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Inverse-closed Banach subalgebras of 

higher-dimensional non-commutative tori

by

Karlheinz Grochenig (Wien) and Michael Leinert (Heidelberg)

Abstract. We give a systematic construction of inverse-closed (Banach) subalgebras 

in general higher-dimensional non-commutative tori.

1. Introduction. Let A C 13 be two algebras with common identity. 

Then A is called inverse-closed in 13 if a G A and a-1 G 13 implies that 

a-1 G A. This property is a generalization of Wiener’s Lemma for abso­

lutely convergent Fourier series and occurs abundantly in many branches of 

mathematical analysis. The range of applications covers numerical analy­

sis, pseudodifferential operators, frame theory, and, last but not least, non- 

commutative tori. See [8] for a survey of many versions of Wiener’s Lemma 

and applications of inverse-closedness.

In this paper we study subalgebras of general non-commutative tori. 

Non-commutative tori are the founding examples of non-commutative ge­

ometry [4, 20], and are defined as the universal C*-algebras generated by 

a finite number of unitary elements Uj with commutation relations of the 

form UjUk — OjkUkUj for j, k = 1,..., n, and Ojk G C. In non-commutative 

geometry inverse-closed subalgebras of non-commutative tori play an im­

portant role: on the one hand, as “smooth non-commutative manifolds”, 

and on the other hand, in the K-theory of C*-algebras. Perhaps the main 

result concerning inverse-closed subalgebras of non-commutative tori is the 

density theorem. It states that the K-groups of a non-commutative torus 

and of all its dense, inverse-closed subalgebras are isomorphic. Similarly the 

stable rank of a dense, inverse-closed subalgebra coincides with the stable 

rank of the ambient algebra [2].
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Usually the existence of an inverse-closed subalgebra is taken for granted 

and is the starting point for the theory. Also, mostly Frechet subalgebras are 

considered rather than Banach subalgebras (because Frechet algebras model 

“smooth” non-commutative tori). Our objective is the systematic construc­

tion of Banach subalgebras of non-commutative tori in higher dimensions. 

Indeed, we will characterize all those inverse-closed Banach subalgebras of 

the form Lj,(Zn), where v is a weight function on Zn. By choosing weights 

of subexponential growth, we even construct a Banach subalgebra that is 

contained in the ordinary smooth non-commutative torus. For certain non- 

commutative tori with an even number of generators these results were al­

ready obtained in [9]. An alternative proof for the case of two generators 

was subsequently given in [21]. The extension of our results was motivated 

by a question of N. C. Phillips who asked us whether the results in [9] also 

hold for arbitrary non-commutative tori in higher dimensions.

In the last part we investigate briefly the simplicity of the Banach sub­

algebras of non-commutative tori in terms of the parameters that define 

the commutation relations. As a consequence we obtain a new proof of the 

well-known characterization of the simplicity of the non-commutative tori.

Our methods are drawn from abstract harmonic analysis, in particu­

lar the investigation of projective representations and twisted convolution 

algebras in the school of Leptin and Ludwig.

Let us mention that in some areas an inverse-closed subalgebra is also 

called a spectral subalgebra, a local subalgebra, or a full algebra. If A is 

inverse-closed in 13, then A is called spectrally invariant in 13 or (under 

standard conditions) invariant under holomorphic calculus; (A, 13} is called 

a Wiener pair. 2

2. Higher-dimensional non-commutative tori. We first give a de­

scription of non-commutative tori in higher dimensions and explain the link 

to harmonic analysis.

Let T denote the unit circle. Let U\,..., Un be unitary symbols satisfying 

the commutation relations

U? tfy — OjkUk Uj, 

where 0jk G T. Since UjUk = OjkUkUj = OjkOkjUjUk, we have Okj — Ojk aRd 

thus the matrix 3 — (3jk}j,k=i,...,n is hermitean.

The non-commutative torus C*(3} is the universal C*-algebra generated 

by the unitaries Uj, j — 1,... ,n. To obtain a concrete and workable repre­

sentation, we interpret C*(3} as a twisted group C*-algebra of Zn.

Using multi-index notation with Ul — ■ ■ • U^1 for I 6 Zn, we get

(2.1) UlUm = a(l, rn}Ul+m for I, m 6 Zn,
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where cr(Z,m) G T. In fact, repeated application of the commutation rules 

yields the expression

(2.2)

n— 1 , n—2 , 1 ,
-)=(n c)"(n cu)) "_1 ■ ■ • (n c)2 = n ■ 

J=1 j—1 j=l

Since U° = U® • • • U® — I, (2.1) implies cr(0,m) = <j(m, 0) = 1, which is 

consistent with (2.2). We also have cr(—l,m) = cr(Z, —m) — cr(Z,m).

Since we require the multiplication to be associative, we have

(2.3) u(Z,m)u(Z + m,p) = a(Z,m+p)a(m,p) for Z, m,p G Zn.

For f,gE £1(Z77') we define the twisted convolution f g or simply f tj g by

f gW = - y) <?(&, x G Zn.

yGZn

The involution f f—> /* is defined by /*(rr) = a(x, — x) f(—x) for x G Zn. 

For the special case of “Dirac” functions 6y = X{y} we have

(2.4) 6y t] 6Z = a(y, z)6y+z and 5* = a(-y, y)6-y, y,zEln.

We also note that

Sy\\6y = -y)a(-y, y)60 = 60

and 5*\\6y = cr^—y, y^af—y, y)fio = <5q, so 6y is unitary for every y G Zn.

Then (£1(Zn), , *) is a Banach *-algebra, which we denote by £1(Z”, 6). 

This fact can be checked directly, but it also follows from the reasoning 

below.

Following [22] and [16], we define a central extension G of T by Zn as 

follows. Let G = {(z,£) : x G Zn, £ G T} with multiplication (&,£)(?/, ??) = 

(x + //, cr(x, y)frf). Then G is a nilpotent group with neutral element e = 

(0,1) and inverse (z,£)-1 = (—x, a(x, — z)£). The Haar measure on G is 

\Gf(a)da — anc^ the group convolution * on G is de­

fined with respect to this measure.

For f e ^(Zn) we define f° G L1(G?) by /°(x,^) = /(x)f. This extension 

satisfies the following properties.

Lemma 2.1. The mapping o : £1(Zn) —» L1(G) is an isometric ^homo­

morphism from £1(Zn, 6) into L1(G).

Proof. We have

lirili = \\f°(a)\da= £ j|/«|de= £ |/M| =

G xGZn T a;GZn 
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so f f° is an isometry. This map is compatible with the involution, since 

cr m

= f°(-x,a(x,-x)& = T^WCF1) = (/°)*(a;,f).

For the homomorphism property we first write

(/ h g)°(x, £) = (/ h ? = 22 f(yMx - y)<r(y,x - ?/)?• 

y£Zn

On the other hand, from

(t/,77)-1(z,£) = (~y,(r(y, -y)g)(x^) = (x - y, £fj<j(y, -y)cr(-y, x)) 

we obtain

= ^2\f°(y,'n)go((y,y')~\x,^dy

y T

= 22 S f^g(x - s/)?^(z/> -yM~y, *) dy. 

y T

Using (2.3) with (Z,m,p) = (y, — y,x) and cr(0,z) = 1, we have

^(z/, “Z/HO, x) = a(y, —y + x}cr(-y, x},

or ct(t/, — 7/)cr(—?/, x) — cr(y,x — y). Comparing the formulas, we see that

(/t| <z)° = ■

We may therefore think of •£1(Zn,^) as a closed *-subalgebra of L1(G). 

In particular, it is a Banach *-algebra. Its enveloping C*-algebra is the 

non-commutative torus C*(0).

To obtain a concrete realization of C*(0), we consider the regular repre­

sentation A of U(Zn,$) on ^2(Z) defined by

A(/)<7 = f tie 9 for / € ^(Z»), g € €2(Zn).

This representation is faithful, and the closure of A(U) with respect to the 

operator norm is a C*-algebra C. By a special case of [12, Satz 6], C*(0) is 

isometrically isomorphic to C. From now on, we will therefore not distinguish 

between the abstract algebra C*(0) and its concrete realization C.

3. Inverse-closed subalgebras of C*(^). Next we construct a family 

of inverse-closed Banach subalgebras of the non-commutative torus C*(0). 

This construction relies on two important results in Banach algebra theory 

and abstract harmonic analysis.

First recall that a Banach *-algebra A is symmetric if the spectrum of 

every positive element is positive, i.e., cr(n*a) C [0,oo) for all a G A. The 

connection between symmetry and inverse-closedness is folklore and implicit 

in many proofs of symmetry [10, 11, 13, 14]. The following proposition is 
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contained in Palmer’s book [17, Thm. 11.4.1]. (Since the regular represen­

tation of AfZn,0) is faithful and £x(Zn,0) is semisimple, we may quote a 

formulation that is already adapted to semisimple Banach algebras.)

Proposition 3.1. A unital semisimple Banach ^-algebra A is symmet­

ric if and only if it is inverse-closed in its enveloping C*-algebra.

Our second ingredient is a fundamental result of Ludwig [14].

Proposition 3.2. If G is a nilpotent group, then L1(Gr) is symmetric.

By combining the explicit construction of non-commutative tori with 

these results, we obtain a fundamental inverse-closed subalgebra of C*(0f

Theorem 3.3. The Banach *-algebra AIfTP, 0) is inverse-closed in C*(6).

Proof. By construction, the central extension G of Zn is nilpotent, and 

consequently L1(G) is symmetric by Ludwig’s result. Lemma 2.1 identifies 

£1(Zn,,0) with a closed *-subalgebra of LX(G), and thus ^1(Zn,0) is also a 

symmetric Banach *-algebra. By Proposition 3.1 this means that A(Zn,0) 

is inverse-closed in C*(0), as claimed. ■

Remark 3.4. For even dimension and a special representation of the 

generators of C*(0) by phase-space shifts, Theorem 3.3 was proved in [9] 

when solving a problem in time-frequency analysis. An earlier result is con­

tained in [1]. See also [15] and [7, Ch. 13] for connections with time-frequency 

analysis.

For the special case of two generators and irrational 0 an elegant al­

ternative proof of Theorem 3.3 was obtained by Rosenberg [21], Whereas 

our approach yields the symmetry by identifying ^1(Z,0) with a closed 

*-subalgebra of a symmetric algebra (given by L1 of a nilpotent group), 

[21] uses the fact that C(Z, 0) can be interpreted as a *-quotient of a sym­

metric algebra. Undoubtedly, Rosenberg’s proof can also be generalized to 

arbitrary non-commutative tori, but we found the approach in [9] more ac­

cessible.

To generate more examples of inverse-closed subalgebras of C*(0), we 

introduce weighted ^-algebras.

Let v be a submultiplicative and symmetric weight function on Zn, i.e., 

v satisfies the conditions

v(x + y) < v(x)vfy) and v(—x) = v(x) for all x, y 6 Zn, 

and let ^(Zn) be the corresponding weighted C-space with norm ||/||£i = 

||/v||i. The pointwise inequality \(f tjg) g)(z)| < (\f\ * |p|)(a?) x Zn 

shows that (^(Zn), ^) is a Banach algebra, which we denote £^(Zn, Of Since 

v is symmetric, ^(Zn, 0) is a *-subalgebra of £1(Zn, Of
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The next proposition characterizes those submultiplicative symmetric 

weights for which £i(Zn,0) is inverse-closed in (7*(0).

Proposition 3.5. The Banach algebra £l(Zn,0) is inverse-closed in 

C*(0) if and only if v satisfies the Gelfand-Raikov-Shilov condition (GRS- 

condition)

lim u(mrr)1//m = 1 for all x E TT.

Proof. Assume first that v satisfies the GRS-condition. Then we may 

extend v to a weight on G by setting <jj(x, £) = v(x) for all x E Zn, f G T. The 

extended weight co satisfies the GRS-condition on G, so the weighted version 

of Ludwig’s Theorem, as proved in [6, Theorems 1.3 and 3.4], implies that 

L^(G) is symmetric. Since obviously || f° ||Li Lemma 2.1 shows

that /^(Z™, 0) can be identified with a closed subalgebra of L^(G) and thus is 

also symmetric. Consequently, by Proposition 3.1, ^(Zn,(9) is inverse-closed 

in its enveloping C*-algebra. To see that this C*-algebra is C*(0f it suffices 

to note that £i(Zn,$) is dense in £1(Zn,0) and every *-representation tt of 

Lj(Zn, on a Hilbert space can be extended to C(Zn, 0). The latter follows 

from the fact that tf is completely determined by the 7r(5xf x E and 

those operators are unitary, so %(/) = f(xfiv(5xf f G G(Zn), is the 

desired extension of x to a ^-representation of (f~(Tjn,0f

Conversely, assume that v violates the GRS-condition. This means that 

there exists an x E Zn such that limm_>oo v(mx)Vm > 1. Since by (2.4) the 

mth power of dx is of the form cm6mx with |cm| = 1, the spectral radius of 

5X in ^(Zn,0) is

r£1.(Zn,0')(^x) ~ \\Cm^mx |Li fgn 0) = > L

On the other hand, since 5X is unitary in ^(Zn, Of it is also unitary in C*(0f 

Consequently, the spectral radius of 5X in C*(0) is 1. Therefore the spectrum 

of 6X in £i(Zn,$) cannot be equal to the spectrum of 5X in C*(0f and so 

.£i(Zn,$) is not inverse-closed in C*(0f ■

Remark 3.6. A non-spectral subalgebra of the irrational rotation al­

gebra (the non-commutative torus with two generators) and its simplicity 

were first discussed by Schweitzer [23].

Proposition 3.5 provides an abundance of examples of inverse-closed Ba­

nach subalgebras of a non-commutative torus in higher dimensions. By tak­

ing intersections of weighted G-algebras, one may now construct inverse- 

closed Frechet subalgebras of C*(0f In particular, fix u(x) = 1 + |z| for 

some norm | • | on Zn and set

(3.1) <S(Z”,0) = G 4(Z",0) = {f 6 ^(Z") : 1/MI = O(l*rs) Vs > 

s>0
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Then <S(Zn, 0) consists of all rapidly decreasing sequences and coincides with 

the usual smooth non-commutative torus. Since an arbitrary intersection 

of inverse-closed subalgebras is again inverse-closed, <S(Zn,0) is an inverse- 

closed Frechet subalgebra of the non-commutative torus C*(0). This result 

goes back to Connes [3].

Proposition 3.5 also yields inverse-closed subalgebras of C*(0) that are 

even smaller than <S(Zn,$)- For this, fix a subexponential weight v(x) — 

eala:l6 with a > 0 and 0 < b < 1. Then v satisfies the GRS-condition, and 

thus ^(Zn,0) is inverse-closed in C*(0). On the other hand, ^(Zn,d) is a 

Banach subalgebra of the smooth non-commutative torus <S(Zn,$). In the 

language of non-commutative geometry, one might say that ^(Zn, 0) consists 

of “ultra-smooth” elements of C*(9).

4. Simplicity. The construction of inverse-closed subalgebras of non- 

commutative tori is completely independent of the fine structure of these 

tori. In particular, the simplicity of ^1(Zn,6)) is not related to its spectral 

properties.

In this section we treat the question of when the twisted G-algebra 

G(Zn, 0) is simple. Making use of the symmetry of G(Zn, 0), one can derive 

Theorem 4.3 below from the characterization of the simplicity of higher­

dimensional non-commutative tori C*(0) in [18], but one has to go back to 

[24] and [5] for its proof. We offer a simplified proof that works directly for 

^1(Zn,^), from which the known result about C*((9) follows. Our proof for 

the twisted ^-algebras is fairly elementary, but its idea is probably old.

Let m E Zn, denote the “Dirac” functions on Zn, and ej, j = 1,..., n, 

the standard basis of Zn. Then 6m is central in €1(Z77', 6>), if and only if 

dm dej = 5m for j = 1,..., n. Since

dm t] dej = cr(m, ej)dm+e. = 0^ • • • 0™^ §m+ej 

and

dej t| dm = a(ej,m)5m+ej = 0™1 • • • 0™^} Sm+e., 

the following conditions are equivalent:

(i) dm is central in £1(Zn, 0).

(ii) cr(m, ej) — a(ej,m) for j = 1,..., n.

(iii) Ilj=i = 1 f°r k = 1,..., n.

If 'O = (fOjk) is a (non-unique) skew-symmetric real matrix with e27ra^’fe = Ojk, 

then (iii) means that mj'Ojk E Z for k — 1,..., n. So, if we denote the 

skew-symmetric bilinear form (m, I) i—> m) = mTf)l by $ again, a fourth 

equivalent property is

(iv) ,0(l,m) E Z for all I E Zn.
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Definition 4.1. A cocycle <r is called degenerate if there exists a non­

zero m G Zn satisfying one of the equivalent conditions (i)-(iv). Otherwise 

cr is called non-degenerate.

We note that cr can be degenerate even if d is non-degenerate in the 

sense of linear algebra.

Remark 4.2. It is well known that a unital Banach algebra A with 

non-trivial center is not simple. For if the center Z is non-trivial, i.e., its 

dimension is at least two, then it contains an element a that is not invertible 

in Z by the Gelfand-Mazur Theorem. Since Z is inverse-closed in A, we see 

that a is not invertible in A. Consequently, the generated ideal aA — Aa is 

a proper two-sided ideal, and so is its closure aA. Thus A is not simple.

The following theorem characterizes the simplicity of twisted A-algebras.

Theorem 4.3. Let v be an arbitrary, submultiplicative weight function 

on TP (v need not satisfy the G RS -condition). Then the algebra £l(ZP,0) is 

simple if and only if the cocycle a is non-degenerate.

Proof. If <7 is degenerate, then €*(Zn,0) has a non-trivial center and is 

not simple by Remark 4.2.

Now suppose that a is non-degenerate. For each j G {1,... ,n} the ele­

ment 5ej is unitary, and its adjoint is cr(—ej, ej)5_ej.. For arbitrary x G Zn 

and k e N we have

for some /3X G T. More precisely, /3X — 1 if and only if 6X commutes with 6ej. 

We denote the “centralizer” of 6ej by

Cj = {y G Zn : 6y ^e. = bej t] dy}.

Now let I be a (closed) two-sided ideal of €*(Zn, 0) and f = &xfix 

G I C £i(Zn,$). We consider the behavior of the averages

jm = = E «J-Ea*K
fc=l ' k—1

If x G Cj, then m-1 @x = 1; if x & Cj, then m"1 YJk=i &x converges 

to zero for m —> oo. Using dominated convergence, we conclude that

Um jm(j) = a^x = f*Cj

xGCj

with convergence in the £i-norm. For f G I, this means that also fxCj £ 

Since this is true for all j = 1,..., n, we / • IIj=i XCj — Cj

Since <r is non-degenerate, we must have 0^=1 Q = W an^ t^lus /(O)^o 

G I. Either I — £j(Zn,0) or I is a proper ideal and /(0) = 0. By applying 

the argument to dx t] f G I for every x E TP, we find that (5X t| /)(0) = 
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a(z,-z)/(-z) = 0, so /(z) - 0 for all x € Zn. Consequently, either I = 

£j(Zn,0) or I = {0}, and thus £j(Zn,0) is simple. ■

Remark 4.4. We may also obtain an alternative proof of the well- 

known C*-analogue of Theorem 4.3. The above proof works for C*(0) as 

well, because the finitely supported functions are dense in and the 

inner automorphisms are also isometric in the C'*(6,)-norm.
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