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Zusammenfassung

Die vorliegende Arbeit beschéaftigt sich mit dem statistischen Testen fiir schlecht-gestellte
inverse Probleme. Als Beobachtungen liegen lediglich verrauschte Versionen einer unbekannten
Transformation der uns interessierenden Grofle vor. Statistische Inferenz, bei der typischerweise
eine Inversion der Transformation no6tig ist, wird deshalb als inverses Problem bezeichnet. Beson-
ders herausfordernd sind hierbei schlecht-gestellte inverse Probleme, bei denen die Inversion der
Transformation instabil ist. Unsere vorgeschlagenen nicht-parametrischen Tests bewerten wir
mittels eines nicht-asymptotischen Minimax-Kriteriums.

Die Arbeit besteht aus zwei Teilen, die sich mit unterschiedlichen schlecht-gestellten inversen
Modellen beschéftigen. Im ersten Teil betrachten wir ein inverses Gauf3sches Folgenmodell mit
nur teilweise bekanntem Operator und im zweiten Teil die zirkuldre Faltung. In beiden Modellen
leiten wir Minimax-Separationsradien her. Diese charakterisieren, wie weit ein Objekt von der
Nullhypothese entfernt sein muss, damit der Unterschied von einem statistischen Test erkannt
werden kann. Wir stellen zwei Testprozeduren vor. Zum einen betrachten wir einen (indi-
rekten) Test, bei dem wir mit Hilfe eines Projektionsansatzes den Abstand zur Nullhypothese
schiatzen. Wir zeigen seine Minimax-Optimalitat unter schwachen Annahmen. Der zweite (di-
rekte) Test basiert stattdessen auf einer Schiatzung des Abstandes im Bildraum des Operators
und umgeht dadurch die Inversion des Operators. Auch hier charakterisieren wir die Situa-
tionen, in denen der Test minimax-optimal ist. Die Giite unserer Tests hidngt — wie es in der
nicht-parametrischen Statistik {iblich ist — von der geeigneten Wahl eines Dimensionsparameters
ab. Fiir die Optimalitit des Tests wird Vorwissen iiber die zugrundeliegende Struktur benétigt.
Deshalb beschéftigen wir uns aufferdem mit adaptiven Teststrategien, die ohne solch ein Vor-
wissen auskommen. Wir wenden eine klassische Bonferroni-Aggregationsmethode auf unsere
beiden Testprozeduren (direkt und indirekt) an und untersuchen die resultierenden Methoden
auf ihre Optimalitéat. Verglichen mit den nicht-adaptiven Separationsradien stellen wir eine Ver-
schlechterung um einen logarithmischen Faktor fest. Wir beweisen, dass dieser logarithmische
Faktor ein unvermeidbarer Preis ist, der fiir Adaptivitiat bezahlt werden muss.

Unsere Testmethoden basieren auf der Schétzung eines quadratischen Funktionals, ndmlich
der Distanz zur Nullhypothese. Wir untersuchen den Zusammenhang zwischen den beiden
statistischen Fragestellungen — dem Schétzen des quadratischen Funktionals und dem Testen
— im zirkuldren Faltungsmodell. Wir erldutern, wie sich Resultate fiir eines der beiden Prob-
leme in den Kontext des anderen iibertragen lassen. Abschlieffend betrachten wir Testprobleme
im Zusammenhang mit Datenschutzbeschrankungen. Dabei werden die Daten, bevor sie zur
statistischen Analyse zur Verfiigung stehen, anonymisiert. Das heifit, die Daten werden vor
der Weitergabe an die Statistikerin in einer bestimmten Art abgewandelt, um die Privatsphére
von Individuen zu schiitzen. Wir untersuchen, wie eine solche Privatisierung der Daten die
Aussagekraft der statistischen Tests beeinflusst.
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Abstract

This thesis deals with non-parametric hypothesis testing for ill-posed inverse problems, where
optimality is measured in a non-asymptotic minimax sense. Loosely speaking, we observe only
an approximation of a transformed version of the quantity of interest. Statistical inference,
which usually requires an inversion of the transformation, is thus an inverse problem. Particu-
larly challenging are ill-posed inverse problems, where the inverse transformation is not stable.

The thesis is divided into two parts, which investigate different ill-posed inverse models: the
inverse Gaussian sequence space model with partially unknown operator and a circular convo-
lution model. In both models we derive minimax separation radii of testing, which characterise
how much an object has to differ from the null hypothesis to be detectable by a statistical test.
We propose two types of testing procedures, an indirect and a direct one. The indirect test
is based on a projection-type estimation of the distance to the null and we prove its minimax
optimality under mild assumptions. The direct test is instead based on estimating the energy
in the image space and thus avoids an inversion of the operator. We highlight the situations in
which also the direct test performs optimally. As usual in non-parametric statistics, the per-
formance of our tests depends on the optimal choice of a dimension parameter, which relies on
prior knowledge of the underlying structure of the model. We derive adaptive testing strategies
by applying a classical Bonferroni aggregation to both the direct and the indirect testing pro-
cedures and analyse their performance. Compared with the non-adaptive tests their radii face
a deterioration by a log-factor, which we show to be an unavoidable cost to pay for adaptation.

Since our minimax optimal testing procedures are based on estimators of a quadratic func-
tional, we further explore the connection between the two problems — quadratic functional
estimation and minimax testing — in the circular convolution model. We show how results from
one framework can be exploited in the other. Lastly, we consider minimax testing under privacy
constraints, where the observations are deliberately transformed before being released to the
statistician in order to protect the privacy of an individual.
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Introduction

Inverse problems appear in many fields of science, for instance in climatology, economics and
medicine. We consider non-asymptotic adaptive minimax testing for inverse problems. In this
introduction we explain the main ideas for a general inverse model. The thesis then deals with
the statistical investigations for two specific models; the inverse Gaussian sequence space model
and the circular convolution model.

The testing task. Let (H, (-, )%) and (G, (-,-,)g) be two separable Hilbert spaces and let
T:-H—Gh—sTh

be a linear operator. Based on a noisy observation of Th we aim to make inference on the
element h. Specifically, for a given benchmark h°® we consider the testing problem

Hy:h=h° against Hy:h+#h°,

where optimality is measured in a minimax sense.

Inverse problems

Recovering the original element h € H based on noisy versions of the image ¢ = Th € G is
called statistical inverse problem since it typically requires an inversion of the operator 7T'.
Hadamard [1902] characterises a well-posed inverse problem, given by the equation g = Th,
through three conditions.

» Existence. A solution exists, i.e. there exists an element h € H such that Th = g.
» Uniqueness. The solution is unique, i.e. the operator T is injective.

» Stability. The inverse operator T~! is continuous, i.e. for all € > 0 there exists a § > 0
such that [|g — g||g < 0 implies |[T7'g —T g, <e.

The first two conditions are minimal conditions for the meaningful recovery of the element of
interest h € H. The third guarantees that a good approximation of g automatically yields a
good approximation of T~'g = h. In this thesis we consider ill-posed inverse problems, where
the first two conditions are satisfied but the third condition is violated. If we, however, no
longer require 7! to be continuous, we cannot ensure a good approximation of h even if we can
approximate g well. Regularization methods help to overcome this issue by replacing 7!
with a suitable continuous operator. We briefly mention two common strategies.

» Tikhonov regularization. Given an approximation § of g = Th, instead of considering
T—'G, we take the minimiser of the Tikhonov functional

FiH—R, [ F(f) = ITf = gl% + NIFIZ,



for a regularization parameter A > 0. That is, as an approximation of the solution h we
consider

h € arg min F(f).
feH

The term A || f ||3_[ in the Tikhonov functional F(f) is a regularization term, which enforces
solutions of smaller norm. If ||§ — gl|; — 0 and the regularization parameter is appro-
priately chosen, the approximation & converges to the solution h. We refer to Chapter 5
in Engl et al. [1996] (e.g. Theorem 5.2) for more details.

Projection regularization. Let (b;); be a basis of the Hilbert space H and denote
by Hj := Lin(bj,j < k) the space spanned by the first k basis elements. Projection
regularization searches for the best approximation contained in the finite dimensional
subspace, i.e. given an approximation § of g = Th we consider a minimiser in Hj of the
functional

FiH—R f— F(f) = ITf —3llg
i.e. an element

h € arg min F(f).
feM
as an approximation of the solution hA. In this case the dimension k is the regularization
parameter. We refer to Chapter 3.3 in Engl et al. [1996] for more details and conditions un-
der which the approximation i converges to the true solution h provided that g approaches

g.

Example (Deconvolution). Let us illustrate the concepts with a deconvolution model.
We consider the Hilbert space H = G = .XPZ of 1-periodic complex-valued functions defined

er
on R, which are square integrable on [0,1). The space .2 is equipped with its usual inner

per

product (f,g)z2 = fol f(x)g(x)dz. For & € £72. we define the convolution operator

Te : £2.[0,1) — £2.[0,1),

per per
h — Tg h

given by

1
Teh(y) = /0 &(y — x)h(x)dx, for y €[0,1).

Denote by (e;)jcz with ej(x) = exp(2mijx), € [0,1) the Fourier basis of "S/ﬂpZer and by
h; = (h,e;) 22, € C the j-th Fourier coefficient of an element h € .iﬂpzer. By Parseval’s

theorem an element h belongs to .,iﬂpir if and only if its Fourier coefficients are square
summable. The convolution operator has a representation in terms of Fourier coefficients

given by

Tech=)_&hje;. (%)

JEZ
Let us investigate Hadamard’s conditions for well-posedness.

» Existence. The representation () implies that any combination of g, h and £ € ﬁfgcr
with g = T¢h satisfies g; = ;h; for all j € Z. Hence, for a given pair g and { there



exists a solution if and only if the sequence (%]].{gj;éo})jez is square summable. In
J

this case a solution h of T¢h = g is given through its Fourier coefficients (h;) ez =

(%ﬂ{gﬂéo})jez-

» Uniqueness. Injectivity of the operator T¢ can be expressed in terms of the Fourier
coefficients of the convolution function &, it requires §; # 0 for all j € Z.

» Stability. Naturally, if §; # 0 for all j € Z, we can represent the inverse of T¢ on its
natural domain as

_ 1
T, lg= Z —9je;.
jez >

The inverse operator Ty * cannot be continuous, since & € .prer implies that its Fourier
coefficients tend to zero |§;| — 0 for |j| — oo. Indeed, the Fourier basis (€,)nez
satisfies Hen||?g;g =1 for all n € Z due to the orthonormality, but also

per

2 1
=—75 — 00 for n — oo.
52
|€n]

per

|7

Thus, the operator is unbounded and, hence, not continuous.

Summarizing, deconvolution is an ill-posed inverse problem. The main issue is the dis-
continuity of the deconvolution operation. Let us examine the two regularization methods
in this specific situation.

» Tikhonov regularization. For the deconvolution model the Tikhonov regulariza-
tion, which is generally given implicitly as a minimization task, has an explicit repre-
sentation (see Engl et al. [1996], Chapter 5.1.) given by

- &
h = Gie;
2 i<
JEZ 1617+ A
for an approximation g of g = T'h. The approximation error is now no longer amplified

through the multiplication with the unbounded coefficients é, j € Z, which have

instead been replaced by bounded counterparts

& .
i J €2

» Projection regularization. Also the projection regularization takes a simpler form
in the deconvolution model, it is given by

5 I5
h:Z
j=—k

=}

A%

J
€55
J

where the truncation to only a finite number of dimensions stabilizes the regularized
solution.

Non-asymptotic minimax testing theory.

Basic notions from statistical testing. Denote by ) the space of observations and by Py,
the probability distribution associated with noisy observations of Th. A statistical test is a

measurable function A : ) — {0,1}. By convention, for a observation y € ) we understand
A(y) = 1 as the decision to reject the null hypothesis and A(y) = 0 as accepting the null. There

are two kinds of errors that can occur. The type I error is to reject the null although it is

3



true, this occurs with probability Pp.(A = 1). The type II error arises when accepting the
null although it is not true, i.e. for some h contained in the alternative H; it happens with
probability P,(A = 1). For a € (0,1) a test A is said to have level a, if the type I error
probability is bounded by «, i.e. Ppo (A = 1) < . It is said to be (1-8)-powerful, 5 € (0,1),
for the element h € H if the type II error probability is bounded by 3, i.e. Pp(A = 0) < S.

Minimax theory. Given a test A : Y — {0,1} we measure its performance by how well it is
able to distinguish between the null hypothesis and elements that are in some sense separated
from the null. Formally, for a separation radius p > 0 and a non-parametric regularity class &£
we consider the testing task

Hy:h=h° against HY :||h—h°|l3 > p,h—h° €€, (ITT)

where the null hypothesis Hj and the alternative HY are separated to make them statistically dis-
tinguishable. If h° is the null element in the Hilbert space, the testing task (I'T'T) is called signal
detection, since the aim is to detect a non-zero signal h. Otherwise we call it a goodness-of-fit
testing task. We define the maximal risk of a test

R(A|Ep) =P (A=1)+ sup P,(A=0),
h=h°ll3=p
h—h°€&

as the sum of the type I error probability and the maximal type II error probability over the
p-separated alternative. The difficulty of the testing task is then characterised by the minimax
risk

R(E p):=mfR(A]E p),

where the infimum is taken over all possible tests. Generally three factors influence the difficulty
of the testing task: the ill-posedness of the operator 7', the regularity class £, and the noise level
or the number of observations with which we observe Th = ¢. In particular, we are interested
in the minimal distance by which we need to separate the null hypothesis and the alternative
such that there exists a test that can tell them apart with high probability. Formally, a radius
p? is called minimax separation radius or minimax radius of testing if for all a € (0,1)
there exist constants A,, A, > 0 such that

(i) for all A > A, we have R (€, Aps) < a, (upper bound)
(ii) for all A < A, we have R (€, Aps) > 1 —a. (lower bound)

Condition (i) essentially states that if we separate the null and the alternative further than
Aups, the minimax risk is smaller than a. We show the upper bound (i) by constructing a
testing procedure (Aa)qe(0,1), Which satisfies the required risk bound. Condition (ii) guarantees
the opposite: if we allow elements that are closer to the null hypothesis than A, px the sum of
error probabilities is large, no matter which test we choose. The lower bound (ii) is typically
proved by exploiting reduction arguments, showing the lower risk bound for an arbitrary test.

4
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Visualization of the minimax radius of testing. Elements in the green-striped area are far
enough away from the null, i.e. separated by at least A, ps, to be detected with high probability.
That is, there exists a test with minimax risk over the A,p,-separated alternative smaller
than «. Elements closer to the null hypothesis h° than A, p, (orange-striped area) cannot be
statistically distinguished from the null. If we include such elements in the alternative, the risk
of any test is larger than 1 — a. The detection boundary is given by the minimax separation
radius py.

Other notions of separation radii. The notion of the minimax separation radius used in
this thesis can e.g. be found in Collier et al. [2017]. There exists an alternative definition, which
was pioneered by Baraud [2002]. Therein the levels a € (0,1) and 8 € (0,1) for the error prob-
abilities are fixed and one searches for the smallest separation radius such that there exists an
a-test that is (1 — 3)-powerful over all separated alternatives. Since the derivations of our upper
bounds are done by controlling the type I and the maximal type II error probabilities separately
(compare Proposition 1.2.1, Proposition 2.2.1 and Proposition 4.2.1), it would also be possible
to derive separation radii in the sense of Baraud [2002]. We emphasise that both definitions of
the minimax radius of testing are entirely non-asymptotic, in other words they do not require
the noise level to vanish or the number of observations to tend to infinity. Nonetheless, often
one is interested in the behaviour of the separation radii when the noise level tends to zero
or the sample size increases. In this situation the radii are referred to as rates of testing or
separation rates. Analogously to the estimation theory for inverse problems, where there exist
asymptotic (cp. Carrasco et al. [2007]) as well as non-asymptotic approaches (cp. Cavalier [2008]
or Efromovich and Koltchinskii [2001]), there is an asymptotic framework for minimax testing,
which was mostly established in the series of papers Ingster [1993a], Ingster [1993b], Ingster
[1993c]. We refer to the monograph Ingster and Suslina [2012] for an extensive overview and
the paper Marteau and Sapatinas [2015], which explores the connection between the asymptotic
and non-asymptotic setting.

The first objective of this thesis is to derive (non-asymptotic) minimax separation radii for
general classes of non-parametric alternatives £ and operators T'. For the upper bounds we
construct tests that are based on projection-type estimators gz of ||h — hOH?H, where k € N
is a truncation parameter. This is a natural approach when considering the testing problem



(I'T'T) since the hypotheses are separated by this quantity. We reject the null hypothesis if
the estimated value q,ﬁ exceeds a certain threshold. Deriving upper bounds then requires
bounds of the quantiles of these projection-type estimators under the null hypothesis and the
alternatives. The upper bounds mimic a classical bias? - variance trade off, which calls for
an optimal choice of the truncation parameter k. For the upper bounds the essential tools
(i.e. Bernstein-type concentration inequalities) highly depend on the observational model
and the particular Hilbert space that is considered. Lower bounds are shown by reducing
the testing risk to a distance of probability measures. The key points in these proofs are
the construction of suitable so-called candidate elements and bounds for the y2-divergence
or the Kullback-Leibler divergence over mixtures of these candidate elements.

Since our minimax optimal tests are based on estimators of the quadratic functional h —
||h — h°||§_[, another aim of this thesis is to highlight the connection between the two prob-
lems — quadratic functional estimation and minimax testing. We show how results from
one framework can be exploited in the other. Although the problems are clearly closely
connected, they feature structurally different behaviour in the radii and we come to the
conclusion that, roughly speaking, testing is always faster than estimation.

Direct and indirect approaches. There occurs an interesting phenomenon when treating
minimax testing in inverse models. Generally speaking, the ill-posedness of an inversion causes
additional difficulties, which can be avoided in the context of testing. Given noisy observations
of T'h it is natural to consider a direct testing task

HY :Th="Th° against HP : Th #Th°,

which can be solved without an inversion of the operator T'. By investigating the direct testing
problem we shift the statistical inference from the pre-image space H to the image space G of
the operator T'. Moreover, for an injective (known) operator 7' the null hypotheses of the direct
problem (Th = Th°) and of the indirect problem (h = h°) coincide. By using a test that is
conceptionally constructed to solve the direct testing problem, i.e. where the statistical analysis
is conducted in the space G, for the indirect testing problem, we circumvent the additional
instability typical for inverse problems. Formulating the direct testing problem from a minimax
point of view, we again introduce a separation of the null hypothesis and the alternative, which
yields

HY :Th=Th®  against  HP":|Th—Th°|, > p,Th—Th® € F, (DTT)

for an appropriately transformed regularity class F. Laurent et al. [2012] show that in specific
situations a test that is minimax optimal for direct testing task (DT'T) is also minimax optimal
for indirect testing task (ITT). In these situations an inversion of the operator is unnecessary
and, thus, should be avoided. The key point of such a result is an embedding of the form

(Ul = 1]l > poh = 1° € €} S {|Th = Th°lly, > 6, Th — Th° € F},

which naturally involves both characteristics of the operator T" and the regularity classes £ and F.

The second objective of this thesis is to investigate the performance of direct testing pro-
cedures (constructed to solve (DTT)) for the indirect testing task (ITT) and to derive
conditions under which they perform optimally. That is, we aim to characterise the situ-
ations in which an inversion is advisable and the situations in which it can be avoided in
terms of properties of the regularity class £ and the ill-posedness of the operator T'. In
particular, we explore what happens in the case of an unknown operator 7. We point
out that the null hypothesis Th°® of the direct testing problem is — in the case of un-




known 7" — only prespecified if h° is the null element in the Hilbert space H (since it gets
mapped to the null element in the Hilbert space G by the linear operator T'). Therefore,
there is a natural distinction between signal detection (testing against the null element) and
goodness-of-fit problems (testing against a prescribed non-zero element) if the operator is
unknown. In signal detection we build tests that are based on a projection-type estimation
of ||Th||§_[, where we have direct access to noisy observations of T'h. For the goodness-of-fit
it is natural to base a test on the estimation of || Th — Th"H?{. However, if T' is unknown so
is Th°, which thus has to be estimated. Nevertheless, our upper bounds for the direct test
are again given by a bias? - variance trade off and in many cases coincide with the minimax
separation radius (up to constants).

Adaptation. The tests constructed for solving (I'T'T) and (DTT) typically requiring an op-
timal choice of a tuning parameter depending on properties of the regularity class £ and the
operator 1. Hence, these testing procedures are not adaptive, i.e. not assumption-free.
Preferably we want our tests to perform (nearly) optimal over a wide range of classes £ (and
operators T') simultaneously and without requiring any a priori knowledge about the underlying
structure. In non-parametric estimation adaptation methods often include data-driven choices
of tuning parameters (cp. Birgé [2001]) or aggregation approaches (cp. Tsybakov [2004]). In
nonparametric testing, adaptation is most commonly approached by multiple testing procedures.
A classical method is the Bonferroni aggregation of tests, where one considers a maximum-test
over an appropriately chosen (finite) class, which rejects the null as soon as one of the tests in
the collection does. Let us be more precise. Assume we have constructed a finite collection of
tests (Ag,a, ke, where for each tuning parameter k € IC the test Ay, = ]l{éli>7k( ) with

o
test statistic 61,% and threshold 74 (o) is of level oy, € (0,1). Let >, cxc o = o and consider the
maz-test

Ara=1 {?Ea%{éifm(ak)}w} '

The maximum structure of the test allows for an easy control of the type I error probability,

Ppo (A]Qa = 1) < Z Ppo (Ak,ak = 1) = Z ap = «
kel kel

and the type II error probability
]P)h (A]Qa = 0) S gcnelllcl Ph (Ak,ak = 0) .

Therefore, the max-test behaves (almost) as well as the best test contained in the collection.
Hence, for each alternative that we want to adapt to, the set X should be chosen such that
there exists a (nearly) optimal test in the collection. The notable difference is that « has been
replaced with «a; and the cost to pay for adaptation is characterised by the difference of the
power of the tests Ay, and Ay ,. Thus, aggregation (and therefore adaptation) of tests typ-
ically involves a deterioration of the radius of testing. This idea is formalized by introducing
an adaptive factor, which characterises the loss. A natural question arises: Is the cost that
we pay for adaptation due to a suboptimal testing strategy or is it caused intrinsically by the
problem and is, hence, unavoidable?

The third objective of this thesis is to propose adaptive testing procedures, to characterise
the cost to pay for adaptation and to show that this cost is unavoidable. Though the
aggregation of tests can be executed for many testing strategies, determining minimal (un-
avoidable) adaptive factors is especially demanding. Typically it requires the construction
of a-level tests such that their dependence on « is in some sense optimal (often this means
it mimics the behaviour of Gaussian quantiles). In the notation above this translates to




minimal changes in the threshold 74 (a) when « is replaced with the smaller quantity ay.
It requires a sharp control of the quantiles of a test statistic using for example Bernstein-
type inequalities. We characterise adaptive factors in terms of arbitrary collections IC and
general sets of alternatives. Unavoidability of a deterioration in the rate for adaptation has
mainly been considered in the setting of asymptotic minimax rates and only for specific
smoothness classes (Spokoiny [1996]). We provide general conditions on the complexity of
the set of alternatives and the size of the unavoidable adaptive factor. Interestingly, this
general result allows us to derive the minimal adaptive factors for widely considered sets of
alternatives. Lower bounds for the adaptive factors are particularly challenging since they
involve an additional mixture over various alternatives, which complicates the calculations
e.g. for y2-divergences over mixtures and requires a delicate construction of the candidate
densities.

Privacy constraints. In recent years making data publicly available while still protecting the
privacy of an individual has become an increasingly important task. Statistical inference under
a local differential privacy constraint, where only anonymized versions of the observations are
available, is a highly demanding challenge. Roughly speaking, each data holder transforms the
observation according to a random mechanism before passing the data on to the statistician.
Ideally such a mechanism should protect the privacy of an individual while preserving the in-
formation that is needed to make meaningful statistical inference. In general, the task here is
twofold: one has to develop data-release mechanisms that guarantee a certain level of privacy
and statistical methods that perform well based on privatized observations.

We consider minimax testing for inverse problems in a local differential privacy setting and
investigate how different levels of privacy protection influence the separation radii.

Contributions and structure of this thesis

In this thesis we consider two statistical models: The Inverse Gaussian sequence space model
(part I) and Circular convolution (part II), which are introduced in detail at the beginning of
the respective parts of this thesis. Let us briefly put the two models in the context of the general
inverse problem described in this introduction. In the inverse Gaussian sequence space model
we consider the Hilbert spaces H = G = £2(N) of square-summable real-valued sequences and
a multiplication operator Th((x;);jcz) = (A\jz;)jez. We make inference on the sequence (z;);ez
based on an observation of the image sequence (Ajz;)jcz contaminated by additive Gaussian
noise. In the circular convolution model we consider Hilbert spaces H = G C .£?[0, 1) of square-
integrable densities and a (circular) convolution operator T¢ f = f@. We assume that we have
independent and identically distributed observations from T¢ f at our disposal and aim to make
inference on f. In each chapter we mention further references regarding the respective models
and specific testing tasks in the related literature-paragraphs, putting the contributions of
this thesis into more detailed context. Let us summarize the main results of this thesis.

Inverse Gaussian sequence space model

» Adaptive minimax testing with partially known operators (Chapter 1)
In this chapter we derive minimax separation radii, compare direct and indirect testing
procedures and carry out adaptation strategies for both. The main challenge of this chapter
is the fact that the multiplication operator is unknown, but can be observed contaminated
by additive noise. Interestingly, we show that for unknown operators the minimax radii
depend on the null hypothesis h° and that in the case of signal detection the error in the
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operator does not appear in the radii. The results of this chapter are published in the
preprint Schluttenhofer and Johannes [2020a].

» Testing of linear functionals (Chapter 2)
In this chapter instead of testing h° we test the value of a linear functional L(h°) and
derive the corresponding minimax radii of testing. The content of this chapter originated
from a discussion with Félix Beroud and Clément Marteau from the University of Lyon I.

Circular convolution model

» Minimax testing and quadratic functional estimation (Chapter 3)

In this chapter we explore the connection between (minimax) quadratic functional estima-
tion and (minimax) testing, which is natural since in the testing task the null hypothesis
and the alternative are separated by a quadratic functional h — ||h — hOH%. We derive
both minimax radii of testing and minimax estimation rates. We show that — although the
problems are clearly closely connected — the typical elbow effect that occurs in quadratic
functional estimation does not appear in the testing task. Our proofs yield a heuristic ex-
planation for this effect: the elbow effect is caused by elements with large energy (i.e. large
||h — h°||3_[), these are difficult to estimate, but easy to test, since they are far away from
the null hypothesis. The results of this chapter are published in the preprint Schluttenhofer
and Johannes [2020b].

» Adaptive minimax testing for circular convolution (Chapter 4)

In this chapter we again derive minimax separation radii, compare direct and indirect
testing procedures and carry out adaptation strategies for both. Considering minimax
testing in a circular convolution model is a natural extension of the Gaussian sequence
space model, since we identify functions on the circle with their coefficients (forming a
sequence) with respect to an appropriately chosen basis. There are, however, some new
challenges. Firstly, the objects we consider are no longer Gaussian, which requires the
application of different concentration results to prove upper bounds. Moreover, concerning
lower bounds, which involve controlling y2-divergences between mixtures over candidate
densities, we require estimates also for non-Gaussian distributions. The results of this
chapter are published in the preprint Schluttenhofer and Johannes [2020c].

» Testing under privacy constraints (Chapter 5)

In this chapter we assume that only privatized samples, i.e. deliberately transformed obser-
vations, are available and investigate privatization mechanisms and corresponding testing
strategies. The first insight of this chapter is the fact that it is not advisable to perturb
the observations themselves since this mimics an artificial convolution, which results in a
significant deterioration of the rates. Instead perturbation of the coefficients of the density
of interest in a certain basis are considered. We establish a general upper bound which can
be applied to an arbitrary privatization method of the coefficients and provides bounds
involving the variance of the privatized coefficients. We show that the standard privati-
zation method of adding Laplace noise fails to perform optimally and is outperformed by
a more involved privatization method called hypercube sampling. Comparing our results
with findings in direct models, we conjecture our obtained radii to be minimax optimal and
provide a preliminary framework for a possible lower bound in the Perspectives section.
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Part 1

Inverse (Gaussian sequence space
model
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Inverse (Gaussian sequence space
model

Let (H, (-,-)%) and (G, (-,,)g) be separable infinite-dimensional real Hilbert spaces' and let
T-H—Gh—sTh

be a linear bounded” operator. In this section we specify the kind of noisy observations from Th
that we consider in the first part of this thesis. We assume that we can observe the element Th
projected onto test functions, i.e. the observable quantities are of the form (Th, f)g for f € G
and are contaminated by additive Gaussian noise. Firstly, we explain how to translate observ-
able quantities of the form (T'h, f)g for f € G into an (indirect) sequence space model and give
some examples where this occurs naturally. Next, we give a motivation for considering additive
Gaussian errors in the sequence model context.

Sequence models

We distinguish three cases for the operator T'. Let us start with the elementary case.
> Let (H, (-, )n) = (G,(,-,)g) and let T = Idy be the identity on H.

Let (¢;)jen be an orthonormal basis of #. Such a countable basis exists, since H is assumed to
be separable. For any j € N and h € H let us define

<Th7<10]>7'[ = <ha QOJ>H = ‘9]’

where the sequence of coefficients (;) jen characterises the element of interest completely through
the basis representation h = > cn(h, 0j)np; = > jen ;. The observational model is then
given by the sequence

Y;=0;+e¢  with &S N(0,1), jeEN, (GSSM)

which is called the (direct) Gaussian sequence space model with noise level ¢ > 0. It is
called direct since we have direct access to noisy observations of the sequence of interest (6;);en.
The model GSSM has received a lot of attention in the statistics literature, we only mention
Baraud [2002], Ingster and Suslina [2012], Collier et al. [2017] and refer to the references therein.

» Let T be an injective operator with known singular value decomposition.

LA Hilbert space is a real or complex-valued complete metric space with a distance function that is induced
by an inner product. Complete means that every Cauchy sequence has a limit within the space. A Hilbert space
is separable if and only if it has a countable orthonormal basis.

2T is bounded if and only if there exists an M > 0 such that IThllg < M ||R||,, for all b € H.
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We call a triple (;,1;, \j)jen, consisting of a basis (¢;)jen of H, an orthonormal system (v;) jen
in G and a sequence (\j)jen € RN, a singular value decomposition of the operator T' if it
can be represented in the form

Th=3 Alh.pj)u;  forallheH.
JjeEN

The elements (¢;)jeny and (1;)jen are called singular vectors, (\;)jen are called singular
values. If the singular value decomposition of an operator is known, we can project the element
Th € G onto the singular vectors. For any 7 € N and h € G we then obtain

(Thyiyg = (> Ml or)utbe 5)g = Ajh, j)n = Ajb;,
keN

where again the sequence of coefficients (6;);en characterises the element of interest completely
through the basis representation h = Zj€N<h, ©i)HP; = 2 jen Ojp;. The observational model is
given by

Yy =X +e&;  with &R N(0,1), jeEN, (IGSSM)

which is called the indirect Gaussian sequence space model with noise level ¢ > 0. Since T’
is assumed to be injective, we have \; > 0 for all j € N and the parameter (;);cn is identifiable
in the model (IGSSM). If \; — 0 for j — oo, the model (IGSSM) is called ill-posed,
since a decaying sequence (\;);ecn weakens the signal of interest (0;);en and, thus, inference on
(65)jen becomes more difficult. Otherwise it is called well-posed. The degree of ill-posedness
is measured by the decay of (Aj)jen. The problem is called mildly ill-posed if the sequence
(Aj)jen decays polynomially and severely ill-posed if it decays at an exponential rate. A
singular value decomposition with decaying singular values (yielding an ill-posed model) exists
for instance for compact operators (Werner [2006], Theorem VI.3.6.). The model (IGSSM) is
for example investigated in Cavalier and Tsybakov [2002], Ermakov [2006], Cavalier [2008] (all
three considering estimation of (6;),cn), Laurent et al. [2012], Laurent et al. [2011], Ingster et al.
[2012a], Ingster et al. [2012b] (considering testing tasks).

» Let T be an injective operator with known singular vectors (but unknown singular values).

In the case of unknown singular values we assume that we have additional observations of the
operator acting on the singular vectors, i.e. for each 5 € N we have additional observations of
Ty, contaminated by an additive error. Due to T¢; = > oy M (@), 0k) e = Aj¥; and the
orthonormality of the singular vectors we obtain

(Tji)n = Aj.

That is, we assume that additionally to the observations given by (IGSSM) we have at our
disposal noisy observations of (\;);en:.

iid

Y; = X605 + €& with & ~N(0,1),5 €N, (IGSSM)
s = g =F @ with s Y N(0,1),5 € N. (partially known)

This model is called the indirect Gaussian sequence space model with partially known
operator and noise levels €,0 > 0, since the singular vectors are given, but not the singular
values. This model was introduced in Cavalier and Hengartner [2005] and is also considered
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in Johannes and Schwarz [2013] (estimation), Marteau and Sapatinas [2017a] and Kroll [2019a]
(testing). A similar model is considered in Butucea et al. [2008]. For a sequence space model
with fully unknown operator we refer to Efromovich and Koltchinskii [2001], Marteau [2006]
and Hoffmann and Reiss [2008]. In Chapter | we consider a further generalization of the partially
known (IGSSM), where we allow the noise levels € and o to depend on the index j, which is
then called a heterogeneous model.

Examples

We give some concrete examples of statistical models, where an indirect sequence space model
appears naturally.

Example (Inference on derivatives.). (compare Alquier et al. [2011], Section 1.1.6.2.)
Let H = £2[0,1) be the Hilbert space of (complex-valued) square integrable functions
defined on [0, 1) equipped with its usual inner product. Consider the Fourier basis e;, j € Z
of £2[0,1) with ej(x) = exp(2mijz) and for a function h € £2[0,1) its Fourier coefficients
fj == (f,ej)n. Assume we are interested in the -th derivative of a function f, which can
be expressed in the terms of the Fourier coefficients as follows

FB =" (2mi5)P fe;,

JEL
i.e. the parameter of interest is given by the Fourier coefficients of the S-th derivative
0; = (2mif)°f;,  JEZ
but we only have at our disposal the sequence space analogue to a noisy observation of
the sequence f; = (27rij)*59j, jJ € N. This is a mildly ill-posed problem, where we have

complete knowledge of the sequence (\;);en = ((2m' j )*B)jeN, since it is predetermined by

the Bth-derivative that we are interested in.

Next, we present an example, where the singular value decomposition of the considered
operator is fully known.

Example (Tomography). (compare Baumeister and Leitao [2005], Chapter 5 and Alquier
et al. [2011], Section 1.1.6.5. and the references therein) In tomography a goal is to obtain
an image of the structure of an object. We assume this structure is characterised by the
function f. In X-ray tomography we observe the initial (Ip) and the final (1) intensity of
an X-ray passing through the object of interest. We denote by I(z) the intensity at a point
x, the standard mathematical model for the behaviours of the intensity is given by

I'(z)
I(x)

= /(@)

for any point x in the object, which implies

" @)

[ = [ T8 e = posti@izy = 10g (1)

where x¢ and x; denote the starting and the end point of a line. Hence, observing the initial
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Ip and final I; intensity is equivalent to observing line integrals

exp(~ [ f(z)de)

of the function of interest f. Let us formalize this model by writing it as a linear operator
equation. Assume for simplicity that our object is contained in the two-dimensional unit
sphere B := {x € R? | 22 + 23 < 1}. We consider the following parametrization of a line

Ly, = {z €R?| z:t<cfjw) +s<_SIW>,s € R}
sin cos ¢

for t € [0,1] and ¢ € [0, 27), which is visualized below.

cos()
tcin())

t(Giniey) + 5Cme) ) 5 € R

The line integrals of a function f : B — R are given by

1/1_152 o
/ f(z)dz = / f (t (C?S 90) + s( S ¢>> ds,
Li,,NB Vi sin ¢ COs ¢
and the line integrals can be viewed as functions of (¢, ¢). The Radon transform is defined
as the operator that maps a function f to the line integrals, formally

R: Z*B) — £%([0,1] x [0,2n],du)

with

i
Rt ) = s /L O

i.e. Rf(t,p) is the m-the average of f along the line L, restricted to the unit circle. By
£2([0,1] x [0, 27], dit) we denote the square integrable functions with respect to the measure
W= @dtds (which simply reverses the normalization). It can be shown that the Radon
transform R is a linear, bounded and compact operator and its singular value decomposition
is known.
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The last example presents a case in which the singular value decomposition is only partially
given.

Example ((Circular) convolution). (compare Werner [2006], Exercise VI.7.8.) We con-
sider the Hilbert space H = .2 [0,1) of 1-periodic complex-valued functions defined on R
that are square integrable on [0,1). Let f € £2,[0,1) be fixed (but unknown) and define

the operator
T:H—H,h—Th

where
Th(z) = /[0’1) h(t)f(z — t)dt.

It is straight-forward to see that 7' is a well-defined linear compact operator. Indeed, it is an
integral operator with square integrable kernel k(z,t) = f(x —t) (Werner [2006], Example
I1.3.(c), p.67). Thus, its admits a singular value decomposition. Again, denote by e;, j € Z
with e;(z) = exp(2mijz), x € R the Fourier basis of zger[o, 1) and by f; := (f, e;)n the
Fourier coefficients of the convolution function f. Then, (ej,e;, fj)jcz is a singular value
decomposition of T'. It is remarkable that the singular basis (e;);cz does not depend on the
function f that we convolve with. So even if f is unknown, we have partial knowledge about
the operator — its singular vectors are known, its singular values are unknown. Depending
on the regularity of f, this is either a mildly ill-posed (in the case when f is ordinary
smooth) or a severely ill-posed model (in the case when f is super smooth) with partially
known operator.

Additive noise

Let us briefly motivate why the model assumption of additive noise is natural in the statistical
context. An extremely well-studied statistical model is nonparametric regression, which can
be found in the following simplified form in many textbooks (e.g. Tsybakov [2009]). Based
on observations of the equally-spaced point evaluations of a (square-integrable) function f €
£20,1) defined on [0, 1), i.e.

Zij=f (i) + ¢, where ¢ ﬁwd./\/(O, 1), forje{l,....n}, (NR)

we aim to make inference on the function f. The additive noise structure when observing
functions is a widely accepted model assumption. We want to explain how this assumption
can be transferred to the sequence space model. For any function ¢ € £2[0,1) we define the

vectors of point evaluations ¢ = (¢ (%)) je{1,...ny in R™. Moreover, we equip the space R" with

the inner product (a,b), = %2?21 ajbj. Let (@m)men be an orthonormal basis of £2[0,1)
that satisfies (o, @m)n = % 1 (%) Om (%) = O for all I,m € {1,...,n—1}, ie. its
associated vectors are also orthonormal in (R™, (-, -),,) (one could e.g. consider the trigonometric
basis (cp. Tsybakov [2009], Lemma 1.7.)). We define for Z = (Z1,...,2Zy), ¢ = (C1,-..,¢n) and
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ke {1,...,n} the quantities

j=1
j=1
& = VIl erin = 4= 3 Gen(2) N (0, 1).
j=1

Then (NR) implies with ¢ = ﬁ that

Y = U + €&, for ke {1,...,n}. (TSSM)

Note that v = (f, Yr)n, k € {1,...,n} are discrete versions of the Fourier coefficients 6; =
Jioy f(@)¢r(z)dz. Hence, (TS5M) can be viewed as a truncated version of the Gaussian se-
quence space model, which is well approximated for the idealized case n — oo. Considering
observations as in (NR) of equally spaced point evaluations of T'f in an inverse model, we
obtain a similar motivation for the additive error the inverse sequence space model.

Notation

With the index e we indicate sequences. For two sequences z, = (2;)jen, Yo = (y;)jen € RY
operations and inequalities are defined component-wise, i.e. 22 = (x?)jeN, To/Ye = (2j/Yj)jen

and for c € R, z, < cy, if z; < cy; for all j € N. We denote

%= A(N) := {az. eRY: Z:c? < oo},

jeN
02 :=(*®(N) := {x. e RY: sup |z;| < oo}

jeN

The space 2 := (*(N) equipped with (z,,y.)e = 2 jeNTjYjs Hx.||gg = > jeN 9:? is a Hilbert
space of square summable sequences, (>° equipped with ||z, ||« = sup;cy|7;| is a Banach space
of bounded sequences. For K C N we denote the smallest minimiser, if it exists, by

arg minxy := min{k € K : z < z; for all j € K}.
kel

For two functions f,g : R — R we write f(¢) < g(e) (as ¢ —» 0) if there exists a constant
C' > 0 such that f(e) < Cyg(e) for all £ small enough. We write f(g) ~ g(e) if both f(e) < g(e)
and g(¢) < f(e) and say that f and g are of the same order.

Moreover, by #? = £?%[0,1) we denote the Hilbert space of real-valued square inte-
grable functions defined on the half-open unit interval [0,1) equipped with the inner product

(f,9)92 = [y f(x)g(z)dz.

Finally, for k € N we use the short-hand notation [k] for the set {1,...,k}.
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Chapter 1

Adaptive minimax testing with
partially known operators

1.1 Introduction

In an inverse Gaussian sequence space model with additional noisy observations of
the operator we derive upper bounds for the non-asymptotic minimax radii of testing
for ellipsoid-type alternatives, simultaneously for both the signal detection problem
(testing against zero) and the goodness-of-fit testing problem (testing against a pre-
scribed sequence) without any regularity assumption on the null hypothesis. The
radii are the maximum of two terms, each of which depends on one of the noise
levels. Interestingly, the term involving the noise level of the operator explicitly de-
pends on the null hypothesis and vanishes in the signal detection case. We provide
a matching lower bound in the case when the operator is observed with the same or
smaller noise level as the sequence of interest. We consider two testing procedures,
an indirect test based on the estimation of the distance to the null and a direct test,
which is instead based on estimating the energy in the image space. We highlight the
assumptions under which the direct test performs as well as the indirect test. Fur-
thermore, we apply a classical Bonferroni method for making both the indirect and
the direct test adaptive with respect to the regularity of the alternative and derive
separation radii for these tests. The radii of the adaptive tests are deteriorated by an
additional log-factor, which we show to be unavoidable. The results are illustrated
considering Sobolev spaces and mildly or severely ill-posed inverse problems.

The statistical model. We consider an inverse Gaussian sequence space model with het-
eroscedastic errors and unknown operator

Y = Aj05 + €5,
Xj=X+oi&,  JeEN, (1.1.1)

where A\, € ¢* is an unknown bounded sequence, 6, € ¢? is an unknown square summable
sequence, €, € RI}i and o, € RI}]_ are known sequences of positive real numbers, called noise levels,
and fj,fj BN (0,1). The sequences Y, and X, are therefore independent with independent
Gaussian components, we denote their respective distributions by Y, ~ Pi'.e. and X, ~ Pi: and

their joint distribution by (Y., X.) ~ P2 S:.
Related literature. Model (1.1.1) is an idealised formulation of a statistical inverse problem
with unknown operator, where a signal 6, that is transformed by a multiplication with the

unknown sequence A, is observed. In the particular case A\, = (1);jen the model is called direct,
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otherwise inverse, and ill-posed if additionally A, tends to zero. The model is already introduced
in more detail in the previous section. For statistical inference for inverse problems with fully
known operator (corresponding to known A,) we refer to Johnstone and Silverman [1990], Mair
and Ruymgaart [1996], Mathé and Pereverzev [2001], Cavalier and Tsybakov [2002], Cavalier
et al. [2002] and the references therein. Ingster et al. [2012b] describe examples, in which
the inverse Gaussian sequence space model with known A, arises naturally, one of which is
deconvolution (Ermakov [1990], Fan [1991], Stefanski and Carroll [1990]). In our model (1.1.1)
the sequence A, is unknown, but an additional noisy observation of it is available. Cavalier and
Hengartner [2005], Ingster et al. [2012a], Johannes and Schwarz [2013] or Marteau and Sapatinas
[2017a], for instance, provide a detailed discussion and motivation of this particular statistical
inverse problem with unknown operator. An example is density deconvolution with unknown
error distribution (c.f. Comte and Lacour [2011], Efromovich [1997] or Neumann [1997]). Oracle
or minimax optimal non-parametric estimation and adaptation in the framework of inverse
problems has been extensively studied in the literature (see Efromovich and Koltchinskii [2001],
Cavalier et al. [2004], Cavalier [2008], Hoffmann and Reiss [2008], to name but a few). In this
chapter we are, however, concerned with non-parametric testing, which we formalize next.

The testing task. For some benchmark sequence 6° € ¢? we want to test the null hypothesis
{6, = 02} against the alternative {6, # 62} based on the observations (Y,, X,), where A, € £
is a nuisance parameter. To make the null hypothesis distinguishable from the alternative, we
introduce the separation condition

0= {9. c:6.|% > ,02},

which separates the hypotheses in the ¢?-norm by a separation radius p > 0. Additionally,
regularity conditions are imposed on the unknown sequences 6, and A, by introducing non-
parametric classes of parameters © C ¢2 and A C /. We define these classes below such that
they are flexible enough to capture typical smoothness and ill-posedness assumptions. Over
these classes we can write the testing problem as

Hy:60,=0,)\, € A against HY:0,—62 € Ei no,\ €A. (1.1.2)

Roughly speaking, in minimax testing one searches for the smallest p such that (1.1.2) is still

testable with small error probabilities. Following e.g. Collier et al. [2017] we measure the accu-

racy of a test A : RN x RN — {0, 1} by its maximal risk defined as the sum of the maximal type

I and II error probability over the null hypothesis and the p-separated alternative, respectively,
R(A16,A,00,p) :=sup Pyt (A=1)+ sup Pyt (A=0).

Ao EA e EA
Oe—0¢ eéf,m@

and compare it to the minimax risk

R(O,A,0],p) = iIAlfR(A | ©,A,07,p),

where the infimum is taken over all possible tests, i.e. over all measurable functions A : RY x
RY — {0,1}. A separation radius p? (depending on the classes ©, A, the noise levels &,, o,
and the null hypothesis 62) is called minimax radius of testing, if for all & € (0,1) there exist
constants A, € R, and A, € R, with

(i) for all A > A, we have R (©,A,02, Ap) < a, (upper bound)
(ii) for all A < A, we have R (©,A,07,Ap) > 1 —a. (lower bound)

Note that this definition of the minimax radius of testing is entirely non-asymptotic. However,
in our illustrations we compare our findings to existing asymptotic results by considering the
homoscedastic case, i.e. constant noise levels ¢, = (¢)en and o, = (0) ey with €,0 € Ry, and
the behaviour of the radii for € and o tending to zero.
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Related literature. Minimax testing for the direct homoscedastic version of the model
(1.1.1), i.e. Ay = (1)jen, 00 = (0)jen and e, = (€)jen, has been studied extensively in the lit-
erature for various classes of alternatives. Asymptotic results and a list of references can be
found in the book by Ingster and Suslina [2012]. Let us briefly mention some further refer-
ences. Lepski and Spokoiny [1999] derive asymptotic minimax rates for Besov-type alternatives.
Following this result, Spokoiny [1996] considers adaptive testing strategies, showing that asymp-
totic adaptation comes with the unavoidable cost of a log-factor. Baraud [2002] introduces a
non-asymptotic framework for minimax testing and derives matching upper and lower bounds
in the direct model for ellipsoid-type alternatives. Collier et al. [2017] provide similar results
for sparse alternatives, using tests based on minimax-optimal estimators of the squared norm
of the parameter of interest. Carpentier and Verzelen [2019] derive minimax radii of testing for
composite (null) hypotheses, which explicitly depend on the complexity of the null hypothesis.
Both phenomena — an estimator of the squared norm yields a minimax optimal test and minimax
radii depend on the null hypothesis — reappear in our results.

In the inverse problem setting with fully known operator and homoscedastic errors, i.e.
0o = (0)jen and e, = (€)jen asymptotic rates over ellipsoids © are derived in Ingster et al.
[2012a]. Simultaneously, Laurent et al. [2012] establish the corresponding non-asymptotic radii.
Moreover, Laurent et al. [2011] compare direct and indirect testing approaches, i.e. based on the
estimation of ||\, (0, — 9?)”?2 respectively of ||6, — «9?||§2, concluding that the direct approach is
preferable (under certain assumptions), since it achieves the minimax radius without requiring
an inversion. Marteau and Mathé [2014] also discuss how to obtain direct and indirect tests
using general regularization schemes. Marteau and Sapatinas [2017b] derive separation radii
under weak (non-Gaussian) noise assumptions.

Let us now return to the testing task (1.1.2) in the model with unknown operator with
homoscedastic errors. In this situation there is a natural distinction between the cases
0 =0, := (0)jen (signal detection) and 67 # 0, (goodness-of-fit) on which we comment further
below in the next paragraph. Minimax testing in this model is considered in Marteau and Sap-
atinas [2017a] (only goodness-of-fit) and Kroll [2019a] (goodness-of-fit and signal detection, but
treated separately). In the goodness-of-fit scenario Marteau and Sapatinas [2017a] additionally
impose an abstract smoothness condition 6] € © on the null hypothesis and obtain lower and
upper bounds featuring a logarithmic gap. Treating the signal detection task and the goodness-
of-fit testing task separately, Kroll [2019a] establishes matching upper and lower bounds for the
minimax radii of testing uniformly over null hypotheses in ©. Their radii depend on © rather
than on the given null hypothesis 6. Let us emphasize that though we are working in a similar
setting (with the additional generalization to heteroscedastic errors) we instead seek radii
for a given 67, which are typically much smaller than the uniform ones obtained by Marteau and
Sapatinas [2017a] and Kroll [2019a]. Radii or rates of testing, which depend explicitly on the
null hypothesis of the testing problem, are often referred to as local rates of testing (c.f. Bal-
akrishnan and Wasserman [2019], Balakrishnan and Wasserman [2018] and Wei and Wainwright
[2020]) as opposed to uniform rates of testing, which are derived for classes of null hypotheses.

Minimax results. In this paper we derive upper bounds for the non-asymptotic minimax
radii of testing in the inverse Gaussian sequence space model simultaneously for both signal
detection (6 = 0,) and goodness-of-fit testing (0 # 0,) without any regularity assumption on
the null hypothesis 67. For known operators (o, = 0,) there is typically no distinction between
the goodness-of-fit and the signal detection task. Minimax results for the goodness-of-fit task can
be obtained from the signal detection task by simply shifting the observations, i.e. considering
the sequence Y, — A,0? instead of Y,. This is obviously no longer possible if A, is unknown and
02 # 0,, which motivates the separate treatment of the two problems in Marteau and Sapatinas
[2017a] and Kroll [2019a]. To understand the signal detection problem and the goodness-of-fit
testing problem simultaneously we mimic the idea of shifting the observations by reparametrising
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our statistical model via the mapping ¢ : RN x RN — RN xRN (y,,z,) — (y, —0°z., z,), which
is bijective and known. The components of Y, =Y, — #°X, are still independent and follow a

normal distribution Y; = Y; — 03X ~ N ()\j(Qj —07), (53?)2), where (£2)% := €% 4 (63)%07. This
reparametrisation already indicates that with respect to the observations of the operator, the
effective noise level is #S0, instead of the original noise level o,. Thereby the dependence
of the minimax radii on the null hypothesis is explicit. In particular, this shows that the o,-
term in the radius vanishes in the signal detection task (6 = 0,). Furthermore, for o, = 0,
we recover the minimax radii for known operators, which consequently do not depend on the
null hypothesis 6. Using the reparametrised observations (Y,, X,) we propose an indirect test
based on the estimation of a squared weighted ¢2-norm of #° — 6,. More precisely, we use an
estimator that mimics an inversion of A\, by using the class A and aims to estimate the quadratic
functional q,%(@f —0,) = Ejeﬂk:}] (0; — Hj)z. If k is chosen appropriately, the test attains the
minimax radius given by a classical trade-off between the variance of the quadratic functional
and a bias?-term. To avoid the inversion, we investigate a direct testing procedure inspired by
Laurent et al. [2011] that is based on the estimation of the squared £>-norm of A, (62 — 6,). In
contrast to inverse problems with known operator, we show that the direct approach is not always
preferable if the operator is unknown, but characterise situations in which it is. In particular
in signal detection the direct test achieves the minimax radius under very mild assumptions.
Moreover, its advantage over the indirect test is that it only implicitly depends on the knowledge
of the model’s ill-posedness characterised by the class A via an optimal choice of the dimension
parameter k.

Adaptation. For both testing procedures the optimal choice of the dimension parameter k
relies on the knowledge of characteristics of the classes ® and A. A classical procedure to cir-
cumvent this problem is to aggregate several tests for various dimension parameters k into a
mazimum-test, which rejects the null hypothesis as soon as one of the tests does. We apply
this aggregation to both testing procedures and derive the radii of testing of their correspond-
ing max-tests. Thereby, the indirect max-test is adaptive (i.e. assumption-free) with respect
to the smoothness of 8, characterised by a family of ©-alternatives. Comparing its radius to
the non-adaptive radius, there is a deterioration, which we express in terms of the number of
dimension parameters over which we aggregate. Heuristically, the adaptive radius is obtained
by magnifying the error level in the non-adaptive radius by an adaptive factor (cp. Spokoiny
[1996]). Depending on the complexity of the families of ©-alternatives, we show that adaptive
factors of loglog- or even log loglog-order are possible. The indirect max-test is still only adap-
tive with respect to the smoothness of 0,, but explicitly depends on the model’s ill-posedness
characterised by A. In contrast, the direct max-test is adaptive with respect to both smoothness
and ill-posedness. Moreover, we provide a general result (Proposition 1.6.1) which allows to
show the unavoidability of adaptive factors for general collections of alternatives. Previously,
unavoidability results are only known in specific cases (for instance in Spokoiny [1996] provides
such a lower bound for specific Besov-type alternatives in the asymptotic setting). We apply
the general lower bound result to specific types of alternatives (consisting of classes of ordinary
smooth or super smooth Sobolev-type ellipsoids) and prove that the adaptive factors of loglog-
and logloglog-order, which are attained by our max-tests, are an unavoidable cost to pay for
adaptation.

Notation. Due to the many parameters, different noise levels and several radii, the following
chapter is heavy on notation. We therefore provide a notation index for easier orientation.
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Abbreviations

e = \/e2 + (0°)%0, reparametrized noise level

di(z,) = > jelk] ? quadratic functional

my(z,) = maxjeﬂkﬂ |x]] maximum (up to k)

br(0.) == (10,117 — a7 (6.) bias terms

L, :=+/|logu] log-term, u € (0,1)

ok == (1 Vlog|K)/4 adaptive factor for aggregation over IC
Regularity and ill-posedness

a, € R§0 regularity, non-increasing, bounded by 1
R>0 regularity radius

@aR. C /2 regularity class

Ve € R§O ill-posedness, non-increasing, bounded by 1
c>0 ill-posedness diameter

A5, €U ill-posedness class

AC 72 collection of regularity parameters

Y collection of ill-posedness parameters

Tests, test statistics and thresholds

a2 estimator of qZ(, — 62), defined in (1.2.1)
Tk () threshold for the indirect test, defined in (1.2.7)
Apo = ]l{q2>7k(a)} indirect test, defined in (1.2.8)
k

az estimator of q7(\,(6. — 62)), defined in (1.4.1)
d(a) threshold for the direct test, defined in (1.4.7)
A = ]1{5 >7d(a)} direct test, defined in (1.4.8)

? k k
Tk o = MaXgek {qk — Tk (ﬁ)} (indirect) max-test statistic (over K)
Ag.o = II{T’C .50 (indirect) max-test (over K)
TICCl,a = maXgei {}(}z —rd (ﬁ)} (direct) max-test statistic (over K)
Ad,C’a = II{T’% >0} (direct) max-test (over K)

Separation radii and optimal dimensions

P?L. ve(®a) 1= I;?iél {qk ( ) \Y ak} (indirect) separation radius
s Ve G
kae ve(2s) := arg min {qk ( ) Vv ak} optimal dimension (for the indirect test),
keN

2 — . . .
(pghv. (3:.)) = min {Vk ax (z2) v a%} (direct) separation radius

kL (x,) :=arg I§in {V;qu (z2) v a%} optimal dimension (for the direct test)

Ge;Ve

P/QQa.,V, (x.) == Ikmn {qk ( ) Vv ak} adaptive (indirect) separation radius
kK aeve (o) := arg min {qk ( ) v ak} optimal dimension contained in K (indirect)
kek
% gy, (T2) 1= gcnlIICl {mk ( ) Vv ak} (indirect) remainder radius
rLe,Ve c

(p% g (L)) = lglllrcl {vk ar(z?) v a%} adaptive (direct) separation radius
Ve c
k:,c deve (Ta) 1= argerllclin {V 2qi(z?) v ak} optimal dimension contained in K (direct)

(ré o (2.)? = imlg {vk my,(22) V a%} (direct) remainder radius
;0e,Ve c
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Outline of this chapter. In Section 1.2 we derive an upper bound via an indirect testing
procedure, in Section 1.4 we investigate a direct testing procedure. Section 1.3 contains the
lower bound. Section 1.5 is devoted to adaptive testing. We describe the general adaptation
procedure in Section 1.5.1 and apply it to both the indirect test (Section 1.5.2) and the direct

An adaptive lower bound can be found in Section 1.6. Technical results

test (Section 1.5.2).
and their proofs are deferred to Appendix A.

Outline

Adaptive minimax testing with partially known operators

Adaptive upper bound Adaptive upper bound
via an indirect max-test via a direct max-test |77,
\ Section 1.5.2 | \ Section 1.5.3 | .
ig
; i P&
% Upper bound Upper bound )
5} 1
Y . o . . . G
ER via an indirect testing procedure via a direct test procedure §F
2 " R
O'O k ‘ Section 1.2 ‘ ‘ Section 1.4 ‘ ,V;
IR T T . e@
s : g
Py 5 RS
’«.f; .. f Lower bound 1 4
.. . o0
%A 1 Section 1.3 J B
X H o9
.:"Vy
........... I Adaptive lower bound 1
L Section 1.6 J

1.2 Upper bound via an indirect testing procedure

The tests we propose are based on estimators of quadratic functionals,

Regularity classes.
for any sequence z, € RN and k € N we define

my(z,.) := max |z;]| .

2 2
qr(Te) := T, .
k( ) jg[[k:]] J jelk]

Moreover, for a sequence 6, € /2 and k € N we define the bias terms
2 2 2
bre(6.) := [|6ull;2 — ai(6.) = D 65.
i>k
With this notation we are ready to define the non-parametric classes for the parameters 6, € ¢2
and A, € (. Let a, = (aj)jen C RIE be a strictly positive monotonically non-increasing

sequence bounded by 1 and let R > 0, we define
O := {0, € :b.(0.) <R%2} = {0, € 2 : by (6.) < R%a} for all k € N}.
Note that @aR. is of a very general form, it simply allows to control the bias terms by, k € N for all
elements in the class, which is sufficient for all our proofs. A more common class of alternatives

(e.g. used in Kroll [2019a], Marteau and Sapatinas [2017a], Baraud [2002]) are ellipsoids of the
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form OF := {9, €. 2 jeN 0]2&;2 < RQ}, which is also covered by our class OF . We refer to
Tsybakov [2009] (Lemma A.3. in the appendix) for an explanation how the decay of the sequence
f., which can be interpreted as coefficients of a function w.r.t. a certain basis, relates to the
regularity of the associated function.

Let v, = (vj)jen C R{\E be a strictly positive, monotonically non-increasing sequence bounded
by 1 and let ¢ > 1, we define

A2 A2
AS, = A eEl®: cl< e <ol = A.Eém:c_lg—ggcforallk‘EN )

2
A Vi

Let us emphasise that the assumptions A, € A7, and v, € ]RIEO imply that A, > 0, and hence
the parameter 0, is identifiable.

Definition of the test statistic. In this section we derive an upper bound for the minimax
radius of testing based on the estimation of the energy of the parameter of interest 6, — 62. To
be more precise, for the reparametrised (£2)% = &2 + (69)202 € RY we consider the estimators

X (Y; — 03X;)% — (£5)? V72— (9)?
qr = Z J 7 \,]2 A Z 1‘1723 (1.2.1)
jelk] J Jelk] J
Since
€o,00 ° 2 o0\2 ( 0)2 _|_)\2 (9' _ 90)2 _( 0)2
EEeos (a2) — E@.,A.(Yj - erj) - (5]‘) _ € 5 \Ys j €
0o, Ne (%) = Z 2 = Z 2
JElK] J jelk] J
2
2 . o
- 2
L] Vi

=t (220 - 00)) < a0, — 00),

61,% is an unbiased estimator of the quadratic functional q,% (i—:(@. — 0?)), which differs from

q2 (6. — 62) only by a factor ¢ for all A\, € AS, and all k € N. For a sequence z, € RY let us
define the following minimum and minimiser, respectively,

: z; . i
Pawwe(@4) = min {Qk <V2 Vagp = min ‘Z V—j Vag g, (1.2.2)
‘ S L
x? x?
Kaeve(2.) = arg min S qi [ =5 | Vaj ¢ = arg min > Fvai. (1.2.3)
’ keN Ve keN Vi

Throughout this section the sequences a, and v, are arbitrary but fixed. In particular, the
optimal testing procedures explicitly exploit the prior knowledge of a, and v,, i.e. the fact that
the unknown parameters satisfy 6, — 67 € @aR. and A € A, for some R,c € R;. Given subsets
AV C Rl}i of strictly positive, monotonically non-increasing bounded sequences, we discuss
adaptive testing strategies when a, € A and v, € V in Section 1.5.

Our evaluation of the performance of the test under both the null hypothesis and the al-
ternative relies on bounds for quantiles of (non-)central x2-distributions, which we present in
Lemma A.1.1 in Section A.1. Its proof is based on a result in Birgé [2001] (Lemma 8.1), which is
a generalisation of Lemma 1 of Laurent and Massart [2000] and can also be found with slightly
different notation in Laurent et al. [2012] (Lemma 2).
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Proposition 1.2.1 (Bounds for the quantiles of q,%) For w € (0,1) we define L,, :=
[logu|. Let o, 5 € (0,1).

(i) (level-a) For each k € N we have

50 0'. A 2 (52)2 2 (82)2

)\EAC . .

(ii) ((1 — B)-powerful) Define the dimension k, := kg, v, (€s) A kgeve(f20.) € N as in
(1.2.3) and Cap =5 (La + L2 + Lg + 5L3). Then for each 6, — 02 € O N £2 with

p* > (B* +Cap) {Prava () V 0 v (6204 }

we have

o060 [ A2 2 [(e2)? 2 (2)
sup Pyo\e | Gk, < 2Laqg, o2 + 2L, my, 2 < B. (1.2.5)

)\GA Ve . .

Proof of Proposition 1.2.1. We intend to apply Lemma A.1.1 and use the notation introduced
there. If (Y, X,) ~ Pp2S¢, then for each k € N,

R €2 (Y; — 07X;) e
Qumairad (Z) = ¥ T
* J€lr] J

with e, := % and p, 1=

v

Ae(0e—0)

Ve

i) Under the null hypothesis 6, = 6°, i.e., (Y., X,) ~ P527* we have Qi ~ Q¢ . Therefore,
09, )\e 0o,k

with (A.1.1) from Lemma A.1.1 it follows
ags (1) < dilen) + 2Luar(el) + 2L5my (e2),
which implies (1.2.4).
(ii) Under the alternative, ie. (Y., X,) ~ Pgle with A, € AS,, 6, — 67 € OF N £2 and
B2 (04 o) {hor (o0 P )} e bl

10 = 62012 > p* > (R + cCag) {pa.,v. (c0) V P (620) }

)V
52 20.2
> RQCLz* + Ccaﬁ {qk* (V; V qg, °3 *

> RQal€ +co { alk, (e ) + Limy, (e?) + g, (e?) (Lg + 5L%)} , (1.2.6)
(

using that pZ, . (.) V P2, .. (0500) = qi, (v%) 5 ) V ai_, which follows from

Lemma A.2.1 and 2 {qk* ( ) V dk, ((00)2 2)}
e

Vo

s <(522)2> = qr, (€2) > my, (e2). More-
i (

q
over, for each k € N and A € AS, we have cq?(p.) > g2 (0. —6) = |0, — Hﬁ’HEg —b2(0,—62),

which in turn for each 6, — 6? E G)R. implies

cai(p.) = |16, — 62| — R%a3.
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This bound applied with k& = k, together with (1.2.6) yields

. )2 {Lan. (2) + L, (2) . (2) B+ 529}

Rearranging the last inequality we obtain

%qz* (tte) = 2Laq, (6?) + 2L%my, (e?) + ., (e?) 2(Lg + 5L/23).

Inserting this bound into (A.1.3) of Lemma A.1.1 implies

4
2Lodr, (¢2) +2L2m, (€2) +af, (e2) < o}, () — an. (€2) 2L +5L3) + o, (e.)
<dqj L (1=5)
/*’/.JC )

and thus (1.2.5), which completes the proof.

Definition of the test. For a € (0,1) and k € N we define the threshold

Tr(a) := 2Lqg ((6\;02)2> +2L2my, <(852)2> (1.2.7)

and the corresponding test
Ag o = 1{q2>m(a)}, (1.2.8)

Proposition 1.2.1 (i) shows that the test Ay, is a level a/2-test for any k& € N. Moreover,
Ak’*,oa/2 with

ki := kg ve(€e) N kayve(070,) (1.2.9)

is a (1 — a/2)-powerful test over Aq {pasve(€e) V paeve(020,)}-separated alternatives due to
Proposition 1.2.1 (ii) with 8 = /2 and A% := R? 4 ¢Cy/pq/s = R* + ¢ (10La/2 +3012 /2).
Hence,

R (Dt aja | 05 A 02 A {pusva(e) V puara (B30.))) < 0/2+ 0/2 =

for all A > A,. In other words, p2, .. (e.) V p2, ,.(020.) is an upper bound for the radius of
testing of Ay, ./, which is summarised in the next theorem.

Theorem 1.2.2 (Upper bound for the radius of testing). For a € (0, 1) define Zi =
R2+¢ (10La/2 + 3OL§/2). Then, for all A > A, we have

R (Of, A5, 62, Ap) < a,

With p := paeve(€e) V Paeve(020,), i.e. p? is an upper bound for the minimax radius of
testing.

Proof of Theorem 1.2.2. The claim follows from Proposition 1.2.1 considering Ay, /o defined
in (1.2.8) and the elementary bound

R(OF, A%, 02, Ap) <R (Ap a2 | OFAC,.02, Ap).
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Remark 1.2.3 (Signal detection vs. goodness-of-fit). Considering the signal detection
task, i.e. 0] = 0,, we have pg, v, (00,) = 0 for all o, € RI}IF and, thus, the minimaz radius of
testing does not depend on the noise level o,.

Considering the goodness-of-fit task, i.e. 82 # 0,, for all e, > o,, we have

(02)0? (02)%? op2 H
dk (V? < qg T <165 7o a V*g

and, therefore, payve(0e04) < |02 o0 Paeve(€e). In other words, pa, v, (0e0.) is negligible com-
pared t0 ||02]] joo Pa.ve (€s). We point out that e, > o, is a natural situation. It essentially means
that the (multiplication) operator can be observed with the same or at lower noise level than
the sequence of interest. A similar assumption is for instance also considered in Cavalier and
Hengartner [2005] and Efromovich [1997]. Often, if both measurements Y, and X, are made
with the same “measurement device”, it is even common to assume €, = o,. O

Remark 1.2.4 (Homoscedastic, (non-)parametric rates). In the homoscedastic case, i.e.
ee = (€)jen and o, = (0)jen for e,0 € Ry we are especially interested in the behaviour of
the radii of testing pay ve(€) = Paeve(€L) ANA Payve(T) = pPasve(0e0.) as € and o tend to zero.
Paeve(€) and pa, v, (0) are then called rates of testing. We call pq, v, (€) (respectively pa, v, (0))

()

parametric, if pa‘% is bounded away from 0 and infinity as € — 0. Note that since

.. o Pae,v (5) -2
1 =7 >
im inf =2 > lva o

and a, > 0,, it is always bounded away from 0. Hence it becomes parametric if and only if

v, 2 € 2. However, since v, € {*° and therefore vy 2> HV,H for all 5 € N, we always have
v, 2 & 2. Thus, the rate pa, v.(€) is always non-parametmc

On the other hand, for a goodness- ofﬁt task (0 # 0,), it can similarly be seen that the rate

Paeve(0) is parametric if and only if b ¢ 02, which is possible. Note that it is never faster than

parametric, since

lim inf Paevel9) ()
o—0 o

> | @2

-2
vl > 0.

Illustration 1.2.5. Throughout this chapter we illustrate the order of the rates of testing in
the homoscedastic case €, = (¢€)jen and o, = (0)en under the following typical smoothness
and ill-posedness assumptions. Concerning the regularity class @f}. we distinguish two
behaviours of the sequence a,, namely the ordinary smooth case a, = (j %) ey for s > 1/2,
where @aR. corresponds to a Sobolev ellipsoid, and the super smooth case a, = (¢77") jEN
for s > 0, which can be interpreted as an analytic class of parameters. Concerning the class
A§, we also distinguish two cases for the sequence v,. For p > 0 we consider a mildly
ill-posed model v, = (j7P)jen and a severely ill-posed model v, = (e™7");cn. Finally,
we consider two cases of null hypotheses: the signal detection task 67 = 0, and the
goodness-of-fit testing task 6 = (j)jen for some ¢ > 1/2. The table below displays
the order of the optimal choice ky := kqq v, (€s) A kao ve (020,) for the dimension parameter
as well as the order of the minimax rate p2, ., (e.)V p2, .. (020.) for the signal detection task
(with pZ, .. (020.) = 0 as discussed in Remark 1.2.3) and the goodness-of-fit task. Keep
in mind that the rate PZ.,V. (e.) does not depend on the null hypothesis, therefore, it is
the same for all 67 € 2. In accordance with Remark 1.2.4, p2.  (020,) is parametric for

the goodness-of-fit task whenever (0;’;2)2 € (2. The calculations of the order of the radii in
this chapter are similar to the calculations in the illustrations in Chapter 3 and Chapter 4
(replace n with £2) and thus omitted.
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Order of the optimal dimension ke, v, (€s) A Kae,ve (020)
and the minimax radius p2, , (e.) V p2, vo(050.)
in the homoscedastic case €, = (€)jen, 0o = (0)jen-

a’j V] kao,Vo (E.) pc%.,v. (E') ‘ kalyVo(gfo-.) p?t.,v. (030-‘)
02 € 2 02 = (57")jen
4 8s
o BTAp—DF1 g istalp—D+1 t—p< %
4 8
j—s j_P e 4dptis+1 548"!‘45174‘1 0'7% |10g g‘% 0'2 t—p= i
a_% o? t—p> %
. 1 _2s 1 _ 2s
j=% e | |loge|P lloge| P [log o|? llogo|™
4(p—t)+1
\logaﬁ llog o 20 t-p< 1
_ 48 . l 2 M 1 1 9 1
e j7P | |logels e“|loge| 2s \loga|i (logllogo|)2 0 t—p=7
llog o|s o? t—p> g

Remark 1.2.6 (Simplified test statistics). Let us note that by applying Markov’s inequality
. . . . ~ 0)2
it can be shown that the test ]l{éli*ﬁk(a)} with the simplified threshold Ty (a) = \/qu* (Q)

ve
and ks as in (1.2.9) also attains the minimaz radius of testing payve(€e) V Paeve(020.). The
approach of deriving radii of testing by applying Markov’s inequality has for example been used
in Kroll [2019a] and is used in Chapter 3 of this thesis. Since we are in particular concerned
with adaptive Bonferroni aggregation, we need the sharper bound given in Proposition 1.2.1 for

the threshold constant in terms of a. This directly translates to the cost to pay for adaptivity. O

The test Ay o in (1.2.8) explicitly uses the knowledge of v,, which determines the asymptotic
behaviour of the sequence A, € A{ . Inspired by Laurent et al. [2011], as an alternative we
consider a direct test in Section 1.4. But, first, we provide a matching lower bound to the
upper bound derived in Theorem 1.2.2 for the case ¢, < o,. This assumption is discussed in
Remark 1.2.3.

1.3 Lower bound

Proposition 1.3.1 (Lower bound in terms of ¢,). Let k, := kq, v, (¢.) and let n € (0, 1]
satisfy
ak, (€3/V) Nak, _ aw, (€2/vI) A},
T A an (V) Va

(1.3.1)

For a € (0,1) define 42 :=1n <R2 A v/2log(1 + 2042)). Then, for all A < A, we have

R (GaR.v AS/.: 9(.)7 Apa.,v. (Eo)> >1-aq,

ie. pghv. (¢.) is a lower bound for the minimax radius of testing.

Proof of Proposition 1.5.1. Reduction step. To prove lower bounds for the testing radius
we reduce the risk of a test to a distance between probability measures on the null and the

alternative. Let us write p := pg, v, (€.) and let p be a probability measure on {6124 o1 @aP‘. } xAS,,
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p induces a so-called mixing measure
Peeoe = / P du(fa, M)
’ OR xAG, Oe, 2 M( )

For any test A the risk can then be lower bounded in terms of the y2-distance between the
probability distribution under the null Py := IP’E"U‘ for v, € A§, and P, :=Pj>7* as follows

R(A] O, AS,,02, Aup) > Py (A=1)+ P, (A=0)

XZ(PO’PM)

—1—TV(Py,P,) >1— R

(1.3.2)
where TV denotes the total variation distance and x? the y2-divergence.

Definition of the mixture. Let £ € N be fixed, for a given sequence of deviations from the
null 4, € 2 and 7 € {£}* we define 67 € 2 by

07 = 730, 1 ijeqwny
We consider the uniform mixture measure over the vertices of a hypercube
1 [¢] T
P, := o Z Pee?s = Z N(©.(02407),e.) @ N(v.,,0.).

02+9’.’,v.
re{£}* TE{:I:}

Naturally, since we only mix over (95. and not over A§_, the x2-divergence between Py and P,
reduces to the y2-divergence between the marginal distribution of (Yj)jen and the dependence
on the marginal distribution of (X;);en cancels. Lemma A.3.1 from the appendix then shows
that

PP =X [ o0 S N0 +00),2.), N(v.02,2.)

Te{i}k

1 404 1 v202
< exp (2 Z 24]) _1:eXp<2qk< 59 )) —1.
jelx] 7 ¢

Combining the last bound with (1.3.2) we see that the assertion follows as soon as

(a) 0 € EA " (separation)

(b) 6 e ok, (smoothness)

(c) af (*

§§2> < 2log(1 + 2a2). (similarity)

Definition of the deviations. It remains to define these quantities. Let k := ky := kg, v, (€o)
and consider 6, with

n Fpao,Vo( ) -
%= Ak, (€2/v2) = ]l{JG[[k*]]}’ for j € Nand ¢ := R* A \/2log(1 +2a2).

12
0. qk*( o) = ¢npz. . (€.) with A2 = (n, (a) is satisfied. Moreover, the condition on

1 implies for all m < k, that b2, (6, ) < qk: (6,) = A2 p% < Ca2 < R2a2, due to the monotonicity
of a,. Trivially, we also have b2 (6,) = 0 < a2, for each m > k,. Therefore, 6, satisfies (b).
Again exploiting the condition on 1 we obtain

Since

202
" (Vf-) — (2 2(Pa-»(v-2(/v))) < (% < 2log(1 + 207),

and, thus, also (c) holds, which completes the proof. O
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Note that the lower bound in Proposition 1.3.1 involves the value 7 satisfying (1.3.1), which
depends on the joint behaviour of the sequences v, and a, and essentially guarantees an optimal
balance of the bias and the variance term in the dimension k,. Moreover, looking at Remark 1.2.3
we see that Proposition 1.3.1 provides a matching lower bound to the upper bound derived in
Theorem 1.2.2, whenever the radius is governed by the e,-term, which is for instance the case if
Eo = T,.

1.4 Upper bound via a direct testing procedure

In this section we derive an upper bound for the radius of testing based on the estimation of

2
1A (0, — 0?)“32 instead of ‘ 3—:(9. —6?) p 3 in the section before. In fact, for k € N we consider

=Y ((G-6X)-(?) = X (- )?), (1.4.1)

JElk] JE[k]
which is an unbiased estimator of the truncated version g3 (A, (6, — 62)), since
Oe ~ o o 2 [¢] (¢]
B (@) = X (€72 (0-6)" - €?) = doue. - o).
lil€[¥]

To formulate a result similar to Proposition 1.2.1 we introduce for a sequence z, € RY the
minimum

(Pg.,v. (x.))2 = 11516111\11 {V,;qu (x?) \% a%} = I]glr\ll {V];2 /jez[[%]] x? vV az} (1.4.2)

and minimizer

kS, .. (x.) ;= arg min {VI;qu (x?) \Y% ai} = arg min { v} > Z a;?- Vaiy. (1.4.3)
’ keN keN jelk]

Replacing the sequence x, by the original and effective noise levels ¢, and 0%0, we establish
(P8, . (0) VP4, v, (020.))% as the optimal achievable radius for the direct test. Similar to Propo-
sition 1.2.1 (for the indirect test) the next result allows to evaluate the performance of the direct
test based on the test statistic (1.4.1) under both, the null hypothesis and the alternative.

Proposition 1.4.1 (Bounds for the quantiles of q7). For u € (0,1) set L, := \/[log u].
Let o, 8 € (0,1).

(i) (a-level) For each k € N we have

)\86111\1;. IP’Z§§: (ﬁk = Wb ((53)2) + 2L2my, ((5?)2)) < a. (1.4.4)

Qe,Ve Qe ,Ve

(ii) ((1 — B)-powerful) Define the dimension k¢ := k3.  (e,) A kS | (0S0,) € N as in
(1.2.3) and Co 5 :=5 (La + L2+ Lg+ 5L%>. Then for each 6, — 62 € O N E% with

p* > (R2+cCap) (P4, () V P, ., (620.))°
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we have

am ER (624 < 2Lacly ((£2)?) + 2L2myq ((2)2)) < 8. (1.4.5)

Proof of Proposition 1./.1. We note that (Y,, X,) ~ P‘;:i: implies

Qi = dj + aR(e2) ~ Qg

with e, = €% and p, = A, (0, — 67), where we again use the notation of Lemma A.1.1 in the
appendix.

(i) The proof of (1.4.4) follows analogously to the proof of (1.2.4) in Proposition 1.2.1 by
applying Lemma A.1.1.

(ii) Similar calculations as in the proof of (1.2.5) show that for each 6, — 62 € OF N 6% with

2
p? > (R?+cCap) (pghv. (€4) V p‘jhv.(ﬁfa.)) , we obtain for k = k¢

10, 0213 > = (R + Cap) (Pl (0) V 1 (6202))
> R%a} + cCo vy, {Qk (8?) V ag ((93)20?>}
> R%a; + C%V;qu (eQ)

> R%a? + cgv,;2 {Laqk (e?) + Limy (e?) + qk (e?) (Lg + SL%)} , (1.4.6)

2
using (pghv. (ea) V pghv_ (0.00.)) = v 2qr (€2) Vax ((62)%02) Va2 due to Lemma A.2.1 and
2 {ak (€2) Var ((62)%02)} > ax ((€2)?) = qk (€2) > my(e?). Moreover, for each k € N and
A € AS, we have cv; 2q? (1) > g3 (0. — 6°) = ||6, — 02|% — b2(. — 6°), which in turn for
each 6, — 62 € OF implies
evi 2at(u) = 116, — 6217 — R%a}.

This bound applied with k& = k¢ together with (1.4.6) yields

CV];2QI%(M.) > Cgv,;2 {Laqk (e?) + Limk <e?) + qk (e?) (Lg + 5L%)} .

Rearranging the last inequality and proceeding as in the proof of (1.2.5) implies (1.4.5),
which shows the assertion.

O
Definition of the test. For a € (0,1) and k € N we define the threshold
7h () = 2Lad((e2)%) + 2Lamy((£0)?) (1.4.7)
and the corresponding test
d .
Ak7a = ]l{’(‘l’i>7_g(a)}. (1.4.8)
Proposition 1.4.1 (i) shows that the test Af o2 is a level a/2-test for any k € N. Moreover,
d .
Ak?,a/Q with

k= kS, (e) NKS, o, (020.) (1.4.9)
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is a (1 — a/2)-powerful test over A, {pg.yv. (e.) V pghv_(GfJ.)}—separated alternatives due to
Proposition 1.4.1 (ii) with 8 = /2 and 4% := R? + ¢Cy a2 = R24—c(10Lap—+30Liﬂ>.

Hence,

R (A | O NS 02, AL g0, (e VS, (6200 }) a/2 4 a/2=0

_ 2
for all A > A,. In other words, (,0‘3. GRS 7\,.(9?0.)) is an upper bound for the radius of

testing of A(]id 02" Moreover, it is also a lower bound for its radius of testing, which we prove

in the next proposition.

Proposition 1.4.2 (Radius of testing of Aig,a/2)° Let a € (0,1) and

p = pa, v (€0) V pa, . (050.).

(i) (upper bound) With Zi =R%+c (10La/2 + 30L2/2> we obtain for all A > A,
R (Al oo | O, A, 02, 4p) < .

(ii) (lower bound) Let

D
o

2

0<n<

and define Ai = R217. Then it follows for all A < A4,

R (A | OF,AS,,02,4p) > 1 - a.

Qe

d

Summarizing, p? is a radius of testing for the test Ala /o

Proof of Proposition 1./.2. Firstly, part (i) is an immediate consequence of Proposition 1.4.1
and we omit the details. Secondly, consider part (ii). We note that for each A, € Ay, and
0, — 62 € OF with qzd(H. —62) =0 we have

o

Qo = @y + () ~ QFF
and, thus,
kd a/2 —

PGt (A =1 < 5

due to (A.1.1) in Lemma A.1.1 (using the notation introduced therein). For any 6, — 65 € O
with

qid(ﬁ. —-607)=0 and bid 0, —07) = R2azd,
which is for instance satisfied for

0, — 0] ::<f{akfﬂ{j=kf+1})jeN’
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it immediately follows

2
A2 = R (08, () V i 1, (050)) < RZay
= bja (6, —02) < 16, — 2172

which shows that 6, — 6 is contained in the alternative. Hence, for such a 6, and all A > A,
we obtain

d R o e, 06 d _ o
R (Akf,a/Z ’ @a.,Af,.,e.,Ap) = PZ.,A. (Akf,a/2 - 0) >1- 9 > 1—a

which shows (ii) and completes the proof. ]

Remark 1.4.3 (Optimality of the direct test). Considering the signal detection task,
i.e. 07 = 0, we have pghv. (020.) = 0 for all o, € RY and thus the radius of testing does not
depend on the noise level o,. Considering the goodness-of-fit task, i.e. 07 # 0,, we emphasise
that for all e, > o,, we have

ar ((02)%07) < ax ((62)%2) < 116217 ax (<2)

and, therefore, pgh\,_ (070.) < 11602]] oo pg.vv. (€.). In other words, pghv_ (020,) is megligible com-
pared to ||02| e p3, v, (e.). Hence, the direct test shows a similar behaviour as the indirect test
(as discussed in Remark 1.2.7).

Let us now briefly discuss under which conditions the direct test attains the radius pghv' (es) V
pghv. (020,) of the indirect test. For any e, € RI}i the elementary inequality

2
Vi, 2di(€2) > a <5> , keN (1.4.10)

v2
shows that

pg.,v. (6') Z pao7Vo (8')

If there exists a constant k1 € Ry such that

2
Vi, 2di(e2) < maai <;> . keN, (1.4.11)

23,04/2
the minimax radius in the signal detection case. The condition (1.4.11) is e.g. satisfied in
a mildly ill-posed model. Note that, however, the additional condition is sufficient but not
necessary as we will see in the illustration below. Considering the radius in terms of o, we
obtain pghv_ (0204) > paeve(020,) by exploiting again the elementary inequality (1.4.10) (with e,
replaced by 0l0,). Therefore, if there exists in addition a constant ka € Ry such that

then pg.,v. (es) and pq, v, (€.) are of the same order. In particular, then the test A attains

-2 20090\2 2 5 [ (62)%02
Vk qk((e.) 0'.) S K24 T s k S N7 (1412)
then pghv. (020.) and pa, v, (070.) are of the same order. Summarizing, if both (1.4.11) and
(1.4.12) are satisfied, then the test Aid 02 attains the same radius as the indirect test, where
the conditions are again sufficient but not necessary. O
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Illustration 1.4.4. In the homoscedastic case we illustrate the order of the rate and the
corresponding optimal dimension parameter of the direct test A(lif,a /2 defined in (1.4.8) by
considering the typical smoothness and ill-posedness assumptions as in [llustration 1.2.5.
The table displays the order of the rate (pghv. (ea) V3, .. (930.))2 for the signal detection
task 67 = 0, (with pg.yv.(ﬁfa.) = 0 as discussed in Remark 1.4.3) and the goodness-of-
fit task with 62 = (j7')jen. In comparison with Illustration 1.2.5 we point out that in
all three cases the orders of (pghv. (5.))2 and p2, . (e.) coincide. Note that there exists

a k1 € Ry such that (1.4.11) is fulfilled only in the case of a mildly ill-posed model. In
a severely ill-posed model, however, there exists no such constant. Nonetheless, in both
cases the direct test performs optimally with respect to the noise level . Comparing the

orders of (pghv. («9?0,))2 and p7, . (020.) we note that in both a mildly and a severely
ill-posed model there does not exist a ko € Ry such that (1.4.12) is satisfied. Even so, for
severely ill-posed models the rate of the direct test (pg. ve(€a) V Pl Ve (Gfa.))Q and the rate
of the indirect test p2, ,.(e.) V p2, v, (020.) are of the same order, and thus the direct test
is also optimal. On the other hand, for mildly ill-posed models the rate (pghv. (Gfa,))2 is

always nonparametric and might be much slower than the rate p2, ,,(690,), which can be
parametric (cp. Illustration 1.2.5).

Order of the optimal dimension kg, |, (e.) A kg, .. (650.)

GQe,Ve
2
and the radius (pghv_ (e.) V pghv. (92’0.))
in the homoscedastic case €, = (¢)jen and o, = (0)jen

2 2
a; vj k(e (phana(ea) | k0200 (ol (0304))
(smooth.) (ill-posed.) 0° € 2 02 = (j7")jen
_ 4 8s 1 2s
j—s j—p & 4p+4s+1 €4s+4p+1 o stp o s+p
Q = _2£ 1 2s
Jjs e J” llog | P [loge| P llog o|? [logo|™ »
s 1 dp+l 2
e’ JjP llogels e? |loge| 25 lloga\% |log0]?p o?

Laurent et al. [2011] show that for known operators, under specific smoothness and ill-
posedness assumptions (covered also in Illustration 1.2.5 and Illustration 1.4.4) every minimax
optimal test for the direct task is also minimax optimal for the indirect task. Even under these
specific assumptions this in no longer the case for unknown operators if pg. vo(€4) 18 negligible
compared to pg.’v. (00,), since we observe that the direct test Agf /2 defined in (1.4.8) is not
always optimal for the indirect task (compare Illustration 1.4.4 and Illustration 1.2.5).

1.5 Adaptation

1.5.1 Description of the adaptation procedure

For both the indirect and the direct test the optimal choice of the dimension parameter k, (in
(1.2.3)) respectively k¢ (in (1.4.3)) require prior knowledge of the sequences a, and v,, which are
typically unknown in practise. In this section we study an aggregation of the tests over several
dimension parameters, which leads to a testing procedure that performs nearly optimal over a
wide range of regularity classes. We first present the testing radii of these aggregation-tests,
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where compared to the minimax radii of testing we observe a deterioration by a log-factor with
respect to the noise levels. Moreover, we show that this deterioration is an unavoidable cost to
pay for adaptation.

Aggregation procedure. Let us briefly describe a widely used aggregation strategy. For a
sequence of levels (ag)ren € (0, 1)N let (Sk.a, )ken be a sequence of test statistics such that

Vi, = Lrg o1

is a level-ag-test for each k € N. Note that both the indirect and the direct testing procedures
satisfy this condition by construction as shown in (1.2.4) and (1.4.4) in Proposition 1.2.1 and
Proposition 1.4.1, respectively. Given a finite collection K C N of dimension parameters and
a =) cx 0 we consider the max-test statistic

S = max S
K,Ot kek k},ock
and the max-test

Vica = ]l{s,c,a >0}

that is, the max-test rejects the null hypothesis as soon as one of the tests does. Due to the
elementary inequality

P %e (Via =1) = P52t (Ska > 0) < D PRt (Skay, > 0) <D =« (1.5.1)
ke kel

the max-test Vi o is a level-a-test. The type II error probability of the max-test can be con-
trolled by any test contained in the collection, since for all 8, € £2 and A, € £> we have

PoSe (Vica = 0) =Py Se (Ska < 0) < min P P e (Skay <0) = min Poue (Viay, = 0).
These two error bounds have oppositional effects on the choice of the collection K. Roughly
speaking, K should not be too large due to the aggregation of type I error probabilities. On the

other hand it should still be large enough to minimise the type II error probabilities. Typically
the choice of I depends on the original and the effective noise levels ¢, and 60,

Bonferroni correction. Throughout this section, given a level a € (0,1) and a finite col-
lection X € N we consider Bonferroni levels ai = %‘, k € K, i.e. the same level ‘% for each
test statistic S, in the collection. For alternative constructions of error levels we refer to
Remark 4.3.1, where they are discussed in detail in a similar setting.

Lack of adaptability. The goal of the aggregation is to find testing strategies for which the
risk can be controlled over large families of alternatives. Let A C ¢? and V C > be classes of
positive, monotonically non-increasing sequences that are bounded by 1. To measure the cost
to pay for adaptation we introduce factors d., and d,,, which are typically called adaptive
factors (cf. Spokoiny [1996]) for a family of tests {Va},c(1) and a family of alternatives
{@S. A, € A} x {AS, : v, € V}, if for every a € (0,1) there exists a constant A, € Ry such
that for all A > A, we have

Sup R (va ‘ @5.7AS/.70?7 A {pao,Vo (65060) \ pao,Vo (600020—‘)}) S Q.
(CL.,V.)E.AXV

Here, pau.ve(€e) V Paeve(0504) is a non-adaptive radius of testing over ©OF x AS . Compared
with the non-adaptive upper bound, the test V, now needs to perform for any combination

36



(as,v,) € AxV. We, however, allow larger radii where the noise levels e, and 60, are magnified
by the factors &¢,,d,, > 1. The factors d., and J,, are called minimal adaptive factors if in
addition for every a € (0,1) there exists a constant A, such that for all A < A,

inf sup RV O, AL, 02 A{par v (5250) V pas v (55,0500)}) > 1=
v (a.,v.)EAXV

If the minimal adaptive factors tend to infinity as the noise levels decrease to zero, then this
phenomenon is typically called lack of adaptability.
1.5.2 Adaptation to smoothness — indirect test

In this section we first carry out an aggregation of the indirect tests. Recall that the indirect
test statistic §7 in (1.2.1) and the threshold 7 (c) in (1.2.7) explicitly use the knowledge of the

sequence v,. Therefore, we consider adaptation to {@f}. ta, € .A} x A§, for a given v, only.

We present the adaptive factors for the indirect max-test and show that they coincide with the
minimal adaptive factors asymptotically.

Indirect max-test. Given a € (0,1) and a finite collection K C N we define the max-test
statistic with Bonferroni levels

e o= g i - (1)}

and the corresponding test
A’Caa = ]l{T]C7a>O}7

which is a level-a-test due to (1.2.4) in Proposition 1.2.1 and (1.5.1). Its radius of testing faces
a deterioration compared with the minimax radius due to the Bonferroni aggregation, which we
formalise next. Analogously to (1.2.2), for each sequence z, € R we define the minimum over
the collection K

. z? . §
P2lc,a.,v. (x,) == I]glelllcl {qk ( > Vv ak} = 1]3161% { Z V—i Vv ai (1.5.2)
Ve jelk] I

and the corresponding minimizer

2 o
kK. aeve (z,) = arg min {qk (m ) v ak} = arg min Z —i az b (1.5.3)
kek v2 kek =T v

Additionally, we define the minimum

2 2
2 . z, 2 . Xy
r T,):=min<myg [ — | Vai ;, =min{ max - Va 1.5.4
K’a"v‘( ) kek { K (V%) k} kek {Je[[k]] V2 k} ( )
We first provide an upper bound for the radius of testing of the max-test in terms of the
reparametrised noise level (€2)2 = €2 + (62)%02 and the adaptive factor

Sk = (1Vlog|K|)V4, (1.5.5)
The upper bound consists of the maximum of two terms

Praeva(Oked)  and 1}, . (670).

We think of 7“,2C deve (6%€2) as a remainder term, which is typically negligible compared with
plzC,a-,V- (6xce?) (compare Remark 1.5.2 below).
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Proposition 1.5.1 (Adaptive upper bound — indirect max-test). For a € (0,1) define
Ay =R2+c(5Lajp +15L2 5 +5). Then for all A > A, we obtain

sup R (A2 | OF, AL, 65, Apa, ) < @
a.E.A
With pa, = piauve (6E2) V T auve (9362) and dxc := (1V log |K[)"/*

Proof of Proposition 1.5.1. The proof follows along the lines of the proof of Proposition 1.2.1
and exploits (A.1.1) and (A.1.3) in Lemma A.1.1. We use the notation introduced there. For
(Y., X,) ~ ]P";:K: we have

Qr == qf + qies) ~ QL

for each k € N and e? := (652)2 and p, = 3—:(0, —602). (A.1.1) implies that under the null
hypothesis with L := \/log(2|K]| /a) the quantile satisfies

o (Qf‘,q) q2(e) + 2Lai(e?) + 20%my(2)

and, therefore,

P (A2 =1) = P (Tew > 0) < > PirSe (a2 > mla/ |K)))
ke

= m (@) < 3 g =g (150

kel kek

Under the alternative for 6, — 67 € ©F N2 with p > Ay {p.ae.ve (0kE2) V 7K a0,ve (072) } We
have

o] 72 [¢] o
162 — 6207 = Aq {9k v v (OE2) V 10 v (950) }
> R%a?, + ¢ (5Laya + 15L% )5 +5) {ax, (9%e2) vy, (dke?) }
> R2%a? + cdLq 2k, (5}%6?) + 015La/2mk*(5lce.) + b, (5,%6?)

> R%, + cg (La, (€2) + L2my, (¢2) +aF, (€2) (Laja +5L2))  (157)

where we successively use (), (x*) and (% * %) shown below. Indeed, we have

PR aera (KD V 1% 00 s (0752) = a, (6%€2) V my,, (de?) v af, (%)
with k, := arg min {my(03-€2)} A arg min {qx(0%€2) V a2} due to Lemma A.2.1;
ke kel
ar, (0%€d) = ar, (€7) ()
and
Ak, (0€d)(Laja +1) = Lag, (€2),  my, (5xed)(La /o +1) = L2my, (€7). (% %)

For all k € N, A\, € A¢, and 0, — 62 € OF N f% it follows

cdi(p) = 116, — 621172 — R%af,
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which together with (1.5.7) implies

4
=k (1) = 2Lay, (€7) + 2L%mg, (€7) + 2(Lay2 + 5LE j3) k. (€7).

Rearranging the last inequality and using (A.1.3) in Lemma A.1.1 shows that for all A, € A,
under the alternative we have

Bi2s (Bes = 0) =32 (Tean <0)

Ee,00 2 2
< min P35 (Qi < 2Lai(ed) + 2L7mi () + a(e.))
[0

Ce,00 Co o _ =
<P (Qu <ty (1-a/2)) = 5.

Combining the bound for the type I error probability (1.5.6) and the bound for the type II error
probability (1.5.8) completes the proof. O

(1.5.8)

Remark 1.5.2 (Adaptive factor 67 versus dx). The second term Tic . ve (02€2) in the up-
per bound of Proposition 1.5.1 for the adaptive radius of testing can always be bounded by
PK.aeve(0262) due to the elementary inequality mg(53(e2)?/v?) < qr(8(€2)?/v?) for all k € N.
Note that pi.a.v.(62€2) only differs from the first term pi.a. v, (0xcel) in the upper bound of
Proposition 1.5.1 by an additional factor dx. Hence, we can always show that 5,% is an adap-
tive factor. However, often this bound is too rough and the term r;c,a.yv.(é,%sf) is negligible
compared t0 pic.aq ve (0kES), which then results in an adaptive factor éx. Let us give sufficient
conditions for the negligibility. Consider ky := ki a4 ve (0xc€S) as in (1.5.3). We give a condition
in terms of the relationship between k, and Sxc, which is then easy to check. Assume there exists
a C > 0 such that

VEamy, ( )2> < Cap, <(5V2)2> (1.5.9)

1.e. we “gain” at least a factor \/ky by considering the maximum instead of the quadratic func-
tional (this is for instance the case in a mildly ill-posed model with homogeneous variance) and
assume additionally (for all a, € A)

6% < CVk,. (1.5.10)
Then, naturally

my,, (545 ) < CVkamy, ( = )2> < C2%qy, <5’2CE,€2)2>

and, hence, TK,a.,v.(5;2C€f) < CpK ae,ve (0kED), which implies that we obtain an adaptive factor
Ok U

We now reformulate the upper bound in Proposition 1.5.1 in terms of the noise levels €, and
02c,. Recall that the optimal dimension is given by a minimum

k’* = k(l.,Vo (50) A ka.,v. (0?0’.)

(compare Proposition 1.2.1 (ii)). Therefore, we eventually choose collections K., and K,, de-
pending on ¢, respectively o, only and set

K=K, NK,,
with
0eq = 01, and 0gy = 0K

Trivially, |KC| < |[K,| A |Ko,| and hence ok < d¢, A dy,. The next result is a direct consequence
of Proposition 1.5.1 due t0 2 {px aeve (0ce€e) V PK,a0,ve (056050¢)} > Pic.ae.ve (Okces) and its proof
is omitted. The assumption (1.5.11) simply states that the remainder term is indeed negligible.

ce *
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Theorem 1.5.3 (Adaptive upper bound - indirect max-test). Let K := IC;, N K,,,
ey = Ok, and dy, := Ok,,. Assume there exists a C' > 1 such that

TK.aeve (08€2) < CPK.auve (6kE2) (1.5.11)

for all a, € A. Then, for each a € (0,1) with Zi =) (R2 +c (5La/2 + 15Li/2 + 5)) it
follows for all A > A,

sup R (Axaz | OR,AS,, 05, ACp,, ) < a
a.E.A

Wlth Pae = pK,aoyvo (6508') \ pK:,a07V. (600 9300)

In Remark 1.5.4 and Illustration 1.5.5 we select a suitable collection IC such that the min-
imisation over K approximates the minimisation over N well, i.e. such that the upper bound in
Theorem 1.5.3 satisfies

pIC7a/.7V. (55060) \/ p’CﬂuV. (60'09?0-0) S é {pao,Vo (650€‘) \/ pa.7V. (500630—.)}
for some C > 1.

Remark 1.5.4 (Choice of K in the homoscedastic setting). Let us discuss the choice of
the collection IC of dimension parameters in the homoscedastic case €, = (€)jen, 0o = (0)jeN-
Considering the signal detection task (where only the e-terms appear, i.e. we set Ky, = N
and K = K., ) it is easily seen that for all v, € V and a, € A the minimax optimal dimension
Eauve (€4) is mever larger than e=*. Therefore, the natural choice K = K. := [¢™4] yields a factor
Ok of order |log €|1/4. However, in many cases it is sufficient to aggregate over a geometric grid
Kg:={27:j € [4[logye|]} U{1}. Obviously, é, is then of order (log llog e[)/*.

For a goodness-of-fit task the upper bound for the minimax optimal dimension parameter
can further be improved by exploiting the knowledge of 07. More precisely, since q,% (%) >
az ((9)?) > &'k + oq2((02)?) and supgeyar < 1, any k € N such that o*q3((02)?) > 1 is
an upper bound for the dimension parameter. For instance, for the goodness-of-fit task with
02 = (77 jen as considered in Illustration 1.5.5 below, the upper bound is of order o™, which
results in the natural choice K = [e4] N [o~4] =: Ke N K, and an adaptive factor [loge|/* A
llog a|1/4. However, since a geometric grid K, := {27 : j € [4|logye|] N [4|logy o|]} U {1} is
again sufficient, dx is of order (log[loge|)/* A (log [log o|)'/* = 6. A 6. 0

Summarizing, to obtain the desired upper bound p2, .. (6z,e.) V 2, .. (65,020,) from Theo-
rem 1.5.3, there are two things to do. Firstly, construct the collection & such that minimization
over K approximates minimization over N well. Secondly, show the negligibility of the remainder
term, i.e. verify (1.5.11). This is done in the illustration below.

IMustration 1.5.5 (Homoscedastic case). Consider the smoothness and ill-posedness
assumptions of Illustration 1.2.5. Define the geometric grid

K i=Ky:={27:j € [4logye|] N [4[logy 0| ]} U {1}

with an adaptive factor dx < 6., A ds,, where 6. ~ (log [loge|)'/* and 6, ~ (log [log o|)1/4.

As discussed in Remark 1.5.4 in all three cases minimization over K approximates mini-
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mization over N well, i.e. there exists a C' > 0 such that, uniformly for all a, € A,

CPaqve (0kel) > PK,ae,ve (xces)-

Moreover, for mildly ill-posed models 7 4, v, (0%.£2) is negligible compared with pq, v, (0xe?),

i.e. uniformly for all s € [s,, s*] there exists a C' > 1 such that
r’C7a07VI (612(262) S éplc,a. Ve (5}C€?)7

since the conditions (1.5.9) and (1.5.10) are fulfilled. Furthermore, the constant C' can be
chosen uniformly for all sufficiently small noise levels.

In a severely ill-posed model 7., vo (5222), Pkaewa (9KE2); Paeva (3kES) and o, v, (€9) are
all of the same order and the adaptive factors have no effect on the rate. We present the
resulting rates of testing p2, .. (0c,€4)V P2, . (05,0204) for both the signal detection (67 = 0,)
and the goodness-of-fit task (62 = (") en) in the table below. Note that we only consider
the case 4t — 4p < 1 to avoid unnecessary case distinctions and increase the readability of
the table.

Order of the adaptive radius P2lc,a.,v. (0ce€0) V pIZC,a.,v. (05,020.)
for the geometric grid K := Ky := {27 : j € [4[logye|] N [4|logyo|]} U {1}
in the homoscedastic case e, = (¢)jen and o, = (7) en.

aj Vj pIQC,a.,v. (65060) pIQC,a.,v. (60.9200)
(smooth.) (ill-posed.) | 62 € ¢2 62 = (57" jen, 4t —4p <1
RN - H ) B

j i? ((tog[10ge])ie) *+#+1 | ((log [log o) 10) FFate=ns1

2 _% 2s
i log=|~ 7 logo] ™5

s . 9 1 dp+1 5 1 4(p—t)+1

e’ jP e*(log|loge|)? [loge| 25~ | o*(log|logo|)? |logo|™ 2

In case of super smoothness a, = (e*js)jeN and mild ill-posedness (see Illustration 1.2.5)

1
the minimax optimal dimension parameter is of order |loge|2s in the signal detection case

1 1
and of order [loge|2s A [logo|2s in the goodness-of-fit task, which suggest (for adaptation
to s > s*) a smaller geometric grid

;. 1 1
Ko, = {215 € 5~ o log=| 10 [~ ogs [log ol U (1},

yielding an adaptive factor dx,, < d:Ad, with d. ~ (loglog |log 5\)% and 0, ~ (loglog |log a\)%.
Indeed, in this situation there exists a C' > 1 such that

TK,ae,ve (51205?) V PK,ae,ve (51C5:)) < Cpayve (61092)

uniformly for all s > s, and for sufficiently small noise levels. We present the resulting rates
of testing in the table below.
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Order of the adaptive radius p2,C7a.7V. (0ce€e) V p2,cva.7v. (05.6%0,)
for the geometric grid K := K, = {2j 1j € ﬂi log, [log el ] N [[i log, |log o ]]}

in the homoscedastic case €, = (€)jen and o, = (0);en.

aj Vj p2lC,a.,V. (65.€°) p%,a.,v. (6(706(:0-0)
(smooth.) (ill-posed.) | 62 € 2 02 = (j7")jen, 4t —4dp <1

is : 9 1 sl || 1 4(p—t)+1
e’ jP e”(loglog |loge|)2 |loge| 25 | o(loglog|logol)? |logo|™ 25

1.5.3 Adaptation to both smoothness and ill-posedness — direct test

As an alternative to the indirect test we have introduced the direct test in Section 1.4. In contrast
to the indirect test it only depends on the sequence v, through the choice of the optimal dimen-
sion parameter. Hence, for a direct-max-test by aggregating over various dimension parameters
we consider adaptation to both smoothness {@aR. ta, € A} and ill-posedness {Af,. 1V, € V}.

Direct max-test. Given a € (0,1) and a finite collection £ C N we define the max-test
statistic with Bonferroni levels

. (8%
Tlcci,a = %163% {q;% - 7'1? <VC|) }

and the corresponding test
d ._
Ak = H{Tg7a>0}’

which is a level-a-test due to (1.4.4) in Proposition 1.4.1. Its testing radius faces a deterioration
compared to the optimal direct testing radius derived in Proposition 1.4.2 due to the Bonferroni
aggregation. Analogously to (1.4.2), for a sequence z, € RN we define a minimum over the
collection K

(p%,a.,v. (z.))? == 1]3161’1% {VEqu(w?) Vv ai} = g?éllICl {VkQ / Z xjf Vv ai} (1.5.12)
Jelkl

and the corresponding minimiser

kL ae.ve (To) 1= arg min {V;2qk(x?) v az} = arg min { v; > Z x? Vaiy.
Y kek kek ek

Additionally, we define

(7“,%7,1_7\,. (2.))? = gg’rcl {V;ka(.%?) Y ai} = %1611161 {V;Q Jrrelﬁiﬁ(x?) v a%} . (1.5.13)

We first present an adaptive upper bound in terms of the reparametrised noise level (£2)% =

€2 4+ (09)%0? and the factor ok := (1V log \IC|)1/4. Again, the upper bound has two regimes,
which determine whether we obtain an adaptive factor d¢ or 5,20
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Proposition 1.5.6 (Adaptive upper bound — direct max-test). For a € (0,1) define
Ay =R2+c(5Lajp + 15L2 5 +5). Then for all A > A, we obtain

o R (Btase |00 A%, 02, A { ok 00 v, (B0 V 1, (BRED) ) < 0
Qe,Ve )EAX

Proof of Proposition 1.5.6. The proof follows along the lines of the proof of Proposition 1.5.1
using Proposition 1.4.1 rather than Proposition 1.2.1 and we omit the details. ]

Remark 1.5.7 (Adaptive factor (5}% vs. Ox). The upper bound in Proposition 1.5.6 consists
of two terms similar to the upper bound in Proposition 1.5.1. In contrast to r,ga.,v.(é,%sf) in
Proposition 1.5.1 the term 'r,c P ((5 ¢) in Proposition 1.5.0 is generally not negligible compared
to p%a_,v. (0xce®) if the effective noise level (62)20? determines the radius. That is, e.g. in the
homoscedastic case T,%,ahv. (6%0,) and p%,ahv. (6%0,) are of the same order. Hence, in this case,
we obtain an adaptive factor ‘5126' If, however, the noise level €, governs the radius, r,%a.’V.(é,%a.)
is often negligible compared with ,0% e Ve (0xe?), yielding an adaptz've factor dxc. Again, we give
sufficient conditions for this to happen. Similar to Remark 1.5.2 consider k3 := ki auve (OKES)-
Assume there exists a C > 0 such that (compare assumption (1.5.9))

Vkimg (£2) < Caga(e), (1.5.14)

and assume additionally that

0% < C\/l?f. (1.5.15)
Then, trivially,

my (68e2) < Ckimyg (6367) < CPa (6362)
and, hence, ¢ ,, .. (6%e.) < Cpit 4, . (9kces). O

Next, we want to formulate the upper bound in Proposition 1.5.6 in terms of the noise
levels €, and 6J0,. Similar to the previous section, we choose collections K., and K, and set
K =K. ,NKs, with o, := dx.,, 65, := dk,, and, hence, ox < ¢, Adg,. The assumption (1.5.16)
states that the remainder term evaluated in 53.5. is negligible. As discussed in Remark 1.5.7
the remainder term evaluated in 62 620, is generally not negligible.

Theorem 1.5.8 (Adaptive upper bound - direct max-test). Let K := K, N K,,,
ey = 0k, and dy, := Ok,,. Assume there exists a C' > 1 such that

TI%,G«.7V. (6526') S Cp%,a.,v. (65080) (1516)

for a, € Aand v, € V. Then, for each a € (0,1) with Zi =7 (RQ +c <5La/2 + 15Li/2 + 5))
it follows for all A > A,

5p R (Acarz | 05, A% 65 AC {ph gy v, (Beue) V PR (03,0200 ) <

Proof of Theorem 1.5.5. We have the elementary inequalities
2{ P aure 0-a20) V 1t s (05,0200 = it 0 v (9122),
2{r e (22 Vi a0 0a (02,0200} > 1k 4, 1, (0722)

43



and

P (02,6500) > ik, (62.620.)

Ce @~ ® [\ el

The assertion is now an immediate consequence of Proposition 1.5.6 and assumption (1.5.16). O

Remark 1.5.9 (Optimality w.r.t ,, suboptimality w.r.t o,). Comparing the upper bounds
in Theorem 1.5.3 and Theorem 1.5.8 for the indirect and the direct max-tests shows that there ap-

2
pears an additional factor o4, in the term p%,ahv. (62.0°0,). However, the radius (pghv_ (9‘.’0.))

Te 0@
achieved by the direct test is generally already much larger than the radius pghv.(ﬁfa.) achieved
by the indirect test and the additional deterioration by a factor o4, is negligible compared with
it. In other word, if the o,-part of the radius determines its behaviour, the direct test already
performs suboptimally and the additional factor plays an inconsequential role. On the other
hand, if the e,-part of the radius determines its behaviour, then p%,a.,v. (0co€4) s typically of the
same order as P, ve(0z.€s) and, hence, optimal. O

INlustration 1.5.10 (Homoscedastic case). Consider the homoscedastic case and the
smoothness and ill-posedness assumptions introduced in Illustration 1.2.5. Choosing a ge-
ometric grid K := K, := {27 :j € [4|logye|] N [4logyo|]} U {1} with ¢ < ey A dou,
0c. ~ (log[loge|)'/*, 85, ~ (log [log o|)"/* yields

deC,a.,v. (6& 60) \ p%,a.,v. (53'. 9;)0-0) S C {pg. Ve (560 80) \% pg.,v. (53'. 0300)}

for a constant C' > 1 chosen uniformly for s € [s4,s*] and p € [ps,p*]. That is, the
minimisation over /C approximates the minimisation over N sufficiently well.
Moreover, for mildly ill-posed models we have

rd (512050) S Cp%,a.,v. (56050)

K,ae,Ve

for some C' > 1 uniformly for all s € [s,, s*] and p € [ps, p*], since the conditions (1.5.14)
and (1.5.15) are fulfilled.

In a severely ill-posed case the terms pi- ae.ve (0KED), s auw (05€9) and p%’a.,v. (€2) are
all of the same order and the adaptive factor has no effect on the rate. We present the
resulting adaptive radii from Theorem 1.5.8 in the table below.

2
Order of the adaptive radius (p%,a.,v. (0ce€4) V p%ﬂ.’v. (62, 9?0.))

for the geometric grid K := Ky := {27 : j € [4[logye|] N [4|logy o| ]} U {1}
in the homoscedastic case €, = (&) jen and o, = (0)jen

aj Vj (p%,a. Ve (65- 8'))2 (p%,a. Ve (52. 030—'))2
smooth. ill-posed.) | 6° € ¢? 02 = (57 en
. . J
1 L 1 2s

i 7 ((logllog ) i) *F#¥1 | ((log|log o])20)5+5

2 _2i 2s
Jj s e " [loge| P [logo|™ »
— 48 . 2 1 M 2 2p
e’ P &*(log|loge|)? [loge| 25~ | o*(log[loga|) [log o] s

We shall stress that the orders of the upper bounds in terms of e, = (€) e, i.e. p%’a.’v. (0ce€s)
(direct test) and px ae ve(0eo€o) (indirect test), coincide in all three cases. Therefore, the
direct test performs optimally with an adaptive factor d., if the €,-terms govern the radii,
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this e.g. happens in the case € > . However, the upper bound ,o% deve (5(2,. o,) in terms of o,
obtained for the direct test is generally much slower than the optimal radius pic aq ve (00, 0%)
achieved by the indirect test.

As in [lustration 1.5.5 in case of super smoothness a, = (e‘js)j ey We consider a smaller
geometric grid for adaptatlon to s, >0

_ 1 1
K=K, = {27 1j € [[g log, |loge|] N [[g log, |log o| ]]} u{1}

and an adaptive factor dxc,, < d. A, with d. ~ (loglog [log 5|)% and 6, ~ (loglog |log a|)i.

2
Order of the adaptive radius (p%a.,\,.(ég.s.) Y p%,a.,v.(OQ 00 ))

TOe¢ ©

for the geometric grid K := Ky, := {Zj 1€ [[% logy |loge|] N [[% log, |log o] ]]}

in the homoscedastic case e, = (€)en and o, = (0)en

aj Vi (pIC a.,v.( )) (p ,a.,v. 3'.0?0—‘))2
(smooth.) (ill-posed.) | 62 € ¢? 02 = (i7" jen

eI’ JjP ‘ 62(loglog\1og5\) \logs\ b ‘ (loglog |log o) \loga!

1.6 Adaptive lower bound

In this section we provide conditions under which a deterioration of the minimax testing radius is
unavoidable for adaptation over {G)GR. ta, € A}, where A C (2 is a class of regularity sequences.

Proposition 1.6.1 (Adaptive lower bound). Let « € (0,1), 6 = ., > 1 and let v, € V
be fixed. Assume that there exists a collection of N regularity sequences {af :j €[N]} C A,
where we abbreviate for j € [N]

Pj = Pl . (de,) with associated dimension parameters k; := ki .. (0e.)
such that the following four conditions are satisfied.
(C1) The collection is ordered such that k; < k,, and 6%2p; < py,, whenever | < m.
(C2) There exists a finite constant ¢, > 0 such that exp(c,d?) < Nao?.

(C3) There exists a constant 7 € (0, 1] such that

Then, with
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we obtain for all A € [0, 4,]

inf sup R (A | @i,As.,Gf,ApahV. (55.)) >1—-a.
A a.E.A

Proof of Proposition 1.6.1. The proof generalises the reduction scheme of Proposition 1.3.1 to
multiple classes of alternatives.

Reduction step. We write Py := ]P";;g: Let P1,, be a mixing measure over the A,py,-
separated alternative @aRT and consider the uniform mixture Py := %Zme[[Nl] Py, over all
m € [N]. Replacing the supremum over all a, € A with a maximum over all a]*, m € [N] and
then the maximum by the average over m € [N] and combining this with the reduction step of
Proposition 1.3.1 it is easily seen that (cp. the proof of Proposition 4.6.1 for more details)

2
inf sup R (A | O, A%, 07, Appu v (02)) > 1 — 1 L0 EL,
A geed o ’ 2

Definition of the mixtures. For each m € [N] we introduce deviations from the null 7 € ¢2
by setting

Aypm 0% :
) —egrr e forj € [km],
m - j
9] = ka( v2 J
0 otherwise.

Note that 67 € @Sj OEQA o fOllows exactly as the in proof of Proposition 1.3.1. Thus, we define

1 ;00 om,T __ ,Nm .
P1m = 5 ZTe{i}km P92+6~T‘,v. where Oj = 7]0]- Lijeftm])-

Bound for the y?-divergence. Arguing as in the proof of Proposition 1.3.1 and applying
Lemma A.3.1 from the appendix yields

1 1 -
PP < 1y S e (Gad, (200D - 1
m,lE[N]

We insert the definition of the deviations 7", 6, exploit conditions (C'1) and (C3) and obtain
forl <m

2
m3i p
Uy (V200 /2) < 2626025
m
with & = R? A y/log(1 + a?) A \/cq. Hence, by splitting the sum into two parts (m = [ and
m # 1) we get

1 N(N -1
X2 (Pg,Py) < N exp(cqd?) + (]\72) exp(log(1 + a?)) — 1 < 202,
where we used both (C1) (first inequality) and (C2) (second inequality). Inserting this bound
into the reduction step completes the proof. O

Remark 1.6.2 (Conditions of Proposition 1.6.1). Let us comment on the conditions of
Proposition 1.6.1. Condition (C1) requires A to contain distinguishable elements al*, which
result in significantly different radii pp,. This is a sensible condition: assume all elements in
A yield the same separation radius and the same optimal dimension. Naturally, adaptation can
then be achieved without a loss. We only expect to pay for adaptivity if we need to incorporate
various dimension parameters k in our adaptation procedure. Condition (C2) gives an upper
bound for the maximal size of the adaptive factor and (C3) is a balancing condition, which already
appears in the non-adaptive lower bound Proposition 1.5.1, but now has to hold uniformly over
the collection. O
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Proposition 1.6.1 gives general conditions on the collection {@aR. ta, € A} of regularity alter-
natives, which make adaptation without a loss impossible. Next, we demonstrate how to use it in
the homoscedastic setting to show that the adaptive factors that we obtain in Illustration 1.5.5
are minimal.

Theorem 1.6.3 (Minimal adaptive factor, polynomial decay). We consider the
homoscedastic case e, = (¢)jen. Let A be non-trivial with respect to polynomial decay for
some s* > s, > %, ie.

{(i7")jen : s € [54,8"]} C A

and let v, := (j7P)jen, p > 0 be fixed.
For a € (0,1) set A2 :=1 (R2 A log(1+ a?) A 1/2) with 7 as in Proposition 1.6.1. There
exists an € € (0, 1) such that for all 0 < e < £ and all A < A, we have

inf sup R (A 165, A, 03, Ape, v, (d2.)) > 1«

ae€EA

with § = (log |log 5|)i, i.e. d is a lower bound for the minimal adaptive factor over A.

Proof of Theorem 1.6.3. We construct a collection Ay := {al* € A: m € [N]} C A such that
(C1) = (C3) of Proposition 1.6.1 are satisfied.
Definition of the collection. We have seen in Illustration 1.2.5 that the minimax radius

in case of ordinary smoothness and mild ill-posedness is of order p2, . (de,) ~ (66)¢(®) with

- 8s _ 8s _ 8p+2
the exponent 6(8) = m The exponent 6(5) = m = — m

increasing in s, hence the corresponding regularity parameters result in radii with exponents in
the interval [e(sy), e(s*)] =: [ex, €*]. A grid of size N on [e,, e*] induces a grid on [sy, s*], which
in turn defines a grid on A. Let d := €< and

is monotonically

Gs :={sm:e(sm) =€ —md,me{0,...,N —1}},
which we use to define our collection of regularity sequences

Gao = {(17%)jen: s €Gs}.

Tedious, but elementary calculations (comparable to those in the proof of Theorem 4.6.3 and
thus omitted) show that (C1) — (C3) are satisfied with N = L%%L d = (log |log <€|)1/4
and ¢ small enough. ]

Theorem 1.6.4 (Minimal adaptive factor, exponential decay). We consider the ho-
moscedastic case €, = (€);jen. Let A be non-trivial with respect to exponential decay for
some s* > s, > 0, i.e.

{(e_js)jeN A= [s*,s*]} cA

and let v, := (j7P)jen, p > 0 be fixed.
For a € (0,1) set A2 :=1 (R2 A log(1 + a?) A 1/2) with 7 as in Proposition 1.6.1. There
exists an € € (0,1) such that for all 0 < e < & and all A < A, we have

inf sup R (A | OF,AS,,602, Apa, v, (9.)) > 1 -0
ae€A
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with § = (log log |log 5|)i, i.e. ¢ is a lower bound for the minimal adaptive factor over A.

Proof of Theorem 1.6.5. We construct a collection Ay := {al* € A: m € [N]} C A such that
(C1) = (C3) of Proposition 1.6.1 are satisfied.

Definition of the collection. We have seen in Illustration 1.2.5 that the minimax radius in case
of super smoothness and mild ill-posedness is of order p3, |, (de.) ~ (0¢)*(log 6e)~¢®) with the
exponent e(s) := 4p+1 . The exponent is monotonically decreasing in s, hence the corresponding
regularity parameters result in radii with exponents in the interval [e(s*),e(sx)] =: [ex, €*]. A
grid of size N on [e4,e*] induces a grid on [s,,s*], which in turn defines a grid on A. Let

d::e*%e* and
Gs :={sm :e(sm) =ex+md,me{0,...,N —1}},

which we use to define our collection of regularity sequences
ga. = {(efjs)jeN S E gs} .

Again, the calculations to verify (C1) — (C3) are elementary but tedious (and omitted since
e* —e* log|log(de) |J
1

they are comparable to those in the proof of Theorem 4.6.4). With N = |<7% Toe

§ = (loglog [log £|)"/* and & small enough the assertion follows. O

Summarizing, Theorem 1.6.3 and Theorem 1.6.4 establish the optimality of the adaptive
factors with respect to the noise level € obtained in Illustration 1.5.5 and Illustration 1.5.10.
That is, we have shown that for adaptation in an ordinary smooth — mildly ill-posed
model, the minimal adaptive factor is given by (log|loge|)*/%. Moreover, in a super smooth
— mildly ill-posed model the cost to pay for adaptation is only of order (loglog |log s|)1/ 4
and it is unavoidable. We point out that in the third case (ordinary smooth — severely ill-
posed) the rates are very slow (i.e. logarithmic in the noise level) due to the severe ill-posedness.
Moreover, the optimal dimension does not depend on the smoothness parameter and, hence, the
indirect and the direct testing procedure are automatically adaptive with respect to smoothness.
However, even if we carry out our adaptation procedure for the direct testing procedure to make
it adaptive with respect to the ill-posedness of the model, the additional factor (caused by the
aggregation) does not have an effect on the rate.
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Appendix A

Auxiliary results

A.1 Non-central y?>-random variables

Lemma A.1.1 (Quantiles of (non—central) x%-random variables). For p, € £? and
eo € RY let Z, ~ Pee = N(pa, e 2). For each k € N define Q; := > il Z and denote by
QZ'.k its distribution, i.e. Q ~ (Dve'.,k and by q Tk p(w) the (1 —u)- quantlles of Q o L€

PP (Qk < qi'.k(u)) =1—wu. For any k € Nand u € (0,1) with L, := /|log u| we have

afe 5 () < qile.) + 2Luqr(e?) + 2L2my(e?) (A.11)
< gi(es) + 2(Lu + L) ak(€2), (A.1.2)
Uy (1 =) 2 %(e.)+§qk(u.) 2 (L +5L2) ax(ed)- (A.1.3)

Proof of Lemma A.1.1. We start our proof with the observations that

EnQu= Y (¢ + 1) = aile.) + ai(p)

JG[[k]]
3 X wiA(ZD) = Y e +2u) = ai(ed) + e
Jeﬂk]] jelk]

since vary; (Z2) E;:(Z?)—(EZ:(ZJZ)) = Mj+6M262+36 (u?—i—e )2 = 4M2€2+2€4 Moreover,
we have

Vai(ed) = ai(ed) = my(ed),

which we use below without further reference. Due to Birgé [2001] (Lemma 8.1) it follows for
all z > 0

Pyr, (Qe — B (Qi) > 2v/Sz + 2my(e2)z) < exp(—2)
Per (Qr — B (Qu) < —2v/Sr) < exp(—a),

which for all u € (0,1) with L, = \/[log u| implies

qi(es) + ap(pe) + 24/ L25y + 2Lomy(e2),
( )+qk(lu")_2 Ek’Lu'
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For p, = 0, we have q(u,) = 0 and Xy = q3(e?), hence, we immediately obtain (A.1.1) and
(A.1.2). For arbitrary p. € % we have X < qi(e?) + 2q;(u.)my(e?) and, therefore, using
Vr+y<yVr+/yand 2\/zy < cx + ¢tz for x,y,c € Ry with ¢ = 10 it follows

2/ShL2 < 2/202 () mp(e2) L2 + 2,/ (e2) L2

1
< 361/3(#.) + 10my,(e2) L2 + 2y/a?(e2) L2

1
< 5(1;3(#.) + (10L2 + 2L,)q7(e?),

which implies (A.1.3) and completes the proof. O

A.2 Balancing Lemma

The next lemma shows how to balance a monotonically non-increasing sequence with two mono-
tonically non-decreasing sequences, Figure A.2 illustrates the assertion of the lemma. It is
needed in many places in this chapter, since we derive upper bounds which are the maximum
of two balanced radii with the same decreasing bias term and we want to determine the overall
minimising dimension.

Qo

kb.\/c. = kb. A kc.

Figure A.1: Illustration of Lemma A.2.1

Lemma A.2.1 (Balancing lemma). Let a, € ]RIJNr be a monotonically non-increasing
sequence, let b,,c, € RT_ be two monotonically non-decreasing sequences. Let

Phe = Toin {ar V be} and p, = g {ak Ve
Then,

\% = :=minqar Vb V).
Pbe V Pee = Poaves keN{ k Vb Vek}
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Moreover,

Ky,

= arg min {ay V by} and k., := arg min {ay V ¢}
keN kEN

satisfy

kp, A key = kpyve, := arg min {ag V b V i} .
keN

Proof of Lemma A.2.1. We start the proof with the observation that
Pbe V Pee < PbyVes-
Since for each k < ky,ve, we have ag V by V ¢k = ax > pooves = Pbe V Peos We also obtain
Kby N key 2 Kbyve,- (A.2.1)

Since the minimisers of the sets {ay V bx} and {ax V ¢} might not be unique but must be
consecutive due to the monotonicity, we define ky,vc,, kb, , key € NU {00} by

[kbes kb ] := {k € N:ap Vb < ap, V by, ¥Ym € N}
lkeos k] :={k €N:ap Ve < amVe,Vm e N}
Tkpavess Epove] = {k € N:ap Vb, Vep < am Vb, Ven¥m € N}

Now we either have [ky, , kp. ] C [Kpoves Kbaves] OF [keos Keo] € [Kbovess Ebave, ], because of (A.2.1)
and since the non-trivial case ky, v, < oo implies for k := kp,ve, +1 that pp, V pe, < ppoves < biV
cr = {ar V b}V {ag V cx}. Without loss of generality let us assume [kp,, kb, ]| C [Kboves, Kbeves -
Note that there exits a k € [ky,, kp,ve, [ if and only if pp, < ar = ar Vb, < ar V bk V ¢k = poove s
which in turn implies pp,ve, = ag V ¢k for all k € [ky, , kp,ve, [ We distinguish the two cases

(a) Pby = Pbeves

(b) Pbe < Pbeves

Firstly, consider (a) which implies kp, = kp,vc, . Consequently, pp, V peo < Pboves = Pbe = Pbs V Peo
and ky, A ke, > ky, = kp, N ke, , which implies the assertion.

Next, consider (b) which implies kp, > kp,ve,, Where pp,ve, = ar V ¢ for all k € [ky,ve, , kb, [-
Moreover, for all k € [ky, , ks, ] we have axVbr = pp, < ppove. = ax ViV ¢y, which in turn implies
Pbove, = Ck = ag V¢ for all k € [ky, , kp,]. Consequently, ax V ek = pp,ve, for all k € [kp,ve , kb, ]
and ar,. \Y, h. < cp=apVeyforall k> ky,. Since pe, < ppove. < ap = ag Ve for all k < kp,ve,
it follows pey = poyve, and ke, = kp,ve,, which in turn implies the claim pp, V pe, = poove, and
kp, A key = kp,ve, and completes the proof. O

A.3 Calculations for the y?-divergence

Recall that by PZ: we denote the probability distribution of a Gaussian sequence with indepen-
dent components with mean sequence 6, and variance sequence &2

Lemma A.3.1 (x2-divergence). Let S be an arbitrary index set with |S| = N € N. For
s€Slet k¥ €N, 05 € (? and v, € £*°. For the mixing measure

1 1 .
Pui= Y o O Bl with 627 = (5651 jepen)jen
sES re{}r’

o1



and Py :=P2° ~02 the y2-divergence satisfies

(B0 < 7 Y exp( P (¥ ?0f0f/€?)> Y

s,teS

where 05 = 5 — 6°.

Proof of Lemma A.5.1. Without loss of generality we assume 6. = 0, (which is possible since
v, is fixed). Inspecting the calculations in the direct Gaussian sequence space model with
coordinate-wise constant noise levels by Baraud [2002] (proof of Theorem 1) (compare also the
calculations in Lemma B.1.1) it is readily seen that for any z, = (z;)jen € RY the likelihood
ratio is given by

dp,, 1 ) ~ u-éj.zj ujej z
dﬁpo(z Zexp (—Qq,{s (1,05 /e, ) H (exp( 2 + exp o )

J J

By taking the expectation of the squared likelihood ratio with respect to Py we obtain

dP, g v;039; v;039;
EO(dPO( ) N2 Z H (exp <_ £j texp €5

s,teS j=1

K5 AR 23t
N2 Z H cosh< Jajej)

steS j=1

where Z, is a random variable with distribution Py. Exploiting the elementary inequality
cosh(z) < exp(2?/2), € R and the definition of the x2-divergence completes the proof. O

A.4 Mixtures

The next example provides a heuristic explanation in a simplified setting why taking mixtures
helps to obtain better results when proving lower bounds.

Example A.4.1 (Mixtures help). We consider a parametric testing problem. Let Py be
the probability measure of a normal distribution A/(6,1) and let § € R be the quantity of
interest. When analysing the complexity of the testing problem

Hy:0=0 against Hy 0] > p,

we compare the distance between the sets of probability distributions {Py} and {Py : |6 > p}.
Standard techniques for proving lower bounds in this setting involve the total variation dis-
tance between Py and a mixture P, with IP,(A) := [Py(A)du(#) for measurable sets A and
a mixing measure y supported on the parameter set {6 : |#] > p} of the alternative. This
example shows that indeed taking a mixing measure over several parameters of the alter-
native instead of taking just one element of the alternative gives a better lower bound (i.e.
a smaller total variation distance). In fact, we have

V(Po,Py) = 1/ 5= |0] + O(6?) as 0 — 0.
Choosing p1 := 1 (69 + 0_g), i.e. P, = 3 (N(0,1) + N(—0,1)) yields

TV(Po,P,) = C6? + O(6*) as  — 0.
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for some positive constant C' > 0.

Proof. We first recall Taylor’s Theorem with a remainder in Lagrange form. For a (k + 1)-
times differentiable function f we have for z € R, § € R and some £ € [z, z + 0]

1 02 2 ek k 9k+1 k+1
f@+6) = @) +0fV@) + 5P @) + -+ 7V @) + o O,
This implies
2
fla+6) ~ f(z) = 050 (@) + & 1O(&)
4
Fle+6) + flz —0) —2f(z) = (@) + 5 (106 + F9(6)

for some &y,& € [z,x + 0], & € [x — 0,x]. The second equation is called the second
symmetric derivative. Moreover, if f is the density of the standard normal distribution,
we have

x

f@) = F=exp(-%)

(@) = —zf(z)

O(z) = &* - Vf ()
(z) = (22 — 2°) ().

x

x

3).1?

Then, for some &, € [z, z + 6], we obtain

2
TV(Po, Py) = [15@+6) - f@)]ds = 5 / ‘9f(”(x) + %f@)(&;) dz

— 1/\9f(1>(x)\dx+0(92)

]9|/|x]f )z + O(6%) = |o\\f+092

since [ |z] f(z)dz = 2 [jg o) 2f(z)dz = \/%6_752/2 T=oo— \/g, which proves the first asser-
tion. For the second assertion we use the representation for the second symmetric derivative
derived above and obtain for {; =&, € [z,2 4+ 6] and {& = &5 € [z — 0, 2]

TV(3(Po +P_0).Po) = 5 [ |5(f(@ +6) + £z = ) - (@) da

f/]fx—i—ﬁ o il = 8 — ) s

-1/1Ps

= / )02]”(2)(:15)‘ dz + 0(6%)

=3¢ [|@® - 1| s@)de + 00"
= CO2 + O(6%)

21O + L 75 (0@ + )| de

with C := § [|(z* — 1)| f(z)dz € (0, 00), which completes the proof. O
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Chapter 2

Testing of linear functionals

In this chapter we derive matching upper and lower bounds for the minimax separa-
tion radius in a linear functional testing problem for the inverse Gaussian sequence
space model. Moreover, we compare linear functional testing to goodness-of-fit test-
ing.

2.1 Linear functional testing

We consider an inverse Gaussian sequence space model, i.e. our observations are given by
Y; = N0 + €§5, jeN,

where € > 0 is the noise level, ¢; Y N(0,1) is i.i.d. white noise, Ae = (Aj)jen € £*° is a known

bounded sequence and 6, = (6;);jen € ¢? is an unknown square summable sequence of interest.

For an introduction of the model we refer to (IGSSM). We denote by Py, the joint law of (Y});en

with mean (A.6,). In this chapter instead of making inference on the signal 8, = (0;);en itself,
we aim to make inference on the value of a linear functional L(6,). Let

L:D—R

be a linear functional and #¢ € D C ¢* a benchmark sequence with L° := L(6°), where D =
D(L) C ¢? denotes the natural domain of L. For a separation radius p > 0 and a nonparametric
class ©® C D we consider the testing problem

Hy: L(6,)=L° against HY :|L(6,) — L°| > p,0, — 62 € O. (2.1.1)

We present the testing task in the form (2.1.1), which is typical for non-parametric minimax
testing. Note, however, that in practice when testing L(6,) = L° for a given L° the benchmark
0? is generally not given (and not uniquely identified by L(67) = L°). Hence, in our proofs we
only require that there exists a §7 € © with L(6S) = L° and control the error probabilities of a
test for any element 6, such that there exists such a 67 with 6 — 6, € ©.

For a test A, i.e. a measurable function A : RY — {0,1}, we define the maximal risk
corresponding to the testing task (2.1.1) by setting

R(A ‘ @,p) = P@g(A: 1)+ sup ]P)g.(A:O).
Oe—05€O©
|L(0e)=L°[>p

We measure the difficulty of the testing task by taking the smallest risk obtainable by any test,
that is, we define the minimax risk R (0, p) := infao R (A | ©,p). We call p = p(O) a minimax
radius of testing if for all @ € (0,1) there exist constants A,, A, € R, such that
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(i) for all A > A, we have R (0, Ap) < a, (upper bound)
(ii) for all A < A, we have R (0, A4p) > 1— a. (lower bound)

The goal of this chapter is to determine a radius of testing over an ¢2-ellipsoid © for an arbitrary
linear functional L. Let us formalize the kind of alternatives we consider. For a monotonically
non-increasing sequence a, and a positive radius R > 0 we define the non-parametric class of
sequences

0 =0y = {19. €’ Wa;? < RQ}
JEN

and assume that 62 € OF .

Linear functionals. By the Riesz representation theorem (see Theorem V.3.6. in Werner
[2006]) there exists a sequence L, = (L;)jen € ¢* such that any continuous (i.e. bounded) linear
functional L : 2 — R can be represented as L(6,) = (L,,0,)p = > jen Lj0; for all 0, € 2.
We point out that we do not need the square summability of the coefficients L, € ¢? of the
linear functional for our testing method, since we base our test statistic on a finite number of
coeflicients anyway. Due to the regularity assumption, it is sufficient if >,y L?a? < 00, since
then

DLl <y ‘Lj(@‘ - 07)
JEN

+ 30|15
jEN JEN

1/2 1/2 1/2 1/2
s(zf@az) (Zaﬂej—e;v) +(Zz>§a§) (Zaﬂw;f)

jEN jEN jEN jEN

1/2
<2R (Z L?a?) < 0.

JEN

Hence, we consider any linear functional which has a representation of the form

L(0.) = (L.,0.)p = > L;b; with > Lia} < oo. (2.1.2)

JEN JEN

Thus, we are able to cover a larger class of linear functionals. Let us give some examples
of such functionals. Let f € 22[0,1) be a square integrable real-valued function, denote by
fo == (fj)jen its coefficients in some basis (b;)jen of £2[0,1). Linear functionals acting on
(subsets of) £2[0,1), such as point evaluation, average values or weighted averages can be

represented as linear functionals acting on the coefficients in ¢2. By D and D we denote the
respective (natural) domains of the functionals.

» Point evaluation. Let t, € [0,1). Define L : .#?[0,1) 2 D — R by
Lf = f(to).

We have f(to) = > en fibi(to) =t YXjen Ljf; = L(f.) with L; := b;(ts), i.e. the cor-
responding linear functional L : 2 O D — R satisfies Lf = L(f,) with domain D =
{f. 12 jen | fil 1bi(ta)] < oo}. In particular, this linear functional is unbounded.

» Averages. Let ¢ € [0,1). The average (up to c) functional L : #2[0,1) — R is given by
C
Lf = / F()dt.
0

We have [§ f(t)dt = Y en fj fo bj(t)dt =: Y ien Ljif; =: L(f.) with Lj := [§b;(t)dt, i.e.
the corresponding linear functional L : /2 — R satisfies Lf = L(f.).
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» Weighted Averages. Let w € .£2[0,1). The weighted average functional L : .£2[0,1) —
R is given by

Lf = /Olw(t)f(t)dt.

We have folw(t)f(t)dt = >jen fj folw(t)bj(t)dt =: Y jen Ljfj = L(f,) with coefficients
Lj:= fol w(t)b;(t)dt, i.e. the corresponding functional L : £ —» R satisfies Lf = L(f.).

Related literature. Statistical estimation of linear functional dates back to the 80s. Early
work includes Ibragimov and Khas’ minskii [1985] and Ibragimov and Khas’ minskii [1988] (in
Gaussian noise models) and Ibragimov and Khas’ minskii [1989] (in a density observation model).
Goldenshluger and Pereverzev [2000] consider the adaptive estimation of linear functionals from
indirect white noise observations. The results are extended to Hilbert scales in Goldenshluger
and Pereverzev [2003]. Let us mention some further work in sequence space models. Adaptive
estimation over Besov balls under .#P-loss is treated e.g. in Laurent et al. [2008]. The series
of papers Cai and Low [2003], Cai and Low [2004], Cai and Low [2005b], Cai and Low [2005¢]
covers the adaptive estimation of linear functionals over convex and non-convex function classes
characterised in terms of a modulus of continuity. Under sparsity assumptions estimation of
linear functionals is considered more recently in Collier et al. [2018], treating both adaptation to
the smoothness index and the noise level in a direct Gaussian sequence space model. For a specific
linear functional only (i.e. L(6,) := > ;cn0;) Golubev [2020] considers adaptive estimation,
comparing adaptive choices of a cut-off parameter. Butucea and Comte [2009] consider linear
functional estimation in a convolution model.

Interestingly, also direct approaches to estimation of linear functionals are investigated, for
instance in Mathé and Pereverzev [2002]. Instead of aiming to solve the observation equation
Y = Th + €€ for h and then applying the linear functional Lh = ([, h) (called the solution-
functional approach), they search for a (regularized) solution f of T*f = [, where T™ is the
adjoint operator of T, then Lh = (I,h) = (T*f,h) = (f,Th) and therefore their estimation
technique uses the observations of T'h directly (called the data-functional approach). Although
we do not use this technique in this chapter it is worth mentioning since it is a similar to the
direct and indirect approaches for testing considered in this thesis.

Outline of this chapter. We derive an upper bound in Section 2.2 and a matching lower
bound in Section 2.3. We illustrate the resulting minimax separation radii for typical ill-
posedness and smoothness cases in Illustration 2.4.1. Moreover, we compare linear functional
testing to goodness-of-fit testing in Section 2.4 and discuss adaptation (Remark 2.4.3).

2.2 Upper bound

Definition of the test. Our test is based on a truncated plug-in estimator of the distance
|L(0.) — L°|. Due to the representation (2.1.2) for a cut-off dimension k € N we suggest the test
statistic

N Y,
=) Ly = L°
jelk] Y

as a truncated estimator of L(6,) — L°. For a € (0,1) we define the threshold

L2
(@) == dapae, | 3 5+ [R2D L] (2.2.1)
jelk] I >k
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where @, denotes the (1 — a)-quantile of a standard normal distribution, i.e. P(Z < qq) =1—«
for Z ~ N(0,1). Finally, we introduce the test

Ak,a = ]l{’ik|>7'k(04)} (222)

Proposition 2.2.1 (Quantiles of the test statistic). Let o, € (0,1). Denote by qq
the (1 —«)-quantile of a standard normal distribution. Let & € N and consider the threshold
7 (c) defined in (2.2.1) and a benchmark function 62 € O with L(62) = L°.

(i) (a-level) We have

ng (Ak,a = 1) = ng (‘Zk‘ > Tk(a)) < a.

(ii) ((1 — B)-powerful) Let 6, satisfy 6, — 62 € OF and

1,2
[L(0:) = L°| > (tajp —en-p)e,| >, 33 +3, [R*D Ljaf=ip
jelk] “I j>k

then we have

Py, (Ag,a =0) =Py, (‘Zk’ < Tk(oé)) <B.

Proof of Proposition 2.2.1. Note that for Y; ~ N(\;0;,e%) our test statistic 1, follows a normal
L?

distribution with mean jig, 1 1= 3" ey Lj (05 —07) — X5k L;0; and variance o} =g > el 3
i

(i) Hence, we can rewrite the probability

]P)Q‘.’ (‘Zk‘ > Tk(a)) = ]P)gg (lAk > Tk(a)) —i—]P)gg (ik < —Tk(a))

< ZPQg (Z >
Ok

where Z ~ N(0,1). Note that for 6, = 07 we have pgg 1, = — >~ L;07. We point out
that 02 is not given in practice (only L° is!) and it is not necessarily uniquely determined
by L(67) = L°. Hence, in general the bias term g 1, is unknown but easily bounded using
the Cauchy-Schwarz inequality

1/2 1/2 1/2
<(Sore) (Su) sn(gus) ow
>k

Jj>k J>k

nog k| < 3 |L563
J>k

due to the regularity assumption 67 € @aR.. Therefore, inserting the definition of the
threshold yields the desired upper bound.

(o) — by

]P’e‘.’ (‘Zk‘ > Tk(a)) < Qng (Z > Tk > = 2P92 (Z > qa/2) = 2% = «.

Ok
(ii) Let 6, — 62 € OF | due to the Cauchy-Schwarz inequality we have

1/2 1/2 1/2
2
<(Su) (SE-0)a) <n(go)

>k >k >k

> Li(0; —05)

>k
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and in the same manner

1/2
d Lif;| <R (Z L§a§) :

>k >k
First consider the case L(6,) — L° > p. Hence, |L(0,) — L°| > p implies

pook = p— D Lt — > Li(0;

>k >k

1,2
> (a2 — d1-p)e, | D )\% T [R2D . La3.
JE[k] * i>k

Rearranging the last inequality and recalling the definition of the threshold 7% («) in (2.2.1)
yields

(@) — pig, k

Ok

< di-g-
Therefore, we can bound the probability
Py, (‘Zk’ < () = Po, (I € [-7(a), 7u()])
_ Py, <lAk: — Houk {_Tk(a) ~ Houk () — Me.,kD
Ok

Ok Ok

§P9. (ZS Tk(a)—/w.,k> SPB. (ZSQ1fﬁ> =7
Ok

for a standard normal random variable Z ~ A/(0, 1), which proves the assertion. The other
case L(0,) — L° < —p follows analogously by considering the bound

Py, (Zk € [_Tk(a)ka(a)]) < Py, (ik > —Tk(a))

and proceeding as above.

For a truncation dimension k& € N let us define the separation radius

2
o= 3 T
.7

jelk] >k

The part /> L?a? is a typical bias term, which decreases if the dimension parameter k

L2
increases. On the other hand the variance part €, /Zje[[k]} 57 Increases with k. Proposition 2.2.1
i

in particular shows that Ay, , is a level-a-test that is (1—j3)-powerful over 2(qy, /2 —@1-5+3R) pp-
separated alternatives (since \/z + /y < 2y/x+y for all z,y > 0). The radius py can be
optimised with respect to the cut-off dimension k. In the case of a monotonically decreasing
sequence A\, = (A;)jen, which we assume from hereon, the optimal dimension is given by the
simplified expression

&2
/{*::sup{keN Vi <ak}
k

and the corresponding minimal radius is

P*.II?EII{II{J&‘QZ 2+ZL } (2.2.3)

j€lk] >k

The next proposition establishes p, as an upper bound based on Proposition 2.2.1
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Proposition 2.2.2 (Upper bound for the radius of testing). For a € (0,1) define

Za =2 (3R i Yo /a — QI—a/2) .

where q, denotes the (1 — a)-quantile of a standard normal random variable. Then, for all
A > A, we obtain

R (6%, 4p.) <R (An, a2 | OR, 4p.) <0

i.e. py is an upper bound for the minimax radius of testing.

Proof of Proposition 2.2.2. The assertion follows from Proposition 2.2.1 applied to 8 = a//2 and
the definition of the testing risk. O

2.3 Lower bound

In this section we provide a matching lower bound to the upper bound derived in Proposi-
tion 2.2.2. Thus, we establish p, defined in (2.2.3) as the minimax radius of testing.

Proposition 2.3.1 (Lower bound). For a € (0,1) we define A, := R A /log(1 + 2a2).
Let p, be defined in (2.2.3). Then for all A < A, we have

R (95.’Aap*) Z 1- a,
i.e. py is a lower bound for the minimax radius of testing.

Proof of Proposition 2.5.1. Reduction step. Standard reduction techniques show that for any
test A the testing risk is lower bounded by

x2(Pyg, Py, )

(A’@a 7%,0*)21— 9

for some sequence 6, (called hypothesis) contained in the A, p.-separated alternative, i.e. satis-
fying 6, — 62 € OF and |L(0,) — L°| > A,ps. Moreover, straight-forward calculations (detailed
in Lemma B.1.1) show that

ZjeN /\32‘ (9; - 9]’)2

g2

X2(IP93,IP’9.) = exp —1.

Construction of the hypothesis 6,. We define the sequence 6, by setting

e )\2 +67 if j < ks,
;=

gaQLJ +02 i > ke,

with & := R A /log(1 + 2a?), which has the following three properties.

(1) |L(6) = L°| = cpx (separation)
By construction it follows

I
w(>PF€Za4H€Zv]=l=m-
J>Kx Px I<Kx jp* Px
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(2) 6, — 02 € OF (smoothness)

Note that %22_%'_2 < 1 for all j < k4. Hence,
J

L2
2 2 47 =2
4 RS Zajﬁa

*

> a;? (ej - .9;) = ¢2

JjEN I<Kx J J>Kx
< g2 2 2L§
£ Z € 2 +¢ Z a;—
7<k« J ISR« Px
< 52 ,0* 52 < R2
since for o,y > 0 we have 22 4+ y? < (z +y)2.
22(0°-0;)*
(3) M < log(l + 2a?) (similarity)
Note that )\2a2 < &2 for all J > kKx. Hence,
12
2 ( po , 2 4 2 J
Z)‘j@j_e]) =& J 42+§ Z)‘ 7
jEN F<kx J J>ka Px
1.2
] J
2 Z a; i 52
]<n* ] J>Kx *

< €% 2'0* = £2e? <log(1 + 2a%)e?
p?

*
The conditions (1) and (2) guarantee that the constructed candidate sequence 6, is contained
in the alternative. Condition (3) implies that x?(Pgg, Py, ) < 2a?, which yields
mfR(A]® ap*>21—a

and, thus, completes the proof.

2.4 Comparison to goodness-of-fit testing

In this section we illustrate the minimax radii of testing obtained in Proposition 2.2.1 and
Proposition 2.3.1 and compare them to the radii obtained in the previous chapter.

Illustration 2.4.1. We calculate the order of the optimal dimension k, and the minimax
radius of testing p, for some specific combinations of the behaviour of A\, (parameter p for
ill-posedness), L, (parameter r for Riesz Representation of the linear functional) and a,
(parameter s for smoothness). We assume s > % for the polynomially decaying case, which

guarantees a, € 2,
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Order of the optimal dimension %, and the minimax radius ps
for a linear functional L with L; = 57"

a; )\j Rx Px
(smoothness) (ill-posedness)
€ r > % +p
1
js jP e str | ey/|loge] P = %—i—p
2s542r—1 1
£ 2st2p r<s5+p
I | loge] | ftogef3~+"
A € r > % +p
e I8 jP lloge| | ey/log |110g5| P = % +p
elloge|2 Py < 1+p

Calculations for the risk bounds of Illustration 2.4.1.

1
1. (mildly ill-posed — ordinary smooth) The optimal r, is given by K, ~ ¢ 2. The

L2
variance term /> ;e T% = \/Zje[[kﬂj_g(r_p) behaves like a constant for r > 1 + p,

like v/log k for r = % + p and like k®P="+1/2 for r < % + p. The bias term /> ;- L?a?

is of order k~(51t7)+1/2_ Hence, in the case r > % + p the rate is parametric. In the

case r = % + p it satisfies p, ~ ev/log ks ~ £4/]loge|. In the case r < % + p it satisfies

2s+2r—1
(s+r)+1/2 ~ g 3t

Px ™~ Kix
L?

2. (strongly ill-posed — ordinary smooth) For the variance term ,/Zje[[kﬂ +7 we have
j

2
exp(kp) 2, RN i—% 2 exp(k(p — 0)) for any § > 0. The bias term /> ;- L?a? is of

order k~(+7)+1/2 The optimal dimension is of order s, ~ |log(¢)|, which yields a rate of

order p, ~ |log 5|%_(5+T).

2

3. (mildly ill-posed — very smooth) The variance term /3= e % = \/Zje[[kﬂj—Q(T—P)
J

behaves like a constant for r > % + p, like Vlogk for r = % + p and like kP—")+1/2 for

r < 3 +p. The bias term /2 jok LiaZ satisfies exp(—ks) 2 /X5 LiaF 2 exp(—k(s+9))
for any § > 0. The optimal dimension is of order r, ~ |log(¢)|. Hence, in the case r > 3 +p
the rate is parametric. In the case r = % + p it satisfies p, ~ ev/log Ky ~ e4/log |loge|. In
1
the case r < 3 + p it satisfies p, ~ ¢ [log g2t Pm),
O

Note that if the linear functional L, is smooth (fast decay of the coefficients, e.g. L; =e™")
L?
such that it evens out the ill-posedness A, of the model, i.e. >_ cy 55 < 00, then variance term

is uniformly bounded for all dimension parameters k. In this case we obtain a parametric rate
p« = €. Roughly speaking, the linear functional has a smoothing effect in both the bias and the
variance part of the separation radius, which yields much smaller radii than the ones obtained in
the classical goodness of fit-testing task (compare the rates in [llustration 1.2.5). A heuristic ex-
planation for this phenomenon is the fact that it is naturally a much simpler task to only detect
certain features L(#,) of a sequence than to test the entire sequence 6,. As an example consider
the linear functional L(6,) = 61, which extracts the first component of a sequence. Testing only
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one component of §, can be done with a parametric rate, whereas testing the (infinite) sequence
0, yields a much slower (necessarily non-parametric) rate.

Let us explore the link between linear functional testing and goodness-of-fit testing in detail,
i.e. we compare testing

HYF L) =L°  against  H{™7:|L(0,) — L°| > p, 6, — 65 € OF | (LF)
with
H§F . 9, = 6° against HlGOF’p 0. — 02,2 > p, 0. — 02 € O (GoF)

More specifically, we aim to answer the question: how does an (optimal) test in one framework
perform in the other? The next lemma shows that the null hypothesis of (L.I') and the alternative
of (Gol') intersect. Hence, a test cannot be of low level and powerful for both testing problems
simultaneously.

Lemma 2.4.2 (Non-empty intersection of hypotheses). Let p(e) N\, 0 for € \, 0. For
e small enough, there exists a sequence 9, € £2 such that with p = p(¢) the following two
conditions are satisfied;

> 9, € HYF  ie. L(¥,) = L°,
> 9, € H de. |[0, — 62,2 > p and 9, — 62 € OF .
Proof of Lemma 2./.2. We distinguish two cases with respect to the linear functional.
First case: There exists an index j, such that L; = 0. Then, let 9, = (), en be given by

ﬂj = Rajo]l{j:jo} + 9;, jeN.
2
Then, L(9;) = L°, e (¥ — 05) a;% = R? and for & small enough

19, — 6217 = R%a3, > p*(e).

Hence, ¥, € HY¥ N HEM,
Second case: We have L; # 0 for all j € N. Define

R 1
Uy = f . T 7 + 0?,
b VRaE T B3
R 1
g = —— + 65
Lo T 1
L%a% L%a%
and
19]' = 95, j>3.
Proceeding as above completes the proof. ]

Let us now come back to answering our previous questions. Let A be a level-a-test for (LI,
ie. Pg,(A=1) <« for all §, with L(0,) = L°. Naturally, we also have

ng(A = 1) < sup P@.(A = 1) < «,
6o cHLF
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i.e. A is also a level-a-test for (GoF'). However, due to Lemma 2.4.2 for a small enough noise
level there exists 9, € HY N HlGOF’p. Hence,

sup Pp, (A =0)>Py,(A=0)>1-aq,

9. GHlGOF

which implies that the power of A for the problem (Gol') cannot be larger than «.
Let A now be a (1 — 3)-powerful test for (GoF), i.e. Py, (A =0) < 8 for all §, € HI°"_ If L is
an (?-functional, i.e. L, € (2, then |L(6, — 6°)| < ||L.||7% ||6. — 62|/ Therefore,

LO)-L°12p = 1l =0l > L] p
Hence, with 5 := || L,||% p? we have

sup Py, (A=0)< sup Py (A=0)<p,
ecH, P fecH M

i.e. the type II error probability can be controlled. On the other hand, since Lemma 2.4.2 implies
that there exists a 9, € HY¥ N H IG °FP we obtain for the type I error probability

sup P@.(A = 1) > Pg.(A = 1) > 1-— ﬁ
fecHLF

Summarizing, a test intended for (LF) should not be used to test (Gol) and vice versa. This
is a natural conclusion: a linear functional test is constructed to detect only a feature L(6,) of
the sequence of interest, which is a simpler task than to make inference on the entire sequence
0,. Therefore, the two problems (Gol') and (LF) indeed require different testing strategies.

Remark 2.4.3 (Adaptation). The test (2.2.2) relies on the knowledge of the regularity class
@5., specifically on the sequence a, and is, thus, non-adaptive. Let us briefly outline a possible
strategy to obtain an adaptive test. By modifying the threshold (2.2.1) to only consist of a
variance-type term it is possible to construct a (modified) test of the form (2.2.2), which only
depends on the reqularity sequence a, through the optimal choice of the dimension parameter
k. In this situation the standard procedure to obtain an adaptive test is to aggregate the tests
over various dimension parameters into a max-test, which rejects the null as soon as one of
the tests does. Let us briefly discuss the effect of such a aggregation in the setting of this
chapter. It is well-known (DasGupta [2008], Example 8.13) that for small o we approzimately

have o ~ /2 |log | for the quantiles of a standard normal distribution. This is due to

2 2 e~ T o(x)

1—\Ii(x):1/ooe2dt§1/oote 2 dt = =
V2 Jx VamJz X V21 T

where W(x) and ¢(x) denote the probability distribution function and the probability density
function of a standard normal distribution, respectively. Hence, aggregation of the test (2.2.2)
via the Bonferroni method over a finite collection K C N of dimensions k, i.e. replacing «
by a/ |K| yields an additional factor of \/log|K| in the testing radius. Since K is commonly
chosen to be of cardinality |loge| (by considering a geometric grid), the additional factor (i.e.
a deterioration due to the aggregation) is of order /log |loge| (this translates to an adaptive
factor of order (log [loge|)'/*), which we conjecture to be optimal (compare Section 1.5 in the
previous chapter). O
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Appendix B

Auxiliary results

B.1 Calculations for the y?-divergence

Lemma B.1.1 (yx2-divergence between two normals). Denote by P,, respectively P,,
the probability measures associated with sequences of normal distributions with independent
coordinates N (u;,€), j € N respectively N'(v;,¢), j € Nand ¢ > 0. Then, the x2-divergence
satisfies

X2(IP’”.,}P’,,.) = exp (Z W) -1

: &
JEN

Proof of Lemma B.1.1. We recall the definition of the y?-divergence between two measures P, Q
(cp. Tsybakov [2009], Section 2.4)

J(&-1) a0 iP<Q

00 otherwise .

(B, Q) = {
Since in our case both IP,, and P,, are normal distributions we have P,, < P,,. Furthermore,

XQ(P,Q)=/<<£)2—2£+1> dQ:/(ig)de—lezN@ (%(Z)Y—l.

Let us now first determine the likelihood ratio

—vi)2 — (yi — pg)? i(py —vj V2 — 12
dpu'(y.):Hexp<(y] 5) 252(% MJ))ZHeXp<2y(M )+(g NJ)>'

2
Py, jEN jEN 2e

Let Y, be a random variable with distribution P,,. We obtain
Rl 2
E, F (Y,
(] <d]P)V.( ))

_ H/ exp y](,uj l/.]) 5 (V] ”j) exp (y] 2”]) dyj
V2me? 2e 2¢

jeN

Inside of the exponential function in the integral we carry out a square addition
515 — i) — (g = 03 =~ — 20y — 1) + Qo — 03 = 2
Yj\Hg — Vj Yj—Vj Yj Hj = Vj Hj = Vj 3
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which yields

2
J

2e2?
jEN

jeN

which completes the proof.

<2(V]2 - N?) + (2p; —vj)2 —v
e

Vi — 1:)? Vi — L
o (7)o (£ 4
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Part 11

Circular convolution
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Circular convolution

We consider a circular convolution model, where a random variable that takes values on the
circle is observed contaminated by an additive error. Identifying the circle with the unit interval
[0,1), the observable random variable is given by

Y =X+e—-|X+e]=X+¢ mod 1,

where X and ¢ are independent random variables supported on the interval [0,1) and |-] denotes
the floor-function. The next proposition characterises the density of the random variable Y in
terms of the densities of X and e, i.e. the density of Y is the circular convolution of the
densities of X and e.

Proposition (Convolution density). Let X ~ f and € ~ ¢ be independent random
variables on [0,1). The random variable Y := X 4+ ¢ — | X + ¢ has density g = f@y with

a(y) == (F®P)(y) == /[0 L J(=9) mod Dp(s)ds,  ye[0,1)

Proof. Let y € [0,1). By independence of X and ¢ we have
FY(y) =P(Y <y) =P(X +¢ mod 1 <y)

N 1 TTs mo dxd ,
/[0,1) /[0,1) f(@)@ () {g1s<y mod 13dwds

where we introduce the change of variable, t = x +s mod 1, dz = dt and obtain

P@= [ S mod Do) psy s rydsdt

= / / ft—s mod 1)p(s)dsdt.
[0,9) /10,1)

Taking the derivative yields the desired result

o) = Y ) loim f, 7t s mod Dp(ayds

O

Related literature. Circular data, also called wrapped (around the circumference of the unit
circle), spherical or directional, appears in various applications. For an in-depth review of many
examples for circular data we refer the reader to Mardia [1972], Fisher [1995] and Mardia and
Jupp [2009]. Let us only briefly mention two popular fields of application. Circular models are
used for data with a temporal or periodic structure, where the circle is identified e.g. with a
clock face (cp. Gill and Hangartner [2010]). Moreover, also directional data can be represented
by a circular model by identifying the circle with a compass rose. Kerkyacharian et al. [2011]
and Lacour and Ngoc [2014], for instance, investigate a circular model with multiplicative error.
Nonparametric estimation in the additive error model has amongst others been considered in
Efromovich [1997], Comte and Taupin [2003] and Johannes and Schwarz [2013].
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Some examples of circular densities. Figure 2.1 displays several typical densities on the
circle, Figure 2.2 plots the same densities on [0, 1) for comparison. More details and many more
examples can be found in chapter 3 of the textbook Mardia and Jupp [2009].

1. (von Mises distribution) This is the analogue of the Gaussian distribution on the circle,
hence, also known as the circular normal distribution. Denote by I, (k) the modified Bessel-
function of order 0, then the density of a von Mises vM(y, )-distribution with location
parameter u and measure of concentration x > 0 is given by

f(x) = Ljﬁ) exp( cos(2m(x — 1))

We plot the density for p = 1/2 and k = 3.

2. (Uniform distribution) The density of a uniform UJ[0, 1) distribution is given by

f(@) = 1.
For kK — 0 the von Mises distribution approaches the uniform distribution on the circle.

3. (Cardioid Distribution) For a parameter |p| < % and a location parameter p the cardioid
distribution C(u, p) has density

f(x) =14 2pcos(2m(z — u)).

For small x the von Mises distribution approximates the Cardioid distribution since exp(k) ~
1+ k. We plot the density with = 1/2 and p = 0.25.

4. (Triangular Distribution) The density of a triangular distribution is given by

x for z < 1/2,
) = /
1—z forz>1/2.

5. (Wrapped Normal distribution) A distribution on the circle can be obtained by wrap-
ping a distribution given on the real line around the circumference of the unit circle. Let
R ~ N (i,0?%) be a normally distributed random variable on R, then

X =R—-|R|]=R modl

is a random variable on the unit circle and we denote its distribution by WN(u, 02). If ¢
is the density of R, then the density of X is given by

fla) =3 &@2n(z+k)).

kEZ
We plot the wrapped normal distribution for = 1/2 and o = 1.
6. (Wrapped Cauchy distribution) In the same way as in the example of the Normal

distribution, we can wrap a Cauchy distribution Cauchy(s,t) around the unit circle. Its
density is plotted for s =1/2 and ¢ = e.
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von Mises density Uniform density

Cardioid density Triangular density
Wrapped Normal density Wrapped Cauchy density

Figure 2.1: Typical densities on the unit circle.
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Figure 2.2: Typical densities on the unit circle plotted on [0, 1).
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Some examples of circular data.

1. (temporal data) Figure 2.3 presents the arrival times of 254 patients at an intensive care
unit, the data was collected over a period of 12 months. The data points are taken from
Fisher [1995], p. 239 and were originally published in Cox and Lewis [1966], p. 254-255.

2. (directional data) Figure 2.4 shows two different ways of representing circular data in
a diagram. We are given the orientation of 76 turtles after laying eggs (data taken from
Table 1.5 in Mardia and Jupp [2009]). On the left the data points are represented as a
rose diagram (the circular analogue of a histogram), on the right the points are plotted
around the circle and their estimated density is presented in green. For comparison we also
plot the density of a mixture of von Mises distributions, one with weight 0.8 and location
parameter 1/6 (roughly the direction of the sea) and a second with weight 0.2 and location
parameter 4/6 (direction away from the sea), both with measure of concentration x = 3.

3. (temporal data) Figure 2.5 shows the estimated density of the times of birth in the
US (2018) (red line) with 3801534 data points obtained from https://www.cdc.gov/
nchs/data_access/vitalstatsonline.htmm plotted around a 24-hour clock face. For
comparison we plot the density of a uniform distribution. An interesting question could
be: Is the birth time uniformly distributed around the 24h-clockface? Our goodness-of-fit
tests proposed in Chapter 3 and Chapter 4 are based on an estimation of the green area.

Arrival times
at an intensive care unit

Figure 2.3: Arrival times at an intensive care unit plotted around a 24-hour clock face (green
dots) and their estimated density (green line).
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https://www.cdc.gov/nchs/data_access/vitalstatsonline.htmm
https://www.cdc.gov/nchs/data_access/vitalstatsonline.htmm

Turtle data Turtle data

Figure 2.4: Orientation in which 76 turtles leave their nest after laying eggs, represented as a
rose diagram (left) and as points on the circle (right). The green line is the estimated density,
for comparison we plot the density of a mixture of two von Mises distributions (orange line).

Birth Times

Figure 2.5: Estimated density of the times of birth in the US (2018) (red line) and its distance
(green) to a uniform distribution (blue dashed line).
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Fourier coefficients property. We denote by .#? = .£2[0,1) the space of square-integrable
complex-valued functions on [0, 1) equipped with its usual inner product. The methodology of
the following chapters relies on the expansion of the respective functions in the exponential basis
ej,j € Z of £* with e;(z) = exp(2mijz) for € [0,1). The next proposition provides a useful
property for circularly convoluted densities in terms of their Fourier coefficients. The proof is
similar to the well-known proof for Fourier transforms and convolution on R and we state it here
for completeness (cp. Appendix A in Meister [2009], Lemma A.1)

Proposition (Circular convolution theorem). Let f, ¢ € #? with Fourier coefficients

fo = (fi)jez = ({f, &) #2)jez and @, = (p;)jez = ({¢, €;) #2). We have g = f@¢ if and
only if g; = f; - pj for all j € Z.

Proof. Let g = f®y, then for j € Z we have
figr= [ S@eiae [ ewes -y

= [ | r@ei-a)eme;(~ydyda,
[0,1) J[0,1)
where we introduce the change of variable, 2z = x +y mod 1,dx = dz and obtain

fier= [ [ Ty mod Delyes(—2pzdy
= [, U@RICIes(2)az = [ gles(=2) = g5

Now let g; = f;-p; for all j € Z, then by the Riesz-Fischer Theorem we have the representation
(with equality in .£2)

9y) =D _gieiy) =) fivieiy) =) saj/ f(@)ej(—x)e;(y)dz,
= jez jez YO0

where we introduce the change of variable, x = y—s mod 1,dx = ds and exploit the periodicity

of ej, j € Z

g(y) = jez;pj /[0’1) fly—s mod 1)e;(—y + s)e;j(y)ds
= jezégoj /[071) fly—s mod 1)e;(s)ds
— /[071) fly—s mod 1) Z pjej(s)ds

JEZ

_ / fly—s mod p(s)ds = (f@)(y).
0,1)

Notation

In contrast to the previous part of this thesis, from here on we also consider complex-valued
sequences and complex-valued functions. In this second part we denote

2= 03(Z) = {x eCh: ) i< oo},

jEN

020 = 12(2) = {:c € C% s sup fz;| < 00} :
JEL

75



The space £2 := (2(Z) equipped with (z,,y.)p = > jeN TiYj ||:v.||§2 =D jeN |:vj|2 is a Hilbert
space of square summable complex-valued sequences, (> equipped with ||z, ||jec = sup;ez [7;| is
a Banach space of bounded sequences.

By 2% .= £2[0,1) we denote in this part the Hilbert space of complex-valued square in-
tegrable functions defined on the half-open unit interval [0, 1) equipped with the inner product

(f,9) .22 = Jy f(z)g(z)da.
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Chapter 3

Minimax testing and quadratic
functional estimation for circular
convolution

In the circular convolution model we aim to infer on the density of a circular random
variable using observations contaminated by an additive measurement error. We
highlight the interplay of the two problems: optimal testing and quadratic functional
estimation. Under general regularity assumptions we determine an upper bound
for the minimax risk of estimation for the quadratic functional. The upper bound
consists of two terms, one that mimics a classical bias?-variance trade-off and a
second that causes the typical elbow effect in quadratic functional estimation. Using
a minimax optimal estimator of the quadratic functional as a test statistic, we derive
an upper bound for the non-asymptotic minimax radius of testing for non-parametric
alternatives. Interestingly, the term causing the elbow effect in the estimation case
vanishes in the radius of testing. We provide a matching lower bound for the testing
problem. By showing that any lower bound for the testing problem also yields a lower
bound for the quadratic functional estimation problem, we obtain a lower bound for
the risk of estimation. Lastly, we prove a matching lower bound for the term causing
the elbow effect. Therefore, we establish both the minimax risk of estimation and
the minimax radius of testing.

3.1 Introduction

The statistical model. In this section we consider minimax testing and quadratic functional
estimation in a circular convolution model. We observe a random variable given by

Yi=X+4e—|X+e),

where X and e are independent random variables on [0, 1) with densities f and ¢, respectively.
The density of the observable random variable Y satisfies ¢ = f®p, where % denotes the
circular convolution. The model is introduced and motivated in detail in the section above.

3.1.1 Quadratic functional estimation

Denote by D the subset of real probability densities in .2 := .£2[0,1), the Hilbert space of
square-integrable complex-valued functions on [0, 1) equipped with its usual norm ||-|| »2. Since
we are interested in the estimation of the quadratic functional q?(f) := || f||%= of a density f,
we assume throughout this paper that both f and ¢ (and, hence, g) belong to D. We also want
to compare f to the prescribed density f© = 1y 1) of a uniform distribution by estimating their
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£2-distance ?(f—f°) = ||f — foH?g,Q Since q%(f— f°) = q%(f) —1 these problems are equivalent
and we focus on the estimation of q%(f — f°). Let {Yi};_; be a sample of n independent and
identically distributed observations with density g, i.e. the observations are given by

Vi ¥g=f®p, keln]. (3.1.1)
Denote by Py and E; the probability distribution and the expectation associated with the
data (3.1.1). For a non-parametric class £ we measure the accuracy of an estimator 42, i.e. a
measurable function §2 : R* — R by its maximal risk

r2(@2,8) = sup By (a2 —a*(f - f°)
f—fee€

and compare its performance to the minimax risk of estimation

r2(€) == ip2fr2(q2, £),
q
where the infimum is taken over all possible estimators. An estimator G2 is called minimax
optimal for the class £ if its maximal risk is bounded by the minimax risk r2(£) up to a
constant. Note that with the non-parametric class £ we put restrictions on the difference f— f°
instead of on f directly, this makes it easier to compare the quadratic functional estimation
problem with the testing problem, which we state below.

Related literature. Quadratic functional estimation in direct models has received much at-
tention in the literature, let us only mention a few references. Bickel and Ritov [1988] and Birgé
and Massart [1995] establish minimax rates for the estimation of functionals of a density, where
they discover a typical phenomenon in quadratic functional estimation: the so-called elbow
effect, which also appears in our results. It refers to a sudden change in the behaviour of the
rates as soon as the smoothness/regularity parameter crosses a critical threshold. In a Gaussian
sequence space model, which is closely related to our model, for instance, Laurent and Massart
[2000] and Laurent [2005] consider adaptive quadratic functional estimation via model selec-
tion, Cai and Low [2005a] and Cai and Low [2006] derive minimax optimal estimators under
Besov-type regularity assumptions. Collier et al. [2017] consider sparsity constraints. Quadratic
functional estimation in an inverse Gaussian sequence space model is treated by Butucea and
Meziani [2011] (known operator) and Kroll [2019a] (partially unknown operator). For quadratic
functional estimation for deconvolution on the real line we refer to Butucea [2007] and Chesneau
[2011].

3.1.2 The testing task

Based on the observations (3.1.1) we test the null hypothesis {f = f°} against the alternative
{f # f°}. To make the null hypothesis and the alternative distinguishable, we separate them in
the .#%-norm. For a separation radius p € Ry let us define the set £7 := {€ € L2 : [|{] »» > p},
which is called the energy condition. For a nonparametric class of functions &, called the
regularity condition, the testing problem can be written as

Hy: f=/f° against HY:f—f°€ Z’? neE, feD. (3.1.2)

We measure the accuracy of a test A, i.e. a measurable function A : RY — {0,1}, by its
maximal risk defined as the sum of the type I error probability and the maximal type II error
probability over the p-separated alternative

R(AE,p) =Pp(A=1)+ sup Pr(A=0).
f—feez?ne
feD
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We aim to answer the question how far the null and the alternative need to be separated to be
statistically distinguishable. A value p?(A, &) = PQ({Aa}ae(o,l) ,€) is called radius of testing
for the family of tests {Aq},¢(g,1) over the alternative &, if for all o € (0, 1) there exist constants

A, Ay € Ry such that
(i) for all A > A, we have R (A, | €, Ap(A,€)) < q, (upper bound)
(ii) for all A < A, we have R (Ay | €, Ap(A,€)) > 1 —a. (lower bound)
The difficulty of the testing problem can be characterised by the minimax risk

R(E,p)=mfR(A[E,p)

where the infimum is taken over all possible tests. The value p?(€) is called minimax radius
of testing if for all a € (0,1) there exist constants A,, A, € Ry such that

(i) for all A > A, we have R (&€, Ap(€)) < a, (upper bound)
(ii) for all A < A, we have R (£, Ap(€)) > 1 —a. (lower bound)

If p%(€) is a radius of testing for the family of tests {A,} ac(0,1)> then it is called minimax
optimal.

Related literature. Concerning minimax testing in convolution models we refer e.g. to Bu-
tucea [2007], Butucea et al. [2009] and Loubes and Marteau [2014], all three consider convolu-
tion on the real line. The connection between quadratic functional estimation and testing has
for example been studied in Collier et al. [2017] (in a direct Gaussian sequence space model
under sparsity), Kroll [2019a] (in a indirect Gaussian sequence space model under regularity
constraints) and Butucea [2007] (in a convolution model on the real line).

3.1.3 Methodology

We characterise both the minimax risk and the minimax radius in terms of the sample size n,
the parameters of the regularity class £ and the error density ¢. Our approach heavily depends
on the properties of the Hilbert space .Z? := £2[0,1) equipped with its usual inner product

() == (-, ) &2 given by

<§7 w> = ) §($)¢(1‘)dx for §v € gza

0,1

where () denotes the complex conjugate of 1(x). Given the exponential basis e;, j € Z of £>
with e;(x) = exp(2mijz) for z € [0,1), we denote the Fourier coefficients of a function f € #2
by fj = (f,e;), j € Z. This leads to the discrete Fourier series expansion

F=>fej, (3.1.3)
JEZ

where equality holds in .#2. The non-parametric class of functions £ is formulated in terms
of the Fourier coefficients and characterises the regularity of the function. Let R > 0 and let
a. = (aj)jen € RN be a strictly positive, monotonically non-increasing sequence. We assume
that the density of interest f (resp. f— f°) belongs to the .#?-ellipsoid

ER = {ge.z?:zza;? & §R2}. (3.1.4)

jEN
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We point out that in the case f° = 1| ) the conditions f € 55. and f— f° € 55: are equivalent.
Moreover, note that for real-valued densities, the condition f € 55_ imposes conditions on all
coefficients f;,j € Z, since | fj|2 = | f,j\Q, j € N for all real-valued functions and, additionally
fo = 1 for all densities. The definition (3.1.4) is general enough to cover classes of ordinary
and super smooth densities. Expanding both f and f° in the exponential basis as in (3.1.3)
and applying Parseval’s Theorem yields a representation of the quadratic functional q?(f —

o)r=If- fOH?gg in their Fourier coefficients q?(f — f°) = ez ’fj -5 2 23 jen ‘fj — f;”Q.
In particular, for f° = 1jg,), we have A(f—f°) = QZjeN\fj\Q. Moreover, by the circular
convolution theorem we have g = f®¢ if and only if the Fourier coefficients satisfy g; = f; - ¢;
for all j € Z. Here and subsequently we assume that the Fourier coefficients of the noise density

¢ are non-vanishing everywhere, i.e. |¢;| > 0 for all j € Z. The quadratic functional can then
be expressed as

2
95 — »il5
‘27 (3.1.5)

CUf=r=>

jez |51
which simplifies to q2(f — f°) = 2 > jeN % in the case of a uniform density f° = 1 ). The
only unknown quantities in (3.1.5) are the Fourier coefficients g;, j € Z of g, which can easily
be estimated. Since for j € Z, g; = (g,e;) = Eyre;(—Y1), a natural estimator is given by
replacing the expectation with the empirical counterpart g, := % > ki1 €j(—Yy). Inserting these
estimators into the quadratic functional, however, generates a bias in every component. Since
]§j|2 - % is an unbiased estimator of the numerator |gj\2, for j € N, for each k € N we
consider the estimator

- L—1g;/°
N 2 )42
qw=221%|{wl— 0 (3.1.6)
. n—1
MSIL

ko gl

3= g
Here and subsequently, we only consider the case f° = 1 ). Using 61,% as an estimator of the

which is an unbiased estimator of the truncated quadratic functional q,%( f—1 [0’1)) =2

distance || f — f° ||>2g2 to the null hypothesis, we construct a test that, roughly speaking, compares
the estimator to a multiple of its standard deviation. Precisely, for £k € N,a € (0,1) and a
constant C,,, we consider the test
1/2
1
Apo = ]1{ 2} with 1/,3 = Z —|4 . (3.1.7)

A2 Vk | .
43>Ca -k jelk] 13

3.1.4 Minimax results

We show that for fixed k& € N the minimax risk of estimator 47 defined in (3.1.6) is up to a
constant bounded by

4 2

4., .4 . 4 4., Y 4 4 Um
Vr with =<a;V =% and ro:=max{a. N——= . (3.1.8
Pk ’ ok { : n2} ’ meN { " n|90m’2} ( )

The base level term 2 is present for all dimensions k € N, whereas the term pé, which represents
a typical bias?-variance trade-off, explicitly depends on the dimension parameter k € N and can,
thus, be optimised with respect to k. More precisely, choosing x4 as a minimizer of pi, the risk
of q%;* is up to a constant bounded by

4 4 . 4 4
V =< Vre.. 3.1.9
P VT, {ké§ pk} o (3.1.9)
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The term r? causes the classical elbow effect in quadratic functional estimation, since it prevents

the rate from being faster than parametric. The upper bound shows the expected behaviour:
a faster decay of the Fourier coefficients of ¢, i.e. a smoother error density, results in a slower
rate. Therefore, we call the decay of (|¢;|)jen the degree of ill-posedness of the model. On the
other hand, a faster decay of the Fourier coefficients of the density of interest f, characterized
by the sequence a,, yields a faster rate. We use the estimation upper bound to determine an
upper bound for a radius of testing of the test Ay , defined in (3.1.7). For appropriately chosen
Cy an upper bound for the radius of testing of Ay, , is given by

V2
pr =aiV ;’“ (3.1.10)

which can again be optimised with respect to k € N. Again choosing k, as the minimiser of pi
with respect to k, the radius of testing of A, , is of order

2 : 2
P, = MmN P.
* keN k

Interestingly, the term causing the elbow effect in the estimation case vanishes in the radius of
testing. Roughly speaking, the densities that cause r2 in (3.1.9), and, hence, the elbow effect,
are difficult to estimate (since they have large energy), but easy to test (since they are far from
the null). This observation is explicitly used in the proof of the upper bounds of testing.

Outline

Minimax testing and quadratic functional estimation for circular convolution

[ r2(ER) < mingen pf V 7 }

Section 3.2

‘ minimax risk of quadratic functional estimation ‘ K

r2(ER):i=inf sup Ef(42—q*(f—/°)°
@ f_foceR

Disappearance
of the elbow
effect

Section 3.6 -

P*(ER) < mingen pf

[ r2(ER) 2 74 } (r2(eR))* s p2(eR)
Section 3.5 : [

‘ minimax radius of testing ‘

| PA(ER) |

Section 3.4

[ PA(ER) 2 mingey p} }

Outline of this chapter. We provide an upper bound for the estimation risk in Section 3.2,
which is used to derive an upper bound for the radius of testing in Section 3.3. Interestingly,
the term causing the elbow effect disappears. Section 3.4 shows a matching lower bound for
the testing problem. In Section 3.5 we show that testing is faster than quadratic functional
estimation if we correct for the missing square, formally r4(€) > Cp?(€) for some C > 0. Using
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this connection between quadratic functional estimation and testing, we immediately obtain a
lower bound for the estimation problem. It remains to prove an additional lower bound for the
term 72 that causes the elbow effect, which is done in Section 3.6. Thus, we establish the order
of both the minimax estimation risk and the minimax radius of testing. Technical results and
their proofs are deferred to Appendix C.

3.2 Upper bound for the estimation risk

The next proposition presents an upper bound for the quadratic functional estimator defined in
(3.1.6) for arbitrary f € D and k € N. The key element of the proof is rewriting the estimator
as a U-statistic and exploiting a well-known formula for its variance. The upper bound consists
of one bias? term and two variance terms, one of which still involves the density of interest f.

Proposition 3.2.1 (Upper bound for the estimation risk). For n > 2 and k € N the
estimator defined in (3.1.6) satisfies

2 N 2
Es(a - a*(f - f° ) (Z|f] ) +% = il (3.2.1)

ik et 1230 ™ et 1941
with ¢ := [[f®@¢ | = 19l = SUPzep,1) |9(2)]-

Proof of Proposition 5.2.1 . The bound follows from a classical bias?>-variance decomposition of
the estimation risk;

B (aF —a*(f 1) = (Bt} — a*(f — 1))+ varg(@})
= (R~ )~ ~ 1))+ varg(@)
2
= (Z |ij2> + vary (45). (32.2)
71>k

To bound the variance, we rewrite the estimator as a U-statistic

Ly oy S b3, Vo) o= U,

)i il n(n—1) 2,

Ylej<Y)_

a; =
where we define the kernel h : [0,1) x [0,1) — C by

hyi,y2) = ) eilmv)eslye) for y1,y2 € 0,1)

oI
l71€ K] ¥
and the normalized U-statistic

-1
U, = (Z) S (Y, Vi

l#m

The kernel h is symmetric and real-valued. Indeed, for yi,y2 € [0,1) we have

e;l— €, (& el—
h(ylvyZ) = Z j(‘yl)’;(yz) = Z W = h(y27y1)7
lilelk] P lUlel%] P

82



where we introduce the change of variables I = —j and exploit that e;(-) = e_;(—-). Moreover,

— ej(y1)ej(—y el(—y1)e(y
Ay, y2) = Z J(1|)J|(22) — Z W = h(y1, ),
lilelk] Y lilelk] ©i

where we again introduce the change of variables | = —j and exploit that e;(-) = e;(—-). Let us
define the function

hl : [07 1) — Ra Yy hl(y) = Ef(h(yvy2))
By Lemma A on p. 183 in Serfling [2009] the variance of the U-statistic U,, is determined by

n

1
vary(Uy) = <2> (2(n —2)& + &)

with & := varg(hi(Y1)) and & := varg(h(Y1,Y2)). Next, we bound the two terms & and &.
Since

Eye;(Ya2) 17
hi(y) =Ep(h(y, Y2) = > 20—y = Y Foei(-y),
letey il itk 1]
we obtain by Parseval’s identity
<Ef (M) < hll% = iy
& < Eplha(V) < gl 1hallee = llgllae D 5
etk 1941

Now consider the term &». It holds

€y = vary(h(Y1,Y2)) < Ef|h(Y1, Y2)* < |9l /[0 ) /[0 ) \h(y1, y2)|* dy19(y2)dya,

where
Joay €5 (Y2 — y)e(y2 — y1)du 1
/‘h<y17y2)’2dy1 = Z 0.1) p) 2 = Z T4
e el Lol leti 131
and, hence,
) 1 1
/ / |h(y1, y2)|* dyrg(ya)dya = ﬁ/ gly2)dya = Y —
0.0 o s lesl” o et 1l
Finally, combining the bounds for & and &> yields
A 1 2n —2)61+& _ 1 1
2\ _
Varf(qk) = zvarf(Un) == W S Efl + ﬁfQ
Iyl 31 llgl 1
< 19lleo - oo o (3.2.3)
jlelr] ¥ ilelr] ¥
where we use that ﬁ < % for n > 2. Together with (3.2.2) this proves the assertion. O

The upper bound in (3.2.1) depends on the quantity ¢ = ||g||,, < ||¢||, Which is uniformly
bounded for all f € D as soon as ||¢||,, < co. By additionally exploiting the regularity condition
(3.1.4) we obtain a uniform bound for the risk, valid for all f € EX.
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Corollary 3.2.2 (Uniform upper bound for the risk of estimation).
Consider the quantities v} and 2 as defined in (3.1.7) and (3.1.8), respectively. For n, k € N,
n > 2 the estimator G defined in (3.1.6) satisfies

A o 1%
sup Ep(4f —a®(f— fO)? < ca Vv 62—’; V. cari (3.2.4)
feER n

with ¢1 := 3R?, ¢y := 2([lelloo + R?), c3:=3 ||g0||OOR2

Proof of Corollary 3.2.2. We exploit the upper bound of Proposition 3.2.1. Since the sequence
a, is non-increasing, the first term on the right-hand side in (3.2.1) (the bias term) is bounded
by

2 2 2 — 2 _
SoIHP =2 15 =2 il a;%a} <247 ) |fil° a;? < R%aj.

7>k >k >k >k

To control the last (third) term on the right-hand side of (3.2.1), we bound each summand, i.e.
for each j € N we have

2 ‘f‘Q 4 1 2
11/ < aj§ a; 1/\n|%|2a§ if n |2 a? > 1,

2 = 2
;] ﬁwl“

ifn|<,0j| a? <L

Hence, we obtain a bound for the entire sum

2
1 | /5] |05 a4< ) 1
3 S 3 4
" ieta 197 yiepa % Wﬂa WMWﬂ
2 , 4
<max{a A Um 2} Z %—I—RQ%
meN |Spm| IElF] aj n

4 Vi
< R*ry + R*E.
n

Combining both bounds with (3.2.1) and 2 +y + 2z < 3(z Vy V 2) for all z,y,z > 0 yields the
assertion. O

We remind the reader that since we consider the case f° = 1jg 1), we have f € Ef: if and
only if f— f° 65&.

Remark 3.2.3 (Optimal choice of the dimension parameter). The first two terms in the
upper bound of Corollary 5.2.2 depend on the dimension parameter k € N, whereas the last term
card does not. It plays the role of a base-level error, which causes the well-known elbow effect in
quadratic functional estimation (cp. also Illustration 3.2.6 below). It can easily be seen that r3

2 2

4 = maxen {a A e } > af n‘il_‘Q e % In other
J

words, no matter the choice of the dimension k the estimation rate can never be faster than

parametric. The first two terms, however, depend on k € N and can, therefore, be optimised.
We define the optimal dimension

is always of order larger than + w, since 1y

4
. v
Ky = min {k €N:a; < n’;} (3.2.5)
as the dimension that achieves an optimal bias-variance trade-off. O

84



Theorem 3.2.4 (Upper bound for the minimax risk of estimation). Let k, as in
(3.2.5), ps as in (3.1.9) and 2 as in (3.1.8). For n > 2 the minimax risk satisfies

r2(ER) <r2(@2,,ef) < ¢ (phvrd)

with C := 3 (R* + |||l +R2 + |l¢|l. R2).

Proof of Theorem 3.2./. We apply Corollary 3.2.2 to q,%* with k4 as in (3.2.5). O

We now provide an additional upper bound for the variance of the estimator (3.1.6), which
is used in the next section to derive an upper bound for the testing radius.

Corollary 3.2.5 (Upper bound for the variance). Let f° = 1)) and f € D. For
n,k € N, n > 2 and v? as in (3.1.7) the estimator defined in (3.1.6) satisfies

I/4
var o (42) < n% (3.2.6)
1/2 1/4
var p(Gz) < llello - ai(f — f°);’“ + [lello 77’3 (32.7)

Proof of Corollary 3.2.5. Let us start with the second assertion (3.2.7). We use the bound
(3.2.3) derived in the proof of Proposition 3.2.1 combined with ||g||,, < [|¢||,- The first term
on the right hand side can be bounded due to the Cauchy-Schwarz inequality by

Kils v L\
> ]‘23 ( > |fj|4) (Z ) < QG- £2) i

4
Jict 195 1elH itk 1]

In the last inequality we exploit \/z +y < y/x + \/y for any z,y > 0, which shows (3.2.7).
To prove the first assertion (3.2.6), we note that, additionally, for f = f° = 1| ) and, hence,
g = 1jo1y we have ||g||,, =1 and qi(f — f°) = 0, which finishes the proof. O

Illustration 3.2.6. We illustrate the order of the estimation risk under typical regularity
and ill-posedness assumptions. For two real-valued sequences (7;)jeny € RY and (y;)jen €
RY we write z; < y; if there exists a constant ¢ > 0 such that z; < cy; for all j € N. We
write x; ~ y;, if both z; < y; and y; S ;. Concerning the class 5& we distinguish two
behaviours of the sequence a,, namely the ordinary smooth case, a; ~ j7° for s > 1/2,
corresponding to a Sobolev ellipsoid, and the super smooth case, a; ~ exp(—;°) for s > 0,
corresponding to a class of analytic functions. We also distinguish two cases for the regular-
ity of the error density ¢. For p > 1/2 we consider a mildly ill-posed model |p;| ~ [j|7F
and for p > 0 a severely ill-posed model |p;| ~ exp(— |j’). Many examples of circular
densities can be found in Chapter 3 of Mardia and Jupp [2009]. The table below presents
the order of the upper bound for the minimax risk 7%(€}) derived in Theorem 3.2.4. In
Section 3.4 we provide a matching lower bound, and, thus, establish the minimax optimality
of the estimator q,%*. Note that in the mildly ill-posed — ordinary smooth case we observe
the typical elbow effect in quadratic functional estimation.
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Order of the minimax risk of estimation 72 (SaP: )~ plvord

a; 051 P re r?(&e.)
(smooth.) (ill-posed.)
3s __8s _ 8s N
j=s 1577 S P P | n 4t s—p<0 n 4stiptl s-—p< 2
n! s=p=0 | (n7} s—p> i
. s _4s 4s
i el (logn) P (logn) P (logn) P
. 4p+1
e’ l717P n~2(logn)”s  n! n~t

Calculations for the risk bounds in Illustration 5.2.0.

We establish the order of the terms 7% and p? in Theorem 3.2.4 for each of the three combinations
(12

> _Om }
nlom|*

in Illustration 3.2.6 and determine the dominating term. Let m, := max {m eN: am

1. (ordinary smooth — mildly ill-posed) Consider first p} defined in (3.1.9). The variance

Vi 1 1 1 14
Ve — 1L A5 p 1 p4p+1 : 4 .
term -5 = -3 3 i€k PR G 7| is of order sk and the bias term aj is
_ . . _ 4p+1 2
of order k=4%. Hence, the optimal s, satisfies k% ~ L kP + and, thus, kK, ~ nistir+i

8s
which yields an upper bound of order p? ~ k74 ~ n~ TFipiT,

an Ln2(p—9) §
the term ? ~ =m 1s monoton-

az,
2
nle;|” |7 nlem n
ically increasing in m for p — s > 0 and monotonically non-increasing otherwise. Let

p — s > 0, then m, satisfies m; 4 ~ }lm?(p—S)

2
rd~n e is negligible compared with p?. Let p — s < 0, then a?, and ol m|2 are non-
1ncreasmg The maximum of their minimum is attained at m, = 1, which yields 7% ~ %

Hence, r? is of larger order than p} for s — p > % only.

For the base level r‘ol = maxmeN{ ﬁl

25
and is thus of order my ~ ns+». Therefore,

2. (ordinary smooth — severely ill—posed) Consider first p{ defined in (3.1.9). The

4
variance term V—Q = n2 Z\g\e[[k]} o ™ n2 > jjlerk) €xP(414]7) is of order .5 exp(4k:p) and

—4s

the bias term ak is of order k=%, Hence, the optimal s, satisfies k4% ~ # exp(4x%) and,

thus, k. ~ (log(n 2/b ))% with b, ~ (log(nz))%s, which yields an upper bound of order
ph~ it~ (logn) 7

Considering the base level 74 = max,,cy { 4

a’gn m—ZS
}, the term e~ exp(2m?P)

az,
2
n|p;]
is eventually monotonically increasing in m. Hence, my satisﬁes my4s ~ % <25 exp(2m?b)

4s

and is thus of order m, ~ (log(n/bn)); with b, ~ (log n) . Therefore, 74 ~ (logn)™ » is
of the same order as p?.
3. (super smooth — mildly ill-posed) Consider first p? defined in (3.1.9). The variance
4
term % = #leleﬂkﬂ ﬁ ~ #Z\j\éﬂkﬂ 17|* is of order #k‘lpﬂ and the bias term af
is of order exp(—4k®). Hence, the Optimal Ky satisfies exp(—4k$) ~ 12 kP and, thus,

(log( 2/b ))1 with b, ~ (logn) e , which yields an upper bound of order p} ~

+
T L logn)
2
C0n51dering the base level 74 = max,,en {a A ‘ 2} the term o |2 ~ exp( 2m?®)

is eventually monotonically decreasing in m. Hence, my satisfies my ~ 1. Therefore,

rd ~ n~!is of larger order than p} and is thus the dominant term.

O]
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3.3 Upper bound for the radius of testing

In this section we derive an upper bound for the radius of testing of the task (3.1.2). For k € N
we consider the family of tests {Ag o}, c(0,1) defined in (3.1.7), that is based on the estimator

42 in (3.1.6) of the distance || f — foH?gg to the null hypothesis.

Proposition 3.3.1 (Upper bound for the radius of testing of A, /5). Let a € (0, 1),
¢ :=| ¢l and C’a/g,ﬁa be such that

20, + 1 20, )y + 1
e TS 2 and 22T % (3.3.1)
C101/2 2 (Aa - cx/2)2 2

Set A := R2 + A2. Then, for all A > A, and all k € N we obtain

R (Dras | €0 Api) < o,

2
ie. pi=a2V %’“ is an upper bound for the radius of testing of {Ak’a/Q} O
(&3 )

Remark 3.3.2 (Choice of C,/, and ﬁa) In particular (3.3.1) and, hence, Proposition 3.5.1
1s satisfied for

Copp =200/ plle  and  Aa = Cup+/2/a/2llel% (0/2) + 0]l
Indeed, since ¢ > 1 we have
2C, /2 +1 la 1 fa\?\ _a/1 1 o
ez, O <2c2+4c2<2> > §2<2+4c) =3
and

2Ca/2 +1
(Ava - a/2)2

« 2C, 2 +1 « 2C, 2 +1 «
T . — —
2

“ 12(a/2) T +e 2 4dcla2) T+l 2

|

Proof of Proposition 3.3.1. We show that both the type I error probability and the type II error
probability are bounded by «/2. Consider first the type I error probability. Applying first
Markov’s inequality and then the second inequality (3.2.6) from Corollary 3.2.5 we obtain

. 1%
Pro(Apas2 =0) =Pro(af > Ca/?f)
E o (62)2 o (G2 1
< Er (q_k2) o e 1 e (3.3.2)
Coan v Chppn™2vp = CF )y — 2

for all C,, /o satisfying (3.3.1), since |[¢]|,, > 1. Next, we consider the type II error probabil-
ity. Let f be contained in the A,pi-separated alternative, i.e. f — f° € 55. and q%(f — f°) >
(Aa)?p3. We expand

2
A 1% A e} [¢]
Pr(Apape=0) = Pf(Q/z < Ca/2;k) = Pf(@l/% —qi(f—f°) < Ca/2V13 —ar(f—£°)

and distinguish the following two cases for the density f
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Figure 3.1: Visualization of the structure of the proof of Proposition 3.3.1. We dis-
tinguish the two cases: Either f — f° has large energy (in the first k£ components), hence, it is
easy to test since it is far from the null. Or f— f° has small energy (in the first k& components),
hence, it is difficult to test since it is close to the null.

L oqp(f—f°) = 2C, 21'%, easy to test
k /270
2. qi(f - f)< 2004/2%' (difficult to test)

2
Case 1: (easy to test) We have C’a/g% —qi(f—f) < —%q%(f— f°) and, therefore, due to
Markov’s inequality

Pp(Apasz = 0) <PaE — (f — f°) < —lq,%<f— )

-2
9 vars(§°)
f=1) €4 —7—ow
R
On the one hand, by the case dlstlnctlon we have qk( f=r°) =20, /2 , on the other hand we
have var;(G?) < cqi(f — fo); + cﬁ with ¢ = [J¢||,, due to (3.2.7) in Corollary 3.2.5. Hence,

l\DM—~

=Pr(ap(f—f°) -

2 4

2 oy VP vl v v
c(f— )% + % % Y
]P) A o = O S 4 n n — 4C n + n
F(Brasz=0) S 4= mrr ey QT @7
vi Y 2 +1 _a
<d4c = 2 + =C—5 <=
2% 4C2,% Corz ~ 2

due to assumption (3.3.1).
Case 2: (difficult to test) Under the alternative we have

2 2 2 — 2 —
SoIHP =2 15 =2 il a;%a} <247 Y |fil° a;? < R%aj.

l7l>k >k >k >k

and q?(f — f°) = >ljleN \ijQ > Zzpz. Therefore, it follows

2 2
QG =)= (=)= 2 I = Aopf —afR? = 75 4 R} — R%} = A2°%
li|>k
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Hence, due to Markov’s inequality the type II error probability satisfies

2
IP)f(Ak,oz/2 = 0) = ]P)f <(AII% - ql%(f_ fo) < Ca/2VTI; - ql%(f_ fo)>

B 2
= P; (—61,% +at(f = °) < (~Capp + 42) ’“)
varf(q,%)
2,4
(Aa - a/2) FIE

From the bound for the variance (3.2.7), the case distinction condition and the choice of A, in

(3.3.1) it follows

2 o V2 v V2 v2
BU-f)VE+S 2k
Py(Akapp=0) <c: k~ 2,,42 S ! 2,2
(A?)z - Coz/Q) 7?}5 (A?x - Coc/Q) Wk
2C 1

(42~ Cupa)

Combining the last bound and (3.3.2), we obtain the assertion, which completes the proof. [

From Proposition 3.3.1 with k = k4 as in (3.2.5) and p, as in (3.1.9) we immediately obtain

the following corollary and, hence, omit its proof.

Corollary 3.3.3 (Upper bound for the minimax radius of testing). Under the con-
ditions of Proposition 3.3.1 for all A > A, we obtain

R (ER, Ap) <R (Dp, 02 | €, Ap,) <

2
Yk

i.e. p? = mingey {az \% n} is an upper bound for the minimax radius of testing.

Illustration 3.3.4. We illustrate the order of the upper bound for the radius of testing
p2 = p2(ER) derived in Corollary 3.3.3 under the typical smoothness and ill-posedness
assumptions introduced in Illustration 3.2.6. In the next section we provide a matching
lower bound, which establishes p? as the minimax radius of testing. Comparing the next
table with Illustration 3.2.6 we emphasise that there is no elbow effect. The derivation of
the bounds is similar to the ones in [llustration 3.2.6 and is thus omitted.
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Order of the minimax radius of testing p2(ER)

a; 051 [
(smoothness) (ill-posedness)
4s
jfs |j|—P n  4s+4p+1
. 2

i el (logn) »

: S _ 4p+1
e’ 131" n” ! (logn) 2

3.4 Lower bound for the radius of testing

In this section we prove a matching lower bound for the radius of testing. The proof is inspired by
Assouad’s cube technique (see Tsybakov [2009], Chapter 2.7 for an explanation of the technique
in the estimation case), where the testing risk is reduced to a distance between probability
measures. It requires the construction of 2%+ candidates (called hypotheses) in the class S}i,
which are vertices of a hypercube. Roughly speaking, they are constructed such that they are
statistically indistinguishable from the null f° while having largest possible .#?-distance.

Proposition 3.4.1 (Lower bound for the radius of testing). Assume

2 Z aJQ- =:a < 00. (3.4.1)
JjeEN

Consider ky as in (3.2.5) and let n € (0, 1] satisfy

V2 v?
(ai* % % n< a2 A :L* : (3.4.2)

For a € (0,1) define 42 :=1n (R2 A V1og(1 + 2a2) A ail). Then, for all A < A,

R(é’f:,Ap*) >1-aq,

2
i.e. p2 = mingey {az \% l;f} is a lower bound for the minimax radius of testing.

Proof of Proposition 3./.1. Reduction step. To prove a lower bound for the testing radius we
reduce the risk of a test to a distance between probability measures. Denote Py := Pfo and let
P1, specified below, be a mixing measure over the A, p.-separated alternative. The minimax
risk can then be lower bounded by applying a classical reduction argument as follows

R(EX, Aaps) = inf {Pre(A=1)+  sup Ps(A = 0)
f-foeZ3 , NE.feD
> inf {Py(A = 1) + P1(A = 0)}
2
= 1—TV(Py,Py) > 1— X(P;’Pl), (3.4.3)

where TV denotes the total variation distance and x? the x?-divergence. The last inequality
follows e.g. from Lemma 2.5 combined with (2.7) in Tsybakov [2009].
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Definition of the mixture. On the alternative we mix the Fourier coefficients uniformly over
the vertices of a hypercube. Consider f with f— f° € 55‘. N3 p, With coeflicients

1 J=0,
Ji = Y 100 i € [,
0 otherwise,

where ¢ := R? A \/log(1 + 2a2) A a~!. For a sign vector 7 € {£}"* we define 7 with f7 — f° €
E’}f. N .i”j », through its Fourier coefficients

1 j=0,
fi =976 il € [k,
0 otherwise.

The quadratic functionals q*(f™ — f°) = ¢*(f — f°) and qi(f™ — f°) = q3(f — f°), k € N are

invariant under 7. The resulting mixing measure is given by

1 = 2’€* Z Pf‘r

Te{£}™

Let us check that the constructed candidates f7, 7 € {+}"* are indeed densities and are con-
tained in the alternative. Let 7 € {£}"™

2
(8) Tjez|ff| < oo (€ 2?)
Satisfied by construction.

(b) f] = T' (real-valued)
Satlsﬁed by construction.

(c) f§=1 (normalized to 1)
Satisfied by construction.

(d) >jjlen ’f;‘ <1 (positive)
The Cauchy-Schwarz inequality implies

1/2 1/2
slgl<(xa) (Sa)

ljleN ljleN ljleN

1/2 1/2
~(:5) (meru) <vaee

JEN JEN
where the second last inequality follows as in (e).

(e) f—foe&r,ie 23 ey Gj_Q £i1* <R? (smoothness)
By the monotonicity of a, and the definition of { we have

¢np; 4 -2
2> aptlfil =2 X leil

JeN o ljlels4]

Cnp .
< V4*am2 ve < (nplag? < ¢ <R2

Kx
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() f—foe i, iealf—f°) > A (separation)
By definition

2 o 2 o Cnpi —4 2 2 2
G =)=, (f=f) == D el " = Cnpl = Alpl.
B g1€lra]

(8) 7 Spjiepung 111" le5]" < log(1 + 202) (similarity)
The definition of ¢ and the condition on n imply

2 4 4 2(2772/)3 —4
n? Y |filt et =n 3 > el
|71€[kx] Fx g€
2.2 4 2
_ 28 TP <28
Vﬁ*

2 4
np 2 2
5 = < 7 <log(l+2a%).

Ky

The conditions (a)-(d) guarantee that the vertices are densities, (e) and (f) guarantee that the
vertices lie in the alternative. Condition (g) is needed to bound the y2-divergence between Py
and P; and thus guarantees that the induced distance between the mixing measure and the null
is negligible, i.e. that they are similar enough to be statistically indistinguishable.

Bound for the y?-divergence. We apply Lemma (C.1.2 from the appendix and obtain

1
X (2 > Pffapo) < exp <2n2 > !gﬁ) ~1l=exp (n2 > \fa'\4\%|4) - 1.

Te{£}™* JEr4] l71€[rx]

Hence, the condition (g) implies

1
¢ (% 2 Pf*’PO) < exp (log(1+20%)) — 1 = 20

Te{+}™*

and, therefore, by inserting this bound into (3.4.3)

2
X (]P;,IP’l) >1-a,

R (ganAap*) Z 1 -

which proves the claim. O

Remark 3.4.2 (Conditions on 7 and a). Proposition 3./.1 involves the value 7 satisfying
(3.4.2), which depends on the joint behaviour of the sequences a, and ¢, and essentially guar-
antees an optimal balance of the bias and the variance term in the dimension ky. For all typical
smoothness and ill-posedness assumptions considered in Illustration 5.2.6 an n exists such that
(3.4.2) holds uniformly over all n € N. The additional assumption a = 2> jeN ajz- < 00 n
Proposition 3./.1 is needed to ensure that the candidate densities constructed in the reduction
scheme of the proof are indeed densities. This assumption is in particular satisfied for the typical
smoothness classes introduced in Illustration 5.2.0. For Sobolev-type alternatives, i.e. a; ~ j—*
it is satisfied as soon as s > 1/2, for super smooth alternatives, i.e. aj ~ exp(—j®) it is satisfied
for all positive s. O

3.5 Connection between quadratic functional estimation and

testing

In this section we explore the connection between quadratic functional estimation and testing.
Every estimator for the quadratic functional q2(f — f°) = ||f — £°||%= can be used to construct
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a test by rejecting the null as soon as the estimated value of the quadratic functional exceeds a
certain threshold. The next proposition shows how this connection can be formalized in terms
of the minimax risk and the minimax radius. Denote by 042 the null element in in .#2. Note
that since the non-parametric class £ is formulated as a constraint on f — f°, it is natural to
assume 0 g2 € £.

Proposition 3.5.1 (Testing is faster than quadratic functional estimation).

Let a € (0,1), & C £? a nonparametric class with 02 € € and p?(€) a minimax radius
of testing with A, as in the lower bound definition. Then, the minimax risk of estimation
satisfies

Proof of Proposition 3.5.1. Let §? be any estimator of q?(f— f°). Define the test A := Lige>p2/2)
with p = A, p(E). We convert the mean squared error into the sum of type I and type II
error probabilities, i.e. the testing risk, by applying Markov’s inequality. Keeping in mind that
a?(f° — £°) = 0, we have

2
r2(@%,8) = sup By (@ —a*(f - f°))
f—foe€

zl{Efo (@2 - (P = f)) +  sup Ef(q2—q2<f—f0>)}

2 f—feeens?

 mi(io-r-¢25)]

f—feeeny?

4 2 2
Plpe(a2>2 )+ sup Prla2<
8 2 f—f°e£ﬂfp2 2

e
= TR(AE Aup(©)).

vV
|0
——
=
<~
o
/N
o)
o
vV
NS
~
+

v
|

Since ¢? is arbitrary and by definition R (£, A,p(€)) > 1 — , we obtain the result. O

3.6 Lower bound for the estimation risk

Recall that the upper bound for the risk of estimation in Theorem 3.2.4 is of order p? Vv ri.
There are two possible scenarios, either the risk is governed by the bias?-variance-term p? =

4 2
mingen {ai Vv Z’;} or by the base level term r? = max,,cy {aﬁl A n\im E } We prove separate
m

lower bounds for these two cases. The lower bound in the first case is an immediate consequence
of the lower bound for the radius of testing Proposition 3.4.1 combined with Proposition 3.5.1.

Corollary 3.6.1 (First lower bound for the risk of estimation). Let a € (0,00) and
n € (0, 1] satisfy (3.4.1) and (3.4.2), respectively. Then, for all n > 2 we have

2/pd —1 4
,,,2(55.)277(1{ Nlog(3/2) Na )min{a4\/yk}.

16 kEN n?

Proof of Corollary 5.6.1. We apply Proposition 3.5.1 to the lower bound for the radius of testing
derived in Proposition 3.4.1 and set o = 0.5. O
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Let us now turn to the second lower bound. In contrast to the lower bound proved in Propo-
sition 3.4.1, the proof of the next proposition only requires the construction of two candidate
densities.

Proposition 3.6.2 (Second lower bound for the risk of estimation). For all n > 2
we have

1 R4 a2
2/¢cR > | = — : = ’
r*(€a) > <64 " 16) meN {am " n|s0m|2}

Proof of Proposition 5.0.2. Reduction step. Denote by Q; the measure with density f®e.
The measure Py associated with the observations equals the n-fold product measure of Q.
Let f*,f~ € D (to be specified below) with associated P¢+, Py and quadratic functionals
q? = ¢®(f*) and p? = ¢*(f~). Denote by h(Ps+,P;-) the Hellinger affinity between the two
measures P¢+ and Py-. We apply the reduction scheme of Lemma C.2.1 and obtain

r2(ER) > hQ(Pg’P_) (o? - 1p2)2- (3.6.1)

Using the tensorization property of the Hellinger affinity and the definition of the Hellinger
distance (cp. for instance Tsybakov [2009], p. 83), it follows

n

n 1
h(Pye,Py-) = (h(QfﬂQf*)) = (1 - §H2(Qf+, Qf))
Let us denote ¢* := f*®¢, we will ensure that g~ > % Hence,

(9" (x) — g~ (2))°
(Vo™ + Vo @)

L2
e <2la* -7,

Qe Q) = [

Moreover, we ensure that ||g* — g_||;2 < 1. Then Bernoulli’s inequality ((1 + )" > 1+ rz for
all z > —1,r > 0) implies
2

h? (P, Pps) > 1 — 2an+ =9 ||,

From (3.6.1) it follows
1 2 2
() = 5 (o - 1) (1 ~2ngt g ng)
— 5 (@97 (1-20] @0 - 100l (3.6.2)

Construction of the hypotheses Let 7 € {+} and let m be arbitrary. Define the Fourier
coefficients of the hypotheses 7, 7 € {+} by

]. ] - 07 ]- j = 07
f;r =c(1+¢Can, j==+m, and fi=q0-=8Can, j==Em,
0 otherwise, 0 otherwise,

with C := %/\ % and &2 := 1A m. Then, the hypotheses 7, 7 € {£} satisfy the following

conditions:

1. fTeD (density)
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2
(a) ZjeZ ‘f;‘ < 00, by construction. (6 32)

(b) f] = f7;, by construction. (real-valued)
(¢) f§ =1, by construction. (normalized to 1)
(d) Ypjjen ]f;‘ = 2(1+&)Cap < 2 2Cam < 4C < 1. (positive)
2. [ =g > % (bounded from below)

(&) Lijjen |15 |lesl = 21 = ©)Cam [om| <20 < 4.
3. [r—foe&l (smoothness)

2
(f) 2% jena;” = 2a,;2(1 +€)2C%a2, < 8C? < R2.

i

4. (p? —q?)? > (% A R4) {a A n\so 2 } (separation)
2
(g) We have ¢*(f7 — f°) = X|jjen ‘f;‘ = 2(1 £ ¢&)%a2,, therefore,

(0~ =4 (1 +67 — (1-7) C'al, = 6420 a,

_64.< ) _ AR4>§ gt
:Qm){a N }

5. |/ ®¢ — @l < & (similarity)
(h) We have |f*®p — f~ @2 = 40°€%a}, o, <407 < 7.

Note that Condition (h) also implies ||ft*®¢ — f _®g0||??2 < 1, which is a condition to apply
Bernoulli’s inequality. Combining both bounds (g) and (h) with the reduction in (3.6.2), we
obtain

1/1 a? 1 1 R4 a?

2/¢cR 4 4 m 4 m
r(&,) > AR A 1-2n— | =|—A— a,, N\ —= 7.
( )_8< >{ i n|@m’2}< 4n> (64 16){ " n90m|2}

Since m € N is arbitrary, this proves the assertion. ]

3.7 Upper bound for the radius of testing via a direct test

This section is a first step towards an adaptive testing procedure, which we will explore in
more detail in the next chapter. The test proposed in this section does not explicitly use the
coefficients ¢, j € Z of the error density. Using a similar technique as in Section 3.3, we derive
its radius of testing. We consider a test that is based on the estimation of

(9 —9°) = (@ — f°Pyp) = /[ 5 (9(z) — ¢°(2))* dy
Slo =Sl

VIS

Y
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which we call the direct version of the quadratic functional, since we have direct access to
observations of g. To be more precise, we consider

oo 119l
di=2 % {\QJIQ— nli’ } (3.7.1)

lil€lx]
where §; = %22:1 ej(—Yy) is the standard estimator for the jth Fourier coefficient g; and
Gi12 R
% is a de-biasing term. Clearly, dz is an unbiased estimator of the truncated quantity

2
ai(g—g°) = 2lilelk ‘fj — fjo‘ ’%‘2 . The estimator can be written as a U-statistic

n 1
di = ——— o p— Z Zej -Y))e;j(Yim) :iU%
l#m |jl€[k]
l,me(n]

where U¢ is a canonical U-statistic

1
n
U(T:IL = <2> Z h(YVlaYm)
l#m
l,me[n]

with the symmetric kernel h(y;,y2) := lilelH] ej(—y1)e;j(y2). Let us first analyse the variance
of the estimator (3.7.1).
Proposition 3.7.1 (Upper bound for the variance). Let f° = 1j;) and f € D. For
n,k € N, n > 2 the estimator defined in (3.7.1) satisfies

1

var(d2) < [lgllc Z sl 1551 + N9l

" lilek

Proof of Proposition 3.7.1. Recall that d2 = %Ug. Straight-forward calculations (similar to the
proof of Proposition 3.2.1) show that the kernel h is symmetric and real-valued. Let us define
the function

hi:[0,1) — R,y — hi(y) :== E¢(h(y, Y2)).

The variance of the U-statistic US can thus be calculated using the formula (Lemma A on p.
183 in Serfling [2009])

-1
var;(Ud) = (Z) (2(n —2)& + &),

where & := varg(h1(Y1)) and & := varyg(h(Y1,Y2)). Let us now find upper bounds for the
quantities £&; and &. We start with &. We have

hi(y) =Esh(y,Ya) = > ej(—y)Ere;(Ya) = > ej(—y)7,

7l k] l7lk]

i.e. the Fourier coefficients of h; are given by hy; = g—;, |j| € [k] and zero otherwise. Hence,
by Parseval’s inequality we obtain

&= vary(h(V1)) < Ef [ (YD < llglloe Ihnll3 = lglloe - 195 = llglle Do 155 sl
l7|€[k] l7l€lk]
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For the term & we note that
vy (107, Y9) S By 07V < gl [ [ ) gt e
with

/0 )|h(y1,y2)|2dy1 = > /€j(—yl)ej(y2)€l(—y1)61(y2)dy1

(0,1 1€ k]

= Y [l - weln i =2k 1,

31,121 € k]
where the last inequality follows from the orthonormality of the basis (e;);cz. Hence,
§2 = varp(h(Y1,Y2)) < |lgllo (2k — 1).

Combining the bounds for &; and &; we obtain (using 2(T1_1) < % for n > 2)

A 1 1 1
varp(df) = Jvarg (Up) < —&1 + —6

1 o 2% — 1
<lglloo = Do 1filP 151 + l9lloe —=—
™ lelk "

which proves the assertion.

O

Since we want to analyse the behaviour of (Aiﬁ under the null hypotheses and the alternative,
we state appropriate bounds for the variance in these two situations in the next corollary.

Corollary 3.7.2 (Variance upper bound under the null and the alternative).

Let f© =1y and f € D. For n,k € N, n > 2 the estimator defined in (3.7.1) satisfies

2k -1

n2

varg(dz) < flell

Vvar fo (d2) < ,
2k -1

Tq%(g—g") + [elloo

2k -1

Proof of Corollary 5.7.2. We use the bound of Proposition 3.7.1. In particular, we have

2 2 o
> el 1P = di(g — ¢°),

l7l€lk]

1 <2k —T1and |9/, < [|¢lls, which shows (3.7.3). For f = f° = 1oy we furthermore have
3.7.2) follows.

a9 —9°) = 0 and |lgllo, < Xjjjez | fil [#5] < 1, hence, the first assertion (3.

(3.7.2)

(3.7.3)

O]

We consider a test that is based on the estimator (3.7.1) and compares it to a multiple of its

standard deviation under the null. For o € (0,1), a constant Cy, and k € N define

A

n

=1, .
fres {dizca \/2/971}

Furthermore, for k € N let

) V2k —1

(o) = af v (max il ™) Y=

l71€(k]
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Proposition 3.7.3 (Upper bound for the radius of testing of Agam). Let a € (0,1)
and let C,, s, A, satisfy (3.3.1). Set Zi := R? + A2. Then, for all A > A, and all k € N

we obtain

R (Ag,a/Q | giyAP%) <a,

i.e. (p{)? is an upper bound for the radius of testing of {Ag a/2} @)
) o 5

Proof of Proposition 3.7.5. We show that both the type I error probability and the type II error
probability of the test (3.7.4) are bounded by /2. For the type I error probability we apply
Markov’s inequality and obtain

2k—1 < 2

V2k — 1) _ varge (d?) 1
n - O§/2TQ - Ca/Z

Pyo (Afap=1) =Py (&i > o

where the last inequality follows from (3.7.2) in Corollary 3.7.2. Hence, the type I error prob-
ability is bounded by /2 for all C, /5 > v/2/a. Since [|¢||,, > 1, it in particular holds for all
C,, satisfying (3.3.1). Next, we consider the type II error probability. Let f be contained in
the A,pi-separated alternative, i.e. f— f° € EX and ¢*(f — f°) > Zi(p‘g)Q. We expand inside
of the type II error probability, centring the estimator az by its expectation

A V2k—1
Pf(Ag’a/Q =0) = Py <d2 < Ca/2n>
=Py (dQ—qi(g—g ) < Capp™——— —ailg — o)
and distinguish the following two cases
L ai(g—g°) > QCa/z%, (easy to test)
2. q,%(g —g°) < 20a/2%- (difficult to test)

Case 1: (easy to test) The case distinction implies C, /o~ 27];_1 —qi(g—g°) < —%qlz(g —g°)

and, therefore, we obtain by applying Markov’s inequality
L4

Py(Af o =0) <Py <€1i —qilg—g°) < —5k(9 — g°))

vary (d7)
(ai(g — 9°))*
Inserting the bound for the variance obtained in (3.7.3) of Corollary 3.7.2 and exploiting the
case distinction condition yields

o 3 1 o
=Py (qi(g—g )—diz§qi(g—g )) <4

V2k—1_2 o 2k—1
di(9 —9°) + == 2 1 o
Pr(Afa=0) <4 [l | — ) <l | 50—+ 55— | < 5
f( k,a/2 ) H || ( (q%(g_go))g ) || || Ca/2 02/2 2

Case 2: (difficult to test) Recall (cp. the proof of Proposition 3.3.1) that under the alternative
we have

U= -5 2EE? w5 f

ljleN li|>k

2
< aiR%
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Hence,

R )=~ )~ X |- £ = A - R}
i[>k
V2k—1 o V2k —1

> A2 ( max -2 +R%a? — R%a? = A2 ( max
(I e[l \SOJ| ) n k k (‘ e[l \SOJ| ) n

Moreover, we have the following connection between the indirect and the direct quadratic func-
tionals

(max |io;] *)ai(o — 9°) = (max |o;| %) > |fi—f

sl€li] sleth =

> (max |pj ) min ;") |-
JlelA HET JieTe]

= ar(f— f°).

Therefore, under the alternative q,%(g —g°) > /Nli 7V25_1 and the type II error probability satisfies

Py(Af .2 =0) =Py (di —ai(9—9°) < Cap——— —dilg — ¢°)
] Vok =1
<Py (dk —ai(9 = 9°) < (Capp — AQ)

2 22k—1
Aa - a/2) n2

~ V2k — 1) - varf(ai)
 (

Exploiting the bound for the variance (3.7.3) of Corollary 3.7.2, the case distinction condition
and the choice of A, and C, s, it follows

2Ca/2+1 a
(Ag Capp) 2

which completes the proof. O

| A

Pr(Afa2 =0) < ll¢lle

Define the minimum and minimizer that realize the bias-variance trade-off by

(p9)? = min {k v ( max w—?)”’“‘l} ,

keN |71€lk] n

d -2
Ky (= arg min < ai V ( max |p;
ReN {’“ (g leal ),

Then Proposition 3.7.3 immediately yields the following corollary.

Corollary 3.7.4 (Optimised upper bound for the radius of testing of Aid O4/2). Let

a € (0,1) and let C, s, A, satisfy (3.3.1). Set ZZ := R2 + A2. Then, for all A > A4, and
all £ € N we obtain

R(AL s | ER, Apd) <a

i.e. (p8)? is an upper bound for the radius of testing of {AH Q/Q} T
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Appendix C

Auxiliary results

C.1 Auxiliary results for proving lower bounds of testing

Lemma C.1.1 (Interchanging sums and products on cubes). Let £k € N. For sign
vectors 7 € {#}* we introduce J™ = (J;j)jeﬂkﬂ C R*. Then,

P
= Mop=T45%

re{+}* jElX] JE[K]

Proof of Lemma C.1.1. The proof is by induction over k.
The base case k = 1 follows immediately, since

Uy po it il
T1€{:|:} 2

For the induction step assume

1 - Jo +JF
w X L= 75
re{x}* j€lk] JElk]
Then it follows,
1 .
ok+1 Z H Jjj
re{t}rtt jefk+1]
1 Ts T4
= ST > I 7|+ X II 77
re{x}FHjelk+1] re{x}F 1 jefk+1]
Tk+1=1 Th41=—
1 T T5 _
= gk+1 Z H Jj] Jlj_+1+ Z H Jjj i1
re{+}* jelx] re{x}* jE[K]

1 _ 1 .
=3 (J++1 + sz+1) ok > I 77
re{£}* jElx]

+ ., - + 4 g-
JEd T+ J;

= % (‘]Ij—i-l + JI;—H) II 11 Ty

JElk] 2 jelk+1]

where the induction assumption is used in the second last step.
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Lemma C.1.2 (x?-divergence for mixtures over hypercubes). Let k € N. For 7 €
{£}" define coefficients 07 € ¢2(Z) and functions g7 € £? by setting

)31 13l € [],
0; =41 j=0, and ZHeJ—quL ZGTe]
0 lj| > k, j==Fk lil<lx]

Assuming ¢g” € D for each 7 € {:I:}k, we consider the mixture Py with probability density

Z H 9" (z), for z; € [0,1),i € [n]

Te{i}k i€[n]
and denote Pp = Py with probability density
H T,y (2:), for z; € [0,1),i € [n].
i€n]

Then, the y2-divergence satisfies

X*(P1,Pg) < exp (2n2 > 9?) -

JE[k]

Proof of Lemma C.1.2. Since Py < Py we have

dP,

2
AT/ —1.
7))

X (P1,Po) = Eo (
for i.i.d. random variables (Z;) e[, With marginal density f° = 1|y ;) under Py. Let 2; € [0,1),
j € [n], then the likelihood ratio becomes

dP,
dTP’O(Zl’ Z H 9" (2i),

Te{i} i€[n]

since Py is a product over uniform densities. Squaring, taking the expectation under Py and
exploiting the independence yields

5 (T2, 20) = () I Ele (20 (2)

rme{+}* i€n]

~(3) T @l @)g2)"

rne{£}"

Let us calculate

Eo(g"(Z0g"(Z1) = | g ()g"(2)dz =142 3 676,

[0,1) =G

where the last equality is due to the orthonormality of (e;);ez and the symmetry of 6™ and 6".
Applying the inequality 1 + x < exp(x), which holds for all z € R, we obtain

Eo(97(Z1)g"(Z1)) =1+2 Y 0j0] <exp(2 Y 0767) = [] exp(20}0)).
lil€lx] JElk] JElk]
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Hence,

dPy 2 1\?
Eo <dIP’ (Zl,...,Zn)> < <2k> Z H exp( 2n970”
rme{+}F j€lk]

where we can apply Lemma C.1.1 to the n-summation with Jjﬁj = exp(2n9;-0;’) and obtain

exp(2n670;) + exp(—2n070;)

dP 2 1
IE( iz, 2 ) <o X0 . y

dPo re{x}* j€l¥]

) ) 2m6070,)+exp(—2n070;) .
to the 7-summation with J;7 = xp(2n010;) ;Xp( nf3%) yields

exp(2n6?) + exp(—2n9j2-) + exp(—2nl9j2-) + exp(2n9j2-)

2
]E <3§1(Z1,,Zn)> < H : 4
S

Applying Lemma C.1.1

exp(2n0?) + exp(—2n6?) 9
= H 1 5 12 = H cosh(2n6;).
JE[¥]

Jelk]

Since cosh(z) < exp(2?/2) we obtain

dPy 2 24 2 4
Eo ((m(zla cee Zn)) < H exp(2n°05) = exp | 2n Z o]
JE[k] i€l

which completes the proof.

C.2 Auxiliary results for proving lower bounds of estimation

Lemma C.2.1 (Reduction scheme for the estimation risk). Let £ be a regularity
class. For densities f1, f~ € 2 with fT — f°, f~ — f° € £ we have
2

2 1 o = °
inf sup By (4 =’/ f7)" 2 gh*®se,B) (U~ £) =7 = 1)

where h(P;+,P;-) denotes the Hellinger affinity between P+ and P-.

Proof of Lemma C.2.1. Let G2 be any estimator and denote P, := Psr, P- =Py and q
@*(fT — f°) and p? := ¢*(f~ — f°). We have

h(Ps,P / JAPLdP_ = / IP, dP_
< / o+ _q AP, dP_ dP, dP_
q [e—
qz_qz 1/2 Q2 — p? 1/2 1/2
() o) 55T 0) o
q —]p q” —Pp

< % ((Ef+ (1 — @2)2)1/2 + (Ef*QPQ - 512)2)1/2>

~ |g? - p?

2 A . 1/2
< W (Ef+(q2 - q2)2 +Ep- (]P2 - q2)2) .
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Therefore,

2
sup By (42— q*(f—f°)) >
f—feeg

which completes the proof.

—4*)?+E;-(p
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Chapter 4

Adaptive minimax testing for
circular convolution

Given observations from a circular random variable contaminated by an additive
measurement error, we consider the problem of minimax optimal goodness-of-fit
testing in a non-asymptotic framework. We propose direct and indirect testing pro-
cedures using a projection approach. The structure of the optimal tests depends on
regularity and ill-posedness parameters of the model, which are unknown in practice.
Therefore, adaptive testing strategies that perform optimally over a wide range of
regularity and ill-posedness classes simultaneously are investigated. Considering a
multiple testing procedure, we obtain adaptive i.e. assumption-free procedures and
analyse their performance. Compared with the non-adaptive tests, their radii of
testing face a deterioration by a log-factor. We show that for testing of uniformity
this loss is unavoidable by providing a lower bound. The results are illustrated
considering Sobolev spaces and ordinary or super smooth error densities.

4.1 Adaptive testing

Minimax radii of testing in the circular model were derived in the previous chapter. Therein, we
consider a test that is based on a projection estimator of the quantity || f — f° ||ip2, which depends
on a dimension parameter. Choosing the dimension parameter optimally, the test that we
obtain is shown to be minimax optimal, i.e. it achieves the minimax radius of testing (defined in
Section 3.1.2) given by a typical bias?-variance trade-off. The choice of the dimension parameter,
however, depends on the underlying smoothness structure. Moreover, the test explicitly uses
the coefficients of the error density. Since both are typically unknown in practise, we investigate
adaptive testing strategies in this chapter, which do not rely on this prior knowledge.

Direct vs. indirect testing procedures We point out that estimating the energy || f — f° ||iﬂg
based on i.i.d. copies of Y = X +¢— | X +¢] with density g = f® is an inverse problem, since
it requires an inversion of the convolution transformation. This inversion introduces additional
instability in deconvolution problems, caused by its ill-posedness. To circumvent this problem,
in an inverse Gaussian sequence space model Laurent et al. [2011] argue for a direct testing
procedure, which is based on the estimation of the energy in the image space of the operator.
Let us explain this idea in our setting. Instead of the indirect testing task

Hy:f—f°=0 against Hy:f—f°#£0,
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which is called indirect since we do not have access to observations from the density f, we
examine the direct testing task

HY :g—g¢°=(f—f)®p=0  against  H{ :g—g°#0,

where we have direct access to observations from g. This approach has two advantages: on
the one hand the additional uncertainty caused by an inversion is avoided, on the other hand
- in the special case f° = 1o (and, hence, ¢° = PPy = ]1[071)) - the proposed tests for
the direct testing task no longer explicitly depend on the error density (. For both the direct
and indirect testing procedure the radii of testing, depending on a dimension parameter, are
essentially determined by a bias?-variance trade-off. As usual the optimal choice of the dimension
parameter depends on both the smoothness of the alternative and on the ill-posedness of the
model, which are unknown in practice. This motivates the study of adaptive testing procedures,
which we investigate in this chapter.

Adaptive testing and related literature. In the literature adaptive, i.e. assumption-
free, testing strategies have been studied in both an asymptotic and non-asymptotic framework.
In an asymptotic framework e.g. Spokoiny [1996] considers adaptive testing in a sequence space
model with Besov-type alternatives, showing that asymptotic adaptation comes with an un-
avoidable cost of a loglog-factor. In a nonasymptotic setting Laurent et al. [2003] consider
adaptive testing in a Gaussian regression model, Fromont and Laurent [2006] deal with a den-
sity model. Butucea [2007] and Butucea et al. [2009] determine adaptive rates of testing in a
convolution model on the real line using kernel estimators of the .#2-distance to the null. The
proposed tests have as a common feature that they are based on estimators of the distance to
the null, which only depend on the (unknown) smoothness through a tuning parameter (e.g. a
bandwidth, a threshold or a dimension parameter). By aggregating the estimators over different
tuning parameters into one test statistic — i.e. using a multiple testing approach — the authors
obtain tests, which perform optimally over a wide range of alternatives. Since they no longer
depend on the unknown regularity of the alternative, they are assumption-free. To formalise
this idea, let us introduce a collection A of regularity parameters that characterise a family of
alternatives {&,, : a, € A} with corresponding radii {pg, (n) := p(&,.,) : a. € A}, where we now
explicitly emphasise the dependence on the regularity parameter a, € A and the number of
observations n in the notation. In general, adaptation without a loss is impossible (cp. Spokoiny
[1996]). To characterise the cost to pay for adaptation we introduce the effective sample size
on with § = ¢,, depending on n. The factor ¢ € [0, 1] shrinks the sample size n and, hence, evalu-
ating the radius at on deteriorates the radius of testing. In fact, the value 5! is called adaptive
factor for the family of tests {A, : @ € (0,1)} over the family of alternatives {&,, : a. € A}, if

for all a € (0,1) there exists a constant A, > 0 such that
(i) for all A > A, we have sup,,c4 R (Aq | €, Apa, (6n)) < a, (upper bound)

where pq, (n) denotes a radius of testing for the family {A, :a € (0,1)}. We shall emphasise
that the testing risk now has to be bounded uniformly for all alternatives &,,,a, € A. We call
§~! minimal adaptive factor if in addition for all o € (0,1) there exists a constant A, > 0
such that

(i) for all A < A, we have infa sup,,c4 R (A | &€, Apa,(dn)) > 1 — a. (lower bound)

The goal of this chapter is to characterise the minimal adaptive factor 6 1.

Aggregation procedure. Let us come back to the circular deconvolution problem and the
indirect and direct tests discussed above. In this chapter we aggregate both testing procedures
over a family L C N of dimension parameters using a classical Bonferroni method, where for
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a given level a € (0,1) each of the tests in the family has level % The aggregated testing
procedure rejects the null hypothesis as soon as one test in the collection rejects. It is straight-
forward to see that a Bonferroni aggregation of the direct and indirect tests proposed in the
previous chapter leads to an adaptive factor of order |K| (since C,, ~ é and, hence, Cy /x| ~ @)
The choice of the family X reflects the collection of alternatives over which the aggregated test
performs optimally. If the alternatives characterise ordinary smoothness of the circular density,
the size of K is typically chosen to be of order logn (cp. Fromont and Laurent [2006], Spokoiny
[1996]). Then the aggregated test (from the previous chapter) will feature a deterioration by
an adaptive factor of order logn. However, we show in this chapter that generally the minimal
adaptive factor is smaller. In order to do so, we first derive sharper bounds for the quantiles of
the direct and indirect test statistics using exponential bounds for U-statistics and a Bernstein
inequality (instead of the Markov inequality in the previous chapter). This allows to define a
new version of an indirect and a direct test, for which we derive radii of testing. Aggregating
these tests via the Bonferroni method we obtain an adaptive factor for adaptation with respect
to smoothness of order /loglogn. Interestingly, in case of testing for uniformity, i.e. f° =T 1),
the aggregated direct test no longer depends on the noise density ¢ and is, thus, also adaptive
with respect to the ill-posedness of the model. Moreover, in this situation we derive a lower
bound for the adaptive factor providing conditions under which it is minimal.

Outline of this chapter. The upper bounds for the radius of testing via an indirect and
a direct testing procedure are derived in Section 4.2 and Section 4.4, respectively. Section 4.3
and Section 4.5 are devoted to adaptive indirect and direct testing strategies. We provide lower
bounds in Section 4.6.

Outline

Adaptive minimax testing for circular convolution

Concentration inequalities for U-statistics
and a Bernstein-inequality

Appendix D.2 Appendix D.3
Section 4.2 ‘ ‘ Section 4.4
Upper bound Upper bound
via an indirect testing procedure via a direct testing procedure
. 7 q 2V2k
‘ PoaBhy o)  minge {af v 4} ‘ ‘ Py o) S mingey {af v 5% | ‘
Section 4.3 Section 4.5
Adaptive upper bound Adaptive upper bound
via an indirect max-test via a direct max-test
. B . 2v2k
‘ Pu(Brcass) S mineen {af v VIoBTT | ‘ ‘ PO oj0) S mimeen {af v VI TR/} ‘
Section 4.6
[ Adaptive lower bound ]
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4.2 Upper bound via an indirect testing procedure

Notation and preliminaries. We consider the Hilbert space .2 := £2[0,1) of square-
integrable complex-valued functions defined on [0, 1) equipped with its usual norm ||| . and
corresponding inner product (f, g) o2 = fol f(x)g(z)dx for f,g € L2, where g(z) denotes the
complex conjugate of g(z). The exponential or Fourier basis {e;},.; with e;(z) := exp(2mijz)

for z € [0,1) and j € Z is an orthonormal basis of .#2. Consequently, any ¢ € .#? admits an
expansion as a discrete Fourier series

£=Y e (1.2.1)
JET
with & := (£, e;) 2 for j € Z, where the equality (4.2.1) holds in #?. By Parseval’s identity
its sequence of Fourier coefficients &, := (&;);ez is square summable, i.e. it belongs to the
Hilbert space ¢2 := (2(7Z) of square-summable complex-valued sequences. The Hilbert space £2
is equipped with its usual norm ||-||,» and corresponding inner product (a.,b.), == ez a;b;
for a., b, € (. Parseval’s identity then states that

1€l 22 = lI& ]l 2

for all £ € #2. For a density function g we further denote by .Z2(g) the set of all real-valued
(Borel-measurable) functions h satisfying fol h?(x)g(z)dz < co. If Y ~ g, then this condition
translates to Ey,h%(Y) < oo. To be more precise, we define

1
Lg) = {h 0,1) S R : / h2(2)g(z)de < oo}.
0
We denote the set of square-integrable densities by D € .#? and assume ¢, f,g € D.

Fourier coefficients of densities in D. We expand the densities f, f° € D C .£? in the expo-
nential basis. Since densities f € D are normalized to 1, i.e. 1 = fol flx)dx = fol f(@) 1,1y (w)dz,
we always have

Jfo=1 (4.2.2)

Moreover, since densities are real-valued, we obtain

h=75 (4.2.3)

for all j € Z. To see this, note that f(x) = f(z) for all z € R. Hence, also > .cy frex =
S kez fxek = Skez fre—k. Finally, by projecting onto the j-th basis function and exploiting
the orthonormality, we obtain f; = (3 .cz frer,€j) = <ngzﬁ€—k,€j> = f_; for each j € Z.
In particular, using the two properties (4.2.2) and (4.2.3) as well as Parseval’s identity, we can
rewrite the .2 distance between f and f° as

2

V=10 == 12N = | 5 - 1
JEZ

= > ‘fj - f
lileN

R MIIE
jeN

Moreover, by the circular convolution theorem, the density g = f® of the observations admits
Fourier coefficients satisfying g; = f; - ¢; for all j € N. Hence, assuming from here onwards
that the Fourier coefficients of the error density are non-vanishing, i.e. |p;| > 0 for all j € Z, we
obtain the representation of the .#2-distance between f and f°
o - 53]
ol2 95 — 95
P = -5 =X ="

051
ljleN ljleN  1¥]

?
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where

1 1
9; = (g, €j) 2 :/0 9(y)e;j(y)dy :/0 ej(=y)g(y)dy = Ey~y(e;j(=Y))

for all j € Z and we denote g° = f°®p, i.e. g; = f{p; for all j € Z.

Definition of the test statistic. For k € N and [k] := [1,k] NN let us define an unbiased
estimator q,% of the truncated version

|2 o=
2-Fr= X sl o, s

2
, (4.2.4)
Tkl dleta 19317 et 1937 icug

Iy

where we exploited that due to the symmetry of the summation and the coefficients (4.2.3) we
have

DR S D

dlete 1237 iem 1937 e 1]

The first two summands of (4.2.4) are unknown and need to be estimated, the third is known.
For the second term, which is a linear term, recall that the Fourier coefficients can be expressed
as g; = Ey~g4ej(—Y). Thus, a natural estimator based on observations {Y;};", is given by
%Zle[[n]] ej(—Y;). Replacing the unknown Fourier coefficients by their empirical counterparts
based on the observations {Y;};,, we obtain

- Y ¥

sietaicmy il

gjej }/l

9595
as an unbiased estimator of ) ek |; -

U-statistic

For the first term, which is quadratic, we use the

7 = Z Z ei(=Y)e; (Yim) e] (Yin)
”(” ) idtaimem e’
m

as an unbiased estimator of > i<k ” In total, we consider the test statistic

lg;*
il°
4j, == Ty — 25, + ar(f°).
Below, we construct a test that, roughly speaking, compares the estimator to a multiple of its
standard deviation.
Decomposition of the test statistic. The key element to analyse the behaviour of the test
statistic is the following decomposition
@ =Un+2Vo +a(f = f°) (4.2.5)

with the canonical U-statistic

1 (ej(=Y1) — g;)(e5(Ym) — 7;)
U, = —— ) (4.2.6)
n(n—1) j%u:kﬂ z,n%nn il
l#m
the centred linear term
1 Z Z 95)(e; (Y1) — 7) (427

D =k
and the separation term q,%(f — ).
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Definition of the threshold. In the next proposition we provide bounds for the quantiles of
the test statistic ¢7. Define L, := (log(e/x))"/? = (1 —log(z))"/? € (1,00) for = € (0,1). Define
for k € N the quantities

1/4
1 _
e ( E |4) and my := max_|¢;| ! (4.2.8)

etk 195 Ilk]

which we, roughly speaking, use to characterise the variance of the test statistic c],%. For ¢y :=
799 (|92 2 + 1372, ¢ == 52]|¢2||n and o € (0,1), we define the threshold

1/2 V2 1/2 m2
(@) := c1 (1vL§\/;ng; La;’ﬂchLi?’f. (4.2.9)

Note that due to the Cauchy-Schwarz inequality and Parseval’s identity, we have [|g¢|[, <
£z [9ellz = 117N 22 l@ll 22 < 00, hence, ¢z is indeed finite.

Proposition 4.2.1 (Bounds for the quantiles of ¢3). For densities f°, f,¢ € D and
n € N,n > 2 consider {Y]}?:1 = g = f®y with joint distribution P; and let g° = f°®e.
Let o, 3 € (0,1) and for k € N consider the estimator 47 and the threshold 74 () as defined
n (4.2.5) and (4.2.9), respectively.

(i) If 22(¢°) = {|¢] & € £2}, then

Pro(dp > () < .

(ii) If c3 := 8||g||pn + 826 H<p,||§2 + 1372 and the separation condition

ai(f=f°) =2 (Tk(a) + 3Ly (1 v V’z) Vg) : (4.2.10)

n n

holds, then

Py(Gi < (@) < 8.

Proof of Proposition /.2.1. (i) If f = f° and, hence, g = ¢°, the decomposition (4.2.5) sim-
plifies to 47 = U,,, where U, is a canonical U-statistic. Applying Proposition D.1.1 of the
appendix, a concentration inequality for canonical U-statistics of order 2, with z = L2 > 1
and quantities A — D satisfying (DD.1.2), we obtain

C

D B A
Pyo <Un >8— Lo+ 13=L2 +261—~L3 + 343L4> <exp(l — ). (4.2.11)
n n

372 e

Consider the quantities A — C defined in (D.2.1) and D in (D.2.2), which under the
additional assumption Z%(g°) = {|¢| : € € £?} satisfy (D.1.2) due to Lemma D.2.1. We
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have

8 L0+ 139L2 + 2613£L3 + 343£L4
n /27
1/3 4
<82 |gul La ’“+13 4-lgall L2 k+261 3 llgulle Loy +343 -4 %
2 2 Vg
=52]/galln L27+L (16”9-He2+783”9-H£2 a 1/2+1372L3 )

2
§52||g.||€1L2mk—l-L £ (799 9.2 + 1372) <1VL2V\/L3 )
n

a 1/2
2 2
L (1 VLG v L ) Lok
n n n
:Tk(a)a

which together with (4.2.11) shows the assertion (i).

Keeping the decomposition (4.2.5) in mind, we control the deviations of the U-statistic
U, and the linear statistic V,, by applying Proposition D.1.1 and Lemma D.2.2 of the
appendix, respectively. In fact, the quantities A— D given in (D.2.1) of Lemma D.2.1 fulfil
(recall that Lg/s > 1 for all g > 0)

C A
8— Lﬁ/2+13 L5/2+261 3/2Lﬁ/2 3435 Ly

2
14
<82 lg.ll,2 Lm;’f +18-2- |lgull e L pt

3
I/
+261-3 - ||gull o L )y —s iy t343- 4 L

Vk

2
<L} 5 (825]|g.l,» +1372) (1 v W ) 2k

n

4

Vi

2

2 V2
<L}, (42||9.H42 + 783 || 9.l 2 1/2 + 1372k ) .

vi

n

<L3/5(825 ||gallp +1372) ( 1V vi\ v -
<Ly L)

where we exploited that 1V aV a®? =1V a? for any a > 0. Consequently, the event
0 ={U, < -7}

satisfies P¢(€21) < /2 due to Proposition D.1.1 (with the usual symmetry argument).
Define further the event

(= {2vn < -7y — %qi(f— f°)}

2e
Lemma D.2.2 with x = Lg/, > 1, which is an application of a Bernstein-type inequality.

hor = L2 (8 2) (1v ™) ™k Then we have Py(2,) < £ < £d
with 7 = 5/2( lgallor + [lpalli2) |1V Sk ) SE. Then we have Py(Q2) < 52 < § due to
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We obtain

T+ T2
2

4 vi \ Vi 2 2 my,
= L35 (825lgall +1372) [ 1V 75 ) 2 4 120 8 lgull + llpal) ( 1V 7
4 vi \ Vi 2
< iy (1V 5 ) 2K (825 lgulle + 1872+ 8 lgu s + 0ull22)

2 2
< Loy <1 v ”’“) e

n n

with c3 = 81g.||,n + 826 ||<,0.H§2 + 1372 due to m% < V,%, 1 < Lg/p and lgellrz < ll@allpe <

||g0.||§2. Hence, the assumption (4.2.10) implies
1 °
ng(f— f°) Z mi(@) + 71+ 72,

The decomposition (4.2.5) yields
By (@} < () = By ({af < mle)} ) + By ({af < 7)) 0 5)
<Pp(h) + Py (2Vn +ap(f = ) < mla) + 7'1)

< g +Py(€22) < B,

which shows (ii) and completes the proof.
0

Remark 4.2.2 (Assumption in (i) of Proposition 4.2.1). The technical assumption £?*(g°) =
{l¢]: ¢ € .,?2} in Proposition /.2.1 allows us to express elements of £*(g°) in their Fourier ex-
pansion. The assumption is needed to obtain the second bound for the quantity D in Lemma D.2.1
of the appendiz. It is immediately satisfied for f° =11y and if f° is bounded away from 0. [

Definition of the test. Using the test statistic 7 and the threshold 7(c) given in (4.2.5)
and (4.2.9), respectively, we define the test

AV ﬂ{ﬁﬁZTk(a)}’ for ke N, a € (0,1). (4.2.12)

From (i) in Proposition 4.2.1 it immediately follows that Ay, is a level-a-test for all k& € N. To
analyse its power over the alternative, we introduce a regularity constraint, i.e. a nonparametric
class of functions & = 55. , which is formulated in terms of Fourier coefficients. Let R > 0 and
let a, = (aj)jen be a strictly positive, monotonically non-increasing sequence that is bounded
by 1. We assume that the differences f — f° belong to the ellipsoid

5&2{]‘:6@:22%2‘]‘3’23R2}. (4.2.13)

jEN

Note that f € 55‘. imposes conditions on all coefficients fj, J € Z, since ‘fjf = ‘f_j‘z, Jj €N
for all real-valued functions and, additionally, f5 = 1 for all densities. The definition (4.2.13)
is general enough to cover classes of ordinary and super smooth densities. The second part
(ii) of Proposition 4.2.1 now allows to characterise elements in £ for which Ay, is powerful.
Exploiting these results, we derive an upper bound for the radius of testing of Ay , in terms of
v as in (4.2.8) and the regularity parameter a,, that is we define

2
1%
Phas = Pran(n) = ai VL, (4.2.14)

where, for now, we suppress the dependence on n in the notation.
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Proposition 4.2.3 (Upper bound for the radius of testing of A, »). Let g° = f°®¢p
with f°, ¢ € £ satisfy £2(g°) = {|¢],€ € £?}. For a € (0,1) define

A2 :=R2+2(8R ||l 2 + 826 ||ou||% + 859 ||g2 |l + 2744) Ly, 4. (4.2.15)

For all A > A, and for all n,k € N with n» > 2 and 1/,3 < n, we have

R (Ak,a/2 | 85.714/)14:,(1.) <a.

Proof of Proposition /.2.5. We apply Proposition 4.2.1 to show that both the type I and the
maximal type II error probability are bounded by a/2, then the result follows immediately from
the definition of the testing risk

R (Ak,a/Q | 55.714%,(1.) =P (Ak,a/Q = 1) + f—fOG;ii o P, (Akva/Q = 0)

<a/2+a/2=a.
Since the assumption of Proposition 4.2.1(i) is fulfilled, the test Ay, , /o is a level-a/2-test. Hence,
for each density f € £? belonging to the alternative, i.e. with |f — foH?gg > Zipia. and

f—fce 55. it remains to verify condition (4.2.10) in order to apply Proposition 4.2.1 (ii) (with
B = «/2). Indeed, in this situations we have

2 2 2
Sls-nl <X S5

71>k lj|>k 7

< aiRQ,

since a, is non-increasing, hence 2 > 1 for all j > k. Thus,
J
o 012 0|2 2 2 2p2
G(f =)= =l = D If = 1 2 Aopia, — iR
71>k

2
> 2(8R [l 2 + 826 | pul7: +859 [lg2 |1 + 2744) 5 4 E (4.2.16)

where the second inequality is due to the definition of A,. Note that using the triangle inequality
and the Cauchy-Schwarz inequality, we obtain

1geller < llge = g2l + llgdlln < 1fe = Ml llpellez + Ml9dlln < Rllpallez + llglllen

where we used

M= £NE =2 | = £

JET

< R?

2 2
—2
SE a; ‘fj_f]c')
JEZ

since a, is bounded by 1. Hence, (4.2.16) yields

2
Z/
G (f = £°) > 2(81gallpr + 826 ||@a|7 4 851 [|g2 |1 + 2744)La/4 (4.2.17)

The condition (4 2.10) then follows from (4.2.17) by exploiting further 1 < Loja < Laya gl <
Hg:)”gl and mk < V]% <n. Indeed

V2 y2 2 m2
m(a/2) = ¢ (1\/L§/2\/T’:\/Li/27f LQ/Q +02La/2

1/2

<(a+ 02)%/4%
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Hence,

2\ 12
( (0/2) + esTh <1v> n)

2

<2(c1 +c2+c3)L 4a/4f
< 2(8 9.l + 826 llpullie + 7991952 + 52 1921 + 2744)La/4

2
vy
< 281I9ullx + 826 [|2ulz + 851 (|92l n + 2744)La/4

which together with (4.2.17) completes the proof. O

Let us introduce a dimension that realizes an optimal bias-variance trade-off and the corre-
sponding radius

Eay := kq,(n) := arg min p} ae = min {k eN: p%a. < Pz.,l forall I € N} (4.2.18)
keN
and
2 2 Vir
Pay *= Pa,(n) := min Phae = min aj, v (-

Corollary 4.2.4 (Upper bound for the radius of testing) Let ¢° = f°®¢ with

f°,p € £ satisty £2(¢°) = {|¢] : € € £?}. Fora € (0,1) deﬁneA as in Proposition 4.2.3.
Then for all A > A, and n > V21" 2, we have

R (D a2 | €5y Apa) < (4.2.19)
Proof of Corollary 4.2.4. The result follows 1mmed1ately from Proposition 4.2.3, since I/g <n
for all n > f\gpl\ . Indeed, 1> pa_J > pa. > V o TV L for all n > f|g01| ) O

We shall emphasize that in the case f° = 1jg ;) the radius of testing p,, is known to be
minimax (due to the results of Chapter 3), and, hence, the test Ay /o is minimax optimal.

Illustration 4.2.5. We determine the order of the radius of testing

p2.(n) = min{ ai v 1/7,%
0 keN | "

n

for specific regularity sequences a, and error densities ¢, which are characterised by their
sequences of Fourier coefficients (¢;);en and represent the ill-posedness of the model. For
two real-valued sequences (z;)jeny € RY and (y;)jen € RY we write z; < y; if there exists
a constant ¢ > 0 such that z; < cy; for all j € N. We write x; ~ y;, if both z; < y; and
y; S xj. We distinguish two behaviours of the sequence a,, either polynomial decay a; ~ j~°
for some s > 1/2, such that 5};‘. corresponds to a Sobolev ellipsoid of ordinary smooth
functions, or exponential decay a; ~ exp(—j®) for some s > 0, where Sfi corresponds to a
class of analytic (super smooth) functions. The same distinction is made for the regularity
of the error density ¢. For p > 1/2 we consider a mildly ill-posed model |¢;| ~ [j]|~7
and for p > 0 a severely ill-posed model |¢;| ~ exp(—|j|¥). The table below presents the
order of the optimal dimension and the upper bound for the radius of testing of the test
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Ak, a/2> @ € (0,1) derived in Corollary 4.2.4, which corresponds to the minimax radius of
testing . For detailed calculations we refer to Illustration 3.2.6.

Order of the optimal dimension k,, and the minimax radius pg_

a; |45 Ka, Pas
(smoothness) (ill-posedness)
2 4s

j—s |‘7 | —p n 4p+4s+1 n  4s+4p+1

. 1 _2s
= eliP (logn)? | (logn) ™7

o _ 1 2p+1/2

Vi (logn)s | n~(logn) s

4.3 Adaptive indirect testing procedure

For a parameter a, the minimax optimal test Ay /5 in Corollary 4.2.4 relies on the dimension
parameter kg,, which in turn depends on the smoothness class 55‘. . Ideally, we want our testing
procedure to be adaptive, i.e. assumption-free, with respect to the alternative class E};‘. It
should perform optimally for a wide range of alternatives. In this section we therefore propose an
adaptive testing procedure by aggregating the tests derived in Section 4.2 over various dimension
parameters k. We first generally describe the aggregation procedure and then apply it to the
tests defined in (4.2.12).

Description of the adaptation procedure via Bonferroni aggregation. Let K C N be

a finite collection of dimension parameters. For k € K and levels (ay.)xexc € (0, 1), we consider

the collection of level-oy-tests (k. o, )kck = (]l{Ck >0})kel€ based on test statistics (g qo,. For
oA

Q=) pcx O, we consider the max-test
d)IC,a = ]l{C}C,a>0} with CIC,a = %163*’%( Ck,akv

i.e. the test rejects the null hypothesis as soon as one of the tests in the collection does. Under
the null hypothesis, we bound the type I error probability of the max-test by the sum of the
error probabilities of the individual tests,

]P)fo (¢/C,a = 1) = Pfo (max Ck,ozk > O) < Z Pfo (Ck,ak > O) < Z ap = Q. (431)
kek kEK keK

Hence, ¢i o is a level-a-test. Under the alternative, we can bound the type II error probability
by the error probability of any of the individual tests,

Pi(dka =0) = Pf(gleag Choay, <0) < min Py(Crap, <0) = min Pt (dk,a, = 0). (4.3.2)

Therefore, ¢x o has the maximal power achievable by a test in the collection. The bounds (4.3.1)
and (4.3.2) have opposing effects on the choice of the collection K. On the one hand, it should
be as small as possible to keep the type I error probability small. On the other hand, it must
be large enough to contain an optimal dimension parameter k,, for a wide range of smoothness
parameters a,. Typically, there is a cost to pay for adaptation, which is characterized by the
size of a (minimal) adaptive factor, defined in Section 4.1. Let us heuristically explain what
causes the adaptive factor and give a reason for its typical order.
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Typical order of the adaptive factor. We have seen that the minimax optimal test in-
troduced in Section 4.2, roughly speaking, compares an estimator q,%, to a multiple (depending

2
on «) of its standard deviation, which is typically of order %7 i.e. we reject the null as soon
2
as 43 > Ca%’“. If the deviations of the estimator follow a (sub)Gaussian regime, the threshold
constant C, can be chosen to be of order y/log(1/a) to guarantee level-a. We consider the
Bonferroni correction of these tests, that is, the error levels ay = % A natural choice for the
collection of dimension parameters K is a geometric grid K = {20, ol ... 2l2logyn] }, since in
many cases ko, < n?, which yields |K| ~ logn. Then, the new thresholds behave like
Vi & Vioglogn ,
v

OoziN «
n n ks

i.e. the effective sample size is reduced to d,n = W by the adaptive factor 6, = y/loglogn.

4.3.1 Aggregation of the indirect tests and the choice of the levels oy

Denote by A C R§O a set of strictly positive, monotonically non-increasing sequences bounded
by 1. The set A characterises the collection of alternatives {S& ta, € .A}, for which we analyse

the power of our testing procedure simultaneously. Let X C N with || < co and « € (0,1). We
apply the aggregation described above and obtain a max-test with a Bonferroni choice of error
levels

A}Qa = ]I{Qn,a>0} with QIC,a = Iglealé( ((A]]% - T]A%)) y
where §7 and 7; () are the test statistic and the threshold of the indirect test defined in (4.2.5)
and (4.2.9), respectively. In this paper we consider a classical Bonferroni choice of error levels,
ar = 157- In the next remark we discuss other possible aggregation choices and compare them
to our method. The Monte-Carlo quantile and threshold method is e.g. used in Laurent et al.
[2003] and Fromont and Laurent [2006].

Remark 4.3.1 (Choice of (ay)reic). Let us describe three different methods for choosing thresh-
olds for the statistics 43 and the levels (ay)rec-

Monte-Carlo quantile method. Roughly speaking, instead of using the thresholds T(c) that
we introduce in (1.2.9), this approach uses the (unspecified) quantiles of 42 under the null hy-

pothesis. Let us be more precise and denote by tx(a) the (1 — «)-quantile of 43 under the null
hypothesis f = f°. Let

* — . ° ~2 _ <
o 1= sup {u € (0,1): Py (r]lflea’%{ (qk tk(u)) > 0) <a
and consider the test statistic and the corresponding test
. 2
Ak = H{Té,a* >0} with TR o = max (qk - tk(a*))
Then, by definition
Pfo ( *’C,OL = 1) = Pfo (Iklglea’é( (61]% - tk(a*)) > O) S .
The drawback of this method is that in general there are no explicit formulas for the quantiles
tr(u),k € K, u € (0,1) and the chosen error level o*. Therefore, in practice they have to be

determined e.g. via a Monte-Carlo-simulation.

116



Monte-Carlo threshold method. Instead of using the quantiles ty(u), we use the explicit up-
per bounds for the quantiles Ti(u) > tx(u) for u € (0,1) that we determined in Proposition J.2.1.
Let

b P a2
a' :=sup {u €(0,1): Py (rl?ea’%( (qk Tk(u)) > 0) < a}

and consider the test statistic and the corresponding test

A}Lga = ]l{T];aJr >0} with le,aT = I’?él’%( ((Al,% — Tk(aT)) .

Then, by definition

o T = = o A2 — T <
Py (A,Qa 1) Py (I]?Ea}%( (qk T (a )) > 0) <o
This method no longer requires simulations for the thresholds. However, there is still no explicit
formula for of, which again has to be determined via a Monte-Carlo-simulation.

Bonferroni method. We simply define

«
(0773

Ikl

and consider the test statistic and the corresponding test

A}Qa = ]I{TKVQ>O} with T}Qa = II?Ea% (Tk — Tk(ak)) .

Then, by definition

«

Kl

[o%

Pro (Ao = 1) = Ppo <maX ((i,% — Tk(ak)> > 0> < Z a = Z

kek kel kek

While it is a more conservative method, it allows us to explicitly show the dependence of the
testing radius of the max-test on the size of the collection K. This dependence is naturally also
present in the Monte Carlo methods, though hidden in the definition of o resp. of.

The power of the three methods. All three methods yield max-tests of level-a. To analyse
their power, we note that for any f € D

Py (Ahy=0) < min Py (a2 < te(@h),
Py (AL’,C = 0) < %@Pf (C],% < Tk(OéT)> ,

_ : ~2
Ps (Apr =0) < min Py (qk < Tk(ak)> . (4.3.3)

In particular it follows from the definition of o*, o and the fact that () is monotonically
increasing in « that

te(0) < (ol < m(ag)

Hence, showing via (4.3.3) that the Bonferroni-max-test Ay j is powerful for an element f € D
immediately implies that the other two max-tests are also powerful. O
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4.3.2 Testing radius of the indirect max-test

The next proposition determines an adaptive upper bound for the radius of testing of the max-
test. The upper bound essentially has two regimes. The adaptive factor ! depends on which
regime determines the behaviour of the radius of testing. For the Bonferroni choice of error
levels, o = i, the adaptive factor 51 is in all cases of order (log |K|)¢ for ¢ € {%, 1}. Below,

1/2 which we show to be the

we give conditions for which the adaptive factor is of order (log |K])
minimal adaptive factor.
Recall that the max-test Ax ., only aggregates over a finite set  C N. We define the minimal

achievable radius of testing over the set K as

Prae(n) i=minpl, (n)  with  pi, (n) = apV -k,
with v as in (4.2.8) and a regularity parameter a, = (a;);jen € A. Since p2,(n) in (4.2.14) is
defined as the minimum taken over N instead of K, for n € N we always have

P, (1) = PR a0 (1) < PF 4, (1)

Moreover, replacing y,% by mz as in (4.2.8), let us define a remainder radius, typically negligible
compared to pQ,C’a. (n),
2
2 2 M

Ti.ae (1) 1= gg’% 7“,%@. (n) with Tha.(n) = aj v — (4.3.4)

Proposition 4.3.2 (Uniform radius of testing over A).
Under the assumptions of Proposition 4.2.1, let a € (0,1) and consider A, as in (4.2.15).
Then, for all A > A, and for all n € N, n > 2,

as (01
as.lg)L‘R (A]C’a/g | 5}}., A (1 V PIC(S?)/(2)) (T}Qa. (62n) V PK.ae (5n))) <«

with 6 = (1 v log |K|)~Y/2.
Proof of Proposition /.3.2. For each a, € A we apply Proposition 4.2.1 to show that both the

type I and the maximal type II error probability are bounded by «/2. The result then follows
immediately from the definition of the testing risk

R (Dgap | €8, Ap) =Ppo (A =1) + fﬁfoes;%m& Py (Axa=0)

<a/2+a/2=a.

Under the null hypothesis, the claim follows from (4.3.1) together with Proposition 4.2.1 (i) and
dokek Ok = D pek % = 2. Under the alternative, let f € 2% with f — f° € E} satisfy

2
If = £oI%e > AL (1 v W) (0. (%) V P00 (1)) (4.3.5)

It is sufficient to use the elementary bound (4.3.2) together with the following two observations,
which we show below:

118



1. Whenever f € .Z? satisfies f — f° € 5};{. and

2 2 2
o 2 Vi v v m
If = f%: > A (az v (1 VsV 53’“ ) 57’2 Vv 52?";) : (4.3.6)

then
Pr(at < (s7) < 5

2. If the separation condition (4.3.5) is satisfied, then there exists a k € K such that (4.3.6)
is fulfilled.

Consequently, we have
. o
Pr(Axa2 =0) < Iknel’gpf(Ak,ak/Q =0)< 3

for all f € £? satisfying f — f° € 55. and (4.3.5). Thus, the maximal type II error probability
is also bounded by «/2. It remains to show (1.) and (2.).

1. The claim follows from Proposition 4.2.1 (ii) (with f = «/2), since (4.3.6) implies (4.2.10),
which states

o v\ v?
G- 1) =2 <Tk<2f;q> Feald ), (1 Vi) £, 43
with Tk(ﬁ) as in (4.2.9). Indeed, exploiting Li/z = log(2e/a) > 1 and, hence,

L2 @ik = log(2¢ K| Ja) =log |K| + L7 jp < L2 (1 +log|K|) = L3 1562,

we have

o 2 V;% 3 vi vi mj,
(i) = e1 | 1V Lo\ =2V LE a2 | Lajiaicn = + 2L oy =

/ 2 2 2
(1 \/Loz/Q (54 \/La/263 ) La/25 +62La/252

2 2
Vi, Yk

Vi
< clLa/Z (1 vV 54 V 63> 57 CQLO&/Q 62

2 2 2 2
4 Vi o, Ve | Ve, Mg
<(c1+ CQ)LQ/Z ((1 V 5in V Bn ) n V 2n ) .

Additionally using Ly /4 > Lq/2, 1 > ¢ the right-hand side of (4.3.7) is bounded by

2 VI%
2

2 2 2
4 Vi Yk Vk my 4 Vi \ Vi
S 2(01 + 02)La/2 ((1 vV 64 V 53 ) on \Y 62 ) + 263LO¢/4 (1 V n) ;

2 2 2 2
4 Vi o Y | Yk, Mg
<2(c1+ea+e3)Ly ((1\/ \/54 Vo ) 5 den) :
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Hence, since ZZ — R? > 2(c; +c2+c3)

Li/4 the condition (4.2.10) of Proposition 4.2.1
holds whenever

2 2 2 2

2
Let us verify this condition. Due to f— f° € 85_ and, hence, 3 ;5 ‘f;’ — fj’ < aiR?, the
condition (4.3.6) implies

G- =1l -

71>

2 2 2 2
I Y ST AV AT VS
> (4 R)((v 5 $n | on 520 |

which justifies the application of Proposition 4.2.1. If (4.3.6) is satisfied, then also (4.3.8)
and thus (4.2.10), which shows the claim (1.)

o 2
—fj’

2. By the Balancing Lemma A.2.1 we have

m v
Koae (070) V g, (00) = af v 5 v <h

2
v
Vo M RN 25
for at least one k € K. Hence, there exists a dimension parameter k € K such that
PK.a0 (0N) m? v? V2
(r,%7a.((52n) v p,%ja.(én)) (1 v %73 > a2V 52’6 v ZE (v ok

on o*n

Since

2 2
v Vi v,
1V =k > 1 k.

v 5n — v §2nl/2 v 53n

this shows (4.3.6) and, hence, (2.), which completes the proof.

Corollary 4.3.3 (Worst-case adaptive factor). Under the assumptions of Proposi-

tion 4.2.1, let a € (0,1) and consider A, as in (4.2.15). Then, for all A > A, and for
alln e N, n > 2

sup R (Ax o
a.E.A ( IC /2|

(1 V PK,ae (5271)) p;g7a.((52n)> <«

with 6 = (1 v log |K|)~Y/2.

Proof of Corollary 4.5.5. The proof follows along the lines of the proof of Proposition 4.3.2
considering

1= £l = A (1V pan (8%7)) 0700 (670) (4.3.9)
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instead of (4.3.5). In fact, as in the proof of Proposition 4.3.2, it is sufficient to show (2.)
under the separation condition (4.3.9). For each a, € A under (4.3.9) the dimension parameter

ky := arg min p? , (6n) satisfies
kek e

(1V PF0a (0%0)) 0 (0%1) = (1V pic.aa (0%0) V - 0 (61) ) 0, (6%)
2 2
2, Yk Vk, Vi,
Z ak* 52 <1 Vv 6n1/2 V 62”)
2 2
> MR Vi (1, Wk Ve,
= 52 Y <5 VoY 53n>

2 2 2
m 1% 1% 1%
>a) Vv R (1\/ ey ’“)

n - In 2nl/2 ~ §3n

since aj, V 55* = p2,c’a. (6n), 6 <1 and mi_ < vi . This shows (4.3.6) and, consequently, (2.).
We obtain the assertion by proceeding exactly as in the proof of Proposition 4.3.2. O

By Corollary 4.3.3, p,QCya.((SQn) is an upper bound for the radius of testing of the indirect
max-test as soon as pQ,C,a. (62n) < 1. The latter is satisfied for an arbitrary regularity parameter

a. € A, if 1 € K (condition on the class K) and n > /2 |¢1| ™2 (1 4 log |K|) (condition on the
minimal sample size). Indeed, under the two conditions, we have

: Vi \[|801|
p%cva.(cSQn) = min {ak 2 } < %\/ 5T <1V —5— 52,

Hence, in this case we obtain an adaptive factor of order log|K|. The next corollary
establishes ,0,2@ 1. (0n) as a sharper upper bound for the radius of testing of the indirect max-test
under additional conditions, all of which are e.g. satisfied in the examples considered below in
Mustration 4.3.6. Therefore, under these additional conditions we obtain an adaptive factor

of order /log|K|.

Corollary 4.3.4 (Best-case adaptive factor). Under the assumptions of Proposition 4.2.1,
let o € (0,1) and consider A, as in (4.2.15). If there exist constants ¢, C' > 1 such that

Tk ae(6°0) < cpra,(On)  and  pica,(6n) < C5%2 (4.3.10)

for all a, € A, then for all A >c¢-C - A, and for all n € N, n > 2,

sup R (Arc.a/2 | Ens Apica, (1)) < a

aes€A

with 6 = (1 v log |K|)~Y/2.

Proof of Corollary /4.3./. Under the assumptions (4.3.10) we have

(1 v W) (T,Cya.((s?n) Y pK,a.(én)) < <1 v p;c,gg/(jm> (¢pK.ae (1) V pic.ae (97))

< (1V O) (cprc.as(6n) V pc.as (61))
<c-C- PK,ae (572),

hence, the assertion follows directly from Proposition 4.3.2. ]
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Remark 4.3.5 (Choice of the collection K). Ideally, the collection K C N is chosen such that
its elements approximate the optimal parameter ko, for all a, € A given z'n (1.2.18) sufficiently
well. Note that kg, < " for n reasonably large (precisely n > \f|<p1| , which implies 1 >

\ /2ka,

2
2\ Vi ka
ai V k= = p? ae = > p2 > e > ), Hence, a naive choice is

’CI:{L---,L%QJ} with ksl = %),

which yields an adaptive factor of order (log n)l/z. However, in most cases, a minimisation over
a geometric grid

K= {2 e {0, [logy()]}} with — |Ks| = |loga (%))

approximates the minimisation over N well enough. The resulting adaptive factor is then of
order (loglog n)1/2. For some special cases the even smaller collection

/cs:{w',je{o,...,L%J}} with |IC| = | REon |

(compare Illustration /.5.6 below) is still sufficient, resulting in an adaptive factor of order
(logloglogn)'/2. O

Illustration 4.3.6. For the typical configurations for regularity and ill-posedness intro-
duced in [lustration 4.2.5, the tables below display the upper bounds for the adaptive radii
of the max-tests Ax o/2, @ € (0,1) for appropriately chosen grids. The tables in particular
show that in all considered cases the order of the remainder term r%’a.(ézn) is negligible
compared with p,QC .(6n). In a mildly ill-posed model (parameter p) with ordinary smooth-
ness (parameter s) we have seen in Illustration 4.2.5 that the optimal dimension k,, is of
order nm, which is smaller than n? for all combinations of s and p, by the reasoning
of Remark 4.3.5 it is even smaller than n?/2. Hence, we choose the geometric grid

Ko={2,j€{0,...,[log()]}}  with  |Ks| = [logy(y)]

and obtain the adaptive factor 6! = (1 + log|K2|)'/2 ~ /loglogn. It is easily seen that
the remainder term T,QCM. (62n) is asymptotically negligible compared with p,QCQ,a. (6n), since
for some positive constants x,y > 0 (depending on s and p) we have

?“;ZCM. (62n) N (loglog n)®
p,2c27a. (on) ny

—0 (n — 00).

2 0
Moreover, F)'C%;(n) tends to zero for n — oo, since § is only of log-order. Therefore, the

upper bound derived in Proposition 4.3.2 asymptotically reduces to p,2€2, a, (6n), which is of
the same order as p?l_ (6n) with an adaptive factor of order /loglogn.

Order of T12C2,a. (6%n) and ,0,2C2 s (6n) with 6 = (1 + log |ICa|)~1/2
and Kz = {2/,j € {0,...., [log(%) }}

a; |51 "%2,a0 (9°7) PKz,a0 (1)
(smoothness)  (ill-posedness)

__4s _ 4s
s pr ( n ) 4s+4p ( n ) 4s+4p+1
J J loglogn (loglogn)1/2
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In a severely ill-posed model with ordinary smoothness, we have seen in Illustration 4.2.5
that the order of the optimal dimension parameter does not depend on the smoothness pa-
rameter a,. Hence, the test A, /9, , which is, in fact, independent of a,, is automatically
adaptive with respect to ordinary smoothness and no aggregation procedure is needed.

In a mildly ill-posed model with super smoothness (parameter s) Illustration 4.2.5 shows
1

that the optimal dimension is of order (logn)s. Hence, we choose the smaller geometric
grid

ICS* = {ijj & {0; RN L%J}} with ’K;S*’ _ I—logzlognj

for adaptation to s > s, and obtain an even smaller adaptive factor 6—! = (14+log |Ks, |)1/2 ~
Vl1ogloglogn. It is easily seen that the remainder term T%S*,a. (6%n) is asymptotically neg-
ligible compared with pQKSH a, (0M), since

7"IQCS* R (0%n) Vl1ogloglogn

pIQCS* Qe (0m) (logn) i

—0 (n — o0).

2
Pics, ae (O . .
Moreover, '%573'() tends to zero for n — oo, since ¢ is only of log-order. Therefore, the

upper bound derived in Proposition 4.3.2 asymptotically reduces to p2,CS*7a. (6n), which is of
the same order as pZ, (dn) with an adaptive factor of order v/logloglogn.

Order of r,%S*’a. (6%n) and p,%S*,a.((Sn) with 6 = (1 + log |KC, |) /2
and K, = {2/,5 € {o,...., [ 18zlo8n |} }

a; |51 "%+, a0 (0°) PK, a0 ()
(smoothness) (ill-posedness)

5 o= 2p . /
o7 |]| D ‘ log lo;gllogn (IOg n) 231’ (log logifg n)l/2 (IOg Tl) 2P+S1 2

Calculations for the risk bounds in Illustration /.3.0.

2
Firstly, we determine the order of the terms p%- , (6n) = mingex {a% Y 62}.

1. (ordinary smooth - mildly ill-posed)
We first show that minimisation over Ko approximates the minimisation over N well
enough, i.e.

2 . 2 2
Piy.ae (M) = ;gel;cn Ph.as () ~ min pg, (n) = pg, (n).

. 2
We aim to find j, such that 27* € Ky approximates k,, well. Since k,, ~ nir+is+1 we

define

2

—1 <1 2/92)].
T is R ] S Nog(n?/2)]

j*5:[
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Then,

2, 3x (2p+1/2)
2 2 9 Vi, 9 2
PKa,ae (M) < Pois 4, (n) = a3, V TZ <oy T

n
(2 loga n+1)(2p+1/2)

< o~ (miigrlogan) |, 2
~ n

4 4
5 n- 4p+45$+1 vV 22p+1/2n_4p+4fs+1

_ 4s 9
S wEE e~y (n)

Since, trivially p2_(n) < p,QCM. (n), we obtain p2_(n) ~ p,QCM. (n). Replacing n by dn yields
the result.

2. (super smooth - mildly ill-posed)
We first show that minimisation over K, approximates the minimisation over N well
enough, i.e.
P, ou(n) = min g2, (n) ~ min g2, (n) = p2, (n).
sx (e ke, e keN | e e

We aim to find j, such that 2/ € K,, approximates k,, well. Since k,, ~ (log n)i we
define

. 1 1
Gy 1= [glogz logn] < [S—loglog(nﬂ.

*

Then,

2 . Jx (2p+1/2)
2 2 2 Voix _o.9six 2
ple* ,de (n) < p2j*,a. (7’1,) = Qgji \ n 5 e \4

n

sl logylogn 9(3 logy log n+1)(2p+1/2)

Se -
2p+1/2

< p2ygwrplosn) T

n

2p+1/2
(logn)” s
S~ pa,(n)

Since, trivially p2, (n) < p,QCS*,a. (n), we obtain p2 (n) ~ pZICS*,a. (n). Replacing n by 6°n
yields the result.

2
Next, we determine the order of the remainder term 7",%7 a.(62n) = mingex {az Vv ;;’;L}, by first

2
calculating 7“12\1 . (1) = mingey az \% % and then showing that minimisation over K approxi-

mates the minimisation over N well enough.

2
1. (ordinary smooth - mildly ill-posed) The variance term % is of order % and the
2
bias term ai is of order k~2?°. Hence, the minimizing k, satisfies k2% ~ % and thus

1 s
1 i i 9 _ s
ki ~ n?s+2, which yields rg , (n) ~n .
Next, we show that minimisation over Ko approximates the minimization over N well
enough, i.e.

1,00 () = it 72 0, (0) ~ mnin s, () = 12, (n)
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. 1
We aim to find j, such that 27* € Ko approximates k, well. Since k, ~ n2s+2» we define

1
553, 0] < [log(n?/2)].

j*5:[

2 jx (2

ms. . 2J*( P)
(n) = a3 v 222 27y

* n

n

(515 Togy nt1)(2p)
< o (g5 logam) |, 27772

n
s op ——5_
<n p¥s V29Pp pEs

_ s 2
S./ n pts ~ TN,a. (n)

Since, trivially rﬁm. (n) < r,%%a. (n), we obtain 1”12\1’&. (n) ~ T,QCML. (n). Replacing n by dn
yields the result.

2
. (super smooth - mildly ill-posed) The variance term % is of order % and the

2k*

. . _ C e e . . _9ks 2p
bias term ai is of order e . Hence, the minimizing k, satisfies e™2F+ ~ % and thus

) 25
ky ~ (log(n/bn))% with b, ~ (logn) =, which yields 75 a0 (N) ~ %.
Next, we show that minimisation over K5, approximates the minimization over N well
enough, i.e.

2

o aa () = min 10, () ~ min o o, (n) = 72, (0)

We aim to find j, such that 27+ € Ks, approximates k, well. Since k, ~ (log n)% we define

1 1
Jx = [—logylogn] < [—loglogn].
s S«

Then,
2 : i (2p)
msy; 9Jx(2p
K 2 2 27% —2.28J%
Ky e (n) < T"25x aq (n) = a5, V n Se \ n
1
< 6_2'25% logg logn 2( s 1082 log n+1)(2p)
- n
2p
<n2v 22P+1/2M
n
2p
logn)=s
< Qogm= )

n
Since, trivially 7§ ,, (n) < TI%S*,Q. (n), we obtain % , (1) ~ r,%S*’a. (n). Replacing n by §%n
yields the result.

O

Remark 4.3.7 (Adaptation to the radius R of the alternative). In this chapter the
parameter R is unknown but assumed to be fized and we consider adaptation to a collection
of alternatives {55{. ta, € .A} only. From Corollary /.2./ (and the definition of A, therein) it
follows immediately that adaptation to {ECE :R e (O,R*]} is achieved without a loss. Indeed,

replacing R by R* in the definition of A, we promptly obtain a result similar to (4.2.19) in
Corollary /.2./ with an additional supremum taken over R € (0,R*]. However, adaptation to

{55. :R e (0,00)} is not possible without a loss, for an explanation of this phenomenon we

refer to Section 6.3. in Baraud [2002] for a similar observation in a Gaussian sequence space
model. O
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4.4 Upper bound via a direct testing procedure

Definition of the test statistic. Instead of estimating the .#2-distance q(f — f°), in this
section we consider a test that is based on an estimation of the .#?-distance between the images

g = f®yp and ¢° = f° @y, i.e. of
o|? o121 |2
=Y Jo—g| = X -l el

l7leN |jleN

For k € N we construct an unbiased estimator ﬁ,% of the truncated version
o 2 2 o0 o 2
Slo-g = X lal-2Y ga+ Y |- (4.4.1)
FISIL| FISIL| lilelx] lilelx]

The first two summands of (4.4.1) are unknown and, thus, need to be estimated, the third is
known. For the second term, which is a linear term, we plug in canonical estimators of the
Fourier coefficients g; and obtain

~ Z Z gJeJ )
IJIG[[k]] len]

as an unbiased estimator of Z\j\e[{k]] g7g;- For the first term, which is quadratic, we use the
U-statistic

Ty, = ( Z Ze] (=Y)e;(Yim)

IJIE[[k]] L,me[k]
I#m

as an unbiased estimator of Z\j\e[[k}] ]gj|2. In total, we consider the test statistic

ar =Tk — 25k + a(9°)-
Decomposition of the test statistic. Similarly to the decomposition (4.2.5) of the indirect
test statistic, we split 51,% into three parts;

G =04 2ve 4 q2(g - ¢°) (4.4.2)

with the canonical U-statistic

Z > —95)(e;(Ym) — 95), (4.4.3)

”(” ) et mennn
It

the centred linear term

" Z > (g )(e; (Y1) — 7j) (4.4.4)

" |5l €kl teln]
and the separation term q3(g — ¢°).
Definition of the threshold. In the next proposition we provide bounds for the quantiles of

the test statistic . Recall that L, := (log(e/z))/? = (1 — log(x))/? € (1,00) for = € (0,1).
For ¢1 :=7991¢2]| 2 + 1372, ¢ := 52]|¢g¢||n and a € (0,1), we define the threshold

/2 V2 V2 1
da) =¢ (1 v L2 nk v L3 nk) La nk +cQL35. (4.4.5)
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Proposition 4.4.1 (Bounds for the quantiles of q}). For densities f°, f,¢ € D and

n € N,n > 2 consider {Y} Y = g = f®y with joint distribution Py and let ¢° = f°®p.

Let a, 3 € (0,1) and for k € N consider the estimator q7 and the threshold 7{(«) as defined
n (4.4.2) and (4.4.5), respectively.

(i) If Z%(¢9°) = {[¢] , € € £?}, then
Pyo(di > 7 (@) < a.
(ii) If e3 := 837 ||p.|,2 + 1373 and the separation condition

ai(g—9°) > 2 (T (@) + c3Lj (1 v V?) V?) ; (4.4.6)

holds, then

Pf(d; < 7ii(@) < B.

Proof of Proposition /./.1. The proof is similar to the proof of Proposition 4.2.1 using the de-
composition (4.4.2) rather than (4.2.5). For the first part (i), we apply Proposition D.1.1 of the
appendix together with Lemma D.3.1 (instead of Lemma D.2.1). For the second part (ii), we
control the deviations of the U-statistic US and the linear statistic V4 by applying Lemma D.3.1
and Lemma D.3.2 (instead of Lemma D.2.1 and Lemma D.2.2.)

(i) If f = f° and, hence, g = ¢°, the decomposition (4.4.2) simplifies to q; = U, where U4
is a canonical U-statistic. Applying Proposition D.1.1 of the appendix, a concentration
inequality for canonical U-statistics of order 2, with # = L2 > 1 and quantities A — D
satisfying (D.1.2), we obtain

C B A
(Ud > 8 Lo+ 13— L2 +261—7 L} +343 = L4> < exp(l — ). (4.4.7)
Consider the quantities A — C defined in (D.3.1) and D in (D.3.2), which under the
additional assumption £2(g°) = {|¢| : € € £?} satisfy (D.1.2) due to Lemma D.3.1. We
have
8= Lo+ 13— L2 + 261~ L7 + 3435 L,
2k 1
<82 gl Lo 4134+ gl L2
(2k)3/2 2k
+261 -3 ||gu]lpe L2 —~7 +343-4-L‘(§—2
\/21{ k)4 V2k
=52 gl L2+ Lo Y20 (16 gl + 783 N o 22 B 4 13722 Y2

\/214 2k)1/4 2
<52|\g. |1 L2 + Lo—— (799 ||g.||,2 + 1372) (1 Vv L(QX( ) Vv Lg%

nl/2
1 /\/ V2k V2k
=2~ 4 ¢ (1 v L2 v LI ) Lo——
n n

=7 (a),

which together with (4.2.11) shows the assertion (i).
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(ii) Keeping the decomposition (4.4.2) in mind, we control the deviations of the U-statistic
U4 and the linear statistic V¢ by applying Proposition D.1.1 and Lemma D.3.2 of the
appendix, respectively. In fact, the quantities A— D given in (D.2.1) of Lemma D.3.1 fulfil
(recall that Lg/s > 1 for all 8 > 0)

C D B A
8Ly +13—Ljs +261—75 7 Lo + 3435 L
V2k V2k
<82 gl Lo 4132 gulle Lo
(2/@)3/2 2k

(2k)1/4 \/2k> V2

SLé/z (42 lgellp2 + 783 gallp2 SR 4+ 137222

n
(2k)V% 2k V2K
<L 5 (825 |gull 2 +1372) <1v Vv .

V2k\ V2k

n

n

where we exploited that 1V a V a? =1V a? for any a > 0. Consequently, the event
d d d
of = {ud < -}

satisfies Pp(Q2$) < B/2 due to Proposition D.1.1 (with the usual symmetry argument).
Define further the event

1 (e}
0F = {2\/51 < -7 - Sailg—g )}

with 7 1= L%/Q (12 )1g2l,2 + 1) (1 \Y @) @ Then we have Pf(2y) < % < g due to
Lemma D.3.2 with z = Lg/, > 1, which is an application of a Bernstein-type inequality.
We obtain

%\ V2k
T+ 75 = L5(825 9.l 2 + 1372) (1 v f)

n
V2k\ V2k
+ L3 5(12|gu]l 2 + 1) <1 V=

(3) 2

n

n

<L/3/2 (825 ||gallp2 + 1372 412 ||ga]| 2 + 1)

v2k\ V2k

< L}, <1vn

with c3 = 837 ||| + 1373 due to 1 < Lg/p and ||g.||,2 < [[¢0a||p2- Hence, the assumption
(1.4.6) implies

1 .
~ai(g—¢°) > mi(a) + ' + 5.

2
The decomposition (4.4.2) yields
Py (@ < 7)) =Pr ({a@f < (@)} 0 0f) + Py ({a} < ()} 0 (2)°)
<PyQ) + Py (2V3 + a}(g — ¢°) < (@) + 1)
B

<5 +Pp(05) < B,

which shows (ii) and completes the proof.
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Definition of the test. For k£ € N and « € (0,1) we define the test
d ._

where q7 is the test statistic in (4.4.2) and 7{(a) the threshold in (4.4.5). Proposition 4.4.1 (i)
shows that A‘é’a is a level-a-test for all & € N. Moreover, Proposition 4.4.1 (ii) characterises
elements for which A% o 18 (1 — B)-powerful. Exploiting these results and considering the addi-
tional regularity constraint Eclf. (defined in (4.2.13)), we derive an upper bound for the radius of
testing of Agﬂ in terms of g = maxj;je[x] \g0j|_2 as in (4.2.8) and the regularity parameter a,,
that is we define

v2k 2} . (4.4.9)

(Pg,a.)2 = (Pg,a. (n))? = {ai N M

Proposition 4.4.2 (Upper bound for the radius of testing of Ag O‘/2). Let g° = f°®ep
with f°,p € D satisfy £%(¢°) = {|¢], & € £?}. For a € (0,1) define

A2 = R? + 2(837 |lp.l 2 + 851 g2l + 2745) L2 ;. (4.4.10)
For all A > A, and for all n,k € N with n > 2 and v/2k < n, we have

R (A% a2 | €0 Abta,) <

Proof of Proposition /./.2. Using Proposition 4.4.1 we show that both the type I and the max-
imal type II error probability are bounded by «/2, and thus the result follows from

R(A&mlﬁﬁAﬁm)—Pﬁ(Mbm—l)+fP&¥€ Wﬁ%(@%p—O)

k,ae

<a/2+a/2=qa.

Since the assumption of Proposition 4.4.1(i) is fulfilled, the test A%a /o is a level-a /2-test. Hence,

for each density f € #2 belonging to the alternative, i.e. with ||f — f°|%2 > Zi(pg’a.)z and
f—f°e 55. it remains to verify condition (4.4.6) in order to apply Proposition 4.4.1 (ii) (with
B = a/2), i.e. we need to check that

- (4.4.11)

n

Qg —g°) =2 <T;?(a/2) + 3Ly (1 v m) m) -

Indeed, in this situations we have

S - < 4

li|>k lil>k I

2
< aiR?,

fi—= 15

since a, is non-increasing, hence Z—’“ > 1 for all j > k. Therefore,
J
o o o —2
AGr(f= 1) = 1F = £l = Do 1f = £21P > AL(pho.)” — aiR?

51>k
V2k
> 2(837 [|all 2 + 851 || goll o + 2745)L3/4Tm§, (4.4.12)
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where the last inequality is due to the definition of A,. Using ||¢¢ |2 < [lg2]l,1 we further obtain

V2k
ar(f = 1) 2 2(837 [leull e + 799 (1921l 2 + 52 (192l 2 + 2745)%/47"1%
V2k
> 2(c1 + ¢ + 03)Li/47m%. (4.4.13)

The condition (4.4.11) then follows from (4.4.13) by exploiting 1 < Ly /2 < Lasa»llgdll2 < 1195 llp1s
2k < n? and m2qi(g9 — ¢°) > qi(f — f°), which holds since

ai(g - = > oi- gJ] max [¢;] 7
ilelk] i€ Tk]
‘g g
=g
_ZM:Z\J%— = ai(f— /).
slerer 19l 1Tkl
Indeed,

V2k V2k V2k 1
TS(O[/Q):Cl (1\/La/2 T\/Li/Q n La/2 n +C2Lg‘/2;

V2k
<(e1 + 02)L4a/47.

Hence, due to v2k < n and (4.4.13)

V2k\ V2k
2 2 L 1v—/| ] —
(@(a/ ) +cs aM( vV o
V2k
<2(c1+ec2t 03)Li/47
< qp(f = f)m? < dilg - ¢°),
which completes the proof. O

The upper bound (p}iva.)2 for the radius of testing of A% a2 depends on the dimension

parameter k. Let us introduce a dimension that realizes an optimal bias?-variance trade-off and
the corresponding radius

ks. = kd (n) := arg min p¢ 4 ‘= Min {k eN: p‘,ia. < p}{a. forall l € N}

Qe

keN
and
i V2k
(Pan)? 1= (P, (n))? 1= min(pf,,)* = min {ai Vi
Corollary 4.4.3 (Upper bound for the radius of testing). Let ¢° = @go with
fo, 0 € L2 satisty £%(g°) = {|¢],€ € £?}. For a € (0,1) define A, as in ( 10). Then

for all A > A, andnzxf’goll 2 we have

R (A a2 | €2 ARL) <o
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Proof of Corollary 4.4.5. The result follows immediately from Proposition 4.4.2. Indeed, n >
/91.d
V21|t implies 1 > (pia.)2 > (pd )2 > %, which justifies the application of Proposi-

tion 4.4.2 and completes the proof. O

Remark 4.4.4 (Optimality of the direct testing procedure). Let us compare the upper
2 V2k, 2

bound for the direct testing procedure (pg ) = mingen {ai \% ka} with the minimaz radius

of testing pa = mingey {ak vk } Naturally, p d > pa,- Moreover, if there exists a constant
¢ > 0 such that

< V2k max |goj| = V2km?2 < e}, (4.4.14)
|J|€[[k]] W’J VI

then pg. and pq, are of the same order and, thus, the direct testing procedure is minimazx optimal.
Condition (4.4.14) is for instance satisfied for a mildly ill-posed model, i.e. if (|¢;])jen decays
polynomially. Note, however, that (4.4.14) is a sufficient but not a necessary condition. For
a severely ill-posed model, i.e. if (|p;|)jen decays exponentially, the condition (4.4.14) is not
fulfilled. Nevertheless, the direct testing procedure still performs optimally (see Illustration /./.5
below). O

Illustration 4.4.5. We illustrate the order of the upper bound for the radius of testing of
the direct test Agd a2 @ € (0,1) under the regularity and ill-posedness assumptions in-

troduced in [llustration 4.2.5. Comparing the resulting upper bounds (pd,)? with the radii
p2., we conclude that the direct test performs as well as the indirect test in all three cases.

Order of the optimal dimension k:g. and the upper bound (pg.)2

a |51 ko, (5. )?
(smoothness) (ill-posedness)
2 4s

j—s |] | —p n4p+is+1 n 4s+4p+1

) 1 _2s
i el (logn)? | (logn) #

. 1 2p+1/2

I (logn)s | n~'(logn) ™5

Calculations for the radius bounds in Illustration 4./.5.
Recall the definition (pg.)2 = mingen {a% \Y% @m%} .

1. (ordinary smooth - mildly ill-posed) The variance term m%@ is of order %k2p+1/2
and the bias term aj is of order k~2*. Hence, the optimal kfzi. satisfies (ko )72 ~

2
%(k:a.)QpH/ 2 and thus k,, ~ n®¥%+1, which yields an upper bound of order (pd,)?

4s
(kay) ™25 ~ n” BstapiT,
2. (ordinary smooth - severly ill-posed) The variance term m? \nﬁ is of order
and the bias term a} is of order k=2°. Hence, the optimal kS, satisfies (k:a.)_25 ~
1 1
L(ka.)t/?e*" and thus k3, ~ (log(n/b,))» with b, ~ (logn) kD , which yields an upper

2s

bound of order (p¢,)% ~ (kd)72% ~ (logn) ™ ».

1 k1/262k1’
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3. (super smooth - mildly ill-posed) The variance term mi@ is of order %k}l/ 2+2p and
the bias term a? is of order e~2¥". Hence, the optimal k4, satisfies e 2(kae)® 1 (kq, )1/2+2

and thus kg, ~ (log(n/bn))i with by, ~ (logn) B , which yields an upper bound of order

2p+1/2

(P8, ~ 5 (kG)*PHY2 ~ Llogn) ™

4.5 Adaptive direct testing procedure

4.5.1 Aggregation of the direct tests and the choice of the levels «;

The test A%d )2 in Corollary 4.4.3 requires the knowledge of the parameter sequence a, of the

regularity class Ef: for the choice of the optimal dimension parameter k = kfll.. Let £ C N
be a finite collection of dimension parameters. We apply the Bonferroni aggregation method
described in Section 4.3 to the collection of direct tests (A%,ak)kelC in order to construct an
adaptive (i.e. assumption-free) testing procedure. We obtain a max-test with a Bonferroni
choice of error levels o, = a/|K|

d 1, - - S =2 _d(a
Af o = ]l{Q,C’a>0} with QK= max (Qk 7k (] \)) :

4.5.2 Testing radius of the direct max-test

In the next proposition we determine an adaptive upper bound for the radius of testing of the
max-test. Again, as it is the case for the indirect-max-test, the upper bound has two regimes.
The adaptive factor ' depends on which regime governs the behaviour of the radius of testing.
The adaptive factor § 71 is in all cases of order (log |K|) for ¢ € {%, 1}. Below, we give conditions

for which the adaptive factor is of order (log|K|)'/2, which we show to be the minimal adaptive
factor. The max-test A,C ., only aggregates over a finite set £ C N, therefore we define the
minimal achievable radius of testing over the set K as

VI

(PR aa(m))? = min(pl,, (n)?  with (g, (n))* = af v ——m,
ek n
and m3 as in (4.2.8) and a regularity parameter a, = (a;)jen € A. Since (pd, (n))? in (4.4.9) is
defined as the minimum taken over N instead of K, for n € N we always have p2_ (n) = dN L(n) <

P%,a. (n). Moreover, let us recall the remainder radius defined in (4.3.4)

2
. m
Ra () =minri, (n)  with  rf, (n)=afv=E.

Proposition 4.5.1 (Uniform radius of testing over A).
Under the assumptions of Proposition 4.4.1 let a € (0,1) and consider A, as in (4.4.10).
Then, for all A > A, and for alln € N, n > 2

d
PR, (072)
sup R (AIC a2 | €, (1 \ 1%3/2> (TIC,a. ((5271) \ pdlC,a. (5n))> Sa

Qe EA

with 6 = (1 v log |K|)~Y/2.
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Proof of Proposition J.5.1. The proof follows along the lines of the proof of Proposition 4.3.2
making use of Proposition 4.4.1 rather than Proposition 4.2.1. We again bound the type I and
maximal type IT error probabilities separately. From (4.3.1) combined with Proposition 4.4.1 (i)
and Y o % = § it follows that the type I error probability is bounded by a/2. Under the

alternative, let f € #? with f— f° € 55_ satisfy

_ d(6n))?2
TR (”W) (0 (M) V (0, (51))°). (4.5.1)

It is sufficient to use the elementary bound (4.3.2) together with the following two observations,
which we show below.

1. Whenever f € £? satisfies f — f° € EQP: and

°|1 A2 [ 42 2k)Y4 2K\ V2kmi  m?
IF = Fllze = 4a (a’“\/(lv 2niz V. &n sn Vs

(4.5.2)

then

| Q

By (6t < 7t (sf)) <

2. If the separation condition (4.5.1) is satisfied, then there exists a k € K such that (4.5.2)
is fulfilled.

Consequently, we have

Pr(Aga2=0) < gg,lclpf(Ak,akm =0) <

| o

for all f € .£? satisfying f — f° € ECE and (4.3.5). Thus, the maximal type II error probability
is also bounded by «/2. It remains to show (1.) and (2.).

1. The claim follows from Proposition 4.4.1 (ii) (with 8 = «/2), since (4.5.2) implies (4.4.6),
which states

ai(g—¢°) > 2 <T;§(2|°‘,q) + 3Ly (1 Vv \/ﬁ) m) , (4.5.3)

n n

with Tk(%) as in (4.2.9). Indeed, exploiting Li/Q = log(2e/a)) > 1 and, hence,

L3 oy = log(2¢|K| /o) =log |K| + L7, ;o < L3 (1 + log |K|) = L7, 5672,

we have
d/ «a 2 vV 2k 3 m v 2k 2 1
i (gfiy) = @1 (1 V Laseien\ TV Lasey =, | Laseikn =, + Loy,
2 \/ﬁ 3 V Qk m 2 1
= C1 (1\/La/2 75471 \/La/2753n La/276 +C2La/25T

4 V2k V2K V2k 1
§(01+02)La/2<(1\/ 54nv53n on \/% '
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Additionally using L,/4 > Lq/a, 1 > 0 the right-hand side of (4.5.3) is bounded by
V2k\ V2k
2 <7‘,§( 5k ‘) —1—03La/4 <1 Y > )

n n

V2k  V2k\ V2k 1 V2k\ V2k
< 4 - | —
< 2(e1+e2) Lo ((w si Vi | s Vs | T 2ela |1V | —

V2k 2k \ V2k 1
< 4 i
< 2(01 +co + Cg)La/4 ((1 V 5o V 5 5n V n

Hence, since Zi —R%2>2(c; +co+ 03)L§/4 the condition (4.4.6) of Proposition 4.4.1 holds

whenever
o —2 V2k  V2k\ V2k 1

2
Let us verify this condition. Due to f— f° € 55_ and, hence, 3 ;5 ‘f]" — fj’ < aiR?, the
condition (4.5.2) implies

R~V =1l = X |1 - fjf

|j|>k
\/ﬂ 2k m?
_ 2 2, M
(AR (( Vissn | on MY 52, |

and, hence, since m3q2(g — ¢°) > q2(f — f°), we obtain

qi(g—g")Z(Zi—ff) ((W x/ﬁv\/ﬁ) m\/l),

dn  3n n  §%n

which justifies the application of Proposition 4.4.1. If (4.5.2) is satisfied, then also (4.5.4)
and thus (4.4.6), which shows the claim (1.).

2. By the Balancing Lemma A.2.1 we have

m \/
leC,a. (52n) \ (pdlC,a. (5”))2 - a% \% 7 5
2
and (o (0)? > L2t > —Vé

for at least one k € K. Hence, there exists a dimension parameter k € IC such that

d Sn 2
(R (@*m) v <p%,a.<5n>>2) (1 o)

Since 1V ‘ﬁ >1V Effﬁ; v \5/3:, this shows (4.5.2) and, hence, (2.), which completes the
proof.

O

The next two corollaries show that we either (in the worst case) obtain an adaptive factor
of order log|K| or (in the best case) of order (log \IC|)1/ 2. depending on whether the remainder
term 7 q, (62n) is negligible compared with p%,a.(én) or not.
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Corollary 4.5.2 (Worst-case adaptive factor).
Under the assumptions of Proposition 4.4.1, let o € (0,1) and consider A4, as in (4.4.10).
Then, for all A > A, and for all n € N, n > 2,

sup R (Ao | €8, A(1V o0, (670)) pit 4, (6%0)) < @

with 6 = (1 v log |K|)~Y/2.

Proof of Corollary 4.5.2. The proof follows along the lines of the proof of Proposition 4.3.2,
considering

1= 715 2 A (1V (PR (0P))°) (R (00))° (45.5)

instead of (4.5.1). In fact, as in the proof of Proposition 4.5.1, it is sufficient to show (2.)
under the separation condition (4.5.5). For each a, € A under (4.5.5) the dimension parameter

k. := arg min pjl ,_(6?n) satisfies
kek ’

(1V (pa (°1))?) (0, (6%m))”
— (1 Vv p% a (62n) V (pi a.(52n))2) (P, (070))?

L)1/ %
> ak* ( n 1/2 Mk, V 52, mm)
L)1/ 2
> ag, v (1\/ n 1/2 Mg, V 53:* i) 52];:
21@ 1 L)/ 2ky mj,
/4

2k ) ok m?
2 * L Ky
= 0V ( 52 1/2 K mk) e

vV 2k . -
since aj_V 62:’“* = (p%ya.(52n))2 and § < 1. This shows (4.5.2) and, consequently, (2.). We
obtain the assertion by proceeding exactly as in the proof of Proposition 4.5.1. O

Corollary 4.5.2 implies that (p% 2. (6?1))? is an upper bound for the radius of testing for the
direct max-test if p% e (6%n) < 1. Note that this is the case for an arbitrary regularity parameter

a. € A, ifeg. 1 € K and n > v2|p1| 72 (1 + log |K|), that is, for a suitable choice of K and n
large enough. Indeed, under these two conditions, we have

V2k 2m?2 21|72
mk}ga%\/\/d;ml §1\/M
n

=1.
0%n

(P 00 (671))? = arg min {ak v
ke

Under additional conditions, which are satisfied for all examples considered in our illustrations,
we can derive a sharper upper bound (P%,a. (6n))? and, thus, obtain an adaptive factor of order

(log K2,

Corollary 4.5.3 (Best-case adaptive factor). Under the assumptions of Proposition 4.4.1,
let € (0,1) and consider A, as in (4.4.10). If there exist constants ¢, C' > 1 such that

r;c,a,((SQn) < cp%’a. (on) and p%a_ (on) < C3/2 (4.5.6)
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for all a, € A, then for all A >c-C - A, and for all n € N, n > 2,

sup R (A oy | €, Ap o (00)) < @

with 6 = (1 v log |K|)~Y/2.

Proof of Corollary /.5.3. Under the assumptions (4.5.6) we have

d  (5n d (on
<1 y W) (s (621) V i, (81)) < (1 y W) (6t G) V i (6)

< (1VC) (cpt o, (On) V it 4, (67) )
<O (0n),
hence, the assertion follows directly from Proposition 4.5.1.

Concerning the choice of the collection K of dimensions, we refer to Remark 4.3.5.

Illustration 4.5.4. For the typical configurations for regularity and ill-posedness intro-
duced in Illustration 4.2.5 the tables below display the adaptive radii of the direct max-test
A%’ a2 @€ (0,1) for appropriately chosen grids. In a mildly ill-posed model (parameter p)
with ordinary smoothness (parameter s) we have seen in Illustration 4.4.5 that the optimal
dimension k,, is of order nm, which is smaller than n? for all combinations of s and
p, by the reasoning of Remark 4.3.5 it is even smaller than n?/2. Hence, we choose the
geometric grid

Ko={2.je {0, llog(%)}}  with  [Kaf = [logy(%)]

and obtain the adaptive factor 6—! = (1+log |Kz|)!/? ~ /Ioglogn. It is easily seen that the
remainder term 7“,%2,&. (6%n) is asymptotically negligible compared with (p%% 2. (612))?, since
for some positive constants x,y > 0 (depending on s and p) we have

"Ryae(0°0)  (loglogn)®

~ — 0 n — 00).
Py 0P~ o)
(PR e (97))? . .
Moreover, —2%¢—— tends to zero for n — oo, since J is only of log-order. Therefore,

the upper bound derived in Proposition 4.5.1 reduces to (p%z’ o, (61))?, which is of the same
order as (pd, (6n))? with an adaptive factor of order /loglogn.

In a severely ill-posed model with ordinary smoothness, we have seen in Illustration 4.4.5
that the order of the optimal dimension parameter does not depend on the smoothness
parameter a,. Hence, the test Ag 2,kas? which is, in fact, independent of a,, is automatically
adaptive with respect to ordinary smoothness and no aggregation procedure is needed. Note
that in the case f° = 1}y 1) neither the test statistic G (defined in (4.4.2)) nor the threshold
7d(a) (defined in (4.4.5)) depend on the coefficients of the error density ¢. Then, by
aggregating over Ko the max-test A%,a /2 is also adaptive with respect to severe ill-posedness.

In this case the remainder term 3., ,. (6%n) is of the same order as (p%%a. (6n))?, hence the

theoretical adaptive factor that we obtain is of order loglogn. This factor, however, does
d Y 2

not effect the behaviour of the radius. Moreover, w tends to zero for n — oo, since

¢ is only of log log-order and, therefore, the upper bound in Proposition 4.5.1 asymptotically

reduces to (p%g’a. (6n))?, which is of the same order as (pd, (n))2.
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Order of 7',%27(1. (6%n) and (P%%a,((sn))Q with 6 = (1 + log |KC)~1/2
and Ky = {Qj,j € {0, ce U.ng(%Q)J}}

a; |51 TR.00 (077) (P00 (97))°
(smoothness) (ill-posedness)

4s 4s

. o= T 4s+4 ~ 4s+4p+1
J * ‘.7‘ P (logﬁ)grf) o ((loglogngl/z) o

. 4 _ &S
j—s 6_‘] [ (log n) P (log n) p

In a mildly ill-posed model with super smoothness (parameter s) Illustration 4.4.5 shows
that the optimal dimension is of order (logn)s. Hence, we choose the smaller geometric
grid
. log, 1 . log, 1
Ko, ={2,jefo,. .. [llen il with |k, | = |l82)0en]

for adaptation to s > s, and obtain the adaptive factor =1 = (1 + log|K,, [)/2. Tt is
easily seen that the remainder term 77 (62n) is asymptotically negligible compared with

Ksy e
(p%S* 0. (012))?, since

%, a.(6°n)  /logloglogn
(p]Cs*,ao (5”))2 (log n)i

—0 (n — 00).

d FY 2
Moreover, w tends to zero for n — oo, since ¢ is only of log-order. Therefore, the

upper bound derived in Proposition 4.3.2 asymptotically reduces to (p%sH a (6n))?, which is
of the same order as (pd_ (6n))? with an adaptive factor of order v/logloglog n.

Order of r,%S*’a. (6°n) and (P%S*,a. (6n))? with § = (1 + log \ICS*|)*1/2
and K, = {2/,5 € {o,...., [ l8zlo8n |1}

aj 051 PR CED) (P, a0 (00))?
(smoothness)  (ill-posedness)

—j® = log log logn 22 | (logloglogn)!/? 2piiay/2
e 577 ‘ logloglogn (1,0 ) % | (ogloglogm)/2 (1,0 225

We conclude that in all the cases considered in this illustration the direct max-test achieves
a testing radius of the same order as the indirect max-test. We emphasise that in contrast to
the indirect max-tests the direct max-tests are in addition also adaptive to the ill-posedness
of the model, since they do not require the knowledge of the coefficients of the error density
¢ if we test for uniformity (i.e. in the case f° =1y 1))

Calculations for the risk bounds in Illustration /.5.).

Firstly, we determine the order of the terms ([J%ﬂ.(c57z))2 = mingei {az v %mz}

1. (ordinary smooth - mildly ill-posed)
We first show that minimisation over Ky approximates the minimisation over N well
enough, i.e.

(R0 (1) = min (Pl () ~ min(pg, (n))* = (PG, (n))*.
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. 2
We aim to find j, such that 27* € Ky approximates kg. well. Since k:g_ ~ nirtistl we
define

Jw = [MTHIO& n] < [log(n®/2)].
Then,

2. 2ixm?2

(000 (D) < (o, (0))? = v T2 g pm2siey S

(2t loga n+1)(2p+1/2)

0js (2p+1/2)
\/ -

< 2_(4p+44ss+1 logy n) V, 2

n
4s 4s
<n” WrasTL Y 92p+1/2 )~ TprasTT

S0 T~ (] (n))?

Since, trivially (pd, (n)) < (p%w. (n))?, we obtain (pd, (n))? ~ (p%%a.(n))? Replacing n

by dn yields the result.

. (super smooth - mildly ill-posed)
We first show that minimisation over IC;, approximates the minimisation over N well
enough, i.e.

(P, a0 () = min (pf g, (n))? ~ min(pf, (1))” = (pa. (n))*

We aim to find j, such that 2/* € KC,, approximates k:g. well. Since k:g' ~ (log n)i we
define

Ju = [Llogylogn] < [+ loglog(n)].
Then,

/92 . 29xm2. . Jx (2p+1/2)
22 ms;, < 22y, 2
n

~

(0%, 00 (M)? < (0% 40 (n))* = a3, V

72_25% logg logn

n
2(% log, logn+1)(2p+1/2)

<e
n
2p+1/2

< =2y o212 (logn) s

n
2p+1/2
(logn) s
ST (n)?

Since, trivially (pd, (n)) < (pdle*,a. (n))?, we obtain (pd, (n))? ~ (P%s*,a. (n))%. Replacing n

by dn yields the result.

. (ordinary smooth - severely ill-posed) We first show that minimisation over g ap-
proximates the minimisation over N well enough, i.e.

(Pip.ae(n))? = min (P (0))* ~ min(pg, (m)* = (PG, (n))*.

We aim to find j, such that 27+ € Ky approximates k2 well. Since k2, ~ (logn/ bn)% with
4s
by, ~ (log n)% we define

o = |1 logy(log(n/b,)/2)] < [log(n?/2)].
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Then,

V2 2]* 2j*/2 .
d 2 d 2 _ 2 2]* —287, 2.9PJx
(P (1)) < (e 0, ()2 = a3, v 2 2720 v e
*10 logn
SJ2725(;1)logQ(log(n/bn)/Q)fl)\/2p B20% o 2:20082((108(n/bn))/2)
n

2s

< (logn) ™ » ~ (pg, (1))

2, we obtain (pd, (n))? ~ (p%%a.(n))? Replacing n

a

Since, trivially (pd, (n)) < (P%Q,a, (n))
by dn yields the result.

2
Next, we determine the order of the remainder term r%va.(én) = mingex {a% \% W:L’f}, by first

2
calculating 73 a. (1) = mingey az Vv n:f} and then showing that minimisation over K approx-

imates the minimisation over N well enough. The calculations in the (ordinary smooth -
mildly ill-posed) and the (super smooth - mildly ill-posed) cases have already been done
in Illustration 4.3.6. It remains to consider the third case.

3. (ordinary smooth - severely ill-posed) The variance term ok

21#’
bias term a3 is of order k2. Hence, the minimizing k., satlsﬁes k2 ~ &= and thus

1 2s
ky ~ (log(n/by))? with b, ~ (logn)~ » , which yields 7’1%7(1. ~ (logn)
Next, we show that minimisation over Ko approximates the minimization over N well
enough, i.e.

2s
P,

1) = min o (n) ~ min g, (n) = r2, ()

We aim to find j, such that 27« € Ky approximates k, well. Since k, ~ (log(n/ bn))% with
2s
by, ~ (logn) » we define
o 1= L logy(log(n/ba)/2)] S Llog(n?/2)].
Then,
2 ) 2.9PJx
Ry S 7 = v B < g2y
;0e ,Qe n

n
eg.glogz(log(n/bn)/Q)

2s
o= 3 loga log(n) |,

N

n
_ 2s

(logn)™» ~rf 4, (n)

N

Since, trivially rﬁha.(n)
yields the result.

IN

T’2C2,a. (n), we obtain r%ja.(n) ~ T?Cg,a. (n). Replacing n by §%n

O

Note that in the case f° = 1) neither the test statistic q (defined in (4.4.2)) nor the
threshold 7¢() (defined in (4.4.5)) depend on the coefficients of the error density ¢. Hence, the
test Ag o2 only depends on the ill-posedness of the model through the dimension parameter k.

Aggregating over an appropriate class K yields a direct max-test A /2 that is adaptive with
respect to both the regularity and the ill-posedness of the model. ThlS observations is formally
stated in the next theorem.
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Theorem 4.5.5 (Adaptation to ill-posedness). Let f° = L(o,1)- Under the assumptions
of Corollary 4.5.3 let o € (0,1) and consider A, as in (4.4.10). Then for all A > ¢-C - A,
and for alln € N, n > 2

sup sup R (A%,a/2 | 5&,Ap%,a.(5n)) <a
pED asc A

with 6 = (1 v log |K|)~Y/2.

In the next section we provide a lower bound on the minimal adaptive factor 6! in this
situation (i.e. f= 1y 1)).

4.6 Adaptive lower bound

Throughout this section we assume that f° = 1}y ;). The next proposition states general condi-
tions on the class A under which an adaptive factor 6! is an unavoidable cost to pay for adap-
tation over A. The proof of Proposition 4.6.1 is based on a Assouad-type reduction argument
and makes use of Lemma D.4.1 in the appendix, which provides a bound on the y2-divergence
between the null and a mixture over several alternative classes. Inspired by Assouad’s cube
technique the candidate densities, i.e. the vertices of the hypercubes, are constructed such that,
roughly speaking, they are statistically indistinguishable from the null f° while having largest
possible .#2-distance.

Proposition 4.6.1 (Adaptive lower bound). Let a € (0,1) and § € (0, 1]. Assume there
exists a collection of N regularity parameters {aZ :j € [N]} C A, where we abbreviate for
j €]

o= P, (6n) with associated optimal dimension parameters k= k_i(on),

such that the following four conditions are satisfied:

(C1) The collection is ordered such that k! < k™ and p! < §p™, whenever [ < m.

@

(C3) There exists a finite constant a such that 2max;cn | < a.

)
(C2) There exists a finite constant ¢, > 0 such that exp(cad—2) < Na?.
2
) )
)

(C4) There exists a constant n € (0,1] such that

2

2
J\2 A Mg J\2 j
< min )N @) Ay

TN ; 2 CIN 2
JE[N] (ai}j)Q v JE[N] (p?)
Then, with

A% =g (R2 Ayflog(1+a2) Aat A @)
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we obtain for all A € [0, 4,]

inf sup R (A | Ea ,Apa.(5n)) >1-o.
A a.E.A

Remark 4.6.2 (Conditions of Proposition 4.6.1). Let us briefly discuss the conditions
of Proposition 4.6.1. Under (C1) the collection of regularity parameters A is rich enough to
make adaptation unavoidable, i.e. it contains distinguishable elements resulting in significantly
(measured in terms of §) different radii. (C2) is a bound for the maximal size of an unavoidable
adaptive factor. (C3) guarantees that the candidates constructed in the reduction scheme of the
proof are indeed densities. The condition (C) relates the behaviour of the sequences v, and al
and essentially guarantees an optimal balance of the bias and the variance term in the dimension
k7 uniformly over all j € [N]. Moreover, for all reqularity and ill-posedness examples considered
in Illustration 4.2.5 condition (CJ) holds uniformly for all n € N. We shall emphasise that the
optimal dimensions k? and the corresponding radii p’, for which (C1) and (CJ) are stated, are
determined in terms of the effective sample size on. O

Proof of Proposition /.0.1. Reduction Step. To prove a lower bound for the testing radius
we reduce the risk of a test to a distance between probability measures. Denote Py = Pyo, let
P1,m, specified below, be a mixing measure over the A,p"-separated alternative and consider
the uniform mixture Py := + >men] P1,m over all m € [N]. The risk can be lower bounded by
applying a classical reduction argument as follows

f RIA|EY, Ape, (6 > inf R(A ,A
in af sup ( | € p.(n)) inf max ( | & p)
> inf < Po(A =1) + max sup Pr(A=0
A 0( ) mEﬂN]] f_foegsmmgpzm f( )
1
>inf{ Po(A=1)+ — Ps(A =
S B A=)+ Y s BAA=0)

me[N] f=F° €€ NL o

zigf{IP’o( Z Py (A _0)}

mE[[N]]
2 inf {Po(A=1)+P1(A=0)}

=1- TV(Po,Pl)
2
>1— X (]P);?Pl),

where TV denotes the total variation distance and y? the y2-divergence.

Definition of the mixture. For each m € [N] we mix the Fourier coefficients uniformly over
the vertices of a hypercube contained in the corresponding alternative. For m € [N] we define
the coefficients of 0" = (0]")jen € /%(N) by

o 72 for j € [k™]
7 0 otherwise

and the candidate functions for the sign vectors 7 € {£}*" by

U=t Y0 m6fes.
ljlelk™]
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Now, we can define the mixing measures

1
]P)Lm = 2]€7m Z }P)fm,‘r7 m € [[N]]

Te{L}F"

Let us verify that for each m € [N] the collection { fmriT e {:l:}km} is a set of densities

contained in the alternative 55% N ,2”/)27”, i.e. that Py ,, is indeed supported on the alternative.

Lo fm7)5 =2 HHmng + 1 < o0, satisfied by construction. (e £?)
2. f]m T = @, satisfied since # and 7 are vectors in RY resp. R*", hence (real-valued)
1T = bl = g = £
3. fo"" =1 satisfied by construction. (normalized to 1)
4. 35150 ‘fjm"r’ < 1, by the Cauchy-Schwarz inequality, (positive)
since

3 \fmw-mem\Zsm@m—?w
l7]>0 a; jEN jeN
< Vay Rt < yavaT - 1,

where the second last inequality follows as in (5.)

5. fmT — fee &l e 2 > jen(al’ < R2?, (smoothness)
satisfied since by the monotonlclty of al* we have

23 (a2 o] = 22 A2y $ )

JEN ko jelkm]
< A%(p™)agm < nR*(p")ajm < R

6. [T — [0 LR i I — [l pe = Ayp™ (separation)
satisfied since

1= ol =2 S Jonff = Al S gz

J€lk™] i jelk™]

We collect one more property of the constructed densities, which shows that they are similar
enough to be statistically indistinguishable.

7. ﬁ > exp(2n? Y
l,me[N] JE[k™AKL]
Let us first investigate the argument inside of the exp-function.

2
9?%'9;'80]“ ) <1—202 (similarity)

A (p™)? AL 4
2n? ‘gm%gg%‘ =n? ay4 A 2 Z |51
je[[k’”/\kl]] km kl jeﬂik"b/\klﬂ
_ 24

= V4
km vkt
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Let [ < m, then by (C1), the definition of A, and the condition (C4) on n we obtain

2 Ag{ m\2( ,\2 2( m\2( 12
22 Z gm%gl ‘ — 25 (PV4) (p") < n?log( a2)77 (PVZ ()
jE[E™ AL km km
2( myA( )2
=n?log(l + 042)777 ((p/in))%(f )
km
12
< 2 2 ()
<n“log(l+« )62n2(pm)2
12
= log(1 + a2)62((’;7)”)2 <log(1 + a?)

The case | = m simply yields

4 A4 m\4 _
ool =202 3 ||l = 2n2 2l 5

Vim .
je[[km/\kl j€lk™] kmo jelkm]
4 4
— Tl2 Aa (pm) Co
I/;lm 82

Finally, combining the two bounds, we have

1 m 2
I,me[N] JE[k™AKL]
1 2
Sqz X e X |oretle))
I=m€[N] JE[R™AKL]

N(N —-1) m 2
+ — N7 Z exp (2n2 Z ‘Oj cpjeé-goj’ )
I<mée[N] JE[E™AKL]

< N exp(cqad 7)) + — exp(log(1l + a%))
N
<Ta+1+a — 1+ 202 (4.6.1)

where the last inequality is due to (C2).

Bound for the y?-divergence. We apply Lemma D.4.1 and obtain

1 2
Xz(PhPO) < N2 Z exp (2n2 Z ‘9;7190]'9;’903" ) -1 (4.6.2)
I,me[N] JEk™AKL]

Hence, property (7.) (similarity) guarantees that the induced distance between the mixing
measure and the null is negligible. Combining (4.6.1) with (4.6.2) and the reduction step proves
the assertion. O

Adaptive lower bounds in specific situations. We apply Proposition 4.6.1 to two specific
classes of alternatives {5& ta, € A}. We consider a set A which is non-trivial with respect
to either a polynomial decay or an exponential decay, that is,

{(j7%)jen s € [sx,8]} C A or {(efjs)jeN 15 € [5*,5*]} cA

for s, < s* and sy, s* > 0.
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Theorem 4.6.3 (Minimal adaptive factor — polynomial decay). Let A be non-trivial
with respect to polynomial decay for some s* > s, > % Let |¢j| ~ j7P for some p > 1/2.
For a € (0,1) there exists an n, € N and A, € (0,00) such that for all n > n, and
Acl0,A,]

inf sup R (A | ECE,Apa.((sn)) >1-a
A a.EA

with § = (1 Vvloglog n)fé, i.e. 67! is a lower bound for the minimal adaptive factor over A.

Proof of Theorem /.6.3. We intend to apply Proposition 4.6.1. To do so, we construct a col-
lection of regularity parameters Ay := {a* € A:m € [N]} C A such that (C1) — (C4) are
satisfied.

Definition of the collection. Recall from Illustration 4.2.5 that the minimax radius in our
setting is of order p2_ (dn) ~ (6n)~¢*) with the exponent e(s) := 43;27“. Since A is non-trivial
with respect to polynomial decay, it contains a subset of the form {(j7%)jen : s € [s4, s*]}. Due
to e(s) = ﬁspﬂ =1- 45?2;11 the exponent is monotonically increasing in s, hence the cor-
responding regularity parameters result in radii with exponents in the interval [e(sy), e(s*)] =:
[ex, €*]. We define a grid of size N on [e,, e*], which then induces a grid on [s,, s*]. For the step

. *7
size d := % let

Ge:={e"—md:me{0,...,N —1}} C [e4, €]
be a grid on [e4, €*]. For m € {0,..., N — 1} let s,, be defined by the equation

4sm
—m e
4s;m +4p+1

e(sm) = * —md,

which results in a grid on [s,, s*],
Gs:={sm:e(sm) =€ —md,me{0,...,N —1}}.
Finally, we define our collection of regularity sequences as

Gao = {(17")jen 1 5 € Gs}.
Verification of the conditions (C1) — (C4)

(C1) Let n be large enough such that the effective sample size dn is larger than 1. The grid is
defined such that

m >l <= e(sy) =€ —md< e —Id=e(s)

& 5, < 8

s 2 2
dp+dsm+1 > 4dp+4s;+1

2 2
— (571) dp+dsm+1 > (5n) 4p+4sl+1’
2
which shows that, since by Illustration 4.2.5, k™ ~ (dn) TFism+1
l
lim — < 1.
m

n—00

In other words, there exists a no ;1 € N such that for all n > no1

k< k™, for I < m,
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(C4)

which verifies the first part of (C1).

To check the second part, we define N := {8*26* ﬁ)oggzin)J where we assume that n is large
enough such that N > 1. Since for [ < m,

% (6n)clm)=e(s) = (5p)E=m)d.
we obtain

6—2% = exp ((I — m)dlog(én) — 2log d)
with

(m —1)dlog(dn) + 2logd > dlog(dn) + 2log(d)

[log(9)] _
2 el log(dn) + 21og(d) = 4 |log(d)| + 21og(d) > 0.
Hence, due to (p!)? ~ (n)¢*)| we obtain
12
lim 5200 1,

n—oo (pm)?
In other words, there exists a no2 € N such that for all n > ng 2

Pl < 6p™ for I < m.

The condition (C2) can be rewritten as
cad 2 —log(N) < 2log().

It is easily seen that 62log(N) — 1 for n — co. Hence, log(N) — %5*2 — oo and, thus,
there exists a no 3 (possibly depending on «) such that

cad 2 —log(N) < 2log(a).
with ¢o := 3 and, therefore, (C2) is satisfied.

We observe that

Sup Z(am 2 S Sup ZJ —2s < Z] —254 </ —2S*dx
mée[N] jen s€[sx,5*] jeN jEN

which shows (C3).

=:aqa,
_23*—1

The existence of a constant 7 satisfying (C4) uniformly over n follows, because for a, ~
2

(77%)jen with s € [s,, s*] the terms a% and —2* are of the same order.

Theorem 4.6.4 (Minimal adaptive factor — exponential decay). Let A be non-trivial
with respect to exponential decay for some s* > s, > 0. Let |p;| ~ j 7P for some p > 1/2.
For a € (0,1) there exists an n, € N and A, € (0,00) such that for all n > n, and
Aecl0,A,]

inf sup R (A | Si,Apa.(énD >1l—«
ae€A
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with § = (1 V logloglogn)~1/2, i.e. 6~! is a lower bound for the minimal adaptive factor
over A.

Proof of Theorem /.0.4. We intend to apply Proposition 4.6.1. To do so, we construct a collec-
tion of regularity parameters Ay := {al* € A:m € [N]} C .A Such that (C1)—(C4) are satisfied.
Definition of the collectlon Recall from Illustration 4.2.5 that the minimax radius in our
setting is of order p2, (dn) ~ (loggin)() with the exponent e(s) := 22 212 Gince A is non-trivial
with respect to exponential decay, it contains a subset of the form {(e —J° ) JEN 18 € [84,8 *]}. The
exponent is monotonically decreasing in s, hence the corresponding regularity parameters result
in radii with exponents in the interval [e(s*), e(sx)] =: [ex,€*]. We define a grid of size N on

[€x, €*], which then induces a grid on [sy, s*]. For d := e*% let
Ge:i={ex+md:me{0,...,N —1}} C [e4, €]
be a grid on [ey, e*]. For m € {0,..., N — 1} let s,, be defined by the equation

2p + 1/2

Sm

e(sm) = * 4+ md,

which results in a grid on [s,, s*]
Gs :={sm:e(sm) =ex+md,me{0,...,N —1}}.
Finally, we define our collection of regularity sequences as
Gou = (e )jerr : 5 € G}
Verification of the conditions (C1)—(C4)

(C1) Let n be large enough such that the effective sample size dn is larger than 1. The grid is
defined such that

m> 1< e(sy) =€ +md>e +1d=e(s)
— L > ;ll
1 1
<= (0n)sm > (0n)s

1
which shows that, since by Illustration 4.2.5, k™ ~ (dn)sm ,

l
hm—<1

n—o0

In other words, there exists a no 1 € N such that for all n > no 1
K< k™ for [ < m,

which verifies the first part of (C1).

To check the second part, we define N := | <% %J where we assume that n is
large enough such that N > 1. Since for [ < m,
1 e(s1)
5 (log(d7)) e(s))—e(5m) (I-m)d
= (log(é ! m) = (log(d
we obtain

2 5n (log(én))e( st)
%(bg((;n))( m)

= exp ((I —m)dloglog(dn) — 21logd)
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with

(m —l)dloglog(dn) 4+ 2logd > dloglog(dn) + 2log(d)

[log(d)]
——————loglog(é 2log(d
og log(on) °® og(dn) + 21og(9)
=4 |log(6)| + 2log(6) > 0.
Hence, due to (p')% ~ %, we obtain
1\2
lim 62 () < 1.

w5’ {2
In other words, there exists a no2 € N such that for all n > ng 2

ol < sp™ for I < m.

(C2) The condition (C2) can be rewritten as
cad % —log(N) < 2log(a).

It is easily seen that 62log(N) — 1 for n — co. Hence, log(N) — %5*2 — oo and, thus,
there exists a no 3 (possibly depending on «) such that

cad % —log(N) < 2log(a).
with cq = 3 and, therefore, (C2) is satisfied.
(C3) We observe that

) Sy ©© Sk
sup Z(agn)2§ sup 26_2] §Z€_2j S/o e 2 du,

me[N] jeN SE[S*,S*}]'GN jeN

where we introduce the change of variables y = 22, da = 1/s,(1/2)"/5+y1/5dy

1
1\ 1 [
= <> */ yse vy
2 Sx JO

1

1
1\s 1 1 1Y s« 1
= — —F —_— = — F —_— 1 =
(2) Sk (s*) <2> <8*+ ) -

(C4) The existence of a constant 7 satisfying (C4) uniformly over n follows, because for a, ~
2

which shows (C3).

-5 . v
(e77")jen with s € [s,, s*] the terms af ~and —** are of the same order.

O]

Comparing Theorem 4.6.3 and Theorem 4.6.4 with Illustration 4.3.6 (for the indirect test)
and Illustration 4.5.4 (for the direct test) shows that the adaptive factors that we obtain are
minimal. Indeed, in the ordinary smooth — mildly ill-posed model both the direct and the
indirect max-test face a deterioration by a +/loglogn-factor, which Theorem 4.6.3 shows to be
unavoidable. In the more restrictive setting of super smoothness and mild ill-posedness both
tests feature a +/log log log n-factor, which is unavoidable due to Theorem 4.6.4. In the ordinary
smooth — severely ill-posed model there is no loss for adaptation visible in the testing radius.
Finally, let us comment on the fact that Theorem 4.6.3 and Theorem 4.6.4 at first glance only
provide asymptotic results since they require n to be sufficiently large. This is quite a natural
assumption since the adaptive factor 6! only has an effect if \/loglogn > 1 (for polynomial
decay) or if \/logloglogn > 1 (for exponential decay), which clearly only occurs for n large
enough.
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Appendix D

Auxiliary results

D.1 Preliminaries

The next two assertions, a concentration inequality for canonical U-statistics and a Bernstein
inequality, provide our key arguments in order to control the deviation of the test statistics. The
first assertion is a reformulation of Theorem 3.4.8 in Gine and Nickl [2015].

Proposition D.1.1 (Concentration inequality for U-statistics). Let n > 2 and let
{Y;};. be independent and identically distributed [0, 1)-valued random variables. Let h :
[0,1)2 — R be a bounded symmetric kernel, i.e. h(y,7) = h(g,y) for all y,4 € [0,1),
fulfilling in addition

E(h(Y1,52)) =0  Vy2 €[0,1). (D.1.1)
Let A, B,C and D be real numbers such that

sup  |h(y1,y2)| < A,
y17y26[071)

sup ]Eh’2(Y17y2)
yQE[Ovl)

IA

BQ
Eh*(Y1,Ys) < C?,
D.

sup {E(h(Y1, V2)¢(V1)€(¥2)), EC? (V1) < 1, E€%(¥z) < 1} < (D.1.2)

Then, the real-valued canonical U-statistic

B 1

Un n(n—1)

> h(Yi,Yn)
l,me[n]
l#m

satisfies for all z > 0

B

D
P(U, > 89351/2 +132 2 + 261
n n n3/2

A
3% 4 3432502) <exp(l —z).
n

The following version of Bernstein’s inequality can directly be deduced from Theorem 3.1.7.
in Gine and Nickl [2015].

Proposition D.1.2 (Bernstein’s inequality).
Let {Z;};_, be independent random variables with |Z;| < b almost surely and E 1Z;> <v
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for all j € [n]. Then for all z > 0 and n > 1, we have

P (1 > (Z;j—EZ;) > e + ];x) < exp(—x).

jell " "

Preliminaries. We assume throughout this section that ¥ and {Y]}?:l are independent and
identically distributed with density g = f@®¢ € £? with respect to the Lebesgue measure.

Rewriting the condition on D. Recall that by #?(g) we denote the set of Borel-
measurable functions £ : [0,1) — R with ||§Hip2(g) = [} €%(x)g(x)dz < oo. The associated

inner product is given by (¢, () ¢2(g) = fol E(x)¢(z)g(x)dz for £,¢ € £*(g). We express the
condition on D as the norm of an operator from .#?(g) into itself. Let h : [0,1)2 — R be a
bounded kernel, i.e. ||kl yoo := SUpy, 40,1y [M(Y1,y2)| < 0o. Consider the integral operator

H:.2%(g) — Z%(9) (D.1.3)
§r— H¢

with HE(s) == fol h(t,s)&(t)g(t)dt = Eh(Y,s)E(Y) for s € [0,1). The operator has the following
properties.

1. H is well-defined, i.e. HE € £?(g), since

el = [ e o= [ ([ 1 osgmar) g
< /0 ( /0 Rttt ) /0 s2<t>g<t>dt) g(z)ds

= (€]l g2y B h(Y1, Y2)|?, (D.1.4)

where we applied the Cauchy-Schwarz inequality in the second line. Hence, |[HE ||3g2 is
finite, since h is bounded and & € .Z2(g).

2. H is linear, i.e. for £, ¢ € £2%(g), A € R, H(Aé +¢) = NHE+ H(, since integrals are linear.

3. The operator norm of H is bounded by ||h|| »o, since due to (D.1.4) we have
IH || 22(g)— 22(g) = SHP{HH§||.$2(g) 1€l g2 < 1} < 1Al gee -
4. The operator norm can be written as

[H || 2 (g)— 22(5) = Sup {E(h(Yl,Y2)C(Y1)§(Y2),EC2(Y1) <1,EE(Y,) < 1}. (D.1.5)

Indeed, note that the operator norm satisfies
1H | 2(5) 25) = 59D { I HCll gy 1<l <1} < [1B]] e
= sup { BUTCR(S) : ole <1}
= sup { BRI ¢l < 1)

The claim then follows by applying the Cauchy-Schwarz inequality to

E(h(Y1. Y2)S(D)E(Y2)) < (ER(V1, Y)?(M) " (Be(v2))
and taking the supremum over E¢?(Y;) < 1 and E¢2(Y3) < 1.
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5. Let the kernel h by symmetric, then H is self-adjoint. Let ¢, ¢ € £2(g), then we have

(¢ HE) 72y / o HO@A = [ [ A neEe) @@
= [ [ ot gwiangzle ) = [ e HO o)z = (HE €) oy,
where we used Fubini’s Theorem and the symmetry of h.

Hence, for h bounded and symmetric, H is a linear, bounded and self-adjoint operator. Thus,
we can write the operator norm of H as (see Theorem V.5.7 of Werner [2006])

1] ()5 220 = 50 { [{HE ) 29| ¢ €]l gy < 1} (D.1.6)

Note that due to (D.1.4), we can always use D := C. Under an additional assumption we
are, however, able to achieve a sharper bound. For this we recall some properties of the discrete
convolution in the next paragraph.

Discrete convolution. Recall that for p > 1 we denote by ¢’ := (P(Z) the Banach
space of complex-valued sequences over Z endowed with its usual ¢P-norm given by ||a.||, =

1
(ZjeZ la; ]p) & for a. := (aj)jez € CZ. In the case p = 2, the space £2 is a Hilbert space and

the ¢2.-norm is induced by its usual inner product (a,,b,)p = Yjez a;b; for all a,,b, € ¢*. For
each sequence a, € ¢!, we define the discrete convolution operator

agx 02 —s 07
b, — (a,. * b,)

with (a. *b,); := >_;c7 aj—1b;. The following propositions collect some properties of the discrete
convolution operator. Similar results hold for the (continuous) convolution operator, for which
the proofs can be found in Werner [2006] (Example on p.348). Our proofs for the discrete case
are similar to those in Werner [2006], but we state them here for completeness.

Proposition D.1.3 (Properties of the discrete convolution operator).
Let a, € 2N /4.
1. The operator a,* is well defined, i.e. a, * b, € ¢? for all b, € (2.
2. The operator a,* is linear and continuous.
3. The operator norm satisfies ||a.x||2_ 2 < ||@||p-
4. If a; = a—j for all j € Z, then a,* is self-adjoint.
5. If a; = a—; for all j € Z, then |(a, * by, b.)g2| < ||au*|lj2_, g ||Da |22 for all b € £2.

6. For b € £% we have |(a, * by, b)g2| < ||aa]lpr [|be]|Z-

Proof of Proposition D.1.5. 1. We first show that each coefficient is finite.

2
< (Z\asz) (Z!bzIQ) = flaul [1ba]lf < 0.
lez €z
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Next, we prove that a, * b, € ¢ for all b, € ¢2. We first observe that for j € Z by
introducing m = j — [ we obtain

2 2 2
[(ae*ba)jl = D ajabi| < | D lam| bj-ml| = (Z \lamly/lam] \bj—m\)
leZ meZ meZ
- <Z|am|> (Z’“m |bjm|2> = lladllp Y- lam| |bj—ml|®
m m MmEZ
and, hence,
Yo l(ae )1 < lladlln D D lam| bj—ml?
JEZ JEZmEL
= flaula Y (Z|bjm|2> |am|
MmEZ \JEZ
= llaallp 1Ba]172 > lam
meZ
= llallZ [Iba]172 < oc.
2. To check linearity let b,,c, € ¢%(Z), A, u € R. Then,
(aq * (Aby + pc,)); = Z a;j—1(Aby + pey)
leZ
= )\Zaj,lbl + uZaj,lcl = Aae *bo)j + p(as *c,);.
leZ l€Z

A linear operator between normed spaces T : X — ) is continuous if and only if there
exists an M > 0 such that || T[]y, < M ||z||y for allz € X (see e.g. Werner [2006], Theorem
I1.1.2). In our case T = a,*, X = Y = (*(Z), we have due to (1.)

llae % bl 2 < llaellpr [10all2
hence a,* is linear and continuous.

3. From (1.) it follows that

laekll e = sup Jlas xba|l,2 = sup 5 < [|ae]|n
Hb'”22:1 bc760o || '||82
4. Let b,,c, € *(Z). We have
(a' * bo7 C.>K2 = Z Z a’j—lblé
JELIEL
= Zzal_jcjbl = Zmbl = (be, @ * Co) g2,
lEZ jEL leZ

which implies the self-adjointness of a,*.

5. A linear, continuous and self-adjoint operator T : H — H between Hilbert spaces satisfies
Ty = SUD) ||, <1 (T, x)3| = sup,o,, |<1i’|‘€{”‘. (cp. Werner [2006], V.5.7). Since a,
is linear, continuous and self-adjoint by (2.) and (4.), we obtain for all b, € £?\ {0} that

(@ * ba, ba) 2]

2
1641172

lae]lpz_yp2 =

Hence,

2
(@0 % b0, b0) 2| < llaat|lpz g2 (10612
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6. If a; = a—; for all j € Z, then the assertion immediately follows from (5.) combined with
(3.).
For arbitrary a, € ¢1(Z) N ¢?(Z), note that using similar calculations as in (1.) we obtain
2
{@u x ba, ba)ge|* =

> D aj-ibib;

JELIET
2

= (ZM) >

JEZ JET

2 2
< [lballez llaaller D2 D laml 1bj—ml

JEZMEL

2 2
<ol laaller D laml Y 1bj—m]

mez JEZ

4 2
= [16a ez llaellr

2

> aj-ib

leZ

which completes the proof.
O

Recall that the real density g € .£2 of the observations satisfies ¢ = f®¢ with both f and
¢ belonging to #2. Consequently, the Fourier coefficients g, = (g;);ez belong to both £2, since
gl 2 = llgu]l;2 by Parseval’s identity, and to ¢! due to the convolution theorem. Indeed, since
g9; = fip; for all j € Z, we obtain [|g.|lx < [[fulle2 [l@allz < oo due to the Cauchy-Schwarz
inequality.

Corollary D.1.4 (Discrete convolution with the coefficients of a density). Let
g € D with Fourier coefficients g, = (g;)jez in ¢! N ¢2. Then, the discrete convolution
operator go* : £2 — ¢? is linear, bounded and self-adjoint.

Proof of Corollary D.1./. The assumption g € .£? implies g, € £? due to Parseval’s identity.
The density g is real-valued, hence, we have g; = g—; for all j € Z (cp. (4.2.3)). The claim then
immediately follows from Proposition D.1.3. O

Under an additional assumption on the space (of real-valued) functions .#2(g), the operator

g.x is a non-negative. Hence, there exists an operator (g,x)'/? such that H(g,*)lﬂg, »

(ge * &ay &) 2. This is used frequently in the proofs below.

Proposition D.1.5 (Non-negative deconvolution operator). Assume {|¢| : £ € £?} C
Z2(g), where g is a density with Fourier coefficients in /! N /2. Then, g, is a non-negative
operator and there exists (g,*)'/? such that

|02, = (0. &0 6) = 1€12agy)

Proof of Proposition D.1.5. Let £ € £?(g) with & = >jez§iej, then

9ok 0&)e =D& g6 =3 &> E(a(Y)e;(=Y) & =E[¢(Y)* = (€52, > 0.

jez ez jez  lez
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Hence, if for all £ € 2 we also have |¢| € £?%(g) (this is a space of real-valued functions!), then
go* is a non-negative operator from £2 to /2. Consequently, there exists a non-negative operator
(go%)'/2 such that

| 2]}, = (g0 % &£ = 022,

for all ¢ € £2. O

Remark D.1.6 (Operator norm of non-negative operators). Let T : H — H be a non-
negative operator on the Hilbert space H. Then there exists TY2 such that

(Th, Byl = (T2, TV by | = HTl/Qth_l Vh € H.

Taking the supremum over all ||h|l,, <1, we obtain

2

|T|lyy—y2e = sup [(Th,h)| = sup HTI/Q}LHi: HTI/QHH—W'

2
IRl <1 a7, <1

D.2 Auxiliary results used in the proof of Proposition 4.2.1

Lemma D.2.1 (Control for the canonical U-statistic — indirect test).
Consider {Y]}?:1 Y g € £?% and for k € N the kernel h : [0,1)2 — R given by

h(y,y2) = Y (o) - gj)(:j(m) _gj), YV y1,y2 € [0,1),
ek |51

which is real-valued, bounded, symmetric and fulfils (D.1.1). Let v, and my as in (4.2.8),
then the quantities

A= 4}
B =/81g.ll2vk < 3|gull 2 v
C =D =2|g.llq (D.21)

satisfy the condition (D.1.2) in Proposition D.1.1. If, in addition, £%(g) = {|¢|: £ € £?}
then also

D = 4||gulp mi, (D.2.2)

satisfies the condition (D.1.2) in Proposition D.1.1.

Proof of Lemma D.2.1. We first check the conditions on the kernel h.

1. h is real-valued. Let y;,y, € [0,1), then

h(y1, y2) = Z (ej(y1) —91)(‘%‘2(—92) - 9j)
ljlelx] @5l
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where we change the summation index from j to —I

_ Z (e—1(y1) *?4)(%1(*1/2) —g-1)
ek =1

and use that ¢;(y) = e_;(—y) for all [ € Z

S (er(=y1) —g ) (ely2) — g-1)
- 2
ek il
since the coefficients of (real-valued) densities satisfy g; = g_; for all [ € Z, we have

-y (ei(=y1) — g0) (e1(y2) — 91)

2
ll|€[k] |901‘

= h(y1,y2).

2. h is symmetric. Let y1,y2 € [0,1), then

(ej(=y1) — 95) (ej(yz) - %‘)
|2

hyy2) = Y

1Tkl [

where we change the summation index form j to —{

_ Z (er(y1) — 9—1) (er(=y2) — 9 1)

o]
lUle[k] vl

and use the coefficients of (real-valued) densities satisfy g =g_; for all l € Z

_ Z (e(y1) — 1) (el(—y2) — a1) = h(y2,y1)-

2
tiek] i
3. h is bounded. Let y;,y2 € [0, 1), then

(e5(=y1) = 95) (&5 (2) — ;) [(es (=) = 95) (e5(2) = 7;)|

|h(y17y2)|: Z 2 < Z 2
HEL k2l 31€lx] |01
Z 4 < 0
— 72 .
etk 1]

4. h satisfies (D.1.1). Let Y] ~ g, y2 € [0,1), then

(Ee;(—Y1) — g5) (ej(yz) - gj)
’2

Eh(YlayQ) = Z = 07
etk @5
since Ee;(—Y1) = g;.

We now first calculate quantities A, B, C' that satisfy (D.1.2). Then by the discussion above,
D = C also satisfies (D.1.2).

1. The quantity A. From
l(ej —gi)le—i — )l yoo <4 and |p;| <1 for all j,l € Z (D.2.3)

we immediately obtain
1
sup [h(y1,y2)| = 1Al oo < 4 — =4y = A
y1,y2€[0,1) lilelk] |90j|
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2. The quantity B. Note that E(e;(—Y1)e;(Y1)) = E(ej—(=Y1)) = gj—; for all j,1 € Z.
Hence, for all y, € [0,1) we obtain

€ -Y1) — ) {€5(y2 7]
E’h(th)‘z_var(z (e5(=11) g)( (y2) — g))

ljl€lk] il
zvar( Z ej(_Yl)M)
€Tkl eil”
2
3(3/2) gj)
. (Y D.2.4
- j%ﬂ:k]] o ol o
(ej(y2) - ﬂj) (er(=12) — 1)
IE eJ Y e (Y
IJIE[[k]]Illg[[:k]] et ol esl”
oy b -m) et ) D.25)

2
T L= 5]

which can be written in terms of a discrete convolution. For that purpose, let us define

ei(— yz)

the ¢! N ¢%-sequences a; := 9i1{jj1ep2r)y and bj := 9i Ly ey for j € Z. Therefore,

. |§0]|
we can write
ej(ye
Z u Z g] M = <0/. * b07 bo>€2
P B Y P

Now, we can make use of the properties of the discrete convolution operator derived in
Proposition D.1.3. By 6. in Proposition D.1.3; we obtain

2
ej(y2) — G;
(@0 # b ba) gz < |laa]|n IIb.\IgF( > \gjl) > ‘]4]’
ljl€l2k] il 1Pl
1/2 ' 2
<(4k)”2< > ygj|2> ) W
lj1€[24] e 2]

where we applied the Cauchy-Schwarz inequality in the last step. Combining the last
bound with (D.2.5), (D.2.3) and (2k)/? < v, it follows

sup E|h(Y1,92)° < 8V |g.lle = B
y2€[071)

3. The quantity C. Note that

E(e;(=Y1) — gj)(ei(Y1) — ;) = E(e;j(=Y1)e(Y1)) — giEei(Y1) — giEe;(—Y1) + 959,
=9j—1 — 991 — 9195 + 9591 = 9j—1 — 99
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for all j,1 € Z. Therefore, we obtain

E|h(Y1,Y2)?
& ( )3 (ej(=Y1) — gj?(Zej(Y2) —9;) 3 (Y1) —gy)(e(—Ya) — gl))
Ijle[[k]} |05 etk el

_ Z Z |ggl 9]91’
2

ljl€ k] |%! 1€ k] o]

1 lgj—i? lg;1° s
I +2 4 = (D.2.6)

<2
= 2 2 2
sietr 193l iegey 12 sietel 1931 et 12l

To the second summand we apply the Cauchy Schwarz inequality

2 2 2 2
gj g gj 1
> > 5 l'|2=z(z |' %’,2) sz( )3 w)(z o AH)
jlelr] 191 jiefr] ¥ lilelk] ¥ NS jlelk] ¥

(D.2.7)

< 20t llgallzz (D.2.8)

where we additionally exploited that |g;| < 1 for all j € Z. The first summand is rewritten

in terms of a discrete convolution. We define the ¢! N ¢%-sequences c¢; := |gj]2 Lyjieesg)
and d; := ﬁﬂﬂﬂe[kﬂ} for j € Z. Then,

Y s o= P pfeurd i)

i€tk "Pﬂ‘ et el
By 6. of Proposition D.1.3 this is bounded by
2
(coxdeda)z < leclpr 1 ||gz = llg.llez vi-
Combining this bound with (D.2.7) and (D.2.6), we obtain
E[h(Y1,Y2)|* < 29172 vii + 2119l it = 4|90 1172 vic = C2,
which proves the first part of the assertion.

4. The quantity D. Let H be the operator defined in (D.1.3) with H¢(y) = Eh(Y1,9)(Y),
D.1.6

y € [0,1). Assume Z%(g) = {|¢| : € € £?}. Hence, we can us the representation (D.1.6).
Let £ € £2(g), which 1mphes §=>;enéjej € £?. Exploiting
E (ej(—Y1) — =Y §Eej(—V1)e(V1) — g;EEYV1) = &g5-1 — g BE(V1)
leZ lez

= (g0 % &)j — 9;EE(11)
and |g;| <1 for all j € Z straightforward calculations show

(HE,€) ) = / (HOWE(y / [ he ey
> w S / 07)(e5() — 3)E(2)E W) (2)g(y)d=dy
= Y (e (Y1) — g)E(1D)) (E(es(¥2) — 7,)(12))
el |9"J|
.S \E(ej(—Yl) gﬂ m2 S g+ 6); — BV
slelkl sl slelk
< 2mf (llge * &ll7e + lgallor 16132 ) - (D.2.9)
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Under the assumption £%(g) = {|¢£| : € € £?}, the operator g, is non-negative due to
Proposition D.1.5. Hence, there exists (g,*)/? such that

(9972 ((9.9)'°€.) = g0 % &o.

Since the operator norm is given by

H(g.*)l/QC. p

|(ge)1/2

= sup
B0 e 40 <1 g2

we can write (with ¢ = (g,%)'/2¢)

2 2

lgo * 112 = |90 2 (@) 2|, < [ (g2072 (g5) /2%,

= (gl EN gy < gl %y -

202 2

where the second last equality is due to Proposition D.1.5 with Remark D.1.6 and the last
inequality due to 6. in Proposition D.1.3. Combining this bound with (D.2.9) and the
representations (D.1.5) and (D.1.6), we obtain

sup {E(h(V1, Y2)((V1)&(Y2), BCA(V1) < 1,E€3(Y3) < 1}

el g2y < 1} < 4md llgalls = D.

= [|H || 2(g).22(g) = sup {‘<H§a§>ff2(g)

O
Lemma D.2.2 (Control for the linear term — indirect test). Consider random vari-
ables {YJ}?:1 s g = f®¢ € £? with joint distribution Py and let g° = f°®¢ € £2. For
k € N consider q3(f — f°) and my, as defined in (4.2.4) and (4.2.8), respectively. Then the
linear centred statistic V,, defined in (4.2.7) satisfies for all z > 1 and n > 1
2 2
1
P <2vn < —a% (1 v m’“) s f°)> < exp(~a),
n n 2
where ¢1 = 81|gu | + [|0s I72-
Proof of Lemma D.2.2. Introduce the .Z?-function 1) := Z\lle[[k]] %ez and independent and
l

identically distributed random variables Z; := 2¢(Yj) for j € [n]. Note that Z;, j € [k] are
real-valued due to the symmetry of the summation and the symmetry of the coeflicients of a
real-valued function, see Remark D.2.3 below. We intend to apply Proposition D.1.2 to

1
Vi =— > (7 —Es(Z))).
J€ln]

For this purpose we compute the required quantities v and b. Consider b. Subsequently using
the identity g; — g7 = (fi — ;)¢ for | € Z, which is due to the convolution theorem, and the
Cauchy-Schwarz inequality, it follows

1Z1] <20 0llge <2mE Y lg—gil=2mi > |(fi— el
|1|€[%] 1|€[¥]

1/2 1/2
< 2mj, ( = fz°\2> ( > \901!2) < 2miar(f = [°) [|@allee =: b, (D.2.10)

llelx] |l x]
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Next, consider v. Since Ef(e;(—Y1)e;(Y1)) = gj—; for all j,1 € Z, we obtain
— g
2
|51

Bz = 4B ()P =4 Y Y U E (o(<vi)ey (1)) ¥

st e ledl”

a—g5 95 — 95
:42 o Zgj—l] ‘23’
siety 12 el 1@l

which we rewrite in terms of a discrete convolution. Let us introduce ¢! N £2-sequences a; =
9ilgyepsy and d; = %ﬂﬂﬂe[kﬂ} for j € Z. Exploiting 6. of Proposition D.1.3 and the
identity (g; — g5) = (fj — f7)wj, j € Z, it follows

Ef|ZiP=4 %) 9= gl Zgjl

s 1ol e | ]|
= da, * du,d)) < 4lad]|p |da]|7

<y ©

k] "Pﬂ"

O

O

lgaller < 4mia(f = f°) I gallpn =2 v (D.2.11)

The claim of Lemma D.2.2 now follows from Proposition D.1.2 with b and v as in (D.2.10) and
(D.2.11), respectively. Indeed, making use of 2ac < %2 + c%¢ for any a, c,e > 0, (D.2.10) implies
for 1,69 >0

2mk

bz
D et 1)+ i Nl

2vx 2:Bm
\ T < edi(f - )+ ==k ||9-Hél :
n £9

yields for all x > 1

9 M
<8Hg.H41+ [l k)

2 2
2 o 2 MM m 4 2
QT )+ a2 (1 y n’f) (8l + 5 leuli)

n2

and

Combining both bounds with 1 = g5 = i
2vez  bx %
T =<

< Sa (- )+

<

S Nl = ww—n

Hence, the assertion follows from Proposition D.1.2 by the usual symmetry argument. O

Remark D.2.3 (Z;, j € [k] real-valued). Z;, j € [k], defined in the proof of Lemma D.2.2
are real-valued, since for all y € [0,1), we have

=Y Ly = A g, e_i(y)
iierey 1l iepa 1o’

where we change the summation from [ to —j

95— 92,
=Y e
e

and exploit that for real-valued densities g_; = g;

_ 95 =9 o\ ’
|j§k]] o ej(y) = ¥(y)
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D.3 Auxiliary results used in the proof of Proposition 4.4.1

Lemma D.3.1 (Control for the canonical U-statistic - direct test).
Consider {Y;}_, % g e £ and for k € N the kernel h : [0,1)2 — R given by

Wy, ye) = D (i) —gj)(ei(y2) —7;),  Vyr,52 €[0,1),
l7|€[k]

which is real-valued, bounded, symmetric and fulfils (D.1.1). The quantities

A =8k

B = \/ 8 HQ-HZZ (2k)3/4 <3 ||9-H22 (2k}3/4

C =D =2|g.]p (2K)"2 (D.3.1)
satisfy the condition (D.1.2) in Proposition D.1.1. If, in addition, £?(g) = {|¢| : € € £?}
then also

D =4|g.llp (D-3.2)

satisfies the condition (D.1.2) in Proposition D.1.1.

Proof of Lemma D.5.1. Setting |p;|> = 1 for all |j| € [k], the assertion immediately follows
from Lemma D.2.1. O

Lemma D.3.2 (Control for the linear term - direct test). Let {Y]};Z Y g=f®yp e

Z? with joint distribution Py and let ¢° = f°®¢ € .Z2. For k € N consider q7(g — ¢°) as
defined in (4.4.1) with f, f° replaced by g,¢°. Then the linear centred statistic V¢ defined
n (4.4.4) satisfies for all z > 1 and n > 1

2k)1/2 2k)1/2 1
Py (2\/2 < —ze; (1 v &) ) L 5 k(9 —g")) < exp(—),

n n

where ¢; = 12 ||g¢||,2 + 1.

Proof of Lemma D.3.2. Introduce the & 2—fumction P = ZIIIE[[k]] (91 — g7) e and independent
and identically distributed random variables Z; := 2i(Y;) for j € [n]. Note that Z;, j € [k] are
real-valued due to the symmetry of the coeﬁ"lcients of a real-valued function and the summation.
We intend to apply Proposition D.1.2 to

Vi= Y (2 - (7).

J€[n]

For this purpose we compute the required quantities v and b. Consider b. By the Cauchy-
Schwarz inequality, it follows

2
1Z1) <2|[¥)lgee <2 ot — gf| < 2(2k) 1/2(2 g — 92’\2>

etk etk
= 2(2k)"*qi(g — g°) =: b (D.3.3)
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Next, consider v. Since Ef(e;(—Y1)e;(Y1)) = gj—; for all j,1 € Z, we obtain

Bl 21 = 4B (V) =4 > > (70— o) By (ar(=Y0)e;(1) (95 - 65)
l7l€lx] 121 [k]

=43 (@-a) > 9-1(9-9).

7€ k] llex]

which we rewrite in terms of a discrete convolution. Let us introduce ¢! N ¢2-sequences aj =
giluepery and d; == (g5 — 95)1qjjiepyy for j € Z. Exploiting 6. of Proposition D.1.3, it follows

Brzi =4 > (a-7) > 9i1(95- )

7€ k] lLl€[k]
- 4<a/o * doa do> S 4 Ha"Hﬁl Hd'HEQ
2
<4 > g —g| loulla <dailg -2 D gl =iv. (D.3.4)
ljl€lk] |71€[2k]

The claim of Lemma D.2.2 now follows from Proposition D.1.2 with b and v as in (D.3.3) and
(D.3.4), respectively. Indeed, making use of 2ac < “8—2 + c?¢ for any a,c,e > 0, (D.2.10) implies
for e1,e90 >0

bﬁ<5 2(g — ¢°) * 2k
3 = LRI I 9¢1 n?
and
2vz o 2z
\/n§52<11%(f—f)+6n( Z ’9j|)
2" \ljlel2k]

1/2
Segqﬁ(f—fO)Jr:;l(‘lk)l/z( > lgj\z)

ljl€[2k]
22z (2k)1/?
€9 n

1gellez -

< eai(f-f2)+

Combining both bounds with 1 = e, = i yields for all x > 1

2ve  ba _ 1 o o (2k)1/2 4 (2k)1/?
i Tt _ Y (19 =
+3- <50l —¢°) + a2t lgallex + 35—
1, (2k:)1/2 (2k)1/2 ( 4)
- 1v——11(12]9. — .
<3 ai(f =)+ - vV— gelln + 9
Hence, the assertion follows from Proposition D.1.2 by the usual symmetry argument. O

D.4 Calculations for the y?-divergence

Lemma D.4.1 (y?-divergence over hypercubes over multiple classes). Let S be
an arbitrary index set of finite cardinality |S| € N. For each s € S assume k° € N and
95 € (2(N) C RYN. For 7 € {£}"" define coefficients 657 € ¢2(Z) and functions ¢>7 € £? by
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setting

305 il € [+°] ks
9;-”7 =<1 j=0 and g = Z Gj’Tej =€+ Z Gj’Tej
0 Ij| > & j=—k? ljlel+*]

Assuming ¢*” € D for each s € S and 7 € {j:}ks, we consider the mixture Py with
probability density

\SIZ ok Z Hg ; for z; € [0,1),i € [n]

SES TE{:l:}kS i€n]

and denote Py = Pyo with probability density
H 10,1y (2i), for z; € [0,1),i € [n].

i€[n]

Then, the y2-divergence satisfies

Y2 (P, Py) < ’ Z exp <2n Z (9;?9;)2) —1.

5,teS JE[kSNKt]

Proof of Lemvma D./.1. We remind the reader of the following representation of the y? diver-
gence for measures Py < Pp and i.i.d. random variables (Z;),c[n]

dPy
dPy

Let z; € [0,1), j € [n], then the likelihood ratio becomes

2(Pr,Py) = By ( (Z,.. .,Zn))2 .

dpP
ﬁ(zla"'azn |8|Z 2 Z Hg )

s€eS E{i}ks i€[n]

since Py is a product over uniform densities. Squaring, taking the expectation under Py and
exploiting the independence yields

dP
Eo <dP1(Zla-~a n) = 2 Z 2k5 th Z Z H E ST (ZJ))

s,tesS TE{:I:}k G{i}k i€n]
=5 S s XY (Bl )"
s,teS TG{:I:} nG{:t}kt

Let us calculate

Jj=—ks 1=

Bola" (20" (20) = [ 47 (2 (:)dz = 3 Z 037607 [ es()en(2)=

k
= 2. Z 0570570

j=—k% l=—Fkt
kS
s, Tnt, T __ s,T nt,m
D, 0Ty =142 > 607Tey
Jj=—k* jEks AkT]
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where we used the orthonormality of (e;) ez and the symmetry of 057 respectively %7. Applying
the inequality 1 + z < exp(x), which holds for all x € R we obtain

Eo(g*"(Z1)g""(Z1)) =1+2 Y 657677

Jje[ksNKt]
s,T nt, _ S,T nt,
< exp (2 > 0; 9]-77) = J] exp (20j Hj").
jE[ksAkt] JE[kSAKt]
Hence,
dPl 2 1 8,7 nt,
]E (dPO(ZhJZ)> Swtz 2ks2kt Z Zt H teXp(ZnHj Hjn),
s,teS re{£}* ne{i}’“ JelksNk]

where we can apply the Interchanging Lemma C.1.1 to the n-summation with J]T-“ = exp(2n0§’79§’")
and obtain

S’T t S’T t

dP, 2 1 1 exp (—2n9j Hj) + exp <2n9j Hj)

E(Z,...,Z) < — .

0 dIP’o( 1 n) 5|2 Stz; ok Z H 2

re £} el Akt

. . - . . - exp( 2n0S T9t)+exp(2m95 Tet)
Again applying Lemma C.1.1 to the 7-summation with J j] = 5

yields

exp (—2n93~9t~> + exp (2n9§9§)

dP; 377
EO(dP (Zla"'a ) ’S‘QZ H 2

S,tES je[kSNK]

= W Z H cosh(2n9js-9§-).

s,teS je[ksAkt]

Since cosh(z) < exp(2?2/2), = € R (look at the series expansions!), we obtain

dP s )2
Eo <dP(1](Z1,..., n > < ]S|2 z H exp (2n2 (93'9;') )

s,tES je[kSNkt]

= s — Z exp (271 Z (050;-)2) ,

s,teS JE[kSNKt]

which completes the proof. O
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Chapter 5

Testing under privacy constraints

In this chapter we investigate the compromise between protecting the privacy of
an individual by transforming the data before it is released and being able to make
accurate inference. We study different methods that can generate privatized versions
of sensitive data that a data holder is reluctant to share. Moreover, we examine how
meaningful the statistical results based on the privatized data can be. Under an
additional local privacy constraints we consider the goodness-of-fit testing problem
for a circular density that has already been considered in Chapter 3 and observe
that standard privatization methods do not yield minimax rate, but cause a twofold

deterioration of the radii.

5.1 Differential local privacy and privatized testing

Differential local privacy. In this section we assume that the raw sample

Ve X g=f®p, keln] (5.1.1)
is not available to the statistician. Instead, we receive a privatized or sanitized sample Zy | Yy, =
yr, that is obtained from (Y% )ic[n) by a stochastic transformation Q, called privacy mechanism,
stochastic channel or data-release mechanism, with regular conditional distribution Q(- | yx)
given Yy = yi. Formally, given two measurable spaces (Y,0())) and (Z,0(Z)), where Y, Z
take values in ) and Z respectively and are defined on a common probability space, a privacy
mechanism (Q can be associated with a Markov kernel kg : (Y, 0(2)) — [0,1] with kg (yx, B) =
P(Z, € B| Yy, = yx) = Q(B | yg) for all y, € Y and B € o(Z). In the computer science
literature, the samples (Y )repn) and (Zx)re[n) are often called databases. We assume that the
stochastic channel satisfies a privacy constraint, which we formalize next. We point out that the
following definition is by convention usually called a-differential local privacy. The parameter
«, however, is in the context of testing also associated with the type I error, which is why we
call it ~-differentially private.

Definition 5.1.1 (y-differential privacy). Let Y be a random variables on (¥, c()))
and let Z be random variables on (Z,0(Z2)), where o()), 0(Z) are o-fields and Y, Z are

defined on a common probability space. The regular conditional distribution of Z given Y
is denoted by @), i.e.

Z|Y =y~Q(ly)

We call Z a ~-differentially private view of Y with privacy parameter v > 0 if the
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conditional distribution satisfies
Q(B | y) <exp(y) - Q(B|v) for all B € o(Z) and y,y’ € V. (5.1.2)

The privacy mechanism is then called y-differentially locally private. We denote the set
of all y-differentially locally private mechanism by Q..

The sample (Zy)pe[n) obtained with Q satisfying (5.1.2) is called a y-differentially locally
private (non-interactive) view of the raw sample (Y )pefn) (5.1.1). The term locally refers
to the fact that to generate the kth sanitized observation Z; we only require the kth raw
observation Y}, thus, the raw data can be stored locally. In contrast to this, there also exists
the concept of global differential privacy, where a data collector is entrusted with the data and
generates a privatized database (Z)ic[n) based on the entire raw data set (Yi)pefn)- It is called
non-interactive since we neither require the knowledge of the (possibly already generated)
sanitized observations (Z;),<y, i.e. the data holders do not need to interact with each other
in order to generate the private views. Naturally, there exist many more concepts of privacy
(smooth privacy, divergence-based privacy, approximate privacy etc.), for a broad overview we
refer the reader to Barber and Duchi [2014].

Related literature. The concept of differential privacy was essentially introduced in the se-
ries of papers Dinur and Nissim [2003], Dwork and Nissim [2004] and Dwork [2006]. Dwork
[2008] gives an overview of the early results in the field. First statistical results are derived in
Wasserman and Zhou [2010] and Hall et al. [2013], where both papers work under global privacy
constraints. Duchi et al. [2018] provide a toolbox of methods for deriving minimax rates of
estimation under a local privacy constraint.

Let us now first heuristically explain the implications of the condition (5.1.2). A small
value of 4 (close to 0) corresponds to a high privacy guarantee. In the extreme case v = 0 the
conditional distributions do not depend on the value of the input data Y. Hence, we achieve total
privacy. Naturally, the privatized sample is then useless for making inference on the distribution
of Y. Large values of v allow for low privacy, since a change in the original observation can
then yield a completely different distribution for the output random variable and it is thus
easier to draw conclusions about the raw data. Let now formalize the effect (5.1.2) has on the
information about concrete input data points. Assume we want to find out whether the original
(raw) data comes from Person 1 (with value y with associated probability Py = Q(- | y)) or
from Person 2 (with value y’ # y with associated probability P; = Q(- | ¢')). This task can be
formulated in terms of a two-point simple testing problem, which can then be solved using the
Neyman-Pearson-Lemma. The privacy constraint gives a bound for the maximal power a test
can achieve. The following proposition is a reformulation of Theorem 2.4. in Wasserman and
Zhou [2010] and we state its proof in our setting for completeness.

Proposition 5.1.2 (Plausible deniability). Let Z be a vy-differentially private view of Y’
obtained through the channel Q. Let y # 3/. Any level-a-test based on the observation Z
and the channel Q) for the task

Hy: {Po=Q( | y)} against H:{P1=Q(|v)}

has power bounded by aexp(7y).

Proof of Proposition 5.1.2. The Neyman-Pearson Lemma states that the highest possible power
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(i.e. minimal type II error probability) is obtained by a test of the form

where P; and Py are the probability distributions associated with the null hypothesis and the
alternative, respectively, and the threshold 7 satisfies

dP,
Py(A=1)=Py | — > < a.
of ) o((ﬂ%_r)_a

Note that the distributions Py = Q(- | y) and P; = Q(- | ¢') satisfy
P1(A) < exp(7)Po(A)

for any measurable set A. Hence, the power of the test is bounded by
1-P1(A=0)=Pi1(A=1) <exp(7)Po(A =1) < exp(7)a,

which proves the result. O

We now give two popular examples of privacy mechanisms that satisfy the privacy constraint
(5.1.2). We start with a reminder of the Laplace distribution.

Reminder 5.1.3 (Laplace distribution). With N ~ Laplace(u,b) we denote the distri-
bution with probability density

1 _
pr(az):?bexp (|x bu|>’ z € R.
For y,z € R we have yN + z ~ Laplace(yu + z,yb). Moreover,

EN = p, var N = 2b°.

Example 5.1.4 (Perturbation approach, ”Adding noise”). The perturbation ap-
proach consists of adding centred noise N with Lebesgue density A to the observations,
i.e.

Z =Y+ N with N ~ h, EN =0.
Then the stochastic channel @@ has the density
a(z |y) = h(z —y).

with respect to the Lebesgue measure. The most popular noise density is the Laplace density
with appropriately chosen variance.

Example 5.1.5 (Exponential mechanism). Let £ : J) x Z — [0,00) be any function
and define the sensitivity of £ by

0= sup sup |£(ZL‘, Z) - g(yv Z)|
z,yeY z€Z
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as the maximal change of £ that can occur due to altering the input data. Define the density

h(z|y) =

and sample Z ~ h(- | y). McSherry and Talwar [2007] show that the exponential mechanism
yields a ~-differentially private channel.

Privatized testing task. We denote by D the probability densities in .#?. For a nonpara-
metric regularity class £ and a separation set XPQ ={{e¥ 22 € 42 > p} we aim to solve the
testing task

Hy: f=[f° against HY:f—f°€ $p2 NnNE feD (5.1.3)

based on privatized views (Z;);c[n of (Yj)je[n], Where the (unobservable) raw data are inde-
pendent and identically distributed copies of a circular convolution model Y ~ g = f®p. The
goal is to find a pair of a privacy mechanism @ and a testing procedure {A, : « € (0,1)} such
that (5.1.3) is solved optimally. Let us introduce a criterion for optimality. Denote by P ¢ the
joint distribution of (Z;) e[y if they are obtained from Y; i g = f®p, j € [n] by applying the
stochastic channel Q. For a stochastic channel @, a test A based on the observations (Z;) c[n]
and p > 0 we define the privatized maximal risk as the sum of type I and maximal type II
error probabilities over the p-separated alternative

R(A,Q ’g,p) = Pfo’Q(A(Zl,...,Zn) :1)—|- sup Pny(A(Zl,...,Zn) :0)
f—reez?ne
fep

The y-private minimax risk of testing is then given by
R(E,p,v) = inf inf R (A, E,p),
(€,p,7) = o ER(AQIE,p)

where the infimum is taken over all possible tests based on privatized observations coming from
a ~y-differentially private stochastic channel 3. As usual, we search for the smallest value of
p such that the null and the p-separated alternative are statistically distinguishable. A value
p? = p*(€,7) is called y-private minimax radius of testing if for all a € (0,1) there exist

constants A, A, > 0 such that
(i) for all A > A, we have R (€,p,7) < a, (upper bound)

(ii) for all A < A, we have R (£,p,7) > 1 —a. (lower bound)

Methodology. In this chapter we fix the testing procedure (inspired by the minimax optimal
procedure derived in Chapter 3) and investigate its performance in combination with different
privatization methods. Throughout this chapter we assume that f and ¢ lie in .Z?. Our
methodology heavily depends on this assumption. Consider the Fourier or exponential basis
{ej} ez of £? with ej(z) := exp(—2mijz) for x € [0,1) and j € Z. Each function ¢ € £2
can be represented as a discrete Fourier series § = }-.c7 §je; where §; 1= (€, e;) o2 for j € Z.
Expanding the function of interest f in the Fourier basis and applying the circular convolution
theorem we obtain the representation

F=> fiei=) 9i ¢i e

= JEZ.
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where (¢;)jez is known and g; = Ere;(=Y), j € Z. Looking at the testing problem (5.1.3) it
seems natural to base a test on an estimation of the quantity

(/-1 K

[0,1)

(f@) = fo@) de = 3 |f5 = 7
JEL

where the last equality is due to Parseval’s theorem. Using a projection approach we, in fact,
estimate the truncated version

d-P=3 -5

l7l€lk]

Note that Ef(e;j(=Y1)) = g; = fj®;, which — in case the sample (Vi) is available — is
usually estimated by %Zme[[n]] ej(—Y.,). This motivates why we consider privacy mechanisms
generating privatized versions of the raw data Y;,,m € [n], which are unbiased estimators of
vectors {e;j(—Y,)} jekp ™ € [n] for an appropriately chosen dimension k.

Related Literature. The first result for a projection approach for estimating a density under
privacy constraints is due to Wasserman and Zhou [2010], Section 6. In a non-local setting they
are able to achieve the minimax rate using an orthogonal series density estimator with Laplace
perturbation of the coefficients. Let us discuss the results in our model with local constraints.
To our knowledge, so far there has only been work on density estimation and testing problems
in direct models: Duchi et al. [2018] consider orthogonal series density estimation based on
privatized views of the direct observations of the density;

X M8 fe 22(0,1), kel[n]

2s
The non-private minimax estimation risk is well-known to be of order n™ 2s+1, where s is the
smoothness parameter of a Sobolev ellipsoid (cp. (3.1.4) and Illustration 3.2.6). They show that

the local ~-private minimax risk is of order (72,@)—%7 providing both a lower and an upper
bound. Butucea et al. [2020] consider Besov ellipsoids with wavelet techniques combined with
a Laplace perturbation approach. Also in this case, the privatization causes a deterioration of
the order of the risk from n” 2 to (n(eY — 1)2)_%%SL2 (s being the smoothness parameter of
the Besov ellipsoid, we only state the dense zone here for illustration purposes). Note that this
is comparable to the results of Duchi et al. [2018] since for small v we have v ~ ¢ — 1. The
results mentioned so far address estimation problems. Concerning testing tasks we mention two
recent papers: Lam-Weil et al. [2020] consider Besov ellipsoids with wavelet techniques combined
with Laplace perturbation and show that the privatized radius of testing is sandwiched between

2s 2s
n~ #+3¢7 (lower bound) and (ny?)” %+ (upper bound) compared to the non-private minimax
2

radius of testing given by n~ 71, Berrett and Butucea [2020] consider minimax testing of
discrete distributions also for interactive mechanism. As a non-interactive mechanism they
again investigate Laplace perturbations.

Naturally, also other statistical methods apart from orthogonal series approaches have been
investigated under privacy constraints. Kernel estimators are, for instance, treated in Hall
et al. [2013] and Kroll [2019b] under local differential approximate (,0) - privacy, which is
a relaxation of the constraint we consider. These papers consider Laplace perturbation and
Gaussian perturbation (which is only useful in the (v,d)-differential privacy context). Kroll
[2019D] also addresses adaptivity issues.
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( Lower bound

5.2 Upper bound for general privatization methods

In this section we derive an upper bound on the ~-private minimax radius of testing under
very general assumptions on the private views. Below we show that these assumptions are
in particular satisfied for the Laplace-perturbation mechanism and the hypercube sampling
scheme. We assume that each data holder m € [n] releases a vector Z,, = (Zm,j)|jje[r] With
Zm,—j = Zm,j for j € [k] containing private views of (e;(Yy))}jieqs) and, thus, of Yy,. Note
that the components Z,, = (Z,j)|j|c[r) mimic the behaviour of e;(-) and e_;(-) and Z,, does
not contain a zero element (since ey(Y,,) = 1 for any value of Y, hence, it does not need to
be privatized). Therefore, data holder m only needs to generate the elements (Zy, ;);cr). We
denote by Pq(- | Yin), Eg(- | Yin) the distribution respectively the expectation of Z,, given Y.
For ease of presentation from here on we only consider the case f° = 1| ;) (which translates to
testing against uniformity), but note that is possible to extend the findings in this section to
arbitrary f° € £2.

Assumption 5.2.1 (Assumptions on the private views).
For m € [n] let (Zm,;j);epy S CF be a y-differentially locally private view of ¥;, via the
channel @ satisfying the following four assumptions.

1. (unbiasedness) For all m € [n] and j € [k] let Eq (Zm ; | Yim) = €j(—Y,), which
implies Ef.q (Zin,j) = By (EQ(Zm,j | Yin)) = Efej(=Yn) = g;-
2. (independence) For all m,l € [n], m # [ the vectors (Zm.j) jeqy and (Zlﬂj)je[[k]] are

independent.

3. (conditionally uncorrelated components) Conditionally on Y, the components
of (Zim,;) jeqr) are uncorrelated, i.e. Eq(Zm,j Zm.i | Yim) = Eq(Zm,; | Yim)EqQ(Zm,i | Ym)
almost surely for all 4, j € [k],i # j and m € [n].
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4. (variance) Conditionally on Y, the variance is bounded by varg(Zn, ; | Ym) < o2
for all m € [n], j € [k].

Construction of the test statistic. For k € N and a privatized sample Z,, = (Zm.;)|jie[4],
m € [n] we consider the quantity

2 ].
e DD
nn=1) i ieln 14
l#m

T iZ1s
#2“ (5.2.1)

o>

which is an unbiased estimator of qf(f — f°) as soon as Assumption 5.2.1 (1.) is satisfied. Note
that we can rewrite f)% = %Un with the U-statistic

-1
n
U, = S 2.
<2> > W Zm, Z) (5.2.2)
m,l€[n]
l#m
with kernel h : C?¢ x C?* — R given by

21,j%2,5
h(zl,zQ) = Z o] 2’],
siete 1%l

where we index the components of a vector z € C? in the following way z = (Zj)|j\e[[k;}] =
(Z—ky-+-y2-1,21,...,2k). Restricted to V := {z € C% . zj = Z} the kernel h is symmetric

and real-valued. Indeed,

1. symmetric

W, z) = Y TR = S AIBd N ELB (s, ),
et 19ilT e 1l etk 13l

2. real-valued

(21, 22) = Z Zl,jz22,j _ Z 21,—j222,—j _ Z Zl,jz22,j = h(21, 22).
e 1937 e 1@l etk 13l

The next proposition provides an upper bound for the variance of the estimator (5.2.1). We
remark that since we assume f,p € £? we have g, = (g;)jez € {*(Z) by the Cauchy-Schwarz
inequality. Let us also recall the notation

1/2
|
2
vV = Z 4) .
<|j|ew] |41

Proposition 5.2.2 (Upper bound for the variance). Assume that the private views
satisfy Assumption 5.2.1 and consider the estimator (5.2.1). For n > 2 and any f € .£? we
have

R . 1/2 V4
w0 < o {afr - P+ o E (4ot
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Proof of Proposition 5.2.2. Define the function h; : C** — C by hy(z) := Efqh(z, Z2). Again,
restricted to V := {z € (C2k 1z = z_j} the function is real-valued. By Lemma A on p. 183 in
Serfling [2009] the variance can be calculated by

n

-1
varf(Un) = (2> 2n-1& + &) < %51 + %52
with

fl = V&I‘f’Q(hl(Zl)) and fg = V&I"ﬁ@(h(zl, ZQ)).

We start with determining an upper bound for the term &;. Note that due to the assumption
(unbiasedness) in Assumption 5.2.1 we have

ziEyg Z g
mz)= 3 TR = ¥ Ao
slet 1ol et 1]
Hence, we obtain the bound
2

= Y I N o (2,70).
FIRUE S ’(PJ‘ "Pl|

2721]

fl = V&I‘ﬁQ(hl(Zl)) < Eﬁ@
etk 193]

Let j ¢ {£l}, then by the conditional uncorrelatedness and the unbiasedness of Assump-
tion 5.2.1 it follows

Efo(Z1,711) = By (Eq(Z1,71 | V1)) = By (Eq(Z1; | Y1)Eq(Z1y | V1))
= Ef(e;(~Y1)a (V1)) = Ef(ej—i(~Y1)) = gj1.
Let j € {£l}, then
B10(21,700)| < BralZil = varsq(Z1;) + [Ero 2l
<% + 1+ [Ef(Eq(Z1; | Y1)
=0 + 1+ [Egej(-Y1)* < 0® +2,
since by Eve’s law we have

vary (Z1,;) = Ep(varq(Z1,; | Y1)) + varp(Eq(Z1,; | Y1))
< o* +varp(e;(—Y1)) <o + 1.

Hence,
— T2 .7
mwm%ﬁ¢ﬂ|¢” mwm%ﬁ¢ﬂ|¢” mum%ﬁ¢ﬂ|¢”
l=j = lg{+}
<20t +2) Py e, (523
um%ﬁwﬂ ieten g 131" led
We define the sequences a, and b, by a; := |g;| 1|j|c[2x] and b; := \‘so ‘\]lly|e[[k]] for j € Z. Then, the

second term can be rewritten as a discrete convolution (we refer to Section D.1, Proposition D.1.3
for the details)

75| a1l
> > il A1 gial] = [{ae  be, b e

FE RS |<PJ’ 21
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where (-,-) denotes the inner product of the Hilbert space ¢?(Z). Since a, € ¢! and b, € ¢?
Proposition D.1.3 (6). implies

‘ 2

2 ’9‘
[(ae % be,bad g2 < llaallp 10allze < llgalln Y ]‘ 1
itk 1941

Inserting this bound into (5.2.3) we obtain

g, 19
& <20%+2) Y ‘ ]A’4+H9-Hel > | ],‘4
NELZ ljl€k] 17

2

.

<41+ oY) gy 3 il
stk 193

| 2

Additionally applying the circular convolution theorem and the Cauchy-Schwarz inequality we
obtain

y ol 5 i ( )y fj‘*)m(z 1)1/2

2 — 4
slete 1931 ety ] IED itk 1951
< 3" UfPvE = ai(f - £,
ieTk]

where we used that \/z +y < v/ + /y for all z,y > 0 in the last line. Finally, we have the
bound

&1 <41+ 07) |lgallpn ar(f = ).
Let us now consider the term &. We have

& =varyq(h(Z1, Z2)) < Epq|h(Z1, Z2) |

l71,11€k] \SOj|2 |<Pl|2 f’Q( 1,j42,j41, 271)
1 7 —
— } : ———Erq (ZLJ’ZLI) Ern (szZQ’l) ’

B 12 2
e el el

where we use the independence from Assumption 5.2.1. In particular for j € {#I}, from the
variance bound in Assumption 5.2.1 it follows

Era (%1571)] < By (Ea (|21570] 1 1))
=By (Eq (12,1° | V1))
=Ef (varg (Z1; | Y1) + Ef [Eq (Z1; | Y1)
<o’ 41

Let j ¢ {£l}, then due to the conditional uncorrelatedness

Erq (21,711) = B (Bg (21,711 | 1)) = By (Bq (Z1; | Y1) Eq (Z1; | V1))
=Eq (¢j(-Y1)ei(V1)) = Eq (ej-1(=Y1)) = gj1-
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Therefore, the following bound holds

© 1] %e:[[k]] m ‘Ef@ (Zmzl l)‘ ‘Ef@ (ZQJZ2 l)’
je{xl}

" 4] l§|£[[k]] m ’Ef@ (Zl’]Zl l)‘ ‘Ef@ (Z2,JZ2 l)’
Jje{xl}

1
= 20" +1)" + —5 3 1951l 911
sligets [l 4l diep leil” Ll
je{xl} je{£l}

|
<2 +1)7 > i+ Y —a—slgal (5.2.4)
siem 19l e el led

1

We define the sequences ¢, and d, by c; := |gj]2 Ljieperg and dj := ——1;cp for j € Z. Then,

1
1
the second term can again be written in terms of a discrete convolution. Precisely,
! ’| = d.,d.) | < d.|?
5 19517 = [(ca x day do) 2] < leallpn (a2

1
4
< > gl X 7 <llgllo v

lelkl 1ilerk 4]

12
lers 1#il” el

where we again applied Proposition D.1.3 (6). Inserting this bound into (5.2.4) we obtain
& < 2\gullp (0® + )%k

Combining the bounds for £; and & we get

/\

R 4 4
dvary,q(p?) = vary,g(Un) < SEt 58
2 4
16(0” + 1) [|gallp @i (f — f° ) +8lgull 1 (0% + 1) nf

IN

o V2 l/
<16 g2l {q,%<f )0+ )% (0 17
which proves the assertion. 0

Construction of the test. For a € (0,1), Cy > 0 (specified below) and k € N let us consider
the test

Vi

n

priv. __
Apo, =1
py>Ca(l+0?)

} (5.2.5)

based on the privatized estimator p7 of the distance ||f — f°||‘2g2 to the null hypothesis. We
consider the testing task (5.1.3) for the regularity class

{ge.z? 2> a2 g SRQ}. (5.2.6)

JEN

for a strictly positive, monotonically non-increasing sequence a, = (a;);en (see Section 3.1.3 and
[lustration 3.2.6 for more details about the cases covered by this general form) Furthermore,
we define a privatized version of the radius of testing given by a classical bias?-variance trade-off

Vk

() = ad v (14 0%)% (5.2.7)

n’
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where o2

is the variance bound from Assumption 5.2.1 (4.). Comparing pgrév with the non-
private radius py defined in (3.1.10), we see that — as expected — the privatizétion only has an
effect on the variance-term and not on the bias’-term. The next proposition provides an upper
bound for the radius of testing of A} ¥V Ttisan analogue result to the (non-private) upper bound
derived in Corollary 3.3.3. The proof follows along similar lines as the proof of Corollary 3.3.3,

using Proposition 5.2.2 1nstead of Corollary 3.2.5 and taking into account the private version of

the threshold (Cy(1 4 o )?’“) and, therefore, appropriately modifying the case distinction. We
state the proof here for completeness.

Proposition 5.2.3 (Upper bound for the radius of testing of Air;V/Q).

Let ¢ := ||p.||x < 00. For a € (0,1) let C’a/Q,Aa be such that

2C 1
S% and c-~a/—2+<

QCQ/Q +1 a
C. —_— J—
(Aa - a/2) 2

(5.2.8)

is satisfied. Set Zi =R%2+4+ ;1?1 Let @ and the corresponding privatized views (Z1,. .., Zy,)
satisfy Assumption 5.2.1. Then, for all A > A, and all £ € N we obtain

prlv prlv
R ( k,a/2? Q | ) < &,
(pgr;V)Q is an upper bound for the privatized radius of testing of {Agr;vﬁ} ay
’ o s

/
/
/
/
/
/
/
/
/
/
Vv
v

2
2
12
V
/

NN NN NN NNNNNNNNNNN

N
N

Figure 5.1: Visualization of the structure of the proof of Proposition 5.2.3. We distin-
guish the two cases: Either f— f° has large energy (in the first & components), hence, it is easy
to test since it is far from the null (green striped area). Or f — f° has small energy (in the first
k components), hence, it is difficult to test since it is close to the null (orange area).

Proof of Proposition 5.2.5. Recall the definition of the risk of testing

R(AF22 Q1 E AR ) = Prra(A]), = D+ s FralA, =0)
°e prlv ae
ka
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We show that both the first and the second summand are bounded by «/2. For the type I
error probability we apply Markov’s inequality and use the bound from Proposition 5.2.2.
Note that in the case f = f° = 1| ;) we have ||g,||, = 1 and az(f — f°) = 0. Hence, we obtain

Tiv l/
Proqy(AFass = 0) = Proq(pf > Caya(l +0?) T'f)
__ Ero®d)’ Varfo,Q(f)i) s < 1 _a (5.2.9)
- Ca/Q( + o2)n—2v 02/2(1 +o2)n~ Cg/z 2’

due to (3.3.1) and Efo (p3) = q]%,(fo — f°) = 0. The type II error probability is evaluated
for all f contained in the Aapzm—separated alternative, i.e. for f satisfying f — f° € £} and
QP(f—f°) = (4a)? (PET;V) . We centre the estimator p7 by its expectation q3(f — f°) and obtain

2
riv o v
Pro(Afan = 0) =Prad; < Cap(l+0%)-F)

=Pr i — G(f — [°) < Capp(l+0*) = at(f = f°))
We make a case distinction on the energy of f — f° in the first k components.

a(f—r) = 20, /5(1 + UQ)% (easy to test)

2. G(f = f°) < 2C05(1 4 0%)% (difficult to test)

Case 1. (easy to test) The densities satisfying (1.) are easy to test, since the energy already
contained in the first k& components is large (i.e. a multiple of the standard deviation). Hence,
they are easy to distinguish from the null by a test focusing on the first & components. Note
that in this case we do not even need to use the regularity assumption f — f° € 5& . Due to

2
the case distinction we have C,/o(1 + 02)% —qi(f— f°) < 3qi(f — f°) and, thus, Markov’s
inequality implies

Pro(A5): =0) < Pro(f — ai(f - f7) < —%q,%(f )
1 2
=Pro(ai(f - f7) = b} > 5ai(f = f7) < 4%_

Inserting the bound for the variance from Proposition 5.2.2 yields

QR(f — f2)(1+ 02 % + (14 02)2%
(a2 (f = f))?

_ (o5 (40?2
= 16 4.1 {q,%( F= ) - )P }

Pra(Ahn, =0) < 16g.]x

Since by the case distinction qi(f — f°) > 2C,2(1 40 ) , we obtain
Pr (AP, =0) < 16 ||g.]| ;—1—;
[R\=E /2 — elll 2Ca/2 403/2

8 4
< Hso.llgl{ V2R }<a/2
C. /2 Coc/?
due to ||ge][2 < [|@e]l and (5.2.8).
Case 2. (difficult to test) The densities satisfying (2.) are difficult to test, since they are

176



close to the detection boundary. In this case we need to exploit the separation condition of
the alternative and the fact that the regularity constraint f — f° € 55: implies that, roughly
speaking, the energy outside of the first k components can be controlled. In fact, for f — f° €
ER N 95,42 Jpriv We have 3755 | f — o< a?R? due to the regularity condition f — f° € EX

k

and q%(f — f°) = >jjlen If = f° 2> A S(p pm) due to the energy condition f— f° € .32 o

a k,o

Therefore,

GfF=f) === =P > Ao(p P2 — afR?
|j|>k
2

N 2
2A3(1+02)%+azR2 a2R*=A2(1+0 )2

We use this bound and Markov’s inequality to obtain
2
riv A [e] 4 [¢]
Pro(A7 =0) =Pra(df — ai(f = f7) < Capa(l+0%)-t —ai(f = f))
2 2 ° 12 2\ Vi
< Prodf — aR(f = f°) < (Capp =A%) (1 +0%)E)

2
= Pro(a(f - ) — b} > (42 - Cupo) (1+a)7,';’)
Varf,Q(f)k)
(32 Cap) (022

Inserting the bound for the variance from Proposition 5.2.2 yields

G(f— A+ 02)%’3 +(1+ 02)27”?%

Pra(A} e, =0) < 4]g.)lp

k,a/2 ~ 2 v
/ (3 - Cups) (14024
2 o
qa.(f—f 1
gl — S 2
(A?X— a/Z) (1+J2)Wk (Agé_ a/Z)
2
2C,/2(1 + 02)2k 1
<Agullp§ ——L — 4+ —— )
(Agzica/Q) (1+02)Fk (Agzi a/2)
2C, /5 + 1
= 4lgullp § —L—
(Aa - Ca/Z)
[0
< —
=2’

where we exploited the case distinction in the third line and ||g.||,; < [|¢.]n and (5.2.8) in the
last line, which completes the proof. O

5.2.1 Upper bound via Laplace perturbation

In this section we show that Assumption 5.2.1 is satisfied for private views generated by an
appropriately applied Laplace perturbation mechanism. Thus, we can apply the general upper
bound Proposition 5.2.3 to obtain an upper bound for the privatized radius of testing. Laplace
perturbation is a very popular privatization mechanism and appears in the statistics literature
e.g. in Wasserman and Zhou [2010], Kroll [2019b], Duchi et al. [2018], Butucea et al. [2020], Lam-
Weil et al. [2020], Berrett and Butucea [2020] to mention but a few. We start with describing
the perturbation method in our setting.
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Description of the Laplace perturbation. Recall that the basis functions ej,j € Z are
complex-valued. We perturb the real and the imaginary part separately. Let the dimension
parameter k € Z be fixed and let the raw data be given by (Y;)me[n)- For j € [£], m € [n] and
a perturbation level b > 0 we define

Z3e = TRe (€j(Ym)) + b&mj
Zy =1m (ej(Ym)) + bl

with &, 5, Gm.j " Laplace(0,1), i.e. due to Euler’s formula (exp(iy) = cos(y) + isin(y))

Zrljfj | Y, = y ~ Laplace(cos(27jy), b),
Zy | Yo = y ~ Laplace(sin(27jy), b). (5.2.10)

Define the vector of tuples Cy, := ((Z2¢ ZIm-))jE[[kﬂ.

m’j ’ mhj

Proposition 5.2.4 (Privacy guarantee). (Cn)pme[y) With b = % are non-interactive
7-differentially locally private views of (Yi,)me[n]-

Proof of Proposition 5.2./. The privacy channel corresponding to the Laplace perturbation de-
scribed above has density

€1 Y = ) = H 1 ‘c?e - cos(27rjym)‘ 1 ‘c?n - sin(ijym)‘
i€ | I'm = Ym) = % exXp b 2% exp b

l7l€lk]

for ¢ := ((cBe, clm

0™ ek € (R x R)*. For ym, v, € [0,1) we consider the quotient

Q(C | Y = ym)
ale | Ym = y,)
1 |c§{e7cos(27rjy4n)‘|c?efcos(27rjym)| 1 |c§mfsin(27'rjy;n)‘7|c§.mfsin(27rjym)
= H 2—()6 b 2*()6 b
l7l€lx]

Applying the reversed triangle inequality (||a| — |b|| < |a £ b]) yields

c Y — ‘Cos(27rjy,¢n)—cos(27rjym)| |sin(27rjy;n)—sin(27rjym)‘
ale | Ym = ym) < H e - -

e

< I eber (5.2.11)
l7l€lk]

8k
=ecb <e¢7.

We have thus checked the analogous condition to (5.1.2) for densities and the proof is complete.
O

Remark 5.2.5 (Order of the perturbation level b). The proposed perturbation level b = 8,7’“
shows the expected behaviour. For a higher level of privacy (v small), we need to add noise
with higher variance. The more evaluations of the raw data point Y,, we release, the higher
the variance of the added noise should be in order to guarantee the required privacy level, i.e.
b grows with k. The linear dependence of b on k is due to the Fourier basis and is specific for
our situation. To be more precise it is due to the fact that all basis functions have the same
support [0,1), which is reflected in the bound (5.2.11). For instance, Butucea et al. [2020] and
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sin(27Y,,) e cos(2rY,,) e
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cos(2mx)

Y(Ym) 1

0.5

—0.5

—1+

Figure 5.2: Visualization: Releasing the value e;(Y,,) respectively the tuple
(sin(27Yyy,), cos(27Y,)) allows to uniquely identify the raw data point Y, (first line),
whereas releasing the value ¥(Y,,) only provides the information Y;, € [0,0.5) (second line).
Therefore the perturbation level of the added noise that is required for y-differentiable privacy
depends on the basis.

Lam-Weil et al. [2020] consider Laplace perturbations of evaluations of wavelet bases, where the
perturbation levels can be chosen of lower order (which in our situations would correspond to
@) instead. In fact, in their situations they are able to obtain a sharper bound in (5.2.11)
due to the special structure of their wavelet bases. We point out that taking the supremum
over all Ym,y,, € [0,1) the bound (5.2.11) is indeed sharp, i.e. we cannot achieve a lower
perturbation level. Let us heuristically explain why this is the case. Releasing the evaluation
e1(Yrm) = cos(2nYy,) +isin(2nY,,) respectively the tuple (cos(2wYy,),sin(2nY5,)) already uniquely
identifies the value Yy, whereas releasing the evaluation ¥(Yy,), where 1 e.g. is the Haar wavelet
V() = Njg,1/2)(x) — L1 /21)(x) contains much less information about Yy,. Figure 5.2 visualizes
this observation. That is to say that evaluating a finite number of Haar wavelet basis functions
at a data point Yy, is already privatizing the data, thus, it is sufficient to add less noise. O

Proposition 5.2.6 (Assumption 5.2.1 for Laplace perturbation). (Z&‘fj—iZg}j)jeﬂkﬂ,
m € [n] defined in (5.2.10) with b = 87—]“ are ~y-differentially locally private views of Y,
m € [n] and satisfy Assumption 5.2.1 with % =: OLp.

Proof of Proposition 5.2.6. (ijfj —iZ}n‘f‘j) je[x]> M € [n] are y-differentially locally private views
due to Proposition 5.2.4. We check the conditions (1.)-(4.)
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1. (unbiasedness)
Eq (25 —iZ% | Yi) = Eq (20 | Yn) — iBa (212 | Yin)
= cos(2mjY,y,) —isin(27m5Yy,) = €;(—Yim)
2. (independence) For m # [ the vectors (Zg‘f iz %) jeqx) and (Zl] iZlIgl)je[[k]] are

independent by construction, since the Laplace perturbatlons conducted by data holder m
and data holder [ are independent.

3. (conditionally uncorrelated components) Conditionally on Y,, the components of
(Zis; Re _jzmm . )je[x] are independent by construction, since the Laplace perturbations occur
in each component independently.

4. (variance) Let j € [k], then due to (5.2.10) and Reminder 5.1.3

16k
V&I‘Q(Z}}fj - iZ}ﬁi‘j) = varQ(Z,Rn?j) + VarQ(Z;,ffj) = 20% 4 2b* = (’y) = oip.

16k

Inserting 0 = orp = into the privatized radius of testing (5.2.7) we observe that

- 16%k%\ v}
priv. \2 . Yk 2 LP
(Phorp)? = ai v (1 i ) <16 (p V(o) )
where p is the non-private radius of testing (defined in (3.1.10)) and

k212

LP\2 2 k
= V

(Pr) ag ~2n

The next corollary is now an immediate consequence of Proposition 5.2.3 combined with the
previous Proposition 5.2.6 and we omit its proof.

Corollary 5.2.7 (Privatized radius of testing with Laplace perturbation).
Let a € (0,1), v € R. Consider the family of tests {Agmﬂ} ,a € (0,1) defined in (5.2.5) and

consider the privacy mechanism @, associated with (5.2.10). Let A, as in Proposition 5.2.3.
Then, for all A > 164, and all k¥ € N we obtain

R( gr;V/Q’QW | & (PkVPk )) < o

The previous corollary shows that compared with the (non-private) radius of testing pi
derived in Section 3.3 the privatized upper bound has the additional term (pIEP)Q, where the
variance term is increased.

INlustration 5.2.8 (Laplace perturbation). The upper bound for the radius of testing of
the tests Aier/Q, a € (0,1) and the Laplace perturbation derived in Corollary 5.2.7 depend
on the dimension parameter k. Defining

2 2

LP ._ kv

K* arg mln CLk T
keN 7n

2
and Kk, = arg min {a% V ’;’j} as in (3.2.5), we can optimize the upper bound with respect to
keN
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k and obtain the upper bound

2 LP)? - LP._ . LP
pxV (p* ) vl k™ o= il g
We illustrate the order of both terms under the typical smoothness and ill-posedness assump-
tions introduced in Illustration 3.2.6. Compared with the (non-private) minimax radius of
testing we notice two effects in the privatized term pI'Y. On the one hand the sample size
appears with an additional factor 72, which results in a smaller effective sample size of or-
der 42n. On the other hand in the mildly ill-posed models the radii are polynomially worse
compared with the minimax radii.

Order of the upper bound for the radius of testing under Laplace perturbation

a; |51 [ (p37)?
(smoothness)  (ill-posedness)
4s 4s
j8 l7]7P n 4s+4p+1 (72,1)_ 4s+4p+5
. _2s _2s

i e 17l (logn)” » (log(v?n))~

s _ 4p+1 4p+5
e’ 417" n~l(logn) 2 | (y’n)"!(log(y’n)) 2

Calculations for the risk bounds in Illustration 5.2.8. The order of p? has already been estab-

lished in Illustration 3.2.6. Consider (pLF)2.

k2p+5/2
vn

and

2,2
1. (ordinary smooth - mildly ill-posed) The variance term k;;;f is of order
2
the bias term aj is of order k~2°. Hence, the optimal kP satisfies kP ~ (y2n) Tt

4s
which yields an upper bound of order (kXF)=2% ~ (y2n)%+4r75

k2 exp(2kP)
¥

2,,2
2. (ordinary smooth - severely ill-posed) The variance term kv;/; is of order

2542
Hence, the optimal xLT satisfies kIP ~ (log(72n/bﬂ/zn))1/p with b, ~ (log 'an)T+, which

; LP)—2s 2.0\ %
yields an upper bound of order (k;")™*% ~ (log(y°n)) ».

k2p+5/2
7*n

and the
bias term a2 is of order exp(—2k*). Hence, the optimal kL't satisfies kIF ~ (log(VQn/szn))l/s

2,2
3. (super smooth - mildly ill-posed) The variance term k;”“ is of order
¥2n

4p+

4p+5
with b, ~ (log 7271)7-5, which yields an upper bound of order (v2n)~!(log(7?n)) 2s .
O

Remark 5.2.9 (Naive privatization methods). The standard technique for privatizing data
is to add Laplace noise directly to the observations. Let us informally explain why this yields
suboptimal results in our model. Inference on the density f of X based on observations of
Y + N with privatization noise N and raw data Y ~ f&p is essentially a double-deconvolution
problem. Consider for instance an ordinary smooth — mildly ill-posed model. We have already

seen in Chapter 5 that a non-private testing radius cannot be of smaller order than niwﬁlﬁ,
where s is the reqularity parameter and p the ill-posedness parameter of the model. Privatiz-
ing through adding (circular) noise to the observations increases the ill-posedness parameter,
specifically in the situation of (wrapped) Laplace noise. Indeed, the wrapped Laplace distribu-
tion WLaplace(0,b) has Fourier coefficients fjWLp ~ (bj)72, hence the ill-posedness parameter
increases by 2 (compare Mardia and Jupp [2009], Section 3.2. for the wrapping of densities
around the circumference of the circle and Comte and Taupin [2003], Section 2.1. for the co-

efficients). Therefore, there is no hope for obtaining a testing radius of smaller order than
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4s
(v2n)” T4 19 by using this naive privatization method, which is considerably worse than what
we obtained in Illustration 5.2.8. Moreover, we point out that this phenomenon is not due to
the choice of the Laplace density. Naturally, there exists no density with fJN ~ L2 (which

would yield the desired order ('an)ﬁsﬁ?’), since densities lie in £*. Similar observations can
be made in a super smooth - mildly ill-posed model. We emphasize that in a ordinary smooth
- severely ill-posed model the order of the radius of testing is already logarithmic in the sample
size due to the ill-posedness of the model. In this case a privatization does not have an effect on
the order (cp. the table in Illustration 5.2.5) only on the effective sample size (v?n). O

5.2.2 Upper bound via hypercube sampling

Comparing our upper bound in Corollary 5.2.7 respectively Illustration 5.2.8 with the usual
upper bounds (for direct models), which are e.g. derived in Duchi et al. [2018] and Butucea
et al. [2020], we see though we are able to reproduce the effect on the effective sample size
(v?n) we have an additional deterioration in the exponent (where a 3 instead of the 5 in both
the (ordinary smooth - mildly ill-posed) and (super smooth - mildly ill-posed) case appears).
This deterioration directly translates to the higher perturbation level that we remarked on in
Remark 5.2.5. Therefore, we consider another privatization mechanism, which is less standard
but better suited for our model. Heuristically, the hypercube sampling mechanism described
below works better for our choice of basis (which is determined by our testing approach) than
the Laplace perturbation, since it samples all components of the privatized views simultaneously
instead of adding noise separately to each component. The hypercube sampling mechanism was
introduced in Duchi et al. [2018], p.17 and we adapt it here to our setting.

Description of the hypercube sampling mechanism. We describe the procedure of data
holder m with given raw data Y,, =Y = y and omit the index m for readability.

1. Step (Evaluation): Create the vectors
v = (vj)jepr) = (cos(2mjy))jer)  w = (w))jepm) = (SIn(27)Y)) jex]
by evaluating the k basis functions e;, j € [k] at Y = y and storing the real part in v and
the imaginary part in w. Denote by V' = (Re ¢;(Y)) ey and W = (Im e;(Y"))jepx) the
corresponding random variables.
2. Step (Cube Sampling): Sample vertices of a k-hypercube yRe — (%Re )jex] and ylm —

(}7].Im )je[k] With independent components according to

>Re 1 v -Re 1w,

Py =1 =v)=—-+ -2 Py =-—1 =v)=-— =2~

(Re =1V =v)=+2, v; V=v)=5-2

clm N clm R
3. Step (Privatization) Sample the Bernoulli random variables TRe , 7lm independently
according to

BrRe —0)=p(r™ =)= 1 prRe —qy—prm —1)= P
er/? 1’ er/2 +1°

4. Step (Cube Sampling): Sample vertices of a k-hypercube 7Im ’ 7Re 4 ccor ding to
ZRe {U(Z e {£BY | (z¥Re) > 0) iR =1,

U(z € {+£B}* | (z,YRe )y <) it TRe =
Sim _ [Uz€ {(£B}* | (2, vImy > 0) ifpIm =,
Uz € {£B}* | (z, YImy <o) if7Im =g

182



1 e’/241

where U denotes the uniform distribution on a discrete set, B := Z-=75— and
1 ( k-1
kT ((k—l)/2) k odd,
Cl = 1 k—1
A0 (k/Q) k even.

Illustration 5.2.10. We illustrate the hypercube sampling scheme for the real part and
k = 2. Assume that Y;, = y,, is the given raw data point. Let v = (cos(27yy,), cos(4mym,)) =
(Re (e1(ym)), Re (e2(ym)), i-e. the real parts of the evaluations of the first two basis func-
tions. We describe the procedure to obtain a privatized view of v via the hypercube sampling
mechanism.

° 1+ )
(3) (1)

| | v = (cos(2mYmm), cos(4mym))
-1 1

° —1 °
(4) (2)

Projection onto cube: We plot the vector v of the real part of the evaluations of the
first two basis functions. The vertices of the hypercube (red points) in which this vector
lies are assigned probabilities. The closer a vertex is to the raw data point v, the higher the
probability. The vertices in the picture are numbered with decreasing probability, i.e. (1) is
the most likely to be sampled in the first step.

b et
(3) ///(JL)
///
| | d ‘v = (cos(27Ymm ), cos(4mym,))
-1 1
° —1+ °
(4) (2)

Privatization and sampling step: Assume that indeed vertex Y;, = (1) was sam-
pled in the first step. This defines a hyperplane, the striped part (green) is given by

{z ER?: (2, Y,) > 0}. Sampling 7' ~ Ber(efll) decides whether we sample uniformly

from the vertices of the hypercube {+B}* in the correct (green) hyperplane (in case of a
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success T = 1) or from the hyperplane that contains vertices further apart from the raw
data point (in case of a failure T = 0).

By Duchi et al. [2018] (p.17) Z™ and ZR€ are y/2-differentially private views of Y. We
want to combine the two into one private view via the following well-known lemma (see e.g.
Kroll [2019b], Lemma 2.16. for a proof)

Lemma 5.2.11 (Composition lemma). Let Z;, Zs be 7; respectively 7s-differentially
locally private views of Y, which are independent conditionally on Y. Then (Z3, Z2) is a
(71 + ~y2)-differentially locally private view of Y.

Hence, Lemma 5.2.11 implies that zRe _izIm g4, ~-differentially private view of Y. Assume
now that each data holder m carries out the mechanism to generate views Z,, = (Z,%‘fj -
iZmy) jethl-

Proposition 5.2.12 (Assumption 5.2.1 for hypercube sampling). (ZTP,{L‘fj—iZ},I;‘j)jeﬂk]],

m € [n] sampled according to the hypercube mechanism are vy-differentially locally private
e’/241
ev/2—1

views of Y;,, m € [n] and satisfy Assumption 5.2.1 with ¢- vk =: opg for a universal

constant ¢ > 0.

Proof of Proposition 5.2.12. 1. (unbiasedness)
Eq (25 =20 | Yim) = Eq (20 | Yn) — iBa (Z02% | Yin)
= cos(2mjY,,) — isin(2mjY,,) = ej(—Ym),
which follows from 1.3 in the appendix of Duchi et al. [2018].

2. (independence) For m # [ the vectors (ZT%?j - iZgéI}j)je[[k]] and (er’fje - iZlIf;l)je[[kH are
independent by construction, since the sampling schemes conducted by data holder m and
data holder [ are independent.

3. (conditionally uncorrelated components) Conditionally on Y, the components of

ZRe. _izIm) . o are independent by construction, since the components of YRe and
m,j m,j/)j€[k]

vIm e sampled independently.

4. (variance) Let j € [k], then due to (5.2.10) and Reminder 5.1.3

varQ(fofj - iZ,I,fj) = varg(Z2°) + VarQ(ZTI,fj) < B*+ B?

m7j
2
€2 41 9
< . _— =:
>~ <C \/E€7/2_1> - 0{gs,

due to the fact that the Z;,,Jm and de lie in a bounded cube and Stirling’s approximation.
Indeed, applying Stirling’s formula to all three factorials shows that for any n,2 < k <n

() = o o () ()

Let us first consider the case when k is odd, then

= 2'37*1 ((kk_ul/z) = (1 +o(1) Qk: \/E?'” = (1+0(1))
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Now let k& be even, then

1 (k——l)
T \ k2
1 k—1 E—1\F2/ _1 \k/2-1
< (1+0(1))2k—1 \/27Tk/2(k/2— 1) ( k/? ) (16/2—1>

(1 of1)) g -2

11

ek

IN

IN

Corollary 5.2.13 (Assumption 5.2.1 for hypercube sampling). Let v € (0, 1).
(Z Re jzlm ) je[k]p ™ € [n] sampled according to the hypercube mechanism are y-differentially

locally prlvate views of Y;,, m € [n] and satisfy Assumption 5.2.1 with ¢ - % = o for a
universal constant ¢ > 0.

Proof. Note that 1 4+ x < e” for all z € R. Thus,

241 21 2 2 _5
= + < - -,
e/ —1 ev/2—-1 eV/2-1" v/2 7
then the assertion follows from Proposition 5.2.12. O

Comparing the variance c - % = o of the private views obtained via hypercube sampling
with the private views from the Laplace perturbation (cp. Proposition 5.2.6), we see that we
have improved by a factor of vk. Inserting o = f into the privatized radius of testing (5.2.7)
we observe that

2 2
iv ck\ v
(ng;HS)Q = aj v (1 + ’y2> ;k < ppV (Ph)%

where p? is the non-private radius of testing (defined in (3.1.10)) and

2
kvi

HS\2 2.\, .2
= V .
(Pr>) ag vV ¢ ~2n

The next corollary is now an immediate consequence of Proposition 5.2.3 combined with the
previous Proposition 5.2.12 and we omit its proof.

Corollary 5.2.14 (Privatized radius of testing with hypercube sampling).

Let a € (0,1), v € (0,1). Consider the family of tests {AE”V/Q} ,a € (0,1) defined in (5.2.5)

and consider the hypercube mechanism @,. Let A, as in Proposition 5.2.3. Then, for all
A> A, and all k£ € N we obtain

R (A0 @y | €854 (v 419)) < @

The previous corollary shows that compared with the (non-private) radius of testing p?
derived in Section 3.3 the privatized upper bound has the additional term (p®)2, where the
variance term is increased.
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Illustration 5.2.15 (Hypercube sampling). The upper bound for the radius of testing
of the tests AZ“V/Q, € (0,1) and the hypercube sampling mechanism derived in Corol-
lary 5.2.14 depend on the dimension parameter k. Analogously to Illustration 5.2.8 we

define

kIS k’”}%
= arg min{ ai V 2 =E (5.2.12)
keN ’n

2

and Kk, = arg min {a% Vv ':fj} as in (3.2.5), we can optimize the upper bound with respect to
keN

k and obtain the upper bound

2
2 HS : HS _ HS
p*\/<p* ) with Py rl?erlrllpk . (5.2.13)

We illustrate the order of both terms under the typical smoothness and ill-posedness as-
sumptions introduced in Illustration 3.2.6.

Order of the upper bound for the radius of testing under hypercube sampling

a; |51 P (p)?
(smoothness) (ill-posedness)
4s 4s
j=s 5|77 n_ 4s+4pt1 (y2n)~ Istip+3
. 2 2

i i (logn) P (log(%n))~ »

" _ 4p+1 4p+3
e’ 17" n~'(logn)" 2% | (y°n)~!(log(y?n)) 2

Calculations for the risk bounds in Illustration 5.2.15. The order of p? has already been estab-
lished in Tllustration 3.2.6. Consider (pf5)2.

2 .
1. (ordinary smooth - mildly ill-posed) The variance term kgﬁ is of order ka;d/Z and
¥4n ¥4n

2
the bias term a% is of order k~2%. Hence, the optimal x! S satisfies HHS (y2n)3sTap¥s |
which yields an upper bound of order (k15)725 ~ (72n) T

k exp(2kP)
R

2
2. (ordinary smooth - severely ill-posed) The variance term % is of order

Hence, the optimal !5 satisfies x5 ~ (log(v2n/b.2 NP with by, ~ (log(v? n)) - , which

yields an upper bound of order (x HS) ~ (log(y?n))~ %
3. (super smooth - mildly ill-posed) The variance term ]; is of order and the bias
term alC is of order exp(—2ks) Hence, the optimal xH5 satisfies il (log('y n/b.z n))l/s

4p+3
with b, ~ (log(~? n)) 5 , which yields an upper bound of order (v?n)~!(log(7?n)) 2s .
O

Comparing our upper bounds in Illustration 5.2.15 with the known results in direct mod-
els (e.g. Lam-Weil et al. [2020]), we conjecture our radii to be optimal. In the next section
(Perspectives) we take a first step to answer the important question: Is the deterioration of
the radii of testing caused only by a poor choice of the privacy mechanism? Or is the attained
deterioration unavoidable if we want to protect privacy? We provide an approach in form of a
classical reduction scheme that might lead to a lower bound.
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Perspectives

Lower bounds for testing under privacy constraints

A main difficulty when trying to prove lower bounds under privacy constraints is to characterize
the required a-differential privacy property of the privacy mechanism in a way such that it can
be exploited in the lower bound. A way to make the privacy constraint tangible is to write
the privacy channels as operators, for which we can apply a singular value decomposition. The
privacy constraint can be translated into a constraint on the singular values of this (appropriately
defined) operator. Similar approaches in direct models have been considered in Lam-Weil et al.
[2020] (for a direct density model) and Berrett and Butucea [2020] (for a direct model with
discrete distributions). Let us give a preliminary framework for deriving a matching lower
bound to the upper bound (5.2.13). Recall that the upper bound consists of the maximum of

2
two terms p? V (pfp) and we aim to prove separate lower bounds for these two situations. A
matching lower bound for the first term has already been derived in Section 3.4. For the second
term, we briefly outline the steps of our suggested lower bound framework.

1. Reduction step. For a fixed privacy channel @ standard reduction arguments (compare
e.g. the proof of Proposition 3.4.1) show that

(P, Proq)
9

where p is a probability measure on the p-separated alternative and P, q = [ Prqdu(f).
2. x?-divergence between privatized measures. Straightforward calculations show that
X’ (Pug, Proq) < Eee exp (n{Qaqge. g) 22) — 1.

where &,¢ id p and we denote g¢ = {®y, i.e. the density of ¥ in the case X ~ &.
Moreover, we define the operator

QQ:$2—>Z2

g D). where ()@ = [l D)y
with kernel Qg = Ey ((q(Zj\y)—po(Z;Z)z(Zgng|g)—po(Zj))), where q is the density of @ w.r.t.
o4y
some reference measure and p, = [ q(- | y)g°(y)dy.

3. Construction of the mixture measure p. Denote by (););jen and (v;);en the singular
values and singular vectors of the operator {2q. Let n € {£}* and 6 € R*. Define

k
op(x) := Zm@lvl(x) and Cp = /5n(x)da:
=1
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and the candidate functions

En(x) == g°(x)(1 — ¢y) + 9y(x).

The candidate functions §,, integrate to 1 by construction. It remains to verify that &, > 0
(at least with high probability if 7 is sampled uniformly from {i}k ). Let u be the uniform
mixture on {577 in € {:l:}k} If &,,m € {£}" are densities, then,

2 k

n

X (Puq Prq) < exp (2 > an)\gn> - L (5.2.14)
m=1

4. Control of the eigenvalues of 2¢. The v-differentiable privacy constraint implies that
any singular value \; of 2q satisfies

)\j < (e'y — 1)2.

The suggested steps are simply a rough outline, with several gaps still to be filled in. Arriving
at (5.2.14) , the remaining demanding challenge is to construct § € R such that y is supported
on the alternative and the y2-divergence in (5.2.14) is smaller than 4a?.
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Adaptive testing under local privacy constraints

Adaptivity in a local privacy setting seems to be a particularly interesting problem. As usual in
nonparametric statistics the optimal dimension (in (5.2.12)) of our projection-type tests (con-
sidered in Chapter 5) relies on knowledge of smoothness properties of the unknown underlying
density. Thus, there is a necessity to come up with adaptation procedures that do not rely on
this knowledge, since it is generally not available in practise. Developing adaptive procedures in
a local privacy setting is especially challenging, since the required steps need to be carried out by
each data holder separately. Since statistical inference under privacy constraints is a relatively
new field, there are so far only few results on adaptive strategies in general. For non-parametric
estimation in a direct density model, Kroll [2019b] for instance investigates a privatized version
of Lepski’s method for kernel density bandwidth selection, where each data holder is asked to
release evaluations of the kernel (scaled with a bandwidth) for the collection of bandwidths that
appears in Lepski’s method. The privatization mechanisms have to be scaled appropriately such
that privacy protection is still guaranteed although more data (i.e. evaluations of a kernel for
several bandwidths) is released. Let us briefly explain what makes adaptivity challenging in the
context of nonparametric testing. In order to apply the classical Bonferroni aggregation method
to the privatized tests, the statistician needs access to the entire collection of tests Ay, k € IC,
where k is the tuning parameter and IC a collection of such parameters, over which one wishes
to aggregate. We have seen, however, that our proposed privatization strategies highly depend
on the dimension parameter k. To be able to describe the problem at hand more accurately, let
us briefly recall the main idea. In both hypercube sampling and Laplace perturbation, the j-th
data holder privatizes the observation Y} by evaluating the first k£ basis functions {em(}/})}meﬂkﬂ
and transforming these k-dimensional vectors by the chosen privatization mechanism. Since the
same observation Y; is used in the evaluation of each basis function, the privatization mechanism
naturally depends on the number of evaluated basis functions, which we want to release. This is
a common phenomenon, e.g. also noted in Lam-Weil et al. [2020]. The influence of the dimen-
sion k on the privatized samples is reflected in their variance after privatization. For Laplace
perturbation the variance of the (v-)privatized observations is of order opp ~ %, whereas the

dependence on k is reduced to opg ~ g for hypercube sampling. Our general upper bounds
for the radius of testing demonstrate the effect that the dependence of the variance on k has
on the radii. In fact, the upper bounds (with the notation of Chapter 5) for a projection-based
test with dimension k£ and a privatization mechanism yielding private views with variance o
(typically depending on k) are given by
. 2
(PP = ai v (1+0%)E,

which have to be minimised with respect to k£ in order to be optimal. Without knowledge on
the true underlying smoothness structure, i.e. on a,, we can a priori only derive rough upper
bounds for the optimal dimension. These upper bounds are — in terms of the sample size n —
typically of order n® for some ¢ > 0 (in mildly ill-posed models) or of order logn (in severely ill-
posed models). Hence, the naive approach is to aggregate over an (appropriate) class containing
all possibly optimal dimension parameters (i.e. up to the upper bound). To do so, the data
holder would have to release privatized version of the evaluated basis functions up to the upper
bound for the optimal dimension. Therefore, additionally to the usual cost to pay for the
protection of privacy and the deterioration due to the aggregation, there is a factor caused by
the necessary privatisation for all dimensions in the collection K. It is an open question whether
this strategy then still exhibits optimal adaptive behaviour or whether completely different
adaptation strategies and privatization mechanisms need to be developed.
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