
DISSERTATION

submitted
to the

Combined Faculty of the Natural Sciences and for Mathematics
of the

Ruberto-Carola Heidelberg University, Germany
for the degree of

Doctor of Natural Sciences

Put forward by

Biagio Brattoli
Born in Foggia, Italy

Oral examination:

Visual Similarity Using Limited
Supervision

Advisor: Prof. Dr. Björn Ommer

The challenge of vision should not be answering the question
’what is this?’, but asking instead ’what is it like?’, thus linking
the input with an analogous representation in memory.

[Moshe Bar. The proactive brain: memory for predictions
(2009), Philosophical Transaction of the Royal Society, 364, 1235-
1243]

Abstract

The visual world is a conglomeration of objects, scenes, motion, and much
more. As humans, we look at the world through our eyes, but we understand it
by using our brains. From a young age, humans learn to recognize objects by
association, meaning that we link an object or action to the most similar one in
our memory to make sense of it.

Within the field of Artificial Intelligence, Computer Vision gives machines
the ability to see. While digital cameras provide eyes to the machine, Computer
Vision develops its brain. To that purpose, Deep Learning has emerged as a
very successful tool. This method allows machines to learn solutions to problems
directly from the data. On the basis of Deep Learning, computers nowadays
can also learn to interpret the visual world. However, the process of learning
in machines is very different from ours. In Deep Learning, images and videos
are grouped into predefined, artificial categories. However, describing a group
of objects, or actions, with a single integer (category) disregards most of its
characteristics and pair-wise relationships. To circumvent this, we propose to
expand the categorical model by using visual similarity which better mirrors the
human approach.

Deep Learning requires a large set of manually annotated samples, that form
the training set. Retrieving training samples is easy given the endless amount of
images and videos available on the internet. However, this also requires manual
annotations, which are very costly and laborious to obtain and thus a major
bottleneck in modern computer vision.

In this thesis, we investigate visual similarity methods to solve image and
video classification. In particular, we search for a solution where human super-
vision is marginal. We focus on Zero-Shot Learning (ZSL), where only a subset
of categories are manually annotated. After studying existing methods in the
field, we identify common limitations and propose methods to tackle them. In
particular, ZSL image classification is trained using only discriminative supervi-
sion, i.e. predefined categories, while ignoring other descriptive characteristics.
To tackle this, we propose a new approach to learn shared features, i.e. non-
discriminative, thus descriptive characteristics, which improves existing methods
by a large margin. However, while ZSL has shown great potential for the task
of image classification, for example in case of face recognition, it has performed
poorly for video classification. We identify the reasons for the lack of growth in
the field and provide a new, powerful baseline.

Unfortunately, even if ZSL requires only partial labeled data, it still needs
supervision during training. For that reason, we also investigate purely unsuper-
vised methods. A successful paradigm is self-supervision: the model is trained
using a surrogate task where supervision is automatically provided. The key to
self-supervision is the ability of deep learning to transfer the knowledge learned
from one task to a new task. The more similar the two tasks are, the more
effective the transfer is. Similar to our work on ZSL, we also studied the com-
mon limitations of existing self-supervision approaches and proposed a method
to overcome them. To improve self-supervised learning, we propose a policy net-

work which controls the parameters of the surrogate task and is trained through
reinforcement learning.

Finally, we present a real-life application where utilizing visual similarity with
limited supervision provides a better solution compared to existing parametric
approaches. We analyze the behavior of motor-impaired rodents during a single
repeating action for which our method provides an objective similarity of behav-
ior, facilitating comparisons across animal subjects and time during recovery.

Zusammenfassung

Die visuelle Welt ist ein Konglomerat von Objekten, Szenen, Bewegungen
und vielem mehr. Als Menschen betrachten wir die Welt durch unsere Augen,
wohingegen die visuellen Informationen von unserem Gehirn verarbeitet werden.
Schon in jungen Jahren lernen Menschen Objekte durch Assoziation zu erkennen,
was bedeutet, dass wir ein Objekt oder eine Handlung mit unserem Wissen, das
wir über mehrere Jahre aufgebaut haben verknüpfen, um einen Sinn daraus zu
ziehen.

Im Bereich der künstlichen Intelligenz verleiht Computer Vision Maschinen
die Fähigkeit zu sehen. Während Digitalkameras als die Augen einer Maschine
agieren, befasst sich Computer Vision damit das ”Gehirn” einer Maschine weit-
erzuentwickeln. Zu diesem Zweck hat sich Deep Learning als sehr erfolgreiches
Werkzeug herausgestellt. Diese Methode ermöglicht es Maschinen, Lösungen für
Probleme direkt aus den Daten zu erlernen. Auf der Grundlage von Deep Learn-
ing können Computer lernen die visuelle Welt eigenständig zu interpretieren.
Der Lernprozess in Maschinen unterscheidet sich jedoch stark von unserem. In
Deep Learning werden Bilder und Videos in vordefinierte künstliche Kategorien
eingeteilt. Bei der Beschreibung einer Gruppe von Objekten oder Aktionen mit
einer einzelnen Zahl (Kategorie) werden jedoch viele ihrer Merkmale und paar-
weisen Beziehungen nicht berücksichtigt. Um dies zu umgehen, schlagen wir vor,
das kategoriale Modell durch Verwendung von visuellen Ähnlichkeiten zu erweit-
ern, da dies eher die menschliche Vorgehensweise widerspiegelt.

Deep Learning erfordert eine große Menge an manuell annotierten Beispielen,
die den Trainings-Datensatz bilden. Glücklicherweise ist das Zusammenstellen
eines Datensatzes angesichts der fast endlosen Anzahl von Bildern und Videos
im Internet einfach. Ein Trainings-Datensatz erfordert allerdings auch manuelle
Annotationen, deren Beschaffung sehr kostspielig und mühsam ist und daher
einen großen Engpass für moderne Computer Vision Methoden darstellt.

In dieser Dissertation untersuchen wir visuelle Ähnlichkeitsmethoden um die
Klassifizierung von Bildern und Videos zu verbessern. Insbesondere suchen wir
nach Lösungen die nur eine geringfügige Kontrolle von Menschen erfordert. Dabei
konzentrieren wir uns vorwiegend auf Zero-Shot Learning (ZSL), bei dem nur
eine Teilmenge von Kategorien manuell mit Annotationen versehen wird. Auf-
grund einer von uns durchgeführten detaillierten Analyse von existierenden ZSL
Methoden war es uns möglich methodenübergreifende Limitierungen zu identi-
fizieren. Darüber hinaus schlagen wir verschiedene Ansätze vor, um die gefunde-
nen Limitierungen zu beseitigen. Wir beschäftigen uns insbesondere mit der Ein-
schränkung, dass existierende ZSL Methoden, Modelle zur Bild-Klassifierungen
nur unter der Verwendung von diskriminierender Überwachung (vordefinierte
Kategorien) trainieren während andere beschreibende Merkmale ignoriert wer-
den. Daher schlagen wir einen neuen Ansatz vor, bei dem gemeinsame, d.h. nicht
diskriminierende, Merkmale gelernt werden. Diese Vorgehensweise verbessert ex-
istierende Methoden um ein Vielfaches. Während ZSL sein großes Potenzial im
Lösen von Bild-Klassifizierungs Problemen gezeigt hat, erreicht es im Falle von
Video-Klassifizierungen allerdings nur mangelhafte Leistungen. Wir identifizieren

die Gründe für die geringen Verbesserungen, die in den letzten Jahren in diesem
Bereich erreicht wurden und bieten eine neue, leistungsstarke Basis an.

Leider benötigt ZSL immer einen Datensatz der zumindest teilweise annotiert
ist. Aus diesem Grund untersuchen wir zusätzlich Methoden, die ausschließlich
auf unbeaufsichtigten (nicht annotiert) Datensätzen basieren. Ein erfolgreiches
Paradigma in diesem Bereich ist die Selbstüberwachung: Das Modell wird mithilfe
einer Ersatzaufgabe trainiert, bei der die Überwachung automatisch erfolgt. Der
Schlüssel zur Selbstüberwachung liegt in der Fähigkeit von Deep Learning. Das
von einer Aufgabe erlernte Wissen kann dank Deep Learning auf eine neue Auf-
gabe übertragen werden. Je ähnlicher die beiden Aufgaben sind, desto effektiver
funktioniert die Übertragung. Ähnlich zu unserer Arbeit in ZSL haben wir auch
hier die allgemeinen Limitierungen bestehender Ansätze untersucht und bieten
eine neue Methode an, die diese umgeht. Um das selbstüberwachte Lernen zu
verbessern, schlagen wir ein Strategie-Netzwerk vor, das die Parameter der Er-
satzaufgabe steuert und durch bestärkendes Lernen geschult wird.

Schließlich stellen wir eine reale Anwendung vor, bei der die Verwendung
von visuellen Ähnlichkeiten mit begrenzter Überwachung eine bessere Lösung als
bestehende parametrische Ansätze bietet. Wir analysieren das Verhalten von
Nagetieren, die an einer neurologischen Erkrankung leiden. Unsere Methode
ermöglicht ein objektives Auswerten von Videos, die die Tiere, während sie eine
bestimmte Bewegung wiederholt ausführen, zeigen. Insbesondere vergleichen wir
die Erfolgsrate von unterschiedlichen Tieren und untersuchen die Verbesserungen
die durch eine Behandlung auftreten.

Acknowledgements

I would like to thank my advisor Prof. Dr. Björn Ommer for giving me the
chance to work on my passion over the last years. Also, I own him the critical
thinking that I build over my PhD.

I am deeply grateful to my colleagues who made the office feel like home. In
particular, I want to thank Sabine, Miguel and Timo for their friendship. I am
grateful for all the people I shared memories over the past years: Artsiom, Niko,
Karsten, Nawid, Tobias, Pablo, Patrick, Johannes, Michael. A huge thanks goes
to Pamela for her big help in boring paperwork and the morning laughs.

Keeping the best for last, I thank Uta for constantly testing my patients in
stressful situations, but also for her strengths that kept me motivated and was
key to a successful PhD.

Contents

1 Introduction 1
1.1 Deep Representation Learning for Computer Vision 4
1.2 Transfer learning for Self-supervision 5
1.3 Contributions . 6
1.4 Thesis Organization . 7

2 Image Classification of Unseen Objects 9
2.1 Background . 9

2.1.1 Preliminaries . 9
2.1.2 Related Work . 10

2.2 Motivation . 12
2.3 Approach . 13

2.3.1 Auxiliary Encoder . 14
2.3.2 Extracting Inter-class Characteristics 14
2.3.3 Minimizing Mutual Information 16

2.4 Experiments . 19
2.4.1 Implementation Details . 19
2.4.2 Datasets . 20
2.4.3 Quantitative and Qualitative Results 21

2.5 Ablations . 21
2.5.1 Embedding Properties . 22
2.5.2 Testing Components and Parameters 23

2.6 Summary . 24

3 Video Classification of Unseen Actions 27
3.1 Background . 27
3.2 Motivation . 29
3.3 Zero-shot Action Classification . 31

3.3.1 Problem Setting . 32
3.3.2 End-to-end Training . 32
3.3.3 Towards Realistic ZSL . 33
3.3.4 Easy Pretraining for Video ZSL 34

3.4 Experimental Setup . 34
3.4.1 Datasets . 35
3.4.2 Training Protocol . 35
3.4.3 Evaluation Protocol . 35
3.4.4 Implementation Details . 36

i

ii CONTENTS

3.5 Results . 37
3.5.1 Comparison to the State of the Art 37
3.5.2 Comparison to a Baseline Method 37
3.5.3 Easy Pretraining with Images 41
3.5.4 Generalization and Domain Shift 41
3.5.5 Ablation Study . 42
3.5.6 Backbone Choice . 42

3.6 Analysis . 43
3.6.1 SUN Pretraining: Easier Task or Better Representation? . 43

3.7 Training Class Diversity . 43
3.8 Analyze the Model Capability Action per Action 44

3.8.1 Direct Comparison by Sorting Classes 44
3.9 Summary . 46

4 Improving Self-Supervision for Better Visual Representation 49
4.1 Background: Meta-learning . 49
4.2 Self-Supervision . 50

4.2.1 Baseline: Spatiotemporal Jigsaw Puzzle 51
4.3 Our Contribution . 52

4.3.1 Meta-learner for Improving Self-supervision 53
4.4 Implementation Details . 56
4.5 Experiments . 57

4.5.1 Nearest Neighbor Search 57
4.6 Transfer Capabilities of the Unsupervised Visual Representation . 58
4.7 Ablation Study . 60
4.8 Policy Detailed Analysis . 62

4.8.1 Size of Validation Set . 62
4.8.2 Number of Groups . 63
4.8.3 Baseline Error EBL Description 64
4.8.4 How Decisive Are the Permutations? 64
4.8.5 Permutation Selection of Our Policy 65
4.8.6 Extra Computational Costs 66
4.8.7 Activation . 68

4.9 Summary . 69

5 Behavior Analysis for Rodents using Unsupervised Visual Rep-
resentation 71
5.1 Behavior Analysis . 71

5.1.1 Definition . 72
5.1.2 Motivation . 73
5.1.3 Contribution . 73
5.1.4 Experiment setup . 73

5.2 Approach . 74
5.2.1 Self-supervision . 74
5.2.2 Evaluation . 75

5.3 Grasping Sugar: Training and Rehabilitation 76
5.4 Study Brain Through Behavior 78

5.4.1 Neuronal Rewiring Correlation 78

CONTENTS iii

5.4.2 Optogenetic Stimulation 79
5.5 Summary . 80

6 Conclusion 83
6.1 Summary . 83
6.2 Discussion and Future Work . 85

Chapter 1

Introduction

Artificial intelligence[139] (AI) gives machines the ability to perceive the world
and make decisions. Similarly to the invention of the steam engine, AI may
bring a new industrial revolution that will change society[138]. Machines do not
get tired and can access a huge amount of data, abilities which humans lack.
Because of that, AI has a strong impact on several industries, particularly in
those fields where objectively analyzing a large flow of data is crucial, such as
finance[169] and cyber-security[1]. Concurrently, AI is entering our homes and
everyday life. Products like Echo from Amazon and Home from Google can
recognize and partially understand human language. Automatic translators are
getting better every year, surpassing human level in some cases[113]. A single
algorithm[145] can defeat the best human chess and go players.

A fundamental part of AI is the ability to understand the visual world. Cam-
eras give eyes to computers, however ”seeing”, i.e. understanding the content of
an image or video, is more complex and still an open research topic. Although,
digital images are just a series of numbers, humans can naturally interpret them
by recognizing objects, scenes, places, postures, and other properties. Computer
vision[51] is the field of research that develops algorithms which enable machines
to ”see”. The core of vision is the recognition of patterns in images[36, 35]. More
specifically, objects are made of parts[48] which in turn are made of basic compo-
nents, such as lines and curves. For example, a face is typically made of two eyes,
a nose, and a mouth, and a person is typically made of a face, arms, legs, etc...
The relative arrangement of parts forms a specific patter which can be leveraged
to recognize the object. In this sense, vision can be defined as pattern recog-
nition in images and videos. Therefore, given a set of predefined object/action
categories, the algorithm is developed to recognize the specific patterns that dis-
tinguish the categories from each other. For example, an algorithm that separates
horses from zebras will search for stripes on the animal.

However, designing by hand an algorithm that can search for those discrim-
inative patterns is nearly impossible. Fortunately, using machine learning, we
can learn an approximate solution directly from the data. CV algorithms can
discover, or learn, the discriminative patterns necessary to distinguish object cat-
egories. Commonly, the learning process requires a human to define the target
categories and annotate each data sample with one of those categories. Methods

1

2 CHAPTER 1. INTRODUCTION

of this nature are referred to as supervised and the collection of annotated data
used for the learning process is called ”training set” or ”training data”. Labelling
each image (or video) in the training set entails that the human annotator has
a clear distinctions of what defines an object (or action) and how to effectively
group samples into non-overlapping categories.

However, what represents an object, a scene or an action is not well defined.
A way to describe complex objects is through a hierarchical structure. For ex-
ample, a car is made of wheels, doors, and other constituents. This raises the
question: Should the car be labelled as a whole or each part independently? Are
we satisfied to recognize the object as a ”car” or do we need more fine-grained
categories such as the car model and brand? A similar issue appear with actions:
when does an action start or end? In case of a person jumping, when does the
”jumping” start? Is it the exact moment when the person lifts his feet from the
ground or a few seconds earlier when it prepares for the jump? Should we split
the jump in phases, such as ready, going up, going down? There is no general
answer to these questions[117, 86], as the answer depends on the context and
the problem to be solved. However, even when the problem is well defined, the
subjective interpretation of the object could introduce human bias through the
annotations. Using the earlier example, if a part of the car is occluded, do we
also label the missing part? Also, how much of the car can be missing for it to
be still considered a ”car”? Developing a single model to solve computer vision
will therefore not be possible as long as scientists force discrete categories on a
continuous visual world[105]. Currently, the common approach is to develop very
specialized methods. For example, one model is able to recognize faces, while
another gives cars the ability to recognize driving street and obstacles.

In this thesis, we research a more general vision model by substituting the
concept of ”category” with ”visual similarity”[105, 117, 86]. Furthermore, we
limit the need for human annotations during the learning process which has two
major benefits: decreasing the annotation bottleneck allowing for larger training
set and reducing the human bias within the annotation process[64].

In the remainder of the section, we examine the concepts of object classifica-
tion, which apply to any computer vision task.

Visual Similarity Humans do not explore and learn about the world in discrete
categories, but through exemplars[105], meaning that we associate any new object
with the most similar one in our memory. This concept can also be applied to
machines, thus instead of asking the model ”Which category does this belong
to?”, we ask ”What is this similar to?” [117]. In this way, it is possible to develop
a more flexible model of the visual world, closer to reality. For example, two
dogs are more similar to each other than to a cat, and two german shepherds will
be more similar than a chihuahua. However, learning visual similarity is a hard
task. A perfect model would require a human annotator to compare every pair
of images existing in the training set, which is infeasible due to the cost growing
exponentially with the number of samples. This brings us directly to the second
topic of this thesis: reducing the amount of annotation needed for training, i.e.
limiting human supervision.

3

Figure 1.1: Comparison between a classical computer vision (CV) pipeline and
a deep learning model. (Top) A classical pipeline extracts salient information
from the input image using hand-crafted features. Learned filters are then ap-
plied to solve the task. In this example, taken from Felzenszwalb et al.[48], the
HOG features[31] emphasizes strong edges. A part-based model, trained using
SVM[29], detects a person within the image. (Bottom) This figure, taken from
https://www.cc.gatech.edu/ hays/compvision/proj6/, shows the feature extrac-
tors automatically learned by the network. Hand-crafted features are not neces-
sary to encode the image. The network shows a hierarchical representation, from
low level information, such as edges, to more abstract concepts, object parts, to
the complete object.

Limited Human Supervision Until three decades ago, the main obstacle of
computer vision was the lack of digital images. Thanks to technological innova-
tions, the abundance of cameras and the internet, it is easy to collect an infinite
amount of images and videos nowadays. However, simply having the data is not
enough to train a ML model. Each training sample still requires meticulous man-
ually annotation. This created a new bottleneck in ML: Annotation -providing
millions of images with thousands of object categories is very costly and time-
consuming. Furthermore, human annotation is prone to error - either because of
practical mistakes or because of ambiguities in the task itself. This and the con-
straint of the visual world into a categorical system make it hard to accurately
reflect reality. These issues motivate the search for new methods to learn the
model using less manual annotation.

In this thesis, we cover two types of limited supervision: zero-shot (ZSL)
and unsupervised learning. In ZSL, the model is learned on a limited number
of categories and tested on a new set of categories, never seen during training.
Unsupervised methods are approaches that do not require any human supervision
for training and learn representations directly from the data.

4 CHAPTER 1. INTRODUCTION

1.1 Deep Representation Learning for Computer

Vision

As mentioned earlier in this chapter, a computer vision algorithm recognizes an
object by looking for discriminative patterns within the image. Since finding those
patterns is a hard task, computer vision researchers use machine learning (ML)
to learn salient patterns directly from the training data[19] For example, given a
simple dataset of handwritten digits, a classical ML classifier (e.g. decision trees,
support vector machine, multi-layer perceptron) could be applied directly on the
raw pixels, achieving good performances. However, a real-life task has a much
higher complexity than a simple white digit on black background. Therefore a
computer vision task can not be solved by a classifier applied directly on the raw
image. For this reason, the image is processed before usage, to remove redundant
information and retain only crucial ones. In other words, the classifier needs to be
invariant to uninformative characteristics, such as brightness, tiny spatial shifts,
rotation or occlusion, and focus on crucial features like edges, corners, or motion
in videos. The algorithm to break down an image into essential information or
features is called ”feature extractor”. Extracting the right information is a very
difficult task and has been a relevant research topic for decades. For this reason,
in classical computer vision, researchers would focus on hand-crafting specialized
feature extractors instead of improving on the classifier responsible for the actual
prediction. The output of the feature extractor is what we call a visual represen-
tation[106]. Over the last four decades, researchers have developed many features
extractors, some focused on shape (Hough lines[10]), others on motion (optical
flow[5], HOOF), or color gradient (SIFT[98] and HOG[31]). However, in the last
decade a new paradigm became popular in computer vision, so much so that clas-
sical feature extractors are becoming obsolete. This new paradigm is called Deep
Learning (DL)[91, 57] and is based on artificial neural networks (ANN)[92], a ML
method able to automatically learn feature extractor and classifier concurrently.
ANN have been around for three decades, however, because of limitations in data
and computation, they were never powerful enough to compete with other meth-
ods. However, the exponential rise of available and specialized compute made
ANNs much more attractive in recent years.

Arguably, the high effectiveness of DL compared to classical CV stems from
better visual representations [85]. In particular, the DL representation is[91]:

• Hierarchical: the model is composed of several layers where the output
(representation) of a layer is the input to another. (Hence the term ”deep”
in the name.)

• Learned: the filters are directly learned from the data to solve the specific
task. In early layers, some DL filters do resemble the hand-crafted ones,
however most of the filters retrieve new information.

• Large capacity: the number of filters in a deep learning model is orders of
magnitude larger than the biggest model using hand-crafted features.

1.2. TRANSFER LEARNING FOR SELF-SUPERVISION 5

Hierarchy, training, and capacity enables the model to learn more complex and
abstract concepts[176]. For example, to detect a person, the neural network learns
that the body has a face, which is composed of eyes, nose, and mouth, which in
turn are made of lines and curves[176]. Fig. 1.1 shows a comparison between a
classical pipeline and a modern deep learning model.

1.2 Transfer learning for Self-supervision

Humans have the ability to transfer the knowledge learned from one task to an-
other. For example, a tennis player is better at badminton than a person who
never played either because the tennis player can utilize what he learned from one
sport (tennis) in the other (badminton). This ability is called Transfer Learning
(TL) and is essential for our everyday life, preventing us from learn each small
activity from scratch. In machine learning the same concept applies[152, 37],
however it has been less successful in classical ML because the learned classifier
is typically very specialized. On the other hand, the hierarchical nature of deep
neural network allows them to extract more generic features, less specialized on
the actual task that they are learning. Therefore, after training a network on a
task, it is possible to transfer the general features to a new task. The first phase
comprising the initial training takes the name of ”pre-training” and the second
containing the adjustment to a secondary task, is referred to as ”fine-tuning”.
The final evaluation task is called ”downstream task”. As an example, let’s say
that our pre-training task is to distinguishing dogs from cats and the downstream
task is distinguishing dog’s breed. To solve the first task, the network needs to
learn classical features of the two animals, such as face, legs, fur, and so on. When
solving the second task, even if it is data is notably different, the network can uti-
lize the previous knowledge and does not need to learn it from scratch. Naturally,
the closer the pre-trained task is to the downstream task, the more effecting the
transfer is. In fact, transfer learning can be used to measure similarity between
two tasks[2].

Transfer learning is particularly effective when the first task has a large
amount of training data available while the second task only has few annotated
data. The most common example is object detection[132, 96]: annotating the full
image with a single label (image classification) is much faster than pointing at all
objects within the image (object detection). Therefore, it is common practice to
pre-train the network on image classification and fine-tune on object detection,
since more annotated training samples are available for the first task. This is im-
portant because, in general, the more data is used for training, the stronger the
visual representation will be. Unsupervised representation learning fills this niche
perfectly as theoretically it has an infinite amount of data available. Pre-training
can be done in an unsupervised fashion first to produce a very powerful visual
representation, and then fine-tuned on the downstream task where annotations
are limited.

6 CHAPTER 1. INTRODUCTION

Unsupervised methods Unsupervised deep learning methods can be distin-
guished in two main categories:

• Generative models[67, 81, 58]: the task is to approximate the data distri-
bution or reconstruct each single sample.

• Self-supervision[38, 114]: the model is trained using a surrogate task for
which labels are freely available, typically by transforming the input and
using the network to identify the transformation.

Generative models have been a first attempt to a generic unsupervised representation[83,
128]. However, these methods tend to focus too much on fine-grained features
of the image (such as background), since they need to approximate the data dis-
tribution. Moreover, they are very costly since generating the image requires
extra computation. Self-supervision on the other hand as recently shown promise
to learn unsupervised representation. Unlike reconstruction-based approaches,
self-supervised training is closer to the downstream task since it utilizes a sim-
ilar objective function (called loss) instead of reproducing the input image. In
Chapter 4, we will review some of the most common self-supervision methods and
propose a framework for learning a generic representation for images and videos.

1.3 Contributions

This thesis provides the following contributions:

• We highlight an important weakness of metric learning, where existing
methods are based solely on discriminative features, ignoring crucial inter-
class relations.

• Our novel training forces the network to learn inter-class characteristics
together with classical discriminative features, boosting any existing metric
learning method by a large margin.

• Research in zero-shot learning for video classification is making very slow
progress. We identify the reasons behind that: existing models are shallow,
hence the low performance, and unreasonably complex, making the methods
not reproducible. Finally, used training sets are unnecessarily small and
don’t exploit modern dataset.

• We propose a new zero-shot learning protocol for video classification , which
supports a faster progress in the field, and a strong baseline method easy
to reproduce and modify.

• We train a controller via reinforcement learning to adjust the hyper-parameters
of the surrogate task to maximize the generalization capability of the learned
representation.

• We apply self-supervision to encode behavior in a representation for objec-
tively quantify motor-skill changes in rodents and compare behavior across
animals.

1.4. THESIS ORGANIZATION 7

• We compare animal behavior during training and rehabilitation, showing
how visual similarity can assist drug evaluation and comparison of rehabil-
itation methods.

1.4 Thesis Organization

Chapter 2. Before discussing unsupervised learning, we study zero-shot learn-
ing (ZSL) as an intermediate problem between unsupervised and supervised learn-
ing. Specifically, we train a model on labeled data and test on classes never seen
during training, for example, recognize a bird speci or car model. ZSL is typically
solved by learning similarities between images, called metric learning, instead of
classifying them into predefined categories. In Chapter 2, we discuss existing
methods and propose our contribution to improve the state-of-the-art. The pro-
posed method was previously published at ICCV 2019.

Chapter 3. In the last few years, researchers have worked on improving ZSL
for images and were able to apply to a real-world applications. At the same time,
ZSL for video classification has not made much progress and is far from being
used in a real product. In Chapter 3 we study the current state of the field and
analyze why the progress is slow. Moreover, we provide a new, strong baseline
and evaluation method which could help the field progress at an increased pace.
This work was published at CVPR 2020.

Chapter 4. After ZSL, this thesis focuses on unsupervised learning, changing
the problem from having some supervision to a total lack thereof. In particular,
we study the paradigm of self-supervision: the network is trained using a surro-
gate task for which labels are freely available. In Chapter 4 we give an overview
of existing self-supervised approaches and propose an unsupervised method to
learn a video representation. Moreover, we boost self-supervised methods by
combining images and videos into a single framework. Finally, we improve self-
supervision even further by optimizing the surrogate task during training using
an automatic controller. We utilize modern reinforcement learning methods to
learn the controller. The work discussed in Chapter 4 was published as part of
ECCV 2018.

Chapter 5. In Chapter 5, we apply our unsupervised video representation to a
real world scenario: to objectively evaluate behavior. In particular, given several
rodents performing the same, repetitive action, we compare their motor functions
to tell the level of impairment of each animal. This is instrumental in comparing
different rehabilitation methods and drugs. Moreover, we can predict the complex
brain status by only watching the behavior. This work was partially published
at CVPR 2017. Follow-up work is under review for a journal publication. The
behavior analysis was a joint contribution with Uta Buechler.

Chapter 6. Finally, we draw the conclusion on visual similarity when the
supervision is incomplete and discuss future direction.

Chapter 2

Image Classification of Unseen
Objects

The goal of Zero-shot learning (ZSL) [89, 122] is recognizing classes never seen
during training. ZSL belongs to limited supervision since it requires that only
a limited set of classes are available during training while testing on a different
set of classes. Typically, the challenge is limited to a single object type (cars,
birds, faces, ...) and the task is more a fine-grained classification: given a specific
objects, distinguish its fine-grained variations (car model, bird species, face ID).
Distinguish faces by training on airplanes is unrealistic.

Metric learning is the standard way to tackle zero-shot learning. Instead of
predicting the exact object class, the model learns the visual similarity between
objects. In this way, the model can generalize to classes never seen during train-
ing.

By far, the most successful field for ZSL is face recognition. Every day millions
of devices are unlocked using face ID technology. This technology reached very
high precision in the latest years thanks to metric learning.

In this chapter, we tackle a common limited supervision scenario (ZSL). Our
contribution is a method to boost the visual representation for boosting state-of-
the-art.

After formally define metric learning (Sec.2.1.1) and providing a short list of
related work, we motivate our contribution (Sec. 2.2) and describe our method
in details (Sec. 2.3). Finally, we evaluate the method showing how it boost per-
formances for many previous methods (Sec. 2.4). The work done in this chapter
was previously published in Roth et al. [136].

2.1 Background

In this section, we are going to formally define the metric learning algorithm and
provide an overview of existing methods.

2.1.1 Preliminaries

In metric learning, the network learns to extract discriminative features and
project the images from pixel space to a lower-dimensional euclidean space. The

9

10 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

Figure 2.1: (Left) Images can be described by combinations of latent charac-
teristics and white noise. (Green) Standard metric learning encoders extract
class-discriminative information α while disregarding object-specific properties β
(e.g. color, orientation). Achieving invariance to such characteristics requires
substantial training data. (Brown) Instead, the model can explain them away
by learning their structure explicitly. Our novel approach explicitly separates
class-specific and shared properties during training to boost the performance of
the discriminative encoding.

encoder E projects images xi of class y nearby in the encoding space, while sam-
ples from different classes are far apart.

The visual representation f (x) is extracted using a neural network f : RHeight×Width×3 →
RF, which is then passed to the embedding E : RF → RD. Typically, E is imple-
mented as a fully connected layer of dimension D. f and E can be combined in a
single neural network, therefore they can be learned jointly using standard back-
propagation. The network is trained by enforcing that dij < dik if yj = yi and

yk 6= yi, where dij = ||E(f (xi))− E(f (xj))||2 is the euclidean distance between

the images xi and xj. Formally, the loss is defined as l = max
(
dij − dik + m, 0

)
where m is a margin parameter and yj = yi and yk 6= yi. Many variants of this
loss have been proposed recently, with margin loss[167] (adding an additionally
learnable margin β) proving to be best.

2.1.2 Related Work

Metric learning is effective in various computer vision applications, such as object
retrieval [119, 167], zero-shot learning [167] and face verification [28, 143]. The
triplet paradigm [143] is the standard in the field and much work has been done
to improve upon the original approach. As an exponential number of possible
triplets makes the computation infeasible, many papers propose solutions for

2.1. BACKGROUND 11

Figure 2.2: Overview of our approach. We aim to learn two separate encoding
spaces s.t. class information α extracted by Eα is free from shared properties β
by explicitly describing them through an auxiliary encoder Eβ. Given a set of
image/label pairs (x, y), their CNN feature representation f (x) groups images
by both class-specific (car model) and shared (orientation, color) characteristics.
We separate these by training the class-discriminative encoder Eα with ground-
truth labels (boundary color). Simultaneously, an auxiliary encoder Eβ is trained
on labels from a surrogate task (right) to explain away interclass features. The
required surrogate labels are generated by standardizing the embedded training
data per class and performing clustering. This recovers labels representing the
shared structures β (contour line-styles). Training both tasks together, Eα learns
a robust, β-free encoding, which is now explicitly explained by Eβ.

mining triplets more efficiently [167, 143, 63, 54, 72]. Recently, Duan et al. [41]
have proposed a generative model to directly produce hard negatives. ProxyNCA
[112] generates a set of class proxies and optimizes the distance of the anchor
to said proxies, solving the triplet complexity problem. Others have explored
orthogonal directions by extending the triplet paradigm, e.g. making use of every
sample in the (specifically constructed) batch at once [119, 148], enforcing an
angular triplet constraint [160], minimizing a cluster quality surrogate [118] or
optimizing the overlap between positive and negative similarity histograms [155].
Also, ensembles have been quite successfully used by combining multiple encoding
spaces [120, 121, 175, 52] to maximize their efficiency.

Our work makes use of class-agnostic grouping of our data (see e.g. [11, 12])
and shares similarities with proposals from Liu et al.. [94], who explicitly de-
compose images into class-specific and intra-class embeddings using a generative
model, as well as Bai et al.. [9], who, before training, divide each image class into
subgroups to find an approximator for intra-class variances that can be included
in the loss. However, unlike [9, 94], we explicitly search for structures shared
between classes instead of modelling the intra-class variance per sample [94] or
class [9]. Also, unlike [9], we assume class-independent intra-class variance and

12 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

iteratively train a second encoder to model intra-class features, thereby purify-
ing the main encoder from non-discriminative features and achieving significantly
better results.

Finally, some works have exploited the latent structure of the data as a su-
pervisory signal [114, 116, 24, 21, 23, 142, 141]. In particular, Caron et al.. [24]
learn an unsupervised image representation by clustering the data, starting from
a Sobel filter before initialization. Our approach includes such latent data struc-
tures in a similar way, however, we use it as auxiliary information to improve
upon the metric learning task.

2.2 Motivation

The pixel space is a very high dimensional space composed of structured dimen-
sions, but also many unstructured, noisy dimensions. If we ignore the unstruc-
tured components, we can describe an image using a few dimensions where the
structured information is encoded. A typical computer vision algorithm learns
salient latent characteristics for a specific task. For example in object classifica-
tion, discriminative characteristics (e.g. car shape) are used to group the images
according to predefined classes. In order to eliminate the unstructured infor-
mation (e.g. random clutter, occlusion, image brightness), we force the neural
network to become invariant to them, for example by using data augmentation.
However, there is still structured information which is not used for the classifica-
tion task because they are shared among classes, but cannot be simply disregarded
as noise (e.g. viewpoints and notions of color).

Carefully extracting the shared features becomes especially important in met-
ric learning. Learning similarities is a complex task that requires a very detailed
description, or encoding, of the image. Therefore, finding a strong set of latent
characteristics is crucial. Explicitly handling those characteristics shared across
classes should, therefore, benefit the model (Lin et al. [94]), as it can better ex-
plain the object variance within a class. Take for example a model trained only
on white cars of a certain category. This model will very likely not be able to
recognize a blue car of the same category (Fig. 2.1 top-right). In this exam-
ple, the encoder ignores the concept of ”color” for that particular class, even
though it can be learned from the data as a latent variable shared across all cars
(Fig. 2.1 bottom-right). This is a typical generalization problem and is tradition-
ally solved by providing more labeled data. However, besides being a costly
solution, metric learning models need to also generalize to unknown classes, a
task which should work independently from the amount of labels provided.

Several work [94, 73, 9] have shown that explicitly modeling intro-class vari-
ation is beneficial for the model. For example, spatial transformer layers [73]
explicitly learn the possible rotations and translations of an object category.

Our model learns the classical metric learning task of discriminating between
classes, but at the same time, it learns the shared characteristics of the objects.
The discriminative and shared features are learned by two separate encoders,
respectively the class and auxiliary encoder. While we use ground-truth labels to
learn the class encoder, the auxiliary encoder is trained through a novel surrogate
task that extracts class-independent information in an unsupervised way.

2.3. APPROACH 13

Figure 2.3: Example of clustering the data based on Z (see Sec2.3.2) for two
datasets: CARS196[84] and SOP[119]. We group the dataset into 5 clusters (rows)
and select the first 5 classes (columns) with at least one sample per cluster. For
each entry, we selected the sample closest to the centroid per class. On the left
is our interpretation of the cluster structure. The results show that subtraction
of the class-specific features by standardization helps to group images based on
more generic properties, like car orientation and bike parts.

Finally, we extract the shared characteristics learned by the auxiliary encoder
from the discriminative ones adopting a mutual information loss. This purifies
the class encoder from non-discriminative, shared characteristics.

This solution can be utilized with any standard metric learning loss, as shown
in the result section (Sec. 2.4.3). Our approach is evaluated on three standard
benchmarks for zero-shot learning, CUB200-2011 [158], CARS196 [84] and Stan-
ford Online Products [119], as well as two more recent datasets, In-Shop Clothes
[185] and PKU VehicleID [95]. The results show that the proposed approach
consistently enhances the performances of existing methods.

2.3 Approach

The main idea behind our method is the inclusion of class-shared characteristics
into the metric learning process to help the model explain them away. In doing so,
we would gain robustness to intrinsic, not-discriminative properties of the data,
which is contrary to the common approach of simply forcing invariance towards
them. However, three main problems arise with this approach, namely: (i) Ex-
tracting both class and class-independent characteristics using a single encoder is
infeasible and detrimental to the main goal. (ii) We lack the labels for extracting
these latent properties. (iii) We need to explicitly remove unwanted properties
from the class embedding. We propose solutions to each of these problems in
sections 2.3.1, 2.3.2 and 2.3.3.

14 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

Algorithm 1 Training a model via MIC

Input: data X, full encoder E, inter-/intra class encoders {Eα, Eβ}, CNN f , class
targets Yα, batchsize bs, clusternumber C, update frequency TU, (adversarial)
mutual information loss ld and weight γ, projection network R, gradient reversal
op r, metric learning loss functions for Eα,β lα,β

Yβ ← Cluster(Stand(Embed(X, E, f)), C)
epoch ← 0
while Not Converged do

repeat
bα, bβ ← GetBatch(X, Yα, Yβ, bs)
eα,β ← Embed(bα,β, Eα,β, f)
Lα ← lα(eα, Yα) + γ · ld(er

α, R(er
β))

Eα, f ← Backward(Lα)
eα,β ← Embed(bα,β, Eα,β, f)
Lβ ← lβ(eβ, Yβ)+ γ · ld(er

α, R(er
β))

Eβ, f ← Backward(Lβ)

until end of epoch;
if epoch mod TU == 0 then

Yβ ← Cluster(Embed(X,Eβ, f), C)
end
epoch← epoch + 1

end

2.3.1 Auxiliary Encoder

To separate the process of extracting both inter- and intra-class (shared) char-
acteristics, we utilize two separate encodings: a class encoder Eα which aims to
extract class-discriminative features and an auxiliary encoder Eβ to find shared
properties. These encoders are trained together (Fig.2.2). To efficiently train the
underlying deep neural network, the two encoders share the same image represen-
tation f (x) which is updated by both during training. In the first training task,
the class encoder Eα is trained using the provided ground truth labels y1, · · · , yN
associated with each image x1, · · · , xN with N the number of samples. A respec-
tive, metric-based loss function can be selected arbitrarily (such as a standard
triplet loss or the aforementioned margin loss), as this part follows the generic
training setup for metric learning problems. Because labels are not provided for
the training of our auxiliary encoder, we define an automatic process to mine
shared latent structure information from the original data. This information is
then used to provide a new set of training labels to train our auxiliary encoder
(Fig.2.2 right). As the training scheme is now equivalent to the primary task, we
may choose from the same set of loss functions.

2.3.2 Extracting Inter-class Characteristics

We seek a task which, without human supervision, spots structured characteristics
within the data while ignoring class-specific information. As structured proper-

2.3. APPROACH 15

R@k Dim 1 2 4 NMI

DVML[94] 512 52.7 65.1 75.5 61.4
BIER[120] 512 55.3 67.2 76.9 -
HTL[54] 512 57.1 68.8 78.7 -
A-BIER[121] 512 57.5 68.7 78.3 -
HTG[182] - 59.5 71.8 81.3 -

DREML[174] 9216 63.9 75.0 83.1 67.8

Semihard[143] - 42.6 55.0 66.4 55.4
Semihard* 128 57.2 69.4 79.9 63.9
MIC+semih 128 58.8 70.8 81.2 66.0
ProxyNCA[112] 64 49.2 61.9 67.9 64.9
ProxyNCA* 128 57.4 69.2 79.1 62.5
MIC+ProxyNCA 128 60.6 72.2 81.5 64.9
Margin[167] 128 63.6 74.4 83.1 69.0
Margin* 128 62.9 74.1 82.9 66.3
MIC+margin 128 66.1 76.8 85.6 69.7

Table 2.1: Recall@k for k nearest neighbor and NMI on CUB200-2011 [158]. Our
model outperforms all previous approaches, even those using a larger number of
parameters. (*) indicates our best re-implementation with ResNet50.

R@k Dim 1 2 4 NMI

HTG[182] - 76.5 84.7 90.4 -
BIER[120] 512 78.0 85.8 91.1 -
HTL[54] 512 81.4 88.0 92.7 -
DVML[94] 512 82.0 88.4 93.3 67.6
A-BIER[121] 512 82.0 89.0 93.2 -
DREML[174] 9216 86.0 91.7 95.0 76.4
Semihard[143] - 51.5 63.8 73.5 53.4
Semihard* 128 65.5 76.9 85.2 58.3
MIC+semih 128 70.5 80.5 87.4 61.6
ProxyNCA[112] 64 73.2 82.4 86.4 -
ProxyNCA* 128 73.0 81.3 87.9 59.5
MIC+ProxyNCA 128 75.9 84.1 90.1 60.5
Margin[167] 128 79.6 86.5 90.1 69.1
Margin* 128 80.0 87.7 92.3 66.3
MIC+margin 128 82.6 89.1 93.2 68.4

Table 2.2: Recall@k for k nearest neighbor and NMI on CARS196 [84].
DREML[174] is not comparable given the large embedding dimension. (*) in-
dicates our ResNet50 re-implementation.

16 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

R@k Dim 1 10 100 NMI

DVML[94] 512 70.2 85.2 93.8 90.8
BIER[120] 512 72.7 86.5 94.0 -
ProxyNCA[112] 64 73.7 - - -
A-BIER[121] 512 74.2 86.9 94.0 -
HTL[54] 512 74.8 88.3 94.8 -
Margin[167] 128 72.7 86.2 93.8 90.7
Margin* 128 74.4 87.2 94.0 89.4
MIC+margin 128 77.2 89.4 95.6 90.0

Table 2.3: Recall@k for k nearest neighbor and NMI on Stanford Online Products
[119]. (*) indicates our ResNet50 re-implementation.

ties are generally defined by characteristics shared among several images, they
create homogeneous groups. To find these, clustering offers a well-established
solution. This algorithm associates images to surrogate labels c1, · · · , cN with
ci ∈ [1, · · · , C] and C being the predefined number of clusters. However, applied
directly to the data, this method is biased towards class-specific structures since
images from the same class share many common properties, like color, context,
and shape, mainly injected through the data collection process (e.g. a class may
be composed of pictures of the same object from multiple angles).

To remove the characteristics shared within the class, we apply normalization
guided by the ground truth classes. For each class y we compute the mean µy and
standard deviation σy based on the features f (xi), ∀xi : yi = y. Then we obtain

the new standardized image representation Z = [z1, · · · , zN]with zi =
f (xi)−µyi

σyi
,

where the class influence is now reduced. Afterwards, the auxiliary encoder Eβ

can be trained using the surrogate labels [c1, · · · , cN] produced by clustering the
space Z.

To be effective, a strong prior is needed. It is a standard procedure for deep
metric learning to initialize the representation backend f with weights pre-trained
on ImageNet. This provides a sufficiently good starting point for clustering, which
is then reinforced through training Eβ.

Fig.2.3 shows some examples of clusters detected using our surrogate task.
This task and the encoder training are summarized in Fig.2.2.

2.3.3 Minimizing Mutual Information

The class encoder Eα and auxiliary encoder Eβ can then be trained using the
respective labels. As we utilize two different learning tasks, Eα and Eβ learn dis-
tinct characteristics. However, as both share the same input, the image features
f (x), a dependency between the encoders can be induced, therefore leading to
both encoders learning some similar properties. To reduce this effect and to con-
strain the discriminative and shared characteristics into their respective encoding
space, we introduce a mutual information loss, which we compute through an

2.3. APPROACH 17

R@k Dim 1 10 30 50

BIER[120] 512 76.9 92.8 96.2 97.1
HTG[182] - 80.3 93.9 96.6 97.1
HTL[54] 512 80.9 94.3 97.2 97.8
A-BIER[121] 512 83.1 95.1 97.5 98.0

DREML[174] 9216 78.4 93.7 96.7 -

Margin* 128 84.5 95.7 97.6 98.3
MIC+margin 128 88.2 97.0 98.0 98.8

Table 2.4: Recall@k for k nearest neighbor and NMI on In-Shop [185]. (*) indi-
cates our best re-implementation with ResNet50

Test Splits Small Large

R@k Dim 1 5 1 5

MixDiff+CCL[95] - 49.0 73.5 38.2 61.6
GS-TRS[9] - 75.0 83.0 73.2 81.9
BIER[120] 512 82.6 90.6 76.0 86.4
A-BIER[121] 512 86.3 92.7 81.9 88.7

DREML[174] 9216 88.5 94.8 83.1 92.4

Margin* 128 85.1 92.4 80.4 88.9
MIC+margin 128 86.9 93.4 82.0 91.0

Table 2.5: Recall@k for k nearest neighbor and NMI on PKU VehicleID[95].
DREML[174] is not comparable given the large embedding dimension. (*) our
best ResNet50 re-implementation

18 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

Figure 2.4: Qualitative nearest neighbor evaluation for CUB200-2011, CARS196
and SOP based on Eα and Eβ encodings and their combination. The results
show that Eβ leverages class-independent information (posture, parts) while Eα

becomes independent to those features and focuses on the class detection. The
combination of the two reintroduces both.

adversarial setup

ld = −
(

Er
α(f (x))�R(Er

β(f (x)))
)2

(2.1)

with R being a learned, small two-layered fully-connected neural network with
normalized output projecting Eβ to the encoding space of Eα. � stands for an
elementwise product, while the r superscript notes a gradient reversal layer [53]
which flips the gradient sign s.t. when trying to minimize ld, i.e. maximiz-
ing correlation, the similarity between both encoders is actually decreased. A
similar method has been adopted by [121], where shared information is mini-
mized between an ensemble of encoders. In contrast, our goal is to transfer non-
discriminate characteristics to an auxiliary encoder. Finally, as ld scales with R,
we avoid trivial solutions (e.g. R(Eβ) → ∞) by enforcing R(Eβ) to have unit
length, similar to Eα and Eβ.

Finally, the total loss L to train our two encoders and the representation f is
computed by L = lα + lβ + γld, where γ weights the contribution of the mutual
information loss with respect to the class triplet loss lα and the auxiliary triplet

2.4. EXPERIMENTS 19

Figure 2.5: UMAP projection of Eα for CARS196. Seven clusters are selected,
showing six images near the centroid and their ground-truth labels. We see that
the encoding extracts class-specific information and ignores other (e.g. orienta-
tion).

loss lβ. The full training is described in Alg. 1.

2.4 Experiments

In this section we offer a quantitative and qualitative analysis of our method,
also in comparison to previous work. After providing technical information for
reproducing the results of our model, we give some information regarding the
standard benchmarks for metric learning and provide comparisons to previous
methods. Finally, we offer insights into the model by studying its key components.

2.4.1 Implementation Details

We implement our method using the PyTorch framework [123]. As baseline ar-
chitecture, we utilize ResNet50 [66] due to its widespread use in recent metric
learning work. All experiments use a single NVIDIA GeForce Titan X. Prac-
tically, class and auxiliary encoders Eα and Eβ use the same training protocol
(following [167] with embedding dimensions of 128) with alternating iterations to
maximize the usable batch-size. The dimensionality of the auxiliary encoder Eβ

is fixed (except for ablations in sec. 2.5) to the dimensionality of Eα to ensure
similar computational efficiency compared to previous work. However, due to
GPU memory limitations, we use a batchsize of 112 instead of a proposed 128,
with no relevant changes in performance.

20 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

During training, we randomly crop images of size 224× 224 after resizing to
256× 256, followed by random horizontal flips. For all experiments, we use the
original images without bounding boxes. We train the model using Adam [80]
with a learning rate of 10−5 and set the other parameters to default. We set
the triplet parameters following [167], initializing β = 1.2 for the margin loss and
α = 0.2 as fixed triplet margin. Per mini-batch, we sample m = 4 images per class
for a random set of classes, until the batch size is reached. For γ (Sec. 2.3.3 eq.)
we utilize dataset-dependent values in [100, 2000] determined via cross-validation.

After class standardization, the clustering is performed via standard k-means
using the faiss framework [76]. Using the hyperparameters proposed in this para-
graph, the computational cost introduced by our approach is 10-20% of total
training time. For efficiency, the clustering can be computed on GPU using
faiss[76]. The number of clusters is set before training to a fixed, problem-specific
value: 30 for CUB200-2011 [158], 200 for CARS196 [84], 50 for Stanford Online
Products [119], 150 for In-Shop Clothes [185] and 50 for PKU VehicleID [95].
We update the cluster labels every other epoch. Notably, however, our model
is robust to both parameters since a large range of parameters give comparable
results. Later in section 2.5 we study the effect of cluster numbers and cluster
label update frequencies for each dataset in more detail to motivate the chosen
numbers. Finally, class assignments by clustering, especially in the initial training
stages, becomes near arbitrary for samples further away from cluster centers. To
ensure that we do not reinforce such a strong initial bias, we found it beneficial
to ease the class constraint by randomly switching samples with samples from
different cluster classes (with probability p ≤ 0.2).

2.4.2 Datasets

Our model is evaluated on five standard benchmarks for image retrieval typically
used in deep metric learning. We report the Recall@k metric [74] to evaluate
image retrieval and the normalized mutual information score (NMI) [101] for the
clustering quality. The training and evaluation procedure follows the standard
setup as used in [167].
CARS196[84] with 196 car models over 16,185 images. We use the first 98
classes (8054 images) for training and the remaining 98 (8131 images) for test-
ing.
Stanford Online Products[119] with 120,053 product images in 22,634 classes.
59,551 images (11,318 classes) are used for training, 60,502 (11,316 classes) for
testing.
CUB200-2011[158] with 200 bird species over 11,788 images. Train and Test
Sets contain the first and last 100 classes (5,864/5,924 images) respectively.
In-Shop Clothes[185] with 72,712 clothing images in 7,986 classes. 3,997 classes
are used for training and 3,985 classes for evaluation. The test set is divided into
a query set (14,218 images) and a gallery set (12,612 images).
PKU VehicleID[95] with 221,736 surveillance images of 26,267 vehicles with
shared car models. We follow [95] and use 13,134 classes (110,178 images) for
training. Testing is done on a predefined small and large testing subset with
7,332 (small) and 20,038 (large) images respectively.

2.5. ABLATIONS 21

Figure 2.6: UMAP projection of Eβ for CARS196. Seven clusters are selected,
showing six images near the centroid and their GT labels. The result shows that
the encoding extracts intrinsic characteristics of the object (car) independent
from GT classes.

2.4.3 Quantitative and Qualitative Results

In this section we compare our approach with existing models from recent liter-
ature. Our method is applied on three different losses, the standard triplet loss
with semi-hard negative mining [143], Proxy-NCA [112] and the state-of-the-art
margin loss with weighted sampling [167]. For full transparency, we also provide
results with our re-implementation of the baselines.

The results show a consistent gain over the state of the art for all datasets ,
see tables 2.1, 2.2, 2.3, 2.4 and 2.5. In particular, our approach achieves better
results than more complex ensembles. On CUB200-2011, we outperform even
DREML [174] which trains 48 ResNet models in parallel.

Qualitative results are shown in Fig.2.4: the class encoder Eα retrieves images
sharing class-specific characteristics, while the auxiliary encoder Eβ finds intrinsic,
class-independent object properties (e.g. posture, context). The combination
retrieves images with both characteristics.

2.5 Ablations

In this section, we investigate the properties of our model and evaluate its com-
ponents. We qualitatively examine the proposed encoder properties by checking
recalled images for both and study the influence of Eβ on the recall performance,

22 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

Figure 2.7: Evaluation of Eα as a function of the Eβ capacity. For CARS196 [84]
and CUB200-2011 [158], we plot Eα Recall@1 against the Eβ dimension during
training. The results show that the increase in capacity of Eβ and thus the ability
to learn properties shared among classes directly benefits the class encoder Eα.

see Section 2.5.1. In Section 2.5 we measure the relation between the intra-class
variance and the capacity of our auxiliary encoder Eβ. Also, ablation studies
are performed to examine the relevance of each pipeline component and hyper-
parameter. We primarily utilize the most common benchmarks CUB200-2011,
CARS196 and SOP.

2.5.1 Embedding Properties

Firstly, we visualize the characteristics of the class encoder Eα (Fig.2.5) and auxil-
iary encoder Eβ (Fig.2.6) by projecting the embedded test data to two dimensions
using UMAP[104]. The figures show Eα extracting class-discriminative informa-
tion while Eβ encodes characteristics shared across classes (e.g. car orientation).

To evaluate the effect of the auxiliary encoder Eβ on the class encoder Eα,
we study the properties of the class encoding as function of the capability of
Eβ to learn shared characteristics. First, we study the performance of Eα on
CARS196[84] and CUB200-2011[158] relative to the auxiliary encoder dimension.
Utilizing varying Eβ dimensionalities, Fig.2.7 shows a direct relation between Eβ

capacity and the retrieval capability. Eβ with dimension 0 indicates the baseline
method [167]. For all other evaluations, the Eβ dimension is equal to Eα to keep
the computational cost comparable to the baseline [167] (see Sec.2.4.1).

To examine our initial assumption that learning shared characteristics pro-
duces more compact classes, we study the intra-class variance by computing the
mean pairwise distances per class, averaged over all classes. These distances are
normalized by the average inter-class distance, approximated by the distance be-
tween two class centers. Summarized in fig.2.8 we see higher intra-class variance
for basic margin loss (Eβ dimension equal to 0). But more importantly, the class
compactness is directly related to the capacity of the auxiliary encoder Eβ.

We also offer a qualitative evaluation of the surrogate task in Fig.2.3. Af-
ter class-standardization, the clustering recognizes latent structures of the data
shared across classes.

2.5. ABLATIONS 23

Figure 2.8: Measure of the intra-class variance in the class embedding Eα as
function of the auxiliary encoder Eβ dimension. The result shows that the intra-
class variance decreases with an increase in Eβ capacity. This points towards Eβ

making it easier for Eα to disregard class-independent information.

Clust Stand MutInfo CARS CUB SOP

- - - 80.0 62.9 73.2
+ - - 79.2 59.1 71.9
+ + - 81.3 64.9 75.8
+ + + 82.6 66.1 77.2

Table 2.6: Ablation study: Relevance of different contributions. Each component
is crucial for reaching the best performance. (Clust: Eβ training with clusters,
Stand: standardization before clustering (Sec. 2.3.2), MutInfo: mutual informa-
tion loss (Sec. 2.3.3))

2.5.2 Testing Components and Parameters

In order to analyze our modules, we evaluate different models, each lacking one of
the proposed contribution, see tab. 2.6. The table shows how each component is
needed for the best performance. Comparing to the baseline in the first line, we
see that simply introducing an additional task based on clustering the data dete-
riorates the performance, as we add another class-discriminative training signal
that introduces worse or even contradictory information. However, by utilizing
standardization, we allow our second encoder to explicitly learn new features to
support the class encoder instead of working against it, giving a significant perfor-
mance boost. A final mutual information loss emphasises the feature separation
to improve the results further.

Our approach can be combined with most existing metric learning losses,
which we evaluate on ProxyNCA[112] and triplet loss with semihard sampling[143]
in Tab.2.1 and 2.2. On both CARS196 and CUB200-2011, we see improved image
retrieval performance.

To examine the newly introduced hyper-parameters, Fig.2.9 compares the
performances on the three benchmarks using a range of cluster numbers. The
plot shows how the number of clusters influences the final performances, meaning

24 CHAPTER 2. IMAGE CLASSIFICATION OF UNSEEN OBJECTS

Figure 2.9: Ablation study: influence of the number of clusters on Recall@1.
A fixed cluster label update period of 1 was used with equal learning rate and
consistent scheduling.

the quality of the latent structure extracted by the auxiliary encoder Eβ is crucial
for a better classification. At the same time, an optimal performance, within
a range of ±1% Recall@1, is reached by a large set of cluster values, making
the model robust to this hyper-parameter. For these cumulative tests, a higher
learning rate and less training epochs were used to both reduce computation time
and avoid overfitting to the test set. Based on these examinations, we set a fixed,
but dataset-dependent cluster number for all other training runs, see Sec. 2.4.1.

A similar evaluation has been performed on the update frequency for the
auxiliary labels (Fig.2.10). Updating the cluster frequently clearly provides a
boost to our model, suggesting that the auxiliary encoder Eβ improves upon
the initial clustering. However, within a reasonable range of values (between an
update every 1 to 10 epochs) the model has no significant drop in performance.
Thus we fix this parameter to update every two epochs for all the experiments.

2.6 Summary

In this chapter, we tackled zero-shot learning, a form of limited supervision where
labels are available only for a limited number of classes, while new unseen classes
appear during testing. ZSL is an example where learning visual similarity is
crucial for solving the task.

Our main contribution is a novel extension for standard metric learning meth-
ods to incorporate structured intra-class information into the learning process.
We do so by separating the encoding space into two distinct subspaces. One
incorporates information about class-dependent characteristics, with the remain-
ing encoder handling shared, class-independent properties. While the former is
trained using standard metric learning setups, we propose a new learning task for

2.6. SUMMARY 25

Figure 2.10: Ablation study: influence of the cluster label update frequency
on Recall@1. An optimal number of clusters (see Sec. 2.4.1) and consistent
scheduling was used.

the second encoder to learn shared characteristics and explain a combined train-
ing setup. Experiments on several standard image retrieval datasets show that
our method consistently boosts standard approaches, outperforming the current
state-of-the-art methods and reducing intra-class variance.

Chapter 3

Video Classification of Unseen
Actions

As mentioned in the previous chapter, Zero-Shot Learning (ZSL) [89, 122] is a
powerful paradigm of limited supervision where a single model can be trained
on a set of classes and tested on any new class as long as the two domains are
not too different from each other. ZSL for image classification is very popular
in research given its success in several practical applications. However, video
classification could also really benefit from ZSL since training a model for video
is particularly costly and data are harder to annotate. Therefore, producing a
single visual representation for solving video classification should be a top priority
of computer vision research.

ZSL for image classification is very successful, reaching high performances on
standard benchmarks. Aditionally, many real-world products are based on metric
learning. However, ZSL for video recognition did not follow the same progress:
state-of-the-art algorithms achieve very low performances on easy dataset and
only a few new methods are published every year. In this chapter, we study
existing methods for ZSL video classification to identify the reason behind this
slow progress in the field. In particular, we find a lack of reproducibility to
be a key weakness and propose a strong baseline that is easy to reproduce for
future development. Our proposed baseline outperforms all previous methods
by learning the model end-to-end for the first time in the field. Moreover, we
establish a standard evaluation protocol with the aim of keeping the ZSL premises
respected.

In this chapter, we learn a general visual representation for video classification
in the limited supervision paradigm of ZSL. Our contributions are: a thorough
analysis of existing methods and their weaknesses; a well-defined training and
evaluation protocol; a strong baseline easy to reproduce for boosting future work
in the field. The work done in this chapter was previously published in Brattoli
et al.[22].

3.1 Background

Before diving into the method, we give a quick overview of existing work in the
field of video classification, in the fully supervised and zero-shot case.

27

28 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.1: Our e2e model is simple but powerful. URL [184], Action2Vec [61]
and TARN [18] are state-of-the-art approaches. Gray blocks represent modules
fixed during training. Colors (blue, red, orange, yellow) indicate modules trained
in separate stages.

Video classification: Existing methods can be categorized into two groups:
2D networks [146, 161] and 3D networks [25, 47, 62, 102, 153, 154]. The pio-
neer work of Simonyan and Zisserman [146], uses only up to 5 frames sampled
randomly from the video. During testing, the visual representation is extracted
from more frames and averaged over the video clip. This implied that looking
at a large chunk of the video was important during inference but wasn’t strictly
required during training. On the contrary, Wang et al. [161] showed that sam-
pling multiple frames throughout the video during training could improve perfor-
mance, suggesting that temporal context is instrumental. However, modern 3D
networks [25, 47, 153] showed that sampling only 16 frames, typically consecutive
ones, is sufficient for achieving the best performances. Increasing training input
from 16 to 128 frames improved performance only marginally.

In this chapter, we apply the basic sampling concept of state-of-the-art video
classification to the ZSL problem. This enables us to train the network end-to-
end, making the model more effective but also much simpler compared to previous
work – as shown in Fig. 3.1.

Zero shot video classification: Differently from standard video classifica-
tion, existing ZSL approaches [18, 61, 127, 177, 184] firstly extract visual features
from all video frames using a pretrained network, typically C3D [153] pretrained
on Sports-1M. Then, a shallow temporal model is trained to map the visual fea-
tures to a semantic space [107]. Learning semantic embedding is a good proxy for
generalizing to new classes that are not present in the training set. Therefore, in-
ference reduces to finding the test class whose embedding is the nearest-neighbor
of the model’s output. Word2Vec [107] is commonly used to produce the ground-
truth word embeddings. An alternative approach is to use manually crafted class

3.2. MOTIVATION 29

attributes [70]. We decided not to pursue the manual approach as it harder to
apply in general scenarios.

Hahn et al. [61] and Bishay et al. [18] are two state-of-the-art methods. They
extract C3D features from 52 clips of 16 frames from each video following the
Protocol from Tran et al. [153]. A recurrent neural network [34, 68] encodes
all frame features into a single vector, which is then mapped to the Word2Vec
embedding using a fully connected layer. Fig. 3.1 illustrates this two approaches.
The experiments are performed on a single dataset by splitting the classes in half
for training and the other half for testing. The strength of extracting the visual
features offline using a pretrained network is that most of the video frames can
fit in the GPU memory during training. However, we show that this has little
benefit respect to train the model end-to-end, thus extracting the visual features
online.

Similarly to Zhu et al. [184], we also learn a generic visual representation from
a large dataset and test on separate, smaller datasets. However, we also leverage
the strength of modern 3D CNNs. In comparison, Zhu et al. [184] utilize the very
deep ResNet200 [66], pretrained on still images (ImageNet [137]), ignoring the
temporal context.

A major issue with the standard evaluation method is that actions are over-
lapping between pre-training or training data and target dataset, as pointed out
by Roitberg et al. [135]. For example, Zhu et al. [184] train on the full Activ-
ityNet [44] dataset, which has 23 classes in their training datasets that overlap
with the test dataset. The situation is similar for all other methods to varying
degrees.

Inductive VS Transductive: Transductive ZSL methods [4, 109, 162, 163,
172, 171, 173] use test samples during training without their annotation. We do
not consider this case because a real case scenario is typically inductive where
test data is fully unknown at training time.

Alternative approaches use generative models to compensate for the gap be-
tween semantic and visual distributions [109, 178]. Unfortunately, performance is
limited by the inability to fine-tune the visual embedding. We show fine-tuning
is crucial to generalize across datasets.

3.2 Motivation

Video data sourcing and annotation are particularly expensive in terms of time
and monetary cost. For this reason, ZSL could be particularly beneficial. A great
testbed could be a large set of human actions since they all shared a common
structure: human body, motion and object interaction. Moreover, many public
datasets are available for this domain [44, 59, 78, 79, 87, 149]. In case of full
supervision, 3D convolutional neural networks (CNNs) proved successful [47, 153,
154]. How well modern deep networks can recognize human actions in the ZSL
setting is, however, an open question.

All existing inductive methods for ZSL action recognition [4, 18, 61, 109, 127,
162, 163, 171, 172, 173, 177, 184] have a good trade-off between training efficiency
and using prior knowledge since the visual representation is extracted using pre-
trained network offline. The algorithm only trains the mapping from visual to

30 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.2: Training and test classes, t-SNE [100] visualization of Word2Vec
embeddings. Red dots represent training classes we used, and gray dots training
classes we removed to separate training and test data. Crosses represent test
classes. Pictures are actual dataset videoframes.

semantic embedding, implemented as a shallow model. Low training space com-
plexity of shallow models allows them to benefit from long video sequences and
large feature extractors. Fig. 3.1 shows a representation of three state-of-the-art
and our model.

In contrast, successful computer vision algorithms for many vision tasks,
such as image classification [66], object detection [130, 132, 147] and segmen-
tation [27, 65, 181], rely on a fully differentiable network that can be trained
end-to-end (e2e). Being able to fine-tune the visual representation on the down-
stream task is arguably at the core of deep networks’ success across machine
learning domains [14]. Furthermore, training the full model increases the net-
work capacity to store information available in large datasets [13, 66]. This poses
a question: How can an e2e ZSL system compete with current methods?

We provide several contributions to the ZSL video classification problem:
Methodological: We adapt action recognition standards to ZSL developing

the first e2e-trained model. Our method is simple (Fig. 3.1) and effec-
tive (Fig. 3.4), outperforming all previous work. Moreover, we provide an
easy pretraining to specifically tackle ZSL weaknesses.

Testing: Following Roitberg et al. [135], we propose a fair ZSL evaluation that
enforces a realistic ZSL setting. In particular, we train a model on a single
large dataset and evaluate on multiple test datasets. The sets of training
and test classes are ensured to be disjoint using an ad-hoc class distance
measure.

Analysis: We analyze the ZSL problem in detail, searching for strengths and
weaknesses of a typical ZSL model for human action recognition. For ex-
ample, we found out that a large variety of classes is to be preferred over a

3.3. ZERO-SHOT ACTION CLASSIFICATION 31

Figure 3.3: Removing overlapping training and test classes. The y-axis shows
Kinetics classes closest to the test sets UCF and HMDB. x-axis shows the distance
(see Eq. 3.4) of the corresponding closest test class. In our experiments, we
removed training classes closer than τ = 0.05 to the test set – to the left of the
red line in the figure.

large number of samples.

Our model, training and evaluation code, are available at github.com/bbrattoli/ZeroShotVideoClassification.

3.3 Zero-shot Action Classification

We first carefully define ZSL in the context of video classification. This will allow
us to propose not only a new ZSL algorithm, but also a clear evaluation protocol
that we hope will direct future research towards practical ZSL solutions. We stay
within the inductive setting, as described in Sec. 3.1.

32 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.4: (Top) Our model is state-of-the-art (error computed on the UCF test
dataset.)

3.3.1 Problem Setting

A video classification task is defined by a training set (source) Ds = {(x1, c1), · · · , (xNs , cNs)}
consisting of pairs of videos x and their class labels c, and a video-label test set
Dt. In addition, previous work often uses pretraining datasets Dp as explained
in Sec. 3.1.

Intuitively, ZSL is any procedure for training a classification model on Ds (and
possibly Dp) and then testing on Dt where Dt does not overlap with Ds ∪ Dp.
How this overlap is defined varies. Sec. 3.3.3 proposes a definition that is more
restrictive than those used by previous work, and forces the algorithms into a
more realistic ZSL setting.

ZSL classifiers need to generalize to unseen test classes. One way to achieve
this is using nearest-neighbor search in a semantic class embedding space.

Formally, given a video x, we infer the corresponding semantic embedding
z = g(x) and classify x as the nearest-neighbor of z in the set of embeddings of
the test classes. Then, a trained classification model M(·) outputs

M(x) = argmin
c∈Dt

cos (g(x), W2V(c)). (3.1)

where cos is the cosine distance and the semantic embedding is computed using
the Word2Vec function [107] W2V : C → R300.

The function g = fs ◦ fv is a composition of a visual encoder fv : x 7→ y and
a semantic encoder fs : y 7→ z ∈ R300.

3.3.2 End-to-end Training

In previous work, the visual embedding function fv is either hand-crafted [173,
184] or computed by a pretrained deep network [18, 61, 163, 184]. It is fixed
during optimization, forcing model development to focus on improving fs. Re-
sulting models need to learn to transform fixed visual embeddings into meaningful
semantic features and can be very complex, as shown in Fig. 3.1 (Bottom).

Instead, we propose to optimize both fv and fs at the same time. Such e2e
training offers multiple advantages:

1. Since fv provides a complex computation engine, fs can be a simple linear
layer (see Fig. 3.1).

3.3. ZERO-SHOT ACTION CLASSIFICATION 33

2. We can implement the full model using standard 3D CNNs.
3. Pretraining the visual embedding on a classification task is not necessary.
End-to-end optimization using the full video is unfeasible due to GPU memory

limitations. Our implementation is based on standard video classification meth-
ods which are effective even when only a small snippet is used during training, as
discussed in detail in Sec 3.1. Formally, given a training video/class pair (x, c) ∈
Ds we extract a snippet xt of 16 frames at a random time t ≤ (len(x)− 16). The
network is optimized by minimizing the loss

L = ∑
(x,c)∈Ds

‖W2V(c)− (fs ◦ fv)(xt)‖2. (3.2)

Inference procedure is similar but pools information from multiple snippets fol-
lowing Wang et al. [161]. Sec. 3.4.4 details both our training and inference pro-
cedures.

To better understand our method’s performance under various experimen-
tal conditions, we implemented a baseline model that uses identical fs, fv and
training data, but fixes fv’s weights to values pretrained on the classification
task (available out-of-the-box in the most recent PyTorch implementation, see
Sec. 3.4.4). This was necessary since we were not able to access implementations
of any of the state-of-the-art methods ([18, 61, 184]). Unfortunately, our own re-
implementations achieved results far below numbers reported by their authors,
even with their assistance.

3.3.3 Towards Realistic ZSL

To ensure that our ZSL setting is realistic, we extend the methods of [135] that
carefully separates training and test data. This is cumbersome to achieve in
practice, and has not been attempted by most previous work. We hope that our
clear formulation of the training and evaluation protocols will make it easy for
future researchers to understand the performance of their models in true ZSL
scenarios.

Non-overlapping training and test classes: Our first goal is to make
sure that Ds ∪Dp and Dt have ”non-overlapping classes”. The simple solution –
to remove source class names from target classes or vice-versa – does not work,
because two classes with slightly different names can easily refer to the same con-
cept, as shown in Fig. 3.3. A distance between class names is needed. Equipped
with such a metric, we can make sure training and test classes are not too similar.
Formally, let d : C → C denote a distance metric on the space of all possible class
names C, and let τ ∈ R denote a similarity threshold. A video classification task
fully respects the zero-shot constraint if

∀cs ∈ Ds ∪ Dp, min
ct∈Dt

d(cs, ct) > τ. (3.3)

A straightforward way to define d is using semantic embeddings of class names.
We define the distance between two classes to be simply

d(c1, c2) = cos(W2V(c1), W2V(c2)) (3.4)

34 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

where cos indicates cosine distance. This is consistent with the use of the cosine
distance in the ZSL setting as we do in Eq. 3.1. Fig. 3.2 shows an embedding of
training and test classes after we removed from Kinetics classes overlapping with
test data using the procedure outlined above. Fig. 3.3 shows the distribution
of distances between training and test classes in our datasets. There is a cliff
between distances very close to 0 and larger than 0.1. In our expeirments we use
τ = 0.05 as a natural, unbiased threshold.

Different training and test video domains: We argue that video domains
of Ds ∪ Dp and Dt should differ. In previous work, the standard evaluation
protocol is to use one dataset for training and testing, using 10 random splits.
This does not account for domain shifts that happen in real world scenarios due
to data compression, camera artefacts, and so on. For this reason ZSL training
and test datasets should ideally have disjoint video sources.

Multiple test datasets: A single ZSL model should perform well on mul-
tiple test datasets. As outlined above, previous works train and test anew for
each available dataset (typically UCF and HMDB). In our experiments, training
happens only once on the Kinetics dataset [79], and testing on all of UCF [149],
HMDB [87] and ActivityNet [44].

3.3.4 Easy Pretraining for Video ZSL

In a real-world scenario a model is trained once and then deployed on diverse
unseen test datasets. A large and diverse training dataset is crucial to achieve
good performance. Ideally, the training dataset would be tailored to the gen-
eral domain of inference – for example, a strong ZSL surveillance model to be
deployed at multiple unknown locations would require a large surveillance and
action recognition dataset.

Sourcing and labeling domain-specific video datasets is, however, very expen-
sive. On the other hand, annotating images is considerably faster. Therefore, we
designed a simple dataset augmentation scheme which creates synthetic training
videos from still images. Sec. 3.5 shows that pretraining our model using this
dataset boosts performance, especially if available training data is small.

We convert images to videos using the Ken Burns effect: a sequence of crops
moving around the image simulates video-like motion. Sec. 3.4.1 provides more
details.

Our experiments focus on the action recognition domain. In action recognition
(as well as in many other classification tasks), location and scenery of the video
is strongly predictive of action category. Because of this we choose SUN [168], a
standard scene recognition dataset. Fig. 3.2 shows the complete class embedding
of our the scene dataset’s class names.

3.4 Experimental Setup

To facilitate reproducibility, we describe our training and evaluation protocols in
detail. The protocols propose one way of training and evaluating ZSL models
that is consistent with our definitions in Sec. 3.3.3.

3.4. EXPERIMENTAL SETUP 35

3.4.1 Datasets

UCF101 [149] has 101 action classes primarily focused around sports, with 13320
videos sourced from YouTube. HMDB51 [87] is divided into 51 human actions
focused around sports and daily activities and contains 6767 videos sourced from
commercial videos and YouTube. ActivityNet [44] contains 27,801 untrimmed
videos divided in 200 classes focusing on daily activities with videos sourced using
web search. We extracted only the labeled frames from each video. Kinetics [79] is
the largest currently available action recognition dataset, covering a wide range of
human activity. The first version of the dataset contains over 200K videos divided
in 400 categories. The newest version has 700 classes for a total of 541624 videos
sourced from YouTube. SUN397 [168] (see Sec. 3.3.4) is a scene understanding
image dataset. It contains 397 scene categories for a total of over 100K high-
resolution images. We converted it to a simulated video dataset using the Ken
Burns effect: To create a 16-frame video from an image, we randomly choose
”start” and ”end” crop locations (and crop sizes) in the image, and linearly
interpolate to obtain 16 crops. Each of them are then resized to 112× 112.

3.4.2 Training Protocol

Our experiments in Sec. 3.5 use two training methods:
Training Protocol 1: Remove from Kinetics 700 all the classes whose dis-

tance to any class in UCF∪HMDB is smaller than τ (see Eq. 3.4). This results
in a subset of Kinetics with 664 classes, which we call Kinetics 664. As explained
in Sec. 3.3.3, this setting is already more restrictive than that of the previous
methods, which train new models for each test dataset.

Training Protocol 2: Remove from Kinetics 700 all the classes whose dis-
tance to any class in UCF∪HMDB ∪ ActivityNet is smaller than τ (see Eq. 3.4).
This results in a subset of Kinetics with 605 classes which we call Kinetics 605.
This setting is even more restrictive, but is closer to true ZSL. Our goal is to show
that it is possible to train a single ZSL model that applies to multiple diverse test
datasets.

Figure 3.2 shows a t-SNE projection of the semantic embeddings of all Kinetics
700 classes, as well as the 101 UCF classes and the classes we removed to obtain
Kinetics 664.

3.4.3 Evaluation Protocol

We tested our model using two protocols: the first follows Sec. 3.3.3 to emulate a
true ZSL setting, the second is compatible with previous work. Both Evaluation
Protocols apply the same model to multiple test datasets.

Evaluation Protocol 1: In order to make our results comparable with pre-
vious work, we use the following procedure: Randomly choose half of the test
dataset’s classes, 50 for UCF and 25 for HMDB. Evaluate the classifier on that
test set. Repeat ten times and average the results for each test dataset.

Evaluation Protocol 2: Previous work uses random training/test splits of
UCF [149] and HMDB [87] to evaluate their algorithms. However, we train on a
separate dataset Kinetics 664 / 605 and can test on full UCF and HMDB. This

36 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Dataset VisualFeat UCF HMDB Activity

URL [184] ResNet200 42.5 51.8 -

DataAug [173] - 18.3 19.7 -
InfDem [134] I3D 17.8 21.3 -
Bidirectional [163] IDT 21.4 18.9 -
FairZSL [135] - - 23.1 -
TARN [18] C3D 19 19.5 -
Action2Vec [61] C3D 22.1 23.5 -

Ours(605classes) C3D 41.5 25.0 24.8
Ours(664classes) C3D 43.8 24.7 -
Ours(605classes) R(2+1)D 18 44.1 29.8 26.6
Ours(664classes) R(2+1)D 18 48 32.7 -

Table 3.1: Comparison with the state-of-the-art on standard benchmarks.
We evaluate on half test classes following Evaluation Protocol 1 (Sec. 3.4.3).
Ours(605classes) indicates we removed all training classes that overlap with UCF,
HMDB, or ActivityNet. Ours(664classes) indicates we removed only training
classes overlapping with UCF and HMDB. We outperform previous work in both
scenarios. Sec. 3.1 argues that URL’s results are not compatible with other works
as their training and test sets overlap and their VisualFeat is an order of magni-
tude deeper.

allows us to return more realistic accuracy scores. The evaluation protocol is
simple: evaluate the classifier on all 101 UCF classes and all 51 HMDB classes.

3.4.4 Implementation Details

In our experiments, fv (see Sec. 3.3.1) is the PyTorch implementation of R(2+1)D 18 [154]
or C3D[153]. In the pretrained setting, we use the out-of-the-box R(2+1)D 18
pretrained on Kinetics 400[79], while C3D is pretrained on Sports-1M[78]. In the
e2e setting, we initialize the model with the pretrained=False argument. The
visual embedding fv(x) is BxTx512 where B is the batch size and T is the num-
ber of clips per video. We use T = 1 for training, and T = 25 for evaluation in
Tables 3.1 and 3.2. The clips are 16 frames long and we choose them following
standard protocols established by Wang et al. [161]. We average fv(x) across
time (video snippets) similarly to previous approaches [153, 184]. fs is a linear
classifier with 512x300 weights. The output of fs ◦ fv is of shape Bx300.

We follow standard protocol in computing semantic embeddings of class names [18,
171, 184]. Word2Vec [107] – in particular, the gesim [131] Python implementa-
tion – encodes each word. We average multi-word class names. In rare cases
of words not available in the pretrained W2V model (for example, ’rubiks’ or
’photobombing’) we manually change the words (see the code for more details).
Formally, for a class name consisting of N words c = [c1, · · · , cN], we embed it
as W2V(c) = ∑N

i=1 W2V(ci) ∈ R300. We set τ to 0.05 following the analysis in
Sec. 3.3.3 based on Fig. 3.3.

To minimize the loss of Eq. 3.2 we use the Adam optimizer [80], starting with

3.5. RESULTS 37

Method UCF HMDB Activity

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

URL [184] 34.2 - - - - -
664classes 37.6 62.5 26.9 49.8 - -
605classes 35.3 60.6 24.8 44.0 20.0 42.7

Table 3.2: Evaluation on all test classes. In contrast to Table 3.1, here we report
results of our method applied to all three test datasets using Evaluation Protocol
2 (Sec. 3.4.3). We applied a single model trained on classes dissimilar from
all of UCF, HMDB and ActivityNet. Nevertheless, we outperform URL [184]
on UCF101. URL authors do not report results on full HMDB51. Remaining
previous work do not report results on neither full UCF101 nor full HMDB51.

a learning rate of 1e− 3. Batch size is 22 snippets, with 16 frames each. The
model trained for 150 epochs, with a tenfold learning rate decrease at epochs 60
and 120. All experiments are performed on the Nvidia Tesla V100 GPU.

Following [153], we reshaped each frame’s shortest side to 128 pixels, and
cropped a random 112x112 patch on training and the center patch on inference.

3.5 Results

Our experiments have two goals: compare our method to previous work and
investigate our method’s performance vs the baseline (see Sec. 3.3.2.) The first
is necessary to validate that e2e ZSL on videos can outperform more complex
approaches that use pretrained features. The latter will allow us to understand
under what conditions e2e training can be particularly beneficial.

3.5.1 Comparison to the State of the Art

Table 3.1 compares our method to existing approaches. We followed our Training
and Evaluation Protocol 1, as described in Sections 3.4.2 and 3.4.3. Our protocols
are more restrictive than that of previous methods: we removed training classes
that overlap with test classes, introduced domain shift, and applied one model to
multiple test datasets. Despite this, we outperform previous video-based methods
by a large margin. Furthermore, when testing on UCF we outperform URL [184]
which uses a network an order of magnitude deeper than ours – 18 vs 200 layers
– and 23 classes overlap between training and testing (see Sec. 3.1).

3.5.2 Comparison to a Baseline Method

Our baseline method described in Sec. 3.3.2 uses a fixed, pretrained visual feature
extractor but is otherwise identical to our e2e method. This allows us to study the
benefits of e2e training under Evaluation Protocol 2, (see Sections 3.4.2 and 3.4.3).
Using all test classes provides a more direct evaluaition of the method.

Training dataset size: To investigate the effect of training set size on per-
formance we subsampled Kinetics 664 uniformly at random, then re-trained and

38 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.5: Number of training classes matters in ZSL. Orange curves show per-
formance on subsets of Kinetics 664, as we keep all the training classes and
increase the subset size. The blue curves, whose markers become progressively
brighter, indicate a separate experiment where we increased the number of train-
ing classes starting from 2, all the way up to 664 (Sec. 3.5.2). For any given
training dataset size, performance on test data is much better with more training
classes. In addition, when few training classes are available the e2e model is not
able to outperform the baseline.

3.5. RESULTS 39

Figure 3.6: Augmented pretraining with videos-from-images. We trained our
algorithm on progressively smaller subsets of Kinetics 664 classes (Sec. 3.5.2).
We compared the results to training on the same dataset, after pretraining the
model on our synthetic SUN video dataset (Sec. 3.5.3). The pretraining procedure
boosts performance up to 10% points.

re-evaluated the model. Fig. 3.5 shows that the e2e algorithm consistently outper-
forms the baseline on both datasets. Both algorithms’ performance is worse with
smaller training data. However, the baseline flattens out at about 100K training
datapoints, whereas our method’s error keeps decreasing. This is expected, as
the e2e model has more capacity.

Number of training classes: In many video domains diverse data is difficult
to obtain. Small datasets might not only have few datapoints, but also contain
only a few training classes. We show that the number of training classes can
impact ZSL results as much as training dataset size.

To obtain Fig. 3.5 we subsampled Kinetics 664 class-wise. We first picked 2
Kinetics 664 classes at random, and trained the algorithm on those classes only.
We repeated the procedure using 4, 10, 25, 50, 100, 200, 400 and all 664 classes.
Naturally, the fewer classes the fewer datapoints the training set contained. This
results are compared in Fig. 3.5 with the procedure described above, where we
removed Kinetics datapoints at random – independent of their classes.

The figure shows that it is better to have few training samples from a large
number of classes rather than many from a very small number of classes. This
effect is more pronounced for the e2e model rather than the baseline.

Training dataset class diversity: We showed that ZSL works better with
more training classes. If we have a limited budget for collecting classes and
datapoints, how should we choose them? We investigated whether the set of
training classes should emphasize fine differences (e.g. ”shooting basketball” vs
”passing basketball” vs ”shooting soccerball” and so on) or diversity.

In Fig. 3.7 we selected 50 training classes in four ways: (Top Left) We ran-
domly choose 50 classes from the whole Kinetics 664 dataset, trained the algo-
rithm on these classes, and ran inference on the test set. We repeated this process

40 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.7: Diverse training classes are good for ZSL. Here we trained our algo-
rithm on subsets of 50 Kinetics 664 classes. (Top left) Training classes picked
uniformly at random. (Top right) We clustered Word2Vec embeddings of classes
into two clusters, then trained and evaluated separately using each cluster, and
averaged the results. (Bottom) Here we averaged the results of training using
three and six clusters. The figure shows that the more clusters, the less diverse
the training classes were semantically. At the same time, less diversity caused
higher errors.

3.5. RESULTS 41

Figure 3.8: Error as test classes move away from training. For each UCF101 test
class, we computed its distance to 10 nearest neighbors in the training dataset.
We arranged all such distance thresholds on the x-axis. For each threshold, we
computed the accuracy of the algorithms on test classes whose distance from
training data is larger than the threshold. In other words, as x-axis moves to the
right, the model is evaluated on cumulatively smaller, but harder test sets.

ten times and averaged inference error. (Top Right) We clustered the 664 classes
into 2 clusters in the Word2Vec embedding space, and chose 50 classes at ran-
dom within one of the clusters, trained and ran inference. We then repeated the
procedure ten times and averaged the result. (Bottom) Here we chose 50 classes
in one of 3 clusters (Left) and one of 6 clusters (Right), trained, and averaged
inference results of 10 runs. The figure shows that test error for our method
increases as class diversity decreases. This result is not obvious, since the task
becomes harder with increasing class diversity.

3.5.3 Easy Pretraining with Images

Previous section showed that class count and diversity are important drivers of
ZSL performance. This inspired us to develop the pretraining method described
in Sec. 3.3.4: we pretrain our model on a synthetic video dataset created from
still images from the SUN dataset. Fig. 3.6 shows that this simple procedure
consistently decreases test errors by up to 10%. In addition, Fig. 3.8 shows that
this initialization scheme makes the model more robust to large domain shift
between train and test classes. The following section describes the latter finding
in more detail.

3.5.4 Generalization and Domain Shift

A good ZSL model will generalize well to test classes that differ significantly
from training classes. To investigate the performance of our models under heavy
domain shift, we computed their accuracy on subsets of test data with growing
distance from the training dataset. We first trained our model on Kinetics 664.
Then, for a given semantic distance threshold τ (see Sec. 3.3.3), we computed
accuracy of the model on the set of UCF classes whose mean distance from the

42 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

UCF101 accuracy 50 classes 101 classes

e2e Augment Multi Top-1 Top-5 Top-1 Top-5

26.8 55.5 19.8 40.5
X 43.0 68.2 35.1 56.4
X X 45.6 73.1 36.8 61.7
X X 48.0 74.2 37.6 62.5
X X X 49.2 77.0 39.8 65.6

Table 3.3: Ablation study. Numbers represent classification accuracy. “50
classes” uses Evaluation Protocol 1 (Sec. 3.4.3.) “101 classes” uses Evaluation
Protocol 2. e2e: training the visual embedding as opposed to fixed, pretrained
baseline (Sec. 3.3.2). Augment: pretrain using the SUN augmentation scheme
(Sec. 3.5.3). Multi: At test time, extract multiple snippets from each video and
average the visual embeddings (Sec. 3.4.4).

closest 10 Kinetics 664 classes is larger than τ. Fig. 3.8 shows that the baseline
model’s (pretrained on a large dataset but not trained e2e) performance drops to
zero at around τ ∼ 0.57. Our e2e method performs much better, never dropping
to zero accuracy for high thresholds. Finally, using the SUN pretraining method
further increases the model’s robustness.

3.5.5 Ablation Study

Table 3.3 studies contributions of different elements of our model to its perfor-
mance. The performance is low when the visual embedding is fixed. The e2e
approach improves the performance by a large margin. Our class augmentation
method further boosts performance. Finally it helps to extract linearly spaced
snippets from a video on testing, and average their visual embeddings. Using 25
snippets improves considerably the performances without influencing the training
time of the model.

3.5.6 Backbone Choice

Tab. 3.4 compares the accuracy of three 3D convolutional backbones on two ki-
netics versions using our Training Protocol 1 (Sec. 3.4.2). For this comparison
we also tried using the full Kinetics 400/700 datasets, without removing over-
lapping test classes. The table shows that adding the 6% of the training classes
most overlapping with the test set yields an unexpected >40% accuracy boost
for UCF and 25% on HMDB. This proves that the zero-shot learning constraint
is non-trivial.

3.6. ANALYSIS 43

UCF HMDB

Network Train classes 50 101 25 51

C3D K400 361 33.7 25.7 17.0 13.3
R3D 18 K400 361 37.2 29.0 20.4 16.8
R(2+1)D 18 K400 361 38.7 30.6 22.0 18.1

C3D K700 664 40.3 33.1 22 17.0
R3D 18 K700 664 41.2 34.2 23.6 19.0
R(2+1)D 18 K700 664 43.0 35.0 25.8 20.6

R(2+1)D 18 K400 400 50.1 44.5 27.2 22.5
R(2+1)D 18 K700 700 54.6 49.7 30.5 25.6

Table 3.4: Accuracy of different backbone architectures trained on the first (K400)
and last (K700) version of Kinetics [19]. The models are evaluated on a single
clip (16 frames).

3.6 Analysis

3.6.1 SUN Pretraining: Easier Task or Better Represen-
tation?

Sec. 3.3.4 shows that pretraining on a scenes dataset (SUN397) improves ZSL
performance. In this section, we ask whether the boost is due to better model
generalization or simply because the source domain becomes closer to the target
domain.

Per each UCF101 test class, Fig. 3.9 shows the W2V distance to Kinetics
train classes as well as (Kinetics + SUN) train classes. Test classes that got
more than 10% closer to training data are marked in color. The right subplot,
however, shows that the model trained on (Kinetics + SUN) boosts the accuracy
of many classes – in particular, the accuracy of many classes that are not among
the colored ones rose significantly. The model pretrained on SUN data increases
performance on many classes which are not close to SUN data. We conclude that
pretraining on SUN allows the model to generalize better over almost all test
classes, not only the ones close to SUN data.

3.7 Training Class Diversity

We expand the analysis of Sec. 3.5.2 and Fig. 3.7, by testing the influence of
training class diversity on both UCF and HMDB. Fig. 3.10 correlates model
performance with training class density. For this experiment, we selected 50 train
classes with different density in the Word2Vec space, using the same clustering
approach we used in Sec. 3.5.2. Per each diversity value, we select 50 classes and
train a model multiple times to compute the standard deviation. Fig. 3.10 shows
that test error decreases as training classes become more diverse. At the same
time, the standard deviation decreases, indicating that for compact classes, the

44 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.9: Each dot represents a UCF101 test class. Test class accuracy (right)
and distance (left) to the train set (Kinetics664) for two models: one with random
initialization and one pretrained on SUN (see Sec 3.6). A colored dot indicates a
test class that reduces its distance to the train set by more than 10% when SUN
is included on training.

performance highly depends on where in the class space we sample the classes,
which is something we only know once the test set is available.

This outcome is not obvious, since we might expect the task to become harder
when class variance increases (given the same number of training datapoints).
However, we do not observe decrease in performance. Therefore, we can con-
clude that the model can only benefit from a high variety within the train class
distribution. This new insight can be useful during training dataset collection.

3.8 Analyze the Model Capability Action per

Action

What does better or worse accuracy indicate for specific classes? We break down
the change in performance between models for each UCF101 test class.

3.8.1 Direct Comparison by Sorting Classes

In Sec. 3.5.2, we evaluated the model using error aggregated over all the test
classes. It is also interesting to know whether the network is getting better at
recognizing specific classes, or improves across the board?

Fig. 3.11 shows the accuracy on each UCF test class for three models: baseline,
e2e trained on Kinetics, and e2e pretrained on SUN397 and then trained on
Kinetics. We sorted the classes from hardest to easiest for each model. Fig. 3.12
shows the same information, zoomed in on worst and best actions only. The two
plots show that some of the actions which are difficult for the baseline model are
correctly classified by our e2e models. On the other hand, the inverse situation
is rare. In addition, the actions which are correctly classified by the baseline are
also easily identified by our models.

3.8. ANALYZE THE MODEL CAPABILITY ACTION PER ACTION 45

Figure 3.10: Performance of the e2e model trained on 50 Kinetic664 classes and
tested on UCF and HMDB. The 50 classes are chosen based on diversity in their
W2V embedding (see Fig. 3.7, for details). The more semantically diverse the
training classes, the lower the error.

46 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

Figure 3.11: Accuracy on each UCF101 test class, for three models. Each subplot
uses different model’s accuracies to sort the classes, otherwise the numbers are
the same.

In addition, the results of e2e trained on Kinetics and e2e pretrained on SUN
and trained on Kinetics are highly correlated, but the second achieves overall bet-
ter performances. This suggests that SUN provides complementary information
to Kinetics which are useful for the target task. On the other hand, the baseline
is less correlated with the e2e results, suggesting that the fixed visual features
have a lot to learn and should be fine-tuned.

3.9 Summary

In this chapter, we studied the limited supervision task ZSL for video classifi-
cation. We provide a method that uses semantic information from a natural
language model to learn visual similarities between actions, crucial for general-
izing to unseen actions. Our contributions are several: we providing a strong
baseline, studied the ZSL problem in detail for the field of human actions and
defined a better evaluation protocol.

Our baseline is developed by following practices from recent video classifica-
tion literature. We train the first e2e system for video recognition ZSL. Our eval-
uation protocol is stricter than that of existing work and measures more realistic
zero-shot classification accuracy. Even under this stricter protocol, our method
outperforms previous works whose performance was measured with training and

3.9. SUMMARY 47

Figure 3.12: Accuracy on best and worst 10 classes for each model.

48 CHAPTER 3. VIDEO CLASSIFICATION OF UNSEEN ACTIONS

test sets overlapping and sharing domains. Through a series of directed exper-
iments, we showed that class diversity is crucial for good generalization.Guided
by this insight, we formulated a simple pretraining technique that boosts ZSL
performance.

Our model is easy to understand and extend. Our training and evaluation
protocols are easy to use with alternative approaches. We made our code available
github.com/bbrattoli/ZeroShotVideoClassification, encouraging the community
to build on our insights and create a strong foundation for future video ZSL
research.

Chapter 4

Improving Self-Supervision for
Better Visual Representation

In the last two chapters, we produced a visual representation that can generalize
from training to unseen classes. In this chapter, we will go one step further and
develop an unsupervised visual representation, i.e. without using human anno-
tation.In particular, we focus on the paradigm of self-supervision which uses a
surrogate task where labels are automatically available. More in detail, the com-
mon approach is to transform the input data and ask the network to recognize the
applied transformation. To solve the task, the network needs to extract crucial
semantic information from the data, thus learning a useful visual representation
that can be transferred to new tasks.

Self-supervision is a well-established paradigm with a large collection of meth-
ods. Therefore, we do not add one more method to the pile, but propose a
contribution on a meta-level. Every surrogate task has a free parameter which
determines how to transform the input sample. Typically, this parameter is cho-
sen randomly for each sample during training. Instead, we could control it to
optimize the training. The assumption is that a specific transformation is more
effective on certain data. Base on this assumption, we develop an automatic
controller trained using reinforcement learning.

More details on this will be provided in Sec 4.3, but first we provide a short
collection of related work on the relevant topics in Sec 4.1. This work was previ-
ously published in Buechler et al. [23].

4.1 Background: Meta-learning

Curriculum Learning: In 2009 Bengio et al. [15] proposed curriculum learn-
ing (CL) to enhance the learning process by gradually increasing the complexity
of the task during training. CL has been utilized by different deep learning meth-
ods [60, 150, 26] with the limitation that the complexity of samples and their
scheduling during training typically has to be established a priori. Kumar et. al
[88] define the sample complexity from the perspective of the classifier, but still
manually define the scheduling. In contrast, our policy dynamically selects the
permutations based on the current state of the network.

49

50
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Meta-Learning for Deep Neural Networks: Recently, methods have pro-
posed ways to improve upon the classical training of neural networks by, for
example, automatizing the selection of hyper-parameters [7, 129, 186, 46, 120].
Andrychowicz et al. [7] train a recurrent neural network acting as an optimizer
which makes informative decisions based on the state of the network. Fan et
al. [46] propose a system to improve the final performance of the network using a
reinforcement learning approach which schedules training samples during learn-
ing. Opitz et al. [120] use the gradient of the last layer for selecting uncorrelated
samples to improve performance. Similar to [7, 46, 120] we propose a method
which affects the training of a network to push towards better performances. In
contrast to these supervised methods, where the image labels are fixed, our policy
has substantial control on the training of the main network since it can directly
alter the input data by proposing permutations.

4.2 Self-Supervision

Convolutional neural networks (CNNs) have demonstrated to learn powerful vi-
sual representations from large amounts of tediously labeled training data [85].
However, since visual data is cheap to acquire but costly to label, there has re-
cently been great interest in learning compelling features from unlabeled data.
Without any annotations, self-supervision based on surrogate tasks, for which
the target value can be obtained automatically, is commonly pursued [110, 93,
49, 11, 114, 38, 108, 115, 99, 124, 90, 30, 55, 140]. In colorization [90], for in-
stance, the color information is stripped from an image and serves as the target
value, which has to be recovered. Various surrogate tasks have been proposed,
including predicting a sequence of basic motions [99], counting parts within re-
gions [115] or embedding images into text topic spaces [124]. In contrast to the
majority of recent self-supervised learning approaches, Doersch et al. [39] and
Wang et al. [165] combine surrogate tasks to train a multi-task network. Do-
ersch et al. [39] choose 4 surrogate tasks and evaluate a naive and a mediated
combination of those. Wang et al. [165], besides a naive multi-task combination
of these self-supervision tasks, use the learned features to build a graph of se-
mantically similar objects, which is then used to train a triplet loss. Since they
combine heterogeneous tasks, both methods use an additional technique on top
of the self-supervised training to exploit the full potential of their approach.

The key competence of visual understanding is to recognize structure in visual
data. Thus, breaking the order of visual patterns and training a network to
recover the structure provides a rich training signal. This general framework
of permuting the input data and learning a feature representation, from which
the inverse permutation (and thus the correct order) can be inferred, is a widely
applicable strategy. It has been pursued on still images [114, 116, 38, 30, 39] by
employing spatial shuffling of images (especially permuting jigsaws) and in videos
[110, 93, 49, 21] by utilizing temporally shuffled sequences. Buechler et al. [23]
proposes that since spatial and temporal shuffling are both ordering tasks, which
only differ in the ordering dimension, they should be addressed jointly. Since this

4.2. SELF-SUPERVISION 51

is a more complete method, addressing both image and video tasks, we will use
this as our baseline. More details will be given in Sec. 4.2.1.

4.2.1 Baseline: Spatiotemporal Jigsaw Puzzle

Our goal is to control a surrogate task to optimize the training. Therefore, we
need to choose one of the existing self-supervised methods and build our con-
troller on top of that. We chose Buechler et al. [23] which learns a general visual
representation for images and video following the paradigm of Jigsaw puzzle. In
this section, we describe in details the method.

The visual representation is trained using a CNN backbone (CaffeNet [75]
architecture up to pool5) initialized from scratch (see Fig. 4.1C). The spatial
component receives in input an image divided in m× m regular grid of tiles as
suggested by [114](Fig. 4.1B top). A video sequence composed of u frames is
shuffled temporally and given as input to the temporal network.

To avoid redundancy in the formulation, we will refer to a generic input x =
(x1, x2, . . .) for both a sequence of frames (temporal task) or image tiles (spatial
task). Given an index permutation ψi = (ψi,1, ψi,2, · · ·), we define the shuffled
input as

ψi(x) :=
(
xψi,1 , xψi,2 , . . .

)
. (4.1)

The set of all possible permutations Ψ? is limited for practical reasons using the
heuristic proposed by Noroozi and Favaro [114], by sampling a set Ψ ⊂ Ψ? of
maximally diverse permutations ψi ∈ Ψ. We iteratively include the permutation
with the maximum Hamming distance d(·,·) to the already chosen ones. The
set of permutations is different for the spatial and temporal tasks since we use less
permutations for the latter. For simplicity, we are going to explain our approach
based on a general Ψ without referring to a specific task.

On top of the visual representation (CNN backbone, Fig. 4.1(C)) we need
a classifier that actually solves the Jigsaw task by identifying the permutation
applied to the input. The output of the Pool5 is flattened and given to a fully
connected layer of size 1024, typically referred to as fc6. We obtain one fc6 out-
put for each input part with a total size of u× 1024. For the spatial network,
the parts are stacked 1× u ∗ 1024 and passed to another fully connected layer
(fc7); for the temporal network, a recurrent neural network (LSTM [68]) summa-
rizes the parts into a single output 1× 512 (see Fig. 4.1(C) and Sect. 4.4 for
implementation details). The output of fc7 or the LSTM is then processed by
a final fully connected layer which estimates the permutation ψi applied to the
input sample. Using a limited number of permutation and assign a categorical
number to each of them, allow us to train the network end-to-end using a stan-
dard cross-entropy loss. The output activation ϕi, i ∈ {1, . . . |Ψ|} of the classifier
corresponds to the permutation ψi ∈ Ψ. Given that the output activation value
of a classifier indicates how certain the network is on the prediction, this can be
important information for the selection of the permutation. We will follow up on
this in Sec 4.3.

52
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.1: (A) Deep RL of a policy for sampling permutations. (B) Permuting
training images/videos by the proposed actions of (A) to provide self-supervision
for our network architecture (C). (D) Evaluating the update network (C) on
validation data to receive reward and state.

The spatial and temporal components are trained in parallel: each task pro-
duces a gradient which are then averaged and back-propagated through the entire
network, including the shared backbone.

4.3 Our Contribution

We observe that there has been unused potential in self-supervision based on
ordering: Previous works [93, 49, 114, 116, 21] have randomly selected the per-
mutations used for training the CNN. However, can we not find permutations that
are of higher utility for improving a CNN representation than the random set?
For instance, given a 3× 3 jigsaw grid, shuffling two neighboring image patches,
two patches in faraway corners, or shuffling all patches simultaneously will learn
the structure of different granularity. Thus diverse permutations will affect the
CNN in a different way. Moreover, the effect of the permutations on the CNN
changes during training since the state of the network evolves. During learning,
we can examine the previous errors the network has made when recovering order
and then identify a set of best-suited permutations. Therefore, wrapped around
the standard back-propagation training of the CNN, we have a reinforcement
learning algorithm that acts by proposing permutations for the CNN training.
To learn the function of proposing permutations we simultaneously train a policy
and self-supervised network by utilizing the improvement over time of the CNN
network as a reward signal.

In previous works [110, 93, 49, 114, 21], for each training sample one permu-
tation is randomly selected from a large set of candidate permutations ψi ∈ Ψ.
Selecting the data permutation independent from the input data is beneficial as
it avoids overfitting to the training data (permutations triggered only by specific
samples). However, permutations should be selected conditioned on the state of
the network that is being trained to sample new permutations according to their
utility for learning the CNN representation.

4.3. OUR CONTRIBUTION 53

4.3.1 Meta-learner for Improving Self-supervision

A Markov Decision Process for Proposing Permutations: We need to
learn a function that proposes permutations conditioned on the network state
and independent from samples x to avoid overfitting. Knowingly, the state of the
network cannot be represented directly by the network weights, as the dimen-
sionality would be too high for learning to be feasible. To capture the network
state at time step t in a compact state vector s, we measure performance of the
network on a set of validation samples x ∈ Xval. Each x is permuted by some
ψi ∈ Ψ. A forward pass through the network then leads to activations ϕi and a
softmax activation of the network,

y?i =
exp(ϕi)

∑k exp(ϕk)
. (4.2)

Given all the samples, the output of the softmax function indicates how good a
permutation ψi can already be reconstructed and which ones are hard to recover
(low y?i). Thus, it reflects the complexity of a permutation from the view point of
the network and y?i can be utilized to capture the network state s. To be precise,
we measure the network’s confidence regarding its classification using the ratio
of correct class l vs. second highest prediction p (or highest if the true label l is
not classified correctly):

yl(x) =
y?l (x) + 1
y?p(x) + 1

, (4.3)

where x ∈ Xval and adding 1 to have 0.5 ≤ yl ≤ 2, so that yl > 1 indicates a
correct classification. The state s is then defined as

s =

 y1(x1) . . . y1(x|Xval |)
...

...
y|Ψ|(x1) . . . y|Ψ|(x|Xval |),

 (4.4)

where one row contains the softmax ratios of a permutation ψi applied to all sam-
ples x ∈ Xval (see Fig. 4.1(D)). Using a validation set for determining the state
has the advantage of obtaining the utility for all permutations ψi and not only
for the ones applied in the previous training phase. Moreover, it guarantees the
comparability between validations applied at different time points independently
by the policy. The action a = (x, ψi) ∈ A = X × Ψ of training the network by
applying a permutation ψi to a random training sample x changes the state s
(in practice we sample an entire mini-batch of tuples for one training iteration
rather than only one). Training changes the network state s at time point t into s′

according to some transition probability T(s′|s, a). To evaluate the chosen action
a we need a reward signal rt given the revised state s′. The challenge is now to
find the action which maximizes the expected reward

R(s, a) = E[rt|st = s, a], (4.5)

given the present state of the network. The underlying problem of finding suitable
permutations and training the network can be formulated as a Markov Decision
Process (MDP)[151], a 5-tuple < S, A, T, R, γ >, where S is a set of states st, A
is a set of actions at, T(s′|s, a) the transition probability, R(a, s) the reward and
γ ∈ [0, 1] is the discount which scales future rewards against present ones.

54
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.2: Training procedure of π. The policy proposes actions [at,k]
K
k=1 to per-

mute the data X, used for training the unsupervised network. The improvement
of the network is then used as reward r to update the policy.

Defining a Policy: As a reward rt we need a score which measures the impact
the chosen permutations have had on the overall performance in the previous
training phase. For that, the error

E := 1− 1
|Ψ| · |Xval|

|Ψ|

∑
l=1

∑
x∈Xval

δ l ,argmax
p={1,...,|Ψ|}

y?p(x) (4.6)

with δ the Kronecker delta, can be used to assess the influence of a permutation.
To make the reward more informative, we compare this value against a baseline
(BL), which results from simply extrapolating the error of previous iterations,
i.e. EBL

t+1 = 2Et−Et−1. We then seek an action that improves upon this baseline.
Thus, the reward rt obtained at time point t + 1 (we use the index t for r at time
step t + 1 to indicate the connection to at) is defined as

rt := EBL
t+1 − Et+1. (4.7)

We determine the error using the same validation set as already employed for
obtaining the state. In this way no additional computational effort is required.

Given the earlier defined state s of the network and the actions A we seek to
learn a policy function

π(a|s, θ) = P(at = a|st = s, θt = θ), (4.8)

that, given the θ parameters of the policy, proposes an action a = (x, ψi) for a
randomly sampled training data point x based on the state s, where π(a|s, θ)
is the probability of applying action a ∈ A at time point t given the state s.
The parameters θ can be learned by maximizing the reward signal r. It has been
proven that a neural network is capable of learning a powerful approximation of
π [111, 151, 144]. However, the objective function (maximizing the reward) is not
differentiable. In this case, Reinforcement Learning (RL)[151] has now become a
standard approach for learning π in this particular case.

Policy Gradient: There are two main approaches for attacking deep RL prob-
lems: Q-Learning and Policy Gradient. We require a policy which models action
probabilities to prevent the policy from converging to a small subset of permuta-
tions. Thus, we utilize a Policy Gradient (PG) algorithm which learns a stochastic
policy and additionally guarantees convergence (at least to a local optimum) as
opposed to Q-Learning. The objective of a PG algorithm is to maximize the

4.3. OUR CONTRIBUTION 55

expected cumulative reward (Eq. 4.5) by iteratively updating the policy weights
through back-propagation. One update at time point t + 1 with learning rate α
is given by

θt+1 = θt + α
(
∑t′≥t γt′−trt′

)
∇ log π(a|s, θ), (4.9)

Action Space: The complexity of deep RL increases significantly with the
number of actions. Asking the policy to permute a sample x given the full space
Ψ leads to a large action space. Thus, we dynamically group the permutations into
|C| groups based on the state of the spatiotemporal network. The permutations
which are equally difficult or equally easy to classify are grouped at time point
t and this grouping changes over time according to the state of the network.
We utilize the state s (Eq. 4.4) as input to the grouping approach, where one
row si represents the embedding of permutation ψi. A policy then proposes one
group cj ∈ C of permutations and randomly selects one instance ψi ∈ cj of the
group. Then a training data point x is randomly sampled and shuffled by ψi.
This constitutes an action a = (x, ψi). Rather than directly proposing individual
permutations ψi, this strategy only proposes a set of related permutations cj.
Since |C| << |Ψ|, the effective dimensionality of actions is significantly reduced
and learning a policy becomes feasible.

Network State: To obtain a more concise representation ŝ = [ŝj]
|C|
j=1 of the

state of the spatiotemporal network (the input to the policy), we aggregate the
characteristics of all permutations within a group cj. Since the actions are di-
rectly linked to the groups, the features should contain the statistics of cj based
on the state of the network. Therefore we utilize per group (i) the number of
permutations belonging to cj and (ii) the median of the softmax ratios (Eq. 4.3)
over the (ψi, x) pairs with ψi ∈ cj and x ∈ Xval

ŝ = [|cj|, median
(
[si]ψi∈cj

)
]
|C|
j=1. (4.10)

The median over the softmax ratios reflects how well the spatiotemporal network
can classify the set of permutations which are grouped together. Including the size
|cj| of the groups helps the policy to avoid the selection of very small groups which
could lead to overfitting of the self-supervised network on certain permutations.
The proposed ŝ have proven to be an effective and efficient representation of
the state. Including global features, as for example the iteration or learning rate
utilized in previous work [45, 46], does not help in our scenario. It rather increases
the complexity of the state and hinders policy learning. Fig. 4.1(D) depicts the
validation process, including the calculation of state ŝ and the reward r.

Training Algorithm: We train the self-supervised network and the policy si-
multaneously, where the training can be divided in two phases: the self-supervised
training and the policy update (see Fig. 4.2 and Algorithm 1 in section A of the
Supplementary Material). The total training runs for T steps. Between two steps
t and t + 1 solely the self-supervised network is trained (π is fixed) using SGD

56
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

for several iterations using the permutations proposed by π. Then, ŝ is updated
using the validation procedure explained above. At each time step t an episode
(one update of π) is performed. During episode t, the policy proposes a batch
of K actions [at]Kk=1, based on the updated state ŝt, which are utilized to train
the self-supervised network for a small amount of iterations. At the end of the
episode, another validation is applied to determine the reward rt for updating π
(Eq. 4.9). The two phases alternate each other until the end of the training.

Computational Extra Costs during Training: With respect to the basic
self-supervised training, the extra cost for training the policy derives only from
the total number of episodes × the time needed for performing an episode. If the
number of SGD iterations between two policy updates t and t + 1 is significantly
higher than the steps within an episode, the computational extra costs for train-
ing the policy is small in comparison to the basic training. Fortunately, sparse
policy updates are, in our scenario, possible since the policy network improves sig-
nificantly faster than the self-supervised network. We observed a computational
extra cost of ∼40% based on the optimal parameters. Previous work, [45, 186]
which utilize deep RL for meta-learning, need to repeat the full training of the
network several times to learn the policy, thus being several times slower.

4.4 Implementation Details

All deep networks are implemented using the PyTorch1 framework.

Spatiotemporal Jigsaw: The shared basic model of the spatiotemporal net-
work up to pool5 has the same architecture as CaffeNet [75] with batch normalization[71]
between the conv layers. The still images utilized for the spatial task are chosen
from the training set of the Imagenet dataset [137]. For training our model with
the temporal task, we utilize the frames from split1 of the human action dataset
UCF-101 [149]. We use 1000 initial permutations for both tasks (|Ψ| = 1000).
we use SGD with a starting learning rate of 0.001 which we reduce after 200k
iterations by a factor of 10. Our network runs in total for 350k iterations. We
use a batchsize of 128 for both spatial and temporal tasks. For the spatial clas-
sification branch, the fc6-layer has a size of 1024, fc7 has 4096 dimensions. For
the temporal task we use an fc6-layer with 512 neurons and one LSTM layer with
the hidden dimension of 256. The policy network is trained using the ADAM
optimizer with a starting learning rate of 0.01. For the temporal task, we ran-
domly crop a patch with the size of 224x224 per frame and resize to 75x75. For
the spatial task, each tile has the size of 75x75. Having the same input as the
temporal task simplifies the implementation phase. As in [114], conv1 has stride
2 during the unsupervised training, and it is changed to 4 during all evaluation
experiments. As augmentation, we randomly crop each tile/frame, apply a ran-
dom color jittering to each of them and normalize the tiles/frames separately.
For the spatial task we divide an input image x into 9 non-overlapping parts. For
the temporal task, we randomly select 8 frames from each video.

1http://pytorch.org/

http://pytorch.org/

4.5. EXPERIMENTS 57

Methods
UCF101[149] PascalVOC07[42]

Top1 Top5 Top10 Top20 Top50 Top1 Top5 Top10 Top20 Top50

Random 18.8 25.7 30.0 35.0 43.3 17.6 61.6 75.5 85.5 94.2

Jigsaw [114] 19.7 28.5 33.5 40.0 49.4 39.2 71.6 82.2 89.5 96.0
OPN [93] 19.9 28.7 34.0 40.6 51.6 33.2 67.1 78.5 87.0 94.6
Ours 25.7 36.2 42.2 49.2 59.5 54.3 73.0 83.0 89.9 96.2

Table 4.1: Evaluating the visual representation using an unsupervised nearest
neighbor approach on split1 of UCF-101 and Pascal VOC 2007 dataset. We
compare the results gained by (i) a random initialization, (ii) a spatial approach
[114], (iii) a temporal method [93], and (iv) spatiotemporal jigsaw + our meta-
learner. For extracting the features based on the weights of (ii) and (iii) we utilize
their published models

Our meta-learner: To train the policy we use the Policy Gradient algorithm
REINFORCE (with moving average subtraction for variance reduction) and add
the entropy of the policy to the objective function which improves the exploration
and therefore prevents overfitting (proposed by [166]). The policy network con-
tains 2 FC layers, where the hidden layer has 16 dimensions. We use K-means
clustering for grouping the permutations in 10 groups. The validation set con-
tains 100 (|Xval| = 100) samples and is randomly sampled from the training set
(and then excluded for training).

4.5 Experiments

Our ablation study evaluates quantitatively our contribution, showing that a
strategy better than random can be found automatically. The visual representa-
tion is tested quantitatively and qualitatively on a variety of contrasting vision
tasks, including image classification, object detection, object segmentation, and
action recognition (Section 4.6).

Datasets: UCF-101 [149] contains 101 different action classes and over 13k
clips. HMDB-51 [87] contains 51 classes and around 7k clips. The Imagenet [137]
benchmark consists of∼1.3M images divided in 1000 objects category. The Pascal
VOC 2007 [42] dataset consists of 9,963 images, containing 24,640 annotated
objects which are divided in 20 classes. Based on the default split, 50% of the
images belong to the training/validation set and 50% to the testing set. We use
the provided bounding boxes of the dataset to extract the individual objects,
whereas patches with less than 10k pixels are discarded.

4.5.1 Nearest Neighbor Search

Nearest neighbor search is a good unsupervised method for evaluating the visual
representation. We test the learned representation on two datasets: Pascal VOC
for images and UCF101 for videos.

58
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.3: Given a query from the Pascal VOC test set, we provide the top5
nearest neighbor from the train set based on pool5 using cosine distance. We
compare the models from (i) supervised training with the Imagenet classification
task, (ii) our meta-learner(+spatiotemporal jigsaw) approach, (iii) OPN as a
temporal approach [93], (iv) Jigsaw as a spatial method [114] and (v) a random
initialization.

For each image/frame we resize the input to 227× 227 as standard procedure,
then extract the pool5 activation. For each image/video in the test set, topk
NN are retrieved from the train set using cosine distance. For UCF101, the
representation is the average between pool5 from 10 frames per video. If the
class of a test sample appears within the topk train samples, it is considered
correctly predicted. Finally, the mean accuracy [%] is reported averaged across
test samples.

Tab. 4.1 shows the accuracy for k = 1, 5, 10, 20, 50 computed on UCF-101
and Pascal VOC 2007, respectively. It can be seen, that our model achieves the
highest accuracy for all k, meaning that our method produces more informative
features for object/video classification. Note, that especially the accuracy of Top1
is much higher in comparison to the other approaches.
We additionally evaluate our features qualitatively by depicting the Top5 nearest
neighbors in the training set given a query image from the test set (see Fig. 4.3).
We compare our results with [114, 93], a random initialization, and a network
with supervised training using the Imagenet dataset.

4.6 Transfer Capabilities of the Unsupervised

Visual Representation

After training our visual representation without using labels, we evaluate its
generalization quality by testing on different visual tasks. For the following ex-
periments, we initialize all networks with our trained model up to conv5 and
fine-tune on the specific task using standard evaluation procedures.

Imagenet 4.2: The backbone is initialized using our unsupervised represen-
tation and frozen during fine-tuning. The classifier is fine-tuned on the Imagenet
challenge [137] on top of conv5. The classifier is either a single linear layer, as
introduced by Zhang et al. [179], or a two-layer network, proposed by Noroozi
and Favaro [114]. Tab. 4.2 shows that our visual representation obtains more
than 2% over the best model with a comparable architecture and almost 4% in
the linear task.

Action recognition: The experiment is performed using the PyTorch im-

4.6. TRANSFER CAPABILITIES OF THE UNSUPERVISED VISUAL
REPRESENTATION 59

Method Non-
Linear

Linear

Imagenet 59.7 50.5
Random 12.0 14.1
Videos [164] 29.8 -
OPN* [93] 29.6 -
Context [38] 30.4 29.6
Colorization[179] 35.2 30.3
BiGan[40] 34.8 28.0
Split-Brain[180] - 32.8
NAT[20] 36.0 -
Jigsaw[114] 34.6 27.1
Ours 38.2 36.5
RotNet+[55] 43.8 36.5

Table 4.2: Imagenet challenge [137] using our visual representation up to pool5.
We train a Linear[179] and Non-linear[114] classifier while keeping the features
(pool5) frozen. (*: indicates our implementation of the model, +: indicates bigger
architecture due to missing groups in the conv layers)

Method UCF-
101

HMDB-
51

Random 47.8 16.3
Imagenet 67.7 28.0

Shuffle&Learn [110] 50.2 18.1
VGAN [157] 52.1 -
Luo et. al [99] 53.0 -
OPN [93] 56.3 22.1

Jigsaw* [114] 51.5 22.5
Ours 58.6 25.0

Table 4.3: Testing the unsupervised visual representation on the action recogni-
tion task. The unsupervised representation is fine-tuned on UCF-101 and HMDB-
51 and the test accuracy [%] is reported. ’*’: Jigsaw (Noroozi and Favaro [114])
do not provide results for this task, we replicate their results using our PyTorch
implementation

plementation 2 provided by Wang et al. [161]. The network architecture and
hyperparameters are retained from our model. The input is a single frame from
each video for training and testing. As dataset, we use UCF-101 and HMDB-51,
averaging the accuracy over the three provided splits. Our method outperforms
the state-of-the-art by 2.3% on UCF-101 and 2.9% on HMDB-51. Notice that
HMDB-51 is never used during training, showing that our visual representation
generalizes better than other methods.

2https://github.com/yjxiong/temporal-segment-networks

https://github.com/yjxiong/temporal-segment-networks

60
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Method Classification[42] Detection[42] Segmentation[43]

Imagenet 78.2 56.8 48.0
Random 53.3 43.4 19.8
OPN[93] 63.8 46.9 -
Color17[90] 65.9 - 38.4
Counting[115] 67.7 51.4 36.6
PermNet[30] 69.4 49.5 37.9
Jigsaw[114] 67.6 53.2 37.6
RotNet[55]+ 73.0 54.4 39.1
Ours 74.2 52.8 42.8

Table 4.4: Our visual representation is tested on three different visual tasks
on Pascal VOC: (i) multi object classification, (ii) detection (VOC07) and (iii)
segmentation (VOC12). For (i) and (ii) we show the mean average precision
(mAP), for (iii) the mean intersection over union (mIoU). (’+’: significantly
larger conv layers)

Pascal VOC: Our unsupervised visual representation is then evaluated on
different vision tasks. On Pascal VOC07 [42], we test on multi-object classification
using the procedure described in [82]. On the same dataset, we evaluate on object
detection following the experimental protocol described in [132]. Then, using the
Pascal VOC12 [43] dataset, we test on object segmentation using FCN [96]. For all
tasks, we initialize the backbone with our representation and fine-tune the whole
network on the downstream task. Previous methods using deeper networks, such
as [165, 39], are omitted from Tab. 4.4. The results in Tab. 4.4 show that we
significantly improve upon the other approaches. Our method outperforms even
[55] in object classification and segmentation, which uses batch normalization
also during fine-tuning and uses a larger network due to the group parameter in
the conv layers.

4.7 Ablation Study

In this section, we compare the baseline method (S+T) with our improved version
using the controller policy (P) during training.

Method S S+P T T+P S+T S+T+P

Pascal 67.6 71.3 64.1 65.9 72.0 74.2
UCF-101 51.5 54.6 52.8 55.7 57.3 58.6

Table 4.5: We compare the different models on the multi-object classifica-
tion task using the Pascal VOC07 and on the action recognition task using
UCF-101. (S):Spatial task, (S+P):Spatial task + Policy, (T): Temporal task,
(T+P):Temporal task + Policy, (S+T):Spatial and Temporal task simultane-
ously, (S+T+P):all approaches simultaneously

Unsupervised Feature Evaluation: In Fig. 4.5 the models are evaluated

4.7. ABLATION STUDY 61

Figure 4.4: Permutations chosen by the policy in each training episode. For
legibility, ψi are grouped by validation error into four groups. The policy, up-
dated after every episode, learns to sample hard permutations more often in later
iterations

on the Pascal VOC object classification task without any further fine-tuning by
extracting pool5 features and computing cosine similarities for nearest neighbor
search as described in section 4.5.1. This unsupervised evaluation shows how well
the unsupervised features can generalize to a primary task, such as object clas-
sification. Fig. 4.5 shows, that each of the three models (Spatial, Temporal and
Spatiotemporal) has a substantial gain when the CNN is trained using the pol-
icy. Our final model, composed of the spatiotemporal task with policy (S+T+P),
reaches almost the supervised features threshold (”imagenet” line in Fig. 4.5).

Supervised Fine-Tuning: In Tab. 4.5, a supervised evaluation has been
performed starting from the unsupervised visual representation. Each model is
fine-tuned on the multi-class object classification task on Pascal VOC 2007 and
video classification using UCF-101. The results are consistent throughout the
unsupervised evaluation, showing that the methods with RL policy (S+P, T+P,
and S+T+P) improve over the baseline models.

Policy Learning: Fig. 4.4 shows the permutations chosen by the policy
while it is trained at different episodes (x-axis). This experiment aims to ana-
lyze the learning behavior of the policy. For this reason, we initialize the policy
network randomly and the CNN model from an intermediate checkpoint (aver-
age validation error 72.3%). Per episode, the permutations are divided into four
complexities (based on the validation error) and the relative count of permuta-
tions selected by the policy is shown per complexity. Initially, the policy selects
the permutations uniformly in the first three episodes, but then learns to sample
with higher frequency from the hard permutations (with high error; top red) and
less from the easy permutations (bottom purple), without overfitting to a specific
complexity but mixing the hard classes with intermediate ones.

Fig. 4.6 depicts the spatial validation error over the whole training process
of the spatiotemporal network with and without the policy. The results are con-
sistent with the unsupervised evaluation, showing a faster improvement when

62
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.5: The test accuracy from Top1 nearest neighbor search evaluation on
VOC07 is used for comparing different ablations of our architecture during train-
ing. The curves show a faster improvement of the features when the policy (P)
is used

Figure 4.6: Error over time of the spatial task, computed using the validation
set and sorted by the average error. Each row shows how the error for one
permutation evolves over time. (A): with Policy, (B): without policy

training with the permutations proposed by the policy than with random per-
mutations. Note that (B) in Fig. 4.6 shows a uniform improvement over all
permutations, whereas (A) demonstrates the selection process of the policy with
a non-uniform decrease in error.

4.8 Policy Detailed Analysis

In this section, we will provide extra details about our controller policy, in par-
ticular how we found the hyper-parameters and their effect on the final result.

4.8.1 Size of Validation Set

In Sec. 4.3.1 we mention the usage of 100 images for the validation set Xval. Fig.
4.7 shows an evaluation of the optimal size for the validation set based on the
mean and standard deviation of the error (y-axis) using several randomly sampled
validation sets with size |Xval| = 10, 20, 50, 100 or 200 at different time steps (x-

4.8. POLICY DETAILED ANALYSIS 63

Figure 4.7: Evaluation of the optimal size for Xval.

axis). We randomly sample 5 different sets per size and compute for every set the
mean error given the checkpoints of the self-supervised network trained without
policy at iteration 50k, 100k, 150k, 200k, 250k, 300k and 350k. Fig. 4.7 then
shows the mean and standard deviation over the 5 sets regarding a specific size and
iteration. While the overall tendency of the error over the consecutive training
iterations is similar for all validation sizes, |Xval| = 10, 20, 50 show comparably
large standard deviation. For the other two sizes there is only little difference
which motivates our choice of |Xval| = 100.

4.8.2 Number of Groups

We declare in Sect. 4.1 the choice of 10 groups which we are going to analyze sub-
sequently. We use the softmax ratios y?i (Eq. 4.3) to determine the complexity of
a permutation from the view point of the network. Fig. 4.8 shows the distribution
of all y?i over the (ψi, x) pairs with ψi ∈ Ψ and x ∈ Xval (all entries of s, Eq.4.4) at
time point 300k as histogram. We compute this distribution for all ψi which are
part of a group. We then test the distributions of the different groups for equality
using the Kolmogorov-Smirnov-Test (KS-test; Null-Hypothesis is that the distri-
butions are the same). If the p-value returned by the KS-test is smaller than a
predefined significance value α = 0.01 the Null-Hypothesis can be rejected and
the distributions are assumed to be different. We utilize this measure to iden-
tify groups which have a similar distribution and should therefore be grouped
together. In this way, we can find the optimal amount of groups without hav-
ing two separate groups with the same distribution/difficulty. Fig. 4.9 depicts the

64
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.8: Frequency of the softmax ratios y?i given all entries of s (Eq. 4.4) at
time point 300k.

matrices of pairwise p-values for |C| = 10, 15 and 20 at time point 150k, 250k and
350k. It can be seen, that there are already several groups for |C| = 15 where the
Null-Hypothesis cannot be rejected anymore (values higher than α), i.e. |C| = 15
is already to high for avoiding groups of similar complexity. Therefore, 10 groups
seems to be the best choice for the clustering approach.

4.8.3 Baseline Error EBL Description

In Eq. 4.7 we define the baseline error EBL
t+1 as the minimum error that the policy

network needs to achieve to receive a positive reward. Fig. 4.10 illustrates more
in details the use of this baseline with respect to the reward computation. The
baseline EBL

t+1 is computed by linear extrapolation based on the error Et−1 and

Et in the previous time points t − 1 and t. For extrapolating EBL
t+1 we use the

equation

f (u3) = f (u1) +
u3 − u1

u2 − u1
(f (u2)− f (u1)). (4.11)

where a point (u, f (u)) corresponds to our errors (t, Et) and the extrapolated
point f (u3) corresponds to our baseline error EBL

t+1. Substituting {u1, u2, u3}
with {t− 1, t, t + 1} and f (u) with Et results in

EBL
t+1 = Et−1 +

(t + 1)− (t− 1)
t− (t− 1)

(Et − Et−1) = 2Et − Et−1. (4.12)

4.8.4 How Decisive Are the Permutations?

In this section we evaluate the impact on performance that permutation selection
has during training. In particular, we use our trained policy for selecting the
permutations and evaluate the model after one epoch. As baseline we use the
random policy which selects the permutations uniformly at random. Moreover,

4.8. POLICY DETAILED ANALYSIS 65

Figure 4.9: Pairwise p-values for a different amount of groups at several check-
points.

we evaluate the permutations which are discarded by our policy. Therefore, we
utilize an inverse policy in order to understand the importance of the permutation
selection. It turns out that the inverse policy impairs training, producing features
worse than the random policy ((78± 16)%, see Tab. 4.6), while our policy always
increases the performance with respect to the random policy.
The validation accuracy shown in Tab. 4.6 refers to unsupervised training. We
initialize the network from a given checkpoint and train for one epoch following
one of the three policies. The final result is the ratio between our/inverse policy
and the baseline random policy. Then we average over several checkpoints.

4.8.5 Permutation Selection of Our Policy

As discussed in Sec. 4.3, defining the complexity of a permutation should depend
on the state of the network and not, for example, only on the degree of shuffling
independently of the network. For this reason, we utilize the validation error as
input for our policy. When illustrating how often permutations with a particular
shuffling (Hamming distance to the not-shuffled sequence) are selected by our
policy during the training process (see Fig. 4.11) one should not be able to rec-
ognize a specific pattern, as for example a curriculum that selects easy samples
(strongly permuted) at earlier iterations and harder ones (only small changes) at
later iterations. Fig. 4.11 shows that our trained policy does not follow a simple
curriculum learning procedure. It selects the permutations only based on the

66
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.10: The reward rt is positive when the error Et+1, obtained by training
the self-supervised network using the policy, is below the extrapolated baseline
error EBL

t+1

Table 4.6: Validation accuracy after one epoch of training using the policy in the
left column. The accuracy is relative to the random policy. The experiment is
repeated for several checkpoints, the reported accuracy is the mean and std over
those repetitions. The performances when using the inverse policy are worse than
the random policy baseline, while our policy always outperforms the baseline.

Method Relative Accuracy
RL policy (125± 14)%
Inverse policy (78± 16)%

state of the network as can be seen in Fig. 4.4. Qualitative examples of cho-
sen permutations, depicted in Fig. 4.12, confirm this behavior as no correlation
between the degree of shuffling and the training iteration is visible.

4.8.6 Extra Computational Costs

Policy Cost Calculation

In this section we derive the computational cost of using the policy during train-
ing relative to the computation of the basic self-supervised training. Including
the policy introduces three additional phases in the training algorithm: action
sampling (policy inference), update of the policy, and validation for computing
state ŝ and reward r. The inference and update of the policy are omitted from
the calculation since their cost is orders of magnitude lower with respect to the
main network, given the minor size of the policy network. Therefore the cost of

4.8. POLICY DETAILED ANALYSIS 67

Figure 4.11: Percentage of permutations chosen by the policy at diverse training
iterations. The permutations are structured using the Hamming distance to the
not-shuffled sequence.

the policy derives from the computational cost V of the validation phase. In fact,
for each sample in the validation set (100 samples following Sec. 4.8.1), the main
network performs one forward pass per each of the 1000 permutations, resulting
in

V =
100 · 1000

128
≈ 780 (4.13)

where 128 is the batch size. The validation phase is then performed twice per
episode t, at the beginning (computing ŝt) and the end of the episode (for the
reward rt). The final computational cost of using the policy is calculated by
multiplying the episode cost by the number of episodes T = 90 performed during
the entire training

CC = T · (2 ·V). (4.14)

The number of total updates T is set to 90 since the policy does not benefit from
an higher frequency of updates (no additional performance gain), which would
only increase the computational cost.
We can compute the policy cost in relation to the self-supervised training as

CC
I

=
T · (2 ·V)

I
=

90 · (2 · 780)
350000

≈ 40%. (4.15)

given the total number of iterations I = 350k to train the self-supervised network.

Performance Relative to Computation

Fig. 4.5 shows the performances of the unsupervised features during training,
based on the iterations of the self-supervision network. Since our goal was to
compare the convergence speed of the main network with and without policy,

68
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Figure 4.12: Qualitative examples of permutations with a high or low probability
to be chosen by the policy at different time points.

Fig. 4.5 does not consider the additional iterations necessary for training the
policy. For Fig. 4.13 we normalize the x-axis by taking into account the episodes
needed to train the policy network. Since the extra cost mainly derives from the
forward passes of the self-supervised network during the validation phase, we use
the total number of forward passes on the x-axis. Fig. 4.13 shows that, even
considering the extra computational cost needed to train the policy, there is a big
advantage of using the policy during training.

4.8.7 Activation

Fig. 4.14,4.15 show the top activation for different conv5 units of our self-supervised
trained model following the approach described by Zhou et al. [183]. In short, we
run all images of a particular dataset through the network and output the top
activations per unit contained in the conv5 layer. In Figure E.4.14 we show three
neurons over three different datasets: Imagenet, Pascal VOC, and UCF-101. Due
to the number of images included in the Imagenet dataset, we only use the test set
for visualizing the top activations. For UCF-101 we use one frame per video con-
tained in the training set of split1. Having a consistent activation across different
datasets shows the transfer capability of our feature representation. In particular
the first row of Figure E.4.14 is the activation of a unit responding to eyes, the
second recognizes faces and the third reacts to sky in landscapes. Figure E.4.15
shows additionally that the network learns to recognize very particular object
parts, like the tires of a four-wheel vehicle.

4.9. SUMMARY 69

Figure 4.13: Unsupervised object classification on Pascal VOC 2007 per number
of total forward passes computed by the self-supervised network. The x-axes
contains the unsupervised training plus the validation for the policy. ’Random’
and ’Imagenet’ are computed using respectively random weights and features
trained with labels on ImageNet.

Figure 4.14: Rows: Top activations of
3 different conv5 neurons across three
datasets (columns). Note, that the
neurons exhibit the same behavior in
all datasets; The first unit focuses on
eyes, the second on faces and the third
on sky in a landscape.

Figure 4.15: Top activations of a single
neuron firing on car wheels. The same
neuron is evaluated on different images
of Imagenet (1st row) and Pascal VOC
(2nd row).

4.9 Summary

In this chapter, we studied self-supervision, a paradigm to learn visual represen-
tation without human annotation. The visual representation can then be used
directly to compute similarities between images and videos, or as initialization
for a downstream task.

To sample data permutations, which are at the core of any surrogate ordering
task, we have proposed a policy based on RL requiring relatively small extra
computational cost. Therefore, the sampling policy adapts to the state of the
network that is being trained. As a result, permutations are sampled according
to their expected utility. In experiments on diverse tasks ranging from image
classification and segmentation to action recognition in videos, our adaptive policy
for spatiotemporal permutations has shown favorable results compared to the
state-of-the-art.

Since the publication of this work in Buechler et al. [23], new self-supervision
methods have been proposed for images and video, based on the Jigsaw puzzle
idea. For example, two important papers are Noroozi et al. [116] for images and

70
CHAPTER 4. IMPROVING SELF-SUPERVISION FOR BETTER VISUAL

REPRESENTATION

Xu et al. [170] for video.

Chapter 5

Behavior Analysis for Rodents
using Unsupervised Visual
Representation

In the previous chapter, we introduced several methods to learn a good visual
similarity, bypassing the use of human annotation. In this chapter, we apply the
learned visual representation to a real-life application: motor behavior analysis.
In summary, the task is to compare the motor-skills across different animal sub-
jects to quantify their degree of illness and studying their improvement during
rehabilitation.

In this chapter, we introduce the concept of behavior analysis and describe
the challenges and contributions in Sec. 5.1. Then we provide more details about
our method (Sec. 5.2.1) and evaluate qualitatively and quantitatively the unsu-
pervised visual similarity (Sec. 5.2.2). Finally, we test our method on several
biomedical tasks: motor-skill training and rehabilitation (Sec. 5.3), predicting
the brain status from behavior (Sec. 5.4).

The work presented in this chapter was partially published in Brattoli et
al. [21] and it is currently under review for publication.

5.1 Behavior Analysis

Behavior analysis (BA) is the study of motor function during a single, repeating
action. BA is a major tool for biomedical research, for example for clinical study,
since it is a non-invasive method to study the change of impairment during re-
habilitation. Existing methods require physical or virtual markers to track the
subject limbs, which is time-intensive.

Our contribution is an unsupervised visual similarity of posture and behavior.
Our method provides an objective comparison of behavior across subjects with-
out using keypoints or annotations. The method is evaluated on rodents with
neurological diseases for several applications: rehabilitation and neuro-function
correlation.

71

72
CHAPTER 5. BEHAVIOR ANALYSIS FOR RODENTS USING

UNSUPERVISED VISUAL REPRESENTATION

Figure 5.1: Our framework for behavior analysis. From the top: exemplary
frames of the rats grasping sugar pellets; the proposed neural network for behavior
encoding; examples of the applications enabled by our approach.

5.1.1 Definition

Study the elaborate internal processes of the brain is challenging and invasive.
Therefore, we study their visible result: motor behavior, i.e. the voluntary dy-
namic change of posture. In many fields of biomedical research, the quantification
of motor behavior constitutes an essential, non-invasive diagnostic strategy [16].

Complex movements, such as grasping, are coordinated by the brain and the
signal is sent through the spinal cord to control the muscle activation. The
analysis of the output, i.e. behavior, is crucial for the understanding of the
brain function. BA can lead to detect and classify distinct functional deficits.
Moreover, it can give us direct feedback on the treatment, allowing for individual
adjustments [50].

5.1. BEHAVIOR ANALYSIS 73

5.1.2 Motivation

Videos of behavior recorded during the long-term recovery after neurological dis-
eases provide an easily available, rich source of information to evaluate and adjust
drug application and rehabilitative treatment paradigms.

The common practice for behavior analysis is to place physical markers on
body joints which are easily detected by the algorithm [17, 156, 97, 69]. However,
placing markers on the body can alter the behavior of the animal subjects in the
process or being very time consuming, and annoying, for human patients.

A good alternative is marking the body parts on the video recording [133,
33, 126, 8]. This solves the previous problems, but requires time-intensive, error-
prone human annotations.

Using machine learning, more advanced algorithms can track virtual key-
points, reducing the number of annotations needed [103, 8]. However, these mod-
els require tedious posture annotation of large amounts of training images [6].
Even using transfer learning, modern methods still require hundreds of labeled
frames for a single animal.

Apart from the manual annotation, existing methods have another major
weakness: the disease effect on the motor-skills has to be known before detecting
keypoints, since the user needs to select specific body-parts to track. However,
a true diagnostic tool should discover and localize deviant behavior, rather than
only confirm it. Firstly, this makes BA, not objective, since different annotators
may favor different body-parts. Second, the analysis might miss important neural
mechanisms if the right body-parts are not tracked. This means that it is not
possible to discover new characteristics of the disease, but only confirm those
known to the user.

5.1.3 Contribution

We propose a fully automatic, unsupervised diagnostic support system for behav-
ior analysis based on objective comparison of motor functions across subjects. A
summary of the approach is shown in Fig. 5.1. Using an unsupervised training
procedure avoids tedious labeling and an annotator bias and supports an objective
analysis. Given reference videos of healthy and impaired behavior, a query video
sequence can be compared to the references for discovering characteristic behav-
ior. Being subject agnostic is crucial for an unbiased comparison. Moreover, we
can compare the behavior of the same subject during a recovery process to quan-
tify the improvement. Thus, we are closing the gap between merely extracting
keypoints [103, 8, 133, 33, 126, 56, 125] and a direct behavior classification [77, 32]
that is rather opaque to the user. Our novel algorithm for movement analysis
is promising for diverse applications in the field of biomedical research and was
evaluated on rodents subjects with stroke.

5.1.4 Experiment setup

We analyzed the recovery of impaired forelimb function in a rat stroke model
where a stroke partially destroyed the sensorimotor cortex in one hemisphere.
The effect on the impaired motor function was assessed using recordings of the

74
CHAPTER 5. BEHAVIOR ANALYSIS FOR RODENTS USING

UNSUPERVISED VISUAL REPRESENTATION

Figure 5.2: The training procedure of Brattoli et al. [21] for learning the behavior
representation without manual annotation. The network is trained to extract a
posture and behavior embedding (Eπ(xi) and Eβ(x)) only by forcing it to distin-
guish the characteristic structure of behavior sequences from shuffled sequences.

animals grasping a sugar pellet on a transparent shelf with minimum opening.
The animals were separated into four groups based on the treatment: ”Stimu-
lation and Training”, ”Stimulation”, ”Delayed training” and ”No Treatment”.
Recordings (50 frames/sec, consumer camera) have been taken during the initial
training of the animals before the stroke and during recovery, which lasted up to
5 weeks after insult.

5.2 Approach

Before diving into the experiment application, we provide more details about the
method and evaluate the learned visual similarity.

5.2.1 Self-supervision

As introduced in Sec. 5.1.2, a good method for comparing behavior needs to be
subject agnostic, enabling the comparison of behavior across individuals despite
their difference in appearance. This model should be trained without using hu-
man annotation since those are tedious and inject the annotator bias in the data.
Using the self-supervision method proposed in Brattoli et al. [21] (Fig. 5.2), the
network learns to extract the characteristic behavior from a video sequence with-
out any user intervention using a surrogate task. During training, the network
recognize normal behavior sequences x = (x1, x2, ...) from the same sequence
with frames xρ(i) randomly permuted by a permutation ρ (Fig. 5.2). The network

5.2. APPROACH 75

Figure 5.3: Nearest neighbors using our unsupervised visual similarity. (Left)
Posture similarity: For each query, we show five nearest neighbors using cosine
similarity on Eπ(xi) and the rgb average of 100 NN, which show a consistent
posture with almost no blurriness. (Right) Sequence similarity: we show two
nearest neighbors selected using cosine similarity on Eβ(x) for a single query.

can solve this auxiliary task only by recognizing the paw posture Eπ(xi) and the
temporal dynamics while grasping, the behavior Eβ(x). Sequences from different
animal subjects are mix together during training, pushing the model to ignore the
differences in appearance and focus on the posture, enforcing the subject agnostic
representation.

The behavior encoding Eβ(x) is a good visual representation that can be
used for visual similarity to objectively compare behavior across subjects. Before
showing application of our method, we carefully evaluate Eπ(xi) and Eβ(x) in
Sec. 5.2.2.

5.2.2 Evaluation

In this section, we evaluate the leaned encodings Eπ(xi) and Eβ(x) both qualita-
tively and quantitatively, showing that they can be used for visual similarity of
posture and motion sequence across subjects, therefore are a good candidate for
behavior analysis.

Visual Similarity. We evaluate the visual similarity using the learned un-
supervised encodings. Fig. 5.3 (Left) shows the nearest neighbor based on our
posture encodings Eπ(xi). Even though no supervision has been used, the model
can retrieve images representing the same posture from different subjects. In par-
ticular, we provide the five nearest neighbors and an rgb average over the hundred
closest samples. The consistent posture over the 100 NN shows that the posture
similarity is strong. Similarly, we can retrieve similar motion using Eβ(x), shown
in Fig. 5.3 (Right).

In Fig. 5.4, we project a thousands paw frames on a 2D plane using t-
SNE [100]. The results shows that Eπ(xi) extracts salient posture information
and ignores appearance. Moreover, even thought the model was not explicitly
trained for this, the time dimension is represented as a circle: the grasp starts at
the top right and continues clockwise.

Comparison with Grund-Truth. For our approach, we compute a ”health-
iness score” by classify every sequence as healthy or impaired and calculate the

76
CHAPTER 5. BEHAVIOR ANALYSIS FOR RODENTS USING

UNSUPERVISED VISUAL REPRESENTATION

Figure 5.4: Projection of the posture representation Eπ(xi) to a 2D plane using
t-SNE. Similar postures are projected nearby and the time dimension appear as
a circle, showing that the representation extracts useful posture information and
rejects appearance characteristics.

percentage of healthy sequences per cohort. A linear classifier is trained on our
visual representation to distinguish healthy and impaired.

Fig. 5.5 shows the healthiness score (HS) and the ground truth (GT) values
provided by experts [3]. Our visual representation reaches the good results with
a high correlation of 0.933± 0.005 using a simple linear classifier.

5.3 Grasping Sugar: Training and Rehabilita-

tion

In this section, we apply our method to compare behavior over time. In particular,
we show how the grasping action improves during training and how it changes
during rehabilitation, depending on the treatment. To study the improvement,
we need a reference behavior to compare with. Therefore, we define a ”baseline”
behavior which is the best possible grasping skills, obtained at the end of training,
right before the stroke, which we call ”0d”.

5.3. GRASPING SUGAR: TRAINING AND REHABILITATION 77

Figure 5.5: Comparing our model with ground-truth scores [3] provided by the
experts. The bar-plot shows the healthiness score (higher is healthier). Our score
is computed using a classifier to predict the ratio of healthy sequences per cohort.
The results of our model correlate with GT at 0.933± 0.005.

Train to Grasp. Fig. 5.6 shows, every four days, the average similarity of
all subjects to baseline. The figure shows that the improvement is continues as
expected, suggesting that our encoding is providing a good representation.

Additionally, we can identify for each time point of learning how the behavior
differs from the reference: the posture representation allows to spot postures
(rows in Fig. 5.7) that are significantly over-represented in contrast to the skilled
reference (red) as well as the ones that are missing (blue) at each point in time.
Here the postures are mapped from the multidimensional Eπ to 1D on the y-axis
using t-SNE. The result shows that non-grasping postures (bottom) are more
frequent in early stages while grasping postures (top), which precisely target the
sugar pellet, are unlikely. During learning, the posture distribution then converges
to the skilled reference baseline.

Therapies Comparison. An objective measure of behavior is crucial for
testing drugs and treatments. In Fig. 5.8, we compare the effect of different treat-
ments on the impaired rat respect to our reference baseline behavior. Specifically,
the animals are divided into four treatment cohorts:

• ”Stimulation and Training”: a combination of optogenetic stimulation and
physical treatments are used during rehabilitation.

• ”Stimulation”: only the optogenetic stimulation are used on the subjects,
without physical treatment.

• ”Delayed Training”: only a physical treatment after a couple of weeks from
the stroke.

78
CHAPTER 5. BEHAVIOR ANALYSIS FOR RODENTS USING

UNSUPERVISED VISUAL REPRESENTATION

Figure 5.6: Similarity to skilled animals (0d) during training. The similarity to
trained animals gradually increases over successive training days.

• ”No Treatment”: as the name suggests, these subjects have received no
treatments.

We expected the first category to obtain the best recovery result.
Fig. 5.8 shows the similarity to a healthy baseline (left) and to impaired ref-

erence (right), immediately post-stroke, for each week of recovery. As expected,
animals treated with optogenetic stimulation (green, blue) steadily improve dur-
ing rehabilitation and having almost no similarity with the post-stroke behavior.
In contrast, groups with no treatment (red) or only rehabilitative training (or-
ange) reveal behavior that is similar to neither reference (top, center), suggesting
an inadequate compensation differing significantly from the true recovery of im-
paired function.

The experiments show the behavior encoding Eβ to be an effective means to
compare different therapies after a disease and to diagnose the resulting changes
in motor function.

5.4 Study Brain Through Behavior

As mentioned in Sec. 5.1.2, body motion is the output of complex brain func-
tionality. Therefore, by looking at the behavior, we can predict the status of the
brain. In this section, we propose two experiments where we correlate the behav-
ior encoded in our unsupervised representation, with some information describing
the brain status.

5.4.1 Neuronal Rewiring Correlation

For this experiment, we look at the brain ”offline”, after the animal is deceased.
In particular, we counted the BDA positive fibers [159] in the damaged brain
hemisphere post-mortem. The higher is the count, the more rehabilitated was
the animal after treatment. Fig. 5.9 shows two brain slices where the count is low
(left) and high (right) in the damaged hemisphere. This count, which describes
the status of the brain after rehabilitation, is compared to the healthiness score
defined in Sec. 5.2.2 for the last day of recordings. The plot shows a significant

5.4. STUDY BRAIN THROUGH BEHAVIOR 79

Figure 5.7: Relative frequency of individual postures per day of training compared
to trained animals (0d). green: same frequency, red: more frequent, and blue:
less frequent than day 0. Examples of postures are shown on the left (t column),
including temporal context (t− 1 and t + 1 columns) to better understand the
natural ordering of the postures along the vertical axis. The plot shows that
correct hand closure at grasping occurs significantly less early in training.

correlation of r ∼ 0.7 between the healthiness measurement based on our visual
similarity and the fiber count in the brain.

The results in Fig. 5.9 show that our behavior study could provide an alter-
native to the highly invasive brain study.

5.4.2 Optogenetic Stimulation

While the previous experiment was a study of the brain ”offline”, in this para-
graph we study the changes of behavior ”online”. In particular, we use a tech-
nique called ”Optogenetics” to deactivate targeted brain functions in-vivo, basi-
cally simulating a stroke, which slightly alter the motor skills. The effects are
reversible the moment the laser is turned off. For this experiment, we point the
laser at three positions in the motor cortex. By simultaneously measuring the re-
sulting changes in behavior we can quantify the importance of individual cortical
circuits for a particular motor function.

The animals are divided into two cohorts:

• ”Treatment”: the animals are treated in a way that the laser affects the
brain.

• ”Control”: the animals did not receive any treatment and the laser should

80
CHAPTER 5. BEHAVIOR ANALYSIS FOR RODENTS USING

UNSUPERVISED VISUAL REPRESENTATION

Figure 5.8: Comparison of different treatments on the rats’ dataset during 35
days of rehabilitation. The x-axes measure behavior similarity to healthy baseline
(left) and 2days post-stroke impaired (right). Rehabilitation successfully restores
skilled motor function to bring behavior close to pre-stroke for the treatment
cohorts (green, blue). Without treatment (orange, red), the behavior is altered,
but still remains far from baseline, indicating inadequate compensation of motor-
function.

have no effect on them.

The experiment evaluates whether based on our behavior representation a
classifier can predict if optogenetics was perturbing a grasp (Fig. 5.10). As ex-
pected, the classifier only performs at chance level for controls and is significantly
better (68± 9% test accuracy per grasp) to discriminate light-perturbed behavior
in treated animals. Only for these, it can recognize the light-driven modification
of specific motor functions. Since such altered behavior is not present in every
trial of a grasp, the goal had to be a significant improvement over control, but
not finding differences in every grasp.

5.5 Summary

In this chapter, we utilize our unsupervised visual similarity as a tool for rep-
resenting the animal behavior. Behavior analysis is a major instrument for the
objective comparison of rehabilitative treatments and drugs, as well as evaluating
the status of a disease.

For the behavior analysis to be effective, the visual similarity needs to be
detailed and subject agnostic. Therefore, in Sec. 5.2.2 we evaluated our method
before moving on to the application. Our approach was then tested on two tasks:
studying the change of behavior over time and predicting the brain status by solely
looking at the animal movement. The results show that our behavior similarity

5.5. SUMMARY 81

Figure 5.9: Relation between cortical rewiring (number of BDA positive fibers
post-mortem in the hemisphere affected by the stroke, horizontal axis) and our
behavior representation (vertical). Two examples, low and high fiber density, are
shown. The experiment indicates that the behavior and rewiring are correlated
(p ∼ 0.7).

can be used to compare the effect of different treatments during rehabilitation
and could substitute invasive measures to ”look into the brain”.

82
CHAPTER 5. BEHAVIOR ANALYSIS FOR RODENTS USING

UNSUPERVISED VISUAL REPRESENTATION

Figure 5.10: In-vivo deactivation of brain function in the motor cortex using opto-
genetic stimulation triggers subtle, reversible changes in behavior. Only based on
our behavior representation, a classifier is then able to predict for test sequences
whether there was optical stimulation. As would be expected, the classifier only
achieves chance level for a control cohort but it performs significantly better
(68± 9% accuracy) on the treated animals.

Chapter 6

Conclusion

This thesis proposed several approaches to learn a visual representation for image
and video similarity in two scenarios with limited supervision. In this chapter,
after summarizing the thesis, we draw the conclusion and propose some interesting
directions for future work.

6.1 Summary

Chapter 1 At the beginning of this thesis, we introduced the benefits of using
deep learning for computer vision and its limitations. In particular, we identify
two major issues both originating from the need of human supervision.
The first weakness is the representation of the visual world. Humans tend to
group every object in the image in predefined, artificial categories. This view is
reductive since it ignores many characteristics of the object, such as function and
aspect. In our work, we relax the categorical assumption by learning visual simi-
larities instead, therefore classifying objects only relative to each other, avoiding
artificial classes.
The second weakness is that annotating training samples is very costly, in par-
ticular for more complex tasks (e.g. object detection and segmentation). If we
could bypass the annotation bottleneck, we could harvest the huge amount of
data available nowadays to produce very powerful visual representation. In this
thesis, we investigated two setup in which human supervision is limited: zero-shot
learning (ZSL) and self-supervision.
We then talked about the important ability of transferring the knowledge from
a task to another, called transfer learning, intrinsic of deep learning. Transfer
learning is crucial when it comes to limited supervision since we can solve a task
where only few labels are available by leveraging a much large dataset.

Chapter 2 ZSL has proven to be an effective way under condition of limited
supervision to only known object categories and generalize to unknown ones.
ZSL is particularly effective when source and target distribution come from the
same underlying data generator, for example objects such as faces, birds and
cars. State-of-the-art models are trained using metric learning, which maximizes
the similarity between images of the same category, while maximizing distance to
samples from distinct categories. This discriminative approach, however, is very

83

84 CHAPTER 6. CONCLUSION

simplistic and ignores the underling structure of the representation space, includ-
ing similarity across categories, i.e. inter-class similarity. Many relaxation to this
problem have proven successful over the past years. Nevertheless, the inter-class
similarity is still being ignored. We show that including this type of informa-
tion is very effective to boost any kind of metric learning objective. To capture
inter-class characteristics, we developed an unsupervised method which removes
class-specific features and searches for patterns across categories. For example,
when training a representation over cars, no matter what the car model is, the
network should know that object characteristics such as ”wheels” and ”doors”
are shared among all categories.

Chapter 3 Given the success of ZSL in the image domain, we studied the prob-
lem also for video classification. The task is to produce a model that learns to
compare actions in videos so that it can recognize new actions which have never
seen during training. For example, given several actions during training, such
as ”playing football” and ”playing piano”, the model should recognize test cate-
gories such as ”playing basketball” and ”playing violin”. In particular, we focus
on human activities. Labelling videos is very time intensive relatively to images,
therefore being able to only annotate part of the data and generalize to any new
category could really benefit the field. Instead, the field is way behind: perfor-
mances are very low and the yearly growth is very little. We investigated the
causes of this slow progress and propose a new, strong baseline to help the field
grow faster. In particular, we identify the major weaknesses in a lack of common
benchmark due to non-reproducible models and ineffective use of the network
potential, which is kept frozen after pre-training. Therefore, we propose a new
baseline model which outperforms all previous approaches while being much sim-
pler by using an end-to-end approach.

Chapter 4 As mentioned above, one goal of this thesis is to reduce the human
supervision for training the visual representation. ZSL is a very effective approach
to recognize new, unlabelled categories, however it still requires a large labelled
dataset during training. The next step is to get rid of human annotation and for
that self-supervision is a good candidate. The key of self-supervision is to train
the visual representation using a surrogate task where labels are freely available.
Typically, the surrogate task transforms the input sample and the network is
tasked to recognize the transformation. The transformation is typically chosen
randomly during training. We argue that the training can be optimized, there-
fore producing more robust visual representation, based on which transformation
is chosen. Therefore, we propose a meta-learning approach to control the surro-
gate task during training to boost the visual representation strength even further.
Our reinforcement learning controller can select the transformation based on the
network status. Our approach was tested only on permutations, which is a very
popular transformation for self-supervision. In future works, the RL controller
could also be tested on other surrogate tasks, like rotation prediction, or even a
multi-task combination of surrogate tasks.

6.2. DISCUSSION AND FUTURE WORK 85

Chapter 5 Finally, we tested a modern self-supervised task on a real-application.
We used an unsupervised video sequence encoder to compare animal behavior.
An objective metric of behavior is crucial for biomedical fields. For example,
it could be used to compare treatments and rehabilitative drugs, or measuring
the state of a disease that damages motor skills. However, manual annotation
is costly and human bias might alter the model. Thus an unsupervised video
representation is a good fit to solve the task. We tested this method on a dataset
of rodents grasping a sugar pellet through a slit. Our behavior similarity was
successful throughout a series of biomedical experiments. For example, we were
able to detect the changes in behavior during training and rehabilitation, and we
could correlate the animal movement with the brain status.

6.2 Discussion and Future Work

Discussion In this thesis, we investigated visual similarity as an alternative
approach to artificial categories. In parallel, we studied deep learning models
that require minimal to no supervision. The contribution of this thesis is to
find and tackle common weaknesses of existing models and propose a real-world
application.

The major issue with using limited supervision is the weak training signal.
Since the model is trained on a task different to the downstream task, the visual
representation is not guaranteed to generalize well across tasks. Fully supervised
methods do not have this issue, since they are directly trained on the final task.
Previous works focused on closing the gap between these two types of signal.
This work has shown that it is still possible to improve upon state-of-the-art by
proposing alternative approaches to boost existing methods. We also have shown
how to use visual similarity in combination with a fully unsupervised approach
for behavior encoding. This approach can be adapted to other applications, such
as video anomaly detection or performance evaluation in sports.

Future work Fully supervised methods are easy to train, but require a fully
annotated dataset. Unsupervised methods require no human annotations, but
might not generalize well on the downstream task. Major improvements have
been done by the research community in ZSL and self-supervision over the past
few years. However, it has been shown that the yearly improvement is converging.
Therefore, we seek new paradigms.

For future work, a hybrid solution is key: use self-supervision on a large
collection of unlabelled data while, in parallel, train on a few labelled samples.
In this way, we can exploit the strengths of both methods, and reduce their
weaknesses. This is a form of semi-supervised learning that is receiving a lot of
attention lately because of its promising performances.

Publications

This dissertation has led to the following scientific publications:

• Brattoli B., Büchler U., Wahl AS, Schwab ME, Ommer B., LSTM Self-
Supervision for Detailed Behavior Analysis. In IEEE Computer Vision and
Pattern Recognition (CVPR), 2017.

• Brattoli B., Büchler U., Ommer B. Improving, Spatiotemporal Self-Supervision
by Deep Reinforcement Learning. In European Conference on Computer
Vision (ECCV), 2018.

• Brattoli B., Roth K., Ommer B., MIC: Mining Inter-class Characteristics
for Improving Metric Learning. In IEEE International Conference on Com-
puter Vision (ICCV), 2019.

• Brattoli B., Tighe J., Zhdanov F., Perona P., Chalupka K., Rethinking Zero-
shot Video Classification: End-to-end Training for Realistic Applications.
In IEEE Computer Vision and Pattern Recognition (CVPR), 2020.

The following publication is currently under submission:

• Brattoli B., Büchler U., Dorkenwald M., Reiser P., Filli L., Helmchen F.,
Wahl AS, Ommer B., UBAM: Unsupervised Behavior Analysis and Magni-
fication.

Bibliography

[1] Artificial intelligence and the future of cybersecurity. Proceedings of the
ACM Conference on Computer and Communications Security, 10 2011.

[2] A. Achille, M. Lam, R. Tewari, A. Ravichandran, S. Maji, C. C. Fowlkes,
S. Soatto, and P. Perona. Task2vec: Task embedding for meta-learning.
In Proceedings of the IEEE International Conference on Computer Vision,
pages 6430–6439, 2019.

[3] M. Alaverdashvili and I. Q. Whishaw. A behavioral method for identi-
fying recovery and compensation: hand use in a preclinical stroke model
using the single pellet reaching task. Neuroscience & Biobehavioral Reviews,
37(5):950–967, 2013.

[4] I. Alexiou, T. Xiang, and S. Gong. Exploring synonyms as context in zero-
shot action recognition. In 2016 IEEE International Conference on Image
Processing (ICIP), pages 4190–4194. IEEE, 2016.

[5] L. Alvarez, J. Weickert, and J. Sánchez. Reliable estimation of dense optical
flow fields with large displacements. International Journal of Computer
Vision, 39(1):41–56, 2000.

[6] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d human pose esti-
mation: New benchmark and state of the art analysis. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2014.

[7] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
and N. de Freitas. Learning to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Systems, pages 3981–3989,
2016.

[8] A. Arac, P. Zhao, B. H. Dobkin, S. T. Carmichael, and P. Golshani. Deep-
behavior: A deep learning toolbox for automated analysis of animal and
human behavior imaging data. Frontiers in systems neuroscience, 13:20,
2019.

[9] Y. Bai, F. Gao, Y. Lou, S. Wang, T. Huang, and L. Duan. Incor-
porating intra-class variance to fine-grained visual recognition. CoRR,
abs/1703.00196, 2017.

[10] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes.
In Readings in computer vision, pages 714–725. Elsevier, 1987.

89

90 BIBLIOGRAPHY

[11] M. A. Bautista, A. Sanakoyeu, and B. Ommer. Deep unsupervised similar-
ity learning using partially ordered sets. In Proceedings of IEEE Computer
Vision and Pattern Recognition, 2017.

[12] M. A. Bautista, A. Sanakoyeu, E. Tikhoncheva, and B. Ommer. Cliquecnn:
Deep unsupervised exemplar learning. In Advances in Neural Information
Processing Systems, pages 3846–3854, 2016.

[13] S. Beery, G. Van Horn, and P. Perona. Recognition in terra incognita. In
The European Conference on Computer Vision (ECCV), September 2018.

[14] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[15] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learn-
ing. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48. ACM, 2009.

[16] G. J. Berman. Measuring behavior across scales. BMC biology, 16(1):23,
2018.

[17] G. J. Berman. Measuring behavior across scales. BMC biology, 16(1):23,
2018.

[18] M. Bishay, G. Zoumpourlis, and I. Patras. Tarn: Temporal attentive rela-
tion network for few-shot and zero-shot action recognition. arXiv preprint
arXiv:1907.09021, 2019.

[19] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[20] P. Bojanowski and A. Joulin. Unsupervised learning by predicting noise.
arXiv preprint arXiv:1704.05310, 2017.

[21] B. Brattoli, U. Büchler, A. S. Wahl, M. E. Schwab, and B. Ommer. Lstm
self-supervision for detailed behavior analysis. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017.

[22] B. Brattoli, J. Tighe, F. Zhdanov, P. Perona, and K. Chalupka. Rethinking
zero-shot video classification: End-to-end training for realistic applications.
In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, 2020.

[23] U. Büchler, B. Brattoli, and B. Ommer. Improving spatiotemporal self-
supervisionby deep reinforcement learning. In IEEE Conference on Euro-
pean Conference on Computer Vision (ECCV), 2018.

[24] M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for
unsupervised learning of visual features. CoRR, abs/1807.05520, 2018.

[25] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model
and the kinetics dataset. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6299–6308, 2017.

BIBLIOGRAPHY 91

[26] H.-S. Chang, E. Learned-Miller, and A. McCallum. Active bias: Train-
ing more accurate neural networks by emphasizing high variance samples.
In Advances in Neural Information Processing Systems, pages 1003–1013,
2017.

[27] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation.
In Proceedings of the European conference on computer vision (ECCV),
pages 801–818, 2018.

[28] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric dis-
criminatively, with application to face verification. In Proceedings, pages
539–546. IEEE, 2005.

[29] C. Cortes and V. Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[30] R. S. Cruz, B. Fernando, A. Cherian, and S. Gould. Deeppermnet: Visual
permutation learning. In CVPR, 2017.

[31] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In 2005 IEEE computer society conference on computer vision and
pattern recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[32] F. De Chaumont, R. D.-S. Coura, P. Serreau, A. Cressant, J. Chabout,
S. Granon, and J.-C. Olivo-Marin. Computerized video analysis of social
interactions in mice. Nature methods, 9(4):410, 2012.

[33] A. I. Dell, J. A. Bender, K. Branson, I. D. Couzin, G. G. de Polavieja, L. P.
Noldus, A. Pérez-Escudero, P. Perona, A. D. Straw, M. Wikelski, et al.
Automated image-based tracking and its application in ecology. Trends in
ecology & evolution, 29(7):417–428, 2014.

[34] R. Dey and F. M. Salemt. Gate-variants of gated recurrent unit (gru) neural
networks. In 2017 IEEE 60th international midwest symposium on circuits
and systems (MWSCAS), pages 1597–1600. IEEE, 2017.

[35] E. Diamant. Modeling visual information processing in brain: a computer
vision point of view and approach. In International Symposium on Brain,
Vision, and Artificial Intelligence, pages 62–71. Springer, 2007.

[36] J. J. DiCarlo, D. Zoccolan, and N. C. Rust. How does the brain solve visual
object recognition? Neuron, 73(3):415–434, 2012.

[37] C. B. Do and A. Y. Ng. Transfer learning for text classification. In Advances
in Neural Information Processing Systems, pages 299–306, 2006.

[38] C. Doersch, A. Gupta, and A. A. Efros. Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1422–1430, 2015.

92 BIBLIOGRAPHY

[39] C. Doersch and A. Zisserman. Multi-task self-supervised visual learning.
arXiv preprint arXiv:1708.07860, 2017.

[40] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning.
arXiv preprint arXiv:1605.09782, 2016.

[41] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou. Deep adversarial met-
ric learning. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

[42] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

[43] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[44] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles. Activi-
tynet: A large-scale video benchmark for human activity understanding.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 961–970, 2015.

[45] Y. Fan, F. Tian, T. Qin, X.-Y. Li, and T.-Y. Liu. Learning to teach. In
International Conference on Learning Representations, 2018.

[46] Y. Fan, F. Tian, T. Qin, and T.-Y. Liu. Neural data filter for bootstrapping
stochastic gradient descent. ICLR, 2016.

[47] C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video
recognition. arXiv preprint arXiv:1812.03982, 2018.

[48] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part-based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[49] B. Fernando, H. Bilen, E. Gavves, and S. Gould. Self-supervised video
representation learning with odd-one-out networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017.

[50] L. Filli, T. Sutter, C. S. Easthope, T. Killeen, C. Meyer, K. Reuter,
L. Lörincz, M. Bolliger, M. Weller, A. Curt, et al. Profiling walking dysfunc-
tion in multiple sclerosis: characterisation, classification and progression
over time. Scientific reports, 8(1):4984, 2018.

[51] D. A. Forsyth and J. Ponce. Computer vision: a modern approach. Prentice
Hall Professional Technical Reference, 2002.

BIBLIOGRAPHY 93

[52] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system
sciences, 55(1):119–139, 1997.

[53] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky. Domain-adversarial training of neural
networks. J. Mach. Learn. Res., 17(1):2096–2030, Jan. 2016.

[54] W. Ge. Deep metric learning with hierarchical triplet loss. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 269–285,
2018.

[55] S. Gidaris, P. Singh, and N. Komodakis. Unsupervised representation learn-
ing by predicting image rotations. In International Conference on Learning
Representations, 2018.

[56] A. Gomez-Marin, N. Partoune, G. J. Stephens, and M. Louis. Automated
tracking of animal posture and movement during exploration and sensory
orientation behaviors. PloS one, 7(8):e41642, 2012.

[57] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press,
2016.

[58] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[59] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,
V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, et al. The” some-
thing something” video database for learning and evaluating visual common
sense. In ICCV, 2017.

[60] A. Graves, M. G. Bellemare, J. Menick, R. Munos, and K. Kavukcuoglu.
Automated curriculum learning for neural networks. arXiv preprint
arXiv:1704.03003, 2017.

[61] M. Hahn, A. Silva, and J. M. Rehg. Action2vec: A crossmodal embedding
approach to action learning. arXiv preprint arXiv:1901.00484, 2019.

[62] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns retrace
the history of 2d cnns and imagenet? In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages 6546–6555, 2018.

[63] B. Harwood, B. Kumar, G. Carneiro, I. Reid, T. Drummond, et al. Smart
mining for deep metric learning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2821–2829, 2017.

[64] J. Hays and A. Efros. Where in the world? human and computer geoloca-
tion of images. Journal of Vision, 9(8):969–969, 2009.

94 BIBLIOGRAPHY

[65] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings
of the IEEE international conference on computer vision, pages 2961–2969,
2017.

[66] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[67] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507, 2006.

[68] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural com-
putation, 9(8):1735–1780, 1997.

[69] Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-
Moll. Deep inertial poser: Learning to reconstruct human pose from sparse
inertial measurements in real time. ACM Transactions on Graphics, (Proc.
SIGGRAPH Asia), 37:185:1–185:15, Nov. 2018. Two first authors con-
tributed equally.

[70] H. Idrees, A. R. Zamir, Y.-G. Jiang, A. Gorban, I. Laptev, R. Sukthankar,
and M. Shah. The thumos challenge on action recognition for videos “in
the wild”. Computer Vision and Image Understanding, 155:1–23, 2017.

[71] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167, 2015.

[72] A. Iscen, G. Tolias, Y. Avrithis, and O. Chum. Mining on manifolds:
Metric learning without labels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7642–7651, 2018.

[73] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer net-
works. In Advances in neural information processing systems, pages 2017–
2025, 2015.

[74] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intel-
ligence, 33(1):117–128, 2011.

[75] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international confer-
ence on Multimedia, pages 675–678. ACM, 2014.

[76] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with
gpus. arXiv preprint arXiv:1702.08734, 2017.

[77] M. Kabra1, A. A. Robie1, M. Rivera-Alba1, S. Branson, and K. Branson.
Jaaba: interactive machine learning for automatic annotation of animal
behavior. Nature methods, 10, 2012.

BIBLIOGRAPHY 95

[78] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei. Large-scale video classification with convolutional neural networks. In
CVPR, 2014.

[79] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.

[80] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[81] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[82] P. Krähenbühl, C. Doersch, J. Donahue, and T. Darrell. Data-
dependent initializations of convolutional neural networks. arXiv preprint
arXiv:1511.06856, 2015.

[83] M. A. Kramer. Nonlinear principal component analysis using autoassocia-
tive neural networks. AIChE journal, 37(2):233–243, 1991.

[84] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations
for fine-grained categorization. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 554–561, 2013.

[85] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[86] J. K. Kruschke. Alcove: an exemplar-based connectionist model of category
learning. Psychological review, 99(1):22, 1992.

[87] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a
large video database for human motion recognition. In Proceedings of the
International Conference on Computer Vision (ICCV), 2011.

[88] M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent
variable models. In Advances in Neural Information Processing Systems,
pages 1189–1197, 2010.

[89] H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning of new tasks.
In AAAI, 2008.

[90] G. Larsson, M. Maire, and G. Shakhnarovich. Colorization as a proxy task
for visual understanding. arXiv preprint arXiv:1703.04044, 2017.

[91] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–
444, 2015.

[92] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

96 BIBLIOGRAPHY

[93] H.-Y. Lee, J.-B. Huang, M. K. Singh, and M.-H. Yang. Unsupervised repre-
sentation learning by sorting sequences. In IEEE International Conference
on Computer Vision (ICCV), 2017.

[94] X. Lin, Y. Duan, Q. Dong, J. Lu, and J. Zhou. Deep variational met-
ric learning. In The European Conference on Computer Vision (ECCV),
September 2018.

[95] H. Liu, Y. Tian, Y. Wang, L. Pang, and T. Huang. Deep relative distance
learning: Tell the difference between similar vehicles. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2167–2175, 2016.

[96] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for se-
mantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3431–3440, 2015.

[97] M. M. Loper, N. Mahmood, and M. J. Black. MoSh: Motion and shape
capture from sparse markers. ACM Transactions on Graphics, (Proc. SIG-
GRAPH Asia), 33(6):220:1–220:13, Nov. 2014.

[98] D. G. Lowe. Method and apparatus for identifying scale invariant features
in an image and use of same for locating an object in an image, Mar. 23
2004. US Patent 6,711,293.

[99] Z. Luo, B. Peng, D.-A. Huang, A. Alahi, and L. Fei-Fei. Unsupervised
learning of long-term motion dynamics for videos. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017.

[100] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[101] C. Manning, P. Raghavan, and H. Schütze. Introduction to information
retrieval. Natural Language Engineering, 16(1):100–103, 2010.

[102] B. Martinez, D. Modolo, Y. Xiong, and J. Tighe. Action recognition with
spatial-temporal discriminative filter banks. In The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[103] A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W.
Mathis, and M. Bethge. Deeplabcut: markerless pose estimation of user-
defined body parts with deep learning. Nature Neuroscience, 21(9):1281–
1289, 9 2018.

[104] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold ap-
proximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426, 2018.

[105] D. L. Medin and M. M. Schaffer. Context theory of classification learning.
Psychological review, 85(3):207, 1978.

BIBLIOGRAPHY 97

[106] G. Mesnil, A. Bordes, J. Weston, G. Chechik, and Y. Bengio. Learning
semantic representations of objects and their parts. Machine learning,
94(2):281–301, 2014.

[107] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[108] T. Milbich, M. Bautista, E. Sutter, and B. Ommer. Unsupervised video
understanding by reconciliation of posture similarities. In Proceedings of
the IEEE International Conference on Computer Vision, 2017.

[109] A. Mishra, V. K. Verma, M. S. K. Reddy, S. Arulkumar, P. Rai, and
A. Mittal. A generative approach to zero-shot and few-shot action recogni-
tion. In 2018 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 372–380. IEEE, 2018.

[110] I. Misra, C. L. Zitnick, and M. Hebert. Unsupervised learning using se-
quential verification for action recognition. In IEEE European Conference
on Computer Vision (ECCV), 2016.

[111] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[112] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh. No
fuss distance metric learning using proxies. In Proceedings of the IEEE
International Conference on Computer Vision, pages 360–368, 2017.

[113] G. Neubig. Neural machine translation and sequence-to-sequence models:
A tutorial. arXiv preprint arXiv:1703.01619, 2017.

[114] M. Noroozi and P. Favaro. Unsupervised learning of visual representations
by solving jigsaw puzzles. In IEEE European Conference on Computer
Vision (ECCV), 2016.

[115] M. Noroozi, H. Pirsiavash, and P. Favaro. Representation learning by learn-
ing to count. arXiv preprint arXiv:1708.06734, 2017.

[116] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash. Boosting self-
supervised learning via knowledge transfer. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[117] R. M. Nosofsky. Attention, similarity, and the identification–categorization
relationship. Journal of experimental psychology: General, 115(1):39, 1986.

[118] H. Oh Song, S. Jegelka, V. Rathod, and K. Murphy. Deep metric learning
via facility location. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5382–5390, 2017.

98 BIBLIOGRAPHY

[119] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. Deep metric learning via
lifted structured feature embedding. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4004–4012, 2016.

[120] M. Opitz, G. Waltner, H. Possegger, and H. Bischof. Bier-boosting inde-
pendent embeddings robustly. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5189–5198, 2017.

[121] M. Opitz, G. Waltner, H. Possegger, and H. Bischof. Deep metric learning
with bier: Boosting independent embeddings robustly. IEEE transactions
on pattern analysis and machine intelligence, 2018.

[122] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot
learning with semantic output codes. In Advances in neural information
processing systems, pages 1410–1418, 2009.

[123] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in py-
torch. In NIPS-W, 2017.

[124] Y. Patel, L. Gomez, M. Rusiñol, C. Jawahar, and D. Karatzas. Self-
supervised learning of visual features through embedding images into text
topic spaces. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2017.

[125] A. Pérez-Escudero, J. Vicente-Page, R. C. Hinz, S. Arganda, and G. G.
De Polavieja. idtracker: tracking individuals in a group by automatic iden-
tification of unmarked animals. Nature methods, 11(7):743, 2014.

[126] S. M. Peters, I. J. Pinter, H. H. Pothuizen, R. C. de Heer, J. E. van der
Harst, and B. M. Spruijt. Novel approach to automatically classify rat social
behavior using a video tracking system. Journal of neuroscience methods,
268:163–170, 2016.

[127] A. Piergiovanni and M. S. Ryoo. Learning shared multimodal embeddings
with unpaired data. CoRR, 2018.

[128] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[129] S. Ravi and H. Larochelle. Optimization as a model for few-shot learning.
ICLR, 2016.

[130] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

[131] R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with
Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.
ELRA. http://is.muni.cz/publication/884893/en.

http://is.muni.cz/publication/884893/en

BIBLIOGRAPHY 99

[132] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[133] A. A. Robie, K. M. Seagraves, S. R. Egnor, and K. Branson. Machine vision
methods for analyzing social interactions. Journal of Experimental Biology,
220(1):25–34, 2017.

[134] A. Roitberg, Z. Al-Halah, and R. Stiefelhagen. Informed democracy:
voting-based novelty detection for action recognition. arXiv preprint
arXiv:1810.12819, 2018.

[135] A. Roitberg, M. Martinez, M. Haurilet, and R. Stiefelhagen. Towards a fair
evaluation of zero-shot action recognition using external data. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 0–0,
2018.

[136] K. Roth, B. Brattoli, and B. Ommer. Mic: Mining interclass characteristics
for improved metric learning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8000–8009, 2019.

[137] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[138] S. Russell. Artificial intelligence: The future is superintelligent. Nature,
548(7669):520, 2017.

[139] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 3 edition, 2010.

[140] A. Sanakoyeu, M. A. Bautista, and B. Ommer. Deep unsupervised learning
of visual similarities. Pattern Recognition, 78:331–343, 2018.

[141] A. Sanakoyeu, V. Tschernezki, U. Büchler, and B. Ommer. Divide and
conquer the embedding space for metric learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019.

[142] N. Sayed, B. Brattoli, and B. Ommer. Cross and learn: Cross-modal self-
supervision. In German Conference on Pattern Recognition (GCPR), 2018.

[143] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding
for face recognition and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 815–823, 2015.

[144] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.
Mastering the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

100 BIBLIOGRAPHY

[145] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. Mastering chess and
shogi by self-play with a general reinforcement learning algorithm. arXiv
preprint arXiv:1712.01815, 2017.

[146] K. Simonyan and A. Zisserman. Two-stream convolutional networks for ac-
tion recognition in videos. In Conference on Neural Information Processing
Systems (NIPS), 2014.

[147] B. Singh, M. Najibi, and L. S. Davis. Sniper: Efficient multi-scale training.
In Advances in Neural Information Processing Systems, pages 9310–9320,
2018.

[148] K. Sohn. Improved deep metric learning with multi-class n-pair loss objec-
tive. In Advances in Neural Information Processing Systems, pages 1857–
1865, 2016.

[149] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human
actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

[150] Ö. Sümer, T. Dencker, and B. Ommer. Self-supervised learning of pose
embeddings from spatiotemporal relations in videos. In Computer Vision
(ICCV), 2017 IEEE International Conference on, pages 4308–4317. IEEE,
2017.

[151] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[152] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep
transfer learning. In International conference on artificial neural networks,
pages 270–279. Springer, 2018.

[153] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning
spatiotemporal features with 3d convolutional networks. In Proceedings of
the IEEE international conference on computer vision, pages 4489–4497,
2015.

[154] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A closer
look at spatiotemporal convolutions for action recognition. In Proceedings
of the IEEE conference on Computer Vision and Pattern Recognition, pages
6450–6459, 2018.

[155] E. Ustinova and V. Lempitsky. Learning deep embeddings with histogram
loss. In Advances in Neural Information Processing Systems, pages 4170–
4178, 2016.

[156] C. E. Vargas-Irwin, G. Shakhnarovich, P. Yadollahpour, J. M. Mislow, M. J.
Black, and J. P. Donoghue. Decoding complete reach and grasp actions
from local primary motor cortex populations. Journal of neuroscience,
30(29):9659–9669, 2010.

BIBLIOGRAPHY 101

[157] C. Vondrick, H. Pirsiavash, and A. Torralba. Generating videos with
scene dynamics. In Conference on Neural Information Processing Systems
(NIPS), 2016.

[158] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-
ucsd birds-200-2011 dataset. Computation Neural Systems Technical Re-
port, 2011.

[159] A.-S. Wahl, U. Büchler, A. Brändli, B. Brattoli, S. Musall, H. Kasper, B. V.
Ineichen, F. Helmchen, B. Ommer, and M. E. Schwab. Optogenetically
stimulating intact rat corticospinal tract post-stroke restores motor control
through regionalized functional circuit formation. Nature communications,
8(1):1187, 2017.

[160] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep metric learning
with angular loss. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2593–2601, 2017.

[161] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Val Gool.
Temporal segment networks: Towards good practices for deep action recog-
nition. In IEEE European Conference on Computer Vision (ECCV), 2016.

[162] Q. Wang and K. Chen. Alternative semantic representations for zero-
shot human action recognition. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 87–102. Springer,
2017.

[163] Q. Wang and K. Chen. Zero-shot visual recognition via bidirectional latent
embedding. International Journal of Computer Vision, 124(3):356–383,
2017.

[164] X. Wang and A. Gupta. Unsupervised learning of visual representations
using videos. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2794–2802, 2015.

[165] X. Wang, K. He, and A. Gupta. Transitive invariance for self-supervised
visual representation learning. In IEEE International Conference on Com-
puter Vision (ICCV), 2017.

[166] R. J. Williams and J. Peng. Function optimization using connectionist
reinforcement learning algorithms. Connection Science, 3(3):241–268, 1991.

[167] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl. Sampling mat-
ters in deep embedding learning. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2840–2848, 2017.

[168] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages
3485–3492. IEEE, 2010.

102 BIBLIOGRAPHY

[169] M. Xie. Development of artificial intelligence and effects on financial system.
In Journal of Physics: Conference Series, volume 1187, page 032084. IOP
Publishing, 2019.

[170] D. Xu, J. Xiao, Z. Zhao, J. Shao, D. Xie, and Y. Zhuang. Self-supervised
spatiotemporal learning via video clip order prediction. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
10334–10343, 2019.

[171] X. Xu, T. Hospedales, and S. Gong. Semantic embedding space for zero-
shot action recognition. In 2015 IEEE International Conference on Image
Processing (ICIP), pages 63–67. IEEE, 2015.

[172] X. Xu, T. Hospedales, and S. Gong. Transductive zero-shot action recogni-
tion by word-vector embedding. International Journal of Computer Vision,
123(3):309–333, 2017.

[173] X. Xu, T. M. Hospedales, and S. Gong. Multi-task zero-shot action recogni-
tion with prioritised data augmentation. In European Conference on Com-
puter Vision, pages 343–359. Springer, 2016.

[174] H. Xuan, R. Souvenir, and R. Pless. Deep randomized ensembles for metric
learning. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 723–734, 2018.

[175] Y. Yuan, K. Yang, and C. Zhang. Hard-aware deeply cascaded embedding.
In Proceedings of the IEEE international conference on computer vision,
pages 814–823, 2017.

[176] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818–833.
Springer, 2014.

[177] B. Zhang, H. Hu, and F. Sha. Cross-modal and hierarchical modeling of
video and text. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 374–390, 2018.

[178] C. Zhang and Y. Peng. Visual data synthesis via gan for zero-shot video
classification. arXiv preprint arXiv:1804.10073, 2018.

[179] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization. In Euro-
pean Conference on Computer Vision, pages 649–666. Springer, 2016.

[180] R. Zhang, P. Isola, and A. A. Efros. Split-brain autoencoders: Unsupervised
learning by cross-channel prediction. arXiv preprint arXiv:1611.09842,
2016.

[181] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing net-
work. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2881–2890, 2017.

BIBLIOGRAPHY 103

[182] Y. Zhao, Z. Jin, G.-j. Qi, H. Lu, and X.-s. Hua. An adversarial approach
to hard triplet generation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 501–517, 2018.

[183] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Object
detectors emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

[184] Y. Zhu, Y. Long, Y. Guan, S. Newsam, and L. Shao. Towards universal
representation for unseen action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 9436–9445,
2018.

[185] S. Q. X. W. Ziwei Liu, Ping Luo and X. Tang. Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016.

[186] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learn-
ing. arXiv preprint arXiv:1611.01578, 2016.

