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Inverse-closed Banach subalgebras of
higher-dimensional non-commutative tori

by

KARLHEINZ GROCHENIG (Wien) and MICHAEL LEINERT (Heidelberg)

Abstract. We give a systematic construction of inverse-closed (Banach) subalgebras
in general higher-dimensional non-commutative tori.

1. Introduction. Let A C B be two algebras with common identity.
Then A is called inverse-closed in B if a € A and a~! € B implies that
a~! € A. This property is a generalization of Wiener’s Lemma for abso-
lutely convergent Fourier series and occurs abundantly in many branches of
mathematical analysis. The range of applications covers numerical analy-
sis, pseudodifferential operators, frame theory, and, last but not least, non-
commutative tori. See [8] for a survey of many versions of Wiener’s Lemma
and applications of inverse-closedness.

In this paper we study subalgebras of general non-commutative tori.
Non-commutative tori are the founding examples of non-commutative ge-
ometry [4, 20], and are defined as the universal C*-algebras generated by
a finite number of unitary elements U; with commutation relations of the
form U;Uy = 0;3UxU; for j,k =1,...,n, and 6;; € C. In non-commutative
geometry inverse-closed subalgebras of non-commutative tori play an im-
portant role: on the one hand, as “smooth non-commutative manifolds”,
and on the other hand, in the K-theory of C*-algebras. Perhaps the main
result concerning inverse-closed subalgebras of non-commutative tori is the
density theorem. It states that the K-groups of a non-commutative torus
and of all its dense, inverse-closed subalgebras are isomorphic. Similarly the
stable rank of a dense, inverse-closed subalgebra coincides with the stable
rank of the ambient algebra [2].
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Usually the existence of an inverse-closed subalgebra is taken for granted
and is the starting point for the theory. Also, mostly Fréchet subalgebras are
considered rather than Banach subalgebras (because Fréchet algebras model
“smooth” non-commutative tori). Our objective is the systematic construc-
tion of Banach subalgebras of non-commutative tori in higher dimensions.
Indeed, we will characterize all those inverse-closed Banach subalgebras of
the form ¢1(Z™), where v is a weight function on Z". By choosing weights
of subexponential growth, we even construct a Banach subalgebra that is
contained in the ordinary smooth non-commutative torus. For certain non-
commutative tori with an even number of generators these results were al-
ready obtained in [9]. An alternative proof for the case of two generators
was subsequently given in [21]. The extension of our results was motivated
by a question of N. C. Phillips who asked us whether the results in [9] also
hold for arbitrary non-commutative tori in higher dimensions.

In the last part we investigate briefly the simplicity of the Banach sub-
algebras of non-commutative tori in terms of the parameters that define
the commutation relations. As a consequence we obtain a new proof of the
well-known characterization of the simplicity of the non-commutative tori.

Our methods are drawn from abstract harmonic analysis, in particu-
lar the investigation of projective representations and twisted convolution
algebras in the school of Leptin and Ludwig.

Let us mention that in some areas an inverse-closed subalgebra is also
called a spectral subalgebra, a local subalgebra, or a full algebra. If A is
inverse-closed in B, then A is called spectrally invariant in B or (under
standard conditions) invariant under holomorphic calculus; (A, B) is called
a Wiener pair.

2. Higher-dimensional non-commutative tori. We first give a de-
scription of non-commutative tori in higher dimensions and explain the link
to harmonic analysis.

Let T denote the unit circle. Let Uy, . .., U, be unitary symbols satisfying
the commutation relations

U,;Uy = 03U,

where Ojk € T. Since UjUk = OijkUj = jkeijjUk, we have ekj = Ujk and
thus the matrix 6 = (6;x);k=1,.n is hermitean.

The non-commutative torus C*() is the universal C*-algebra generated
by the unitaries Uj, j = 1,...,n. To obtain a concrete and workable repre-
sentation, we interpret C*(6) as a twisted group C*-algebra of Z™.

Using multi-index notation with U' = U{l ..Ul for 1 € Z", we get

(2:1) U'U™ = o(l,m)U™  for I,m € Z",
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where o(l,m) € T. In fact, repeated application of the commutation rules
yields the expression
(2.2)

ot = (o) ([Tom) ™ - (1) = 1T ek
Jj=1 j=1 1<j<k<n

Since U? = U?---U? =1, (2.1) implies o(0,m) = o(m,0) = 1, which is
consistent with (2.2). We also have o(—l,m) = o(l,—m) = o(l,m).
Since we require the multiplication to be associative, we have

(2.3) a(l,m)a(l +m,p) =o(l,m+p)o(m,p) forl,m,peZ".
For f, g € £1(Z™) we define the twisted convolution f fjp g or simply f 4 g by
flog@) =Y fy y)oly,z—vy), zeZ"
yeL™

The involution f — f* is defined by f*(z) = o(z,—z) f(—z) for x € Z".
For the special case of “Dirac” functions ¢, = xy,} we have

(2.4) oy b0, =0(y,2)0y4. and 0y =0(~y,y)0—y, y,z€Z"
We also note that

Oy 5; =a(y,~y)o(~y,y)do = do

and 4y b 6y = o(~y,y)o(~y,y)do = do, S0 Jy is unitary for every y € Z".

Then (¢*(Z™), 4, *) is a Banach x-algebra, which we denote by ¢1(Z",6).
This fact can be checked directly, but it also follows from the reasoning
below.

Following [22] and [16], we define a central extension G of T by Z" as
follows. Let G = {(z,¢) : z € Z", £ € T} with multiplication (z,£)(y,n) =
(x + y,0(z,y)én). Then G is a nilpotent group with neutral element e =
(0,1) and inverse (z,£)! = (~z,0(x, —x)&). The Haar measure on G is
o fla)da =3 o §p f(x,€) d€, and the group convolution % on G is de-
fined with respect to this measure.

For f € £1(Z™) we define f° € LY(G) by f°(z,£) = f(z)€. This extension
satisfies the following properties.

LEMMA 2.1. The mapping o : £1(Z") — L*(G) is an isometric *x-homo-
morphism from £X(Z",0) into L'(G).

Proof. We have
I = § 15°(a)lda = Y~ §If@)Elde = >~ |f()] = lI£lls,
G

z€Z" T TEL™
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so f + f°is an isometry. This map is compatible with the involution, since
(f)°(z,€) = f*(2)€ = o(z, —z) f(—x)€
=3 fo(_x’ 0'(.’1), _:L’)é) = fo((l,, 5)—1) = (fo)*(xag)'
For the homomorphism property we first write

(f19)°(=.6) = (Fhg) (@)=Y fy)glz —yo(y,z - y)E.

yeL™

On the other hand, from
(v, m) N (z,8) = (—y,0(y, —y)n)(z,€) = (z — y, o (y, —y)o(~y, z))

we obtain

(f°x9°)(=,8) = > _ | 2y, mg°((y,m) (2, €)) dn
y T
=V rwmg(x - y)eno(y, —y)o(—y, z) dn.
y T

Using (2.3) with (I,m,p) = (y,—y,z) and o(0,z) = 1, we have

a(y,—y)o(0,z) = oy, —y + z)o(-y, z),
or o(y, —y)o(—y,z) = o(y,z — y). Comparing the formulas, we see that
(fhg)=r"xg" =
We may therefore think of £}(Z",6) as a closed x-subalgebra of L}(G).
In particular, it is a Banach *-algebra. Its enveloping C*-algebra is the
non-commutative torus C*(0).

To obtain a concrete realization of C*(#), we consider the regular repre-
sentation A of £}(Z", ) on ¢*(Z) defined by

Mflg=fleg for f el (Z"), ge ().
This representation is faithful, and the closure of A(¢!) with respect to the
operator norm is a C*-algebra C. By a special case of [12, Satz 6], C*(6) is

isometrically isomorphic to C. From now on, we will therefore not distinguish
between the abstract algebra C*(6) and its concrete realization C.

3. Inverse-closed subalgebras of C*(6). Next we construct a family
of inverse-closed Banach subalgebras of the non-commutative torus C*(6).
This construction relies on two important results in Banach algebra theory
and abstract harmonic analysis.

First recall that a Banach x-algebra A is symmetric if the spectrum of
every positive element is positive, i.e., c(a*a) C [0,00) for all a € A. The
connection between symmetry and inverse-closedness is folklore and implicit
in many proofs of symmetry [10, 11, 13, 14]. The following proposition is
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contained in Palmer’s book [17, Thm. 11.4.1]. (Since the regular represen-
tation of ¢1(Z", ) is faithful and ¢!(Z",6) is semisimple, we may quote a
formulation that is already adapted to semisimple Banach algebras.)

PROPOSITION 3.1. A unital semisimple Banach *-algebra A is symmet-
ric if and only if it is inverse-closed in its enveloping C*-algebra.

Our second ingredient is a fundamental result of Ludwig [14].
PROPOSITION 3.2. If G is a nilpotent group, then L*(G) is symmetric.

By combining the explicit construction of non-commutative tori with
these results, we obtain a fundamental inverse-closed subalgebra of C*(6).

THEOREM 3.3. The Banach x-algebra £*(Z", 0) is inverse-closed in C*(0).

Proof. By construction, the central extension G of Z" is nilpotent, and
consequently L'(G) is symmetric by Ludwig’s result. Lemma 2.1 identifies
(Y(Z",0) with a closed *-subalgebra of L!(G), and thus ¢}(Z™,0) is also a
symmetric Banach -algebra. By Proposition 3.1 this means that ¢}(Z", )
is inverse-closed in C*(#), as claimed. m

REMARK 3.4. For even dimension and a special representation of the
generators of C*(#) by phase-space shifts, Theorem 3.3 was proved in [9]
when solving a problem in time-frequency analysis. An earlier result is con-
tained in [1]. See also [15] and [7, Ch. 13] for connections with time-frequency
analysis.

For the special case of two generators and irrational 6 an elegant al-
ternative proof of Theorem 3.3 was obtained by Rosenberg [21]. Whereas
our approach yields the symmetry by identifying ¢!(Z,0) with a closed
x-subalgebra of a symmetric algebra (given by L' of a nilpotent group),
[21] uses the fact that £}(Z,6) can be interpreted as a *-quotient of a sym-
metric algebra. Undoubtedly, Rosenberg’s proof can also be generalized to
arbitrary non-commutative tori, but we found the approach in [9] more ac-
cessible.

To generate more examples of inverse-closed subalgebras of C*(6), we
introduce weighted ¢!-algebras.

Let v be a submultiplicative and symmetric weight function on Z", i.e.,
v satisfies the conditions

v(z+y) <v(z)v(y) and wv(—z)=wv(z) forall z,yec Z",

and let £1(Z") be the corresponding weighted ¢'-space with norm ||f||nx =
| foll1. The pointwise inequality |(f i g)(x)| < (If| * |g|)(x) for all z € 2"
shows that (£3(Z"), bp) is a Banach algebra, which we denote £1(Z", ). Since
v is symmetric, £2(Z™, 6) is a x-subalgebra of £}(Z",6).
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The next proposition characterizes those submultiplicative symmetric
weights for which £1(Z", 0) is inverse-closed in C*(4).

PROPOSITION 3.5. The Banach algebra ¢1(Z",0) is inverse-closed in
C*(0) if and only if v satisfies the Gelfand—-Raikov-Shilov condition (GRS-
condition)

lim v(mz)Y™ =1 for allz € Z".
m—r0o0

Proof. Assume first that v satisfies the GRS-condition. Then we may
extend v to a weight on G by setting w(z, &) = v(z) forallz € Z", £ € T. The
extended weight w satisfies the GRS-condition on G, so the weighted version
of Ludwig’s Theorem, as proved in [6, Theorems 1.3 and 3.4], implies that
LL(G) is symmetric. Since obviously || £°|| ry@) = [Iflle, Lemma 2.1 shows
that £1(Z",6) can be identified with a closed subalgebra of L.(G) and thus is
also symmetric. Consequently, by Proposition 3.1, £1(Z", §) is inverse-closed
in its enveloping C*-algebra. To see that this C*-algebra is C*(), it suffices
to note that £1(Z™,0) is dense in £}(Z",6) and every x-representation 7 of
¢1(Z™, 6) on a Hilbert space can be extended to £*(Z™, ). The latter follows
from the fact that m is completely determined by the 7(d,), z € Z", and
those operators are unitary, so @(f) = > czn f(@)7(62), f € £1(Z™), is the
desired extension of 7 to a *-representation of £*(Z",6).

Conversely, assume that v violates the GRS-condition. This means that
there exists an z € Z"™ such that lim,,_,c v(mz)/™ > 1. Since by (2.4) the
mth power of §, is of the form ¢, 0, With |c,,| = 1, the spectral radius of
65 in' (TP ,0) &

oz )(02) = 1M llemOmelyl (7 gy = lim o(ma)!/™ > 1

On the other hand, since &, is unitary in £1(Z", ), it is also unitary in C*(6).
Consequently, the spectral radius of ¢, in C*(#) is 1. Therefore the spectrum
of 8, in £L(Z™,0) cannot be equal to the spectrum of é, in C*(#), and so
21(Z", 0) is not inverse-closed in C*(6). =

REMARK 3.6. A non-spectral subalgebra of the irrational rotation al-
gebra (the non-commutative torus with two generators) and its simplicity
were first discussed by Schweitzer [23].

Proposition 3.5 provides an abundance of examples of inverse-closed Ba-
nach subalgebras of a non-commutative torus in higher dimensions. By tak-
ing intersections of weighted ¢'-algebras, one may now construct inverse-
closed Fréchet subalgebras of C*(#). In particular, fix v(z) = 1+ |z for
some norm | - ] on Z™ and set

(3.1) S(Z",0) =) (2", 0)={f €21(Z"): |f(z)] = Ol=|~*) Vs 2 0}.

s>0
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Then S(Z", 0) consists of all rapidly decreasing sequences and coincides with
the usual smooth non-commutative torus. Since an arbitrary intersection
of inverse-closed subalgebras is again inverse-closed, S(Z",#) is an inverse-
closed Fréchet subalgebra of the non-commutative torus C*(6). This result
goes back to Connes [3].

Proposition 3.5 also yields inverse-closed subalgebras of C*(6) that are
even smaller than S(Z™,6). For this, fix a subexponential weight v(z) =
edl” with @ > 0 and 0 < b < 1. Then v satisfies the GRS-condition, and
thus £1(Z™,6) is inverse-closed in C*(6). On the other hand, £1(Z",0) is a
Banach subalgebra of the smooth non-commutative torus S(Z",6). In the
language of non-commutative geometry, one might say that £2(Z", 6) consists
of “ultra-smooth” elements of C*(6).

4. Simplicity. The construction of inverse-closed subalgebras of non-
commutative tori is completely independent of the fine structure of these
tori. In particular, the simplicity of £*(Z",#) is not related to its spectral
properties.

In this section we treat the question of when the twisted ¢!-algebra
¢Y(Z", 0) is simple. Making use of the symmetry of £1(Z", 6), one can derive
Theorem 4.3 below from the characterization of the simplicity of higher-
dimensional non-commutative tori C*(¢) in [18], but one has to go back to
[24] and [5] for its proof. We offer a simplified proof that works directly for
¢4(Z",0), from which the known result about C*(6) follows. Our proof for
the twisted ¢'-algebras is fairly elementary, but its idea is probably old.

Let 0, m € Z™, denote the “Dirac” functionson Z", and e;,j = 1,...,n,
the standard basis of Z". Then &y, is central in ¢*(Z",#), if and only if
Om lig Oe; = e, b O for 5 =1,...,n. Since

Om §0e; = o(m, €;)0mie; = GZL; . O;rjjf; Omte;
and ;

5ej 0 6m = 0‘(6]', m)5m+ej = 9;711 S 9;?]]__; 5m+ej7
the following conditions are equivalent:

(1) &m is central in £1(Z", 0).

(i) o(m,e;) = ole;,m) for j =1y, ..,n.
(i) TIj_, 6 =1for k=1,...,n.

If 9 = (Y,x) is a (non-unique) skew-symmetric real matrix with e>ix = g,
then (iii) means that Z;-l:l mj¥j, € Z for k =1,...,n. So, if we denote the
skew-symmetric bilinear form (m, 1) — 9(I,m) = mT 9l by 9 again, a fourth
equivalent property is

(iv) 9(l,m) € Z for all | € Z".
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DEFINITION 4.1. A cocycle o is called degenerate if there exists a non-
zero m € Z" satisfying one of the equivalent conditions (i)—(iv). Otherwise
o is called non-degenerate.

We note that o can be degenerate even if ¢ is non-degenerate in the
sense of linear algebra.

REMARK 4.2. It is well known that a unital Banach algebra 4 with
non-trivial center is not simple. For if the center Z is non-trivial, i.e., its
dimension is at least two, then it contains an element a that is not invertible
in Z by the Gelfand—Mazur Theorem. Since Z is inverse-closed in A, we see
that a is not invertible in A. Consequently, the generated ideal a A = Aa is
a proper two-sided ideal, and so is its closure a.4. Thus A is not simple.

The following theorem characterizes the simplicity of twisted ¢!-algebras.

THEOREM 4.3. Let v be an arbitrary, submultiplicative weight function
on Z™ (v need not satisfy the GRS-condition). Then the algebra £L(Z™,0) is
simple if and only if the cocycle o is non-degenerate.

Proof. If o is degenerate, then ¢.(Z", ) has a non-trivial center and is
not simple by Remark 4.2.

Now suppose that o is non-degenerate. For each j € {1,...,n} the ele-
ment J.; is unitary, and its adjoint is o(—e;, e;)d—;. For arbitrary z € Z"
and k € N we have

(62,18, 455 = Ba,
for some 3, € T. More precisely, 3, = 1 if and only if 6, commutes with J; .
We denote the “centralizer” of d; by

Cj={y € Z": 8, hbe; = b, 18y}.

Now let I be a (closed) two-sided ideal of £(Z",0) and f = >, cyn 00z
€ I C ¢X(Z™,0). We consider the behavior of the averages

P b ey k i A
n(f)= S0k = 3 az(azﬁz i

k=1 €T k=1
If & € O, then m 1350 BE =1: if & ¢ C5f (hen m~1 37, B¥ converges
to zero for m — oo. Using dominated convergence, we conclude that

lim Jn(f) = ) aabe = fxc,

:EGCj :
with convergence in the ¢£1-norm. For f € I, this means that also fxc; € I.
Since this is true for all j =1,...,n, we f - H;‘:l Xc; = an;;le el
Since o is non-degenerate, we must have ﬂ;‘zl C; = {0} and thus f(0)do

€ I. Either I = ¢£1(Z"™,0) or I is a proper ideal and f(0) = 0. By applying
the argument to &, b f € I for every z € Z", we find that (. § f)(0) =
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o(z,—z) f(—z) = 0, so f(z) = 0 for all z € Z". Consequently, either I =
£1(2",9) or I = {0}, and thus £1(Z",9) is simple. m

REMARK 4.4. We may also obtain an alternative proof of the well-

known C*-analogue of Theorem 4.3. The above proof works for C*(0) as
well, because the finitely supported functions are dense in C*() and the
inner automorphisms are also isometric in the C*(6)-norm.
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