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ABSTRACT. The following theorem on the circle group T is due to Norbert
Wiener: If f € L' (T) has non-negative Fourier coefficients and is square in-
tegrable on a neighbourhood of the identity, then f € L?(T). This result has
been extended to even exponents including p = oo, but shown to fail for all
‘other p € (1,00]. All of this was extended further (appropriately formulated)
well beyond locally compact abelian groups. In this paper we prove Wiener’s
theorem for even exponents for a large class of commutative hypergroups. In
addition, we present examples of commutative hypergroups for which, in sharp
contrast to the group case, Wiener’s theorem holds for all exponents p € [1,00].
For these hypergroups and the Bessel-Kingman hypergroup with parameter %
we characterise those locally integrable functions that are of positive type and
square-integrable near the identity in terms of amalgam spaces.

1. INTRODUCTION

On the unit circle T consider the following statement: If an integrable function
on T has non-negative Fourier coefficients and is p—integrable on some neigh-
bourhood of the identity, then f is p—integrable on all of T. For p = 2 this is a
theorem of Norbert Wiener. It was then shown to hold for all even p € N and
p = o0, but to fail for all other p € (1,00] [17, 1}]. All of this was extended
(appropriately formulated) successively to compact abelian [ ], locally compact
abelian [ ] and finally IN-groups [ '] (groups having at least one relatively com-
pact neighbourhood of the identity invariant under inner automorphisms). Since,
in the original formulation, Wiener’s theorem does not extend to non-compact
groups (it fails even for the real line), the results on non-compact groups G are
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formulated with LP (G) replaced by the amalgam space (LP,¢*)(G). (for com-
pact groups this is no change, as (L?,£*°) (G) = LP(G) in this case). Related
information can be found in [ ', p. 1].

In Section 2 of this paper we extend the positive result to a large class of com-
mutative hypergroups, namely those where the product of bounded continuous
positive definite functions is itself positive definite (see Corollary 2.15 below). In
particular this applies to strong hypergroups.

In Section 3 we consider Bessel-Kingman hypergroups. These are strong hy-
pergroups, so the results of Section 2 apply to them. For the motion hypergroup,
t.e. the Bessel-Kingman hypergroup with o = %, we show (Theorem 3.0) that
for p = 2 there is a characterization like the one in [ ] of positive definite func-
tions that are square integrable near the identity. Since the proof (following
[']) makes use of results about Fourier transforms, duality and interpolation for
amalgam spaces defined via certain tilings, we need to show that on this hyper-
group the norms for these spaces are equivalent to amalgam norms defined using
translations. For groups this equivalence is well known (see [ | or [ ]), but for
hypergroups this is not clear. We obtain some results on translation, convolution
and the Fourier transform for amalgam spaces on the motion hypergroup; these
are needed for the proof of Theorem 3.6. We also compare our amalgam norms
with some other ones, including those in [ ].

Finally in Section 4 we look at the countable non-discrete hypergroups consid-
ered in [ /] and [! ]. We prove the analogue of Theorem 3.6 and show that for
these hypergroups, in sharp contrast to the group case, Wiener’s theorem holds
for all exponents p € [1, 00]; see Theorem 4.10 and Corollary 1.12 below.

2. WIENER'S THEOREM FOR p € N OR p = 00
P

Let K be a hypergroup with Haar measure wg. In the following any unex-
plained notation will be taken from [ |. Recall that, although the product of two
elements, say z,y of K, might not be defined, the convolution of the unit point
masses €, and ¢, is defined. When the integral of a function f on K against the
measure €, * ¢, is defined, that integral is denoted by f(z * y). We recall the
definition of positive definiteness on hypergroups ([, Definition 4.1.1]).

Definition 2.1. A function f on K is called positive definite if it is measurable
and locally bounded, and

iicﬁ}f (zl *x]_) =40

i=1 j=1
for all choices of ¢; € C, z; € K and n € N.

The set of continuous positive definite functions will be denoted by P(K).
Note that, unlike for groups, there are hypergroups where such functions are
not necessarily bounded (see [/, p. 268] or Remark 2.10 below). The subset of
bounded functions in P(K) is denoted by P, (k).

When £, g and h are functions on K, the notation f(g*h) will mean the point-
wise product of the function f with the convolution g * h, rather than meaning
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the integral of f against a measure g x h as in the notation f(x * y) above. We
sometimes also write (g x h)f or f- (g * h) (and this extends to cases where g is
. & measure).

Definition 2.2. A locally integrable function f is said to be of positive type if
[ 1 @rgdo=0

for every g € C,(K), where g* (z) := A (z7) ¢~ (z),9~ =g~ and g~ (z) := g (z7)
forall x € K.

For continuous f this amounts to saying that f is positive definite (see [ ],
Lemma 4.1.4; when K is not unimodular, the function ¢~ in part (iii) of that
lemma should be replaced by the function g*). In particular, if K is discrete the
notions “of positive type” and “positive definite” coincide.

Remark 2.3. If K is any non-discrete hypergroup, there exist lower semicontin-
uous functions of positive type in L'(K) that are unbounded near the identity
and hence don’t belong to P(K). To see this, note that using the outer reg-
ularity of wg for the null set {e} there is a decreasing sequence of symmetric
neighbourhoods U,, with wg (U,) — 0, and we may assume wg (U,) < 1/n. Let
f=> A1y, * 1y, where A\, = 1/ (nwk (U,)) and 1y, is the indicator function
of U,. Now

171 = 3 hwsore (U < 37 5 < oo

Being the supremum of continuous functions, f is lower semicontinuous, and we

have
1
Fl&) = dnwr (Un) = ~ =00
so f is unbounded near e. Since 1y, = 1y, ~, f is of positive type.

On several occasions in this paper we use that if f is a function of positive type
and h is is a real-valued continuous function with compact support, then h* fxh~
is of positive type. This can be seen from the definition using [ ], (1.4.23), that
is

[ emg o= [ 1-(gxn) do 21)

and its left-hand version

/(h* f)g dwg = /f ((A™h7) * g) dwk (2.2)

which has a similar proof. (Note that A~h™ = h* since h is real-valued.) In the
special case when f € L'(K) and the hypergroup K is commutative, we can also
see this using the Fourier transform.

Remark 2.4. Let K be a commutative hypergroup. A function f € L*(K) is of

A
positive type if and only if f > 0 on the support of the Plancherel measure mx.
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Proof. (a) Let f € L'(K) be of positive type and let x € supp7x. By |, 4.1.22],
there is net (f,) in C.(K) such that f, *x f~ — x uniformly on compact sets. We
may assume that f,* f"(e) = 1 for all .. For e > 0 choose a compact C' C K such
that fK\C |f| dwix < e. Since |x| <1 and |f, x f7| <1 (for the second inequality,
note that f, * f € B, (K) by [, Lemma 4.1.5(b)], and the bound follows from
[, Lemma 4.1.3(g)]), we have that

‘?(x) — [ £ o 1)

< 26+/C|f| X = (fu % £)] doe < 3¢

for suitable ¢. By the assumption on f we have [ f-(f,* f7) dwx > 0 (note that
A
f> = f! since K is unimodular), and hence f(y) > 0.

A
(b) Suppose f > 0 on supp 7k and let g € C.(K). We have using (2.1) and
Plancherel’s theorem
2
dﬂ'K > 0 O

/f‘(g*gw) dwK:/(f*g)EdWK: ;‘%dw:/fg

As in [, p.8], the set of all probability measures on K will be denoted by
MY (K).

Lemma 2.5. Let K be a commutative hypergroup. For every relatively compact
neighbourhood U of the identity there is a constant Cy > 0 such that

/9 (u*1y) dwg < Cy /91U dwi (2.3)

for all choices of € M* (K) and all non-negative g € P, (K).

Proof. By Theorem 4.1.13 of ['] we may write g(z) as a coefficient of a cyclic
representation D of the hypergroup K on a Hilbert space #, that is there is a
cyclic vector u € H such that

for all z € K.
Choose a relatively compact neighbourhood V of e such that

U{supp (B~ 28,) i,y € VICY
and wg (V) < 1; these conditions guarantee that

Since h € CF (K) with h(e) > 0 and U is relatively compact, there exist
Bt By TS B0 1A g, by A => (D mmal shiatglistias 23 < A6 ol svliese

TIih’ (y) =h (xi o y)

is the z;—translate of h.
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Let v =37 | \i€g,. Then

/9‘(#*1U)dwz<§/g<,u* <i)\¢nlh>> dwy

=(D

(p*v™ xh)u, u>H

(D(u* v~ *1y)u,D(1y)u >
(D(u* v )D(1y)u, D(1y)u >H
1D(

x v )HB HD(lv)uHi[

< V}l/hg dwie

I

IN

since ||u|| = 1, and since

ID(Lv)ull3, = (D(1v)u, D(Ay)u)y, = (D(1v)"D(1v)u, u)y
= (D1} * 1y)u,u),, = (D(h)u,u),, = /hg dwg.

So, letting Cy = ||v||, we have that

/g(u*lU) dngcy/glwaK. O

Corollary 2.6. Let K be a commutative hypergroup such that By(K) - Py(K) C
Py(K) and let p € N be even. For every relatively compact neighbourhood U of
the identity there is a constant Cy > 0 such that for all choices of u € M* (K)
and f € Py (K)

/|f|p . (/,l, * ]-U) dUJK < CU / {flp 1U dwK. (25)

Proof. Let p € N be even. Since f € Py(K), the same is true for f. It follows
that

[P = (FF)P? € R(K)
and it is also positive. Inserting g = |f|? in inequality (2.3) yields the inequality
(2.5). O

Remark 2.7. We remind the reader that for strong hypergroups,
P (K) B (K)C B (K).

(Use Bochner’s theorem to write two functions f and g in P, (K) as inverse
transforms of two nonnegative measures pu, v respectively on K. Then fg is the
inverse transform of p * v and hence belongs to P, (K) as well.) In particular,
Corollary 2.6 and much of what follows holds for all strong hypergroups.

We now extend inequality (2.5) to integrable functions f of positive type.

Corollary 2.8. Let K be a commutative hypergroup such that By(K) - Py(K) C
Py(K) and take p € N to be even. For every relatively compact neighbourhood U
of the identity there is a constant Cy > 0 such that for all choices of p € M* (K)
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A
and f € L' (K) of positive type (equivalently: f € L*(K) with f > 0 on supp 7k )
we have

/ P (1% 1) duxc < Cu / P 1y dox. (26)

Proof. Let f be such a function with [ |f|” 1y dwx < oo and write f, = k,* f &,
where k, € CF (K), [k, dug = 1 and suppk, | {e}. (If K is first countable,
then this approximate identity can in fact be chosen to be a sequence.) Clearly
f. is bounded, continuous and integrable. Since f, is of positive type (see the
paragraph immediately preceding Remark 2.1), it is also in B, (K). Now the
values of f, on U depend on the values of f on a slightly larger neighbourhood
U’, and we cannot rule out a priori the possibility that [ |f|” 1y dwx = co. For
this technical reason we first use a compact neighbourhood W of e contained in
the interior of U.

For sufficiently large ¢ the values of f, on W only depend on the values of f on
U, and we have

I(F = £ 1wll, < [|fly = ko (FLo) * k7|, = 0 (2.7)

since fly = flylw and f1w = [k, * (f1ly) * k] 1w for sufficiently large .. We
also have

Ife—=flly =0 (2.8)
and we can extract a sequence (fy,) from (f,) satisfying both (2.7) and (2.8), and
(if necessary, passing to a subsequence thereof) converging pointwise a.e. to f.

Using Fatou’s lemma we obtain
/|f|p : (M * 1w) dw}( S hmlnf/ |fn|p L * 1W dwK
< Cw liminf/lfn|p 1w dwg

< C’W/mp 1w dwg

where, for the middle inequality, we have appealed to (2.5), and the last inequality
follows from (2.7). Choose 1, Zq,...,z, € K and Ai,Ag,..., A, > 0 such that
1y < 3% A 7z, 1w. We then have

S G 10) dane < 3o [ 117 G ) do
ge=il
.—_Z/\Z-/|f[p~ <“*€If *1W> dwg
=1
< Cw <Z A,-) /lf\p Ly dwi
=1
< (Z Ai> cw/mp 1y dwi (2.9)
=1
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and this ends the proof of the corollary. O

To prepare for Remark 2.11, we insert the following definition.

Definition 2.9. For p € [1,00) we say that a measurable function f belongs to
the amalgam space (L?,£%) (K) if || f||, o = sup, ||f (e1y)H?
7 P

some relatively compact neighbourhood U of the identity.

is finite for

In the discussion following Corollary 2.15 below, we show that replacing U by
a different relatively compact neighbourhood of the identity yields an equivalent
norm and hence the same space (L?,¢*)(K). Note that

L' (K) C (L'1%) (K) C Ly (K).-
Remark 2.10. In the group case, Corollary 2.5 extends to locally integrable func-
tions f of positive type (see [ ', 1.1 and Theorem 1.6]), but for hypergroups this
is not always possible. Indeed the Naimark hypergroup ([, p. 99], but note
the misprint in line 5, the second occurrence of a™ should be deleted) is a coun-
terexample. For this hypergroup on R* with Haar measure dw (z) = sinh? z dx
there are unbounded (positive definite) characters of the form x, (z) = S%g‘;(;—?
where 7 > 1 and a = —r2. Then ¥, (z) behaves like e""Y* as z — co. Writing
U :=[0,1], for # > 1 we have 0 < 7,1y < 1, supp (1;1y) C Jp := [z — 1,z + 1]
and [7,1ydw = [1ydw =: ¢, so that 7,1y > 5500 On @ set with measure at
least . Therefore

1
. (11 1/PH > IlxaTel > in . — (E)"
Xo (Ta10) || 2 IxeTelull, 2 { minXe | 55707

For a sufficiently small (a < —9 will do), the right-hand side of this inequality
tends to co as x — oo (and hence J, — {co}), which shows that Corollary 2.5
does not hold on this hypergroup. —~—""""

Remark 2.11. The proof of Corollary 2.8 works for any (locally integrable) func-
tion f of positive type for which the convolutions f, all belong to L*°. Those con-
volutions are continuous, of positive type and (by assumption) bounded, hence
positive definite. The L'-convergence in (2.8) can then be replaced by local L'-
convergence, that is by convergence in L' (C) for every compact set C'.

In particular, the proof works for all f € (L', £) (K) of positive type because
the k, in our proof all belong to C.. (K). So fxk, € L*, as we show in a moment,
and hence so does f, =k, * f x k", which shows that f, is bounded for each .
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For any relatively compact neighbourhood U > e, and ¢ chosen suitably large
so that supp (k,) C U, we have

ekl @ < [ 1 )i () o )
< il / 1 (@ )| Ly () dw (3)
< il / 1Fl (@ ) 1o (9) do (3)

— il [ 1£ 0110 (o7 1) deo )

= [Ikilloo 11/ 72~ 1wl
< kel oo 111 00,0

where for the first equality we refer to [ |, Theorem 1.3.21, and hence f * k is
bounded.

Theorem 2.12. Let K be a commutative hypergroup such that B(K) - B(K) C
Py(K) and let p € N be even. For every relatively compact neighbourhood U of
the identity there is a constant Cy > 0 such that for all choices of p € M (K)
and f € (L', 0) (K) of positive type we have

17 (1)l < |7 (ux 1) < 7| )| = Ci I 10l (220)
In particular this holds for f € L' (K) of positive type (equivalently: f € L'(K)

A
with f > 0 on supp 7k ).

Proof. The first inequality in (2.10) holds for all finite exponents p > 1 since
0 < p* 1y < 1. The next inequality in (2.10) uses Corollary 2., the assumption
that p € N is even and Remark 2.11. ]

Corollary 2.13. Let K be a commutative hypergroup such that Py(K') - Py(K) C
Py(K). For f € (L', £>®) (K) of positive type we have

[1fllee < 15 Lullos - (2.11)
In particular, since 0 < 17,1y < 1, we have
1f7:1ullee < 1f1vslloe < 1 1ullo (2.12)

where U, = {y |7 1y(y) > 0}.
Proof. The second quantity in (2.10) is the L” norm of f relative to the measure
(1 * 1y) dw. Since the total mass of this measure is finite, letting p — oo in (2.10)

gives the essential supremum of |f| on the set where p* 1y > 0. Apply this with
@ = €, for various points z in K, and use the fact that U, is a neighbourhood of

z~, to obtain || f]lo, < If1vllw- e

Remark 2.14. Note that taking u = &, in Theorem 2.12 gives that for all even
peN

If loll, < £ (10)”|| < G717 101, (213)
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It is useful to recall at this stage that for fixed p, the quantities ||f 7,1y, and

Hf (Txly)l/pH agree on groups but not necessarily on hypergroups (see the end
p
of Remark 3.4 below).

We restate (2.12) and (2.13) using Definition 2.9.

Corollary 2.15. (Wiener’s theorem for functions in (L',¢*)(K)) Let K be a
commutative hypergroup such that Py(K) - Py(K) C By(K) and take p € N even
orp=oco. If f € (L, £*)(K) is of positive type, and satisfies f 1y € LP (K) for
some relatively compact neighbourhood U of e, then

fe @) (K) and ||flpev < C7IIf Lull,-
In particular this holds for f € L' (K) satisfying the same conditions.

Note that, by the equivalence proved next, if K is compact, then (LP,¢*) = L?
and || - ||p.00,v €quals (up to equivalence) the L norm on K (take || - ||p00,x and
use T,1g = 1k).

We now compare || f||,00,v for different choices of U (even on non-commutative
hypergroups). Let U and V be relatively compact neighbourhoods of e, and de-
note the corresponding amalgam spaces by (L?,¢>)y and (LP,£>)y respectively.
There are \; > 0 and z; € K such that 1y < > A\i7p,1y. Let f € (L2, {%°)y
and z € K. When 1 < p < oo we have

’ :/If\pnlu dwg S/mpTz (Z%HJV) dwg
# —

n P n
= > |f ()| < (Z Ai> ([

il i=1

by Lemma 2.16 below (set u = €,- *¢,-). Hence

fe@ @)y and ||fllpeov < Cllflpooyv

with C = (3°1, Xi)P | so that the amalgam space (LP, ) (K) does not depend
on the chosen neighbourhood.

Note that, since necessarily ) A; > 1, this sum can serve as a constant for all
finite p. So we have constants of equivalence which only depend on U and V/, but
not on p.

If p = oo and (as before) we denote by U, the set where 7,1y > 0, then
[ flloo,00r = 8UPs | f1u, |l It follows that || f|lo, o0 = IIfle since Uy is a neigh-
bourhood of x. So in this case, if we use V instead of U, we obtain not only an
equivalent norm but in fact the very same norm.

Hf (re1p)?

Lemma 2.16. Letp € [1,00]. For f € (L?,£*°)y and p a probability measure with
compact support we have f (ux1y)Y? € LP and || f (u * 1,)*/? e < 1 50,

Proof. By | ', Proposition 13.64] and the remarks following it, the set S of all
convex linear combinations of Dirac measures is weakly dense in M!(K). So
there is a net (x,) in S with p, — p weakly. In the present case we may assume
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supp , C supp u (in the proof of ['1/, 13.64], if A; Nsupp u # 0, choose z; in this
set and not just in A;). By [, Theorem 1.6.18(b)] we obtain ||u, g —pu*g|[; — 0
for all g € L'(K). From the net (u, * 1y) we may extract a sequence (i, * 1y)
converging in [ - [[; and (if necessary, passing to a subsequence thereof) also
pointwise a.e. to p* 1. Hence

(tn * 1y)7? = (u* 1y)'/?

All these functions have absolute value < 1 (see | , 1.4.6]) and have support in the
compact set supp (u) * supp (1y) (see [, 1.2.12])), hence are dominated by h =

Lsupp (wxsupp (1v)- There are B > 0 and yx € K such that h < 22:1 B (Tyklv)l/p,
SO

a.e.

l
£ Pl < Bellf (7, 10) P |l < 0.

k=1
By dominated convergence we obtain || f(u, * 1y)Y? — f(u* 1y)?||, — 0. Now,
since pi, 1s a convex combination Z;”Zl Yj€z;, We have

5 m 1/p|? m

Hf(/in * lv)l/p“ =If <Z”/j7'zj~1v> :/|f|p27j7'rj—1v dwpe
= j=1 ) j=1

m 1

=Sl (ij,lv)”

j=1

Hence || f (11 1) ||, < || fllpoo,v as asserted. O

P m
<D G o = AN oo
P =1

Remark 2.17. All of the results obtained so far hold for a large class of commuta-
tive hypergroups, in particular for strong hypergroups, and hence also for those
examples to be considered below. Furthermore, much of this section extends to
some non-commutative hypergroups. A version of Lemma 2.5 holds without the
assumption that K is commutative. Instead, we assume that there is a relatively
compact neighbourhood V' of the identity with the property that 1y is central
in the convolution algebra L'(K) and hence in the measure algebra on K. The
conclusion of the lemma then holds for neighbourhoods U of e that include the
support of the product 17/ % 1. The centrality assumption implies that K is
unimodular. In particular, (1y)* = 17 (as in the commutative case). Therefore
the proof of the lemma remains almost the same (replace the sentence concern-
ing the supports of the £,- * &, up to and including inequality (2.4) by “Let
h = 1y % 1y.”). With the same modified hypothesis, Corollary 2.6 holds with
no change in its proof. For Corollary 2.8 we also require that the support of
15 * 1y be contained in the interior of U, rather than just in U. In the proof of
Corollary 2.8 take W equal to this support. Then for such U, Theorem 2.12 and
hence Remark 2.14 as well as Corollary 2.15 for even p also hold. For p = oo,
Corollary 2.13 and hence the corresponding part of Corollary 2.15 hold on general
hypergroups (without any centrality assumption):

Let f € (L', £®) (K) be of positive type. If U is a relatively compact neigh-
bourhood of e and f, = k, * f * k where the k, are as in the proof of Corollary
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2.8, take ¢ large enough so that supp (k * k,) C U. Then (see Remark 2.11) f, is
continuous, positive definite and bounded, so by [/, Lemma 4.1.3(g)] for the first
equality and (2.2) for the third equality below, we have

[filloo = Ko x [k (e)
:/(/{L*f)dewK

— [0 ) do

<N Lol AT * Ky
< vl -

Since f, — f locally in L*—norm (that is, ||(f, — f) 1¢|l; = 0 for every compact
C C K), we obtain || f]|,, < [[f1v]ls-

3. HYPERGROUPS ON R,

In this section we consider some hypergroups on R, to which all of Section 2
applies. For one of them we show that the version of Wiener’s theorem presented
in [ ] for locally compact abelian groups also holds (Theorem 3.6 below), as indeed
do other positive results about translation, convolution and Fourier transforms,
which we need for the proof of the theorem.

3.1. Bessel-Kingman hypergroups. For these hypergroups the reader is re-
ferred to [, , Section 3.5.61], but we give here some basic properties. Let o > —1.
For z,y € Ry consider the convolution

Ez *q €0 = &z = &0 *a &

and for z,y > 0,
Tty

s *a &y (f) = Ko (z,y,2) f (z) 22T dz, f € Co (Ry)
lz—y]|
where

a1
Ko (2,9,2) i= ot 1) (22~ @~y (e +v)* = 2]
o I ()T (a+1)2%1 (292)" .
Then (R4, #q) is a commutative hypergroup with the identity involution and Haar

measure w,, (dz) = 22*1dz. Its characters are given by ¢y (z) := j, (Az), = € Ry
for each A > 0 where j, denotes the modified Bessel function of order « given by

[ee]

: K =Ry
]a(x) ._kz%Z%k[F(a—}—k—{—l)x ,IER.

Note that pg = 1.

It is well known that (R, *4) = (R4, *,)" , where the hypergroup isomorphism
is given by A — ¢, (so that (Ry,*,) is not only strong but even Pontryagin);
see [ *, Example 7.2]. Wiener’s theorem as in Corollary 2.15 therefore holds for
these Bessel-Kingman hypergroups.
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For a = 1 (the motion hypergroup) the convolution is given by

1 T+

y
€z %1 &y (f) = 527 - f(z)zdz (3.1)

in which case the characters are just
S~ (=D'T ()
Ax) = 2
02) = > g P

k=0

)Qk _ sin)\a:’ >0

€T) =
pr(z) =7 o >

(SIS

The term ‘motion hypergroup’ is justified by the fact that <R+, *;) is isomorphic
2
to the double coset space M(3) /SO(3) .
For f € L' (Ry,*4),a > —1, its Fourier transform is defined by

A

flpy) = f oxdw,
Ry

and the convolution of two functions f, g is given by

f*ag(z) = i f(@*ay)g(y) wa(dy).
Recall that X
(f *a 9)" = £9.
When o = % we have
R % f(z)(sinAz)zdz, X#0,
flon) = e
fR+ I (z) 2% dz, A=0.

and, in particular,
1
o (sin Ae — AecosAe), A#0,

(1pe)" (02) = , (3.2)
A =0.

€
3 )
3.2. The amalgam spaces (L?,¢7) (R, *,) for 1 < p,q¢ < co. In preparation
for Theorem 3.6 in Section 3.4, we need to develop some properties of certain
discrete amalgam spaces. We define them so that the norms |[|-[|, ., used in this
section are equivalent to the corresponding continuous norms || - |[pc0v used in
Section 2, and we prove this equivalence in Section 3.3. At the end of the current
subsection, we consider other families of discrete amalgam norms, in particular
those introduced in [ ], and show that they are mostly not equivalent to the
norms that we use.
For each n € N write [, := [n — 1,n) and for 1 < p, ¢ < oo define

1

191 = (iw @) (o [P dwa)§>q 3)
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with the usual convention when one or both of p, g is co, that is

1

£l = (Zwa (L) sup | <x>\Q>

1 R v
oo =500 (=5 | 1117 )

and  [[flepo = sup sup | ()] = 1o

n x€lp

The (p, ¢) —amalgam space is defined as the subspace of all measurable functions
f given by e

(L7, 67) Ry, xa) = { £ £ 1,y < 00}
We have the following result.

Proposition 3.1. Let f be a measurable function. Then

1 £l 0 S WFll,g  for pi < p2
and | fll, 0 S CIfll,,  for o 2 o,
where C' is a constant. In particular, for p1 < ps and g1 > q2

(Lpz)ng) (R+7 *a) - (Lpl’gﬁh) (R-H *Oc) )
so that  (LP,09) (Ry, *q) C LP (R4, %q) N LI (Ry, %) forp>gq
and LP (Ry,*q) UL (R, *4) C (LP,47) (Ry, %4) forp <gq.

Proof. This is straightforward using Holder’s inequality together with the prop-
erty that w, (1) > C > 0 for all n. O

Note that (L=, £*) (R4, *4) is the smallest amalgam space and (L', £°) (R4, *q)
is the largest.

Remark 3.2. We now use indicator functions on subintervals of I,, to show that for
p # ¢ our amalgam norms are not equivalent to the discrete amalgam normsin | ],
which are computed on sets with measures uniformly bounded away from 0 and
co. There is no division or multiplication by measures of tiles in the computation
of those norms. In the present case we obtain norms equivalent to those in [ |
by splitting R, into disjoint intervals of Haar measure 1; at least wq (I,,) — 2 of
these subintervals are included in I,. Let f be the indicator function of one such
subinterval. Then the norm of f in our space (LP, %) (Ry, o) is we (I)"/477,
while its norm in the corresponding space in [ ] is 1. Since wq (I,) — o0 as
n — 00, these norms are not equivalent unless p = g.

Both families of discrete amalgams on Bessel-Kingman hypergroups are con-
structed in such a way as to have norms equal to the usual LP norm, and hence to
each other when p = ¢. In the examples above, the functions f are not positive
definite, and we do not know whether there are corresponding examples involv-
ing positive definite functions. Finally, most other choices give amalgam norms
that are not equivalent to ours, for example the partition choice having the I,
without normalization, and the continuous amalgam norm as in Definition 2.9
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but without the 1/p power. The only cases where our discrete amalgam norm is
equivalent to the one without weights are those where p = ¢, and the only case
where the two kinds of continuous amalgam norms are equivalent is that where
p =1 (see the end of Remark 3.1).

3.3. Equivalence of the discrete amalgam norm |||, with the contin-

uous amalgam norm defined by translations in the case a = % For the
following subsections of Section 3 we only consider the Bessel-Kingman hyper-

group <R+, *%> (and to simplify the notation we write w in place of w%). Values

of o > 1 are treated in [ .

Proposition 3.3. Forp € [1,00),

1/p
Hf”poo < C sSup (/ ‘f‘ Tyl[Ol dw) ;

y€(0,00)

Proof. We have using (3.1)

Tyl (z) = 1o,y (y *1 :E)

=&y *1 & (Ljom)

1
=L tdt
22Y J{jz—yla+yinio,1
1’ m—l_y S 1>
= ﬁ(l—(x—y)Q), z+y>1land |z—y| <1, (3.4)
0, |z —y| > 1.
Fory—n—i—— n € N, we obtain
~(nadz)
Gt ) MY PR QP
dz(nt3) B
Tapilpy (z) =
0, ‘n+ % = x] 21

On the interval I,,;; this is larger than
3/4 3/16
4(n+3)(n+1) = 2w (ln41)

which holds for all n € N. On I; we have the trivial estimate 7o1ljp1) > 1 = %w(lh ;

and putting these together gives
1/p
dw) : [

5 Sl i
su Mol dw) sup (/
ye[OEo) (/ I oL B2 neN \J1, @ (In)
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Remark 3.4. In Proposition 3.3 we compared the norm [|f||, ., with the contin-

1
uous amalgam norm || f||pco 01 = SUDye[0,00) Hf (Tyl[o,l])”

for p € [1,00). We
P
consider the same comparison with p = co. Letting

Ay) = {t € [0,00) : Ty1jo, 1] ) > O}

we have || f1|oo,00,0,1] = SUPye(0,00) HflA(y)Hoo' Clearly A (y) is an open neighbour-
hood of y and hence

sup HflA oo = 1o = I flloo oo -

y€[0,00

This means that for p = oo we have C' = 1 and in fact equality in Proposition
3.3.

We warn the reader that for every p € (1, oo] the seemingly similar (and, in the
group case, identical) norm sup,¢(g o) Hnyl[o,l] Hp is smaller and not equivalent to

. In fact, for this smaller norm, Proposition 3.3 fails for

1
SUPyeioe) ||/ (7Lo)”

all choices of the constant C'. The reason for this is that the sup-norm of 7,1y
tends to zero as y — oo.

Proposition 3.5. Forp € [1,00),
1/p
e > s ([ 177 200)
ye oo

Proof. (i) For y € [0,1) the expression in (3.4) takes the simpler form

1’ xél_ya
nlon @) =4 & (1-(@-y)’) <1, 1-y<z<l+y,

Since 7,101 < 1jo,2) this gives

/|f}%y1[0,1] dig= /|f|P1[0,1>dw+/mﬁm duo

/ P 1 oo

:/11 ; )Ifl”dw+3/[m!f!”dw

the second inequality holding since w (/1) = 3 < 1 and w

(1)
</ P70 dw>l/p < </11 = (111) 1P dw) 4. glin (

=LAl

€

=< < 3. Hence

1/p
dw)
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(ii) For y € [1,2) we have 7,1j91) < 1[5y which leads to

/|f|p7y1[0,1 dw

/mp dw+/ 1 dw+/ AP de

p p 1 p
g/ (Il)m dw+3/2w(”\f\ dw+7/[3—w(13) |fIP dw

since w (I3) < 7, and hence

(firoms)”
: </ ey d“’) e </ e
o ([ i e)”

S (1+3P+TPY || f]] oo -

1/p
dw>

(iii) For y > 2 we have

ﬁ@*(ﬂf—y)rg), y—l<z<y+l,

Tylpy (z) =
0, otherwise.

If y € I, then k > 3 and (y — 1,y + 1) intersects at most Ix_1, Iy, [k4+1. For
z € (y—1,y+1) we have

dry >4(y—1y>4(k—-2)(k-1).
Now k > 3 implies 4 (k —2) > k and 3 (k — 1) > k + 2 so that

1 1 1 1 1 1
Thus we obtain for j =k — 1,k k+1

1
/ |f|p Tyl[O,l] dw = / |f|p i, (1 5 (x . 9)2) Ly—1y+1) dw
) I I Ty

. 3/5- w (1]]-)
/fj w(lfj)

dw

and

1/p k41
</ |f|p Tyl[O,l] dUJ) S 31/7) Z
j=k-1

1/p
P dw) i



46 W.R. BLOOM, J.J.F. FOURNIER, M. LEINERT

(iv) Taking C to be the maximum of the constants in (i)-(iii) we have

1/p
( |FIP 710, dw) < Cl£llp 00

for all y € [0, 00) and hence

1/p
s ( 1Pt dw) <Ol o

y€[0,00

3.4. Functions that are square integrable on a neighbourhood of the
identity. For p = 2 we have the following characterisation along the lines of [ ],
Theorem 3.1.

Theorem 3.6. For f € L! <R+, *%) with 3\‘ > 0 the following are equivalent:
(1) f is square integrable in a neighbourhood of the identity;
2) Fe (@) (Riny);
(3) £ € (12,62) (Ri %)

Proof. The proof of Theorem 3.1 in [ | applies, but we need to check that the
results used there are still valid in our setting. This requires the equivalence of the
continuous and the discrete amalgam norms, which we showed in Propositions
3.3 and 3.5, together with uniform boundedness of translation along with the
Hausdorff-Young theorem for these amalgam spaces. We prove the latter two

properties in the next three sections. O

3.5. Translation in (L*®,¢')(Ry, *1). In this section we show that translation
is uniformly bounded on the amalgam space (L>, ¢')(Ry, *%) Denote the Haar

measure w ([,,) of the interval I, by w,. It is easily checked that w,, = n?—n+ %
Given a locally integrable function f on Ry let P, f := f1;, and consider

1

nf@)=f(eeyy) =5 [

F(t)tadt.

|z —y|,z+y)]

Note that |7, f| < 7,(]f|) pointwise, and that 7,(|f]) < 7yg if |f| < ¢ almost
everywhere. We want to show uniform boundedness of the translation operators
Ty OB (LOO,ZI)(RJF,*%).

Consider an index n and a positive number y, and write f, := 1, . It will be
enough to show that

Ty fullzes,ery < Cllfall(zoe er)

for a number C that is independent of y and n. Indeed, letting ¢, = ||P.f]loo
and g = ) cnfn, we then have that |f| < g pointwise, and thus |7, f||(ze,0) <



WIENER’S THEOREM ON HYPERGROUPS 47

I7y9ll (Lo e1y- But also 7,9 < > ¢,7,(fn) pointwise so that

7y fllczes,ery < Nlmygll(pee,ery < chHTyan(Lm,él)
<Y enllifall ey = Cllfllzoe .
n

Fix y and n, and call a non-negative integer k exceptional if k = 1 or if there is
some number z in the interval I such that |z — y| or z 4+ y lies in I,,. Denote the
set of exceptional indices by E, and let G be the set of generic indices forming
the complement of £ in Z,.

If k is generic, then the intersection of the interval [|z — y|,z + y] with I, is
either empty for all z in I, or this intersection is all of I, for all such z. Then

Ty fn either vanishes on the whole interval I or it coincides on I with
1 n

—_— tdt. 3.5)

21‘y n—1 (

Since k > 2, the expression above does not change by more than a factor of 2 as
2 runs through the interval Ij.

So for each generic index k there is a non-negative constant dp with dp <
Tyfn(x) < 2dy for all z in I. Then

Wiel| Pe(Tyfa) lloo < wi2di < 2|| Pe(ry fr)ll1-

Note too that wy|fulle = ||fnll1 since f, is constant (= 1) on its support I,.
Therefore,

Zwkllpk(Tyfn>l|oo < ZQHPIC(Tyfn)HI < Z 2(|Pe(ry fo)lla

keG keG k€EZ

= 2||Ty(fn)||1 = 2Hf?’t”l = 2<")ann||oo = 2||fn||(L°°,é1)>

the last inequality holding since the norm of any translation on L'(R, x 1 ) is 1.

One way for k to be exceptional is to have = + y belong to [, for some z in [,
that is, the sets y + Iy and I,, have non-empty intersection; equivalently, the set
I, —y overlaps I. There are at most two such values of k, and none when y > n.
Any other exceptional indices k£ come from cases where I,, + y or y — I, overlap
I, or k = 1. It follows easily that there are at most seven exceptional indices,
and in fact there are at most five of them.

It remains to estimate wy||Px(7,fn)|leo for each exceptional index k. When
k < 3n use the estimate

- 1 1 9 9
rfn<x>s—/ tdt = ——{(z+3) — o —pP} =1
! 22Y Jio—ylz+y] dzy

to see that
WkHPk(Tyfn)Hoo Lwk L wzp < 19w, = 19an”(L°°yfl)'

When k is exceptional and k > 3n, one of the sets y & I, must overlap .
The smallest value that y could take would then satisfy y + n = k — 1, making
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Y+ %k >k—1andy > —:f;k 1> %k since k > 3. In particular, y > %a: for all
in I, in these cases. For this £ and such x use the upper bound

1 " 1 n 2n
2o | tdi=—If=l—-1F==g
nin@) < g [ tdt= et = (= 1) <

LY Jn—-1 z? = (k_ 1)2
where the first inequality follows from (3.5), to see that
k2 (2m
wkHPk(Tyfn)Hoo S ﬁ S 8n S 24wn S 24an||(Loo:el).

3.6. Translation and convolution on (L, ¢?)(Ry, *%). In this section we de-
duce that translation is uniformly bounded on (L”,£7)(R4,*1) and note that
Young’s inequality for convolution also holds for the amalgam spaces on (R, * ! ).
The uniform boundedness of translation on (L°°, *)(Ry, 1 ) implies by duality
that it also holds on (L}, £*) (R4, *1). To confirm this, first note that matters
reduce to the case of a non-negative function, g say, in (L, £*)(R, *%), and that

7,9 is then also non-negative. This translate belongs to (L', ¢*°)(Ry, *%) if and
only if

/R (ry9(2)) £(&) dw(z) < 00

for all non-negative functions f in the unit ball of (1>, ¢!)(R, *%). In this case,
the norm of 7,9 in (L', £°)(Ry, *%) is equal to the supremum of these integrals

over all such functions f. By [/, Theorem 1.3.21], and the fact that y~ = y, these
integrals are equal to

/R 9(2) (1,£(2)) dw(z) < gl Ty Fllloty < Cllgllion ey

We thus have uniform boundedness of translation on (L, ¢9)(Ry, * %) when the
reciprocal indices (1/p, 1/q) sit at any of the four corners of the unit square in the
first quadrant. As in [ ], complex interpolation then yields uniform boundedness
of translation whenever (1/p,1/q) lies in this unit square, that is whenever 1 <
p,q < oo. This also follows in a more elementary way from Holder’s inequality.

As in the case of locally compact abelian groups, Young’s inequality for convo-
lution of LP-functions extends to these amalgams. The general statement is that
if reciprocal indices in the unit square satisfy the condition

(Y- G -w

and if functions f; and f belong to the respective amalgams (LP, (% )(R,, *%)
and (LP2,0%2)(R,, *%), then the convolution of f; and f; is defined and belongs
to (L?,¢7)(R,, *%). Moreover, we have

||f1 *% fQH(LP,éq) < C||f1||(LT’1,€‘11)“fZH(L"M"?)'

In fact, the inclusions between amalgams then imply that these statements still
hold, usually with a different constant C, provided that 1/p < 1/p;+1/p,—1 and
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1/q > 1/q1+1/¢2—1. Another way to state this is that (1/p, 1/q) can be any point
in the unit square lying northwest of the point (1/p1 +1/p2—1,1/q1 +1/q2 — 1),
which is also required to lie in the unit square. Again the general case follows
from a few extreme cases by complex interpolation or by repeated use of Holder’s
inequality.

3.7. Fourier transforms on (L?, /9)(R,, *%). Our goal in this section is to prove

A

that if f € (LP,£9)(Ry,*1) with 1 < p,q < 2, then f € (LY, ”)(R4,*1). The
cases where p = ¢ are already known (see []) with the same proof as for locally
compact abelian groups, but if p # ¢, then this property of the Fourier transform
requires some work. These cases will follow by complex interpolation from those
where p = ¢ and the special ones where (p,q) = (2,1) or (1,2). (The latter is
the one that arises in the proof of Theorem 3.6.) We show below that the two
special cases are equivalent by duality, and we prove the first case using some
easily-checked properties of transforms of the indicator functions 1, .

From (3.2) we find that the Fourier transform of 1, belongs to (1>, £7) (R4, *1)
for all ¢ > %, but does not belong to (LP,Zl)(RJF,*%) for any value of p. Let
g1 =31y *1 12 and g, = 31y *1 1jn—2,nt+1) when n > 1. We can check that

gn(z) =1 for all z in I,,. When n > 1, Holder’s inequality gives

gnllz2.e) = 3 Hlfl\l (11,%1 +1;, + 11n+1) H(

12,01
<3 |1g ‘1/\ PR
= 3 H I (Lo .2) In—1 + 1z, + Inta (12,2)

:C‘Il/l;-i-l/;l—l-l/l; 2

=C Hlfn—l T1ln+1n, H2
= CWn_1 4 Wn, + Wnt1)?
R T
By formula (3.3), if f € L*(Ry, *%) and f vanishes outside I,,, then || f||(z2,01) =

/@l fll2- Moreover, in this case f = fg, and it follows by Young’s inequality for
convolution of amalgams that

I T I
= n = *1 Jn = gn
f (Loo7£2) g (L°°,22) 2 (L°°,12) (LQ,ZZ) (L2,Zl)
N
< Hf O im = Crfamlflle = Cllflunen
g 2

For a general function f in (L% ¢')(Ry,), applying the inequalities above to
P.f := f1;, yields that ]ﬁff < Cyan||Pafll,. Since for (p,q) = (2,1),

‘(Lw,él’)

formula (3.3) takes the special form [|fl 2 0y = 22021 V/Wa (In) B Fll 5 it fol-
A
lows that ‘f < C|fllez2,0-
(Le°,£%)
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Suppose next that g € L'(Ry,*1). Then g belongs to (L2, £=)(Ry, +1) if and
only if gf € L'(Ry, «1) for all functions f in the unit ball of (L% (R, +1). In
this case, H?JH( r2,01) is equal to the supremum over all such functions f of the num-
bers | f@(t)f(t)w(t) dt|. But each of these integrals is equal to fg(:z:)?‘(x)w(x) dx

and so has absolute value less than or equal to

7N
f < Mgllr,eyCll fllz2,ery = Cligllezr,e2y-
(L ,e2)

lgllczr,e2)

In other words, the Fourier transform is a bounded operator from L'(R., % 1 ) to
(L2, 0°)(Ry, *1) when L'(Ry, +1) is viewed as a dense subspace of (LY, ) (R, *1)
with the norm || - ||z1¢2). Extend this operator to all of (L', £*)(Ry, *%).

This includes the usual extension of the Fourier transform operator from the
intersection of the spaces L'(R., *%) and L*(R., *%) to an isometry from the

space L?(R., *%) to a dual copy of L%(Ry, *%). It also includes the transform
originally defined as a mapping of L'(R., *%) to L>°(Ry, *%) and shown above
to map the smaller space (L?, £')(Ry, *1) to (L%, £%)(Ry, *1). So, the Hausdorff-
Young theorem holds for amalgams in the four extreme cases where the indices

(p,q) are (1,1), (2,2), (2,1) and (1,2), and the other cases then follow by complex
interpolation.

4. SOME COUNTABLE NON-DISCRETE HYPERGROUPS

The positive conclusion in Wiener’s theorem also holds for non-even exponents
in the interval [1,00) on some countable compact hypergroups H, considered in
[ ] and [ ], and on the countable locally compact hypergroup H below. Here a
is a parameter in the interval (0,1/2]. We let a = 1/2 and leave the other cases
for the reader.

4.1. Compact countable commutative hypergroups.

Example 4.1. The one-point compactification Z, U {oo} of the non-negative
integers is a compact commutative hypergroup <H 1 *) with convolution given
by

0 1
Zk:l 2k Ek+ns m=n € Zy,
Em * Ep = €005 m=n= 0o, (4.1)

Eminfmn}, . M#E wE€ ZiU{oo},
so that €4, 1s the identity element. The Haar measure w is given by w (n) = s
for n < co and w (c0) = 0. The characters y,, are given by
Ol £ =24
Mol vl e 21,
iy 2> T
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where n € Z,, and the Plancherel measure 7 is just

1 {2n—1, if n> 1,

1, if n= 0. =2}

T(Xn) = 705 =
[ 13

We observe that the set of continuous positive definite functions is given by
P<H%>:{ff:ZC¥lXZOQZO,ZOQ<OO} (43)
=0 =0

(indeed, in [ ], equation (4.3) is the definition of P (H%>) It is a consequence of

Bochner’s theorem ([, Theorems 4.1.15 and 4.1.16]) that (4.3) holds if and only

if fe b, (Hg), and this space coincides with P (H%) because H% is compact.
If fis asin (4.3) then

f(n)= (Z ai> — Gl (4.4)

for n € Z; and (because of continuity)
floo) =) ai (4.5)

Remark 4.2. For f € P <H%> we have ||f|l,, = f(c0), as seen from (4.4) and
(4.5) (or from [, Lemma 4.1.3(g)]).

4.2. Operations on P (H%> By (4.3) the function f is the inverse Fourier

transform of
7 — CYZ‘/7T (Xl)

and the latter function (on h/f\%) belongs to L! (7). The set of inverse transforms of
functions in L' () is called the Fourier algebra of H}, and is denoted by A (H%> :
It is shown in [ ] that Lipschitz functions operate on A <H%>; in particular, if
feA (H ) and 1 < p < oo, then |fIP € A (H%> as well. We prove the

corresponding statement for P <H 1 > and apply it in Section 4.7.

1
2

Proposition 4.3. Let 1 < p < co. Suppose that f : H% — C 1is p-integrable in
a neighbourhood U of the identity e. If f is of positive type then so is |f|*. In
particular, if f € P (H ) then |f|” € P <H%>

1

2
Proof. The p-integrability of f near e implies global p-integrability, because the
complement of U is finite. Since the Plancherel measure has full support, Remark
2.4 then reduces matters to checking that the Fourier coefficients of |f|” are non-
negative if those of f are.
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When p = 1, let 7(n) = f (n)w (n) for each n; then r € ¢! since f is integrable.
We claim that JA‘ > 0 if and only if r is real-valued and
Ir(n)| <r(n+1)+r(n+2)+--- foralln (4.6)

If these inequalities hold for f, then they also hold when all negative values r(m)
are replaced by |r(m)|, that is when f is replaced by |f|. So the case of the
proposition where p = 1 follows from our claim.

The conditions above on r are equivalent to requiring for all n that

r(n)+r(n+1)+r(n+2)+--->0 (4.7)
and —r(n)+r(n+1)+r(n+2)+--->0. (4.8)
Indeed, subtracting the two inequalities for the same value of n shows that r(n)

is real, and then inequality (4.6) follows since |r(n)| = max{r(n),—r(n)}. The
converse is obvious.

A
Condition (1.8) is equivalent to requiring that f(n + 1) > 0, while the 0" case
A

of condition (4.7) is equivalent to requiring that f(0) > 0. If condition (4.%)
holds for all n, and condition (1.7) holds for some value of n, then adding the
corresponding case of condition (4.8) shows that condition (4.7) also holds for the
next value of n. So the two conditions hold of all values of n if and only if f is of
positive type.

To deal with exponents p in the interval (1,00), consider the n-th instance of
condition (4.6) with f replaced by |f|?, that is

[f(m)Pw(n) < |f(n+1DPwn+1) +[f(n+2)fun+2) +---.

Let wn(n + k) = w(n + k)/w(n) when k& = 1,2.--. The inequality above is
equivalent to requiring that
o0 1/p
[f) < | D1t k) Pwa(n+ k)| (4.9)

k=1

The expression on the right above is the LP norm of the restriction of f to the
set {n +1,n+ 2, .-} with respect to the measure w,, which has total mass 1.
By Holder’s inequality, that LP norm majorizes the corresponding L' norm. So

it is enough the prove inequality (1.9) when p = 1, and that was done in the first
part of the proof. [

4.3. A locally compact example. We now analyse a non-compact example
presented in [ ]. For N > 0 the set Uy defined by
Uy = {N,N+1,N+2, - 00} (4.10)

is a proper subhypergroup of H 1 and is isomorphic to H 1 but with a scaled Haar

measure. Define similar hypergroups Uy when N < 0 (Uy = Hi), and let H be
. 2

the union of these nested compact hypergroups. Then H is a locally compact

-

L
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commutative hypergroup with convolution given by

0 1
Zk:=1 5’55]94‘774, m=ne Z,
Em * Ep = Eoas m=n =00, (4.11)

Emin{m,n}, m 7é nezu {OO},
so that €4 is the identity element, but H is not compact.

The functions x, in Example 4.1, with n now allowed to be any integer, com-
prise all the characters on H except for the character y_o, = 1, which has
Plancherel measure 0. The first case of formula (4.2) for the Plancherel mea-
sure of x, extends to all indices n < 0 (in particular we now have 7 (xo) = 1).

Note that H is Pontryagin since (up to the different parametrization of H”) it
is self-dual via the mapping n — x_,. In fact it is straightforward to see that

Zzozl _z'lk‘Xn~k, m=nc Z;
XmXn = X —o0) m=n= —00,

Xmax{m,n}, m 7é nezZuU {—OO}

Remark 4.4. By [/, Corollary 2.4.20(ii)], H} is also Pontryagin. In particular,
H and H 1 are strong hypergroups (that is, their canonical duals are also hyper-
groups). Now use Remark 2.7 to obtain

Fy(Hy)- B(Hy) C By(Hy) and  F(H)- B(H) C F(H),

so that all the results of Section 2 apply to both H 1 and H. In particular the
conclusion of Wiener’s theorem holds on H, and again on H 1 for all even p > 1.
In Section 4.7 we will show that the same conclusion holds on both H 1 and H
for all p € [1,00].

4.4. Localizing properties of functions. Functions on H are positive definite
if and only if their restrictions to each subhypergroup Uy are positive definite.
The same is true for continuity of functions on H. If g € C.(K) then the convo-
lution g* * ¢ vanishes outside Uy for some integer N. It follows that a (locally
integrable) function is of positive type on H if and only if the restriction of that
function to each Uy is of positive type. Lemma 1.6 below provides a converse to
this.

It is again clear that every ¢! sum of characters (including x-«) with non-
negative coefficients is continuous, bounded and positive definite. Conversely,
given a function f in P(H), denote its restriction to the subhypergroup Uy by
fluy- Then fly, is bounded as Uy is compact, and by [/, Lemma 4.1.3g],

I fluwllee = Fluy (00) = f (c0)

for all N € Z. It follows that f is bounded on H, so then by Bochner’s theorem
again there exist non-negative a_o, and oy, j € Z with 3 ;0 < 00 such that
f =0 wX-oo+ 2, @jX;, and hence || flleo = f(o0) and P(H) = 17T
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The following proposition is a corollary of Proposition 4.3, using localization
and the lines after (4.10), and will prove useful in Section 4.7.

Proposition 4.5. Let 1 < p < co. Suppose that f : H — C 1is p-integrable in a
neighbourhood of the identity. If f is of positive type then so is |f|’. In particular,
if f € P(H) then |f|’ € P(H).

Lemma 4.6. Extend a function of positive type on the hypergroup Uy to all of
H by making it vanish outside Uy. That extension s of positive type on H. In
particular, the extension by zero of a function in P(Uy) ts in P(H).

Proof. Denote the original function by fy and its extension by f. Since fy is
locally integrable and Uy is compact, fy € L'(Uy) and f € L'(H).
To apply Remark 2.4, let y be a character on H. Then its restriction x|y, to

A A
Uy is a character on Uy, and f(x) = fn(x|uy)- Since every character on Uy has

A A
positive Plancherel measure, fy(x|vy) > 0, and f(x) is nonnegative too. O

4.5. Discrete amalgam norms. We used the amalgam norm

e =500 (=5 [ 107 ) (@.12)

to state Theorem 3.0 for Bessel-Kingman hypergroups. Consider the correspond-
ing norm on H. Given the division by the mass w,([,,) here, the integral above
should run over the interval I,. In H that coincides with the set {n — 1}, with
the curious outcome that

1£llpe0 = sup|f(n = 1)| = sup £ ()] = 1 flloo (4.13)

no matter what p is.

When p < oo, there are compactly supported functions in LP(H) that tend to
oo at 0o. Any such function f has the property that

sup (/ lfIP 1y dw) ’ < 00 (4.14)

for each compact neighbourhood U of oo even though || f||, . = 00. So the norm

| - [[poo is not equivalent to the one given in (4.14). We show below that the
modified norm

1100 = max { | FLenui| o 1200, (4.15)

where Uy can be replaced by any compact neighbourhood of oo, is equivalent to
the norm in (4.14).

Different choices of U in (4.14) give norms that are equivalent to each other,
by the argument just after Corollary 2.15. Similar reasoning applies to (4.15),
and it suffices to prove the equivalence between the latter and the norm in (4.14)
when U = Uy. Split the calculation of the supremum in (4.14) into two cases cor-
responding to different instances of (4.11). For n < 0 we have 7,1y, = 2" 1y,,
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so that

b

([P mta)” =170

For n > 0 we obtain 7,1y, = 1y, and this gives

( JgsT dw)‘_’ /1w,

By formula (4.13), the norms in (4.14) and (4.15) coincide when U = U,
When 1 < g < o0, let

1/q

1150 = { I FLmenlls, + 1 £ 10012} (4.16)

where

1/q
11wl = {Zw({n})lﬂn)lq}

n<0

actually doesn’t depend on p. Whenever 1 < p,q < oo, denote the space of
functions f on H for which ||f|| , < oo by (LP,£9)(H).

On H, the structure of these spaces is simpler than it is on the real line or on
the Bessel-Kingman hypergroups. A function belongs to (L, ¢?)(H) if and only
if its restriction to the set Uy belongs to LP and its restriction to the complement
of Uy belongs to L.

Since w(Up) = 1, the restriction to Uy then belongs to L” for all » < p. Since
each point in the complement of Uy has mass at least 1, the restriction to the
complement then belongs to L" for all » > ¢. Extend those restrictions by 0 to
see that (LP,¢7)(H) contains the same functions as LP(H) + L(H) when p < g,
and the same functions as LP(H) N LI(H) when p > q.

4.6. Fourier transforms. The norms || - ||; , have good properties relative to
A

Fourier transforms (see below). Define || - ||, on H as for H just by replacing w

by 7. Let

A
UdLE{TLEHinSO}

A
and use Ug" and its complement in H to define || - ||% , as in equations (1.15) and
(4.16). We have the following counterpart of Theorem 3.0.

Theorem 4.7. The following statements are equivalent for a (locally integrable)
function f of positive type on the hypergroup H :
(1) f is square integrable in a neighbourhood of the identity;

(2) f is the (inverse) transform of a function in the space (L', £?) ([/}),
(B El L Rl
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Proof. Again this follows if the Fourier transform extends from L'(H) N L*(H)

to have appropriate mapping properties between suitable amalgam spaces, that
is,

A
it |Ifll,, <oo, where 1<p,g<2, then Hf < 00. (4.17)

*
q.p

By the observations at the end of Section <.5, this is equivalent to checking, when
A

A A
1<p,q<2 thatif f € LP(H) + LY(H) then f € LY (H) + L¥ <H), and the

, A A N AN~
same for LP(H)NLY(H) and L? @ﬂ L* ( H |. Both parts follow immediately
from the Hausdorff-Young theorem [] for hypergroups. |

*

Remark 4.8. In fact, < [|f]l;,, in all these cases. Complex interpolation

A
/
q'p’

again reduces matters to proving this in the extreme cases where (p, q) is one of
(1,1),(2,2),(1,2) and (2,1). The first two cases are true because

7

<|[Ifllh and

A
f
The corresponding estimates in the other two extreme cases follow from each
other by duality as in Section 3.7.

We elect to confirm the case where (p,q) = (2,1) and (¢, p’) = (00,2). Split f
as fi + fo, where fo = fly, and f; vanishes on Up. Since || f|I5, = [ filli + [|f2ll2,

Al <ialhand || <1l

fo
00,2 00,2

= [I£12-
2

o]

it suffices to show that

A
Note that f1(n) =0 for all n > 0, since the support of f; is disjoint from that
Al* A
fl flluoi

*

of x, when n > 0. So simplifies to become , and

o0

00,2

A

A
fi <||Aill < Ifillh  as required.

o0

00,2

Note also that the characters x, with n < 0 are all equal to 1 on the set Uy, making

A A A
f2 constant on the set U;. Then flys|| = ||f2lygs|| sincew (Ug) =1. So
e} 2
Al* A 2 A 2) 2
B = {( fetag| )+ St | }
00,2 [e's) n>0
A 2 A 2 %
= {( falyy ) + 7({n}) | fa(n) }
2 n>0
A
= ||f2]| = |lf2llz as required.
2
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4.7. Wiener’s theorem for all exponents. We will show that versions of
Wiener’s theorem hold on H for all exponents in the interval [1,00], but we
first note that Lemma 2.5 can be sharpened in the case of this hypergroup:

Remark 4.9. For U = Uy we may choose the neighbourhood V in the proof of
Lemma 2.5 to be Uy as well. Instead of inequality (2.1) we obtain

hi= 1; * 1\/ = W<UN)1UN‘

The next step in that proof then works with the singleton z; = {e}, the parameter
A1 = 1/w(Uy) and the measure v = \je.. The long chain of equalities and
inequalities there ends with the quantity ||v|| [ hg dwk. For the special choice of

h above, this is
I {wwN) / gdwK}
Un

which gives the conclusion of Lemma 2.5 with
Cuy = IVllw(Un) = 1.

It follows that Corollary 2.6 holds with Cy = 1 when U = Uy. Since the
proof of that corollary only requires that |f|P € P,(K), Proposition 4.5 yields
the conclusion of the corollary for all exponents p in the interval [1,00), again
with Cy = 1 if U = Uy for some N. The proof of Corollary 2.& shows, for such
exponents p, that if inequality (2.5) holds for all functions f in P,(K), then the
inequality holds with the same constant Cy for all integrable functions f that are
of positive type.

Theorem 4.10. Let p € [1,00] and f be a function of positive type on H. Then
1,00 = 1 Fllpoowo = 11/ Lusoll, - (4.18)

For a general relatively compact neighbourhood U of the identity there are con-
stants Cy and C{, (independent of p) such that

[fllpeor < Cullflull, and |Ifll5e < Cullflull, (4.19)
for all (locally integrable) functions f of positive type.

Corollary 4.11. Let p € [1,00|. For every relatively compact neighbourhood U
of the identity in H and every compact subset V' of H there is a constant Cyy
(independent of p) such that

1f1vll, < Cuv || f1ull, (4.20)
for all (locally integrable) functions f of positive type.

Corollary 4.12. Let p € [1,00]. For every neighbourhood U of the identity in
the compact hypergroup H% there is a constant Cy (independent of p) such that

1fll» < Cu [l fLull, (4.21)
for all functions f of positive type.
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Proofs. As in Corollary 2.13, the cases where p = oo follow from those where
p < oo. In the latter cases, there is nothing to prove unless [|f1yl|, < oo.
Restricting f to various subhypergroups Uy and extending those restrictions by
0 then reduces matters to cases where f has compact support and is therefore
p-integrable, hence integrable.

The first equality in (1.18) was shown, when 1 < p < oo, in the lines following
(4.15). For the second equality, it is clear from the definition of || f||,c0,v, that it
is no smaller than ||f1y,l|,. The opposite inequality ||f|lpc0us < [If1esll, holds

because of the discussion after Remark 4.9. The same discussion yields the first
inequality in line (4.19). The second inequality then follows by the equivalence

of the norms || - ||, 00,y and | - || ... This completes the proof of Theorem 4.10.
For Corollary 4.11, use the chain of inequalities
”f1VHp < Hpr,oo,V < Cé/,VHpr,oo,U < C(/J,VCU HflUHp’
where the first step uses the definition of || - ||, 0,1, the second step uses the

equivalence of that norm with || - ||, ., and the last step uses the first inequality
in (1.19). Corollary 4.12 follows because extending f by 0 gives a function of
positive type on H. O

Remark 4.13. The first inequality in (1.19) provides an upper bound for || f||p.cov
in terms of | f1y[|,. When p < oo, there is no such general bound for | f|[,.
Indeed, since Y -~ w(n) = oo, the constant function 1 trivially belongs to the
set P(H) but to none of the spaces LP(H) with 0 < p < oo.
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