Directly to content
  1. Publishing |
  2. Search |
  3. Browse |
  4. Recent items rss |
  5. Open Access |
  6. Jur. Issues |
  7. DeutschClear Cookie - decide language by browser settings

Forward Modelling the Secular Evolution of the Milky Way Disk

Frankel, Neige

[thumbnail of thesis.pdf]
Preview
PDF, English
Download (14MB) | Terms of use

Citation of documents: Please do not cite the URL that is displayed in your browser location input, instead use the DOI, URN or the persistent URL below, as we can guarantee their long-time accessibility.

Abstract

We know precisely the position of the Sun in our Galaxy. Yet, like for most stars, we cannot tell where it was born. Stars undergo dynamical memory loss: their orbits evolve, because the Milky Way, like many galaxies, has non-axisymmetric structures (e.g. bar, spirals) that shuffle stellar orbits. My thesis quantifies the strength of that process to answer: How (much) do stars change orbit? Can we still infer their birth places, to constrain the formation of the Milky Way disk? I have combined data from the large stellar surveys APOGEE and Gaia, and developed a method to extract the information they contain on the Galactic disk evolution. I forward-modelled the formation of the stellar disk, the stars’ elemental abundances and their subsquent orbital diffusion, which then informs us about their birth radii through ’weak chemical tagging’. I have found that stars can change orbits by large amounts, and most of this evolution is cold (the orbits stay near- circular). Secular evolution determines how the Milky Way disk is structued. If the Milky Way is typical this explain what drives disk galaxies in general to their typical exponential disk density profiles.

Document type: Dissertation
Supervisor: Rix, Prof. Dr. Hans-Walter
Place of Publication: Heidelberg
Date of thesis defense: 14 October 2020
Date Deposited: 16 Mar 2021 11:32
Date: 2021
Faculties / Institutes: The Faculty of Physics and Astronomy > Dekanat der Fakultät für Physik und Astronomie
DDC-classification: 500 Natural sciences and mathematics
520 Astronomy and allied sciences
About | FAQ | Contact | Imprint |
OA-LogoDINI certificate 2013Logo der Open-Archives-Initiative