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Abstract. If G is a locally compact group, CD(G) the algebra of convolution
dominated operators on L2(G), then an important question is: Is C1+CD(G)
(or CD(G) if G is discrete) inverse-closed in the algebra of bounded operators
on L2(G)?

In this note we answer this question in the affirmative, provided G is such
that one of the following properties is satisfied.
(1) There is a discrete, rigidly symmetric, and amenable subgroup H ⊂ G

and a (measurable) relatively compact neighbourhood of the identity U ,
invariant under conjugation by elements of H, such that {hU : h ∈ H}
is a partition of G.

(2) The commutator subgroup of G is relatively compact. (If G is connected,
this just means that G is an IN group.)

All known examples where CD(G) is inverse-closed in B(L2(G)) are covered
by this.

1. Introduction

For an operator on Hilbert space with an additional property, often this prop-
erty is not preserved under inversion. So there is an interest in situations where
this does not happen. For example, consider on l2(Z) an operator as a two-
sided infinite matrix; then it might have a certain off-diagonal decay; that is,
its entries ai,j decay as k = |i− j| becomes large. A condition of summability
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like
∑

k sup{|ai,j| : |i− j| = k} < ∞ is an example. This type of condition is
preserved under inversion. Note these operators A are characterised by the con-
dition that there exists an α ∈ l1(Z) dominating the operator in the sense that
|A(ξ)(l)| ≤

∑
k α(k)|ξ(l − k)|, for example, α(k) = sup{|ai,j| : |i− j| = |k|}.

With canonical operations the set of these operators is a Banach ∗-algebra. To
see that the set is closed under multiplication one uses a Fubini type interchange
of summation, which is allowed since we have summable dominants. An example
in Gabor frame theory, where it becomes useful to consider this class of operators
on a nonabelian group, namely a Heisenberg group with compact centre, is given
in [12]. An example relating to mobile communication can be found in [6]. In
this note we continue the search for more general groups, where classes of those
operators are preserved under inversion.

Let G be a locally compact group. A bounded operator T on L2(G) is called
convolution dominated, if it is dominated by left convolution with some L1-
function; that is, there is f ∈ L1(G) such that |Tg|(x) ≤ f ∗ |g|(x) almost
everywhere for all g ∈ L2(G).

The set CD(G) of all convolution dominated operators on L2(G) is a ∗-subalgebra
of the ∗-algebra of all bounded operators B(L2(G)). In such a situation, an al-
gebra B and a subalgebra A ⊂ B with common unit, the question of inverse-
closedness of A in B is of importance; that is, whether an element of A which is
invertible in B must be invertible in A, too. Probably the first result on inverse-
closedness is due to N. Wiener [23] and widely known as Wiener’s Lemma:

If a function on the unit circle with absolutely summable Fourier series has
an inverse with respect to pointwise multiplication in the Banach algebra of con-
tinuous functions, then this inverse has an absolutely summable Fourier series,
too.

Using results of Bochner and Phillips [5] on operator valued Fourier series, quite
a few authors studied the inverse-closedness of CD(G) in B(L2(G)) for abelian
discrete groups G [10, 1, 3, 2, 22, 7]. Using techniques from noncommutative
harmonic analysis [13, 18, 19, 21], in [7] we together with K. Gröchenig treated
the case of rigidly symmetric, amenable, not necessarily abelian, discrete groups
(which in particular includes all nilpotent discrete groups).

In the case of nondiscrete G (here the question is about 1+T in place of T , since
CD(G) has no identity) a measurability problem arises [8]; see also [4]. A path
avoiding this is to restrict the question to the algebra CDreg(G) of convolution
dominated operators with more regular side diagonals [8, 4]. In this note, in
order to avoid this restriction, we adopt a different approach combining methods
of [15, 16, 17] with noncommutative harmonic analysis. With similar methods
Farrell and Strohmer [6] looked at the generalised Heisenberg groups.

We extend the positive results to the following two classes of groups.

(1) There is a (measurable) relatively compact neighbourhood U of the iden-
tity and a rigidly symmetric and amenable discrete subgroup H ⊂ G with
hUh−1 = U for all h ∈ H such that {hU}h∈H is a partition of G.
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(2) The topological commutator subgroup of G is compact; that is, G is a
compact extension of an abelian group. IfG is connected, this is equivalent
to saying that G is an IN group [14].

Note that (1) covers nilpotent Lie groups that admit a rational structure. The real
“ax+b” group (for this group the convolution dominated operators are not inverse
closed in B(L2(G)) [9]) shows that the compactness condition in (2) is needed.
Conditions (1) and (2) cover all known examples where CD(G) is inverse-closed
in B(L2(G)). We note that groups satisfying property (2) are amenable [11,
Theorem 1.2.6]. This is not so obvious in case (1). In an appendix we show
amenability of such groups by establishing Følner’s condition.

2. Preliminaries

Let G be a locally compact group, K(G) the space of complex valued functions
on G with compact support, and dx a left Haar measure on G. For a complex-
valued function f we denote by f its complex conjugate. For a subset V ⊂ G we
denote its closure by V and its Haar measure (provided V is measurable) by |V |.

Let U be a (measurable) relatively compact neighbourhood of the identity e.
The following Lemma is well known.

Lemma 2.1. If H ⊂ G satisfies xU ∩yU = ∅ for all x ̸= y in H, then, for z ∈ G
and relatively compact K,L ⊂ G, the number of all h ∈ H with hL ∩ zK ̸= ∅ is

dominated by |KL−1U |
|U | .

Proof. If hL meets zK, we have h ∈ zKL−1; hence hU ⊂ zKL−1U . So the

number of such elements cannot exceed |zKL−1U |
|hU | = |KL−1U |

|U | . □

Let H ⊂ G be a discrete subset, and let U be a relatively compact neighbour-
hood of the identity e such that {xU}x∈H is a partition of G. With this setting,
we define the amalgam space

(L∞, l1) = {f ∈ L1(G) :
∑
k∈H

∥ f · χkU ∥∞ < ∞}.

Note that if U is invariant under conjugation by elements of H (this will be our
standard assumption below), then |xU | = |Ux|, so ∆(x) = 1 for x ∈ H, and
for x ∈ H and u ∈ U we have ∆(xu) = ∆(u) ≤ supu∈U ∆(u) < ∞; so G is
unimodular.

Proposition 2.2. Given the above assumptions on U and H, including the in-
variance of U under conjugation by elements of H, the amalgam space (L∞, l1)
is a dense two-sided ideal in L1(G).

Proof.
(a) K(G) is dense in L1(G), and K(G) ⊂ (L∞, l1), since for f ∈ K(G) the

number of h ∈ H with hU ∩ supp(f) ̸= ∅ is at most
|supp(f)U−1U |

|U | .

(b) Since in L1 we have g ∗f =
∑

x,y∈H gχxU ∗fχyU , to show that (L∞, l1) is a

left ideal in L1(G) it suffices to show that, for f ∈ (L∞, l1), g ∈ L1(G), and
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x, y ∈ H, one has gχxU ∗ fχyU ∈ (L∞, l1) with ∥ gχxU ∗ fχyU ∥(L∞,l1) ≤
const∥ gχxU ∥1∥ fχyU ∥∞.
Now, ∥ gχxU ∗ fχyU ∥∞ ≤ ∥ gχxU ∥1∥ fχyU ∥∞ and supp(gχxU ∗fχyU) ⊂

xUyU = xyU
2
. The number of all h ∈ H with hU ∩ xyU

2 ̸= ∅ is at most
|U2

U−1U |
|U | =: c by Lemma 2.1 (taking K = yU2 and L = U there). So

∥ gχxU ∗ fχyU ∥(L∞,l1) ≤ c∥ gχxU ∥1∥ fχyU ∥∞.

(c) By the assumptions on U and H, the group G is unimodular; so an argu-
ment like the above shows that (L∞, l1) is a right ideal in L1(G), too.

□

Definition 2.3. An operator T ∈ B(L2(G)) is called convolution dominated, if
there is f ∈ L1(G) dominating T in the sense that

|Tg|(x) ≤ f ∗ |g|(x) a.e. ∀g ∈ L2(G).

Such an f is automatically non-negative.
We denote the algebra of convolution dominated operators by CD(G) or simply

CD. It is normed by

∥T ∥CD = inf{∥ f ∥L1(G) : |Tg|(x) ≤ f ∗ |g|(x) a.e. ∀g ∈ L2(G)},

where T ∈ CD. We denote by CD∞ the space of all convolution dominated op-
erators T on L2(G) which are dominated by convolution with some f ∈ (L∞, l1).
The norm of T ∈ CD∞ is defined by

∥T ∥CD∞ = inf{∥ f ∥(L∞,l1) : |Tg|(x) ≤ f ∗ |g|(x) a.e. ∀g ∈ L2(G)}. (2.1)

From [9, Proposition 2.3], we know that any convolution dominated operator
is an integral operator with respect to a kernel. Calling kernels equivalent if they
coincide locally almost everywhere (l.a.e.) on G×G, we have a linear bijection be-
tween the convolution dominated operators and the equivalence classes of kernels
satisfying (2.3). A kernel t of such an operator T satisfies

T (g)(x) =

∫
G

t(x, y)g(y) dy, l.a.e., ∀g ∈ L2(G) (2.2)

and

|t(x, y)| ≤ f(xy−1) l.a.e. for some f ∈ L1(G). (2.3)

At the level of kernels the composition of convolution dominated operators S and
T with respective kernels s and t is given by convolution of kernels

s ∗ t(x, y) =
∫
G

s(x, z)t(z, y) dz l.a.e..

This formula makes sense because S and T are dominated by convolution with
integrable functions.

In case that the operator T is in CD∞, we can take the dominating f in
(L∞, l1). The argument in [9, Remark 2.4] shows that the infimum in (2.1) is
attained. Actually the function

∑
i∈H ess supxy−1∈iU |t(x, y)| · χiU does the job.
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Remark 2.4. If t is a kernel for T with |t(x, y)| ≤ f(xy−1) locally almost everywhere
for some f ∈ L1(G), then N := { (x, y) | |t(x, y)| > f(xy−1) } is a local null set;
so t′ := tχU×U\N is equivalent to t and hence defines the same operator, and
t′(x, y) ≤ f(xy−1) everywhere. So, replacing t by t′, we may replace “l.a.e.” by
“a.e.” in (2.2) and (2.3).

Proposition 2.5. CD∞ is a dense ideal in CD.

Proof.
(a) Let T ∈ CD be an operator with convolution kernel k, and let f ∈ L1(G)

be given, where |k(x, y)| ≤ f(xy−1) locally almost everywhere. For ε > 0,
there is some 0 ≤ g ∈ K(G) with ∥ f − g ∥1 < ε. Let k∞ := sign k ·
(|k| ∧M(g)), where M(g)(x, y) := g(xy−1). Then |k − k∞| ≤ M(|f − g|).
So, if T∞ is defined by k∞, we have T∞ ∈ CD∞ and ∥T − T∞ ∥CD ≤
∥ f − g ∥1 < ε.

(b) For T ∈ CD and S ∈ CD∞ with convolution kernels t and s, respectively,
there are f ∈ L1(G) and g ∈ (L∞, l1) with |t| ≤ M(f) and |s| ≤ M(g)
locally almost everywhere. So

|t ∗ s(x, y)| = |
∫
G

t(x, z)s(z, y) dz| ≤
∫
G

f(xz−1)g(zy−1) dz = f ∗ g(xy−1).

So TS is dominated by convolution with f ∗ g ∈ (L∞, l1); hence TS ∈
CD∞.

(c) Analogously we see that CD∞ is a right ideal in CD.
□

Proposition 2.6. If G is nondiscrete, then CD∞ has no identity.

Proof. Suppose that G is nondiscrete and that E is the identity of CD∞ with cor-
responding kernel e. If V is the downward directed system of compact neighbour-
hoods of the group identity and eV := 1

|V |χV for V ∈ V , then {eV }V ∈V is an ap-

proximate identity of L1(G). Since E ∈ B(L2(G)), we have ∥E(eV ∗ g)− Eg ∥2 →
0 for g ∈ K(G). Denoting EV the operator belonging to the kernel (x, y) 7→
eV (xy

−1), using Fubini one has E(eV ∗ g) = (EEV )g = EV g; hence∫
G

∫
G

eV (xy
−1)g(y)f(x) dydx →

∫
G

∫
G

e(x, y)g(y)f(x) dydx for f ∈ K(G).

If f ⊗ g is such that its support does not meet the diagonal {(x, x−1) | x ∈ G},
then the left hand side vanishes for sufficiently small V ; so the right hand side
is 0. This implies that e = 0 locally almost everywhere outside the diagonal.
Since G is nondiscrete, the diagonal is a local null set; so e = 0 locally almost
everywhere; hence E = 0 which contradicts E(CD∞) = CD∞ ̸= {0}. □
Remark 2.7. So CD∞(G) has an identity if and only if G is discrete.

Since CD∞(G) is a dense ideal in CD(G), Remark 2.7 holds true for CD(G),
too.

For z ∈ C, let sign z = z
|z| if z ̸= 0, resp. 0 if z = 0, and extend this pointwise to complex

valued functions.
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3. Matrices of operators and kernels

Now we shall decompose A ∈ CD∞ and its convolution kernel a = (a(x, y))x,y∈G
as a matrix of blocks. Since L2(G) = ⊕i∈HL

2(iU) (orthogonal sum of Hilbert
spaces), we may divide A into blocks Aij, where Aij ∈ B(L2(jU), L2(iU)) is the
restriction of A to L2(jU) composed with the orthogonal projection onto L2(iU).
If we order the finite subsets of H × H by inclusion, we have A = (Aij)i,j∈H in

the sense that the finite submatrices of (Aij)i,j∈H , when interpreted as operators

on L2(G), converge to A in the strong operator topology. If B = (Bij)i,j∈H ,

then AB = ((AB)i,j) where (AB)i,j =
∑

k∈H AikBkj, since multiplication on

bounded sets of operators is strongly continuous. So the map A 7→ (Aij) is an
algebra isomorphism from CD∞ onto its image. The map for the corresponding
kernels reads a 7→ (aij) where aij is the restriction of a to iU × jU ; that is,
aij = (a(x, y))(x,y)∈iU×jU . Note that ∥Aij ∥Op ≤ |U |∥ aij ∥∞, where the infinity
norm is taken on iU × jU with respect to product Haar measure. Since for
A,B ∈ CD∞ the respective kernels a and b are dominated by L1-functions,
the convolution a ∗ b is the kernel corresponding to AB. (This is done with a
Fubini argument, which is not valid for general kernels.) Denoting λ the left
regular representation of G on L2(G) and λi = λ(i), i ∈ H, we define a Hilbert
space isomorphism S : ⊕i∈HL

2(U) → ⊕i∈HL
2(iU) by S((ui)i∈H) = (λiui)i∈H .

Then A◦
ij := λ−1

i Aijλj ∈ B(L2(U)) and ∥A◦
ij ∥op = ∥Aij ∥op. We have A◦

ikA
◦
kj =

λ−1
i Aikλkλ

−1
k Akjλj = λ−1

i AikAkjλj = (AikAkj)
◦. For the kernels this reads (aik ∗

akj)
◦ = a◦ik∗a◦kj and a◦ij = (a(iξ, jη))ξ,η∈U . Thus multiplication of blocks is carried

into operator composition in B(L2(U)), respectively convolution of kernels on U×
U . Altogether we obtain that the map A 7→

(
a◦ij

)
i,j∈H is an algebra isomorphism

onto its image in the kernel-valued matrices with matrix multiplication, where
the multiplication of entries is convolution of kernels on U × U . If we define the
involution

(
a◦ij

)∗
i,j∈H =

(
a◦∗ji

)
i,j∈H , where b∗(x, y) = b(y, x) for any kernel b on

U × U and x, y ∈ U , then the map A 7→
(
a◦ij

)
i,j∈H preserves the involution, too.

Remark 3.1. The reader will have noticed that, if we allow ourselves to identify
the isomorphic Hilbert spaces L2(G) and ⊕i∈HL

2(U) and interpret the matrix(
a◦ij

)
as an operator (in the canonical way), then A 7→

(
a◦ij

)
is the identity map;

that is, the operator defined by
(
a◦ij

)
is the original A again.

For G,H, and U as above, we define different kinds of diagonals on G×G.

Definition 3.2. For k ∈ H, we call {(x, y) ∈ G×G |xy−1 ∈ kU} the band diag-
onal determined by k, the set ∪ij−1∈kU(iU × jU) the approximate block diagonal
determined by k, and ∪ij−1=k(iU × jU) the block diagonal determined by k.

Lemma 3.3. There is n ∈ N such that each approximate block diagonal meets
at most n band diagonals, and conversely each band diagonal meets at most n
approximate block diagonals (and hence can be covered by these).

Proof. Let x, y ∈ G. There are s, t ∈ H and ξ, η ∈ U with x = sξ and y = tη.
If (x, y) is in the band diagonal determined by k ∈ H, this means xy−1 ∈ kU ;
that is, sξη−1t−1 ∈ kU or st−1 ∈ kU2U−1. If (x, y) is in the approximate block
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diagonal determined by l ∈ H, this means st−1 ∈ lU . So if this approximate block
diagonal meets the above band diagonal, this means l ∈ kU2U−2 or lU2∩kU2 ̸= ∅.
For fixed l (resp. k), the number of possible such k (resp. l) is dominated by
|U2U−2U |

|U | by Lemma 2.1. □

Corollary 3.4. CD∞ is bicontinuously ∗-isomorphic to the algebra of kernel
valued matrices CDH := {(a◦ik)i,k∈H} with norm
∥ (a◦ik)i,k∈H ∥ :=

∑
l∈H supik−1∈lU ∥ a◦ik ∥∞.

Proof. As seen before Remark 3.1, the map A 7→
(
a◦ij

)
i,j∈H carries the algebra

CD∞ isomorphically onto its image in the kernel valued matrices. Lemma 3.3
shows that this image is precisely CDH and that there are norm estimates both
ways for this isomorphism. □
Remark 3.5. If H is a subgroup, then approximate block diagonals are block
diagonals.

Proof. If i, j, k ∈ H with ij−1 ∈ kU , then k is the only element of H in kU , since
lU ∩ l′U = ∅ for l ̸= l′ in H. It follows that ij−1 = k. □

4. Spectrality of CD∞ and CDH.

Now we assume thatH is a (discrete) rigidly symmetric and amenable subgroup
of G and that the Haar measure of G is normalised, so that |U | = 1. Let A =
l∞(H,L∞(U×U)) denote the space of all bounded functions f : H → L∞(U×U)
with pointwise linear operations, multiplication (f, g) 7→ fg, where fg(h) = f(h)∗
g(h) (where ∗ denotes the convolution of kernels) and involution f 7→ f ∗, where

f ∗(h)(u, v) = f(h)(v, u), endowed with the norm ∥ f ∥A = suph∈H ∥ f(h) ∥∞.
Then A is a Banach ∗-algebra.

We denote the left regular representation of H on A by T . So (Tkf)(h) =
f(k−1h) for f ∈ A and h, k ∈ H. The twisted L1 algebra L = l1(H,A, T )
in the sense of Leptin is the Banach space of all functions F : H → A with
product F ⋆ G(h) =

∑
y∈H TyF (hy)G(y−1), involution F 7→ F ∗, where F ∗(h) =

T−1
h F (h−1)∗, and norm ∥F ∥ =

∑
h∈H ∥F (h) ∥A.

Theorem 4.1. The Banach ∗-algebra CDH is isometrically ∗-isomorphic to L =
l1(H, l∞(H,L∞(U × U)), T ). As a result CD∞ is bicontinuously ∗-isomorphic to
L.

Proof. Like in [7] we define a representation R of L, but this time on L2(G) =⊕
i∈H L2(U). The image ofR will turn out to be CDH . If δ

m
h denotes theA-valued

Dirac function which takes the value m ∈ l∞(H,L∞(U × U)) at h and vanishes
on H \ {h}, we set Rδmh = λh ◦ Mm, where Mm is the multiplication operator
(ξi)i∈H 7→ (m(i) ∗ ξi)i∈H , where of course (ξi)i∈H ∈

⊕
i∈H L2(U) = L2(G). Then

Rδmh coincides with the operator T given by the matrix (tij) ∈ CDH with zero
entries outside the h diagonal ij−1 = h and thj,j = m(j) for j ∈ H. To see this,
it suffices to apply both operators to (δi,kξ)i∈H , where ξ ∈ L2(U) and k ∈ H. We
have T (δi,kξ) = (ηi), where ηi = δi,hkm(k) ∗ ξ, which equals Rδmh (δi,kξ) (note that
λh permutes the L2(U)-blocks of L2(G), shifting the k block to the hk block).
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Clearly ∥ δmh ∥L = ∥T ∥CDH
= ∥m ∥∞. Extending R by linearity and continuity

we obtain an isometric linear isomorphism from L onto CDH . Consider δmh and
δnk with h, k ∈ H and m,n ∈ A = l∞(H,L∞(U × U)).

Rδmh Rδnk = λhMmλkMn

= λhkλ
−1
k MmλkMn = λhkM(T−1

k m)n

= Rδ
(T−1

k m)n

hk = R(δmh ∗ δnk ).
This implies that R is multiplicative. Finally

(Rδmh )
∗ = (λhMm)

∗ = Mm∗λ−1
h

= λ−1
h MThm∗ = R(δThm

∗

h−1 ); = R((δmh )
∗).

So R is a ∗-isomorphism from L = l1(H, l∞(H,L∞(U × U))) onto CDH (resp.
CD∞), which is isometric (resp. bicontinuous). At the same time R is a ∗-
representation of L on L2(G). □
Lemma 4.2. Let K2,∞ be the space of (equivalence classes of) measurable kernels
on U × U with

∥ k ∥2,∞ = ess supy∈U∥ k(·, y) ∥2 < ∞.

Then L∞(U × U) is a right Banach K2,∞ module, and K2,∞ is a left L2(U × U)
module for the convolution of kernels.

Proof. In order to avoid additional constants coming up, we normalise Haar mea-
sure on G so that |U | = 1.

(a) Let g ∈ L∞(U × U) and k ∈ K2,∞. Since

|g ∗ k (r, s)| = |
∫
U

g(r, t)k(t, s) ds| ≤ ∥ g(r.·) ∥∞∥ k(·, s) ∥1

≤ ∥ g ∥∞∥ k(·, s) ∥2 ≤ ∥ g ∥∞∥ k ∥2,∞ a.e. ,

we have

∥ g ∗ k ∥∞ ≤ ∥ g ∥∞∥ k ∥2,∞.

(b) Let h ∈ L2(U × U) and k ∈ K2,∞. Then

|h ∗ k(r, s)| ≤ ∥h(r, ·) ∥2∥ k(·, s) ∥2 ≤ ∥h(r, ·) ∥2∥ k ∥∞,2 a.e. ;

so

∥h ∗ k(·, s) ∥22 ≤
∫
U

∫
U

|h(r, u)|2 du dr∥ k ∥22,∞ ≤ ∥h ∥22∥ k ∥22,∞.

Hence

∥h ∗ k ∥2,∞ ≤ ∥h ∥2∥ k ∥2,∞.

□
Definition 4.3. A subalgebra A of an algebra B is called a spectral subalgebra
of B or spectral in B, if for every a ∈ A the spectrum of a in A coincides with its
spectrum in B except perhaps for the value zero. (Without the removal of zero
the notion would be equivalent to inverse-closedness).
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In the following remark for an element a of a Banach algebra A we denote its
spectral radius by r(a).

Remark 4.4.

(a) L∞(U ×U) and the Hilbert–Schmidt kernels L2(U ×U) are Banach alge-
bras for convolution, and so is K2,∞, since ∥ ∥2,∞ ≥ ∥ ∥2 on K2,∞.

(b) Since in general one sided ideals are spectral subalgebras, (L∞(U ×U), ∗)
is spectral in K2,∞ which is spectral in the algebra of Hilbert–Schmidt op-
erators on L2(U), which in turn is spectral in B(L2(U)). So (L∞(U×U), ∗)
is spectral in B(L2(U)).

(c) The closure of L∞(U × U) in B(L2(U)) is its C∗-hull C∗(L∞(U × U)).
For a ∈ L∞(U × U) and the operator A defined by it, one has ∥A ∥ =

r(A∗A)
1
2 = r(a∗a)

1
2 by (b). Since ∥ π(a) ∥ ≤ r(a∗a)

1
2 for any Hilbert space

∗-representation of L∞(U × U), the norm a 7→ ∥A ∥ is the greatest C∗-
seminorm on it. Hence the C∗-hull of L∞(U×U) is its closure in B(L2(U)).

(d) The argument in (c) shows that if A is a Banach ∗-algebra contained in a
C∗-algebra B and A is spectral in B, then the closure of A in B is the C∗-
hull C∗(A). (Without the spectrality assumption this is false. Consider
L1(G) ⊂ B(L2(G)) for a nonamenable group G.)

The set C = l∞(H,B(L2(U)) with pointwise operations and involution (where
multiplication in B(L2(U)) is composition) is a C∗-algebra. The left regular
representation of H on C is denoted by T . So Tkf(h) = f(k−1h) for f in C and
h, k ∈ H. In analogy to the beginning of this section we consider the twisted
L1-algebra B = l1(H, l∞(H,B(L2(U)), T ) and define the ∗-representation R of B
like for L in the proof of Theorem 4.1.

Proposition 4.5.
(a) The closure of R(B) in B(L2(G)) is its C∗-hull C∗(B).

(b) R(B) is spectral in B(L2(G)).

(c) CD∞(G) is spectral in B(L2(G)). In particular, CD∞(G) is a symmetric
Banach ∗-algebra.

Proof. Like in the proof of Theorem 4.1, we let

M : l∞(H,B(L2(U))) → B(l2(H,L2(U))) = B(L2(G))

be the ∗-representation c 7→ Mc, where Mc(ξi)i∈H = (c(i)ξi)i∈H for (ξi)i∈H ∈
l2(H,L2(U)). Since H is amenable and l∞(H,B(L2(U))) is a C∗ algebra, by
Leptin [20] the M -regular representation is a maximal representation of B. It is
weakly equivalent to R.

To see this one slightly modifies the proof of [7, Prop 3]. Since R happens on
L2(G) = l2(H,L2(U)) and λM happens on l2(H,L2(G)) = l2(H ×H,L2(U)), we
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work on this last space, which we denote H for short. Like in [7], let Rω denote
the extension of R from L2(G) to H defined by letting the operator R(f) =∑

y∈H λ(y) ◦Mf(y), where f ∈ L, act on the first coordinate only. That is,

Rω(f)ξ(x, z) =
∑
y∈H

f(y)(y−1x)ξ(y−1x, z) for ξ ∈ H, x, z ∈ H.

The operator S : H → H defined by Sξ(x, z) = ξ(xz, z) is unitary and intertwines
Rω and λM as in [7].

So Rω and in turn R are maximal representations of L.. Thus the closure of
R(B) in B(L2(G)) is C∗(B). This proves (a).

For f ∈ B the operator R(f) can be viewed as an l1-sum of its diagonals. Each
diagonal (with zero entries outside the diagonal) is a bounded operator on L2(G),
and its operator norm is the supremum of the B(L2(G))-norms of its entries. So
the ∗-isomorphism f 7→ R(f) maps B isometrically into l1(H,B(L2(G)). In
particular, R(B) is a complete and hence closed ∗-subalgebra of l1(H,B(L2(G)))
=̃l1(H)⊗̂B(L2(G)). The latter is symmetric, since H is rigidly symmetric. So
R(B) is symmetric, too. By [7] and (a), R(B) is spectral in B(L2(G)). This
proves (b).

By Lemma 4.2, L is a right ideal in l1(H, l∞(H,K2,∞)), which is a left ideal in
l1(H, l∞(H,L2(U × U))), which is a two-sided ideal in B=̃R(B) which by (b) is
spectral in B(L2(G))). So CD∞(G)=̃R(L)=̃L is spectral in B(L2(G)). □

Let 1 denote the identity operator in B(L2(G)).

Corollary 4.6. C1 + CD∞(G) is inverse-closed in B(L2(G)).

Proof. If G is discrete, this is contained in [7] (C1 may be omitted here, since
1 ∈ CD∞ = CD). Hence we may assume that G is nondiscrete. Then CD∞(G)
has no identity and is spectral in B(L2(G)) which has the identity 1. So the
assertion follows. □
Theorem 4.7. C1 + CD(G) is inverse-closed in B(L2(G)).

Proof. If G is discrete, then CD∞(G) = CD(G); so this case is covered by Corol-
lary 4.6. In the non-discrete case: C1 + CD∞(G) is inverse-closed in B(L2(G)),
and CD∞(G) is a dense two-sided ideal in CD(G). (See for instance [17] for the
argument.) □

5. Groups with compact commutator

Consider a locally compact group G with compact topological commutator
subgroup C = [G,G]. We denote pC : G → G/C the canonical projection.
G/C is a locally compact abelian group; so G/C = Rd × J , where d ∈ N ∪ {0}
and J contains a compact open subgroup K. Let R ⊂ J be a complete set of
representatives of J/K, U :=

(
p−1
C ([−1

2
, 1
2
)d ×K

)
, and let H ⊂ G be a complete

set of representatives of Zd×R ⊂ G/C. Then U is relatively compact, measurable,
and H-invariant. Furthermore {hU}h∈H is a partition of G. The set hU does not

depend on the choice of the representatives in J and in G; so we may write ḣU
for hU with ḣ ∈ D := Zd × J/K.
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Every h ∈ H is of the form h = repC(m, r), where repC denotes a representative
of (m, r) ∈ G/C, m ∈ Zd, and r is a representative repK(rK) of rK ∈ J/K in
J . So hU = p−1

C ((m + [−1
2
, 1
2
)d) × rK) which means that hU only depends on

ḣ := (m, rK) = (id × pK)(pC(h)) ∈ D. If k = repC(m
′, r′) and ḣ = k̇, it follows

that m = m′ and rK = r′K; hence h = k. So the map h 7→ ḣ is bijective from H

to D. Note also that (hk)̇ = ḣk̇ and (h−1)̇ = (ḣ)−1 (but unlike D the set H need
not be a group).

Proposition 5.1. The approximate block diagonals (hU, kU)hk−1∈lU of Defini-

tion 3.2 are exactly the block diagonals (ḣU, k̇U)ḣk̇−1=l̇ .

Proof.
(a) hk−1 ∈ lU implies l−1hk−1 ∈ U . The formula for h 7→ ḣ is meaningful on

all of G and defines an homomorphism onto Rd × J/K. Now l̇−1ḣk̇−1 ∈
U̇ ∩D = {0} (where U̇ denotes the set {u̇ : u ∈ U}). So ḣk̇−1 = l̇.

(b) If ḣk̇−1 = l̇, then hk−1 differs from l by an element w ∈ G with ẇ = 0;
that is, w ∈ p−1

c ({0} ×K). So hk−1 = lw ∈ lU .
□

Corollary 3.4 and Proposition 5.1 now imply the following theorem.

Theorem 5.2. If the (topological) commutator subgroup [G,G] is compact, then
CD∞ is bicontinuously ∗-isomorphic to the ∗-algebra of kernel-valued matrices

CDH = {(a◦hk)h,k∈H} =
{
(a◦

ḣk̇
)ḣ,k̇∈D

}
,

with norm
∥ (a◦

ḣk̇
)ḣ,k̇∈D ∥ =

∑
l̇∈D

sup
ḣk̇−1=l̇

∥ a◦
ḣk̇

∥∞,

the infinity norm being taken on hU × kU with product Haar measure on it.

Like in the beginning of section 3, we have L2(G) = ⊕h∈HL
2(hU) = ⊕h∈HL

2(U)
with canonical isomorphisms, and as we just have seen we may replace the
labelling h ∈ H by ḣ ∈ Ḣ = D. Although D = Zd × J/K is not a sub-
group of G; in general, it acts on L2(G) = ⊕ḣ∈DL

2(U) by permuting the L2(U)

blocks. Denoting the action of l̇ ∈ D by λl̇, we have λl̇(fḣ)ḣ∈D = (fl̇−1ḣ)ḣ∈D
for (fḣ)ḣ∈D ∈ ⊕ḣ∈DL

2(U). At the level of L2(G) = ⊕ḣ∈HL
2(hU) we would have

λl̇gh = λr(l̇ḣ)λh−1gh = λr(l̇ḣ)h−1gh, for gh ∈ L2(hU), where r(l̇ḣ) denotes the unique

k ∈ H with k̇ = l̇ḣ. This is a consequence of respecting our identifications. Note
that λl̇ may be different from λl.

We also define the action T of D = Ḣ on A = l∞(H,L∞(U × U)) =

l∞(D,L∞(U × U)) by Tk̇f(ḣ) = f(k̇−1ḣ) for f ∈ A and ḣ, k̇ ∈ D. For m ∈ A,

the multiplication operator Mm on ⊕ḣ∈DL
2(U × U) is defined by (Mmg)(ḣ) =

m(ḣ) ∗ g(ḣ) for ḣ ∈ D, g ∈ ⊕ḣ∈DL
2(U) where ∗ means convolution of kernels in

L∞(U×U). Like in the case where H is a subgroup, we have λk̇Mmλk̇−1 = MTk̇m
.

Letting L = l1(D,A, T ), denote the twisted L1-algebra like in the beginning of
section 4 (replace H and its elements by D and the respective elements); we may
repeat the proof of Theorem 4.1 to obtain its analogue.
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Theorem 5.3. The Banach ∗-algebra CDH is isometrically ∗-isomorphic to L =
l1(D, l∞(D,L∞(U ×U)), T ). As a result CD∞ is bicontinuously ∗-isomorphic to
L.

Continuing as in section 4 with D in place of H, we obtain the analoga of
Corollary 4.6 and Theorem 4.7.

Corollary 5.4. C1 + CD∞(G) is inverse-closed in B(L2(G)).

Theorem 5.5. C1 + CD(G) is inverse-closed in B(L2(G)).

6. Appendix

Here we shall derive the amenability of a locally compact group G satisfying
our assumption (1).

Lemma 6.1. If K ⊂ G is compact, then it can be covered by finitely many sets
hU with h ∈ H.

Proof.
(i) First note that, due to our assumptions, H is not only discrete but uni-

formly discrete. This implies that a net (hµ) in H cannot converge to a
point outside H, and if hµ → h ∈ H, then hµ = h from some index µ0

onwards.
(ii) Suppose that K ⊂ G is compact and meets infinitely many sets hnU ,

hn ∈ H, n ∈ N, and hn ̸= hm for n ̸= m. For n ∈ N, choose kn ∈ K∩hnU ;
so kn = hnun with un ∈ U . Choose a convergent subnet (kµ) of (kn)n∈N;
kµ → k ∈ K say. Choose a subnet (kµ′) of (kµ) such that kµ′ = hµ′uµ′

with uµ′ → u ∈ U . Then hµ′ = kµ′u−1
µ′ → ku−1. This contradicts the fact

that (hµ′), being a subnet of (hn)n∈N, cannot converge (according to (i)).
□

Now we show that G satisfies the Følner condition (see [11, 3.6]). For a compact
K ⊂ G, let K be covered by finitely many hiU, i = 1, . . . ,M , and let the compact
set U2 ∪ U−1U be covered by kjU, j = 1, . . . , L. Let ϵ > 0 be arbitrary. Since
H satisfies the Følner condition, for ∪i,j{kjhi, kjh

−1
i }, there exists a nontrivial

finite set E ⊂ H such that |kjhiE∆E| ≤ ε
L
|E| and |kjh−1

i E∆E| ≤ ε
L
|E| for

i = 1, . . . ,M , j = 1, . . . , L. (On the discrete group H the Haar measure coincides
with the counting measure, thus for E ⊂ H the cardinality of E is |E|.) Then
for x ∈ K, x = hiu say, we have

|hiuUE \ UE| ≤ |hiU
2E \ UE| = |U2hiE \ UE|

≤ |
L∪

j=1

kjUhiE \ UE| = |U ||
L∪

j=1

kjhiE \ E|

≤ |U |
L∑

j=1

|kjhiE \ E| ≤ |U |ε|E| = ε|UE|.
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Similarly

|UE \ hiuUE| ≤ |u−1h−1
i UE \ UE| ≤ |U−1Uh−1

i E \ UE|

≤ |
L∪

j=1

kjUh−1
i E \ UE| ≤ |U |

L∑
j=1

|kjh−1
i E \ E|

≤ |U |ε|E| = ε|UE|.
So we obtain, for x = hiu ∈ K,

|xUE∆UE| = |{hiuUE \ UE} ∪ {UE \ hiuUE}|
≤ |hiuUE \ UE|+ |UE \ hiuUE| ≤ 2ε|UE|.
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