
Integr. equ. oper. theory 61 (2008), 493-509

© 2008 Birkhauser Verlag Basel/Switzerland

0378-620X/040493-17, published online July 25, 2008

DOI 10.1007/s00020-008-1604-7

Integral Equations 

and Operator Theory

Convolution-Dominated Operators on Discrete 

Groups

Gero Fendler, Karlheinz Grochenig and Michael Leinert

Abstract. We study infinite matrices A indexed by a discrete group G that are 

dominated by a convolution operator in the sense that |(Ac)(a:)| < (a* |c|)(tc) 

for x 6 G and some a E £1(G). This class of “convolution-dominated” matrices 

forms a Banach-*-algebra contained in the algebra of bounded operators on 

^2(G). Our main result shows that the inverse of a convolution-dominated ma

trix is again convolution-dominated, provided that G is amenable and rigidly 

symmetric. For abelian groups this result goes back to Gohberg, Baskakov, 

and others, for non-abelian groups completely different techniques are re

quired, such as generalized Zd-algebras and the symmetry of group algebras.
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1. Introduction

Is the off-diagonal decay of an infinite matrix inherited by its inverse matrix? This 

question arises in many problems in numerical analysis and approximation theory 

and its solution has many applications in frame theory and pseudo differential 

operators and wireless communications. See [5, 11, 13, 18, 29, 30] for a sample of 

papers.

The study of the off-diagonal decay has two distinct facets, namely the rate 

of the off-diagonal decay and the nature of the underlying index set. Usually the 

index set is (a subset of) and the focus is on obtaining various forms of off- 

diagonal decay conditions. For instance, it is known that polynomial decay and 

sub exponential decay are preserved under matrix inversion [18, 15].

In general, the preservation of off-diagonal decay under inversion depends 

also on the index set. For instance, in the theory of Calderbn-Zygmund operators,

K. G. was supported by the Marie-Curie Excellence Grant MEXT-CT 2004-517154. 
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the index set consists of all dyadic cubes. On this index set the quality of the 

off-diagonal decay is not necessarily preserved, and as a consequence the inverse of 

a Calderdn-Zygmund operator need not be a Calderon-Zygmund operator [25, 32],

Thus the interaction between the precise form of off-diagonal decay and the 

index set plays a decisive role. This observation is implicit in [18, 15, 31]. In [18, 15] 

it was mentioned (without explicit proof) that polynomial or subexponential decay 

are preserved under inversion whenever the index set of the matrix class possesses 

a metric with a polynomial growth condition.

We study the interaction between the decay conditions and the index set 

in the context of non-commutative harmonic analysis. Precisely, the index set 

will be a discrete (non-Abelian) group, e.g., a finitely generated discrete group of 

polynomial growth. We then investigate the class of convolution-dominated ma

trices, which are described by a specific type of off-diagonal decay. Convolution- 

dominated matrices over the index set were introduced by Gohberg, Kashoeck, 

and Woerdeman [10] as a generalization of Toeplitz matrices, and they showed 

that this class of matrices was closed under inversion. Similar results and gener

alizations were obtained independently by Kurbatov [19], Baskakov [2]. Sometime 

later Sjbstrand [29] rediscovered their results, gave a completely different proof, 

and used it in the context of a deep theorem about pseudodifferential operators.

We consider matrices indexed by a discrete group G: every operator on ^2(G) 

is described by a matrix A with entries A(x, y), x, y G G by the usual action 

(Ac)(a;) = A(z, ?/)c(?/) on a sequence c G ^2(G). We will consider mostly 

groups of polynomial growth. A finitely generated group is of polynomial growth, 

if there exists a finite set U C G, such that U^Li Un = G and cardtW < CnD for 

some constants C,D > 0. Our main theorem reads as follows.

Theorem 1. Let G be a discrete finitely generated group of polynomial growth. 

If a matrix A indexed by G satisfies the off-diagonal decay condition \A(x, y)\ < 

a(xy~1fi x,y G G for some a G £1(G) and A is invertible on I2{G), then there 

exists b G O(G') such that |A-1 (x, y)| < b{xy~^fi x, y G G.

We will extend this result and also consider the situation where £1(G) is 

replaced by the weighted algebra (A (G, u>) for certain weight functions on G. This 

weighted case is easier and follows from Theorem 1 by standard methods.

To put Theorem 1 into a bigger context, let us consider the case A(x, y) — 

aficy-1) for a sequence a G -C(G). This matrix A corresponds to the convolution 

operator Ac = a * c on £2(G). Even this case is highly non-trivial. Theorem 1 

implies the symmetry of the group algebra ^1(G), i.e., the spectrum of positive 

elements a* * a is contained in [0, oo) for all a G €X(G). This fact is of course 

well known, but its proof requires the combination of two landmark results of 

harmonic analysis, namely Gromov’s characterization of finitely generated groups 

of polynomial growth as finite extensions of nilpotent groups and Hulanicki’s result 

that discrete nilpotent groups are symmetric [16, 17].

Convolution-dominated matrices on groups of polynomial growth occur im

plicitly in Sun’s remarkable work [31]. His conditions on the off-diagonal decay 
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are somewhat complicated and exclude the basic case of I?1-decay. In view of the 

relation with the symmetry of groups, this omission is not surprising.

2. The Algebra of Convolution-Dominated Operators as a Twisted 

L1-Algebra

Let G be a discrete group. For x G G we denote the operator of left translation 

on G(G) and on ^2(G) by X(x), i.e. if f G €\G) or f G ^2(G), then X(x)f (t/) = 

f(x~ry), x,y E G. By £>(£2(G)) we denote the algebra of bounded operators on 

•£2(G).

For an operator A : £2(G) —> ^2(G) let A(x, y) —< A6y, 6X >, x,y G G, be its 

matrix, where < , > is the inner product of the Hilbert space ^2(G) and 5x(x) — 1 

and 5X (z) = 0 for z x.

If G is a discrete Abelian group G, the proof of the main theorem is based 

on an idea of de Leeuw [4]: to every operator on G one can assign an operator

valued Fourier series and then classical Fourier series arguments, such as Wiener’s 

Lemma, can be applied. This approach is championed in [2, 10].

For a non-Abelian group as the index set, these ideas break down com

pletely, and a new approach is required. Our key idea is to replace the Fourier 

series arguments by methods taken from Leptin’s investigation of generalized L1- 

algebras [20, 21, 22]. The main insight is that the algebra of convolution-dominated 

matrices can be identified with a generalized Zd-algebra in the sense of Leptin. This 

observation allows us to translate the original problem about matrix inversion into 

a problem of abstract harmonic analysis. The analysis of generalized L1-algebras 

was advanced by Leptin and Poguntke [20, 21, 22, 24] and has produced deep 

results. In fact, we will resort to their representation theoretic results and to the 

concept of the “rigid symmetry” of Banach algebras and apply these at a crucial 

point.

The relation between a “simple” matrix problem and the theory of generalized 

Zd-algebras may seem surprising at first glance, but it is exactly this connection 

that allows us to use the power of non-commutative harmonic analysis to solve the 

problem.

Let us mention that a similar theory can be established for convolution-domi

nated integral operators. This generalization is more technical and will be dealt 

with in a subsequent paper.

The paper is organized as follows: in Section 2 we give a formal definition 

of the algebra of convolution-dominated operators and identify it as a generalized 

Zd-algebra. In Section 3 we prove the symmetry of this algebra, and in Section 4 we 

treat the related concept of inverse-closedness. In particular, we prove Theorem 1. 

In Section 5 we treat the weighted case and characterize all weights for which the 

generalized weighted Zd-algebra is symmetric.

Acknowledgement: We would like to thank Marc Rieffel for his useful com

ments and questions on an early draft of the paper.



496 Fendler, Grochenig and Leinert IEOT

Definition 1. The operator A is called convolution-dominated, in short notation 

A G CD(Gj, if there exists a sequence a G C(G) such that

\A(x,yf < afiry^1), ^x,yEG.

We define the norm of A as an element in CD(Gf) by

|| A ||i := inf{|| a ||£i : a G ^(G), |A(z,?/)| < Vx,y G G}.

By choosing a(z) to be the supremum of the entries of A on the 2-th diagonal, 

namely a(z) = sup^^.^-i-^j |A(z,?/)|, we see that

Hili = 52 sup l^z/)! < °°-
z&G {x,y:xy~1^z}

To shed light on this definition, consider the action of the operator or matrix 

A on a finitely supported vector c and take absolute values:

|(Ac)(x)| = | 52 < 52 aCw-1) |c(z/)( = {a* |c|)(x). (1)

yeG y&G

Thus A is dominated pointwise by a convolution operator, whence our terminology. 

Clearly, if a G ^1(G), i.e., if A G CD(Gfi then A is bounded on t!2(G), and the 

operator norm on G(Gfi in fact on all £P(G), 1 < p < oo, is majorized by the H||i- 

norm. If we consider the composition of two convolution-dominated operators A 

and B, then we obtain similarly

|(ABc)(a?)| < (a*b* |c|) (x),

and therefore the operator AB is again convolution-dominated and we obtain that 

||AB||i < H||i ||B||i, because £1(G) is a convolution algebra. We may summarize 

these observations as follows.

Lemma 1. The space CD(G) is a Banach ^-algebra with respect to composition 

of operators and taking the adjoint operator as involution. Moreover, CDffiT) is 

continuously embedded into B(^2(G)).

Our first goal is to represent CD(G) as a generalized B1-algebra in the sense 

of Leptin [20]. Consider the C*-algebra ^°°(G) with pointwise multiplication and 

complex conjugation as involution. This algebra is isometrically represented as an 

algebra of multiplication operators on £2(G) by

Dmf{x} — m(x)/(x), where x E G,f G f2(G),m G €°°(G).

Analogously, we define an operator DT by

D™ = X(z)oDm

As is easily seen, the matrix of D™ has the entries

D^(x, y) = m(y)5z(xy~^ . (2)

Whereas the matrix of the multiplication operator Dm is a diagonal matrix, the 

matrix of D™ is non-zero only on the 2-th side-diagonal. Since every matrix can be 

written as the sum of its side-diagonals, every operator is a sum of the elementary 
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operators D™. This simple observation is crucial for the analysis of convolution- 

dominated operators.

Next we study how the operators D™ behave under composition: if v, w G G 

and m,n G £°°(G), then

z&G

= n{z}5v(xz~r)m{y^w^zy^

z&G

= ri(zyyv(xy~1z~1)m(y)6w(z) (3)

zeG

= n(wy)m{y)Sv(xy^1w~1)

= n(wy)m(y')5vw(xy~1)

In the last equality we have set Tyn(z) = n{y~rz) for n G ^°°(G). We use a 

notation different from A, because Ty : ^°°(G) £°°(G) is a C* automorphism

of the algebra £°°(G) and the mapping y Ty defines a homomorphism of the 

group G into the group of G*-automorphisms of ^°°(G). Using this homomorphism, 

we may now form the twisted ZA-algebra C = ^1(G, ^°°(G), T) in the sense of 

Leptin [20, 21, 22]. The underlying Banach space of C is the space of £°°(G)- 

valued absolutely summable sequences on G, but we will often interpret it as the 

projective tensor product

^(G,£°°(G)) =^1(G)®^OO(G).

Thus for an element f G £1(G,^°°(G)) we denote its value in ^°°(G) by fix'), 

x G G, and we write f(x)(z) or /(x, z) for the value of this ^-function at z G G.

The twisted convolution of h, f G £ is defined by

h*f(x) = ^2 for x G G,

y&G

and the involution of h G £ by

h*(x) =Tx-ih(x~1), forxGG.

An element f G £. may be represented uniquely as

/ =

z&G

where mz — f(z) G £°°(G). By using rnz as the z-th side-diagonal of a matrix, we 

define a map

R W1(G,^OO(G),T) ^B(^2(G)) (4)

by

(5) 

zeG
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Proposition 1. The map R : T) -> CD(G') is an isometric

^-isomorphism.

Proof. Let f — 'f2lzeGmzhz and h = f^zeGnzhz G C. By (2) we have 

llfi/llco = ll£oM|i 

z£G

= 52 sup \D™z(x,y)\ 
zeG {x,y:xy~'i-=z}

= J2sup|w(?/)l = II f ||^(G/~(G))- 

zeG y 

Thus R is an isometry.

The twisted convolution of f and h may be computed as follows: 

(7z*/)(a;,z) = [^Tyh^f^y-1)]^

y&G

= 52 h(xy,y~lz)f(y~\z) 

yeG

= 52 nxy{y~1z)my-i(z) (6)
y&G

— ly (a?) 

V 

where

lv = Y.Tynvymy-. e£°°(G). 

y&G

By comparison, the composition of the corresponding operators Rf and Rh (matrix 

multiplication) yields that

RfoRh = 

r w

= 52-D^w-inr)mw = 52p^ 
r,w v

where 

~~ Truj — iTLr TTI'iju — TyYl'yy TTLy — i ly.

{r,w:rw—v} y&G

Thus Rf o Rh — R(f * h) and R is an algebra homomorphism.

The involution of f as above is given by 

f*(x,z) = Tx-imx-i(z) 

= mx-i{xz) 

= Iv (^z'j5v (^xf
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where lv(z) — Tv-imv-i(z).

By comparison, the adjoint of a single side-diagonal operator is

(Z?^)*(X,7/) = D™v(y,x)

= mv(x')8v(yx~1')

= mv{x)Sv-i{xy~ly)

= mv{v~1y)Sv-i(<xy~1)

= D^(x,y).

These equalities imply that

(y^z>^)* = jjxvjnv

V V

= Y,DVV~17^ = R(J*^

V

and so R preserves the involution. Finally, from the definition of ||A||i and the 

equalities (2) and (5) one sees that R is onto. 

3. Symmetry of the Twisted L1-Algebra

Recall that a Banach algebra A with isometric involution is called symmetric if 

the spectrum of every positive element is contained in the non-negative reals, 

i. e. sp(o*a) C [0,oo) for all a G A. For various abstract characterizations of 

symmetry see [3, Section 41] or [24],

Furthermore, a locally compact group G is called symmetric, if its convolution 

algebra ZX(G) is symmetric. Various classes of groups are known to be symmetric: 

(a) locally compact Abelian groups, (b) compact groups, (c) finite extensions of 

discrete nilpotent groups, (d) compactly generated groups of polynomial growth, 

(e) compact extensions of locally compact nilpotent groups, and others. See [23]. 

For the groups of the classes (a) — (c) Leptin and Poguntke [24] have shown that 

they satisfy an even stronger property, namely that of rigid symmetry. This means 

that for every C*-algebra C the projective tensor product L1(G)0C' is symmetric. 

Later Poguntke [27] showed that all nilpotent locally compact groups are rigidly 

symmetric.

Our goal is to show that the twisted L1-algebra £ = ^X(G,^°°(G), T) of a 

rigidly symmetric discrete group G is symmetric and hence that the algebra of 

convolution-dominated operators CD(G} is also symmetric.

To this end we define a map

Q : £\G,£°°{G\T^ ^(G^B^G^ (7)

by

/ = Y2 5v ® mv Z2Sv 0 • (8) 
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Proposition 2. The map Q is an isometric *-isomorphism of G(G,£°°onto 

a closed subalgebra o/€1(G)0B(^2(G)).

Proof. The proof rests on the isometrical identification T'fG, E) = £1(G)0E, 

which holds for any Banach space E [6, Ch. VIII. 1.]. It follows that for f = 

® mv e £

II/Hi = ElHJU = £||o™”||b(P(g))

V V

— II 5^^ ® D™v

V

Thus Q is an isometry. Let h = 5V 0 nv, then by (6)

h * f = G ® lv,

V

where lv = '^f/yEG(Tynvy')my-i. Hence

Q(k*f) =

V

= E^® E D"zD^

v {z,w:zw=v}

=

z,w

= = Q(h)Q(f).

zeG w

Similarly one computes that Q intertwines the involutions. In fact

wr = E^®^”’)’
V

V

= =Q(.n.

V-1

Thus Q is a ^-homomorphism. Since Q is an isometry, the image of Q is a closed 

subalgebra of t?1 0 B(£2). 

Since symmetry is inherited by closed subalgebras, we obtain the following 

consequence.

Corollary 1. Let G be a discrete rigidly symmetric group. Then (f {G{G\T} 

and CD(G) are symmetric Banach ^-algebras.
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4. Inverse Closedness

Given two Banach algebras A C 13 with common identity, A is inverse-closed in 

13, if

a G A and a”1 G 13 => a-1 G A.

This notion occurs under many names: one also says that A is a spectral subalgebra 

or a local subalgebra of 13. The pair (A, B) is called a Wiener pair by Naimark [26]. 

An important property of an inverse-closed subalgebra A is that it possesses the 

same holomorphic functional calculus as 13.

Inverse-closedness is usually proved by means of Hulanicki’s Lemma [17]. 

Let r^a) denote the spectral radius of a in the algebra A. If r>i(a) = rg(a) for 

all a — a* G A, then we have equality of the spectra sp^(u) = spB(a) for all 

a G A. Consequently, if 13 is symmetric, then A is also symmetric. For this version 

of Hulanicki’s lemma, see [9, Lemma 3.1 and 6.1] and [12, Lemma 5.1] for an 

elementary proof.

Our goal is to show that the algebra of convolution-dominated matrices 

CD(G) is inverse-closed in B(^2(G)). For this purpose we consider two natural 

unitary representations of the twisted £*-algebra £.

The first representation is the so-called D-regular representation of £.. Recall 

that D : m Dm is a faithful representation of the G*-algebra £°° by multiplica

tion operators in B(^2(G)). Then as in Leptin [22, §3] the D-regular representation 

XD of £ = G(G, t?°°, T) on the Hilbert space ^2(G,^2(G)) is defined by

ad(/)«®) = T < e ^(cagG)), /ex.

y&G

One easily verifies that this defines indeed a ^representation of C.

The second representation is the mapping R : £ —-> CD(G) C B(£2(G)) 

introduced in (5). By Proposition 1, R is also a ^-representation of C on £2(G). 

We call this representation the canonical representation of C.

Proposition 3. The D-regular representation XD of £ is a multiple of the canonical 

representation R. Hence ||R(/)|| = || XD(f) || for all f G £.

Proof. We identify t?2(G, .£2(G)) with t?2(G x G). Let R^ be the extension of R from 

f2(G) to f2(G x G) by letting the operators R^f) = A(y) ° D^v\ f G £, 

act in the first coordinate only, i.e., for £ G £2(G x G)

z) = z). (9)

y&G

Next we define a candidate for an intertwining operator between the B-regular 

representation and the card(G)-multiple Rw of the canonical representation by

Sf,(x,z) = ffxz,z), where f G €2(G x G).

Then on the one hand we have

s[R“ z) = 52 f(y)(y~lxz^(.y~lxz,zY

y&G
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On the other hand

y&G

y&G

y&G

= 52 f^y~^xz^y~lxz, zY

y&G

Consequently,

AD(/)(SO=SJ?“UX (10)

for all f E C and £ E YtG x Gf Since S is unitary on ^2(G x G), XD and are 

equivalent. 

To deal with inverse-closedness, we need to compare several norms on C and 

GD(G). Let || . ||* be the largest C* norm on C. By a theorem of Ptak [28] a 

Banach ^-algebra A is symmetric, if and only if the largest G*-seminorm || • ||* on 

A satisfies ||a*a||* = r^(a*a) for all a E A. See also [3, §41 Corollary 8].

As a first consequence of Proposition 3 we identify the largest G*-norm on 

GD(G).

Corollary 2. Let G be an amenable discrete group, then the largest C* norm on C 

equals the operator norm on CD(G).

Proof. Since G is amenable, it follows from [22, Satz 6] of Leptin that for the 

representation D of £°°(G) the G-regular representation XD defines the largest G* 

norm on C. Therefore we obtain

II / II* = II A°(/) || = || #(/) ||b(^(G)) for every f EC, 

where the last equality follows from Proposition 3. 

Proposition 4. Let G be a discrete, amenable, and rigidly symmetric group. Then

r£(/V)=rCn(C)(W),-Rm)= II W) 111(^10)) for all f e £. (11)

Proof. Since C and GG(G) are symmetric by Corollary 1, Ptaks theorem [28] 

implies that || f ||2 = = rCD(G^RWR(ff). Since Corollary 2 says that

||/*/ll* = |IW)*W)IW2), we obtain the identity (11). 

Theorem 2. Let G be a discrete, amenable, and rigidly symmetric group. If f E C 

is such that R(f) E CD(G') has an inverse in B{I2{G)) then f~x exists in C and 

R{f~^ = R{fYx is in CD(Gf
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Proof. If f G C is hermitian, i.e. f — f*, then by Proposition 4

rUf)2 =rc(ff) = II R(f) llh^(G))-

[9, Lemma 6.1 and 3.1] imply that

spr(/) = V/g£.

Thus the invertibility of R(/) in B(£2(G)) implies the invertibility of f in £. 

By writing Theorem 2 explicitly as a statement about the off-diagonal decay 

of an invertible matrix, we recover Theorem 1 of the introduction.

Corollary 3. Let G be a discrete, amenable, and rigidly symmetric group (for 

instance, a finitely generated group of polynomial growth). If a matrix A indexed by 

G satisfies the off-diagonal decay condition |A(x, y)\ < a(xp-1) for some a G £X(G) 

and A is invertible on I2{G), then there exists b G /1(G) such that |A-1(z, y)\ < 

bf^xy-1).

A slight variation yields the following result of which previous versions have 

been quite useful in time-frequency analysis [7].

Corollary 4. Assume that A G CD(G) and that A — A*. Then the following are 

equivalent:

(i) A is invertible on f2(G).

(ii) A is invertible on IpfG) for all p, 1 < p < oo.

(hi) A is invertible on PfiG) for some p, 1 < p < oo.

Proof, (i) => (ii) Recall that every matrix A E CD(G) is bounded on all £P(G), 

1 < P < oo by (1). Thus if A G CD(G) is invertible on ^2(G), then by Theorem 1 

A-1 G CD(fiT) and thus A-1 is invertible on I!P(G) for arbitrary p, 1 < p < oo. 

The implication (ii) => (iii) is obvious.

(iii) => (i) Assume that A is invertible on some £P(G). Then the adjoint 

operator A* = A is invertible on the dual space Ip (G), where p' — p/(p — 1) 

is the conjugate index. By interpolation we obtain that A is invertible on the 

interpolation space ^2(G). 

Remark. The hypotheses on the group G are almost sharp. To see this, let A(/) 

denote the convolution operator c >-> A(/)c = f*c acting on •P’(G'), and let speP(f) 

the spectrum of A(/) as an operator acting on £P(G). Then sp^f) = spp^f) for 

all p G [1, oo], if and only if the group G is amenable and symmetric [1, 14]. Thus 

amenability and symmetric are necessary in Theorem 2. We do not know whether 

we can replace the rigid symmetry by symmetry, because it is an open problem 

whether every symmetric group is rigidly symmetric [27].

We emphasize once more that all discrete finitely generated groups of poly

nomial growth satisfy the hypotheses of amenability and rigid symmetry. These 

groups are finite extensions of some discrete nilpotent group by Gromov’s re

sult [16], and thus they are rigidly symmetric by [24] and [27].
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5. Symmetry of weighted algebras

In this section we extend the results about the symmetry of convolution-dominated 

operators to the weighted case.

A function co : G —> [1, oo) is called a weight on G, if it fulfills

u(xy) < \/x,yEG

= ca(x), \/x E G

w(e) = 1.

Given a weight we let be the weighted G-algebra on G. Using weights,

one can model stronger decay conditions on convolution-dominated operators as 

follows.

Definition 2. An operator A on G(G) is called x>-convolution-dominated, A E 

CDiG.A in short, if there exists an a E G(G,c<j) such that

\A(x,y)\ < a^xy-1), \/x,yEG.

We define its norm as

|| A ||w := inf{|| a ||^(G,W) : a E ^(G,co), |A(x, y)\ < a^xy-1) \/x,y E G}.

As in the unweighted case, we may write the norm as

||A||W = SUP < °°-

zeG {x,y-xy-r=z}

Thus an operator A is in CD(G, co), if it is dominated by a convolution oper

ator in G(G, w) in the sense that |Ac(x)| < (a* |c|)(re) for some a E (.\G, co). Since 

Ofi fiGyfi is a convolution algebra, the space of co-convolution-dorninated operators 

CD(G, co) is a Banach *-algebra with respect to composition of operators and the 

usual involution of operators in Furthermore, CD(G,T) C CD(Gf C

B(G(G)).

For the study of CD(G,w), we consider the weighted, twisted £]-algebra 

= G(G,ccgG°(G),T), which is defined as a subalgebra of £ endowed with the 

norm

II/IIa, = 52 H/CGIloo MG •
xeG

Since £w is a subalgebra of £, all algebraical relations are preserved and the 

results of Sections 2 and 3 carry over to £w after a slight modification of the norm 

computations.

Proposition 5. Let and denote the restrictions of the maps R and Q defined 

in (4) and (7) from £ to = L1 (^G, a) {GfTf Then

R^ : G(G,w,G°(G),T) CD(G,u)

is an isometric *-isomorphism and

: G(G,w/°°(G),T) G(G,w)®B(G(G))

is an isometric *-isomorphism onto a closed ^-subalgebra.
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We are interested in the symmetry of the weighted A-algebra. This forces us 

to impose some conditions of subexponential growth on the weight.

Definition 3. (a) A weight w is said to satisfy the GRS-condition (Gelfand-

Raikov-Shilov condition) if

lim ca(xn)1/n = 1 for all x G G. 

n—^oQ

(b) A weight w is said to satisfy the UGRS-condition (the uniform GRS-condi

tion), if for some generating subset U of G containing the identity element

lim sup cu(?/)1//n = lim sup u>(xiX2 ... xn)^n = 1.

n^°° yQUn n^°° x^,...,xn&U

The GRS-condition is a necessary condition for the spectral identity (J) = 

r^i (/) in weighted group algebras, and hence for the symmetry of G(G,u>) [8]. If 

G is a compactly generated locally compact group of polynomial growth, then the 

GRS-condition is also sufficient for the symmetry of G(G,(u). In this case, the 

UGRS-condition with a relatively compact set U is also equivalent to the GRS- 

condition by the results in [8]. However, if G is not compactly generated, the 

UGRS-condition may be a stronger assumption on the weight.

We emphasize that in Definition 3, U need not be finite. As a example con

sider the group Z2 and the weight — (1 + ^i, ^2 G Z,s > 0. This

weight satisfies the GRS-condition and the UGRS-condition with the generating 

set {—1, 0,1} x Z.

Theorem 3. Let G be a rigidly symmetric, amenable, discrete group. If the weight 

w satisfies the UGRS-condition and the condition

sup w(z) < C inf w(x), (12)
xeun\un-i xeun\un~1

t/zen^1(G,w)0B(£2(G)) is inverse-closed in G(G)0B(£2(G)) and hence symmetric.

Proof. By the assumption on G we know that the algebra B = G(G) ®B(^2(G)) is 

symmetric. Since A = ^1(G,cj) ®B(^2(G)) is a subalgebra of B, by [9, Lemmas 3.1 

and 6.1], we need only show the equality of the both spectral radii on the latter 

algebra.

Since for f G A

ii / h = 52 ii iib(£2(g)) 52 ii a*) ii w2(G)wO) = ii f iu
xGG xEG

the spectral radius formula implies that

M/) < rA(f) for all f G A.

Thus it suffices to show the converse inequality. To this end we define a weight v 

on Z by

f(n) = sup

yeu\n\
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where U is a generating set, containing the identity element, such that 

limn-^oo supyet/n = 1. By induction one finds an estimation for the norm

of the n-th convolution power f(nl of f E A:

II |U < ’ 52 II II II f(X2) II • ■ • II II • (13)

G G

Since G = (Pn \ as a disjoint union (where UQ — 0), we may split 

each sum accordingly. This yields

ll/n)IU <

52 52 ■■■ 52 ii/(*i)ii•■■£»)•
fcl,fc2,...,fcn^l Uk™\Ukn-'

If Xj E Ukj \ L7fej' ~1, then x±.. .xn E Ukl~* ^~kn and so the weight is majorized by

CV(X! . . . Xn) < SUp Lj(7/)=u(fciH- - - F/Cn).

- - l"fen

Set bk := Zuk\uk-> II /(rc) II and b = (M^gn- Then clearly we have || f ||B = || b ||^i 

and condition (12) implies that C~1 ||6||^i < ll/llzu < ||&||^i. For the convolution 

powers of f we obtain that

II/(n) IU < 52 bklbk2 .. .b^v^ + k2 + ■ ■ .kn) = \\b^n) < oo.

ki,k2,---,kn — l

By its definition the weight v on Z satisfies the GRS-condition, and G(Z,u) is 

symmetric by [8, Lemma 3.2]. Hence

rA^ = 2™, ii /(n)nT 2^0 ii^h^m

= r^1(Z,v)(^) = rF(Z)(^) = II Nk

= ll/h-
So for all k E N we have

and by letting k —> oo we obtain the required inequality r>i(/) < rs(/)- 

Combining Proposition 5 and Theorem 3, we obtain the symmetry of the 

weighted convolution-dominated operator algebras CD(G,cu).

Corollary 5. Under the same assumptions on G anduo as in Theorem 3, the algebra 

CD(G,u)) is symmetric.

Moreover, the Theorem 3 combined with Theorem 2 shows that for f E 

r£u(fi = ^x(Qw(/)) = MW))

= MZ) = ^B(£2(G))(^(/)) = rBG2(G))(^w(/))-

Using Hulanicki’s Lemma in the form of [9, Lemma 6.1 and 3.1] we conclude as in 

the proof of Theorem 2 that CD(G,aT) is inverse-closed in B(^2(G)).
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Corollary 6. Impose the same assumptions on G and a) as in Theorem 3.

If f G is such that R^{f} G CD(G,af) has an inverse in B(I2(Gf then 

f~r exists in and R^fif-1) — R^ffR1 is in CD(G,af).

For a single matrix Corollary 6 can be recast once again as a statement about 

the preservation of the off-diagonal decay by the inverse.

Corollary 7. Impose the same assumptions on G and co as in Theorem 3. If a matrix 

A onG satisfies the off-diagonal decay condition A(x,i/)| < a(xy~1fi Vx, y G G, for 

some a G -G(G, w) and A is invertible on £2(G), then there exists some b G -G(G, cu), 

such that 1 (m, ?y)| < bficy~r),Vx,y G G.

Remark. The proof of Thm. 3 is similar to the one of [8, Thm. 3.3]. However, the 

proof given there works only under an additional assumption on the weight, such 

as (12), the result remains correct as a consequence of the main result in [8].
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