
D I S S E RTAT I O N
S U B M I T T E D T O T H E

C O M B I N E D FA C U LT Y O F N AT U R A L S C I E N C E S A N D M AT H E M AT I C S
O F H E I D E L B E R G U N I V E R S I T Y, G E R M A N Y

F O R T H E D E G R E E O F
D O C T O R O F N AT U R A L S C I E N C E S

Put forward by
M.Sc. Sara Konrad

born in: Schwetzingen

Oral examination: 14 December 2020





C O S M I C S T R U C T U R E F O R M AT I O N I N T H E L I M I T O F S M A L L S C A L E S
W I T H I N

K I N E T I C F I E L D T H E O RY
F U N W I T H A S Y M P T O T I C S

Referees: Matthias Bartelmann
Manfred Salmhofer





A B S T R A C T

The amplitude and shape of the density fluctuation power spectrum today are deter-
mined by the initial conditions set after inflation, the properties of dark matter particles
and the growth of structures due to the gravitational interaction in an expanding
spacetime.

Since cosmic structure formation is highly non-linear, the impact of the properties of
dark matter on today’s structure or results from N-body simulations like the observed
universal halo density profiles, are hard to understand with conventional analytical
methods. While these approaches break down at small scales when particle streams
cross, Kinetic Field Theory (KFT) operates with a generating functional in classical
N-particle phase space, circumventing those problems.

In this work, we present novel asymptotic methods that apply to rapidly oscillating
integrals with two large parameters. Applying these methods to KFT, we derive the
asymptotic limit of the power spectrum on small scales in the Zel’dovich approx-
imation. The power spectrum universally develops a k−3 tail, independent of the
steepness of the initial spectrum, suggesting that scale-invariant structures form below
a characteristic length scale already early in cosmic history. Finally, we derive the
asymptotics of the factors of the factorized generating functional to guide their nu-
merical implementation. These factors are indispensable for the numerical evaluation
of perturbation theory and density correlation functions of high order within the
framework of KFT.

Z U S A M M E N FA S S U N G

Die heutige Amplitude und Form des Leistungsspektrums kosmischer Dichtefluktua-
tionen werden durch die Anfangsbedingungen nach der Inflation, die Eigenschaften
der Teilchen dunkler Materie und das Strukturwachstum aufgrund gravitativer Wech-
selwirkung in einer expandierenden Raumzeit bestimmt.

Da kosmische Strukturentwicklung hochgradig nichtlinear verläuft, sind der Ein-
fluss der Eigenschaften dunkler Materie auf die heutigen Strukturen sowie Ergebnisse
aus N-Teilchen-Simulationen wie die beobachteten universellen Dichteprofile gebun-
dener Strukturen mit konventionellen analytischen Methoden nur schwer zu verstehen.
Während diese Herangehensweisen auf kleinen Skalen scheitern sobald sich Teilchen-
ströme kreuzen, operiert die Kinetische Feldtheorie mit einem erzeugenden Funktional
im klassischen N-Teilchen-Phasenraum und umgeht somit diese Probleme.

In dieser Arbeit präsentieren wir neue asymptotische Methoden, die auf stark
oszillierende Integrale mit zwei großen Parametern anwendbar sind. Wir wenden
diese Methoden auf KFT an und leiten im Rahmen der Zel’dovich-Näherung den
asymptotischen Verlauf des Leistungsspektrums auf kleinen Skalen her. Das Leis-
tungsspektrum strebt universell einem k−3-Verhalten zu, unabhängig davon, wie steil
das Anfangsleistungsspektrum war. Dies deutet darauf hin, dass sich unterhalb einer
charakteristischen Längenskala skaleninvariante Strukturen bereits früh während der
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kosmischen Geschichte bilden. Schließlich leiten wir die Asymptotik der Faktoren
des faktorisierten erzeugenden Funktionals her, um Hinweise für deren numerische
Implementierung zu gewinnen. Diese Faktoren sind unerlässlich, um Störungstheorie
und Dichtekorrelationen höherer Ordnung im Rahmen von KFT zu berechnen.
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This feeling of being lonely and very temporary visitors in the universe
is in flat contradiction to everything known about man

(and all other living organisms) in the sciences.
We do not “come into” this world;

we come out of it, as leaves from a tree.
As the ocean “waves,” the universe “peoples.”

— Alan Watts

In loving memory of my grandparents.





1
I N T R O D U C T I O N

Curious as we humans are, we seek to explore the world that we are part of and
learn about the things that surround us. Throughout human history, changes in our
scientific and philosophical world view go hand in hand with changes in the way
how we think and how we see ourselves and how we conceive and articulate causal
relations. Looking into the night sky and to the stars leads our gaze to the most
extreme scales that we are able to explore.

What do we know today about our universe and what is still to be discovered?
We live in an expanding universe that appears isotropic and homogeneous if

averaged over large enough scales [3, 50]. According to Einstein’s theory of general
relativity, the dynamics of spacetime depends on the matter-energy density of the
universe [23]. However, only 5% of today’s matter-energy content can be considered
understood and are well described by the standard model of particle physics. For the
remaining 95%, typically split into the two components dark energy and dark matter,
we have only vague ideas about some of their properties [2]. Approximately 69% of
today’s matter-energy content are attributed to dark energy, a hypothetical substance
that causes the accelerated expansion that the universe undergoes today [53, 55]. The
remaining approximately 26% are associated to dark matter that reveals itself only via
gravitational interaction. It differs from regular matter – so called baryonic matter –
by the absence of any detectable interactions with electromagnetic radiation.

While we leave the search for dark energy to others, the goal of this work is to
contribute to the ongoing endeavor to uncover the nature of dark matter, which might
be particle-like, a modification of gravity, or something different.

Since dark matter is approximately five times more abundant than baryonic matter,
it is supposed to dominate cosmic structure formation on large scales. The structures
today are believed to have originated from small initial fluctuations set during the
earliest stages of the universe [44]. If dark matter consists of an unknown particle
species, the subsequent evolution of such structures until today depends on the
particles’ properties, such as their mass and interactions, as well as the background
expansion of the universe. Hence, studying the evolution of the statistics of cosmic
structures will guide us to a better understanding of the relation between these
interactions, the growth of cosmic structures and to constrain possible dark matter
particle candidates.

Since the differential equations that govern cosmic structure formation are highly
non-linear and hard to solve analytically with conventional methods, the most detailed
theoretical predictions today come from N-body simulations (see e.g. [59, 60, 63]). On
the one hand, it is for example known from N-body simulations in combination with
cosmological observations, that dark matter particles need to be non-relativistic and
are to the largest extend collisionless. Otherwise the theoretical predictions would
not match the structures we observe today. On the other hand, numerical simulations
also bring up new problems and questions. An example is the observation that the
density profiles of simulated dark matter halos always follow the same profile function,
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2 introduction

independent of the halo mass and widely independent of the dark matter type [43, 46,
64]. Up to now, it is not known why these halo profiles are universal and structures
therefore scale-free across many orders of magnitude. Even though we got many
interesting insights about comic structure formation from simulations, they are also
inherently limited in their applicability. For example, repeating simulations with many
different cosmological parameters, initial conditions, dark matter models and across
large scales requires large resources in time and energy. Moreover, extracting reliable
values for higher-order statistics that serve as tests for non-Gaussianities turns out to
be very difficult.

Due to their high computational cost and because gaining a fundamental under-
standing of physical processes from complex numerical simulations is limited, there
is great need for analytical approaches with which cosmic structure formation can
be calculated, especially in the non-linear regime. Common analytical approaches
such as Eulerian and Lagrangian perturbation theory are successful in describing the
largest structures in the regime of linear up to mildly nonlinear scales larger than
approximately 20 h−1 Mpc. However, these theories break down when the particle
streams of collisionless dark matter cross and the velocity fields are not uniquely
defined any more (for an overview, see [11] and references therein). Thus, they cannot
describe the evolution of the non-linear structures on small scales, which we wish to
analyze.

For these reasons, we work in the framework of Kinetic Field Theory (KFT). KFT op-
erates in the 6N-dimensional phase space of correlated microscopic particles obeying
Hamiltonian dynamics. Thus, the crossing of particle streams is no obstacle because
the full phase space information always remains available [7, 9, 10]. Making use of
the path integral formalism, the central objects of KFT are (i) the free generating
functional, that governs free particle motion, and (ii) an interaction operator that
has to be chosen appropriately. While correlation functions of macroscopic fields are
obtained by the application of appropriate operators, interactions beyond free motion
can be incorporated via perturbation theory or a mean field approach. KFT is a very
flexible theory in which collisionless dark matter, other types of dark matter, baryonic
physics, modified gravity and different cosmological models can be considered, while
the computations can be performed on a standard computer within minutes or faster.
For a recent review, we refer to [10]

When we started with this work, the basic equations of KFT, which govern the free
evolution as well as perturbation theory, were already available. However, it was not
possible to evaluate these expressions numerically at intermediate and small scales
when the full initial momentum-momentum correlations were taken into account,
not even for the free two-point statistics. The difficulties were due to the rapidly
oscillating integrals that are delicate to handle numerically. To circumvent these
obstacles, approximations in the initial correlations where typically applied. While
these approximations yield numerically stable results, they are only valid in the
large scale regime, where linear growth is expected to occur. At the other end of
the spectrum, i.e. in the small-scale limit, no such approximation methods had been
available, neither analytical nor numerical.

To eventually derive analytical and numerical results for the small-scale regime of
cosmic structure formation from KFT, we pursue three major goals with this work.
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(i) The development of novel asymptotic methods that apply to the rapidly oscillat-
ing integrals in KFT in Chapter 4. These methods might also find applications beyond
KFT.

(ii) The application of these methods to KFT to derive the small-scale asymptotics
of the free power spectrum in Chapter 6. Our main result is the proof that the free
power spectrum at small scales always develops a k−3 tail, independent of the shape
of the initial power spectrum.

(iii) To derive the asymptotic behavior of the factors of the free generating functional
and to guide their numerical implementation in Chapter 7.

This work is organized as follows. In Chapter 2, we start with a summary of the
cosmological standard model and review analytical approaches to cosmic structure
formation. In the following Chapter 3, we review the basics of KFT and specifically
those more recent results that are relevant to this work. In Chapter 4, we derive novel
asymptotic methods for rapidly oscillating integrals with two large parameters, first in
one and then in N dimensions. We then derive the asymptotics of the initial correlation
functions of the cosmic density and velocity fields at large and small scales in Chapter
5. With the use of these results, we derive in Chapter 6 the small-scale k−3 asymptotics
of the density fluctuation power spectrum. In Chapter 7, we derive the asymptotics of
the factors of the free generating functional to enable the numerical evaluation and the
implementation of higher order spectra and perturbation theory. Finally in Chapter 8,
we give some concluding remarks and an outlook to future work.





Part I

F O U N D AT I O N S





2
S T R U C T U R E S I N T H E U N I V E R S E

A hundred years ago, the western image of the cosmos was very different compared
to the image we have today. It was widely believed that the universe was static and
that all objects in it are located within the Milky Way, our own host galaxy. Modern
cosmology begins with two scientific breakthroughs, one observational and one
theoretical. In 1912, Henrietta Swan Leavitt discovered the relation between the period
and the brightness of Cepheid variable stars [39]. This breakthrough in observational
cosmology made it possible to quantify the distances to remote stars and later to prove
the existence of other galaxies outside the Milky Way. In 1915, Albert Einstein lay the
theoretical foundations of cosmology with the general theory of relativity, in which he
explained gravity as a geometric phenomenon of spacetime [23]. These two findings
marked the onset of a drastic change in our picture of the universe that finally led to
the formulation of the standard model of cosmology.

In 1922 Alexander Friedmann published the equations for the dynamics of a
homogeneous and isotropic universe, showing that the universe might not be static but
expands [29, 30]. Independently, Georges Lemaître arrived the same prediction in 1927,
and discussed its physical implications, in particular in the context of observations
of redshifted galaxies [40]. The first observational proof for the expansion of the
universe was provided by Edwin Hubble. He measured the redshifts of distant
galaxies and quantified their distance with Cepheids. From these data, he found the
linear relationship between distance and velocity, now known as Hubble-Lemaître law
[37]. The more distant a galaxy, the higher the velocity with which it is driven away
from us.

A few years later, Fritz Zwicky (1933) based on redshift observations of galaxies
in clusters discovered first evidence for the existence of dark matter, a non-luminous
substance that interacts gravitationally. By measuring the peculiar velocities of galaxies
in the Coma cluster, he found that in order to be stable, the cluster had to contain
much more mass than visible. In 1970, Vera Rubin confirmed the existence of dark
matter on galaxy scales, where she found that the rotation curves measured from
stellar velocities were flat [56]. These rotation curves cannot be explained by the
observed distribution of luminous matter in the form of stars, gas or dust. Today we
know that the universe is filled with approximately five times more dark than visible
matter.

It is important to note that besides dark matter, our universe hosts another – even
more puzzling and abundant – substance. Observations of supernovae of type 1A
suggest that the universe today undergoes accelerated expansion [53, 55]. In general
relativity, the unknown source of this acceleration needs to be attributed to a substance
with negative pressure, known as dark energy that is the most abundant energy
component in the universe today.

The discovery of the cosmic microwave background by Penzias and Wilson in
1965 marks another milestone in cosmology [52]. Since our universe expands today,
going back in time implies higher densities and temperatures. Eventually, the density
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8 structures in the universe

and temperature reach a level at which the atoms in the universe ionize. Photons
are tightly coupled to this hot optically thick plasma. When the temperature drops
during cosmic expansion, atoms form and the universe becomes transparent, releasing
the formerly trapped photons. This electromagnetic radiation is observed today
as cosmic microwave background (CMB) radiation. Due to its thermal origin, it
has a perfect Planck spectrum. The fluctuations in the cosmic density field during
recombination are imprinted as tiny fluctuations of the CMB temperature. The statistics
of these fluctuations can be used as an important tool for modern cosmology as they
reveal crucial insights about the early universe as well as various processes that took
place along the line of sight. For example, the low amplitude of these temperature
fluctuations proves that a substantial amount of matter – that is dark matter – cannot
interact with photons at all.

What is the origin of structures in the universe? According to the model of cosmic
inflation, the structures we observe today were seeded by tiny quantum fluctuations
[44]. These quantum fluctuations were massively enlarged during an early era of
inflationary expansion. The origin and nature of the inflaton field, which is assumed to
have driven this inflation, is still unknown. Once inflation ended, the seed fluctuations
imprinted on the density field grew via gravitational instability. As we know today,
this growth was largely dominated by the gravity of dark matter, whose dynamics
shaped various properties of the present-day structures, such as their mass profiles or
the amount of substructures. In order to understand the nature of dark matter, we
have to understand how the formation of structures proceeds.

In the following, we give a brief introduction about the technical aspects of cosmol-
ogy necessary for this work. This chapter is organized as follows. In the first section,
we review the dynamics of the homogeneous and isotropic Friedmann universe. In
the second section, we review how the growth of linear structures is described in
the so-called Eulerian picture. In the third section, we show how Zel’dovich particle
trajectories are derived in the Lagrangian picture. In the fourth section, we summarize
the statistical description of density fluctuations and the connection to the halo pic-
ture. Finally, in the last section, we summarize these insights and discuss the need
of an alternative analytical approach to cosmic structure formation that help us to
understand the nature of dark matter and the emergence of universal halo density
profiles.

Most parts of this chapter follow the description in [6].

2.1 the homogeneous universe

Cosmology describes the universe as a whole, the natural language being the frame-
work of general relativity. The dynamical variable that is considered is the metric gµν.
The metric is sourced in a set of non-linear second-order differential equations, known
as the Einstein field equations

Gµν =
8πG

c4 Tµν + Λgµν . (2.1)

The Einstein tensor Gµν on the left hand side represents the dynamics or (local)
curvature of space time, containing second derivatives of the metric. The energy-
momentum tensor is Tµν. When placed on the right hand side of the equation, the
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cosmological constant term Λgµν may be interpreted as an additional energy density
with negative pressure. This term was originally introduced by Einstein to allow a
static non-empty universe [24]. However, it is also possible to place this term on the
left hand side of the equation and interpret it as a geometrical feature of spacetime.

On large scales, the universe appears to be homogeneous and isotropic. These two
assumptions lead to the most general form of the metric, the Robertson-Walker line
element

ds2 = gµνdxµdxν = −c2dt2 + a2(t)
[

dw2 + f 2
K(w)

(
dθ2 + sin2 θdφ2

)]
. (2.2)

The coordinates are chosen such that w is the radial co-moving coordinate of freely-
falling fundamental observers who observe an isotropic universe. The time-dependent
scale factor a describes the change in spatial length scales with cosmic time t. The
coordinates can be chosen such that metric contains no terms g0i with i ∈ {1, 2, 3}.
If this was not possible, these terms would imply the flow of energy, contradicting
isotropy. Analogously, if the coordinates cannot be chosen such that simultaneously
the off-diagonal terms in the spatial part of the metric, i.e. gij with i 6= j, vanish, this
would imply matter flows, which are forbidden, likewise. Due to homogeneity, the
function fK needs to be trigonometric, hyperbolic, or linear in the coordinate w,

fK(w) =


K−1/2 sin(

√
Kw) for K > 0

w for K = 0

|K|−1/2 sinh(
√
|K|w) for K < 0

. (2.3)

The constant K parameterises the curvature of spatial hypersurfaces. The only dynam-
ical variable in the metric is therefore the scale factor a.

Due to homogeneity and isotropy, we can consider the matter-energy content of the
universe as an ideal fluid with energy density ρ and pressure p. From Einstein’s field
equations and the Robertson-Walker line element, the Friedmann equations

H2(a) :=
(

ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 +
Λc2

3
, (2.4)

ä
a
= −4πG

3

(
ρ +

3p
c2

)
+

Λc2

3
(2.5)

follow. When a obeys the Friedmann equations, the metric in (2.2) is called the
Friedmann-Lemaître-Robertson-Walker metric. The first Friedmann equation (2.4) defines
the (squared) Hubble function H that quantifies the expansion rate. The second
Friedmann equation (2.5) shows that any conventional energy content with positive
pressure, like matter or radiation, slows down the expansion, while the cosmological
constant leads to an acceleration of the expansion. Curvature has no effect on the
acceleration of the scale factor. Note that one can combine both Friedmann equations
(2.5)–(2.5) to get the adiabatic equation,

d
dt

(
a3ρc2

)
+ p

d
dt

(
a3
)
= 0 , (2.6)

which reflects local energy-momentum conservation.



10 structures in the universe

In order to close the system of equations, an equation of state for the energy content
is necessary. We use the ansatz

ρ = wρc2 , (2.7)

with the parameter w, characteristic for the specific type of energy considered. The
energy density ρ and pressure p in the Friedmann equations are sums of different
energy components

ρ = ∑
i

ρi . (2.8)

In the equations of motion, these energy components differ in their equation of
state parameters wi. For non-relativistic (dark) matter ρm, the pressure is negligible
compared to the energy density, such that wm = 0. Relativistic matter and radiation ρr

are characterized by a trace-free energy momentum tensor, such that wr =
1
3 follows.

An equation of state parameter can also be introduced for the cosmological constant,
which yields wΛ = −1. In this case, the cosmological constant is interpreted as an
effective fluid component, that we call dark energy. Whether the presently observed
acceleration of the cosmic expansion is governed by a cosmological constant or forms
of dark energy is not known today. Alternative values for wΛ or even a time-dependent
equation of state, as are considered in so-called quintessence models, may be viable
explanations as well.

The evolution of each density component with the scale factor a follows from the
adiabatic equation (2.6) by inserting the corresponding equation of state parameter.
Denoting the energy densities with a subscript 0 at a = 1, we obtain the equations

ρr(a) = ρr0a−4 , ρm(a) = ρm0a−3 and ρΛ(a) = ρΛ0 ≡
Λc2

8πG
. (2.9)

In order to express the densities by dimensionless parameters, it is convenient to
define the critical density

ρcr(t) :=
3H2(t)
8πG

with ρcr0 :=
3H2

0
8πG

. (2.10)

The critical density has the following meaning: when the energy density of the
universe, including the cosmological constant, is equal to the critical density, then the
universe is spatially flat. We now define the dimensionless density parameters for
radiation, matter and dark energy,

Ωi(t) :=
ρi(t)
ρcr(t)

with Ωi0 :=
ρi0

ρcr0
. (2.11)

The critical density also allows to define a curvature density parameter

ΩK := 1−Ωr −Ωm −ΩΛ . (2.12)

The values of these parameters today are shown in Table 2.2. With these parameters
and (2.9) we can write the Hubble function (2.4) as

H(a) = H0
√

Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩΛ0 (2.13)

=: H0E(a) , (2.14)
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which defines the expansion function E. This representation of the Hubble function
shows that at very early times the expansion rate was governed by radiation. Since
the energy density of radiation drops by a factor of a faster than that of matter, the
scale factor aeq =

Ωr0
Ωm0

marks matter-radiation equality. As the matter density dilutes,
the universe eventually reaches an era dominated by the cosmological constant. A
summary of the evolution of the scale factor with cosmic time and of the expansion
rate with scale factor is shown in Table 2.1.

era a(t) H(a)

radiation domination ∝ t1/2 ∝ a−2

matter domination ∝ t2/3 ∝ a−3/2

Λ domination ∝ exp(H0
√

ΩΛ0t) → const.

Table 2.1: The evolution of the scale factor a with cosmic time t and the evolution of the Hubble
function H with the scale factor in the era of radiation, matter and Λ domination
are shown.

2.2 linear growth of large-scale structures

On scales & 100 Mpc, the universe indeed appears to be homogeneous [57]. Below this
scale, the matter in the universe is hierarchically structured. The largest gravitationally
bound objects are the galaxy clusters, which are connected by the filamentary structure
of the so-called cosmic web. The cosmic web is a network pattern of filaments, clusters
and voids visible in the matter distribution on the largest observed scales. Galaxies
and dwarf galaxies form on smaller scales, while smallest structures are globular
clusters and finally stars and planets.

In order to describe the growth of the large-scale structures, one would need to do
this in the framework of general relativity. However, since the structures we consider
are small compared to the Hubble radius (rH ≈ 3.01× 103h−1 Mpc) and retardation
effects are unimportant, Newtonian dynamics is appropriate to use.

We describe the dynamics of the inhomogeneous cosmic fluid by the equations of
hydrodynamics

∂ρ

∂t
+ ~∇ ·

(
ρ~v
)
= 0 , (2.15)

∂~v
∂t

+
(
~v · ~∇

)
~v = −

~∇p
ρ
− ~∇Φ , (2.16)

~∇2Φ = 4πGρ . (2.17)

The continuity equation (2.15) ensures mass conservation. The Euler equation (2.16)
expresses the conservation of momentum in the presence of pressure and gravitational
forces and the Newtonian gravitational potential Φ satisfies Poisson’s equation (2.17).
These non-linear equations can in general not be solved analytically. However, when
the amplitude of fluctuations in the density and velocity fields are small, (2.15)–(2.17)
can be linearised in the fluctuations and then solved to yield linear growth. This
procedure is called (Eulerian) linear perturbation theory.
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parameter symbol value

Hubble constant H0 67.4± 0.5 km s−1 Mpc−1

age of the universe tH 13.801± 0.024 Gyr

redshift at recombination z∗ 1089.80± 0.21

age at recombination t∗ 377700± 3200 yr

variance at 8 h−1Mpc σ8 0.811± 0.006

spectral index ns 0.965± 0.004

matter density parameter Ωm0 0.315± 0.007

baryon density parameter Ωb0 0.0486± 0.0010

radiation density parameter Ωr0

curvature density parameter ΩK0 0.001± 0.002

dark energy density parameter ΩΛ0 0.6889± 0.0056

dark energy eos parameter wΛ −1.03± 0.03

Table 2.2: Cosmological parameters, taken from the Planck collaboration [2].

To this end, we split the density and the velocity field into their mean values,
indicated by a subscript 0, and their fluctuations

ρ = ρ0 + δρ and ~v = ~v0 + δ~v . (2.18)

The introduction of a non-vanishing mean velocity might seem to contradict the
isotropy assumption. However, when we consider the physical spatial coordinate~r
and the comoving coordinate ~q =~r/a, the velocity can be split into a comoving and a
peculiar part,

~v = ~̇r = ȧ~q + a~̇q = H~r + a~̇q = ~v0 + δ~v . (2.19)

Thus, two observers who are comoving with the Hubble flow and separated by the
comoving vector ~q, will measure a relative velocity ~v0 = H~r in physical coordinates
due to the Hubble expansion.

Next, we define the density contrast

δ(~r, t) :=
ρ(~r, t)− ρ0(t)

ρ0(t)
=

δρ(~r, t)
ρ0(t)

(2.20)

that quantifies the relative over- or under-density relative to the mean density and the
peculiar velocity ~u := δ~v

a .
Linearizing the perturbed equations (2.15)–(2.17) and considering that the mean

background fields satisfy those equations individually, we arrive at

δ̇ + ~∇ · ~u = 0 , (2.21)

~̇u + 2H~u = −
~∇δp
a2ρ0

−
~∇δΦ

a2 , (2.22)

~∇2δΦ = 4πGρ0a2δ . (2.23)
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We relate fluctuations in the pressure to fluctuations in the density field via the sound
speed cs by δp = c2

s ρ0δ, (2.21)–(2.23) can be combined to yield the linear second-order
equation for the dynamics of the density contrast of non-relativistic matter

δ̈ + 2Hδ̇ = 4πGρ0δ +
c2

s
~∇2δ

a
. (2.24)

Decomposing the density contrast into plane waves yields

¨̂δ + 2H ˙̂δ =

(
4πGρ0 −

c2
s k2

a

)
δ̂ . (2.25)

For a pressureless non-relativistic fluid like dark matter that dominates cosmic struc-
ture formation, (2.25) simplifies to

¨̂δ + 2H ˙̂δ =
3
2

H2Ωmδ̂ . (2.26)

Since modes are uncoupled in the linear theory, every mode evolves independently
with the same rate. Thus, the solution to (2.25) has the form δ̂(~k, t) = δ̂(~k, t0)D(t),
with D(t0) = 1. Since (2.25) is a linear second-order equation, the function D has two
independent solutions. Considering collisionless dark matter in the matter dominated
era, the solutions to (2.26) are a growing solution D+(a) ∝ a and a decaying solution
D−(a) ∝ a−3/2. In general, any linear combination of the two solutions then solves
(2.25). The single constraint D(t0) = 1 removes one degree of freedom in the combi-
nation of these solutions, but is not sufficient to uniquely determine the final form.
Since we are interested in the growth of structures, only the growth factor D+ will be
considered for any practical purposes and we write

δ(t) = δ(t0)
D+(t)
D+(t0)

. (2.27)

In Table 2.3 we show the solutions for relativistic matter, pressure-less non-relativistic
matter and non-relativistic matter with pressure in the radiation dominated era.

matter type non-growing solution growing solution scales

relativistic ∝ a−2 ∝ a2 k� 2
√

3Hc−1

osc. ω = ck√
3aH

k� 2
√

3Hc−1

non-relelativistic ∝ const. ∝ ln a all

(pressure-less)

non-relativistic ∝ const. ∝ ln a k� 2Hc−1

(with pressure) osc. ω = ck
aH k� 2Hc−1

Table 2.3: The linear growth of density perturbations during the radiation dominated era for
different types of matter is scale-dependent. Large-scale perturbations in relativistic
matter grow like a2, while small-scale perturbations oscillate. Perturbations in
pressure-less non-relativistic matter grow logarithmically at all scales. Large-scale
perturbations in non-relativistic matter with pressure also grow logarithmically,
while small-scale perturbations oscillate.
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A good approximation for the post-matter dominated era, when Ωm + ΩΛ = 1,
while Ωm 6= 1 is given by

D+(a) ≈ 5a
2

Ωm

[
Ω4/7

m −ΩΛ +

(
1 +

1
2

Ωm

)(
1 +

1
70

ΩΛ

)]−1

. (2.28)

The linear growth of velocity perturbations in co-moving coordinates ~q can be
derived from the ansatz

~u(~q, t) = u(t)~∇δΦ(~q, t) , (2.29)

and the linear growth of density perturbations (2.27), when the initial field ~u(i) is
a Gaussian random field, correlated with δ(i). Ignoring pressure gradients in (2.22),
which is appropriate for collisionless dark matter, the linear velocity perturbations
become

~u = −2
3

f
a2HΩm

~∇δΦ , (2.30)

with the logarithmic derivative of the growth function f = d ln D+/d ln a. The ansatz
(2.29) for the perturbations in the velocity field implies a curl-free velocity field, since
~u is proportional to the gradient of the perturbations in the gravitational field. If the
initial velocity perturbations contained a non-vanishing vorticity part, i.e. ~∇×~u(t0) 6=
0, linear perturbation theory yields only a decaying solution ∝ a−1 for the vorticity
[11]. Since the rotational part of velocity perturbations is suppressed during linear
growth, we neglect any rotational velocities at initial times for the growth of structures.
Thus, we can write the initial velocity field as the gradient of a velocity potential
~u(i) = ~∇ψ.

2.3 zel’dovich approximation

Another analytic approach to describe the growth of cosmic structures is given by
Lagrangian perturbation theory. While Eulerian perturbation theory considers the
dynamics of the density and velocity fields in a spatial rest-frame, the Lagrangian
picture follows the spatial trajectories of particles. The central object of Lagrangian
perturbation theory is the displacement field ~Ψ, which describes a map between the
initial and the final position of a particle

~q(i) → ~q(i) + ~Ψ(~q(i), t) . (2.31)

The equations of motion for the particle positions can then be solved perturbatively.
For details, we refer to [11]. The first-order solution is given by

~∇ · ~Ψ(1)(~q, t)
∣∣∣
~q=~q(i)

= −D+(t) · δ(~q(i)) . (2.32)

The divergence of the displacement field is linearly related to the initial density
contrast by the growth factor. When we assume that the initial vorticity of the velocity
field vanishes, (2.32) completely determines the displacement field to linear order.

Lagrangian perturbation theory breaks down, when particle trajectories cross such
that caustics form in the density field. In the Zel’dovich approximation particle
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trajectories are set to follow the first-order solution of Lagrangian perturbation theory
beyond the range of validity. We review the derivation of particle trajectories in the
Zel’dovich approximation as presented in [6]. We consider the map ~q→~r(~q, t) from
initial comoving coordinates ~q to late time coordinates~r in real space with the ansatz

~r(~q, t) = a(t)~q + b(t)~f (~q) . (2.33)

Comparing to this expression to the mapping (2.31) implies that b/a~f corresponds to
the displacement field ~Ψ. The ansatz (2.33) implies straight particle trajectories at all
times.1 As long as particle trajectories do not cross, the time-evolved density is then
related to the initial density by

ρ = ρ0det−1

[
∂ri

∂qj

]
, (2.34)

where the linearized map of ~q→~r is given by

∂ri

∂qj
= a(t)δij + b(t)

∂ fi(~q)
∂qj

. (2.35)

Taking the time derivative of (2.33) yields

~̇r(~q, t) = ȧ(t)~q + ḃ(t)~f (~q) , (2.36)

where we identify the peculiar velocity ~u = ḃ
a
~f . Since we assume ~u to be curl-free,

as discussed in Section 2.2, this implies the existence of an initial velocity potential
ψ such that ~f = ~∇ψ. We now denote the eigenvalues of (~∇⊗ ~∇)ψ(~q) by (λ1, λ2, λ3)

and express the determinant of the Jacobian as

det

[
∂ri

∂qj

]
=
(
a(t) + b(t)λ1

) (
a(t) + b(t)λ2

) (
a(t) + b(t)λ3

)
. (2.37)

Using this result in (2.34) together with the definition of the density contrast (2.20),
we arrive at

δ =
a3(t)(

a(t) + b(t)λ1
) (

a(t) + b(t)λ2
) (

a(t) + b(t)λ3
) − 1

≈ −b(t)
a(t)

(λ1 + λ2 + λ3)

= −b(t)
a(t)

~∇ · ~f (~q) ,

(2.38)

where the approximation holds for low densities, i.e. when b
a λi � 1. Since ~∇~f is

time-independent and b
a independent of position, a comparison with our known

solution of linear growth (2.27) yields the identification

b(t)
a(t)

=
D+(t)
D+(t0)

, and δ(~q, t0) = −~∇ · ~f (~q) . (2.39)

Inserting this result in (2.33) and adjusting the normalization of the velocity potential
ψ finally yields the Zel’dovich trajectories

~r(~q, t) = a(t)
[
~q + D+(t)~∇ψ

]
. (2.40)

1 The evolution of trajectories for a more general ansatz is discussed in [14].
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2.4 statistics of fluctuations

The fluctuations in the cosmic density field can be characterized by the n-point
statistics of the density contrast. As long as the density contrast is a Gaussian random
field, its statistics is completely described by the two-point correlations: The one-point
statistics, the average density contrast, 〈δ〉 = 0 vanishes by definition, and any higher
order even cumulants of the field can be expressed as products of the two-point
function, while cumulants of odd order vanish.

The two-point correlation function of density fluctuations is defined as

ξδδ(y) := 〈δ(~x)δ(~x +~y)〉 , (2.41)

where the average is performed over all positions ~x and orientations of ~y.
The power spectrum P is defined by the two-point correlation function of density

fluctuations in Fourier space

〈δ̂(~k)δ̂∗(~k′)〉 =: (2π)3δD(~k−~k′)Pδ(k) , (2.42)

where the star superscript indicates complex conjugation. Homogeneity requires that
modes of different wave numbers are uncorrelated in Fourier space, which is the
reason for the Dirac delta distribution. Isotropy demands that the power spectrum
depends only on the absolute value of the wave vector k.

The time-evolved density fluctuation power spectrum during linear evolution then
follows from (2.27) and (2.42)

Pδ(k, t) =
D2

+(t)
D+(t(i))

P(i)
δ (k) , (2.43)

where P(i)
δ denotes the power spectrum at an initial time. For practical purposes, the

power spectrum at recombination is an excellent choice for P(i)
δ for at least two reasons:

(i) structure formation is expected to occur linearly at this early time, and (ii) the
shape of the power spectrum at large scales, i.e. small wave numbers, is very well
known from measurements of the CMB while the shape at smaller scales, i.e. larger
wave number, is known from measurements of the Lyman-α forest.

The two-point correlation function and the power spectrum are related by the
Fourier transform

ξδδ(y) =
∫ d3k

(2π)3 Pδ(k)ei~k·~y =
1

2π2

∫
dk k2Pδ(k)

sin ky
ky

. (2.44)

The variance σ of the density contrast δ is given by ξδδ(0). In practice, the variance σR

of the filtered density field is considered, where R denotes the filter scale. Then, σR

can be expressed in terms of the power spectrum and the Fourier transform ŴR of
filter function WR in real space

σ2
R =

1
2π2

∫
dk k2Pδ(k)Ŵ2

R(k) . (2.45)

The value of the variance σ8 at R = 8h−1Mpc is shown in Table 2.2.
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Another way to approach the two-point statistics of the density fluctuations is by
considering how matter is actually distributed. Cosmological N-body simulations and
observations suggest that most of the dark matter today is bound in halos2. While in
general difficult to measure in the real world, simulations have shown that the density
profiles of individual halos have a universal shape. This universal shape was first
found and characterized in [46] with the fit-function

ρNFW(r|M) =
ρsr3

s
r(r + rs)2 , (2.46)

where the scale radius rs and the scale density ρs depend on the virialized halo
mass M. A recent numerical study suggests that this so-called NFW profile is valid in
simulated halos across 20 orders of magnitude in halo mass [64]. Considering that
most of the dark matter today is organized in halos, the power spectrum can roughly
be split into two contributions3,

Pδ(k) ≈ P1h
δ (k) + P2h

δ (k) . (2.47)

The one-halo term P1h takes correlations from the density profiles of individual halos
into account. Let n(M) denote the number density of halos of a given mass M, then
the one-halo term is given by

P1h(k) =
∫

dM n(M)

(
M
ρ̄

)2 ∣∣u(k|M)
∣∣2 , (2.48)

where u(k|M) denotes the Fourier transform of the density profile of a halo with
mass M. If the positions of halos were completely uncorrelated, the power spectrum
would be completely determined by P1h. The correlation of halo positions is taken
into account by the two-halo term P2h. For more details on the halo picture, we refer
to [22] and the references therein.

Figure 2.1 shows the dimensionless nonlinear power spectrum ∆(k) = k3Pδ(k)/(2π2)

from a fit function (PD) together with the linear power spectrum (lin), the one-halo
term P1h, and the two-halo term P2 for today. For small scales, i.e. large wave numbers
above 1 h Mpc−1, the non-linear power spectrum is completely determined by the
one-halo term.

2.5 summary and discussion

The largest portion of the matter-energy content that fills our universe today consists
of substances that we know very little of. While dark energy reveals itself in the
accelerated expansion of universe, the existence of dark matter - a substance that
does not interact with light - becomes apparent to us through its gravitational effects
and the unexpectedly small fluctuations in the cosmic microwave background. We
can learn more about the nature of dark matter by studying the properties of cosmic

2 It is estimated that the amount of dark matter that is not bound in halos is less than 20 % (see e.g. [69]
and references therein).

3 A more thorough analyis that incorporates the rich substructures of halos and takes the redhisft
dependence of (2.46) and the statistical scattering of the mass dependence of rs and ρs into account is
presented in [34].
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Figure 2.1: The dimensionless power spectrum of the dark matter density field at the present
time. The curve labeled ‘PD’ shows the fitting formula of reference [210] in [22].
The dot dashed curve labeled ‘lin’ shows the linear power spectrum. The dotted
and short dashed curves show the two terms which sum to give the total power
(solid line) in the halo model. The figure and caption are taken from [22]. The
wording of the caption is slightly changed.

structures and investigating how they must have formed; and in particular, how
different properties of dark matter affect this formation process.

Linear theory is very successful to quantify the growth of density perturbations
on the largest scales, even until today. However, non-linear evolution sets in at small
scales already at early times. This leads to a break-down of linear theory, which
cannot explain the diverse structures we observe today or the development of halos
with a universal density profile. As time progresses, the non-linearity in the power
spectrum arises at successively smaller wave numbers, implying the growth of non-
linear structures first on small and then on larger scales. Here, two fundamental
questions arise:

• How can we find an analytical description of the non-linear dark matter power
spectrum?

• Why do dark matter halos attain a universal density profile?

Rigorous analytical descriptions on how the non-linear power spectrum emerges
are still missing. Cosmological N-body simulations are time and energy consuming,
especially when one wishes to repeat the simulation for different parameters. Fur-
thermore, they suffer from their own issues like limited resolution, the formation of
spurious features, the implementation of initial conditions or the limited box size, to
name a few.

Describing the growth of cosmic structures with Eulerian perturbation theory has
several limitations. First, linear theory is valid only for small perturbations, i.e. δ� 1.
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This assumption can be relaxed to some degree by incorporating higher orders in
the perturbations. This leads to non-linear equations that couple modes, such that
modes no longer evolve independently. However, the standard perturbation series
does not converge. Second, treating cosmic structures in the picture of hydrodynamics
restricts the theory to single-valued velocity fields. This is a valid assumption for
fluids for which the mean free path of particles is small compared to the scales
under consideration. This assumption does in general not hold for collisionless dark
matter, which develops flows with crossing particle streams, such that the velocity
can no longer be described by a single-valued continuous field. While hydrodynamics
predicts the formation of shocks, which prevent the crossing of streams, stream
crossing is actually important for cosmic structure formation. Similar problems arise
in Lagrangian perturbation theory, where the functional determinant becomes singular
when streams cross. The non-linear Zel’dovich power spectrum, which can be obtained
by extrapolating the particle trajectories from first-order Lagrangian perturbation
theory beyond its validity, i.e. shell crossing, underestimates structures at late times
even more than the linear power spectrum does.

In this work, we make use of another analytical approach to cosmic structure
formation, which circumvents the aforementioned problems: Kinetic Field Theory
(KFT) is an analytical approach to cosmic structure formation that operates in the
particle picture. The dynamics of the particles phase space trajectories is governed by
the Hamiltonian flow in 6N-dimensional phase space, thus avoiding problems with
stream crossing, as trajectories in phase space do not cross. In the next chapter, we
review the most important aspects of KFT, relevant to this work.





3
K I N E T I C F I E L D T H E O RY F O R C O S M I C S T R U C T U R E
F O R M AT I O N

Kinetic field theory (KFT) is a statistical field theory for ensembles of classical particles
in or out of equilibrium. The central object in KFT is the generating functional Z. Sim-
ilar to the partition function in classical thermodynamics, it contains all information
about the probability distribution P(ϕ) of system states ϕ

Z =
∫
Dϕ P(ϕ) . (3.1)

In general, the system states ϕ are continuous fields of time, which requires the use of
a path integral. In this chapter, we review the foundations of KFT for cosmic structure
formation. Since KFT became a very diverse theory with various formulations and
applications in cosmology, astrophysics and beyond, we restrict this review to those
results that are relevant for this work. We recommend the recent review on KFT [10]
to the interested reader.

In the first section, we introduce the tensor notation that is used througout this
work. In the second section, we review, in the spirit of [35] and [51], how classical
mechanics can be formulated with path integrals. In the third section, we specify the
particle dynamics appropriate for cosmic structure formation in KFT by considering
an expanding space time and gravitational interactions. In the fourth section, we
introduce the initial phase space distribution for cosmic structures. Finally, in the last
section, we summarize the current state of the theory of free density moments with
initial momentum correlations in KFT.

3.1 notation

We consider a set of N point particles in the classical 6N dimensional phase space Γ.
The trajectory of each particle 1 ≤ j ≤ N in phase space is the tuple of position ~qj and
momentum ~pj, which we denote by

xj :=

~qj

~pj

 . (3.2)

Note that the following notations are equivalent ~qj ≡ ~xqj , ~pj ≡ ~xpj .
To compactify notation, we collect the trajectories of all particles in the tensorial

object

x := xj ⊗ ej , (3.3)

where summation over j is implied, and ej ∈ RN with (ej)i = δij, 1 ≤ i ≤ N.
Furthermore, when we consider the collection of all particle positions or momenta
separately, we write

xq := ~qj ⊗ ej , (3.4)

xp := ~pj ⊗ ej , (3.5)

21
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respectively. Unless otherwise stated, we use bold letters without index (e.g. J, x) to
denote 6N-dimensional vectors. We can split these vectors into the 3N dimensional
position component (e.g. Jq, xq) and a 3N-dimensional momentum component (e.g.
Jp, xp). When we use the same letter non-bold with integer index (e.g. Jj, xj), we
mean the 6-dimensional phase space tuple of one specific particle. In order to indicate
the 3-dimensional position/momentum component of an individual particle, we use
non-bold symbols with vector arrow, position/momentum label and integer particle
index (e.g. ~Jqj , ~Jpj , ~xqj ,~xpj ).

With these conventions, any bold vector J can be written as

J =

~Jqj

~Jpj

⊗ ej . (3.6)

We introduce the scalar product

〈J, x〉 := (Jj ⊗ ej) · (xi ⊗ ei) = Jj · xj ≡ 〈Jq, xq〉+ 〈Jp, xp〉 , (3.7)

and define the symplectic two-form

J :=

 0 I3

−I3 0

⊗ IN . (3.8)

We define the gradient with respect to the phase space coordinates of all particles

∇x :=

~∇qj

~∇pj

⊗ ej , (3.9)

such that the application to any scalar function f of the particles’ phase space coordi-
nates can be written as

∇x f (x) =
N

∑
j=1


∂

∂qj,x

∂
∂qj,y

∂
∂qj,z

 f (x) +
N

∑
j=1


∂

∂pj,x

∂
∂pj,y

∂
∂pj,z

 f (x) . (3.10)

To write equations more compactly, we introduce the following notion for integrals
over k in Fourier space and over q in real space, respectively,∫

k
:=
∫

R3

d3k
(2π)3 and

∫
q

:=
∫

R3
d3q . (3.11)

3.2 classical mechanics with path integrals

A path-integral formulation for classical Hamiltonian dynamics was developed in [35]
and a perturbation theory via Feynman diagrams in [51]. In this section, we review
the key ideas that appear in these works which also enter the foundations of KFT. We
show how the generating functional is set up for a classical Hamiltonian system of
many point-like particles, the role of operators, and how the split of free motion and
interactions leads to perturbation theory.
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3.2.1 Generating Functional

For a classical (canonical) ensemble of N point particles, the system states ϕ are
described by the trajectories x in the classical 6N-dimensional phase space Γ, as
defined in (3.3). We write the generating functional (3.1) as

Z =
∫
Dx P(x) . (3.12)

Note that P(x) is the probability distribution for trajectories in classical phase space,
and not the probability distribution to find the system in a specific configuration at a
given time.

For a given probability distribution of initial conditions x(i) at some initial time, we
can write

P(x) =
∫

dx(i) P(x|x(i))P(x(i)) =:
∫

dΓ(i)P(x|x(i)) . (3.13)

For now, we assume that the initial state of the system is known and we omit the
integration over initial conditions until Ection 3.4, when we introduce the probability
distribution of the initial phase space coordinates relevant for dark matter particles in
cosmology.

In classical phase space, trajectories do not cross and are uniquely constrained by the
initial conditions because they follow the Hamiltonian flow. For a given Hamiltonian
H, the equations of motion (e.o.m.) are given by

ẋ(t) = J∇xH
[
x(t)

]
, (3.14)

with the symplectic two-form J defined in (3.8) and the phase space gradient ∇x

defined in (3.9).
For specified initial conditions x(i), we denote the formal solution to the e.o.m. by

xcl(t; x(i)) and call them classical trajectories. Clearly, P(x|x(i)) is non-zero only if x
solves the e.o.m., and zero otherwise, such that we can write

P(x, t|x(i), t(i)) = δD

[
x− xcl(t; x(i))

]
. (3.15)

The functional Dirac delta distribution can be written in terms of the e.o.m.,

δD [x− xcl] = δD [ẋ−J∇xH]det
[
∂tδ

a
b −J ac∂c∇bH

]
, (3.16)

where the determinant can be formally proven to be equal to unity [35], which is
the statement of Liouville’s theorem. We now write the generating functional (3.2) in
terms of the e.o.m.,

Z =
∫
Dx P(x|x(i))

=
∫
Dx δD [ẋ−J∇xH]

=
∫
Dx Dχ exp

[
i
∫ ∞

0
dt
(
〈χ, ẋ−J∇xH〉

)]
,

(3.17)
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expressing the Dirac delta distribution as a functional Fourier integral with respect to
an auxiliary field χ in the last step.1

In order to generate moments of phase space coordinates from the generating
functional, we introduce two source fields

J :=

~Jqj

~Jpj

⊗ ej and K :=

~Kqj

~Kpj

⊗ ej , (3.18)

turning the generating functional into the expression

Z[J, K] =
∫
Dx Dχ exp

[
i
∫ ∞

0
dt
(
〈χ, ẋ−J∇xH〉+ 〈J, x〉+ 〈K, χ〉

)]
. (3.19)

We define the Lagrangian as in [51],

L := 〈χ, ẋ−J∇xH〉 , (3.20)

such that we arrive at the following compact expression for the generating functional
including source fields,

Z[J, K] =
∫
Dx Dχ exp

[
i
∫ ∞

0
dt
(
L+ 〈J, x〉+ 〈K, χ〉

)]
. (3.21)

3.2.2 Operators

By applying differential operators to the generating functional and setting the source
fields to zero afterwards, functions of the phase space trajectories can be generated.
In the simplest case, applying a functional derivative with respect to the source field
J(t), generates phase space trajectories

−i
δZ[J, K]

δJ(t)

∣∣∣∣∣
J=0=K

= x(t) . (3.22)

More generally, we apply operators in form of functions of functional derivatives with
respect to the field components, to generate functions of the phase spase trajectories.

f (x) = f̂
(
−i

δ

δJ

)
Z[J, K]

∣∣
J=0=K . (3.23)

Note that since the particle trajectories evolve deterministically and we consider
specified initial conditions here, the application of operators returns actual functions
rather than averages of functions of the phase space trajectories. Only later, when we
integrate over initial conditions, do we generate averages.

One important operator is the particle density operator in Fourier space. The number

1 Note that (3.17) is a conditional generating functional with respect to the initial conditions. In Section
3.4, we complete the expression by incorporating the integral over initial conditions, appropriate to
cosmology.
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density ρ(q, t) of N point particles with positions ~qj(t) at time t is given by a sum of
Dirac delta distributions,

ρ(~q, t) =
N

∑
j=1

δD(~q−~qj(t)) . (3.24)

In Fourier space, the density becomes

ρ̃(~k, t) =
N

∑
j=1

ei~k·~qj(t) . (3.25)

We define the one-particle number density as

ρ̃j(~k, t) = ei~k·~qj(t) , (3.26)

and the corresponding operator follows from (3.23),

ρ̂j(~k, t) = e
−~k· δ

δ~Jqj (t) . (3.27)

Because of its exponential form, acting with a one-particle density operator on the
generating functional shifts the corresponding source field as follows,

ρ̂j(~k j, tj)Z[J, K] : ~Jqj(t)→ ~Jqj(t)− δD(t− tj)~k j . (3.28)

In order to generate products of one particle number densities from the generating
functional, we have to apply the corresponding operator (3.27) multiple times,

ρ̃1(~k1, t1) · · · ρ̃r(~kr, tr) = ρ̂1(~k1, t1) · · · ρ̂r(~kr, tr) Z[J, K]
∣∣
J=0=K

= e
−~k1

δ
δ~Jq1 (t1)

−···−~kr
δ

δ~Jqr (tr) Z[J, K]
∣∣
J=0=K .

(3.29)

To describe the shifts (3.29), we define

k :=
r

∑
j=1

δD(tj − t)

~k j

~0

⊗ ej , (3.30)

such that the product of the one-particle densities (3.29) becomes

ρ̃1(~k1, t1) · · · ρ̃r(~kr, tr) = Z[k, 0] =
r

∏
j=1

ei~k j·~qj(tj) , (3.31)

in agreement with (3.26).

3.2.3 Free Generating Functional

In the last section we showed how functions of the phase space trajectories can be
generated by applying differential operators to the generating functional. However,
in order to actually evaluate these expressions, the solution to the equations of
motion is needed. This solution can in general not be obtained exactly. The idea of
the path integral formulation of classical mechanics is to first introduce a reduced
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or free Hamiltonian for which the equations of motion can be solved and the path
integral can be performed, to arrive at the free generating functional. In the next step an
operator is derived from the remaining or interaction part of the Hamiltonian. With
this resulting interaction operator, the solution of the equations of motion can be
calculated perturbatively.

First, we consider a system of non-interacting particles with the free Hamiltonian

H0 =
p2

2m(t)
, (3.32)

where we allow the particles to have a time-dependent mass m(t). With (3.20), we
arrive at the free Lagrangian

L0 = 〈χ, ẋ−J∇xH0〉 = 〈χ, ẋα〉 − 1
m(t)

〈χq, p〉 , (3.33)

which leads to the free generating functional

Z0[J, K] =
∫
Dx Dχ exp

[
i
∫ ∞

0
dt
(
〈χ, ẋ〉 − 1

m(t)
〈χq, p〉+ 〈χ, K〉+ 〈J, x〉

)]
. (3.34)

Next, we bring (3.34) in a form, such that we can perform the path integral. To this
end, we define a modified free Lagrangian by including the 〈χ, K〉 term

L′0 = 〈χ, ẋ〉 − 1
m(t)

〈χq, p〉+ 〈χ, K〉

= 〈χ, ẋ〉 − 〈χ,J∇xH′0〉 ,
(3.35)

with the modified free Hamiltonian

H′0 =
N

∑
j=1

 ~p2
j

2m(t)
− ~Kq,j · ~pj + ~Kp,j ·~qj


=

p2

2m(t)
− 〈K,J x〉 ,

(3.36)

including the source field K. Because of their linearity, we can solve

q̇ = ∂pH′0 =
1

m(t)
p−Kq , (3.37)

ṗ = −∂qH′0 = −Kp (3.38)

with a Green’s function G,

x(t) = G(t, t(i))x(i) −
∫ ∞

0
dt′G(t, t′)K(t′) , (3.39)

where the Green’s function can be written as

G(t, t′) = G(t, t′)⊗ IN , (3.40)

and

G(t, t′) =

gqq(t, t′)I3 gqp(t, t′)I3

gpq(t, t′)I3 gpp(t, t′)I3

 (3.41)
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is a 6× 6-dimensional matrix. The propagators

gqq(t, t′) = Θ(t− t′) = gpp(t, t′) , (3.42)

gpq(t, t′) = 0 , (3.43)

gqp(t, t′) =
∫ t

t′

dt′′

m(t′′)
(3.44)

are scalar functions, where Θ denotes the Heaviside step function. A derivation of
these propagators is shown in Appendix A.1. We denote the free particle motion by
x0(t) with spatial and momentum components with

q0(t) = q(i) + gqp(t, t′)p(i) , (3.45)

p0(t) = p(i) . (3.46)

This allows us to evaluate the path integral , yielding the free generating functional

Z0[J, K] = exp
[

i
∫ ∞

0
dt〈J(t), x0(t)〉 − i

∫
dt dt′〈J(t),G(t, t′)K(t′)〉

]
. (3.47)

Note that by applying functional derivatives with respect to the source fields J and K,
we generate the propagators,

(−i)2 δ2Z0[J, K]

δ~Jaj(t)δ~Kbi(t′)

∣∣∣∣∣∣
J=0=K

= i δij gab(t, t′) I3 , (3.48)

where a, b ∈ {q, p}.

3.2.4 Interactions

In the previous section, we considered free particle motion for which we solved the
e.o.m. and derived the free generating functional. Now, we consider a Hamiltonian
that includes an interaction part HI , which we allow to depend on both the particle
positions q and momenta p,

H = H0 +HI(p, q) . (3.49)

Analogously to the free system, the modified Lagrangian (3.35) now becomes

L′ = 〈χ, ẋ−J∇xH′0〉 − 〈χ,J∇xHI(p, q)〉 . (3.50)

We define the interaction-Lagrangian

LI (χ, x) := −〈χ,J∇xHI(p, q)〉 , (3.51)

and write the generating functional (3.19) as

Z[J, K] =
∫
Dx Dχ exp

[
i
∫ ∞

0
dt
(
L′0 + LI (χ, x) + 〈J, x〉

)]
. (3.52)

Since we introduced K as source field for χ in (3.19), functional derivatives with repect
to K generate χ, the same way as functional derivatives with respect to J generate the
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particle trajectories x. As a consequence, we can transform the part in (3.52) containing
the interaction-Lagrangian into an interaction operator∫ ∞

0
dtLI (χ, x)→ ŜI =

∫ ∞

0
dtLI

(
−i

δ

δK(t)
,−i

δ

δJ(t)

)
. (3.53)

We pull the interaction operator in front of the integral and arrive at the full gener-
ating functional, which is now expressed as the free generating functional with the
interaction operator in the exponential applied to it,

Z[J, K] = eiŜI Z0[J, K] . (3.54)

In general, the interaction operator is not linear in the functional derivatives, such
that a direct application of eiŜI to the free generating functional can not be evaluated
exactly. However, expanding the exponential,

eiŜI ≈ 1 + iŜI + · · · , (3.55)

leads to a perturbative series in the interaction, as illustrated in the following example.

Example 3.1. We consider the phase space trajectories (3.22) with the generating functional
(3.54)

x(t) = −i
δ

δJ(t)
eiŜI Z0[J, K]

∣∣
J=0=K . (3.56)

By expanding the exponential (3.55), we arrive at a perturbative series for the phase space
trajectories,

x(t) ≈ −i
δ

δJ(t)

(
1 + iŜI + ...

)
Z0[J, K]

∣∣
J=0=K (3.57)

= x0(t) + x(1)(t) + ... , (3.58)

where

x0(t) = −i
δ

δJ(t)
Z0[J, K]

∣∣
J=0=K (3.59)

describes free motion, and the first perturbative term

x(1)(t) = −i
δ

δJ(t)
iŜI Z0[J, K]

∣∣
J=0=K (3.60)

corresponds to the application of one interaction operator. The n-th pertubative term is given
by

x(n)(t) = −i
δ

δJ(t)
in

n!
Ŝn

I Z0[J, K]
∣∣
J=0=K , (3.61)

where Ŝn
I has the meaning of applying the interaction operator n times.
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3.3 particle dynamics

In the last section, we reviewed how classical mechanics can generally be formulated
in the path integral formalism. In this section, we review how the dynamics of
collisionless particles in an expanding spacetime under the influence of Newtonian
gravity is specified.

Since the splitting of the Hamiltonian into a free and an interaction part is in general
not unique, we are free in our choice of the propagators. We review the representation
of the Hamiltonian as well as the propagators in the Newtonian case and when free
motion is specified to Zel’dovich trajectories, as derived in [5]. Furthermore, we derive
the interaction operator similar to [7] and show how the choice of the propagator
changes the interaction operator by an additional propagator correction operator.

3.3.1 Hamiltonian

For our considerations, the Newtonian limit is appropriate, since it is the limiting
case that applies to scales that are small compared to the Hubble length cH−1 and
large compared to the Schwarzschild radii of any collapsed objects [50]. We review
the derivation of the Hamiltonian for particles under the influence of gravity in an
expanding spacetime in Appendix A.2. In summary, the key steps are as follows.
(i) We derive the Lagrangian of a single particle in an expanding spacetime with
a time-dependent gravitational field in comoving coordinates q. (ii) We transform
the time coordinate such that the linear growth factor D+, which is a monotonic
function of time, is our new time coordinate (t = D+−D(i)

+ ). Because of the expanding
spacetime, the particle mass becomes effectively time-dependent. (iii) Finally, we
perform a Legendre transform of the Lagrangian to obtain the Hamiltonian for the
single-particle system (A.26). We finally arrive at the N-particle Hamiltonian

H(q, p) =
p2

2m(t)
+ V(q, t) . (3.62)

The effective particle mass is

m(t) = a2 H
H0

D+ f , (3.63)

where H and f denote the usual Hubble function and growth rate, respectively,

H =
a′

a
and f =

d ln D+

d ln a
, (3.64)

and a′ denotes the derivative of the scale factor with respect to the original time
coordinate. H0 is the value of H evaluated at the time when a = 1. The total potential
V is the sum of all potentials ϕ at the positions of individual particles

V(q, t) =
1
2

N

∑
j=1

ϕ(~qj, t) , (3.65)

where ϕ satisfies the Poisson equation

~∇2
q ϕ(~q, t) =

4πGa(t)
H2

0 m(t)
[
ρm(~q, t)− ρ̄m

]
, (3.66)
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ρm is the comoving mass density and ρ̄m the spatially averaged comoving mass density,
which is constant in time. With the density contrast

δ(~q, t) :=
ρm(~q, t)− ρ̄m

ρ̄m
(3.67)

and the dimensionless matter density parameter

Ωm0 =
8πG
3H2

0
ρ̄ (3.68)

at a = 1, we can write (3.66) now as

~∇2
q ϕ(~q, t) =

3
2

a(t)
m(t)

Ωm0δ(t) . (3.69)

3.3.2 Interaction Operator

In KFT, we are free in our choice of how to split the Hamiltonian into a free and an
interaction part. Starting with (3.62) suggests to chooseH0 = p2

2m(t) as free Hamiltonian,
such that free trajectories are given by (3.45) and (3.46), with the Newtonian propagator
(3.44) and the effective particle mass (3.63). A much better choice to reproduce the
observed linear growth at large scales are Zel’dovich trajectories with the Zel’dovich
propagator

gZ
qp(t, t′) = (t− t′)Θ(t− t′) . (3.70)

A comparison with (3.44) implies m(t) = 1 for the free motion and hence implies the
free Zel’dovich Hamiltonian

HZ
0 =

p2

2
. (3.71)

We therefore split the Hamiltonian (3.62) in the following way,

H(q, p) =
p2

2
+

(
1

m(t)
− 1
)

p2

2
+ V(q, t) , (3.72)

and define the Zel’dovich interaction Hamiltonian

HZ
I (p, q) :=

(
1

m(t)
− 1
)

p2

2
+ V(q, t) . (3.73)

The Zel’dovich interaction Lagrangian (3.51) then turns into

LZ
I = −〈χ,J∇xHI(p, q)〉 (3.74)

= −
(

1
m(t)

− 1
)
〈χq, p〉+ 〈χp,∇qV(q, t)〉 (3.75)

= −C(χq, p) + V(χp, q) . (3.76)

In the last step, we defined the potential part

V(χp, q) := 〈χp,∇qV(q, t)〉 (3.77)
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and the propagator correction part

C(χq, p) :=
(

1
m(t)

− 1
)
〈χq, p〉 . (3.78)

With this Lagrangian, the interaction operator (3.53) becomes

ŜI :=
∫ ∞

0
dt
(

1
m(t)

− 1
)〈

δ

δKq(t)
,

δ

δJp(t)

〉
−
∫ ∞

0
dt V̂

(
−i

∂

∂Jq(t)
,−i

∂

∂Kp(t)

)
.

(3.79)

The interaction operator now consists of two parts. The potential part V generates the
interactions due to the pairwise interaction potentials. The propagator correction part
C subtracts those interactions that are already taken into account in the Zel’dovich
trajectories.

For collisionless point particles like cold dark matter, the interaction potential V
is given by the sum of gravitational potentials acting between all individual particle
pairs. More generally, when the potential only depends on the pairwise distances of
particles and has a time-dependent amplitude A(t), we write V as

V(q, t) = A(t) ∑
1≤i≤j≤N

v
(
|~qi(t)−~qj(t)|

)
, (3.80)

where v is the potential acting between individual pairs of particles, which scales like
|~q|−1 for gravity.

As shown in Appendix A.3, we can express the potential operator in terms of the
single-particle density operators (3.27),

V̂
(
−i

∂

∂Jq(t)
,−i

∂

∂Kp(t)

)
= A(t)

N

∑
k=1

∑
i 6=k

∫
k

ρ̂i(~k, t)ṽ(~k)ρ̂k(−~k, t)~k · δ

δ~Kpk(t)
, (3.81)

where ṽ is the Fourier transform of the potential function v, which is k−2 for gravity.
The time-dependent amplitude

A(t) =
3
2

a(t)
m(t)

Ωm0

ρ̄
(3.82)

follows from (3.69), with the time-independent comoving particle number density ρ̄.
Although the potential and the correction parts in (3.79) should always be kept

together in order to generate coherent orders of perturbations, we illustrate the action
of C in the perturbative calculation of q, neglecting V in the following example.

Example 3.2 (Propagator Correction Operator). We consider N particles with the Hamil-
tonian

H =
p2

2m(t)
. (3.83)

We computed the solution to the e.o.m.s (3.45) and (3.46) with the propagator (3.44). We now
introduce a split H = HZ

0 +HZ
I to force the free motion to follow Zel’dovich trajectories,

H0(p) =
p2

2
and HI(p) =

(
1

m(t)
− 1
)

p2

2
. (3.84)
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The free motion is now determined by the Zel’dovich propagator (3.70), such that the free
particle positions are

q0(t) = q(i) + tp(i) . (3.85)

To compute the deviation from the Zel’dovich trajectories due to the time-dependent mass, we
consider the q-part of (3.56) with ŜI from (3.79) without the potential part V ,

q(t) = −i
δ

δJq(t)
exp

[
i
∫

dt′
(

1
m(t′)

− 1
)〈

δ

δKq(t′)
,

δ

δJp(t′)

〉]
Z0[J, K]

∣∣
J=0=K . (3.86)

We compute the first perturbative term (3.60) in Appendix A.4 and arrive at

q(1)(t) =
δ

δJq(t)

∫
dt′
(

1
m(t′)

− 1
)
〈 δ

δKq(t′)
,

δ

δJp(t′)
〉 Z0[J, K]

∣∣
J=0=K

= −tp(i) + p(i)
∫ t

0
dt′

1
m(t′)

.
(3.87)

Adding this first-order perturbation term to the free solution (3.85) yields the exact solution of
(3.83),

q0(t) + q(1)(t) = q(i) +
∫ t

0
dt′

1
m(t′)

p(i) . (3.88)

Example 3.3 (First-order Perturbation Theory). We consider the full Hamiltonian (3.72)
with the free Zel’dovich trajectories (3.85). Then, the first-order correction to the trajectory of
particle 1 due to the time-dependent mass, as in the previous example, and due to gravitational
interactions, is given by

~q(1)1 (t) = −t~p(i)
1 +

∫ t

0
dt′

1
m(t′)

~p(i)
1

+
N

∑
j=2

∫
dt′′ A(t′′)gqp(t, t′′)

~q0,1(t′′)−~q0,j(t′′)
|~q0,1(t′′)−~q0,j(t′′)|3

.
(3.89)

Note that the gravitational contribution in the second line takes the form of Born’s approxima-
tion: the force the particle experiences is evaluated along the free trajectory.

3.4 initial phase space distribution

Up to here, we considered classical N-particle systems where the particles attain
definite initial positions and momenta. In general, however, the exact initial conditions
are not known but obey certain statistics. This implies a probability distribution
density P(x(i)) for the initial state in phase space. The initial phase space measure in
(3.13) is generally given by

dΓ(i) := P(q(i), p(i))dq(i)dp(i) . (3.90)

In order to arrive at the complete generating functional for cosmic structure for-
mation, we have to modify the free generating functional (3.47) by including the
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integration over the initial phase space distribution while the interaction operator
remains unchanged,

Z0[J, K] =
∫

dΓ(i)exp
[

i
∫ ∞

0
dt〈J(t), x0(t)〉 − i

∫
dt dt′〈J(t),G(t, t′)K(t′)〉

]
. (3.91)

In this section, we review the initial phase space distribution for cosmic structures as
derived in [7] and show how parts of the initial conditions can be integrated out in
the generating functional.

From now on, we drop the superscript (i) that indicates initial particle positions
and initial particle momenta. To avoid confusion, time-evolved quantities are always
written with a time argument.

3.4.1 Initial Correlations

We review the initial conditions that apply to cosmology [7]. First, we consider the
initial probability distribution of the initial density contrast and momenta P(δ, p),
where δ = δj ⊗ ej, and δj denotes the density contrast at the position of particle j. As
shown in the appendix of [7], the intial phase space distribution can be obtained from
Poisson sampling, such that

P(q, p) = V−N
∫

dδ
N

∏
j=1

(1 + δj)P(δ, p) . (3.92)

Initially, we assume a Gaussian random field,

P(δ, p) =
1√

(2π)4Ndet C
exp

−1
2
(δᵀ, pᵀ)C−1

δ

p


 , (3.93)

with the 4N × 4N dimensional correlation matrix

C :=

〈δjδk〉 〈δj~p
ᵀ
k 〉

〈~pjδk〉 〈~pj ⊗ ~pk〉

⊗ ej ⊗ ek . (3.94)

The two-particle density contrast correlation function depends on the relative particle
distance and is given by the Fourier transform of the initial density perturbation
power spectrum P(i)

δ ,

〈δiδj〉 = ξδδ(~qi −~qj)

=
∫

k
P(i)

δ (k)ei~k·(~qi−~qj)

=: Cδδ(qij) .

(3.95)

Since we initially consider only the curl-free part of the velocity field, we introduce a
velocity potential field ψ such that the initial momentum of particle j at position ~qj
can be expressed as

~pj = ~∇qψ(~q)
∣∣∣
q=qj

. (3.96)
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(2.23) and (2.30) imply that the power spectrum of the initial velocity potential is
related to the initial density fluctuation power spectrum by a factor k−4,

P(i)
ψ (k) = k−4P(i)

δ (k) . (3.97)

We conclude that the initial density-momentum correlations are given by

〈δi~pj〉 = −i
∫

k
~k

P(i)
δ (k)
k2 ei~k·(~qi−~qj)

= ~∇qj

∫
k

P(i)
δ (k)
k2 ei~k·(~qi−~qj)

=: ~Cδp(qij) .

(3.98)

Similarly, we obtain for the initial momentum-momentum correlations

〈~pi ⊗ ~pj〉 =
∫

k
~k⊗~k

P(i)
δ (k)
k4 ei~k·(~qi−~qj)

= ~∇qi ⊗ ~∇qj

∫
k

P(i)
δ (k)
k4 ei~k·(~qi−~qj)

=: Ĉpp(qij) .

(3.99)

We discuss the specific properties in the large- and small-scale limits in detail in
Chapter 5.

3.4.2 Generating Functional with Initial Correlations

The initial conditions can partially be integrated out in the free generating func-
tional. First, we introduce a source vector tδ for δ and rewrite the initial probability
distribution (3.92) as

P(q, p) = V−N
∫

dδ
N

∏
j=1

(1 + δj)P(δ, p)

= V−N
N

∏
j=1

(
1− i

∂

∂tδj

) ∫
dδP(δ, p)eiδ·tδ

∣∣∣∣∣∣
tδ=0

.

(3.100)

Next, we define the vectors

J̃q :=
∫

dt Jq(t) , (3.101)

J̃p :=
∫

dt
(

gqp(t, 0)Jq(t) + Jp(t)
)

, (3.102)

and rewrite the free generating functional (3.91) in terms of the free trajectories (3.45)
and (3.46),

Z0[J, K] =
∫

dΓ(i)exp
[

i
∫

dt〈J(t), x0(t)〉 − i
∫

dtdt′〈J(t),G(t, t′)K(t′)〉
]

=
∫

dΓ(i)exp
[

i〈J̃q, q〉+ i〈J̃p, p〉 − i
∫

dtdt′〈J(t),G(t, t′)K(t′)〉
]

.
(3.103)
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Now, we can perform the integration over initial momenta and initial density contrasts,

∫
dΓ(i)ei〈J̃q,q〉+i〈J̃p,p〉

= V−N
N

∏
j=1

(
1− i

∂

∂tδj

) ∫
dδdqdp P(δ, p)ei〈tδ,δ〉+i〈J̃q,q〉+i〈J̃p,p〉

∣∣∣∣∣∣
tδ=0

= V−N
N

∏
j=1

(
1− i

∂

∂tδj

) ∫
dq exp

−1
2
(tᵀδ , J̃ᵀp)C(q)

tδ

J̃p

+ i〈J̃q, q〉


∣∣∣∣∣∣∣
tδ=0

.

(3.104)

Note that the initial correlation matrix C explicitly depends on the initial (relative)
particle positions q. We define the sub matrices

Cδδ(q) := 〈δjδk〉 ⊗ ej ⊗ ek , (3.105)

Cδp(q) = Cᵀ
pδ(q) := 〈δj~p

ᵀ
k 〉 ⊗ ej ⊗ ek , (3.106)

Cpp(q) := 〈~pj ⊗ ~pk〉 ⊗ ej ⊗ ek , (3.107)

and arrive at∫
dΓ(i)ei〈J̃q,q〉+i〈J̃p,p〉

= V−N
N

∏
j=1

(
1− i

∂

∂tδj

) ∫
dq

{
exp

(
−1

2
tᵀδ Cδδ(q)tδ

)

× exp
(
−tᵀδ Cδp(q)J̃p −

1
2

J̃ᵀpCpp(q)J̃p + i〈J̃q, q〉
)}∣∣∣∣∣

tδ=0

(3.108)

A comprehensive analysis of the series that is induced by the differential operator is
given in [27].

Let us note that in [7] it was shown that the initial phase space distribution P(q, p)
can also be expressed in terms of the initial momentum correlations together with an
operator C that generates the initial density and momentum-density correlations,

P(q, p) =
V−N√

(2π)3Ndet Cpp(q)
C
(

q,−i
∂

∂p

)
exp

(
−1

2
pᵀC−1

pp (q)p
)

. (3.109)

For the evaluation of quantities at late times, we can assume C ≈ 1 when work-
ing with the Zel’dovich propagator (3.70) [7, 27]. The reason is that at late times,
when the propagator gqp becomes large, and at linear scales the contributions from
initial density correlations Cδδ and initial momentum-density correlations Cpδ are
relatively suppressed by g−2

qp and g−1
qp , respectively, compared to the initial momentum

correlations Cpp. The initial phase space distribution is then approximated by

P(q, p) ≈ V−N√
(2π)3Ndet Cpp(q)

exp
(
−1

2
pᵀC−1

pp (q)p
)

. (3.110)

We therefore consider only the effect of initial momentum correlations for structure
growth throughout this work, unless otherwise stated. Furthermore, we derive results
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for free streaming, i.e. we do not consider any interactions, apart from those that are
already included in the Zel’dovich approximation. Therefore, we can set K = 0 and
arrive at the free streaming generating functional for particles with initial Gaussian
momentum correlations,

Z0[J, 0] = V−N
∫

dq exp
(
−1

2
J̃ᵀpCpp(q)J̃p + i〈J̃q, q〉

)
. (3.111)

3.5 free density correlators

In this section, we review the factorized expression for the free density correlators as
derived in [9], and point out an erroneous expression in the same work that concerns
correlators of third and higher order.

3.5.1 Free Correlators

For a more compact notation, we denote wave vector and time arguments by a single
symbol in the following way,

f (1) ≡ f (~k1, t1) , in general: f (n) ≡ f (~kn, tn) . (3.112)

Correlators of the density field are computed by applying density operators (3.27)
to the generating functional. We denote the r-point density correlation function in
Fourier space, which is obtained by the application of r density operators, by

Gρρ···ρ(1, 2, . . . , r) := 〈ρ̃(1)ρ̃(2) · · · ρ̃(r)〉
= ρ̂(1)ρ̂(2) · · · ρ̂(r) Z[J, K]

∣∣
J=0=K .

(3.113)

Recall that every density operator is a sum of one-particle density operators,

ρ̂(1)ρ̂(2) · · · ρ̂(r) =
N

∑
j1=1

N

∑
j2=1
· · ·

N

∑
jr=1

ρ̂j1(1)ρ̂j2(2) · · · ρ̂jr(r) . (3.114)

The r point density correlator is then a sum of Nr terms, which can be grouped into
N one-particle, N(N − 1) two-particle, etc., up to N!

(N−r)! r-particle contributions. We
define the vector L with components

Lq :=
r

∑
s=1

~ks ⊗ ejs , (3.115)

Lp :=
r

∑
s=1

gqp(ts, 0)~ks ⊗ ejs , (3.116)

and the single particle components

~Lqj =
r

∑
s=1

~ksδjjs , (3.117)

~Lpj =
r

∑
s=1

gqp(ts, 0)~ksδjjs . (3.118)
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With these definitions, we write an l-particle term as

Z0[L] = V−l

 l

∏
j=1

∫
qj

 exp

−1
2

Lᵀ
pCpp(q)Lp + i

l

∑
j=1

~Lqj ·~qj

 , (3.119)

where we already integrated out the initial positions of the N − l non-contributing
particles.

3.5.2 Factorization

Since Cpp only depends on the relative particle positions, we introduce coordinates
relative to the initial position of the first particle ~qj1 := ~qj −~q1. Integration over the
initial position of the first particle leads to a Dirac delta distribution, indicating
statistical homogeneity, and the l-particle term becomes

Z0[L] =
(2π)3

V l δD

 l

∑
j=1

~Lqj

 l

∏
j=2

∫
qj1

 exp

−1
2

Lᵀ
pCpp(q)Lp + i

l

∑
j=2

~Lqj ·~qj1

 .

(3.120)

See also reference [9], (B3).
The integral (3.120) can be factorized. First, we introduce relative coordinates

between all l involved particles, and write (3.120) as

Z0[L] =
(2π)3

V l δD

 l

∑
j=1

~Lqj

 ∏
2≤b<a≤l

∫
k′ab

 ∏
1≤k<j≤l

∫
qjk


× exp

−1
2

Lᵀ
pCpp(q)Lp + i

l

∑
j=2

~Lqj ·~qj1 + i ∑
2≤b<a≤r

~k′ab · (~qab −~qa1 +~qb1)

 .

(3.121)

Then, we define the internal wave vectors

~k jk :=


~Lqj −

j−1

∑
b=2

~k′jb +
l

∑
a=j+1

~k′aj for k = 1, j = 2, . . . , l

~k′jk for k = 2, . . . , (l − 1), j = (k + 1), . . . , l ,

(3.122)

such that the l-particle contribution to the free correlator can be written in the
factorized form

Z0[L] =
(2π)3

V l δD

 l

∑
j=1

~Lqj

 exp

−σ2
1

6

l

∑
j=1

~L2
pj


×

 ∏
2≤b<a<l

∫
k′ab

 ∏
1≤k<j≤l

Ijk(~Lpj ,~Lpk ,~k jk) ,

(3.123)
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where we defined the factors

Ijk(~Lpj ,~Lpk ,~k jk) :=
∫

qjk

e−
~Lᵀ

pj Ĉpp(~qjk)~Lpk+i~k jk ·~qjk , (3.124)

and

σ2
1 :=

∫
k

k2P(i)
ψ (k) (3.125)

denotes the initial velocity dispersion. In (3.124) Ĉpp(~q) denotes the 3× 3-dimensional
momentum correlation matrix of two particles separated by ~q, as defined in (3.99).
The terms Ijk can be interpreted as the two-particle correlation of particles j and k that
contribute to the l-particle correlator (3.121). The integral over the wave vectors k′ab
connects the contributions from all particle pairs. Note that the structure of (3.120)
is the same as the structure of the free generating functional (3.111), implying that
the free generating functional can be factorized in the same way. We discuss the
asymptotics of the factors Ijk in the limit of small scales in Chapter 7.

We would like to point out that the expression for ~Lᵀ
pj Ĉpp(~qjk)~Lpk in the kernel of

Ijk in terms of the functions a‖ and a⊥ derived in Appendix B.3 of [9] is erroneous.
For two-point correlation functions, the results are correct. In general, however, the
transformation using the projection operators shown there, is not valid as shown in
Appendix A.5 of this work. The correct coordinate representation of the momentum
correlation matrix, which is also derived in [9], is given by

Ĉpp(~qjk) = −~∇qjk ⊗ ~∇qjk

∫
k

P(i)
δ (k)
k4 ei~k·~qjk

= −
~qjk ⊗~qjk

q2
jk

a2(qjk)− I3a1(~qjk) ,
(3.126)

where we defined the functions

a1(q) :=
ξ ′ψ(q)

q
= − 1

2π2

∫ ∞

0
dk P(i)

δ (k)
j1(kq)

kq
, (3.127)

a2(q) := ξ ′′ψ(q)−
ξ ′ψ(q)

q
=

1
2π2

∫ ∞

0
dk P(i)

δ (k)j2(kq) , (3.128)

with the velocity potential correlation function ξψ and the spherical Bessel functions
of the first kind j1 and j2.

3.5.3 Free Power Spectrum

Finally, we have a closer look at two-point correlations. Using the definition of the
density fluctuation power spectrum Pδ,

〈δ̃(~k1, t)δ̃(~k2, t)〉 = (2π)3δD(~k1 +~k2)Pδ(k, t) , (3.129)

and

(2π)3δD(~k1 +~k2)Pδ(k, t) = ρ̄−2Gρρ(12)− ρ̄−1Gρ(1)− ρ̄−1Gρ(2) + 1 , (3.130)
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with t1 = t2 = t, the free power spectrum becomes

P(k, t) = e−
σ2

1
3 k2g2

qp(t,0)
∫

d3q
(

e−~L
ᵀ
p1 Ĉpp(~q)~Lp2 − 1

)
ei~k·~q . (3.131)

When we choose the Zel’dovich propagator this expression is equivalent to the
nonlinear Zel’dovich power spectrum [58]. In Chapter 6, we discuss the properties
of the free power spectrum in the limit of small scales, i.e. large wave numbers k, in
detail.

For Zel’dovich trajectories, the free power spectrum behaves asymptotically like the
linear power spectrum [7]. To summarize this result, the large-scale limit is obtained
by a Taylor expansion of the exponential in the kernel of (3.131). There are at least two
reasons why this expansion leads to the correct limit. First, the momentum correlation
matrix is bounded for all q, implying that for fixed gqp and arbitrarily small k the
exponent itself becomes arbitrarily small, which in turn justifies a Taylor expansion
of the exponential. And second, we expect that the dominant contribution to the
large-scale limit comes from the integrand at large q. Since Cpp falls off like q−ns−1 for
large q with ns ≤ 1 (see Chapter 5), the behavior of the kernel in this regime is well
approximated by the Taylor expansion. Thus, as k→ 0 (3.131) assumes the asymptotic
expansion

P(k, t) = e−
σ2

1
3 k2g2

qp(t,0)
∫

d3q
∞

∑
n=1

(
g2

qp(t, 0)~kᵀĈpp(~q)~k
)n

n!
ei~k·~q

∼ e−
σ2

1
3 k2g2

qp(t,0)

[
g2

gp(t, 0)P(i)
δ (k) +

g4
qp(t, 0)

2

∫
k′

P(i)
δ (k′)P(i)

δ (|~k−~k′|) + · · ·
]

.

(3.132)

Since we choose Zel’dovich trajectories the propagator is equal to the linear growth
factor gZ

qp(t, 0) = D+(t)−D+(t(i)) and we indeed recover linear growth. However, this

result deviates from standard perturbation theory by the damping term e−
σ2

1
3 k2g2

qp(t,0)

in front of the series. It is legitimate to ask about the physical relevance of this factor.
On the one hand, in [41] it was shown that by resummation, this damping can be
removed. On the other hand, we deliberately expanded the integral for small k such
that any statement about the damping factor at scales where it becomes relevant may
be out of the scope of this expansion. In Chapter 6, we derive an asymptotic expansion
of the free power spectrum at small scales and discuss the implications for the growth
of cosmic structures in detail.

3.6 summary and discussion

In this chapter, we summarized the basic foundations of KFT that apply to cosmic
structure formation. We started with a review on how classical mechanics can be
formulated in the framework of path integrals. The central object is the generating
functional Z[J, K] which can be split into a free generating functional and an inter-
action operator applied to it. This split is not unique, such that the propagators that
describe free motion can be chosen arbitrarily. Changes in the choice of the propa-
gators are then compensated in the interaction operator. By applying operators to
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the generating functional, functions of the phase space coordinates at arbitrary times
can be generated. However, in general, it is not possible to calculate the effect of
the complete interaction operator. A perturbation series can be obtained by a Taylor
expansion of the interaction operator to include higher orders in the interactions.
Another way to include higher interaction orders is the use of an averaged interaction
operator. This strategy turned out to be quite successful for the calculation of the
non-linear density fluctuation power spectrum of cosmic structures [8].

Next, we reviewed the dynamics that apply to collisionless particles in an expanding
spacetime and derived the interaction operator for pair-wise gravitational interactions.
We also showed how the choice of free Zel’dovich trajectories changes the interaction
operator and how this effects the particle trajectories in first-order perturbation theory.

We then reviewed the initial conditions that apply to the cosmic fluid at early times.
Assuming initially a Gaussian random field as well as the linear continuity equation,
the probability distribution of density and momentum fluctuations depends only on
the initial density perturbation power spectrum. The probability distribution in phase
space is then obtained by a Poisson sampling in the initial fields. For large scales
and large propagators gqp, only the initial momentum correlations are relevant when
using Zel’dovich propagators. In Chapter 5, we derive the characteristics of the initial
correlation functions in the limit of small and large scales in detail.

Finally, we reviewed how density correlation functions can be obtained by the factor-
ization of the generating functional. We discussed an error in an earlier publication [9]
that concerns the kernel of correlation functions of order three and higher. When the
factorization was originally introduced, it was hoped that these expressions facilitate
the numerical evaluation of higher-order density correlation functions. The idea was
to first tabulate the factors Ijk such that the remaining convolution of these factors
can be efficiently computed. Up to now, it was not possible to successfully implement
such an algorithm for general factors. One problem was the error in the kernel that we
resolved. In Chapter 7, we discuss further reasons for the still outstanding successful
implementation and resolve some of the major issues.

The two point density fluctuation power spectrum in the free theory of KFT recovers
the non-linear Zel’dovich power spectrum when the Zel’dovich propagator is used.
Thus, in order to obtain a non-linear power spectrum with KFT, we can start at lowest
order with the non-linear Zel’dovich power spectrum. Then, we can use perturbation
theory or an averaged interaction operator to include more interactions. Before stream
crossing, the Zel’dovich power spectrum is in very good agreement with power
spectra obtained from N-body simulations. The exact behavior of this power spectrum
during stream crossing and afterwards, when re-expansion occurs, is important for the
understanding of early structure formation. However, the free power spectrum is hard
to implement numerically for large wave numbers, because of the oscillating integral
and the same problem arises for the factors Ijk. In Chapter 6, we derive the asymptotic
series of the free power spectrum in KFT for large wave numbers at arbitrary times.
Since, to our knowledge, no asymptotic methods dealing with integrals of these types
exist yet – the large parameter k in the kernel appears with different powers in the
exponent – we derive in Chapter 4 a new method that applies to these integrals.
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I N T E R L U D E : A S Y M P T O T I C S O F C E RTA I N T Y P E S O F I N T E G R A L S

Integrals over rapidly oscillating integrands occur frequently in physics and are often
difficult to handle numerically. Their asymptotic behaviour for large parameter values
(e.g. large wave numbers) is interesting in view of estimates, studies of limiting
behaviour, and testing numerical solutions. In this chapter, we derive the asymptotics
of integrals of the form

P(k) =
∫

Ω
g(x)e−ks f (x)eik·xdx , (4.1)

for large parameters k → ∞, where Ω ⊂ RN , N ≥ 1, and s ≥ 1, real. There are
asymptotic methods for certain special choices of s in the literature. For example for
s = 1, the method of stationary phase or the method of steepest descent can typically
be applied. Without the phase function eikx in the kernel, Laplace’s method is used.
For s = 0, there are methods that deal with the asymptotic expansion of Fourier
or Hankel transforms. However, for more general values of s, the large parameter k
appears with different powers in the exponent of the integration kernel. When f and
g are monomials, a coordinate transformation, e.g. k · x → y, can be performed and
one of the forementioned methods can be applied. For general values of s as well
as functions f and g, to our knowledge, no general techniques are known to derive
the asymptotics of the integral (4.1). Our goal is to narrow this gap by providing a
technique that is valid for a broad class of functions f and g as well as a wide range
of parameters s. For the techniques we present, s needs to exceed a lower bound that
depends on f .

We introduce in the first section some notation and definitions related to asymp-
totics and multi-indices. In the second section, we derive the asymptotics for one-
dimensional integrals over finite intervals. In the third section we derive the asymp-
totics for N-dimensional integrals over finite regions. In the fourth part, we show that
for quadratically integrable, bounded functions f with a unique minimum at x = 0,
the derived asymptotics is valid for integration over the whole RN , even when the
integral (4.1) is not absolutely convergent.

4.1 notation and definitions

4.1.1 Asymptotics

We start by defining the order symbols and asymptotic equality as in [17] and [49].

Definition 4.1 (O-Notation). Suppose f , g are real-valued functions over a space X and x0

a limit point.
(i) As x → x0 in X,

f (x) = o
(

g(x)
)

:⇔ f (x)
g(x)

→ 0 . (4.2)

43
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In this case f is said to be „little-oh" of g as x → x0.
(ii) As x→ x0 in X,

f (x) = O
(

g(x)
)

:⇔
∣∣∣∣∣ f (x)

g(x)

∣∣∣∣∣ is bounded . (4.3)

In this case, f is said to be „big-oh" of g as x → x0. When limx→x0
f (x)
g(x) 6= 0, then f is said to

be „of order" g.

The o and O symbols are also known as Landau symbols.

Definition 4.2 (Asymptotic Equality). Suppose f , g are real-valued functions over a space
X and x0 a limit point. As x → x0 in X,

f (x) ∼ g(x)⇔ f (x)
g(x)

→ 1 . (4.4)

In this case, we say f and g are asymptotically equal.

Note that this use of the term „asymptotic equality" differs from the use by some
other authors who define two functions to be asymptotically equal if and only if they
possess identical asymptotic expansions (see below). One can show that the difference
of two asymptotically equal functions is of lower order,

f (x) ∼ g(x) ⇔ f (x)− g(x) = o
(

g(x)
)

, as x → x0 . (4.5)

This leads us to the definitions of an asymptotic sequence and a generalized asymptotic
expansion, which we take from Wong [68].

Definition 4.3 (Asymptotic Sequence). Let
{

fn
}

n∈N
be a sequence of functions defined on

a common space X and x0 a limit point of X. We say that
{

fn
}

n∈N
is an asymptotic sequence

as x→ x0 in X if for all n ≥ 0

fn+1(x) = o
(

fn(x)
)

, as x→ x0 . (4.6)

Definition 4.4 (Generalized Asymptotic Expansion). Let f and fn, n = 0, 1, 2, . . . , be
functions defined on X. The formal series ∑ fn is called a generalized asymptotic expansion of
f with respect to the asymptotic sequence

{
ϕn
}

n∈N
, as x → x0, if

f (x) =
N

∑
n=0

fn(x) + o
(

ϕN(x)
)

, (4.7)

for every fixed N ≥ 0. In this case, we write

f (x) ∼
∞

∑
n=0

fn(x) ;
{

ϕn
}

n∈N
, as x→ x0 . (4.8)

Note that Definition 4.4 implies that the asymptotic expansion of a function f is not
unique. For x 6= x0, the asymptotic expansion of a function may not be a convergent
series. Nevertheless, in some cases it is possible to get good estimates for the function
value in the vicinity of the limit point by optimal truncation. We adopt the definition
of the optimal truncation rule as stated by Boyd [13].
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Definition 4.5 (Optimal Truncation Rule). Consider a generalized asymptotic expansion
as in the previous definition. Then, for a given x, the minimum error in an asymptotic series
is usually achieved by truncating the series so as to retain the smallest term in the series,
discarding all terms of higher degree.

As stated by Boyd, the imprecise adjective „usually" indicates that this is not true
in general and there are simple counter-examples. However, the optimal truncation
rule can be rigorously proven for some classes of asymptotic series. Apart from these
special classes, it is an empirical rule that turned out to be very useful in practice. 1

The shorter term superasymptotic was introduced by Berry and Howls (see [13] and
references therein).

Definition 4.6 (Superasymptotic). An optimally-truncated asymptotic series is a su-
perasymptotic approximation.

4.1.2 Multi-Index Notation

A multi-index α = (α1, α2, . . . , αN) ∈NN
0 is an N-tuple of non-negative integers. Multi-

indices compactify the notation a lot. The following list of notation and formulas will
be useful throughout this chapter.

• Absolute value

|α| := α1 + α2 + . . . + αN . (4.9)

• Factorial

α! := α1! α2! · · · αN ! . (4.10)

• The sum of two multi-indices α, β ∈NN
0

α + β := (α1 + β1, α2 + β2 + ... + αN + βN) . (4.11)

• The binomial of two multi-indices α, β ∈NN
0(

α

β

)
:=
(

α1

β1

)(
α2

β2

)
· · ·
(

αN

βN

)
. (4.12)

• Gamma function

Γ(α) := Γ(α1)Γ(α2) · · · Γ(αN) . (4.13)

• Multi-index applied to a vector x = (x1, x2, ..., xN) ∈ CN

xα := xα1
1 xα2

2 · · · x
αN
N . (4.14)

1 Carl Bender once stated in a seminar he held in Heidelberg about asymptotics that physics is typically
nice. For this reason and since in this work we check all our results numerically, we adopt this rule
unless contradictions arise.
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• Multi-index applied to a function of a multi-index µ ∈NN

f α(µ) := f α1(µ1) f α2(µ2) · · · f αN (µN) . (4.15)

or more specific, as used below(
2
µ

)(α+1)/2

:=

(
2
µ1

)(α1+1)/2(
2
µ2

)(α2+1)/2

· · ·
(

2
µN

)(αN+1)/2

. (4.16)

• Applied to a differential operator

DαG(y0) :=

(
∂|α|

∂yα1
1 · · · ∂yαN

N

)
G(y)

∣∣∣∣∣
y=y0

. (4.17)

• Leibniz formula for two functions f , g

Dα( f g) = ∑
β+γ=α

(
α

β

)
(Dβ f )(Dγg) . (4.18)

4.2 one-dimensional integrals

In one dimension, we start by considering for s ≥ 1 and β > 0 integrals of the form

I(k) =
∫ b

0
dx e−ks f (x)xβ−1eikx , (4.19)

in the limit of large parameters k→ ∞.
We begin our analysis with Laplace’s method as stated by Erdélyi [25], using the

formulation from Nemes [47], slightly adapted. For a proofs of Laplace’s method, we
refer to [25, 68].

Theorem 4.1 (Erdélyi’s Theorem). Consider for real-valued functions f and real- or complex-
valued functions g the following integral,

I(λ) =
∫ b

a
e−λ f (x)g(x)dx, as λ→ ∞ , (4.20)

for which we assume that

1. f (x) > f (a) for x ∈ (a, b) and

inf
x∈[a+δ,b)

{
f (x)− f (a)

}
> 0 , (4.21)

for all δ > 0;

2. f ′(x) and g(x) are continuous in a neighborhood of x = a, except possibly at a;

3. f and g admit asymptotic expansions

f (x) ∼ f (a) +
∞

∑
m=0

am(x− a)m+α , (4.22)
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and

g(x) ∼
∞

∑
m=0

bm(x− a)m+β−1 , (4.23)

with α > 0 and Re(β) > 0 as x → a+. Furthermore, the expansion of f can be
term-wise differentiated such that

f ′(x) ∼
∞

∑
m=0

am(m + α)(x− a)m+α−1 , (4.24)

as x→ a+;

4. I(λ) converges absolutely for sufficiently large λ.

Then

I(λ) ∼ e−λ f (a)
∞

∑
n=0

Γ
(

n + β

α

)
cn

λ(n+β)/α
, (4.25)

as λ→ +∞.

The coefficients cn can be expressed in terms of an and bn,

cn =
1

αa(n+β)/α
0

n

∑
m=0

bn−m

m!
dm,n , (4.26)

with

dm,n = lim
x→0

dm

dxm

1 +
∞

∑
j=1

aj

a0
xj

−(n+β)/α

. (4.27)

This explicit formula for the coefficients cn was first presented by Wojdylo in [67] and
[66]. For the first three coefficients, we find

d0,n = 1 , (4.28)

d1,n = −n + β

α

a1

a0
, (4.29)

d2,n =
n + β

α

(
n + β + α

α

a2
1

a2
0
− 2

a2

a0

)
. (4.30)

We can now use Theorem 4.1 to prove the following theorem for integral (4.19) that
we are interested in.

Theorem 4.2. Consider the integral (4.19) where f satisfies the requirements of Erdélyi’s
Theorem 4.1, 1 ≤ α ≤ s and β > 0. Then, there exists a positive integer M > 0, such that
(4.19) possesses an asymptotic expansion

I(k) ∼ e−ks f (0)

αaβ/α
0 ksβ/α

[
M−1

∑
m=0

Im(k) + ϕM(k)

]
, as k→ ∞ , (4.31)
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where

Im(k) =
e−

i
2 πm

km

∞

∑
n=m

e
i
2 πn

Γ
(

n+β
α

)
m!(n−m)!

dm,n

an/α
0

kn(1−s/α) , (4.32)

and

ϕM(k) =
∞

∑
n=M

n

∑
m=M

Γ
(

n+β
α

)
(ksa0)n/α

(ik)n−m

m!(n−m)!
dm,n . (4.33)

Proof. We start by specifying Erdélyi’s Theorem 4.1 to Fourier-type integrals

I(λ, k) =
∫ b

0
dx e−λ f (x)xβ−1eikx , (4.34)

with constant mode k and b > 0. Notice that for λ = ks, we obtain (4.19). We assume
that f satisfies the conditions of Erdélyi’s Theorem and consider without loss of
generality the lower integration boundary a = 0. We use the Taylor series for the
exponential in g(x) = xβ−1eikx in (4.25) and arrive at the asymptotic expansion

I(λ, k) ∼ e−λ f (0)
∞

∑
n=0

Γ
(

n + β

α

)
cn(k)

λ(n+β)/α
, as λ→ +∞ , (4.35)

where the coefficients (4.26) depend on the wave number k

cn(k) =
1

αa(n+β)/α
0

n

∑
m=0

(ik)n−m

m!(n−m)!
dm,n . (4.36)

Since we aim at an asymptotic expansion where also k becomes a large parameter,
we now consider the sum over n of those terms in the double sum (4.35) with (4.36)
where m is constant. This re-ordering then yields an asymptotic expansion for (4.34)
as λ→ ∞ that is also ordered in decreasing orders of k.

Lemma 4.1. For α ≥ 1 and k > 0, there exists a positive integer M > 0 and a real number
λ0 such that

Im(λ, k) :=
−e

i
2 πm

km

∞

∑
n=m

Γ
(

n + β

α

)(
k

(λa0)1/α

)n
e

i
2 πndm,n

m!(n−m)!
(4.37)

is finite for all m < M and all λ > λ0.

Proof. Consider

I0(λ, k) =
∞

∑
n=0

Γ
(

n + β

α

)
1

(λa0)n/α

(ik)n

n!
d0,n . (4.38)

Since d0,n = 1 for all n, we estimate

∣∣I0(λ, k)
∣∣ =

∣∣∣∣∣∣
∞

∑
n=0

Γ
(

n + β

α

)
1
n!

(
ik

(λa0)1/α

)n
∣∣∣∣∣∣ (4.39)

≤
d2α−βe

∑
n=0

∣∣∣∣∣∣Γ
(

n + β

α

)
1
n!

(
ik

(λa0)1/α

)n
∣∣∣∣∣∣ (4.40)

+
∞

∑
n=0

∣∣∣∣∣∣Γ(n + β)

n!

(
ik

(λa0)1/α

)n
∣∣∣∣∣∣ , (4.41)
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where we used that α ≥ 1 and that Γ
(

n+β
α

)
≤ Γ(n + β) for all 2 ≤ n+β

α . Since β > 0,
the first sum is a finite sum of finite terms, thus finite. For the term, we calculate

∞

∑
n=0

∣∣∣∣∣∣Γ(n + β)

n!

(
ik

(λa0)1/α

)n
∣∣∣∣∣∣ = Γ(β)

Γ(t)
Γ(t)Γ(β)

∞

∑
n=0

Γ(n + β)

n!
Γ(n + t)
Γ(n + t)

(
k

(λa0)1/α

)n

= Γ(β)2F1

(
β, t; t;

k
(λa0)1/α

)
,

(4.42)

where we introduced the variable t > 0, arbitrary, and 2F1 denotes the (generalized)
hypergeometric function [1]. For λ > kα

a0
=: λ0, (4.42) converges to

Γ(β)2F1

(
β, t; t;

k
(λa0)1/α

)
= Γ(β)

[
1− k

(λa0)1/α

]−β

, (4.43)

implying (4.38) exists for λ > λ0 and thus (4.37) exists for M > 0 and λ > λ0, proving
Lemma 4.2.

From the definition (4.37) we directly infer

Im(λ, k) = O
(

λ−m/α
)

, as λ→ ∞ . (4.44)

Lemma 4.1 implies that we can partially resum the infinite double sum appearing in
(4.35). Together with definition (4.37), we arrive at the asymptotics for (4.34)

I(λ, k) ∼ e−λ f (0)

α(λa0)β/α

[
M−1

∑
m=0

Im(λ, k) + ϕM(λ, k)

]
, (4.45)

as λ→ ∞, where we defined

ϕM(λ, k) :=
∞

∑
n=M

n

∑
m=M

Γ
(

n+β
α

)
(λa0)n/α

(ik)n−m

m!(n−m)!
dm,n . (4.46)

Comparing ϕM(λ, k) = O(λ−M/α) with, we find that 4.44, ϕM is asymptotically
suppressed compared to the Im in (4.45), as k→ ∞.

We now derive the asymptotics of (4.19) from (4.45). First, we find that for λ = ks,
where 1 ≤ α ≤ s and m < M, the terms (4.37) are

Im(ks, k) =
e−

i
2 πm

km

∞

∑
n=m

e
i
2 πn

Γ
(

n+β
α

)
m!(n−m)!

dm,n

an/α
0

kn(1−s/α) (4.47)

=
k−ms/α

m!am/α
0

∞

∑
n=0

e
i
2 πn

Γ
(

n+m+β
α

)
n!

dm,n+m

an/α
0

kn(1−s/α) (4.48)

=: Im(k) . (4.49)

Due to the constraint s ≥ α,

Im(k) = O
(

k−ms/α
)

. (4.50)
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Next, for λ = ks, ϕM in (4.45) becomes

ϕM(ks, k)

=
∞

∑
n=0

n

∑
m=0

Γ
(

n+M+β
α

)
(ksa0)(n+M)/α

(ik)n−m

(m + M)!(n−m)!
dm+M,n+M

=
k−sM/α

am/α
0

∞

∑
n=0

e
i
2 πn kn(1−s/α)

an/α
0

n

∑
m=0

e−
i
2 πm

Γ
(

n+M+β
α

)
dm+M,n+M

(m + M)!(n−m)!
k−m

=: ϕM(k) ,

(4.51)

which is of order O
(

k−sM/α
)

. Due to (4.50), ϕM is asymptotically suppressed com-
pared to the Im as k→ ∞. We thus conclude, that there exists a positive integer M > 0,
such that the integral (4.19), which is for λ = ks equivalent to (4.34), satisfies the
asymptotic expansion (4.31).

4.3 multidimensional integrals

In this section, we consider integrals in RN , N > 1 of the form

P(k) =
∫

D
e−|k|

s f (x)g(x)eik·xdx , s ≥ 2 , (4.52)

where k ∈ RN and D ⊂ RN is a possibly unbounded domain. As in the one-
dimensional case, we start by considering Laplace integrals

J(λ) =
∫

D
g(x)e−λ f (x)dx , (4.53)

where λ > 0 is a large positive parameter. We summarize Laplace’s method for
multidimensional integrals as presented by Wong [68]. For a proof, we refer to the
same reference.

Theorem 4.3 (Laplace’s Method). For the integral (4.53) we assume that

1. f , g ∈ C∞(D);

2. J(λ) converges absolutely for all sufficiently large λ;

3. f has a global minimum at and only at x0 ∈ D such that

ρ(ε) = infD\Bε(x0)

{
f (x)− f (x0)

}
> 0 (4.54)

for all ε > 0, where Bε(x0) is the open ball with radius ε around x0; and that

4. the Hessian matrix of f in x0

A =

(
∂2 f (x)
∂xi∂xj

)∣∣∣∣∣
x=x0

(4.55)

is positive definite.
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Then, the integral has an the asymptotic expansion

J(λ) ∼ e−λ f (x0)
∞

∑
n=0

cn

λN/2+n , (4.56)

as λ→ ∞. The coefficients cn are given by

cn = ∑
|α|=2n

δ(α)

(
2
µ

)(α+1)/2

Γ
(

α + 1
2

)
DαG(0)

α!
, (4.57)

where α = (α1, α2, . . . , αN) is a multi-index, µ = (µ1, µ2, . . . , µN) ∈ RN is the collection of
the eigenvalues of the Hessian matrix A from (4.55), and

δ(α) =

1, all αi even

0, else
. (4.58)

The function G : D0 → RN , where D0 ⊂ D, is given by (4.64) below.

Note that condition 3 implies that f has its essential infimum in D at and only at the
point x0. If x0 is an interior point, this will in turn imply that x0 is a critical point of f ,
i.e., ∇ f (x)|x=x0 = 0. Condition 4 is equivalent to the statement that all eigenvalues of
A are positive.

We now make use of Theorem 4.3 to prove the following theorem for the asymptotics
of the integral (4.52).

Theorem 4.4. Consider the integral (4.52) where f and g satisfy the conditions of Theorem
4.3, x0 = 0 and g(0) 6= 0. Then, the asymptotics of (4.52) is given by

P(k) ∼ g(0)e−|k|
s f (0)

√
(2π)N

|k|sNdet A
exp

(
− kᵀA−1k

2|k|s

)
, as |k| → ∞ . (4.59)

Our strategy is very similar to our proof in one dimension. We first consider Fourier-
Laplace type integrals with two distinct coefficients and then perform a resummation
of terms. To this end, we need an expression for the function G, that appears in the
coefficients (4.57). This can be derived from Morse’s Lemma. We summarize Wong’s
presentation of Morse’s Lemma [68].

Lemma 4.2 (Morse’s Lemma). Let f be a real-valued C∞-function in a neighborhood of the
non-degenerate critical point x0, with the Hessian matrix

A =

(
∂2 f

∂xi∂xj

)∣∣∣∣∣
x=x0

(4.60)

being positive definite. Then there exist neighborhoods U, V of the points y = 0, x = x0 and a
diffeomorphism h : U → V of class C∞ such that

( f ◦ h)(y) = f (x0) +
N

∑
j=1

µjy2
j , (4.61)

where the µj are the eigenvalues of A. Furthermore, the Jacobian of the transformation satisfies

∂(x1, . . . , xN)

∂(y1, . . . , yN)

∣∣∣∣∣
y=0

= 1 . (4.62)
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When λ in (4.53) becomes very large, the integrand outside a small neighborhood of
x0 is is exponentially suppressed compared to the peak value. With this consideration
and applying a diffeomorphism h from Morse’s Lemma, the asymptotics of (4.53) is
given by

J(λ) ∼
∫

U
e−λ ∑N

j=1 µjy2
j g(h(y)) det h′(y)dy , as λ→ ∞ , (4.63)

where U is the transformed integration domain. This transformation defines the
function G (4.57),

G(y) = g(h(y)) det h′(y) , (4.64)

where

h′ij(y) :=

(
∂hi(y)

∂yj

)
(4.65)

denotes the Jacobian of the diffeomorphism, with h′0 := h′(y = 0), at the critical point.

Proof of Theorem 4.4. We now specify Laplace’s method, Theorem 4.3, to Fourier-type
integrals with constant wave vector k ∈ RN ,

J(λ, k) :=
∫

D
e−λ f (x)g(x)eik·xdx , (4.66)

for large parameters λ and |k| 6= 0. Note that for λ = ks, this integral is equivalent to
(4.52). According to Theorem 4.3, the asymptotics of 4.66 as λ→ ∞ is given by

J(λ, k) ∼ e−λ f (0)
∞

∑
n=0

cn(k)
λN/2+n . (4.67)

The coefficients cn(k) depend on the orientation and the absolute value of the wave
vector k,

cn(k) = ∑
|α|=2n

δ(α)

(
2
µ

)(α+1)/2

Γ
(

α + 1
2

)
DαG(k, 0)

α!
, (4.68)

where G is according to (4.64) given by

G(k, y) = g(h(y))eik·h(y) det h′(y) . (4.69)

Since our ultimate goal is to arrive at an asymptotic series where also |k| becomes
very large, we determine the leading |k| behavior of the coefficients cn(k).

Lemma 4.3. The coefficients cn in (4.68) with G as in (4.69) acquire the expansion

cn(k) = g(0)eiπnk2n ∑
|α|=2n

δ(α)

α!

(
2
µ

) α+1
2

Γ
(

α + 1
2

) N

∏
j=1

(
∂

∂yj
k̂ · h(y)

)αj
∣∣∣∣∣∣
y=0

+ ϕn(k) ,

(4.70)

with k̂ := k/|k|, where ϕn(k) is asymptotically suppressed as |k| → ∞.
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Note that the eigenvalues µi of the Hessian, the scalar function f and the vector
valued function h do not depend on |k|, but may depend on the direction of k.

Proof. We first determine the leading |k| behavior of the terms DαG(k, 0). Recalling
that h(0) = x0 = 0 and det h′0 = 1, we find

DαG(k, 0) = ∑
ρ+σ=α

(
α

ρ

)(
Dρeik·h(y)

) (
Dσg(y)det h′(y)

)∣∣∣∣∣∣
y=0

= g(h(y))det h′(y)Dαeik·h(y)|y=0 + φα(k)

= g(0)Dαeik·h(y)|y=0 + φα(k) ,

(4.71)

as |k| → ∞, where ρ and σ are multi-indices and

φα(k) := ∑
ρ+σ=α,ρ 6=α

(
α

ρ

)(
Dρeik·h(y)

) (
Dσg(y)det h′(y)

)∣∣∣∣∣∣
y=0

, (4.72)

contains those terms from (4.71), where not all derivatives act on the exponential. In
the first step of (4.71), we applied Leibniz’s rule (4.18). Since derivatives acting on
eik·h(y) generate higher orders of |k|, φα = O(|k|2n−1) is asymptotically suppressed
compared to Dαeik·h(y)|y=0 = O(|k|2n), as |k| → ∞.

Applying a single differential operator to the exponential function, we find

∂eik·h(y)

∂yi
=

N

∑
j=1

∂eik·h(y)

∂hj

∂hj(y)
∂yi

= ieik·h(y) ∂

∂yi
k · h(y)

= i|k|eik·h(y) ∂

∂yi
k̂ · h(y) ,

(4.73)

where k̂ := k/|k| denotes the unit vector pointing in the direction of k. Applying |α|
differential operators, we infer from (4.71)

DαG(k, 0) = g(0) Dαeik·h(y)|y=0 + φα(k)

= g(0) (i|k|)|α|
N

∏
j=1

(
∂

∂yj
k̂ · h(y)

)αj
∣∣∣∣∣∣
y=0

+ φα(k) .
(4.74)

Using this result in (4.68), we can write the cn as

cn(k) = g(0)eiπn|k|2n ∑
|α|=2n

δ(α)

α!

(
2
µ

) α+1
2

Γ
(

α + 1
2

) N

∏
j=1

(
∂

∂yj
k̂ · h(y)

)αj
∣∣∣∣∣∣
y=0

+ ϕn(k) .

(4.75)

The remainder

ϕn(k) = ∑
|α|=2n

δ(α)

(
2
µ

)(α+1)/2

Γ
(

α + 1
2

)
φα(k)

α!
, (4.76)

is O(|k|2n−1) as k→ ∞ and therefore asymptotically suppressed.
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We insert (4.75) into the asymptotic series (4.67) to get the asymptotics as λ→ ∞,

J(λ, k) ∼ e−λ f (0)

λN/2 × ∞

∑
n=0

g(0) ∑
|α|=2n

δ(α)

α!

(
−|k|2

λ

)n(
2
µ

) α+1
2

Γ
(

α + 1
2

) N

∏
j=1

(
∂

∂yj
k̂ · h(y)

)αj
∣∣∣∣∣∣
y=0

+
ϕn (k)

λn


 .

(4.77)

We simplify the double sum with our result (B.13) from Appendix B.2 and note that
by construction ϕ0(k) = 0, to arrive at

J(λ, k) ∼ e−λ f (0)

λN/2

g(0)

√
(2π)N

detA
exp

(
−|k|

2

2λ
k̂ᵀA−1k̂

)
+

∞

∑
n=1

ϕn(k)
λn

 , (4.78)

as λ→ ∞.
We now consider λ = |k|s. Since ϕn(k) = O

(
|k|2n−1

)
,

ϕn(k)
|k|sn = O

(
|k|n(2−s)−1

)
= O

(
|k|−1

)
, (4.79)

for all s ≥ 2, as |k| → ∞. Furthermore,

∞

∑
n=1

ϕn(k)
|k|sn = O

(
|k|1−s

)
= o

(
|k|2−s

)
,

exp

(
− |k|

2

2|k|s k̂ᵀA−1k̂

)
= O

(
|k|2−s

)
,

⇒
∞

∑
n=1

ϕn(k)
|k|sn = o

exp

(
− |k|

2

2|k|s k̂ᵀA−1k̂

)
(4.80)

as |k| → ∞. We therefore conclude, that (4.78) holds for J(|k|s, k) as k→ ∞, such that
(4.78) is equivalent to (4.59), proving the theorem.

4.4 extension to infinite integration domains

In the previous sections, we have derived the asymptotics of integrals of the type

P(k) =
∫

RN
e−|k|

s f (x)g(x)eik·xdx (4.81)

as k→ ∞ when the integral is absolutely convergent. We demanded this as condition
4 in one dimension and condition 2 in N dimensions. In this section, we show for the
general multidimensional case, that we can relax this assumption.

Theorem 4.5. We consider the integral 4.52, satisfying the conditions of Theorem 4.3 with
x0 = 0, but instead of condition 2, f and g satisfy
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2’. f ∈ L2(RN) and g ∈ L∞(RN), g(0) 6= 0; and

3b. the infimum

σ(ε) = inf
x∈RN\Bε(0)

{
| f (0)| − | f (x)|

}
> 0 (4.82)

for all ε > 0.

Then, the asymptotic expansion (4.59) of Theorem 4.4 holds, as |k| → ∞.

Proof. Without loss of generality, it is sufficient to assume g(x) = 1, since the expansion
(4.59) from Theorem 4.4 depends only on the value of g at the critical point. For k 6= 0,
we consider the integral

P̃(k) :=
∫

RN

[
e−|k|

s f (x) − 1 + |k|s f (x)
]

eikxdx

= P(k)− (2π)NδD(k) + |k|s f̂ (k)

= P(k) + |k|s f̂ (k) ,

(4.83)

where f̂ denotes the Fourier transform of f . Since the Fourier transform maps L2 onto
itself, f̂ ∈ L2. We further split the integration domain as

P̃(k) =

(∫
D0

+
∫

RN\D0

) [
e−|k|

s f (x) − 1 + |k|s f (x)
]

eikxdx =: P̃1(k) + P̃2(k) , (4.84)

where we choose D0 ⊂ RN , a finite, open neighborhood of the origin, such that
Morse’s Lemma applies.

We now investigate the contributions to P̃(k) from a neighborhood of the origin
and from outside this neighborhood as |k| → ∞. The integral P̃1(k) is given by

P̃1(k) =
∫

D0

e−|k|
s f (x)eikxdx−

∫
D0

eikxdx +
∫

D0

|k|s f (x)eikxdx

≤
∫

D0

e−|k|
s f (x)eikxdx +

(
1 + |k|s| f (0)|

)
|D0|

. (4.85)

Since the second term in the last line of (4.85) is exponentially suppressed compared to
the asymptotics (4.59) – recall that f (0) < 0 and (4.59) therefore grows exponentially
with increasing |k|s – we conclude that

P̃1(k) ∼ e−|k|
s f (0)

√
(2π)N

|k|sNdetA
exp

(
− kᵀA−1k

2|k|s

)
, (4.86)

as |k| → ∞.
For P̃2(k) we estimate

|P̃2(k)| ≤
∫

RN\D0

∣∣∣e−|k|s f (x) − 1 + |k|s f (x)
∣∣∣dx

=
∫

RN\D0

∣∣∣∣∣ ∞

∑
n=2

[−|k|s f (x)]n

n!

∣∣∣∣∣dx

≤
∞

∑
n=2

1
n!

∫
RN\D0

∣∣|k|s f (x)
∣∣n dx

. (4.87)



56 interlude : asymptotics of certain types of integrals

We now choose

ε := inf
{
|x| : x ∈ R \ D0

}
. (4.88)

By condition 3b there exists a σ(ε) > 0 such that

| f (x)| ≤ | f (0)| − σ(ε), ∀x ∈ RN \ D0 , (4.89)

With this, we get

|P̃2(k)| ≤
∞

∑
n=2

|k|sn

n!

∫
RN\D0

∣∣ f (x)
∣∣n dx

≤
∞

∑
n=2

|k|sn [| f (0)| − σ(ε)
]n−2

n!

∫
RN

∣∣ f (x)
∣∣2 dx

=

∫
RN

∣∣ f (x)
∣∣2 dx(

| f (0)| − σ(ε)
)2

∞

∑
n=2

[
|k|s

(
| f (0)| − σ(ε)

)]n

n!

=

∫
RN

∣∣ f (x)
∣∣2 dx(

| f (0)| − σ(ε)
)2

[
e−|k|

s[ f (0)+σ(ε)] − 1 + |k|s f (0)
]

, (4.90)

since f ∈ L2 and therefore
∫

RN | f (x)|2dx finite. This result is exponentially suppressed
by a factor exp

[
−|k|sσ(ε)

]
compared to the asymptotics 4.59. Since f̂ ∈ L2 vanishes

at infinity, we conclude

P(k) = P̃(k)− |k|s f̂ (k)

∼ P̃(k) ∼ P̃1(k)

= e−|k|
s f (0)

√
(2π)N

|k|sNdet A
exp

(
− kᵀA−1k

2|k|s

)
, as |k| → ∞ ,

(4.91)

as claimed. Note that f (0) < 0, thus (4.91) increases exponentially for increasing
values of |k|s.

4.5 summary and discussion

In this chapter, we derived the asymptotics of Laplace-Fourier type integrals, where
the large parameter k appears with different powers in the exponential. For integrals
in one dimension, we derived a complete asymptotic series by a resummation of
Laplace’s method from Erdélyi’s Theorem. In N dimensions, we derived an expression
for the leading term in the asymptotic expansion. In the last section, we showed that
our results are also valid when the integral does not converge absolutely, as long as
the function f is quadratically integrable and bounded. In order to derive further
terms of the asymptotic sequence in N dimensions, one needs to evaluate derivatives
of the diffeomorphism h in Morse’s Lemma, at the critical point. Since the proof of
Morse’s Lemma by Milnor gives a construction of the inverse h−1, a derivation of
further asymptotic terms should in principle be possible.

Our method in N dimensions provides an efficient way to obtain the leading
behaviour for large parameters k. However, one disadvantage of this method is
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that the function f needs to be asymptotically quadratic in the neigborhood of the
critical point. One way to overcome this shortcoming in certain cases and additionally
construct more terms of the asymptotic expansion in N dimensions might be to
introduce spherical coordinates and apply the one-dimensional method to the integral
over the radial coordinate. Then, for each term in the resulting asymptotic series, the
integration over the angular coordinates has to be performed. This strategy was for
example used in [31] to extend the one-dimensional Laplace’s method to multiple
dimensions.

The methods we presented are valid when ks dominates the Laplace part of the
kernel, i.e. the power s needs to be above some critical value. This constraint is the
reason why a modification of Laplace’s method leads to our results. For smaller values
of s, when the oscillation due to the Fourier phase dominates the behaviour of the
kernel, another method has to be derived. A starting point to derive such a method
might be the saddle-point approximation.





5
C H A R A C T E R I S T I C S O F T H E I N I T I A L C O R R E L AT I O N S

The initial correlations in the cosmic density and velocity fields are key ingredients to
understand cosmic structures today. In kinetic field theory (KFT), the initial density
correlations

Cδδ(~q) =
∫

k
P(i)

δ (k)ei~k·~q = ξδδ(q) , (5.1)

the initial density-momentum correlations

~Cδp(~q) = i
∫

k
~kk2P(i)

ψ (k)ei~k·~q = ~∇qξδψ(q) , (5.2)

and the initial momentum correlations

Ĉpp(~q) =
∫

k
(~k⊗~k)P(i)

ψ (k)ei~k~q = −(~∇q ⊗ ~∇q)ξψψ(q) (5.3)

are built-in in the free generating functional, thus they are completely incorporated in
the free theory. In this chapter, we analyze the characteristics of the initial correlation
functions in the limit of very large and very small scales. Their asymptotic limiting
behavior is not only interesting by itself. In KFT, knowing the asymptotics is also
important for the numerical evaluation and analytical estimation of the correlation
functions at later times – in particular in the strongly non-linear regime. Because
we assume that the initial fluctuations are Gaussian, the initial correlation functions
are completely determined by the initial density perturbation power spectrum. The
features we identify in our analysis apply to a broad class of initial power spectra
relevant to cosmological structure formation.

This chapter is organized as follows. In the first section, we motivate the introduction
of a smoothing scale. In the second section, we derive an asymptotic expansion for
small scales q → 0 and in the third section the asymptotics for large scales q → ∞.
In the final section, we present the exact analytical solution to the initial correlation
functions for a type of hot dark matter with an initial power spectrum P(i)

δ (k) ∝ k e−k/ks ,
where ks defines the smoothing scale in Fourier space.

5.1 motivation of a small-scale smoothing

Since KFT operates in the N-particle phase space, there is fundamentally no need to
introduce a smoothing scale. However, there are several resons why we nevertheless
might want to introduce a smoothing scale for non-exponentially cut-off power spectra,
like the CDM power spectrum in [4]. First, calculations become significantly simpler
because the resulting asymptotic series for the initial correlation functions (5.1)–(5.3)
are power series. Considering initial power spectra that are not exponentially cut-off
results in asymptotic series that involve logarithms, which in turn need to be handled
differently in later calculations. Second, from a physical perspective it is unlikely that
the initial power spectrum, even for cold dark matter, behaves asymptotically like a
rational function up to arbitrarily large wave numbers.

59
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The primordial power spectrum, set after inflation, was a simple power law propor-
tional to kns with ns . 1 and a very small amplitude1. The way how these perturbations
grow strongly depends on the dominant energy component in the universe. During
the radiation dominated era, perturbations with wavelength smaller than the parti-
cle horizon stop growing because of the so called Meszaros effect, while large-scale
perturbations grow without mode coupling. This results in a power spectrum that
at large scales (small k) is still proportional to kns , while at small scales (large k) it
asymptotically behaves like ∼ kns−4 [4].

When dark matter consists of particles and is not completely cold, random ther-
mal motions additionally wash out fluctuations below a free-streaming scale that
corresponds to the typical comoving distance that a particle travels in the age of the
universe [28]. This scale is inversely proportional to the dark matter particle mass mX.
The product of the comoving critical density and the cubed comoving free-streaming
scale then defines a mass scale for cosmological structures. Hot dark matter with
mX ∼ 30 eV has a free-streaming length of the order of a galaxy cluster, warm dark
matter with mX ∼ 2 keV has a free-streaming length that corresponds to the halo
of a dwarf galaxy, while for CDM, mX ∼ 100 GeV, the free-streaming length corre-
sponds to the scale of the Earth [28]. Thus, when dark matter consists of particles,
thermally or non-thermally produced, some kind of cutoff compared to the ∼ kns−4

tail has to be imprinted in the linear power spectrum [28, 69]. Since this cutoff is
physically related to mX, all of our later results that depend on the cutoff scale contain
information about the mass of hypothetical dark matter particles. The linear power
spectra of hypothetical non-cold dark matter typically possess steeper power laws, are
exponentially damped, and/or assume oscillating behaviour in the high-k regime. A
general framework to parametrize the linear power spectra of non-cold dark matter at
small scales was recently put forward in [45].

For any initial power spectrum that is not exponentially cut-off, we introduce a
smoothing scale ks in Fourier space by applying an exponential UV regulator to the
initial density power spectrum

P(i)
δ (k)→ P(i)

δ (k) e−k/ks , (5.4)

such that the moments σ2
n of the initial velocity potential power spectrum P(i)

ψ (k) =

k−4P(i)
δ (k),

σ2
n :=

∫
k

k2nP(i)
ψ (k) =

1
2π2

∫ ∞

0
dk k2n−2P(i)

δ (k) < ∞ , (5.5)

are finite.
Note that in the Lagrangian picture, a smoothing scale needs to be introduced to

define a smooth displacement field [18]. The smoothing in KFT is physically very
different to the smoothing in the Lagrangian picture: in KFT, the smoothing occurs in
the initial correlation functions and not in the initial density or velocity (displacement)
fields. In an individual realisation, particles are still allowed to cross at arbitrarily
small distances at initial times.

Throughout this work, the initial power spectra that we consider either naturally
possess tails that fall off at least exponentially, or they are smoothed according to (5.4),
unless stated otherwise.

1 The exponent might change with k, but such a change has not been observed.
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5.2 small-scale asymptotics

In this section, we derive the asymptotics of the correlation functions Cδδ, ~Cδp and Ĉpp,
(5.1)-(5.3), for small scales, i.e. as q → 0. To this end, we make use of the following
theorem from Erdélyi on the integration of asymptotic expansions [25]. A proof of the
theorem can be found in the same reference.

Theorem 5.1 (Integration of Asymptotic Expansions). Let
{

ϕn
}

n∈N
be an asymptotic

sequence and a < q < b. For the integral

I(q) :=
∫ b

a
f (k)W(k, q)dk , (5.6)

we assume that

1. the function

W(k, q) ∼
N

∑
n=0

an(k)ϕn(q) + o
(

ϕN(q)
)

(5.7)

as q→ q0 uniformly in q;

2. W(k, q) is a measurable function of k for each fixed q;

3. an(k) is a measurable function of k for each fixed n; and

4. f (k) is an integrable function of k for which each of the integrals

An =
∫ b

a
f (k)an(k)dk (5.8)

exists.

Then, also the integral (5.6) exists for each q in some neighborhood of q0, and

I(q) ∼
N

∑
n=0

An ϕn(q) + o
(

ϕN(q)
)

. (5.9)

In order to apply Theorem 5.1 we first note that the integrals (5.1)-(5.3) are absolutely
convergent because we introduced an exponential cutoff and because ns > 0. Starting
with Cδδ, we introduce spherical coordinates, perform the integral over the angles and
arrive at

Cδδ(q) =
1

2π2

∫ ∞

0
dk k2P(i)

δ (k)j0(kq) , (5.10)

where jn denotes the spherical Bessel function of the first kind of order n. This integral
expression is of the same type as (5.6) in Theorem 5.1. The conditions for Theorem 5.1
are fulfilled in (5.10), where a = q0 = 0, b→ ∞, W(k, q) = j0(kq) and f (k) = k2P(i)

δ (k),
because

1. j0(x) possesses a convergent Taylor series at x = 0 such that

j0(kq) =
∞

∑
n=0

(−1)n k2n

(2n + 1)!
q2n , (5.11)

where we choose ϕn(q) = q2n;



62 characteristics of the initial correlations

2. j0(kq) is a measurable function of k for each fixed q;

3. (−1)n k2n

(2n+1)! is a measurable function of k for each fixed n; and

4. k2P(i)
δ (k) is an integrable function of k for which each of the integrals

An =
∫ b

a
k2P(i)

δ (k)(−1)n k2n

(2n + 1)!
dk =

(−1)n

(2n + 1)!
σ2

2+n , (5.12)

exist due to the exponential cutoff in P(i)
δ and because ns > 0.

We thus arrive at the asymptotic expansion

Cδδ(q) ∼
1

2π2

∞

∑
n=0

(−1)n σ2
2+n

(2n + 1)!
q2n , as q→ 0 . (5.13)

We apply the same procedure to compute the asymptotic expansion of ~Cδp as q→ 0,

~Cδp(q) = ~∇q

∫
k

k−2P(i)
δ (k)ei~k~q (5.14)

=
~∇q

2π2

∫ ∞

0
dk P(i)

δ (k)
sin(kq)

kq
(5.15)

∼
~∇q

2π2

∞

∑
n=0

(−1)n q2n

(2n + 1)!

∫ ∞

0
dk k2nP(i)

δ (k) (5.16)

=
1

2π2
~q
q

∞

∑
n=1

(−1)n 2n q2n−1

(2n + 1)!

∫ ∞

0
dk k2nP(i)

δ (k) (5.17)

= − ~q
2π2

∞

∑
n=0

(−1)n σ2
2+n

(2n + 3)(2n + 1)!
q2n . (5.18)

For the asymptotics of the initial momentum-momentum correlation matrix, we
first rewrite Ĉpp as in (3.126),

Ĉpp(~q) = −~∇q ⊗ ~∇q

∫
k

P(i)
ψ (k)ei~k·~q (5.19)

= −~q⊗~q
q2

(
ξ ′′ψ(q)−

ξ ′ψ(q)
q

)
− I3

ξ ′ψ(q)
q

(5.20)

=: −~q⊗~q
q2 a2(q)− I3a1(q) , (5.21)

with the functions

a1(q) :=
ξ ′ψ(q)

q
= − 1

2π2

∫ ∞

0
dk P(i)

δ (k)
j1(kq)

kq
, (5.22)

a2(q) := ξ ′′(q)−
ξ ′ψ(q)

q
=

1
2π2

∫ ∞

0
dk P(i)

δ (k)j2(kq) . (5.23)

We arrive at the asymptotics of a1 by applying Theorem 5.1,

a1(q) = −
1

2π2

∫ ∞

0
dkP(i)

δ (k)
j1(kq)

kq

∼ − 1
2π2

∫ ∞

0
dkP(i)

δ (k)
∞

∑
n=0

(−1)n(2 + 2n)
(3 + 2n)!

(kq)2n

=
1

2π2

∞

∑
n=0

(−1)n+1

(2n + 3)(2n + 1)!
σ2

1+nq2n ,

(5.24)
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as q→ 0, where we used the Taylor series of j1(x),

j1(x) = x
∞

∑
n=0

(−1)n(2 + 2n)
(3 + 2n)!

x2n . (5.25)

We compute the asymptotic expansion of a2 by exploiting a2(q) = qa′1(q) and finally
arrive at

a1(q) ∼
∞

∑
n=0

(−1)n+1σ2
n+1

(3 + 2n)(1 + 2n)!
q2n , as q→ 0 , (5.26)

a2(q) ∼
∞

∑
n=1

(−1)n+1 2n σ2
n+1

(3 + 2n)(1 + 2n)!
q2n , as q→ 0 . (5.27)

To make further calculations more compact, we define the coefficients

an :=
(−1)n+1σ2

n+1

(3 + 2n)(1 + 2n)!
, (5.28)

such that the asymptotic expansions of a1 and a2 are now given by

a1(q) ∼
∞

∑
n=0

anq2n , as q→ 0 , (5.29)

a2(q) ∼
∞

∑
n=1

2n anq2n , as q→ 0 . (5.30)

The convergence radius of the asymptotic series (5.29) and (5.30) is given by q = 1
ks

when an exponential smoothing according to (5.4) is chosen. This can be seen from
the following consideration. Recall that we chose an exponential regularization for the
initial power spectrum, then we can write (5.22) as

a1(q) = −
1

2π2

∫ ∞

0
P(i)

δ,nr(k)e
−k/ks

(
eikq − e−ikq

2i(kq)3 − eikq + e−ikq

2(kq)2

)
j1(kq)

kq
, (5.31)

where P(i)
δ,nr now denotes the un-regularized initial power spectrum, which for cold

dark matter has a power law tail. Furthermore, we wrote the trigonometric representa-
tion of j1(x) = x−2 sin x− x−1 cos x in terms of complex exponentials. When we now
consider q = ±iy with y ≥ 1

ks
, then the integral (5.31) is not exponentially regularized

any more and might even diverge. Although we only consider positive values of q,
this possible divergence in the complex plane indicates the finite convergence radius
of the series (5.29) and (5.30) that we derived for a1 and a2. The same argument holds
for the series (5.13) and (5.18), which also have a finite radius of convergence q = 1

ks
.

Note that for a stronger regularization kernel, like for example a Gaussian, these series
might actually be convergent for all finite ks for all values of q.

Note that it is also possible to derive the asympotic expansions of the initial
correlation functions without smoothing, i.e. when the initial density perturbation
power spectrum has a power law tail. Depending on the power, this leads to an
asymptotic expansion that either involves logarithms or a sum of two power series. In
this work, we restrict our analysis to power spectra with exponential cutoff.
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5.3 large-scale asympotics

In KFT, when we want to compute density correlation functions, for example via the
factors of the generating functional (3.124), we have to numerically evaluate integrals
that contain the initial correlation functions in the integration kernel. From a numerical
perspective these integrals are typically difficult to compute, as they (i) are rapidly
oscillating and (ii) have to be performed over infinite integration domains. In order
to implement these integrals numerically, we need to know the degree to which they
converge and how they can numerically be regularized. Thus, we need to know the
behavior of the integration kernel for large arguments.

Since we consider only the effect of initial momentum correlations in this work, we
restrict our analysis to the large-scale asymptotics of Ĉpp. To this end, we apply the
asymptotic expansion techniques for Hankel transforms presented in [68]. We start by
stating the necessary theorems from [68], and refer for proofs of these theorems to the
same reference.

We consider the Hankel transform of the function f ,

Hν(q) =
∫ ∞

0
dk f (k)Jν(kq) , (5.32)

where Jν denotes the Bessel function of first kind of order ν.

Theorem 5.2. In (5.32), we assume that

1. f is m times continuously differentiable in (0, ∞), m being a non-negative integer;

2. f has an asymptotic expansion

f (k) ∼
∞

∑
n=0

cnkλn−1, as k→ 0 , (5.33)

where Re(λ0 + ν) > 0, Re λn+1 > Re λn for n = 0, 1, 2, . . . and this asymptotic
expansion can be differentiated m times; and

3. each of the integrals∫ ∞

1
f (j)(k)k−1/2eik·qdk, j = 0, 1, . . . , m, (5.34)

converges uniformly for all sufficiently large q, where f (j) denotes the j-th derivative of
f .

Let N be the smallest non-negative integer such that

Re λN > m , (5.35)

and define fN(k) by

f (k) =
N−1

∑
n=0

cnkλn−1 + fN(k) . (5.36)

Then the Hankel transform (5.32) satisfies

Hν(q) =
N−1

∑
n=0

cn

Γ
(

1
2 ν + 1

2 λn

)
2λn−1

Γ
(

1
2 ν− 1

2 λn + 1
) q−λn + EN(q) , (5.37)
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where

EN(q) =

(
−1

q

)m ∫ ∞

0
fN,m(q)Jν+m(kq) , (5.38)

and the functions fN,j(k), j = 0, 1, . . . , m are defined recursively by fN,0(k) = fN(k) and

fN,j+1(k) = f ′N,j(k)−
(ν + j + 1)

k
fN,j(k) . (5.39)

The following corollary from [68] provides a sufficient condition such that the
expansion in Theorem 5.2 is asymptotic.

Corollary 5.1. To show that the expansion in Theorem 5.2 is asymptotic, it is enough to prove
that

EN(q) = o
(

q−m
)

, as q→ ∞ , (5.40)

or equivalently

lim
q→∞

∫ ∞

0
dk fN,m(k)Jν+m(kq) = 0 . (5.41)

Finally, an estimate for the remainder EN in Theorem 5.2 is given by the following
theorem from [68].

Theorem 5.3. Assume that conditions 1 and 2 hold, and replace condition 3 by

3’. Each of the integrals∫ ∞

1
dk f (j)(k)k−1/2eikq , (5.42)

where j = 0, 1, . . . , m, converges uniformly for all sufficiently large q, and∫ ∞

1
dk | f (j)(k)|kj−m < ∞ , (5.43)

for each j = 0, 1, . . . , m.

Choose N again as in Theorem 5.2. (i) If Re λN−1 < m, then

|EN(q)| ≤
Aν+m

qm

∫ ∞

0
dk | fN,m(k)| . (5.44)

(ii) If Re λN−1 = m, then

|EN(q)| ≤
Bν+m

qm+1/2

∫ ∞

0
dk k−1/2| fN,m(k)| . (5.45)

The coefficients in (5.44) and (5.45) are given by

Aα = sup
0≤k≤∞

|Jα(k)| and Bα = sup
0≤k≤∞

|k1/2 Jα(k)| . (5.46)
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We now apply these theorems, to derive the asymptotics of a1 and a2 as q→ ∞. We
start by expressing the integrals (5.22) and (5.23) as Hankel transforms,

a1(q) = −
1

2π2

√
π

2q

∫ ∞

0
dk

P(i)
δ (k)

qk
√

k
J3/2(kq) , (5.47)

a2(q) =
1

2π2

√
π

2q

∫ ∞

0
dk

P(i)
δ (k)√

k
J5/2(kq) , (5.48)

using the relation

jν(x) =
√

π

2x
Jν+1/2(x) . (5.49)

For the initial density perturbation power spectrum, we assume that

1. P(i)
δ can be continuously differentiated at least three times (m = 3 in Theorem

5.2) in k ∈ (0, ∞), which is safe to assume due to its regularity; and that

2. P(i)
δ has an asymptotic expansion of the form

P(i)
δ (k) ∼

∞

∑
n=0

Pnkns+n, as k→ 0+ , (5.50)

that can be differentiated at least three times.

Note that the reason for demanding m = 3 is of practical nature: it allows us to
calculate the first three terms in the asymptotic expansion.

With these assumptions, the kernel functions in (5.47) and (5.48) satisfy the first two
requirements of Theorems 5.2 and 5.3. The first three exponents λn for both cases are
shown in Table 5.1. Note that the remaining requirements related to integrability are
fulfilled because of the smoothing.

ν λ0 λ1 λ2 N (for 1
2 < ns <

3
2 )

a1(q) 3/2 ns − 1/2 ns + 1/2 ns + 3/2 3

a2(q) 5/2 ns + 1/2 ns + 3/2 ns + 5/2 2

Table 5.1: Parameters for the asymptotic expansion (5.37) of the functions a1(q) and a2(q),
respectively. Recall that N is given by condition (5.35) with m = 3. For a1, we
assumed the existence of a λ3 ≥ λ2 + 1.

In accordance with our requirement (5.50), we write the initial density perturbation
power spectrum,

P(i)
δ (k) = P0kns + P1kns+1 + P2kns+2 + P3(k) , (5.51)

where P0, P1 and P2 are real-valued coefficients. Combining (5.51) with (5.36) then
yields the following expressions for the kernel functions (5.47) and (5.48),

a1 :
P(i)

δ (k)

qk
√

k
=

P0

q
k(ns−1/2)−1 +

P1

q
k(ns+1/2)−1 +

P2

q
k(ns+3/2)−1 +

P3(k)
qk
√

k
, (5.52)

a2 :
P(i)

δ (k)√
k

= P0k(ns+1/2)−1 + P1k(ns+3/2)−1 + P2k(ns+5/2)−1 +
P3(k)√

k
. (5.53)
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With (5.37) from Theorem 5.2, we arrive for a1 at the expansion

a1(q) = −
1

2π2

√
π

2q
P0

q

Γ
(

3
4 +

ns
2 −

1
4

)
2ns−3/2

Γ
(

3
4 −

ns
2 + 1

4 + 1
) q−ns+1/2

− 1
2π2

√
π

2q
P1

q

Γ
(

3
4 +

ns
2 + 1

4

)
2ns−1/2

Γ
(

3
4 −

ns
2 −

1
4 + 1

) q−ns−1/2

− 1
2π2

√
π

2q
P2

q

Γ
(

3
4 +

ns
2 + 3

4

)
2ns+1/2

Γ
(

3
4 −

ns
2 −

3
4 + 1

) q−ns−3/2

+ E3,1(q)

= − P0

2π2

√
π

22−ns

Γ
(

1
2 +

ns
2

)
Γ
(
2− ns

2

) q−ns−1

− P1

2π2

√
π

21−ns

Γ
(
1 + ns

2

)
Γ
(

3
2 −

ns
2

)q−ns−2

− P2

2π2

√
π

2−ns

Γ
(

3
2 +

ns
2

)
Γ
(
1− ns

2

) q−ns−3

+ E3,1(q) .

(5.54)

This expansion is an asymptotic expansion for 1
2 < ns <

3
2 with E3,1(q) ≤ O(q−4.5),

because m = 3 and λ2 = ns + 3/2 in Theorem 5.3. Equivalently, we arrive for a2 at the
asymptotics

a2(q) =
1

2π2

√
π

2q
P0

Γ
(

5
4 +

ns
2 + 1

4

)
2ns−1/2

Γ
(

5
4 −

ns
2 −

1
4 + 1

) q−ns−1/2

+
1

2π2

√
π

2q
P1

Γ
(

5
4 +

ns
2 + 3

4

)
2ns−3/2

Γ
(

5
4 −

ns
2 −

3
4 + 1

) q−ns−3/2

+ E2,2(q)

=
P0

2π2

√
π

21−ns

Γ
(

3
2 +

ns
2

)
Γ
(
2− ns

2

) q−ns−1

+
P1

2π2

√
π

2−ns

Γ
(
2 + ns

2

)
Γ
(

3
2 −

ns
2

)q−ns−2

+ E2,2(q).

(5.55)

For ns ≈ 1, these expressions for the asymptotics become

a1(q) = −
P0

2π2 q−2 − π

2
P1

2π2 q−3 − 2
P2

2π2 q−4 + O(q−4.5) , (5.56)

a2(q) = 2
P0

2π2 q−2 +
3π

2
P1

2π2 q−3 + O(q−3.5) . (5.57)
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In Figure 5.1, we show the functions −a1 (purple solid), a2 (green solid) and σ2
1
3 + a1

(blue solid) together with the corresponding first-order asymptotics (dashed lines) for
small and large scales, derived from an initial cold dark matter power spectrum from
[4] with smoothing at large scales (ks = 10 Mpc−1h, left) and small scales (ks = 1000
Mpc−1h, right). The asymptotics coincides in all cases excellently with the limiting
behavior of the functions. Note that for the smaller smoothing wave number (left

picture), the amplitudes of σ2
1
3 + a1(q) and a2(q) for small values of q is smaller than

in the right picture, while the large-scale behavior is the same. Furthermore, the
small-scale asymptotics in the left picture is valid for a wider range of q. This reflects
the larger convergence radius k−1

s of the asymptotic series compared to the right
picture.
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Figure 5.1: The functions −a1(q) (purple lines), σ2
1
3 + a1(q) (golden lines), and a2(q) (green

lines) normalized to σ2
1
3 = −a1(0) for the CDM power spectrum from [4], with

ns = 0.96 and two different smoothing scales. Dashed lines show the asymptotics
q2 for small scales (5.29) and (5.30), and the q−ns−1 asymptotics for large scales
(5.54) and (5.55). The cosmological parameters used are shown in Table E.1.

5.4 an analytical test case

In some special cases, the initial correlation matrices can be computed analytically.
Such analytical expressions are helpful in gaining a qualitative understanding of the
initial correlations. Furthermore, they are very useful in testing numerical algorithms,
as numerical uncertainties are minimized compared to fit functions or data.

In this section, we consider initial power spectra

P(i)
δ (k) = A k e−k/ks , (5.58)
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that correspond to an analytically tractable test case with ns = 1 and an exponential
cutoff. Recall that the initial power spectra of the velocity potential and of the density
correlations are given by

k4Pψ(k) = P(i)
δ (k) , (5.59)

where A > 0 is an amplitude and ks > 0 a fixed smoothing scale.
For the initial density correlations, we plug (5.58) in (5.1). Carrying out the integral,

we arrive at

Cδδ(q) =
A

2π2

∫ ∞

0
dk k3e−k/ks

sin(kq)
kq

=
A
π2

3
k2

s
− q2(

1
k2

s
+ q2

)3 .
(5.60)

Similarly, we compute the initial momentum-density correlations (5.2),

~Cδp(q) =
A

2π2
~∇q

∫ ∞

0
dk ke−k/ks

sin(kq)
kq

=
A

2π2
~∇q

1
1
k2

s
+ q2

= −~q A
π2

1(
1
k2

s
+ q2

)2 .

(5.61)

In order to obtain Ĉpp, we first compute a1 by plugging (5.58) into (5.10),

a1(q) = −
A

2π2
1
q

∫ ∞

0
dk e−k/ks j1(kq)

= − A
2π2

1
q

∫ ∞

0
dk e−k/ks

(
sin(kq)
(kq)2 −

cos(kq)
kq

)

= − A
2π2

1
q2

∫ ∞

0
dx e−x/(qks)

(
sin(x)

x2 − 1
x

)
+
∫ ∞

0
dx e−x/(qks)

(
1
x
− cos(x)

x

) .

(5.62)

We performed the last step in order to apply the following integral solutions from
[36],

∫ ∞

0
dx e−x/t

(
sin(x)

x2 − 1
x

)
= −1

2
ln
(

1 + t2
)
− arctan(t)

t
+ 1 , (5.63)

∫ ∞

0
dx e−x/t

(
1
x
− cos(x)

x

)
=

1
2

ln
(

1 + t2
)

. (5.64)

Using these relations, we arrive at

a1(q) =
A

2π2
1
q2

(
arctan(ksq)

ksq
− 1

)
, (5.65)
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and, with a2(q) = qa′1(q),

a2(q) =
A

2π2

 3
q2

(
1− arctan(ksq)

ksq

)
− k2

s
1 + k2

s q2

 . (5.66)

In Figure 5.2 we show an example of these functions for A = 2π2 and ks = 1
Mpc−1h. Qualitatively, they behave similar to the CDM functions shown in Figure 5.1,
which makes them excellent test functions for numerical routines.
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Figure 5.2: The functions −a1(q) (purple line) from (5.65), σ2
1
3 + a1(q) (golden line), and a2(q)

(green line) from (5.66) normalized to σ2
1
3 = −a1(0) for the analytically tractable

power spectrum P(i)
δ (k) = k e−k/ks . These functions behave qualitatively very similar

to the CDM functions, shown in Figure 5.1. The parameters used are shown in
Table E.1.

Finally, we compute the asymptotic series for small and large q, respectively. We
first note the series expansion for the inverse tangent, for real arguments,

arctan(x) =



∞

∑
n=0

(−1)nx1+2n

1 + 2n
for |x| < 1 ,

± π

4
for x = ±1 ,

π

2
−

∞

∑
n=0

(−1)nx−1−2n

1 + 2n
for |x| > 1 .

(5.67)
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For a1 we thus arrive at the series expression

a1(q) = −
Ak2

s
2π



∞

∑
n=0

(−1)n

2n + 3
(ksq)2n for |ksq| < 1 ,

1∓ π

4
for ksq = ±1 ,

1
(ksq)2 −

π

2
1

(ksq)3 +
1

(ksq)4

∞

∑
n=0

(−1)n

1 + 2n
(ksq)−2n for |ksq| > 1 .

(5.68)

Comparing the series for small scales to our results (5.29) for the asymptotics as q→ 0,
the expansion coefficients are given by

an = −Ak2
s

2π2
(−1)nk2n

s
2n + 3

. (5.69)

Identifying this with (5.28), we can read off the moments of the initial velocity potential
power spectrum,

σ2
n+1 =

A
2π2 k2n+2

s (2n + 1)! . (5.70)

Note that (5.68) implies that the convergence radius of the small q power series
expansion is set by the smoothing scale k−1

s . Furthermore, let us note that the ratio of
two successive moments of the initial velocity potential power spectrum is quadratic
in the smoothing wave number

σ2
n+1

σ2
n

= k2
s2n(2n + 1) . (5.71)

This property will be relevant for our analysis of the free power spectrum in the next
chapter.

5.5 summary and discussion

In this chapter, we derived the asymptotic expansions of the initial density-density
Cδδ, density-momentum ~Cδp and momentum-momentum Ĉpp correlation functions of
the cosmic fluid. In the first section, we derived the asymptotic series for small scales.
These are power series of even powers of q, where the series coefficients depend on
the moments σ2

n of the initial velocity potential power spectrum. These expansions are
valid for a broad class of initial density perturbation power spectra, provided the σ2

n
exist. To this end, we introduced an exponential cutoff in the initial power spectrum
with smoothing scale ks in Fourier space. Depending on the nature of dark matter,
this cutoff may be physical. In particle models of dark matter, ks is related to the dark
matter particle mass mX and therefore – for thermally produced dark matter – to their
temperature. In the next chapter, when we derive the asymptotics of the free power
spectrum at small scales, the physical relevance of this cutoff scale for cosmic structure
formation becomes clear, because σ2

2 determines the mass and time scale of stream
crossing.
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In general, it is also possible to derive an asymptotic series for the initial correlation
functions from power spectra with power law tails. Such an expansion contains either
logarithmic terms, when the power law tail is an integer, or otherwise consists of a
sum of more than one power series [68]. This case will be studied in later work.

In the second section, we derived the asymptotics of the momentum correlation
function Ĉpp for large scales. The lowest-order terms for a1(q) and a2(q) are both
proportional to q−1−ns . This large-scale behavior is important when implementing
numerical codes for the evaluation of correlation functions in KFT, since it determines
the convergence rate of the integrals. Since we consider only initial momentum-
momentum correlations in this work, we restricted our analysis of the large-scale limit
to Ĉpp. In practice, both the asymptotics for large scales as well as the asymptotics for
small scales turned out to be highly relevant for the numerical evaluation of density
correlation functions in KFT. In the next two chapters, we demonstrate the relevance of
the small-scale asymptotics for numerical implementations of the correlation functions.

In the last section, we derived the analytic solutions to the initial correlation func-
tions for a type of hot dark matter. These behave qualitatively similar to the correlation
functions for smoothed CDM. Therefore, these analytical expressions can be used to
test numerical integration routines with asymptotically safe functions.
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In this chapter, we study the small-scale properties of the free power spectrum in KFT,

P(k, t) = e−
σ2

1
3 k2g2

qp(t,0)
∫

d3q
(

eg2
qp(t,0)~kᵀĈpp(~q)~k − 1

)
ei~k·~q , (6.1)

with the initial momentum-momentum correlation matrix

Ĉpp(~q) =
∫

k

(
~k⊗~k

)
P(i)

ψ (k)ei~k·~q

= −~q⊗~q
q2 a2(q)− I3a1(q) .

(6.2)

Equation (6.1) was derived by assuming (i) straight particle trajectories, (ii) a curl-free
initial velocity field with a velocity potential ψ, (iii) an initial Gaussian random field,
and (iv) considering only the initial momentum-momentum correlations. The free
power spectrum in KFT is equivalent to the non-linear Zel’dovich power spectrum
when we choose the Zel’dovich propagator gZ

qp(t, 0) = D+(t) − D+(t(i)). It is also
the unperturbed zeroth-order power spectrum in KFT, thus the starting point to
calculate the non-linear power spectrum from KFT perturbation theory or mean-field
approaches, when no further initial correlations are considered. As in the previous
chapter on the initial correlation functions, we consider smoothed initial power spectra
(5.4).

This chapter consists of three parts. In the first part, we present our technical
results. Our main result is the derivation of the first-order asymptotics P ∼ k−3

for k → ∞ where the exponent is independent of the initial steepness of the power
spectrum. Furthermore, we derive the expressions for the coefficients of the whole
asymptotic series of the free power spectrum and of the time-evolved free density-
density correlation function ξδδ(k, t) in real space. In the second part, we discuss
the implications for cosmic structure formation in view of the numerically observed
universal halo density profiles, the time evolution of small-scale perturbations and
the implications for the interpretation of the exponential damping prefactor in (6.1).
Furthermore, we derive the characteristic redshift-, length- and mass scales when
stream crossing at small scales occurs and show how these scales depend on the
smoothing of the initial dark matter spectrum and the values of the cosmological
parameters. In the final part, we summarize and discuss the conclusions that can be
drawn from these results.

6.1 derivation of the small-scale asymptotics

In this section, we first derive the first-order asymptotics by applying our Theorem
4.4 for N-dimensional Fourier-Laplace type integrals. We then derive an expression
of the whole asymptotic series by applying our Theorem 4.2 to the one-dimensional
integral of the radial coordinate. Finally, we derive an expression for the asymptotics
of the time-evolved free density correlation function ξδδ in real space.

73
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6.1.1 First-order Asymptotics

We start by aligning the wave vector~k with the z-axis and denote the cosine of the
angle enclosed by~k and ~q by

µ :=
~k ·~q

kq
. (6.3)

Next, we denote the function appearing in the exponential of the integration kernel
(6.1) by

fµ(~q) := g2
qp(t, 0)

[
µ2a2(q) + a1(q)

]
= −g2

qp(t, 0)
∫

k′
k′2z Pψ(k′)ei~k′·~q ,

(6.4)

such that we can write the free power spectrum as

P(k, t) = e−
σ2

1
3 k2g2

qp(t,0)
∫

d3q
(

e−k2 fµ(~q) − 1
)

ei~k·~q . (6.5)

We apply our Theorems 4.4 and 4.5 to compute the asymptotics of this expression in
the limit k→ ∞. In order to apply these theorems, we first have to show that

1. | fµ| and − fµ both have an isolated global maximum at ~q = 0;

2. fµ is quadratically integrable in R3; and

3. the Hessian matrix A of fµ at the origin exists and is positive definite.

Then, Theorem 4.5 allows us to drop the 1 in the integration kernel and to apply
Theorem 4.4, yielding the asymptotics

P(k, t) ∼ e−
σ2

1
3 k2g2

qp(t,0)−k2 fµ(0)

√
(2π)3

k6det A
exp

(
−1

2
A−1

zz

)
, as k→ ∞ , (6.6)

where A−1
zz is the zz-component of the inverse of the Hessian A.

Requirement 1 is satisfied, because fµ has an isolated global minimum at the origin,

| fµ(~q)| ≤ g2
qp(t, 0)

∫
k′

∣∣∣k′2z Pψ(k′)ei~k′·~q
∣∣∣

≤ g2
qp(t, 0)

∫
k′

k′2z Pψ(k′)

= g2
qp(t, 0)

σ2
1

3
= − fµ(0) ,

(6.7)

and | fµ(~q)| = − fµ(0) if and only if q = 0 because Pψ(k′) ≥ 0 ∀k′ ∈ R3.
In order to prove requirement 2, it is sufficient to show that there exist constants

C > 0 and ε > 0 such that

| fµ(~q)| ≤ C
(
1 + q

)−3/2−ε , ∀~q ∈ R3 . (6.8)
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In (5.56) and (5.57), we have shown that there are A, B > 0 such that

a2(q) ∼
A

qns+1 and a1(q) ∼ −
B

qns+1 , as q→ ∞ . (6.9)

Furthermore, fµ is bounded, which proves that fµ is quadratically integrable in R3 for
ns > 1/2.

We now compute the Hessian A at the origin,

A =
∂2 f (q)
∂qi∂qj

∣∣∣∣∣
q=0

= g2
qp(t, 0)

∫
k′

k′2z k′ik
′
jPψ(k′)ei~k′·~q

∣∣∣∣
q=0

= g2
qp(t, 0)

∫
k′

k′2z k′ik
′
jPψ(k′)

= g2
qp(t, 0)

σ2
2

15

(
δij + 2δizδjz

)
,

(6.10)

where we used the definition of the moments σ2
n (5.5) of the initial velocity potential

power spectrum and∫
k′

k′4z Pψ(k) =
1

4π2

∫ 1

−1
dµ µ4

∫ ∞

0
dk k2P(i)

δ (k) =
1
5

σ2
2 , (6.11)∫

k′
k′2z k′2x/yPψ(k) =

1
8π2

∫ 1

−1
dµ µ2(1− µ2)

∫ ∞

0
dk k2P(i)

δ (k) =
1

15
σ2

2 . (6.12)

Since A is diagonal with only positive entries, A is positive definite and has the
determinant

det A = 3

(
g2

qp(t, 0)σ2
2

15

)3

> 0 ∀g2
qp(t, 0) 6= 0 , (6.13)

which proves the last requirement 3. The inverse of A is

A−1 =
15

g2
qp(t, 0)σ2

2

[
δij −

2
3

δizδjz

]
. (6.14)

We denote the linearly evolved second moment of the initial velocity potential field by

τ2
2 (t) := g2

qp(t, 0)σ2
2 , (6.15)

and plug our results for f (0) from (6.7), det A from (6.13) and A−1 from (6.14) into
(6.6), arriving at the asymptotics

P(k, t) ∼ 3(4π)3/2

k3

(
5

2τ2
2 (t)

)3/2

exp

(
− 5

2τ2
2 (t)

)
, (6.16)

as k→ ∞. This result proves that the free power spectrum always asymptotically falls
off like k−3. This result is remarkably independent on the slope of the initial power
spectrum. The only condition is the existence of a finite value for the moment σ2

2 .
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6.1.2 Full Asymptotic Series

Since our method for Fourier-Laplace type integrals in N dimensions, just as the
standard Laplace method in N-dimensions, does not provide a straight-forward way
to calculate the terms of the asymptotic series beyond the first term, we make use of
another strategy. As shown in [31], asymptotic series expansions for N-dimensional
Laplace integrals can be obtained without any smoothness conditions on the involved
functions, as long as their asymptotic expansions near the critical minimum exist.
Then, the complete expansion series is obtained by first transforming the integrand to
spherical coordinates. Afterwards, the one-dimensional Laplace method is applied to
the integral over the radial coordinate. Finally, the integration over the angles for each
term in the asymptotic expansion has to be performed.

We make use of the same strategy to obtain an asymptotic series for P . First, we
transform to spherical coordinates and apply Theorem 4.2 for Laplace-Fourier type
integrals in one dimension to the q integral. This yields an asymptotic series for which
the integral over µ = cos θ can be performed term-wise.

We introduce radial coordinates (q, φ, µ), where ~k 6= 0 is aligned with the z-axis.
Since the integration kernel is independent of the angle φ, we perform this integral
immediately and arrive at

P(k, t) ∼ 2πe−
σ2

1
3 k2g2

qp(t,0)
∫ 1

−1
dµ
∫ Q

0
dq q2e−k2 fµ(q)eikqµ , (6.17)

as k→ ∞, where we applied our Theorem 4.5 to drop the 1 in the kernel, and Q > 0
is arbitrary. We now define

Iµ(k2, kµ) :=
∫ Q

0
dq q2e−k2 fµ(q)eikqµ , (6.18)

in close analogy to (4.35), where we replaced k → kµ and λ → k2. Note that the
meaning of fµ changed compared to (6.4) in the last section. In the present context, we
consider µ ∈ [−1, 1] as a fixed parameter such that fµ(q) : R+ → D ⊂ R. We apply
the intermediate result (4.45), with s = 2, α = 2 and β = 3, and obtain the asymptotic
expansion

Iµ(k2, kµ) ∼ e−k2 fµ(0)

2a3/2
0 (µ)k3

[
M−1

∑
m=0

Im(µ)

k2m + ϕM(k2, kµ)

]
, (6.19)

as k→ ∞, with the functions m from (4.37),

Im(µ) := k2m I2m(k2, kµ)

=
−e

i
2 πm

µm

∞

∑
n=m

Γ
(

n + 3
2

)(
µ√

a0(µ)

)n
e

i
2 πndm,n(µ)

m!(n−m)!
.

(6.20)

The coefficients dm,n(µ) are given in (4.27),

dm,n(µ) = lim
x→0+

dm

dxm

1 +
∞

∑
j=1

aj(µ)

a0(µ)
xj

− n+3
2

. (6.21)



6.1 derivation of the small-scale asymptotics 77

Using the asymptotic expansions of the functions a1(q) and a2(q), fµ acquires an
asymptotic expansion of the form

fµ(q) ∼ fµ(0) +
∞

∑
m=0

am(µ)q2+m , as q→ 0+ , (6.22)

where the coefficients am(µ) vanish for odd indices m, and

fµ(0) = −
σ2

1
3

g2
qp(t, 0) = −τ2

1 (t)
3

. (6.23)

Combining (6.17)–(6.19) yields the asymptotic series

P(k, t) ∼
M−1

∑
m=0
P (m)(t)k−2m−3 , (6.24)

with the time-dependent coefficients

P (m)(t) := 8 · 33/2π

(
5

2τ2
2 (t)

)3/2 ∫ 1

−1
dµ

Im(µ)

(2µ2 + 1)3/2 . (6.25)

In order to demonstrate that this procedure yields the correct result, we re-derive
the result for the first-order asymptotics,

P (0)(t) = 3(4π)3/2

(
5

2τ2
2 (t)

)3/2

exp

(
− 5

2τ2
2 (t)

)
, (6.26)

which is equal to (6.16). For the second coefficient in the asymptotic series, we arrive
at

P (1)(t) =
2π3/2

7
σ2

3

σ2
2

(
5

2τ2
2 (t)

)5/2

exp

(
− 5

2τ2
2 (t)

)
×123− 132

(
5

2τ2
2 (t)

)
+ 20

(
5

2τ2
2 (t)

)2
 .

(6.27)

The derivation of expressions (6.26) and (6.27) is shown in Appendix C.1.

6.1.3 Asymptotics in Real Space

We now have closer look at the small-scale behavior of the time-evolved free density
correlation function ξδδ in real space. The free density fluctuation correlation function
is related to the free power spectrum (6.1) by a Fourier transform,

ξδδ(q) =
1

2π2

∫ ∞

0
dk P(k)k2 sin(kq)

kq

=
(iq)−1

4π2

∫ ∞

0
dk P(k)k

(
eikq − e−ikq

)
.

(6.28)

Note that for better readability, we drop the time-dependence of ξδδ and P here and
in the following.

In order to derive the asymptotics for small scales, we apply the method to calculate
the asymptotic expansion of the Fourier transform near the origin as presented in [68].
This method makes use of the Mellin transform, which is defined in [68] as follows.
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Definition 6.1 (Mellin Transform). The Mellin transform of a locally integrable function f
on (0, ∞) is defined by

M
[

f ; s
]
=
∫ ∞

0
ts−1 f (t)dt , (6.29)

when the integral converges.

Let us now consider the one-sided Fourier transform of a suitable function f

Ff (x) =
∫ ∞

0
f (t)eixtdt . (6.30)

An asymptotic expansion of Ff at the origin can be obtained by the following theorem
that we took from [68] and slightly adapted in its formulation. For a proof of this
theorem, we refer to the same reference.

Theorem 6.1. Let f be a locally integrable function on [0, ∞) with an asymptotic expansion

f (t) ∼
∞

∑
s=0

ast−s−α , as t→ ∞ , (6.31)

where 0 < α ≤ 1.
(i) If 0 < α < 1, then

Ff (x) = e−απi/2
n−1

∑
s=0

(−i)s−1Γ(1− s− α)asxα+s−1 −
n

∑
s=1

cs(−ix)s−1 + Rn(x) , (6.32)

where the coefficients cs are given by (6.36).
(ii) If α = 1, then

Ff (x) = − log x
n−1

∑
s=0

as

s!
(ix)s +

n−1

∑
s=0

γ∗s (−ix)s + Rn(x) , (6.33)

where

γ∗s =
(−1)s+1

s!

(
γ− i

π

2

)
as − ds+1 , (6.34)

and the coefficients ds+1 are given by (6.37) and γ ≈ 0.5772 denotes the Euler-Mascheroni
constant. The remainder in both cases satisfies

Rn(x) = (−ix)n
∫ ∞

0
fn,n(t)eixtdt , (6.35)

with fn,n(t) being defined in (6.39).

The cs coefficients are given by

cs =
(−1)s

(s− 1)!
M
[

f ; s
]

, (6.36)

where M
[

f ; s
]

is the Mellin transform of f , or its analytic continuation. The ds

coefficients are given by

ds+1 =
(−1)s+1

s!
as

s

∑
k=1

1
k
− (−1)s

s!
a∗s , (6.37)
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and a∗s denotes the value of the limit

a∗s := lim
z→s+1

(
M
[

f ; z
]
+

as

z− s− 1

)
. (6.38)

The function fn,n is defined by

fn,n(t) :=
(−1)n

(n− 1)!

∫ ∞

t
(τ − t)n−1 fn(τ)dτ , (6.39)

with

fn(t) = f (t)−
n−1

∑
s=0

ast−s−α . (6.40)

We start by expressing ξδδ as the linear combination

ξδδ(q) =
(iq)−1

4π2

[
ξ+(q)− ξ−(q)

]
(6.41)

of the two functions

ξ+(q) :=
∫ ∞

0
dk P(k)keikq , (6.42)

ξ−(q) := ξ+(−q) . (6.43)

Since kP is absolutely integrable in R, the one-dimensional Fourier transform exists
and the functions ξ+ and ξ− are well defined.

Next, we apply Theorem 6.1 to derive the terms of the asymptotic series of (6.42)
and (6.43). The terms in the expansion of ξδδ then follow from the sum of ξ+ and ξ−.
In the last chapter, we derived the asymptotics (6.24) of P for large wave numbers.
Thus, the kernel kP(k) in (6.42) has the asymptotics

kP(k) ∼
M−1

∑
m
P (m)k−2+2m , as k→ ∞ , (6.44)

with the coefficients P (m) given by (6.25). Comparing (6.44) to (6.31) implies to use
α = 1 and

as =

0 s even ,

P ( s−1
2 ) s odd ,

(6.45)

in Theorem 6.1. With (6.41)–(6.45) and the coefficients (6.25), the asymptotic expansion
of ξδδ for q → 0 is completely determined. We now compute the first term in this
expansion, for which we need the first coefficient (6.26). For the first term in the
expansion (6.33) of ξ+ we arrive at

ξ+(q) =
∫ ∞

0
dk kP(k)eikq ∼ (iq)

[
−P (0) log q− γ∗1

]
, (6.46)

as q→ 0+. The coefficient γ∗ is given by

γ∗1 =

(
γ− i

π

2
− 1
)
P (0) − a∗1 , (6.47)
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with

a∗1 = lim
z→2

(
M
[
P(k)k; z

]
+
P (0)

z− 2

)
. (6.48)

We calculate the first ξ− term analogously and arrive at

ξ−(q) =
∫ ∞

0
dk kP(k)e−ikq ∼ (−iq)

[
−P (0) log(−q)− γ∗1

]
= −(iq)

[
−P (0) (log q + iπ

)
− γ∗1

]
,

(6.49)

as q→ 0+. Subtracting (6.42) and (6.41) yields∫ ∞

0
dk kP(k)

(
eikq − e−ikq

)
∼ −2iqP (0) [log q + γ− 1

]
+ 2iqa∗1 (6.50)

and we finally arrive at the first-order asymptotics

ξδδ(q, t) ∼ − 1
2π2

[
P (0)(t) log q + (γ− 1)P (0)(t)− a∗1(t)

]
, (6.51)

as q → ∞, where we re-added the time dependence for clarity. The free density
correlation function thus diverges logarithmically for small scales, as expected. The
amplitude P (0) of the tail of the fee power spectrum sets the amplitude of ξδδ and the
q-independent offset (γ− 1)P (0)(t)− a∗1(t).

6.2 implications for cosmic structure formation

In this section, we discuss the implications of our results on the formation of cosmic
structures.

6.2.1 Universality at Small Scales

In the last section, we proved that the power spectrum for particles on free trajectories
with initially correlated momenta always develops a k−3 tail. This universal power law
evolves independently of the initial slope of the power spectrum at large k values. The
value −3 of the exponent is solely determined by the number of spatial dimensions.

To demonstrate the validity of the asymptotic expansion, we show in Figure 6.1 the
numerical evaluation of the free power spectrum (6.1) (purple lines), together with the
k−3 (6.16) (green lines) and the k−5 term (6.27) (blue lines) in the asymptotic expansion
(6.24), for two different redshifts (z = 2 and 10) and two different smoothing scales
(ks = 10 and 1000 h Mpc−1). We discuss free power spectra at today’s redshift z = 0 in
below in Section 6.2.5. For comparison, we also show the linearly evolved smoothed
power spectra (5.4, grey lines),

Plin.
δ (k) = g2

qp(t)P(i)
δ (k) . (6.52)

For the initial power spectra P(i)
δ , we choose the cold dark matter power spectrum

from [4] and multiply it with an exponential regulator with smoothing scale ks as
in (5.4). To relate the propagator to redshift, we choose the Zel’dovich propagator
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gqp(t, 0) = D+(t)− D+(t(i)). For the linear growth function D+, we use the cosmo-
logical parameters shown in Table E.2. The free power spectrum converges in all
four examples to the k−3 asymptotics. A comparison with the linearly evolved power
spectra shows that a huge increase in power occurs at small scales: all formerly expo-
nentially damped power spectra acquire a k−3 tail. Moreover, the asymptotic behavior
is independent of the first moment of the initial velocity potential σ2

1 , i.e. the initial
velocity dispersion. Next, we explain the general meaning of the k−5 term, i.e. the
second-order asymptotics (6.27) (blue lines in Figure 6.1).
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Figure 6.1: At large wave numbers, the k−3 asymptotics (6.16) (green lines) is in perfect
agreement with the numerical evaluation of the free power spectrum (6.1) (purple
lines) for early (top) and late (bottom) times as well as for large (left) and small
(right) smoothing scales. The second order of the asymptotic expansion (6.27) (blue
lines) predicts the scale of the onset of the k−3 behavior at those wave vectors,
where the k−3 and the k−5 asymptotics cross. The blue dashed line in (a) indicates
that the k−5 asymptotics is negative. The linearly evolved smoothed power spectra
(6.52) (grey lines) are drawn for comparison. The cosmological and power spectrum
parameters used are shown in Tables E.2 and E.3, respectively.

6.2.2 Characteristic Self-Similarity Scale

As can be seen in Figure 6.1, the scale at which the power spectrum converges to the
k−3 asymptotics is well described by the intersection of the first- and second-order
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asymptotics, (6.26) and (6.27). This intersection defines a characteristic time-dependent
wave number kchar(t),

kchar(t) =

√√√√∣∣∣∣∣P (1)(t)
P (0)(t)

∣∣∣∣∣
=

 1
84

σ2
3

σ2
2

(
5

2τ2
2 (t)

) ∣∣∣∣∣∣123− 132

(
5

2τ2
2 (t)

)
+ 20

(
5

2τ2
2 (t)

)2
∣∣∣∣∣∣


1/2

,

(6.53)

above which the free power spectrum attains the universal k−3 behavior. However,
note that (6.53) vanishes for

τ2
2,1/2(t) =

5
123

(
33±

√
475
)
≈ 1.34± 0.89 . (6.54)

This implies that there exist neighborhoods of τ2
2,1/2(t), such that (6.53) does not

characterize the wave number above which the free power spectrum attains the k−3

behavior. To get better estimates for kchar at these points, one could for example
compare the first-order asymptotics to higher orders, following the optimal truncation
rule 4.5. Another possibility is to consider the monotonic envelope of (6.53). An
exploration of the detailed properties of the asymptotics in the vicinity of τ2

2,1/2(t)
will be the subject of future work. For now we consider time scales such that the free
power spectrum for wave numbers above the kchar from (6.53) is dominantly described
by the first-order asymptotics.

In general, for wave numbers above kchar, the free power spectrum is scale-free
because it turns into a power law. If most of dark matter is organized in halos1, then
the one-halo term determines the small-scale part of the power spectrum as shown in
Figure 2.1 of Chapter 2. Since the one-halo part of the power spectrum P1h

δ (2.48) is
determined by the density profiles of individual halos and the number density n(M)

of halos with a given mass M, i.e. the halo mass function, the self-similarity of the
power spectrum supports universal halo profiles that are independent of the halo
mass. This is an indication that the universality of halo profiles arises very early in
the formation history of protohalos during the first gravitational infall of material.
Up to now, it has been unknown why these universal halo profiles emerge, while the
general shape of the halo mass function seems to be relatively well understood [69].
However, further work is needed to investigate this proposed scenario, because we
related the properties of a two-point function in Fourier space (the power spectrum) to
the properties of a conditional density function in real space (the halo profile), where
additionally the halo mass function n(M) enters. Furthermore, it is subject to future
work to explore whether this universality at small scales fundamentally emerges also
when gravitational interactions are taken into account.

6.2.3 Implications for Numerical Implementations

The expression for the free power spectrum (6.1) contains the prefactor e−
σ2

1
3 k2g2

qp(t,0),
which may be interpreted as a damping factor. When an asymptotic expansion of

1 Reference [69] and references therein suggest that probably more than 80% of dark matter is organized
in halos.
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the integral (6.1) for small k is performed – which is equivalent to an expansion in
the initial momentum correlations – one obtains a linearly evolved power spectrum
multiplied by this damping factor,

P(k, t) ∼ e−
σ2

1
3 k2g2

qp(t,0)g2
qp(t, 0)P(i)

δ (k) , as k→ 0+ . (6.55)

A natural question to ask is: What is the meaning of this damping factor? In Figure 6.2,
we compare the free power spectra from Figure 6.1 (purple lines) to the linearly evolved
damped power spectra (6.55) (golden lines). In these examples, no visible features from
the damping are apparent in the free power spectra. Indeed, our analytical result (6.16)
shows that for large k the damping is completely canceled in the asymptotics. The free
power spectrum is not exponentially cut-off but has a power-law tail with exponent
−3. This observation has important consequences for numerical implementations to
evaluate free power spectra at large wave numbers. Equation (6.6) shows that when
we use a numerical fit for the initial momentum correlation function (6.4), this fit
function needs to obey the correct limit (6.23),

lim
q→0

fµ(q) = −g2
qp(t, 0)

σ2
1

3
. (6.56)

Otherwise, the damping is not correctly compensated for large values of k and the
numerical results differ exponentially from the true value. In order for the numerical
result to yield values that are in agreement with the first-order asymptotics, any
implementation of fµ(q) needs to satisfy the correct small-scale behavior (6.22) at least
up to the order q2.

6.2.4 Time-dependence of the Amplitude

The time-dependent amplitude of the first-order asymptotics, P (0)(t) in (6.26), is
a function of the product g2

qp(t, 0)σ2
2 . Thus, for straight particle trajectories, τ2

2 (t) =
g2

qp(t, 0)σ2
2 acts as a (squared) time coordinate that describes the growth of structures at

small scales. For small values of σ2
2 , i.e. large smoothing scales of the initial structures

in real space, the small-scale structure evolution proceeds more slowly, while large
values of σ2

2 imply a faster evolution of the structures on small scales.
Figure 6.3 (b) shows the asymptotic amplitude P (0) as a function of τ2

2 (t), (grey
line). Colored crosses mark the asymptotic amplitude of the power spectra shown
in panel (a). The grey line shows that P (0) first rises steeply during the free infall of
structures until it reaches a maximum at

τ2
2 (max) =

5
3

. (6.57)

This maximum indicates stream crossing at small scales because for larger values of
τ2

2 (t) re-expansion of structures sets in, such that the asymptotic amplitude P (0) starts
to decrease and eventually falls of like (τ2

2 )
−3/2 for late times. Therefore,

gqp(max) =

√
5

3σ2
2

(6.58)
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Figure 6.2: The free power spectra from Figure 6.1 (purple lines) show no features of the
damped linearly evolved power spectra (6.55) (golden lines) at small scales. The
effect of the damping term is not visible at all for early (top) and late (bottom)
times as well as for large (left) and small (right) smoothing scales. Parameters as in
Figure 6.1.

sets the time of small-scale stream crossing in units of the linear growth factor and
the amplitude reaches the maximal value

P (0)(τ2
2 (max)) = 3

(
6π

e

)3/2

≈ 54.78 . (6.59)

This maximum value is universal for all cosmological models and all initial power
spectra. The small-scale regime of the power spectrum will never grow beyond this
amplitude when straight particle trajectories and initially correlated momenta are
considered. Just the time (6.58), in units of of the linear growth factor, at which this
universal amplitude is reached depends on σ2

2 , thus on the smoothing scale.
In Figure 6.3 (a), we show the free dimensionless power spectrum

∆(k) = P(k)k3 (6.60)

as a function of τ2
2 (t) for ks = 1000 h Mpc−1 at five different redshifts. The dimension-

less power spectra shown become constant for large values of k because ∆(k)→ P (0)

(6.26). Note that the plateaus show that the k−3 asymptotics emerges already be-
fore stream crossing (z = 29 and 25 in Figure 6.3) and persists after the onset of
re-expansion (z = 17 and 13 in Figure 6.3).

6.2.5 Non-linear Zel’dovich Power Spectrum at Redshift z = 0

At large scales, the non-linear Zel’dovich power spectrum is known to correspond to
the linear power spectrum, which accurately describes the structure on the largest
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Figure 6.3: (a) The free dimensionless power spectrum (6.60) for a smoothed initial Bardeen
power spectrum with ks = 1000 h Mpc−1 is shown for different redshifts z. The
amplitude rises from z = 29 and reaches the universal maximum (6.59) at z = 21.
After the onset of re-expansion, the amplitude goes down while the k−3 behavior
persists. (b) The amplitude P (0) of the first-order asymptotics (6.26) as a function of
the free streaming time τ2

2 (6.15) rises until it reaches the maximum value ≈ 54.78
at τ2

2 = 5/3, when stream crossing occurs. After stream crossing, re-expansion
leads to a decay of structures and the amplitude decreases with (τ2

2 )
−3/2. Colored

points correspond to the asymptotic amplitudes from (a). The cosmological and
power spectrum parameters used are shown in Tables E.2 and E.4, respectively.

scales – even today. However, it is also known that the Zel’dovich approximation leads
to a re-expansion of structures after stream crossing that goes along with decreasing
power at small scales, as can be seen in Figure 6.3. In order to prevent this re-expansion,
techniques like for example the adhesion approximation, that makes particles stick
together, were developed, e.g. in [65]. Another method to lift the tail of the Zel’dovich
power spectrum is to use a so-called truncated Zel’dovich power spectrum, e.g. in
[20]. This means that the initial power spectrum is truncated similarly to the action of
the regulator that we introduced in (5.4). Thus the initial power spectra are smoothed
at appropriate scales. In Figure 6.4, we show how truncation, i.e. smoothing away
the small-scale fluctuations, at different scales affects the tail of the Zel’dovich power
spectrum at today’s redshift z = 0. In Figure 6.4 (a), the free power spectra (colored
lines) for four different smoothing scales are shown, together with the linearly evolved
Bardeen power spectrum (black line). The tail of all four free power spectra stays
below the linear Bardeen spectrum. In Figure 6.4 (b) we show the same dimensionless
power spectra that all reach plateau values for k & 100 h Mpc−1. In Figure 6.4 (c)
we show the amplitude P (0) as a function of τ2

2 ((6.26), grey line), where the colored
crosses indicate the values for four example power spectra at z = 0. The truncation at
smaller wave numbers leads to smaller values of σ2

2 causing a slower evolution of the
amplitude at small scales. However, since the amplitude is bounded by the maximal
value ≈ 54.78 (6.59), there is no truncation scale such that the free Zel’dovich power
spectrum reaches the amplitude of the linear cold dark matter power spectrum at
small scales today.

We conclude that our results are in agreement with the known fact that the truncated
Zel’dovich power spectrum cannot be tuned to yield the amplitude of the linear CDM
power spectrum or even the non-linear power spectrum at today’s redshift z = 0.
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Additionally, we derived the value that the amplitude of any truncated Zel’dovich
power spectrum can maximally reach at small scales.
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Figure 6.4: The asymptotic amplitude evolves more slowly for smaller smoothing wave num-
bers. (a) The free power spectra (6.1) (colored lines) for different values of ks and
the linearly evolved Bardeen power spectrum (black line) are shown at today’s
redshift z = 0. The amplitudes at small scales differ by more than three orders of
magnitude. (b) The dimensionless power spectra as in (a) are shown. All free power
spectra reach different plateau values for k & 100 h Mpc−1. (c) The asymptotic
amplitude P (0) (6.26) (grey line) as a function of the free streaming time τ2

2 is
shown as in Figure 6.3 (b). Colored crosses indicate the plateau values of the
dimensionless power spectra in (b). For smaller ks, the evolution of P (0) proceeds
slower, implying a slower growth of small-scale structures. The cosmological and
power spectrum parameters used are shown in Tables E.2 and E.4, respectively.

6.2.6 Asymptotic Stream Crossing Scales

The Zel’dovich approximation is considered to be appropriate up to scales when
stream crossing occurs2. From the asymptotics of the free power spectrum we can
derive the redshift-, length- and mass scales of stream crossing. In the following,
we denote these scales as the asymptotic stream crossing scales and indicate the corre-
sponding variables by the superscript sc. These scales are of particular interest as they
characterize the process of the formation of the first dense structures in the universe.

2 In one spatial dimension, the Zel’dovich approximation is exact before particles meet.
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Asymptotic Stream Crossing Redshift

We already derived the stream crossing time (6.58) at small scales in units of the
linear growth factor. The redshift zsc at which small-scale stream crossing occurs thus
depends on σ2

2 and on the cosmological parameters that determine the growth factor
D+(z) as a function of redshift. From (6.57) with τ2

2 (t) = g2
qp(t)σ2

2 and the Zel’dovich
propagator gqp(t, 0) = D+(z(t))− D+(z(i)), the condition for zsc is

3σ2
2

(
D+(zsc)− D+(z(i))

)2

5
!
= 1 . (6.61)

To demonstrate the dependence of zsc on the cosmological parameters, we show in
Figure 6.5 (a) the σ2

2 -dependent asymptotic stream crossing redshift for three different
sets of cosmological parameters. In Figure 6.5 (b), we show the linear growth factor as
a function of redshift. The faster the linear growth factor rises with decreasing redshift
at early times, the earlier small-scale stream crossing occurs. We conclude that the
asymptotic stream crossing redshift is sensitive to both the cosmological parameters
and the smoothing scale of the initial power spectrum and thus on the dark matter
type.
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Figure 6.5: (a) The redshift zsc at which small-scale stream crossing occurs is determined
by σ2

2 and the underlying cosmological parameters. It is implicitly given by
(6.61). The different colors indicate the different sets of cosmological parame-
ters (ΩΛ0, Ωm0, Ωb0, h), where ΛCDM = (0.7, 0.3, 0.04) (h = 0.7 blue lines, h = 0.3
purple lines) and CDM = (0.0, 0.999, 0.001) (h = 0.7 red lines). The reason for the
differences in zsc is the different redshift evolution of the corresponding growth
factors D+(z), which are shown in (b). The cosmological and power spectrum
parameters used are shown in Tables E.2 and E.4, respectively.

Asymptotic Stream Crossing Amplitude

We derived the amplitude (6.59) that determines the small-scale behavior of the non-
linear Zel’dovich power spectrum at stream crossing. In Figure 6.6 we demonstrate
how different smoothing scales (ks = 1 h Mpc−1 left and ks = 1000 h Mpc−1 right)
influence the relative power of the Zel’dovich power spectrum (purple lines) compared
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to the linearly evolved CDM power spectrum (black lines) at small scales. Figure 6.6
(c) and (d) show the ratios

ratio =
P(k, tsc)

g2
qp(tsc, 0)PCDM,(i)

δ (k)
(6.62)

between the non-linear Zeldovich power spectra and the linearly evolved Bardeen
power spectra at small-scale stream crossing, where PCDM,(i)

δ (k) denotes the Bardeen
power spectrum at initial time, i.e. the non-smoothed CDM spectrum. Since the
asymptotic amplitude evolves more slowly for small smoothing wave numbers, zsc,
which is implicitly given by (6.61), is smaller in (a) and (c) compared to (b) and (d).
This is why for ks = 1 h Mpc−1 the free power spectrum falls below the linear CDM
spectrum, while for ks = 1000 h Mpc−1 the growth at small scales was faster, such
that the free power spectrum has more power on small scales compared to the linear
spectrum.
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Figure 6.6: The free power spectra (6.1) (purple lines) for the smoothing scales ks = 1 h
Mpc−1 (a) and ks = 1000 h Mpc−1 (b) are shown at the respective asymptotic
stream crossing redshift, together with the k−3 asymptotics (6.16) (green lines), the
second-order k−5 asymptotics (6.27) (blue lines) and the linearly evolved Bardeen
power spectrum (black lines). For ks = 1 h Mpc−1 (a) the free power spectrum falls
below the linear power spectrum at small scales. For ks = 1000 h Mpc−1 (b) the
small-scale evolution of the free power spectrum is faster than linear growth. (c)
and (d) show the ratios (6.62) between the free and the linear power spectra. The
cosmological and power spectrum parameters used are shown in Tables E.2 and
E.4, respectively.

Asymptotic Stream Crossing Length Scale

We obtain the characteristic wave number ksc above which the power spectrum attains
the k−3 tail at small-scale stream crossing from (6.53) and (6.57),

ksc =

√
15
28

σ2
3

σ2
2

. (6.63)
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We convert this wave number into the asymptotic stream crossing length scale

Rsc =
2π

ksc . (6.64)

Note that ksc and Rsc depend only on the ratio of the second and the third moments of
the initial velocity potential power spectrum. They depend neither on the cosmological
parameters nor on the amplitude of the initial power spectrum.

From the asymptotic stream crossing length scale, we next derive a mass scale.

Asymptotic Stream Crossing Mass Scale

From the asymptotic stream crossing length scale, we deduce a mass scale

Msc = ρcr0Ωm0

(
ksc

2π

)−3

≈ 1.16× 1013M�

(
ksc

Mpc−1h

)−3

≈ 2.96× 1013M�

√σ2
3

σ2
2

Mpc h−1

−3

.

(6.65)

Thus, the asymptotic stream crossing mass scale Msc depends on the matter density
today and on the shape of the initial power spectrum, via the ratio of the second and
third moments σ2

3 and σ2
2 , but not on its amplitude. Note that the explicit dependence

on the stream crossing redshift cancels because the matter density scales like a−3, i.e.
inversely with the proper volume.

To demonstrate the sensitivity of ksc and Msc to the shape of the initial power spec-
trum, we show them in Figure 6.7 as a function of σ2

2 for two different types of initial
power spectra. The blue lines are for smoothed Bardeen initial power spectra. The
golden lines show the results for non-cold dark matter type (nCDM-type) initial power
spectra that have power law tails instead of an exponential smoothing. In this example,
we characterize the initial power spectra of the nCDM-type by the transfer function

PnCDM,(i)
δ (k)

PCDM,(i)
δ (k)

= T2(k) =
[
1 + (αk)β

]2γ
, (6.66)

relative to the initial CDM power spectrum PCDM,(i)
δ (k), for which we choose the

Bardeen spectrum. In [45], it has been shown that the power spectra of many types
of nCDM can be characterized by such a transfer function. Without specifying our
example to a specific dark matter model, we used the exemplary parameter values
α = 1.0, β = 2.0 and varied γ ∈ [−20.0,−0.02].

Figure 6.7 shows that the initial nCDM-type power spectra lead to different
asymptotic stream crossing wave numbers and mass scales compared to the ini-
tially smoothed CDM power spectra. This is a direct consequence of the different
shapes, which demonstrates the sensitivity of the stream crossing length- and mass
scales to the shape of the initial power spectrum.

The asymptotic stream crossing length scale might be related to a scale in physical
space below which structures attain self-similar profiles, while the asymptotic stream
crossing mass scale might be related to the mass of bound structures such as halos.
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It will be the subject of future work to explore to which degree these scales are
actually imprinted in cosmic structures, for example by comparisons with N-body
simulations. If these scales can be related to any observables, these observables might
serve as a probe for σ2

3 /σ2
2 , which in turn gives constraints on the shape of linear

power spectrum and therefore on the models assumed for dark matter. Furthermore,
it will also be interesting to explore in the framework of KFT whether these scales
remain fundamental when higher orders of the gravitational interaction are taken into
account.
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Figure 6.7: The stream crossing wave number ksc (6.63), shown in (a), and mass scale Msc (6.65)
in units of solar mass, shown in (b), are sensitive to the shape of the initial power
spectrum. We show the σ2

2 -dependent values obtained from initially smoothed
Bardeen power spectra (blue lines) and for non-dark matter type (nCDM-type)
power spectra (golden lines). The latter are related to the Bardeen power spectrum
by the transfer function (6.66). Both ksc and Msc are sensitive to the shape of the
initial power spectrum because they are functions of σ2

3 /σ2
2 . The cosmological and

power spectrum parameters used are shown in Tables E.2 and E.5, respectively.

6.3 summary and discussion

In the first part of this Chapter, we first derived the first-order asymptotics of the
free power spectrum P (6.1) in KFT. By applying our Theorem 4.4 for N-dimensional
Fourier-Laplace type integrals, we proved that the free power spectrum always de-
velops a k−3 tail, independently of the slope of the initial power spectrum. This
small-scale behavior was suggested in [58] for the non-linear Zel’dovich power spec-
trum. Independently of our work, the k−3 asymptotics was recently derived in the
framework of Lagrangian perturbation theory in [18], finding the same amplitude that
we derive here.

By applying our Theorem 4.2, we then derived an expression for the coefficients of
the whole asymptotic series of P in orders of k−3−2m and evaluated the second term
of this series that describes the k−5 behavior. In the final section of the first part, we
derived the asymptotic expansion of the time-evolved free density-density correlation
function ξδδ. We proved that ξδδ diverges logarithmically, as expected, and calculated
explicitly the expression for the leading-order term.

In the second part of this chapter, we discussed the relevance of these results for
cosmic structure formation in more detail. First, we demonstrated the validity of our
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asymptotic expansion by comparing our analytical results to numerical evaluations
of the free power spectrum for different initial smoothing scales and at different
redshifts.

In the examples that we have shown, the intersection of the first- and second-order
asymptotics indicated the wave number above which the free power spectrum is well
described by the k−3 asymptotics. On the one hand, this suggests that the optimal
truncation rule might hold for our asymptotic expansion, such that incorporating
higher-order terms of the asymptotic series and truncating before the smallest term
might lead to the best possible approximation. On the other hand, we have shown
that the second-order asymptotics changes the sign twice, i.e. the coefficient has two
zeros. It will be subject of future work to analyze the properties of the asymptotic
series in more detail and more specifically for times at which the second coefficient
changes sign. Nevertheless, for the examples that we have shown, the intersection
of the first- and second-order asymptotics describes the characteristic wave number
kchar above which the power spectrum assumed the k−3 power law, thus scale-free
behavior. We suggested that kchar might be related to a scale in real space below which
dark matter forms self-similar structures. In future work, this can be explored by
comparing this scale to results from N-body simulations. However, even when this
scale is imprinted in simulations of collisionless dark matter, in the real universe
baryonic matter is supposed to have a strong impact on structure formation on small
scales. The integration of baryons is currently studied in the framework of Resummed
KFT [32, 33]. Another important next step will be to check whether this k−3 behavior
that we proved for free trajectories, persists also when more gravitational interactions
are included, for example via perturbation or mean-field theory. Additionally, we
only took initial momentum-momentum correlations into account, neglecting initial
density-density and initial density-momentum correlations. At large scales, it has been
shown that this is a valid approach. At small scales, however, this assumption also
has to be checked more thoroughly in future work.

We then discussed the implications of the exponential damping factor in front of
the integral (6.1) for the numerical implementation of codes to evaluate the free power
spectrum. We argued that it is crucial for the evaluation at large wave numbers that
the small-scale behavior of the initial density correlation function is implemented
asymptotically correctly up to order q2. The results will otherwise diverge exponen-
tially.

Next, we showed that the time evolution of the amplitude of the k−3 asymptotics
depends only on the product g2

qp(t, 0)σ2
2 , showing that the evolution of the small-

scale structure proceeds more slowly when the initial power spectrum has a smaller
smoothing wave number. At early times, the amplitude rises steeply, indicating
the convergence of particle streams due to their initially correlated momenta. The
asymptotics then reaches a universal maximum value ≈ 54.78 when g2

qp(t, 0)σ2
2 = 5/3.

This maximal value of the amplitude marks small-scale stream crossing, where particle
trajectories cross and the particles subsequently move apart. This leads to the re-
expansion of the small-scale structures that is known to occur in the Zel’dovich
approximation and that goes along with the decreasing amplitude at small scales.
Our analytical result quantifies the time evolution of the small-scale amplitude for
the non-linear Zel’dovich power spectrum with any truncation. Furthermore, we
quantified the maximal amplitude that these power spectra eventually reach at small
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scales and the time when this maximum is reached, i.e. when small-scale stream
crossing occurs.

In the last section, we derived several scales that we associate to small-scale stream
crossing and showed how these scales depend on the cosmological parameters and
the shape of the initial power spectrum. First, we demonstrated that the asymptotic
redshift scale is determined by σ2

2 and the cosmological parameters. The faster the
linear growth factor rises with decreasing redshift at early times, the higher the
redshift of small-scale stream crossing. Similarly, higher values of σ2

2 also imply higher
asymptotic stream crossing redshifts. Next, we derived the asymptotic stream crossing
wave number and the asymptotic stream crossing length scale from the intersection
point of the first- and second-order asymptotics at small-scale stream crossing. This
length scale is determined by the ratio σ2

3 /σ2
2 and thus independent of the cosmological

parameters and the amplitude of the initial power spectrum. We did not yet explore
whether this scale is indeed imprinted in the cosmic structures formed. Nevertheless,
since this scale indicates the wave number above which the free power spectrum
attains the k−3 behavior, it also determines the physical scale up to which (probably
self-similar) structures formed up to the time when stream crossing happens. This is
especially interesting for cold dark matter, where σ2

2 is very large such that stream
crossing occurs early. Consequently, the formation of small structures occurs very
rapidly and the small-scale amplitude of the free power spectrum at the time of stream
crossing experienced a much stronger relative growth than the linearly growing large-
scale structures. The asymptotic stream crossing length scale then marks a lower limit
below which non-linear structures certainly have formed. Converting the asymptotic
stream crossing length scale to a mass scale, this might then set a scale for the mass
of non-linear structures that have formed. Furthermore, we demonstrated that these
scales depend on the model for dark matter. For initial power spectra with the same
values for the moments σ2

2 , different scales emerge when the moments σ2
3 are different,

i.e. when they have similar initial cutoff scales but the steepness of the tails varies.
It will be interesting to explore in future work whether these scales that we derived
for free trajectories remain evident when more gravitational interactions are included.
Since in one dimension, the Zel’dovich approximation is exact before stream crossing,
we propose that the scales we derived for three dimensions are also reflected in the
early formation of structures in the presence of full gravitational interactions. This can
be tested by comparing our results to cosmological N-body simulations. Furthermore,
if these scales are then also imprinted in cosmic structures at late times and related to
any observables, then these observables are probes for the dark matter type. With this,
we lay the foundation for future work to explore the possible imprint of these scales
in observables and to derive the precise relations for specific dark matter candidates.
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FA C T O R S O F T H E G E N E R AT I N G F U N C T I O N A L

In kinetic field theory (KFT), the factors

I21(~Jp1 ,~Jp2 ,~Jq1) :=
∫

q
e−~J

ᵀ
p1 Ĉpp(~q)~Jp2+i~Jq1 ·~q (7.1)

are the fundamental building blocks of the free generating functional (3.111) when
we consider only initial momentum-momentum correlations Cpp. In Section 3.5 of
Chapter 3, we reviewed how the free density correlation functions can be expressed
in terms of a convolution of these factors (see (3.123)).

When the factorization was originally introduced, it was hoped that it facilitates
the numerical evaluation of higher order density correlation functions. The idea
was to evaluate the factors (7.1) for a wide range of arguments and store them in a
table such that subsequent convolutions could be computed more efficiently. Thus,
a fast evaluation of these numerical factors is important to calculate the free density
correlation functions to higher orders. Besides, the factorization is used as a basis for
ongoing research on the foundations and possible new formulations of KFT, where
the individual asymptotic behavior of the factor I21 plays a crucial role.

Up to now, it was not possible to successfully implement an algorithm for the
numerical evaluation of these factors for general orientations of the involved vectors
~Jp1 , ~Jp2 and ~Jq1 . This lack of success has several reasons. First, the error made in [9]
with regard to the integration kernel that we now resolved in 3.5 led to a wrong
implementation of the factors in earlier work [15]. Second, these integrals are in the
representation (7.1) numerically not convergent. This is because the initial momentum
correlation matrix,

Ĉpp(~q) =
∫

k
(~k⊗~k)P(i)

ψ (k)ei~k·~q

= −~q⊗~q
a2(q)

q2 − I3a1(q) ,
(7.2)

with the initial velocity potential power spectrum P(i)
ψ (k) = k−4P(i)

δ (k) and the functions
a1(q) and a2(q) as in (5.22) and (5.23), has a tail that falls off like q−ns−1 for large q
as shown in Section 5.3 of Chapter 5. Thus, the integration kernel in (7.1) has to be
appropriately regularized at large scales for any numerical implementation. In the
first section of this chapter, we present such a regularization. A third challenging
aspect for the numerical implementation of these factors is the rapid oscillation of the
kernel, especially for large absolute values of the vectors involved. In the previous
chapter we discussed a related issue for the numerical implementation of the free
power spectrum. When the initial momentum-momentum correlation function is not
implemented correctly, the result of the numerical integration deviates exponentially
from the true value. In the second section of this chapter, we derive the asymptotics of
the factors for large absolute values and arbitrary orientations of the vectors in the
argument.
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7.1 regularization at large scales

In this section, we show how the kernel of each factor (7.1) can be regularized to yield
numerically well convergent integrals.

In [9, 15], the factors (7.1) were regularized by adding a Dirac delta distribution
yielding the generalized power spectra

P21(~Jp1 ,~Jp2 ,~Jq1) :=
∫

q

(
e−~J

ᵀ
p1 Ĉpp(~q)~Jp2 − 1

)
ei~Jq1 ·~q , (7.3)

such that the factors are

I21(~Jp1 ,~Jp2 ,~Jq1) = (2π)3δD

(
~Jq1

)
+ P21(~Jp1 ,~Jp2 ,~Jq1) . (7.4)

The integration kernel in (7.3), without the oscillating factor, now falls off like q−ns−1.
Since ns . 1, we wish to increase the steepness of the kernel for better convergence.
To go one step further in the regularization, we first note that∫

q
~Jᵀp1 Ĉpp(~q)~Jp2ei~Jq1 ·~q =

∫
q

∫
k

(
~Jp1 ·~k

) (
~Jp2 ·~k

)
P(i)

ψ (k)ei
(
~Jq1+

~k
)
·~q (7.5)

=
(~Jp1 ·~Jq1)(~Jp2 ·~Jq1)

J4
q1

P(i)
δ (Jq1) , (7.6)

where we used (7.2). Thus, we can regularize the generalized power spectra (7.3) by
adding a zero by adding and subtracting (7.6), and arrive at

P21(~Jp1 ,~Jp2 ,~Jq1) =
(~Jp1 ·~Jq1)(~Jp2 ·~Jq1)

J4
q1

P(i)
δ (Jq1)

+
∫

q

(
e−~J

ᵀ
p1 Ĉpp(~q)~Jp2 − 1 +~Jᵀp1 Ĉpp(~q)~Jp2

)
ei~Jq1 ·~q .

(7.7)

The integration kernel in (7.7) now falls of with q−ns−3, which greatly improves the
numerical speed of convergence. We finally arrive at the numerically better tractable
expression for the factors (7.1),

I21(~Jp1 ,~Jp2 ,~Jq1) = (2π)3δD

(
~Jq1

)
+

(~Jp1 ·~Jq1)(~Jp2 ·~Jq1)

J4
q1

P(i)
δ (Jq1)

+
∫

q

(
e−~J

ᵀ
p1 Ĉpp(~q)~Jp2 − 1 +~Jᵀp1 Ĉpp(~q)~Jp2

)
ei~Jq1 ·~q .

(7.8)

7.2 small-scale asymptotics

In this section, we derive the asymptotics of the factors I21 for the limit |Jp1 Jp2 | → ∞,

where possibly also |Jq1 | → ∞, provided lim
|Jp1 Jp2 |

J2
q1
6= 0. To this end, we apply our

method for N-dimensional Laplace-Fourier type integrals that we derived in Chapter
4.
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We start by choosing the orientation of the coordinate frame such that the vectors
~Jp1 are ~Jp2 located in the x, z-plane. Thus, the we can represent these vectors as follows

~Jp1 = Jp1

sin θ′

0

cos θ′

 and ~Jp2 = Jp2

− sin θ′

0

cos θ′

 , (7.9)

where the angle between ~Jp1 and ~Jp2 is 2θ′. In Figure 7.1 we show a sketch of the
orientation of these vectors. Next, we define µ̃ := cos θ′ and write the exponent in the
integrand of (7.1) with (7.2) as

−~Jp1 Ĉpp(~q)~Jp2 = −Jp1 Jp2

[(
q2

x − (q2
x + q2

z)µ̃
2
) a2(q)

q2 +
(

1− 2µ̃2
)

a1(q)

]
. (7.10)

We now define the function

fµ̃(~q) :=
(

q2
x − (q2

x + q2
z)µ̃

2
) a2(q)

q2 +
(

1− 2µ̃2
)

a1(q) (7.11)

and write

I21(~Jp1 ,~Jp2 ,~Jq1) =
∫

q
e−Jp1 Jp2 fµ̃(~q)+i~Jq1 ·~q . (7.12)

This integral has the same structure as the integral (4.66) in our proof of Theorem
4.4 if we set λ = Jp1 Jp2 and~k = ~Jq1 . The difference to (4.66) is that we need to find
the location(s) of critical point(s) that contribute to the asymptotics expansion (4.78),
i.e. the minima of fµ̃. When the critical point is located at the origin, (7.12) has an
asymptotic expansion of the form (4.78).

4

4

2 1 2

3

Figure 7.1: The vectors ~Jp1 and ~Jp2 are turned in the x, z-plane. Both vectors enclose the angle
θ′ with the z-axis. The location of the critical points are marked with colors and
numbers. (1, yellow) is located at the origin. The pair (2, light blue) is located on
the x-axis. (3, purple) is critical on the whole y-axis. (4, dark blue) marks the pair
of critical points on the z-axis.
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7.2.1 Critical Points

To identify the local minima of fµ̃, we first calculate the gradient

~∇ fµ̃(~q) =
~q
q

(q2
x − µ̃2(q2

x + q2
z)
)( a′2(q)

q2 − 2
a2(q)

q3

)
+ (1− 2µ̃2)

a2(q)
q



+

2qx(1− µ̃2)

0

−2qzµ̃2

 a2(q)
q2 ,

(7.13)

where we used the relation a2(q) = q · a′1(q). By setting the gradient to zero, i.e.
~∇ fµ̃(q) = 0, we identify four types of critical points, as derived in Appendix D.1. One
critical point is located at the origin and there are pairs of critical points located on the
x-axis, on the y-axis, and on the z-axis, respectively. In Appendix D.2, we calculate the
Hessian matrix A = (~∇⊗ ~∇) fµ̃(q) at these critical points. Let us note that, due to our
choice of coordinates, the Hessian matrices at the critical points are all diagonal. The
signs of the diagonal elements, i.e. the eigenvalues, indicate whether the critical point
is a minimum that contributes to the asymptotic approximation of I21. The location
of the critical points is sketched in Figure 7.1. In the following, we summarize the
properties we find for each critical point.

1. ~q = (0, 0, 0): For 0 ≤ µ̃2 < 1/4, this critical point is a minimum, since in this
case all eigenvalues of the Hessian (D.17),

A(0) = lim
q→0

~∇⊗ ~∇ fµ̃(~q) =
σ2

2
15

3− 4µ̃2 0 0

0 1− 2µ̃2 0

0 0 1− 4µ̃2

 , (7.14)

are positive. This critical point is shown in Figure 7.1 as the golden point (1).

2. ~q = (±qx, 0, 0): These two critical points are located on the x-axis, where the
location qx = qx(µ̃) is implicitly given by (D.9),

(1− 2µ̃2)
a2(qx)

qx
= −(1− µ̃2)a′2(qx) . (7.15)

These critical points are not minima, because the last eigenvalue of the Hessian
(D.20),

A(x) =


(1− µ̃2)a′′2 (qx) + (2− 3µ̃2)

a′2(qx)
qx

0 0

0 2(µ̃2 − 1) a2(qx)
q2

x
0

0 0 −2 a2(qx)
q2

x

 , (7.16)

is always negative, given that a2(q) > 0 for all q > 0. These critical points are
shown in Figure 7.1 as the two light blue points (2).
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3. ~q = (0,±qy, 0): For µ̃2 = 1/2, all points that are located on the y-axis are critical
points of saddle-point type with the Hessian (D.22),

A(y) =
a2(qy)

q2
y

1 0 0

0 0 0

0 0 −1

 . (7.17)

These critical points are indicated in Figure 7.1 by the purple colored y-axis (3).

4. ~q = (0, 0,±qz): Two critical points are located on the z-axis, where the location
±qz(µ̃) is implicitly given by (D.8),

(1− 2µ̃2)
a2(qz)

qz
= µ̃2a′2(qz) . (7.18)

The Hessian is given by (D.25),

A(z) =


2 a2(qz)

q2
z

0 0

0 2µ̃2 a2(qz)
q2

z
0

0 0 −µ̃2a′′2 (qz) + (1− 3µ̃2)
a′2(qz)

qz

 . (7.19)

For µ̃2 6= 0, the first two eigenvalues are always positive. When the last eigen-
value is positive, then these two critical points are also minima. These critical
points are shown in Figure 7.1 as the two dark blue points (4).

From these results we conclude that for µ̃2 < 1/4 the critical point at the origin
is the only minimum that contributes to the asymptotics of (7.1). For µ̃2 > 1/4, the
two critical points located on the z-axis are the contributing minima as can be seen
by the eigenvalues shown in Figure 7.3. For µ̃2 = 1/4, the critical point at the origin
coincides with the critical points on the z-axis with one vanishing eigenvalue. Thus,
this critical point is degenerate. The case µ̃2 = 1/4 is not captured by our asymptotic
method and will be analyzed in future work.

In Figure 7.2, we show the function fµ̃ (7.11) in the x, z-plane which we derived
from a smoothed Bardeen power spectrum for four different values of µ̃2. Dark colors
indicate smaller values. For µ̃2 = 0 (Figure 7.2 (a)) and µ̃2 = 1/4 (Figure 7.2 (b)) fµ̃

has a minimum at the origin. For larger values µ̃2 = 3/8 (Figure 7.2 (c)) and µ̃2 = 5/8
(Figure 7.2 (d)), fµ̃ has two minima located on the z-axis, in agreement with our
analysis. Note that the minimum for µ̃2 = 1/4 (Figure 7.2 (b)) appears elongated
along the z-axis, which indicates that this minimum branches out for larger values of
µ̃2.

In Figure 7.3, we show the eigenvalues of the Hessian at the critical minima as a
function of µ̃2 which parameterizes the relative orientation of the vectors ~Jp1 and ~Jp2 .
In Figure 7.4 we show the location of the critical point qz that is implicitly given by
(7.18) as a function of µ̃2. For µ̃2 < 1/4, the critical minimum of fµ̃ is located at the
origin, while for µ̃2 > 1/4, two critical minima are located at (0, 0,±qz). The inset
is a zoom into the transition region 0.2 ≤ µ̃2 ≤ 0.3 and shows that qz increases very
steeply for µ̃2 slightly above 1/4.

Now that we have derived the minima of fµ̃ that contribute to the asymptotics of the
factors as well as the corresponding Hessian matrices as a function of the orientation
of the two vectors ~Jp1 and ~Jp2 , we derive the asymptotics in the next sections.
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Figure 7.2: The function fµ̃ (7.11) in the x, z-plane for four different values of µ̃2. Dark colors
indicate lower values. For µ̃2 = 0 (a) and µ̃2 = 1/4 (b), fµ̃ has a minimum at
the origin. For larger values µ̃2 = 3/8 (c) and µ̃2 = 5/8 (d), fµ̃ has two minima,
located at the z-axis. The minimum for µ̃2 = 1/4 in (b) appears elongated along
the z-axis, which indicates that this minimum branches out for larger values of µ̃2.
The cosmological and power spectrum parameters are shown in Tables E.2 and E.6,
respectively.

7.2.2 Asymptotics for µ̃2 < 1/4:

For µ̃2 < 1/4 the only minimum of fµ̃ is located at the origin with the value

fµ̃(0) = −(1− 2µ̃2)
σ2

1
3

(7.20)

and the Hessian A = A(0) given by (7.14). The asymptotics of (7.1) is given by (4.78)
with λ = Jp1 Jp2 and~k = ~Jq1 and we arrive at

I21

(
~Jp1 ,~Jp2 ,~Jq1

)
=
∫

q
exp

(
−~Jp1 Ĉpp(~q)~Jp2 + i~Jq1 ·~q

)
∼ (2π)3/2 e−Jp1 Jp2 fµ̃(0)

√
detA

e
−

~Jᵀq1
A−1~Jq1

2Jp1 Jp2 ,
(7.21)
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Figure 7.3: The eigenvalues of the Hessian of fµ̃ at the critical minimum. For µ̃2 < 1/4, the
critical minimum is located at the origin and the eigenvalues are the diagonal
elements of (7.14). For µ̃2 > 1/4, two critical minima are located at (0, 0,±qz),
where qz is implicitly given by (7.18) and the eigenvalues are the diagonal elements
of (7.19). In Figure 7.4, qz is shown as a function of µ̃2. At µ̃2 = 1/4, the third
eigenvalue is zero, indicating a degenerate critical point at the origin. We used the
parameters as in Figure 7.2.

as |Jp1 Jp2 | → ∞, where possibly also |Jq1 | → ∞, provided lim
|Jp1 Jp2 |

J2
q1
6= 0. Using (7.20)

and (7.14) yields

I21

(
~Jp1 ,~Jp2 ,~Jq1

)
∼
(

2π
15

Jp1 Jp2 σ2
2

)3/2 exp
(

Jp1 Jp2
σ2

1
3 (1− 2µ̃2)

)
√
(3− 4µ̃2)(1− 2µ̃2)(1− 4µ̃2)

× exp

− 15
2σ2

2 Jp1 Jp2

(
J2
q1,x

3− 4µ̃2 +
J2
q1,y

1− 2µ̃2 +
J2
q1,z

1− 4µ̃2

) ,

(7.22)

as |Jp1 Jp2 | → ∞, where possibly also |Jq1 | → ∞, provided lim
|Jp1 Jp2 |

J2
q1
6= 0.

7.2.3 Asymptotics for µ̃2 > 1/4:

For µ̃2 > 1
4 we found that the two minima located at (0, 0,±qz), where qz(µ̃) is

implicitly given by (7.18), contribute to the asymptotics of 7.1. If qz is not infinitesimally
small, we consider the two contributions

I21

(
~Jp1 ,~Jp2 ,~Jq1

)
∼
(∫

Ω−
+
∫

Ω+

)
e−~J

ᵀ
p1 Ĉpp(~q)~Jp2+i~Jq1 ·~q , (7.23)
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Figure 7.4: The location of the critical minima of fµ̃ as a function of µ̃2 is shown. For µ̃2 < 1/4,
the critical minimum of fµ̃ is located at the origin, while for µ̃2 > 1/4, two
critical minima are located at (0, 0,±qz). The zoom into the transition region
0.2 ≤ µ̃2 ≤ 0.3 shows that qz increases very steep for µ̃2 slightly above 1/4. We
used the parameters as in Figures 7.2 and 7.2.

where Ω± denote small, non-overlapping neigborhoods of the minima at (0, 0,±qz),
and Ω− ∩Ω+ = ∅.1 We define ~qz := (0, 0, qz) and shift the coordinate frame ~q→ ±~qz

of both integrals, such that the respective critical point is located at the origin

I21

(
~Jp1 ,~Jp2 ,~Jq1

)
∼
∫

Ω−
e−~Jp1 Ĉpp(~q)~Jp2+i~Jq1 ·~q +

∫
Ω+

e−~Jp1 Ĉpp(~q)~Jp2+i~Jq1 ·~q

=
∫

Ω0
e−~Jp1 Ĉpp(~q+~qz)~Jp2+i~Jq1 ·(~q+~qz) +

∫
Ω0

e−~Jp1 Ĉpp(~q−~qz)~Jp2+i~Jq1 ·(~q−~qz) ,

(7.24)

as |Jp1 Jp2 | → ∞, where possibly also |Jq1 | → ∞, provided lim
|Jp1 Jp2 |

J2
q1
6= 0. Here,

Ω± → Ω0 is a neighborhood of the origin because of the coordinate shift. The
asymptotics of (7.24) is given by (4.78) with λ = Jp1 Jp2,~k = ~Jq1 and g(0) = e±i~Jq1 ·~qz ,

I21

(
~Jp1 ,~Jp2 ,~Jq1

)
∼ (2π)3/2 e−Jp1 Jp2 fµ̃(qz)√

detA(qz)
e
−

~Jᵀq1
A−1(qz)~Jq1
2Jp1 Jp2

(
ei~Jq1 ·~qz + e−i~Jq1 ·~qz

)
(7.25)

= 2 cos
(
~Jq1 ·~qz

)
(2π)3/2 e−Jp1 Jp2 fµ̃(qz)√

detA(qz)
e
−

~Jᵀq1
A−1(qz)~Jq1
2Jp1 Jp2 , (7.26)

as |Jp1 Jp2 | → ∞, where possibly also |Jq1 | → ∞, provided lim
|Jp1 Jp2 |

J2
q1
6= 0, where

fµ̃(q±z ) = −µ̃2a2(qz)− (1− 2µ̃2)a1(qz) , (7.27)

1 In the book Asymptotic Expansions of Integrals, Bleistein and Handelsman discuss the case of two nearby
saddle-points. [12]
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qz(µ̃) is implicitly given by (7.18), and the Hessian A = A(z) is given by (7.19).

7.3 summary and discussion

In this chapter, we derived several aspects of the factors of the free generating func-
tional, relevant for their numerical implementation, analytical considerations and
future developments of KFT.

In the first part, we showed how the integrand can be regularized, without intro-
ducing any approximation, such that numerical integrations of the factors converge
faster.

In the second part, we derived the asymptotics of the factors for large values of

|Jp1 Jp2 | and possibly large values of |Jq1 |, provided lim
|Jp1 Jp2 |

J2
q1
6= 0. We showed that the

asymptotics depends on the locations qz of the critical minima of fµ̃. These locations
are parameterized by the angle that the vectors ~Jp1 and ~Jp2 enclose. When this angle
is larger than 2π/3, the single critical minimum that contributes to the asymptotics
is located at the origin. For angles smaller than 2π/3, the two contributing minima
are located symmetrically along the axis that cuts the angle of those vectors in halves.
In both cases, the asymptotics involves an exponential factor that depends on the
value of fµ̃ at the critical points. This has the important consequence for numerical
implementations, that any numerical deviation of fµ̃ from the true value leads to
exponentially deviating results when |Jp1 Jp2 | becomes larger. Furthermore, since the
asymptotics depends on the eigenvalues of the Hessian at the critical points, we
advice that for any numerical implementation that aims at the evaluation of the
factors at large values of |Jp1 Jp2 |, the function fµ̃ should be implemented as precisely
as possible up to second order in the vicinity of the critical points. Moreover, we
suggest for µ̃2 > 1/4 to split the integration domain and center the two domains on
the critical points, respectively. Note that these numerical considerations are similar
to our conclusions for the free power spectrum in the previous chapter. First tests
for µ̃2 < 1/4 (not shown in this work) showed that the analytical prediction for the
asymptotics agree with the numerical results.

When the vectors ~Jp1 and ~Jp2 enclose an angle of exactly 2π/3, the single minimum
at the origin is degenerate and the Hessian matrix A is not positive definite. Since
our asymptotic method in N dimensions is built upon Morse’s Lemma, it requires
A to be positive definite, thus we cannot apply this method in this case. We propose
that the application of the splitting lemma, as explained below, will enable us to
derive the asymptotics for this relative orientation of ~Jp1 and ~Jp2 . These factors are
particularly interesting as they appear in the free bispectrum when the wave vectors
are equilateral.

Recent and ongoing work in our group by BSc student Tara Butler [16] and MSc
student Christian Sorgenfrei is dedicated to the numerical implementation of the
factors and we are looking forward to compare our analytical asymptotics to the
upcoming numerical results.

As already mentioned, the free moments of the density field can be expressed
as convolutions of the factors that we discussed here. With this work, we hope to
facilitate the numerical implementation of the factors such that higher order moments
can be calculated. However, the main limitation of our result with respect to the
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implementation of convolutions of the factors concerns the restriction lim
|Jp1 Jp2 |

J2
q1
6= 0,

for the following reason. When the free moments are calculated, the convolution has
to be performed by integrating over those vectors that are contained in the oscillating
phase, while the two vectors ~Jp1 and ~Jp2 are fixed. Thus, when performing the integral,
the factors need to be evaluated at values of |~Jq1 | that are large compared to |Jp1 Jp2 |,
which is not covered by our asymptotic expansion. It is subject to future work to
explore asymptotic methods – likely based on the saddle-point approximation – that
deal with this limit.

When we are interested in the small-scale asymptotics of the free moments of
order l of the density field, we could follow another strategy. Instead of deriving
the asymptotics from a convolution of the factors, one could think of deriving the
asymptotics directly from the free generating functional (3.120) prior to factorization.
For large absolute values of the Lp one would then like to apply our Theorem for
N-dimensional Fourier-Laplace type integrals to the 3(l − 1)-dimensional integration
over the particle separations ~qj1 for 1 < j ≤ l. However, as shown by Ricardo Waibel
in his ongoing MSc work, the 3(l − 1)× 3(l − 1)-dimensional Hessian of the function
Lᵀ

pCpp(q)Lp appearing in the exponent of the integrand (3.120) is in general not
positive definite for l > 2, i.e. for three-point correlations and higher orders. Moreover,
it was shown that the rank of the Hessian for l ≥ 4 never exceeds 6. We thus cannot
straightforwardly apply our asymptotic method for N-dimensional Fourier-Laplace
type integrals for moments of order ≥ 3.

In ongoing work with Ricardo Waibel we are working on a way to deal with
these non-vanishing co-ranks of the Hessian. The idea is to apply the splitting
lemma [54] to find a coordinate transform in the neighborhoods of the critical points
such that the function in the exponent splits into a quadratic part with Hessian A
and an independent higher-order part h, Lᵀ

pCpp(q)Lp → (y1, · · · , yj)A(y1, · · · , yj)
ᵀ +

h(yj+1, · · · , y3(l−1)). Then, we can apply our existing method to the j-dimensional
integral over the quadratic part and deal with the remaining [3(l− 1)− j]-dimensional
part separately. Thus, we hope to extend the results of this work in the future to
formally derive the asymptotics of free density moments of arbitrary order. These
are relevant to test the evolution of non-Gaussianities, to improve the implementa-
tions of perturbation theory and mean field theory in KFT, and also to test the k−3

asymptotics that we derived in the previous chapter for the free power spectrum
when gravitational interactions beyond the Zel’dovich approximation are taken into
account.



8
C O N C L U S I O N S A N D O U T L O O K

In this work, we analytically investigated cosmic structure formation in collisionless
dark matter in the limit of small scales within the framework of Kinetic Field Theory
(KFT).

Our main result is the derivation of the universal k−3 asymptotics of the free density
fluctuation power spectrum. This asymptotic behavior emerges independently of the
steepness of the initial power spectrum, provided its second moment σ2

2 exists. In this
case, the k−3 asymptotics emerges substantially earlier than dark-matter streams cross.

Our result therefore suggests that for dark matter types with initially steeply
decreasing power spectra, linearly evolved power spectra poorly describe the actual
power spectrum at scales smaller than the cutoff scale, even at early times.

Furthermore, we calculated the time-dependent characteristic wave number above
which the power spectrum converges to the k−3 behavior. This characteristic wave
number might be related to a scale in real space, below which dark matter forms
self-similar structures. It is subject to future work to explore this possibility and
the connection to the observed universal halo profiles by comparisons to numerical
simulation and further analytical considerations. For the latter, we will consider the
time evolved momentum-density correlation functions that have been firstly derived
in [42]. These give information about the velocity dispersion on different scales, while
the small-scale asymptotics can be calculated similarly to the free power spectrum
which will be done systematically in future work.

In this work, we also derived several scales that are associated to small-scale stream
crossing. If cosmic structure formation before shell crossing is well described by the
Zel’dovich approximation, these scales might not only be imprinted in the structures
at the small-scale stream crossing redshift of dark matter, but also influence the growth
of later structures. In this case, cosmic observables could be linked to these scales
which in turn are directly linked to the properties of dark matter. Consequently, these
observables then serve as probes for dark matter particle candidates. The small-scale
stream crossing redshift of dark matter might even mark a cosmic distance promising
to search for dark matter annihilation signals [19, 26, 61] as the densities at these
scale factors where higher and the initial slopes of halo cores presumably steeper, as
suggested by simulations [48].

With the successful implementation of a numerical code, guided by our knowledge
about the asymptotics, we are now able to calculate the free power spectrum for a wide
range of cosmological parameters, dark matter models and redshifts. This code will
be published in the near future to enable a larger community to calculate non-linear
Zel’dovich power spectra for various dark matter models at arbitrary scales and a wide
range of redshifts. A next step will be to evaluate the free power spectrum for specific
non-cold dark matter models and compare these spectra to results from simulations.
This is particularly interesting, because a growing number of simulation results in
warm dark matter cosmologies is available enabling quantitative comparisons by some
range of parameters (see e.g. [21, 43, 62]).
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To arrive at these results, we derived novel asymptotic methods for rapidly oscillat-
ing integrals with two large parameters. While we successfully applied these methods
to integrals appearing in KFT, they may also find applications in other research fields.
Compared to our method in one dimension, the method for N-dimensional integrals
in its current form is more restrictive in its assumptions on the behavior of the kernel
function. Moreover, the N-dimensional method does not provide a straightforward
way to derive terms beyond the first order asymptotics. In order to derive the asymp-
totic series for the free power spectrum, we therefore applied the one-dimensional
method to the integral over the radial coordinate. It will be subject to future work to
explore if this strategy can be formally generalized for our N-dimensional method.

In this work, we investigated the free power spectrum for particles on straight
trajectories when only Gaussian initial momentum-momentum correlations are taken
into account. It is subject to future work to explore if these results change when addi-
tionally initial density-density and momentum-density correlations are considered.
Furthermore, it will be interesting to find out if the k−3 asymptotics remains valid
when interactions beyond the Zel’dovich approximation are taken into account. Since
KFT remains valid beyond shell crossing, this is the perfect framework for such a
future study.

In order to evaluate the terms in the perturbation series in future work, we need
to evaluate free density moments of high order. These moments are also important
in other aspects. Firstly, they probe the early formation of non-Gaussianities. And
secondly, 2n-point correlation functions are in general necessary to determine the
likelihood of a cosmological model from measured n-point correlation functions. With
the factorized generating functional, we have in principle a representation of the free
density moments that can be implemented straightforwardly from an algorithmic
point of view. However, the implementation of the factors of the generating functional
for general alignments and absolute values of the involved vectors is difficult due
to the rapidly oscillating integral. To facilitate this implementation, we presented
a way how the integration can be regularized non-perturbatively by adding and
subtracting a term that is linear in the initial power spectrum. Moreover, we derived
the asymptotics of these factors at small scales. However, our asymptotic method
does not provide a limit when only the vector appearing in the complex phase of
the integration kernel becomes large. It is subject to future work to find or develop
an asymptotic method which is appropriate for this case. Once the factors can be
computed for arbitrary vectors, we are able to calculate the free density moments of
high orders by convolutions of these factors and thus calculate higher order terms in
perturbation theory.

To summarize, we provided novel mathematical tools that apply to KFT and
beyond. We derived the small-scale asymptotics of the cosmic density fluctuation
power spectrum and the scales characteristic for small-scale stream crossing. With
these results we lay the foundations for future work to constrain possible dark
matter candidates from observations and to understand the formation of universal
halo density profiles in simulations. Finally, our asymptotics results will guide the
numerical implementation of KFT such that the plethora of existing expressions
for higher order correlation functions and perturbation series can eventually be
numerically evaluated.
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A
A P P E N D I X : K I N E T I C F I E L D T H E O RY F O R C O S M I C S T R U C T U R E
F O R M AT I O N

a.1 derivation of the hamiltonian propagator

We start with the modified free Hamiltonian

H′0 =
p2

2m(t)
− 〈K,J x〉 , (A.1)

satisfying the following equations of motion.

q̇ = ∂pH′0 =
1

m(t)
p−Kq (A.2)

ṗ = −∂qH′0 = −Kp . (A.3)

We integrate (A.3) directly and obtain

p(t) = p(i) −
∫ t

ti

dt′ Kp(t) , (A.4)

where p(i) are the initial momenta at time t = ti. With (A.4), we integrate (A.2)

q(t) = q(i) +
∫ t

ti

dt′
[

1
m(t′)

p(t′)−Kq(t′)
]

= q(i) +
∫ t

ti

dt′

 1
m(t′)

(
p(i) −

∫ t′

ti

dt′′ Kp(t′′)

)
−Kq(t′)


= q(i) + p(i)

∫ t

ti

dt′

m(t′)
−
∫ t

ti

dt′
[

Kq(t′) +
1

m(t′)

∫ t′

ti

dt′′ Kp(t′′)

]
.

(A.5)

By partial integration, we obtain

∫ t

ti

dt′

m(t′)

∫ t′

ti

dt′′ Kp(t′′) =
∫ t′

ti

dt′′ Kp(t′′)
∫ t′

ti

dt′′

m(t′′)

∣∣∣∣∣
t′=t

t′=ti

−
∫ t

ti

dt′ Kp(t′)
∫ t′

ti

dt′′

m(t′′)

=
∫ t

ti

dt′ Kp(t′)
∫ t

ti

dt′

m(t′)
−
∫ t

ti

dt′ Kp(t′)
∫ t′

ti

dt′′

m(t′′)

=
∫ t

ti

dt′ Kp(t′)

[∫ t

ti

dt′

m(t′)
−
∫ t′

ti

dt′′

m(t′′)

]

=
∫ t

ti

dt′ Kp(t′)
∫ t

t′

dt′′

m(t′′)
.

(A.6)

We define the propagator

gqp(t, t′) :=
∫ t

t′

dt′′

m(t′′)
, (A.7)
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and write (A.5) as

q(t) = q(i) + gqp(t, ti)p(i) −
∫ t

ti

dt′
[
Kq(t′) + gqp(t, t′)Kp(t′)

]
. (A.8)

a.2 hamiltonian for particles in an expanding spacetime

This section is a review of the derivations shown in [50] and [5].
We start with the Lagrangian of an individual particle with mass m0 in a gravitational
field Φ, where space expands isotropically accordingly to the scale factor a(t)

L(~q,~̇q, t) =
1
2

m
(

a(t)~̇q + ȧ(t)~q
)2
−m0Φ(~q, t) . (A.9)

Here, ~q = ~r/a denotes the comoving coordinate relative to the physical spatial
coordinate~r. We apply the canonical transformation

L→ L− 1
2

d
dt

m0aȧq2 , (A.10)

such that the Lagrangian (A.9) reduces to

L(~q,~̇q, t) =
1
2

m0a2(t)q̇2 −m0φ(~q, t) , (A.11)

with the new potential

φ(~q, t) = Φ(~q, t) +
1
2

aäq2 . (A.12)

The potential satisfies Poisson’s equation

∆φ(~q, t) =
4πG
a(t)

[
ρm(~q, t)− ρ̄m

]
, (A.13)

where ρm denotes the comoving mass density and ρ̄m the average comoving mass
density, which is constant in time. (A.13) can be solved with the Green’s function that
corresponds to the Laplacian in three dimensions,

φ(~q, t) = −4πG
a(t)

∫
d3q′

ρm(~q′, t)− ρ̄m

|~q′ −~q| . (A.14)

In the point particle picture, the comoving mass density is

ρm(~q, t) = m0 ∑
j

δD

(
~q−~qj(t)

)
, (A.15)

where the one-particle contribution to the comoving mass density is

ρm,j(~q, t) = m0δD

(
~q−~qj(t)

)
. (A.16)

We now define the linear growth factor as new time coordinate τ := D+ (t) −
D+(t(i)). The total differential is given by

dτ = dD+ =
dD+

da
da
dt

dt = HD+ f dt , (A.17)
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and time derivatives are related by

d
dt

= HD+ f
d

dτ
, (A.18)

where H and f denote the usual Hubble function and growth rate, respectively,

H =
1
a

d
dt

a and f =
d log D+

d log a
, (A.19)

and H0 is the value of H evaluated at the time when a = 1. Thus, first-order time
derivatives transform as

~̇x =
d~x
dt

= HD+ f
d~x
dτ

. (A.20)

Transforming the Lagrangian to the new time coordinate yields

L
(
~q,

d~q
dτ

, τ

)
=

1
2

ma2HD+ f
(

d~q
dτ

)2

− mφ(~q, τ)

HD+ f
. (A.21)

From now on we use the dot for the derivative with respect to the new time coordinate,
which we rename back to t and divide the Lagrangian by the constant factor m0H0.
We define the time-dependent particle mass and the new potential

~̇q :=
d~q
dt

, (A.22)

m(t) := a2 H
H0

D+ f , (A.23)

ϕ
(
~q, t
)

:=
a2φ(~q, t)
H2

0 m(t)
. (A.24)

With the generalized momentum

~p =
∂L
∂~̇q

= m(t)~̇q , (A.25)

we obtain the Hamiltonian of a single particle

H = ~p · ~̇q− L =
~p2

2m(t)
+ ϕ

(
~q, t
)

, (A.26)

and the Hamiltonian e.o.m.

~̇q =
~p

m(t)
, ~̇p = −~∇ϕ . (A.27)

a.3 derivation of the interaction potential

We consider a general interaction Hamiltonian HI that depends only on the pairwise
distances of particles, such that we can write

HI(q, t) = A(t) ∑
1≤i<j≤N

v
(
|~qi(t)−~qj(t)|

)
= A(t)

∫
d3zd3y v

(
|~z−~y|

)
∑

1≤i<j≤N
δD
(
~y−~qi(t)

)
δD(~z−~qj(t)) ,

(A.28)
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where A(t) is a time-dependent amplitude. The potential part of the interaction
Lagrangian (3.76) then becomes

V(χp, q) = −〈χp,∇qHI(q, t)〉

= −A(t)
∫

d3zd3y
{

v
(
|~z−~y|

)
×

N

∑
k=1

~χpk · ~∇qk ∑
1≤i<j≤N

δD
(
~y−~qi(t)

)
δD(~z−~qj(t))

}
.

(A.29)

Applying the derivatives to the sum, we get

~χpk · ~∇qk ∑
1≤i<j≤N

δD
(
~y−~qi

)
δD(~z−~qj)

= ∑
1≤i<k

δD
(
~y−~qi

)
~χpk · ~∇qk δD

(
~z−~qk

)
+ ∑

k<j≤N
δD(~z−~qj)~χpk · ~∇qk δD

(
~y−~qk

)
.

(A.30)

Since the interaction potential depends only on the absolute value of the coordinate
difference, we can interchange the integration variables ~y and ~z in the above sum,

V(χp, q) = −A(t)
∫

d3zd3y
{

v
(
|~z−~y|

)
×

N

∑
k=1

∑
i 6=k

δD
(
~y−~qi

)
~χpk · ~∇qk δD

(
~z−~qk

)}
.

(A.31)

Expressing the interaction potential and the Dirac delta distributions in terms of their
Fourier transforms, we can write

V(χp, q) = −A(t)
∫

k
v̂(~k)

N

∑
k=1

∑
i 6=k

(
−i~χpk ·~k

)
ei~k·~qi(t)e−i~k·~qk(t)

= −A(t)
N

∑
k=1

∑
i 6=k

∫
k

ρ̃i(~k, t)v̂(~k)
(
−i~χpk ·~k

)
ρ̃k(−~k, t) ,

(A.32)

where we expressed the exponentials in terms of the Fourier transform of the one-
particle densities (3.26) in the last step.

a.4 propagator-correction operator

We start with the full generating functional

Z[J, K] = eiŜI Z0[J, K] , (A.33)

where the free generating functional is

Z0[J, K] = exp
[

i
∫ ∞

0
dt〈J(t), x0(t)〉 − i

∫ ∞

0
dt dt′〈J(t),G(t, t′)K(t′)〉

]
. (A.34)

We now consider only the propagator correction part of the interaction operator,

iŜCI = i
∫ ∞

0
dt
〈

δ

δKq(t)
,

δ

δJp(t)

〉(
1

m(t)
− 1
)

, (A.35)
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such that the first-order correction to particle trajectories are

q(1)(t) = iŜCI

(
−i

δ

δJq(t)

)
Z0[J, K]

∣∣
J=0=K

=
∫ ∞

0
dt′
〈

δ

δKq(t)
,

δ

δJp(t)

〉
δ

δJp(t′)

(
1

m(t′)
− 1
)

Z0[J, K]
∣∣
J=0=K

= i
∫ ∞

0
dt′
〈

δ

δKq(t)
,

δ

δJp(t)

〉(
1

m(t′)
− 1
) [

p(i) −
∫ ∞

0
dt′′gpp(t, t′′)Kp(t′′)

]
Z0[J, K]

∣∣
J=0=K

= −
∫ ∞

0
dt′
{

δ

δKq(t′)

(
1

m(t′)
− 1
) [

p(i) −
∫ ∞

0
dt′′gpp(t′, t′′)Kp(t′′)

]

×
[

q(i) + gqp(t, 0)p(i) −
∫ ∞

0
dt′′Gqa(t, t′′)Ka(t′′)

]}
Z0[J, K]

∣∣
J=0=K ,

(A.36)

where we used gpq = 0, and summation over a ∈
{

q, p
}

is implied in the last line.
The application of the last functional derivative, together with gqq = Θ(t− t′), finally
yields

q(1)(t) =
∫ ∞

0
dt′
(

1
m(t′)

− 1
)

p(i)gqq(t, t′)

= −tp(i) + p(i)
∫ t

0
dt′

1
m(t′)

.
(A.37)

a.5 erroneous representation of Cpj pk

In [9], an erroneous transformation of the integration kernel of the factors

Ijk(~Lpj ,~Lpk ,~k jk) :=
∫

qjk

e−
~Lᵀ

pj Ĉpp(~qjk)~Lpk+i~k jk ·~qjk (A.38)

of the factorized free moments was performed. There, the following relation for the
momentum correlations Cpp was introduced,

Cpj pk ≡ Ĉpp(~q) = −π̃‖ξ
′′
ψ(q)− π̃⊥

ξ ′ψ(q)
q

, (A.39)

where ~q is the separation vector between particles j and k, and

π̃‖ =
~q⊗~q

q2 , π̃⊥ = I3 − π̃‖ (A.40)

are the parallel and perpendicular projection operators with respect to ~q. Furthermore,
the projection operators with respect to the internal wave vector~k jk (see (3.122)) were
introduced,

π
‖
jk =

~k jk ⊗~k jk

k2
jk

, π⊥jk = I3 − π
‖
jk . (A.41)
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The idea in [9] was to represent the momentum correlation matrix in terms of the
latter set of projectors. This was done by an expansion of the Hessian of the potential
correlation function,

Ĉpp(q) = D2ξψ(q) = π̃‖ξ
′′
ψ(q) + π̃⊥

ξ ′ψ(q)
q

= a‖π
‖
jk + a⊥π⊥jk , (A.42)

such that the integral (A.38) can be written as

Ijk(~Lpj ,~Lpk ,~k jk) :=
∫

qjk

e
~Lᵀ

pj π
‖
jk
~Lpk a‖+~L

ᵀ
pj π
⊥
jk
~Lpk a⊥+i~k jk ·~qjk . (A.43)

The functions a‖ and a⊥ were determined by multiplying the above equation by π
‖
jk

and π⊥jk , and taking the trace of the resulting two equations, which yields

a‖ = ξ ′′ψ(q)trπ̃‖π
‖
jk +

ξ ′ψ(q)
q

trπ̃⊥π
‖
jk ,

2a⊥ = ξ ′′ψ(q)trπ̃‖π
⊥
jk +

ξ ′ψ(q)
q

trπ̃⊥π⊥jk .

(A.44)

The cosine µ := ~q·~k jk
qk jk

of the angle between ~q and~k jk was introduced, yielding the traces

trπ̃‖π
‖
jk = µ2, trπ̃⊥π

‖
jk = 1− µ2 = trπ̃‖π

⊥
jk , trπ̃⊥π⊥jk = 1 + µ2 , (A.45)

and thus

a‖ = µ2ξ ′′ψ(q) + (1− µ2)
ξ ′ψ(q)

q
,

2a⊥ = (1− µ2)ξ ′′ψ(q) + (1 + µ2)
ξ ′ψ(q)

q
.

(A.46)

This result implies that in the integral (A.43) polar coordinates can be introduced such
that~k jk is parallel to the z-axis and the integrand is independent of the angle φ, for
arbitrary vectors ~Lpj , ~Lpk and~k jk.

The erroneous nature of this transformation becomes clear when we choose a similar
but different way to compute a‖ and a⊥. First, we multiply (A.42) by the projectors
with respect to ~q, and then take the trace,

ξ ′′ψ(q) = a‖trπ̃‖π
‖
jk + a⊥trπ̃‖π

⊥
jk

= a‖µ
2 + a⊥(1− µ2),

2
ξ ′ψ(q)

q
= a‖trπ̃⊥π

‖
jk + a⊥trπ̃⊥π⊥jk

= a‖(1− µ2) + a⊥(1 + µ2).

(A.47)

Using (A.45), we solve these two equation analogously for a‖ and a⊥ and arrive at

a‖ =
1 + µ2

3µ2 − 1
ξ ′′ψ(q)−

2(1− µ2)

3µ2 − 1

ξ ′ψ(q)
q

,

a⊥ =
µ2 − 1

3µ2 − 1
ξ ′′ψ(q) +

2µ2

3µ2 − 1

ξ ′ψ(q)
q

.

(A.48)
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First, note that these results differ from (A.46). Second, for µ2 → 1
3 , a‖ and a⊥ diverge.

Therefore, we conclude that a‖ and a⊥ do not induce a formally correct transformation
for the kernel in (A.38) as shown in (A.42).

When two-point correlation functions are considered, the above transformation does
not fail. In this case all three involved vectors point in the same direction: ~Lpj = −~Lpi

due to the Dirac delta distribution in front of the generating functional, and ~Lpj ‖~k jk.
Thus, we can align all three vectors along the z-axis, and the original expressions
(A.39) and (A.40) yield

−~Lᵀ
pj Ĉpp(~q)~Lpk = −L2

pj
µ2ξ ′′ψ(q)− L2

pj

ξ ′ψ(q)
q

+ L2
pj

µ2
ξ ′ψ(q)

q
. (A.49)

Using the transformed expression (A.43) together with (A.46) yields the same result,

~Lᵀ
pj π
‖
jk
~Lpk a‖ +~Lᵀ

pj π
⊥
jk
~Lpk a⊥ = −L2

pj
a‖ (A.50)

= −L2
pj

[
µ2ξ ′′ψ(t) + (1− µ2)

ξ ′ψ(q)
q

]
. (A.51)





B
A P P E N D I X : A S Y M P T O T I C S O F C E RTA I N T Y P E S O F I N T E G R A L S

b.1 hessian in morse’s lemma

Let Q denote the Hessian matrix of ( f ◦ h)(y) at y = 0, with the diffeomorphism h
from Morse’s Lemma 4.2. Recall from (4.60), that

Aij =
∂2 f (x)
∂xi∂xj

∣∣∣∣∣
x=x0

(B.1)

denotes the Hessian matrix of A at the critical point x0. From (4.61) we infer that Q is
the diagonal matrix

Qij =
∂2

∂yi∂yj
( f ◦ h)(y)

∣∣∣∣∣
y=0

= µiδij , (B.2)

with µi being the eigenvalues of A. We now compute Q via the chain rule

Qij =
∂2

∂yi∂yj
f (h(y))

∣∣∣∣∣
y=0

=
∂

∂yi

N

∑
a=1

∂ f (h(y))
∂ha(y)

∂ha(y)
∂yj

∣∣∣∣∣
y=0

=
N

∑
a=1

∂ha(y)
∂yj

∂

∂yi

∂ f (h(y))
∂ha(y)

∣∣∣∣∣
y=0

+
N

∑
a=1

∂ f (h(y))
∂ha(y)

∂2ha(y)
∂yi∂yj

∣∣∣∣∣
y=0

=
N

∑
a=1

N

∑
b=1

∂ha(y)
∂yj

∂hb(y)
∂yi

∂2 f (h(y))
∂hb(y)∂ha(y)

∣∣∣∣∣
y=0

,

(B.3)

where the second term vanished because ~nabla f (x)|x=x0 = 0. With

∂2 f (h(y))
∂ha(y)∂hb(y)

∣∣∣∣∣
y=0

≡ ∂2 f (x)
∂xa∂xb

∣∣∣∣∣
x=x0

= Aab , (B.4)

and the Jacobian matrix of the diffeomorphism

[
h′(y)

]
aj :=

∂ha(y)
∂yj

,
[
h′0
]

aj :=
∂ha(y)

∂yj

∣∣∣∣∣
y=0

, (B.5)

(B.3) becomes

Qij =
N

∑
a=1

N

∑
b=1

[
h′0
]

aj Aab
[
h′0
]

bi

=
N

∑
a=1

N

∑
b=1

[
h′0
]ᵀ

ja Aab
[
h′0
]

bi

=
[[

h′0
]ᵀ A h′0

]
ij

.

(B.6)
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This result shows, that
[
h′0
]ᵀ and h′0 diagonalize A,

Q =
[
h′0
]ᵀ A h′0 = diag(µ1, . . . , µN) , (B.7)

and since det h′0 = 1, it follows that[
h′0
]−1

=
[
h′0
]ᵀ . (B.8)

Furthermore, we arrive at the following representation of the inverse of the Hessian,

Q =
[
h′0
]ᵀ A h′0

⇔ IN =
[
h′0
]ᵀ A h′0 Q−1

⇔ h′0 = A h′0 Q−1

⇔ A−1h′0 = h′0 Q−1

⇔ A−1 = h′0 Q−1 [h′0]ᵀ
⇒ kᵀA−1k = (kᵀh′0) Q−1 (

[
h′0
]ᵀ k), ∀k ∈ RN .

(B.9)

From this, we conclude the following result,

kᵀA−1k =
N

∑
j=1

[
k · h′0

]2
j

µj
=

N

∑
j=1

1
µj

 ∂

∂yj
k · h(y)

∣∣∣∣∣
y=0

2

. (B.10)

b.2 simplifying terms

We use the result (B.10) to simplify the sum, appearing in (4.77)

S(λ, k) :=

∞

∑
n=0

∑
|α|=2n

δ(α)

α!

(
−k2

λ

)n(
2
µ

) α+1
2

Γ
(

α + 1
2

) N

∏
j=1

(
∂

∂yj
k̂ · h(y)

)αj
∣∣∣∣∣∣
y=0

=

√
(2π)N

detA

∞

∑
n=0

∑
|α|=2n

N

∏
j=1

δ(αj)

(αj/2)!

− k2

2λµj

(
∂

∂yj
k̂ · h(y)|y=0

)2
αj/2

=

√
(2π)N

detA

∞

∑
n=0

∑
|α|=n

N

∏
j=1

1
αj!

− k2

2λµj

(
∂

∂yj
k̂ · h(y)|y=0

)2
αj

,

(B.11)

where we used (4.13) and, since all αj are even numbers, Γ
(

αj+1
2

)
=

αj !
(αj/2)!2αj

√
π. The

last expression is identical to the Taylor expansion of a multivariate exponential, such
that

S(λ, k) =

√
(2π)N

detA
exp

− k2

2λ

N

∑
j=1

1
µj

(
∂

∂yj
k̂ · h(y)|y=0

)2
 . (B.12)

With (B.10), we finally arrive at

S(λ, k) =

√
(2π)N

detA
exp

(
− k2

2λ
k̂ᵀA−1k̂

)
. (B.13)



C
A P P E N D I X : S M A L L - S C A L E A S Y M P T O T I C S O F T H E F R E E P O W E R
S P E C T R U M

c.1 derivation of P (0)
and P (1)

We start with the expression for the time-dependent coefficients P (m) from (6.25),

P (m)(t) = 8 · 33/2π

(
5

2τ2
2 (t)

)3/2 ∫ 1

−1
dµ

Im(µ)

(2µ2 + 1)3/2 , (C.1)

with the functions from (6.20),

Im(µ) =
−e

i
2 πm

µm

∞

∑
n=m

Γ
(

n + 3
2

)(
µ√

a0(µ)

)n
e

i
2 πndm,n(µ)

m!(n−m)!
, (C.2)

and the coefficients dm,n are given in (6.21),

dm,n(µ) = lim
x→0+

dm

dxm

1 +
∞

∑
j=1

aj(µ)

a0(µ)
xj

− n+3
2

. (C.3)

The µ-dependent coefficients am(µ) follow from inserting expansions (5.29) and (5.30)
of a1(q) and a2(q) into the definition (6.4) of fµ, and identifying terms with (6.22),

a2m(µ) = g2
qp(t, 0)

[
2(m + 1)µ2 + 1

]
am+1 ,

a2m+1(µ) = 0 ,
(C.4)

with the µ-dependent coefficients am defined in (5.28),

am =
(−1)m+1σ2

m+1

(3 + 2m)(1 + 2m)!
. (C.5)

The first three coefficients in (C.4) are then given by

a0(µ) = (2µ2 + 1)
τ2

2 (t)
30

, (C.6)

a1(µ) = 0 , (C.7)

a2(µ) = −(4µ2 + 1)
τ2

3 (t)
840

, (C.8)

with τ2
n(t) = g2

qp(t, 0)σ2
n , such that we get for the first three coefficients in (C.3)

d0,n(µ) = 1 , (C.9)

d1,n(µ) = 0 , (C.10)

d2,n(µ) = −(n + 3)
a2(µ)

a0(µ)
=

n + 3
28

4µ2 + 1
2µ2 + 1

σ2
3

σ2
2

. (C.11)
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c.1.1 Evaluation of P (0)

With

I0(µ) = −
∞

∑
n=0

Γ
(

n+3
2

)
n!

 √
30µi√

(2µ2 + 1)τ2
2 (t)


n

, (C.12)

we calculate∫ 1

−1
dµ

I0(µ)

(2µ2 + 1)3/2 (C.13)

= −
∞

∑
n=0

Γ
(

n+3
2

)
n!

∫ 1

−1

dµ

(2µ2 + 1)3/2

 √
30µi√

(2µ2 + 1)τ2
2 (t)


n

(C.14)

= −
∞

∑
n=0

Γ
(

n + 3
2

)
(2n)!

∫ 1

−1

dµ

(2µ2 + 1)3/2

(
− 30µ2

(2µ2 + 1)τ2
2 (t)

)n

, (C.15)

where we used in the last step that odd powers of µ vanish in the integral. Using the
result∫ 1

−1
dµ

µ2n

(2µ2 + 1)2n+3/2 =
2

3n+1/2(2n + 1)
, (C.16)

with the help of the computer algebra software Wolfram Mathematica [38], we arrive
at ∫ 1

−1
dµ

I0(µ)

(2µ2 + 1)3/2 (C.17)

= − 2√
3

∞

∑
n=0

Γ
(

n + 3
2

)
(2n + 1)!

(
−10

σ2
2

)n

(C.18)

= −
√

π

3
exp

(
− 5

2τ2
2 (t)

)
. (C.19)

In the last step we used the relation

∞

∑
n=0

Γ
(

n + 3
2

)
(2n + 1)!

xn =

√
π

2
ex/4 , (C.20)

which we obtained with [38].
We finally arrive at the following result for the first coefficient in the asymptotic

expansion (6.24) of P ,

P (0)(t) = 3(4π)3/2

(
5

2τ2
2 (t)

)3/2

exp

(
− 5

2τ2
2 (t)

)
. (C.21)
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c.1.2 Evaluation of P (1)

For the second term in the asymptotics, we start with

I1(µ) =
1

14µ2
σ2

3

σ2
2

4µ2 + 1
2µ2 + 1

∞

∑
n=2

Γ
(

n+3
2 + 1

)
2(n− 2)!

 √
30µi√

(2µ2 + 1)τ2
2 (t)


n

(C.22)

and calculate∫ 1

−1
dµ

I1(µ)

(2µ2 + 1)3/2 (C.23)

=
1
28

σ2
3

σ2
2

∞

∑
n=2

Γ
(

n+5
2

)
(n− 2)!

∫ 1

−1
dµ

4µ2 + 1
µ2(2µ2 + 1)5/2

 √
30µi√

(2µ2 + 1)τ2
2 (t)


n

(C.24)

=
1
28

σ2
3

σ2
2

∞

∑
n=1

Γ
(

n + 5
2

)
(2n− 2)!

(
− 30

τ2
2 (t)

)n ∫ 1

−1
dµ

(4µ2 + 1)µ2n−2

(2µ2 + 1)5/2+n , (C.25)

where we again used that terms with odd powers of µ vanish in the integration. We
obtained the solution for the integral∫ 1

−1
dµ

(4µ2 + 1)µ2n−2

(2µ2 + 1)5/2+n =
2

3n+3/2
31 + 10n

2n(2n + 2)− 3
(C.26)

from [38], which yields∫ 1

−1
dµ

I1(µ)

(2µ2 + 1)3/2 (C.27)

=
1

28k2
2

33/2

σ2
3

τ2
2 (t)

∞

∑
n=1

Γ
(

n + 5
2

)
(2n− 2)!

(
−10

σ2
2

)n
31 + 10n

2n(2n + 2)− 3
. (C.28)

Again from [38], we obtained the sum

∞

∑
n=1

Γ
(

n + 5
2

)
(2n− 2)!

xn 31 + 10n
2n(2n + 2)− 3

=

√
πx

32
ex/4

(
492 + 132x + 5x2

)
, (C.29)

which yields∫ 1

−1
dµ

I1(µ)

(2µ2 + 1)3/2

=

√
π

28 · 33/2

σ2
3

σ2
2

(
5

2τ2
2 (t)

)
exp

(
− 5

2τ2
2 (t)

)

×

123− 132

(
5

2τ2
2 (t)

)
+ 20

(
5

2τ2
2 (t)

)2
 .

(C.30)
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With (C.1), we finally arrive at the second coefficient in the asymptotic series (6.24)
of P

P (1)(t) =
2π3/2

7
σ2

3

σ2
2

(
5

2τ2
2 (t)

)5/2

exp

(
− 5

2τ2
2 (t)

)

×

123− 132

(
5

2τ2
2 (t)

)
+ 20

(
5

2τ2
2 (t)

)2
 .

(C.31)
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d.1 identification of the critical points

Let q > 0 and set ~∇ fµ̃ = 0, then from (7.13) we arrive at the following set of equations

qx

q

(q2
x − µ̃2(q2

x + q2
z)
)( a′2(q)

q2 − 2
a2(q)

q3

)
+ (3− 4µ̃2)

a2(q)
q

 = 0 , (D.1)

qy

q

(q2
x − µ̃2(q2

x + q2
z)
)( a′2(q)

q2 − 2
a2(q)

q3

)
+ (1− 2µ̃2)

a2(q)
q

 = 0 , (D.2)

qz

q

(q2
x − µ̃2(q2

x + q2
z)
)( a′2(q)

q2 − 2
a2(q)

q3

)
+ (1− 4µ̃2)

a2(q)
q

 = 0 . (D.3)

The second equation, (D.2), implies that either

(
q2

x − (q2
x + q2

z)
)( a′2(q)

q2 − 2
a2(q)

q3

)
+ (1− 2µ̃2)

a2(q)
q

= 0 , (D.4)

or qy = 0.

• If (D.4) is satisfied, then (D.1) and (D.3) reduce to

qx

q

(
1− µ̃2

)
= 0 , (D.5)

qz

q
µ̃2 = 0 . (D.6)

Equation (D.5) implies qx = 0 or µ̃2 = 1.

– If qx = 0, then (D.6) implies either µ̃ = 0 or qz = 0. But if µ̃ = 0 = qx, then
(D.3) implies a2(q)

q = 0, contradicting q > 0. If instead qz = 0, then (D.2)
implies

(1− 2µ̃2)
a2(qy)

qy
= 0 , (D.7)

which is possible only for µ̃2 = 1
2 . We conclude that for µ̃2 = 1

2 , all points
on the qy-axis are critical points.

– If µ̃2 = 1, then (D.6) implies qz = 0. Then (D.1) implies a2(q)
q = 0, again

contradicting q > 0.

• If qy = 0 instead, (D.1) and (D.3) remain unchanged.
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– If qx = 0, then (D.3) reduces to

(1− 2µ̃2)
a2(qz)

qz
= µ̃2a′2(qz) . (D.8)

We conclude that a pair of critical points lies on the z-axis, at positions
(0, 0,±qz(µ̃), where qz(µ̃ has to satisfies (D.8).

– If qx 6= 0, then (D.1) and (D.3) imply qz = 0, since a2(q)
q > 0 which is not

possible due to our requirement q > 0. With qy = 0 = qz, (D.1) implies

(1− 2µ̃2)
a2(qx)

qx
= −(1− µ̃2)a′2(qx) . (D.9)

Therefore, we conclude that a pair of critical points is located on the x-axis
at positions (±qx(µ̃), 0, 0), where qx(µ̃) satisfies (D.9).

d.2 derivation of the hessian at the critical points

We start by defining

Q1 :=
1− 2µ̃2

2
,

Q2 := (1− µ̃2)
q2

x
q2 − µ̃2 q2

z
q2 ,

B := 2
a2(q)

q
,

A := Q2
(
a′2(q)− B

)
+ Q1B ,

~v := (1− µ̃2)
qx

q
~ex − µ̃2 qz

q
~ez .

With these definitions , fµ̃ and ~∇ fµ̃ as defined in (7.11) and (7.13), respectively, can be
re-written as

fµ̃(~q) = Q2a2(q) + 2Q1a1(q) , (D.10)

~∇ fµ̃(~q) = A
~q
q
+ B~v . (D.11)

For the Hessian of fµ̃ we then get

(~∇⊗ ~∇) fµ̃(~q) = ~∇A⊗ ~q
q
+

A
q

(
I3 −

~q⊗~q
q2

)
+ B′

~q
q
⊗~v + B~∇⊗~v , (D.12)

with

~∇A =
~q
q

Q2

[
a′′2 (q)− B′ − 2

q
(
a′2(q)− B

)]
+ Q1B′

+
2
q
(
a′2(q)− B

)
~v , (D.13)

and

~∇⊗~v =
1
q

[(
1− µ̃2

)
E11 − µ2E33 −

~q
q
⊗~v

]
, (D.14)
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where we defined E11 = diag(1, 0, 0) and E33 = diag(0, 0, 1). We thus arrive at

(~∇⊗ ~∇) fµ̃(~q) =
A
q

I3 +

Q2

[
a′′2 (q)− B′ − 2

q
(
a′2(q)− B

)]
+ Q1B′ − A

q

 ~q⊗~q
q2

+
2
(
a′2(q)− B

)
q

~v⊗ ~q
q
+

(
B′ − B

q

)
~q
q
⊗~v +

B
q

[(
1− µ̃2

)
E11 − µ̃2E33

]
.

(D.15)

Next, we evaluate the Hessian at the critical points.

Hessian at the origin ~q = (0, 0, 0):

Since

lim
q→0

a′′2 (q) = lim
q→0

2
a′2(q)

q
= lim

q→0
2

a2(q)
q2 = 2

σ2
2

15
, (D.16)

the Hessian at the origin becomes

A(0) := lim
q→0

(~∇⊗ ~∇) fµ̃(~q) =
σ2

2
15

3− 4µ̃2 0 0

0 1− 2µ̃2 0

0 0 1− 4µ̃2

 . (D.17)

Hessian on the x-axis ~q = (±qx, 0, 0):

We now set qz = 0 = qy, implying q = qx and

Q2 = 1− µ̃2 and ~v = Q2~ex , (D.18)

such that the Hessian A(x) := (~∇⊗ ~∇) fµ̃(~q)
∣∣∣
qy=0=qz

reduces to

A(x) =
A
q
(I3 − E11) +

[(
1− µ̃2

)
a′′2 (q) + Q1B′

]
E11 −

B
q

µ̃2E33 . (D.19)

Inserting condition (D.9) that is valid at the critical points, yields

A(x) =


(1− µ̃2)a′′2 (qx) + (2− 3µ̃2)

a′2(qx)
qx

0 0

0 2(µ̃2 − 1) a2(qx)
q2

x
0

0 0 −2 a2(qx)
q2

x

 , (D.20)

where qx = qx(µ̃) is implicitly given by (D.9).

Hessian on the y-axis ~q = (0,±qy, 0):

For ~q = (0,±qy, 0) and µ̃2 = 1
2 , we have

~v = 0 and Q2 = 0 = Q1 ⇒ A = 0 , (D.21)
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such that the Hessian A(y) := (~∇⊗ ~∇) fµ̃(~q)
∣∣∣
qx=0=qz

reduces to

A(y) =
B
q

[(
1− µ̃2

)
E11 − µ̃2E33

]

=
a2(qy)

q2
y

1 0 0

0 0 0

0 0 −1

 .
(D.22)

Hessian on the z-axis ~q = (0, 0,±qz):

Finally, for qx = 0 = qy, we have

Q2 = −µ̃2 and ~v = Q2~ez , (D.23)

such that the Hessian A(z) := (~∇⊗ ~∇) fµ̃(~q)
∣∣∣
qx=0=qy

reduces to

A(z) =
A
q
(I3 − E33) +

(
−µ̃2a′′2 (q) + Q1B′

)
E33 +

B
q

(
1− µ̃2

)
E11 . (D.24)

Making use of (D.8) that is satisfied at the critical points along the z-axis, we get

A(z) =


2 a2(qz)

q2
z

0 0

0 2µ̃2 a2(qz)
q2

z
0

0 0 −µ̃2a′′2 (qz) + (1− 3µ̃2)
a′2(qz)

qz

 , (D.25)

where qz = qz(µ̃) is implicitly given by (D.8).
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PA R A M E T E R S A N D F U N C T I O N S U S E D

e.1 power spectra and transfer functions

• Linearly evolved power spectra are obtained by

Plin.
δ (k, t) =

D2
+(t)

D2
+(t(i))

A(σ8)T2(k)kns , (E.1)

where A(σ8) is the power spectrum amplitude that is determined by σ8 (see 2.45)
by using an exponential filter. T(k) denotes the transfer function, for which we
use either the cold dark matter transfer function (E.4) from Bardeen et al [4], a
damped cold dark matter transfer function (E.6) or a non-cold dark matter-type
(E.7) from Murgia et al [45].

• Linearly evolved damped power spectra,

Plin.(d)
δ (k, t) = e−

σ2
1
3 k2g2

qp
D2

+(t)
D2

+(t(i))
A(σ8)T2(k)kns , (E.2)

are obtained by multiplying (E.1) with the damping factor from KFT as described
in Section 6.2.3 of Chapter 6.

• Free power spectra,

P(k, t) = e−
σ2

1
3 k2g2

qp(t,0)
∫

d3q
(

eg2
qp(t,0)~kᵀĈpp(~q)~k − 1

)
ei~k·~q , (E.3)

are obtained from KFT as described in Section 3.5.3 of Chapter 3.

• The transfer function from Bardeen et al [4] for cold dark matter is

TCDM,ad,X(k) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4

(E.4)

with

q =
k

hMpc−1 Ω−1
X0 exp

[
Ωb0

(
1 +
√

2hΩ−1
X0

)]
, (E.5)

where ΩX0 = Ωm0 −Ωb0 denotes the dark matter density parameter, today.

• The transfer function for smoothed cold dark matter is

T(k) = TCDM,ad,X(k)e−k/(2ks) , (E.6)

where ks corresponds to the smoothing wave number.

• The parameterized transfer function non-cold dark matter-type power spectra
from Murgia et al [45] is

TnCDM(k) = TCDM,ad,X(k)
[
1 + (αk)β

]γ
, (E.7)

where α, β and γ are free parameters, specifying the dark matter type.
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e.2 parameter tables for figures

ΩΛ0 Ωm0 Ωb0 h σ8 ns a T(k) ks [h Mpc−1] Figure

0.7 0.3 0.04 0.7 0.8 0.96 0.001 (E.6) 10 5.1 (a)

1000 5.1 (b)

ΩΛ0 Ωm0 Ωb0 h σ8 ns a P(i)
δ (k) ks [h Mpc−1] Figure

- - - - - - - k e−k/ks 1 5.2

Table E.1: Cosmological and power spectrum parameters used in Figures 5.1 and 5.2.

ΩΛ0 Ωm0 Ωb0 h σ8 ns a(i) Figure(s)

0.7 0.3 0.04 0.7 0.8 0.96 0.001 6.1, 6.2, 6.3, 6.4

6.5 (blue lines), 6.6, 6.7

7.2, 7.3, 7.4

0.0 0.999 0.001 0.7 0.8 0.96 0.001 6.5 (red lines)

0.7 0.3 0.04 0.3 0.8 0.96 0.001 6.5 (purple lines)

Table E.2: Cosmological parameters that are used in Figures 6.1 – 6.7 and Figures 7.2 – 7.4.
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a z T(k) power spectrum ks [h Mpc−1] Figure Line

1/11 10 (E.6) (E.3) 10 6.1 (a), 6.2 (a) purple

(E.4) (E.1) 10 6.1 (a) grey

(E.6) (E.2) 10 6.2 (a) golden

(E.6) (E.3) 1000 6.1 (b), 6.2 (b) purple

(E.4) (E.1) 1000 6.1 (b) grey

(E.6) (E.2) 1000 6.2 (b) golden

1/3 2 (E.6) (E.3) 10 6.1 (c), 6.2 (c) purple

(E.4) (E.1) 10 6.1 (c) grey

(E.6) (E.2) 10 6.2 (c) golden

(E.6) (E.3) 1000 6.1 (d), 6.2 (d) purple

(E.4) (E.1) 1000 6.1 (d) grey

(E.6) (E.2) 1000 6.2 (d) golden

Table E.3: Power spectrum parameters that are used in Figures 6.1 and 6.2.

z T(k) power spectrum ks [h Mpc−1] Figure Line

(see Fig.) (E.6) (E.3) 1000 6.3 (see Fig.)

0 (E.6) (E.3) (see Fig.) 6.4 (see Fig.)

(E.4) (E.1) - 6.4 black

zsc (E.6) (E.3) ∈ [10−1, 104] 6.5 (see Fig.)

zsc = 2.17 (E.6) (E.3) 1 6.6 (a), 6.6 (c) purple

(E.4) (E.1) - 6.6 (a), 6.6 (c) black

zsc = 21.0 (E.6) (E.3) 1000 6.6 (b), 6.6 (d) purple

(E.4) (E.1) - 6.6 (b), 6.6 (d) black

Table E.4: Power spectrum parameters that are used in Figures 6.3 – 6.6.

z T(k) α β γ power spectrum ks [h Mpc−1] Figure Line

zsc (E.6) - - - (E.3) ∈ [10−1, 102] 6.7 blue

(E.7) 1.0 2.0 ∈ [−20.0,−0.02] (E.3) 106
6.7 golden

Table E.5: Power spectrum parameters that are used in Figure 6.7.

a T(k) ks [h Mpc−1] Figures

0.001 (E.6) 10 7.2, 7.3, 7.4

Table E.6: Cosmological and power spectrum parameters used in Figures 7.2 – 7.4.
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