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ISOMORPHISMS OF AC(cr) SPACES

IAN DOUST AND MICHAEL LEINERT

Abstract. Analogues of the classical Banach-Stone theorem for spaces of con

tinuous functions are studied in the context of the spaces of absolutely continuous 

functions introduced by Ashton and Doust. We show that if AC'(cri) is algebra 

isomorphic to A(7(<T2) then or is homeomorphic to or. The converse however is 

false. In a positive direction we show that the converse implication does hold if 

the sets or and a 2 are confined to a restricted collection of compact sets, such as 

the set of all simple polygons.

1. Introduction

In [3] Ashton and Doust defined the Banach algebra AC'(cr) consisting of ‘abso

lutely continuous’ functions with domain an arbitrary nonempty compact subset a 

of C (or equivalently of R2). The motivation for their definition was to extend the 

spectral theory of well-bounded operators to cover operators whose spectra need 

not be contained in the real line. This led to the definition of an A(7(cr) operator 

being a bounded operator on a Banach space X which admits a bounded functional 

calculus T : AC'(cr) —> B(X). Under some additional assumptions, the image of this 

map T is an algebra of operators which is isomorphic to AC {a). Accordingly, one 

can recover certain aspects of the theories of normal operators and of scalar-type 

spectral operators, replacing algebras of continuous functions (7(f2) with algebras 

of absolutely continuous functions. Quite naturally then, underlying many of the 

open problems in this area are questions which ask for analogues of the classical 

topological results about C7(Q) spaces. (Details of the theory of AC(cr) operators 

can be found in [5].)

One of the most classical of these topological results is the Banach-Stone theorem 

which says that two compact Hausdorff spaces Qi and Q2 are homeomorphic if 

and only if the function algebras 0(01) and C(Q2) are linearly isometric. There 

have been many generalizations and extensions of this result (see [9]). Work of 

Amir [1] shows that one may still deduce that Qi and Q2 are homeomorphic if one 

only assumes that and C(Q2) are (linearly) isomorphic with Banach-Mazur 

distance less than 2. Cohen [6] has shown that the value 2 is sharp.

In a different direction, one might require that the spaces (7(fA) and C(Q2) be 

isomorphic as algebras. In this case one may argue using the maximal ideal spaces 

to get the same conclusion. In particular, as the next result shows, if C(Qi) and
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2 IAN DOUST AND MICHAEL LEHNERT

C(Q2) are algebra isomorphic, then they are isometrically isomorphic. This result 

was originally proved in [10]; a modern treatment is given in [9].

Theorem 1.1 (Gelfand and Kolmogoroff 1939). LetQi aWQ2 be compact Hausdorff 

spaces. Then C'(Qi) and C(C,f) are isomorphic as algebras if and only if and Q2 

are homeomorphic. Moreover, every algebra isomorphism j : C(Qi) —> C(Q2) is of 

the form j(f) = f o h where h : Qi —> Q2 is a homeomorphism.

The main issue that we shall address in this paper is the corresponding relationship 

between the topological structure of the set a and the algebraic structure of AC {a). 

In Section 2 we shall give a simple proof that if AC(a-f) and AC(cr2) are algebra 

isomorphic, then cq and <72 are homeomorphic. The converse of this is false however. 

In Section 3 we show that the algebra of absolutely continuous functions over the 

closed unit disk is not isomorphic to the algebra of absolutely continuous functions 

over a square.

If, however, one restricts the class of sets in which a may lie, one can recover some 

sort of analogue of the Banach-Stone Theorem. In Theorem 6.3 we show that if Pi 

and P2 are simple polygons, then AC(Pi) is algebra isomorphic to AC(P2). We then 

extend this result to cover more general sets based on polygons.

Notation. Suppose that A and B are Banach algebras. We shall write A — B to 

mean that A is isomorphic to B (as a Banach algebra), and write A = B to mean 

that A and B are isometrically isomorphic.

Throughout, we shall use the term polygon to refer to a simple polygon including 

its interior. In particular, every such polygon is homeomorphic to the closed unit 

disk.

2. Preliminaries

In this section we shall briefly outline the definition of the spaces AC {a). Here 

we follow [8] rather than the original definitions given in [3]. Throughout, a, 

and cr2 will denote nonempty compact subsets of the plane. Although the original 

motivation for these definitions came from considering functions defined on subsets of 

the complex plane, for this paper it will be notationally easier consider the domains 

of the functions to be subsets of R2. We shall work throughout with algebras of 

complex-valued functions.

Suppose that f : <7 —> C. Let S — [xq, x-^ ..., xn] be a finite ordered list of 

elements of a, where, for the moment, we shall assume that n > 1. Note that the 

elements of such a list do not need to be distinct.

We define the curve variation of f on the set S to be

n

(2.1) cvar(/, S) = \f(x^ “ •

2=1
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We shall also need to measure the ‘variation factor’ of the list S. Loosely speaking, 

this is the greatest number of times that 75 crosses any line in the plane, where 75 

denotes the piecewise linear curve joining the points of S in order. The following 

definition makes precise just what is meant by a crossing.

Definition 2.1. Suppose that is a line in the plane. We say that Xi xi+1, the line 

segment joining Xi to xi+1, is a crossing segment of S = [x0, 27, ..., xn] on £ if any 

one of the following holds:

(i) Xi and ay+1 lie on (strictly) opposite sides of E

(ii) i = 0 and Xi E L

(iii) i > 0, Xi E £ and Xi-i I.

(iv) i = n — 1, xr I and xi+1 G A

In this case we shall write Xi xi+i E X(S,E).

Definition 2.2. Let vf(S, £) denote the number of crossing segments of S on E The 

variation factor of S is defined to be

vf(S) = maxvf(S, £).

Clearly 1 < vf(S) < n. For completeness, in the case that S = [cc0] we set

cvar(/, [cd0] ) = 0 and let vf( [a?0], £) = 1 whenever x0 E E

Example 2.3. Consider the line I and the list S — [£Ci]^=0 as shown in Figure 1. Let

Si = Xi xi+i. Then the crossing segments for S on £ are s0 (rule (ii)), s% (rule (i)),

S4 (rule (iii)) and S7 (rule (iv)). All the other segments are not crossing segments of 

Son A Thus vf(S,^)=4.

Figure 1. Examples of crossing segments.

The two-dimensional variation of a function f : a —> C is defined to be

(2.2) vara<T) = supUEAL,

s vf(S)

where the supremum is taken over all finite ordered lists of elements of <j. The 

variation norm is

11/IIbvw = ll/IL + var(/>U

and the set of functions of bounded variation on a is

BV(a) = {f-.<7 C : ||/||BVW < 00}.
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The space BV(a) is a Banach algebra under pointwise operations [3, Theorem 3.8]. 

If a = [0,1] then the above definition is equivalent to the more classical one.

Let P2 denote the space of polynomials in two real variables of the form p(z, y) — 

^2nmcnmXnym, and let P2(u) denote the restrictions of elements on P2 to a. The 

algebra P2(cr) is always a subalgebra of BV(a) [3, Corollary 3.14],

Definition 2.4. The set of absolutely continuous functions on <7, denoted AC(cT), 

is the closure of P2(cr) in BV(f).

The set AC {a) forms a closed subalgebra of BV (u) and hence is a Banach algebra.

We shall say that f G C^a) if there exists an open neighbourhood U of a and 

an extension F of f to U such that the partial derivatives of F (of order one) are 

continuous on U. The space CTPP(cf) consists of those functions f for which there 

is a triangulation of a neighbourhood U of u and an extension of f to U which is 

continuous and piecewise planar on this triangulation. It was shown in [8] that both 

C^fa) and CTPP(cd) are dense subsets of AC (a).

Our first step is to show that if AC'(cri) and AC(a2) are isomorphic as algebras, 

then cq and cr2 must be homeomorphic. We note that one does not need to assume 

that the isomorphism is continuous.

Lemma 2.5. Suppose that f G AC {a). Then the spectrum of f is cr(/) = /(a) and 

hence the spectral radius of f is r(J) = ||/lloo-

Proof. This is more or less immediate from [3, Corollary 3.9]. 

Theorem 2.6. Suppose that j : AC(af) —> AC(a2) is an algebra isomorphism. 

Then

(1) ll/L=ILM)LM all f G AC(a1).

(2) there exists a homeomorphism h : -G a2.

(3) = f oh-1 for all f G AC(ai).

(f) j is continuous.

Proof. Since j preserves the identity element, it also preserves the spectrum of ele

ments. Thus, using Lemma 2.5,

ll/lloo = = IIX/)lloo

for all f G AC (a). Since AC(a^ is dense in C'(ui), this implies that j extends to an 

isometric isomorphism j : C(<7i) —> C'(<72) and hence, by the Banach-Stone Theorem, 

<7i is homeomorphic to <72. Indeed there exists a homeomorphism h : cq —> <72 such 

that ;(/) = f ° ^-1 f°r all f G C(ai). Restricting this to AC(af) gives part 3.

Suppose that fn -G f in AC(ui). Then certainly fn -G f uniformly and hence 

pointwise. Suppose that j(fn) 9 iR hK7(<72) (and hence also pointwise). Then for 

all x G <72,

g(x) = lim;(/n)(^) = lim/n(h-1(a?)) = /(7z-1(z)) = j(/)(rr) 

n n
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and hence }(/) = g. Thus, by the Closed Graph Theorem, j is continuous. 

It is easy to find homeomorphic sets cq and a2 for which AC'(cri) and AC(a2) are 

algebra isomorphic, but not isometrically. If the isomorphism preserves norms, then 

part 1 of the above theorem implies that it also preserves variation.

Corollary 2.7. Suppose that j : AC'(ai) -E is an isometric Banach algebra

isomorphism. Then var(/, cq) = var(j(/), a2) for all f G AC(af).

Example 2.8. Let cq = {0,1,2} and a2 = {0,1, i}. Since cq C R,

ll/IU^, = liriloo +1/(1) - /(0)l +1/(2) - /(DI, / e ^M1)-

On the other hand, any function defined on a2 can clearly be written in the form 

f(x + iy) = gfy — x) for some function g of one real variable. Lemma 3.12 and 

Proposition 3.10 of [3] then imply that the norm for f E AC(a2) is given by

II/IIbv^) = ll/IL + max(|/(l) -J(0)|, |/(i) -/(0)|, |/(i) -

Any isomorphism must map idempotents to idempotents. However it is easy to see 

that while all idempotents in AC(a2) have variation at most 1, the algebra AC(af) 

contains the idempotent with /(0) = /(2) = 0 and /(I) = 1 which has variation 2. 

Thus these algebras can not be isometrically isomorphic.

In the other direction, suppose that a : R2 —> R2 is an invertible affine transforma

tion. It is clear from the definition of variation that = \\f ° a-1 Hbv(q(ct))•

Since affine transformations preserve polynomials, it is clear that AC {a) is isometri

cally isomorphic to AC(a(gjf). (This is a very small extension of [3, Theorem 4.1].) 

In Section 4 we shall extend this to slightly more general transformations of the 

plane, at the expense of the algebra isomorphism no longer being isometric.

3. The disk and the square

Let Q = [0,1] x [0,1] C R2 denote the closed unit square and let D = {x E R2 : 

11a) || < 1} denote the closed unit disk. These sets are clearly homeomorphic. The 

aim of this section is to show that AC(Q) qA AC(D).

Theorem 3.1. AC'(Q) and AC(D) are not isomorphic as algebras.

Proof. Suppose that j : AC'(Q) —> AC(JD) is an algebra isomorphism. By The

orem 2.6, the map j is continuous and hence IIac(d) — llfll II/IIac(Q) ^or 

/gAC(Q).

Let h : Q —> D be the homeomorphism associated with j. Then h([0,1] x {0}) is 

a closed arc on the unit circle dD.

Let n E N be even. For 0 < k < n, let pk = h(^,0). Now choose en > 0 small 

enough so that, for every odd Zc, the cn-disc with centre pk does not meet the line 

segment pk_rpk+1.
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Now let Sn > 0 be chosen (using the uniform continuity of h) so that if x, x' G Q 

with ||t — ah|| < 6n then ||h(a?) — hfx')|| < en. Without loss we may assume that 

4 < 1-

Figure 2. The construction of pk in the proof of Theorem 3.1.

For each odd k, let pk = G B(pk,en). Let S = [pQ,p^p2,p3,...,

Pn_i,Pn] T D. It is easy to see that the points of S form the vertices of a con

vex subset of D and so, in particular, vf(Sn) = 2.

Consider the map fn : Q —> R defined by fn(x,y) = min(?//5n, 1). Clearly fn G 

AC(Q) with \\fn\\= 2. Define gn : D R by gn = fn o h-1 = Then 

Pn(P/c) = 0 for k even, and gn(Pk) = 1 for A; odd. Thus

hn||AC(D) > var(yn,D) >
cvar(pn, Sn) 

vf(Fn)

n

2‘

But for all n, ||Pn||/ic*(D) — Ill'll II/^IIac(Q) — \\j\\ and hence we have a contradiction.

As we shall now show, there are severe restrictions on the behaviour of any algebra 

isomorphism which is associated with a C2 homeomorphism from Q to another 

compact subset of the plane.

Lemma 3.2. Suppose that Q C R2 is compact. Then a set I C Q is a closed line 

segment if and only if it is closed, convex and can be disconnected by the removal of 

a single point.

Proof. The forward implication is obvious.

Suppose now that the second condition holds. Let x G denote a point whose 

removal splits f \{a?} into disjoint sets and £2- Choose points G A and y2 E 

Then yY y2 lies inside L and must pass through x as U C is not connected. Since 

y2 was an arbitrary element of -C, the line through y} and x contains every element 

of A2 — and similarly every element of -C must he on the same line. Thus £ is a 

closed convex subset of a line, or in other words, a line segment. 

Recall that a set U is mid-point convex if |(a? A y) G U for all x,y E U.
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Lemma 3.3. Suppose that Q C R2 is compact and that I = {x + Xv : 0 < A < 

1} C Q is a closed line segment. Let h : Q —> a C R2 be a homeomorphism. Then 

h(A) is a line segment if and only if it is mid-point convex.

Proof. Again the forward implication is clear.

Now suppose that h(A) is mid-point convex. Since h is a homeomorphism, h(T) 

is closed and can be disconnected by a point. Since h(A) is closed and mid-point 

convex, it is convex, and so the result follows from the previous lemma. 

Lemma 3.4. Suppose that a C R2 and that h : Q —> a is a homeomorphism. For 

y G [0,1] let Iy — [0,1] x {y}. If h(4) not a line segment, then there exists S > 0 

such that h(Iy) is not a line segment for any y G [0, 5].

Proof. As h(€o) is not a line segment we may choose x, x' G [0,1] such that v = 

L (7z(rr, 0) + hfx', 0)) is not an element of h(fo). Let e = d(y, h(£0)) > 0. Now choose 

5 > 0 small enough so that if u,u' E Q with \\u — u'\\ < 5 then ||h(ti) — h(tt/)ll < 

c/3.

Suppose that 0 < y < 5 and that is a line segment. Since is mid-point 

convex, there exists t G [0,1] such that h(t, y) — ~(h(x,y) + hfxfyf). But then

WHh 0) - v\\ < h(t,O) -

2

2 2

6

“ 3

6

- < 6

3

, x h(x,y) + h(x',y)

+ h(t,y)- - - -

hfx, y) A hfxf y)

contradicting that /z(€0)) = £•

A consequence of this result is that if h : Q —> (j is a homeomorphism and there 

exists a line segment I E Q such that h(ff) is not a line segment, then we may assume 

that both I and h(P) lie in the interiors of their respective sets.

Theorem 3.5. Suppose that 0 a C R2 is compact and that j : AC(Q) -E AC(of 

is an algebra isomorphism with associated homeomorphism h : Q —> cr. If h is C2 

then h maps line segments to line segments.

Proof. Suppose that there exist a, j and h as above such that for some line segment 

£ C Q, /z(^) is not a line segment. We shall show that this leads to a contradiction. 

In order to streamline the proof, a number of simplifications can be made.

By the above remark we can assume that I lies in the interior of Q. Since h is C2, 

h(L) has a tangent at each point and the curve can at least locally be considered as 

the graph of a C2 function of a parametrization of this tangent line. Since h(Jf) is 

not a line segment, one can therefore choose an invertible affine map /3 : R2 —> R2 

such that there is a subsegment £0 of I such that

(1) (/3 o h)(4) = {(s,t(s)) : 0 < s < 1}, and
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(2) t"(s) > 0 for 0 < S < 1.

Now choose an invertible affine map a : R2 —> R2 such that

(1) a(4) = [0,1] x {0} C [0,1] x [-1,1] C int(a(Q)), and

(2) (/3 o h o 1] x [0,1]) lies above (/3 o

We shall write hi = (3 o h o qT1 for the homeomorphism from a(Q) to /3(a), and C 

for the curve (/3 o h)(4)- (See Figure 3.)

Figure 3. The homeomorphism hi : a/Q) —> /3(<j) in the proof of Theorem 3.5.

The proof now mimics that of Theorem 3.1. Let n G N be even. For 0 < k < n, let 

pk = (fo4y)) and let Xk G [0,1] denote the (unique) number such that hi(xk} 0) =

Pk-

Choose en small enough so that for all odd k, the ball B(pk, en) lies beneath the 

line segment pk_i Pk+i- (This is of course possible by the convexity of the function 

t.)

Now choose 0 < 8n < 1 so that if x.y G a(Q) with ||a? —ccz|| < 5n then 

HM^) - hi (a?z) || < en.

For each odd Zo, let pk = hi(xfc, 5) G B(pk, e). Then pk lies above the curve C but 

below the chord pfc_T pk+i- Let Sn — [p0, Pi, Pz, Pi- • • • ,Pn-i>Pn], so tLat as in the 

proof of Theorem 3.1, vf(Sn) = 2.

Consider the map fn : ce(Q) gR defined by

| 1, if y > 4,

ffh y) = < y/Sn, if 0 < y < 3n,

0, if y < 0.

Clearly fn G ACfa(Q)) with ||/nlLCWQ)) = 2. Again define gn : /3(u) —> R by 

9n — fn ° Lf1 to produce a function with IIpOac^)) — n/^- ®UL n°tin£ ^Le 

remarks at the end of Section 2 about the invariance of variation norms under affine 

transformations, we have that for all n, |4n|Lc(/3fo)) — Ill’ll II/nilACfo(Q)) - ^ ||/|| 

which is the required contradiction. 
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Functions mapping line segments to line segments have been studied by various 

authors. We refer the reader to [7] for further details. It is worth noting that such 

maps need not be affine. For example h(z, y) = ((% + 1) / (y + 1), 2y/+ 1)), which 

maps the unit square to the trapezoid with vertices (1, 0), (2, 0), (1,1) and (|, 1), is 

a nonaffine line-segment preserving function.

4. Half-plane-affine maps

Despite the results of the previous section there are some positive statements that 

can be made about when AC(af) and AC(a2) are isomorphic. As we noted earlier, 

this is certainly the case if a2 is the image of (jr under an affine homeomorphism a. 

In this section we weaken this condition on the homeomorphism mapping <7! to a2.

Definition 4.1. A half-plane splitting of R2 is a pair of closed half-planes {Hi, H2} 

whose union is R2 and which only intersect along their shared boundary line.

Definition 4.2. An invertible map a : R2 —> R2 is said to be a half-plane-affine map 

if there exists a half-plane splitting {Hi, H2} of R2 and two affine maps ap, ce2 : R2 —> 

R2 such that a(x) = a fix) whenever x e Hr We shall write a = {cq, a2}H1;/f2-

Any half-plane-affine map is clearly continuous. The assumption of invertibil- 

ity ensures that {<a(Hi), ce(H2)} is a half-plane splitting of R2. We also have the 

following easy fact.

Lemma 4.3. The inverse of a half-plane-affine map is a half-plane-affine map.

Suppose for the remainder of this section that a = {cq, ce2}/y1,h2 is a half-plane- 

affine map.

We shall show below that for such maps BVfifi ~ BVfifif). The main point 

in proving this is showing that given any finite ordered list S of elements of a, 

vf(S) is comparable to vf(a(S')). Heuristically, if the number of times that the 

curve 7s crosses a line 7 is k, then 7a(s) should cross either otfififi or q2(€) at least | 

times. Proving this is a little delicate however because in the case that a segment 

Sj = Xi £Cj+1 has at least one of its endpoints on the line 7, it is possible that Si is 

a crossing segment on 7 but that a(xf) a(aq+1) is not a crossing segment on either 

cq(£) or q2(7).

Lemma 4.4. Let a : R2 —> R2 be a half-plane affine map. Suppose that S — 

[a?0,..., xn] is a finite ordered list of points in R2 and that S = [v0, • • . ,vn] is the 

list of the images of these points under a. Then

|vf(H) < vf(S) < 2vf(S).

Proof. By the previous lemma it suffices to just prove the left-hand inequality.
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Let k = vf(S) and fix a line £ such that vf(S,€) = k. For 0 < i < n - 1 let 

St = Xi and let Si = Vi vi+1. Our aim is to find a correspondence between 

crossing segments of S on £ and crossing segments of S on either ce^) or ce2W-

If •£ = ce(^) is also a line then Si E X(S,£) if and only if §i E X(S,£) and so 

vf(5) > vf(S) which certainly gives the required inequality. This occurs in particular 

if I is parallel to the boundary line between Hi and H2.

If £ is not a line, then aq(T) and ce2(^) do not coincide, and there must exist a 

unique point w E I that lies on the shared boundary of Hi and 7L2.

Suppose that Sj G X(S, €). If Xi and xi+1 lie strictly on opposite sides of £, then 

Vi and Ui+i he strictly on opposite sides of and so §i is a crossing segment for S for 

at least one of aq(£) or ce2(^). The more difficult situation is if one of the endpoints 

of Si lies on £. Referring to Definition 2.1 we have the following possibilities:

(i) f = 0 and Xi E £. Then v0 E £ and hence s0 is a crossing segment of S on at 

least one of cei(£) or ce2(£).

(ii) i > 0, Xi E I and x^i £. Note that in this case s^_i X(S, •£).

Without loss of generality we may label the half-planes so that Xi E Hv. Now 

Si is a crossing segment of S on cei(£) except in the case that v^ E ce^T) (see 

Figure 4). If v^i E cei(€) then, as cei(£) and ce2(£) do not coincide, x^i E H2 

and v^i ce2(^). We must now distinguish the case when xz lies in the interior 

of Hi and the case when Xi lies in the boundary of Hi.

If Xi = w then vz E ce2(€) so since Vj-i ce2(T) we have Si E X{S,a2{£)). 

If Xi w, then (as in Figure 4) Vi-i and Vi lie on opposite sides of ce2(^) and

FIGURE- 4. Mapping of crossing segments in the proof of Lemma 4.4.

Thus, while only one of Sj_i and Si are crossing segments of S on £, at least 

one of Sj-i and Si is a crossing segment of S on either &i(£) or ce2(£).

(iii) i = n — 1, Xi ^ £ and E £. Again we may assume that xn E Hi and hence 

that vn E CEi(^).

If vn_i cei(^) then clearly sn_i E X(S, cei(£)). On the other hand, if 

vn_i E cei(^) then one may argue as in (ii) that sn_i E X(S, ce2(€)). As before 

then, sn_i is a crossing segment of S on at least one of cei(^) or a2(£).
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Let ky and k2 be the number of crossing segments of S on cei (€) and a2(^) respectively. 

Then the above discussion shows that Aq + &2 > k. It follows therefore that vf(5) > | 

as required. D

Theorem 4.5. Let a : R2 —> R2 be a half-plane affine map. Suppose that ay is a 

nonempty compact subset ofP2 and that o2 = <a(cq). Then BV(aA) — BV(a2) and 

AC^-AC^.

Proof. Suppose that a = {cq, <a2}hx,h2 and that A is the boundary line between H\ 

and H2. For f G BV(cq) let / : cq —> R be defined by

/(«(«)) = x E ai-

The first step is to show that f G BVfaA).

By the previous lemma

cvar(/, S) cvar(/, S)

- - -  - -  < 2- - ——— < 2 var f, cq .
vf(S) “ vf(S) - u’ 17

Taking the supremum over all such finite lists S shows that

||/||BV(cr2) < 2 II/IIbv^)

and in particular that f G Let j : BV(cq) -A BV(a2) be defined by

/(/) = /• H is clear that j is a continuous algebra homomorphism. Lemma 4.3 

can now be used to deduce that j is also onto and hence that j is a Banach algebra 

isomorphism.

Suppose that g G CTPP(af). Then j(g) will also be planar on polygonal regions 

(on a neighbourhood) of a2. Indeed j is a bijection from CTPP(af) to CTPPC2) 

and hence j is also a bijection between the closures of these sets, AC (a A and AC(a2A

□

As the example below shows, the factor of 2 in the above proof is necessary.

Example 4.6. Suppose that oy is the nonconvex quadrilateral with vertices at (1, 0), 

(0,4), (—1,0) and (0,2). Note that cq is the image of the closed unit square under 

a half-plane-affine map. Theorem 4.5 then implies that AC(Q) m AC/cq).

Define

/(t, y) = max(l - y, 0), (z, y) G

Then, as f only varies in the y direction, it is clear that H/H^ = 1, that var(/, cq) = 1 

and hence that ||/||By(c71) = 2- Now write / = /1+/2 where/i(z, y) = f(x, y)x[-i,o]AA 

and /2(z,y) = /(z, y)%[o,i](rr)• Note that both A and f2 are in CTPP(cp) C AC/cq) 

and that these functions have disjoint supports.

Suppose now that j : AC(cq) —> AC(Q) is a Banach algebra isomorphism, with 

associated homeomorphism h : (jy Q. Let yi = /(/i), g2 = /(/2) and g = j(f). 

Using Theorem 2.6(1), we can choose points Zi,z2 G Q such that gAzA = 5k£. Let 
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7 denote the line segment joining zx and z2. Then W1^) is a continuous curve in 

(Ji which necessarily passes though some point (0,7) E cii. Let w = be the 

corresponding point on 7. Then g(w ) = Mw) + g2(w) = /i(0,y) + /2(0, ?/) = 0. 

But this implies that cvar(g,7) > 2 and hence var(g,<j2) > 2. By Corollary 2.7 we 

see that j can not be isometric. In particular, this example shows that factor of 2 

that appears in the proof of Theorem 4.5 is necessary.

Remark 4.7. A simple adjustment to the above example, replacing the vertex (0,2) 

with the point (0,0), shows that if T is a closed triangular region in R2, then 

AC(T) ~ ACfQ). Thus isomorphism class does not distinguish between the number 

of vertices in polygonal regions. We shall come back to this issue later in the paper.

5. Locally piecewise affine maps

The results of the previous section can be extended to cover homeomorphisms of 

the plane made up from more than two affine maps.

Let a : R2 —> R2 be an invertible affine map, and let C be a convex n-gon. Then 

a(C) is also a convex n-gon. Denote the sides of C by Si,..., sn. Suppose that 

Xq E int(C). The point cr0 determines a triangulation Zf,... ,Tn of C, where Tj is 

the (closed) triangle with side Sj and vertex cc0. A point yQ E int(a(C)) determines 

a similar triangularization T\,... ,Tn of a(<7), where the numbering is such that 

g(s;-) — The following fact is then clear.

Lemma 5.1. With the notation as above, there is a unique map h : R2 -A R2 such 

that

(1) h(cc) = ce(cc) for x int(C'),

(2) h maps Tj onto Tj, for 1 < j < n.

(3) = h\Tj is affine, for 1 < j < n.

(4) = y0.

We shall say that h is the locally piecewise affine map determined by (C, a, Xq, yof

Figure 5. The locally piecewise affine map h determined by (C*, a, x0, y0).
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It is clear that h is necessarily continuous and invertible. Indeed the following 

result is straightforward.

Lemma 5.2. Let h be the locally piecewise affine map determined by (C,a,x0,y0). 

Then hr1 is the locally piecewise affine map determined by (h(C), cm1, y0, x0).

In the last section we shall repeatedly use the following special case of Lemina 5.1 

applied with a = id, the identity mapping on R2.

Lemma 5.3. Suppose that T and T are two triangles in R2 with vertices a, b, c and 

a, b, c respectively. Suppose that Q is a convex quadrilateral in R2 which contains 

T and T and which has be as one side. Then the locally piecewise affine map 

determined by (Q, id, a, a) maps T onto T and fixes all points outside of Q.

Figure 6. A locally piecewise affine map moving T to T.

Our first aim is to show that for any locally piecewise affine map h, AC {a) ~ 

AC(h(u)).

Lemma 5.4. Suppose that h is a locally piecewise affine map determined by (u, C, x0, y0) 

where C is a convex n-gon. Let S — [w0, Wi,..., wm\ be a list of elements in R2 

and let S = [h(w0), hfwfp ..., h(wm)]. Then

1
— vf (S) < vf (S) < cn vf (S) 

Cn

for some positive constant cn which is independent of S.

Proof. By the previous lemma it suffices to prove either one of the inequalities. For 

notational simplicity, we shall write Si = Wj w^+1, for 0 < i < m — 1 and write 

Vi = for 0 < i < m.

Let Tfo ..., Tn denote the subsets of the plane defined at the start of this section, 

and let To = R2 \ int(C').

Suppose then that vf(S) = k and that is a line such that vf(S,€) = vf(S).

At least one of the regions To,..., Tn has at least Zci = |~crossing segments of 

S' on f with at least one of their endpoints in that region. Suppose that this region 

is Tr. Let K denote the set of indices i such that Si G XfS, and Si has at least one 
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endpoint in Tr. Our aim is to show that each of these crossing segments corresponds 

to a crossing segment of S on one of a finite number of lines. This will require a 

careful consideration of cases.

Let

h = min{d('Ui, h(Tr)) : 0 < i < n and Vi Tr}.

We take the minimum of the empty set to be zero.

Suppose first that 1 < r < n. Then h(Tr) is a triangle. Choose a triangle t with 

sides parallel to those of h(Tr), which contains h(Tr) in its interior, and such that if 

v G T then d(v, h(Tr)) < |. Let and 4 denote the three lines forming the sides 

of T (see Figure 7). From this construction, every segment S{ with i G K either lies 

entirely inside /z(Tr), or else it is a crossing segment for S on at least one of the lines 

4, 4 or 4.

Let 4 denote the line which is the image of I under ar (considered as extended 

to the whole plane).

Figure 7. The construction of 4, and 4-

Suppose then that i G K, and that both Wj and w^+i lie in Tr. Referring to 

Definition 2.1 there are four possibilities:

(i) wx and wi+1 he on strictly opposite sides of £. In this case Vj and vi+1 lie on 

strictly opposite sides of and so Si G X(S,£q)-

(ii) z = 0 and wz G Clearly then G and so 4 G X(S,4)-

(iii) i > 0, Wi G I and I. In this case s^i X(5,€) and either:

(a) Wj_i G Tr. In this case Vi G £o and 4 and hence Si G X(S,£0).

(b) Tr. In this case Si need not be in X(S,4) since might lie on

4. However, 4-1 must be a crossing segment for S on one of the boundary 

lines 4, 4 or 4-

(iv) i = m - 1, Wi g £ and wi+1 G A Again 4 G X(S,4)-
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Suppose next that i E K and that one of w,, and does not lie in Tr. As noted 

above, in this case Sj E X(S,£f) for some j = 1, 2, 3.

At this stage we have shown that if 1 < r < n, then there are at least segments

of S which are crossing segments for at least one of the lines with 0 < j < 4.

Thus, for at least one of these values of vf(S,£j) > (^1-

The remaining case is where r = 0 and so Tr is not a triangle. The proof in this

case is almost identical except that now one must work with lines ., ln chosen 

close to the boundary of h(T0) so that all the endpoints which are not in A

lie inside the smaller n-gon determined by these lines,(jmd the line Zo = aW^fsee 

Figure 8). Every segment Sj — Vi vi+1 with only one endpoint in To lies in X(S,^-) 

for at least one j with 1 < j< n.

Following the proof above one can then show that there are (at least) segments 

of S which are crossing segments for at least one of the lines A, where 0 < J < n, 

and hence vf(S,A,) > for at least one value of j in this range.

Figure 8. Choosing ..., when r = 0 (and n = 5).

In either case then

vf(S) >
ki _ fvf(S)/(n +1)1 > vf(S) 

n + 1 n + 1 ~ (n + I)2

□

The above proof of course shows that cn < (n T I)2. Heuristically we expect that 

cn = n T 1 but we are unable to prove this.

Theorem 5.5. Suppose that a is a nonempty compact subset of the plane, and that h 

is a locally piecewise affine map. ThenBV(a) ~ BV(h(cr)) and AC (a) ~ AC(h(af) 

Proof. For f E BV(a), let f : h(a) —> C be defined by /(h(cr)) = /(cr). Suppose 

that f E BVf) and that S = [v0,..., vm] is a list of points in h(cr). Let S = 
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[w0,..., wm\ C a denote the list of preimages of the points in S. Then, using the 

notation of Lemma 5.4,

cvar(/, S) cvar(/, S) cvar(/, S)

- - - ~- - =- - - - -- -  < on- - ——— < Gn var f.a).
vf(S') vf(5) “ vf(S) - 7

Thus, / is of bounded variation with ||/||bv(/i(<t)) < (1 + Cn) ||/||w(ct). It follows, 

using Lemma 5.2 that the map j : f f is a bounded isomorphism from BV'(cr) 

onto BV

It is clear that j maps CTPP(gj) onto CTPP(Jifaf) and hence that j provides an 

isomorphism from AC (a) onto AC(h(a)). 

6. Polygons and ears

The main result from this section is that given any two simple polygons Pi and P2 

we have that AC (Pi) ~ AC(Pf). The proof requires a nice fact from computational 

geometry called the ‘Two Ears Theorem’ which was proven by Meisters [11].

Given a, b E R2 we shall let a b denote the ‘open’ line segment between a and 

b, that is

a b° = {Ao, + (1 — X)b : O<A<1}.

Let v be a vertex of^olygon P and suppose that a, b are the neighbouring vertices 

to v. We say that v is an ear of P if ab lies entirely in the interior of P.

Theorem 6.1 (Two Ears Theorem). Every simple polygon with more than 3 vertices 

has at least 2 ears.

A simple consequence of the Two Ears Theorem is that it is possible to triangulate 

any polygon. That is, given any polygon P, one may construct a finite family of 

‘disjoint’ triangles {Pn} whose vertices are all vertices of P and whose union equals 

P.

Lemma 6.2. Suppose that v is an ear of a polygon P. Let T = Cavb denote 

the triangle formed by the two sides of P which meet at v and the corresponding 

diagonal ab. Then there exists a convex quadrilateral Q with vertices a, u, b and 

w such that

(1) T \ {a,b} C int(Q),

(2) a u and bu lie in the complement of P, and

(3) a w° and bw he in the interior of P.

Proof. We begin by triangulating P using the standard algorithm of removing one 

ear at a time. We may clearly start by dealing with the ear at v and so T is one 

of the triangles in our triangulation. The diagonal a b must form an edge of two of 

the triangles, namely T, and another which we shall denote by p. One can choose 

w to be any interior point of T-y and this will clearly have property 3. Let m denote
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Figure 9. Lemma 6.2.

the midpoint of a b and let £ denote the median of T that passes through v and m. 

As we shall see below, if we demand that w also lies on £ then this will ensure that 

the quadrilateral Q is convex. (See Figure 10.)

Figure 10. Construction of w.

Finding a suitable point u is slightly more delicate. For small t > 0, u(t) — 

(1 + t)v — tw lies in the complement of P. If au(t) or bu(t) does not lie in the 

complement of P then it must be the case that some vertices of P he in the interior 

of the quadrilateral avbu(t) or on one of the boundary lines au(t) or bu(t). Since 

there can be only finitely many such vertices, by choosing t0 > 0 sufficiently small 

we can ensure that u = u(to) satisfies condition (2).

Property (1) is clear so it remains to check convexity. By the construction, the 

two diagonals of Q will meet at m and clearly m G a b and m G u w°. But by
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Theorem 6.7.9 of [13] a quadrilateral is convex if and only if the diagonals meet at 

a point in the interior of these diagonals, and hence Q is convex. 

Theorem 6.3. Suppose that Pr and P2 are simple polygons. Then AC(Pf) ~ 

AC(P2).

Proof. We shall use induction to prove that the statement

S(n) : if P is any simple n-gon and T is a triangle, then AC'(P) ~ AC(T)

holds for all n > 3.

The statement is true for n — 3 since one can find an affine map between any 

two triangles. Suppose then that n > 3 and that the S(m) is true for all m with 

3 < m < n. Let P be an n-gon with vertices ..., vn. By the Two Ears Theorem, 

there exists an ear Vj. Let TVj be the triangle with vertices at Vj-i, Vj and Vj+i-

Using Lemma 6.2 fix a convex quadrilateral Q with vertices at and tq+1 and 

two additional points u, w chosen so that TVj \ {tq-i, tq+1} lies in the interior of Q 

and so that Vj_i w° and vj+1 w° lie in the interior of P. As Q is convex, the point 

Vj and the midpoint m of Vj-i Vj+1 are both interior points of Q.

Figure 11. The action of h.

Let a denote the identity map on R2, and let h denote the unique locally piecewise 

affine map determined by (Q, ce, Vj, m). This map sends Vj-iVj to rq-im and 

Vj Vj+i to m Vj+i (see Figure 11). All the other edges of P lie in the complement 

of Q and are therefore fixed. It follows therefore that the image of P under h is 

an m-gon for some m < n. By Theorem 5.5, AC(P)  ACfhfPf). But by the 

induction hypothesis, AC(/i(P)) ~ AC(T) for any triangle T and so the proof is 

complete. 
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7. Polygonal regions with holes

The results of the last section have a natural extension to a wider class of regions. 

Let P be a simple polygon in the plane. A set TV is a window in P if it is the 

interior of a polygon P' where P' lies in the interior of P. We shall say that a 

compact set a is a polygonal region of genus n if there exists a simple polygon 

P with n nonoverlapping windows Wi,..., Wn such that

a = P \ (Wl U • • • U TVn)

and write G(cr) = n for the genus of a.

Figure 12. A polygonal region of genus 3.

If oj and a two are polygonal regions of differing genus, then these sets are not 

homeomorphic and hence AC(<7i) In this section we shall show that show

within this class of sets, the isomorphism class of the the corresponding function 

algebras is completely determined by their genus. This is achieved by showing that 

there is always a finite sequence of locally piecewise affine maps whose composition 

sends y w cr and then applying Theorem 5.5. One of the main tools in doing this 

is to show that via such maps, one may ‘move’ triangular windows anywhere within 

any rectangle that contains no other other windows.

Lemma 7.1. Suppose that R is a rectangle and that T = /Rabe and T' = /Ra'b'c' 

are two triangles in the intenor of R. Then there is a continuous bijection h : R2 —> 

R2 such that

(1) h can be written as a composition of finitely many locally piecewise affine 

maps,

(2) h(cc) = x for all x R,

(3) hfiR) = R, and

M h(T) = T'.

Proof. Choose e > 0 such that no point of T or T' lies within distance 2e of the 

boundary of R. We shall call the four interior points of R which lie at distance e 
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along the diagonals from the vertices of R, the e-corner points of R. Fix any three 

of these e-corner points and let To denote the triangle with these points as vertices. 

We shall show that there is a function h satisfying (1), (2) and (3) and such that 

h(T) = To. The same proof of course would construct a corresponding map sending 

T' to To. Since the inverse of a locally piecewise affine map is also locally piecewise 

affine, this produces a finite sequence of locally piecewise affine maps which has 

properties (1) - (4).

The line through b and c splits R into two convex polygons. Let P denote the 

polygon which contains a. At least one of the vertices of F, say tq, is a vertex of R 

not lying on the line through b and c.

Let aj be the e-corner point of R near vy. Using the triangulations of P generated 

by a and by ay, Lemma 5.1 produces a locally piecewise affine map hy which is the 

identity outside of P, and which maps a to ay. Indeed, as T lies entirely in a region 

on which hy is affine, hy maps T to the triangle Aaibc (see Figure 13).

Figure 13. Moving the first vertex in Lemma 7.1.

Consider now the quadrilateral Q with vertices at ay and the three vertices of R 

other than iq. Note that the position of ay ensures that Q is convex, and hence 

that the line through ay and c splits Q into two convex polygons. Let Py denote the 

polygon containing b. One of the vertices of Q adjacent to ay (which is therefore 

also a vertex of F) must he in Py. Denote this vertex by and let by be the e-corner 

point of R near v2- (Note that by must he in Py.) Applying Lemma 5.1 again we 

produce a locally piecewise affine map h2 which is the identity outside of Q and 

which maps Aaybc onto AaybyC.

Finally, consider the convex quadrilateral Qy with vertices ay, by and the two 

remaining vertices of R. Let Cy be the e-corner point of R near one of these remaining 

vertices of R. Noting that c and Cy are both in the interior of Qy we can find a 

locally piecewise affine map h$ which is the identity outside of Qy and which maps 

AaybyC onto /PaybyCy.
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The vertices of this final triangle are all e-corner points. With one or two further 

applications of locally piecewise affine maps we can arrange that the image of T 

under this composition of maps is To. 

Theorem 7.2. Suppose that and a2 are polygonal regions of genus n-^ and n2. 

Then AC(af) ~ AC{a2) if and only if = n2.

Proof. As noted above it only remains to show the ‘if’ part of the theorem. Fix a 

genus n. Let r denote the polygonal region of genus n

r = T\(T1U---UTn)

where T is the triangle with vertices at (0, —1), (1, 0) and (0,1) and, for k = 1,.. ., n, 

the window Tn is the triangle with vertices at (w^,0), (y^,0) and

We shall proceed by showing that if <r is any polygonal regions of genus n, then 

AC(ct) ~ ACff

Figure 14. Reducing the number of edges in a window.

Suppose then that

u = P\(W1U---UWn).

The image of a under any locally piecewise affine map is also a polygonal region of 

genus n and as before, the isomorphism class of the corresponding AC function space 

is preserved under such maps. By applying a finite sequence of locally piecewise 

affine maps as in the proof of Theorem 6.3 we may reduce the number of vertices 

in P to 3. Note that the effect of these maps might be to increase the number of 

vertices in some of the windows. By applying a suitable affine map then, we see 

that AC'(ct) ~ AC {a') where

and where Vi,..., Vn are windows in T.
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The same algorithm can now be used to reduce the windows 14,..., Vn to triangles. 

Specifically, suppose that V is a window in T with at least 4 vertices Vi,..., vk. By 

the Two Ears Theorem we can choose an ear Vj in V. Since o' can be triangulated, 

the proof of Theorem 6.2 allows us to choose a convex quadrilateral Q containing 

the triangular region VjVj+1 but not intersecting any of the other windows of 

o'. Applying a suitable locally piecewise affine map h which fixes the complement 

of Q and maps Vj to the midpoint of we reduce the number of vertices in

V while leaving all the other windows unchanged. (See Figure 14.)

It just remains to prove that if

a' = T \ (W U • • • U K)

where each window is a triangle, then we can apply a finite sequence of locally 

piecewise affine maps to move the triangles {14} to the corresponding triangles {Tk} 

in the description of our standard set r. Our main tool is Lemma 7.1 which allows us 

to move a triangle anywhere within the interior of rectangular region while leaving 

everything outside the rectangle undisturbed. Although in concrete examples it is 

easy to efficiently move the triangles to their final position, for completeness we shall 

now give a general algorithm shows that this is always possible.

Note that it follows from Lemma 5.3 that one may always move a vertex of a 

triangle to any point in the interior of that triangle, or, by applying two such moves, 

shrink any triangle towards one of its vertices.

We shall use the lexicographical ordering of points in the plane to choose the 

smallest vertex (xk,yk) for each of the triangles Vk.

The steps in the algorithm are as follows.

(1) Label the triangles so that aq < x^ < • • • < xn.

(2) Starting from the right, shrink as many triangles (toward one vertex say) as 

is necessary to ensure that the rr-coordinates of the smallest vertex of each 

of the triangles are distinct.

(3) Starting from the left, shrink each triangle towards its smallest vertex. If

the triangles are shrunk to a sufficiently small size then the projections of 

these triangles onto the rr-axis will form disjoint intervals Indeed,

after sufficient shrinking the triangles will sit within the interiors of disjoint 

rectangles Rk as in Figure 15.

(4) Using Lemma 7.1 use a sequence of locally piecewise affine maps to move the 

Zcth triangle (within rectangle Rk to one with vertices at (flfc,0), (Lt, 0) and 

(ttfc, e^) where ek is chosen small enough so that this triangle sits in Rk

(5) It remains to move the triangles to the correct positions to form the stan

dard configuration t. Choose 5 < min(ai, ^). Starting from the left, move 

each triangle in turn (using Lemma 7.1) so that it has vertices (^%^-m 0), 

(»0) and (»,£).
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(6) Now starting from the right, one can move the fc-th triangle to the standard 

triangle T^.

Since we have only applied a finite sequence of locally piecewise affine maps, AC(cd) ~ 

AC(t\ and this completes the proof.

Figure 15. Steps in the algorithm to map o' to r: (2) making the 

smallest vertices distinct; (3) shrinking the triangles so they have dis

joint projections on the x-axis.

□
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