
DISSERTATION

submitted
to the

Combined Faculty of the Natural Sciences and for Mathematics
of the

Ruberto-Carola Heidelberg University, Germany
for the degree of

Doctor of Natural Sciences

Put forward by

Uta Büchler
Born in Offenbach am Main, Germany

Oral examination:

Visual Representation Learning
with Minimal Supervision

Advisor: Prof. Dr. Björn Ommer

Abstract

Computer vision intends to provide the human abilities of understanding and
interpreting the visual surroundings to computers. An essential element to com-
prehend the environment is to extract relevant information from complex visual
data so that the desired task can be solved. For instance, to distinguish cats from
dogs the feature ’body shape’ is more relevant than ’eye color’ or the ’amount
of legs’. In traditional computer vision it is conventional to develop handcrafted
functions that extract specific low-level features such as edges from visual data.
However, in order to solve a particular task satisfactorily we require a combina-
tion of several features. Thus, the approach of traditional computer vision has the
disadvantage that whenever a new task is addressed, a developer needs to manu-
ally specify all the features the computer should look for. For that reason, recent
works have primarily focused on developing new algorithms that teach the com-
puter to autonomously detect relevant and task-specific features. Deep learning
has been particularly successful for that matter. In deep learning, artificial neural
networks automatically learn to extract informative features directly from visual
data. The majority of developed deep learning strategies require a dataset with
annotations which indicate the solution of the desired task. The main bottleneck
is that creating such a dataset is very tedious and time-intensive considering that
every sample needs to be annotated manually. This thesis presents new techniques
that attempt to keep the amount of human supervision to a minimum while still
reaching satisfactory performances on various visual understanding tasks.

In particular, this thesis focuses on self-supervised learning algorithms that
train a neural network on a surrogate task where no human supervision is re-
quired. We create an artificial supervisory signal by breaking the order of vi-
sual patterns and asking the network to recover the original structure. Besides
demonstrating the abilities of our model on common computer vision tasks such
as action recognition, we additionally apply our model to biomedical scenarios.
Many research projects in medicine involve profuse manual processes that extend
the duration of developing successful treatments. Taking the example of ana-
lyzing the motor function of neurologically impaired patients we show that our
self-supervised method can help to automate tedious, visually based processes in
medical research. In order to perform a detailed analysis of motor behavior and,
thus, provide a suitable treatment, it is important to discover and identify the
negatively affected movements. Therefore, we propose a magnification tool that
can detect and enhance subtle changes in motor function including motor behav-
ior differences across individuals. In this way, our automatic diagnostic system
does not only analyze apparent behavior but also facilitates the perception and
discovery of impaired movements.

Learning a feature representation without requiring annotations significantly
reduces human supervision. However, using annotated dataset leads generally to
better performances in contrast to self-supervised learning methods. Hence, we
additionally examine semi-supervised approaches which efficiently combine few
annotated samples with large unlabeled datasets. Consequently, semi-supervised
learning represents a good trade-off between annotation time and accuracy.

Zusammenfassung

Computer Vision hat das Ziel die menschliche Fähigkeit, visuelle Umgebun-
gen zu verstehen und zu interpretieren, an Computer weiterzugeben. Ein es-
senzieller Bestandteil ist hierbei, relevante Informationen von visuellen Daten zu
extrahieren, sodass die anvisierte Aufgabe gelöst werden kann. Um zum Beispiel
Hunde von Katzen unterscheiden zu können, ist das Merkmal ”Körperform” rel-
evanter als ”Augenfarbe” oder die ”Anzahl der Beine”. Im klassischen Com-
puter Vision ist es üblich maßgeschneiderte Funktionen zu entwickeln, die spez-
ifische Merkmale wie Kanten oder Punkte von visuellen Daten extrahieren. Um
allerdings Aufgaben zufriedenstellend lösen zu können, wird die Kombination
mehrerer Merkmale benötigt. Die Vorgehensweise beim Einsatz von klassischen
Computer-Vision-Methoden hat daher den Nachteil, dass jedes relevante Merk-
mal manuell definiert und an den Computer weitergegeben werden muss wann
immer eine neue Aufgabe angegangen wird. Aus diesem Grund enthalten die
jüngst publizierten Methoden hauptsächlich neue Algorithmen, die dem Com-
puter beibringen relevante Merkmale eigenständig zu extrahieren. Deep Learning
besitzt auf diesem Gebiet besonders großes Potential. In Deep Learning ler-
nen künstliche neuronale Netze informative Merkmale automatisch von visuellen
Daten zu extrahieren. Die Mehrheit der entwickelten Deep-Learning-Methoden
benötigt einen Datensatz mit Annotationen, welche die gewünschte Lösung der
Aufgabe vorgeben, sodass das neuronale Netz in der Lage ist, die relevanten Merk-
male zu finden. Dies bedeutet allerdings, dass jedes Beispiel im Datensatz manuell
annotiert werden muss, was sehr zeit- und kostenintensiv ist. In dieser Doktorar-
beit wird nach neuen Deep-Learning-Techniken geforscht, die signifikant weniger
manuelle Überwachung benötigen, aber trotzdem zufriedenstellende Ergebnisse
in verschiedenen visuellen Aufgabenstellungen liefern.

Der Schwerpunkt dieser Thesis lieg insbesondere auf Algorithmen des eigen-
überwachten Lernens, bei dem das neuronale Netzwerk mit einer Ersatzaufgabe,
anstatt der ursprünglichen Zielaufgabe, trainiert wird. Die Ersatzaufgabe wird
dabei so formuliert, dass keine manuellen Annotationen benötigt werden. Die
von uns entwickelte Methode erzeugt ein künstliches Überwachungssignal, in-
dem wir die Anordnung visueller Strukturen durcheinander bringen und dem
neuronalen Netzwerk die Aufgabe stellen, die ursprüngliche Struktur wieder-
herzustellen. Zur umfassenden Auswertung der Fähigkeiten des Verfahrens wen-
den wir es nicht nur auf verbreitete Computer Vision Probleme wie die Erkennung
von Bewegungsaktivitäten an, sondern auch auf biomedizinische Szenarien. Viele
medizinische Forschungsprojekte benötigen eine Vielzahl manueller Prozesse, die
die Dauer der Entwicklung von Behandlungsmöglichkeiten verlängern. Daher
zeigen wir anhand der Forschungsprojekte, bei denen die Motorik von neurolo-
gisch beeinträchtigten Patienten analysiert wird, dass eigenüberwachtes Lernen
dabei helfen kann, mühsame visuelle Prozesse in medizinischer Forschung zu au-
tomatisieren. Um eine detaillierte Analyse des motorischen Verhaltens eines Pa-
tienten durchführen zu können, ist es entscheidend, die negativ beeinträchtigten
Bewegungen zu erkennen und zu identifizieren. Aus diesem Grund haben wir eine
Methode entwickelt, die sogar geringe Veränderungen detektieren und künstlich

verstärken kann, sodass sie besser sichtbar sind. Dabei ermöglicht unser Ver-
fahren außerdem ein personenübergreifendes Detektieren von motorischen Unter-
schieden.

Das automatisierte Erlernen einer aussagekräftigen Repräsentation visueller
Daten, ohne Annotationen zu benötigen, reduziert den manuellen Aufwand sig-
nifikant. Das Verwenden von vollständig annotierten Datensätzen führt allerd-
ings beim Stand der Forschung noch häufig zu besseren Ergebnissen im Vergle-
ich zu eigenüberwachten Methoden. Infolgedessen beschäftigt sich diese The-
sis zusätzlich mit halb-überwachten Verfahren, bei denen eine große Menge an
nicht-annotierten Daten mit wenigen annotierten Daten effizient kombiniert wer-
den. Halb-überwachte Verfahren stellen daher einen guten Kompromiss zwischen
Annotationszeit und Leistung dar.

Acknowledgements

At first, I would like to express my sincere gratitude to my advisor Prof. Dr.
Björn Ommer. I am especially thankful for his constant support during my Ph.D.,
his willingness to patiently discuss ideas and results for countless hours and for
staying until the end of every submission deadline. I also would like to thank PD
Dr. Karl Rohr for his interest in my work and for accepting to review my thesis.

A special thanks to all my colleagues at the CompVis research group and the
HCI with whom I have shared many moments of happiness, frustration and in-
spiring discussions inside and outside of work including Nikolai, Tobias, Michael,
Artsiom, Patrick, Johannes, Ekaterina, Dmytro, Alexander, Fabrizio, Barbara
and Pamela. I am especially grateful for the strong and hopefully lifelong friend-
ships that emerged during my time in Heidelberg with Timo, Sabine, Lisa and
Miguel.

Thanks to my family for their love and encouragement and for always believing
in me not only throughout my Ph.D. but my whole life. Without their support I
wouldn’t be where I am today.

Last but not least, I would like to thank Biagio who was first a colleague but
quickly became part of my family. Our heated discussions and diverse perspec-
tives on ideas was a vital part of my accomplishments.

Contents

1 Introduction 1
1.1 Computer Vision . 1
1.2 Deep Learning . 3
1.3 Learning a Representation with Limited

Supervision . 4
1.4 Objective . 6
1.5 Contributions . 6
1.6 Thesis Organization . 8

2 Background 11
2.1 Artificial Neural Networks . 11

2.1.1 Perceptron . 12
2.1.2 Regular Neural Networks 13
2.1.3 Convolutional Neural Networks 13
2.1.4 Fully-Convolutional Networks 16
2.1.5 Deep Generative Models 17
2.1.6 Recurrent Neural Networks 19
2.1.7 3D Convolutional Neural Networks 20

2.2 Activation Functions . 21
2.3 Loss Functions . 23
2.4 Optimization . 25
2.5 Established Network Architectures 29

3 Self-Supervised Representation Learning 33
3.1 Self-Supervised Learning in a Nutshell 33
3.2 Overview of Recent Works . 34

3.2.1 Image-Based Methods . 34
3.2.2 Video-Based Methods . 38

3.3 LSTM Self-Supervision for Videos 41
3.3.1 Temporal Permutation . 41
3.3.2 Experiments . 42

3.4 Multi-Task Self-Supervision . 46
3.4.1 Spatial and Temporal Permutation 47
3.4.2 Experiments . 48
3.4.3 Ablation Studies . 52
3.4.4 Visualizations . 53

3.5 Technical Details . 54

i

ii CONTENTS

3.6 Discussion . 54

4 Unsupervised Motor Behavior Analysis 57
4.1 Introduction . 57
4.2 Previous Work . 59
4.3 Experimental Setup . 62

4.3.1 Rat Stroke Model . 62
4.3.2 Human Gait Dataset (HG2DB) 63

4.4 Self-Supervised Learning for Behavior
Analysis . 64
4.4.1 Learning a Fine-Grained Representation 64
4.4.2 Detection . 65

4.5 Magnification of Impaired Behavior 66
4.6 Experiments . 69

4.6.1 Paw Detection . 69
4.6.2 Evaluation of the Learned Representation 69
4.6.3 Fitness Prediction and Comparison with Previous

Work . 73
4.6.4 Disease Classification . 74
4.6.5 Rehabilitation Analysis . 75
4.6.6 Magnification . 76

4.7 Technical Details . 80
4.8 Discussion . 80

5 Robust Magnification 83
5.1 Introduction . 83
5.2 Robust Magnification across Subjects 84

5.2.1 Problem Definition . 84
5.2.2 Disentanglement for Magnification 85
5.2.3 Learning to Magnify . 87

5.3 Experiments . 89
5.3.1 Datasets . 89
5.3.2 Qualitative Results . 90
5.3.3 Quantitative Analysis . 93
5.3.4 Ablation Studies . 96

5.4 Technical Details . 96
5.5 Discussion . 96

6 Semi-Supervised Representation Learning for Videos 99
6.1 Introduction . 99
6.2 Related Works . 100
6.3 Unsupervised Pre-Training and Fine-tuning 101
6.4 Post-Training via Pseudo-Labelling 103
6.5 Experiments . 106

6.5.1 Datasets . 106
6.5.2 Evaluation Metrics . 107
6.5.3 Quantitative Evaluation 107
6.5.4 Ablation Studies . 108

CONTENTS iii

6.6 Self-Supervised vs. Semi-Supervised 109
6.7 Technical Details . 110
6.8 Discussion . 110

7 Conclusion and Discussion 111

Chapter 1

Introduction

1.1 Computer Vision

Humans perceive their environment mainly through the five basic senses: sight,
hearing, smell, taste and touch. The sensing organs such as eyes, ears and hands
send information to the brain which ultimately processes the input. This pro-
cess is necessary to understand and explore our surroundings. It helps to gain
knowledge and to find connections to possibly new encounters and challenges.
Especially the human visual system greatly supports humans in understanding
the surrounding environment. Scientists have been trying to develop technical
devices that assist us in exploring the world. These devices often imitate the
ability of objects or behavior occurring in the natural world such as planes that
emulate birds or cameras that mimic eyes. Another example is how humans or
animals process visual information which they have absorbed through their eyes
in order to make sense of the world. This is imitated by computers, which pro-
cess digital images or videos that are recorded by cameras. The goal of Computer
Vision (CV) is then to develop algorithms that help computers to understand
the content of visual data and to infer information about the environment. In
other words, CV attempts to reproduce the abilities of human vision, i.e. to help
computers to see. Figure 1.1 graphically describes this process.

Computer vision emerged in the early 1970s [158] and is a sub-field of artificial
intelligence which aims at simulating human intelligence in machines. At the
beginning of CV, researchers believed that processing the visual input with a
computer should be an easy task and represents only a small step along the
way to developing an artificial intelligence [158]. However, they quickly realized
that learning to understand and interpret the visual surroundings is a far more
complex task than one would assume. In fact, visual problems which seemed
trivial at the beginning are still not fully solved nowadays.

Computer vision methods are developed for a wide variety of applications in-
cluding security (e.g. surveillance) [32, 75, 154, 186, 118], autonomous driving
[109, 188, 111, 58] or healthcare [15, 81, 175, 5]. In order to tackle these applica-
tions, there exists a long list of ongoing research areas such as object recognition,
posture estimation, person identification, multi-object detection, crowd counting,
depth estimation, 3D reconstruction, flow estimation, action recognition, track-
ing, action segmentation and many more.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Human vision vs. computer vision. Humans capture their surround-
ings through eyes and send the visual information to the brain which subsequently
processes the input. Due to several months or years of exploration and life ex-
perience, humans are able to understand their environment and, for instance,
recognize the objects in a displayed scene. Computer vision is used to provide a
similar ability for computers: given an image of a scene recorded by a camera,
CV helps a computer to process the input and eventually infer information about
the scene.

One of the most crucial steps to solve these problems is to find a task-oriented
representation that best describes the scene and that ignores unimportant factors.
In order to identify a person, for instance, humans focus on very specific features
of a person’s face such as the shape of the eyes or nose; if the person is sitting
or standing is rather unimportant. However, if the aim is to recognize the type
of movement a person is performing, the posture becomes more important than
facial features. Thus, also the performance of computer vision methods heavily
depends on the choice of data representation. Traditional feature extractors such
as SIFT (Scale-Invariant Feature Transform) [102] or HOG (Histogram of Ori-
ented Gradients) [30] focus mainly on low-level characteristics such as edges or
corners. These human engineered features might be successful in distinguishing
bananas from apples but are less effective if we want to differentiate between ap-
ples and oranges due to their almost identical shape. Moreover, every new task or
dataset requires us to manually specify which features the computer should look
for. Therefore, the CV community has devoted a big part of its research to meth-
ods that teach a computer to autonomously extract relevant and task-specific
features. This procedure is also called representation learning and is part of the
broader topic of machine learning algorithms. Recently, one specific approach
has been particularly successful in learning powerful visual representations: Deep
Learning. A deep learning model is based on an artificial neural network that
learns to progressively extract higher level features such as object parts by build-
ing them out of simpler characteristics such as edges. Similar to cameras or
planes, an artificial neural network is inspired by living organisms. Deep learning
draws some insights from the structure and functionality of a brain. However, as
humans often need years of experience to naturally understand the environment
also deep learning models require a lot of training data to reach an adequate
performance.

1.2. DEEP LEARNING 3

Figure 1.2: Depiction of the structure of a neural network. Low-level features
such as edges or contours represent simpler (visual) concepts and are processed
in early layers. Mid-level features like object parts are extracted by combining
the information passed from previous layers. Finally, high-level features that,
for instance, describe the full object, are passed to a final output layer in order
to make a decision such as the class of the object shown on the input image.
Each column represents one layer that consists of several interconnected neurons
(circle).

We will discuss this problem further in the next two sections and provide a
more detailed description of deep learning.

1.2 Deep Learning

Recent successes in machine learning and the development of increasingly more
powerful computers have brought us closer to the goal of creating an artificial
intelligence. Machine learning represents a set of algorithms that interprets data,
learns from them, and infers the learned concepts to perform intelligent decisions.
Deep learning (DL) is a subset of machine learning algorithms that is partly
inspired by the structure and functionality of a brain (visual cortex). Before deep
learning, machine learning algorithms such as support vector machines (SVM)
[28] or decision trees were highly dependent on manual feature engineering, i.e.
hard-coded knowledge. Instead of relying on humans to specify what features to
look for, deep learning algorithms teach a computer to acquire their knowledge
from raw data.

The idea is to allow a computer to understand the environment in terms
of a hierarchy of concepts, meaning that complicated concepts can be learned
by building them out of simpler ones. The expression ”deep” is used because
many simple concepts, build on top of each other, are utilized until a rather
complex issue can be solved [61]. Mapping, for instance, an image of a cat
directly from pixel intensities to an object class results in a very complicated
function. In an artificial neural network, this problem is approached by breaking
the complex mapping into many nested simpler functions, where each function
is represented by a different layer of the model. Each layer consists of several
nodes (artificial neurons) which are densely interconnected. An individual node

4 CHAPTER 1. INTRODUCTION

might be connected to various nodes in the predecessor layer, from which it
obtains information, and several nodes in the following layer, to which it passes
information. The connections between the nodes are modeled as weights that
define the amount of information passed from layer to layer. Figure 1.2 illustrates
the structure of an artificial neural network. In order to provide a good mapping
from the input (e.g. images) to the desired output (e.g. object classes) the weights
of all layers need to be trained. This is performed by using an optimization
algorithm that searches for the set of weights that maximizes the performance
on a training dataset. A more detailed background of neural networks and a
description of the different layer types are introduced in Chapter 2.

The concept of deep learning exists since the 1940s but was rather unpopular
for several years. One reason being the deficient hardware available at that time
given that the training process is computationally very costly [61]. Inspired by
the Neocognitron network [57] which was presented in 1980 by K. Fukushima,
Yann LeCun et al. introduced convolutional neural networks (common abbrevi-
ations: CNN or ConvNet) [95] in 1989. CNNs are a particular type of artificial
neural networks for processing data with a grid-like topology such as image data
(for more information on CNNs see Section 2.1). Even though CNNs significantly
reduce the computational complexity during training and showed impressive re-
sults on some tasks such as the MNIST digit image classification problem, they
remained rather unpopular until the early 2000s. In 2009 Russakovsky et al. [142]
released ImageNet, a large object recognition dataset with more than 1 million
real images and 1000 object classes. The goal was to move from simple classifica-
tion problems such as MNIST to real-world problems. Thanks to this large-scale
dataset and a novel CNN architecture called AlexNet [90], deep learning expe-
rienced a breakthrough in 2012. AlexNet reduced the state-of-the-art error rate
on ImageNet by a large margin. Since then neural networks gained increasing
popularity and many deeper architectures such as VGG [149] or ResNet [67] have
been proposed. Neural networks have also shown their potential on various other
tasks including video understanding problems. Deep learning is nowadays the
leading approach for solving vision tasks and represents a big step forward to-
wards artificial intelligence. In addition, DL advances various interdisciplinary
projects involving, for instance, art history [107, 152, 21] or autonomous driving
[109, 111, 58, 25].

1.3 Learning a Representation with Limited

Supervision

The success of neural networks highly depends on the data. AlexNet, for in-
stance, contains 61 million parameters that need to be trained on the desired
task. Without a large-scale dataset like ImageNet it would not be possible to
achieve satisfactory results. The deeper a network the more potential it has to
solve complex problems. Nevertheless, this also requires more data to train mil-
lions or even billions of parameters. Fortunately, visual data is cheap to acquire
due to the huge number of images and videos available on the internet. However,
training a neural network requires additionally annotations (also: labels) which

1.3. LEARNING A REPRESENTATION WITH LIMITED
SUPERVISION 5

define the content of the images or videos (for instance the class of an object
displayed on an image). Gathering these annotations is very tedious, cost- and
time-intensive considering that every image needs to be labeled manually by a
person. Occasionally also privacy, safety or ethic issues prevent us from annotat-
ing large datasets. Therefore, besides advancing supervised methods (training the
network with manual annotations), researchers have been focusing on developing
approaches that learn a useful feature representation with no or only few labels.
The methods that do not require any manual annotations are called unsupervised.
There are several fields in computer vision concerned with developing approaches
which are using only few labels such as

• Weakly-Supervised Learning. Trains a neural network with lower qual-
ity labels that are easier to acquire (e.g. using only bounding box anno-
tations to learn object boundaries [83]) or uses a neural network that is
trained on a different fully labeled dataset (or task) as initialization.

• Zero-Shot Learning. Training is performed on a small number of classes
with the aim of generalizing to new, unseen classes.

• Semi-Supervised Learning. Efficiently combines the large number of
unlabeled samples with a small amount of labeled samples.

The above list is only a selection from this scope of work. There exist many more
expressions describing specific annotation setups. This thesis focuses mainly on
unsupervised learning, specifically self-supervised, and partly on semi-supervised
learning. Note, that unsupervised and self-supervised learning are used inter-
changeably in this thesis.

Training a neural network with limited resources has not only the advantage
of reducing the labelling effort. It also reflects the way animals and humans learn.
According to Horace B. Barlow, a visual neuroscientist, the brain is able to extract
knowledge from the massive amount of sensory data perceived through our sensing
organs without receiving any direct rewards or punishments [9]. This suggests
that the perceived data already incorporates a considerable number of supervisory
signals. In machine learning, this property is exploited by self-supervised methods
which learn a powerful feature representation without requiring manual labels.
Self-supervised approaches train the network indirectly by solving a surrogate
task where its labels can be extracted automatically from the data (for more
information please see Chapter 3).

Learning with limited annotations is especially helpful for interdisciplinary
projects that might address rather atypical vision tasks. Instead of requiring
experts from other fields such as biology or art history to spend time on anno-
tating millions of samples, self-supervised learning enables the direct usage of
unlabeled datasets. The benefit of applying self-supervised learning methods to
interdisciplinary projects has been, for instance, demonstrated in medical imag-
ing [159, 23] or autonomous driving [113, 27]. In this thesis, we particularly show
in Chapter 4 that self-supervised learning can efficiently assist neuroscientists in
analyzing the motor function (motor behavior analysis) of patients suffering from
a neurological disease.

6 CHAPTER 1. INTRODUCTION

1.4 Objective

Teaching a neural network to understand the content of images or videos is a
challenging task. Especially in unsupervised learning only lately methods are
starting to show satisfactory results on benchmark datasets. Thus, the principal
objective of this thesis is to develop novel deep learning approaches for learning
feature representations by employing either none or only a small amount of man-
ual annotations. The performances of the learned representations are evaluated
and compared to previous works on several image and video understanding tasks
including an interdisciplinary project. The remainder of this section specifies the
various sub-goals of this thesis.

Self-supervised learning provides a powerful tool for learning meaningful fea-
ture representations without requiring labels. This thesis aims at developing a
novel self-supervised learning method to learn an image and video representation
simultaneously. The goal is to learn image features that are applicable to a wide
variety of image understanding tasks such as object classification and human
posture estimation and to improve action recognition using the resulting video
representation.

Besides applying the novel methods to common computer vision problems, this
thesis additionally aims at facilitating the research in interdisciplinary projects
using self-supervised machine learning. In particular, this dissertation includes
a collaboration with neuroscientists who analyze the movement of animals and
humans suffering from neurological diseases that negatively affect the motor func-
tion. Self-supervised methods can support researchers by automatically analyzing
the behavior before and after medical treatments. Moreover, the overall goal of
this collaboration is to develop a diagnostic support system that can discover even
small changes in motor function in order to find an optimal treatment. Thus, this
thesis aims at developing a tool that not only analyzes behavior but also com-
pares and quantifies even subtle deviations. The discovery of small differences in
movements is not only advantageous in medical scenarios but also, for instance,
in sports for comparing and identifying sub-optimal movements. Therefore, the
developed method should be robust enough to function also in less restricted
scenarios with videos which are recorded outside of a medical lab.

Self-supervised learning represents an impressive alternative to supervised
learning if no labels are available. However, self-supervised methods are not yet as
powerful as supervised methods and therefore lead often to lower performances.
Thus, this thesis additionally aims at investigating the improvement in perfor-
mance when combining a large dataset of unlabeled samples with few labeled
examples. In particular, this thesis aims in developing a new semi-supervised
method for improving the accuracy on action recognition.

1.5 Contributions

The contributions of this thesis are the following:

• An overview of the most influential self-supervised image- and video-based
approaches published from 2015 until 2020.

1.5. CONTRIBUTIONS 7

• A new surrogate task for self-supervised learning is developed in this thesis.
The surrogate task exploits time information by firstly permuting video
frames and secondly asking the network to reconstruct the original frame
ordering. In combination with an LSTM network the model learns a fine-
grained image and sequence representation without requiring any manual
annotations. The representation can be used to address several tasks such
as action recognition and human pose estimation.

• A framework for combining two related permutation tasks that capture
spatial and temporal information from images and videos, respectively, is
proposed. Given that the two unsupervised tasks are related, the network
can be trained simultaneously on two data types without requiring a pre- or
post-processing step for adjusting them to each other. The resulting shared
representation contains information extracted from images and videos and
can therefore be used to tackle a wide variety of visual understanding tasks.

• In this thesis, self-supervised learning is applied to common benchmark
datasets of the computer vision community but also to an interdisciplinary
project which is based on a close collaboration with neuroscientists. The
self-supervised method described above is used to learn a fine-grained be-
havior representation of diverse subjects (animals and humans) which are
suffering from a neurological disease. Biagio Brattoli has equally con-
tributed to this idea.

• Many processes in motor behavior analysis are still performed manually.
Given the behavior representation learned via the self-supervised method,
this thesis additionally provides a pipeline for automatically analyzing the
behavior/motor function of impaired subjects. The proposed method can
predict the fitness of a subject, classify diseases, analyze the rehabilitation
progress and compare the behavior across diverse subjects. Evaluations
are performed on two different types of species (rodents and humans). Im-
plementing and applying the pipeline to rodents has been performed in
collaboration with Biagio Brattoli (equal contribution).

• A new approach for discovering and comparing subtle differences in posture
is proposed. Small behavioral changes of impaired subjects in comparison
to healthy subjects are easily overlooked by humans due to the different
appearances. The model proposed in this thesis is able to facilitate the
perception of impairment by magnifying subtle posture deviations between
an impaired and healthy subject. For that matter, the approach includes
at first an unsupervised training of a generative network that learns to
separate posture from appearance (background, color of clothes etc.). Then
during inference, the generative model is able to detect and magnify subtle
posture deviations across subjects to finally generate images that display the
magnified differences. The resulting magnifications increase the visibility
of impairment for humans and can therefore simplify the interpretation of
symptoms.

• Magnifying posture deviations across subjects requires a strong separation

8 CHAPTER 1. INTRODUCTION

of posture and appearance if the recording setup changes from subject to
subject (e.g. different locations). Therefore, a novel disentanglement loss
is introduced to enforce a stronger partition of posture and appearance.

• In order to improve the generation quality of magnified images, a new loss
is proposed. Different to the previously mentioned magnification, which
is only applied after training the generative model, the new loss enables
the model to incorporate the magnification process already into the train-
ing. This guarantees a higher image generation quality and more realistic
magnifications.

• A novel semi-supervised learning approach for action recognition is pro-
posed. The presented approach learns powerful features from partly labeled
video datasets by adapting successful methods in semi-supervised learning
for images to videos and by exploiting recent advances in unsupervised video
representation learning.

• This thesis introduces five new datasets for behavior analysis and magni-
fication. These datasets have been collected by or in collaboration with
Anna-Sophia Wahl, Martin E. Schwab, Lenard Filli, Fritjof Helmchen and
Michael Dorkenwald.

1.6 Thesis Organization

Chapter 2 introduces the concept of artificial neural networks including their
structure, different layer types and common approaches for optimizing their per-
formances. This chapter additionally summarizes established network architec-
tures that have been successfully applied to a variety of different visual under-
standing tasks.

Chapter 3 first introduces self-supervised representation learning and pro-
vides a summary of the most influential approaches. Previous works on self-
supervised learning mainly addressed image understanding tasks. In this chapter,
we describe our self-supervised framework of permuting video frames where the
resulting representation can be used to solve video understanding tasks. Then,
we propose an extension of that method by training a multi-task neural network
on spatial and temporal permutations for better generalization. We evaluate the
performance of both methods on action recognition, pose estimation, image clas-
sification, image detection and image segmentation. The approaches introduced
in this chapter are based on two publications [15, 16] at CVPR 2017 and ECCV
2018.

Chapter 4 presents an interdisciplinary project which highly benefits from
unsupervised machine learning approaches to automatize manual processes. Clin-
ical studies for analyzing the motor function of subjects that are suffering from
a neurological disease have so far included many manual processes. To ease the
work of researchers and doctors, we propose to apply self-supervision to learn
a fine-grained representation of behavior without requiring manual annotations.
This chapter first introduces previous (supervised) works on behavior analysis
and presents the experimental setups of the clinical studies on which we evaluate

1.6. THESIS ORGANIZATION 9

our approach. Then we describe our method for learning a fine-grained posture
and behavior representation. In order to provide a detailed diagnostic system that
is able to discover even small indications of impairment, we additionally present
an approach that magnifies subtle posture differences between an impaired and
healthy subject. Our magnification method facilitates the perception and com-
parison of impairment across different subjects. We demonstrate the applicability
of our complete diagnostic system (including our learned representation and our
magnification method) on two different species for diverse behavior analysis tasks
such as disease classification and rehabilitation evaluations. Our diagnostic sup-
port system is currently under review at a journal.

Chapter 5 describes a more robust magnification method for amplifying
posture deviations across subjects. Besides the medical scenario introduced in the
previous chapter, our robust magnification approach is also applicable to more
complex video setups such as outdoor recordings with different lightning and
backgrounds. We first introduce two novel losses for disentangling posture from
appearance and for learning to magnify posture deviations. Then, we evaluate
and compare our magnification results with previous works using three datasets
with different settings. This chapter is based on our publication at CVPR 2020
[43].

Chapter 6 introduces a semi-supervised learning (SSL) method for action
recognition. Self-supervised learning minimizes the amount of human supervision
but does not yet reach as high performances as supervised methods. Therefore,
we propose a novel semi-supervised method for action recognition that efficiently
combines few labeled samples with a large dataset of unlabeled samples. Our ap-
proach consists of an unsupervised pre-training, fine-tuning and pseudo-labelling
based post-training phase. After describing our novel approach, we evaluate its
performance on two benchmark datasets with up to 400 classes and demonstrate
the importance of all stages by providing several ablation studies.

Chapter 7 concludes the thesis with a summary and final discussion.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Artificial neural networks (ANN) have been tremendously successful during the
last few years in learning powerful feature representations for addressing various
visual understanding tasks. Therefore, this thesis is mainly concerned with im-
proving and developing new ANN based methods. This chapter contains a short
summary of the most important concepts of ANNs. If the reader is already fa-
miliar with neural networks, this chapter can be skipped since it does not contain
any methodological details about the approaches developed in this thesis.

2.1 Artificial Neural Networks

An artificial neural network (or often simply called neural network) consists of
an hierarchy of concepts starting from simpler data representations to more com-
plicated ones. As introduced in Section 1.2, the aim is to approximate a complex
function y = f ∗(x) that maps an input x (e.g. an image) to the desired output y
(e.g. an object class) by breaking it into many simpler nested functions f (l) with
l = 1, ..., NL and NL the amount of functions used, i.e.

f ∗(x) ≈ f (x; θ) := f (NL)(f (NL−1)(... f (2)(f (1)(x; θ(1)); θ(2))...; θ(NL−1)); θ(NL)),
(2.1)

where θ = (θ(1), θ(2), ..., θ(NL)) represents the learnable parameters that result in
the best function approximation. This type of ANN is also called feedforward
neural network since the information flows only in one direction. The process of
predicting y given x using the feedforward neural network is commonly named
forward pass. Figure 1.2 illustrates the concept of a feedforward neural network
graphically. In practice, the nested functions f (l) are implemented as layers,

whereas the first layer is represented by f (1), the second by f (2) and so on and

the depth of a neural network is defined by NL. Note, that θ(1), ..., θ(NL) are
matrix valued and their dimensionalities represent the width of the corresponding
layers. The first layer is also called input layer, the last layer output layer and all
the layers in between are named hidden layers since the training data does not
specify their desired output. Each hidden layer consists of a set of neurons that
are connected with neurons from adjacent layers but not with neurons from the
same layer.

11

12 CHAPTER 2. BACKGROUND

Figure 2.1: Depiction of a Perceptron.

In order to obtain a good function approximation f (x; θ), we require a strategy
that finds the best values for θ (also called weights) given a set {xi, yi}N

i=1 of
input-output pairs. This procedure is called the training of a neural network
and consists essentially of a forward and backward pass. The latter represents
the actual ”learning” of the ANN and is responsible for updating the weights
accordingly to increase the performance/decrease the error. During the forward
pass, the input is fed into the network and passed through all layers until the final
layer outputs a prediction score per input sample. To perform the backward pass,
we require a loss function (Section 2.3) that evaluates the prediction performances
on the training set given the true labels yi. The computed loss is then back-
propagated from the last layer up until the first layer by using an optimization
algorithm that adjusts the weights in the direction of improvement. In Section
2.4 we introduce commonly used optimization algorithms which search for the set
of weights that maximizes the performance.

2.1.1 Perceptron

Neural networks that map the input directly to the output (no hidden layers)
are often referred to as single-layer neural networks and are only able to learn
linearly separable patterns. A perceptron ranks among supervised single-layer
neural networks and represents a mathematical model of a biological neuron.
Figure 2.1 illustrates a perceptron and its internal functionality. Similar to a
biological neuron, a perceptron controls the strength of influence of one neuron
on another. This is practically implemented by using learnable weights wi. The
final signal is computed by summing up the weighted input values. If the resulting
signal is above a specific threshold, the neuron outputs (also called to ’fire’) its
signal. However, the value of the signal can be anything between −∞ and ∞.
Therefore, it is necessary to define the bounds (also ’firing rate’) of the neuron’s
signal. The firing rate is practically modelled by using an activation function
a. The most elementary form of a would be a binary step function or threshold
function that simply decides if the neuron is firing or not,

a(x; θ) =

{
1 ∑N

i=0 wixi > 0
0 ∑N

i=0 wixi ≤ 0.
(2.2)

with θ = (w1, ..., wN). This activation function might work well for a binary
problem. However, if more than two classes are involved, we require multiple

2.1. ARTIFICIAL NEURAL NETWORKS 13

neurons that could all output 1 or 0, making it impossible to determine the
only correct class. Therefore, several alternative activation functions (especially
nonlinear activation functions) have been proposed over the years. In Section 2.2
we discuss the most common and widely used activation functions.

The weights wi of a perceptron are trained by applying an optimization ap-
proach such as stochastic gradient descent given a training set of input-output
pairs (see Section 2.4).

A perceptron can implement all elementary logical functions, such as AND,
OR or NOT. However, more complex functions such as XOR do not represent a
linear separable pattern and can therefore not be modelled by a single perceptron.
In this case we require a multi-layer perceptron (MLP) with a nonlinear activation
function which is also often seen as the regular neural network.

2.1.2 Regular Neural Networks

Regular neural networks contain at least one hidden layer and are able to represent
nonlinear functions. In contrast to convolutional neural networks (subsequent
section), multi-layer perceptrons only contain fully-connected (FC) layers. As
the name already suggests, an FC layer signifies that each node is connected to
every node in adjacent layers. Their output can therefore be computed by a
simple matrix multiplication. As a side note, also a perceptron is considered fully
connected since every input node is connected to the output node(s) and one
fully-connected layer is composed of one or multiple perceptrons. The output of
a two-layer neural network (one hidden layer and one output layer), for instance,
can be mathematically expressed in the following way

ypred = f (x; θ) = θ(2) · a(θ(1)x) (2.3)

with θ(1) and θ(2) the weights of the hidden layer and output layer, respectively
and a a (nonlinear) activation function.

Unfortunately, a regular neural network does not scale well to full images. A
two-layer neural network that receives images with a size of 200x200x3 already
contains more than 240,000 weights which need to be trained. In the next sec-
tion we describe an alternative and more efficient layer type that exploits the
properties of images to reduce the number of parameters and the immense com-
putational costs.

2.1.3 Convolutional Neural Networks

As a regular neural network, a convolutional neural network (CNN) contains an
input layer, output layer and one or multiple hidden layers. The main difference
between a regular and convolutional neural network is the type of layers. A
conventional CNN is composed of diverse layer types, namely

• Convolutional layers,

• Pooling layers and

• Fully-connected layers.

14 CHAPTER 2. BACKGROUND

Figure 2.2: Example of a 2x2 max pooling operation.

The following paragraphs provide a brief description of the different layer types.
Since fully-connected layers have been already discussed in the previous subsec-
tion, this topic will not be covered subsequently.

Convolutional Layers. As the name suggests, a convolutional (conv) layer
consists of a set of learnable convolutional filters. In contrast to a fully-connected
layer, the neurons in a conv layer are only connected to a small region of the
previous layer. Thus, the number of parameters in a conv layer is smaller than
in an FC layer. This property comes from the fact that the same convolutional
filter is applied to all locations of the input features. Moreover, each filter has
only a small receptive field leading to a small number of parameters per filter.
The neurons in a conv layer are arranged in 3 dimensions: width, height, and
depth. The width and height characterize the size of the convolutional filter and
the depth is defined by the size of the input volume (e.g. if the input is an image
with 3 channels the depth of the first conv layer would be 3). Practically, each
filter is convolved across the width and height of the input in a sliding window
manner. This procedure produces a 2D feature map which provides the response
of the chosen filter at every spatial location. A conv layer usually contains several
convolutional filters where each of them produces a separate 2D activation map.
Stacking these activation maps results in a 3D output volume. Since the filters are
applied to spatially neighboring input features, the original structure of the input
(e.g. the x-y structure of an image) is maintained. Thus, besides the advantage
of reducing the amount of learnable weights, a conv layer additionally preserves
the spatial information. In this way, a CNN is able to identify spatial structures
such as edges or objects through the application of the corresponding filters (e.g.
a sobel filter for edge detection). The optimal values of the filter parameters for
a particular task and dataset are learned during the training of the CNN. We
would like to refer the reader interested in learning more about convolutions to
related literature such as [61] for more details.

Pooling. The main purpose of a pooling layer is to decrease the number
of parameters and computational costs by reducing the spatial dimensionality
of the feature maps (a depth slice of the input). The pooling operation (also
called subsampling or downsampling) operates independently on every feature
map. The most common pooling operations are max pooling, average pooling
and sum pooling. The operations are performed by applying a max, average
or sum filter to a 2D sub-region of an input feature map. If a max filter has,
for instance, a size of 2× 2, the operation computes the max over 4 numbers.
Figure 2.2 illustrates an example of a 2× 2 max pooling operation applied to
a 4× 4 feature map. In practice, max pooling has proven to be more effective
than applying an average or sum filter. It is also worth noting that besides
reducing the number of parameters, a pooling operation additionally increases

2.1. ARTIFICIAL NEURAL NETWORKS 15

the receptive field and aggregates multiple low-level features in the neighborhood.
Therefore, downsampling also causes a local rotational and positional invariance
advantageous for various tasks such as object recognition.

Overall Structure of a Basic CNN. Every CNN contains at least one con-
volutional layer and a pooling layer is periodically inserted in-between successive
conv layers. In order to indicate if the output of a neuron is relevant or not,
an activation function (more details in Section 2.2) is applied to the convolved
feature map either before or after the pooling operation. The final layer of a
conventional CNN is a classifier in the form of a fully-connected layer. Thus,
every neuron in the last layer is connected to all neurons from the previous layer.
The final output represents the predicted class scores of the given input, i.e. the
dimensionality of the output is defined by the number of classes occurring in the
dataset. To summarize, a CNN gradually transforms the original input (e.g. an
image) layer by layer from the initial values (e.g. pixel intensities) to the final
class scores. The parameters of the conv and FC layers are learned during train-
ing while the activation function and the pooling operation are fixed functions.
In the following, we briefly discuss additional strategies and layer types proposed
during the last few years for improving the overall performance of CNNs.

Regularization. One of the major problems of CNNs is that they are prone
to overfitting due to their complexity. Overfitting occurs when a function ap-
proximation is too closely fit to a small set of data points and fails in generalizing
to unseen data. In this case, the CNN might output perfect predictions for the
training set but is not able to predict the classes of a left-out testing set. Stan-
dard regularization methods essentially push some of the parameters towards zero
to reduce the model complexity and increase the generalization abilities for ul-
timately improving the performances on various tasks. The most common and
established approaches proposed over the past few years are L2/L1 regulariza-
tion, Dropout [151] and data augmentation. The L2 regularization penalizes the
squared magnitude of all weights by adding the term 1

2 λw2 with w the weights
in the network and λ the regularization strength. This type of regularization
heavily penalizes peaky weights and encourages the CNN to employ all inputs
consistently. Practically, the L2 regularization linearly decays every weight to-
wards zero during training. The L1 regularization adds the term λ|w| to the
objective and has the property to direct some of the entries in a weight vector
very close to zero. Thus, the weight vector becomes very sparse, meaning that
only the most important inputs are considered. In practice, the L2 regularization
often outperforms the L1 regularization. There exists also a combination of both
regularizations called elastic net regularization. Dropout [151] is one of the most
effective and most simple regularization approaches and is usually placed after an
FC layer. A dropout layer sets individual neurons with a probability of p to zero
during training. p is commonly set to 0.5 but represents a hyperparameter that
might need to be adjusted for reaching its maximum potential. Dropout forces
the network to have redundant representations and prevents neurons from being
highly dependent on others (co-adaption). The idea behind data augmentation
is to prevent overfitting by artificially increasing the size of the training set with-
out requiring manual annotations. Common data augmentations for images are
cropping, padding, horizontal flipping, scaling and color jittering. Nearly every

16 CHAPTER 2. BACKGROUND

CNN model is nowadays trained with data augmentation.
Besides the previously mentioned regularization methods, many more strate-

gies have been proposed during the last few years. Among them are early stop-
ping, DropConnect [176], DropBlock [59], fractional max pooling [63], stochastic
depth [70] and Cutout [35]. For more information please see [61] or similar liter-
ature.

Normalization. Normalization can be performed on the input data itself or
the hidden layers of an ANN by adjusting and scaling the values. This paragraph
addresses techniques of the latter. Normalization provides many advantageous
and is presently a standard strategy used in CNNs. For instance, besides pre-
venting weights to explode by restricting them to a certain range, normalization
also increases the overall training speed and prevents an internal covariate shift
(distribution of the activations is constantly changing). Common normalization
techniques are local response normalization [90], batch normalization [73], layer
normalization [7] and group normalization [184]. In the following, we will describe
batch normalization (short: batchnorm) since it is presently the most established
normalization technique. Batchnorm increases the stability of a CNN by nor-
malizing the values of a previous activation based on the samples in a batch (a
collection of several training samples during one forward pass). In particular,
for every value xi the approach subtracts the batch mean µB = 1

m ∑m
i=1 xi and

divides by the batch variance σ2
B = 1

m ∑m
i=1(xi − µB)

2,

x̂i =
xi − µB√

σ2
B + ε

(2.4)

with m the number of samples in a batch. However, normalizing a unit in this way
reduces the expressive power of a neural network. In batchnorm, the expressive
power of a CNN is maintained by introducing two learnable parameters to each
layer: γ for scaling the unit and β for shifting the value. This results in the
following final output

yi = γx̂i + β. (2.5)

The learnable parameters allow the new values yi to have any mean and stan-
dard deviation and are optimized during the training step. A batchnorm layer
is usually inserted after a fully connected layer or a conv layer and before the
activation function.

The following sub-sections introduce popular network structures for solving
different types of problems.

2.1.4 Fully-Convolutional Networks

Fully-convolutional networks are used for segmenting the objects shown on an
image (semantic segmentation). For that reason, we require a class prediction
for every pixel instead of the entire image. Moreover, it is important to keep
the original structure of the input (x-y locations of pixels) which demands for
a model that preserves the spatial information. A convolutional neural network
includes a fully-connected layer which in contrast to convolutional layers obscures

2.1. ARTIFICIAL NEURAL NETWORKS 17

the spatial coordinates. However, the functional form of an FC and conv layer
is identical since both layers compute dot products. The only difference between
these two-layer types is that conv layers are only connected to a local region in
the input. Therefore, Long et al. propose in [101] to simply transform (also called
convolutionalize) the FC layers of a CNN into conv layers by setting the filter size
exactly to the size of the input. A fully-convolutional network has the advantages
that it contains less parameters, the computational costs are reduced, and it can
process samples with a variable image size. However, due to the poolings and
convolutions (downsampling), the output of a fully-convolutional network does
not have the same dimensionality as the input image causing a rather coarse
segmentation mask. Thus, Long et al. [101] propose an alternative method called
FCN that performs a gradual upsampling of activations by using deconvolutions.
This approach is slightly more complex than simply convolutionalizing FC layers
but produces more fine-grained segmentation masks.

2.1.5 Deep Generative Models

The aim of a generative model is to approximate the true distribution a finite
dataset was sampled from and to ultimately employ the resulting model for var-
ious kinds of tasks. Instead of learning to predict a class given a particular data
point, a generative model learns a joint distribution over all data points without
requiring any human supervision (unsupervised). Possible application scenar-
ios are density estimation, sampling for generating new data points given the
learned distribution and unsupervised representation learning. Two of the most
commonly employed generative model approaches in deep learning are (varia-
tional) autoencoders and generative adversarial networks (GAN). The following
paragraph will first introduce autoencoders, followed by a description of varia-
tional autoencoders. To learn more about GANs please see related literature such
as [62] or [61].

Autoencoder. The target values of an autoencoder (AE) are equal to the
input values which means that an AE f tries to learn an approximation of the
identity function,

x̂ = f (x; θ) (2.6)

with x the input to the AE, x̂ the output and θ its weights. However, the ac-
tual purpose of an AE is not to simply copy the input to the output, but to
extract useful features of the underlying data distribution. Producing an output
(almost) identical to the input is merely a tool for training the neural network
without requiring any manual labels. An AE consists of two main phases: the
reduction step (encoding) and the reconstruction phase (decoding). During the
reduction step the network learns to capture the most salient features (also: la-
tent attributes) of the dataset by mapping the input (e.g. pixel intensities) into
a smaller dimensional embedding space. In fact, if the neural network would be
constructed as a linear model, the reduction phase would result into a similar
dimensionality reduction as discovered in PCA. However, thanks to the nonlinear
activation functions, an autoencoder offers a more powerful nonlinear generaliza-
tion of PCA. During the reconstruction phase, the AE attempts to generate a

18 CHAPTER 2. BACKGROUND

Figure 2.3: Illustration of the structure of an autoencoder (left) and variational
autoencoder (right). Left : An encoder E maps the input image x to a lower
dimensional latent space to obtain z = E(x) which is then fed into the decoder
D to reconstruct the image. Right : The encoder of a variational autoencoder
outputs the mean and standard deviation of a normal distribution per latent
attribute from which the latent representation z is sampled. Please note, that the
trapezoids (blue, rose) contain in practice several layers including convolutional
and pooling operations.

representation as close as possible to the input given the reduced encoding. The
network parts of an AE responsible for reducing the dimensionality and for re-
constructing the input are called encoder and decoder, respectively. Considering
the previous characterization, Equation 2.6 is updated as follows

x̂ = D(E(x; θ(E)); θ(D)) (2.7)

with E the encoder, D the decoder and z := E(x; θ(E)) is called the latent rep-
resentation. Figure 2.3(left) illustrates a simplified version of an autoencoder.
The encoder and decoder consist usually of several hidden layers including also
convolutional operations. To facilitate the task of the decoder, it is common to
include skip connections between the encoder and decoder to connect specific
layers across the two network parts. The skip connections enable the decoder to
additionally receive, besides the latent representation, low-level or mid-level fea-
tures (which are extracted in earlier layers of the encoder). The weights of an AE
are trained by measuring the reconstruction error (see Section 2.3 for loss func-
tions) and by backpropagating the error using one of the optimization methods
described in Section 2.4.

Variational Autoencoder. The encoder of an AE, as described above, out-
puts a single value for each encoding dimension to describe the latent attributes.
The encoder of a variational autoencoder (VAE), on the other hand, provides
a probability distribution for each latent attribute. Thus, during the decoding
phase we do not simply input the embedding provided by the encoder into the
decoder, but we randomly sample from each latent distribution to generate the
input vector for the decoder. In this case, the VAE is forced to build a contin-
uous and smooth latent space representation and directly learns the parameters
of the probability distribution instead of a compressed representation. During
training, the encoder outputs the mean and standard deviation for a normal dis-
tribution z ∼ N (µ, σ2), from which the latent representation z is sampled and
input into the decoder D for reconstruction. In practice, µ and σ are implemented
as fully-connected layers. Figure 2.3(right) illustrates the coarse structure of a
VAE. Besides the reconstruction loss already used for AEs, a VAE is addition-
ally optimized by minimizing the Kullback-Leibler distance between the encoder
output and a normal distribution. The additional loss guarantees the sampling
distribution to be normal.

2.1. ARTIFICIAL NEURAL NETWORKS 19

Figure 2.4: Depiction of a basic RNN cell (left) and an LSTM cell (right). The
integration of a memory system and a forget gate in the LSTM cell enables the
network to explicitly learn when a previous hidden state should be forgotten and
when it should be updated using the new input. Therefore, LSTMs are able to
better capture the information as the duration of the dependencies increases.

2.1.6 Recurrent Neural Networks

Recurrent neural networks (RNN) allow to reason based on previous events and
are especially beneficial for processing long sequences (from videos) or lists, i.e. if
temporal or volumetric context is essential for solving the underlying task. Each
cell in an RNN layer is connected with its successive cell to pass the present
information to the next time step. Unfortunately, basic RNNs have difficulties
to capture the information in real-world problems as the duration of the depen-
dencies increases. Yoshua Bengio et al. explores this topic in [12]. Luckily,
long short-term memory networks (LSTMs) that have been proposed in 1997 by
Hochreiter and Schmidhuber [69] are capable of learning long term dependencies
due to their prevention of the vanishing gradient problem (weights are not chang-
ing their values). In fact, LSTMs have started to show its abilities in speech
recognition in 2007 by outperforming traditional models [53] and they have been
fully established in the vision community in 2015, where Donahue et al. [39] have
proposed an end-to-end trainable LSTM model for visual understanding tasks.

RNNs learn temporal dynamics by mapping input sequences to hidden states
which are then mapped to outputs in a recurrent manner. Considering, for in-
stance, the aim of learning sequence specific features for human actions, an RNN
links a posture xt at time point t in consecutive frames by means of hidden states
ht and a non-linear activation function σ

ht = σ(Wxhxt + Whhht−1 + bh)

zt = σ(Whzht + bz).
(2.8)

By learning the parameters W and b we obtain an output representation zt. Basic
RNN cells have a very simple structure and only contain a non-linear activation
function unit (see Figure 2.4 left). LSTM cells, on the other side, incorporate
memory units that allow the network to explicitly decide when to forget previous

20 CHAPTER 2. BACKGROUND

hidden states and when to update them given the new information xt,

it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wx f xt + Wh f ht−1 + b f)

ot = σ(Wxoxt + Whoht−1 + bo)

gt = tanh(Wxcxt + Whcht−1 + bc)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct).

(2.9)

Therefore, LSTMs have the possibility to remove or add information to the state
of the current cell using regulated structures. These structures, also called gates,
enable an LSTM layer to maintain information in memory for a longer period of
time in contrast to RNNs. The structure of an LSTM cell is illustrated in Figure
2.4(right).

In practice, an LSTM layer is commonly attached to a CNN network right
before the first fully-connected layer. During training and testing, the CNN is
used to separately extract the spatial information from several video frames and
the RNN receives the stacked feature maps of all video frames as input to obtain
spatiotemporal features.

2.1.7 3D Convolutional Neural Networks

Similar to recurrent neural networks, 3D convolutional neural networks (3D CNN)
are useful if temporal or volumetric context is important for solving a particular
task such as action recognition.

In standard CNNs, convolutional operations are applied on 2D feature maps
for capturing the spatial information on images. When working with videos,
it is important to additionally consider the temporal component. Therefore,
besides RNNs, researches have first proposed to stack several frames along the
channel dimension before feeding them into the network and to apply basic 2D
convolutions on the stacked input. The input dimensionality of, for instance,
5 RGB frames stacked along the channel dimension would be then w× h× 5 ·
3 with w and h the width and height of the input images, respectively. The
disadvantage of this strategy is, however, that the temporal information of the
input signal is lost right after the first convolution is applied since the output is
only 2 dimensional. 3D CNNs, on the other hand, incorporate motion information
by performing 3D convolutions and 3D pooling operations. The input frames are
stacked along a 4th dimension (input dimensionality: w× h× 3× 5) and the 3D
operations produce an output volume instead of a 2D feature map. In this way,
the temporal information of the input signal is preserved throughout the network
until a fully-connected layer is reached. Similar to standard CNNs, there exist
several proposals of different architectures for 3D CNNs. The most popular 3D
CNN architectures are introduced in Section 2.5.

2.2. ACTIVATION FUNCTIONS 21

Figure 2.5: Illustration of the most common activation functions. The red graphs
represent the derivations of the corresponding activation functions shown in blue.

2.2 Activation Functions

An activation function determines whether a neuron should be activated (fired)
or not depending on its relevance for the final prediction of the model. Moreover,
a nonlinear activation function introduces non-linearity into the model making
it possible to adjust to more complex tasks. In the following, we describe the
most common nonlinear activation functions for neural networks and list their
advantages and disadvantages. Figure 2.5 displays the graphs of the different
activation functions.

1. Sigmoid

a(x) =
1

1 + e−x

The sigmoid function squashes a value between [0, 1] and represents a sat-
urating firing rate of a neuron. As apparent from the red line in Figure
2.5A, the derivation (which is used during the update step as described in
2.4) of saturated neurons is 0 and can therefore cause the network to get
trapped, i.e. the values of the weights are not changing. This is also called
the vanishing gradient problem. Moreover, since the sigmoid function is not
zero-centered, all gradients of the weights are either all negative or positive
if the input is always positive.

2. Tanh

a(x) = tanh x

tanh squashes the output between [−1, 1], is zero-centered and is often used
for binary classification tasks. On the positive side, tanh maps negative

22 CHAPTER 2. BACKGROUND

inputs to a strongly negative output and zero inputs are mapped close to
zero. However, also with tanh as activation function, saturated neurons
have a gradient close to 0 causing the network to be susceptible to the
vanishing gradient problem.

3. ReLU

a(x) = max(0, x)

With ReLU as activation function, all negative values are set to 0 which
allows the network to easily obtain a sparse representation for better pre-
dictive power and less overfitting. Moreover, since the positive inputs never
saturate, the network does not suffer from the vanishing gradient problem.
Another advantage is that ReLU is cheap to compute which leads to a
smaller computational complexity and causes in practice a faster conver-
gence. Unfortunately, ReLU causes the problem of ”dead neurons”, mean-
ing that if neurons are not activated initially, they will never be activated
during the learning process.

4. LeakyReLU / PReLU

a(x) = max(0.01x, x)

LeakyReLU has similar properties than ReLU with the difference that
LeakyReLU does not suffer from the ”dead neuron” problem since the gra-
dient is never 0. Moreover, LeakyReLU is more balanced and might there-
fore learn faster than ReLU. However, the disadvantage of LeakyReLU in
contrast to ReLU is that the output is not sparse anymore.

In LeakyReLU, the slope is pre-defined to 0.01. PReLU is a variant of
LeakyReLU that allows the neural network to determine the slope (learnable
parameter).

5. ELU

a(x) =

{
x, x ≥ 0
β(ex − 1), x < 0

As PReLU, also ELU contains a learnable parameter β that defines the
slope on the negative side. In comparison to LeakyReLU/PReLU, ELU
contains a negative saturation regime, meaning that very negative numbers
slowly reach a gradient of 0 which leads to a sparser representation as in
LeakyReLU. It has therefore all the advantages of ReLU and LeakyReLU
except that the computational complexity is higher.

6. Softmax

a(x)j =
exj

∑K
k=1 exk

The softmax function is primarily used after the last layer of a neural net-
work which is acting as classifier. Softmax squashes the output scores of a
unit j into a [0, 1] range and the total sum over all K units is equal to 1.
This allows us to express the input as a discrete probability distribution.

2.3. LOSS FUNCTIONS 23

Considering all the previously explained activation functions, ReLU might
be the best activation function to start with whereas sigmoid offers the least
advantages.

2.3 Loss Functions

A loss function (also: cost function) evaluates the performance of an algorithm on
the given dataset. It measures the divergence between a prediction produced by
an algorithm and the ground-truth label. The overall loss represents the average
of all losses calculated individually for every sample in a dataset,

L =
1
N

N

∑
i=1
Li (2.10)

with N the number of samples. The following paragraphs outline the most com-
mon loss functions for different types of tasks.

Classification. In classification, we assume that every input sample xi has
exactly one correct label yi such as the class of an object shown in an image.
The underlying dataset might consist of samples from only two different groups
(binary) or multiple classes. The most common cost function for classification
tasks is the cross-entropy loss. It originates from information theory and measures
essentially the difference between two probability distributions p and q,

H(p, q) = −∑
x

p(x)log(q(x)) (2.11)

where p represents the true distribution and q the estimated distribution. Given
the above equation, the cross-entropy loss Li for one sample xi is then as follows,

LCE
i = −

C

∑
c=1

ti,clog(f (xi; θ)c) (2.12)

with ti ∈ {0, 1}C a one hot encoding vector containing zeros everywhere except on
the position of the input’s true class c̃ ∈ {1, ..., C} and f (xi; θ)c the output score
of the neural network for class c given xi as input. It is important to mention
that, before computing the cross-entropy loss, a softmax activation is applied to
the output of the last fully-connected layer in order to normalize the FC output
into a probability distribution. Note, that the output of the last FC layer is often
called ”logits” (unnormalized log probabilities of the classes). The combination
of softmax activation and cross-entropy loss is often referred to as Softmax loss
(but many calls it simply cross-entropy loss even though a softmax activation is
included). In the case of multi-class classification problems, the cross-entropy loss
is also often called the categorical cross-entropy loss or multi-class cross-entropy
loss. For binary problems (C = 2), the equation above simplifies as follows,

LBCE
i = −ti,1log(f (xi; θ)1)− (1− ti,1)log(1− f (xi; θ)1) (2.13)

with ti,1 = 1 if c̃ = 1, otherwise 0. Instead of using softmax as activation
function, the binary cross-entropy loss is used in combination with a sigmoid
activation function.

24 CHAPTER 2. BACKGROUND

Regression. A regression function predicts a continuous, real valued quantity
instead of a label. The mean square error (MSE)/L2 loss or mean absolute error
(MAE)/L1 loss are the most common cost functions for regression tasks. The L2
loss for a single sample xi is computed by using the squared L2 norm between
the predicted value ŷ and the target variable y,

LMSE
i = ||ŷi − yi||22 (2.14)

and the L1 loss for xi is calculated by taking the L1 norm between ŷ and y,

LMAE
i = ||ŷi − yi||1. (2.15)

Optimizing a network for a regression task is often more difficult than for a
classification task. Therefore, it is recommended, if possible, to transform the
regression task into a classification task by quantizing the output into bins.

Image Generation. Typical cost functions used for training a model that is
able to generate images such as a (variational) autoencoder are the reconstruction
loss, perceputal loss and KL-divergence loss.

The reconstruction loss measures the error between the pixel intensities of the
generated image x̂ and the input image x by using either binary cross-entropy
(BCE) or squared L2 norm,

Lrec−BCE
i = −

M

∑
k=1

xklog(x̂k) + (1− xk)log(1− x̂k), (2.16)

Lrec−L2
i =

1
2

M

∑
k=1

(x̂k − xk)
2, (2.17)

with M the number of pixel values in x.
The perceptual loss [78] is often used as surrogate for the reconstruction loss

and compares high-level discrepancies between images such as content or style
differences. It is based on a neural network that has been already trained on the
task of recognizing objects (e.g. trained on ImageNet) and is therefore capable
of identifying high-level features. The perceptual cost function computes the
difference (L2 norm) between the features of the original image x and the features
of the generated image x̂ given the pre-trained network as feature extractor. Using
this loss function for training a generative model encourages the output image x̂
to be perceptually similar to the target image x but does not force them to match
exactly [78].

Similar to the cross-entropy cost function, the Kullback-Leibler (KL) diver-
gence measures essentially the similarity between two distributions,

DKL(p||q) =
N

∑
j=1

p(xj)log

(
p(xj)

q(xj)

)
(2.18)

with p the real distribution and q the approximation. It is specifically useful when
performing a direct regression as required for a variational autoencoder when
minimizing the distance between the encoder output and a normal distribution.

2.4. OPTIMIZATION 25

Figure 2.6: Example of back-propagation applied to a multi-layer perceptron
(MLP) with 1 hidden layer for computing the gradients of the weights wi. The
MLP receives a two-dimensional vector x as input and outputs a prediction scalar
ŷ (top). Given the loss function (top right) the gradients of the parameters

w(1)
1 , w(1)

2 and w(1)
2 are calculated using back-propagation and the chain-rule of

calculus (bottom). The colors signalize the affiliation between the different terms.

2.4 Optimization

Optimization algorithms are responsible for minimizing the losses of an ANN by
updating the weights accordingly. Due to the non-linearity and the depth of a
neural network, loss functions become non-convex. Even though the ultimate
objective of a neural network training is to find the global optima, researchers
have found that finding a local optimum with a reasonable low error is sufficient.
Neural networks are commonly trained with iterative, gradient-based optimizers
(gradient is used to descend the loss function) with back-propagation as a tool for
computing the gradient. Most of the nowadays common optimization methods
for ANNs are often improvements or refinements of stochastic gradient descent
(SGD). The following paragraphs introduce back-propagation, stochastic gradient
descent and its variants.

Back-Propagation. The back-propagation algorithm enables the error pro-
duced by the ANN to flow backward through the network to compute the gradient.
In particular, back-propagation computes the chain-rule of calculus with a very
efficient order of operations. The chain-rule states, that the derivative of f (g(x))
is given as f ′(g(x)) · g(x), i.e.

dy
dx

=
dg
dz

dz
dx

(2.19)

with f , g real valued functions, z = g(x), y = f (g(x)) and x a scalar. The same

26 CHAPTER 2. BACKGROUND

holds for vector valued inputs,

δy
δxi

= ∑
j

δy
δzj

δzj

δxj
. (2.20)

Figure 2.6 shows an example of back-propagation applied to a multi-layer
perceptron with 1 hidden layer, ReLU as activation function and mean squared
error as loss function with x ∈ R2 the input and y ∈ R the output. The
back-propagation algorithm is used to compute the gradients for the parame-

ters θ = (w(1)
1 , w(1)

2 , w(2)
1) using the chain-rule. In the next paragraphs we de-

scribe common optimization methods that employ the gradients for updating the
weights (perform learning) in an ANN.

Stochastic Gradient Descent. Vanilla gradient descent (also: batch gradi-
ent descent) uses the gradient of the loss function L with respect to the parameters
θ for the entire training dataset,

θ = θ − α · ∇θ L(θ) (2.21)

with α the learning rate. Updating the weights in this way is, however, not
realizable for large datasets since the computation would be very slow and only a
fraction of the dataset would fit into memory. Stochastic gradient descent (SGD)
solves this issue by updating the weights using only one sample from the dataset,

θ = θ − α · ∇θ L(θ; x, y) (2.22)

with (x, y) an input-output pair of the dataset. Considering the example from
Figure 2.6 we can now conduct an update step with SGD and back-propagation
after performing a forward pass with the following exemplary input-output pair

(x, y) = ((1, 2), 13) and the initial weights w(1)
1 = 1, w(1)

2 = 2, w(2)
1 = 3

1. Forward pass

z = w(1)
1 x1 + w(1)

2 x2 = 5,

ŷ = w(2)
1 ·max(z, 0) = 15

L = (ŷ− y)2 = 4,

2. Back-propagation

δL

δw(2)
1

= 2 · (ŷ− y) ·max(z, 0) = 20

δL

δw(1)
1

= 2 · (ŷ− y) · w(2)
1 · x1 = 12

δL

δw(1)
2

= 2 · (ŷ− y) · w(2)
1 · x2 = 24

2.4. OPTIMIZATION 27

Figure 2.7: Exemplary progress of SGD (black lines) and SGD with momentum
(red). Picture is taken from [61].

3. SGD update with α = 0.001

w̃(2)
1 = w(2)

1 · α
δL

δw(2)
1

= 3− 0.001 · 20 = 2.98

w̃(1)
1 = w(1)

1 · α
δL

δw(1)
1

= 1− 0.001 · 12 = 0.988

w̃(1)
2 = w(1)

2 · α
δL

δw(1)
2

= 2− 0.001 · 24 = 1.976

In practice, each parameter update is performed using a few samples (mini-
batch) from the training set instead of using only one sample. This guarantees a
more stable convergence since the variance between different parameter updates
is reduced. The learning rate α is a hyper-parameter that needs to be defined
beforehand. However, finding a good learning rate is not trivial. A learning rate
that is too small leads to a very slow convergence and if α is too large the network
might never converge or the loss function might fluctuate around the minimum.
In the deep learning community, it is common to specify a learning rate sched-
ule that defines when the learning rate is reduced. The scheduling could be, for
instance, based on the amount of iterations.

SGD with Momentum. Even though SGD is a popular optimization strat-
egy, an ANN optimized with SGD converges fairly slow. SGD gets often trapped
in sub-optimal local minima and oscillates strongly in areas with long and narrow
ravines. SGD with momentum tackles this problem by using the moving average
gradient instead of the immediate gradient at each update,

v = γv + α · ∇θ L(θ; x, y)
θ = θ − v

(2.23)

with v the velocity vector and γ ∈ (0, 1] a parameter that regulates for how
many iterations the previous gradients are included into the current update. This
strategy helps to accelerate SGD in the relevant direction and to reduce the
oscillations. Figure 2.7 illustrates the effect of momentum. While approaching
a minimum, the immediate gradient decreases and SGD slows down. SGD with
momentum, on the other hand, averages the gradient over several time steps

28 CHAPTER 2. BACKGROUND

leading to a less drastic deceleration. Moreover, SGD with momentum enables the
algorithm to skip over very sharp minima that in many cases represent overfitting.

Besides skipping undesirable sharp minima, SGD with momentum might, at
the same time, miss desirable optima if the momentum is too high. SGD with
nesterov momentum addresses this issue by first estimating the future location
and then correcting the velocity vector based on the future location,

v = γv + α · ∇θ L(θ − γv; x, y)
θ = θ − v.

(2.24)

AdaGrad. The optimization methods described so far use a constant learning
rate for all parameters. AdaGrad [46] adapts the learning rate for each parameter
individually depending on their importance. The update for a parameter θi is
performed as follows,

θi = θi −
α√

Gii + ε
∇θ L(θi; x, y) (2.25)

with Gii = Gii + (∇θ L(θi; x, y))2 the sum of the squares of the gradients w.r.t θi
up to the current time step and ε a small smoothing term to avoid division by
zero. Individually adapting the learning rate has the advantage that the global
learning rate needs less manual tuning and interacts more as a general indicator.
AdaGrad has shown to work very well in settings with sparse gradients. However,
due to the growing division term, the learning rate is constantly decreasing which
results in slow training up until no additional knowledge is acquired. AdaDelta
[193] extends AdaGrad by restricting the number of accumulated past gradients
to a fixed size.

RMSProp. Similar to AdaDelta, RMSProp has been developed for elimi-
nating the problem of a diminishing learning rate which is observed in AdaGrad.
In particular, RMSProp divides the learning rate by an exponentially decaying
average of squared gradients,

Gii = γGii + (1− γ) · g2
t (2.26)

with γ the decay rate chosen usually around 0.9.
Adam. Adam (adaptive moment estimation) [85] is often seen as a combina-

tion of RMSProp and SGD with momentum. Besides storing the exponentially
decaying average of squared previous gradients (second momentum), Adam also
saves the exponentially decaying average of previous gradients (first momentum),

mt = β1 ·mt−1 + (1− β1) · gt

vt = β2 · vt−1 + (1− β2) · g2
t

(2.27)

with gt = ∇θ L(θ; x, y) and β1 and β2 hyper-parameters that are usually set to
β1 = 0.9 and β2 = 0.999, respectively. vt is used for scaling the learning rate (like
RMSProp) and mt for accelerating the algorithm (like SGD with momentum) at
time point t. Both parameters are initialized with 0 (m0 = v0 = 0). To prevent a
division by a very small number in early iteration, the Adam optimizer contains

2.5. ESTABLISHED NETWORK ARCHITECTURES 29

additionally a bias correction,

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

.
(2.28)

This results in the following update

θt+1 = θt − α
m̂t√

v̂t + ε
(2.29)

The Adam optimizer converges quickly and is, besides SGD with momentum,
nowadays the most frequently used optimization approach.

2.5 Established Network Architectures

Since the boom of neural networks, there have been many different architecture
proposals where some of them are particularly successful in solving image and
video understanding tasks. In this section, we provide a brief description of the
most common network architectures in computer vision.

AlexNet. AlexNet [90] is considered one of the most important architectures
which advanced the current deep learning era. In 2012, AlexNet won the Ima-
geNet ILSVRC 2012 competition by a large margin and was since then applied
to many diverse visual understanding tasks. It consists of in total 8 layers with
5 convolutional layers and 3 fully-connected layers with max pooling layers after
the 1st, 2nd and 5th convolutional layer and ReLU activation functions after ev-
ery conv layer. The network has in total 62.3 million parameters where the FC
layers contain most of them. Compared to previous neural network architectures
such as LeNet [96], AlexNet contains many more parameters, but thanks to the
advancements in GPU capacities at that time it was possible to train the net-
work within 5 to 6 days on the large-scale dataset ImageNet [142] using 2 GPUs.
CaffeNet [77] is a variant of AlexNet that essentially has the same architecture,
but was build to be trained on only one instead of 2 GPUs (since also AlexNet
can be run nowadays on 1 GPU, CaffeNet and AlexNet are practically the same
network).

VGG. VGG [149] was introduced in 2014 and outperformed AlexNet in the
ILSVRC 2014 challenge. A characteristic of VGG are the relatively small convo-
lutional filters (3× 3) on the first few layers. This modification allows the usage
of more layers (deeper network) since the small convolutional filters contain less
parameters than the ones used in AlexNet. Succeeding architectures such as
ResNet [67] adopted the idea of using multiple 3× 3 convolutions in series. VGG
consists of in total 16 (or 19) layers with 13 (or 16) convolutional layers, 3 fully-
connected layers, 5 pooling operations and every hidden layer is equipped with
ReLU as nonlinear activation function. In contrast to previous and also following
architectures, VGG contains a lot of parameters (> 135 million) leading to long
training times.

Inception. The idea of Inception-V1 [156] (also called GoogleNet) which was
introduced in 2014, was to go wider instead of only deeper. The concept emerged

30 CHAPTER 2. BACKGROUND

Figure 2.8: Left : Illustration of an inception module with dimension reductions.
Image taken from [156]. Right : Depiction of a residual block in ResNet. Image
taken from [67].

from the problem that it is difficult to find the right filter size since objects can
occupy either the full image or only a fraction. The developers of GoogleNet
introduced an inception module that applies several filters with different sizes
on the same level. Figure 2.8 illustrates the structure of the new module. The
authors of [156] additionally propose to perform 1 × 1 convolutions to reduce
the input channels and therefore the computational complexity. The original
GoogleNet contains 9 of those inception modules with in total 22 layers and a
pooling operation at the end of the last inception module. Given that GoogleNet
is a relatively deep network, the authors included two auxiliary classifiers in the
middle of the network. The total loss is then computed using the two auxiliary
losses and the final loss at the end of the network. InceptionV1 was further
improved by introducing more updates to increase the accuracy and for reducing
the computational complexity. These improved networks are called Inception-
V2, Inception-V3, Inception-V4 and Inception-ResNet. More information can be
found in [157] and [155].

ResNet. ResNet [67] introduces in 2016 residual building blocks for ad-
dressing the vanishing gradient problem. A residual block makes use of shortcut
connections between two convolutional layers. Instead of learning the mapping
x → F (x), a residual block learns the mapping from x → F (x) + x (iden-
tity connection). Figure 2.8(right) illustrates the structure of a residual block.
ResNet18 consists of 17 convolutional layers with a filter size of 3× 3 (as VGG), 1
fully-connected layer and only 2 pooling operations. Due to the reduced number
of fully-connected layers, ResNet18 contains only 11 million parameters. Dimin-
ishing the vanishing gradient problem by using identity connections enabled the
usage of much deeper neural networks. The original ResNet contains 18 layers,
but it is common nowadays to employ ResNet50 or ResNet101 with 50 or 101
layers, respectively.

C3D. C3D [162] and also the networks described in the subsequent paragraphs
represent 3D networks with 3D convolutions. C3D has been already introduced
in 2015 but gained only recently more attraction due to the higher demand in
efficient deep learning algorithms for video understanding tasks. The network
consists of 8 3D convolutional layers, 2 fully-connected layers and pooling op-
erations after the 1st, 2nd, 4th, 6th and 8th conv layer. The authors of [162]
obtained the best results when using small convolutional filter with the size of
3× 3× 3 throughout the entire network. C3D outperformed previous work on

2.5. ESTABLISHED NETWORK ARCHITECTURES 31

action recognition, action similarity labeling and scene and object recognition at
the time of publication.

I3D. I3D [20] has been proposed in 2018 and represents a two-stream 3D
inflated network. Instead of developing a new architecture for video understand-
ing, the authors of [20] propose to inflate 2D CNNs that have shown superior
performances on image understanding tasks. All 2D convolutional layers and 2D
pooling operations are simply inflated to 3 dimensions by endowing them with a
temporal dimension. In addition to the proposed inflation, I3D is also tested on
a two-stream configuration with one 3D network pre-trained on RGB inputs and
the other on optical flow. The streams are trained independently from each other
but combined during testing by averaging their predictions. For the experiments,
Carreira and Zisserman [20] employ an ImageNet pretrained Inception-V1 as base
network.

3D ResNet. As the name suggest a 3D ResNet is the 3D version of a 2D
ResNet network. Tran et al. propose in [163] two variants. The first version
(R3D) simply transforms the 2D operations in a ResNet network into 3D filters.
The second version (R(2+1)D) approximates 3D convolutions by separating them
into two steps: a 2D convolution for spatial modeling followed by a 1D convolution
for extracting temporal information. Experiments have shown that R(2+1)D
results in lower errors on action recognition than R3D with the same amount
of layers and parameters. This is most likely due to the higher complexity in
R(2+1)D given that the amount of activation functions (nonlinearities) can be
doubled in R(2+1)D.

32 CHAPTER 2. BACKGROUND

Chapter 3

Self-Supervised Representation
Learning

In the age of big data, problems have shifted from lacking training data to now
having lots of it but lacking tedious manual annotations. Deep learning, which
benefits from large volumes of training data, has therefore spurred new interest
in unsupervised techniques. Especially self-supervision, where the feature rep-
resentation of visual data is learned indirectly by solving a surrogate task (also
called pretext task), has recently shown great potential. Previous works have
successfully addressed image understanding tasks but are still lacking satisfac-
tory performances on the more difficult task of analyzing videos. After providing
a description of self-supervised learning and summarizing the most influential
self-supervised methods, we propose a new surrogate task that exploits temporal
information from videos in this chapter. Our model learns a detailed sequence
representation that is used to tackle video understanding tasks. In addition, we in-
troduce a multi-task network for learning a powerful representation on unlabeled
images and videos simultaneously. Experiments on image and video understand-
ing tasks demonstrate the wide applicability of our models and their superior
performance in comparison to previous methods.

3.1 Self-Supervised Learning in a Nutshell

Convolutional neural networks (CNNs) have demonstrated that they are able
to learn powerful visual representations from large amounts of tediously labeled
training data [90]. However, since visual data is cheap to acquire but costly to
label, there has recently been great interest in learning compelling features from
unlabeled data. For that matter, self-supervised learning (SelfSL) [116, 98, 54,
10, 122, 36, 114, 123, 103, 127, 94, 29, 60, 145] is nowadays a popular technique
to learn visual representations without requiring manually labeled training data.
The desired visual features are indirectly learned by solving a surrogate task where
its target values can be obtained automatically from the data. In other words,
we still train a CNN with a supervised loss function, however, that function does
not evaluate the performance on the desired task (due to the missing labels), but
on an artificially constructed surrogate task. In [122], for instance, Noroozi and
Favaro randomly permute parts of an image like a jigsaw puzzle and ask the net-

33

34 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

work to recover the original configuration. The index of the applied permutation
serves as the target value and is automatically defined without requiring manual
annotations. Even though the network has not been directly trained on a desired
task, e.g. image classification, the learned representation carries good semantic
and structural knowledge of objects. Thus, SelfSL exploits visual data like images
[180, 36, 94, 29, 197, 170, 129, 38, 60] or videos [116, 98, 54, 103, 128, 179, 180, 15],
but also text [127] or audio [126] as source of information. The representation
learned through a surrogate task (pre-training) can be afterwards transferred to
a variety of challenging visual understanding tasks such as image classification
[122, 124, 60, 123, 16], human pose estimation [11, 10, 114, 15], image segmen-
tation [122, 124, 16, 14, 60] or action recognition [16, 98, 116, 187, 54]. The
transfer is performed by re-training (fine-tuning) the obtained representation on
the desired task (also called downstream task) using all labels of the correspond-
ing dataset. We expect the fine-tuned model to show higher performances on the
downstream task than a model that has only been trained on the final task since
the pre-training provides prior knowledge about the data structure. The more
semantic and structural knowledge is already captured during the pre-training,
the higher the performance boost on the final task.

3.2 Overview of Recent Works

Lately, a considerable amount of SelfSL techniques have been introduced in com-
bination with deep learning. They have proven to be an effective tool for learning
powerful features with unlabeled data in several areas such as language mod-
elling or computer vision. In the vision community, self-supervised deep learning
has been established in 2015 where mainly image understanding tasks such as
image classification, object recognition or geometry estimation were addressed
[44, 36, 179, 2]. Due to their success many more SelfSL methods have been pub-
lished since then and applied to a bigger variety of downstream tasks including
video understanding issues. This thesis is mainly concerned with methods that
analyze videos. However, since self-supervised methods for image understanding
have greatly influenced the research for video analysis this section firstly provides
a short summary of the most influential image-based self-supervised works fol-
lowed by video-based approaches. A curated list of famous self-supervised papers
can be found on github1. The figures displayed in this section provide assis-
tance to understand the described methods better and are all taken from the
corresponding papers.

3.2.1 Image-Based Methods

Common tasks for images addressed in self-supervised learning are image clas-
sification, object recognition, pose estimation, image segmentation, object de-
tection and geometry estimation using the benchmark datasets Olympic Sports
[121], Leeds Sports [80], NYU Depth [120], ImageNet [142], Pascal VOC [50, 51],
CIFAR-10/CIFAR-100 [89] and Places205 [200]. We will now summarize five of

1https://github.com/jason718/awesome-self-supervised-learning

https://github.com/jason718/awesome-self-supervised-learning

3.2. OVERVIEW OF RECENT WORKS 35

Figure 3.1: Model overview of Inpainting
[129]. The encoder receives an image with
missing parts as input and the decoder gen-
erates the missing part. The weights are up-
dated using an L2 loss given the generated
and original patch.

Figure 3.2: Depiction of the
different region masks ap-
plied to input images for In-
painting.

the most influential self-supervised methods which use the learned representation
for solving image understanding tasks.

Inpainting [129]. In 2016 Pathak et al. [129] proposed a self-supervised
method based on a generative model. The pretext task in generative modeling
is to reconstruct the original input using an encoder-decoder architecture while
learning a powerful latent image representation [169, 197, 40, 42, 129]. Pathak et
al. propose to learn meaningful features by asking an autoencoder to generate the
contents of an arbitrary image region conditioned on its surroundings. An encoder
receives an image with missing parts as input and produces a latent feature
representation of that input. Then, the decoder’s task is to generate the missing
region given the latent feature representation. The weights of the autoencoder are
updated using an L2 reconstruction loss and the original image region. Figure 3.1
and 3.2 display the training strategy and possible region masks that are applied
before inserting the image into the network. In order to succeed at this surrogate
task, the network needs to understand the content of the image and produce
reasonable assumptions about the missing part of the input. Pathak et al. employ
the benchmark datasets ImageNet [142] and Paris StreetView [37] for training the
network with the unsupervised surrogate task. The transferability of the learned
features to image understanding tasks are evaluated by fine-tuning the encoder
features (AlexNet architecture) on the desired downstream task. Inpainting [129]
has shown state-of-the-art results at the time of publication in image classification
and segmentation on Pascal VOC.

Jigsaw [122, 124]. Jigsaw [122] by Noroozi and Favaro and their subsequent
method Jigsaw++ [124] have been very successful and widely cited approaches
for self-supervised learning. Moreover, our methods introduced in Section 3.3
and 3.4 are influenced by this strategy. As the approaches presented in [36,
123, 119, 29, 84], Jigsaw and Jigsaw++ belong to the type of methods that
extract multiple patches from an image and ask the network to predict their
relationship. In particular, Noroozi and Favaro propose in [122] to use Jigsaw
puzzles for developing a visuo-spatial representation of objects in the context of
CNNs. An image is divided into 9 tiles (3x3 grid) which are shuffled afterwards,
given a random permutation from a pre-defined set of permutations, and fed
into a siamese network with AlexNet [90] architecture. The fully-connected (fc)

36 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Figure 3.3: Model overview of Jigsaw [122]. An image is divided into 9 parts and
fed into the siamese network after randomly shuffling the order of the patches.
The features of the patches are concatenated, and a classifier predicts the index
of the applied permutation.

Figure 3.4: Model overview of DeepCluster [17]. The network is trained on a
multi-class classification task using the cluster assignments as pseudo-labels. The
method alternates between updating the network weights and re-clustering the
training set given the present feature representation of the network.

features of all 9 patches are concatenated and given as input to the second fc
layer. The task of the network is then to correctly predict the index of the applied
permutation using a final fc layer as classifier. Figure 3.3 shows the generation
of a puzzle and the network architecture. After training the network for 350k
iterations with the jigsaw puzzle task, Noroozi and Favaro evaluate the learned
features by fine-tuning on image classification, detection and segmentation using
the Pascal VOC dataset and on the ImageNet classification task. The method
achieved state-of-the-art results at the time of publication (2017). Instead of fine-
tuning the self-supervised model on the downstream task, Noroozi and Favaro
proposed one year later in [124] to decouple the structure of the self-supervised
model from the final task-specific, fine-tuned model. In particular, they first
train a (bigger) network on a self-supervised method such as Jigsaw and employ
the trained features for assigning pseudo-labels (pseudo object classes) to every
image of the ImageNet dataset via clustering. Then, the target network (AlexNet
architecture) is pre-trained using a multi-task classification loss and the previously
assigned pseudo-labels. Until this point no supervision is required. For the final
evaluation, the target network is trained on the desired downstream task such as
image classification or segmentation using the labels provided by the datasets.

3.2. OVERVIEW OF RECENT WORKS 37

Figure 3.5: Visualization of the
Colorization approach [196]. The
model receives a gray-scale image as
input and predicts the color for every
pixel.

Figure 3.6: Exemplary depiction of
the applied transformation to input
images for training RotNet [60].

DeepCluster [17]. Several approaches [17, 190, 185, 18] have employed
clustering to learn an unsupervised image representation. In 2018, Caron et al.
presented DeepCluster [17] as a novel unsupervised approach based on clustering
with impressive results. Similar to image classification, the SelfSL model in [17]
predicts the class of an image. However, instead of using the ground-truth classes
(supervised), Caron et al. employ cluster assignments as pseudo-labels. The
approach alternates between clustering the image descriptors with k-means and
updating the weights of the network by predicting the cluster assignments. The
features for performing the clustering are extracted from the network which is
trained. Figure 3.4 summarizes the training procedure.

Colorization [94]. Given a grayscale image, the goal of colorization [93, 196,
197, 26, 71, 1, 94] is to hallucinate a plausible color for every pixel in that image.
In 2016, two concurrent works [196, 93] have proposed to use colorization as a
pretext task to learn an image representation without requiring any annotations.
Fortunately, training data is easily accessible given the huge amount of unlabeled
color images available on the internet. Therefore, recent works [93, 196, 94] have
proposed to employ large datasets of colored images to train a CNN by firstly
removing color information from the input and secondly asking the network to
predict that extracted component (see Figure 3.5). Larsson et al. investigate in
[94] different types of losses for training the networks on the colorization task. In
particular, they consider a regression loss for L*a*b color values as well as a KL
divergence loss for hue/chroma histograms. Larsson et al. [94] perform experi-
ments with different types of networks: AlexNet, VGG-16 and ResNet-152. The
best results on image understanding tasks are achieved with the hue/chroma his-
tograms and the ResNet-152 architecture. The results obtained with the AlexNet
structure are also the most competitive among AlexNet models of previous works.

RotNet [60]. Modifying an image geometrically while the semantic con-
tent stays unaltered is another way of teaching the network to learn meaningful
features without requiring manual annotations. In RotNet [60] the entire input
image is randomly rotated by a multiple of 90◦ (90◦, 180◦, 270◦, 360◦) before
inserting the distorted image to the network (see Figure 3.6). After a forward
pass, a classifier needs to predict the index of the applied rotation. Experiments
have shown that RotNet achieved state-of-the-art results at the time of publica-
tion (2018) for image classification on ImageNet, Pascal VOC and Places205 and
image detection/segmentation on Pascal VOC.

38 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Figure 3.7: Depiction of the MotionDynam-
ics strategy proposed in [103]. The model pre-
dicts a sequence of basic motions given two input
frames.

Figure 3.8: Architecture
of [103] for transferring
the learned representa-
tion to the downstream
task action recognition.

3.2.2 Video-Based Methods

After the success of applying SelfSL methods to image understanding tasks, sev-
eral unsupervised video representation learning approaches have been proposed.
Temporal information provided in videos such as motion or the ordering of frames
is employed to construct novel surrogate tasks. Common video understanding
tasks that are presently tackled by SelfSL methods are action recognition, ac-
tion segmentation or tracking. Moreover, the trained representation is broadly
applicable and often also used to address video and image understanding tasks
simultaneously. The following paragraphs describe four of the most influential
self-supervised methods for video representation learning.

MotionDynamics [103]. Many self-supervised methods employ motion in-
formation from videos to train a representation that carries good semantic and
structural knowledge of objects and movements [103, 177, 146, 134]. Among them
also the approach proposed in 2017 by Luo et al. [103] where the network learns
to predict a sequence of atomic long-term 3D flows (see Figure 3.7). The network
consists of an LSTM based encoder-decoder architecture and receives either a pair
of RGB, depth or RGB-D samples as input. The learned latent representation
can then be used as motion feature for addressing action recognition. Figure 3.8
demonstrates the network structure of the encoder for recognizing activities. The
decoder is omitted for the downstream task.

VideoColorization [171]. Inspired by self-supervised image colorization
methods, Vondrick et al. [171] teach a network to colorize gray-scale videos
(surrogate task) in order to learn a robust feature representation for tackling
video understanding tasks. The network consists of a ResNet-18 followed by a
3D spatiotemporal convolutional network. The overview of the model is shown
in Figure 3.9. Given a gray-scale reference and gray-scale target image, the CNN
computes for every location a feature embedding and the model points from the
target frame into the reference frame embeddings using softmax similarity. For

3.2. OVERVIEW OF RECENT WORKS 39

Figure 3.9: Model overview of VideoColorization [171]. Given two gray-scale
images, the model establishes for every point in the target image a correspondence
to a point in the reference frame using softmax similarity. The model is trained
by comparing the reference color with the predicted color in the target image.

Figure 3.10: Method overview of CycleConsistency [181]. A patch is tracked
backwards and then forward using a tracker τ and a representation φ. The error
is computed by comparing the original (right, blue box) with the final tracked
patch (right, brown box).

evaluating if the location was tracked correctly, the color of the reference frame
is firstly transferred to the associated location in the target frame. Then, the
transferred color is compared with the true color of the target frame. The error
is computed using a cross-entropy categorical loss after quantizing the color-
space into discrete categories. During inference, a fully labeled frame is given as
reference and the learned pointer is used to propagate labels throughout the video.
For evaluation, Vondrick et al. [171] apply their model to video segmentation and
pose tracking.

CycleConsistency [181]. In 2019, Wang et al. [181] have proposed a self-
supervised method for learning visual correspondences by automatically extract-
ing them from videos and turning them into a learning signal. In particular,
Wang et al. [181] obtain unlimited supervision by tracking patches along a cycle
in time (forward and backward) and by using the inconsistency between the start-
ing and ending patches as objective function. Figure 3.10 displays the procedure
of the learning method. A random patch is first tracked backwards (right to left,
blue box) and then forward (left to right, brown box) by a classic tracking-by-
matching method based on a learned encoder φ. The training signal is then given
by measuring the visual and position-wise differences between the original and fi-
nal tracked patch. For inference, the first frame of a video is fully labeled, and the
encoder’s representation is used to compute dense correspondences for propagat-

40 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Figure 3.11: Overview of the Clip Order Prediction (COP) [187] framework. 3
snippets are extracted from a video, randomly shuffled and inserted into the 3D
CNN. After combining the CNN features of all snippets, a classifier predicts the
index of the applied permutation.

ing the labels to the rest of the video. The learned model is evaluated on instance
and semantic propagation as well as pose keypoint and texture propagation.

COP [187]. Clip order Prediction (COP) [187] is one of the latest approaches
that exploit the natural order of frames as source of information to construct a
surrogate task [98, 54, 116, 15, 16]. The methods introduced in Section 3.3.1 and
3.4.1 also capitalize on that concept. The idea is related to Jigsaw [122], but
instead of shuffling sub-parts of an image, COP [187] permutes several snippets
of a video. In particular, the model of [187] is trained by first sampling non-
overlapping snippets from a video, where every snippet consists of a pre-defined
number of frames. Then, after permuting the snippets in a random order, a 3D
CNN is used to extract the features for every snippet (see Figure 3.11). After a
pairwise concatenation of the features, fully-connected layers placed on top of the
3D CNN predict the index of the previously applied permutation, i.e. the order
prediction is, as in Jigsaw [122], formulated as multi-class classification problem.
Thus, the network is updated based on the ability of predicting the applied per-
mutation. Solving this task requires an understanding of the temporal structure
of actions and is therefore a valuable pretext task for addressing video under-
standing tasks. Xu et al. [187] employ 3 snippets per sample, leading to 3! = 6
possible permutations/classes. The model is evaluated by fine-tuning the pre-
trained network on action recognition using the benchmark datasets HMDB-51
[91] and UCF-101 [150]. At the time of publication (2019) the approach achieved
state-of-the-art results using three different types of 3D CNN architectures (C3D
[162], R3D [163], R(2+1)D [164]).

The subsequent sections describe and evaluate our developed self-supervised
methods for learning fine-grained video and image representations. Please note
that some of the approaches described above have been published after the meth-
ods introduced in the following sections.

3.3. LSTM SELF-SUPERVISION FOR VIDEOS 41

Figure 3.12: Exem-
plary depiction of tem-
poral shuffling.

Figure 3.13: Visualization of our LSTM self-
supervised training. As input we use real and
permuted sequences to learn a representation.

3.3 LSTM Self-Supervision for Videos

The key competence of visual understanding is to recognize structure in visual
data. Thus, breaking the order of visual patterns and training a network to
recover the structure provides a rich training signal. The framework of permuting
the input data and learning a feature representation has been successfully pursued
on still images [122, 124, 36, 29, 38] by employing spatial shuffling of images
(especially permuting jigsaws). We aim to address not only image but also video
understanding tasks and propose to adapt the framework of permuting images
to videos. A previous publication by Misra et al. [116] employ information from
videos by verifying the temporal order of three frames using a triplet siamese
network. In this way, the network learns a single frame representation, which is,
however, not sufficient for determining fine-grained similarities between sequences
[15]. In order to learn more sequence specific features, we propose to combine
learning of single frame features with learning of sequence representations by using
a long short-term memory (LSTM) network which we train on permutations of
entire sequences.

In the next Section, we present our permutation strategy and evaluate our
learned representation in Section 3.3.2 on image and video understanding tasks.

3.3.1 Temporal Permutation

SelfSL represents a type of methods that aims at teaching the network the struc-
ture and properties of visual data through a surrogate task. We propose to
train the network on distinguishing between real (not permuted) and randomly
permuted sequences. Figure 3.12 demonstrates the shuffling of a sequence with

42 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

5 frames for the sports activity “Long Jump”. Distinguishing between a real
sequence and its permutation is challenging, since the model needs to learn the
subtle details of the subject’s posture together with their change over time. More-
over, a positive and the respective negative sequence are identical except for the
order in which postures appear. In order to solve the task satisfactorily, the
network needs to disregard background, differences between subjects or lighting
changes and solely focus on the change of postures. Thus, our surrogate task is
perfectly suited for learning movements and postures, while establishing crucial
independence properties.

Training. Let x = (x1, x2, . . . xl) be a sequence with l frames that is to be
shuffled by permuting its parts by a random permutation ρ. For training the
CNN, mini-batches Dj are composed as

Dj = [xj1 , ρ(xj1), xj2 , ρ(xj2), · · · , xjn , ρ(xjn)]

Lj = [y1, y2, · · · , y2n], with yk = k mod 2
(3.1)

where yk is the label of sequence k in Dj and 2n is the number of samples in batch
Dj. After a forward pass of Dj, the binary classifier predicts per sample either
1 for real or 0 for shuffled. Figure 3.13 depicts this procedure and the network
structure. We optimize the network weights by using the cross-entropy loss and
stochastic gradient descent (SGD). For more technical details please see Section
3.5.

Architecture. In order to be comparable with previous work, we employ an
AlexNet [90] network structure for the single frame representation with 5 convolu-
tional layers and 1 fully-connected (fc6) layer. Then, the fc6 output of the frames
is combined in a recurrent neural network, implemented as LSTM, for learning a
sequence representation. The output of the LSTM layer is then processed by a
final fully-connected classification layer for predicting real or shuffled.

3.3.2 Experiments

In this section we evaluate our method described above on image and video
understanding tasks. We present results on human pose estimation and action
recognition. In Chapter 4 we additionally demonstrate the performance of our
self-supervised method on an interdisciplinary project (behavior analysis).

Human Pose Estimation. Pose estimation in the vision community means
to localize joints (synonym: keypoints) on images/videos such as left hand or
right foot and/or to search for a pre-defined pose in the space of all postures. It
is traditionally tackled by learning a supervised model on detecting body parts
[137, 161] and by adding extra information like the relative position between parts
[132] in order to improve the accuracy and to learn similarities. Our approach does
not require a model of the body or its parts, it rather extracts characteristic pose
information directly from the image using the features learned by our approach.

We test our approach on two benchmark datasets for pose estimation: Olympic
Sports [121] and Leeds Sports [80]. The Olympic Sports dataset comprises 16 dif-
ferent sport activities with a total of 525 clips and 113,516 frames. Since the
athletes in Olympic Sports are not always in the center, we compute person
bounding boxes for all videos using the approach of [52] due to its performance

3.3. LSTM SELF-SUPERVISION FOR VIDEOS 43

in object and person detection. We firstly initialize the 5 convolutional layers
and 2 FC layers using the filters of the powerful CliqueCNN model [11] which
has shown competitive performances on pose analysis with unlabeled data. Then
we run our self-supervised training procedure as explained in Section 3.3.1 to
improve the representation. To be comparable, we use the same experimental
setup as in [11]. In particular, [11] created a test set of around 1200 different
postures and labeled 20 similar and 20 dissimilar samples for each of the 1200
query postures. Then, for evaluating pose similarity, we use the learned feature
representation for sorting the 40 labeled samples based on their similarity to the
query posture. The more of the 20 similar postures are among the first 20 samples
after sorting, the better the representation of posture. We compare our approach
with the baseline methods described in the following.

• HOG-LDA [65]. For the first baseline method we follow the approach
described in [65]: We first extract whitened HOG (histogram of oriented
gradients) feature descriptors for all video frames and then train an LDA
(linear discriminant analysis) model on clustered postures to learn visual
similarities.

• Exemplar-SVM [108]. The authors of [108] propose to divide a large
machine learning problem into several easy-to-solve sub-problems by train-
ing one SVM classifier per positive sample (exemplar). Then, all classifiers
together form a strong ensemble of Exemplar-SVM classifiers. We employ
HOG features for training the classifiers and the negative samples originate
from all categories except the one that the exemplar comes from. For evalu-
ating the performance of Exemplar-SVM on posture estimation we use the
combination of the trained classifier scores as similarity measure.

• Exemplar-CNN [45]. Exemplar-CNN is an unsupervised approach that
exploits data augmentations to create surrogate classes. A random set of
data transformations is applied to each input sample and the CNN’s task
is to classify the applied augmentation classes. We follow [45] to train the
network on the posture estimation datasets. Then, for evaluating its perfor-
mance, we use the trained network representation for computing similarities
among the test samples.

• CliqueCNN [11]. In CliqueCNN, Bautista et al. propose an unsupervised
similarity learning approach that only relies on the highest/lowest similar-
ities given a weak estimator of local distances. Very similar samples are
grouped into compact cliques and the batches for training the CNN are
constructed so that one batch only contains mutually distant cliques. The
approach has shown state-of-the-art performances on human pose estima-
tion at the time of publication.

• ImageNet [90]. With the notation ”ImageNet”, we allude to the model
trained supervised on the ImageNet classification task. Note, that in con-
trast to the unsupervised methods explained previously, this model has not
been trained on the human pose estimation dataset itself.

44 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Category
HOG-
LDA
[65]

Exemplar
SVM
[108]

Exemplar
CNN [45]

ImageNet
[90]

Clique
CNN
[11]

Ours

Basketball 0.51 0.63 0.58 0.55 0.70 0.75
Bowling 0.57 0.63 0.58 0.55 0.85 0.87
Clean&Jerk 0.61 0.71 0.58 0.62 0.81 0.85
Discus Throw 0.42 0.76 0.56 0.59 0.65 0.68
Diving 10m 0.42 0.54 0.51 0.57 0.70 0.76
Diving 3m 0.50 0.57 0.52 0.66 0.76 0.84
Hammer Throw 0.62 0.64 0.51 0.66 0.82 0.88
High Jump 0.64 0.76 0.59 0.62 0.82 0.87
Javelin Throw 0.71 0.72 0.57 0.74 0.85 0.85
Long Jump 0.60 0.69 0.57 0.71 0.78 0.85
Pole Vault 0.59 0.64 0.60 0.64 0.81 0.83
Shot Put 0.51 0.67 0.52 0.70 0.75 0.76
Snatch 0.64 0.76 0.59 0.67 0.84 0.89
Tennis Serve 0.70 0.75 0.64 0.71 0.84 0.87
Triple Jump 0.63 0.65 0.58 0.65 0.80 0.83
Vault 0.59 0.71 0.63 0.68 0.81 0.86

Mean 0.58 0.67 0.56 0.65 0.79 0.83

Table 3.1: Transferability of our temporal permutation approach to human pose
estimation. We report the average area under the curve for all categories of the
Olympic Sports dataset [121] using our approach and previous methods. Our
model outperforms the previous state-of-the-art CliqueCNN [11] by a large mar-
gin.

In Table 3.1 we show the average area under the Curve (AUC) obtained with
our model and the previously described baseline methods (the higher the better).
In particular, we measure the AUC of a ROC (receiver operating characteristic)
curve where the false positive rate is set in ratio with the true positive rate at
different classification thresholds. Table 3.1 demonstrates that we consistently
outperform all previous methods and achieve an average gain of 4% over the best
performing previous method, CliqueCNN. Evidently, our self-supervised LSTM-
based sequence ordering task captures more subtle structures, which becomes
apparent when comparing the learned pose similarities of our approach with that
of the state-of-the-art in Figure 3.14. The stripe pattern, which highlights the
reoccurring postures of gait cycles in ”Long Jump”, is more clearly pronounced
when using our representation in contrast to the features learned by CliqueCNN.
Since our model has learned detailed similarities, it can find a large number of
consistent nearest neighbors to a query frame. This ability is demonstrated in
Figure 3.15 which shows the average over 100 nearest samples for two sports
categories of Olympic Sports. It shows, that our approach is able to produce
averages that still capture the essence of the pose.

The Leeds Sports dataset [80] contains 2000 pose annotated images. Since
there are only static images but no videos as would be required for our method,
we transfer the previously trained model from Olympic Sports and directly test
on the Leeds Sports benchmark. For evaluation we follow the standard protocol

3.3. LSTM SELF-SUPERVISION FOR VIDEOS 45

Figure 3.14: Similarity Ma-
trices of the category Long
Jump using our approach (left)
and CliqueCNN [11] (right).
Rows/columns are individual
frames. Red signifies high sim-
ilarity and blue indicates low
similarity.

Figure 3.15: Applying the posture
representation obtained by our self-
supervised LSTM training to find sim-
ilar samples: We show the average of
the 100 nearest neighbors of a query
frame from category Long Jump (left)
and Hammer Throw (right).

Parts
HOG-
LDA
[65]

ImageNet
[90]

Clique
CNN
[11]

Ours
Pose
Mach.
[137]

Deep
Cut[132]

GT

Torso 73.7 76.9 80.1 82.4 88.1 96.0 93.7
Upper legs 41.8 47.8 50.1 53.3 79.0 91.0 78.8
Lower legs 39.2 41.8 45.7 48.0 73.6 83.5 74.9
Upper arms 23.2 26.7 27.2 30.9 62.8 82.8 58.7
Lower arms 10.3 11.2 12.6 16.0 39.5 71.8 36.4
Head 42.2 42.4 45.5 48.9 80.4 96.2 72.4

Mean 38.4 41.1 43.5 46.6 67.8 85.0 69.2

Table 3.2: Human pose estimation results on the Leeds Sports dataset [80] using
our temporal permutation model trained on OlympicSports and without fine-
tuning on Leeds Sports. We report the percentage of correct parts (observer-
centric) for our approach, related works and GT similarities (GT). This experi-
ment shows the generalization capabilities of our approach since it has not been
trained on the dataset itself.

and measure the observer-centric Percentage of Correct Parts (PCP). A part/limb
is considered as correctly detected if the distance between the true limb location
and the predicted location is less than half of the limb length. In Table 3.2 we
show the PCP acquired by HOG-LDA [65], ImageNet [90], CliqueCNN [11], our
approach, two fully supervised method (Pose Machines [137] and DeepCut [132])
and ground-truth (GT) similarities. The GT indicates an upper bound on the
performance we can achieve by an unsupervised approach that finds nearest train-
ing samples to query frames, but that is not trained on keypoints. Therefore, for
each query we select the nearest neighbor using its keypoints and measure the
PCP between the ground-truth keypoint annotation of the nearest neighbor and
the query. Compared to the best previous unsupervised method (CliqueCNN) we
improve by 3.1%. Achieving this gain without fine-tuning on the target dataset
shows that our approach can nicely generalize.

Action Recognition. The goal of action recognition (also often called action

46 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Random ImageNet
Shuffle&Learn

[116]
VGAN
[170]

Jigsaw*
[122]

Ours

Acc (%) 47.8 67.7 50.2 52.1 51.5 52.4

Table 3.3: Evaluating the transferability of our temporal permutation model to
action recognition using the human action dataset UCF-101 [150]. We initialize
the network with the method shown in the top row until conv5 and fine-tune
the weights on the action recognition task. Accuracies [%] are reported for our
approach and previous methods. ’*’: The authors of Jigsaw [122] do not provide
results for this task, we replicate their results using our implementation.

classification) is to recognize/classify a movement performed by a subject given
some raw input data such as videos or accelerometers data. For evaluating our
model on the action recognition task, we use the three splits of the human action
datasets UCF-101 [150] with 101 different action classes and over 13k clips. We
follow the common evaluation procedure of training the network supervised on
the action recognition task (fine-tuning) after initializing with the weights pre-
trained on the proposed unsupervised method. The fine-tuning is performed by
using single frames as input and the network is trained and tested on every split
separately. If not mentioned otherwise, all classification accuracies presented
in this paragraph are computed by taking the mean over the three splits. For
training and testing we utilize the PyTorch implementation2 provided by Wang et
al. [178] for augmenting the data and for the fine-tuning and evaluation step, but
network architecture and hyperparameters are retained from our model. Table
3.3 shows the accuracy on UCF-101 after fine-tuning the representations obtained
with the following methods: (i) random weights (ii) a supervised network pre-
trained on the ImageNet [142] dataset (iii) 3 unsupervised previous methods and
(iv) our self-supervised approach. The results show, that our features successfully
outperform all previous works on action recognition and that our method further
reduces the gap to supervised pre-training ((ii)).

3.4 Multi-Task Self-Supervision

Training a network on a single task enables us to accurately adjust hyper-para-
meters until we reach the highest performance on that problem. However, being
so focused on one task let us ignore additional information that can be extracted
from data and that might help to further improve the performance on our initial
problem. Several works [47, 6, 115, 38, 180] have shown that sharing a represen-
tation among related tasks leads to a better generalization of the model. Also in
SelfSL, previous works [38, 180] have shown that training a network on multiple
surrogate tasks can improve the performance on the desired downstream task.
However, these methods combine heterogeneous tasks that require an additional
technique on top of the self-supervised training to exploit the full potential of
their approach. We propose a model that combines two directly related tasks,
which are complementary without the need of additional adjustment approaches.

2https://github.com/yjxiong/temporal-segment-networks

https://github.com/yjxiong/temporal-segment-networks

3.4. MULTI-TASK SELF-SUPERVISION 47

Figure 3.16: Overview of our spatiotemporal model. (A): We train our network
on the spatial and temporal ordering task in parallel with two alternating batch
types containing either shuffled tiles or shuffled frames. (B): Our network consists
of a ConvNet and two classifier branches which aim to predict the correct index
of the applied permutations. The training signal of both ordering tasks is used
to update the ConvNet weights using SGD and the categorical cross entropy loss.
The trained ConvNet weights are then used as initialization to address video and
image understanding tasks.

3.4.1 Spatial and Temporal Permutation

Noroozi and Favaro [122] have shown that breaking the order of visual patterns
on images and training a network to recover the structure provides a rich train-
ing signal. The same conclusion can be drawn from our previously described
approach that breaks the temporal structure by shuffling frames. Both methods
have proven through extensive evaluations that the learned representation carries
good semantic and structural knowledge of objects or actions. Spatial and tempo-
ral shuffling are both ordering tasks which only differ in the ordering dimension.
Therefore, we propose to address the two directly related ordering tasks jointly
in order to extract information from images and videos simultaneously. This en-
ables us to tackle a wide range of different visual understanding tasks from both
domains.

We learn a CNN feature representation (AlexNet [90] architecture up to pool5)
for images and individual frames of a video using spatiotemporal self-supervision.
Training starts from scratch with a randomly initialized network. To obtain
training samples for the spatial ordering task, we divide images into a m × m
regular grid of tiles as suggested by [122] (see Figure 3.16 A top). The shuffling
of the temporal ordering task if performed on frame level using l frames per video
sequence (see Figure 3.16 A bottom). For the following part of this section, we
are going to talk about a sample x in general, referring to a sequence of frames

48 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

(temporal task) or a partitioned image (spatial task). Similar to Section 3.3.1 we
define x = (x1, x2, . . .) as the sample that is to be shuffled by permuting its parts
by some index permutation ρi = (ρi,1, ρi,2, · · ·) with

ρi(x) :=
(
xρi,1 , xρi,2 , . . .

)
. (3.2)

In Section 3.3.1 we have proposed to train the CNN on a binary classification
problem (real vs shuffled). In contrast, Noroozi and Favaro propose in [122] to
train the spatial shuffling with a multi-class classification loss, i.e. the network
needs to predict the index i of the performed permutation ρi. Therefore, we have
also experimented with this training procedure for the temporal permutation task
and, in fact, have empirically found that using a multi-class classification loss
leads to slightly better results. Moreover, using the same classifier type for both
ordering tasks guarantees a more consistent and stable training of our multi-task
network. For practical reasons, we perform a pre-processing step, as introduced
in [122], that reduces the set of all possible permutations P? by sampling a set
P ⊂ P? of maximally diverse permutations ρi ∈ P. This reduces the complexity
of the classification task significantly since the set of all possible permutations
P? contains l! or (m · m)! elements. If, for example, l = 8 the total number
of possible permutations (and therefore classes to predict) equals 8! = 40320.
The sampled set P is obtained by iteratively including the permutation with the
maximum Hamming distance d(•, •) to the already chosen ones until the desired
amount of permutations is reached. Both self-supervised tasks have their own set
of permutations.

To solve the ordering task of undoing the shuffling based on the features we
want to learn, we need a classifier that can identify the permutation. The classifier
architecture begins with an fc6 layer. For spatial ordering, the fc6 output of all
tiles is stacked in an fc7 layer (see Figure 3.16B top); for temporal ordering the
fc6 output of the frames is combined in a recurrent neural network implemented
as LSTM [69] (as in Section 3.3.1 and see Figure 3.16B bottom). The outputs
of the fc7 and LSTM layer are then processed by two final fc layers (one for
each task) which estimate the index of the applied permutation ρi. The network
is trained in parallel with two batches, one containing n images with spatially
permuted tiles and one consisting of n sequences with temporally shuffled frames.
Back-propagation provides two gradients, one from the spatial and one from the
temporal task, which are passed backwards through the entire network down to
conv1. Thus, both batches update the ConvNet weights which are evaluated in
the following chapter.

3.4.2 Experiments

In this section we analyze the abilities of our model on image and video under-
standing tasks and compare with the performance of previous works. In particu-
lar, we perform unsupervised and supervised evaluations on image classification,
image segmentation, image detection and action recognition.

Nearest Neighbor Search. We employ nearest neighbor (NN) search to
perform an unsupervised evaluation of our model. For that matter, we use two
different datasets: split1 of the human action dataset UCF-101 and the Pascal

3.4. MULTI-TASK SELF-SUPERVISION 49

Method
UCF101 Pascal

Top1 Top5 Top10 Top20 Top50 Top1 Top5 Top10 Top20 Top50

Random 18.8 25.7 30.0 35.0 43.3 17.6 61.6 75.5 85.5 94.2
Jigsaw[122] 19.7 28.5 33.5 40.0 49.4 39.2 71.6 82.2 89.5 96.0
OPN[98] 19.9 28.7 34.0 40.6 51.6 33.2 67.1 78.5 87.0 94.6
Ours 23.4 34.6 41.0 47.3 57.1 39.4 71.7 81.7 88.4 96.1

Table 3.4: Quantitative evaluation of our unsupervised feature representation
using NN search on split1 of UCF-101 and Pascal VOC07. The nearest neighbors
are computed using the cosine distance of the pool5 features. For UCF-101, 10
frames per video are extracted. Images of the test set are used as queries and
the images of the training set as the retrieval targets. We report mean accuracies
(%) over all chosen test frames. If the class of a test sample appears within the
Topk it is considered correctly predicted. We compare the results gained by (i) a
random initialization, (ii) a spatial approach [122], (iii) a temporal method [98],
and (iv) our model. For extracting the features based on the weights of (ii) and
(iii) we use their published models.

Figure 3.17: Qualitative evaluation of our unsupervised feature representation
using NN search on the Pascal VOC07 dataset. For every test sample we show
the Top5 NN from the training set (Top1 to Top5 from left to right) using the
cosine distance of the pool5 features. We compare the models of (i) a supervised
training with the Imagenet classification task, (ii) our spatiotemporal approach,
(iii) OPN as a temporal approach [98], (iv) Jigsaw [122] as a spatial method and
(v) a random initialization.

VOC 2007 dataset. For computing the nearest neighbor on UCF-101, we extract
10 frames per video. The Pascal VOC 2007 dataset consists of 9, 963 images,
containing 24, 640 annotated objects which are divided in 20 classes. Based on
the default split, 50% of the images belong to the training/validation set and 50%
to the testing set. We use the provided bounding boxes of the dataset to extract
the individual objects and discard patches with less than 10k pixels. We use the
model trained with our self-supervised approach to extract the pool5 features of
the training and testing set. Then, for every test sample we compute the Top
k nearest neighbors in the training set by using cosine distance. A test sample
is considered as correctly predicted if its class can be found within the Top k
nearest neighbors. The final accuracy is then determined by computing the mean
over all testing samples. Table 3.4 shows the accuracy for k = 1, 5, 10, 20, 50 com-
puted on UCF-101 and Pascal VOC 2007 using our approach, two previous works

50 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Method Non-Linear Linear

Imagenet 59.7 50.5
Random 12.0 14.1
RotNet+[60] 43.8 36.5
Videos [179] 29.8 -
OPN* [98] 29.6 -
Context [36] 30.4 29.6
Colorization[196] 35.2 30.3
BiGan[41] 34.8 28.0
Split-Brain[197] - 32.8
NAT[14] 36.0 -
Jigsaw[122] 34.6 27.1
Ours 37.9 34.7

Table 3.5: Test accuracy (%) of the Imagenet classification task. A linear [196]
and non-linear [122] classifier are trained after the frozen features (pool5) of the
methods shown in the left column. (*: indicates our implementation of the model,
+: indicates bigger architecture)

[122, 98] and a random initialization. It can be seen, that our model achieves
the highest accuracy for almost all k, meaning that our method produces more
informative features for object/video classification. Especially the accuracies for
video classification are significantly higher in comparison to the other approaches.
We additionally evaluate our features qualitatively by depicting the Top5 nearest
neighbors in the training set given a query image from the test set (see Figure
3.17). We compare our results with [122, 98], a random initialization, and a
network trained on ImageNet (supervised).

In the next few paragraphs we evaluate how well our self-supervised model can
transfer to image and video understanding tasks and to different datasets. For
that, we initialize all networks with our trained model up to conv5 and fine-tune
on the specific task using standard evaluation protocols.

ImageNet [142]. The ImageNet benchmark dataset can be used to test im-
age classification abilities. It consists of ∼1.3M images divided into 1000 object
categories. We evaluate our features by training a (i) linear [196] and (ii) non-
linear classifier [122] (two-layer neural network) on top of the frozen conv layers.
Table 3.5 shows that our features obtain the best results given all previous un-
supervised methods for both the linear and non-linear classifier. The modified
AlexNet introduced by [60] is not directly comparable to our model since it has
60% more parameters due to larger conv layers (”groups” parameter of the deep
learning framework).

Pascal VOC. The dataset offers to evaluate the transferability of our features
by fine-tuning on three different tasks: multi-class object classification and ob-
ject detection on Pascal VOC 2007 [50], and object segmentation on Pascal VOC
2012 [51]. In order to be comparable to previous works, we fine-tuned the model
without batch normalization, using the standard AlexNet with groups in conv2,
conv4 and conv5. Previous methods using deeper networks, such as [180, 38], are

3.4. MULTI-TASK SELF-SUPERVISION 51

Method Classification[50] Detection[50] Segmentation[51]

ImageNet 78.2 56.8 48.0
Random 53.3 43.4 19.8
RotNet[60]+ 73.0 54.4 39.1
OPN[98] 63.8 46.9 -
Color17[94] 65.9 - 38.4
Counting[123] 67.7 51.4 36.6
PermNet[29] 69.4 49.5 37.9
Jigsaw[122] 67.6 53.2 37.6
Ours 72.0 52.4 41.3

Table 3.6: Evaluating the transferability of our features on three tasks on Pascal
VOC. The network is initialized until conv5 with the method shown on the left
column and fine-tuned for (i) multi-label image classification[88], (ii) object de-
tection using Fast R-CNN [139] and (iii) image segmentation[101]. (i) and (ii) are
evaluated on Pascal VOC’07, (iii) on Pascal VOC’12. For (i) and (ii) we show the
mean average precision (mAP), for (iii) the mean intersection over union (mIoU).
Fine-tuning has been performed using the standard AlexNet architecture, with-
out batch normalization and groups 2 for conv[2,4,5]. (’+’: significantly larger
conv layers)

omitted from Table 3.6. For object classification we follow the evaluation pro-
tocol described in [88]. We do not require the pre-processing and initialization
method described in [88] for any of the shown experiments. For object detection
we train Fast-RCNN following the experimental protocol described in [139]. We
use FCN [101] to fine-tune our features on the segmentation task. The results in
Table 3.6 show that we significantly improve upon previous works. Our method
outperforms even [60] in segmentation, which uses batch normalization also dur-
ing fine-tuning and uses a larger network due to the group parameter in the conv
layers.

Action Recognition. We employ the three splits of two different human
action datasets to evaluate our unsupervised pre-trained network on the action
recognition task: UCF-101 [150] with 101 different action classes and over 13k
clips and HMDB-51 [91] with 51 classes and around 7k clips. As in Section 3.3.1,
the supervised training is performed using single frames as input and the network
is trained and tested on every split separately. All classification accuracies are
computed by taking the mean over the three splits of the corresponding dataset.
For training and testing we utilize the PyTorch implementation3 provided by
Wang et al. [178] for augmenting the data and for the fine-tuning and evaluation
step, but network architecture and hyper-parameters are retained from our model.
Table 3.7 shows that we outperform the previous works on UCF-101 and HMDB-
51. During our self-supervised training our network has never seen videos from
the HMDB-51 dataset, showing that our model can transfer nicely to another
dataset.

3https://github.com/yjxiong/temporal-segment-networks

https://github.com/yjxiong/temporal-segment-networks

52 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Method UCF-101 HMDB-51

Random 47.8 16.3
ImageNet 67.7 28.0
Shuffle&Learn [116] 50.2 18.1
VGAN [170] 52.1 -
Luo et. al [103] 53.0 -
OPN [98] 56.3 22.1
Jigsaw* [122] 51.5 22.5
Ours 57.3 23.2

Table 3.7: Test accuracy (%) on the video understanding task action recognition.
We initialized the network until conv5 with the approach shown in the left column
and fine-tuned on UCF-101 and HMDB-51. ’*’: Jigsaw [122] do not provide
results for this task, we replicate their results using our PyTorch implementation.

Figure 3.18: Unsupervised compari-
son of the different parts of our model
on Pascal VOC’07 using nearest neigh-
bor search. (S): Spatial task, (T):
Temporal task, (S+T): Spatial and
Temporal task simultaneously.

Method S T S&T S+T

Pascal 67.6 64.1 69.8 72.0
UCF-101 51.5 52.8 54.2 57.3

Table 3.8: Supervised compari-
son of the different parts of our
model on Pascal VOC’07 and
UCF-101. (S): Spatial task, (T):
Temporal task, (S&T): first solely
Spatial task, followed by solely
Temporal task, (S+T): Spatial
and Temporal task simultaneously.

3.4.3 Ablation Studies

Now we evaluate the spatial and temporal task separately to demonstrate that
both components are essential to achieve the final performance.

Unsupervised Evaluation. We show in Figure 3.18 results on the Pascal
VOC object classification task for every component of our model without any
further fine-tuning. As in the previous section, we perform the unsupervised
evaluation using nearest neighbor search by extracting pool5 features and com-
puting cosine similarities. This shows how well the unsupervised features can
generalize to a primary task, such as object classification. Figure 3.18 illustrates
that the combined spatiotemporal model (S+T) clearly outperforms the networks
trained on only one task (by 7% on the spatial and 14% on the temporal model).
Furthermore, the combined network shows a faster improvement, which may be
explained by the regularization effect that the temporal has on the spatial task
and vice-versa.

Supervised Fine-Tuning. In Table 3.8 we present a supervised evaluation
of all components. Each model is fine-tuned on the multi-class object classifica-
tion task on Pascal VOC 2007 and on video classification using UCF-101. The

3.4. MULTI-TASK SELF-SUPERVISION 53

Figure 3.19: Class Saliency Maps of image classification models using networks
trained with ImageNet, our spatiotemporal method and random weights as ini-
tialization.

results coincide with the unsupervised evaluation and show that the features of
the spatiotemporal model (S+T) outperform both single-task models. The com-
bination of the two tasks has been performed in parallel (S+T) and in a serial
manner (S&T) by first training the spatial and then the temporal task on top of
the spatial features. Training the permutation tasks in parallel provides a large
gain over the serial version, showing that the two tasks benefit from each other
and should be trained together.

3.4.4 Visualizations

For illustrating how well our representations have captured salient details of an
object we apply the visualization procedure of [148]. As in Section 3.4.2, we
evaluate our representation by transferring it to the task of image classification
on Pascal VOC 2007. The network is initialized up to conv5 using (i) supervised
training by means of the ImageNet classification task (upper bound), (ii) our spa-

54 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

tiotemporal self-supervision and (iii) no pre-training, i.e., random weights. Each
of these initialized networks are then fine-tuned on Pascal VOC. Applying [148]
yields a class-specific saliency map which indicates the relationship of individual
pixels to the final classification. A good representation should capture essential
aspects of the object. Fig. 3.19 shows that our self-supervised approach captures
more of the characteristic structures than a randomly initialized network.

3.5 Technical Details

The following information describe the training process more detailed for both
presented approaches (Section 3.3.1 and 3.3.1). If not stated otherwise, the details
concerning the temporal part in Section 3.4.1 coincide with the specifications of
the predecessor approach in Section 3.3.1.

All deep networks are implemented using the PyTorch4 framework and the
experiments were performed on a single Titan X GPU. The still images used for
the spatial task are chosen from the training set of the Imagenet dataset [142]. For
training our model with the temporal task, we employ the frames from split 1 of
the human action dataset UCF-101 [150]. We randomly select 8 frames from each
video and randomly crop a patch with the size of 224x224 per frame and resize
to 75x75. For the spatial task we divide an input image into 9 non-overlapping
parts and each tile has the size of 75x75. As augmentation, we randomly crop
each tile/frame, apply a random color jittering to each of them and normalize
the tiles/frames separately. We use 1000 permutations (|P| = 1000) for both
tasks in Section 3.4.1. For the training of the predecessor method with a binary
loss (Section 3.3.1) we employ all possible permutations P? since the amount of
permutations is not affecting the number of prediction classes. For updating the
network, we use SGD with a starting learning rate of 0.001 which we reduce after
200k iterations by a factor of 10. Our network runs in total for 350k iterations.
We use a batchsize of 128 for both spatial and temporal tasks. A batch in Section
3.3.1 contains n = 128 different sequences and 256 samples in total since every
sequence is represented by its real and randomly shuffled version (as expressed
in Equation 3.1). For the spatial classification branch, the fc6-layer has a size of
1024, fc7 has 4096 dimensions. For the temporal task we use an fc6-layer with
512 neurons and one LSTM layer with the hidden dimension of 256.

3.6 Discussion

In this chapter, we have introduced self-supervised representation learning and
presented two novel SelfSL methods that efficiently employ visual data without
requiring any human annotations. We break the order of visual patterns and
ask a neural network to recover the structure. The temporal permutation of
frames leads to a detailed posture and sequence representation that is evaluated
on human pose estimation and action recognition. To exploit the full potential
of both images and videos we have proposed a multi-task representation learning
approach that combines two directly related tasks. A neural network is trained

4http://pytorch.org/

http://pytorch.org/

3.6. DISCUSSION 55

simultaneously on permuting image tiles and shuffling video frames. This enables
us to learn a broadly applicable feature representation for addressing various
video and image understanding tasks. The learned representation outperforms
previous works on image classification, multi-class object classification, action
recognition, object detection and object segmentation using four different bench-
mark datasets. Nearest neighbor search demonstrates that our model is able to
comprehend similarities or dissimilarities between related or unrelated events, re-
spectively. This property is further analyzed in the next chapter where we use
SelfSL to compare motor behavior videos among subjects that are participating
in biomedical studies.

56 CHAPTER 3. SELF-SUPERVISED REPRESENTATION LEARNING

Chapter 4

Unsupervised Motor Behavior
Analysis

Motor behavior analysis seeks to understand the voluntary dynamic change of
posture of individuals and how it transforms due to disease developments or
external influences such as medication. A detailed analysis of posture changes
during skilled motor tasks such as walking or grasping can reveal distinct func-
tional deficits and their restoration during recovery. Previous works on behavior
analysis require placing physical or virtual markers on the individual to cap-
ture the movements. This procedure is very cost- and time-intensive considering
the annotation effort for labeling characteristic locations. We propose to use
video-based self-supervised learning to automatically learn accurate posture and
behavior representations. Our approach does not require any physical or virtual
markers and is able to automatically analyze behavior changes without any user
interaction or prior expert knowledge. An essential goal of motor behavior analy-
sis is to develop an effective treatment for restoring impaired motor skills. Thus,
besides evaluating the overall behavior, it is crucial to discover small differences
in motor function between the impaired individual and a reference movement to
allow a direct adjustment of treatment. For that matter, we propose a novel deep
generative model that is able to detect and magnify subtle posture deviations
across individuals.

4.1 Introduction

Movements of individuals are the visible result of several intricate internal pro-
cesses. Therefore, the research of motor behavior [13, 4, 55, 175, 81, 112, 5, 167,
143] concerns a wide variety of disciplinary perspectives. For a basic understand-
ing of motor function several factors need to be taken into account such as the
neurophysiological or psychological state of the individual. Thus, analyzing the
visible execution of movements can reveal crucial information about the subject’s
internal condition without requiring invasive procedures such as brain surgery.
Figure 4.1 illustrates this concept.

Especially in biomedical research, motor behavior analysis is an important
component for evaluating different treatment options for diseases that affect the
motor function such as a stroke or multiple sclerosis (MS). Even though machine

57

58 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.1: Motion signals in the brain trigger visible posture changes. Analyzing
the behavior reveals information about the state of the internal processes, e.g.
the brain function.

learning has lately shown tremendous successes in automatizing several medi-
cal studies [133, 22, 198, 147, 153, 140, 168], a large amount of neuroscience
researchers still perform behavior analyzes manually by closely observing and
annotating hours of recordings.

There exist two popular approaches for behavior analysis [112, 81] that em-
ploy machine learning techniques to provide semi-automated behavior evalua-
tions. However, both rely on annotated keypoints and strong user interactions.
In this chapter, we propose a diagnostic support system that does not require
any manual annotations. In particular, we demonstrate how unsupervised com-
puter vision can be used to automatize motor behavior analysis. We apply our
SelfSL approach introduced in Section 3.3.1 to two biomedical studies of humans
and rodents that suffer from a neurological disease. Given recordings of several
individuals that perform a pre-defined movement such as walking, our SelfSL
approach is able to encode the fine-grained details of the shown behavior. The
learned posture and sequence representation can be used to automatically ob-
serve and quantify the changes in behavior triggered by medication or disease
aggravation.

Besides measuring the impairment of patients, a detailed diagnosis also re-
quires understanding how and when the behavior changes in comparison to a
reference (e.g. healthy) movement. However, human senses are not construed
to detect small variations in behavior, especially when comparing two different
subjects. In other fields, scientists have been creating tools to magnify their
senses in order to recognize phenomena that are not directly observable, e.g. mi-
croscopes or telescopes for increasing the visual senses. We belief that such a
tool is also required to improve the perception of behavioral changes. Therefore,
we additionally propose a generative model-based approach that amplifies subtle
posture differences between an impaired individual and a reference subject. Build
upon the fine-grained representation learned in our SelfSL method, our generative
model generates new images that exaggerate impaired postures. If, for instance,
a patient is not able to fully bend their knee while walking, our magnification

4.2. PREVIOUS WORK 59

Figure 4.2: Jaaba [81] interface screenshot while the user labels the behavior
’chase’ given a video of flies. The dashed white box in the bottom of the figure
signals the frames that are being labeled. After annotating frames with and
without the desired behavior, Jaaba trains a classifier for detecting this behavior.
Then, the user can choose the frames that should be analyzed automatically and
Jaaba provides a behavior prediction with a confident score per selected frame.
The figure is taken from http://jaaba.sourceforge.net/Training.html.

approach magnifies this behavior (since it is different from healthy gaits) by pro-
ducing images that only show an outstretched leg throughout the gait. In this
way, subtle impairment which could be easily overlooked is more visible to the
user (e.g. a doctor). Our generated images facilitate the user’s interpretation of
the symptoms, help to actually understand the disorder and ultimately support
researchers in developing or adjusting treatments.

After describing previous works in the next section, we introduce in Section 4.3
the experimental setup of two medical scenarios that benefit from such a diagnos-
tic support system. Then, we demonstrate in Section 4.4 how our SelfSL method
can be applied to the given scenarios. Our novel generative model for amplify-
ing subtle posture differences is introduced in Section 4.5. We demonstrate the
wide applicability of our learned features and generated images through extensive
experiments and a comparison with previous works in Section 4.6.

4.2 Previous Work

Placing physical markers on an individual to capture the trajectory of a movement
is very tedious and especially problematic when working with small and hairy
animals. Therefore, many researches have moved from physical to virtual markers
[141, 131, 130] by virtually annotating the interesting regions after recording
the movements. In recent works, machine learning is employed to facilitate the
evaluation of motor behavior by e.g. training a supervised model that can detect
keypoints or estimate postures. The two most popular machine learning based
approaches are currently Jaaba [81] and DeepLabCut [112] which are described
subsequently.

http://jaaba.sourceforge.net/Training.html

60 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.3: Exemplary depiction of keypoint annotations of rodents and flies for
training DeepLabCut [112]. The examples are taken from [112].

Jaaba. Janelia Automatic Animal Behavior Annotator (Jaaba) is an open-
source program for detecting annotated behavior in animals. It collects quanti-
tative statistics that describe the behavior shown in an input video. Given the
graphical user interface (GUI) provided by Jaaba, a user first needs to define the
behavior they want to detect on some of the input frames and Jaaba attempts to
detect the annotated behavior on the remaining frames after training a classifier.
An example of the user interface for the task of detecting the behavior ’chase’
of flies can be found in Figure 4.2. For training the classifier, Jaaba computes
per-frame features that describe the state of the animal. The proposed features
can be grouped into locomotion, landmark-based, appearance-based and social
categories. The user can select the most meaningful features or develop new per-
frame features. The classifier is then trained using the pre-defined features and
the GentleBoost learning algorithm [56]. If necessary, the user can request to
re-train the classifier after labeling more frames or correcting wrong predictions.

DeepLabCut. DeepLabCut [112] is an open-source software package for
quantifying behavior with 3D pose estimation. It is based on the deep learning
feature detector architecture of ”DeeperCut” [72], an approach for multi-human
pose estimation. The network of DeepLabCut consists of a variant of ResNets
[67] that are pretrained on ImageNet [142]. Deconvolutional layers are used to
up-sample the ResNet features to produce prediction masks for every pre-defined
keypoint. For training the model, the user needs to label a few hundred frames
with the desired keypoints. Figure 4.3 depicts examples of keypoint annotations
for rodents and flies. The number of annotated frames required for achieving
satisfactory results is dependent on the quality of videos and the difficulty of the
task. The developer of DeepLabCut provide weights of the network trained on
∼ 25, 000 labeled images for human pose estimation. Users can use these weights
as initialization before fine-tuning on their desired dataset to reduce the training
effort.

The main difference between our approach proposed in the following sections
and the previously described methods is the amount of required user interaction.
Our approach is completely unsupervised and does not require any annotations.
Moreover, our model learns a feature representation of the entire object-of-interest
and does not define behavior based on only a few keypoints. We show the ben-
efits of our method in the experimental section where we also compare with the
previously described methods.

As a plus, we also propose a generative model that generates new images
for facilitating the perception of small differences between a query and reference
subject. We are not aware of any previous behavior analysis approaches that

4.2. PREVIOUS WORK 61

Figure 4.4: Overview of the latest video motion magnification method based on
an encoder-decoder architecture. The figure is taken from [125].

provide such a magnification tool. However, there exist previous works that
address video magnification in a different context which we will discuss in the
following paragraph.

Magnification. Magnification is a valuable tool to enhance differences on
images or a set of images, in order to automatically detect and visualize small
deformations. Tali et al. [33] and Tlusty et al. [160], for instance, visualize
non-local variations between repeating structures in a single image or for multi-
ple views (e.g. for visualizing irregularities in a stone wall). Previous works on
video motion magnification have primarily addressed the amplification of small
motions [125, 100, 183, 48, 173, 174, 199, 166] or the deviation from a predefined
reference shape [172], but only within the same video [100, 125]. The first at-
tempt of motion magnification [100] computes optical flow between video frames
and then amplifies every pixel separately given the optical flow information. Fol-
lowing works [183, 173, 48, 174, 199, 125] do not alter pixels directly, but they
decompose the video into an alternative representation, e.g., by using the fre-
quency domain. The desired motion is then selected and used to generate the
image. Oh et al. [125] proposed the first deep learning based approach to video
motion magnification using an encoder-decoder architecture. Figure 4.4 provides
an overview of the method. The network is trained with a regularization loss that
enforces the shape representation of a color perturbed frame to be the same as
the original frame in order to induce a separation of texture and shape. The loss
ensures that the magnification only affects shape and not intensity changes. For
performing the magnification, Oh et al. [125] introduce a specialized non-linear
magnification module that is trained using a synthetic dataset. We also amplify
differences using video frames as input, however, we amplify the deviation in pos-
ture across individuals and videos. Moreover, our approach does not require an
additional non-linear module for producing meaningful magnifications. Since this
approach is the most recent and most successful publication in video magnifica-
tion, we provide a comparison of our magnification results with the amplifications
generated by Oh et al. [125] in the experimental section.

62 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.5: Experimental Setup of the Rat Stroke Model. Left: The animal is
placed in a Plexiglas box and reaches through a small aperture (blue lines) to
grasp for a sugar pellet that is placed manually within the area marked with a
red oval. Right: Exemplary frame of a video from a grasping session that is used
to analyze the behavior.

4.3 Experimental Setup

We evaluate our diagnostic support system on two species suffering from neuro-
logical diseases. We closely collaborated with neuroscientists who executed the
medical studies and recorded the subjects with a single camcorder.

4.3.1 Rat Stroke Model

In the first study, we analyzed the recovery of impaired forelimb function in
rats that suffered from a photothrombotic stroke in the sensorimotor cortex. To
evaluate the impact of the neurological disease and subsequent treatments, the
animals performed a skilled forelimb action (single pellet grasping) at several
stages during the experiment. They were placed in a Plexiglas box and recorded
while grasping a sugar pellet that was manually positioned on a shelf (see red oval
on Figure 4.5). The study was performed with in total 36 adult female Long-Evans
rats. In the first stage, the animals were trained for up to 5 weeks in the complex
single pellet grasping task until at least 60% of the grasps were successful. Then,
all rats received a photothrombotic stroke targeting the sensorimotor cortex that
corresponds to the preferred paw for grasping. The animals were divided into four
treatment groups and the ability to grasp was again examined for every animal
2 days, 7 days, 14 days, 21 days, and 35 days after the stroke. The treatment
groups are the following:

1. Stimulation: neuronal stimulation of the intact corticospinal tract with blue
light from day 3 until day 14 after the stroke (3× a day)

2. Stimulation & Training : stimulation as above plus intensive grasping train-
ing of the impaired paw during the 3rd and 4th week after stroke (for at
least 100 sugar pellets per training session)

3. Delayed Training : intensive grasping training of the impaired paw during
the 3rd and 4th week after stroke

4.3. EXPERIMENTAL SETUP 63

Figure 4.6: Exemplary depiction of several subjects in HG2DB. The different
subjects wear different types of trousers in different colors.

Figure 4.7: One Walking cycle of a subject from HG2DB represented by 10
linearly spaced frames.

4. No Treatment

For a more detailed description of the experimental setup and treatment
groups please see [175]. To evaluate the success of the performed medications,
we analyze the rehabilitation behavior of the different treatment groups using
the recordings from all stages. We verify the results achieved with our SelfSL
algorithm using manual scores and compare with previous works in Section 4.6.

4.3.2 Human Gait Dataset (HG2DB)

For our second scenario, human subjects with different neurological disorders
were recorded while walking on a treadmill. The Human Gait Dataset to Study
Dysfunctional Behavior (HG2DB) contains 14 patients diagnosed with multiples
sclerosis (MS), 18 patients with hydrocephalus and 10 healthy subjects that are
used as reference. The videos were recorded at University Hospital Zurich be-
tween 2017 and 2018. All patients showed walking impairment where some were
more prominent than others. 24 hours after receiving appropriate treatments,
all impaired patients were recorded again to evaluate the change in behavior due
to the medication. For further information about the applied treatment of the
MS patients please see [55]. The movements were documented with a standard
consumer video-camera and the position of the tripod was kept constant for all
recordings. Figure 4.6 provides exemplary frames of several subjects of HG2DB
and Figure 4.7 shows a full walking cycle divided in 10 linearly spaced frames.
For anonymity purposes, we only use the lower part of the body since this is also
the area that needs to be analyzed for assessing the walking abilities. As for the
rat stroke model, described above, we employ our methods to analyze the behav-

64 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

ior of the patients before and after treatment and compare them with healthy
individuals.

The videos have been recorded by Linard Filli with whom we also stayed in
close contact while performing the behavior analysis experiments on this dataset.

4.4 Self-Supervised Learning for Behavior

Analysis

A detailed motor behavior analysis goes far beyond a trajectory analysis [81]. It
requires an accurate representation of the entire object-of-interest to capture even
small distinctions between various stages of rehabilitation or between a query
and reference movement. Focusing on only a few pre-defined keypoints easily
leads to forfeiting important elements essential for a fine-grained study of motor
function. Moreover, in order to expedite and facilitate the evaluation of behavior
for medical experts, the algorithm should circumvent tedious manual annotations
and an annotator bias. For that reason, we propose to employ SelfSL to learn a
detailed representation of posture and behavior without requiring any labels.

4.4.1 Learning a Fine-Grained Representation

The challenge is to learn an encoding that can compare similar behavior across
individuals despite their differences in appearance. Fortunately, our approach
described in Section 3.3.1 has shown excellent performances on datasets with
diverse subjects and tasks related to motor behavior analysis such as posture
estimation or action recognition. Therefore, we train per medical study a deep
neural network with the temporal permutation task introduced in Section 3.3.1
and Figure 3.13 using the corresponding recordings. The sequences for training
the network are at first randomly extracted from the given videos. Then, we
randomly shuffle the sequences, input the real and permuted samples into the
CNN and train the network to distinguish between the two sequence types. Since
the training data contains sequences from different subjects, the network learns
to be invariant to appearance characteristics and only focuses on the execution of
the shown movements. After training, we can use simple classifiers on top of the
fine-grained representation in order to measure the recovery during rehabilitation
or to distinguish between different diseases.

During the grasping process of the rat stroke experiment, the camcorder
records half of the animal’s body that performs the action (as can be seen in
Figure 4.5 right). However, only the paw is essential for assessing motor function
since the stroke solely affected the forelimb. Therefore, before training the net-
work with the temporal permutation task, we have implemented an approach that
separates the paw from background clutter without requiring any annotations.
This procedure is described in the next paragraph. Note, that we do not require
any detection mechanism for the human gait dataset since a fixed bounding box
per video produces satisfactory extractions of the region-of-interest (lower body).

4.4. SELF-SUPERVISED LEARNING FOR BEHAVIOR
ANALYSIS 65

Figure 4.8: Visualization of our detection system, which uses optical flow for
initial positive samples and random negatives to train an FCN for extracting
candidate regions before applying temporal smoothing (bottom right).

4.4.2 Detection

Finding and tracking a rat’s paw during grasping is challenging for a number of
reasons. There is no initialization for tracking provided and due to frequent occlu-
sions by other body parts (other paw, arm, nose, etc.) detections are frequently
lost. Moreover, paws are small, furry, fast-moving (implying large displacement
between successive frames and motion blur due to limited illumination of noctur-
nal rodents that are distracted by intense light), and appearance varies signifi-
cantly between subjects as does shape between different hand postures. Learning
a representation and detector for paws with these large variations in shape and
appearance is therefore demanding—especially since we do not require laborious
manual annotations of paws. Therefore, we follow a sequential bootstrapping
procedure to train a CNN-based hand detector in an iterative manner, initializ-
ing it with motion information to start with the easy to extract paws first and
then consecutively learning more complex ones. We initially extract a set of can-
didate paw regions by computing optical flow [99] and decomposing frames with
[182] into a low-rank background model and a sparse set of connected foreground
pixels, thus finding strongly moving paws. In addition to these positive samples
we add hard negatives randomly sampled from locations around the positives to
then train a CNN (AlexNet [90], trained with stochastic gradient descend with
cross-entropy loss) to separate both classes. The resulting network which we will
call E0

π is then turned into a fully convolutional network (FCN0) by reshaping
the last 3 fc-layers. A deconvolutional layer is not necessary since we do not need
pixel-accurate segmentation. Paws are then extracted by taking the 5 strongest
candidate detections per frame from the FCN0 scoremap and then selecting the
best one by temporal smoothing, i.e., fitting a polynomial to ten consecutive
frames and choosing the smoothest trajectory. Figure 4.8 summarizes this pro-
cedure. We show in the experimental section that the new detector has better
performance than the initial motion detections.

Given the new and improved detections of all sequences we can now train the
model (ConvNet+LSTM) with the temporal permutation task to learn a behav-

66 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

ior and posture representation. Since E0
π has implicitly learned a representation

of paws we employ the weights of E0
π as initialization for the ConvNet. The

LSTM and classifier weights are initialized randomly. Training with the tempo-
ral permutation task yields not only a behavior representation but also a refined
posture network E1

π that presumably understands posture better than the paw
detector FCN0. Therefore, we implement a bootstrap retraining to further im-
prove the forelimb detections and consequently also the posture representation.
In particular, we use E1

π to obtain a new paw detector FCN1 which in turn yields
better detections to retrain the ConvNet+LSTM model on the temporal permu-
tation task. The bootstrap retraining of the ConvNet+LSTM network and the
FCN paw detector finally converges after two iterations which is demonstrated
quantitatively in the experimental section.

For the human gait dataset, the ConvNet+LSTM network is initialized ran-
domly and only trained once with the surrogate task since an adequate region-
of-interest can be extracted from the beginning for all videos.

4.5 Magnification of Impaired Behavior

The SelfSL approach enables us to learn a representation for quantifying visible
impairment. However, a complete and detailed analysis of behavior also includes
to spot even small indications of impairment to better understand the possible
degeneration of motor function. For that matter, we require a comparison of the
performed action with some reference (e.g. healthy) movement. However, this
task cannot always be solved easily, since the comparison of different behaviors
is performed across diverse subjects. Appearance differences make it difficult to
solely focus on postures and to spot their subtle deviations. Hence, we extend
our behavior analysis tool with an additional model that is able to magnify subtle
posture differences across subjects to facilitate the perception of deviations for
humans.

Model. We require an approach which provides (1) a detailed representation
of posture that allows to magnify subtle deviations and (2) magnifications ex-
pressed in the form of images so that humans are able to understand and interpret
the output. In fact, the model needs to first explicitly learn an encoding space
conditioned on the input image (in which we can manipulate the input posture)
and second decode the encoding back to the image space. Hence, an autoencoder
(AE) is the architecture of choice. An AE consists of an encoder E and a de-
coder D. E extracts a lower dimensional representation of the input image x,
and D translates the representation back to the input space by generating the
reconstructed image x̂. We additionally require a model that explicitly separates
posture from the remaining image components since we only want to magnify the
differences in posture. Hence, we use an autoencoder containing two encoders,
Eπ for posture and Eα for appearance. Figure 4.9A displays the structure of the
network. In detail, Eπ and Eα encode an input image x into the low dimensional
latent space zπ and zα, respectively. The decoder D is used to reconstruct x given
zπ and zα as input and outputs the reconstruction

x̂ = D
(
zx

π, zx
α

)
(4.1)

4.5. MAGNIFICATION OF IMPAIRED BEHAVIOR 67

Figure 4.9: Training of our generative model which is employed during inference
for magnifying subtle posture differences. A: To produce real-looking images, the
generative model with two encoders Eπ (posture) and Eα (appearance) and one
decoder D is trained by minimizing the distance between the input image x and
the generation x̂. B : We additionally introduce an appearance loss that minimizes
the distance between the latent representations of images that originate from the
same video, i.e. images which have the same appearance.

with zx
π and zx

α the latent posture and appearance representation of x, respec-
tively.

Training. In order to generate satisfying magnifications, the network needs
to (1) produce real-looking images and (2) separate posture from appearance. To
satisfy condition (1), the generative model is trained by minimizing the recon-
struction loss, i.e. distance between the original input image x and the generated
image x̂

Lrec = d(x, x̂) (4.2)

with d(•, •) the perceptual distance [78]. The reconstruction loss is visually
illustrated in Figure 4.9A.

To ensure that we can manipulate posture without changing the appearance
as required for magnification, we introduce two additional training principles that
define the role of Eπ and Eα. Fortunately, we have already learned a fine-grained
posture representation for our medical scenarios in the previous section using the
temporal permutation task. For that reason, we use the ConvNet network from
Section 4.4 as our posture encoder Eπ and thus circumvent the training from
scratch for the posture encoder. In fact, we do not update Eπ since it is already
fully trained on extracting only posture information from the input image. We
solely train one fully connected layer placed on top of Eπ (as shown in Figure
4.9A). To define the functionality of Eα we introduce an appearance loss

Lapp = |Eα(x)− Eα(x′)|2 (4.3)

which minimizes the distance between the latent representations of two images
from the same video. This ensures that input images with the same appearance
are mapped to the same point in the latent space zα. This procedure can be
viewed in Figure 4.9B.

68 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.10: Illustration of our magnification strategy. We linearly extrapolate
in the latent posture space zπ between a reference posture (filled green dot) and
the query posture (red filled dot) to obtain the magnified posture (filled orange
dot). The magnified image is then generated by feeding the magnified posture
and the latent appearance representation of the query frame (filled red dot in
zα) into the decoder D after concatenating them. The reference postures are in
comparison to the query posture more horizontal and the output image displays
the exaggeration of this behavior by further rotating the paw.

To summarize, our generative model is updated with the following training
objective:

L = Lrec + γLapp (4.4)

where γ is a free parameter and we set γ = 10−3 in our experiments. More
technical details about the network structure and hyper-parameters can be found
at the end of this chapter (Section 4.7).

Magnification. After the training of the generative model is converged, we
employ the network for performing magnifications in the posture space without
altering the appearance. Figure 4.10 illustrates our strategy for magnifying the
posture differences between a query frame and reference posture. First, we collect
several reference postures by determining the nearest neighbors of the query frame
x from the set of all healthy postures. We compute the nearest neighbors by using
the posture representation of our behavior network. Using the nearest neighbors
ensures that all reference frames originate from the same type of posture, e.g.
all arise from a right step. Then, we insert the selected frames into the posture
encoder and perform magnification between the representation zx

π = Eπ(x) of
the query frame x and the encoding zxNN

π of the reference postures using linear
extrapolation. In this way, we obtain the magnified representation zxm

π ,

zxm
π = zxNN

π + λ · (zx
π − zxNN

π), (4.5)

with λ > 1 a pre-defined parameter and zxNN
π = 1

K ∑K
j=1 Eπ(xj) the average

posture representation of the K chosen reference frames (nearest neighbors). The
linear extrapolation is illustrated in Figure 4.10 via the black line in the posture
space zπ that connects the different posture representations. In order to generate
the magnified frame x̂m, we extract the appearance encoding zx

α of the query
frame x, concatenate the two encodings (zx

α and zxm
π) and insert the result into

the decoder D.

4.6. EXPERIMENTS 69

Models Accuracy(%)

OpticalFlow [99] 40.2
FCN0 58.0
FCN1 81.4
FCN2 82.1

Table 4.1: Accuracy of the detections obtained by using optical flow, after one
round of training (FCN0), and after two (FCN1)/three rounds of retraining
(FCN2).

4.6 Experiments

Now we present several experiments which evaluate the trained representations
and analyze the behavior of the two medical scenarios given our models. We
further show that our diagnostic support system outperforms previous works.

4.6.1 Paw Detection

For the rat stroke model we first require an approach that detects the object-
of-interest, i.e. the grasping forelimb, before learning a posture and behavior
representation. We now evaluate the accuracy of the obtained regions and provide
more details about the training process of the paw detector.

As described in Section 4.4.2 we extract the first initial candidate paw regions
(∼ 15, 000) by using optical flow [99] and robust PCA [182]. We train a network
(E0

π) with these initial detections and transform it to an FCN (FCN0) in order
to obtain candidate regions for the full dataset (∼ 40, 000 densely extracted
sequences). Then, we perform the bootstrap retraining of the ConvNet+LSTM
network and the paw detector until convergence (after 2 iterations). We evaluate
the detection performance for every phase on a small test set of manually labeled
paw locations from different videos. Table 4.1 shows the detection accuracy of
successive rounds of the bootstrap retraining (detections are counted as correct
if their intersection over union with the ground-truth is ≥ 50%).

4.6.2 Evaluation of the Learned Representation

Next, we qualitatively and quantitatively evaluate the posture and behavior rep-
resentation learned by our SelfSL method. We use the fc6 features of our ConvNet
network (displayed in Figure 3.13) as posture representation and the LSTM fea-
tures as behavior encoding. If not stated otherwise, we employ the final model of
the bootstrap retraining procedure (after 2 iterations) for the rat stroke scenario.
For the human gait dataset, we train the ConvNet+LSTM network only once
since no detection algorithm of the region-of-interest is required for the given
videos.

Qualitative Results. The primary goal of our learning procedure is to
train a model that understands postures and behavior which includes identify-
ing similar or dissimilar samples. Therefore, we assess the quality of the learned
representation by computing the cosine similarities in the representation space

70 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.11: Qualitative evaluation of our posture encoding on the rat stroke
dataset. We compute the cosine similarity between all samples given their posture
encoding and show the nearest neighbors of several query frames. The last column
provides an average image of the 100 nearest neighbors.

Figure 4.12: Qualitative evaluation of our behavior encoding on the rat stroke
dataset. We use the LSTM features for computing the cosine similarities between
all sequences and show the 3 closest sequences for 4 query samples.

between all samples of a dataset to determine the nearest neighbors. Figure 4.11
illustrates the nearest neighbors of several query postures of the rat stroke dataset
given the learned posture representation, and Figure 4.12 qualitatively evaluates
the behavior representation. It is apparent, that both representations are in-
variant to appearance differences and only encode the desired characteristics, i.e.
posture and behavior. The same conclusion can be drawn from Figure 4.13 which

4.6. EXPERIMENTS 71

Figure 4.13: Qualitative evaluation of our posture encoding on the human gait
dataset. We project our posture representation of 1000 randomly chosen postures
to a 2D embedding using tSNE [178]. The walking gate can be reconstructed by
following the circle anticlockwise and similar postures are located close to each
other. The figure can be best viewed by zooming in on the digital version.

72 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.14: Exemplary depiction of two samples of the posture benchmark test
set used to evaluate posture representations quantitatively.

Models Accuracy(%)

ImageNet[90] 65.3
E0

π 72
E2

π 85.6

Table 4.2: Evaluation of posture
representation using our bench-
mark test set for posture similar-
ity.

Models Accuracy(%)

Max frame similarity 74.1
Avg frame similarity 75.9
DTW [31] 76.8
ClusterLSTM 64.0
Ours2 80.5

Table 4.3: Evaluation of behavior repre-
sentation using the benchmark test set
for sequence similarity.

shows the projection of 1000 postures of HG2DB from the posture encoding to a
2D embedding space.

Quantitative Results. We quantitatively evaluate the learned representa-
tions of the rat stroke dataset using a posture (individual frames) and a behavior
(sequences) benchmark, which were manually labeled. Both benchmarks are com-
posed of reference frames/sequences and 10 similar and 10 dissimilar manually
selected samples have been labeled for each reference. Figure 4.14 shows two
exemplary samples of the posture benchmark. We use 30 reference elements for
evaluating the posture representation and 22 for the sequence evaluation. This
test set consists of in total 4326 frames. For evaluating pose and behavior similar-
ity, we use the learned feature representations for sorting the 20 labeled samples
based on their similarity to the reference posture and sequence, respectively. We
then report the relative number of samples which are labeled as similar within
the first 10 samples after sorting. Table 4.2 shows the results for single frame
posture similarity obtained by a network trained supervised on ImageNet [90],
our E0

π and E2
π (the final posture representation obtained after two iterations).

Note that the joint training of behavior and postures substantially improves the
representation of individual postures. In Table 4.3 we compare the behavior
similarity results achieved by our LSTM ordering task (Ours2, last bootstrap
retraining) with Dynamic Time Warping [31] (DTW), a direct stacking of sin-
gle frame posture representations and an LSTM baseline model (clusterLSTM)
based on sequence clustering. In case of stacking, we compute the similarity be-
tween two sequences by taking either the average or maximum of the pairwise
similarities between single frames originating from the two sequences. ClusterL-
STM corresponds to an LSTM network trained on a multi-class classification
task rather than our proposed self-supervised ordering task. For that matter, we

4.6. EXPERIMENTS 73

create clusters of sequences using Dynamic Time Warping as distance measure
between the sequences and train the network to separate different clusters from
another. Table 4.3 shows that our LSTM ordering task outperforms all the other
approaches. The weak performance of clusterLSTM underlines that training a
behavior representation on discrete groups of sequences is not suited to learn fine-
grained behavior similarities. We omit the results of the intermediate iterations
(E1

π, Ours1) in Table 4.2 and 4.3, since the performances differ only marginally
due to convergence of learning (as indicated in Table 4.1).

4.6.3 Fitness Prediction and Comparison with Previous
Work

For neuroscientists, the primary goal of behavior analysis is to discover the degree
of motor function impairment and to develop new treatments. For the task of
single pellet grasping, a standard protocol has been proposed in [4] to judge
grasping fitness. Experts assess grasping by scoring ten criteria including the
pronation and supination of the paw (its turning) and the opening and closing
of the digits. Averaging these scores then yields an indicator for the fitness of
the motor function. Rather than trying to replicate the individual decisions that
experts make, we propose to circumvent this tedious manual analysis by directly
mapping sequences to a final fitness score.

Evaluation Protocols. We compare the resulting scores of our method
that learns a non-parametric and unsupervised representation against two estab-
lished methods for supervised, keypoint-based behavior analysis, DeepLabCut
[112] and Jaaba [81]. The methods for comparison are summarized in Section
4.2. We train per approach a classifier for distinguishing healthy from impaired
sequences. The training set is composed of 5000 sequences from pre-stroke videos
(healthy) and 5000 from 2 days post-stroke videos (impaired). The trained clas-
sifiers then predict the healthiness for each grasping sequence on a separate test
set of ∼ 90, 000 sequences. Per method, we tested several classifiers including
support vector machines (SVM) [28], AdaBoost and multi-layer perceptrons and
selected the classifier that obtains the best test accuracy. For our approach we use
the trained behavior representation as feature input and train a support vector
machine classifier [28]. For DeepLabCut we first fine-tune the provided network
weights (pre-trained on human pose estimation) on detecting 14 keypoints on the
forelimb (wrist, arm and 3 per finger for 4 fingers) using 1500 manually labeled
frames. Then, we use the keypoint predictions of DeepLabCut on the grasping
sequences to extract the trajectory and kinematic features. We use these fea-
tures to finally train and test the classifier that aims to distinguish healthy from
impaired sequences. The best results have been achieved with an AdaBoost clas-
sifier with Decision Trees as estimators. Jaaba receives the body-part location per
video frame as input and automatically computes a set of hand-crafted features
to train an in-build classifier.

Fitness Prediction. The animals in the rat stroke experiment were divided
into 4 different treatment groups during a 35-day long recovery. We compute for
every rehabilitation phase the relative number of sequences that are predicted
as healthy given the evaluation protocols described above. In Figure 4.15 we

74 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.15: Prediction of grasping fitness of the rat stroke dataset during a 35-
day long recovery for 4 treatment groups. We show for every rehabilitation phase
the distance to the ground-truth scores determined by experts. ”BL” are the
baseline videos recorded after the training stage and before the stroke. All other
phases are recordings after the stroke, e.g. ”2d” represent videos from 2 days
after the stroke and ”35d” from 35 days after the stroke.

Figure 4.16: Disease classification of the subjects in HG2DB. We train two clas-
sifiers (healthy vs multiples sclerosis and healthy vs hydrocephalus) and report
the 2D score distribution on test videos. Each axis represents one classifier and
shows the probability of a subject suffering from one of the diseases.

show the results achieved with our method, DeepLabCut and Jaaba. Each bar
represents the error from the expert ground-truth (GT) scores, as defined in
[4]. Our results have a correlation of 0.933 ≥ 0.005 with the ground-truth scores
whereas Jaaba and DeepLabCut produce a correlation of 0.820 ≥ 0.072 and 0.695
≥ 0.014, respectively. This experiment demonstrates that our non-parametric
model is able to better emulate the tedious manual expert scores in comparison
to previous works.

4.6.4 Disease Classification

The human gait dataset contains patients that are diagnosed with either multiples
sclerosis (MS) or hydrocephalus. We now show, that our learned behavior repre-
sentation is able to not only distinguish healthy from impaired but also patients
with different neurological diseases that both affect the motor function.

4.6. EXPERIMENTS 75

Figure 4.17: Rehabilitation analy-
sis for four treatment cohorts of the
rat stroke scenario. We show the
similarity to healthy baseline behav-
ior (BL, x-axis) and to impaired be-
havior (2d, y-axis). The cohorts
with optogenetic stimulation show a
strong improvement during recovery
whereas animals of ”Delayed Train-
ing” and ”No Treatment” show signs
of inadequate compensation.

Figure 4.18: Rehabilitation anal-
ysis of the human gait dataset.
We show the similarity of multi-
ples sclerosis and hydrocephalus pa-
tients to healthy (y-axis) and pre-
treatment (x-axis) behavior. The
treatments for both diseases improve
the patient’s conditions, however,
the treatment for hydrocephalus pa-
tients only persists in a short time
window.

At first, we train one linear classifier (SVM) per disease by using the record-
ings from healthy subjects as positive examples and patients with MS or hydro-
cephalus as negatives (∼ 1200 sequences per class). Then, we compute the scores
of both classifiers on some test videos from all classes. Figure 4.16 shows the dis-
tribution of scores after concatenating the results of the classifiers per video and
applying kernel density estimation. Each axis provides the probability of a sub-
ject to be affected by the respective disease or not. All classes are well separated
and compact, indicating that our method is able to separate even diseases that
both affect the motor function by only extracting information from the different
walking styles.

4.6.5 Rehabilitation Analysis

The subjects of both medical scenarios received disease-specific treatments to
improve motor function. If long-term recordings are given, behavior analysis can
also reveal the subtle changes in motor function during recovery. In this section,
we analyze the recordings from diverse recovery stages and compare the outcome
of different treatments using our behavior representation.

Rat Stroke Model. The videos of the rat stroke scenario contain record-
ings from before the stroke was triggered and up until 35 days after stroke. Per
treatment group, we relate the behavior to a large set of healthy baseline (BL)
kinematics (before stroke) as well as impaired samples from 2 days post stroke
(2d). We train a linear classifier (LDA) using ∼ 1000 sequences from BL and an-

76 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.19: Left: Depiction of the procedure for resynthesizing healthy refer-
ence frames. We first obtain a reference posture by averaging the healthy nearest
neighbor postures of the query frame in the posture encoding zπ. Then we com-
bine that encoding with the appearance representation of the query subject and
synthesize the healthy reference frame x̂NN using the decoder D. Right: Exem-
plary results of resynthesized healthy reference frames on HG2DB.

other ∼ 1000 sequences from 2d behavior. During inference, we use the classifier
scores as a measure of impairment for all videos recorded during recovery. Figure
4.17 displays the similarity to BL (y-axis) and 2d (x-axis) per cohort and for each
week of recovery. The cohorts with optogenetic stimulation (”Stimulation” and
”Stimulation and Training”) steadily improve during recovery, reaching around
70% similarity to the baseline behavior and having almost no similarity with the
impaired post-stroke behavior. Moreover, the figure not only shows, if the animal
behavior gets closer again to their original state at baseline, it also reveals cases
of unsuccessful recovery where behavior digresses from 2d, however without be-
coming more similar to baseline, e.g. the cohort ”no treatment”. This is a sign
of inadequate compensation of impaired motor functions that differs significantly
from true recovery.

HG2DB. To evaluate the effect of a treatment on human patients we compare
the behavior after treatment with (1) healthy and (2) pre-treatment behavior
for both diseases. We train a classifier using sequences from healthy and pre-
treatment and show the development of motor function skills in Figure 4.18 after
treatment. The treatment for multiples sclerosis patients (Fampyra) yields a
significant improvement on the walking abilities. Lumbar puncture, the treatment
for patients affected by hydrocephalus, leads to an improvement within the first
2 hours due to reduction of liquor pressure, but the experiment shows that the
motor skills deteriorated again afterwards as expected by expert neuroscientists.

Figure 4.17 and 4.18 show that our behavior encoding is an effective repre-
sentation for comparing different therapies and for analyzing the improvements
in behavior during recovery. In the next sub-section, we analyze the abilities of
our generative model for discovering and magnifying subtle posture differences.

4.6.6 Magnification

Section 4.5 introduced a generative model for amplifying subtle differences in
behavior between an impaired patient and reference subject. This approach can
extend medical diagnostics and reveal subtle deviations due to impairment that
even a trained eye might easily overlook. Now, we demonstrate the applicability
of our approach on the two medical scenarios and compare with previous work

4.6. EXPERIMENTS 77

Figure 4.20: Results of our magnification approach on HG2DB (top) and the rat
stroke dataset (bottom). We show the healthy reference posture (1st row) gener-
ated with the appearance of the impaired subject, the original impaired frames
(2nd row), our magnification results (3rd row), a heat map that demonstrates the
pixel differences between the healthy and impaired subject (4th row) and the di-
rection for improvement using optical flow. We manually superimposed magenta
markers to facilitate the perception of the differences for the reader.

on video motion magnification.

Resynthesized Healthy Reference. Appearance differences increase the
difficulty of spotting behavior deviations across subjects. Therefore, to support a
direct diagnostic comparison despite the appearance differences of the reference
and impaired subject, we first generate an image that shows a healthy reference
posture but has the same appearance as the impaired subject. This is only
possible since our generative model learned to separate posture from appearance.
We graphically show the procedure for generating the healthy reference frame in
Figure 4.19 including three exemplary outputs on both medical scenarios. As can
be seen, our resynthesized healthy reference frames x̂NN contain the same type of
posture as the healthy nearest neighbors and the same appearance as the query
subject.

Our Results. In Figure 4.20 we demonstrate the abilities of our magni-
fication approach on HG2DB (top) and the rat stroke dataset (bottom). Our
magnification (3rd row) reveals the hardly visible differences in posture between
the query (2nd row) and resynthesized reference (1st row). For instance, in the
first example of Figure 4.20 our approach recognizes that the impaired subject is

78 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Figure 4.21: Results of our magnification approach in comparison with the out-
puts generated by Oh et al. [125].

not able to perform a proper right step and therefore sets the foot down earlier
than a healthy subject leading to a smaller distance between the feet. To help the
reader spot subtle deviations, we manually superimposed (magenta) markers in
the first three rows. We highlight the differences between healthy and impaired
postures by an automatic heat map (4th row) and show how the affected body
regions need to move to compensate the impairment (last row). The heat map
is determined by computing the L2 distance in pixel space between the impaired
and healthy frame. For calculating the direction of improvement, we employ the
optical flow between the two images.

Comparison. Now we compare our results with the latest motion magnifica-
tion approach by Oh et al. [125] using their published implementation on github
1. In Figure 4.21 we directly compare our magnified outputs with the generations
produced by Oh et al. [125]. Our approach (4th row) successfully magnifies the
differences between healthy (1st row) and impaired (2nd row), whereas the motion
magnification approach [125] (3rd row) is often not able to amplify the differences
accordingly. The strategy by Oh et al. is not suited for evaluating posture devia-
tions across subjects. Therefore, it outputs rather blurry and unrealistic looking
images without magnifying the differences in the walking cycle.

Next, we evaluate how our method and the approach by Oh et al. perform
if we ask to magnify between healthy subjects in contrast to using healthy and
impaired subjects as before. The desired output is that the approach does not
detect any behavior differences between healthy subjects and that the magnified
generations do not differ from the original input. This would demonstrate that the
method does not magnify arbitrary deviations caused by differences in appearance
or normal posture variations, but only those due to impaired behavior. In Figure
4.22 we present the differences in pixel space between an original frame and
its magnification using impaired sequences (top) or healthy subjects (bottom)
as query. For our method, the differences are consistently larger for impaired
patients (top) than for healthy ones (bottom). The differences for Oh et al. ,
on the other hand, indicate that this approach magnifies healthy and impaired
behavior indiscriminately. This experiment shows, that our approach fulfills the
requirement of only magnifying impaired behavior and not arbitrary deviations.

1https://github.com/12dmodel/deep_motion_mag (accessed August 2019)

https://github.com/12dmodel/deep_motion_mag

4.6. EXPERIMENTS 79

Figure 4.22: Evaluation of the magnifications between healthy subjects (bottom)
in contrast to the magnified generations between impaired and healthy behavior
(top). A magnification approach for motor behavior analysis should not magnify
arbitrary differences, but only the ones we are interested in (e.g. due to impaired
behavior). We evaluate this condition by calculating the differences in the pixel
space between the original input image and the magnified output. The differences
for magnifications between healthy subjects should be very small in comparison
to amplifications between healthy and impaired.

80 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

4.7 Technical Details

All deep networks are implemented using the PyTorch2 framework and the ex-
periments were performed on a single Titan X GPU.

Posture and Behavior representation. The ConvNet+LSTM network
corresponds to the model introduced in Section 3.3.1 with a foundation architec-
ture based on AlexNet [90], i.e. five convolutional layers (conv1 to conv5) with
intermediate max-pooling and one fully connected layer (fc6). The temporal in-
formation is incorporated by using a long short-term memory layer with 1024
hidden nodes. For our experiments the fc6 features are used as posture represen-
tation and the LSTM as behavior encoding. A final fully-connected layer acts as
classifier for predicting if a sequence is shuffled or not. For training the network
we use 24 sequences per batch and include a randomly permuted version each
(in total 48 samples per batch). We use a binary cross-entropy loss and update
the network using stochastic gradient descent with weight decay and a starting
learning rate of 0.01 which we reduce after 200k iterations by a factor of 10. Our
network runs in total for 350k iterations. We train in total two networks, one for
each dataset: For the rat stroke model we use ∼ 100, 000 sequences for training
with an average length of 8 frames per sequence and for the human gait dataset
we employ ∼ 170, 000 sequences with an average length of 27 frames. The input
frames have a size of 227 × 227 and as augmentation we randomly crop each
frame and apply a random color jittering (the same augmentation for all frames
belonging to the same sequence).

Generative model. The encoder-decoder architecture is composed of three
networks: the posture encoder Eπ, the appearance encoder Eα, and the decoder
D. Eπ is the same network as the ”ConvNet” part described above until fc6.
Eα is composed of 5 layers, each layer includes a convolutional layer, followed by
batch normalization and LeakyReLU. The decoder has 6 layers: firstly, a fully
connected layer with ReLU which receives the appearance and posture encoding
as input (concatenated); the output is then reshaped and input into 5 transpose
convolution layers. Each transpose convolution layer contains upsampling, a con-
volution operation with kernel size 3, batch normalization, and LeakyReLU. The
network is updated using Adam solver, with a learning rate of 5 · 10−4, while
keeping the default values for the other hyper-parameters. The model is trained
for 50 epochs.

4.8 Discussion

In this chapter we have demonstrated the applicability of unsupervised machine
learning to motor behavior analysis. We have used our temporal permutation task
to learn a fine-grained posture and behavior representation without requiring
experts labelling hours of recordings. The utility of the resulting features is
evaluated on two biomedical scenarios with rodents and humans. We have shown
that our representation is able to (i) analyze the rehabilitation based on different
treatments, (ii) distinguish diseases and (iii) reproduce manual fitness scores of

2http://pytorch.org/

http://pytorch.org/

4.8. DISCUSSION 81

experts. In addition to it, our approach compares favorably against supervised
behavior analysis approaches.

This chapter has introduced additionally a magnification approach that facili-
tates the perception of subtle impaired behavior. Our generative model discovers
the posture deviations between impaired patients and healthy reference subjects
and generates new images that display the exaggerated posture differences. We
have showed that our approach produces realistic magnifications of impaired be-
havior that is almost invisible to the naked eye. Comparing to the latest motion
magnification approach has demonstrated the importance of our disentangled
representation in order to enable a meaningful magnification across subjects.

The medical scenarios introduced in this chapter were recorded indoors and
in a very restricted setup with similar lightning conditions. In the next chapter
we present a robust magnification approach that is able to emphasize posture
deviations across subjects in less restricted recording setups.

82 CHAPTER 4. UNSUPERVISED MOTOR BEHAVIOR ANALYSIS

Chapter 5

Robust Magnification

Magnifying posture deviations across subjects is a new and challenging task. In
the previous chapter we have shown its importance especially for analyzing the
behavior of patients that suffer from a neurological disease. The videos of the
medical scenarios were recorded in a very controlled setup with similar lightning
and camera settings. In this chapter we propose a robust magnification approach
that enables us to compare videos recorded in different setups as, for instance,
occurring in sports for comparing and identifying sub-optimal movements. To
transfer appearance across subjects onto a magnified posture, we introduce a novel
loss for disentangling appearance and posture in an autoencoder. Moreover, we
incorporate the magnification process already into the training so that the model
learns to produce realistic images even for strong magnifications. Experiments
confirm that our approach improves upon previous works.

5.1 Introduction

Motion magnification techniques aim to detect and amplify small motion in order
to facilitate its perception. Previous approaches [100, 183, 48, 173, 174, 166, 199,
125] successfully magnify the variations of a specific target object within the same
video. They are addressing, for instance, the magnification of the ”wobbling”
motion of a pupil during the idle state or the breathing movement of a baby’s belly
(to detect breathing interruptions of babies during sleep). These methods can
handle intra-video appearance variability but fail at the differences across subjects
and videos. In the previous chapter we have demonstrated the importance of a
magnification approach that can selectively amplify subtle posture differences
across subjects. Motor behavior analysis highly benefits from such an advanced
method. Exaggerating the often subtle deviations between impaired behavior
and healthy reference movements facilitates the interpretation of the symptoms
and assists researchers and doctors to understand the disorder. The videos of
the medical scenarios analyzed in the previous chapter were recorded in a very
controlled setup: indoors with similar lightning and background and the cameras
were placed roughly at the same position. However, not only biomedical scenarios
with very controlled setups benefit from magnifying posture deviations. In sports,
for instance, analyzing an athlete’s execution of a specific action to discover the
mistakes and to adjust the movement accordingly is crucial to increase the overall

83

84 CHAPTER 5. ROBUST MAGNIFICATION

performance. This problem, however, requires a magnification method that also
functions outdoors and that it is able to compare behavior recorded with different
setups.

Therefore, we propose in this chapter a novel unsupervised and more robust
magnification model that is not restricted to indoor recordings and that can
be used for numerous other applications such as sports. As before, we aim to
explicitly disentangle posture and appearance in an autoencoder. However, in
contrast to our previous method, we propose a novel loss that better enforces
disentanglement despite larger appearance deviations. Moreover, the new loss
enables us to train all weights of the generative model from scratch without
requiring a pre-trained posture representation. Magnification typically aims at
generating new, exaggerated postures that are not in the training set. Therefore,
it is difficult to produce real-looking images especially if the dataset contains
videos with high variety in appearance. Consequently, we need to integrate the
magnification process already into the training of the autoencoder to generate
realistic images even for strong amplifications. In contrast to the most recent
video magnification approach [125] whose training works on synthetic data, we
introduce an approach that can directly train on inferred magnifications of real
data without requiring supervision.

Experiments demonstrate that our method leads to more detailed and realis-
tically looking magnifications. It also improves previous performances in terms
of quality and on the downstream task of discovering posture deviation due to
impairment.

5.2 Robust Magnification across Subjects

Before describing our approach for robust magnification, we redefine the problem
of magnifying posture deviations. Then, we present our unsupervised approach
for separating posture and appearance to assure that the magnification only alters
the posture and not the appearance. Finally, we describe our method that enables
us to directly train the magnification on real data.

5.2.1 Problem Definition

Given a frame xq of a query video showing a subject performing a particular
action, the objective is to amplify the differences of xq to a reference frame xr

and to generate the magnified image

x̂m = m(xq|xr, λ) (5.1)

with m a magnification function, λ the amplification intensity and xr a frame from
a different video and subject. As in the previous chapter, we aim to magnify only
the posture deviations while leaving the appearance unaltered. Thus, we require
an autoencoder (AE) with two encoders, Eπ for posture and Eα for appearance,
and a decoder D to generate images. A query image xq is then reconstructed as
follows

x̂q = D
(
Eπ(xq), Eα(xq)

)
. (5.2)

5.2. ROBUST MAGNIFICATION ACROSS SUBJECTS 85

The same separation is applied for xr. Given the AE with two encoders, we can
update Equation 5.1 for generating the magnified image x̂m as follows,

x̂m = D
(

mπ

(
Eπ(xq)|Eπ(xr), λ

)
, Eα(xq)

)
(5.3)

with mπ a magnification function in the posture space which is further defined
in Section 5.2.3. In order to obtain a meaningful magnification x̂m we require a
training procedure which teaches the network to distinguish posture from appear-
ance and to produce realistic outputs. In the next two sub-sections we propose
our novel training strategy which enables a robust magnification of posture devi-
ations across subjects.

5.2.2 Disentanglement for Magnification

Magnifying posture deviations involves the comparison of subjects with different
appearances. To transfer the posture from xr to xq it is crucial to obtain a posture
encoding that does not contain any subject-specific information. Furthermore,
we require a pure appearance representation of xq for generating the magnified
frame.

The posture and appearance encoders are considered to be disentangled if the
posture encoding is invariant to appearance changes and vice-versa. The state-of-
the-art in motion magnification [125] induces an invariance to intensity changes
in the pose encoder by introducing a regularization loss. The objective enforces
the pose representation of a color perturbed frame to be the same as the original
frame. We also apply a color transformation τ to the input image xq, but we
additionally alter the posture by choosing a random frame xq′ from the same
video as xq (xq′ contains the same appearance as xq, but a different posture).
We insert τ(xq) into the posture encoder Eπ, xq′ into the appearance encoder
Eα and generate the reconstruction with the decoder D (see Figure 5.1 A). A
perfect reconstruction is only possible if the AE extracts the posture information
from τ(xq) and the appearance information from xq′. We train our model by
minimizing the following reconstruction loss:

Lrec = d(x̂q, xq) (5.4)

with x̂q = D(Eπ(τ(xq)), Eα(xq′)) the reconstruction and d(•, •) the perceptual
distance [78]. Oh et al. [125] also employ the reconstruction loss but require an
additional regularization objective to enforce invariance.

Despite the color transformation, the input τ(xq) to the posture encoder still
contains appearance information such as the background scene or the type of
clothes worn by the subject. This would allow the decoder to find a lazy solution
by mainly leveraging the posture encoding to reconstruct xq as good as possi-
ble without considering the appearance encoding Eα(xq). In contrast to motion
magnification of single objects, the magnification of posture deviations transfers
postures across subjects with different appearances. Hence, it requires a stronger
separation of posture and appearance. For that reason, we introduce a novel
loss discouraging our model to correctly reproduce the image if one of the two
encodings is ignored. In practice, we generate ”fake” images by exchanging the

86 CHAPTER 5. ROBUST MAGNIFICATION

Figure 5.1: Disentanglement for Magnification. A: The image xq is reconstructed
by using the color transformed image τ(xq) as input to the posture encoder and
a random frame xq′ (same video as xq) as input to the appearance encoder. The
reconstruction loss minimizes the distance xq and the reconstruction x̂q. B and
C : To enforce meaningful information in both encoders, we teach the network
to generate deficient images when only one of the two encodings is used. We
exchange one of the two encodings with Gaussian noise, producing ”fake” images
and require a distance t• between the original and the fake image.

encoding of either appearance or posture with random Gaussian noise. Then we
teach the network that an image reconstructed without one of the two encodings
(fake image) is lacking an important component and should therefore not be able
to fully represent the original input image. We define the reconstruction with
fake posture as

x̂q′
α = D

(
N (0, σ), Eα(xq′)

)
(5.5)

and with fake appearance as

x̂q
π = D

(
Eπ(τ(xq)),N (0, σ)

)
. (5.6)

The generation with fake images is visually illustrated in Figure 5.1 B and C. We
enforce a distance between the input and fake image to be close to a target value
tα, tπ > 0. These values represent the lower bound on how close x̂q′

α and x̂q
π are

allowed to approach the original input xq during training. We update our model
using the loss

Ldis =
∥∥d(xq, x̂q

π)− tπ

∥∥
1 +

∥∥∥d(xq, x̂q′
α)− tα

∥∥∥
1

(5.7)

with d(•, •) being the perceptual distance. Note, that for the distance to x̂q′
α we

compare with xq since xq and xq′ contain the same appearance and therefore x̂q′
α

should be equal to x̂q
α after optimizing the network.

At this point, both terms of Ldis are optimized independently from each other
and one might be easier to minimize than the other. However, to successfully
generate x̂q we require both the posture and appearance encoding to be equally
advanced. We found empirically that if one encoder outperforms the other, the
weaker one has problems to catch up. Therefore, we balance the encoders by
relating the target values tα and tπ with the reconstruction quality of the opposite
terms,

tπ = d(xq, x̂q′
α) + γπ, (5.8)

5.2. ROBUST MAGNIFICATION ACROSS SUBJECTS 87

Figure 5.2: Illustration of the magnification process. We amplify posture devi-
ations between a query frame xq and a reference frame xr by extrapolating the
posture differences in Eπ. D receives the appearance encoding of xq concate-
nated with the amplified posture encoding as input and generates the resulting
magnifications. We show the output using 4 different amplification factors λ.

tα = d(xq, x̂q
π) + γα. (5.9)

with γπ and γα being fixed margins. By coupling the margins to another, we
force each encoder to make equal progress. If, for example, the reconstruction
quality of x̂q′

α increases (and therefore the distance to xq decreases), tπ decreases
as well according to Equation 5.9 and forces therefore d(xq, x̂q

π) in Equation 5.7

to be smaller than x̂q′
α by a margin of γπ. Overall, this leads to a loss which is

less sensitive to the fixed margins.
In the next section, we introduce our approach that enables us to directly

train the magnification of posture deviations on real data.

5.2.3 Learning to Magnify

The magnification in the posture space usually leads to novel poses. However, it
is difficult for a generative model to produce postures never seen during training,
especially with a high variety in appearance. In particular, we require a model
that is (i) able to precisely transfer the magnified posture mπ to the pixel space
and (ii) sensitive to small encoding differences. Thus, the magnification should be
included directly into the training process. Since ground-truth magnifications are
not available, we cannot simply employ the reconstruction loss. Oh et al. [125]
tackled this problem by creating a synthetic dataset to simulate the magnification
of motion. We propose an alternative approach that allows us to directly train
magnification on real data without requiring ground-truth images. In this way,
our model produces more fine-grained and realistically looking results which is
demonstrated in the experimental section.

As defined in Equation 5.3, we generate a magnified frame x̂m by combining
the magnified posture encoding mπ with the appearance encoding Eα(xq). For
computing mπ we first calculate the difference between xq and xr in the posture
encoding. Then we amplify the posture deviation in the direction of Eπ(xq). This
procedure can be practically realized by extrapolating the posture differences,

mπ(Eπ(xq)|Eπ(xr), λ) = Eπ(xr) + λ (Eπ(xq)− Eπ(xr)) (5.10)

88 CHAPTER 5. ROBUST MAGNIFICATION

Figure 5.3: Learning to Magnify. Our magnification loss forces the decoder to
precisely transfer the magnification mπ to the RGB space by re-encoding the
magnified image x̂m and minimizing the distance between the original magnified
posture (yellow filled point) and its re-encoded posture (orange filled point). The
same is applied for the appearance encodings (orange empty point and dark red
empty point). Finally, an adversarial discriminator C enforces the generation of
realistic-looking magnified images.

with λ > 1 being the magnification factor. Figure 5.2 visually depicts this pro-
cedure.

During training, we require a reference frame xr containing a slightly different
posture as xq since we aim to amplify subtle posture differences. This can be
chosen automatically by using the k-th nearest neighbor (NN) of xq (excluding
frames from the same video) with k randomly chosen from the range [10, 20]. By
selecting different reference frames for xq every epoch, the model learns to cover
a wide range of posture deviations. We can now generate a magnified frame x̂m

for each xq with respect to the sampled reference frame xr. The magnification
of posture deviations requires a decoder able to precisely transfer the magnified
posture encoding mπ to the pixel space without distorting or losing any infor-
mation about the new posture. In particular, our model should reach a fixpoint
with respect to mπ, i.e. mπ should be equal to the re-encoded decoded mπ,

mπ
!
= Eπ

(
D(mπ, •)

)
. (5.11)

To meet this requirement, we introduce a fixpoint loss that minimizes the distance
between the re-encoded magnified frame Eπ(x̂m) = Eπ

(
D(mπ, Eα(xq))

)
and the

original magnification mπ. Figure 5.3 illustrates this procedure. We also minimize
the distance between the respective appearance encodings Eα(x̂m) and Eα(xq) to
ensure a consistent appearance decoding. Our model is then updated with the
following fixpoint loss

Lfix =‖Eπ(x̂m)−mπ

(
Eπ(xq)|Eπ(xr), λ

)
‖2

2

+ ‖Eα(x̂m)− Eα(xq)‖2
2 .

(5.12)

We only update the decoder with Lfix since the purpose of Lfix is to improve the
generation of magnified images.

To encourage the decoder to produce realistically looking images, we intro-
duce an adversarial loss. A discriminator C is trained to distinguish between
real images xq and magnified images x̂m by maximizing the objective LA(C, D)

5.3. EXPERIMENTS 89

proposed by [62],

LA(C, D) = Ex∼pdata(x) [log C(x)]

+ Ex̂∼pmag(x) [log (1− C(x̂)]
(5.13)

with pdata the data distribution and pmag the distribution of magnified images.
The decoder is then trained by additionally minimizing LA. The adversarial loss
allows us to visualize the differences in posture with higher magnification factors
without generating artifacts or unrealistic images.

We summarize the losses described in this section as

Lmag =LA + βLfix (5.14)

with β = 2.
Our model is then updated with the following final loss,

L = Lrec + Ldis + γLmag (5.15)

with γ = 0.5 and Lmag is only being used to update the decoder.

5.3 Experiments

We evaluate our approach on three different scenarios and compare our results
with previous work on motion magnification. First, we introduce the datasets
and perform qualitative and quantitative evaluations. Then, we show that every
component of our model is important for generating meaningful magnifications
through ablation studies.

5.3.1 Datasets

Magnifying posture deviations is a challenging and relatively new task. We in-
troduce three datasets showing three different actions for the task of magnifying
posture deviations across subjects. It is particularly important that the dataset
contains subjects with different appearances to analyze the abilities of our model
to transfer posture from one subject to another. Our datasets cover the following
actions: (1) walking on a treadmill, (2) swinging a golf club and (3) moving the
pupil of a person’s eye.

HG2DB. The first dataset has been already introduced in Chapter 4 for be-
havior analysis (for visual examples please see Figure 4.6 and 4.7). As a reminder,
several patients, that are suffering from a neurological disease, are recorded while
walking on a treadmill. The dataset also contains videos of healthy subjects
which are used as reference. All videos were recorded indoors with a consistent
camera setup. HG2DB contains in total 229 videos with around 700 frames each,
leading to a total number of 172,288 frames.

Golf Swing. We collected several videos from YouTube1 showing several
golfers performing a golf swing on different tournaments. The videos are recorded

1https://www.youtube.com/user/GolfswingHD/, Accessed in August 2019

https://www.youtube.com/user/GolfswingHD/

90 CHAPTER 5. ROBUST MAGNIFICATION

Figure 5.4: Overview of the Golf Swing dataset.

Figure 5.5: Depiction of the 10 sub-
jects in CUEye with 3 different eye colors
(brown, blue and green) and both gen-
ders.

Figure 5.6: Pos-
sible postures in
CUEye.

in slow-motion (120 fps) making them suitable for our scenario since many subtle
differences in posture are represented. Our dataset has an overlap with the videos
collected by Guha et al. [8] with the main difference that we use purely videos
with a high frame rate. Overall, we collected 48 videos with a total number of
7000 frames. For our experiments, we cropped the frames so that the person-
of-interest is located in the center which results in frames with an average size
of 600x600. Figure 5.4 shows a subset of available subjects in Golf Swing and
various types of postures. Golf Swing is more challenging than HG2DB since
the videos were recorded from different tournaments (i.e. different backgrounds,
lightning etc.) and they contain the full body of the person (i.e. more degrees of
freedom regarding posture changes).

Close-Up Human Eye Dataset (CUEye). Even though eyes seem to
be static if no direct movement is triggered by the person, the pupil still moves
very subtle, often referred to as ‘wobbling’. Magnifying posture deviations is an
excellent tool to increase the visibility of this motion. We collected 10 videos
showing close-up recordings of the eye from 10 different subjects (one video each)
with three different eye-colors (brown, blue and green). The videos are recorded
with a standard HD camera with 30 frames per second and an average length of 25
seconds. For the experiments, we cropped the videos so that only the eye is shown
which results in frames with an average size of 500×350 (width×height). The
subjects first move their eyes (left, right, up and down) to allow the generative
model to differentiate between pose and appearance. This is followed by 5 seconds
of starring used for evaluating if our approach is able to magnify the ’wobbling’
effect of the pupil. We provide an overview of the subjects and occurring postures
in Figure 5.5 and 5.6.

5.3.2 Qualitative Results

Figure 5.7, 5.8 and 5.9 show magnified images generated by our model for all
three datasets.

5.3. EXPERIMENTS 91

Figure 5.7: Qualitative Comparison on HG2DB. We show the magnification of
posture deviations between a reference and query frame (first row) using the
approach by Oh et al. [125] (2nd row), our model without Ldis and without
Lmag (3rd row), our model without Lmag (4th row) and our final model (5th
row). We manually superimposed red markers to facilitate the perception of the
small differences and changes in the magnified images. The markers represent
the posture of the query subject and are the same throughout a specific example.
Left : The query subject keeps its legs more parallel than the reference subject.
Our model exaggerates this behavior until the legs of the query subject are com-
pletely parallel. Middle: The query subject does not raise its left foot properly.
Our magnifications visualize the differences until the entire left foot touches the
treadmill. Right : The query subject performs bigger steps and our model further
increases the distance.

Figure 5.7 demonstrates our results on magnifying posture deviations on
HG2DB (5th row; yellow border) given a reference and query frame (first row).
We show the output with three different magnification intensities λ. Our model
is able to detect the posture differences and represent the magnifications on real-
istically looking images.

In Figure 5.8 we show our results (3rd row) on Golf Swing. Even though the
dataset is very challenging due to the possible posture changes in arms and legs
and the different recording locations, our robust model is able to magnify the
differences between the reference and query frame. In particular, the example in
the middle shows that our model can even magnify arms and legs at the same
time.

Figure 5.9 displays the magnification of the subtle movements of a pupil while
the eye is in idle state. Instead of comparing the posture deviations across differ-
ent subjects, we first compute the pupil’s movement in time of a query subject
(top left) and transfer this motion to several target subjects with different ap-
pearances (right). Our model successfully detects the very subtle motion of the
query subject and is able to transfer this motion to other subjects.

Comparison with Previous Work. Previous work addressed the task of

92 CHAPTER 5. ROBUST MAGNIFICATION

Figure 5.8: Qualitative Comparison on Golf Swing. We show the magnifications
produced by our model and compare with previous work [125] (best viewed by
zooming in on the digital version). The red markers indicate the posture of the
query subject and are the same throughout a specific example. Left : The legs of
the query subject are further apart, and the arm is kept lower. Our model further
increases the distance of the legs and lowers the arms on the generated images.
Middle: The right knee of the query is twisted inside, and the arms are kept
higher. Our approach magnifies both by further twisting the knee and raising the
arms. Right : The reference subject is holding its arms more centered than the
query subject. Our model magnifies the deviation by slowly moving the arms of
the query subject to the left.

Figure 5.9: Magnification Results on CUEye. Detection of subtle posture differ-
ences in the pupil given a query movement (top left) and a target appearance
(right). Bottom left shows a close up of the pupil with a blue grid as guide. The
zoom shows a tiny motion from left to right. Given one of the target appearances
shown on the right, our model can transfer and magnify the left-right movement
from the query to the target appearance.

magnifying subtle motion within the same video [100, 183, 48, 173, 174, 166,
199, 125], but not across subjects with different appearances. Considering all
motion magnification approaches, [125] has the highest potential to address the
more complex scenario due to their usage of a generative model with a shape
and texture representation. Therefore, we qualitatively compare our results in
Figure 5.7 and Figure 5.8 (and quantitatively in Table 5.1) with [125] on the task
of magnifying posture differences. We use the official implementation of [125]
from their repository. Both figures show that Oh et al. [125] is not specialized on
magnifying posture deviations. Their model is only invariant to intensity changes
and also modifies the background and appearance of the subject. This leads to

5.3. EXPERIMENTS 93

Figure 5.10: Fake appearance images. The images are generated using the frames
in the first row as input to the posture encoder and random Gaussian noise which
replaces the appearance representation.

Figure 5.11: Fake posture images. The images are generated using the frames in
the first row as input to the appearance encoder and random Gaussian noise as
posture encoding.

very blurry and unrealistic images.

We additionally compare our final model without the newly introduced losses
Ldis and Lmag. Both losses are especially for larger λ essential to generate mean-
ingful magnifications. In contrast, our final model is able to precisely magnify
the posture differences and to generate realistic outputs without altering the ap-
pearance.

Fake Images. In order to better comprehend ”fake” images, we provide
examples with fake posture and fake appearance. In particular, in Figure 5.10
we show images generated with random Gaussian noise as appearance encoding
(’fake appearance’ x̂q

π) and in Figure 5.11 we display images generated with ran-

dom Gaussian noise as posture encoding (’fake posture’ x̂q′
α). As intended, the

images shown in Figure 5.10 only represent the posture and do not contain any
appearance information; while the images in Figure 5.11 contain appearance in-
formation such as the background or color of clothes but display all subjects with
the same average posture indicating the lack of posture information.

5.3.3 Quantitative Analysis

Classification of Impairment. Our model generates novel magnified pos-
tures not present in the given dataset. Hence, we cannot directly evaluate our
magnified images due to missing ground-truth magnifications. As an alternative,
we introduce a quantitative evaluation based on the health condition of patients
in HG2DB.

We train two linear (binary) classifiers, both on healthy vs unhealthy samples.
One classifier is trained with the original images (Original) and the second one

94 CHAPTER 5. ROBUST MAGNIFICATION

Classifier Postures
AVG

trained with 1 2 3 4 5 6 7 8 9 10

Original 58.9 61.3 63.2 53.3 55.9 51.7 58.3 50.3 50.7 61.2 56.5 ± 4.5
Oh et al. [125] 60.2 61.5 64.1 53.5 56.1 52.0 59.4 52.8 51.2 61.4 57.2 ± 4.4
Ours 70.4 66.7 72.0 68.3 71.8 67.6 69.6 65.3 59.5 65.7 67.7 ± 3.5

Table 5.1: Classification of Impairment. We report the test accuracies (%) per
posture achieved by binary classifiers (healthy vs impaired) trained and tested
on the key-points of (i) the original data, (ii) the magnified images generated by
previous work on motion magnification and (iii) our magnified images. A visual
example of postures 1 to 10 can be found in the supplementary material.

Figure 5.12: Magnifying Posture Deviations as a Medical Tool. Deviations be-
tween healthy (first row) and impaired (second row) is amplified in the generated
images (third row) for a better analysis of the disease status. The patient only
shows difficulties during the right step. Increasing λ emphasizes the deviation.
We manually superimposed markers that indicate the angle of the right foot to
facilitate the perception of the differences. The same marker is superimposed on
the magnifications with different λs (3rd row). Clearly, larger magnifications λ
(towards right) show a significantly changed foot angle in comparison to row 2
or 1. In contrast, the angle does not change for the healthy left leg’s step.

with the magnified generations (Ours). The goal is to evaluate if the magnifica-
tion improves the classification of impairment.

The classification should be subject independent and only based on posture
information. For this specific experiment, we employ keypoints to represent pos-
tures since these correspond best to how humans perceive postures. In particular,
we use DeepLabCut [112] for detecting the following 8 keypoints: left/right hip,
left/right knee, left/right toe and left/right heel. The detector is trained with
manually annotated frames of HG2DB. The keypoints are normalized using ‘left
hip’ as origin to assure that they are comparable across different videos.

We sample 10 diverse linearly spaced postures from a complete walking cycle
sequence and perform the quantitative analysis independently per posture. We
provide a visual example of the postures in Figure 4.7. For every posture and
subject (including all subjects in the dataset) we collect 10 Nearest Neighbors
resulting in 10×number of subjects samples per posture for training and testing.
Different postures require different magnification intensities to render visible pos-
ture discrepancies between healthy and impaired subjects. Therefore, we generate

5.3. EXPERIMENTS 95

1 2 3 4 5 6
0

50

100

150

200

FI
D

In
cr

ea
se

Oh et al.
Ours w/o dis w/o mag

Ours w/o mag

Ours

Figure 5.13: Quality of Visualizations - FID. We display the absolute FID increase
relative to λ = 1 for different intensity values λ using the generation of Oh et
al. [125] (dark blue), our model without Ldis and without Lmag (light blue),
our model without Lmag (purple) and our final model (orange). In contrast to
our final model, the generation quality of Oh et al. and our incomplete models
decreases significantly (FID increase) with increasing λ.

the magnified images with in total 25 different magnification factors (λ), where
λ ∈ [1.2, 6] with a step size of 0.2, and train one classifier per λ and posture.

The optimal λ per posture has been found using cross-validation and Tab. 1
reports the accuracy on the test set. We do not expect the accuracy to be ∼ 100%
since not all impaired patients have issues with each posture, i.e., for specific
posture-subject pairs no differences to healthy subjects should be detected. This
behavior can be also observed in Figure 5.12. The patient (2nd row) only shows
difficulties during the right step. Our model detects the deviation to a healthy
subject (1st row) and only magnifies the inaccurate posture during the right step.

We also compare our quantitative results with previous work on motion magni-
fication. We performed the same experiment explained above using the magnified
generations of Oh et al. [125] and report the accuracies in Table 5.1.

Most of the classifiers trained on the original data stay close to random perfor-
mance and are not able to distinguish healthy from impaired. Compared to the
approach of [125], our magnified images can increase the accuracy significantly.
We show especially for posture 4,5 and 8 a large boost and improve the classi-
fication accuracy in average by more than 11%. This experiment demonstrates
that our model is a valuable tool for discovering impairment of motor behavior.

Quality of Visualizations - FID. The Fréchet Inception Distance (FID)
was originally proposed by Heusel et al. [68] and aims to evaluate the quality of
generated images. It measures the distance between two multivariate Gaussians
(real and generated images):

FID = ||µr − µg||22 + Tr(Σr + Σg − 2(ΣrΣg)
1/2), (5.16)

where Xr ∼ N (µr, Σr) and Xg ∼ N (µg, Σg) are the activations of the Inception-
v3 layer for real and generated images, respectively. We empirically found, that
the features of the Inception network (pre-trained on ImageNet) are less suscep-
tible to posture differences than to appearance perturbations. Different postures
reach on average an FID of around 5. This shows that the posture change through
magnification is negligible when measuring FID. Therefore, it allows us to evalu-
ate the generation quality of our magnified images using different magnification

96 CHAPTER 5. ROBUST MAGNIFICATION

intensities without requiring ground-truth magnifications. In Figure 5.13 we show
the absolute FID increase relative to λ = 1. This experiment demonstrates that
with increasing λ our final model achieves the best results and only forfeits a small
decrease in quality even with higher λ. Please note that this experiment eval-
uates the generation quality, not if the magnifications correspond to the actual
amplification of the posture deviations.

5.3.4 Ablation Studies

In Figure 5.7 and 5.13 we evaluate the importance of our proposed losses. We
compare the magnified images produced by our full model with the generations
of our model without Lmag and/or without Ldis. Figure 5.7 shows that our
model without Ldis and Lmag generates, similar to [125], blurry and unrealis-
tically looking images. Our model trained with the disentanglement loss Ldis

improves the generations especially for smaller λ, but fails in producing valuable
magnifications for larger λ. Instead, our final model is able to precisely display
the magnification of posture deviations on the generated images even for large λ.
Similar conclusions can be drawn from Figure 5.13. The quality of the magnified
images decreases for our incomplete models for λ > 3 but stays almost constant
for our final model. This shows that every component of our robust model is
important.

5.4 Technical Details

We use a network architecture similar to the model proposed by Esser et al. [49]
with 6 Resnet blocks [66] per encoder/decoder and skip connections between the
appearance encoder and the decoder. For downsampling we use a convolutional
layer (kernelsize=3, stride=2, padding=1) and for upsampling we employ NN
upsampling followed by a 1x1 convolutional layer. Our discriminator C has the
same structure as DCGAN[136]. The weights are Xavier initialized and we train
our model using the Adam optimizer [86] with a learning rate of 1× 10−4. We
use a batchsize of 10 and an image size of 128x128.

The standard deviation σ for the Gaussian distribution used in Ldis is set to
0.01. We did not see that as a critical parameter; slight changes did not affect
the results.

To train our model with Lmag we require the nearest neighbors of every query
sample xq. Therefore, we first train our model without Lmag and then employ
the trained posture encoding for obtaining the NNs. Afterwards, we train our
model with all losses. We train in total for 300 Epochs for Golf Swing and 100
Epochs for HG2DB and CUEye.

5.5 Discussion

To enable a meaningful magnification of posture deviations in less restricted
recording setups we have proposed a robust magnification strategy with two novel

5.5. DISCUSSION 97

losses. We obtain a stronger disentanglement of posture and appearance by forc-
ing the generative model to reconstruct an image accurately only if both encoders
contribute information to the generation process. In addition, our fixpoint loss
enables us to integrate the magnification directly into the training and to learn
on real data without supervision. Our approach is evaluated on three different
scenarios including the very challenging golf swing dataset with varying camera
setups and locations. We have demonstrated the importance of both novel objec-
tives in the experimental section and compare favorably against the latest motion
magnification approach.

98 CHAPTER 5. ROBUST MAGNIFICATION

Chapter 6

Semi-Supervised Representation
Learning for Videos

Learning a feature representation without requiring any labels has shown to be
an effective tool whenever annotations are difficult to obtain. In contrast, super-
vised learning requires fully labeled datasets, but shows superior performances
on common visual understanding tasks. In this chapter, we aim at combining
the best of both worlds: an approach that shows superior performances on vi-
sual understanding tasks while keeping the amount of human supervision at a
minimum. In particular, we investigate the effect of semi-supervised learning
on action recognition. Semi-supervised learning (SSL) efficiently combines la-
beled and unlabeled data to train powerful feature representations without being
dependent on extensive annotated datasets. Previous works on SSL for action
recognition have mostly established hand-crafted features or have been applied
to only very restricted settings. Following the success of SSL for images using
deep learning, we introduce a deep semi-supervised learning approach for action
recognition that efficiently deduces pseudo-labels for the unlabeled samples. We
further propose to combine the semi-supervised method with an unsupervised
pre-training to create a better foundation before training on the desired down-
stream task with only few labels. Experimental evaluations for action recognition
demonstrate the competitive performance on two benchmark datasets with up to
400 classes.

6.1 Introduction

Unsupervised learning enables to produce powerful feature representations for
several image and video understanding tasks without requiring any manual an-
notations. The state-of-the-art in unsupervised learning is improving constantly,
but the gap to supervised models is especially for videos still significant. In the
semi-supervised setting, we assume that a small set of samples is labeled. The goal
is to improve the performance on datasets with only few annotated samples by
leveraging a large number of unlabeled samples. Thus, semi-supervised learning
(SSL) offers a good trade-off between labeling time/expenses and performance. In
particular recent SSL approaches for images [165, 24, 92, 97, 138, 87, 191, 117, 189]
have shown that semi-supervised learning is a promising direction for solving

99

100 CHAPTER 6. SEMI-SUPERVISED REPRESENTATION LEARNING FOR VIDEOS

challenging visual understanding tasks. We observe that there has been unused
potential in deep SSL for action recognition. Previous works have mostly devel-
oped hand-crafted features [195, 144, 135, 192] for very restricted settings. For
instance, [195] adapts knowledge from the image domain to the video domain but
evaluates their approach only on few action classes chosen by hand.

In this chapter, we present a deep SSL approach for action recognition that
has been successfully applied to two benchmark datasets with up to 400 different
activities. Given the recent success in unsupervised video representation learn-
ing, our method contains a self-supervised pre-training phase to create a better
foundation before training with the few labeled samples. Moreover, we propose
a novel semi-supervised approach that efficiently employs the labeled videos for
inferring pseudo-labels of the remaining samples. Specifically, our model contains
3 major phases: (1) An unsupervised pre-training where we employ an unlabeled
dataset that is larger than our target dataset and contains related content; (2)
a fine-tuning phase where we use the few labeled samples to train our model on
the desired downstream task; and (3) a post-training, that infers pseudo-labels
for the unlabeled samples. Phase 2 and 3 are initialized with the models trained
in phase 1 and 2, respectively.

Besides evaluating our model on two benchmark datasets, we additionally per-
form an extensive ablation study in order to separately analyze the performance
achieved for every single phase.

The remaining of this chapter is structured as follows: At first, we will summa-
rize in Section 6.2 previous work on semi-supervised and unsupervised learning.
Then, we will describe our approach in section 6.3 and 6.4 and evaluate the per-
formance gain in section 6.5. Finally, we will provide technical details, summarize
the findings and discuss the limitations of our presented approach.

6.2 Related Works

In this section we introduce previous work on semi-supervised learning for videos
and images and provide an overview of recent unsupervised learning techniques
for videos.

SSL for Videos. Semi-supervised learning (SSL) provides a good trade-off
between labeling time and accuracy. Surprisingly, there has been only little work
on deep SSL for action recognition [3, 76, 64, 106] using visual information (videos
or images) as input. Ahsan et al. [3] attempt to tackle SSL for videos through
deep learning by first performing an unsupervised pre-training using generative
adversarial networks followed by fine-tuning on action recognition using the full
training set. However, this approach rather corresponds to the common unsuper-
vised learning scenario; in SSL, only a fraction of the labeled samples is employed
instead of the full dataset. Other works do not necessarily use RGB images as
input, but alternative modalities such as RGB-D [76, 106] or accelerometers data
[64, 105].

SSL for Images. In contrast to SSL for videos, SSL for images has re-
cently gained increasing attraction. Recent approaches [165, 24, 92, 97, 138,
87, 191, 117, 189] significantly improve the performance upon baseline models.
Our model is particularly inspired by deep SSL methods for image classification.

6.3. UNSUPERVISED PRE-TRAINING AND FINE-TUNING 101

The approaches can be divided into two major categories: (i) inferring pseudo-
labels for the unlabeled samples [97, 74, 117] and (ii) adding an unsupervised
objective to the loss function [165, 92, 24, 191, 194]. Iscen et al. [74] employ a
transductive label propagation method to infer pseudo-labels for the unlabeled
samples. Their method iterates between updating the pseudo-labels with a near-
est neighbor graph and training the network with the newly inferred labels. We
also iterate in phase 3 between updating the network weights and re-computing
the pseudo-labels of unlabeled videos. However, our model does not require the
computation of nearest neighbors for every sample given all other samples in the
dataset; we infer pseudo-labels from a more efficient clustering approach. Phi Vu
Tran [165] has recently proposed an approach that falls under the second category
(additional unsupervised objective). The model is simultaneously trained on a
supervised and self-supervised task to enable an efficient use of the whole dataset.
For the latter, [165] employs the surrogate task of predicting image rotations [60]
using all images while the former only regards the few labeled samples. However,
a multi-task network requires a careful balancing [180, 38] to exploit the full po-
tential of the individual tasks. We also employ an unsupervised approach during
the pre-training phase, but we do not train our model on two tasks at the same
time. Our experiments have shown, that a sequential training achieves better
results than training the tasks in parallel.

Unsupervised Video Representation Learning. Previous work in unsu-
pervised learning of video representations capitalize on self-supervised methods
[187, 98, 116, 15] or generative models [170, 34, 104, 3]. The latter aims to
generate high-fidelity video clips [170, 34, 3] or predict long-term motion [104]
while learning useful features for recognizing actions. In self-supervision, on the
other hand, the representation is learned by solving a surrogate task that ex-
ploits the spatiotemporal signal in videos as source of information. Similar to
our approach proposed in Chapter 3, Hsin-Ying et al. [98] have introduced an
Order Prediction Network (OPN) architecture that learns a video representation
by sorting sequences. A 2D convolutional neural network (CNN) receives tempo-
rally shuffled frames as input and is trained on the surrogate task of classifying
the employed permutation. Xu et al. [187] have extended this work by proposing
Clip Order Prediction (COP), which uses a 3D network architecture and shuffles
sequence snippets instead of single frames. COP is the current state-of-the-art
in unsupervised learning of video representations. Therefore, we have considered
COP for phase 1 (unsupervised pre-training) of our proposed approach.

6.3 Unsupervised Pre-Training and Fine-tuning

As demonstrated in many approaches for unsupervised learning of video represen-
tations [187, 98, 116, 15, 170, 34, 104, 3], a pre-training, that does not require any
labels can significantly boost the performance for action classification. Instead of
initializing the network with random weights before training with labeled data,
the model is initialized with the weights obtained during pre-training. Given the
substantial success in unsupervised learning, we propose to adopt this procedure
for SSL of videos.

Phase 1: Unsupervised Pre-Training. COP [187] significantly outper-

102 CHAPTER 6. SEMI-SUPERVISED REPRESENTATION LEARNING FOR VIDEOS

Figure 6.1: Overview of the network architectures for all phases. In phase 1
(left) we train the network with clip order prediction [187]: 3 snippets are ex-
tracted from a video and temporally permuted (from the original order (1, 2, 3) to
(2, 3, 1)). After a pairwise concatenation of the 3D convnet features, a classifier
predicts the class of permutation with 3! possible permutations/classes. In phase
2 (top-right) we initialize the 3D ConvNet with the weights from phase 1 and
fine-tune the network with the labeled samples on the downstream task with |c|
classes. In the last phase (bottom-right) we employ the ground-truth labels and
inferred pseudo-labels to post-train the 3D ConvNet with |c|+ |ĉ| classes.

forms previous work on unsupervised video representation learning. A neural
network is trained by first sampling m non-overlapping snippets s1, . . . , sm (the
subscripts indicate the chronological order) from a video x where every snippet
sj (j = 1, . . . , m) consists of n frames. Then, after permuting the snippets in
a random order, a 3D ConvNet f (•; θ) with θ the network weights, is used to
extract the features φsj = f (sj; θ) for every snippet sj. After a pairwise concate-
nation of the features, fully-connected layers placed on top of the 3D ConvNet
predict the previously applied permutation, i.e. the order prediction is formu-
lated as a classification problem with m! classes (see Figure 6.1 (left) for a visual
description of the network architecture). Thus, the network is updated based
on the ability of predicting the applied permutation. Solving this task requires
an understanding of the temporal structure of actions and is therefore a valu-
able network initialization for the downstream task of action classification. COP
is currently the state-of-the-art in unsupervised video representation learning.
Therefore, we have employed COP for phase 1 of our approach. We refer the
interested reader to [187] for a more detailed description.

As commonly known, deep learning benefits from large volumes of training
data. Fortunately, visual data is cheap to acquire if no labelling process is needed
and unsupervised learning does not require any manual annotations. Therefore,
instead of pre-training on the target dataset X, we propose to employ a larger
and unlabeled dataset X for pre-training, where X and X are assumed to contain
related content. We show in the experimental section that the assumption of
achieving an increased accuracy when using a larger dataset for pre-training is
especially true for small datasets.

Phase 2: Fine-tuning. After pre-training our model on the unsupervised

6.4. POST-TRAINING VIA PSEUDO-LABELLING 103

task, we fine-tune the network on the downstream task using the subset XL ⊂ X
of labeled videos with yxl ∈ {1, 2, ..., |c|} the label of xl ∈ XL and |c| the number
of ground-truth classes. We will show in the experimental section that the pre-
training, especially for small datasets, significantly boosts the performance on
the downstream task in comparison to a baseline. However, so far, we have only
employed the full dataset during the unsupervised learning phase. Previous work
on SSL for images has shown a significant improvement in accuracy when inferring
pseudo-labels [97, 74, 117] for the unlabeled subset XU in order to train with the
full dataset X = XL ∩ XU on the downstream task. Therefore, we propose in the
next section a novel semi-supervised approach for videos that determines pseudo-
labels for unlabeled videos given the network weights θL obtained during phase
2.

6.4 Post-Training via Pseudo-Labelling

The aim of SSL is to efficiently employ the few labeled samples for boosting
the performance on the desired downstream task. Now, we present an iterative
technique that post-trains the fine-tuned network with inferred pseudo-labels.

Inferring Pseudo-Labels by Nearest Neighbors. Our SSL approach for
videos is based on the assumption, that similar samples (e.g. videos showing the
same movement) should obtain the same prediction. Let Φxc be the representa-
tion of an arbitrary video xc ∈ X with c the true class of xc. Then we assume
that the distance d(Φ•, Φxc

u) between xc
u ∈ XU and every xc

l ∈ XL is on average
smaller than to every xc̄

l ∈ XL where c̄ 6= c. In other words, we assume that an
unlabeled sample xc

u is on average closer to a labeled sample xc
l from the same

class c than to a labeled sample xc̄
l from a different class c̄ given the feature rep-

resentation Φ•. Given this assumption, we can infer the pseudo-label yxc
u by first

calculating the distance d between Φxc
u and Φxl for all xl ∈ XL and then setting

yxc
u = yx̂l where x̂l ∈ XL is the closest (labeled) sample to xc

u (nearest neighbor)
in the feature space, i.e.

x̂l = argminxl∈XL
d(Φxc

u , Φxl). (6.1)

With a precise video representation, the pseudo-label yxc
u equals the true class c.

Comparing every unlabeled sample in XU to every labeled sample in XL is,
however, even for small datasets computationally inefficient and unstable if high
intra-class variances exist. Therefore, we assign the pseudo-label yxc

u not based
on the distance to individual samples but to a set of samples that are grouped
with respect to their class affiliations. In particular, we first compute the feature
representation Φci for every class ci with (i = 1, . . . , |c|) by averaging the features
of all samples belonging to class ci

Φci =
1

nci
∑

x∈X
ci
L

Φx (6.2)

with Xci
L being the set of labeled samples from ci and nci its size. Then, we

set yxc
u = ci if d(Φxc

u , Φci) < d(Φxc
u , Φck) ∀k ∈ {1, . . . , |c|}/i. In this way,

104 CHAPTER 6. SEMI-SUPERVISED REPRESENTATION LEARNING FOR VIDEOS

Figure 6.2: Depiction of the video representation for ν = 3. Per video x, we
sample ν = 3 different snippets, extract their features and concatenate them to
obtain the feature representation Φx.

Figure 6.3: Alternative way for representing a labeled video xl by selecting a
snippet ŝxl from all extracted snippets sj using the logits of the true class.

we significantly reduce the complexity for obtaining the pseudo-labels based on
similarities since |c| � |XL|.

Video Representation. For the assumption, that Φxc
u is closest to the

average feature representation of its true class c to hold, we require strong video
features that accurately represent the full action. As commonly pursued in video
understanding tasks [110, 187, 16], we employ video snippets to represent x,
where every snippet consists of n frames. In particular, we employ in total ν non-
overlapping and linearly-spaced snippets sj per video with j = 1, . . . ν in order to
capture the full action required for accurately measuring the similarity between
videos. Then, we use the 3D ConvNet trained on the downstream task (in phase 2)
to obtain the features φsj = f (sj; θL) for every snippet sj. Finally, we concatenate
the features of the individual snippets to retrieve the video representation of an
arbitrary video x,

Φx = (φsx
1
, φsx

2
, . . . , φsx

ν
). (6.3)

Figure 6.2 visually depicts this procedure.

Unfortunately, the input videos are often not perfectly cropped, i.e. there
might be sequences in a video that contain a component or movement that does
not belong to the labeled activity. Therefore, as an alternative, we have also
experimented with selecting one of the snippets sx

j as representative instead of

concatenating the ν snippets. Given the network that has been trained in phase

6.4. POST-TRAINING VIA PSEUDO-LABELLING 105

2, we perform a forward pass for every snippet sxl
j of a labeled video xl and extract

the score of the true class of xl. We then select the snippet with the maximum
score (ŝxl) to represent xl (see Figure 6.3). Since the true class of an unlabeled
sample xu is not known, we cannot employ the same procedure. Therefore, we
propose an alternative approach for selecting a snippet for xu that is based on
the labeled videos. At first, we compute the average feature representation Φci

per true class ci, (i = 1, . . . , |c|) using the features of the labeled samples similar
to Eq. 6.2. Though, instead of using the concatenated snippets, we now use the
features of the previously selected snippets. Then, per unlabeled video xu, we
compute the distance between its snippets and all Φci . The snippet closest to
one of the average feature representations Φci is then selected as representative
of xu.

Choosing only one snippet that supposedly best represents the presented ac-
tion might remove parts of the video that are irrelevant for classifying the move-
ment. However, this approach also entails the risk of eliminating important fac-
tors of the action, especially if the activity is protracted. Given the videos of
the benchmark datasets we evaluate our approach on, we have empirically found
that concatenating several snippets leads to slightly better results than choosing
one of them. Therefore, our experiments in Section 6.5 are based on the video
representation that employs all ν snippets.

Inferring Pseudo-Labels by Clustering. To obtain the highest possible
gain from training the network with inferred pseudo-labels, we require strong
features to find the true label of unlabeled samples through nearest neighbors.
Therefore, we employ the network weights θL obtained during the fine-tuning
phase. However, networks that are only trained with a small part of the dataset
might not generalize well to unseen data, especially for classes with high intra-
class variances. In this situation, the nearest neighbor of an unlabeled sample
does not necessarily correspond to a video from the same class, but most likely to
an outlier in the labeled set XL. Thus, inspired by DeepCluster [17], we propose to
cluster the unlabeled samples separately from the labeled videos and jointly train
the network with |c|+ |ĉ| output classes, where |ĉ| is the number of clusters for
the unlabeled samples. In this way, we can explore new structures in the dataset
using the unlabeled samples while maintaining the structure we have already
established from the labeled samples. In fact, DeepCluster [17] has shown, that
the highest performance gain in unsupervised representation learning for images
is achieved when using 10 times more clusters than the actual number of ground-
truth classes. This demonstrates, that it can be beneficial to over-cluster the data
for learning the structure of the full dataset.

For clustering the unlabeled samples, we first extract the features Φx (Eq.
6.3) for all x ∈ XU. Then, we apply k-means to cluster the unlabeled videos in
|ĉ| groups. The pseudo-label of an unlabeled samples xu is based on the cluster
label and the total number of ground-truth classes |c|, i.e.

yxu ∈ {|c|+ i}|ĉ|i=1. (6.4)

If an unlabeled video is closer to the centroid of a class that is represented by
labeled samples, we employ the label of that class as pseudo-label instead of the
cluster label.

106 CHAPTER 6. SEMI-SUPERVISED REPRESENTATION LEARNING FOR VIDEOS

#Videos #Per Class
100% 9537 71-221
20% 1818 18
10% 909 9
5% 404 4

Table 6.1: Number of available
training videos for UCF101 in the
semi-supervised setting (partly la-
beled).

#Videos #Per Class
100% 240,577 224-990
5% 11,600 29
2% 4,4000 11
1% 2,000 5

Table 6.2: Number of available
training videos for Kinetics400 in the
semi-supervised setting (partly la-
beled).

Training. Given the ground-truth labels of the labeled samples and the
pseudo-labels determined in the previous step, we can now train our model on the
whole training set. We alternate between updating the network weights and re-
computing the pseudo-labels as proposed in [17]. Thus, the pseudo-labels always
represent the current status of the network. We do not employ the full training
set from the beginning, but slowly increase the number of unlabeled samples in
the training set based on the distance to their centroids. Consequently, we also
slowly increase the number of clusters relative to the growth of the training set.

6.5 Experiments

In this section we will first introduce the datasets and metrics employed for eval-
uating our approach. Then, we present the performance gain we achieve with our
model in comparison to a baseline method. Finally, we perform ablation studies
to evaluate every component of our approach.

6.5.1 Datasets

We evaluate our approach on two benchmark datasets for action recognition. We
are not aware of any previous works, that evaluate an SSL approach for videos on
the selected benchmark datasets. Therefore, we have employed our own sampled
subsets for the experiments. We have sampled 3 subsets from a particular dataset
with different numbers of videos to simulate the labeled set XL. Per subset and
class, we randomly select a pre-defined number of videos. Table 6.1 and Table
6.2 provide an overview of the selected subsets for our experiments.

UCF101. UCF101[150] has been already employed in previous chapters for
evaluating the features of our unsupervised video representation learning ap-
proaches. It contains ∼ 13k YouTube videos divided in 101 different human
action classes. ∼ 10k videos are provided for training and ∼ 3k for testing. Table
6.1 summarizes the number of labeled videos we employ for our experiments. We
train our model with either 20%, 10% or 5% of the training data of split1 and
evaluate on the test set. As mentioned in Section 6.3, we train the unsupervised
task on a larger dataset X than the target dataset (UCF101). In particular, we
employ Kinetics400 for UCF101 as the larger dataset since both contain related
content (human activities).

6.5. EXPERIMENTS 107

Accuracy (%) Precision@1 (%)
5% 10% 20% 100%∗ 5% 10% 20% 100%∗

BL 20.06 31.49 48.18 65.76 18.42 27.88 41.95 60.40
Ours 32.96 48.74 61.84 74.25 31.54 46.23 56.62 68.74

Table 6.3: Accuracy and Precision@1 on the test set of UCF101 using our full
model vs. Baseline (BL). ∗When using 100% of the labels, we omit the semi-
supervised post-step and the results in Ours present the performances achieved
after pre-training on Kinetics400 (phase 1) and fine-tuning on UCF101 (phase 2).

Kinetics400. As UCF101, Kinetics400 [82] is also a collection of YouTube
videos showing various people performing in total 400 different actions. The
dataset consists of ∼ 260k videos with ∼ 240k samples for training and ∼ 20k for
testing. Table 6.2 summarizes the number of labels we employ per subset. We
experiment with 1%, 2% and 5% of the available labels and report the results on
the full testing set. We use Kinetics700 [19] for the unsupervised pre-training.

6.5.2 Evaluation Metrics

We evaluate our model using two different metrics: accuracy and precision@1.
For the accuracy, we simply measure the prediction accuracy on the evaluation
set of UCF101 or Kinetics400. Per video, we extract three snippets, with n = 16
frames per snippet, from the beginning, center and end of the video and average
the logits over all snippets. The accuracy reports the relative amount of correct
predictions for all videos in the test set. During the post-training phase, we might
train with more classes than the actual amount of ground-truth classes |c|, i.e.
the FC layer contains more than |c| output nodes. Since our approach ensures
that the first |c| entries of the FC layer correspond to the actual ground-truth
classes, we truncate the FC layer at |c| to compute the accuracy.

The precision@1 is calculated using nearest neighbor retrieval. This evalua-
tion measure does not require a trained FC classifier. For every sample in the
evaluation set we calculate the nearest neighbor in the training subset using the
features of the trained model (last layer before the FC layers). A sample is cor-
rectly predicted if the nearest neighbor has the same class. The average over
all samples represents the precision@1. This evaluation procedure considers the
actual feature representation and disregards the task-specific layers (e.g. the last
FC layer for predicting the ground-truth class during fine-tuning). In this way,
we guarantee a fair comparison of all models no matter with which task it has
been trained.

6.5.3 Quantitative Evaluation

In the following, we will first describe the baseline model we compare with. Then,
we will report the results on the test sets of UCF101 and Kinetics400.

Baseline. For the baseline model (BL), we only fine-tune the network on the
labeled subset XL without any unsupervised pre-training or pseudo-labelling, i.e.
we randomly initialize the network before conducting phase 2.

108 CHAPTER 6. SEMI-SUPERVISED REPRESENTATION LEARNING FOR VIDEOS

Accuracy (%) Precision@1 (%)
1% 2% 5% 1% 2% 5%

BL 5.86 10.88 19.39 4.21 7.67 12.5
Ours 6.97 12.98 23.28 5.33 11.37 16.81

Table 6.4: Accuracy and precision@1 on the test set of Kinetics400 using our
full model vs. Baseline (BL).

Models 5% 10% 20% 100%

Phase 2 (BL) 18.42 27.88 41.95 60.40
Phase 1 & 2 (target)∗ 24.95 40.08 52.04 62.95
Phase 1 & 2 29.57 44.22 54.84 68.38
Phase 2 & 3 25.17 37.2 46.03 -
Full model (target)∗ 28.84 43.63 52.89 -
Full model 31.54 46.23 56.62 -

Table 6.5: Precision@1 on UCF101 obtained with different combinations of the
3 phases. ∗Instead of pre-training with the larger dataset in phase 1, we employ
the target dataset (UCF101).

Results. Table 6.3 and 6.4 show the results achieved with our approach and
the baseline model for UCF101 and Kinetics400, respectively. For UCF101, our
full model significantly outperforms the baseline model. In fact, our model only
requires half of the data to achieve the same or higher accuracy as the baseline
model: with 5% of the data we obtain a higher performance than the baseline
model that is trained with 10% of the samples; the same applies to 10%. More-
over, when using 20% of the samples our model almost reaches the precision@1
of the baseline model trained with 100%. Kinetics400 is with 400 classes signifi-
cantly more difficult than UCF101. Nevertheless, our approach shows especially
for 5% a significant boost in performance, proving that our method is applicable
for middle- and large-scale datasets.

6.5.4 Ablation Studies

We have shown a significant performance gain when training the network with
our model. Now we perform ablation studies to separately analyze the gain
achieved with the unsupervised pre-training (phase 1) or pseudo-labelling based
post-training (phase 3) on UCF101. In particular, we show in Table 6.5 the
precision@1 obtained with (i) phase 1 and 2, (ii) phase 2 and 3 and (iii) phase 1,
2 and 3 (Full model). We also report the results for using the target dataset during
phase 1 as opposed to employing the larger dataset. It shows, that especially the
pre-training with the larger dataset (phase 1 and 2) and also the semi-supervised
approach significantly boosts the performance for UCF101 in comparison to the
baseline or the results obtained when pre-training with UCF101 (phase 1 and 2
(target)). It proves that all the components of our model are important to achieve
the final performance.

6.6. SELF-SUPERVISED VS. SEMI-SUPERVISED 109

k SelfSL SSL SelfSL (K400)+SSL
UCF K400 5% 10% 20% 5% 10% 20%

1 7.31 9.59 28.23 36.42 45.54 33.86 44.78 55.13
5 21.02 22.27 41.07 50.10 59.04 47.62 58.01 66.41
10 31.0 31.01 47.16 55.33 64.25 53.75 63.26 70.53
20 43.22 42.71 53.89 60.72 69.52 59.69 67.77 74.56
50 61.66 60.11 63.33 67.37 76.67 66.80 74.76 79.46

Table 6.6: Comparing self-supervised with semi-supervised learning using nearest
neighbor retrieval on UCF-101. Test set videos are used as queries and videos
from the training set as retrieval targets. If the true class of a test sample appears
within the Topk it is considered correctly predicted. As distance measure for re-
trieving nearest neighbors we employ cosine distance. We report mean accuracies
(%) over all test samples using the representations trained on (i) only phase 1
(SelfSL) (2) phase 2 and 3 (SSL) and (3) phase 1, 2 and 3 (SelfSL (K400)+SSL).

6.6 Self-Supervised vs. Semi-Supervised

The previous section has shown that using only a small fraction of labeled samples
and combining them with a large unlabeled dataset leads to significant improve-
ments in comparison to training only with the labeled samples (baseline). In this
chapter, we investigate if the effort for labelling few samples pays off in terms
of performance in contrast to self-supervised learning. Thus, we directly com-
pare the results of our semi-supervised method (which requires a small amount
of human supervision) with the accuracy obtained by using solely unlabeled sam-
ples. In particular, we compare the representation achieved after phase 1 (only
self-supervised task) with the features obtained after training phase 2 and 3 (fine-
tuning and post-training) using nearest neighbor retrieval on UCF-101. For every
sample in the evaluation set we calculate the k nearest neighbors in the training
set using the features of the trained models (last layer before the FC layers) and
cosine distance. A test sample is considered as correctly predicted if its class can
be found within the Topk nearest neighbors. The final accuracy is determined by
computing the mean over all testing samples.

At first, we compare the performance achieved when using K400 instead of
UCF-101 for training the network on the self-supervised approach (1st column
in Table 6.6). Surprisingly, using the larger unlabeled dataset (Kinetics400) does
not lead to a strong improvement in comparison to using UCF-101 during phase
1. The potential of applying a large dataset during pre-training seems to emerge
only after fine-tuning on the downstream task (Phase 1 & 2 (target) vs Phase 1
& 2 in Table 6.5).

Next, we compare SelfSL with SSL (column 1 and 2 in Table 6.6). Using only
5% of the data (4 videos per class) leads already to a significant improvement of
almost 300% for k = 1. Only for k > 20, SelfSL and SSL with 5% of labeled
samples achieve similar results. It shows that spending a limited amount of
time on annotating few labels (if possible) can lead to a superior improvement in
performance. However, this assumption cannot be transferred blindly to arbitrary
problems or datasets and should, therefore, be always reassessed in case of a new

110 CHAPTER 6. SEMI-SUPERVISED REPRESENTATION LEARNING FOR VIDEOS

task or dataset.
Finally, we additionally provide the nearest neighbor retrieval results for

k = 1, 5, 10, 20, 50 for our final model which combines self-supervised pre-training
with semi-supervised learning. The results in Table 6.6 (last column) confirm the
conclusion, already drawn in the previous chapter, that a combination of unsu-
pervised and semi-supervised learning methods yields the highest accuracies.

6.7 Technical Details

All deep networks in our experiments are implemented using the PyTorch1 frame-
work. We use C3D [162] as our backbone network and employ 2 FC layers as
in [187] for phase 1 and 1 FC layer for phase 2 and 3 on top of the last conv
layer of C3D (see Figure 6.1). During training, we sample 3 snippets per video
with a length of 16 frames each and an interval of 8 frames between them. One
mini-batch contains 12 videos, i.e. 3× 12 snippets. For data augmentation we
follow the same protocol as in [187]: during training, the snippets are first resized
to 128× 172, then randomly cropped to 112× 112. For testing, the snippets are
cropped in the center. We use mini-batch stochastic gradient descent to opti-
mize the network with a starting learning rate of 1e− 3, a momentum of 0.9 and
weight decay of 0.0005. The learning rate is reduced by 0.1 whenever a plateau
is reached until a minimum learning rate of 1e− 5. For all phases, we train the
network until the model has converged but at most 400 Epochs.

We perform clustering on the GPU using the faiss [79] library. For UCF101
we update the pseudo-labels every 5 Epochs and for Kinetics400 every 15 Epochs.
We use 101 clusters for UCF-101, meaning that the highest accuracies for UCF-
101 are reached when using nearest neighbors for inferring pseudo-labels instead
of clustering. However, action recognition on Kinetics400 benefits more from
clustering and the best results were achieved using 800 clusters.

6.8 Discussion

In this chapter we have proposed a novel semi-supervised representation learning
approach for action recognition. Our model consists of 3 phases, namely (1) a self-
supervised pre-training, (2) a fine-tuning and (3) a pseudo-labelling based post-
training. We have evaluated our approach on two benchmark datasets including
the large-scale data collection Kinetics400 [82]. Our semi-supervised method
significantly improves upon the baseline for both datasets. We have shown that
phase (1) and (3) are essential to achieve the final performances. Interestingly,
our model achieves the best accuracy for the smaller dataset UCF-101 when using
the nearest neighbors for inferring pseudo-labels instead of clustering. In contrast,
for Kinetics400 we achieve the best results when using twice as much clusters as
classes. This behavior indicates that over-clustering might only be beneficial
for large-scale datasets such as Kinetics400 or ImageNet (used in DeepCluster
[17]). For future work it would be interesting to further investigate this demeanor
especially in combination with video understanding tasks.

1http://pytorch.org/

http://pytorch.org/

Chapter 7

Conclusion and Discussion

This thesis focused on developing deep learning approaches that require only min-
imal supervision to solve image and especially video understanding tasks. New
methods were proposed to learn powerful representations of images and videos
without requiring manual annotations. The learned representations enable not
only an objective classification of actions and behavior but also allow to compare
and quantify even small differences across individuals. To further increase the
performance on visual understanding tasks without requiring extensive human
supervision, this thesis additionally proposes a semi-supervised approach that ef-
ficiently combines large unlabeled datasets with a small set of labeled samples.
The wide applicability of the presented methods was demonstrated on several
visual understanding tasks including a biomedical application. The remainder of
this chapter separately summarizes the different approaches and their applica-
tions and concludes with a discussion. The discussion at the end of this chapter
contains personal opinions which are based on experiences and knowledge col-
lected throughout this Ph.D.

Deep learning benefits from large volumes of training data. Fortunately, self-
supervised learning allows to exploit a huge amount of data freely available on
the internet without requiring tedious, time-intensive, manual annotations. Even
though self-supervised learning has experienced a substantial amount of progress
recently, the performance gap to supervised methods is still significant. Thus, a
large part of this work was committed to developing novel self-supervised learning
methods for advancing the research field. The approach introduced in Section
3.3.1 exploits temporal information from videos in order to construct an artificial
supervisory signal. In particular, a neural network receives randomly permuted
video frames as input and is tasked to recognize the applied permutation. This
task can only be solved if the network understands the content of the video. The
proposed method outperformed previous image and video-based self-supervised
learning approaches on human pose estimation and action recognition. In order
to exploit even more data which is freely available, Section 3.4.1 introduced a
permutation framework that is able to process not only videos, but also images
at the same time. A multi-task neural network is simultaneously trained on
permuted video frames (temporal shuffling) and permuted image tiles (spatial
shuffling). Addressing the two directly related ordering tasks jointly enables the
extraction of information from images and videos simultaneously. The resulting

111

112 CHAPTER 7. CONCLUSION AND DISCUSSION

feature representation was evaluated on several image and video understanding
tasks and showed superior performances compared to previous works.

Besides advancing the computer vision field by introducing new self-supervised
learning approaches, this thesis additionally aimed at improving the workflow in
biomedical research by automatizing tedious manual (and partly repetitive) pro-
cesses. In particular, this dissertation includes a collaboration with neuroscien-
tists which are evaluating new treatments for neurologically impaired individuals
by analyzing the change in motor function before and after treatment. Previous
machine-learning-based works were fully supervised and required experts from
neuroscience to manually annotate virtual key-points in behavior videos. In or-
der to facilitate the development of suitable treatments, Chapter 4 presented a
diagnostic support system that solely requires the recordings as input without
demanding any tedious annotations. The proposed system applies the temporal
self-supervised approach, introduced in the previous Chapter, to learn a fine-
grained posture and behavior representation. Moreover, the magnification tool
described in Section 4.5 enables the diagnostic support system to discover and
quantify even small deviations in posture between healthy and impaired indi-
viduals. A generative neural network is trained on disentangling posture and
appearance for image synthesis to ensure that the posture deviations across indi-
viduals can be analyzed separately despite appearance differences. Then, during
inference, the generative model can be used to magnify the subtle differences in
posture between healthy and impaired individuals using only the recorded videos
as input. The proposed diagnostic support system was evaluated on two different
medical scenarios with rodents and humans and showed superior performances
compared to previous works.

Magnifying subtle posture deviations across individuals is not only valuable for
biomedical research projects. In sports, for instance, analyzing the execution of a
specific action to discover subtle mistakes and to adjust the movement accordingly
is crucial to increase the overall performance. A magnification tool can support
such an analysis by facilitating the perception of those small mistakes using the
movement of a professional athlete as reference. The sports scenario is, however,
less restricted than a strongly controlled experiment with a static background in a
medical lab. Videos from athletes might be recorded outside or at many different
locations. Thus, Chapter 5 introduced a more robust magnification approach
that can be applied to less restricted scenarios. A novel disentanglement loss
guarantees a stronger separation of posture and appearance which is especially
important if the videos are recorded at different locations. Furthermore, this
thesis introduced a magnification loss which enables neural networks to be trained
directly on inferred magnifications of real data. In this way, the generative model
is able to produce more realistically looking magnifications during inference. The
robust magnification approach was first evaluated and compared to previous work
on a biomedical scenario in order to demonstrate its performance in a controlled
setup. A new dataset which shows various people performing a golf swing at
different tournaments was then used to evaluate the effectiveness of the robust
magnification tool for more challenging setups.

The methods introduced in Chapter 3 to 5 demonstrated the immense poten-
tial unsupervised learning provides. Even though the performance is constantly

113

improving, and the field of unsupervised learning is gaining more and more atten-
tion, there is still no substitute for methods that use large labeled datasets. Thus,
this thesis additionally investigated the improvement in performance when adding
only a few labeled samples to the unlabeled dataset. In particular, Chapter 6
introduced a semi-supervised approach for video recognition that efficiently com-
bines large unlabeled datasets with few labeled samples. The proposed method
consists of three main steps, namely a self-supervised pre-training (only unlabeled
samples), supervised fine-tuning (only labelled samples) and a pseudo-labelling
based post-training (labeled and unlabeled samples). Experiments on two bench-
mark datasets including a large-scale dataset with up to 400 classes showed a
large boost in performance in comparison to a baseline which is only trained
on the labeled samples. Ablation studies demonstrated that the unsupervised
pre-training is an essential part of the approach to create a good basis for the
subsequent steps. Moreover, the experiments have shown that using only few
labeled samples can significantly improve the performance if they are efficiently
combined with the large set of unlabeled samples.

In conclusion, unsupervised deep learning is a very important research topic
and its applicability goes beyond standard computer vision tasks. The interdisci-
plinary project introduced in this thesis demonstrated the potential of unsuper-
vised learning and its high utility to other fields. A combination of unsupervised
and semi-supervised learning is, in my opinion, the most promising direction for
future work and should be investigated further. However, this strategy presup-
poses the possibility of obtaining at least a small amount of annotations. If this
is not given, unsupervised learning is certainly a very good alternative to learn
powerful visual representations for images and videos.

115

Publications

This dissertation has led to the following scientific publications:

• Brattoli, B.∗, Büchler, U.∗, Wahl, AS, Schwab, ME, Ommer, B. LSTM
Self-Supervision for Detailed Behavior Analysis. In IEEE Computer Vision
and Pattern Recognition (CVPR), 2017.

• Wahl, A.S.∗, Büchler, U.∗, Brändli, A., Brattoli, B., Musall, S., Kasper,
H., Ineichen, B.V., Helmchen, F., Ommer, B. and Schwab, M.E. Optogenet-
ically stimulating intact rat corticospinal tract post-stroke restores motor
control through regionalized functional circuit formation. Nature commu-
nications, 8(1), 2017.

• Büchler, U.∗, Brattoli, B.∗, Ommer, B. Improving Spatiotemporal Self-
Supervision by Deep Reinforcement Learning. In European Conference on
Computer Vision (ECCV), 2018.

• Dorkenwald, M.∗, Büchler, U.∗, Ommer, B. Unsupervised Magnification
of Posture Deviation Across Subjects. In IEEE Computer Vision and Pat-
tern Recognition (CVPR), 2020.

Under submission is currently the following publication:

• Brattoli, B.∗, Büchler, U.∗, Dorkenwald, M., Reiser, P., Filli, L., Helm-
chen, F., Wahl, A.S., Ommer, B. uBAM: Unsupervised Behavior Analysis
and Magnification using Deep Learning.

∗Indicates equal contribution

Bibliography

[1] M. F. AbdulHalim and Z. A. Mejbil. Automatic colorization without human
intervention. In 2008 International Conference on Computer and Commu-
nication Engineering, pages 62–65. IEEE, 2008.

[2] P. Agrawal, J. Carreira, and J. Malik. Learning to see by moving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 37–45, 2015.

[3] U. Ahsan, C. Sun, and I. Essa. Discrimnet: Semi-supervised action recog-
nition from videos using generative adversarial networks. arXiv preprint
arXiv:1801.07230, 2018.

[4] M. Alaverdashvili and I. Q. Whishaw. A behavioral method for identi-
fying recovery and compensation: hand use in a preclinical stroke model
using the single pellet reaching task. Neuroscience & Biobehavioral Reviews,
37(5):950–967, 2013.

[5] B. Antic, U. Büchler, A.-S. Wahl, M. E. Schwab, and B. Ommer. Spatiotem-
poral parsing of motor kinematics for assessing stroke recovery. In Inter-
national Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 467–475. Springer, 2015.

[6] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In
Advances in neural information processing systems, pages 41–48, 2007.

[7] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[8] G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and J. V. Guttag.
Synthesizing images of humans in unseen poses. CoRR, abs/1804.07739,
2018.

[9] H. B. Barlow. Unsupervised learning. Neural computation, 1(3):295–311,
1989.

[10] M. A. Bautista, A. Sanakoyeu, and B. Ommer. Deep unsupervised similar-
ity learning using partially ordered sets. In Proceedings of IEEE Computer
Vision and Pattern Recognition, 2017.

[11] M. A. Bautista, A. Sanakoyeu, E. Tikhoncheva, and B. Ommer. Cliquecnn:
Deep unsupervised exemplar learning. In Advances in Neural Information
Processing Systems, pages 3846–3854, 2016.

117

118 BIBLIOGRAPHY

[12] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks,
5(2):157–166, 1994.

[13] G. J. Berman. Measuring behavior across scales. BMC biology, 16(1):23,
2018.

[14] P. Bojanowski and A. Joulin. Unsupervised learning by predicting noise.
arXiv preprint arXiv:1704.05310, 2017.

[15] B. Brattoli, U. Büchler, A. S. Wahl, M. E. Schwab, and B. Ommer. Lstm
self-supervision for detailed behavior analysis. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[16] U. Büchler, B. Brattoli, and B. Ommer. Improving spatiotemporal self-
supervision by deep reinforcement learning. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 770–786, 2018.

[17] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for
unsupervised learning of visual features. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 132–149, 2018.

[18] M. Caron, P. Bojanowski, J. Mairal, and A. Joulin. Unsupervised pre-
training of image features on non-curated data. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2959–2968, 2019.

[19] J. Carreira, E. Noland, C. Hillier, and A. Zisserman. A short note on the
kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987, 2019.

[20] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model
and the kinetics dataset. In proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6299–6308, 2017.

[21] E. Cetinic, T. Lipic, and S. Grgic. Fine-tuning convolutional neural net-
works for fine art classification. Expert Systems with Applications, 114:107–
118, 2018.

[22] H. Chen, X. J. Qi, J. Z. Cheng, and P. A. Heng. Deep contextual net-
works for neuronal structure segmentation. In Thirtieth AAAI conference
on artificial intelligence, 2016.

[23] L. Chen, P. Bentley, K. Mori, K. Misawa, M. Fujiwara, and D. Rueckert.
Self-supervised learning for medical image analysis using image context
restoration. Medical image analysis, 58:101539, 2019.

[24] Y. Chen, X. Zhu, and S. Gong. Semi-supervised deep learning with memory.
In Proceedings of the European Conference on Computer Vision (ECCV),
pages 268–283, 2018.

[25] Z. Chen and X. Huang. End-to-end learning for lane keeping of self-driving
cars. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1856–1860.
IEEE, 2017.

BIBLIOGRAPHY 119

[26] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. In Proceedings of the
IEEE International Conference on Computer Vision, pages 415–423, 2015.

[27] F. Chiaroni, M.-C. Rahal, N. Hueber, and F. Dufaux. Self-supervised learn-
ing for autonomous vehicles perception: A conciliation between analytical
and learning methods. arXiv preprint arXiv:1910.01636, 2019.

[28] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[29] R. S. Cruz, B. Fernando, A. Cherian, and S. Gould. Deeppermnet: Visual
permutation learning. In CVPR, 2017.

[30] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[31] T. Darrell and A. Pentland. Space-time gestures. In Computer Vision and
Pattern Recognition, 1993. Proceedings CVPR’93., 1993 IEEE Computer
Society Conference on, pages 335–340. IEEE, 1993.

[32] A. Datta, M. Shah, and N. D. V. Lobo. Person-on-person violence detection
in video data. In Object recognition supported by user interaction for service
robots, volume 1, pages 433–438. IEEE, 2002.

[33] T. Dekel, T. Michaeli, M. Irani, and W. T. Freeman. Revealing and modify-
ing non-local variations in a single image. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia, 2015.

[34] E. L. Denton et al. Unsupervised learning of disentangled representations
from video. In Advances in neural information processing systems, pages
4414–4423, 2017.

[35] T. DeVries and G. W. Taylor. Improved regularization of convolutional
neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[36] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1422–1430, 2015.

[37] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros. What makes
paris look like paris? Communications of the ACM, 58(12):103–110, 2015.

[38] C. Doersch and A. Zisserman. Multi-task self-supervised visual learning.
arXiv preprint arXiv:1708.07860, 2017.

[39] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional
networks for visual recognition and description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2625–2634,
2015.

120 BIBLIOGRAPHY

[40] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning.
arXiv preprint arXiv:1605.09782, 2016.

[41] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning.
arXiv preprint arXiv:1605.09782, 2016.

[42] J. Donahue and K. Simonyan. Large scale adversarial representation learn-
ing. In Advances in Neural Information Processing Systems, pages 10541–
10551, 2019.

[43] M. Dorkenwald, U. Büchler, and B. Ommer. Unsupervised magnification
of posture deviations across subjects. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[44] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox.
Discriminative unsupervised feature learning with exemplar convolutional
neural networks. IEEE transactions on pattern analysis and machine intel-
ligence, 38(9):1734–1747, 2015.

[45] A. Dosovitskiy, J. T. Springenberg, M. Riedmiller, and T. Brox. Discrim-
inative unsupervised feature learning with convolutional neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 766–774. Curran Associates, Inc., 2014.

[46] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of machine learning research,
12(Jul):2121–2159, 2011.

[47] L. Duong, T. Cohn, S. Bird, and P. Cook. Low resource dependency pars-
ing: Cross-lingual parameter sharing in a neural network parser. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 845–850, 2015.

[48] M. Elgharib, M. Hefeeda, F. Durand, and W. T. Freeman. Video magnifi-
cation in presence of large motions. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4119–4127, 2015.

[49] P. Esser, E. Sutter, and B. Ommer. A variational u-net for conditional
appearance and shape generation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8857–8866, 2018.

[50] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge 2007 (voc2007) results. 2007.

[51] M. Everingham and J. Winn. The pascal visual object classes challenge
2012 (voc2012) development kit. Pattern Analysis, Statistical Modelling
and Computational Learning, Tech. Rep, 2011.

BIBLIOGRAPHY 121

[52] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively
trained, multiscale, deformable part model. In 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[53] S. Fernández, A. Graves, and J. Schmidhuber. An application of recur-
rent neural networks to discriminative keyword spotting. In International
Conference on Artificial Neural Networks, pages 220–229. Springer, 2007.

[54] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video
representation learning with odd-one-out networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[55] L. Filli, J. Werner, G. Beyer, K. Reuter, J. Petersen, M. Weller, B. Zörner,
and M. Linnebank. Predicting responsiveness to fampridine in gait-impaired
patients with multiple sclerosis. European journal of neurology, 26(2):281–
289, 2019.

[56] J. Friedman, T. Hastie, R. Tibshirani, et al. Additive logistic regression: a
statistical view of boosting (with discussion and a rejoinder by the authors).
The annals of statistics, 28(2):337–407, 2000.

[57] K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[58] P. Gebert, A. Roitberg, M. Haurilet, and R. Stiefelhagen. End-to-end pre-
diction of driver intention using 3d convolutional neural networks. In 2019
IEEE Intelligent Vehicles Symposium (IV), pages 969–974. IEEE, 2019.

[59] G. Ghiasi, T.-Y. Lin, and Q. V. Le. Dropblock: A regularization method
for convolutional networks. In Advances in Neural Information Processing
Systems, pages 10727–10737, 2018.

[60] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learn-
ing by predicting image rotations. In International Conference on Learning
Representations, 2018.

[61] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[62] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[63] B. Graham. Fractional max-pooling. arXiv preprint arXiv:1412.6071, 2014.

[64] D. Guan, W. Yuan, Y.-K. Lee, A. Gavrilov, and S. Lee. Activity recognition
based on semi-supervised learning. In 13th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA
2007), pages 469–475. IEEE, 2007.

http://www.deeplearningbook.org

122 BIBLIOGRAPHY

[65] B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for
clustering and classification. In European Conference on Computer Vision,
pages 459–472. Springer, 2012.

[66] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[67] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[68] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash
equilibrium. In Advances in Neural Information Processing Systems, pages
6626–6637, 2017.

[69] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[70] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger. Deep networks
with stochastic depth. In European conference on computer vision, pages
646–661. Springer, 2016.

[71] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Let there be color! joint end-
to-end learning of global and local image priors for automatic image col-
orization with simultaneous classification. ACM Transactions on Graphics
(ToG), 35(4):1–11, 2016.

[72] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and B. Schiele.
Deepercut: A deeper, stronger, and faster multi-person pose estimation
model. In European Conference on Computer Vision, pages 34–50. Springer,
2016.

[73] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[74] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Label propagation for
deep semi-supervised learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5070–5079, 2019.

[75] S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks
for human action recognition. IEEE transactions on pattern analysis and
machine intelligence, 35(1):221–231, 2012.

[76] C. Jia, Z. Ding, Y. Kong, and Y. Fu. Semi-supervised cross-modality ac-
tion recognition by latent tensor transfer learning. IEEE Transactions on
Circuits and Systems for Video Technology, 2019.

[77] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast

BIBLIOGRAPHY 123

feature embedding. In Proceedings of the 22nd ACM international confer-
ence on Multimedia, pages 675–678. ACM, 2014.

[78] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In European conference on computer vision,
pages 694–711. Springer, 2016.

[79] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
gpus. arXiv preprint arXiv:1702.08734, 2017.

[80] S. Johnson and M. Everingham. Clustered pose and nonlinear appearance
models for human pose estimation. In Proceedings of the British Machine
Vision Conference, 2010. doi:10.5244/C.24.12.

[81] M. Kabra1, A. A. Robie1, M. Rivera-Alba1, S. Branson, and K. Branson.
Jaaba: interactive machine learning for automatic annotation of animal
behavior. Nature methods, 10, 2012.

[82] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[83] A. Khoreva, R. Benenson, M. Omran, M. Hein, and B. Schiele. Weakly
supervised object boundaries. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 183–192, 2016.

[84] D. Kim, D. Cho, D. Yoo, and I. S. Kweon. Learning image representations
by completing damaged jigsaw puzzles. In 2018 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 793–802. IEEE, 2018.

[85] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[86] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[87] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-
supervised learning with deep generative models. In Advances in neural
information processing systems, pages 3581–3589, 2014.

[88] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-
dependent initializations of convolutional neural networks. arXiv preprint
arXiv:1511.06856, 2015.

[89] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. University of Toronto, 2009.

[90] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

124 BIBLIOGRAPHY

[91] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a
large video database for human motion recognition. In Proceedings of the
International Conference on Computer Vision (ICCV), 2011.

[92] S. Laine and T. Aila. Temporal ensembling for semi-supervised learning.
arXiv preprint arXiv:1610.02242, 2016.

[93] G. Larsson, M. Maire, and G. Shakhnarovich. Learning representations
for automatic colorization. In European Conference on Computer Vision,
pages 577–593. Springer, 2016.

[94] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy
task for visual understanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6874–6883, 2017.

[95] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[96] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[97] D.-H. Lee. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In Workshop on Challenges in Represen-
tation Learning, ICML, volume 3, page 2, 2013.

[98] H.-Y. Lee, J.-B. Huang, M. K. Singh, and M.-H. Yang. Unsupervised repre-
sentation learning by sorting sequences. In IEEE International Conference
on Computer Vision (ICCV), 2017.

[99] C. Liu. Beyond pixels: exploring new representations and applications for
motion analysis. PhD thesis, Citeseer, 2009.

[100] C. Liu, A. Torralba, W. T. Freeman, F. Durand, and E. H. Adelson. Motion
magnification. In ACM transactions on graphics (TOG), volume 24, pages
519–526. ACM, 2005.

[101] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440, 2015.

[102] D. G. Lowe. Object recognition from local scale-invariant features. In Pro-
ceedings of the seventh IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee, 1999.

[103] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei. Unsupervised
learning of long-term motion dynamics for videos. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

BIBLIOGRAPHY 125

[104] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei. Unsupervised learn-
ing of long-term motion dynamics for videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2203–2212,
2017.

[105] Y. Ma and H. Ghasemzadeh. Labelforest: Non-parametric semi-supervised
learning for activity recognition. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4520–4527, 2019.

[106] M. F. Mabrouk, N. M. Ghanem, and M. A. Ismail. Semi supervised learning
for human activity recognition using depth cameras. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA),
pages 681–686. IEEE, 2015.

[107] P. Madhu, R. Kosti, L. Mührenberg, P. Bell, A. Maier, and V. Christlein.
Recognizing characters in art history using deep learning. In Proceedings of
the 1st Workshop on Structuring and Understanding of Multimedia heritAge
Contents, pages 15–22, 2019.

[108] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for
object detection and beyond. In ICCV, 2011.

[109] M. Martin, A. Roitberg, M. Haurilet, M. Horne, S. Reiß, M. Voit, and
R. Stiefelhagen. Drive&act: A multi-modal dataset for fine-grained driver
behavior recognition in autonomous vehicles. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2801–2810, 2019.

[110] B. Martinez, D. Modolo, Y. Xiong, and J. Tighe. Action recognition with
spatial-temporal discriminative filter banks. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[111] S. Masood, A. Rai, A. Aggarwal, M. N. Doja, and M. Ahmad. Detecting
distraction of drivers using convolutional neural network. Pattern Recogni-
tion Letters, 2018.

[112] A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W.
Mathis, and M. Bethge. Deeplabcut: markerless pose estimation of user-
defined body parts with deep learning. Nature Neuroscience, 21(9):1281–
1289, 9 2018.

[113] J. Mayr, C. Unger, and F. Tombari. Self-supervised learning of the drivable
area for autonomous vehicles. In 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 362–369. IEEE, 2018.

[114] T. Milbich, M. Bautista, E. Sutter, and B. Ommer. Unsupervised video
understanding by reconciliation of posture similarities. In Proceedings of
the IEEE International Conference on Computer Vision, 2017.

[115] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. Cross-stitch networks
for multi-task learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3994–4003, 2016.

126 BIBLIOGRAPHY

[116] I. Misra, C. L. Zitnick, and M. Hebert. Shuffle and learn: unsupervised
learning using temporal order verification. In European Conference on Com-
puter Vision, pages 527–544. Springer, 2016.

[117] T. Miyato, S.-i. Maeda, M. Koyama, and S. Ishii. Virtual adversar-
ial training: a regularization method for supervised and semi-supervised
learning. IEEE transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018.

[118] S. Mohammadi, A. Perina, H. Kiani, and V. Murino. Angry crowds: Detect-
ing violent events in videos. In European Conference on Computer Vision,
pages 3–18. Springer, 2016.

[119] T. Nathan Mundhenk, D. Ho, and B. Y. Chen. Improvements to context
based self-supervised learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 9339–9348, 2018.

[120] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation
and support inference from rgbd images. In ECCV, 2012.

[121] J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling temporal structure
of decomposable motion segments for activity classification. In European
conference on computer vision, pages 392–405. Springer, 2010.

[122] M. Noroozi and P. Favaro. Unsupervised learning of visual representations
by solving jigsaw puzzles. In IEEE European Conference on Computer
Vision (ECCV), 2016.

[123] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learn-
ing to count. arXiv preprint arXiv:1708.06734, 2017.

[124] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash. Boosting self-
supervised learning via knowledge transfer. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[125] T.-H. Oh, R. Jaroensri, C. Kim, M. Elgharib, F. Durand, W. T. Freeman,
and W. Matusik. Learning-based video motion magnification. In Pro-
ceedings of the European Conference on Computer Vision (ECCV), pages
633–648, 2018.

[126] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and A. Torralba.
Ambient sound provides supervision for visual learning. In European Con-
ference on Computer Vision, pages 801–816. Springer, 2016.

[127] Y. Patel, L. Gomez, M. Rusiñol, C. Jawahar, and D. Karatzas. Self-
supervised learning of visual features through embedding images into text
topic spaces. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[128] D. Pathak, R. Girshick, P. Dollár, T. Darrell, and B. Hariharan. Learn-
ing features by watching objects move. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.

BIBLIOGRAPHY 127

[129] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Con-
text encoders: Feature learning by inpainting. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2536–2544,
2016.

[130] T. D. Pereira, D. E. Aldarondo, L. Willmore, M. Kislin, S. S.-H. Wang,
M. Murthy, and J. W. Shaevitz. Fast animal pose estimation using deep
neural networks. Nature methods, 16(1):117–125, 2019.

[131] S. M. Peters, I. J. Pinter, H. H. Pothuizen, R. C. de Heer, J. E. van der
Harst, and B. M. Spruijt. Novel approach to automatically classify rat social
behavior using a video tracking system. Journal of neuroscience methods,
268:163–170, 2016.

[132] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. Andriluka, P. V.
Gehler, and B. Schiele. Deepcut: Joint subset partition and labeling for
multi person pose estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4929–4937, 2016.

[133] R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G. S.
Corrado, L. Peng, and D. R. Webster. Prediction of cardiovascular risk fac-
tors from retinal fundus photographs via deep learning. Nature Biomedical
Engineering, 2(3):158, 2018.

[134] S. Purushwalkam and A. Gupta. Pose from action: Unsupervised learning
of pose features based on motion. arXiv preprint arXiv:1609.05420, 2016.

[135] H. Qian, S. J. Pan, and C. Miao. Distribution-based semi-supervised learn-
ing for activity recognition. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 7699–7706, 2019.

[136] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[137] V. Ramakrishna, D. Munoz, M. Hebert, A. J. Bagnell, and Y. Sheikh. Pose
machines: Articulated pose estimation via inference machines. In ECCV,
2014.

[138] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-
supervised learning with ladder networks. In Advances in neural informa-
tion processing systems, pages 3546–3554, 2015.

[139] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[140] C. Ritter, T. Wollmann, P. Bernhard, M. Gunkel, D. M. Braun, J.-Y. Lee,
J. Meiners, R. Simon, G. Sauter, H. Erfle, et al. Hyperparameter opti-
mization for image analysis: application to prostate tissue images and live
cell data of virus-infected cells. International journal of computer assisted
radiology and surgery, 14(11):1847–1857, 2019.

128 BIBLIOGRAPHY

[141] A. A. Robie, K. M. Seagraves, S. R. Egnor, and K. Branson. Machine vision
methods for analyzing social interactions. Journal of Experimental Biology,
220(1):25–34, 2017.

[142] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[143] H. Ryait, E. Bermudez-Contreras, M. Harvey, J. Faraji, B. M. Agha, A. G.-
P. Schjetnan, A. Gruber, J. Doan, M. Mohajerani, G. A. Metz, et al. Data-
driven analyses of motor impairments in animal models of neurological dis-
orders. PLoS biology, 17(11), 2019.

[144] S. P. Sahoo, U. Srinivasu, and S. Ari. 3d features for human action recogni-
tion with semi-supervised learning. IET Image Processing, 13(6):983–990,
2019.

[145] A. Sanakoyeu, M. A. Bautista, and B. Ommer. Deep unsupervised learning
of visual similarities. Pattern Recognition, 78:331–343, 2018.

[146] N. Sayed, B. Brattoli, and B. Ommer. Cross and learn: Cross-modal self-
supervision. In German Conference on Pattern Recognition, pages 228–243.
Springer, 2018.

[147] H.-C. Shin, K. Roberts, L. Lu, D. Demner-Fushman, J. Yao, and R. M.
Summers. Learning to read chest x-rays: Recurrent neural cascade model
for automated image annotation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2497–2506, 2016.

[148] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv
preprint arXiv:1312.6034, 2013.

[149] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[150] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

[151] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[152] G. Strezoski and M. Worring. Omniart: multi-task deep learning for artistic
data analysis. arXiv preprint arXiv:1708.00684, 2017.

[153] H.-I. Suk, D. Shen, A. D. N. Initiative, et al. Deep learning in diagnosis
of brain disorders. In Recent Progress in Brain and Cognitive Engineering,
pages 203–213. Springer, 2015.

BIBLIOGRAPHY 129

[154] W. Sultani, C. Chen, and M. Shah. Real-world anomaly detection in surveil-
lance videos. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 6479–6488, 2018.

[155] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In
Thirty-first AAAI conference on artificial intelligence, 2017.

[156] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[157] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826,
2016.

[158] R. Szeliski. Computer vision: algorithms and applications. Springer Science
& Business Media, 2010.

[159] A. Taleb, C. Lippert, T. Klein, and M. Nabi. Multimodal self-supervised
learning for medical image analysis. arXiv preprint arXiv:1912.05396, 2019.

[160] T. Tlusty, T. Michaeli, T. Dekel, and L. Zelnik-Manor. Modifying non-local
variations across multiple views. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[161] A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neu-
ral networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1653–1660, 2014.

[162] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In Proceedings of
the IEEE international conference on computer vision, pages 4489–4497,
2015.

[163] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer
look at spatiotemporal convolutions for action recognition. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, pages
6450–6459, 2018.

[164] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer
look at spatiotemporal convolutions for action recognition. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, pages
6450–6459, 2018.

[165] P. V. Tran. Exploring self-supervised regularization for supervised and
semi-supervised learning. arXiv preprint arXiv:1906.10343, 2019.

130 BIBLIOGRAPHY

[166] S. Tulyakov, X. Alameda-Pineda, E. Ricci, L. Yin, J. F. Cohn, and N. Sebe.
Self-adaptive matrix completion for heart rate estimation from face videos
under realistic conditions. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2396–2404, 2016.

[167] C. E. Vargas-Irwin, G. Shakhnarovich, P. Yadollahpour, J. M. Mislow, M. J.
Black, and J. P. Donoghue. Decoding complete reach and grasp actions
from local primary motor cortex populations. Journal of neuroscience,
30(29):9659–9669, 2010.

[168] M. Veta, Y. J. Heng, N. Stathonikos, B. E. Bejnordi, F. Beca, T. Wollmann,
K. Rohr, M. A. Shah, D. Wang, M. Rousson, et al. Predicting breast tumor
proliferation from whole-slide images: the tupac16 challenge. Medical image
analysis, 54:111–121, 2019.

[169] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning, pages 1096–1103,
2008.

[170] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with
scene dynamics. In Conference on Neural Information Processing Systems
(NIPS), 2016.

[171] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and K. Murphy.
Tracking emerges by colorizing videos. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 391–408, 2018.

[172] N. Wadhwa, T. Dekel, D. Wei, F. Durand, and W. T. Freeman. Deviation
magnification: Revealing departure from ideal geometries. ACM Trans.
Graph. (Proceedings SIGGRAPH Asia 2015), 34(6), 2015.

[173] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman. Phase-based
video motion processing. ACM Transactions on Graphics (TOG), 32(4):80,
2013.

[174] N. Wadhwa, M. Rubinstein, F. Durand, and W. T. Freeman. Riesz pyramids
for fast phase-based video magnification. In 2014 IEEE International Con-
ference on Computational Photography (ICCP), pages 1–10. IEEE, 2014.

[175] A.-S. Wahl, U. Büchler, A. Brändli, B. Brattoli, S. Musall, H. Kasper, B. V.
Ineichen, F. Helmchen, B. Ommer, and M. E. Schwab. Optogenetically
stimulating intact rat corticospinal tract post-stroke restores motor control
through regionalized functional circuit formation. Nature communications,
8(1):1187, 2017.

[176] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus. Regularization of
neural networks using dropconnect. In International conference on machine
learning, pages 1058–1066, 2013.

BIBLIOGRAPHY 131

[177] J. Wang, J. Jiao, L. Bao, S. He, Y. Liu, and W. Liu. Self-supervised
spatio-temporal representation learning for videos by predicting motion and
appearance statistics. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4006–4015, 2019.

[178] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Val Gool.
Temporal segment networks: Towards good practices for deep action recog-
nition. In IEEE European Conference on Computer Vision (ECCV), 2016.

[179] X. Wang and A. Gupta. Unsupervised learning of visual representations
using videos. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2794–2802, 2015.

[180] X. Wang, K. He, and A. Gupta. Transitive invariance for self-supervised
visual representation learning. In IEEE International Conference on Com-
puter Vision (ICCV), 2017.

[181] X. Wang, A. Jabri, and A. A. Efros. Learning correspondence from the
cycle-consistency of time. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2566–2576, 2019.

[182] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal
component analysis: Exact recovery of corrupted low-rank matrices via
convex optimization. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.
Williams, and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems 22, pages 2080–2088. Curran Associates, Inc., 2009.

[183] H.-Y. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, and W. T. Free-
man. Eulerian video magnification for revealing subtle changes in the world.
ACM Transactions on Graphics (Proc. SIGGRAPH 2012), 31(4), 2012.

[184] Y. Wu and K. He. Group normalization. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 3–19, 2018.

[185] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for
clustering analysis. In International conference on machine learning, pages
478–487, 2016.

[186] D. Xu, E. Ricci, Y. Yan, J. Song, and N. Sebe. Learning deep represen-
tations of appearance and motion for anomalous event detection. arXiv
preprint arXiv:1510.01553, 2015.

[187] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised
spatiotemporal learning via video clip order prediction. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
10334–10343, 2019.

[188] C. Yan, F. Coenen, and B. Zhang. Driving posture recognition by joint
application of motion history image and pyramid histogram of oriented
gradients. International journal of vehicular technology, 2014, 2014.

132 BIBLIOGRAPHY

[189] H. Yang, H. Wu, and H. Chen. Detecting 11k classes: Large scale object
detection without fine-grained bounding boxes. In Proceedings of the IEEE
International Conference on Computer Vision, pages 9805–9813, 2019.

[190] J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep
representations and image clusters. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5147–5156, 2016.

[191] A. S. Yoon, T. Lee, Y. Lim, D. Jung, P. Kang, D. Kim, K. Park, and
Y. Choi. Semi-supervised learning with deep generative models for asset
failure prediction. arXiv preprint arXiv:1709.00845, 2017.

[192] H. Yuan and C. Wang. A human action recognition algorithm based on
semi-supervised kmeans clustering. In Transactions on edutainment VI,
pages 227–236. Springer, 2011.

[193] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

[194] X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer. S4l: Self-supervised semi-
supervised learning. In Proceedings of the IEEE international conference
on computer vision, pages 1476–1485, 2019.

[195] J. Zhang, Y. Han, J. Tang, Q. Hu, and J. Jiang. Semi-supervised image-
to-video adaptation for video action recognition. IEEE transactions on
cybernetics, 47(4):960–973, 2016.

[196] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In Euro-
pean Conference on Computer Vision, pages 649–666. Springer, 2016.

[197] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised
learning by cross-channel prediction. arXiv preprint arXiv:1611.09842,
2016.

[198] W. Zhang, R. Li, H. Deng, L. Wang, W. Lin, S. Ji, and D. Shen. Deep
convolutional neural networks for multi-modality isointense infant brain
image segmentation. NeuroImage, 108:214–224, 2015.

[199] Y. Zhang, S. L. Pintea, and J. C. Van Gemert. Video acceleration magni-
fication. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 529–537, 2017.

[200] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep
features for scene recognition using places database. In Advances in neural
information processing systems, pages 487–495, 2014.

	Introduction
	Computer Vision
	Deep Learning
	Learning a Representation with Limited Supervision
	Objective
	Contributions
	Thesis Organization

	Background
	Artificial Neural Networks
	Perceptron
	Regular Neural Networks
	Convolutional Neural Networks
	Fully-Convolutional Networks
	Deep Generative Models
	Recurrent Neural Networks
	3D Convolutional Neural Networks

	Activation Functions
	Loss Functions
	Optimization
	Established Network Architectures

	Self-Supervised Representation Learning
	Self-Supervised Learning in a Nutshell
	Overview of Recent Works
	Image-Based Methods
	Video-Based Methods

	LSTM Self-Supervision for Videos
	Temporal Permutation
	Experiments

	Multi-Task Self-Supervision
	Spatial and Temporal Permutation
	Experiments
	Ablation Studies
	Visualizations

	Technical Details
	Discussion

	Unsupervised Motor Behavior Analysis
	Introduction
	Previous Work
	Experimental Setup
	Rat Stroke Model
	Human Gait Dataset (HG2DB)

	Self-Supervised Learning for Behavior Analysis
	Learning a Fine-Grained Representation
	Detection

	Magnification of Impaired Behavior
	Experiments
	Paw Detection
	Evaluation of the Learned Representation
	Fitness Prediction and Comparison with Previous Work
	Disease Classification
	Rehabilitation Analysis
	Magnification

	Technical Details
	Discussion

	Robust Magnification
	Introduction
	Robust Magnification across Subjects
	Problem Definition
	Disentanglement for Magnification
	Learning to Magnify

	Experiments
	Datasets
	Qualitative Results
	Quantitative Analysis
	Ablation Studies

	Technical Details
	Discussion

	Semi-Supervised Representation Learning for Videos
	Introduction
	Related Works
	Unsupervised Pre-Training and Fine-tuning
	Post-Training via Pseudo-Labelling
	Experiments
	Datasets
	Evaluation Metrics
	Quantitative Evaluation
	Ablation Studies

	Self-Supervised vs. Semi-Supervised
	Technical Details
	Discussion

	Conclusion and Discussion

