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Abstract

In this paper we show that the Fourier–Stieltjes algebra B(G) of a non-compact locally compact group G

cannot have the weak∗ fixed point property for nonexpansive mappings. This answers two open problems
posed at a conference in Marseille-Luminy in 1989. We also show that a locally compact group is compact
exactly if the asymptotic centre of any non-empty weak∗ closed bounded convex subset C in B(G) with
respect to a decreasing net of bounded subsets is a non-empty norm compact subset. In particular, when
G is compact, B(G) has the weak∗ fixed point property for left reversible semigroups. This generalizes
a classical result of T.C. Lim for the circle group. As a consequence of our main results we obtain that a
number of properties, some of which were known to hold for compact groups, in fact characterize compact
groups.
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1. Introduction

Let E be a Banach space and K be a non-empty bounded closed convex subset of E. We
say that K has the fixed point property if every nonexpansive mapping T : K → K (i.e. ‖T x −
Ty‖ � ‖x − y‖ for all x, y ∈ K) has a fixed point. We say that E has the weak fixed point
property if every weakly compact convex subset of E has the fixed point property. A dual Banach
space E is said to have the weak∗ fixed point property if each weak∗ compact convex subset
of E has the fixed point property. Since weakly compact sets (in a dual Banach space) are weak∗
compact, the weak∗ fixed point property implies the weak fixed point property. A well known
result of Bruck [6] shows that a Banach space E with the weak fixed point property, already
has the weak fixed point property for commuting semigroups, i.e., if K is a weakly compact
convex subset of E and S = {Ts | s ∈ S} is a representation of a commutative semigroup S as
nonexpansive self-mappings on K , then K contains a common fixed point for S . Consequently,
it follows from [26] that, for a compact group G, the Fourier–Stieltjes algebra B(G) (which
in this case coincides with A(G), the Fourier algebra of G), has the weak fixed point property
for commuting semigroups. It also follows from [27, Theorem 4.2 and Proposition 5.1] that
if G is an [AU]-group (definition in Section 2), then B(G) has the weak fixed point property
for left reversible semigroups. Furthermore, if G is separable and compact, then B(G) has the
weak∗ fixed point property for left reversible semigroups. Note that [AU]-groups include all
compact groups. However, there are important non-compact locally compact groups such as the
Fell group which are [AU]-groups (see [40]). In a recent paper, N. Randrianantoanina [37] proved
that G is an [AU]-group if and only if B(G) has the weak fixed point property for left reversible
semigroups.

The main purpose of this paper is to show that, given a locally compact group G, its Fourier–
Stieltjes algebra B(G) regarded as the dual of the group C∗-algebra C∗(G) has the weak∗ fixed
point property for nonexpansive mappings (or weak∗ normal structure) if and only if G is com-
pact. This answers two open problems (Problem 8 and Problem 9) posed in the 1989 conference
“Fixed point theory and applications” held in Marseille-Luminy [23] (see also Open Problem 6.6
in [27]).

In [37], Randrianantoanina shows that for a Hilbert space H (not necessarily separable), the
space T (H) of trace class operators on H has the weak∗ fixed point property for left reversible
semigroups using non-commutative L1-spaces. From this one can derive that for any compact
group G, B(G) has the weak∗ fixed point property for left reversible semigroups. We give a
more elementary proof of this fact and also show that this property characterizes compact groups
among all locally compact groups. This answers a problem raised in Remark 4.3 [37] and im-
proves a result of Lau and Mah [27] for separable compact groups.

This paper is organized as follows: In Section 3 we show for the classical example of a
non-compact [AU]-group, the Fell group F , that there is a non-empty weak∗-compact convex
subset K of B(F) and an isometry T from K into K which is fixed point free. In Section 4
we prove one of our main results: If G is non-compact, then B(G) cannot have the weak∗ fixed
point property. In Section 5, we show that if G is compact, then the asymptotic centre of a
non-empty weak∗ closed convex subset C in B(G) with respect to a decreasing net of bounded
subsets is a non-empty norm compact subset of C. In particular, B(G) has the weak∗ fixed
point property for left reversible semigroups. Section 6 contains a general result on relations
between the above mentioned properties on dual Banach spaces and states some open prob-
lems.
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2. Some preliminaries

Let G be a locally compact group with a fixed left Haar measure λ. Let L1(G) denote the
group algebra of G with convolution product. The group C∗-algebra C∗(G) is defined to be the
completion of L1(G) with respect to the norm

‖f ‖∗ = sup‖π(f )‖,

where the supremum is taken over all nondegenerate ∗-representations π of L1(G) as a ∗-algebra
of bounded operators on a Hilbert space. Let B(L2(G)) be the set of all bounded operators on the
Hilbert space L2(G) and ρ be the left regular representation of G, i.e. for f ∈ L1(G) ρ(f ) is the
bounded operator in B(L2(G)) defined by convolution with f . Denote by C∗

ρ(G) the completion
of L1(G) with respect to the norm ‖ρ(·)‖, and denote by VN(G) the closure of {ρ(f ) | f ∈
L1(G)} in the weak operator topology in B(L2(G)). In the case when G is left amenable, in
particular when G is compact, then C∗(G) is isometrically isomorphic to C∗

ρ(G). Denote the set
of continuous positive definite functions on G by P(G), and the set of continuous functions on G

with compact support by C00(G). Define the Fourier–Stieltjes algebra of G, denoted by B(G),
to be the linear span of P(G). The Fourier algebra of G, denoted by A(G), is defined to be the
closed linear span of P(G) ∩ C00(G). Clearly, A(G) = B(G) when G is compact. It is known
that C∗(G)∗ = B(G), where the duality is given by 〈f,φ〉 = ∫

f (t)φ(t) dλ(t), f ∈ L1(G), φ ∈
B(G), and A(G)∗ = VN(G) (see [11] and [21] for details).

A locally compact G is said to be an [AU]-group if the von Neumann algebra generated by any
continuous unitary representation of G is atomic, which is equivalent to saying that every con-
tinuous unitary representation of G is completely reducible, i.e. is the Hilbert sum of irreducible
representations. For details see Appendix A.

A Banach space E is said to have the Radon–Nikodym property if each closed convex sub-
set D of E is dentable i.e., for any ε > 0, there exists an x in D such that x /∈ co(D\Bε(x)),
where Bε(x) = {y ∈ X | ‖x − y‖ < ε} and coK is the closed convex hull of a set K ⊆ E. It
was shown in [28, Lemma 3.1] that if the predual M∗ of a von Neumann algebra M has the
Radon–Nikodym property, then M∗ has the weak fixed point property.

It follows from [40, Theorem 3.5] that the class of groups G for which B(G) has the Radon–
Nikodym property is precisely the [AU]-groups (see also [14]).

Let K be a bounded closed convex subset of a Banach space E. A point x in K is called a
diametral point if

sup
{‖x − y‖: y ∈ K

} = diam(K),

where diam(K) denotes the diameter of K . The set K is said to have normal structure if every
nontrivial (i.e., contains at least two points) convex subset H of K contains a non-diametral point
of H (see [13,20]). A Banach space E has weak normal structure if every nontrivial weakly
compact convex subset of E has normal structure. A dual Banach space E has weak∗ normal
structure if every nontrivial weak∗ compact convex subset of E has normal structure [13, p. 44],
[19,26,31].

A dual Banach space E is said to have property UKK∗ (weak∗ uniformly Kadec–Klee prop-
erty) if for any ε > 0 there is a 0 < δ < 1 such that whenever A is a subset of the closed unit ball
of E containing a sequence (xn) with sep((xn)) := inf{‖xn −xm‖: n 
= m} > ε, then there is an x

in the weak∗ closure of A such that ‖x‖ � δ. The property UKK∗ was introduced by van Dulst
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and Sims [9]. They proved that if E has property UKK∗, then E has weak∗ normal structure and
hence has the weak∗ fixed point property.

Let S be a semitopological semigroup, i.e. S is a semigroup with a Hausdorff topology such
that for each a ∈ S, the mappings s → as and s → sa from S into S are continuous. S is called
left reversible if aS ∩ bS 
= ∅ for any a, b ∈ S, where, in general, K denotes the closure of the
set K . Clearly abelian semigroups and groups are left reversible. Let CB(S) be the C∗-algebra
of bounded continuous complex-valued functions on S and for a ∈ S, let �a be the left transla-
tion operator on CB(S) defined by (�af )(t) = f (at) for f ∈ CB(S) and t ∈ S. Then S is left
amenable if there is an m ∈ CB(S)∗ such that ‖m‖ = m(1) = 1 and m(�af ) = m(f ) for all
f ∈ CB(S) and a ∈ S. If the topology on S is normal and S is left amenable, then S is left re-
versible. In particular, if S is left amenable as a discrete semigroup, then S is left reversible. Left
reversible semigroups have played an important role in the study of common fixed point theo-
rems and ergodic type theorems for semigroups of nonexpansive mappings (see [17,22,23,29,30,
32,33,36]).

Let S be a semitopological semigroup, and K be a topological space. An action of S on K is
a map ψ from S × K to K , denoted by ψ(s, k) = sk, s ∈ S, k ∈ K , such that s1s2(k) = s1(s2k),
for all s1, s2 ∈ S, and k ∈ K . The action is separately continuous if ψ is continuous in each of
the variables when the other is kept fixed. Lau showed in [20] that if E is a Banach space and
S = {Ts | s ∈ S} is a separately continuous representation of a left reversible semitopological
semigroup S as nonexpansive self-maps on a norm compact convex subset K of E, then K con-
tains a common fixed point for S . We say a Banach space E has the weak fixed point property
for left reversible semigroups if whenever S is a left reversible semitopological semigroup and
K is a non-empty weakly compact convex subset of E for which the action of S on K (with the
norm topology) is separately continuous and nonexpansive, then K has a common fixed point
for S. Similarly a dual Banach space E has the weak∗ fixed point property for left reversible
semigroups if whenever S is a left reversible semitopological semigroup and K is a non-empty
weak∗ compact convex subset of E for which the action of S on K is separately continuous
and nonexpansive, then K has a common fixed point for S. In general, a weakly compact con-
vex set of a Banach space need not have the fixed point property for left reversible semigroups,
not even for commutative semigroups. Indeed, Alspach [1] (see also [5, Theorem 4.2], [4,8])
showed there is a weakly compact convex subset K in L1[0,1] and an isometry T : K → K

without a fixed point. Hence if S = (N,+) and S = {T n | n ∈ N}, then K does not have a com-
mon fixed point for S . However, Bruck showed in [6] that a Banach space E having the weak
fixed point property has the weak fixed point property for commutative semigroups, and Lim
showed in [33] that a Banach space with weak normal structure has the weak fixed point prop-
erty for left reversible semigroups. For dual Banach spaces, it is known (see [33,34]) that �1

and all uniformly convex Banach spaces have the weak∗ fixed point property for left reversible
semigroups.

3. The case of the Fell group F = Qp ���C

In this section, we shall demonstrate for our motivating example, the Fell group F = Qp �C,
that B(F) fails the weak∗ fixed point property. Here p is a fixed prime number, C is the compact
multiplicative subgroup of Qp\{0} consisting of those elements of Qp with valuation 1, and Qp

is the additive group of the p-adic number field. Multiplication in F is given by (x, k)(x′, k′) =
(xτk(x

′), kk′), x, x′ ∈ Qp , k, k′ ∈ C, and τk(x
′) = kx′.
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Now the group C∗-algebra of the Fell group C∗(F ) is liminal (i.e. CCR), and its dual ob-
ject, the set of (equivalence classes of) its irreducible representations, is Ĉ∗(F ) = F̂ = Ĉ ∪̇ {T j |
j ∈ Z} in the notation of Baggett (see [2, pp. 142–143]), where “∪̇” denotes the disjoint union of
two sets, and the direct sum of the {T j } (with infinite multiplicity) equals the regular representa-
tion R of F .

Defining â(π) = π(a) for a ∈ C∗(F ), π ∈ F̂ , we may identify C∗(F ) ∗-isometrically with
a C∗-algebra of operator-valued functions on F̂ = Ĉ ∪ {T j | j ∈ Z}. The topology of F̂ rela-
tivized either to Ĉ or to {T j | j ∈ Z} is discrete, and every γ ∈ Ĉ is the limit of any sequence
(T jn) where jn converges to minus infinity [2, p. 143]. Denoting the compact linear operators
on a Hilbert space H by K(H), we now show that C∗(F ) contains the c0-sum

⊕
0 K(HT j )

isometrically: Let E ⊂ {T j | j ∈ Z} be finite and I = ⋂
j /∈E KerT j . For i ∈ E, since T i is not

in the closure of {T j | j /∈ E}, KerT i does not contain I . Hence T i(I ) 
= 0 and T i |I is irre-
ducible [7, 2.11.2]. Being a sub-C∗-algebra of C∗(F ), I is liminal too. So, given Si ∈K(Hi) for
i ∈ E, there is some b ∈ I with T i(b) = Si for all i ∈ E [7, 4.2.4 and 4.2.5]. For j /∈ E we have
T j (b) = 0 by the definition of I . For γ ∈ Ĉ, γ (b) = 0 holds too, since |γ (a)| � limn‖T jn(a)‖
for any a ∈ A and any sequence jn → −∞. So, the algebraic direct sum of all K(HT j ), j ∈ Z, is
naturally contained in C∗(F ). Taking the norm closure, we obtain J := ⊕

0 K(HT j ) ⊂ C∗(F ).
Although we do not really need it, let us say a bit more about the structure of C∗(F ). Since

J is a closed ideal, by [7, 2.11.2] we have Â/J = Ĉ in a canonical way, which implies that
A/J is isometrically isomorphic to the commutative C∗-algebra C0(Ĉ) ∼= C∗(C). We have
limj→∞ ‖T j (a)‖ = 0 for all a ∈ C∗(F ), but the corresponding statement for j → −∞ holds
for a ∈ J only.

By [2], the trivial representation is limit of every sequence (T in) with in → −∞, so by
Dixmier [7] the constant function ϕ0 = 1 is weak∗ limit of states associated with the T in . Since
F is separable, so is C∗(F ), which implies that on bounded sets of B(F) the weak∗ topology is
metrizable. It follows that ϕ0 is the weak∗ limit of some sequence of states ϕ1, ϕ2, . . . with ϕn

associated with some T jn , T jn 
= T jm for n 
= m, and jn → −∞.
Let K = {∑∞

0 αjϕj | αj � 0,
∑∞

0 αj = 1}.

Lemma 3.1. K is a convex weak∗ compact subset of B(F).

Proof. The set Q = {ϕn, n = 0,1,2, . . .} is countable and weak∗ compact. Its weak∗ closed
convex hull coQ, being norm bounded, is weak∗ compact and, by [38, Theorem 3.28] coincides
with the set of all integrals

∫
ϕ dμ(ϕ) where μ is a Borel probability measure on Q. Since

1-point sets are Borel in Q, every such μ must be discrete. So coQ = K , in particular K is
weak∗ compact. �

Define T : K → K by T (
∑∞

0 αiϕi) = ∑∞
1 αi−1ϕi . Then T is well defined, because the coef-

ficients αi can be recovered from the sum ϕ = ∑∞
0 αiϕi . One can see this by using the fact that⊕

0 K(HT j ) ⊂ C∗(F ): If Sn ∈ K(HT jn ) is chosen such that ϕn(Sn) = 1 and xn ∈ ⊕
0 K(HT j )

has jn-coordinate Sn and all other coordinates zero, then ϕ(xn) = αn · ϕn(Sn) = αn. This works
for all n � 1, and α0 is recovered by α0 = 1 − ∑∞

1 αi .

Theorem 3.2. (i) T is isometric (i.e. ‖T ϕ − T ψ‖ = ‖ϕ − ψ‖ for ϕ,ψ ∈ K).
(ii) T has no fixed point in K .
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Proof. (i) Let ϕ,ψ ∈ K , ϕ = ∑∞
0 αiϕi , ψ = ∑∞

0 βiϕi . Then

ϕ − ψ =
∞∑
0

(αi − βi)ϕi .

We clearly have ‖ϕ − ψ‖ �
∑∞

0 |αi − βi |. To get the reverse inequality, let ε > 0 and let
a ∈ C∗(F ) with ‖a‖ � 1 be such that |(α0 − β0)ϕ0(a) − |α0 − β0|| < ε. Choose n0 ∈ N

such that
∑

n>n0
|αi − βi | < ε. Adjust a by adding a suitable element b of

⊕n0
1 K(HT j )

such that ‖a + b‖ � 1 (for this, it suffices to have ‖T j (a + b)‖ � 1 for j = 1, . . . , n0) and
|∑n0

1 (αi − βi)ϕi(a + b) − ∑n0
1 |αi − βi || < ε. Then we have

∣∣∣∣∣
∞∑
0

(αi − βi)ϕi(a + b) −
∞∑
0

|αi − βi |
∣∣∣∣∣ < 4ε.

Hence ‖ϕ −ψ‖ = ∑∞
0 |αi −βi |, since ε > 0 was arbitrary. Applying this to T ϕ −T ψ we obtain

‖T ϕ − T ψ‖ = ∑∞
1 |αi−1 − βi−1| = ∑∞

0 |αi − βi | = ‖ϕ − ψ‖.
(ii) If ϕ = ∑∞

0 αiϕi is fixed under T , from ϕ = T ϕ we obtain α0 = 0, αi = αi−1 for i � 1,
hence αi = 0 for all i. But ϕ = 0 is not a point in K . �

We thus have proved that the Fourier–Stieltjes algebra of the Fell group does not have the
weak∗ fixed point property.

4. The general case

The Fell group example provides a guideline for the general case. However, since we do not
know what the C∗-algebra of a general [AU]-group looks like, we shall use von Neumann algebra
arguments.

Lemma 4.1. Let G be a locally compact group and σ be the Hilbert sum of some irreducible
representations of G. If π is one of the summands of σ , and P is the projection onto the space
Hπ = ⊕

π ′≈π Hπ ′ , then P is in the von Neumann algebra generated by σ .

Proof. It suffices to show that P commutes with every T in the commutant of σ , which is
equivalent to T Hπ ⊂ Hπ for all such T . If ξ ∈ Hπ and T ξ /∈ Hπ , there is a summand π0 
≈ π

of σ such that Hπ0 -component of T ξ is nonzero. This implies that for some π ′ ≈ π the Hπ0 -
component of T ξπ ′ is nonzero, where ξπ ′ denotes the Hπ ′ -component of ξ . The operator Mπ ′
(resp. Mπ0) on Hσ which is the identity on the Hπ ′ (resp. Hπ0) component and zero on all other
components of Hσ clearly is in the commutant of σ ; hence so is the operator S = Mπ0T Mπ ′ 
= 0.
By construction we have SHπ ′ ⊂ Hπ0 ; so S intertwines π ′ and π0. Since π ′ and π0 are irre-
ducible, this implies π ′ ≈ π0, which is a contradiction. We conclude that T Hπ ⊂ Hπ for all T

in the commutant of σ . �
Let A be a C∗-algebra and let f be a positive form on A, f (x) = (πf (x)ξ |ξ). Let us describe

the unique positive normal extension of f to the universal von Neumann algebra ω(A)′′. Define
ξ̃ = (ξg) in the universal representation space

⊕
Hπg by ξg = ξ for g = f and ξg = 0 for
g pos.
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all other g. Then f̃ (y) = (yξ̃ |ξ̃ ) for y ∈ ω(A)′′ defines a positive normal form on ω(A)′′. Its
restriction to A is f (in the sense f̃ (ω(x)) = f (x) for x ∈ A, where ω denotes the universal
representation ω = ⊕

πg); so by [7] f̃ must be the unique positive normal extension of f .

Lemma 4.2. If π is an irreducible ∗-representation of the C∗-algebra A and x �→ f (x) =
(π(x)ξ |ξ) is a positive form associated with π , then the support of f is � Pπ , where Pπ is
the projection onto the subspace Hπ = ⊕

π ′≈π Hπ ′ of the universal representation space of A.

Proof. Letting σ = ω in Lemma 4.1 we see that Pπ ∈ ω(A)′′. With f̃ as above we have
f̃ (1 − Pπ) = ((1 − Pπ)ξ |ξ) = (0|ξ) = 0; so suppf � Pπ (see [7]). �

Probably the following lemma is known but we are not aware of a reference and so we give a
short proof.

Lemma 4.3. If G is σ -compact, then for the weak∗ topology on the unit sphere S of B(G), every
function ϕ ∈ S has a countable base of neighbourhoods.

Proof. By assumption there are compact sets Kn ⊂ G for n ∈ N such that G = ⋃∞
1 Kn. By

enlarging Kn if necessary, we may assume that K̊n ⊃ Kn−1. This implies that, for compact K ,
there is n0 ∈ N such that K ⊂ Kn0 . Therefore, for ϕ ∈ S, the sets Un = {ψ ∈ B(G) | |ψ − ϕ| < 1

n

on Kn} form a neighbourhood base of ϕ for the topology of uniform convergence on compact
sets, which by [15] coincides with the weak∗ topology on S. �

Let H be an open subgroup of G. For u ∈ B(H) let u0 : G → G be the extension of u by zero
outside H .

The following lemma is well known for positive definite functions [16, 32.43], but to extend
it to all of B(G), e.g. by use of polar decomposition, appears more involved than a direct proof.

Lemma 4.4. If H is an open subgroup of G, the map Q : u �→ u0 is an isometric isomorphism
from B(H) into B(G).

Proof. (i) We first show that C∗(H) is contained in C∗(G) (with the same norm). For f ∈ L1(H)

clearly ‖f ‖C∗(G) = supπ ‖π |H (f )‖ � ‖f ‖C∗(H). On the other hand, if σ is a continuous unitary
representation of H , since H is open, σ is a subrepresentation of the induced representation
indG

H (σ). To see this, use the isometric embedding ξ �→ gξ of Hσ into HindG
H (σ) defined by

gξ (h) = σ(h−1)ξ for h ∈ H , and gξ = 0 on G\H , and observe that indG
H (σ)(k)gξ = gσ(k)ξ

for k ∈ H (for definitions see [12, pp. 152, 153]). So for f ∈ L1(H) we obtain ‖ indG
H (σ)(f )‖ �

‖σ(f )‖, which shows that the inequality above is really an equality, and we obtain C∗(H) ⊂
C∗(G).

(ii) Since by (i) C∗(H) is a closed subspace of C∗(G), we have B(H) = C∗(H)∗ ∼=
B(G)/C∗(H)⊥ isometrically, where C∗(H)⊥ denotes the annihilator of C∗(H) in B(G). So,
given f ∈ B(H) and ε > 0, there is some F ∈ B(G) with F |H = f and ‖F‖B(G) < ‖f ‖B(H) +ε.
Multiplying F with the continuous positive definite function 1H (characteristic function of H ),
we obtain f0 = F1H and ‖f0‖B(G) � (‖f ‖B(H) + ε). Since ε > 0 was arbitrary, it follows that
‖f0‖B(G) = ‖f ‖B(H). �
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Theorem 4.5. Let G be a locally compact group. If B(G) has the weak∗ fixed point property,
then G is compact.

Proof. If B(G) has the weak∗ fixed point property, then a fortiori B(G) has the weak fixed point
property, so by [37, Theorem 4.1] G is an [AU] group, and hence unimodular [40, Theorem 4.4].
It therefore suffices to prove the assertion for [AU] groups.

(i) Suppose G is a σ -compact non-compact [AU] group. The proof of Theorem 3.4 in [35]
works for Bρ(G), too and shows that the set I of isolated points in Ĝρ is dense in Ĝρ . Since
[35, Theorem 3.1(ii)] applies to these points (they have a weak∗ strongly exposed positive defi-
nite coefficient in Pρ(G)), they are also closed in Ĝρ . By [41, Theorem 7.6] however there must
be some π0 ∈ Ĝρ which is not of this sort, so has no weak∗ strongly exposed positive definite
coefficient in Pρ(G). Let ϕ0 be a (pure) state associated with this π0. We know that ϕ0 is weak∗
limit of (pure) states associated with representations π ∈ I . By Lemma 4.3, there is a sequence of
such states ϕn say with ϕn → ϕ0 in the weak∗ topology. Since points in I are closed, π0 is not in
the closure of any finite subset of I , so that we may assume that the representations πn belonging
to ϕn are inequivalent for different n. In particular, by Lemma 4.2 the supports of the ϕn are pair-
wise orthogonal. As in the example of the Fell group, let K = {∑∞

0 αiϕi | αi � 0,
∑∞

0 αi = 1}.
Using the arguments from the Fell group example in Section 3, one sees that K is weak∗ compact
convex, and the map (αi) �→ ∑∞

0 αiϕi is one-to-one because of the orthogonality of the supports
of the ϕi .

Define the map T : K → K as before. For ϕ = ∑
αiϕi and ψ = ∑

βiϕi in K we have ϕ −
ψ = ∑

αi�βi
(αi −βi)ϕi −∑

αi<βi
(βi −αi)ϕi . Since the two sums have orthogonal supports, we

obtain

‖ϕ − ψ‖ =
∥∥∥∥

∑
αi�βi

. . .

∥∥∥∥ +
∥∥∥∥

∑
αi<βi

. . .

∥∥∥∥

=
∞∑
0

|αi − βi |.

Hence ‖T ϕ − T ψ‖ = ∑∞
0 |αi − βi | = ‖ϕ − ψ‖, so T is isometric. Also the argument of the

example shows that T has no fixed point in K . In particular, B(G) does not satisfy the weak∗
fixed point property.

(ii) Suppose G is an [AU] group that is not σ -compact. We first observe that since G is non-
compact, G must contain an open σ -compact subgroup H which is not compact. To see this,
take a compact neighbourhood U of e. Then there is an infinite sequence {xn} such that {Uxn}
is pairwise disjoint. Let V be the union of all Uxn and H be the union of powers of {V ∪ V −1}.
Then H is σ -compact open subgroup of G which is non-compact since the infinite sequence {xn}
has no convergent subnet.

Let B0(H) denote the subalgebra of B(G) consisting of functions vanishing outside H . It fol-
lows from Lemma 4.4 and (ii) of its proof that the map Q : u → u0 (extension by zero outside H )
is an isometric isomorphism from B(H) onto B0(H) and the weak∗ topology on B(H) ∼= B0(H)

is the relative topology of the weak∗ topology on B(G). Also, by Hahn–Banach theorem the
weak topology on B(H) ∼= B0(H) is the relative topology of the weak topology on B(G).

We infer that H has the weak∗ fixed point property, so by [37, Theorem 4.1], H is an [AU]
group, too, and since H is σ -compact non-compact, (i) applies. We thus obtain a weak∗ compact
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convex set K in B(H) ∼= B0(H) (which is also weak∗ compact in B(G)) and a distance preserv-
ing map T : K → K which has no fixed point in K . In particular, B(G) fails to have the weak∗
fixed point property. �
Remark 4.6. The reader may have noticed that in the case of [AU] groups we proved a slightly
stronger statement than Theorem 4.5, namely: If G is a non-compact [AU]-group, there is a non-
void weak∗ compact convex set K and an isometric map T : K → K which has no fixed point.

If G is unimodular and not an [AU] group, from [24] we obtain a still stronger statement: like
above, but with “weak” in place of “weak∗”. We do not know whether this stronger statement
also holds for non-unimodular groups.

Theorem 4.7. Let G be a locally compact group. The following are equivalent:

(a) G is compact.
(b) B(G) has the UKK∗ property.
(c) B(G) has weak∗ normal structure.
(d) B(G) has the weak∗ fixed point property for nonexpansive mappings.

Proof. (a) �⇒ (b) was proved in [9]
(b) �⇒ (c) was proved in [26].
(c) �⇒ (d) was proved in [34].
(d) �⇒ (a) follows from Theorem 4.5. �

5. Asymptotic centre

Let C be a non-empty subset of a Banach space X and {Dα | α ∈ Λ} be a decreasing net of
bounded non-empty subsets of X. For each x ∈ C, and α ∈ Λ, let

rα(x) = sup
{‖x − y‖ ∣∣ y ∈ Dα

}
,

r(x) = lim
α

rα(x) = inf
α

rα(x),

r = inf
{
r(x)

∣∣ x ∈ C
}
.

The set (possibly empty)

AC
({Dα | α ∈ Λ}) = {

x ∈ C
∣∣ r(x) = r

}

is called the asymptotic centre of {Dα | α ∈ Λ} with respect to C and r is the asymptotic radius
of {Dα | α ∈ Λ} with respect to C.

The notion of asymptotic centre is due to M. Edelstein [10]. See also [33].
In this section, we shall show that the asymptotic centre of a non-empty weak∗ closed convex

set C in B(G) of a compact group G with respect to a decreasing net of bounded subsets of
B(G) is a non-empty norm compact subset of C. This was first proved by T.C. Lim when G is
the circle group [34], and for separable compact groups by Lau and Mah [27]. We begin with
the following lemma. It was proved in [27] for sequences. Note that in consideration of nets, we
have to avoid the diagonalization process employed in [34] and [27]. Since this is not entirely
obvious we give some details of the proof.
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Lemma 5.1. Let G be a compact group, and let {Dα | α ∈ Λ} be a decreasing net of bounded
subsets of B(G), and (ϕμ)μ∈M be a weak∗ convergent bounded net with weak∗ limit ϕ. Then

r(ϕ) + lim sup
μ

‖ϕμ − ϕ‖ = lim sup
μ

r(ϕμ), (5.1)

i.e.:

lim
α

sup
{‖ϕ − ψ‖ ∣∣ ψ ∈ Dα

} + lim sup
μ

‖ϕμ − ϕ‖

= lim sup
μ

lim
α

sup
{‖ϕμ − ψ‖ ∣∣ ψ ∈ Dα

}
. (5.2)

Proof. As in [27] it can be seen that the left hand side of (5.2) majorates the right hand side.
To prove the reverse inequality we may assume without loss of generality that ϕ = 0, so we

shall prove

lim
α

sup
{‖ψ‖ ∣∣ ψ ∈ Dα

} + lim
μ

‖ϕμ‖ � lim
μ

lim
α

sup
{‖ϕμ − ψ‖ ∣∣ ψ ∈ Dα

}
. (5.3)

For α ∈ Λ and n ∈ N choose ψα,n ∈ Dα such that ‖ψα,n‖ > sup{‖ψ‖ | ψ ∈ Dα} − 1
n

. We
order Λ × N by the setting (α,n) � (α′, n′) if α � α′ and n � n′. Then lim(α,n)‖ψα,n‖ =
limα sup{‖ψ‖ | ψ ∈ Dα}. Since lim(α,n)‖ϕμ − ψα,n‖ � limα sup{‖ϕμ − ψ‖ | ψ ∈ Dα}, it now
suffices to prove the following inequality:

lim
(α,n)

‖ψα,n‖ + lim
μ

‖ϕμ‖ � lim
μ

lim
(α,n)

‖ϕμ − ψα,n‖. (5.4)

If we pass to a subnet of (ψα,n), (ψβ) say (abuse of notation), such that lim(α,n)‖ψα,n‖ =
limβ ‖ψβ‖, this may decrease the right side of (5.4) and thus make the inequality harder to prove.
The same applies, if we then pass to a subnet (ϕμ′) of (ϕμ) such that limμ‖ϕμ‖ = limμ′ ‖ϕμ′‖
and if after this we pass to a subnet (ϕμ′′) of (ϕμ′) such that

lim
μ′ lim

β
= ‖ϕμ′ − ψβ‖ = lim

μ′′ lim
β

‖ϕμ′′ − ψβ‖.

It therefore suffices to prove the inequality

lim
β

‖ψβ‖ + lim
μ

‖ϕμ‖ � lim
μ

lim
β

‖ϕμ − ψβ‖ (5.5)

where, for convenience, we wrote μ for μ′′ again. Let q = limμ ‖ϕμ‖ and r = limμ limβ‖ϕμ −
ψβ‖. If (5.5) is false, there is some p > 0 with

lim
β

‖ψβ‖ = r − q + p. (5.6)

To obtain a contradiction it is sufficient to show that for each ε > 0 we can find two sequences
β1 � β2 � · · · and finite subsets σ1 ⊂ σ2 ⊂ · · · of I such that for β � βk

∑ ∥∥ψβ(i)
∥∥ > (p − ε)/2, with σ0 = ∅.
i∈σk\σk−1
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This contradicts the boundedness of (ψβ) because for β � βk ,

‖ψβ‖ >
∑
i∈σk

∥∥ψβ(i)
∥∥ � k(p − ε)/2.

The construction of the two sequences is as in the proof of Lemma 3.1 of [27] pages
362–364. �
Definition 5.2. Let E be a dual Banach space. We say that E has the lim-sup property for de-
creasing nets of bounded subsets if (5.2) holds for any decreasing net {Dα | α ∈ Λ} of bounded
subsets of E, and any weak∗ convergent bounded net (ϕμ) with weak∗ limit ϕ. We say that E

has the asymptotic centre property for decreasing nets of bounded subsets if for any non-empty
weak∗ closed convex subset C in E and any decreasing net {Dα | α ∈ Λ} of bounded non-empty
subsets of C, the asymptotic centre of {Dα | α ∈ Λ} with respect to C is a non-empty norm
compact convex subset of C.

The “lim-sup property” for sequences was introduced by T.C. Lim in [34]. It was called “Lim’s
condition” in [25]. The name was formally introduced in [27] in honour of T.C. Lim.

Theorem 5.3. Let G be a locally compact group. The following are equivalent:

(a) G is compact.
(b) B(G) has the lim-sup property.
(c) B(G) has the asymptotic centre property.
(d) B(G) has the weak∗ fixed point property for left reversible semigroups.
(e) B(G) has the weak∗ fixed point property for nonexpansive mappings.
(f) ‖ϕ‖ + lim supμ ‖ϕμ − ϕ‖ = lim supμ ‖ϕμ‖ for any bounded net (ϕμ) in B(G) which con-

verges to ϕ ∈ B(G) in the weak∗ topology.
(g) For any net (ϕμ) in B(G) and any ϕ ∈ B(G) we have that ‖ϕμ − ϕ‖ → 0 if and only if

ϕμ → ϕ in the weak∗ topology and ‖ϕμ‖ → ‖ϕ‖.
(h) On the unit sphere of B(G) the weak∗ and the norm topology coincide.

Proof. (a) �⇒ (b) follows from Lemma 5.1.
(b) �⇒ (c): Let C be a weak∗ closed convex non-empty subset of B(G) and {Dα | α ∈ Λ} be

a decreasing net of bounded non-empty subset of C. Let r(ϕ) be as defined at the beginning of
this section.

First, we show that the convex function ϕ �→ r(ϕ) is weak∗ lower semi-continuous. To this
end, it suffices to prove that the level set Ks := {ϕ ∈ C | r(ϕ) � s} is weak∗ closed for each s.
We may assume that s � 0. Let (ϕμ) be a net in Ks which converges to ϕ in the weak∗ topology.
By (b)

r(ϕ) = lim sup
μ

r(ϕμ) − lim sup
μ

‖ϕμ − ϕ‖ � s. (5.7)

Hence ϕ ∈ Ks , and Ks is weak∗ closed.
Now denote the asymptotic centre by K and the asymptotic radius by r . Let s > r , then

r = inf{r(x) | x ∈ C ∩ Ks} and K = {x ∈ C ∩ Ks | r(x) = r}. The set Ks is norm bounded and
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weak∗ closed, so it is weak∗ compact. Thus the weak∗ lower semi-continuous convex functional
must attain its minimum on the set C ∩ Ks . Hence K 
= ∅.

Next, we prove that K is norm compact. Clearly K = ⋂
s>r Ks is weak∗ compact. If (ϕμ) is

a net in K , there is a subnet (ϕμ′) converging weak∗ to some ϕ ∈ K . Since r(ϕμ) = r(ϕ) = r ,
we have lim‖ϕμ′ − ϕ‖ = 0 by (b). Thus the net (ϕμ′) is norm convergent to ϕ, hence K is norm
compact.

(c) �⇒ (d): Let S be a left reversible semitopological semigroup, and C a weak∗ compact
convex non-empty subset of B(G) for which the action of S on (C,‖ · ‖) is separately continuous
and nonexpansive. Let S be directed by a � b if aS ⊆ bS. For a fixed u ∈ C, let Ws = sS(u) for
all s ∈ S. Then {Ws | s ∈ S} is a decreasing net of subsets of C. Let K be the asymptotic centre
of {Ws | s ∈ S} with respect to C. Then K is a non-empty norm compact convex subset of C.
Moreover, it is S-invariant. For, let x ∈ K , s ∈ S, and ε > 0 be arbitrary. Since x ∈ K , there exists
t ∈ S such that tS(u) ⊂ Wt ⊂ B[x, r + ε], where r is the asymptotic radius and B[x, r] denotes
the closed ball of radius r centred at x. Since s is nonexpansive, we have stS(u) ⊂ B[s(x), r +ε],
so that Wst ⊂ B[s(x), r + ε]. Thus, s(x) ∈ K . It now follows from Corollary 1 in [17] that K ,
and hence C, contains a common fixed point for S.

(d) �⇒ (e): This is obvious by taking the semigroup generated by a single nonexpansive map.
(e) �⇒ (a): By Theorem 4.5.
(b) �⇒ (f): Take Dα = {0}, for all α.
(f) �⇒ (g): Clearly norm convergence of ϕμ to ϕ implies convergence of the respective norms

and weak∗ convergence. The converse is immediate from (f).
(g) �⇒ (h) is obvious.
(h) �⇒ (a): This is in [3, Theorem 3.9]. �

6. Some remarks and open problems

Our proof of Theorem 5.3 (a) �⇒ (d) �⇒ (e) is inspired by the case where G = T, the
circle group, by Lim [34]. In this case B(T) ∼= �1(Z). It generalizes the argument given from
Theorem 4.6 in [28] for B(G) of a separable [IN]-group. The argument given in Theorem 5.3
yields the following general result:

Theorem 6.1. Let E be a dual Banach space. Then the following implications hold:

(a) �⇒ (b) �⇒ (c) and (a) �⇒ (d) �⇒ (e) �⇒ (f)

where

(a) E has the lim-sup property.
(b) E has the asymptotic centre property.
(c) E has the weak∗ fixed point property for left reversible semigroups.
(d) ‖ϕ‖+ lim supμ ‖ϕμ −ϕ‖ = lim supμ ‖ϕμ‖ for any bounded net (ϕμ) in E converging weak∗

to ϕ ∈ E.
(e) For any net (ϕμ) in E and any ϕ ∈ E we have that ‖ϕμ − ϕ‖ → 0 if and only if ϕμ → ϕ in

the weak∗ topology and ‖ϕμ‖ → ‖ϕ‖.
(f) The weak∗ topology and the norm topology coincide on the unit sphere S of E.
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Open problem 1. Let G be a locally compact group. Let Bρ(G) denote the reduced Fourier–
Stieltjes algebra of B(G), i.e. Bρ(G) is the weak∗ closure of C00(G) ∩ B(G). Then
Bρ(G) = Cρ(G)∗. Does the weak∗ fixed point property on Bρ(G) imply G is compact? This
is true when G is amenable by Theorem 5.3, since B(G) = Bρ(G) in this case.

Open problem 2. Let G be a locally compact group. Does the asymptotic centre property on
Bρ(G) imply that G is compact?
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Appendix A

In [40, p. 184] Keith Taylor remarked that a (continuous unitary) representation π of a locally
compact group G is completely decomposable (i.e. π is the direct sum of irreducible represen-
tations) if and only if the von Neumann algebra M generated by π is atomic (i.e. every nonzero
(selfadjoint) projection in M dominates a minimal nonzero projection in M). The equivalence
can be seen using [39, p. 301] together with some additional arguments, but this is tedious. Keith
Taylor kindly supplied an elementary argument for the equivalence. With slight modifications on
our side it runs as follows:

(a) Let H be a Hilbert space and B(H) the algebra of all bounded linear operators on H . Let
π be a representation of G on H , let Mπ be the von Neumann algebra generated by π(G), i.e.
the double commutant Mπ = {π(x) | x ∈ G}′′, and let Proj(M ′

π ) denote the set of projections
in M ′

π , the commutant of Mπ . If K is a closed subspace of H , let PK be the orthogonal pro-
jection of H onto K . Then K is π -invariant if and only if PK ∈ Proj(M ′

π ). Furthermore, K is
an irreducible π -invariant subspace of H if and only if PK is a minimal nonzero element of the
lattice Proj(M ′

π ). Thus, π is completely reducible if and only if the identity in Proj(M ′
π ) is the

orthogonal sum of minimal elements of Proj(M ′
π ).

(b) If M is a von Neumann algebra with identity I acting on a Hilbert space H and P is a
projection in M ′, then M is PM + (I − P)M and the latter is a direct sum. P is a minimal
nonzero projection (among projections in M ′) if and only if PM ′P is one dimensional and this
holds if and only if PM = B(PH) (see 5.5.6 of [18]). Thus, I being written as an orthogonal
sum of minimal projections in M ′ is the same as writing H as an orthogonal sum of subspaces
such that M restricted to any of those subspaces consists of all the bounded operators on that
subspace.

(c) Let G be a set of pairwise orthogonal minimal nonzero projections in M ′ with∑
P∈G P = I , and define an equivalence

M∼ by P
M∼ Q if the (irreducible) representations of M

defined by restricting to PH and QH are equivalent. If j is an equivalence class of
M∼, the

projection Ej = ∑
P∈j P is in M (proof like for Lemma 4.1) and clearly in M ′ too. So Ej is a

central projection of M and

MEj = IHj
⊗ B(PjH), (A.1)

where Pj is some representative of j and Hj is the orthogonal complement of PjH in EjH . If
R denotes the set of equivalence classes of G, we have EiEj = 0 for i 
= j , i, j ∈ R. In addition
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∑
j∈R Ej = I , and M is the von Neumann algebra direct sum

∑
j∈R MEj , where each MEj

looks like in (A.1).
(d) Now, if P is a nonzero projection in M , there is some i ∈ R with PEi 
= 0. By (A.1) PEi

must be of the form IHi
⊗ P ′, where P ′ is a nonzero projection in B(PiH). If Q is a minimal

nonzero projection in B(PiH) dominated by P ′, then IHi
⊗ Q is a minimal nonzero projection

in the summand MEi of M and it is dominated by P .
Conclusion: Parts (b), (c) and (d) show that if a von Neumann algebra is atomic then so is

its commutant, and atomicity is equivalent to the identity being an orthogonal sum of minimal
projections. This together with (a) proves the above stated equivalence.
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