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Inverse-closed Banach subalgebras of 

higher-dimensional non-commutative tori

by

Karlheinz Grochenig (Wien) and Michael Leinert (Heidelberg)

Abstract. We give a systematic construction of inverse-closed (Banach) subalgebras 

in general higher-dimensional non-commutative tori.

1. Introduction. Let A C 13 be two algebras with common identity. 

Then A is called inverse-closed in 13 if a G A and a-1 G 13 implies that 

a-1 G A. This property is a generalization of Wiener’s Lemma for abso

lutely convergent Fourier series and occurs abundantly in many branches of 

mathematical analysis. The range of applications covers numerical analy

sis, pseudodifferential operators, frame theory, and, last but not least, non- 

commutative tori. See [8] for a survey of many versions of Wiener’s Lemma 

and applications of inverse-closedness.

In this paper we study subalgebras of general non-commutative tori. 

Non-commutative tori are the founding examples of non-commutative ge

ometry [4, 20], and are defined as the universal C*-algebras generated by 

a finite number of unitary elements Uj with commutation relations of the 

form UjUk — OjkUkUj for j, k = 1,..., n, and Ojk G C. In non-commutative 

geometry inverse-closed subalgebras of non-commutative tori play an im

portant role: on the one hand, as “smooth non-commutative manifolds”, 

and on the other hand, in the K-theory of C*-algebras. Perhaps the main 

result concerning inverse-closed subalgebras of non-commutative tori is the 

density theorem. It states that the K-groups of a non-commutative torus 

and of all its dense, inverse-closed subalgebras are isomorphic. Similarly the 

stable rank of a dense, inverse-closed subalgebra coincides with the stable 

rank of the ambient algebra [2].
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Usually the existence of an inverse-closed subalgebra is taken for granted 

and is the starting point for the theory. Also, mostly Frechet subalgebras are 

considered rather than Banach subalgebras (because Frechet algebras model 

“smooth” non-commutative tori). Our objective is the systematic construc

tion of Banach subalgebras of non-commutative tori in higher dimensions. 

Indeed, we will characterize all those inverse-closed Banach subalgebras of 

the form Lj,(Zn), where v is a weight function on Zn. By choosing weights 

of subexponential growth, we even construct a Banach subalgebra that is 

contained in the ordinary smooth non-commutative torus. For certain non- 

commutative tori with an even number of generators these results were al

ready obtained in [9]. An alternative proof for the case of two generators 

was subsequently given in [21]. The extension of our results was motivated 

by a question of N. C. Phillips who asked us whether the results in [9] also 

hold for arbitrary non-commutative tori in higher dimensions.

In the last part we investigate briefly the simplicity of the Banach sub

algebras of non-commutative tori in terms of the parameters that define 

the commutation relations. As a consequence we obtain a new proof of the 

well-known characterization of the simplicity of the non-commutative tori.

Our methods are drawn from abstract harmonic analysis, in particu

lar the investigation of projective representations and twisted convolution 

algebras in the school of Leptin and Ludwig.

Let us mention that in some areas an inverse-closed subalgebra is also 

called a spectral subalgebra, a local subalgebra, or a full algebra. If A is 

inverse-closed in 13, then A is called spectrally invariant in 13 or (under 

standard conditions) invariant under holomorphic calculus; (A, 13} is called 

a Wiener pair. 2

2. Higher-dimensional non-commutative tori. We first give a de

scription of non-commutative tori in higher dimensions and explain the link 

to harmonic analysis.

Let T denote the unit circle. Let U\,..., Un be unitary symbols satisfying 

the commutation relations

U? tfy — OjkUk Uj, 

where 0jk G T. Since UjUk = OjkUkUj = OjkOkjUjUk, we have Okj — Ojk aRd 

thus the matrix 3 — (3jk}j,k=i,...,n is hermitean.

The non-commutative torus C*(3} is the universal C*-algebra generated 

by the unitaries Uj, j — 1,... ,n. To obtain a concrete and workable repre

sentation, we interpret C*(3} as a twisted group C*-algebra of Zn.

Using multi-index notation with Ul — ■ ■ • U^1 for I 6 Zn, we get

(2.1) UlUm = a(l, rn}Ul+m for I, m 6 Zn,



Inverse-closed, subalgebras of non-commutative tori 51

where cr(Z,m) G T. In fact, repeated application of the commutation rules 

yields the expression

(2.2)

n— 1 , n—2 , 1 ,
-)=(n c)"(n cu)) "_1 ■ ■ • (n c)2 = n ■ 

J=1 j—1 j=l

Since U° = U® • • • U® — I, (2.1) implies cr(0,m) = <j(m, 0) = 1, which is 

consistent with (2.2). We also have cr(—l,m) = cr(Z, —m) — cr(Z,m).

Since we require the multiplication to be associative, we have

(2.3) u(Z,m)u(Z + m,p) = a(Z,m+p)a(m,p) for Z, m,p G Zn.

For f,gE £1(Z77') we define the twisted convolution f g or simply f tj g by

f gW = - y) <?(&, x G Zn.

yGZn

The involution f f—> /* is defined by /*(rr) = a(x, — x) f(—x) for x G Zn. 

For the special case of “Dirac” functions 6y = X{y} we have

(2.4) 6y t] 6Z = a(y, z)6y+z and 5* = a(-y, y)6-y, y,zEln.

We also note that

Sy\\6y = -y)a(-y, y)60 = 60

and 5*\\6y = cr^—y, y^af—y, y)fio = <5q, so 6y is unitary for every y G Zn.

Then (£1(Zn), , *) is a Banach *-algebra, which we denote by £1(Z”, 6). 

This fact can be checked directly, but it also follows from the reasoning 

below.

Following [22] and [16], we define a central extension G of T by Zn as 

follows. Let G = {(z,£) : x G Zn, £ G T} with multiplication (&,£)(?/, ??) = 

(x + //, cr(x, y)frf). Then G is a nilpotent group with neutral element e = 

(0,1) and inverse (z,£)-1 = (—x, a(x, — z)£). The Haar measure on G is 

\Gf(a)da — anc^ the group convolution * on G is de

fined with respect to this measure.

For f e ^(Zn) we define f° G L1(G?) by /°(x,^) = /(x)f. This extension 

satisfies the following properties.

Lemma 2.1. The mapping o : £1(Zn) —» L1(G) is an isometric ^homo

morphism from £1(Zn, 6) into L1(G).

Proof. We have

lirili = \\f°(a)\da= £ j|/«|de= £ |/M| =

G xGZn T a;GZn 
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so f f° is an isometry. This map is compatible with the involution, since 

cr m

= f°(-x,a(x,-x)& = T^WCF1) = (/°)*(a;,f).

For the homomorphism property we first write

(/ h g)°(x, £) = (/ h ? = 22 f(yMx - y)<r(y,x - ?/)?• 

y£Zn

On the other hand, from

(t/,77)-1(z,£) = (~y,(r(y, -y)g)(x^) = (x - y, £fj<j(y, -y)cr(-y, x)) 

we obtain

= ^2\f°(y,'n)go((y,y')~\x,^dy

y T

= 22 S f^g(x - s/)?^(z/> -yM~y, *) dy. 

y T

Using (2.3) with (Z,m,p) = (y, — y,x) and cr(0,z) = 1, we have

^(z/, “Z/HO, x) = a(y, —y + x}cr(-y, x},

or ct(t/, — 7/)cr(—?/, x) — cr(y,x — y). Comparing the formulas, we see that

(/t| <z)° = ■

We may therefore think of •£1(Zn,^) as a closed *-subalgebra of L1(G). 

In particular, it is a Banach *-algebra. Its enveloping C*-algebra is the 

non-commutative torus C*(0).

To obtain a concrete realization of C*(0), we consider the regular repre

sentation A of U(Zn,$) on ^2(Z) defined by

A(/)<7 = f tie 9 for / € ^(Z»), g € €2(Zn).

This representation is faithful, and the closure of A(U) with respect to the 

operator norm is a C*-algebra C. By a special case of [12, Satz 6], C*(0) is 

isometrically isomorphic to C. From now on, we will therefore not distinguish 

between the abstract algebra C*(0) and its concrete realization C.

3. Inverse-closed subalgebras of C*(^). Next we construct a family 

of inverse-closed Banach subalgebras of the non-commutative torus C*(0). 

This construction relies on two important results in Banach algebra theory 

and abstract harmonic analysis.

First recall that a Banach *-algebra A is symmetric if the spectrum of 

every positive element is positive, i.e., cr(n*a) C [0,oo) for all a G A. The 

connection between symmetry and inverse-closedness is folklore and implicit 

in many proofs of symmetry [10, 11, 13, 14]. The following proposition is 
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contained in Palmer’s book [17, Thm. 11.4.1]. (Since the regular represen

tation of AfZn,0) is faithful and £x(Zn,0) is semisimple, we may quote a 

formulation that is already adapted to semisimple Banach algebras.)

Proposition 3.1. A unital semisimple Banach ^-algebra A is symmet

ric if and only if it is inverse-closed in its enveloping C*-algebra.

Our second ingredient is a fundamental result of Ludwig [14].

Proposition 3.2. If G is a nilpotent group, then L1(Gr) is symmetric.

By combining the explicit construction of non-commutative tori with 

these results, we obtain a fundamental inverse-closed subalgebra of C*(0f

Theorem 3.3. The Banach *-algebra AIfTP, 0) is inverse-closed in C*(6).

Proof. By construction, the central extension G of Zn is nilpotent, and 

consequently L1(G) is symmetric by Ludwig’s result. Lemma 2.1 identifies 

£1(Zn,,0) with a closed *-subalgebra of LX(G), and thus ^1(Zn,0) is also a 

symmetric Banach *-algebra. By Proposition 3.1 this means that A(Zn,0) 

is inverse-closed in C*(0), as claimed. ■

Remark 3.4. For even dimension and a special representation of the 

generators of C*(0) by phase-space shifts, Theorem 3.3 was proved in [9] 

when solving a problem in time-frequency analysis. An earlier result is con

tained in [1]. See also [15] and [7, Ch. 13] for connections with time-frequency 

analysis.

For the special case of two generators and irrational 0 an elegant al

ternative proof of Theorem 3.3 was obtained by Rosenberg [21], Whereas 

our approach yields the symmetry by identifying ^1(Z,0) with a closed 

*-subalgebra of a symmetric algebra (given by L1 of a nilpotent group), 

[21] uses the fact that C(Z, 0) can be interpreted as a *-quotient of a sym

metric algebra. Undoubtedly, Rosenberg’s proof can also be generalized to 

arbitrary non-commutative tori, but we found the approach in [9] more ac

cessible.

To generate more examples of inverse-closed subalgebras of C*(0), we 

introduce weighted ^-algebras.

Let v be a submultiplicative and symmetric weight function on Zn, i.e., 

v satisfies the conditions

v(x + y) < v(x)vfy) and v(—x) = v(x) for all x, y 6 Zn, 

and let ^(Zn) be the corresponding weighted C-space with norm ||/||£i = 

||/v||i. The pointwise inequality \(f tjg) g)(z)| < (\f\ * |p|)(a?) x Zn 

shows that (^(Zn), ^) is a Banach algebra, which we denote £^(Zn, Of Since 

v is symmetric, ^(Zn, 0) is a *-subalgebra of £1(Zn, Of
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The next proposition characterizes those submultiplicative symmetric 

weights for which £i(Zn,0) is inverse-closed in (7*(0).

Proposition 3.5. The Banach algebra £l(Zn,0) is inverse-closed in 

C*(0) if and only if v satisfies the Gelfand-Raikov-Shilov condition (GRS- 

condition)

lim u(mrr)1//m = 1 for all x E TT.

Proof. Assume first that v satisfies the GRS-condition. Then we may 

extend v to a weight on G by setting <jj(x, £) = v(x) for all x E Zn, f G T. The 

extended weight co satisfies the GRS-condition on G, so the weighted version 

of Ludwig’s Theorem, as proved in [6, Theorems 1.3 and 3.4], implies that 

L^(G) is symmetric. Since obviously || f° ||Li Lemma 2.1 shows

that /^(Z™, 0) can be identified with a closed subalgebra of L^(G) and thus is 

also symmetric. Consequently, by Proposition 3.1, ^(Zn,(9) is inverse-closed 

in its enveloping C*-algebra. To see that this C*-algebra is C*(0f it suffices 

to note that £i(Zn,$) is dense in £1(Zn,0) and every *-representation tt of 

Lj(Zn, on a Hilbert space can be extended to C(Zn, 0). The latter follows 

from the fact that tf is completely determined by the 7r(5xf x E and 

those operators are unitary, so %(/) = f(xfiv(5xf f G G(Zn), is the 

desired extension of x to a ^-representation of (f~(Tjn,0f

Conversely, assume that v violates the GRS-condition. This means that 

there exists an x E Zn such that limm_>oo v(mx)Vm > 1. Since by (2.4) the 

mth power of dx is of the form cm6mx with |cm| = 1, the spectral radius of 

5X in ^(Zn,0) is

r£1.(Zn,0')(^x) ~ \\Cm^mx |Li fgn 0) = > L

On the other hand, since 5X is unitary in ^(Zn, Of it is also unitary in C*(0f 

Consequently, the spectral radius of 5X in C*(0) is 1. Therefore the spectrum 

of 6X in £i(Zn,$) cannot be equal to the spectrum of 5X in C*(0f and so 

.£i(Zn,$) is not inverse-closed in C*(0f ■

Remark 3.6. A non-spectral subalgebra of the irrational rotation al

gebra (the non-commutative torus with two generators) and its simplicity 

were first discussed by Schweitzer [23].

Proposition 3.5 provides an abundance of examples of inverse-closed Ba

nach subalgebras of a non-commutative torus in higher dimensions. By tak

ing intersections of weighted G-algebras, one may now construct inverse- 

closed Frechet subalgebras of C*(0f In particular, fix u(x) = 1 + |z| for 

some norm | • | on Zn and set

(3.1) <S(Z”,0) = G 4(Z",0) = {f 6 ^(Z") : 1/MI = O(l*rs) Vs > 

s>0
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Then <S(Zn, 0) consists of all rapidly decreasing sequences and coincides with 

the usual smooth non-commutative torus. Since an arbitrary intersection 

of inverse-closed subalgebras is again inverse-closed, <S(Zn,0) is an inverse- 

closed Frechet subalgebra of the non-commutative torus C*(0). This result 

goes back to Connes [3].

Proposition 3.5 also yields inverse-closed subalgebras of C*(0) that are 

even smaller than <S(Zn,$)- For this, fix a subexponential weight v(x) — 

eala:l6 with a > 0 and 0 < b < 1. Then v satisfies the GRS-condition, and 

thus ^(Zn,0) is inverse-closed in C*(0). On the other hand, ^(Zn,d) is a 

Banach subalgebra of the smooth non-commutative torus <S(Zn,$). In the 

language of non-commutative geometry, one might say that ^(Zn, 0) consists 

of “ultra-smooth” elements of C*(9).

4. Simplicity. The construction of inverse-closed subalgebras of non- 

commutative tori is completely independent of the fine structure of these 

tori. In particular, the simplicity of ^1(Zn,6)) is not related to its spectral 

properties.

In this section we treat the question of when the twisted G-algebra 

G(Zn, 0) is simple. Making use of the symmetry of G(Zn, 0), one can derive 

Theorem 4.3 below from the characterization of the simplicity of higher

dimensional non-commutative tori C*(0) in [18], but one has to go back to 

[24] and [5] for its proof. We offer a simplified proof that works directly for 

^1(Zn,^), from which the known result about C*((9) follows. Our proof for 

the twisted ^-algebras is fairly elementary, but its idea is probably old.

Let m E Zn, denote the “Dirac” functions on Zn, and ej, j = 1,..., n, 

the standard basis of Zn. Then 6m is central in €1(Z77', 6>), if and only if 

dm dej = 5m for j = 1,..., n. Since

dm t] dej = cr(m, ej)dm+e. = 0^ • • • 0™^ §m+ej 

and

dej t| dm = a(ej,m)5m+ej = 0™1 • • • 0™^} Sm+e., 

the following conditions are equivalent:

(i) dm is central in £1(Zn, 0).

(ii) cr(m, ej) — a(ej,m) for j = 1,..., n.

(iii) Ilj=i = 1 f°r k = 1,..., n.

If 'O = (fOjk) is a (non-unique) skew-symmetric real matrix with e27ra^’fe = Ojk, 

then (iii) means that mj'Ojk E Z for k — 1,..., n. So, if we denote the 

skew-symmetric bilinear form (m, I) i—> m) = mTf)l by $ again, a fourth 

equivalent property is

(iv) ,0(l,m) E Z for all I E Zn.
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Definition 4.1. A cocycle <r is called degenerate if there exists a non

zero m G Zn satisfying one of the equivalent conditions (i)-(iv). Otherwise 

cr is called non-degenerate.

We note that cr can be degenerate even if d is non-degenerate in the 

sense of linear algebra.

Remark 4.2. It is well known that a unital Banach algebra A with 

non-trivial center is not simple. For if the center Z is non-trivial, i.e., its 

dimension is at least two, then it contains an element a that is not invertible 

in Z by the Gelfand-Mazur Theorem. Since Z is inverse-closed in A, we see 

that a is not invertible in A. Consequently, the generated ideal aA — Aa is 

a proper two-sided ideal, and so is its closure aA. Thus A is not simple.

The following theorem characterizes the simplicity of twisted A-algebras.

Theorem 4.3. Let v be an arbitrary, submultiplicative weight function 

on TP (v need not satisfy the G RS -condition). Then the algebra £l(ZP,0) is 

simple if and only if the cocycle a is non-degenerate.

Proof. If <7 is degenerate, then €*(Zn,0) has a non-trivial center and is 

not simple by Remark 4.2.

Now suppose that a is non-degenerate. For each j G {1,... ,n} the ele

ment 5ej is unitary, and its adjoint is cr(—ej, ej)5_ej.. For arbitrary x G Zn 

and k e N we have

for some /3X G T. More precisely, /3X — 1 if and only if 6X commutes with 6ej. 

We denote the “centralizer” of 6ej by

Cj = {y G Zn : 6y ^e. = bej t] dy}.

Now let I be a (closed) two-sided ideal of €*(Zn, 0) and f = &xfix 

G I C £i(Zn,$). We consider the behavior of the averages

jm = = E «J-Ea*K
fc=l ' k—1

If x G Cj, then m-1 @x = 1; if x & Cj, then m"1 YJk=i &x converges 

to zero for m —> oo. Using dominated convergence, we conclude that

Um jm(j) = a^x = f*Cj

xGCj

with convergence in the £i-norm. For f G I, this means that also fxCj £ 

Since this is true for all j = 1,..., n, we / • IIj=i XCj — Cj

Since <r is non-degenerate, we must have 0^=1 Q = W an^ t^lus /(O)^o 

G I. Either I — £j(Zn,0) or I is a proper ideal and /(0) = 0. By applying 

the argument to dx t] f G I for every x E TP, we find that (5X t| /)(0) = 
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a(z,-z)/(-z) = 0, so /(z) - 0 for all x € Zn. Consequently, either I = 

£j(Zn,0) or I = {0}, and thus £j(Zn,0) is simple. ■

Remark 4.4. We may also obtain an alternative proof of the well- 

known C*-analogue of Theorem 4.3. The above proof works for C*(0) as 

well, because the finitely supported functions are dense in and the 

inner automorphisms are also isometric in the C'*(6,)-norm.
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