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ABSTRACT. If G is a locally compact group, C D(G) the algebra of convolution
dominated operators on L?(G), then an important question is: Is C1+ CD(G)
(or CD(G) if G is discrete) inverse-closed in the algebra of bounded operators
on L*(G)?

In this note we answer this question in the affirmative, provided G is such
that one of the following properties is satisfied.

(1) There is a discrete, rigidly symmetric, and amenable subgroup H C G
and a (measurable) relatively compact neighbourhood of the identity U,
invariant under conjugation by elements of H, such that {hU : h € H}
is a partition of G.

(2) The commutator subgroup of G is relatively compact. (If G is connected,
this just means that G is an IN group.)

All known examples where CD(G) is inverse-closed in B(L?(G)) are covered
by this.

1. INTRODUCTION

For an operator on Hilbert space with an additional property, often this prop-
erty is not preserved under inversion. So there is an interest in situations where
this does not happen. For example, consider on [*(Z) an operator as a two-
sided infinite matrix; then it might have a certain off-diagonal decay; that is,
its entries a;; decay as k = |i — j| becomes large. A condition of summability
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like >, sup{la;;| : |i —j| = k} < oo is an example. This type of condition is
preserved under inversion. Note these operators A are characterised by the con-
dition that there exists an o € [(Z) dominating the operator in the sense that
A ()] < Sy alk)[El — k)], for example, a(k) = sup{lai,| : |i—j| = [k]}
With canonical operations the set of these operators is a Banach x-algebra. To
see that the set is closed under multiplication one uses a Fubini type interchange
of summation, which is allowed since we have summable dominants. An example
in Gabor frame theory, where it becomes useful to consider this class of operators
on a nonabelian group, namely a Heisenberg group with compact centre, is given
in [12]. An example relating to mobile communication can be found in [6]. In
this note we continue the search for more general groups, where classes of those
operators are preserved under inversion.

Let G be a locally compact group. A bounded operator T on L?(G) is called
convolution dominated, if it is dominated by left convolution with some L!-
function; that is, there is f € L'(G) such that |Tg|(z) < f * |g|(z) almost
everywhere for all g € L*(G).

The set CD(G) of all convolution dominated operators on L?(G) is a *-subalgebra
of the %-algebra of all bounded operators B(L*(G)). In such a situation, an al-
gebra B and a subalgebra A C B with common unit, the question of inverse-
closedness of A in B is of importance; that is, whether an element of A which is
invertible in B must be invertible in A, too. Probably the first result on inverse-
closedness is due to N. Wiener [23] and widely known as Wiener’s Lemma:

If a function on the unit circle with absolutely summable Fourier series has
an inverse with respect to pointwise multiplication in the Banach algebra of con-
tinuous functions, then this inverse has an absolutely summable Fourier series,
too.

Using results of Bochner and Phillips [5] on operator valued Fourier series, quite
a few authors studied the inverse-closedness of C'D(G) in B(L*(G)) for abelian
discrete groups G [10, 1, 3, 2, 22/ 7]. Using techniques from noncommutative
harmonic analysis [13, 18, 19, 21], in [7] we together with K. Grochenig treated
the case of rigidly symmetric, amenable, not necessarily abelian, discrete groups
(which in particular includes all nilpotent discrete groups).

In the case of nondiscrete G (here the question is about 147" in place of T', since
C'D(G) has no identity) a measurability problem arises [3]; see also [4]. A path
avoiding this is to restrict the question to the algebra C'D,.,(G) of convolution
dominated operators with more regular side diagonals [8, 4]. In this note, in
order to avoid this restriction, we adopt a different approach combining methods
of [15, 16, 17] with noncommutative harmonic analysis. With similar methods
Farrell and Strohmer [6] looked at the generalised Heisenberg groups.

We extend the positive results to the following two classes of groups.

(1) There is a (measurable) relatively compact neighbourhood U of the iden-
tity and a rigidly symmetric and amenable discrete subgroup H C G with
hUR™! = U for all h € H such that {hU},cy is a partition of G.
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(2) The topological commutator subgroup of G is compact; that is, G is a
compact extension of an abelian group. If G is connected, this is equivalent
to saying that G is an IN group [14].

Note that (1) covers nilpotent Lie groups that admit a rational structure. The real
“ax—+b” group (for this group the convolution dominated operators are not inverse
closed in B(L?*(G)) [9]) shows that the compactness condition in (2) is needed.
Conditions (1) and (2) cover all known examples where C'D(G) is inverse-closed
in B(L*(G)). We note that groups satisfying property (2) are amenable [11,
Theorem 1.2.6]. This is not so obvious in case (1). In an appendix we show
amenability of such groups by establishing Fglner’s condition.

2. PRELIMINARIES

Let G be a locally compact group, K(G) the space of complex valued functions
on G with compact support, and dz a left Haar measure on GG. For a complex-
valued function f we denote by f its complex conjugate. For a subset V C G we
denote its closure by V and its Haar measure (provided V is measurable) by |V|.

Let U be a (measurable) relatively compact neighbourhood of the identity e.
The following Lemma is well known.

Lemma 2.1. If H C G satisfies tUNyU = 0 for all x # y in H, then, for z € G

and relatively compact K, L C G, the number of all h € H with hL N zK # 0 is
KL~ 1U|
-

dominated by
Proof. If hL meets zK, we have h € zKL™'; hence hU C zKL7'U. So the

|zKL-'U| _ |KL~1U| ]
/N VT

number of such elements cannot exceed

Let H C G be a discrete subset, and let U be a relatively compact neighbour-
hood of the identity e such that {#U}, ., is a partition of G. With this setting,
we define the amalgam space

(L= ={f € LYG) = Y11 f - xw lloo < 00}

keH

Note that if U is invariant under conjugation by elements of H (this will be our
standard assumption below), then |zU| = |Uz|, so A(z) = 1 for z € H, and
for x € H and u € U we have A(zu) = A(u) < sup,ey A(u) < o005 so G is
unimodular.

Proposition 2.2. Given the above assumptions on U and H, including the in-
variance of U under conjugation by elements of H, the amalgam space (L, 1)
is a dense two-sided ideal in L'(G).

Proof.
(a) K(G) is dense in L'(G@), and K(G) C (L*=,I'), since for f € K(G) the

number of h € H with hU Nsupp(f) # 0 is at most W

(b) Since in L' we have g+ f = Y- 1 9Xau * fXyu, to show that (L>,1') is a
left ideal in L!(Q) it suffices to show that, for f € (L*,1'), g € L}(G), and
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r,y € H, one has gxou * fxyr € (L%,0) with [ gxaw  fxyu e <
const || gxav [l1]] fxyv llo-

Now, || gxav * fXyu lloo < 9xav 1111 F Xy (oo and supp(gxau * fXyu) C
xUyU = ny2. The number of all h € H with hU N ny2 # () is at most

[Tvty) %TU' =: ¢ by Lemma 2.1 (taking K = yU? and L = U there). So

| 9xzv * Fxyu lzeeary < ell gxau 1l FXyu (oo

(c¢) By the assumptions on U and H, the group G is unimodular; so an argu-
ment like the above shows that (L, [') is a right ideal in L'(G), too.
O

Definition 2.3. An operator T' € B(L*(G)) is called convolution dominated, if
there is f € L'(G) dominating T in the sense that

Tgl(x) < f*lgl(x)  aeVge L*G).

Such an f is automatically non-negative.
We denote the algebra of convolution dominated operators by C'D(G) or simply
CD. Tt is normed by

IT lep = mf{|| fllzre) ¢ ITgl(x) < f *|gl(z) ae.Vg € L*(G)},

where T € C'D. We denote by C'D,, the space of all convolution dominated op-
erators T' on L?(G) which are dominated by convolution with some f € (L>,').
The norm of T' € C'D, is defined by

1T lepe = f{]l f e © [Tgl(x) < f*lgl(x)ae Vg € LAG)}.  (2.1)

From [9, Proposition 2.3], we know that any convolution dominated operator
is an integral operator with respect to a kernel. Calling kernels equivalent if they
coincide locally almost everywhere (l.a.e.) on G X G, we have a linear bijection be-
tween the convolution dominated operators and the equivalence classes of kernels
satisfying (2.3). A kernel ¢ of such an operator 7' satisfies

T(g)(z) = / t(z,y)g(y) dy, lae., Yg € L*(G) (2.2)
G
and
[t(z,y)] < f(xy™') la.e. for some f € L'(G). (2.3)

At the level of kernels the composition of convolution dominated operators S and
T with respective kernels s and ¢ is given by convolution of kernels

s*t(a:,y):/Gs(x,z)t(z,y) dz la.e..

This formula makes sense because S and 1" are dominated by convolution with
integrable functions.

In case that the operator 7' is in C'D,,, we can take the dominating f in
(L>=,1'). The argument in [9, Remark 2.4] shows that the infimum in (2.1) is
attained. Actually the function )., ess sup,,-1c;|[t(%, y)| - xiv does the job.
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Remark 2.4. If t is a kernel for T with |t(z,y)| < f(zy~') locally almost everywhere
for some f € LY(G), then N := {(z,y)||t(z,y)| > f(zy~')} is a local null set;
so t' := txuxu\w~ is equivalent to ¢ and hence defines the same operator, and
t'(z,y) < f(zy™!) everywhere. So, replacing ¢t by ¢, we may replace “l.a.e.” by
“a.e.” in (2.2) and (2.3).

Proposition 2.5. C'D., is a dense ideal in C'D.

Proof.

(a) Let T' € C'D be an operator with convolution kernel k, and let f € L'(G)
be given, where |k(z,y)| < f(xy™!) locally almost everywhere. For & > 0,
there is some 0 < g € K(G) with || f —g]1 < e. Let ko := sign k -
(Ik| A M(g)), where M(g)(z,y) := g(zy™"). Then |k — koo| < M(|f — gl).
So, if T, is defined by k., we have T, € CDy and ||T — T |lcp <
I f =gl <e

(b) For T'€ CD and S € CD,, with convolution kernels ¢ and s, respectively,
there are f € L'Y(G) and g € (L™®,I') with [t| < M(f) and |s| < M(g)
locally almost everywhere. So

£ s(z,y)| = | /G bz, 2)s(zy) dz] < /G Flaz gy dz = fx glay™).

So T'S is dominated by convolution with f % g € (L, I'); hence T'S €
CDy.
(c¢) Analogously we see that C' D, is a right ideal in C'D.
0

Proposition 2.6. If G is nondiscrete, then C Dy, has no identity.

Proof. Suppose that G is nondiscrete and that E is the identity of C'D., with cor-
responding kernel e. If V is the downward directed system of compact neighbour-
hoods of the group identity and ey := I_‘1/IXV for V€ V, then {ey}vey is an ap-
proximate identity of L'(G). Since E € B(L*(G)), we have || E(ey x g) — Eg ||2 —
0 for g E K(G). Denoting Ey the operator belonging to the kernel (z,y) —
ey (zy™1), using Fubini one has E(ey x g) = (FEy)g = Eyg; hence

//evxy dydx—)// e(z,y)g (x) dydx for f € K(G).

If f ® g is such that its support does not meet the diagonal {(z,z7!) |z € G},
then the left hand side vanishes for sufficiently small V; so the right hand side
is 0. This implies that e = 0 locally almost everywhere outside the diagonal.
Since G is nondiscrete, the diagonal is a local null set; so e = 0 locally almost
everywhere; hence F = 0 which contradicts F(CDy) = CDy # {0}. O

Remark 2.7. So C D (G) has an identity if and only if G is discrete.

Since C' D4 (G) is a dense ideal in CD(G), Remark 2.7 holds true for CD(G),
too.

For z € C, let sign z = é if z £ 0, resp. 0if z = 0, and extend this pointwise to complex
valued functions.
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3. MATRICES OF OPERATORS AND KERNELS

Now we shall decompose A € C'Dy, and its convolution kernel a = (a(z,y)), ,cq
as a matrix of blocks. Since L?(G) = @®;cgL*(iU) (orthogonal sum of Hilbert
spaces), we may divide A into blocks A;;, where A;; € B(L*(jU), L*(iU)) is the
restriction of A to L?(jU) composed with the orthogonal projection onto L*(iU).
If we order the finite subsets of H x H by inclusion, we have A = (A;;)
the sense that the finite submatrices of (Ay), ;e
on L?(G), converge to A in the strong operator topology. If B = (Bij)z',jeH’
then AB = ((AB);;) where (AB),; = > ¢y AixByj, since multiplication on
bounded sets of operators is strongly continuous. So the map A — (4;;) is an
algebra isomorphism from C'D,, onto its image. The map for the corresponding
kernels reads a +— (a;;) where a;; is the restriction of a to iU x jU; that is,
aij = (a(x,y))@ycivxju- Note that || Ay [lop < |U||| @ij [|lso, Where the infinity
norm is taken on iU x jU with respect to product Haar measure. Since for
A, B € CD, the respective kernels a and b are dominated by L!-functions,
the convolution a * b is the kernel corresponding to AB. (This is done with a
Fubini argument, which is not valid for general kernels.) Denoting A the left
regular representation of G on L?(G) and \; = \(i), i € H, we define a Hilbert
space isomorphism S : ®;cgL2(U) — ®ienL?(iU) by S((w)icn) = (Nts)icn-
Then A5, := A\7'Ay); € B(LA(U)) and || A3 [lop = || Aij llop- We have A5 A7 =
/\Z_lAzk)\k;)\lzlAk]/\g = /\Z_IAZ]CA]C]A] = (AikAkj)o. For the kernels this reads (aik *
axj)® = aj*ay; and af; = (a(i€, jn))enev. Thus multiplication of blocks is carried
into operator composition in B(L?*(U)), respectively convolution of kernels on U x
U. Altogether we obtain that the map A — (afj)ije 5 18 an algebra isomorphism
onto its image in the kernel-valued matrices with matrix multiplication, where
the multiplication of entries is convolution of kernels on U x U. If we define the
involution (a

ijer M
when interpreted as operators

where b*(z,y) = b(y,z) for any kernel b on

9.)* — (ao,f)
ij)ijeH JilijeH’

U x U and x,y € U, then the map A — (afj)ijeH preserves the involution, too.

Remark 3.1. The reader will have noticed that, if we allow ourselves to identify
the isomorphic Hilbert spaces L?(G) and @;cpyL*(U) and interpret the matrix
(afj) as an operator (in the canonical way), then A — (afj) is the identity map;
that is, the operator defined by (afj) is the original A again.

For G, H, and U as above, we define different kinds of diagonals on G x G.

Definition 3.2. For k € H, we call {(z,y) € G x G |zy~' € kU} the band diag-
onal determined by k, the set U;j-1¢, (iU x jU) the approzimate block diagonal
determined by k, and U;j-1_(¢U x jU) the block diagonal determined by k.

Lemma 3.3. There is n € N such that each approrimate block diagonal meets
at most n band diagonals, and conversely each band diagonal meets at most n
approximate block diagonals (and hence can be covered by these).

Proof. Let x,y € G. There are s,t € H and £,n € U with © = s and y = tn.
If (z,y) is in the band diagonal determined by k € H, this means zy~! € kU;
that is, sén~'t~! € kU or st™! € kU?U~!. If (z,y) is in the approximate block
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diagonal determined by [ € H, this means st~ € [U. So if this approximate block
diagonal meets the above band diagonal, this means [ € kUU 2 or IU*NkU? # 0.
For fixed [ (resp. k), the number of possible such k (resp. 1) is dominated by

|U2‘[g|2U‘ by Lemma 2.1. 0

Corollary 3.4. CD,, is bicontinuously x-isomorphic to the algebra of kernel
valued matrices C Dy = {(a5)iken} with norm

| (a5 )ier || == ZZGH sup-1eq0 || @5 [foo-

Proof. As seen before Remark 3.1, the map A — (a;?j)ijE o
CD., isomorphically onto its image in the kernel valued matrices. Lemma 3.3
shows that this image is precisely C'Dy and that there are norm estimates both

ways for this isomorphism. 0

carries the algebra

Remark 3.5. If H is a subgroup, then approximate block diagonals are block
diagonals.

Proof. If i, j, k € H with ij=! € kU, then k is the only element of H in kU, since
IUNIU =0 for I # 1" in H. Tt follows that ij~! = k. O

4. SPECTRALITY OF C' D, AND CDy.

Now we assume that H is a (discrete) rigidly symmetric and amenable subgroup
of G and that the Haar measure of G is normalised, so that |U| = 1. Let A =
[*(H, L>*(U x U)) denote the space of all bounded functions f : H — L>*(U x U)
with pointwise linear operations, multiplication (f, g) — fg, where fg(h) = f(h)x*
g(h) (where % denotes the convolution of kernels) and involution f — f*, where

f*(h)(u,v) = f(h)(v,u), endowed with the norm || f||l4a = suppey || f(h) [|oo-
Then A is a Banach *-algebra.

We denote the left regular representation of H on A by T. So (Ty.f)(h) =
f(k7'h) for f € A and h,k € H. The twisted L' algebra £ = I'(H, A, T)
in the sense of Leptin is the Banach space of all functions F' : H — A with
product F'xG(h) = 3y T, F(hy)G(y~"), involution F — F*, where F*(h) =

T, F(h=!)*, and norm || F || = 32,cpy | F(h) [|a-

Theorem 4.1. The Banach x-algebra C Dy is isometrically *-isomorphic to L =
IY(H,I®(H,L=®(U x U)),T). As a result C D, is bicontinuously *-isomorphic to
L.

Proof. Like in [7] we define a representation R of £, but this time on L*(G) =
@D.cyy L*(U). The image of R will turn out to be CDy. If 65 denotes the A-valued
Dirac function which takes the value m € [*°(H, L>(U x U)) at h and vanishes
on H \ {h}, we set RO}" = N\, o M,,,, where M, is the multiplication operator
(&)ier — (m(2) * &)icnr, where of course (&)icn € @,cpy L*(U) = L*(G). Then
R6;" coincides with the operator T' given by the matrix (¢;;) € C Dy with zero
entries outside the h diagonal ij~* = h and ¢;;; = m(j) for j € H. To see this,
it suffices to apply both operators to (8; x€)ienr, where £ € L*(U) and k € H. We
have T'(6; k&) = (n;), where 1; = 6; (k) % &, which equals R} (0; £€) (note that
A permutes the L?(U)-blocks of L?(G), shifting the k block to the hk block).
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Clearly || 07" ||z = | T llecp,; = |lm || Extending R by linearity and continuity
we obtain an isometric linear isomorphism from £ onto C'Dy. Consider §;" and
op with h,k € H and m,n € A=1>(H,L*(U x U)).

= Ay MMMy = MM,

— R = RS 7).
This implies that R is multiplicative. Finally
(R = (AM,y,)* = My-A*
= N Mrne = ROT)i= R(G)).
So R is a x-isomorphism from £ = [*(H,I*°(H,L>*(U x U))) onto C Dy (resp.

CD), which is isometric (resp. bicontinuous). At the same time R is a *-
representation of £ on L?(G). O

Lemma 4.2. Let Ky o, be the space of (equivalence classes of ) measurable kernels
on U x U with
15 ll2.00 = ess supyep || k(- y) [|2 < oo

Then L>*(U x U) is a right Banach K », module, and Ks o is a left L*(U x U)
module for the convolution of kernels.
Proof. In order to avoid additional constants coming up, we normalise Haar mea-
sure on G so that |U| = 1.

(a) Let g € L>®(U x U) and k € Kj . Since

g *k (r,8)] = I/Ug(ﬁt)k(tS)dS\ < 1g(r) llooll K- 8) Il
< NgllscllkCGo8) Mlz < g llcoll K llzoe — ace.,

we have
9%kl <9 llocll & [2,00-
(b) Let h € L*(U x U) and k € Ky. Then
(hk(r,s)] < [[h(r,) 2l kCos) 2 < [[AGr, ) [l2ll ke ae. s

SO
I hxk(ss) 2 < / / h(r )P dudrl kB < B30 B

Hence
[ 7k ll2,00 < TR 2]l £ [l2,00-
O

Definition 4.3. A subalgebra A of an algebra B is called a spectral subalgebra
of B or spectral in B, if for every a € A the spectrum of a in A coincides with its
spectrum in B except perhaps for the value zero. (Without the removal of zero
the notion would be equivalent to inverse-closedness).
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In the following remark for an element a of a Banach algebra A we denote its
spectral radius by r(a).

Remark 4.4.
(a) L=(U x U) and the Hilbert-Schmidt kernels L?(U x U) are Banach alge-
bras for convolution, and so is Ky o, since || |l2.00 > || |l2 o0 K2 0.

(b) Since in general one sided ideals are spectral subalgebras, (L (U x U), %)
is spectral in K o which is spectral in the algebra of Hilbert-Schmidt op-
erators on L?(U), which in turn is spectral in B(L?*(U)). So (L>*(UxU), )
is spectral in B(L*(U)).

(c) The closure of L>®(U x U) in B(L?*(U)) is its C*-hull C*(L>=(U x U)).
For a € L*(U x U) and the operator A defined by it, one has ||A| =
r(A*A)2 = r(a*a)2 by (b). Since || w(a) || < r(a*a)? for any Hilbert space
s-representation of L>®°(U x U), the norm a + || A|| is the greatest C*-
seminorm on it. Hence the C*-hull of L>°(U x U) is its closure in B(L*(U)).

(d) The argument in (c) shows that if 4 is a Banach %-algebra contained in a
C*-algebra B and A is spectral in B, then the closure of A in B is the C*-
hull C*(A). (Without the spectrality assumption this is false. Consider
LY(@) c B(L*(@)) for a nonamenable group G.)

The set C = [*°(H, B(L*(U)) with pointwise operations and involution (where
multiplication in B(L?*(U)) is composition) is a C*-algebra. The left regular
representation of H on C is denoted by T. So Ty f(h) = f(k~'h) for f in C and
h,k € H. In analogy to the beginning of this section we consider the twisted
L'-algebra B = [}(H,I*°(H, B(L*(U)),T) and define the *-representation R of B
like for £ in the proof of Theorem 4.1.

Proposition 4.5.
(a) The closure of R(B) in B(L*(Q)) is its C*-hull C*(B).

(b) R(B) is spectral in B(L*(@G)).

(c) CDu(G) is spectral in B(L*(Q)). In particular, CD.(G) is a symmetric
Banach x-algebra.

Proof. Like in the proof of Theorem 4.1, we let
M 1°°(H, B(L*(U))) — B(I*(H, L*(U))) = B(L*(G))

be the s-representation ¢ +— M., where M.(&)icnr = (c(4)&)icn for (&§)ien €
I(H,L*(U)). Since H is amenable and [*°(H, B(L*(U))) is a C* algebra, by
Leptin [20] the M-regular representation is a maximal representation of B. It is
weakly equivalent to R.

To see this one slightly modifies the proof of [7, Prop 3|. Since R happens on
L*(G) = I?(H,L*(U)) and AM happens on I>(H,L*(G)) = I>(H x H, L*(U)), we
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work on this last space, which we denote H for short. Like in [7], let R¥ denote
the extension of R from L?*(G) to H defined by letting the operator R(f) =
ZyeH A(y) o My, where f € L, act on the first coordinate only. That is,

R(f)é(x,2) = Z f(y)(y_1$)§(y_1$, 2) foré eH, x,z € H.

yeH

The operator S : H — H defined by S¢(x, 2) = {(zz, z) is unitary and intertwines
R® and AM as in [7].

So R¥ and in turn R are maximal representations of £.. Thus the closure of
R(B) in B(L*(G)) is C*(B). This proves (a).

For f € B the operator R(f) can be viewed as an ['-sum of its diagonals. Each
diagonal (with zero entries outside the diagonal) is a bounded operator on L*(G),
and its operator norm is the supremum of the B(L*(G))-norms of its entries. So
the x-isomorphism f — R(f) maps B isometrically into ['(H, B(L*(G)). In
particular, R(B) is a complete and hence closed x-subalgebra of I'(H, B(L*(G)))
=N H)®B(L*(G)). The latter is symmetric, since H is rigidly symmetric. So
R(B) is symmetric, too. By [7] and (a), R(B) is spectral in B(L*(G)). This
proves (b).

By Lemma 4.2, £ is a right ideal in I'(H,[*(H, K3 ,)), which is a left ideal in
IY(H,1°°(H, L*(U x U))), which is a two-sided ideal in B=R(B) which by (b) is
spectral in B(L*(G))). So CD(G)=R(L)=L is spectral in B(L*(Q)). O

Let 1 denote the identity operator in B(L*(G)).
Corollary 4.6. C1 + CDy(G) is inverse-closed in B(L*(G)).

Proof. If G is discrete, this is contained in [7] (C1 may be omitted here, since
1 € CDy = CD). Hence we may assume that G is nondiscrete. Then C' D (G)
has no identity and is spectral in B(L?(G)) which has the identity 1. So the
assertion follows. 0J

Theorem 4.7. C1 + CD(G) is inverse-closed in B(L*(G)).

Proof. If G is discrete, then CD(G) = C'D(G); so this case is covered by Corol-
lary 4.6. In the non-discrete case: Cl + C'Dy(G) is inverse-closed in B(L?*(G)),
and C'D.(G) is a dense two-sided ideal in C'D(G). (See for instance [17] for the
argument. ) O

5. GROUPS WITH COMPACT COMMUTATOR

Consider a locally compact group G with compact topological commutator

subgroup C' = [G,G]. We denote pc : G — G/C the canonical projection.
G/C is a locally compact abelian group; so G/C = R? x J, where d € NU {0}
and J contains a compact open subgroup K. Let R C J be a complete set of
representatives of J/K, U := (p5'([-1,2)¢ x K), and let H C G be a complete
set of representatives of Z¢x R C G/C. Then U is relatively compact, measurable,
and H-invariant. Furthermore {hU },cp is a partition of G. The set hU does not
depend on the choice of the representatives in J and in G; so we may write hU

for hU with h € D :=7Z¢ x J/K.
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Every h € H is of the form h = repc(m, ), where repc denotes a representative
of (m,r) € G/C, m € Z¢, and r is a representative repx(rK) of rK € J/K in
J. So hU = pg'((m + [—5, £)%) x rK) which means that hU only depends on
h:= (m, rK) (id x pg)(pc(h)) € D. If k = repe(m/,r') and h = k, it follows
that m =m’ and rK = r'K; hence h = k. So the map h — h is bijective from H
to D. Note also that (hk) = hk and (A=) = (k)= (but unlike D the set H need

not be a group).

Proposition 5.1. The approzimate blogk djagonals (hU, kU)pp-1eiv of Defini-
tion 3.2 are exactly the block diagonals (RU, kU )jj—1_; -

Proof.
(a) hk™' € IU implies ["'hk~! € U. The formula for h — h is meaningful on
all of G and defines an homomorphism onto R? x J/K. Now ["'hik~! €
UND = {0} (where U denotes the set {:u € U}). So hk™' =1.
(b) If hk™* = i, then hk~" differs from [ by an element w € G with w = 0;
that is, w € p; ({0} x K). So hk~! =lw € IU.
0

Corollary 3.4 and Proposition 5.1 now imply the following theorem.

Theorem 5.2. If the (topological) commutator subgroup [G’,G] is compact, then
C Dy is bicontinuously x-isomorphic to the x-algebra of kernel-valued matrices

CDy = {(app)nren} = {(aZk)h,keD} ’

(a5 hgen | =D sup a5 lloo,
iep M=l

the infinity norm being taken on hU x kU with product Haar measure on it.

Like in the beginning of section 3, we have L*(G) = @®peg L*(hU) = @peg L2(U)
with canonical isomorphisms, and as we just have seen we may replace the
labelling h € H by h € H = D. Although D = Z% x J/K is not a sub-
group of G; in general, it acts on L*(G) = @j,,L*(U) by permuting the L*(U)
blocks. Denoting the action of i € D by \;, we have N(fi)iep = (fi-1i)ien
for (fi)iep € PiepL?(U). At the level of L?(G) = @, L*(hU) we would have
Aigh = A(iinAn=19n = A iiyn-19n, for gn € L2(hU), where r(Ih) denotes the unique

with norm

k € H with k = [h. This is a consequence of respecting our identifications. Note
that \; may be different from ;.

We also define the action T of D = H on A = 1®(H,L>=(U x U)) =
1°(D, L>*(U x U)) by T,f(h) = f(k~*h) for f € A and h,k € D. For m € A,
the multiplication operator M,, on &; ,L*(U x U) is defined by ( M,,g)(h) =
m(h) * g(h) for h € D,g € ®;_,L*(U) where * means convolution of kernels in
L>(U x U). Like in the case where H is a subgroup, we have A M, A1 = My, .

Letting £ = I*(D, A, T), denote the twisted L!-algebra like in the beginning of
section 4 (replace H and its elements by D and the respective elements); we may
repeat the proof of Theorem 4.1 to obtain its analogue.
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Theorem 5.3. The Banach x-algebra C' Dy is isometrically x-isomorphic to L =
IY(D,1®°(D, L=(U x U)),T). As a result C' Dy, is bicontinuously *-isomorphic to
L.

Continuing as in section 4 with D in place of H, we obtain the analoga of
Corollary 4.6 and Theorem 4.7.

Corollary 5.4. C1 4+ CD(G) is inverse-closed in B(L*(G)).
Theorem 5.5. C1 + CD(G) is inverse-closed in B(L*(G)).

6. APPENDIX

Here we shall derive the amenability of a locally compact group G satisfying
our assumption (1).

Lemma 6.1. If K C G is compact, then it can be covered by finitely many sets
hU with h € H.

Proof.

(i) First note that, due to our assumptions, H is not only discrete but uni-
formly discrete. This implies that a net (h,) in H cannot converge to a
point outside H, and if h, — h € H, then h, = h from some index
onwards.

(ii) Suppose that K C G is compact and meets infinitely many sets h,U,
h, € H,n € N, and h,, # h,, for n # m. For n € N, choose k, € KNh,U,
so k, = hyu, with u, € U. Choose a convergent subnet (k,) of (k,)nen;
k, — k € K say. Choose a subnet (k,) of (k,) such that k, = hyu,
with u,y — u € U. Then hy = kulu;,l — ku~!. This contradicts the fact

that (h,/), being a subnet of (h,),en, cannot converge (according to (i)).
O

Now we show that G satisfies the Fglner condition (see [11, 3.6]). For a compact
K C G, let K be covered by finitely many h;U, i = 1,..., M, and let the compact
set U2 U U-'U be covered by k;U, j =1,...,L. Let € > 0 be arbitrary. Since
H satisfies the Fglner condition, for U; ;{k;h;, k;h; '}, there exists a nontrivial
finite set £ C H such that |kji, EAE| < £|E| and |k;jh; 'EAE| < £|E] for
i=1,...,M,j=1,...,L. (On the discrete group H the Haar measure coincides
with the counting measure, thus for £ C H the cardinality of £ is |E|.) Then
for x € K, x = h;u say, we have

\hwuUE\UE| < |WhU?E\UE| = |U*hE\ UE]

L L
< ||JkUNE\UE| = |U||| JknE\ E|

j=1 j=1

L
U1 [kE\E| < |Ule|E| = ¢|UE.

Jj=1

IN
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Similarly

UE\ hwUE| < |u'h;'UE\UE| < |U'Uh;'E\UE|

L L
< \JkUh ' ENUE] < [US kb "B\ B
j=1 j=1

< |UlelE|l = €|UE].

So we obtain, for x = h;u € K,

A
a

wUEAUE| = |{hwUE\UE}U{UE\ hjuUE}|
< |huUE\UE|+ |UE\ hawUE| < 2¢|UE|.
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