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Abstract 
 

Multiple myeloma (MM) is a malignant bone marrow (BM) disease 

characterized by somatic hypermutation and DNA damage in plasma cells; 

leading to the overproduction of dysfunctional malignant myeloma cells. 

Accumulation of myeloma cells has direct and indirect effects on the BM and 

other organs. Despite the development of new therapeutic options; MM 

remains incurable and only a small fraction of patients experiences long-term 

survival (LTS). The past has shown that ultimately all patients still relapse; 

leading to the hypothesis that a state of active immune-surveillance is required 

to control the residual disease.  

 

To understand the long-term survival phenomenon and its link to the immune-

phenotypes in MM disease; we collected paired bone marrow samples from 

24 patients who survived for about  7 to 17 years after Autologous Stem Cell 

Transplant (ASCT), with a high plasma cell infiltration in the BM (median 

49.5%) at diagnosis time. Response assessment according to the International 

Myeloma Working Group (IMWG) revealed that 15 patients were in complete 

remission (CR), whereas 9 patients were in non-complete remission (non-CR) 

that had tumor cells which remained stable over recent years.  

 

We performed single-cell RNA-seq sequencing on more than 290,000 bone 

marrow cells from 11 patients before treatment (BT) and in LTS, as well as 

three healthy controls using 10x Genomics technology. I developed a 

computational approach using the state-of-the-art single cell methods, 

statistical inference and machine learning models to decipher the bone 

marrow immune cell types and states across all clinical groups. I performed 

in-depth analyses of the bone marrow immune microenvironment across all 

captured cell types, and provided the global landscape of cellular states across 

all clinical groups.  
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In this work, I defined new cellular states, marker genes, and gene signatures 

associated with the patients’ clinical and survival states. Additionally, I 

defined a new myeloid population termed Myeloma-associated Neutrophils 

(MAN) cells and a T cell exhaustion population termed Aberrant Memory 

Cytotoxic (AMC) CD8+ T cells in newly diagnosed Multiple Myeloma patients. 

 

Moreover, I propose new therapeutic targets CXCR3 and NR4A2 in AMC 

CD8+ T cells, which could be further investigated to reverse the T cell 

exhaustion state in newly diagnosed MM patients. Furthermore, I defined new 

prognostic markers in the CD8+ T cell compartment which could be predictive 

for the global disease state. 

 

Finally, I propose that MM long-term survivors go through a complex and 

evolving immune landscape and acquire cellular states in a stepwise manner. 

Furthermore, I propose the Continuum Immune Landscape (CIL) Model which 

explains the immune landscape of MM patients before and after long-term 

survival. Additionally, I introduced the Disease-State Trajectories (DST) 

hypothesis regarding the disease-associated dysregulated cellular states in 

MM context, which could be generalized into other tumor entities and 

diseases.  
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Zusammenfassung 
 

Das multiple Myelom (MM) ist eine maligne Erkrankung des Knochenmarks 

(KM), die durch somatische Hypermutation und DNA-Schäden in 

Plasmazellen gekennzeichnet ist. Dadurch kommt es zu einer massiven 

Proliferation maligner Myelomzellen, die direkte und indirekte Auswirkungen 

auf das Knochenmark und andere Organe hat. Obwohl die Entwicklung neuer 

Therapeutika neue Behandlungsmöglichkeiten geschaffen hat, bleibt das 

multiple Myelom eine unheilbare Erkrankung, die nur wenige Patienten 

langzeitig überleben lässt (long term survival, LTS). Fast alle Patienten erleiden 

letztendlich einen Rückfall. Das lässt vermuten, dass das Immunsystem beim 

Langzeitüberleben eine Resterkrankung kontrollieren muss. 

 

Um zu verstehen, warum es zu LTS kommt und welche Rolle dabei das 

Immunsystem spielt, haben wir gepaarte KM-Proben von 24 Patienten 

untersucht, die 7-17 Jahre nach einer autologen Stammzelltransplantation 

(ASCT) noch lebten. Die mediane Plasmazellinfiltration im Knochenmark 

betrug 49,5% bei Diagnose. Die Beurteilung des Therapieansprechens nach 

den Kriterien der International Myeloma Working Group (IMWG) ergab, dass 

15 Patienten zum Zeitpunkt der zweiten Probennahme in vollständiger 

Remission (CR) waren, während 9 Patienten nur eine unvollständige 

Remission (non-CR) hatten, d.h. bei ihnen konnte ein Anteil noch 

vorhandener Tumorzellen nachgewiesen werden, der jedoch über die Zeit 

konstant war. 

 

Von 11 Patienten wurden die Proben vor Therapiebeginn und bei LTS mit 

Einzelzell-RNA-Sequenzierung (10x Genomics) von insgesamt mehr als 

290.000 Knochenmarkszellen untersucht, außerdem KM-Proben von 

gesunden Spendern. Ich habe hier ein computergestütztes Verfahren auf der 

Grundlage neuester bioinformatischer Einzelzellanalysemethoden entwickelt, 
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wobei auch Methoden der statistischen Inferenz und des Maschinenlernens 

zum Einsatz kamen. Damit konnte ich Zelltypen und ihre Zustände in den 

jeweiligen klinischen Gruppen bestimmen und eine detaillierte Analyse der 

Zusammensetzung der Immunumgebung im KM durchführen. So konnte eine 

globale Landschaft der Zelltypen und Zellzustände beim multiplen Myelom 

beschrieben werden. 

 

Ich habe in dieser Arbeit neue zelluläre Zustände, charakteristische Gene und 

Gensignaturen beschrieben, die mit den klinischen Zuständen der Patienten 

und ihrem Überleben assoziiert sind. Ich habe eine neue Population 

myeloider Zellen, Myeloma-assoziierte Neutrophile (MAN) identifiziert und 

eine T-Zell-Population mit Anzeichen von Exhaustion gefunden, die wir 

"aberrante cytotoxische CD8+-T-Gedächtniszellen" (AMC) genannt haben. 

 

Mit CXCR3 und NR4A2 schlage ich neue therapeutische Ziele in AMC CD8+ 

T-Zellen vor, deren Rolle bei der Revertierung eines exhausted Zustands 

weiterer Erforschung bedarf. Außerdem habe ich neue prognostische Marker 

in CD8+-T-Zellen identifiziert, die den Status der Erkrankung vorhersagen 

lassen. 

 

Schließlich schlage ich ein Modell vor, bei dem MM-Langzeitüberlebende 

eine komplexe Abfolge von Veränderungen der Immunzelllandschaft 

durchmachen, bei dem zelluläre Zustände sich schrittweise ändern. Dieses 

Continuum-Immunzelllandschafts-Modell (CIL) erklärt die Immunantwort von 

MM-Patienten vor Therapie und in LTS. Ich entwickele auch eine Hypothese 

zu "Krankheitszustands-Trajektorien" (DST), die dysregulierte Zellzustände 

mit potentieller Relevanz auch für andere Kerbserkrankungen beschreibt. 
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1 Introduction 

1.1 The discovery of cells: the building block of the biological 

systems 

 

From an early time point in history, humans have been trying to 

understand the vast diversity of biological systems in the surrounding nature; 

as a crucial step to understand health and disease. Back in 3000 B.C., ancient 

Egyptians started to describe a manifestation of tissue abnormalities and 

distinguished between benign and malignant “tumors” (Hajdu 2011, 1). 

Thousands of years later would follow without real progress in understanding 

the underlying cause of such abnormalities.  

 

In 1665, Robert Hooke used a compound microscope (Figure 1.1) and started 

to observe tiny pores that looked like tiny rooms (“Cella” in Latin) which he 

named “cells” (Hooke 1667). He did not know what their real function is and 

did not think that they are alive (Inwood 2002, 1635–1703).  By using more 

powerful microscopes (magnify objects ~ 300-fold), Anton van Leeuwenhoek 

started to observe that these cells are motile and he assumed that this motility 

is indicative of life (Mazzarello 1999). Over years of technological 

advancement, we started to gain more information about subcellular 

structures and cellular functions, and more evidence that the cell is the 

fundamental unit of life (Mazzarello 1999). Such a new understanding was 

the start of shaping one of the key ideas in the biological history “The cell 

theory”. 

 

The discovery of the cells changed our perspective on the underlying structure 

of tissues and organs. We started to understand that alterations in the cells of 

an organism would have a causal link to the diseases and started to catalog 

human diseases accordingly. It seems that the interaction between the human 

mind, tools, and technologies induced the next steps in understanding the 
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underlying chain of causes and effects of the physical world. That was a true 

case in shaping “The cell theory”. These concepts helped Rudolf Virchow to 

develop the Cellularpathologie concept and to further propose “the theory of 

cancer origin” (R. P. Wagner 1999). 

 

 
 

 

Figure 1.1: Early model of Robert Hooke's microscope. 

------------ 
*Adapted from (Micrographia by Robert Hooke, 1665) 
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1.2 The origin of the immune system: 

 

Humans live in the natural world which is full of microbial communities and 

are in need to interact with such complex communities, either to eliminate 

the pathogenic ones or to keep a balanced relationship with the beneficial 

ones (D. Zheng, Liwinski, and Elinav 2020). Moreover,  human cells tend to 

accumulate somatic mutations and cellular defects which need to be quickly 

eliminated (Goodnow 2007); to get rid of such potential pathogenic cells and 

to keep the whole organ-to-organ interaction systems in a healthy homeostatic 

state. To execute these crucial functions, humans and other mammals 

developed an intricate and complex immune system that keeps regulating and 

checking the cellular interactions in both homeostatic and diseased states; in 

addition to eliminating the pathogenic antigens.  

 

Multicellular organisms (metazoans) started to evolve and exist in 500 million 

years ago. These organisms started to co-develop intricate systems of adaptive 

immune cells beside the innate immune cells to initiate protective responses 

against potential pathogens; including parasites, fungi, bacteria, and viruses 

(Cooper and Alder 2006). Over millions of years, these multicellular 

organisms started to adapt to different environmental challenges and stresses 

to survive such conditions in the natural world (Figure 1.2). These defensive 

mechanisms are mediated via a complex network of interacting cell types 

which evolved strategies to learn from the environment and the inner cellular 

world, and to elicit appropriate immune responses accordingly. 

 

Over the last couple of decades, we started to gain deeper insights into the 

immune system and how it evolved to work in such an orchestrated manner. 

Moreover, we learned that agnathans (jawless vertebrates) developed an 

adaptive immune system based on a combinatorial assembly system of 

different genetic modules to produce lymphocytes with a unique receptor 

repertoire (Alder et al. 2005).  
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Figure 1.2: Phylogenetic Tree represents the evolutionary tree of the 
multicellular organisms’ immune system.  

------------ 
*Adapted from (Cooper and Alder 2006) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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1.2.1 Hematopoietic system and hematopoietic stem cells (HSCs) 

 

All immune cells originate from hematopoietic stem cells (HSCs) through a 

complex developmental process known as “hematopoiesis”, which is 

localized mainly in the bone marrow. In 1868, Ernst Haeckel was the first to 

use the word stem cell (Stammzelle). He thought that these stem cells are the 

root of a branching family of more mature cells in many biological systems 

which he described as a tree-like structure and he named it a “family tree” or 

‘Stammbaum’ in German (Ernst Haeckel 1868). It seems that the early 

description of such developmental processes as a “Tree” like model 

dominated our view of the hematopoietic system description for decades.  

 

1.2.2 Hierarchical models of hematopoiesis and cell-fate 

decisions 

 

Early definitions of the HSCs came from fluorescence-activated cell (FACs) 

sorting of the HSC populations (Spangrude, Heimfeld, and Weissman 1988) 

which are characterized by two essential properties after transplantation; self-

renewal and multipotency. The non-HSCs populations (Progenitor cells) are 

the cells that can not retain such self-renewal properties and have a restricted 

lineage differentiation capacity (Doulatov et al. 2010). 

 

Over the past twenty years, the scientific community derived many models to 

explain the differentiation and development process of HSCs from the 

progenitor states towards the final commitment to mature cell types. Early 

models started to separate the progenitors into two subbranches; the myeloid 

branch (common myeloid progenitors “CMP” ) and lymphoid branch 

(common lymphoid progenitor “CLM”). They further split into 

megakaryocyte–erythroid progenitor cell “MEP” and granulocyte–monocyte 

progenitors “GMP” (Figure 1.3- a).  
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Figure 1.3: Proposed Haematopoiesis hierarchical models. 

a) Early model shows that HSCs population is a homogeneous state of cells 

and through the differentiation process, it bifurcates into myeloid and 

lymphoid branches towards the final mature cell type. b) This model shows 

that the HSC pool is a more heterogeneous population. c) This model has 

been proposed after using single-cell transcriptomics technologies, which 

suggest that the haematopoiesis process is rather a continuum of cellular 

differentiation.  

------- 
*Adapted from (Laurenti and Göttgens 2018) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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Around the time between 2005 and 2015, new data and pieces of evidence 

became available suggesting that HSCs are heterogeneous pools of cells that 

have different capacities of self-renewal and differentiation properties. The 

myeloid and lymphoid branches are still connected via the lymphoid-primed 

multipotential progenitor (LMPP) population (Görgens et al. 2013) (Figure 1.3 

- b).  

 

Due to the recent development in single-cell genomics technologies and 

especially in single-cell RNA-seq, it has been proposed that the hematopoiesis 

process is rather a continuum process of cellular differentiation where single 

cells can develop along a differentiation trajectory and that lineage-

restrictions are regulated in an early time point of hematopoietic stem and 

progenitor cells (HSPCs) compartment (Figure 1.3-c) (Paul et al. 2015, Velten 

et al. 2017 and Giladi et al. 2018).  

 

Cell-fate decisions are tightly controlled via gene expression programs, which 

are in turn regulated via transcriptomic and epigenetic regulators. Multipotent 

cells are proposed to harbor multilineage capacity where they express a low 

level of expression programs which can activate and shift the cellular function 

into alternative lineages under either deterministic or stochastic processes 

(Laurenti and Göttgens 2018). Such biological programs shape at the end a 

specific pattern of cell-type-specific related gene expression programs, which 

are capable of regulating the function, phenotypic state, and cellular identity 

of the immune cell types.  
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1.3 The immune system blueprint 

 

Over the past several years, a substantial research effort has been invested to 

understand the mechanisms that regulate the immune systems’ functions. The 

immune system can be subdivided into two large branches: innate and 

adaptive immunity. Innate immunity uses an embedded germline-encoded 

genetic memory of receptors that can directly recognize the molecular pattern 

of common antigens in a time scale of hours.  

 

In contrast, adaptive immunity co-evolved to recognize unique patterns of 

antigens to elicit specific immune responses and eliminate these new antigens 

in a time scale of days (Figure 1.4). The efficiency of the immune system 

depends mainly on the intricate interplay between the innate and adaptive 

immune branches to develop strategies; to eliminate potential pathogenic 

challenges.  

 

 
 

Figure 1.4: Immune system’s two branches (innate and adaptive immunity) 
and the time scale of the immune response.  

----------------- 
*Adapted from (Yamauchi and Moroishi 2019) by permission from Copyright Clearance Center’s 

RightsLink® service.  
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Through the next sections, we will dive into the key players of the immune 

system and how it is orchestrated and regulated. 

 

1.3.1 The innate immune system: granulocytes, myeloid Antigen-

Presenting (APC), and natural killer (NK) cells  

 

The innate immune system (IIS) can induce immune responses mediated via 

specialized myeloid and lymphoid cells, and recognize foreign antigens 

through germline-encoded receptors (e.g: Toll-like receptors (TLRs) and 

pattern recognition receptors (PRRs) Galli, Borregaard, and Wynn 2011). 

Granulocytes are considered the frontline of the innate immune response and 

can be subdivided into many cell types according to the cellular morphology 

and characteristic staining (e.g., neutrophils, basophils, mast cells or 

eosinophils).  

 

Neutrophils constitute the majority of leukocytes and are recruited by 

inflammatory molecules (e.g., chemokines) to the site of inflammation. They 

can phagocytose antigens, secrete quite a range of cytokines to recruit more 

neutrophil cells to the inflamed tissue, and potentially remodel the bone 

marrow to increase the production of myeloid cells. Myeloid progenitors can 

generate a group of phagocytic cells (dendric cells (DCs), monocytes, and 

macrophages) that acquire in addition the function of professional antigen-

presenting cell (APC).  

 

Myeloid APCs are considered the link between the innate and adaptive 

immune system as they can detect antigens and communicate that to the T 

cell and B cells (Figure 1.4). DCs have a primary and critical role in capturing 

and presenting antigens to naïve T cells and activating them (Collin and Bigley 

2018). Macrophages also have the capacity of antigen-presenting and are 

more specialized in engulfing “phagocytose” antigens and pathogens (Mosser 

and Edwards 2008). More shreds of evidence suggest phenotypic plasticity of 
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innate immune cells in response to cytokines signals, and other 

microenvironment factors that can alter their cellular functions (Galli, 

Borregaard, and Wynn 2011). 

 

Lymphoid progenitors can generate natural killer (NK) cells, which are 

considered as one of the IIS major players; they have germline-encoded 

receptors and can mediate cytolytic effector functions, which can directly kill 

infected cells or tumor cells (Moretta et al. 2008).  However, this notion has 

been challenged. Other views consider NK cells as part of the adaptive 

immune system since they originate from the lymphoid lineage and can 

contribute to the “immunological memory” phenotype which is mainly 

associated with the T- and B- cells (Figure 1.5). There are distinct receptor-

ligand interactions which induce generating antigen-specific memory NK 

cells that have certain tissue restriction and adaptation patterns (Cerwenka 

and Lanier 2016). Therefore, NK cells can be considered as the interface 

between the innate and adaptive immune system (Moretta et al. 2008 and 

Vivier et al. 2011). 

 

 
 

Figure 1.5: The generation of memory NK cells 

In-vivo exposure of NK cells to IL-18, IL-12, and IL-15 induce a NK activation 

state and after the adoptive transfer of these cells; they can persist for the long 

term and produce abundant granzymes, perforin, and IFNγ.  
----------------- 
*Adapted from (Cerwenka and Lanier 2016) by permission from Copyright Clearance Center’s 

RightsLink® service.   
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1.3.2 The adaptive immune system: T- and B- cells 

 

Throughout the evolutionary history of the immune system, vertebrates 

evolved a new branch of the immune system, which can generate new and 

diverse receptors against foreign antigens, in addition to the preexisting innate 

immune system. This new machinery is termed the “adaptive” immune system 

where each lymphocyte has a unique antigen receptor. This feature makes the 

adaptive immune system capable of generating a clonally diverse repertoire 

of lymphocytes; facilitating an evolutionary advantage for recognizing a wide 

range of new antigens and pathogens.  

 

By the early 20th century, a new realization started to emerge in understanding 

that the adaptive immune system has two main functional branches, one 

branch is involved in cell-mediated immunity and the other branch is capable 

of generating soluble immune factors or humoral-mediated immunity 

(antitoxins or antibodies).  

 

The key cellular players of these immune functions have not been discovered 

until the late 1950s. Two fundamental studies started to change the 

immunological thinking at this time and defined the key cell types mediating 

the adaptive immune system functions (Figure 1.6).  

 

In Miller 1961's study, he performed thymectomies in neonatal and older 

mice in the context of studying thymic lymphoma, and he observed that only 

mice that had undergone neonatal thymectomy developed a wasting 

syndrome in addition to infections and low proportions of lymphocytes. Miller 

proposed that in early life the thymus export lymphocytes which can support 

graft-rejection or antiviral responses.  

 

A few years later, in Cooper, Peterson, and Good (1965)’s study, they showed 

that the chickens’ bursa of Fabricius is the source of antibody-producing 
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lymphocytes, and they distinguished between the role of these cells and 

Miller’s thymus-derived cells (cell-mediated lymphocytes).  

 

Both studies established the key differences between the T (thymus-derived) 

and B (bone marrow-derived or bursa-derived) lymphocytes and their co-

operative role in mediating adaptive immune functions (Figure 1.6).  

 

 

 

 
 

Figure 1.6: Early adaptive immune system models show the origin of cell-
mediated immunity by the T cell (thymus-derived), and humoral-mediated 
immunity by the B cell (bursa-derived or bone marrow-derived). 

----------------- 
*Adapted from (Germain 2019) by permission from Copyright Clearance Center’s RightsLink® 

service. 
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1.3.3 T lymphopoiesis: T cell thymic development 

 

T cells are the key players of cell-mediated immunity, they go through 

complex processes of development and differentiation to be fully functional 

cells. T cell development starts from HSC differentiation into lymphoid 

restricted progenitors which can give rise to thymic seeding progenitors 

(TSPs). The exact origin of the TSPs is debatable and further pieces of evidence 

suggest that TSPs originate from either fetal liver or bone marrow (Koch and 

Radtke 2011, Kernfeld et al. 2018, Zeng et al. 2019).  

 

The thymus can be subdivided into four compartments (the subcapsular zone, 

cortex, medulla, and the corticomedullary junction), each of which has a 

unique microenvironment structure and has important roles in T-

lymphopoiesis. TSPs start to enter the thymus and develop into early thymic 

progenitors (ETP); a subpopulation of double-negative (DN) 1 cell retains the 

capacity to develop into DCs, NK cells , and macrophages (Figure 1.7). 

 

In the DN1 stage, NOTCH signaling inhibits cell fate potential and allows it 

to develop into the DN2 stage where the TCR γδ and TCR β rearrangement 

occurs and can give rise to committed γδ T cells. Furthermore, the DN2 is 

developed into DN3 and DN4, which commit into double-positive T cells by 

further retaining TCR αβ lineage restriction. Finally, the DP T cells commit to 

a single positive (SP) state; either CD4 SP or CD8 SP T cells (Koch and Radtke 

2011).  

 

CD8+ T cells have a crucial role in mediating cytotoxicity functions against 

antigens, pathogens, and tumors through releasing granzymes, perforin, and 

cytotoxic molecules. CD4+ T cells have lower cytotoxicity functions and 

regulatory roles (Th1, Th2, Th17, and others), in addition to 

immunosuppressive roles (Treg) mediated by binding to effector T cells and 

inhibiting the secretion of cytokines.  
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Figure 1.7: T cell thymic development. 

HSC cells develop to TSPs which can enter the thymus cortex and go through 

multistep development and maturation into a single positive (SP) state either 

being SP CD4 or SP CD8 T cells.  

 

----------------- 
*Adapted from (Koch and Radtke 2011) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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1.3.4 T cell-fate differentiation models  

 

During acute and chronic infections, naïve CD8+ T cells bind to specific 

antigens and undergo clonal expansion and differentiation into effector T 

cells, which could either be terminal effectors (effector cytotoxic) or memory 

cells (memory precursor effector) to further develop into long-lived memory T 

cells. In the chronic infection setting, the effector and memory CD8+ T cells 

encounter persistent antigen exposure which leads to the emergence of a 

terminal nonfunctional state of differentiation that is defined as the “T cell 

exhaustion” state.  

 

Many models have been proposed describing the T cell-fate differentiation 

processes and the generation of effector and memory T cells, which are tightly 

regulated via transcriptional and epigenetic regulators (Kaech and Cui 2012, 

Zebley, Gottschalk, and Youngblood 2020).  

 

The first model is the “separate-precursor” model, which describes that naïve 

T cells are preprogrammed during thymic development to adopt a specific 

differentiation state either to effector T cells or long-lived memory T cells 

(Kaech and Cui 2012b). However, this model has not been supported 

anymore since several studies using cellular barcoding showed that single 

naïve T cells are multipotent and can differentiate to both memory and effector 

T cells (Stemberger et al. 2007, Gerlach et al. 2010) (Figure 1.8 a).  

 

The “decreasing-potential” model suggests that the differentiation states are 

regulated according to the repetitive stimulation and cumulative history of the 

signals encountered in the T cell history of antigen stimulation to the T cells 

(Figure 1.8 b). The “signal-strength” model suggests that the heterogeneity in 

differentiated T cells is a result of the overall and combined signals of antigens, 

cytokines, and costimulatory molecules (Figure 1.8 c).  
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Figure 1.8: T cell-fate differentiation models describing potential 
mechanisms of generating effector and memory T cell states.  

----------------- 
*Adapted from (Kaech and Cui 2012a) by permission from Copyright Clearance Center’s 

RightsLink® service.  
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Finally, the “asymmetric cell fate” model proposes that both memory and 

effector T cells can arise from one cell through an asymmetric process of cell 

division that can happen at very early steps of cell division after the T cell 

activation via an antigen (Kaech and Cui 2012b) (Figure 1.8 d).  

 

Understanding T cell-fate differentiation states and the regulating mechanisms 

of this process are crucial for unleashing T cell cytotoxic functions against 

tumor cells and pathogens (Zebley, Gottschalk, and Youngblood 2020).  

 

1.3.5 B-cell development and immunological memory formation 

 

After a single infection, the immune system acquires two key aspects of an 

immunologic memory: 1) the long-lived plasma cell, which is responsible for 

the antibody production. 2) memory B-cells that can be activated and act after 

re-exposure to the same infectious agent. One key aspect to understand the 

immunologic memory of the B-cell is to understand the underlying 

developmental processes of the B-cells and cell-fate decisions after exposure 

to an antigen (Akkaya, Kwak, and Pierce 2020).  

 

B- cell originates from the HSC compartment in the bone marrow where the 

HSCs differentiate into Pro-B cell and Pre-B cell states (Figure 1.9 a). The next 

developmental step is the generation of the immature B-cell, which acquires 

the expression of the B-cell receptor (BCR) which “marks” the first specificity 

stage in B- cell development. Furthermore, these cells enter the periphery as 

a “transitional B-cell” which expresses IgM with or without IgD and would be 

ready to enter the second stage of B-cell development in the secondary 

lymphoid organs (Cambier et al. 2007). After exposure to an antigen, the naïve 

B-cell can further develop to a memory B- cell or a plasmablast and further 

develop to the final stage of the plasma cell state.  
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a) 

 
 

b) 

 
 
Figure 1.9: B cell developmental models. 

a) B cell development in the BM and secondary lymphoid organs. b) Naïve B 

cell-fate and differentiation decisions according to the pathogenic exposure.  

----------------- 
*Adapted from (Sabatino, Pröbstel, and Zamvil 2019) and  (Akkaya, Kwak, and Pierce 2020) 

by permission from Copyright Clearance Center’s RightsLink® service. 
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Naïve B- cells express both TLRs and BCRs; the TLRs role is to recognize 

pathogen-associated molecular patterns (PAMPS), which are conserved 

molecular motifs in microbes. BCRs can recognize new antigens. In the case 

of only recognizing antigens, the B-cells perform antigen presentation of the 

antigen to the T cells and this process induces the production of germinal 

center (GC) B cells (Figure 1.9 b).  

 

In contrast, B- cell’s exposure to both antigens and PAMPs activates the TLRs 

to block the processing of the antigen via BCRs and induces a shift in the 

differentiation machinery toward producing short-lived plasma cells (Akkaya, 

Kwak, and Pierce 2020). 

 

1.4 Multiple Myeloma (MM) disease 

 

Multiple myeloma (MM) is a cancer of malignant plasma cells in the bone 

marrow (BM) microenvironment. MM represents about 10% of all 

hematological malignancies (Rajkumar 2020). Normal plasma cells have a 

unique role in generating diverse antibody structures which are accomplished 

by V(D)J recombination, somatic hypermutation, and class-switch 

recombination (Chi, Li, and Qiu 2020).  

 

This mechanism of antibody generation is dysregulated, which leads to 

malignant transformation of plasma cells and the manifestation of many 

subtypes of hematological malignancies including MM, which can affect and 

dysregulate the microenvironment (Rajkumar et al. 2014). The overproduction 

of malignant plasma cells leads to disturbing normal bone marrow functions 

and the presence of clinical signs and manifestations like anemia, low platelet 

counts, and low white blood counts. One key characteristic of malignant 

myeloma cells is that they can produce abnormal immunoglobulins (M-

proteins) which can be present in the bloodstream and or the urine.  
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a) 

 
 

b)  

 
 

Figure 1.10: Single-cell genomics studies show the heterogeneity of the 
tumor cell compartment and bone marrow microenvironment cell types in 
the MM context.  

a) t-distributed stochastic neighbor embedding (tSNE) representation shows 

the heterogeneity of the malignant plasma cell compartment between different 

patients’ clusters. b) tSNE representation shows the diverse cell types and 

states in MM bone marrow microenvironment. 
----------------- 

*Adapted from (Ledergor et al. 2018). and (Zavidij et al. 2020) by permission from Copyright 

Clearance Center’s RightsLink® service.  
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Furthermore, the M- proteins can adhere together and induce organ failure 

and cause hyperviscosity syndrome, as well as other clinical manifestations: 

hypercalcemia, renal insufficiency, anemia, and/or bone disease with lytic 

lesions. All these signs are known as CRAB clinical features (Kumar et al. 

2017). Recent genomics and single-cell studies showed that malignant 

myeloma cells are composed of heterogeneous populations of malignant  

tumor cells where every single patient has a certain expression pattern of 

transcriptional programs (Ledergor et al. 2018). These “transcriptional clones“ 

could instruct bone marrow changes and remodeling, and induce a cellular 

shift in the surrounding of the tumor microenvironment immune cells (Zavidij 

et al. 2020) (Figure 1.10). 

 

1.4.1 MM bone marrow niches and microenvironment  

 

The bone marrow (BM) microenvironment is a very complex living system, 

which is composed of diverse cell types and states. They are interconnected 

through a complex chain of chemokine and cytokine signaling networks. The 

BM niches are constructed from cellular and non-cellular parts, where the 

cellular part is composed of mesenchymal stem cells (MSCs), osteoclasts, 

osteocytes, endothelial cells, macrophages, T cells, B cells, fibroblasts, and 

other cell types (Figure 1.11 a). These cell types regulate and orchestrate the 

hematopoietic stem and progenitor cell (HSPC) self-renewal capacity in 

addition to their quiescence state, localization, and differentiation (Ghobrial 

et al. 2018).  

 

Over the past decades, we started to understand the important role of the bone 

marrow microenvironment in supporting and mediating malignancy states in 

human and in vivo mouse models (Medyouf 2017, Tirado-Gonzalez et al. 

2018). Early studies showed that stromal cells (e.g., fibroblasts) can establish 

premetastatic niches which can support malignant clones (Kaplan et al. 2005).  
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a) 

 
b)  

 
 
Figure 1.11: Multiple Myeloma BM microenvironment  

a) Hematopoietic stem and progenitor cell (HSPCs) co-localization in the BM niche 

and cell types where cell-cell interactions are maintained via a network of 

chemokines and cytokines b) Cell-cell interaction network between myeloma cells 

and the bone marrow niche mediated via receptor-ligand interactions.  

----------------- 

*Adapted from (Ghobrial et al. 2018) and (Kumar et al. 2017) by permission from Copyright 

Clearance Center’s RightsLink® service.  
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Studies in the MM context showed that there is a crucial interplay between 

the myeloma cells and the BM microenvironment (Kumar et al. 2017). 

Myeloma cells migrate to the BM by upregulating CXCR4 on their cells and 

bind to CXCL12 expressing cells in the BM niche (Figure 1.11b). The 

interaction of myeloma cells with BM osteoblast causes high expression of 

RANKL, which binds to the RANK receptor (an activator of the NF-κB pathway 

and induces osteoclast differentiation). The imbalance between osteoblast and 

osteoclast differentiation leads to bone destruction, and the MM patient starts 

to experience bone disease with lytic lesions, which is one of the CRAB 

clinical signs of MM disease.  

 

Additionally, the BM stromal cells express VEGFA, which is a strong 

angiogenic factor that mediates increased oxygen supply by forming new 

blood vessels. Myeloma cells can express VEGF, which induces angiogenic 

processes in the BM microenvironment (Vacca and Ribatti 2006). Clinical 

studies showed that elevated angiogenesis was associated with a worse MM 

disease outcome (Rajkumar et al. 2002). Still, we are in an early phase of 

understanding the relationships between the BM niche and malignant 

myeloma cells. 
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1.4.2 MM disease evolution trajectories and the emergence of 

high-risk states 

 

Multiple myeloma is a genetically heterogeneous and complex disease 

mediated by several genetic and epigenetic changes that induce alterations 

driving the myelomagenesis processes (Morgan, Walker, and Davies 2012). 

Pre-clinical stages of MM have been defined; suggesting multistep 

evolutionary steps till the manifestation of full-blown MM state. The pre-

clinical/pre-malignant states are monoclonal gammopathy of undetermined 

significance (MGUS) and smoldering myeloma (SMM) which are crucial steps 

in the natural history of the disease evolution.  

 

It has been proposed that these multistep transitions require the acquisition of 

genetic abnormalities which lead to the development of myeloma malignant 

clones (Figure 1.12 a). The myelomagenesis process starts with a normal 

plasma cell that acquires an initial event (e.g., chromosomal translocation 

t(4;14), t(14;16) and hyperdiploidy) which induces the MGUS state. 

Furthermore, the transformed clone starts to harbor copy number changes 

(e.g., gain (1q), deletion (1p), deletion (17p), and mutations) which transform 

the cells to be in the SMM state. The next stage of transformation is marked 

by MYC translocation, jumping translocations, and amplification (1q), which 

leads to subclonal diversification and expansion of certain clone structures 

and the development of the clinical symptoms of the MM disease.  

 

Furthermore, there are major ecosystems and regional evolution resulting in 

(selective-sweeps) based on the competitive features of the malignant clones. 

These malignant clones access different niches and lead to creating focal 

lesions (FLs) in the BM, extramedullary disease (EMD) in other organs (e.g. 

liver) or plasma cell leukemia (PCL); which represent the key features of the 

high-risk MM state (Figure 1.12 b). 
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a) 

 
B) 

 
 
Figure 1.12: MM disease evolution trajectories. 

a) Evolutionary model explaining the MM disease evolution from early initial 

transformation events in the plasma cell compartment to the manifestation of high-

risk MM state. b) Proposed model for MM regional evolution in the bone marrow 

and extra-medullary. 

----------------- 

*Adapted from (Pawlyn and Morgan 2017) by permission from Copyright Clearance Center’s 

RightsLink® service.  
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1.4.3 The immune microenvironment, immunoevasion, 

immunosuppression, and T cell exhaustion 

 

Cellular components of the immune system and its two branches (the innate 

and adaptive immune systems) have an important role and impact in tumor 

progression and elimination (Gajewski, Schreiber, and Fu 2013). In the 

normal BM microenvironment, there are cell types capable of deriving 

cytotoxicity functions and mediating potent immune responses (e.g., NK and 

T cells) against tumor cells, to orchestrate tumor elimination processes.  

 

However, there are other populations such as myeloid-derived suppressor 

cells (MDSCs) and regulatory T cells (Tregs) that have an immunosuppressive 

function, which promote malignant clone proliferation and immunoevasion 

(Taube et al. 2018). Moreover, stromal cells have been shown to activate Treg 

cells, inhibit B-cell proliferation, and regulate both innate and adaptive 

immune responses, which can be mediated through the secretion of IL-10, 

IFNγ, TNFα, and TGFβ (Ghannam et al. 2010).  

 

Recent studies showed that there is a link between MM disease evolution from 

MGUS to SMM and the immunosuppressive state of the BM 

microenvironment, which mediates the escape of tumor cells and promotes 

their growth (Zhang and Zhang 2020). Recently, Zavidij et al. 2020 conducted 

a single-cell RNA-seq study of the BM aspirates from MM patients at different 

time points of the clinical and pre-clinical stages of the MM disease (Figure 

1.13). Zavidij et al. 2020 showed that Tregs, NK, and CD16+ monocytes cells 

were enriched in the MGUS stage, while memory CD8+ T cells in the SMM 

low-risk stage were depleted. In the high-risk SMM stage, they showed that 

CD14+ monocytes induce internalization of (MHC) class II, which establishes 

a T cell suppressive phenotype and increased expression of interferon-α 

signaling genes in many cell types. 
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Figure 1.13: Stepwise immune microenvironment alterations through the 
evolution of MM.  

----------------- 

*Adapted from (Zhang and Zhang 2020) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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T cell exhaustion is one of the key hallmarks of tumor-immune states. In the 

chronic inflammation state of tumors, the memory T cell differentiation is 

altered and these cells start to lose their effector function and upregulate many 

inhibitory receptors which mark the exhaustion state of the T cells (Wherry 

and Kurachi 2015). The T cell exhaustion pathways are multifaceted and have 

many factors that control and regulate the exhaustion state. The pathways can 

be grouped into three categories (Figure 1.14):  

 

1. Cell-cell signals with prolonged T cell receptor (TCR) engagement 

(Wherry and Kurachi 2015). 

2. High levels of inflammatory cytokines and soluble factors.   

3. Microenvironmental and tissue remodeling as a result of the altered 

expression of adhesion molecules and chemokine receptors.  

 

Despite recent advances in understanding the T cell exhaustion state in solid 

tumors and hematological malignancies; it seems that the T cell exhaustion in 

MM disease is difficult to define, since the typical exhaustion signatures and 

marker genes are not highly expressed, as have been recently shown by 

Zavidij et al. 2020. This means that we need more functional work to 

investigate and gain a deeper understanding of the T cell exhaustion state in 

the MM context. 
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Figure 1.14: Cellular and molecular mechanisms regulating the T cell 
exhaustion state.  

----------------- 

*Adapted from  (Wherry and Kurachi 2015) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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1.4.4 Long-term survival and relapse: current treatment 

landscape and immunotherapeutic approaches  

 

In the past 15 years, survival in MM has been improved due to the extensive 

efforts in understanding the biology and clinical aspects of the disease, which 

led to novel therapeutic approaches and drugs for treatment.  

 

The treatment phases in MM can be grouped into four stages: initial therapy, 

autologous stem cell transplantation (ASCT), maintenance therapy, and 

treatment of relapse (Rajkumar and Kumar 2016, Agnarelli, Chevassut, and 

Mancini 2018). The therapeutic efficacy is reflected by the increased number 

of patients who achieved complete remission (CR) and extended periods of 

free progression.  

 

Still, MM disease is incurable and most of the MM patients’ relapse. The MM 

patients' survival is monitored via minimal residual disease (MRD) measures, 

which can be tested by real-time quantitative PCR, next-generation 

sequencing (NGS), and multicolor flow cytometric (MFC) (Kostopoulos et al. 

2020). 

 

The introduction of ASCT and therapeutic regimens using proteasome 

inhibitors and immunomodulatory drugs (IMiDs) showed the most effective 

ways of treating newly diagnosed multiple myeloma (NDMM) patients (Figure 

1.15). Lenalidomide is an immunomodulatory agent which can regulate T cell 

co-stimulation (via B7-CD28 costimulatory pathway), and increase the 

cytotoxicity functions of NK cells and alter cytokine production by 

downregulating IL-6 production which decreases myeloma cells proliferation 

and increase their apoptosis (Quach et al. 2010, Vo et al. 2018).  

 

Immunotherapies with immune-checkpoint blockade seem to be a very 

effective strategy in treating MM patients; like Elotuzumab (anti-SLAMF7 

antibody) and Daratumumab (anti-CD38 antibody). Elotuzumab activates NK 
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cells and macrophages. Daratumumab decreases Treg proportion and increases 

helper and cytotoxic T cell proportions which leads to immune activation 

(Ghobrial et al. 2018). Recent studies showed that using Elotuzumab or 

Daratumumab alone or in combination with Lenalidomide or Bortezomib are 

most effective in comparison to the standard care (Palumbo et al. 2016).  

 

Despite the fact that PD-L1 is highly expressed by MM cells, controversial 

data exist regarding the efficacy and toxicity of  the use of Pembrolizumab 

(PD-1 antibody blockade) and Lenalidomide which has led the FDA to stop 

these studies (FDA Research 2019). These contradictions need to be resolved 

by better understanding the immune microenvironment and T cell cellular 

states in the MM context. 

 

In addition, understanding the role of the immune-microenvironment in the 

MM context would be also helpful to increase the number of patients who 

experience the long-term survival state (> 10 years) and to potentially find a 

definitive cure for MM which is not an achieved target yet.  
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a) 

 
 

b) 

 

 

 

 

 

 

 

 

Figure 1.15: Current treatment approaches for initially diagnosed MM 
patients.  

a) MM treatment algorithm of newly diagnosed MM patients. b) Current drugs 

used for MM treatment include proteasome inhibitors and 

immunomodulatory drugs (IMiDs).  
----------------- 

*Adapted from (Rajkumar and Kumar 2016) and (Kumar et al. 2017) by permission from 

Copyright Clearance Center’s RightsLink® service.  
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1.5 The rise of single-cell genomics technologies 

 

The scientific community started to realize the complexity of biological 

systems (e.g., immune system, tumor heterogeneity, and cellular 

differentiation and developmental processes). These systems can be dissected 

at the single-cell level, which will be helpful to further understand these 

systems and their underlying cellular interactions.  

 

The first single-cell RNA-seq experiment has been published eleven years ago 

when Tang et al. (2009) started to perform mRNA sequencing for each single 

cell of a single 4-cell stage blastomere, which has been fully manually 

isolated. Since this first single-cell experiment, technological and 

methodological advances occurred over the years, and the scale of the 

sequenced cells grew exponentially (Figure 1.16).  

 

Now, we can sequence thousands of cells per experiment, which can be 

easily scaled to sequence and profile millions of cells in one experimental run 

(Datlinger et al. 2019).  

 

 
 

Figure 1.16:  Single-cell experimental and technological advancements.  

The reported number of cells per studies’ publication date; representing the growth 

in the number of sequenced cells per study.  

----------------- 

*Adapted from (Svensson, Vento-Tormo, and Teichmann 2018) by permission from Copyright 

Clearance Center’s RightsLink® service. 
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The droplet microfluidics technology enabled to reach the scale of sequencing 

to thousands of cells in the same experiment. Drop-seq was the first protocol 

that used the droplet microfluidics technology to sequence thousands of cells 

with a substantial decrease in cost per cell (6 cents/cell) (Macosko et al. 2015). 

The 10x genomics company started to commercialize the inDrop method and 

sell the required device and reagents, which made it available and accessible 

for more labs world-wide.  

 

In the 10x Genomics setting, a single-cell RNA-seq experiment can be 

performed and scaled up to eight channels (each channel with different pools 

of cells and populations), which can be processed in parallel at the same time. 

In every single channel, the encapsulation process for thousands of cells 

occurs, where the cells are combined with the reagents of the microfluidic 

chip and gel beads at a fast formation rate ( ∼100,000 Gel bead in EMulsion 

(GEM) / ∼6-min) (Figure 1.17).  

 

 
 

Figure 1.17: 10x Genomics’ GemCode technology for single-cell RNA-seq 
library preparation.  

----------------- 

*Adapted from (G. X. Y. Zheng et al. 2017) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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The gel beads are loaded with the barcoded oligonucleotides which are 

composed of four key parts: 1) Sequencing adapters and primers 2) 14  
nucleotides (nt) barcode 3) 10  nt unique molecular identifier (UMI) 4) 30 nt 

oligo-dT to prime polyadenylated RNA transcripts (G. X. Y. Zheng et al. 2017).  

 

The encapsulation process starts first when the gel beads are mixed with the 

cells and reagents. At the microfluidic junction, the cell/reagents/gel bead 

structure is mixed with the oil-surfactant solution to form the GEMs which are 

collected in the GEM outlet. After the success of the encapsulation process, 

the cell lysis process starts, and the GEM dissolves and releases its reagents 

for the start of reverse transcription (RT). After the GEM emulsion is broken, 

the barcoded cDNA is collected for PCR amplification. The final libraries are 

formed by sharing the amplified cDNAs and incorporating the adapter and 

sample indices into the cDNAs. By the end of this process, the libraries are 

ready for next-generation sequencing (NGS) ( Figure 1.17). 

 

Further technological advancements that happened through the last couple of 

year; have led to capturing more layers and cellular information beyond the 

mRNA level (e.g., presence of cell surface proteins, intracellular proteins,  

chromatin accessibility, DNA methylation status, genome sequence, histone 

modifications, lineage tracing, and spatial co-localization) (Figure 1.18).  

 

These recent technological advances required developing new computational 

methods and algorithms to analyze the underlying patterns captured from 

each single data layer, and ultimately integrating these data types into one 

joint-learning process and forming holistic computational representations of 

cellular states in health and disease (Granja et al. 2019, Stuart and Satija 

2019). 
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Figure 1.18: Multimodal single-cell technologies capture multiple layers of 
cellular information.  
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1.6 Challenges and advancements in single-cell computational 

methods and algorithms 

 

Due to the rapid development in single-cell genomics technologies and 

readouts; innovative computational methods and algorithms have been 

developed to resolve the technical challenges inherited from different 

technologies, different data types, and integrating data from different batches, 

cell types, technologies, and species (Stuart and Satija 2019). 

 

Single-cell RNA-seq analysis involves many different computational steps 

including alignment of the raw sequences to a reference genome, generating 

a count matrix, quality control (QC) check, normalization and dimensionality 

reduction, clustering, cell type annotations and further looking at cell-cell 

interaction, inferring developmental trajectories and gene regulatory networks 

(Hie et al. 2020). Even though there are similar and common steps in the 

analysis workflow of both bulk and single-cell RNA-seq (Figure 1.19); still 

single-cell data analysis poses more challenges (Stegle, Teichmann, and 

Marioni 2015, Lähnemann et al. 2020).  

1.6.1 Single-cell data sparsity 

 

Due to the shallow coverage of the transcriptomes, single-cell RNA-seq data 

suffers from a large number of observed zeros which have been termed as 

“dropouts” or “zero-inflation” (Kharchenko, Silberstein, and Scadden 2014). 

These zero values could originate from two sources:  

 

1. Sampling noise: where the genes are not detected via sequencing 

machines. 

2. True biology: where the genes are not expressed in certain cells in a 

given biological system.   
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Figure 1.19: Common single-cell RNA-seq data analysis workflow and the 
key computational methods underlying these analysis workflows.  

Many of these steps are common between the Bulk RNA-seq and single cell 

RNA-seq (green color). Some other steps are specific to each data type (gray: 

Bulk and yellow: single-cell).  
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These assumptions led the community to think and develop new methods, 

which could use these zero information, with consideration of using zero-

inflation models and  mixture models where every single cell has modeled as 

a mixture of dropouts (Poisson distribution) and amplification (NB 

distribution) (Kharchenko, Silberstein, and Scadden 2014, Pierson and Yau 

2015). Furthermore, imputation methods have been developed to predict the 

expression of genes with zero values (Andrews and Hemberg 2018).  

 

Despite these efforts to either model or correct for over-zeros, a recent study 

by Svensson 2020 and Choi et al. 2020 showed that the primary cause of 

zero-inflation is mainly due to the biological nature of the cells, and using a 

generalized linear model (GLM) with negative binomial count distribution 

would reflect the biological variation.  

 

1.6.2 Sampling and biological variations 

 

The sources of variations in the gene expression matrix could be due to 

sampling noise or biological variation. Normalization and selecting highly 

variable genes (HVGs) are two key methods that are currently used to 

minimize technical variation while preserving the biological variation.  

 

Normalization methods try to generate consistent comparisons between the 

measured genes across many cells, and to correct for the variation in the 

number of captured reads/transcripts per gene and per cell. Many 

normalization methods have been introduced, e.g., SCnorm (Bacher et al. 

2017), scran (Lun, McCarthy, and Marioni 2016), Deseq2 (Love, Huber, and 

Anders 2014, 2).  
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The size factor methods are the most frequently used; gene counts are 

normalized by the total counts per cell, then are scaled by an arbitrary factor 

(e.g., 104 or 106 ), then pseudocounts are added and finally log-transformation 

is performed. Such an approach ignores the real differences in the total mRNA 

counts and cell sizes between the different cell types and states (Hie et al. 

2020). SCTransform models the counts per gene using a regularized negative 

binomial model, where the sequencing depth is used as a covariate in the 

GLM model (Hafemeister and Satija 2019).  

 

The highly variable genes (HVGs) methods try to select the most variable 

genes across all cells based on their expression level. The HVGs methods 

assume that the true biological signal differences would manifest as an 

increased variation in the affected genes in comparison to the other genes 

which have been mainly affected by the technical factors. The simplest form 

of calculating the HVGs is by computing the variance of the log-normalized 

expression values of each gene for all cells. This per-gene variance is 

calculated by modeling the mean-variance relationship and selecting for the 

top variable genes (e.g. 2000-5000 genes) (Amezquita et al. 2020).  
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1.6.3 Dimensionality reduction  

 

Since the single-cell RNA-seq technologies capture the full transcriptomic 

features of the samples, this does not imply that all genes are important for a 

certain biological system. Therefore, reducing this high data dimensionality to 

(low dimensional manifold) would be a reasonable task to preserve the most 

important structure in the data and to gain a more intuitive understanding of 

the data.  

 

The dimensionality reduction methods can be grouped into two categories:  

 

1. Linear decomposition methods: e.g., principal component analysis 

(PCA) (F.R.S 1901), singular value decomposition (SVD) (Kalman 

1996) and  GLM-PCA (Townes et al. 2019). 

 

2. Non-linear methods (for mainly visualization purposes): e.g. t-

distributed stochastic neighbor embedding  (tSNE) (Maaten and 

Hinton 2008) and uniform manifold approximation and projection 

(UMAP) (McInnes, Healy, and Melville 2020).  

 

The most commonly used linear method is the PCA, which tries to discover 

the principle components (PCs) or “axes” to capture the largest amount of 

variation in the data’s high dimensional space which enables for more 

advantages in the downstream analysis steps (Amezquita et al. 2020).  

 

The non-linear methods reduce the data to two or three dimensions as a 

representation for each cell in a more human intuitive space, in addition to 

preserving the local structures and patterns in that space. The non-linear 

methods preserve these local structures, but this process could introduce 

distortions.  
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Looking at the data in its high dimensional space is needed for a deeper 

interpretation and understanding. For example, UMAP tries to learn low-

dimensional embeddings of high-dimensional data by introducing a set of 

heuristics, like force-directed embeddings (Kobourov 2012), which enables 

the visualization of k-nearest neighbor (KNN) graph topology (Altman 1992). 

This process is controlled by a set of parameters to enable higher density 

distortions (Hie et al. 2020).  

 

1.6.4 Clustering cell types  

 

Clustering methods are crucial tools to group cells based on the similarity of 

their gene expression patterns across many cells to define the underlying cell 

types and describe their heterogeneity. While many clustering algorithms 

have been used for single-cell RNA-seq data, graph-based clustering is largely 

adapted and used (Duò, Robinson, and Soneson 2018).  

 

The graph-based clustering starts with constructing a network graph where 

each cell represents a node in the graph and is connected to its nearest 

neighbor (NN) via edges. The edge weights are calculated based on the 

similarity between the cells, and higher weights indicate that these cells are 

closely related e.g., by the  Louvain and Leiden algorithms (Traag, Waltman, 

and van Eck 2019). 
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1.6.5 Differential expression (DE) analysis between clusters, cell 

types, and subpopulations  

 

Differential expression (DE) analysis methods have been developed for the 

bulk RNA-seq and microarray data analyses, with the main interest to 

determine whether the mean expression of a given gene is showing a 

statistically significant difference for different sample groups.  

 

Further methods have been developed and specifically tailored for single-cell 

RNA-seq data, e.g., MAST (Finak et al. 2015), and SCDE (Kharchenko, 

Silberstein, and Scadden 2014). A benchmark paper has been published 

(Soneson and Robinson 2018) and conducted a comparison between 36 DE 

tools. The authors showed that very simple tests like t-test or Wilcoxon rank-

sum test ranked high scores, in addition to bulk-DE-methods (e.g. limma) and 

MAST. 

 

Other approaches have been proposed to average single-cell data to 

pseudobulk and perform DE testing using bulk DE methods. This approach 

showed that it outperforms single-cell based methods and performs similarly 

well as complex mixed model-based approaches (Crowell et al. 2020). 

However, the pseudobulk approach could lose the important properties of the 

single cell data by averaging and pseudobulking the single cell signals.  

 

Ntranos et al. 2019 revisited the use of the logistic regression (LR) model for 

microarray data analysis. They reasoned that the single-cell data size enables 

appropriate fitting of the data and showed that LR model outperforms both 

bulk and single-cell based methods. Moreover, Stuart et al. 2019 showed that 

the LR approach can be used for large-scale single-cell datasets and enables 

including donor information and other covariates in the model.  
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1.6.6 Trajectories and developmental process inference  

 

Cellular states have been mainly defined by molecular surface markers (e.g., 

CD34+). Due to current technological advances in capturing and mapping 

cellular states through measuring the whole transcriptome via single-cell 

RNA-seq; these cells have been observed to follow a continuum manifold of 

cellular states in many different tissue types and organs (D. E. Wagner and 

Klein 2020). To infer the continuum manifold, computational methods have 

been recently developed to construct data-driven models from single-cell 

data, predict the cellular dynamics of these cells, and visualize these 

manifolds (Saelens et al. 2019).  

 

Most of the current methods begin with constructing a graph where each node 

represents a cell and the edges represent the gene expression similarity (Figure 

1.20 b). Then these algorithms start to extract the manifold structure topology 

or organize the cell into a trajectory axis to predict the future state of these 

cells (Figure 1.20 c). To visualize these graphs in two or three dimensions, 

methods such as UMAP, SPRING (Weinreb, Wolock, and Klein 2018), and 

ForceAtlas2 (Jacomy et al. 2014) have been used. Such visualization can be 

intuitive for the human mind; however, it could be misleading as it represents 

a distorted representation of the high dimensional data (as discussed in the 

Dimensionality reduction section). More recent methods, e.g., RNA velocity 

(La Manno et al. 2018) or scVelo (Bergen et al. 2020) have been developed 

based on the idea of using nascent mRNA proportions to calculate the rate of 

change of the spliced and unspliced mRNA ratios across all genes to predict 

developmental directionality and future cellular states.  

 

In general, these methods order the cells along a continuum and allow to 

study the average changes, variance, and gene expression correlation across 

a graph to infer tree-like structures (Qiu, Hill, et al. 2017) or other expected 

topologies and hierarchies (Saelens et al. 2019). 
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Figure 1.20: Trajectory inference from cellular state manifolds. 

a) Gene expression matrix (genes x cells) which can be plotted in high 

dimensional space. b) Cells are connected according to the similarity in the 

gene expression space forming a graph. ca,b,c) Graph-based methods to 

construct and visualize the cellular state manifolds.  

 
----------------- 

*Adapted from (D. E. Wagner and Klein 2020) by permission from Copyright Clearance 

Center’s RightsLink® service. 
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1.6.7 Data Integration across batches, technologies, and species  

 

The current technology enables sequencing of thousands and millions of cells 

across different batches and cellular states and using different technologies, 

even from different species which pose many challenges to perform data 

integration.  

 

These challenges echo with “batch-correction” techniques for bulk data. 

Newly developed data integration methods have been tailored to resolve 

single-cell data challenges (e.g., cell type heterogeneity, cellular state shifts, 

and others). These new integration methods can identify shared biological 

features and states e.g., matched cell type across batches and conditions 

(Stuart and Satija 2019) (Figure 1.21).  

 

 
 
Figure 1.21: Workflow for data integration between different datasets and 
batches. 

The purpose of these methods is to find shared correlation structures by using 

canonical correlation analysis (CCA) or mutual nearest neighbors (MNNs). 
----------------- 

*Adapted from (Stuart and Satija 2019) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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Two prominent methods have been developed recently and had an important 

impact on resolving the data integration challenges. The first method mainly 

uses canonical correlation analysis (CCA) to find shared sources of variation 

between the different datasets / batches which produces a vector of features, 

and by using a dynamic time warping algorithm, these vectors are aligned 

across datasets (Stuart and Satija 2019). These steps project the cells into a 

shared low-dimensional space and further locate the cells with the same 

biological state to close locations in that space, regardless of the batch design, 

experimental setup, or technical components (Butler et al. 2018). The second 

method uses the mutual nearest neighbors (MNNs) approach to define the 

cells which are mutually closest to the other cells in the datasets and which 

therefore could represent a shared cellular state (Haghverdi et al. 2018) 

(Figure 1.21 ).  

 

Both methods had an important influence on developing other data 

integration methods (e.g., Scanorama, Conos, Harmony, BBKNN, and others). 

A recent benchmark paper (Luecken et al. 2020) showed that BBKNN, 

Scanorama, and Seurat v3 methods show overall high performance scores in 

many data integration tasks which are mainly based on the CCA and MNNs 

ideas. 
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1.6.8 Cell-cell interaction network 

 

Computational methods have been developed to learn potential receptor-

ligand interactions and communication between cell types from single-cell 

RNA-seq data, e.g., cellphoneDB (Efremova et al. 2020),  and nichenet 

(Browaeys, Saelens, and Saeys 2020). These methods are based on a curated 

list of receptor-ligand pairs, which could bias the analysis since it is based on 

the curator’s selection and expertise. Besides these methods are based on the 

expression of the mRNA of receptors and ligands, which is not always 

detectable by current single-cell technologies.  

 

Despite that these methods have been used and showed benefits in many 

published studies (Vento-Tormo et al. 2018, Baccin et al. 2020, Browaeys, 

Saelens, and Saeys 2020). Further caution is needed while interpreting the 

results of these methods due to the lack of benchmark studies or ground truth 

data. Further development in the direction of cell-cell interaction methods is 

needed to leverage the full potential of the single-cell data and have detailed 

de novo and single-cell data-driven interactome maps.  

 

 
 
Figure 1.22: CellphoneDB method overview for cell-cell communication 
inference by using a curated list of receptor-ligand pairs.  

----------------- 

*Adapted from (Efremova et al. 2020) by permission from Copyright Clearance Center’s 

RightsLink® service. 
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2 Aims of the thesis 
 

Through the past decades, we have started to gain deep insights into the MM 

disease and its clinical manifestation. We started to observe that few MM 

patients experience long-term remission (LTS) over several years (~ 7 to 17 

years). Even though, they ultimately relapse! 

 

The Long-Term Survival (LTS) phenomenon triggered our curiosity to establish 

this study in the context of MM. The study aims to investigate the molecular 

and cellular profiles of LTS patients’ bone marrow immune microenvironment 

and its link to their LTS states. For this, we use computational models, single 

cell genomics technologies and wet lab validation. 

 

The key objectives of this thesis: 
 

1. Define the global landscape of MM patients’ bone marrow immune 
microenvironment before treatment (BT) and in long-term survival (LTS).  

 
2. Dissect the cell types and phenotypic states, and define the key biological 

programs and cellular states, which are linked to the LTS.  
 

3. Define the potential role of BM immune microenvironment in controlling 
the malignant plasma cells’ growth and progression. 

 
4. Characterize the immuno-phenotypes of the MM patients via specific 

surface markers, transcriptional factors, gene signatures, and cell-cell 
interaction network patterns.  

 
5. Define new therapeutic targets, prognostic markers, and signatures for 

MM disease states.  
 

6. Build a new model that can explain the LTS phenomenon in the MM 
disease context.  
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The thesis objectives raised many key computational challenges which 

needed innovative ways to be tackled and resolved:  

 

1- To broadly define cell types, I aimed to cluster the single-cell RNA-seq data and 
map the clusters to known cell types’ marker genes and bulk data references.  

 

2- To define characteristic marker genes, gene signatures, and biological 
pathways, I worked on finding the optimum differential expression (DE) model 
to include the complex experimental and clinical covariates, and run pathway 
enrichment analyses.  

 

3- To predict and classify the cellular states across the clinical groups, I started to 
develop new approaches to resolve this challenge using a generalized linear 
mixed model (GLMM) and random forest (RF) model. 

 

4- To study cell types development and differentiation processes, I started to use 
and finetune trajectory inference and RNA velocity methods to construct 
developmental trajectories.  

 

5- To gain systems-level understanding and build a new immune model, I 
developed a new way to model the global pathways signature scores using 
generalized linear model (GLM).  

 

6- To construct cell-cell interaction, I aimed to perform the receptor-ligand 
interaction networks which could mediate the cross-talk between cell types and 
states. 

 

7- Furthermore, I worked extensively on the data interpretation, to link the 
analyses findings with current published work from the literature; to better 
understand the biological processes in the context of MM disease states.  

 

Collectively, I provide a detailed molecular and cellular state description of 

the bone marrow immune microenvironment and the tumor compartment. I 

define new cellular states and populations associated with long-term survival 

states. I propose a new cellular-state therapeutic target and prognostic marker 

genes in the T cell compartment. Finally, I propose a new model that explains 

the MM long-term survival phenomenon. 
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3 Methods 
 

I developed the computational approach and used the methods mentioned in 

this chapter except section (3.1). The methods section (3.1) has been done in 

a collaboration with Prof. Dr. med. Michael Hundemer, Mohamed H. S. 

Awwad and Dr. med.  Raphael Lutz from the Laboratory for Translational 

Immunology (TRIM), Heidelberg University Hospital, Dr. Jan-Philipp Mallm 

from Single-cell Open Lab (scOpenLab - DKFZ), and DKFZ Genomics and 

Proteomics Core Facility. 

 

3.1 Sampling strategy, library preparation, and next generation 

sequencing (NGS)  

 

We collected bone marrow samples from three healthy controls and eleven 

multiple myeloma patients at two different time points (a diagnosis time - 

Before treatment (BT), and in long-term survival (~ 7-15 years after initial 

diagnosis) in collaboration with Prof. Dr. med. Michael Hundemer, Mohamed 

H. S. Awwad and Dr. med.  Raphael Lutz from the Laboratory for Translational 

Immunology (TRIM), Heidelberg University Hospital. 

 

After thawing, the bone marrow cells were initially stained with anti-human 

CD45 and CD3 antibodies, followed by a Vybrant DyeCycle Violet stain 

according to the manufacturer’s recommendations. For each time point, live 

total bone marrow and live CD45+CD3+ cells were sorted using a BD 

FACSAria Fusion (was performed by Dr. med.  Raphael Lutz) (Figure 3.1).  
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The 10x genomics platform (kit version 2) has been used for single-cell RNA 

sequencing, according to the manufacturer’s recommendations (was 

performed by Dr. med. Raphael Lutz in collaboration with scOpenLab at 

DKFZ).  

 

For each library, an individual sequencing run was performed on Illumina 

HiSeq 4000 machine (using paired-end sequencing protocol) and allocated 

one lane per sample for sequencing was performed by the DKFZ Genomics 

and Proteomics Core Facility. 

 

 

 
 

Figure 3.1 Sorting strategy for CD45+/CD3+ population from the bone 
marrow samples at different time points.  

Source (collaborators: Dr. med.  Raphael Lutz and Prof. Dr. med. Michael Hundemer) 

  

- 2018 
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3.2 Developing single-cell RNA-seq bioinformatics analysis 

workflow  

 

I developed a computational approach for processing and analyzing the 

single-cell RNA-seq data, which can be divided into two main parts (Figure 

3.2):  

 

• The first part starts with the upstream processing of the raw sequencing 

data using the Cell Ranger pipeline and constructing a gene-barcode 

matrix.  

 

• The second part is based on statistical inference methods and 

performing downstream analyses, which are based on many standard 

methods in R and Python computational environments. Furthermore, I 

developed a generalized linear mixed model (GLMM) for the single-

cell abundance analysis; to build conclusions about the association of 

cell types proportions and the clinical state of our patients. In addition, 

to quantify the cellular states; I developed a random forest model to 

predict and quantify the phenotypic expansion of the cellular states 

and phenotypes within our clinical groups.  
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Figure 3.2: The overall bioinformatics workflow and developed approaches 
to analyze single-cell RNA-seq data. 
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3.2.1 Upstream analyses: Cell Ranger pipeline 

 

To generate the gene-expression matrix; I used the Cell Ranger pipeline 

(version 3.0.1) (G. X. Y. Zheng et al. 2017).  This is a pipeline which can 

process Chromium single-cell RNA-seq output to perform read alignment, 

generate gene-barcode matrix and perform other downstream analysis tasks 

(Figure 3.3).  

 

I started the upstream analysis with the raw data of the samples in FASTQ 

format (yellow box). I used (refdata-cellranger-GRCh38-1.2.0) as the human 

reference genome provided by 10x genomics to generate the gene-expression 

matrix (green box). I started using the Cell Ranger pipeline by running 

cellranger count function on each sample separately to extract the cell-

barcode, UMI, and RNA reads, and to correct the cell-barcode sequencing 

errors. Furthermore, the read alignment step is mainly based on the STAR 

aligner (Dobin et al. 2013), which maps reads into exonic, intronic, and 

intergenic regions of the genome. The confidently mapped reads to the 

annotated transcripts model are considered for the UMI counting step. 

 

 
 

Figure 3.3: Overview of the Cell Ranger pipeline’s main steps.  

The yellow box represents the start point of the raw FASTQ files and the green 

box is the final output of the pipeline, which represents the gene-expression 

matrix for further downstream analyses.  
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After the correction step, Cell Ranger starts the UMI counting to generate 

gene-barcode matrix (green box). Cell Ranger (version 3.0.1) introduced a 

new algorithm in the pipeline that is more efficient in identifying populations 

with low RNA content per cell and defining real cells from empty droplets 

(calling cell barcodes). This is a critical step especially if the data represents 

an underlying heterogeneous population of cell types with different sizes and 

RNA content (Lun et al. 2019). 

3.2.2 Downstream analyses: statistical inference and learning 

 

After composing the gene-expression matrix for all samples, I imported this 

matrix into R for the downstream analysis. I used two main R packages: Seurat 

v3 (Stuart et al. 2019), and Monocle v3 (Qiu, Mao, et al. 2017) for QC check, 

statistical analysis, biomarker discovery, and trajectory analysis.  

 

3.2.3 Quality control (QC) and selecting cells for the 

downstream analysis  

 

I started the downstream analysis by creating a Seurat object and setting initial 

filtering criteria for the raw absolute count data (non-normalized data). I 

selected genes that are expressed in ≥ 3 cells and kept the cells with ≥ 200 

detected genes. I exclude cells with an outlier number of detected genes 

(according to the cell types detected genes), which could be considered as 

potential doublets. Furthermore, I filtered cells based on the percentage of 

mitochondrial genes to the total UMI counts per cell (5 to 10%).  
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3.2.4 Normalizing the data and detecting highly variable genes 

(HVGs)  

 

I normalized the data using NormalizeData function which uses 

normalization.method =”LogNormalize”; to normalize the gene expression 

measurements for each cell by total expression, multiplies this value by a scale 

factor (104 by default), and log-transforms the result. I detected the highly 

variable genes by using FindVariableGenes function and specifying the 

following parameters selection.method = "vst" and nfeatures =2000 for the 

downstream steps.  

3.2.5 Data Scaling and regressing out undesirable sources of 

variation  

 
Single-cell data often has several technical confounders (e.g., batch effect, 

number of detected molecules, etc.) and biological variability (like that 

introduced the cell cycle stages), which should be regressed out to gain a clear 

biological signal that represents the true biological variations between the 

cells. I used ScaleData function and model.use = "negbinom" to regress on 

the number of detected molecules per cell and the percentage of 

mitochondrial gene content. 

 

3.2.6 Linear dimensionality reduction  

 

I performed principal component analysis using the RunPCA function on the 

scaled data. Then, I used PCElbowPlot function to determine the statistically 

significant principal components (PCs) by ranking the PCs depending on the 

percentage of explained variance by every PC and selecting the top PCs (~ 

20-50 PCs) for the next steps. 
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3.2.7 Clustering cells  

 

I started clustering the cells using a graph-based algorithm (shared nearest 

neighbor (SNN)-Cliq). I constructed the shared nearest neighbor (SNN) graph 

which is implemented in Seurat (FindNeighbors function) (Xu and Su 2015). 

Then, I used a smart local moving algorithm (implemented in FindClusters 

function) to optimize the modularity function and define clusters (Waltman 

and van Eck 2013).  

3.2.8 Non-linear dimensionality reduction  

 

To learn the underlying data manifold, I used the uniform manifold 

approximation and projection (UMAP) algorithm to co-localize the cells in a 

low-dimensional representation (2d or 3d) (McInnes, Healy, and Melville 

2020). I used the same PCs and ran the RunUMAP function to compute the 

UMAP algorithm based on the scaled gene expression data. 

 

3.2.9 Finding differentially expressed genes and biomarkers  

 

To define the biological markers and differentially expressed genes that are 

specific for clusters or clinical groups, I used the FindMarkers function and 

used the Logistic Regression (LR) model by specifying test.use = "LR" (Ntranos 

et al. 2019). Furthermore, I used patient IDs, gender, and cellular detection 

rate (CDR) as latent variables (Finak et al. 2015). In addition, further 

parameters have been specified (logfc.threshold = 0.25, min.pct = 0.1, and 

only.pos = TRUE).  
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3.2.10 Cell type annotation  

 

We manually annotated the main cell types in the bone marrow according to 

the gene expression of known canonical markers derived from the literature 

(based on the marker genes provided by Dr. Simon Haas) (Supplementary 

Figure 6.2). Regarding the T cell subtypes annotation, I faced major 

challenges to initially identify the CD4+ and CD8+ T-cells, since they are 

transcriptionally similar and CD4 gene expression is very sparse in 10x 

genomics data. To tackle this challenge, I used the reference-based method 

SingleR (Aran et al. 2019) by using the SingleR function to define the CD4+ 

and CD8+ T cell subtypes, which enabled us to expand the definitions of these 

cells beyond just the sparse expression of CD4+ and CD8+ surface marker 

genes. 

3.2.11 Single-cell Abundance Analysis (GLMM approach) 

 

To test the compositional shift of cell types across the clinical groups, I 

modeled the association of cell types and clinical states with cell types 

abundance using a generalized linear mixed model (GLMM) implementation 

in lme4 R-package and specified family= poisson, link=log. Specifically, I used 

the following model: 

 
Yij ~ celltypes + clinicalgroups + celltypes:clinicalgroups + (1| paired sample IDs) 

 

Here, Yij denotes the raw counts of celltype i in the sample j where the 

celltypes, clinicalgroups, and the interaction term of both covariates are 

modeled as fixed effects, and the paired sample IDs are modeled as a random 

effect. I then used the statistically significant model estimates (p-value <0.001) 

of the interaction term between the cell types and clinical groups based on 

Wald-Test for the downstream visualization.  
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3.2.12 Single-cell RNA-seq copy number alterations (CNV) 

analysis 

 

To define the chromosomal alterations (large segments of chromosomal gain 

or deletion), I used the inferCNV method which leverages the single-cell RNA-

seq data to detect such genome-wide alterations (Tirosh et al. 2016). In 

general, inferCNV computes the average expression of many genes across 

several positions of the tumor cells’ genome in comparison to normal cell 

types as a reference.  

 

More specifically, I used the infercnv::run function which starts by filtering 

genes below a certain threshold (cutoff=0.1), performing normalization, and 

log transformation. Then the infercnv algorithm performs centering by using 

the normal reference mean value of each gene and subtracting these values 

from the corresponding genes in the tumor cells.  

 

Furthermore, a smoothing step is performed at the chromosome level, and the 

relative adjustment to the normal reference is computed. The log-

transformation is performed and the final values are inverted for efficient 

representation of the symmetry in the gains and losses per chromosome. In 

addition, I used a de-noising step denoise=T to further reduce the noise ratio. 

Finally, I used a hidden Markov model HMM=T to predict the final CNV states 

(deletion, neutral, or amplification) (Fan et al. 2018). 
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3.2.13 Classifying cellular states - Random Forest (RF) model 

 

I developed Random Forest (RF) classifier (Figure 3.4) to quantify the 

phenotypic expansion and classify the cellular states using the randomForest 

R package (Breiman 2001). I started training the RF model with only healthy 

and Before Treatment (BT) cells after a down-sampling step n=2000 cells; to 

avoid imbalance sampling. Additionally, I performed feature selection and 

used the top 2000 highly variable genes (HVGs) for training the model 

decision trees = 1000. Then I used the trained model to predict the phenotypic 

composition and to classify the cellular states in all clinical groups including 

the CR and non-CR groups.  

 

After performing the prediction step, I obtained continuous probabilistic 

scores (from 0 to 1) for every single cell, reflecting the extent of similarity of 

every single cell to the healthy-like or before treatment (BT-like) state 

respectively. Finally, I used the highest prediction score for each cell to assign 

the final label to a cell. 

 

 
 

Figure 3.4: An overview of the Random Forest (RF) model to quantify cellular 
states in each cell type and defining Healthy (H) -Like and Before treatment 
(BT) -like cells.  
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3.2.14 Gene set enrichment analysis (GSEA) and biological 

program scoring 

 

To define the underlying enriched biological processes, I used the fgsea 

function in the Fast Gene Set Enrichment Analysis R package (version 1.12.0) 

(Korotkevich, Sukhov, and Sergushichev 2019). I used a priori defined gene 

signatures and pathways from the MSigDB database (specifically, Hallmark:H, 

Curated gene set:C2, Gene Ontology:C5, and Immunological signature gene 

sets:C7) (Liberzon et al. 2015).   

 

To compute the overall program score/per cell for a given gene set or 

biological program, I used Seurat::AddModuleScore function to calculate the 

average expression of the given gene set for every single cell and subtract the 

averaged values from the aggregated expression of a randomly selected 

control gene set (n=100). 

 

3.2.15 Trajectory inference and mapping cellular states 

 

To construct a developmental trajectory of CD8+ T cell subtypes and states, I 

performed log-normalization and calculated lower-dimensional space PCA 

(n=50). Consequently, I performed clustering using Leiden community 

detection algorithms (Traag, Waltman, and van Eck 2019) and UMAP 

representation. In addition to the clustering, I performed graph partitioning 

and abstraction using the PAGA connectivity measure, by partitioning the 

graph obtained from the clustering representation into smaller homogeneous 

subclusters and subpopulations (Wolf et al. 2019).  

 

To assign pseudotime, I specified the healthy CD8+  cells as the initial starting 

point of the trajectory and ran the learn_graph function and the order_cells 

function with the default parameters to learn the entire trajectory which are 

implemented in Monocle v3 (Cao et al. 2019).  
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I performed spatial autocorrelation analysis using Moran's I (H. Li, Calder, and 

Cressie 2007) to define co-regulated genes through the developmental process 

of interest within the trajectory. Then I used these correlated and 

anticorrelated genes to define certain modules of co-expressed genes which 

could be linked back to our clinical groups and possibly explain the clinical 

states.  

 

In addition, I applied RNA velocity (La Manno et al. 2018) based on the ratios 

of spliced / unspliced mRNA to predict the potential origins of aberrant 

memory-cytotoxic (AMC) CD8+ T cells from different CD8+ memory subtypes. 

I used scVelo (Bergen et al. 2020) to resolve the transcriptional dynamics of 

the splicing kinetics by running the dynamical model implementation 

scv.tl.recover_dynamics function in the python environment.  

 

I computed the RNA velocity estimates by using scv.tl.velocity function. In-

addition, I calculated a connectivity score based on PAGA connectivity 

measure and random walk based-distance by running 

sc.tl.paga(groups='leiden', model='v1.0') function (Wolf et al. 2019).  

  



 80 

3.2.16 Cell-cell interactions and constructing global networks 

 

To analyze the receptor-ligand interaction patterns between cell types and 

states in different clinical groups; I used a curated list of known receptor-

ligand interactions from CellPhoneDB v.2.0 (Efremova et al. 2020) and ran 

cellphonedb method function in a Python virtual environment to infer 

potential receptor-ligand interactions between the cell types for each clinical 

group separately.  

 

Since each clinical group has different cell types and proportions, I performed 

subsampling of the data using a geometric sketching algorithm (Hie et al. 

2019) by activating the subsampling function and specifying --subsampling-

num-cells 18000. I selected the statistically significant interaction partners for 

the downstream visualization (p-value < 0.05) for each cell type per clinical 

group. Finally, I used Cytoscape (v3.8.0) to construct and visualize the global 

cell-cell interaction networks between cell types for each clinical group.   
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4 Results 

4.1 The global landscape of the bone marrow immune 

microenvironment 

 

To generate a deep transcriptional immune landscape of the multiple 

myeloma (MM) bone marrow (BM) microenvironment, we performed single-

cell RNA-seq for the whole bone marrow and FACS-sorted CD3+ T cells (n=50 

paired-sample) of newly diagnosed multiple myeloma patients (before 

treatment), n=11, in long term survival (LTS), n=11, and healthy controls, n=3. 

Bone marrow cells were isolated and library preparation was prepared using 

the 10x genomics technology, and afterwards sequenced (see Sampling 

strategy, library preparation, and next generation sequencing in the Methods 

section).  

 

After quality control checking (QC) and filtering (Supplementary Figure 6.1), 

I performed merging for all data across all clinical groups since I did not 

observe a batch effect. The cells were clustered according to cell types from 

different batches and clinical groups. I used the graph-based clustering and 

UMAP representation to classify and catalogue cell types and subtypes (Figure 

1.1). We performed manual cell type annotation using known canonical 

markers of each cell type (provided by Dr. Simon Haas) (Supplementary 

Figure 6.2), and I used a reference-based method to resolve the challenges in 

defining and annotating T cell subtypes, NK and NKT cells. 
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Figure 4.1: The global landscape of the bone marrow microenvironment. 

a) UMAP representation of bone marrow cells of all clinical groups showing 

the main captured cell types and states in the bone marrow immune 

microenvironment. b) UMAP representation of the plasma cell compartment 

across patients’ samples as defined by markers gene expression.  

  

a) 

b) 
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4.2 Cellular abundance and compositional shifts in the immune 

microenvironment before and after Long Term Survival (LTS) 

 

We were able to define and annotate 23 subtypes of cells in the bone marrow 

microenvironment, including the expected immune cell types; T-cells, B-cells, 

NK, NKT, neutrophils, dendritic cells (cDC), monocytes, hematopoietic stem 

cells and progenitor, and plasma cells reflecting the underlying complexity of 

bone-marrow niches across all clinical groups (Figure 4.1 a). I observed a high 

degree of immune cell composition variation and shifts per patient’s samples 

as well as across clinical groups in comparison to the healthy donors’ samples 

(Figure 4.2 a)  

 

I performed cell type’s abundance analyses by constructing generalized linear 

mixed model (GLMM) to obtain statistical and predictive power to understand 

the association between cell type abundance and the disease clinical states. I 

observed significant enrichment as well as the depletion of different cell types 

across the clinical groups in comparison to the healthy controls (Figure 4.2 b 

and Table 2). In the BT group, I observed an enrichment of plasma cells and 

NK cells in line with previous studies (Ledergor et al. 2018) (Zavidij et al. 

2020). I defined new population in the neutrophil compartment and termed 

myeloma associated neutrophils (MAN) cells. The MAN cells showed 

statistically significant positive estimates (p-value < 0.001) from the GLMM, 

indicating the high predictive power of these cells’ abundance for the MM 

initial diagnosis state. In the non-CR group, I observed partial enrichment of 

plasma cells, MAN, and NK cells, which also showed statistically significant 

positive GLMM estimates. In contrast, the CR group showed high enrichment 

of CD8+ T-cells, NKT cells, neutrophils, neutrophils-t-cells, mature B-cells, 

common myeloid progenitors (CMP) and monocytes which showed positive 

GLMM estimates reflecting the predictive power of these cell types for the CR 

clinical state. Both CR and non-CR groups showed enrichment of dendritic 

cell subtypes and dendritic cell/monocyte progenitors. 
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a) 

 
 
b) 

 
 

Figure 4.2: Cellular abundance shift in the bone marrow immune 
microenvironment before and after Long Term Survival (LTS). 

a) Proportions of cell types in both healthy and MM patients before and after long-

term survival for each sample. b) The GLMM of the cell types abundance count data. 

The x-axis shows the GLMM model estimates (p-value <0.001), the y-axis shows the 

cell types, the circles’ color represents the clinical groups, and the size of the circles 

reflects the Wald statistical test values. 
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4.2.1 Tumor compartment: B cells and malignant plasma cells  

 

Mature B cells can differentiate to plasma cells. Somatic hypermutations and 

chromosomal translocations can occur that lead to the manifestation of 

abnormal clonal plasma cells (Pawlyn and Morgan 2017). I performed 

clustering and dimensionality reduction on the plasma cell compartment and 

defined 17 heterogeneous clusters (Supplementary Figure 6.3 a). The healthy 

donors (clusters 7 and 12) showed the co-clustering pattern of plasma cells 

with the CR group cells reflecting the healthy plasma cell states. In contrast, 

the other major clusters from BT and non-CR groups represent one individual 

patient reflecting the interpatient heterogeneity of the malignant plasma cell 

compartment (Figure 4.1 b).  

 

To further define the healthy and malignant plasma cells, I performed 

differential expression analysis between these clusters to define the biological 

programs that could explain the underlying heterogeneity. I observed that 

each patient has a certain usage preference to the immunoglobulins heavy 

chains and light chains (Ig kappa and lambda) (Figure 4.3 a).  

 

Moreover, I observed that the majority of the plasma cells express malignancy 

markers (SCD1, TNFRSF17). Besides, I observed that each patient has a certain 

preference to co-express other malignancy markers (CCND1, CCND2, ITGB7, 

FRZB, LAMP5, MAFB) as shown in a previous study (Ledergor et al. 2018), 

indicating that abnormal plasma cells adapt different biological programs 

according to the surrounding BM microenvironment. In-addition, I performed 

CNV inference analysis using our single cell RNA-seq data to infer the CNV 

status and determine the global chromosomal losses and duplications (Figure 

4.3 b).  
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I ran the CNV analysis for all patients before and in LTS, and observed that 

the same malignant plasma cell clone at the diagnosis time of each patient is 

persistently present in LTS. As an example, P20 showed specific loss of chr13, 

partial duplication of chr14, and duplication of chr22 (Supplementary Figure 

6.3 b) which is visible at both timepoints (BT and LTS, respectively). The 

majority of the plasma cells harbor both chr13 loss and chr22 duplication, 

which continue to be present at LTS, too. Furthermore, I performed clustering 

for P20 plasma cells and defined seven subpopulations which showed 

heterogeneous transcriptional expression states, indicating that we can detect 

intra patient heterogeneity in their plasma cell compartment (Supplementary 

Figure 6.4 d).  

 

The Inter-patient and Intra-patient heterogeneity can not only be explained by 

the CNV status, suggesting that there are possible sources which could shape 

and influence the observed transcriptional heterogeneity; such as the BM 

microenvironment, epigenetic regulation and/or long noncoding RNA (ex: 

MALAT1)” expression (Supplementary Figure 6.4 d).  
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a) 

 
b) 

 

 
 

Figure 4.3: Malignant plasma cells in MM patients before and after LTS. 

a) The heatmap shows the immunoglobulin usage and malignancy marker expression in the 

plasma cell compartment per patient sample. b) The heatmap shows the CNV single-cell RNA 

status inferred from the single-cell RNA-seq data of the MM patients’ plasma compartment.  
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4.3 Dissecting the bone marrow microenvironment complex 

immune cellular states 

 

In the following sections, I will dissect the cell types and states to define the 

key regulatory programs that control and co-evolve through the LTS  groups 

(non-CR and CR). 

4.3.1 The NK phenotypic expansion from healthy NK states to 

more diverse states in the BT group.  

 

NK cells are a subset of innate lymphocytes that have an important role in 

mediating an effector cytotoxic function in the BM microenvironment. I 

grouped the NK cells (n= 14454 cells) into 11 major clusters (resolution 

parameter = 0.5) which are distributed over the clinical groups (Figure 4.4). I 

found a statistically significant enrichment of NK cells relative abundance in 

both BT and CR groups to the healthy control (Figure 4.2 b). 

a)                                                    b) 

a) UMAP representation for the 11 major clusters b) UMAP representation color coded 
by the clinical groups. 

Figure 4.4: UMAP representation of the NK compartment clusters before and 
after long-term survival 
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I observed NK phenotypic expansion from NK highly dense clusters in the 

healthy group toward more diverse states in CR and non-CR groups, with the 

highest diversity in the BT group (Figure 4.5). To quantify this phenotypic 

expansion, I trained a random forest (RF) model on healthy and BT NK cells 

(check Figure 3.4 in the methods section for more details). I used the trained 

model to predict the NK cell phenotypic composition in all clinical groups 

(including CR and non-CR groups).  

 

Interestingly, I observed that non-CR and CR groups retain NK cells which 

have BT-like phenotype, indicating that the NK cells in the long-term survival 

groups are a highly dynamic population which is positioned in between the 

phenotypic states of the healthy and BT groups. These phenotypic states in the 

long-term survival groups reflect an active disease state (Figure 4.6).  
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Figure 4.5: The density plot shows the phenotypic expansion of the NK 
compartment and the enrichment and depletion of the NK compartment 
across the clinical groups. 

* UMAP representation: the axes have been omitted for simplicity. The color scale represents number 

of neighbors 
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a) 

 
b)                                                            c) 

 
 

Figure 4.6: Random Forest Model prediction of BT-like and healthy-like 
states across all clinical groups in the NK compartment.  

a) The UMAP representation shows the RF model prediction of the cellular 

states in the NK compartment*. b) The pie chart shows the proportions of BT-

like cells in the different clinical groups. c) GLMM estimates of BT-like cells 

for each clinical group (p-value <0.001). *The axes have been omitted for 

simplicity. 
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4.3.2 NK cells control the tumor residual disease state via 

mediating high cytotoxic functions in the CR group  

 

I performed differential expression analysis between our clinical groups and 

detected 41 differentially expressed genes (adj. p-value ≤ 0.05). I observed the 

upregulation of CXCR4 in the BT group, in line with previous study 

observations in MM context (Zavidij et al. 2020) (Figure 4.7).  In both BT and 

non-CR groups, I observed the upregulation of TNFA and NFKB1 

inflammatory pathway genes (TNFAIP3, CD69, RGS1, KLF6, and NFKBIA) 

and downregulation of the main cytolytic effector molecules (GNLY, GZMB, 

NKG7, PRF1, and KLRD1) in NK cells (Duhan et al. 2019) (Figure 4.8 a). 

Furthermore, I used these genes to calculate the overall biological program 

score for every single cell and constructed a predictive GLM model for these 

scores. 

 

 
 

Figure 4.7: The heatmap shows the DE genes between the clinical group in 
the NK compartment cells across the patients’ samples. 

* The color scale reflects scaled values of the genes expression (z-score). The metadata is indicated by 
the color codes on the right-hand side 
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a) 

 

 

 

 

 

 

 

 

 

b)                                                              c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) The heatmap shows the expression of NFKB and inflammatory pathway and 

NK cytotoxicity genes across the clinical groups. b) c) Median scores of NFKB 

and inflammatory pathway, and NK cytotoxicity program scores across 

clinical groups, respectively. 

  

Figure 4.8: NFKB and inflammatory pathway scores and NK cytotoxicity 
program scores in the NK compartment 
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I observed a strong negative correlation between both scores in the BT group 

indicating that BT-NK cells induce a proinflammatory signal, and 

consequently, a lower NK cytolytic activity in the bone marrow 

microenvironment (Figure 4.8 b and c, and Supplementary Figure 4.8).  

 

In contrast, both CR and healthy groups showed upregulation of cytolytic 

effector markers, indicating that both groups harbor higher NK cytotoxicity 

function and lower activity of NFKB1 inflammatory pathway. The non-CR 

group showed lower expression of GZMB, FCER1G, and GNLY, showing that 

the non-CR group retains a lower cytolytic activity than the CR group (Figure 

4.8 b, c and Figure 4.9).  

 
 

 
 

Figure 4.9: GLM estimates of NFKB and inflammatory pathway scores and 
NK cytotoxicity program single-cell scores per clinical group.  

The circle colors represent the clinical groups and the size of the circle reflects the GLM 

model estimate values (p-value < 0.001). 
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I performed receptor-ligand interaction analysis to decipher cell-cell crosstalk 

patterns and observed common NK interaction partners like NK co-activating 

(CD2-CD58) (Rölle et al. 2018) partner, which is expressed in all clinical 

groups between NK cells and other cell types in the BM microenvironment.  

 

More specifically, I observed that in the CR and healthy groups, the 

stimulatory interaction partner (CD94:NKG2C heterodimer - HLA-E) has a 

high interaction score between NK cells and many other cell types including 

CD8+T-cells, CD4+ T cells and mature B cells; reflecting a high NK activation 

state in the CR group (Pittari et al. 2017) (Figure 4.10).  

 

The non-CR group loses the stimulatory interaction partner (CD94:NKG2C 

heterodimer - HLA-E) and keeps upregulating the inhibitory interaction 

partner (CD94:NKG2A heterodimer - HLA-E) (Pump et al. 2019) 

(Supplementary Figure 6.6). The BT group loses both (CD94:NKG2C 

heterodimer - HLA-E) and (CD94:NKG2A heterodimer - HLA-E) interaction 

partners and upregulate (TNFRSF1B - GRN) and (IFNG Type II - IFNR) 

interaction partners between NK cells and other cell types in the BM 

microenvironment. Such cell-cell crosstalk in the BT group would induce a 

negative impact on the NK’s cytotoxicity functions and potentially mediate an 

immunosuppression state allowing myeloma cell growth and proliferation 

(Almishri et al. 2016, 2). 

 

 



 96 

 

 

Figure 4.10: Balloon plot shows the Receptor-Ligand (R-L) interaction patterns between the NK cells and other cell 
types in the CR group bone marrow microenvironment. 

The color scale represents the mean receptor-ligand interaction scores. The size of the circle represents the (-Log10) of the p values
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4.3.3 T cell cellular states and phenotypes in the bone marrow 

microenvironment of MM patients. 

 

T cell abundance and presence in spatial proximity to the malignant cell have 

been shown in many tumor entities (Binnewies et al. 2018). This spatial 

proximity has been correlated to better clinical outcomes when T cells harbor 

and retain certain phenotypic states and functions to elicit an immune 

response against malignant cells (van der Leun, Thommen, and Schumacher 

2020). To gain an in-depth understanding of the T cells phenotypic state 

before and after MM LTS; we sorted CD3+ T cells from the same BM samples 

of our cohort (was performed by Dr. med.  Raphael Lutz) and performed 

single-cell RNA-seq (10x genomics). After QC and filtering out low-quality 

cells, I merged both the BM T cell and the sorted CD3+ T cells single-cell RNA-

seq data into one data object, and proceeded with the downstream analysis 

and T cell subtypes annotation. 

 

4.3.4 CD8+ and CD4+ T cell heterogeneous cellular states and 

subtypes 

 

Based on the clustering of the single-cell RNA-seq data, I defined 8 subtypes 

of CD8+ T cells (n= 101975 cells) and 3 subtypes of CD4+ T cells (n= 40821 

cells) (Figure 4.11). Interestingly, I defined a new population and termed 

aberrant memory-cytotoxic (AMC) CD8+ T-cells, which is enriched in MM  

initial diagnosis state (Supplementary Figure 6.7). I observe a heterogeneous 

distribution of the T cell subtypes between the clinical groups (Supplementary 

Figure 6.7 and Figure 6.8) and across samples before and after LTS (Figure 

4.12 a).  
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a) 

 
b) 

 
 

Figure 4.11: UMAP representation of the T cell subtypes in all clinical 
groups.   

a) UMAP visualization of the integrated bone marrow and sorted CD8+ T cells 

showing the subtypes of CD8+ T-cells. b) UMAP visualization of integrated 

bone marrow and sorted CD4+ T cells showing subtypes of CD4+ T-cells. * The 

axes have been omitted for simplicity. 
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4.3.5 Compositional shifts in CD8+ and CD4+ subtypes across the 

MM patients 

 

I performed cell type abundance analyses by generalized linear mixed model 

(GLMM) and observed significant relative enrichment as well as depletion of 

cell types across the clinical groups in comparison to the healthy controls 

(Figure 4.12, Figure 4.13 and Table 3). In the BT group, I observed an 

enrichment of aberrant memory-cytotoxic (AMC) and effector cytotoxic γδ 

CD8+ T cells which obtained statistically significant positive GLMM estimates 

(p-value < 0.001) (Figure 4.12 b).  

 

In the non-CR group, I observed an enrichment of early and late memory 

CD8+ T cells, Tregs and effector CD4+ T cells, and partial enrichment of AMC 

CD8+ T cells which also showed statistically significant positive GLMM 

estimates (p-value < 0.001). In contrast, the CR group showed high 

enrichment of naïve and effector cytotoxic CD8+ T- cells and showed 

statistically significant positive GLMM estimates, indicating that the CR group 

has a high abundance of effector cytotoxic CD8+ T cells.  

 

4.3.6 T cell hallmark pathway analysis shows that the CR group 

harbor high cytotoxic functions while BT and non-CR harbor 

more inflammatory and exhaustion signatures  

 

To characterize the phenotypic states of the T cell subtypes. I calculated global 

signature scores for each clinical group using T cell hallmark signatures and 

constructed GLMM to estimate the predictive power of these biological 

programs to the clinical state (Figure 4.13 and Supplementary Figure 6.9).  
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a) 

 

 

 

 

 

 

 

 

 

 

 

 

b) 

 
 

Figure 4.12:  compositional shifts and alterations across the clinical groups 
in the T cell compartment subtypes 

a) Proportions of the T cell subtypes in both healthy and MM patients before and after 

long-term survival for each sample. b) Estimates from the GLMM of the cell type 

abundance count data: The x-axis shows the GLMM model estimates (p-value 

<0.001), the y-axis shows the T cell subtypes, the circle color represents the clinical 

group, and the size of the circles reflects the Wald Test values (p-value < 0.001). 
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Both BT and non-CR groups showed significant upregulation of T cell 

dysfunction and exhaustion signature, TNFA signaling via NFKB, hypoxia 

pathways and apoptotic processes. In contrast, I observed an upregulation of 

T cell activation and the cytotoxic marker ITGB1 (CD29) (Nicolet et al. 2020) 

in the CR group’s T cells (both CD8+ and CD4+ subtypes) and in the non-CR 

group (CD4+ Subtype). Therefore, this finding supports the notion that the 

malignant plasma cells are under a strong immunosurveillance state, which 

controls the disease state, fate, and progression (Figure 6.9). 

a) 

 
b)  

 
 

Figure 4.13: GLM model estimates of the T cell hallmarks pathways for 
single-cell scores per clinical group in the T cell compartment a) CD8+ and 
b) CD4+ T cell subtypes. 
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4.3.7 Naive CD8+ T cells of the LTS group retain memory-like 

features in the active disease state 

 

Naive CD8+ T- cells have an astonishing capacity to interact with foreign 

antigens and pathogens and differentiate to memory and cytotoxic T cells, 

which can drive potent immunogenic responses. Underlying transcriptional 

programs with unique features are characterizing each of the clinical groups 

on the Naïve CD8+ T cells landscape (Figure 4.14). BT, non-CR, and CR 

groups showed similar major trajectory patterns as well as specific branching 

and “transcriptional clones” for each of these groups. Interestingly, I observed 

that CR and non-CR groups follow a trajectory like BT group, indicating that 

these cells retain footprints of memory-like features from the disease’s history. 

These memory-like features are an interesting observation, since the CR and 

non-CR groups are sampled several years after the autologous stem cell 

transplantation (~ 9 years). Moreover, the healthy naive CD8+ T cells showed 

two specific transcriptional clones which are mostly depleted from the other 

clinical groups.  

 

I performed module analysis and detected specific modules of co-expressed 

genes that regulate the naïve transcriptional states between the clinical 

groups. The CR group showed upregulation of certain gene regulatory 

modules (Modules 2, 3, 6,7, and 13), and showed enrichment of mTORC1 

signaling and IL2-STAT5 signaling indicating a T cell quiescence exit (QE) 

state (Supplementary Figure 6.10 and Supplementary Figure 6.11). In 

contrast, BT and non-CR groups showed downregulation of the CR group-

specific modules and upregulation of certain modules (Modules 

1,8,17,4,9,16,11 and 14) and specific surface markers and transcriptional 

factors indicating that these cells are primed towards a high activation state. 
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Figure 4.14: Pseudotemporal ordering of the naive CD8+ T cells 
transcriptional states of each clinical group. 
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I investigated the genes underlying the modules, and observed that there is a 

co-expression pattern of CCR7, ADGRE5 (CD97), and CD44 surface markers 

and many transcriptional factors that co-regulate the naïve T cell state in the 

BT group (Supplementary Figure 6.10 c). ADGRE5 (CD97) is an early 

activation marker and its interaction with CD55 showed a strong 

costimulatory signal to the T cell (Spendlove and Sutavani 2010). Moreover, 

CD44 is upregulated after T cell activation (Baaten, Li, and Bradley 2010), 

suggesting that both expressions of CD97 and CD44 are indicative of an 

activation state in the BT and non-CR naïve CD8+ T cell compartment. Many 

crucial TFs like ARID5A, CREM, HIF1A, and SON are regulating the BT and 

non-CR naïve T cell states. Upregulation of ARID5A, CREM, HIF1A, and SON 

supports the notion that these cells are in a highly activated state (Zaman et 

al. 2016,,Fang et al. 2015,, Phan and Goldrath 2015,,Ahn et al. 2011). Besides, 

the non-CR group showed an activation state by upregulating many activation 

surface markers CD69 (Ziegler, Ramsdell, and Alderson 1994) and KLRD1 

(CD94) (Spendlove and Sutavani 2010)).  

 

I could argue that the non-CR group activation state is relatively different from 

the BT activation state. The non-CR naive state showed upregulation of many 

genes like GZMK and GZMA indicating an immune surveillance role (Arias 

et al. 2017). Furthermore, IL10RA expression in the non-CR naive state 

reduces any potential tissue damage as a side effect of inflammatory cytotoxic 

activity (Ouyang and O’Garra 2019), and the upregulation of PIM-1 

expression promotes cell survival within this state (Peperzak et al. 2010).  
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4.3.8 CD8+ T cell global differentiation models in MM before and 

after long-term survival  

 

Several models have been proposed to explain the emerging memory and 

effector cytotoxic CD8+ T cell populations after T cell activation (Kaech and 

Cui 2012b). In the MM field, we do not have such models which could 

explain the mechanisms of CD8+ T cell differentiation in the diseased bone 

marrow of MM patients. To explore this question, I ran trajectory analyses (see 

Trajectories and developmental process inference methods section) for CD8+ 

T cell subtypes for the clinical groups and I observed striking differentiation 

patterns. 

 

In the healthy CD8+ T cell context, the differentiation processes follow a 

Linear Cell Fate Model where the trajectory starts with a naive state followed 

by a memory state and ends with cytotoxic states (Figure 4.15). However, in 

BT and non-CR groups, the differentiation processes can be best described by 

the Continuum Cell Fate Model where naïve CD8+ T cells have the capacity 

to differentiate simultaneously to memory and cytotoxic CD8+ T cells from an 

early differentiation point of the trajectory. Moreover, I observed a global 

developmental shift in the differentiation order, where BT and non-CR 

trajectories end with memory states in contrast to the healthy trajectory which 

ends in a cytotoxic state (Figure 4.16 and Supplementary Figure 6.12). In the 

CR CD8+ T cell context, the differentiation processes are in line with Partial-

Linear Cell Fate Model which looks similar to the healthy trajectory and ends 

with a cytotoxic state (Supplementary Figure 6.13).  
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a) 

b) 

 
c) 

 
 

Figure 4.15: Healthy CD8+ T cells follow a linear cell-fate differentiation 
trajectory   

a) UMAP representation shows the pseudotime assignment of the cells over the 

developmental trajectory.  b) The proportions of the CD8+ T cell subtypes over the assigned 

pseudotime. c) Graphical summery represents the Linear Cell Fate Model. 
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a) 

 

 

 

 

b) 

 
 

 

 

 

Legend next page …  
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c) 

 

 
 

Figure 4.16: Before Treatment (BT) CD8+ T cells follow a continuum cell-fate 
differentiation trajectory 

a) UMAP representation shows the pseudotime assignment of the cells over the 

developmental trajectory.  b) The proportions of the CD8+ T cell subtypes over the assigned 

pseudotime. c) Graphical summery represents the Continuum Cell Fate Model in BT group. 
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4.3.9 Global disease-state CD8+ T cell markers 

 
I observed that there are certain surface markers, TFs, and pathways 

constitutively expressed in most of the CD8+ T cell subtypes within each of 

the clinical groups. These biological markers could be disease-State specific 

markers rather than being specific for each of the CD8+ T cell subtypes. These 

markers could have the potential to be used as a disease state predictive 

marker which needs to be biologically and clinically validated. 

 

 
 

Figure 4.17: Immunophenotypic summary of CD8+ T cell compartments in 
Multiple Myeloma patients’ BM before and after long-term survival.  

------------------ 

SMs: Surface Markers - PWs: Pathways - TFs: Transcriptional Factors 
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4.3.10 The neutrophil heterogeneous transcriptional landscape 

in MM LTS and the definition of a new population: Myeloma 

Associated Neutrophils (MAN) 

 

Neutrophils are the most abundant leukocytes in the circulation and have an 

important role in modulating the BM immune microenvironment and 

regulating the adaptive immune response (Rosales 2018). MM patients with 

high neutrophil/lymphocyte ratio (NLR) are more likely to have a poorer 

prognosis (Mu et al. 2018) ,(Onec et al. 2017). It has been shown that high-

density neutrophils are dysfunctional and immunosuppressive in MGUS and 

MM (Romano et al. 2020). However, the role of neutrophils in MM long-term 

survival is unclear.  

 

To define the phenotypic states and subpopulations in the neutrophil 

compartment, I extracted the neutrophil lineage single-cell RNA-seq data (n= 

18118 cells) and performed dimensionality reduction, graph-based clustering 

and defined 11 clusters (resolution parameter = 0.5) distributed over the 

clinical groups (Supplementary Figure 6.14). Furthermore, I defined two main 

neutrophils subtypes; normal neutrophils (NN) and myeloma associated 

neutrophils (MAN) (Figure 4.18). Interestingly, I found that NN clusters are 

highly enriched in the healthy and CR groups, while MAN cell clusters are 

highly enriched in the BT and partially enriched in the non-CR groups (Figure 

4.18 b and Supplementary Figure 6.15).  

 

Additionally, MAN cells showed high positive GLMM estimates indicating the 

significant predictive power of this population abundance for the clinical 

group states (Figure 4.2 b and Table 2). I observed that MAN cellular states 

between patients show lower correlation structures in comparison to the NN 

cells patients’ samples (Figure 4.19); indicating that MAN cells are more 

phenotypically diverse between our patients’ samples. 

  



 111 

a) 

 
b) 

 
 

Figure 4.18: Neutrophil transcriptional landscape in all clinical groups and 
states. 

a) UMAP representation of normal neutrophils (NN) and Myeloma Associated 

Neutrophils (MAN). b) Density plot* shows the enrichment and depletion of the 

neutrophil compartment across the clinical groups. *UMAP representation: the axes have 

been omitted for simplicity. The color scale represents number of neighbors 
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I developed a random forest (RF) classifier to quantify this phenotypic 

expansion and decipher the cellular states per clinical group (check Figure 

3.4 in the methods section for more details).  Interestingly, I found that both 

non-CR and CR groups harbor BT-Like neutrophil cells (Figure 4.20 a). The 

GLMM showed a significant positive estimate for BT, non-CR, and CR groups 

(p-value < 0.001) (Figure 4.20 b and c); indicating that BT-like neutrophils 

have good predictive power with respect to the clinical state, suggesting a 

potentially important role in the disease state control and progression. 

 

a)                                                       b) 

Figure 4.19: The Heatmap shows the correlation coefficient similarity 
between patients’ samples in both a) NN and b) MAN cells. 
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b)                                                           c) 

 
 

Figure 4.20: Random Forest Model prediction for BT-like and Healthy-like 
states across all clinical groups in the neutrophil compartment. 

a) UMAP representation shows the random forest Model prediction for before 

treatment-like and healthy-like states across all clinical groups in the 

neutrophil compartment. b) The pie chart shows the proportions of BT-like 

cells in different clinical groups. c) GLMM estimates of BT-like cells for each 

clinical group (p-value <0.001). 
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4.3.11  MAN cells retain a migration phenotype and induce 

pro-inflammatory and immunosuppressive signals in both BT and 

non-CR groups. 

 

I performed differential expression analysis between the neutrophils subtypes 

and found 118 upregulated genes which are specific for MAN cells. 

Furthermore, I performed GSEA (Figure 4.21 and Supplementary Figure 6.16) 

and observed an upregulation of many pathways and biological programs in 

MAN cells related to neutrophil migration, chemokine and cytokine signaling 

pathways and proinflammatory responses.  

 

I found that IL1B is highly upregulated in MAN cells, a potent proinflammatory 

cytokine and upstream of IL-6, which supports myeloma cell growth (Lust and 

Donovan 1999) and induces an immunosuppressive signal in the BM 

microenvironment (Kaplanov et al. 2019). Besides, many other genes which 

induce proinflammatory signals (CD83, PLEK, IFNGR2) and activate the NFKB 

inflammatory pathway (BID, BCL2A1, and ANKRD28) (Aerts-Toegaert et al. 

2007, 8,,Lundmark et al. 2015, T. Liu et al. 2017). In-addition, I observed that 

CXCL8 family genes (CXCL8, CXCL2, CXCL3) (Oliveira, Rosowski, and 

Huttenlocher 2016), GPR183, SOD2 (Zhou et al. 2018), and MARCKS (Wang 

2018) are upregulated in MAN cells which regulate and induce neutrophil 

migration. Furthermore, I used these genes to calculate the overall biological 

program score for every single cell and constructed a predictive GLM model 

for these scores (see Gene set enrichment analysis (GSEA) and biological 

program scoring: Methods section). I observed an upregulation of the 

neutrophil migration and proinflammatory signal program genes in BT and 

non-CR groups (Figure 4.21 b). The GLMM model showed positive estimates 

for the BT and non-CR groups (Figure 4.21 c) indicating that both groups, 

harbor immunosuppressive and pro-inflammatory signals in comparison to 

the CR and healthy groups, which would be one of the key phenotypic 

differences between CR and non-CR group immune states. 
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a) 

 
b)                                                   c) 

  

 

 

 

Figure 4.21: The MAN cells shows a migration phenotype and upregulation of 
pro-inflammatory and immunosuppressive signatures 

a) Heatmap shows the neutrophils migration, pro-inflammatory and 

immunosuppressive responses of neutrophil compartment cells across the patients’ 

samples. b) Median scores of the neutrophil migration and proinflammatory program 

across clinical groups. c) GLM estimates of the neutrophil migration and pro-

inflammatory program across clinical groups (p-value < 0.001). 
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4.3.12 Dendritic cells (DCs) states and subtypes across MM 

clinical groups 

 

Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that have an 

important role in activating and regulating T cell antitumor activity (Fu and 

Jiang 2018). However, their role is contradictory in MM context where they 

can activate CD8+ T cells to act against myeloma cells, but also, DCs can 

protect myeloma cells from CD8+ T cell cytotoxic effect (Leone et al. 

2015),(Vo et al. 2018). In our data, I detected and defined three DCs 

subpopulations (n=2834 cells); conventional dendritic cells (cDC), Myeloid-

derived Dendritic cells (mdDCs), and plasmacytoid Dendritic cells (pDCs) 

(Figure 4.22).  

 

 
 

Figure 4.22:  UMAP representation of DCs subtypes in all clinical groups and 
states.  
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4.3.13 mdDCs induce higher IFG signals in the BM and mediate 

immunosuppressive crosstalk with MAN cells in both BT and non-

CR groups.  

 

I observed significant enrichment of mdDCs in the CR group and significant 

enrichment of pDCs in BT and non-CR groups (Figure 4.23 a and Figure 4.2). 

I performed DE analysis between the clinical groups in mdDCs and pDCs 

subtypes and I detected 30 differentially expressed genes (adj. p-value ≤ 0.05) 

between our clinical groups (Figure 4.23 b and c). In mdDCs, I observed the 

upregulation of interferon-alpha and gamma genes (ISG15, IFITM3 and LY6E). 

I observed high overall program scores in the BT and non-CR group (Figure 

4.23 b and Supplementary Figure 6.17).  

 

I performed receptor-ligand interactions analysis and observed that the 

interaction partner AXL-GAS6 in the BT group is expressed, forming cell-cell 

interaction between mdDCs and Plasma cells, monocytes, and pDCs (Figure 

4.24) indicating that the mdDCs phenotype could potentially support tumor 

growth and has an immunosuppressive role in MM BM microenvironment 

(Yan et al. 2019), (Waizenegger et al. 2015).  

 

Furthermore, I detected many other interaction partners that are expressed in 

the BT- group as IL1R-IL1B and IL1R-ILRN between mdDCs and MAN cells, 

supporting the potential immunosuppressive role of mdDCs and MAN cells in 

the BT- group.  
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a) 

 
b)                                                    c)  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: a) Heatmap shows the enrichment and depletion of DCs 
subtypes across the clinical groups. b) Heatmap shows the DE genes between 
the clinical groups in mdDCs. c) Heatmap shows the DE genes between the 
clinical groups in pDCs. 

 
The color scale reflects scaled values of the gene’s expression (z-score). The metadata is indicated by 
the color codes on the right-hand side 
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Figure 4.24: Balloon plot shows the Receptor-Ligand interaction patterns between mdDCs and other cell types in BT-
group.  

The color scale represents the mean receptor-ligand interaction scores. The size of the circle represents the (-Log10) of the p value
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4.3.14 AMC CD8+ T cells enrichment in the BT-group  

 

After T cell activation, new populations and subtypes of memory CD8+ T cells 

emerge, which have a quick capacity to proliferate and execute cytotoxicity 

functions and secret cytokines and live long after infection (Martin and 

Badovinac 2018).  

 

To decipher the memory cellular states across the clinical groups; I performed 

in-depth analyses and defined four main memory CD8+ subtypes (n= 41718 

cells). The aberrant memory-cytotoxic (AMC) CD8+ T cells were mainly 

enriched in MM-patients BT and partially enriched in the non-CR group 

(Figure 4.25, Figure 4.26 and Supplementary Figure 6.18).  

 

 
 

Figure 4.25: UMAP representation of the CD8+ memory T cells subtypes. 
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Figure 4.26: The density plot shows the memory CD8+ subtypes in all clinical 
groups and the enrichment of AMC CD8+ T cells in BT group. 

* UMAP representation: the axes have been omitted for simplicity. The color scale represents number 

of neighbors 
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4.3.15 Velocity estimates and connectivity analyses predict 

multiple origins of AMC CD8+ T cells. 

 

To investigate the differentiation trajectory of the AMC CD8+ T-cells, I 

performed RNA velocity analysis based on the ratios of spliced/unspliced 

mRNA to predict the potential sources of AMC CD8+ T cells for the memory 

CD8+ subtypes. I calculated the PAGA connectivity measure to quantify the 

cellular fate and transitions confidence of the memory CD8+ subtypes in BT 

group (Figure 4.27 and Figure 4.28).  

 

I found that the AMC CD8+ T cell population could originate from early 

memory and partially from late-memory and memory-stem CD8+ T- cells. I 

defined the top-likelihood genes representing the underlying dynamic 

behavior of the differentiation process toward the AMC CD8+ T cells in the 

BT group (Supplementary Figure 6C).  

 

 
 

Figure 4.27: UMAP representation overlaid with RNA velocity vector field 
shows the differentiation trajectory directionality of the CD8+ memory 
subtypes in BT- group. 

* The arrows represent vectors in the gene expression space and are estimated from the 
RNA velocity. The arrows show the directionality and speed of the underlying 
developmental process of the T cell memory subtypes.  
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Figure 4.28: UMAP representation is overlaid with a directed graph which 
summarizes the transition confidence between the CD8+ memory subtypes 
in BT- group. 

 

In-addition, I observed that the Phosphodiesterase enzyme subunit (PDE4B) 

which has an important role in T cell activation and suppression(Epstein 2017) 

is upregulated later in the development latent-time (Figure 4.29). To quantify 

the phenotypic expansion in the memory CD8+ T cell compartment across the 

clinical groups; I trained the RF model only on healthy and BT treatment cells 

and used the trained model to predict the memory CD8+T- cell phenotypic 

states in all clinical groups including CR and non-CR groups. I observed that 

the non-CR and CR groups retain memory CD8+ T cells which have a BT-like 

phenotype (Supplementary Figure 6.19) which is in line with similar 

observations in the analysis of both neutrophils and NK compartments.  
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Figure 4.29: The heatmap shows the top-likelihood genes underlying the 
latent time of the CD8+ memory subtypes in BT- group. 

* The yellow color’s high Intensity represents high expression of the shown genes in rows  
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4.3.16 The AMC CD8+ T cell harbors an exhaustion phenotype 

 

Furthermore, I performed DE analysis and found that AMC CD8+ T cells are 

expressing a unique group of surface markers and TFs, reflecting the 

exclusiveness of this aberrant memory state in the disease context. 

Upregulation of TFs like (ARID5A, JUND, BHLHE40, REL, ZEB2), 

(Roychoudhuri et al. 2016,, Mognol et al. 2017,, Scott and Omilusik 2019,, C. 

Li et al. 2019,  Visekruna, Volkov, and Steinhoff 2012),  and other TFs like 

(ZNF331, CEBPZ, SKIL, and NR1H2) with an unclear role in T cell biology 

support the notion of the exclusiveness of these states in newly diagnosed 

multiple myeloma patients (Supplementary Figure 6.21). The upregulation of 

the surface markers ATP1B3 (CD298) and SLC7A5 (LAT1) indicates that these 

cells are metabolically active (Sinclair et al. 2013).  

 

High expression of the memory surface marker CXCR3 (CD183) is observed. 

CXCR3 (CD183) has been proposed to have an important role in T cell 

trafficking and migration function (Groom and Luster 2011) ,(Hu et al. 2011) 

(Figure 4.30). However, a recent study showed that CXCR3 was not required 

for T cell migration and has an important role in enhancing the intratumoral 

CD8+ T cell response to PD-1 blockade (Chow et al. 2019). Another study 

showed that the Progenitors Exhausted T cells (T-PEX) express CXCR3 and 

CD44 as well as the known exhaustion markers like PDCD1, TIGIT, and TOX 

(Galletti et al. 2020b).  

 

The upregulation of the transcription factor NR4A2, pre-dysfunctional markers 

(CXCR3, CXCR4, and CD44) and the downregulation of the activation 

markers ITGB1, CD52 and KLRD1 indicates a clear direction that AMC CD8+ 

states represent the “T cell exhaustion” phenotype in the multiple myeloma 

disease context (Mognol et al. 2017),(Seo et al. 2019).  
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Figure 4.30: Heatmap shows the differentially expressed surface markers and 
exhaustion genes in the CD8+ T cell memory subtypes. 

* The color scale reflects scaled values of the gene’s expression (z-score). The metadata is indicated by 
the color codes on the right-hand side.  
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4.3.17 Experimental validation of AMC CD8+ T cell population 

 

To further characterize the AMC CD8+ T-cells, I proposed many marker genes 

(Figure 4.30) to be tested via wet lab experiments. By using qPCR and FACs 

experiments (performed by Dr. med.  Raphael Lutz), we found that CXCR3+ 

expression shows specific FACs expression in a new patient cohort of newly 

diagnosed MM patients (n=30).  

 

Further qPCR analyses have been performed for the sorted CXCR+ CD8+ T cell 

population and showed a high expression of the predicted and proposed 

markers from the single-cell analyses. Furthermore, the FACs data showed that 

there is a partial correlation between the CXCR3+ T cell and plasma cell 

infiltration which has been confirmed by imaging staining on bone marrow 

samples. 
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4.3.18 Systems level understanding and constructing the global 

network of cell-cell interactions  

 

To gain a global understanding of the cell-cell crosstalk interaction patterns in 

the bone marrow microenvironment, I constructed a global network between 

of potential receptor-ligand interactions based on the co-expression pattern. 

At the global level, I observed a substantial decrease in the receptor-ligand 

total interaction counts (R-L TIC) between the cell types in BT group and LTS 

group state, indicating an altered bone marrow microenvironment in 

comparison to the healthy bone marrow microenvironment state (Figure 

4.31).  

 

Additionally, I observed increased receptor-ligand core interaction patterns 

(R-L CO) between the MAN cells and other cell types in the BT group and 

non-CR groups (Supplementary Figure 6.22). More specifically, I observed 

that in both BT group and non-CR groups, the stimulatory interaction partners 

LGALS9_CD44, LGALS9_CD47, CD74_MIF (Y. Zheng et al. 2016) and HLA-

DPB1_TNFSF13B are upregulated between MAN cells and many other cell 

types. These co-expression pattern of receptor-ligand suggests that MAN cells 

mediate a pro-inflammatory crosstalk interaction with the other cell types, 

therefore inducing an immunosuppressive and inflammatory 

microenvironment.  
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Figure 4.31: Bone marrow microenvironment global network construction 
between the cell types across all clinical groups.  

a) The heatmap shows the receptor-ligand total interaction counts (R-L TIC) 

per cell type for each clinical group. Network construction for the receptor-

ligand core interaction (R-L CO) between bone marrow cell types (b) healthy 

(c) before treatment (d) non-complete remission group (e) complete remission 

group. Node size and edge width reflect the interaction count per cell type 

(interaction count threshold > 15). 
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4.3.19 Global Hallmark pathway scores across all bone marrow 

cell types and states.  

 

To determine which pathways have a global influence on the BM 

microenvironment remodeling and cellular state phenotypic shift; I performed 

global scoring for all GSEA Hallmark pathways for each single cell of all BM 

cell types (after excluding the plasma cell compartment). Then I conducted a 

correlation analysis between the pathway scores for each clinical group; I 

observed altered correlation structures between the hallmark pathways per 

clinical group in comparison to the healthy BM state (Supplementary Figure 

4.19).  

 

I constructed the GLM for the pathway scores for each clinical group and I 

observed statistically significant GLM estimates (P-value < 0.001) for many of 

these pathways to predict the clinical state (Figure 4.32 and Supplementary 

Figure 6.24). I observed that there are many pathways related to the induction 

of proinflammatory and immunosuppressive signals in the BM 

microenvironment (TNF alpha signaling via NFKB and TGF beta signaling), in 

addition to apoptosis and hypoxia biological signals.  

 

These pathways showed stepwise increasing GLM estimates starting from low 

estimates in the CR group and moving to higher estimate values in the non-

CR group to the highest predictive estimates in the BT group (Figure 4.32). 

Furthermore, I observe that there are other pathways specific to certain 

clinical states (e.g., interferon-alpha and gamma pathways in the non-CR 

group, and p53 and complement pathways in the CR group). These global 

analyses suggest that there is a potentially evolving landscape of immune 

states that govern the MM disease before and after long-term survival.  
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Figure 4.32: GLM estimates of the hallmark pathways of all immune bone 
marrow cell types across the clinical groups.  

The circle colors represent the clinical groups and the size of the circle reflects 

the GLM estimate values (p-value < 0.001). 
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5 Discussion  
 

Even though we started to gain more insights and understanding about 

myeloma biology and treatment, we are still missing the key solutions for the 

MM puzzle which is reflected in the relapse of patients after receiving current 

intensive therapy.  

 

While I am conducting this study, I found few resources on the 

microenvironment and the immune landscape of the disease (Ghobrial et al. 

2018), and rather more studies focused on the tumor compartment (myeloma 

cells) (Pawlyn and Morgan 2017). We are missing in-depth studies (from 

computational and wet lab sides) into the tumor microenvironment in the 

context of MM disease (Thorsson et al. 2018). More efforts are needed to gain 

deep insights into the tumor microenvironment of the disease, which will be 

a key factor to resolve the disease biology and find an ultimate cure.  

 

Recently, two single-cell RNA-seq studies have been published on the 

precursor stages of MM. Ledergor et al. 2018 characterized malignant 

myeloma cells in asymptomatic individuals (precursor stages) and identified 

tumor cells that have a similar transcriptomic profile as the active disease 

state. Nevertheless, Ledergor et al. 2018 study focused on the tumor cells and 

did not report on the immune-microenvironment.  Zavidij et al. 2020 study 

performed single-cell RNA sequencing for the precursor stages of MM with 

more focus on the tumor immune-microenvironment, where they 

characterized dysregulated cellular states and found compromised immune 

microenvironments.  
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5.1 MM long-term survivors go through a complex and evolving 

immune landscape 

 

The research work on this thesis represents the first comprehensive 

investigation of the bone marrow immune microenvironment (paired-sample 

setting) at a single-cell resolution for the same MM patients before and in long-

term survival (~ 7-15 years). Our study represents the first effort on linking the 

cellular states and immune phenotypes of MM patients to the long-term 

survival (LTS) using single-cell genomics approach and computational 

models.  

 

I developed computational and machine learning approaches to analyze and 

dissect the cellular states and subtypes of the different clinical groups. I 

revealed the global landscape of the bone marrow microenvironment before 

and in long-term survival for the first time. I found that the MM patients go 

through a complex landscape of the immune states which control the disease. 

Over time, our patients lose this immune control that leads to the emergence 

of a malignancy state and, ultimately, they relapse. I proposed a new model, 

the Continuum Immune Landscape (CIL) Model, which explains the long-term 

survival phenomenon from the perspective of the cell types and states in the 

bone marrow microenvironment. The CIL model and the key findings of this 

study will be discussed next in this chapter. 
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5.1.1 The Continuum Immune Landscape (CIL) model: a new 

model explains long-term survival in MM  

 

The CIL model can be summarized in six assumptions which are based on the 

extensive analyses and observations (showed in the Results section) of the 

cellular states and cell types before and after long-term survival (Figure 5.1): 

 

1- The long-term survival states (CR and non-CR) represent one of the 
disease stages and do not reflect a cure nor healthy-like state. 

 
2- The immune states of multiple myeloma patients can be represented as 

a continuum of a complex immune landscape of cell types and states.  
 

3- One of the main characteristics of the CIL model is that the patients 
follow a multi-stepwise evolution from a more cytotoxic state (high 
immune control) to a less cytotoxicity (medium immune control), and 
finally to an inflammatory cellular state (low immune control).  

 
4- In the complete remission (CR) state, immune cells with high 

cytotoxicity potential are abundant, and mediate a strong immune 
control of the disease (high immune control). 

 
5- The non-complete remission (non-CR) state harbor lower cytotoxicity 

functions in comparison to the CR state, and strong pro-inflammatory 
signal (medium immune control). 

 
6- The MM initial diagnosis state (supposedly similar to the relapse state) 

is characterized by high inflammatory signals and exhausted cellular 
states (low immune control).  
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Figure 5.1: The Continuum Immune Landscape (CIL) Model explains multiple 
myeloma immune states before and in long-term survival.  

 
X-axis: High (MGUS and CR), Medium (SMM and non-CR)  and Low (initial diagnosis 

and relapse) Immune Control.  

 

Y-axis: represent the immune control potential and MM patients are in the circles. 
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5.1.2 The global landscape representation and compositional 

shifts in the BM immune microenvironment before and after Long 

Term Survival (LTS) 

 

At the global level, I defined and annotated 23 major cell types across all 

clinical groups representing the major known immune cell types in the BM 

microenvironment. I observed a high degree of immune cell types 

composition variation and shifts per patient’s samples as well as across 

clinical groups in comparison to the healthy donors’ samples.  

 

I developed a Generalized Linear Mixed Model (GLMM) to further associate 

cell types abundance with the clinical states of the patients before and in long-

term survival (LTS). In line with previous studies (Ledergor et al. 2018, Zavidij 

et al. 2020), the BT group showed an enrichment of malignant plasma cells 

and NK cells. I defined a new population termed myeloma associated 

neutrophils (MAN). The GLMM model showed that MAN cells have a 

predictive power for the clinical state; especially in BT and non-CR groups. In 

addition, the model showed interesting predictive associations between the 

abundance of NKT, T cell, Monocytes and DCs subtypes abundance and the 

LTS groups.  

 

I developed a random forest (RF) model to quantify the cellular states per cell 

type across all clinical groups and to predict the cellular state in a probabilistic 

manner. The RF model showed that all LTS states harbor a phenotypic state 

similar to that of the before treatment-like (BT-like) states and lower 

proportions of healthy-like (H-like) cellular states. This means that all patients 

even after a complete remission, still in one of the disease states. They are not 

cured nor healthy individuals, and they harbor different cellular states in 

comparison to the healthy control.  
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5.1.3  Residual tumor cells (RTCs) have been detected in the non-

CR and CR groups.  

 

At the cell type level, I started to decipher each cell type one at a time. In the 

plasma cell compartment, I started to define the healthy and malignant plasma 

cells using graph-based clustering algorithm, which showed a heterogenous 

subpopulation of specific malignant plasma cells per patient. The malignant 

transcriptional clones have been confirmed using previously defined 

malignancy markers such as SCD1 and TNFRSF17. I detected malignant 

transcriptional clones in the non-CR state, too, representing residual tumor 

cells (RTCs).  

 

I performed CNV analyses to define underlying chromosomal aberrations. The 

CNV analyses showed common aberrations like chr13 loss and chr22 

duplication in all patients. I observed that each patient has a unique make-up 

of chromosomal aberrations, which persisted over time in the non-CR and CR 

groups. These analyses suggest an evolutionary trajectory of malignant 

transcriptional clones which co-adapted and co-evolved overtime with long-

term immune cellular states.  

 

5.1.4 The complete remission (CR) group represents the high 

immune control (HIC) state  

 

The CIL model proposes that all MM patients are under a complete remission 

state after receiving the treatment protocol. Based on the in-depth analyses of 

the cellular states, more specifically the NK and T cells, I observed a striking 

pattern of upregulation of the effector cytotoxic molecules and programs in 

complete remission (CR) group. In the NK compartment, I observed NK 

phenotypic expansion in CR and non-CR groups, showing the highest 

diversity in the BT group.  
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To further quantify this phenotypic expansion, I developed a random forest 

(RF) model, which suggests that the LTS groups retain NK cells that share BT-

like phenotype. Further analyses revealed that the CR group showed 

upregulation of cytolytic effector markers (GNLY, GZMB, NKG7, PRF1, and 

KLRD1); indicating that the CR group harbored higher NK cytotoxicity 

function (Figure 5.2).  

 

 
 

Figure 5.2: The heatmap shows the expression of NFKB and inflammatory 
pathway and NK cytotoxicity genes across the clinical groups 

 

Moreover, I performed receptor-ligand interaction analysis and observed that 

the stimulatory interaction partner CD94:NKG2C heterodimer - HLA-E, which 

has a high interaction score between NK cells and many other cell types in 

the CR group, reflecting a high NK activation state in CR group. In the T- cell 

compartment of the CR group, I observed an enrichment of the effector 

cytotoxic CD8+ T- cell and high overall global scores for the T cell activation 

signatures as well as upregulation of the superior cytotoxic marker ITGB1 

(CD29) (Nicolet et al. 2020). 
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One critical observation is that I did not observe enrichment of malignant 

plasma cells’ transcriptional clones in the CR group. I propose that the 

malignant plasma cells are under a strong immunosurveillance state 

controlling the disease state and progression. Therefore, we could not detect 

their presence. Building on these evidences, the CIL model suggests that the 

CR group represents the high immune control (HIC) state in the long-term 

survival immune landscape and fate-trajectory (Figure 5.1).  

 

5.1.5 The non-Complete Remission (non-CR) group represents 

medium immune control (MIC) state 

 

In-depth analyses of the NK and T cell compartments of the non-CR group 

showed lower cytotoxicity functions in comparison to the CR group. In-

contrast, I observed upregulation of TNFA and NFKB1 inflammatory pathway 

genes (TNFAIP3, CD69, RGS1, KLF6, and NFKBIA) indicating a higher 

proinflammatory signal in non-CR BM microenvironment.   

 

The receptor-ligand interaction analysis reveal that non-CR group loses the 

stimulatory interaction partner CD94:NKG2C heterodimer - HLA-E and keeps 

upregulating the inhibitory interaction partner CD94:NKG2A heterodimer - 

HLA-E suggesting an inhibitory phenotype in the non-CR BM 

microenvironment.  

 

In the T cell compartment of the non-CR group, I observed an enrichment of 

both early and late memory CD8+ T cells as well as Tregs and effector CD4+ T 

cells with high overall scores of the T cell dysfunction and exhaustion 

signature. Furthermore, I observed partial enrichment of a new population 

termed myeloma associated neutrophils (MAN), which induce pro-

inflammatory and immunosuppressive signals. Furthermore, in the non-CR 

group’s mdDCs, I observed an upregulation of interferon-alpha and gamma 

genes and signatures.  
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The enrichment of malignant plasma cells in the non-CR group without clear 

clinical signs suggests that the non-CR group is under relatively lower immune 

control than the CR group, which represents an early phase of potential 

relapse. Based on these observations, the CIL model suggests that the non-CR 

group represents the medium immune control (MIC) state in the long-term 

survival immune landscape (Figure 5.1). 

 

5.1.6 Before treatment (BT) group represents the low immune 

control (LIC) state  

 

While LTS in both groups showed high cytotoxicity signals, the before 

treatment (BT), on the other hand, showed downregulation of the cytotoxic 

functions and a significant increase in inflammatory signals.  

 

In the NK compartment, the BT group showed significant upregulation of 

TNFA and NFKB1 inflammatory pathway genes (TNFAIP3, CD69, RGS1, 

KLF6, and NFKBIA) and downregulation of the main cytolytic effector marker 

molecules (GNLY, GZMB, NKG7, PRF1, and KLRD1). Furthermore, the 

receptor-ligand interaction showed an upregulation of (TNFRSF1B - GRN) and 

(IFNG Type II - IFNR) interaction partners in the NK compartment of the BT 

group, which potentially mediate an immunosuppression state; allowing 

myeloma cell proliferation.  

 

Strikingly, I observed a high abundance and enrichment of MAN cells which 

showed upregulation of IL1B, a potent proinflammatory cytokine and 

upstream of IL-6, which supports myeloma cell growth in addition to other 

pro-inflammatory signatures (Rosean et al. 2014). Adding to the upregulation 

of interferon-alpha and gamma genes in mdDCs; the immunosuppressive 

interaction partner (AXL-GAS6) is expressed in the BT group, forming cell-cell 

interaction between mdDCs and malignant plasma cells, monocytes, and 

pDCs.  
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Regarding the T cell compartment, the BT group showed significant 

upregulation of T cell dysfunction and exhaustion signatures as well as TNFA 

signaling via the NFKB pathway, hypoxia pathway, and apoptotic processes.  

 

I described a novel population termed AMC CD8+ T cells (CXCR3+) population 

which showed high abundance in the BT group. RNA velocity estimates 

showed that the AMC CD8+ T cells would potentially originate from several 

memory CD8+ T cell subtypes. The AMC CD8+ T cells showed upregulation 

of T cell dysfunctional and exhaustion markers (CXCR3, CXCR4, CD44, and 

NR4A2) along with downregulation of activation markers ITGB1, CD52 and 

KLRD1. This population represents the hard to define T cell exhaustion state 

in MM disease context.  

 

All these pieces of evidence support the CIL model and correctly position the 

initial diagnosis state (BT-group) at the end of the immune-control trajectory. 

I hypothesize that the BT state is a proxy for the relapse state and I therefore 

propose that the BT group represents the low immune control (LIC) state in 

the immune landscape model leading to an immune escape state of myeloma 

cells and a full-blown disease (Figure 5.1).   
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5.1.7 Disease-associated trajectories and dysregulated cellular 

states and phenotypes 

 

The CIL model poses the hypothesis that the disease can be represented as a 

deviated trajectory from the healthy cellular state trajectory. Such deviations 

showed a unique molecular profile, gene regulatory program, and networks 

of cell-cell interaction patterns.  

 

The disease-state trajectories (DST) hypothesis (Figure 5.3) is based on three 

main observations from the analyses:  

 

1- The rise of new populations and cellular states (e.g., MAN cells, AMC CD8+ T 
cells and NK phenotypic expansion). 

 
2- altered receptor-ligand interactions and cell-cell interaction network patterns 

in the diseased states.  
 

3- altered global developmental trajectories (e.g., CD8+ T cell differentiation 
trajectories across the clinical groups) 

 

 
 

Figure 5.3: The disease-state trajectories (DST) model and dysregulated 
cellular states. 

The greenish colors represent the cellular state in healthy individuals. A dysregulated 
cellular state (yellowish color) may start to perturb the healthy trajectory that would lead 
to  the emergence of the disease-state trajectories (DST) (red colors).  
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One striking observation that supports the Disease-State Trajectories (DST) 

hypothesis is the observation of completely new cellular states in the 

neutrophil compartment (MAN cells), which showed a unique transcriptional 

state in the BT and non-CR groups. I found an altered cellular state associated 

with the disease progression in the CD8+ T compartment (AMC CD8+ T cells) 

which are expressing a unique group of surface markers and TFs, reflecting 

the exclusiveness of this aberrant state in the MM disease context. The cell of 

origin of these new cellular states could be from the same cell type or the 

emergence of the cellular state from hydride origins of several cell types. A 

recent study (Ahmed et al. 2019) found an unknown lymphocyte that showed 

a dual expression of TCR and BCR and key lineage markers of both B and T 

cells in the context of type 1 diabetes (T1D).  

 

At the cell-cell communication level, I found an altered pattern of receptor-

ligand interactions associated with the disease state. For example, I found that 

MAN cells started to initiate new cell-cell interaction patterns with other cell 

types in the non-CR and BT groups; mediating a pro-inflammatory crosstalk 

interaction with the other cell types. Such observations alongside others in 

many cell types (NK, NKT, mdDCs and others); support that disease 

trajectories induce new type of cell-cell interactions to ultimately induce 

cellular state shifts and phenotypic changes, as a mean for mediating a new 

disease trajectory.  

 

At the global developmental trajectory level, I observed that the CD8+ T cells 

started to adapt a variety of differentiation strategies associated with the 

disease state. In-depth analyses showed that in the healthy context, CD8+ T 

cell differentiation processes follows linear cell fate model. However, in BT 

and non-CR groups, the differentiation processes was better described by a 

continuum cell fate model. In the CR group, the differentiation processes 

adapted partial-linear cell fate model, which is more similar to the healthy 

trajectory order. Such observations suggest that through the disease 

trajectories, cell types start to adapt to different developmental strategies 

according to the disease state.  
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This observation is confirmed by the different transcriptional state of the Naïve 

CD8+ T cells. The module analysis showed that the naïve CD8+ T cell states 

are shaped and influenced by the immune state of the disease, and this could 

further alter the global T cell differentiation process of the naïve CD8+ T cells 

into memory and cytotoxic CD8+ phenotypes and give rise to more 

dysregulated CD8+ states and phenotypes. 
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5.2 New therapeutic targets and predictive prognostic markers 

 

The analyses open new possibilities for clinical applications including new 

therapeutics options and predictive prognostic markers for the disease state. 

Future efforts are needed to test and validate these markers via in-vitro, in-

vivo and clinical approaches and assays.   

 

5.2.1 CXCR3 and NR4A2: new therapeutic targets to reverse the 

T cell exhaustion state in newly diagnosed MM patients 

 

I found that the AMC CD8+ T cells represent the exhaustion state in MM 

context. I found that CXCR3 surface marker and NR4A2 transcriptional factor 

(TF) expression defines and regulates this T cell exhaustion state in multiple 

myeloma context. Therefore, I propose that by targeting CXCR3 and NR4A2, 

we could reverse the exhaustion state of the T cells to a more effector cytotoxic 

state (Figure 5.4). 

 

 
 
Figure 5.4: Reversing T cell exhaustion state by targeting  CXCR3+ CD8+ T 
cells and its NR4A2 transcriptional factor in MM context. 
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This notion is supported by recent studies on the role of NR4A transcriptional 

factor in T cell exhaustion biology, which has been shown in a mouse model 

(X. Liu et al. 2019) and human CAR T cells (Chen et al. 2019). Furthermore, 

CXCR3 has been found recently to be upregulated in the newly defined 

Progenitors Exhausted T cell (TPEX) state (Galletti et al. 2020a). CXCR3+ has 

been defined to have an important role in enhancing the intra-tumoral CD8+ 

T cell response to PD-1 blockade (Chow et al. 2019).  

5.2.2 Global disease-state CD8+ T cell prognostic markers 

 

One important application of the analyses is the definition of certain surface 

markers, TFs, and pathways constitutively expressed in the CD8+ T cell 

compartment subtypes, which are specifically expressed in each of the 

clinical groups (Figure 4.17). These markers could serve as disease-state 

specific markers, and the prognostic value of these markers needs to be tested 

in larger clinical cohorts.  

 

  



 147 

5.3 Limitations and future Directions 

 

Through the following section, I will try to summarize the limitations of this 

study and the field as a whole. In addition, I will propose new directions 

which could resolve these challenges 

 

5.3.1 mRNA represents just one layer of the biological regulation 

processes 

 

Through this study, I tried to define cell types and states based on one layer 

of information (mRNA). The biological systems are rather more complex; 

multiple sources of information orchestrate and regulate these systems. The 

genetic and epigenetic states of the cell regulate the cell type identity and 

phenotypic states (Kundaje et al. 2015).  

 

Recently, new approaches have been developed to capture more layers of 

information. For example, single-cell ATAC-seq is available now to define the 

chromatin accessibility and capture the open and closed chromatin regions 

across the whole genome at a single-cell resolution (Satpathy et al. 2019). 

More technologies have been developed to capture the methylation state 

combined with gene expression at single-cell resolution (Linker et al. 2019). 

Other technologies have been developed to detect surface protein expression 

e.g, CITE-seq (Stoeckius et al. 2017) and spatial transcriptomics techniques to 

map the co-localization of cell types in different tissues e.g., Slide-Seq 

(Rodriques et al. 2019). Such technologies have been developed to capture 

more layers of information (Butler et al. 2018), which could be used to gain 

in-depth characterization of the immune landscape of the long-term survival 

of MM patients.  

  



 148 

These technologies and new data types would need to be integrated into one 

joint representation of cell types and states, which could open new 

possibilities for understanding the true nature of the MM disease and its 

immune landscape during the disease evolution. These new data types will 

pose challenges for the computational community. We would need to 

develop new methods to handle increased data size, integrate data types, deal 

with technical variations, inherited sampling noise, and the asynchrony of the 

multiple layers of biological information processing. One promising approach 

is the use of Bayesian deep learning models e.g. the variational autoencoder 

(VAE) model. VAE has been shown recently that it can process vast amounts 

of data and integrate different data types in an efficient manner (Lopez et al. 

2018).  

 

5.3.2 Cell of origin: the rise of new populations and cellular 

states.  

 

It has been challenging to define the cell of origin of the new populations and 

cellular states. For the AMC CD8+ T cells, I tried to infer the cell of origin using 

trajectory inference and RNA velocity methods to define potential cell of 

origins. However, it would be important to perform TCR sequencing for AMC 

CD8+ to trace the differentiation process using their inner cellular marks. 

Regarding the MAN cell origins, it would be important to use lineage tracing 

techniques (Weinreb et al. 2020) to define its cell of origin, whether it gives 

arise from the same cell type or from hydride origins and states.  
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5.3.3 Systems Immunology: building a holistic view of the 

immune system  

 

Through this study, I observed lots of contradictory information in the 

literature about the role of markers or cellular state in different disease 

contexts. I think that the source of this confusion is due to two critical points: 

 

1- Cell type definition: different groups and labs use different marker genes 
and surface markers, as a definition for the same cell types and subtypes 
(Günther and Schultze 2019). 
 

2- Context-dependent findings: due to the focused research approach on a 
certain cell type in a certain disease or biological context, we lost the 
global view of the immune system and introduced contradictory 
statements about the same marker and cell type (Blank et al. 2019).  

 

The current state is challenging, however, it is encouraging us to find new 

ways to understand the immune system and to come up with a holistic view 

of the immune system by defining the underlying mechanistic regulatory 

networks (Binnewies et al. 2018).  

 

Systems immunology approach with the aid of the current bioinformatics 

methods, machine learning models, and integrated single-cell atlases could 

help us reach the next wave of understanding the immune system despite the 

context specificities (Davis, Tato, and Furman 2017). Moreover, such systems 

biology models and approaches could be helpful to reach universal 

definitions of cell types and states across diseases and biological contexts.  
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5.3.4 New therapeutic paradigm: cellular-state targets and 

reversers 

 

The current therapeutic approaches are trying to find new targets that are 

based on the “one-gene-target” hypothesis. This process starts with screening 

for many genes that could be associated with the disease. This knowledge 

then is translated to in vivo experimental systems; trying to perturb such genes 

(one at a time) and observe the downstream effects of such perturbations. 

Then, as soon as an approximate understanding of this gene in a certain 

context is achieved, finding the therapeutic option starts in place; this gene is 

then addressed as a potential therapeutic target to hopefully inhibit its 

downstream effects. 

 

The “one-gene-target” approach assumes that a single gene could be a key 

regulator for the tumorigenic processes. The current large-scale genomics 

studies showed the existence of 43,778,859 single-nucleotide variants, 

2,418,247 indels, and 288,416 structural variant events which represent 

somatic variants in 2,583 cancer patients (Campbell et al. 2020). In addition, 

early cancer genomics studies showed that hundreds to thousands of 

mutations can be detected per tumor type (Lawrence et al. 2013). This 

realization reflects the complexity of alterations in real cancer patients’ 

samples. We need to rethink the “one-gene-target” hypothesis to ultimately 

think of cancer cure rather than enhancing the survival for several months in 

the majority of our cancer patients.  

 

Through the analyses, I observed that the clinical states of multiple myeloma 

patients are associated with the emergence of new cellular states (e.g., MAN 

cells, AMC CD8+ T cells, NK cell phenotypic expansion and other). Such 

observations suggest one key realization; which is that the disease induces 

complete cellular state changes and shifts.  
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Possibly, we could think about new therapeutic approaches that could target 

such global cellular state changes, and reversing therefore the cellular states 

(Figure 5.5) to more healthy-like states via Cellular-States Reversers (CSRs). 

 

 
 

Figure 5.5: New therapeutic paradigm to target and reverse cellular states  

 

To reverse an entire cellular state means that we should think about a new 

way of altering the cell-cell interaction patterns, which are mediated by the 

chemokine-cytokine signaling networks, and reversing the transcriptional 

state of the altered cellular state.  

 

I propose that by designing newly programed cell types, which can function 

as CSRs via sensing the altered microenvironment states in the disease 

context, and secreting biological factors to reverse back the entire cellular 

state to a healthy-like state accordingly. This could seem hard to reach, 

however, there is a current synthetic biology approach that has been 

developed to design new biological circuits with programmed biological 

functions (Purnick and Weiss 2009). Furthermore, the current CAR T cells 

therapeutics approach has been developed based on cell-based therapeutics 

and synthetic biology approaches (Caliendo, Dukhinova, and Siciliano 2019). 
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More research efforts are needed from the computational and experimental 

sides, to reach fully programmed cell types which can induce a reversing 

cellular states (RCS) process and ultimately reach healthy-like cellular states 

or freeze current preferential cellular states as the high immune control (HIC) 

state of our patients.  

 

5.3.5 Causal Inference and Reinforcement learning (RL) 

 

Current machine learning methods are based on the independent and 

identically distributed (IID) data assumption and on finding a correlation 

between the observed variables. Such an approach cannot help us in defining 

the causal links between the observed variables. Incorporating causal 

knowledge to our models would be an important aspect that needs to be 

further investigated; to gain mechanistic insights about the underlying 

biological causal structures between cell types and states in the MM and 

various disease contexts.  

 

One attempt to move statistical learning to causal representation learning is 

the current use of reinforcement learning (RL) methods. RL methods showed 

surprising success in video game scenarios (Silver et al. 2017), however, they 

have some trouble dealing with real-world high-dimensional data (Schölkopf 

2019), and with shaping the right reward function (sparse rewards) to gain 

desirable outcomes (Hare 2019).  

 
Despite the current challenges in the RL field, the idea of having multiagent 

learning (MAL) from the environment and implementing policies depending 

on a reward function would be a good start. We could develop such models 

to resolve cell-cell interaction scenarios and to gain mechanistic insights 

through inducing global perturbations to the tumor microenvironments from 

different tumor entities.  
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6 Appendices  

6.1 Supplementary tables 

 
 

Table 1: Clinical characterization of Multiple Myeloma patients in long-term 
survival cohort.  

Source (collaborators: Dr. med.  Raphael Lutz and Prof. Dr. med. Michael Hundemer) 

 

 

 

 

Table 1: Characteristics of patients with Multiple Myeloma in LTR: Abbreviations: ASCT= autologous stem cell transplantation; BM= bone marrow; CR= Complete remission; 
Mel = melphalan; NA = not available; n.a. not applicable; PC = plasma cells; PR= partial response; PAD= bortezomib – doxorubicin- dexamethasone; TAD = thalidomide- 
doxorubicin- dexamethasone; VAD= vincristine – doxorubicin – dexamethasone; VCD= bortezomib- cyclophosphamide- dexamethasone; VID= vincristine – ifosfamide – 
dexamethasone; VGPR= very good partial response 

Number Gender 
(M/F) 

age MM Type CRAB criteria Time after  
ASCT (years) 

Stage 
(ISS) 

cytogenetics Cytology: 
% PC in 

BM 

Induction 
treatment 

Pre-ASCT 
response 

conditioning Maintenance, 
duration (in years 

after ASCT)  

Post-ASCT 
response 

relapse 
from CR (years 

after ASCT) 
1 M 68 IgG kappa bone disease 14 I standard 5% 3x VAD NA 2x Mel 200 interferon, 8  CR 7 

2 M 73 IgG lambda bone disease, 
anemia 

11 I standard 30% 3x VAD PR 2x Mel 200 thalidomide, 2  CR 3 

3 F 71 IgA/IgG 
lambda 

bone disease, 
anemia 

10 III standard 90% 3x VAD VGPR 2x Mel 200 thalidomide, 1 CR 8 

4 F 69 IgG kappa bone disease 9.5 I standard 15% 3x VAD PR 1x Mel 200 thalidomide, 2 CR 9 

5 F 73 IgK kappa bone disease 9 II high risk (del17p) 50% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR 7 

6 M 77 IgG kappa bone disease 10 I standard 10% 3x VAD PR 1x Mel 200 thalidomide, 1 CR 10 

7 M 73 IgG kappa anemia 9 I standard 20% 3x PAD VGPR 2x Mel 200 none CR 6 

8 F 56 IgA lambda bone disease 9 I high risk (del 17p) 60% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR 6 

9 F 67 IgA kappa anemia 9 I standard 80% 3x TAD VGPR 1x Mel 200 None VGPR n.a. 

10 M 54 BJ kappa bone disease 15 NA NA NA 3x VAD NA 2x Mel 200 interferon, 2 CR n.a. 

11 F 58 IgG kappa bone disease 14 II NA 60% 3x TAD NA 2x Mel 200 thalidomide, 4 CR n.a. 

12 M 69 IgG kappa bone disease 14 III standard 80% 3x TAD PR 2x Mel 200 thalidomide, 4 CR n.a. 

13 M 70 IgA lambda bone disease 9 II high risk (del 17p) 100% 3x PAD nCR 2x Mel 200 bortezomib, 2 CR n.a. 

14 F 65 BJ kappa bone disease 11 I standard 20% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR n.a. 

15 F 79 IgA lambda bone disease 14 I standard 30% 3x VAD CR 2x Mel 200 interferon, NA CR n.a. 

16 F 58 IgG kappa bone disease 17 NA NA 80% 4x VID NA 2x Mel 200 interferon, 13 CR n.a. 

17 M 59 IgG kappa renal failure, 
anemia 

12 II standard 20% 3x VAD PR 2x Mel 200 interferon, NA CR n.a. 

18 M 65 IgG lambda bone disease 11 I standard 70% 3x VAD VGPR 2x Mel 200 thalidomide, 2 CR n.a. 

19 M 75 IgA lambda bone disease 11 I standard 80% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR n.a. 

20 F 61 IgG kappa bone disease 11 III standard 30% 3x VAD PR 1x Mel 200 thalidomide, 3 CR n.a. 

21 M 55 IgG kappa bone disease 10 II high risk (gain 
1q21) 

50% 3x PAD VGPR 2x Mel 200 bortezomib, 2  CR n.a. 

22 M 68 IgG lambda renal failure 9.5 III high risk (t4;14) 80% 3x PAD VGPR 2x Mel 200 bortezomib, 2 CR n.a. 

23 M 60 IgG kappa bone disease,  
hypercalcemia 

9 I standard 30% 3x TAD CR 1x Mel 200 None CR n.a. 

24 F 46 IgG lambda bone disease 7 II standard 50% 3x VCD PR 2x Mel 200 lenalidomide, 1 CR n.a. 
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Table 2:  GLMM model results of the whole bone marrow cell types across the clinical groups. 

 

cellTypes Clinical_groups Estimate Std..Error Wald_stat_test P_Value
Pro- and Pre- B-cells Complete Remission -0,775814032 0,143021319 -5,424464266 5,81286E-08
Plasmacytoid dendritic cells (pDCs) Complete Remission 0,515817173 0,130682221 3,947110537 7,91E-05
Plasmacytoid dendritic cells (pDCs) Non Complete Remission 1,076135715 0,119950195 8,971521215 2,92447E-19
Plasmacytoid dendritic cells (pDCs) Before Treatment 1,017122693 0,120565977 8,436233168 3,27729E-17
Plasma cells Non Complete Remission 2,35955881 0,094817843 24,88517717 1,0767E-136
Plasma cells Before Treatment 3,992772879 0,092436578 43,19472823 0
NKT cells Non Complete Remission -0,982142562 0,081129531 -12,10585775 9,8336E-34
NK cells Complete Remission 0,637037688 0,052409976 12,15489377 5,4032E-34
NK cells Non Complete Remission 0,378905864 0,051813996 7,312809167 2,61614E-13
NK cells Before Treatment 1,382804007 0,048599248 28,45319734 4,4488E-178
Neutrophils-T-cells Complete Remission 1,357969832 0,09443066 14,38060297 6,84952E-47
Neutrophils-T-cells Non Complete Remission -0,444635732 0,11902298 -3,735713307 0,000187184
Neutrophils-T-cells Before Treatment 0,774388367 0,097122679 7,973301106 1,54491E-15
Neutrophils Complete Remission 0,665782556 0,046540593 14,30541611 2,02423E-46
Neutrophils Non Complete Remission -1,020856056 0,051859639 -19,68498195 2,9004E-86
Neutrophils Before Treatment -0,828277452 0,049211847 -16,83085472 1,44994E-63
Myeloma Associated Neutrophils (MAN) Complete Remission 1,73449992 0,468898031 3,699098323 0,000216367
Myeloma Associated Neutrophils (MAN) Non Complete Remission 4,234558317 0,450776418 9,393921579 5,78069E-21
Myeloma Associated Neutrophils (MAN) Before Treatment 6,157117968 0,44949448 13,69787225 1,04543E-42
Monocytes Complete Remission 1,947112141 0,089446315 21,7685003 4,6148E-105
Monocytes Before Treatment 0,841420051 0,09342722 9,006155262 2,13407E-19
MkP - MEP Complete Remission 0,756984172 0,133613232 5,665488069 1,46607E-08
MkP - MEP Non Complete Remission 0,626328502 0,132862804 4,714099684 2,42782E-06
MkP - MEP Before Treatment 1,451127081 0,123125545 11,78575156 4,62278E-32
Mature B-cells Complete Remission 0,527997249 0,048504656 10,88549621 1,35161E-27
Mature B-cells Non Complete Remission -0,200709862 0,049457218 -4,058252181 4,94414E-05
Immature B-cells Complete Remission -1,257479028 0,162943805 -7,717255821 1,18861E-14
Immature B-cells Before Treatment -0,498594043 0,122543819 -4,068700039 4,72762E-05
HSPCs Non Complete Remission -0,743469473 0,119573096 -6,217698595 5,04499E-10
HSPCs Before Treatment 0,741163435 0,09149275 8,100788677 5,4604E-16
Erythroid cells Before Treatment 2,873727025 0,19182643 14,98087111 9,79251E-51
Dendritic cell / monocyte progenitors Complete Remission 0,64425913 0,126540071 5,091344777 3,55533E-07
Dendritic cell / monocyte progenitors Non Complete Remission 0,451591939 0,126838324 3,56037453 0,000370326
Dendritic cell / monocyte progenitors Before Treatment 0,516215404 0,126684509 4,074810778 4,60518E-05
Common myeloid progenitor Complete Remission 0,581409927 0,084909689 6,847392038 7,52084E-12
Common myeloid progenitor Non Complete Remission -0,426504235 0,094411935 -4,517482187 6,25793E-06
Common myeloid progenitor Before Treatment 0,40917171 0,083211904 4,917225639 8,77794E-07
cDC / Monocytes Complete Remission 1,145353742 0,109516861 10,45824116 1,34326E-25
cDC / Monocytes Non Complete Remission 0,769820093 0,11148042 6,905428715 5,0052E-12
cDC / Monocytes Before Treatment 0,798442602 0,109667913 7,280548914 3,32465E-13
cDC Complete Remission 2,224744204 0,428244525 5,195032446 2,04684E-07
cDC Non Complete Remission 2,057002281 0,428356782 4,802077068 1,57028E-06
cDC Before Treatment 2,034548235 0,432089471 4,708627202 2,49391E-06
CD8+ T-cells Complete Remission 0,575225635 0,045582251 12,61950929 1,64845E-36
CD8+ T-cells Before Treatment 0,817160466 0,043056086 18,97897718 2,54502E-80
CD4+ T-cells Non Complete Remission -0,469412214 0,049809594 -9,424132502 4,33675E-21
CD4+ T-cells Before Treatment 0,23902489 0,04610373 5,184502177 2,16593E-07
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Table 3: GLMM model results of the T cells subtypes across the clinical groups

cellTypes Clinical_groups Estimate Std..Error Wald_stat_test P_Value
CD8+_Cycling_Cells Complete Remission 1,39266653 0,187150228 7,441436438 9,96E-14
CD8+_KLRB1+ Complete Remission -1,666495772 0,085227497 -19,55349887 3,85E-85
CD4+_Effector Complete Remission 0,543798939 0,032364133 16,80251812 2,34E-63
CD8+_Abberant_Memory_Cytotoxic Complete Remission 2,063250239 0,148294719 13,91317403 5,27E-44
CD8+_Early_Memory Complete Remission 0,766509206 0,041802603 18,33639889 4,24E-75
CD8+_Effector_Cytotoxic Complete Remission 1,496065606 0,029967107 49,92359148 0
CD8+_Effector_Cytotoxic_Gamma_Delta Complete Remission 0,764093228 0,149080426 5,125375954 2,97E-07
CD8+_Late_Memory Complete Remission 1,398739852 0,047095009 29,7003843 7,6E-194
CD8+_Memory_Stem_Cell Complete Remission -0,231267695 0,050627169 -4,568055081 4,92E-06
CD8+_Naive Complete Remission 0,848195759 0,03106437 27,30445717 3,8E-164
CD4+_Treg Non Complete Remission 0,693675336 0,088669318 7,823172103 5,15E-15
CD8+_Cycling_Cells Non Complete Remission 1,68258525 0,18362611 9,16310457 5,04E-20
CD8+_KLRB1+ Non Complete Remission -0,942081371 0,067933579 -13,86768349 9,94E-44
CD4+_Effector Non Complete Remission 0,63494728 0,032960269 19,26402021 1,08E-82
CD8+_Abberant_Memory_Cytotoxic Non Complete Remission 2,027756474 0,149967966 13,5212641 1,17E-41
CD8+_Early_Memory Non Complete Remission 1,585492302 0,039440993 40,19909664 0
CD8+_Effector_Cytotoxic Non Complete Remission 0,961825501 0,031699581 30,34189953 3,2E-202
CD8+_Effector_Cytotoxic_Gamma_Delta Non Complete Remission 1,134041849 0,145458638 7,796318337 6,37E-15
CD8+_Late_Memory Non Complete Remission 2,026481907 0,045738286 44,30603114 0
CD8+_Naive Non Complete Remission 0,301824683 0,033752935 8,94217591 3,82E-19
CD8+_Cycling_Cells Before Treatment 1,500161484 0,170218234 8,813165579 1,22E-18
CD8+_KLRB1+ Before Treatment -0,853705508 0,046770602 -18,25303663 1,96E-74
CD4+_Effector Before Treatment -0,472019336 0,028461325 -16,58458747 9,01E-62
CD8+_Abberant_Memory_Cytotoxic Before Treatment 4,287677327 0,137635648 31,15237498 4,7E-213
CD8+_Early_Memory Before Treatment 0,200427645 0,036724413 5,45761323 4,83E-08
CD8+_Effector_Cytotoxic Before Treatment 0,301330007 0,026411567 11,40901664 3,77E-30
CD8+_Effector_Cytotoxic_Gamma_Delta Before Treatment 2,362177685 0,120801396 19,55422512 3,8E-85
CD8+_Late_Memory Before Treatment 1,256978612 0,04197153 29,94836275 4,6E-197
CD8+_Memory_Stem_Cell Before Treatment -0,265321603 0,039683146 -6,686002231 2,29E-11
CD8+_Naive Before Treatment -0,33217998 0,027571346 -12,04801454 1,99E-33
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6.2 Supplementary figures 

 

 
 
Figure 6.1: Quality control barplots show the total number of cells and total 
UMI counts per sample for each patient and donor. 
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Figure 6.2:  The heatmap shows the gene expression of differentially 
expressed genes of the known cell type markers used for the manual 
annotations. 
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a) 

 

b) 

 

Figure 6.3: The inter- and intra- patient heterogeneity in the plasma cell 
compartment.  

a) UMAP representation of the plasma cell compartment shows different 

clusters of distribution across clinical groups. b) The heatmap shows the 

Single cell RNA-seq CNV status of patient number 20 at two time points (BT 

and after LTS).  
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a)  

 
 

b) 
 

 
 

 

Legend next page  
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c) 
 

 
 
 
d) 
 

 
 
Figure 6.4: UMAP representation of patient 20 samples plasma cells and 
normal immune cells 

a) Cell type annotation. B) Chromosome 13 loss in plasma cell compartment. c) 
Chromosome 22 duplication in the plasma cell compartment. d) The heatmap shows 
the DE genes between P20’s plasma cells clusters and subpopulations. 
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Figure 6.5: Correlation analysis between NFKB and inflammatory pathway 
scores and NK cytotoxicity program scores. 
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a) 

 

b) 

 

Legend next page …
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c) 

 
Figure 6.6: Receptor-Ligand interactions between NK cells and other cell types in the BM microenvironment across the 
clinical groups. a) healthy group b) non-CR c) BT groups. 
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Figure 6.7:  UMAP representation shows the exclusive existence of the 
aberrant Memory Cytotoxic CD8+ T cell population (black colored 
population) in the BT group. 
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Figure 6.8: UMAP representation of the CD4+ subpopulations across clinical 
groups. 
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a) 

 

b)  

 
 

Figure 6.9: The heatmaps show the T cell hallmark pathways and underlying 
gene expression in the a) CD8+ b) CD4+ compartment across the clinical 
groups.  
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a)                                            b) 
 
 

 
 
 
 
 
 
 

c) 

  
 

Figure 6.10: Naïve CD8+ T cell modules analyses.  

a) Upregulated modules in the naïve C8+ T cell compartment in each clinical. 

b) GSEA enrichment pathways for the naïve CD8+ T cell modules. c) The 

heatmap shows many specific underlying modules’ gene expression across 

the clinical groups. 
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Figure 6.11: UMAP representation shows specific modules expressions 
which are specific for the clinical groups.  
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a) 

b) 

 
c) 

 
 

Figure 6.12: Non-Complete Remission CD8+ T cells follow a continuum cell 
fate differentiation Trajectory 
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a) 

b) 

 
c) 

 
Figure 6.13: Complete Remission CD8+ T cells follow a Partial-Linear cell 
fate differentiation Trajectory. 
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Figure 6.14: UMAP representation of neutrophil clusters across the clinical 
groups. 

 

 
 

Figure 6.15:  The heatmap shows the abundance of the neutrophil’s subtypes 
across the clinical groups  
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a) 

 
b) 

 
c) 
 

 

 

Figure 6.16: GSEA analysis enriched pathways which are upregulated in 
MAN cells.  
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a) 

 

b) 

 
 

Figure 6.17: a) Median scores of the interferon-alpha and gamma genes 
across clinical groups. b) GLM model estimate of interferon alpha and 
gamma genes across clinical groups (p-value < 0.001). 
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Figure 6.18: UMAP representation of the CD8+ memory T cells subtypes 
before and after long-term survival 
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a) 

 

b)                                                            c) 

 
Figure 6.19: Random forest model prediction for cellular states in the 
memory CD8+ T cell subtypes.  

a) UMAP representation of the Random Forest Model prediction for Before 

Treatment and Healthy-like states across all clinical groups b) The pie chart 

shows the proportions of BT-like cells in different clinical groups. c) GLMM 

estimates of BT-like cells for each clinical group (p-value <0.001). 

  



 176 

 
 
 
 
 

 
 
 
Figure 6.20: GSEA analysis enriched pathways for the CD8+ memory 
subtypes. 
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a) 

 
 

b) 

 
Figure 6.21:  AMC CD8+ T cell specific surface marker genes and TFs 

(I) UMAP representation shows gene expression (red color indicates high gene 

expression). (J) The heatmap shows the differentially expressed transcriptional 

factors for CD8+ memory subtypes. 
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a) 
 

 
b)  

 
 

Figure 6.22: Balloon plot shows the receptor-ligand interaction patterns 
between MAN cells and other cell types in (A) BT group and (B) non-CR 
group.  

The circles' colors represent the mean receptor-ligand interaction scores. The 

circle size represents the (-Log10) of p-values. 
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Figure 6.23: Heatmap shows the correlation patterns between the GSEA 
hallmark pathways and single-cell scores per clinical group. 
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Figure 6.24: GLM model estimates of the hallmark pathways single-cell 
scores per clinical group.  

The circle color is coded by the clinical groups and the size of the circle reflects the 

GLM model estimate values (p-value < 0.001). 
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6.3 Software versions and code availability 

 
Hmisc_4.4-0   Formula_1.2-3    survival_3.1-8    lattice_0.20-38     writexl_1.3   

wesanderson_0.3.6  Monocle 3.0.1.3  UpSetR_1.4.0     randomForest_4.6-14 cowplot_1.0.0    

ggpointdensity_0.1.0 ggpubr_0.3.0   msigdbr_7.0.1       data.table_1.12.8    fgsea_1.12.0      

Rcpp_1.0.4.6 reshape2_1.4.4      matrixStats_0.56.0   GSA_1.03.1     plyr_1.8.6 scales_1.1.0        

ggsci_2.9    plotly_4.9.2.1       gplots_3.0.3   pheatmap_1.0.12     readxl_1.3.1         

forcats_0.5.0        stringr_1.4.0    purrr_0.3.4  readr_1.3.1   tidyr_1.0.2   tibble_3.0.1  

ggplot2_3.3.0       tidyverse_1.3.0      viridis_0.5.1 viridisLite_0.3.0    RColorBrewer_1.1-2  

dplyr_0.8.5   Seurat_3.1.5.999    backports_1.1.6     fastmatch_1.1-0     igraph_1.2.5    

lazyeval_0.2.2      splines_3.6.3      BiocParallel_1.20.1 listenv_0.8.0       digest_0.6.25       

htmltools_0.4.0     gdata_2.18.0      fansi_0.4.1         checkmate_2.0.0     magrittr_1.5        

cluster_2.1.0      ROCR_1.0-11        openxlsx_4.1.4      globals_0.12.5      modelr_0.1.7      

jpeg_0.1-8.1        colorspace_1.4-1   rvest_0.3.5         ggrepel_0.8.2       xfun_0.13        

haven_2.2.0         crayon_1.3.4   jsonlite_1.6.1      zoo_1.8-8      ape_5.3             glue_1.4.0          

gtable_0.3.0  leiden_0.3.3        car_3.0-7    future.apply_1.5.0  abind_1.4-5         DBI_1.1.0    

rstatix_0.5.0       htmlTable_1.13.3    reticulate_1.15     foreign_0.8-75      rsvd_1.0.3      

tsne_0.1-3    htmlwidgets_1.5.1   httr_1.4.1 acepack_1.4.1       ellipsis_0.3.0    ica_1.0-2           

pkgconfig_2.0.3     nnet_7.3-12   uwot_0.1.8    dbplyr_1.4.3      tidyselect_1.0.0    rlang_0.4.6 

munsell_0.5.0   cellranger_1.1.0    tools_3.6.3    cli_2.0.2           generics_0.0.2      broom_0.5.6         

ggridges_0.5.2      npsurv_0.4-0     knitr_1.28     fs_1.4.1   fitdistrplus_1.0-14 zip_2.0.4           

caTools_1.18.0    RANN_2.6.1 pbapply_1.4-2  future_1.17.0  nlme_3.1-144        xml2_1.3.2   

compiler_3.6.3      rstudioapi_0.11     curl_4.3   png_0.1-7    lsei_1.2-0     ggsignif_0.6.0      

reprex_0.3.0        stringi_1.4.6       Matrix_1.2-18       vctrs_0.2.4       pillar_1.4.4        

lifecycle_0.2.0     lmtest_0.9-37       RcppAnnoy_0.0.16    bitops_1.0-6   irlba_2.3.3   

patchwork_1.0.0     R6_2.4.1            latticeExtra_0.6-29 KernSmooth_2.23-16 gridExtra_2.3       

rio_0.5.16      codetools_0.2-16    MASS_7.3-51.5       gtools_3.8.2      assertthat_0.2.1    

withr_2.2.0     sctransform_0.2.1   parallel_3.6.3      hms_0.5.3    rpart_4.1-15        carData_3.0-

3       Rtsne_0.15   lubridate_1.7.8    base64enc_0.1-3  Python 03.07.06   Cell Ranger  3.0.1   

CellPhoneDB 2.0 Cytoscape 03.08.00 scVelo 0.2.2 R version 3.6.3 

 
 
Code availability (GitHub):  https://github.com/AMA111/PhD-Thesis-2020  
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8 Abbreviations 
ADGRE5: Adhesion G Protein-Coupled Receptor E5 104 

AMC: Aberrant Memory Cytotoxic passim 

ANKRD28: Ankyrin Repeat Domain 28 114 

APC: antigen-presenting cells 25 

APCs: antigen-presenting cells 25, 116 

ARID5A: AT-Rich Interaction Domain 5A 104, 125 

ASCT: Autologous Stem Cell Transplant 1, 46 

ATAC-seq: Assay for Transposase-Accessible Chromatin using sequencing 147 

ATP1B3: ATPase Na+/K+ Transporting Subunit Beta 3 125 

AXL: AXL Receptor Tyrosine Kinase 117, 140 

BCL2A1: BCL2 Related Protein A1 114 

BCR: B-cell receptor 33, 35 

BHLHE40: Basic Helix-Loop-Helix Family Member E40 125 

BID: BH3 Interacting Domain Death Agonist 114 

BT: Before Treatment passim 

BT-like: before treatment like passim 

CAR T cells: Chimeric antigen receptor T cells 146, 151 

CCA: canonical correlation analysis 62, 63 

CCND1: Cyclin D1 85 

CCND2: Cyclin D2 85 

CCR7:  C-C Motif Chemokine Receptor 7 104 

CD4: cluster of differentiation 4 passim 

CD8: cluster of differentiation 8 passim 

CDR: cellular detection rate 74 

CEBPZ: CCAAT Enhancer Binding Protein Zeta 125 

chr: chromosome 86 

CIL: Continuum Immune Landscape passim 

CITE-seq: Cellular Indexing of Transcriptomes and Epitopes by Sequencing 147 

CLM: common lymphoid progenitor 21 

CMP: common myeloid progenitors 21, 83 

CR: Complete Remission passim 

CRAB: hypercalcemia, renal insufficiency, anemia, and/or bone disease with lytic lesions 37, 39 

CREM: CAMP Responsive Element Modulator 104 

CXCL12: C-X-C motif chemokine 12 39 

CXCL2: C-X-C Motif Chemokine Ligand 2 114 

CXCL3: C-X-C Motif Chemokine Ligand 3 114 
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CXCL8: C-X-C Motif Chemokine Ligand 8 114 

CXCR3: C-X-C Motif Chemokine Receptor 3 passim 

CXCR4: C-X-C chemokine receptor type 4 39, 92, 125, 141 

DCs: dendric cells passim 

DN: double-negative 29 

DST: Disease-State trajectories 2, 142, 143 

e.g.,: for example 58 

EMD: extramedullary disease 40 

ETP: early thymic progenitors 29 

FACS: Fluorescence-activated cell sorting 5, 21, 81 

FCER1G: Fc Fragment Of IgE Receptor Ig 94 

FDA: Food and Drug Administration 47 

FRZB: Frizzled Related Protein 85 

GAS6: Growth Arrest Specific 6 117, 140 

GC: germinal center 35 

GEM: Gel bead in EMulsion 50, 51 

GMP: granulocyte–monocyte progenitors 21 

GNLY: Granulysin 92, 94, 138, 140 

GPR183: G Protein-Coupled Receptor 183 114 

GRN: Granulin Precursor 95, 140 

GZMA: Granzyme A 104 

GZMB: Granzyme B 92, 94, 138, 140 

GZMK: Granzyme K 104 

HIF1A: Hypoxia Inducible Factor 1 Subunit Alpha 104 

HLA-DPB1: Major Histocompatibility Complex, Class II, DP Beta 1 128 

HLA-E: HLA class I histocompatibility antigen, alpha chain E 95, 138, 139 

HSCs: hematopoietic stem cells 21, 22, 23, 33 

HSPC: haematopoietic stem and progenitor cell 37 

HSPCs: Hematopoietic stem and progenitor cells 23, 38 

IFITM3: Interferon Induced Transmembrane Protein 3 117 

IFNG: Interferon Gamma 95, 140 

IFNGR2: Interferon Gamma Receptor 2 114 

IFNR: Interferon Production Regulator 95, 140 

IFNγ: Interferon gamma 26, 42 

IgD: Immunoglobulin D 33 

IgM: Immunoglobulin M 33 

IID: independent and identically distributed 152 

IIS: innate immune system 25, 26 

IL-10: Interleukin 10 42 



 205 

IL10RA: Interleukin 10 Receptor Subunit Alpha 104 

IL1B: Interleukin 1 Beta 114, 117, 140 

IL2: Interleukin 2 102 

IL-6: Interleukin 6 46, 114, 140 

IMiDs: immunomodulatory drugs 46, 48 

IMWG: International Myeloma Working Group 1 

ISG15: Interferon-Induced 17-KDa/15-KDa Protein 117 

ITGB1: Integrin Subunit Beta 1 101, 125, 138, 141 

ITGB7: Integrin Subunit Beta 7 85 

JUND: JunD Proto-Oncogene, AP-1 Transcription Factor Subunit 125 

KLF6: Kruppel Like Factor 6 92, 139, 140 

KLRD1: Killer Cell Lectin Like Receptor D1 passim 

KM: Knochenmarks 3 

KNN: k-nearest neighbor 58 

LAMP5: Lysosomal Associated Membrane Protein Family Member 5 85 

LGALS9: Galectin 9 128 

LIC: Low Immune Control 141 

LMPP: lymphoid-primed multipotential progenitor 23 

LR: logistic regression 59, 74 

LTS: long-term survival passim 

LY6E: Lymphocyte Antigen 6 Family Member E 117 

MAFB: V-maf musculoaponeurotic fibrosarcoma oncogene homolog B 85 

MALAT1: Metastasis Associated Lung Adenocarcinoma Transcript 1 86 

MAN: Myeloma associated Neutrophils passim 

MARCKS: Myristoylated Alanine Rich Protein Kinase C Substrate 114 

MDSCs: myeloid-derived suppressor cells 42 

MEP: megakaryocyte–erythroid progenitor cell 21 

MFC: multicolor flow cytometric 46 

MGUS: monoclonal gammopathy of undetermined significance 135 

MIF: Macrophage Migration Inhibitory Factor 128 

MNNs: mutual nearest neighbors 62, 63 

MRD: minimal residual disease 46 

MSCs: mesenchymal stem cells 37 

NB: Negative binomial distribution 55 

NDMM: newly diagnosed multiple myeloma 46 

NFKB1: Nuclear Factor Kappa B Subunit 1 92, 94, 139, 140 

NFKBIA: Nuclear Factor Kappa B Subunit 1 92, 139, 140 

NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells 39 

NGS: next generation sequencing 5, 46, 51, 67 
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NK: natural killer passim 

NKG2C: NKG2-C type II integral membrane protein 95, 138, 139 

NKG7: Natural Killer Cell Granule Protein 7 92, 138, 140 

NKT: natural killer T 81, 83, 136, 143 

non-CR: non-Complete Remission passim 

NR1H2: Nuclear Receptor Subfamily 1 Group H Member 2 125 

NR4A2: The Nuclear receptor related 1 protein 2, 125, 141, 145 

nt: nucleotides 51 

P53: Tumor Protein P53 130 

PAMPS: Pathogen-associated molecular patterns 35 

PCA: principal component analysis 57, 78 

PCL: plasma cell leukemia 40 

PCR: Polymerase chain reaction 46, 51 

PD-1: Programmed Cell Death 1 47, 125, 146 

PDCD1: Programmed Cell Death 1 125 

PD-L1: Programmed death-ligand 1 47 

PIM-1: Pim-1 Proto-Oncogene, Serine/Threonine Kinase 104 

PLEK: Pleckstrin 114 

PRF1: Perforin 1 92, 138, 140 

PRRs: pattern recognition receptors 25 

PWs: Pathways 109 

qPCR: quantitative Polymerase Chain Reaction 5, 127 

RANK: Receptor activator of nuclear factor kappa-Β 39 

RANKL: Receptor activator of nuclear factor kappa-Β ligand 39 

REL: REL Proto-Oncogene, NF-KB Subunit 125 

RF: random forest 136 

RGS1: Regulator Of G Protein Signaling 1 92, 139, 140 

R-L CO: receptor-ligand core interaction 128, 129 

R-L TIC: receptor-ligand total interaction counts 128, 129 

RL: Reinforcement Learning 152 

RNA: ribonucleic acid 132, 141, 158 

RT: reverse transcription 51 

SCD1: Stearoyl-coenzyme A desaturase 1 85, 137 

SKIL: SKI Like Proto-Oncogene 125 

SLAMF7: SLAM family member 7 46 

SLC7A5: Solute Carrier Family 7 Member 5 125 

SMM: smoldering multiple myeloma 135 

SMs: Surface Markers 109 

SOD2: Superoxide Dismutase 2 114 



 207 

SON: SON DNA And RNA Binding Protein 104 

SP: single positive 29 

STAT5: Signal Transducer And Activator Of Transcription 5 102 

SVD: singular value decomposition 57 

TCR: T-cell receptor 29, 44 

TFs: Transcritional Factors 109 

TGFβ: Transforming growth factor beta 42 

Th: T helper 29 

TIGIT: T Cell Immunoreceptor With Ig And ITIM Domains 125 

TLRs: Toll-like receptors 25, 35 

TNF: Tumor Necrosis Factor 130 

TNFA: Tumor necrosis factor alpha passim 

TNFAIP3: TNF Alpha Induced Protein 3 92, 139, 140 

TNFRSF17: TNF Receptor Superfamily Member 17 85, 137 

TNFRSF1B: TNF Receptor Superfamily Member 1B 95, 140 

TNFSF13B: TNF Superfamily Member 13b 128 

TNFα: tumor necrosis factor alpha 42 

TOX: Thymocyte Selection Associated High Mobility Group Box 125 

Treg: Regulatory T cells 29, 42, 47 

Tregs: regulatory T cells 42, 99, 139 

tSNE: t-distributed stochastic neighbor embedding 36, 57 

TSPs: thymic seeding progenitors 29, 30 

t-test: Student's t-test 59 

VEGF: Vascular endothelial growth factor 39 

VEGFA: Vascular endothelial growth factor A 39 

ZEB2: Zinc Finger E-Box Binding Homeobox 2 125 

ZNF331: Zinc Finger Protein 331 125 
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9  Talks, poster presentations, 

abstracts and publications 
 

9.1.1 Conferences talks 

 

Single Cell Atlas of Bone Marrow Microenvironment in Multiple Myeloma 

Long-Term Survivors 

 

Abdelrahman Mahmoud, Raphael Lutz, Mohamed H.S. Awwad, Charles 

Imbusch, Tobias Boch, Niels Weinhold, Marc S. Raab, Carsten Müller- Tidow, 

Brian Durie, Simon Haas, Hartmut Goldschmidt, Benedikt Brors, and Michael 

Hundemer  

 
(26th October 2019, Keynote speaker in EG-CompBio conference) 

 

Single Cell Atlas of Bone Marrow Microenvironment in Multiple Myeloma 

Long-Term Survivors 

 

Abdelrahman Mahmoud, Raphael Lutz, Mohamed H.S. Awwad, Charles 

Imbusch, Tobias Boch, Niels Weinhold, Marc S. Raab, Carsten Müller- Tidow, 

Brian Durie, Simon Haas, Hartmut Goldschmidt, Benedikt Brors, and Michael 

Hundemer  

 
(15th September 2019, 6th Next-Generation Sequencing Symposium) 

 

  



 209 

9.1.2 Video talks 

 

Single Cell Project Summary: Multiple Myeloma Long-Term Survivors.  
 

Abdelrahman Mahmoud,  

 
(26th July 2020, Link: https://youtu.be/gC2pV_ezjiU) 

 

 

Single Cell Data Analysis - Overview 

 

Abdelrahman Mahmoud 

 
(13th September 2018, Link: https://vimeo.com/289672930) 

 

9.1.3 Poster presentations 

 

Deciphering the Immune Evolution Landscape of Multiple Myeloma Long-

Term Survivors Using Single Cell Genomics  

 

Abdelrahman Mahmoud*, Raphael Lutz*, Mohamed H.S. Awwad, Charles 

Imbusch, Tobias Boch, Niels Weinhold, Marc S. Raab, Carsten Müller- Tidow, 

Brian Durie, Simon Haas, Hartmut Goldschmidt, Benedikt Brors, and Michael 

Hundemer  

 
(16th November 2020, DKFZ 2020 PhD Poster presentations) 
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9.1.4 Abstracts 

 

The Bone Marrow Microenvironment of Multiple Myeloma Long-Term 

Survivors at Single Cell Resolution  

 

Raphael Lutz*, Abdelrahman Mahmoud*, Mohamed H.S. Awwad, Charles 

Imbusch, Tobias Boch, Niels Weinhold, Marc S. Raab, Carsten Müller- Tidow, 

Brian Durie, Simon Haas, Hartmut Goldschmidt, Benedikt Brors, and Michael 

Hundemer  

 
(5th December, 2020, The 62nd ASH Annual Meeting and Exposition) 

 

 

Deconvolution of Hematopoietic Commitment Decisions By Genome-Wide 

Analysis of Progressive DNA Methylation Changes  

 

Sina Staeble, MSc, Stephen Kraemer, MSc, Jens Langstein, MSc, Ruzhica 

Bogeska, PhD, Mark Hartmann, PhD, Maximilian Schoenung, MSc, Melinda 

Czeh, PhD, Julia Knoch, Natasha Anstee, PhD, Simon Haas, PhD, 

Abdelrahman Mahmoud, Julius Graesel, MSc, Daniel Huebschmann, MD 

PhD, Lars Feuerbach, PhD, Weichenhan Dieter, PhD, Benedikt Brors, PhD, 

Karsten Rippe, PhD, Jan-Philipp Mallm, PhD, Frank Rosenbauer, PhD, 

Christoph Plass, PhD, Matthias Schlesner, PhD, Michael D. Milsom, PhD, 

Daniel B. Lipka 

 

(2019, Blood Journal)  
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9.1.5 Manuscripts 

 

Deciphering the Immune Evolution Landscape of Multiple Myeloma Long-

Term Survivors Using Single Cell Genomics 

 

Abdelrahman Mahmoud*, Raphael Lutz*, Mohamed H.S. Awwad, Charles 

Imbusch, Tobias Boch, Niels Weinhold, Marc S. Raab, Carsten Müller- Tidow, 

Brian Durie, Simon Haas, Hartmut Goldschmidt, Benedikt Brors, and Michael 

Hundemer  

 

(in preparation) 

 

Loss of the LSD1 protein but not its enzymatic activity promotes leukemia in 

mice through mislocalization of NPM1 to the cytoplasm 

 

Jonas Samuel Jutzi, Abdelrahman Mahmoud, Judith Mueller, Lars Feuerbach, 

Monika Gothwal, Benedikt Brors, Roland Schuele and Heike Luise Pahl  

 

(in preparation) 

 

Selective Elimination of Immunosuppressive T cells in Patients with Multiple 

Myeloma  

 

Mohamed H.S. Awwad, Abdelrahman Mahmoud, Heiko Bruns, Hakim 

Echchannaoui, Katharina Kriegsmann, Marc S. Raab, Uta Bärtsch, Markus 

Munder, Anna Jauch, Katja Weisel6, Hans Jürgen Salwender, Volker Eckstein, 

Mathias Hänel, Roland Fenk, Jan Dürig, Benedikt Brors, Carsten Müller-

Tidow, Hartmut Goldschmidt, Michael Hundemer  

 

(Accepted in Leukemia journal) 
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Induction of autoreactive regulatory T cells through promiscuous gene 

expression by bone marrow-resident antigen presenting cells 

 

Chih-Yeh Chen, Felix Klug, Siao-Han Wong , Franziska Durst , Sheena Pinto, 

Tomoyoshi Yamano, Dania Riege, Michael Delacher , Maria Dinkelacker , 

Charles D. Imbusch , Abdelrahman Mahmoud , Roman Kurilov , Miograd 

Guzvic , Claudia Gebhard , Guido Wabnitz , Valentina Volpin, Ayse Nur 

Menevse, Yvonne Samstag, Pärt Peterson , Michael Rehli , Slava Stamova, 

Maria Xydia , Christoph A. Klein , Mark S. Anderson , Christian Schmid , 

Markus Feuerer , Benedikt Brors, Ludger Klein, Bruno Kyewski , Philipp 

Beckhove  

 

(under revision) 

 

AKT-dependent NOTCH3 activation drives tumor progression in a model of 

mesenchymal colorectal cancer  

 

Varga, Julia, Adele Nicolas, Valentina Petrocelli, Marina Pesic, Abdelrahman 

Mahmoud, Birgitta E. Michels, Emre Etlioglu, et al.  

 

(2020, Journal of Experimental Medicine journal) 

 
 

CRISPR/Cas9-edited NSG mice as PDX models of human leukemia to address 

the role of niche-derived SPARC  

 

Tirado-Gonzalez, I., E. Czlonka, A. Nevmerzhitskaya, D. Soetopo, E. 

Bergonzani, A. Mahmoud, A. Contreras, et al.  

 

(2018, Leukemia journal) 
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