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Abstract

Antibodies play an increasingly important role in modern medicine, with
monoclonal antibody sales expected to reach nearly USD 200 billion by 2024.
High-throughput antibody screening is possible with phage display technologies,
however, these are based on antibody binding, which does not necessarily correlate
with the phenotypic effects of antibodies on target cells. Traditional functional
antibody screening can also be performed with hybridoma cell technology, but
as individual hybridoma cells have to be grown up into colonies and tested, this
process is both time-consuming and expensive, and only a mere few thousand clones
can be obtained and screened.

Droplet microfluidics has been utilised for the screening of individual
antibody-secreting cells, as the small droplet volumes enable the accumulation
of antibodies to a functional concentration within hours. Droplet microfluidics
is also the basis of emulsion-based single-cell transcriptomic assays, where the
co-encapsulation of barcoded entities with cells enables the labelling of all mRNA
from an individual cell with the same barcode, permitting high-throughput
single-cell transcriptomic analyses.

In this thesis, we aimed to evaluate the feasibility of an antibody screening
technology that would combine these two applications of droplet microfluidics,
and to set up the individual components necessary for such a technology. This
technology would enable the study of the effects of single antibody-secreting cells
on the transcriptomes of single target cells of interest, in order to identify antibodies
of interest.

This requires the co-encapsulation of two different cell types. As this process
is governed by Poisson distribution, most droplets cannot reach the desired cell
occupancy. To overcome this, we have optimised a picoinjection workflow to
selectively inject lysis buffer into droplets with desired cell occupancies, in order to
maximise the utility of the sequencing results in our eventual screens.

In addition, we have identified appropriate model systems in which induced
transcriptomic changes can be identified at a single-cell level, which can thus be used
for further proof of concept and optimisation experiments. We have also evaluated
the feasibility of detecting perturbations from the transcriptomic data of a small
number of cells treated with drugs, as the identification of antibody hits in our
future screens would require the identification of single perturbed transcriptomes
in a background of untreated transcriptomes.

Furthermore, as our antibody screening technology would require a means
of antibody sequencing, we have developed a Drop-seq-compatible antibody
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sequencing methodology that enables the identification and elucidation of heavy
and light chain antibody variable region sequences. We apply this methodology to
sequence mixtures of four different hybridoma cell lines mixed at different ratios
and to sequence a diverse population of antibody-secreting cells, for which we have
no prior knowledge of the heavy and light chain variable regions present.

These individual components pave the way for the development of a
microfluidic antibody screening pipeline that employs single-cell transcriptomics. By
studying gene expression changes as a proxy for the global phenotypes of target cells,
the effects of different antibodies on various different targets can be simultaneously
monitored, permitting highly multiplexed screening campaigns.
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Zusammenfassung

Antikörper spielen in der modernen Medizin eine immer wichtigere Rolle.
Bis 2024 wird der jährliche Umsatz von monoklonalen Antikörpern einen
Wert von voraussichtlich bis zu 200 Mrd. USD erreichen. Mit Hilfe von
Phagen-Display-Technologien sind Hochdurchsatz-Antikörper-Screenings möglich.
Diese basieren jedoch auf Antikörperbindungen und repräsentieren nicht
notwendigerweise auch funktionale Effekte wie z.B. (ant)agonistische Wirkungen
auf Zellrezeptoren.

Auf der anderen Seite kann die Hybridom-Technik für ein funktionelles
Antikörper-Screening eingesetzt werden. Dieser Prozess ist allerdings sowohl
zeitaufwändig als auch kostspielig, da einzelne Hybridomzellen zu Kolonien
herangezüchtet werden müssen, und nur ein Paar tausend Klone können erhalten
und untersucht werden.

Für das Screening einzelner Antikörper-sekretierender Zellen wurde auch
die Tröpfchenmikrofluidik eingesetzt, da die kleinen Tröpfchenvolumina die
Akkumulation von Antikörpern bis zu einer funktionellen Konzentration innerhalb
von Stunden ermöglichen. Die Tröpfchenmikrofluidik ist auch die Grundlage
für transkriptomische Einzelzell-Assays auf Emulsionsbasis, bei denen die
Co-Einkapselung von Barcode-Entitäten mit diesen Zellen, zur Markierung aller
mRNAs aus ein und derselben Zelle mit dem gleichen Barcode führt. Dies ermöglicht
transkriptomische Einzelzell-Analysen im Hochdurchsatz.

Das Ziel dieser Dissertation war es, die Realisierbarkeit einer
Antikörper-Screening-Technologie, die diese beiden Anwendungen der
Tröpfchenmikrofluidik kombinieren würde, zu evaluieren und die notwendigen
Einzelkomponenten aufzubauen. Diese Technologie würde die Wirkung
individueller Antikörper-sekretierender Zellen auf das Transkriptom einzelner
Zielzellen von Interesse untersuchen, um die funktionellen Antikörper zu
identifizieren.

Diese Technologie erfordert die gemeinsame Einkapselung von zwei
verschiedenen Zelltypen. Da diese Einkapselung durch eine Poisson-Verteilung
bestimmt ist, weisen viele Tröpfchen nicht die gewünschte Zellbelegung auf. Um
dieses Problem zu lösen, haben wir einen Pico Injektions-Workflow optimiert, bei
dem selektiv nur Lysepuffer in Tröpfchen mit der gewünschten Zellbelegungen
injiziert wird. Dadurch wird die Nützlichkeit der Sequenzierungsdaten für unsere
vorgesehenen Screens maximiert.

In diesem Zusammenhang wurden geeignete Modellsysteme etabliert, in
denen induzierte transkriptomische Veränderungen auf Einzelzellenebene analysiert
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werden können. Darüber hinaus wurde untersucht, ob die Wirkung von
Medikamenten aus den transkriptomischen Daten einer kleinen Anzahl von
behandelten Zellen abgeleitet werden kann, da die Selektion von funktionalen
Antikörpern in unseren zukünftigen Screens die Identifizierung einzelner
veränderter Transkriptome vor dem Hintergrund unbehandelter Transkriptome
erfordert.

Zusätzlich bedarf unsere Antikörper-Screening-Technologie einer geeigneten
Methode, um die korrekten Sequenzen der Antikörper zu erhalten. Aus diesem
Grund wurde eine Drop-seq-kompatible Antikörper-Sequenzierungsmethode
entwickelt, welche die Identifizierung von Sequenzen variabler Regionen
der schweren und leichten Ketten von Antikörpern ermöglicht. Wir wenden
diese Methode auf Mischungen von vier verschiedenen Hybridomzelllinien in
unterschiedlichen Mischverhältnissen an, sowie auch auf die Sequenzierung einer
diversen Population von Antikörper-sekretierenden Zellen, bei denen zuvor keine
Vorkenntnisse über die variablen Regionen der schweren und leichten Ketten
herrschten.

Zusammengenommen ebnen diese Methoden den Weg für die
Entwicklung einer mikrofluidischen Antikörper-Screening-Pipeline mit
Hilfe der Einzelzell-Transkriptomik. Durch die Untersuchung von
Genexpressionsänderungen als Proxy für den globalen Phänotyp von
Zielzellen können die Auswirkungen verschiedener Antikörper auf verschiedene
Zielstrukturen gleichzeitig überwacht werden, was wiederum hochmultiplexierte
Screening-Kampagnen ermöglicht.
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1 | Introduction

Microfluidics encompasses various technologies and approaches in which small
amounts of fluids are manipulated and analysed. This is typically done within
micron-scale structures with defined geometries (i.e. channels). The first systems
were made of silicon (Manz et al., 1990), while the platforms used today are mostly
PDMS- (Whitesides, 2006), paper- or fiber-based (Hosseini et al., 2017). The small
volumes used in microfluidic systems, usually in the femtolitre to microlitre scale,
enable higher throughput with the same reagent use and make it viable to analyse
biological samples that are only available in small volumes. In addition, the
small sample volumes mean a reduction in dilutions, which make the detection of
low-abundance molecules possible.

Early microfluidic devices were manufactured from silicon and glass using
clean room techniques that were already established for the semiconductor industry
(Sackmann et al., 2014). However, these materials have their limitations: silicon is
opaque to visible light and both glass and silicon devices are complicated to fabricate
(Convery and Gadegaard, 2019).

The use of polydimethylsiloxane (PDMS) together with lithography
revolutionised the field of microfluidics (Whitesides, 2006), by making microfluidics
accessible to the wider research community. A combination of high-resolution
printing and photolithography is used to produce master moulds displaying a
positive relief of the desired channel structures (Qin et al., 1996). Chips are produced
by pouring PDMS over the structures before the cured PDMS is removed from the
moulds and sealed by covalent bonding to glass or PDMS, frequently via plasma
oxidation (Duffy et al., 1998). The production of PDMS chips from master moulds is
cheap and simple, and can be carried out in the absence of specialised clean room
equipment. A detailed workflow of the fabrication of microfluidic devices can be
found in the Materials and Methods (Chapter 13).

Additionally, the elasticity of PDMS permits not only the easy removal
from moulds for feature replication, but also has huge advantages for valving
and actuation (Quake and Scherer, 2000; Unger et al., 2000). PDMS is also
both transparent (Piruska et al., 2005) and effectively biocompatible, although
unpolymerized crosslinker can be present in cured PDMS, and is toxic if not
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removed. The biocompatibility is due in part to its high permeability to gas
(Lamberti et al., 2014), which enables the long-term culture and imaging of cells and
organisms (Choudhury et al., 2012; Huberts et al., 2013), although this also means
that evaporation can occur during experiments (Berthier et al., 2008).

1.1 Physics of microfluidics

The small dimensions present in microfluidics result in fluids having different
properties when compared to larger fluidic systems. Predicting which form of
fluidic flow will dominate in any given system is done by calculating Reynold’s
number (Re), a dimensionless number outlining the ratio between inertial and
viscous forces,

Re =
ρU0L0

µ
(1.1)

where ρ is the fluid density, U0 is the fluid velocity, L0 is the length scale of the
system and µ is the fluid viscosity.

For small values of Reynold’s number (Re < 10), flow is laminar, while for large
values of Reynold’s number (Re > 1000), flow is turbulent. In microfluidic systems,
L0, the length scale of the system, is generally in the scale of micrometres and the
velocities (U0) are typically in the range of 1 µm/s – 1 cm/s. Therefore, theRe values
for microfluidic devices are usually between 10-6 and 101 (Squires and Quake, 2005).
This suggests that viscous forces will prevail, and that two or more miscible liquids
flowing parallel in a microfluidic channel will follow a laminar flow regime, where
they will not mix except by diffusion.

A second dimensionless number, the Péclet number (Pe), is crucial in the
modelling of the relative importance of convection and diffusion,

Pe =
U0w

D
(1.2)

whereU0 is the fluid velocity,w is the width of the channel andD is the diffusion
coefficient of the molecule of interest. The number of channel widths required for
full mixing varies proportionately with Pe. For example, in a typical T-junction
where two liquids are injected to flow alongside each other, a small protein flowing
in a fluid through a 100 µm channel at 100 µm/s would require 250 channel widths
to mix. In microfluidic devices, channel length correlates with time, so this would
be approximately 2.5 cm, or 4 minutes (Squires and Quake, 2005).

By optimising system dimensions and experimental parameters while bearing
the Péclet number in mind, on-chip gradients can be generated and reliably
maintained.
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1.2 Single-phase microfluidics in biology

The most basic single-phase microfluidic system is a microfluidic chamber filled
with a single fluid (Fig. 1.1A). This is a powerful tool for the culture and imaging of
single cells (Skelley et al., 2009), organoids (Karzbrun et al., 2018), embryos (Chung
et al., 2011) and multicellular organisms (Chokshi et al., 2009).

Furthermore, microfluidics enables the generation of different conditions within
a single chamber, enabling the analysis of cellular and organismal responses to
spatial and temporal changes in stimuli. Utilising laminar flow, Lucchetta et al.
subjected the different halves of single Drosophila melanogaster embryos to different
temperatures for different periods of time and examined changes in development
(Lucchetta et al., 2005).

The utilisation of PDMS structures with specific geometries permits the study
of cell motility and transportability. Liu et al. developed a microfluidic chip that is
capable of sorting cells based on cell size and the ability of cells to travel through
small constrictions. This was made possible by the use of a special channel geometry
involving tilted microposts (Liu et al., 2015b). When used in combination with stable
chemokine gradients, complex chemotactic behaviours can be analysed. This has
been illustrated by Jain et al. in their study of T-lymphocyte exploration patterns.
They utilised a chip containing a maze structure, which mimicked a tissue-like
environment, together with a chemokine gradient induced across the chip. The
tightly defined geometrical and chemical features enabled the precise quantification
of the changes in cell movement induced by cell activation and by the presence of
chemoattractant gradients (Jain et al., 2015).

Other geometries, namely the "Organ-on-a-Chip" or "Body-on-a-Chip" systems,
utilise microfluidics to reconstitute more complex systems. These model crucial
processes within or between specific organs or the body’s dynamic response
to various drugs. This was first demonstrated for a three chamber Microscale
Cell Culture Analog (µCCA) device that includes both lung and liver cells (Sin
et al., 2004), while similar systems were subsequently utilised for elucidating and
evaluating drug mixtures as potential cancer treatments (Tatosian and Shuler, 2009).

1.2.1 Valves in microfluidics

Valving and actuation systems enable compartmentalisation within single-phase
microfluidic systems (Fig. 1.1C). Pneumatic microvalves, first developed in the
Quake lab (Unger et al., 2000), are the most widely used. These microvalves consist
of two layers separated by a PDMS membrane (Fig. 1.1C, grey), with the flow layer
containing a liquid phase. The application of pneumatic pressure via the control
layer results in a downward deflection of the membrane, closing the fluidic channel
and interrupting flow through the flow layer.
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Figure 1.1: Different microfluidic formats utilised in biology. A. Single-phase
microfluidic chambers can be used for cell culture. B. Nanowells can be used for
the large-scale compartmentalisation of cells. C. Pneumatic valves are composed
of two layers. The application of pressure results in downward deflection of the
membrane, closing the fluidic channel. D. Emulsification enables the efficient
generation of a large number of individual compartments. Figure reprinted from
Mathur et al., 2019 under the terms of the Creative Commons Attribution License
(CC-BY 4.0).
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These have enabled the development of complex microfluidic systems that are
capable of delivering multiple inputs and monitoring multiple outputs from cells.
This has been demonstrated by Junkit et al., where single macrophages were studied
upon stimulation with bacterial lipopolysaccharides (LPS) (Junkin et al., 2016). The
microfluidic system contained 16 reagent inputs, and antibody-functionalised beads
were utilised to study cytokine levels. Cells were also subjected to on-chip imaging,
immunostained, or isolated for cell culture or gene expression analysis, illustrating
the complexity that can be achieved with valve-based systems.

1.3 Nanowells in biology

Any discussion of the role that microfluidics plays in biology would not be complete
without the mention of nanowells, which are wells present in a microfluidic chip,
with volumes in the nanolitre range. Even though the utilisation of nanowells does
not necessarily entail the usage of microfluidics, they are similar to microfluidic
technologies in their device production and the role they play in biological analyses.

Like other microfluidic devices, nanowells can be produced from PDMS
(Fig. 1.1B), and can be easily scaled up, thus enabling massive parallelisation.
Depending on their size, these nanowells fulfil a plethora of functions, ranging
from the generation and study of spheroids (Kim et al., 2012; Ruppen et al., 2015) to
the high-throughput analysis of single cells (Han et al., 2012). Nanowells have been
utilised by the Love group to study T-lymphocyte activation at a single-cell level.
Single T-lymphocytes were trapped and the secretion of cytokines was measured
every two hours after stimulation (Han et al., 2012), illustrating how these systems
permit the high-throughput, multiplexed and dynamic study of complex cellular
processes on a single-cell level.

1.4 Two-phase microfluidics

Two-phase microfluidics utilises two immiscible liquids to generate discrete units
of one liquid (droplets or plugs) in a continuous phase of the other liquid. In this
thesis, we refer largely to aqueous droplets in a continuous oil phase, as this is more
useful for our biological applications. Both the inverse, oil droplets in a continuous
aqueous phase, as well as double emulsions, both water-in-oil-in-water (W/O/W)
and oil-in-water-in-oil (O/W/O), are also feasible.

As millions of surfactant-stabilised droplets can be generated at kilohertz (kHz)
frequencies, the scale of compartmentalisation possible with two-phase microfluidics
is several orders of magnitude higher than in the other microfluidic systems outlined
previously (Fig. 1.1D).
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1.4.1 Droplet generation

The interaction of two immiscible phases is defined by various physical properties,
with the most important being surface tension (γ). As these properties remain
consistent within each microfluidic system, microfluidic systems are deterministic,
facilitating the reliable and reproducible generation of monodisperse emulsions
(Squires and Quake, 2005).

Various channel geometries can be used for monodisperse droplet generation
with two immiscible phases (Fig. 1.2). The main geometries utilised are T-junctions
(Thorsen et al., 2001), flow-focusing junctions (Anna et al., 2003) and co-flow systems
(Umbanhowar et al., 2000).

Figure 1.2: Droplet generation and manipulation modules. Droplet generation
is carried out by primarily three different geometries: T-junctions, flow-focusing,
and co-flow modules. Subsequently, droplets can be manipulated with a variety
of manipulation modules. Droplets can be merged with other droplets, split into
smaller droplets, re-loaded into a different microfluidic device and incubated on
chip. In addition, the fluorescence signals in droplets can be detected, and droplets
of interest can be sorted. Figure reprinted from Matuła et al., 2020 under the
terms of the Creative Commons Attribution-NonCommercial-NoDerivs License
(CC-BY-NC-ND 4.0).

For T-junctions, droplets are generated by injecting the aqueous stream
orthogonally to the oil phase. The presence of interfacial tension between the
two fluids causes competition between interfacial tension and viscous stresses,
resulting in instability and droplet formation. Changing the relative flow rates and
the channel shapes influences the droplet size and morphology (Thorsen et al., 2001).

Flow-focusing junctions generate droplets by adding oil from two sides
orthogonal to the aqueous phase, together with a constriction just downstream
which opens into a wide channel (Anna et al., 2003). This draws the fluid into a
narrow stream which then breaks up by Rayleigh-Plateau instability, which is the
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phenomenon where a jet of liquid breaks into multiple droplets (Rayleigh, 1879).
This is driven by the fact that surface tension forces tend towards minimising the
surface area between the two phases. Small sinusoidal perturbations in the jet of
liquid grow when the radius of the curvature of the waves is larger than the radius
of the cylinder of the inner liquid, eventually leading to rupturing of the pinched
areas to form droplets.

In co-flow systems, the tip of a capillary is used to inject an aqueous stream
into a stream of oil. Drops form at the tip of the capilliary and detach once the drag
caused by the co-flowing liquid exceeds the interfacial tension (Umbanhowar et al.,
2000).

To generate stable emulsions that can be both stored and used as bioreactors,
the interfacial tension between the aqueous and oil phases must be reduced, to
prevent droplet fusion upon contact. This is achieved by the addition of amphiphilic
molecules known as surfactants (surface active agents) to the continuous phase.
These surfactants must fulfil three important functions, namely stability, control of
exchange between droplets and biocompatibility (Baret, 2012). Many applications
today utilise fluorinated oils as these are biocompatible (Giaever and Keese, 1983),
permit gas exchange and most organic compounds are insoluble in them (Lemal,
2004). Correspondingly, various fluorosurfactants have been developed for use in
droplet microfluidics. Those made of perfluorinated poly-ethers (PFPE) coupled
to polyethylene-glycol (PEG) are highly biocompatible and have been used widely
(Holtze et al., 2008), although alternatives continue to be developed (Chowdhury
et al., 2019; Wagner et al., 2015). These fluorinated oils and fluorosurfactants ensures
that cells and other biological entities can be encapsulated into droplets and that
cells can be kept alive over several days (Clausell-Tormos et al., 2008).

In addition to droplet generation, there exists various modules for the
manipulation of droplets, to mimic manipulations which are crucial for biological
experimentation on a larger scale, such as pipetting (Fig. 1.2). Droplets can be split
into smaller droplets by the use of tree-branching geometries (Fig. 1.2, Splitting)
(Link et al., 2004). For processes requiring incubation steps, droplets can be
incubated on chip (Fig. 1.2, Incubation) or off chip prior to re-injection into a
microfluidic system (Fig. 1.2, Re-loading). The detection of fluorescent signals
in droplets can be carried out by the use of lasers and photo-multiplier tubes (PMTs)
(Fig. 1.2, Detection) (Baret et al., 2009) and droplets can be merged with other
droplets (Fig. 1.2, Merging) (Bremond et al., 2008) or sorted (Fig. 1.2, Sorting) (Niu
et al., 2007), either simultaneously with or independently of droplet detection.

1.4.2 Droplet detection

The selective high-throughput processing of generated droplets is only possible
in the presence of a high-throughput means by which droplets can be analysed.
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Fluorescence-based analysis of droplets fits this mold, due to the low timescales
(sub-milliseconds) involved in fluorescence detection by PMTs. A laser beam of the
appropriate wavelength is focused on the channels, and emitted light of the right
wavelength is quantified by the use of band-pass filters to ensure that only light of
the appropriate wavelengths reach the associated PMT. Multiple lasers and PMTs
can be combined within a single droplet detection system, enabling the simultaneous
analysis of multiple fluorescence parameters, and thus the development of complex
high-throughput microfluidic assays where droplet contents can be rapidly and
reliably identified and analysed.

This has been utilised for combinatorial drug screening, where an optical setup
comprising of three different excitation lasers (375, 488 and 561 nm) and readouts
at three different wavelengths (450, 521 and >580 nm) permitted the use of highly
multiplexed assays in the blue, green and red spectrum respectively within a single
experiment (Eduati et al., 2018). In this setup, the authors utilised plugs, which are
large non-surfactant-stabilised droplets that occupy the the entire channel or tubing,
and these were separated by mineral oil droplets. This experimental setup keeps
plugs in the same order as they were generated.

The authors produced experimental plugs and used a rhodamine 110 (green
fluorescent dye) conjugated substrate of Caspase-3, an early marker of apoptosis,
and Alexa Fluor 594 (orange fluorescent dye) to track apoptosis and the addition
of cells to the assay respectively. Furthermore, a set of plugs containing binary
concentrations (high/low) of the blue fluorescent dye cascade blue were produced
before each set of experimental plugs, to both separate groups of plugs and to
identify plugs for each experimental condition. These cascade blue plugs encoded
numbers in binary code, for example, 2 plugs with high-low blue fluorescence
encoded the binary number "10", which is the decimal number "2". As a number was
assigned to each experimental condition, this permitted the retrospective elucidation
of the identity of individual experimental plugs. The plugs were produced and
stored in PTFE tubing and were analysed by flushing the plugs through a detection
module capable of detecting readouts at three different wavelengths, to reveal
information on droplet identity, cell apoptosis and cell loading.

1.4.3 Droplet sorting

Active droplet sorting is carried out to enrich for specific droplets of interest. In
the case of fluorescence-activated droplet sorting (FADS), fluorescence readouts
are used to trigger sorting decisions, in a manner similar to fluorescence-activated
cell sorting (FACS). Droplets are analysed upstream of the sorting junction. By
default, all droplets are directed to the waste channel. However, when a droplet
fulfils certain fluorescence requirements, an electric field is applied which deflects
the droplet into the collection channel via dielectrophoresis (Ahn et al., 2006). The
detection and sorting of entire droplets allows for secreted products to be detected
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and permits assays involving multiple cells that would not be possible with FACS
(Baret et al., 2009).

1.4.4 Droplet fusion and picoinjection

Droplet fusion is crucial for adding of reagents to droplets, which is essential for
biological workflows in which reagents must be added to samples in a sequential
manner.

Droplet fusion can be carried out in a passive manner, where droplets are
induced to come into contact and fuse by the use of different channel geometries,
such as an expansion of channel width to induce a destabilisation of droplet
interfaces (Bremond et al., 2008) or the use of pillar elements to slow and deform
droplets to enable droplet fusion (Niu et al., 2008). Most passive droplet fusion
modules utilise droplets with no or little surfactant, such that there remains
significant interfacial tension between the phases, enabling droplet fusion based on
surface tension phenomena.

In contrast, electro-coalescence permits the fusion of surfactant-stabilised
droplets. The droplets of interest are subjected to an electric field, which triggers
a dipole in both droplets to be fused. When the droplets are near each other, their
induced dipoles align, leading to an attractive force between them, and thus to
droplet fusion (Chabert et al., 2005). The fusion of two different droplet types has
been demonstrated at kHz frequencies (Mazutis et al., 2009).

Reagents can also be added to pre-existing droplets by the use of picoinjection
(Fig. 1.3). Surfactant-stabilised droplets are re-injected into a chip and spaced with
oil. Droplets pass by a picoinjector nozzle, through which the reagent of interest is
added. Picoinjection only takes place when the electrodes are activated, creating an
electric field which destabilises the surfactant film surrounding droplets and permits
reagents from the nozzle to be injected into the passing droplets (Abate et al., 2010).
The amount of reagent injected can be varied by varying the injection velocity, which
is determined by the injection pressure at the nozzle, and by varying the injection
time, which is inversely related to the oil flow rate. In addition, picoinjection can be
carried out for all droplets or selectively triggered for a subset of droplets, making it
a useful tool for the selective processing of droplets. More details can be found in
Sections 4.3 and 13.1.6 of this thesis.

Both active droplet fusion via electro-coalescence and picoinjection are presently
used to add reagents to droplets. As electro-coalescence requires the synchronisation
of multiple droplet streams to enable reliable droplet pairing, it can be tricky to set
up, especially if re-injected emulsions are involved (Eastburn et al., 2013a). The
volumes to be added may also affect the choice of method; laboratories working with
both electro-coalescence and picoinjection typically say that picoinjection works
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Figure 1.3: Microfluidic device with a droplet spacer and a picoinjector. Droplets
are spaced by the addition of oil. The reagent is added by the picoinjector, which
is a pressurised channel through which the reagent is injected. The application of
an electric field by the electrodes destabilised the surfactant film surrounding the
droplet, permitting the reagents to merge with the droplet passing the picoinjector.
Figure reprinted from Abate et al., 2010 with permission from PNAS.

better for the addition of small volumes, while electro-coalescence works better for
adding larger volumes (Personal Communication, Ryckelynck, 2020).

1.5 Emulsion polymerase chain reaction

1.5.1 Polymerase chain reaction

The indispensable polymerase chain reaction (PCR) technique, which permits
the amplification of small amounts of genetic material, was first conceived by
Kary Mullis in 1984 (Saiki et al., 1985). The initial PCR method, together with a
majority of modern-day PCR methods, depend on thermal cycling, where repeated
cycles of heating and cooling permit various temperature-dependent reactions to
take place. The reaction requires primers, which are short DNA oligonucleotides
that are complementary to sequences flanking the region of interest, and DNA
polymerase, an enzyme that synthesises DNA from free nucleotides in the presence
of a DNA template. Firstly, denaturation of DNA, where the two strands of DNA are
physically separated, is carried out at over 90 °C. Then, the temperature is lowered
to around 50 °C to 65 °C, permitting the binding of primers to template DNA,
before enzyme-catalysed DNA replication occurs at 72 °C, where DNA polymerase
synthesises new DNA from free nucleotides, based on the DNA template present
(Quan et al., 2018). The utilisation of heat-stable polymerases, such as the Taq
polymerase from Thermus aquaticus, removes the need to continually replenish
polymerase, which had to be done previously when heat-sensitive polymerases were
used. As the DNA generated in each cycle is itself used as template in subsequent
cycles, exponential amplification of the DNA takes place.

Apart from the amplification of genetic material, PCR has also been adapted
for the quantification of the amount of genetic material present within samples,
via quantitative PCR (qPCR) (Arya et al., 2005). As the amplification of DNA is
exponential, there is a quantitative relationship between the amount of starting
template and the amount of PCR product at any particular cycle, but this plateaus
off as reagents are used up or due to the accumulation of inhibitory products (Arya
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et al., 2005). Therefore, such quantification is done by monitoring the amplification
of a target DNA molecule throughout the PCR, rather than at the end. This is done
by coupling a fluorescent readout to the amount of DNA generated, by using either
DNA intercalating dyes or hydrolysis-based probes, and by monitoring fluorescence
over time.

While qPCR has been widely used to measure genomic DNA and cDNA
levels, the resulting data can be variable and problematic, particularly for samples
with low levels of nucleic acids and/or variable amounts of chemical and protein
contaminants. Under these circumstances, digital PCR has been shown to produce
more precise and reproducible data (Taylor et al., 2017).

1.5.2 Digital polymerase chain reaction

Digital polymerase chain reaction (dPCR) is a relatively new method for the absolute
quantification of nucleic acids. The technique has been gaining popularity for
its precision and sensitivity and is increasingly utilised in both healthcare and
environmental analyses.

The first step in dPCR is the subdivision of the reaction into many independent
sub-reactions, such that every partition contains most likely one or no template
molecules. PCR is then carried out, and the proportion of positive (with template,
and thus DNA amplification) and negative (no template and no amplification)
partitions is then elucidated. These are digital signals, as opposed to the analog
signals obtained during qPCR (Quan et al., 2018; Whale et al., 2016). These
digital signals permit precise quantification using Poisson statistics, which is
less problematic compared to the calibration curves and variations in reaction
efficiencies seen in qPCR quantification (Svec et al., 2015). In addition, the small
partition volumes used effectively increase the concentrations of templates within
the individual reaction vessels and additionally separates competing templates.
This reduces template competition and enhances the detection of rare variants in a
background of wild-type templates. This is also expected to increase tolerance to
inhibitors, given that targets are concentrated within smaller volumes (Quan et al.,
2018).

While dPCR has been carried out in microtubes (Sykes et al., 1992), microtitre
plates (Vogelstein and Kinzler, 1999) and non-droplet microfluidic setups, including
valves (Unger et al., 2000), nanowells (Matsubara et al., 2004) and chambers (Du
et al., 2009; Heyries et al., 2011), droplet microfluidics has been widely adopted for
digital PCR, in a format called droplet digital PCR (ddPCR), due to the ease and
scalability of droplet generation. Here, isolated microreactors in the form of aqueous
droplets are created within an immiscible oil phase.

The chemistry required for dPCR, and thus ddPCR, is broadly similar to
that used for qPCR. For both applications, a higher fluorescence should be
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present upon increased amplification. Thus, either non-specific fluorescent dyes or
sequence-specific DNA probes fused to a fluorescent reporter dye and a quencher are
used, with the fluorescent readout in dPCR analysed only after the entire PCR has
been carried out. The readout can be obtained via sequentially interrogating droplets
with fluorescence excitation sources and detectors (as explained in Section 1.4.2) or
via wide-field microscopy. The ddPCR technology is commercially available, for
example, as the Bio-Rad QX200TM Droplet DigitalTM PCR System.

Like most other droplet microfluidic processes involving fluorescence readouts,
the throughput of ddPCR is currently largely limited by the readout. Alternatives,
such as converting droplets into cytometry-compatible agarose beads (Zhang et al.,
2012) or double emulsions (Zinchenko et al., 2014), could be considered to overcome
this shortcoming (Quan et al., 2018).

1.5.3 Emulsion PCR for compartmentalisation

Emulsion PCR has also been utilised in other contexts, specifically where the
segregation of different templates is required or beneficial, such as in the
amplification of genomic and cDNA libraries. The bulk amplification of such
complex mixtures of nucleic acids is usually hindered by two problems, namely that
shorter fragments tend to be preferably amplified over larger fragments, and that
artifacts can be generated via recombination between homologous regions of DNA
(Williams et al., 2006). Therefore, droplet PCR has been utilised for the amplification
of complex DNA mixtures (Williams et al., 2006), including for the preparation of
complex libraries for molecular evolution and aptamer selection (Shao et al., 2011).

While bead-based barcoding approaches, as exemplified by CytoSeq (Fan et al.,
2015), Drop-seq (Macosko et al., 2015) and InDrop (Klein et al., 2015), were developed
first and are more widely utilised for molecular barcoding, this can also be carried
out with droplet barcoding libraries, where each droplet contains many copies of
the same barcode sequence, but different droplets have different barcode sequences
(Lan et al., 2016; Lan et al., 2017; Shahi et al., 2017). Emulsion PCR is utilised in the
generation of droplet barcoding libraries, where barcode oligonucleotides flanked
by constant sequences are encapsulated at a limiting dilution, together with PCR
reagents and primers complementary to the constant regions. One primer contains
a sequence that enables the fragments to cluster on Illumina flow cells. The droplets
are then subject to thermal cycling, enabling the generation of approximately ten
million barcode droplets in a few hours. The droplets are subsequently fused with
droplets containing templates or cells of interest and further processed to label
all DNA fragments from a single droplet with the same barcode sequence. This
enables all reads corresponding to a given template or cell to be identified via the
barcode. The use of molecular barcoding in single-cell genetic analyses will be
further elaborated on in Section 1.6.1.
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Emulsion PCR is similarly crucial in the context of fusion, or overlap extension
PCR, specifically when there is variability in template sequences and therefore,
templates should not be fused indiscriminately.

A key example is the cloning and sequencing of antibody heavy and light
chains, which are highly variable within a single organism, and thus within a single
sample. As the heavy and light chains are encoded by different genes, the pooling
and bulk sequencing of B-lymphocytes inevitably results in a loss of endogenous
heavy and light chain pairings. Similarly, overlap extension PCR of the pooled
heavy and light chain sequences will produce non-endogenous fusion products.

This problem has been overcome by the use of emulsion PCR, where antibody
heavy and light chain pairings can be maintained. This has typically been
carried out via workflows involving two rounds of encapsulation. Firstly, single
antibody-secreting cells are encapsulated with lysis buffer and poly-dT beads for
mRNA capture, such that every poly-dT bead contains genetic material from a single
cell. The poly-dT beads are then subjected to a second round of encapsulation at
a limiting dilution, such that most droplets maximally contain one bead. Overlap
extension PCR is then carried out to fuse the heavy and light chain sequences,
in a manner that maintains endogenous pairings. These fragments can then be
prepared for sequencing (DeKosky et al., 2015; McDaniel et al., 2016, Sumida et al.,
2012), or even expressed as yeast display libraries and used for the screening of
antibody binding (Adler et al., 2017a; Adler et al., 2017b). These techniques, and
other antibody sequencing technologies, will be further explained in Section 1.8.4.

Similarly, emulsion overlap extension PCR has been utilised for the
characterisation of microbial communities, where functional target genes of interest
were fused with 16S rRNA genes. Cells were encapsulated together with acrylamide,
which was then polymerised, trapping the cells and their genomes in polyacrylamide
beads. As the polyacrylamide permits the diffusion of enzymes, primers and buffers,
these beads were directly enzymatically treated to enable cell lysis. The beads
were then re-encapsulated and subject to overlap extension PCR, with the fused
amplicons only present in droplets where the microbial cell contains the functional
gene of interest. This technique provides information on both the genes of interest
and the host organisms containing those genes, as microbial species can be identified
by their 16S rRNA sequences (Spencer et al., 2016).

Overall, the ability of droplet microfluidics to partition PCR reactions has played
a central role in advancing quantification via digital PCR and has similarly elevated
PCR applications where compartmentalisation is required. The effortlessness by
which this has been employed and commercialised reflects the ease in which
molecular processes can be adapted to droplet formats. This paves the way for more
complex enzymatic reactions, assays and workflows to be conducted in droplets,
including, but not limited to, those crucial for single-cell analyses.
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1.6 Single-cell analyses

Due to cellular heterogeneity present in eukaryotic populations and systems
(Rosenfeld et al., 2005; Weinberger et al., 2005), single-cell analyses are critical in
the discovery of mechanisms and details that cannot be detected via bulk analyses.
For example, single-cell analyses have enabled the discovery and further analysis
of rare cell types in the immune system (Villani et al., 2017). Single-cell analyses
are also important in cancer genetics, where genetic changes result in intra-tumour
heterogeneity with consequences on treatment outcome (Saadatpour et al., 2015).
Furthermore, the recombination events in B- and T-lymphocytes (Tonegawa, 1983)
and meiosis in the production of sperm (Wang et al., 2012) create heterogeneous
populations, such that their functional characteristics and diversity can only be
assessed at the single-cell level.

1.6.1 Molecular barcoding in single-cell genetic analyses

Molecular barcoding in single-cell genetic analyses involves the labelling of genetic
material from each single cell with nucleic acid sequences unique to each cell, to
enable the mapping of all obtained reads back to their cells of origin. While this
strategy has been used in single-cell genomic (Lan et al., 2017) and epigenetic
analyses (Lareau et al., 2019), this section will focus on single-cell transcriptomic
analyses.

The labelling of all mRNA from each single cell in single-cell transcriptomic
analyses is done by the tagging of all mRNA transcripts from each individual
cell with cell-specific barcodes, and this process takes place during the reverse
transcription of the mRNA into cDNA (Fig. 1.4).

This is made possible by the introduction of oligonucleotides containing
sequences permitting amplification and sequencing (Univ), cell barcodes (CL), UMIs
and poly-dT sequences (Fig. 1.4). The poly-dT sequence enables the capture of
mRNA (Fig. 1.4A) and the subsequent reverse transcription, to generate cDNA
fused to the universal sequences, cell barcodes and UMIs (Fig. 1.4B). By introducing
the same cell barcode to all cDNA from the same cell, reads can be mapped back
to their cells of origin after sequencing. This can be done with a barcoded bead,
as illustrated in Figure 1.4 and exemplified by CytoSeq (Fan et al., 2015), Drop-seq
(Macosko et al., 2015) and InDrop (Klein et al., 2015), by the use of droplet barcoding
libraries (Lan et al., 2016; Lan et al., 2017; Shahi et al., 2017), or by the pre-spotting of
barcode-containing oligonucleotides within nanowells (Goldstein et al., 2017).

An alternative means of molecular barcoding involves combinatorial indexing,
where cells or nuclei are subject to split-and-pool barcoding, such that the
transcriptomes of individual cells or nuclei are uniquely labelled (Cao et al., 2017;
Cusanovich et al., 2015). This is exemplified by sci-RNA-seq, where fixed and
permeabilised cells are first subdivided into 96- or 384-well plates, with each well
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Figure 1.4: An example of beads and oligonucleotides utilised for cell barcoding
in single-cell transcriptomic analyses. The oligonucleotides utilised in the BD
RhapsodyTM Single-Cell Analysis System are pictured. A. Oligonucleotides utilised
for single-cell transcriptomic analyses contain sequences permitting amplification
and sequencing (Univ = Universal sequence, light grey), a cell barcode (CL = Cell
Label, dark grey), unique molecular identifier (UMI, blue-grey) and a poly-dT
sequence (orange). mRNA sequences are captured by hybridisation of the
poly-dA tails (yellow) to the poly-dT sequences (orange). B. Subsequent reverse
transcription results in the archiving of cDNA on the bead and the labelling with
the cell label and the UMI. Figure reprinted from Shum et al., 2019 with permission
from Springer Nature.

receiving a molecular index via in situ reverse transcription. Cells are then pooled
and redistributed via FACS into 96- or 384-well plates in limiting numbers, before
being subjected to second-strand synthesis, transposition with transposon 5 (Tn5)
transposase, lysis, and polymerase chain reaction (PCR) amplification, where a
second well-specific barcode is introduced. As a large majority of cells pass through
a unique combination of wells, individuals cells can be distinguished by the unique
barcode combination they receive. The rate of "collisions", where cells receive the
same combination of indices, can be finely tuned by regulating the number of cells
distributed to each well during the second round of indexing.

The length of the nucleic acid barcode utilised in molecular barcoding naturally
affects the possible diversity of the barcode pool. If we assume that all possible
nucleic acid sequences of a given length N are utilised, the number of possible
barcodes will be equivalent to 4N . Therefore, a 12-bp long barcode can assume
412 (approximately 107) different sequences and a 30-bp barcode can assume 430

(approximately 1018) different sequences (Kebschull and Zador, 2018). The diversity
of the barcode pool is evidently also dependent on how many different sequences
are accessible; some techniques intentionally limit the diversity of barcodes to
simplify subsequent data processing. For example, in 10X Genomics, barcodes
are drawn from a pre-determined ’whitelist’ of sequences, to simplify subsequent
error-correction and read assignment (Zheng et al., 2017). In addition, the number
of barcodes accessible in sci-RNA-seq is rather dependent on the number of wells
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utilised during the two indexing steps, as opposed to the length of the barcodes,
although the barcode lengths must be sufficient to ensure diversity across the wells
utilised (Cao et al., 2017).

In order to ensure that cells are uniquely labelled, the labelling of multiple cells
with the same barcode must be avoided. For combinatorial indexing strategies,
as previously mentioned, this can be regulated by modulating the number of cells
distributed to each well during the second round of indexing. For non-combinatorial
indexing strategies, this is most easily done by ensuring that the diversity of barcodes
is orders of magnitudes larger than the number of cells (Kebschull and Zador, 2018).
If we assume that the sampling of barcodes from the pool is random, the required
barcode diversity can be easily estimated.

For the labelling of k cells with barcodes that are drawn from a pool of N
barcodes, for which N >> k, and where every barcode is equally likely to be chosen,
the fraction of uniquely labelled cells (F ) can be estimated as

F ≈ 1− k

N
(1.3)

Therefore, if the diversity of the barcode pool is 100-fold larger in diversity
than the number of labelled cells (N/k = 100), there would be 99% unique
labelling (Kebschull and Zador, 2018), which is suitable for most single-cell genomic
applications.

1.6.2 Nanowells and valve-based single-cell genetic analyses

Both valves and nanowells have been utilised for single-cell genetic analyses, due to
their abilities to segregate and isolate single cells for independent processing.

Single cells can be segregated into nanowells and processed independently.
Cells are seeded into the wells using a limiting dilution - based on Poisson
distribution, a majority of wells would be empty or would contain a single cell.
Cellular barcoding takes place via the addition of barcoded beads (Fan et al., 2015;
Gierahn et al., 2017) or by the pre-spotting of oligonucleotides containing barcodes
within the wells (Goldstein et al., 2017). The former has been commercialised
by BD Biosciences as the BD RhapsodyTM Single-Cell Analysis System, while
the latter has been commercialised by TakaraBio as the iCELL8 system. In the
iCELL8 system, nanowells can be imaged and the dispensing of cells and reagents is
highly regulated, overcoming the problems of Poisson distribution and enabling the
efficient single-cell transcriptomic profiling of thousands of single cells (Kim et al.,
2019).

In contrast, valve-based systems enable the isolation of single cells into
fluidically segregated compartments. These are the basis of the commercially
available Fluidigm C1 system, which is capable of trapping and barcoding single
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cells for over thirty different applications (Lynch and Ramalingam, 2019), including
genomic (Fan et al., 2011; Wang et al., 2012), transcriptomic (Streets et al., 2014),
epigenomic (Buenrostro et al., 2015) and even combinatorial analyses (Buenrostro
et al., 2018; Dey et al., 2015; Macaulay et al., 2015).

1.6.3 Emulsion-based single-cell analyses

As previously mentioned, the formation of water-in-oil droplets creates a large
number of individual reaction vessels. By including cells in the aqueous phase,
cells can be encapsulated and segregated into individual droplets, which then
act as independent reaction vessels. The occupancy of droplets depends on
cell concentration and droplet size, and this follows a Poisson distribution
(Clausell-Tormos et al., 2008). As droplet size remains consistent for any given
combination of flow rates in a droplet generation chip of a specific geometry, cell
occupancy can be modified by changing the cell concentration used. In many
analyses, the average number of cells per drop (λ) used, which can be calculated
as the cell density divided by the droplet volume, would be around 0.1. This
minimises the probability of obtaining droplets containing multiple cells (p < 0.005),
but results in a majority of droplets containing no cells (p ≈ 0.90) (Shembekar
et al., 2016). However, this is inconsequential as high frequencies of droplet
production (tens of kHz) nonetheless enable the rapid generation of large numbers
of cell-containing droplets. In addition, such loading densities make it highly
probable that cell-containing droplets contain exactly a single cell. This makes
droplet microfluidics a popular tool to study single cells.

Various genomic (Lan et al., 2017), transcriptomic (Klein et al., 2015; Macosko
et al., 2015; Zheng et al., 2017), epigenomic (Lareau et al., 2019; Rotem et al., 2015)
and proteomic analyses for membrane proteins (Peterson et al., 2017; Shahi et al.,
2017; Stoeckius et al., 2017b) and secreted proteins (El Debs et al., 2012; Eyer et al.,
2017; Mazutis et al., 2013) that utilise droplet microfluidics for compartmentalisation
of single cells have been developed.

In this section, we will focus on methods for single-cell transcriptomics and
single cell proteomics for the detection of membrane proteins. Single-cell droplet
microfluidic methods focusing on secreted proteins, specifically antibodies, are
explained in Sections 1.9.3 and 1.9.4.

1.6.4 Emulsion-based single-cell transcriptomics

As previously outlined, single-cell transcriptomic analyses were possible with
technologies that did not utilise droplet microfluidics. However, the development
of two high-throughput droplet microfluidic single-cell transcriptomic technologies,
inDrop (Klein et al., 2015) and Drop-seq (Macosko et al., 2015) in 2015, and the
subsequent introduction of the 10X Genomics Chromium platform for 3’ Gene
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Expression analysis (Zheng et al., 2017) revolutionised the field of single-cell
transcriptomics.

A

B

Figure 1.5: Summary and comparison of emulsion-based single-cell
transcriptomic technologies. A. Summary of the three emulsion-based single-cell
transcriptomic technologies. Beads are functionalised with oligonucleotides
containing PCR primer, a cell barcode, UMI and a poly-dT tail. These beads are
co-encapsulated with cells. B. Comparison of the three emulsion-based single-cell
transcriptomic technologies. They differ in the structure and oligonucleotide
sequences of the barcoded bead, the cell barcode capacity, droplet generation
method and workflow. Figure reprinted from Zhang et al., 2019 with permission
from Molecular Cell.

The three technologies utilise similar principles to enable single-cell
transcriptomic analyses (Fig. 1.5), and are fairly simple to implement as they merely
require a single droplet maker.

For all three technologies, cells are co-encapsulated together with beads that
have been functionalised with oligonucleotides consisting of a PCR primer, cell
barcode, unique molecular identifier (UMI) and poly-dT tail (Fig. 1.5A). The presence
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of the poly-dT tail enables the capture of mRNA. Cellular barcoding is made possible
by the inclusion of a cell barcode in the primers. As previously outlined, all primers
on the same bead contain the same cell barcode, thus all mRNA from a single
cell would be labelled with the same barcode. After sequencing, the sequenced
fragments can then be mapped back to the original droplet, and thus to the original
cell that they came from.

The unique molecular identifiers (UMIs) are random oligonucleotide sequences
of 4 - 15 bp, which differ between different oligonucleotides associated to each bead.
This means that reads with the same cell barcode and the same UMI and that come
from the same transcript originate from a single mRNA molecule, as opposed to
reads that map to the same gene, and contain the same cell barcode but different
UMIs, which would instead be derived from unique mRNA transcripts from the
same gene and expressed in the same cell (Fig. 1.6). This enables correction for
amplification bias and a more accurate quantification of mRNA transcripts (Islam
et al., 2014).

Figure 1.6: Cell barcodes and UMIs alleviate amplification bias and increase the
accuracy of mRNA transcript quantification. Reads with the same cell barcode
come from the same cell. Reads with the same cell barcode and transcript read, but
different UMIs, are derived from unique mRNA transcripts, while reads with the
same cell barcode, same transcript read and same UMI are ultimately derived from
the same mRNA transcript. Figure reprinted from Matuła et al., 2020 under the
terms of the Creative Commons Attribution-NonCommercial-NoDerivs License
(CC-BY-NC-ND 4.0).

A key difference between the different single-cell transcriptomic technologies
is the type of barcoding bead used (Fig. 1.5B). In Drop-seq, 30 µm beads made of
a hard resin are used, while in inDrop and 10X Genomics, 60 - 70 µm deformable
hydrogel and gel beads are used respectively. The different physical properties affect
the encapsulation efficiency – the Drop-seq beads are encapsulated with a Poisson
distribution, which means that a mere 2 - 4% of cells are captured (Macosko et al.,
2015). In contrast, the beads used for inDrop and 10X Genomics are deformable
and can be closely packed, which means that they can be loaded with a super
Poisson distribution, where 60 - 90% of cells are barcoded in inDrop (Klein et al.,
2015). The beads also have different chemical properties that affect their handling.
The oligonucleotides attached to the hydrogel beads utilised for inDrop contain a
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photo-cleavable spacer and are thus released by exposure to UV (Klein et al., 2015),
while the beads utilised in 10X Genomics dissolve upon the co-encapsulation of
cells, due to the simultaneous addition of a reducing agent, which reduces disulfide
linkages present within the beads (Bent et al., 2020; Zheng et al., 2017). This means
that while the beads utilised for Drop-seq can be utilised for multiple rounds of
library preparation, this is not the case for inDrop or 10X Genomics.

The differences in fabrication also results in different levels of bead size
variation, where it was noted that the beads used in Drop-seq were less uniform in
size compared to those of 10X Genomics and inDrop (Zhang et al., 2019). Zhang et
al. hypothesise that this has consequences for the determination of which barcodes
are associated with healthy cells. The total number of raw reads is frequently used
to differentiate between healthy cells and dead cells or empty droplets. While a
distinct difference is noted between barcodes from healthy cells and other droplets
in 10X and InDrop, such a difference is not seen for Drop-seq (Zhang et al., 2019).

Various processing steps differ between the technologies. Both Drop-seq and
the 10X Genomics technology utilise the Moloney murine leukemia virus (MMLV)
reverse transcriptase, which adds a few cytosine nucleotides at the 3’ end of the
cDNA, but only when the polymerase reaches the 3’ end of the cDNA and not when
cDNA synthesis is prematurely terminated. The SMART (Switching mechanism at
the 5’ end of the RNA transcript) technology permits the addition of a PCR handle
at the 3’ end with the use of a template switch oligonucleotide (TSO) (Zhu et al.,
2001).

In contrast, inDrop utilises CEL-seq (Cell Expression by Linear amplification
and Sequencing) (Hashimshony et al., 2012), where in vitro transcription (IVT) linear
amplification followed by RT-PCR is used to amplify the barcoded cDNAs. This
potentially reduces PCR amplification bias and noise (Ziegenhain et al., 2017).

Other differences exist based on which enzymatic processes take place in
droplets versus in bulk (Fig. 1.5B). In Drop-seq, reverse transcription and template
switching occur in bulk, while in inDrop, reverse transcription is carried out in
droplets. In the 10X Genomics system, reverse transcription, template switching
and transcript extension occur in droplets. Carrying out reverse transcription in
droplets is necessary in inDrop and for the 10X Genomics technology, due to primer
release and dissolving of the beads, respectively.

Reverse transcription in bulk, as is carried out for Drop-seq, could increase the
risk of cross-contamination, although this could be minimised with optimisation
of the washing steps (Biočanin et al., 2019). Yet, reverse transcription in bulk could
reduce the time at which the reverse transcriptase has to remain at room temperature
before reverse transcription and also eliminate the problem of RT inhibition in
droplets by mammalian cell lysates (Eastburn et al., 2013b; Mary et al., 2011).
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There are also differences in the length of the cell barcodes and UMIs (Fig. 1.6).
The differing structures and lengths of the barcodes affect the theoretical cell barcode
library size, and thus the maximum cell capacity that can be processed in a single run.
Additionally, the barcodes used in InDrop and in 10X Genomics are generated from
a known ’whitelist’ of sequences, while the barcodes in Drop-seq are completely
random. This has consequences on the actual diversity generated, where the
diversity in InDrop and 10X Genomics is predefined by the number of different
sequences in the whitelists, rather than a mathematical function of the number of
bases (as mentioned in Section 1.6.1). This also has consequences on data analysis,
where the use of a ’whitelist’ permits simplification of error-correction, while the
synthesis strategy in Drop-seq provides no prior information to aid error-correction
or read assignment (Tambe and Pachter, 2019). There are also differences in the cell
barcode error rates for the different systems, which are likely to arise during DNA
synthesis. It appears that 10X beads have the lowest error rates, and thus are of the
best quality (Zhang et al., 2019).

In addition, errors in UMIs, including point mutations and a bias towards
certain nucleotides or sequences introduced during UMI generation, result in a
reduction in effective UMI space and in incorrectly reduced molecular counts,
specifically amongst highly expressed genes. Longer UMIs, such as those seen
in the 10X Genomics platform, could mitigate these effects (Petukhov et al., 2018).

Overall, the 10X Genomics Single Cell 3’ Gene Expression technology appears
to outperform the other two technologies in sensitivity, precision and cell barcode
quality (Ding et al., 2019; Zhang et al., 2019). Additionally, the 10X Genomics
platforms require the smallest time investment, although they cost about twice as
much per cell compared to Drop-Seq and inDrop (Ding et al., 2019). In addition, as
the 10X Genomics platform is commercial, it is constantly subject to changes and
improvements that continue to improve its efficiency and throughput. For example,
alternative library construction methods, such as assessing 5’ gene expression via the
Single Cell 5’ Gene Expression kit, have been introduced. Naturally, the commercial
and black box nature of the 10X Genomics systems makes them less amenable for
technological development and modification within academic environments.

1.6.5 Analysis of emulsion-based single-cell RNA-seq data

A key challenge of single-cell RNA-seq data analysis is that the data is inherently
noisy, due to the susceptibility of single-cell RNA-seq to various sources of technical
and biological variation. Technical variation originates from variation in capture
efficiency, amplification bias and variation in sequencing efficiency (Bacher and
Kendziorski, 2016; Hwang et al., 2018), while biological variation arises from
differences in cell-cycle stage or cell size in different cells, which are not routinely
of interest for most experiments (Bacher and Kendziorski, 2016). Such biological
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variation is typically not detected in bulk RNA-seq due to averaging over large cell
numbers.

Another challenge for single-cell RNA-seq is the large number of "dropouts",
which generally refers to observed zeros, where a given gene in a given cell has
no UMIs or reads mapping to it (Lähnemann et al., 2020). While some of these
events may be due to genes that are biologically not expressed, other events may be
attributed to technical limitations, such as systematic mRNA degradation during
cell lysis, or events that occur by chance, such as the failure to capture transcripts
that are expressed at low levels (Bacher and Kendziorski, 2016; Hicks et al., 2018).
It has been estimated that only approximately 10% to 20% of all transcripts are
captured and sequenced (Kolodziejczyk et al., 2015). This is problematic, as it has
been shown that the proportion of genes with a zero expression level is a big source
of cell-cell variation and, together with batch effects, can cause false discoveries
(Hicks et al., 2018). While the degree of sparsity varies between single-cell RNA-seq
techniques, emulsion-based techniques are particularly susceptible to such problems
(Ding et al., 2019), as these high-throughput techniques are typically sequenced in
a shallow manner (Eraslan et al., 2019; Kashima et al., 2019). This is because the
high-throughput emulsion techniques are typically aimed at characterising larger
numbers of cells, which generally precludes deep sequencing, which would be
expensive at that scale.

As a result, the workflows and processes from bulk RNA-seq cannot be directly
utilised for the analysis of single-cell RNA-seq data. Instead, novel computational
methods are required, specifically for processes that are directly affected by the high
dropout rates or increased heterogeneity of single-cell data (Bacher and Kendziorski,
2016).

Emulsion-based single-cell RNA-seq data analysis is a multi-step process
(Poirion et al., 2016). While numerous tools are available for every step of each
process, there are also software packages that implement many, if not all, steps of the
analysis workflow, such as Seurat (Satija et al., 2015) and scanpy (Wolf et al., 2018).
In the first step of data analysis, the data is pre-processed and aligned to genomes, to
convert the raw data generated by sequencing machines into matrices of read counts.
The data is then subject to a quality control (QC) step to exclude poor-quality data
from single cells. Here, three important factors are typically examined, namely the
number of counts per barcode (count depth), the number of genes per barcode and
the fraction of counts from mitochondrial genes per barcode (Luecken and Theis,
2019). Barcodes that are outliers can correspond to barcodes from dying cells, cells
with poor mRNA recovery or low efficiency of cDNA production, or to doublets,
where two cells were encapsulated in a single droplet (Haque et al., 2017), and these
should be excluded.

The data is then normalised to account for variation in sampling between cells.
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This variation can be caused by variability in the capture, reverse transcription
and sequencing of mRNA, such that identical cells may have varied count depths.
The count data does not account for this, but normalisation addresses this by, for
example, scaling the count data to gather relative gene expression abundances
within different cells (Luecken and Theis, 2019). This step has been found to have a
large impact on single-cell RNA-seq analyses (Vieth et al., 2019).

Next, one can also account for and regress out the biological confounding
factors, such as cell cycle, apoptosis (Stegle et al., 2015) and technical batch effects
(Butler et al., 2018) that were previously mentioned.

Subsequently, the data can be analysed in a variety of ways, depending on
the biological question of interest. The data can be clustered to identify different
cell types or populations of interest, developmental trajectories can be mapped or
differentially-expressed genes between pre-defined groups can be identified.

There exist various methods for the identification of differentially-expressed
genes, with both methods developed for bulk RNA-seq and single-cell RNA-seq
having been utilised for the analysis of single-cell RNA-seq data. The single-cell
RNA-seq analyses packages, such as MAST and single-cell differential expression
(SCDE), have been developed specifically to account for frequent dropout events
and claim to be more sensitive in detecting differentially-expressed genes than the
bulk RNA-seq methods (Finak et al., 2015; Kharchenko et al., 2014). However, some
analyses have rather observed that methods designed specifically for single-cell
RNA-seq data do not necessarily perform better than those for bulk RNA-seq data
(Soneson and Robinson, 2018; Vieth et al., 2019; Wang et al., 2019).

Another challenge of analysing single-cell RNA-seq data comes from the
sheer multi-dimensionality of the data generated. One has to examine the tens
of thousands of genes, each of which can be considered as a single dimension, and
consider their expression in hundreds to thousands of cells (Haque et al., 2017).
Many approaches combat this by reducing the ’multi-dimensionality’ of the data
into smaller numbers of dimensions that can be easily visualised and analysed. For
example, Principal Component Analysis (PCA) is a linear transformation method
that reduces the dimensionality of data, typically from over 20,000 genes to 10 - 100
different principal components (Haque et al., 2017; Kiselev et al., 2019). PCA works
to find the axis that explains the maximum amount of variance (the first principal
component), before finding orthogonal axes that capture the greatest amount of
remaining variance, to define the second and third principal component, and so
on. This makes it fast, deterministic and linear, but means that it cannot capture
non-linear relationships. In addition, PCA tends to be disproportionately affected
by outliers (Amezquita et al., 2020).

In contrast, there are other more flexible non-linear techniques, such as
t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton, 2008) and
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Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018),
which are capable of capturing non-linear dependencies. These work by trying
to find a low-dimensional representation that continues to preserve relationships
between neighbours in high-dimensional space (Amezquita et al., 2020). However,
this comes at the expense of increased computational effort, and the need for the user
to define more parameters, for which guidelines are not necessarily well-defined
(Kiselev et al., 2019). It has been generally suggested that a range of different values
be tested for the parameters, so as to not draw inaccurate conclusions (Amezquita
et al., 2020). When comparing t-SNE and UMAP, UMAP aims to preserve more
global structure, but at the expense of resolution within each cluster, while t-SNE is
particularly suited for high-dimensional data. In addition, UMAP is computationally
faster than t-SNE, making it increasing popular today (Amezquita et al., 2020).

The dimensionality reduction methods mentioned above can be used for both
visualisation and summarisation (Luecken and Theis, 2019). Visualisation refers
to optimally representing the dataset in two or three dimensions, which is useful
for further understanding data, as well as for the preliminary detection of batch
effects, in the case of PCA. In contrast, summarisation refers to using dimensionality
reduction to aid downstream analysis. This both reduces noise and reduces the
downstream computational work (Amezquita et al., 2020). In addition, this may
reveal biologically interesting information. For example, the analysis of principal
components by Macosko et al. revealed that the top principal components of a
particular dataset were dominated by genes involved in the cell cycle, enabling
thorough characterisation of cell-cycle gene expression (Macosko et al., 2015).
The different techniques outlined above may thus be more suited for different
applications, for example, Luecken and Theis recommend UMAP for exploratory
visualization and PCA for general purpose summarization (Luecken and Theis,
2019).

Cells can then be organised into clusters, which permits data exploration and
the deduction of member cell identity (Luecken and Theis, 2019). This takes place
by grouping cells based on similarity of gene expression profiles. There are a
variety of algorithms used for clustering, with one popular method being k-means
clustering, which divides cells into k clusters in an iterative process (MacQueen,
1967). This approach requires one to input k, the expected number of clusters, which
may not be known beforehand. In addition, k-means clustering is biased towards
similarly-sized clusters, which may result in rare cell types being hidden within
larger groups (Kiselev et al., 2019). In contrast, many single-cell analysis platforms
currently use the Louvain algorithm on single-cell k-Nearest Neighbour (KNN)
graphs (Blondel et al., 2008), which is capable of detecting communities as groups of
cells that have more links between them than expected from the overall number of
links that cells have. Clusters may then be manually annotated or annotated with
the aid of reference databases such as the Mouse Brain Atlas (Zeisel et al., 2018) or
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the Human Cell Atlas (Regev et al., 2017). This latter approach can be carried out
by utilising either database-derived marker genes, or by using full gene-expression
profiles from the relevant databases (Luecken and Theis, 2019).

While the above methods of clustering, dimensionality reduction and analysing
differential expression frequently do consider and model the sparsity of single-cell
RNA-seq data, the problem of sparsity can also be dealt with by "imputing" values
for the observed zeros that better reflect the true gene expression levels (Lähnemann
et al., 2020).

Various types of imputation have been used to infer gene expression levels.
Some imputation methods adjust gene expression levels based on expression in
"similar" cells, aiming to reduce the noise present (Dijk et al., 2018). Other methods
use probability to determine which observed zeros are biological or technical, and
remove technical variation while preserving biological variation (Huang et al., 2018;
Li and Li, 2018). This is carried out by using the expression of other genes, or of
the same genes in other cells as predictors. A separate class of methods utilises
the generation of low-dimensionality representations to impute the data, as these
methods enable the reconstruction of the observed data matrix from simplified
representations (Pierson and Yau, 2015; Risso et al., 2018).

Imputation can be problematic when the imputations are entirely reliant on
information present within the imputed dataset, as this can lead to circularity
that artificially amplifies signals present within the dataset, leading to inflated
correlations and false positives (Andrews and Hemberg, 2019). Therefore,
any conclusions derived from imputed data should be subjected to thorough
experimental validation (Luecken and Theis, 2019). This problem can also be
overcome by reference to cell atlases, many of which are in the process of being
developed (Almanzar et al., 2020; Regev et al., 2017), or by concurrently exploring
complementary data types (Lähnemann et al., 2020).

Evidently, there are a plethora of assorted tools for the different steps of
single-cell RNA-seq data analysis, with various tools and pipelines differentially
suited for diverse applications. As this is an active research area, one expects
the introduction of new tools in the future. In particular, it is thought that tools
utilising deep learning workflows and tools for single-cell omic integrations may be
exceptionally disruptive to current analysis pipelines (Luecken and Theis, 2019).

1.6.6 Targeted sequencing within emulsion-based single-cell
transcriptomic analyses

Single-cell sequencing experiments can be costly, with costs increasing with both
the number of cells sequenced and with sequencing depth, specifically the number
of reads per cell. Thus, there have been multiple analyses on how best to optimise
experimental design in the face of the trade-off between sequencing depth and cell
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number in single-cell transcriptomic studies (Svensson et al., 2019; Zhang et al.,
2020).

In many transcriptomic analyses, fewer than 1000 genes are variable and are
responsible for the clustering of expression profiles (Birey et al., 2017). In addition,
it has been shown that around 2% of genes consume over 50% of sequencing reads,
while many genes with important biological functions are frequently expressed
at lower levels (Replogle et al., 2020). It has also been demonstrated that many
transcriptional states can be decently inferred from the gene expression of a subset
of genes (Subramanian et al., 2017). This suggests that a targeted approach focusing
on a set of particular genes could improve throughput and sensitivity while keeping
sequencing cost-effective (Schraivogel et al., 2020).

This can be easily achieved in InDrop, which permits the straightforward
manufacture of beads with customised capture sequences (Zilionis et al., 2017). This
is possible as primer synthesis on the InDrop hydrogel beads are carried out in a
stepwise manner, with two barcode segments, the UMIs and poly-dT sequences
being added via sequential split-and-pool synthesis steps (Fig. 1.7A). By replacing
the poly-dT sequences with a pool of gene-specific sequences, and by adding these
via an additional synthesis step, transcriptomic sequencing can be carried out in a
targeted manner (Zilionis et al., 2017).

An alternative technology, droplet-assisted RNA targeting by single-cell
sequencing (DART-seq), has been developed to enable the concurrent analysis of
the transcriptome and specific RNA amplicons, and has been demonstrated to work
with Drop-seq beads (Fig. 1.7B). This is made possible via the enzymatic attachment
of custom primers to a subset of poly-dT sequences on Drop-seq beads, enabling
the specific capture of certain mRNAs. The DART-seq system has been utilised for
characterisation of non-A-tailed transcripts of an RNA virus together with whole
transcriptome analysis of the infected cells, and for the characterisation of paired
variable heavy and light chain antibody sequences alongside whole transcriptomes
of B-lymphocytes (Saikia et al., 2019).

Another possibility for targeted single-cell transcriptomic sequencing employs
gene-specific primers to selectively amplify genes of interest following cDNA
generation (Fig. 1.7C). This is exemplified by Constellation Drop-seq, which utilises
a single primer per gene (Vallejo et al., 2019), and targeted Perturb-seq (TAP-seq),
which utilises two different gene-specific primers per gene (Schraivogel et al., 2020).
The former has been demonstrated with Drop-seq, while the latter has been utilised
together with both Drop-seq and the 10X Genomics platforms. TAP-seq enabled
the identification of 18 different cell subtypes within murine bone marrow with
merely 100 sequencing reads per cell, which is an approximately 7- to 12-fold lower
sequencing depth than what would be required to produce quantitatively similar
results via whole transcriptome sequencing (Schraivogel et al., 2020).
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Figure 1.7: Targeted sequencing in emulsion-based single-cell transcriptomic
analyses. A. Illustration of the split-and-pool approach used for on-bead
oligonucleotide generation in InDrop. The approach is highly adjustable, where
the addition of an additional synthesis step and the replacement of the poly-dT
sequence with gene-specific sequences enables targeted sequencing. Figure
reprinted from Zilionis et al., 2017 with permission from Springer Nature.
B. Workflow for converting Drop-seq beads to DART-seq beads for targeted
sequencing. Double-stranded probes containing custom primer sequences and
poly-dA ssDNA overhangs anneal to the poly-dT segments of a subset of
oligonucleotides present on Drop-seq beads. These probes are ligated to the
oligonucleotide sequences present on the bead, and the complementary strands
are removed via heating. The presence of both custom primers and oligo-dT
tails permits simultaneous analysis of targets of interest together with whole
transcriptome analysis. Figure reprinted from Saikia et al., 2019 with permission
from Springer Nature. C. Illustration of the targeted Perturb-seq (TAP-seq)
approach. Two gene-specific primers (outer and inner primers) are utilised to
selectively amplify each gene of interest, after reverse transcription (RT) is carried
out. The bead oligonucleotide illustrated is representative of both Drop-seq and 10X
Genomics bead oligonucleotides, and includes common features of both, including
unique molecular identifiers (UMI), cell barcodes (CB) and sequences involved
in PCR amplification (PCR). Figure reprinted from Schraivogel et al., 2020 with
permission from Springer Nature.

Alternatively, hybridisation-based target enrichment has been utilised to enrich
for hundreds of selected transcripts. This has been demonstrated by direct-capture
Perturb-seq, where hybridisation baits against 978 genes from the L1000 landmark
genes (Subramanian et al., 2017) were designed and used for hybridisation capture
(Replogle et al., 2020). This increased the percentage of mRNA molecules aligning
to target genes from 6% without enrichment to 87% after target enrichment,
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corresponding to an increase of over 14-fold. This suggests that sequencing at
a 10-fold lower depth would still result in the enriched library containing more
UMIs per cell for most targeted genes.

1.6.7 Emulsion-based single-cell cell surface proteomics

Following the establishment of emulsion-based single-cell transcriptomic techniques,
various platforms for single-cell proteomic analyses capable of analysing membrane
protein expression emerged (Peterson et al., 2017; Shahi et al., 2017; Stoeckius et al.,
2017b).

Many of these technologies work in a similar manner - antibodies specific for
the proteins of interest and labelled with oligonucleotide tags are used to stain
cells, prior to encapsulation, cell lysis, barcoding of antibody tags (and cDNA)
and library construction. Most methods, specifically CITE-seq (cellular indexing
of transcriptomes and epitopes by sequencing) (Stoeckius et al., 2017b), REAP-seq
(RNA expression and protein sequencing assay) (Peterson et al., 2017) and Feature
Barcoding from 10X Genomics, are compatible with single-cell transcriptomic
technologies such as Drop-seq or the 10X Genomics Single Cell 3’ Gene Expression
technology. This is made possible by the inclusion of a poly-dA tail at the 3’ end
of the conjugated oligo, which will bind to the poly-dT tails of the barcoding bead
oligonucleotides, as shown below for the CITE-seq workflow (Fig. 1.8) (Stoeckius
et al., 2017b). Alternatively, the introduction of complementary capture sequences
on the oligonucleotide sequences of the antibodies and on the Gel Beads in 10X
Genomics Feature Barcoding achieves the same purpose while enabling independent
barcoding of the transcriptome and the proteome (Matuła et al., 2020).

The CITE-seq technology has been adapted by its creators to enable
sample multiplexing that remains compatible with emulsion-based single-cell
transcriptomics analyses (Stoeckius et al., 2018). Here, antibodies against
ubiquitously expressed surface proteins are used. The same pool of antibodies,
but with different oligonucleotide tags (known as cell hashtags), are used to stain
different samples, before the cells from different samples are pooled and processed
with the single-cell transcriptomic technology of choice. Sequencing both the cell
hashtags and the transcriptomes ensures that the sample identity of each cell can be
elucidated. As all samples are processed within one encapsulation experiment, this
reduces batch effects. In addition, cell hashing allows one to identify most doublet
events and eliminate them in the analysis. This facilitates the superloading of cells,
where cells are loaded at a higher concentration than would normally be considered,
due to the limitations of Poisson distribution. This permits the analysis of more cells
for a given amount of reagents, reducing experimental costs.
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Figure 1.8: Antibody diagram and workflow used in CITE-seq and cell hashing.
A. Illustration of the oligo-tagged antibodies used. Antibodies are bound to
an oligonucleotide that contains a PCR barcode, an antibody barcode and a
poly-dA tail. B. CITE-seq and cell hashing workflow. Cells are stained with
antibodies and washed prior to mixing and encapsulation. Upon cell lysis, both the
antibody-oligos and mRNAs are captured on beads. Subsequent processing takes
place as appropriate for the respective emulsion-based single-cell transcriptomic
technology – outlined here for Drop-seq. Figure reprinted from Stoeckius et al.,
2017a with the permission of the authors.

1.6.8 Simultaneous profiling of genetic perturbations and
transcriptomes in single cells

Single-cell transcriptomics has been utilised in screens involving genetic
perturbations, namely where the perturbation conditions are encoded by genetic
markers within the same cell in which the perturbation takes place. A subset
of these screens, specifically Perturb-seq (Dixit et al., 2016), CROP-seq (CRISPR
droplet sequencing) (Datlinger et al., 2017) and Mosiac-Seq (mosaic single-cell
analysis by indexed CRISPR sequencing) (Xie et al., 2017) employ emulsion-based
single-cell RNA-seq as a readout for CRISPR-based pooled genetic screens. The
specific single guide RNA (sgRNA) associated with the perturbation is identified
either by capturing the sgRNA itself within a Pol II transcript (CROP-seq) or by Pol
II transcribed barcodes (Perturb-seq, Mosiac-seq), each of which is associated with a
specific sgRNA sequence.

While the techniques studied various biological processes, ranging from LPS
stimulation in mouse primary immune cells (Dixit et al., 2016) to enhancer function
in human cell lines (Xie et al., 2017), most techniques nonetheless analyse an average
of 80 - 150 transcriptomes per sgRNA and are capable of detecting both gene level
regulation and signature and state-level regulation (Datlinger et al., 2017; Dixit et al.,
2016; Hill et al., 2018; Xie et al., 2017).
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As single-cell RNA-seq data is intrinsically noisy due to the high drop-out
rate, all three screens carried out downsampling or saturation analyses, to assess
the sensitivity and/or specificity of their readout as compared to bulk RNA-seq
data or to a more comprehensive dataset, specifically for different numbers of
transcriptomes per perturbation. This naturally remains dependent on effect size
of the perturbation. In Mosaic-seq, they have mapped the percentage recovery of
differentially expressed genes as a function of the number of single cells analysed.
With 100 cells, they were able to pick up approximately 35.7% of differentially
expressed genes seen in bulk RNA-seq (Xie et al., 2017). Pilot experiments
in Perturb-seq found that with 100 single cells per guide, the sensitivity and
specificity of detecting the correct genes regulated by the perturbation (as seen
in bulk RNA-seq) were 80% and 90% respectively, but that signature and state-level
regulation should be detectable with a mere tens of cells per perturbation, together
with 400 transcripts per cell (Dixit et al., 2016). In CROP-seq, they estimated that 15%
(850/5,798 transcriptomes) of the dataset would be sufficient to obtain concordant
gene expression signatures seen with their current data (Datlinger et al., 2017), which
is approximately 12 - 13 cells per perturbation.

These illustrate that for different biological processes, single-cell transcriptomics
is capable of detecting differential gene expression induced by a specific perturbation
that can be concurrently detected via sequencing. The actual number of cells
required to pick up a specific effect would naturally differ with the strength of
the perturbation, the genes examined and the sequencing depth (Datlinger et al.,
2017). This raises the question of how many single cells would be required to detect
a given perturbation, and if a perturbation could be identified from its effect on the
transcriptome of a single cell. This thesis aims to investigate this in the context of
drug, antibody and cell-based perturbations.

1.7 Cell-cell interactions

Cell-cell interactions are essential in many cellular processes, including proliferation,
differentiation, survival, apoptosis, migration and the coordination of responses to
stimulation (Guo et al., 2013). The misregulation of cell-cell interactions have been
associated with disease, including neurodegenerative diseases (Beer et al., 2008) and
cancer (Jain et al., 1996). Cell-cell interactions can take place between cells of the
same cell type (homotypic) or different cell types (heterotypic), and can occur either
via direct cell contact or by the transmission of a signal, such as via soluble factors,
electrical signals or mechanical cues (Zervantonakis et al., 2011).

The study of cell-cell interactions has largely taken place in vitro, as such
experiments are experimentally less complex and enable standardisation and
simplification of experimental conditions to eliminate potential confounding factors
found in experiments conducted in vivo (Guo et al., 2013). Cell-cell interactions have
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been studied in bulk with Transwell plates, where two different cell populations
are separated by a porous filter, enabling the study of paracrine interactions but
not those involving direct contact. In addition, other co-culture assays have also
been used, using Petri dishes, solid supports and bioreactors (Goers et al., 2014).
However, these methods are limited by the lack of control over the loading of cells
and the concurrent lack of spatiotemporal regulation of the microenvironment that
cells are exposed to (Guo et al., 2013).

In contrast, microfluidics affords experimentalists with higher control over
the microenviroment that cells are exposed to (Velve-Casquillas et al., 2010) and
permits spatiotemporal regulation of biochemical cues (Vu et al., 2017). In addition,
such systems permit better manipulation of cell seeding (Matsue et al., 1997) and
modulation of cell patterning (Park and Shuler, 2003). The small volumes used also
allows the isolation and further study of soluble factors utilised in communication,
as these can be found at functional concentrations (Guo et al., 2013).

Microfluidics permits both the study of population-level cell-cell interaction
studies, which utilise larger chambers to culture larger numbers of cells, as well as
single-cell level cell-cell interaction studies, which mostly pair and study two cells
(Dura et al., 2015; Dura et al., 2016). Both types of studies will be discussed below.

1.7.1 Population level interaction studies with microfluidics

The versatility afforded by microfluidic systems allows the design of different
chambers or channels in which different cell types can be seeded. These can
be made permeable only to soluble factors or separated by pneumatic valves to
specifically study how cells communicate indirectly (Xu et al., 2010), or they can
be separated by mere pillars to enable cells to be in direct contact. Such systems
have been used to investigate a plethora of different biological systems, including
hepatocyte-endothelial cell interactions (Sudo et al., 2009) and neuromuscular
junction formation (Zahavi et al., 2015).

These systems benefit from recent advances in three-dimensional (3D) cell
culture that better mimic the extracellular matrix in vivo. For example, Bersini
et al. has developed a microfluidic 3D in vitro model of a vascularised bone-like
microenvironment, by using a collagen gel embedded with human mesenchymal
stem cells and lined with endothelial cells. This was then incubated with invasive
breast cancer cells, to study the process by which breast cancer metastasises into
bone (Bersini et al., 2014).

These systems are frequently analysed via real-time imaging and bulk analyses
of secreted soluble factors, which enable the investigation of cell-cell interactions at
the population level in a more quantitative and regulated manner than before.
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1.7.2 Single-cell interaction studies with microfluidics

While the study of cell-cell interactions at a population level will reveal much about
the interactions, the large numbers of cells would mask any heterogeneity in cell
responses. In contrast, the study of two single cells that are paired in a regulated
manner enables the study of such heterogeneity with a high level of detail. In
addition, it is of interest to screen various libraries, such as libraries of antibodies,
T-cell receptors or engineered factors, for their effect on cell-cell interactions, and
the utilisation of pairs of single cells makes this feasible at a high throughput.

Pairs of single cells can be brought together by the use of nanowells. This
has been used by Yamanaka et al. to co-incubate natural killer (NK) cells together
with K-562 target cells. The cells were imaged at various time points to assess if
cell killing took place and cytokine and chemokine secretion was measured by the
utilisation of a capture antibody-coated glass slide that was incubated in contact
with the nanowell array. This produced a matched microarray of secreted proteins
that were then detected by the use of fluorescently labeled antibodies and imaging,
and correlated back to specific nanowells. The authors found that the secretion of
IFN-γ from NK cells is associated with its motility when it contacts the target cell,
but not with the outcome of cell killing (Yamanaka et al., 2012).

Cells can also be brought together by co-encapsulation. Sarkar et al. studied
the interactions between T-lymphocytes and dendritic cells (DCs) by imaging to
assess cell interaction and by measuring calcium levels via fluorescence microscopy.
They noted an increase in T-lymphocyte calcium levels in both directly interacting
DC-T-lymphocyte pairs and those in the same droplet but that did not appear
to make contact, suggesting the presence of contact-dependent and independent
processes in T-lymphocyte activation (Sarkar et al., 2015).

Microfluidic hydrodynamic trapping can be utilised to trap and pair cells in a
deterministic manner at a 1:1 cell ratio (Dura et al., 2015). Here, cells are sequentially
loaded into traps, which hold the cell pairs in place even if the surrounding media
is changed. Dura et al. examined the interaction of CD8+ T-lymphocytes with
antigen-loaded B-lymphocytes and the subsequent effects of ionomycin stimulation.
By examining cytosolic calcium mobilisation and the expression of CD8 (on
T-lymphocytes) and pMHCI and MHCII-eGFP (on B-lymphocytes), they found
that there is a heterogeneity in the response of T-lymphocytes, where some cells
respond to both stimuli (double responders), some respond to only ionomycin
activation (single responders) while some did not respond entirely (Dura et al.,
2015). A subsequent analysis from the same group tracked more parameters, with
both on- and off-chip culturing, imaging, staining and single-cell sequencing shown
to be possible (Dura et al., 2016).

Such microfluidic single-cell interaction assays enable the detection of cell
heterogeneity in cell-cell interactions. However, most of these assays are low
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throughput, due to the dependence on imaging and single-cell manipulations.
Additionally, many assays are only able to monitor a few parameters at once,
which may not provide enough information for a complete understanding of the
complexity observed in many cell-cell interaction processes.

While there exist many techniques to study cell-cell interactions at the single-cell
level, most are only able to track a few different parameters at a time and in a
low-throughput manner. At the same time, there exist various emulsion-based
methods for high-throughput transcriptomic analyses of single cells, where the
expression of all genes within the cells can be assessed, but these have not been
applied to study cell-cell interactions. Therefore, the development of a method that
permits high-throughput transcriptomic analyses of cell-cell interactions is of great
interest and is one goal of this thesis.

1.8 Monoclonal antibodies

One particularly interesting category of cell-cell interactions involves soluble
antibodies secreted by antibody-secreting cells, together with target cells that
express surface proteins that these antibodies bind to. These heterotypic interactions
are particularly important given the increasing important role that monoclonal
antibodies (mAbs) play in modern medicine, with seven of the top ten best-selling
drugs in 2019 being mAbs (Urquhart, 2020a), and with mAb sales expected to reach
nearly USD 200 billion by 2024 (Dealmakers, 2019). Additionally, 12 new mAbs
were approved by the United States Food and Drug Administration (FDA) in 2018,
representing 20% of the total approved drugs in that year, and half of these are
expected to be blockbusters and to generate peak sales of over USD 1 billion by
2024 (Mullard, 2019). These illustrate the continued importance of mAbs in modern
medicine.

While this chapter will only focus on monoclonal antibodies, it must be noted
that there are also other promising antibody-derived therapeutics in development or
on the market, including bispecific antibodies, which are antibodies that have been
designed to target two different epitopes (Labrijn et al., 2019), and immunoadhesins,
which are chimeric molecules combining the functional domain of a binding protein
with immunoglobulin constant domains (Ashkenazi and Chamow, 1995).

1.8.1 Generation, structure and function of antibodies

B-lymphocytes are a crucial part of the adaptive immune system, with their function
carried out by the production of clonally diverse immunoglobulin (Ig) receptors
that are capable of precisely recognising antigenic epitopes with nano- to picomolar
affinities (LeBien and Tedder, 2008). These immunoglobulins (Ig) can be present as
surface immunoglobulins on the surface of B-lymphocytes, or secreted as soluble
antibodies (Hoffman et al., 2016).
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The diversity of antibodies and B-cell receptors (BCRs) expressed within
an individual immune system is immense, and this is made possible by V(D)J
recombination, a somatic recombination process in B-cell development. The process
brings together one variable (V), one diversity (D) and one joining (J) segment of the
IGH locus to form an exon in the heavy chain Ig gene, with the same taking place
for the V and J segments of the light chain. Additional diversity can be introduced
by random insertions or deletions at the segment junctions (Hoehn et al., 2016). In
addition, BCRs improve antigen binding during infection via affinity maturation,
a combination of both somatic hypermutation (Li et al., 2004) and clonal selection,
such that the remaining B-cell progeny secrete antibodies with higher affinities for
the antigen (Peled et al., 2008).

While all antibody molecules made by an individual B-lymphocyte typically
have the same antigen-binding site, the sheer number of different B-lymphocytes
with diverse antibodies and BCRs generated by the processes outlined above,
explains the polyclonality of antibodies obtained from an organism. It has been
estimated that the potential diversity of the naïve repertoire is over 1018 (Elhanati
et al., 2015), yet this does not consider somatic hypermutation, and thus the true
potential diversity is potentially much larger. In contrast, monoclonal antibodies
utilised in medicine are produced by a single clone of B-lymphocytes, which typically
produce a single species of antibody against a single epitope. This means that such
monoclonal antibodies are homogeneous, monospecific and characterisable for
therapeutic purposes (Castelli et al., 2019).

Five different types of immunoglobulins are produced by B-lymphocytes,
namely IgG, IgA, IgM, IgD and IgE. These differ in the type of heavy chain present
in the molecule and these differences permit the immunoglobulins to function in
different types and different stages of immune responses (Schroeder and Cavacini,
2010). For example, IgM is excellent at activating complement, while IgE binds
Fc receptors to activate mast cells (Hoffman et al., 2016). The different types
of immunoglobulin also differ in their affinities, where high molecular weight
immunoglobulins (IgM) have lower affinities for the antigens, as compared to IgG
and IgA, which generally have affinities that are orders of magnitude higher, due
to affinity maturation (Eisen, 2014). All therapeutic antibodies that are currently
used in the clinic are immunoglobulin G (IgG) monoclonal antibodies, of which four
different isotypes exist (IgG1, IgG2, IgG3, and IgG4) (Ryman and Meibohm, 2017).
IgG1 is the most abundant isotype in serum, constituting 60% - 75% of serum IgG
(Hoffman et al., 2016).

A single immunoglobulin G monoclonal antibody consists of four protein
chains, two identical heavy chains and two identical light chains, which
are linked via disulfide bonds (Fig. 1.9A). The N-terminal regions of the
chains form the variable (V) region, which includes the antigen-binding
complementarity-determining regions (CDRs), while the C-terminal regions form
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the constant (C) regions (Awwad and Angkawinitwong, 2018). The IgG can also
be divided into the Fab (fragment antigen-binding) and Fc (fragment crystallisable
region) regions, with the Fab regions permitting the identification of different
antigens by different antibodies, and the Fc regions regulating various effector
functions (Porter, 1958).

Figure 1.9: Monoclonal antibody structure and function. A. Schematic of an
immunoglobulin G (IgG) monoclonal antibody (mAb). The constant heavy (CH)
and constant light regions (CL), and the variable heavy (VH) and variable light
regions (VL) are indicated. The table shows the various types of mAbs present,
including murine, chimeric (human constant (C) with murine variable (V) regions),
humanised (with only murine complementarity-determining regions (CDRs)) and
human mAbs. B. Mechanisms of action of mAbs. The mechanisms of actions
of antibodies are provided together with examples of therapeutic mAbs that act
via those mechanisms (orange box). Antagonism and signalling are controlled
by specific CDRs within the Fab region, where antibodies can specifically bind to
a target (either ligand or receptor) and block (Antagonism) or induce signalling
(Signalling). In contrast, other functions of mAbs are controlled by the Fc region,
namely complement-dependent cytotoxicity (CDC) and antibody-dependent
cell-mediated cytotoxicity (ADCC). mAbs can cause cell lysis of T- or B-lymphocytes
via complement activation (CDC) or bind to Fc receptors and trigger cell lysis
(ADCC). Figure reprinted from Hansel et al., 2010 with the permission from
Springer Nature.

Different types of monoclonal antibodies exist with different portions of
antibodies being derived from murine or human proteins (Fig. 1.9A). Early mAbs,
such as Muromonab-CD3, the first mAb approved for use in humans, were fully
murine, but these posed immunogenicity problems, where patients developed
human anti-murine antibodies, resulting in rapid clearance of the drug and in
anaphylactic shock in some patients (Abramowicz et al., 1992; Jaffers et al., 1986).
In order to minimise immunogenic problems, the human content of therapeutic
antibodies has been increased, with the development of chimeric (mouse/human)
and humanised antibodies (human antibodies containing mouse CDRs) with the



36 Chapter 1. Introduction

aid of genetic engineering. Here, the mouse antibody variable regions or the mouse
CDRs are transferred to human IgGs respectively, reducing the non-human content
of antibodies to 30% and 5 - 10% respectively (Yamashita et al., 2007), in order to
minimise the immunogenicity of such mAbs. In addition, technologies have been
developed that permit the discovery of fully human mAbs, namely phage display
and the immunisation of transgenic mouse models that express human IgG isotypes
(Yamashita et al., 2007). More information about these methods can be found in
Section 1.9.

mAbs can act via various mechanisms (Fig. 1.9B). As previously mentioned,
the Fab domain enables recognition of different antigens, which permits it to block
ligand-receptor interactions (Antagonism) or to induce receptor signalling in the
absence of ligands (Signalling) (Hansel et al., 2010). Additionally, the Fc region of
mAbs permits binding to Fc receptors (FcR), which initiates complement-dependent
cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC). These vary
with Ig subclass, where the isotypes IgG1 and IgG3 are the most potent at activating
complement, and IgG1 is highly effective at promoting ADCC, such that IgG1 is
widely used to trigger cell death, such as in oncology-related applications (Weiner
et al., 2010). In contrast, due to its reduced Fc effector function, IgG4 is commonly
used if cytotoxicity is not desired, and further reduction of cytotoxicity can be
induced via modification of the Fc region by genetic engineering.

1.8.2 Pharmacology of monoclonal antibodies compared to small
molecule drugs

mAbs differ from small molecule drugs in various aspects. The high specificity of
mAbs permits precise targeting and minimises off-target effects (Leader et al., 2008).
While small molecule drugs have struggled to modulate protein-protein interactions,
mAbs perform better in modulating such interactions (Mabonga and Kappo, 2019).
In addition, the neonatal Fc receptor (FcRn) reduces the lysosomal degradation of
IgG antibodies, including therapeutic mAbs (Kim et al., 2007), resulting in IgG1,
IgG2 and IgG4 having a half-life of around 18 - 21 days, which is significantly longer
than the typical half-life of other therapeutic molecules (Kontermann, 2011), thus
lower dosing frequencies are sufficient (Ovacik and Lin, 2018).

mAbs are approximately 150 kDa in size, making them comparatively larger
than small molecule drugs, which are typically between 200 - 500 Da in size
(Wan, 2016). This generally limits them to extracellular targets, given their limited
membrane permeability (Trenevska et al., 2017), although various strategies to
intracellularly target mAbs are being explored (Slastnikova et al., 2018). In
addition, the large size, limited membrane permeability and gastric degradation
of mAbs restricts oral administration, such that they are typically administered via
intravenous (IV), subcutaneous (SC), or intramuscular (IM) injections (Wang et al.,
2008). Their large size also results in a slower distribution into tissue, with maximal
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plasma concentrations noted only approximately 1 – 8 days following subcutaneous
(SC) or intramuscular (IM) injection (Kamath, 2016).

1.8.3 Monoclonal antibodies in the clinic

mAbs in the clinic have been largely used for the treatment of cancer and
autoimmune diseases, and to a smaller extent, against infectious diseases. In the
treatment of cancer, mAbs targeting tumour antigens, such as those overexpressed
in cancer cells and involved in unregulated cell division, have been successful
in reducing tumor growth rate, inducing apoptosis and sensitising tumours to
chemotherapy (Scott et al., 2012). For example, trastuzumab and pertuzumab bind
HER2 (ERBB2), a receptor overexpressed in 30% of invasive breast cancers and in
some adenocarcinomas of the lung, ovary, prostate and gastrointestinal tract (Chen
et al., 2003). A combination therapy of trastuzumab and pertuzumab has been
shown to be more effective in the treatment of HER2+ metastatic breast cancer than
treatment with the single mAbs (Fabi et al., 2016). In addition, other modalities,
such as bispecific antibodies (Brinkmann and Kontermann, 2017) , and antibodies
conjugated to cytotoxic organic compounds (Antibody-Drug Conjugates (ADCs))
(Beck et al., 2017), radionuclides (Mattes, 2002) and protein toxins (Alewine et al.,
2015) are increasingly utilised in the treatment of cancer (Almagro et al., 2017). The
highly selective nature of mAbs results in fewer side effects compared to traditional
chemotherapy (Pento, 2017), making them an attractive alternative for the treatment
of certain cancers.

mAbs have also been utilised in the treatment of autoimmune diseases, where
they are usually used to target various components of the immune system to
reduce excessive disease-causing immune responses (Castelli et al., 2019). For
example, mAbs targeting TNF-α, a cytokine important in autoimmunity, has been
used in the treatment of various immune diseases including rheumatoid arthritis
and Crohn’s disease (Castelli et al., 2019). In addition, a few mAbs have been
approved for prophylaxis and treatment of both bacterial and viral targets, such as
bezlotoxumab against Clostridium difficile toxin B and palivizumab to prevent severe
lower respiratory tract disease due to respiratory syncytial virus (RSV) in high risk
children (Pelfrene et al., 2019). While not many mAbs have been approved for the
treatment of bacterial and viral infections, it is thought that mAbs could be beneficial
in treating emerging infections, especially in the absence of suitable alternatives
(Pelfrene et al., 2019; Salazar et al., 2017), illustrating the continued importance of
mAbs in the clinic.

1.8.4 Antibody sequencing

Given the diversity of B-cell receptor (BCR) repertoires, the sequencing of B-cell
receptors is crucial to understanding B-lymphocyte clonal evolution in various
contexts, such as during infection, vaccination and autoimmune diseases (Seah
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et al., 2018). In addition, the sequencing of antibody-secreting cells from immunised
animals and humans can be used to elucidate information on antibody binding.
Equally important is the fact that antibody sequencing plays a vital supporting role
in antibody screening (as will be elaborated on in Section 1.9), as the identification
and characterisation of hits frequently requires the cloning and sequencing of
antibody variable regions.

Traditionally, antibodies have been identified via the use of qPCR, or sequenced
via a combination of single-cell PCR and Sanger sequencing. For example, a
previous proof of concept droplet microfluidic antibody screen utilised qPCR to
study hybridoma enrichment (Shembekar et al., 2018), while the BCR repertoire
was traditionally characterised by the use of a combination of FACS to isolate single
B-lymphocytes, single cell PCR and Sanger sequencing (Tiller et al., 2008). However,
qPCR requires pre-knowledge of the antibody sequences, while the use of Sanger
sequencing limits the analysis to tens or hundreds of BCR sequences, which is a
miniscule fraction of the BCR repertoire, which has been estimated to be larger than
than 1 x 1013 in humans (Georgiou et al., 2014). This suggests that high-throughput
sequencing methods, such as those utilised in next generation sequencing (NGS),
should be employed to expand the sampling of the antibody repertoire and to
characterise a large number of hits during high-throughput antibody screening.
This high-throughput DNA sequencing of immunoglobulin genes has been termed
Ig-seq (Georgiou et al., 2014), but refers to a collection of different methods.

Antibody sequencing with high-throughput sequencing methods is not trivial,
firstly due to the extraordinary variability in BCR sequences (Hoehn et al., 2016).
The reverse transcription of mRNA and corresponding PCR amplification of cDNA
ensures the amplification of expressed antibody sequences, but the variability means
that a mix of primers has to be used and optimised to maximise recovery while
minimising amplification bias (Tiller et al., 2008).

The second complication is that antibody heavy and light chains are encoded
by different genes. This means that the pooling and sequencing of B-lymphocytes
results in the inevitable loss of endogenous heavy and light chain pairings. The
sheer number of heavy and light chain variants means that the restoration of these
pairings cannot take place via trial-and-error.

This has been partially resolved by Reddy et al. for the pairing of high
abundance clones, by the pairing of the most dominant heavy and light chains
according to their relative frequencies. 78% of the identified antibodies generated in
this manner were antigen-specific, but it must be noted that the diversity of the light
chains was lower than that of heavy chains, such that multiple pairings had to be
generated and validated by affinity measurements (Reddy et al., 2010).

Alternatively, the topologies of the VH and VL phylogenetic trees have been
utilised to pair heavy and light chain sequences (Zhu et al., 2013). The authors
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observed that VH and VL genes within matching branches of the respective
phylogenetic trees could be paired to give antibodies with significantly lower
autoreactivity compared to those those from unmatched branches, suggesting that
the phylogenetic matching of heavy and light chains could approximate natural
pairings (Zhu et al., 2013).

A more precise method that is highly compatible with NGS methods is the
introduction of cell barcodes to label sequences from individual B-lymphocytes
prior to pooling. The labelling of heavy and light chains from each cell with
the same barcode ensures that the heavy chain sequences can be traced back to
their associated light chain sequence following next-generation sequencing. This
is analogous to molecular barcoding utilised in single-cell genetic analyses, as
explained in Section 1.6.1.

This has been carried out in microtitre plates, where a two-dimensional
barcoded primer matrix consisting of 240 x 192 tags, capable of barcoding over
46,000 individual B-lymphocytes, was developed. Of 1,152 single B-lymphocytes
analysed, including peritoneal cavity B-cells, splenic marginal zone B-cells and
mature naïve B-cells, 33% yielded full-length heavy and light chain genes (Busse
et al., 2014). However, the processing of thousands of single-cell PCRs in microtitre
plates is relatively expensive, labour-intensive and time-consuming.

Alternatives have been developed to take advantage of the small assay volumes
and high throughputs possible with microfluidics. For example, a chip containing
1.7 x 105 nanowells was utilised for the deposition of single B-lymphocytes together
with magnetic poly-dT beads. Cell lysis and mRNA capture on beads was carried
out in individual nanowells, with magnetic beads subsequently pooled, washed
and encapsulated into droplets together with reagents for RT-PCR and overlap
extension PCR. Overlap extension PCR was utilised to link the associated heavy
and light chain fragments, ensuring that endogenous pairings can be deciphered
via subsequent sequencing. After RT-PCR and overlap extension PCR, the emulsion
was broken and the fused VH:VL cDNA fragments were recovered and analysed via
paired-end Illumina sequencing, enabling the single-cell analyses of over 5 x 104

lymphocytes (DeKosky et al., 2013).

The technology has also been adapted into a fully emulsion-based technology,
where droplets were utilised instead of nanowells. Using a flow-focusing device,
single B-lymphocytes were encapsulated together with lysis buffer and poly-dT
beads, enabling the capture of mRNA on the beads. The beads were then recovered
and utilised for emulsion overlap extension RT-PCR as outlined above. This enabled
the sequencing of over 2 x 106 B-lymphocytes in one experiment, with a pairing
precision of over 97% (DeKosky et al., 2015; McDaniel et al., 2016). Similarly,
emulsion overlap extension RT-PCR has been employed to generate DNA amplicons
that encode natively-paired single-chain variable fragments (scFvs), which were then
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expressed as yeast display libraries and used for the screening of antibody binding.
NGS was subsequently used to identify the clones in both pre- and post-sort scFv
libraries (Adler et al., 2017a; Adler et al., 2017b).

1.8.5 Antibody sequencing coupled with emulsion-based single-cell
transcriptomic analyses

Various single-cell antibody sequencing methods have been developed, either as part
of, or in conjunction with the emulsion-based single-cell transcriptomic technologies
mentioned in Section 1.6.4.

It is worth noting that unaltered conventional emulsion-based single-cell
transcriptomic technologies which capture mRNA transcripts at their 3’ ends, such as
Drop-seq, InDrop and the 10X Genomics Single Cell 3’ Gene Expression technology,
cannot pick up the variable regions of antibody genes. Such technologies capture
mRNA via their poly-A tails, with the cell barcodes being located at the 3’ end of
the cDNA. However, the variable regions of the antibody genes are located at the 5’
end of their respective mRNAs (Fig. 1.10A). The utilisation of fragmentation and
short-read Illumina sequencing results in a failure to sequence the variable regions
of antibody and BCR transcripts using these technologies. Therefore, a variety
of technological modifications have been developed to ensure that the variable
regions of antibody transcripts and the cell barcodes from the same fragments can
be sequenced, such that the native pairing of the heavy and light chains can be
identified and simultaneously associated with whole-cell transcriptomic data.

The 5’ capture of mRNA has been adapted for antibody sequencing, as has
been outlined by Goldstein et al. and utilised by the Single Cell Immune Profiling
workflow from 10X Genomics. While the overall workflow is similar to that of
the 3’ Gene Expression technology, with the utilisation of deformable gel beads
to capture mRNA, the nucleotide sequences used here are organised differently,
with the oligonucleotides containing the cell barcodes, UMIs and the segments for
template switching located on the gel beads, and the poly-dT primers added as
free-floating primers in the droplets (Fig. 1.10B). This results in the capture of mRNA
on beads at their 5’ ends, with the cell barcodes and UMIs located at the 5’ end of the
captured mRNA. As such, upon the generation of cDNA, the variable regions (VDJ)
are located closer to the cell barcodes and UMIs, enabling the targeted amplification
of B-cell receptor sequences when BCR-specific primers are used (Goldstein et al.,
2019; Single Cell Immune Profiling). This enables the generation of sufficiently short
fragments that can be sequenced on an Illumina platform, to yield heavy and light
chain variable region sequences associated with the relevant cell barcodes (Goldstein
et al., 2019). Such antibody sequencing can also be run in conjunction with the 10X
Genomics Single Cell 5’ Gene Expression workflow, enabling the elucidation of
whole-cell transcriptomic data together with the associated antibody sequences
(Single Cell Immune Profiling).
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Figure 1.10: Problems with and strategies for antibody sequencing in parallel
with single-cell transcriptomics. A. Capture of antibody-encoding mRNA via 3’
poly-A tails. The V, D and J regions of a transcript encoding an antibody heavy
chain are indicated in red, yellow and brown respectively, with the constant region
(C) shown in light blue. The mRNA is captured via hybridisation of the poly-A tail
to the poly-dT sequence of bead-bound oligonucleotides. The UMI, cell barcode
and PCR primer are shown in orange, green and black, respectively. Here, the
constant region will separate the variable regions from the cell barcodes and UMIs.
B. Schematic illustrating 5’ capture of mRNA and library construction for antibody
sequencing. The beads utilised have oligonucleotides containing the R1 primer
(black), cell barcode (green), UMI (orange) and the 5’ switch oligo (blue). These are
co-encapsulated with B-cells (hollow brown circles), reverse transcriptase (black
triangles) and poly-dT fragments (fuchsia). These result in fragments with the V, D
and J segments (red, yellow and brown, respectively) located directly adjacent to
the initial bead-bound segments. The targeted amplification with BCR primers and
R1 primers ensure that only antibody cDNA is amplified and generates fragments
for library preparation that have most of the constant region removed. Figure
modified and reprinted from Goldstein et al., 2019 under the terms of the Creative
Commons Attribution License (CC-BY 4.0). C. DART-seq primer design enables
the specific sequencing of antibody heavy and light chains. The heavy (HC, top)
and light chain genes (LC, bottom) are shown. Primers were designed to anneal to
the 5’ ends of the constant regions, and are shown here for the heavy (blue) and the
light chains (orange). These ensure the specific capture of antibody mRNA onto
Drop-seq beads, with part of the constant region not being included in the cDNA
generated. Figure reprinted from Saikia et al., 2019 with permission from Springer
Nature.
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DART-seq (droplet-assisted RNA targeting by single-cell sequencing), as
previously explained in Section 1.6.6, permits targeted sequencing via the ligation
of gene-specific oligonucleotides onto Drop-seq beads, enabling gene-specific
capture of the mRNAs of interest (Saikia et al., 2019). By utilising oligonucleotides
targeting the constant regions of human heavy and light isotypes (Fig. 1.10C),
antibody mRNAs can be specifically captured, with a part of the constant region
excluded from the cDNA generated, enabling the sequencing of both antibody
sequences and cell barcodes with Illumina sequencing. DART-seq has been utilised
to obtain the complete CDR3L+ and CDR3H regions from 21.3% (120/564) of
immunoglobulin-transcript-positive primary B-lymphocytes (Saikia et al., 2019).

Another technology that enables simultaneous whole-cell and antibody gene
sequencing is Repertoire and Gene Expression by Sequencing (RAGE-Seq), which
has been demonstrated to be compatible with the 10X Genomics Single Cell
3’ Gene Expression technology. Here, full length cDNA sequences generated
from the 3’ capture of antibody-encoding mRNAs are enriched via targeted
hybridisation capture. These cDNA sequences are then subjected to long-read
nanopore sequencing, enabling sequencing of both the 3’ cell barcode and the
5’ VDJ regions. Short-read Illumina sequencing is carried out in parallel for the
remaining cDNA, and the data from both datasets can be linked via matching of
the cell barcodes present within both datasets. This enables the accurate pairing of
whole single-cell transcriptomic profiles with targeted full-length antibody mRNA
sequences. The technology recovered paired immunoglobulin heavy and light
chains for 42.6% (689/1619) of primary B-lymphocytes obtained from a lymph node
(Singh et al., 2019).

The above three techniques utilise different workarounds to obtain the
sequences of antibody variable regions and their associated barcodes, enabling the
native pairing of heavy and light chain antibody sequences, together with association
to the relevant single-cell whole-cell transcriptomic data. As T-cell receptors (TCRs)
resemble antibodies and B-cell receptors in terms of protein structure and the genetic
mechanism by which variability is produced (Charles A Janeway et al., 2001), one
could envision easily adapting the above strategies for the sequencing of TCRs, and
this has been done for the 10X Genomics Single Cell Immune Profiling workflow
(Single Cell Immune Profiling) and RAGE-seq (Singh et al., 2019).

1.9 Antibody discovery

The crucial role played by monoclonal antibodies in medicine has necessitated the
development of various technologies for antibody discovery. These technologies are
capable of screening for antibody binding or antibody function, or for a combination
of both. While current bulk antibody screening technologies have been successfully
utilised for the discovery of therapeutic monoclonal antibodies, they continue to be
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limited to only screening for binders (phage display) or are limited by time, cost and
the diversity generated (hybridoma technology). Various microfluidic technologies,
specifically those involving droplet microfluidics, have been developed in recent
years to both act as viable alternatives for, and to complement traditional antibody
discovery methods.

This section will outline non-microfluidic, microfluidic and droplet microfluidic
antibody discovery methods, for screening for both antibody binding and function.

1.9.1 Non-microfluidic antibody discovery methods

Phage display is the most widely used technology for in vitro antibody selection,
where it is capable of rapidly identifying antibody binders from diverse libraries
(with repertoire sizes of up to 1010 to 1011) (Chan et al., 2014a), with selection possible
in as little as a week (Chan et al., 2011). A small number of mAbs currently in the
clinic were discovered via phage display, with the most notable being Humira
(Adalimumab), currently the world’s best selling drug (Urquhart, 2020b), which is
used to treat a variety of autoimmune diseases (Broeder et al., 2002).

Phage display was pioneered by George Smith in 1985, where foreign DNA
was introduced into phages, such that foreign peptides were fused to the pIII coat
protein of bacteriophage M13, resulting in the display of these peptides on the phage
surface (Smith, 1985). He demonstrated that it was possible to enrich more than
1000-fold for binders over WT phage, by utilising a specific antibody against the
displayed peptide. It was later demonstrated by three independent groups that
single-chain variable fragments (scFvs), fusion proteins of the variable regions of
the heavy and light chains of antibodies, or Fab fragments, could be presented on
phages, permitting the identification of potent, fully human mAb binders (Barbas
et al., 1991; Breitling et al., 1991; McCafferty et al., 1990). Since then, alternative
antibody formats have been utilised in the construction of antibody phage libraries,
including heavy-domain human antibody fragments (VHs), heavy-domain camelid
and shark antibody fragments (VHHs) and bivalent scFvs (diabodies) (Abraham
et al., 1996; Dooley et al., 2003; Lee et al., 2007).

This approach draws on the possibility to directly link a protein (phenotype)
to its associated gene (genotype), to permit multiple rounds of selection and
amplification, as illustrated in Fig. 1.11. Typically, antigens are immobilised on
ELISA plates or on magnetic beads, although phage display has more recently
been used against tumour sections to select for antibodies specific to tumour
antigens (Larsen et al., 2015). Phages displaying antibodies are incubated with
the targets of interest, before non-binders are removed via washing. Binders are
then eluted and amplified via infection of E. coli, with the produced phages utilised
for the next panning cycle (Fig. 1.11). The repeated rounds of selection enable the
enrichment of rare antigen-binding clones, selecting for high affinity binders (Lu
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et al., 2020). Concurrently, the short amplification time of phages in E. coli enables
the identification of mAbs much faster than via traditional hybridoma generation
and selection.

Figure 1.11: Biopanning with an antibody phage-display library. Phages
displaying antibodies are incubated with antigens immobilised on a solid surface,
such as ELISA plates or magnetic beads. Non-binders are removed via washing,
before bound phages are eluted and amplified via infection of E. coli. The phages
produced can then be utilised for the next panning cycle. After several cycles, the
antigen-binding clones are sufficiently enriched and can be further characterised.
Figure reprinted from Lu et al., 2020 under the terms of the Creative Commons
Attribution License (CC-BY 4.0).

Gene repertoires can be obtained from naïve or immunised animals, or can be
synthetically constructed by randomising CDR sequences within fixed frameworks
(Lu et al., 2020). Obtaining gene repertoires from naïve or immunised animals
involves the reverse transcription and PCR amplification of the relevant segments
of the variable heavy (VH) and light chains (VL), depending on the library to be
constructed. Multiple specific primer pairs are utilised to ensure amplification of
different VH and VL families. These segments, which represent the Ig gene-encoding
repertoire, are ligated into a phage display vector (phagemid), and utilised for
phage production (Lu et al., 2020). Care must be taken to maximise diversity of
the resulting library. As the natural antibody pairing is not maintained when the
phage display libraries are constructed, the resulting antibodies displayed may have
suboptimal biophysical characteristics and affinities (Strohl and Strohl, 2012). It
must be noted that there are droplet-based approaches to clone paired antibody
heavy and light chains into backbones for utilisation in display libraries, to maintain
antibody heavy and light chain pairings (Xiao et al., 2017). Similar methods have
also previously been mentioned in Sections 1.5 and 1.8.4.

While immunised libraries have antibody genes that have undergone affinity
maturation in vivo, permitting the development of antibodies with high affinities
against the targets, the need for animal models for such libraries, and the need
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to generate new libraries for each target limit their widespread use (Lu et al.,
2020). In contrast, single naïve and synthetic libraries have been utilised for the
identification of high-affinity antibodies against a plethora of targets (Knappik et al.,
2000; Vaughan et al., 1996), and most widely accessible commercial libraries are
based on non-immunised gene repertoires (Chan et al., 2014a).

Various other types of display technologies have also been employed for the
selection of antibodies via directed evolution, including bacterial display (Krüger
et al., 2002) and yeast display (Boder and Wittrup, 1997). These technologies
have various advantages, such as the fact that they can be used in conjunction
with FACS and magnetic assisted cell sorting (MACS). In addition, yeast display
utilises eukaryotic post-translational modifications to display scFvs and Fabs, which
improves antibody solubility and the processing of complex clones (Sheehan and
Marasco, 2015). However, yeast antibody display libraries have a theoretical limit of
107 to 109 clones in total, which is several orders of magnitude lower than similar
phage libraries (Sheehan and Marasco, 2015). In addition, both bacterial and yeast
libraries are currently not as well-characterised and optimised as phage libraries.

All the display technologies mentioned merely reveal information on antibody
binding and fail to shed any light on antibody functionality, which is a requirement
for therapeutic antibody function, where the modulation of target function is key
(Seah et al., 2018). In addition, as previously mentioned, antibody display libraries
typically do not display complete antibodies, but rather antibody fragments or
fusion proteins derived from antibodies. Thus, further genetic engineering is
routinely required to convert promising targets into full-length IgG formats. This
is occasionally coupled with a loss of binding affinity, and thus, these targets may
require further optimisation (Lu et al., 2020).

To overcome these shortcomings, functional antibody screening is frequently
carried out via hybridoma technology. The generation of hybridomas via the fusion
of B-lymphocytes from mice and immortalised myeloma cells was pioneered by
Köhler and Milstein (Köhler and Milstein, 1975), with this technology enabling the
isolation and purification of monoclonal antibodies (from a single hybridoma clone)
in large quantities.

In order to obtain the necessary B-lymphocytes, mice (or any other mammals)
are injected with an antigen that provokes an immune response (Fig. 1.12).
Antigens may be accompanied by an adjuvant and multiple injections may
be carried out, to enhance the immune response. B-lymphocytes are then
extracted and fused with immortalised myeloma cells via electrofusion or the
introduction of PEG. Fused cells are selected for by incubation in HAT medium
(hypoxanthine-aminopterin-thymidine medium). Aminopterin blocks the pathway
that allows for nucleotide synthesis, which results in the death of myeloma cells,
which lack the hypoxanthine-guanine phosphoribosyltransferase (HGPRT) gene
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Figure 1.12: Monoclonal antibody generation via hybridoma technology. Mice
are immunised with the antigen of interest before extracted splenic B-lymphocytes
are fused with myeloma cells to form hybridoma cells. Fused cells are selected for
by culture in HAT media. Individual cells of interest can be identified, selected for
and clonally amplified, in order to harvest monoclonal antibodies. Figure reprinted
from Jones, 2010 under the terms of the Creative Commons Attribution License
(CC-BY 3.0).

and thus are unable to produce nucleotides de novo. In addition, the unfused
B-lymphocytes have a short life span, such that both cell types die in HAT
media, with only the B-lymphocyte-myeloma hybrids surviving. These hybridoma
cells both produce antibodies and are immortal, with clonal populations of
hybridoma cells (those descended from the same parental hybridoma cell) producing
monoclonal antibodies targeting the same epitope. The supernatant of each clonal
population can then be tested for antibody binding and functionality. Over 90% of
antibodies that have been approved by the United States FDA for use in the clinic
were generated via hybridoma technology and are used either directly or as chimeric
or humanised versions (Parray et al., 2020).

As previously mentioned, fully murine antibodies are limited in their
functionality in humans, due to their immunogenicity and rapid clearance in
humans (Yamashita et al., 2007). While this has been partially overcome by the
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use of chimeric and humanised mAbs, researchers have also established various
methods for the discovery and generation of human mAbs. For example, transgenic
mouse models have been generated, where the murine Ig-heavy and Ig-light chain
loci are disrupted and where transgenes encoding human IgG isotypes are expressed,
enabling the application of hybridoma technology to generate human antibodies
(Lonberg, 2005).

However, all hybridoma-based screening requires clonal cell expansion to
obtain a sufficient antibody concentration for subsequent assays, and thus the
requirement for clonal cell expansion, and thus for cell immortalisation makes
hybridoma generation time-consuming and expensive, typically limiting the number
of clones that can be screened to a few thousand. This constitutes a mere fraction of
the antibody repertoire in mammals (approximately 1/104 of the mouse antibody
repertoire) (Reddy et al., 2010). Additionally, hybridomas can only be generated
from a subset of B-lymphocytes, not including fully matured bone marrow plasma
cells, which secrete the vast majority of high affinity IgGs in vivo (Reddy et al., 2010).
These factors limit the usage of hybridoma technology for the high-throughput
screening of therapeutic antibodies.

While alternative immortalisation techniques have been explored, including
immortalisation with the Epstein-Barr virus (EBV) (Traggiai et al., 2004) or via
genetic reprogramming (Kwakkenbos et al., 2010), these methods remain largely
limited to human memory B-lymphocytes and remain time-consuming and limited
in throughput.

The above factors propound the benefits of direct screening of non-immortalised
B-lymphocytes, which enables the quick isolation of potential mAbs from few
cells. As B-lymphocytes express specific cell surface markers depending on their
stage of development, primary antibody-secreting cells can be easily isolated
via FACS (Kaminski et al., 2012). As certain B-lymphocyte populations, such
as memory B-lymphocytes, express surface Ig receptors, they can be incubated
with fluorescently-labelled antigens, and screened for binding affinity using FACS
(Scheid et al., 2009). Alternatively, B-lymphocytes can be co-cultivated with
antigen-coated beads or antigen-expressing cells, and with fluorescence-labelled
secondary antibodies. This results in a "halo of fluorescence" being seen in the
vicinity of B-lymphocytes expressing antibodies with the binding properties of
interest (Tickle et al., 2009). Individual B-lymphocytes can then be picked with a
micromanipulator. Once individual B-lymphocytes of interest have been isolated,
whether by FACS or direct cell picking, cDNA can be prepared from the cells
via reverse transcription and amplification of the heavy and light chains. As
previously mentioned, this is not trivial, given the variability in IgH and IgL leader
sequences. Thus, a primer-set mixture typically has to be prepared and optimised, to
cover different leader sequences (forward primers) and Ig constant regions (reverse
primers), to improve recovery (Tiller et al., 2008). These genes can then be cloned
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into mammalian expression cell lines, to generate recombinant mAbs for further
characterisation (Tiller et al., 2008).

1.9.2 Antibody discovery with microfluidics

Microfluidics provides various advantages over bulk systems in the discovery and
study of antibodies. The largest advantage is the fact that microfluidics permits small
assay volumes from femtolitre to nanolitre scales, which enable the accumulation of
detectable concentrations of antibodies from single antibody-secreting cells in the
matter of minutes. For example, antibody secretion rates of single mouse hybridoma
cells in 50 pL droplets were measured to be around 4 x 104 molecules per cell per
minute, resulting in detectable concentration of antibodies (approximately 20 nM)
after merely 15 minutes (Mazutis et al., 2013). This facilitates the direct screening
of single antibody-secreting cells and eliminates the need for cell immortalisation,
which paves the way for faster and cheaper isolation of antibodies of interest.

Various microfluidic and nanowell systems have been utilised to study
antibody binding and identify antibodies of interest. Singhal et al. have described
a bead-based technology to measure antibody-antigen binding kinetics. The
technology utilises valves for reagent addition and washing steps, together with
beads coated with Protein A that enables antibody capture. Subsequent addition of
fluorescently-labelled and unlabelled antigen enabled the measurement of binding
kinetics, with a sensitivity comparable to surface plasmon resonance (SPR), but with
a sample consumption 4 orders of magnitude lower (Singhal et al., 2010). While
valve-based systems are limited in their throughput, a very high level of control is
possible, enabling complex reagent addition and washing steps.

In contrast, nanowells enable the high-throughput interrogation of
antibody-secreting cells. Jin et al. carried out an antibody binding screen by coating
nanowells with anti-immunoglobulin antibodies, enabling the capture of antibodies
secreted by single B-lymphocytes seeded in the nanowells. Fluorescently-labelled
antigen was then added, and antigen binding formed distinctive circular spots,
allowing for easy identification of cells of interest, which could then be retrieved
with a micromanipulator and subjected to sequencing and cloning (Jin et al., 2009).

Similarly, the secreted antibodies can be captured on glass slides coated with
anti-immunoglobulin antibodies that are placed on top of nanowells. These glass
slides can be easily rinsed and stained with fluorescent antigens, while the cells
continue to be cultured in the nanowells, or expanded or utilised for further analyses
(Love et al., 2006; Ogunniyi et al., 2009). In addition, similar assays have been used to
collect multiparametric datasets that study antibody specificity, isotypes and affinity
(Story et al., 2008). These nanowell technologies enable fast and high-throughput
studies of antibody binding, permitting the study of hundreds of thousands of
antibody secreting cells within hours.
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While the study of antibody secreting cells has been carried out in single-phase
and valve-based microfluidic systems, the advantages of droplet microfluidics
make it ideal for the binding and functional screening of antibodies. In particular,
the extremely high-throughputs that can be achieved via droplet production
theoretically enable screening of a large diversity of cells. In addition, the ease and
possibility of droplet manipulation, including sorting with fluorescence-activated
droplet sorting (FADS) and adding reagents via droplet fusion and picoinjection,
makes droplet microfluidics advantageous for complex multi-step assays, including
functional antibody screening assays.

1.9.3 Antibody binding screening with droplet microfluidics

Droplet microfluidics has been utilised for antibody binding screening, in a manner
similar to fluorometric microvolume assay technology (FMAT) (Lee et al., 2008).
Mazutis et al. sorted out antibody-secreting cells from non-secretors in a proof of
principle experiment (Fig. 1.13A) (Mazutis et al., 2013). Cells were co-encapsulated
with antibody-capturing beads and fluorescently-labelled secondary antibodies. In
droplets containing antibody-secreting cells, the secreted antibodies bound to the
beads, resulting in the localisation of the secondary antibodies, and thus of their
corresponding fluorophores, to the beads. These droplets induced high intensity
green fluorescence peaks when they passed the detector (Fig. 1.13B). In contrast, the
secondary antibodies remained homogeneously distributed in droplets containing
non-secretors, resulting in broad, low intensity peaks (Fig. 1.13B). Cells were stained
with a different fluorophore, which enabled the detection of droplets containing
cells. Droplets were sorted at a frequency of approximately 200 Hz, enabling the
screening of thousands of cells screened with hours of microfluidic operation.

A similar technology with the same principles has also been developed,
which combines droplet microfluidics and imaging to permit massively parallel
kinetic analyses of antibody-secreting single cells, encompassing simultaneous
measurements of antibody secretion rate, specificity and antigen affinity (Eyer
et al., 2017). DropMap utilises paramagnetic nanoparticles instead of a single
bead and these nanoparticles can be induced to form an elongated aggregate,
known as a beadline, via the introduction of a magnetic field. This increases the
antibody binding capacity and reduces the number of droplets without beads.
The nanoparticles are coated with anti-mouse Igκ nanobodies to capture secreted
antibodies, and are encapsulated together with an antibody-secreting cell, Alexa
647-labelled F(ab’)2 specific for mouse IgG Fc and Alexa 488-labelled antigen.
Secreted IgG and the anti-IgG(Fc) can then be captured onto the beadline, with
the ratio of red fluorescence on the beadline relative to that within the droplet used
to calculate the IgG concentration (Fig. 1.13C, left). Similarly, if the secreted IgG binds
the antigen, the ratio of green fluorescence on the beadline relative to that within
the droplet can be used to calculated the strength of the interaction (Kd). DropMap
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was used to characterise over 16,000 primary mouse primary B-lymphocytes in
tens of thousands of droplets in a single array. Over one million droplets (i.e.,
200,000 to 400,000 individual cells) can be analysed in a single 46 x 46 mm chamber,
demonstrating the scalability of the technique.

While the detection of antigen binding to beads has been enhanced by the use
of the beadline, detecting the binding of antibodies to cells and membrane-bound
target is further complicated by the fact that cell-based fluorescence signals are
highly variable based on the position of the fluorescent object within the droplet.
For example, the closer a cell is to the focal plane, and to the center of the laser spot,
the higher the detected fluorescence intensities. However, as these variations in
intensities are consistent across different fluorescence channels, one can overcome
this confounding effect by the use of a dual-colour normalised readout (Fig. 1.13D)
(Shembekar et al., 2018). When a bead or cell is outside the focal plane, both the assay
signal and the marker signal show reduced intensity, permitting straightforward
normalisation. This has been utilised by Shembekar et al. for a high-throughput
droplet microfluidic single-cell screening for cells secreting antibodies that bind
to target cells, with 220-fold enrichment of cells secreting binding antibodies and
80,000 clones sorted in a single experiment.
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Figure 1.13: Screening for antibody binding with droplet microfluidics.
A. Illustration of the sorting strategy used by Mazutis et al.. Beads (hollow circles)
and cells (grey or orange ellipses) are co-encapsulated and incubated. Secreted
antibodies (dark blue) are captured by capture antibodies (pink) on the streptavidin
beads. This results in the localisation of detection antibodies (green) around the
bead. However, droplets with no bead, no cell, or a cell that does not secrete
antibody, will not present this localised green fluorescence. Droplets can then be
sorted by FADS, to selectively enrich for droplets with cells secreting antibodies of
interest. Figure adapted from Mazutis et al., 2013 with permission from Springer
Nature. B. Fluorescence intensities of droplets during analysis and sorting. Cells are
stained with orange dye and can be identified by the orange peaks that go over the
detection threshold. The green peaks represent the secondary antibodies present.
The presence of a high green peak indicates that antibody is secreted and captured
by the bead. This triggers sorting when it goes over the sorting threshold (grey
area, sorting pulse). Figure reprinted from Mazutis et al., 2013 with permission
from Springer Nature. C. Illustration of the antibody binding assay used in Eyer
et al., 2017 and Gérard et al., 2020. To screen for antibodies against soluble antigens,
antibody-secreting cells are encapsulated with streptavidin paramagnetic beads,
F(ab’)2 anti-mouse IgG Fc - Alexa Fluor 647 and antigen - Alexa Fluor 488 (left).
IgGs secreted by antibody-secreting cells are captured on the beads, and will bind
anti-mouse IgG Fc Alexa Fluor 647, giving a red fluorescence peak. If the IgG
binds the antigen of interest, the antigen - Alexa Fluor 488 will also localise at the
beadline, giving a green fluorescence peak. Screening for cell-binding antibodies
requires the co-encapsulation of antibody-secreting cells (blue) with target cells
(green) and F(ab’)2 anti-mouse IgG Fc - Alexa Fluor 647 (right). If the IgG binds
the antigen of interest, the antibodies and the anti-mouse IgG Fc Alexa Fluor
647 will localise around the cell, resulting in the presence of a red fluorescence
peak. Figure reprinted from Gérard et al., 2020 with permission from Springer
Nature. D. Distinguishing between antibody-secreting cells that secrete binders
and non-binders. Antibody-secreting cells (circles) are co-encapsulated with target
cells (purple triangles) and fluorescent secondary antibody (hollow green triangles).
If the secreted antibodies bind to the target cells, a sharp fluorescent peak will be
observed around the cell. A dual colour fluorescence readout is used to normalise
the antibody signal for the confounding factor of cell position within the droplet.
Figure modified and reprinted from Shembekar et al., 2018 under the terms of the
Creative Commons Attribution License (CC-BY 4.0).

The DropMap technology has been further enhanced to enable the screening of
both soluble and membrane-bound antigens, and has been combined with antibody
V-gene sequencing via in-droplet single-cell barcoded reverse transcription, in a
system termed CelliGO (Gérard et al., 2020). For the detection of antibody-secreting
cells secreting antibodies against the soluble targets, droplets similar to those
described for DropMap were utilised (Fig. 1.13C, left). In contrast, for the detection of
binding to membrane-bound targets, antibody-secreting cells were co-encapsulated
with target cells, in the presence of Alexa 647-labelled F(ab’)2 specific for mouse
IgG Fc (Fig. 1.13C, right). Localisation of the Alexa 647 signal to the cells indicated
antibody binding to the target cells. The generated droplets were then sorted via
FADS at a frequency of up to 600 Hz, which is equivalent to the sorting of 120 to
240 cells per second, given encapsulation at λ = 0.2 - 0.4, with a total of 1.5 - 11
million cells screened per experiment. The sorted cells were then recovered and
re-encapsulated into droplets containing lysis buffer, reverse transcriptase and
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hydrogel beads carrying barcoded primers for the capture of antibody heavy and
light chain mRNAs. In a manner similar to outlined in Section 1.8.5, the barcodes
present on each bead are bead-specific, such that cDNAs generated from each cell
are differentially barcoded, enabling cognate VH and VL pairs to be identified
after NGS. Of the antibodies generated from the hit sequences, 93% and 14%
recognised the soluble and membrane-bound antigens of interest, respectively.
More non-redundant IgGs were identified as would have been from traditional
non-microfluidic antibody screening methods, and the IgGs identified had higher
affinities.

The authors also utilised the technology for concurrent targeted single-cell
RNA-seq of 32 different transcripts to study cell phenotype, in a manner similar to
the targeted single-cell transcriptomic analyses described earlier in Section 1.6.6.

1.9.4 Functional antibody screening in droplet microfluidics

Antibody screening to identify neutralising antibodies against infectious agents is
theoretically possible. Wippold et al. have carried out a proof of concept experiment
to demonstrate that droplet microfluidics can be utilised to identify droplets
containing hybridoma cells secreting antibodies neutralising viral infection. They
showed this with the in-droplet infection of rat pulmonary epithelial L2 cells by
replication-competent GFP-tagged murine hepatitis virus (MHV), and demonstrated
that the neutralisation of viral infection by neutralising antibodies could be detected
via a fluorescence readout (Wippold et al., 2020). While the imaging readout that was
used is not compatible with high-throughput screens, one could imagine that similar
assays could be carried out with fluorescence-activated droplet sorting (FADS), as
was previously described (Gérard et al., 2020; Shembekar et al., 2018), to enable the
high-throughput screening and identification of antibodies that neutralise infectious
agents.

High-throughput antibody screening for functional antibodies against a soluble
target, the congestive heart failure drug target angiotensin-converting enzyme 1
(ACE-1), was carried out using droplet microfluidics (Fig. 1.14) (El Debs et al., 2012).
A heterogeneous hybridoma cell population in which only one in ten thousand
cells secreted an antibody inhibiting ACE-1 was encapsulated together with ACE-1,
and incubated off-chip to permit antibody accumulation. These droplets were
then re-injected into a microfluidic device and fused with a second droplet species
containing all reagents required for a fluorescence assay for ACE-1 activity. Droplets
without ACE-1 inhibition had high ACE-1 activity and thus high fluorescence
intensity, while droplets with ACE-1 inhibition exhibited low fluorescence intensity
(Fig. 1.14A). The latter category of droplets were selectively collected by FADS and
the encapsulated cells were recovered (Fig. 1.14B). Over 90% of these cells expressed
the antibody inhibiting ACE-1, demonstrating that this technology is capable of
a more than 9000-fold enrichment of cells secreting a functional antibody. Over
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Figure 1.14: Experimental setup for functional antibody screening. A. Two
different hybridoma cell lines, which expressed either the ACE-1 inhibitory
antibody 4E3 or the non-inhibitory antibody Elec-403, were encapsulated into
droplets together with recombinant ACE-1. The droplets were incubated to permit
antibody accumulation, and then fused with reagents for a fluorogenic assay for
ACE-1 activity. Droplets that contained the Elec-403 hybridoma, which secreted
a non-inhibitory antibody, had uninhibited ACE-1, leading to high fluorescence
readouts in the ACE-1 enzymatic assay. In contrast, droplets that contained the 4E3
hybridoma demonstrated reduced ACE-1 activity, and thus had a low fluorescence
readout. B. Microfluidic chip utilised for the reinjection of droplets after a 6 h
incubation off-chip (I). Droplets were fused with droplets containing the fluorogenic
ACE-1 substrate (II) and incubated for 30 min in a delay line (IV). The sorting
module (VI) permitted the selective collection of droplets with low fluorescence
intensities, which presumably contained inhibited ACE-1. Figures adapted from
El Debs et al., 2012. Copyright 2012 National Academy of Sciences.

300,000 cells were processed in a single experiment, which took less than a day,
demonstrating the speed and throughput possible with this technology. While
hybridoma cells were utilised here, such technology should also be applicable to
non-immortalised B-lymphocytes, as was demonstrated in Eyer et al., 2017 and
Gérard et al., 2020.

Droplet microfluidic methods for antibody screening for binding or function
mostly require prior knowledge or predetermined targets, making them less useful
for target-agnostic screening. In addition, functional antibody screening in droplets
generally requires assay systems utilising fluorescence, which necessitates the
availability of compatible fluorescence assays, which may not exist or may require
prior development.

Current bulk antibody screening technologies are either limited to screening
for antibody binders (phage display) or are able to assess functionality, but are
time-consuming, expensive and limited in the diversity of clones that can be
obtained and screened (hybridoma technology) (as outlined in Section 1.9.1). Droplet
microfluidics has been used to overcome these limitations, with functional single-cell
hybridoma screening having been demonstrated for soluble targets (as exemplified
in Section 1.9.4) (El Debs et al., 2012), but this has not yet been demonstrated
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for membrane-based targets or whole cells. In addition, most antibody discovery
platforms currently require prior knowledge about the target, such that screening
cannot take place in a target-agnostic manner. Combining the utilisation of droplet
microfluidics in functional antibody screening, with the utilisation of droplet
microfluidics for single-cell transcriptomic analyses (as outlined in Section 1.6.4) will
enable the development of a method that permits high-throughput target-agnostic
functional antibody screening. Such a technology would permit the study of the
effect of antibodies on transcriptomes of single target cells, and demonstrating the
feasibility of such a technology is one of the main goals of this thesis.
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2 | Aims and objectives

The main aims of this thesis were to assess the feasibility of a technology combining
the uses of droplet microfluidics for single-cell transcriptomic analyses (as outlined
in Section 1.6.4) and in functional antibody screening (as explained in Section 1.9.4).
This method would enable high-throughput target-agnostic functional antibody
screening by using changes in target cell transcriptomes as a readout.

In order to achieve this, we have made preparations for actual screens, by
arranging for the production of a diverse hybridoma library secreting antibodies
against SK-BR-3 cells, as outlined in Chapter 3.

The first important aim was to assess the feasibility of using single-cell
transcriptomic analyses to study cell-cell interactions, which is discussed in Part I.
This encompasses the first objective, which was to establish a Drop-seq workflow
to effectively generate and process droplets containing two cell types, which is
outlined in Chapter 4. In addition, the second objective was to identify suitable
model systems for the establishment of microfluidic and sequencing workflows,
which is discussed in Chapter 5. The third objective was to assess how many single
cells would be required to detect a given perturbation, and if a perturbation can be
identified from its effect on the transcriptome of a single cell, which is examined
in Chapter 6. A discussion pertaining to the objectives discussed in Part I can be
found in Chapter 7.

The second important aim was to establish an antibody sequencing technology
that would be compatible with Drop-seq. Such a technology would ideally be
capable of sequencing and pairing the heavy and light chain variable regions of
antibody genes, while ensuring that these sequences can be paired to relevant
target cell transcriptomes. The method developed and the associated results are
discussed in Part II, with the microfluidic pipeline outlined in Chapter 8. We
analysed both predefined hybridoma mixtures with known antibody heavy and light
chain sequences and a complex hybridoma mixture with unknown antibody heavy
and light chain sequences, which are presented in Chapters 9 and 10 respectively. A
discussion relevant to Part II can be found in Chapter 11.

The overall feasibility of a high-throughput target-agnostic functional antibody
screening technology and the associated implications are discussed in Chapter 12.
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3 | Preparation of a complex
hybridoma library

For any eventual screens, the structure of which is outlined in Section 12.1, we
would require a complex population of antibody-secreting cells, where the different
antibody-secreting cells would secrete different antibodies that bind a specific cell
line. Therefore, we employed Precision Antibody, a company involved in antibody
generation, to generate a diverse hybridoma library expressing different antibodies
against SK-BR-3 cells.

The SK-BR-3 cell line is a human immortalised breast cancer cell line that
overexpresses the human epidermal growth factor receptor 2 (HER2/ERBB2). This
cell line is medically relevant as approximately 20% of breast cancers demonstrate
HER2 overexpression, and treatments that specifically target Her2 have been shown
to be promising. One such drug, trastuzumab, is a humanised monoclonal antibody
against Her2 (Henjes et al., 2012).

Mice were first immunised with whole SK-BR-3 cells, and sera were extracted
from the immunised mice. Control immunisation experiments were run in parallel at
EMBL and an immune response against SK-BR-3 was detected for both the in-house
sera (Fig. 3.1A) and those obtained from Precision Antibody (Fig. 3.1B). Primary
B-cells were then extracted from the immunised mice and fused with myeloma
cells to generate a diverse population of hybridoma cells. We expect a subset of
hybridoma cells to secrete antibodies that bind to surface proteins on SK-BR-3 cells,
and that a subset of these would induce transcriptomic changes, which could then
be detected via single-cell transcriptomic sequencing, as is outlined in Chapter 5.

We have utilised these hybridoma cells for a number of experiments, including
single-cell RNA-seq of SK-BR-3 cells treated with Precision Antibody hybridoma
supernatant, as outlined in Section 5.9. In addition, as a proof of concept, this
complex hybridoma mixture has been sequenced with our antibody sequencing
technology, as explained in Chapter 10.
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Figure 3.1: Sera binding to whole SK-BR-3 cells. SK-BR-3 cells were incubated
with 100x diluted mouse sera, and subsequently with 1000x diluted Alexa Fluor
568 goat anti-mouse IgG antibody before flow cytometry analysis. Alexa Fluor
568 was detected at 561-586/15, x-axes. A. Sera from an unimmunised mouse
in EMBL (in-house) (blue) and from three mice immunised in EMBL (in-house)
with whole SK-BR-3 cells (pink, green, mustard) were utilised for staining. B. Sera
from an unimmunised mouse from Precision Antibody (blue) and from three mice
immunised by Precision Antibody with whole SK-BR-3 cells (pink, green, mustard)
were utilised for staining.
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Part I

A single-cell transcriptomic
method to map cell-cell

interactions
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4 | A workflow for the
transcriptomic analysis of
cell-cell interactions

This part describes a novel microfluidic workflow for the analysis of interactions
between two cell types via single-cell transcriptomics. Cell-cell interactions play
an important role in the development and function of multicellular organisms, but
current technologies for the study of cell-cell interactions between single cells, in
particular, those that are utilised for the screening of cell-cell interaction factors, are
frequently only capable of assessing one or a few different variables simultaneously,
and largely fail to acquire complex transcriptomic data. Various emulsion-based
single-cell sequencing technologies, such as Drop-seq (Macosko et al., 2015), InDrop
(Klein et al., 2015) and the 10X Genomics 3’ Gene Expression platform (Zheng et al.,
2017), are capable of detecting complex transcriptomic data from single cells, but
these fail to consider the interactions that these cells may partake in.

The microfluidic pipeline for the transcriptomic analysis of cell-cell interactions
is presented in this chapter. To overcome the problems of Poisson distribution that
accompany the co-encapsulation of two cell types, picoinjection was utilised to
selectively inject lysis buffer into droplets with the desired cell occupancies. We
have tested various stimulant and target cell pairs, in a bid to identify a suitable
model system, which is outlined in Chapter 5. In addition, we have also carried out
analyses to determine how many single cells would be required to detect a given
perturbation, which is described in Chapter 6.

4.1 Microfluidic pipeline for the transcriptomic analysis of
cell-cell interactions

Our two cell types of interest – stimulant cells and target cells – would be
co-encapsulated together with Drop-seq beads. The stimulant cells present or
secrete factors that bind to cell surface proteins on the target cell, triggering a
transcriptomic change in the target cell. The droplets would then be incubated at
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37 °C for 4 - 8 hours, to enable antibody binding and the induction of transcriptomic
changes. Subsequently, cell lysis reagents would be selectively picoinjected into
the droplets of interest, before the emulsion is broken and the library is prepared.
From the sequencing data, one expects to obtain two sets of data, namely sequences
relating to the stimulant, together with gene expression data of the target cells,
which can be correlated using cell barcodes (Fig. 4.1). Based on the target cell
transcriptomes, we expect to detect either single specific stimulant cells of interest,
or small groups of identical stimulant cells. Please refer to Chapters 6 and 7 for
more information regarding the minimum number of cells required to detect a
perturbation.

Figure 4.1: Microfluidic pipeline and chip designs for the transcriptomic
analysis of cell-cell interactions. A. Microfluidic pipeline for the transcriptomic
analysis of cell-cell interactions. (1) Stimulant cells are co-encapsulated with target
cells and barcoded beads. Droplets are incubated to enable the induction of
transcriptomic changes on the target cells. (2) Lysis buffer is then added via selective
picoinjection, before (3) the emulsion is broken and the library is further processed.
(4) The sequencing data would contain both information on the stimulant (green)
and gene expression of the target cells (blue), grouped by barcode (orange, purple).
B. Chip design used for bead and cell encapsulation (Step 1). Chip design reprinted
from Macosko et al., 2015 with permission from Cell. C. Chip design used for
picoinjection (Step 2). Chip design reproduced with permission from Hongxing
Hu, EMBL Heidelberg.
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Theoretically, any emulsion-based single-cell transcriptomic technology could
be used. However, as we require an incubation step in between cell encapsulation
and cell lysis, the cell lysis reagents cannot be added at cell encapsulation, which is
the case for typical emulsion-based single-cell transcriptomic workflows. Therefore,
we cannot use the 10X Genomics Single Cell 3’ Gene Expression technology as
the commercial nature of the technology precludes a thorough understanding of
the composition of the lysis buffer, preventing us from modifying the workflow.
Between Drop-seq and InDrop, Drop-seq has been shown to perform more reliably
(Zhang et al., 2019), and the smaller droplets and smaller beads are easier to
manipulate and design chips for.

4.2 Co-encapsulation of two cell types

Passive cell encapsulation in droplet microfluidics is non-deterministic and can
be best modelled by the Poisson distribution (Clausell-Tormos et al., 2008). In
traditional single-cell transcriptomic assays, cells are flowed into the chip at a density
of less than one cell per droplet on average, such that a majority of droplets contain
no cells. For example, for λ = 0.1 (where λ is the cell density divided by droplet
volume), about 90.5% of droplets would contain no cells, about 9% would contain
one cell as desired, while less than 0.5% of droplets would contain two or more cells
(Shembekar et al., 2016). Coupled with the high frequency of droplet production, this
ensures that a sufficient number of cell-containing droplets is generated for analyses,
while minimising the number of droplets containing multiple cells, ensuring true
single-cell analyses.

However, Poisson statistics makes the co-encapsulation of two cell types
difficult. For the encapsulation of one cell each of two different cell types, as is
desired in this experiment, the maximum achievable probability is only 13.5%
(Fig. 4.2, dark green) (Hu et al., 2015). Even when considering stimulant cells
encapsulated with two or more target cells (Fig. 4.2, light green), which make up
9.71% of droplets and could still yield useful sequencing data, over 60% of droplets
containing barcoded beads would contain an undesirable combination of cells
(Fig. 4.2, light red, dark red). These droplets would contribute to the sequencing
data generated, but as they contain either only one cell type, or more than one
stimulant cell, the transcriptomic data generated from these droplets would not be
useful for our analysis, and would instead be a waste of sequencing resources.

4.3 Picoinjection

To overcome this problem, we have optimised a technology that could selectively
process droplets with the desired cell occupancy, by the selective picoinjection of lysis
buffer into droplets with the correct cell occupancy. Our previously encapsulated
droplets would be re-injected into the picoinjection chip while the cell lysis reagents
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Figure 4.2: Droplet occupancies for encapsulation with two cells and a bead. The
proportion of each droplet type are shown for an experiment in which barcoded
beads (grey circles, BC) are encapsulated at λ = 0.3 and the stimulant (green) and
target cells (blue) are encapsulated at λ = 1. (1) Approximately 22% of droplets
would contain a single bead and 25% of droplets will contain at least one barcoded
bead and thus generate sequencing data. (2) Of the sequenced droplets, 36.8%
contain no stimulant cells, 36.8% contain exactly one stimulant cell, while 26.4%
contain two or more stimulant cells. (3) Independently, 36.8% of sequenced droplets
contain no target cells, 36.8% contain exactly one target cell, while 26.4% contain
two or more target cells. (4) We can calculate the expected percentages of droplets
with different occupancies. We expect that only 13.5% of sequenced droplets will
have our desired occupancy of one stimulant cell and one target cell (dark green).
Droplets with one stimulant and two or more target cells may still be useful (light
green). Droplets containing only target cells (light red) or only stimulant cells or
multiple stimulant cells (dark red) will not be useful.

would be loaded into the picoinjector nozzle (Fig. 4.3A). The stimulant and target
cells would be stained with different cell dyes (Cell Trace CFSE and Cell Trace
Violet) prior to encapsulation. Picoinjection is triggered by the activation of an
electric field, which destabilises the surfactant film surrounding droplets and causes
injection of reagents into droplets (Abate et al., 2010). We would utilise the lasers of
wavelengths 375 nm and 488 nm and their associated photo-multiplier tubes (PMTs)
that detect emitted light at 450 nm and 525 nm, and trigger picoinjection only when
fluorescence signals from both cell types are detected. This means that lysis buffer
will only be added to droplets with the desired occupancy, thus minimising the waste
of resources spent on sequencing droplets with undesirable droplet occupancies.

This has been demonstrated for single-colour picoinjection, where reagents
were injected into droplets containing green cells (Fig. 4.3A) but not into empty
droplets (Fig. 4.3B). Given that dual-colour sorting has been previously established
in the lab (Hu et al., 2015), the utilisation of dual-colour picoinjection can be easily
envisioned.
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Figure 4.3: Selective processing of droplets with desired cell occupancies via
single-colour picoinjection. A. High-speed video frames taken at (1) t = 0 ms, (2)
t = 2.5 ms and (3) t = 5 ms, show picoinjection in the presence of one or more green
cells in a passing droplet (green spot in (1)). Note the loss of interface between
the liquid in the picoinjector and in the droplet (white arrows in (2) and (3)). B.
High-speed video frames taken at (1) t = 0 ms, (2) t = 2.5 ms and (3) t = 5 ms, show
that picoinjection does not take place in the absence of green cells in a passing
droplet. Note the presence of the interface between the liquid in the picoinjector
and in the droplet (white arrows in (2) and (3)). Frames from a video reproduced
with permission from Hongxing Hu, EMBL Heidelberg
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5 | Identification of a suitable
model system

To establish a technology that can study cell-cell interactions at a single-cell level, we
require a suitable model system. This system should be comprised of two cell lines -
a stimulant cell line and a target cell line. The stimulant cell line should present or
secrete a genetically-encoded factor that would bind to cell surface proteins on the
target cell line and trigger a transcriptomic change in the target cell line that would
be detectable by single-cell transcriptomics (Fig. 5.1, (1)). Ideally, we would also have
a negative cell line that would be identical to the stimulant cell line (Fig. 5.1, (2)),
except that it would not present or secrete the stimulant, and thus we expect any
target cell co-encapsulated with this cell line to have a transcriptome similar to a cell
that was present alone in a droplet (Fig. 5.1, (3)). The stimulant should be genetically
encoded, such that it can be detected via emulsion-based single-cell sequencing
(Fig. 5.1, (4)). In addition, as both cells would be co-encapsulated in the same droplet
and would thus be associated with the same droplet barcode, it would be ideal for
the stimulant and target cell lines to be derived from different species, such that
the two transcriptomes can be distinguished after sequencing. In addition, the time
permitted for the stimulant and cell line of interest should ideally be no more than
8 - 12 hours, due to limitations imposed by the droplet microfluidic format. Whilst it
has been shown that cell viability in droplets generally remains above 90% over two
days, it has also been demonstrated that increased cell density in droplets results in
increased cell death, likely due to the lack of nutrition or the accumulation of toxic
metabolites (Clausell-Tormos et al., 2008). Co-encapsulation doubles the effective
cell concentration in droplets, and thus we prefer to limit the time the cells spend in
droplets to 8 - 12 hours, to minimise cellular stress and cell death.

The stimulant can be either presented on the cell surface or secreted by the
stimulant cell line. As the density of the encapsulation medium is still lower than
that of cells, the encapsulated cells tend to sink and interact, ensuring transcriptomic
changes in the target cells co-encapsulated with a stimulant cell that presents the
stimulant on the cell surface (Hu et al., 2015; Segaliny et al., 2018). In addition,
the small droplet volumes ensure that any secreted factors, such as antibodies,
will reach a functional concentration in the matter of hours (El Debs et al., 2012;
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Figure 5.1: Ideal model system for transcriptomic analysis of cell-cell
interactions. The ideal model system would comprise of a stimulant cell line
(green) and a target cell line (blue). (1) Droplet containing a stimulant cell (green)
together with a target cell (blue). The stimulant cell line should produce or secrete
a factor that binds to and induces transcriptomic changes in the target cells (yellow
star). (2) Droplet containing a cell that does not express the stimulant, but is
otherwise genetically identical to the stimulant cell (pink), together with a target
cell (blue). No transcriptomic changes would induced in the target cells (blue).
(3) Droplet containing only a single target cell (blue). Target cells present alone
in a droplet (blue) should have transcriptomes similar to the target cell in (2).
(4) The stimulant should be genetically encoded such that cells that present and
do not present the stimulant can be differentiated via sequencing (green, pink).
(5) Sequences from the same droplets, namely stimulant-associated sequences and
target cell transcriptome sequences, can be linked via cell barcode sequences (red,
purple and cyan for (1), (2) and (3) respectively). The target cell transcriptomes
should be distinguishable from the stimulant cell transcriptomes, and those from
target cells co-encapsulated with positive stimulant cells (1, yellow) and negative
stimulant cells (2, dark blue) should be distinguishable via single-cell sequencing.

Shembekar et al., 2018). This has been exemplified by Mazutis et al., where detectable
concentrations of antibodies (approximately 20 nM) were detected after merely
15 minutes (Mazutis et al., 2013).

These three identified cell lines would then be used for our subsequent screens,
where stimulant-presenting cells would be spiked into a population of negative cells
at different ratios, prior to co-encapsulation with the target cell line, to elucidate the
sensitivity and specificity of our technology.

We have identified and tested various model systems. Many of the initial
systems tested involved antibody-secreting hybridoma cells together with their
associated target cells, as we hoped to couple the study of cell-cell interactions
with the antibody sequencing technology developed in Part II, by establishing and
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optimising a system to study the effect of antibodies on target cell transcriptomes.
Subsequently, other model systems involving interactions via membrane-bound
proteins were also considered and tested.

As antibody binding can indeed induce effects on target cell transcriptomes
(Abidi et al., 2008; Sousa et al., 2019), we have tested various promising systems,
first with bulk sequencing, to assess if there are indeed transcriptomic differences
between treated and untreated populations. Systems have then been subjected to
emulsion-based single-cell sequencing, to assess if the transcriptomic differences
can be identified at a single-cell level. The 10X Genomics Chromium platform for
3’ Gene Expression is currently the gold standard in the field and was utilised, in
conjunction with cell hashing (explained in Section 5.7) to minimise batch effects.

For all experiments involving hybridoma cells, the H25B10 mouse hybridoma
cell line was used as a negative control. H25B10 hybridoma cells secrete antibodies
against the Hepatitis B virus Surface Antigen, which is not present on the target cell
lines utilised.

5.1 SK-BR-3 cells with 4D5 hybridoma cells

The SK-BR-3 cell line is a human immortalised breast cancer cell line that
overexpresses the human epidermal growth factor receptor 2 (HER2/ERBB2) and is
thus susceptible to trastuzumab, a humanised monoclonal antibody against Her2
(Henjes et al., 2012). The murine version of this antibody, 4D5, is secreted by the
4D5 hybridoma cell line. As the effect of the anti-Her2 antibodies on the SK-BR-3
transcriptome is well defined (Le et al., 2005), we expected that SK-BR-3, together
with trastuzumab and the associated 4D5 hybridoma cell line, would be a good
model system for us to optimise and study the sensitivity of our assay.

5.1.1 4D5 hybridoma cells fail to produce functional antibody

In order to accurately estimate antibody concentrations within hybridoma
supernatants, we carried out an ELISA against mouse IgG (Fig. 5.2A). However,
we estimated the soluble IgG levels in 4D5 hybridoma supernatants to be between
74.0 ng/ml and 87.2 ng/ml (Fig. 5.2A, undiluted (green crosses) and 4x diluted
(mustard crosses)), which is significantly lower than the antibody concentrations of
other hybridoma supernatants. For example, the mouse IgG concentrations of the
8G5F11, IE9F9 and H25B10 hybridoma supernatants were found to be 7.74 µg/ml,
12.09 µg/ml and 24.72 µg/ml respectively (Fig. 5.2B). This makes the antibody
concentration of the 4D5 hybridoma supernatant over 85x lower than expected.

It is also possible to detect antibodies on the surface of hybridoma cells by
staining hybridoma cells with antibodies against the IgGs of interest. While the IgG
concentrations present on the cell surface may not necessarily correlate well with
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Figure 5.2: 4D5 hybridoma cells express low antibody amounts. A. The mouse
IgG concentrations of hybridoma supernatants were assessed by ELISA. A standard
curve was prepared (blue line) based on the absorbance values at 600 nm obtained
for mouse IgG standards (hollow blue circles). The common logarithms of the
absorbance values at 600 nm are shown on the y-axis while the common logarithms
of mouse IgG concentrations in ng/ml are shown on the x-axis. Mouse IgG
concentrations of undiluted 4D5 (green crosses) and 4x diluted 4D5 supernatants
(mustard crosses) were assessed. Media was also assessed as a negative control
(pink cross). Data was generated with the IgG mouse ELISA Kit from abcam. B. The
mouse IgG concentrations of hybridoma supernatants were assessed by ELISA. A
standard curve was prepared (blue line) based on the absorbance values at 600 nm
obtained for mouse IgG standards (hollow blue circles). The natural logarithms
of the absorbance values at 600 nm are shown on the y-axis while the natural
logarithms of mouse IgG concentrations in ng/ml are shown on the x-axis. Mouse
IgG concentrations of 200x diluted 8G5F11 (pink cross), 200x diluted IE9F9 (green
cross) and 200x diluted H25B10 supernatants (mustard cross) were assessed. Data
was generated with the IgG mouse ELISA Kit from abcam. C. 4D5 hybridoma
cells were incubated with no antibody (blue) or with 2000x diluted Alexa Fluor
488 goat anti-mouse IgG antibody (pink) before flow cytometry analysis. D. OKT-9
hybridoma cells were incubated with no antibody (blue) or with 2000x diluted
Alexa Fluor 488 goat anti-mouse IgG antibody (pink) before flow cytometry analysis.
Alexa Fluor 488 was detected at 488-530/30, y-axes and forward scatter is reflected
on the x-axes.
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secreted IgG antibodies, it has been shown that hybridoma cells that secrete IgG
generally also had surface-bound IgG (Liu et al., 2015a).

We found that there was a negligible amount of surface-bound IgG present on
4D5 hybridoma cells (Fig. 5.2C), as indicated by the low Alexa Fluor 488 signal on
stained 4D5 hybridoma cells. In contrast, the high Alexa Fluor 488 signals present on
OKT-9 hybridoma cells, indicate high expression of surface-bound IgG (Fig. 5.2D).

These data suggest that 4D5 hybridoma cells secrete a limited amount of
antibody and thus, may be restricted in their utility as a model system.

In addition, ten 4D5 heavy chain sequences were analysed with IgBLAST
(Ye et al., 2013), revealing that while a majority of sequences (9/10) align well to
each other and have identifiable CDR3 regions, the sequenced heavy chains are
non-productive (Fig. 5.3).

Figure 5.3: 4D5 heavy chain is non-productive. Ten PCR fragments were
amplified from 4D5 cDNA and sent for sequencing. 9/10 sequences were
homologous and this sequence was subjected to IgBLAST (Ye et al., 2013), which
indicated that this sequence was non-productive.

The lack of a functional heavy chain detected from 4D5 hybridomas,
accompanied by the low antibody concentrations in 4D5 hybridoma supernatants
suggest that limited, if any, functional antibody is produced by the 4D5 hybridoma
cells. The cell line was also discontinued in ATCC in 2018, with no indication of if,
or when, it would be reinstated. Therefore, it is not feasible to use 4D5 as part of a
model system for the establishment of our technology.
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5.1.2 Single-cell RNA-seq via Drop-seq
SK-BR-3 cells with anti-Her-2 antibody

We also assessed the transcriptomic responses of SK-BR-3 cells encapsulated in the
absence or presence of 1 µg/ml recombinant anti-Her2 antibody. Clustering by
sample is observed for the differentially treated SK-BR-3 cells along the second
component, which is responsible for 6% of the variance (Fig. 5.4).

This suggests that the transcriptomic changes induced by this stimulus are
detectable by single-cell transcriptomics. However, the lack of 4D5 cells expressing
functional anti-Her-2 antibodies currently prevents us from developing this model
system further.

Figure 5.4: Dimensional reduction of gene expression data of SK-BR-3 cells.
Gene expression data of untreated SK-BR-3 cells (blue circles) and SK-BR-3 cells
treated with 1 µg/ml recombinant anti-Her2 antibody (orange triangles), obtained
by Drop-seq. The Principal Component Analysis was carried out on the scran
normalised counts, with the first two principal components plotted. The size of the
shapes indicate the number of total features, namely the number of genes that are
detected per droplet. Data reproduced with the permission of Charles Girardot,
EMBL Heidelberg.
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5.2 Jurkat cells with hybridoma cells secreting anti-CD4
antibodies

The Jurkat cell line is an immortalized line of human T-lymphocytes (Schneider
et al., 1977), while the associated hybridoma cell line secretes antibodies against
human CD4. CD4 is a membrane glycoprotein that is a co-receptor of T-cell
receptors (TCRs) (Glatzová and Cebecauer, 2019), assisting in the communication
with antigen-presenting cells. CD4 is also utilised by HIV-1 to gain entry into T-cells
(Kwong et al., 1998).

Anti-CD4 antibodies have been used for in vitro T-cell and Jurkat cell activation,
although this is typically done in conjunction with the OKT-3 antibody (Klammt
et al., 2015).

5.2.1 Single-cell RNA-seq via Drop-seq
Jurkat cells with anti-CD4 hybridoma supernatant

We assessed the transcriptomic responses of untreated Jurkat cells and Jurkat cells
treated with anti-CD4 hybridoma supernatant, which were subsequently processed
via Drop-seq. No clustering by sample is observed for the differentially treated
Jurkat cells at the single-cell level (Fig. 5.5). This suggests that the model system
involving Jurkat and anti-CD4 hybridoma cells does not induce transcriptomic
changes in Jurkat cells that are distinct enough to be detected at the single-cell level,
demonstrating that this model system cannot be used for the development of our
technology.

5.3 K-562 cells with OKT-9 hybridoma cells

The K-562 cell line is a human immortalised myelogenous leukemia cell line (Lozzio
and Lozzio, 1975), while OKT-9 mouse hybridoma cells secrete antibodies that bind
to the transferrin receptor (CD71) present on K-562 cells (Sutherland et al., 1981).
CD71 plays a physiological role in cellular iron intake, is necessary for erythrocyte
development and is implicated in carcinogenesis of various types of cancers (Chan
et al., 2014b; Daniels et al., 2012), and thus we expected a detectable transcriptomic
response upon binding of OKT-9 antibodies to K-562 cells.

Additionally, this model system has been previously used in droplet
microfluidic assays utilising dual-colour normalised fluorescence readouts to detect
antibody binding in a high-throughput manner (Shembekar et al., 2018).

5.4 Jurkat cells with OKT-3 hybridoma cells

The Jurkat cell line is an immortalized line of human T-lymphocytes (Schneider
et al., 1977), while OKT-3 mouse hybridoma cells secrete antibodies that bind CD3,
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Figure 5.5: Dimensional reduction of gene expression data of Jurkat cells. Gene
expression data of untreated Jurkat cells (cultured in media only) (blue circles)
and Jurkat cells treated with anti-CD4 hybridoma supernatant (orange triangles),
obtained by Drop-seq. The Principal Component Analysis was carried out on the
scran normalised counts, with the first two principal components plotted. The size
of the shapes indicate the number of total features, namely the number of genes
that are detected per droplet. Data reproduced with the permission of Charles
Girardot, EMBL Heidelberg.

a T-cell co-receptor that plays a role in T-cell activation. OKT-3 can activate T-cells
(Norman, 1995), with this activation having been shown to be associated with a
transcriptomic response detectable in bulk (Smeets et al., 2012).

5.5 Bulk RNA-seq
K-562 cells with OKT-9 hybridoma supernatant and Jurkat cells

with OKT-3 hybridoma supernatant

In order to assess the suitability of the model systems involving K-562 cells with
OKT-9 hybridoma cells and Jurkat cells with OKT-3 hybridoma cells, we conducted
a bulk RNA-seq experiment. We sequenced 3 replicates each of K-562 cells treated
with OKT-9 or H25B10 (negative control) hybridoma supernatants, and Jurkat cells
treated with OKT-3 or H25B10 (negative control) hybridoma supernatants. Our aim
was to test if there were transcriptomic changes present that were detectable in bulk.
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A

B

Figure 5.6: Bulk RNA-seq of two promising model systems. Gene expression
data from bulk RNA-seq experiments were analysed via Principal Component
Analysis (PCA) and the first two principal components were plotted. A. Clustering
of gene expression data from K-562 cells treated with H25B10 hybridoma
supernatant (red, "KH25") or with OKT-9 hybridoma supernatant (turquoise,
"KOKT9"). B. Clustering of gene expression data from Jurkat cells treated
with H25B10 hybridoma supernatant (red, "JH25") or with OKT-3 hybridoma
supernatant (turquoise, "JOKT"). Data reproduced with the permission of Charles
Girardot, EMBL Heidelberg.

For both model systems, we observed strong clustering of replicates based on
treatment (Fig. 5.6). In particular, differentially-treated samples cluster at opposite
ends of the x-axis, which represents the first principal component (PC1) and accounts
for 92% and 97% of the variance for the K-562 and Jurkat systems respectively. This
reflects that most of the variance present is due to the treatment with the different
hybridoma supernatants, which illustrates that treatment of K-562 cells with OKT-9
hybridoma supernatant, and Jurkat cells with OKT-3 hybridoma supernatant does
induce transcriptomic changes in the respective target cells which can be detected
in bulk RNA-seq, laying the groundwork for single-cell transcriptomic analysis
(Section 5.7).

5.6 Synthetic model systems

Two synthetic model systems were utilised, namely MCF-7 and A375-P cells treated
with niclosamide, or with DMF (as a negative control).

The MCF-7 cell line is a human immortalised breast cancer cell line (Soule et al.,
1973) which has been widely used in the study of breast cancer, while the A375-P
cell line is a human malignant melanoma cell line (Welch et al., 1991).

Niclosamide is a small molecule drug that is used to treat parasitic infections,
but as it modulates Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling
pathways, it has been repurposed for the treatment of other diseases, including
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cancer (Barbosa et al., 2019; Chen et al., 2018). The interactions of both these cell
lines with niclosamide have been previously characterised in the Connectivity Map,
where niclosamide had a high average transcriptional impact score of 0.65, which
is in the 94th percentile of all tested drugs present in the Connectivity Map, with
the specific Transcriptional Activity Scores above 0.5 for both MCF-7 and A375
(Subramanian et al., 2017). This reflects that a large transcriptomic change was
induced in both these cell types upon treatment with niclosamide.

The Connectivity Map also enabled us to identify a subset of genes that have
been shown to be up- or down-regulated in MCF-7 and A375 cells upon niclosamide
treatment, specifically by identifying genes with absolute Z-scores larger than 5
(Subramanian et al., 2017). Based on the Connectivity Map data, TSC22D3 and
DDIT4 were up-regulated in MCF-7 cells upon niclosamide treatment, while MAT2A
was down-regulated. Similarly, INSIG1 and ARHGEF2 were up-regulated in A375
cells treated with niclosamide.

Figure 5.7: Relative gene expression in MCF-7 and A375-P cells upon treatment
with niclosamide. Normalised relative expression of the genes of interest, ACTB
and GAPDH in MCF-7 and A375-P cells upon treatment with niclosamide. Gene
expression was determined via reverse transcription followed by quantitative
real-time PCR (RT-qPCR), with the expression of each gene of interest assessed
using two independent primer pairs. Gene expression was normalised to that of
cells treated with dimethylformamide (DMF) (negative control) (blue) and to the
expression of ACTB, a housekeeping gene. GAPDH, a second housekeeping gene,
was also analysed. Two replicates were carried out for each sample - primer pair
combination (n = 2), with the error bars indicating the standard deviation present.
A. Normalised relative expression of MAT2A, TSC22D3 and DDIT4 in MCF-7 cells
upon treatment with niclosamide (pink). B. Normalised relative expression of
INSIG1 and ARHGEF2 in A375-P cells upon treatment with niclosamide (pink).

We designed qPCR primers against these genes and confirmed that the expected
transcriptomic effects were detectable in cDNA obtained from MCF-7 and A375-P
cells treated with niclosamide (Fig. 5.7). Specifically, MAT2A expression was reduced
by 50% and an approximate 10-fold increase in DDIT4 expression was noted for



5.7. Studying multiple model systems with cell hashing 77

MCF-7 cells treated with niclosamide (Fig. 5.7A). Similarly, an increase in INSIG1
expression of over eight-fold and an approximate two-fold increase increase in
ARHGEF2 expression were observed for A375-P cells treated with niclosamide
(Fig. 5.7B).

These suggested that a larger transcriptomic effect might be present and might
be detectable with single-cell transcriptomics, and thus, these systems have been
included in our 10X experiments as positive controls.

5.7 Studying multiple model systems with cell hashing

5.7.1 Cell hashing

As the 10X Genomics Single Cell 3’ Gene Expression platform performs the best out
of the three emulsion-based single-cell transcriptomic technologies (Zhang et al.,
2019), we have utilised it to test if the transcriptomic changes seen in the target cell
lines upon stimulation are detectable via single-cell transcriptomics. To minimise
batch effects caused by the independent processing of different samples, we have
utilised cell hashing (Stoeckius et al., 2018).
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Figure 5.8: Cell hashing enables the identification of a desired model system.
Two samples of target cells (blue) are differentially treated (red, green) before being
tagged with different hashtag antibodies (light blue, orange). After sequencing, the
sample identity of the cells can be elucidated, based on the presence of different
oligo tags (as indicated by the asterisk). Based on the cell barcodes (red, green), the
oligo tag sequences can be linked to the gene expression of individual single cells,
to study differential gene expression.

Differentially-treated samples and samples from different model systems were
all treated with antibodies against ubiquitously-expressed cell surface proteins,
which have been linked to different oligonucleotide tags (Stoeckius et al., 2018). The
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different samples were then pooled and processed via the 10X Genomics 3’ Gene
Expression v3 or v3.1 pipeline (Fig. 5.8). By sequencing both the cell transcriptomes
and the cell hashtags, each specific transcriptome can be mapped back to a specific
sample, and as all samples are processed in a single sequencing experiment, batch
effects caused by processing are minimised. Cell hashing also permits the pooling
and simultaneous analysis of multiple independent model systems, making it
cost-effective.

5.7.2 Single-cell RNA-seq with 10X Genomics

Over two independent experiments, we have studied six pairs of samples in total. We
have included two positive model systems, which involve two cell lines, MCF-7 and
A375-P, which were both treated with DMF (negative control) or niclosamide. We
carried out two independent experiments with MCF-7 cells treated with niclosamide,
where we compared the data obtained when the experiments were conducted with
and without cell cycle synchronisation (Appendix B). While the systems do not
involve cell-cell interactions, but rather the effect of a drug on cell transcriptomes,
we believed that the strong transcriptional changes induced by niclosamide could
be used as a control to study the number of cells needed to detect and identify a
group of perturbed cells via single-cell transcriptomics (Chapter 6).

In addition, we had three pairs of samples from our model systems of interest,
namely K-562 cells treated with anti-BSA antibody (negative control) or OKT-9
supernatant, as well as Jurkat cells treated with anti-His antibody (negative control)
or anti-CD3 antibody, in the absence and presence of 10 ng/mL phorbol 12-myristate
13-acetate (PMA). PMA is used to stimulate T-cell activation, proliferation, and
cytokine production (Weissman et al., 1986) and had previously been shown to
increase the differential gene expression between untreated Jurkat cells and cells
treated with anti-CD3 antibody (Smeets et al., 2012).

As the different model systems utilise human cell lines from different tissue
types, we expect them to cluster separately upon dimensionality reduction and
visualisation, due to cell line specific differences in gene expression. We observe
this in the t-SNE and UMAP plots generated for both the first and second 10X
experiments (Fig. 5.9), indicating that cell hashing does indeed permit distinguishing
between differently treated and differently labelled samples. It also indicates that
the single-cell transcriptomic analysis permits delimitation of cells from different
cell lines.

MCF-7 cells treated with niclosamide cluster separately from MCF-7 cells
treated with DMF, in the presence and absence of cell cycle synchronisation
(Fig. 5.10A, B). We did not observe stark differences between the synchronised and
unsynchronised samples, despite the fact that synchronisation was highly efficient,
with unsynchronised samples having 69.0% of MCF-7 cells in G1, which increased
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(see next page)
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Figure 5.9: Distinguishing different cell types and treatments with cell hashing.
Normalised gene expression data of different cell types treated with stimulants.
A. t-distributed stochastic neighbourhood embedding (t-SNE) clustering of six
samples from the first 10X and cell hashing experiment, comprising of A375-P cells
treated with dimethylformamide (DMF, negative, blue) or with niclosamide (black),
Jurkat cells treated with anti-His-antibody (negative, dark red) or with anti-CD3
antibody (pink), and unsynchronised MCF-7 cells treated with DMF (negative,
light green) or with niclosamide (dark green). A perplexity of 50 was used. B. Six
samples from the second 10X and cell hashing experiment visualised using Uniform
Manifold Approximation and Projection (UMAP), comprising of Jurkat cells treated
with anti-His-antibody (negative, mustard) or with anti-CD3 antibody (orange) in
the presence of PMA, K-562 cells treated with anti-BSA antibody (negative, teal) or
with OKT-9 supernatant (green), and synchronised MCF-7 cells treated with DMF
(negative, blue) or with niclosamide (purple). The data was generated via the 10X
Genomics 3’ Gene Expression v3 pipeline. Data reproduced with the permission of
Charles Girardot, EMBL Heidelberg.

to 95.9% upon synchronisation (Appendix B). Similarly, A375-P cells treated with
niclosamide cluster separately from A375-P cells treated with DMF (Fig. 5.10C).
These signify that niclosamide is able to induce a transcriptomic change in MCF-7
and A375-P cells that can be detected via single-cell transcriptomics, and these
results are used in Chapter 6 to further examine the bioinformatic identification of
positive events.

In contrast, no clustering by sample is apparent for K-562 cells treated with
OKT-9 hybridoma supernatant (Fig. 5.10D), or for Jurkat cells treated with anti-CD3
antibody in the absence and presence of PMA (Fig. 5.10E, F). These suggest that
the transcriptomic changes induced by these stimuli are not strong enough to be
detected by single-cell transcriptomics, and that these two model systems cannot
be used to further develop our technology. As such, we continued to search for a
suitable model system.
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Figure 5.10: Dimensional reduction of gene expression data from model
systems. Normalised gene expression data of different cell types treated with
stimulants, visualised using Uniform Manifold Approximation and Projection
(UMAP). The different colours indicate the sample identity based on the detected
hashtags, while different shapes indicate different identities as determined by
Seurat. A. UMAP of unsynchronised MCF-7 cells treated with DMF (red) or with
niclosamide (turquoise) as part of the first 10X experiment. B. UMAP of cell-cycle
synchronised MCF-7 cells treated with DMF (red) or with niclosamide (turquoise)
as part of the second 10X experiment. C. UMAP of A375-P cells treated with DMF
(red) or with niclosamide (turquoise) as part of the first 10X experiment. D. UMAP
of K-562 cells treated with anti-BSA antibody (red) or with OKT-9 hybridoma
supernatant (turquoise) as part of the second 10X experiment.E. UMAP of Jurkat
cells treated with anti-His antibody (turquoise) or with anti-CD3 antibody (red) as
part of the first 10X experiment. F. UMAP of Jurkat cells treated with PMA, and
with anti-His antibody (turquoise) or with anti-CD3 antibody (red) as part of the
second 10X experiment. Data reproduced with the permission of Charles Girardot,
EMBL Heidelberg.

5.8 Differentiated U937 cells with 60bca hybridoma cells

U937 cells are a human macrophage cell line, which can be induced to differentiate
and express CD14 upon the addition of 100 nM 1,25-dihydroxyvitamin D3 (Baek
et al., 2009). CD14 is a membrane co-receptor for the binding and detection of
bacterial lipopolysccharides (LPS), and thus plays a crucial role in regulating cellular
and subsequent immune responses to LPS (Zanoni et al., 2011). The 60bca mouse
hybridoma cell line secretes antibodies that bind to CD14 (Wright et al., 1990),
inhibiting the binding of the LPS-LBP protein complexes to CD14, preventing the
release of tumour necrosis factor alpha (TNFα) (Wright et al., 1990). Thus, we
expected the activation of differentiated U937 cells with LPS and LBP in the presence
and absence of 60bca antibodies to result in differential transcriptomic responses.

5.8.1 Differentiation of U937 cells

We have established the induction of CD14 expression in U937 cells. CD14
expression was detected in U937 cells treated with 100 nM 1,25-dihydroxyvitamin D3
for 24 hours (Fig. 5.11B, green), but not in untreated U937 cells (Fig. 5.11A, green).
This fluorescence signal was absent in the absence of the primary antibody (mouse
anti-human CD14 antibody) (Fig. 5.11B, blue and pink), demonstrating that it is
indeed specific to CD14 expression.

5.8.2 Bulk mRNA-seq
U937 cells, LPS and 60bca hybridoma supernatant

In order to assess the suitability of U937 cells induced to express CD14 with
60bca hybridoma cells as a model system, we conducted a bulk RNA-seq
experiment. We sequenced U937 cells induced to express CD14, in the presence
of 500 ng/mL lipopolysccharides (LPS) and 1% human serum, which contains
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Figure 5.11: Increased CD14 expression in U937 cells treated with
1,25-dihydroxyvitamin D3. A. Untreated U937 cells were incubated with no
antibody (blue), with only 1000x diluted Alexa Fluor 488 goat anti-mouse IgG
antibody (pink), or with 250x diluted mouse anti-human CD14 antibody and 1000x
diluted Alexa Fluor 488 goat anti-mouse IgG antibody before flow cytometry
analysis. B. U937 cells treated with 100 nM 1,25-dihydroxyvitamin D3 for 24 hours
were incubated with no antibody (blue), with only 1000x diluted Alexa Fluor 488
goat anti-mouse IgG antibody (pink), or with 250x diluted mouse anti-human CD14
antibody and 1000x diluted Alexa Fluor 488 goat anti-mouse IgG antibody before
flow cytometry analysis. Alexa Fluor 488 was detected at 488-530/30, x-axes.

Figure 5.12: Bulk RNA-seq of CD14-expressing U937 cells in the presence of
LPS and human serum. Gene expression data from a bulk RNA-seq experiment
was processed with RUVSeq and analysed via Principal Component Analysis (PCA)
and the first two principal components were plotted. Clustering of gene expression
from U937 cells treated with 60bca hybridoma supernatant (red, "60BCA") or with
H25B10 hybridoma supernatant (turquoise, "H25"), in the presence of 500 ng/mL
LPS and 1% human serum. Data reproduced with the permission of Charles
Girardot, EMBL Heidelberg.

lipopolysaccharide-binding protein (LBP). These cells were simultaneously treated
with 60bca or H25B10 (negative control) hybridoma supernatants, to detect if there
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is a detectable transcriptomic difference between samples treated with 60bca or
H25B10 hybridoma supernatants.

We observed strong clustering of replicates based on treatment with different
hybridoma supernatants (Fig. 5.12). In particular, differentially-treated samples
cluster at opposite ends of the x-axis, which represents the first principal component
(PC1) and accounts for 79% of the variance. This suggests that most of the variance
present is due to the treatment of the U937 cells with the different hybridoma
supernatants, in the presence of 500 ng/mL LPS and 1% human serum.
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Figure 5.13: Gene ontology analysis of bulk RNA-seq data of CD14-expressing
U937 cells in the presence of LPS and human serum. The top ten over-represented
categories in Biological Processes (BP) are shown on the y-axis. The different shades
of blue reflect the adjusted P-values, which were calculated using the Wallenius
approximation method, while the size of the circles indicate the number of enriched
genes that fall within each category. The x-axis reflects the percentage of genes
within each category that were differentially expressed between the samples treated
with 60bca and H25B10 hybridoma supernatants, both in the presence of 500 ng/mL
LPS and 1% human serum. Data reproduced with the permission of Charles
Girardot, EMBL Heidelberg.
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Gene Ontology analysis was carried out on differentially expressed genes
(FDR < 1%) (Appendix C, Table C.1) and the top ten over-represented categories
include various cell activation and immune-associated processes (Fig. 5.13), which
is biologically coherent with the LPS activation of U937 cells via CD14. U937 cells
are human macrophage cells, and thus are part of the innate immune system, while
CD14 plays a crucial role in regulating cellular and subsequent immune responses
to LPS (Zanoni et al., 2011). Having these categories as over-represented amongst
the genes differentially expressed between CD14-expressing U937 cells treated with
60bca or H25B10 hybridoma supernatants is consistent with 60bca antibodies having
an effect on the binding of LPS-LBP complexes to CD14 and thus on subsequent
CD14 signalling, suggesting that the differential transcriptomic signals detected are
indeed the biological signals that we are interested in.

These suggest that the antibodies present in the 60bca hybridoma supernatant
are capable of inhibiting LPS activation of CD14-expressing U937 cells, with
transcriptomic effects detectable in bulk RNA-seq, laying the groundwork for future
single-cell transcriptomic analyses (Section 5.9).

5.9 Studying the second batch of model systems with cell
hashing

We have conducted a 10X Genomics Single Cell 3’ Gene Expression experiment
utilising cell hashing, where we studied two different model systems. We included
six samples from the model system involving CD14-expressing U937 cells, LPS and
60bca or H25B10 hybridoma supernatants (Table 5.1).

Sample number Sample name LPS Hybridoma supernatant
1 Untreated No Media only

2 H25B10 only No H25B10 supernatant

3 60bca only No 60bca supernatant

4 LPS only Yes, 500 ng/mL Media only

5 LPS + H25B10 Yes, 500 ng/mL H25B10 supernatant

6 LPS + 60bca Yes, 500 ng/mL 60bca supernatant

Table 5.1: U937 samples included in the cell hashing experiment.

We have also included two samples from involving SK-BR-3 cells and Precision
Antibody hybridoma cells (as outlined in Chapter 3), namely SK-BR-3 cells treated
with H25B10 (negative control) or Precision Antibody hybridoma supernatant.

As the different model systems utilise human cell lines from different tissue
types, we expect them to cluster separately upon dimensionality reduction and
visualisation, due to cell line specific differences in gene expression. We observe this
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Figure 5.14: Distinguishing U937 and SK-BR-3 cells and different treatments
with cell hashing. Gene expression data of different cell types treated with
stimulants, visualised using Uniform Manifold Approximation and Projection
(UMAP) with dimensions = 50 for dimensionality reduction, and resolution = 0.1
during clustering. A. Unsupervised clustering based on whole transcriptome data,
of eight samples from the cell hashing experiment, comprising of SK-BR-3 cells
treated with H25B10 supernatant or with supernatant from the Precision Antibody
hybridomas and U937 cells triggered to express CD14, and treated as outlined in
Table 5.1. Three different clusters were identified (red, green, blue). B.-I. Cells are
differently highlighted based on their hashtag identity, with cells of the population
of interest highlighted in red, and cells from the remaining samples shown in grey.
SK-BR-3 cells treated with Precision Antibody hybridoma supernatant (B) and
SK-BR-3 cells treated with H25B10 supernatant (C) were visualised. Untreated
U937 cells (D), U937 cells treated with only H25B10 hybridoma supernatant (E),
U937 cells treated with only 60bca hybridoma supernatant (F), U937 cells treated
with only LPS (G), U937 cells treated with H25B10 hybridoma supernatant and LPS
(H) and U937 cells treated with 60bca hybridoma supernatant and LPS (I) were
visualised. The data was generated via the 10X Genomics 3’ Gene Expression v3.1
pipeline. Data reproduced with the permission of Xiaoli Ma, EPFL.
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in the generated UMAP plot, where SK-BR-3 cells and U937 cells cluster in distinct
clusters, with SK-BR-3 cells largely clustering in Cluster 1 (green) and U937 cells
clustering in Cluster 0 (red) (Fig. 5.14). This indicates that the cell hashing and 10X
sequencing worked well.

The U937 cells from the six samples form two clusters upon unsupervised
clustering, shown in red ("Cluster 0") and turquoise ("Cluster 1") in Figure 5.15A.
Cells from samples that were not treated with LPS, but were either untreated
(Fig. 5.15B), treated with H25B10 hybridoma supernatant (Fig. 5.15C), or with 60bca
hybridoma supernatant (Fig. 5.15D), are largely localised in Cluster 0. In contrast,
cells from samples that were treated with LPS only (Fig. 5.15E) or with LPS and
H25B10 hybridoma supernatant (Fig. 5.15F) are largely localised in Cluster 1. Lastly,
cells treated with both LPS and 60bca hybridoma supernatant appear to be spread
evenly across both clusters (Fig. 5.15G).

These results suggest that the clustering observed is likely to be associated with
LPS stimulation, with Cluster 0 (red) containing unstimulated cells and Cluster 1
(turquoise) containing cells stimulated by LPS (Fig. 5.15A). It should be noted that
while the cells in samples treated with LPS only (Fig. 5.15E) or with LPS and H25B10
hybridoma supernatant (Fig. 5.15F) are largely localised in Cluster 1, a small number
of cells are present in Cluster 0. This could be explained by the fact that only 66% of
U937 cells express CD14 upon activation with 100 nM 1,25-dihydroxyvitamin D3
(Fig. 5.11B), such that not all U937 cells could be activated by LPS via CD14. The
experiment could thus be further optimised by the fluorescence-activated cell
sorting (FACS) of CD14-expressing cells prior to incubation with LPS and antibody
supernatant.

The results also reinforce the fact that H25B10 hybridoma supernatant appears
to induce little to no effect on target cell transcriptomes, which is optimal for a
negative control. This can be noted from the fact that the clustering in the untreated
(Fig. 5.15B) and H25B10 only samples (Fig. 5.15C) are highly similar. In addition, the
clustering in the samples treated with LPS only (Fig. 5.15E) and LPS and H25B10
supernatant (Fig. 5.15F) are also extremely alike. The fact that the clustering present
in the sample treated with only 60bca supernatant (Fig. 5.15D) is highly similar to
that in the untreated and H25B10 only samples (Fig. 5.15B, C) suggests that the 60bca
hybridoma supernatant has no effect on target cell transcriptomes in the absence of
LPS, which makes biological sense, given that the 60bca antibodies bind CD14 and
inhibit LPS activation via CD14.

In contrast, the distribution of cells treated with both LPS and 60bca hybridoma
supernatant across both clusters shows that the 60bca hybridoma supernatant
does indeed cause some inhibition of LPS activation (Fig. 5.15G), but that this
inhibition is not complete, such that we do not see a clustering pattern reflective
of no LPS activation. This partial inhibition is not optimal and could be further
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Figure 5.15: Dimensional reduction of gene expression data from U937 cells
treated with LPS and H25B10 or 60bca hybridoma supernatant. Gene expression
data of U937 cells treated with combinations of LPS, H25B10 hybridoma
supernatant and 60bca hybridoma supernatant, as outlined in Table 5.1, and
visualised using Uniform Manifold Approximation and Projection (UMAP) with
dimensions = 50 for dimensionality reduction, and resolution = 0.1 during
clustering. A. Unsupervised clustering based on whole transcriptome data of
six samples involving U937 cells triggered to express CD14, and treated as outlined
in Table 5.1. Two different clusters were identified (red, turquoise). B.-G. Cells are
differently highlighted based on their hashtag identity, with cells of the population
of interest highlighted in red, and cells from the remaining samples shown in
grey. Untreated U937 cells (B), U937 cells treated with only H25B10 hybridoma
supernatant (C), U937 cells treated with only 60bca hybridoma supernatant (D),
U937 cells treated with only LPS (E), U937 cells treated with H25B10 hybridoma
supernatant and LPS (F) and U937 cells treated with 60bca hybridoma supernatant
and LPS (G) were visualised. Data reproduced with the permission of Xiaoli Ma,
EPFL.
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optimised by the modulation of LPS concentration, or by the adjustment of the
antibody concentrations utilised for treatment. Nonetheless, this data suggests
that treatment of CD14-expressing U937 cells with 60bca hybridoma supernatant
(in the presence of LPS) does induce transcriptomic changes that are detectable
via single-cell sequencing, paving the way for the use of this model system in
subsequent experiments.

Figure 5.16: Dimensional reduction of gene expression data from SK-BR-3 cells
treated with H25B10 and Precision Antibody hybridoma supernatant. Gene
expression data of SK-BR-3 cells treated with H25B10 and Precision Antibody
hybridoma supernatant, and visualised using Uniform Manifold Approximation
and Projection (UMAP) with dimensions = 50 for dimensionality reduction, and
resolution = 0.1 during clustering. A. Unsupervised clustering based on whole
transcriptome data of two samples involving SK-BR-3 cells. Two different clusters
were identified (red, turquoise). B. SK-BR-3 cells treated with Precision Antibody
hybridoma supernatant are shown in red, while SK-BR-3 cells treated with H25B10
hybridoma supernatant are visualised in grey, based on the hashtag identity of
the two samples. C. SK-BR-3 cells treated with H25B10 hybridoma supernatant
are shown in red, while SK-BR-3 cells treated with Precision Antibody hybridoma
supernatant are visualised in grey, based on the hashtag identity of the two samples.
Data reproduced with the permission of Xiaoli Ma, EPFL.
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SK-BR-3 cells treated with Precision Antibody or H25B10 hybridoma
supernatant form two clusters upon unsupervised clustering, shown in red ("Cluster
0") and turquoise ("Cluster 1") in Figure 5.16A, but these clusters do not correlate with
sample identity. However, some clustering based on sample identity did take place
(Fig. 5.16B, C), suggesting that there are indeed transcriptomic differences between
the two populations that can be detected by single-cell transcriptomic analyses.
Therefore, we are confident that a subset of PA hybridoma cells secrete antibodies
that bind to, and trigger transcriptomic changes in SK-BR-3 cells. To further
study individual hybridoma cells and the effects of their antibodies on SK-BR-3
transcriptomes, we will co-encapsulate individual hybridoma cells together with
SK-BR-3 target cells (as outlined in Chapter 4). This will permit the accumulation of
antibodies from specific single hybridoma cells to functional concentrations within
droplets in a matter of hours, and will permit the detection of transcriptomic effects
triggered by antibodies secreted from a single hybridoma cell. Therefore, this
experiment is planned for the future.

5.10 CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 cells

While the focus of this chapter is primarily on cell-cell interactions involving
antibodies, the technology we aim to develop would be equally applicable to cell-cell
interactions involving direct cell contact. Therefore, we also tested a model system
involving CHO-GLP1R-GFP cells with HEK293T-mCherry-Exendin-4 cells, which
interact via direct cell contact.

The glucagon-like peptide 1 receptor (GLP1R) is a GPCR protein receptor
involved in the regulation of insulin secretion, while Exendin-4 is an agonist
of GLP1R (Thorens et al., 1993). The CHO-GLP1R-GFP cell line is a Chinese
Hamster Ovary cell line that expresses human GLP1R, and expresses green
fluorescent protein (GFP) under the control of a CRE promoter, such that GFP
is expressed upon the activation of the human GLP1R (Zhang et al., 2015). The
HEK293T-mCherry-Exendin-4 cell line is a human embryonic kidney cell line that
expresses mCherry and Exendin-4 fused to the platelet-derived growth factor
receptor (PDGFR) transmembrane domain, to anchor Exendin-4 to the cell surface
(Zhang et al., 2015). The activation of CHO-GLP1R-GFP cells with Exendin-4
results in increased expression of GFP (Fig. 5.17), while the co-cultivation of
HEK293T-mCherry-Exendin-4 cells with CHO-GLP1R-GFP induces GFP expression
in the latter, which is not observed when CHO-GLP1R-GFP cells are co-cultivated
with wild-type HEK293T cells (Fig. 5.18). While the GFP expression acts as a marker
gene that can be easily identified, we expected further changes in gene expression
in CHO-GLP1R-GFP cells to be triggered by the presence of Exendin-4.
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5.10.1 Activation of CHO-GLP1R-GFP cells with 10 µM Exendin-4

The treatment of CHO-GLP1R-GFP cells with 10 µM Exendin-4 for 6 hours resulted
in the increased expression of GFP, as detected via flow cytometry (Fig. 5.17, pink).

Figure 5.17: GFP expression in CHO-GLP1R-GFP cells treated with 10 µM
Exendin-4. CHO-GLP1R-GFP cells were incubated for 6 hours either in regular
media (negative control, blue) or with 10 µM Exendin-4 (pink), before analysis with
flow cytometry. GFP expression was detected at 488-530/30, x-axis.

5.10.2 Co-cultivation of CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 cells

Similarly, the co-cultivation of CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 cells for over 6 hours resulted in the expression of
GFP, as detected via flow cytometry (Fig. 5.18, 6 h: pink, 10 h: green and 24 h:
mustard), while this GFP signal was not detected for CHO-GLP1R-GFP cells
that were mixed with HEK293T-mCherry-Exendin-4 cells immediately prior to
flow cytometry (Fig. 5.18, blue), or for CHO-GLP1R-GFP cells co-cultivated with
HEK293T-WT cells (Fig. 5.18, grey). While the GFP expression is detectable after
6 hours, it should be noted that GFP expression appears to be even higher after
10 hours and after 24 hours (Fig. 5.18).
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Figure 5.18: GFP expression in CHO-GLP1R-GFP cells co-cultivated with
HEK293T-WT or HEK293T-mCherry-Exendin-4 cells. CHO-GLP1R-GFP cells
were stained with CellTraceTM Violet, seeded into plates containing HEK293T-WT
cells and incubated for 30 hours (negative control, grey) or into plates with
HEK293T-mCherry-Exendin-4 cells and incubated for 0 hours (blue), 6 hours
(pink), 10 hours (green) or 24 hours (mustard). Cells were then harvested for
flow cytometry. A. CHO-GLP1R-GFP cells were identified as the population of
cells that were positive for CellTraceTM Violet and negative for mCherry (gate
labelled CHO Cells). mCherry expression was detected at 561-610/20, y-axis, and
CellTraceTM Violet was detected at 355-450/50, x-axis. B. The CHO cell populations
were then examined for GFP expression, which was detected at 488-530/30, x-axis.

5.10.3 Co-encapsulation of CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 cells

We have also carried out a similar assay in droplets, where we co-encapsulated
CHO-GLP1R-GFP cells with HEK293T-mCherry-Exendin-4 cells or with WT
HEK293T cells, at λ = 1 for each cell type. Cells were then analysed via flow
cytometry 10 hours later. We observed that the CHO-GLP1R-GFP cells that had
been co-encapsulated with HEK293T-mCherry-Exendin-4 cells (Fig. 5.19, pink) had
a higher GFP expression level than those co-encapsulated with WT HEK293T cells
(Fig. 5.19, blue). This demonstrates that the direct cell interaction can take place in
droplets, and does result in the expected phenotypic change. Therefore, we expect
that co-encapsulation and incubation in droplets will similarly lead to a detectable
change in cell transcriptomes.

While it is not possible to quantitatively compare results across different flow
cytometry experiments, it should be noted that the increase in GFP expression
detected after 10 hours in the co-encapsulation experiment appears to be smaller
than the increase seen after 10 hours of co-cultivation (Fig. 5.18, green and
Fig. 5.19, pink). This is likely to be due in part to the Poisson statistics involved
in the co-encapsulation of two cell types. While we expect each droplet to
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Figure 5.19: GFP expression in CHO-GLP1R-GFP cells co-encapsulated with
HEK293T-WT or HEK293T-mCherry-Exendin-4 cells. CHO-GLP1R-GFP
cells were stained with CellTraceTM Violet and co-encapsulated with
HEK293T-mCherry-Exendin-4 cells or with WT HEK293T cells. Cells were
incubated in droplets for 10 hours, before the emulsion was broken and the cells
were harvested for flow cytometry. A. CHO-GLP1R-GFP cells were identified
as the population of cells that were positive for CellTraceTM Violet and negative
for mCherry (gate labelled CHO Cells). mCherry expression was detected at
561-610/20, y-axis, and CellTraceTM Violet was detected at 355-450/50, x-axis. B.
The CHO cell populations were then examined for GFP expression, which was
detected at 488-530/30, x-axis. The scale of the y-axis has been normalised to the
mode.

contain an average of one cell of each cell type, given a λ = 1 for each cell
type, Poisson distribution predicts that 36.8% of droplets containing one or more
CHO-GLP1R-GFP cells would not contain any HEK293T cells. As such, we expect a
subset of CHO-GLP1R-GFP cells to not encounter any HEK293T-mCherry-Exendin-4
cells, and thus to not exhibit increased GFP expression. This would explain the
non-symmetric curve present in Figure 5.19B.

However, the absence of a solid substrate in droplets could also cause
changes in gene expression of adherent cells, such as CHO-GLP1R-GFP. This
suggests that further optimisation of in-droplet experiments would be required,
before utilising this model system for further co-encapsulation experiments. In
addition, as the GFP expression increases with the time that CHO-GLP1R-GFP and
HEK293T-mCherry-Exendin-4 cells are permitted to interact (Fig. 5.18), it would
be wise to assess cell viability in droplets in conjunction with GFP expression, to
maximise GFP signal while minimising cell death.

These experiments lay the foundation for future experiments with the
CHO-GLP1R-GFP model system. The activation of CHO-GLP1R-GFP cells with
Exendin-4 in plates permits the generation of bulk and single-cell RNA-seq
data, while the activation of CHO-GLP1R-GFP cells via co-cultivation and
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co-encapsulation with HEK293T-mCherry-Exendin-4 cells lay the groundwork for
subsequent experiments combining co-encapsulation and Drop-seq.

5.10.4 Bulk mRNA-seq
CHO-GLP1R-GFP cells with Exendin-4

In order to assess the suitability of CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 to be a model system, we conducted a bulk RNA-seq
experiment, where untreated CHO-GLP1R-GFP cells and CHO-GLP1R-GFP cells
treated with 10 µM Exendin-4 were sequenced in bulk.

We observed strong clustering of replicates based on treatment, both when GFP
was excluded (Fig. 5.20A) and when it was included in the analysis (Fig. 5.20B).
In particular, differentially-treated samples cluster at opposite ends of the x-axis,
which represents the first principal component (PC1) and accounts for 99% of the
variance. This suggests that most of the variance present is due to the treatment of
CHO-GLP1R-GFP cells with Exendin-4, independently of GFP expression.

Figure 5.20: Bulk RNA-seq of CHO-GLP1R-GFP cells in the presence and
absence of Exendin-4. A. Gene expression data, with the exclusion of GFP
expression, were processed with RUVSeq and analysed via Principal Component
Analysis (PCA) and the first two principal components were plotted. Clustering
of gene expression data from CHO-GLP1R-GFP cells treated with Exendin-4 for
6 hours (turquoise, "GLP1R_Ex4") and untreated CHO-GLP1R-GFP cells (red,
"GLP1R_Neg") are shown. B. Gene expression data, with GFP expression included,
were processed with RUVSeq and analysed via Principal Component Analysis
(PCA) and the first two principal components were plotted. Clustering of gene
expression data from CHO-GLP1R-GFP cells treated with Exendin-4 for 6 hours
(turquoise, "Ex4") and untreated CHO-GLP1R-GFP cells (red, "Neg") are shown.
Data reproduced with the permission of Charles Girardot, EMBL Heidelberg.

In addition, GFP was also detected amongst the top differentially expressed
genes when it was included in the analysis ("TurboGFP", Appendix C, Table C.2),
which lends weight to the results of the bulk sequencing experiment. This
suggests that GFP could be utilised as a positive control in subsequent sequencing
experiments, where we expect to see higher GFP expression in CHO-GLP1R-GFP
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cells in which GLP1R has been activated. The top differentially expressed genes
from the bulk sequencing experiment could also be utilised for more effective
identification of activated cells.

5.10.5 Single-cell RNA-seq via Drop-seq
CHO-GLP1R-GFP cells with Exendin-4

We assessed the transcriptomic responses of untreated CHO-GLP1R-GFP cells
and CHO-GLP1R-GFP treated for 24 hours with 10 µM Exendin-4, which were
subsequently processed via Drop-seq. As the two populations cluster separately
(Fig. 5.21), this suggests that the model system involving CHO-GLP1R-GFP and
HEK293T-mCherry-Exendin-4 cells could be further utilised for the development of
our technology.
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Figure 5.21: Dimensional reduction of Drop-seq gene expression data of
CHO-GLP1R-GFP cells. Gene expression data of untreated CHO-GLP1R-GFP
cells (cultured in media only) ("CTRL", blue circles) and CHO-GLP1R-GFP cells
treated with 10 µM Exendin-4 for 24 hours ("STIM", orange triangles). The Principal
Component Analysis was carried out on the raw log counts after QC, with the
first two principal components plotted. The size of the shapes indicate the number
of total features, namely the number of genes that are detected per droplet. Data
reproduced with the permission of Charles Girardot, EMBL Heidelberg.

The two populations separate along the second principal component (Fig. 5.21,
y-axis), which accounts for 2% of the population variance. The first principal
component corresponds to 64% of the variance and this appears to correlate to
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the total features detected. This implies that the variance being picked up in the
first principal component is technical rather than biological, suggesting that further
normalisation may be required.

In addition, GFP was also detected amongst the top differentially expressed
genes ("TurboGFP", Appendix C, Table C.3), supporting the idea that this could be
used as a marker gene to identify activated CHO-GLP1R-GFP cells.

Despite the fact that different incubation periods with Exendin-4 were utilised
for the bulk sequencing experiment and for this Drop-seq experiment, we detected
three genes apart from GFP that were highly differentially expressed in both
experiments (Appendix C, Tables C.2 and C.3), namely Thbd, Tfap2a and Scarb1.

These data suggests that the model system involving CHO-GLP1R-GFP and
HEK293T-mCherry-Exendin-4 cells is a promising one, with the detection of
differential gene expression induced by Exendin-4 at a single-cell level after cells
were treated with Exendin-4 for 24 hours. Optimally, we would have similar data
for 6 hours of Exendin-4 treatment, and potentially with the 10X Genomics 3’ Gene
Expression platform.

Nonetheless, we believe that the system could be further utilised in the
development of our co-encapsulation technology. This would be particularly
interesting in the context of cell-cell interactions where both the stimulant and
the receptor are present on cell surfaces, such that cells must come into direct contact
for the interaction to take place.

5.11 Conclusion

In this chapter, we have tested various potential model systems in a bid to find a
suitable one in which to establish the technology.

The systems involving CHO-GLP1R-GFP and HEK293T-mCherry-Exendin-4
cells, and CD14-expressing U937 cells with 60bca hybridoma cells (in the presence of
LPS) appear to induce transcriptomic changes in the target cells that are detectable by
single-cell transcriptomic sequencing. This makes them well-suited for subsequent
co-encapsulation experiments, which will enable the development and optimisation
of a technology for high-throughput transcriptomic analyses of cell-cell interactions.

In addition, the GLP1R-Exendin-4 system requires direct cell contact for
interaction, while the U937-60bca system involves antibody secretion and binding,
such that the interaction is indirect. The fact that we have two model systems that
involve different types of cell-cell interactions will enable us to ensure the suitability
of our technology for both categories of cell-cell interactions.
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6 | Bioinformatic identification
of positive events

In order to study cell-cell interactions via single-cell transcriptomics, we would like
to identify specific transcriptomic perturbations in the target cells and associate them
back to specific stimulant cells. This raises a question about the minimum number
of perturbed cells required to identify a perturbation against the background of
unstimulated cells. Ideally, we hope to be able to identify single transcriptomes of
interest, and thus detect single stimulant cells associated with these transcriptomes.

To further investigate the minimum number of cells required to detect a
perturbation, we have carried out downsampling analyses. As we do not have
an antibody model system in which treated and untreated cells cluster separately
upon visualisation of single-cell transcriptomic data, we carried out these analyses
on the model systems involving MCF-7 and A375-P cells that were treated with
DMF (negative control) or with niclosamide (Fig. 5.10A, C). While the effect size of
different model systems may vary, such that the conclusions from this analysis may
not be completely applicable to all other model systems, we believe that this acts as
a good first estimate.

For both cell types, all untreated cells were included, but a subset of the cells
treated with niclosamide were spiked in into the single-cell dataset to be analysed.
Subsequently, clustering was carried out via Seurat and the datasets were visualised
with UMAP. The identity of the cells are known beforehand, such that the cells that
have been spiked in can be identified after clustering. This was repeated for 1, 2,
5, 10, 20, 30, 50, 100, 200, 300, 400 and 500 cells treated with niclosamide, in the
presence of 683 MCF-7 cells treated with DMF (negative control) (Fig. 6.1) or 763
A375-P cells treated with DMF (negative control) (Fig. 6.2).

As the number of treated cells included increases, the boundary between the
untreated and treated cells becomes more defined, with separate clusters of treated
cells becoming increasingly apparent (Figures 6.1 and 6.2). However, it must be
noted that even between these two model systems, which involve two different
cell types treated with the same drug, the number of cells at which one or more
clusters appear differ. For MCF-7 cells treated with niclosamide, a separate cluster is
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Figure 6.1: Subsampling analysis involving MCF-7 cells treated with
niclosamide. Normalised gene expression data of MCF-7 cells treated with DMF
(negative control) (grey) and MCF-7 cells treated with niclosamide (red), visualised
using Uniform Manifold Approximation and Projection (UMAP) with dimensions
= 20 for dimensionality reduction. Subsampling experiments involving 1 (A), 2 (B),
5 (C), 10 (D), 20 (E), 30 (F), 50 (G), 100 (H), 200 (I), 300 (J), 400 (K), or 500 MCF-7
cells treated with niclosamide (L). 683 MCF-7 cells treated with DMF were used for
all analyses. Data reproduced with the permission of Xiaoli Ma, EPFL.
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Figure 6.2: Subsampling analysis involving A375-P cells treated with
niclosamide. Normalised gene expression data of A375-P cells treated with DMF
(negative control) (grey) and A375-P cells treated with niclosamide (red), visualised
using Uniform Manifold Approximation and Projection (UMAP) with dimensions
= 20 for dimensionality reduction. Subsampling experiments involving 1 (A), 2 (B),
5 (C), 10 (D), 20 (E), 30 (F), 50 (G), 100 (H), 200 (I), 300 (J), 400 (K), or 500 A375-P
cells treated with niclosamide (J). 763 A375-P cells treated with DMF were used for
all analyses. Data reproduced with the permission of Xiaoli Ma, EPFL.



102 Chapter 6. Bioinformatic identification of positive events

apparent when merely 30 - 50 cells are spiked in (Fig. 6.1F, G). In contrast, for A375-P
cells treated with niclosamide, distinct clusters are only apparent when around 100 -
200 treated A375-P cells are added (Fig. 6.2H, I). This reinforce the idea that the exact
number of cells required for the formation of one or more distinct clusters would be
highly dependent on the effect size of the perturbation, which could vary between
different perturbations and different cell lines.

Overall, it is clear that we need tens, possibly hundreds of cells, to detect a
perturbation via clustering. This implies that with the current analysis method,
perturbations cannot be detected on the single-cell level. The implications of this
conclusion and alternative methods for the detection of perturbations are discussed
in Chapters 7 and 12.
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7 | Discussion

In this part, we have assessed various potential model systems on their suitability to
be utilised to establish a technology using single-cell transcriptomic analyses to study
cell-cell interactions. We identified two model systems that are suitable, namely the
system involving CHO-GLP1R-GFP and HEK293T-mCherry-Exendin-4 cells, and
the system involving CD14-expressing U937 cells and 60bca hybridoma cells. The
former involves cell-cell interaction via direct contact, while the latter involves
the secretion of antibodies that interact with cell surface receptors. Therefore,
the development and optimisation of our technology with both model systems
will ensure that our technology remains widely applicable to different categories
of cell-cell interactions. Consequently, we plan to utilise both these systems for
subsequent optimisation experiments, as outlined in Section 7.1.

Nonetheless, we are also exploring a model system involving K-562 cells,
lentiviruses and hybridoma cell lines secreting antibodies against the vesicular
stomatitis virus glycoprotein (VSV-G). VSV-G is utilised by many widely-used
lentiviral vectors, as it expands the range of host cells that can be transduced (Cronin
et al., 2005). We have tested the supernatant from two hybridoma cell lines, namely
8G5F11 and IE9F9, for their ability to inhibit lentiviral transduction (Lefrancois and
Lyles, 1982; Munis et al., 2018), and have demonstrated that incubation of lentiviral
particles together with the 8G5F11 and IE9F9 hybridoma supernatants resulted in
the inhibition of lentiviral transduction of K-562 cells (Appendix D, Fig. D.1).

We expect that lentiviral transduction will induce significant transcriptomic
changes in transduced cells, that would be detectable by single-cell RNA-seq. In
addition, we have cloned exogeneous genes (OCT4, SARS-CoV-2 nsp1) or shRNA
against GATA1 into the lentiviral transfer vectors, and we expect these genes
or shRNA to further influence target cell transcriptomes in a manner detectable
by emulsion-based single-cell transcriptomic analyses. Therefore, we expect a
detectable transcriptomic difference between K-562 cells incubated with lentiviruses,
in the presence or absence of the aforementioned anti-VSVG antibodies.
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7.1 Future work

The next key experiment would be establishing a Drop-seq model screen with
our chosen model systems. As explained in Chapter 5, three cell lines are
required for each model system, namely the target cell line (CHO-GLP1R-GFP
or CD14-expressing U937, in the presence of LPS), together with the stimulant
cell line (HEK293T-mCherry-Exendin-4 or 60bca hybridoma cells) and a cell line
genetically similar to the stimulant cell line, but that does not express the stimulant
(WT HEK293T or H25B10 hybridoma cells, both of which act as negative controls)
(Fig. 5.1). The stimulant cell line would be spiked into a population of negative
control cells, prior to co-encapsulation with the target cell line, with the employment
of different ratios of stimulant:negative cells revealing information on the sensitivity
and specificity of our technology.

We expect to obtain single-cell transcriptomic data for the target cell lines, in
conjunction with sequences that permit identification of the stimulant cell line,
namely mCherry and Exendin-4, for the model system involving GLP1R and
Exendin-4. For systems involving hybridoma cell lines, such as the system utilising
U937 cells and the 60bca/H25B10 hybridoma cell lines, the sequences of interest
would be those encoding the antibody heavy and light chains. We would be able to
obtain these antibody sequences using the technology outlined in Part II.

This experiment will demonstrate if the technology can definitively identify
droplets containing cells expressing activating factors that induce a specific
transcriptomic effect in our target cells. It will also give us an idea of the efficiency of
the technology, by telling us what percentage of positive droplets (those containing
an activating cell together with a target cell) have a target cell transcriptomic profile
distinct from droplets containing non-activated cells.

In addition, as Drop-seq will be utilised for our technology, we have to assess
the sensitivity of Drop-seq in detecting our perturbations of interest, given that the
10X Genomics Single Cell 3’ Gene Expression technology appears to outperform
Drop-seq in sensitivity and precision (Ding et al., 2019; Zhang et al., 2019), and that
some single-cell experiments were carried out with the 10X technology. As such,
we may have to carry out additional Drop-seq experiments with target cells that
have been activated in bulk, to study the ability of Drop-seq to detect transcriptomic
changes at a single-cell level.

Subsequently, we would also like to test the performance of our technology at
assessing cell-cell interactions in which one, or both, populations are heterogeneous.
As most natural cell populations are heterogeneous, there is value in elucidating how
usable the technology would be in analysing interactions involving heterogeneous
cell populations. This could be done by utilising a diverse hybridoma library,
such as the Precision Antibody hybridoma library that has been raised against
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whole SK-BR-3 cells (as introduced in Chapter 3). The hybridoma library would
act as a heterogeneous stimulant population, and would enable us to elucidate the
sensitivity of our technology at detecting rare or infrequent cell-cell interactions.
Naturally, these experiments are dependent on the bioinformatic analyses and on
the identification of perturbations from single, or a small number of cells, which will
be discussed further in Section 7.2.1.

7.2 Remaining challenges

The field of emulsion-based single-cell transcriptomics has advanced immensely in
recent years. However, the utilisation of such technologies for the study of cell-cell
interactions remain impeded, and this section will discuss the remaining challenges
and theorise on how these may be overcome.

Three main challenges remain, namely:

1. Elucidating and reducing the minimum cell number to pick up perturbations

2. Overcoming Poisson distribution during cell and bead encapsulation

3. Establishing targeted sequencing

7.2.1 How many cells are needed to detect a perturbation?

The data in Chapter 6 suggests that between 30 - 100 cells would be required to
detect a perturbation via clustering analysis. The analysis carried out was rather
qualitative as clustering was determined by eye, and not in a quantitative manner. In
addition, these analyses involved the random sampling of treated cells, suggesting
that chance may have played a role in determining which cells were selected, and
thus in where the threshold was. It would naturally be ideal to both repeat the
random sampling and the analysis multiple times, and to develop a method to
quantitatively grade the extent of clustering.

This analysis was carried out with MCF-7 and A375-P cells treated with
niclosamide, a drug, and did not involve any perturbations that would be
present within cell-cell interactions. As the effect size of the perturbation is
expected to affect the number of cells required for perturbation detection, it would
be ideal for us to carry out a similar analysis with a perturbation present in
cell-cell interaction model systems, such as an antibody-based perturbation or
with Exendin-4, which is involved in the interaction between CHO-GLP1R-GFP and
HEK293T-mCherry-Exendin-4 cells.

In addition, the model screen mentioned above would be crucial. Specifically,
the spike-in of known ratios of positive hits in a sea of negative events would
give us a better measure of effect size and of the sensitivity of our technology, for
our model system of interest. It could also be beneficial to utilise a system with
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a maximal effect size, to truly minimise the number of cells required to detect
a perturbation. Alternatively, the use of a model system that has almost-digital
differential expression in one or more genes, for example, the expression of GFP in
CHO-GLP1R-GFP cells, could improve the identification of perturbed cells and be
utilised for the optimisation of analysis pipelines for the identification of single, or
small numbers of perturbed cells from overall gene expression (i.e. gene expression
excluding GFP).

This requirement for 30 - 100 cells to detect a perturbation severely limits the
throughput of our technology, as it suggests that for a perturbation to be picked up,
it must be represented in 30 - 100 droplets. This limits the number of perturbations,
namely different stimulants, that can be investigated in a single experiment, as
sequencing costs would rapidly become prohibitively high. This limitation on the
throughput of the technology greatly reduces the attractiveness of the technology
for wider use.

In addition, this implies that many identical stimulant cells would be required
in every experiment, in order to detect a perturbation. These may be difficult
to obtain, especially if the number of cells to be investigated in a single screen
remains generally low, such that the stimulant cells of interest would have to
form a significant part of the stimulant cell pool. For example, rare cell types
would be difficult to investigate, as they are present at low percentages in cell
populations. It also remains onerous to enrich for such rare cell types, especially
as they remain poorly understood. Similarly, this would hinder the study of
primary plasma B-lymphocytes, which have significant diversity at the single-cell
level, with many individual clones forming a minuscule part of the whole cell
population. Even within populations where cell expansion is viable, such as within
a diverse hybridoma cell population, such processes would be both costly and
time-consuming. Therefore, a necessary area of improvement would be to reduce
the number of cells required to detect a perturbation.

Studies involving single-cell transcriptomic screens involving genetic
perturbations are a good proxy for understanding how our question has been
investigated and answered by others. As further explained in Section 1.6.8, these
screens involve genetic perturbations, such as CRISPR inhibition or activation, with
the perturbation conditions encoded by genetic markers within the same cell in
which the perturbation occurs (Datlinger et al., 2017; Dixit et al., 2016; Hill et al.,
2018; Xie et al., 2017).

Most of these techniques examined an average of 80 - 150 transcriptomes, i.e.
single cells, per sgRNA, i.e. per perturbation. It was found that the sensitivity and
specificity of detecting the correct genes regulated by the perturbation (as seen in
bulk RNA-seq) were 80% and 90% respectively in Perturb-seq, when 100 single
cells per guide were used (Dixit et al., 2016), but the authors suggested that a mere
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tens of cells per perturbation would be sufficient to detect signature and state-level
regulation. In CROP-seq, they estimated that 12 - 13 cells per perturbation would
be adequate to obtain gene expression signatures congruent with their current
data (Datlinger et al., 2017). In contrast, the power estimation carried out by
Alda-Catalinas et al. suggested that approximately 400 cells were required per
sgRNA in a CRISPRa screen, to identify Zygotic Genome Activation (ZGA)-like
signatures in mouse embryonic stem cells (mESCs) (adjusted p-value < 0.00032,
power of 0.8) (Alda-Catalinas et al., 2020). This reinforces the idea that the number
of cells required is likely to be highly dependent on the effect size of the perturbation,
and suggests that the figure of 30 - 100 cells from our data is within the expected
range.

Similarly, the recent TAP-seq sensitivity analysis by Schraivogel et al. suggests
that a minimum of 30 - 40 cells must be profiled per perturbation (Schraivogel et al.,
2020). It must be noted that this conclusion was derived for targeted Perturb-seq,
where only 74 genes were specifically examined. This was concluded from the use of
well-established perturbations that specifically downregulated their known targets
in cis, and resulted in wider detectable transcriptomic effects. This suggests that
targeted sequencing, as will be further explored in a later subsection, could reduce
the number of cells required to detect a perturbation.

Within the same analysis, the authors carried out parallel analyses with their
Perturb-seq datasets (no targeted sequencing). They either considered all detected
genes, or simply examined the 74 genes from the TAP-seq target panel, and found
that the latter had a higher precision, as the analysis across all detected genes
resulted in lower precision, due to an increase in the number of false-positive hits
(Schraivogel et al., 2020). The authors then argued that this strengthens the argument
for hypothesis-driven analyses in such experimental designs.

This is not unimaginable within our context, where the examination of a subset
of highly differentially expressed and biologically relevant genes could enable more
effective segregation of treated and untreated populations, perhaps enabling the
identification of perturbed cells even when they are present in smaller numbers.
This could be done by using genes for which we know would be differentially
expressed, perhaps based on previous bulk or single-cell sequencing data. Naturally,
this could have the implication that analyses would have to be hypothesis-driven,
meaning that our analyses would no longer be target-agnostic, a loss of a selling
point of our technology. Nonetheless, such an approach would still be useful
for screening, namely for the identification of new antibodies that have the same
effects as previously discovered antibodies, but potentially with differing effect sizes
and/or that bind to different epitopes.

In addition, one could also envision the target-agnostic identification of outliers
by examining highly differentially expressed genes, or by examining a subset of
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genes associated with specific pathways of interest. For example, it could be possible
to examine a subset of target genes that are linked to GPCR signalling, with the
screening remaining target-agnostic in the context of individual specific receptors,
which could be specifically useful in the study of orphan GPCRs. These possibilities
will all require further work to establish and optimise.

Other pipelines have been developed for the analysis of single-cell CRISPR
screening data, and it is not difficult to imagine utilising similar principles for
the analysis of results from our technology. For example, the CRISPRa screen
which seeked to identify regulators of the ZGA program in mESCs utilised MOFA+
(Argelaguet et al., 2020) for the characterisation of molecular signatures and the
identification of hits in their screen (Alda-Catalinas et al., 2020). MOFA+ is capable
of grouping cells by sgRNA (perturbation) and permitting the modelling of these
groups with separate hyperparameters, to discover "factors" which could be linked
to a subset of sgRNAs and could correspond to specific biological pathways of
interest (Alda-Catalinas et al., 2020; Argelaguet et al., 2020). A similar analysis
utilising stimulant sequences in place of sgRNAs can be easily envisioned.

Similarly, MUSIC (Model-based understanding of single-cell CRISPR screening)
has been developed for the better elucidation of perturbation function in single-cell
CRISPR screens. MUSIC utilises a computational framework based on Topic Models,
which was traditionally developed for the study of semantics in text (Duan et al.,
2019). Like documents about a specific topic contain certain words more or less
frequently, gene expression profiles of single cells are expected to have higher
or lower expression of certain genes, depending on the perturbation. In this
case, a topic is a specific biological function that is associated with a group of
differentially expressed genes, which permits each perturbed transcriptome to
possess a proportion of memberships in different functional topics, rather than being
classified in a cluster. The authors argue that this makes their analysis more sensitive
in the detection of subtle phenotypic changes, when compared to traditional
clustering. One could envision topic models being utilised for the characterisation
of perturbations within our technology, where an increased sensitivity could reduce
the number of cells needed for the detection of a single perturbation.

Yet, it must be noted that our biological question is somewhat different to those
present in single-cell CRISPR screens based on transcriptomics. The single-cell
CRISPR screens typically examine transcriptomic signatures to study the impact
of the perturbation on specific pathways of interest, with a limited number of
perturbations studied. This also comes with the implication that their definition
of the minimum number of cells required to detect a perturbation would be rather
stringent, as they would require a sufficiently low p-value, where they can be
confident that the perturbation has a detectable effect on the transcriptome. In
contrast, we would like to study a larger number of perturbations in a target-agnostic
manner, and could accept slightly lower sensitivity (i.e. higher numbers of false
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negatives), as we would simply like to detect a subset of perturbations that would
be interesting. Nonetheless, while it is unlikely that the analysis pipelines used for
single-cell CRISPR screens can be directly copied for our analysis, the principles
utilised in these analyses do remain partially relevant and should be further explored
as we seek to improve the detection of perturbations within our technology.

7.2.2 Regulating droplet occupancy

The second crucial problem that we have also considered earlier is that of the
regulation of droplet occupancy. This is a crucial problem as next-generation
sequencing is extremely costly. The processing of droplets containing only a
single cell type is undesired, simply as the genetic material from these droplets
are irrelevant for our analyses. This increases sequencing and reagent costs without
contributing any useful data on cell-cell interactions, as explained in Chapter 4.

While we have developed a microfluidic workflow to selectively process
droplets containing our desired cell occupancy (as mentioned in Chapter 4), this
has only been reliably established for a single colour, and thus for a single cell type.
Naturally, it would be helpful to have a higher level of control over the occupancy of
droplets that are processed, either by selectively processing droplets with a desired
occupancy, or by regulating what is encapsulated.

The former can be done by modifying our current workflow to detect multiple
fluorescence signals. We would stain the stimulant and target cells with different
cell dyes (such as Cell Trace CFSE and Cell Trace Violet) prior to encapsulation,
and would utilise two lasers and their associated PMTs to detect the two different
fluorescence signals. Picoinjection would be triggered only when fluorescence
signals from both cell types are detected in a single droplet. This is not inconceivable,
given that dual-colour droplet sorting for the selective enrichment of droplets
containing two differently stained cells has previously been established in the lab
(Hu et al., 2015).

Deterministic cell encapsulation has been previously described, where Dean’s
force was utilised to carry out inertial ordering of particles or cells to be encapsulated.
Kenma et al. demonstrate an increased efficiency of single cell encapsulation,
with 77% of droplets containing a single cell, which is significantly higher than
the hypothetical Poisson limit of 37% (Kemna et al., 2012). The employment of
multiple curved microchannels for deterministic cell encapsulation, coupled with
electro-coalescence could enable the deterministic generation of droplets containing
two cells of different cell types. Schoeman et al. have demonstrated such a workflow,
with 40% of the droplets containing two cells after droplet fusion, although they
did not distinguish between the cells encapsulated from the two different nozzles
(Schoeman et al., 2014).
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Other highly regulated single-cell encapsulation technologies have been
described, for instance, those which deploy hydrodynamic traps to capture single
cells prior to their encapsulation (Sauzade and Brouzes, 2017). While these could be
fairly easily adapted to the capture and encapsulation of two cells, these techniques
remain limited by their low throughputs.

The various possibilities outlined could improve our regulation of droplet
occupancy or ensure that only droplets with our desired occupancies are further
processed. However, it remains to be seen how effective these suggested
improvements would be.

7.2.3 Targeted sequencing

With increasing numbers of cells to be analysed by single-cell RNA-seq, the costs
increase rapidly, making large screens prohibitively costly. When coupled with the
facts that only a subset of genes are variably expressed and that around 2% of genes
consume over 50% of sequencing reads (Replogle et al., 2020), this supports the use
of a targeted sequencing approach, to improve throughput and sensitivity without a
correspondingly large increase in sequencing costs.

However, the use of a targeted sequencing approach implies that there must
be a pre-selection of genes to be monitored. These genes can be associated with
pathways or processes of interest, and as previously mentioned, a hypothesis-driven
selection of genes may actually make it easier to identify cells of interest (Schraivogel
et al., 2020). However, this prior knowledge may not be available for all applications,
and it also makes any study no longer fully target-agnostic, with target agnosticism
being a selling point of our technology.

Targeted sequencing can be carried out in emulsion-based single-cell
transcriptomic technologies in various ways, as elaborated on in Section 1.6.6.
The different techniques all seek to selectively enrich for specific sequences of
interest, and this can be primarily done at three different steps of the emulsion-based
single-cell RNA-seq protocol, namely during RNA capture, PCR amplification and
enrichment via hybridisation capture.

Enrichment during RNA capture is facilitated by the presence of gene-specific
oligonucleotide sequences that selectively capture mRNA of interest. This is easily
realisable with the addition of gene-specific oligos during bead manufacture in
InDrop (Zilionis et al., 2017). However, as we use Drop-seq in our application,
DART-seq would be more appropriate (Saikia et al., 2019). Here, custom primers
are enzymatically attached to a subset of poly-dT sequences on Drop-seq beads, to
enable sequence-specific capture of a subset of mRNA.

Enrichment can also be carried out during PCR. This has been demonstrated
by Constellation Drop-seq, which utilises a single primer per gene (Vallejo et al.,
2019), and targeted Perturb-seq (TAP-seq), which utilises two different gene-specific
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primers per gene (Schraivogel et al., 2020). These primers permit the specific
amplification of cDNA corresponding to the mRNA of interest. Both techniques
are fully compatible with Drop-seq, with the latter also compatible with the 10X
Genomics Single-Cell 3’ Gene Expression platform.

Another example of PCR-based enrichment would be the antibody sequencing
platform that we have established, which is outlined in Part II.

Enrichment is also possible via hybridisation capture to enrich for library
fragments of interest. This is exemplified by direct-capture Perturb-seq (Replogle
et al., 2020), which was only established for 10X Genomics gene expression libraries.
Nonetheless, as hybridisation was carried out after library preparation, it is not
difficult to envisage utilising the technology for a library prepared with a different
emulsion-based single-cell RNA-seq technology.

We envision that the utilisation of targeted sequencing will enable the expansion
of the possible throughput, without a proportionate increase in the cost of
sequencing. Previously developed targeted single-cell transcriptomic technologies
have demonstrated a reduction of 7- to 12-fold (Schraivogel et al., 2020) and 14-fold
(Replogle et al., 2020) in the sequencing depth required for targeted single-cell
transcriptomic sequencing to produce quantitatively similar data for the genes of
interest, when compared to whole transcriptomic sequencing. This suggests that for
the same sequencing cost, a switch from whole transcriptomic sequencing to targeted
approaches could enable an increase in the number of single cells investigated by 6-
to 13-times.

Overall, these three main challenges are closely associated with sequencing
costs, which remain and will remain a significant determinant of the number of
cells that can be processed in a single experiment, and thus the throughput of a
single experiment. Any improvement in any of these three areas would improve
the throughput of our technology for a given cost. Firstly, reducing the number of
cells required to detect a perturbation of interest will enable the screening of more
distinct perturbations with the same number of target cells sequenced. Improving
the number of droplets containing the desired cell occupancy will reduce the amount
of undesired sequencing data, increasing the amount of useful data, and potentially
the number of cells that can be analysed with the same sequencing costs. Lastly,
targeted sequencing will reduce the per-cell sequencing cost, given that only a subset
of genes are monitored, enabling an increase in throughput for the same sequencing
costs.

With the given experimental conditions, we could analyse approximately four
thousand single cells in a single NextSeq run that would cost around e 2000. Given
that our data in Chapter 6 demonstrate that a perturbation could only be detected
with approximately 50 single cells, this works out to approximately 80 different
conditions that could be detected and studied in such an experiment, making it
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prohibitively expensive. This calculation was made from emulsion-based single-cell
transcriptomic experiments without co-encapsulation, thus implying that the second
challenge would not even be present under this circumstance, and that the actual
throughput in an experiment involving co-encapsulation would be poorer. This
suggests that improvements in the various areas are crucial in increasing the viability
and attractiveness of the technology.

7.3 Future applications

The technology could be deployed for the screening of genetically encoded factors.
One could envision screening factors for various biological processes, for example,
for the identification of factors relevant to stem cell differentiation. Stimulant cells
expressing different genetically encoded factors would provide different "niches" in
droplets. By tracking the genetically encoded factor present, and the transcriptomic
changes present in the target cells, factors of interest can be identified.

This illustrates the possibility of applying this technology, a cell-cell interaction
technology that uses single-cell transcriptomics as a readout, to various biological
systems and investigations.
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Part II

A single-cell antibody sequencing
workflow
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8 | A workflow for antibody
sequencing

This part describes a novel modification to conventional Drop-seq (Macosko
et al., 2015) that permits the sequencing of antibody heavy and light chains in
a paired manner, while enabling the association of antibody sequences with whole
transcriptome data from the same droplet. The workflow is introduced in this
chapter, while two proof of concept analyses, namely the analysis of predefined
hybridoma mixtures with known antibody heavy and light chain sequences and the
analysis of a complex hybridoma mixture with unknown antibody heavy and light
chain sequences, are presented in Chapter 9 and Chapter 10 respectively.

8.1 Introduction

Antibody sequencing is relevant both for advancing our understanding of the
adaptive immune system, and in the identification and characterisation of antibodies
in antibody screening. Antibody sequencing is complicated by the fact that the heavy
and light chains of antibodies are encoded by different genes, with the endogenous
heavy and light chain pairings being crucial for the reproduction and further study of
antibodies of interest. This means that the pooling and bulk sequencing of antibody
genes from antibody-secreting cells, which results in the loss of endogenous heavy
and light chain pairings, is of limited usefulness.

As previously mentioned in Section 1.8.4, techniques that focus only on the
sequencing of antibody variable heavy and light chains frequently utilise overlap
extension PCR to physically link heavy and light chain sequences prior to sequencing
or cloning for use in display libraries. These require the physical separation
of antibody sequences derived from different cells, and frequently the physical
separation of individual antibody-secreting cells, into individual reaction vessels.
This has been carried out in nanowells (DeKosky et al., 2013) and in droplets (Adler
et al., 2017a; Adler et al., 2017b; DeKosky et al., 2015; McDaniel et al., 2016; Rajan
et al., 2018).
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As explained in Section 1.8.5, the sequencing of antibody variable regions is
not possible with unaltered conventional emulsion-based single-cell transcriptomic
technologies (based on the 3’ capture of mRNA), due to the fact that the variable
regions of the antibody genes are located nearer the 5’ end of the mRNA. The
combination of fragmentation and short-read Illumina sequencing results in a failure
to fully sequence the variable regions of the antibody-encoding transcripts in these
technologies.

Other technologies have coupled the sequencing of antibody variable heavy
and light chains with whole transcriptome analysis, either by capturing mRNA
at their 5’ ends (10X Genomics 5’ Gene Expression Technology) (Goldstein et al.,
2019; Single Cell Immune Profiling), by ligating gene-specific oligonucleotides onto
Drop-seq beads to enable targeted capture of antibody-encoding mRNAs close to
the variable region (DART-seq) (Saikia et al., 2019), or by sequencing 3’ labelled
antibody-encoding cDNAs via long-read nanopore sequencing (Singh et al., 2019).
These three techniques utilise different workarounds, but all permit the sequencing
of antibody variable regions, together with their associated barcodes, to enable both
the native pairing of heavy and light chain antibody sequences and the association
of antibody sequences with the relevant single-cell whole-cell transcriptomic data.

Like the other strategies utilised for both sequencing antibody sequences and
linking these to transcriptomic data, we aim to link cell barcodes with antibody
heavy and light chain sequences, in a manner compatible with next-generation
sequencing. Here, we introduce a method that is different from those previously
outlined. Our method links cell barcodes and UMIs with antibody variable regions
via an additional emulsion overlap extension PCR step, such that the resulting
fragments are compatible with Illumina sequencing and both the antibody variable
regions and their associated cell barcodes and UMIs can be sequenced. This would
not only permit the association of the heavy and light chains, but would also enable
association of the antibody sequences to the transcriptomic data, such that relevant
antibody sequences can be associated with the relevant whole cell transcriptomes.

8.2 Experimental workflow

We have developed an emulsion overlap extension PCR workflow that is fully
compatible with Drop-seq, to enable the sequencing of antibody heavy and light
chain variable regions (Fig. 8.1). The experimental workflow has been primarily
developed and optimised by Hongxing Hu, EMBL Heidelberg.

As outlined in Figure 8.1, we co-encapsulate antibody-secreting cells together
with barcoded beads and lysis buffer, as outlined in Drop-seq (Macosko et al., 2015).
The emulsion is then broken and subjected to reverse transcription and PCR. The
PCR products are then encapsulated at a limiting dilution, to ensure that most
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Figure 8.1: Workflow for Drop-seq-compatible antibody sequencing. The
workflow for the antibody sequencing of antibody-secreting cells via the addition of
small modifications to Drop-seq. (1) Antibody-secreting cells are co-encapsulated
with barcoded beads and lysis buffer, to trigger cell lysis. (2) The emulsion is then
broken and reverse transcription and PCR are carried out. (3) PCR products are
encapsulated at a limiting dilution, such that a large majority of droplets contain
either no PCR products or a single PCR product. DNA polymerase and four
different groups of primers are also included in the droplets, which facilitate the
emulsion overlap extension PCR to produce a fragment compatible with sequencing.
(Left inset) Each DNA fragment with an antibody gene contains PCR handles
(black), a segment corresponding to the template switch oligo (yellow, with "GGG"),
the antibody variable (dark green, "V") and constant regions (light green, "C"), the
UMI (grey, "UMI") and the cell barcode (orange, "CB"). The four primer types that
are included in the droplets are pictured. The two that bind to the PCR handles
are complementary (black arrows, with the complementary overhangs indicated
in red), and the other two primers bind to the antibody constant region (light
green arrows), permitting the specific amplification of antibody sequences. Two
individual fragments are amplified from each template, but the use of primers with
complementary overhangs results in the splicing and fusion of both fragments into
a single fragment, as pictured in the right inset. (Right inset) The PCR product is
pictured, with two flanking sequences corresponding to the primers that annealed
to within the antibody constant regions (light green), the UMI (grey, "UMI"), the cell
barcode (orange, "CB"), regions corresponding to the initial PCR handles (black)
and the complementary overhang (red), the region corresponding to the initial
TSO sequence (yellow) and the antibody variable region (dark green). The primers
utilised for the sequencing of the UMIs and cell barcodes (black arrow, left), and
for the sequencing of the antibody variable regions (black arrow, right and light
green arrow) are also pictured. (4) Emulsion overlap extension PCR is carried out
by thermocycling of the generated droplets. (5) A nested PCR is carried out to
incorporate the relevant adaptors before purification and sequencing on a MiSeq.
The fragments in the library would be comprised of an antibody heavy or light
chain linked to the cell barcode and UMI (shown in the right inset). This means that
the associated heavy and light chain sequences can be linked via the cell barcodes
(purple, orange).
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droplets contain no PCR products or only a single PCR product that would act as a
template for the next PCR.

Reagents for the emulsion overlap extension PCR are also included in the
droplets, namely DNA polymerase and four different types of primer (Fig. 8.1, left
inset). Two groups of primers bind to the antibody constant region (Fig. 8.1, left
inset, light green arrows), which permit PCR amplification to take place only in
droplets containing an antibody-encoding mRNA. The other two primers bind to
the flanking PCR handles and contain complementary overhangs (Fig. 8.1, left inset,
black arrows with red overhangs).

Within each droplet containing an antibody fragment, two individual fragments
would be amplified, one containing the antibody variable chain, and the other
containing the UMI and cell barcode. However, the use of primers with
complementary overhangs would result in the splicing and the fusion of both
fragments into a single fragment (pictured in Fig. 8.1, right inset), that contains
the antibody variable region linked to the UMI and cell barcode, with an altered
orientation of the various components relative to each other.

The emulsion overlap extension PCR has to be carried out in droplets, as
such a reaction in bulk would result in indiscriminate fusion of different barcodes
with different antibody variable regions. Compartmentalisation introduced via the
presence of droplets ensures that individual fragments are amplified and fused
in independent reaction vessels, ensuring that the antibody variable regions are
combined only with their associated cell barcode and UMI.

The resulting fragments are much shorter than the initial fragments, due to the
exclusion of a large part of the antibody constant region. This makes the fragments
short enough to be sequenced via paired-end Illumina sequencing.

8.3 Bioinformatic workflow

The bioinformatic pipeline has been developed by Charles Girardot and Jelle
Scholtalbers, EMBL Heidelberg. Charles Girardot has also contributed significantly
to the analysis of the data outlined in this Part of the thesis.

After sample demultiplexing, barcode detection and the demultiplexing of
droplets are carried out. The paired-end reads, which correspond to reads from
the two ends of each antibody variable region, are linked via the alignment of
overlapping sequences present in the two reads, to give full-length antibody
variable regions. Subsequently, these sequences are clustered first by UMI, to give
a consensus sequence for each UMI, and then by droplet barcode, to give an idea
of the identity and distribution of the different antibody chains in each droplet.
IgBLAST is then carried out to identify the V, D, and J regions for each identified
chain. For the light chains, only kappa chains, which are expressed in over 95% of
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mouse primary B-cells, are analysed in the data presented in this thesis, although
the technology has now been adapted for the analysis of both kappa and lambda
chains (data not shown). More details of the bioinformatic analysis can be found in
Section 13.6.

We have demonstrated the viability of our technology via the sequencing of
various hybridoma mixtures. Firstly, we investigated various samples of hybridoma
cells that were mixed at predetermined ratios, and for which we had the antibody
heavy and light chain sequences for the component hybridoma cells. We also
analysed a complex hybridoma mixture, for which we had no prior knowledge
of the antibody heavy and light chains. The data for these two experiments are
outlined in the subsequent chapters (Chapters 9 and 10).
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9 | Antibody sequencing of
predefined mixtures of
hybridoma cells

We first validated our technology using hybridoma mixtures containing hybridoma
cells with known heavy and light chain sequences, which were mixed at
predetermined ratios.

9.1 Experimental setup

In order to test our technology, we utilised four hybridoma cell lines (4D5, H25B10,
anti-CD4 and OKT-9). We have previously sequenced the heavy and light chain
sequences of these hybridomas via Sanger sequencing, and therefore used these
sequences as reference sequences for the subsequent Illumina sequencing data.

We processed three samples containing hybridoma cells mixed at different ratios
(Fig. 9.1). The hybridoma cells were sorted via FACS prior to the experiment, to
remove dead cells. Two samples containing all four cell lines were prepared, namely
at a ratio of 1:1:1:1, with all cells at the same concentration, at a ratio of 50:1:1:1,
where anti-CD4 hybridoma cells were included at a 50-fold concentration compared
to the other cell types. Additionally, a third sample (1:1:1+S) was prepared where
4D5, H25B10 and OKT-9 were mixed at a ratio of 1:1:1, and incubated for 20 minutes
with media in which anti-CD4 hybridoma cells were previously cultured (anti-CD4
supernatant), to investigate the effect of free-floating RNA on our sequencing results.

The samples were processed as outlined in Section 8.2, with the heavy and
light chains being amplified and sequenced separately. This gives us a total of six
different samples, namely a heavy and a light chain sample for each of the three
experimental conditions.
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Figure 9.1: Experimental setup of hybridoma sequencing experiment. In the first
sample (1:1:1:1), four hybridoma cell lines (4D5, H25B10, anti-CD4 and OKT-9)
were mixed in equal proportion. In the second sample (50:1:1:1), three hybridoma
cell lines (4D5, H25B10 and OKT-9) were mixed in equal proportion with anti-CD4
cells added at 50-fold the concentration of the other cell lines. In the third sample
(1:1:1+S), three hybridoma cell lines (4D5, H25B10 and OKT-9) were mixed in
equal proportion, and incubated with anti-CD4 supernatant for 20 minutes, prior
to processing. All samples were then processed with the workflow outlined in
Section 8.2. Hybridoma cells and supernatant of different origins are indicated with
different colours (4D5: blue, H25B10: pink, anti-CD4: green, OKT-9: mustard)

9.2 Data processing

The data was processed as outlined in Sections 8.3 and 13.6. It must be noted here
that for the data presented here, only kappa chains were detected. However, we
expect this to have a negligible impact on the analysis, given that all the known light
chain sequences of the four hybridoma cell lines are kappa light chains.

BLAST was used to align antibody heavy and light sequences against a custom
database containing only the known antibody heavy and light chain sequences
of 4D5, H25B10, anti-CD4 and OKT-9, which had been previously obtained with
Sanger sequencing. This ensures that each antibody heavy or light chain obtained
from next-generation sequencing, and each associated UMI, could be classified to
a specific chain identity. The UMIs of the sequenced antibody chains were also
associated with their respective droplet barcode, such that the antibody heavy or
light chain identities of the various UMIs associated with each droplet were used
to identify the hybridoma cell that was likely to have been encapsulated in each
droplet.

This is visualised in Figure 9.2, where the number of UMIs associated with the
different light chains for the different droplets in the 1:1:1:1 sample are visualised.
The bar graphs for all six samples can be found in Appendix E.

Droplets containing five or fewer UMIs associated to identifiable chains specific
to the library type (light chains for light chain libraries, heavy chains for heavy chain



9.2. Data processing 123

Figure 9.2: Distribution of UMIs associated with droplets for light chain
sequencing of the 1:1:1:1 hybridoma mixture. Four hybridoma cell lines (4D5,
H25B10, anti-CD4 and OKT-9) were mixed in equal proportion. Independent
droplets are shown on the x-axis ("Drops") while the UMI count for each droplet is
depicted on the y-axis ("UMI Count"). Each bar corresponds to the UMIs associated
within a single droplet. The identity of the light chain associated with each UMI
is indicated by the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink,
anti-CD4: green, OKT-9: mustard). The grey line at UMI Count = 5.5 indicates
the cut-off utilised. Droplets with bars above this cut-off were further processed,
while droplets with bars below this, which have five or fewer UMIs associated to
identifiable light chains, were rejected.

libraries) were rejected (Fig. 9.2), as we expected that droplets containing hybridoma
cells would optimally have more detectable antibody sequences. From the remaining
droplets, we classified droplets to specific hybridoma cells if more than half of their
UMIs were associated with the same chain, and rejected the remaining droplets.

Between 86 and 488 droplets were detected for the six different samples (Fig. 9.3),
with about 10% - 40% of droplets being discarded for most samples. For light chain
sequencing, droplets that were discarded mostly had fewer than six UMIs (Fig. 9.3,
grey), but for some heavy chain samples, there were more droplets with six or
more UMIs in which no chain accounted for more than 50% of the UMIs (Fig. 9.3,
black). The quality of the heavy chain library for 50:1:1:1 and the light chain library
for 1:1:1:1 appear to be particularly poor, with comparably low UMI counts for
each droplet and low numbers of droplets detected (Appendix E). Given that the
heavy and light chain libraries were generated from the same samples, and that the
three different samples for each chain (heavy or light) were processed together, no
systematic reason for the variation in quality is readily apparent.
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Figure 9.3: Identity of droplets for heavy and light chain antibody sequencing
(including discarded droplets). The proportion of droplets rejected, or classified
to each hybridoma cell line for both the heavy and light chain libraries of the three
samples are visualised. The droplets assigned to specific hybridoma cell lines are
indicated in colour (4D5: blue, H25B10: pink, anti-CD4: green, OKT-9: mustard),
while the droplets that were rejected are indicated in grey (rejected as the droplet is
associated with fewer than six UMIs) or black (rejected as no single chain accounts
for more than half of the UMIs). Each square represents 1% of droplets in a sample,
with the total number of droplets (n) for each sample noted below each waffle plot.

9.3 Results

The distribution of the droplets and their respective heavy and light chain identities,
after the removal of the discarded droplets, are shown in Figure 9.4. While the ratios
detected are not exactly representative of the ratios of the different cell types mixed,
the general trend is coherent with the experimental setup.

When comparing the 50:1:1:1 and 1:1:1:1 samples, where the former had a
concentration of anti-CD4 hybridoma cells that was 50-fold compared to the other
cell types, a corresponding increase in the number of droplets assigned to anti-CD4
(green) is evident (Fig. 9.4). This is apparent for the light chain libraries, where
anti-CD4 makes up about 39% of droplets (48/124 assigned droplets) in the 1:1:1:1
sample, which increases to over 98% (406/414 assigned droplets) in the 50:1:1:1
sample. Similarly, for the heavy chain samples, anti-CD4 constitutes about 1.6% of
droplets (5/304 assigned droplets) in the 1:1:1:1 sample, which increases to over
76% (23/30 assigned droplets) in the 50:1:1:1 sample. A corresponding proportional
decrease is also noticeable for the antibody chains of the other cell lines in the 50:1:1:1
sample, as compared to the 1:1:1:1 sample.

In contrast, the absence of anti-CD4 hybridoma cells, in the presence of anti-CD4
supernatant, resulted in a reduction in the number of droplets assigned to anti-CD4
(green) (Fig. 9.4). This is perceivable for the light chain libraries, where anti-CD4
accounts for about 39% of droplets (48/124 assigned droplets) in the 1:1:1:1 sample,
which decreases to about 14% (10/69 assigned droplets) in the 1:1:1+S sample.
Similarly, for the heavy chain samples, anti-CD4 represents about 1.6% of droplets
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Figure 9.4: Identity of droplets for heavy and light chain antibody sequencing
(excluding discarded droplets). The proportion of droplets classified to each
hybridoma cell line, excluding the rejected droplets, for both the heavy and light
chain libraries of the three samples are visualised. The identities of the droplets are
indicated in colour (4D5: blue, H25B10: pink, anti-CD4: green, OKT-9: mustard).
Each square represents 1% of droplets in a sample, with the total number of droplets
(n) for each sample noted below each waffle plot.

(5/304 assigned droplets) in the 1:1:1:1 sample, which decreases to a mere 0.4%
(1/264 assigned droplets) in the 1:1:1+S sample. A corresponding proportional
increase is also clearly seen for the antibody chains of the other cell lines in the
1:1:1+S sample, as compared to the 1:1:1:1 sample.

However, while the percentage of droplets assigned to anti-CD4 (green) is
smaller in the 1:1:1+S sample than in the 1:1:1:1 sample (Fig. 9.4), there are still
droplets that are assigned to anti-CD4, suggesting that free-floating RNA present
in the hybridoma supernatants do indeed contribute to contamination to a small
extent.

This is also supported by the bar graphs for the different samples (Fig. 9.2 and
Appendix E), where it is evident that many droplets contain a few antibody chains
from cell lines other than the cell line that they are assigned to. Given that cells are
encapsulated at a low concentration, such that most cell-containing droplets would
contain only a single cell, this contamination is likely to arise from free-floating
RNA in the supernatant. However, the problem is not a serious one as a majority of
droplets can still be confidently assigned to one hybridoma cell line.

The ratios of the antibody chains from the different hybridoma cell lines vary
between the heavy and light chain libraries, even for the same samples (Fig. 9.4).
This could indicate differences in capture or amplification efficiency of the antibody
heavy and light chains, or differences in heavy and light chain expression, even
within each hybridoma cell line.

Additionally, there is clearly a variation in the efficiency of picking up heavy
or light chains from different hybridoma cell lines. This is particularly evident
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when considering the 1:1:1:1 sample. Here, cells from four different hybridoma cell
lines were mixed in equal proportion, but the resulting droplets were not equally
distributed across the four cell lines (Fig. 9.4). Instead, there is an over-representation
of OKT-9 and an under-representation of 4D5, in both the light and heavy chain
libraries, as well as an under-representation of anti-CD4 in the heavy chain library.
This may be attributed to differences in antibody mRNA expression across different
cell lines. In particular, the low numbers of droplets assigned to 4D5 could be
associated with the fact that 4D5 does not produce productive heavy chains (Fig. 5.3),
and that the antibody concentration of 4D5 hybridoma supernatant is generally over
85x lower than that of other hybridoma cell lines (Fig. 5.2), suggesting that 4D5 cells
may express particularly low levels of antibody mRNA (Section 5.1).

Overall, we have generated the first proof of concept for our
Drop-seq-compatible antibody sequencing workflow. We sequenced samples
comprising of mixes of four different hybridoma cell lines at different ratios, and
demonstrated that the heavy and light chains of all four hybridoma cell lines could
be detected, sequenced and matched to previously known sequences. In addition,
droplets could be assigned to the different hybridoma cell lines, with the proportion
of droplets assigned to the different cell lines changing in a logical manner across
the different samples, based on differing proportions of cells processed in the
different samples. This indicates that we are capable of detecting antibody-secreting
cells present at different proportions, with our data providing information on the
relative proportion of the different cells present.
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10 | Antibody sequencing of
a complex hybridoma
mixture

We next employed our technology to investigate a complex hybridoma mixture,
where we had no prior knowledge of the sequences of the antibody heavy and light
chains.

10.1 Experimental setup

As previously mentioned in Chapter 3, hybridoma cells that secrete antibodies
that bind whole SK-BR-3 cells were generated by Precision Antibody. These were
generated utilising primary B-cells from mice that were shown to have an immune
response against SK-BR-3 cells (Fig. 3.1B). Thus, we expect that a subset of these
hybridoma cells would secrete antibodies that would bind to membrane receptors
present on SK-BR-3 cells and potentially induce transcriptomic changes. As this is a
model system under investigation, we were also interested to appraise the ability of
our technology to analyse the antibody diversity within this hybridoma sample.

The samples were processed as outlined in Section 8.2, with the heavy and light
chains being amplified separately but sequenced together. Hybridoma cells from a
single flask were split into two identical groups prior to Drop-seq processing and
sequencing. This gives us a total of four different samples, namely a heavy and a
light chain sample for each group.

It must be noted here that mouse immunoglobulins have either the kappa or
the lambda light chain, with individual B-lymphocytes exclusively expressing only
one class of light chain. Our analysis pipeline only detects kappa chains, but we
expect this to have a minimal impact on the analysis, given that over 95% of primary
mouse B-cells express kappa light chains, while less than 5% express lambda light
chains.
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10.2 Results

As in the previous experiment, the UMIs of the sequenced antibody chains were
associated with their respective droplet barcodes, but no alignment to known heavy
or light chains was carried out.

We detected over 700 droplet codes for each group, of which over 20% could be
associated with both heavy and kappa light antibody chains (Fig. 10.1, blue). This
figure is suboptimal, and suggests that our sampling is insufficient to pick up paired
heavy and kappa light chains for 80% of droplets, which would be required for a
complete understanding of the detected antibodies, and for any subsequent cloning
and reconstruction of antibody sequences of interest.

A majority of the remaining droplets were associated with only antibody heavy
(Fig. 10.1, pink) or kappa chains (Fig. 10.1, green), with almost no droplets associated
with neither, which is expected, as the workflow involves sequence-specific
amplification of antibody heavy and kappa chains.

Figure 10.1: Association of VH and VK to droplets. The proportion of droplets
that have both an associated heavy (VH) and kappa chain (VK) (VH + VK, blue),
only an associated heavy chain (VH) (VH only, pink), only an associated kappa
chain (VK) (VK only, green) or neither a heavy or a kappa chain (none, black). Each
square represents 1% of droplets in a sample, with the total number of droplets (n)
for each group noted below each waffle plot.

When considering the droplets that were associated with both heavy and kappa
antibody chains (Fig. 10.1, blue), there are large numbers of unique VH and VK pairs
for both groups (Group 1: 152, Group 2: 135), which both correspond to 89% of the
number of droplets for which VH and VK pairs were detected (Table 10.1).

Number of droplets Number of unique
Group with VH/VK pairs VH/VK pairs Percentage
Group 1 171 152 89%
Group 2 152 135 89%

Table 10.1: VH/VK pairs.



10.2. Results 129

An examination of the heavy and kappa chains detected for each library
revealed that while over 400 heavy or kappa chains were detected within each library,
the number of unique chains was much lower (Table 10.2). Specifically, the numbers
of unique heavy chains were 188 and 181 for Groups 1 and 2 respectively, which
correspond to 43% and 40% of the number of detected heavy chains. Similarly, the
numbers of unique kappa chains were 144 and 135 for Groups 1 and 2 respectively,
which is equal to 30% of the number of detected kappa chains for both groups.

Number of
Library Number of chains unique chains Percentage
Group 1, heavy chains 434 188 43%
Group 2, heavy chains 447 181 40%
Group 1, kappa chains 473 144 30%
Group 2, kappa chains 453 135 30%

Table 10.2: Unique VH and VK chains.

The exact distribution of the unique heavy and kappa chains across droplets
has been visualised in Figures 10.2 and 10.3. While 57% (107/188) and 52% (94/181)
of the unique heavy chains identified in Group 1 and Group 2 respectively appeared
in only one droplet each, over 20 heavy chain sequences for each group were found
in five or more droplets (Fig. 10.2). Similarly, while 44% (64/144) and 37% (70/135)
of unique kappa chains identified in Group 1 and Group 2 respectively were present
in only one droplet each, over 25 kappa chain sequences for each group were found
in five or more droplets (Fig. 10.3).

Figure 10.2: Occurrences of unique heavy chains in droplets. The unique heavy
chains have been ranked by the number of droplets they are found in, and plotted
along the x-axes, while the y-axes indicate the number of droplets in which each
chain has been identified in. Data is shown for the heavy chain libraries from
Group 1 (A) and Group 2 (B). Data reproduced with the permission of Charles
Girardot, EMBL Heidelberg.
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Figure 10.3: Occurrences of unique kappa chains in droplets. The unique kappa
chains have been ranked by the number of droplets they are found in, and plotted
along the x-axes, while the y-axes indicate the number of droplets in which each
chain has been identified in. Data is shown for the kappa chain libraries from
Group 1 (A) and Group 2 (B). Data reproduced with the permission of Charles
Girardot, EMBL Heidelberg.

There is a reasonable level of congruence between the frequently detected heavy
and kappa chains between Group 1 and Group 2. For the heavy chains, of the top 10
most frequently occurring chains in Group 1 and Group 2, three chains are present
in both libraries. For the kappa chains, of the top 10 most frequently occurring
chains in Group 1 and Group 2, seven chains are present in both libraries (Table 10.4,
Original Rankings).

However, a closer examination of the data suggests that some of the
over-represented kappa chains may have arisen from PCR errors or errors on
the bead barcodes, rather than being due to a biological lack of diversity in the
hybridoma population (Table 10.3). This can be seen by examining plots in which
the barcodes associated with a particular heavy or kappa chain antibody sequence
are plotted (Fig. 10.4 and 10.5).

Unique chains Unique chains with Unique chains with Unique chains
Library with ≥2 barcodes likely PCR errors likely bead errors without errors
Group 1, heavy chains 81 5 1 75/81 (93%)
Group 2, heavy chains 87 10 0 77/87 (89%)
Group 1, kappa chains 80 5 3 72/80 (90%)
Group 2, kappa chains 85 9 3 73/85 (86%)

Table 10.3: Errors in barcode counts of VH and VK chains. The number of unique
chains associated with two or more barcodes were quantified. Errors were defined
as barcodes pairs or groups that had only one or two nucleotide differences. Single
nucleotide differences located throughout the barcode were classified as likely PCR
errors, while nucleotide differences that occurred were located at the end of the
barcode and in groups of 4 or 16 were classified as likely bead errors.

The examination of the most frequently detected heavy chains from Group 1 and
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Figure 10.4: Analysis of droplet code distances for the most frequently detected
heavy chains. The droplet barcodes of the most frequently detected heavy chains
in Group 1 (A, n = 14) and Group 2 (B, n = 17) were examined. Droplet barcodes are
found under and to the right of the heatmap, while the different colours indicate
the number of nucleotide differences between pairs of barcodes. The germline V, D,
and J sequences of the antibody chain are indicated in the title. Data reproduced
with the permission of Charles Girardot, EMBL Heidelberg.

Group 2 reveal that the various barcodes have differences of at least five nucleotides,
suggesting that they did indeed arise from different droplets (Fig. 10.4). This
is also the case for most detected heavy chains, with the occasional presence of
pairs of barcodes which differ by a single nucleotide (Fig. F.1, Appendix F). While
mutations present within droplet barcodes may cause a small overestimation in
barcode number for some heavy chains, this has been noted for only a small number
of unique heavy chains (5/81 for Group 1, 10/87 for Group 2) (Table 10.3), with
most identified events only involving two barcodes. Overall, as 93% and 89% of
unique heavy chains with two or more associated barcodes are not problematic
(Table 10.3), we are confident that the errors do not pose a significant problem for
the identification and quantification of heavy chains.

Similar analyses can be conducted for the kappa chain sequences. Scrutiny of
the most frequently detected kappa chains from Group 1 (Fig. 10.5A) and Group 2
(Fig. 10.5C) revealed that a majority of detected barcodes are highly similar. For the
most frequently detected kappa chain from Group 1, 16 barcodes (bottom left corner,
pale yellow and light grey cyan) differ by only one or two nucleotides (Fig. 10.5A).
Similarly, for the most frequently detected kappa chain from Group 2, 16 barcodes
(top right corner, pale yellow and pale purple) differ by only one or two nucleotides
(Fig. 10.5C). The fact that the differences occur exclusively in the last two nucleotides
of the barcode, with all four possible nucleotides present, suggest that they may have
arisen from errors in bead barcoding, where the barcodes are shorter than expected,
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with the last two nucleotides being part of the UMIs. This suggests that the true
number of barcodes for the kappa chains IGKV1-117*01_IGKJ1*01 (Fig. 10.5A) and
IGKV8-27*01_IGKJ5*01 (Fig. 10.5C) should be 11 and 6 barcodes respectively.

Figure 10.5: Analysis of droplet code distances for the top and second most
frequently detected kappa chains. The droplet barcodes of the most and second
most frequently detected kappa chains in Group 1 (A: most (n = 26) and B: second
most (n = 22)) and Group 2 (C: most (n = 21) and D: second most (n = 17)) were
examined. Droplet barcodes are found under and to the right of the heatmap, while
the different colours indicate the number of nucleotide differences between pairs of
barcodes. The germline V and J sequences of the antibody chain are indicated in the
title. Data reproduced with the permission of Charles Girardot, EMBL Heidelberg.

A similar issue has also been noted for the second most frequently detected
kappa chain in Group 2, where four barcodes (bottom left, light grey cyan) differ
from each other solely in the last nucleotide (Fig. 10.5B). A thorough analysis of all
the unique kappa chains reveals that three unique kappa chains each in Group 1
(3/80) and Group 2 (3/85) have similar issues (Table 10.3). In addition, single
nucleotide differences between pairs of barcodes, which are more likely to have
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arisen during PCR, were noted for 4/80 and 9/85 kappa chains for Group 1 and
Group 2 respectively (Table 10.3). This suggests that 90% (72/80) and 86% (73/85)
of unique kappa chains from Group 1 and Group 2 respectively are not problematic
and have accurate barcode counts, including the second most frequently detected
kappa chain from Group 2 (Fig. 10.5D), and that these errors do not drastically alter
the conclusions.

Original Rankings Corrected Rankings
Germline V and J (kappa chains) Group 1 Group 2 Group 1 Group 2
IGKV1096*01_IGKJ2*01 2 2 1 1
IGKV14126*01_IGKJ2*01 4 4 2 3
IGKV37*01_IGKJ2*01 5 3 3 2
IGKV1096*01_IGKJ1*01 6 15 4 10
IGKV1117*01_IGKJ1*01 1 8 5 6
IGKV17121*01_IGKJ2*01 7 10 6 13
IGKV620*01_IGKJ2*01 8 19 7 18
IGKV819*01_IGKJ2*01 9 5 8 4
IGKV830*01_IGKJ1*01 10 7 9 5
IGKV830*01_(’IGKJ1*01’, ’IGKJ1*02’) 11 9 10 7
IGKV1993*01_IGKJ1*01 3 16 13 11
IGKV625*01_IGKJ1*01 16 6 16 12
IGKV1110*01_IGKJ1*01 21 14 21 9
IGKV1110*01_IGKJ2*01 59 12 59 8
IGKV827*01_IGKJ5*01 NA 1 NA 19

Table 10.4: Kappa chain rankings based on barcode frequencies. Kappa chains
were ranked based on the number of associated barcodes, with the chains with the
highest barcode frequencies ranked more highly. All chains that were in the top
ten, in either the original or corrected rankings, are shown. The corrected rankings
were derived by assuming that all barcodes with only one or two differences were
derived from the same barcode. "NA" indicates where the kappa chain sequence
was not detected for two or more barcodes.

As we can identify these errors, they should ideally be excluded from
subsequent analyses. The correction of these errors results in data that appears
more congruent across the different groups. This is exemplified by the fact that the
second most frequently detected kappa chains for Group 1 and Group 2 are the same
(IGKV10-96*01_IGKJ2*01, Fig. 10.5B, D). Given that the highly similar barcodes
present in the most frequently detected kappa chains for Group 1 and Group 2 are
likely to be derived from the same bead, and that the true number of barcodes for
the kappa chains IGKV1-117*01_IGKJ1*01 (Fig. 10.5A) and IGKV8-27*01_IGKJ5*01
(Fig. 10.5C) should be 11 and 6 barcodes respectively, what we termed the second
most frequently detected kappa chain (IGKV10-96*01_IGKJ2*01, Fig. 10.5B, D) would
actually be the most common kappa chain sequence for both groups, with 18 and
21 unique barcodes for Group 1 and Group 2 respectively (Table 10.4). With the
corrected rankings, the top three kappa chains in Group 1 are the same three
sequences identified as the top three kappa chains in Group 2. In addition, of
the top 10 most frequently occurring chains in Group 1 and Group 2, eight chains are



134 Chapter 10. Antibody sequencing of a complex hybridoma mixture

present in both libraries, which is up from seven in the original rankings (Table 10.4).

Overall, these analyses suggest that some of the high barcode counts for some
antibody chains have arisen from PCR or barcoding errors. However, other high
barcode counts appear to be biological, suggesting that the complex hybridoma
library is not as diverse as expected, with a subset of heavy and kappa chains
present in multiple droplets. We cultured the Precision Antibody hybridoma cells
for one week prior to the experiment, and we hypothesise that this time period may
have been too long, such that certain hybridoma populations may have expanded.
Further optimisation of the culture process prior to antibody sequencing can be
carried out, to ensure that cells are of sufficiently good quality, while minimising the
loss of diversity that may occur upon extended culture.
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11 | Discussion

We have generated the first proofs of concept for our Drop-seq-compatible antibody
sequencing workflow. We sequenced samples comprising of mixes of four different
hybridoma cell lines at different ratios, and demonstrated that the heavy and light
chains of all four hybridoma cell lines could be detected. We detected various ratios
of different heavy and light chains which were coherent with the ratios at which
the cells were included in the various samples. We have also sequenced a complex
hybridoma library where we had no prior knowledge of the antibody heavy and
light chains, demonstrating that our technology can detect antibody heavy and light
chain sequences from a diverse library.

Our technology is dependent on and compatible with Drop-seq, and thus
permits the simultaneous study of antibody heavy and light chain sequences and of
whole transcriptomes from the same samples. The association of the antibody heavy
and light chains with their corresponding cell barcodes would enable the association
of antibody chain information with the specific single-cell transcriptomes with the
same cell barcodes.

There are conspicuous opportunities for improvement. We have noted the
presence of contaminating chains in most droplets, and hypothesise that these
arise from free-floating RNA, which may in turn arise from dead cells present
within the samples. While the cells utilised in the experiment were sorted by
fluorescence-activated cell sorting (FACS) to remove dead cells, and were washed
and kept at low temperatures throughout the processing, it is possible that a small
proportion of cells are dying during the process and releasing mRNA. Further
optimisation of cell handling could mitigate this issue.

We have also observed that our sampling was insufficient to pick up both heavy
and light chains for many droplets. This could potentially be overcome by increasing
the number of fragments sequenced, or by processing a smaller number of STAMPs
at each time, to ensure that more pairs of associated antibody heavy and light chains
would be detected, but further experiments or in silico analyses are required to assess
the suitability of these measures.

We have also noted that the full length heavy chain variable sequences were
occasionally slightly too long for an alignment to be generated by alignment of the
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paired reads. In most of these cases, it is still possible to obtain the CDR3 region, the
region crucial for the determination of antigen specificity of the antibody, from the
second read. While this is less desirable than obtaining the full length heavy chain
read, the CDR3 region could still provide useful information and enable cloning of
a key region of the antibody heavy chain variable region. This should be further
explored and evaluated.

For the two datasets presented, only kappa light chains were detected, and
lambda chains were not included within the analysis. This is not a problem in the
experiment involving mixes of four different hybridoma cell lines, as all four of these
hybridoma cell lines express only kappa light chains. In contrast, while this could
have resulted in the exclusion of a small number of lambda chains in the complex
hybridoma mixture, the extent of the problem is expected to be small, give that over
95% of primary mouse B-cells express kappa light chains, while less than 5% express
lambda light chains. Nonetheless, our analysis pipeline should be, and has already
been expanded to include the analysis of lambda chains (data not shown).

Our results have also identified a potential vulnerability. Specifically, it appears
that some barcoded beads may have shorter cell barcodes, which can cause errors
in our analysis and had resulted in an over-estimation of the number of barcodes
associated with specific antibody chains. This is not surprising, given that previous
analyses have found that about 10% of Drop-seq beads contain a one-base deletion in
cell barcodes (Zhang et al., 2019). It has also been noted by the creators of Drop-seq
that a batch of barcoded beads generated before June 2015 has a subset of barcodes
(about 10 - 20%) that shared the first 11 bases but that differed at the last base
(Nemesh, 2018). Extra caution is required during data analysis to filter out these
barcodes. They can be excluded by the tolerance of a mismatch of two nucleotides
for cell barcodes, or by implementation of the DetectBeadSynthesisErrors package,
which should detect and repair barcode indel synthesis errors (Nemesh, 2018).

More work should also be done to quantitatively estimate the sensitivity of
the technology. While we have demonstrated that the technology can be used for
the sequencing of simple and complex mixtures of hybridoma cells, we have not
yet quantified the sensitivity and specificity of our antibody sequencing technology.
This could be done by labelling different hybridoma cells with hashtag antibodies
carrying specific barcodes (Stoeckius et al., 2018), a technology which is relatively
well-established in the lab. If we take hashtag labelling as the gold standard, we
could then quantitatively estimate the rates of antibody detection, relative to the
hashtag labels. These could also be combined with spike-in experiments, where a
hybridoma cell line expressing a known antibody could be spiked into a complex
mixture of hybridoma cells at different ratios (1:100, 1:1,000, 1:10,000 etc) to provide
a measure of the sensitivity and specificity of our technique.

The fact that the technology simply requires an additional emulsion PCR step
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with appropriate primers suggests that it can easily adapted for the sequencing
of antibody sequences of other species or for the sequencing of other variable
mRNAs present within the transcriptome. While the data presented in this thesis
have utilised the technology exclusively for the sequencing of mouse antibody
heavy and light chains, the technology has been used in the lab for the sequencing
and characterisation of human antibody heavy and light chains (Hongxing Hu,
unpublished data), demonstrating its adaptability for use in different organisms.
In addition, it is not difficult to envision its adaptation for the sequencing of T-cell
receptors (TCRs), which resemble antibodies and B-cell receptors in terms of protein
structures and the genetic mechanisms by which variability is produced.

There exist other emulsion-based antibody sequencing technologies that
are compatible with simultaneous whole-transcriptome analysis (as previously
discussed in Section 1.8.5), such as RAGE-seq (Singh et al., 2019), which uses
long-read sequencing to sequence antibody sequences and their associated barcodes,
as well as any other techniques that utilise additional oligonucleotide sequences to
capture sequences of interest in a targeted manner, such as InDrop (Klein et al., 2015)
or DART-seq (Saikia et al., 2019). However, these technologies frequently require
an additional sequencing technique, namely nanopore sequencing in the case of
RAGE-seq, or require prior manipulation and alteration of beads, which can be
problematic to optimise.

In contrast, our technology does not require any prior manipulation of beads or
additional sequencing techniques, which are both costly and difficult to optimise.
Instead, it simply requires the addition of an emulsion PCR step after cDNA
generation, which involves a round of droplet generation that is extremely similar
to what is required in the Drop-seq protocol, and an additional round of PCR. The
only additional reagents required are new primers and a DNA polymerase, which
are relatively inexpensive, making our technology an affordable and simple option
for the sequencing of antibody sequences, especially within labs that are familiar
with Drop-seq.

However, our technology is currently not compatible with the 10X Genomics
Single Cell 3’ Gene Expression workflow. This is unfortunate, as the 10X Genomics
workflows have been shown to perform better than Drop-seq and InDrop (Zhang
et al., 2019). As the primer sequences utilised in the 10X pipelines are generally
accessible, it is possible to adapt and optimise the technology for use with the 10X
workflows in the future.

The ability to sequence antibody heavy and light chains, and to associate the
chains with relevant transcriptomes, lays the groundwork for the development of a
method that enables the study of the effect of antibodies on the transcriptomes of
single target cells, permitting high-throughput target-agnostic functional antibody
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screening. This technology will be outlined and further explained in the general
discussion in Chapter 12.
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12 | General discussion and
perspectives

Antibody screening continues to remain highly relevant in modern medicine
(Urquhart, 2020a), but current established screening methods are either limited in
their ability to detect functional antibodies (phage display) or are time-consuming,
reagent-intensive and expensive, thus limiting the diversities of libraries that
can be screened (hybridoma technology). These methods are also target- and
function-specific, in contrast to our target-agnostic approach, which will be outlined
below.

Droplet microfluidics has been employed to overcome various limitations
of phage display and hybridoma technology, with the low sample volumes and
high-throughputs permitting high-throughput functional antibody screening for
antibodies against soluble targets (El Debs et al., 2012). In addition, while the
screening for antibody binders has been carried out against whole cells (Shembekar
et al., 2018), these technologies have not yet been demonstrated for the screening for
functional antibodies against membrane-based targets or whole cells, and currently
require prior knowledge about the target, such that screening is not target-agnostic.

We believe that droplet microfluidics continues to fulfil many criteria for the
advancement of antibody screening. In particular, we believe that the use of
droplet microfluidics for single-cell transcriptomics (as outlined in Section 1.6.4)
can complement current droplet microfluidic antibody screening, to enable the
development of a powerful method that permits high-throughput target- and
function-agnostic functional antibody screening, by studying the effect of antibodies
on single-cell transcriptomes.

12.1 Outline of the technology

The technology would be built upon the conclusions derived from Part I and the
antibody sequencing technology developed in Part II.

Having successfully demonstrated that picoinjection can be utilised for the
selective processing of droplets with desired occupancies (Section 4.3), we would
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implement a workflow extremely similar to that outlined in Chapter 4. Firstly,
we would co-encapsulate target cells with antibody-secreting cells. We would
then incubate the droplets to permit antibody accumulation before carrying out
picoinjection to add lysis buffer, ideally specifically to the droplets of interest, before
reverse transcription and PCR are carried out (Fig. 12.1, (1) - (3)).

Figure 12.1: Microfluidic functional antibody screening utilising single-cell
transcriptomics. (1) Antibody-secreting cells are co-encapsulated with target cells
and incubated to enable the accumulation of antibodies and the induction of
transcriptomic changes in the target cells. (2) Lysis buffer is then added via selective
picoinjection, before (3) the emulsion is broken and reverse transcription and PCR
are carried out. (4) Library preparation is carried out and the gene expression
libraries are sequenced via NextSeq. The cell barcodes present enable all cDNA to
be mapped back to their droplets of origin. (5) Concurrently, PCR products from
(3) are encapsulated at a limiting dilution, such that a large majority of droplets
contain either no, or a single PCR product. DNA polymerase and four different
groups of primers are also included in the droplets, which facilitate the emulsion
overlap extension PCR to produce a fragment compatible with sequencing. (6)
Emulsion overlap extension PCR is carried out by thermocycling of the generated
droplets. (7) Library preparation is carried out and the resulting fragments are
sequenced on a MiSeq, giving the antibody heavy and light chain sequences from
the antibody-secreting cells (ASCs). The cell barcodes (purple, orange) present
enable the association of antibody heavy and light chain sequences with each other
(green), and with cDNA of the associated target cell (blue).

The PCR products would then be utilised for two parallel applications. Firstly,
they could be utilised for library preparation and sequencing, to yield the gene
expression profiles of all cells, although we would be specifically interested in
the gene expression profile of target cells (Fig. 12.1, (4)). Secondly, as outlined
in Chapter 8 and validated in Chapters 9 and 10, the PCR products could be
co-encapsulated with DNA polymerase and PCR primers. This permits the selective
amplification of antibody heavy and light chain sequences, via an emulsion overlap
extension PCR that fuses the associated cell barcodes and UMIs with the antibody
sequences of interest into shorter fragments compatible with Illumina sequencing.
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This allows the sequencing of antibody heavy and light chain sequences while
ensuring that they could be associated to each other (Fig. 12.1, (5) - (7)).

Figure 12.2: Data analysis schematic for microfluidic functional antibody
screening utilising single-cell transcriptomics. Our sequencing data includes
gene expression data from target cells (A) and antibody heavy and light chain
variable sequences from the antibody-secreting cells (B). A. Normalised gene
expression data of 683 MCF-7 cells treated with DMF (negative control) (grey) and
50 MCF-7 cells treated with niclosamide (red), visualised using Uniform Manifold
Approximation and Projection (UMAP), with dimensions = 20 for dimensionality
reduction. This data was obtained during subsampling analysis and has been
reproduced here with the permission of Xiaoli Ma, EPFL. This UMAP is utilised as
a schematic, to illustrate that the gene expression data obtained from our future
screens could be clustered to separate a background of untreated cells or cells
which have no transcriptomic changes (grey) from clusters corresponding to cells
that have undergone functional transcriptomic changes (red). B. Our sequencing
data includes antibody heavy (VH) and light chain variable sequences (VL) from
the antibody-secreting cells. Based on the target cells of interest identified from
clustering, the antibody heavy and light chain sequences from hybridoma cells in
the same droplets as those target cells can be identified via their common barcode
sequences (black box). These antibody heavy and light chain sequences can then
be used for cloning, synthesis and characterisation of these antibodies for further
validation.

We would obtain two main categories of data, namely the gene expression
data, of which we would be specifically interested in the data from the target
cells (Fig. 12.2A), and the antibody heavy and light chain variable sequences from
the antibody-secreting cells (Fig. 12.2B). Cell transcriptomes containing functional
transcriptomic changes of interest can be identified (Fig. 12.2A, red cluster circled in
black), with the concepts and ideas discussed in Chapters 6 and 7 or with the use of
prior sequencing data for the same model system. The gene expression data from
the target cells and the antibody heavy and light chain variable sequences can be
grouped by barcode, such that the transcriptome of an individual target cell can
be linked to the antibody sequences of their associated antibody-secreting cell for
each droplet. This enables the antibody heavy and light chain variable regions of
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interest to be identified (Fig. 12.2B, black box), and synthesised for further study
and validation.

12.2 Characteristics of the technology

The technology has various advantages over current antibody sequencing
techniques, which were outlined in Section 1.9.

Our technology analyses single antibody-secreting cells. This means that
primary B-lymphocytes could be used for our screen, and that single hybridoma
cells can be processed without the need for hybridoma cell expansion, which is
both time-consuming and expensive, and limits the number of hybridoma clones
that can be studied. The throughput of this technology would instead be largely
restricted by sequencing and the associated costs, which will be elaborated on more
in Section 12.3.

As no prior knowledge of specific protein targets or pathways is required, and
the phenotypes of interest do not have to be defined beforehand, this antibody
screening technique would be fully target- and function-agnostic. We expect that
any antibody that changes the target cell transcriptome in any measurable way will
be picked up in our screen. In addition, the use of target cell transcriptomes as a
readout would ensure that any antibodies identified would be functional, rather
than merely binding.

Overall, the technology is not unduly complex to implement. The single
technologically-challenging step would be that of picoinjection, which requires
lasers and their respective PMTs for the detection of cells within droplets, along
with the associated LabVIEW software to measure peak fluorescence intensities
of droplets and to gate the droplet populations of interest. The workstation also
requires an electronic setup, to permit activation of an electric field on chip, to
destabilise the surfactant film surrounding droplets and permit injection of reagents
into droplets. In addition, the facilities for the manufacture of microfluidic chips are
required, both for the production of PDMS chips, and the addition of low melting
solder into the inlets for the generation of on-chip electrodes.

The rest of the protocol is not technologically more complex than conventional
Drop-seq. The workflow for the sequencing of antibody heavy and light chain
variable regions (as described in Chapter 8) does not require any prior manipulation
of beads, but is simply viable with the addition of an emulsion overlap extension
PCR to the Drop-seq protocol. The droplet generation carried out here is essentially
analogous to the initial droplet generation in Drop-seq, and simply requires the
addition of PCR reagents and primers.

However, our technology is not compatible with the 10X Genomics Gene
Expression workflow, as the need for pre-incubation of the two cell types in the
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absence of the lysis buffer is not possible with 10X Genomics proprietary reagents.
As the 10X Genomics workflows have been shown to perform better than Drop-seq
(Zhang et al., 2019), this is not ideal, but we believe that Drop-seq remains more
than sufficient for our prospective antibody sequencing technology.

12.3 Remaining challenges

As mentioned above, our technology will largely be limited by sequencing costs.
To mitigate this, we would need to optimise the identification of perturbations
from a small number of cells and minimise the processing of droplets that do not
provide useful data for our analyses, while exploring modifications such as targeted
sequencing. These improvements seek to increase the throughput of our technology
without a corresponding increase in costs. These correspond closely to the challenges
that were outlined in Section 7.2, namely:

1. Elucidating and reducing the minimum cell number to pick up perturbations

2. Overcoming Poisson distribution during cell and bead encapsulation

3. Establishing targeted sequencing

As previously mentioned in Section 7.2, the identification of perturbations from
a small number of cells is crucial in the functioning of our screening technology. Our
analysis of a drug perturbation on two different cell lines suggests that between
30 - 100 cells would be required to detect a perturbation via clustering analysis
(Chapter 6). While the effect size of a modulation caused by antibody binding
may differ from that of drugs, we believe that this is a realistic estimate, especially
as it is in line with similar analyses involving single-cell CRISPR screens with
transcriptomic readouts (Alda-Catalinas et al., 2020; Datlinger et al., 2017; Dixit et al.,
2016; Schraivogel et al., 2020).

This would be particularly problematic for the implementation of the
technology for antibody screening, as we would like to screen a diverse library of
antibody-secreting cells, while the requirement for 30 - 100 single cells per antibody
clone would permit us to only realistically screen hundreds, or maximally, thousands
of different antibody clones, before sequencing costs become exorbitant.

In addition, as previously mentioned in Section 7.2, this would require a
population of antibody-secreting cells where genetically identical antibody secreting
cells are present, with at least 30 individual cells per clone. This is realistic for
hybridoma cells, as they can be easily cultured and expanded, but would be more
difficult to achieve for primary plasma B-lymphocytes, which are extremely diverse
and are difficult to culture. This suggests that the reduction of the number of cells
required to detect a perturbation is an area that requires improvement.
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We believe that clustering may not necessarily be the best bioinformatic tool
to detect perturbations. Instead, alternative strategies should be investigated.
For example, it is not unimaginable that the examination of a subset of highly
differentially expressed and biologically relevant genes could enable a more effective
segregation of treated and untreated populations, even in the absence of targeted
sequencing. Similarly, various pipelines have been, and continue to be developed
for the analysis of transcriptomic data obtained from single-cell CRISPR screens.
These pipelines, such as MOFA+ (Alda-Catalinas et al., 2020; Argelaguet et al., 2020)
and MUSIC (Duan et al., 2019) could be easily adapted for use in our screening
pipeline, but their efficacy remains to be evaluated.

However, it must be noted that any screen for biologically relevant
antibody-secreting cells would be slightly different from single-cell CRISPR screens
with transcriptomic readouts. Those screens typically examine one, or a few, specific
biological pathways, while our screen aims to be target-agnostic and intends to
detect hits from a plethora of different pathways. In addition, while these single-cell
CRISPR screens value both sensitivity and specificity very highly, our screen could
accept slightly lower sensitivity (i.e. higher numbers of false negatives), as we would
simply like to detect some biologically interesting perturbations, without necessarily
having to reliably detect all relevant perturbations.

In the context of high-throughput antibody screening, it would be extremely
vital to carry out both a subsampling analysis (as outlined in Chapter 6) and a model
screen, with a model system involving an antibody secreting cell line, together with
the relevant target cell line. While the use of an additional model system would
expand the conclusions that we have made from our currently limited dataset,
characterisation of a dataset involving a model system with antibody secretion
would ensure that we are well-placed for further investigation of more complex
populations of antibody-secreting cells, and for the optimisation of the technology
for antibody screening.

The regulation of droplet occupancy also remains a challenge for
high-throughput target-agnostic antibody screening via transcriptomics. We would
like to maximise the number of droplets containing two cells, namely one cell
of each cell type, but this is challenging to achieve with Poisson distribution, as
explained in Chapter 4. We are currently capable of selectively processing droplets
containing one cell type, by selectively picoinjecting lysis buffer only into droplets
in which a specific cell type is detected, as outlined in Section 4.3. Improving
upon picoinjection to enable detection of multiple fluorescence signals and thus
decision-making based on multiple cell types, will improve the accuracy of selective
processing and minimise the sequencing of cells from undesirable droplets. This is
not unimaginable, but will have to be established and optimised.

Alternatively, a higher level of regulation of encapsulation would enable the
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generation of a higher percentage of droplets with the desired occupancy. This
would enhance the efficiency of our antibody screening technology while reducing
the unnecessary sequencing of uninteresting droplets. There are various possibilities
on how this can be done, including the utilisation of deterministic cell encapsulation
with Dean’s force (Kemna et al., 2012; Schoeman et al., 2014) or hydrodynamic traps
(Sauzade and Brouzes, 2017), but it remains to be seen how effective these methods
may be.

Targeted sequencing will similarly be crucial in reducing sequencing costs, and
could enable an increase in screening throughput without a corresponding increase
in sequencing costs. The different techniques all aim to selectively enrich for specific
sequences of interest, and this can be primarily done at three different steps of the
emulsion-based single-cell RNA-seq protocol, namely during RNA capture, PCR
amplification and enrichment via hybridisation capture, as explained in Section 7.2.

However, targeted sequencing requires a pre-selection of genes to be observed.
While a hypothesis-driven selection of genes may actually make it easier to identify
cells of interest (Schraivogel et al., 2020), this information may not be available for
all processes, and makes any screen no longer fully target-agnostic.

It is clear that while our technology is very promising, it continues to be
impaired by the high sequencing costs involved and by various challenges associated
with these high sequencing costs, which limit the screening throughput. This
suggests that improvements in the three areas mentioned, namely reducing the
minimum cell number to pick up perturbations, overcoming Poisson distribution
during encapsulation, and establishing targeted sequencing, are crucial in increasing
the viability and desirability of the technology. Nonetheless, given that sequencing
costs are rapidly decreasing over time (Hall, 2013; The Cost of Sequencing a Human
Genome), we expect that the technology will be increasingly more viable and more
desirable in the future.

12.4 Outlook

We believe that this screening technology can be easily adapted for the study and
screening of interactions of T-cells with their interaction partners, including but not
limited to, antigen-presenting cells (APCs) and dendritic cells. This is as the protein
structures of and the genetic mechanisms by which variability is produced in T-cell
receptors are highly similar to that of antibodies and B-cell receptors.

Droplet microfluidics has greatly revolutionised both the field of single-cell
sequencing and the field of antibody screening. We envision that a future technology
combining both applications of microfluidics will permit high-throughput
target-agnostic functional antibody screening and enable the identification of novel,
biologically interesting antibodies.
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In this thesis, we have assessed the feasibility of such a technology. Firstly, we
have overcome the problem of Poisson distribution in droplet generation, where
we successfully demonstrated that picoinjection can be utilised for the selective
processing of droplets with desired occupancies. We have also identified two model
systems suitable for the further optimisation of the single-cell transcriptomic analysis
pipeline, namely the CHO-GLP1R-GFP and HEK293T-mCherry-Exendin-4 model
system, where the cells interact via direct cell contact, and the system involving the
60bca hybridoma cell line and CD14-expressing U937 cells, where the interaction
takes place indirectly, via the action of antibodies. Work has also been done to
investigate the identification of a small number of positive events from a larger
background of negative events, allowing us to frame further strategies to reduce the
number of positive events needed to identify a perturbation.

Additionally, we have developed an antibody sequencing pipeline compatible
with Drop-seq, and demonstrated its use on a predefined mixture of hybridoma cells
and on a complex mixture of hybridoma cells for which we had no prior knowledge
of antibody sequences.

Our work in these two areas has laid the groundwork for the development
and optimisation of a technology utilising both these aspects for high-throughput
target-agnostic functional antibody screening. While challenges remain, we believe
that this antibody screening technology will be viable in the near future.
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13.1 Methods in microfluidics

13.1.1 Mask design and production

The microfluidic devices utilised as part of this thesis work were first produced as
photomasks and subjected to photolithography. They were designed in AutoCAD
(Autodesk Inc., USA) and were either adapted from previous designs found in the
lab or from publications. Designs were printed (Selba S.A. Versiox Switzerland) as
negative masks (clear designs on a dark barkground) on transparent plastic sheets
at a resolution of 25,400 dpi.

13.1.2 Photolithography for production of moulds

Based on the size of the design to be produced, silicon wafers (Siltronix, Silicon
Materials, Germany) of an appropriate size (3′′ or 4′′) were selected and cleaned with
an air gun and heated on a hot plate, at 140 °C for 10 min. The wafers were then
coated with a layer of SU-8 photoresist (MicroChem Corp., Newton MA). Different
variants of SU-8 photoresist exist, which differ in viscosity, and thus in the height
of the layers that can be formed. For example, the SU-8 2050 photoresist was used
to attain channel depths ranging from 50 – 100 µm. Approximately 5 ml of the
resist was dispensed on the wafer and spread uniformly on the wafer by a spin
coater (WS-400BZ-6NPP/LITE, Laurell Technologies Corporation, USA). The time
and spinning speed used were based on the manufacturer’s recommendations.
The wafers were then baked at 65 °C and 95 °C based on the manufacturer’s
instructions and the desired channel heights. The photomask was then placed
on the wafer and exposed to UV light for a defined time (based on manufacturer’s
instructions) in a mask aligner (Karl Suss MA45). Crosslinking occurs at the sections
exposed to UV light, such that the design on the photomask will be transferred
to the resist. The wafers were once again baked at 65 °C and 95 °C based on
the manufacturer’s instructions and on the desired channel heights, before being
developed with mr-Dev-600 (micro resist technology GmbH, Berlin), which removes
all non-polymerised photoresist, leaving the desired structures behind. Finally, a
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final baking step was carried out at 150 °C to solidify the structures on the mold.
The height of the structures obtained was verified using a Profilometer (Faulhaber).

13.1.3 Manufacturing of microfluidic chips

Polydimethylsiloxane (PDMS) and curing agent (Sylgard 184 silocone elastomer
kit, Dow Corning Corp, USA) were mixed at a 9:1 (w/w) ratio and degassed in
a dessicator until all bubbles were removed. The mixture was then poured over
moulds placed in petri dishes and baked overnight at 65 °C. The solidified PDMS
was then cut with a scalpel and peeled off the mould. Inlets for fluid and for
electrodes were punched with biopsy punches with a diameter of 0.75 mm (World
Precision Instruments, USA). The PDMS was then cleaned using an air gun and with
adhesive tape, before being plasma bonded (Femto, Diener electronic GmbH + Co.
KG, Germany) to untreated glass slides or to the non-conductive sides of indium tin
oxide (ITO) glass slides (chips for picoinjection) (CG 41IN-S207, Delta Technologies
Limited, USA). Picoinjection devices were also placed on a hotplate at 95 °C until
the PDMS was heated up, before low melting solder was inserted into the inlets for
the electrodes. These were then connected to cables at the inlets, which could then
be connected to the electronic setup of the workstation. To make channel surfaces
hydrophobic, Aquapel (Autoserv, Germany) was flushed through the channels and
subsequently removed by flushing with air, before being left to dry for 10 min on a
hot plate set to 80 °C.

13.1.4 Injection of fluids into microfluidic chips

Luer-Lok syringes (Beckon-Dickinson, USA) of an appropriate size were loaded
with the reagents to be injected, before being connected to 25G 1′′ needles
(Beckon-Dickinson, USA), which were in turn connected to PTFE tubing with an
inner diameter of 0.32 mm and an outer diameter of 0.78 mm (TW30, Adtech Polymer
Engineering Ltd, UK). Syringes were primed to remove all air bubbles and fill the
tubing with reagent. These syringes were then mounted on PHD 22/2000 Syringe
Pumps (Harvard Apparatus, USA), and the syringe diameters and desired flow rates
were programmed. The free ends of each tubing were connected to their respective
tubing inlet in the microfluidic chip, ensuring that reagents were injected into the
chip at defined flow rates.

13.1.5 Optical setup for imaging and fluorescence measurements

A standard inverted light microscope (Eclipse Ti-S, Nikon GmbH, Germany) was
used for bright-field imaging inside droplets. A high speed camera (Motion BLITZ
EoSens mini1, Mikrotron GmbH, Germany) was used to make high-speed recordings
during droplet generation.

Spectroscopic fluorescence measurements were carried out with an in-house
optical system, which is comprised of a vibration-reduced breadboard fitted with a
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Figure 13.1: Optical setup of the microfluidic workstation. Three different lasers
are utilised for excitation at wavelengths of 375 nm, 488 nm and 561 nm. Emission is
measured with three PMTs, at wavelengths of 450 nm, 521 nm and >584 nm. Figure
reprinted from Frenzel and Merten, 2017 under a Creative Commons Attribution
License (CC-BY 3.0) - Published by The Royal Society of Chemistry.

standard inverted microscope, as mentioned above. Lasers of wavelengths 375 nm,
488 nm and 561 nm were directed over dichroic mirrors into the microscope
objective (Fig 13.1). The emitted light was then directed through bandpass
filters to a set of three photomultiplier tubes (PMTs) (Hamamatsu), enabling the
simultaneous excitation and detection of three different parameters (Fig 13.1). For
all measurements, a 40x objective was used. In the experiments outlined in this
thesis, only the lasers of wavelengths 375 nm and 488 nm and their respective PMTs
were utilised.

13.1.6 Selective picoinjection

Cell lysis reagents were injected into the picoinjector inlet at 200 µl/h. The droplet
emulsion was mounted onto a syringe pump which was set to inject at 500 µl/h.
Once the air was removed from the tubing, the tubing was connected to the chip
and the injection rate lowered to 100 µL/h. Injected droplets were spaced out with
oil, and the flow rates of the droplets and the oil were adjusted to achieve good
spacing and a constant flow of droplets.

We used an in-house LabVIEW software (developed by Ramesh Utharala) to
measure peak fluorescence intensities of droplets and to set gates for the droplet
population of interest. When a droplet of interest passes the laser, an electrical pulse
is applied to induce the addition of cell lysis reagents in the nozzle into the droplet
of interest.

The picoinjection technology was kindly shared with us by Michael Ryckelynck
from the University of Strasbourg.
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13.1.7 Cell and bead encapsulation for Drop-seq and picoinjection

Cells to be used for picoinjection were washed in PBS before being stained with
CellTraceTM CFSE (Thermo Fisher Scientific Inc., USA) as per manufacturer’s
instructions. Alternatively, cells for Drop-seq were unstained. Cells were then
washed twice with PBS before being counted and resuspended in PBS with
0.01% Bovine Serum Albumin (BSA) (Sigma-Aldrich, USA) at a concentration of
4 x 106 cells/ml before being diluted to a concentration corresponding to a final
λ = 0.05 after encapsulation.

Approximately 120,000 Drop-seq barcoded beads (ChemGenes, USA) (Macosko
et al., 2015) were spun down at 1000 x g at 4 °C and resuspended in 950 µl lysis
buffer and 50 µl 1M dithiothreitol (DTT) (Thermo Fisher Scientific Inc., USA).

Cells and beads were then loaded into separate 3 ml Luer-Lok syringes
(Beckon-Dickinson, USA) directly connected to TW30 tubing (Adtech Polymer
Engineering Ltd, UK) via PDMS plugs. A magnetic mixing disc (VP Scientific, USA)
was also included and rotated at a low speed using a magnetic mixer (Combimag
Reo, IKA, Germany), to ensure even cell mixing. The syringes containing cells or
beads were mounted on syringe pumps with the syringes pointing downwards. The
chip design used was the same as that of the devices used for Drop-seq (Macosko
et al., 2015), with a height of 80 µm.

The continuous phase used was 1% PicoSurf-1 (Sphere Fluidics, UK)
in HFE-7500 Novec Engineered Fluid (3M, USA) for experiments involving
picoinjection. For Drop-seq experiments without picoinjection, QX200TM Droplet
Generation Oil for EvaGreen (Bio-Rad Laboratories Inc., USA) was utilised. The
oil phase was injected at a flow rate of 12,000 µL/h, while the cells and beads were
injected at flow rates of 3000 µL/h.

13.1.8 Co-encapsulation of CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 cells

CHO-GLP1R-GFP cells were stained with CellTraceTM Violet (Thermo Fisher
Scientific Inc., USA) as per manufacturer’s instructions. CHO-GLP1R-GFP cells,
HEK293T-WT and HEK293T-mCherry-Exendin-4 cells were washed once with PBS
before being counted and resuspended in FreeStyle 293 Expression Media (Gibco,
Thermo Fisher Scientific Inc., USA) at a concentration corresponding to a final λ = 1
for each cell type after encapsulation.

Cells were then loaded into separate 3 ml Luer-Lok syringes (Beckon-Dickinson,
USA) directly connected to TW30 tubing (Adtech Polymer Engineering Ltd, UK) via
PDMS plugs. A magnetic mixing disc (VP Scientific, USA) was also included and
rotated at a low speed using a magnetic mixer (Combimag Reo, IKA, Germany), to
ensure even cell mixing. The syringes were mounted on syringe pumps with the
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syringes pointing downwards. The chip design used was the same as that of the
devices used for Drop-seq (Macosko et al., 2015), with a height of 80 µm.

The continuous phase used was 1% PicoSurf-1 (Sphere Fluidics, UK) in
HFE-7500 Novec Engineered Fluid (3M, USA), and was injected at a flow rate of
12,000 µL/h, while the cells were injected at flow rates of 3000 µL/h. Two samples
were prepared, where CHO-GLP1R-GFP cells were co-encapsulated together with
either HEK293T-WT or HEK293T-mCherry-Exendin-4 cells.

Droplets were incubated for 10 h at 37 °C, 5% CO2 and in a
humidified environment, prior to emulsion breakage with 0.3x volume of
1H,1H,2H,2H-Perfluorooctanol (PFO) (ABCR GmbH, Germany) and analysis with
flow cytometry.

13.1.9 Droplet generation for single-molecule PCR

2X emulsion linkage PCR mix was prepared as outlined in Section 13.14.2 and DNA
obtained after cDNA purification was diluted to 3 x 10-4 ng/µl with water containing
0.5 mg/ml Ultrapure BSA (Thermo Fisher Scientific Inc., USA). Both mixtures were
loaded in 3 ml Luer-Lok syringes (Beckon-Dickinson, USA) directly connected to
TW30 tubing (Adtech Polymer Engineering Ltd, UK) via PDMS plugs. The syringes
were mounted on syringe pumps with the syringes pointing downwards.

The chip design used was the same as the design utilised for the PDMS co-flow
droplet generation design used in conventional Drop-seq (Macosko et al., 2015), but
with a height of 55 µm, to generate droplets with 70 µm diameter and a volume of
about 180 pl.

The continuous phase used was QX200TM Droplet Generation Oil for
EvaGreen (Bio-Rad Laboratories Inc., USA), which was injected at a flow rate of
12,000 µL/h, while the PCR mix and DNA templates were injected at flow rates of
1800 - 2000 µL/h.

13.2 Mammalian cell culture

13.2.1 Cell culture conditions

SK-BR-3 cells were obtained from the Jechlinger lab, EMBL Heidelberg, and were
cultured in DMEM High Glucose media (Gibco, Thermo Fisher Scientific Inc., USA)
supplemented with 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific
Inc., USA), 1 mm sodium pyruvate (Gibco, Thermo Fisher Scientific Inc., USA),
100 units/ml Penicillin and 100 µg/ml Streptomycin (Gibco, Thermo Fisher Scientific
Inc., USA). The cells were subcultured 2 - 3 times a week at a ratio of 1:5.

K-562 cells (ATCC®CCL-243TM, USA), and were cultured in IMDM media
(Gibco, Thermo Fisher Scientific Inc., USA) supplemented with 10% FBS (Gibco,
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Thermo Fisher Scientific Inc., USA), 100 units/ml Penicillin and 100 µg/ml
Streptomycin (Gibco, Thermo Fisher Scientific Inc., USA). The cells were subcultured
3 times a week at a ratio of 1:10 - 1:15.

Hybridoma cell lines were cultured in either DMEM High Glucose (4D5, OKT-9,
OKT-3, anti-CD4, H25B10) (Gibco, Thermo Fisher Scientific Inc., USA) or RPMI-1640
media (60bca, 8G5F11, IE9F9, H25B10) (Gibco, Thermo Fisher Scientific Inc., USA)
supplemented with 10% FBS (Gibco, Thermo Fisher Scientific Inc., USA) and
100 units/ml Penicillin and 100 µg/ml Streptomycin (Gibco, Thermo Fisher Scientific
Inc., USA). The cells were subcultured 2 - 3 times a week at a ratio of 1:6 – 1:20.

Table 13.1: Hybridoma cell lines utilised

Hybridoma cell line Company Catalog number
4D5 ATCC, USA CRL-10463

OKT-9 ATCC, USA CRL-8021

OKT-3 ATCC, USA CRL-8001

H25B10 ATCC, USA CRL-8017

60bca ATCC, USA HB-247

8G5F11 Kerafast, USA EB0010

IE9F9 Kerafast, USA EB0012

Precision Antibody hybridoma Precision Antibody, USA NA
(against SK-BR-3 cells)

Antibody sequences of the anti-CD4 hybridoma cell line can be found in Appendix G.

Precision Antibody hybridoma cells were cultured in ClonaCellTM-HY Medium
C (STEMCELL Technologies Inc., Canada), supplemented with HAT Supplement
(sodium hypoxanthine (0.1 mm), aminopterin (0.4 µM) and thymidine (16 µM))
(Gibco, Thermo Fisher Scientific Inc., USA) and 100 units/ml Penicillin and
100 µg/ml Streptomycin (Gibco, Thermo Fisher Scientific Inc., USA). Information
on the generation of the Precision Antibody hybridomas can be found in Chapter 3
and in Subsection 13.13.2.

U937 cells (ATCC®CRL-1593.2TM, USA) were cultured in RPMI-1640 media
(Gibco, Thermo Fisher Scientific Inc., USA) supplemented with 10% FBS (Gibco,
Thermo Fisher Scientific Inc., USA), 100 units/mL Penicillin and 100 µg/mL
Streptomycin (Gibco, Thermo Fisher Scientific Inc., USA). The cells were subcultured
2 – 3 times a week at a ratio of 1:5.

Wild-type Chinese Hamster Ovary (CHO-K1) cells were obtained from the
Ellenberg lab, EMBL Heidelberg, while the CHO-GLP1R-GFP cells were obtained
from the McDonald lab at the Scripps Research Institute (Zhang et al., 2015).
They were cultured in F12-K media (Gibco, Thermo Fisher Scientific Inc., USA)
supplemented with 10% FBS (Gibco, Thermo Fisher Scientific Inc., USA), 2 mm
L-Glutamine (Sigma-Aldrich, USA), 100 units/ml Penicillin and 100 µg/ml
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Streptomycin (Gibco, Thermo Fisher Scientific Inc., USA). The cells were subcultured
2 – 3 times a week at a ratio of 1:10 – 1:15, using 0.05% Trypsin-EDTA (Gibco, Thermo
Fisher Scientific Inc., USA) to detach the cells from the bottom of the flasks.

The HEK293T cells expressing mCherry and Exendin-4 were generated in-house
by Amanda Vanselow, using a plasmid obtained from the McDonald lab at the
Scripps Research Institute (Zhang et al., 2015). HEK293T cells (wild-type (WT)
(ATCC®CRL-3216TM, USA) and mCherry-Exendin-4) were cultured in DMEM
High Glucose media (Gibco, Thermo Fisher Scientific Inc., USA) supplemented
with 10% FBS (Gibco, Thermo Fisher Scientific Inc., USA), 2 mm L-Glutamine
(Sigma-Aldrich, USA), 1 mm sodium pyruvate (Gibco, Thermo Fisher Scientific Inc.,
USA), 100 units/ml Penicillin and 100 µg/ml Streptomycin (Gibco, Thermo Fisher
Scientific Inc., USA). The cells were subcultured 3 times a week at a ratio of 1:4 – 1:6,
using 0.05% Trypsin-EDTA (Gibco, Thermo Fisher Scientific Inc., USA) to detach the
cells from the bottom of the flasks.

MCF-7 cells were obtained from the Jechlinger lab, EMBL Heidelberg. They
were cultured in DMEM High Glucose media (Gibco, Thermo Fisher Scientific Inc.,
USA) supplemented with 10% FBS (Gibco, Thermo Fisher Scientific Inc., USA), 2 mm
L-Glutamine (Sigma-Aldrich, USA), 1X non-essential amino acids (Sigma-Aldrich,
USA), 100 units/ml Penicillin and 100 µg/ml Streptomycin (Gibco, Thermo Fisher
Scientific Inc., USA). The cells were subcultured 2 – 3 times a week at a ratio of
1:6 - 1:10, using 0.05% Trypsin-EDTA (Gibco, Thermo Fisher Scientific Inc., USA) to
detach the cells from the bottom of the flasks.

A375-P cells were obtained from the Diz-Muñoz lab, EMBL Heidelberg.
They were cultured in RPMI-1640 media (Gibco, Thermo Fisher Scientific Inc.,
USA) supplemented with 10% FBS (Gibco, Thermo Fisher Scientific Inc., USA),
2 mm L-Glutamine (Sigma-Aldrich, USA), 100 units/ml Penicillin and 100 µg/ml
Streptomycin (Gibco, Thermo Fisher Scientific Inc., USA). The cells were subcultured
2 – 3 times a week at a ratio of 1:6 - 1:10, using 0.05% Trypsin-EDTA (Gibco, Thermo
Fisher Scientific Inc., USA) to detach the cells from the bottom of the flasks.

All cells were cultured at 37 °C, 5% CO2 and in a humidified environment.

13.2.2 Obtaining hybridoma supernatants

Hybridoma cells were washed with PBS and seeded in their respective media (Table
13.2) and incubated at at 37 °C, 5% CO2 and in a humidified environment for 24
hours. Hybridoma cells and supernatant were then spun at 500 x g for 5 min, before
the supernatant was filtered through a 0.45 µm Millex-HV Filter, PVDF (Merck
Millipore, MilliporeSigma, USA) and aliquoted and stored at -20 °C.
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Table 13.2: Hybridoma supernatant media

Media composition Hybridoma cell lines
DMEM High Glucose (Gibco, Thermo Fisher Scientific 4D5, OKT-9, OKT-3,
Inc., USA) supplemented with 10% FBS (Gibco, Thermo anti-CD4, H25B10
Fisher Scientific Inc., USA) and 100 units/ml Penicillin
and 100 µg/ml Streptomycin (Gibco, Thermo Fisher
Scientific Inc., USA)
RPMI-1640 (Gibco, Thermo Fisher Scientific Inc., USA) 8G5F11, IE9F9, H25B10
supplemented with 10% FBS (Gibco, Thermo Fisher
Scientific Inc., USA) and 100 units/ml Penicillin
and 100 µg/ml Streptomycin (Gibco, Thermo Fisher
Scientific Inc., USA)
Hybridoma Serum-free media (Gibco, Thermo Fisher 60bca, H25B10
Scientific Inc., USA) supplemented with 100 units/ml
Penicillin and 100 µg/ml Streptomycin (Gibco,
Thermo Fisher Scientific Inc., USA)
ClonaCellTM-HY Medium E (STEMCELL Technologies Precision Antibody
Inc., Canada) supplemented with 100 units/ml Penicillin hybridomas, H25B10
and 100 µg/ml Streptomycin (Gibco, Thermo Fisher
Scientific Inc., USA)

13.2.3 Lentivirus production

HEK293T cells were seeded and left to adhere overnight, to give approximately
60-70% confluency. 10 µg of pLVX-IRES-ZsGreen (transfer plasmid), 10 µg of
pCMV-dR8.2 (packaging plasmid) and 5 µg of pMD2.G with VSV-G (envelope
plasmid) were utilised for the transfection of each T175 flask of HEK293T cells, with
calcium phosphate used as the transfection reagent, according to the manufacturer’s
instructions (Sigma-Aldrich, USA). The media was changed 24 h after transfection,
and lentivirus supernatants were harvested at 48 h and 72 h after transfection and
pooled. The media used for the transfection and collection of virus supernatants
contain 5 mm sodium butyrate (Sigma-Aldrich, USA).

The supernatants were concentrated with Lenti-XTM Concentrator (Takara
Bio, Japan), according to the manufacturer’s instructions. The lentivirus was
resuspended in the appropriate media for the cell type to be transduced, with the
addition of 5 mm sodium butyrate (Sigma-Aldrich, USA) and 5 µg/mL polybrene
(Merck Millipore, MilliporeSigma, USA).

13.3 Cell treatment and activation

All hybridomas supernatants are produced and utilised as indicated in Table 13.2.
Different hybridoma supernatants utilised in same experiment use the same media
composition.
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13.3.1 Treatment of SK-BR-3 cells with recombinant anti-Her-2 antibody

SK-BR-3 cells were unstimulated or treated with 1 µg/ml Anti-HER2-Tra-hIgG1
(InvivoGen, USA) for 6 h at 37 °C, 5% CO2 and in a humidified environment, prior
to cell harvesting and library generation.

13.3.2 Treatment of Jurkat cells with anti-CD4 hybridoma supernatant

Jurkat cells were washed with and resuspended in FreeStyle 293 Expression Media
(Gibco, Thermo Fisher Scientific Inc., USA). Samples were mixed at a 1:1 ratio
with anti-CD4 hybridoma supernatant or with media only (negative control) and
incubated for 6 h at 37 °C, 5% CO2 and in a humidified environment, prior to cell
harvesting and library generation.

13.3.3 Treatment of Jurkat cells with anti-CD3 antibody and PMA

Jurkat cells were treated with 1 µg/ml anti-His (negative control) (Biolegend, USA)
or 1 µg/ml anti-CD3 antibody (Biolegend, USA) for 8 h at 37 °C, 5% CO2 and in a
humidified environment, prior to cell harvesting and library generation. This took
place concurrently with PMA treatment, if applicable.

Jurkat cells were incubated with 10 ng/ml of Phorbol 12-Myristate 13-Acetate
(PMA) (InVivoGen, USA) for 8 h at 37 °C, 5% CO2 and in a humidified environment,
as outlined in Smeets et al., 2012.

13.3.4 Treatment of Jurkat cells with OKT-3 hybridoma supernatant

Jurkat cells were washed with and resuspended in FreeStyle 293 Expression Media
(Gibco, Thermo Fisher Scientific Inc., USA). Samples were mixed at a 1:1 ratio with
OKT-3 hybridoma supernatant or with H25B10 hybridoma supernatant (negative
control) and incubated for 4 h at 37 °C, 5% CO2 and in a humidified environment.
Both hybridoma supernatants were used at a IgG concentration of 6.720 µg/mL.
Concentrations were determined by ELISA (Appendix A).

13.3.5 Treatment of K-562 cells with OKT-9 hybridoma supernatant

For the bulk sequencing experiment, K-562 cells were treated with 1 µg/ml of
anti-BSA antibody (negative control) (Thermo Fischer Scientific Inc., USA) or mixed
at a 1:1 ratio with OKT-9 hybridoma supernatant (3.14 µg/ml, as determined by
ELISA (Appendix A)) for 8 h at 37 °C, 5% CO2 and in a humidified environment,
prior to cell harvesting and library generation.

For the 10X sequencing experiment, K-562 cells were washed with and
resuspended in FreeStyle 293 Expression Media (Gibco, Thermo Fisher Scientific
Inc., USA). Samples were mixed at a 1:1 ratio with OKT-9 hybridoma supernatant
or with H25B10 hybridoma supernatant (negative control) and incubated for 4 h
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at 37 °C, 5% CO2 and in a humidified environment. Both hybridoma supernatants
were used at a IgG concentration of 3.14 µg/mL. Concentrations were determined
by ELISA (Appendix A).

13.3.6 Treatment with niclosamide

MCF-7 and A375-P cells were treated with dimethylformamide (DMF)
(Sigma-Aldrich, USA) (negative control) or 10 µM niclosamide (MedChemExpress
LLC., USA) for 6 h at 37 °C, 5% CO2 and in a humidified environment, prior to cell
harvesting and further processing.

13.3.7 Differentiation of U937 with 1,25-dihydroxyvitamin D3 and
treatment with anti-CD14 hybridoma supernatant

U937 cells were incubated with with 100 nm 1,25-dihydroxyvitamin D3
(Sigma-Aldrich, USA) for 24 h to stimulate CD14 expression (Baek et al., 2009).
CD14-expressing U937 cells were washed with and resuspended in FreeStyle 293
Expression Media (Gibco, Thermo Fisher Scientific Inc., USA) containing 1 µg/mL
lipopolysaccharides from Salmonella minnesota (Sigma-Aldrich, USA), 2% human
serum (Sigma-Aldrich, USA), 100 units/ml Penicillin and 100 µg/ml Streptomycin
(Gibco, Thermo Fisher Scientific Inc., USA)). These were mixed at a 1:1 ratio with
60bca hybridoma supernatant or with H25B10 hybridoma supernatant (negative
control), and incubated for 6 h at 37 °C, 5% CO2 and in a humidified environment.
Both hybridoma supernatants were used at a IgG concentration of 5.37 µg/mL.
Concentrations were determined by ELISA (Appendix A).

13.3.8 Treatment of CHO-GLP1R-GFP cells with Exendin-4

CHO-GLP1R-GFP cells were treated with 10 µM Exendin-4 (GenScript Biotech, USA)
for 6 h at 37 °C, 5% CO2 and in a humidified environment, prior to cell harvesting
with 0.05% Trypsin-EDTA (Gibco, Thermo Fisher Scientific Inc., USA).

13.3.9 Co-cultivation of CHO-GLP1R-GFP cells with
HEK293T-mCherry-Exendin-4 cells

HEK293T-WT or HEK293T-mCherry-Exendin-4 cells were seeded and permitted
to adhere overnight. CHO-GLP1R-GFP cells were stained with CellTraceTM

Violet (Thermo Fisher Scientific Inc., USA) as per manufacturer’s instructions.
CHO-GLP1R-GFP cells were then seeded and incubated for 0, 6, 10 or 30 h at
37 °C, 5% CO2 and in a humidified environment, prior to cell harvesting with
0.05% Trypsin-EDTA (Gibco, Thermo Fisher Scientific Inc., USA).
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13.3.10 Inhibition of lentiviral transduction by 8G5F11 and IE9F9
hybridoma supernatants

Lentivirus is added at a concentration that gives a final multiplicity of infection
(MOI) of 5 (in media for K-562 culture with 10 mm sodium butyrate (Sigma-Aldrich,
USA) and 10 µg/mL polybrene (Merck Millipore, MilliporeSigma, USA)), and mixed
with an equal volume of 7.5 µg/mL H25B10 (negative control), 8G5F11 or IE9F9
hybridoma supernatant and incubated at 37 °C for 1 hour. The lentivirus-antibody
mixture was incubated with K-562 cells overnight, with the media changed after 21
hours. K-562 cells were harvested for flow cytometry analysis 96 hours after viral
transduction.

13.3.11 Cell cycle synchronisation with palbociclib

MCF-7 cells were treated with 2.5 µM palbociclib (Sellect Chemistry LLC., USA) for
24 h. The media containing palbociclib was removed and the cells were washed
gently with PBS prior to subsequent analyses.

13.4 Bulk mRNA-sequencing

13.4.1 Library preparation and sequencing

Cells were washed twice with PBS, before RNA extraction was carried out with
the RNeasy Mini Kit with on-column DNA digestion (as per the manufacturer’s
instructions) (QIAGEN N.V., Netherlands). For each cell type, treated and untreated
samples were prepared, with three biological replicates prepared for each treatment
condition.

The RNA obtained was analysed using the Bioanalyzer RNA 6000 Pico Assay
and a 2100 Bioanalyzer (Agilent Technologies Inc., USA), before being used for
library preparation via the Illumina TruSeq mRNA Stranded Library kit (Illumina
Inc., USA), with the three replicates for each treatment condition being processed
independently and the samples differentially indexed at the Adapter Ligation step.
The libraries obtained were subject to fragment size analysis using High Sensitivity
DNA Chips and a 2100 Bioanalyzer (Agilent Technologies Inc., USA). All samples
were pooled at equimolar ratios and sequenced on a NextSeq 500 machine with a
75 cycles high output kit (Illumina Inc., USA), with 85 bases read for read 1 and 7
bases for the index reads.

13.4.2 Data analysis

The library was first demultiplexed using the in-line i7 Illumina indices to assign
reads to samples. Demultiplexing was carried out by Jonathan Landry from the
EMBL Genomic Core Facility.
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An analysis pipeline was created and the analysis was performed in Galaxy.
Fragments were trimmed with Trimmomatic (Galaxy Version 0.36.6) (Bolger et al.,
2014) prior to mapping to the hg38 reference genome (and using the gencode
V27 version of the genome annotation) using the STAR RNA-Seq alignment tool
(Galaxy Version 2.5.2b-0) (Dobin et al., 2013). Low quality reads were removed
by filtering (minimum MAPQ quality score = 30) (Galaxy Version 1.1.2) and count
tables were generated with featureCounts (Galaxy Version 1.6.3) (Liao et al., 2014)
and the gencode V27 version of the genome annotation. If indicated, RUVSeq was
also utilised to remove unwanted variation from the RNA-seq data during the
normalization of RNA-Seq read counts between samples (Risso et al., 2014). DESeq2
was utilised to identify differentially expressed genes (Love et al., 2014) and GOseq
was utilised to perform Gene Ontology analysis (Young et al., 2010). PCA analysis
was used to assess sample correlation. The analysis was carried out by Charles
Girardot from Genome Biology Computational Support.

13.5 Single-cell RNA-sequencing via Drop-seq

13.5.1 Purification and cDNA synthesis

The library preparation for Drop-seq was carried out in a manner similar to what
is outlined in Macosko et al., 2015. Starting with the generated emulsion (from
Section 13.1.7), oil at the bottom of the tube was removed, before 30 ml of room
temperature 6X SSC (Thermo Fisher Scientific Inc., USA) was added, and 1 ml of
1H,1H,2H,2H-Perfluorooctanol (PFO) (ABCR GmbH, Germany) added. The tube
was then firmly inverted ten times to break the emulsion, before being spun at
1000 x g for 1 min at 4 °C, with reduced braking on the centrifuge.

The supernatant was carefully removed and 30 ml of 6X SSC was added to
kick the beads into solution. Once a majority of the oil sank to the bottom, the
supernatant was transferred to a new tube and spun at 1000 x g for 1 min at 4 °C.
Once again, the supernatant was removed, leaving about 1 ml of liquid, which
was then used to resuspend the beads for transfer to a DNA LoBindTM 1.5 ml tube
(Eppendorf AG, Germany). The beads were spun at 1000 x g for 1 min at 4 °C and
the supernatant was removed and discarded.

Three more washing steps were carried out in a similar manner - two with 6X
SSC and one with 2X Maxima RT buffer (Thermo Fisher Scientific Inc., USA). 200 µl
of RT mix was then added to the beads and they were incubated with rotation at
room temperature for 30 min and then at 42 °C for 90 min. The beads were then
washed once with TE-SDS, twice with TE-TW and once with 10 mm Tris pH 8.0,
before being resuspended in 200 µl of exonuclease mix and incubated at 37 °C for
45 min with rotation. The beads were then washed once with TE-SDS, twice with
TE-TW and once with nuclease-free water (Thermo Fisher Scientific Inc., USA),
before being counted with a hemocytometer chamber.
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2000 beads were mixed with PCR mix and PCR was carried out. PCR products
were purified by the addition of 0.6x volume of SPRISelect Reagent (Beckman
Coulter Inc., USA), before being subject to fragment size analysis using High
Sensitivity DNA Chips and a 2100 Bioanalyzer (Agilent Technologies Inc., USA).

13.5.2 Tagmentation-based 3’-end library preparation

600 pg of purified cDNA was brought to a total volume of 5 µl with nuclease-free
water, before 10 µl of Nextera TD buffer (Illumina Inc., USA) and 5 µl of Amplicon
Tagment enzyme (Illumina Inc., USA) was added and the sample was mixed by
pipetting and incubated at 55 °C for 5 min. 5 µl of Neutralisation Buffer (Illumina
Inc., USA) was added and the solution was mixed by pipetting before incubation for
5 min at room temperature. The following reagents were then added to each PCR
tube in this order: 15 µl of Nextera PCR mix (Illumina Inc., USA), 8 µl Nuclease-free
water (Thermo Fisher Scientific Inc., USA), 1 µl 10 µM New-P5-SMART-PCR hybrid
oligo and 1 µl 10 µM Nextera N70X oligo, before PCR was carried out with the
Tagmentation PCR program.

PCR products were purified by the addition of 0.6X volume of SPRISelect
Reagent (Beckman Coulter Inc., USA), before being subject to fragment size analysis
using High Sensitivity DNA Chips and a 2100 Bioanalyzer (Agilent Technologies
Inc., USA).

Samples were pooled at equimolar ratios and sequenced on a NextSeq 500
machine (Illumina Inc., USA), with paired-end sequencing carried out (Read 1:
20 bp, Read 2: 50 bp) and a Read 1 Index of 8 bp. A custom read 1 primer was used.

13.5.3 Data analysis

The library was first demultiplexed using the in-line i7 Illumina indices to assign
reads to samples. Demultiplexing was carried out by Jonathan Landry from the
EMBL Genomic Core Facility.

The dropSeqPipe pipeline was used for quality control, barcode detection,
demultiplexing of droplets and for the generation of a UMI/read count table (Roelli,
2020).

The data was normalised by scran, prior to PCA analysis to assess sample
correlation (Lun et al., 2016). scde was performed to identify differentially expressed
genes (Kharchenko et al., 2014). The analysis was carried out by Charles Girardot
from Genome Biology Computational Support.
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13.6 Single-cell antibody sequencing via Drop-seq

13.6.1 Cell preparation and fluorescence activated cell sorting

Cells were washed twice in PBS, counted and resuspended in FACS sorting buffer
at a concentration of 1 x 107 cells/ml. 4D5, H25B10 and OKT-9 cells were mixed at
equal proportion and processed as a single sample, while anti-CD4 hybridoma cells
were processed separately. DAPI (Thermo Fisher Scientific Inc., USA) was added to
each sample to a final concentration of 100 nm.

Live cells were then sorted into 1.5 ml tubes with a BD FACSAriaTM Fusion Cell
Sorter, utilising the 405 nm laser for the excitation of DAPI.

Sorted cells were spun down (5 min, 250 x g) at 4 °C, before the supernatant
was removed and discarded and the cells were resuspended in PBS. This was
repeated once for a total of two washing steps, before the cells were counted and
resuspended in PBS with 0.01% Bovine Serum Albumin (BSA) (Sigma-Aldrich, USA)
at a concentration of 4 x 106 cells/ml.

The 4D5, H25B10 and OKT-9 cell mixture and anti-CD4 hybridoma cells were
then mixed at the desired ratios: 3:1 for the 1:1:1:1 sample and 1:16.67 for the 50:1:1:1
sample. For the 1:1:1+S sample, the 4D5, H25B10 and OKT-9 cell mixture was mixed
with OKT-9 hybridoma supernatant and incubated for 20 min on ice, before being
washed with PBS and resuspended in PBS with 0.01% Bovine Serum Albumin (BSA)
(Sigma-Aldrich, USA) at a concentration of 4 x 106 cells/ml.

The samples were then processed via the Drop-seq encapsulation protocol as
outlined in Section 13.1.7.

13.6.2 Purification and cDNA synthesis

The library preparation for Drop-seq was carried out in a manner similar to what
is outlined in Macosko et al., 2015. Starting with the generated emulsion (from
Section 13.1.7), oil at the bottom of the tube was removed, before 30 ml of room
temperature 6X SSC (Thermo Fisher Scientific Inc., USA) was added, and 1 ml of
1H,1H,2H,2H-Perfluorooctanol (PFO) (ABCR GmbH, Germany) added. The tube
was then firmly inverted ten times to break the emulsion, before being spun at
1000 x g for 1 min at 4 °C, with reduced braking on the centrifuge.

The supernatant was carefully removed and 30 ml of 6X SSC was added to
kick the beads into solution. Once a majority of the oil sank to the bottom, the
supernatant was transferred to a new tube and spun at 1000 x g for 1 min at 4 °C.
Once again, the supernatant was removed, leaving about 1 ml of liquid, which
was then used to resuspend the beads for transfer to a DNA LoBindTM 1.5 ml tube
(Eppendorf AG, Germany). The beads were spun at 1000 x g for 1 min at 4 °C and
the supernatant was removed and discarded.
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Three more washing steps were carried out in a similar manner - two with 6X
SSC and one with 2X Maxima RT buffer (Thermo Fisher Scientific Inc., USA). 200 µl
of RT mix was then added to the beads and they were incubated with rotation at
room temperature for 30 min and then at 42 °C for 90 min. The beads were then
washed once with TE-SDS, twice with TE-TW and once with 10 mm Tris pH 8.0,
before being resuspended in 200 µl of exonuclease mix and incubated at 37 °C for
45 min with rotation. The beads were then washed once with TE-SDS, twice with
TE-TW and once with nuclease-free water (Thermo Fisher Scientific Inc., USA),
before being counted with a hemocytometer chamber.

10,000 beads were mixed with PCR mix for antibody sequencing and PCR was
carried out. PCR products were purified by the addition of 0.6x volume of SPRISelect
Reagent (Beckman Coulter Inc., USA), before the concentrations were measured
by a Nanodrop spectrophotometer (Thermo Fisher Scientific Inc., USA) and Qubit
fluorometer (Thermo Fisher Scientific Inc., USA) using the dsDNA High-Sensitivity
Assay (as per the manufacturer’s instructions) (Thermo Fisher Scientific Inc., USA).
The samples were also subject to fragment size analysis using High Sensitivity DNA
Chips and a 2100 Bioanalyzer (Agilent Technologies Inc., USA).

13.6.3 Single-molecule PCR amplification of antibody sequences

Purified PCR products obtained from the above PCR were encapsulated at a limiting
dilution as described in Section 13.1.9, and subject to thermocycling as outlined in
Section 13.15 ("Emulsion linkage PCR").

The thermocycled emulsion was combined in 2 ml DNA LoBindTM Tubes
(Eppendorf AG, Germany). 0.8x volume of 1H,1H,2H,2H-Perfluorooctanol (PFO)
(ABCR GmbH, Germany) was added to each tube and the mixture was pipetted up
and down 10 - 15 times with a 1 ml pipette to break the emulsion. The tubes were
then spun at 12,000 x g for 12 min at 4 °C. The supernatants were transferred and
subject to PCR purification with MinElute columns (as per the manufacturer’s
instructions) (QIAGEN N.V., Netherlands), prior to two rounds of elution in
42 µl nuclease-free water (Thermo Fisher Scientific Inc., USA). PCR products were
purified by the addition of 0.5x volume of AMPure XP beads (Beckman Coulter Inc.,
USA), and the concentrations were measured by a Nanodrop spectrophotometer
(Thermo Fisher Scientific Inc., USA) and Qubit fluorometer (Thermo Fisher Scientific
Inc., USA) using the dsDNA High-Sensitivity Assay (as per the manufacturer’s
instructions) (Thermo Fisher Scientific Inc., USA).

Nested PCR was carried out with 500 pg - 2 ng template. PCR products were
then purified by the addition of 0.5x volume of AMPure XP beads (Beckman Coulter
Inc., USA), and the concentrations were measured with a Qubit fluorometer (Thermo
Fisher Scientific Inc., USA) using the dsDNA High-Sensitivity Assay (as per the
manufacturer’s instructions) (Thermo Fisher Scientific Inc., USA) before being
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subject to fragment size analysis using High Sensitivity DNA Chips and a 2100
Bioanalyzer (Agilent Technologies Inc., USA).

Samples were pooled at equimolar ratios and sequenced on a MiSeq, with
paired-end sequencing carried out (Read 1: 20 bp, Read 2: 236 bp, Read 3: 8 bp,
Read 4: 236 bp). Custom read 1, read 2 and read 4 primers were used.

This protocol was established and optimised by Hongxing Hu and has been
reproduced here with his permission.

13.6.4 Data analysis

The library was first demultiplexed using the in-line i7 Illumina indices to assign
reads to samples. Demultiplexing was carried out by Jonathan Landry from the
EMBL Genomic Core Facility.

Barcode detection and demultiplexing were carried out with the Je suite
(Girardot et al., 2016). The paired-end reads (Read 2 and Read 4) corresponding to
reads from the 3’ and 5’ ends of the antibody variable region were paired with PEAR
(Paired-End reAd mergeR), with a maximum p-value of 0.01 and a minimum overlap
of 10 bases (Zhang et al., 2014). Pear-merged antibody sequences were clustered
by UMI to give a consensus sequence for each UMI, making use of VSEARCH
(Rognes et al., 2016), using the centroid option with a minimum identity of 95%.
The UMI-consensuses were then clustered by droplet barcodes, utilising VSEARCH
(Rognes et al., 2016), using the centroid option with a minimum identity of 95%.
IgBLAST was carried out for the droplet consensus sequences to identify the V, D
and J regions (Ye et al., 2013). For the light chains, only the kappa chain sequences
were included in the IgBLAST analysis. For the analysis of known antibody heavy
and light chains, BLAST was used to align sequences against a custom database
containing only the known antibody heavy and light chain sequences of 4D5,
H25B10, anti-CD4 and OKT-9, which had been previously obtained with Sanger
sequencing. Subsequent parsing and analyses were carried out in R. The analysis
was carried out by Charles Girardot from Genome Biology Computational Support.

13.7 Single-cell sequencing via 10X Genomics

13.7.1 Cell hashing and 10X library preparation

Cells were prepared for Total-Seq A hashtag antibody staining as per the
manufacturer’s instructions (Protocol - TotalSeq™-A Antibodies and Cell Hashing with
10x Single Cell 3’ Reagent Kit v3 3.1 Protocol) (Biolegend, USA).

Adherent cells (MCF-7, A375-P, SK-BR-3) were harvested with
0.05% Trypsin-EDTA (Gibco, Thermo Fisher Scientific Inc., USA) before being
washed twice with PBS and resuspended at a concentration of 2 x 107 cells/ml
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in flow cytometry staining buffer. Suspension cells (K-562, Jurkat, U937) were
washed twice with PBS and resuspended at a concentration of 2 x 107 cells/ml in
flow cytometry staining buffer. 5 µl of Human TruStain FcX (Biolegend, USA) was
added per 1 million cells and the samples were incubated at 4 °C for 10 min. At
that time, 1 µg of hashtag antibody per sample was diluted in 50 µl flow cytometry
staining buffer and spun at 14,000 x g at 4 °C for 10 min, before it was added to
the samples and allowed to incubate at 4 °C for 30 min. 3.5 ml of flow cytometry
staining buffer was then added to each sample and spun for 5 min at 250 x g at
4 °C, before the supernatant was removed and discarded. This washing step was
repeated twice more. The cells were then resuspended in 400 µl PBS with 0.04% BSA
(Sigma-Aldrich, USA), filtered through a 40 µm cell strainer (Corning Inc., USA)
and counted with a TC10 Automated Cell Counter (Bio-Rad Laboratories Inc., USA).
Cells were diluted to a final concentration of 1 x 106 cells/ml and equal volumes of
the different samples were mixed.

Table 13.3: Antibodies utilised in cell hashing

Antibody name Hashtag oligo sequence
Human TruStain FcX -
TotalSeq™-A0251 anti-human Hashtag 1 Antibody GTCAACTCTTTAGCG
TotalSeq™-A0252 anti-human Hashtag 2 Antibody TGATGGCCTATTGGG
TotalSeq™-A0253 anti-human Hashtag 3 Antibody TTCCGCCTCTCTTTG
TotalSeq™-A0254 anti-human Hashtag 4 Antibody AGTAAGTTCAGCGTA
TotalSeq™-A0255 anti-human Hashtag 5 Antibody AAGTATCGTTTCGCA
TotalSeq™-A0256 anti-human Hashtag 6 Antibody GGTTGCCAGATGTCA
TotalSeq™-A0257 anti-human Hashtag 7 Antibody TGTCTTTCCTGCCAG
TotalSeq™-A0258 anti-human Hashtag 8 Antibody CTCCTCTGCAATTAC

All antibodies were obtained from Biolegend (Biolegend, USA).

Cells were subject to Chromium Single Cell 3’ sample preparation as per
the manufacturer’s instructions (v3, CG000185 Rev B, or v3.1, CG000206 Rev D)
(10X Genomics, USA). A Targeted Cell Recovery of 5000 cells was used for the
experiments with K-562, Jurkat, MCF-7 and A375-P cells, while a Targeted Cell
Recovery of 6000 cells was used for the experiment involving U937 and SK-BR-3
cells. At Step 2.2, cDNA amplification was carried out with the hashtag oligo (HTO)
reaction mix, while the purification of cDNA and HTOs was done as outlined in the
manufacturer’s instructions (v3, CG000185 Rev B, or v3.1, CG000206 Rev D) (10X
Genomics, USA).

The Cell Surface Protein Library Construction (Step 4) was not carried out,
instead a Sample Index PCR Mix was prepared and amplified with the HTO Sample
Index PCR protocol. The HTO library was then purified by the addition of 1.2X
SPRISelect Reagent (Beckman Coulter Inc., USA). Both the cDNA and HTO libraries
were then subject to fragment size analysis using High Sensitivity DNA Chips and
a 2100 Bioanalyzer (Agilent Technologies Inc., USA). The libraries were pooled,



164 Chapter 13. Materials and Methods

with the HTO library comprising 7% and the cDNA library comprising 93% for the
experiments with K-562, Jurkat, MCF-7 and A375-P cells, and with the HTO library
comprising 10% and the cDNA library comprising 90% for the experiments with
U937 and SK-BR-3 cells. The libraries were sequenced on a NextSeq 500 machine
(Illumina Inc., USA). Paired end libraries of cell barcodes (Read 1, 28 bp) and cDNA
and HTOs (Read 2, 64 bp) were generated.

13.7.2 10X Genomics 3’ Gene Expression Analysis and cell hashing data
analysis

Demultiplexing of the library was carried out with the Cell Ranger pipelines
mkfastq and count (10X Genomics, USA). The Cell Ranger count pipeline was
used to align reads to the GRCh38/hg19 reference genome, generate matrices of the
number of reads per gene and to correlate cell barcodes with hashtag sequences.
Demultiplexing and alignment of the sequencing results was done by Jonathan
Landry from the EMBL Genomic Core Facility.

Seurat was utilised for quality control (QC) and normalisation of the data
(Butler et al., 2018), where genes found in fewer than three cells and cells with
fewer than 200 genes were removed. It was also used to identify highly variable
features, cluster the cells and carry out dimensionality reduction and visualisation,
by both t-distributed stochastic neighbourhood embedding (tSNE) (Maaten, 2014)
and Uniform Manifold Approximation and Projection (UMAP) (McInnes et al.,
2018). Default parameters were used, unless otherwise specified. Seurat analysis
was carried out by Charles Girardot from Genome Biology Computational Support
and by Xiaoli Ma from the Laboratory of Biomedical Microfluidics (LBMM), EPFL.

13.7.3 Subsampling analysis

Subsampling analysis was carried out on the data obtained from A375-P cells and
unsynchronised MCF-7 cells, that were either treated with DMF (negative control),
or treated with niclosamide. 763 A375-P cells treated with DMF (negative control) or
683 MCF-7 cells were included, together with a subset of randomly sampled treated
cells. Prior to the analysis, where genes found in fewer than three cells and cells with
fewer than 200 genes were removed. Clustering and dimensionality reduction were
carried out via Seurat (Butler et al., 2018), and visualised with Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018). Default parameters
were used, unless otherwise specified. This was repeated for different numbers of
treated cells, namely 1, 2, 5, 10, 20, 30, 50, 100, 200, 300, 400 and 500 treated cells.

Subsampling analysis was carried out by Xiaoli Ma, Laboratory of Biomedical
Microfluidics (LBMM), EPFL.
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13.8 Flow cytometry

All flow cytometry analyses were conducted on a LSR Fortessa Analyser
(Becton-Dickinson, USA), which is equipped with five lasers: 355 nm, 405 nm,
488 nm, 561 nm and 640 nm, for the simultaneous monitoring of various readouts.

13.8.1 Flow cytometry analysis of antibody expression of hybridoma
cells

Cells were stained with anti-mouse IgG antibodies conjugated to Alexa Fluor 488
(Life Technologies, USA) prior to flow cytometry analysis on a LSR Fortessa Analyser
(Becton-Dickinson, USA).

13.8.2 Flow cytometry analysis of CD14 expression on U937 cells

Increased CD14 expression was verified by staining U937 cells with mouse
anti-human CD14 antibodies (Biolegend, USA) and anti-mouse IgG antibodies
conjugated to Alexa Fluor 488 (Life Technologies, USA) prior to flow cytometry
analysis on a LSR Fortessa Analyser (Becton-Dickinson, USA).

13.8.3 Flow cytometry analysis of sera binding to SK-BR-3 cells

Cells were stained with sera obtained from mice immunised with SK-BR-3 (Precision
AntibodyTM, AG Pharmaceutical Inc., USA) and anti-mouse IgG antibodies
conjugated to Alexa Fluor 568 (Life Technologies, USA) prior to flow cytometry
analysis on a LSR Fortessa Analyser (Becton-Dickinson, USA).

13.8.4 Flow cytometry analysis of cell cycle synchronisation

Cells were resuspended in ice-cold PBS before ice-cold ethanol was added dropwise,
to a final concentration of 80% ethanol. Samples were then incubated at -20°C for at
least 3 hours. Cells were then centrifuged, before media removal and resuspension
in PBS to enable cell rehydration. Cells were then resuspended in PBS containing
0.1% (v/v) TritonTM X-100 (Sigma-Aldrich, USA) and 1 µg/mL DAPI (Thermo
Fisher Scientific Inc., USA), prior to flow cytometry analysis.

13.9 ELISA

Mouse IgG antigen detection via ELISA was carried out as per the manufacturer’s
instructions (Molecular Innovations Inc., USA or Abcam, United Kingdom). In each
experiment, a standard curve was prepared for mouse IgG concentrations ranging
from 0 to 500 ng/ml or 1000 ng/ml. Hybridoma samples were diluted between 10
and 200 times prior to the ELISA. Absorbance at 600 nm was measured in a Tecan
Safire (Tecan Group Ltd., Switzerland) plate reader.
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13.10 RNA extraction and reverse transcription

Cells were washed twice with PBS, before RNA extraction was carried out
with the RNeasy Mini Kit (as per the manufacturer’s instructions) (QIAGEN
N.V., Netherlands). 250 ng of RNA was utilised for reverse transcription with
SuperScriptTM III Reverse Transcriptase (Thermo Fisher Scientific Inc., USA),
according to manufacturer’s instructions, utilising oligo d(T)16 as the primers and
an extension time of 45 min for the extension step at 50 °C. The resulting cDNA was
diluted 20-fold prior to qPCR.

13.11 Real-time qPCR

Samples were mixed with the relevant primer pairs and SYBR Green PCR Master
Mix (Applied Biosystems, Thermo Fisher Scientific Inc., USA), according to the
manufacturer’s instructions. The mixes were added to MicroAmpTM Fast Optical
96-Well Fast Clear Reaction Plates with Barcode (0.1 ml) (Applied Biosystems,
Thermo Fisher Scientific Inc., USA) and run on a StepOneTM Real-Time PCR System
(Applied Biosystems, Thermo Fisher Scientific Inc., USA).

Table 13.4: Primers utilised for qPCR

Gene name and
primer pair Forward primer Reverse primer
INSIG1 pair 1 TACGCTGATCACGCAGTTTC TGACGCCTCCTGAGAAAAAT

INSIG1 pair 2 CATTAACCACGCCAGTGCTA CTGGAACGATCAAATGTCCA

ARHGEF2 pair 1 GTTTCAGGCATGACCATGTG TGTCTTTACAGCGGTTGTGG

ARHGEF2 pair 2 TACCTGCGGCGAATTAAGAT TGGGTCATCTCAGCAAACAG

MAT2A pair 1 GTTGTGCCTGCGAAATACCT ATTTTGCGTCCAGTCAAACC

MAT2A pair 2 CTACGCCGTAATGGCACTTT ACTCTGATGGGAAGCACAGC

TSC22D3 pair 1 GACCAGACCATGCTCTCCAT CATGGCCTGTTCGATCTTGT

TSC22D3 pair 2 TGGTGGCCATAGACAACAAG TGCTCCTTCAGGATCTCCAC

DDIT pair 1 CGAGTCCCTGGACAGCAG TCACTGAGCAGCTCGAAGTC

DDIT pair 2 CGGAGGAAGACACGGCTTA CATCAGGTTGGCACACAAGT

ACTB TGAAGTGTGACGTGGACATC GGAGGAGCAATGATCTTGAT

GAPDH AGCAAGAGCACAAGAGGAAGAG GAGCACAGGGTACTTTATTGATGG

All qPCR primers included are for the amplification of human genes

13.12 Sanger sequencing

Plasmid and PCR samples were prepared for Sanger sequencing as per the vendor’s
instructions, and sent to GATC for sequencing (Eurofins, Luxembourg).
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13.13 Mouse immunisations

SK-BR-3 cell samples were harvested and aliquots of 2 million cells each were frozen
at -80 °C in the presence of 10% fetal bovine serum (FBS) (Gibco, Thermo Fisher
Scientific Inc., USA) and 10% DMSO.

13.13.1 In-house mouse immunisations

2 million frozen SK-BR-3 cells were thawed, washed with PBS and utilised for
subcutaneous immunisation of female C57BL6 mice. The mice were boosted with
2 million SK-BR-3 cells at 4 and 8 weeks after the first immunisation. The animals
were kept in the conventional containment conditions and fed ad libitum. Two weeks
after the second booster, the mice were bled by retro-orbital route and sera were
separated. The sera were tested with flow cytometry analysis.

13.13.2 Mouse immunisations and hybridoma generation by Precision
Antibody

2 million frozen SK-BR-3 cells were thawed, washed with PBS and utilised for
the immunisation of SJL/J mice, according to the company’s protocols (Precision
Antibody, AG Pharmaceutical Inc., USA), in the presence of adjuvant. A total of
three mice were immunised. Sera were obtained via tailbleed and sent to EMBL for
flow cytometry analysis.

Subsequently, mouse B-cells were obtained and fused with myeloma cells, with
selection carried out via 1 - 2 weeks of post-fusion culture in HAT media, to remove
unfused and dead myeloma and B-cells, all according to the company’s protocols
(Precision Antibody, AG Pharmaceutical Inc., USA). The cells were then frozen and
shipped to EMBL on dry ice.

13.14 Buffers and solutions

13.14.1 Buffers

Table 13.5: Buffers

Buffer Composition
Flow cytometry staining buffer 2% (v/v) FBS and 2 mm EDTA in PBS

FACS sorting buffer 2% (w/v) BSA and 2.5 mm EDTA in PBS

TE-SDS 10 mm Tris pH 8.0 with 0.5% SDS and 1 mm EDTA

TE-TW 10 mm Tris pH 8.0 with 0.01% Tween-20 and 1 mm EDTA
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13.14.2 Reaction mixes

Table 13.6: Reaction mixes 1

Reaction mixes Composition
HTO reaction mix For 66 µl:

50 µl Amp Mix (10X Genomics, USA)
15 µl cDNA primers (10X Genomics 3’ kit, 10X Genomics, USA)
1 µl HTO Additive Primer (0.2 µM stock)

Sample Index PCR Mix For 100 µl:
5 µl Purified ADT/HTO fraction
2.5 µl SI PCR Primer (10 µM stock) (10X Genomics, USA)
2.5 µl TruSeq D701_S (10 µM stock)
50 µl 2X KAPA Hifi Master Mix (Sigma-Aldrich, USA)
40 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)

Lysis buffer For 950 µl:
500 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)
300 µl 20% Ficoll PM-400 (GE Healthcare, USA)
10 µl 20% Sarkosyl (Sigma-Aldrich, USA)
40 µl 0.5 M EDTA (Thermo Fisher Scientific Inc., USA)
100 µl 2 M Tris pH 7.5 (Thermo Fisher Scientific Inc., USA)

RT mix For 200 µl:
75 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)
40 µl Maxima 5X RT buffer (Thermo Fisher Scientific Inc., USA)
40 µl 20% Ficoll PM-400 (GE Healthcare, USA)
20 µl 10 mm dNTPs (VWR International, USA)
5 µl NXGen RNase Inhibitor (Lucigen, USA)
10 µl 50 µM Template Switch Oligo (TSO) (for Drop-seq)
or TSO_P_M_LNA (for antibody sequencing)
10 µl Maxima h RTase (Thermo Fisher Scientific Inc., USA)

Exonuclease mix For 200 µl:
20 µl Exo I buffer (New England Biolabs, USA)
170 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)
10 µl Exo I (New England Biolabs, USA)

Drop-seq PCR mix For 50 µl, per 2000 beads:
24.6 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)
0.4 µl 100 µM TSO_PCR
25 µl 2X KAPA HiFi HotStart Readymix (Sigma-Aldrich, USA)
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Table 13.7: Reaction mixes 2

Reaction mixes Composition
Drop-seq PCR mix For 50 µl, per 2000 beads:
for antibody sequencing 24.2 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)

0.4 µl 50 µM SC_M_F_H
0.4 µl 50 µM SC_TSO_Rev_H
25 µl 2X KAPA HiFi HotStart Readymix (Sigma-Aldrich, USA)

Tagmentation mix For 600 pg of cDNA in 5 µl water:
10 µl Nextera TD buffer (Illumina Inc., USA)
5 µl Amplicon Tagment enzyme (Illumina Inc., USA)
Incubate at 55 °C for 5 min
5 µl Neutralisation Buffer (Illumina Inc., USA)
Incubate at room temperature for 5 min
15 µl Nextera PCR mix (Illumina Inc., USA)
8 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)
1 µl 10 µM New-P5-SMART-PCR hybrid oligo
1 µl 10 µM Nextera N70X oligo

2X emulsion linkage PCR mix For 1 ml of 2X PCR mix:
80 µl 10 µM 23-Abs-Common Forward
80 µl 10 µM 3-Abs-Common Reverse
4 µl 10 µM V5-Abs-Sense
4 µl H&L V-region Reverse Primer Mix, 10 µM overall
4 µl H&L V-region Sense Primer Mix, 10 µM overall
4 µl 10 µM Abs-PCR-BC
10 µl 50 mg/ml Ultrapure BSA (Thermo Fisher Scientific Inc., USA)
16 µl 25 mm dNTPs (VWR International, USA)
400 µl 5X Q5 reaction buffer (New England Biolabs, USA)
20 µl Q5 Hot Start High-Fidelity DNA Polymerase
(New England Biolabs, USA)
368 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)

Nested PCR mix For 20 µl:
0.4 µl V7-Mix-N50X Primer Mix, 10 µM overall
0.4 µl V7 Reverse Nested Primer Mix, 10 µM overall
0.8 µl Template DNA
8.4 µl Nuclease-free water (Thermo Fisher Scientific Inc., USA)
10 µl 2X KAPA HiFi HotStart ReadyMix (Sigma-Aldrich, USA)
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13.15 PCR programmes

Table 13.8: PCR programmes 1

HTO Sample Index PCR
Initial denaturation 98 °C 2 min
12 cycles 98 °C 20 s

64 °C 30 s
72 °C 20 s

Final extension 72 °C 5 min
Hold 4 °C

PCR - Drop-seq
Initial denaturation 95 °C 3 min
4 cycles 98 °C 20 s

65 °C 45 s
72 °C 3 min

9 cycles 98 °C 20 s
67 °C 20 s
72 °C 3 min

Final extension 72 °C 5 min
Hold 4 °C

Tagmentation PCR
Initial denaturation 95 °C 30 s
12 cycles 95 °C 10 s

55 °C 30 s
72 °C 30 s

Final extension 72 °C 5 min
Hold 4 °C
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Table 13.9: PCR programmes 2

Emulsion linkage PCR
Initial denaturation 95 °C 30 sec
4 cycles 98 °C 5 s

52 °C 30 s
72 °C 30 s

4 cycles 98 °C 5 s
55 °C 30 s
72 °C 30 s

30 cycles 98 °C 5 s
60 °C 30 s
72 °C 45 s

Final extension 72 °C 2 min
Hold 4 °C

Nested PCR
Initial denaturation 95 °C 3 min
22 cycles 98 °C 20 s

62 °C 20 s
72 °C 30 s

Final extension 72 °C 5 min
Hold 4 °C

RT-qPCR
Initial denaturation 95 °C 10 min
40 cycles 95 °C 15 s

60 °C 1 min
Melt curve stage 95 °C 15 s

60 °C 1 min
Slow temperature increase + 0.3 °C per min

95 °C 15 s
End
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13.16 DNA sequences

Table 13.10: DNA sequences for Drop-seq and 10X Genomics

Sequence name Sequence (5’ -> 3’)
HTO Additive primer GTGACTGGAGTTCAGACGTGTGC*T*C

SI PCR primer AATGATACGGCGACCACCGAGATCTACACTC
TTTCCCTACACGACGC*T*C

TruSeq D701_S CAAGCAGAAGACGGCATACGAGATCGAGTA
ATGTGACTGGAGTTCAGACGTGT*G*C

TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

TSO_PCR AAGCAGTGGTATCAACGCAGAGT

New-P5-SMART PCR Hybrid
oligo

AATGATACGGCGACCACCGAGATCTACACG
CCTGTCCGCGGAAGCAGTGGTATCAACGCAG
AGT*A*C

Drop-seq custom Read 1
Primer

GCCTGTCCGCGGAAGCAGTGGTATCAACGCA
GAGTAC

Table 13.11: DNA sequences for antibody sequencing PCR

Sequence name Sequence (5’ -> 3’)
TSO_P_M_LNA AAGCAGTGGTATCAACGCAGAGTGAATTCGC

GGCCGCTCGCGAGAATrGrG+G

SC_M_F_H GTGAATTCGCGGCCGCTCGCGAG

SC_TSO_Rev_H AAGCAGTGGTATCAACGCAGAGTAC

23-Abs-Common Forward CGCAGTAGCGGTAAACGGC

3-Abs-Common Reverse GCGGATAACAATTTCACACAGGS

V5-Abs-Sense GCGCCGCGATGGGAATAGTGAATTCGCGGCC
GCTCGCGAG

Abs-PCR-BC TATTCCCATCGCGGCGCAAGCAGTGGTATCA
ACGCAGAGTAC



13.16. DNA sequences 173

Table 13.12: H&L V-region Reverse Primer Mix

Sequence name Sequence (5’ -> 3’) Proportion
to add

V7-Abs-Ighg12abc CGCAGTAGCGGTAAACGGCCTGGACAGGG
ATCCAGAGTTCC

18

V7-Abs-Ighg3 CGCAGTAGCGGTAAACGGCCTGGACAGGG
CTCCATAGTTCC

2

V7-Abs-Igkc CGCAGTAGCGGTAAACGGCCGACTGAGGC
ACCTCCAGATGTTAACTGCTC

18

V7-Abs-Iglc23 CGCAGTAGCGGTAAACGGCCCCTGGGTGAT
AGGTGTACCATTTGC

1

V7-Abs-Iglc14 CGCAGTAGCGGTAAACGGCCCCTGAGTGA
MAGGGGTACCATCTRC

1

Table 13.13: H&L V-region Sense Primer Mix

Sequence name Sequence (5’ -> 3’) Proportion
to add

4-Abs-P1-BC-Ighg1 GCGGATAACAATTTCACACAGGACCTGCTC
TGTGTTACATGAGGGCCTGCAC

36

4-Abs–P1-BC-Ighg2a GCGGATAACAATTTCACACAGGGTTCAGTG
GTCCACGAGGGTCTGCACAATCACC

1

4-Abs–P1-BC-Ighg2b GCGGATAACAATTTCACACAGGCCTTCTCAT
GCAACGTGAGACACGAGGGTCTG

1

4-Abs–P1-BC-Ighg2c GCGGATAACAATTTCACACAGGGCCTGCTC
AGTGGTCCACGAGGGTCTGC

1

4-Abs–P1-BC-Ighg3 GCGGATAACAATTTCACACAGGACCTGCTC
CGTGGTGCATGAGGCTCTCC

1

4-Abs-P1-BC-Igkc GCGGATAACAATTTCACACAGGGAGGCCAC
TCACAAGACATCAACTTCACCCATTGTC

36

4-Abs-P1-BC-Iglc1/2/3/4 GCGGATAACAATTTCACACAGGGMCTGGA
AGGYARATGGTACMCCTDTCACYCAGG

4
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Table 13.14: V7-Mix-N50X Primer Mix

Sequence name Sequence (5’ -> 3’) Proportion
to add

V72-Nest-Igh12abc-50X AATGATACGGCGACCACCGAGATCTACACx
xxxxxxxCAGGGGCCAGTGGATAGACHGATG
GGG

18

V72-Nest-Igh3-50X AATGATACGGCGACCACCGAGATCTACACx
xxxxxxxCAGCCAGGGACCAAGGGATAGACA
GATG

2

V7-Nest-K-50X AATGATACGGCGACCACCGAGATCTACACx
xxxxxxxGCTCACTGGATGGTGGGAAGATGGA
TACAGTTGG

18

V72-Nest-L14-50X AATGATACGGCGACCACCGAGATCTACACx
xxxxxxxGAGCTCTTCAGAGGAAGGTGGRAAC
AG

1

V72-Nest-L23-50X AATGATACGGCGACCACCGAGATCTACACx
xxxxxxxGAGCTCCTCAGRGGAAGGTGGAAAC
A

1

xxxxxxxx refer to the 8bp adaptor sequence (refer to Table 13.15)

Table 13.15: Adaptor sequences

Index name Adaptor sequence (5’ -> 3’)
501 TAGATCGC

502 CTCTCTAT

503 TATCCTCT

504 AGAGTAGA

505 GTAAGGAG

506 ACTGCATA

507 AAGGAGTA
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Table 13.16: V7 Reverse Nested Primer Mix

Sequence name Sequence (5’ -> 3’) Proportion
to add

V7-Abs-BC-Ighg1 CAAGCAGAAGACGGCATACGAGATGAGGG
CCTGCACAACCACCATACTGAGAAGAGC

36

V7-Abs–BC-Ighg2a CAAGCAGAAGACGGCATACGAGATGAGGG
TCTGCACAATCACCACACGACTAAGAGCTT
CTCC

1

V7-Abs–BC-Ighg2b CAAGCAGAAGACGGCATACGAGATGAGGG
TCTGAAAAATTACTACCTGAAGAAGACCAT
CTCCCGG

1

V7-Abs–BC-Ighg2c CAAGCAGAAGACGGCATACGAGATGAGGG
TCTGCACAATCACCTTACGACTAAGACCAT
CTCC

1

V7-Abs–BC-Ighg3 CAAGCAGAAGACGGCATACGAGATGAGGC
TCTCCATAACCACCACACACAGAAGAACCT
GTCTC

1

V7-Abs–BC-Igkc CAAGCAGAAGACGGCATACGAGATCTTCAC
CCATTGTCAAGAGCTTCAACAGGAATGAGT
G

36

V7-Abs–BC-Iglc1234 CAAGCAGAAGACGGCATACGAGATCADGT
YACWCATGAAGGKVACACTGTGGAGAAGA
GT

4

Table 13.17: Sequencing primers for antibody sequencing

Sequence name Sequence (5’ -> 3’)
Read 1 CCATCGCGGCGCAAGCAGTGGTATCAACGCA

GAGTAC

Read 2 Read 2 Sequencing Primer Mix (refer to Table 13.18)

Read 4 GAATTCGCGGCCGCTCGCGAGAATGGG
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Table 13.18: Read 2 Sequencing Primer Mix

Sequence name Sequence (5’ -> 3’) Proportion
to add

SC-Ighg1 GGGGCCAGTGGATAGACAGATGGGGGTGTC
GTTTTGG

36

SC-Ighg2a GGCCAGTGGATAGACCGATGGGGCTGTTGT
TTTGGC

1

SC-Ighg2b-v7 GGGGCCAGTGGATAGACTGATGGGGGTGTT
GTTTTGG

1

SC-Ighg2c GGGGCCAGTGGATAGACCGATGGGGCTGTT
GTTTTGG

1

SC-Ighg3 CAGCCAGGGACCAAGGGATAGACAGATGG
GGCTGTTGTTGTAG

1

SC-Igkc-nu TGGTGGGAAGATGGATACAGTTGGTGCAGC
ATCAGCCC

36*

SC-Igkc-Iso GCTCACTGGATGGTGGGAAGATGGATACAG
TTGGTGCAGCATC

36*

SC-Iglc1 GAAACAGGGTGACTGATGGCGAAGACTTGG
GCTGGC

1

SC-Iglc2 GGAAACACGGTGAGAGTGGGAGTGGACTT
GGGCTGAC

1

SC-Iglc3 TGGAAACATGGTGAGTGTGGGAGTGGACTT
GGGCTGAC

1

SC-Iglc4 AGGTGGGAACAGATTAACTGAGGGTGTAGC
CTTGGGTTGGC

1

*Add either SC-Igkc-nu or SC-Igkc-Iso for the sequencing of the kappa chain

Table 13.19: DNA sequence modifications

Symbol Modification
* Phosphorothioated base

r RNA base

+ Locked nucleic acid (LNA)
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A | Determining antibody
concentrations of
hybridoma supernatants

Enzyme-linked immunosorbent assays (ELISAs) were carried out to accurately
assess the antibody concentrations present in hybridoma supernatants used for
stimulation experiments.

A.1 OKT-9, OKT-3 and H25B10 hybridoma supernatants

(see next page)
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Figure A.1: Assessing mouse IgG concentrations of OKT-9, OKT-3 and H25B10
hybridoma supernatants. Standard curves were independently prepared for each
experiment (blue lines) based on the absorbance values at 600 nm obtained for
mouse IgG standards (hollow blue circles). Absorbance values at 600 nm are shown
on the y-axis while mouse IgG concentrations in ng/ml are shown on the x-axis.
A. Mouse IgG concentrations of 25x diluted OKT-9 and H25B10 supernatants
were assessed (red crosses) prior to incubation with K562 cells. B. Mouse IgG
concentrations of 100x diluted OKT-3 and H25B10 supernatants were assessed (red
crosses) prior to incubation with Jurkat cells. Data was generated with the mouse
Immunoglobulin G ELISA Kit from Molecular Innovations.

The mouse IgG concentrations of the supernatants used for incubation with
K-562 cells were found to be 3.14 µg/ml and 3.97 µg/ml for OKT-9 and H25B10
respectively (Fig. A.1A), while those used for incubation with Jurkat cells had
concentrations of 9.01 µg/ml and 6.72 µg/ml for OKT-3 and H25B10 respectively
(Fig. A.1B). In each experiment, the supernatants were diluted to the lower
concentration to ensure that an equal amount of antibody was added to each sample.

A.2 60bca and H25B10 hybridoma supernatants

The mouse IgG concentrations of the 60bca and H25B10 hybridoma supernatants
were 5.36 µg/ml and 7.01 µg/ml respectively (Fig. A.2). In each experiment, the
supernatants were diluted to 5.36 µg/ml to ensure that an equal amount of antibody
was added to each sample.

Figure A.2: Assessing mouse IgG concentrations of 60bca and H25B10
hybridoma supernatants. A standard curve was prepared (blue line) based on
the changes in absorbance values at 600 nm obtained for mouse IgG standards over
10 minutes (hollow blue circles). The natural logarithms of the change in absorbance
values at 600 nm are shown on the y-axis while the natural logarithms of mouse
IgG concentrations in ng/ml are shown on the x-axis. Mouse IgG concentrations of
10x diluted 60bca and H25B10 supernatants were assessed (pink crosses) prior to
incubation with differentiated U937 cells. Data was generated with the IgG mouse
ELISA Kit from abcam.
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A.3 8G5F11, IE9F9 and H25B10 hybridoma supernatants

The mouse IgG concentrations of the 8G5F11, IE9F9 and H25B10 hybridoma
supernatants were found to be 7.74 µg/ml, 12.09 µg/ml and 24.72 µg/ml
respectively (Fig. A.3). The hybridoma supernatants were all diluted to 7.5 µg/ml
prior to use, to ensure that an equal amount of antibody was added to each sample.

Figure A.3: Assessing mouse IgG concentrations of 8G5F11, IE9F9 and H25B10
hybridoma supernatants. A standard curve was prepared (blue line) based on
the absorbance values at 600 nm obtained for mouse IgG standards (hollow blue
circles). The natural logarithms of the absorbance values at 600 nm are shown on
the y-axis while the natural logarithms of mouse IgG concentrations in ng/ml are
shown on the x-axis. Mouse IgG concentrations of 200x diluted 8G5F11, IE9F9 and
H25B10 hybridoma supernatants were assessed (pink crosses) prior to incubation
with lentiviruses. Data was generated with the IgG mouse ELISA Kit from abcam.

A.4 Precision Antibody and H25B10 hybridoma
supernatants

The mouse IgG concentrations of the Precision Antibody and H25B10 hybridoma
supernatants were found to be 15.7 µg/ml and 15.8 µg/ml respectively (Fig. A.4).
The H25B10 supernatant was diluted to 15.7 µg/ml prior to use, to ensure that an
equal amount of antibody was added to each sample.
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Figure A.4: Assessing mouse IgG concentrations of Precision Antibody and
H25B10 hybridoma supernatants. A standard curve was prepared (blue line)
based on the absorbance values at 600 nm obtained for mouse IgG standards
(hollow blue circles). The natural logarithms of the absorbance values at 600 nm are
shown on the y-axis while the natural logarithms of mouse IgG concentrations in
ng/ml are shown on the x-axis. Mouse IgG concentrations of 250x diluted Precision
Antibody and H25B10 hybridoma supernatants were assessed (pink crosses). Data
was generated with the IgG mouse ELISA Kit from abcam.
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B | Cell cycle synchronisation
with palbociclib

Palbociclib is an inhibitor of the phosphorylation of CDK4/6 (Finn et al., 2009). This
results in hypophosphorylation of pRb, preventing S-phase entry and the DNA
synthesis required for cell division, therefore arresting the cell cycle at the G1 phase.

Figure B.1: Cell cycle synchronisation of MCF-7 cells with 2.5 µM palbociclib.
Cells were dehydrated by incubation in 80% ethanol at -20 °C for at least 3 hours.
They were then rehydrated and resuspended in PBS containing 0.1% (v/v) TritonTM

X-100 and 1 µg/mL DAPI, prior to flow cytometry analysis. The cells present in the
G1 (green), S (grey) and G2 (mustard) phases can be distinguished by their DAPI
signal, which indicates the relative amount of DNA present in the cells. DAPI was
detected at 405-450/50, X-axis.

We have established cell cycle synchronisation in MCF-7 cells. In
unsynchronised MCF-7 cells, 31% of cells were in the S and G2 phases, with 69% of
cells in the G1 phase (Fig.B.1A, blue), while in the presence of 2.5 µM palbociclib, 4%
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of cells were in the S and G2 phases and 96% of cells were in the G1 phase (Fig.B.1A,
pink).
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C | Top differentially expressed
genes in sequencing
experiments

Gene Symbol Log2FC Wald-Stats p-value Adj p-value
SOD2 2.26100099 96.8340309 0 0
FTH1 1.83301037 77.2526022 0 0
CCL2 2.62528497 57.1850985 0 0
ACSL1 1.20570079 54.1249997 0 0
CXCL8 2.03024681 52.4335506 0 0
SLC7A11 1.51443829 43.3581112 0 0
OLIG1 2.31657488 43.339373 0 0
NFKB2 1.49419295 43.0426866 0 0
TNFAIP6 2.5209804 41.8588466 0 0
PIK3AP1 1.10339892 40.4243299 0 0
CD44 1.17950928 38.2043166 0 0
TNFAIP3 1.64623616 37.5887004 0 0
HCK 1.10414668 37.4613289 3.93E-307 4.09E-304
SERPINB2 1.17650618 37.4596762 4.18E-307 4.09E-304
FAM129A 1.00603981 36.7971634 2.05E-296 1.87E-293
GAS7 0.86924842 36.3218309 7.32E-289 6.26E-286
SAMSN1 1.31478117 33.7317769 1.98E-249 1.59E-246
CLIC4 0.8637671 32.9207563 1.11E-237 8.44E-235
ATP2B1 1.06900173 32.8380938 1.68E-236 1.21E-233
C3 2.26722232 32.7286807 6.11E-235 4.18E-232

Table C.1: Top 20 differentially expressed genes in bulk RNA-seq of
CD14-expressing U937 cells upon LPS activation. The genes shown are
differentially expressed in bulk RNA-seq data of CD14-expressing U937 cells
upon LPS activation in the presence of H25B10 hybridoma supernatant, compared
to CD14-expressing U937 cells upon LPS activation in the presence of 60bca
hybridoma supernatant. Data reproduced with the permission of Charles Girardot,
EMBL Heidelberg.
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Gene Symbol Log2FC Wald-Stats p-value Adj p-value
TurboGFP 5.62258704 190.7584374 0 0
Soga3 4.93115507 46.3402174 0 0
Il11 4.39984653 47.5338354 0 0
Clcf1 3.46346797 43.0567027 0 0
Thbd 3.15006871 98.9401012 0 0
Tfap2a 2.46951645 59.3494976 0 0
Gclc 1.98247736 80.6964055 0 0
Adamts1 1.88556156 41.8020556 0 0
Phlda1 1.83994729 41.6610294 0 0
PEX5 1.66828033 56.397473 0 0
Gata2 1.60672452 41.7900229 0 0
Sgk1 1.57710398 38.5448287 0 0
Dusp4 1.56705335 49.7296723 0 0
Sh3bp5 1.52927531 41.9652613 0 0
Scarb1 1.28906643 46.3408639 0 0
Tnxb 1.28888809 39.0513561 0 0
Errfi1 1.23050478 38.4015003 0 0
Net1 1.22647673 42.6468222 0 0
Rrm2 1.20722909 53.0336263 0 0
Scd2 1.19243674 37.5545413 0 0
Tsc22d1 1.17602778 46.0975193 0 0
Lif 1.09653009 43.5121945 0 0
Igfbp4 0.66641723 57.4240046 0 0
Strip2 -1.8330434 -44.311021 0 0

Table C.2: Top 24 differentially expressed genes in bulk RNA-seq of
CHO-GLP1R-GFP cells upon addition of 10 µM Exendin-4. The genes shown
are differentially expressed in bulk RNA-seq data of CHO-GLP1R-GFP cells
upon incubation with 10 µM Exendin-4 for 6 hours, compared to untreated
CHO-GLP1R-GFP cells. Data reproduced with the permission of Charles Girardot,
EMBL Heidelberg.
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Gene symbol Log2FC Z-score adj p-value Adj p-value
Fam188b 8.24804448 6.25304523 8.02E-13 4.03E-10
Smox 6.98423122 6.25304523 9.61E-13 4.03E-10
Serpinf1 6.61839053 6.25304523 8.05E-13 4.03E-10
TurboGFP 4.75592888 6.25304523 8.02E-13 4.03E-10
Thbd 2.26156058 6.25304523 8.02E-13 4.03E-10
Cited1 2.06201112 6.25304523 8.02E-13 4.03E-10
Scarb1 1.72942868 6.25304523 8.02E-13 4.03E-10
Tfap2a 1.56313746 6.25304523 8.19E-13 4.03E-10
Pbx1 1.46336273 6.25304523 8.02E-13 4.03E-10
Rab31 1.43010449 6.25304523 8.06E-13 4.03E-10
Timp1 1.23055502 6.25304523 8.59E-13 4.03E-10
Rplp1 1.23055502 6.25304523 8.02E-13 4.03E-10
Itgb5 1.0642638 6.25304523 8.13E-13 4.03E-10
Lrpap1 0.93123083 6.25304523 9.40E-13 4.03E-10
Lgals1 0.86471434 6.25304523 8.02E-13 4.03E-10
Gpx4 0.79819785 6.25304523 8.02E-13 4.03E-10
Arpc1b 0.76493961 6.25304523 8.02E-13 4.03E-10
Id3 0.73168137 6.25304523 8.73E-13 4.03E-10
Ankrd1 -2.1950441 -6.2530452 8.02E-13 4.03E-10

Table C.3: Top 19 differentially expressed genes in Drop-seq of
CHO-GLP1R-GFP cells upon addition of 10 µM Exendin-4. The genes
shown are differentially expressed in Drop-seq data of CHO-GLP1R-GFP cells
upon incubation with 10 µM Exendin-4 for 24 hours, compared to untreated
CHO-GLP1R-GFP cells. Data reproduced with the permission of Charles Girardot,
EMBL Heidelberg.
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D | Inhibition of lentiviral
transduction

We have tested antibodies secreted by two hybridoma cell lines, namely 8G5F11
and IE9F9, for their ability to inhibit lentiviral transduction (Lefrancois and Lyles,
1982; Munis et al., 2018). This has been carried out for our cell line of interest,
K-562, while utilising a lentivirus at a multiplicity of infection (MOI) of 5. This
lentivirus was generated using the transfer plasmid pLVX-IRES-ZsGreen, such
that the lentiviral particles contained a gene encoding a protein expressing green
fluorescence (ZsGreen). Lentiviral transduction in the presence of 7.5 µg/mL
H25B10 hybridoma supernatant (negative control) resulted in 47.3% of cells being
ZsGreen+ (Fig. D.1, pink). The ZsGreen+ population of K-562 cells was reduced
to 1.34% and 14.3% respectively, in the presence of 7.5 µg/mL 8G5F11 and IE9F9
hybridoma supernatants (Fig. D.1, green, mustard), illustrating that the anti-VSV-G
antibodies present inhibited the lentiviral transduction of K-562 cells by lentiviral
particles containing the gene for ZsGreen. In addition, the 8G5F11 antibody
was shown to be more effective than the IE9F9 antibody at inhibiting lentiviral
transduction.

Antibody concentrations of hybridoma supernatants were determined by ELISA
(Appendix A).
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Figure D.1: Inhibition of lentiviral transduction by anti-VSV-G hybridoma
supernatants. Lentivirus containing the gene for ZsGreen were mixed with
7.5 µg/mL hybridoma supernatant (H25B10: pink, 8G5F11: green, IE9F9: mustard)
and incubated at 37 °C for 1 hour. The lentivirus-antibody mixture was incubated
with K-562 cells overnight. K-562 cells were analysed by flow cytometry 96 hours
after viral transduction. A sample where no lentivirus and no hybridoma
supernatant was added was included as a negative control (blue). ZsGreen
expression was detected at 488-530/30, X-axis.
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E | Distribution of UMIs in
droplets during antibody
sequencing

Figure E.1: Distribution of UMIs associated with droplets for kappa chain
sequencing of the 1:1:1:1 hybridoma mixture. Four hybridoma cell lines (4D5,
H25B10, anti-CD4 and OKT-9) were mixed in equal proportion. Independent
droplets are shown on the x-axis ("Drops") while the UMI count for each droplet is
depicted on the y-axis ("UMI Count"). Each bar corresponds to the UMIs associated
within a single droplet. The identity of the kappa chain associated with each UMI
is indicated by the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink,
anti-CD4: green, OKT-9: mustard). The grey line at UMI Count = 5.5 indicates
the cut-off utilised. Droplets with bars above this cut-off were further processed,
while droplets with bars below this, which have five or fewer UMIs associated to
identifiable kappa chains, were rejected.
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Figure E.2: Distribution of UMIs associated with droplets for kappa chain
sequencing of the 50:1:1:1 hybridoma mixture. Three hybridoma cell lines (4D5,
H25B10 and OKT-9) were mixed in equal proportion with anti-CD4 hybridoma
cells added at 50-fold the concentration of the other cell lines. Independent droplets
are shown on the x-axis ("Drops") while the UMI count for each droplet is depicted
on the y-axis ("UMI Count"). Each bar corresponds to the UMIs associated within
a single droplet. The identity of the kappa chain associated with each UMI is
indicated by the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink,
anti-CD4: green, OKT-9: mustard). The grey line at UMI Count = 5.5 indicates
the cut-off utilised. Droplets with bars above this cut-off were further processed,
while droplets with bars below this, which have five or fewer UMIs associated to
identifiable kappa chains, were rejected.
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Figure E.3: Distribution of UMIs associated with droplets for kappa chain
sequencing of the 1:1:1+S hybridoma mixture. Three hybridoma cell lines (4D5,
H25B10 and OKT-9) were mixed in equal proportion, and incubated with anti-CD4
supernatant for 20 minutes, prior to processing. Independent droplets are shown
on the x-axis ("Drops") while the UMI count for each droplet is depicted on the
y-axis ("UMI Count"). Each bar corresponds to the UMIs associated within a single
droplet. The identity of the kappa chain associated with each UMI is indicated by
the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink, anti-CD4: green,
OKT-9: mustard). The grey line at UMI Count = 5.5 indicates the cut-off utilised.
Droplets with bars above this cut-off were further processed, while droplets with
bars below this, which have five or fewer UMIs associated to identifiable kappa
chains, were rejected.
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Figure E.4: Distribution of UMIs associated with droplets for heavy chain
sequencing of the 1:1:1:1 hybridoma mixture. Four hybridoma cell lines (4D5,
H25B10, anti-CD4 and OKT-9) were mixed in equal proportion. Independent
droplets are shown on the x-axis ("Drops") while the UMI count for each droplet is
depicted on the y-axis ("UMI Count"). Each bar corresponds to the UMIs associated
within a single droplet. The identity of the heavy chain associated with each UMI
is indicated by the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink,
anti-CD4: green, OKT-9: mustard). The grey line at UMI Count = 5.5 indicates
the cut-off utilised. Droplets with bars above this cut-off were further processed,
while droplets with bars below this, which have five or fewer UMIs associated to
identifiable heavy chains, were rejected.
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Figure E.5: Distribution of UMIs associated with droplets for heavy chain
sequencing of the 50:1:1:1 hybridoma mixture. Three hybridoma cell lines (4D5,
H25B10 and OKT-9) were mixed in equal proportion with anti-CD4 hybridoma
cells added at 50-fold the concentration of the other cell lines. Independent droplets
are shown on the x-axis ("Drops") while the UMI count for each droplet is depicted
on the y-axis ("UMI Count"). Each bar corresponds to the UMIs associated within
a single droplet. The identity of the heavy chain associated with each UMI is
indicated by the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink,
anti-CD4: green, OKT-9: mustard). The grey line at UMI Count = 5.5 indicates
the cut-off utilised. Droplets with bars above this cut-off were further processed,
while droplets with bars below this, which have five or fewer UMIs associated to
identifiable heavy chains, were rejected.
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Figure E.6: Distribution of UMIs associated with droplets for heavy chain
sequencing of the 1:1:1+S hybridoma mixture. Three hybridoma cell lines (4D5,
H25B10 and OKT-9) were mixed in equal proportion, and incubated with anti-CD4
supernatant for 20 minutes, prior to processing. Independent droplets are shown
on the x-axis ("Drops") while the UMI count for each droplet is depicted on the
y-axis ("UMI Count"). Each bar corresponds to the UMIs associated within a single
droplet. The identity of the heavy chain associated with each UMI is indicated by
the colour(s) of the bar ("SUBJECT", with 4D5: blue, H25B10: pink, anti-CD4: green,
OKT-9: mustard). The grey line at UMI Count = 5.5 indicates the cut-off utilised.
Droplets with bars above this cut-off were further processed, while droplets with
bars below this, which have five or fewer UMIs associated to identifiable heavy
chains, were rejected.
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F | Analysis of droplet code
distances for unique chains

The barcodes pictured in Figure F.1 are from the sixth most frequently detected
heavy chain from Group 2. The seventh and eighth barcodes (from the top)
("TCACCGACCACC" and "TCGCCGACCACC") differ by a single nucleotide in the
third position (Fig. F.1). This suggests that they are unlikely to be derived from two
different droplets, but are more likely to have arisen from a PCR mutation.

Figure F.1: Analysis of droplet code distances for the sixth most frequently
detected heavy chain in Group 2. The droplet barcodes of the sixth most frequently
detected heavy chain in Group 2 were examined (n = 9). Droplet barcodes are
found under and to the right of the heatmap, while the different colours indicate
the number of nucleotide differences between pairs of barcodes. The germline V, D,
and J sequences of the antibody chain are indicated in the title. Data reproduced
with the permission of Charles Girardot, EMBL Heidelberg.
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G | Heavy and light chain
sequences of anti-CD4
antibody

anti-CD4 heavy chain:
CAGGTCCAACTGCAGCAGCCTGGGGCTGAGCTGGTAAAGCCTGGGGCTTC
AGTGAAGTTGTCCTGCAAGGCTTCTGGCTACATTTTCACCAGTTACTGGAT
GCACTGGGTGAAGCAGAGGCCTGGACAAGGCCTTGAGTGGATTGGTATGA
TTCATCCTAATAGTGATAATACTGACTTCAATGAGAAATTCAAGAGTAAG
GTCACACTGACTGTAGACAAGTCCTCCAGCACAGCCTACATGCAACTCAG
CAGCCTGACATCTGAGGACTCTGCGGTCTATTATTGTGCAAGAGATTACTA
CGGTAGTGGCTACGGCTGGTACTTCGATGTCTGGGGCACAGGGACCACGG
TCACCGTCTCCTCAG

anti-CD4 light chain:
GACATTGTGATGACCCAGTCTCACAAGTTCATGTCCACATCAGTAGGAGA
CAGGGTCAGCATCACCTGCAAGGCCAGTCACGATGTGGGTAATGCTATAG
CCTGGTATCAACAGCGACCAGGGCGTTCTCCTAAGCTACTGATTTACTGGG
CATCCACCCGCCACACTGGAGTCCCTGATCGCTTCACAGGCAGTGGGTCT
GGGACAGATTTCTCTCTCACCATTAGCAATGTGCAGTCTGAAGACTTGGCA
GATTATTTCTGTCAGCAATATAGCAACTATCCGTTCACGTTCGGAGGGGGG
ACCAAGCTGGAAATAAAAC

Both sequences were shown to be productive when analysed with IgBLAST (Ye
et al., 2013).
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I composed this thesis with Overleaf, and used a custom document
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