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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem statistischen Testen für schlecht-gestellte
inverse Probleme. Als Beobachtungen liegen lediglich verrauschte Versionen einer unbekannten
Transformation der uns interessierenden Größe vor. Statistische Inferenz, bei der typischerweise
eine Inversion der Transformation nötig ist, wird deshalb als inverses Problem bezeichnet. Beson-
ders herausfordernd sind hierbei schlecht-gestellte inverse Probleme, bei denen die Inversion der
Transformation instabil ist. Unsere vorgeschlagenen nicht-parametrischen Tests bewerten wir
mittels eines nicht-asymptotischen Minimax-Kriteriums.

Die Arbeit besteht aus zwei Teilen, die sich mit unterschiedlichen schlecht-gestellten inversen
Modellen beschäftigen. Im ersten Teil betrachten wir ein inverses Gaußsches Folgenmodell mit
nur teilweise bekanntem Operator und im zweiten Teil die zirkuläre Faltung. In beiden Modellen
leiten wir Minimax-Separationsradien her. Diese charakterisieren, wie weit ein Objekt von der
Nullhypothese entfernt sein muss, damit der Unterschied von einem statistischen Test erkannt
werden kann. Wir stellen zwei Testprozeduren vor. Zum einen betrachten wir einen (indi-
rekten) Test, bei dem wir mit Hilfe eines Projektionsansatzes den Abstand zur Nullhypothese
schätzen. Wir zeigen seine Minimax-Optimalität unter schwachen Annahmen. Der zweite (di-
rekte) Test basiert stattdessen auf einer Schätzung des Abstandes im Bildraum des Operators
und umgeht dadurch die Inversion des Operators. Auch hier charakterisieren wir die Situa-
tionen, in denen der Test minimax-optimal ist. Die Güte unserer Tests hängt – wie es in der
nicht-parametrischen Statistik üblich ist – von der geeigneten Wahl eines Dimensionsparameters
ab. Für die Optimalität des Tests wird Vorwissen über die zugrundeliegende Struktur benötigt.
Deshalb beschäftigen wir uns außerdem mit adaptiven Teststrategien, die ohne solch ein Vor-
wissen auskommen. Wir wenden eine klassische Bonferroni-Aggregationsmethode auf unsere
beiden Testprozeduren (direkt und indirekt) an und untersuchen die resultierenden Methoden
auf ihre Optimalität. Verglichen mit den nicht-adaptiven Separationsradien stellen wir eine Ver-
schlechterung um einen logarithmischen Faktor fest. Wir beweisen, dass dieser logarithmische
Faktor ein unvermeidbarer Preis ist, der für Adaptivität bezahlt werden muss.

Unsere Testmethoden basieren auf der Schätzung eines quadratischen Funktionals, nämlich
der Distanz zur Nullhypothese. Wir untersuchen den Zusammenhang zwischen den beiden
statistischen Fragestellungen — dem Schätzen des quadratischen Funktionals und dem Testen
– im zirkulären Faltungsmodell. Wir erläutern, wie sich Resultate für eines der beiden Prob-
leme in den Kontext des anderen übertragen lassen. Abschließend betrachten wir Testprobleme
im Zusammenhang mit Datenschutzbeschränkungen. Dabei werden die Daten, bevor sie zur
statistischen Analyse zur Verfügung stehen, anonymisiert. Das heißt, die Daten werden vor
der Weitergabe an die Statistikerin in einer bestimmten Art abgewandelt, um die Privatsphäre
von Individuen zu schützen. Wir untersuchen, wie eine solche Privatisierung der Daten die
Aussagekraft der statistischen Tests beeinflusst.
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Abstract

This thesis deals with non-parametric hypothesis testing for ill-posed inverse problems, where
optimality is measured in a non-asymptotic minimax sense. Loosely speaking, we observe only
an approximation of a transformed version of the quantity of interest. Statistical inference,
which usually requires an inversion of the transformation, is thus an inverse problem. Particu-
larly challenging are ill-posed inverse problems, where the inverse transformation is not stable.

The thesis is divided into two parts, which investigate different ill-posed inverse models: the
inverse Gaussian sequence space model with partially unknown operator and a circular convo-
lution model. In both models we derive minimax separation radii of testing, which characterise
how much an object has to differ from the null hypothesis to be detectable by a statistical test.
We propose two types of testing procedures, an indirect and a direct one. The indirect test
is based on a projection-type estimation of the distance to the null and we prove its minimax
optimality under mild assumptions. The direct test is instead based on estimating the energy
in the image space and thus avoids an inversion of the operator. We highlight the situations in
which also the direct test performs optimally. As usual in non-parametric statistics, the per-
formance of our tests depends on the optimal choice of a dimension parameter, which relies on
prior knowledge of the underlying structure of the model. We derive adaptive testing strategies
by applying a classical Bonferroni aggregation to both the direct and the indirect testing pro-
cedures and analyse their performance. Compared with the non-adaptive tests their radii face
a deterioration by a log-factor, which we show to be an unavoidable cost to pay for adaptation.

Since our minimax optimal testing procedures are based on estimators of a quadratic func-
tional, we further explore the connection between the two problems – quadratic functional
estimation and minimax testing – in the circular convolution model. We show how results from
one framework can be exploited in the other. Lastly, we consider minimax testing under privacy
constraints, where the observations are deliberately transformed before being released to the
statistician in order to protect the privacy of an individual.
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Introduction

Inverse problems appear in many fields of science, for instance in climatology, economics and
medicine. We consider non-asymptotic adaptive minimax testing for inverse problems. In this
introduction we explain the main ideas for a general inverse model. The thesis then deals with
the statistical investigations for two specific models; the inverse Gaussian sequence space model
and the circular convolution model.

The testing task. Let (H, 〈·, ·〉H) and (G, 〈·, ·, 〉G) be two separable Hilbert spaces and let

T : H −→ G, h 7−→ Th

be a linear operator. Based on a noisy observation of Th we aim to make inference on the
element h. Specifically, for a given benchmark h◦ we consider the testing problem

H0 : h = h◦ against H1 : h 6= h◦,

where optimality is measured in a minimax sense.

Inverse problems

Recovering the original element h ∈ H based on noisy versions of the image g = Th ∈ G is
called statistical inverse problem since it typically requires an inversion of the operator T .
Hadamard [1902] characterises a well-posed inverse problem, given by the equation g = Th,
through three conditions.

I Existence. A solution exists, i.e. there exists an element h ∈ H such that Th = g.

I Uniqueness. The solution is unique, i.e. the operator T is injective.

I Stability. The inverse operator T−1 is continuous, i.e. for all ε > 0 there exists a δ > 0
such that ‖g̃ − g‖G ≤ δ implies

∥∥T−1g̃ − T−1g
∥∥
H ≤ ε.

The first two conditions are minimal conditions for the meaningful recovery of the element of
interest h ∈ H. The third guarantees that a good approximation of g automatically yields a
good approximation of T−1g = h. In this thesis we consider ill-posed inverse problems, where
the first two conditions are satisfied but the third condition is violated. If we, however, no
longer require T−1 to be continuous, we cannot ensure a good approximation of h even if we can
approximate g well. Regularization methods help to overcome this issue by replacing T−1

with a suitable continuous operator. We briefly mention two common strategies.

I Tikhonov regularization. Given an approximation g̃ of g = Th, instead of considering
T−1g̃, we take the minimiser of the Tikhonov functional

F : H −→ R, f 7−→ F(f) := ‖Tf − g̃‖2G + λ ‖f‖2H

1



for a regularization parameter λ > 0. That is, as an approximation of the solution h we
consider

h̃ ∈ arg min
f∈H

F(f).

The term λ ‖f‖2H in the Tikhonov functional F(f) is a regularization term, which enforces
solutions of smaller norm. If ‖g̃ − g‖G −→ 0 and the regularization parameter is appro-
priately chosen, the approximation h̃ converges to the solution h. We refer to Chapter 5
in Engl et al. [1996] (e.g. Theorem 5.2) for more details.

I Projection regularization. Let (bj)j be a basis of the Hilbert space H and denote
by Hk := Lin(bj , j ≤ k) the space spanned by the first k basis elements. Projection
regularization searches for the best approximation contained in the finite dimensional
subspace, i.e. given an approximation g̃ of g = Th we consider a minimiser in Hk of the
functional

F : H −→ R, f 7−→ F(f) := ‖Tf − g̃‖2G
i.e. an element

h̃ ∈ arg min
f∈Hk

F(f).

as an approximation of the solution h. In this case the dimension k is the regularization
parameter. We refer to Chapter 3.3 in Engl et al. [1996] for more details and conditions un-
der which the approximation h̃ converges to the true solution h provided that g̃ approaches
g.

Example (Deconvolution). Let us illustrate the concepts with a deconvolution model.
We consider the Hilbert space H = G = L 2

per of 1-periodic complex-valued functions defined
on R, which are square integrable on [0, 1). The space L 2

per is equipped with its usual inner
product 〈f, g〉L 2

per
=
∫ 1

0 f(x)g(x)dx. For ξ ∈ L 2
per we define the convolution operator

Tξ : L 2
per[0, 1) −→ L 2

per[0, 1),
h 7−→ Tξh

given by

Tξh(y) :=
∫ 1

0
ξ(y − x)h(x)dx, for y ∈ [0, 1).

Denote by (ej)j∈Z with ej(x) = exp(2πijx), x ∈ [0, 1) the Fourier basis of L 2
per and by

hj := 〈h, ej〉L 2
per
∈ C the j-th Fourier coefficient of an element h ∈ L 2

per. By Parseval’s
theorem an element h belongs to L 2

per if and only if its Fourier coefficients are square
summable. The convolution operator has a representation in terms of Fourier coefficients
given by

Tξh =
∑
j∈Z

ξjhjej . (∗)

Let us investigate Hadamard’s conditions for well-posedness.

I Existence. The representation (∗) implies that any combination of g, h and ξ ∈ L 2
per

with g = Tξh satisfies gj = ξjhj for all j ∈ Z. Hence, for a given pair g and ξ there

2



exists a solution if and only if the sequence (gjξj 1{ξj 6=0})j∈Z is square summable. In
this case a solution h of Tξh = g is given through its Fourier coefficients (hj)j∈Z =
(gjξj 1{ξj 6=0})j∈Z.

I Uniqueness. Injectivity of the operator Tξ can be expressed in terms of the Fourier
coefficients of the convolution function ξ, it requires ξj 6= 0 for all j ∈ Z.

I Stability. Naturally, if ξj 6= 0 for all j ∈ Z, we can represent the inverse of Tξ on its
natural domain as

T−1
ξ g =

∑
j∈Z

1
ξj
gjej .

The inverse operator T−1
ξ cannot be continuous, since ξ ∈ L 2

per implies that its Fourier
coefficients tend to zero |ξj | −→ 0 for |j| −→ ∞. Indeed, the Fourier basis (en)n∈Z
satisfies ‖en‖2L 2

per
= 1 for all n ∈ Z due to the orthonormality, but also

∥∥∥T−1
ξ en

∥∥∥2

L 2
per

= 1
|ξn|2

−→∞ for n→∞.

Thus, the operator is unbounded and, hence, not continuous.

Summarizing, deconvolution is an ill-posed inverse problem. The main issue is the dis-
continuity of the deconvolution operation. Let us examine the two regularization methods
in this specific situation.

I Tikhonov regularization. For the deconvolution model the Tikhonov regulariza-
tion, which is generally given implicitly as a minimization task, has an explicit repre-
sentation (see Engl et al. [1996], Chapter 5.1.) given by

h̃ =
∑
j∈Z

ξj

|ξj |2 + λ
g̃jej

for an approximation g̃ of g = Th. The approximation error is now no longer amplified
through the multiplication with the unbounded coefficients 1

ξj
, j ∈ Z, which have

instead been replaced by bounded counterparts ξj
|ξj |2+λ , j ∈ Z.

I Projection regularization. Also the projection regularization takes a simpler form
in the deconvolution model, it is given by

h̃ =
k∑

j=−k

g̃j
ξj
ej ,

where the truncation to only a finite number of dimensions stabilizes the regularized
solution.

Non-asymptotic minimax testing theory.

Basic notions from statistical testing. Denote by Y the space of observations and by Ph
the probability distribution associated with noisy observations of Th. A statistical test is a
measurable function ∆ : Y −→ {0, 1}. By convention, for a observation y ∈ Y we understand
∆(y) = 1 as the decision to reject the null hypothesis and ∆(y) = 0 as accepting the null. There
are two kinds of errors that can occur. The type I error is to reject the null although it is

3



true, this occurs with probability Ph◦(∆ = 1). The type II error arises when accepting the
null although it is not true, i.e. for some h contained in the alternative H1 it happens with
probability Ph(∆ = 1). For α ∈ (0, 1) a test ∆ is said to have level α, if the type I error
probability is bounded by α, i.e. Ph◦(∆ = 1) ≤ α. It is said to be (1-β)-powerful, β ∈ (0, 1),
for the element h ∈ H if the type II error probability is bounded by β, i.e. Ph(∆ = 0) ≤ β.

Minimax theory. Given a test ∆ : Y −→ {0, 1} we measure its performance by how well it is
able to distinguish between the null hypothesis and elements that are in some sense separated
from the null. Formally, for a separation radius ρ > 0 and a non-parametric regularity class E
we consider the testing task

H0 : h = h◦ against Hρ
1 : ‖h− h◦‖H ≥ ρ, h− h

◦ ∈ E , (ITT)

where the null hypothesis H0 and the alternative Hρ
1 are separated to make them statistically dis-

tinguishable. If h◦ is the null element in the Hilbert space, the testing task (ITT) is called signal
detection, since the aim is to detect a non-zero signal h. Otherwise we call it a goodness-of-fit
testing task. We define the maximal risk of a test

R (∆ | E , ρ) := Ph◦ (∆ = 1) + sup
‖h−h◦‖H≥ρ
h−h◦∈E

Ph (∆ = 0) ,

as the sum of the type I error probability and the maximal type II error probability over the
ρ-separated alternative. The difficulty of the testing task is then characterised by the minimax
risk

R (E , ρ) := inf
∆
R (∆ | E , ρ) ,

where the infimum is taken over all possible tests. Generally three factors influence the difficulty
of the testing task: the ill-posedness of the operator T , the regularity class E , and the noise level
or the number of observations with which we observe Th = g. In particular, we are interested
in the minimal distance by which we need to separate the null hypothesis and the alternative
such that there exists a test that can tell them apart with high probability. Formally, a radius
ρ2
? is called minimax separation radius or minimax radius of testing if for all α ∈ (0, 1)

there exist constants Aα, Aα > 0 such that

(i) for all A ≥ Aα we have R (E , Aρ?) ≤ α, (upper bound)

(ii) for all A ≤ Aα we have R (E , Aρ?) ≥ 1− α. (lower bound)

Condition (i) essentially states that if we separate the null and the alternative further than
Aαρ?, the minimax risk is smaller than α. We show the upper bound (i) by constructing a
testing procedure (∆α)α∈(0,1), which satisfies the required risk bound. Condition (ii) guarantees
the opposite: if we allow elements that are closer to the null hypothesis than Aαρ? the sum of
error probabilities is large, no matter which test we choose. The lower bound (ii) is typically
proved by exploiting reduction arguments, showing the lower risk bound for an arbitrary test.

4



h◦ − h ∈ E

h◦

ρ?

Aαρ?

Aαρ?

Visualization of the minimax radius of testing. Elements in the green-striped area are far
enough away from the null, i.e. separated by at least Aαρ?, to be detected with high probability.
That is, there exists a test with minimax risk over the Aαρ?-separated alternative smaller
than α. Elements closer to the null hypothesis h◦ than Aαρ? (orange-striped area) cannot be
statistically distinguished from the null. If we include such elements in the alternative, the risk
of any test is larger than 1 − α. The detection boundary is given by the minimax separation
radius ρ?.

Other notions of separation radii. The notion of the minimax separation radius used in
this thesis can e.g. be found in Collier et al. [2017]. There exists an alternative definition, which
was pioneered by Baraud [2002]. Therein the levels α ∈ (0, 1) and β ∈ (0, 1) for the error prob-
abilities are fixed and one searches for the smallest separation radius such that there exists an
α-test that is (1−β)-powerful over all separated alternatives. Since the derivations of our upper
bounds are done by controlling the type I and the maximal type II error probabilities separately
(compare Proposition 1.2.1, Proposition 2.2.1 and Proposition 4.2.1), it would also be possible
to derive separation radii in the sense of Baraud [2002]. We emphasise that both definitions of
the minimax radius of testing are entirely non-asymptotic, in other words they do not require
the noise level to vanish or the number of observations to tend to infinity. Nonetheless, often
one is interested in the behaviour of the separation radii when the noise level tends to zero
or the sample size increases. In this situation the radii are referred to as rates of testing or
separation rates. Analogously to the estimation theory for inverse problems, where there exist
asymptotic (cp. Carrasco et al. [2007]) as well as non-asymptotic approaches (cp. Cavalier [2008]
or Efromovich and Koltchinskii [2001]), there is an asymptotic framework for minimax testing,
which was mostly established in the series of papers Ingster [1993a], Ingster [1993b], Ingster
[1993c]. We refer to the monograph Ingster and Suslina [2012] for an extensive overview and
the paper Marteau and Sapatinas [2015], which explores the connection between the asymptotic
and non-asymptotic setting.

The first objective of this thesis is to derive (non-asymptotic) minimax separation radii for
general classes of non-parametric alternatives E and operators T . For the upper bounds we
construct tests that are based on projection-type estimators q̂2

k of ‖h− h◦‖2H, where k ∈ N
is a truncation parameter. This is a natural approach when considering the testing problem

5



(ITT) since the hypotheses are separated by this quantity. We reject the null hypothesis if
the estimated value q̂2

k exceeds a certain threshold. Deriving upper bounds then requires
bounds of the quantiles of these projection-type estimators under the null hypothesis and the
alternatives. The upper bounds mimic a classical bias2 - variance trade off, which calls for
an optimal choice of the truncation parameter k. For the upper bounds the essential tools
(i.e. Bernstein-type concentration inequalities) highly depend on the observational model
and the particular Hilbert space that is considered. Lower bounds are shown by reducing
the testing risk to a distance of probability measures. The key points in these proofs are
the construction of suitable so-called candidate elements and bounds for the χ2-divergence
or the Kullback-Leibler divergence over mixtures of these candidate elements.

Since our minimax optimal tests are based on estimators of the quadratic functional h 7→
‖h− h◦‖2H, another aim of this thesis is to highlight the connection between the two prob-
lems – quadratic functional estimation and minimax testing. We show how results from
one framework can be exploited in the other. Although the problems are clearly closely
connected, they feature structurally different behaviour in the radii and we come to the
conclusion that, roughly speaking, testing is always faster than estimation.

Direct and indirect approaches. There occurs an interesting phenomenon when treating
minimax testing in inverse models. Generally speaking, the ill-posedness of an inversion causes
additional difficulties, which can be avoided in the context of testing. Given noisy observations
of Th it is natural to consider a direct testing task

HD
0 : Th = Th◦ against HD

1 : Th 6= Th◦,

which can be solved without an inversion of the operator T . By investigating the direct testing
problem we shift the statistical inference from the pre-image space H to the image space G of
the operator T . Moreover, for an injective (known) operator T the null hypotheses of the direct
problem (Th = Th◦) and of the indirect problem (h = h◦) coincide. By using a test that is
conceptionally constructed to solve the direct testing problem, i.e. where the statistical analysis
is conducted in the space G, for the indirect testing problem, we circumvent the additional
instability typical for inverse problems. Formulating the direct testing problem from a minimax
point of view, we again introduce a separation of the null hypothesis and the alternative, which
yields

HD
0 : Th = Th◦ against HD,ρ

1 : ‖Th− Th◦‖H ≥ ρ̃, Th− Th
◦ ∈ F , (DTT)

for an appropriately transformed regularity class F . Laurent et al. [2012] show that in specific
situations a test that is minimax optimal for direct testing task (DTT) is also minimax optimal
for indirect testing task (ITT). In these situations an inversion of the operator is unnecessary
and, thus, should be avoided. The key point of such a result is an embedding of the form

{‖h− h◦‖H ≥ ρ, h− h
◦ ∈ E} ⊆ {‖Th− Th◦‖H ≥ ρ̃, Th− Th

◦ ∈ F} ,

which naturally involves both characteristics of the operator T and the regularity classes E and F .

The second objective of this thesis is to investigate the performance of direct testing pro-
cedures (constructed to solve (DTT)) for the indirect testing task (ITT) and to derive
conditions under which they perform optimally. That is, we aim to characterise the situ-
ations in which an inversion is advisable and the situations in which it can be avoided in
terms of properties of the regularity class E and the ill-posedness of the operator T . In
particular, we explore what happens in the case of an unknown operator T . We point
out that the null hypothesis Th◦ of the direct testing problem is — in the case of un-
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known T — only prespecified if h◦ is the null element in the Hilbert space H (since it gets
mapped to the null element in the Hilbert space G by the linear operator T ). Therefore,
there is a natural distinction between signal detection (testing against the null element) and
goodness-of-fit problems (testing against a prescribed non-zero element) if the operator is
unknown. In signal detection we build tests that are based on a projection-type estimation
of ‖Th‖2H, where we have direct access to noisy observations of Th. For the goodness-of-fit
it is natural to base a test on the estimation of ‖Th− Th◦‖2H. However, if T is unknown so
is Th◦, which thus has to be estimated. Nevertheless, our upper bounds for the direct test
are again given by a bias2 - variance trade off and in many cases coincide with the minimax
separation radius (up to constants).

Adaptation. The tests constructed for solving (ITT) and (DTT) typically requiring an op-
timal choice of a tuning parameter depending on properties of the regularity class E and the
operator T . Hence, these testing procedures are not adaptive, i.e. not assumption-free.
Preferably we want our tests to perform (nearly) optimal over a wide range of classes E (and
operators T ) simultaneously and without requiring any a priori knowledge about the underlying
structure. In non-parametric estimation adaptation methods often include data-driven choices
of tuning parameters (cp. Birgé [2001]) or aggregation approaches (cp. Tsybakov [2004]). In
nonparametric testing, adaptation is most commonly approached by multiple testing procedures.
A classical method is the Bonferroni aggregation of tests, where one considers a maximum-test
over an appropriately chosen (finite) class, which rejects the null as soon as one of the tests in
the collection does. Let us be more precise. Assume we have constructed a finite collection of
tests (∆k,αk)k∈K, where for each tuning parameter k ∈ K the test ∆k,αk = 1{q̂2

k
>τk(αk)} with

test statistic q̂2
k and threshold τk(αk) is of level αk ∈ (0, 1). Let

∑
k∈K αk = α and consider the

max-test

∆K,α = 1{
max
k∈K
{q̂2

k
−τk(αk)}>0

}.
The maximum structure of the test allows for an easy control of the type I error probability,

Ph◦ (∆K,α = 1) ≤
∑
k∈K

Ph◦ (∆k,αk = 1) =
∑
k∈K

αk = α

and the type II error probability

Ph (∆K,α = 0) ≤ min
k∈K

Ph (∆k,αk = 0) .

Therefore, the max-test behaves (almost) as well as the best test contained in the collection.
Hence, for each alternative that we want to adapt to, the set K should be chosen such that
there exists a (nearly) optimal test in the collection. The notable difference is that α has been
replaced with αk and the cost to pay for adaptation is characterised by the difference of the
power of the tests ∆k,αk and ∆k,α. Thus, aggregation (and therefore adaptation) of tests typ-
ically involves a deterioration of the radius of testing. This idea is formalized by introducing
an adaptive factor, which characterises the loss. A natural question arises: Is the cost that
we pay for adaptation due to a suboptimal testing strategy or is it caused intrinsically by the
problem and is, hence, unavoidable?

The third objective of this thesis is to propose adaptive testing procedures, to characterise
the cost to pay for adaptation and to show that this cost is unavoidable. Though the
aggregation of tests can be executed for many testing strategies, determining minimal (un-
avoidable) adaptive factors is especially demanding. Typically it requires the construction
of α-level tests such that their dependence on α is in some sense optimal (often this means
it mimics the behaviour of Gaussian quantiles). In the notation above this translates to
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minimal changes in the threshold τk(α) when α is replaced with the smaller quantity αk.
It requires a sharp control of the quantiles of a test statistic using for example Bernstein-
type inequalities. We characterise adaptive factors in terms of arbitrary collections K and
general sets of alternatives. Unavoidability of a deterioration in the rate for adaptation has
mainly been considered in the setting of asymptotic minimax rates and only for specific
smoothness classes (Spokoiny [1996]). We provide general conditions on the complexity of
the set of alternatives and the size of the unavoidable adaptive factor. Interestingly, this
general result allows us to derive the minimal adaptive factors for widely considered sets of
alternatives. Lower bounds for the adaptive factors are particularly challenging since they
involve an additional mixture over various alternatives, which complicates the calculations
e.g. for χ2-divergences over mixtures and requires a delicate construction of the candidate
densities.

Privacy constraints. In recent years making data publicly available while still protecting the
privacy of an individual has become an increasingly important task. Statistical inference under
a local differential privacy constraint, where only anonymized versions of the observations are
available, is a highly demanding challenge. Roughly speaking, each data holder transforms the
observation according to a random mechanism before passing the data on to the statistician.
Ideally such a mechanism should protect the privacy of an individual while preserving the in-
formation that is needed to make meaningful statistical inference. In general, the task here is
twofold: one has to develop data-release mechanisms that guarantee a certain level of privacy
and statistical methods that perform well based on privatized observations.

We consider minimax testing for inverse problems in a local differential privacy setting and
investigate how different levels of privacy protection influence the separation radii.

Contributions and structure of this thesis

In this thesis we consider two statistical models: The Inverse Gaussian sequence space model
(part I) and Circular convolution (part II), which are introduced in detail at the beginning of
the respective parts of this thesis. Let us briefly put the two models in the context of the general
inverse problem described in this introduction. In the inverse Gaussian sequence space model
we consider the Hilbert spaces H = G = `2(N) of square-summable real-valued sequences and
a multiplication operator Tλ((xj)j∈Z) = (λjxj)j∈Z. We make inference on the sequence (xj)j∈Z
based on an observation of the image sequence (λjxj)j∈Z contaminated by additive Gaussian
noise. In the circular convolution model we consider Hilbert spaces H = G ⊆ L 2[0, 1) of square-
integrable densities and a (circular) convolution operator Tξf = f ?©ξ. We assume that we have
independent and identically distributed observations from Tξf at our disposal and aim to make
inference on f . In each chapter we mention further references regarding the respective models
and specific testing tasks in the related literature-paragraphs, putting the contributions of
this thesis into more detailed context. Let us summarize the main results of this thesis.

Inverse Gaussian sequence space model

I Adaptive minimax testing with partially known operators (Chapter 1)
In this chapter we derive minimax separation radii, compare direct and indirect testing
procedures and carry out adaptation strategies for both. The main challenge of this chapter
is the fact that the multiplication operator is unknown, but can be observed contaminated
by additive noise. Interestingly, we show that for unknown operators the minimax radii
depend on the null hypothesis h◦ and that in the case of signal detection the error in the
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operator does not appear in the radii. The results of this chapter are published in the
preprint Schluttenhofer and Johannes [2020a].

I Testing of linear functionals (Chapter 2)
In this chapter instead of testing h◦ we test the value of a linear functional L(h◦) and
derive the corresponding minimax radii of testing. The content of this chapter originated
from a discussion with Félix Beroud and Clément Marteau from the University of Lyon I.

Circular convolution model

I Minimax testing and quadratic functional estimation (Chapter 3)
In this chapter we explore the connection between (minimax) quadratic functional estima-
tion and (minimax) testing, which is natural since in the testing task the null hypothesis
and the alternative are separated by a quadratic functional h 7→ ‖h− h◦‖2H. We derive
both minimax radii of testing and minimax estimation rates. We show that – although the
problems are clearly closely connected – the typical elbow effect that occurs in quadratic
functional estimation does not appear in the testing task. Our proofs yield a heuristic ex-
planation for this effect: the elbow effect is caused by elements with large energy (i.e. large
‖h− h◦‖2H), these are difficult to estimate, but easy to test, since they are far away from
the null hypothesis. The results of this chapter are published in the preprint Schluttenhofer
and Johannes [2020b].

I Adaptive minimax testing for circular convolution (Chapter 4)
In this chapter we again derive minimax separation radii, compare direct and indirect
testing procedures and carry out adaptation strategies for both. Considering minimax
testing in a circular convolution model is a natural extension of the Gaussian sequence
space model, since we identify functions on the circle with their coefficients (forming a
sequence) with respect to an appropriately chosen basis. There are, however, some new
challenges. Firstly, the objects we consider are no longer Gaussian, which requires the
application of different concentration results to prove upper bounds. Moreover, concerning
lower bounds, which involve controlling χ2-divergences between mixtures over candidate
densities, we require estimates also for non-Gaussian distributions. The results of this
chapter are published in the preprint Schluttenhofer and Johannes [2020c].

I Testing under privacy constraints (Chapter 5)
In this chapter we assume that only privatized samples, i.e. deliberately transformed obser-
vations, are available and investigate privatization mechanisms and corresponding testing
strategies. The first insight of this chapter is the fact that it is not advisable to perturb
the observations themselves since this mimics an artificial convolution, which results in a
significant deterioration of the rates. Instead perturbation of the coefficients of the density
of interest in a certain basis are considered. We establish a general upper bound which can
be applied to an arbitrary privatization method of the coefficients and provides bounds
involving the variance of the privatized coefficients. We show that the standard privati-
zation method of adding Laplace noise fails to perform optimally and is outperformed by
a more involved privatization method called hypercube sampling. Comparing our results
with findings in direct models, we conjecture our obtained radii to be minimax optimal and
provide a preliminary framework for a possible lower bound in the Perspectives section.
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Part I

Inverse Gaussian sequence space
model
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Inverse Gaussian sequence space
model

Let (H, 〈·, ·〉H) and (G, 〈·, ·, 〉G) be separable infinite-dimensional real Hilbert spaces1 and let

T : H −→ G, h 7−→ Th

be a linear bounded2 operator. In this section we specify the kind of noisy observations from Th
that we consider in the first part of this thesis. We assume that we can observe the element Th
projected onto test functions, i.e. the observable quantities are of the form 〈Th, f〉G for f ∈ G
and are contaminated by additive Gaussian noise. Firstly, we explain how to translate observ-
able quantities of the form 〈Th, f〉G for f ∈ G into an (indirect) sequence space model and give
some examples where this occurs naturally. Next, we give a motivation for considering additive
Gaussian errors in the sequence model context.

Sequence models

We distinguish three cases for the operator T . Let us start with the elementary case.

I Let (H, 〈·, ·〉H) = (G, 〈·, ·, 〉G) and let T = IdH be the identity on H.

Let (ϕj)j∈N be an orthonormal basis of H. Such a countable basis exists, since H is assumed to
be separable. For any j ∈ N and h ∈ H let us define

〈Th, ϕj〉H = 〈h, ϕj〉H =: θj ,

where the sequence of coefficients (θj)j∈N characterises the element of interest completely through
the basis representation h =

∑
j∈N〈h, ϕj〉Hϕj =

∑
j∈N θjϕj . The observational model is then

given by the sequence

Yj = θj + εξj with ξj
iid∼ N (0, 1), j ∈ N, (GSSM)

which is called the (direct) Gaussian sequence space model with noise level ε > 0. It is
called direct since we have direct access to noisy observations of the sequence of interest (θj)j∈N.
The model GSSM has received a lot of attention in the statistics literature, we only mention
Baraud [2002], Ingster and Suslina [2012], Collier et al. [2017] and refer to the references therein.

I Let T be an injective operator with known singular value decomposition.
1A Hilbert space is a real or complex-valued complete metric space with a distance function that is induced

by an inner product. Complete means that every Cauchy sequence has a limit within the space. A Hilbert space
is separable if and only if it has a countable orthonormal basis.

2T is bounded if and only if there exists an M > 0 such that ‖T h‖G ≤M ‖h‖H for all h ∈ H.
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We call a triple (ϕj , ψj , λj)j∈N, consisting of a basis (ϕj)j∈N ofH, an orthonormal system (ψj)j∈N
in G and a sequence (λj)j∈N ∈ RN, a singular value decomposition of the operator T if it
can be represented in the form

Th =
∑
j∈N

λj〈h, ϕj〉Hψj for all h ∈ H.

The elements (ϕj)j∈N and (ψj)j∈N are called singular vectors, (λj)j∈N are called singular
values. If the singular value decomposition of an operator is known, we can project the element
Th ∈ G onto the singular vectors. For any j ∈ N and h ∈ G we then obtain

〈Th, ψj〉G = 〈
∑
k∈N

λk〈h, ϕk〉Hψk, ψj〉G = λj〈h, ϕj〉H =: λjθj ,

where again the sequence of coefficients (θj)j∈N characterises the element of interest completely
through the basis representation h =

∑
j∈N〈h, ϕj〉Hϕj =

∑
j∈N θjϕj . The observational model is

given by

Yj = λjθj + εξj with ξj
iid∼ N (0, 1), j ∈ N, (IGSSM)

which is called the indirect Gaussian sequence space model with noise level ε > 0. Since T
is assumed to be injective, we have λj > 0 for all j ∈ N and the parameter (θj)j∈N is identifiable
in the model (IGSSM). If λj −→ 0 for j −→ ∞, the model (IGSSM) is called ill-posed,
since a decaying sequence (λj)j∈N weakens the signal of interest (θj)j∈N and, thus, inference on
(θj)j∈N becomes more difficult. Otherwise it is called well-posed. The degree of ill-posedness
is measured by the decay of (λj)j∈N. The problem is called mildly ill-posed if the sequence
(λj)j∈N decays polynomially and severely ill-posed if it decays at an exponential rate. A
singular value decomposition with decaying singular values (yielding an ill-posed model) exists
for instance for compact operators (Werner [2006], Theorem VI.3.6.). The model (IGSSM) is
for example investigated in Cavalier and Tsybakov [2002], Ermakov [2006], Cavalier [2008] (all
three considering estimation of (θj)j∈N), Laurent et al. [2012], Laurent et al. [2011], Ingster et al.
[2012a], Ingster et al. [2012b] (considering testing tasks).

I Let T be an injective operator with known singular vectors (but unknown singular values).

In the case of unknown singular values we assume that we have additional observations of the
operator acting on the singular vectors, i.e. for each j ∈ N we have additional observations of
Tϕj contaminated by an additive error. Due to Tϕj =

∑
k∈N λk〈ϕj , ϕk〉Hψk = λjψj and the

orthonormality of the singular vectors we obtain

〈Tϕj , ψj〉H = λj .

That is, we assume that additionally to the observations given by (IGSSM) we have at our
disposal noisy observations of (λj)j∈N.

Yj = λjθj + εξj with ξj
iid∼ N (0, 1), j ∈ N, (IGSSM)

Xj = λj + σζj with ζj
iid∼ N (0, 1), j ∈ N. (partially known)

This model is called the indirect Gaussian sequence space model with partially known
operator and noise levels ε, σ > 0, since the singular vectors are given, but not the singular
values. This model was introduced in Cavalier and Hengartner [2005] and is also considered
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in Johannes and Schwarz [2013] (estimation), Marteau and Sapatinas [2017a] and Kroll [2019a]
(testing). A similar model is considered in Butucea et al. [2008]. For a sequence space model
with fully unknown operator we refer to Efromovich and Koltchinskii [2001], Marteau [2006]
and Hoffmann and Reiss [2008]. In Chapter 1 we consider a further generalization of the partially
known (IGSSM), where we allow the noise levels ε and σ to depend on the index j, which is
then called a heterogeneous model.

Examples

We give some concrete examples of statistical models, where an indirect sequence space model
appears naturally.

Example (Inference on derivatives.). (compare Alquier et al. [2011], Section 1.1.6.2.)
Let H = L 2[0, 1) be the Hilbert space of (complex-valued) square integrable functions
defined on [0, 1) equipped with its usual inner product. Consider the Fourier basis ej , j ∈ Z
of L 2[0, 1) with ej(x) = exp(2πijx) and for a function h ∈ L 2[0, 1) its Fourier coefficients
fj := 〈f, ej〉H. Assume we are interested in the β-th derivative of a function f , which can
be expressed in the terms of the Fourier coefficients as follows

f (β) =
∑
j∈Z

(2πij)βfjej ,

i.e. the parameter of interest is given by the Fourier coefficients of the β-th derivative

θj = (2πij)βfj , j ∈ Z

but we only have at our disposal the sequence space analogue to a noisy observation of
the sequence fj = (2πij)−βθj , j ∈ N. This is a mildly ill-posed problem, where we have
complete knowledge of the sequence (λj)j∈N =

(
(2πij)−β

)
j∈N

, since it is predetermined by
the βth-derivative that we are interested in.

Next, we present an example, where the singular value decomposition of the considered
operator is fully known.

Example (Tomography). (compare Baumeister and Leitao [2005], Chapter 5 and Alquier
et al. [2011], Section 1.1.6.5. and the references therein) In tomography a goal is to obtain
an image of the structure of an object. We assume this structure is characterised by the
function f . In X-ray tomography we observe the initial (I0) and the final (I1) intensity of
an X-ray passing through the object of interest. We denote by I(x) the intensity at a point
x, the standard mathematical model for the behaviours of the intensity is given by

I ′(x)
I(x) = −f(x)

for any point x in the object, which implies

−
∫ x1

x0
f(x)dx =

∫ x1

x0

I ′(x)
I(x) dx = [log(I(x))]x1

x0
= log

(
I1
I0

)
,

where x0 and x1 denote the starting and the end point of a line. Hence, observing the initial
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I0 and final I1 intensity is equivalent to observing line integrals

exp(−
∫ x1

x0
f(x)dx)

of the function of interest f . Let us formalize this model by writing it as a linear operator
equation. Assume for simplicity that our object is contained in the two-dimensional unit
sphere B :=

{
x ∈ R2 | x2

1 + x2
2 ≤ 1

}
. We consider the following parametrization of a line

Lt,ϕ =
{
z ∈ R2 | z = t

(
cosϕ
sinϕ

)
+ s

(
− sinϕ
cosϕ

)
, s ∈ R

}

for t ∈ [0, 1] and ϕ ∈ [0, 2π), which is visualized below.

t
(cos(ϕ)

sin(ϕ)
)

Lt,ϕ

t
(cos(ϕ)

sin(ϕ)
)

+ s
(− sin(ϕ)

cos(ϕ)
)
, s ∈ R

The line integrals of a function f : B −→ R are given by∫
Lt,ϕ∩B

f(z)dz =
∫ √1−t2

−
√

1−t2
f

(
t

(
cosϕ
sinϕ

)
+ s

(
− sinϕ
cosϕ

))
ds,

and the line integrals can be viewed as functions of (t, ϕ). The Radon transform is defined
as the operator that maps a function f to the line integrals, formally

R : L 2(B) −→ L 2([0, 1]× [0, 2π], dµ)
f 7−→ Rf(·, ·)

with

Rf(t, ϕ) := π

2
√

1− t2

∫
Lt,ϕ∩B

f(z)dz,

i.e. Rf(t, ϕ) is the π-the average of f along the line Lt,ϕ restricted to the unit circle. By
L 2([0, 1]×[0, 2π],dµ) we denote the square integrable functions with respect to the measure
µ = 2

√
1−t2
π dtds (which simply reverses the normalization). It can be shown that the Radon

transform R is a linear, bounded and compact operator and its singular value decomposition
is known.
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The last example presents a case in which the singular value decomposition is only partially
given.

Example ((Circular) convolution). (compare Werner [2006], Exercise VI.7.8.) We con-
sider the Hilbert space H = L 2

per[0, 1) of 1-periodic complex-valued functions defined on R
that are square integrable on [0, 1). Let f ∈ L 2

per[0, 1) be fixed (but unknown) and define
the operator

T : H −→ H, h 7−→ Th

where

Th(x) :=
∫

[0,1)
h(t)f(x− t)dt.

It is straight-forward to see that T is a well-defined linear compact operator. Indeed, it is an
integral operator with square integrable kernel k(x, t) = f(x− t) (Werner [2006], Example
II.3.(c), p.67). Thus, its admits a singular value decomposition. Again, denote by ej , j ∈ Z
with ej(x) = exp(2πijx), x ∈ R the Fourier basis of L 2

per[0, 1) and by fj := 〈f, ej〉H the
Fourier coefficients of the convolution function f . Then, (ej , ej , fj)j∈Z is a singular value
decomposition of T . It is remarkable that the singular basis (ej)j∈Z does not depend on the
function f that we convolve with. So even if f is unknown, we have partial knowledge about
the operator – its singular vectors are known, its singular values are unknown. Depending
on the regularity of f , this is either a mildly ill-posed (in the case when f is ordinary
smooth) or a severely ill-posed model (in the case when f is super smooth) with partially
known operator.

Additive noise

Let us briefly motivate why the model assumption of additive noise is natural in the statistical
context. An extremely well-studied statistical model is nonparametric regression, which can
be found in the following simplified form in many textbooks (e.g. Tsybakov [2009]). Based
on observations of the equally-spaced point evaluations of a (square-integrable) function f ∈
L 2[0, 1) defined on [0, 1), i.e.

Zj = f

(
j

n

)
+ ζj , where ζj

iid∼ N (0, 1), for j ∈ {1, . . . , n} , (NR)

we aim to make inference on the function f . The additive noise structure when observing
functions is a widely accepted model assumption. We want to explain how this assumption
can be transferred to the sequence space model. For any function ϕ ∈ L 2[0, 1) we define the
vectors of point evaluations ϕ = (ϕ

(
j
n

)
)j∈{1,...,n} in Rn. Moreover, we equip the space Rn with

the inner product 〈a, b〉n = 1
n

∑n
j=1 ajbj . Let (ϕm)m∈N be an orthonormal basis of L 2[0, 1)

that satisfies 〈ϕl,ϕm〉n = 1
n

∑n
j=1 ϕl

(
j
n

)
ϕm

(
j
n

)
= δl,m for all l,m ∈ {1, . . . , n− 1}, i.e. its

associated vectors are also orthonormal in (Rn, 〈·, ·〉n) (one could e.g. consider the trigonometric
basis (cp. Tsybakov [2009], Lemma 1.7.)). We define for Z = (Z1, . . . , Zn), ζ = (ζ1, . . . , ζn) and
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k ∈ {1, . . . , n} the quantities

Yk := 〈Z,ϕk〉n = 1
n

n∑
j=1

Zjϕk( jn),

ϑk := 〈f ,ϕk〉n = 1
n

n∑
j=1

f( jn)ϕk( jn),

ξk :=
√
n〈ζ,ϕk〉n = 1√

n

n∑
j=1

ζjϕk( jn) iid∼ N (0, 1).

Then (NR) implies with ε = 1√
n

that

Yk = ϑk + εξk, for k ∈ {1, . . . , n} . (TSSM)

Note that ϑk = 〈f ,ϕk〉n, k ∈ {1, . . . , n} are discrete versions of the Fourier coefficients θk =∫
[0,1) f(x)ϕk(x)dx. Hence, (TSSM) can be viewed as a truncated version of the Gaussian se-

quence space model, which is well approximated for the idealized case n → ∞. Considering
observations as in (NR) of equally spaced point evaluations of Tf in an inverse model, we
obtain a similar motivation for the additive error the inverse sequence space model.

Notation

With the index • we indicate sequences. For two sequences x• = (xj)j∈N, y• = (yj)j∈N ∈ RN

operations and inequalities are defined component-wise, i.e. x2
• = (x2

j )j∈N, x•/y• = (xj/yj)j∈N
and for c ∈ R, x• ≤ cy• if xj ≤ cyj for all j ∈ N. We denote

`2 := `2(N) :=

x• ∈ RN :
∑
j∈N

x2
j <∞

 ,
`∞ := `∞(N) :=

{
x• ∈ RN : sup

j∈N
|xj | <∞

}
.

The space `2 := `2(N) equipped with 〈x•, y•〉`2 :=
∑
j∈N xjyj , ‖x•‖

2
`2 :=

∑
j∈N x

2
j is a Hilbert

space of square summable sequences, `∞ equipped with ‖x•‖`∞ = supj∈N |xj | is a Banach space
of bounded sequences. For K ⊆ N we denote the smallest minimiser, if it exists, by

arg min
k∈K

xk := min {k ∈ K : xk ≤ xj for all j ∈ K} .

For two functions f, g : R→ R>0 we write f(ε) . g(ε) (as ε −→ 0) if there exists a constant
C > 0 such that f(ε) ≤ Cg(ε) for all ε small enough. We write f(ε) ∼ g(ε) if both f(ε) . g(ε)
and g(ε) . f(ε) and say that f and g are of the same order.

Moreover, by L 2 := L 2[0, 1) we denote the Hilbert space of real-valued square inte-
grable functions defined on the half-open unit interval [0, 1) equipped with the inner product
〈f, g〉L 2 =

∫ 1
0 f(x)g(x)dx.

Finally, for k ∈ N we use the short-hand notation JkK for the set {1, . . . , k}.
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Chapter 1

Adaptive minimax testing with
partially known operators

1.1 Introduction

In an inverse Gaussian sequence space model with additional noisy observations of
the operator we derive upper bounds for the non-asymptotic minimax radii of testing
for ellipsoid-type alternatives, simultaneously for both the signal detection problem
(testing against zero) and the goodness-of-fit testing problem (testing against a pre-
scribed sequence) without any regularity assumption on the null hypothesis. The
radii are the maximum of two terms, each of which depends on one of the noise
levels. Interestingly, the term involving the noise level of the operator explicitly de-
pends on the null hypothesis and vanishes in the signal detection case. We provide
a matching lower bound in the case when the operator is observed with the same or
smaller noise level as the sequence of interest. We consider two testing procedures,
an indirect test based on the estimation of the distance to the null and a direct test,
which is instead based on estimating the energy in the image space. We highlight the
assumptions under which the direct test performs as well as the indirect test. Fur-
thermore, we apply a classical Bonferroni method for making both the indirect and
the direct test adaptive with respect to the regularity of the alternative and derive
separation radii for these tests. The radii of the adaptive tests are deteriorated by an
additional log-factor, which we show to be unavoidable. The results are illustrated
considering Sobolev spaces and mildly or severely ill-posed inverse problems.

The statistical model. We consider an inverse Gaussian sequence space model with het-
eroscedastic errors and unknown operator

Yj = λjθj + εjξj ,

Xj = λj + σj ξ̃j , j ∈ N, (1.1.1)

where λ• ∈ `∞ is an unknown bounded sequence, θ• ∈ `2 is an unknown square summable
sequence, ε• ∈ RN

+ and σ• ∈ RN
+ are known sequences of positive real numbers, called noise levels,

and ξj , ξ̃j
iid∼ N (0, 1). The sequences Y• and X• are therefore independent with independent

Gaussian components, we denote their respective distributions by Y• ∼ Pε•λ•θ• and X• ∼ Pσ•λ• and
their joint distribution by (Y•, X•) ∼ Pε•,σ•θ•,λ•

.

Related literature. Model (1.1.1) is an idealised formulation of a statistical inverse problem
with unknown operator, where a signal θ• that is transformed by a multiplication with the
unknown sequence λ• is observed. In the particular case λ• = (1)j∈N the model is called direct,
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otherwise inverse, and ill-posed if additionally λ• tends to zero. The model is already introduced
in more detail in the previous section. For statistical inference for inverse problems with fully
known operator (corresponding to known λ•) we refer to Johnstone and Silverman [1990], Mair
and Ruymgaart [1996], Mathé and Pereverzev [2001], Cavalier and Tsybakov [2002], Cavalier
et al. [2002] and the references therein. Ingster et al. [2012b] describe examples, in which
the inverse Gaussian sequence space model with known λ• arises naturally, one of which is
deconvolution (Ermakov [1990], Fan [1991], Stefanski and Carroll [1990]). In our model (1.1.1)
the sequence λ• is unknown, but an additional noisy observation of it is available. Cavalier and
Hengartner [2005], Ingster et al. [2012a], Johannes and Schwarz [2013] or Marteau and Sapatinas
[2017a], for instance, provide a detailed discussion and motivation of this particular statistical
inverse problem with unknown operator. An example is density deconvolution with unknown
error distribution (c.f. Comte and Lacour [2011], Efromovich [1997] or Neumann [1997]). Oracle
or minimax optimal non-parametric estimation and adaptation in the framework of inverse
problems has been extensively studied in the literature (see Efromovich and Koltchinskii [2001],
Cavalier et al. [2004], Cavalier [2008], Hoffmann and Reiss [2008], to name but a few). In this
chapter we are, however, concerned with non-parametric testing, which we formalize next.

The testing task. For some benchmark sequence θ◦• ∈ `2 we want to test the null hypothesis
{θ• = θ◦•} against the alternative {θ• 6= θ◦•} based on the observations (Y•, X•), where λ• ∈ `∞
is a nuisance parameter. To make the null hypothesis distinguishable from the alternative, we
introduce the separation condition

`2ρ :=
{
θ• ∈ `2 : ‖θ•‖2`2 ≥ ρ

2
}
,

which separates the hypotheses in the `2-norm by a separation radius ρ > 0. Additionally,
regularity conditions are imposed on the unknown sequences θ• and λ• by introducing non-
parametric classes of parameters Θ ⊆ `2 and Λ ⊆ `∞. We define these classes below such that
they are flexible enough to capture typical smoothness and ill-posedness assumptions. Over
these classes we can write the testing problem as

H0 : θ• = θ◦• , λ• ∈ Λ against Hρ
1 : θ• − θ◦• ∈ `2ρ ∩Θ, λ• ∈ Λ. (1.1.2)

Roughly speaking, in minimax testing one searches for the smallest ρ such that (1.1.2) is still
testable with small error probabilities. Following e.g. Collier et al. [2017] we measure the accu-
racy of a test ∆ : RN×RN −→ {0, 1} by its maximal risk defined as the sum of the maximal type
I and II error probability over the null hypothesis and the ρ-separated alternative, respectively,

R (∆ | Θ,Λ, θ◦• , ρ) := sup
λ•∈Λ

Pε•,σ•θ◦• ,λ•
(∆ = 1) + sup

λ•∈Λ
θ•−θ◦•∈`2ρ∩Θ

Pε•,σ•θ•,λ•
(∆ = 0) .

and compare it to the minimax risk

R (Θ,Λ, θ◦• , ρ) := inf
∆
R (∆ | Θ,Λ, θ◦• , ρ) ,

where the infimum is taken over all possible tests, i.e. over all measurable functions ∆ : RN ×
RN −→ {0, 1}. A separation radius ρ2 (depending on the classes Θ,Λ, the noise levels ε•, σ•
and the null hypothesis θ◦•) is called minimax radius of testing, if for all α ∈ (0, 1) there exist
constants Aα ∈ R+ and Aα ∈ R+ with

(i) for all A ≥ Aα we have R (Θ,Λ, θ◦• , Aρ) ≤ α, (upper bound)

(ii) for all A ≤ Aα we have R (Θ,Λ, θ◦• , Aρ) ≥ 1− α. (lower bound)
Note that this definition of the minimax radius of testing is entirely non-asymptotic. However,
in our illustrations we compare our findings to existing asymptotic results by considering the
homoscedastic case, i.e. constant noise levels ε• = (ε)j∈N and σ• = (σ)j∈N with ε, σ ∈ R+, and
the behaviour of the radii for ε and σ tending to zero.
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Related literature. Minimax testing for the direct homoscedastic version of the model
(1.1.1), i.e. λ• = (1)j∈N, σ• = (0)j∈N and ε• = (ε)j∈N, has been studied extensively in the lit-
erature for various classes of alternatives. Asymptotic results and a list of references can be
found in the book by Ingster and Suslina [2012]. Let us briefly mention some further refer-
ences. Lepski and Spokoiny [1999] derive asymptotic minimax rates for Besov-type alternatives.
Following this result, Spokoiny [1996] considers adaptive testing strategies, showing that asymp-
totic adaptation comes with the unavoidable cost of a log-factor. Baraud [2002] introduces a
non-asymptotic framework for minimax testing and derives matching upper and lower bounds
in the direct model for ellipsoid-type alternatives. Collier et al. [2017] provide similar results
for sparse alternatives, using tests based on minimax-optimal estimators of the squared norm
of the parameter of interest. Carpentier and Verzelen [2019] derive minimax radii of testing for
composite (null) hypotheses, which explicitly depend on the complexity of the null hypothesis.
Both phenomena – an estimator of the squared norm yields a minimax optimal test and minimax
radii depend on the null hypothesis – reappear in our results.
In the inverse problem setting with fully known operator and homoscedastic errors, i.e.
σ• = (0)j∈N and ε• = (ε)j∈N asymptotic rates over ellipsoids Θ are derived in Ingster et al.
[2012a]. Simultaneously, Laurent et al. [2012] establish the corresponding non-asymptotic radii.
Moreover, Laurent et al. [2011] compare direct and indirect testing approaches, i.e. based on the
estimation of ‖λ•(θ• − θ◦•)‖

2
`2 respectively of ‖θ• − θ◦•‖

2
`2 , concluding that the direct approach is

preferable (under certain assumptions), since it achieves the minimax radius without requiring
an inversion. Marteau and Mathé [2014] also discuss how to obtain direct and indirect tests
using general regularization schemes. Marteau and Sapatinas [2017b] derive separation radii
under weak (non-Gaussian) noise assumptions.
Let us now return to the testing task (1.1.2) in the model with unknown operator with
homoscedastic errors. In this situation there is a natural distinction between the cases
θ◦• = 0• := (0)j∈N (signal detection) and θ◦• 6= 0• (goodness-of-fit) on which we comment further
below in the next paragraph. Minimax testing in this model is considered in Marteau and Sap-
atinas [2017a] (only goodness-of-fit) and Kroll [2019a] (goodness-of-fit and signal detection, but
treated separately). In the goodness-of-fit scenario Marteau and Sapatinas [2017a] additionally
impose an abstract smoothness condition θ◦• ∈ Θ on the null hypothesis and obtain lower and
upper bounds featuring a logarithmic gap. Treating the signal detection task and the goodness-
of-fit testing task separately, Kroll [2019a] establishes matching upper and lower bounds for the
minimax radii of testing uniformly over null hypotheses in Θ. Their radii depend on Θ rather
than on the given null hypothesis θ◦• . Let us emphasize that though we are working in a similar
setting (with the additional generalization to heteroscedastic errors) we instead seek radii
for a given θ◦• , which are typically much smaller than the uniform ones obtained by Marteau and
Sapatinas [2017a] and Kroll [2019a]. Radii or rates of testing, which depend explicitly on the
null hypothesis of the testing problem, are often referred to as local rates of testing (c.f. Bal-
akrishnan and Wasserman [2019], Balakrishnan and Wasserman [2018] and Wei and Wainwright
[2020]) as opposed to uniform rates of testing, which are derived for classes of null hypotheses.

Minimax results. In this paper we derive upper bounds for the non-asymptotic minimax
radii of testing in the inverse Gaussian sequence space model simultaneously for both signal
detection (θ◦• = 0•) and goodness-of-fit testing (θ◦• 6= 0•) without any regularity assumption on
the null hypothesis θ◦• . For known operators (σ• = 0•) there is typically no distinction between
the goodness-of-fit and the signal detection task. Minimax results for the goodness-of-fit task can
be obtained from the signal detection task by simply shifting the observations, i.e. considering
the sequence Y• − λ•θ◦• instead of Y•. This is obviously no longer possible if λ• is unknown and
θ◦• 6= 0•, which motivates the separate treatment of the two problems in Marteau and Sapatinas
[2017a] and Kroll [2019a]. To understand the signal detection problem and the goodness-of-fit
testing problem simultaneously we mimic the idea of shifting the observations by reparametrising
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our statistical model via the mapping t : RN×RN −→ RN×RN, (y•, x•) 7−→ (y•−θ◦•x•, x•), which
is bijective and known. The components of Ỹ• = Y• − θ◦•X• are still independent and follow a
normal distribution Ỹj = Yj − θ◦jXj ∼ N

(
λj(θj − θ◦j ), (ε◦j )2

)
, where (ε◦j )2 := ε2

j + (θ◦j )2σ2
j . This

reparametrisation already indicates that with respect to the observations of the operator, the
effective noise level is θ◦•σ• instead of the original noise level σ•. Thereby the dependence
of the minimax radii on the null hypothesis is explicit. In particular, this shows that the σ•-
term in the radius vanishes in the signal detection task (θ◦• = 0•). Furthermore, for σ• = 0•
we recover the minimax radii for known operators, which consequently do not depend on the
null hypothesis θ◦• . Using the reparametrised observations (Ỹ•, X•) we propose an indirect test
based on the estimation of a squared weighted `2-norm of θ◦• − θ•. More precisely, we use an
estimator that mimics an inversion of λ• by using the class Λ and aims to estimate the quadratic
functional q2

k(θ◦• − θ•) :=
∑
j∈JkK

(
θ◦j − θj

)2
. If k is chosen appropriately, the test attains the

minimax radius given by a classical trade-off between the variance of the quadratic functional
and a bias2-term. To avoid the inversion, we investigate a direct testing procedure inspired by
Laurent et al. [2011] that is based on the estimation of the squared `2-norm of λ• (θ◦• − θ•). In
contrast to inverse problems with known operator, we show that the direct approach is not always
preferable if the operator is unknown, but characterise situations in which it is. In particular
in signal detection the direct test achieves the minimax radius under very mild assumptions.
Moreover, its advantage over the indirect test is that it only implicitly depends on the knowledge
of the model’s ill-posedness characterised by the class Λ via an optimal choice of the dimension
parameter k.

Adaptation. For both testing procedures the optimal choice of the dimension parameter k
relies on the knowledge of characteristics of the classes Θ and Λ. A classical procedure to cir-
cumvent this problem is to aggregate several tests for various dimension parameters k into a
maximum-test, which rejects the null hypothesis as soon as one of the tests does. We apply
this aggregation to both testing procedures and derive the radii of testing of their correspond-
ing max-tests. Thereby, the indirect max-test is adaptive (i.e. assumption-free) with respect
to the smoothness of θ• characterised by a family of Θ-alternatives. Comparing its radius to
the non-adaptive radius, there is a deterioration, which we express in terms of the number of
dimension parameters over which we aggregate. Heuristically, the adaptive radius is obtained
by magnifying the error level in the non-adaptive radius by an adaptive factor (cp. Spokoiny
[1996]). Depending on the complexity of the families of Θ-alternatives, we show that adaptive
factors of log log- or even log log log-order are possible. The indirect max-test is still only adap-
tive with respect to the smoothness of θ•, but explicitly depends on the model’s ill-posedness
characterised by Λ. In contrast, the direct max-test is adaptive with respect to both smoothness
and ill-posedness. Moreover, we provide a general result (Proposition 1.6.1) which allows to
show the unavoidability of adaptive factors for general collections of alternatives. Previously,
unavoidability results are only known in specific cases (for instance in Spokoiny [1996] provides
such a lower bound for specific Besov-type alternatives in the asymptotic setting). We apply
the general lower bound result to specific types of alternatives (consisting of classes of ordinary
smooth or super smooth Sobolev-type ellipsoids) and prove that the adaptive factors of log log-
and log log log-order, which are attained by our max-tests, are an unavoidable cost to pay for
adaptation.

Notation. Due to the many parameters, different noise levels and several radii, the following
chapter is heavy on notation. We therefore provide a notation index for easier orientation.
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Abbreviations

ε◦• =
√
ε2
• + (θ◦•)2σ• reparametrized noise level

q2
k(x•) =

∑
j∈JkK x

2
j quadratic functional

mk(x•) := maxj∈JkK |xj | maximum (up to k)
bk(θ•) := ‖θ•‖2`2 − q2

k(θ•) bias terms
Lu :=

√
|log u| log-term, u ∈ (0, 1)

δK := (1 ∨ log |K|)1/4 adaptive factor for aggregation over K

Regularity and ill-posedness

a• ∈ RN
>0 regularity, non-increasing, bounded by 1

R > 0 regularity radius
ΘR
a• ⊆ `

2 regularity class
v• ∈ RN

>0 ill-posedness, non-increasing, bounded by 1
c > 0 ill-posedness diameter
Λc

v• ⊆ `
∞ ill-posedness class

A ⊆ `2 collection of regularity parameters
V ⊆ `∞ collection of ill-posedness parameters

Tests, test statistics and thresholds

q̂2
k estimator of q2

k(θ• − θ◦•), defined in (1.2.1)
τk(α) threshold for the indirect test, defined in (1.2.7)
∆k,α := 1{q̂2

k
>τk(α)} indirect test, defined in (1.2.8)

q̃2
k estimator of q2

k(λ•(θ• − θ◦•)), defined in (1.4.1)
τd
k (α) threshold for the direct test, defined in (1.4.7)

∆d
k,α = 1{q̃2

k
>τd

k
(α)} direct test, defined in (1.4.8)

TK,α := maxk∈K
{

q̂2
k − τk

(
α
|K|

)}
(indirect) max-test statistic (over K)

∆K,α := 1{TK,α>0} (indirect) max-test (over K)

T d
K,α := maxk∈K

{
q̃2
k − τd

k

(
α
|K|

)}
(direct) max-test statistic (over K)

∆d
K,α := 1{

Td
K,α>0

} (direct) max-test (over K)

Separation radii and optimal dimensions

ρ2
a•,v•(x•) := min

k∈N

{
qk
(
x2
•

v2
•

)
∨ a2

k

}
(indirect) separation radius

ka•,v•(x•) := arg min
k∈N

{
qk
(
x2
•

v2
•

)
∨ a2

k

}
optimal dimension (for the indirect test),(

ρd
a•,v•(x•)

)2
:= min

k∈N

{
v−2
k qk

(
x2
•

)
∨ a2

k

}
(direct) separation radius

kd
a•,v•(x•) := arg min

k∈N

{
v−2
k qk

(
x2
•

)
∨ a2

k

}
optimal dimension (for the direct test)

ρ2
K,a•,v•(x•) := min

k∈K

{
qk
(
x2
•

v2
•

)
∨ a2

k

}
adaptive (indirect) separation radius

kK,a•,v•(x•) := arg min
k∈K

{
qk
(
x2
•

v2
•

)
∨ a2

k

}
optimal dimension contained in K (indirect)

r2
K,a•,v•(x•) := min

k∈K

{
mk

(
x2
•

v2
•

)
∨ a2

k

}
(indirect) remainder radius

(ρd
K,a•,v•(x•))

2 := min
k∈K

{
v−2
k qk(x2

•) ∨ a2
k

}
adaptive (direct) separation radius

kd
K,a•,v•(x•) := arg min

k∈K

{
v−2
k qk(x2

•) ∨ a2
k

}
optimal dimension contained in K (direct)

(rd
K,a•,v•(x•))

2 := min
k∈K

{
v−2
k mk(x2

•) ∨ a2
k

}
(direct) remainder radius
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Outline of this chapter. In Section 1.2 we derive an upper bound via an indirect testing
procedure, in Section 1.4 we investigate a direct testing procedure. Section 1.3 contains the
lower bound. Section 1.5 is devoted to adaptive testing. We describe the general adaptation
procedure in Section 1.5.1 and apply it to both the indirect test (Section 1.5.2) and the direct
test (Section 1.5.2). An adaptive lower bound can be found in Section 1.6. Technical results
and their proofs are deferred to Appendix A.

Outline
Adaptive minimax testing with partially known operators

Adaptive upper bound

via an indirect max-test
Section 1.5.2

Upper bound

via an indirect testing procedure
Section 1.2

Adaptive upper bound

via a direct max-test
Section 1.5.3

Upper bound

via a direct test procedure
Section 1.4

Lower bound
Section 1.3

Adaptive lower bound
Section 1.6
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1.2 Upper bound via an indirect testing procedure

Regularity classes. The tests we propose are based on estimators of quadratic functionals,
for any sequence x• ∈ RN and k ∈ N we define

q2
k(x•) :=

∑
j∈JkK

x2
j , mk(x•) := max

j∈JkK
|xj | .

Moreover, for a sequence θ• ∈ `2 and k ∈ N we define the bias terms

bk(θ•) := ‖θ•‖2`2 − q2
k(θ•) =

∑
j>k

θ2
j .

With this notation we are ready to define the non-parametric classes for the parameters θ• ∈ `2
and λ• ∈ `∞. Let a• = (aj)j∈N ⊆ RN

+ be a strictly positive monotonically non-increasing
sequence bounded by 1 and let R > 0, we define

ΘR
a• :=

{
θ• ∈ `2 : b•(θ•) ≤ R2a2

•

}
=
{
θ• ∈ `2 : bk(θ•) ≤ R2a2

k for all k ∈ N
}
.

Note that ΘR
a• is of a very general form, it simply allows to control the bias terms bk, k ∈ N for all

elements in the class, which is sufficient for all our proofs. A more common class of alternatives
(e.g. used in Kroll [2019a], Marteau and Sapatinas [2017a], Baraud [2002]) are ellipsoids of the
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form Θ̃R
a• :=

{
θ• ∈ `2 :

∑
j∈N θ

2
ja
−2
j ≤ R2

}
, which is also covered by our class ΘR

a• . We refer to
Tsybakov [2009] (Lemma A.3. in the appendix) for an explanation how the decay of the sequence
θ•, which can be interpreted as coefficients of a function w.r.t. a certain basis, relates to the
regularity of the associated function.
Let v• = (vj)j∈N ⊆ RN

+ be a strictly positive, monotonically non-increasing sequence bounded
by 1 and let c ≥ 1, we define

Λc
v• :=

{
λ• ∈ `∞ : c−1 ≤ λ2

•

v2
•
≤ c

}
=
{
λ• ∈ `∞ : c−1 ≤ λ2

k

v2
k

≤ c for all k ∈ N
}
.

Let us emphasise that the assumptions λ• ∈ Λc
v• and v• ∈ RN

>0 imply that λ• > 0• and hence
the parameter θ• is identifiable.

Definition of the test statistic. In this section we derive an upper bound for the minimax
radius of testing based on the estimation of the energy of the parameter of interest θ• − θ◦• . To
be more precise, for the reparametrised (ε◦•)2 = ε2

• + (θ◦•)2σ2
• ∈ RN

+ we consider the estimators

q̂2
k :=

∑
j∈JkK

(Yj − θ◦jXj)2 − (ε◦j )2

v2
j

=
∑
j∈JkK

Ỹ 2
j − (ε◦j )2

v2
j

. (1.2.1)

Since

Eε•,σ•θ•,λ•

(
q̂2
k

)
=
∑
j∈JkK

Eε•,σ•θ•,λ•
(Yj − θ◦jXj)2 − (ε◦j )2

v2
j

=
∑
j∈JkK

(ε◦j )2 + λ2
j

(
θj − θ◦j

)2
− (ε◦j )2

v2
j

=
∑
j∈JkK

λ2
j

(
θj − θ◦j

)2

v2
j

= q2
k

(
λ•
v•

(θ• − θ◦•)
)
≤ cq2

k(θ• − θ◦•),

q̂2
k is an unbiased estimator of the quadratic functional q2

k

(
λ•
v• (θ• − θ◦•)

)
, which differs from

q2
k(θ• − θ◦•) only by a factor c for all λ• ∈ Λc

v• and all k ∈ N. For a sequence x• ∈ RN let us
define the following minimum and minimiser, respectively,

ρ2
a•,v•(x•) := min

k∈N

{
qk

(
x2
•

v2
•

)
∨ a2

k

}
= min

k∈N


√√√√∑
j∈JkK

x4
j

v4
j

∨ a2
k

 , (1.2.2)

ka•,v•(x•) := arg min
k∈N

{
qk

(
x2
•

v2
•

)
∨ a2

k

}
= arg min

k∈N


√√√√∑
j∈JkK

x4
j

v4
j

∨ a2
k

 . (1.2.3)

Throughout this section the sequences a• and v• are arbitrary but fixed. In particular, the
optimal testing procedures explicitly exploit the prior knowledge of a• and v•, i.e. the fact that
the unknown parameters satisfy θ• − θ◦• ∈ ΘR

a• and λ ∈ Λc
v• for some R, c ∈ R+. Given subsets

A,V ⊆ RN
+ of strictly positive, monotonically non-increasing bounded sequences, we discuss

adaptive testing strategies when a• ∈ A and v• ∈ V in Section 1.5.
Our evaluation of the performance of the test under both the null hypothesis and the al-

ternative relies on bounds for quantiles of (non-)central χ2-distributions, which we present in
Lemma A.1.1 in Section A.1. Its proof is based on a result in Birgé [2001] (Lemma 8.1), which is
a generalisation of Lemma 1 of Laurent and Massart [2000] and can also be found with slightly
different notation in Laurent et al. [2012] (Lemma 2).
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Proposition 1.2.1 (Bounds for the quantiles of q̂2
k). For u ∈ (0, 1) we define Lu :=√

|log u|. Let α, β ∈ (0, 1).

(i) (level-α) For each k ∈ N we have

sup
λ∈Λc

v•

Pε•,σ•θ◦• ,λ•

(
q̂2
k > 2Lαq2

k

(
(ε◦•)2

v2
•

)
+ 2L2

αmk

(
(ε◦•)2

v2
•

))
≤ α. (1.2.4)

(ii) ((1 − β)-powerful) Define the dimension k? := ka•,v•(ε•) ∧ ka•,v•(θ◦•σ•) ∈ N as in
(1.2.3) and Cα,β := 5

(
Lα + L2

α + Lβ + 5L2
β

)
. Then for each θ• − θ◦• ∈ ΘR

a• ∩ `
2
ρ with

ρ2 ≥
(
R2 + cCα,β

){
ρ2
a•,v•(ε•) ∨ ρ

2
a•,v•(θ

◦
•σ•)

}
we have

sup
λ∈Λc

v•

Pε•,σ•θ•,λ•

(
q̂2
k? ≤ 2Lαq2

k?

(
(ε◦•)2

v2
•

)
+ 2L2

αmk?

(
(ε◦•)2

v2
•

))
≤ β. (1.2.5)

Proof of Proposition 1.2.1. We intend to apply Lemma A.1.1 and use the notation introduced
there. If (Y•, X•) ∼ Pε•,σ•θ•,λ•

, then for each k ∈ N,

Qk := q̂2
k + q2

k

(
ε◦•
v•

)
=
∑
j∈JkK

(Yj − θ◦jXj)2

v2
j

∼ Qe•
µ•,k

with e• := ε◦•
v• and µ• := λ•(θ•−θ◦•)

v• .

(i) Under the null hypothesis θ• = θ◦• , i.e., (Y•, X•) ∼ Pε•,σ•θ◦• ,λ•
we have Qk ∼ Qe•

0•,k. Therefore,
with (A.1.1) from Lemma A.1.1 it follows

qe•0•,k(u) ≤ q2
k(e•) + 2Luqk(e2

•) + 2L2
umk(e2

•),

which implies (1.2.4).

(ii) Under the alternative, i.e. (Y•, X•) ∼ Pε•,σ•θ•,λ•
with λ• ∈ Λc

v• , θ• − θ◦• ∈ ΘR
a• ∩ `

2
ρ and

ρ2 ≥
(
R2 + cCα,β

) {
ρ2
a•,v•(ε•) ∨ ρ

2
a•,v•(θ

◦
•σ•)

}
, we obtain

‖θ• − θ◦•‖
2
`2 ≥ ρ

2 ≥
(
R2 + cCα,β

){
ρ2
a•,v•(ε•) ∨ ρ

2
a•,v•(θ

◦
•σ•)

}
≥ R2a2

k? + cCα,β

{
qk?

(
ε2
•

v2
•

)
∨ qk?

(
(θ◦•)2σ2

•

v2
•

)}

≥ R2a2
k? + cCα,β2

{
qk?

(
e2
•

)}
≥ R2a2

k? + c5
2
{
Lαqk?

(
e2
•

)
+ L2

αmk?

(
e2
•

)
+ qk?

(
e2
•

)
(Lβ + 5L2

β)
}
, (1.2.6)

using that ρ2
a•,v•(ε•) ∨ ρ

2
a•,v•(θ

◦
•σ•) = qk?

(
ε2
•

v2
•

)
∨ qk?

(
(θ◦•)2σ2

•
v2
•

)
∨ a2

k?
, which follows from

Lemma A.2.1 and 2
{

qk?
(
ε2
•

v2
•

)
∨ qk?

(
(θ◦•)2σ2

•
v2
•

)}
≥ qk?

(
(ε◦•)2

v2
•

)
= qk?

(
e2
•

)
≥ mk?(e2

•). More-
over, for each k ∈ N and λ ∈ Λc

v• we have cq2
k(µ•) ≥ q2

k(θ•−θ◦•) = ‖θ• − θ◦•‖
2
`2−b2

k(θ•−θ◦•),
which in turn for each θ• − θ◦• ∈ ΘR

a• implies

cq2
k(µ•) ≥ ‖θ• − θ◦•‖

2
`2 − R2a2

k.
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This bound applied with k = k? together with (1.2.6) yields

cq2
k?(µ•) ≥ c5

2
{
Lαqk?

(
e2
•

)
+ L2

αmk?

(
e2
•

)
+ qk?

(
e2
•

)
(Lβ + 5L2

β)
}
.

Rearranging the last inequality we obtain
4
5q2

k?(µ•) ≥ 2Lαqk?
(
e2
•

)
+ 2L2

αmk?

(
e2
•

)
+ qk?

(
e2
•

)
2(Lβ + 5L2

β).

Inserting this bound into (A.1.3) of Lemma A.1.1 implies

2Lαqk?
(
e2
•

)
+ 2L2

αmk?

(
e2
•

)
+ q2

k? (e•) ≤
4
5q2

k?(µ•)− qk?
(
e2
•

)
2(Lβ + 5L2

β) + q2
k? (e•)

≤ qe•µ•,k(1− β),

and thus (1.2.5), which completes the proof.

Definition of the test. For α ∈ (0, 1) and k ∈ N we define the threshold

τk(α) := 2Lαqk

(
(ε◦•)2

v2
•

)
+ 2L2

αmk

(
(ε◦•)2

v2
•

)
(1.2.7)

and the corresponding test

∆k,α := 1{q̂2
k
>τk(α)}. (1.2.8)

Proposition 1.2.1 (i) shows that the test ∆k,α/2 is a level α/2-test for any k ∈ N. Moreover,
∆k?,α/2 with

k? := ka•,v•(ε•) ∧ ka•,v•(θ◦•σ•) (1.2.9)

is a (1 − α/2)-powerful test over Aα {ρa•,v•(ε•) ∨ ρa•,v•(θ◦•σ•)}-separated alternatives due to
Proposition 1.2.1 (ii) with β = α/2 and A

2
α := R2 + cCα/2,α/2 = R2 + c

(
10Lα/2 + 30L2

α/2

)
.

Hence,

R
(
∆k?,α/2 | Θ

R
a• ,Λ

c
v• , θ

◦
• , A {ρa•,v•(ε•) ∨ ρa•,v•(θ◦•σ•)}

)
≤ α/2 + α/2 = α

for all A ≥ Aα. In other words, ρ2
a•,v•(ε•) ∨ ρ

2
a•,v•(θ

◦
•σ•) is an upper bound for the radius of

testing of ∆k?,α/2, which is summarised in the next theorem.

Theorem 1.2.2 (Upper bound for the radius of testing). For α ∈ (0, 1) define A2
α :=

R2 + c
(
10Lα/2 + 30L2

α/2

)
. Then, for all A ≥ Aα we have

R
(
ΘR
a• ,Λ

c
v• , θ

◦
• , Aρ

)
≤ α,

with ρ := ρa•,v•(ε•) ∨ ρa•,v•(θ◦•σ•), i.e. ρ2 is an upper bound for the minimax radius of
testing.

Proof of Theorem 1.2.2. The claim follows from Proposition 1.2.1 considering ∆k?,α/2 defined
in (1.2.8) and the elementary bound

R
(
ΘR
a• ,Λ

c
v• , θ

◦
• , Aρ

)
≤ R

(
∆k?,α/2 | Θ

R
a• ,Λ

c
v• , θ

◦
• , Aρ

)
.
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Remark 1.2.3 (Signal detection vs. goodness-of-fit). Considering the signal detection
task, i.e. θ◦• = 0•, we have ρa•,v•(θ◦•σ•) = 0 for all σ• ∈ RN

+ and, thus, the minimax radius of
testing does not depend on the noise level σ•.
Considering the goodness-of-fit task, i.e. θ◦• 6= 0•, for all ε• ≥ σ•, we have

qk

(
(θ◦•)2σ2

•

v2
•

)
≤ qk

(
(θ◦•)2ε2

•

v2
•

)
≤ ‖θ◦•‖

2
`∞ qk

(
ε2
•

v2
•

)
and, therefore, ρa•,v•(θ◦•σ•) ≤ ‖θ◦•‖`∞ ρa•,v•(ε•). In other words, ρa•,v•(θ◦•σ•) is negligible com-
pared to ‖θ◦•‖`∞ ρa•,v•(ε•). We point out that ε• ≥ σ• is a natural situation. It essentially means
that the (multiplication) operator can be observed with the same or at lower noise level than
the sequence of interest. A similar assumption is for instance also considered in Cavalier and
Hengartner [2005] and Efromovich [1997]. Often, if both measurements Y• and X• are made
with the same “measurement device”, it is even common to assume ε• = σ•. �

Remark 1.2.4 (Homoscedastic, (non-)parametric rates). In the homoscedastic case, i.e.
ε• = (ε)j∈N and σ• = (σ)j∈N for ε, σ ∈ R+ we are especially interested in the behaviour of
the radii of testing ρa•,v•(ε) := ρa•,v•(ε◦•) and ρa•,v•(σ) := ρa•,v•(θ◦•σ•) as ε and σ tend to zero.
ρa•,v•(ε) and ρa•,v•(σ) are then called rates of testing. We call ρa•,v•(ε) (respectively ρa•,v•(σ))
parametric, if ρa•,v• (ε)

ε is bounded away from 0 and infinity as ε→ 0. Note that since

lim inf
ε→0

ρa•,v•(ε)
ε

≥ ‖v•‖−2
∞

and a• > 0•, it is always bounded away from 0. Hence, it becomes parametric if and only if
v−2
• ∈ `2. However, since v• ∈ `∞ and therefore v−2

j ≥ ‖v•‖−2
∞ for all j ∈ N, we always have

v−2
• 6∈ `2. Thus, the rate ρa•,v•(ε) is always non-parametric.

On the other hand, for a goodness-of-fit task (θ◦• 6= 0•), it can similarly be seen that the rate
ρa•,v•(σ) is parametric if and only if θ◦•

v• ∈ `
2, which is possible. Note that it is never faster than

parametric, since

lim inf
σ→0

ρa•,v•(σ)
σ

≥
∥∥∥(θ◦•)2

∥∥∥
`2
‖v•‖−2

∞ > 0.

�

Illustration 1.2.5. Throughout this chapter we illustrate the order of the rates of testing in
the homoscedastic case ε• = (ε)j∈N and σ• = (σ)j∈N under the following typical smoothness
and ill-posedness assumptions. Concerning the regularity class ΘR

a• we distinguish two
behaviours of the sequence a•, namely the ordinary smooth case a• = (j−s)j∈N for s > 1/2,
where ΘR

a• corresponds to a Sobolev ellipsoid, and the super smooth case a• = (e−js)j∈N
for s > 0, which can be interpreted as an analytic class of parameters. Concerning the class
Λc

v• we also distinguish two cases for the sequence v•. For p > 0 we consider a mildly
ill-posed model v• = (j−p)j∈N and a severely ill-posed model v• = (e−jp)j∈N. Finally,
we consider two cases of null hypotheses: the signal detection task θ◦• = 0• and the
goodness-of-fit testing task θ◦• = (j−t)j∈N for some t > 1/2. The table below displays
the order of the optimal choice k? := ka•,v•(ε•) ∧ ka•,v•(θ◦•σ•) for the dimension parameter
as well as the order of the minimax rate ρ2

a•,v•(ε•)∨ρ
2
a•,v•(θ

◦
•σ•) for the signal detection task

(with ρ2
a•,v•(θ

◦
•σ•) = 0 as discussed in Remark 1.2.3) and the goodness-of-fit task. Keep

in mind that the rate ρ2
a•,v•(ε•) does not depend on the null hypothesis, therefore, it is

the same for all θ◦• ∈ `2. In accordance with Remark 1.2.4, ρ2
a•,v•(θ

◦
•σ•) is parametric for

the goodness-of-fit task whenever (θ◦•)2

v2
•
∈ `2. The calculations of the order of the radii in

this chapter are similar to the calculations in the illustrations in Chapter 3 and Chapter 4
(replace n with ε2) and thus omitted.
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Order of the optimal dimension ka•,v•(ε•) ∧ ka•,v•(θ◦•σ•)
and the minimax radius ρ2

a•,v•(ε•) ∨ ρ
2
a•,v•(θ

◦
•σ•)

in the homoscedastic case ε• = (ε)j∈N, σ• = (σ)j∈N.

aj vj ka•,v•(ε•) ρ2
a•,v•(ε•) ka•,v•(θ◦•σ•) ρ2

a•,v•(θ
◦
•σ•)

θ◦• ∈ `2 θ◦• = (j−t)j∈N

σ
− 4

4s+4(p−t)+1 σ
8s

4s+4(p−t)+1 t− p < 1
4

j−s j−p ε
− 4

4p+4s+1 ε
8s

4s+4p+1 σ−
1
s |log σ|

1
2 σ2 t− p = 1

4
σ−

1
s σ2 t− p > 1

4

j−s e−j
p |log ε|

1
p |log ε|−

2s
p |log σ|

1
p |log σ|−

2s
p

|log σ|
1
s |log σ|

4(p−t)+1
2s σ2 t− p < 1

4

e−j
s

j−p |log ε|
1
s ε2 |log ε|

4p+1
2s |log σ|

1
s (log |log σ|)

1
2 σ2 t− p = 1

4
|log σ|

1
s σ2 t− p > 1

4

Remark 1.2.6 (Simplified test statistics). Let us note that by applying Markov’s inequality
it can be shown that the test 1{q̂2

k?
>τ̃k(α)} with the simplified threshold τ̃k(α) :=

√
2
αqk?

(
(ε◦•)2

v2
•

)
and k? as in (1.2.9) also attains the minimax radius of testing ρa•,v•(ε•) ∨ ρa•,v•(θ◦•σ•). The
approach of deriving radii of testing by applying Markov’s inequality has for example been used
in Kroll [2019a] and is used in Chapter 3 of this thesis. Since we are in particular concerned
with adaptive Bonferroni aggregation, we need the sharper bound given in Proposition 1.2.1 for
the threshold constant in terms of α. This directly translates to the cost to pay for adaptivity. �

The test ∆k,α in (1.2.8) explicitly uses the knowledge of v•, which determines the asymptotic
behaviour of the sequence λ• ∈ Λc

v• . Inspired by Laurent et al. [2011], as an alternative we
consider a direct test in Section 1.4. But, first, we provide a matching lower bound to the
upper bound derived in Theorem 1.2.2 for the case ε• ≤ σ•. This assumption is discussed in
Remark 1.2.3.

1.3 Lower bound

Proposition 1.3.1 (Lower bound in terms of ε•). Let k? := ka•,v•(ε•) and let η ∈ (0, 1]
satisfy

η ≤
qk?(ε2

•/v2
•) ∧ a2

k?

ρ2
a•,v•(ε•)

=
qk?(ε2

•/v2
•) ∧ a2

k?

qk?(ε2
•/v2

•) ∨ a2
k?

. (1.3.1)

For α ∈ (0, 1) define A2
α := η

(
R2 ∧

√
2 log(1 + 2α2)

)
. Then, for all A ≤ Aα we have

R
(
ΘR
a• ,Λ

c
v• , θ

◦
• , Aρa•,v•(ε•)

)
≥ 1− α,

i.e. ρ2
a•,v•(ε•) is a lower bound for the minimax radius of testing.

Proof of Proposition 1.3.1. Reduction step. To prove lower bounds for the testing radius
we reduce the risk of a test to a distance between probability measures on the null and the
alternative. Let us write ρ := ρa•,v•(ε•) and let µ be a probability measure on

{
`2Aαρ

∩ΘR
a•

}
×Λc

v• ,
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µ induces a so-called mixing measure

Pε•,σ•µ :=
∫

ΘR
a•×Λc

v•

Pε•,σ•θ•,λ•
dµ(θ•, λ•).

For any test ∆ the risk can then be lower bounded in terms of the χ2-distance between the
probability distribution under the null P0 := Pε•,σ•θ◦• ,v• for v• ∈ Λc

v• and Pµ := Pε•,σ•µ as follows

R
(
∆ | ΘR

a• ,Λ
c
v• , θ

◦
• , Aαρ

)
≥ P0 (∆ = 1) + Pµ (∆ = 0)

= 1− TV(P0,Pµ) ≥ 1−

√
χ2(P0,Pµ)

2 , (1.3.2)

where TV denotes the total variation distance and χ2 the χ2-divergence.
Definition of the mixture. Let k ∈ N be fixed, for a given sequence of deviations from the
null θ̃• ∈ `2 and τ ∈ {±}k we define θ̃τ• ∈ `2 by

θ̃τj = τj θ̃j1{j∈JkK}

We consider the uniform mixture measure over the vertices of a hypercube

Pµ := 1
2k

∑
τ∈{±}k

Pε•,σ•
θ◦•+θ̃τ• ,v•

= 1
2k

∑
τ∈{±}k

N (v•(θ◦• + θ̃τ• ), ε•)⊗N (v•, σ•).

Naturally, since we only mix over ΘR
a• and not over Λc

v• , the χ2-divergence between P0 and Pµ
reduces to the χ2-divergence between the marginal distribution of (Yj)j∈N and the dependence
on the marginal distribution of (Xj)j∈N cancels. Lemma A.3.1 from the appendix then shows
that

χ2(P0,Pµ) = χ2

 1
2k

∑
τ∈{±}k

N (v•(θ◦• + θ̃τ• ), ε•),N (v•θ◦• , ε•)


≤ exp

1
2
∑
j∈JkK

v4
j θ̃

4
j

ε4
j

− 1 = exp
(

1
2q2

k

(
v2
• θ̃

2
•

ε2
•

))
− 1.

Combining the last bound with (1.3.2) we see that the assertion follows as soon as
(a) θ̃ ∈ `2Aαρ, (separation)

(b) θ̃ ∈ ΘR
a• , (smoothness)

(c) q2
k

(
v2
•θ̃

2
•

ε2
•

)
≤ 2 log(1 + 2α2). (similarity)

Definition of the deviations. It remains to define these quantities. Let k := k? := ka•,v•(ε•)
and consider θ̃• with

θ̃j :=
√
ζηρa•,v•(ε•)
qk?(ε2

•/v2
•)

ε2
j

v2
j

1{j∈Jk?K}, for j ∈ N and ζ := R2 ∧
√

2 log(1 + 2α2).

Since
∥∥∥θ̃•∥∥∥2

`2
= q2

k?
(θ̃•) = ζηρ2

a•,v•(ε•) with A2
α = ζη, (a) is satisfied. Moreover, the condition on

η implies for all m ≤ k? that b2
m(θ̃•) ≤ q2

k?
(θ̃•) = A2

αρ
2 ≤ ζa2

k?
≤ R2a2

m due to the monotonicity
of a•. Trivially, we also have b2

m(θ̃•) = 0 ≤ a2
m for each m > k?. Therefore, θ̃• satisfies (b).

Again exploiting the condition on η we obtain

q2
k?

(
v2
• θ̃

2
•

ε2
•

)
= ζ2η2 (ρa•,v•(ε•))4

q2
k?

(ε2
•/v2

•)
≤ ζ2 ≤ 2 log(1 + 2α2),

and, thus, also (c) holds, which completes the proof.
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Note that the lower bound in Proposition 1.3.1 involves the value η satisfying (1.3.1), which
depends on the joint behaviour of the sequences v• and a• and essentially guarantees an optimal
balance of the bias and the variance term in the dimension k?. Moreover, looking at Remark 1.2.3
we see that Proposition 1.3.1 provides a matching lower bound to the upper bound derived in
Theorem 1.2.2, whenever the radius is governed by the ε•-term, which is for instance the case if
ε• ≥ σ•.

1.4 Upper bound via a direct testing procedure

In this section we derive an upper bound for the radius of testing based on the estimation of
‖λ•(θ• − θ◦•)‖

2
`2 instead of

∥∥∥λ•v• (θ• − θ◦•)
∥∥∥2

`2
as in the section before. In fact, for k ∈ N we consider

q̃2
k :=

∑
j∈JkK

(
(Yj − θ◦jXj)2 − (ε◦j )2

)
=
∑
j∈JkK

(
Ỹ 2
j − (ε◦j )2

)
, (1.4.1)

which is an unbiased estimator of the truncated version q2
k(λ•(θ• − θ◦•)), since

Eε•,σ•θ•,λ•

(
q̃2
k

)
=

∑
|j|∈JkK

(
(ε◦j )2 + λ2

j

(
θj − θ◦j

)2
− (ε◦j )2

)
= q2

k(λ•(θ• − θ◦•)).

To formulate a result similar to Proposition 1.2.1 we introduce for a sequence x• ∈ RN the
minimum

(
ρd
a•,v•(x•)

)2
:= min

k∈N

{
v−2
k qk

(
x2
•

)
∨ a2

k

}
= min

k∈N

v−2
k

√∑
j∈JkK

x4
j ∨ a

2
k

 (1.4.2)

and minimizer

kd
a•,v•(x•) := arg min

k∈N

{
v−2
k qk

(
x2
•

)
∨ a2

k

}
= arg min

k∈N

v−2
k

√∑
j∈JkK

x4
j ∨ a

2
k

 . (1.4.3)

Replacing the sequence x• by the original and effective noise levels ε• and θ◦•σ• we establish
(ρd
a•,v•(ε•)∨ρ

d
a•,v•(θ

◦
•σ•))2 as the optimal achievable radius for the direct test. Similar to Propo-

sition 1.2.1 (for the indirect test) the next result allows to evaluate the performance of the direct
test based on the test statistic (1.4.1) under both, the null hypothesis and the alternative.

Proposition 1.4.1 (Bounds for the quantiles of q̃2
k). For u ∈ (0, 1) set Lu :=

√
|log u|.

Let α, β ∈ (0, 1).

(i) (α-level) For each k ∈ N we have

sup
λ∈Λc

v•

Pε•,σ•θ◦• ,λ•

(
q̃2
k > 2Lαq2

k

(
(ε◦•)2

)
+ 2L2

αmk

(
(ε◦•)2

))
≤ α. (1.4.4)

(ii) ((1 − β)-powerful) Define the dimension kd
? := kd

a•,v•(ε•) ∧ k
d
a•,v•(θ

◦
•σ•) ∈ N as in

(1.2.3) and Cα,β := 5
(
Lα + L2

α + Lβ + 5L2
β

)
. Then for each θ• − θ◦• ∈ ΘR

a• ∩ `
2
ρ with

ρ2 ≥
(
R2 + cCα,β

)
(ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•))2
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we have

sup
λ∈Λc

v•

Pε•,σ•θ•,λ•

(
q̂2
kd
?
≤ 2Lαq2

kd
?

(
(ε◦•)2

)
+ 2L2

αmkd
?

(
(ε◦•)2

))
≤ β. (1.4.5)

Proof of Proposition 1.4.1. We note that (Y•, X•) ∼ Pε•,σ•θ•,λ•
implies

Qk := q̃2
k + q2

k(ε◦•) ∼ Qe•
µ•,k

with e• = ε◦• and µ• = λ•(θ• − θ◦•), where we again use the notation of Lemma A.1.1 in the
appendix.

(i) The proof of (1.4.4) follows analogously to the proof of (1.2.4) in Proposition 1.2.1 by
applying Lemma A.1.1.

(ii) Similar calculations as in the proof of (1.2.5) show that for each θ• − θ◦• ∈ ΘR
a• ∩ `

2
ρ with

ρ2 ≥ (R2 + cCα,β)
(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2
, we obtain for k = kd

?

‖θ• − θ◦•‖
2
`2 ≥ ρ

2 ≥ (R2 + cCα,β)
(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2

≥ R2a2
k + cCα,βv−2

k

{
qk
(
ε2
•

)
∨ qk

(
(θ◦•)2σ2

•

)}
≥ R2a2

k + cCα,β2 v−2
k qk

(
e2
•

)
≥ R2a2

k + c5
2v−2

k

{
Lαqk

(
e2
•

)
+ L2

αmk

(
e2
•

)
+ qk

(
e2
•

)
(Lβ + 5L2

β)
}
, (1.4.6)

using
(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2
= v−2

k qk
(
ε2
•

)
∨qk

(
(θ◦•)2σ2

•

)
∨a2

k due to Lemma A.2.1 and
2
{
qk
(
ε2
•

)
∨ qk

(
(θ◦•)2σ2

•

)}
≥ qk

(
(ε◦•)2) = qk

(
e2
•

)
≥ mk(e2

•). Moreover, for each k ∈ N and
λ ∈ Λc

v• we have cv−2
k q2

k(µ•) ≥ q2
k(θ• − θ◦•) = ‖θ• − θ◦•‖

2
`2 − b2

k(θ• − θ◦•), which in turn for
each θ• − θ◦• ∈ ΘR

a• implies

cv−2
k q2

k(µ•) ≥ ‖θ• − θ◦•‖
2
`2 − R2a2

k.

This bound applied with k = kd
? together with (1.4.6) yields

cv−2
k q2

k(µ•) ≥ c5
2v−2

k

{
Lαqk

(
e2
•

)
+ L2

αmk

(
e2
•

)
+ qk

(
e2
•

)
(Lβ + 5L2

β)
}
.

Rearranging the last inequality and proceeding as in the proof of (1.2.5) implies (1.4.5),
which shows the assertion.

Definition of the test. For α ∈ (0, 1) and k ∈ N we define the threshold

τd
k (α) := 2Lαq2

k((ε◦•)2) + 2L2
αmk((ε◦•)2) (1.4.7)

and the corresponding test

∆d
k,α := 1{q̃2

k
>τd

k
(α)}. (1.4.8)

Proposition 1.4.1 (i) shows that the test ∆d
k,α/2 is a level α/2-test for any k ∈ N. Moreover,

∆d
kd
? ,α/2

with

kd
? := kd

a•,v•(ε•) ∧ k
d
a•,v•(θ

◦
•σ•) (1.4.9)
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is a (1 − α/2)-powerful test over Aα
{
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

}
-separated alternatives due to

Proposition 1.4.1 (ii) with β = α/2 and A
2
α := R2 + cCα/2,α/2 = R2 + c

(
10Lα/2 + 30L2

α/2

)
.

Hence,

R
(
∆d
kd
? ,α/2

| ΘR
a• ,Λ

c
v• , θ

◦
• , A

{
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

})
≤ α/2 + α/2 = α

for all A ≥ Aα. In other words,
(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2
is an upper bound for the radius of

testing of ∆d
kd
? ,α/2

. Moreover, it is also a lower bound for its radius of testing, which we prove
in the next proposition.

Proposition 1.4.2 (Radius of testing of ∆d
kd
? ,α/2

). Let α ∈ (0, 1) and

ρ := ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•).

(i) (upper bound) With A
2
α := R2 + c

(
10Lα/2 + 30L2

α/2

)
we obtain for all A ≥ Aα

R
(
∆d
kd
? ,α/2

| ΘR
a• ,Λ

c
v• , θ

◦
• , Aρ

)
≤ α.

(ii) (lower bound) Let

0 < η ≤
a2
kD?

ρ2

and define A2
α := R2η. Then it follows for all A ≤ Aα

R
(
∆d
kd
? ,α/2

| ΘR
a• ,Λ

c
v• , θ

◦
• , Aρ

)
≥ 1− α.

Summarizing, ρ2 is a radius of testing for the test ∆d
kd
? ,α/2

.

Proof of Proposition 1.4.2. Firstly, part (i) is an immediate consequence of Proposition 1.4.1
and we omit the details. Secondly, consider part (ii). We note that for each λ• ∈ Λc

v• and
θ• − θ◦• ∈ ΘR

a• with q2
kd
?
(θ• − θ◦•) = 0 we have

Qkd
?

:= q̃2
kd
?

+ q2
kd
?
(ε◦•) ∼ Q

ε◦•
0•,kd

?

and, thus,

Pε•,σ•θ•,λ•
(∆d

kd
? ,α/2

= 1) ≤ α

2

due to (A.1.1) in Lemma A.1.1 (using the notation introduced therein). For any θ• − θ◦• ∈ ΘR
a•

with

q2
kd
?
(θ• − θ◦•) = 0 and b2

kd
?
(θ• − θ◦•) = R2a2

kd
?
,

which is for instance satisfied for

θ• − θ◦• =
(
Rakd

?
1{j=kd

?+1}
)
j∈N

,
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it immediately follows

A2
αρ

2 = R2η
(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2
≤ R2a2

kd
?

= b2
kd
?
(θ• − θ◦•) ≤ ‖θ• − θ◦•‖

2
`2 ,

which shows that θ• − θ◦• is contained in the alternative. Hence, for such a θ• and all A ≥ Aα
we obtain

R
(
∆d
kd
? ,α/2

| ΘR
a• ,Λ

c
v• , θ

◦
• , Aρ

)
≥ Pε•,σ•θ•,λ•

(∆d
kd
? ,α/2

= 0) ≥ 1− α

2 ≥ 1− α,

which shows (ii) and completes the proof.

Remark 1.4.3 (Optimality of the direct test). Considering the signal detection task,
i.e. θ◦• = 0• we have ρd

a•,v•(θ
◦
•σ•) = 0 for all σ• ∈ RN

+ and thus the radius of testing does not
depend on the noise level σ•. Considering the goodness-of-fit task, i.e. θ◦• 6= 0•, we emphasise
that for all ε• ≥ σ•, we have

qk
(
(θ◦•)2σ2

•

)
≤ qk

(
(θ◦•)2ε2

•

)
≤ ‖θ◦•‖

2
`∞ qk

(
ε2
•

)
and, therefore, ρd

a•,v•(θ
◦
•σ•) ≤ ‖θ◦•‖`∞ ρd

a•,v•(ε•). In other words, ρd
a•,v•(θ

◦
•σ•) is negligible com-

pared to ‖θ◦•‖`∞ ρd
a•,v•(ε•). Hence, the direct test shows a similar behaviour as the indirect test

(as discussed in Remark 1.2.3).
Let us now briefly discuss under which conditions the direct test attains the radius ρ2

a•,v•(ε•) ∨
ρ2
a•,v•(θ

◦
•σ•) of the indirect test. For any ε• ∈ RN

+ the elementary inequality

v−2
k q2

k(ε2
•) ≥ q2

k

(
ε2
•

v2
•

)
, k ∈ N (1.4.10)

shows that

ρd
a•,v•(ε•) ≥ ρa•,v•(ε•).

If there exists a constant κ1 ∈ R+ such that

v−2
k q2

k(ε2
•) ≤ κ1q2

k

(
ε2
•

v2
•

)
, k ∈ N, (1.4.11)

then ρd
a•,v•(ε•) and ρa•,v•(ε•) are of the same order. In particular, then the test ∆d

kd
? ,α/2

attains
the minimax radius in the signal detection case. The condition (1.4.11) is e.g. satisfied in
a mildly ill-posed model. Note that, however, the additional condition is sufficient but not
necessary as we will see in the illustration below. Considering the radius in terms of σ• we
obtain ρd

a•,v•(θ
◦
•σ•) ≥ ρa•,v•(θ◦•σ•) by exploiting again the elementary inequality (1.4.10) (with ε•

replaced by θ◦•σ•). Therefore, if there exists in addition a constant κ2 ∈ R+ such that

v−2
k q2

k((θ◦•)2σ2
• ) ≤ κ2q2

k

(
(θ◦•)2σ2

•

v2
•

)
, k ∈ N, (1.4.12)

then ρd
a•,v•(θ

◦
•σ•) and ρa•,v•(θ◦•σ•) are of the same order. Summarizing, if both (1.4.11) and

(1.4.12) are satisfied, then the test ∆d
kd
? ,α/2

attains the same radius as the indirect test, where
the conditions are again sufficient but not necessary. �
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Illustration 1.4.4. In the homoscedastic case we illustrate the order of the rate and the
corresponding optimal dimension parameter of the direct test ∆d

kd
? ,α/2

defined in (1.4.8) by
considering the typical smoothness and ill-posedness assumptions as in Illustration 1.2.5.
The table displays the order of the rate

(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2
for the signal detection

task θ◦• = 0• (with ρd
a•,v•(θ

◦
•σ•) = 0 as discussed in Remark 1.4.3) and the goodness-of-

fit task with θ◦• = (j−t)j∈N. In comparison with Illustration 1.2.5 we point out that in
all three cases the orders of

(
ρd
a•,v•(ε•)

)2
and ρ2

a•,v•(ε•) coincide. Note that there exists
a κ1 ∈ R+ such that (1.4.11) is fulfilled only in the case of a mildly ill-posed model. In
a severely ill-posed model, however, there exists no such constant. Nonetheless, in both
cases the direct test performs optimally with respect to the noise level ε. Comparing the
orders of

(
ρd
a•,v•(θ

◦
•σ•)

)2
and ρ2

a•,v•(θ
◦
•σ•) we note that in both a mildly and a severely

ill-posed model there does not exist a κ2 ∈ R+ such that (1.4.12) is satisfied. Even so, for
severely ill-posed models the rate of the direct test

(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2
and the rate

of the indirect test ρ2
a•,v•(ε•) ∨ ρ

2
a•,v•(θ

◦
•σ•) are of the same order, and thus the direct test

is also optimal. On the other hand, for mildly ill-posed models the rate
(
ρd
a•,v•(θ

◦
•σ•)

)2
is

always nonparametric and might be much slower than the rate ρ2
a•,v•(θ

◦
•σ•), which can be

parametric (cp. Illustration 1.2.5).

Order of the optimal dimension kd
a•,v•(ε•) ∧ k

d
a•,v•(θ

◦
•σ•)

and the radius
(
ρd
a•,v•(ε•) ∨ ρ

d
a•,v•(θ

◦
•σ•)

)2

in the homoscedastic case ε• = (ε)j∈N and σ• = (σ)j∈N

aj vj kd
a•,v•(ε•)

(
ρd
a•,v•(ε•)

)2
kd
a•,v•(θ

◦
•σ•)

(
ρd
a•,v•(θ

◦
•σ•)

)2

(smooth.) (ill-posed.) θ◦• ∈ `2 θ◦• = (j−t)j∈N

j−s j−p ε
− 4

4p+4s+1 ε
8s

4s+4p+1 σ
− 1
s+p σ

2s
s+p

j−s e−j
p |log ε|

1
p |log ε|−

2s
p |log σ|

1
p |log σ|−

2s
p

e−j
s

j−p |log ε|
1
s ε2 |log ε|

4p+1
2s |log σ|

1
s |log σ|

2p
s σ2

Laurent et al. [2011] show that for known operators, under specific smoothness and ill-
posedness assumptions (covered also in Illustration 1.2.5 and Illustration 1.4.4) every minimax
optimal test for the direct task is also minimax optimal for the indirect task. Even under these
specific assumptions this in no longer the case for unknown operators if ρd

a•,v•(ε•) is negligible
compared to ρd

a•,v•(θ
◦
•σ•), since we observe that the direct test ∆d

kd
? ,α/2

defined in (1.4.8) is not
always optimal for the indirect task (compare Illustration 1.4.4 and Illustration 1.2.5).

1.5 Adaptation

1.5.1 Description of the adaptation procedure

For both the indirect and the direct test the optimal choice of the dimension parameter k? (in
(1.2.3)) respectively kd

? (in (1.4.3)) require prior knowledge of the sequences a• and v•, which are
typically unknown in practise. In this section we study an aggregation of the tests over several
dimension parameters, which leads to a testing procedure that performs nearly optimal over a
wide range of regularity classes. We first present the testing radii of these aggregation-tests,
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where compared to the minimax radii of testing we observe a deterioration by a log-factor with
respect to the noise levels. Moreover, we show that this deterioration is an unavoidable cost to
pay for adaptation.

Aggregation procedure. Let us briefly describe a widely used aggregation strategy. For a
sequence of levels (αk)k∈N ∈ (0, 1)N let (Sk,αk)k∈N be a sequence of test statistics such that

∇k,αk := 1{Sk,αk>0}

is a level-αk-test for each k ∈ N. Note that both the indirect and the direct testing procedures
satisfy this condition by construction as shown in (1.2.4) and (1.4.4) in Proposition 1.2.1 and
Proposition 1.4.1, respectively. Given a finite collection K ⊆ N of dimension parameters and
α :=

∑
k∈K αk we consider the max-test statistic

SK,α := max
k∈K

Sk,αk

and the max-test

∇K,α := 1{SK,α>0},

that is, the max-test rejects the null hypothesis as soon as one of the tests does. Due to the
elementary inequality

Pε•,σ•θ◦• ,λ•
(∇K,α = 1) = Pε•,σ•θ◦• ,λ•

(SK,α > 0) ≤
∑
k∈K

Pε•,σ•θ◦• ,λ•
(Sk,αk > 0) ≤

∑
k∈K

αk = α, (1.5.1)

the max-test ∇K,α is a level-α-test. The type II error probability of the max-test can be con-
trolled by any test contained in the collection, since for all θ• ∈ `2 and λ• ∈ `∞ we have

Pε•,σ•θ•,λ•
(∇K,α = 0) = Pε•,σ•θ•,λ•

(SK,α ≤ 0) ≤ min
k∈K

Pε•,σ•θ•,λ•
(Sk,αk ≤ 0) = min

k∈K
Pε•,σ•θ•,λ•

(∇k,αk = 0) .

These two error bounds have oppositional effects on the choice of the collection K. Roughly
speaking, K should not be too large due to the aggregation of type I error probabilities. On the
other hand it should still be large enough to minimise the type II error probabilities. Typically
the choice of K depends on the original and the effective noise levels ε• and θ◦•σ•.

Bonferroni correction. Throughout this section, given a level α ∈ (0, 1) and a finite col-
lection K ⊆ N we consider Bonferroni levels αk = α

|K| , k ∈ K, i.e. the same level α
|K| for each

test statistic Sk,αk in the collection. For alternative constructions of error levels we refer to
Remark 4.3.1, where they are discussed in detail in a similar setting.

Lack of adaptability. The goal of the aggregation is to find testing strategies for which the
risk can be controlled over large families of alternatives. Let A ⊆ `2 and V ⊆ `∞ be classes of
positive, monotonically non-increasing sequences that are bounded by 1. To measure the cost
to pay for adaptation we introduce factors δε• and δσ• , which are typically called adaptive
factors (cf. Spokoiny [1996]) for a family of tests {∇α}α∈(0,1) and a family of alternatives{

ΘR
a• : a• ∈ A

}
×
{
Λc

v• : v• ∈ V
}
, if for every α ∈ (0, 1) there exists a constant Aα ∈ R+ such

that for all A ≥ Aα we have

sup
(a•,v•)∈A×V

R
(
∇α | ΘR

a• ,Λ
c
v• , θ

◦
• , A {ρa•,v•(δε•ε•) ∨ ρa•,v•(δσ•θ◦•σ•)}

)
≤ α.

Here, ρa•,v•(ε•) ∨ ρa•,v•(θ◦•σ•) is a non-adaptive radius of testing over ΘR
a• × Λc

v• . Compared
with the non-adaptive upper bound, the test ∇α now needs to perform for any combination
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(a•, v•) ∈ A×V. We, however, allow larger radii where the noise levels ε• and θ◦•σ• are magnified
by the factors δε• , δσ• > 1. The factors δε• and δσ• are called minimal adaptive factors if in
addition for every α ∈ (0, 1) there exists a constant Aα such that for all A ≤ Aα

inf
∇

sup
(a•,v•)∈A×V

R
(
∇ | ΘR

a• ,Λ
c
v• , θ

◦
• , A {ρa•,v•(δε•ε•) ∨ ρa•,v•(δσ•θ◦•σ•)}

)
≥ 1− α.

If the minimal adaptive factors tend to infinity as the noise levels decrease to zero, then this
phenomenon is typically called lack of adaptability.

1.5.2 Adaptation to smoothness – indirect test

In this section we first carry out an aggregation of the indirect tests. Recall that the indirect
test statistic q̂2

k in (1.2.1) and the threshold τk(α) in (1.2.7) explicitly use the knowledge of the
sequence v•. Therefore, we consider adaptation to

{
ΘR
a• : a• ∈ A

}
× Λc

v• for a given v• only.
We present the adaptive factors for the indirect max-test and show that they coincide with the
minimal adaptive factors asymptotically.

Indirect max-test. Given α ∈ (0, 1) and a finite collection K ⊆ N we define the max-test
statistic with Bonferroni levels

TK,α := max
k∈K

{
q̂2
k − τk

(
α

|K|

)}
and the corresponding test

∆K,α := 1{TK,α>0},

which is a level-α-test due to (1.2.4) in Proposition 1.2.1 and (1.5.1). Its radius of testing faces
a deterioration compared with the minimax radius due to the Bonferroni aggregation, which we
formalise next. Analogously to (1.2.2), for each sequence x• ∈ RN we define the minimum over
the collection K

ρ2
K,a•,v•(x•) := min

k∈K

{
qk

(
x2
•

v2
•

)
∨ a2

k

}
= min

k∈K


√√√√∑
j∈JkK

x4
j

v4
j

∨ a2
k

 (1.5.2)

and the corresponding minimizer

kK,a•,v•(x•) := arg min
k∈K

{
qk

(
x2
•

v2
•

)
∨ a2

k

}
= arg min

k∈K


√√√√∑
j∈JkK

x4
j

v4
j

∨ a2
k

 . (1.5.3)

Additionally, we define the minimum

r2
K,a•,v•(x•) := min

k∈K

{
mk

(
x2
•

v2
•

)
∨ a2

k

}
= min

k∈K

{
max
j∈JkK

x2
j

v2
j

∨ a2
k

}
. (1.5.4)

We first provide an upper bound for the radius of testing of the max-test in terms of the
reparametrised noise level (ε◦•)2 = ε2

• + (θ◦•)2σ2
• and the adaptive factor

δK := (1 ∨ log |K|)1/4 . (1.5.5)

The upper bound consists of the maximum of two terms

ρ2
K,a•,v•(δKε

◦
•) and r2

K,a•,v•(δ
2
Kε
◦
•).

We think of r2
K,a•,v•(δ

2
Kε
◦
•) as a remainder term, which is typically negligible compared with

ρ2
K,a•,v•(δKε

◦
•) (compare Remark 1.5.2 below).
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Proposition 1.5.1 (Adaptive upper bound – indirect max-test). For α ∈ (0, 1) define
A

2
α := R2 + c

(
5Lα/2 + 15L2

α/2 + 5
)
. Then for all A ≥ Aα we obtain

sup
a•∈A

R
(
∆K,α/2 | ΘR

a• ,Λ
c
v• , θ

◦
• , Aρa•

)
≤ α.

with ρa• = ρK,a•,v•(δKε◦•) ∨ rK,a•,v•(δ2
Kε
◦
•) and δK := (1 ∨ log |K|)1/4

Proof of Proposition 1.5.1. The proof follows along the lines of the proof of Proposition 1.2.1
and exploits (A.1.1) and (A.1.3) in Lemma A.1.1. We use the notation introduced there. For
(Y•, X•) ∼ Pε•,σ•θ•,λ•

we have

Qk := q2
k + q2

k(e•) ∼ Qe•
µ•,k

for each k ∈ N and e2
• := (ε◦•)2

v2
•

and µ• := λ•
v• (θ• − θ◦•). (A.1.1) implies that under the null

hypothesis with L :=
√

log(2 |K| /α) the quantile satisfies

qe•0•,k

(
α

2 |K|

)
≤ q2

k(e•) + 2Lqk(e2
•) + 2L2mk(e2

•)

and, therefore,

Pε•,σ•θ◦• ,λ•

(
∆K,α/2 = 1

)
= Pε•,σ•θ◦• ,λ•

(TK,α > 0) ≤
∑
k∈K

Pε•,σ•θ◦• ,λ•

(
q̂2
k > τk(α/ |K|)

)
=
∑
k∈K

Pε•,σ•θ◦• ,λ•

(
Qk > q

e•
0•,k

)
≤
∑
k∈K

α

2 |K| = α

2 . (1.5.6)

Under the alternative for θ•− θ◦• ∈ ΘR
a• ∩ `

2
ρ with ρ ≥ Aα

{
ρK,a•,v•(δKε◦•) ∨ rK,a•,v•(δ2

Kε
◦
•)
}

we
have

‖θ• − θ◦•‖
2
`2 ≥ A

2
α

{
ρ2
K,a•,v•(δKε

◦
•) ∨ r2

K,a•,v•(δ
2
Kε
◦
•)
}

≥ R2a2
k? + c

(
5Lα/2 + 15L2

α/2 + 5
){

qk?
(
δ2
Ke

2
•

)
∨mk?(δ4

Ke
2
•)
}

≥ R2a2
k? + c5Lα/2qk?

(
δ2
Ke

2
•

)
+ c15L2

α/2mk?(δ4
Ke

2
•) + c5qk?

(
δ2
Ke

2
•

)
≥ R2a2

k? + c5
2
(
Lqk?

(
e2
•

)
+ L2mk?

(
e2
•

)
+ q2

k?

(
e2
•

) (
Lα/2 + 5L2

α/2

))
(1.5.7)

where we successively use (∗), (∗∗) and (∗ ∗ ∗) shown below. Indeed, we have

ρ2
K,a•,v•(δKε

◦
•) ∨ r2

K,a•,v•(δ
2
Kε
◦
•) = qk?

(
δ2
Ke

2
•

)
∨mk?(δ4

Ke
2
•) ∨ a2

k? (∗)

with k? := arg min
k∈K

{
mk(δ4

Ke
2
•)
}
∧ arg min

k∈K

{
qk(δ2

Ke
2
•) ∨ a2

k

}
due to Lemma A.2.1;

qk?(δ2
Ke

2
•) ≥ qk?(e2

•) (∗∗)

and

qk?(δ2
Ke

2
•)(Lα/2 + 1) ≥ Lqk?(e2

•), mk?(δ4
Ke

2
•)(L2

α/2 + 1) ≥ L2mk?(e2
•). (∗ ∗ ∗)

For all k ∈ N, λ• ∈ Λc
v• and θ• − θ◦• ∈ ΘR

a• ∩ `
2
ρ it follows

cq2
k(µ•) ≥ ‖θ• − θ◦•‖

2
`2 − R2a2

k,
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which together with (1.5.7) implies
4
5q2

k?(µ•) ≥ 2Lqk?(e2
•) + 2L2mk?(e2

•) + 2(Lα/2 + 5L2
α/2)qk?(e2

•).

Rearranging the last inequality and using (A.1.3) in Lemma A.1.1 shows that for all λ• ∈ Λc
v•

under the alternative we have

Pε•,σ•θ•,λ•

(
∆K,α/2 = 0

)
= Pε•,σ•θ•,λ•

(
TK,α/2 ≤ 0

)
≤ min

k∈K
Pε•,σ•θ•,λ•

(
Qk ≤ 2Lqk(e2

•) + 2L2mk(e2
•) + q2

k(e•)
)

≤ Pε•,σ•θ•,λ•

(
Qk? ≤ q

e•
µ•,k?

(1− α/2)
)

= α

2 . (1.5.8)

Combining the bound for the type I error probability (1.5.6) and the bound for the type II error
probability (1.5.8) completes the proof.

Remark 1.5.2 (Adaptive factor δ2
K versus δK). The second term rK,a•,v•(δ2

Kε
◦
•) in the up-

per bound of Proposition 1.5.1 for the adaptive radius of testing can always be bounded by
ρK,a•,v•(δ2

Kε
◦
•) due to the elementary inequality mk(δ4

K(ε◦•)2/v2
•) ≤ qk(δ4

K(ε◦•)2/v2
•) for all k ∈ N.

Note that ρK,a•,v•(δ2
Kε
◦
•) only differs from the first term ρK,a•,v•(δKε◦•) in the upper bound of

Proposition 1.5.1 by an additional factor δK. Hence, we can always show that δ2
K is an adap-

tive factor. However, often this bound is too rough and the term rK,a•,v•(δ2
Kε
◦
•) is negligible

compared to ρK,a•,v•(δKε◦•), which then results in an adaptive factor δK. Let us give sufficient
conditions for the negligibility. Consider k? := kK,a•,v•(δKε◦•) as in (1.5.3). We give a condition
in terms of the relationship between k? and δK, which is then easy to check. Assume there exists
a C > 0 such that√

k?mk?

(
(ε◦•)2

v2
•

)
≤ Cqk?

(
(ε◦•)2

v2
•

)
, (1.5.9)

i.e. we “gain” at least a factor
√
k? by considering the maximum instead of the quadratic func-

tional (this is for instance the case in a mildly ill-posed model with homogeneous variance) and
assume additionally (for all a• ∈ A)

δ2
K ≤ C

√
k?. (1.5.10)

Then, naturally

mk?

(
δ4
K(ε◦•)2

v2
•

)
≤ C

√
k?mk?

(
δ2
K(ε◦•)2

v2
•

)
≤ C2qk?

(
δ2
K(ε◦•)2

v2
•

)
,

and, hence, rK,a•,v•(δ2
Kε
◦
•) ≤ CρK,a•,v•(δKε◦•), which implies that we obtain an adaptive factor

δK. �

We now reformulate the upper bound in Proposition 1.5.1 in terms of the noise levels ε• and
θ◦•σ•. Recall that the optimal dimension is given by a minimum

k? := ka•,v•(ε•) ∧ ka•,v•(θ◦•σ•)

(compare Proposition 1.2.1 (ii)). Therefore, we eventually choose collections Kε• and Kσ• de-
pending on ε• respectively σ• only and set

K := Kε• ∩ Kσ•
with

δε• := δKε• and δσ• := δKσ• .

Trivially, |K| ≤ |Kε• | ∧ |Kσ• | and hence δK ≤ δε• ∧ δσ• . The next result is a direct consequence
of Proposition 1.5.1 due to 2 {ρK,a•,v•(δε•ε•) ∨ ρK,a•,v•(δσ•θ◦•σ•)} ≥ ρK,a•,v•(δKε◦•) and its proof
is omitted. The assumption (1.5.11) simply states that the remainder term is indeed negligible.
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Theorem 1.5.3 (Adaptive upper bound - indirect max-test). Let K := Kε• ∩ Kσ• ,
δε• := δKε• and δσ• := δKσ• . Assume there exists a C ≥ 1 such that

rK,a•,v•(δ2
Kε
◦
•) ≤ CρK,a•,v•(δKε◦•) (1.5.11)

for all a• ∈ A. Then, for each α ∈ (0, 1) with A
2
α := 2

(
R2 + c

(
5Lα/2 + 15L2

α/2 + 5
))

it
follows for all A ≥ Aα

sup
a•∈A

R
(
∆K,α/2 | ΘR

a• ,Λ
c
v• , θ

◦
• , ACρa•

)
≤ α

with ρa• = ρK,a•,v•(δε•ε•) ∨ ρK,a•,v•(δσ•θ◦•σ•).

In Remark 1.5.4 and Illustration 1.5.5 we select a suitable collection K such that the min-
imisation over K approximates the minimisation over N well, i.e. such that the upper bound in
Theorem 1.5.3 satisfies

ρK,a•,v•(δε•ε•) ∨ ρK,a•,v•(δσ•θ◦•σ•) ≤ C̃ {ρa•,v•(δε•ε•) ∨ ρa•,v•(δσ•θ◦•σ•)}

for some C̃ > 1.

Remark 1.5.4 (Choice of K in the homoscedastic setting). Let us discuss the choice of
the collection K of dimension parameters in the homoscedastic case ε• = (ε)j∈N, σ• = (σ)j∈N.
Considering the signal detection task (where only the ε-terms appear, i.e. we set Kσ• = N
and K = Kε•) it is easily seen that for all v• ∈ V and a• ∈ A the minimax optimal dimension
ka•,v•(ε•) is never larger than ε−4. Therefore, the natural choice K = Kε := Jε−4K yields a factor
δK of order |log ε|1/4. However, in many cases it is sufficient to aggregate over a geometric grid
Kg :=

{
2j : j ∈ J4 |log2 ε| K

}
∪ {1}. Obviously, δKg is then of order (log |log ε|)1/4.

For a goodness-of-fit task the upper bound for the minimax optimal dimension parameter
can further be improved by exploiting the knowledge of θ◦• . More precisely, since q2

k

(
(ε◦•)2

v•

)
≥

q2
k

(
(ε◦•)2) ≥ ε4k + σ4q2

k((θ◦•)2) and supk∈N ak ≤ 1, any k ∈ N such that σ4q2
k((θ◦•)2) ≥ 1 is

an upper bound for the dimension parameter. For instance, for the goodness-of-fit task with
θ◦• = (j−t)j∈N as considered in Illustration 1.5.5 below, the upper bound is of order σ−4, which
results in the natural choice K = Jε−4K ∩ Jσ−4K =: Kε ∩ Kσ and an adaptive factor |log ε|1/4 ∧
|log σ|1/4. However, since a geometric grid Kg :=

{
2j : j ∈ J4 |log2 ε| K ∩ J4 |log2 σ| K

}
∪ {1} is

again sufficient, δK is of order (log |log ε|)1/4 ∧ (log |log σ|)1/4 = δε ∧ δσ. �

Summarizing, to obtain the desired upper bound ρ2
a•,v•(δε•ε•) ∨ ρ

2
a•,v•(δσ•θ

◦
•σ•) from Theo-

rem 1.5.3, there are two things to do. Firstly, construct the collection K such that minimization
over K approximates minimization over N well. Secondly, show the negligibility of the remainder
term, i.e. verify (1.5.11). This is done in the illustration below.

Illustration 1.5.5 (Homoscedastic case). Consider the smoothness and ill-posedness
assumptions of Illustration 1.2.5. Define the geometric grid

K := Kg :=
{

2j : j ∈ J4 |log2 ε| K ∩ J4 |log2 σ| K
}
∪ {1}

with an adaptive factor δK ≤ δε• ∧ δσ• , where δε ∼ (log |log ε|)1/4 and δσ ∼ (log |log σ|)1/4.
As discussed in Remark 1.5.4 in all three cases minimization over K approximates mini-
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mization over N well, i.e. there exists a C > 0 such that, uniformly for all a• ∈ A,

Cρa•,v•(δKε◦•) ≥ ρK,a•,v•(δKε◦•).

Moreover, for mildly ill-posed models rK,a•,v•(δ2
Kε
◦
•) is negligible compared with ρa•,v•(δKε◦•),

i.e. uniformly for all s ∈ [s?, s?] there exists a C̃ ≥ 1 such that

rK,a•,v•(δ2
Kε
◦
•) ≤ C̃ρK,a•,v•(δKε◦•),

since the conditions (1.5.9) and (1.5.10) are fulfilled. Furthermore, the constant C̃ can be
chosen uniformly for all sufficiently small noise levels.
In a severely ill-posed model rK,a•,v•(δ2

Kε
◦
•), ρK,a•,v•(δKε◦•), ρa•,v•(δKε◦•) and ρa•,v•(ε◦•) are

all of the same order and the adaptive factors have no effect on the rate. We present the
resulting rates of testing ρ2

a•,v•(δε•ε•)∨ρ
2
a•,v•(δσ•θ

◦
•σ•) for both the signal detection (θ◦• = 0•)

and the goodness-of-fit task (θ◦• = (j−t)j∈N) in the table below. Note that we only consider
the case 4t − 4p < 1 to avoid unnecessary case distinctions and increase the readability of
the table.

Order of the adaptive radius ρ2
K,a•,v•(δε•ε•) ∨ ρ

2
K,a•,v•(δσ•θ

◦
•σ•)

for the geometric grid K := Kg :=
{
2j : j ∈ J4 |log2 ε| K ∩ J4 |log2 σ| K

}
∪ {1}

in the homoscedastic case ε• = (ε)j∈N and σ• = (σ)j∈N.

aj vj ρ2
K,a•,v•(δε•ε•) ρ2

K,a•,v•(δσ•θ
◦
•σ•)

(smooth.) (ill-posed.) θ◦• ∈ `2 θ◦• = (j−t)j∈N, 4t− 4p < 1

j−s j−p
(
(log |log ε|)

1
4 ε
) 8s

4s+4p+1 ((log |log σ|)
1
4σ)

8s
4s+4(p−t)+1

j−s e−j
p |log ε|−

2s
p |log σ|−

2s
p

e−j
s

j−p ε2(log |log ε|)
1
2 |log ε|

4p+1
2s σ2(log |log σ|)

1
2 |log σ|

4(p−t)+1
2s

In case of super smoothness a• =
(
e−j

s)
j∈N and mild ill-posedness (see Illustration 1.2.5)

the minimax optimal dimension parameter is of order |log ε|
1

2s in the signal detection case
and of order |log ε|

1
2s ∧ |log σ|

1
2s in the goodness-of-fit task, which suggest (for adaptation

to s ≥ s?) a smaller geometric grid

Ks? :=
{

2j : j ∈ J
1

2s?
log2 |log ε| K ∩ J

1
2s?

log2 |log σ| K
}
∪ {1} ,

yielding an adaptive factor δKs? . δε∧δσ with δε ∼ (log log |log ε|)
1
4 and δσ ∼ (log log |log σ|)

1
4 .

Indeed, in this situation there exists a C ≥ 1 such that

rK,a•,v•(δ2
Kε
◦
•) ∨ ρK,a•,v•(δKε◦•) ≤ Cρa•,v•(δKε◦•)

uniformly for all s ≥ s? and for sufficiently small noise levels. We present the resulting rates
of testing in the table below.
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Order of the adaptive radius ρ2
K,a•,v•(δε•ε•) ∨ ρ

2
K,a•,v•(δσ•θ

◦
•σ•)

for the geometric grid K := Ks? :=
{

2j : j ∈ J 1
2s? log2 |log ε| K ∩ J 1

2s? log2 |log σ| K
}

in the homoscedastic case ε• = (ε)j∈N and σ• = (σ)j∈N.

aj vj ρ2
K,a•,v•(δε•ε•) ρ2

K,a•,v•(δσ•θ
◦
•σ•)

(smooth.) (ill-posed.) θ◦• ∈ `2 θ◦• = (j−t)j∈N, 4t− 4p < 1

e−j
s

j−p ε2(log log |log ε|)
1
2 |log ε|

4p+1
2s σ2(log log |log σ|)

1
2 |log σ|

4(p−t)+1
2s

1.5.3 Adaptation to both smoothness and ill-posedness – direct test

As an alternative to the indirect test we have introduced the direct test in Section 1.4. In contrast
to the indirect test it only depends on the sequence v• through the choice of the optimal dimen-
sion parameter. Hence, for a direct-max-test by aggregating over various dimension parameters
we consider adaptation to both smoothness

{
ΘR
a• : a• ∈ A

}
and ill-posedness

{
Λc

v• : v• ∈ V
}
.

Direct max-test. Given α ∈ (0, 1) and a finite collection K ⊆ N we define the max-test
statistic with Bonferroni levels

T d
K,α := max

k∈K

{
q̃2
k − τd

k

(
α

|K|

)}
and the corresponding test

∆d
K,α := 1{

Td
K,α>0

},
which is a level-α-test due to (1.4.4) in Proposition 1.4.1. Its testing radius faces a deterioration
compared to the optimal direct testing radius derived in Proposition 1.4.2 due to the Bonferroni
aggregation. Analogously to (1.4.2), for a sequence x• ∈ RN we define a minimum over the
collection K

(ρd
K,a•,v•(x•))

2 := min
k∈K

{
v−2
k qk(x2

•) ∨ a2
k

}
= min

k∈K

v−2
k

√∑
j∈JkK

x4
j ∨ a

2
k

 (1.5.12)

and the corresponding minimiser

kd
K,a•,v•(x•) := arg min

k∈K

{
v−2
k qk(x2

•) ∨ a2
k

}
= arg min

k∈K

v−2
k

√∑
j∈JkK

x4
j ∨ a

2
k

 .
Additionally, we define

(rd
K,a•,v•(x•))

2 := min
k∈K

{
v−2
k mk(x2

•) ∨ a2
k

}
= min

k∈K

{
v−2
k max

j∈JkK
(x2
j ) ∨ a2

k

}
. (1.5.13)

We first present an adaptive upper bound in terms of the reparametrised noise level (ε◦•)2 =
ε2
• + (θ◦•)2σ2

• and the factor δK := (1 ∨ log |K|)1/4. Again, the upper bound has two regimes,
which determine whether we obtain an adaptive factor δK or δ2

K.

42



Proposition 1.5.6 (Adaptive upper bound – direct max-test). For α ∈ (0, 1) define
A

2
α := R2 + c

(
5Lα/2 + 15L2

α/2 + 5
)
. Then for all A ≥ Aα we obtain

sup
(a•,v•)∈A×V

R
(
∆d
K,α/2 | Θ

R
a• ,Λ

c
v• , θ

◦
• , A

{
ρd
K,a•,v•(δKε

◦
•) ∨ rd

K,a•,v•(δ
2
Kε
◦
•)
})
≤ α.

Proof of Proposition 1.5.6. The proof follows along the lines of the proof of Proposition 1.5.1
using Proposition 1.4.1 rather than Proposition 1.2.1 and we omit the details.

Remark 1.5.7 (Adaptive factor δ2
K vs. δK). The upper bound in Proposition 1.5.6 consists

of two terms similar to the upper bound in Proposition 1.5.1. In contrast to rK,a•,v•(δ2
Kε
◦
•) in

Proposition 1.5.1 the term rd
K,a•,v•(δ

2
Kε
◦
•) in Proposition 1.5.6 is generally not negligible compared

to ρd
K,a•,v•(δKε

◦
•) if the effective noise level (θ◦•)2σ2

• determines the radius. That is, e.g. in the
homoscedastic case rd

K,a•,v•(δ
2
Kσ•) and ρd

K,a•,v•(δ
2
Kσ•) are of the same order. Hence, in this case,

we obtain an adaptive factor δ2
K. If, however, the noise level ε• governs the radius, rd

K,a•,v•(δ
2
Kε•)

is often negligible compared with ρd
K,a•,v•(δKε

◦
•), yielding an adaptive factor δK. Again, we give

sufficient conditions for this to happen. Similar to Remark 1.5.2 consider kd
? := kd

K,a•,v•(δKε•).
Assume there exists a C > 0 such that (compare assumption (1.5.9))√

kd
?mkd

?
(ε2
•) ≤ Cqkd

?
(ε2
•), (1.5.14)

and assume additionally that

δ2
K ≤ C

√
kd
? . (1.5.15)

Then, trivially,

mkd
?

(
δ4
Kε

2
•

)
≤ C

√
kd
?mkd

?

(
δ2
Kε

2
•

)
≤ C2qk

(
δ2
Kε

2
•

)
,

and, hence, rd
K,a•,v•(δ

2
Kε•) ≤ Cρd

K,a•,v•(δKε•). �

Next, we want to formulate the upper bound in Proposition 1.5.6 in terms of the noise
levels ε• and θ◦•σ•. Similar to the previous section, we choose collections Kε• and Kσ• and set
K := Kε•∩Kσ• with δε• := δKε• , δσ• := δKσ• and, hence, δK ≤ δε•∧δσ• . The assumption (1.5.16)
states that the remainder term evaluated in δ2

ε•ε• is negligible. As discussed in Remark 1.5.7
the remainder term evaluated in δ2

σ•θ
◦
•σ• is generally not negligible.

Theorem 1.5.8 (Adaptive upper bound - direct max-test). Let K := Kε• ∩ Kσ• ,
δε• := δKε• and δσ• := δKσ• . Assume there exists a C ≥ 1 such that

rd
K,a•,v•(δ

2
εε•) ≤ Cρd

K,a•,v•(δε•ε•) (1.5.16)

for a• ∈ A and v• ∈ V. Then, for each α ∈ (0, 1) withA2
α := 2

(
R2 + c

(
5Lα/2 + 15L2

α/2 + 5
))

it follows for all A ≥ Aα

sup
a•∈A

R
(
∆K,α/2 | ΘR

a• ,Λ
c
v• , θ

◦
• , AC

{
ρd
K,a•,v•(δε•ε•) ∨ ρ

d
K,a•,v•(δ

2
σ•θ
◦
•σ•)

})
≤ α.

Proof of Theorem 1.5.8. We have the elementary inequalities

2
{
ρd
K,a•,v•(δε•ε•) ∨ ρ

d
K,a•,v•(δσ•θ

◦
•σ•)

}
≥ ρd

K,a•,v•(δKε
◦
•),

2
{
rd
K,a•,v•(δ

2
ε•ε•) ∨ r

d
K,a•,v•(δ

2
σ•θ
◦
•σ•)

}
≥ rd
K,a•,v•(δ

2
Kε
◦
•)
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and

ρd
K,a•,v•(δ

2
σ•θ
◦
•σ•) ≥ rd

K,a•,v•(δ
2
σ•θ
◦
•σ•)

The assertion is now an immediate consequence of Proposition 1.5.6 and assumption (1.5.16).

Remark 1.5.9 (Optimality w.r.t ε•, suboptimality w.r.t σ•). Comparing the upper bounds
in Theorem 1.5.3 and Theorem 1.5.8 for the indirect and the direct max-tests shows that there ap-
pears an additional factor δσ• in the term ρd

K,a•,v•(δ
2
σ•θ
◦
•σ•). However, the radius

(
ρd
a•,v•(θ

◦
•σ•)

)2

achieved by the direct test is generally already much larger than the radius ρ2
a•,v•(θ

◦
•σ•) achieved

by the indirect test and the additional deterioration by a factor δσ• is negligible compared with
it. In other word, if the σ•-part of the radius determines its behaviour, the direct test already
performs suboptimally and the additional factor plays an inconsequential role. On the other
hand, if the ε•-part of the radius determines its behaviour, then ρd

K,a•,v•(δε•ε•) is typically of the
same order as ρK,a•,v•(δε•ε•) and, hence, optimal. �

Illustration 1.5.10 (Homoscedastic case). Consider the homoscedastic case and the
smoothness and ill-posedness assumptions introduced in Illustration 1.2.5. Choosing a ge-
ometric grid K := Kg :=

{
2j : j ∈ J4 |log2 ε| K ∩ J4 |log2 σ| K

}
∪ {1} with δK ≤ δε• ∧ δσ• ,

δε• ∼ (log |log ε|)1/4, δσ• ∼ (log |log σ|)1/4 yields

ρd
K,a•,v•(δε•ε•) ∨ ρ

d
K,a•,v•(δ

2
σ•θ
◦
•σ•) ≤ C

{
ρd
a•,v•(δε•ε•) ∨ ρ

d
a•,v•(δ

2
σ•θ
◦
•σ•)

}
for a constant C ≥ 1 chosen uniformly for s ∈ [s?, s?] and p ∈ [p?, p?]. That is, the
minimisation over K approximates the minimisation over N sufficiently well.
Moreover, for mildly ill-posed models we have

rd
K,a•,v•(δ

2
Kε•) ≤ Cρd

K,a•,v•(δε•ε•)

for some C ≥ 1 uniformly for all s ∈ [s?, s?] and p ∈ [p?, p?], since the conditions (1.5.14)
and (1.5.15) are fulfilled.
In a severely ill-posed case the terms ρd

K,a•,v•(δKε
◦
•), rd

K,a•,v•(δ
2
Kε
◦
•) and ρd

K,a•,v•(ε
◦
•) are

all of the same order and the adaptive factor has no effect on the rate. We present the
resulting adaptive radii from Theorem 1.5.8 in the table below.

Order of the adaptive radius
(
ρd
K,a•,v•(δε•ε•) ∨ ρ

d
K,a•,v•(δ

2
σ•θ
◦
•σ•)

)2

for the geometric grid K := Kg :=
{
2j : j ∈ J4 |log2 ε| K ∩ J4 |log2 σ| K

}
∪ {1}

in the homoscedastic case ε• = (ε)j∈N and σ• = (σ)j∈N
aj vj (ρd

K,a•,v•(δε•ε•))
2 (ρd

K,a•,v•(δ
2
σ•θ
◦
•σ•))2

(smooth.) (ill-posed.) θ◦• ∈ `2 θ◦• = (j−t)j∈N

j−s j−p
(
(log |log ε|)

1
4 ε
) 8s

4s+4p+1 ((log |log σ|)
1
2σ)

2s
s+p

j−s e−j
p |log ε|−

2s
p |log σ|−

2s
p

e−j
s

j−p ε2(log |log ε|)
1
2 |log ε|

4p+1
2s σ2(log |log σ|) |log σ|

2p
s

We shall stress that the orders of the upper bounds in terms of ε• = (ε)j∈N, i.e. ρd
K,a•,v•(δε•ε•)

(direct test) and ρK,a•,v•(δε•ε•) (indirect test), coincide in all three cases. Therefore, the
direct test performs optimally with an adaptive factor δε• if the ε•-terms govern the radii,
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this e.g. happens in the case ε ≥ σ. However, the upper bound ρd
K,a•,v•(δ

2
σ•σ•) in terms of σ•

obtained for the direct test is generally much slower than the optimal radius ρK,a•,v•(δσ•σ•)
achieved by the indirect test.

As in Illustration 1.5.5 in case of super smoothness a• =
(
e−j

s)
j∈N we consider a smaller

geometric grid for adaptation to s? > 0

K := Ks? :=
{

2j : j ∈ J
1

2s?
log2 |log ε| K ∩ J

1
2s?

log2 |log σ| K
}
∪ {1}

and an adaptive factor δKs? ≤ δε ∧ δσ with δε ∼ (log log |log ε|)
1
4 and δσ ∼ (log log |log σ|)

1
4 .

Order of the adaptive radius
(
ρd
K,a•,v•(δε•ε•) ∨ ρ

d
K,a•,v•(δ

2
σ•θ
◦
•σ•)

)2

for the geometric grid K := Ks? :=
{

2j : j ∈ J 1
2s? log2 |log ε| K ∩ J 1

2s? log2 |log σ| K
}

in the homoscedastic case ε• = (ε)j∈N and σ• = (σ)j∈N
aj vj (ρd

K,a•,v•(δε•ε•))
2 (ρd

K,a•,v•(δ
2
σ•θ
◦
•σ•))2

(smooth.) (ill-posed.) θ◦• ∈ `2 θ◦• = (j−t)j∈N

e−j
s

j−p ε2(log log |log ε|)
1
2 |log ε|

4p+1
2s σ2(log log |log σ|) |log σ|

2p
s

1.6 Adaptive lower bound

In this section we provide conditions under which a deterioration of the minimax testing radius is
unavoidable for adaptation over

{
ΘR
a• : a• ∈ A

}
, where A ⊆ `2 is a class of regularity sequences.

Proposition 1.6.1 (Adaptive lower bound). Let α ∈ (0, 1), δ = δε• ≥ 1 and let v• ∈ V
be fixed. Assume that there exists a collection of N regularity sequences

{
aj• : j ∈ JNK

}
⊆ A,

where we abbreviate for j ∈ JNK

ρj := ρ
aj•,v•

(δε•) with associated dimension parameters kj := k
aj•,v•

(δε•)

such that the following four conditions are satisfied.

(C1) The collection is ordered such that kl ≤ km and δ2ρl ≤ ρm, whenever l < m.

(C2) There exists a finite constant cα > 0 such that exp(cαδ4) ≤ Nα2.

(C3) There exists a constant η ∈ (0, 1] such that

η ≤ min
j∈JNK

(ajkj )
2 ∧ qkj

(
(δε•)2

v2
•

)
(ajkj )

2 ∨ qkj
(

(δε•)2

v2
•

) = min
j∈JNK

(ajkj )
2 ∧ qkj

(
(δε•)2

v2
•

)
ρ2
j

.

Then, with

A2
α := η

(
R2 ∧

√
log(1 + α2) ∧

√
cα

)
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we obtain for all A ∈ [0, Aα]

inf
∆

sup
a•∈A

R
(
∆ | ΘR

a• ,Λ
c
v• , θ

◦
• , Aρa•,v•(δε•)

)
≥ 1− α.

Proof of Proposition 1.6.1. The proof generalises the reduction scheme of Proposition 1.3.1 to
multiple classes of alternatives.
Reduction step. We write P0 := Pε•,σ•θ◦• ,v• . Let P1,m be a mixing measure over the Aαρm-
separated alternative ΘR

am•
and consider the uniform mixture P1 := 1

N

∑
m∈JNK P1,m over all

m ∈ JNK. Replacing the supremum over all a• ∈ A with a maximum over all am• ,m ∈ JNK and
then the maximum by the average over m ∈ JNK and combining this with the reduction step of
Proposition 1.3.1 it is easily seen that (cp. the proof of Proposition 4.6.1 for more details)

inf
∆

sup
a•∈A

R
(
∆ | ΘR

a• ,Λ
c
v• , θ

◦
• , Aρa•,v•(δε•)

)
≥ 1−

√
χ2(P0,P1)

2 .

Definition of the mixtures. For each m ∈ JNK we introduce deviations from the null θ̃m• ∈ `2
by setting

θ̃mj :=


Aαρm

qkm ( δ
2ε2
•

v2
•

)

δ2ε2
j

v2
j

for j ∈ JkmK,

0 otherwise.

Note that θ̃m• ∈ ΘR
aj•
∩ `2Aαρm follows exactly as the in proof of Proposition 1.3.1. Thus, we define

P1,m := 1
2km

∑
τ∈{±}km Pε•,σ•

θ◦•+θ̃
m,τ
• ,v•

where θ̃m,τj = τj θ̃
m
j 1{j∈JkmK}.

Bound for the χ2-divergence. Arguing as in the proof of Proposition 1.3.1 and applying
Lemma A.3.1 from the appendix yields

χ2(P0,P1) ≤ 1
N2

∑
m,l∈JNK

exp
(1

2q2
km∧kl(ν

2
• θ̃
m
• θ̃

l
•/ε

2
•)
)
− 1.

We insert the definition of the deviations θ̃m• , θ̃l•, exploit conditions (C1) and (C3) and obtain
for l ≤ m

q2
km∧kl(ν

2
• θ̃
m
• θ̃

l
•/ε

2
•) ≤ 2ξ2δ4 ρ

2
l

ρ2
m

.

with ξ = R2 ∧
√

log(1 + α2) ∧ √cα. Hence, by splitting the sum into two parts (m = l and
m 6= l) we get

χ2(P0,P1) ≤ 1
N

exp(cαδ4) + N(N − 1)
N2 exp(log(1 + α2))− 1 ≤ 2α2,

where we used both (C1) (first inequality) and (C2) (second inequality). Inserting this bound
into the reduction step completes the proof.

Remark 1.6.2 (Conditions of Proposition 1.6.1). Let us comment on the conditions of
Proposition 1.6.1. Condition (C1) requires A to contain distinguishable elements am• , which
result in significantly different radii ρm. This is a sensible condition: assume all elements in
A yield the same separation radius and the same optimal dimension. Naturally, adaptation can
then be achieved without a loss. We only expect to pay for adaptivity if we need to incorporate
various dimension parameters k in our adaptation procedure. Condition (C2) gives an upper
bound for the maximal size of the adaptive factor and (C3) is a balancing condition, which already
appears in the non-adaptive lower bound Proposition 1.3.1, but now has to hold uniformly over
the collection. �
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Proposition 1.6.1 gives general conditions on the collection
{

ΘR
a• : a• ∈ A

}
of regularity alter-

natives, which make adaptation without a loss impossible. Next, we demonstrate how to use it in
the homoscedastic setting to show that the adaptive factors that we obtain in Illustration 1.5.5
are minimal.

Theorem 1.6.3 (Minimal adaptive factor, polynomial decay). We consider the
homoscedastic case ε• = (ε)j∈N. Let A be non-trivial with respect to polynomial decay for
some s? > s? >

1
2 , i.e.{

(j−s)j∈N : s ∈ [s?, s?]
}
⊆ A

and let v• := (j−p)j∈N, p > 0 be fixed.
For α ∈ (0, 1) set A2

α := η
(
R2 ∧

√
log(1 + α2) ∧ 1/2

)
with η as in Proposition 1.6.1. There

exists an ε̃ ∈ (0, 1) such that for all 0 < ε < ε̃ and all A ≤ Aα we have

inf
∆

sup
a•∈A

R
(
∆ | ΘR

a• ,Λ
c
v• , θ

◦
• , Aρa•,v•(δε•)

)
≥ 1− α

with δ = (log |log ε|)
1
4 , i.e. δ is a lower bound for the minimal adaptive factor over A.

Proof of Theorem 1.6.3. We construct a collection AN := {am• ∈ A : m ∈ JNK} ⊆ A such that
(C1) – (C3) of Proposition 1.6.1 are satisfied.
Definition of the collection. We have seen in Illustration 1.2.5 that the minimax radius
in case of ordinary smoothness and mild ill-posedness is of order ρ2

a•,v•(δε•) ∼ (δε)e(s) with
the exponent e(s) := 8s

4s+4p+1 . The exponent e(s) = 8s
4s+4p+1 = 2 − 8p+2

4s+4p+1 is monotonically
increasing in s, hence the corresponding regularity parameters result in radii with exponents in
the interval [e(s?), e(s?)] =: [e?, e?]. A grid of size N on [e?, e?] induces a grid on [s?, s?], which
in turn defines a grid on A. Let d := e?−e?

N and

Gs := {sm : e(sm) = e? −md,m ∈ {0, . . . , N − 1}} ,

which we use to define our collection of regularity sequences

Ga• :=
{
(j−s)j∈N : s ∈ Gs

}
.

Tedious, but elementary calculations (comparable to those in the proof of Theorem 4.6.3 and
thus omitted) show that (C1) – (C3) are satisfied with N = b e?−e?4

|log(δε)|
log δ c, δ = (log |log ε|)1/4

and ε small enough.

Theorem 1.6.4 (Minimal adaptive factor, exponential decay). We consider the ho-
moscedastic case ε• = (ε)j∈N. Let A be non-trivial with respect to exponential decay for
some s? > s? > 0, i.e.{

(e−js)j∈N : s ∈ [s?, s?]
}
⊆ A

and let v• := (j−p)j∈N, p > 0 be fixed.
For α ∈ (0, 1) set A2

α := η
(
R2 ∧

√
log(1 + α2) ∧ 1/2

)
with η as in Proposition 1.6.1. There

exists an ε̃ ∈ (0, 1) such that for all 0 < ε < ε̃ and all A ≤ Aα we have

inf
∆

sup
a•∈A

R
(
∆ | ΘR

a• ,Λ
c
v• , θ

◦
• , Aρa•,v•(δε•)

)
≥ 1− α
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with δ = (log log |log ε|)
1
4 , i.e. δ is a lower bound for the minimal adaptive factor over A.

Proof of Theorem 1.6.3. We construct a collection AN := {am• ∈ A : m ∈ JNK} ⊆ A such that
(C1) – (C3) of Proposition 1.6.1 are satisfied.
Definition of the collection. We have seen in Illustration 1.2.5 that the minimax radius in case
of super smoothness and mild ill-posedness is of order ρ2

a•,v•(δε•) ∼ (δε)2(log δε)−e(s) with the
exponent e(s) := 4p+1

2s . The exponent is monotonically decreasing in s, hence the corresponding
regularity parameters result in radii with exponents in the interval [e(s?), e(s?)] =: [e?, e?]. A
grid of size N on [e?, e?] induces a grid on [s?, s?], which in turn defines a grid on A. Let
d := e?−e?

N and

Gs := {sm : e(sm) = e? +md,m ∈ {0, . . . , N − 1}} ,

which we use to define our collection of regularity sequences

Ga• :=
{

(e−js)j∈N : s ∈ Gs
}
.

Again, the calculations to verify (C1) – (C3) are elementary but tedious (and omitted since
they are comparable to those in the proof of Theorem 4.6.4). With N = b e?−e?4

log|log(δε)|
log δ c,

δ = (log log |log ε|)1/4 and ε small enough the assertion follows.

Summarizing, Theorem 1.6.3 and Theorem 1.6.4 establish the optimality of the adaptive
factors with respect to the noise level ε obtained in Illustration 1.5.5 and Illustration 1.5.10.
That is, we have shown that for adaptation in an ordinary smooth – mildly ill-posed
model, the minimal adaptive factor is given by (log |log ε|)1/4. Moreover, in a super smooth
– mildly ill-posed model the cost to pay for adaptation is only of order (log log |log ε|)1/4

and it is unavoidable. We point out that in the third case (ordinary smooth – severely ill-
posed) the rates are very slow (i.e. logarithmic in the noise level) due to the severe ill-posedness.
Moreover, the optimal dimension does not depend on the smoothness parameter and, hence, the
indirect and the direct testing procedure are automatically adaptive with respect to smoothness.
However, even if we carry out our adaptation procedure for the direct testing procedure to make
it adaptive with respect to the ill-posedness of the model, the additional factor (caused by the
aggregation) does not have an effect on the rate.
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Appendix A

Auxiliary results

A.1 Non-central χ2-random variables

Lemma A.1.1 (Quantiles of (non-central) χ2-random variables). For µ• ∈ `2 and
e• ∈ RN

+ let Z• ∼ Pe•µ• := N (µ•, e2
•). For each k ∈ N define Qk :=

∑
j∈JkK Z

2
j and denote by

Qe•
µ•,k

its distribution, i.e. Qk ∼ Qe•
µ•,k

and by qe•µ•,k(u) the (1 − u)-quantiles of Qe•
µ•,k

, i.e.
Pe•µ•

(
Qk ≤ qe•µ•,k(u)

)
= 1− u. For any k ∈ N and u ∈ (0, 1) with Lu :=

√
|log u| we have

qe•0•,k(u) ≤ q2
k(e•) + 2Luqk(e2

•) + 2L2
umk(e2

•) (A.1.1)
≤ q2

k(e•) + 2(Lu + L2
u)qk(e2

•), (A.1.2)

qe•µ•,k(1− u) ≥ q2
k(e•) + 4

5q2
k(µ•)− 2

(
Lu + 5L2

u

)
qk(e2

•). (A.1.3)

Proof of Lemma A.1.1. We start our proof with the observations that

Ee•µ•Qk =
∑
j∈JkK

(e2
j + µ2

j ) = q2
k(e•) + q2

k(µ•)

Σk := 1
2
∑
j∈JkK

vare•µ•(Z
2
j ) =

∑
j∈JkK

e2
j (e2

j + 2µ2
j ) = q2

k(e2
•) + 2q2

k(µ•e•)

since vare•µ•(Z
2
j ) = Ee•µ•(Z

4
j )−

(
Ee•µ•(Z

2
j )
)2

= µ4
j+6µ2

je
2
j+3e4

j−(µ2
j+e2

j )2 = 4µ2
je

2
j+2e4

j . Moreover,
we have√

q2
k(e2
•) = q2

k(e2
•) ≥ mk(e2

•),

which we use below without further reference. Due to Birgé [2001] (Lemma 8.1) it follows for
all x > 0

Pe•µ•
(
Qk − Ee•µ•(Qk) ≥ 2

√
Σkx+ 2mk(e2

•)x
)
≤ exp(−x)

Pe•µ•
(
Qk − Ee•µ•(Qk) ≤ −2

√
Σkx

)
≤ exp(−x),

which for all u ∈ (0, 1) with Lu =
√
|log u| implies

qe•µ•,k(u) ≤ q2
k(e•) + q2

k(µ•) + 2
√
L2
uΣk + 2L2

umk(e2
•),

qe•µ•,k(1− u) ≥ q2
k(e•) + q2

k(µ•)− 2
√

ΣkL2
u.
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For µ• = 0• we have q2
k(µ•) = 0 and Σk = q2

k(e2
•), hence, we immediately obtain (A.1.1) and

(A.1.2). For arbitrary µ• ∈ `2 we have Σk ≤ q2
k(e2
•) + 2q2

k(µ•)mk(e2
•) and, therefore, using√

x+ y ≤
√
x+√y and 2√xy ≤ cx+ c−1x for x, y, c ∈ R+ with c = 10 it follows

2
√

ΣkL2
u ≤ 2

√
2q2

k(µ•)mk(e2
•)L2

u + 2
√

q2
k(e2
•)L2

u

≤ 1
5q2

k(µ•) + 10mk(e2
•)L2

u + 2
√

q2
k(e2
•)L2

u

≤ 1
5q2

k(µ•) + (10L2
u + 2Lu)q2

k(e2
•),

which implies (A.1.3) and completes the proof.

A.2 Balancing Lemma

The next lemma shows how to balance a monotonically non-increasing sequence with two mono-
tonically non-decreasing sequences, Figure A.2 illustrates the assertion of the lemma. It is
needed in many places in this chapter, since we derive upper bounds which are the maximum
of two balanced radii with the same decreasing bias term and we want to determine the overall
minimising dimension.

N
a•

b•

c•

kc•

kb•∨c• = kb• ∧ kc•

kb•

Figure A.1: Illustration of Lemma A.2.1

Lemma A.2.1 (Balancing lemma). Let a• ∈ RN
+ be a monotonically non-increasing

sequence, let b•, c• ∈ RN
+ be two monotonically non-decreasing sequences. Let

ρb• := min
k∈N
{ak ∨ bk} and ρc• := min

k∈N
{ak ∨ ck} .

Then,

ρb• ∨ ρc• = ρb•∨c• := min
k∈N
{ak ∨ bk ∨ ck} .
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Moreover,

kb• := arg min
k∈N

{ak ∨ bk} and kc• := arg min
k∈N

{ak ∨ ck}

satisfy

kb• ∧ kc• = kb•∨c• := arg min
k∈N

{ak ∨ bk ∨ ck} .

Proof of Lemma A.2.1. We start the proof with the observation that

ρb• ∨ ρc• ≤ ρb•∨c• .

Since for each k < kb•∨c• we have ak ∨ bk ∨ ck = ak > ρb•∨c• ≥ ρb• ∨ ρc• , we also obtain

kb• ∧ kc• ≥ kb•∨c• . (A.2.1)

Since the minimisers of the sets {ak ∨ bk} and {ak ∨ ck} might not be unique but must be
consecutive due to the monotonicity, we define kb•∨c• , kb• , kc• ∈ N ∪ {∞} by

Jkb• , kb•K := {k ∈ N : ak ∨ bk ≤ am ∨ bm∀m ∈ N}
Jkc• , kc•K := {k ∈ N : ak ∨ ck ≤ am ∨ cm∀m ∈ N}

Jkb•∨c• , kb•∨c•K := {k ∈ N : ak ∨ bk ∨ ck ≤ am ∨ bm ∨ cm∀m ∈ N}

Now we either have Jkb• , kb•K ⊆ Jkb•∨c• , kb•∨c•K or Jkc• , kc•K ⊆ Jkb•∨c• , kb•∨c•K, because of (A.2.1)
and since the non-trivial case kb•∨c• <∞ implies for k := kb•∨c•+1 that ρb•∨ρc• ≤ ρb•∨c• < bk∨
ck = {ak ∨ bk} ∨ {ak ∨ ck}. Without loss of generality let us assume Jkb• , kb•K ⊆ Jkb•∨c• , kb•∨c•K.
Note that there exits a k ∈ Jkb• , kb•∨c•J if and only if ρb• < ak = ak ∨ bk ≤ ak ∨ bk ∨ ck = ρb•∨c• ,
which in turn implies ρb•∨c• = ak ∨ ck for all k ∈ Jkb• , kb•∨c•J. We distinguish the two cases
(a) ρb• = ρb•∨c•
(b) ρb• < ρb•∨c•
Firstly, consider (a) which implies kb• = kb•∨c• . Consequently, ρb•∨ρc• ≤ ρb•∨c• = ρb• = ρb•∨ρc•
and kb• ∧ kc• ≥ kb• = kb• ∧ kc• , which implies the assertion.
Next, consider (b) which implies kb• ≥ kb•∨c• , where ρb•∨c• = ak ∨ ck for all k ∈ Jkb•∨c• , kb•J.
Moreover, for all k ∈ Jkb• , kb•K we have ak∨bk = ρb• ≤ ρb•∨c• = ak∨bk∨ck, which in turn implies
ρb•∨c• = ck = ak ∨ ck for all k ∈ Jkb• , kb•K. Consequently, ak ∨ ck = ρb•∨c• for all k ∈ Jkb•∨c• , kb•K
and akb• ∨ ckb• ≤ ck = ak ∨ ck for all k ≥ kb• . Since ρc• ≤ ρb•∨c• < ak = ak ∨ ck for all k < kb•∨c•
it follows ρc• = ρb•∨c• and kc• = kb•∨c• , which in turn implies the claim ρb• ∨ ρc• = ρb•∨c• and
kb• ∧ kc• = kb•∨c• and completes the proof.

A.3 Calculations for the χ2-divergence

Recall that by Pε•θ• we denote the probability distribution of a Gaussian sequence with indepen-
dent components with mean sequence θ• and variance sequence ε2

• .

Lemma A.3.1 (χ2-divergence). Let S be an arbitrary index set with |S| = N ∈ N. For
s ∈ S let κs ∈ N, θs• ∈ `2 and ν• ∈ `∞. For the mixing measure

Pµ := 1
N

∑
s∈S

1
2κs

∑
τ∈{±}κs

Pε•
ν•θ

s,τ
•

with θs,τ• = (τjθsj1{j∈JksK})j∈N
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and P0 := Pε•ν•θ◦• the χ2-divergence satisfies

χ2(P0,Pµ) ≤ 1
N2

∑
s,t∈S

exp
(1

2q2
κs∧κt(ν

2
• θ̃
s
• θ̃
t
•/ε

2
•)
)
− 1,

where θ̃s• = θs• − θ◦• .

Proof of Lemma A.3.1. Without loss of generality we assume θ◦• = 0• (which is possible since
ν• is fixed). Inspecting the calculations in the direct Gaussian sequence space model with
coordinate-wise constant noise levels by Baraud [2002] (proof of Theorem 1) (compare also the
calculations in Lemma B.1.1) it is readily seen that for any z• = (zj)j∈N ∈ RN the likelihood
ratio is given by

dPµ
dP0

(z•) = 1
N

∑
s∈S

exp
(
−1

2q2
κs(ν•θ̃s•/ε•)

) κs∏
j=1

1
2

(
exp

(
−
νj θ̃

s
jzj

ε2
j

)
+ exp

(
νj θ̃

s
jzj

ε2
j

))
.

By taking the expectation of the squared likelihood ratio with respect to P0 we obtain

E0

(dPµ
dP0

(Z•)
)2

= 1
N2

∑
s,t∈S

κs∧κt∏
j=1

1
2

(
exp

(
−
ν2
j θ̃
s
j θ̃
t
j

εj

)
+ exp

(
ν2
j θ̃
s
j θ̃
t
j

εj

))

= 1
N2

∑
s,t∈S

κs∧κt∏
j=1

cosh
(
ν2
j θ̃
s
j θ̃
t
j

ε2
j

)
,

where Z• is a random variable with distribution P0. Exploiting the elementary inequality
cosh(x) ≤ exp(x2/2), x ∈ R and the definition of the χ2-divergence completes the proof.

A.4 Mixtures

The next example provides a heuristic explanation in a simplified setting why taking mixtures
helps to obtain better results when proving lower bounds.

Example A.4.1 (Mixtures help). We consider a parametric testing problem. Let Pθ be
the probability measure of a normal distribution N (θ, 1) and let θ ∈ R be the quantity of
interest. When analysing the complexity of the testing problem

H0 : θ = 0 against H1 : |θ| ≥ ρ,

we compare the distance between the sets of probability distributions {P0} and {Pθ : |θ| ≥ ρ}.
Standard techniques for proving lower bounds in this setting involve the total variation dis-
tance between P0 and a mixture Pµ with Pµ(A) :=

∫
Pθ(A)dµ(θ) for measurable sets A and

a mixing measure µ supported on the parameter set {θ : |θ| ≥ ρ} of the alternative. This
example shows that indeed taking a mixing measure over several parameters of the alter-
native instead of taking just one element of the alternative gives a better lower bound (i.e.
a smaller total variation distance). In fact, we have

TV(P0,Pθ) =
√

1
2π |θ|+O(θ2) as θ −→ 0.

Choosing µ := 1
2 (δθ + δ−θ), i.e. Pµ = 1

2 (N (θ, 1) +N (−θ, 1)) yields

TV(P0,Pµ) = Cθ2 +O(θ4) as θ −→ 0.
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for some positive constant C > 0.

Proof. We first recall Taylor’s Theorem with a remainder in Lagrange form. For a (k + 1)-
times differentiable function f we have for x ∈ R, θ ∈ R+ and some ξ ∈ [x, x+ θ]

f(x+ θ) = f(x) + θf (1)(x) + θ2

2! f
(2)(x) + · · ·+ θk

k! f
(k)(x) + θk+1

(k + 1)!f
(k+1)(ξ).

This implies

f(x+ θ)− f(x) = θf (1)(x) + θ2

2 f
(2)(ξ0)

f(x+ θ) + f(x− θ)− 2f(x) = θ2f (2)(x) + θ4

12
(
f (4)(ξ1) + f (4)(ξ2)

)
for some ξ0, ξ1 ∈ [x, x + θ], ξ2 ∈ [x − θ, x]. The second equation is called the second
symmetric derivative. Moreover, if f is the density of the standard normal distribution,
we have

f(x) = 1√
2π exp

(
−x2

2

)
f (1)(x) = −xf(x)
f (2)(x) = (x2 − 1)f(x)
f (3)(x) = (2x− x3)f(x).

Then, for some ξx ∈ [x, x+ θ], we obtain

TV(P0,Pθ) = 1
2

∫
|f(x+ θ)− f(x)| dx = 1

2

∫ ∣∣∣∣∣θf (1)(x) + θ2

2 f
(2)(ξx)

∣∣∣∣∣ dx
= 1

2

∫ ∣∣∣θf (1)(x)
∣∣∣ dx+O(θ2)

= 1
2 |θ|

∫
|x| f(x)dx+O(θ2) = 1

2 |θ|
√

2
π

+O(θ2)

since
∫
|x| f(x)dx = 2

∫
[0,∞) xf(x)dx = 2√

2πe
−x2/2 |x=∞

x=0 =
√

2
π , which proves the first asser-

tion. For the second assertion we use the representation for the second symmetric derivative
derived above and obtain for ξ1 = ξ1,x ∈ [x, x+ θ] and ξ2 = ξ2,x ∈ [x− θ, x]

TV(1
2(Pθ + P−θ),P0) = 1

2

∫ ∣∣∣∣12(f(x+ θ) + f(x− θ))− f(x)
∣∣∣∣ dx

= 1
4

∫
|f(x+ θ) + f(x− θ)− f(x)|dx

= 1
4

∫ ∣∣∣∣∣θ2f (2)(x) + θ4

12
(
f (4)(ξ1) + f (4)(ξ2)

)∣∣∣∣∣ dx
= 1

4

∫ ∣∣∣θ2f (2)(x)
∣∣∣ dx+O(θ4)

= 1
4θ

2
∫ ∣∣∣(x2 − 1)

∣∣∣ f(x)dx+O(θ4)

= Cθ2 +O(θ4)

with C := 1
4
∫ ∣∣(x2 − 1)

∣∣ f(x)dx ∈ (0,∞), which completes the proof.
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Chapter 2

Testing of linear functionals

In this chapter we derive matching upper and lower bounds for the minimax separa-
tion radius in a linear functional testing problem for the inverse Gaussian sequence
space model. Moreover, we compare linear functional testing to goodness-of-fit test-
ing.

2.1 Linear functional testing

We consider an inverse Gaussian sequence space model, i.e. our observations are given by

Yj = λjθj + εξj , j ∈ N,

where ε > 0 is the noise level, ξj
iid∼ N (0, 1) is i.i.d. white noise, λ• = (λj)j∈N ∈ `∞ is a known

bounded sequence and θ• = (θj)j∈N ∈ `2 is an unknown square summable sequence of interest.
For an introduction of the model we refer to (IGSSM). We denote by Pθ• the joint law of (Yj)j∈N
with mean (λ•θ•). In this chapter instead of making inference on the signal θ• = (θj)j∈N itself,
we aim to make inference on the value of a linear functional L(θ•). Let

L : D −→ R

be a linear functional and θ◦• ∈ D ⊆ `2 a benchmark sequence with L◦ := L(θ◦•), where D =
D(L) ⊆ `2 denotes the natural domain of L. For a separation radius ρ > 0 and a nonparametric
class Θ ⊆ D we consider the testing problem

H0 : L(θ•) = L◦ against Hρ
1 : |L(θ•)− L◦| ≥ ρ, θ• − θ◦• ∈ Θ. (2.1.1)

We present the testing task in the form (2.1.1), which is typical for non-parametric minimax
testing. Note, however, that in practice when testing L(θ•) = L◦ for a given L◦ the benchmark
θ◦• is generally not given (and not uniquely identified by L(θ◦•) = L◦). Hence, in our proofs we
only require that there exists a θ◦• ∈ Θ with L(θ◦•) = L◦ and control the error probabilities of a
test for any element θ• such that there exists such a θ◦• with θ◦• − θ• ∈ Θ.
For a test ∆, i.e. a measurable function ∆ : RN −→ {0, 1}, we define the maximal risk
corresponding to the testing task (2.1.1) by setting

R (∆ | Θ, ρ) := Pθ◦•(∆ = 1) + sup
θ•−θ◦•∈Θ

|L(θ•)−L◦|≥ρ

Pθ•(∆ = 0).

We measure the difficulty of the testing task by taking the smallest risk obtainable by any test,
that is, we define the minimax risk R (Θ, ρ) := inf∆R (∆ | Θ, ρ). We call ρ = ρ(Θ) a minimax
radius of testing if for all α ∈ (0, 1) there exist constants Aα, Aα ∈ R+ such that
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(i) for all A ≥ Aα we have R (Θ, Aρ) ≤ α, (upper bound)

(ii) for all A ≤ Aα we have R (Θ, Aρ) ≥ 1− α. (lower bound)

The goal of this chapter is to determine a radius of testing over an `2-ellipsoid Θ for an arbitrary
linear functional L. Let us formalize the kind of alternatives we consider. For a monotonically
non-increasing sequence a• and a positive radius R > 0 we define the non-parametric class of
sequences

Θ = ΘR
a• :=

ϑ• ∈ `2 :
∑
j∈N

ϑ2
ja
−2
j ≤ R2


and assume that θ◦• ∈ ΘR

a• .

Linear functionals. By the Riesz representation theorem (see Theorem V.3.6. in Werner
[2006]) there exists a sequence L• = (Lj)j∈N ∈ `2 such that any continuous (i.e. bounded) linear
functional L : `2 −→ R can be represented as L(θ•) = 〈L•, θ•〉`2 =

∑
j∈N Ljθj for all θ• ∈ `2.

We point out that we do not need the square summability of the coefficients L• ∈ `2 of the
linear functional for our testing method, since we base our test statistic on a finite number of
coefficients anyway. Due to the regularity assumption, it is sufficient if

∑
j∈N L

2
ja

2
j < ∞, since

then ∑
j∈N
|Ljθj | ≤

∑
j∈N

∣∣∣Lj(θj − θ◦j )∣∣∣+ ∑
j∈N

∣∣∣Ljθ◦j ∣∣∣
≤

∑
j∈N

L2
ja

2
j

1/2∑
j∈N

a−2
j (θj − θ◦j )2

1/2

+

∑
j∈N

L2
ja

2
j

1/2∑
j∈N

a−2
j (θ◦j )2

1/2

≤ 2R

∑
j∈N

L2
ja

2
j

1/2

<∞.

Hence, we consider any linear functional which has a representation of the form

L(θ•) = 〈L•, θ•〉`2 =
∑
j∈N

Ljθj with
∑
j∈N

L2
ja

2
j <∞. (2.1.2)

Thus, we are able to cover a larger class of linear functionals. Let us give some examples
of such functionals. Let f ∈ L 2[0, 1) be a square integrable real-valued function, denote by
f• := (fj)j∈N its coefficients in some basis (bj)j∈N of L 2[0, 1). Linear functionals acting on
(subsets of) L 2[0, 1), such as point evaluation, average values or weighted averages can be
represented as linear functionals acting on the coefficients in `2. By D and D we denote the
respective (natural) domains of the functionals.

I Point evaluation. Let t◦ ∈ [0, 1). Define L : L 2[0, 1) ⊇ D −→ R by

Lf = f(t◦).

We have f(t◦) =
∑
j∈N fjbj(t◦) =:

∑
j∈N Ljfj =: L(f•) with Lj := bj(t◦), i.e. the cor-

responding linear functional L : `2 ⊇ D −→ R satisfies Lf = L(f•) with domain D ={
f• :

∑
j∈N |fj | |bj(t◦)| <∞

}
. In particular, this linear functional is unbounded.

I Averages. Let c ∈ [0, 1). The average (up to c) functional L : L 2[0, 1) −→ R is given by

Lf =
∫ c

0
f(t)dt.

We have
∫ c

0 f(t)dt =
∑
j∈N fj

∫ c
0 bj(t)dt =:

∑
j∈N Ljfj =: L(f•) with Lj :=

∫ c
0 bj(t)dt, i.e.

the corresponding linear functional L : `2 −→ R satisfies Lf = L(f•).
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I Weighted Averages. Let ω ∈ L 2[0, 1). The weighted average functional L : L 2[0, 1) −→
R is given by

Lf =
∫ 1

0
ω(t)f(t)dt.

We have
∫ 1

0 ω(t)f(t)dt =
∑
j∈N fj

∫ 1
0 ω(t)bj(t)dt =:

∑
j∈N Ljfj =: L(f•) with coefficients

Lj :=
∫ 1

0 ω(t)bj(t)dt, i.e. the corresponding functional L : `2 −→ R satisfies Lf = L(f•).

Related literature. Statistical estimation of linear functional dates back to the 80s. Early
work includes Ibragimov and Khas’ minskii [1985] and Ibragimov and Khas’ minskii [1988] (in
Gaussian noise models) and Ibragimov and Khas’ minskii [1989] (in a density observation model).
Goldenshluger and Pereverzev [2000] consider the adaptive estimation of linear functionals from
indirect white noise observations. The results are extended to Hilbert scales in Goldenshluger
and Pereverzev [2003]. Let us mention some further work in sequence space models. Adaptive
estimation over Besov balls under L p-loss is treated e.g. in Laurent et al. [2008]. The series
of papers Cai and Low [2003], Cai and Low [2004], Cai and Low [2005b], Cai and Low [2005c]
covers the adaptive estimation of linear functionals over convex and non-convex function classes
characterised in terms of a modulus of continuity. Under sparsity assumptions estimation of
linear functionals is considered more recently in Collier et al. [2018], treating both adaptation to
the smoothness index and the noise level in a direct Gaussian sequence space model. For a specific
linear functional only (i.e. L(θ•) :=

∑
j∈N θj) Golubev [2020] considers adaptive estimation,

comparing adaptive choices of a cut-off parameter. Butucea and Comte [2009] consider linear
functional estimation in a convolution model.
Interestingly, also direct approaches to estimation of linear functionals are investigated, for
instance in Mathé and Pereverzev [2002]. Instead of aiming to solve the observation equation
Y = Th + εξ for h and then applying the linear functional Lh = 〈l, h〉 (called the solution-
functional approach), they search for a (regularized) solution f of T ∗f = l, where T ∗ is the
adjoint operator of T , then Lh = 〈l, h〉 = 〈T ∗f, h〉 = 〈f, Th〉 and therefore their estimation
technique uses the observations of Th directly (called the data-functional approach). Although
we do not use this technique in this chapter it is worth mentioning since it is a similar to the
direct and indirect approaches for testing considered in this thesis.

Outline of this chapter. We derive an upper bound in Section 2.2 and a matching lower
bound in Section 2.3. We illustrate the resulting minimax separation radii for typical ill-
posedness and smoothness cases in Illustration 2.4.1. Moreover, we compare linear functional
testing to goodness-of-fit testing in Section 2.4 and discuss adaptation (Remark 2.4.3).

2.2 Upper bound

Definition of the test. Our test is based on a truncated plug-in estimator of the distance
|L(θ•)− L◦|. Due to the representation (2.1.2) for a cut-off dimension k ∈ N we suggest the test
statistic

l̂k :=
∑
j∈JkK

Lj
Yj
λj
− L◦

as a truncated estimator of L(θ•)− L◦. For α ∈ (0, 1) we define the threshold

τk(α) := qα/2ε

√√√√∑
j∈JkK

L2
j

λ2
j

+
√

R2
∑
j>k

L2
ja

2
j (2.2.1)
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where qα denotes the (1−α)-quantile of a standard normal distribution, i.e. P(Z ≤ qα) = 1−α
for Z ∼ N (0, 1). Finally, we introduce the test

∆k,α := 1{|l̂k|>τk(α)}. (2.2.2)

Proposition 2.2.1 (Quantiles of the test statistic). Let α, β ∈ (0, 1). Denote by qα
the (1−α)-quantile of a standard normal distribution. Let k ∈ N and consider the threshold
τk(α) defined in (2.2.1) and a benchmark function θ◦• ∈ ΘR

a• with L(θ◦•) = L◦.

(i) (α-level) We have

Pθ◦• (∆k,α = 1) = Pθ◦•
(∣∣∣l̂k∣∣∣ > τk(α)

)
≤ α.

(ii) ((1− β)-powerful) Let θ• satisfy θ• − θ◦• ∈ ΘR
a• and

|L(θ•)− L◦| ≥ (qα/2 − q1−β)ε

√√√√∑
j∈JkK

L2
j

λ2
j

+ 3
√

R2
∑
j>k

L2
ja

2
j =: ρ

then we have

Pθ• (∆k,α = 0) = Pθ•
(∣∣∣l̂k∣∣∣ ≤ τk(α)

)
≤ β.

Proof of Proposition 2.2.1. Note that for Yj ∼ N (λjθj , ε2) our test statistic l̂k follows a normal
distribution with mean µθ•,k :=

∑
j∈JkK Lj(θj−θ◦j )−

∑
j>k Ljθ

◦
j and variance σ2

k := ε2∑
j∈JkK

L2
j

λ2
j
.

(i) Hence, we can rewrite the probability

Pθ◦•
(∣∣∣l̂k∣∣∣ > τk(α)

)
= Pθ◦•

(
l̂k > τk(α)

)
+ Pθ◦•

(
l̂k < −τk(α)

)
≤ 2Pθ◦•

(
Z >

τk(α)−
∣∣µθ◦• ,k∣∣

σk

)
,

where Z ∼ N (0, 1). Note that for θ• = θ◦• we have µθ◦• ,k = −
∑
j>k Ljθ

◦
j . We point out

that θ◦• is not given in practice (only L◦ is!) and it is not necessarily uniquely determined
by L(θ◦•) = L◦. Hence, in general the bias term µθ◦• ,k is unknown but easily bounded using
the Cauchy-Schwarz inequality

∣∣µθ◦• ,k∣∣ ≤∑
j>k

∣∣∣Ljθ◦j ∣∣∣ ≤
∑
j>k

(θ◦j )2a−2
j

1/2∑
j>k

L2
ja

2
j

1/2

≤ R

∑
j>k

L2
ja

2
j

1/2

:= bk

due to the regularity assumption θ◦• ∈ ΘR
a• . Therefore, inserting the definition of the

threshold yields the desired upper bound.

Pθ◦•
(∣∣∣l̂k∣∣∣ > τk(α)

)
≤ 2Pθ◦•

(
Z >

τk(α)− bk
σk

)
= 2Pθ◦•

(
Z > qα/2

)
= 2α2 = α.

(ii) Let θ• − θ◦• ∈ ΘR
a• , due to the Cauchy-Schwarz inequality we have∣∣∣∣∣∣

∑
j>k

Lj(θj − θ◦j )

∣∣∣∣∣∣ ≤
∑
j>k

L2
ja

2
j

1/2∑
j>k

(
θ◦j − θj

)2
a−2
j

1/2

≤ R

∑
j>k

L2
ja

2
j

1/2
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and in the same manner∣∣∣∣∣∣
∑
j>k

Ljθ
◦
j

∣∣∣∣∣∣ ≤ R

∑
j>k

L2
ja

2
j

1/2

.

First consider the case L(θ•)− L◦ ≥ ρ. Hence, |L(θ•)− L◦| ≥ ρ implies

µθ•,k ≥ ρ−
∑
j>k

Ljθ
◦
j −

∑
j>k

Lj(θj − θ◦j )

≥ (qα/2 − q1−β)ε

√√√√∑
j∈JkK

L2
j

λ2
j

+
√

R2
∑
j>k

L2
ja

2
j .

Rearranging the last inequality and recalling the definition of the threshold τk(α) in (2.2.1)
yields

τk(α)− µθ•,k
σk

≤ q1−β.

Therefore, we can bound the probability

Pθ•
(∣∣∣l̂k∣∣∣ ≤ τk(α)

)
= Pθ•

(
l̂k ∈ [−τk(α), τk(α)]

)
= Pθ•

(
l̂k − µθ•,k

σk
∈
[
−τk(α)− µθ•,k

σk
,
τk(α)− µθ•,k

σk

])

≤ Pθ•
(
Z ≤ τk(α)− µθ•,k

σk

)
≤ Pθ• (Z ≤ q1−β) = β

for a standard normal random variable Z ∼ N (0, 1), which proves the assertion. The other
case L(θ•)− L◦ ≤ −ρ follows analogously by considering the bound

Pθ•
(
l̂k ∈ [−τk(α), τk(α)]

)
≤ Pθ•

(
l̂k ≥ −τk(α)

)
and proceeding as above.

For a truncation dimension k ∈ N let us define the separation radius

ρk :=

√√√√ε2
∑
j∈JkK

L2
j

λ2
j

+
∑
j>k

L2
ja

2
j .

The part
√∑

j>k L
2
ja

2
j is a typical bias term, which decreases if the dimension parameter k

increases. On the other hand the variance part ε
√∑

j∈JkK
L2
j

λ2
j

increases with k. Proposition 2.2.1
in particular shows that ∆k,α is a level-α-test that is (1−β)-powerful over 2(qα/2−q1−β+3R)ρk-
separated alternatives (since

√
x + √y ≤ 2

√
x+ y for all x, y ≥ 0). The radius ρk can be

optimised with respect to the cut-off dimension k. In the case of a monotonically decreasing
sequence λ• = (λj)j∈N, which we assume from hereon, the optimal dimension is given by the
simplified expression

κ? := sup
{
k ∈ N : ε

2

λ2
k

< a2
k

}
and the corresponding minimal radius is

ρ? := min
k∈N


√√√√ε2

∑
j∈JkK

L2
j

λ2
j

+
∑
j>k

L2
ja

2
j

 . (2.2.3)

The next proposition establishes ρ? as an upper bound based on Proposition 2.2.1
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Proposition 2.2.2 (Upper bound for the radius of testing). For α ∈ (0, 1) define

Aα := 2
(
3R + qα/4 − q1−α/2

)
.

where qα denotes the (1− α)-quantile of a standard normal random variable. Then, for all
A ≥ Aα we obtain

R
(
ΘR
a• , Aρ?

)
≤ R

(
∆κ?,α/2 | Θ

R
a• , Aρ?

)
≤ α,

i.e. ρ? is an upper bound for the minimax radius of testing.

Proof of Proposition 2.2.2. The assertion follows from Proposition 2.2.1 applied to β = α/2 and
the definition of the testing risk.

2.3 Lower bound

In this section we provide a matching lower bound to the upper bound derived in Proposi-
tion 2.2.2. Thus, we establish ρ? defined in (2.2.3) as the minimax radius of testing.

Proposition 2.3.1 (Lower bound). For α ∈ (0, 1) we define Aα := R ∧
√

log(1 + 2α2).
Let ρ? be defined in (2.2.3). Then for all A ≤ Aα we have

R
(
ΘR
a• , Aαρ?

)
≥ 1− α,

i.e. ρ? is a lower bound for the minimax radius of testing.

Proof of Proposition 2.3.1. Reduction step. Standard reduction techniques show that for any
test ∆ the testing risk is lower bounded by

R
(
∆ | ΘR

a• , Aαρ?
)
≥ 1−

√
χ2(Pθ◦• ,Pθ•)

2

for some sequence θ• (called hypothesis) contained in the Aαρ?-separated alternative, i.e. satis-
fying θ• − θ◦• ∈ ΘR

a• and |L(θ•)− L◦| ≥ Aαρ?. Moreover, straight-forward calculations (detailed
in Lemma B.1.1) show that

χ2(Pθ◦• ,Pθ•) = exp


∑
j∈N λ

2
j

(
θ◦j − θj

)2

ε2

− 1.

Construction of the hypothesis θ•. We define the sequence θ• by setting

θj :=

ξε
2 Lj
λ2
jρ?

+ θ◦j if j ≤ κ?,

ξa2
j
Lj
ρ?

+ θ◦j if j > κ?,

with ξ := R ∧
√

log(1 + 2α2), which has the following three properties.

(1) |L(θ•)− L◦| ≥ cρ? (separation)
By construction it follows

|L(θ•)− L◦| = ξ
∑
j>κ?

a2
j

L2
j

ρ?
+ ξε2 ∑

j≤κ?

L2
j

λ2
jρ?

= ξ
ρ2
?

ρ?
= ξρ?.
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(2) θ• − θ◦• ∈ ΘR
a• (smoothness)

Note that ε2

λ2
j
a−2
j ≤ 1 for all j ≤ κ?. Hence,

∑
j∈N

a−2
j

(
θj − θ◦j

)2
= ξ2 ∑

j≤κ?
ε4 L2

j

λ4
jρ

2
?

a−2
j + ξ2 ∑

j>κ?

a4
j

L2
j

ρ2
?

a−2
j

≤ ξ2 ∑
j≤κ?

ε2 L2
j

λ2
jρ

2
?

+ ξ2 ∑
j>κ?

a2
j

L2
j

ρ2
?

≤ ξ2 ρ
2
?

ρ2
?

= ξ2 ≤ R2,

since for x, y > 0 we have x2 + y2 ≤ (x+ y)2.

(3)
∑

j∈N λ
2
j(θ◦j−θj)

2

ε2 ≤ log(1 + 2α2) (similarity)
Note that λ2

ja
2
j ≤ ε2 for all j > κ?. Hence,

∑
j∈N

λ2
j

(
θ◦j − θj

)2
= ξ2ε4 ∑

j≤κ?
λ2
j

L2
j

λ4
jρ

2
?

+ ξ2 ∑
j>κ?

λ2
ja

4
j

L2
j

ρ2
?

≤ ξ2ε2 ∑
j≤κ?

ε2 L2
j

λ2
jρ

2
?

+ ξ2ε2 ∑
j>κ?

a2
j

L2
j

ρ2
?

≤ ξ2ε2 ρ
2
?

ρ2
?

= ξ2ε2 ≤ log(1 + 2α2)ε2.

The conditions (1) and (2) guarantee that the constructed candidate sequence θ• is contained
in the alternative. Condition (3) implies that χ2(Pθ◦• ,Pθ•) ≤ 2α2, which yields

inf
∆
R
(
∆ | ΘR

a• , Aαρ?
)
≥ 1− α

and, thus, completes the proof.

2.4 Comparison to goodness-of-fit testing

In this section we illustrate the minimax radii of testing obtained in Proposition 2.2.1 and
Proposition 2.3.1 and compare them to the radii obtained in the previous chapter.

Illustration 2.4.1. We calculate the order of the optimal dimension κ? and the minimax
radius of testing ρ? for some specific combinations of the behaviour of λ• (parameter p for
ill-posedness), L• (parameter r for Riesz Representation of the linear functional) and a•
(parameter s for smoothness). We assume s > 1

2 for the polynomially decaying case, which
guarantees a• ∈ `2.
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Order of the optimal dimension κ? and the minimax radius ρ?
for a linear functional L with Lj = j−r

aj λj κ? ρ?
(smoothness) (ill-posedness)

ε r > 1
2 + p

j−s j−p ε
− 1
s+p ε

√
|log ε| r = 1

2 + p

ε
2s+2r−1

2s+2p r < 1
2 + p

j−s e−jp |log ε| |log ε|
1
2−(s+r)

ε r > 1
2 + p

e−js j−p |log ε| ε
√

log |log ε| r = 1
2 + p

ε |log ε|
1
2 +(p−r) r < 1

2 + p

Calculations for the risk bounds of Illustration 2.4.1.

1. (mildly ill-posed – ordinary smooth) The optimal κ? is given by κ? ∼ ε
− 1
s+p . The

variance term
√∑

j∈JkK
L2
j

λ2
j

=
√∑

j∈JkK j
−2(r−p) behaves like a constant for r > 1

2 + p,

like
√

log k for r = 1
2 + p and like k(p−r)+1/2 for r < 1

2 + p. The bias term
√∑

j>k L
2
ja

2
j

is of order k−(s+r)+1/2. Hence, in the case r > 1
2 + p the rate is parametric. In the

case r = 1
2 + p it satisfies ρ? ∼ ε

√
log κ? ∼ ε

√
|log ε|. In the case r < 1

2 + p it satisfies
ρ? ∼ κ−(s+r)+1/2

? ∼ ε
2s+2r−1

2s+2p .

2. (strongly ill-posed – ordinary smooth) For the variance term
√∑

j∈JkK
L2
j

λ2
j

we have

exp(kp) &
√∑

j∈JkK
L2
j

λ2
j
& exp(k(p − δ)) for any δ > 0. The bias term

√∑
j>k L

2
ja

2
j is of

order k−(s+r)+1/2. The optimal dimension is of order κ? ∼ |log(ε)|, which yields a rate of
order ρ? ∼ |log ε|

1
2−(s+r).

3. (mildly ill-posed – very smooth) The variance term
√∑

j∈JkK
L2
j

λ2
j

=
√∑

j∈JkK j
−2(r−p)

behaves like a constant for r > 1
2 + p, like

√
log k for r = 1

2 + p and like k(p−r)+1/2 for
r < 1

2 +p. The bias term
√∑

j>k L
2
ja

2
j satisfies exp(−ks) &

√∑
j>k L

2
ja

2
j & exp(−k(s+δ))

for any δ > 0. The optimal dimension is of order κ? ∼ |log(ε)|. Hence, in the case r > 1
2 +p

the rate is parametric. In the case r = 1
2 + p it satisfies ρ? ∼ ε

√
log κ? ∼ ε

√
log |log ε|. In

the case r < 1
2 + p it satisfies ρ? ∼ ε |log ε|

1
2 +(p−r).

Note that if the linear functional L• is smooth (fast decay of the coefficients, e.g. Lj = e−j
r)

such that it evens out the ill-posedness λ• of the model, i.e.
∑
j∈N

L2
j

λ2
j
< ∞, then variance term

is uniformly bounded for all dimension parameters k. In this case we obtain a parametric rate
ρ? = ε. Roughly speaking, the linear functional has a smoothing effect in both the bias and the
variance part of the separation radius, which yields much smaller radii than the ones obtained in
the classical goodness of fit-testing task (compare the rates in Illustration 1.2.5). A heuristic ex-
planation for this phenomenon is the fact that it is naturally a much simpler task to only detect
certain features L(θ•) of a sequence than to test the entire sequence θ•. As an example consider
the linear functional L(θ•) = θ1, which extracts the first component of a sequence. Testing only
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one component of θ• can be done with a parametric rate, whereas testing the (infinite) sequence
θ• yields a much slower (necessarily non-parametric) rate.

Let us explore the link between linear functional testing and goodness-of-fit testing in detail,
i.e. we compare testing

HLF
0 : L(θ•) = L◦ against HLF,ρ̃

1 : |L(θ•)− L◦| ≥ ρ̃, θ• − θ◦• ∈ ΘR
a• , (LF)

with

HGoF
0 : θ• = θ◦• against HGoF,ρ

1 : ‖θ• − θ◦•‖`2 ≥ ρ, θ• − θ
◦
• ∈ ΘR

a• . (GoF)

More specifically, we aim to answer the question: how does an (optimal) test in one framework
perform in the other? The next lemma shows that the null hypothesis of (LF) and the alternative
of (GoF) intersect. Hence, a test cannot be of low level and powerful for both testing problems
simultaneously.

Lemma 2.4.2 (Non-empty intersection of hypotheses). Let ρ(ε)↘ 0 for ε↘ 0. For
ε small enough, there exists a sequence ϑ• ∈ `2 such that with ρ = ρ(ε) the following two
conditions are satisfied;

I ϑ• ∈ HLF
0 , i.e. L(ϑ•) = L◦,

I ϑ• ∈ HGoF,ρ
1 , i.e. ‖ϑ• − θ◦•‖`2 ≥ ρ and ϑ• − θ◦• ∈ ΘR

a• .

Proof of Lemma 2.4.2. We distinguish two cases with respect to the linear functional.
First case: There exists an index j◦ such that Lj◦ = 0. Then, let ϑ• = (ϑj)j∈N be given by

ϑj := Raj◦1{j=j◦} + θ◦j , j ∈ N.

Then, L(ϑj) = L◦,
∑
j∈N

(
ϑj − θ◦j

)2
a−2
j = R2 and for ε small enough

‖ϑ• − θ◦•‖
2
`2 = R2a2

j◦ ≥ ρ
2(ε).

Hence, ϑ• ∈ HLF
0 ∩HGoF,ρ

1 .
Second case: We have Lj 6= 0 for all j ∈ N. Define

ϑ1 := R
L1
· 1√

1
L2

1a
2
1

+ 1
L2

2a
2
2

+ θ◦1,

ϑ2 := − R
L2
· 1√

1
L2

1a
2
1

+ 1
L2

2a
2
2

+ θ◦2

and

ϑj := θ◦j , j > 3.

Proceeding as above completes the proof.

Let us now come back to answering our previous questions. Let ∆ be a level-α-test for (LF),
i.e. Pθ•(∆ = 1) ≤ α for all θ• with L(θ•) = L◦. Naturally, we also have

Pθ◦•(∆ = 1) ≤ sup
θ•∈HLF

0

Pθ•(∆ = 1) ≤ α,
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i.e. ∆ is also a level-α-test for (GoF). However, due to Lemma 2.4.2 for a small enough noise
level there exists ϑ• ∈ HLF

0 ∩HGoF,ρ
1 . Hence,

sup
θ•∈HGoF

1

Pθ•(∆ = 0) ≥ Pϑ•(∆ = 0) ≥ 1− α,

which implies that the power of ∆ for the problem (GoF) cannot be larger than α.
Let ∆ now be a (1− β)-powerful test for (GoF), i.e. Pθ•(∆ = 0) ≤ β for all θ• ∈ HGoF,ρ

1 . If L is
an `2-functional, i.e. L• ∈ `2, then |L(θ• − θ◦•)| ≤ ‖L•‖

2
`2 ‖θ• − θ◦•‖

2
`2 . Therefore,

|L(θ•)− L◦| ≥ ρ̃ =⇒ ‖θ• − θ◦•‖
2
`2 ≥ ‖L•‖

−2
`2 ρ̃.

Hence, with ρ̃ := ‖L•‖2`2 ρ2 we have

sup
θ•∈HLF,ρ̃

1

Pθ•(∆ = 0) ≤ sup
θ•∈HGoF,ρ

1

Pθ•(∆ = 0) ≤ β,

i.e. the type II error probability can be controlled. On the other hand, since Lemma 2.4.2 implies
that there exists a ϑ• ∈ HLF

0 ∩HGoF,ρ
1 we obtain for the type I error probability

sup
θ•∈HLF

0

Pθ•(∆ = 1) ≥ Pϑ•(∆ = 1) ≥ 1− β.

Summarizing, a test intended for (LF) should not be used to test (GoF) and vice versa. This
is a natural conclusion: a linear functional test is constructed to detect only a feature L(θ•) of
the sequence of interest, which is a simpler task than to make inference on the entire sequence
θ•. Therefore, the two problems (GoF) and (LF) indeed require different testing strategies.

Remark 2.4.3 (Adaptation). The test (2.2.2) relies on the knowledge of the regularity class
ΘR
a•, specifically on the sequence a• and is, thus, non-adaptive. Let us briefly outline a possible

strategy to obtain an adaptive test. By modifying the threshold (2.2.1) to only consist of a
variance-type term it is possible to construct a (modified) test of the form (2.2.2), which only
depends on the regularity sequence a• through the optimal choice of the dimension parameter
k. In this situation the standard procedure to obtain an adaptive test is to aggregate the tests
over various dimension parameters into a max-test, which rejects the null as soon as one of
the tests does. Let us briefly discuss the effect of such a aggregation in the setting of this
chapter. It is well-known (DasGupta [2008], Example 8.13) that for small α we approximately
have qα ≈

√
2 |logα| for the quantiles of a standard normal distribution. This is due to

1−Ψ(x) = 1√
2π

∫ ∞
x

e−
t2
2 dt ≤ 1√

2π

∫ ∞
x

t

x
e−

t2
2 dt = e−

x2
2

x
√

2π
= φ(x)

x

where Ψ(x) and φ(x) denote the probability distribution function and the probability density
function of a standard normal distribution, respectively. Hence, aggregation of the test (2.2.2)
via the Bonferroni method over a finite collection K ⊆ N of dimensions k, i.e. replacing α
by α/ |K| yields an additional factor of

√
log |K| in the testing radius. Since K is commonly

chosen to be of cardinality |log ε| (by considering a geometric grid), the additional factor (i.e.
a deterioration due to the aggregation) is of order

√
log |log ε| (this translates to an adaptive

factor of order (log |log ε|)1/4), which we conjecture to be optimal (compare Section 1.5 in the
previous chapter). �
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Appendix B

Auxiliary results

B.1 Calculations for the χ2-divergence

Lemma B.1.1 (χ2-divergence between two normals). Denote by Pµ• respectively Pν•
the probability measures associated with sequences of normal distributions with independent
coordinates N (µj , ε), j ∈ N respectively N (νj , ε), j ∈ N and ε > 0. Then, the χ2-divergence
satisfies

χ2(Pµ• ,Pν•) = exp

∑
j∈N

(νj − µj)2

ε2

− 1

Proof of Lemma B.1.1. We recall the definition of the χ2-divergence between two measures P,Q
(cp. Tsybakov [2009], Section 2.4)

χ2(P,Q) =


∫ ( dP

dQ − 1
)2

dQ if P� Q
∞ otherwise .

Since in our case both Pν• and Pµ• are normal distributions we have Pµ• � Pν• . Furthermore,

χ2(P,Q) =
∫ (( dP

dQ

)2
− 2 dP

dQ + 1
)

dQ =
∫ ( dP

dQ

)2
dQ− 1 = EZ∼Q

( dP
dQ(Z)

)2
− 1.

Let us now first determine the likelihood ratio

dPµ•
dPν•

(y•) =
∏
j∈N

exp
(

(yj − νj)2 − (yj − µj)2

2ε2

)
=
∏
j∈N

exp
(

2yj(µj − νj) + (ν2
j − µ2

j )
2ε2

)
.

Let Y• be a random variable with distribution Pν• . We obtain

Eν•
(dPµ•

dPν•
(Y•)

)2

=
∏
j∈N

∫ 1√
2πε2

exp
(

4yj(µj − νj) + 2(ν2
j − µ2

j )
2ε2

)
exp

(
−(yj − νj)2

2ε2

)
dyj .

Inside of the exponential function in the integral we carry out a square addition

4yj(µj − νj)− (yj − νj)2 = −(yj − (2µj − νj))2 + (2µj − νj)2 − ν2
j ,
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which yields

Eν•
(dPµ•

dPν•
(Y•)

)2

=
∏
j∈N

exp
(

2(ν2
j − µ2

j ) + (2µj − νj)2 − ν2
j

2ε2

)∫ 1√
2πε2

exp
(
−(yj − (2µj − νj))2

2ε2

)
dyj︸ ︷︷ ︸

=1

=
∏
j∈N

exp
(

(νj − µj)2

ε2

)
= exp

∑
j∈N

(νj − µj)2

ε2

 ,
which completes the proof.
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Part II

Circular convolution
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Circular convolution

We consider a circular convolution model, where a random variable that takes values on the
circle is observed contaminated by an additive error. Identifying the circle with the unit interval
[0, 1), the observable random variable is given by

Y := X + ε− bX + εc = X + ε mod 1,

where X and ε are independent random variables supported on the interval [0, 1) and b·c denotes
the floor-function. The next proposition characterises the density of the random variable Y in
terms of the densities of X and ε, i.e. the density of Y is the circular convolution of the
densities of X and ε.

Proposition (Convolution density). Let X ∼ f and ε ∼ ϕ be independent random
variables on [0, 1). The random variable Y := X + ε− bX + εc has density g = f ?©ϕ with

g(y) := (f ?©ϕ)(y) :=
∫

[0,1)
f((y − s) mod 1)ϕ(s)ds, y ∈ [0, 1).

Proof. Let y ∈ [0, 1). By independence of X and ε we have

F Y (y) = P(Y ≤ y) = P(X + ε mod 1 ≤ y)

=
∫

[0,1)

∫
[0,1)

f(x)ϕ(s)1{x+s≤y mod 1}dxds,

where we introduce the change of variable, t = x+ s mod 1, dx = dt and obtain

F Y (y) =
∫

[0,1)

∫
[0,1)

f(t− s mod 1)ϕ(s)1{t≤y mod 1}dsdt

=
∫

[0,y)

∫
[0,1)

f(t− s mod 1)ϕ(s)dsdt.

Taking the derivative yields the desired result

g(t) = d
dyF

Y (y) |y=t=
∫

[0,1)
f(t− s mod 1)ϕ(s)ds.

Related literature. Circular data, also called wrapped (around the circumference of the unit
circle), spherical or directional, appears in various applications. For an in-depth review of many
examples for circular data we refer the reader to Mardia [1972], Fisher [1995] and Mardia and
Jupp [2009]. Let us only briefly mention two popular fields of application. Circular models are
used for data with a temporal or periodic structure, where the circle is identified e.g. with a
clock face (cp. Gill and Hangartner [2010]). Moreover, also directional data can be represented
by a circular model by identifying the circle with a compass rose. Kerkyacharian et al. [2011]
and Lacour and Ngoc [2014], for instance, investigate a circular model with multiplicative error.
Nonparametric estimation in the additive error model has amongst others been considered in
Efromovich [1997], Comte and Taupin [2003] and Johannes and Schwarz [2013].
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Some examples of circular densities. Figure 2.1 displays several typical densities on the
circle, Figure 2.2 plots the same densities on [0, 1) for comparison. More details and many more
examples can be found in chapter 3 of the textbook Mardia and Jupp [2009].

1. (von Mises distribution) This is the analogue of the Gaussian distribution on the circle,
hence, also known as the circular normal distribution. Denote by I◦(κ) the modified Bessel-
function of order 0, then the density of a von Mises vM(µ, κ)-distribution with location
parameter µ and measure of concentration κ > 0 is given by

f(x) = 1
I◦(κ) exp(κ cos(2π(x− µ)))

We plot the density for µ = 1/2 and κ = 3.

2. (Uniform distribution) The density of a uniform U [0, 1) distribution is given by

f(x) = 1[0,1).

For κ −→ 0 the von Mises distribution approaches the uniform distribution on the circle.

3. (Cardioid Distribution) For a parameter |ρ| < 1
2 and a location parameter µ the cardioid

distribution C(µ, ρ) has density

f(x) = 1 + 2ρ cos(2π(x− µ)).

For small κ the von Mises distribution approximates the Cardioid distribution since exp(κ) ≈
1 + κ. We plot the density with µ = 1/2 and ρ = 0.25.

4. (Triangular Distribution) The density of a triangular distribution is given by

f(x) =
{
x for x < 1/2,
1− x for x > 1/2.

5. (Wrapped Normal distribution) A distribution on the circle can be obtained by wrap-
ping a distribution given on the real line around the circumference of the unit circle. Let
R ∼ N (µ, σ2) be a normally distributed random variable on R, then

X := R− bRc = R mod 1

is a random variable on the unit circle and we denote its distribution by WN(µ, σ2). If ξ
is the density of R, then the density of X is given by

f(x) =
∑
k∈Z

ξ(2π(x+ k)).

We plot the wrapped normal distribution for µ = 1/2 and σ = 1.

6. (Wrapped Cauchy distribution) In the same way as in the example of the Normal
distribution, we can wrap a Cauchy distribution Cauchy(s, t) around the unit circle. Its
density is plotted for s = 1/2 and t = e.
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Figure 2.1: Typical densities on the unit circle.
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Figure 2.2: Typical densities on the unit circle plotted on [0, 1).

72



Some examples of circular data.

1. (temporal data) Figure 2.3 presents the arrival times of 254 patients at an intensive care
unit, the data was collected over a period of 12 months. The data points are taken from
Fisher [1995], p. 239 and were originally published in Cox and Lewis [1966], p. 254-255.

2. (directional data) Figure 2.4 shows two different ways of representing circular data in
a diagram. We are given the orientation of 76 turtles after laying eggs (data taken from
Table I.5 in Mardia and Jupp [2009]). On the left the data points are represented as a
rose diagram (the circular analogue of a histogram), on the right the points are plotted
around the circle and their estimated density is presented in green. For comparison we also
plot the density of a mixture of von Mises distributions, one with weight 0.8 and location
parameter 1/6 (roughly the direction of the sea) and a second with weight 0.2 and location
parameter 4/6 (direction away from the sea), both with measure of concentration κ = 3.

3. (temporal data) Figure 2.5 shows the estimated density of the times of birth in the
US (2018) (red line) with 3801534 data points obtained from https://www.cdc.gov/
nchs/data_access/vitalstatsonline.htmm plotted around a 24-hour clock face. For
comparison we plot the density of a uniform distribution. An interesting question could
be: Is the birth time uniformly distributed around the 24h-clockface? Our goodness-of-fit
tests proposed in Chapter 3 and Chapter 4 are based on an estimation of the green area.
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Figure 2.3: Arrival times at an intensive care unit plotted around a 24-hour clock face (green
dots) and their estimated density (green line).
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Figure 2.4: Orientation in which 76 turtles leave their nest after laying eggs, represented as a
rose diagram (left) and as points on the circle (right). The green line is the estimated density,
for comparison we plot the density of a mixture of two von Mises distributions (orange line).
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Figure 2.5: Estimated density of the times of birth in the US (2018) (red line) and its distance
(green) to a uniform distribution (blue dashed line).
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Fourier coefficients property. We denote by L 2 = L 2[0, 1) the space of square-integrable
complex-valued functions on [0, 1) equipped with its usual inner product. The methodology of
the following chapters relies on the expansion of the respective functions in the exponential basis
ej , j ∈ Z of L 2 with ej(x) = exp(2πijx) for x ∈ [0, 1). The next proposition provides a useful
property for circularly convoluted densities in terms of their Fourier coefficients. The proof is
similar to the well-known proof for Fourier transforms and convolution on R and we state it here
for completeness (cp. Appendix A in Meister [2009], Lemma A.1)

Proposition (Circular convolution theorem). Let f, ϕ ∈ L 2 with Fourier coefficients
f• = (fj)j∈Z = (〈f, ej〉L 2)j∈Z and ϕ• = (ϕj)j∈Z = (〈ϕ, ej〉L 2). We have g = f ?©ϕ if and
only if gj = fj · ϕj for all j ∈ Z.

Proof. Let g = f ?©ϕ, then for j ∈ Z we have

fj · ϕj =
∫

[0,1)
f(x)ej(−x)dx

∫
[0,1)

ϕ(y)ej(−y)dy

=
∫

[0,1)

∫
[0,1)

f(x)ej(−x)ϕ(y)ej(−y)dydx,

where we introduce the change of variable, z = x+ y mod 1, dx = dz and obtain

fj · ϕj =
∫

[0,1)

∫
[0,1)

f(z − y mod 1)ϕ(y)ej(−z)dzdy

=
∫

[0,1)
(f ?©ϕ)(z)ej(−z)dz =

∫
[0,1)

g(z)ej(−z) = gj .

Now let gj = fj ·ϕj for all j ∈ Z, then by the Riesz-Fischer Theorem we have the representation
(with equality in L 2)

g(y) =
∑
j∈Z

gjej(y) =
∑
j∈Z

fjϕjej(y) =
∑
j∈Z

ϕj

∫
[0,1)

f(x)ej(−x)ej(y)dx,

where we introduce the change of variable, x = y−s mod 1, dx = ds and exploit the periodicity
of ej , j ∈ Z

g(y) =
∑
j∈Z

ϕj

∫
[0,1)

f(y − s mod 1)ej(−y + s)ej(y)ds

=
∑
j∈Z

ϕj

∫
[0,1)

f(y − s mod 1)ej(s)ds

=
∫

[0,1)
f(y − s mod 1)

∑
j∈Z

ϕjej(s)ds

=
∫

[0,1)
f(y − s mod 1)ϕ(s)ds = (f ?©ϕ)(y).

Notation

In contrast to the previous part of this thesis, from here on we also consider complex-valued
sequences and complex-valued functions. In this second part we denote

`2 := `2(Z) :=

x• ∈ CZ :
∑
j∈N

x2
j <∞

 ,
`∞ := `∞(Z) :=

{
x• ∈ CZ : sup

j∈Z
|xj | <∞

}
.
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The space `2 := `2(Z) equipped with 〈x•, y•〉`2 :=
∑
j∈N xjyj , ‖x•‖

2
`2 :=

∑
j∈N |xj |

2 is a Hilbert
space of square summable complex-valued sequences, `∞ equipped with ‖x•‖`∞ = supj∈Z |xj | is
a Banach space of bounded sequences.

By L 2 := L 2[0, 1) we denote in this part the Hilbert space of complex-valued square in-
tegrable functions defined on the half-open unit interval [0, 1) equipped with the inner product
〈f, g〉L 2 =

∫ 1
0 f(x)g(x)dx.
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Chapter 3

Minimax testing and quadratic
functional estimation for circular
convolution

In the circular convolution model we aim to infer on the density of a circular random
variable using observations contaminated by an additive measurement error. We
highlight the interplay of the two problems: optimal testing and quadratic functional
estimation. Under general regularity assumptions we determine an upper bound
for the minimax risk of estimation for the quadratic functional. The upper bound
consists of two terms, one that mimics a classical bias2-variance trade-off and a
second that causes the typical elbow effect in quadratic functional estimation. Using
a minimax optimal estimator of the quadratic functional as a test statistic, we derive
an upper bound for the non-asymptotic minimax radius of testing for non-parametric
alternatives. Interestingly, the term causing the elbow effect in the estimation case
vanishes in the radius of testing. We provide a matching lower bound for the testing
problem. By showing that any lower bound for the testing problem also yields a lower
bound for the quadratic functional estimation problem, we obtain a lower bound for
the risk of estimation. Lastly, we prove a matching lower bound for the term causing
the elbow effect. Therefore, we establish both the minimax risk of estimation and
the minimax radius of testing.

3.1 Introduction

The statistical model. In this section we consider minimax testing and quadratic functional
estimation in a circular convolution model. We observe a random variable given by

Y := X + ε− bX + εc,

where X and ε are independent random variables on [0, 1) with densities f and ϕ, respectively.
The density of the observable random variable Y satisfies g = f ?©ϕ, where ?© denotes the
circular convolution. The model is introduced and motivated in detail in the section above.

3.1.1 Quadratic functional estimation

Denote by D the subset of real probability densities in L 2 := L 2[0, 1), the Hilbert space of
square-integrable complex-valued functions on [0, 1) equipped with its usual norm ‖·‖L 2 . Since
we are interested in the estimation of the quadratic functional q2(f) := ‖f‖2L 2 of a density f,
we assume throughout this paper that both f and ϕ (and, hence, g) belong to D. We also want
to compare f to the prescribed density f◦ = 1[0,1) of a uniform distribution by estimating their

77



L 2-distance q2(f−f◦) = ‖f − f◦‖2L 2 . Since q2(f−f◦) = q2(f)−1 these problems are equivalent
and we focus on the estimation of q2(f − f◦). Let {Yk}nj=1 be a sample of n independent and
identically distributed observations with density g, i.e. the observations are given by

Yk
iid∼ g = f ?©ϕ, k ∈ JnK. (3.1.1)

Denote by Pf and Ef the probability distribution and the expectation associated with the
data (3.1.1). For a non-parametric class E we measure the accuracy of an estimator q̂2, i.e. a
measurable function q̂2 : Rn −→ R by its maximal risk

r2(q̂2, E) := sup
f−f◦∈E

Ef
(
q̂2 − q2(f − f◦)

)
and compare its performance to the minimax risk of estimation

r2(E) := inf
q̂2
r2(q̂2, E),

where the infimum is taken over all possible estimators. An estimator q̂2 is called minimax
optimal for the class E if its maximal risk is bounded by the minimax risk r2(E) up to a
constant. Note that with the non-parametric class E we put restrictions on the difference f− f◦
instead of on f directly, this makes it easier to compare the quadratic functional estimation
problem with the testing problem, which we state below.

Related literature. Quadratic functional estimation in direct models has received much at-
tention in the literature, let us only mention a few references. Bickel and Ritov [1988] and Birgé
and Massart [1995] establish minimax rates for the estimation of functionals of a density, where
they discover a typical phenomenon in quadratic functional estimation: the so-called elbow
effect, which also appears in our results. It refers to a sudden change in the behaviour of the
rates as soon as the smoothness/regularity parameter crosses a critical threshold. In a Gaussian
sequence space model, which is closely related to our model, for instance, Laurent and Massart
[2000] and Laurent [2005] consider adaptive quadratic functional estimation via model selec-
tion, Cai and Low [2005a] and Cai and Low [2006] derive minimax optimal estimators under
Besov-type regularity assumptions. Collier et al. [2017] consider sparsity constraints. Quadratic
functional estimation in an inverse Gaussian sequence space model is treated by Butucea and
Meziani [2011] (known operator) and Kroll [2019a] (partially unknown operator). For quadratic
functional estimation for deconvolution on the real line we refer to Butucea [2007] and Chesneau
[2011].

3.1.2 The testing task

Based on the observations (3.1.1) we test the null hypothesis {f = f◦} against the alternative
{f 6= f◦}. To make the null hypothesis and the alternative distinguishable, we separate them in
the L 2-norm. For a separation radius ρ ∈ R+ let us define the set L 2

ρ :=
{
ξ ∈ L 2 : ‖ξ‖L 2 ≥ ρ

}
,

which is called the energy condition. For a nonparametric class of functions E , called the
regularity condition, the testing problem can be written as

H0 : f = f◦ against Hρ
1 : f − f◦ ∈ L 2

ρ ∩ E , f ∈ D. (3.1.2)

We measure the accuracy of a test ∆, i.e. a measurable function ∆ : RN −→ {0, 1}, by its
maximal risk defined as the sum of the type I error probability and the maximal type II error
probability over the ρ-separated alternative

R (∆ | E , ρ) := Pf◦(∆ = 1) + sup
f−f◦∈L 2

ρ ∩E
f∈D

Pf(∆ = 0).
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We aim to answer the question how far the null and the alternative need to be separated to be
statistically distinguishable. A value ρ2(∆, E) = ρ2({∆α}α∈(0,1) , E) is called radius of testing
for the family of tests {∆α}α∈(0,1) over the alternative E , if for all α ∈ (0, 1) there exist constants
Aα, Aα ∈ R+ such that

(i) for all A ≥ Aα we have R (∆α | E , Aρ(∆, E)) ≤ α, (upper bound)

(ii) for all A ≤ Aα we have R (∆α | E , Aρ(∆, E)) ≥ 1− α. (lower bound)

The difficulty of the testing problem can be characterised by the minimax risk

R (E , ρ) := inf
∆
R (∆ | E , ρ)

where the infimum is taken over all possible tests. The value ρ2(E) is called minimax radius
of testing if for all α ∈ (0, 1) there exist constants Aα, Aα ∈ R+ such that

(i) for all A ≥ Aα we have R (E , Aρ(E)) ≤ α, (upper bound)

(ii) for all A ≤ Aα we have R (E , Aρ(E)) ≥ 1− α. (lower bound)

If ρ2(E) is a radius of testing for the family of tests {∆α}α∈(0,1), then it is called minimax
optimal.

Related literature. Concerning minimax testing in convolution models we refer e.g. to Bu-
tucea [2007], Butucea et al. [2009] and Loubes and Marteau [2014], all three consider convolu-
tion on the real line. The connection between quadratic functional estimation and testing has
for example been studied in Collier et al. [2017] (in a direct Gaussian sequence space model
under sparsity), Kroll [2019a] (in a indirect Gaussian sequence space model under regularity
constraints) and Butucea [2007] (in a convolution model on the real line).

3.1.3 Methodology

We characterise both the minimax risk and the minimax radius in terms of the sample size n,
the parameters of the regularity class E and the error density ϕ. Our approach heavily depends
on the properties of the Hilbert space L 2 := L 2[0, 1) equipped with its usual inner product
〈·, ·〉 := 〈·, ·〉L 2 given by

〈ξ, ψ〉 :=
∫

[0,1)
ξ(x)ψ(x)dx for ξ, ψ ∈ L 2,

where ψ(x) denotes the complex conjugate of ψ(x). Given the exponential basis ej , j ∈ Z of L 2

with ej(x) = exp(2πijx) for x ∈ [0, 1), we denote the Fourier coefficients of a function f ∈ L 2

by fj = 〈f, ej〉, j ∈ Z. This leads to the discrete Fourier series expansion

f =
∑
j∈Z

fjej , (3.1.3)

where equality holds in L 2. The non-parametric class of functions E is formulated in terms
of the Fourier coefficients and characterises the regularity of the function. Let R > 0 and let
a• = (aj)j∈N ∈ RN be a strictly positive, monotonically non-increasing sequence. We assume
that the density of interest f (resp. f − f◦) belongs to the L 2-ellipsoid

ER
a• :=

ξ ∈ L 2 : 2
∑
j∈N

a−2
j |ξj |

2 ≤ R2

 . (3.1.4)
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We point out that in the case f◦ = 1[0,1) the conditions f ∈ ER
a• and f− f◦ ∈ ER

a• are equivalent.
Moreover, note that for real-valued densities, the condition f ∈ ER

a• imposes conditions on all
coefficients fj , j ∈ Z, since |fj |2 = |f−j |2, j ∈ N for all real-valued functions and, additionally
f0 = 1 for all densities. The definition (3.1.4) is general enough to cover classes of ordinary
and super smooth densities. Expanding both f and f◦ in the exponential basis as in (3.1.3)
and applying Parseval’s Theorem yields a representation of the quadratic functional q2(f −
f◦) = ‖f − f◦‖2L 2 in their Fourier coefficients q2(f− f◦) =

∑
j∈Z

∣∣∣fj − f◦j ∣∣∣2 = 2
∑
j∈N

∣∣∣fj − f◦j ∣∣∣2.
In particular, for f◦ = 1[0,1), we have q2(f − f◦) = 2

∑
j∈N |fj |

2. Moreover, by the circular
convolution theorem we have g = f ?©ϕ if and only if the Fourier coefficients satisfy gj = fj · ϕj
for all j ∈ Z. Here and subsequently we assume that the Fourier coefficients of the noise density
ϕ are non-vanishing everywhere, i.e. |ϕj | > 0 for all j ∈ Z. The quadratic functional can then
be expressed as

q2(f − f◦) =
∑
j∈Z

∣∣∣gj − ϕjf◦j ∣∣∣2
|ϕj |2

, (3.1.5)

which simplifies to q2(f − f◦) = 2
∑
j∈N

|gj |2

|ϕj |2
in the case of a uniform density f◦ = 1[0,1). The

only unknown quantities in (3.1.5) are the Fourier coefficients gj , j ∈ Z of g, which can easily
be estimated. Since for j ∈ Z, gj = 〈g, ej〉 = Efej(−Y1), a natural estimator is given by
replacing the expectation with the empirical counterpart ĝj := 1

n

∑n
k=1 ej(−Yk). Inserting these

estimators into the quadratic functional, however, generates a bias in every component. Since
|ĝj |2 − 1−|ĝj |2

n−1 is an unbiased estimator of the numerator |gj |2, for j ∈ N, for each k ∈ N we
consider the estimator

q̂2
k := 2

∑
|j|∈JkK

|ϕj |−2
{
|ĝj |2 −

1− |ĝj |2

n− 1

}
, (3.1.6)

which is an unbiased estimator of the truncated quadratic functional q2
k(f−1[0,1)) := 2

∑k
j=1

|gj |2

|ϕj |2
.

Here and subsequently, we only consider the case f◦ = 1[0,1). Using q̂2
k as an estimator of the

distance ‖f − f◦‖2L 2 to the null hypothesis, we construct a test that, roughly speaking, compares
the estimator to a multiple of its standard deviation. Precisely, for k ∈ N, α ∈ (0, 1) and a
constant Cα, we consider the test

∆k,α := 1{
q̂2
k
≥Cα

ν2
k
n

} with ν2
k :=

∑
j∈JkK

1
|ϕj |4

1/2

. (3.1.7)

3.1.4 Minimax results

We show that for fixed k ∈ N the minimax risk of estimator q̂2
k defined in (3.1.6) is up to a

constant bounded by

ρ4
k ∨ r4

◦ with ρ4
k :=

{
a4
k ∨

ν4
k

n2

}
and r4

◦ := max
m∈N

{
a4
m ∧

a2
m

n |ϕm|2

}
. (3.1.8)

The base level term r4
◦ is present for all dimensions k ∈ N, whereas the term ρ4

k, which represents
a typical bias2-variance trade-off, explicitly depends on the dimension parameter k ∈ N and can,
thus, be optimised with respect to k. More precisely, choosing κ? as a minimizer of ρ4

k, the risk
of q̂2

κ? is up to a constant bounded by

ρ4
? ∨ r4

◦ :=
{

min
k∈N

ρ4
k

}
∨ r4
◦. (3.1.9)
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The term r4
◦ causes the classical elbow effect in quadratic functional estimation, since it prevents

the rate from being faster than parametric. The upper bound shows the expected behaviour:
a faster decay of the Fourier coefficients of ϕ, i.e. a smoother error density, results in a slower
rate. Therefore, we call the decay of (|ϕj |)j∈N the degree of ill-posedness of the model. On the
other hand, a faster decay of the Fourier coefficients of the density of interest f, characterized
by the sequence a•, yields a faster rate. We use the estimation upper bound to determine an
upper bound for a radius of testing of the test ∆k,α defined in (3.1.7). For appropriately chosen
Cα an upper bound for the radius of testing of ∆k,α is given by

ρ2
k = a2

k ∨
ν2
k

n
, (3.1.10)

which can again be optimised with respect to k ∈ N. Again choosing κ? as the minimiser of ρ2
k

with respect to k, the radius of testing of ∆κ?,α is of order

ρ2
? := min

k∈N
ρ2
k.

Interestingly, the term causing the elbow effect in the estimation case vanishes in the radius of
testing. Roughly speaking, the densities that cause r4

◦ in (3.1.9), and, hence, the elbow effect,
are difficult to estimate (since they have large energy), but easy to test (since they are far from
the null). This observation is explicitly used in the proof of the upper bounds of testing.

Outline
Minimax testing and quadratic functional estimation for circular convolution

minimax risk of quadratic functional estimation

r2(ER
a•) := inf

q̂2
sup

f−f◦∈ER
a•

Ef
(
q̂2 − q2(f − f◦)

)2

r2(ER
a•) . mink∈N ρ4

k ∨ r4
◦

r2(ER
a•) & r

4
◦

Section 3.6

Section 3.2

minimax radius of testing

ρ2(ER
a•)

ρ2(ER
a•) . mink∈N ρ2

k

Section 3.3

(
r2(ER

a•)
)2
. ρ2(ER

a•)

Section 3.5

ρ2(ER
a•) & mink∈N ρ2

k

Section 3.4

Disappearance
of the elbow

effect

Outline of this chapter. We provide an upper bound for the estimation risk in Section 3.2,
which is used to derive an upper bound for the radius of testing in Section 3.3. Interestingly,
the term causing the elbow effect disappears. Section 3.4 shows a matching lower bound for
the testing problem. In Section 3.5 we show that testing is faster than quadratic functional
estimation if we correct for the missing square, formally r4(E) ≥ Cρ2(E) for some C > 0. Using
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this connection between quadratic functional estimation and testing, we immediately obtain a
lower bound for the estimation problem. It remains to prove an additional lower bound for the
term r4

◦ that causes the elbow effect, which is done in Section 3.6. Thus, we establish the order
of both the minimax estimation risk and the minimax radius of testing. Technical results and
their proofs are deferred to Appendix C.

3.2 Upper bound for the estimation risk

The next proposition presents an upper bound for the quadratic functional estimator defined in
(3.1.6) for arbitrary f ∈ D and k ∈ N. The key element of the proof is rewriting the estimator
as a U-statistic and exploiting a well-known formula for its variance. The upper bound consists
of one bias2 term and two variance terms, one of which still involves the density of interest f.

Proposition 3.2.1 (Upper bound for the estimation risk). For n ≥ 2 and k ∈ N the
estimator defined in (3.1.6) satisfies

Ef
(
q̂2
k − q2(f − f◦)

)2
≤

∑
|j|>k
|fj |2

2

+ c

n2

∑
|j|∈JkK

1
|ϕj |4

+ c

n

∑
|j|∈JkK

|fj |2

|ϕj |2
(3.2.1)

with c := ‖f ?©ϕ‖∞ = ‖g‖∞ := supx∈[0,1) |g(x)|.

Proof of Proposition 3.2.1 . The bound follows from a classical bias2-variance decomposition of
the estimation risk;

Ef
(
q̂2
k − q2(f − f◦)

)2
=
(
Ef q̂2

k − q2(f − f◦)
)2

+ varf (q̂2
k)

=
(
q2
k(f − f◦)− q2(f − f◦)

)2
+ varf (q̂2

k)

=

∑
|j|>k
|fj |2

2

+ varf (q̂2
k). (3.2.2)

To bound the variance, we rewrite the estimator as a U-statistic

q̂2
k = 1

n(n− 1)
∑
l 6=m

∑
|j|∈JkK

ej(−Yl)ej(Ym)
|ϕj |2

:= 1
n(n− 1)

∑
l 6=m

h(Yl, Ym) := 1
2Un,

where we define the kernel h : [0, 1)× [0, 1) −→ C by

h(y1, y2) :=
∑
|j|∈JkK

ej(−y1)ej(y2)
|ϕj |2

for y1, y2 ∈ [0, 1)

and the normalized U-statistic

Un :=
(
n

2

)−1 ∑
l 6=m

h(Yl, Ym).

The kernel h is symmetric and real-valued. Indeed, for y1, y2 ∈ [0, 1) we have

h(y1, y2) =
∑
|j|∈JkK

ej(−y1)ej(y2)
|ϕj |2

=
∑
|l|∈JkK

el(y1)el(−y2)
|ϕj |2

= h(y2, y1),
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where we introduce the change of variables l = −j and exploit that ej(·) = e−j(−·). Moreover,

h(y1, y2) =
∑
|j|∈JkK

ej(y1)ej(−y2)
|ϕj |2

=
∑
|l|∈JkK

el(−y1)el(y2)
|ϕj |2

= h(y1, y2),

where we again introduce the change of variables l = −j and exploit that ej(·) = ej(−·). Let us
define the function

h1 : [0, 1) −→ R, y 7−→ h1(y) := Ef (h(y, Y2)).

By Lemma A on p. 183 in Serfling [2009] the variance of the U-statistic Un is determined by

varf (Un) =
(
n

2

)−1

(2(n− 2)ξ1 + ξ2)

with ξ1 := varf (h1(Y1)) and ξ2 := varf (h(Y1, Y2)). Next, we bound the two terms ξ1 and ξ2.
Since

h1(y) = Ef (h(y, Y2)) =
∑
|j|∈JkK

Efej(Y2)
|ϕj |2

ej(−y) =
∑
|j|∈JkK

gj

|ϕj |2
ej(−y),

we obtain by Parseval’s identity

ξ1 ≤ Ef |h1(Y1)|2 ≤ ‖g‖∞ ‖h1‖2L 2 = ‖g‖∞
∑
|j|∈JkK

|fj |2

|ϕj |2
.

Now consider the term ξ2. It holds

ξ2 = varf (h(Y1, Y2)) ≤ Ef |h(Y1, Y2)|2 ≤ ‖g‖∞
∫

[0,1)

∫
[0,1)
|h(y1, y2)|2 dy1g(y2)dy2,

where∫
|h(y1, y2)|2 dy1 =

∑
|j|,|l|∈JkK

∫
[0,1) ej(y2 − y1)el(y2 − y1)dy1

|ϕj |2 |ϕl|2
=

∑
|j|∈JkK

1
|ϕj |4

and, hence,∫
[0,1)

∫
[0,1)
|h(y1, y2)|2 dy1g(y2)dy2 =

∑
|j|∈JkK

1
|ϕj |4

∫
[0,1)

g(y2)dy2 =
∑
|j|∈JkK

1
|ϕj |4

.

Finally, combining the bounds for ξ1 and ξ2 yields

varf (q̂2
k) = 1

4 varf (Un) = 2(n− 2)ξ1 + ξ2
2n(n− 1) ≤ 1

n
ξ1 + 1

n2 ξ2

≤ ‖g‖∞
n

∑
|j|∈JkK

|fj |2

|ϕj |2
+ ‖g‖∞

n2

∑
|j|∈JkK

1
|ϕj |4

, (3.2.3)

where we use that 1
2(n−1) ≤

1
n for n ≥ 2. Together with (3.2.2) this proves the assertion.

The upper bound in (3.2.1) depends on the quantity c = ‖g‖∞ ≤ ‖ϕ‖∞, which is uniformly
bounded for all f ∈ D as soon as ‖ϕ‖∞ <∞. By additionally exploiting the regularity condition
(3.1.4) we obtain a uniform bound for the risk, valid for all f ∈ ER

a• .
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Corollary 3.2.2 (Uniform upper bound for the risk of estimation).
Consider the quantities ν4

k and r4
◦ as defined in (3.1.7) and (3.1.8), respectively. For n, k ∈ N,

n ≥ 2 the estimator q̂2
k defined in (3.1.6) satisfies

sup
f∈ER

a•

Ef (q̂2
k − q2(f − f◦))2 ≤ c1a

4
k ∨ c2

ν4
k

n2 ∨ c3r
4
◦ (3.2.4)

with c1 := 3R4, c2 := 2(‖ϕ‖∞ + R2), c3 := 3 ‖ϕ‖∞R2.

Proof of Corollary 3.2.2. We exploit the upper bound of Proposition 3.2.1. Since the sequence
a• is non-increasing, the first term on the right-hand side in (3.2.1) (the bias term) is bounded
by ∑

|j|>k
|fj |2 = 2

∑
j>k

|fj |2 = 2
∑
j>k

|fj |2 a−2
j a2

j ≤ 2a2
k

∑
j>k

|fj |2 a−2
j ≤ R2a2

k.

To control the last (third) term on the right-hand side of (3.2.1), we bound each summand, i.e.
for each j ∈ N we have

1
n

|fj |2

|ϕj |2
≤


|fj |2

a2
j
a4
j

(
1 ∧ 1

n|ϕj |2a2
j

)
if n |ϕj |2 a2

j ≥ 1,
R2

n2|ϕj |4
if n |ϕj |2 a2

j < 1.

Hence, we obtain a bound for the entire sum

1
n

∑
|j|∈JkK

|fj |2

|ϕj |2
≤

∑
|j|∈JkK

|ϕj |2

a2
j

a4
j

(
1 ∧ 1

n |ϕj |2 a2
j

)
+ R2

n2

∑
|j|∈JkK

1
|ϕj |4

≤ max
m∈N

{
a4
m ∧

a2
m

n |ϕm|2

} ∑
|j|∈JkK

|fj |2

a2
j

+ R2 ν
4
k

n2

≤ R2r4
◦ + R2 ν

4
k

n2 .

Combining both bounds with (3.2.1) and x + y + z ≤ 3(x ∨ y ∨ z) for all x, y, z ≥ 0 yields the
assertion.

We remind the reader that since we consider the case f◦ = 1[0,1), we have f ∈ ER
a• if and

only if f − f◦ ∈ ER
a• .

Remark 3.2.3 (Optimal choice of the dimension parameter). The first two terms in the
upper bound of Corollary 3.2.2 depend on the dimension parameter k ∈ N, whereas the last term
c3r

4
◦ does not. It plays the role of a base-level error, which causes the well-known elbow effect in

quadratic functional estimation (cp. also Illustration 3.2.6 below). It can easily be seen that r4
◦

is always of order larger than 1
n , since r4

◦ = maxm∈N
{
a4
m ∧

a2
m

n|ϕm|2
}
≥ a4

1 ∧
a2

1
n|ϕj |2

& 1
n . In other

words, no matter the choice of the dimension k the estimation rate can never be faster than
parametric. The first two terms, however, depend on k ∈ N and can, therefore, be optimised.
We define the optimal dimension

κ? := min
{
k ∈ N : a4

k ≤
ν4
k

n2

}
(3.2.5)

as the dimension that achieves an optimal bias-variance trade-off. �
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Theorem 3.2.4 (Upper bound for the minimax risk of estimation). Let κ? as in
(3.2.5), ρ? as in (3.1.9) and r4

◦ as in (3.1.8). For n ≥ 2 the minimax risk satisfies

r2(ER
a•) ≤ r

2(q̂2
κ? , E

R
a•) ≤ C

(
ρ4
? ∨ r4

◦

)
with C := 3

(
R4 + ‖ϕ‖∞ + R2 + ‖ϕ‖∞R2).

Proof of Theorem 3.2.4. We apply Corollary 3.2.2 to q̂2
κ? with κ? as in (3.2.5).

We now provide an additional upper bound for the variance of the estimator (3.1.6), which
is used in the next section to derive an upper bound for the testing radius.

Corollary 3.2.5 (Upper bound for the variance). Let f◦ = 1[0,1) and f ∈ D. For
n, k ∈ N, n ≥ 2 and ν2

k as in (3.1.7) the estimator defined in (3.1.6) satisfies

varf◦(q̂2
k) ≤

ν4
k

n2 , (3.2.6)

varf(q̂2
k) ≤ ‖ϕ‖∞ · q

2
k(f − f◦)

ν2
k

n
+ ‖ϕ‖∞

ν4
k

n2 . (3.2.7)

Proof of Corollary 3.2.5. Let us start with the second assertion (3.2.7). We use the bound
(3.2.3) derived in the proof of Proposition 3.2.1 combined with ‖g‖∞ ≤ ‖ϕ‖∞. The first term
on the right hand side can be bounded due to the Cauchy-Schwarz inequality by

∑
|j|∈JkK

|fj |2

|ϕj |2
≤

 ∑
|j|∈JkK

|fj |4
1/2 ∑

|j|∈JkK

1
|ϕj |4

1/2

≤ q2
k(f − f◦) · ν2

k .

In the last inequality we exploit
√
x+ y ≤

√
x + √y for any x, y ≥ 0, which shows (3.2.7).

To prove the first assertion (3.2.6), we note that, additionally, for f = f◦ = 1[0,1) and, hence,
g = 1[0,1) we have ‖g‖∞ = 1 and q2

k(f − f◦) = 0, which finishes the proof.

Illustration 3.2.6. We illustrate the order of the estimation risk under typical regularity
and ill-posedness assumptions. For two real-valued sequences (xj)j∈N ∈ RN and (yj)j∈N ∈
RN we write xj . yj if there exists a constant c > 0 such that xj ≤ cyj for all j ∈ N. We
write xj ∼ yj , if both xj . yj and yj . xj . Concerning the class ER

a• we distinguish two
behaviours of the sequence a•, namely the ordinary smooth case, aj ∼ j−s for s > 1/2,
corresponding to a Sobolev ellipsoid, and the super smooth case, aj ∼ exp(−js) for s > 0,
corresponding to a class of analytic functions. We also distinguish two cases for the regular-
ity of the error density ϕ. For p > 1/2 we consider a mildly ill-posed model |ϕj | ∼ |j|−p
and for p > 0 a severely ill-posed model |ϕj | ∼ exp(− |j|p). Many examples of circular
densities can be found in Chapter 3 of Mardia and Jupp [2009]. The table below presents
the order of the upper bound for the minimax risk r2(ER

a•) derived in Theorem 3.2.4. In
Section 3.4 we provide a matching lower bound, and, thus, establish the minimax optimality
of the estimator q̂2

κ? . Note that in the mildly ill-posed – ordinary smooth case we observe
the typical elbow effect in quadratic functional estimation.
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Order of the minimax risk of estimation r2(ER
a•) ∼ ρ

4
? ∨ r4

◦

aj |ϕj | ρ4
? r4

◦ r2(ER
a•)

(smooth.) (ill-posed.)

j−s |j|−p n
− 8s

4s+4p+1

n−
8s

4s+4p s− p < 0
n−1 s− p ≥ 0

n−
8s

4s+4p+1 s− p < 1
4

n−1 s− p ≥ 1
4

j−s e−|j|
p (logn)−

4s
p (logn)−

4s
p (logn)−

4s
p

e−j
s |j|−p n−2(logn)

4p+1
s n−1 n−1

Calculations for the risk bounds in Illustration 3.2.6.
We establish the order of the terms r4

◦ and ρ4
? in Theorem 3.2.4 for each of the three combinations

in Illustration 3.2.6 and determine the dominating term. Let m? := max
{
m ∈ N : a4

m ≥
a2
m

n|ϕm|2
}

.

1. (ordinary smooth – mildly ill-posed) Consider first ρ4
? defined in (3.1.9). The variance

term ν4
k
n2 = 1

n2
∑
|j|∈JkK

1
|ϕj |4

∼ 1
n2
∑
|j|∈JkK |j|

4p is of order 1
n2k

4p+1 and the bias term a4
k is

of order k−4s. Hence, the optimal κ? satisfies κ−4s
? ∼ 1

n2κ
4p+1
? and, thus, κ? ∼ n

2
4s+4p+1 ,

which yields an upper bound of order ρ4
? ∼ κ−4s

? ∼ n−
8s

4s+4p+1 .
For the base level r4

◦ = maxm∈N
{
a4
m ∧

a2
m

n|ϕj |2

}
, the term a2

m

n|ϕm|2
∼ 1

nm
2(p−s) is monoton-

ically increasing in m for p − s > 0 and monotonically non-increasing otherwise. Let
p− s > 0, then m? satisfies m−4s

? ∼ 1
nm

2(p−s)
? and is thus of order m? ∼ n

2s
s+p . Therefore,

r4
◦ ∼ n

− 8s
4s+4p is negligible compared with ρ4

?. Let p− s ≤ 0, then a4
m and a2

m

n|ϕm|2
are non-

increasing. The maximum of their minimum is attained at m? = 1, which yields r4
◦ ∼ 1

n .
Hence, r4

◦ is of larger order than ρ4
? for s− p > 1

4 only.

2. (ordinary smooth – severely ill-posed) Consider first ρ4
? defined in (3.1.9). The

variance term ν4
k
n2 = 1

n2
∑
|j|∈JkK

1
|ϕj |4

∼ 1
n2
∑
|j|∈JkK exp(4 |j|p) is of order 1

n2 exp(4kp) and
the bias term a4

k is of order k−4s. Hence, the optimal κ? satisfies κ−4s
? ∼ 1

n2 exp(4κp?) and,
thus, κ? ∼ (log(n2/bn))

1
p with bn ∼ (log(n2))

4s
p , which yields an upper bound of order

ρ4
? ∼ κ−4s

? ∼ (logn)−
4s
p .

Considering the base level r4
◦ = maxm∈N

{
a4
m ∧

a2
m

n|ϕj |2

}
, the term a2

m

n|ϕm|2
∼ m−2s

n exp(2mp)

is eventually monotonically increasing in m. Hence, m? satisfies m−4s
? ∼ 1

nm
−2s
? exp(2mp

?)
and is thus of order m? ∼ (log(n/bn))

1
p with bn ∼ (logn)

2s
p . Therefore, r4

◦ ∼ (logn)−
4s
p is

of the same order as ρ4
?.

3. (super smooth – mildly ill-posed) Consider first ρ4
? defined in (3.1.9). The variance

term ν4
k
n2 = 1

n2
∑
|j|∈JkK

1
|ϕj |4

∼ 1
n2
∑
|j|∈JkK |j|

4p is of order 1
n2k

4p+1 and the bias term a4
k

is of order exp(−4ks). Hence, the optimal κ? satisfies exp(−4κs?) ∼ 1
n2κ

4p+1
? and, thus,

κ? ∼ (log(n2/bn))
1
s with bn ∼ (logn)

4p+1
s , which yields an upper bound of order ρ4

? ∼
1
n2κ

4p+1
? ∼ 1

n2 (logn)
4p+1
s .

Considering the base level r4
◦ = maxm∈N

{
a4
m ∧

a2
m

n|ϕj |2

}
, the term a2

m

n|ϕm|2
∼ m2p

n exp(−2ms)
is eventually monotonically decreasing in m. Hence, m? satisfies m? ∼ 1. Therefore,
r4
◦ ∼ n−1 is of larger order than ρ4

? and is thus the dominant term.
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3.3 Upper bound for the radius of testing

In this section we derive an upper bound for the radius of testing of the task (3.1.2). For k ∈ N
we consider the family of tests {∆k,α}α∈(0,1) defined in (3.1.7), that is based on the estimator
q̂2
k in (3.1.6) of the distance ‖f − f◦‖2L 2 to the null hypothesis.

Proposition 3.3.1 (Upper bound for the radius of testing of ∆k,α/2). Let α ∈ (0, 1),
c := ‖ϕ‖∞ and Cα/2, Ãα be such that

c ·
2Cα/2 + 1
C2
α/2

≤ α

2 and c ·
2Cα/2 + 1

(Ãα − Cα/2)2
≤ α

2 . (3.3.1)

Set A2
α := R2 + Ã2

α. Then, for all A ≥ Aα and all k ∈ N we obtain

R
(
∆k,α/2 | ER

a• , Aρk
)
≤ α,

i.e. ρ2
k = a2

k ∨
ν2
k
n is an upper bound for the radius of testing of

{
∆k,α/2

}
α∈(0,1)

.

Remark 3.3.2 (Choice of Cα/2 and Ãα). In particular (3.3.1) and, hence, Proposition 3.3.1
is satisfied for

Cα/2 = 2(α/2)−1 ‖ϕ‖∞ and Ãα = Cα/2 +
√

2/α
√

4 ‖ϕ‖2∞ (α/2)−1 + ‖ϕ‖∞.

Indeed, since c ≥ 1 we have

c ·
2Cα/2 + 1
C2
α/2

= c ·
(

1
2c
α

2 + 1
4c2

(
α

2

)2
)
≤ α

2

(1
2 + 1

4c

)
≤ α

2

and

c ·
2Cα/2 + 1

(Ãα − Cα/2)2
= c · α2 ·

2Cα/2 + 1
4c2(α/2)−1 + c

= α

2 ·
2Cα/2 + 1

4c(α/2)−1 + 1 = α

2 .

�

Proof of Proposition 3.3.1. We show that both the type I error probability and the type II error
probability are bounded by α/2. Consider first the type I error probability. Applying first
Markov’s inequality and then the second inequality (3.2.6) from Corollary 3.2.5 we obtain

Pf◦(∆k,α/2 = 0) = Pf◦(q̂2
k ≥ Cα/2

ν2
k

n
)

≤
Ef◦

(
q̂2
k

)2
C2
α/2n

−2ν4
k

=
varf◦(q̂2

k)
C2
α/2n

−2ν4
k

≤ 1
C2
α/2
≤ α

2 , (3.3.2)

for all Cα/2 satisfying (3.3.1), since ‖ϕ‖∞ ≥ 1. Next, we consider the type II error probabil-
ity. Let f be contained in the Aαρk-separated alternative, i.e. f − f◦ ∈ ER

a• and q2(f − f◦) ≥
(Aα)2ρ2

k. We expand

Pf (∆k,α/2 = 0) = Pf (q̂2
k < Cα/2

ν2
k

n
) = Pf (q̂2

k − q2
k(f − f◦) < Cα/2ν

2
k − q2

k(f − f◦))

and distinguish the following two cases for the density f
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f − f◦ ∈ ER
a•

√
2Cα/2

ν2
k
n

f◦
Aαρk

Figure 3.1: Visualization of the structure of the proof of Proposition 3.3.1. We dis-
tinguish the two cases: Either f − f◦ has large energy (in the first k components), hence, it is
easy to test since it is far from the null. Or f− f◦ has small energy (in the first k components),
hence, it is difficult to test since it is close to the null.

1. q2
k(f − f◦) ≥ 2Cα/2

ν2
k
n , (easy to test)

2. q2
k(f − f◦) < 2Cα/2

ν2
k
n . (difficult to test)

Case 1: (easy to test) We have Cα/2
ν2
k
n − q2

k(f − f◦) ≤ −1
2q2

k(f − f◦) and, therefore, due to
Markov’s inequality

Pf (∆k,α/2 = 0) ≤ Pf (q̂2
k − q2

k(f − f◦) ≤ −
1
2q2

k(f − f◦))

= Pf (q2
k(f − f◦)− q̂2

k ≥
1
2q2

k(f − f◦)) ≤ 4 varf (q̂2)
(q2
k(f − f◦))2 .

On the one hand, by the case distinction we have q2
k(f − f◦) ≥ 2Cα/2

ν2
k
n , on the other hand we

have varf (q̂2) ≤ cq2
k(f − f◦)

ν2
k
n + c

ν4
k
n2 with c = ‖ϕ‖∞ due to (3.2.7) in Corollary 3.2.5. Hence,

Pf (∆k,α/2 = 0) ≤ 4
cq2
k(f − f◦)

ν2
k
n + c

ν4
k
n2

(q2
k(f − f◦))2 = 4c

 ν2
k
n

q2
k(f − f◦)

+
ν4
k
n2

(q2
k(f − f◦))2


≤ 4c

 ν2
k
n

2Cα/2
ν2
k
n

+
ν4
k
n2

4C2
α/2

ν4
k
n2

 = c ·
2Cα/2 + 1
C2
α/2

≤ α

2

due to assumption (3.3.1).
Case 2: (difficult to test) Under the alternative we have∑

|j|>k
|fj |2 = 2

∑
j>k

|fj |2 = 2
∑
j>k

|fj |2 a−2
j a2

j ≤ 2a2
k

∑
j>k

|fj |2 a−2
j ≤ R2a2

k.

and q2(f − f◦) =
∑
|j|∈N |fj |

2 ≥ A2
αρ

2
k. Therefore, it follows

q2
k(f − f◦) = q2(f − f◦)−

∑
|j|>k
|fj |2 ≥ A

2
αρ

2
k − a2

kR2 = Ã2
α

ν2
k

n
+ R2a2

k − R2a2
k = Ã2

α

ν2
k

n
.
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Hence, due to Markov’s inequality the type II error probability satisfies

Pf (∆k,α/2 = 0) = Pf

(
q̂2
k − q2

k(f − f◦) ≤ Cα/2
ν2
k

n
− q2

k(f − f◦)
)

≤ Pf

(
q̂2
k − q2

k(f − f◦) ≤
(
Cα/2 − Ã2

α

) ν2
k

n

)

= Pf

(
−q̂2

k + q2
k(f − f◦) ≤

(
−Cα/2 + Ã2

α

) ν2
k

n

)

≤ varf (q̂2
k)(

Ã2
α − Cα/2

)2 ν4
k
n2

.

From the bound for the variance (3.2.7), the case distinction condition and the choice of Ãα in
(3.3.1) it follows

Pf (∆k,α/2 = 0) ≤ c ·
q2
k(f − f◦)

ν2
k
n + ν4

k
n2(

Ã2
α − Cα/2

)2 ν4
k
n2

≤ c ·
2Cα/2

ν2
k
n + ν2

k
n(

Ã2
α − Cα/2

)2 ν2
k
n

= c ·
2Cα/2 + 1(
Ã2
α − Cα/2

)2 ≤
α

2 .

Combining the last bound and (3.3.2), we obtain the assertion, which completes the proof.

From Proposition 3.3.1 with k = κ? as in (3.2.5) and ρ? as in (3.1.9) we immediately obtain
the following corollary and, hence, omit its proof.

Corollary 3.3.3 (Upper bound for the minimax radius of testing). Under the con-
ditions of Proposition 3.3.1 for all A ≥ Aα we obtain

R
(
ER
a• , Aρ?

)
≤ R

(
∆κ?,α/2 | E

R
a• , Aρ?

)
≤ α,

i.e. ρ2
? = mink∈N

{
a2
k ∨

ν2
k
n

}
is an upper bound for the minimax radius of testing.

Illustration 3.3.4. We illustrate the order of the upper bound for the radius of testing
ρ2
? = ρ2

?(ER
a•) derived in Corollary 3.3.3 under the typical smoothness and ill-posedness

assumptions introduced in Illustration 3.2.6. In the next section we provide a matching
lower bound, which establishes ρ2

? as the minimax radius of testing. Comparing the next
table with Illustration 3.2.6 we emphasise that there is no elbow effect. The derivation of
the bounds is similar to the ones in Illustration 3.2.6 and is thus omitted.
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Order of the minimax radius of testing ρ2
?(ER

a•)

aj |ϕj | ρ2
?

(smoothness) (ill-posedness)

j−s |j|−p n
− 4s

4s+4p+1

j−s e−|j|
p (logn)−

2s
p

e−j
s |j|−p n−1(logn)

4p+1
2s

3.4 Lower bound for the radius of testing

In this section we prove a matching lower bound for the radius of testing. The proof is inspired by
Assouad’s cube technique (see Tsybakov [2009], Chapter 2.7 for an explanation of the technique
in the estimation case), where the testing risk is reduced to a distance between probability
measures. It requires the construction of 2κ? candidates (called hypotheses) in the class ER

a• ,
which are vertices of a hypercube. Roughly speaking, they are constructed such that they are
statistically indistinguishable from the null f◦ while having largest possible L 2-distance.

Proposition 3.4.1 (Lower bound for the radius of testing). Assume

2
∑
j∈N

a2
j =: a <∞. (3.4.1)

Consider κ? as in (3.2.5) and let η ∈ (0, 1] satisfy(
a2
κ? ∨

ν2
κ?

n

)
η ≤

(
a2
κ? ∧

ν2
κ?

n

)
. (3.4.2)

For α ∈ (0, 1) define A2
α := η

(
R2 ∧

√
log(1 + 2α2) ∧ a−1

)
. Then, for all A ≤ Aα

R
(
ER
a• , Aρ?

)
≥ 1− α,

i.e. ρ2
? = mink∈N

{
a2
k ∨

ν2
k
n

}
is a lower bound for the minimax radius of testing.

Proof of Proposition 3.4.1. Reduction step. To prove a lower bound for the testing radius we
reduce the risk of a test to a distance between probability measures. Denote P0 := Pf◦ and let
P1, specified below, be a mixing measure over the Aαρ?-separated alternative. The minimax
risk can then be lower bounded by applying a classical reduction argument as follows

R
(
ER
a• , Aαρ?

)
= inf

∆

Pf◦(∆ = 1) + sup
f−f◦∈L 2

Aαρ?
∩E,f∈D

Pf(∆ = 0)


≥ inf

∆
{P0(∆ = 1) + P1(∆ = 0)}

= 1− TV(P0,P1) ≥ 1−

√
χ2(P0,P1)

2 , (3.4.3)

where TV denotes the total variation distance and χ2 the χ2-divergence. The last inequality
follows e.g. from Lemma 2.5 combined with (2.7) in Tsybakov [2009].
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Definition of the mixture. On the alternative we mix the Fourier coefficients uniformly over
the vertices of a hypercube. Consider f with f − f◦ ∈ ER

a• ∩L 2
Aαρ?

with coefficients

fj :=


1 j = 0,√
ζηρ?
ν2
κ?
|ϕj |2 |j| ∈ Jκ?K,

0 otherwise,

where ζ := R2 ∧
√

log(1 + 2α2) ∧ a−1. For a sign vector τ ∈ {±}κ? we define f τ with f τ − f◦ ∈
ER
a• ∩L 2

Aαρ?
through its Fourier coefficients

f τj =


1 j = 0,
τ|j|fj |j| ∈ Jκ?K,
0 otherwise.

The quadratic functionals q2(f τ − f◦) = q2(f − f◦) and q2
k(f τ − f◦) = q2

k(f − f◦), k ∈ N are
invariant under τ . The resulting mixing measure is given by

P1 := 1
2κ?

∑
τ∈{±}κ?

Pfτ .

Let us check that the constructed candidates f τ , τ ∈ {±}κ? are indeed densities and are con-
tained in the alternative. Let τ ∈ {±}κ? .

(a)
∑
j∈Z

∣∣∣f τj ∣∣∣2 <∞ (∈ L 2)
Satisfied by construction.

(b) f τj = f τ−j (real-valued)
Satisfied by construction.

(c) f τ0 = 1 (normalized to 1)
Satisfied by construction.

(d)
∑
|j|∈N

∣∣∣f τj ∣∣∣ ≤ 1 (positive)
The Cauchy-Schwarz inequality implies

∑
|j|∈N

∣∣∣f τj ∣∣∣ ≤
∑
|j|∈N

a2
|j|

1/2∑
|j|∈N

a−2
|j| |fj |

2

1/2

=

2
∑
j∈N

a2
j

1/22
∑
j∈N

a−2
j |fj |

2

1/2

≤
√
ζ
√
a ≤ 1,

where the second last inequality follows as in (e).

(e) f − f◦ ∈ ER
a• , i.e. 2

∑
j∈N a

−2
j |fj |

2 ≤ R2 (smoothness)
By the monotonicity of a• and the definition of ζ we have

2
∑
j∈N

a−2
|j| |fj |

2 = ζηρ2
?

ν4
κ?

∑
|j|∈Jκ?K

|ϕj |−4 a−2
|j|

≤ ζηρ2
?

ν4
κ?

a−2
κ? ν

4
κ? ≤ ζηρ

2
?a
−2
κ? ≤ ζ ≤ R2.
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(f) f − f◦ ∈ L 2
Aαρ?

, i.e. q(f − f◦) ≥ Aαρ?. (separation)
By definition

q2(f − f◦) = q2
κ?(f − f

◦) = ζηρ2
?

ν4
κ?

∑
|j|∈Jκ?K

|ϕj |−4 = ζηρ2
? = A2

αρ
2
?.

(g) n2∑
|j|∈Jκ?K |fj |

4 |ϕj |4 ≤ log(1 + 2α2) (similarity)
The definition of ζ and the condition on η imply

n2 ∑
|j|∈Jκ?K

|fj |4 |ϕj |4 = n2 ζ
2η2ρ4

?

ν8
κ?

∑
|j|∈Jκ?K

|ϕj |−4

= n2 ζ
2η2ρ4

?

ν2
κ?

≤ n2 ζ
2η2ρ4

?

ν2
κ?

≤ ζ2 ≤ log(1 + 2α2).

The conditions (a)-(d) guarantee that the vertices are densities, (e) and (f) guarantee that the
vertices lie in the alternative. Condition (g) is needed to bound the χ2-divergence between P0
and P1 and thus guarantees that the induced distance between the mixing measure and the null
is negligible, i.e. that they are similar enough to be statistically indistinguishable.
Bound for the χ2-divergence. We apply Lemma C.1.2 from the appendix and obtain

χ2

 1
2κ?

∑
τ∈{±}κ?

Pfτ ,P0

 ≤ exp

2n2 ∑
j∈Jκ?K

|gj |4
− 1 = exp

n2 ∑
|j|∈Jκ?K

|fj |4 |ϕj |4
− 1.

Hence, the condition (g) implies

χ2

 1
2κ?

∑
τ∈{±}κ?

Pfτ ,P0

 ≤ exp
(
log(1 + 2α2)

)
− 1 = 2α2

and, therefore, by inserting this bound into (3.4.3)

R
(
ER
a• , Aαρ?

)
≥ 1−

√
χ2(P0,P1)

2 ≥ 1− α,

which proves the claim.

Remark 3.4.2 (Conditions on η and a). Proposition 3.4.1 involves the value η satisfying
(3.4.2), which depends on the joint behaviour of the sequences a• and ϕ• and essentially guar-
antees an optimal balance of the bias and the variance term in the dimension κ?. For all typical
smoothness and ill-posedness assumptions considered in Illustration 3.2.6 an η exists such that
(3.4.2) holds uniformly over all n ∈ N. The additional assumption a = 2

∑
j∈N a

2
j < ∞ in

Proposition 3.4.1 is needed to ensure that the candidate densities constructed in the reduction
scheme of the proof are indeed densities. This assumption is in particular satisfied for the typical
smoothness classes introduced in Illustration 3.2.6. For Sobolev-type alternatives, i.e. aj ∼ j−s

it is satisfied as soon as s > 1/2, for super smooth alternatives, i.e. aj ∼ exp(−js) it is satisfied
for all positive s. �

3.5 Connection between quadratic functional estimation and
testing

In this section we explore the connection between quadratic functional estimation and testing.
Every estimator for the quadratic functional q2(f − f◦) = ‖f − f◦‖2L 2 can be used to construct
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a test by rejecting the null as soon as the estimated value of the quadratic functional exceeds a
certain threshold. The next proposition shows how this connection can be formalized in terms
of the minimax risk and the minimax radius. Denote by 0L 2 the null element in in L 2. Note
that since the non-parametric class E is formulated as a constraint on f − f◦, it is natural to
assume 0L 2 ∈ E .

Proposition 3.5.1 (Testing is faster than quadratic functional estimation).
Let α ∈ (0, 1), E ⊆ L 2 a nonparametric class with 0L 2 ∈ E and ρ2(E) a minimax radius
of testing with Aα as in the lower bound definition. Then, the minimax risk of estimation
satisfies

r2(E) ≥ (1− α)A
2
α

8 · ρ
4(E).

Proof of Proposition 3.5.1. Let q̂2 be any estimator of q2(f−f◦). Define the test ∆ := 1{q̂2≥ρ2/2}
with ρ = Aαρ(E). We convert the mean squared error into the sum of type I and type II
error probabilities, i.e. the testing risk, by applying Markov’s inequality. Keeping in mind that
q2(f◦ − f◦) = 0, we have

r2(q̂2, E) = sup
f−f◦∈E

Ef
(
q̂2 − q2(f − f◦)

)2

≥ 1
2

Ef◦
(
q̂2 − q2(f◦ − f◦)

)
+ sup
f−f◦∈E∩L 2

ρ

Ef
(
q̂2 − q2(f − f◦)

)
≥ ρ4

8

Pf◦
(

q̂2 ≥ ρ2

2

)
+ sup
f−f◦∈E∩L 2

ρ

Pf

(
q2(f − f◦)− q̂2 ≥ ρ2

2

)
≥ ρ4

8

Pf◦
(

q̂2 ≥ ρ2

2

)
+ sup
f−f◦∈E∩L 2

ρ

Pf

(
q̂2 ≤ ρ2

2

)
= ρ4

8 R (∆ | E , Aαρ(E)) .

Since q̂2 is arbitrary and by definition R (E , Aαρ(E)) ≥ 1− α, we obtain the result.

3.6 Lower bound for the estimation risk

Recall that the upper bound for the risk of estimation in Theorem 3.2.4 is of order ρ4
? ∨ r4

◦.
There are two possible scenarios, either the risk is governed by the bias2-variance-term ρ4

? =
mink∈N

{
a4
k ∨

ν4
k
n2

}
or by the base level term r4

◦ = maxm∈N
{
a4
m ∧

a2
m

n|ϕm|2
}

. We prove separate
lower bounds for these two cases. The lower bound in the first case is an immediate consequence
of the lower bound for the radius of testing Proposition 3.4.1 combined with Proposition 3.5.1.

Corollary 3.6.1 (First lower bound for the risk of estimation). Let a ∈ (0,∞) and
η ∈ (0, 1] satisfy (3.4.1) and (3.4.2), respectively. Then, for all n ≥ 2 we have

r2(ER
a•) ≥

η2(R4 ∧ log(3/2) ∧ a−1)
16 min

k∈N

{
a4
k ∨

ν4
k

n2

}
.

Proof of Corollary 3.6.1. We apply Proposition 3.5.1 to the lower bound for the radius of testing
derived in Proposition 3.4.1 and set α = 0.5.
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Let us now turn to the second lower bound. In contrast to the lower bound proved in Propo-
sition 3.4.1, the proof of the next proposition only requires the construction of two candidate
densities.

Proposition 3.6.2 (Second lower bound for the risk of estimation). For all n ≥ 2
we have

r2(ER
a•) ≥

(
1
64 ∧

R4

16

)
max
m∈N

{
a4
m ∧

a2
m

n |ϕm|2

}
.

Proof of Proposition 3.6.2. Reduction step. Denote by Qf the measure with density f ?©ϕ.
The measure Pf associated with the observations equals the n-fold product measure of Qf .
Let f+, f− ∈ D (to be specified below) with associated Pf+ , Pf− and quadratic functionals
q2 = q2(f+) and p2 = q2(f−). Denote by h(Pf+ ,Pf−) the Hellinger affinity between the two
measures Pf+ and Pf− . We apply the reduction scheme of Lemma C.2.1 and obtain

r2(ER
a•) ≥

h2(P+,P−)
8

(
q2 − p2

)2
. (3.6.1)

Using the tensorization property of the Hellinger affinity and the definition of the Hellinger
distance (cp. for instance Tsybakov [2009], p. 83), it follows

h(Pf+ ,Pf−) =
(
h(Qf+ ,Qf−)

)n
=
(

1− 1
2H2(Qf+ ,Qf−)

)n
.

Let us denote g± := f± ?©ϕ, we will ensure that g− ≥ 1
2 . Hence,

H2(Qf+ ,Qf−) =
∫ (

g+(x)− g−(x)
)2(√

g+(x) +
√
g−(x)

)2 dx ≤ 2
∥∥∥g+ − g−

∥∥∥2

L 2
.

Moreover, we ensure that
∥∥g+ − g−

∥∥2
L 2 ≤ 1. Then Bernoulli’s inequality ((1 + x)r ≥ 1 + rx for

all x ≥ −1, r ≥ 0) implies

h2(Pf− ,Pf+) ≥ 1− 2n
∥∥∥g+ − g−

∥∥∥2

L 2
.

From (3.6.1) it follows

r2(ER
a•) ≥

1
8
(
q2 − p2

)2
(

1− 2n
∥∥∥g+ − g−

∥∥∥2

L 2

)
= 1

8
(
q2 − p2

)2
(

1− 2n
∥∥∥f+ ?©ϕ − f− ?©ϕ

∥∥∥2

L 2

)
. (3.6.2)

Construction of the hypotheses Let τ ∈ {±} and let m be arbitrary. Define the Fourier
coefficients of the hypotheses f τ , τ ∈ {±} by

f+
j =


1 j = 0,
(1 + ξ)Cam j = ±m,
0 otherwise,

and f−j =


1 j = 0,
(1− ξ)Cam j = ±m,
0 otherwise,

with C := 1
4 ∧

R√
8 and ξ2 := 1∧ 1

na2
m|ϕm|

2 . Then, the hypotheses f τ , τ ∈ {±} satisfy the following
conditions:

1. f τ ∈ D (density)
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(a)
∑
j∈Z

∣∣∣f τj ∣∣∣2 <∞, by construction. (∈ L 2)

(b) f τj = f τ−j , by construction. (real-valued)

(c) f τ0 = 1, by construction. (normalized to 1)

(d)
∑
|j|∈N

∣∣∣f τj ∣∣∣ = 2(1± ξ)Cam ≤ 2 · 2Cam ≤ 4C ≤ 1. (positive)

2. f ?©ϕ = g− ≥ 1
2 (bounded from below)

(e)
∑
|j|∈N

∣∣∣f−j ∣∣∣ |ϕj | = 2(1− ξ)Cam |ϕm| ≤ 2C ≤ 1
2 .

3. f τ − f◦ ∈ ER
a• (smoothness)

(f) 2
∑
j∈N a

−2
j

∣∣∣f τj ∣∣∣2 = 2a−2
m (1± ξ)2C2a2

m ≤ 8C2 ≤ R2.

4. (p2 − q2)2 ≥
(

1
4 ∧ R4

){
a4
m ∧

a2
m

n|ϕm|2
}

(separation)

(g) We have q2(f τ − f◦) =
∑
|j|∈N

∣∣∣f τj ∣∣∣2 = 2(1± ξ)2a2
m, therefore,

(p2 − q2)2 = 4
(
(1 + ξ)2 − (1− ξ)2

)2
C4a4

m = 64ξ2C4a4
m

= 64 ·
(

1
44 ∧

R4

82

)
ξ2a4

m =
(1

4 ∧ R4
)
ξ2a4

m

=
(1

4 ∧ R4
){

a4
m ∧

a2
m

n |ϕm|2

}
.

5.
∥∥f+ ?©ϕ − f− ?©ϕ

∥∥2
L 2 ≤ 1

4n (similarity)

(h) We have
∥∥f+ ?©ϕ − f− ?©ϕ

∥∥2
L 2 = 4C2ξ2a2

m |ϕj |
2 ≤ 4C2 1

n ≤
1

4n .

Note that Condition (h) also implies
∥∥f+ ?©ϕ − f− ?©ϕ

∥∥2
L 2 ≤ 1, which is a condition to apply

Bernoulli’s inequality. Combining both bounds (g) and (h) with the reduction in (3.6.2), we
obtain

r2(ER
a•) ≥

1
8

(1
4 ∧ R4

){
a4
m ∧

a2
m

n |ϕm|2

}(
1− 2n 1

4n

)
=
(

1
64 ∧

R4

16

){
a4
m ∧

a2
m

n |ϕm|2

}
.

Since m ∈ N is arbitrary, this proves the assertion.

3.7 Upper bound for the radius of testing via a direct test

This section is a first step towards an adaptive testing procedure, which we will explore in
more detail in the next chapter. The test proposed in this section does not explicitly use the
coefficients ϕj , j ∈ Z of the error density. Using a similar technique as in Section 3.3, we derive
its radius of testing. We consider a test that is based on the estimation of

q2(g − g◦) = q2(f ?©ϕ − f◦ ?©ϕ) =
∫

[0,1)
(g(x)− g◦(x))2 dy

=
∑
j∈Z

∣∣∣gj − g◦j ∣∣∣2 =
∑
j∈N

∣∣∣fj − f◦j ∣∣∣2 |ϕj |2 ,
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which we call the direct version of the quadratic functional, since we have direct access to
observations of g. To be more precise, we consider

d̂2
k := 2

∑
|j|∈JkK

{
|ĝj |2 −

1− |ĝj |2

n− 1

}
, (3.7.1)

where ĝj := 1
n

∑n
k=1 ej(−Yk) is the standard estimator for the jth Fourier coefficient gj and

1−|ĝj |2
n−1 is a de-biasing term. Clearly, d̂2

k is an unbiased estimator of the truncated quantity

q2
k(g − g◦) =

∑
|j|∈JkK

∣∣∣fj − f◦j ∣∣∣2 |ϕj |2 . The estimator can be written as a U-statistic

d̂2
k = 1

n(n− 1)
∑
l 6=m

l,m∈JnK

∑
|j|∈JkK

ej(−Yl)ej(Ym) =: 1
2Ud

n

where Ud
n is a canonical U-statistic

Ud
n =

(
n

2

)−1 ∑
l 6=m

l,m∈JnK

h(Yl, Ym)

with the symmetric kernel h(y1, y2) :=
∑
|j|∈JkK ej(−y1)ej(y2). Let us first analyse the variance

of the estimator (3.7.1).

Proposition 3.7.1 (Upper bound for the variance). Let f◦ = 1[0,1) and f ∈ D. For
n, k ∈ N, n ≥ 2 the estimator defined in (3.7.1) satisfies

varf (d̂2
k) ≤ ‖g‖∞

1
n

∑
|j|∈JkK

|ϕj |2 |fj |2 + ‖g‖∞
2k − 1
n2 .

Proof of Proposition 3.7.1. Recall that d̂2
k = 1

2Ud
n. Straight-forward calculations (similar to the

proof of Proposition 3.2.1) show that the kernel h is symmetric and real-valued. Let us define
the function

h1 : [0, 1) −→ R, y 7−→ h1(y) := Ef (h(y, Y2)).

The variance of the U -statistic Ud
n can thus be calculated using the formula (Lemma A on p.

183 in Serfling [2009])

varf (Ud
n) =

(
n

2

)−1

(2(n− 2)ξ1 + ξ2) ,

where ξ1 := varf (h1(Y1)) and ξ2 := varf (h(Y1, Y2)). Let us now find upper bounds for the
quantities ξ1 and ξ2. We start with ξ1. We have

h1(y) = Efh(y, Y2) =
∑
|j|∈JkK

ej(−y)Efej(Y2) =
∑
|j|∈JkK

ej(−y)gj ,

i.e. the Fourier coefficients of h1 are given by h1,j = g−j , |j| ∈ JkK and zero otherwise. Hence,
by Parseval’s inequality we obtain

ξ1 = varf (h1(Y1)) ≤ Ef |h1(Y1)|2 ≤ ‖g‖∞ ‖h1‖22 = ‖g‖∞
∑
|j|∈JkK

|gj |2 = ‖g‖∞
∑
|j|∈JkK

|fj |2 |ϕj |2 .
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For the term ξ2 we note that

varf (h(Y1, Y2)) ≤ Ef |h(Y1, Y2)|2 ≤ ‖g‖∞
∫

[0,1)

∫
[0,1)
|h(y1, y2)|2 dy1g(y2)dy2

with ∫
[0,1)
|h(y1, y2)|2 dy1 =

∑
|j|,|l|∈JkK

∫
ej(−y1)ej(y2)el(−y1)el(y2)dy1

=
∑

|j|,|l|∈JkK

∫
ej(y2 − y1)ej(y2 − y1)dy1 = 2k − 1,

where the last inequality follows from the orthonormality of the basis (ej)j∈Z. Hence,

ξ2 = varf (h(Y1, Y2)) ≤ ‖g‖∞ (2k − 1).

Combining the bounds for ξ1 and ξ2 we obtain (using 1
2(n−1) ≤

1
n for n ≥ 2)

varf (d̂2
k) = 1

4 varf (Ud
n) ≤ 1

n
ξ1 + 1

n2 ξ2

≤ ‖g‖∞
1
n

∑
|j|∈JkK

|fj |2 |ϕj |2 + ‖g‖∞
2k − 1
n2 ,

which proves the assertion.

Since we want to analyse the behaviour of d̂2
k under the null hypotheses and the alternative,

we state appropriate bounds for the variance in these two situations in the next corollary.

Corollary 3.7.2 (Variance upper bound under the null and the alternative).
Let f◦ = 1[0,1) and f ∈ D. For n, k ∈ N, n ≥ 2 the estimator defined in (3.7.1) satisfies

varf◦(d̂2
k) ≤

2k − 1
n2 , (3.7.2)

varf (d̂2
k) ≤ ‖ϕ‖∞

√
2k − 1
n

q2
k(g − g◦) + ‖ϕ‖∞

2k − 1
n2 . (3.7.3)

Proof of Corollary 3.7.2. We use the bound of Proposition 3.7.1. In particular, we have∑
|j|∈JkK

|ϕj |2 |fj |2 = q2
k(g − g◦),

1 ≤
√

2k − 1 and ‖g‖∞ ≤ ‖ϕ‖∞, which shows (3.7.3). For f = f◦ = 1[0,1) we furthermore have
q2
k(g − g◦) = 0 and ‖g‖∞ ≤

∑
|j|∈Z |fj | |ϕj | ≤ 1, hence, the first assertion (3.7.2) follows.

We consider a test that is based on the estimator (3.7.1) and compares it to a multiple of its
standard deviation under the null. For α ∈ (0, 1), a constant Cα and k ∈ N define

∆d
k,α := 1{

d̂2
k
≥Cα

√
2k−1
n

}. (3.7.4)

Furthermore, for k ∈ N let

(ρd
k)2 := a2

k ∨
(

max
|j|∈JkK

|ϕj |−2
) √

2k − 1
n

.
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Proposition 3.7.3 (Upper bound for the radius of testing of ∆d
k,α/2). Let α ∈ (0, 1)

and let Cα/2, Ãα satisfy (3.3.1). Set A2
α := R2 + Ã2

α. Then, for all A ≥ Aα and all k ∈ N
we obtain

R
(
∆d
k,α/2 | E

R
a• , Aρ

d
k

)
≤ α,

i.e. (ρd
k)2 is an upper bound for the radius of testing of

{
∆d
k,α/2

}
α∈(0,1)

.

Proof of Proposition 3.7.3. We show that both the type I error probability and the type II error
probability of the test (3.7.4) are bounded by α/2. For the type I error probability we apply
Markov’s inequality and obtain

Pf◦
(
∆d
k,α/2 = 1

)
= Pf◦

(
d̂2
k ≥ Cα/2

√
2k − 1
n

)
≤

varf◦(d̂2
k)

C2
α/2

2k−1
n2
≤ 1
C2
α/2

,

where the last inequality follows from (3.7.2) in Corollary 3.7.2. Hence, the type I error prob-
ability is bounded by α/2 for all Cα/2 ≥

√
2/α. Since ‖ϕ‖∞ > 1, it in particular holds for all

Cα satisfying (3.3.1). Next, we consider the type II error probability. Let f be contained in
the Aαρd

k-separated alternative, i.e. f − f◦ ∈ ER
a• and q2(f − f◦) ≥ A

2
α(ρd

k)2. We expand inside
of the type II error probability, centring the estimator d̂2

k by its expectation

Pf (∆d
k,α/2 = 0) = Pf

(
d̂2 < Cα/2

√
2k − 1
n

)

= Pf

(
d̂2 − q2

k(g − g◦) < Cα/2

√
2k − 1
n

− q2
k(g − g◦)

)

and distinguish the following two cases

1. q2
k(g − g◦) ≥ 2Cα/2

√
2k−1
n , (easy to test)

2. q2
k(g − g◦) < 2Cα/2

√
2k−1
n . (difficult to test)

Case 1: (easy to test) The case distinction implies Cα/2
√

2k−1
n − q2

k(g − g◦) ≤ −1
2q2

k(g − g◦)
and, therefore, we obtain by applying Markov’s inequality

Pf(∆d
k,α/2 = 0) ≤ Pf

(
d̂2
k − q2

k(g − g◦) ≤ −
1
2q2

k(g − g◦)
)

= Pf
(

q2
k(g − g◦)− d̂2

k ≥
1
2q2

k(g − g◦)
)
≤ 4 · varf (d̂2

k)
(q2
k(g − g◦))2 .

Inserting the bound for the variance obtained in (3.7.3) of Corollary 3.7.2 and exploiting the
case distinction condition yields

Pf(∆d
k,α/2 = 0) ≤ 4 · ‖ϕ‖∞

 √2k−1
n q2

k(g − g◦) + 2k−1
n2

(q2
k(g − g◦))2

 ≤ ‖ϕ‖∞
(

2
Cα/2

+ 1
C2
α/2

)
≤ α

2 .

Case 2: (difficult to test) Recall (cp. the proof of Proposition 3.3.1) that under the alternative
we have

q2(f − f◦) =
∑
|j|∈N

∣∣∣fj − f◦j ∣∣∣2 ≥ A2
α(ρd

k)2 and
∑
|j|>k

∣∣∣fj − f◦j ∣∣∣2 ≤ a2
kR2.
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Hence,

q2
k(f − f◦) = q2(f − f◦)−

∑
|j|>k

∣∣∣fj − f◦j ∣∣∣2 ≥ A2
α(ρd)2 − R2a2

k

≥ Ã2
α( max
|j|∈JkK

|ϕj |−2)
√

2k − 1
n

+ R2a2
k − R2a2

k = Ã2
α( max
|j|∈JkK

|ϕj |−2)
√

2k − 1
n

.

Moreover, we have the following connection between the indirect and the direct quadratic func-
tionals

( max
|j|∈JkK

|ϕj |−2)q2
k(g − g◦) = ( max

|j|∈JkK
|ϕj |−2)

∑
|j|∈JkK

∣∣∣fj − f◦j ∣∣∣2 |ϕj |2
≥ ( max
|j|∈JkK

|ϕj |−2)( min
|j|∈JkK

|ϕj |2)
∑
|j|∈JkK

∣∣∣fj − f◦j ∣∣∣2 = q2
k(f − f◦).

Therefore, under the alternative q2
k(g−g◦) ≥ Ã2

α

√
2k−1
n . and the type II error probability satisfies

Pf (∆d
k,α/2 = 0) = Pf

(
d̂2
k − q2

k(g − g◦) ≤ Cα/2
√

2k − 1
n

− q2
k(g − g◦)

)

≤ Pf

(
d̂2
k − q2

k(g − g◦) ≤ (Cα/2 − Ã2
α)
√

2k − 1
n

)

= Pf

(
q2
k(g − g◦)− d̂2

k ≥ (Ã2
α − Cα/2)

√
2k − 1
n

)
≤ varf (d̂2

k)
(Ã2

α − Cα/2)2 2k−1
n2

.

Exploiting the bound for the variance (3.7.3) of Corollary 3.7.2, the case distinction condition
and the choice of Ãα and Cα/2, it follows

Pf (∆d
k,α/2 = 0) ≤ ‖ϕ‖∞ ·

2Cα/2 + 1(
Ã2
α − Cα/2

)2 ≤
α

2 ,

which completes the proof.

Define the minimum and minimizer that realize the bias-variance trade-off by

(ρd
?)2 := min

k∈N

{
a2
k ∨ ( max

|j|∈JkK
|ϕj |−2)

√
2k − 1
n

}
,

κd
? := arg min

k∈N

{
a2
k ∨ ( max

|j|∈JkK
|ϕj |−2)

√
2k − 1
n

}
.

Then Proposition 3.7.3 immediately yields the following corollary.

Corollary 3.7.4 (Optimised upper bound for the radius of testing of ∆d
κd
? ,α/2

). Let

α ∈ (0, 1) and let Cα/2, Ãα satisfy (3.3.1). Set A2
α := R2 + Ã2

α. Then, for all A ≥ Aα and
all k ∈ N we obtain

R
(
∆d
κ?,α/2 | E

R
a• , Aρ

d
?

)
≤ α,

i.e. (ρd
?)2 is an upper bound for the radius of testing of

{
∆d
κd
? ,α/2

}
α∈(0,1)

.
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Appendix C

Auxiliary results

C.1 Auxiliary results for proving lower bounds of testing

Lemma C.1.1 (Interchanging sums and products on cubes). Let k ∈ N. For sign
vectors τ ∈ {±}k we introduce Jτ = (Jτjj )j∈JkK ⊆ Rk. Then,

1
2k

∑
τ∈{±}k

∏
j∈JkK

J
τj
j =

∏
j∈JkK

J−j + J+
j

2 .

Proof of Lemma C.1.1. The proof is by induction over k.
The base case k = 1 follows immediately, since

1
2
∑

τ1∈{±}
Jτ1

1 = J−1 + J+
1

2 .

For the induction step assume

1
2k

∑
τ∈{±}k

∏
j∈JkK

J
τj
j =

∏
j∈JkK

J−j + J+
j

2 .

Then it follows,
1

2k+1

∑
τ∈{±}k+1

∏
j∈Jk+1K

J
τj
j

= 1
2k+1


 ∑
τ∈{±}k+1

τk+1=+

∏
j∈Jk+1K

J
τj
j

+

 ∑
τ∈{±}k+1

τk+1=−

∏
j∈Jk+1K

J
τj
j




= 1
2k+1


 ∑
τ∈{±}k

∏
j∈JkK

J
τj
j

 J+
k+1 +

 ∑
τ∈{±}k

∏
j∈JkK

J
τj
j

 J−k+1


= 1

2
(
J+
k+1 + J−k+1

) 1
2k

∑
τ∈{±}k

∏
j∈JkK

J
τj
j


= 1

2
(
J+
k+1 + J−k+1

) ∏
j∈JkK

J+
j + J−j

2 =
∏

j∈Jk+1K

J+
j + J−j

2 ,

where the induction assumption is used in the second last step.
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Lemma C.1.2 (χ2-divergence for mixtures over hypercubes). Let k ∈ N. For τ ∈
{±}k define coefficients θτ• ∈ `2(Z) and functions gτ ∈ L 2 by setting

θτj =


τ|j|θ|j| |j| ∈ JkK,
1 j = 0,
0 |j| > k,

and gτ =
k∑

j=−k
θτj ej = e0 +

∑
|j|∈JkK

θτj ej .

Assuming gτ ∈ D for each τ ∈ {±}k, we consider the mixture P1 with probability density

1
2ks

∑
τ∈{±}ks

∏
i∈JnK

gτ (zi), for zi ∈ [0, 1), i ∈ JnK

and denote P0 = Pf◦ with probability density∏
i∈JnK

1[0,1)(zi), for zi ∈ [0, 1), i ∈ JnK.

Then, the χ2-divergence satisfies

χ2(P1,P2) ≤ exp

2n2 ∑
j∈JkK

θ4
j

− 1.

Proof of Lemma C.1.2. Since P1 � P0 we have

χ2(P1,P0) = E0

(dP1
dP0

(Z1, . . . , Zn)
)2
− 1.

for i.i.d. random variables (Zj)j∈JnK with marginal density f◦ = 1[0,1) under P0. Let zj ∈ [0, 1),
j ∈ JnK, then the likelihood ratio becomes

dP1
dP0

(z1, . . . , zn) = 1
2k

∑
τ∈{±}k

∏
i∈JnK

gτ (zi),

since P0 is a product over uniform densities. Squaring, taking the expectation under P0 and
exploiting the independence yields

E0

(dP1
dP0

(Z1, . . . , Zn)
)2

=
( 1

2k
)2 ∑

τ,η∈{±}k

∏
i∈JnK

E0(gτ (Zj)gη(Zj))

=
( 1

2k
)2 ∑

τ,η∈{±}k
(E0(gτ (Z1)gη(Z1)))n .

Let us calculate

E0(gτ (Z1)gη(Z1)) =
∫

[0,1)
gτ (z)gη(z)dz = 1 + 2

∑
|j|∈JkK

θτj θ
η
j ,

where the last equality is due to the orthonormality of (ej)j∈Z and the symmetry of θτ and θη.
Applying the inequality 1 + x ≤ exp(x), which holds for all x ∈ R, we obtain

E0(gτ (Z1)gη(Z1)) = 1 + 2
∑
|j|∈JkK

θτj θ
η
j ≤ exp(2

∑
j∈JkK

θτj θ
η
j ) =

∏
j∈JkK

exp(2θτj θ
η
j ).
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Hence,

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤
( 1

2k
)2 ∑

τ,η∈{±}k

∏
j∈JkK

exp(2nθτj θ
η
j ),

where we can apply Lemma C.1.1 to the η-summation with J
ηj
j = exp(2nθτj θ

η
j ) and obtain

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤ 1

2k
∑

τ∈{±}k

∏
j∈JkK

exp(2nθτj θj) + exp(−2nθτj θj)
2 , .

Applying Lemma C.1.1 to the τ -summation with J
τj
j = exp(2nθτj θj)+exp(−2nθτj θj)

2 yields

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤
∏
j∈JkK

exp(2nθ2
j ) + exp(−2nθ2

j ) + exp(−2nθ2
j ) + exp(2nθ2

j )
4

=
∏
j∈JkK

exp(2nθ2
j ) + exp(−2nθ2

j )
2 =

∏
j∈JkK

cosh(2nθ2
j ).

Since cosh(x) ≤ exp(x2/2) we obtain

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤
∏
j∈JkK

exp(2n2θ4
j ) = exp

2n2 ∑
j∈JkK

θ4
j

 ,
which completes the proof.

C.2 Auxiliary results for proving lower bounds of estimation

Lemma C.2.1 (Reduction scheme for the estimation risk). Let E be a regularity
class. For densities f+, f− ∈ L 2 with f+ − f◦, f− − f◦ ∈ E we have

inf
q̂2

sup
f−f◦∈E

Ef
(
q̂2 − q2(f − f◦)

)2
≥ 1

8h2(Pf+ ,Pf−)
(
q2(f+ − f◦)− q2(f− − f◦)

)2
,

where h(Pf+ ,Pf−) denotes the Hellinger affinity between Pf+ and Pf− .

Proof of Lemma C.2.1. Let q̂2 be any estimator and denote P+ := Pf+ , P− = Pf− and q2 :=
q2(f+ − f◦) and p2 := q2(f− − f◦). We have

h(P+,P−) =
∫ √

dP+dP− =
∫ ∣∣∣∣∣q2 − p2

q2 − p2

∣∣∣∣∣√dP+dP−

≤
∫ ∣∣∣∣∣q2 − q̂2

q2 − p2

∣∣∣∣∣√dP+dP− +
∫ ∣∣∣∣∣ q̂2 − p2

q2 − p2

∣∣∣∣∣√dP+dP−

≤

∫ ∣∣∣∣∣q2 − q̂2

q2 − p2

∣∣∣∣∣
2

dP+

1/2 (∫
dP−

)1/2
+

∫ ∣∣∣∣∣ q̂2 − p2

q2 − p2

∣∣∣∣∣
2

dP−

1/2 (∫
dP+

)1/2

≤ 1
|q2 − p2|

((
Ef+(q2 − q̂2)2

)1/2
+
(
Ef−(p2 − q̂2)2

)1/2
)

≤ 2
|q2 − p2|

(
Ef+(q2 − q̂2)2 + Ef−(p2 − q̂2)2

)1/2
.
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Therefore,

sup
f−f◦∈E

Ef
(
q̂2 − q2(f − f◦)

)2
≥ 1

2
(
Ef+(q2 − q̂2)2 + Ef−(p2 − q̂2)2

)
≥ h2(P+,P−)

8
(
q2 − p2

)2
,

which completes the proof.
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Chapter 4

Adaptive minimax testing for
circular convolution

Given observations from a circular random variable contaminated by an additive
measurement error, we consider the problem of minimax optimal goodness-of-fit
testing in a non-asymptotic framework. We propose direct and indirect testing pro-
cedures using a projection approach. The structure of the optimal tests depends on
regularity and ill-posedness parameters of the model, which are unknown in practice.
Therefore, adaptive testing strategies that perform optimally over a wide range of
regularity and ill-posedness classes simultaneously are investigated. Considering a
multiple testing procedure, we obtain adaptive i.e. assumption-free procedures and
analyse their performance. Compared with the non-adaptive tests, their radii of
testing face a deterioration by a log-factor. We show that for testing of uniformity
this loss is unavoidable by providing a lower bound. The results are illustrated
considering Sobolev spaces and ordinary or super smooth error densities.

4.1 Adaptive testing

Minimax radii of testing in the circular model were derived in the previous chapter. Therein, we
consider a test that is based on a projection estimator of the quantity ‖f − f◦‖2L 2 , which depends
on a dimension parameter. Choosing the dimension parameter optimally, the test that we
obtain is shown to be minimax optimal, i.e. it achieves the minimax radius of testing (defined in
Section 3.1.2) given by a typical bias2-variance trade-off. The choice of the dimension parameter,
however, depends on the underlying smoothness structure. Moreover, the test explicitly uses
the coefficients of the error density. Since both are typically unknown in practise, we investigate
adaptive testing strategies in this chapter, which do not rely on this prior knowledge.

Direct vs. indirect testing procedures We point out that estimating the energy ‖f − f◦‖2L 2

based on i.i.d. copies of Y = X+ε−bX+ εc with density g = f ?©ϕ is an inverse problem, since
it requires an inversion of the convolution transformation. This inversion introduces additional
instability in deconvolution problems, caused by its ill-posedness. To circumvent this problem,
in an inverse Gaussian sequence space model Laurent et al. [2011] argue for a direct testing
procedure, which is based on the estimation of the energy in the image space of the operator.
Let us explain this idea in our setting. Instead of the indirect testing task

H0 : f − f◦ = 0 against H1 : f − f◦ 6= 0,
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which is called indirect since we do not have access to observations from the density f, we
examine the direct testing task

HD
0 : g − g◦ = (f − f◦) ?©ϕ = 0 against HD

1 : g − g◦ 6= 0,

where we have direct access to observations from g. This approach has two advantages: on
the one hand the additional uncertainty caused by an inversion is avoided, on the other hand
- in the special case f◦ = 1[0,1) (and, hence, g◦ = f◦ ?©ϕ = 1[0,1)) - the proposed tests for
the direct testing task no longer explicitly depend on the error density ϕ. For both the direct
and indirect testing procedure the radii of testing, depending on a dimension parameter, are
essentially determined by a bias2-variance trade-off. As usual the optimal choice of the dimension
parameter depends on both the smoothness of the alternative and on the ill-posedness of the
model, which are unknown in practice. This motivates the study of adaptive testing procedures,
which we investigate in this chapter.

Adaptive testing and related literature. In the literature adaptive, i.e. assumption-
free, testing strategies have been studied in both an asymptotic and non-asymptotic framework.
In an asymptotic framework e.g. Spokoiny [1996] considers adaptive testing in a sequence space
model with Besov-type alternatives, showing that asymptotic adaptation comes with an un-
avoidable cost of a log log-factor. In a nonasymptotic setting Laurent et al. [2003] consider
adaptive testing in a Gaussian regression model, Fromont and Laurent [2006] deal with a den-
sity model. Butucea [2007] and Butucea et al. [2009] determine adaptive rates of testing in a
convolution model on the real line using kernel estimators of the L 2-distance to the null. The
proposed tests have as a common feature that they are based on estimators of the distance to
the null, which only depend on the (unknown) smoothness through a tuning parameter (e.g. a
bandwidth, a threshold or a dimension parameter). By aggregating the estimators over different
tuning parameters into one test statistic – i.e. using a multiple testing approach – the authors
obtain tests, which perform optimally over a wide range of alternatives. Since they no longer
depend on the unknown regularity of the alternative, they are assumption-free. To formalise
this idea, let us introduce a collection A of regularity parameters that characterise a family of
alternatives {Ea• : a• ∈ A} with corresponding radii {ρa•(n) := ρ(Ea•) : a• ∈ A}, where we now
explicitly emphasise the dependence on the regularity parameter a• ∈ A and the number of
observations n in the notation. In general, adaptation without a loss is impossible (cp. Spokoiny
[1996]). To characterise the cost to pay for adaptation we introduce the effective sample size
δn with δ = δn depending on n. The factor δ ∈ [0, 1] shrinks the sample size n and, hence, evalu-
ating the radius at δn deteriorates the radius of testing. In fact, the value δ−1 is called adaptive
factor for the family of tests {∆α : α ∈ (0, 1)} over the family of alternatives {Ea• : a• ∈ A}, if
for all α ∈ (0, 1) there exists a constant Aα > 0 such that

(i) for all A ≥ Aα we have supa•∈AR (∆α | E , Aρa•(δn)) ≤ α, (upper bound)

where ρa•(n) denotes a radius of testing for the family {∆α : α ∈ (0, 1)}. We shall emphasise
that the testing risk now has to be bounded uniformly for all alternatives Ea• , a• ∈ A. We call
δ−1 minimal adaptive factor if in addition for all α ∈ (0, 1) there exists a constant Aα > 0
such that

(ii) for all A ≤ Aα we have inf∆ supa•∈AR (∆ | E , Aρa•(δn)) ≥ 1− α. (lower bound)

The goal of this chapter is to characterise the minimal adaptive factor δ−1.

Aggregation procedure. Let us come back to the circular deconvolution problem and the
indirect and direct tests discussed above. In this chapter we aggregate both testing procedures
over a family K ⊆ N of dimension parameters using a classical Bonferroni method, where for
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a given level α ∈ (0, 1) each of the tests in the family has level α
|K| . The aggregated testing

procedure rejects the null hypothesis as soon as one test in the collection rejects. It is straight-
forward to see that a Bonferroni aggregation of the direct and indirect tests proposed in the
previous chapter leads to an adaptive factor of order |K| (since Cα ≈ 1

α and, hence, Cα/|K| ≈
|K|
α ).

The choice of the family K reflects the collection of alternatives over which the aggregated test
performs optimally. If the alternatives characterise ordinary smoothness of the circular density,
the size of K is typically chosen to be of order logn (cp. Fromont and Laurent [2006], Spokoiny
[1996]). Then the aggregated test (from the previous chapter) will feature a deterioration by
an adaptive factor of order logn. However, we show in this chapter that generally the minimal
adaptive factor is smaller. In order to do so, we first derive sharper bounds for the quantiles of
the direct and indirect test statistics using exponential bounds for U-statistics and a Bernstein
inequality (instead of the Markov inequality in the previous chapter). This allows to define a
new version of an indirect and a direct test, for which we derive radii of testing. Aggregating
these tests via the Bonferroni method we obtain an adaptive factor for adaptation with respect
to smoothness of order

√
log logn. Interestingly, in case of testing for uniformity, i.e. f◦ = 1[0,1),

the aggregated direct test no longer depends on the noise density ϕ and is, thus, also adaptive
with respect to the ill-posedness of the model. Moreover, in this situation we derive a lower
bound for the adaptive factor providing conditions under which it is minimal.

Outline of this chapter. The upper bounds for the radius of testing via an indirect and
a direct testing procedure are derived in Section 4.2 and Section 4.4, respectively. Section 4.3
and Section 4.5 are devoted to adaptive indirect and direct testing strategies. We provide lower
bounds in Section 4.6.

Outline
Adaptive minimax testing for circular convolution

Concentration inequalities for U-statistics

and a Bernstein-inequality
Appendix D.2 Appendix D.3

Upper bound

via an indirect testing procedure

ρ2
a•(∆ka• ,α/2) . mink∈N

{
a2
k ∨

ν2
k
n

}

Adaptive upper bound

via an indirect max-test

ρ2
a•(∆K,α/2) . mink∈N

{
a2
k ∨

√
log |K|ν

2
k
n

}

Upper bound

via a direct testing procedure

ρ2
a•(∆

d
kd
a• ,α/2

) . mink∈N
{
a2
k ∨

m2
k

√
2k

n

}

Adaptive upper bound

via a direct max-test

ρ2
a•(∆

d
K,α/2) . mink∈N

{
a2
k ∨

√
log |K|m

2
k

√
2k

n

}

Adaptive lower bound

Section 4.6

Section 4.2

Section 4.3

Section 4.4

Section 4.5
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4.2 Upper bound via an indirect testing procedure

Notation and preliminaries. We consider the Hilbert space L 2 := L 2[0, 1) of square-
integrable complex-valued functions defined on [0, 1) equipped with its usual norm ‖·‖L 2 and
corresponding inner product 〈f, g〉L 2 :=

∫ 1
0 f(x)g(x)dx for f, g ∈ L 2, where g(x) denotes the

complex conjugate of g(x). The exponential or Fourier basis {ej}j∈Z with ej(x) := exp(2πijx)
for x ∈ [0, 1) and j ∈ Z is an orthonormal basis of L 2. Consequently, any ξ ∈ L 2 admits an
expansion as a discrete Fourier series

ξ =
∑
j∈Z

ξjej (4.2.1)

with ξj := 〈ξ, ej〉L 2 for j ∈ Z, where the equality (4.2.1) holds in L 2. By Parseval’s identity
its sequence of Fourier coefficients ξ• := (ξj)j∈Z is square summable, i.e. it belongs to the
Hilbert space `2 := `2(Z) of square-summable complex-valued sequences. The Hilbert space `2
is equipped with its usual norm ‖·‖`2 and corresponding inner product 〈a•, b•〉`2 :=

∑
j∈Z ajbj

for a•, b• ∈ `2. Parseval’s identity then states that

‖ξ‖L 2 = ‖ξ•‖`2

for all ξ ∈ L 2. For a density function g we further denote by L 2(g) the set of all real-valued
(Borel-measurable) functions h satisfying

∫ 1
0 h

2(x)g(x)dx < ∞. If Y ∼ g, then this condition
translates to EY∼gh2(Y ) <∞. To be more precise, we define

L 2(g) :=
{
h : [0, 1)→ R :

∫ 1

0
h2(x)g(x)dx <∞

}
.

We denote the set of square-integrable densities by D ∈ L 2 and assume ϕ, f, g ∈ D.

Fourier coefficients of densities in D. We expand the densities f, f◦ ∈ D ⊆ L 2 in the expo-
nential basis. Since densities f ∈ D are normalized to 1, i.e. 1 =

∫ 1
0 f(x)dx =

∫ 1
0 f(x)1[0,1)(x)dx,

we always have

f0 = 1 (4.2.2)

Moreover, since densities are real-valued, we obtain

fj = f−j (4.2.3)

for all j ∈ Z. To see this, note that f(x) = f(x) for all x ∈ R. Hence, also
∑
k∈Z fkek =∑

k∈Z fkek =
∑
k∈Z fke−k. Finally, by projecting onto the j-th basis function and exploiting

the orthonormality, we obtain fj = 〈
∑
k∈Z fkek, ej〉 = 〈

∑
j∈Z fke−k, ej〉 = f−j for each j ∈ Z.

In particular, using the two properties (4.2.2) and (4.2.3) as well as Parseval’s identity, we can
rewrite the L 2 distance between f and f◦ as

‖f − f◦‖2L 2 = ‖f• − f◦• ‖
2
`2 =

∑
j∈Z

∣∣∣fj − f◦j ∣∣∣2 =
∑
|j|∈N

∣∣∣fj − f◦j ∣∣∣2 = 2
∑
j∈N

∣∣∣fj − f◦j ∣∣∣2 .
Moreover, by the circular convolution theorem, the density g = f ?©ϕ of the observations admits
Fourier coefficients satisfying gj = fj · ϕj for all j ∈ N. Hence, assuming from here onwards
that the Fourier coefficients of the error density are non-vanishing, i.e. |ϕj | > 0 for all j ∈ Z, we
obtain the representation of the L 2-distance between f and f◦

q2(f − f◦) :=
∑
|j|∈N

∣∣∣fj − f◦j ∣∣∣2 =
∑
|j|∈N

∣∣∣gj − g◦j ∣∣∣2
|ϕj |2

,
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where

gj = 〈g, ej〉L 2 =
∫ 1

0
g(y)ej(y)dy =

∫ 1

0
ej(−y)g(y)dy = EY∼g(ej(−Y ))

for all j ∈ Z and we denote g◦ = f◦ ?©ϕ, i.e. g◦j = f◦j ϕj for all j ∈ Z.

Definition of the test statistic. For k ∈ N and JkK := [1, k] ∩ N let us define an unbiased
estimator q̂2

k of the truncated version

q2
k(f − f◦) :=

∑
|j|∈JkK

∣∣∣fj − f◦j ∣∣∣2 =
∑
|j|∈JkK

|gj |2

|ϕj |2
− 2

∑
|j|∈JkK

g◦j gj

|ϕj |2
+

∑
|j|∈JkK

∣∣∣f◦j ∣∣∣2 , (4.2.4)

where we exploited that due to the symmetry of the summation and the coefficients (4.2.3) we
have ∑

|j|∈JkK

g◦j gj

|ϕj |2
=

∑
|j|∈JkK

g◦−jg−j

|ϕj |2
=

∑
|j|∈JkK

g◦j gj

|ϕj |2
.

The first two summands of (4.2.4) are unknown and need to be estimated, the third is known.
For the second term, which is a linear term, recall that the Fourier coefficients can be expressed
as gj = EY∼gej(−Y ). Thus, a natural estimator based on observations {Yl}nl=1 is given by
1
n

∑
l∈JnK ej(−Yl). Replacing the unknown Fourier coefficients by their empirical counterparts

based on the observations {Yl}nl=1, we obtain

Ŝk := 1
n

∑
|j|∈JkK

∑
l∈JnK

g◦j ej(Yl)
|ϕj |2

as an unbiased estimator of
∑
|j|∈JkK

g◦j gj

|ϕj |2
. For the first term, which is quadratic, we use the

U-statistic

T̂k = 1
n(n− 1)

∑
|j|∈JkK

∑
l,m∈JkK
l 6=m

ej(−Yl)ej(Ym)
|ϕj |2

as an unbiased estimator of
∑
|j|∈JkK

|gj |2

|ϕj |2
. In total, we consider the test statistic

q̂2
k := T̂k − 2Ŝk + q2

k(f◦).

Below, we construct a test that, roughly speaking, compares the estimator to a multiple of its
standard deviation.

Decomposition of the test statistic. The key element to analyse the behaviour of the test
statistic is the following decomposition

q̂2
k = Un + 2Vn + q2

k(f − f◦) (4.2.5)

with the canonical U-statistic

Un := 1
n(n− 1)

∑
|j|∈JkK

∑
l,m∈JnK
l 6=m

(ej(−Yl)− gj)(ej(Ym)− gj)
|ϕj |2

, (4.2.6)

the centred linear term

Vn := 1
n

∑
|j|∈JkK

∑
l∈JnK

(gj − g◦j )(ej(Yl)− gj)
|ϕj |2

(4.2.7)

and the separation term q2
k(f − f◦).
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Definition of the threshold. In the next proposition we provide bounds for the quantiles of
the test statistic q̂2

k. Define Lx := (log(e/x))1/2 = (1− log(x))1/2 ∈ (1,∞) for x ∈ (0, 1). Define
for k ∈ N the quantities

νk :=

 ∑
|j|∈JkK

1
|ϕj |4

1/4

and mk := max
|j|∈JkK

|ϕj |−1 , (4.2.8)

which we, roughly speaking, use to characterise the variance of the test statistic q̂2
k. For c1 :=

799 ‖g◦•‖`2 + 1372, c2 := 52 ‖g◦•‖`1 and α ∈ (0, 1), we define the threshold

τk(α) := c1

1 ∨ L2
α

√
ν2
k

n
∨ L3

α

ν2
k

n

Lα ν2
k

n
+ c2L

2
α

m2
k

n
. (4.2.9)

Note that due to the Cauchy-Schwarz inequality and Parseval’s identity, we have ‖g◦•‖`1 ≤
‖f◦• ‖`2 ‖ϕ•‖`2 = ‖f◦‖L 2 ‖ϕ‖L 2 <∞, hence, c2 is indeed finite.

Proposition 4.2.1 (Bounds for the quantiles of q̂2
k). For densities f◦, f, ϕ ∈ D and

n ∈ N, n ≥ 2 consider {Yj}nj=1
iid∼ g = f ?©ϕ with joint distribution Pf and let g◦ = f◦ ?©ϕ.

Let α, β ∈ (0, 1) and for k ∈ N consider the estimator q̂2
k and the threshold τk(α) as defined

in (4.2.5) and (4.2.9), respectively.

(i) If L 2(g◦) =
{
|ξ| , ξ ∈ L 2}, then

Pf◦(q̂2
k ≥ τk(α)) ≤ α.

(ii) If c3 := 8 ‖g•‖`1 + 826 ‖ϕ•‖2`2 + 1372 and the separation condition

q2
k(f − f◦) ≥ 2

(
τk(α) + c3L

4
β/2

(
1 ∨ ν

2
k

n

)
ν2
k

n

)
, (4.2.10)

holds, then

Pf(q̂2
k < τk(α)) ≤ β.

Proof of Proposition 4.2.1. (i) If f = f◦ and, hence, g = g◦, the decomposition (4.2.5) sim-
plifies to q̂2

k = Un, where Un is a canonical U-statistic. Applying Proposition D.1.1 of the
appendix, a concentration inequality for canonical U-statistics of order 2, with x = L2

α ≥ 1
and quantities A−D satisfying (D.1.2), we obtain

Pf◦
(

Un ≥ 8C
n
Lα + 13D

n
L2
α + 261 B

n3/2L
3
α + 343 A

n2L
4
α

)
≤ exp(1− x). (4.2.11)

Consider the quantities A − C defined in (D.2.1) and D in (D.2.2), which under the
additional assumption L 2(g◦) =

{
|ξ| : ξ ∈ L 2} satisfy (D.1.2) due to Lemma D.2.1. We
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have

8C
n
Lα + 13D

n
L2
α + 261 B

n3/2L
3
α + 343 A

n2L
4
α

≤8 · 2 · ‖g•‖`2 Lα
ν2
k

n
+ 13 · 4 · ‖g•‖`1 L

2
α

m2
k

n
+ 261 · 3 · ‖g•‖`2 L

3
α

ν3
k

n3/2 + 343 · 4 · L4
α

ν4
k

n2

=52 ‖g•‖`1 L
2
α

m2
k

n
+ Lα

ν2
k

n

(
16 ‖g•‖`2 + 783 ‖g•‖`2 L

2
α

νk
n1/2 + 1372L3

α

ν2
k

n

)

≤52 ‖g•‖`1 L
2
α

m2
k

n
+ Lα

ν2
k

n
(799 ‖g•‖`2 + 1372)

(
1 ∨ L2

α

νk
n1/2 ∨ L

3
α

ν2
k

n

)

=c2L
2
α

m2
k

n
+ c1

1 ∨ L2
α

√
ν2
k

n
∨ L3

α

ν2
k

n

Lα ν2
k

n

=τk(α),

which together with (4.2.11) shows the assertion (i).

(ii) Keeping the decomposition (4.2.5) in mind, we control the deviations of the U-statistic
Un and the linear statistic Vn by applying Proposition D.1.1 and Lemma D.2.2 of the
appendix, respectively. In fact, the quantities A−D given in (D.2.1) of Lemma D.2.1 fulfil
(recall that Lβ/2 ≥ 1 for all β > 0)

8C
n
Lβ/2 + 13D

n
L2
β/2 + 261 B

n3/2L
3
β/2 + 343 A

n2L
4
β/2

≤8 · 2 · ‖g•‖`2 Lβ/2
ν2
k

n
+ 13 · 2 · ‖g•‖`2 L

2
β/2

ν2
k

n

+ 261 · 3 · ‖g•‖`2 L
3
β/2

ν3
k

n3/2 + 343 · 4 · L4
β/2

ν4
k

n2

≤L4
β/2

(
42 ‖g•‖`2 + 783 ‖g•‖`2

νk
n1/2 + 1372ν

2
k

n

)
ν2
k

n

≤L4
β/2 (825 ‖g•‖`2 + 1372)

(
1 ∨ νk

n1/2 ∨
ν2
k

n

)
ν2
k

n

≤L4
β/2(825 ‖g•‖`2 + 1372)

(
1 ∨ ν

2
k

n

)
ν2
k

n
=: τ1,

where we exploited that 1 ∨ a ∨ a2 = 1 ∨ a2 for any a ≥ 0. Consequently, the event

Ω1 := {Un ≤ −τ1}

satisfies Pf(Ω1) ≤ β/2 due to Proposition D.1.1 (with the usual symmetry argument).
Define further the event

Ω2 :=
{

2Vn ≤ −τ2 −
1
2q2

k(f − f◦)
}

with τ2 := L2
β/2(8 ‖g•‖`1 + ‖ϕ•‖2`2)

(
1 ∨ m2

k
n

)
m2
k
n . Then we have Pf(Ω2) ≤ β

2e ≤
β
2 due to

Lemma D.2.2 with x = Lβ/2 ≥ 1, which is an application of a Bernstein-type inequality.
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We obtain

τ1 + τ2

= L4
β/2(825 ‖g•‖`2 + 1372)

(
1 ∨ ν

2
k

n

)
ν2
k

n
+ L2

β/2(8 ‖g•‖`1 + ‖ϕ•‖2`2)
(

1 ∨ m
2
k

n

)
m2
k

n

≤ L4
β/2

(
1 ∨ ν

2
k

n

)
ν2
k

n

(
825 ‖g•‖`2 + 1372 + 8 ‖g•‖`1 + ‖ϕ•‖2`2

)
≤ L4

β/2c3

(
1 ∨ ν

2
k

n

)
ν2
k

n

with c3 = 8 ‖g•‖`1 + 826 ‖ϕ•‖2`2 + 1372 due to m2
k ≤ ν2

k , 1 ≤ Lβ/2 and ‖g•‖`2 ≤ ‖ϕ•‖`2 ≤
‖ϕ•‖2`2 . Hence, the assumption (4.2.10) implies

1
2q2

k(f − f◦) ≥ τk(α) + τ1 + τ2.

The decomposition (4.2.5) yields

Pf
(
q̂2
k < τk(α)

)
= Pf

({
q̂2
k < τk(α)

}
∩ Ω1

)
+ Pf

({
q̂2
k < τk(α)

}
∩ Ωc

1

)
≤ Pf(Ω1) + Pf

(
2Vn + q2

k(f − f◦) < τk(α) + τ1
)

≤ β

2 + Pf(Ω2) ≤ β,

which shows (ii) and completes the proof.

Remark 4.2.2 (Assumption in (i) of Proposition 4.2.1). The technical assumption L 2(g◦) ={
|ξ| : ξ ∈ L 2} in Proposition 4.2.1 allows us to express elements of L 2(g◦) in their Fourier ex-

pansion. The assumption is needed to obtain the second bound for the quantity D in Lemma D.2.1
of the appendix. It is immediately satisfied for f◦ = 1[0,1) and if f◦ is bounded away from 0. �

Definition of the test. Using the test statistic q̂2
k and the threshold τk(α) given in (4.2.5)

and (4.2.9), respectively, we define the test

∆k,α := 1{q̂2
k
≥τk(α)}, for k ∈ N, α ∈ (0, 1). (4.2.12)

From (i) in Proposition 4.2.1 it immediately follows that ∆k,α is a level-α-test for all k ∈ N. To
analyse its power over the alternative, we introduce a regularity constraint, i.e. a nonparametric
class of functions E = ER

a• , which is formulated in terms of Fourier coefficients. Let R > 0 and
let a• = (aj)j∈N be a strictly positive, monotonically non-increasing sequence that is bounded
by 1. We assume that the differences f − f◦ belong to the ellipsoid

ER
a• =

f̃ ∈ D : 2
∑
j∈N

a−2
j

∣∣∣f̃j∣∣∣2 ≤ R2

 . (4.2.13)

Note that f̃ ∈ ER
a• imposes conditions on all coefficients f̃j , j ∈ Z, since

∣∣∣f̃j∣∣∣2 =
∣∣∣f̃−j∣∣∣2, j ∈ N

for all real-valued functions and, additionally, f◦0 = 1 for all densities. The definition (4.2.13)
is general enough to cover classes of ordinary and super smooth densities. The second part
(ii) of Proposition 4.2.1 now allows to characterise elements in ER

a• for which ∆k,α is powerful.
Exploiting these results, we derive an upper bound for the radius of testing of ∆k,α in terms of
νk as in (4.2.8) and the regularity parameter a•, that is we define

ρ2
k,a• := ρ2

k,a•(n) := a2
k ∨

ν2
k

n
, (4.2.14)

where, for now, we suppress the dependence on n in the notation.
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Proposition 4.2.3 (Upper bound for the radius of testing of ∆k,α/2). Let g◦ = f◦ ?©ϕ
with f◦, ϕ ∈ L 2 satisfy L 2(g◦) =

{
|ξ| , ξ ∈ L 2}. For α ∈ (0, 1) define

A
2
α := R2 + 2(8R ‖ϕ•‖`2 + 826 ‖ϕ•‖2`2 + 859 ‖g◦•‖`1 + 2744)L4

α/4. (4.2.15)

For all A ≥ Aα and for all n, k ∈ N with n ≥ 2 and ν2
k ≤ n, we have

R
(
∆k,α/2 | ER

a• , Aρk,a•

)
≤ α.

Proof of Proposition 4.2.3. We apply Proposition 4.2.1 to show that both the type I and the
maximal type II error probability are bounded by α/2, then the result follows immediately from
the definition of the testing risk

R
(
∆k,α/2 | ER

a• , Aρk,a•

)
= Pf◦

(
∆k,α/2 = 1

)
+ sup
f−f◦∈L 2

Aρk,a•
∩ER

a•

Pf
(
∆k,α/2 = 0

)
≤ α/2 + α/2 = α.

Since the assumption of Proposition 4.2.1(i) is fulfilled, the test ∆k,α/2 is a level-α/2-test. Hence,
for each density f ∈ L 2 belonging to the alternative, i.e. with ‖f − f◦‖2L 2 ≥ A

2
αρ

2
k,a•

and
f− f◦ ∈ ER

a• it remains to verify condition (4.2.10) in order to apply Proposition 4.2.1 (ii) (with
β = α/2). Indeed, in this situations we have∑

|j|>k

∣∣∣fj − f◦j ∣∣∣2 ≤ ∑
|j|>k

a2
k

a2
j

∣∣∣fj − f◦j ∣∣∣2 ≤ a2
kR2,

since a• is non-increasing, hence ak
aj
≥ 1 for all j ≥ k. Thus,

q2
k(f − f◦) = ‖f − f◦‖2L 2 −

∑
|j|>k
|f − f◦|2 ≥ A2

αρ
2
k,a• − a

2
kR2

≥ 2(8R ‖ϕ•‖`2 + 826 ‖ϕ•‖2`2 + 859 ‖g◦•‖`1 + 2744)L4
α/4

ν2
k

n
(4.2.16)

where the second inequality is due to the definition of Aα. Note that using the triangle inequality
and the Cauchy-Schwarz inequality, we obtain

‖g•‖`1 ≤ ‖g• − g
◦
•‖`1 + ‖g◦•‖`1 ≤ ‖f• − f

◦
• ‖`2 ‖ϕ•‖`2 + ‖g◦•‖`1 ≤ R ‖ϕ•‖`2 + ‖g◦•‖`1 ,

where we used

‖f• − f◦• ‖
2
`2 =

∑
j∈Z

∣∣∣fj − f◦j ∣∣∣2 ≤∑
j∈Z

a−2
j

∣∣∣fj − f◦j ∣∣∣2 ≤ R2,

since a• is bounded by 1. Hence, (4.2.16) yields

q2
k(f − f◦) ≥ 2(8 ‖g•‖`1 + 826 ‖ϕ•‖2`2 + 851 ‖g◦•‖`1 + 2744)L4

α/4
ν2
k

n
. (4.2.17)

The condition (4.2.10) then follows from (4.2.17) by exploiting further 1 ≤ Lα/2 ≤ Lα/4 ,‖g◦•‖`2 ≤
‖g◦•‖`1 and m2

k ≤ ν2
k ≤ n. Indeed,

τk(α/2) = c1

1 ∨ L2
α/2

√
ν2
k

n
∨ L3

α/2
ν2
k

n

Lα/2 ν2
k

n
+ c2L

2
α/2

m2
k

n

≤ (c1 + c2)L4
α/4

ν2
k

n
.
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Hence,

2
(
τk(α/2) + c3L

4
α/4

(
1 ∨ ν

2
k

n

)
ν2
k

n

)

≤ 2(c1 + c2 + c3)L4
α/4

ν2
k

n

≤ 2(8 ‖g•‖`1 + 826 ‖ϕ•‖2`2 + 799 ‖g◦•‖`2 + 52 ‖g◦•‖`1 + 2744)L4
α/4

ν2
k

n

≤ 2(8 ‖g•‖`1 + 826 ‖ϕ•‖2`2 + 851 ‖g◦•‖`1 + 2744)L4
α/4

ν2
k

n
,

which together with (4.2.17) completes the proof.

Let us introduce a dimension that realizes an optimal bias-variance trade-off and the corre-
sponding radius

ka• := ka•(n) := arg min
k∈N

ρ2
k,a• := min

{
k ∈ N : ρ2

k,a• ≤ ρ
2
a•,l for all l ∈ N

}
(4.2.18)

and

ρ2
a• := ρ2

a•(n) := min
k∈N

ρ2
k,a• = min

k∈N

{
a2
k ∨

ν2
k

n

}
.

Corollary 4.2.4 (Upper bound for the radius of testing). Let g◦ = f◦ ?©ϕ with
f◦, ϕ ∈ L 2 satisfy L 2(g◦) =

{
|ξ| : ξ ∈ L 2}. For α ∈ (0, 1) define A2

α as in Proposition 4.2.3.
Then for all A ≥ Aα and n ≥

√
2 |ϕ1|−2, we have

R
(
∆ka• ,α/2 | E

R
a• , Aρa•

)
≤ α. (4.2.19)

Proof of Corollary 4.2.4. The result follows immediately from Proposition 4.2.3, since ν2
ka•
≤ n

for all n ≥
√

2 |ϕ1|−2. Indeed, 1 ≥ ρ2
a•,1 ≥ ρ

2
a• ≥ ν

2
ka•
n−1 for all n ≥

√
2 |ϕ1|−2.

We shall emphasize that in the case f◦ = 1[0,1) the radius of testing ρa• is known to be
minimax (due to the results of Chapter 3), and, hence, the test ∆ka• ,α/2 is minimax optimal.

Illustration 4.2.5. We determine the order of the radius of testing

ρ2
a•(n) = min

k∈N

{
a2
k ∨

ν2
k

n

}

for specific regularity sequences a• and error densities ϕ, which are characterised by their
sequences of Fourier coefficients (ϕj)j∈N and represent the ill-posedness of the model. For
two real-valued sequences (xj)j∈N ∈ RN and (yj)j∈N ∈ RN we write xj . yj if there exists
a constant c > 0 such that xj ≤ cyj for all j ∈ N. We write xj ∼ yj , if both xj . yj and
yj . xj . We distinguish two behaviours of the sequence a•, either polynomial decay aj ∼ j−s
for some s > 1/2, such that ER

a• corresponds to a Sobolev ellipsoid of ordinary smooth
functions, or exponential decay aj ∼ exp(−js) for some s > 0, where ER

a• corresponds to a
class of analytic (super smooth) functions. The same distinction is made for the regularity
of the error density ϕ. For p > 1/2 we consider a mildly ill-posed model |ϕj | ∼ |j|−p
and for p > 0 a severely ill-posed model |ϕj | ∼ exp(− |j|p). The table below presents the
order of the optimal dimension and the upper bound for the radius of testing of the test
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∆ka• ,α/2, α ∈ (0, 1) derived in Corollary 4.2.4, which corresponds to the minimax radius of
testing . For detailed calculations we refer to Illustration 3.2.6.

Order of the optimal dimension ka• and the minimax radius ρ2
a•

aj |ϕj | ka• ρ2
a•

(smoothness) (ill-posedness)

j−s |j|−p n
2

4p+4s+1 n
− 4s

4s+4p+1

j−s e−|j|
p (logn)

1
p (logn)−

2s
p

e−j
s |j|−p (logn)

1
s n−1(logn)

2p+1/2
s

4.3 Adaptive indirect testing procedure

For a parameter a• the minimax optimal test ∆ka• ,α/2 in Corollary 4.2.4 relies on the dimension
parameter ka• , which in turn depends on the smoothness class ER

a• . Ideally, we want our testing
procedure to be adaptive, i.e. assumption-free, with respect to the alternative class ER

a• . It
should perform optimally for a wide range of alternatives. In this section we therefore propose an
adaptive testing procedure by aggregating the tests derived in Section 4.2 over various dimension
parameters k. We first generally describe the aggregation procedure and then apply it to the
tests defined in (4.2.12).

Description of the adaptation procedure via Bonferroni aggregation. Let K ⊆ N be
a finite collection of dimension parameters. For k ∈ K and levels (αk)k∈K ⊆ (0, 1)K, we consider
the collection of level-αk-tests (φk,αk)k∈K = (1{ζk,αk>0})k∈K based on test statistics ζk,αk . For
α :=

∑
k∈K αk, we consider the max-test

φK,α := 1{ζK,α>0} with ζK,α = max
k∈K

ζk,αk ,

i.e. the test rejects the null hypothesis as soon as one of the tests in the collection does. Under
the null hypothesis, we bound the type I error probability of the max-test by the sum of the
error probabilities of the individual tests,

Pf◦(φK,α = 1) = Pf◦(max
k∈K

ζk,αk > 0) ≤
∑
k∈K

Pf◦(ζk,αk > 0) ≤
∑
k∈K

αk = α. (4.3.1)

Hence, φK,α is a level-α-test. Under the alternative, we can bound the type II error probability
by the error probability of any of the individual tests,

Pf(φK,α = 0) = Pf(max
k∈K

ζk,αk ≤ 0) ≤ min
k∈K

Pf(ζk,αk ≤ 0) = min
k∈K

Pf(φk,αk = 0). (4.3.2)

Therefore, φK,α has the maximal power achievable by a test in the collection. The bounds (4.3.1)
and (4.3.2) have opposing effects on the choice of the collection K. On the one hand, it should
be as small as possible to keep the type I error probability small. On the other hand, it must
be large enough to contain an optimal dimension parameter ka• for a wide range of smoothness
parameters a•. Typically, there is a cost to pay for adaptation, which is characterized by the
size of a (minimal) adaptive factor, defined in Section 4.1. Let us heuristically explain what
causes the adaptive factor and give a reason for its typical order.
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Typical order of the adaptive factor. We have seen that the minimax optimal test in-
troduced in Section 4.2, roughly speaking, compares an estimator q̂2

k to a multiple (depending
on α) of its standard deviation, which is typically of order ν2

k
n , i.e. we reject the null as soon

as q̂2
k & Cα

ν2
k
n . If the deviations of the estimator follow a (sub)Gaussian regime, the threshold

constant Cα can be chosen to be of order
√

log(1/α) to guarantee level-α. We consider the
Bonferroni correction of these tests, that is, the error levels αk = α

|K| . A natural choice for the
collection of dimension parameters K is a geometric grid K =

{
20, 21, . . . , 2b2 log2 nc

}
, since in

many cases ka• ≤ n2, which yields |K| ∼ logn. Then, the new thresholds behave like

Cαk
ν2
k

n
∼ C̃α

√
log logn
n

ν2
k ,

i.e. the effective sample size is reduced to δnn = n√
log logn by the adaptive factor δ−1

n =
√

log logn.

4.3.1 Aggregation of the indirect tests and the choice of the levels αk

Denote by A ⊆ RN
>0 a set of strictly positive, monotonically non-increasing sequences bounded

by 1. The set A characterises the collection of alternatives
{
ER
a• : a• ∈ A

}
, for which we analyse

the power of our testing procedure simultaneously. Let K ⊆ N with |K| <∞ and α ∈ (0, 1). We
apply the aggregation described above and obtain a max-test with a Bonferroni choice of error
levels

∆K,α := 1{Q̂K,α>0} with Q̂K,α := max
k∈K

(
q̂2
k − τk( α

|K|)
)
,

where q̂2
k and τk(α) are the test statistic and the threshold of the indirect test defined in (4.2.5)

and (4.2.9), respectively. In this paper we consider a classical Bonferroni choice of error levels,
αk = α

|K| . In the next remark we discuss other possible aggregation choices and compare them
to our method. The Monte-Carlo quantile and threshold method is e.g. used in Laurent et al.
[2003] and Fromont and Laurent [2006].

Remark 4.3.1 (Choice of (αk)k∈K). Let us describe three different methods for choosing thresh-
olds for the statistics q̂2

k and the levels (αk)k∈K.
Monte-Carlo quantile method. Roughly speaking, instead of using the thresholds τk(α) that
we introduce in (4.2.9), this approach uses the (unspecified) quantiles of q̂2

k under the null hy-
pothesis. Let us be more precise and denote by tk(α) the (1 − α)-quantile of q̂2

k under the null
hypothesis f = f◦. Let

α? := sup
{
u ∈ (0, 1) : Pf◦

(
max
k∈K

(
q̂2
k − tk(u)

)
> 0

)
≤ α

}
and consider the test statistic and the corresponding test

∆?
K,α := 1{

T ?K,α?>0
} with T ?K,α? := max

k∈K

(
q̂2
k − tk(α?)

)
Then, by definition

Pf◦
(
∆?
K,α = 1

)
= Pf◦

(
max
k∈K

(
q̂2
k − tk(α?)

)
> 0

)
≤ α.

The drawback of this method is that in general there are no explicit formulas for the quantiles
tk(u), k ∈ K, u ∈ (0, 1) and the chosen error level α?. Therefore, in practice they have to be
determined e.g. via a Monte-Carlo-simulation.
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Monte-Carlo threshold method. Instead of using the quantiles tk(u), we use the explicit up-
per bounds for the quantiles τk(u) ≥ tk(u) for u ∈ (0, 1) that we determined in Proposition 4.2.1.
Let

α† := sup
{
u ∈ (0, 1) : Pf◦

(
max
k∈K

(
q̂2
k − τk(u)

)
> 0

)
≤ α

}
and consider the test statistic and the corresponding test

∆†K,α := 1{
T †
K,α†

>0
} with T †K,α† := max

k∈K

(
q̂2
k − τk(α†)

)
.

Then, by definition

Pf◦
(
∆†K,α = 1

)
= Pf◦

(
max
k∈K

(
q̂2
k − τk(α†)

)
> 0

)
≤ α.

This method no longer requires simulations for the thresholds. However, there is still no explicit
formula for α†, which again has to be determined via a Monte-Carlo-simulation.
Bonferroni method. We simply define

αk := α

|K|

and consider the test statistic and the corresponding test

∆K,α := 1{T̂K,α>0} with T̂K,α = max
k∈K

(
T̂k − τk(αk)

)
.

Then, by definition

Pf◦ (∆K,α = 1) = Pf◦
(

max
k∈K

(
q̂2
k − τk(αk)

)
> 0

)
≤
∑
k∈K

αk =
∑
k∈K

α

|K|
= α.

While it is a more conservative method, it allows us to explicitly show the dependence of the
testing radius of the max-test on the size of the collection K. This dependence is naturally also
present in the Monte Carlo methods, though hidden in the definition of α? resp. α†.
The power of the three methods. All three methods yield max-tests of level-α. To analyse
their power, we note that for any f ∈ D

Pf
(
∆?
α,k = 0

)
≤ min

k∈K
Pf
(
q̂2
k < tk(α?)

)
,

Pf
(
∆†α,k = 0

)
≤ min

k∈K
Pf
(
q̂2
k < τk(α†)

)
,

Pf (∆α,k = 0) ≤ min
k∈K

Pf
(
q̂2
k < τk(αk)

)
. (4.3.3)

In particular it follows from the definition of α?, α† and the fact that τk(α) is monotonically
increasing in α that

tk(α?) ≤ τk(α†) ≤ τk(αk)

Hence, showing via (4.3.3) that the Bonferroni-max-test ∆α,k is powerful for an element f ∈ D
immediately implies that the other two max-tests are also powerful. �
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4.3.2 Testing radius of the indirect max-test

The next proposition determines an adaptive upper bound for the radius of testing of the max-
test. The upper bound essentially has two regimes. The adaptive factor δ−1 depends on which
regime determines the behaviour of the radius of testing. For the Bonferroni choice of error
levels, αk = α

|K| , the adaptive factor δ−1 is in all cases of order (log |K|)c for c ∈
{

1
2 , 1
}

. Below,
we give conditions for which the adaptive factor is of order (log |K|)1/2, which we show to be the
minimal adaptive factor.

Recall that the max-test ∆K,α only aggregates over a finite set K ⊆ N. We define the minimal
achievable radius of testing over the set K as

ρ2
K,a•(n) := min

k∈K
ρ2
k,a•(n) with ρ2

k,a•(n) := a2
k ∨

ν2
k

n
,

with ν2
k as in (4.2.8) and a regularity parameter a• = (aj)j∈N ∈ A. Since ρ2

a•(n) in (4.2.14) is
defined as the minimum taken over N instead of K, for n ∈ N we always have

ρ2
a•(n) = ρ2

N,a•(n) ≤ ρ2
K,a•(n).

Moreover, replacing ν2
k by m2

k as in (4.2.8), let us define a remainder radius, typically negligible
compared to ρ2

K,a•(n),

r2
K,a•(n) := min

k∈K
r2
k,a•(n) with r2

k,a•(n) := a2
k ∨

m2
k

n
. (4.3.4)

Proposition 4.3.2 (Uniform radius of testing over A).
Under the assumptions of Proposition 4.2.1, let α ∈ (0, 1) and consider Aα as in (4.2.15).
Then, for all A ≥ Aα and for all n ∈ N, n ≥ 2,

sup
a•∈A

R
(

∆K,α/2 | ER
a• , A

(
1 ∨ ρK,a•(δn)

δ3/2

)(
rK,a•(δ2n) ∨ ρK,a•(δn)

))
≤ α

with δ = (1 ∨ log |K|)−1/2.

Proof of Proposition 4.3.2. For each a• ∈ A we apply Proposition 4.2.1 to show that both the
type I and the maximal type II error probability are bounded by α/2. The result then follows
immediately from the definition of the testing risk

R
(
∆K,α/2 | ER

a• , Aρ
)

= Pf◦
(
∆K,α/2 = 1

)
+ sup
f−f◦∈L 2

Aρ∩ER
a•

Pf
(
∆K,α/2 = 0

)
≤ α/2 + α/2 = α.

Under the null hypothesis, the claim follows from (4.3.1) together with Proposition 4.2.1 (i) and∑
k∈K αk =

∑
k∈K

α
2|K| = α

2 . Under the alternative, let f ∈ L 2 with f − f◦ ∈ ER
a• satisfy

‖f − f◦‖2L 2 ≥ A2
α

(
1 ∨

ρ2
K,a•(δn)
δ3

)(
r2
K,a•(δ

2n) ∨ ρ2
K,a•(δn)

)
. (4.3.5)

It is sufficient to use the elementary bound (4.3.2) together with the following two observations,
which we show below:
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1. Whenever f ∈ L 2 satisfies f − f◦ ∈ ER
a• and

‖f − f◦‖2L 2 ≥ A2
α

(
a2
k ∨

(
1 ∨ νk

δ2n1/2 ∨
ν2
k

δ3n

)
ν2
k

δn
∨ m2

k

δ2n

)
, (4.3.6)

then

Pf
(
q̂2
k < τk

(
α

2|K|

))
≤ α

2 .

2. If the separation condition (4.3.5) is satisfied, then there exists a k ∈ K such that (4.3.6)
is fulfilled.

Consequently, we have

Pf(∆K,α/2 = 0) ≤ min
k∈K

Pf(∆k,αk/2 = 0) ≤ α

2 .

for all f ∈ L 2 satisfying f − f◦ ∈ ER
a• and (4.3.5). Thus, the maximal type II error probability

is also bounded by α/2. It remains to show (1.) and (2.).

1. The claim follows from Proposition 4.2.1 (ii) (with β = α/2), since (4.3.6) implies (4.2.10),
which states

q2
k(f − f◦) ≥ 2

(
τk( α

2|K|) + c3L
4
α/4

(
1 ∨ ν

2
k

n

)
ν2
k

n

)
, (4.3.7)

with τk( α
2|K|) as in (4.2.9). Indeed, exploiting L2

α/2 = log(2e/α) ≥ 1 and, hence,

L2
α/(2|K|) = log(2e |K| /α) = log |K|+ L2

α/2 ≤ L
2
α/2(1 + log |K|) = L2

α/2δ
−2,

we have

τk( α
2|K|) = c1

1 ∨ L2
α/(2|K|)

√
ν2
k

n
∨ L3

α/(2|K|)
ν2
k

n

Lα/(2|K|) ν2
k

n
+ c2L

2
α/(2|K|)

m2
k

n

≤ c1

1 ∨ L2
α/2

√
ν2
k

δ4n
∨ L3

α/2
ν2
k

δ3n

Lα/2 ν2
k

δn
+ c2L

2
α/2

m2
k

δ2n

≤ c1L
4
α/2

1 ∨

√
ν2
k

δ4n
∨ ν2

k

δ3n

 ν2
k

δn
+ c2L

2
α/2

m2
k

δ2n

≤ (c1 + c2)L4
α/2

1 ∨

√
ν2
k

δ4n
∨ ν2

k

δ3n

 ν2
k

δn
∨ m2

k

δ2n

 .
Additionally using Lα/4 ≥ Lα/2, 1 ≥ δ the right-hand side of (4.3.7) is bounded by

2
(
τk( α

2|K|) + c3L
4
α/4

(
1 ∨ ν

2
k

n

)
ν2
k

n

)

≤ 2(c1 + c2)L4
α/2

1 ∨

√
ν2
k

δ4n
∨ ν2

k

δ3n

 ν2
k

δn
∨ m2

k

δ2n

+ 2c3L
4
α/4

(
1 ∨ ν

2
k

n

)
ν2
k

n

≤ 2(c1 + c2 + c3)L4
α/4

1 ∨

√
ν2
k

δ4n
∨ ν2

k

δ3n

 ν2
k

δn
∨ m2

k

δ2n

 .
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Hence, since A2
α − R2 ≥ 2(c1 + c2 + c3)L4

α/4 the condition (4.2.10) of Proposition 4.2.1
holds whenever

q2
k(f − f◦) ≥

(
A

2
α −R2

)1 ∨

√
ν2
k

δ4n
∨ ν2

k

δ3n

 ν2
k

δn
∨ m2

k

δ2n

 . (4.3.8)

Let us verify this condition. Due to f−f◦ ∈ ER
a• and, hence,

∑
|j|>k

∣∣∣f◦j − fj∣∣∣2 ≤ a2
kR2, the

condition (4.3.6) implies

q2
k(f − f◦) = ‖f − f◦‖2L 2 −

∑
|j|>k

∣∣∣f◦j − fj∣∣∣2

≥
(
A

2
α −R2

)1 ∨

√
ν2
k

δ4n
∨ ν2

k

δ3n

 ν2
k

δn
∨ m2

k

δ2n

 ,
which justifies the application of Proposition 4.2.1. If (4.3.6) is satisfied, then also (4.3.8)
and thus (4.2.10), which shows the claim (1.).

2. By the Balancing Lemma A.2.1 we have

r2
K,a•(δ

2n) ∨ ρ2
K,a•(δn) = a2

k ∨
m2
k

δ2n
∨ ν

2
k

δn
and ρ2

K,a•(δn) ≥ ν2
k

δn

for at least one k ∈ K. Hence, there exists a dimension parameter k ∈ K such that

(
r2
K,a•(δ

2n) ∨ ρ2
K,a•(δn)

)(
1 ∨

ρ2
K,a•(δn)
δ3

)
≥ a2

k ∨
m2
k

δ2n
∨
(
ν2
k

δn

(
1 ∨ ν2

k

δ4n

))
.

Since

1 ∨ ν2
k

δ4n
≥ 1 ∨ νk

δ2n1/2 ∨
ν2
k

δ3n
,

this shows (4.3.6) and, hence, (2.), which completes the proof.

Corollary 4.3.3 (Worst-case adaptive factor). Under the assumptions of Proposi-
tion 4.2.1, let α ∈ (0, 1) and consider Aα as in (4.2.15). Then, for all A ≥ Aα and for
all n ∈ N, n ≥ 2,

sup
a•∈A

R
(
∆K,α/2 | ER

a• , A
(
1 ∨ ρK,a•(δ2n)

)
ρK,a•(δ2n)

)
≤ α

with δ = (1 ∨ log |K|)−1/2.

Proof of Corollary 4.3.3. The proof follows along the lines of the proof of Proposition 4.3.2,
considering

‖f − f◦‖2L 2 ≥ A2
α

(
1 ∨ ρ2

K,a•(δ
2n)
)
ρ2
K,a•(δ

2n) (4.3.9)
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instead of (4.3.5). In fact, as in the proof of Proposition 4.3.2, it is sufficient to show (2.)
under the separation condition (4.3.9). For each a• ∈ A under (4.3.9) the dimension parameter
k? := arg min

k∈K
ρ2
k,a•

(δ2n) satisfies

(
1 ∨ ρ2

K,a•(δ
2n)
)
ρ2
K,a•(δ

2n) =
(
1 ∨ ρK,a•(δ2n) ∨ ρ2

K,a•(δ
2n)
)
ρ2
K,a•(δ

2n)

≥ a2
k? ∨

ν2
k?

δ2n

(
1 ∨ νk?

δn1/2 ∨
ν2
k?

δ2n

)

≥ a2
k? ∨

m2
k?

δ2n
∨
ν2
k?

δn

(
1
δ
∨ νk?
δ2n1/2 ∨

ν2
k?

δ3n

)

≥ a2
k? ∨

m2
k?

δ2n
∨
ν2
k?

δn

(
1 ∨ νk?

δ2n1/2 ∨
ν2
k?

δ3n

)

since a2
k?
∨ ν2

k?
δ2n = ρ2

K,a•(δ
2n), δ ≤ 1 and m2

k?
≤ ν2

k?
. This shows (4.3.6) and, consequently, (2.).

We obtain the assertion by proceeding exactly as in the proof of Proposition 4.3.2.

By Corollary 4.3.3, ρ2
K,a•(δ

2n) is an upper bound for the radius of testing of the indirect
max-test as soon as ρ2

K,a•(δ
2n) ≤ 1. The latter is satisfied for an arbitrary regularity parameter

a• ∈ A, if 1 ∈ K (condition on the class K) and n ≥
√

2 |ϕ1|−2 (1 + log |K|) (condition on the
minimal sample size). Indeed, under the two conditions, we have

ρ2
K,a•(δ

2n) = min
k∈K

{
a2
k ∨

ν2
k

δ2n

}
≤ a2

1 ∨
ν2

1
δ2n
≤ 1 ∨

√
2 |ϕ1|−2

δ2n
= 1.

Hence, in this case we obtain an adaptive factor of order log |K|. The next corollary
establishes ρ2

K,a•(δn) as a sharper upper bound for the radius of testing of the indirect max-test
under additional conditions, all of which are e.g. satisfied in the examples considered below in
Illustration 4.3.6. Therefore, under these additional conditions we obtain an adaptive factor
of order

√
log |K|.

Corollary 4.3.4 (Best-case adaptive factor). Under the assumptions of Proposition 4.2.1,
let α ∈ (0, 1) and consider Aα as in (4.2.15). If there exist constants c, C > 1 such that

rK,a•(δ2n) ≤ cρK,a•(δn) and ρK,a•(δn) ≤ Cδ3/2 (4.3.10)

for all a• ∈ A, then for all A ≥ c · C ·Aα and for all n ∈ N, n ≥ 2,

sup
a•∈A

R
(
∆K,α/2 | ER

a• , AρK,a•(δn)
)
≤ α

with δ = (1 ∨ log |K|)−1/2.

Proof of Corollary 4.3.4. Under the assumptions (4.3.10) we have(
1 ∨ ρK,a•(δn)

δ3/2

)(
rK,a•(δ2n) ∨ ρK,a•(δn)

)
≤
(

1 ∨ ρK,a•(δn)
δ3/2

)
(cρK,a•(δn) ∨ ρK,a•(δn))

≤ (1 ∨ C) (cρK,a•(δn) ∨ ρK,a•(δn))
≤ c · C · ρK,a•(δn),

hence, the assertion follows directly from Proposition 4.3.2.
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Remark 4.3.5 (Choice of the collection K). Ideally, the collection K ⊆ N is chosen such that
its elements approximate the optimal parameter ka• for all a• ∈ A given in (4.2.18) sufficiently
well. Note that ka• ≤ n2

2 for n reasonably large (precisely n ≥
√

2 |ϕ1|−2, which implies 1 ≥

a2
1 ∨

ν2
k
n = ρ2

1,a• ≥ ρ
2
a• ≥

ν2
ka•
n ≥

√
2ka•
n ), Hence, a naive choice is

K1 =
{

1, . . . , bn2

2 c
}

with |K1| = bn
2

2 c,

which yields an adaptive factor of order (logn)1/2. However, in most cases, a minimisation over
a geometric grid

K2 =
{

2j , j ∈
{

0, . . . , blog2(n2

2 )c
}}

with |K2| = blog2(n2

2 )c

approximates the minimisation over N well enough. The resulting adaptive factor is then of
order (log logn)1/2. For some special cases the even smaller collection

Ks =
{

2j , j ∈
{

0, . . . , b log2 logn
s c

}}
with |Ks| = b log2 logn

s c

(compare Illustration 4.3.6 below) is still sufficient, resulting in an adaptive factor of order
(log log logn)1/2. �

Illustration 4.3.6. For the typical configurations for regularity and ill-posedness intro-
duced in Illustration 4.2.5, the tables below display the upper bounds for the adaptive radii
of the max-tests ∆K,α/2, α ∈ (0, 1) for appropriately chosen grids. The tables in particular
show that in all considered cases the order of the remainder term r2

K,a•(δ
2n) is negligible

compared with ρ2
K,a•(δn). In a mildly ill-posed model (parameter p) with ordinary smooth-

ness (parameter s) we have seen in Illustration 4.2.5 that the optimal dimension ka• is of
order n

2
4p+4s+1 , which is smaller than n2 for all combinations of s and p, by the reasoning

of Remark 4.3.5 it is even smaller than n2/2. Hence, we choose the geometric grid

K2 =
{

2j , j ∈
{

0, . . . , blog2(n2

2 )c
}}

with |K2| = blog2(n2

2 )c

and obtain the adaptive factor δ−1 = (1 + log |K2|)1/2 ∼
√

log logn. It is easily seen that
the remainder term r2

K2,a•
(δ2n) is asymptotically negligible compared with ρ2

K2,a•
(δn), since

for some positive constants x, y > 0 (depending on s and p) we have

r2
K2,a•

(δ2n)
ρ2
K2,a•

(δn)
∼ (log logn)x

ny
−→ 0 (n→∞).

Moreover,
ρ2
K2,a•

(δn)
δ3 tends to zero for n → ∞, since δ is only of log-order. Therefore, the

upper bound derived in Proposition 4.3.2 asymptotically reduces to ρ2
K2,a•

(δn), which is of
the same order as ρ2

a•(δn) with an adaptive factor of order
√

log logn.

Order of r2
K2,a•

(δ2n) and ρ2
K2,a•

(δn) with δ = (1 + log |K2|)−1/2

and K2 =
{

2j , j ∈
{

0, . . . , blog2(n2

2 )c
}}

aj |ϕj | r2
K2,a•

(δ2n) ρ2
K2,a•

(δn)
(smoothness) (ill-posedness)

j−s |j|−p
(

n
log logn

)− 4s
4s+4p

(
n

(log logn)1/2

)− 4s
4s+4p+1
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In a severely ill-posed model with ordinary smoothness, we have seen in Illustration 4.2.5
that the order of the optimal dimension parameter does not depend on the smoothness pa-
rameter a•. Hence, the test ∆α/2,ka• , which is, in fact, independent of a•, is automatically
adaptive with respect to ordinary smoothness and no aggregation procedure is needed.

In a mildly ill-posed model with super smoothness (parameter s) Illustration 4.2.5 shows
that the optimal dimension is of order (logn)

1
s . Hence, we choose the smaller geometric

grid

Ks? =
{

2j , j ∈
{

0, . . . , b log2 logn
s?

c
}}

with |Ks? | = b
log2 logn

s?
c

for adaptation to s ≥ s? and obtain an even smaller adaptive factor δ−1 = (1+log |Ks? |)1/2 ∼√
log log logn. It is easily seen that the remainder term r2

Ks? ,a•(δ
2n) is asymptotically neg-

ligible compared with ρ2
Ks? ,a•(δn), since

r2
Ks? ,a•(δ

2n)
ρ2
Ks? ,a•(δn)

∼
√

log log logn

(logn)
1
2s

−→ 0 (n→∞).

Moreover,
ρ2
Ks? ,a•

(δn)
δ3 tends to zero for n → ∞, since δ is only of log-order. Therefore, the

upper bound derived in Proposition 4.3.2 asymptotically reduces to ρ2
Ks? ,a•(δn), which is of

the same order as ρ2
a•(δn) with an adaptive factor of order

√
log log logn.

Order of r2
Ks? ,a•(δ

2n) and ρ2
Ks? ,a•(δn) with δ = (1 + log |Ks? |)−1/2

and Ks? =
{

2j , j ∈
{

0, . . . , b log2 logn
s?

c
}}

aj |ϕj | r2
Ks? ,a•(δ

2n) ρ2
Ks? ,a•(δn)

(smoothness) (ill-posedness)

e−j
s |j|−p log log logn

n (logn)
2p
s

(log log logn)1/2

n (logn)
2p+1/2

s

Calculations for the risk bounds in Illustration 4.3.6.
Firstly, we determine the order of the terms ρ2

K,a•(δn) = mink∈K
{
a2
k ∨

ν2
k
δn

}
.

1. (ordinary smooth - mildly ill-posed)
We first show that minimisation over K2 approximates the minimisation over N well
enough, i.e.

ρ2
K2,a•(n) = min

k∈K2
ρ2
k,a•(n) ∼ min

k∈N
ρ2
a•(n) = ρ2

a•(n).

We aim to find j? such that 2j? ∈ K2 approximates ka• well. Since ka• ∼ n
2

4p+4s+1 we
define

j? := d 2
4p+ 4s+ 1 log2 ne . dlog(n2/2)e.
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Then,

ρ2
K2,a•(n) ≤ ρ2

2j? ,a•(n) = a2
2j? ∨

ν2
2j?
n
. 2−2sj? ∨ 2j?(2p+1/2)

n

. 2−( 4s
4p+4s+1 log2 n) ∨ 2( 2

4p+4s+1 log2 n+1)(2p+1/2)

n

. n−
4s

4p+4s+1 ∨ 22p+1/2n−
4s

4p+4s+1

. n−
4s

4p+4s+1 ∼ ρ2
a•(n)

Since, trivially ρ2
a•(n) ≤ ρ2

K2,a•
(n), we obtain ρ2

a•(n) ∼ ρ2
K2,a•

(n). Replacing n by δn yields
the result.

2. (super smooth - mildly ill-posed)
We first show that minimisation over Ks? approximates the minimisation over N well
enough, i.e.

ρ2
Ks? ,a•(n) = min

k∈Ks?
ρ2
k,a•(n) ∼ min

k∈N
ρ2
a•(n) = ρ2

a•(n).

We aim to find j? such that 2j? ∈ Ks? approximates ka• well. Since ka• ∼ (logn)
1
s we

define

j? := d1
s

log2 logne . d 1
s?

log log(n)e.

Then,

ρ2
Ks? ,a•(n) ≤ ρ2

2j? ,a•(n) = a2
2j? ∨

ν2
2j?
n
. e−2·2sj? ∨ 2j?(2p+1/2)

n

. e−2·2s
1
s log2 logn

∨ 2( 1
s

log2 logn+1)(2p+1/2)

n

. n−2 ∨ 22p+1/2 (logn)
2p+1/2

s

n

.
(logn)

2p+1/2
s

n
∼ ρ2

a•(n)

Since, trivially ρ2
a•(n) ≤ ρ2

Ks? ,a•(n), we obtain ρ2
a•(n) ∼ ρ2

Ks? ,a•(n). Replacing n by δ2n
yields the result.

Next, we determine the order of the remainder term r2
K,a•(δ

2n) = mink∈K
{
a2
k ∨

m2
k

δ2n

}
, by first

calculating r2
N,a•(n) = mink∈N

{
a2
k ∨

m2
k
n

}
and then showing that minimisation over K approxi-

mates the minimisation over N well enough.

1. (ordinary smooth - mildly ill-posed) The variance term m2
k
n is of order k2p

n and the
bias term a2

k is of order k−2s. Hence, the minimizing k? satisfies k−2s
? ∼ k2p

?
n and thus

k? ∼ n
1

2s+2p , which yields r2
N,a•(n) ∼ n−

s
s+p .

Next, we show that minimisation over K2 approximates the minimization over N well
enough, i.e.

r2
K2,a•(n) = min

k∈K2
r2
k,a•(n) ∼ min

k∈N
r2
k,a•(n) = r2

a•(n)

124



We aim to find j? such that 2j? ∈ K2 approximates k? well. Since k? ∼ n
1

2s+2p we define

j? := d 1
2s+ 2p log2 ne . dlog(n2/2)e.

Then,

r2
K2,a•(n) ≤ r2

2j? ,a•(n) = a2
2j? ∨

m2
2j?
n
. 2−2sj? ∨ 2j?(2p)

n

. 2−( 2s
2p+2s log2 n) ∨ 2( 1

2p+2s log2 n+1)(2p)

n

. n−
s
p+s ∨ 22pn−

s
p+s

. n−
s
p+s ∼ r2

N,a•(n)

Since, trivially r2
N,a•(n) ≤ r2

K2,a•
(n), we obtain r2

N,a•(n) ∼ r2
K2,a•

(n). Replacing n by δn
yields the result.

2. (super smooth - mildly ill-posed) The variance term m2
k
n is of order k2p

n and the
bias term a2

k is of order e−2ks . Hence, the minimizing k? satisfies e−2ks? ∼ k2p
?
n and thus

k? ∼ (log(n/bn))
1
s with bn ∼ (logn)

2p
s , which yields r2

N,a•(n) ∼ (logn)
2s
p

n .
Next, we show that minimisation over Ks? approximates the minimization over N well
enough, i.e.

r2
Ks? ,a•(n) = min

k∈Ks?
r2
k,a•(n) ∼ min

k∈N
r2
k,a•(n) = r2

a•(n)

We aim to find j? such that 2j? ∈ Ks? approximates k? well. Since k? ∼ (logn)
1
s we define

j? := d1
s

log2 logne . d 1
s?

log logne.

Then,

r2
Ks? ,a•(n) ≤ r2

2j? ,a•(n) = a2
2j? ∨

m2
2j?
n
. e−2·2sj? ∨ 2j?(2p)

n

. e−2·2s
1
s log2 logn

∨ 2( 1
s

log2 logn+1)(2p)

n

. n−2 ∨ 22p+1/2 (logn)
2p
s

n

.
(logn)

2p
s

n
∼ r2

N,a•(n)

Since, trivially r2
N,a•(n) ≤ r2

Ks? ,a•(n), we obtain r2
N,a•(n) ∼ r2

Ks? ,a•(n). Replacing n by δ2n
yields the result.

Remark 4.3.7 (Adaptation to the radius R of the alternative). In this chapter the
parameter R is unknown but assumed to be fixed and we consider adaptation to a collection
of alternatives

{
ER
a• : a• ∈ A

}
only. From Corollary 4.2.4 (and the definition of Aα therein) it

follows immediately that adaptation to
{
ER
a• : R ∈ (0,R?]

}
is achieved without a loss. Indeed,

replacing R by R? in the definition of Aα we promptly obtain a result similar to (4.2.19) in
Corollary 4.2.4 with an additional supremum taken over R ∈ (0,R?]. However, adaptation to{
ER
a• : R ∈ (0,∞)

}
is not possible without a loss, for an explanation of this phenomenon we

refer to Section 6.3. in Baraud [2002] for a similar observation in a Gaussian sequence space
model. �
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4.4 Upper bound via a direct testing procedure

Definition of the test statistic. Instead of estimating the L 2-distance q2(f − f◦), in this
section we consider a test that is based on an estimation of the L 2-distance between the images
g = f ?©ϕ and g◦ = f◦ ?©ϕ, i.e. of

q2(g − g◦) =
∑
|j|∈N

∣∣∣gj − g◦j ∣∣∣2 =
∑
|j|∈N
|f − f◦|2 |ϕj |2 .

For k ∈ N we construct an unbiased estimator q̃2
k of the truncated version

q2
k(g − g◦) :=

∑
|j|∈JkK

∣∣∣gj − g◦j ∣∣∣2 =
∑
|j|∈JkK

|gj |2 − 2
∑
|j|∈JkK

g◦j gj +
∑
|j|∈JkK

∣∣∣g◦j ∣∣∣2 . (4.4.1)

The first two summands of (4.4.1) are unknown and, thus, need to be estimated, the third is
known. For the second term, which is a linear term, we plug in canonical estimators of the
Fourier coefficients gj and obtain

S̃k := 1
n

∑
|j|∈JkK

∑
l∈JnK

g◦j ej(Yl)

as an unbiased estimator of
∑
|j|∈JkK g

◦
j gj . For the first term, which is quadratic, we use the

U-statistic

T̃k = 1
n(n− 1)

∑
|j|∈JkK

∑
l,m∈JkK
l 6=m

ej(−Yl)ej(Ym)

as an unbiased estimator of
∑
|j|∈JkK |gj |

2. In total, we consider the test statistic

q̃2
k := T̃k − 2S̃k + q2

k(g◦).

Decomposition of the test statistic. Similarly to the decomposition (4.2.5) of the indirect
test statistic, we split q̃2

k into three parts;

q̃2
k = Ud

n + 2Vd
n + q2

k(g − g◦) (4.4.2)

with the canonical U-statistic

Ud
n := 1

n(n− 1)
∑
|j|∈JkK

∑
l,m∈JnK
l 6=m

(ej(−Yl)− gj)(ej(Ym)− gj), (4.4.3)

the centred linear term

Vd
n := 1

n

∑
|j|∈JkK

∑
l∈JnK

(gj − g◦j )(ej(Yl)− gj) (4.4.4)

and the separation term q2
k(g − g◦).

Definition of the threshold. In the next proposition we provide bounds for the quantiles of
the test statistic q̃2

k. Recall that Lx := (log(e/x))1/2 = (1 − log(x))1/2 ∈ (1,∞) for x ∈ (0, 1).
For c1 := 799 ‖g◦•‖`2 + 1372, c2 := 52 ‖g◦•‖`1 and α ∈ (0, 1), we define the threshold

τd
k (α) := c1

1 ∨ L2
α

√√
2k
n
∨ L3

α

√
2k
n

Lα√2k
n

+ c2L
2
α

1
n
. (4.4.5)
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Proposition 4.4.1 (Bounds for the quantiles of q̃2
k). For densities f◦, f, ϕ ∈ D and

n ∈ N, n ≥ 2 consider {Yj}nj=1
iid∼ g = f ?©ϕ with joint distribution Pf and let g◦ = f◦ ?©ϕ.

Let α, β ∈ (0, 1) and for k ∈ N consider the estimator q̃2
k and the threshold τd

k (α) as defined
in (4.4.2) and (4.4.5), respectively.

(i) If L 2(g◦) =
{
|ξ| , ξ ∈ L 2}, then

Pf◦(q̃2
k ≥ τd

k (α)) ≤ α.

(ii) If c3 := 837 ‖ϕ•‖`2 + 1373 and the separation condition

q2
k(g − g◦) ≥ 2

(
τd
k (α) + c3L

4
β/2

(
1 ∨
√

2k
n

) √
2k
n

)
, (4.4.6)

holds, then

Pf(q̃2
k < τd

k (α)) ≤ β.

Proof of Proposition 4.4.1. The proof is similar to the proof of Proposition 4.2.1 using the de-
composition (4.4.2) rather than (4.2.5). For the first part (i), we apply Proposition D.1.1 of the
appendix together with Lemma D.3.1 (instead of Lemma D.2.1). For the second part (ii), we
control the deviations of the U-statistic Ud

n and the linear statistic Vd
n by applying Lemma D.3.1

and Lemma D.3.2 (instead of Lemma D.2.1 and Lemma D.2.2.)

(i) If f = f◦ and, hence, g = g◦, the decomposition (4.4.2) simplifies to q̃2
k = Ud

n, where Ud
n

is a canonical U-statistic. Applying Proposition D.1.1 of the appendix, a concentration
inequality for canonical U-statistics of order 2, with x = L2

α ≥ 1 and quantities A − D
satisfying (D.1.2), we obtain

Pf◦
(

Ud
n ≥ 8C

n
Lα + 13D

n
L2
α + 261 B

n3/2L
3
α + 343 A

n2L
4
α

)
≤ exp(1− x). (4.4.7)

Consider the quantities A − C defined in (D.3.1) and D in (D.3.2), which under the
additional assumption L 2(g◦) =

{
|ξ| : ξ ∈ L 2} satisfy (D.1.2) due to Lemma D.3.1. We

have

8C
n
Lα + 13D

n
L2
α + 261 B

n3/2L
3
α + 343 A

n2L
4
α

≤8 · 2 · ‖g•‖`2 Lα
√

2k
n

+ 13 · 4 · ‖g•‖`1 L
2
α

1
n

+ 261 · 3 · ‖g•‖`2 L
3
α

(2k)3/2

n3/2 + 343 · 4 · L4
α

2k
n2

=52 ‖g•‖`1 L
2
α

1
n

+ Lα

√
2k
n

(
16 ‖g•‖`2 + 783 ‖g•‖`2 L

2
α

(2k)1/4

n1/2 + 1372L3
α

√
2k
n

)

≤52 ‖g•‖`1 L
2
α

m2
k

n
+ Lα

√
2k
n

(799 ‖g•‖`2 + 1372)
(

1 ∨ L2
α

(2k)1/4

n1/2 ∨ L3
α

ν2
k

n

)

=c2L
2
α

1
n

+ c1

1 ∨ L2
α

√√
2k
n
∨ L3

α

√
2k
n

Lα√2k
n

=τd
k (α),

which together with (4.2.11) shows the assertion (i).
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(ii) Keeping the decomposition (4.4.2) in mind, we control the deviations of the U-statistic
Ud
n and the linear statistic Vd

n by applying Proposition D.1.1 and Lemma D.3.2 of the
appendix, respectively. In fact, the quantities A−D given in (D.2.1) of Lemma D.3.1 fulfil
(recall that Lβ/2 ≥ 1 for all β > 0)

8C
n
Lβ/2 + 13D

n
L2
β/2 + 261 B

n3/2L
3
β/2 + 343 A

n2L
4
β/2

≤8 · 2 · ‖g•‖`2 Lβ/2

√
2k
n

+ 13 · 2 · ‖g•‖`2 L
2
β/2

√
2k
n

+ 261 · 3 · ‖g•‖`2 L
3
β/2

(2k)3/2

n3/2 + 343 · 4 · L4
β/2

2k
n2

≤L4
β/2

(
42 ‖g•‖`2 + 783 ‖g•‖`2

(2k)1/4

n1/2 + 1372
√

2k
n

) √
2k
n

≤L4
β/2 (825 ‖g•‖`2 + 1372)

(
1 ∨ (2k)1/4

n1/2 ∨
√

2k
n

) √
2k
n

≤L4
β/2(825 ‖g•‖`2 + 1372)

(
1 ∨
√

2k
n

) √
2k
n

=: τd
1 ,

where we exploited that 1 ∨ a ∨ a2 = 1 ∨ a2 for any a ≥ 0. Consequently, the event

Ωd
1 :=

{
Ud
n ≤ −τd

1

}
satisfies Pf(Ωd

1) ≤ β/2 due to Proposition D.1.1 (with the usual symmetry argument).
Define further the event

Ωd
2 :=

{
2Vd

n ≤ −τd
2 −

1
2q2

k(g − g◦)
}

with τd
2 := L2

β/2 (12 ‖g◦•‖`2 + 1)
(
1 ∨

√
2k
n

) √
2k
n . Then we have Pf(Ω2) ≤ β

2e ≤
β
2 due to

Lemma D.3.2 with x = Lβ/2 ≥ 1, which is an application of a Bernstein-type inequality.
We obtain

τd
1 + τd

2 = L4
β/2(825 ‖g•‖`2 + 1372)

(
1 ∨
√

2k
n

) √
2k
n

+ L2
β/2(12 ‖g•‖`2 + 1)

(
1 ∨
√

2k
n

) √
2k
n

≤ L4
β/2

(
1 ∨
√

2k
n

) √
2k
n

(825 ‖g•‖`2 + 1372 + 12 ‖g•‖`2 + 1)

≤ L4
β/2

(
1 ∨
√

2k
n

) √
2k
n

(837 ‖g•‖`2 + 1373)

with c3 = 837 ‖ϕ•‖`2 + 1373 due to 1 ≤ Lβ/2 and ‖g•‖`2 ≤ ‖ϕ•‖`2 . Hence, the assumption
(4.4.6) implies

1
2q2

k(g − g◦) ≥ τd
k (α) + τd

1 + τd
2 .

The decomposition (4.4.2) yields

Pf
(
q̃2
k < τd

k (α)
)

= Pf
({

q̃2
k < τk(α)

}
∩ Ωd

1

)
+ Pf

({
q̂2
k < τk(α)

}
∩ (Ωd

1)c
)

≤ Pf(Ωd
1) + Pf

(
2Vd

n + q2
k(g − g◦) < τd

k (α) + τd
1

)
≤ β

2 + Pf(Ωd
2) ≤ β,

which shows (ii) and completes the proof.
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Definition of the test. For k ∈ N and α ∈ (0, 1) we define the test

∆d
k,α := 1{q̃2

k
≥τd

k
(α)}, (4.4.8)

where q̃2
k is the test statistic in (4.4.2) and τd

k (α) the threshold in (4.4.5). Proposition 4.4.1 (i)
shows that ∆d

k,α is a level-α-test for all k ∈ N. Moreover, Proposition 4.4.1 (ii) characterises
elements for which ∆d

k,α is (1− β)-powerful. Exploiting these results and considering the addi-
tional regularity constraint ER

a• (defined in (4.2.13)), we derive an upper bound for the radius of
testing of ∆d

k,α in terms of m2
k = max|j|∈JkK |ϕj |−2 as in (4.2.8) and the regularity parameter a•,

that is we define

(ρd
k,a•)

2 := (ρd
k,a•(n))2 :=

{
a2
k ∨
√

2k
n

m2
k

}
. (4.4.9)

Proposition 4.4.2 (Upper bound for the radius of testing of ∆d
k,α/2). Let g◦ = f◦ ?©ϕ

with f◦, ϕ ∈ D satisfy L 2(g◦) =
{
|ξ| , ξ ∈ L 2}. For α ∈ (0, 1) define

A
2
α := R2 + 2(837 ‖ϕ•‖`2 + 851 ‖g◦•‖`1 + 2745)L4

α/4. (4.4.10)

For all A ≥ Aα and for all n, k ∈ N with n ≥ 2 and
√

2k ≤ n, we have

R
(
∆d
k,α/2 | E

R
a• , Aρ

d
k,a•

)
≤ α.

Proof of Proposition 4.4.2. Using Proposition 4.4.1 we show that both the type I and the max-
imal type II error probability are bounded by α/2, and thus the result follows from

R
(
∆d
k,α/2 | E

R
a• , Aρ

d
k,a•

)
= Pf◦

(
∆d
k,α/2 = 1

)
+ sup
f−f◦∈L 2

Aρd
k,a•
∩ER

a•

Pf
(
∆d
k,α/2 = 0

)
≤ α/2 + α/2 = α.

Since the assumption of Proposition 4.4.1(i) is fulfilled, the test ∆d
k,α/2 is a level-α/2-test. Hence,

for each density f ∈ L 2 belonging to the alternative, i.e. with ‖f − f◦‖2L 2 ≥ A
2
α(ρd

k,a•
)2 and

f − f◦ ∈ ER
a• it remains to verify condition (4.4.6) in order to apply Proposition 4.4.1 (ii) (with

β = α/2), i.e. we need to check that

q2
k(g − g◦) ≥ 2

(
τd
k (α/2) + c3L

4
α/4

(
1 ∨
√

2k
n

) √
2k
n

)
. (4.4.11)

Indeed, in this situations we have∑
|j|>k

∣∣∣fj − f◦j ∣∣∣2 ≤ ∑
|j|>k

a2
k

a2
j

∣∣∣fj − f◦j ∣∣∣2 ≤ a2
kR2,

since a• is non-increasing, hence ak
aj
≥ 1 for all j ≥ k. Therefore,

q2
k(f − f◦) = ‖f − f◦‖2L 2 −

∑
|j|>k
|f − f◦|2 ≥ A2

α(ρd
k,a•)

2 − a2
kR2

≥ 2(837 ‖ϕ•‖`2 + 851 ‖g◦•‖`1 + 2745)L4
α/4

√
2k
n

m2
k, (4.4.12)
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where the last inequality is due to the definition of Aα. Using ‖g◦•‖`2 ≤ ‖g◦•‖`1 we further obtain

q2
k(f − f◦) ≥ 2(837 ‖ϕ•‖`2 + 799 ‖g◦•‖`2 + 52 ‖g◦•‖`1 + 2745)L4

α/4

√
2k
n

m2
k

≥ 2(c1 + c2 + c3)L4
α/4

√
2k
n

m2
k. (4.4.13)

The condition (4.4.11) then follows from (4.4.13) by exploiting 1 ≤ Lα/2 ≤ Lα/4 ,‖g◦•‖`2 ≤ ‖g◦•‖`1 ,
2k ≤ n2 and m2

kq2
k(g − g◦) ≥ q2

k(f − f◦), which holds since

q2
k(g − g◦)m2

k =
∑
|j|∈JkK

∣∣∣gj − g◦j ∣∣∣2 max
|i|∈JkK

|ϕi|−2

≥
∑
|j|∈JkK

∣∣∣gj − g◦j ∣∣∣2
|ϕj |2

=
∑
|j|∈JkK

∣∣∣fj − f◦j ∣∣∣2 = q2
k(f − f◦).

Indeed,

τd
k (α/2) = c1

1 ∨ L2
α/2

√√
2k
n
∨ L3

α/2

√
2k
n

Lα/2
√

2k
n

+ c2L
2
α/2

1
n

≤ (c1 + c2)L4
α/4

√
2k
n

.

Hence, due to
√

2k ≤ n and (4.4.13)

2
(
τd
k (α/2) + c3L

4
α/4

(
1 ∨
√

2k
n

) √
2k
n

)

≤ 2(c1 + c2 + c3)L4
α/4

√
2k
n

≤ q2
k(f − f◦)m−2

k ≤ q2
k(g − g◦),

which completes the proof.

The upper bound (ρd
k,a•

)2 for the radius of testing of ∆d
k,α/2 depends on the dimension

parameter k. Let us introduce a dimension that realizes an optimal bias2-variance trade-off and
the corresponding radius

kd
a• := kd

a•(n) := arg min
k∈N

ρd
k,a• := min

{
k ∈ N : ρd

k,a• ≤ ρ
d
l,a• for all l ∈ N

}
and

(ρd
a•)

2 := (ρd
a•(n))2 := min

k∈N
(ρd
k,a•)

2 = min
k∈N

{
a2
k ∨
√

2k
n

m2
k

}
.

Corollary 4.4.3 (Upper bound for the radius of testing). Let g◦ = f◦ ?©ϕ with
f◦, ϕ ∈ L 2 satisfy L 2(g◦) =

{
|ξ| , ξ ∈ L 2}. For α ∈ (0, 1) define Aα as in (4.4.10). Then

for all A ≥ Aα and n ≥
√

2 |ϕ1|−2, we have

R
(
∆d
kd
a• ,α/2

| ER
a• , Aρ

d
a•

)
≤ α.
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Proof of Corollary 4.4.3. The result follows immediately from Proposition 4.4.2. Indeed, n ≥
√

2 |ϕ1|−1 implies 1 ≥ (ρd
1,a•)

2 ≥ (ρd
a•)

2 ≥
√

2kd
a•

n , which justifies the application of Proposi-
tion 4.4.2 and completes the proof.

Remark 4.4.4 (Optimality of the direct testing procedure). Let us compare the upper
bound for the direct testing procedure (ρd

a•)
2 = mink∈N

{
a2
k ∨

√
2k
n m2

k

}
with the minimax radius

of testing ρ2
a• = mink∈N

{
a2
k ∨

ν2
k
n

}
. Naturally, ρd

a• ≥ ρa•. Moreover, if there exists a constant
c > 0 such that

ν2
k =

√√√√ ∑
|j|∈JkK

1
|ϕj |4

≤
√

2k max
|j|∈JkK

|ϕj |−2 =
√

2km2
k ≤ cν2

k , (4.4.14)

then ρd
a• and ρa• are of the same order and, thus, the direct testing procedure is minimax optimal.

Condition (4.4.14) is for instance satisfied for a mildly ill-posed model, i.e. if (|ϕj |)j∈N decays
polynomially. Note, however, that (4.4.14) is a sufficient but not a necessary condition. For
a severely ill-posed model, i.e. if (|ϕj |)j∈N decays exponentially, the condition (4.4.14) is not
fulfilled. Nevertheless, the direct testing procedure still performs optimally (see Illustration 4.4.5
below). �

Illustration 4.4.5. We illustrate the order of the upper bound for the radius of testing of
the direct test ∆d

kd
a• ,α/2

, α ∈ (0, 1) under the regularity and ill-posedness assumptions in-
troduced in Illustration 4.2.5. Comparing the resulting upper bounds (ρd

a•)
2 with the radii

ρ2
a• , we conclude that the direct test performs as well as the indirect test in all three cases.

Order of the optimal dimension kd
a• and the upper bound (ρd

a•)
2

aj |ϕj | kd
a• (ρd

a•)
2

(smoothness) (ill-posedness)

j−s |j|−p n
2

4p+4s+1 n
− 4s

4s+4p+1

j−s e−|j|
p (logn)

1
p (logn)−

2s
p

e−j
s |j|−p (logn)

1
s n−1(logn)

2p+1/2
s

Calculations for the radius bounds in Illustration 4.4.5.
Recall the definition (ρd

a•)
2 = mink∈N

{
a2
k ∨

√
2k
n m2

k

}
.

1. (ordinary smooth - mildly ill-posed) The variance term m2
k

√
2k
n is of order 1

nk
2p+1/2

and the bias term a2
k is of order k−2s. Hence, the optimal kd

a• satisfies (ka•)−2s ∼
1
n(ka•)2p+1/2 and thus ka• ∼ n

2
4s+4p+1 , which yields an upper bound of order (ρd

a•)
2 ∼

(ka•)−2s ∼ n−
4s

4s+4p+1 .

2. (ordinary smooth - severly ill-posed) The variance term m2
k

√
2k
n is of order 1

nk
1/2e2kp

and the bias term a2
k is of order k−2s. Hence, the optimal kd

a• satisfies (ka•)−2s ∼
1
n(ka•)1/2e2kp and thus kd

a• ∼ (log(n/bn))
1
p with bn ∼ (logn)

4s+1
2p , which yields an upper

bound of order (ρd
a•)

2 ∼ (kd
a•)
−2s ∼ (logn)−

2s
p .
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3. (super smooth - mildly ill-posed) The variance term m2
k

√
2k
n is of order 1

nk
1/2+2p and

the bias term a2
k is of order e−2ks . Hence, the optimal kd

a• satisfies e−2(ka• )s ∼ 1
n(ka•)1/2+2p

and thus kd
a• ∼ (log(n/bn))

1
s with bn ∼ (logn)

4p+1
2s , which yields an upper bound of order

(ρd
a•)

2 ∼ 1
n(kd

a•)
2p+1/2 ∼ 1

n(logn)
2p+1/2

s .

4.5 Adaptive direct testing procedure

4.5.1 Aggregation of the direct tests and the choice of the levels αk

The test ∆d
kd
a• ,α/2

in Corollary 4.4.3 requires the knowledge of the parameter sequence a• of the
regularity class ER

a• for the choice of the optimal dimension parameter k = kd
a• . Let K ⊆ N

be a finite collection of dimension parameters. We apply the Bonferroni aggregation method
described in Section 4.3 to the collection of direct tests (∆d

k,αk
)k∈K in order to construct an

adaptive (i.e. assumption-free) testing procedure. We obtain a max-test with a Bonferroni
choice of error levels αk = α/|K|

∆d
K,α := 1{Q̃K,α>0} with Q̃K,α := max

k∈K

(
q̃2
k − τd

k ( α
|K|)

)
.

4.5.2 Testing radius of the direct max-test

In the next proposition we determine an adaptive upper bound for the radius of testing of the
max-test. Again, as it is the case for the indirect-max-test, the upper bound has two regimes.
The adaptive factor δ−1 depends on which regime governs the behaviour of the radius of testing.
The adaptive factor δ−1 is in all cases of order (log |K|)c for c ∈

{
1
2 , 1
}

. Below, we give conditions
for which the adaptive factor is of order (log |K|)1/2, which we show to be the minimal adaptive
factor. The max-test ∆d

K,α only aggregates over a finite set K ⊆ N, therefore we define the
minimal achievable radius of testing over the set K as

(ρd
K,a•(n))2 := min

k∈K
(ρd
k,a•(n))2 with (ρd

k,a•(n))2 := a2
k ∨
√

2k
n

m2
k,

and m2
k as in (4.2.8) and a regularity parameter a• = (aj)j∈N ∈ A. Since (ρd

a•(n))2 in (4.4.9) is
defined as the minimum taken over N instead of K, for n ∈ N we always have ρd

a•(n) = ρd
N,a•(n) ≤

ρd
K,a•(n). Moreover, let us recall the remainder radius defined in (4.3.4)

r2
K,a•(n) = min

k∈K
r2
k,a•(n) with r2

k,a•(n) = a2
k ∨

m2
k

n
.

Proposition 4.5.1 (Uniform radius of testing over A).
Under the assumptions of Proposition 4.4.1 let α ∈ (0, 1) and consider Aα as in (4.4.10).
Then, for all A ≥ Aα and for all n ∈ N, n ≥ 2

sup
a•∈A

R
(

∆d
K,α/2 | E

R
a• , A

(
1 ∨

ρd
K,a•(δn)
δ3/2

)(
rK,a•(δ2n) ∨ ρd

K,a•(δn)
))
≤ α

with δ = (1 ∨ log |K|)−1/2.
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Proof of Proposition 4.5.1. The proof follows along the lines of the proof of Proposition 4.3.2
making use of Proposition 4.4.1 rather than Proposition 4.2.1. We again bound the type I and
maximal type II error probabilities separately. From (4.3.1) combined with Proposition 4.4.1 (i)
and

∑
k∈K

α
2|K| = α

2 it follows that the type I error probability is bounded by α/2. Under the
alternative, let f ∈ L 2 with f − f◦ ∈ ER

a• satisfy

‖f − f◦‖2L 2 ≥ A2
α

(
1 ∨

(ρd
K,a•(δn))2

δ3

)(
r2
K,a•(δ

2n) ∨ (ρd
K,a•(δn))2

)
. (4.5.1)

It is sufficient to use the elementary bound (4.3.2) together with the following two observations,
which we show below.

1. Whenever f ∈ L 2 satisfies f − f◦ ∈ ER
a• and

‖f − f◦‖2L 2 ≥ A2
α

(
a2
k ∨

(
1 ∨ (2k)1/4

δ2n1/2 ∨
√

2k
δ3n

) √
2km2

k

δn
∨ m2

k

δ2n

)
, (4.5.2)

then

Pf
(
q̃2
k < τd

k

(
α

2|K|

))
≤ α

2 .

2. If the separation condition (4.5.1) is satisfied, then there exists a k ∈ K such that (4.5.2)
is fulfilled.

Consequently, we have

Pf(∆K,α/2 = 0) ≤ min
k∈K

Pf(∆k,αk/2 = 0) ≤ α

2 .

for all f ∈ L 2 satisfying f − f◦ ∈ ER
a• and (4.3.5). Thus, the maximal type II error probability

is also bounded by α/2. It remains to show (1.) and (2.).

1. The claim follows from Proposition 4.4.1 (ii) (with β = α/2), since (4.5.2) implies (4.4.6),
which states

q2
k(g − g◦) ≥ 2

(
τd
k ( α

2|K|) + c3L
4
α/4

(
1 ∨
√

2k
n

) √
2k
n

)
, (4.5.3)

with τk( α
2|K|) as in (4.2.9). Indeed, exploiting L2

α/2 = log(2e/α) ≥ 1 and, hence,

L2
α/(2|K|) = log(2e |K| /α) = log |K|+ L2

α/2 ≤ L
2
α/2(1 + log |K|) = L2

α/2δ
−2,

we have

τd
k ( α

2|K|) = c1

1 ∨ L2
α/(2|K|)

√√
2k
n
∨ L3

α/(2|K|)

√
2k
n

Lα/(2|K|)
√

2k
n

+ c2L
2
α/(2|K|)

1
n

= c1

1 ∨ L2
α/2

√√
2k
δ4n

∨ L3
α/2

√
2k
δ3n

Lα/2
√

2k
δn

+ c2L
2
α/2

1
δ2n

≤ (c1 + c2)L4
α/2

1 ∨

√√
2k
δ4n

∨
√

2k
δ3n

 √2k
δn
∨ 1
δ2n

 .
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Additionally using Lα/4 ≥ Lα/2, 1 ≥ δ the right-hand side of (4.5.3) is bounded by

2
(
τd
k ( α

2|K|) + c3L
4
α/4

(
1 ∨
√

2k
n

) √
2k
n

)

≤ 2(c1 + c2)L4
α/2

1 ∨

√√
2k
δ4n

∨
√

2k
δ3n

 √2k
δn
∨ 1
δ2n

+ 2c3L
4
α/4

(
1 ∨
√

2k
n

) √
2k
n

≤ 2(c1 + c2 + c3)L4
α/4

1 ∨

√√
2k
δ4n

∨
√

2k
δ3n

 √2k
δn
∨ 1
δ2n

 .
Hence, since A2

α−R2 ≥ 2(c1 + c2 + c3)L4
α/4 the condition (4.4.6) of Proposition 4.4.1 holds

whenever

q2
k(f − f◦) ≥

(
A

2
α −R2

)1 ∨

√√
2k
δ4n

∨
√

2k
δ3n

 √2k
δn
∨ 1
δ2n

 . (4.5.4)

Let us verify this condition. Due to f−f◦ ∈ ER
a• and, hence,

∑
|j|>k

∣∣∣f◦j − fj∣∣∣2 ≤ a2
kR2, the

condition (4.5.2) implies

q2
k(f − f◦) = ‖f − f◦‖2L 2 −

∑
|j|>k

∣∣∣f◦j − fj∣∣∣2

≥
(
A

2
α −R2

)1 ∨

√√
2k
δ4n

∨
√

2k
δ3n

 √2k
δn

m2
k ∨

m2
k

δ2n

 ,
and, hence, since m2

kq2
k(g − g◦) ≥ q2

k(f − f◦), we obtain

q2
k(g − g◦) ≥

(
A

2
α −R2

)1 ∨

√√
2k
δ4n

∨
√

2k
δ3n

 √2k
δn
∨ 1
δ2n

 ,
which justifies the application of Proposition 4.4.1. If (4.5.2) is satisfied, then also (4.5.4)
and thus (4.4.6), which shows the claim (1.).

2. By the Balancing Lemma A.2.1 we have

r2
K,a•(δ

2n) ∨ (ρd
K,a•(δn))2 = a2

k ∨
m2
k

n
∨
√

2k
δn

m2
k

and (ρd
K,a•(δn))2 ≥

√
2k
δn

m2
k ≥
√

2k
δn

for at least one k ∈ K. Hence, there exists a dimension parameter k ∈ K such that(
r2
K,a•(δ

2n) ∨ (ρd
K,a•(δn))2

)(
1 ∨

(ρd
K,a•(δn))2

δ3

)

≥ a2
k ∨

m2
k

δ2n
∨
(√

2k
δn

m2
k

(
1 ∨
√

2k
δ4n

))
.

Since 1 ∨
√

2k
δ4n ≥ 1 ∨ (2k)1/4

δ2n1/2 ∨
√

2k
δ3n , this shows (4.5.2) and, hence, (2.), which completes the

proof.

The next two corollaries show that we either (in the worst case) obtain an adaptive factor
of order log |K| or (in the best case) of order (log |K|)1/2, depending on whether the remainder
term rK,a•(δ2n) is negligible compared with ρd

K,a•(δn) or not.
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Corollary 4.5.2 (Worst-case adaptive factor).
Under the assumptions of Proposition 4.4.1, let α ∈ (0, 1) and consider Aα as in (4.4.10).
Then, for all A ≥ Aα and for all n ∈ N, n ≥ 2,

sup
a•∈A

R
(
∆d
K,α/2 | E

R
a• , A

(
1 ∨ ρd

K,a•(δ
2n)
)
ρd
K,a•(δ

2n)
)
≤ α

with δ = (1 ∨ log |K|)−1/2.

Proof of Corollary 4.5.2. The proof follows along the lines of the proof of Proposition 4.3.2,
considering

‖f − f◦‖2L 2 ≥ A2
α

(
1 ∨ (ρd

K,a•(δ
2n))2

)
(ρd
K,a•(δ

2n))2 (4.5.5)

instead of (4.5.1). In fact, as in the proof of Proposition 4.5.1, it is sufficient to show (2.)
under the separation condition (4.5.5). For each a• ∈ A under (4.5.5) the dimension parameter
k? := arg min

k∈K
ρd
k,a•

(δ2n) satisfies

(
1 ∨ (ρd

K,a•(δ
2n))2

)
(ρd
K,a•(δ

2n))2

=
(
1 ∨ ρd

K,a•(δ
2n) ∨ (ρd

K,a•(δ
2n))2

)
(ρd
K,a•(δ

2n))2

≥ a2
k? ∨

√
2k?
δ2n

m2
k?

(
1 ∨ (2k?)1/4

δn1/2 mk? ∨
√

2k?
δ2n

m2
k?

)

≥ a2
k? ∨

√
2k?
δ2n

m2
k?

(
1 ∨ (2k?)1/4

δn1/2 mk? ∨
√

2k?
δ2n

m2
k?

)
∨
m2
k?

δ2n

≥ a2
k? ∨

√
2k?
δn

m2
k?

(
1
δ
∨ (2k?)1/4

δ2n1/2 mk? ∨
√

2k?
δ3n

m2
k?

)
∨
m2
k?

δ2n

≥ a2
k? ∨

√
2k?
δn

m2
k?

(
1 ∨ (2k?)1/4

δ2n1/2 mk? ∨
√

2k?
δ3n

m2
k?

)
∨
m2
k?

δ2n
,

since a2
k?
∨
√

2k?m2
k?

δ2n = (ρd
K,a•(δ

2n))2 and δ ≤ 1. This shows (4.5.2) and, consequently, (2.). We
obtain the assertion by proceeding exactly as in the proof of Proposition 4.5.1.

Corollary 4.5.2 implies that (ρd
K,a•(δ

2n))2 is an upper bound for the radius of testing for the
direct max-test if ρd

K,a•(δ
2n) ≤ 1. Note that this is the case for an arbitrary regularity parameter

a• ∈ A, if e.g. 1 ∈ K and n ≥
√

2 |ϕ1|−2 (1 + log |K|), that is, for a suitable choice of K and n
large enough. Indeed, under these two conditions, we have

(ρd
K,a•(δ

2n))2 = arg min
k∈K

{
a2
k ∨
√

2km2
k

δ2n

}
≤ a2

1 ∨
√

2m2
1

δ2n
≤ 1 ∨

√
2 |ϕ1|−2

δ2n
= 1.

Under additional conditions, which are satisfied for all examples considered in our illustrations,
we can derive a sharper upper bound (ρd

K,a•(δn))2 and, thus, obtain an adaptive factor of order
(log |K|)1/2.

Corollary 4.5.3 (Best-case adaptive factor). Under the assumptions of Proposition 4.4.1,
let α ∈ (0, 1) and consider Aα as in (4.4.10). If there exist constants c, C > 1 such that

rK,a•(δ2n) ≤ cρd
K,a•(δn) and ρd

K,a•(δn) ≤ Cδ3/2 (4.5.6)
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for all a• ∈ A, then for all A ≥ c · C ·Aα and for all n ∈ N, n ≥ 2,

sup
a•∈A

R
(
∆d
K,α/2 | E

R
a• , Aρ

d
K,a•(δn)

)
≤ α

with δ = (1 ∨ log |K|)−1/2.

Proof of Corollary 4.5.3. Under the assumptions (4.5.6) we have(
1 ∨

ρd
K,a•(δn)
δ3/2

)(
rK,a•(δ2n) ∨ ρd

K,a•(δn)
)
≤
(

1 ∨
ρd
K,a•(δn)
δ3/2

)(
cρd
K,a•(δn) ∨ ρd

K,a•(δn)
)

≤ (1 ∨ C)
(
cρd
K,a•(δn) ∨ ρd

K,a•(δn)
)

≤ c · C · ρd
K,a•(δn),

hence, the assertion follows directly from Proposition 4.5.1.

Concerning the choice of the collection K of dimensions, we refer to Remark 4.3.5.

Illustration 4.5.4. For the typical configurations for regularity and ill-posedness intro-
duced in Illustration 4.2.5 the tables below display the adaptive radii of the direct max-test
∆d
K,α/2, α ∈ (0, 1) for appropriately chosen grids. In a mildly ill-posed model (parameter p)

with ordinary smoothness (parameter s) we have seen in Illustration 4.4.5 that the optimal
dimension ka• is of order n

2
4p+4s+1 , which is smaller than n2 for all combinations of s and

p, by the reasoning of Remark 4.3.5 it is even smaller than n2/2. Hence, we choose the
geometric grid

K2 =
{

2j , j ∈
{

0, . . . , blog2(n2

2 )c
}}

with |K2| = blog2(n2

2 )c

and obtain the adaptive factor δ−1 = (1+log |K2|)1/2 ∼
√

log logn. It is easily seen that the
remainder term r2

K2,a•
(δ2n) is asymptotically negligible compared with (ρd

K2,a•
(δn))2, since

for some positive constants x, y > 0 (depending on s and p) we have

r2
K2,a•

(δ2n)
(ρd
K2,a•

(δn))2 ∼
(log logn)x

ny
−→ 0 (n→∞).

Moreover,
(ρd
K2,a•

(δn))2

δ3 tends to zero for n → ∞, since δ is only of log-order. Therefore,
the upper bound derived in Proposition 4.5.1 reduces to (ρd

K2,a•
(δn))2, which is of the same

order as (ρd
a•(δn))2 with an adaptive factor of order

√
log logn.

In a severely ill-posed model with ordinary smoothness, we have seen in Illustration 4.4.5
that the order of the optimal dimension parameter does not depend on the smoothness
parameter a•. Hence, the test ∆d

α/2,ka•
, which is, in fact, independent of a•, is automatically

adaptive with respect to ordinary smoothness and no aggregation procedure is needed. Note
that in the case f◦ = 1[0,1) neither the test statistic q̃2

k (defined in (4.4.2)) nor the threshold
τd
k (α) (defined in (4.4.5)) depend on the coefficients of the error density ϕ. Then, by

aggregating over K2 the max-test ∆d
K,α/2 is also adaptive with respect to severe ill-posedness.

In this case the remainder term r2
K2,a•

(δ2n) is of the same order as (ρd
K2,a•

(δn))2, hence the
theoretical adaptive factor that we obtain is of order log logn. This factor, however, does
not effect the behaviour of the radius. Moreover,

(ρd
K2,a•

(δn))2

δ3 tends to zero for n→∞, since
δ is only of log log-order and, therefore, the upper bound in Proposition 4.5.1 asymptotically
reduces to (ρd

K2,a•
(δn))2, which is of the same order as (ρd

a•(n))2.
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Order of r2
K2,a•

(δ2n) and (ρd
K2,a•

(δn))2 with δ = (1 + log |K2|)−1/2

and K2 =
{

2j , j ∈
{

0, . . . , blog2(n2

2 )c
}}

aj |ϕj | r2
K2,a•

(δ2n) (ρd
K2,a•

(δn))2

(smoothness) (ill-posedness)

j−s |j|−p
(

n
log logn

)− 4s
4s+4p

(
n

(log logn)1/2

)− 4s
4s+4p+1

j−s e−|j|
p (logn)

1
p (logn)−

2s
p

In a mildly ill-posed model with super smoothness (parameter s) Illustration 4.4.5 shows
that the optimal dimension is of order (logn)

1
s . Hence, we choose the smaller geometric

grid

Ks? =
{

2j , j ∈
{

0, . . . , b log2 logn
s?

c
}}

with |Ks? | = b
log2 logn

s c

for adaptation to s ≥ s? and obtain the adaptive factor δ−1 = (1 + log |Ks? |)1/2. It is
easily seen that the remainder term r2

Ks? ,a•(δ
2n) is asymptotically negligible compared with

(ρd
Ks? ,a•(δn))2, since

r2
Ks? ,a•(δ

2n)
(ρKs? ,a•(δn))2 ∼

√
log log logn

(logn)
1
2s

−→ 0 (n→∞).

Moreover,
(ρd
Ks? ,a•

(δn))2

δ3 tends to zero for n→∞, since δ is only of log-order. Therefore, the
upper bound derived in Proposition 4.3.2 asymptotically reduces to (ρd

Ks? ,a•(δn))2, which is
of the same order as (ρd

a•(δn))2 with an adaptive factor of order
√

log log logn.

Order of r2
Ks? ,a•(δ

2n) and (ρd
Ks? ,a•(δn))2 with δ = (1 + log |Ks? |)−1/2

and Ks? =
{

2j , j ∈
{

0, . . . , b log2 logn
s?

c
}}

aj |ϕj | r2
Ks? ,a•(δ

2n) (ρd
Ks? ,a•(δn))2

(smoothness) (ill-posedness)

e−j
s |j|−p log log logn

n (logn)
2p
s

(log log logn)1/2

n (logn)
2p+1/2

s

We conclude that in all the cases considered in this illustration the direct max-test achieves
a testing radius of the same order as the indirect max-test. We emphasise that in contrast to
the indirect max-tests the direct max-tests are in addition also adaptive to the ill-posedness
of the model, since they do not require the knowledge of the coefficients of the error density
ϕ if we test for uniformity (i.e. in the case f◦ = 1[0,1)).

Calculations for the risk bounds in Illustration 4.5.4.
Firstly, we determine the order of the terms (ρd

K,a•(δn))2 = mink∈K
{
a2
k ∨

√
2k
δn m

2
k

}
.

1. (ordinary smooth - mildly ill-posed)
We first show that minimisation over K2 approximates the minimisation over N well
enough, i.e.

(ρd
K2,a•(n))2 = min

k∈K2
(ρd
k,a•(n))2 ∼ min

k∈N
(ρd
a•(n))2 = (ρd

a•(n))2.
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We aim to find j? such that 2j? ∈ K2 approximates kd
a• well. Since kd

a• ∼ n
2

4p+4s+1 we
define

j? := d 2
4p+4s+1 log2 ne . dlog(n2/2)e.

Then,

(ρd
K2,a•(n))2 ≤ (ρd

2j? ,a•(n))2 = a2
2j? ∨

√
2 · 2j?m2

2j?
n

. 2−2sj? ∨ 2j?(2p+1/2)

n

. 2−( 4s
4p+4s+1 log2 n) ∨ 2( 2

4p+4s+1 log2 n+1)(2p+1/2)

n

. n−
4s

4p+4s+1 ∨ 22p+1/2n−
4s

4p+4s+1

. n−
4s

4p+4s+1 ∼ (ρd
a•(n))2

Since, trivially (ρd
a•(n)) ≤ (ρd

K2,a•
(n))2, we obtain (ρd

a•(n))2 ∼ (ρd
K2,a•

(n))2. Replacing n
by δn yields the result.

2. (super smooth - mildly ill-posed)
We first show that minimisation over Ks? approximates the minimisation over N well
enough, i.e.

(ρd
Ks? ,a•(n))2 = min

k∈Ks?
(ρd
k,a•(n))2 ∼ min

k∈N
(ρd
a•(n))2 = (ρa•(n))2.

We aim to find j? such that 2j? ∈ Ks? approximates kd
a• well. Since kd

a• ∼ (logn)
1
s we

define

j? := d1
s log2 logne . d 1

s?
log log(n)e.

Then,

(ρd
Ks? ,a•(n))2 ≤ (ρd

2j? ,a•(n))2 = a2
2j? ∨

√
2 · 2j?m2

2j?
n

. e−2·2sj? ∨ 2j?(2p+1/2)

n

. e−2·2s
1
s log2 logn

∨ 2( 1
s

log2 logn+1)(2p+1/2)

n

. n−2 ∨ 22p+1/2 (logn)
2p+1/2

s

n

.
(logn)

2p+1/2
s

n
∼ (ρd

a•(n))2

Since, trivially (ρd
a•(n)) ≤ (ρd

Ks? ,a•(n))2, we obtain (ρd
a•(n))2 ∼ (ρd

Ks? ,a•(n))2. Replacing n
by δn yields the result.

3. (ordinary smooth - severely ill-posed) We first show that minimisation over K2 ap-
proximates the minimisation over N well enough, i.e.

(ρd
K2,a•(n))2 = min

k∈K2
(ρd
k,a•(n))2 ∼ min

k∈N
(ρd
a•(n))2 = (ρd

a•(n))2.

We aim to find j? such that 2j? ∈ K2 approximates kd
a• well. Since kd

a• ∼ (logn/bn)
1
p with

bn ∼ (logn)
4s+1

2p we define

j? := b1
p log2(log(n/bn)/2)c . dlog(n2/2)e.
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Then,

(ρd
K2,a•(n))2 ≤ (ρd

2j? ,a•(n))2 = a2
2j? ∨

√
2 · 2j?m2

2j?
n

. 2−2sj? ∨ 2j?/2

n
e2·2pj?

. 2−2s( 1
p log2(log(n/bn)/2)−1) ∨ 2

1
p log2 logn

n
e2·2log2((log(n/bn))/2)

. (logn)−
2s
p ∼ (ρd

a•(n))2

Since, trivially (ρd
a•(n)) ≤ (ρd

K2,a•
(n))2, we obtain (ρd

a•(n))2 ∼ (ρd
K2,a•

(n))2. Replacing n
by δn yields the result.

Next, we determine the order of the remainder term r2
K,a•(δn) = mink∈K

{
a2
k ∨

m2
k
n

}
, by first

calculating r2
N,a•(n) = mink∈N

{
a2
k ∨

m2
k
n

}
and then showing that minimisation over K approx-

imates the minimisation over N well enough. The calculations in the (ordinary smooth -
mildly ill-posed) and the (super smooth - mildly ill-posed) cases have already been done
in Illustration 4.3.6. It remains to consider the third case.

3. (ordinary smooth - severely ill-posed) The variance term m2
k
n is of order e2kp

n and the
bias term a2

k is of order k−2s. Hence, the minimizing k? satisfies k−2s
? ∼ e2kp?

n and thus
k? ∼ (log(n/bn))

1
p with bn ∼ (logn)−

2s
p , which yields r2

N,a• ∼ (logn)−
2s
p .

Next, we show that minimisation over K2 approximates the minimization over N well
enough, i.e.

r2
K2,a•(n) = min

k∈K2
r2
k,a•(n) ∼ min

k∈N
r2
k,a•(n) = r2

a•(n)

We aim to find j? such that 2j? ∈ K2 approximates k? well. Since k? ∼ (log(n/bn))
1
p with

bn ∼ (logn)−
2s
p we define

j? := b1
p log2(log(n/bn)/2)c . blog(n2/2)c.

Then,

r2
K2,a•(n) ≤ r2

2j? ,a• = a2
2j? ∨

m2
2j?
n
. 2−2sj? ∨ e

2·2pj?

n

. 2−
2s
p log2 log(n) ∨ e

2·2log2(log(n/bn)/2)

n

. (logn)−
2s
p ∼ r2

N,a•(n)

Since, trivially r2
N,a•(n) ≤ r2

K2,a•
(n), we obtain r2

N,a•(n) ∼ r2
K2,a•

(n). Replacing n by δ2n
yields the result.

Note that in the case f◦ = 1[0,1) neither the test statistic q̃2
k (defined in (4.4.2)) nor the

threshold τd
k (α) (defined in (4.4.5)) depend on the coefficients of the error density ϕ. Hence, the

test ∆d
k,α/2 only depends on the ill-posedness of the model through the dimension parameter k.

Aggregating over an appropriate class K yields a direct max-test ∆d
K,α/2 that is adaptive with

respect to both the regularity and the ill-posedness of the model. This observations is formally
stated in the next theorem.
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Theorem 4.5.5 (Adaptation to ill-posedness). Let f◦ = 1[0,1). Under the assumptions
of Corollary 4.5.3 let α ∈ (0, 1) and consider Aα as in (4.4.10). Then for all A ≥ c · C · Aα
and for all n ∈ N, n ≥ 2,

sup
ϕ∈D

sup
a•∈A

R
(
∆d
K,α/2 | E

R
a• , Aρ

d
K,a•(δn)

)
≤ α

with δ = (1 ∨ log |K|)−1/2.

In the next section we provide a lower bound on the minimal adaptive factor δ−1 in this
situation (i.e. f = 1[0,1)).

4.6 Adaptive lower bound

Throughout this section we assume that f◦ = 1[0,1). The next proposition states general condi-
tions on the class A under which an adaptive factor δ−1 is an unavoidable cost to pay for adap-
tation over A. The proof of Proposition 4.6.1 is based on a Assouad-type reduction argument
and makes use of Lemma D.4.1 in the appendix, which provides a bound on the χ2-divergence
between the null and a mixture over several alternative classes. Inspired by Assouad’s cube
technique the candidate densities, i.e. the vertices of the hypercubes, are constructed such that,
roughly speaking, they are statistically indistinguishable from the null f◦ while having largest
possible L 2-distance.

Proposition 4.6.1 (Adaptive lower bound). Let α ∈ (0, 1) and δ ∈ (0, 1]. Assume there
exists a collection of N regularity parameters

{
aj• : j ∈ JNK

}
⊆ A, where we abbreviate for

j ∈ JNK

ρj := ρ
aj•

(δn) with associated optimal dimension parameters kj := k
aj•

(δn),

such that the following four conditions are satisfied:

(C1) The collection is ordered such that kl ≤ km and ρl ≤ δρm, whenever l < m.

(C2) There exists a finite constant cα > 0 such that exp(cαδ−2) ≤ Nα2.

(C3) There exists a finite constant a such that 2 maxj∈JNK
∥∥aj•∥∥2

`2(N) ≤ a.

(C4) There exists a constant η ∈ (0, 1] such that

η ≤ min
j∈JNK

(aj
kj

)2 ∧
ν2
kj

δn

(aj
kj

)2 ∨
ν2
kj

δn

= min
j∈JNK

(aj
kj

)2 ∧
ν2
kj

δn

(ρj)2 .

Then, with

A2
α := η

(
R2 ∧

√
log(1 + α2) ∧ a−1 ∧

√
cα

)
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we obtain for all A ∈ [0, Aα]

inf
∆

sup
a•∈A

R
(
∆ | ER

a• , Aρa•(δn)
)
≥ 1− α.

Remark 4.6.2 (Conditions of Proposition 4.6.1). Let us briefly discuss the conditions
of Proposition 4.6.1. Under (C1) the collection of regularity parameters A is rich enough to
make adaptation unavoidable, i.e. it contains distinguishable elements resulting in significantly
(measured in terms of δ) different radii. (C2) is a bound for the maximal size of an unavoidable
adaptive factor. (C3) guarantees that the candidates constructed in the reduction scheme of the
proof are indeed densities. The condition (C4) relates the behaviour of the sequences ϕ• and aj•
and essentially guarantees an optimal balance of the bias and the variance term in the dimension
kj uniformly over all j ∈ JNK. Moreover, for all regularity and ill-posedness examples considered
in Illustration 4.2.5 condition (C4) holds uniformly for all n ∈ N. We shall emphasise that the
optimal dimensions kj and the corresponding radii ρj, for which (C1) and (C4) are stated, are
determined in terms of the effective sample size δn. �

Proof of Proposition 4.6.1. Reduction Step. To prove a lower bound for the testing radius
we reduce the risk of a test to a distance between probability measures. Denote P0 = Pf◦ , let
P1,m, specified below, be a mixing measure over the Aαρm-separated alternative and consider
the uniform mixture P1 := 1

N

∑
m∈JNK P1,m over all m ∈ JNK. The risk can be lower bounded by

applying a classical reduction argument as follows

inf
∆

sup
a•∈A

R
(
∆ | ER

a• , Aρa•(δn)
)
≥ inf

∆
max
m∈JNK

R
(
∆ | ER

am•
, Aρm

)

≥ inf
∆

P0(∆ = 1) + max
m∈JNK

sup
f−f◦∈ER

am•
∩L 2

ρm

Pf(∆ = 0)


≥ inf

∆

P0(∆ = 1) + 1
N

∑
m∈JNK

sup
f−f◦∈ER

am•
∩L 2

ρm

Pf(∆ = 0)


≥ inf

∆

P0(∆ = 1) + 1
N

∑
m∈JNK

P1,m(∆ = 0)


≥ inf

∆
{P0(∆ = 1) + P1(∆ = 0)}

= 1− TV(P0,P1)

≥ 1−

√
χ2(P0,P1)

2 ,

where TV denotes the total variation distance and χ2 the χ2-divergence.
Definition of the mixture. For each m ∈ JNK we mix the Fourier coefficients uniformly over
the vertices of a hypercube contained in the corresponding alternative. For m ∈ JNK we define
the coefficients of θm• = (θmj )j∈N ∈ `2(N) by

θmj :=


Aαρ

m

ν2
km
|ϕj |−2 for j ∈ JkmK

0 otherwise

and the candidate functions for the sign vectors τ ∈ {±}k
m

by

fm,τ := e0 +
∑

|j|∈JkmK

τ|j|θ
m
|j|ej .
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Now, we can define the mixing measures

P1,m := 1
2km

∑
τ∈{±}km

Pfm,τ , m ∈ JNK.

Let us verify that for each m ∈ JNK the collection
{
fm,τ : τ ∈ {±}k

m
}

is a set of densities
contained in the alternative ER

am•
∩L 2

ρm , i.e. that P1,m is indeed supported on the alternative.

1. ‖fm,τ‖22 = 2 ‖θm• ‖
2
`2(N) + 1 <∞, satisfied by construction. (∈ L 2)

2. fm,τj = fm,τ−j , satisfied since θ and τ are vectors in RN resp. Rkm , hence (real-valued)

fm,τj = τ|j|θ
m
|j| = τ|j|θ

m
|j| = fm,τ−j .

3. fm,τ0 = 1 satisfied by construction. (normalized to 1)

4.
∑
|j|>0

∣∣∣fm,τj

∣∣∣ ≤ 1, by the Cauchy-Schwarz inequality, (positive)
since

∑
|j|>0

∣∣∣fm,τj

∣∣∣ = 2
∑
j∈N

∣∣∣θmj ∣∣∣ amjamj ≤
√

2
∑
j∈N

(amj )2

√√√√∑
j∈N

(amj )−2
∣∣∣θmj ∣∣∣2

≤
√
a
√
A2
α(ρm)2a−2

km ≤
√
a
√
a−1 = 1,

where the second last inequality follows as in (5.)

5. fm,τ − f◦ ∈ ER
am•

, i.e. 2
∑
j∈N(amj )−2

∣∣∣θmj ∣∣∣2 ≤ R2, (smoothness)
satisfied since by the monotonicity of am• we have

2
∑
j∈N

(amj )−2
∣∣∣θmj ∣∣∣2 = A2

α(ρm)2

ν4
km

2
∑

j∈JkmK

|ϕj |−4 (amj )−2

≤ A2
α(ρm)2a−2

km ≤ ηR2(ρm)2a−2
km ≤ R2.

6. fm,τ − f◦ ∈ L 2
Aαρ

m , i.e. ‖fm,τ − f◦‖L 2 ≥ Aαρm (separation)
satisfied since

‖fm,τ − f◦‖2L 2 = 2
∑

j∈JkmK

∣∣∣θmj ∣∣∣2 = A2
α(ρm)2

ν4
km

2
∑

j∈JkmK

|ϕj |−4 = A2
α(ρm)2.

We collect one more property of the constructed densities, which shows that they are similar
enough to be statistically indistinguishable.

7. 1
N2

∑
l,m∈JNK

exp
(
2n2 ∑

j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 ) ≤ 1− 2α2 (similarity)

Let us first investigate the argument inside of the exp-function.

2n2 ∑
j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 = n2A
2
α(ρm)2

ν4
km

A2
α(ρl)2

ν4
kl

2
∑

j∈Jkm∧klK
|ϕj |−4

= n2A
4
α(ρm)2(ρl)2

ν4
km∨kl
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Let l < m, then by (C1), the definition of Aα and the condition (C4) on η we obtain

2n2 ∑
j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 = n2A
4
α(ρm)2(ρl)2

ν4
km

≤ n2 log(1 + α2)η
2(ρm)2(ρl)2

ν4
km

= n2 log(1 + α2)η
2(ρm)4(ρl)2

(ρm)2ν4
km

≤ n2 log(1 + α2) (ρl)2

δ2n2(ρm)2

= log(1 + α2) (ρl)2

δ2(ρm)2 ≤ log(1 + α2).

The case l = m simply yields

2n2 ∑
j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 = 2n2 ∑
j∈JkmK

∣∣∣θmj ∣∣∣4 |ϕj |4 = 2n2A
4
α(ρm)4

ν8
km

∑
j∈JkmK

|ϕj |−8 |ϕj |4

= n2A
4
α(ρm)4

ν4
km

≤ cα
δ2 .

Finally, combining the two bounds, we have

1
N2

∑
l,m∈JNK

exp
(
2n2 ∑

j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 )
≤ 1
N2

∑
l=m∈JNK

exp
(
2n2 ∑

j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 )
+ N(N − 1)

N2

∑
l<m∈JNK

exp
(
2n2 ∑

j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 )
≤ 1
N

exp(cαδ−2) + N(N − 1)
N2 exp(log(1 + α2))

≤ Nα2

N
+ 1 + α2 = 1 + 2α2, (4.6.1)

where the last inequality is due to (C2).

Bound for the χ2-divergence. We apply Lemma D.4.1 and obtain

χ2(P1,P0) ≤ 1
N2

∑
l,m∈JNK

exp
(
2n2 ∑

j∈Jkm∧klK

∣∣∣θmj ϕjθljϕj∣∣∣2 )− 1 (4.6.2)

Hence, property (7.) (similarity) guarantees that the induced distance between the mixing
measure and the null is negligible. Combining (4.6.1) with (4.6.2) and the reduction step proves
the assertion.

Adaptive lower bounds in specific situations. We apply Proposition 4.6.1 to two specific
classes of alternatives

{
ER
a• : a• ∈ A

}
. We consider a set A which is non-trivial with respect

to either a polynomial decay or an exponential decay, that is,{
(j−s)j∈N : s ∈ [s?, s?]

}
⊆ A or

{
(e−js)j∈N : s ∈ [s?, s?]

}
⊆ A

for s? < s? and s?, s
? > 0.
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Theorem 4.6.3 (Minimal adaptive factor – polynomial decay). Let A be non-trivial
with respect to polynomial decay for some s? > s? >

1
2 . Let |ϕj | ∼ j−p for some p > 1/2.

For α ∈ (0, 1) there exists an n◦ ∈ N and Aα ∈ (0,∞) such that for all n ≥ n◦ and
A ∈ [0, Aα]

inf
∆

sup
a•∈A

R
(
∆ | ER

a• , Aρa•(δn)
)
≥ 1− α

with δ = (1∨ log logn)−
1
2 , i.e. δ−1 is a lower bound for the minimal adaptive factor over A.

Proof of Theorem 4.6.3. We intend to apply Proposition 4.6.1. To do so, we construct a col-
lection of regularity parameters AN := {am• ∈ A : m ∈ JNK} ⊆ A such that (C1) – (C4) are
satisfied.
Definition of the collection. Recall from Illustration 4.2.5 that the minimax radius in our
setting is of order ρ2

a•(δn) ∼ (δn)−e(s) with the exponent e(s) := 4s
4s+4p+1 . Since A is non-trivial

with respect to polynomial decay, it contains a subset of the form {(j−s)j∈N : s ∈ [s?, s?]}. Due
to e(s) = 4s

4s+4p+1 = 1 − 4p+1
4s+4p+1 the exponent is monotonically increasing in s, hence the cor-

responding regularity parameters result in radii with exponents in the interval [e(s?), e(s?)] =:
[e?, e?]. We define a grid of size N on [e?, e?], which then induces a grid on [s?, s?]. For the step
size d := e?−e?

N let

Ge := {e? −md : m ∈ {0, . . . , N − 1}} ⊆ [e?, e?]

be a grid on [e?, e?]. For m ∈ {0, . . . , N − 1} let sm be defined by the equation

e(sm) = 4sm
4sm + 4p+ 1 = e? −md,

which results in a grid on [s?, s?],

Gs := {sm : e(sm) = e? −md,m ∈ {0, . . . , N − 1}} .

Finally, we define our collection of regularity sequences as

Ga• :=
{
(j−s)j∈N : s ∈ Gs

}
.

Verification of the conditions (C1) – (C4)

(C1) Let n be large enough such that the effective sample size δn is larger than 1. The grid is
defined such that

m > l⇐⇒ e(sm) = e? −md < e? − ld = e(sl)
⇐⇒ sm < sl

⇐⇒ 2
4p+4sm+1 >

2
4p+4sl+1

⇐⇒ (δn)
2

4p+4sm+1 > (δn)
2

4p+4sl+1 ,

which shows that, since by Illustration 4.2.5, km ∼ (δn)
2

4p+4sm+1 ,

lim
n→∞

kl

km
< 1.

In other words, there exists a n◦,1 ∈ N such that for all n ≥ n◦,1

kl < km, for l < m,
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which verifies the first part of (C1).
To check the second part, we define N := b e?−e?4

log(δn)
|log(δ)|c, where we assume that n is large

enough such that N ≥ 1. Since for l < m,

(δn)−e(sl)

(δn)−e(sm) = (δn)e(sm)−e(sl) = (δn)(l−m)d,

we obtain

δ−2 (δn)−e(sl)

(δn)−e(sm) = exp ((l −m)d log(δn)− 2 log δ)

with

(m− l)d log(δn) + 2 log δ ≥ d log(δn) + 2 log(δ)

≥ 4 |log(δ)|
log(δn) log(δn) + 2 log(δ) = 4 |log(δ)|+ 2 log(δ) > 0.

Hence, due to (ρl)2 ∼ (δn)e(sl), we obtain

lim
n→∞

δ−2 (ρl)2

(ρm)2 < 1.

In other words, there exists a n◦,2 ∈ N such that for all n ≥ n◦,2

ρl < δρm for l < m.

(C2) The condition (C2) can be rewritten as

cαδ
−2 − log(N) ≤ 2 log(α).

It is easily seen that δ2 log(N) −→ 1 for n→∞. Hence, log(N)− 1
2δ
−2 −→∞ and, thus,

there exists a n◦,3 (possibly depending on α) such that

cαδ
−2 − log(N) ≤ 2 log(α).

with cα := 1
2 and, therefore, (C2) is satisfied.

(C3) We observe that

sup
m∈JNK

∑
j∈N

(amj )2 ≤ sup
s∈[s?,s?]

∑
j∈N

j−2s ≤
∑
j∈N

j−2s? ≤
∫ ∞

1
x−2s?dx ≤ 1

2s? − 1 =: a,

which shows (C3).

(C4) The existence of a constant η satisfying (C4) uniformly over n follows, because for a• ∼
(j−s)j∈N with s ∈ [s?, s?] the terms a2

ka•
and

ν2
ka•
δn are of the same order.

Theorem 4.6.4 (Minimal adaptive factor – exponential decay). Let A be non-trivial
with respect to exponential decay for some s? > s? > 0. Let |ϕj | ∼ j−p for some p > 1/2.
For α ∈ (0, 1) there exists an n◦ ∈ N and Aα ∈ (0,∞) such that for all n ≥ n◦ and
A ∈ [0, Aα]

inf
∆

sup
a•∈A

R
(
∆ | ER

a• , Aρa•(δn)
)
≥ 1− α
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with δ = (1 ∨ log log logn)−1/2, i.e. δ−1 is a lower bound for the minimal adaptive factor
over A.

Proof of Theorem 4.6.4. We intend to apply Proposition 4.6.1. To do so, we construct a collec-
tion of regularity parameters AN := {am• ∈ A : m ∈ JNK} ⊆ A such that (C1)–(C4) are satisfied.
Definition of the collection. Recall from Illustration 4.2.5 that the minimax radius in our
setting is of order ρ2

a•(δn) ∼ (log δn)e(s)

δn with the exponent e(s) := 2p+1/2
s . Since A is non-trivial

with respect to exponential decay, it contains a subset of the form
{
(e−js)j∈N : s ∈ [s?, s?]

}
. The

exponent is monotonically decreasing in s, hence the corresponding regularity parameters result
in radii with exponents in the interval [e(s?), e(s?)] =: [e?, e?]. We define a grid of size N on
[e?, e?], which then induces a grid on [s?, s?]. For d := e?−e?

N let

Ge := {e? +md : m ∈ {0, . . . , N − 1}} ⊆ [e?, e?]

be a grid on [e?, e?]. For m ∈ {0, . . . , N − 1} let sm be defined by the equation

e(sm) = 2p+ 1/2
sm

= e? +md,

which results in a grid on [s?, s?]

Gs := {sm : e(sm) = e? +md,m ∈ {0, . . . , N − 1}} .

Finally, we define our collection of regularity sequences as

Ga• :=
{

(e−js)j∈N : s ∈ Gs
}
.

Verification of the conditions (C1)–(C4)

(C1) Let n be large enough such that the effective sample size δn is larger than 1. The grid is
defined such that

m > l⇐⇒ e(sm) = e? +md > e? + ld = e(sl)
⇐⇒ 1

sm
> 1

sl

⇐⇒ (δn)
1
sm > (δn)

1
sl ,

which shows that, since by Illustration 4.2.5, km ∼ (δn)
1
sm ,

lim
n→∞

kl

km
< 1.

In other words, there exists a n◦,1 ∈ N such that for all n ≥ n◦,1

kl < km for l < m,

which verifies the first part of (C1).
To check the second part, we define N := b e?−e?4

log log(δn)
|log(δ)| c, where we assume that n is

large enough such that N ≥ 1. Since for l < m,
1
δn(log(δn))e(sl)
1
δn(log(δn))e(sm) = (log(δn))e(sl)−e(sm) = (log(δn))(l−m)d

we obtain

δ−2
1
δn(log(δn))e(sl)
1
δn(log(δn))e(sm) = exp ((l −m)d log log(δn)− 2 log δ)
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with

(m− l)d log log(δn) + 2 log δ ≥ d log log(δn) + 2 log(δ)

≥ 4 |log(δ)|
log log(δn) log log(δn) + 2 log(δ)

= 4 |log(δ)|+ 2 log(δ) > 0.

Hence, due to (ρl)2 ∼ (log δn)e(sl)

δn , we obtain

lim
n→∞

δ−2 (ρl)2

(ρm)2 < 1.

In other words, there exists a n◦,2 ∈ N such that for all n ≥ n◦,2

ρl < δρm for l < m.

(C2) The condition (C2) can be rewritten as

cαδ
−2 − log(N) ≤ 2 log(α).

It is easily seen that δ2 log(N) −→ 1 for n→∞. Hence, log(N)− 1
2δ
−2 −→∞ and, thus,

there exists a n◦,3 (possibly depending on α) such that

cαδ
−2 − log(N) ≤ 2 log(α).

with cα = 1
2 and, therefore, (C2) is satisfied.

(C3) We observe that

sup
m∈JNK

∑
j∈N

(amj )2 ≤ sup
s∈[s?,s?]

∑
j∈N

e−2js ≤
∑
j∈N

e−2js? ≤
∫ ∞

0
e−2xs?dx,

where we introduce the change of variables y = 2xs? ,dx = 1/s?(1/2)1/s?y1/s?dy

=
(1

2

) 1
s? 1
s?

∫ ∞
0

y
1
s e−ydy

=
(1

2

) 1
s? 1
s?

Γ
( 1
s?

)
=
(1

2

) 1
s? Γ

( 1
s?

+ 1
)

=: a,

which shows (C3).

(C4) The existence of a constant η satisfying (C4) uniformly over n follows, because for a• ∼
(e−js)j∈N with s ∈ [s?, s?] the terms a2

ka•
and

ν2
ka•
δn are of the same order.

Comparing Theorem 4.6.3 and Theorem 4.6.4 with Illustration 4.3.6 (for the indirect test)
and Illustration 4.5.4 (for the direct test) shows that the adaptive factors that we obtain are
minimal. Indeed, in the ordinary smooth – mildly ill-posed model both the direct and the
indirect max-test face a deterioration by a

√
log logn-factor, which Theorem 4.6.3 shows to be

unavoidable. In the more restrictive setting of super smoothness and mild ill-posedness both
tests feature a

√
log log logn-factor, which is unavoidable due to Theorem 4.6.4. In the ordinary

smooth – severely ill-posed model there is no loss for adaptation visible in the testing radius.
Finally, let us comment on the fact that Theorem 4.6.3 and Theorem 4.6.4 at first glance only
provide asymptotic results since they require n to be sufficiently large. This is quite a natural
assumption since the adaptive factor δ−1 only has an effect if

√
log logn > 1 (for polynomial

decay) or if
√

log log logn > 1 (for exponential decay), which clearly only occurs for n large
enough.
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Appendix D

Auxiliary results

D.1 Preliminaries

The next two assertions, a concentration inequality for canonical U-statistics and a Bernstein
inequality, provide our key arguments in order to control the deviation of the test statistics. The
first assertion is a reformulation of Theorem 3.4.8 in Gine and Nickl [2015].

Proposition D.1.1 (Concentration inequality for U-statistics). Let n ≥ 2 and let
{Yl}nl=1 be independent and identically distributed [0, 1)-valued random variables. Let h :
[0, 1)2 −→ R be a bounded symmetric kernel, i.e. h(y, ỹ) = h(ỹ, y) for all y, ỹ ∈ [0, 1),
fulfilling in addition

E(h(Y1, y2)) = 0 ∀y2 ∈ [0, 1). (D.1.1)

Let A,B,C and D be real numbers such that

sup
y1,y2∈[0,1)

|h(y1, y2)| ≤ A,

sup
y2∈[0,1)

Eh2(Y1, y2) ≤ B2,

Eh2(Y1, Y2) ≤ C2,

sup
{
E(h(Y1, Y2)ζ(Y1)ξ(Y2)),Eζ2(Y1) ≤ 1,Eξ2(Y2) ≤ 1

}
≤ D. (D.1.2)

Then, the real-valued canonical U-statistic

Un = 1
n(n− 1)

∑
l,m∈JnK
l 6=m

h(Yl, Ym)

satisfies for all x ≥ 0

P
(

Un ≥ 8C
n
x1/2 + 13D

n
x+ 261 B

n3/2x
3/2 + 343 A

n2x
2
)
≤ exp(1− x).

The following version of Bernstein’s inequality can directly be deduced from Theorem 3.1.7.
in Gine and Nickl [2015].

Proposition D.1.2 (Bernstein’s inequality).
Let {Zj}nj=1 be independent random variables with |Zj | ≤ b almost surely and E |Zj |2 ≤ v
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for all j ∈ JnK. Then for all x > 0 and n ≥ 1, we have

P

 1
n

∑
j∈JnK

(Zj − EZj) ≥
√

2vx
n

+ bx
3n

 ≤ exp(−x).

Preliminaries. We assume throughout this section that Y and {Yj}nj=1 are independent and
identically distributed with density g = f ?©ϕ ∈ L 2 with respect to the Lebesgue measure.

Rewriting the condition on D. Recall that by L 2(g) we denote the set of Borel-
measurable functions ξ : [0, 1) → R with ‖ξ‖2L 2(g) :=

∫ 1
0 ξ

2(x)g(x)dx < ∞. The associated
inner product is given by 〈ξ, ζ〉L 2(g) :=

∫ 1
0 ξ(x)ζ(x)g(x)dx for ξ, ζ ∈ L 2(g). We express the

condition on D as the norm of an operator from L 2(g) into itself. Let h : [0, 1)2 −→ R be a
bounded kernel, i.e. ‖h‖L∞ := supy1,y2∈[0,1) |h(y1, y2)| <∞. Consider the integral operator

H : L 2(g) −→ L 2(g) (D.1.3)
ξ 7−→ Hξ

with Hξ(s) :=
∫ 1

0 h(t, s)ξ(t)g(t)dt = Eh(Y, s)ξ(Y ) for s ∈ [0, 1). The operator has the following
properties.

1. H is well-defined, i.e. Hξ ∈ L 2(g), since

‖Hξ‖2L 2 =
∫ 1

0
|Hξ(x)|2 g(x)dx =

∫ 1

0

(∫ 1

0
h(t, x)ξ(t)g(t)dt

)2
g(x)dx

≤
∫ 1

0

(∫ 1

0
h2(t, x)g(t)dt

)(∫ 1

0
ξ2(t)g(t)dt

)
g(x)dx

= ‖ξ‖L 2(g) E |h(Y1, Y2)|2 , (D.1.4)

where we applied the Cauchy-Schwarz inequality in the second line. Hence, ‖Hξ‖2L 2 is
finite, since h is bounded and ξ ∈ L 2(g).

2. H is linear, i.e. for ξ, ζ ∈ L 2(g), λ ∈ R, H(λξ+ζ) = λHξ+Hζ, since integrals are linear.

3. The operator norm of H is bounded by ‖h‖L∞ , since due to (D.1.4) we have

‖H‖L 2(g)→L 2(g) := sup
{
‖Hξ‖L 2(g) : ‖ξ‖L 2 ≤ 1

}
≤ ‖h‖L∞ .

4. The operator norm can be written as

‖H‖L 2(g)→L 2(g) = sup
{
E(h(Y1, Y2)ζ(Y1)ξ(Y2),Eζ2(Y1) ≤ 1,Eξ2(Y2) ≤ 1

}
. (D.1.5)

Indeed, note that the operator norm satisfies

‖H‖L 2(g)→L 2(g) = sup
{
‖Hζ‖L 2(g) : ‖ζ‖L 2 ≤ 1

}
≤ ‖h‖L∞

= sup
{√

E(Hζ)2(Y2) : ‖ζ‖L 2 ≤ 1
}

= sup
{√

Eh2(Y1, Y2)ζ2(Y1) : ‖ζ‖L 2 ≤ 1
}

The claim then follows by applying the Cauchy-Schwarz inequality to

E(h(Y1, Y2)ζ(Y1)ξ(Y2)) ≤
(
Eh2(Y1, Y2)ζ2(Y1)

)1/2 (
Eξ2(Y2)

)1/2

and taking the supremum over Eζ2(Y1) ≤ 1 and Eξ2(Y2) ≤ 1.
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5. Let the kernel h by symmetric, then H is self-adjoint. Let ζ, ξ ∈ L 2(g), then we have

〈ζ,Hξ〉L 2(g) =
∫ 1

0
ζ(x)(Hξ)(x)dx =

∫ 1

0

∫ 1

0
h(z, x)ξ(z)g(z)dzg(x)ζ(x)dx

=
∫ 1

0

∫ 1

0
ζ(x)h(x, z)g(x)dxg(z)ξ(z)dz =

∫ 1

0
ξ(z)(Hζ)(z)g(z)dz = 〈Hζ, ξ〉L 2(g),

where we used Fubini’s Theorem and the symmetry of h.

Hence, for h bounded and symmetric, H is a linear, bounded and self-adjoint operator. Thus,
we can write the operator norm of H as (see Theorem V.5.7 of Werner [2006])

‖H‖L 2(g)→L 2(g) = sup
{∣∣∣〈Hξ, ξ〉L 2(g)

∣∣∣ : ‖ξ‖L 2(g) ≤ 1
}
. (D.1.6)

Note that due to (D.1.4), we can always use D := C. Under an additional assumption we
are, however, able to achieve a sharper bound. For this we recall some properties of the discrete
convolution in the next paragraph.

Discrete convolution. Recall that for p ≥ 1 we denote by `p := `p(Z) the Banach
space of complex-valued sequences over Z endowed with its usual `p-norm given by ‖a•‖`p :=(∑

j∈Z |aj |
p
)1/p

for a• := (aj)j∈Z ∈ CZ. In the case p = 2, the space `2 is a Hilbert space and
the `2-norm is induced by its usual inner product 〈a•, b•〉`2 :=

∑
j∈Z ajbj for all a•, b• ∈ `2. For

each sequence a• ∈ `1, we define the discrete convolution operator

a•∗ : `2 −→ `2

b• 7−→ (a• ∗ b•)

with (a• ∗ b•)j :=
∑
l∈Z aj−lbl. The following propositions collect some properties of the discrete

convolution operator. Similar results hold for the (continuous) convolution operator, for which
the proofs can be found in Werner [2006] (Example on p.348). Our proofs for the discrete case
are similar to those in Werner [2006], but we state them here for completeness.

Proposition D.1.3 (Properties of the discrete convolution operator).
Let a• ∈ `2 ∩ `1.

1. The operator a•∗ is well defined, i.e. a• ∗ b• ∈ `2 for all b• ∈ `2.

2. The operator a•∗ is linear and continuous.

3. The operator norm satisfies ‖a•∗‖`2→`2 ≤ ‖a•‖`1 .

4. If aj = a−j for all j ∈ Z, then a•∗ is self-adjoint.

5. If aj = a−j for all j ∈ Z, then |〈a• ∗ b•, b•〉`2 | ≤ ‖a•∗‖`2→`2 ‖b•‖
2
`2 for all b ∈ `2.

6. For b ∈ `2 we have |〈a• ∗ b•, b•〉`2 | ≤ ‖a•‖`1 ‖b•‖
2
`2 .

Proof of Proposition D.1.3. 1. We first show that each coefficient is finite.∣∣∣∣∣∣
∑
l∈Z

aj−lbl

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∑
l∈Z
|aj−l| |bl|

∣∣∣∣∣∣
2

≤

∑
l∈Z
|aj−l|2

∑
l∈Z
|bl|2

 = ‖a•‖2`2 ‖b•‖
2
`2 <∞.
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Next, we prove that a• ∗ b• ∈ `2 for all b• ∈ `2. We first observe that for j ∈ Z by
introducing m = j − l we obtain

|(a• ∗ b•)j | =

∣∣∣∣∣∣
∑
l∈Z

aj−lbl

∣∣∣∣∣∣
2

≤

∣∣∣∣∣∣
∑
m∈Z
|am| |bj−m|

∣∣∣∣∣∣
2

=

∑
m∈Z

√
|am|

√
|am| |bj−m|

2

≤
(∑

m

|am|
)(∑

m

|am| |bj−m|2
)

= ‖a•‖`1
∑
m∈Z
|am| |bj−m|2

and, hence,∑
j∈Z
|(a• ∗ b•)j |2 ≤ ‖a•‖`1

∑
j∈Z

∑
m∈Z
|am| |bj−m|2

= ‖a•‖`1
∑
m∈Z

∑
j∈Z
|bj−m|2

 |am|
= ‖a•‖`1 ‖b•‖

2
`2

∑
m∈Z
|am|

= ‖a•‖2`1 ‖b•‖
2
`2 <∞.

2. To check linearity let b•, c• ∈ `2(Z), λ, µ ∈ R. Then,

(a• ∗ (λb• + µc•))j =
∑
l∈Z

aj−l(λbl + µcl)

= λ
∑
l∈Z

aj−lbl + µ
∑
l∈Z

aj−lcl = λ(a• ∗ b•)j + µ(a• ∗ c•)j .

A linear operator between normed spaces T : X → Y is continuous if and only if there
exists an M > 0 such that ‖Tx‖Y ≤M ‖x‖X for all x ∈ X (see e.g. Werner [2006], Theorem
II.1.2). In our case T = a•∗, X = Y = `2(Z), we have due to (1.)

‖a• ∗ b•‖`2 ≤ ‖a•‖`1 ‖b•‖`2 ,

hence a•∗ is linear and continuous.

3. From (1.) it follows that

‖a•∗‖`2→`2 = sup
‖b•‖`2=1

‖a• ∗ b•‖`2 = sup
b• 6=0•

‖a• ∗ b•‖`2
‖b•‖`2

≤ ‖a•‖`1

4. Let b•, c• ∈ `2(Z). We have

〈a• ∗ b•, c•〉`2 =
∑
j∈Z

∑
l∈Z

aj−lblcj

=
∑
l∈Z

∑
j∈Z

al−jcjbl =
∑
l∈Z

(a• ∗ c•)lbl = 〈b•, a• ∗ c•〉`2 ,

which implies the self-adjointness of a•∗.

5. A linear, continuous and self-adjoint operator T : H −→ H between Hilbert spaces satisfies
‖T‖H→H = sup‖x‖H≤1 |〈Tx, x〉H| = supx 6=0H

|〈Tx,x〉H|
‖x‖2
H

. (cp. Werner [2006], V.5.7). Since a•
is linear, continuous and self-adjoint by (2.) and (4.), we obtain for all b• ∈ `2 \ {0} that

‖a•∗‖`2→`2 ≥
|〈a• ∗ b•, b•〉`2 |
‖b•‖2`2

.

Hence,

|〈a• ∗ b•, b•〉`2 | ≤ ‖a•∗‖`2→`2 ‖b•‖
2
`2

152



6. If aj = a−j for all j ∈ Z, then the assertion immediately follows from (5.) combined with
(3.).
For arbitrary a• ∈ `1(Z) ∩ `2(Z), note that using similar calculations as in (1.) we obtain

|〈a• ∗ b•, b•〉`2 |2 =

∣∣∣∣∣∣
∑
j∈Z

∑
l∈Z

aj−lblbj

∣∣∣∣∣∣
2

≤

∑
j∈Z

∣∣∣bj∣∣∣2

∑
j∈Z

∣∣∣∣∣∣
∑
l∈Z

aj−lbl

∣∣∣∣∣∣
2


≤ ‖b•‖2`2 ‖a•‖`1
∑
j∈Z

∑
m∈Z
|am| |bj−m|2

≤ ‖b•‖2`2 ‖a•‖`1
∑
m∈Z
|am|

∑
j∈Z
|bj−m|2

= ‖b•‖4`2 ‖a•‖
2
`1 ,

which completes the proof.

Recall that the real density g ∈ L 2 of the observations satisfies g = f ?©ϕ with both f and
ϕ belonging to L 2. Consequently, the Fourier coefficients g• = (gj)j∈Z belong to both `2, since
‖g‖L 2 = ‖g•‖`2 by Parseval’s identity, and to `1 due to the convolution theorem. Indeed, since
gj = fjϕj for all j ∈ Z, we obtain ‖g•‖`1 ≤ ‖f•‖`2 ‖ϕ•‖`2 < ∞ due to the Cauchy-Schwarz
inequality.

Corollary D.1.4 (Discrete convolution with the coefficients of a density). Let
g ∈ D with Fourier coefficients g• = (gj)j∈Z in `1 ∩ `2. Then, the discrete convolution
operator g•∗ : `2 → `2 is linear, bounded and self-adjoint.

Proof of Corollary D.1.4. The assumption g ∈ L 2 implies g• ∈ `2 due to Parseval’s identity.
The density g is real-valued, hence, we have gj = g−j for all j ∈ Z (cp. (4.2.3)). The claim then
immediately follows from Proposition D.1.3.

Under an additional assumption on the space (of real-valued) functions L 2(g), the operator
g•∗ is a non-negative. Hence, there exists an operator (g•∗)1/2 such that

∥∥∥(g•∗)1/2ξ•
∥∥∥2

`2
=

〈g• ∗ ξ•, ξ•〉`2 . This is used frequently in the proofs below.

Proposition D.1.5 (Non-negative deconvolution operator). Assume
{
|ξ| : ξ ∈ L 2} ⊆

L 2(g), where g is a density with Fourier coefficients in `1 ∩ `2. Then, g•∗ is a non-negative
operator and there exists (g•∗)1/2 such that∥∥∥(g•∗)1/2ξ•

∥∥∥2

`2
= 〈g• ∗ ξ•, ξ•〉`2 = ‖ξ‖2L 2(g) .

Proof of Proposition D.1.5. Let ξ ∈ L 2(g) with ξ =
∑
j∈Z ξjej , then

〈g• ∗ ξ•, ξ•〉`2 =
∑
j∈Z

ξj
∑
l∈Z

gj−lξl =
∑
j∈Z

ξj
∑
l∈Z

E (el(Y )ej(−Y )) ξl = E |ξ(Y )|2 = ‖ξ‖2L 2(g) ≥ 0.
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Hence, if for all ξ ∈ L 2 we also have |ξ| ∈ L 2(g) (this is a space of real-valued functions!), then
g•∗ is a non-negative operator from `2 to `2. Consequently, there exists a non-negative operator
(g•∗)1/2 such that∥∥∥(g•∗)1/2ξ•

∥∥∥2

`2
= 〈g• ∗ ξ•, ξ•〉`2 = ‖ξ‖2L 2(g)

for all ξ ∈ L 2.

Remark D.1.6 (Operator norm of non-negative operators). Let T : H → H be a non-
negative operator on the Hilbert space H. Then there exists T 1/2 such that

|〈Th, h〉H| =
∣∣∣〈T 1/2h, T 1/2h〉H

∣∣∣ =
∥∥∥T 1/2h

∥∥∥2

H
∀h ∈ H.

Taking the supremum over all ‖h‖H ≤ 1, we obtain

‖T‖H→H = sup
‖h‖H≤1

|〈Th, h〉| = sup
‖h‖2
H≤1

∥∥∥T 1/2h
∥∥∥2

H
=
∥∥∥T 1/2

∥∥∥2

H→H
.

�

D.2 Auxiliary results used in the proof of Proposition 4.2.1

Lemma D.2.1 (Control for the canonical U-statistic – indirect test).
Consider {Yj}nj=1

iid∼ g ∈ L 2 and for k ∈ N the kernel h : [0, 1)2 −→ R given by

h(y1, y2) =
∑
|j|∈JkK

(ej(−y1)− gj)(ej(y2)− gj)
|ϕj |2

, ∀ y1, y2 ∈ [0, 1),

which is real-valued, bounded, symmetric and fulfils (D.1.1). Let νk and mk as in (4.2.8),
then the quantities

A = 4ν4
k

B =
√

8 ‖g•‖`2ν
3
k ≤ 3 ‖g•‖`2 ν

3
k

C = D = 2 ‖g•‖`2 ν
2
k (D.2.1)

satisfy the condition (D.1.2) in Proposition D.1.1. If, in addition, L 2(g) =
{
|ξ| : ξ ∈ L 2}

then also

D = 4 ‖g•‖`1 m
2
k (D.2.2)

satisfies the condition (D.1.2) in Proposition D.1.1.

Proof of Lemma D.2.1. We first check the conditions on the kernel h.

1. h is real-valued. Let y1, y2 ∈ [0, 1), then

h(y1, y2) =
∑
|j|∈JkK

(ej(y1)− gj)(ej(−y2)− gj)
|ϕj |2
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where we change the summation index from j to −l

=
∑
|l|∈JkK

(e−l(y1)− g−l)(e−l(−y2)− g−l)
|ϕl|2

and use that el(y) = e−l(−y) for all l ∈ Z

=
∑
|l|∈JkK

(el(−y1)− g−l)(el(y2)− g−l)
|ϕl|2

since the coefficients of (real-valued) densities satisfy gl = g−l for all l ∈ Z, we have

=
∑
|l|∈JkK

(el(−y1)− gl) (el(y2)− gl)
|ϕl|2

= h(y1, y2).

2. h is symmetric. Let y1, y2 ∈ [0, 1), then

h(y1, y2) =
∑
|j|∈JkK

(ej(−y1)− gj)
(
ej(y2)− gj

)
|ϕj |2

where we change the summation index form j to −l

=
∑
|l|∈JkK

(el(y1)− g−l)
(
el(−y2)− g−l

)
|ϕl|2

and use the coefficients of (real-valued) densities satisfy gl = g−l for all l ∈ Z

=
∑
|l|∈JkK

(el(y1)− gl) (el(−y2)− gl)
|ϕl|2

= h(y2, y1).

3. h is bounded. Let y1, y2 ∈ [0, 1), then

|h(y1, y2)| =

∣∣∣∣∣∣
∑
|j|∈JkK

(ej(−y1)− gj)
(
ej(y2)− gj

)
|ϕj |2

∣∣∣∣∣∣ ≤
∑
|j|∈JkK

∣∣∣(ej(−y1)− gj)
(
ej(y2)− gj

)∣∣∣
|ϕj |2

≤
∑
|j|∈JkK

4
|ϕj |2

<∞.

4. h satisfies (D.1.1). Let Y1 ∼ g, y2 ∈ [0, 1), then

Eh(Y1, y2) =
∑
|j|∈JkK

(Eej(−Y1)− gj)
(
ej(y2)− gj

)
|ϕj |2

= 0,

since Eej(−Y1) = gj .

We now first calculate quantities A, B, C that satisfy (D.1.2). Then by the discussion above,
D = C also satisfies (D.1.2).

1. The quantity A. From

‖(ej − gj)(e−l − gl)‖L∞ ≤ 4 and |ϕj | ≤ 1 for all j, l ∈ Z (D.2.3)

we immediately obtain

sup
y1,y2∈[0,1)

|h(y1, y2)| = ‖h‖L∞ ≤ 4
∑
|j|∈JkK

1
|ϕj |4

= 4ν4
k = A.
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2. The quantity B. Note that E(ej(−Y1)el(Y1)) = E(ej−l(−Y1)) = gj−l for all j, l ∈ Z.
Hence, for all y2 ∈ [0, 1) we obtain

E |h(Y1, y2)|2 = var

 ∑
|j|∈JkK

(ej(−Y1)− gj)
(
ej(y2)− gj

)
|ϕj |2


= var

 ∑
|j|∈JkK

ej(−Y1)

(
ej(y2)− gj

)
|ϕj |2


≤ E

∣∣∣∣∣∣
∑
|j|∈JkK

ej(−Y1)

(
ej(y2)− gj

)
|ϕj |2

∣∣∣∣∣∣
2

(D.2.4)

=
∑
|j|∈JkK

∑
|l|∈JkK

E(ej(−Y1)el(Y1))

(
ej(y2)− gj

)
|ϕj |2

(el(−y2)− gl)
|ϕj |2

=
∑
|j|∈JkK

(
ej(y2)− gj

)
|ϕj |2

∑
|l|∈JkK

gj−l
(el(−y2)− gl)
|ϕj |2

, (D.2.5)

which can be written in terms of a discrete convolution. For that purpose, let us define
the `1 ∩ `2-sequences aj := gj1{|j|∈J2kK} and bj := ej(−y2)−gj

|ϕj |2
1{|j|∈JkK} for j ∈ Z. Therefore,

we can write

∑
|j|∈JkK

(
ej(y2)− gj

)
|ϕj |2

∑
|l|∈JkK

gj−l
(el(−y2)− gl)
|ϕj |2

= 〈a• ∗ b•, b•〉`2 .

Now, we can make use of the properties of the discrete convolution operator derived in
Proposition D.1.3. By 6. in Proposition D.1.3, we obtain

〈a• ∗ b•, b•〉`2 ≤ ‖a•‖`1 ‖b•‖`2 =

 ∑
|j|∈J2kK

|gj |


 ∑
|j|∈JkK

∣∣∣ej(y2)− gj
∣∣∣2

|ϕj |4


≤ (4k)1/2

 ∑
|j|∈J2kK

|gj |2
1/2

 ∑
|j|∈JkK

∣∣∣ej(y2)− gj
∣∣∣2

|ϕj |4

 ,
where we applied the Cauchy-Schwarz inequality in the last step. Combining the last
bound with (D.2.5), (D.2.3) and (2k)1/2 ≤ ν2

k , it follows

sup
y2∈[0,1)

E |h(Y1, y2)|2 ≤ 8ν4
k ‖g•‖`2 = B2.

3. The quantity C. Note that

E(ej(−Y1)− gj)(el(Y1)− gl) = E(ej(−Y1)el(Y1))− gjEel(Y1)− glEej(−Y1) + gjgl

= gj−l − gjgl − glgj + gjgl = gj−l − gjgl

156



for all j, l ∈ Z. Therefore, we obtain

E |h(Y1, Y2)|2

= E

 ∑
|j|∈JkK

(ej(−Y1)− gj)(ej(Y2)− gj)
|ϕj |2

∑
|l|∈JkK

(el(Y1)− gl)(el(−Y2)− gl)
|ϕl|2


=

∑
|j|∈JkK

1
|ϕj |2

∑
|l|∈JkK

|gj−l − gjgl|
2

|ϕl|2

≤ 2
∑
|j|∈JkK

1
|ϕj |2

∑
|l|∈JkK

|gj−l|2

|ϕl|2
+ 2

∑
|j|∈JkK

|gj |2

|ϕj |2
∑
|l|∈JkK

|gl|2

|ϕl|2
. (D.2.6)

To the second summand we apply the Cauchy Schwarz inequality

2
∑
|j|∈JkK

|gj |2

|ϕj |2
∑
|l|∈JkK

|gl|2

|ϕl|2
= 2

 ∑
|j|∈JkK

|gj |2

|ϕj |2

2

≤ 2

 ∑
|j|∈JkK

|gj |4
 ∑

|j|∈JkK

1
|ϕj |4


(D.2.7)

≤ 2ν4
k ‖g•‖

2
`2 , (D.2.8)

where we additionally exploited that |gj | ≤ 1 for all j ∈ Z. The first summand is rewritten
in terms of a discrete convolution. We define the `1 ∩ `2-sequences cj := |gj |2 1{|j|∈J2kK}
and dj := 1

|ϕj |2
1{|j|∈JkK} for j ∈ Z. Then,

2
∑
|j|∈JkK

1
|ϕj |2

∑
|l|∈JkK

|gj−l|2

|ϕl|2
= 2〈c• ∗ d•, d•〉`2 .

By 6. of Proposition D.1.3 this is bounded by

〈c• ∗ d•, d•〉`2 ≤ ‖c•‖`1 ‖d•‖`2 = ‖g•‖2`2 ν
4
k .

Combining this bound with (D.2.7) and (D.2.6), we obtain

E |h(Y1, Y2)|2 ≤ 2 ‖g•‖2`2 ν
4
k + 2 ‖g•‖`2 ν

4
k = 4 ‖g•‖2`2 ν

4
k = C2,

which proves the first part of the assertion.

4. The quantity D. Let H be the operator defined in (D.1.3) with Hξ(y) = Eh(Y1, y)ξ(Y ),
y ∈ [0, 1). Assume L 2(g) =

{
|ξ| : ξ ∈ L 2}. Hence, we can us the representation (D.1.6).

Let ξ ∈ L 2(g), which implies ξ =
∑
j∈Z ξjej ∈ L 2. Exploiting

E (ej(−Y1)− gj) ξ(Y1) =
∑
l∈Z

ξlEej(−Y1)el(Y1)− gjEξ(Y1) =
∑
l∈Z

ξlgj−l − gjEξ(Y1)

= (g• ∗ ξ•)j − gjEξ(Y1)

and |gj | ≤ 1 for all j ∈ Z straightforward calculations show

〈Hξ, ξ〉L 2(g) =
∫ 1

0
(Hξ)(y)ξ(y)g(y)d(y) =

∫ 1

0

∫ 1

0
h(z, y)ξ(z)g(z)ξ(y)g(y)dzdy

=
∑
|j|∈JkK

1
|ϕj |2

∫ 1

0

∫ 1

0
(ej(−z)− gj)(ej(y)− gj)ξ(z)ξ(y)g(z)g(y)dzdy

=
∑
|j|∈JkK

1
|ϕj |2

(E(ej(−Y1)− gj)ξ(Y1))
(
E(ej(Y2)− gj)ξ(Y2)

)

=
∑
|j|∈JkK

|E(ej(−Y1)− gj |2

|ϕj |2
≤ m2

k

∑
|j|∈JkK

|(g• ∗ ξ•)j − gjEξ(Y1)|2

≤ 2m2
k

(
‖g• ∗ ξ•‖2`2 + ‖g•‖`1 ‖ξ‖

2
L 2(g)

)
. (D.2.9)
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Under the assumption L 2(g) =
{
|ξ| : ξ ∈ L 2}, the operator g•∗ is non-negative due to

Proposition D.1.5. Hence, there exists (g•∗)1/2 such that

(g•∗)1/2
(
(g•∗)1/2ξ•

)
= g• ∗ ξ•.

Since the operator norm is given by

∥∥∥(g•∗)1/2
∥∥∥
`2→`2

= sup
ζ•∈`2,ζ 6=0

∥∥∥(g•∗)1/2ζ•
∥∥∥
`2

‖ζ‖`2

we can write (with ζ = (g•∗)1/2ξ)

‖g• ∗ ξ•‖2`2 =
∥∥∥(g•∗)1/2(g•∗)1/2ξ•

∥∥∥2

`2
≤
∥∥∥(g•∗)1/2

∥∥∥2

`2→`2

∥∥∥(g•∗)1/2ξ•
∥∥∥2

`2

= ‖(g•∗)‖`2→`2 ‖ξ‖
2
L 2(g) ≤ ‖g•‖`1 ‖ξ‖

2
L 2(g) ,

where the second last equality is due to Proposition D.1.5 with Remark D.1.6 and the last
inequality due to 6. in Proposition D.1.3. Combining this bound with (D.2.9) and the
representations (D.1.5) and (D.1.6), we obtain

sup
{
E(h(Y1, Y2)ζ(Y1)ξ(Y2),Eζ2(Y1) ≤ 1,Eξ2(Y2) ≤ 1

}
= ‖H‖L 2(g)→L 2(g) = sup

{∣∣∣〈Hξ, ξ〉L 2(g)

∣∣∣ : ‖ξ‖L 2(g) ≤ 1
}
≤ 4m2

k ‖g•‖`1 = D.

Lemma D.2.2 (Control for the linear term – indirect test). Consider random vari-
ables {Yj}nj=1

iid∼ g = f ?©ϕ ∈ L 2 with joint distribution Pf and let g◦ = f◦ ?©ϕ ∈ L 2. For
k ∈ N consider q2

k(f − f◦) and mk as defined in (4.2.4) and (4.2.8), respectively. Then the
linear centred statistic Vn defined in (4.2.7) satisfies for all x ≥ 1 and n ≥ 1

Pf

(
2Vn ≤ −x2c1

(
1 ∨ m

2
k

n

)
m2
k

n
− 1

2q2
k(f − f◦)

)
≤ exp(−x),

where c1 = 8 ‖g•‖`1 + ‖ϕ•‖2`2 .

Proof of Lemma D.2.2. Introduce the L 2-function ψ :=
∑
|l|∈JkK

gl−g◦l
|ϕl|2

el and independent and
identically distributed random variables Zj := 2ψ(Yj) for j ∈ JnK. Note that Zj , j ∈ JkK are
real-valued due to the symmetry of the summation and the symmetry of the coefficients of a
real-valued function, see Remark D.2.3 below. We intend to apply Proposition D.1.2 to

Vn = 1
n

∑
j∈JnK

(Zj − Ef (Zj)).

For this purpose we compute the required quantities v and b. Consider b. Subsequently using
the identity gl − g◦l = (fl − f◦l )ϕl for l ∈ Z, which is due to the convolution theorem, and the
Cauchy-Schwarz inequality, it follows

|Z1| ≤ 2 ‖ψ‖L∞ ≤ 2m2
k

∑
|l|∈JkK

|gl − g◦l | = 2m2
k

∑
|l|∈JkK

|(fl − f◦l )ϕl|

≤ 2m2
k

 ∑
|l|∈JkK

|fl − f◦l |
2

1/2 ∑
|l|∈JkK

|ϕl|2
1/2

≤ 2m2
kqk(f − f◦) ‖ϕ•‖`2 =: b. (D.2.10)
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Next, consider v. Since Ef(ej(−Y1)el(Y1)) = gj−l for all j, l ∈ Z, we obtain

Ef |Z1|2 = 4Ef |ψ(Y1)|2 = 4
∑
|j|∈JkK

∑
|l|∈JkK

gl − g◦l
|ϕl|2

Ef (el(−Y1)ej(Y1))
gj − g◦j
|ϕj |2

= 4
∑
|j|∈JkK

gl − g◦l
|ϕl|2

∑
|l|∈JkK

gj−l
gj − g◦j
|ϕj |2

,

which we rewrite in terms of a discrete convolution. Let us introduce `1 ∩ `2-sequences aj :=
gj1{|l|∈J2kK} and dj := (gj−g◦j )

|ϕj |2
1{|j|∈JkK} for j ∈ Z. Exploiting 6. of Proposition D.1.3 and the

identity (gj − g◦j ) = (fj − f◦j )ϕj , j ∈ Z, it follows

Ef |Z1|2 = 4
∑
|j|∈JkK

gl − g◦l
|ϕl|2

∑
|l|∈JkK

gj−l
gj − g◦j
|ϕj |2

= 4〈a• ∗ d•, d•〉 ≤ 4 ‖a•‖`1 ‖d•‖
2
`2

≤ 4
∑
|j|∈JkK

∣∣∣gj − g◦j ∣∣∣2
|ϕj |4

‖g•‖`1 ≤ 4m2
kq2
k(f − f◦) ‖g•‖`1 =: v. (D.2.11)

The claim of Lemma D.2.2 now follows from Proposition D.1.2 with b and v as in (D.2.10) and
(D.2.11), respectively. Indeed, making use of 2ac ≤ a2

ε + c2ε for any a, c, ε > 0, (D.2.10) implies
for ε1, ε2 > 0

bx
3n ≤ ε1q2

k(f − f◦) + x2

9ε1
‖ϕ•‖2`2

m4
k

n2

and √
2vx
n
≤ ε2q2

k(f − f◦) + 2x
ε2

m2
k

n
‖g•‖`1 .

Combining both bounds with ε1 = ε2 = 1
4 yields for all x ≥ 1√

2vx
n

+ bx
3n ≤

1
2q2

k(f − f◦) + x2m
2
k

n

(
8 ‖g•‖`1 + 4

9 ‖ϕ•‖
2
`2
m2
k

n

)

≤ 1
2q2

k(f − f◦) + x2m
2
k

n

(
1 ∨ m

2
k

n

)(
8 ‖g•‖`1 + 4

9 ‖ϕ•‖
2
`2

)
,

Hence, the assertion follows from Proposition D.1.2 by the usual symmetry argument.

Remark D.2.3 (Zj, j ∈ JkK real-valued). Zj, j ∈ JkK, defined in the proof of Lemma D.2.2
are real-valued, since for all y ∈ [0, 1), we have

ψ(y) =
∑
|l|∈JkK

gl − g◦l
|ϕl|2

el(y) =
∑
|l|∈JkK

gl − g◦l
|ϕl|2

e−l(y)

where we change the summation from l to −j

=
∑
|j|∈JkK

g−j − g◦−j
|ϕ−j |2

ej(y)

and exploit that for real-valued densities g−j = gj

=
∑
|j|∈JkK

gj − g◦j
|ϕj |2

ej(y) = ψ(y).

�
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D.3 Auxiliary results used in the proof of Proposition 4.4.1

Lemma D.3.1 (Control for the canonical U-statistic - direct test).
Consider {Yj}nj=1

iid∼ g ∈ L 2 and for k ∈ N the kernel h : [0, 1)2 −→ R given by

h(y1, y2) =
∑
|j|∈JkK

(ej(−y1)− gj)(ej(y2)− gj), ∀ y1, y2 ∈ [0, 1),

which is real-valued, bounded, symmetric and fulfils (D.1.1). The quantities

A = 8k

B =
√

8 ‖g•‖`2(2k)3/4 ≤ 3 ‖g•‖`2 (2k)3/4

C = D = 2 ‖g•‖`2 (2k)1/2 (D.3.1)

satisfy the condition (D.1.2) in Proposition D.1.1. If, in addition, L 2(g) =
{
|ξ| : ξ ∈ L 2}

then also

D = 4 ‖g•‖`2 (D.3.2)

satisfies the condition (D.1.2) in Proposition D.1.1.

Proof of Lemma D.3.1. Setting |ϕj |2 = 1 for all |j| ∈ JkK, the assertion immediately follows
from Lemma D.2.1.

Lemma D.3.2 (Control for the linear term - direct test). Let {Yj}nj=1
iid∼ g = f ?©ϕ ∈

L 2 with joint distribution Pf and let g◦ = f◦ ?©ϕ ∈ L 2. For k ∈ N consider q2
k(g − g◦) as

defined in (4.4.1) with f, f◦ replaced by g, g◦. Then the linear centred statistic Vd
n defined

in (4.4.4) satisfies for all x ≥ 1 and n ≥ 1

Pf

(
2Vd

n ≤ −x2c1

(
1 ∨ (2k)1/2

n

)
(2k)1/2

n
− 1

2q2
k(g − g◦)

)
≤ exp(−x),

where c1 = 12 ‖g◦•‖`2 + 1.

Proof of Lemma D.3.2. Introduce the L 2-function ψ :=
∑
|l|∈JkK (gl − g◦l ) el and independent

and identically distributed random variables Zj := 2ψ(Yj) for j ∈ JnK. Note that Zj , j ∈ JkK are
real-valued due to the symmetry of the coefficients of a real-valued function and the summation.
We intend to apply Proposition D.1.2 to

Vd
n = 1

n

∑
j∈JnK

(Zj − Ef (Zj)).

For this purpose we compute the required quantities v and b. Consider b. By the Cauchy-
Schwarz inequality, it follows

|Z1| ≤ 2 ‖ψ‖L∞ ≤ 2
∑
|l|∈JkK

|gl − g◦l | ≤ 2(2k)1/2

 ∑
|l|∈JkK

|gl − g◦l |
2

2

= 2(2k)1/2qk(g − g◦) =: b. (D.3.3)
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Next, consider v. Since Ef(ej(−Y1)el(Y1)) = gj−l for all j, l ∈ Z, we obtain

Ef |Z1|2 = 4Ef |ψ(Y1)|2 = 4
∑
|j|∈JkK

∑
|l|∈JkK

(
gl − g◦l

)
Ef (el(−Y1)ej(Y1))

(
gj − g◦j

)
= 4

∑
|j|∈JkK

(
gl − g◦l

) ∑
|l|∈JkK

gj−l
(
gj − g◦j

)
,

which we rewrite in terms of a discrete convolution. Let us introduce `1 ∩ `2-sequences aj :=
gj1{|l|∈J2kK} and dj := (gj − g◦j )1{|j|∈JkK} for j ∈ Z. Exploiting 6. of Proposition D.1.3, it follows

Ef |Z1|2 = 4
∑
|j|∈JkK

(
gl − g◦l

) ∑
|l|∈JkK

gj−l
(
gj − g◦j

)
= 4〈a• ∗ d•, d•〉 ≤ 4 ‖a•‖`1 ‖d•‖

2
`2

≤ 4
∑
|j|∈JkK

∣∣∣gj − g◦j ∣∣∣2 ‖g•‖`1 ≤ 4q2
k(g − g◦)

∑
|j|∈J2kK

|gj | =: v. (D.3.4)

The claim of Lemma D.2.2 now follows from Proposition D.1.2 with b and v as in (D.3.3) and
(D.3.4), respectively. Indeed, making use of 2ac ≤ a2

ε + c2ε for any a, c, ε > 0, (D.2.10) implies
for ε1, ε2 > 0

bx
3n ≤ ε1q2

k(g − g◦) + x2

9ε1

2k
n2

and √
2vx
n
≤ ε2q2

k(f − f◦) + 2x
ε2n

 ∑
|j|∈J2kK

|gj |


≤ ε2q2

k(f − f◦) + 2x
ε2n

(4k)1/2

 ∑
|j|∈J2kK

|gj |2
1/2

≤ ε2q2
k(f − f◦) + 2

√
2x
ε2

(2k)1/2

n
‖g•‖`2 .

Combining both bounds with ε1 = ε2 = 1
4 yields for all x ≥ 1√

2vx
n

+ bx
3n ≤

1
2q2

k(g − g◦) + x2 (2k)1/2

n

(
12 ‖g•‖`2 + 4

9
(2k)1/2

n

)

≤ 1
2q2

k(f − f◦) + x2 (2k)1/2

n

(
1 ∨ (2k)1/2

n

)(
12 ‖g•‖`1 + 4

9

)
.

Hence, the assertion follows from Proposition D.1.2 by the usual symmetry argument.

D.4 Calculations for the χ2-divergence

Lemma D.4.1 (χ2-divergence over hypercubes over multiple classes). Let S be
an arbitrary index set of finite cardinality |S| ∈ N. For each s ∈ S assume ks ∈ N and
θs• ∈ `2(N) ⊆ RN. For τ ∈ {±}k

s

define coefficients θs,τ• ∈ `2(Z) and functions gs,τ ∈ L 2 by
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setting

θs,τj =


τ|j|θ

s
|j| |j| ∈ JksK

1 j = 0
0 |j| > ks

and gs,τ =
ks∑

j=−ks
θs,τj ej = e0 +

∑
|j|∈JksK

θs,τj ej .

Assuming gs,τ ∈ D for each s ∈ S and τ ∈ {±}k
s

, we consider the mixture P1 with
probability density

1
|S|

∑
s∈S

 1
2ks

∑
τ∈{±}ks

∏
i∈JnK

gs,τ (zi)

 , for zi ∈ [0, 1), i ∈ JnK

and denote P0 = Pf◦ with probability density∏
i∈JnK

1[0,1)(zi), for zi ∈ [0, 1), i ∈ JnK.

Then, the χ2-divergence satisfies

χ2(P1,P2) ≤ 1
|S|2

∑
s,t∈S

exp

2n2 ∑
j∈Jks∧ktK

(θsjθtj)2

− 1.

Proof of Lemma D.4.1. We remind the reader of the following representation of the χ2 diver-
gence for measures P1 � P0 and i.i.d. random variables (Zj)j∈JnK

χ2(P1,P0) = E0

(dP1
dP0

(Z1, . . . , Zn)
)2
− 1.

Let zj ∈ [0, 1), j ∈ JnK, then the likelihood ratio becomes

dP1
dP0

(z1, . . . , zn) = 1
|S|

∑
s∈S

 1
2ks

∑
τ∈{±}ks

∏
i∈JnK

gs,τ (zi)

 ,
since P0 is a product over uniform densities. Squaring, taking the expectation under P0 and
exploiting the independence yields

E0

(dP1
dP0

(Z1, . . . , Zn)
)2

= 1
|S|2

∑
s,t∈S

1
2ks

1
2kt

∑
τ∈{±}ks

∑
η∈{±}kt

∏
i∈JnK

E0(gs,τ (Zj)gt,η(Zj))

= 1
|S|2

∑
s,t∈S

1
2ks

1
2kt

∑
τ∈{±}ks

∑
η∈{±}kt

(
E0(gs,τ (Z1)gt,η(Z1))

)n
Let us calculate

E0(gs,τ (Z1)gt,η(Z1)) =
∫
gs,τ (z)gt,η(z)dz =

ks∑
j=−ks

kt∑
l=−kt

θs,τj θt,τl

∫
ej(z)el(z)dz

=
ks∑

j=−ks

kt∑
l=−kt

θs,τj θt,τj δj,−l

=
ks∑

j=−ks
θs,τj θt,τ−j = 1 + 2

∑
j∈Jks∧ktK

θs,τj θt,ηj ,
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where we used the orthonormality of (ej)j∈Z and the symmetry of θs,τ• respectively θt,η• . Applying
the inequality 1 + x ≤ exp(x), which holds for all x ∈ R we obtain

E0(gs,τ (Z1)gt,η(Z1)) = 1 + 2
∑

j∈Jks∧ktK
θs,τj θt,ηj

≤ exp

2
∑

j∈Jks∧ktK
θs,τj θt,ηj

 =
∏

j∈Jks∧ktK
exp

(
2θs,τj θt,ηj

)
.

Hence,

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤ 1
|S|2

∑
s,t∈S

1
2ks

1
2kt

∑
τ∈{±}ks

∑
η∈{±}kt

∏
j∈Jks∧ktK

exp
(
2nθs,τj θt,ηj

)
,

where we can apply the Interchanging Lemma C.1.1 to the η-summation with Jηjj = exp(2nθs,τj θt,ηj )
and obtain

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤ 1
|S|2

∑
s,t∈S

1
2ks

∑
τ∈{±}ks

∏
j∈Jks∧ktK

exp
(
−2nθs,τj θtj

)
+ exp

(
2nθs,τj θtj

)
2 .

Again applying Lemma C.1.1 to the τ -summation with J
τj
j = exp(−2nθs,τj θtj)+exp(2nθs,τj θtj)

2 yields

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤ 1
|S|2

∑
s,t∈S

∏
j∈Jks∧ktK

exp
(
−2nθsjθtj

)
+ exp

(
2nθsjθtj

)
2

= 1
|S|2

∑
s,t∈S

∏
j∈Jks∧ktK

cosh(2nθsjθtj).

Since cosh(x) ≤ exp(x2/2), x ∈ R (look at the series expansions!), we obtain

E0

(dP1
dP0

(Z1, . . . , Zn)
)2
≤ 1
|S|2

∑
s,t∈S

∏
j∈Jks∧ktK

exp
(

2n2
(
θsjθ

t
j

)2
)

= 1
|S|2

∑
s,t∈S

exp

2n2 ∑
j∈Jks∧ktK

(
θsjθ

t
j

)2
 ,

which completes the proof.
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Chapter 5

Testing under privacy constraints

In this chapter we investigate the compromise between protecting the privacy of
an individual by transforming the data before it is released and being able to make
accurate inference. We study different methods that can generate privatized versions
of sensitive data that a data holder is reluctant to share. Moreover, we examine how
meaningful the statistical results based on the privatized data can be. Under an
additional local privacy constraints we consider the goodness-of-fit testing problem
for a circular density that has already been considered in Chapter 3 and observe
that standard privatization methods do not yield minimax rate, but cause a twofold
deterioration of the radii.

5.1 Differential local privacy and privatized testing

Differential local privacy. In this section we assume that the raw sample

Yk
iid∼ g = f ?©ϕ, k ∈ JnK (5.1.1)

is not available to the statistician. Instead, we receive a privatized or sanitized sample Zk | Yk =
yk that is obtained from (Yk)k∈JnK by a stochastic transformation Q, called privacy mechanism,
stochastic channel or data-release mechanism, with regular conditional distribution Q(· | yk)
given Yk = yk. Formally, given two measurable spaces (Y, σ(Y)) and (Z, σ(Z)), where Y,Z
take values in Y and Z respectively and are defined on a common probability space, a privacy
mechanism Q can be associated with a Markov kernel κQ : (Y, σ(Z)) −→ [0, 1] with κQ(yk, B) =
P(Zk ∈ B | Yk = yk) = Q(B | yk) for all yk ∈ Y and B ∈ σ(Z). In the computer science
literature, the samples (Yk)k∈JnK and (Zk)k∈JnK are often called databases. We assume that the
stochastic channel satisfies a privacy constraint, which we formalize next. We point out that the
following definition is by convention usually called α-differential local privacy. The parameter
α, however, is in the context of testing also associated with the type I error, which is why we
call it γ-differentially private.

Definition 5.1.1 (γ-differential privacy). Let Y be a random variables on (Y, σ(Y))
and let Z be random variables on (Z, σ(Z)), where σ(Y), σ(Z) are σ-fields and Y, Z are
defined on a common probability space. The regular conditional distribution of Z given Y
is denoted by Q, i.e.

Z | Y = y ∼ Q(· | y)

We call Z a γ-differentially private view of Y with privacy parameter γ ≥ 0 if the
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conditional distribution satisfies

Q(B | y) ≤ exp(γ) ·Q(B | y′) for all B ∈ σ(Z) and y, y′ ∈ Y. (5.1.2)

The privacy mechanism is then called γ-differentially locally private. We denote the set
of all γ-differentially locally private mechanism by Qγ .

The sample (Zk)k∈JnK obtained with Q satisfying (5.1.2) is called a γ-differentially locally
private (non-interactive) view of the raw sample (Yk)k∈JnK (5.1.1). The term locally refers
to the fact that to generate the kth sanitized observation Zk we only require the kth raw
observation Yk, thus, the raw data can be stored locally. In contrast to this, there also exists
the concept of global differential privacy, where a data collector is entrusted with the data and
generates a privatized database (Zk)k∈JnK based on the entire raw data set (Yk)k∈JnK. It is called
non-interactive since we neither require the knowledge of the (possibly already generated)
sanitized observations (Zj)j≤k, i.e. the data holders do not need to interact with each other
in order to generate the private views. Naturally, there exist many more concepts of privacy
(smooth privacy, divergence-based privacy, approximate privacy etc.), for a broad overview we
refer the reader to Barber and Duchi [2014].

Related literature. The concept of differential privacy was essentially introduced in the se-
ries of papers Dinur and Nissim [2003], Dwork and Nissim [2004] and Dwork [2006]. Dwork
[2008] gives an overview of the early results in the field. First statistical results are derived in
Wasserman and Zhou [2010] and Hall et al. [2013], where both papers work under global privacy
constraints. Duchi et al. [2018] provide a toolbox of methods for deriving minimax rates of
estimation under a local privacy constraint.

Let us now first heuristically explain the implications of the condition (5.1.2). A small
value of γ (close to 0) corresponds to a high privacy guarantee. In the extreme case γ = 0 the
conditional distributions do not depend on the value of the input data Y . Hence, we achieve total
privacy. Naturally, the privatized sample is then useless for making inference on the distribution
of Y . Large values of γ allow for low privacy, since a change in the original observation can
then yield a completely different distribution for the output random variable and it is thus
easier to draw conclusions about the raw data. Let now formalize the effect (5.1.2) has on the
information about concrete input data points. Assume we want to find out whether the original
(raw) data comes from Person 1 (with value y with associated probability P0 = Q(· | y)) or
from Person 2 (with value y′ 6= y with associated probability P1 = Q(· | y′)). This task can be
formulated in terms of a two-point simple testing problem, which can then be solved using the
Neyman-Pearson-Lemma. The privacy constraint gives a bound for the maximal power a test
can achieve. The following proposition is a reformulation of Theorem 2.4. in Wasserman and
Zhou [2010] and we state its proof in our setting for completeness.

Proposition 5.1.2 (Plausible deniability). Let Z be a γ-differentially private view of Y
obtained through the channel Q. Let y 6= y′. Any level-α-test based on the observation Z
and the channel Q for the task

H0 : {P0 = Q(· | y)} against H1 :
{
P1 = Q(· | y′)

}
has power bounded by α exp(γ).

Proof of Proposition 5.1.2. The Neyman-Pearson Lemma states that the highest possible power
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(i.e. minimal type II error probability) is obtained by a test of the form

∆ := 1{dP1
dP0
≥τ
},

where P1 and P0 are the probability distributions associated with the null hypothesis and the
alternative, respectively, and the threshold τ satisfies

P0(∆ = 1) = P0

(dP1
dP0
≥ τ

)
≤ α.

Note that the distributions P0 = Q(· | y) and P1 = Q(· | y′) satisfy

P1(A) ≤ exp(γ)P0(A)

for any measurable set A. Hence, the power of the test is bounded by

1− P1(∆ = 0) = P1(∆ = 1) ≤ exp(γ)P0(∆ = 1) ≤ exp(γ)α,

which proves the result.

We now give two popular examples of privacy mechanisms that satisfy the privacy constraint
(5.1.2). We start with a reminder of the Laplace distribution.

Reminder 5.1.3 (Laplace distribution). With N ∼ Laplace(µ, b) we denote the distri-
bution with probability density

fLp(x) = 1
2b exp

(
−|x− µ|

b

)
, x ∈ R.

For y, z ∈ R we have yN + z ∼ Laplace(yµ+ z, yb). Moreover,

EN = µ, varN = 2b2.

Example 5.1.4 (Perturbation approach, ”Adding noise”). The perturbation ap-
proach consists of adding centred noise N with Lebesgue density h to the observations,
i.e.

Z := Y +N with N ∼ h, EN = 0.

Then the stochastic channel Q has the density

q(z | y) = h(z − y).

with respect to the Lebesgue measure. The most popular noise density is the Laplace density
with appropriately chosen variance.

Example 5.1.5 (Exponential mechanism). Let ξ : Y × Z −→ [0,∞) be any function
and define the sensitivity of ξ by

δ := sup
x,y∈Y

sup
z∈Z
|ξ(x, z)− ξ(y, z)|
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as the maximal change of ξ that can occur due to altering the input data. Define the density

h(z | y) =
exp(−γ ξ(y,z)2δ )∫
exp(−γ ξ(y,t)2δ )dt

and sample Z ∼ h(· | y). McSherry and Talwar [2007] show that the exponential mechanism
yields a γ-differentially private channel.

Privatized testing task. We denote by D the probability densities in L 2. For a nonpara-
metric regularity class E and a separation set L 2

ρ :=
{
ξ ∈ L 2 : ‖ξ‖L 2 ≥ ρ

}
we aim to solve the

testing task

H0 : f = f◦ against Hρ
1 : f − f◦ ∈ L 2

ρ ∩ E , f ∈ D (5.1.3)

based on privatized views (Zj)j∈JnK of (Yj)j∈JnK, where the (unobservable) raw data are inde-
pendent and identically distributed copies of a circular convolution model Y ∼ g = f ?©ϕ. The
goal is to find a pair of a privacy mechanism Q and a testing procedure {∆α : α ∈ (0, 1)} such
that (5.1.3) is solved optimally. Let us introduce a criterion for optimality. Denote by Pf,Q the
joint distribution of (Zj)j∈JnK if they are obtained from Yj

iid∼ g = f ?©ϕ, j ∈ JnK by applying the
stochastic channel Q. For a stochastic channel Q, a test ∆ based on the observations (Zj)j∈JnK
and ρ > 0 we define the privatized maximal risk as the sum of type I and maximal type II
error probabilities over the ρ-separated alternative

R (∆,Q | E , ρ) := Pf◦,Q(∆(Z1, . . . , Zn) = 1) + sup
f−f◦∈L 2

ρ ∩E
f∈D

Pf,Q(∆(Z1, . . . , Zn) = 0).

The γ-private minimax risk of testing is then given by

R (E , ρ, γ) := inf
Q∈Qγ

inf
∆
R (∆,Q | E , ρ) ,

where the infimum is taken over all possible tests based on privatized observations coming from
a γ-differentially private stochastic channel Q. As usual, we search for the smallest value of
ρ such that the null and the ρ-separated alternative are statistically distinguishable. A value
ρ2 = ρ2(E , γ) is called γ-private minimax radius of testing if for all α ∈ (0, 1) there exist
constants Aα, Aα > 0 such that

(i) for all A ≥ Aα we have R (E , ρ, γ) ≤ α, (upper bound)

(ii) for all A ≤ Aα we have R (E , ρ, γ) ≥ 1− α. (lower bound)

Methodology. In this chapter we fix the testing procedure (inspired by the minimax optimal
procedure derived in Chapter 3) and investigate its performance in combination with different
privatization methods. Throughout this chapter we assume that f and ϕ lie in L 2. Our
methodology heavily depends on this assumption. Consider the Fourier or exponential basis
{ej}j∈Z of L 2 with ej(x) := exp(−2πijx) for x ∈ [0, 1) and j ∈ Z. Each function ξ ∈ L 2

can be represented as a discrete Fourier series ξ =
∑
j∈Z ξjej where ξj := 〈ξ, ej〉L 2 for j ∈ Z.

Expanding the function of interest f in the Fourier basis and applying the circular convolution
theorem we obtain the representation

f =
∑
j∈Z

fjej =
∑
j∈Z

gj · ϕj · ej ,

168



where (ϕj)j∈Z is known and gj = Efej(−Y ), j ∈ Z. Looking at the testing problem (5.1.3) it
seems natural to base a test on an estimation of the quantity

q2(f − f◦) =
∫

[0,1)
(f(x)− f◦(x))2 dx =

∑
j∈Z

∣∣∣fj − f◦j ∣∣∣2 ,
where the last equality is due to Parseval’s theorem. Using a projection approach we, in fact,
estimate the truncated version

q2
k(f − f◦) =

∑
|j|∈JkK

∣∣∣fj − f◦j ∣∣∣2 .
Note that Ef(ej(−Y1)) = gj = fjϕj , which – in case the sample (Ym)m∈JnK is available – is
usually estimated by 1

n

∑
m∈JnK ej(−Ym). This motivates why we consider privacy mechanisms

generating privatized versions of the raw data Ym,m ∈ JnK, which are unbiased estimators of
vectors {ej(−Ym)}j∈JkK, m ∈ JnK for an appropriately chosen dimension k.

Related Literature. The first result for a projection approach for estimating a density under
privacy constraints is due to Wasserman and Zhou [2010], Section 6. In a non-local setting they
are able to achieve the minimax rate using an orthogonal series density estimator with Laplace
perturbation of the coefficients. Let us discuss the results in our model with local constraints.
To our knowledge, so far there has only been work on density estimation and testing problems
in direct models: Duchi et al. [2018] consider orthogonal series density estimation based on
privatized views of the direct observations of the density;

Xk
iid∼ f ∈ L 2([0, 1)), k ∈ JnK.

The non-private minimax estimation risk is well-known to be of order n−
2s

2s+1 , where s is the
smoothness parameter of a Sobolev ellipsoid (cp. (3.1.4) and Illustration 3.2.6). They show that
the local γ-private minimax risk is of order (γ2n)−

2s
2s+2 , providing both a lower and an upper

bound. Butucea et al. [2020] consider Besov ellipsoids with wavelet techniques combined with
a Laplace perturbation approach. Also in this case, the privatization causes a deterioration of
the order of the risk from n−

2s
2s+1 to (n(eγ − 1)2)−

2s
2s+2 (s being the smoothness parameter of

the Besov ellipsoid, we only state the dense zone here for illustration purposes). Note that this
is comparable to the results of Duchi et al. [2018] since for small γ we have γ ≈ eγ − 1. The
results mentioned so far address estimation problems. Concerning testing tasks we mention two
recent papers: Lam-Weil et al. [2020] consider Besov ellipsoids with wavelet techniques combined
with Laplace perturbation and show that the privatized radius of testing is sandwiched between
n−

2s
4s+3 e−γ (lower bound) and (nγ2)−

2s
4s+3 (upper bound) compared to the non-private minimax

radius of testing given by n−
2s

4s+1 . Berrett and Butucea [2020] consider minimax testing of
discrete distributions also for interactive mechanism. As a non-interactive mechanism they
again investigate Laplace perturbations.

Naturally, also other statistical methods apart from orthogonal series approaches have been
investigated under privacy constraints. Kernel estimators are, for instance, treated in Hall
et al. [2013] and Kroll [2019b] under local differential approximate (γ,δ) - privacy, which is
a relaxation of the constraint we consider. These papers consider Laplace perturbation and
Gaussian perturbation (which is only useful in the (γ,δ)-differential privacy context). Kroll
[2019b] also addresses adaptivity issues.
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Future work

5.2 Upper bound for general privatization methods

In this section we derive an upper bound on the γ-private minimax radius of testing under
very general assumptions on the private views. Below we show that these assumptions are
in particular satisfied for the Laplace-perturbation mechanism and the hypercube sampling
scheme. We assume that each data holder m ∈ JnK releases a vector Zm = (Zm,j)|j|∈JkK with
Zm,−j := Zm,j for j ∈ JkK containing private views of (ej(Ym))|j|∈JkK and, thus, of Ym. Note
that the components Zm = (Zm,j)|j|∈JkK mimic the behaviour of ej(·) and e−j(·) and Zm does
not contain a zero element (since e0(Ym) ≡ 1 for any value of Ym, hence, it does not need to
be privatized). Therefore, data holder m only needs to generate the elements (Zm,j)j∈JkK. We
denote by PQ(· | Ym), EQ(· | Ym) the distribution respectively the expectation of Zm given Ym.
For ease of presentation from here on we only consider the case f◦ = 1[0,1) (which translates to
testing against uniformity), but note that is possible to extend the findings in this section to
arbitrary f◦ ∈ L 2.

Assumption 5.2.1 (Assumptions on the private views).
For m ∈ JnK let (Zm,j)j∈JkK ⊆ Ck be a γ-differentially locally private view of Ym via the
channel Q satisfying the following four assumptions.

1. (unbiasedness) For all m ∈ JnK and j ∈ JkK let EQ (Zm,j | Ym) = ej(−Ym), which
implies Ef,Q (Zm,j) = Ef (EQ(Zm,j | Ym)) = Efej(−Ym) = gj .

2. (independence) For all m, l ∈ JnK,m 6= l the vectors (Zm,j)j∈JkK and (Zl,j)j∈JkK are
independent.

3. (conditionally uncorrelated components) Conditionally on Ym the components
of (Zm,j)j∈JkK are uncorrelated, i.e. EQ(Zm,jZm,i | Ym) = EQ(Zm,j | Ym)EQ(Zm,i | Ym)
almost surely for all i, j ∈ JkK, i 6= j and m ∈ JnK.
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4. (variance) Conditionally on Ym the variance is bounded by varQ(Zm,j | Ym) ≤ σ2

for all m ∈ JnK, j ∈ JkK.

Construction of the test statistic. For k ∈ N and a privatized sample Zm = (Zm,j)|j|∈JkK,
m ∈ JnK we consider the quantity

p̂2
k := 1

n(n− 1)
∑

m,l∈JnK
l 6=m

∑
|j|∈JkK

Zm,jZl,j

|ϕj |2
, (5.2.1)

which is an unbiased estimator of q2
k(f− f◦) as soon as Assumption 5.2.1 (1.) is satisfied. Note

that we can rewrite p̂2
k = 1

2Un with the U-statistic

Un :=
(
n

2

)−1 ∑
m,l∈JnK
l 6=m

h(Zm, Zl) (5.2.2)

with kernel h : C2k × C2k −→ R given by

h(z1, z2) :=
∑
|j|∈JkK

z1,jz2,j

|ϕj |2
,

where we index the components of a vector z ∈ C2k in the following way z = (zj)|j|∈JkK =
(z−k, . . . , z−1, z1, . . . , zk). Restricted to V :=

{
z ∈ C2k : zj = z−j

}
the kernel h is symmetric

and real-valued. Indeed,

1. symmetric

h(z1, z2) =
∑
|j|∈JkK

z1,jz2,j

|ϕj |2
=

∑
|j|∈JkK

z1,−jz2,−j

|ϕj |2
=

∑
|j|∈JkK

z1,jz2,j

|ϕj |2
= h(z2, z1),

2. real-valued

h(z1, z2) =
∑
|j|∈JkK

z1,jz2,j

|ϕj |2
=

∑
|j|∈JkK

z1,−jz2,−j

|ϕj |2
=

∑
|j|∈JkK

z1,jz2,j

|ϕj |2
= h(z1, z2).

The next proposition provides an upper bound for the variance of the estimator (5.2.1). We
remark that since we assume f, ϕ ∈ L 2 we have g• = (gj)j∈Z ∈ `1(Z) by the Cauchy-Schwarz
inequality. Let us also recall the notation

ν2
k =

 ∑
|j|∈JkK

1
|ϕj |4

1/2

.

Proposition 5.2.2 (Upper bound for the variance). Assume that the private views
satisfy Assumption 5.2.1 and consider the estimator (5.2.1). For n ≥ 2 and any f ∈ L 2 we
have

varf,Q(p̂2
k) ≤ 4 ‖g•‖`1

{
q2
k(f − f◦)(1 + σ2)ν

2
k

n
+ (1 + σ2)2 ν

4
k

n2

}
.
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Proof of Proposition 5.2.2. Define the function h1 : C2k −→ C by h1(z) := Ef,Qh(z, Z2). Again,
restricted to V :=

{
z ∈ C2k : zj = z−j

}
the function is real-valued. By Lemma A on p. 183 in

Serfling [2009] the variance can be calculated by

varf,Q(Un) =
(
n

2

)−1

(2(n− 1)ξ1 + ξ2) ≤ 4
n
ξ1 + 4

n2 ξ2

with

ξ1 = varf,Q(h1(Z1)) and ξ2 = varf,Q(h(Z1, Z2)).

We start with determining an upper bound for the term ξ1. Note that due to the assumption
(unbiasedness) in Assumption 5.2.1 we have

h1(z) =
∑
|j|∈JkK

zjEf,QZ2,j

|ϕj |2
=

∑
|j|∈JkK

gj

|ϕj |2
zj .

Hence, we obtain the bound

ξ1 = varf,Q(h1(Z1)) ≤ Ef,Q

∣∣∣∣∣∣
∑
|j|∈JkK

gj

|ϕj |2
Z1,j

∣∣∣∣∣∣
2

=
∑

|j|,|l|∈JkK

gj

|ϕj |2
gl

|ϕl|2
Ef,Q(Z1,jZ1,l).

Let j 6∈ {±l}, then by the conditional uncorrelatedness and the unbiasedness of Assump-
tion 5.2.1 it follows

Ef,Q(Z1,jZ1,l) = Ef
(
EQ(Z1,jZ1,l | Y1)

)
= Ef

(
EQ(Z1,j | Y1)EQ(Z1,l | Y1)

)
= Ef(ej(−Y1)el(Y1)) = Ef(ej−l(−Y1)) = gj−l.

Let j ∈ {±l}, then∣∣∣Ef,Q(Z1,jZ1,l)
∣∣∣ ≤ Ef,Q |Z1,j |2 = varf,Q(Z1,j) + |Ef,QZ1,j |2

≤ σ2 + 1 + |Ef(EQ(Z1,j | Y1))|2

= σ2 + 1 + |Efej(−Y1)|2 ≤ σ2 + 2,

since by Eve’s law we have

varf,Q(Z1,j) = Ef(varQ(Z1,j | Y1)) + varf(EQ(Z1,j | Y1))
≤ σ2 + varf(ej(−Y1)) ≤ σ2 + 1.

Hence,

ξ1 ≤
∑

|j|,|l|∈JkK
l=j

|gj |
|ϕj |2

|gl|
|ϕl|2

(σ2 + 2) +
∑

|j|,|l|∈JkK
l=−j

|gj |
|ϕj |2

|gl|
|ϕl|2

(σ2 + 2) +
∑

|j|,|l|∈JkK
l 6∈{±}

|gj |
|ϕj |2

|gl|
|ϕl|2

|gj−l|

≤ 2(σ2 + 2)
∑
|j|∈JkK

|gj |2

|ϕj |4
+

∑
|j|∈JkK

∑
|l|∈JkK

|gj |
|ϕj |2

|gl|
|ϕl|2

|gj−l| . (5.2.3)

We define the sequences a• and b• by aj := |gj |1|j|∈J2kK and bj := |gj |
|ϕj |1|j|∈JkK for j ∈ Z. Then, the

second term can be rewritten as a discrete convolution (we refer to Section D.1, Proposition D.1.3
for the details)∣∣∣∣∣∣

∑
|j|∈JkK

∑
|l|∈JkK

|gj |
|ϕj |2

|gl|
|ϕl|2

|gj−l|

∣∣∣∣∣∣ = |〈a• ∗ b•, b•〉|`2 ,
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where 〈·, ·〉 denotes the inner product of the Hilbert space `2(Z). Since a• ∈ `1 and b• ∈ `2

Proposition D.1.3 (6). implies

|〈a• ∗ b•, b•〉|`2 ≤ ‖a•‖`1 ‖b•‖
2
`2 ≤ ‖g•‖`1

∑
|j|∈JkK

|gj |2

|ϕj |4
.

Inserting this bound into (5.2.3) we obtain

ξ1 ≤ 2(σ2 + 2)
∑
|j|∈JkK

|gj |4

|ϕj |4
+ ‖g•‖`1

∑
|j|∈JkK

|gj |2

|ϕj |4

≤ 4(1 + σ2) ‖g•‖`1
∑
|j|∈JkK

|gj |2

|ϕj |4
.

Additionally applying the circular convolution theorem and the Cauchy-Schwarz inequality we
obtain

∑
|j|∈JkK

|gj |2

|ϕj |4
=

∑
|j|∈JkK

|fj |2

|ϕj |2
≤

 ∑
|j|∈JkK

|fj |4
1/2 ∑

|j|∈JkK

1
|ϕj |4

1/2

≤
∑
|j|∈JkK

|fj |2 ν2
k = q2

k(f − f◦)ν2
k ,

where we used that
√
x+ y ≤

√
x + √y for all x, y ≥ 0 in the last line. Finally, we have the

bound

ξ1 ≤ 4(1 + σ2) ‖g•‖`1 q2
k(f − f◦)ν2

k .

Let us now consider the term ξ2. We have

ξ2 = varf,Q(h(Z1, Z2)) ≤ Ef,Q |h(Z1, Z2)|2

=
∑

|j|,|l|∈JkK

1
|ϕj |2 |ϕl|2

Ef,Q
(
Z1,jZ2,jZ1,lZ2,l

)
=

∑
|j|,|l|∈JkK

1
|ϕj |2 |ϕl|2

Ef,Q
(
Z1,jZ1,l

)
Ef,Q

(
Z2,jZ2,l

)
,

where we use the independence from Assumption 5.2.1. In particular for j ∈ {±l}, from the
variance bound in Assumption 5.2.1 it follows∣∣∣Ef,Q (Z1,jZ1,l

)∣∣∣ ≤ Ef
(
EQ

(∣∣∣Z1,jZ1,l
∣∣∣ | Y1

))
= Ef

(
EQ

(
|Z1,j |2 | Y1

))
= Ef (varQ (Z1,j | Y1)) + Ef |EQ (Z1,j | Y1)|2

≤ σ2 + 1.

Let j 6∈ {±l}, then due to the conditional uncorrelatedness

Ef,Q
(
Z1,jZ1,l

)
= Ef

(
EQ

(
Z1,jZ1,l | Y1

))
= Ef (EQ (Z1,j | Y1)EQ (Z1,l | Y1))

= EQ (ej(−Y1)el(Y1)) = EQ (ej−l(−Y1)) = gj−l.
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Therefore, the following bound holds

ξ2 ≤
∑

|j|,|l|∈JkK
j∈{±l}

1
|ϕj |2 |ϕl|2

∣∣∣Ef,Q (Z1,jZ1,l
)∣∣∣ ∣∣∣Ef,Q (Z2,jZ2,l

)∣∣∣
+

∑
|j|,|l|∈JkK
j 6∈{±l}

1
|ϕj |2 |ϕl|2

∣∣∣Ef,Q (Z1,jZ1,l
)∣∣∣ ∣∣∣Ef,Q (Z2,jZ2,l

)∣∣∣
≤

∑
|j|,|l|∈JkK
j∈{±l}

1
|ϕj |2 |ϕl|2

(σ2 + 1)2 +
∑

|j|,|l|∈JkK
j 6∈{±l}

1
|ϕj |2 |ϕl|2

|gj−l| |gl−j |

≤ 2(σ2 + 1)2 ∑
|j|∈JkK

1
|ϕj |4

+
∑

|j|,|l|∈JkK

1
|ϕj |2 |ϕl|2

|gj−l|2 . (5.2.4)

We define the sequences c• and d• by cj := |gj |2 1|j|∈J2kK and dj := 1
|ϕj |2

1|j|∈JkK for j ∈ Z. Then,
the second term can again be written in terms of a discrete convolution. Precisely,∣∣∣∣∣∣

∑
|j|,|l|∈JkK

1
|ϕj |2 |ϕl|2

|gj−l|2
∣∣∣∣∣∣ = |〈c• ∗ d•, d•〉`2 | ≤ ‖c•‖`1 ‖d•‖

2
`2

≤
∑
|j|∈J2kK

|gj |4
∑
|j|∈JkK

1
|ϕj |4

≤ ‖g•‖`1 ν
4
k .

where we again applied Proposition D.1.3 (6). Inserting this bound into (5.2.4) we obtain

ξ2 ≤ 2 ‖g•‖`1 (σ2 + 1)2ν4
k .

Combining the bounds for ξ1 and ξ2 we get

4 varf,Q(p̂2) = varf,Q(Un) ≤ 4
n
ξ1 + 4

n2 ξ2

≤ 16(σ2 + 1) ‖g•‖`1 q2
k(f − f◦)

ν2
k

n
+ 8 ‖g•‖`1 (σ2 + 1)2 ν

4
k

n2

≤ 16 ‖g•‖`1
{

q2
k(f − f◦)(σ2 + 1)ν

2
k

n
+ (σ2 + 1)2 ν

4
k

n2

}
,

which proves the assertion.

Construction of the test. For α ∈ (0, 1), Cα > 0 (specified below) and k ∈ N let us consider
the test

∆priv
k,α = 1{

p̂2
k
≥Cα(1+σ2)

ν2
k
n

} (5.2.5)

based on the privatized estimator p̂2
k of the distance ‖f − f◦‖2L 2 to the null hypothesis. We

consider the testing task (5.1.3) for the regularity class

ER
a• :=

ξ ∈ L 2 : 2
∑
j∈N

a−2
j |ξj |

2 ≤ R2

 . (5.2.6)

for a strictly positive, monotonically non-increasing sequence a• = (aj)j∈N (see Section 3.1.3 and
Illustration 3.2.6 for more details about the cases covered by this general form). Furthermore,
we define a privatized version of the radius of testing given by a classical bias2-variance trade-off

(ρpriv
k,σ )2 := a2

k ∨ (1 + σ2)ν
2
k

n
, (5.2.7)
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where σ2 is the variance bound from Assumption 5.2.1 (4.). Comparing ρpriv
k,σ with the non-

private radius ρk defined in (3.1.10), we see that – as expected – the privatization only has an
effect on the variance-term and not on the bias2-term. The next proposition provides an upper
bound for the radius of testing of ∆priv

k,α . It is an analogue result to the (non-private) upper bound
derived in Corollary 3.3.3. The proof follows along similar lines as the proof of Corollary 3.3.3,
using Proposition 5.2.2 instead of Corollary 3.2.5 and taking into account the private version of
the threshold (Cα(1 + σ2)ν

2
k
n ) and, therefore, appropriately modifying the case distinction. We

state the proof here for completeness.

Proposition 5.2.3 (Upper bound for the radius of testing of ∆priv
k,α/2).

Let c := ‖ϕ•‖`1 <∞. For α ∈ (0, 1) let Cα/2, Ãα be such that

4 · c ·
2Cα/2 + 1
C2
α/2

≤ α

2 and c ·
2Cα/2 + 1

(Ãα − Cα/2)2
≤ α

2 (5.2.8)

is satisfied. Set A2
α := R2 + Ã2

α. Let Q and the corresponding privatized views (Z1, . . . , Zn)
satisfy Assumption 5.2.1. Then, for all A ≥ Aα and all k ∈ N we obtain

R
(
∆priv
k,α/2,Q | E

R
a• , Aρ

priv
k,σ

)
≤ α,

i.e. (ρpriv
k,σ )2 is an upper bound for the privatized radius of testing of

{
∆priv
k,α/2

}
α∈(0,1)

.

f − f◦ ∈ ER
a•

√
2Cα

2
(1 + σ2)ν

2
k
n

f◦
Aαρk

Figure 5.1: Visualization of the structure of the proof of Proposition 5.2.3. We distin-
guish the two cases: Either f− f◦ has large energy (in the first k components), hence, it is easy
to test since it is far from the null (green striped area). Or f − f◦ has small energy (in the first
k components), hence, it is difficult to test since it is close to the null (orange area).

Proof of Proposition 5.2.3. Recall the definition of the risk of testing

R
(
∆priv
k,α/2,Q | E , Aρ

priv
k,σ

)
:= Pf◦,Q(∆priv

k,α/2 = 1) + sup
f−f◦∈L 2

ρ
priv
k,σ

∩ER
a•

Pf,Q(∆priv
k,α/2 = 0).

175



We show that both the first and the second summand are bounded by α/2. For the type I
error probability we apply Markov’s inequality and use the bound from Proposition 5.2.2.
Note that in the case f = f◦ = 1[0,1) we have ‖g•‖`1 = 1 and q2

k(f − f◦) = 0. Hence, we obtain

Pf◦,Q(∆priv
k,α/2 = 0) = Pf◦,Q(p̂2

k ≥ Cα/2(1 + σ2)ν
2
k

n
)

≤
Ef◦,Q

(
p̂2
k

)2
C2
α/2(1 + σ2)n−2ν4

k

=
varf◦,Q(p̂2

k)
C2
α/2(1 + σ2)n−2ν4

k

≤ 1
C2
α/2
≤ α

2 , (5.2.9)

due to (3.3.1) and Ef◦,Q(p̂2
k) = q2

k(f◦ − f◦) = 0. The type II error probability is evaluated
for all f contained in the Aαρpriv

k,σ -separated alternative, i.e. for f satisfying f − f◦ ∈ ER
a• and

q2(f−f◦) ≥ (Aα)2(ρpriv
k,σ )2. We centre the estimator p̂2

k by its expectation q2
k(f−f◦) and obtain

Pf,Q(∆priv
k,α/2 = 0) = Pf,Q(p̂2

k < Cα/2(1 + σ2)ν
2
k

n
)

= Pf,Q(p̂2
k − q2

k(f − f◦) < Cα/2(1 + σ2)ν2
k − q2

k(f − f◦))

We make a case distinction on the energy of f − f◦ in the first k components.

1. q2
k(f − f◦) ≥ 2Cα/2(1 + σ2)ν

2
k
n (easy to test)

2. q2
k(f − f◦) < 2Cα/2(1 + σ2)ν

2
k
n (difficult to test)

Case 1. (easy to test) The densities satisfying (1.) are easy to test, since the energy already
contained in the first k components is large (i.e. a multiple of the standard deviation). Hence,
they are easy to distinguish from the null by a test focusing on the first k components. Note
that in this case we do not even need to use the regularity assumption f − f◦ ∈ ER

a• . Due to
the case distinction we have Cα/2(1 + σ2)ν

2
k
n − q2

k(f − f◦) ≤ 1
2q2

k(f − f◦) and, thus, Markov’s
inequality implies

Pf,Q(∆priv
k,α/2 = 0) ≤ Pf,Q(p̂2

k − q2
k(f − f◦) ≤ −

1
2q2

k(f − f◦))

= Pf,Q(q2
k(f − f◦)− p̂2

k ≥
1
2q2

k(f − f◦)) ≤ 4 varf,Q(p̂2)
(q2
k(f − f◦))2 .

Inserting the bound for the variance from Proposition 5.2.2 yields

Pf,Q(∆priv
k,α/2 = 0) ≤ 16 ‖g•‖`1

q2
k(f − f◦)(1 + σ2)ν

2
k
n + (1 + σ2)2 ν4

k
n2

(q2
k(f − f◦))2

= 16 ‖g•‖`1

(1 + σ2)ν
2
k
n

q2
k(f − f◦)

+
(1 + σ2)2 ν4

k
n2

(q2
k(f − f◦))2

 .
Since by the case distinction q2

k(f − f◦) ≥ 2Cα/2(1 + σ2)ν
2
k
n , we obtain

Pf,Q(∆priv
k,α/2 = 0) ≤ 16 ‖g•‖`1

{
1

2Cα/2
+ 1

4C2
α/2

}

≤ ‖ϕ•‖`1
{

8
Cα/2

+ 4
C2
α/2

}
≤ α/2

due to ‖g•‖`1 ≤ ‖ϕ•‖`1 and (5.2.8).
Case 2. (difficult to test) The densities satisfying (2.) are difficult to test, since they are

176



close to the detection boundary. In this case we need to exploit the separation condition of
the alternative and the fact that the regularity constraint f − f◦ ∈ ER

a• implies that, roughly
speaking, the energy outside of the first k components can be controlled. In fact, for f − f◦ ∈
ER
a• ∩ L 2

Aαρ
priv
k,σ

we have
∑
|j|>k |f − f◦|

2 ≤ a2
kR2 due to the regularity condition f − f◦ ∈ ER

a•

and q2(f − f◦) =
∑
|j|∈N |f − f◦|

2 ≥ A
2
α(ρpriv

k,σ )2 due to the energy condition f − f◦ ∈ L 2
Aαρ

priv
k,σ

.
Therefore,

q2
k(f − f◦) = q2(f − f◦)−

∑
|j|>k
|f − f◦|2 ≥ A2

α(ρpriv
k,σ )2 − a2

kR2

≥ Ã2
α(1 + σ2)ν

2
k

n
+ a2

kR2 − a2
kR2 = Ã2

α(1 + σ2)ν
2
k

n
.

We use this bound and Markov’s inequality to obtain

Pf,Q(∆priv
k,α/2 = 0) = Pf,Q(p̂2

k − q2
k(f − f◦) < Cα/2(1 + σ2)ν

2
k

n
− q2

k(f − f◦))

≤ Pf,Q(p̂2
k − q2

k(f − f◦) <
(
Cα/2 − Ã2

α

)
(1 + σ2)ν

2
k

n
)

= Pf,Q(q2
k(f − f◦)− p̂2

k ≥
(
Ã2
α − Cα/2

)
(1 + σ2)ν

2
k

n
)

≤ varf,Q(p̂2
k)(

Ã2
α − Cα/2

)2
(1 + σ2)2 ν

4
k
n2

.

Inserting the bound for the variance from Proposition 5.2.2 yields

Pf,Q(∆priv
k,α/2 = 0) ≤ 4 ‖g•‖`1

q2
k(f − f◦)(1 + σ2)ν

2
k
n + (1 + σ2)2 ν4

k
n2(

Ã2
α − Cα/2

)2
(1 + σ2)2 ν

4
k
n2

= 4 ‖g•‖`1

 q2
k(f − f◦)(

Ã2
α − Cα/2

)2
(1 + σ2)ν

2
k
n

+ 1(
Ã2
α − Cα/2

)2


≤ 4 ‖g•‖`1

 2Cα/2(1 + σ2)ν
2
k
n(

Ã2
α − Cα/2

)2
(1 + σ2)ν

2
k
n

+ 1(
Ã2
α − Cα/2

)2


= 4 ‖g•‖`1

 2Cα/2 + 1(
Ã2
α − Cα/2

)2


≤ α

2 ,

where we exploited the case distinction in the third line and ‖g•‖`1 ≤ ‖ϕ•‖`1 and (5.2.8) in the
last line, which completes the proof.

5.2.1 Upper bound via Laplace perturbation

In this section we show that Assumption 5.2.1 is satisfied for private views generated by an
appropriately applied Laplace perturbation mechanism. Thus, we can apply the general upper
bound Proposition 5.2.3 to obtain an upper bound for the privatized radius of testing. Laplace
perturbation is a very popular privatization mechanism and appears in the statistics literature
e.g. in Wasserman and Zhou [2010], Kroll [2019b], Duchi et al. [2018], Butucea et al. [2020], Lam-
Weil et al. [2020], Berrett and Butucea [2020] to mention but a few. We start with describing
the perturbation method in our setting.
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Description of the Laplace perturbation. Recall that the basis functions ej , j ∈ Z are
complex-valued. We perturb the real and the imaginary part separately. Let the dimension
parameter k ∈ Z be fixed and let the raw data be given by (Ym)m∈JnK. For j ∈ JkK, m ∈ JnK and
a perturbation level b > 0 we define

ZRe
m,j = Re (ej(Ym)) + bξm,j ,

ZIm
m,j = Im (ej(Ym)) + bζm,j

with ξm,j , ζm,j
iid∼ Laplace(0, 1), i.e. due to Euler’s formula (exp(iy) = cos(y) + i sin(y))

ZRe
m,j | Ym = y ∼ Laplace(cos(2πjy), b),
ZIm
m,j | Ym = y ∼ Laplace(sin(2πjy), b). (5.2.10)

Define the vector of tuples Cm := ((ZRe
m,j , Z

Im
m,j))j∈JkK.

Proposition 5.2.4 (Privacy guarantee). (Cm)m∈JnK with b = 8k
γ are non-interactive

γ-differentially locally private views of (Ym)m∈JnK.

Proof of Proposition 5.2.4. The privacy channel corresponding to the Laplace perturbation de-
scribed above has density

q(c | Ym = ym) =
∏
|j|∈JkK

1
2b exp

−
∣∣∣cRe
j − cos(2πjym)

∣∣∣
b

 1
2b exp

−
∣∣∣cIm
j − sin(2πjym)

∣∣∣
b


for c := ((cRe

j , cIm
j ))j∈JkK ∈ (R× R)k. For ym, y′m ∈ [0, 1) we consider the quotient

q(c | Ym = ym)
q(c | Ym = y′m)

=
∏
|j|∈JkK

1
2be
|cRe
j
−cos(2πjy′m)||cRe

j
−cos(2πjym)|

b
1
2be
|cIm
j
−sin(2πjy′m)|−|cIm

j
−sin(2πjym)|

b

Applying the reversed triangle inequality (||a| − |b|| ≤ |a± b|) yields

q(c | Ym = ym)
q(c | Ym = y′m) ≤

∏
|j|∈JkK

e
|cos(2πjy′m)−cos(2πjym)|

b e
|sin(2πjy′m)−sin(2πjym)|

b

≤
∏
|j|∈JkK

e
2
b e

2
b (5.2.11)

= e
8k
b ≤ eγ .

We have thus checked the analogous condition to (5.1.2) for densities and the proof is complete.

Remark 5.2.5 (Order of the perturbation level b). The proposed perturbation level b = 8k
γ

shows the expected behaviour. For a higher level of privacy (γ small), we need to add noise
with higher variance. The more evaluations of the raw data point Ym we release, the higher
the variance of the added noise should be in order to guarantee the required privacy level, i.e.
b grows with k. The linear dependence of b on k is due to the Fourier basis and is specific for
our situation. To be more precise it is due to the fact that all basis functions have the same
support [0, 1), which is reflected in the bound (5.2.11). For instance, Butucea et al. [2020] and
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Figure 5.2: Visualization: Releasing the value e1(Ym) respectively the tuple
(sin(2πYm), cos(2πYm)) allows to uniquely identify the raw data point Ym (first line),
whereas releasing the value ψ(Ym) only provides the information Ym ∈ [0, 0.5) (second line).
Therefore the perturbation level of the added noise that is required for γ-differentiable privacy
depends on the basis.

Lam-Weil et al. [2020] consider Laplace perturbations of evaluations of wavelet bases, where the
perturbation levels can be chosen of lower order (which in our situations would correspond to√
k
γ ) instead. In fact, in their situations they are able to obtain a sharper bound in (5.2.11)

due to the special structure of their wavelet bases. We point out that taking the supremum
over all ym, y′m ∈ [0, 1) the bound (5.2.11) is indeed sharp, i.e. we cannot achieve a lower
perturbation level. Let us heuristically explain why this is the case. Releasing the evaluation
e1(Ym) = cos(2πYm)+i sin(2πYm) respectively the tuple (cos(2πYm), sin(2πYm)) already uniquely
identifies the value Ym, whereas releasing the evaluation ψ(Ym), where ψ e.g. is the Haar wavelet
ψ(x) = 1[0,1/2)(x) − 1[1/2,1](x) contains much less information about Ym. Figure 5.2 visualizes
this observation. That is to say that evaluating a finite number of Haar wavelet basis functions
at a data point Ym is already privatizing the data, thus, it is sufficient to add less noise. �

Proposition 5.2.6 (Assumption 5.2.1 for Laplace perturbation). (ZRe
m,j−iZIm

m,j)j∈JkK,
m ∈ JnK defined in (5.2.10) with b = 8k

γ are γ-differentially locally private views of Ym,
m ∈ JnK and satisfy Assumption 5.2.1 with 16k

γ =: σLP.

Proof of Proposition 5.2.6. (ZRe
m,j− iZIm

m,j)j∈JkK, m ∈ JnK are γ-differentially locally private views
due to Proposition 5.2.4. We check the conditions (1.)-(4.)
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1. (unbiasedness)

EQ
(
ZRe
m,j − iZIm

m,j | Ym
)

= EQ
(
ZRe
m,j | Ym

)
− iEQ

(
ZIm
m,j | Ym

)
= cos(2πjYm)− i sin(2πjYm) = ej(−Ym)

2. (independence) For m 6= l the vectors (ZRe
m,j − iZIm

m,j)j∈JkK and (ZRe
l,j − iZIm

l,j )j∈JkK are
independent by construction, since the Laplace perturbations conducted by data holder m
and data holder l are independent.

3. (conditionally uncorrelated components) Conditionally on Ym the components of
(ZRe

m,j− iZIm
m,j)j∈JkK are independent by construction, since the Laplace perturbations occur

in each component independently.

4. (variance) Let j ∈ JkK, then due to (5.2.10) and Reminder 5.1.3

varQ(ZRe
m,j − iZIm

m,j) = varQ(ZRe
m,j) + varQ(ZIm

m,j) = 2b2 + 2b2 =
(16k
γ

)2
=: σ2

LP.

Inserting σ = σLP = 16k
γ into the privatized radius of testing (5.2.7) we observe that

(ρpriv
k,σLP

)2 := a2
k ∨

(
1 + 162k2

γ2

)
ν2
k

n
≤ 162

(
ρ2
k ∨ (ρLP

k )2
)

where ρ2
k is the non-private radius of testing (defined in (3.1.10)) and

(ρLP
k )2 := a2

k ∨
k2ν2

k

γ2n
.

The next corollary is now an immediate consequence of Proposition 5.2.3 combined with the
previous Proposition 5.2.6 and we omit its proof.

Corollary 5.2.7 (Privatized radius of testing with Laplace perturbation).
Let α ∈ (0, 1), γ ∈ R. Consider the family of tests

{
∆priv
k,α/2

}
, α ∈ (0, 1) defined in (5.2.5) and

consider the privacy mechanism Qγ associated with (5.2.10). Let Aα as in Proposition 5.2.3.
Then, for all A ≥ 16Aα and all k ∈ N we obtain

R
(
∆priv
k,α/2,Qγ | ER

a• , A
(
ρk ∨ ρLP

k

))
≤ α.

The previous corollary shows that compared with the (non-private) radius of testing ρ2
k

derived in Section 3.3 the privatized upper bound has the additional term (ρLP
k )2, where the

variance term is increased.

Illustration 5.2.8 (Laplace perturbation). The upper bound for the radius of testing of
the tests ∆priv

k,α/2, α ∈ (0, 1) and the Laplace perturbation derived in Corollary 5.2.7 depend
on the dimension parameter k. Defining

κLP
? := arg min

k∈N

{
a2
k ∨

k2ν2
k

γ2n

}

and κ? = arg min
k∈N

{
a2
k ∨

ν2
k
n

}
as in (3.2.5), we can optimize the upper bound with respect to
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k and obtain the upper bound

ρ2
? ∨

(
ρLP
?

)2
with ρLP

? := min
k∈N

ρLP
k .

We illustrate the order of both terms under the typical smoothness and ill-posedness assump-
tions introduced in Illustration 3.2.6. Compared with the (non-private) minimax radius of
testing we notice two effects in the privatized term ρLP

? . On the one hand the sample size
appears with an additional factor γ2, which results in a smaller effective sample size of or-
der γ2n. On the other hand in the mildly ill-posed models the radii are polynomially worse
compared with the minimax radii.

Order of the upper bound for the radius of testing under Laplace perturbation

aj |ϕj | ρ2
? (ρLP

? )2

(smoothness) (ill-posedness)

j−s |j|−p n
− 4s

4s+4p+1 (γ2n)−
4s

4s+4p+5

j−s e−|j|
p (logn)−

2s
p (log(γ2n))−

2s
p

e−j
s |j|−p n−1(logn)

4p+1
2s (γ2n)−1(log(γ2n))

4p+5
2s

Calculations for the risk bounds in Illustration 5.2.8. The order of ρ2
? has already been estab-

lished in Illustration 3.2.6. Consider (ρLP
? )2.

1. (ordinary smooth - mildly ill-posed) The variance term k2ν2
k

γ2n is of order k2p+5/2

γ2n and

the bias term a2
k is of order k−2s. Hence, the optimal κLP

? satisfies κLP
? ∼ (γ2n)

2
4s+4p+5 ,

which yields an upper bound of order (κLP
? )−2s ∼ (γ2n)

4s
4s+4p+5 .

2. (ordinary smooth - severely ill-posed) The variance term k2ν2
k

γ2n is of order k2 exp(2kp)
γ2n .

Hence, the optimal κLP
? satisfies κLP

? ∼ (log(γ2n/bγ2n))1/p with bn ∼ (log γ2n)
2s+2
p , which

yields an upper bound of order (κLP
? )−2s ∼ (log(γ2n))−

2s
p .

3. (super smooth - mildly ill-posed) The variance term k2ν2
k

γ2n is of order k2p+5/2

γ2n and the
bias term a2

k is of order exp(−2ks). Hence, the optimal κLP
? satisfies κLP

? ∼ (log(γ2n/bγ2n))1/s

with bn ∼ (log γ2n)
4p+5

2s , which yields an upper bound of order (γ2n)−1(log(γ2n))
4p+5

2s .

Remark 5.2.9 (Naive privatization methods). The standard technique for privatizing data
is to add Laplace noise directly to the observations. Let us informally explain why this yields
suboptimal results in our model. Inference on the density f of X based on observations of
Y +N with privatization noise N and raw data Y ∼ f ?©ϕ is essentially a double-deconvolution
problem. Consider for instance an ordinary smooth – mildly ill-posed model. We have already
seen in Chapter 3 that a non-private testing radius cannot be of smaller order than n

− 4s
4s+4p+1 ,

where s is the regularity parameter and p the ill-posedness parameter of the model. Privatiz-
ing through adding (circular) noise to the observations increases the ill-posedness parameter,
specifically in the situation of (wrapped) Laplace noise. Indeed, the wrapped Laplace distribu-
tion WLaplace(0, b) has Fourier coefficients fWLp

j ∼ (bj)−2, hence the ill-posedness parameter
increases by 2 (compare Mardia and Jupp [2009], Section 3.2. for the wrapping of densities
around the circumference of the circle and Comte and Taupin [2003], Section 2.1. for the co-
efficients). Therefore, there is no hope for obtaining a testing radius of smaller order than
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(γ2n)−
4s

4s+4p+9 by using this naive privatization method, which is considerably worse than what
we obtained in Illustration 5.2.8. Moreover, we point out that this phenomenon is not due to
the choice of the Laplace density. Naturally, there exists no density with fNj ∼ j−1/2 (which
would yield the desired order (γ2n)

4s
4s+4p+3 ), since densities lie in L 1. Similar observations can

be made in a super smooth - mildly ill-posed model. We emphasize that in a ordinary smooth
- severely ill-posed model the order of the radius of testing is already logarithmic in the sample
size due to the ill-posedness of the model. In this case a privatization does not have an effect on
the order (cp. the table in Illustration 5.2.8) only on the effective sample size (γ2n). �

5.2.2 Upper bound via hypercube sampling

Comparing our upper bound in Corollary 5.2.7 respectively Illustration 5.2.8 with the usual
upper bounds (for direct models), which are e.g. derived in Duchi et al. [2018] and Butucea
et al. [2020], we see though we are able to reproduce the effect on the effective sample size
(γ2n) we have an additional deterioration in the exponent (where a 3 instead of the 5 in both
the (ordinary smooth - mildly ill-posed) and (super smooth - mildly ill-posed) case appears).
This deterioration directly translates to the higher perturbation level that we remarked on in
Remark 5.2.5. Therefore, we consider another privatization mechanism, which is less standard
but better suited for our model. Heuristically, the hypercube sampling mechanism described
below works better for our choice of basis (which is determined by our testing approach) than
the Laplace perturbation, since it samples all components of the privatized views simultaneously
instead of adding noise separately to each component. The hypercube sampling mechanism was
introduced in Duchi et al. [2018], p.17 and we adapt it here to our setting.

Description of the hypercube sampling mechanism. We describe the procedure of data
holder m with given raw data Ym = Y = y and omit the index m for readability.

1. Step (Evaluation): Create the vectors

v = (vj)j∈JkK = (cos(2πjy))j∈JkK w = (wj)j∈JkK = (sin(2πjy))j∈JkK

by evaluating the k basis functions ej , j ∈ JkK at Y = y and storing the real part in v and
the imaginary part in w. Denote by V = (Re ej(Y ))j∈JkK and W = (Im ej(Y ))j∈JkK the
corresponding random variables.

2. Step (Cube Sampling): Sample vertices of a k-hypercube Ỹ Re = (Ỹ Re
j )j∈JkK and Ỹ Im =

(Ỹ Im
j )j∈JkK with independent components according to

P(Ỹ Re
j = 1 | V = v) = 1

2 + vj
2 , P(Ỹ Re

j = −1 | V = v) = 1
2 −

vj
2

P(Ỹ Im
j = 1 |W = w) = 1

2 + wj
2 , P(Ỹ Im

j = −1 |W = w) = 1
2 −

wj
2

3. Step (Privatization) Sample the Bernoulli random variables TRe , T Im independently
according to

P(TRe = 0) = P(T Im = 0) = 1
eγ/2 + 1

, P(TRe = 1) = P(T Im = 1) = eγ/2

eγ/2 + 1
.

4. Step (Cube Sampling): Sample vertices of a k-hypercube ZIm , ZRe according to

ZRe ∼
{
U(z ∈ {±B}k | 〈z, Ỹ Re 〉 ≥ 0) if TRe = 1,
U(z ∈ {±B}k | 〈z, Ỹ Re 〉 ≤ 0) if TRe = 0

ZIm ∼
{
U(z ∈ {±B}k | 〈z, Ỹ Im 〉 ≥ 0) if T Im = 1,
U(z ∈ {±B}k | 〈z, Ỹ Im 〉 ≤ 0) if T Im = 0
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where U denotes the uniform distribution on a discrete set, B := 1
ck
eγ/2+1
eγ/2−1 and

ck :=


1

2k−1

( k−1
(k−1)/2

)
k odd,

1
2k−1+1/2( k

k/2)
(k−1
k/2
)

k even.

Illustration 5.2.10. We illustrate the hypercube sampling scheme for the real part and
k = 2. Assume that Ym = ym is the given raw data point. Let v = (cos(2πym), cos(4πym)) =
(Re (e1(ym)),Re (e2(ym)), i.e. the real parts of the evaluations of the first two basis func-
tions. We describe the procedure to obtain a privatized view of v via the hypercube sampling
mechanism.

−1 1

−1

1
(1)(3)

(2)(4)

v = (cos(2πym), cos(4πym))

Projection onto cube: We plot the vector v of the real part of the evaluations of the
first two basis functions. The vertices of the hypercube (red points) in which this vector
lies are assigned probabilities. The closer a vertex is to the raw data point v, the higher the
probability. The vertices in the picture are numbered with decreasing probability, i.e. (1) is
the most likely to be sampled in the first step.

−1 1

−1

1
(1)(3)

(2)(4)

v = (cos(2πym), cos(4πym))

Privatization and sampling step: Assume that indeed vertex Ỹm = (1) was sam-
pled in the first step. This defines a hyperplane, the striped part (green) is given by{
z ∈ R2 : 〈z, Ỹm〉 ≥ 0

}
. Sampling T ∼ Ber( eγ

eγ+1) decides whether we sample uniformly
from the vertices of the hypercube {±B}k in the correct (green) hyperplane (in case of a
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success T = 1) or from the hyperplane that contains vertices further apart from the raw
data point (in case of a failure T = 0).

By Duchi et al. [2018] (p.17) ZIm and ZRe are γ/2-differentially private views of Y . We
want to combine the two into one private view via the following well-known lemma (see e.g.
Kroll [2019b], Lemma 2.16. for a proof)

Lemma 5.2.11 (Composition lemma). Let Z1, Z2 be γ1 respectively γ2-differentially
locally private views of Y , which are independent conditionally on Y . Then (Z1, Z2) is a
(γ1 + γ2)-differentially locally private view of Y .

Hence, Lemma 5.2.11 implies that ZRe − iZIm is a γ-differentially private view of Y . Assume
now that each data holder m carries out the mechanism to generate views Zm = (ZRe

m,j −
iZIm

m,j)j∈JkK.

Proposition 5.2.12 (Assumption 5.2.1 for hypercube sampling). (ZRe
m,j−iZIm

m,j)j∈JkK,
m ∈ JnK sampled according to the hypercube mechanism are γ-differentially locally private
views of Ym, m ∈ JnK and satisfy Assumption 5.2.1 with c ·

√
k e

γ/2+1
eγ/2−1 =: σHS for a universal

constant c > 0.

Proof of Proposition 5.2.12. 1. (unbiasedness)

EQ
(
ZRe
m,j − iZIm

m,j | Ym
)

= EQ
(
ZRe
m,j | Ym

)
− iEQ

(
ZIm
m,j | Ym

)
= cos(2πjYm)− i sin(2πjYm) = ej(−Ym),

which follows from I.3 in the appendix of Duchi et al. [2018].

2. (independence) For m 6= l the vectors (ZRe
m,j − iZIm

m,j)j∈JkK and (ZRe
l,j − iZIm

l,j )j∈JkK are
independent by construction, since the sampling schemes conducted by data holder m and
data holder l are independent.

3. (conditionally uncorrelated components) Conditionally on Ym the components of
(ZRe

m,j − iZIm
m,j)j∈JkK are independent by construction, since the components of Ỹ Re and

Ỹ Im are sampled independently.

4. (variance) Let j ∈ JkK, then due to (5.2.10) and Reminder 5.1.3

varQ(ZRe
m,j − iZIm

m,j) = varQ(ZRe
m,j) + varQ(ZIm

m,j) ≤ B2 +B2

≤
(
c ·
√
k
eγ/2 + 1
eγ/2 − 1

)2

=: σ2
HS,

due to the fact that the ZIm
m and ZRe

m lie in a bounded cube and Stirling’s approximation.
Indeed, applying Stirling’s formula to all three factorials shows that for any n, 2 ≤ k ≤ n(

n

k

)
= (1 + o(1))

√
n

2πk(n− k)

(
n

k

)k ( n

n− k

)n−k
.

Let us first consider the case when k is odd, then

ck = 1
2k−1

(
k − 1

(k − 1)/2

)
= (1 + o(1)) 1

2k−1

√
2

π(k − 1)2k−1 = (1 + o(1))

≤ (1 + o(1))
√

4
πk
≤ 1
c

1√
k
.
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Now let k be even, then

ck = 1
2k−1 + 1/2

( k
k/2
)(k − 1

k/2

)

≤ (1 + o(1)) 1
2k−1

√
k − 1

2πk/2(k/2− 1)

(
k − 1
k/2

)k/2 ( k − 1
k/2− 1

)k/2−1

≤ (1 + o(1)) 1
2k−1

√
2
πk

2k−1

≤ 1
c

1√
k
.

Corollary 5.2.13 (Assumption 5.2.1 for hypercube sampling). Let γ ∈ (0, 1).
(ZRe

m,j−iZIm
m,j)j∈JkK, m ∈ JnK sampled according to the hypercube mechanism are γ-differentially

locally private views of Ym, m ∈ JnK and satisfy Assumption 5.2.1 with c ·
√
k
γ = σ for a

universal constant c > 0.

Proof. Note that 1 + x ≤ ex for all x ∈ R. Thus,

eγ/2 + 1
eγ/2 − 1

= eγ/2 − 1
eγ/2 − 1

+ 2
eγ/2 − 1

≤ 1 + 2
γ/2 ≤

5
γ
,

then the assertion follows from Proposition 5.2.12.

Comparing the variance c ·
√
k
γ = σ of the private views obtained via hypercube sampling

with the private views from the Laplace perturbation (cp. Proposition 5.2.6), we see that we
have improved by a factor of

√
k. Inserting σ = c

√
k
γ into the privatized radius of testing (5.2.7)

we observe that

(ρpriv
k,σHS

)2 := a2
k ∨

(
1 + c2k

γ2

)
ν2
k

n
≤ ρ2

k ∨ (ρHS
k )2,

where ρ2
k is the non-private radius of testing (defined in (3.1.10)) and

(ρHS
k )2 := a2

k ∨ c2 kν
2
k

γ2n
.

The next corollary is now an immediate consequence of Proposition 5.2.3 combined with the
previous Proposition 5.2.12 and we omit its proof.

Corollary 5.2.14 (Privatized radius of testing with hypercube sampling).
Let α ∈ (0, 1), γ ∈ (0, 1). Consider the family of tests

{
∆priv
k,α/2

}
, α ∈ (0, 1) defined in (5.2.5)

and consider the hypercube mechanism Qγ . Let Aα as in Proposition 5.2.3. Then, for all
A ≥ Aα and all k ∈ N we obtain

R
(
∆priv
k,α/2,Qγ | ER

a• , A
(
ρk ∨ ρHS

k

))
≤ α.

The previous corollary shows that compared with the (non-private) radius of testing ρ2
k

derived in Section 3.3 the privatized upper bound has the additional term (ρHS
k )2, where the

variance term is increased.
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Illustration 5.2.15 (Hypercube sampling). The upper bound for the radius of testing
of the tests ∆priv

k,α/2, α ∈ (0, 1) and the hypercube sampling mechanism derived in Corol-
lary 5.2.14 depend on the dimension parameter k. Analogously to Illustration 5.2.8 we
define

κHS
? := arg min

k∈N

{
a2
k ∨ c2 kν

2
k

γ2n

}
(5.2.12)

and κ? = arg min
k∈N

{
a2
k ∨

ν2
k
n

}
as in (3.2.5), we can optimize the upper bound with respect to

k and obtain the upper bound

ρ2
? ∨

(
ρHS
?

)2
with ρHS

? := min
k∈N

ρHS
k . (5.2.13)

We illustrate the order of both terms under the typical smoothness and ill-posedness as-
sumptions introduced in Illustration 3.2.6.

Order of the upper bound for the radius of testing under hypercube sampling

aj |ϕj | ρ2
? (ρHS

? )2

(smoothness) (ill-posedness)

j−s |j|−p n
− 4s

4s+4p+1 (γ2n)−
4s

4s+4p+3

j−s e−|j|
p (logn)−

2s
p (log(γ2n))−

2s
p

e−j
s |j|−p n−1(logn)

4p+1
2s (γ2n)−1(log(γ2n))

4p+3
2s

Calculations for the risk bounds in Illustration 5.2.15. The order of ρ2
? has already been estab-

lished in Illustration 3.2.6. Consider (ρHS
? )2.

1. (ordinary smooth - mildly ill-posed) The variance term kν2
k

γ2n is of order k2p+3/2

γ2n and

the bias term a2
k is of order k−2s. Hence, the optimal κHS

? satisfies κHS
? ∼ (γ2n)

2
4s+4p+3 ,

which yields an upper bound of order (κHS
? )−2s ∼ (γ2n)

4s
4s+4p+3 .

2. (ordinary smooth - severely ill-posed) The variance term kν2
k

γ2n is of order k exp(2kp)
γ2n .

Hence, the optimal κHS
? satisfies κHS

? ∼ (log(γ2n/bγ2n))1/p with bn ∼ (log(γ2n))
2s+1
p , which

yields an upper bound of order (κHS
? )−2s ∼ (log(γ2n))−

2s
p .

3. (super smooth - mildly ill-posed) The variance term kν2
k

γ2n is of order k2p+3/2

γ2n and the bias
term a2

k is of order exp(−2ks). Hence, the optimal κHS
? satisfies κHS

? ∼ (log(γ2n/bγ2n))1/s

with bn ∼ (log(γ2n))
4p+3

2s , which yields an upper bound of order (γ2n)−1(log(γ2n))
4p+3

2s .

Comparing our upper bounds in Illustration 5.2.15 with the known results in direct mod-
els (e.g. Lam-Weil et al. [2020]), we conjecture our radii to be optimal. In the next section
(Perspectives) we take a first step to answer the important question: Is the deterioration of
the radii of testing caused only by a poor choice of the privacy mechanism? Or is the attained
deterioration unavoidable if we want to protect privacy? We provide an approach in form of a
classical reduction scheme that might lead to a lower bound.
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Perspectives

Lower bounds for testing under privacy constraints

A main difficulty when trying to prove lower bounds under privacy constraints is to characterize
the required α-differential privacy property of the privacy mechanism in a way such that it can
be exploited in the lower bound. A way to make the privacy constraint tangible is to write
the privacy channels as operators, for which we can apply a singular value decomposition. The
privacy constraint can be translated into a constraint on the singular values of this (appropriately
defined) operator. Similar approaches in direct models have been considered in Lam-Weil et al.
[2020] (for a direct density model) and Berrett and Butucea [2020] (for a direct model with
discrete distributions). Let us give a preliminary framework for deriving a matching lower
bound to the upper bound (5.2.13). Recall that the upper bound consists of the maximum of
two terms ρ2

? ∨
(
ρLP
?

)2
and we aim to prove separate lower bounds for these two situations. A

matching lower bound for the first term has already been derived in Section 3.4. For the second
term, we briefly outline the steps of our suggested lower bound framework.

1. Reduction step. For a fixed privacy channel Q standard reduction arguments (compare
e.g. the proof of Proposition 3.4.1) show that

inf
∆
R (∆,Q | E , ρ) ≥ 1−

√
χ2(Pµ,Q,Pf◦,Q)

2

where µ is a probability measure on the ρ-separated alternative and Pµ,Q =
∫
Pf,Qdµ(f).

2. χ2-divergence between privatized measures. Straightforward calculations show that

χ2(Pµ,Q,Pf◦,Q) ≤ Eξ,ξ′ exp
(
n〈ΩQgξ, gξ′〉L 2

)
− 1,

where ξ, ξ′
iid∼ µ and we denote gξ = ξ ?©ϕ, i.e. the density of Y in the case X ∼ ξ.

Moreover, we define the operator

ΩQ : L 2 −→ L 2

g 7−→ ΩQ(g), where ΩQ(g)(ỹ) :=
∫

ΩQ(y, ỹ)g(y)dy

with kernel ΩQ := Ef0,Q

(
(q(Zj |y)−p◦(Zj))(q(Zj |ỹ)−p◦(Zj))

p2
◦(Zj)

)
, where q is the density of Q w.r.t.

some reference measure and p◦ =
∫
q(· | y)g◦(y)dy.

3. Construction of the mixture measure µ. Denote by (λj)j∈N and (vj)j∈N the singular
values and singular vectors of the operator ΩQ. Let η ∈ {±}k and θ ∈ Rk. Define

δη(x) :=
k∑
l=1

ηlθlvl(x) and cη =
∫
δη(x)dx
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and the candidate functions

ξη(x) := g◦(x)(1− cη) + δη(x).

The candidate functions ξη integrate to 1 by construction. It remains to verify that ξη ≥ 0
(at least with high probability if η is sampled uniformly from {±}k). Let µ be the uniform
mixture on

{
ξη : η ∈ {±}k

}
. If ξη, η ∈ {±}k are densities, then,

χ2 (Pµ,Q,Pf0,Q) ≤ exp
(
n2

2

k∑
m=1

θ4
mλ

2
m

)
− 1. (5.2.14)

4. Control of the eigenvalues of ΩQ. The γ-differentiable privacy constraint implies that
any singular value λj of ΩQ satisfies

λj ≤ (eγ − 1)2.

The suggested steps are simply a rough outline, with several gaps still to be filled in. Arriving
at (5.2.14) , the remaining demanding challenge is to construct θ ∈ Rk such that µ is supported
on the alternative and the χ2-divergence in (5.2.14) is smaller than 4α2.
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Adaptive testing under local privacy constraints

Adaptivity in a local privacy setting seems to be a particularly interesting problem. As usual in
nonparametric statistics the optimal dimension (in (5.2.12)) of our projection-type tests (con-
sidered in Chapter 5) relies on knowledge of smoothness properties of the unknown underlying
density. Thus, there is a necessity to come up with adaptation procedures that do not rely on
this knowledge, since it is generally not available in practise. Developing adaptive procedures in
a local privacy setting is especially challenging, since the required steps need to be carried out by
each data holder separately. Since statistical inference under privacy constraints is a relatively
new field, there are so far only few results on adaptive strategies in general. For non-parametric
estimation in a direct density model, Kroll [2019b] for instance investigates a privatized version
of Lepski’s method for kernel density bandwidth selection, where each data holder is asked to
release evaluations of the kernel (scaled with a bandwidth) for the collection of bandwidths that
appears in Lepski’s method. The privatization mechanisms have to be scaled appropriately such
that privacy protection is still guaranteed although more data (i.e. evaluations of a kernel for
several bandwidths) is released. Let us briefly explain what makes adaptivity challenging in the
context of nonparametric testing. In order to apply the classical Bonferroni aggregation method
to the privatized tests, the statistician needs access to the entire collection of tests ∆k, k ∈ K,
where k is the tuning parameter and K a collection of such parameters, over which one wishes
to aggregate. We have seen, however, that our proposed privatization strategies highly depend
on the dimension parameter k. To be able to describe the problem at hand more accurately, let
us briefly recall the main idea. In both hypercube sampling and Laplace perturbation, the j-th
data holder privatizes the observation Yj by evaluating the first k basis functions {em(Yj)}m∈JkK
and transforming these k-dimensional vectors by the chosen privatization mechanism. Since the
same observation Yj is used in the evaluation of each basis function, the privatization mechanism
naturally depends on the number of evaluated basis functions, which we want to release. This is
a common phenomenon, e.g. also noted in Lam-Weil et al. [2020]. The influence of the dimen-
sion k on the privatized samples is reflected in their variance after privatization. For Laplace
perturbation the variance of the (γ-)privatized observations is of order σLP ∼ k

γ , whereas the
dependence on k is reduced to σHS ∼

√
k
γ for hypercube sampling. Our general upper bounds

for the radius of testing demonstrate the effect that the dependence of the variance on k has
on the radii. In fact, the upper bounds (with the notation of Chapter 5) for a projection-based
test with dimension k and a privatization mechanism yielding private views with variance σ
(typically depending on k) are given by

(ρpriv
k,σ )2 := a2

k ∨ (1 + σ2)ν
2
k

n
,

which have to be minimised with respect to k in order to be optimal. Without knowledge on
the true underlying smoothness structure, i.e. on a•, we can a priori only derive rough upper
bounds for the optimal dimension. These upper bounds are – in terms of the sample size n –
typically of order nc for some c > 0 (in mildly ill-posed models) or of order logn (in severely ill-
posed models). Hence, the naive approach is to aggregate over an (appropriate) class containing
all possibly optimal dimension parameters (i.e. up to the upper bound). To do so, the data
holder would have to release privatized version of the evaluated basis functions up to the upper
bound for the optimal dimension. Therefore, additionally to the usual cost to pay for the
protection of privacy and the deterioration due to the aggregation, there is a factor caused by
the necessary privatisation for all dimensions in the collection K. It is an open question whether
this strategy then still exhibits optimal adaptive behaviour or whether completely different
adaptation strategies and privatization mechanisms need to be developed.
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