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Abstract

In the context of complex applications from engineering sciences the solution of identi-
fication problems still poses a fundamental challenge. In terms of Uncertainty Quantifi-
cation (UQ), the identification problem can be stated as a separation task for structural
model and parameter uncertainty. This thesis provides new insights and methods to
tackle this challenge and demonstrates these developments on an industrial benchmark
use case combining simulation and real-world measurement data.

While significant progress has been made in development of methods for model pa-
rameter inference, still most of those methods operate under the assumption of a perfect
model. For a full, unbiased quantification of uncertainties in inverse problems, it is
crucial to consider all uncertainty sources. The present work develops methods for in-
ference of deterministic and aleatoric model parameters from noisy measurement data
with explicit consideration of model discrepancy and additional quantification of the
associated uncertainties using a Bayesian approach. A further important ingredient is
surrogate modeling with Polynomial Chaos Expansion (PCE), enabling sampling from
Bayesian posterior distributions with complex simulation models. Based on this, a novel
identification strategy for separation of different sources of uncertainty is presented. Dis-
crepancy is approximated by orthogonal functions with iterative determination of op-
timal model complexity, weakening the problem inherent identifiability problems. The
model discrepancy quantification is complemented with studies to statistical approximate
numerical approximation error. Additionally, strategies for approximation of aleatoric
parameter distributions via hierarchical surrogate-based sampling are developed. The
proposed method based on Approximate Bayesian Computation (ABC) with summary
statistics estimates the posterior computationally efficient, in particular for large data.
Furthermore, the combination with divergence-based subset selection provides a novel
methodology for UQ in stochastic inverse problems inferring both, model discrepancy
and aleatoric parameter distributions. Detailed analysis in numerical experiments and
successful application to the challenging industrial benchmark problem – an electric
motor test bench – validates the proposed methods.



Zusammenfassung

Das Lösen von Identifikationsproblemen im Zusammenhang mit komplexen Anwendun-
gen der Ingenieurwissenschaften stellt nach wie vor eine fundamentale Herausforderung
dar. Bezüglich der Quantifizierung von Unsicherheiten (UQ) kann das Identifikationspro-
blem als Trennungsaufgabe zwischen strukturellen Modell- und Parameterunsicherheit
formuliert werden. Diese Arbeit bietet neue Erkenntnisse und Methoden zur Bewältigung
dieser Herausforderung und demonstriert diese Entwicklungen anhand eines industriellen
Anwendungsfalls, welcher Simulation und reale Messdaten kombiniert.

Während in der Entwicklung von Methoden zur Inferenz von Modellparametern erheb-
liche Fortschritte erzielt wurden, arbeiten doch die meisten dieser Methoden unter der
Annahme eines perfekten Modells. Für eine vollständige, unverfälschte Quantifizierung
von Unsicherheiten in inversen Problemen ist es entscheidend alle Unsicherheitsquellen
zu berücksichtigen. Die vorliegende Arbeit entwickelt Methoden zur Inferenz determi-
nistischer und aleatorischer Modellparameter aus verrauschten Messdaten unter explizi-
ter Berücksichtigung der Modelldiskrepanz und zusätzlicher Quantifizierung der damit
verbundenen Unsicherheiten unter Verwendung eines Bayes’schen Ansatzes. Ein weite-
rer wichtiger Bestandteil ist die Surrogatmodellierung mit polynomieller Chaosentwick-
lung (PCE), welche das Ziehen von Zufallszahlen aus Bayes’schen Posterior-Verteilungen
mit komplexen Simulationsmodellen ermöglicht. Darauf aufbauend wird eine neuartige
Identifikationsstrategie zur Trennung verschiedener Unsicherheitsquellen vorgestellt. Die
Diskrepanz wird durch orthogonale Funktionen mit iterativer Bestimmung der optima-
len Modellkomplexität angenähert, wodurch Schwierigkeiten durch das inhärente Identi-
fikationsproblem geschwächt werden. Die Modelldiskrepanzquantifizierung wird durch
Studien zur statistischen Schätzung des numerischen Approximationsfehlers ergänzt.
Zusätzlich werden Strategien zur Approximation aleatorischer Parameterverteilungen
durch hierarchische Surrogat-basierte Stichprobenverfahren entwickelt. Die vorgeschla-
gene Methode, basierend auf der Approximativen Bayes’schen Berechnung (ABC) mit
zusammenfassenden Statistiken, schätzt die Posterior-Verteilung rechnerisch effizient,
insbesondere für große Datenmengen. Darüber hinaus liefert die Kombination mit ei-
ner Divergenz-basierten Teilmengenauswahl eine neuartige Methode zur Inferenz von
Modelldiskrepanz und aleatorischen Parameterverteilungen für UQ in stochastischen in-
versen Problemen. Detaillierte Analysen in numerischen Experimenten und erfolgreiche
Anwendung auf den herausfordernden, industriellen Anwendungsfall - einen Prüfstand
für Elektromotoren - validieren die vorgeschlagenen Methoden.
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Chapter 1.

Introduction

Life’s most important questions are, for the most part, nothing but
probability problems.

Pierre-Simon Laplace (1749-1827)

1.1. Challenges in industrial simulation tasks

Scientific computer simulations are a key technology to understand, predict and design
natural and engineered systems. This is in particular the case for increasingly complex
technical products, where high quality standards and safety critical functions yield high
demands on simulation model quality and on accuracy of numerical solution methods.
Obvious examples for such complex products are highly autonomous vehicles and robots,
but also other electric-mechanical systems like electric motors, batteries, power tools and
household devices.

Typically, mathematical models are used to conceptually describe the essential be-
havior and relationships of complex processes in many applications, such as engineering,
physical sciences, biology, medicine, finance and many others. Those models are designed
in order to solve a particular task that can not be conducted with the original system,
due to time, cost or other limiting constraints. Models however are only approximations
of complex real-world phenomena and thus contain sources of uncertainty. This can be
due to restrictive assumptions that have to be made, lack of knowledge, uncertain or
even unknown parameter values or distributions. Further, conceptual models need to be
transferred to algorithmic models or simulation models, to execute experiments on com-
putational devices. This introduces additional uncertainties due to the use of numerical
approximations or other simplifications.

In design processes, computer simulations are often used to virtually build a first set
of prototypes in order to analyze their validity, efficiency or robustness. Virtual proto-
typing reduces costs of actually building several iterations of real-world prototypes and
optimally allows faster time-to-market. To be successful it is crucial for virtual product
development to consider the above mentioned sources of uncertainties in simulation and
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Chapter 1. Introduction

also the tolerances, material inhomogeneities and other uncertainties of real products
acting in the uncertain open world.

The recent advancements in computational power allow increasingly detailed simula-
tion models and makes their solution ever faster, but uncertainties are still present in
most models. These uncertainties pose challenges for the interpretation and reliability of
simulation results. By quantifying these uncertainties and taking them into account in
mathematical problem descriptions, more refined and reliable predictions can be made.
This is what Uncertainty Quantification (UQ) aims to achieve. UQ methods focus on
understanding, quantifying and propagating uncertainty in computational simulation of
models. A crucial role in this context plays the combination of simulation models with
statistical models and data. Often, uncertainties from various sources are categorized
into aleatoric and epistemic uncertainties. Aleatoric uncertainties are inherent to the sys-
tem itself and are stochastic variations that cannot be reduced. Epistemic uncertainties
are due to model assumptions, insufficient knowledge, parameterizations or discretiza-
tions and can theoretically be reduced, e.g. by including more details or performing more
measurements [Smith, 2013, Sullivan, 2015, McClarren, 2018].

The typical framework for UQ is, given a model with inputs and outputs, to iden-
tify and quantify sources of uncertainty and then propagate uncertainty from inputs to
outputs. Typical engineering questions are then to assess the scattering of the output,
the sensitivity of the output scattering w.r.t. the input scattering, probability of failure,
optimal design or best-fitting model parameters. Example questions for this risk and
reliability assessment might be: How does the output of a technical device vary due
to tolerances of certain product parameters? Does the output scattering comply to a
specific quality goal or does it lead to events of product failure? What parameters need
to be adjusted and can some tolerances even be loosened for cost saving?

A main challenge in UQ is the handling of high computational costs associated with
the combination of simulation models and statistical models. A wide range of methods
already deal with this issue, e.g. by surrogate modeling [Sullivan, 2015]. Another remedy
is the dependence of the UQ analysis on rarely perfect simulation models and on often
unavailable, detailed knowledge of model parameters or model parameter distributions,
which leads to a discrepancy compared to measurement data.

1.2. Uncertainty in inverse problems

Measurement data can be used to improve the accuracy of simulations by improving
the knowledge of model parameters and model parameter distributions. Direct measure-
ment data of a quantity of interest is rarely available. Often measurement data is only
indirectly related to the quantity of interest via some model, requiring the solution of an
inverse problem. Other classical terms in model and data integration are model calibra-
tion, model fitting, model parameter estimation [Sullivan, 2015], system identification
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Chapter 1. Introduction

[Söderström and Stoica, 1989] and data assimilation [Reich and Cotter, 2015].
The inverse problem describes the task of finding a model parameter x ∈ X for given

measurement y ∈ Y and model M : X → Y such that the model output agrees best
with the measurement y =M(x). Generally, this equality does not hold due to

• parametric uncertainty, i.e. epistemic uncertainty due to unknown deterministic
parameters or aleatoric uncertainty due to (unknown) parameters with intrinsic
stochastic variation,

• observation uncertainty, i.e. noise and errors that are introduced by observing
measurements y,

• structural model uncertainty, i.e. lack of knowledge or missing physics in mod-
eling the true system of interest by a model M and

• solution method uncertainty, i.e. errors introduced by implementation and also
by numerical approximation schemes.

Hence, one considers y =M(x) + ε where ε represents the uncertainty due to measure-
ment noise or model error. Simply inverting M is not possible as ε is unknown and in
general M−1 is non-existent. Typically, inverse problems are ill-posed in the sense of
Hadamard. There might exist multiple solutions and stability can be critical, i.e. that
small changes in the data imply large changes in the parameters (see e.g. [Dashti and
Stuart, 2017, Ch. 4, Example 6]). In order to obtain a well-posed problem regularization
is necessary.

This can be done by Bayesian inference which has its origin in the Bayes’ theorem1.
Its idea is to improve knowledge of uncertain parameters by incorporating all available
information, namely information about the measurement process and prior knowledge
of the uncertain parameters. The Bayesian approach to inverse problems is fundamental
in the quantification of uncertainty within applications, involving the blending of math-
ematical models with data. Further, it allows the incorporation of expert knowledge in
the prior. In the absence of suitable data, often expert knowledge is used to construct
model parameter distributions for UQ, e.g. by a process called expert knowledge elicita-
tion [O’Hagan, 2019]. The uncertainty of the experts is then represented by a probability
distribution, which might be subjective and not reliable enough. The Bayesian approach
to inverse problems allows to confirm or update this prior knowledge based on data.

1 Bayes’ theorem is named after Reverend Thomas Bayes (ca. 1701-1761), who formulated a specific
case of the theorem during the 1740s in an essay on the [inverse] probability of causes. Later in 1763
it was edited and published in [Bayes, 1763] by Richard Price (1723-1791). However, it was Pierre-
Simon Laplace (1749-1827) who rediscovered it independently and gave it its modern mathematical
form and scientific application 1774 in [Stigler, 1986, engl. translation] and 1812 in [Laplace, 1812].
The discovery of Bayes theorem, the following controversy in science and achievements assigned to it
(e.g. cracking the enigma code) is covered in [McGrayne, 2011], a popular scientific book.
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Chapter 1. Introduction

The solution of this probabilistic approach to inverse problems is the so called posterior
distribution which describes the updated knowledge of the uncertain parameters, see e.g.
[Kaipio and Somersalo, 2005, Stuart, 2010, Dashti and Stuart, 2017]. Since the result of
the Bayesian approach to inverse problems is a distribution rather than a single point
estimate, one gains additional information about the uncertainty on the estimate in
contrast to deterministic approaches.

For complex models, the posterior distribution is usually not available in closed form
and needs to be approximated. The approximation can be done by filtering, variational
and sampling methods [Stuart, 2010, Gelman et al., 2013]. Markov Chain Monte Carlo
(MCMC) methods are often used in practice to compute samples from the posterior
distribution [Hastings, 1970, Robert and Casella, 2005, Kaipio and Somersalo, 2005].
An alternative are Approximate Bayesian Computation (ABC) methods which are of
advantage whenever the likelihood function is not known in explicit form or when its
evaluation is computationally too expensive. The likelihood is then approximated based
on the comparison of model simulations with the measurements [Wilkinson, 2013].

Despite the recent developments in advanced sampling methods, the solution of in-
verse problems with Bayesian inference remains challenging, in particular for high di-
mensional parameter spaces. If the parameters are aleatoric with unknown probability
distributions, then an infinite dimensional problem needs to be addressed. Hierarchical
modeling and inference is established, e.g. in [Glaser et al., 2016, Glaser, 2020], but high
dimensional and computationally expensive. This requires the development of efficient
methods for approximation.

An additional challenge in solving inverse problems is to capture all sources of uncer-
tainty and correctly identify them, often called ”identification problem”. Here, model
discrepancy, in particular, requires special care.

1.3. The special role of simulation model discrepancy

All models are approximations. Assumptions, whether implied or clearly
stated, are never exactly true. All models are wrong, but some models
are useful. So the question you need to ask is not ”Is the model true?” (it
never is) but ”Is the model good enough for this particular application?”

George E. P. Box (1919 - 2013) in [Box et al., 2009, p.61]

Discrepancy between simulation models and measurement data is almost always
present when dealing with modeling and simulation of complex, real-world systems. It
occurs over all disciplines and has several synonyms in literature, such as model discrep-
ancy, model error, model-form error, model inadequacy, model uncertainty, structural
error and prediction error.
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With available measurement data, an arising question, adding on the quote above,
is: How can data be used to first asses the model quality and second improve existing
models in order to be more useful for the particular application?

In the simulation literature model discrepancy is traditionally addressed during the
crucial practice of model verification, validation and calibration. This includes the tasks
of characterizing numerical approximation errors (verification), checking if the simulation
explains experimental measurements accurately (validation), and if not, refining the
model until sufficient accuracy is achieved (calibration) [Oberkampf and Roy, 2010]. UQ
is closely related to verification and validation with joint approaches for uncertainty
propagation [Roy and Oberkampf, 2011].

In inverse problems, though, quantifying model discrepancy together with other uncer-
tainties is still one of the most fundamental challenges in UQ. While significant progress
has been made in development of methods for model parameter calibration, still most of
those methods operate under the assumption of a perfect model. For a full quantification
of uncertainties in the inverse problem all sources should be considered. Neglecting model
discrepancy can lead to biased and overconfident parameter estimates, since model dis-
crepancy is often one of the largest contribution to the overall uncertainty. Considering
model discrepancy in inverse problems is crucial in order to obtain realistic calibrations of
unknown physical parameters [Brynjarsdóttir and O’Hagan, 2014] and to further obtain
a quantification of model quality and reliability, which is important for most engineering
tasks.

The Kennedy and O’Hagan framework [Kennedy and O’Hagan, 2001] is one of the
first attempts to model and explicitly take account of all the uncertainty sources that
arise in the calibration of computer models. In particular, model discrepancy is consid-
ered in the Bayesian formulation of the inverse problem with Gaussian Process models.
Following work, detailed later in Section 4.1, mainly discusses the core issue with the
KO approach: the identification problem, i.e. the problem of distinguishing between
effects of the model parameters and the model discrepancy. To improve identifiabil-
ity, statistical modeling assumptions including sufficient prior information are required
[Brynjarsdóttir and O’Hagan, 2014], for instance, via smoothness assumptions and low-
degree polynomial expansions for the model discrepancy [Nagel et al., 2020]. However,
careful modeling for the model discrepancy prior is required, as its choice has a perma-
nent influence onto the parameter posterior distribution [Tuo and Wu, 2015, Tuo and
Wu, 2016].

Overall, considering simulation model discrepancy explicitly in the inverse problem
with the additional goal of physically meaningful model parameters is extremely chal-
lenging. It requires further development of methods that address the identifiability prob-
lem and discrepancy modeling. Further, there is an urge for methods with affordable
computational costs. An additional challenge is the consideration of model discrepancy
together with aleatoric model parameter inference, which requires the model discrepancy
to adapt to the stochastic variations of the parameters.
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1.4. Contributions and outline

The driving application in this thesis is a direct current electric motor test bench, in-
troduced in detail in Chapter 2. The use of UQ methods is crucial for the development
and production of electric motors in order to meet high quality requirements. Inverse
UQ is required to infer unknown, aleatoric model parameters, which are itself required
for reliable virtual product development.

Chapter 3 sets up the methodology and theoretical background needed for the methods
developed in this thesis. This includes the introduction of Bayesian inference for inverse
problems, sampling methods and surrogate modeling. The latter is crucial to make
sampling with complex simulation models feasible. A core ingredient for the following
methods are Polynomial Chaos Expansion (PCE) approximations for the simulation
models.

Chapter 4 introduces methods for simultaneous inference of deterministic model pa-
rameters and model discrepancy. The main contributions are:

• A novel probabilistic numerics method for estimation of epistemic uncertainty aris-
ing in the solution of nonlinear ODEs. See Section 4.2.

• A novel method for simultaneous estimation of unknown model parameters and
model discrepancy from noisy observations for multi output dynamical systems.
Adapted from [Nagel et al., 2020], the model discrepancy is hereby modeled by or-
thogonal functions and extended with an iterative determination of optimal com-
plexity in order to account for identifiability problems. The method is compu-
tationally more efficient in handling large number of data points in contrast to
Gaussian Processes model discrepancy approaches. See Section 4.3.

• Improvement of sampling with surrogate-based gradients, in Section 4.4.

• Application and detailed analysis of the proposed method for synthetic electric
motor data. And successful application to real-world data from the test bench,
with challenging determination of optimal complexity. See Section 4.5.

Chapter 5 proposes efficient methods for inference of unknown aleatoric model pa-
rameter distributions from noisy observations in complex systems. The parameters are
estimated in a hierarchical Bayesian setting. In particular, the main contributions are:

• A novel general methodology, leading to an immense speed-up of ABC sampling
by a combination of PCE approximations of the forward problem, sparse grid
techniques and the use of summary statistics. The proposed methodology is
application-neutral and can be applied to a wide range of problem classes. See
Section 5.1.
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• Theoretical results in Theorem 3, proving that ABC is stable w.r.t. approximations
of the underlying forward model.

• Showcase of the proposed methodology on the electric motor test case with syn-
thetic and real-world data from the test bench. The results of the hierarchical
surrogate-based ABC method with summary statistics are compared to an MCMC
method using PCE and Laplace based preconditioners for the sampling. In partic-
ular, the proposed method demonstrates a performance comparable to MCMC in
terms of accuracy while reducing the computational time. The speedup depends
on the data size and increases tremendously with larger data.

Chapter 6 then combines aleatoric model parameter and model discrepancy inference
with following main contributions:

• A novel methodology called hierarchical surrogate-based discrepancy-corrected in-
ference for aleatoric parameter estimation, by combining the previous methods in
a computationally efficient way with divergence-based subset selection and PCE
surrogate modeling for the model discrepancy.

• Successful application to the electric motor test bench data and comparison to
inference with a model discrepancy surrogate based on reference data.

This work concludes in Section 7. Preliminary results of this thesis were already pub-
lished in:

• [John et al., 2018a, John et al., 2019b] and in the detailed preprint [John et al.,
2018b] for simultaneous inference of one deterministic parameter and model dis-
crepancy;

• [John et al., 2019a] for statistical quantification of epistemic uncertainty arising in
the solution of nonlinear ODEs;

• [John et al., 2020] for speed up of aleatoric parameter distribution inference with
hierarchical surrogate-based ABC with summary statistics;
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Chapter 2.

Application and mathematical modeling

The electrodynamic action of an induced current opposes equally the
mechanical action inducing it.

H. F. Emil Lenz (1804-1865), Lenz’s law1

The methods considered in this work are applied to a direct current (DC) electric
motor test bench. Section 2.1 introduces a basic electric motor simulation model, which
is later used for synthetic data generation and detailed analysis. Section 2.2 introduces
the electric motor test bench and further detailed modeling. Later on the real world data
from the test bench is used to test the considered methods on robustness. Finally, Sec-
tion 2.3 sets the mathematical description of the problems: first the forward propagation
of uncertainty and second – the focus of this work – the inverse problem.

2.1. Basic electric motor model

An electric motor is a rotating electrical machine converting electrical into mechanical
energy. Electric motors can either operate on direct (DC) or on alternating current (AC)
and are thus different in their power source, construction and control. This work con-
siders DC electric motors, which are powered from a battery or an AC to DC converter.
With the magnitude of the applied voltage the motor speed can be varied (for AC motors
one needs to adjust the frequency to control the speed). Main elements of DC motors
are a stator and a rotor and often the stator is fixed and the rotor is movable, e.g. as in
Figure 2.1. The stator creates a magnetic field in which the rotor is located, either by
permanent magnets, or by one or more field windings on the stator. The rotor itself is
surrounded by the armature winding, consisting of several coils. When electrical current
is applied to the armature coil a magnetic field is generated. Due to the permanent mag-
netic field caused by the stator a physical force, the Lorentz force, affects the rotor. This
force causes the rotor to rotate. After a certain rotation, when the magnetic fields are
aligned, brushes and a commutator located on the rotor changes the poles, such that the

1Lenz’s law is a consequence of the conservation of energy. It was first published in [Lenz, 1834]
(German), see [Stine, 1923, p.111] for an English translation.
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current and therefore the magnetic poles of the rotor reverse their direction. Thus, the
rotor remains in its continuous rotation [Toliyat and Kliman, 2004]. For a short history
on the invention of electric motors see [Doppelbauer, 2018] and consult the references
therein for more details.

Figure 2.1.: DC electric motor schematic sketch (left) and circuit diagram (right)2.

Two equations, one representing the electrical and one the mechanical side, are com-
bined for a mathematical description of a DC electric motor system. Variables of interest
are current I [A] and voltage V [V ] on the electrical side and torque Tm [Nm] and angu-
lar velocity, i.e. the rotational speed ω [rad/s] on the mechanical side. The electrical part
of a DC motor can be explained by the armature circuit, see Figure 2.1 for a schematic
diagram (where θ denotes the angle of rotation and θ̇ = ω). It is determined by

• an applied voltage V that has to be compensated by a resistance R [Ω], inducing
the armature current I(t) and leading to V = RI(t);3

• a coil that induces the voltage Vc = Lİ(t), where L [H] is the armature circuit

inductance and İ(t) = dI(t)
dt is the change of current in time;4

• and the internal voltage generated by the motor Vi = cmω, where cm [V s/rad] is
a motor constant.

Combining all parts of the armature circuit results in

V = RI(t) + Lİ(t) + cmω(t). (2.1)

The mechanical part of the DC motor is determined by its torque Tm. It is composed of

• inertia of the motor J [kg m2], which arises only when rotational speed changes,
leading to TJ = Jω̇(t);

2Adapted from http://eee-books01.blogspot.com/2015/06/typical-brushed-motor-in-cross-section.html and http://ctms.engin.

umich.edu/CTMS/index.php?example=MotorSpeed&section=SimulinkModeling, respectively.
3This relationship is called Ohm’s law and was proven in 1826 by G.S. Ohm (1789-1854) [Ohm, 1826].
4The direction of Vc is given by Lenz’s law.
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• friction, with friction proportionality constant D [kg m/s], which has a direct
influence TD = Dω(t);

• and by a (constant) load torque T [Nm] which is required to compensate a me-
chanical load.

Altogether, this leads to
Tm = Jω̇(t) +Dω(t) + T. (2.2)

To combine (2.1) and (2.2), the torque Tm can be expressed by Tm = cgI(t), where
cg [Nm/A] is another motor constant. For t > 0, this leads to the basic electric motor
ordinary differential equations (ODEs)

İ(t) =
1

L
(−RI(t)− cmω(t) + V ) , (2.3a)

ω̇(t) =
1

J
(cgI(t)−Dω(t)− T ) , (2.3b)

with initial conditions I(0) = I0 ∈ R, ω(0) = ω0 ∈ R [Toliyat and Kliman, 2004].
This linear ODE system with given constant coefficients can in principle be solved

analytically. However, this is generally not the case for most problems. Hence, to be
more general we use a numerical method to approximate the solution. Here the ODE
system is solved by an explicit Runge-Kutta Method of order 4 (in particular dopri5
(Dormand and Prince), see [Wanner and Hairer, 1991]) with Nt = 601 equidistant time
steps ti, i = 1, . . . , Nt, in the time interval [0, 6] seconds. We denote the discretized
model, mapping from model parameters x ∈ X ⊆ Rn to discrete approximations of the
two states current I and angular velocity ω, by

M4t : X → R2×Nt . (2.4)

In the following we refer to M4t as simulation model M, by omitting the index 4t
for notional convenience. Figure 2.2 displays such an approximation of a motor starting

0 2 4 6

0

0.5

1

t

I

0 2 4 6

0

2

4

t

ω

Figure 2.2.: Example trajectory of current I and angular velocity ω for the basic electric
motor model (2.3).

from rest, i.e. with I(0) = 0, ω(0) = 0, and with a fixed set of parameters (R = 9, L =
0.11, cm = 0.5, cg = 3, D = 0.1, J = 0.1, V = 12, T = 2.5).
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2.2. Electric motor test bench

This section first describes the set-up of the electric motor test bench, second how mea-
surements are obtained and last the corresponding simulation model. This is partly
based on previous work by Glaser et al. [Glaser et al., 2016] and Glaser [Glaser, 2020].
The test bench was also used in own previous work [John et al., 2020], which we follow
closely in the upcoming description.

The hardware of the test bench is based on a windshield wiper electric motor with an
attached break to mimic mechanical loading. Figure 2.3 presents a schematic diagram.
The mounting 6© builds the base of the test bench. Starting from left to right a DC
power supply 4© is needed to drive the engine. Then there is the electric drive 1© com-
posed of the motor and a worm gear. Metal couplings 5© connect the shaft components
and a torque sensor 2© is mounted on the motor shaft. Besides the torque sensor addi-
tional sensors are connected with the electric drive to measure thermal characteristics.
Furthermore, measurements of rotational speed can be obtained. On the right side of
the shaft there is an electromagnetic powder brake 3© that is needed for correctly deal-
ing with a load by minimizing the back-drive ability5. The brake opens the possibility
to run the motor in different modes. Thereby, different measurements corresponding
to the different operating modes of the test bench can be obtained to analyze motor
characteristics.

Figure 2.3.: Schematic diagram of the test bench hardware [Glaser et al., 2016].

Due to tolerances, material uncertainties and different suppliers, some components of
electric motors have varying properties when coming from the production line. This
yields varying characteristics of the motor. The special nature of the test bench is that

5Back-drive ability is the degree of ease of which a motor can be driven by its attached load when the
power is removed from the motor.
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some parameters can be varied on a single set-up in order to mimic some of those varia-
tions. This can be done in an automated way and without replacing components of the
test bench. Automation is achieved by controlling the test bench with a dSPACE6 con-
trol unit that acts according to a control software on a personal computer. In particular
the test bench easily allows to vary the voltage V by a controllable power source and
the load torque T by controlling the magnetic powder brake. In reality the load might
vary largely, e.g. for a windshield wiper due to effects of wind, rain, snow, ice and dirt.
And the voltage might vary due to different batteries, the battery age and usage and
due to the energy consumption of other devices. For safety reasons it is important that
the electric motor works reliably in all scenarios.

2.2.1. Raw measurement data

To mimic aleatoric parameters we define reference distributions for voltage π(V ) and
torque π(T ) and draw samples (Vi, Ti), i = 1, . . . , 200 from those distributions. Run-
ning the test bench sequentially with the sampled values as input results in 200 sets
of measurement signals. I.e. for a given sample (Vi, Ti) we start the test bench and
record measurement signals of current yIi ∈ RNraw

t and angular velocity yωi ∈ RNraw
t

with sampling frequency 10 kHz for around 10 seconds. The number of data points in
each of these raw measurement signal N raw

t is around 105. Figure 2.4 displays some of
these raw measurement signals.

The raw data requires some preprocessing steps for further proceedings. Before de-
tailing on this, let for notational convenience denote by (·) a placeholder for I or ω
interchangeably, e.g. in y(·). Further define following.

Definition 1 (Measurement signal noise estimation). Let y = [y(t1), . . . , y(tNt)] ∈ RNt

be a noisy measurement signal which is assumed to be stationary in a time interval
[ta, tb] ⊂ [t1, tNt ]. Let J ⊂ {1, . . . , Nt} be an index set of time points tj ∈ [ta, tb] with
j ∈ J . Then

y =
1

|J |
∑
j∈J

y(tj). (2.5)

denotes the empirical mean of y w.r.t. the time interval [ta, tb] and

σ =

√
1

|J | − 1

∑
j∈J

(y(tj)− y)2, (2.6)

denotes the empirical noise standard deviation of y, w.r.t. the time interval [ta, tb]. (In
cases where the measurement signal y is non-stationary a moving average could be used
to remove the trend first.)
6 dSPACE digital signal processing and control engineering GmbH, https://www.dspace.com/
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Figure 2.4.: Raw measurement signals of current I and angular velocity ω, for test bench
runs with index i = 65, 103, 118, 170 and 180 (top to bottom).
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Definition 2 (z-scores). For a set of samples S = {si ∈ R, i = 1, . . . , N} define by

zi :=
si −median(S)

std(S)
. (2.7)

the z-scores for i = 1, . . . , N , where std(S) is the empirical standard deviation. Option-
ally, the median can be exchanged by the mean, however the median is less sensitive to
outliers.

The raw data is preprocessed with following steps:

1. Outlier detection and removal: In some measurements unwanted oscillations or
other patterns occur. Those might be due to the test bench setup and in particular
due to the magnetic powder break, which does not reliably apply constant torque
for all scenarios. E.g. test bench run with numbers i = 65 and i = 180 in
Figure 2.4 have oscillations in ω and run i = 118 has some ripple in I. To find
and exclude such runs we compute for each run i = 1, . . . , 200 the empirical noise

standard deviations σ
(·)
i in the time interval [3,7] seconds (see Definition 1) for the

measurement signals of I and ω respectively. Those are displayed in Figure 2.5.

Based on {σ(·)
i }i=1,...,200 we compute the z-scores z

(·)
i (see Definition 2) and use

thresholds τ > 0 on z
(·)
i as a criterion to decide what data should be excluded.

This yields the set of excluded indices I(·) = {i : z
(·)
i ≥ τ}. E.g. for I we exclude

all data with zIi ≥ 2.5 and for ω with zωi ≥ 0.9, yielding the two sets II and Iω,
respectively. The union I = II ∪Iω of the excluded data is marked by red squares
in Figure 2.5.
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Figure 2.5.: Empirical noise standard deviations σ
(·)
i of the raw test bench measurement

data in the stationary time interval [3,7] seconds for runs i = 1, . . . , 200.
The black line shows the median and the red squares indicate the union
I = II ∪ Iω of detected outliers.
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2. Align starting points: The measurement recording starts roughly 0.4 seconds
prior to the ramp up of the applied voltage and corresponding ramp up of the
current, see Figure 2.4. Thus we align the starting points of each measurement by
discarding the first few observations where only ground noise is happening.

3. Warm-up phase: Temperature plays an important role in the behavior of the test
bench. Figure 2.6 displays the empirical means T(·),i, w.r.t. the time interval [0,10]
seconds (see Definition 1), for test bench runs i = 1, . . . , 200 of the temperature
signals measured at the worm, brush, magnet and winding. The mean of the
temperatures increases largely for the first test bench runs and then stabilizes,
such that the later runs are all within a similar temperature range. Thus we
discard the first few test bench runs in order to account for a warm-up phase of
the electric motor and take the last 100 runs, of course with prior removal of the
identified outliers.
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Twinding

Tworm

Tmagent

Tbrush

Figure 2.6.: Empirical means T(·),i, w.r.t. the time interval [0,10] seconds, for test bench
runs i = 1, . . . , 200 of the temperatures measured at the worm, brush, mag-
net and winding.

4. Filtering: As detailed in [Glaser, 2020, Ch. 2] the dSPACE control unit is not
completely decoupled from the test bench and introduces additional noise com-
ponents, which have frequencies around 3 × 107Hz and 4 × 105Hz. However the
sampling rate of the measurement device is only 10 kHz, thus this additional noise
can not be captured fully. To remove the effects a second order Butterworth low
pass filter [Butterworth, 1930, Tuzlukov, 2002] is applied on each measurement sig-
nal with a cut-off frequency of 5×102 Hz. The cut-off frequency is an upper bound
on the interesting motor signal characteristics. This filtering step is in particular
required when the data is further downsampled, as detailed in the next step.

5. Downsampling: To reduce the data size the measurement signals are downsam-
pled from 10kHz to 100 Hz. However this thinning can have major effects on the
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resulting data and cautious inspection is required. E.g. downsampling measure-
ment run i = 170 (4th row in Figure 2.4) without filtering is very sensitive to
the cut-off of the first few data points in Step 2. This is visualized in Figure 2.7

where the mean y
(·)
170, w.r.t. the time interval [3,7] seconds, for I and ω is shown

versus the number of cut-off time points c ∈ {0, . . . , 20}. The effects on y
(·)
170 are

negligible for ω (less than 0.1% deviation), but drastic and non-acceptable for I,
where a deviation of more than 20% occurs. This can be improved by filtering the
signals before downsampling.
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Figure 2.7.: The mean y
(·)
i for I and ω, w.r.t. the time interval [3,7] seconds, of the

downsampled data (•) and the filtered and downsampled data (+) depends
on the number of cut-off time points c ∈ {0, . . . , 20}. The mean of the raw
data (black line) is (almost sure) independent of c.

6. Cut-off: The last step is to cut-off all measurement signals after 6 seconds.

2.2.2. Preprocessed measurement data

After preprocessing the raw data the resulting test bench measurement data set

Y := {yIi ,yωi , i = 1, . . . , N} (2.8)

contains N = 100 noisy measurement series of current I and rotational speed ω. For a
fixed i the discrete measurement signals

yI := [yI(t1), . . . , yI(tNt)] ∈ RNt , (2.9a)

yω := [yω(t1), . . . , yω(tNt)] ∈ RNt , (2.9b)

are each of size Nt = 601 in the time interval [0, 6] seconds with equidistant time points
(t1, . . . , tNt) ∈ [0, 6]. Overall, Y contains 2 × N × Nt data points. An overview of Y is
given in Figure 2.8.
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Figure 2.8.: The figures show the preprocessed test bench measurements Y of the current
I and the rotational speed ω for N = 100. The area between the 2.5% and
97.5% percentile (shaded), mean+/-standard deviation (dash-dotted) and
the mean (solid) of all N measurements are depicted. The black lines show
an exemplary noisy sample measurement series. Further, at two time points
(vertical lines at t∗ = 0.15 and t∗ = 4 seconds) histograms and kernel density
estimation plots are displayed on the right hand side. Note, for visualization
purpose I values normally reaching I = 30[A] are truncated at I = 5[A].
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Reference distributions

So far we have not detailed on the definition of the reference distributions for the aleatoric
parameters X = (V, T ) in order to generate the data. They are defined as Gaussian
with π(V | mV , σV ) = N (mV , σ

2
V ) and π(T | mT , σT ) = N (mT , σ

2
T ), where the hyper-

parameters are set to mV = 13.5,mT = 2.5, σV = 0.7, σT = 0.2. With this setting the
resulting test bench measurement data set Y is visualized in Figure 2.8.

To make things clear: In reality the distributions π(V ) and π(T ) might not be known.
However, this test bench allows to test inference methods on real world data and addi-
tionally validate the results on reference distributions and even on reference samples. In
this work we constrain ourselves on Gaussian distributions as they are already sufficient
to demonstrate the proposed solution methods. Note that the methods introduced in
this work can be generalized for other distributions and, of course, can be used for other
applications with other parameters, too.

Noise analysis

For a basic analysis of the noise structure in each measurement y
(·)
i ∈ Y we compute

the mean y
(·)
i (see Definition 1) w.r.t. the stationary time interval [2, 6] seconds and the

residuals

ε
(·)
i = y

(·)
i − y

(·)
i ∈ R401, (2.10)

respectively for I and ω. With the assumption that the (noise free) underlying signal of I

or ω is constant in this time interval, it can be well approximated by y
(·)
i . Consequently,

the residuals ε
(·)
i , interpreted as (approximative) realizations of the underlying obser-

vation noise , give insights on the unknown observation noise distribution. Figure 2.9

presents histograms for each ε
(·)
i individually and also Gaussian, Laplace and Cauchy

distributions fitted (via maximum likelihood estimation) to the union {ε(·)
i }i=1,...,N , re-

spectively for I and ω. Additionally consulting quantile-quantile (Q-Q) plots, suggests
the Gaussian distribution to be the best fit (compared to Laplace and Cauchy distri-
butions) for the noise in I and ω, albeit the noise in I has a bi-modal structure. The
latter might be due to a phenomena called cogging torque which is due to variations in
the magnetic field, see [Islam et al., 2004] and the references therein for further details.
An additional cause might be the issues in current recording described in Steps 4 and
5. For simplicity this will be considered as noise in the following and covered within the

Gaussian noise assumption. The fitted Gaussian distributions N (0, (σ(·))2) for ε
(·)
i have

estimated values σI ≈ 0.22 and σω ≈ 0.42.
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Figure 2.9.: Noise analysis of the preprocessed measurement data Y. The gray his-

tograms present each measurements y
(·)
i ∈ Y noise ε

(·)
i w.r.t. to the sta-

tionary time interval [2, 6] seconds, respectively for I and ω. Gaussian (solid
black), Laplace (dashed black) and Cauchy (dash-dotted black) distributions
are fitted.

2.2.3. Simulation model

In the following two simulation models for the test bench with low and higher complexity
are introduced. The basic test bench simulation model differs to the previous basic
model (2.3) by modeling the worm gear in the mechanical part of the ODE by

ω̇(t) =
1

J
((cgI(t)−Dω(t))η − Tig) , (2.11)

where η ∈ R is the gear meshing efficiency of the worm gear and ig ∈ R is a constant
proportional to the worm gear ratio.

The second test bench model builds up on this and additionally considers a detailed
thermal model interconnecting with the electrical and mechanical part. This leads to the
introduction of additional parameters describing thermal characteristics and an overall
detailed and complex model. In the following we only give a rough overview on the
model and refer for details to [Glaser et al., 2016, Glaser, 2020]. The model equations
are

İ(t) =
1

L
(−RI(t)− cmω(t) + (Vt(t)− Vdrop)) , (2.12a)

ω̇(t) =
1

J
((cgI(t)− τloss − τfric)η −Dω(t)− Tt(t)ig) , (2.12b)

where:

• the resistance R depends linear on the temperature of the coil;

• the motor constant cm depends nonlinear on temperature of the magnet and on
the current I(t); further cg ≡ cm;
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• Vdrop depends nonlinear on the current I(t);

• the gear meshing efficiency η of the worm gear is a nonlinear function of the lead
angle of the worm, the pressure angle and the friction of the worm (depending
nonlinearly on the worm temperature);

• τloss summarizes the hysteresis loss and the eddy current loss, which both depend
nonlinear on current I(t) and temperature of the magnet;

• τfric = τfric,air + τfric,motor summarizes the air friction loss τfric,air that depends
on the angular velocity ω(t) and the friction loss of the motor τfric,motor;

• τfric,motor is a sum of the friction losses at the bearings, depending on the bearing
temperatures and η and the friction loss at the commutator depending on the
temperature of the commutator;

• voltage Vt(t) and load Tt(t) for the test bench are considered as time depended, as
they are delayed in the hardware until they reach stationary values V and T .

The model parameters are either known from expert knowledge, given by look-up
tables or calibrated based on reference measurements with known realizations of V and T .
An assumption for the model calibration is that the temperatures of the test bench motor
are already on a stationary level. This is in line with the preprocessing Step 3 above,
where the first measurements are discarded to account for a warm up phase. Albeit
detailed modeling, reality is still not described perfectly by the model and parameter
calibration is non-trivial. The latter requires informative data and the solution of a
nonlinear optimization problem.

The test bench model is solved by an adaptive numerical integration scheme in the time
interval [0, 6]. The numerical approximation is then linearly interpolated to Nt = 601
equidistant time steps, leading to similar outputs as in the basic model case above.
Again, we denote the discretized model, mapping from model parameters x ∈ X ⊆ Rn
to discrete approximations of the states I and ω, by

M4t : X → R2×Nt . (2.13)

As it will be clear from context which model is used, we overload notation and also refer
to this numerical approximation as simulation model M, by omitting the index 4t for
notional convenience.

2.3. Mathematical modeling

This section summarizes and mathematically describes the considered problems. Sec-
tion 2.3.1 details on forward propagation of uncertainty and Section 2.3.2 on the inverse
problem.
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2.3.1. Forward propagation of uncertainty

In the previous sections we denoted the numerical approximation of the electric motor
ODE systems as simulation modelM. To be more specific, for given deterministic model
parameters x ∈ X ⊆ Rn, the simulation model

M : X → Rk×Nt (2.14)

is the operator that numerically approximates the solution of an ODE system of order
k ∈ N and returns an approximation of the k = 2 states (current I and angular velocity
ω) at Nt discrete time points (t1, . . . , tNt).

In reality some of the simulation model parameters x might be so-called aleatoric
parameters, i.e. instead of taking a fixed single value they can fluctuate. Consequently,
to reflect these variations in x as well, they are modeled as random variables. Let Xi, i =
1, ..., n be the aleatoric model parameters and X = (X1, ..., Xn) the vector of all these
random variables on an underlying probability space (Ω,A,P) with Ω the underlying
sample space, A the sigma algebra and P : A → [0, 1] the probability measure, such that
X : Ω → X . A realization of X is denoted by x := X(ω) = (X1(ω), ..., Xn(ω)) ∈ X for
ω ∈ Ω. With the random vector X the simulation model M(X) becomes random as
well with

M(X) : Ω→ Rk×Nt . (2.15)

A realization ofM(X) is denoted by y :=M(X)(ω). IfM would be continuous in time,
then M(X) would be a k dimensional stochastic process.

Definition 3 (Forward propagation of uncertainty). Let π(X) be a specific probability
distribution of X. The task of forward propagation of uncertainty is now to propagate the
uncertainty from X to M(X) and quantify, i.e. characterize the distribution of M(X).

Solutions to this problems are well established, see e.g. [Sullivan, 2015]. Typically
Monte Carlo methods are employed for this task by sampling from X and evaluatingM
at the samples in order to obtain samples of M(X). Standard Monte Carlo sampling is
very inefficient and if the evaluation ofM is computationally demanding, more efficient
methods are required. For example surrogate-based methods, whereM is replaced by a
cheaper to evaluate surrogate, see e.g. [Sullivan, 2015]. As there is already an established
zoo of methods for forward uncertainty propagation the development of further methods
is not the focus of this work, however methods to deal with this problem are helpful
to approach the more difficult inverse problem. The solution of the inverse problem
often requires numerous evaluations of the forward problem. Consequently, methods
used to accelerate the forward problem, for instance, can further be used to solve inverse
problems more efficiently.

As already elaborated in the introduction, the forward propagation of uncertainty
sensitively depends on the specified probability distribution of X. In reality this is
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rarely known in detail and often crude assumptions are made, which of course influences
the quality of the quantified distribution ofM(X). FurtherM is only an approximation
of the reality and thus introduces additionally a simulation-reality mismatch, denoted
by simulation model discrepancy.

2.3.2. Inverse problem

Recall the definition and notation of the test bench measurement data Y in (2.8). First,
consider only one test bench run with the measurement series y := [yI ,yω] ∈ R2×Nt

and the simulation model M with simulation model parameters x ∈ X . Assume that
the time points of M correspond to those of the measurements, which might require
additional interpolation within M.

Definition 4 (Inverse problem). An inverse problem is the task of finding simulation
model parameters x† ∈ X , such that

y =M(x†), (2.16)

where the simulation model or forward operator M is continuous, bounded and suffi-
ciently smooth. The data y is in general limited and noisy.

Section 1.2 already elaborated on the challenges and uncertainties associated with
inverse problems. In the following, Chapter 3 details on established solution methods and
introduces the Bayesian approach to inverse problems. Then, Chapter 4 present methods
to solve the inverse problem by additionally considering simulation model discrepancy.

Now, consider the full data set Y. There, measurement signals have some variations
that cannot be explained by measurement noise alone, but are due to unknown aleatoric
system parameters X. With modeling of X and the stochastic simulation modelM(X)
as in the previous section, we define the following problem.

Definition 5 (Stochastic inverse problem). A stochastic inverse problem is the problem
of finding a probability distribution π(X) of the aleatoric simulation model parameters
X such that

Υ
d
=M(X), (2.17)

where Υ : Ω→ Rk×Nt is the true underlying process, which is only known by observations

Y. Here
d
= denotes the equality in distribution.

This problem, of course, inherits all of the previous challenges. Additionally, de-
spite the number of aleatoric parameters is still finite, it is now an infinite dimensional
problem, due to the unknown probability distribution. The parameters to infer are of
stochastic nature and not deterministic, thus it is denoted as stochastic inverse problem.
Chapter 5 deals with the solution of stochastic inverse problems to infer aleatoric pa-
rameter distributions. Building on this, Chapter 6 additionally considers the inference
of simulation model discrepancy based on the methods introduced in Chapter 4.
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Chapter 3.

Numerical methods for inverse problems

Man muss immer umkehren. (Invert, always invert.)

Carl Gustav Jacob Jacobi (1804-1851)

This chapter introduces methods for inverse problems that will be used later on.
Section 3.1 starts with an overview on Bayesian inference and corresponding posterior
approximation methods. A brief review on model selection is given in Section 3.2. Sec-
tion 3.3 introduces surrogate models such as Polynomial Chaos Expansions and Gaussian
processes that are used for acceleration of both forward and inverse problems. Addition-
ally, they are useful for sensitivity analysis, detailed in Section 3.4. In Section 3.5 we
conduct a stability analysis for the use of surrogate models in Bayesian inference and
finally conclude with related work on inverse problems in Section 3.6.

Note that parts of the text in the following are taken and slightly modified from the
authors own work [John et al., 2020].

3.1. Bayesian inference

Recall the inverse problem in Definition 4 where the task is to infer unknown simulation
model parameters x† ∈ X from given data y ∈ Rk×Nt , such that y = M(x†). Due to
the noise in y and the model error in M one generally considers

y =M(x†) + ε, (3.1)

where ε models the measurement and model error. In an abstract way M : X →
Rk×Nt can be seen as the uncertainty-to-observation map, which consists of the solution
operator of the underlying forward model and the observation operator. However, as
already mentioned this problem is typically ill-posed in the sense of Hadamard, i.e.
existence, uniqueness and stability are not necessarily given. A classical approach to
solve the inverse problem is by minimizing the data misfit

min
x∈X

1

2
‖y −M(x)‖2. (3.2)
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In order to obtain a well-posed problem regularization is necessary. One approach is
Tikhonov regularization, also known as ridge regression in statistics, where a regulariza-
tion term R(x) is added to the data misfit

min
x∈X

1

2
‖y −M(x)‖2 + λR(x), (3.3)

for a λ > 0 [Kaipio and Somersalo, 2005]. An example is R(x) = ‖x̂ − x‖2 for some
norm ‖·‖ and a fixed x̂ ∈ X .

The Bayesian approach to inverse problems yields a natural regularization of ill-posed
problems due to the modeling and definition of a probability distribution for the mea-
surement and model error ε and a prior distribution for the unknown parameters x.
With this the Bayesian regularization has a clear interpretation in terms of statistics of
ε and x. In contrast to this, as some say, the regularization in classical optimization
is somewhat arbitrary [Stuart, 2010]. Furthermore and more importantly, the Bayesian
approach is popular for uncertainty quantification in inverse problems, as it allows to
quantify the underlying uncertainties, such as in the unknown parameters x. It delivers
an unique probability measure containing information about the relative probability of
different parameters x given the data y, whereas classical optimization often delivers
just one local minimizer. Note that classical optimization also allows some kind of un-
certainty estimation for local minimizers with Cramér-Rao bounds based on the Fisher
information, for instance, but this is with the assumption of Gaussianity for the esti-
mator. We refer the reader to [Kaipio and Somersalo, 2005, Stuart, 2010, Dashti and
Stuart, 2017] for more details on Bayesian inverse problems.

We model the unknown parameters x ∈ Rn as random variables, characterized accord-
ing to a given prior distribution µ0 and assume that the measurement and model error
ε is independent of x and (for simplicity) normally distributed, i.e. ε ∼ µe = N (0,Γ)
with Γ ∈ RkNt×kNt symmetric, positive definite. The solution of the Bayesian inverse
problem is then the posterior distribution, the conditional distribution of the unknown
parameters x given the observations Y. The posterior distribution can be characterized
via Bayes’ formula.

Theorem 1. [Stuart, 2010] Assume that the least-squares potential Φ : X ×Rk×Nt → R
with Φ(x;Y) = 1

2‖Y −M(x)‖2Γ is measurable w.r.t. the product measure ν0(dx, dY) =
µ0(dx)µe(dY) and that

Z =

∫
Rn

exp(−Φ(x;Y))µ0(dx) > 0 (3.4)

for Y µe-a.s.. Then, the conditional distribution µY of x|Y exists, is absolutely contin-
uous w.r.t. the prior distribution µ0 and the Radon-Nikodym derivative is given by

µY(dx) =
1

Z
exp(−Φ(x;Y))µ0(dx) (3.5)
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for Y µe-a.s..

In the finite dimensional setting, Bayes’ theorem can be formulated via the corre-
sponding Lebesgue densities as

π(x | Y) =
1

Z
πe (Y −M(x))π0(x) , (3.6)

where π0 and πe denote the Lebesgue densities of the prior and measurement distribu-
tions, respectively. In the following we correspond to π(x | Y) as posterior distribution
of x given Y. The measurement distribution πe (Y −M(x)) is also denoted as likelihood
and often the notation πe (Y | x) is used interchangeably. The likelihood combines the
physical model M with the statistical model of the measurement and model error µe.
Z =

∫
Rn πe (Y −M(x))π0(x) dx is called marginal likelihood or evidence and works as

a normalizing constant. It requires the solution of a high dimensional, complex integral
which is computational challenging. Thus it is usually omitted and only following is
considered

π(x | Y) ∝ πe (Y −M(x))π0(x). (3.7)

Note that in the Bayesian sense, the prior and posterior distributions are rather to
be interpreted as degree-of-belief or plausibility of deterministic parameters x, than as
actual probability distributions. They reflect the epistemic uncertainty. I.e. the prior
distribution reflects the belief of plausible values for x before data is observed, e.g. based
on previous knowledge or an experts opinion. And the posterior distribution is then an
update of this prior belief based on the available data y and the specified likelihood.

Generally, the posterior distribution π(x|y) is intractable and one can not sample
from it directly. In particular due to the solution operator of the underlying forward
map involved in the characterization of the posterior distribution, we usually rely on
approximation methods.

3.1.1. Maximum a posteriori estimator and Laplace approximation

For some real world applications, the approximation of the whole posterior distribution
is computationally challenging. Point estimators or approximations via simpler distribu-
tions such as Gaussian distributions are very common in practice to reduce the overall
computational effort. One commonly used point estimator is the maximum likelihood
estimator (MLE)

xMLE = arg max
x∈X

πe (Y −M(x)) , (3.8)

which, however, does not take into account the prior. In contrast to the MLE, the
maximum a posteriori (MAP) estimator

xMAP = arg max
x∈X

π(x | Y) = arg max
x∈X

πe (Y −M(x))π0(x) (3.9)
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is defined as the point x with highest posterior density, consequently taking the prior
into account. Note that there is the possibility that the MAP estimate is not unique or
does not exist. For definition of the MAP in the infinite dimensional setting, we refer to
[Dashti et al., 2013, Helin and Burger, 2015].

The Bayesian approach can be linked to classical optimization methods. For example
the least squares solution of the data misfit (3.2) corresponds to the MLE. And the least
squares solution of the regularized data misfit (3.2) corresponds to the MAP, if prior
distribution and regularization term correspond. See [Stuart, 2010] and also [Dashti and
Stuart, 2017, Ch. 4.3] for further reading. In the latter reference the link between the
MAP and a Tikhonov-Phillips regularized least squares problem is shown for Gaussian
priors.

In case of large data or informative data, the posterior distribution often shows a
concentrated behavior in a small region of the parameter domain. In this setting, the
posterior can be well represented by the Laplace approximation µ̃YLaplace

µY ≈ µ̃YLaplace := N (xMAP, C), (3.10)

a Gaussian distribution with mean xMAP and covariance C = H−1(xMAP), where
H(xMAP) denotes the Hessian of the log-posterior density at the MAP. We refer to
[Schillings et al., 2019] for more details.

Using a Quasi-Newton method to optimization Equation 3.9 yields the MAP and ad-
ditionally an approximation to the inverse Hessian at the MAP. By using the Symmetric-
Rank-1 (SR1) Hessian update strategy theoretic results for convergence to the true Hes-
sian are available, see e.g. [Schillings and Schwab, 2016] and the references therein.

3.1.2. Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) methods approximate the posterior distribution
π(x | Y) by generating a Markov chain with the posterior as limit distribution (under
suitable conditions). MCMC methods are often seen as the gold standard for Bayesian
inverse problems. Most common are the Metropolis Hastings algorithm, the Gibbs sam-
pler, the Hybrid Monte Carlo algorithm (HMC) and their respective variants. We briefly
introduce the Metropolis Hastings MCMC (MH-MCMC) algorithm and refer the reader
to [Robert and Casella, 2005, Gelman et al., 2013, Dashti and Stuart, 2017] and the ref-
erences therein for further details on MCMC methods. For details on the gradient-based
No-U-turn sampler (NUTS) see [Hoffman and Gelman, 2014].

For a proposal distribution (or candidate generating kernel) q : Rn × Rn → R+ MH-
MCMC generates samples that approximate π(x) := π(x | Y) according to Algorithm 1.
Usually we cannot evaluate the posterior distribution directly, thus it is replaced in the
acceptance ratio α by the right hand side of Equation (3.6), where luckily the evidence
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Algorithm 1: Metropolis Hastings MCMC algorithm [Hastings, 1970]

1. Pick the initial value x1 ∈ Rn and set j = 1.
2. Draw x? from proposal distribution q(x | xj) and calculate the acceptance
ratio

α(xj ,x
?) = min

(
1,
π(x?)q(xj | x?)
π(xj)q(x? | xj

)
.

3. Draw u ∈ [0, 1] from an uniform probability density.
4. If α(xj ,x

?) ≥ u, accept x? and set xj+1 = x?, else reject and set xj+1 = xj .
5. If j = J , the desired sample size, stop, else increment j and return to 2.

cancels in the fraction, such that

α(xj ,x
?) = min

(
1,
πe (Y | x?)π0(x?)q(xj | x?)
πe (Y | xj)π0(xj)q(x? | xj

)
. (3.11)

A standard option for q is the Gaussian random walk proposal distribution

q(x | xj) ∝ exp

(
− 1

2γ2
‖x− xj‖2

)
, (3.12)

with the step size γ > 0. It is symmetric such that its evaluation cancels in α(xj ,x
?).

The value of γ determines how fast the algorithm explores the distribution and how
many proposals are rejected. For small γ the exploration is very slow and the number
of accepted samples is usually high. For larger values of γ the exploration is faster,
but the number of accepted samples usually decreases. Additionally, if the initialization
x1 ∈ Rn in Step 1 of Algorithm 1 is in a very low probability region or even outside of
the posterior distribution, then it takes a while (also depending on γ) until MH-MCMC
actually generates samples from the posterior. The beginning of the chain is often called
burn-in and should be removed as it poorly represents the distribution, see [Kaipio and
Somersalo, 2005, Ch. 3.6.2] for an illustration. Further, one should be aware of that due
to construction the samples are correlated, which might require a thinning of the samples
for further proceeding. This comes on top of the already slow convergence rate O(1/

√
J)

of standard Monte Carlo. All these points influence the efficiency and convergence of
MH-MCMC and require a careful selection of the step size γ and the stopping criterion,
i.e. the desired sample size J .

This work uses an implementation of MH-MCMC with Gaussian random walk proposal
distribution based on the Python package PyMC3 [Salvatier et al., 2016], where the step
size γ is automatically adjusted in an initial tuning phase.

The Laplace approximation µ̃YLaplace from Equation 3.10 can be further used to accel-
erate sampling by increasing sampler efficiency, see e.g. [Schillings and Schwab, 2016,
Schillings et al., 2019, Rudolf and Sprungk, 2018]. The estimation of the MAP xMAP
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can be used as starting point x1 for the sampler, which clearly reduces the burn-in phase
of the algorithm. And in case of MH-MCMC with Gaussian random walk proposal, the
inverse Hessian of the log-posterior density at the MAP C can be used as initialization
of the proposal distribution covariance. I.e. replace the proposal distribution N (xj , γ

2I)
by N

(
xj , γ

2C)
)
, where xj denotes the current state of all unknown variables that shall

be inferred, I ∈ Rn×n the identity matrix and γ the step size parameter.
In general MH-MCMC with Gaussian random walk proposal is not dimension-

independent. We refer to [Sprungk, 2018] and [Hu et al., 2017] for further details
on methods to increase the performance of the algorithm in high dimensional spaces,
such as the preconditioned Crank–Nicolson MCMC algorithm.

3.1.3. Approximate Bayesian Computation (ABC)

Approximate Bayesian Computation (ABC) methods are another alternative to approxi-
mate the posterior distribution π(x | Y), which are of advantage whenever the likelihood
function is not known in explicit form or if its evaluation is computationally too expen-
sive. The likelihood is then approximated based on the comparison of model simulations
with the measurements [Wilkinson, 2013]. Note that the following introduction to ABC
methods is based on the authors own work [John et al., 2020].

ABC methods have been extensively used in population genetics and became known
by one of the first publications in 1997 by Tavaré et al. [Tavaré et al., 1997]. Besides
the rejection algorithms, ABC methods have been further extended to ”likelihood-free”
MCMC by Marjoram et al. [Marjoram et al., 2003], sequential Monte Carlo by Sisson et
al. [Sisson et al., 2007], probabilistic approximate rejection ABC by Wilkinson [Wilkin-
son, 2013] and Gibbs Sampling by Wilkinson et al. [Wilkinson et al., 2010]. In ABC
methods it is common practice to summarize the measurements by so-called summary
statistics in order to improve the efficiency, see e.g. [Fearnhead and Prangle, 2012, Najm
and Chowdhary, 2016]. However, the identification of proper summary statistics con-
taining sufficient information for inference is a difficult task, see e.g. [Cam, 1964] and
[Nunes and Balding, 2010, Fearnhead and Prangle, 2012, Barnes et al., 2012, Prangle
et al., 2014]. For a comparative review of dimension reduction methods in ABC we refer
to [Blum et al., 2013]. For a detailed introduction to ABC methods we refer to the book
[Sisson et al., 2018]. A direct comparison between MCMC and ABC based on summary
statistics is performed by Beaumont et al. [Beaumont et al., 2002] in the context of
population genetics.

An advantage of ABC algorithms is that they are intuitive and easy to implement.
Algorithm 2 belongs to the classical family of ABC algorithms based on rejection sam-
pling. Let d(·, ·) : Rk×Nt × Rk×Nt → R be a distance measure between simulated values
and observed data. The tolerance δ ∈ R+ determines the accuracy of the algorithm.
The accepted prior samples are independent and identically distributed samples of the
approximated posterior density π̂

(
x | Y, d(Ysim,Y) ≤ δ

)
.
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Algorithm 2: Approximate Rejection [Wilkinson, 2013]

1. Sample x from π0(·).
2. Sample ε from πe(·) and set Ysim :=M(x) + ε.
3. Accept x if d(Ysim,Y) ≤ δ; return to 1.

Two key challenges of ABC methods are finding an appropriate distance measure d
as well as a suitable value for the tolerance δ. For δ → ∞, every draw from the prior
is accepted and Algorithm 2 only reproduces the prior. On the other hand, for δ = 0,
simulations of the model are only accepted if they are identical to the observed data,
resulting in samples of the exact posterior density π(x | Y). Generally, the accuracy
increases with decreasing tolerance and consequently the samples of the approximated
posterior get closer to the true posterior distribution. However, the overall acceptance
rate decreases with decreasing δ and as a consequence computational effort is higher.
Thus, the tolerance has to be chosen as trade-off between computational capacity and
accuracy. In practice, a strictly positive tolerance δ > 0 is necessary, since the probability
that Ysim = Y is in most non-trivial models very low or even impossible due to model
miss-specification or measurement noise [Sunnaker et al., 2013].

One possibility to increase the acceptance rate and thus the efficiency is to extend
Algorithm 2 by using summary statistics S(·). This summary can be a set of statistics,
i.e. S(·) = (S1(·), ..., Sd(·)), d ∈ N, where the summaries Si(·) for i = 1, ..., d are for
instance the mean, standard deviation or any other statistical measure of the data.
Ideally, the summary statistics are sufficient for the parameter x and capture all of the
information such that

π(x | S(Y))
d
= π(x | Y). (3.13)

An insufficient summary would be a further approximation of the original problem.
Therefore, the selection of statistical functions has to be done carefully, such that S(Y)
is a sufficient representation of the original data Y. Algorithm 3 generates samples that

Algorithm 3: Approximate Rejection with summary statistics [Barber et al., 2015]

1. Sample x from π0(·).
2. Sample ε from πe(·), set Ysim :=M(x) + ε and summarize S(Ysim).
3. Accept x if d

(
S(Ysim), S(Y)

)
≤ δ; return to 1.

approximate π(x | S(Y)). The acceptance ratio is now proportional to the probability
that the summary statistics of a simulation exactly fits the summary statistics of the
observed data and this is usually more probable than matching the whole data exactly.
In total, summary statistics reduce the dimension of the data and therefore increase the
probability of accepting parameters which makes the algorithm computationally more
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efficient. Summary statistics are used in many practical applications, although it is hard
to tell if the summaries are sufficient. See e.g. [Najm and Chowdhary, 2016] for more
details.

3.1.4. Sequential Monte Carlo ABC (SMC ABC)

Sequential Monte Carlo (SMC) methods define a sequence of intermediate distributions,
starting with the prior distribution and iteratively transforming to the posterior distri-
bution [Del Moral et al., 2006]. SMC can be understood as an extension of importance
sampling, where, instead of re-weighting the accepted samples to account for differences
between prior and posterior distribution, several populations are sampled by using the
weights known from importance sampling [Sisson et al., 2007, Lintusaari et al., 2016].

Algorithm 4 is a version of such a SMC ABC method, which is also known as Pop-
ulation Monte Carlo (PMC) method. It is in principle an iterative application of Al-
gorithm 3, where in each population p (resp. iteration) the acceptance rate increases,
allowing decreasing tolerance thresholds δ(p). In Step 5.4. φ is most often a standardized

Algorithm 4: Sequential Monte Carlo ABC [Beaumont et al., 2009, Marin et al., 2012]

Set iteration number p = 1.

1. Sample x
(1)
i from π0(·) for i = 1, ...,M .

2. Sample εi from πe(·), set Ysimi :=M(x
(1)
i ) + εi and summarize S(Ysimi ) for

i = 1, ...,M .

3. Accept x
(1)
i if d

(
S(Ysimi ), S(Y)

)
≤ δ(1) and set w

(1)
i = 1/m, where m ≤M is

the number of accepted samples.

4. Calculate Σ(1) = 2 ·Var
(
{x(1)

i |i = 1, ...,m}
)

.

For iteration number p = 2, ..., P do

5.1. Sample x∗i from {x(p−1)
j |j = 1, ...,m} with probabilities w

(p−1)
j for

i = 1, ...,M .

5.2. Sample x
(p)
i from N (x∗i ,Σ

(p−1)) for i = 1, ...,M .

5.3. Sample εi from πe(·), set Ysimi :=M(x
(p)
i ) + εi and summarize S(Ysimi ) for

i = 1, ...,M .

5.4. Accept x
(p)
i if d

(
S(Ysimi ), S(Y)

)
≤ δ(p) and set

w
(p)
i ∝ π0

(
x

(p)
i

) m∑
j=1

w
(p−1)
j φ

(
x

(p)
i − x

(p−1)
j√

Σ(p−1)

)−1

.

5.5. Calculate Σ(p) = 2 ·Var
(
{x(p)

i |i = 1, ...,m}
)

.
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Gaussian or a Student’s t density [Beaumont et al., 2009]. For population p = 1 a set

of samples x
(1)
i are drawn from an initial prior distribution π0(·) which are accepted if

the summary statistics of the simulated and the observed data are smaller than thresh-
old δ(1) with respect to the distance measure d. In the following iterations p = 2, ..., P

the previous samples x
(p−1)
i are used to define a mixed density of normal distributions

weighted by w
(p−1)
j known from importance sampling. This mixed density is used to

generate the next set of samples, x
(p)
i , which again are only accepted if the summary

statistics of the simulated and the observed data are smaller than δ(p) w.r.t. d. With
each p the threshold δ(p) decreases and consequently the mixed density approaches the
true posterior distribution allowing to generate approximated samples from it directly.

3.2. Model selection

Model selection is required in the case where several physical model instancesMi , i ∈ N,
but also if several variants of the statistical error model µe and the prior µ0 are available.
The task at hand is to find among all competing models the best model with respect to
the available data y. We briefly introduce methods that analyze the residual , compare
the predictive capability and select models via Bayes’ rule. For further reading we refer
to [Claeskens and Hjort, 2008].

Residual analysis

Residual analysis is a basic but useful class of techniques to evaluate the goodness of a
fitted regression model. Basically the consistency of the underlying error assumptions
are rechecked. Let x† be the solution of (3.1) and denote by ŷ =M(x†) the prediction.
The residuals

r = y − ŷ (3.14)

are then interpreted as estimates of the model error ε and are used to validate the
assumptions concerning ε. This is usually done via graphical plots and statistical tests,
requiring careful examination in order to make a judgment on the model-data fit. For ε
modeled as i.i.d. Gaussian with zero mean, one needs to examine if r is a valid sample
of ε by checking the empirical mean, independence, constant variance and Gaussianity.
For further details we refer to [Draper and Smith, 1998]

Predictive capability

To compare the predictive capabilities of models, tools like the Akaike (AIC), Deviance
(DIC), and Watanabe-Akaike Information Criteria (WAIC) as well as Leave-One-Out
cross-validation (LOO) are well suited and widely used. They all estimate pointwise
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out-of-sample prediction accuracy from a fitted Bayesian model. Gelman et al. [Gelman
et al., 2014] review the AIC, DIC and WAIC and put them into a Bayesian predictive
context to better understand their practical application. They state that predictive ac-
curacy can be used as one of the criteria to evaluate, understand and compare models,
underpinned with examples. For cross-validation, the data is partitioned into training
and holdout sets repeatedly, iteratively fitting the model with the training set and eval-
uating the fit with the holdout data. As the name implies, the holdout sets for LOO
contain just one data point. WAIC (also known as Widely-Applicable Information crite-
rion) and LOO are asymptotically equal [Watanabe, 2010] and utilize the log-likelihood
evaluated at the posterior samples of the model parameters to estimate the pointwise
out-of-sample prediction fit. They are advantageous over simpler approaches such as
AIC and DIC, but involve additional computational steps. Vehtari et al. [Vehtari et al.,
2017] introduce fast and stable computations for LOO and WAIC and also an efficient
computation of LOO from MCMC samples, using Pareto-smoothed importance sampling
(PSIS) for correction.

Bayesian model selection

The Bayesian inference scheme can be applied at the model class level in order to select
the best model out of a (finite) setM = {Mi , i ∈ N} of candidate model classes, where
the statistical model for ε might vary as well with i. For this we formulate (3.6) to
explicitly denote the condition on the model Mi and its parameters xi ∈ Rni by

π(xi | Y,Mi) =
1

Zi
πe (Y | xi,Mi)π0(xi | Mi) , (3.15)

where the evidence is

Zi = π (Y | Mi) =

∫
Rni

πe (Y | xi,Mi)π0(xi | Mi) dxi. (3.16)

Bayes’ theorem on model class level reads

π(Mi | Y,M) =
1

π (Y |M)
π (Y | Mi)π(Mi |M) , (3.17)

where π (Y | Mi) denotes the model class likelihood, evidence or Bayes factor and is
equal to (3.16). If the prior distribution for each model class π(Mi |M) is uniform,
as it usually the case, it is sufficient to compute each models evidence Zi = π (Y | Mi).
The highest Zi identifies the model that best explains the data. The values Zi can also
be used for Bayesian model averaging by linearly combining Mi weighted with Zi.

An advantage of Bayesian model selection according to [Beck and Muto, 2007, Simoen
et al., 2013] is that it automatically enforces model parsimony (also well known as Oc-
cam’s razor), i.e. less complex models are preferred. Unfortunately, approximation of
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the evidence is non-trivial in most cases, as it requires the computation of a high dimen-
sional and complex integral. Most posterior approximation methods, such as MCMC or
ABC, neglect the evidence as it is just a normalizing constant. However, some consider
methods only fully Bayesian, if the evidence is computed as well.

Estimation of the evidence with standard Monte Carlo by sampling from the prior is
in general very inefficient, as only a small fraction of prior samples lie in high likelihood
region. Other methods use asymptotic approximations, MCMC samples of the posterior,
or multi-level MCMC methods (e.g. Transitional MCMC [Ching and Chen, 2007]), see
[Simoen et al., 2013, Ch. 3.4] and the references therein. Sequential Monte Carlo (SMC)
methods approximate the posterior by a series of annealed sequences [Kirkpatrick et al.,
1983, Neal, 2001, Beck and Au, 2002] π(x | Y)β ∝ πe (Y | x)β π0(x), for a temperature
β ∈ [0, 1], from the prior β = 0 to the posterior β = 1, where the evidence is estimated as
a by-product, see [Del Moral et al., 2006] and the references therein. Another prominent
approach is nested sampling [Skilling, 2006]. It relies on sampling within a sequence of
hard constraint on the likelihood value (in contrast to the soft annealing in e.g. SMC),
leading to ”nested” contours of the likelihood. The evidence is immediately obtained and
samples from the posterior distribution are an optional by-product.

The evidence takes into account the prior and depends, unfortunately, sensitively on
the specified prior for each model. For informative data, changes in the prior have only
minor influence on the posterior distribution, but can have major influence on the value
of the evidence. Thus, based on the approximation quality of the estimated evidence
values, evidence needs to be handled carefully for selecting a model.

3.3. Surrogate models

If the computational model is expensive to evaluate, reliable and faster to evaluate
surrogate models are a popular option in order to speed up computation for the task at
hand. In particular sampling methods require numerous evaluations of the simulation
model and consequently, surrogate models that replace the original model are often
essential to make sampling feasible.

In principle a model M is approximated by a surrogate M̂ which is cheaper to eval-
uate. For construction of M̂ some evaluations of M are required. The points where
M is evaluated are often constructed by a Design of Experiment (DoE). A DoE either
randomly draws points from the domain of the model parameters (e.g. Monte Carlo,
Quasi-Monte Carlo and Latin Hypercube sample points) or follows a deterministic rule
to select points (e.g. some kind of a grid) or iteratively learns points w.r.t. maximizing
some information gain (active learning).

In principle every universal approximator is suitable for this task, see Table 3.1 for a
non-exhaustive list. For UQ tasks two methods have proven to be notably useful in the
context of UQ and are thus widely employed. Namely Polynomial Chaos Expansions
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(PCEs) and Gaussian processes (GPs), which are introduced in the following.

Method Parameters

Artificial Neural Networks Number of hidden layers, number of neurons per layer,
activation function, learning rate, etc.

Gaussian processes Type of kernel, trend, nugget
Polynomial Chaos Expansions Basis of polynomials, order of polynomials, sparsity
Support Vector Machines Regularization, loss function, type of kernel,

unregularized terms

Table 3.1.: A non non-exhaustive list of universal approximators and their respective
parameters. See e.g. [Bishop, 2006, Sullivan, 2015] for details.

3.3.1. Polynomial Chaos Expansions (PCE)

Polynomial Chaos Expansions (PCE) approximate random variables by expanding them
as a series of orthogonal polynomials. Together with efficient methods to compute a fi-
nite set of the expansion coefficients, it can be used to reliably approximate considerably
smooth simulation modelsM with a surrogate that has almost no evaluation costs. The
use of PCEs emerged in the late 1980s for stochastic finite element methods [Ghanem
and Spanos, 2003], where the problems are discretized both in physical space (by finite
element methods) and in random space (by PCE). This requires so-called intrusive solu-
tion methods that are able to solve the coupled physical-random system. Non intrusive
methods in contrast only require repeated evaluations of the existing simulation model
M and are thus suited for black-box models1. In this work we focus on the non intrusive
approach, such that a broad class of problems independent of the underlying equations
can be addressed. This is in particular important in industry to ease re-usability and
reduce costs.

In 1938, Wiener [Wiener, 1938] introduced the so-called ”Homogeneous Chaos”2 as the
span of Hermite polynomial functionals of a Gaussian process. ”Polynomial Chaos” (PC)
is defined as a member of this set. It is a Fourier-Hermite series expansion, for which
Cameron and Martin proved in 1947 [Cameron and Martin, 1947], that the orthogonal
representation converges to any square-integrable functional. In context of stochastic
processes, this implies that the Homogeneous Chaos converges to any stochastic process
of second order, which was put in a broader framework involving more general prob-
ability distributions, referred to as ”generalized Polynomial Chaos” (gPC) by Xiu and

1The categorization in intrusive and non intrusive is permeable from a mathematical point of view and
rather needs to be understood with respect to implementation, see [Giraldi et al., 2015] for details.

2The term chaos in this context is related to the randomness of a Brownian motion or white noise and
does not relate to the state of a dynamical system.
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Karniadakis in 2002 [Xiu and Karniadakis, 2002].
Consider, without loss of generality, a real-valued random variable Y = Y (ω) according

to some probability space (Ω,A,P). Furthermore, assume that Y ∈ L2(Ω). For a
sequence of centered, normalized and mutually orthogonal Gaussian random variables
{ξi}∞i=1 define Γ̂p to be the space of polynomials in {ξi}∞i=1 with polynomial degree less
than or equal to p ∈ N. Furthermore, define Γp ⊂ Γ̂p to be the set of polynomials,
which belong to Γ̂p and which are orthogonal to Γ̂p−1. The space spanned by Γp shall be
denoted by Γ̃p. Then, the Cameron and Martin theorem [Cameron and Martin, 1947]
yields:

Γ̂p = Γ̂p−1 ⊕ Γ̃p, L2(Ω) =
∞⊕
i=0

Γ̃i. (3.18)

The subspace Γ̃p of L2(Ω) is called the p−th Homogeneous Chaos, and Γp the Polynomial
Chaos of order p. A square-integrable random variable Y can then be represented via:

Y = a0H0 +

∞∑
i1=1

ai1H1(ξi1) +

∞∑
i1

i1∑
i2=1

ai1i2H2(ξi1 , ξi2) + . . . . (3.19)

Hn(ξi1 , . . . , ξin) denotes the multi-dimensional Hermite polynomial of order n in terms of
the multi-dimensional independent standard Gaussian random variable ξ := (ξi1 , . . . , ξin).
To simplify notation, the multi-indices i1, . . . , in can be enumerated by a single index
yielding:

Y =

∞∑
i=0

biψi(ξ), (3.20)

using a one-to-one mapping between the PCE coefficients a and b and the basis function-
als H and ψ. Instead of using Hermite polynomials, one can also use other orthogonal
polynomials depending on the distribution of ξ. This is then called generalized Poly-
nomial Chaos expansion, see [Xiu and Karniadakis, 2002]. It is originally known as
Wiener-Askey polynomial chaos, due to the use of orthogonal polynomials from the
Askey-scheme, where the orthogonality is with respect to the inner product related to
the probability distribution of ξ. Table 3.2 displays some orthogonal polynomials and
their relation to probability distributions. Numerical experiments with these combina-
tions demonstrate (exponential) convergence according to the Cameron-Martin Theorem
[Cameron and Martin, 1947], whereas the use of non-optimal type of polynomials slows
down the convergence rate [Xiu and Karniadakis, 2002].

Remark. Another popular expansion, the Karhunen-Loève decomposition, can be inter-
preted as a particularly simple form of PCE [O’Hagan, 2013, Remark 17]. Notably, it
is a special case of PCE with only linear dependence on the input random variables,
whereas PCE, in general, allows polynomial dependence.
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Probability distribution Polynomial Support

Continuous Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, . . . }
Binomial Krawtchouk {0, 1, 2, . . . , N}
Negative Binomial Meixner {0, 1, 2, . . . }
Hypergeometric Hahn {0, 1, 2, . . . , N}

Table 3.2.: The relation of probability distributions and orthogonal polynomials of the
Askey-scheme according to [Xiu and Karniadakis, 2002].

3.3.2. Approximation of simulation models with PCE

Now consider the randomized simulation model M(X) : Ω→ Rk×Nt with X : Ω→ Rn.
Assume that X is independent such that the probability density function factors π(x) =∏n
i=1 πi(xi). For the sake of simplicity let by f = M(i,j) : X → R for i ∈ {1, 2} and

j ∈ {1, . . . , Nt} denote only one scalar output of the model M, as the following holds
component wise. Now, we expand f(X) as PCE

f(X) =
∑
α∈Nn

bαψα(X), (3.21)

by adopting the multi index notation with α = [α1, . . . , αn] ∈ Nn. The polynomials
ψα(X) =

∏n
i=1 ψαi(Xi) are products of univariate orthogonal polynomials, where αi

determines the polynomial degree of ψαi . The ψα are orthogonal with respect to the
probability density function of X, i.e.

〈ψα(X), ψβ(X)〉 = E[ψα(X)ψβ(X)] =

∫
Ω
ψα(X(ω))ψβ(X(ω))dP(ω) (3.22)

=

∫
X
ψα(x)ψβ(x)π(x)dx = 〈ψα(X), ψα(X)〉δαβ (3.23)

which holds in particular dimension wise, due to construction. The random polynomials
{ψα(X)}α∈Nn form an orthogonal basis of L2(Ω) and the deterministic polynomials
{ψα(X(ω))}α∈Nn form an orthogonal basis of L2(X ). Consequently, the realization of
the PCE expansion of f(X) can be seen as a deterministic expansion of f(x) with
deterministic x ∈ Rn. For computational feasibility, the PCE must be truncated

f(X) ≈
∑

α∈A(p)

bαψα(X) = bTψ(X), (3.24)
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where typically a total order truncation set A(p) := {α ∈ Nn : 1 ≤ |α| ≤ p} for a
finite p ∈ N is used. p is then the maximal polynomial degree in one dimension. This
truncation leaves P + 1 = (p + n)!/(p!n!) terms in the expansion. For other truncation
schemes, e.g. the hyperbolic truncation, see [Blatman and Sudret, 2011]. b ∈ RP+1 and
ψ denote vectors which gather the coefficients and basis polynomials, respectively.

To determine the coefficients bα we project f(X) onto the polynomial basis yielding

〈f(X), ψα(X)〉 = 〈
∑
α∈Nn

bαψα(X)(X), ψα(X)〉 = bα〈ψα(X), ψα(X)〉, (3.25)

due to the orthogonality of the polynomials and the linearity of the inner product.
Assume that the polynomials are orthonormal then the coefficients are given as

bα = 〈f(X), ψα(X)〉 =

∫
Ω
f(X(ω))ψα(X(ω))dP(ω) =

∫
X
f(x)ψα(x)π(x)dx. (3.26)

With the coefficients at hand it is easy to approximate the mean and variance of f(X)
due to the orthogonality of the basis polynomials. The mean is simply E[f(X)] ≈ b0
and the variance V [Y ] ≈∑α∈A(p) b

2
α〈ψα(ξ), ψα(ξ)〉 − b20

For non intrusive computation of the PCE coefficients two approaches are distin-
guished: the regression and the projection approach.

3.3.3. Estimation of the PCE coefficients via regression

For regression we formulate (3.25) in a vectorized version

b = E[ψ(X)ψT (X)]−1E[ψ(X)f(X)], (3.27)

where the matrix components are E[ψ(X)ψT (X)]αβ = 〈ψα(X), ψβ(X)〉. For given real-
izations {x(1), . . . ,x(M)} of X and corresponding evaluations f = {f(x(1)), . . . , f(x(M))}
we compute the empirical analogue of (3.27) by estimating the expectations via Monte
Carlo. This yields the least squares approximation of the PCE coefficients

b̂ = (ΨTΨ)−1ΨF, (3.28)

where the components of the matrix Ψ are Ψij = ψαj (x
(i)) for i = 1, . . . ,M and j =

1, . . . , P +1. For details we refer to [Berveiller et al., 2006] and for least angle regression,
an improvement w.r.t. to sparsity of the polynomial basis, to [Blatman and Sudret, 2011].

3.3.4. Estimation of the PCE coefficients via projection

For the projection approach the integral in (3.26) is in principle approximated via nu-
merical integration or quadrature methods, i.e.

bα =

∫
X
f(x)ψα(x)π(x)dx ≈

m∑
j=1

f(λj)ψα(λj)νj , (3.29)
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with the quadrature nodes λj ∈ X and weights νj ∈ R, j = 1, . . . ,m determined with
respect to π(X). Quadrature methods differ by the way of determining the nodes and
the corresponding weights. For a profound introduction to numerical integration we refer
to [Quarteroni et al., 2010].

In this work we use the Smolyak sparse pseudo-spectral projection (PSP) method3,
using Sparse Grid numerical integration rules. We briefly introduce those methods and
refer to [Bungartz and Griebel, 2004, Nobile et al., 2008, Constantine et al., 2012, Conrad
and Marzouk, 2013] for more details. Further, we refer to the authors previous work,
analyzing and applying the methodology to an industrial use case [John, 2016].

Full Grid numerical integration is in principle the tensorization of univariate deter-
ministic Gauss-quadrature rules. For a given multi index m ∈ Nn0 it yields for (3.26) the
approximation

b̂α = Qm(fψα) =
∑
j∈Im

f(λj)ψα(λj)νj . (3.30)

where the full tensor multi-index set is given by

Im = {j ∈ Nn : 1 ≤ ji ≤ nmi for i = 1, . . . , n} (3.31)

The nmi determine the number of nodes in each dimension and are defined via growth
rules, such as the linear nm = 2m+ 1 or the exponential nm = 2(m+1) − 1 growth rules.
However, Full Grid is usually not practicable, due to the curse of dimensions. Sparse
Grid numerical integration, in principle, linearly combines a weighted selection of lower
order Full Grid numerical integration schemes Qm of various resolutions m with the use
of Smolyak’s method A to partly circumvent the curse of dimension. I.e. for a given
level L ∈ N0 the Sparse Grid approximation of the integral in (3.26) is

b̂α = A(L,Q)(fψα) =
∑

m∈Ms(L)

c(m)
∑
j∈Im

f(λj)ψα(λj)νj . (3.32)

where

M s(L) = {m ∈ Nn0 : L− n+ 1 ≤ |m| ≤ L} (3.33)

is the Smolyak multi-index set and

c(m) = (−1)L−|m|
(

n− 1

L− |m|

)
∈ R (3.34)

is the corresponding Smolyak combining coefficient [Conrad and Marzouk, 2013]. Simply
computing the PCE coefficients bα yields the so-called non intrusive spectral projection
(NISP) method.

3Introduced in [Constantine et al., 2012] as sparse pseudo-spectral approximation method (SPAM), it
is in the ensuing literature better known as PSP [Conrad and Marzouk, 2013].
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Example 1 (Illustration of Sparse grids in 2D). Consider a two dimensional, inde-
pendent random variable X = [X1, X2] : Ω → R2 with probability density π. Let
f(X) : Ω → R be a function of X, such that f(X) ∈ L2(ω). For the isotropic Smolyak
Sparse Grid quadrature A(L,Q) the nodes λj ∈ X and weights νj ∈ R, to approximate
E[f(X)] =

∫
Ω f(X(ω))dP (ω) are visualized in Figure 3.1 for: (a) X1, X2 ∼ N (0, 0.1), (b)

X1, X2 ∼ U [−1, 1] and (c) X1 ∼ U [−1, 1], X2 ∼ N (0, 0.1). Depending on the distribution
of Xi the univariate quadrature rules in dimension i are based on Legendre or Hermite
polynomials for uniform or Gaussian distribution, respectively. Due to Smolyak’s method
(i.e. in particular due to Smolyak’s combining coefficient), some of the weights have neg-
ative values. The level is set to L = 4 which results with the growth rule nm = 2(m+1)−1
in a total of 221 nodes.
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Figure 3.1.: Visualization of two dimensional, isotropic Smolyak Sparse Grid quadrature
nodes λj (black dots) and weights νj (colored circles) for level L = 4 (total
number of 221 nodes) with X in (a), (b) and (c) specified as in Example 1.
The figures are from [John, 2016].

39



Chapter 3. Numerical methods for inverse problems

NISP can be improved by the PSP method, which applies the Smolyak principle di-
rectly to univariate projection operators P (projecting on a univariate orthogonal poly-
nomial basis) instead to quadrature operators. This naturally implies a coupling of the
orthogonal polynomials used for projection with the orthogonal polynomials used for
quadrature. Which automatically determines the quadrature methods to approximate
the PCE coefficients in an optimal way, with the advantage of satisfying a discrete or-
thogonality property, leading to an error reduction (i.e. the reduction of internal aliasing
errors [Conrad and Marzouk, 2013]) and allowing higher order polynomials. The PSP
approximation or PSP surrogate of f reads

f(x) ≈ fL(x) = A(L,P)(f)(x) =
∑

m∈Ms(L)

c(m)
∑
i∈Im

f̂i ψi(x), (3.35)

with coefficients obtained via Full Grid quadrature

f̂i ≈ Qm(fπi) =
∑
j∈Im

f(λj)ψi(λj)νj . (3.36)

At this point we highlight that the choice of the full tensor quadrature Qm, as ten-
sor product of univariate Gauss-quadratures Qmi , w.r.t. the orthonormal polynomials
ψnmi+1 with deg(ψnmi+1) = nmi , is one of the key points of PSP.

The accuracy of the surrogate fL increases with the level L, but also the associated
cost as the simulation model needs to be evaluated at an increasing number of nodes λj .

Finally, the step to compute the PSP surrogate ML are: First, evaluate M at the
Sparse Grid nodes λj and second, compute the PCE coefficients component-wise for I
and ω w.r.t. the Nt time points.

Remark. In this work we construct the PCE surrogate with a fixed Sparse Grid, based
on the prior distribution used for Bayesian inference. This is done a-priori, i.e. before
the inference procedure starts. Current research aims to build the surrogate iteratively
during inference with active learning approaches. We refer to [Li and Marzouk, 2014,
Sinsbeck and Nowak, 2017] for further reading.

3.3.5. Validation of PCE

As the PCE surrogate fL of f is just an approximation, with errors due to truncation of
the PCE and due to approximation of the PCE coefficients, validation of fL is important
for further processing. The Root Mean Square Error (RMSE) is one variant to compare
fL to f . For this purpose draw random samples xi, i = 1, . . . , Nval from X and evaluate
the original model f(xi), i = 1, . . . , Nval. Then the RMSE is defined as

RMSE =

(
1

Nval

Nval∑
i=1

|f(xi)− fL(xi)|2
)− 1

2

. (3.37)
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For f with multiple output we compute the RMSE for each output component and scale
it component-wise by the standard deviation of the validation set σval = std({f(xi), i =
1, . . . , Nval}), i.e. the scaled RMSE is

sRMSE = RMSE /σval. (3.38)

Example 2. (PCE for forward UQ and validation) Consider the basic electric motor
model (2.3), withM as a function of voltage V and load T . Define the input parameter
distributions as π(V | mV , σV ) = N (mV , σ

2
V ) and π(T | mT , σT ) = N (mT , σ

2
T ), with

hyper-parameters mV = 13.5, mT = 2.5, σV = 0.7, σT = 0.2. Then Figure 3.2 displays
the forward propagation of uncertainty from V and T to output distributions of current
I and angular velocity ω (Figure 2.2 above shows only the mean M(mV ,mT )). The
output distributions are obtained by constructing a PCEML(V, T ) ofM(V, T ) first, as
detailed in Section 3.3.1, and then sampling from it. In particular we construct a PSP
surrogate ML(V, T ) with level L = 2 and linear growth rule nm = 2m+ 1, leading to a
two dimensional Sparse Grid with 17 nodes λj . To obtain the output distributions we
evaluate ML(V, T ) at 104 samples of (V, T ). Already for this (admittedly toy) example
the speed up with the surrogate is around factor 750 (51ms for the surrogate compared
to 38s for the original model evaluation at 104 samples). For validation the sRMSE with
Nval = 100 is displayed in Figure 3.3, respectively for each time step and output.
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Figure 3.2.: Forward propagation of uncertainty for the basic electric motor model (2.3)
from input probability distributions of voltage V and load T to output dis-
tributions of current I and angular velocity ω. The displayed overview on
the output distributions are obtained by constructing a PCE ML(V, T ) of
M(V, T ) first and then sampling from ML(V, T ).
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Figure 3.3.: The sRMSE for the PCE surrogate ML(V, T ) of M(V, T ), respectively for
each time step of current I and angular velocity ω.

3.3.6. Gaussian Processes

Gaussian Processes (GPs) are widely used in machine learning, e.g. for supervised learn-
ing tasks in regression and classification, and are also widely used in UQ as surrogates for
simulation models. There exists extensive literature on GPs and GP regression (also well
known as kriging, in particular in the geostatistics literature), thus we briefly introduce
our notation for multi output GP regression and refer to the literature, e.g. [Rasmussen
and Williams, 2006, Bonilla et al., 2007], for details. Note that the following text is
based on and adapted from the authors own work [John et al., 2019a].

A GP is a stochastic process, i.e. a collection of random variables indexed by time
or space, such that every finite collection of those random variables has a multivariate
normal distribution. They can be used to describe the Bayesian a-priori uncertainty
about a latent function and update this based on data.

Let y = f(t), for t ∈ R and f : R → Rd. Consider the multi dimensional regression
problem, where f is unknown and only a data matrix D = [yi]i=1,...,N ∈ Rd×N , with
yi = f(ti), at the corresponding discrete mesh ∆ = {t1, . . . , tN | tn ∈ R}, tm < tn for
m < n, is given. Denote by vec(D) ∈ RdN the vectorization of matrix D. Further,
let A ⊗ B = C denote the Kronecker product of A ∈ Rn×m, B ∈ Rp×q, then C =
[AijB]i=1,...,n,j=1,...,m ∈ Rnp×mq.

GP regression assumes a prior for the unknown f by

P (f(t)) = GP(f(t);m(t), k(t, t′)⊗ V ), (3.39)

with prior mean function m : R→ Rd, a covariance kernel k : R×R→ R and V ∈ Rd×d
positive semi-definite. V correlates the d dimensional outputs of f(t). The trivial choice
for V is V := Id, where Id ∈ Rd×d denotes the identity matrix. For the covariance kernel
k(t, t′), define for two sets ∆,∆′ containing m and n elements, respectively, the m × n
matrix K∆∆′ with (K∆∆′)i,j = k(ti, t

′
j). Then the predictive posterior GP, conditional

on the data D, is

P (f(t) |∆, D) = GP(f(t);µY(t), kY(t, t′)), (3.40)
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with

µY(t) = m(t)− (Kt∆ ⊗ V )G−1vec(D), (3.41)

kY(t, t′) = Ktt′ − (Kt∆ ⊗ V )G−1(K∆t′ ⊗ V ), (3.42)

where G := K∆∆ ⊗ V . The t in Kt∆ symbolically stands for the set {t}. For the multi
dimensional input case, with t ∈ Rn and f : Rn → Rd, it requires a mean function
m : Rn → Rd and a covariance kernel k : Rn × Rn → Rd.

To actually compute the posterior GP a (parametric) mean function m, e.g. the trivial
choice m ≡ 0, and a (parametric) covariance kernel k, e.g. the squared exponential kernel
k(t, t′) = exp(|t− t′|2/(2λ2)) with characteristic length scale λ > 0, need to be selected.
As the computations are usually analytically intractable, approximation techniques are
required to estimate the so-called hyper-parameters of the mean and covariance kernel.
For details on various covariance kernels and their properties, model selection and hyper-
parameter estimation see [Rasmussen and Williams, 2006]. There, relations to other
techniques, such as SVMs, ANNs, splines and others, are discussed, too.

A useful property of GPs is their closeness under linear transformations [Bogachev,
1998]. Consequently, derivatives of GPs are again GPs, since differentiation is a linear
operator [Solak et al., 2003]. For a covariance kernel k(t, t′), define k∂(t, t′) = ∂

∂t′k(t, t′),

similarly k∂ (t, t′) = ∂
∂tk(t, t′) and k∂ ∂(t, t′) = ∂2

∂t∂t′k(t, t′). Then, for d = 1, provided the
derivatives exist,

P (
d

dt
f(t)) = GP(f(t);

d

dt
m(t), k∂ ∂(t, t′)). (3.43)

Furthermore, cov(f(t), ddtf(t′)) = k∂(t, t′) and vice versa cov( ddtf(t), f(t′)) = k∂ (t, t′).

3.4. Sensitivity Analysis

Sensitivity Analysis is ”the study of how uncertainty in the output of a model (numerical
or otherwise) can be apportioned to different sources of uncertainty in the model input”
[Saltelli et al., 2008]. In particular one studies the effects of individual variations as well
as the correlated effects of model parameters xi, i = 1, . . . , n onto variations of a model
f(x1, . . . , xn). Often one specific goal is to rank the input parameters xi according to
their importance or influence on the output of the model. This can then be further
utilized for dimension reduction, i.e. to find an approximation f̂ of f with fewer number
of input parameters. In practice, uncertainty quantification and sensitivity analysis
usually run in tandem.

Usually one distinguishes between local and global sensitivity analysis. Studying the
dependence of f on local variations of the input parameters xi around fixed values x∗i ,
for instance with partial derivatives, we logically talk about local sensitivity analysis.
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Global sensitivity analysis detects the sensitivity of f to variations over the whole pa-
rameter space X . It can be seen as an average sensitivity. Global sensitivity analysis
is established as a powerful approach for determining the important random input pa-
rameters that mainly drive the uncertainty of the model output. It can be distinguished
in two classes: Regression-based methods and variance-based methods. In the following
we briefly introduce variance-based methods, also called Analysis of Variance techniques
(ANOVA), and the related Sobol’ indices. For further details on global sensitivity anal-
ysis we refer to [Saltelli et al., 2008] and for details on the historic development of
variance-based methods in particular to [Saltelli et al., 2008, Chapter 4]. ANOVA is
a variance-based decomposition of a function f with n input parameters to determine
which of the input parameters contribute most to variations of f(x1, . . . , xn) and how
they cooperate or compete. Based on the ANOVA decomposition Sobol’ indices are a
sensitivity measure describing which amount of the output variance is due to the uncer-
tainties of a set of input parameters. They are very popular in sensitivity analysis since
they provide accurate information for most physical and mathematical models and do
not suppose linear or monotonic behavior of the model [Sobol, 2001, Sudret, 2008].

Consider the uncertain input parameters as a vector of independent random variables
X = (X1, . . . , Xn), with realization x = (x1, . . . , xn) = X(ω). Consequently, Y = f(X)
is a random variable as well (assume without loss of generality f(x) ∈ R). Let X∼i =
(X1, . . . , Xi−1, Xi+1, . . . , Xn) denote all random variables except Xi. With this we define
the first-order sensitivity measure

Si =
VXi [EX∼i [Y |Xi]]

V [Y ]
, (3.44)

with Si ∈ [0, 1]. This first-order sensitivity measure describes the main effect contribution
of Xi on Y . Higher-order sensitivity measures can be obtained in a similar fashion by
using variances conditioned on more than one random variable.

Sobol’ decomposition, Sobol’ functional development or high-dimension model repre-
sentation (HDMR) expands a square integrable f into functional terms with increasing
input dimension

f(x1, . . . , xn) = f0 +

n∑
j=1

fj(xj)

+
∑

1≤j1<j2≤n
fj1,j2(xj1 , xj2) + · · ·

+
∑

1≤j1<···<jk≤n
fj1,...,jk(xj1 , . . . , xjk) + · · ·

+ f1,...,n(x1, . . . , xn),

(3.45)

where f0 is constant and each summand itself is square integrable [Saltelli et al., 2008].
It is not a series, since it has a finite number of summands

∑n
j=0

(
n
j

)
= 2n. This
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decomposition allows to entirely identify contributions of single parameters fj(xj) and
contributions of parameter combinations fj1,...,jk(xj1 , . . . , xjk) onto f . It is not unique,
unless we assume that the mean of each summand, except of the constant f0, over any
of its independent variables, is zero, which was proven by Sobol in [Sobol, 2003]. As a
consequence the summands are pairwise orthogonal and are defined as

f0 = EX [Y ], (3.46)

fi(xi) = EX∼i [Y |Xi]− f0, (3.47)

fi,j(xi, xj) = EX∼i,j [Y |Xi, Xj ]− fi(xi)− fj(xj)− f0, (3.48)

fi,j,k(xi, xj , xk) = · · · (3.49)

and so on. Finally, when all but f1,...,n(x1, . . . , xn) are obtained, the latter is defined via
the identity (3.45).

Integrating the square of (3.45) yields the so-called ANOVA-HDMR and further nor-
malizing by the total variance V [Y ] yields 2n − 1 terms, the so-called Sobol’ indices,
which give a full and unique sensitivity analysis of a model f with n-dimensional input.

Definition 6 (Sobol’ indices). For an arbitrary set of indices {j1, . . . , jk} ⊆ {1, . . . , n}
and an integer k ∈ {1, . . . , n} the relations

Sj1,...,jk =
V [fj1,...,jk(Xj1 , . . . , Xjk)]

V [Y ]
, (3.50)

are called Sobol’ indices, with Sj1,...,jk ∈ [0, 1]. Each sensitivity index Sj1,...,jk measures
the relative impact of a set of input parameters {xj1 , . . . , xjk} or respectively input ran-
dom variables {Xj1 , . . . , Xjk} onto the total variance V [Y ].

The first-order Sobol’ indices

Si =
VXi [fi(Xi)]

V [Y ]
=
VXi [EX∼i [Y |Xi]]

V [Y ]
(3.51)

represent the influence of each parameter taken alone whereas the higher order indices
Sj1,...,jk account for possible mixed influence of various parameters. Two or more param-
eters interact, if their effect on the output cannot be expressed as a sum of their single
effects [Saltelli et al., 2008].

In practical applications it is often sufficient to compute first-order, total order and
sometimes second-order sensitivity indices to obtain a good, though non exhaustive char-
acteristic of a model sensitivity [Sudret, 2008, Saltelli et al., 2008]. The classical com-
putation of Sobol’ indices requires Monte Carlo simulation to approximate the integrals,
which fast becomes infeasible when computationally expensive simulation models are
involved. However, here again surrogate models, such as the previously introduced Poly-
nomial Chaos Expansions (PCE) or Gaussian processes (GP) help tremendously. They
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do not only speed up Monte Carlo simulation, but also bring additional advantages,
namely: Sobol’ indices can be analytically derived from PCE [Sudret, 2008]. Whereas
GPs straightforwardly allow to derive confidence intervals on the Sobol’ indices, thus
including the metamodel error. This is detailed in [Gratiet et al., 2016], where each
technique is introduced with an focus on their strengths and limitations in the con-
text of global sensitivity analysis. There, numerical comparison of PCE and GP based
sensitivity analysis shows similar performance.

Example 3 (Forward UQ and first-order Sobol’ indices). With the same setting as in
Example 2, where Figure 3.2 displays the forward propagation of uncertainty from X =
(V, T ) to output distributions of current I and angular velocity ω, here, corresponding

to this variations, the first order Sobol’ indices S
(·)
1 for I and ω w.r.t. the input random

variables X = (V, T ) are displayed in Figure 3.4.
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Figure 3.4.: First order Sobol’ indices S
(·)
1 for current I and angular velocity ω of the

basic electric motor model (2.3).

3.5. Stability analysis of Bayesian inference with surrogate
models

The simulation model M is an approximation of the true underlying process and ad-
ditionally M is often further approximated by a surrogate for computational purposes.
This leads to an approximation of the posterior measure µY . Furthermore, generating
samples that approximate the posterior distribution, e.g. with MCMC or ABC methods,
introduces additional errors. For stability analysis we study the effect of small changes
in the forward model, respectively in the least-squares potential Φ, on changes in the
posterior distribution approximation, which need to be small as well to obtain stability.
This analysis can be used to translate errors in the forward problem into estimates on
errors in the posterior distribution.

The following analysis assumes fixed data Y and concentrates solely on changes in the
forward model. For well posedness w.r.t to changes in the data, we refer to [Dashti and
Stuart, 2017, Ch. 4.1].
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LetML denote an approximation ofM, where L determines the approximation qual-
ity. Respectively, let ΦL denote the approximation of the least-squares potential Φ.
Further denote by µ̃YL the approximation of the posterior measure µY and by π̃L(x|Y)
the corresponding Lebesgue density. The following derivation holds for general approx-
imations ML that converge with L→∞ to M. In particular for the (truncated) PCE,
where ML denotes the PCE surrogate of M for a level L ∈ N0.

Assumptions 1. Assume that Φ ∈ C(Rn;R) and there are functions Mi : R+ →
R+, i = 1, 2 independent of L and monotonic non-decreasing separately in each ar-
gument, and with M2 strictly positive, such that for all x ∈ Rn

Φ(x) ≥ −M1(‖x‖) (3.52)

ΦL(x) ≥ −M1(‖x‖) (3.53)

‖Φ(x)− ΦL(x)‖ ≤M2(‖x‖)ψ(L) , (3.54)

where ψ(L)→ 0 as L→∞. Further assume that µ0(Rn ∩B) > 0 for some bounded set
B ⊂ Rn and

exp(M1(‖x‖))(1 +M2(‖x‖)2) ∈ L1
µ0 . (3.55)

Definition 7. (Hellinger distance) For two probability measures µ and µ′ on a separable
Banach space, which are both absolutely continuous with respect to a common reference
measure ν, the Hellinger distance is defined by

dHell

(
µ, µ′

)
=

√
1

2

(
dµ

dν
− dµ′

dν

)2

dν. (3.56)

Theorem 2. [Dashti and Stuart, 2017, Theorem 4.9] Let Assumptions 1 hold. Then
there is a C > 0 such that, for all L sufficiently large,

dHell

(
µY , µ̃YL

)
≤ Cψ(L). (3.57)

For functions ϕ with ϕ ∈ L2
µY

and ϕ ∈ L2
µ̃YL

, uniformly w.r.t. L, the closeness of the

Hellinger metric implies closeness of expectations of ϕ:∣∣∣EµY [ϕ(x)]− Eµ̃
Y
L [ϕ(x)]

∣∣∣ ≤ C dHell

(
µY , µ̃YL

)
≤ Cψ(L). (3.58)

Theorem 2 enables the translation of errors arising from approximation of the forward
problem into errors in the Bayesian solution of the inverse problem. Furthermore, the
errors in the forward and inverse problems scale the same way with respect to L. This
result applies to the case, where M is an approximation of the true process, but also to
the case where M itself is approximated by a surrogate model ML.
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Stability analysis of ABC and MCMC with surrogate models

Theorem 2 covers the approximation of the posterior measure due to an approximation
of the forward map. But in practice we additionally use sampling methods to generate
samples of the approximated posterior measure. Assume that the goal of computation
is to compute the mean of a quantity of interest ϕ w.r.t. the posterior µY with Lebesgue
density π(x|Y). Expectations of this kind allow the study of many relevant properties
of the posterior, for instance the posterior mean when ϕ(x) = xi with i = 1, . . . , n or
posterior second moments when ϕ(x) = xixj with i, j = 1, . . . , n.

Given the summary statistic S : Rk×Nt → Rd with d ≤ kNt, the inference using ABC
with summary statistics, see Algorithm 3, is based on s† = S(Y) and constructs samples

x̃
(δ)
j based on the polynomial chaos surrogate. Assuming S to be a sufficient statistic,

i.e.

Eµ̃
Y

[ϕ(x)|Y] = Eµ̃
Y

[ϕ(x)|s†] (3.59)

for the surrogate-based model, we are interested in the mean-square-error

Eµ0

Eµ
Y

[ϕ(x)|Y]− 1

m

m∑
j=1

ϕ(x̃
(δ)
j )

2 . (3.60)

Theorem 3. [John et al., 2020] Let the quantity of interest ϕ : Rn → R with ϕ ∈ L1
µ0.

In addition let ϕ ∈ L2
µY

and ϕ ∈ L2
µ̃YL

, uniformly in L. Further let Assumptions 1 hold.

Then, the mean square error converges to 0 for L,m→∞ and δ → 0, i.e.

Eµ0

Eµ
Y

[ϕ(x)|Y]− 1

m

m∑
j=1

ϕ(x̃
(δ)
j )

2→ 0 , m,L→∞, δ → 0 . (3.61)

Proof. The triangle inequality gives the separate estimation of the individual errors

Eµ0

Eµ
Y

[ϕ(x)|Y]− 1

m

m∑
j=1

ϕ(x̃
(δ)
j )

21/2

(3.62)

≤
∣∣∣EµY [ϕ(x)|Y]− Eµ̃

Y
L [ϕ(x)|Y]

∣∣∣+ Eµ0

Eµ̃
Y
L [ϕ(x)|Y]− 1

m

m∑
j=1

ϕ(x̃
(δ)
j )

21/2

=: I1 + I2.

The assumptions on the least-squares potential ensure the closeness of the two measures
µY and µ̃YL in the Hellinger distance, see Theorem 2, which implies

I1 ≤ Cψ(L) . (3.63)
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The second summand I2 corresponds to the ABC error, which converges to 0 as m→∞
and δ → 0, see [Barber et al., 2015, Proposition 3.1].

Analogously, for inference using the MH-MCMC algorithm 1, which constructs samples
x̃j used to approximate

Eµ̃
Y
L [ϕ(x)|Y] ≈ 1

m

m∑
j=1

ϕ(x̃j), (3.64)

the second summand I2 converges to 0 as m → ∞, see [Kaipio and Somersalo, 2005,
Proposition 3.11] (I.e. the MCMC transition kernel needs to be invariant, aperiodic
and irreducibel in order to imply the ergodicity property of MCMC samples). Further,
see [Dashti and Stuart, 2017] for general measure-preserving dynamics on the infinite-
dimensional space, including MCMC and SMC.

3.6. Related work on inverse problems

Gradient matching techniques are notable methods in the context of ODE parameter
estimation. The general idea is to approximate the data by a differentiable approximator
(e.g. Gaussian processes, see [Solak et al., 2003]), which is then used to directly match
the derivative of the data approximation to the ODE function. The advantage is that
no numerical solver for the ODE is required. For a kernel based approach see [Niu et al.,
2016] and the references therein (Side note: For connections between GPs and kernel
methods, see [Kanagawa et al., 2018].). References for P-spline and parallel tempering
based approaches can be found in [Niu et al., 2016]. For GP based approaches the
controversy [Macdonald et al., 2015] shows that the model suggested in [Barber and
Wang, 2014] suffers from an inherent identifiability problem, which is not the case for
the superior models in [Calderhead et al., 2008, Dondelinger et al., 2013]. The latter
work is further extended for scalability and efficiency in [Gorbach et al., 2017, Wenk
et al., 2019b, Wenk et al., 2019a]. Also, extensions to SDEs exist [Abbati et al., 2019].
However, in general gradient matching methods are not suited for black box forward
models, as they require direct access to the ODEs.

Invertible Neuronal Networks (INNs) are another promising approach to inverse
problems, see [Ardizzone et al., 2019] and the references therein. INNs are designed to
learn the forward model, from parameters to output, and use additional latent output
variables to encode information that would otherwise be lost. Due to construction INNs
implicitly learn a model of the corresponding inverse problem. This can be used to
map a measurement to the parameter posterior distribution by sampling from the latent
variables. However, as they only learn from the forward map, model discrepancy is not
considered so far.
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Discrepancy modeling

The fact that the polynomial is an approximation does not necessarily
detract from its usefulness because all models are approximations.
Essentially, all models are wrong, but some are useful. However, the
approximate nature of the model must always be borne in mind.

George Box and Norman Draper in [Box and Draper, 1987, p. 424]

As already motivated in Section 1.3 it is crucial to quantify model discrepancy in
inverse problems. To succed in this it is important to be aware of and additionally
quantify the effects of further uncertainty sources, as they otherwise could undermine
the reliability of results. This chapter addresses the inverse problem in Definition 4,
where one seeks model parameters x ∈ X such that y =M(x) for noisy measurements
y ∈ R2×Nt and simulation model M. In general, this equality posseses either none, one
or multiple solutions in x. Thus, a proper indentification and quantification of possible
solutions providing additional information on their uncertainty is of particular interest
for most engineering tasks. Furthermore, some applications require realistic calibration
of physically interpretable parameters x togheter with an assessment of model quality
and an reliable model discrepancy quantification. To be precise we define:

Definition 8 (Model discrepancy). The term model discrepancy δ = M(x) − η de-
notes the difference between the true system η and the simulation model M. The true
underlying model discrepancy is δ† = M(x†) − η, with the true physical parameters
x†. It comprises the structural uncertainty that might be due to missing physics in the
formulation of the simulation model and also numerical errors.

The joint identification of model discrepancy δ and simulation model parameters x is
one of the most fundamental challenges in solving inverse problems as both are usually
unknown. It is often denoted by:

Definition 9 (Identification problem). The identification problem is the dilema of dis-
tinguishing between effects of the model parameters x, the model discrepancy δ and the
observation noise ε. In principle for every x a δ and ε exist such that y =M(x)+δ+ε
holds. Neglecting ε for a moment, then δ := y−M(x) would satisfy the previous equation
for each x ∈ X .
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This chapter addresses this problem and showcases it with the electric motor appli-
cation by adressing following questions: How good does the model explain the data?
Can it be improved by modeling the model discrepancy? Does this help to infer model
parameters x that are not only mathematically optimal, but correspond to the true
underlying physical parameter values? And what possibilities are there to weaken the
problem inherent identifiability issue?

The remainder of this chapter is structured as follows. Section 4.1 gives an overview on
related work and Section 4.2 remarks on numerical approximation error and probabilistic
numerics. Following, we introduce our Bayesian discrepancy modeling framework in
Section 4.3, highlight the specific challenges in Section 4.3.1, detail on Gaussian process
approximation in Section 4.3.2 and on orthogonal function approximation with iterative
model complexity determination in Section 4.3.3. Section 4.4 describes the improvement
of sampling with surrogate-based gradients. Detailed numerical results of the methods
applied to synthetic and test bench data are presented in Section 4.5.

4.1. Related work

Addressing model discrepancy in inverse problems requires to incorporate the underlying
physics and the associated simulation model, thus many attempts in dealing with model
discrepancy are hidden in domain specific publications. Consequently a comprehensive
literature review is difficult. In the following, we first give an overview on some highly
relevant publications for this thesis and second open the scope for publications that deal
with the problem in another way.

The Kennedy and O’Hagan (KO) framework [Kennedy and O’Hagan, 2001] is one of
the first attempts to model and explicitly take account of all uncertainty sources arising
in the calibration of computer models. In particular, model discrepancy is considered by
an additional term δ in the Bayesian formulation of the inverse problem, i.e.

η =M(x) + δ, (4.1)

yi = ηi + ei, i ∈ N, (4.2)

where η denotes the true physical process and y are a collection of noisy observations
of ηi = η(ti) at time points ti, for some observation error ei. Kennedy and O’Hagan
use Gaussian Processes (GPs) to model δ and, as well, the simulator M. One of their
conclusions is that the estimated parameters depend on the given data and defined er-
ror structure. Those estimates do not necessarily correspond to the true physical values.
Often the computer model explains the data better for other values and restriction of pa-
rameters to the true physical value might lead to worse results. Derivatives of [Kennedy
and O’Hagan, 2001] are among others [Higdon et al., 2004, Kennedy et al., 2006, Conti
et al., 2009]. A lot of the works referring to the KO framework only use the approxima-
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tion of the original simulator by a GP, which then reflects the approximation uncertainty,
but do not consider model discrepancy in order to avoid identification problems.

Following [Kennedy and O’Hagan, 2001], Arendt et al. [Arendt et al., 2012a, Arendt
et al., 2012b] suggest a modular Bayesian approach to solve (4.1). First, the hyper-
parameters of the GP emulating the simulator and the hyper-parameters of the model
discrepancy GP are approximated by maximum likelihood estimates consecutively. Sec-
ond, the posterior distributions of the remaining parameters are approximated, condi-
tioned on the data and the hyper-parameter estimates. Discussion of the identification
problem with illustrative examples shows that a separation of effects is sometimes possi-
ble under mild assumptions, e.g. smoothness of the model discrepancy, but also that it is
not possible in other cases. [Arendt et al., 2012b] presents an approach to improve iden-
tifiability by using multiple responses and representing correlation between responses.
Another work using multiple responses is [Paulo et al., 2012].

Simoen et al. [Simoen et al., 2013] also follow the KO approach, using the term
prediction error model as synonym for the joint statistical model of discrepancy and
noise (also termed likelihood). As most practical applications lack information regarding
prediction error characteristics, they suggest Bayesian model class selection to select the
most probable prediction error model from several alternative model classes, according
to the available data. Further, they observe that the prediction error model has an
important effect on the parameters posterior distribution.

Brynjarsdóttir and O’Hagan [Brynjarsdóttir and O’Hagan, 2014] state that with the
KO framework, in order to infer physical parameters and model discrepancy simultane-
ously, a sufficient prior distribution for at least one of those must be given. An example
shows that a constrained GP prior for the model discrepancy, including best and most
realistic prior information, yields good results for interpolation and learning about phys-
ical parameters, but still seems to be bad for extrapolation. Hence, simply introducing
model discrepancy with weak prior information is not enough.

Alongside the Bayesian approach to model discrepancy there exists also a second ma-
jor thrust of research, the large sample frequentist approach to model uncertainty, see
the introduction of [Plumlee, 2019] and the references therein. Among those, Tuo and
Wu [Tuo and Wu, 2015, Tuo and Wu, 2016] criticize the KO approach and show that
the choice of the model discrepancy prior has a permanent influence onto the parameter
posterior distribution even in the large data limit. Consequently, one needs to be care-
ful with specific prior information. They further introduce the so called L2-projected
calibration (a frequentist method), where the optimal parameter is defined by

xopt = arg min
x∈X
‖η −M(x)‖2L2 = arg min

x∈X

∫
|η(t)−M(t,x)|2dt. (4.3)

xopt minimizes the L2-norm of the model discrepancy δ = η −M(x) which forces the
model M to explain most of the variations of η. In practice η is not available and
is replaced by an estimation η̂ based on an approximation of the noisy data y (e.g.
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with kernel ridge regression or GP regression). The L2-projected calibration avoids the
identifiability problem and has nice asymptotic properties. However, for UQ additional
procedures are required (e.g. bootstrapping, see [Wong et al., 2017]). A further drawback
is that xopt not necessarily corresponds to the true physical parameters.

A bunch of works follow this L2-projected calibration, develop it further and partly
combine it with the Bayesian KO approach. Those are among others [Plumlee, 2017, Gu
and Wang, 2018, Plumlee, 2019, Tuo, 2019, Xie and Xu, 2020], detailed in the following.

Plumlee [Plumlee, 2017] generalizes the L2-norm and combines this with the Bayesian
KO approach to mitigate identifiability problems in the latter. As a consequence of the
combination, a GP prior distribution of the model discrepancy is defined that is orthog-
onal to the gradient of the model. The examples show decent results, but at the cost
of additional computational effort and the availability of a gradient. This adds to the
already high costs for modeling the model discrepancy with GPs for large number of
observations Nt. I.e. each single sample requires the inversion of an Nt ×Nt-covariance
matrix, which results in numerical costs that scale with O(N3

t ). [Gu and Wang, 2018]
also introduce a modified GP prior, referred to as the scaled GP, which is directly applied
to the discrepancy function. This work focuses on prediction and not on interpretability
of the parameters. The method proposed in [Plumlee, 2019] produces a conservative con-
fidence set on the parameters that includes the best parameter with a desired probability.
Additionally, it is consistent in that it excludes suboptimal parameters in large sample
environments. The set is conservative and consistent, two properties whose coincidence
is not present in previously existing Bayesian or large sample frequentist methods. The
caveat is the requirement of a user specified bound on the norm of the discrepancy.
Further, discrepancy correction is not explicitly explored in this paper. In [Tuo, 2019]
a frequentist method, called the projected kernel calibration method, is proposed that
has a natural Bayesian version. They show that the inconsistency problem of the KO
approach can be rectified by a simple modification of the kernel matrix. In the recent
work [Xie and Xu, 2020] an approach called Bayesian projected calibration (regarded as
the Bayesian version of the L2-projected calibration) is proposed. Following [Tuo and
Wu, 2015, Tuo and Wu, 2016, Wong et al., 2017, Plumlee, 2017, Tuo, 2019], they add
theoretical guarantees. We refer the interested reader to [Xie and Xu, 2020] as a starting
point for further reading on L2-projected calibration and its developments.

Nagel et al. [Nagel et al., 2017] (recently published in [Nagel et al., 2020]) follow the KO
approach and address the point of high computational costs with GPs. They employ
a Principal Component Analysis (PCA) w.r.t. the simulation model for identification
of important data points in order to reduce the data and thus computational costs.
They further model the model discrepancy term by a low degree polynomial expansion,
assuming smoothness for the true underlying model discrepancy. This, in combination
with a zero-mean GP with an exponential kernel for the measurement noise, leads to a
decent data-model fit. Conclusions about the quality of the inferred model parameters
are not possible, due to the lack of reference values.
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Another approach in [Goulet and Smith, 2013] and the references therein is called
error-domain model-falsification (EDMF) motivated for civil engineering applications.
EDMF avoids the definition of correlations (they use the term uncertainty dependen-
cies) and is instead based on the concept of falsification. Falsification is the philosophical
perspective that scientific models cannot be fully validated by data, they can only be
falsified, see [Popper, 2005]. Comparison of residual minimization, Bayesian inference
and EDMF methods yields following conclusions. In presence of aleatoric and systematic
errors one needs to be careful with independence assumptions in Bayesian inference, as
the posterior distribution might be biased, which is in line with the findings in [Simoen
et al., 2013] and [Brynjarsdóttir and O’Hagan, 2014]. The same holds for residual min-
imization, where the point estimates are biased. In an example they show that EDMF
can, given sufficient measurements, identify when initial assumptions are flawed by falsi-
fying candidate models. However a result could be that all candidate models are falsified.
In the examples the EDMF results were able to infer the correct parameters, but the
parameter estimates were very conservative (desirable for civil engineering applications).
Additional comparison of Bayesian inference and EDMF w.r.t. robustness and extrapo-
lation can be found in [Pasquier and Smith, 2015].

Other approaches are intrusive or embedded model corrections. In [Parish and Du-
raisamy, 2016] a machine learning approach with full-field inversion, requiring inverse
modeling to address model form-error, is suggested to aid the creation of improved clo-
sure models for computational physics applications. However, as an intrusive approach
it is not suitable for black-box models. In the context of chemical kinetics [Morrison
et al., 2018] directly embed a discrepancy operator in the dynamical system. It respects
certain physical constraints such as conservation laws and requires the definition and
inference of several additional hierarchically modeled parameters, adding to the burden
of analysis. [Sargsyan et al., 2019] follow this embedded approach with PCEs for internal
model correction, which might be beneficial for extrapolation outside of testing range.
A further alternative is presented in [Bhat et al., 2017], where an embedded, dynamic
discrepancy is added. Modeling it by a GP turns the governing ODEs or PDEs into
a system of stochastic differential equations. [Bruder and Koutsourelakis, 2018] also
opt for opening black-box forward models to quantify model uncertainty in a physically
meaningful manner. They formulate an undirected probabilistic model, which recasts
the solution of both forward and inverse problems as probabilistic inference tasks.

Recently, more Machine Learning driven intrusive approaches evolved. E.g. in [Han
et al., 2018] a deep learning based approach is introduced that can handle general high-
dimensional parabolic PDEs. The PDEs are reformulated as backward stochastic differ-
ential equations, where the gradient of the unknown is approximated by neural networks.
In [Raissi et al., 2019] neural networks are trained to solve supervised learning tasks
while respecting any given laws of physics described by general nonlinear PDEs. [Giro-
lami et al., 2019] also systematically incorporate data into the finite element method
(FEM) solution of PDEs in the face of model misspecification using GPs. Recently,
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following [Chen et al., 2018], Rackauckas et al. [Rackauckas et al., 2020] proposed latent
(Neural) ODEs, where the ODE function is learned from data, e.g. with neural networks
or any other universal approximator. If the ODE function is partly known the missing
parts can be learned from data. This process can be seen as machine learning based
model discovery and is still current research. However, in general, simultaneous learning
of parameters from known ODE function parts and learning of unknown ODE function
parts yields again identification problems.

Finally, albeit not explicitly considering model discrepancy, Multilevel or Multifidelity
Monte Carlo methods need to be mentioned for the case where multiple computational
models with varying evaluation cost and fidelity are available. Those methods combine
computationally (often too) expensive high-fidelity models with lower-fidelity models
that are less accurate but computationally cheaper. I.e. this can be seen as a correction
of the lower-fidelity model for the task at hand, such as optimization, inference and
uncertainty quantification, with only minimal amount of high-fidelity model evaluations
to establish accuracy. See [Giles, 2015] for Multilevel Monte Carlo and [Peherstorfer
et al., 2018] for a survey on Multifidelity Monte Carlo methods. This approach cannot
only be applied on the simulation model level, but also for averaging of several compet-
ing (physically motivated) discrepancy models. In [Edeling et al., 2014b] and [Edeling
et al., 2014a] additive measurement noise and multiplicative model discrepancy term are
considered for turbulence closure models, the dominant error source in most Reynolds-
Averaged Navier–Stokes simulations. In [Edeling et al., 2014a] they develop a method
called Bayesian Model-Scenario Averaging, where several turbulence closure models are
averaged. They state that this approach can be successful when a large amount of data
is available and when model parameters are fixed.

4.2. Remark on numerical approximation error

Numerical approximation error is the inherent, epistemic uncertainty associated with
approximating abstract mathematical models with numerical methods. For ODEs this
is due to the finite-dimensional approximation of an unknown and implicitly defined
function. In some applications it might be important to explicitly account for the un-
certainty associated with the numerical method, in order to relate it to other sources
of uncertainty, e.g. measurement noise or model discrepancy due to missing modeling
[Conrad et al., 2017]. Probabilistic numerics (PN) aims at providing a growing toolbox
of methods that address these issues. PN methods recast numerical approximation as
an inference problem and return a distribution (likelihood) over possible solutions. This
distribution represents the inherent numerical uncertainty in contrast to a sole point
estimate in classical deterministic solvers. For an introduction to PN we refer to [Hennig
et al., 2015]. For PN w.r.t. ODEs see [Schober et al., 2019], where classical methods, such
as Runge–Kutta methods, are formulated in a probabilistic way and interpreted as Gaus-
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sian ODE filters. Another contribution to the growing class of PN methods is GOODE
(acronym for Gaussian Off-the-shelf Ordinary Differential Equation solver), the first PN
method for nonlinear 2-point Boundary Value Problems (BVPs) [John et al., 2019a].
GOODE iteratively approximates nonlinear BVPs by a sequence of linear BVPs, which
are solved with GP regression, respectively. GOODE also solves Initial Value Problems
(IVPs), since IVPs can be recast as BVPs. Figure 4.1 presents a GOODE solution for
the trajectory of current I and angular velocity ω for the basic electric motor model
(2.3), solved with a squared exponential kernel and 201 equidistant time steps in the
time interval [0, 6]. The resulting GP represents with its distribution the uncertainty
due to numerical approximation with the finite mesh of 201 time steps. Actually, the
standard deviation is an upper bound on the local numerical approximation error, see
[John et al., 2019a] for details.
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Figure 4.1.: GOODE solution for the trajectory of current I and angular velocity ω
for the basic electric motor model (2.3), solved with a squared exponential
kernel and 201 equidistant time steps in the time interval [0, 6]. For better
visualization only the time frame [0, 1] is shown. Legend: reference solution
with Matlab’s ode45 (solid, gray); GOODE mean (dashed, green); GOODE
standard deviation (dotted, green). The latter is amplified with 103 for
visualization purpose.

Note that incorporation of numerical approximation error via PN in inverse problems
is still an active field of research and up to date no off-the-shelf methods are available.
Recent work by Kersting et al. [Kersting et al., 2020] proposes a new method for ODE
inverse problems. There Gaussian ODE filtering is applied to construct a local Gaussian
approximation to the likelihood, which reflects epistemic uncertainty from numerical
approximation. With the assumption that the ODE function is linear in its parameters,
gradients and Hessian of the likelihood are then tractable and allow existing gradient-
based optimization and sampling methods.

Considering numerical approximation uncertainty in the inverse problem is impor-
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tant for coarse approximations, but might be negligible in contrast to other uncertainty
sources, if a fine discretization is possible. This is illustrated in [Kersting et al., 2020,
Figure 2], where numerical approximation uncertainty aware and unaware likelihoods are
compared for a coarse and fine time discretization of an ODE system (Lotka-Volterra).

In the following work we use a fine discretization, yielding a vanishing numerical error
and thus, for sake of simplicity, do not explicitly account for numerical approximation
error. In other cases one might consider the presented probabilistic numerical methods.

4.3. Bayesian inference with model discrepancy

As already reasoned in previous sections, the Bayesian approach to inverse problems,
introduced in Section 3.1, is advantageous to address the inverse problem and consider
all sources of uncertainty. In (3.1) ε models both the measurement and model error.
However it is often simply modeled as an identically and independent distributed (i.i.d.)
Gaussian. I.e. for unknown standard deviations σI , σω > 0, the identity matrix INt ∈
RNt×Nt and the covariance matrix Σ(σI , σω) = diag(σ2

IINt , σ
2
ωINt) ∈ R2Nt×2Nt let

ε(σI , σω) = [εI(σI), εω(σω)]T ∼ N (0,Σ(σI , σω)). (4.4)

The simplest model, denoted by Bayesian model 1 (BM1), is then

y =M(x) + ε(σI , σω). (4.5)

The likelihood, i.e. the distribution of the measurements y conditioned on the parameters
x, σI and σω, is

y|x, σI , σω ∼ N (M(x),Σ(σI , σω)). (4.6)

With a prior distribution π(x, σI , σω) = π(x)π(σI)π(σω), expressing a-priori knowledge
of the unknown parameters, Bayes’ formula yields for the posterior distribution

π(x, σI , σω|y) ∼ π(y|x, σI , σω)π(x, σI , σω). (4.7)

BM1 with the i.i.d. Gaussian measurement noise in principle assumes that the model
is perfect and thus neglects model discrepancy. In contrast to this, we now follow the
KO approach [Kennedy and O’Hagan, 2001] by explicitly considering and modeling the
unknown discrepancy δ between data y and simulation modelM(x†), where x† ∈ X are
optimal but unknown parameters. The resulting task is to simultaneously find model
parameters x ∈ X , model discrepancy δ = [δI , δω] ∈ R2×Nt and measurement noise
ε(σI , σω) ∈ R2×Nt such that

y =M(x) + δ + ε(σI , σω). (4.8)
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For D = [t1, tNt ] and unknown functions δI , δω : D → R the model discrepancy vectors
are

δI = [δI(t1), . . . , δI(tNt)], δω = [δω(t1), . . . , δω(tNt)]. (4.9)

In principle the unknown model discrepancy δ can easily be included within the Bayesian
framework, by defining a prior distribution and inferring it as well. However, it poses
further challenges which will be detailed in the following section. Inference of each
component in δ ∈ R2×Nt is in principle possible, but is not advisable as it does not
scale. Consequently, additionally to the parametric form of the measurement noise
term ε, a parameterization of the model discrepancy functions δI , δω is required. We
introduce in the following Gaussian Process and orthogonal function approximations
for the model discrepancy, due to the low number of parameters, but emphasize that
for other applications other universal approximators (e.g. see Table 3.1) might be more
suitable.

Remark. Additive measurement noise and model discrepancy is often a standard as-
sumption. Of course, one should carefully examine for the considered problem, if this
is justified. Otherwise one might need to transform the problem or use another noise
assumption tailored to the problem and the available information about the error struc-
ture. In principle, a multiplicative model discrepancy term y =M(x) ∗ δ + ε, where ∗
denotes element wise multiplication, is also possible, see e.g. [Edeling et al., 2014b, Edel-
ing et al., 2014a]. However, the likelihood that arises from a multiplicative error term is
more complicated [Dunlop, 2019]. For the problems considered in this work an additive
error structure is sufficient. Further the Gaussian i.i.d. noise assumption needs to be
justified. For instance, if there is evidence, it could be modeled as temporal or output
correlated or with time dependent standard deviations σI(t), σω(t) > 0. Also one might
think about a Laplace distribution that has fatter tails and is more forgiving for extreme
events.

4.3.1. Specific challenges: identifiability problem and model selection

Going away from the trivial choice of only i.i.d. noise allows a more detailed quantifica-
tion of uncertainties, but at the same time introduces additional challenges to the already
existing ones of solving an inverse problem. The primary problem of identification re-
quires modeling choices to be made for the discrepancy and consequently the difficult
task of model selection. This on the other hand implies an increase of computational
costs.

Identifiability problem

Primarily, there is the identifiability problem defined in 9. In contrast to the very rigid
statistical model BM1, the approach with model discrepancy is very flexible, which
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makes it impossible to identify a best parameter x† and a best model discrepancy δ†

without further information. In [Brynjarsdóttir and O’Hagan, 2014] they state that in
order to infer model discrepancy and model parameters at the same time, at least for
one of those an informative prior must be given. However, it is not clear how specific the
prior information need to be to obtain an identifiable problem. Also, it implies that the
inference result is way more sensitive on the prior, compared to BM1, where the prior
has low influence for informative data y [Tuo and Wu, 2015, Tuo and Wu, 2016].

Model selection

A first step towards specific prior information is to introduce a parametric model for the
model discrepancy term δ with, at best, a low number of variables for inference. Let δ(θ)
denote such a parametric model for δ with parameters θ ∈ Rp and prior distribution
π(θ). For competing variants of δ(θ) model selection is required. In principle model
selection can also be done on the level of the simulation model, but assume for the
following a fixed simulation modelM and consider the selection of the statistical model
only. Important factors that need to be balanced in order to specify and select the model
discrepancy term are:

• Identifiability, i.e. δ(θ) and π(θ) should contain enough specific information to
make inference of x,θ and σI , σω identifiable;

• Accuracy, i.e. the parametric model δ(θ) should be able to approximate the true
underlying discrepancy δ as good as possible, which requires a certain generality or
flexibility of δ(θ). However the generality needs to be balanced with the restrictions
for identifiability;

• Bias-variance trade-off is the fact that with increasing model complexity of
δ(θ) (but in principle also of M) the bias = E[x|y] − x† (difference between the
mean of the estimator and the reference value) decreases, but at the same time the
variance of the estimator V [x|y] increases with the model complexity [Hastie et al.,
2009]. Consequently, the mean square error MSE(x) = bias2 +V [x|y] is minimal
for an optimal model complexity, illustrated in Figure 4.2. With this optimal model
complexity the contributions of bias and variance are somehow balanced. Models
with a complexity over this optimum overfit (explain the measurement data too
good) and below underfit (explain the measurement data too bad).

• Computational costs, i.e. the evaluation of δ(θ) should be with low computa-
tional costs and the number of additional parameters θ should be low to reduce
sampling effort.

1Figure source: http://scott.fortmann-roe.com/docs/BiasVariance.html
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Figure 4.2.: Visualization of the bias-variance trade-off1. A dilema for supervised learn-
ing algorithms is to simultaneously minimize two error sources, the bias and
the variance, which prevent generalization beyond the trainig data. Bias
error occurs from wrong or unsufficient assumptions in the algorithm. Vari-
ance error is due to sensitivity to noise in the training data. With increasing
model complexity the bias decreases, but at the same time the variance
increases, and vice versa [Hastie et al., 2009].
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4.3.2. Gaussian Process approximation

Kennedy and O’Hagan [Kennedy and O’Hagan, 2001] suggest to model the model dis-
crepancy by a Gaussian Process

δ(t) ∼ GP(m(t), k(t, t′)), (4.10)

with mean function m : D → R and covariance function k : D×D → R (see Section 3.3
for an introduction to GPs). This kind of modeling is widely adopted in literature, as
already presented in Section 4.1, e.g. in [Brynjarsdóttir and O’Hagan, 2014, Plumlee,
2017].

Assume m(t) ≡ 0 and a parametric covariance kernel k(·)(t, t′;θ(·)), depending on
hyper-parameters θ(·) ∈ Rp, respectively for I and ω. The GPs δ(·)(t) evaluated at time
points ∆ = {t1, . . . , tNt} are multivariate Gaussian and denoted by

δ(·)(θ(·)) ∼ N (0,K
(·)
∆,∆(θ(·))), (4.11)

with covariance matrix elements [K
(·)
∆,∆(θ(·))]i,j = k(·)(ti, tj ;θ(·)) for ti, tj ∈ ∆. Then

δ(θ) = [δI(θI), δω(θω)]T ∈ R2×Nt (4.12)

denotes the approximation of the true underlying model discrepancy δ in (4.8), depend-
ing on both covariance functions kI , kω and the hyper-parameters θ = [θI ,θω].

Now, with the Gaussian noise model for ε as in BM1, the unknown latent δ can be
analytically integrated out from the product of the GP prior distribution π(δ|θ) and the
Gaussian likelihood π(y|x, σI , σω, δ,θ). The marginal likelihood

π(y|x, σI , σω,θ) =

∫
π(y|x, σI , σω, δ,θ)π(δ|θ)dδ (4.13)

is then a multivariate Gaussian

y|x, σI , σω,θ ∼ N (M(x),K∆,∆(θ) + Σ(σI , σω)). (4.14)

And for given prior distribution π(x, σI , σω,θ) the posterior distribution is given by

π(x, σI , σω,θ|y) ∼ π(y|x, σI , σω,θ)π(x, σI , σω,θ). (4.15)

The model discrepancy posterior distribution is δ(·)(t) ∼ GP(m(·)(t), k(·)(t, t
′)) with

m(·)(t) = K
(·)
t,∆(K

(·)
∆,∆)−1y(·), (4.16)

k(·)(t, t
′) = K

(·)
t,t′ −K

(·)
t,∆(K

(·)
∆,∆)−1y(·)K(·)

∆,t′ , (4.17)

where the dependency on θ(·) is omitted for convenience.
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Usually the log-marginal likelihood

log π(y|x, σI , σω,θ) =− 1

2
(y −M(x))T (K∆,∆(θ) + Σ(σI , σω))−1 (y −M(x)) (4.18)

− 1

2
log |K∆,∆(θ) + Σ(σI , σω)| − Nt

2
log(2π) (4.19)

is used for inference. Here the first term stands for the data fit and the second term
with the determinate for model complexity [Rasmussen and Williams, 2006]. Optimizing
θ w.r.t. the log-marginal likelihood automatically enforces model parsimony and avoids
overfitting for the given parametric covariance kernel and mean function.

Evaluation of the marginal likelihood requires inversion of the covariance matrix, which
is usually done via Cholesky decomposition. During sampling this is required for each
sample of θ, which fast becomes prohibitively expensive for large Nt, as the cost for
training scales withO(N3

t ). An approach to reduce the computational costs is to decrease
the number of time points for inference and finally compute the conditional distribution
to obtain a result for all time points. The reduced set of points are called inducing points
∆ind and are either fixed or simultaneously optimized, see e.g. [Quiñonero-Candela and
Rasmussen, 2005, Titsias, 2009] and the references therein for further details on sparse
GP regression. With this the cost for training reduces to O(Ntn

2
t ), where nt = |∆ind|

is the number of inducing points with nt < Nt. For simplicity we use a fixed set of
equidistant inducing points ∆ind ⊂ ∆ and the Fully Independent Training Conditional
(FITC) method for approximation in the following.

Assuming smoothness for δ we select a Matern 3/2 covariance kernel

k(t, t′) = τ2

(
1 +

√
3|t− t′|
l

)
exp

(
−
√

3|t− t′|
l

)
, (4.20)

with standard deviation τ > 0 and characteristic length scale l > 0. Figure 4.3 presents
in the bottom row an overview of the distribution of a GP with such a kernel for τ = 1
and l = 4, 2, 1.

For the following numerical experiments we denote

y =M(x) + δGP(θ) + ε(σI , σω) (4.21)

as Bayesian model with GPs (GP) with likelihood as above and model discrepancy
parameters θ = [τI , τω, lI , lω].

4.3.3. Orthogonal function approximation

Now, the model discrepancy is modeled by a truncated expansion of orthogonal functions,
as in [Nagel et al., 2017]. However, we simplify the correlated noise assumption made in
[Nagel et al., 2017] to an i.i.d. noise assumption for ε for the benefit of computational
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Figure 4.3.: Prior distribution for model discrepancy δ modeled with orthogonal func-
tions δK (top row: Legendre polynomials on [0, 6], middle row: weighted
Laguerre polynomials with scale s = 6) with maximal polynomial degree K
and Gaussian Process δGP with Matern 3/2 kernel and length scale l.
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efficiency. Yielding a cost efficient alternative for model discrepancy approximation in
comparison to the cost intensive GP approximation. Further, we suggest an iterative
approach to select the truncation order that is intended to infer physical meaningful
parameters and weaken identifiability problems.

For orthogonal function approximation we assume δ ∈ L2(D) and model it by a
truncated expansion of functions which are orthogonal with respect to the inner product
〈f, g〉 =

∫
D fgdµ, where µ is a measure on D and f, g ∈ L2(D). Let {pj}j∈N ⊆ L2(D)

be a basis of functions pj : D → R dense in L2(D), i.e. span({pj}j∈N) = L2(D). Then
for all δ ∈ L2(D) there exists {aj}j∈N ⊆ R with

∑
j∈N|aj |2 < ∞ such that δ can be

represented by the expansion

δ(t) =
∞∑
j=0

ajpj(t). (4.22)

For practicability reasons the expansion is truncated after a K ∈ N

δ(t) ≈ δK(t) =
K∑
j=0

ajpj(t). (4.23)

Let δKI (t) and δKω (t) denote the approximative models for the model discrepancy terms

δI , δω, with coefficients a
(I)
j and a

(ω)
j for j = 0, . . . ,K, respectively. Note that the basis

{pj}j=0,...,K and truncation parameter K do not necessarily need to be identical. Let

a = [a(I),a(ω)] = [a
(I)
0 , . . . , a

(I)
K , a

(ω)
0 , . . . , a

(ω)
K ] ∈ R2K+2 (4.24)

be the vector containing all coefficients and δKI (a) = [δKI (t0), . . . , δKI (tNt)], δ
K
ω (a) =

[δKω (t1), . . . , δKω (tNt)] be the vectors of the model discrepancy terms evaluated at the
discrete time points ti, i = 1, . . . , Nt. Hence

δK(a) = [δKI (a), δKω (a)]T ∈ R2×Nt (4.25)

denotes the approximation of the true underlying model discrepancy δ. The Bayesian
model 2 (BM2) with all parameter dependencies is

y =M(x) + δK(a) + ε(σI , σω). (4.26)

The number of unknown parameters depends on K and is n + 2K + 2 + 2. With the
additional unknown coefficients a, the prior distribution is defined as

π(x, σI , σω,a) = π(x)π(σI)π(σω)π(a), (4.27)
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where

π(a) =
K∏
j=0

π(a
(I)
j )π(a

(ω)
j ). (4.28)

Now, with the likelihood

y|x, σI , σω,a ∼ N (M(x) + δK(a),Σ(σI , σω)), (4.29)

the posterior is given by

πK(x, σI , σω,a|y) ∼ π(y|x, σI , σω,a)π(x, σI , σω,a), (4.30)

where πK denotes the dependence on K.

Remark. In contrast to the previous section, where δ(t) ∼ GP(m(t), k(t, t′)) with m(t) ≡
0 and a parametric model for k(t, t′), here the mean function is explicitly modeled by the
truncated function expansion and, in principle, k(t, t′) ≡ 0. The temporal dependence of
δ is now modeled by a weighted combination of the orthogonal basis functions temporal
dependence. The covariance matrix simplifies to a diagonal matrix based on the i.i.d.
measurement noise ε, resulting in low computational costs for likelihood evaluation. Of
course both approaches could be combined by modeling both, the mean function and
the covariance, but this again would require inducing points to reduce computational
costs for inversion.

For further proceeding the basis functions {pj}j=0,...,K , the prior for the coefficients
π(a) and the truncation parameter K need to be specified. If knowledge about the
discrepancy is available, this should be modeled accordingly by defining an appropriate
prior distribution for δK(a). However, in general this knowledge is not available and
some modeling assumptions need to be made. For these the model discrepancy related
specific challenges detailed in Section 4.3.1 need to be considered in order to balance
identifiability, accuracy (model complexity), bias-variance trade-off and computational
costs.

Basis functions

Following the assumption above, the basis needs to be dense in L2(D). With the addi-
tional assumption that δ is rather smooth, polynomials are a reasonable choice. For this
let pj : D → R be a polynomial with polynomial degree deg(pj) = j and {pj}j∈N be an
orthonormal polynomial basis. Let w : D → R+ be the weighting function of µ. Then,
for instance, the

• (a) Legendre polynomials for w(t) =
1

|D| , with |D| = tNt − t1
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• (b) Tschebyschew polynomials for w(t) =
1√

1− t2
and

• (c) Laguerre polynomials for w(t) = exp−t

are, among others, dense in L2(D) and thus possible choices for the expansion. Legendre
polynomials with the constant weighting function are a reasonable choice for {pj}j=0,...,K .
This choice was also made in [Nagel et al., 2017].

Another option are the scaled and weighted Laguerre polynomials {pj}j∈N, weighted
with the square root of their respective weighting function, i.e. φj(st) = pj(st) exp(−st/2)
for scaling s > 0. For s fixed and t→∞ the φj(st)→ 0, which consequently implies the
same for an expansion in {φj}j∈N with fixed expansion coefficients. This encodes that
the model discrepancy tends to zero for large t.

Figure 4.3 displays an overview of the distribution of δK modeled with (top row) Legen-
dre polynomials on [0, 6] and (middle row) weighted Laguerre polynomials with scale s =
6 for K = 3, 6, 9 (columns) and coefficients sampled as detailed below. Note that the vari-

ance in both cases is non-constant and varies with t, i.e. V [δK(·)(t)] =
∑K

j=0 V [a
(·)
j ]p2

j (t).

Prior distributions for the coefficients

The choice of the prior distribution for the coefficients is a bit delicate and somewhat
arbitrary, as they have no physical meaning. Since no knowledge about the model
discrepancy δ is available we assume δK(a) to be as small as possible by specifying
priors that are centered around zero. Every around zero centered probability distribution
with decaying tails should be sufficient. However, following [Nagel et al., 2017], we
opt for zero mean Laplace distributions, as they assign the highest probability around
zero and decay exponentially towards the tails. The probability density function of
Laplace(a, b) is f(x) = 1

2bexp(−
|x−a|
b ) for x ∈ R [Kotz et al., 2012]. Compared to a

Gaussian distribution, Laplace distribution enforces the zero a bit more and has slightly

fatter tails, see Figure 4.4 for a visual comparison. Consequently, the π(a
(I)
j ), π(a

(ω)
j ) are

modeled as Laplace distributions with zero mean and variance b > 0. As the coefficients

a
(I)
j , a

(ω)
j have independent zero mean priors the resulting distributions for δKI , δ

K
ω are

centered around zero as well, visualized in Figure 4.3 where b = 10.

Truncation parameter K

Assume that a polynomial basis and the prior for the coefficients are given, then an
appropriate truncation parameter K needs to be selected. With the choice of orthogonal
polynomials, K corresponds to the maximum polynomial degree of the basis polynomials
and determines the complexity of the model discrepancy term δK(a). With increasing
K the discrepancy term δK(a) yields an increased flexibility and is able to approximate
a growing class of functions. However, a remedy of this increased flexibility is a loss
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Figure 4.4.: The probability density function of a Laplace distribution Laplace(0, 10)
compared to a Gaussian distribution N (0, 102).

of information in the prior of δK(a). This might yield identifiability problems for all
unknown parameters, depending on the information content of the remaining model
parameter prior distributions. Furthermore, a large K might yield overfitting, i.e. high
degree polynomials inadvertently start to reproduce oscillations of the measurement
noise. With respect to computational costs K should be as small as possible to reduce
the number of unknown parameters to sample from. Consequently, an optimal K should
be just large enough such that δK(a) is accurate enough to approximate the underlying
discrepancy correct, while reducing identifiability and overfitting problems. Finally,
taking all these factors into account the suggested approach in this work on how to find
an optimal Kopt is sketched in Algorithm 5: Start with an initial K = 0 and increase K

Algorithm 5: Selection of optimal truncation parameter Kopt

Initialize: K = 0, tol > 0, κmax ∈ N
1. Compute πK(σI , σω|y), . . . , πK+κmax

(σI , σω|y)
2. If D(πK(σI , σω|y), πK+κ(σI , σω|y)) < tol for κ = 1, . . . , κmax

2.1. Set Kopt = K and stop.
3. Else
3.1. Set K = K + 1
3.2. Compute πK+κmax

(σI , σω|y)
3.3. Return to 2.

iteratively until the marginal posterior distribution πK(σI , σω|y) of the noise standard
deviation stabilizes, i.e. until the condition in line 2 holds for given distance measure
D(·, ·), tolerance tol > 0 and maximum length κmax.

Why is this sufficient? If a model discrepancy is present in BM1, then the noise term
and the parameters are the only instances to capture it. As the noise term is modeled
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with zero mean, the standard deviation might be overestimated consequently. By adding
the model discrepancy term in BM2, it captures, depending on its flexibility and degrees
of freedom, a fraction of the model discrepancy. As a consequence, the noise term ε needs
to represent only the remaining discrepancy and is estimated by a smaller value. Due
to the smoothness assumption of δK(a), ε collects also everything that is not smooth
enough. Now, if the estimated standard deviation of the noise does not change anymore
from K to K+κ for κ = 1, . . . , κmax within the tolerance, then the smallest sufficient K
is found. For this K the model discrepancy term δK(a) should represent the underlying
model discrepancy appropriately and a separation of model, parameter and measurement
uncertainty is achieved.

Remark. In principle, K could be modeled by a discrete random variable in the Bayesian
model and inferred as well. However this bears technical difficulties. E.g. for K ∈
{0,Kmax} there are active coefficients a

(·)
j , j = 0, . . . ,K and passive coefficients a

(·)
j , j =

K+ 1, . . . ,Kmax. Active means that they are considered in δK(a). If K switches during
inference, then active coefficients get passive or vice versa. The problem is now how
to handle this switching together with the often required burn in phase of sampling
methods.

4.4. Sampling with surrogate-based gradient

Sampling from the posterior distribution is a difficult task, in particular for the complex
statistical models of BM2 and GP, which include the complex physical model M in the
likelihood. Sampling with MH-MCMC works, but is inefficient, due to high autocorrela-
tion. For a decent approximation of the posterior distribution a large number of samples
is required, implying long runtimes even with the usage of cheaper to evaluate surrogates
for M.

Often statistical models are expressed as symbolic computation graphs (e.g. with the
Python library Theano [Theano Development Team, 2016] for the probabilistic program-
ming library PyMC3 [Salvatier et al., 2016]), which generally allow automatic differenti-
ation via efficient symbolic manipulation. Sampling efficiency can then be improved with
advanced gradient-based samplers like Hamiltonian Monte Carlo (HMC) and No-U-turn
sampler (NUTS) [Hoffman and Gelman, 2014]. However, complex physical models M
or their surrogates are often black boxes, prohibiting full automatic differentiation.

One option are combined samplers, i.e. a gradient-based one for the automatic dif-
ferentiable parameters combined with a gradient-free for all other parameters, e.g. for
inference with BM2 the MH-MCMC sampler for x and NUTS for a, σI , σω. This im-
proves sampling, but there is still a bottleneck with the MH-MCMC step for x.

In this work we use the fact that the derivatives of PCE surrogates MPCE are
analytically tractable and implement the Jacobian ∇MPCE(x) within the graph. In
particular, MPCE(x) is wrapped as Theano operator with a method that computes a
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vector-Jacobian product, where ∇MPCE(x) itself is wrapped as a Theano operator (If
an analytical gradient is not available, then finite differences are another option). This
makes automatic differentiation possible and allows full usage of gradient-based samplers.
The benefit is visualized in Figure 4.5, where samples from a combined sampler (MH-
MCMC and NUTS) with high autocorrelation are compared to surrogate-based NUTS
samples. Clearly the latter are superior w.r.t. autocorrelation, consequently requiring a
lower number of total samples to approximate the posterior distribution properly. This
is in line with the findings and illustration in [Hoffman and Gelman, 2014, Figure 7]. A
drawback are the higher computational costs per sample for surrogate-based NUTS, as
an additional evaluation of ∇MPCE(x) is required.

0 1000 2000 3000 4000
samples

2.2

2.4

2.6

2.8

3.0

T

MH-MCMC + NUTS

0 1000 2000 3000 4000
samples

NUTS with PCE gradient

Figure 4.5.: Marginal posterior samples of parameter T obtained with combined MH-
MCMC and NUTS sampling (left) and full NUTS sampling with surrogate-
based gradient (right)2.

Remark. Another (technical) option for implementation is to symbolically exportMPCE

(e.g. with the Python library Sympy) and then to convert/import it as Theano graph,
which, in principle, allows automatic differentiation. It works well for small PCE with
only a few time points, but bears technical difficulties for a large PCE with many time
points.

4.5. Numerical experiments

The numerical experiments are presented in following order: first for the basic electric
motor model (see Section 2.1) with synthetic data and second for the test bench data
with the corresponding basic model (2.11) (see Section 2.2). The applied methods are:

2This are already anticipated results from Section 4.5.2 for inference of V and T with BM2 (Legendre
polynomials and K = 3) for synthetic data with discrepancy case linear.

69



Chapter 4. Discrepancy modeling

• BM1 defined in (4.5), the simplest model with only i.i.d. Gaussian measurement
noise ε(σI , σω);

• BM2 defined in (4.26), with orthogonal function model discrepancy δK(a) addi-
tionally to BM1;

• GP defined in (4.21), with Gaussian Process model discrepancy δGP(θ) additionally
to BM1.

In the following Section 4.5.1 details on the joint inference setup. Then Section 4.5.2 and
Section 4.5.3 present the numerical results for synthetic and test bench data, respectively.
Section 4.5.4 concludes with a discussion of the results.

4.5.1. Inference setup

For all three methods the priors for the unknown standard deviations of the noise
π(σI), π(σω) are defined as uninformative Inverse Gamma distributions InvGamma(α =
2, β = 1). This is a common choice for conjugate priors of scale parameters in Bayesian
statistics [Gelman et al., 2013], in particular for a Gaussian likelihood with given mean.
The inverse Gamma distribution ensures the positiveness of σI , σω > 0.

The considered model parameters x are either the voltage V or the mechanical load
T or both. The default prior distributions are V ∼ N (13.5, 0.72) and T ∼ N (2.5, 0.22).
The default setting for BM2 are Legendre polynomials with Laplace(0, b = 1) priors
for the coefficients a. Alterations of the default setting are noted accordingly in the
following.

For GP the priors are for the length scales lI , lω ∼ Gamma(α = 2, β = 1) and for the
standard deviations τI , τω ∼ InvGamma(α = 1, β = 1). The number of inducing points
is nt = 31 (in contrast to all time points with Nt = 601).

The simulation models are replaced by PCE surrogates for speed up, as detailed in
Section 3.3.1. The PCE level L for the basic electric motor model is L = 2 and for the
test bench model L = 3. For approximation of the posterior distributions the NUTS
sampler with surrogate-based gradients is used, see Section 4.4. For BM1 and BM2
four parallel Markov Chains with 1500 samples each are sampled. For GP only 2 chains
are sampled, due to higher computational effort. All computations are performed on a
standard work station.

4.5.2. Synthetic data

Synthetic data allows the control of data generation and thus a detailed comparison and
analysis of the inference results to available reference values. For synthetic data the
basic electric motor model in Section 2.1 is used. The synthetic measurement data y is
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generated by

y =M(x†) + δ† + ε†, (4.31)

where the simulation modelM is evaluated at reference model parameters x†, distorted
by a reference model discrepancy δ† and corrupted by a sample of Gaussian measurement
noise ε† with reference noise standard deviations σ†I = 0.1 and σ†ω = 0.5, for outputs
current I and angular velocity ω, respectively. x† are specified in Section 2.1 with
V † = 12 and T † = 2.5.

As this chapter is all about model discrepancy, the following presents numerical ex-
periments with varying definition of δ† for the inference of model parameters V, T and
model discrepancy δ.

Results for zero, constant, linear and quadratic δ†

Table 4.1 lists four different model discrepancy cases with specific definitions of δ†.
Figure 4.6 presents the marginal posterior distributions of V, σI and σω (rows) for

δ†I(t) δ†ω(t)

zero 0 0
constant 0.1 0.5
linear 0.025t 0.1t
quadratic t(t− 5)/50 t(t− 5)/100

Table 4.1.: Reference model discrepancy δ† = [δ†I(∆), δ†ω(∆)] explicitly defined as zero,
constant, linear or quadratic functions, respectively for current I and angular
velocity ω.

discrepancy cases zero, constant, linear and quadratic (columns). Boxplots represent for
each of these discrepancy cases the marginal posterior distributions obtained via GP,
BM1 and BM2 for K = 0, . . . , 6 (with Legendre polynomials and b = 1). The reference
values are plotted for comparison. Note that the posterior distribution of σI , σω does
not necessarily need to correspond to σ†I , σ

†
ω, but rather to empirical noise standard

deviations (not visualized), due to the finite number of data points. This holds for all
following figures. The BM1 solution for V is biased and overconfident for cases constant,
linear and quadratic in comparison to the reference values. As expected σI and σω are
overestimated to compensate the discrepancy that cannot be handled by BM1. GP is in
general more uncertain, but also biased for cases zero, constant and linear. Here, σI and
σω are well estimated due to GP discrepancy modeling. For BM2 the marginal posterior
distributions of σI and σω decrease in value for increasing K as the model discrepancy
term takes over what previously was covered by the noise term only. BM2 with the
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selection of an optimal K based on the marginal posterior distributions of σI , σω and
Algorithm 5 leads to better results for the posterior distribution of V . We also observe
an increasing uncertainty and bias (note that the prior for V is centered at 13.5) in
BM2 solutions for increasing, non-optimal K. The identified optimal K correspond to
the polynomial degree of the reference discrepancy, namely K = 0 for cases zero and
constant, K = 1 for case linear and K = 2 for case quadratic. The model discrepancy
posterior distributions with those optimal K are displayed in Figure 4.7. They are less
uncertain, compared to the ones obtained with GP. Similar results can be achieved for
inference of T .

Inference of V and T simultaneously is more problematic as displayed in Figure 4.8.
The results with respect to the posterior distributions of V and T are as expected for
BM1: correct for case zero, but biased and overconfident for cases constant, linear and
quadratic. Unfortunately, GP and BM2 results are biased as well and very uncertain.
Here the posterior distributions are almost as uncertain as the prior distributions for V
and T , but a bit shifted. Positive with BM2 is the correct identification of the optimal
K based on Algorithm 5 and the marginal posterior distributions of σI and σω. The
optimal K’s correspond to the polynomial degree of the reference discrepancies, at least
identifying the shape of the model discrepancy correctly, but with an bias and high
uncertainty. The BM2 and GP model discrepancy posterior distributions look almost
similar to those in Figure 4.7, but with more uncertainty and bias.

Modifying the Laplace prior for the BM2 model discrepancy coefficients a from b = 1
to b = 0.1 has high influence on the posterior distributions for inference of V or T
alone, but less influence for simultaneous inference of V and T . For V with b = 0.1 the
results are displayed in Figure A.1 in the Appendix. The results of GP and BM1 are
unaltered, but the BM2 results are now similar biased as BM1. Now, the uncertainty
does not increase with K. Identification of optimal K is still possible, leading to model
discrepancy posterior distributions that are correct in shape but slightly biased. Results
for T alone are similar. For V and T with b = 0.1 the results are, in comparison to those
with b = 1 in Figure 4.8, for BM2 generally only less uncertain and a bit less biased.
Also here, identification of optimal K is still possible.

The joint inference of V and T together is problematic. From the sensitivity anal-
ysis of the basic electric motor model in Figure 3.4, it is known that both parameters
have an influence on both outputs, only with varying share during time. Consequently,
varying the input V, T varies the output I, ω indirectly w.r.t. the simulation model. Ad-
ditionally, varying δI , δω varies the output I, ω directly. Now, varying V, T and δI , δω
simultaneously leads to an identification problem. The effects of single variations are
now not uniquely separable anymore, which makes the corresponding inverse problem
extremely difficult to tackle. With this the prior distribution has increased influence on
the posterior (as shown with reduction of b). Of course modifying the prior of V and T
to be more informative would improve BM2 and also GP results correspondingly.
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Figure 4.6.: Posterior distributions of V, σI and σω (rows) for discrepancy cases zero,
constant, linear and quadratic (columns). Results are obtained via GP,
BM1 and BM2 for K = 0, . . . , 6 (with b = 1). Reference values are red
dash-dotted.
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Figure 4.7.: Posterior distributions of δI , δω (rows) for inference of V, σI and σω (see Fig-
ure 4.6) for discrepancy cases zero, constant, linear and quadratic (columns).
Results are obtained via BM2 with K specified in the heading (top half) and
GP (bottom half). Reference discrepancy plus measurement noise is gray.
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Figure 4.8.: Posterior distributions of V, T, σI and σω (rows) for discrepancy cases zero,
constant, linear and quadratic (columns). Results are obtained via GP,
BM1 and BM2 for K = 0, . . . , 6 (with b = 1). Reference values are red
dash-dotted.
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Remark. Anticipating the discussion later on, we already state an idea here for further
research in order to improve this problem: a sensitivity informed likelihood. BM2 worked
well for single parameters, but not for both. Thus splitting the likelihood in time w.r.t.
time dependent sensitivity indices, for instance, might help to better account for single
variations of the parameters. Research in this direction is unfortunately out of scope for
this work.

Results for δ† based on model misspecification

Table 4.2 lists two different model discrepancy cases with implicit definitions of δ† via
misspecification of model parameters. This reference model discrepancy occurs by gen-
erating the synthetic data with unaltered reference parameters (right term in the sum)
and performing inference with altered reference parameters (as in the left term of the
sum).

[δ†I , δ
†
ω]

case cg M(x†; cg = 0.9c†g)−M(x†; cg = c†g)
case J M(x†; J = 3J†)−M(x†; J = J†)

Table 4.2.: Reference model discrepancy δ† = [δ†I , δ
†
ω] implicitly defined via misspecifica-

tion of model parameters.

The case cg for inference of resistance R and model discrepancy δ was already treated
successfully in the author’s previous publications, see [John et al., 2018a, John et al.,
2018b, John et al., 2019b]. Due to this already detailed documentation, the results are
not repeated here.

Based on the case J data the voltage V is inferred with methods GP, BM1 and BM2 for
K = 0, . . . , 12. For BM2 three different specifications for the model discrepancy prior
δK(a) are used, i.e. with varying polynomials (Legendre and weighted Laguerre) and
varying coefficient prior π(a) = Laplace(0, b). The posterior distributions for parameters
V, σI , σω are displayed in Figure 4.9 and for model discrepancy δ in Figure 4.10.

The BM1 results for V are biased and overconfident. The GP results are even more
biased and have high uncertainty. The GP model discrepancy posterior distribution
properly infers the shape of the reference model discrepancy, but is biased and uncertain,
see Figure 4.10 (bottom half, right column). BM2 with Legendre polynomials and b = 1
achieves better results for V with respect to the bias for K ≥ 6, but has high uncertainty.
Here the marginal posterior distribution of σI , σω and Algorithm 5 suggest, sensitively
depending on κmax and tol, K = 5 or K = 8 as optimal. However K = 5 is not
optimal, as the posterior distribution of V is still biased and improves only with K ≥
6. With increasing K the uncertainty is increasing, which is also visible in the model
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discrepancy posterior distribution in Figure 4.10 (top half), where the evolution of δK

for K = 4, 5, 6, 11 is illustrated. δK for K = 4 roughly has the shape of the reference,
but is, corresponding to the posterior distribution of V for K = 4, largely biased. This
improves for K = 5 and gets even better for K = 6. With K = 11 first signs of overfitting
start to occur, in particular for δKI , where low frequency parts of the measurement noise
are reproduced. This and the increased uncertainty are a sign for a too large K, i.e.
respectively a too large polynomial degree. However, with increasing K the uncertainty
does mainly grow in the coefficients of the constant and linear polynomial and not, as
one might expect, in the coefficients of the higher degree polynomials. Consequently, the
increasing uncertainty are signs of the identification problem, due to an growing number
of unknowns with K.

As a theoretical experiment and since the reference model discrepancy is known, the
influence of a more informative coefficient prior π(a) = Laplace(0, b) is tested by replac-

ing the zero-mean for the coefficients of the constant polynomials a
(·)
0 with an informative

mean based on a polynomial fitted to the reference model discrepancy. All other coef-

ficients a
(·)
j , j ≥ 1 remain with a zero-mean prior. Informative in a

(·)
0 and still with

b = 1 has almost no influence compared to previous results. But informative in a
(·)
0 with

b = 0.1 has an immense influence as displayed in Figure 4.9 (middle column). The results
for V improve drastically with almost no bias and uncertainty. However, the availability

of the used information about a
(·)
0 is unrealistic in practice.

More realistic are general assumptions about the model discrepancy, for instance, that
it is negligible in a stationary time domain. The reference model discrepancy for case J
tends to zero for t→ 6. A model discrepancy prior for δK(a) with the weighted Laguerre
polynomials (scale s = 6), which also tends to zero for t→ 6 as displayed in Figure 4.3,
consequently yields improved results. The posterior distributions of V in Figure 4.9
(right column) nicely converge to the reference value for increasing K. The marginal
posterior distribution of σI , σω and Algorithm 5 suggest K = 4 as optimal. With K = 4
the posterior distribution for δK(a) perfectly infers the reference discrepancy with low
uncertainty, see Figure 4.10 (bottom half). For K ≥ 7 the uncertainty in V increases and
for K ≥ 11 the model discrepancy δK(a) starts to overfit, too. Note that theoretically,
for an optimal weighted Laguerre polynomial scaling parameter s, an even smaller K
would be possible, since a stretched version of the model discrepancy for K = 1 could
already fit the reference discrepancy well. However a non-optimal scale s works just fine
as well, it only requires a larger K.

Inference of V and T simultaneously is displayed in Figure 4.11. The model discrep-
ancy posterior distributions are displayed in the Appendix in Figure A.2. The BM1
results are good in V , but biased and overconfident in T . The GP results are uncertain
and biased, even largely biased in T . The presented BM2 results are all with b = 1 for
the coefficients prior π(a). The results in the first column with Legendre polynomials
are biased and uncertain, which repeats the observations previously made for cases zero
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Figure 4.9.: Discrepancy case J posterior distributions for V, σI and σω (rows). Results
are obtained via GP, BM1 and BM2 for K = 0, . . . , 12 with varying model
discrepancy prior δK(a) (columns), i.e. varying polynomials (Legendre and
weighted Laguerre) and varying coefficient prior π(a) = Laplace(0, b) (mid-

dle column with informative mean for coefficients a
(·)
0 based on the reference

model discrepancy). Reference values are red dash-dotted.
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Figure 4.10.: Discrepancy case J posterior distributions of δI , δω (rows) for inference of
V, σI and σω (see Figure 4.9). Results are obtained via BM2 with Legendre
polynomials (top half), weighted Laguerre polynomials (bottom half) and
K specified in the heading (all with b = 1) and GP (bottom half, right
column). Reference discrepancy plus measurement noise is gray.
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to quadratic. Algorithm 5 suggests an optimal K = 6. The corresponding model dis-
crepancy posterior in Figure A.2 (1st column) is also uncertain and slightly biased, but
with proper shape.

It is not included in the plot, but reducing b from 1 to 0.1 for the Legendre polynomials,
as done previously, improves uncertainty and bias slightly. A way further and obvious
improvement of the results is achieved by exchanging the default parameter prior with a
more informative, centered prior πc(V, T ) = πc(V )πc(T ), with πc(V ) = N (12, 0.12) and
πc(T ) = N (2.5, 0.12). This largely reduces bias and uncertainty (2nd column), however
such specific prior information is hardly available in reality.

Again, BM2 with weighted Laguerre polynomials, representing more realistic infor-
mation about the model discrepancy, leads to very good results (3rd column) for V and
T with the default parameter prior. For an optimal K = 4 results correspond to the
reference with only small uncertainty. Also the model discrepancy posterior is very sharp
on the reference, see Figure A.2 (3rd column). This gets even better with πc(V, T ) (4th
column in Figure 4.11).

4.5.3. Test bench data

The test bench data and the corresponding simulation model are introduced in Sec-
tion 2.2. For the following analysis the test bench run yi with index i = 15 is used,
denoted in the following by TB15. Parameter reference values are then the correspond-
ing samples used for data generation, i.e. V † = Vi, T

† = Ti. Reference values for
σI , σω are not available. Estimates based on Definition 1 with time interval [3, 6] are
σI = 0.19, σω = 0.33. But as they are only estimated for the last half of the whole time
interval, they probably underestimate the actual noise standard deviations.

Inference results for V, T, σI and σω with GP, BM1 and BM2 for K = 0, . . . , 18 are
displayed in Figure 4.12. The BM1 results are almost perfect for V , but biased for T .
The GP results are largely biased in V and equal the prior in T . The BM2 results with
Legendre polynomials also equal the prior in T and are largely biased in V , where the
magnitude of the bias changes with K. The model discrepancy posterior distributions
in Figure 4.13 (1st and 2nd column), somehow get the shape of the discrepancy, but
are largely biased for K = 6 and tend to overfit for larger K, e.g. as displayed for
K = 18. BM2 with weighted Laguerre polynomials achieves very good results in V
for K = 0, . . . , 9 and good results in T for K = 1, 2, 3, 4, 6, 8. For larger K bias and
uncertainty increase. The model discrepancy posterior for K = 5 fits the discrepancy
quite well. For K = 18 overfitting and bias is present, too.

The strong overfitting poses a challenge for selection of an optimal K with Algorithm 5,
as the noise standard deviations still decrease for increasing K. With κmax = 1 and a
tolerant tolerance, K = 2 or K = 6 could be selected as optimal, both leading to decent
model parameter estimates.

Additional results for test bench data with indices i = 16, 26, displayed in Figure A.3
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Figure 4.11.: Discrepancy case J posterior distributions for V, T, σI and σω (rows).
Results are obtained via GP, BM1 and BM2 for K = 0, . . . , 12 with
varying model discrepancy prior δK(a) (columns), i.e. varying polyno-
mials (Legendre and weighted Laguerre). The coefficient prior is default
π(a) = Laplace(0, b = 1). 2nd and 4th column are with more informa-
tive, centered prior πc(V, T ) for the parameters. Reference values are red
dash-dotted.
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Figure 4.12.: Test bench data TB15 posterior distributions for V, T, σI and σω (rows).
Results are obtained via GP, BM1 and BM2 for K = 0, . . . , 18 with varying
model discrepancy prior δK(a) (columns), i.e. Legendre and weighted La-
guerre polynomials. The coefficient prior is default π(a) = Laplace(0, b =
1). Reference values are red dash-dotted. Dotted gray lines augment the
GP noise standard deviation posterior mean for comparison.
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Figure 4.13.: Posterior distributions of δI , δω (rows) for inference of V, T, σI and σω (see
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show similar performance. The BM2 results with K = 1, 2, 4 for TB16 and with K = 6, 9
for TB26 show decent results, but selection of an optimal K with Algorithm 5 is again not
obvious. For TB16 one might select K = 4 and for TB26 K = 4 or with small tolerance
K = 6. The corresponding model discrepancy posterior distributions are displayed in
Figure A.4.

4.5.4. Discussion

The inverse problems approached in this chapter are challenging, mainly due to the
identification problem. The expectations on the introduced methods – BM2 and Al-
gorithm 5 – are to improve on BM1 and GP solution and to get close to an unbiased
parameter and model discrepancy estimation. At this point we would like to highlight
again that the relatively simple function (polynomial) expansion with low number of
terms for the model discrepancy in BM2 is chosen on purpose for three reasons: (1) It
clearly improves on GP with respect to computational costs. (2) It has a low number
of unknown parameters and (3) allows a certain smoothness which is together with (2)
advantageous to tackle the identification problem. Of course, due to this modeling the
BM2 model discrepancy has limited approximation capability. But it is better to obtain
an approximation of the model discrepancy that might be rough, than none or only
an highly uncertain and biased one because of unsolvable identifiability problems. This
trade-off between solvability of the identifiability problem and approximation quality is
visible in the numerical experiments above.

For the synthetic data, the BM1 results are generally biased and overconfident and
the GP results are very uncertain. Overall, BM2 improves on this and achieves de-
cent results, clearly satisfying the expectations. Note that some synthetic experiments
show the difficulties of solving inverse problems with unknown model parameters and
unknown model discrepancy, e.g. major identifiability problems occur for the joint infer-
ence of V and T for discrepancy types zero, constant, linear and quadratic. Nevertheless,
Algorithm 5 worked well for selection of an optimal truncation parameter K for all ex-
amples, though it sensitively depends on the chosen tolerance tol and κmax in some cases.
Further, assuming additional knowledge about the model discrepancy, the weighted La-
guerre polynomials are beneficial to reduce identifiability problems and lead to improved
estimations with less uncertainty.

For the test bench data the results with BM2 and weighted Laguerre polynomials are
decent as well and clearly satisfy expectations, e.g. for TB15 with K = 5 in Figure 4.12
and 4.13. However, selection of an optimal K with Algorithm 5 is difficult, as the BM2
model discrepancy term tends to overfit with increasing K.

The solution to this problem might be a stopping criterion for Algorithm 5 to prevent
overfitting. This could be a hand tuned value or derived from the data for example
as follows. As stated above in Section 4.3.2 Gaussian Processes automatically enforce
model parsimony and avoid overfitting. Albeit the GP results for the model parameters
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and the model discrepancy are biased, the overall data fit is still good. Consequently, the
marginal posterior distribution of σI , σω from the GP method might serve as orientation,
where to stop in Algorithm 5. Consulting the synthetic results, it is confirmed to be a
decent stopping criterion. For the test bench data, where the marginal posterior mean
of σI , σω from the GP method are visually extended (dotted gray) for comparison to the
other methods, it serves well as a stopping criterion, too.

Of course one could make things simpler and fit a GP to the data directly without
simulation model, but this would lead almost surely to a similar posterior for σI , σω. To
do so fit a GP with some kernel and i.i.d. noise to the data, until the desired data fit is
achieved. Then, use the estimate of the noise standard deviation as stopping criterion.
Doing so with an optimizer would require only a few covariance matrix inversions and
result in acceptable computational costs.

Another idea is to accept the high computational costs of the GP method and improve
the performance by transferring the information contained in the weighted Laguerre
polynomials to the model discrepancy prior of the GP method. E.g. with a scaled
covariance kernel kscaled(t, t

′) = φ(t)kbase(t, t
′)φ(t′) for some function φ(t) ≥ 0 and a

base kernel kbase. The amplitude of kscaled then changes over time with φ and tends to
zero if φ tends to zero. However, it is unclear if this leads to similar results as with BM2,
and thus, further investigations are required in future work.
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From deterministic to aleatoric parameter
estimation

Uncertainty is sometimes unavoidable. But in the world of scientific
computing and engineering, at least, what’s worse than uncertainty is being
uncertain about how uncertain one is.

DARPA 20151

By moving to the stochastic inverse problem in Definition 5 we are now concerned
with the estimation of aleatoric parameters in contrast to the inference of deterministic
parameters in the inverse problem in Definition 4. The inference of aleatoric parameters
is in principle an infinite dimensional problem, due to the unknown probability density
functions that live in an infinite dimensional function space. This brings additional
challenges, even higher computational costs and a model discrepancy that now depends
on time and on parameters.

Part of theses challenges are addressed in this chapter by first introducing a discretiza-
tion of the infinite dimensional problem with hierarchical estimation of aleatoric parame-
ters in Section 5.1. Following, Section 5.1.1 presents posterior distribution approximation
with a hierarchical surrogate-based MCMC method and Section 5.1.2 proposes a novel
surrogate-based ABC method with summary statistics that improves on MCMC with
respect to computational costs. This is accompanied by numerical results for synthetic
and test bench data in Section 5.2.

Additional consideration of model discrepancy will be covered later in Chapter 6.

5.1. Hierarchical aleatoric parameter estimation

The need for hierarchical models in Bayesian statistics and in particular in the context
of non-parametric methods (i.e. methods in function space) in machine learning, is well
established [Bishop, 2006]. For state of the art in hierarchical Bayesian estimation we
refer to [Robert, 2007] and for hierarchical Bayesian inverse problems to [Sraj et al.,

1Defense Advanced Research Projects Agency (DARPA) see https://www.darpa.mil/news-events/2015-01-08
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2016, Dunlop et al., 2017, Roininen et al., 2019, Latz et al., 2019] and the references
therein. Those methods deal with inference of continuous-parameter random fields both
for priors and hyper-priors.

As this is an active research field in its own, we assume in the following parametric
distributions for the unknown aleatoric parameters and thus constrain, i.e. discretize
the function space. In particular, we assume Gaussian distributions and inference is
then based on the hyper-parameters mean and standard deviation, following [Glaser
et al., 2016, Glaser et al., 2017, Glaser, 2020]. This corresponds to the traditional way
of dimensionality reduction in forward and inverse stochastic problems by using the
truncated Karhunen-Loève expansion (KLE) [Marzouk and Najm, 2009, Le Mâıtre and
Knio, 2010, Sraj et al., 2016], with only two coefficients.

For theoretical error analysis, i.e. whether the reduced problem can well approximate
the original one, we refer to [Li, 2015]. There, a proof shows that the maximum a
posteriori (MAP) estimator is well approximated by the truncated KLE. Further several
works on theoretical error analysis in the forward problem are mentioned. The effects
of the truncated KLE on the Bayesian inverse problem solution is investigated in [Uribe
et al., 2020].

In the remainder of this section we formulate the stochastic inverse problem in a
hierarchical way and present two methods – hierarchical MCMC and hierarchical ABC –
to approximate the posterior distribution. For convenience we already use the notation
of the electric motor application. Note that the following text is based on the authors
own work [John et al., 2020].

Recall the problem description of the stochastic inverse problem in Definition 5, with
data Y, simulation modelM(X) and the unknown aleatoric parameters X with unknown
probability distribution π(X). The approaches presented so far in Chapters 3 and 4 are
for inference of unknown deterministic parameters x ∈ Rn. A prior distribution reflects
the a-priori belief about possible values of x before data is observed. This prior is then
updated in the Bayesian inference scheme to obtain a posterior distribution. Now again,
to make things clear, this prior and posterior distribution only reflect the degree of belief
on what values are plausible for x, and do not reflect that x is a random variable (or a
random vector). Thus, in order to estimate the unknown probability distribution π(X),
it is factorized and hierarchically approximated by

π(X | θ) =
n∏
i=1

π(Xi | θ), (5.1)

where θ is a real-valued vector of unknown hyper-parameters for the parametric distri-
butions. For X = (V, T ), we assume π(V | mV , σV ) = N (mV , σ

2
V ) and π(T | mT , σT ) =

N (mT , σ
2
T ) where mV ,mT ∈ R, σV , σT > 0, hence, θ := (mV ,mT , σV , σT ). Let π0(θ)

denote the prior for the hyper-parameters. As the distribution of X is now fully de-
termined by the hyper-parameters θ, the goal is to approximate π(θ | Y) instead of
π(X | Y).
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Let y
(·)
i ∈ Y be one of the measurements, where (·) either stands for the current I

or angular velocity ω. Let xi = X(ω) denote a realization of the random vector X.
Further, letM(·)(xi) denote the output of the simulation for model parameters xi either
for I or ω. We assume additive Gaussian measurement noise that is independent and
identically distributed

y
(·)
i = M(·)(xi) + εi︸ ︷︷ ︸

=: G(·)(xi, σ
(·)
i )

, εi ∼ N (0,Σ
(·)
i ), Σ

(·)
i = σ

(·)
i INt , (5.2)

with σ
(·)
i > 0 for i = 1, . . . , N . Here G(·)(xi, σ

(·)
i ) denotes the generative model that

produces noisy simulations for given xi, σ
(·)
i .

As already motivated in Section 3.3.1 we replace the original simulation modelM(X)
by a PCE surrogateMPCE(X). For surrogate generation we assume π(X) to be uniform
within a parameter domain XPCE ⊂ Rn with XPCE large enough to cover the whole
range of the hierarchical prior distribution π(X | θ)π0(θ).

At this point the hierarchical MCMC and the hierarchical ABC method deviate in
approximating the posterior distribution.

5.1.1. Hierarchical surrogate-based MCMC

Picking up from the noise model (5.2) the likelihood for one measurement is then given
as

π(y
(·)
i | xi, σ

(·)
i ) = N

(
y

(·)
i −M(·)(xi),Σ

(·)
i

)
. (5.3)

And the likelihood for all measurements in Y as

π(Y | X,σ) =
N∏
i=1

N
(
yIi −MI(xi),Σ

I
i

)
N (yωi −Mω(xi),Σ

ω
i ) . (5.4)

Here σ denotes the vector of all σ
(·)
i and π0(σ) the corresponding prior. The posterior

distribution is

π(θ,σ | Y) ∝ π(Y | X,σ)π(X | θ)π0(θ)π0(σ). (5.5)

To approximate the posterior distribution π(θ,σ | Y) with MH-MCMC (see Algo-
rithm 1) in the hierarchical setup one needs to sample the following parameters: the
hyper-parameters θ, the measurement noise standard deviations σ, and the realizations
xi = X(ω), i = 1, . . . , N . For X = (V, T ), this is a total of 4 + 2N + 2N parameters to
sample from. For a visualization of the inference structure see the graphical model2 in
Figure 5.1.

2For details on graphical models we refer to [Bishop, 2006, Ch. 8].
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σV mV mT σT

σI σωV T

yI yω

Nt
N

Figure 5.1.: Graphical model of the hierarchical inference structure for MCMC.

As stated in Section 3.1.2 the sampling might be highly inefficient in the case of
concentrated posterior distributions due to highly informative data. Handing over MAP
estimates for initialization and the inverse of the Hessian is an option to increase sampler
efficiency. However computing the full inverse Hessian is to expensive, thus we suggest
to estimate only the MAP and the inverse Hessian for the realizations xi = X(ω), i =
1, . . . , N by

(xi)MAP = arg min
xi∈X

‖yIi −MI(xi)‖ΣI
i

+ ‖yωi −Mω(xi)‖Σω
i

+ log(π(X)). (5.6)

And then use the (xi)MAP for initialization and only a diagonal approximation diag(C̃)
of C for the proposal distribution.

In principle, sampling efficiency can be improved with an advanced gradient-based
sampler and a surrogate-based gradient, as introduced in Section 4.4. A remedy are
the increasing computational costs, due to the additional gradient evaluations. This
poses major drawbacks for the hierarchical approach in particular, where each sample
requires N simulation model evaluations and, consequently, with gradient-based methods
N additional gradient evaluations. Gradient-based sampling is thus not considered in
this chapter. MH-MCMC serves well as a baseline and for comparison to the ABC
method suggested in the following section.

5.1.2. Hierarchical surrogate-based ABC with summary statistics

Again, picking up from the noise model (5.2) we use summary statistics to summarize

the data Y and the generative model G(·)(X,σ(·)
i ), for I and ω respectively. For an

introduction to ABC methods and summary statistics see Section 3.1.3. In general one
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could use any summary statistic that seems useful for the given data. Here we use the
empirical mean and standard deviation, i.e.

S
(·)
1 :=

1

N

N∑
i=1

y
(·)
i and S

(·)
2 :=

√√√√ 1

N − 1

N∑
i=1

(y
(·)
i − S

(·)
1 )2. (5.7)

The summary of the data Y is then

S(Y) := (SI1 , S
ω
1 , S

I
2 , S

ω
2 ) ∈ R4Nt . (5.8)

At this point we could do so with the generative model as well: generate a set of noisy

simulation data YG depending on samples of X | θ for given θ and σ
(·)
i , then compute

S(YG) and compare to S(Y). The size NG of YG does not necessarily need to correspond
to the size N of Y as only the summary statistics are compared. However NG needs to
be sufficiently large to obtain accurate summary statistics. Considering the slow con-
vergence rate of Monte Carlo integration, improving the quality of S(YG) by increasing
NG might get prohibitively expensive as S(YG) needs to be computed for each sample
(S(Y) only once!).

In the following we introduce a more efficient approach by exploiting the additive

noise structure and the parametric distribution of X further. Assume σ
(·)
i = σ(·) for

i = 1, . . . , N . This assumption makes sense since summarizing the data with mean and
standard deviation makes it anyway impossible to infer the noise structure of individual

measurements y
(·)
i . Then the mean of the generative model with respect to π(X | θ) is

S
(·)
1 (θ) :=E[G(·)(X,σ(·))] = E[M(X) + ε(·))] = E[M(X)] + E[ε(·))]︸ ︷︷ ︸

=0

(5.9)

=

∫
X
M(x)π(x | θ)dx. (5.10)

Since noise ε is assumed to be stochastic independent and Gaussian distributed with
zero mean, it cancels by taking the expectation. For the standard deviation we obtain

S
(·)
2 (θ, σ(·))2 :=V [G(·)(X,σ(·))] = V [M(X) + ε(·))] = V [M(X)] + V [ε(·))]︸ ︷︷ ︸

=diag(Σ(·))

=

∫
X

(
M(x)− S(·)

1 (θ)
)2
π(x | θ)dx+ diag(Σ(·)). (5.11)

In order to approximate the multidimensional integrals S
(·)
1 (θ) and S

(·)
2 (θ, σ(·)) one

can either do Monte Carlo sampling or exploit the assumption of the parametric dis-
tribution π(X | θ) further and utilize Sparse Grid quadrature A(LSG,Q) from (3.32)
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with respect to π(X | θ), for a Sparse Grid level LSG ∈ N0. Sparse Grid quadrature de-
creases the number of simulation model evaluations (respectively surrogate evaluations)
further by simultaneously increasing approximation quality. We denote the Sparse Grid
approximations of the summary statistics integrals by

Ŝ
(·)
1 (θ;LSG) = A(LSG,Q)(M), (5.12)

Ŝ
(·)
2 (θ, σ(·);LSG) = A(LSG,Q)

((
M− Ŝ(·)

1 (θ;LSG)
)2
)

+ (σ(·))2, (5.13)

where LSG denotes the dependence on the Sparse Grid level and corresponding approx-
imation quality. The summary of the generative model is then

S(θ, σI , σω;LSG) := (ŜI1(θ;LSG), Ŝω1 (θ;LSG), ŜI2(θ, σI ;LSG), Ŝω2 (θ, σω;LSG)) ∈ R4Nt .
(5.14)

As the current and the angular velocity have different magnitude it is important to
normalize the summary statistics. To do so we divide each component in S(Y) by its L1

norm, i.e.
S(·)
‖S(·)‖1 and so on, and use the exact same scaling also for the components of

S(θ, σI , σω;LSG).
Let d(·, ·) be the L2 norm. Note that this particular choice of the distance plus the

mean and standard deviation as summary statistics is related to the 2-Wasserstein metric
for comparison of two Gaussian Processes3. See [Mallasto and Feragen, 2017] and the
references therein for further details on the 2-Wasserstein metric for GPs.

Finally, for a given threshold δ > 0 and priors π0(θ), π0(σ), we sample from the
posterior π(θ, σI , σω | Y) or rather π(θ, σI , σω | S(Y)) with Algorithm 3 or Algorithm 4
and the normalized summary statistics S(Y) and S(θ, σI , σω;LSG). For a visualization
of the inference structure see the graphical model in Figure 5.2.

The noise standard deviations σI and σω are difficult to infer with the chosen summary

statistics, as they are only additive terms in S
(·)
2 (θ, σ(·)). Thus we estimate them a-

priori and keep them fixed during inference (Another option would be to define a highly
informative prior centered on the a-priori estimation, to allow the sampler to deviate a
bit from the fixed value).

We estimate the noise standard deviation of each measurement yi in a stationary time

interval according to Definition 1 and denote the estimates by σ
(·)
i for i = 1, . . . , N . Then

we use either their mean or median as estimate for σI and σω.

Remark. Note that similar to the MCMC case one could use MAP θMAP and inverse
Hessian estimates C of the parameters to accelerate the ABC sampler efficiency, e.g. by

3 For two Gaussian measures ν1 = N (m1, C1), ν2 = N (m2, C2) in RNt the 2-Wasserstein metric is

W2(ν1, ν2) = ‖m1 −m2‖22 + ‖C1/2
1 − C1/2

2 ‖2F . For C1, C2 diagonal, the Frobenius norm simplifies to

the L2 norm of the standard deviations ‖diag(C
1/2
1 )− diag(C

1/2
2 )‖22.
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Figure 5.2.: Graphical model of the hierarchical inference structure for ABC.

modifying the prior to π0(θ) = N (θMAP , sC) for s > 1. Provided that the estimates
are correct this would lead to less rejected samples. But assume these estimates are
distorted, then the modified prior (in case it is more informative than the original)
might prevent us from sampling in regions where the posterior is non-zero, leading to a
biased posterior. Consequently, in this work we are not using MAP and inverse Hessian
estimates for ABC.

5.2. Numerical experiments

For the numerical experiments in this section the method hierarchical surrogate-based
MCMC summarized in Section 5.1.1 is abbreviated by MCMC and in the case of ini-
tialization with MAP estimates by MCMC(MAP). Further, the method hierarchical
surrogate-based ABC with summary statistics introduced in Section 5.1.2 is abbreviated
by ABC and in the case of SMC by SMC ABC.

The numerical experiments are first presented for the basic electric motor model (see
Section 2.1) with synthetic data and second for the test bench data with corresponding
complex model (2.12) (see Section 2.2). Section 5.2.1 details on the joint inference setup.
Then Section 5.2.2 and Section 5.2.3 present the numerical results for synthetic and test
bench data, respectively. Section 5.2.4 concludes with a brief discussion of the results.
Note that the following is restated from the authors own work [John et al., 2020] with
slight modifications.

5.2.1. Inference setup

In both cases noisy measurement data Y for the electric current I and angular velocity
ω is given to infer the distributions of parameters voltage V and load torque T . In Sec-
tion 5.1 both are modeled as Gaussian random variables with unknown hyper-parameters
mean mv,mT and standard deviations σV , σT . The prior distributions for mV ,mT are
uniform with bounds −30%/ + 50% based on the reference values and for σV , σT with
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bounds −75%/+125% based on the reference values. For MCMC the prior distributions
for σI and σω are inverse Gamma distributions with mean and standard deviation 0.1.
Due to the summary statistics, the identifiability of the noise is difficult. Thus, estimates
of σI and σω based on the available data and Equation (2.6) are used for ABC.

For ABC a fixed threshold δ > 0 and number of samples m = 1500 are used, resulting
in M proposals that are determined by the algorithm. Similar for SMC ABC, where a
fixed, decreasing set of tolerance thresholds and m = 1500 determine M . For MCMC
and MCMC(MAP) three parallel Markov chains, each of length 11.000, are sampled.
With a burn-in phase of 6.000 samples and a modest thinning (discard every second
sample), due to autocorrelation, three times 2.500 samples are then used to approximate
the posterior distribution.

For ABC and SMC ABC an implementation based on the Python package ELFI
[Lintusaari et al., 2018] is used and for MH-MCMC an implementation based on the
Python package PyMC3 [Salvatier et al., 2016], with Gaussian random walk proposal.
All computations are performed on a standard work station. Modest multiprocessing
on 3 cores is used for all methods, i.e. for MCMC three parallel Markov Chains are
generated and for ABC sampling is also carried out in parallel.

5.2.2. Synthetic data

In the following we first describe the synthetic data generation, comment on the PCE
surrogate, present detailed numerical results and finally draw conclusions on posterior
consistency.

Synthetic data generation

To generate synthetic measurement data Y, the generative model G(X,σ) =M(X) + e
is used, where the simulation modelM is the basic electric motor model (2.3). Reference
distributions for the aleatoric parameters X = (V, T ) are defined by π(V | mV , σV ) =
N (mV , σ

2
V ) and π(T | mT , σT ) = N (mT , σ

2
T ), with hyper-parameters mV = 12,mT =

2.5, σV = 0.7, σT = 0.2. Further, reference values for the noise standard deviations are
σI = 0.1 and σω = 0.5. With this setting, we sample N times from G(X,σ) in order
to generate the synthetic measurement data Y. Basically, the simulation model M is
evaluated at N independent samples of X, resulting in N model outputs containing
discrete time series of current I and rotational speed ω each of size Nt. Then for each
output independent Gaussian noise is added according to eI and eω. Figure 5.3 shows
the reference distributions, the samples and Gaussian distributions fitted to the samples
for V and T , respectively. An overview of the resulting data Y for N = 100 is visualized
in Figure 5.4. Later, Figure 5.7 displays a histogram, mean and median of the noise

standard deviation estimations σ
(·)
i , i = 1, . . . , N based on Equation (2.6). To obtain a

correct estimate of σV and σT it is important to estimate the noise standard deviations
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Figure 5.3.: The figures show the Gaussian reference distributions (black dashed) of the
parameters V and T , histograms of N = 100 samples and Gaussian distri-
butions fitted to the samples (red dash-dotted).

correctly. An underestimation of the noise standard deviation results in an overestima-
tion of σV or σT and vice versa, this is due to the additive structure in the summary
statistic, see Equation (5.11).

PCE surrogate

A PCE surrogate as introduced in Section 3.3.1 is used. Validation is carried out with
a set of 100 random samples and corresponding simulations. The RMSE scaled by the
standard deviation of the validation set for a level L = 2 PCE (leads to 17 Sparse
Grid points) is in the range of 10−7. The surrogate for this example can be seen as
almost exact. The speed up is approximately factor 100. I.e. evaluation of one sample
with the original model M takes 4.5ms± 0.412ms and with the surrogate MPCE only
0.0446ms± 0.007ms (mean ± std. dev. of 7000 runs). Further the surrogate model, in
particular the polynomial evaluation, can be vectorized to evaluate a batch of samples
simultaneously, which increases efficiency additionally.

Results

Figure 5.5 displays boxplots of the samples approximating the marginal posterior
distributions of the hyper-parameters, obtained with ABC, SMC ABC, MCMC and
MCMC(MAP). Adding on this Table 5.1 lists the corresponding runtimes, num-
ber of proposals and samples of all methods. For ABC four decreasing values of
δ ∈ {10, 7.5, 5, 2.5} show the concentration of the marginal posterior. The number M
of ABC sample proposals to obtain a fixed number of m = 1500 samples that satisfy
d(·, ·) ≤ δ increases exponentially, as expected. The SMC ABC results are obtained with
the exact same δ’s and are comparable to the ABC results for the smallest δ. However,
by reusing the information of sample-discrepancy pairs from previous populations, SMC
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Figure 5.4.: The figures show the artificially generated noisy measurements Y of the
current I and the rotational speed ω forN = 100. The area between the 2.5%
and 97.5% percentile (shaded), mean+/-standard deviation (dash-dotted)
and the mean (solid) of all N measurements are depicted. The black lines
show an exemplary noisy sample measurement series. Further, at two time
points (vertical lines at t∗ = 0.15 and t∗ = 4 seconds) histograms and kernel
density plots are displayed on the right hand side.
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Figure 5.5.: Boxplots of the samples approximating the hyper-parameters marginal pos-
terior distributions in the synthetic case obtained with ABC, SMC ABC,
MCMC and MCMC(MAP) in comparison to the reference values and sam-
ple mean and standard deviation.
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method runtime [s] samples m proposals M

ABC(δ = 10.0) 3 1500 12000
ABC(δ = 7.5) 7 1500 28000
ABC(δ = 5.0) 27 1500 106000
ABC(δ = 2.5) 1536 1500 5718000
SMC ABC 211 1500 626000
MCMC 400 neff 3*11000
MCMC(MAP) 387 neff 3*11000

Table 5.1.: Runtimes in seconds, number of samples m and proposalsM of the considered
methods. For MCMC the number of effective samples neff is given in detail
in Table 5.2.

ABC reduces the overall number of proposals by approximately factor 10 in order to
obtain a similar result.

Table 5.2 lists for MCMC and MCMC(MAP) the Gelman-rubin statistics R̂ and the
number of effective samples neff of the samples (without thinning). Optimal sampling

efficiency would require R̂ = 1 and neff close to the number of considered samples, see
[Gelman et al., 2013] for further details. The statistics show that MCMC has clearly
difficulties to converge and an increase of sample size would be recommended. It is a
bit better for the hyper-parameters and noise standard deviations, but poor for Vi and
Ti for i = 1, . . . , N , which is due to the concentration effect of the posterior and the
high dimensions. Overall, this sampling difficulties lead to a biased posterior for mV

and mT , displayed in Figure 5.5. By initializing with MAP estimates MCMC(MAP)
shows clear improvements in sampler statistics and posterior distribution. However the
sampler has still difficulties, e.g. the number of effective samples is still less than 15% of
the considered samples.

In addition to the posterior distributions of the hyper-parameters, marginal posterior
distributions of Vi and Ti for i = 1, . . . , N obtained via MCMC(MAP) are visualized in
Figure 5.6. This offers, in contrast to the ABC methods, the opportunity to verify (pre-
suming the posterior distributions are correct), if the underlying parameter distributions
are actually Gaussian or if another parametric distribution would be more suitable. To
get an intuition on the distribution of V or T , one can, for example, plot a histogram
of the MAP estimates. If the marginal posterior densities do not contain much uncer-
tainty, a parametric distribution fitted to the MAP estimates leads already to a reliable
estimate of the distribution of V or T . However, if uncertainty is present, a hierarchical
method is better suited to capture the overall uncertainty.

Figure 5.7 shows the MCMC and MCMC(MAP) marginal posterior distributions
for the noise standard deviations σI and σω. For MCMC they overestimate a bit,
which corresponds to the fact that the Markov Chain did not converge properly. For
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mean(R̂) R̂

V T mV σV mT σT σI σω

MCMC 3.446 3.515 1.107 1.105 1.185 1.227 2.765 1.684
MCMC(MAP) 1.328 1.319 1.000 1.005 1.005 1.001 1.003 1.002

mean(neff ) neff

V T mV σV mT σT σI σω

MCMC 2 2 13 12 7 5 2 3
MCMC(MAP) 8 8 2,215 2,114 1,679 2,353 1,297 1,521

Table 5.2.: Gelman-rubin statistics R̂ and number of effective samples neff for MCMC
and MCMC(MAP), based on the last 5000 samples of 3 parallel sampled
chains, each of total length 11.000, for N = 100. Note that the values pre-
sented for V and T are mean(R̂(V )) := 1

N

∑N
i=1 R̂(Vi), respectively for T ,

and analogously for neff .
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Figure 5.6.: Marginal MCMC(MAP) samples for Vi and Ti for i = 1, ..., 100. The color
bar indicates the index i.
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MCMC(MAP) they are almost identical to the reference values, which is expected in
this synthetic case.
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Figure 5.7.: Marginal MCMC and MCMC(MAP) samples for the noise standard devi-
ations σI and σω. Also the reference values, a histogram of the estimates

σ(·) := [σ
(·)
i ]i=1,...,N via Equation (2.6) and the corresponding mean and

median are displayed.

Definition 10. For an estimator ϑ of a parameter Θ ∈ R define Bias(ϑ) = (ϑ̂ − Θ)2,
where ϑ̂ is a point estimate of ϑ, e.g. the mean, median or MAP. Further, define the
Mean (Median or MAP) Square Error by MSE(ϑ) = Bias(ϑ) + V [ϑ].

In order to put the considered methods into perspective with respect to accuracy,
uncertainty and computational effort, Figure 5.8 shows the summed Bias and MSE of all
hyper-parameters versus the number of model evaluations. The Bias is calculated w.r.t.
the median of the marginal posterior distribution of mV , σV ,mT , σT and the reference
samples empirical moments. The number of model evaluations for ABC are determined
by the product of number of proposals M and the number of Sparse Grid points. Here,
for LSG = 2 and two dimensions, 17 Sparse Grid nodes are used. For MCMC the number
of model evaluations is the number of chains times number of samples m times number of
observations N . Sampling in one chain is only possible sequentially. Important to note
is that the model evaluations do not directly translate to runtime. For ABC and also
for SMC ABC in each population they can easily be executed in parallel, which is not

99



Chapter 5. From deterministic to aleatoric parameter estimation

the case for MCMC. This can be already seen in Table 5.1, where SMC ABC is twice as
fast as MCMC(MAP) albeit requiring a larger number of model evaluations. Please note
that computational times in Table 5.1 strongly depend on the implementation, however
they already give an impression on each methods efficiency. As expected the summed
MSE for ABC, SMC ABC and MCMC reduce with the number of model evaluations,
i.e. corresponding number of samples, where the major part is due to a reduction of
the variance, but also due to a reduction in the summed Bias. For MCMC(MAP)
initialized already with the MAP estimates no further reduction of the summed MSE
can be achieved, however the summed Bias reduces slightly. Overall, w.r.t. the summed
Bias, ABC and SMC ABC achieve results that are only a bit worse than MCMC(MAP)
and way better than MCMC, in much less time.
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Figure 5.8.: Sum of Bias and MSE, summed over all parameters θ, versus the number
of simulation model M (or metamodel MPCE) evaluations. The Bias is
calculated w.r.t. the median of the marginal posterior distribution and the
empirical moments of the reference samples. Note that due to parallelization
model evaluations do not directly correspond to runtimes.

So far the results presented above were for a fixed data size N = 100. In the following
we compare the MCMC, MCMC(ABC) and SMC ABC methods for N = 10, 100, 1000.
Table 5.3 contains measures for the MCMC and MCMC(MAP) sampling efficiency for
increasing values of N , but constant length of 11, 000 samples for the three parallel
sampled Markov chains. For increasing N the values for R̂, neff and the computa-
tional time show that the efficiency decreases drastically, which was already discussed
in Section 3.1.1. This is not only due to the high dimensions N but also due to the
concentration effect of the posterior distributions as a consequence of highly informative
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MCMC MCMC(MAP) SMC ABC

N R̂ neff time [s] R̂ neff time [s] time [s]

10 1.13 453 158 1.03 486 151 217
100 3.42 2 400 1.31 62 387 211

1000 5.48 2 3,562 2.23 9 3,536 205

Table 5.3.: Dimension dependency of MH-MCMC sampler efficiency with respect to the
number of observations N . Note that the actual number of inferred param-
eters is 2N + 6. For concise presentation, the values for R̂ and neff are the
mean of all of those parameters statistics. For comparison the runtime of
SMC ABC is added.

data. Note that already for the low dimensional case with N = 10 the neff is below 10%

of the considered samples. R̂ increases in higher dimensional state spaces indicating that
the distribution of the Markov chain has not yet converged and the number of samples
should be increased. Furthermore, the time needed to execute the algorithm strongly
increases with N . We observe a similar behavior for MCMC(MAP), however in a smaller
scale. This confirms that the statistical efficiency of the Metropolis-Hastings Algorithm
with Gaussian random walk proposal does not perform dimension-independent and jus-
tifies the ABC and in particular the SMC ABC approach that improves in performance
with increasing N , since the summary statistics improve with increasing N . Also the
runtime stays almost constant. For N = 1000 SMC ABC is roughly 17 times faster than
MCMC(MAP). Figure 5.9 adds on Table 5.3 by presenting the marginal posterior dis-
tribution for varying N . For N = 1000 the MCMC posterior of mV and mT are largely
biased and only the SMC ABC and MCMC(MAP) results deliver proper estimates. We
also observe that the SMC ABC posterior only slightly concentrates with increasing
data. This might be due to the fact that the summary statistics only represent part of
the original information. For further uncertainty reduction the summary statistics need
to be extended with additional statistics that contain additional information.

Posterior consistency

The proposed method has several layers of approximation, thus we comment in the fol-
lowing on posterior consistency w.r.t. Theorem 3. In order to show posterior consistency,
Figure 5.5 presents results of the method for small ABC threshold limit (δ → 0). Cor-
responding to the theory the posterior concentrates for decreasing values of δ, which is
also summarized in Figure 5.8.

For the considered example the surrogate already has a high approximation qual-
ity. Thus, we do not consider posterior consistency with respect to the level L of the
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Figure 5.9.: Boxplots of the marginal posterior distributions of mV , σV , mT , σT ob-
tained with SMC ABC, MCMC and MCMC(MAP) for data size N =
10, 100, 1000. Also the reference value and sample values depending on N
are displayed. Table 5.3 lists the corresponding computational time, R̂ and
neff .
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surrogate.
Posterior consistency in the small noise limit (σI , σω → 0) is difficult to show. With

decreasing noise in the single measurements also the noise in the summary statistics
reduces. Thus the minimal discrepancy value d(·, ·) decreases as well. If we now fix
the threshold δ for several noise levels the posterior distribution does not concentrate,
but rather smear out a bit as more samples are accepted. Consequently, in order to
observe posterior consistency in the small noise limit we additionally need to decrease
δ. By decreasing δ in the order as the minimal discrepancy value d(·, ·) decreases (which
is known due to the reference values), we also observe posterior concentration on the
empirical moments of the parameter samples.

For the large data limit, i.e. number of observations N →∞, we observe in Figure 5.9
that the empirical moments of the parameter samples converge to the reference values
(due to the law of large numbers) and with this also the posterior distribution shifts
more to the reference values. However a concentration can hardly be observed, this
might be a consequence of the information loss due to the summary statistics. With
increasing N the summary statistics get more and more accurate (again due to the law
of large numbers), however they still represent only part of the whole data Y. A second
parameter determining the data size is the number of discrete time steps Nt. As it is
already very large, Nt → ∞ would not give much insight and is thus not considered in
this work.

Increasing the Sparse Grid quadrature level LSG for the summary S(θ, σI , σω;LSG)
theoretically improves approximation quality, but with an increase of computational
cost. The presented results are all with LSG = 2. Consequently, reducing to LSG = 1
would reduce computational costs further. For a detailed analysis of the influence on
posterior approximation accuracy and runtime, additional experiments are required in
future work.

5.2.3. Test bench data

The test bench was already introduced in detail in Section 2.2. It allows a predefinition
of parameter distributions in order to generate measurement data Y. This is used to
validate the methods and test them for robustness. In comparison to the artificial set-
ting, inference based on real measurements introduces additional challenges, like model
discrepancies and complex structured measurement noise.

An overview of the test bench data Y is visualized in Figure 2.8. The noise standard

deviations σI and σω are estimated by taking the median of the estimations σ
(·)
i for each

measurement obtained via Equation (2.6) in the stationary time domain [4, 6] seconds.
The measurement noise varies for different measurements, which can be observed in

Figure 5.11, where a histogram of σ
(·)
i is plotted. Note that for the following analysis,

a test bench data set without preprocessing step 1 (outlier removal) is used, which is
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visible in the scattering of the noise estimates for σω.

PCE surrogate

The simulation model M, based on the complex model (2.12) of the the electric motor
test bench, is computationally too expensive to be used for sampling with a reasonable
number of samples. Thus a cheaper to evaluate PCE surrogate model is used as intro-
duced in Section 3.3.1. The RMSE scaled by the standard deviation of the validation
set for a level L = 5 PCE (leads to 181 sparse grid points) is in the range of 10−3 for the
current and 10−4 for the angular velocity. This is sufficient for the following analysis.
The speed up by using the surrogate for this example is approximately factor 2440. I.e.
evaluation of the original modelM for one sample takes 1.78s±192ms (mean ± std. dev.
of 7 runs) and evaluation of the surrogate MPCE for one sample takes 729µs ± 76.4µs
(mean ± std. dev. of 7000 runs). Note that depending on the implementation vectorized
evaluation of the surrogate is possible. E.g. evaluation of the surrogate MPCE for 100
samples takes 1.78ms± 39.3µs (mean ± std. dev. of 700 runs). The speed up compared
to the original model is then approximately factor 105.

Results

With almost the same methods setting as in the synthetic case Figure 5.10 presents
boxplots of the marginal posterior distributions. The only difference is that the thresh-
olds for ABC and SMC ABC are now δ ∈ {7.5, 5.5, 3.5, 1.5}. Table 5.4 displays the
runtimes, number of proposals and samples. SMC ABC takes less than half of the time
than MCMC(MAP).

runtime [s] samples m proposals M

ABC(δ = 7.5) 4 1,500 6,000
ABC(δ = 5.5) 9 1,500 13,000
ABC(δ = 3.5) 41 1,500 66,000
ABC(δ = 1.5) 7,472 1,500 11,968,000
SMC ABC 315 1,500 484,000
MCMC 710 neff 3*11000
MCMC(MAP) 700 neff 3*11000

Table 5.4.: Runtimes in seconds, number of samples m and proposalsM of the considered
methods. For MCMC the number of effective samples neff is given in detail
in Table 5.5.

The results are comparable to the synthetic case, however there is an offset to the ref-
erence values for σV ,mT , σT . This is most likely due to the varying noise structure and
model discrepancy. Further, we notice a difference in the SMC ABC and MCMC(MAP)
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Figure 5.10.: Boxplots of the samples approximating the hyper-parameters marginal pos-
terior distributions in the test bench case obtained with ABC, SMC ABC,
MCMC and MCMC(MAP) in comparison to the reference values and sam-
ple mean and standard deviation.
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posterior distributions for σV and σT . This is due to the estimation of the noise stan-
dard deviations σI , σω and due to the additive structure in the summary statistic, see
Equation (5.11). Figure 5.11 shows the marginal MCMC and MCMC(MAP) samples for
the noise standard deviations σI and σω. Note that there is no reference value available.
The structure of the noise is not as regular as in the artificial setting and can not be
perfectly described by the assumption of independent and identically distributed noise
in time and for every measurement. The MCMC estimates have higher values as the

median of the estimates σ
(·)
i obtained from the stationary time domain, which are used

for ABC and SMC ABC. This leads to the difference in the posterior distributions.
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Figure 5.11.: Marginal MCMC and MCMC(MAP) samples for the noise standard de-
viations σI and σω for the test bench. Also a histogram of the estimates

σ(·) := [σ
(·)
i ]i=1,...,N via Equation (2.6) and the corresponding mean and

median are displayed.

Marginal posterior distributions of Vi and Ti for i = 1, . . . , N obtained via MCMC(MAP)
are visualized in Figure 5.12. For Ti they are wider as in the synthetic case which is
due to larger noise in the data. This slightly simplifies sampling for MCMC and
MCMC(MAP), which can also be observed for the sampler efficiency statistics in Ta-
ble 5.5. Overall we see again a good improvement from MCMC to MCMC(MAP),
but even for MCMC(MAP) neff is still below 15%, which recommends to increase the
sample size.

106



Chapter 5. From deterministic to aleatoric parameter estimation

11 11.5 12 12.5 13 13.5 14 14.5 15 15.5 16
0

10

20

Vi

π
(V

i
)

1.8 2 2.2 2.4 2.6 2.8 3
0

10

20

Ti

π
(T

i
)

10

20

30

40

50

60

70

80

90

100

Figure 5.12.: Marginal MCMC(MAP) samples for Vi and Ti for i = 1, ..., 100 based on
test bench data. The color bar indicates the index i.

mean(R̂) R̂
V T mV σV mT σT σI σω

MCMC 2.257 1.835 1.003 1.033 1.000 1.169 1.270 1.219
MCMC(MAP) 1.036 1.036 1.000 1.001 1.003 1.002 1.001 1.001

mean(neff ) neff
V T mV σV mT σT σI σω

MCMC 4 5 2,852 132 1,667 7 5 6
MCMC(MAP) 45 49 2,085 2,138 1,804 1,985 1,297 1,237

Table 5.5.: Gelman-rubin statistics R̂ and number of effective samples neff for MCMC
and MCMC(MAP), based on the last 5000 samples of 3 parallel sampled
chains, each of total length 11.000, for N = 100. Note that the values pre-
sented for V and T are mean(R̂(V )) := 1

N

∑N
i=1 R̂(Vi), respectively for T

(analog for neff ).
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5.2.4. Discussion

Overall, ABC and SMC ABC for the synthetic data achieve results that are comparable
to MCMC(MAP) in much less computational time. This advantage increases even more
for large data size N . For an increase of data size and consequently increasing number
of parameters in our examples the ABC method performs better for almost constant
computational cost. This is because the summary statistics and noise standard devia-
tion estimation quality improve, which then improves ABC sampling. For MCMC it is
vice versa: performance decreases and also computational costs raise, due to the high
dimensions and the concentration effect. The MCMC performance can be improved by
providing curvature information and appropriate starting values (with MAP and inverse
Hessian initialization), but still the samples are highly autocorrelated.

Of course, plain rejection ABC with small threshold δ is very inefficient, but neverthe-
less obtains decent results. In order to get a rough overview on posterior distribution,
ABC with moderate δ is extremely fast. This fact is further exploited by using a popula-
tion based SMC ABC method with a sequence of decreasing δ’s, where results comparable
to plain rejection ABC with small δ with roughly only 10% samples are obtained. As
ABC is embarrassingly parallel, further multiprocessing would easily yield additional
efficiency gains, whereas potential efficiency gains for MCMC are lower.

The results for the test bench data are comparable to the synthetic case. The offset
to the reference values for σV ,mT , σT is most likely due to the varying noise structure
and model discrepancy. In order to improve the MCMC results accuracy one can intro-
duce a more complex noise model, which leads to a higher number of parameters and
consequently to even more difficulties in sampling. To improve ABC and SMC ABC
one can refine the noise standard deviation estimation by not only approximating them
on the stationary time interval [4, 6], but on the whole time interval used for inference.
Currently, the noise standard deviation is underestimated, which potentially contributes
to an overestimation of σV , σT , because of the additivity in (5.11). Due to the dynamics
of the data in the whole time interval, a more sophisticated approximation method is
then required, e.g. kernel ridge regression or GP regression.

The bias in the mean mT of the load torque T is most likely a consequence of model
discrepancy. Chapter 4 already treated model discrepancy in combination with deter-
ministic parameter estimation and Chapter 6 will treat it in combination with aleatoric
parameter estimation.

In general, the inference results of the ABC method are strongly influenced by the
choice of the summary statistics as well as by the distance function. With multiple input
distributions and multiple output quantities of interest scaling of the summary statistics
is important. E.g. in [Jung and Marjoram, 2011] they showed that appropriate weighting
improves posterior approximation. In our example the outputs are much more sensitive
to variations of the voltage than to variations of the mechanical loading. This issue could
be addressed in future work with a sensitivity analysis in order to choose an appropriate
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distance function. For example, Sobol sensitivity indices [Sobol, 2001, Saltelli et al.,
2008] could be used to weight the distance function pro-rata.

In this work the mean and standard deviation are used as summary statistics. In
future work, other statistics could be included to the summary statistics in order to
increase the information content and further improve the ABC results. However, the
selection of summary statistics is non-trivial as already discussed earlier. An optimal
selection of summary statistics based on minimum entropy [Nunes and Balding, 2010]
was computationally not feasible for this work. Similarly, only the first and second
moment of the unknown aleatoric parameters are estimated. Future work might address
higher moment approximation to infer a broader class of probability distributions.
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Aleatoric parameter and model discrepancy
estimation

Knowing is not enough, we must apply. Willing is not enough, we must do.

Bruce Lee (1940-1973)

Adding on aleatoric parameter estimation in the previous Chapter 5, we now explicitly
consider model discrepancy in the stochastic inverse problem (see Definition 5). In
contrast to Chapter 4, where model discrepancy is inferred for unknown but deterministic
simulation model parameters (see inverse problem Definition 4), now model discrepancy
needs to be inferred for unknown aleatoric simulation model parameters. Consequently,
it does not only depend on time but also on the simulation model parameters and needs
to be estimated for the whole support of the aleatoric parameters. Additionally, of
course, the challenges from Chapter 4 (identifiability problem, model selection, high
computational cost) and Chapter 5 (infinite dimensional problem, high computational
costs) are inherited and even amplified.

Related work on model discrepancy correction in stochastic simulators is sparse to
non-existent, in particular with joint inference of aleatoric parameters. The majority
of work handling model uncertainty in stochastic simulation focuses on covering model
discrepancy by input uncertainty, e.g. by assuming and defining input probability dis-
tributions, see [Plumlee and Lam, 2017] and the references therein. Otherwise, it is
commonly conducted together with model validation during model development. Lam
et al. [Lam et al., 2017] detour from this common approach and improve prediction
from stochastic simulation via model discrepancy learning in the context of operations
research. It builds on and generalizes previous work [Plumlee and Lam, 2016, Plumlee
and Lam, 2017] (both for finite-dimensional, discrete system responses). They utilize the
idea of inferring model discrepancies in deterministic computer experiments to improve
the prediction of stochastic simulation. With the assumption that system observations
at design points x ∈ X are available, they smartly combine regression on a collection of
summary statistics to infer the model discrepancy distribution.

We follow the basic idea of this approach, but loosen the assumption on knowledge of
design points. The data considered in this thesis has unknown design points, i.e. unknown
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model parameters x ∈ X . Section 6.1 introduces hierarchical aleatoric parameter and
model discrepancy estimation as an efficient combination of the methods presented in
the previous chapters. In order to reduce computational cost we propose a method to
build a model discrepancy surrogate on a representative subset of the data only. Finally,
numerical results for the proposed hierarchical surrogate-based discrepancy-corrected
inference method are presented for the test bench in Section 6.2.

Due to the combination of the already detailed Chapters 3, 4 and 5, this chapter
concentrates only on the necessary methods for efficient combination and else refers to
the previous parts of this thesis for brevity.

6.1. Efficient combination of aleatoric parameter and model
discrepancy estimation

In Section 5.1 we presented methods to infer the simulation model parameter distribu-
tion π(X) from Y in a hierarchical surrogate-based way, either with MCMC or with
ABC and summary statistics, but without consideration of a model discrepancy term.
In Section 4.3 we presented methods to infer for one measurement signal y ∈ Y the
simulation model parameters x and the model discrepancy term δ. Now we combine
these two approaches to infer the simulation model parameter distribution π(X) and the
model discrepancy term δ(X) from Y. We explicitly consider model discrepancy in the
stochastic inverse problem (see Definition 5) by

Υ
d
=M(X) + δ(X) (6.1)

where the distributions of X and δ(X) are unknown. W.r.t. the available noisy obser-
vations yi ∈ Y of the true underlying process Υ, it can be reformulated to

yi =M(xi) + δi(xi) + εi (6.2)

for i = 1, . . . , N , with unknown xi, δi(xi) and εi (similar to (4.8)). Note that xi = X(ω)
are realizations of the random variable X. Also, M(xi) and δi(xi) are realizations of
M(X) and δ(X), such that they explain the data yi together with the noise term εi.
Remember that δi(xi) = δi(xi,∆) is already discretized in time and the dependence on
the mesh ∆ is omitted for notational convenience.

Joint inference of a model discrepancy δ(X) for all yi ∈ Y is very complex and
computationally unfeasible. We suggest to solve (6.2) independently for some yi ∈ Y.
The subscript i shall explicitly account the dependence of δi on xi, since not the full
model discrepancy δ(x) for all x ∈ X is inferred, but only for specific xi’s.

Inference of both, xi and δi(xi), for all yi ∈ Y is still burdened with high compu-
tational costs. Thus, we suggest an approach with reduced cost, where xi and δi(xi)
are inferred for a representative subset of Y only. This is then used to build a model
discrepancy surrogate in order to approximate for the remaining measurements.
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6.1.1. Divergence-based subset selection

Subset selection, also denoted by feature selection or dimension reduction, is an often
occurring core issue in many problems, such as regression, supervised learning or pattern
recognition. It is concerned with the task of identifying a subset of data points (features)
that are relevant for the task at hand. The learning method then focuses on the subset
and ignores the rest. Focusing on relevance alone is insufficient for efficient feature selec-
tion of high-dimensional data and should be complemented by redundancy analysis, e.g.
with correlation-based methods, see [Yu and Liu, 2004]. For details on subset selection
of regression variables, see [Miller, 2002]. And for further introduction and categoriza-
tion of feature selection methods in Machine Learning context, we refer to [Guyon and
Elisseeff, 2003, Zhang et al., 2013]. The latter work proposes divergence-based feature se-
lection methods for classification, which improve efficiency and reduce cost. We roughly
follow the divergence-based approach and introduce our subset selection approach in the
following.

Remember that Y consists of yi, i = 1, . . . , N with yi = [yIi ,y
ω
i ]. For a subset of

indices I ⊂ {1, . . . , N} define by

YI := {yi ∈ Y : i ∈ I} (6.3)

a subset of measurement signals. Further let πY denote the probability distribution of
the data Y. For the selection of a representative data subset YI , we need to find a subset
of indices I with NI = |I| minimal, such that πYI approximates πY well w.r.t. some
objective.

Inference of xi and δi(xi) for each yi ∈ YI should lead to a set {xi}i∈I that covers
the model parameter space X well. To achieve this, I should be such that YI covers
best the full output space of yIi and yωi in Y.

A first objective function for an optimal subset of indices Iopt is

Iopt = arg min
I⊂{1,...,N}

dKL (πY‖πYI ) + λ|I|, (6.4)

for a λ > 0. dKL (·‖·) is the Kullback-Leibler (KL) divergence. Note that dKL is not
symmetric and that we choose on purpose this kind of order of the arguments, as this
enforces that the approximation πYI is non-zero wherever πY is non-zero. Consequently
the support of πY should be preserved with πYI . In contrast, the reversed order of
arguments in dKL would yield an approximation πYI of one of the modes of πY , but
eventually with an underestimation of the support. For further details on the Kullback-
Leibler divergence we refer to [Bishop, 2006] and for an illustration of this property in
particular to Ch. 10, Figure 10.3.

The objective in (6.4) leads to a πYI that not only preserves the support of πY , but also
the shape. However, selected subset samples are clustering in high probability regions
and in low probability regions there are only a few samples. This might yield a bad
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representation of the parameter space, in particular in higher dimensions. To obtain a
YI that is more uniformly distributed, we modify the objective. For an α > 0 denote by

πtruncY (y) =

{
α, if πY(y) ≥ α,
πY(y), else,

(6.5)

the truncated probability distribution of the data (with additional normalization to be
a proper probability distribution). Then, the second objective

Iopt = arg min
I⊂{1,...,N}

dKL

(
πtruncY ‖πYI

)
+ λ|I|, (6.6)

leads also to a support preserving, but more uniform subset. The uniformity depends
on α. Later, Example 4 illustrates the difference of those two objective functions in
Figure 6.1.

The optimization problem is complex to solve. An exhaustive search over all 2N − 1
candidate subsets is computationally intractable. The approach in this work is to fix
NI , draw m samples Ij ⊂ {1, . . . , N}, j = 1, . . . ,m and select the Ij that minimizes the
objective. As πY and πYI are not available, kernel density estimates (KDE) based on Y
and YI are used. The KDE is equipped with a Gaussian kernel and Scott’s heuristic for
automatic bandwidth determination, see [Scott, 2015] for details.

To reduce computational costs further we suggest following heuristic: For each yi =

[yIi ,y
ω
i ] ∈ Y calculate the mean of y

(·)
i in the stationary time interval [4, 6] seconds

according to Definition 1. This yields a set of N two dimensional points

Y := {(yIi ,yωi )}i=1,...,N ∈ R2×N . (6.7)

Y is used to compute a KDE πKDEY of the underlying probability distribution πY , where
the latter can be seen as an approximation of πY in a stationary time interval. Objective
(6.6) with πKDE,truncY is then used to determine a subset I via sampling.

Yet another heuristic improves sampling. Sampling Ij ⊂ {1, . . . , N} with probability
proportional to 1/πKDEY (yi) for each i ∈ {1, . . . , N} yields more often samples with

small objective, compared to uniform sampling from {1, . . . , N}. This is illustrated in
Figure 6.2 with the setting of Example 4.

Example 4 (Subset selection 1D example). Let Y be a set of N = 100 samples yi ∈ R
from a Gaussian N (0, 1). Figure 6.1 displays the samples of Y with its KDE πKDEY and
marks the samples of the selected subsets YI with NI = 10. YI is selected with objective
(6.4) (left) and objective (6.6) with α = 0.1 (right). The best out of m = 1000 samples
of Ij , uniformly from {1, . . . , N}, are used. Both subsets preserve the support, but the
one obtained with objective (6.6) is, as desired, more uniform. Figure 6.2 compares
the objective (6.6) of the samples Ij via uniform sampling and via improved sampling
according to the inverse KDE of the data for subset size NI = 10 (left) and NI = 20
(right).
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Figure 6.1.: Comparison of subset selection with objective (6.4) (left) and (6.6) (right).
Both plots show the data Y from Example 4 with its KDE (blue) and the
subset YI with its KDE (black, dash-dotted). Both preserve the support.
The left is also nicely preserving the shape, but with most samples in high
probability region, whereas the right yields more uniformly distributed sam-
ples.
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verse KDE of the data (gray) for subset selection with objective (6.6) for
subset size NI = 10 (left) and NI = 20 (right).
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6.1.2. Model discrepancy surrogate

With a representative subset YI of Y, inference of the simulation model parameters
xi, the model discrepancies δi(xi) and noise term εi need to be carried out for each
measurement yi ∈ YI . This involves for each i ∈ I the challenging identifiability problem
and requires careful solution strategies.

The method BM2, introduced in Section 4.3.3, was successfully employed for test bench
data yj with j = 15, 16, 26 (see Section 4.5). There, the BM2 model discrepancy term
δK(a) was modeled by weighted Laguerre polynomials with coefficients a and truncation
parameter K. BM2 together with Algorithm 5 iteratively leads to approximations of the
posterior distributions

πKi(xi,ai, σ
I
i , σ

ω
i |yi), ∀i ∈ I. (6.8)

Let x̂i and δ̂i(x̂i) := δKi(â) denote the posterior mean. The set of model parameter-
discrepancy pairs

D := {(x̂i, δ̂i(x̂i))}i∈I , (6.9)

can then be used to build a surrogate δ̂(x) of the model discrepancy δ(x) for all x ∈ X .
As x = X(ω), this serves also as surrogate in the stochastic case. In particular, we fit
a PCE to D and compute the PCE coefficients with least squares, see Section 3.3 for
details. For PCE construction it is assumed that x̂i are uniformly sampled from X ,
similar to the construction of the PCE for M.

Of course, the quality of the model discrepancy surrogate δ̂(x) depends on the repre-
sentative quality of the subset YI and of the approximation quality of the set of posterior
mean model parameter-discrepancy pairs D.

In some applications it might be possible to obtain reference model parameters x†i for
some measurements yi with i ∈ I†. Then δKi (ai) can be fitted directly to the residuals

ri = yi −M(x†i ) via

(a†i ,K
†
i ) = arg min

(ai,Ki)
‖ri − δKi (ai)‖L2 , i ∈ I†. (6.10)

Denote the reference model discrepancy by δ†i (x
†
i ) := δ

K†i
i (a†i ), the reference model

parameter-discrepancy set by D† and the model discrepancy surrogate by δ†(x),x ∈ X .
The extrapolation quality of δ†(x) depends on the representative quality of the subset

YI† and with this on the number and locations of x†i ∈ X , i ∈ I†.
It might be that only a small number of reference model parameters are available or

that they are not sufficient to cover the model parameter space X . Then a combination
of D and D† is advisable. I† can be used as a starter for subset selection to obtain a
joint subset YJ with J = I† ∪ I that improves the model discrepancy surrogate.

115



Chapter 6. Aleatoric parameter and model discrepancy estimation

Remark. If available, δ†(x) might serve, in some sense, as prior for inference of
{xi, δi(xi)}i∈I . But this is non-trivial as xi is unknown and the approximation quality
of δ†(xi) might be bad. This combination requires further research and is out of scope
for this work. An idea for further development is an iterative three-stage inference: (1)

Assume δ†(x) is correct and infer x
(1)
i from yi =M(xi) + δ†(xi) + εi. (2) Use δ†(x(1)

i )

as prior for δKi(ai) and infer x
(2)
i from yi =M(xi)+δKi(ai)+εi. (3) Use the posterior

mean of (x
(2)
i , δKi(ai)) to correct δ†(x). Repeat for i = i+ 1.

6.1.3. Hierarchical surrogate-based discrepancy-corrected inference

With the model discrepancy surrogate δ̂(x) and the simulation model surrogateM(x) we
basically perform hierarchical surrogate-based inference as in Section 5.1. The surrogate-
based discrepancy-corrected simulation model

Mδ(x) :=M(x) + δ̂(x) (6.11)

with δ̂ fixed, requires no additional parameters for hierarchical inference and can be used
seamlessly with the methods introduced earlier. Figure 6.3 gives an overview on the
required steps to perform hierarchical surrogate-based discrepancy-corrected inference.

Preprocessed test bench data
Y = {yi : i = 1, . . . , N}

Section 2.2

Divergence-based
subset selection

YI = {yi ∈ Y : i ∈ I}
Section 6.1.1

Simulation model PCE
surrogate with Sparse Grids

M(x)
Sections 2.2 and 3.3

Model parameter and discrepancy inference with BM2
D = {(x̂i, δ̂i(x̂i))}i∈I

Sections 4.3.3 and 6.1.2

Model discrepancy PCE surrogate with Least Squares
δ̂(x)

Sections 3.3 and 6.1.2

Surrogate-based discrepancy-corrected model
M(x) + δ̂(x)

for inference of π(x|θ) with
hierarchical surrogate-based MCMC, Section 5.1.1,

or hierarchical surrogate-based ABC
with summary statistics, Section 5.1.2.

Figure 6.3.: Overview of the required steps to perform hierarchical surrogate-based
discrepancy-corrected inference.
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If the approximation quality of δ̂(x) is sufficient, then the hierarchical inference leads
to corrected parameters and hyper-parameters. Further, δ̂(x) might serve as tool for
modelers to refine the simulation model M in areas where δ̂(x) is large.

6.2. Numerical experiments

The hierarchical surrogate-based discrepancy-corrected inference is applied to the test
bench data with corresponding basic model (2.11) (see Section 2.2). In the following
Section 6.2.1 details on the inference setup and Section 6.2.2 presents the numerical
results.

We follow the abbreviations of the methods introduced in Chapter 4 and Chapter 5.
I.e. BM2 denotes the method introduced in Section 4.3.3, MCMC(MAP) the method in
Section 5.1.1 and SMC ABC the method in Section 5.1.2.

6.2.1. Inference setup

For inference of model parameters xi = (Vi, Ti) and model discrepancy δi(xi) for i ∈ I
with BM2 the inference setup described in Section 4.5.1 is used. For hierarchical inference
of hyper-parameters mV , σV ,mT , σT and all parameters xi = (Vi, Ti), i = 1, . . . , N the
inference setup described in Section 5.2.1 is used.

6.2.2. Test bench data

The divergence-based subset selection with objective (6.6) and NI = 10 leads to the
data subset YI , containing 10% of the data. The selected yi, i ∈ I are displayed in the
Y := {(yIi ,yωi )}i=1,...,N -plane in Figure 6.4. As the reference values x†i = (V †i , T

†
i ) are

known (due to the test bench data generation process), the corresponding x†i = (V †i , T
†
i )

with i ∈ I are marked as well. Both, the output and input space are reasonably covered.

The BM2 results for yi ∈ YI lead to the set D and then to the model discrepancy
surrogate δ̂(x). Selection of optimal Ki, i ∈ I with Algorithm 5 worked reasonably well
under consideration of a GP noise standard deviation estimation as stopping criterion,
as described in Section 4.5.4. The Ki range from 4 to 10. Note that in some cases,
compared to the reference model parameters, other values than the selected yield better
results.

For comparison δ† is computed as well on the same subset and with Ki = 7, ∀i ∈ I.
Hierarchical inference is now carried out with

• simulation model surrogate M only,

• simulation model plus reference model discrepancy surrogate M+ δ†
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Figure 6.4.: Divergence-based subset selection with objective (6.6) for the test bench

data based on Y := {(yIi ,yωi )}i=1,...,N ∈ R2×N (right). Representative for
yi ∈ YI the selected data points in Y with i ∈ I are marked by ×. The
corresponding reference values (left) are marked as well by ×.

• and simulation model plus inferred model discrepancy surrogate M+ δ̂.

Figure 6.5 displays the MCMC(MAP) results for Vi and Ti, i = 1, . . . , N . Inference of Vi
corresponds well to the reference values V †i for all three models. The inference results for
Ti with onlyM do not correspond to the reference and are further spread. As expected,
this is corrected with M+ δ† and also with M+ δ̂. Whereas the latter two results for
Ti are slightly different. Overall, the uncertainty in the Ti estimates is higher as for Vi.

Figure 6.6 presents the hierarchical inference results for the hyper-parameters obtained
with MCMC(MAP) and SMC ABC. The threshold schedule for SMC ABC is chosen such
that a similar amount of proposals (M ≈ 200.000) are drawn for each of the three models.
The SMC ABC runtimes are around 110 seconds and the MCMC(MAP) runtimes around
800 seconds. Analog to the single results for Vi and Ti above, the corrected simulation
models lead to a slight improvement in mT and large improvement in σT , where SMC
ABC and MCMC(MAP) perform similar. For mV a slight drift away from the reference
is observable for both corrected models.

6.2.3. Discussion

Overall, the hierarchical surrogate-based discrepancy-corrected inference works well for
the test bench data and the results with simulation model plus inferred model discrepancy
surrogate M + δ̂ are comparable to those with simulation model plus reference model
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Figure 6.5.: Hierarchical surrogate-based discrepancy-corrected inference for the test
bench data. Comparison of MCMC(MAP) results for (top row) Vi and
(bottom row) Ti, i = 1, . . . , N with (left column) only simulation model
surrogate M, (middle column) simulation model plus reference model dis-
crepancy surrogateM+δ† and (right column) simulation model plus inferred
model discrepancy surrogate M+ δ. Posterior mean (dots) ±4σ (gray bar)
of Vi and Ti are shown in contrast to the identity (red solid line) of the

reference values V †i and Ti†.
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Figure 6.6.: Boxplots of the marginal posterior distributions of the hyper-parameters
mV , σV , mT , σT obtained with SMC ABC and MCMC(MAP) for the test
bench data. For each hyper-parameter results with (left column) only simu-
lation model surrogateM, (middle column) simulation model plus reference
model discrepancy surrogate M + δ† and (right column) simulation model
plus inferred model discrepancy surrogateM+δ are displayed together with
the reference values and sample values.
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discrepancy surrogate M + δ†. This is surprising, as for construction of the inferred
model discrepancy surrogate δ̂ some non-optimal, w.r.t. reference model parameters,
decisions for truncation parameter Ki were made.

Unfortunately, inference results with SMC ABC, albeit improving on mT and σT ,
seem to deteriorate slightly for mV and σV . This might be because of the noise stan-
dard deviation estimation required for the ABC method with summary statistics. In the
Discussion 5.2.4 we argued that for the test bench data the estimates based on the sta-
tionary time interval are an underestimation and contribute to overestimated parameter
standard deviations σV , σT . This might serve as an explanation here as well. For future
investigations, an improved noise estimation might be beneficial. For instance, based
on the already available marginal posterior distributions of σI , σω from the BM2 model
discrepancy inference on YI .

Also future work might research the effects of subset selection with different objec-
tives and subset sizes onto the inference results. Another open point is that we used the
posterior mean of the parameters and of the model discrepancy in D and consequently
neglect the posterior uncertainty in the construction of δ̂. Properly reflecting this uncer-
tainty, would yield higher uncertainty in the parameter posterior distributions obtained
via hierarchical inference. To achieve this, a surrogate directly based on the posterior
distributions of (xi, δi(xi)) is required, which must then also be usable for inference. This
is a challenging task and requires further research. One idea in this direction is to use
GPs as surrogate that map the parameter posterior mean to Gaussian approximations
of the model discrepancy posterior distributions. The GP covariance then adds to the
covariance of the noise for hierarchical inference. To reflect this covariance in the ABC
summary statistics a 2-Wasserstein metric without diagonal covariance assumption, for
instance, is required.
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Conclusions

A mind that is stretched by a new experience can never go back to its old
dimensions.

Oliver Wendell Holmes, Jr. (1841-1935)

This thesis develops and extends Bayesian methods for inference of deterministic and
aleatoric simulation model parameters from noisy measurement data with explicit con-
sideration of simulation model discrepancy and quantification of the associated uncer-
tainties. Application to a complex industrial example – an electric motor with synthetic
and real-world data from a test bench – shows the effectiveness and robustness of the
methods. An important ingredient for all methods is a PCE surrogate, which allows
sampling from the posterior distribution in the first place by drastically speeding up the
model evaluations.

For inference of deterministic parameters and model discrepancy simultaneously, the
proposed Bayesian method – BM2 in Section 4.3 – efficiently improves physical param-
eter estimation, while learning a good approximation of the a-priori unknown model
discrepancy. For the proposed iterative model discrepancy approximation with orthog-
onal functions, a smoothness assumption introducing specific prior knowledge is impor-
tant to handle the underlying identifiability problem. Generally, the results show that
a discrepancy model complexity well above the optimal one, leads to uncertain poste-
rior distributions, indicating identifiability problems. This issue is circumvented by the
proposed iterative model complexity determination. It properly selects an optimal com-
plexity for the synthetic examples and equipped with an additional stopping criterion
it also works for real-world data. Additionally to the already addressed points in the
Discussion 4.5.4, evidence approximation might be an alternative criterion to select an
optimal model complexity, and will be considered in future work for comparison purpose.

For inference of aleatoric parameters, both introduced methods – the hierarchical
surrogate-based MCMC method and the novel hierarchical surrogate-based ABC method
with summary statistics – show good inference results of comparable accuracy. Beneficial
with ABC is the speed-up of the inference by exploiting parametric assumptions on the
unknown parameter distributions and using summary statistics together with sparse
grid quadrature. This is in particular effective for large data and high dimensional

122



Chapter 7. Conclusions

parameter spaces. Albeit the proposed methodology has still some open points to work
on, as discussed in Section 5.2.4, this worked showed that in cases where the likelihood
is expensive to evaluate or even not available, ABC methods are an efficient way to
obtain approximate posterior distributions with comparable quality in much less time.
Additionally, Theorem 3 and experiments confirm posterior consistency for the surrogate-
based ABC method.

The bias in the hierarchical inference results for the real-world test bench data (ob-
served with both methods) motivates the combination of aleatoric parameter estimation
with model discrepancy estimation. For this combined estimation the novel hierarchi-
cal surrogate-based discrepancy-corrected inference method is successful applied to the
electric motor test bench data. The suggested divergence-based subset selection and
PCE surrogate modeling for the model discrepancy provide an computationally efficient
estimation of the unknowns. As a combination and extension of the previous methods
it inherits their potential for improvements. Furthermore, as already discussed in Sec-
tion 6.2.3, future work might address additional consideration of the subsets solution
posterior uncertainty in the construction of the model discrepancy surrogate. As this is
one of the first methods in this field and albeit its general concept, application to other
complex problems will point out further directions for improvement.

Overall, this work showed that with an additional term for model discrepancy inference
results can be improved and realistic information about the discrepancy can be collected,
provided that at least some information about the parameters or the discrepancy is
specified in the priors.

Generally, the combination of simulation models with data-driven approaches, such as
the presented model discrepancy methods in this thesis, already have and will further
gain increased importance in future scientific and industrial research. They can be seen as
tools to discover weaknesses of simulation models, gain new insights and help to develop
an improved next generation of a model. One might use the term ”data-driven model
discovery”. With the methods developed in this thesis for black-box simulation mod-
els, insights are already available for model inputs and outputs. Opening the model and
adding model discrepancy terms directly into the model equations might yield deeper in-
sights and might simplify physical interpretation, at the potential cost of loosing general
applicability of the method. Still remaining with this intrusive methods, are problems
of identifiability, model selection and computational costs. Thus, the insights gained in
this thesis can also be used for further research in that direction.

123



Appendix A.

Additional results for Chapter 4

124



Appendix A. Additional results for Chapter 4

11.5

12.0

12.5

V

zero constant linear quadratic

0.10

0.12

0.14

σ
I

G
P

B
M

1 0 1 2 3 4 5 6

K

0.45

0.50

0.55

0.60

0.65

σ
ω

G
P

B
M

1 0 1 2 3 4 5 6

K

G
P

B
M

1 0 1 2 3 4 5 6

K

G
P

B
M

1 0 1 2 3 4 5 6

K

Figure A.1.: Posterior distributions of V, σI and σω (rows) for discrepancy cases zero,
constant, linear and quadratic (columns). Results are obtained via GP,
BM1 and BM2 for K = 0, . . . , 6 (with b = 0.1). Reference values are red
dash-dotted.
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K. (2017). Statistical analysis of differential equations: introducing probability mea-
sures on numerical solutions. Statistics and Computing, 27(4):1065–1082.

[Conrad and Marzouk, 2013] Conrad, P. R. and Marzouk, Y. M. (2013). Adaptive
Smolyak pseudospectral approximations. SIAM Journal on Scientific Computing,
35(6):A2643–A2670.

[Constantine et al., 2012] Constantine, P. G., Eldred, M. S., and Phipps, E. T. (2012).
Sparse pseudospectral approximation method. Computer Methods in Applied Mechan-
ics and Engineering, 229-232:1–12.

131



Bibliography

[Conti et al., 2009] Conti, S., Gosling, J. P., Oakley, J. E., and O’Hagan, A. (2009).
Gaussian process emulation of dynamic computer codes. Biometrika, 96(3):663–676.

[Dashti et al., 2013] Dashti, M., Law, K. J. H., Stuart, A. M., and Voss, J. (2013). MAP
estimators and their consistency in Bayesian nonparametric inverse problems. Inverse
Problems, 29(9):095017.

[Dashti and Stuart, 2017] Dashti, M. and Stuart, A. M. (2017). The Bayesian Approach
to Inverse Problems. In Ghanem, R., Higdon, D., and Owhadi, H., editors, Handbook of
Uncertainty Quantification, pages 311–428. Springer International Publishing, Cham.

[Del Moral et al., 2006] Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential
Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(3):411–436.

[Dondelinger et al., 2013] Dondelinger, F., Husmeier, D., Rogers, S., and Filippone, M.
(2013). ODE parameter inference using adaptive gradient matching with Gaussian
processes. In Artificial Intelligence and Statistics (AISTATS), pages 216–228.

[Doppelbauer, 2018] Doppelbauer, M. (2018). The invention of the electric motor. [On-
line; Karlsruhe Instiute of Technology, Institute of Electrical Engineering, https:

//www.eti.kit.edu/english/1376.php and https://www.eti.kit.edu/english/

1390.php; accessed Jan. 14, 2020].

[Draper and Smith, 1998] Draper, N. R. and Smith, H. (1998). Applied regression anal-
ysis, volume 326. John Wiley & Sons.

[Dunlop, 2019] Dunlop, M. M. (2019). Multiplicative noise in Bayesian inverse problems:
Well-posedness and consistency of MAP estimators. arXiv preprint arXiv:1910.14632.

[Dunlop et al., 2017] Dunlop, M. M., Iglesias, M. A., and Stuart, A. M. (2017). Hierar-
chical Bayesian level set inversion. Statistics and Computing, 27(6):1555–1584.

[Edeling et al., 2014a] Edeling, W., Cinnella, P., and Dwight, R. (2014a). Predictive
RANS simulations via Bayesian Model-Scenario Averaging. Journal of Computational
Physics, 275:65 – 91.

[Edeling et al., 2014b] Edeling, W., Cinnella, P., Dwight, R., and Bijl, H. (2014b).
Bayesian estimates of parameter variability in the k–ε turbulence model. Journal
of Computational Physics, 258:73 – 94.

[Fearnhead and Prangle, 2012] Fearnhead, P. and Prangle, D. (2012). Constructing
summary statistics for approximate Bayesian computation: semi-automatic approx-
imate Bayesian computation. Journal of the Royal Statistical Society Series B,
74(3):419–474.

132

https://www.eti.kit.edu/english/1376.php
https://www.eti.kit.edu/english/1376.php
https://www.eti.kit.edu/english/1390.php
https://www.eti.kit.edu/english/1390.php


Bibliography

[Gelman et al., 2013] Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari,
A., Rubin, D. B., and Stern, H. S. (2013). Bayesian Data Analysis. Texts in Statistical
Science Series. CHAPMAN & HALL/CRC and CRC Press, Boca Raton, 3rd edition.

[Gelman et al., 2014] Gelman, A., Hwang, J., and Vehtari, A. (2014). Understand-
ing predictive information criteria for Bayesian models. Statistics and Computing,
24(6):997–1016.

[Ghanem and Spanos, 2003] Ghanem, R. G. and Spanos, P. D. (2003). Stochastic finite
elements: a spectral approach. Courier Corporation.

[Giles, 2015] Giles, M. B. (2015). Multilevel Monte Carlo methods. Acta Numerica,
24:259–328.

[Giraldi et al., 2015] Giraldi, L., Liu, D., Matthies, H. G., and Nouy, A. (2015). To be
or not to be intrusive? The solution of parametric and stochastic equations—Proper
Generalized Decomposition. SIAM Journal on Scientific Computing, 37(1):A347–
A368.

[Girolami et al., 2019] Girolami, M., Gregory, A., Yin, G., and Cirak, F. (2019). The
Statistical Finite Element Method. arXiv preprint arXiv:1905.06391.

[Glaser, 2020] Glaser, P. (to appear, 2020). Uncertainty Quantification for Complex
Engineering Systems. Dissertation, Heidelberg University.

[Glaser et al., 2017] Glaser, P., Kosmas, P., Schick, M., and Heuveline, V. (2017). Mod-
eling of a Likelihood Function based on a Global Sensitivity Analysis. PAMM,
17(1):719–720.

[Glaser et al., 2016] Glaser, P., Schick, M., Petridis, K., and Heuveline, V. (2016). Com-
parison beween a Polynomial Chaos Surrogate Model and Markov Chain Monte Carlo
for Inverse Uncertainty Quantification based on an Electric Drive Test Bench. ECO-
MAS Congress, 19:8809–8826.

[Gorbach et al., 2017] Gorbach, N. S., Bauer, S., and Buhmann, J. M. (2017). Scal-
able variational inference for dynamical systems. In Advances in Neural Information
Processing Systems, pages 4806–4815.

[Goulet and Smith, 2013] Goulet, J.-A. and Smith, I. F. (2013). Structural identifica-
tion with systematic errors and unknown uncertainty dependencies. Computers &
Structures, 128:251 – 258.

[Gratiet et al., 2016] Gratiet, L. L., Marelli, S., and Sudret, B. (2016). Metamodel-based
sensitivity analysis: polynomial chaos expansions and Gaussian processes. Handbook
of Uncertainty Quantification, pages 1–37.

133



Bibliography

[Gu and Wang, 2018] Gu, M. and Wang, L. (2018). Scaled Gaussian stochastic process
for computer model calibration and prediction. SIAM/ASA Journal on Uncertainty
Quantification, 6(4):1555–1583.

[Guyon and Elisseeff, 2003] Guyon, I. and Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of machine learning research, 3(Mar):1157–1182.

[Han et al., 2018] Han, J., Jentzen, A., and Weinan, E. (2018). Solving high-dimensional
partial differential equations using deep learning. Proceedings of the National Academy
of Sciences, 115(34):8505–8510.

[Hastie et al., 2009] Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements
of statistical learning: Data mining, inference, and prediction. Springer series in
statistics. Springer New York and Springer, New York, NY, 2nd edition.

[Hastings, 1970] Hastings, W. K. (1970). Monte Carlo Sampling Methods Using Markov
Chains and Their Applications. Biometrika, 57(1):97.

[Helin and Burger, 2015] Helin, T. and Burger, M. (2015). Maximum a posteriori prob-
ability estimates in infinite-dimensional Bayesian inverse problems. Inverse Problems,
31(8):085009.

[Hennig et al., 2015] Hennig, P., Osborne, M. A., and Girolami, M. (2015). Probabilistic
numerics and uncertainty in computations. Proceedings of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, 471(2179).

[Higdon et al., 2004] Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne,
R. D. (2004). Combining field data and computer simulations for calibration and
prediction. SIAM Journal on Scientific Computing, 26(2):448–466.

[Hoffman and Gelman, 2014] Hoffman, M. D. and Gelman, A. (2014). The No-U-turn
sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of
Machine Learning Research, 15(1):1593–1623.

[Hu et al., 2017] Hu, Z., Yao, Z., and Li, J. (2017). On an adaptive preconditioned
Crank–Nicolson MCMC algorithm for infinite dimensional Bayesian inference. Journal
of Computational Physics, 332:492 – 503.

[Islam et al., 2004] Islam, M. S., Mir, S., and Sebastian, T. (2004). Issues in reducing
the cogging torque of mass-produced permanent-magnet brushless dc motor. IEEE
Transactions on Industry Applications, 40(3):813–820.

[John, 2016] John, D. (2016). Uncertainty quantification for hydraulic systems with focus
on the Smolyak sparse pseudo-spectral projection method. Master thesis, Karlsruhe
Institute of Technology (KIT).

134



Bibliography

[John et al., 2019a] John, D., Heuveline, V., and Schober, M. (2019a). GOODE: A
Gaussian Off-The-Shelf Ordinary Differential Equation Solver. In Chaudhuri, K. and
Salakhutdinov, R., editors, Proceedings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3152–
3162, Long Beach, California, USA. PMLR.

[John et al., 2018a] John, D., Schick, M., and Heuveline, V. (2018a). Bayesian inference
for estimating model discrepancy of an electric motor. PAMM, 18(1):e201800393.

[John et al., 2018b] John, D., Schick, M., and Heuveline, V. (2018b). Learning model
discrepancy of an electric motor with Bayesian inference. Preprint Series of the En-
gineering Mathematics and Computing Lab, 0(01).

[John et al., 2020] John, D., Stohrer, L., Schillings, C., Schick, M., and Heuveline, V.
(2020). Hierarchical surrogate-based Approximate Bayesian Computation for an elec-
tric motor test bench. In Review at Journal of Computational Physics.

[John et al., 2019b] John, D. N., Schick, M., and Heuveline, V. (2019b). Learning model
discrepancy of an electric motor with Bayesian inference. In Multidisciplinary Digital
Publishing Institute Proceedings, volume 33, page 11.

[Jung and Marjoram, 2011] Jung, H. and Marjoram, P. (2011). Choice of summary
statistic weights in approximate Bayesian computation. Statistical applications in
genetics and molecular biology, 10(1).

[Kaipio and Somersalo, 2005] Kaipio, J. and Somersalo, E. (2005). Statistical and
Computational Inverse Problems. Applied Mathematical Sciences. Springer Sci-
ence+Business Media, Inc, New York, NY.

[Kanagawa et al., 2018] Kanagawa, M., Hennig, P., Sejdinovic, D., and Sriperumbudur,
B. K. (2018). Gaussian processes and kernel methods: A review on connections and
equivalences. arXiv preprint arXiv:1807.02582.

[Kennedy et al., 2006] Kennedy, M. C., Anderson, C. W., Conti, S., and O’Hagan, A.
(2006). Case studies in Gaussian process modelling of computer codes. Reliability En-
gineering & System Safety, 91(10):1301 – 1309. The Fourth International Conference
on Sensitivity Analysis of Model Output (SAMO 2004).

[Kennedy and O’Hagan, 2001] Kennedy, M. C. and O’Hagan, A. (2001). Bayesian cali-
bration of computer models. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 63(3):425–464.
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