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Abstract. The following theorem on the circle group T is due to Norbert 

Wiener: If f G L1 (T) has non-negative Fourier coefficients and is square in­

tegrable on a neighbourhood of the identity, then f E L2 (T). This result has 

been extended to even exponents including p = oo, but shown to fail for all 

other p G (l,oo]. All of this was extended further (appropriately formulated) 

well beyond locally compact abelian groups. In this paper we prove Wiener’s 

theorem for even exponents for a large class of commutative hypergroups. In 

addition, we present examples of commutative hypergroups for which, in sharp 

contrast to the group case, Wiener’s theorem holds for all exponents p G [1, oo]. 

For these hypergroups and the Bessel-Kingman hypergroup with parameter | 

we characterise those locally integrable functions that are of positive type and 

square-integrable near the identity in terms of amalgam spaces.

1. Introduction

On the unit circle T consider the following statement: If an integrable function 

on T has non-negative Fourier coefficients and is p—integrable on some neigh­

bourhood of the identity, then f is p—integrable on all of T. For p = 2 this is a 

theorem of Norbert Wiener. It was then shown to hold for all even p E N and 

p — oo, but to fail for all other p E (l,oo] [ , ]. All of this was extended

(appropriately formulated) successively to compact abelian [ ], locally compact 

abelian [ ] and finally LA1-groups [ ] (groups having at least one relatively com­

pact neighbourhood of the identity invariant under inner automorphisms). Since, 

in the original formulation, Wiener’s theorem does not extend to non-compact 

groups (it fails even for the real line), the results on non-compact groups G are 
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formulated with ZZ (G) replaced by the amalgam space (ZZ, Z°°) (G). (for com­

pact groups this is no change, as (LP,Z°°) (G) = Lp (G) in this case). Related 

information can be found in [1 , p. 1],

In Section 2 of this paper we extend the positive result to a large class of com­

mutative hypergroups, namely those where the product of bounded continuous 

positive definite functions is itself positive definite (see Corollary 2.15 below). In 

particular this applies to strong hypergroups.

In Section 3 we consider Bessel-Kingman hypergroups. These are strong hy­

pergroups, so the results of Section 2 apply to them. For the motion hypergroup, 

i.e. the Bessel-Kingman hypergroup with a = |, we show (Theorem 3.(1) that 

for p = 2 there is a characterization like the one in [ ] of positive definite func­

tions that are square integrable near the identity. Since the proof (following 

[ ]) makes use of results about Fourier transforms, duality and interpolation for 

amalgam spaces defined via certain tilings, we need to show that on this hyper­

group the norms for these spaces are equivalent to amalgam norms defined using 

translations. For groups this equivalence is well known (see [ ] or [ ]), but for 

hypergroups this is not clear. We obtain some results on translation, convolution 

and the Fourier transform for amalgam spaces on the motion hypergroup; these 

are needed for the proof of Theorem 3.6. We also compare our amalgam norms 

with some other ones, including those in [ ].

Finally in Section 4 we look at the countable non-discrete hypergroups consid­

ered in [ ] and [I ]. We prove the analogue of Theorem 3.6 and show that for 

these hypergroups, in sharp contrast to the group case, Wiener’s theorem holds 

for all exponents p G [1, oo]; see Theorem 4.10 and Corollary 4.12 below.

2. Wiener’s theorem for p e N or p = oo

Let K be a hypergroup with Haar measure ujk- In the following any unex­

plained notation will be taken from [ ]. Recall that, although the product of two 

elements, say x,y of ZC, might not be defined, the convolution of the unit point 

masses ex and sy is defined. When the integral of a function f on K against the 

measure ex * sy is defined, that integral is denoted by /(x * y). We recall the 

definition of positive definiteness on hypergroups ([ '., Definition 4.1.1]).

Definition 2.1. A function f on K is called positive definite if it is measurable 

and locally bounded, and

n n

52 52* a ) 0
i=l j=l

for all choices of Ci G C, Xi G K and n G N.

The set of continuous positive definite functions will be denoted by PfiKfi 

Note that, unlike for groups, there are hypergroups where such functions are 

not necessarily bounded (see [ , p. 268] or Remark 2.10 below). The subset of 

bounded functions in is denoted by PbfiKfi-

When /, g and h are functions on K, the notation f(g*h)  will mean the point­

wise product of the function f with the convolution g * h, rather than meaning 
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the integral of f against a measure g * h as in the notation f(x * y) above. We 

sometimes also write (g * ti)f or f • (p * h) (and this extends to cases where g is 

a measure).

Definition 2.2. A locally integrable function f is said to be of positive type if 

y f • {9*g^duj K > 0

for every g E Cc(K), where g*  (x) := A (z~) (ad), g~ g~ and g~ (z) := g (x~) 

for all x E K.

For continuous f this amounts to saying that f is positive definite (see [ ], 

Lemma 4.1.4; when K is not unimodular, the function in part (iii) of that 

lemma should be replaced by the function #*).  In particular, if K is discrete the 

notions “of positive type” and “positive definite” coincide.

Remark 2.3. If K is any non-discrete hypergroup, there exist lower semicontin- 

uous functions of positive type in L1(7<) that are unbounded near the identity 

and hence don’t belong to P(K). To see this, note that using the outer reg­

ularity of ujk for the null set {e} there is a decreasing sequence of symmetric 

neighbourhoods Un with (LQ —> 0, and we may assume (Un) < 1/n. Let 

/ = Anlyn * l[/n where Xn = 1/ (?w([/n)) and l^n is the indicator function 

of Un. Now

iirik = 22 vwk (cy2 < 22 < °°-

Being the supremum of continuous functions, f is lower semicontinuous, and we 

have

/(e) = 22 (Un>) = 22 ~

so f is unbounded near e. Since lUn — lun~ ■> f is of positive type.

On several occasions in this paper we use that if f is a function of positive type 

and h is is a real-valued continuous function with compact support, then h*f*h~  

is of positive type. This can be seen from the definition using [ ], (1.4.23), that 

is

I (J *h)g  dx>K = j f ■ (g*h~)  dwK (2.1)

and its left-hand version

y (h*  /) g duK = y f • ((AW) *p)  dizK (2.2)

which has a similar proof. (Note that A“h~ = h*  since h is real-valued.) In the 

special case when f E L\K) and the hypergroup K is commutative, we can also 

see this using the Fourier transform.

Remark 2.4. Let K be a commutative hypergroup. A function f E L\K) is of 

A
positive type if and only if f > 0 on the support of the Plancherel measure ttk-
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Proof, (a) Let f E A1 (A') be of positive type and let % 6 supp7T/<. By [ , 4.1.22], 

there is net (/t) in Cc(Af) such that fb * f~ —> x uniformly on compact sets. We 

may assume that fb * (e) = 1 for all z,. For £ > 0 choose a compact C C K such

that fK\C \f\ da)K < £. Since |y| < 1 and \fb * f~\ < 1 (for the second inequality, 

note that fb * f~ G Pb (AT) by [ , Lemma 4.1.5(b)], and the bound follows from 

[ , Lemma 4.1.3(g)]), we have that

/(x) ~ y A (A*  A~) < 2e + [ \f\ |y - (A * A~)l dbJK < 3e 

Jc

for suitable l. By the assumption on f we have f f • (fb* f~) duo^ > 0 (note that 

A
A~ = A*  since K is unimodular), and hence /(%) > 0.

A
(b) Suppose f > 0 on suppT^ and let g E Cc(K). We have using (2.1) and 

Plancherel’s theorem

f • (g* p~) duK
y (f*9)gdwK

2

>0 

As in [ , p. 8], the set of all probability measures on K will be denoted by 

M1 (Al).

Lemma 2.5. Let K be a commutative hypergroup. For every relatively compact 

neighbourhood U of the identity there is a constant Cu > 0 such that

9 ' (h * lu) da>K < Cu glu daj^ (2-3)

for all choices of p E M1 (W) and all non-negative g E Pb (A").

Proof. By Theorem 4.1.13 of [ ] we may write p(x) as a coefficient of a cyclic 

representation D of the hypergroup A' on a Hilbert space AZ, that is there is a 

cyclic vector u E H such that

g{x) = (£>(z)u,u)H

for all x E K.

Choose a relatively compact neighbourhood V of e such that

|J {supp (ex- * £y) : x,y eV} C U

and <jjk (V) < 1; these conditions guarantee that

h := ly * ly < It/- (2-4)

Since h E Cf (K) with h (e) > 0 and U is relatively compact, there exist 

xr,x2, ...,xn G K and Ai,A2,...,An > 0 such that ly < EAi where

rXih(y) = h{xi*  y)

is the Xi—translate of h.
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Let z/ = XiEXi. Then

/ / n \ \

g • (m * M duK < / g Ln * I 5^ Xi rXih I dajK 

d \ \z=l //

= [D(ja * * h)u,

= * V~ * ly)u, £>(ly)u)H

= (D(p * Z7_)z?(lv)u, Z?(lv)u)^

< \\D(p  W)||B(H) ||D(ly)u||^*

< \\v\\ y hg duK

since \\p\\ = 1, and since

||D(lV)u||^ = (Z?(ly)u,D(ly)u)H = (Z?(ly)*D(ly)u,u) H

= (D(ly * ly)u, u)H = (7?(/z)u, u)^ — hg duK.

So, letting Cu = ||^||, we have that

y g ’ (h * lu) dccu < Cu ! glu dux- O

Corollary 2.6. Let K be a commutative hypergroup such that Pb(LP) ■ Pb(K) C 

Pb(K) and let p G N be even. For every relatively compact neighbourhood U of 

the identity there is a constant Cu > 0 such that for all choices of p G M1 (K) 

and f G Pb (K}

y \f\P - (m * W) dajK < Cu y \f\pludajR. (2.5)

Proof. Let p E N be even. Since f E Pb(K'), the same is true for f. It follows 

that

\f\r = (7/)p/2 e P^K)

and it is also positive. Inserting g = \f\p in inequality (2.3) yields the inequality

(2.5). 

Remark 2.7. We remind the reader that for strong hypergroups,

Pb (K) • Pb (K) c Pb (K).

(Use Bochner’s theorem to write two functions f and g in Pb (K) as inverse 

transforms of two nonnegative measures p, v respectively on . Then fg is the 

inverse transform of p * v and hence belongs to F& (7C) as well.) In particular, 

Corollary 2.6 and much of what follows holds for all strong hypergroups.

We now extend inequality (2.5) to integrable functions f of positive type.

Corollary 2.8. Let K be a commutative hypergroup such that Pb(K') • 7%(7<) C 

Pb(K) and take p E N to be even. For every relatively compact neighbourhood U 

of the identity there is a constant Cu > 0 such that for all choices of p E M1 (76) 
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and f G L1 (K) of positive type (equivalently: f E L\K} with f >0 on suppv^) 

we have

[ \f\P ' (m * lu) < Cu [ \f\p 1[/ dtoK. (2.6)

Proof. Let f be such a function with f \f\p ly dcu^ < oo and write fb = kb* f *k b 

where kb G Cf (K), f kbdw>k = 1 and supp/q 4- {e} . (If K is first countable, 

then this approximate identity can in fact be chosen to be a sequence.) Clearly 

fb is bounded, continuous and integrable. Since fb is of positive type (see the 

paragraph immediately preceding Remark 2.4), it is also in Fb(R). Now the 

values of fb on U depend on the values of f on a slightly larger neighbourhood 

U', and we cannot rule out a priori the possibility that f \f\p l^/ dcu^ = oo. For 

this technical reason we first use a compact neighbourhood W of e contained in 

the interior of U.

For sufficiently large l the values of fb on W only depend on the values of f on 

U, and we have

ii(/-/jiwiip< iim-fc.u/vwrlW0 (2.7) 

since flw — f^-u^-w and fblw = [kb * (/ly) * kf] lw for sufficiently large l. We 

also have

ll/.-ZIh^O (2.8)

and we can extract a sequence (/n) from (/J satisfying both (2.7) and (2.8), and 

(if necessary, passing to a subsequence thereof) converging pointwise a.e. to f. 

Using Fatou’s lemma we obtain

y \f\p ■ (/2 * lpy) dajK < limmf j \fn\p p * lw dojK

< limmf j \fn\p lw duK

< Cw / \f\P W da)K

where, for the middle inequality, we have appealed to (2.5), and the last inequality 

follows from (2.7). Choose aq, X2,..., xn G K and Ai, A2,An > 0 such that 

lu < ZXi XiTXilw. We then have 

r n r
/ \f\p ■ (p * 1[/) dwK < A, / \ f\p ■ (p * TXilw) duK 

J 2=1

n p

= ^2 * £x; * lw) dajpc

i=l J

(
n \ r

j / \f\P lw d<jJR

2=1 /

< I i^^-^ ^-9)

\ 2=1 /
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and this ends the proof of the corollary. □

To prepare for Remark 2.11, we insert the following definition.

Definition 2.9. For p E [l,oo) we say that a measurable function f belongs to 

the amalgam space (Lp,£°°) (K) if ||/llp,oo,cz := suPa; \\f (rxlu)1/p|| is finite for 

some relatively compact neighbourhood U of the identity.

In the discussion following Corollary 2.15 below, we show that replacing U by 

a different relatively compact neighbourhood of the identity yields an equivalent 

norm and hence the same space (Lp,T°°)(/<). Note that

L1

Remark 2.10. In the group case, Corollary 2.8 extends to locally integrable func­

tions f of positive type (see [ 1,1.1 and Theorem 1.6]), but for hypergroups this 

is not always possible. Indeed the Naimark hypergroup ([ , p. 99], but note 

the misprint in line 5, the second occurrence of an should be deleted) is a coun­

terexample. For this hypergroup on R+ with Haar measure du (x) = sinh2 x dx 

there are unbounded (positive definite) characters of the form Xa (^) = 

where r > 1 and a = —r2. Then Xa (%) behaves like e^-1^ as x —> oo. Writing 

U := [0,1], for x > 1 we have 0 < tx1u < 1, supp (r^ly) C Jx := [x — 1, x + 1] 

and J tx1v du = f ly du =: c, so that tx1u > 2u(jxj on a set with measure at 

least |. Therefore

||w (Rlu)1/P||
> IkaRlullp > 

p

mmya
c

2w (Jx}

For a sufficiently small (a < —9 will do), the right-hand side of this inequality 

tends to oo as x —> oo (and hence Jx —> {oo}), which shows that Corollary 2.8 

does not hold on this hypergroup. “

Remark 2.11. The proof of Corollary 2.8 works for any (locally integrable) func­

tion f of positive type for which the convolutions fb all belong to L°°. Those con­

volutions are continuous, of positive type and (by assumption) bounded, hence 

positive definite. The Id-convergence in (2.8) can then be replaced by local L1- 

convergence, that is by convergence in L1 (C) for every compact set C.

In particular, the proof works for all f E (L1 ,£°°) (K) of positive type because 

the kb in our proof all belong to Cc (K). So f*k~  E L°°, as we show in a moment, 

and hence so does fb = kb* f * k~, which shows that fb is bounded for each l.
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For any relatively compact neighbourhood U 3 e, and b chosen suitably large 

so that supp (Zq) C U, we have

|/*M|W<  y (y~)\du(y)

< IIMooy \f  y)\hj)du (y)*

< n^iioo y i/i(a;2/) iJ7(2/)^(z/)*

= IIMoo y 1/ fe)l xu (z~ * y) du (?/)

= Halloo III/Ift-Mi

< IIMoo 11/111,00,U

where for the first equality we refer to [ ], Theorem 1.3.21, and hence f * k~ is 

bounded.

Theorem 2.12. Let K be a commutative hypergroup such that Pb(K') ■ Pb(-K) C 

Pi-fK) and let p E N be even. For every relatively compact neighbourhood U of 

the identity there is a constant Cu > 0 such that for all choices of p E (K) 

and f E (L1 , Z°°) (ZC) of positive type we have

11/ • U * 1^)lip < ||/ • (M * iu)1/p||t) < cp ||/ (iu)1/p||ti = cp 11/ . (2.10)

In particular this holds for f E Lx (K) of positive type (equivalently: f E L\K) 

A

with f >0 on supp kk).

Proof. The first inequality in (2.10) holds for all finite exponents p > 1 since 

O<^*1(7<1.  The next inequality in (2.10) uses Corollary 2.8, the assumption 

that p E N is even and Remark 2.11. 

Corollary 2.13. Let K be a commutative hypergroup such that PtfK) ■ Pb(K) C 

Pb(JC). For f E (R1,^00) (A') of positive type we have

ll/L<ll/iylL- (2-n)

In particular, since 0 < tx1u < 1, we have

H/^ldL^II/l^L^II/lulL (2.12)

where Ux = {y |ti1[/(v) >0}.

Proof. The second quantity in (2.10) is the IP norm of f relative to the measure 

(p * Ilz) du. Since the total mass of this measure is finite, letting p -» oo in (2.10) 

gives the essential supremum of \ f\ on the set where p*lu  > 0. Apply this with 

p = ex for various points x in K, and use the fact that Ux is a neighbourhood of

to obtain Il/H^ < ll/l/zll^. 

Remark 2.14. Note that taking p = ex in Theorem 2.12 gives that for all even 

p E N

\\frxlu\\p < ll/PW)1^ < CpWfluW,. (2.13)
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It is useful to recall at this stage that for fixed p, the quantities ||/tx1(7|| and 

\\f agree on groups but not necessarily on hypergroups (see the end

II lip

of Remark 3.4 below).

We restate (2.12) and (2.13) using Definition 2.9.

Corollary 2.15. (Wiener’s theorem for functions in (L1, £°°) (W)J Let K be a 

commutative hypergroup such that Pb(K) • PtfK) C Pb(Kfi and take p E N even 

or p = oo. If f E (L1 , £°°) (K) is of positive type, and satisfies f ly E IP (TP) for 

some relatively compact neighbourhood U of e, then

and Wii/vir

In particular this holds for f E L1 (K) satisfying the same conditions.

Note that, by the equivalence proved next, if K is compact, then (LP,Z°°) = Lp 

and || • ||p,cx>,u equals (up to equivalence) the Lp norm on K (take || • ||p)Oo,R and 

use rxlK = lKfi

We now compare ||/||p)OO,[7 for different choices of U (even on non-commutative 

hypergroups). Let U and V be relatively compact neighbourhoods of e, and de­

note the corresponding amalgam spaces by and (Lp,Z°°)y respectively.

There are Xi > 0 and Xi E K such that W < A^rXily. Let f E (ZT 

and x E K. When 1 < p < oo we have

by Lemma 2.16 below (set p = ex- * £x-). Hence

/e(Lp,Zoo)l/ and WfW^u < qi/IUo.v

with C = (^2^=1 , so that the amalgam space (LP,Z°°) (AT) does not depend

on the chosen neighbourhood.

Note that, since necessarily 'fifiXi > 1, this sum can serve as a constant for all 

finite p. So we have constants of equivalence which only depend on U and V, but 

not on p.

If p = oo and (as before) we denote by Ux the set where rxlu > 0, then 

IIZIIoo.oo.c/ = suPx ll/Mloo- ft follows that ll/IL^y = ll/IL Since Ux is a neigh­

bourhood of x. So in this case, if we use V instead of U, we obtain not only an 

equivalent norm but in fact the very same norm.

Lemma 2.16. Letp E [l,oo] . For f E (Lp,£°°)y and p a probability measure with 

compact support we have f (p*  ly)1^ E Lp and \\f (p * ly)1//p ||p < \\f ||PiOOiy.

Proof. By [ , Proposition 13.64] and the remarks following it, the set S of all 

convex linear combinations of Dirac measures is weakly dense in M1(W). So 

there is a net (pfi in S with pL —> p weakly. In the present case we may assume
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supp/4 c supp/z (in the proof of [ , 13.64], if Aj Csupp/z 0, choose Xj in this 

set and not just in Aj). By [ , Theorem 1.6.18(b)] we obtain \\pL *g  -/z*p||!  0

for all g 6 L1(A'). From the net (/zt * ly) we may extract a sequence (/zn * ly) 

converging in || • ||T and (if necessary, passing to a subsequence thereof) also 

pointwise a.e. to /z * ly. Hence

* MI/P -» (M * MI/P a.e.

All these functions have absolute value < 1 (see [ , 1.4.6]) and have support in the 

compact set supp (/z) * supp (ly) (see [ , 1.2.12])), hence are dominated by h — 

lsupp (/x)*supp  (ly) • There are /3k > 0 and yk e K such that h < (Tyfcly)1/p,

so

i

\\fh\\p < 52/3fc||/(Tyfcly)1/p ||p < oo.

fc=i

By dominated convergence we obtain ||/(/zn * ly)ly/p — /(/z * ly)1//p||p —> 0. Now, 

since pn is a convex combination 7j£xj^ we have

Hence \\f (p * ly)1/p ||p < ||/||p,oo,v as asserted.

Remark 2.17. All of the results obtained so far hold for a large class of commuta­

tive hypergroups, in particular for strong hypergroups, and hence also for those 

examples to be considered below. Furthermore, much of this section extends to 

some non-commutative hypergroups. A version of Lemma 2.5 holds without the 

assumption that K is commutative. Instead, we assume that there is a relatively 

compact neighbourhood V of the identity with the property that ly is central 

in the convolution algebra L\K) and hence in the measure algebra on K. The 

conclusion of the lemma then holds for neighbourhoods U of e that include the 

support of the product ly * ly. The centrality assumption implies that K is 

unimodular. In particular, (ly)*  = ly (as in the commutative case). Therefore 

the proof of the lemma remains almost the same (replace the sentence concern­

ing the supports of the ex- * Ey up to and including inequality (2.4) by “Let 

h = ly * ly.”). With the same modified hypothesis, Corollary 2.6 holds with 

no change in its proof. For Corollary 2.8 we also require that the support of 

ly * ly be contained in the interior of U, rather than just in U. In the proof of 

Corollary 2.8 take W equal to this support. Then for such U, Theorem 2.12 and 

hence Remark 2.14 as well as Corollary 2.15 for even p also hold. For p — oo, 

Corollary 2.13 and hence the corresponding part of Corollary 2.15 hold on general 

hypergroups (without any centrality assumption):

Let f G (L1,^00) (K) be of positive type. If U is a relatively compact neigh­

bourhood of e and fL = kb*f*  k~ where the A are as in the proof of Corollary 
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2.8, take l large enough so that supp (k*  * /q) C U. Then (see Remark 2.11) fL is 

continuous, positive definite and bounded, so by [ , Lemma 4.1.3(g)] for the first 

equality and (2.2) for the third equality below, we have

= y (^ * /) K dwK

= y f • (k*  * kJ da)K

< ll/Moo •

Since fL-+f locally in L1—norm (that is, ||(/t — /) Iclli —> 0 for every compact 

C C KJ we obtain H/L < H/ML-

3. Hypergroups on R+

In this section we consider some hypergroups on R+ to which all of Section 2 

applies. For one of them we show that the version of Wiener’s theorem presented 

in [ ] for locally compact abelian groups also holds (Theorem 3.6 below), as indeed 

do other positive results about translation, convolution and Fourier transforms, 

which we need for the proof of the theorem.

3.1. Bessel-Kingman hypergroups. For these hypergroups the reader is re­

ferred to [ , , Section 3.5.61], but we give here some basic properties. Let a > — 

For x,y E R+ consider the convolution

&x *a  S'O — E-x — £o *a  &x

and for x, y > 0,

r-x+y

£x *a  £y (/) = Ka (x, y, z) f (z) z2a+1 dz, f E Co (R+)

where

„ / x ( F(n + 1) \ [p-(a;-7/)2) ((x + y)2-^2)]Q 2

fr(i)r(a + i)2*W  (W“

Then (R+, *Q) is a commutative hypergroup with the identity involution and Haar 

measure uy (dz) = z2a+1dz. Its characters are given by ipx (x) := ja (Az), x E R+ 

for each A > 0 where ja denotes the modified Bessel function of order a given by

Note that <p0 = 1.

It is well known that (R+, *Q) = (R+, *Q)A , where the hypergroup isomorphism 

is given by A 1—> (so that (R+, *a) is not only strong but even Pontryagin); 

see [ , Example 7.2], Wiener’s theorem as in Corollary 2.15 therefore holds for 

these Bessel-Kingman hypergroups.
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For a = | (the motion hypergroup) the convolution is given by

Ar *1  £y (/) = ~ / f (z) Z dz 

zxy J\x_y\

in which case the characters are just

/ \ \ (—l)fcr(|) 2fc sin Arc

9A (z) = (At) = (At) = ——, A > 0.

2 “'22/v/dr [k + 4 Xx

(3-1)

The term ‘motion hypergroup’ is justified by the fact that ^R+, * i J is isomorphic 

to the double coset space M(3) //SO(3).

For f E L1 (R+, *Q) , a > — its Fourier transform is defined by

:= [

J K-}_

/ Vx d(xa

and the convolution of two functions /, g is given by

f *a  9 (t) := f (x y) g (?/) wQ (dy).

J^+

Recall that

(/ wp)A = fg-

When a = | we have

(
 — I f (x) (sin Ax) x dx, A 7^ 0, 

7r+

L f (x) x2 dx, A = 0.
J «/ \ / •

and, in particular,

(l[o,£))A (wa) = <

— (sin Ac — As cos Ac), 

AJ

(3-2)

3.2. The amalgam spaces (Lp,^9) (R+, Q) for 1 < p, q < exo. In preparation 

for Theorem 3.6 in Section 3.4, we need to develop some properties of certain 

discrete amalgam spaces. We define them so that the norms || -||PiOO used in this 

section are equivalent to the corresponding continuous norms || • ||P)oo,u used in 

Section 2, and we prove this equivalence in Section 3.3. At the end of the current 

subsection, we consider other families of discrete amalgam norms, in particular 

those introduced in [ ], and show that they are mostly not equivalent to the 

norms that we use.

*

For each n E N write In := [n — 1, n) and for 1 < p, q < 00 define 

(3.3)
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with the usual convention when one or both of p, q is oo, that is

II’' IIOO,Q

ll/llp.eo

and ll/lleo.oo

The (p, g) —amalgam space is defined as the subspace of all measurable functions 

f given by

We have the following result.

Proposition 3.1. Let f be a measurable function. Then

\\f\\P1,q < ||/llP21q for Pl <P2

and \\f\\pqi < C||/||pg2 forq1>q2, 

where C is a constant. In particular, for pi < p2 and qi > q2 

(LP2,^2)(R+,* Q) c (27l,^l)(R+,* a), 

so that (Lp, (R+, *Q) C Lp (R+, *Q) n Lq (R+, *Q) for p > q

and Lp(R+,* a)UL9(R+,* a) C (LP,^)(R+,* Q) for p < q.

Proof. This is straightforward using Holder’s inequality together with the prop­

erty that wa (In) > C > 0 for all n. 

Note that (L°°, P) (R+, *a) is the smallest amalgam space and (L1, £°°) (R+, *a) 

is the largest.

Remark 3.2. We now use indicator functions on subintervals of In to show that for 

pfq our amalgam norms are not equivalent to the discrete amalgam norms in [ ], 

which are computed on sets with measures uniformly bounded away from 0 and 

oo. There is no division or multiplication by measures of tiles in the computation 

of those norms. In the present case we obtain norms equivalent to those in [ ] 

by splitting R+ into disjoint intervals of Haar measure 1; at least cua (In) — 2 of 

these subintervals are included in In. Let f be the indicator function of one such 

subinterval. Then the norm of f in our space (Lp,€9) (R+,* Q) is ,

while its norm in the corresponding space in [• ] is 1. Since coa (In) —> oo as 

n —> oo, these norms are not equivalent unless p — q.

Both families of discrete amalgams on Bessel-Kingman hypergroups are con­

structed in such a way as to have norms equal to the usual IP norm, and hence to 

each other when p = q. In the examples above, the functions f are not positive 

definite, and we do not know whether there are corresponding examples involv­

ing positive definite functions. Finally, most other choices give amalgam norms 

that are not equivalent to ours, for example the partition choice having the In 

without normalization, and the continuous amalgam norm as in Definition 2.9
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but without the 1/p power. The only cases where our discrete amalgam norm is 

equivalent to the one without weights are those where p — q, and the only case 

where the two kinds of continuous amalgam norms are equivalent is that where 

p = 1 (see the end of Remark 3.4).

(3.4)1 and

1.0,

For ?/ = n+ |,nGN, we obtain

2

1,

n+^

1.0,

3/16

i/p

□sup 

ye[o,oo)

= £v *1  £.

y 2

1 f

On the interval In+i this is larger than

3/4

) (and to simplify the notation we write u in place of wi). Values 

| are treated in [ ].

Proposition 3.3. For p G [l,oo),

3.3. Equivalence of the discrete amalgam norm ||-|| with the contin­

uous amalgam norm defined by translations in the case a = |. For the 

following subsections of Section 3 we only consider the Bessel-Kingman hyper­

group (r+, i 

of a

*

|PTyl[0,l] dbJ

which holds for all n G N. On F we have the trivial estimate Tol[o,i] > 1 = IzqTT)’ 

and putting these together gives

/ r \ Pp 3

> uu sup

\ Vp

|p 7-yl[o,i] du I

ye[0,oo)

Proof. We have using (3.1)

. t dt

1,
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Remark 3.4. In Proposition 3.3 we compared the norm ||/||poo with the contin­

uous amalgam norm ||/||P)00j[o,i] = supye[o100) \\f (h1[o,i])P|| for P £ [Coo). We 

consider the same comparison with p = oo. Letting

A (y) = {t G [0, oo) : Tyl[0)i] (t) > 0}

we have ||/||oo,oo,[0,i] = supye[o,oo) ||/xA(y)IL- Clearly A (?/) is an open neighbour­

hood of y and hence

sup = ll/ll„ = 11/lloo.co-

ye[0,oo)

This means that for p = oo we have C — 1 and in fact equality in Proposition

We warn the reader that for every p G (1, oo] the seemingly similar (and, in the 

group case, identical) norm supy€[0 oo) || ||p is smaller and not equivalent to

suPye[o,oo) ||/ (Tyx[o,i])p || - In fact, for this smaller norm, Proposition 3.3 fails for 

all choices of the constant C. The reason for this is that the sup-norm of Tyl[0,i] 

tends to zero as y —> oo.

Proposition 3.5. For p G [l,oo),

/ r \ i/p

||/||Pi0O > C SUP / |/|PTyl[0)1]dW .

3/G[0,oo) \J /

Proof, (i) For y G [0,1) the expression in (3.4) takes the simpler form

1, x<l-y,

Tyl[Oii] (z) = < (1 - (x - I/)2) <1, 1-y <x <l + y,

0, x > 1 + y.

Since Tyl[o,i] < l[o,2) this gives
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(ii) For y E [1,2) we have Tyl[01i] < l[o,3) which leads to

since w (I3) < 7, and hence

(iii) For y > 2 we have

( 477 - ’ y-1 <x <y + 1>

V[o,i] (z) = <

[ 0, otherwise.

If y e Ik, then k > 3 and (y - + intersects at most Ik_r, Ik, Ik+1. For

x E (y — 1, y + 1) we have

key > 4 (y - 1) y > 4 (k - 2) (/c - 1).

Now k > 3 implies 4 (k — 2) > k and 3(k — 1) > A; + 2 so that

4x7/ > (k + 2) > - (k2 + k + - ] = -w (7a,+i) > -w (Zfc) > -w (A-i)

o 3 \ 3 j 6 o o

Thus we obtain for j — k — 1, k, k + 1

and
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(iv) Taking C to be the maximum of the constants in (i)-(iii) we have

\ Vp

|PT„l[0,i|dw <C|l<oo

for all y G [0, oo) and hence

sup 

y£[0,oo)

Lyl[0,l] dw

3.4. Functions that are square integrable on a neighbourhood of the 

identity. For p = 2 we have the following characterisation along the lines of [ ], 

Theorem 3.1.

Theorem 3.6. For f G L1 (R+, *i
A

with f > 0 the following are equivalent:

(1) f is square integrable in a neighbourhood of the identity;

(2)

(3) /6(L2,^)(r+,>).*

Proof. The proof of Theorem 3.1 in [ ] applies, but we need to check that the 

results used there are still valid in our setting. This requires the equivalence of the 

continuous and the discrete amalgam norms, which we showed in Propositions 

3.3 and 3.5, together with uniform boundedness of translation along with the 

Hausdorff-Young theorem for these amalgam spaces. We prove the latter two 

properties in the next three sections. 

3.5. Translation in (L°°, £ )(R+, i). In this section we show that translation 

is uniformly bounded on the amalgam space (L°°, € )(]R_|_, i).  Denote the Haar 

measure w (Jn) of the interval In by wn. It is easily checked that wn = n2 — n+ |. 

Given a locally integrable function f on R+ let Pnf := fljn and consider

1 *

1 *

y

—- / f(P)tdt.

Note that \ryf \ < Ty(|/|) pointwise, and that Ty(|/|) < ryg if \f\ < g almost 

everywhere. We want to show uniform boundedness of the translation operators 

Ty on (L°°, €1)(R+, *i ).

Consider an index n and a positive number y, and write fn := l/n . It will be 

enough to show that

11Y fn 11 (L°° ,C1) Y C*||  fn || {L°°,&)

for a number C that is independent of y and n. Indeed, letting cn = ||Fn/||oo 

and g = ^ncnfn, we then have that \f\ < g pointwise, and thus llvy/ll^oo^i) < 
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IIm||(l°°^). But also Tyg < ^ncnTy(fn) pointwise so that

11 Ty f 11 (L°° < \\Ty91| (L00/1) < (<i||'h//n||(Loo,^i)

cnC ||/n||(L°°/i) — C'||/||(Z,oo)£i).

Fix y and n, and call a non-negative integer k exceptional if k = 1 or if there is 

some number x in the interval Ik such that |z — y\ or x + y lies in In. Denote the 

set of exceptional indices by E, and let G be the set of generic indices forming 

the complement of E in Z+.

If k is generic, then the intersection of the interval [|z — y\,x + y\ with In is 

either empty for all x in A, or this intersection is all of In for all such x. Then 

Tyfn either vanishes on the whole interval Ik or it coincides on Ik with

1
(3-5)

Since k > 2, the expression above does not change by more than a factor of 2 as 

x runs through the interval Ik-

So for each generic index k there is a non-negative constant dk with dk < 

ryfn(x) < 2dk for all x in Ik. Then

w/c||Bfc( Tyfn) ||oo E '^k2dk < 2||Ffc(Ty/n)||i.

Note too that wn||/n||oo = ||/n||i since fn is constant (= 1) on its support In. 

Therefore,

Ew‘lin(v„)iioo < E2Hp‘(V")lli E 2lin(voiii

keG keG ke%+

= 2||t„(A)I|1 < 211/nH, = 2wn||/n||co = 2||/n||(L%fl)1

the last inequality holding since the norm of any translation on L1(R+, *i)  is 1.

One way for k to be exceptional is to have x + y belong to In for some x in Ik, 

that is, the sets y + Ik and In have non-empty intersection; equivalently, the set 

In — y overlaps Ik- There are at most two such values of /c, and none when y > n. 

Any other exceptional indices k come from cases where In + y or y — In overlap 

Ik, or k = 1. It follows easily that there are at most seven exceptional indices, 

and in fact there are at most five of them.

It remains to estimate u’fc||Ffc(Ty/n)||oo for each exceptional index k. When 

k < 3n use the estimate

y

1 I ,1
- -  / tdt = -— 

^±xy

to see that

^k || Ffc (Tyfn') ||oo E ^k ~ E 19cJn 19|| fn || (L°° ■

When k is exceptional and k > 3n, one of the sets y ± In must overlap Ik- 

The smallest value that y could take would then satisfy y + n = k — 1, making
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y + |/c > k — 1 and y > |/c — 1 > since k > 3. In particular, y > for all x 

in Ik in these cases. For this k and such x use the upper bound

where the first inequality follows from (3.5), to see that 

|| Pk {j'yfn) 11oo —

A;2(2n)

(Zc — I)2 -
8n < 24wn < 24||/n||(LTO/i).

3.6. Translation and convolution on (Lp,£9)(R+, i ). In this section we de­

duce that translation is uniformly bounded on (Lp,^9)(R+, i)  and note that 

Young’s inequality for convolution also holds for the amalgam spaces on (R+, i).  

The uniform boundedness of translation on (L°°, ^(R-i-, i)  implies by duality 

that it also holds on (L , £°°)(R+, i ). To confirm this, first note that matters 

reduce to the case of a non-negative function, g say, in (L ,^OO)(R+, i),  and that 

ryg is then also non-negative. This translate belongs to (L , €°°)(R+,  i) if and 

only if

*

*

*

*

1 *

1 *

1 *

1

p’ qj

/ (ryg(z))/(z) dw(z) < oo 

JIR-I-

for all non-negative functions f in the unit ball of (L°°, £1)(R+, *i).  In this case, 

the norm of ryg in (L1,€°°)(R+, *i)  is equal to the supremum of these integrals 

over all such functions f. By [ , Theorem 1.3.21], and the fact that y~ = r/, these 

integrals are equal to

V) (VW) ^W < IMI^hVIVIV^1) < C*l|p||(rt,^)-

We thus have uniform boundedness of translation on (Lp, ^9)(R+, *i)  when the 

reciprocal indices (1/p, l/<?) sit at any of the four corners of the unit square in the 

first quadrant. As in [ ], complex interpolation then yields uniform boundedness 

of translation whenever (1/p, 1/g) lies in this unit square, that is whenever 1 < 

p, Q < oo- This also follows in a more elementary way from Holder’s inequality.

As in the case of locally compact abelian groups, Young’s inequality for convo­

lution of LMunctions extends to these amalgams. The general statement is that 

if reciprocal indices in the unit square satisfy the condition

1 1

P2’ 92

1 1

Pi’ 91
(1,1)

and if functions /1 and f2 belong to the respective amalgams (LP1, ^71)(R+, *1)  

and (LP2,^92)(R+, *1),  then the convolution of /1 and /2 is defined and belongs 

to (Lp, ^<7)(R+, *1).  Moreover, we have

ll/l *1  /2||(LP,^) < C,||/l||(//Pl]^l)||/2|l(LP2/92).

In fact, the inclusions between amalgams then imply that these statements still 

hold, usually with a different constant C, provided that 1/p < 1/pi +1 /p2 — 1 and 
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I/7 > I/71 + I/72 —1' Another way to state this is that (1/p, I/7) can be any point 

in the unit square lying northwest of the point (1/pi + l/p2 — 1,I/71 + I/72 — 1), 

which is also required to lie in the unit square. Again the general case follows 

from a few extreme cases by complex interpolation or by repeated use of Holder’s 

inequality.

3.7. Fourier transforms on (Lp, ^9)(R+, 1).  Our goal in this section is to prove 

that if f G (Lp, ^9)(1R.+ , 1)  with 1 < p, 7 < 2, then f E (L9/A/)(R+, 1).  The 

cases where p — q are already known (see [ ]) with the same proof as for locally 

compact abelian groups, but if p 7^ q, then this property of the Fourier transform 

requires some work. These cases will follow by complex interpolation from those 

where p = q and the special ones where (79,7) = (2,1) or (1,2). (The latter is 

the one that arises in the proof of Theorem 3.6.) We show below that the two 

special cases are equivalent by duality, and we prove the first case using some 

easily-checked properties of transforms of the indicator functions l/n.

*

* *

From (3.2) we find that the Fourier transform of 171 belongs to (L°°,^9) (R+, *1)  

for all 7 > |, but does not belong to (Lp^1)(R+, *1)  for any value of p. Let 

Pi = 31/x *1  l[o,2) and 9n — 3 Ip *1  l[n_2,n+i) when n > 1. We can check that 

pn(x) = 1 for all x in In. When n > 1, Holder’s inequality gives

llwll(L2,G) = 3 II171 (l/n-i + l/n + l/n+1) II

11 \ /II (L V1)

= C ||l/n_i + l/n + l/n+11|2 

= C ||lzn_i + lzn + lzn+i ||2 

— A(cjn-1 + Ldn + Co^+i)1/2

< c^rn.

By formula (3.3), if f G L2(R+, *1)  and f vanishes outside In, then ||/||(L2^i) = 

Moreover, in this case f = fgn and it follows by Young’s inequality for 

convolution of amalgams that

A

f
(L°°,£2')

f *1  9n

(L00^2)

A

f

A

/ = c\Ay||/I|2 = c'||/||(L2)£i).

2

For a general function f in (L2, ^1)(K.+ ,), applying the inequalities above to 

:= /l/n yields that \\P^f\\ < CV^\\pnf\\z- Since for = t2’1)’

formula (3.3) takes the special form ||/||(L2= DJXi Vw (Ai) II^A/||2 > f°i"

lows that

A

f <C\\f\\^y

(L°°,£2)
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Suppose next that g e L1(R+, *1).  Then g belongs to (L2,^°°)(R+, *1)  if and 

only if gf G L1(R+, *1)  for all functions f in the unit ball of (L2,^1)(R+, *1).  In 

this case, ||<7||(L2^i) is equal to the supremum over all such functions f of the num-
A ’ A

bers | f g(t)f(t)aj(t) dt\. But each of these integrals is equal to J dx

and so has absolute value less than or equal to

A

/
< hll(L1y2)C*||/||(L2 /i) = C||p||(Li/2).

(L°°/2)

In other words, the Fourier transform is a bounded operator from L1(R+, *1)  to 

(L2, ^°°)(R+, *1)  when L1(R+, *1)  is viewed as a dense subspace of (L1, ^2)(R+, *1)  

with the norm || • ||(li/2). Extend this operator to all of (L1, ^2)(R+, *1).

This includes the usual extension of the Fourier transform operator from the 

intersection of the spaces L1(R+,*i)  and L2(R+,*i)  to an isometry from the 

space L2(R+,*i)  to a dual copy of L2(R+,*i).  It also includes the transform 

originally defined as a mapping of L1(R+,*i)  to L°°(R+,*i)  and shown above 

to map the smaller space (L2, ^1)(R+, *i) to (L°°, ^2)(R+, *i). So, the Hausdorff- 

Young theorem holds for amalgams in the four extreme cases where the indices 

(p, q) are (1,1), (2, 2), (2,1) and (1, 2), and the other cases then follow by complex 

interpolation.

4. Some countable non-discrete hypergroups

The positive conclusion in Wiener’s theorem also holds for non-even exponents 

in the interval [l,oc) on some countable compact hypergroups Ha considered in 

[ ] and [ ], and on the countable locally compact hypergroup H below. Here a 

is a parameter in the interval (0,1/2]. We let a — 1/2 and leave the other cases 

for the reader.

4.1. Compact countable commutative hypergroups.

Example 4.1. The one-point compactification Z+ U {cxn} of the non-negative 

integers is a compact commutative hypergroup [Hi,*) with convolution given 

by

E-m *

' v°° W 
2->fc=l 2fet^+n’

£oo >

m = n 6 Z+,

m = n = 00, (4.1)

so that £oo is the identity e

^min{m,n}> RI 7^ R Z-|_U{oO/, 

lement. The Haar measure w is given by w (n) _ 1
2n+l

for n < oo and w (oo) = 0. The characters Xn are given by

[ o, 

Xn(m) = < -1,

I

m < n — 2, 

m = n — 1, 

m > n
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where n E Z+, and the Plancherel measure n is just

/ \ 1 f 2n-1, if n> 1,

^(w) = u—~~ i 1 •£ n (4-
IliVn II2 1, if n— 0-

We observe that the set of continuous positive definite functions is given by

{
oo OO

f : f = 52 : > °, 52 < 00 ( (4.3)

2=0 2=0 J

(indeed, in [ ], equation (4.3) is the definition of P It is a consequence of

Bochner’s theorem ([ , Theorems 4.1.15 and 4.1.16]) that (4.3) holds if and only 

if f E Pb an<4 this sPace coincides with P (#1) because Hi is compact.

If f is as in (4.3) then

— C^n+l (4-4)
f w = 52ai

for n E Z+ and (because of continuity)

(4-5)

Remark 4.2. For f E P \J^ij we have H/H^ = f (oo), as seen from (4.4) and 

(4.5) (or from [ , Lemma 4.1.3(g)]).

4.2. Operations on p(Hi^. By (4.3) the function f is the inverse Fourier 

transform of

i I- > Qi/T (xj

A
and the latter function (on Wi) belongs to L1 (tt). The set of inverse transforms of 

functions in L1 (tt) is called the Fourier algebra of Hi, and is denoted by A ( .

It is shown in [ ] that Lipschitz functions operate on A hi particular, if 

f E A (Hi\ and 1 < p < oo, then \f\p E A (#1) as well. We prove the 

corresponding statement for P (-Hi) and apply it in Section 4.7.

Proposition 4.3. Let 1 < p < oo. Suppose that f : Hi —> C is p-integrable in 

a neighbourhood U of the identity e. If f is of positive type then so is \f\p ■ In 

particular, if f E P {-Hl} then \ f\p E P

Proof. The p-integrability of f near e implies global p-integrability, because the 

complement of U is finite. Since the Plancherel measure has full support, Remark 

2.4 then reduces matters to checking that the Fourier coefficients of \f\p are non­

negative if those of f are.
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When p — 1, let r(ri) = f (n) w (n) for each n; then ref1 since f is integrable.

A

We claim that f > 0 if and only if r is real-valued and

|r(n)| < r(n + 1) + r(n + 2) + • • • for all n (4.6)

If these inequalities hold for /, then they also hold when all negative values r(m) 

are replaced by |r(m)|, that is when / is replaced by \f\. So the case of the 

proposition where p = 1 follows from our claim.

The conditions above on r are equivalent to requiring for all n that

r(n) + r(n + 1) + r(n + 2) + • • • > 0 (4.7)

and — r(n) + r(n + 1) + r(n + 2) + • • • > 0. (4.8)

Indeed, subtracting the two inequalities for the same value of n shows that r(n) 

is real, and then inequality (4.6) follows since |r(n)| = max{r(n),-r(n)}. The 

converse is obvious.
A

Condition (4.8) is equivalent to requiring that /(n + 1) > 0, while the 0th case 

A

of condition (4,7) is equivalent to requiring that /(0) > 0. If condition (4.8) 

holds for all n, and condition (4.7) holds for some value of n, then adding the 

corresponding case of condition (4.8) shows that condition (1.7) also holds for the 

next value of n. So the two conditions hold of all values of n if and only if / is of 

positive type.

To deal with exponents p in the interval (1, oo), consider the n-th instance of 

condition (4.6) with f replaced by |/|p, that is

|/(n)|pw(n) < |/(n + l)|pw(n + 1) + |/(n + 2)|pu;(n + 2) + • • • .

Let wn(n + fc) = w(n + /c)/cc(n) when k = 1,2 • • •. The inequality above is 

equivalent to requiring that

!/(«)! < (4.9)

The expression on the right above is the Lp norm of the restriction of f to the 

set {n + 1, n + 2, • • • } with respect to the measure wn, which has total mass 1. 

By Holder’s inequality, that Lp norm majorizes the corresponding L1 norm. So 

it is enough the prove inequality (4.9) when p = 1, and that was done in the first 

part of the proof. 

4.3. A locally compact example. We now analyse a non-compact example 

presented in [ ]. For N > 0 the set Un defined by

UN := {N, N + 1, A + 2, • • • , oo} (4.10)

is a proper subhypergroup of Hi and is isomorphic to Hi, but with a scaled Haar 

measure. Define similar hypergroups Un when N < 0 (f/0 = Hi), and let H be 

the union of these nested compact hypergroups. Then H is a locally compact 



WIENER’S THEOREM ON HYPERGROUPS 53

commutative hypergroup with convolution given by

(4.H)

so that ex is the identity element, but H is not compact.

The functions Xn in Example 4.1, with n now allowed to be any integer, com­

prise all the characters on H except for the character x~oo = 1, which has 

Plancherel measure 0. The first case of formula (4.2) for the Plancherel mea­

sure of Xn extends to all indices n < 0 (in particular we now have 7r (xo) = |).

Note that H is Pontryagin since (up to the different parametrization of FA) it 

is self-dual via the mapping n -E x~n- In fact it is straightforward to see that

EaXi rn = n E Z,

XmXn = < X-oo, m = n = -oo,

Xmax{m,n} i ^71 ZU{ OoJ.

Remark 4.4. By [ , Corollary 2.4.20(h)], Hi is also Pontryagin. In particular, 

H and Hi are strong hypergroups (that is, their canonical duals are also hyper­

groups). Now use Remark 2.7 to obtain

P6(7/i) • Pb(Hi) c Pb(Hi) and F6(H) • F6(F) c F6(F),

so that all the results of Section 2 apply to both Hi and H. In particular the 

conclusion of Wiener’s theorem holds on F, and again on Hi, for all even p > 1. 

In Section 4.7 we will show that the same conclusion holds on both Hi and H 
2

for all p E [1, co].

4.4. Localizing properties of functions. Functions on H are positive definite 

if and only if their restrictions to each subhypergroup Un are positive definite. 

The same is true for continuity of functions on H. If g E Cc(K) then the convo­

lution g   g vanishes outside Un for some integer N. It follows that a (locally 

integrable) function is of positive type on H if and only if the restriction of that 

function to each Un is of positive type. Lemma 4.6 below provides a converse to 

this.

* *

It is again clear that every U sum of characters (including X-oo) with non­

negative coefficients is continuous, bounded and positive definite. Conversely, 

given a function f in P(H), denote its restriction to the subhypergroup UN by 

f\uN. Then f\UN is bounded as UN is compact, and by [ , Lemma 4.1.3g],

II/IunIL = f\uN (°°) = /(<*>)

for all N E Z. It follows that f is bounded on H, so then by Bochner’s theorem 

again there exist non-negative a_oo and aj, j E Z with 22j aj < 00 SUCI1 

f = Q-oqX-oo + 22; ajXj, and hence WfW^ = /(oo) and F(F) = Pb(H).
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The following proposition is a corollary of Proposition 4.3, using localization 

and the lines after (4.10), and will prove useful in Section 4.7.

Proposition 4.5. Let 1 < p < co. Suppose that f : H C is p-integrable in a 

neighbourhood of the identity. If f is of positive type then so is \ f\p. In particular, 

iffeP(H) then\f\peP(H).

Lemma 4.6. Extend a function of positive type on the hypergroup Un to all of 

H by making it vanish outside Un- That extension is of positive type on H. In 

particular, the extension by zero of a function in P(Un) is m P(H)-

Proof. Denote the original function by fN and its extension by f. Since is 

locally integrable and Un is compact, G L^Un) and f G L^H).

To apply Remark 2.4, let y be a character on H. Then its restriction x\uN to 

A A
Un is a character on Un, and /(y) = /v(xIutv)- Since every character on Un has 

A A
positive Plancherel measure, /v(%|uN) > 0, and /(%) is nonnegative too. 

4.5. Discrete amalgam norms. We used the amalgam norm

ll/llp.oo = SUP C, \ I (4-12)

n \k'ai dn) Jn—1 /

to state Theorem 3.6 for Bessel-Kingman hypergroups. Consider the correspond­

ing norm on IT. Given the division by the mass wQ(C) here, the integral above 

should run over the interval In. In H that coincides with the set {n — 1}, with 

the curious outcome that

H/lkoo = sup |/(n - 1)| = sup |/(n)| = ||/||oo (4.13)

n n

no matter what p is.

When p < oo, there are compactly supported functions in LP(H) that tend to 

oo at oo. Any such function f has the property that

i
sup ( [\f\pTnludu\ < oo (4.14)

for each compact neighbourhood U of oo even though || f ||p,oo — oo. So the norm 

|| • |lP,oo is not equivalent to the one given in (4.14). We show below that the 

modified norm

II/IIp,oo = max{||/1Wo||Pi00, ll/luollp} > (4-15)

where Uo can be replaced by any compact neighbourhood of oo, is equivalent to 

the norm in (4.14).

Different choices of U in (4.14) give norms that are equivalent to each other, 

by the argument just after Corollary 2.15. Similar reasoning applies to (4.15), 

and it suffices to prove the equivalence between the latter and the norm in (4.14) 

when U = Uq. Split the calculation of the supremum in (4.14) into two cases cor­

responding to different instances of (4.11). For n < 0 we have rnlu0 = 2n+1l{n},



WIENER’S THEOREM ON HYPERGROUPS 55

SO that

1

\f\P rnlu0 cM = |/(n)|.

For n > 0 we obtain rnlUo = 1^, and this gives

\ -

\f\pTniuodu) = ll/Mlp.

By formula (4.13), the norms in (4.14) and (4.15) coincide when U = Uo.

When 1 < q < co, let

ll/llp>9 = {II/WIIL + ll/Wlp} (4-16)

where

f 1
llAwolU = s ?

I n<0 J

actually doesn’t depend on p. Whenever 1 < p, q < oo, denote the space of 

functions f on H for which ||/||* !g < oo by

On H, the structure of these spaces is simpler than it is on the real line or on 

the Bessel-Kingman hypergroups. A function belongs to (Lp, £q)(H) if and only 

if its restriction to the set Uq belongs to Lp and its restriction to the complement 

of Uo belongs to Lq.

Since cj(Ko) = 1, the restriction to Uq then belongs to Lr for all r < p. Since 

each point in the complement of Uo has mass at least 1, the restriction to the 

complement then belongs to Lr for all r > q. Extend those restrictions by 0 to 

see that (Lp, contains the same functions as LP(UU) + Lq(H) when p < q, 

and the same functions as LP(H) Fl Lq(H) when p > q.

4.6. Fourier transforms. The norms || • || have good properties relative to 

A

*

Fourier transforms (see below). Define || • \\Ptq on H as for H just by replacing w 

by 7T. Let

Uf~ =

A
and use Uf- and its complement in H to define || • ||* g as in equations (4. Io) and 

(4.16). We have the following counterpart of Theorem 3.6.

Theorem 4.7. The following statements are equivalent for a (locally integrable) 

function f of positive type on the hypergroup H:

(1) f is square integrable in a neighbourhood of the identity;

/\

(2) f is the (inverse) transform of a function in the space (L ,^2) (H);1

(3) fe
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Proof. Again this follows if the Fourier transform extends from A1 (FT) Pl Z/2(H) 

to have appropriate mapping properties between suitable amalgam spaces, that 

is,

if ||/||J)g < oo, where 1 < p,q < 2, then

A

f

q',p'

(4-17)

By the observations at the end of Section 4.5, this is equivalent to checking, when 

1 < p, q < 2, that if f e LP(H) + Lq(H) then f E L9' [H + IP' \H , and the 

same for Lp{H)P\Lq{H) and Lq'

from the Hausdorff-Young theorem [ ] for hyp ergroups.

H ). Both parts follow immediately

□

Remark 4.8. In fact,

A

f

*

< in all these cases.

q',p'

Complex interpolation

again reduces matters to proving this in the extreme cases where (p, g) is one of

(1,1),(2,2),(1,2) and (2,1). The first two cases are true because

A

f ll/lll and

A

f = 11/112-

The corresponding estimates in the other two extreme cases follow from each

= (2,1) and (q',p') — (oo,2). Split f

it suffices to show that /i

, and

Note that /i(n) = 0 for all n > 0, since the support of /i is disjoint from that 

A 

simplifies to become /ll^

other by duality as in Section 3.7.

We elect to confirm the case where (p, 7) 

as /1 + /2, where /2 = flu0 and /j vanishes on Uo. Since ||/||2jl

< II/1II1 and /2 < ||/2||2.

of Xn when n > 0. So /1

A
/1

A

fl < ll/l 111 as required.

Note also that the characters X\

A

/2 constant on the set Uq. Then

with n < 0 are all equai to 1 on the set No, making 

since tt (U^ = 1. So

2

■Mtr

as required.

A

fa = UM
2
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4.7. Wiener’s theorem for all exponents. We will show that versions of 

Wiener’s theorem hold on H for all exponents in the interval [l,oo], but we 

first note that Lemma 2.5 can be sharpened in the case of this hypergroup:

Remark 4.9. For U — UN we may choose the neighbourhood V in the proof of 

Lemma 2.5 to be UN as well. Instead of inequality (2.4) we obtain

h := ly * ly =

The next step in that proof then works with the singleton aq — {e}, the parameter 

Ai = l/aj(Uy) and the measure v = Ai£e. The long chain of equalities and 

inequalities there ends with the quantity ||z/|| f hgdmK. For the special choice of 

h above, this is

IM| I ^'(^v) / gdajK

I JuN

which gives the conclusion of Lemma 2.5 with

CyN = MIM^hv) = L

It follows that Corollary 2.6 holds with Cu = 1 when U = Un- Since the 

proof of that corollary only requires that \f\p 6 Fb(W), Proposition 4.5 yields 

the conclusion of the corollary for all exponents p in the interval [l,oo), again 

with Cu = 1 if U = Un for some N. The proof of Corollary 2.8 shows, for such 

exponents p, that if inequality (2.5) holds for all functions f in Pf>(K), then the 

inequality holds with the same constant Cu for all integrable functions f that are 

of positive type.

Theorem 4.10. Let p 6 [1, oo] and f be a function of positive type on H. Then

ii/iiq = ii/iu.% = ii/Voiy (4.18)

For a general relatively compact neighbourhood U of the identity there are con­

stants Cu and Cy (independent of p) such that

ll/IU.y < ||/Mp and ||/||Ji0O < |I/M„ (4-19)

for all (locally integrable) functions f of positive type.

Corollary 4.11. Let p 6 [l,oo]. For every relatively compact neighbourhood U 

of the identity in H and every compact subset V of H there is a constant Cuy 

(independent of p) such that

||/lv||p < Cuy ||/lu||p (4.20)

for all (locally integrable) functions f of positive type.

Corollary 4.12. Let p E [l,oo]. For every neighbourhood U of the identity in 

the compact hypergroup Hi there is a constant Cu (independent of p) such that

\\f\\p < Cu H/Wllp (4-21)

for all functions f of positive type. 
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Proofs. As in Corollary 2.13, the cases where p — oo follow from those where 

p < oo. In the latter cases, there is nothing to prove unless ||/l[/||p < oo. 

Restricting f to various subhypergroups Un and extending those restrictions by 

0 then reduces matters to cases where f has compact support and is therefore 

p-integrable, hence integrable.

The first equality in (4.18) was shown, when 1 < p < oo, in the lines following 

(4.15). For the second equality, it is clear from the definition of j| f ||p,oo,Uo that it 

is no smaller than ||/l[/0||p- The opposite inequality || f ||p,oo,u0 — ll/Mlp holds 

because of the discussion after Remark 4.9. The same discussion yields the first 

inequality in line (4.19). The second inequality then follows by the equivalence 

of the norms || • ||P)OO)y and || • This completes the proof of Theorem 4.10.

For Corollary 4.11, use the chain of inequalities

ll/Mp < ||/||p,oo,V < ^,v||/||p,OO,U < C'yyCu ||/l[/||p, 

where the first step uses the definition of || • ||p,oo,v, the second step uses the 

equivalence of that norm with || • ||p)OO,t/ and the last step uses the first inequality 

in (4.19). Corollary 4.12 follows because extending f by 0 gives a function of 

positive type on H. 

Remark 4.13. The first inequality in (4.1.9) provides an upper bound for ||/||p,00,17 

in terms of ||/lu||p- When p < 00, there is no such general bound for ||/||p. 

Indeed, since = °°> the constant function 1 trivially belongs to the

set but to none of the spaces LP(H) with 0 < p < exo.
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