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Abstract

Reaction-diffusion equations coupled with ordinary differential equations (ODEs)
are used to model various biological, chemical and ecological processes. In case
some diffusion coefficients tend to infinity, the reaction-diffusion-ODE system can
be approximated by a reduced system. This system is called shadow limit and is
used to facilitate model analysis. A convergence result is well-known for time inter-
vals which are finite compared to the large diffusion parameter.
This research investigates the relation between a reaction-diffusion-ODE system en-
dowed with zero flux boundary conditions and its shadow limit on long-time scales.
Such long-time intervals scale with the diffusion coefficient and tend to infinity as
diffusion tends to infinity. Solutions of both systems are compared with respect to
the L∞ norm and errors are estimated in terms of the inverse of the large diffusion
parameter. This work shows that an extension of uniform error estimates to large
time intervals may fail without additional stability assumptions. Error estimates
are derived by using a uniform stability condition for the evolution of the linearized
subsystem of ODEs and of the linearized shadow system. The method is based on
previous results for short-time intervals which use a cut-off technique applied to the
system linearized at the shadow solution. The partial lack of diffusion implies low
regularity in space of solutions to both systems. Hence, mild solutions are consid-
ered in this work. Moreover, two analytical ways of verifying the stability conditions
are discussed in detail: dissipativity of evolution systems and linearized stability of
stationary shadow solutions using a spectral analysis.
The general framework applied in this thesis allows to study the uniform shadow
limit approximation for reaction-diffusion systems and reaction-diffusion-ODE sys-
tems, under low regularity of the solutions and of the domain. The explicit error
estimates provide information on the long-term dynamics of such models from re-
sults obtained for their shadow limit. Additionally, this detailed study shows that
the shadow limit reduction exhibits characteristic time scales. Validity of the ap-
proximation on these time ranges can be verified under certain stability assumptions
on the shadow system.
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Zusammenfassung

In vielen biologischen, chemischen und ökologischen Prozessen finden Reaktions-
Diffusions-Gleichungen Anwendung, welche an gewöhnliche Differentialgleichungen
(ODEs) gekoppelt sind. Falls einer der Diffusionskoeffizienten sehr groß ist, lässt
sich das Reaktions-Diffusions-ODE-System durch ein reduziertes System – shadow
limit genannt – approximieren. Dieses System wird zur Vereinfachung der Modell-
Analyse benutzt. Ein entsprechendes Konvergenzresultat existiert für Zeitintervalle,
welche endlich sind verglichen mit der sehr großen Diffusion.
Diese Forschungsarbeit untersucht die Beziehung eines Reaktions-Diffusions-ODE-
Systems mit homogener Neumann-Randbedingung zu dessen shadow limit für große
Zeitintervalle. Solche Langzeitintervalle skalieren mit der Diffusion und wachsen mit
dieser gegen Unendlich. Lösungen beider Systeme werden bezüglich der L∞-Norm
verglichen und die Fehlerterme werden mithilfe des inversen Diffusionskoeffizien-
ten abgeschätzt. Diese Arbeit zeigt, dass die Fehlerabschätzungen ihre Gültigkeit
auf Langzeitintervallen ohne zusätzliche Stabilität möglicherweise verlieren. Die
Abschätzungen werden mittels Stabilitätsbedingungen an die linearisierten Evolu-
tionssysteme des shadow limit und des ODE-Teilsystems erzielt. Dabei wird eine
bereits bekannte Abschneidemethode angewendet, welche nichtlineare Terme nach
einer Linearisierung um die shadow Lösung lokalisiert. Aufgrund partieller Diffu-
sion können Lösungen beider Systeme geringe räumliche Regularität aufweisen. In-
folgedessen werden milde Lösungen betrachtet. Zur analytischen Überprüfung der
Stabilität werden dissipative Evolutionssysteme sowie linearisierte Stabilität sta-
tionärer Lösungen des shadow limit mittels Spektralanalyse untersucht.
Der allgemeine Rahmen dieser Arbeit lässt sich gleichermaßen auf die shadow limit
Approximation von Reaktions-Diffusions- und Reaktions-Diffusions-ODE-Systemen
anwenden – in beiden Fällen unter geringen Regularitätsanforderungen an die Lösun-
gen und das Gebiet. Mithilfe der expliziten Fehlerabschätzungen lassen sich Informa-
tionen über das Langzeitverhalten solcher Modelle aus dem des shadow limit gewin-
nen. Darüber hinaus weist diese Modell-Reduktion charakteristische Zeitskalen auf,
deren Gültigkeit sich unter gewissen Stabilitätsbedingungen nachweisen lässt.
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Notation

N;N0 Set of all natural numbers; N0 := N ∪ {0}

R;R>0;R≥0 Set of all real numbers; set of all positive real numbers; set of all
non-negative real numbers

Ω Open, bounded and connected subset of Rn

ΩT Space-time domain Ω× (0, T )

∂Ω Boundary of Ω ⊂ Rn locally being the graph of a Lipschitz con-
tinuous function, ∂Ω ∈ C0,1, see [1, Paragraph 4.9]

n Outward unit normal vector on the boundary ∂Ω

|Ω| Lebesgue measure of a set Ω ⊂ Rn

〈z〉Ω Spatial mean value of a function z ∈ L1(Ω)

‖·‖p,q Mixed norm of the Lebesgue space Lp,q(ΩT ) defined in (4.18)

D Least positive entry of the diagonal diffusion matrix Dv ∈ Rk×k
>0

logD Natural logarithm of a real number D ∈ R>0

χA Characteristic function being identical 1 on a set A

(u,v) Solution to the shadow problem (1.4)–(1.6)

(uD,vD) Solution to the diffusive problem (1.1)–(1.3)

ψD Mean value correction defined by system (2.10)–(2.11)

(UD,VD) Error functions UD = uD−u, VD = vD−v−ψD defined in (3.1)

∇; ∆ Nabla operator; Laplace operator

(S∆(τ))τ∈R≥0 Heat semigroup for zero flux boundary conditions, see Lemma 2.1
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Notation

λj, wj Eigenvalue λj, eigenfunction wj from a spectral basis of −∆, see
Proposition A.1

I Identity operator on corresponding Banach space

L(B) Set of all linear, bounded operators on a Banach space B

D(L) Domain of a linear (unbounded) operator L

σ(L); ρ(L) Spectrum of a linear operator L; resolvent set ρ(L) = C \ σ(L)

σp(L);σess(L) Point spectrum of a linear operator L; Wolf essential spectrum of
L defined in Proposition C.1

U , Ũ Evolution system induced by Du∆ +A∗(·, t) and A11(·, t), respec-
tively, see (4.6) and Assumption L0

L0(t) Linearized shadow operator defined in (4.11) and used for (4.39)

W Evolution system induced by DS∆ + L0(t), see (4.12) and (4.39)

A1 Assumption A1: regularity of nonlinearities for existence, unique-
ness and first-order truncation, see p. 12

A2 Assumption A2: essentially bounded initial conditions, see p. 12

A3 Assumption A3: decay estimate for the mean value correction ψD,
see p. 44

A4 Assumption A4: regularity of nonlinearities for second-order trun-
cation, see p. 52

B Assumption B: uniform boundedness of shadow solution, see p. 51

L; L0 Assumption L; L0: uniform boundedness of evolution subsystem
U ; Ũ , see pp. 35; 49

L1p Assumption L1p: uniform boundedness of evolution system W ,
see p. 43

Dp Assumption Dp: dissipativity of subsystem A∗ and A11, see p. 68

D1p Assumption D1p: dissipativity of linearized shadow system L0(t),
see p. 73
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1 Introduction

Many biological, chemical and ecological processes can be mathematically described
using a model consisting of reaction-diffusion-type equations endowed with zero flux
boundary conditions which are typical for closed physical systems. Examples in-
clude the activator-inhibitor model of Gierer and Meinhardt [28], the Gray-Scott
model [29], the Lengyel-Epstein model [60] and many others [83]. A special case
of reaction-diffusion-type systems consists of a class of models coupling semilin-
ear reaction-diffusion equations with ordinary differential equations (ODEs) acting
on some function space. Such reaction-diffusion-ODE models arise, for example,
in the context of cell biology: Intercellular dynamics regulated by a diffusive sig-
naling factor can be described by so called receptor-based models [44, 52, 73, 74].
Those models are also applied to a range of ecological and chemical processes, see
[68, 82, 94, 111] and [99], respectively.
Reaction-diffusion-type systems may exhibit quite complex structures. From a
mathematical point of view, it is desirable to reduce their complexity as far as
possible in order to understand the behavior of the full system while simultaneously
maintaining its main properties. In many applications there is one diffusion coeffi-
cient (or even more) that is significantly larger compared to the others. Concerning
this case, a model reduction has been successfully applied to classical reaction-
diffusion systems for the last four decades, starting from the work of Keener [51],
and Nishiura [86] who referred to the reduced system as a shadow system. Nowa-
days, the term shadow systems is used for a more general class of large diffusion
limits of reaction-diffusion-type systems with the largest diffusion coefficient tending
to infinity. The relation of the original partly diffusive model to its reduced system is
the main objective of this thesis. A detailed description is given in the next section
Aims of the thesis.
The shadow limit was originally considered in the case of two coupled reaction-
diffusion equations, where one diffusion is fixed and the other tends to infinity. It
has been used to investigate stationary problems of reaction-diffusion systems with
a large ratio of diffusion rates. A stationary solution of the shadow problem allows
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1 Introduction

finding a stationary solution of the original problem provided that the shadow op-
erator linearized around the stationary shadow solution is invertible [103]. Stability
properties of those stationary solutions are also inherited [78, 109]. Not only are
steady states close to each other in a suitable norm, but in [32, 79] it is shown that
compact attractors for both the reaction-diffusion system and its shadow limit are
closely related. However, dynamics of non-stationary solutions of the shadow system
and of the reaction-diffusion system do not need to be related in general. It may
even happen that solutions of the shadow system blow-up in finite time although
the original system has solutions which exist globally in time [62].

Aims of the thesis

The shadow limit approximation for classical reaction-diffusion systems is usually
performed for regular domains [32, 79]. However, some applications may require a
lower boundary regularity of the underlying domain such that existence of solutions
within the class of regular functions is not guaranteed. Consequently, mild solutions
given by an implicit integral equation of the reaction-diffusion-type system and its
shadow limit are considered in this thesis. Reaction-diffusion-ODE systems may
also exhibit singular patterns with jump-discontinuities [38, 54] or patterns of mass
concentration in finite or infinite time [37, 69, 70, 72]. The main aim of this disser-
tation is to investigate the relation between a reaction-diffusion-type system with
large diffusive components and its shadow limit under low regularity assumptions.
Apart from mild solutions, we allow for non-smooth domains and initial conditions.
Moreover, this study focuses on finding conditions under which the shadow limit
is an adequate reduction of the partly diffusive system on long-time scales. The
thesis extends the uniform convergence results from [7, 75], which already exist for
short-time intervals, to large time intervals including global error estimates.

Let Ω be a given bounded domain (open and connected set) in Rn, n ∈ N, with a
Lipschitz boundary ∂Ω ∈ C0,1. We focus on the reaction-diffusion-type problem

∂uD
∂t
−Du∆uD = f(uD,vD, x, t) in ΩT , uD(·, 0) = u0 in Ω, (1.1)

∂vD
∂t
−Dv∆vD = g(uD,vD, x, t) in ΩT , vD(·, 0) = v0 in Ω, (1.2)

∂uD
∂n

= 0,
∂vD
∂n

= 0 on ∂Ω× (0, T ), (1.3)

2



where uD : ΩT → Rm, vD : ΩT → Rk with m, k ∈ N are vector-valued functions on
the domain ΩT := Ω× (0, T ) endowed with zero Neumann boundary conditions for
each diffusive component. Although the function n denotes the outward unit normal
vector on the boundary ∂Ω, condition (1.3) is defined implicitly for mild solutions
of the above system. The Laplace operator ∆ is applied component by component
and is multiplied by diagonal diffusion matrices Du ∈ Rm×m

≥0 and Dv ∈ Rk×k
>0 with

non-negative and positive entries, respectively. For reaction-diffusion-ODE systems,
boundary condition (1.3) only applies to components of uD for which the entry on
the diagonal of Du is positive. In this thesis, the splitting of the model components
uD and vD depends on the size of diffusion coefficients. All components of Dv are
much larger (or tend to infinity) compared to components of Du. Furthermore, we
consider model nonlinearities

f : Rm+k × Ω× R≥0 → Rm and g : Rm+k × Ω× R≥0 → Rk

which are given functions depending on the unknown solution, space and time. De-
tailed properties are provided in assumptions A1–A4 below.
An asymptotic analysis of problem (1.1)–(1.3) was considered in [100] in the case
when all diffusion coefficients tend to infinity, i.e., Du,Dv → ∞. If some diffu-
sion coefficients, denoted by Du, are fixed and bounded, the classical shadow limit
for Dv → ∞ was studied, for instance, in [51]. A shadow limit reduction of the
reaction-diffusion-ODE case was performed in [75]. In general, the shadow system
of equations (1.1)–(1.3) for all entries of Dv tending to infinity reads

∂u
∂t
−Du∆u = f(u,v, x, t) in ΩT , u(·, 0) = u0 in Ω, (1.4)

dv
dt = 〈g(u(·, t),v(t), ·, t)〉Ω in (0, T ), v(0) = 〈v0〉Ω, (1.5)
∂u
∂n

= 0 on ∂Ω× (0, T ). (1.6)

Here the (componentwise) spatial mean value for z ∈ L1(Ω)k is abbreviated by

〈z〉Ω = 1
|Ω|

∫
Ω

z(x) dx.

To simplify the notation in the remainder of this thesis, we use expression (1.6) but
mention that the boundary condition only applies to diffusive components of u.

3



1 Introduction

As there exists a huge variety of results concerning approximation of stationary pat-
terns or nearby stationary solutions by the classical shadow limit (see [53, 78, 86, 109]
or [32, 79], respectively), the current work focuses on reaction-diffusion-ODE sys-
tems. Nevertheless, the framework which is presented in the following allows to
consider both cases simultaneously with only minor adaptions.
Error estimates given in [75] justify the underlying equations (1.4)–(1.6) of the
shadow system but are useful only for a model reduction of system (1.1)–(1.3) on
finite time intervals. In the published proof, bounds depend exponentially on the
length of the interval, hence the error estimate deteriorates significantly for larger
time scales. The aim of this thesis is to find sufficient assumptions which guarantee
a uniform approximation of the original dynamics by the solutions of the shadow
system (1.4)–(1.6) – on long-time intervals and on the asymptotic time scale. Such
long-time intervals (0, T ) have a length proportional to a power of the least posi-
tive entry D of the diffusion matrix Dv, i.e., T ∼ D` for some ` > 0, and errors
are estimated by a bound proportional to a power of the inverse D−1 as D → ∞.
These estimates are uniform in the sense that we use the L∞(ΩT ) norm to compare
model solutions. Such estimates provide understanding of the long-term dynamics
of reaction-diffusion-type models from results obtained for their associated shadow
limit. To obtain a comprehensive picture of this limit process, the thesis includes a
critical reflection of the made assumptions with various examples and applications
from natural sciences.

Mathematical challenges and applied methods

In this dissertation, I present a detailed study of the limit process by comparing so-
lutions of the reaction-diffusion-type system (1.1)–(1.3) and its shadow limit (1.4)–
(1.6). The spatial mean values in the integro-differential system (1.4)–(1.6) implies
that the shadow system is a singular limit of the partly diffusive system. Hence, in
the error estimates, we involve a correction term ψD. This term includes the initial
layer which originates from different initial values v0 and 〈v0〉Ω. Moreover, there is
a discrepancy between nonlinearities of both systems, which we also include in this
correction term ψD to simplify linearization.
Due to the low regularity of solutions to reaction-diffusion-ODE systems [38, 54],
another difficulty is related to finding a suitable norm for estimating solutions. The
choice of L∞(ΩT ) is suitable for bounded, discontinuous solutions of a wide range
of nonlinear problems which can be solved using the method of Rothe [94]. This
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approach requires a deeper investigation of the heat semigroup which is not strongly
continuous on L∞(Ω). Nevertheless, it is possible to show existence and uniqueness
of mild solutions to both systems (1.1)–(1.3) and (1.4)–(1.6), and to estimate these
with respect to L∞(Ω). At the same time, boundary regularity of Ω can be relaxed
to a Lipschitz boundary which is necessary for validity of Sobolev embeddings, ex-
istence of the heat semigroup and a proper notion of a boundary condition.
When comparing both solutions, estimates for the error uD − u and vD − v − ψD
are established with respect to the L∞(ΩT ) norm where the correction term ψD

is negligible for larger times. The system of errors is linearized around a globally
defined, uniformly bounded shadow limit. To control the growth of the nonlinear
parts, we introduce a cut-off, similar to [75]. This cut-off does not affect the non-
linear part in a small neighborhood of 0, which is a ball of radius D−δ0 for some
δ0 > 0. The truncation allows to obtain uniform estimates of the truncated errors.
For fixed time T and sufficiently big diffusion D ≥ D(T ), the estimates show that
the truncated solution does not leave the latter neighborhood on ΩT and we gain an
estimate for the original errors. In general, however, this approach provides uniform
error estimates which are valid only on finite time intervals (0, T ).
In order to extend these results to long-time intervals, we have to assume a stability
condition on the linearization around the time-dependent shadow solution. This
approach is due to the work with Mikelić, who refined estimates from [75] and who
suggested to consider shadow systems with an L2 dissipative linearization in order
to obtain long-time estimates. Since dissipative systems form a particular class of
uniformly stable evolution systems, the dissipativity assumption could be relaxed
in the work at hand. If the evolutionary system is uniformly stable with respect
to L∞(Ω)m × Rk, we obtain error estimates with explicit dependence on the time
interval length T . Stability implies estimates that are valid on ΩT for T ∼ D` and
some 0 < ` < 1. Assuming uniform exponential stability of the linearized shadow
system even yields global error estimates on Ω× R≥0.
The latter stability condition for the shadow system can also be considered in
Lp(Ω)m × Rk for sufficiently large p < ∞. In this case, parabolic Lp estimates
in combination with the truncation method of Stampacchia are employed to turn to
L∞ bounds for the diffusive components, with explicit dependence on T . An addi-
tional uniform stability of the ODE subsystem in L∞ as in [55] yields an estimate
for the non-diffusive components.
In the stationary case, stability properties of the linerization can be deduced from
the knowledge of the spectrum of the corresponding linear operator. This is a con-

5



1 Introduction

sequence of the well-known spectral mapping theorem for analytic semigroups. The
spectrum of the linearized shadow operator as well as the diffusive operator is char-
acterized for bounded steady states. In the reaction-diffusion-ODE case, however,
both linear operators need not to have a pure point spectrum. To determine the es-
sential spectrum, we apply a spectral decomposition for block operator matrices [5].
This is based on properties of bounded multiplication operators, which are induced
by the ODE subsystem on Lp(Ω)m for 1 ≤ p ≤ ∞.

Scientific contribution

The general semigroup framework applied in this thesis allows to study the uniform
shadow limit approximation for classical reaction-diffusion systems and reaction-
diffusion-ODE systems. Qualitative and quantitative convergence results on finite
time scales are well established, see [7, Section 3.1] for shadow solutions that are
continuous in space, and [69, Appendix A], [75, Theorem 3] for bounded solutions.
On long-time scales, however, there are only few qualitative results including [62] or
[75, Theorem 4]. This dissertation approaches the problem of extending estimates to
long-time intervals, also heading for a global approximation result. Model examples
in this work show that a shadow approximation has to be considered on different
characteristic time scales. Using linearization around a time-dependent shadow
solution, sufficient conditions are derived to validate the quality of the approximation
for solutions on the following time ranges:

• short-time intervals taking account for the initial time layer,

• long-time intervals for times T ∼ D` scaling with diffusion for 0 < ` < 1, and

• asymptotic state for times up to T =∞

While the initial time layer, due to the singular shadow limit, dominates for small
times, the correction term ψD decays exponentially in time and a transient state
is approached. This intermediate period (0, T ) for T ∼ D` has an already large
time range since the diffusivity D is large. Uniform stability of the evolution system
induced by the linearization around the shadow limit yields a natural condition for
solutions of the partly diffusive system (1.1)–(1.3) to stay nearby the solution of
the shadow system (1.4)–(1.6) for all large diffusion. Unfortunately, as examples in
Chapter 6 show, accuracy of the approximation for transient states does not imply
a valuable asymptotic approximation as T →∞. It becomes apparent that uniform

6



exponential stability of the evolution system induced by the linearization at the
shadow limit is a sufficient (but not necessary) concept for global estimates.
Within this study, low regularity assumptions are imposed to guarantee a uniform
approximation of the original dynamics by the shadow system (1.4)–(1.6). This is
motivated by solutions of reaction-diffusion-ODE systems which are bounded but
may be discontinuous in space. Using a non-smooth domain, the results generalize
the works [7, 75] on shadow limit approximation for finite time intervals to non-
smooth solutions. Fundamental ideas of this work which apply to a linear case of
the low-regularity setting have been published in [55].
As a possible way of verifying stability conditions for the linearized shadow prob-
lem in the stationary case, we characterize the spectrum of the corresponding linear
shadow operator. The knowledge of the spectrum not only allows answering ques-
tions concerning the shadow approximation of system (1.1)–(1.3). Also stability
properties of stationary patterns of the shadow system can be derived from a lin-
earized stability analysis of the nonlinear shadow problem [14]. This characterization
of the spectrum shows that the instability result in [69, Appendix B] which restricts
to the point spectrum is valid under much more general conditions.
A similar spectral decomposition is valid for the partly diffusive operator linearized
around a bounded, stationary solution of system (1.1)–(1.3). This is in accordance
with stability considerations in [71, 106]. However, the characterization in this the-
sis generalizes results obtained in [71] for a reaction-diffusion-ODE system with one
ODE component to arbitrary systems.

Outline of the thesis

A brief summary of basic results for the diffusive system (1.1)–(1.3) and its shadow
problem (1.4)–(1.6), including existence, uniqueness and definition of mild solutions,
is given in Chapter 2. Moreover, since comparing solutions of the diffusive system
and its singular limit requires correction terms, a suitable initial layer correction is
introduced. The analysis is based on fundamental properties of the heat semigroup
which are presented in more detail in Appendix B.
The core of the thesis consists of three parts corresponding to different time ranges on
which the approximation result is valid: short-time intervals (Chapter 3), long-time
intervals (Chapter 4) and asymptotic behavior of solutions (Chapter 5). Chapter 3
is devoted to a brief but essential comparison of solutions to the diffusive system
and its shadow counterpart.

7



1 Introduction

The aim of Chapter 4 is to find criteria for an extension of the uniform error esti-
mates to long-time intervals (0, T ) of the length proportional to a power of D, i.e.,
T ∼ D` for ` > 0. With increasing complexity, the focus transfers from linear prob-
lems, which already incorporate all main difficulties of the approximation problem
on long-time scales, to nonlinear problems using linearization. The last section of
Chapter 4 is dedicated to a particular class of problems, namely time-dependent
systems with a dissipative linearization. Those provide a possibility to verify as-
sumptions of the proven convergence results.
Chapter 5 briefly considers global uniform error estimates up to T =∞ as a natural
consequence of the detailed study in the foregoing chapter under stronger assump-
tions. To verify assumptions of the established theorems close to stationary solutions
of the shadow problem, the spectrum of the corresponding linearized, stationary
shadow operator is characterized. In virtue of the proof, a similar decomposition
of the spectrum is shown for the reaction-diffusion-ODE system linearized around
a stationary solution. Finally, asymptotic behavior around steady states is deduced
from linearized stability considerations in both cases.
Particular applications are studied in Chapter 6 in more detail. A Lotka-Volterra-
type system from ecology shows global convergence results. The well-known Lengyel-
Epstein model exhibits various patterns and exemplifies the convergence results
while a system modeling stem cell dynamics shows asymptotic discrepancies be-
tween the diffusive system and its shadow limit.
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2 Preliminary results

Both the diffusive and the shadow problem are of great interest but their analysis
requires slightly different methods. Before starting analysis of existence, uniqueness
and regularity of solutions for each problem separately, we begin with a property
that is fundamental for this work. The latter property is distinctive of zero flux
boundary conditions which are considered in this thesis.

The solution of the one-dimensional heat equation

∂tz −D∆z = 0 in Ω× R>0, z(·, 0) = z0 ∈ L∞(Ω) (2.1)

with zero flux boundary conditions can be expressed by

z(x, t) = S∆(Dt)z0(x), (x, t) ∈ Ω× R>0,

using the heat semigroup (S∆(τ))τ∈R≥0 defined in Proposition B.2. Due to the
maximum principle, see [18, Theorem 1.3.9] or [89, Corollary 4.10], the semigroup
(S∆(τ))τ∈R≥0 is contractive in L∞(Ω), i.e., it satisfies

‖S∆(τ)z0‖L∞(Ω) ≤ ‖z0‖L∞(Ω) ∀ z0 ∈ L∞(Ω), τ ∈ R≥0.

Moreover, we have the following smoothing property as τ →∞.

Lemma 2.1. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1 and λ1 > 0 the first
non-zero eigenvalue of −∆ endowed with zero Neumann boundary conditions. Then
there exists a constant C > 0, depending on Ω only, such that for all 1 ≤ q ≤ p ≤ ∞

‖S∆(τ)z0‖Lp(Ω) ≤ Cm(τ)−
n
2 ( 1

q
− 1
p)e−λ1τ‖z0‖Lq(Ω) ∀ τ ∈ R>0

holds for all z0 ∈ Lq(Ω) satisfying 〈z0〉Ω = 0. Here, we denote m(τ) = min{1, τ}.
Moreover, (S∆(τ))τ∈R≥0 is a contraction semigroup on Lp(Ω) for each 1 ≤ p ≤ ∞,
which is strongly continuous for 1 ≤ p <∞ and analytic for 1 < p <∞.

9



2 Preliminary results

Proof. See Lemma B.4.

A direct consequence of this lemma is the estimate

‖S∆(τ)(z0 − 〈z0〉Ω)‖L∞(Ω) ≤ Ce−λ1τ‖z0 − 〈z0〉Ω‖L∞(Ω) ∀ τ ∈ R≥0 (2.2)

for some C > 0 which only depends on Ω. Remember that constant functions stay
invariant under the action of the Neumann heat semigroup. Considering the scaled
time τ = Dt, this implies that the solution of the above heat equation is averaged
in space for large diffusion D →∞ and a fixed time t > 0:

‖z(·, t)− 〈z0〉Ω‖L∞(Ω) → 0 (D →∞)

In this work, the smoothing property (2.2) is crucial for proofs and will be used
for the fast diffusing components of system (1.1)–(1.3). Remark that this decay
estimate enables us to derive the shadow limit for some simple, decoupled linear
systems in its particular form (1.4)–(1.6). Accuracy of the shadow limit can already
be deduced from the works [7, 32, 75] which make use of a higher boundary regularity
and more regular nonlinearities. Uniform estimates will be shown in Chapter 3 in
its generality under low-regularity assumptions on the domain and the solutions.

2.1 The partly diffusive problem

In this section, we study the diffusive system (1.1)–(1.3) which reads

∂uD
∂t
−Du∆uD = f(uD,vD, x, t) in ΩT , uD(·, 0) = u0 in Ω,

∂vD
∂t
−Dv∆vD = g(uD,vD, x, t) in ΩT , vD(·, 0) = v0 in Ω,

∂uD
∂n

= 0,
∂vD
∂n

= 0 on ∂Ω× (0, T ).

There are several notions of a solution to this system and methods to solve it,
amongst which I should mention the books [59, 64] for the theory of weak solutions
or the more abstract semigroup theory by [8, 40, 76, 92] or [94]. As this work shall
be dedicated mainly to nonlinear problems and will allow for non-smooth solutions,
we consider L∞ estimates similar to Rothe [94].
For the sake of completeness, we recollect definitions and the main idea of the proof
of [94, Part II, Theorem 1]. Therefore, we rewrite system (1.1)–(1.3) as a system of
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2.1 The partly diffusive problem

m+ k reaction-diffusion equations

∂Ψ
∂t
−D∆Ψ = h(Ψ, x, t) in ΩT , Ψ(·, 0) = (u0,v0) =: Ψ0 in Ω, (2.3)

where Ψ = (uD,vD),h = (f ,g), and

D := diag(Du,Dv) ∈ Rm+k
≥0

is a diagonal matrix decomposed of Du,Dv. For each component Ψi with a non-
vanishing diffusion coefficient, we impose zero flux boundary conditions

∂Ψi

∂n
= 0 on ∂Ω× (0, T ). (2.4)

In this setting, only components of uD are allowed not to diffuse, i.e., Du ∈ Rm
≥0,

whereas all components of vD are diffusive since Dv ∈ Rk
>0.

If we consider this system for the simplest decoupled case h = 0, the solution
(uD,vD) is given by the corresponding components. Using the heat semigroup
(S∆(τ))τ∈R≥0 from Lemma 2.1, we define a semigroup (S(t))t∈R≥0 on Lp(Ω)m+k by
S(t) = (Su(t),Sv(t)). The components are given by

Sui (t) =

S∆(Du
i t) if Du

i > 0,

I if Du
i = 0,

and Svj (t) = S∆(Dv
j t) (2.5)

for i = 1, . . . ,m and j = 1, . . . , k provided I is the identity operator on Lp(Ω),

Du := diag(Du
1 , . . . , D

u
m) ∈ Rm×m

≥0 , and Dv := diag(Dv
1 , . . . , D

v
k) ∈ Rk×k

>0 .

Analyticity of the constant semigroup I and the heat semigroup according to Lemma
2.1 induces an analytic semigroup (S(t))t∈R≥0 on Lp(Ω)m+k for each p ∈ (1,∞). This
semigroup can be restricted to the invariant subspace L∞(Ω)m+k independently of
p, compare [18, Theorems 1.3.9, 1.4.1]. The resulting operators yield a formal semi-
group on L∞(Ω)m+k which is not strongly continuous [94, Part I, Lemma 2]. Never-
theless, it is a contraction semigroup on L∞(Ω)m+k due to the maximum principle
from [18, Theorem 1.3.9];

‖S(t)Ψ0‖L∞(Ω)m+k ≤ ‖Ψ0‖L∞(Ω)m+k ∀ t ∈ R≥0.

11
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We proceed similar to [94, Part II, Definition 2] using this semigroup approach.

Definition 2.2. Let 0 < T ≤ ∞. An E∞,0,T -mild solution of problem (2.3)–(2.4)
for initial data Ψ0 = (u0,v0) ∈ L∞(Ω)m+k on the interval [0, T ) is a measurable
function

Ψ : Ω× [0, T )→ Rm+k

satisfying for all t ∈ (0, T )

(i) Ψ(·, t) ∈ L∞(Ω)m+k and sups∈(0,t) ‖Ψ(·, s)‖L∞(Ω)m+k <∞,

(ii) the integral representation

Ψ(·, t) = S(t)Ψ0 +
∫ t

0
S(t− τ)h(Ψ(·, τ), ·, τ) dτ,

where the integral is an absolutely converging Bochner integral in L∞(Ω)m+k.

Following the proof of [94, Part II, Theorem 1] and its assumptions which yield an
E∞,0,T -mild solution for system (2.3)–(2.4), we assume

A1 Let the function h = (f ,g) be measurable in (x, t) ∈ Ω × R≥0 for every fixed
(u,v) ∈ Rm+k. Moreover, for every bounded set B ⊂ Rm+k×Ω×R≥0, let there
exist a constant L(B) > 0 such that for all (u,v, x, t), (y, z, x, t) ∈ B

|h(u,v, x, t)| ≤ L(B),

|h(u,v, x, t)− h(y, z, x, t)| ≤ L(B) (|u− y|+ |v− z|) .

A2 Initial values (u0,v0) ∈ L∞(Ω)m+k.

These assumptions are due to [94, p. 109] while Assumption A1 reflects a local
Lipschitz continuity of h with respect to the variable Ψ. Clearly, the domain of
definition of the nonlinearities can be relaxed depending on the problem. It has to
be mentioned that the assumption ∂Ω ∈ C2,α on the regularity of the boundary
made in [94] is not fulfilled. However, as the proof works along the same lines using
a Picard iteration with the semigroup (S(t))t∈R≥0 induced by Proposition B.2 for
∂Ω ∈ C0,1, we omit details in the following proposition.

Proposition 2.3. Let assumptions A1–A2 hold for a boundary ∂Ω ∈ C0,1. Then for
each diffusion matrix Dv ∈ Rk×k

>0 there exists a maximal time T1 = T1(Dv) > 0, such

12



2.1 The partly diffusive problem

that problem (1.1)–(1.3) has a unique E∞,0,T1-mild solution Ψ = (uD,vD) satisfying
Ψ ∈ L∞(ΩT )m+k for each T < T1. Non-diffusive components uD,i of uD additionally
satisfy uD,i ∈ C([0, T ];L∞(Ω)). Furthermore, the solutions for different diffusion
Dv initially exist on some joint time interval.

Proof. As explained in the setting (2.3)–(2.4), we define h by the vector with the
two components f ,g. The integral representation from Definition 2.2 is used for
a fixed-point iteration on the Banach space L∞(Ω)m+k according to the theorem
of Picard-Lindelöf. This Picard iteration yields a unique mild solution. A non-
diffusive component uD,i of uD satisfies higher regularity in time due to the integral
representation, i.e., uD,i ∈ C([0, T ];L∞(Ω)). Recall that the contraction property
of the semigroup (S(t))t∈R≥0 is independent of the diffusion matrix Dv. If one looks
carefully in the proof of [94, Part II, Theorem 1], this independence implies that all
local-in-time solutions Ψ = Ψ(Dv) exist on the same small time interval independent
of Dv ∈ Rk×k

>0 .

To obtain classical solutions, one has to choose a more regular boundary ∂Ω ∈ C2,α,
Hölder continuous initial data and regular nonlinearities [94, Part II, Theorem 1].
In accordance to the blow-up theory for ordinary differential equations, the solution
may blow up in finite time. If the maximal existence time satisfies T1 <∞, then by
[94, Part II, Theorem 1]

lim
t↗T1
‖Ψ(·, t)‖L∞(Ω)m+k =∞.

Beside these spatially homogeneous blow-up effects, there are cases of diffusion in-
duced blow-up [25, 46, 65, 81]; while the corresponding system of ordinary differen-
tial equations possesses global, uniformly bounded solutions, the diffusive problem
blows-up for some diffusion parameters and initial conditions. This kind of blow-
up may occur if one or more diffusions are introduced as shown in a collection of
examples in [25, §4]. For completeness, the following example adapted from [81] is
presented.

Example 2.4. Let Dv = λ−1
1 be the inverse of the first positive eigenvalue λ1 from

a spectral basis (λj, wj)j∈N0 of −∆ in Proposition A.1 and a := w1(x0) 6= 0 for some
x0 ∈ Ω. Consider the system

∂uD
∂t

= u2
D − (a− vD)2u3

D in ΩT , uD(·, 0) = u0 in Ω,
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∂vD
∂t
− λ−1

1 ∆vD = vD in ΩT , vD(·, 0) = v0 in Ω,
∂vD
∂n

= 0 on ∂Ω× (0, T ).

Proposition A.1 and v0 := w1 ensure that the heat equation has the stationary
mild (actually weak) solution vD = w1. The component uD satisfies an ordinary
differential equation in each point x ∈ Ω. Hence, for sufficiently smooth u0,

uD(x0, t) = 1
u0(x0)−1 − t

blows-up for u0(x0) > 0 in finite time.
Concerning space-independent solutions of the corresponding ordinary differential
equations, the cubic term implies uniform bounds for the solution since a 6= 0. Such
bounds can be found as in [25] using the method of invariant rectangles.

2.2 The shadow problem

In this section, we consider the shadow limit introduced in equations (1.4)–(1.6),

∂u
∂t
−Du∆u = f(u,v, x, t) in ΩT , u(·, 0) = u0 in Ω,

dv
dt = 〈g(u(·, t),v(t), ·, t)〉Ω in (0, T ), v(0) = 〈v0〉Ω,

∂u
∂n

= 0 on ∂Ω× (0, T ).

Since we are interested in low-regularity solutions, we search for solutions of the
following integral representation

u(·, t) = Su(t)u0 +
∫ t

0
Su(t− τ)f(u(·, τ),v(τ), ·, τ) dτ in Ω, (2.6)

v(t) = 〈v0〉Ω +
∫ t

0
〈g(u(·, τ),v(τ), ·, τ)〉Ω dτ, (2.7)

with the same notation (2.5) for the semigroup (Su(t))t∈R≥0 . For a precise definition
of a mild solution, we rewrite system (1.4)–(1.6) as a system of m reaction-diffusion
equations coupled to k non-local differential equations. Let Φ = (u,v), then the
shadow system (1.4)–(1.6) becomes

∂Φ
∂t
−DS∆Φ = hS(Φ, x, t) in ΩT , Φ(·, 0) = (u0, 〈v0〉Ω) =: Φ0 in Ω (2.8)
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where hS = (f , 〈g〉Ω), and DS := diag(Du,0) ∈ Rm+k
≥0 is a diagonal matrix decom-

posed of Du and k zeroes. For each component Φi with a non-vanishing diffusion
coefficient, we again impose zero flux boundary conditions

∂Φi

∂n
= 0 on ∂Ω× (0, T ). (2.9)

Definition 2.5. Let 0 < T ≤ ∞. An E∞,0,T -mild solution of the shadow problem
(2.8)–(2.9) for initial datum Φ0 ∈ L∞(Ω)m×Rk on the interval [0, T ) is a measurable
function

Φ : Ω× [0, T )→ Rm+k

satisfying for all t ∈ (0, T )

(i) Φ(·, t) ∈ L∞(Ω)m × Rk and sups∈(0,t) ‖Φ(·, s)‖L∞(Ω)m×Rk <∞,

(ii) the integral representation (2.6)–(2.7), i.e.,

Φ(·, t) = S(t)Φ0 +
∫ t

0
S(t− τ)hS(Φ(·, τ), ·, τ) dτ

where the integral is a Bochner integral in L∞(Ω)m × Rk and we set Dv = 0 in
definition (2.5) of (S(t))t∈R≥0 .

Applying a Picard iteration as in [94, Part II, Theorem 1] to the corresponding
integral equation yields a local-in-time solution.

Proposition 2.6. Let assumptions A1–A2 hold for a boundary ∂Ω ∈ C0,1. Then
there is a maximal time T0 > 0 such that the shadow problem (1.4)–(1.6) has a
unique E∞,0,T0-mild solution Φ satisfying Φ = (u,v) ∈ L∞(ΩT )m × C([0, T ])k for
each T < T0. Furthermore, non-diffusing components fulfill ui ∈ C([0, T ];L∞(Ω))
for each T < T0.

Proof. Using the method of proof of [94, Part II, Theorem 1], we establish a unique
E∞,0,T0-mild solution Φ, compare to Proposition 2.3. This mild solution possibly
blows up with

lim
t↗T0
‖Φ(·, t)‖L∞(Ω)m×Rk =∞ if T0 <∞.

Furthermore, we have Φ = (u,v) ∈ L∞(ΩT )m × C([0, T ])k for each T < T0, where
the continuity for the non-diffusing components can be deduced from the integral
representation (2.6)–(2.7).
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Certainly, spatially homogeneous solutions to the shadow problem (1.4)–(1.6) for
space-independent nonlinearities are solutions to the corresponding system of ordi-
nary differential equations. Beside spatially homogeneous blow-up effects, there are
cases of integro-driven blow-up which is illustrated by examples from [62, 63, 69].
Their proof of blow-up is much more complex compared to Example 2.4. The clas-
sical integro-driven blow-up is discussed in [69] in which the solution of the shadow
system blows up in finite time but the corresponding ordinary differential equations
exhibit global solutions. The example of Li shows even more [62, 63]; the shadow
system for Du ∈ Rm×m

>0 undergoes integro-driven blow-up in finite time while the
solution to the corresponding diffusive system (1.1)–(1.3) exists for all times. So far,
it is not known if there is an analogon for the case of Du = 0, see for example [48],
where both systems exhibit blow-up in contrast to [63].

2.3 The mean value correction

When comparing solutions of both problems the diffusive system (1.1)–(1.3) and
the shadow system (1.4)–(1.6), we have to face two problems linked to the mean
values in the shadow system. For one thing, the discrepancy between the initial
condition for the equation of vD and v implies an initial time layer corresponding to
v0−〈v0〉Ω which we have to incorporate. For another thing, we have to take care of
a similar difference induced by g−〈g〉Ω. In [75], the authors distinguish between the
initial time layer and the mean value correction for g but, since in many applications
uniformly bounded solutions are considered, I will combine them unless an explicit
dependence is needed.

Suppose that there exists a unique shadow limit (u,v) ∈ L∞(ΩT )m+k on some time
interval [0, T ]. In the remainder of this work, we use the mean value correction ψD

which solves the inhomogeneous system

∂ψD
∂t
−Dv∆ψD = g(u,v, x, t)− 〈g(u,v, ·, t)〉Ω in ΩT , (2.10)

∂ψD
∂n

= 0 on ∂Ω× (0, T ), ψD(·, 0) = v0 − 〈v0〉Ω in Ω. (2.11)

The right-hand side of (2.10) is bounded by Assumption A1. Using the same no-
tation from (2.5) for the semigroup (Sv(t))t∈R≥0 , the well-known Duhamel formula
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yields the unique mild solution

ψD(·, t) = Sv(t)(v0 − 〈v0〉Ω) +
∫ t

0
Sv(t− τ)

{
g(u,v, ·, τ)− 〈g(u,v, ·, τ)〉Ω

}
dτ

as in Proposition 2.3. The function ψD fulfills 〈ψD〉Ω = 0 in view of Proposition
B.3. Hence, the exponential decay estimate (2.2) applies and we estimate

‖ψD(·, t)‖L∞(Ω)k ≤ Ce−λ1Dt‖v0 − 〈v0〉Ω‖L∞(Ω)k

+ C
∫ t

0
e−λ1D(t−τ)‖g(u,v, ·, τ)− 〈g(u,v, ·, τ)〉Ω‖L∞(Ω)k dτ

utilizing the least entry D = minj=1,...,kD
v
j > 0 of Dv. Since we assumed a bounded

shadow limit, the mean value correction satisfies

‖ψD(·, t)‖L∞(Ω)k ≤ Cv0e−λ1Dt + CgD
−1 ∀ D > 0, t ∈ [0, T ] (2.12)

for some constants Cv0 , Cg > 0 that do not depend on D, but on bounds of v0

resp. g,u,v and time T > 0. Boundedness of Ω implies the same estimates for the
Lebesgue spaces Lp(Ω)k with 1 ≤ p <∞. Further remark that, by estimate (2.12),
the exponentially decaying initial time layer Sv(t)(v0 − 〈v0〉Ω) tends to zero as t
grows and it becomes negligible for larger time scales:

‖ψD(·, t)‖L∞(Ω)k ≤ CD−1 for t ≥ log(D)/(λ1D)

As a consequence of low initial regularity, the correction term ψD need not to be
an element of C([0, T );L∞(Ω)k) because this could only be possible if v0 ∈ C(Ω)k

as shown in [94, Part I, Lemma 2]. Nevertheless, the mean value correction ψD is
continuous for t > 0 due to the regularizing effect of the heat equation, see Proposi-
tion B.2. If one additionally assumes v0 ∈ H1(Ω)k = W 1,2(Ω)k, then differentiating
the Fourier expansion from Proposition B.3 yields ψD ∈ L∞(0, T ;H1(Ω)k) with a
similar estimate

‖ψD(·, t)‖H1(Ω)k ≤ Cv0e−λ1Dt + CgD
−1 ∀ D > 0, t ∈ [0, T ].
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3 Short-time intervals

The shadow limit (1.4)–(1.6) can be used as a reduction of the entire diffusive system
(1.1)–(1.3) for large diffusion Dv. In case of Du ∈ Rm×m

>0 , the reduced system was
considered by [32, 51, 86] and [103] who gave birth to shadow systems. Their results
have been used and further developed since the 1980s. For the case of Du = 0 there
are fewer results, yet the works [6, 69, 75] from the last decade are noteworthy. In
all these papers, the regularity of solutions as well as of the boundary is abundant
and can be reduced to obtain uniform estimates with respect to the L∞ norm.
In this chapter, I examine the relation between the partly diffusive system and its
shadow system for large diffusion Dv, i.e., the least positive diagonal entry D of
Dv is assumed to be large. In view of low regularity of solutions, we consider mild
solutions of the partly diffusive system and its shadow limit. The difference of so-
lutions to both systems is estimated including the mean value correction ψD, which
takes account of the singular limit. The length of the time interval on which the
error estimates are derived is not prescribed within this study. Nevertheless, due to
a possible deterioration of constants depending on time, estimates in Theorem 3.3
below are meaningful in general only if the length T of the time interval is finite,
i.e., T = O(1) as D → ∞. Apart from explicit uniform error estimates in the next
sections, based on the ideas of [75], I discuss several limitations of the result and
the used method of proof, especially in the reaction-diffusion-ODE case Du = 0.
The approach used in [75, Section 3] is based on a linearization around the bounded
shadow solution that exists locally in time. Due to low spatial regularity of the
shadow solution, the linearization might contain zero order terms that are discon-
tinuous in space as well. To obtain estimates with respect to the L∞(ΩT ) norm,
the nonlinearities of the system of errors are cut off and uniform estimates for the
localized solutions are derived in Section 3.1. For a suitable cut-off, the truncation
can be removed as the least positive entry D of the diffusion matrix Dv grows. In
this way, estimates for the original errors are obtained in Section 3.2. The following
sections also show that the assumptions made in [75] can be weakened to achieve
uniform convergence results for the shadow approximation.
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3.1 First-order truncation

As Proposition 2.3 shows, the partly diffusive system (1.1)–(1.3) possesses, for each
diffusion matrix Dv, a unique local solution (uD,vD) on some time interval [0, T1),
where T1 = T1(Dv) depends on the diffusion matrix. The corresponding shadow
system (1.4)–(1.6) admits the local-in-time solution (u,v) on [0, T0) by Proposition
2.6. Clearly, both problems differ drastically at t = 0 and the initial time layer of
vD − v, which is incorporated in the mean value correction ψD, is used to obtain
estimates up to t = 0. For a comparison of solutions, we start with a given shadow
limit (u,v) from Proposition 2.6 and introduce the error functions

UD = uD − u and VD = vD − v− ψD. (3.1)

Since we consider nonlinear systems, we take L∞(ΩT ) as a basis to estimate the
error functions. We shall show convergence

(UD,VD)→ 0 as D := min
j=1,...,k

Dv
j →∞

with respect to the norm induced by L∞(ΩT ). Such estimates allow to link the time
interval of existence of solutions to the partly diffusive system (1.1)–(1.3) to some
time interval of existence for the shadow problem (1.4)–(1.6). More precisely, using
the maximal existence times T0, T1 above, for each T < T0 we find some lower bound
DT > 0 such that T1(Dv) > T for each sufficiently large Dv satisfying D ≥ DT .

Due to the mean value correction ψD defined in equations (2.10)–(2.11), the error
functions fulfill the system

∂UD

∂t
−Du∆UD = f(uD,vD, x, t)− f(u,v, x, t) in ΩT , (3.2)

∂VD

∂t
−Dv∆VD = g(uD,vD, x, t)− g(u,v, x, t) in ΩT , (3.3)

UD(·, 0) = 0,VD(·, 0) = 0 in Ω, ∂UD

∂n
= 0,

∂VD

∂n
= 0 on ∂Ω× (0, T ). (3.4)

In view of Assumption A1, we are able to linearize the error system (3.2)–(3.4)
around the shadow solution (u,v). Let us write this problem as one equation

∂ΨD

∂t
−D∆ΨD = h(uD,vD, x, t)− h(u,v, x, t) in ΩT ,
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where we used ΨD = (UD,VD),D = diag(Du,Dv) and h = (f ,g). A Taylor
expansion yields the following system

∂ΨD

∂t
−D∆ΨD = H(UD,VD + ψD, x, t) in ΩT , (3.5)

where H = (F,G) is given by the linearized term

H(y, z + ψD, x, t) = hu(y, z + ψD, x, t)y + hv(y, z + ψD, x, t) (z + ψD) . (3.6)

Herein, we use the matrix-valued functions hu = (hu`i) i=1,...,m
`=1,...,m+k

,hv = (hv`j) j=1,...,k
`=1,...,m+k

.
The entries hu`i, hv`j are given by difference quotients. Their structure can be adapted
from the scalar-valued case k = 1 = m where

hu11(y, z + ψD, x, t) =


f(u+ y, v + z + ψD, x, t)− f(u, v + z + ψD, x, t)

y
, y 6= 0,

0, y = 0,

hv11(y, z + ψD, x, t) =


f(u, v + z + ψD, x, t)− f(u, v, x, t)

z + ψD
, z + ψD 6= 0,

0, z + ψD = 0.

Notice that, a priori, the errors are defined only on ΩT for times

T ≤ inf
Dv

min{T1(Dv), T0},

i.e., on a common time interval of existence for the partly diffusive solution and the
shadow solution. Following ideas of center manifold theory (see for example [11, 34]
or [113, Chapter 9, Section 5]), we construct a suitable cut-off for the possibly un-
bounded remainder H. In general, this procedure localizes the problem and is also
useful in proving local existence or positivity of solutions [113, Chapter 9, Section 2].
In order to show that the errors actually exist on a common time interval [0, T ] for
all sufficiently large diffusion Dv, we identify the bounded solutions of the truncated
problems with the original error functions for large D = minj=1,...,kD

v
j depending

on the interval length T .

For the cut-off procedure, let Θ ∈ C0,1(R) be defined by

Θ(z) =

sgn(z) ·D−δ0 for |z| > D−δ0 ,

z for |z| ≤ D−δ0
(3.7)
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3 Short-time intervals

for some δ0 ∈ (0, 1). Then Θ is uniformly bounded and satisfies the estimate

|Θ(z)| ≤ min{D−δ0 , |z|} ∀ z ∈ R.

For simplicity, we write Θ(y) := (Θ(y1), . . . ,Θ(ym)) in the vector-valued case, too.
To assure boundedness of the model variables in the subsequent analysis, we truncate
the remainder H. Using the cut-off function Θ, we define HD = (FD,GD) by

HD(y, z, x, t) = hu(Θ(y),Θ(z) + ψD, x, t)y

+ hv(Θ(y),Θ(z) + ψD, x, t) (z + ψD) .

Since the functions hu,hv are locally bounded due to Lipschitz continuity stated
in Assumption A1, there exists a uniform bound for these coefficients depending
only on bounds of the shadow limit (u,v), the mean value corrrection ψD and the
cut-off Θ. This assures that the truncated function HD grows at most linearly in
the variables y and z + ψD.

The idea for using the cut-off is as follows. Let (αD, βD) be the solution to the
truncated problem

∂αD
∂t
−Du∆αD = FD(αD, βD, x, t) in ΩT , αD(·, 0) = 0 in Ω, (3.8)

∂βD
∂t
−Dv∆βD = GD(αD, βD, x, t) in ΩT , βD(·, 0) = 0 in Ω, (3.9)

∂αD
∂n

= 0,
∂βD
∂n

= 0 on ∂Ω× (0, T ). (3.10)

Using suitable estimates, we will show that the truncated solution (αD, βD) is located
within the small neighborhood of 0 with radius D−δ0 for sufficiently large diffusions
D. However, in this small neighborhood of the origin, the cut-off Θ does not affect
the right-hand sides if one restricts to the trajectory of the solution (αD, βD). As
solutions to problem (3.5) supplemented with boundary conditions (3.4) are unique,
this implies (αD, βD) = (UD,VD). Before showing that this is the case for the
particular choice of Θ, let us summarize some properties of the truncated right-
hand side.
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3.1 First-order truncation

Lemma 3.1. For each time T < T0 there is a constant CT > 0, independent of
D ≥ 1 but which depends on time T , such that

|FD(y, z, x, t)|, |GD(y, z, x, t)| ≤ CT

(
|y|+ |z + ψD(x, t)|

)
(3.11)

holds for all (y, z) ∈ Rm+k, x ∈ Ω and t ∈ [0, T ]. Especially, FD,GD satisfy the
local Lipschitz condition A1 in (y, z) ∈ Rm+k on bounded sets of Rm+k×Ω× [0, T0).

Proof. We assume D ≥ 1 for simplicity and consider the constants Cv0 , Cg from
estimate (2.12) which we derived for ψD. Note that Cg depends on time T while
Cv0 is independent of time. Using this estimate for ψD, we obtain

‖u + Θ(y)‖L∞(ΩT )m ≤ ‖u‖L∞(ΩT )m + 1,

‖v + Θ(z) + ψD‖L∞(ΩT )k ≤ ‖v‖L∞(ΩT )k + 1 + Cv0 + Cg.

By Assumption A1 and the Lipschitz continuity of Θ, we are able to estimate all dif-
ference quotients in the matrices hu` (Θ(y),Θ(z) +ψD, x, t),hv` (Θ(y),Θ(z) +ψD, x, t)
for bounded arguments. Hence, the function HD is defined on Rm+k × Ω × [0, T ]
and there exists a constant CT > 0 such that

|FD(y, z, x, t)|, |GD(y, z, x, t)| ≤ CT

(
|y|+ |z + ψD(x, t)|

)

holds. Furthermore, as a composition of local Lipschitz functions, the function
HD = (FD,GD) is locally Lipschitz in the variable (y, z) ∈ Rm+k in the sense of
Assumption A1 for all finite times T < T0.

Having the above growth bound for the truncated right-hand sides of the system
(3.8)–(3.10) in mind, we consider mild solutions to the cut-off problem.

Proposition 3.2. Let assumptions A1–A2 hold. Then there exists a unique mild
solution (αD, βD) of the cut-off problem (3.8)–(3.10). The solution is defined on
the same maximal time interval of existence [0, T0) as the shadow solution from
Proposition 2.6. For each time T < T0 there is a constant CT > 0, independent of
D ≥ 1 but which depends on T , such that the solution satisfies the estimate

‖αD‖L∞(ΩT )m + ‖βD‖L∞(ΩT )k ≤ CTD
−1. (3.12)

Proof. As in the partly diffusive case in Proposition 2.3, we solve the problem using
the method of Rothe [94, Part II, Theorem 1]. Similarly to the setting (2.3), we
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3 Short-time intervals

rewrite system (3.8)–(3.10) as a system of m+ k reaction-diffusion equations

∂ΨD

∂t
−D∆ΨD = HD(ΨD, x, t) in ΩT , ΨD(·, 0) = 0 in Ω

where ΨD = (αD, βD),HD = (FD,GD) and possibly not all components of αD
diffusive. Observe that the right-hand side HD of the above system fulfills a local
Lipschitz condition in ΨD by Lemma 3.1. Moreover, the growth estimate

‖HD(w, ·, t)‖L∞(Ω)m+k ≤ k1(t) + k2(t)|w| ∀ w ∈ Rm+k, t ∈ [0, T0)

holds for some non-negative continuous functions k1, k2 due to the bound (2.12) for
ψD and Lemma 3.1. We verify assumptions of [94, Part II, Theorem 1] and its proof
to get an E∞,0,τ -mild solution in the sense of Definition 2.2. Furthermore, we have
the integral representation

αD(·, t) =
∫ t

0
Su(t− τ)FD(ΨD(·, τ), ·, τ) dτ,

βD(·, t) =
∫ t

0
Sv(t− τ)GD(ΨD(·, τ), ·, τ) dτ.

The solution can be extended to some maximal time interval [0, Tmax) for which
we will show Tmax ≥ T0, where T0 is the maximal time interval of existence of the
shadow solution from Proposition 2.6. In fact, if Tmax < T0 ≤ ∞, we use the growth
condition for HD to obtain

‖ΨD(·, t)‖L∞(Ω)m+k ≤
∫ t

0
k1(τ) + k2(τ)‖ΨD(·, τ)‖L∞(Ω)m+k dτ ∀ t ∈ [0, Tmax)

due to the contraction property of the semigroup (S(t))t∈R≥0 . Gronwall’s inequality
implies boundedness of the solution uniformly in t ∈ [0, Tmax). This is a contradiction
to the well-known blow-up effect of the solution when t↗ Tmax, i.e.,

lim
t↗Tmax

‖ΨD(·, t)‖L∞(Ω)m+k =∞ if Tmax <∞.

Thus, we obtain a unique E∞,0,Tmax-mild solution for some Tmax ≥ T0 satisfying
ΨD ∈ L∞(ΩT )m+k for all T < Tmax by Definition 2.2. Recall that above truncated
problem depends on the shadow solution and is at most well-defined on the interval
[0, T0), i.e., Tmax = T0. Using again the integral representation, the contraction
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3.2 Convergence results

property of the semigroup (S(t))t∈R≥0 and the estimate (3.11) for HD yields

‖ΨD(·, t)‖L∞(Ω)m+k ≤ C1

∫ t

0
‖ΨD(·, τ)‖L∞(Ω)m+k dτ + C2

∫ t

0
‖ψD(·, τ)‖L∞(Ω)k dτ

≤ C1

∫ t

0
‖ΨD(·, τ)‖L∞(Ω)m+k dτ + C3D

−1

for all t ∈ [0, T ] and D ≥ 1. Gronwall’s inequality then implies the existence of a
constant CT > 0 depending (in general exponentially) on time T such that estimate
(3.12) holds.

3.2 Convergence results

We are now able to draw a conclusion for the original errors (UD,VD) using the
estimates for the truncated problem in the last section. We infer that the cut-off
introduced in system (3.8)–(3.10) is not required for sufficiently large diffusions D.
Consequently, the same estimates from the last section for the truncated errors
(αD, βD) hold true for the original error functions (UD,VD).

Theorem 3.3. Let assumptions A1–A2 hold and let T0 be the maximal existence
time of the shadow limit (u,v) from Proposition 2.6. Then for each time T < T0

there are constants CT > 0 and DT ≥ 1, independent of D but which depend on T ,
such that for D ≥ DT we have

‖uD − u‖L∞(ΩT )m ≤ CTD
−1, (3.13)

‖vD − v− ψD‖L∞(ΩT )k ≤ CTD
−1, (3.14)

‖〈vD〉Ω − v‖L∞(0,T )k ≤ CTD
−1. (3.15)

Consequently, the diffusive solution (uD,vD) from Proposition 2.3 exists on the same
time interval [0, T ] for each D ≥ DT .

Proof. Since CTD
−1 ≤ D−δ0 for large D ≥ DT and δ0 ∈ (0, 1), we conclude

that Θ(αD) = αD,Θ(βD) = βD on the interval [0, T ]. Hence, (αD, βD) satis-
fies the same equations as (UD,VD) on [0, T ]. Uniqueness implies the equality
(αD, βD) = (UD,VD) and the corresponding first two estimates for the error func-
tions are verified. The remaining estimate (3.15) is a consequence of 〈ψD〉Ω = 0 de-
duced from equations (2.10)–(2.11). One has to observe that the solution (uD,vD)
of the diffusive problem (1.1)–(1.3) is not involved explicitly in the linearized prob-
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3 Short-time intervals

lem (3.5). Therefore, the uniform estimates imply that (uD,vD) exist on a common
time interval [0, T ] for each large diffusion D ≥ DT .

Theorem 3.3 is the analogon of [75, Theorem 3] but the former requires less boundary
regularity and employs optimized assumptions on the nonlinearities f ,g. In view of
low-regularity of mild solutions, Theorem 3.3 generalizes results from [6, Section 3.1]
in the particular case of reaction-diffusion-type equations with zero flux boundary
conditions. The latter method requires a strongly continuous heat semigroup gener-
ated on C(Ω) and hence, it is only working for initial conditions that are continuous
in space [94, Part I, Lemma 2]. Allowing for low-regularity solutions, assumptions
A1–A2 are sufficient for the rough uniform error estimate given by (3.13)–(3.15)
on short-time intervals. Unfortunately, the employed truncation method does not
provide information on the relation of the maximal time interval of existence of so-
lutions to the partly diffusive problem and its shadow problem.

The above result is applicable to many models from natural sciences, see [51, 53,
69, 86], including the references and examples given in Chapter 6. The closest to
our result is [53, Theorems 4]. The authors develop L∞ error estimates and focus
on time-dependence of the constants involved, especially on DT from Theorem 3.3.
The requirements A1–A2 are met in [53] and thus, Theorem 3.3 is applicable. To
compare our results with [53, Theorem 4], it has to be mentioned that

‖ψD(·, t)‖L∞(Ω) ≤ CD−1 ∀ t ∈ [T (D),∞) (3.16)

holds for the mean value correction where we used (without Sobolev’s inequality)

T (D) := max
{

0, log(‖w0 − 〈w0〉Ω‖L∞(Ω)D)
λ1D

}

which is different than in [53]. Moreover, using the decay estimate (2.12) for ψD,
the constant C > 0 in above estimate (3.16) only depends on uniform bounds of the
shadow solution (u∞, v∞, ξ) from [53, Theorem 2]. Although Theorem 3.3 extends
the time range in which the error estimate is valid without considering the initial
time layer, the lower bound DT does depend (possibly exponentially) on time T . In
[53], the lower bound DT of the diffusion is independent of T . On the downside,
the authors obtain a lower convergence rate as D → ∞ as well as a time interval
[T (D), T ] with a much larger T (D) on which the estimates hold.
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3.2 Convergence results

Although we use a low-regularity setting, we can obtain estimates for first-order
derivatives of the errors. A natural consequence of the weak formulation, also used
for energy estimates in the L2 setting of [53], are the following estimates for spatial
and temporal derivatives.

Corollary 3.4. Let assumptions A1–A2 hold and let (UD,VD) be given by equation
(3.1). Then, additionally to the conclusions of Theorem 3.3, we obtain that for each
time T < T0 there exist constants CT > 0 and DT ≥ 1, independent of D but which
depend on T , such that for D ≥ DT we have for all t ∈ [0, T ]

∣∣∣∣∣ d
dt〈UD〉Ω(t)

∣∣∣∣∣ ,
∣∣∣∣∣ d
dt〈VD〉Ω(t)

∣∣∣∣∣ ≤ CT (D−1 + e−λ1Dt),

‖∇VD‖L2(ΩT )n×k ≤ CTD
−3/2.

Proof. According to Proposition B.3, the mild solution (αD, βD) = (UD,VD) is a
weak solution of the truncated problem (3.8)–(3.10). Testing the weak formulation
with the constant function |Ω|−1 yields

d
dt〈UD(·, t)〉Ω = 〈FD(UD,VD, ·, t)〉Ω,
d
dt〈VD(·, t)〉Ω = 〈GD(UD,VD, ·, t)〉Ω.

Both expressions can be bounded using estimate (3.11) for FD,GD. For non-
diffusing components of UD, the time derivative ∂tUD,i can be estimated as well.
For an estimate of the spatial gradient, we consider the purely diffusing equation
for VD which may be written as

∂VD

∂t
−Dv∆VD = GD(UD,VD, x, t) in ΩT ,

VD(·, 0) = 0 in Ω, ∂VD

∂n
= 0 on ∂Ω× (0, T ),

where GD is a bounded function by Lemma 3.1 for large enough D ≥ DT . By
Proposition B.3, VD ∈ L∞(0, T ;H1(Ω)k) is a weak solution with ∂tVD ∈ L2(ΩT )k.
Taking VD as a test function yields, using [98, Proposition III.1.2],

1
2

d
dt

∫
Ω
|VD|2 dx+

k∑
j=1

Dv
j

∫
Ω
|∇VD,j|2 dx =

∫
Ω

GD(UD,VD, x, t) ·VD dx

≤ CTD
−1
(
D−1 + e−λ1Dt

)
.
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3 Short-time intervals

For the latter energy estimate, we used the estimates (3.11), (2.12) and (3.14) for
GD, ψD and VD, respectively. Since an integration over (0, T ) yields

k∑
j=1

Dv
j ‖∇VD,j‖2

L2(ΩT )n ≤ CTD
−2,

the definition of D = minj=1,...,kD
v
j implies the assertion. Additionally, energy

estimates for diffusing components of UD imply ‖∇UD,i‖L2(Ω)n ≤ CTD
−1.

Proposition 3.2 might suggest that the diffusive solution (uD,vD) exists at least as
long as the shadow solution. However, Example 2.4 shows that this is not true for
all diffusion matrices Dv in general since DT may be quite large.

Example 3.5. Let Dv = λ−1
1 be the inverse of λ1 from a spectral basis (λj, wj)j∈N0

of −∆ in Proposition A.1 and a := w1(x0) 6= 0 for some x0 ∈ Ω. Consider the
system

∂uD
∂t

= u2
D − (a− vD)2u3

D in ΩT , uD(·, 0) = u0 in Ω,
∂vD
∂t
− λ−1

1 ∆vD = vD in ΩT , vD(·, 0) = v0 in Ω,
∂vD
∂n

= 0 on ∂Ω× (0, T ).

As already seen in Example 2.4, v0 := w1 and sufficiently smooth, positive u0 imply
a blow-up of uD in x0 in finite time. Concerning the shadow limit, it is clear that
〈v0〉Ω = 0 and v(t) = 〈v0〉Ωet = 0. The corresponding solution u is given by

∂u

∂t
= u2 − a2u3

and (u, v) is uniformly bounded by max{‖u0‖L∞(Ω), |a|−2} as in the case of ordinary
differential equations.

The latter example can be adapted to different diffusion parameters using a multiple
of the stationary solution w1, e.g., by Dv = dλ−1

1 . Note that Theorem 3.3 reveals a
relation between the error functions (UD,VD) and the truncated solutions (αD, βD)
of Proposition 3.2 only for sufficiently large diffusion D. Not only the constant
CT but also the lower diffusion bound DT may grow exponentially as T ↗ T0 and
the estimates deteriorate as the next example shows. Hence, a consideration of the
shadow limit as an approximation of the full system (1.1)–(1.3) is, in general, only
useful for short-time intervals.
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3.2 Convergence results

Example 3.6. Let us take an eigenfunction wj of −∆ for some j ∈ N from Propo-
sition A.1. We consider initial values u0 = 0, v0 = wj for the linear problem

∂uD
∂t
−Du∆uD = auD + bvD in Ω× R>0, uD(·, 0) = u0 in Ω,

∂vD
∂t
−D∆vD = cuD + dvD in Ω× R>0, vD(·, 0) = v0 in Ω,

∂uD
∂n

= ∂vD
∂n

= 0 on ∂Ω× R>0

with constant coefficients a, b, c, d ∈ R. Let a > λjD
u ≥ 0 such that the correspond-

ing matrix

M :=
a b

c d


is stable, hence it satisfies tr(M) = a + d < 0 and det(M) = ad − bc > 0. It is
clear from the initial conditions that 〈v0〉Ω = 0. The corresponding shadow limit is
(u, v) = (0, 0) as u is the unique solution of the corresponding heat equation resp.
ODE for each fixed Du ≥ 0, see Proposition B.2 after rescaling with e−at. Moreover,
the mean value correction ψD reduces to

ψD(·, t) = S∆(Dt)v0 = e−Dλjtwj.

If we consider the error UD = uD − u = uD, it remains to solve the linear equation
for (uD, vD) by Galerkin’s ansatz as in Proposition B.3. The solution is given by the
projection on the eigenspace spanned by wj since the initial values are multiples of
wj, i.e.,

uD(·, t) = uj,D(t)wj and vD(·, t) = vj,D(t)wj.

The coefficients satisfy the following system of ordinary differential equations

duj,D
dt +Duλjuj,D = auj,D + bvj,D in R>0, uj,D(0) = 0,
dvj,D

dt +Dλjvj,D = cuj,D + dvj,D in R>0, vj,D(0) = 1.

Solving this differential equation yields the simple representationuD(·, t)
vD(·, t)

 = eMD,jt

0
1

 · wj with MD,j =
a− λjDu b

c d− λjD

 .
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3 Short-time intervals

The exponential of the shifted matrix MD,j = M− λjD is given by

eMD,jt = eτDt/2
(

1
γD

sinh(γDt)MD,j +
(

cosh(γDt)−
τD

2γD
sinh(γDt)

)
I

)

for τD = tr(MD,j) < 0, δD = det(MD,j) < 0 and γD > 0 with 4γ2
D = τ 2

D − 4δD. This
is due to Putzer’s formula [93, Theorem 2]. Then the error UD = uD is given by

UD(·, t) = b

γD
sinh(γDt)eτDt/2wj = b

2γD

(
e(τD/2+γD)t − e−(τD/2−γD)t

)
wj.

Recall that the positive eigenvalue converges, τD/2 + γD → a − λjDu as D → ∞.
Furthermore, we find some constants satisfying

C1D
−1 ≤ γ−1

D ≤ C2D
−1

and we infer ‖UD(·, t)‖L2(Ω) ≥ C3D
−1e(a−λjDu)t/2−C4D

−1 for some constants Ci > 0
independent of time t and diffusion D. The latter inequality implies exponential
growth of the error UD in L∞(Ω) by boundedness of Ω and a > λjD

u.

The last example also illustrates diffusion-driven instability, both for Du = 0 and
Du > 0, see [106] and references therein. This type of instability arises if the cor-
responding system of ordinary differential equations possesses a spatially constant
steady state which is stable to spatially homogeneous perturbations but unstable to
spatially heterogeneous perturbations, i.e., space-dependent perturbations. In fact,
the above example has asymptotically stable steady states in the ODE case but diffu-
sion destabilizes the system; the determinant δD switches its sign for bigger diffusion
D in view of the unstable subsystem corresponding to a > λjD

u. This causes that
solutions grow exponentially in time, even if we choose small initial perturbations
such as v0 = δwj for small parameters δ > 0. Classically considered for Du > 0,
this mechanism is frequently called Turing instability used in the context of pattern
formation, see also [38, 69, 71] and references therein. A complete spectral analysis
of the above linear operator induced by M + D∆ is deferred to Propositions 5.11
and 5.13, consult also Example 5.14 for further discussions on linearized stability.
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4 Long-time intervals

A comparison of dynamics of the diffusive system and its shadow limit, as done
for instance in [53, Theorem 4], [69, Theorem A.2] or Example 3.6, indicates that
error estimates may deteriorate significantly for larger time scales. In this thesis,
long-time intervals (0, T ) have a length proportional to a power of the least positive
entry D of the diffusion matrix Dv, i.e., T ≤ CD` for some 0 < ` < 1. The error
functions are estimated by a bound proportional to a power of D−1 as D → ∞.
In order to obtain a valuable approximation of the full system (1.1)–(1.3), the aim
of the present chapter is to establish long-range estimates on (0, T ) for T ≤ CD`,
subject to the existence of a global shadow limit. As Example 3.6 shows, we have
to precise assumptions A1–A2 made in the last chapter to prevent from (integro-
and diffusion-driven) instabilities. To understand the full nonlinear system and, fur-
thermore, under which conditions convergence can be shown via linearization around
the shadow solution, we consider first linear systems in Section 4.1 and subsequently
proceed with the nonlinear case in Section 4.2.

The linear case already includes all key aspects of extending estimates in a valuable
manner. Starting from a stability condition for the evolution of the ODE subsystem
in the space-independent case as concerned in [55], we consider space-dependent
linear problems which require a further stability condition on the entire shadow
system for long-time estimates. The last stability condition is chosen with respect
to some Lp space. The case p = ∞ implies error estimates at once in Proposition
4.4 below. A bootstrap argument for parabolic equations is used to achieve a similar
result for finite, sufficiently big p; see further the brief description of the employed
method preceding Theorem 4.5 and results therein.
The nonlinear case finally combines stability properties of the linearized shadow
system with the truncation method from Chapter 3. Using a more complex cut-off
procedure for the second derivatives similar to [75, Theorem 3] yields estimates for
the localized solutions. The truncation may be removed as D → ∞ and estimates
for the original solutions are obtained on long-time intervals with an upper bound
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4 Long-time intervals

proportional to D` for some 0 < ` < 1, see Theorem 4.10. The cut-off approach is
due to the work with Mikelić who refined the estimates from [75, Theorem 3] and
who suggested to consider shadow systems with an L2 dissipative linearization to
obtain long-time estimates. Section 4.3 is devoted to a brief discussion of dissipative
systems which are a particular class of stable evolution systems used in this work.

4.1 The linear case

To begin with, we will focus on a linear version of the partly diffusive system (1.1)–
(1.3), where the right-hand side of the full problem

∂uD
∂t
−Du∆uD = f(uD,vD, x, t) in ΩT , uD(·, 0) = u0 in Ω,

∂vD
∂t
−Dv∆vD = g(uD,vD, x, t) in ΩT , vD(·, 0) = v0 in Ω,

∂uD
∂n

= 0,
∂vD
∂n

= 0 on ∂Ω× (0, T )

is given by linear terms

f(uD,vD, x, t) = A∗(x, t)uD + B∗(x, t)vD + r(x, t), (4.1)

g(uD,vD, x, t) = C∗(x, t)uD + D∗(x, t)vD + s(x, t). (4.2)

Such linear models including their shadow limits have been recently applied in the
context of control theory in [42] for constant coefficients. However, the primary func-
tion of studying linear problems is to understand complex, nonlinear problems by
linearization. According to assumptions A1–A2 and in view of long-time estimates,
we assume bounded coefficients

A∗ ∈ L∞(Ω× R≥0)m×m,B∗,CT
∗ ∈ L∞(Ω× R≥0)m×k,D∗ ∈ L∞(Ω× R≥0)k×k

and r ∈ L∞(Ω × R≥0)m, s ∈ L∞(Ω × R≥0)k. The mild solution Ψ = (uD,vD) from
Proposition 2.3 can be extended to a global solution on R≥0, possibly unbounded,
due to the linear growth of the right-hand side h = (f ,g). The shadow limit reduc-
tion of system (1.1)–(1.3) as D = minj=1,...,kD

v
j →∞ using linear terms (4.1)–(4.2)

yields the following system of integro-differential equations

∂u
∂t
−Du∆u = A∗(x, t)u + B∗(x, t)v + r(x, t) in ΩT ,
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4.1 The linear case

dv
dt = 〈C∗(·, t)u〉Ω + 〈D∗(·, t)v〉Ω + 〈s(·, t)〉Ω in (0, T ),
∂u
∂n

= 0 on ∂Ω× R>0, u(·, 0) = u0 in Ω, v(0) = 〈v0〉Ω.

The right-hand side which grows at most linearly implies a global shadow limit
defined on Ω × R≥0 as the mild solution of the integral representation (2.6)–(2.7),
see Proposition 2.6. Remark that also the shadow solution may be (exponentially)
unbounded as t → ∞. The mean value correction ψD defined in equations (2.10)–
(2.11) satisfies

∂ψD
∂t
−Dv∆ψD = C∗(x, t)u− 〈C∗(·, t)u〉Ω + D∗(x, t)v− 〈D∗(·, t)v〉Ω

+ s(x, t)− 〈s(·, t)〉Ω in Ω× R>0,

∂ψD
∂n

= 0 on ∂Ω× R>0, ψD(·, 0) = v0 − 〈v0〉Ω in Ω.

The equations for the error functions UD = uD − u and VD = vD − v − ψD are
given by system (3.2)–(3.4), i.e., by the linear inhomogeneous system

∂UD

∂t
−Du∆UD = A∗(x, t)UD + B∗(x, t)(VD + ψD) in Ω× R>0, (4.3)

∂VD

∂t
−Dv∆VD = C∗(x, t)UD + D∗(x, t)(VD + ψD) in Ω× R>0, (4.4)

UD(·, 0) = 0,VD(·, 0) = 0 in Ω, ∂UD

∂n
= 0,

∂VD

∂n
= 0 on ∂Ω× R>0. (4.5)

In order to understand difficulties on long-time ranges indicated by Example 3.6,
even in the case of coefficients which are independent of space and time, we first
focus on the case of space-independent coefficients. This situation simplifies due to
zero mean values 〈UD〉Ω = 0, 〈VD〉Ω = 0. Subsequently, we consider space- and
time-dependent coefficients A∗, B∗, C∗,D∗ for which the estimation of the errors is
more complex but already captures all key aspects of the nonlinear case.

4.1.1 Space-independent coefficients

The main part of this section is published in the scientific work [55] with focus on the
reaction-diffusion-ODE case Du = 0 as well as on the classical scalar case Du ∈ R>0.

We aim for an explicit formula of the error UD satisfying equation (4.3) which only
depends on VD and ψD. This in turn will be used to obtain an implicit equation
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4 Long-time intervals

for the error VD which only depends on VD and which allows to estimate this error
function. Finally, the explicit dependence of the error UD on estimated quantities
such as VD and ψD yields estimates for the solution of system (4.3)–(4.5).
Let us first establish an estimate for the mean value correction ψD similarly to
inequality (2.12). One infers from the above setting that ψD only depends on the
difference of initial values v0 − 〈v0〉Ω, C∗(t) and ξ := u − 〈u〉Ω. The last term is
given by the initial value problem

∂ξ

∂t
−Du∆ξ = A∗(t)ξ in Ω× R>0, ξ(·, 0) = u0 − 〈u0〉Ω in Ω,

endowed with zero Neumann boundary conditions, if necessary. The solution can
also be expressed by a corresponding evolution system. To recognize this, we
recall that Du∆ generates a contraction semigroup (Su(t))t∈R≥0 on Lp(Ω)m for
each 1 ≤ p ≤ ∞ by Lemma 2.1. Moreover, the family (A∗(t))t∈R≥0 induces
bounded multiplication operators on Rm resp. Lp(Ω)m for each 1 ≤ p ≤ ∞ since
A∗ ∈ L∞(Ω× R≥0)m×m [104, Proposition 2.2.14]. Using a well-known perturbation
result for evolution equations [92, Chapter 6, Theorem 1.2], there is, for each finite
p <∞, a unique mild solution ξ ∈ C(R≥0;Lp(Ω)m) given implicitly by the Duhamel
formula

ξ(·, t) = Su(t− s)ξ(·, s) +
∫ t

s
Su(t− τ)A∗(τ)ξ(·, τ) dτ ∀ 0 ≤ s ≤ t. (4.6)

Continuity in t = 0 does not carry over to L∞(Ω)m for Du ∈ Rm×m
>0 in general [94,

Part I, Lemma 2]. However, the solution can be found by the same method using
Proposition 2.3 instead. We obtain ξ ∈ C(R>0;L∞(Ω)m) by Proposition B.2 and
the implicit formula (4.6). We thus define an evolution system U consisting of a
family of evolution operators U(t, s) for s, t ∈ R≥0, s ≤ t, on Lp(Ω)m induced by the
unique solution ξ of the implicit equation (4.6);

ξ(·, t) = U(t, s)ξ(·, s) ∀ s, t ∈ R≥0, s ≤ t.

Let us write U(t, 0) =: U(t) for short. Each bounded, linear operator U(t, s) satisfies
the usual conditions

U(t, t) = I, U(t, r) = U(t, s)U(s, r) ∀ r, s, t ∈ R≥0, r ≤ s ≤ t
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4.1 The linear case

of an evolution system and Gronwall’s inequality implies the a priori estimate

‖U(t, s)ξ(·, s)‖Lp(Ω)m ≤ exp
(∫ t

s
‖A∗(τ)‖ dτ

)
‖ξ(·, s)‖Lp(Ω)m .

In the case of Du = 0, the evolution system U can be defined on L∞(Ω)m using
standard techniques of ordinary differential equations in Banach spaces [14, Chapter
III, §1]. Notice that, in general, the convolution property

U(t, s) = U(t− s, 0) ∀ s, t ∈ R≥0, s ≤ t

is not fulfilled. This can be guaranteed only in the case of time-independent oper-
ators A∗(t) ≡ A∗ where U(t, 0) = U(t) play the role of semigroup operators [92,
Section 5.1].

It turns out that uniform boundedness of the evolution system U defined by equation
(4.6) resp. uniform stability of the corresponding differential equation is essential for
showing convergence results. This condition is optimal in the sense that there are
examples where uniform convergence on long-time intervals may not be achievable
in the absence of uniform boundedness in L∞(Ω)m. For instance, take m = 1 and
A∗(x, t) = χA(x)(t) with indicator function χA(x) on some interval A(x) with measure
|A| ∈ Lp(Ω) \ L∞(Ω) or compare to Example 3.6.
Since the same reasoning above holds for space-dependent coefficients A∗(·, t) as
well, we formulate the following stability assumption

L Let the evolution system U be uniformly bounded in L∞(Ω)m, i.e., there is a
constant C > 0 independent of time s, t ∈ R≥0 such that

‖U(t, s)ξ0‖L∞(Ω)m ≤ C‖ξ0‖L∞(Ω)m ∀ ξ0 ∈ L∞(Ω)m, s, t ∈ R≥0, s ≤ t.

Note that boundedness (stability) of the operator family (U(t))t∈R≥0 is not enough
to estimate integrals uniformly if A∗ additionally depends on time, compare the
example of Perron in [14, p.123]. As a consequence of the uniform assumption L,
we are able to estimate∥∥∥∥∥
∫ T

0
U(t, τ)f(τ) dτ

∥∥∥∥∥
L∞(Ω)m

≤ C
∫ T

0
‖f(τ)‖L∞(Ω)m dτ ∀ f ∈ L1(0, T ;L∞(Ω)m).
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4 Long-time intervals

It has to be mentioned that a uniform bound for U independent of p for all large
exponents p <∞ yields bounds in L∞(Ω)m in the limit p→∞ by continuity of the
Lp norm with respect to p [1, Theorem 2.14].

Assuming uniform boundedness of U , we receive an estimate for the mean value
correction ψD similar to inequality (2.12) on long-time intervals. More precisely, let
us write the solution ψD of the inhomogeneous equation

∂ψD
∂t
−Dv∆ψD = C∗(t)U(t)(u0 − 〈u0〉Ω) in Ω× R>0

as an explicit integral via formula (B.3). In view of Lemma 2.1, this can be estimated
to obtain

‖ψD(·, t)‖L∞(Ω)k ≤ Cv0e−λ1Dt + CgD
−1 ∀ D > 0, t ∈ R≥0

with some constants Cv0 , Cg > 0 independent of time t and diffusion D.
These facts can be used to write the errors which solve equations (4.3)–(4.5) in the
following implicit integral form

UD(·, t) =
∫ t

0
U(t, τ)B∗(τ)

(
VD(·, τ) + ψD(·, τ)

)
dτ, (4.7)

VD(·, t) =
∫ t

0
Sv(t− τ)

(
C∗(τ)UD(·, τ) + D∗(τ)

(
VD(·, τ) + ψD(·, τ)

))
dτ. (4.8)

Estimations yield the following result.

Theorem 4.1. Let assumptions A1–A2 and L hold for linearities (4.1)–(4.2) with
space-independent, globally bounded coefficients. Then for any α ∈ (0, 1] there exist
constants C,D0 > 0 independent of T,D such that for all T ≤ D1−α and all D ≥ D0

‖uD − u‖L∞(ΩT )m ≤ CD−α,

‖vD − v− ψD‖L∞(ΩT )k ≤ CD−1.

Moreover, the spatial mean values are independent of D in the sense that

〈uD〉Ω = 〈u〉Ω, 〈vD〉Ω = v in R≥0.

Proof. In what follows, C > 0 is a generic constant which does neither depend on
time t nor on D, but on the particular system with presumed bounds. We test the
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4.1 The linear case

weak formulation of the error system (4.3)–(4.5) with the constant function |Ω|−1 to
infer 〈UD〉Ω = 0, 〈VD〉Ω = 0 on Ω×R≥0. Indeed, we obtain an ordinary differential
equation for the spatial mean values and, since 〈ψD〉Ω = 0, the initial values imply
the result. This leads to a specific situation in the space-independent case in which
we are able to apply directly decay estimate (2.2) of (Sv(t))t∈R≥0 to the integral
representation (4.8):

‖VD(·, t)‖L∞(Ω)k ≤ C
∫ t

0
e−λ1D(t−τ)

(
‖UD(·, τ)‖L∞(Ω)m + ‖VD(·, τ)‖L∞(Ω)k

)
dτ

+ C
∫ t

0
e−λ1D(t−τ)

(
e−λ1Dτ +D−1

)
dτ

Since the non-negative function t 7→ t exp(−λ1Dt) is bounded on R≥0 by its maxi-
mum at λ1Dt = 1, the last integral is uniformly bounded by CD−1 for some C > 0.
According to Assumption L, the boundedness of the evolution system U leads to
an estimate for UD given by equation (4.7). The aforementioned estimate for ψD
implies

‖UD(·, t)‖L∞(Ω)m ≤ C
∫ t

0
‖VD(·, τ)‖L∞(Ω)k dτ + CD−1(1 + t). (4.9)

Combining both estimates for UD and VD and evaluating the double integral yields

‖VD(·, t)‖L∞(Ω)k ≤ C
∫ t

0

∫ t

s
e−λ1D(t−τ)‖VD(·, s)‖L∞(Ω)k dτ ds

+
∫ t

0
e−λ1D(t−τ)‖VD(·, τ)‖L∞(Ω)k dτ + CD−1

≤ CD−1(1 + T )‖VD‖L∞(ΩT )k + CD−1

for all t ≤ T . For each α ∈ (0, 1], we consider T ≤ D1−α and obtain the estimate

‖VD‖L∞(ΩT )k ≤ CD−1

by absorption for sufficiently large D ≥ D0(α). Using inequality (4.9) implies a
similar estimate multiplied by T due to integration.

The linear growth in time in estimates of Theorem 4.1 is due to the fact that
the evolution system U is only bounded. Example 4.2 below shows optimality of
this stability assumption. Let us consider the case in which the evolution system
U satisfies an improved stability condition, so called uniform exponential stability
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4 Long-time intervals

(compare [9, 21] and references therein). This means that there are some time-
independent constants η, C > 0 such that

‖U(t, s)ξ0‖L∞(Ω)m ≤ Ce−ηt‖ξ0‖L∞(Ω)m ∀ ξ0 ∈ L∞(Ω)m, s, t ∈ R≥0, s ≤ t.

In this case, we obtain

‖UD(·, t)‖L∞(ΩT )m ≤ C
∫ t

0
e−η(t−τ)‖VD(·, τ)‖L∞(ΩT )k dτ + CD−1

instead of estimate (4.9). This leads to the best possible, global estimate

‖uD − u‖L∞(Ω×R≥0)m ≤ CD−1, ‖vD − v− ψD‖L∞(Ω×R≥0)k ≤ CD−1. (4.10)

See further Chapter 5 for results concerning exponential stability.

As already mentioned above, the lower convergence rate for UD and the restriction
of the valid time interval [0, T ] in Theorem 4.1 are not only for technical reasons.
The latter are optimal in the sense that estimates may not be available for α = 1
and T =∞, respectively. I will complete the analysis of the space-independent case
with the following example, even endowed with time-independent coefficients, which
demonstrates optimality.

Example 4.2. Consider again Example 3.6 and take initial values u0 = v0 = wj for
some j ∈ N from Proposition A.1 for the following linear problem with parameters
a = d = 0, bc 6= 0, and Du = 0:

∂uD
∂t

= bvD in Ω× R>0, uD(·, 0) = u0 in Ω,
∂vD
∂t
−D∆vD = cuD in Ω× R>0, vD(·, 0) = v0 in Ω,

∂vD
∂n

= 0 on ∂Ω× R>0

It is clear from the initial condition that 〈u〉Ω = v = 0. Hence, the shadow compo-
nent u is constant in time and the corresponding shadow limit is (u, v) = (u0, 0).
The solution (uD, vD) is given by the projection on the eigenspace spanned by wj

because initial values are multiples of wj and the same holds for the error functions

UD(·, t) = Uj,D(t)wj and VD(·, t) = Vj,D(t)wj.
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4.1 The linear case

The coefficients satisfy the following ODE where we use the shifted matrix MD,j

and the explicit form of bψD:

d
dt

Uj,D
Vj,D

 = MD,j

Uj,D
Vj,D

+
be−λjDt + bc

∫ t
0 e−λjD(t−τ) dτ
0

 ∀ t ∈ R>0

This system is endowed with initial conditions Uj,D(0) = 0 = Vj,D(0) and the varia-
tion of constants formula yields the representationUj,D(t)

Vj,D(t)

 =
∫ t

0
eMD,j(t−s)

be−λjDs + bc
∫ s
0 e−λjD(s−τ) dτ
0

 ds.

Using the matrix exponential given in Example 3.6 yields

Uj,D(t) =
∫ t

0
eτD(t−s)/2

(
cosh(γD(t− s))− τD

2γD
sinh(γD(t− s))

)

·
(
be−λjDs + bc

∫ s

0
e−λjD(s−r) dr

)
ds

for τD = −λjD < 0, δD = −bc 6= 0 and γD > 0 with 4γ2
D = τ 2

D − 4δD. Both
eigenvalues µ± = τD/2± γD of the matrix MD,j are real for sufficiently big diffusion
D. We obtain

Uj,D(t) =
∫ t

0

(
C+eµ+(t−s) + C−eµ−(t−s)

)
·
(
b(1 + c(λjD)−1)e−λjDs + bc(λjD)−1

)
ds

where we used C± = 1± τD/(2γD). Clearly, there holds C± → 2 as D →∞.
The negative eigenvalue µ− ≤ τD/2 tends to −∞ as D → ∞ in such a way that
there are constants with C1D ≤ |µ−| ≤ C2D. As a consequence, the integration
over exponents including µ− yields only terms of order D−1.
For the critical eigenvalue µ+, which is either positive or negative and tends to 0 as
D →∞ since µ+µ− = −bc, one can find constants satisfying

C1D
−1 ≤ |µ+| ≤ C2D

−1.

If µ+ < 0, i.e., bc < 0, we obtain linear growth in time by |Uj,D(t)| ≤ CD−1(1 + t).
If µ+ > 0, we infer that integration over exponents including µ+ yields always bad
terms like CD−1eµ+t or even worse if t ≥ D. To get convergence results, we have
to restrict our considerations to t ≤ CD1−α for some α > 0 and the proof works as
presented for Theorem 4.1.

39



4 Long-time intervals

4.1.2 Space-dependent coefficients

As figured out in the foregoing section, uniform stability of the evolution subsystem
for fixed diffusion Du is essential to show accuracy of the shadow approximation for
long-time intervals. Another main feature used in the latter proof is the fact that
spatial mean values of the errors are zero in the space-independent case. This, of
course, may not be true in space-dependent situations where 〈UD〉Ω, 〈VD〉Ω might
even grow exponentially in the linear case as the following example shows.

Example 4.3. Take the eigenfunction v0 := w1 from Example A.4 corresponding
to the first positive eigenvalue λ1 of −∆ on Ω = (0, 1), i.e., w1(x) =

√
2 cos(πx).

Let us focus on an equation for vD only,

∂vD
∂t
−D∆vD = d(x)vD in Ω× R>0, vD(·, 0) = v0 in Ω,

∂vD
∂n

= 0 on ∂Ω× R>0,

for a space-dependent coefficient d := w1 +w2
1 ∈ L∞(Ω). The corresponding shadow

limit is given by v = 0 since 〈v0〉Ω = 0 and 〈d〉Ω = 1. Hence, the mean value
correction ψD reduces to

ψD(·, t) = S∆(Dt)v0 = e−Dλ1tw1.

If we consider the spatial mean of the error VD = vD − ψD, it remains to show
exponential growth of 〈VD〉Ω = 〈vD〉Ω. The function vD is given by

vD(x, t) = S∆(Dt)v0(x) +
∫ t

0
S∆(D(t− τ))d(x)vD(x, τ) dτ

and the implicit integral equation can be solved by a Picard iteration as done in
the proof of existence of mild solutions [94, Part II, Theorem 1]. According to this
iteration, we define approximations v(j)

D (·, t) ∈ L∞(Ω) recursively given by

v
(1)
D (·, t) = S∆(Dt)v0,

v
(j+1)
D (·, t) = S∆(Dt)v0 +

∫ t

0
S∆(D(t− τ))

[
d(·)v(j)

D (·, τ)
]

dτ.

Using trigonometry, we rewrite d = w1 + w2
1 = w0 + w1 +

√
2−1

w2. We iteratively
multiply the coefficient d with v

(j)
D and use that products wjwi can be rewritten as
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4.1 The linear case

a linear combination of wj+i and w|j−i|. This procedure yields

v
(2)
D (·, t) = e−λ1Dtw1 +

∫ t

0
S∆(D(t− τ))f (1)

1 (τ)
[
w1 + w2

1 +
√

2−1
w1w2

]
dτ

=
(∫ t

0
f

(1)
1 (τ) dτ

)
w0 +

(
e−λ1Dt +

∫ t

0
e−λ1D(t−τ)f

(1)
1 (τ) dτ

)
w1

+
∫ t

0
S∆(D(t− τ))f (1)

1 (τ)h(2) dτ,

where v(1)
D (·, t) = e−λ1Dtw1 =: f (1)

1 (t)w1, h(2) = (w1 +
√

2w2 +w3)/2 and w0 ≡ 1. To
understand the next step, let us rewrite the second approximation as

v
(2)
D (·, t) = f

(2)
0 (t)w0 + f

(2)
1 (t)w1 + f

(2)
2 (t)h(2)

and note that the coefficients of the eigenfunctions in h(2) are all positive and h(2)

includes w1 as well. Considering spatial means, 〈wj〉Ω = 0 for all j ∈ N implies
〈v(1)
D 〉Ω = 0 and

〈v(2)
D (·, t)〉Ω =

∫ t

0
e−λ1Dτ dτ.

Using again d = w0 + w1 +
√

2−1
w2, this leads to the third approximation

v
(3)
D (·, t) =

(∫ t

0
f

(2)
0 (τ) + f

(2)
1 (τ) dτ

)
w0

+
(

e−λ1Dt +
∫ t

0
e−λ1D(t−τ)(f (2)

0 (τ) + f
(2)
1 (τ)) dτ

)
w1 + f

(3)
3 (t)h(3),

where h(3) is a sum of positive multiples of wj for j = 0, . . . , 4 and f
(3)
3 ≥ 0 is a

continuous function in time. Estimating from below, we successively gain for all
j ∈ N (by setting f (1)

0 ≡ 0)

f
(j+2)
0 (t) ≥

∫ t

0
f

(j+1)
0 (τ) + f

(j+1)
1 (τ) dτ ≥

∫ t

0

(
e−λ1Dτ +

∫ τ

0
f

(j)
0 (r) + f

(j)
1 (r) dr

)
dτ.

Starting from the innermost double integral and applying Fubini’s rule inductively,
this yields

f
(j+2)
0 (t) ≥

∫ t

0
f

(j+1)
0 (τ) + f

(j+1)
1 (τ) dτ ≥

∫ t

0

j∑
i=0

(t− τ)i
i! e−λ1Dτdτ.

41



4 Long-time intervals

Since v(j)
D converges to vD in L∞(ΩT ), we obtain a lower bound due to

∫ t

0

j∑
i=0

(t− τ)i
i! e−λ1Dτdτ ≤ f

(j+2)
0 (t) ≤ 〈v(j+2)

D (·, t)〉Ω → 〈vD(·, t)〉Ω.

Finally, the theorem of monotone convergence and the evaluation of the integral
leads to exponential growth of 〈VD〉Ω for all large diffusions D:

〈vD(·, t)〉Ω ≥
∫ t

0
et−τe−λ1Dτ dτ ≥ CD−1

(
et − 1

)
≥ 0

This induces exponential growth of t 7→ ‖vD(·, t)‖L∞(Ω) by Hölder’s inequality.

The above example shows that space-dependence requires more assumptions than
just uniform stability for the subsystem of u. Indeed, we require stability for the
evolution of the entire shadow system to which UD, 〈VD〉Ω are solutions. Let us
define this concept for the shadow system similarly to the evolution system U defined
at the beginning of Subsection 4.1.1. Regard the homogeneous shadow problem

∂ξ1

∂t
−Du∆ξ1 = A∗(x, t)ξ1 + B∗(x, t)ξ2 in Ω× R>0, ξ1(·, 0) = ξ0

1 in Ω,
dξ2

dt = 〈C∗(·, t)ξ1〉Ω + 〈D∗(·, t)ξ2〉Ω in R>0, ξ2(0) = 〈ξ0
2〉Ω

endowed with zero Neumann boundary conditions for ξ1 if necessary. Note that Du∆
as well as the identity I generates a (not necessarily strongly continuous) contraction
semigroup on Lp(Ω)m for each 1 ≤ p ≤ ∞ by Lemma 2.1. Using notation (2.8), let
us consider the shadow problem as the initial value problem

d
dtξ = DS∆ξ + L0(t)ξ for t ∈ R>0, ξ(0) =

 ξ0
1

〈ξ0
2〉Ω

 .
The linear operators L0(t) are defined on the Banach space Lp(Ω)m × Rk by their
action on ξ = (ξ1, ξ2)T induced by the linear right-hand side of the shadow problem:

L0(t) : Lp(Ω)m × Rk → Lp(Ω)m × Rk,

L0(t)
ξ1

ξ2

 (x) =
 A∗(x, t)ξ1(x) + B∗(x, t)ξ2

〈C∗(·, t)ξ1〉Ω + 〈D∗(·, t)ξ2〉Ω

 (4.11)

Since the coefficients are uniformly bounded, (L0(t))t∈R≥0 is a family of bounded
operators on Lp(Ω)m×Rk for each 1 ≤ p ≤ ∞. As in the space-independent case in
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4.1 The linear case

Subsection 4.1.1, the sum of both operators generates a strongly continuous evolu-
tion system W consisting of bounded, linear operators W(t, s) for s, t ∈ R≥0, s ≤ t,

on Lp(Ω)m ×Rk for each finite p <∞. The evolution operators W(t, s) are defined
by the unique solution

ξ(·, t) = W(t, s)ξ(·, s), ξ(·, 0) =
 ξ0

1

〈ξ0
2〉Ω

 (4.12)

of the above shadow limit. We refer to Proposition 2.6 for an implicit integral repre-
sentation similar to formula (4.6) and deduce ξ = (ξ1, ξ2)T ∈ C(R≥0;Lp(Ω)m × Rk)
from the fact that L0(t)ξ is uniformly bounded and hence integrable. Continuity
does not carry over to L∞(Ω)m for Du 6= 0 in general [94, Part I, Lemma 2]. How-
ever for the case of p = ∞, the evolution operator can be defined in the same way
as we did for U using ξ ∈ C(R>0;L∞(Ω)m × Rk), see Subsection 4.1.1. In the case
of Du = 0, the evolution system W can directly be defined on Lp(Ω)m × Rk using
standard techniques of ordinary differential equations [14, Chapter III, §1].

Example 4.3 indicates that uniform boundedness of the evolution system W (resp.
uniform stability of the corresponding evolution equation, see [14, p. 112], [16, Defi-
nition 3]) is essential for showing convergence results for space-dependent problems.
This can be seen by using an extension of Example 4.3 to a full shadow system, e.g.,
by A∗, B∗, C∗ = 0 and D∗ = d. For this reason let us assume

L1p Let the evolution system W be uniformly bounded for some 1 ≤ p ≤ ∞, i.e.,
there is a constant C > 0 independent of time such that for all s, t ∈ R≥0, s ≤ t,

‖W(t, s)ξ0‖Lp(Ω)m×Rk ≤ C‖ξ0‖Lp(Ω)m×Rk ∀ ξ0 ∈ Lp(Ω)m × Rk.

An example using measurable coefficients for A∗, C∗ of the form χJ(x)(t) with indi-
cator function χJ(x) on some interval J(x) ⊂ R with measure |J | ∈ Lp(Ω) \ Lq(Ω)
shows that Assumption L1p has to be checked for each index p separately. Though,
from Riesz-Thorin interpolation theorem in [8, Theorem 4.32], uniform boundedness
in Lp(Ω)m ×Rk and Lq(Ω)m ×Rk implies uniform boundedness in Lr(Ω)m ×Rk for
each 1 ≤ p ≤ r ≤ q ≤ ∞. Another interesting case is the limit p→∞, which yields
uniform bounds in L∞(Ω)m ×Rk if one has a uniform bound for W independent of
p for all large exponents p <∞ [1, Theorem 2.14]. See [9, 21] and references therein
for further characterizations of uniform (exponential) stability of evolution systems.
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4 Long-time intervals

Since we are looking for long-time behavior of models, we additionally assume that
the mean value correction ψD satisfies the following continuation of inequality (2.12),
already used in the space-independent case.

A3 The mean value correction ψD satisfies the estimate

‖ψD(·, t)‖L∞(Ω)k ≤ Cv0e−λ1Dt + CgD
−1 ∀ D > 0, t ∈ R≥0 (4.13)

for some constants Cv0 , Cg > 0 that do not depend on time t or diffusion pa-
rameter D, but on bounds of g resp. v0.

Clearly, if g − 〈g〉Ω is uniformly bounded in the time variable t ∈ R≥0 on bounded
subsets of Rm+k × Ω, then Assumption A3 is satisfied. Especially nonlinearities g
that do not depend explicitly on time fulfill A3 if A1–A2 are satisfied and the global
shadow solution is uniformly bounded.

These assumptions lead to a proof of convergence for the general linear case (4.1)–
(4.2) valid for long-time ranges. Starting from equations (4.3)–(4.5), we infer the
following a priori Lp error estimate as a natural consequence of Assumption L1p.

Proposition 4.4. Consider linearities (4.1)–(4.2) with globally bounded coefficients
and let assumptions A1–A3, and L1p hold for some 1 ≤ p ≤ ∞. Then for any
α ∈ (0, 1] there exist constants C,D0 > 0 independent of T,D such that for all
T ≤ D1−α and all D ≥ D0 there holds

sup
t∈[0,T ]

(
‖UD(·, t)‖Lp(Ω)m + ‖VD(·, t)‖Lp(Ω)k

)
≤ CD−α. (4.14)

Proof. To make use of the decay estimate (2.2) for the heat semigroup, it is conve-
nient to split up the error VD and consider its spatial mean value and the remainder
[32, Theorem 1]. Hence, we define the functions

WD := VD − 〈VD〉Ω and bD := 〈VD〉Ω

which satisfy the differential equations

∂WD

∂t
−Dv∆WD = C∗(x, t)UD − 〈C∗(·, t)UD〉Ω + D∗(x, t)(VD + ψD)

− 〈D∗(·, t)(VD + ψD)〉Ω in Ω× R>0,
(4.15)

dbD
dt = 〈C∗(·, t)UD〉Ω + 〈D∗(·, t)(VD + ψD)〉Ω in Ω× R>0, (4.16)
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4.1 The linear case

WD(·, 0) = 0 in Ω, bD(0) = 0,
∂WD

∂n
= 0 on ∂Ω× R>0. (4.17)

We start by estimating the term WD by means of Lemma 2.1. Denoting the right-
hand side of the system (4.15) by RD, the solution WD may be written as

WD(·, t) =
∫ t

0
Sv(t− τ)RD(·, τ) dτ.

For each p ≥ 1 we infer from decay estimate (4.13) for ψD and 〈RD〉Ω = 0 that

‖WD(·, t)‖Lp(Ω)k ≤ C
∫ t

0
e−λ1D(t−τ)

(
‖UD(·, τ)‖Lp(Ω)m + ‖WD(·, τ)‖Lp(Ω)k

+ |Ω|1/p
(
|bD(τ)|+D−1 + e−λ1Dτ

))
dτ

with a similar estimate for p = ∞. Notice that the term WD always implies a
factor D−1 in above estimates while the terms UD and bD have to be controlled
by Assumption L1p. These components satisfy a shadow problem whose solution is
given by UD(·, t)

bD(t)

 =
∫ t

0
W(t, τ)

 B∗(·, τ)(WD + ψD)(·, τ)
〈D∗(·, τ)(WD + ψD)(·, τ)〉Ω

 dτ.

According to Assumption L1p, we have the estimate

‖UD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)| ≤ C
∫ t

0
‖(WD + ψD)(·, τ)‖Lp(Ω)k dτ

≤ C
∫ t

0
‖WD(·, τ)‖Lp(Ω)k dτ + C|Ω|1/pD−1(1 + t).

Combining the latter two estimates leads to an estimate for WD. More precisely,

‖WD(·, t)‖Lp(Ω)k ≤ C
∫ t

0

(
e−λ1D(t−τ) +D−1

)
‖WD(·, τ)‖Lp(Ω)k dτ

+ C|Ω|1/pD−1
(
1 +D−1t

)
,

since the non-negative function t 7→ t exp(−λ1Dt) is bounded on R≥0 by its maxi-
mum at λ1Dt = 1. Taking the supremum over t yields

sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k ≤ CD−1(1 + T ) sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k + CD−1(1 +D−1T ).
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4 Long-time intervals

An absorption of WD terms on the left-hand side for all T ≤ D1−α implies

sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k ≤ CD−1

for all D ≥ D0. Finally, we infer estimates for the errors UD resp. VD from the
above inequality for UD,bD since VD = WD + bD.

If Assumption L1p holds with p =∞, we already obtain a corresponding estimate in
L∞(ΩT ) from Proposition 4.4. Recall that we used bD ≡ 0 in the space-independent
case and it suffices to use condition L instead of L1p for p = ∞. Proposition 5.7
indicates that Assumption L1p for p = ∞ might imply Assumption L (and L0 de-
fined below) in many cases.

Let us further develop the case p < ∞. Results of Proposition 4.4 provide a priori
bounds for norms of the error functions UD,VD in the parabolic space Lp,∞(ΩT ),
where Lp,r(ΩT ) is given by all measurable functions ψ on ΩT with finite norm

‖ψ‖p,r :=
(∫ T

0

(∫
Ω
|ψ(x, t)|p dx

)r/p
dt
)1/r

for 1 ≤ p, r <∞ (4.18)

and an obvious modification for r =∞ [59, Chapters I, II, §1 in both cases]. From
results of Proposition 4.4 and Hölder’s inequality we derive a priori estimates for
each 1 ≤ r <∞ of the form

‖VD‖p,r ≤ T 1/r‖VD‖p,∞ ≤ CD−α+ 1
r

(1−α),

and similarly for UD. Those estimates imply an L∞(ΩT ) estimate of the error VD

and components of UD that diffuse by using a bootstrap argument for parabolic
equations similar to [59, Chapter III, §7]. For a diffusive component zd of UD or
VD we use the fact that the right-hand side Rd ∈ Lp,r(ΩT ) of the corresponding
parabolic equation

∂zd
∂t
− d∆zd = Rd(x, t)

can be estimated in powers of the inverse D−1 for long times T ≤ D1−α by

‖Rd‖p,r ≤ C (‖UD‖p,r + ‖VD‖p,r + ‖ψD‖p,r) .
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4.1 The linear case

An L∞(ΩT ) estimate of zd is established in Proposition B.10 with explicit depen-
dence on the length T of the time interval and the norm ‖Rd‖p,r. In doing so, the
value p from Assumption L1p is restricted due to Sobolev’s embedding to p ≥ 1 = n

and p > n/2 for n ≥ 2 and 1 < r ≤ ∞ is chosen according to (B.14).
After applying stability assumption L to the ODE subsystem of non-diffusing com-
ponents, we obtain explicit estimates for all components of UD,VD.

Theorem 4.5. Consider linearities (4.1)–(4.2) with globally bounded coefficients
and let assumptions A1–A3, L, and L1p hold for some finite p ≥ 1 = n or p > n/2
for n ≥ 2 and choose r as in the parameter setting (B.14). Then there exists an
α0 = α0(r) > 0 and constants C,D0 > 0 independent of T,D such that for all
α ∈ (α0, 1], T ≤ D1−α and D ≥ D0 there holds

‖uD − u‖L∞(ΩT )m ≤ CD−γ, (4.19)

‖vD − v− ψD‖L∞(ΩT )k ≤ CD−γ+(α−1), (4.20)

‖〈vD〉Ω − v‖L∞((0,T ))k ≤ CD−γ+(α−1) (4.21)

for some γ = γ(α, r) > 0. Moreover, for diffusing components uD,i of uD, we have
the same convergence rate as for vD, i.e., D−γ+(α−1).
If Assumption L1p holds with p = ∞, estimate (4.14) is true, and we may choose
D−α as a convergence rate for each component and α0 ≡ 0, see Proposition 4.4.

Proof. In view of Proposition 4.4, we confine ourselves to the case p <∞. To make
use of the L∞ estimate (B.23) for the diffusive component zd, it remains to further
estimate the right-hand side Rd of the corresponding inhomogeneous heat equation.
The Lp estimate (4.14) from Proposition 4.4 yields for each r > 1 and 1 ≤ T ≤ D1−α

‖Rd‖p,r ≤ C (‖UD‖p,r + ‖VD‖p,r + ‖ψD‖p,r) ≤ C
(
T 1/rD−α +D−1/r

)
(4.22)

where we used the decay estimate (4.13) for ψD. Note that the constant C > 0
in this estimate depends on the parameters of the system but only depends on a
lower bound of the diffusion d and is independent of T,D. As a consequence of
Proposition B.10, for r defined by (B.14), diffusing components satisfy

‖zd‖L∞(ΩT ) ≤ CT 1−1/r
(
T 1/rD−α +D−1/r

)
≤ CD(1−α)−min{α,(2−α)/r}.
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4 Long-time intervals

To obtain an analog estimate for non-diffusing components of UD, we use Assump-
tion L and rewrite UD as

UD(·, t) =
∫ t

0
U(t, τ)B∗(·, τ)

(
VD(·, τ) + ψD(·, τ)

)
dτ.

Non-diffusing components UD,i of UD thus can be estimated by

‖UD,i‖L∞(ΩT ) ≤ C

(
T‖VD‖L∞(ΩT )k +

∫ T

0
‖ψD(·, τ)‖L∞(Ω)k dτ

)
≤ CT

(
D(1−α)−min{α,(2−α)/r} +D−1

)
.

If we take T ≤ D1−α and α < 1 into account, we have

‖UD,i‖L∞(ΩT ) ≤ CD2(1−α)−min{α,(2−α)/r}, ‖zd‖L∞(ΩT ) ≤ CD(1−α)−min{α,(2−α)/r}.

A valuable convergence rate is of order D−γ for some γ > 0. Hence, considering the
worse estimate for non-diffusive components, we need

2(1− α)− (2− α)/r < 0 ⇔ α > 21− ξ
2− ξ =: α1(ξ) with ξ = 1

r

and 2(1 − α) − α < 0, i.e., α > 2/3. From the parameter setting (B.14) it is clear
that ξ ∈ (0, 1/2) for n = 1 and ξ ∈ (0, 1) for n ≥ 2. Thus, the monotone decreasing
function α1 satisfying α1(0) = 1, α1(1/2) = 2/3 and α1(1) = 0 yields convergence
rates of the form D−γ for some γ > 0. Especially for n = 1, only the curve α1 is
restrictive. For n ≥ 2 we have to check

α > α1(ξ) for ξ ∈ (0, 1/2), α > 2/3 for ξ ≥ 1/2

and α0 = max{α1(ξ), 2/3} may be chosen.

The above theorem provides a quite natural stabilization criterion on the shadow
system and its ODE subsystem under which a shadow approximation of the full
system (1.1)–(1.3) with linearities (4.1)–(4.2) is valuable on extended time intervals.
Sections 4.3, 5.2 are devoted to the question on how to check these criteria while the
elaborated means are applied exemplarily in Chapter 6 to several nonlinear models.

Let us briefly discuss one generalization having the above proof in mind. Assumption
L can be omitted if all components of u diffuse. If there are some components which
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4.1 The linear case

do not diffuse and some which do, Assumption L can be relaxed. In the proof of
Theorem 4.5 we only used L∞ estimates of L for non-diffusing components since all
diffusing components can be treated in the same way with Ladyzenskaja’s method.
Let us delete all rows and columns of A∗(x, t) for which the corresponding component
is diffusive to obtain A11(x, t) ∈ Rm̃×m̃ for some m̃ ≤ m. This submatrix generates
an evolution system Ũ in L∞(Ω)m̃ for which we assume (instead of Assumption L)

L0 Let the evolution system Ũ be uniformly bounded, i.e., there is a constant C > 0
independent of time such that

‖Ũ(t, s)ξ0‖L∞(Ω)m̃ ≤ C‖ξ0‖L∞(Ω)m̃ ∀ ξ0 ∈ L∞(Ω)m̃, s, t ∈ R≥0, s ≤ t.

Remark that, without requiring Assumption L1p in the space-independent case,
Assumption L might not be relaxed to L0 in Theorem 4.1. This is due to diffusion-
driven instability effects as presented in Example 4.12.

Before turning to the nonlinear case, two modifications of Theorem 4.5 are in order:
uniform polynomial stability and exponential stability may be considered instead of
uniform stability of the evolution systems in assumptions L1p, L resp. L0. Polyno-
mial growth in time in estimates of Theorem 4.5 is due to the fact that the evolution
systems U resp. Ũ and W are uniformly bounded. Similar estimates can be derived
if the evolution systems are only uniformly bounded by some polynomial (see [21,
Definition 1.15] for semigroups or [31, Definition 2.7] for general evolution systems).
More precisely, the proof of Proposition 4.4 works if there are constants C > 0, d ≥ 0
independent of time such that for all s, t ∈ R≥0, s ≤ t there holds

‖W(t, s)ξ0‖Lp(Ω)m×Rk ≤ C
(
1 + (t− s)d

)
‖ξ0‖Lp(Ω)m×Rk ∀ ξ0 ∈ Lp(Ω)m × Rk.

The condition given here is slightly more general than uniform polynomial bound-
edness given in [31, Definition 2.7]. Statements of Proposition 4.4 and Theorem 4.5
remain essentially the same apart from different time restrictions T ≤ D(1−α)/(d+1)

and T ≤ D(1−α)/(d̃+1), assuming polynomial growth with degree d̃ ≥ 0 instead of L0
for Ũ too. By way of illustration, one may consider Example 4.2 with bc ≤ 0 to
obtain estimates with polynomial growth in time.
Next, consider the case where both or either evolution system, U and W , satisfies
a so called uniform exponential stability condition, in L∞(Ω)m and Lp(Ω)m × Rk,
respectively. Let the evolution system U satisfy a uniform exponential stability
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4 Long-time intervals

condition (see [9, 21] and references therein), i.e., there are some time-independent
constants η, C > 0 such that

‖U(t, s)ξ0‖L∞(Ω)m ≤ Ce−ηt‖ξ0‖L∞(Ω)m ∀ ξ0 ∈ L∞(Ω)m, s, t ∈ R≥0, s ≤ t.

This yields

‖UD(·, t)‖L∞(ΩT )m ≤ C
∫ t

0
e−η(t−τ)‖VD(·, τ)‖L∞(ΩT )k dτ + CD−1

and the estimate for non-diffusing components is as good as the ones for diffusing
components. The conditions on γ in the last theorem can be adapted accordingly
since now α > 1/2 and

α > α1(ξ) = 1− 2ξ
1− ξ with α1(ξ) ≤ 0 ∀ ξ ∈ [1/2, 1)

have to be satisfied for convergence. The same modifications remain valid if we
merely consider the ODE subsystem Ũ on L∞(Ω)m̃.

Assuming uniform exponential stability of W in Lp(Ω)m × Rk for some exponent
σ > 0 in Assumption L1p, this yields

‖UD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)| ≤ C
∫ t

0
e−σ(t−τ)‖WD(·, τ)‖Lp(Ω)k dτ + C|Ω|1/pD−1

and the proof of Proposition 4.4 leads to global estimates

sup
t∈R≥0

(
‖UD(·, t)‖Lp(Ω)m + ‖VD(·, t)‖Lp(Ω)k

)
≤ CD−1. (4.23)

From this estimate we infer similar exponents as in the foregoing discussion, more
precisely estimate (4.22) holds for α = 1 and one ascertains a parameter γ > 0.
Global estimates for nonlinear problems will be further discussed in Chapter 5 with
regard to asymptotic behavior.

4.2 The nonlinear case

As figured out in the discussion of the linear case, convergence has been shown under
several additional stability conditions referred to as Assumption L resp. L0 and L1p.
Let us consider the semilinear diffusive case (1.1)–(1.3) following the same ideas as in
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4.2 The nonlinear case

the case of short-time intervals: truncation of the corresponding linearized problem.
It turns out in Theorem 4.10 below that assuming conditions L0 and L1p for the
linearized shadow system yields estimates which are valid for the nonlinear system
on long-time ranges, similar to the results in the linear case in Theorem 4.5. As
standing assumptions for long-time intervals, we use the local Lipschitz condition
A1, bounded initial values from Assumption A2, the decay estimate (4.13) for the
mean value correction ψD from Assumption A3 and the existence of a globally
bounded shadow limit:

B The solution (u,v) of the shadow system (1.4)–(1.6) is globally defined and sat-
isfies u ∈ L∞(Ω× R≥0)m and v ∈ L∞(R≥0)k.

Further assumptions will be made in the following section.

4.2.1 Second-order truncation

Let us start from system (3.2)–(3.4) for the errors UD,VD, i.e.,

∂UD

∂t
−Du∆UD = f(uD,vD, x, t)− f(u,v, x, t) in ΩT ,

∂VD

∂t
−Dv∆VD = g(uD,vD, x, t)− g(u,v, x, t) in ΩT ,

UD(·, 0) = 0,VD(·, 0) = 0 in Ω, ∂UD

∂n
= 0,

∂VD

∂n
= 0 on ∂Ω× (0, T ).

Using Taylor’s expansion, we write for h = (f ,g)

h(uD,vD, x, t)− h(u,v, x, t) = ∇uh(u,v, x, t)UD +∇vh(u,v, x, t)(VD + ψD)

+ H(UD,VD + ψD, x, t), (4.24)

where the remainder H = (F,G) is given componentwise by

H`(y, z + ψD, x, t) =
(
y z + ψD

)T
h(u,v)
` (y, z + ψD, x, t)

 y
z + ψD


for ` = 1, . . . ,m+ k. Each matrix-valued function h(u,v)

` is decomposed of difference
quotients for the first derivatives of h similar to the linearization in (3.6). For this
to be valid and for the following procedure let us assume, in addition to assumptions
A1–A3, B a differentiability assumption.
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4 Long-time intervals

A4 Let f ,g be continuously differentiable with respect to (u,v) ∈ Rm+k and let their
derivatives ∇ufi,∇vfi, i = 1, . . . ,m, and ∇ugj,∇vgj, j = 1, . . . , k, satisfy the
local Lipschitz condition A1. Let the linearized parts ∇(u,v)f , ∇(u,v)g, evaluated
at the shadow limit, be uniformly bounded in (x, t) ∈ Ω× R≥0.

For instance, the local Lipschitz continuity is satisfied for an autonomous right-hand
side (f ,g) which is of class C2 with respect to the unknown variables (u,v). If, in
addition, we have a uniformly bounded shadow limit, then Assumption A4 is fulfilled.

Following the idea of truncation developed in Chapter 3, we construct a suitable
cut-off for the possibly unbounded right-hand side H = (F,G). As before, we will
modify their arguments using the cut-off function Θ defined in (3.7) and consider
the function HD = (FD,GD) given by

HD,`(y, z + ψD, x, t) :=
(
Θ(y) z + ψD

)T
h(u,v)
`,Θ

 Θ(y)
z + ψD

 (4.25)

for each ` = 1, . . . ,m+ k. Herein, we abbreviate

h(u,v)
`,Θ = h(u,v)

` (Θ(y),Θ(z) + ψD, x, t).

Since the arguments of this matrix-valued function are uniformly bounded by as-
sumptions A3, B and the definition of Θ, we may apply the Lipschitz assumption
A4 and infer a constant C > 0 such that

|HD(y, z, x, t)| ≤ C|(Θ(y), z)|2 (4.26)

holds for z := z + ψD. The constant C depends on the time-independent bounds
on u,v in Assumption B, on the one for ψD in Assumption A3, and on Lipschitz
bounds in Assumption A4 for the derivatives, but neither on diffusion D ≥ 1 nor on
time t. In order to control the z-component of the truncation which we estimated
in the last inequality (4.26), we introduce another function. Define

ρ(z) =

 1 for |z| ≤ L,

0 for |z| ≥ 2L
(4.27)

as a smooth and symmetric cut-off function ρ ∈ C∞c (R; [0, 1]) for L := Cv0 + 2,
where Cv0 > 0 is the same constant from the time decay estimate (4.13) of ψD. This
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4.2 The nonlinear case

is possible by mollifying the characteristic function χ(−r,r) where L < r < 2L [1,
Theorem 2.29]. Using this cut-off, we control the z-component in HD by setting

HD(y, z, x, t) := ρ

(
Dδ0 |z|
L

)
HD(y, z, x, t)

(
1− ρ

(
2λ1Dt

logD

))

+ ρ

(
|z|
L

)
HD(y, z, x, t)ρ

(
2λ1Dt

logD

)
.

(4.28)

A similar modification is done in [75, Lemma 2]. Properties of the truncated function
HD = (FD,GD) is given in

Lemma 4.6. For each δ0 ≤ 1/2 there is a constant C > 0, independent of D ≥ 1
but which depends on L defined in (4.27) and assumptions A3–A4, B, such that for
z = z + ψD we have

|FD(y, z, x, t)|, |GD(y, z, x, t)| ≤ C
(
D−2δ0 +χ{t≤logD/(λ1D)}(t) ·min{1, |z|}

)
(4.29)

for all (y, z) ∈ Rm+k, t ∈ R≥0 and for a.e. x ∈ Ω. Here, χ{t≤c} is the characteristic
function on the time interval [0, c].

Proof. The first term in definition (4.28) can be estimated as HD, see inequality
(4.26). However, only Dδ0|z| ≤ 2L has to be considered due to the compact support
of ρ defined in (4.27). For the second term in definition (4.28), we use the estimate

∣∣∣∣∣ρ
(
|z|
L

)
HD(y, z, x, t)ρ

(
2λ1Dt

logD

)∣∣∣∣∣ ≤ C(D−2δ0 + |z|2)ρ
(
|z|
L

)
χ{t≤logD/(λ1D)}

which results once again from inequality (4.26). The right-hand side is at most
non-zero if |z| ≤ 2L and the quadratic term is (linearly) bounded.

In the following, we study the localized problem using the truncation FD,GD asso-
ciated with the error system (3.2)–(3.4). Starting for instance from a substitution
of H in equation (4.24), we obtain

∂αD
∂t
−Du∆αD = ∇uf · αD +∇vf · (βD + ψD) + FD(αD, βD, x, t) in ΩT , (4.30)

∂βD
∂t
−Dv∆βD = ∇ug · αD +∇vg · (βD + ψD) + GD(αD, βD, x, t) in ΩT , (4.31)

αD(·, 0) = 0, βD(·, 0) = 0 in Ω, ∂αD
∂n

= 0,
∂βD
∂n

= 0 on ∂Ω× (0, T ). (4.32)
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4 Long-time intervals

To get an overview, we abbreviate the Jacobians ∇uf ,∇vf ,∇ug,∇vg which are
evaluated at the shadow solution (u,v) and depend in general on space and time.

The focal idea using cut-offs is to find estimates for the solution (αD, βD) of the
truncated problem (4.30)–(4.32) to show that its solution actually is located for
sufficiently large diffusions D within a small neighborhood of 0, with radius D−δ for
some δ > 0, where the cut-offs have no effect if δ ≥ δ0. Similarly to Proposition 3.2,
we find global solutions.

Proposition 4.7. Let assumptions A1–A4, B hold and let D ≥ 1. Then there
exists a unique mild solution (αD, βD) of the truncated problem (4.30)–(4.32) which
is global. Furthermore, for all finite times T > 0 we have (αD, βD) ∈ L∞(ΩT )m+k

and diffusing components are weak solutions, especially βD ∈ L∞(0, T ;H1(Ω)k) with
weak derivative ∂tβD ∈ L2(ΩT )k.

Proof. To apply Rothe’s method as in Proposition 3.2, we write system (4.30)–(4.32)
as a system of m+ k differential equations

∂ΨD

∂t
−D∆ΨD = hD(ΨD, x, t) in ΩT , ΨD(·, 0) = 0 in Ω.

The function ΨD = (αD, βD) is endowed with zero Neumann boundary conditions
for diffusing components and hD is given by

hD(ΨD, x, t) = J(x, t) ·
 αD

βD + ψD(x, t)

+
FD(αD, βD, x, t)

GD(αD, βD, x, t)

 .
Here and in the sequel, we use the notation J for the Jacobian

J(x, t) =
∇uf(u(x, t),v(t), x, t) ∇vf(u(x, t),v(t), x, t)
∇ug(u(x, t),v(t), x, t) ∇vg(u(x, t),v(t), x, t)

 (4.33)

evaluated at the shadow solution (u,v). By Assumption A4, hD is bounded on
bounded subset of Rm+k×Ω×R≥0. Local Lipschitz continuity of hD in the variable
ΨD on bounded sets in Ω × R≥0 carries over from h since FD and GD are locally
Lipschitz in the sense of Assumption A1, see definition (4.28). Following the proof
of Proposition 2.3, there exists an E∞,0,τ -mild solution in the sense of Definition 2.2.
We obtain the integral representation

ΨD(·, t) =
∫ t

0
S(t− τ)hD(ΨD(·, τ), ·, τ) dτ.
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4.2 The nonlinear case

The function hD is linearly bounded in the variable ΨD due to Lemma 4.6. By the
same reasoning as in Proposition 3.2, this implies that no blow-up is possible and
we obtain a unique E∞,0,∞-mild solution with ΨD ∈ L∞(ΩT )m+k for all T <∞.
In order to improve regularity for diffusing components which are denoted by zd,
we apply parabolic L2 theory performed in Proposition B.3. Recall for this that zd
solves the equation

∂zd
∂t
− d∆zd = Rd ∈ L∞(ΩT )

for some diffusion d > 0 and the initial datum for zd is zero.

To get estimates for very long time intervals of order D` for some ` > 0, we need a
more detailed estimation of the quantities which are involved and follow the steps
of Proposition 4.4. We decompose βD into its mean bD = 〈βD〉Ω and the residual
WD = βD − 〈βD〉Ω with 〈WD〉Ω = 0. Equations (4.31)–(4.32) may be replaced by

∂WD

∂t
−Dv∆WD = ∇ug · αD − 〈∇ug · αD〉Ω +∇vg · bD − 〈∇vg · bD〉Ω

+∇vg · (WD + ψD)− 〈∇vg · (WD + ψD)〉Ω
+ GD − 〈GD〉Ω in Ω× R>0,

(4.34)

dbD
dt = 〈∇ug · αD〉Ω + 〈∇vg · bD〉Ω + 〈∇vg · (WD + ψD)〉Ω

+ 〈GD〉Ω in Ω× R>0,
(4.35)

WD(·, 0) = 0 in Ω, bD(0) = 0,
∂WD

∂n
= 0 on ∂Ω× R>0. (4.36)

We start estimating the term WD using Lemma 2.1. Denoting the right-hand side
of equation (4.34) by RD, the solution WD may be written as

WD(·, t) =
∫ t

0
Sv(t− τ)RD(·, τ) dτ.

By Assumption A4, the Jacobian J ∈ L∞(Ω×R≥0)(m+k)×(m+k) is uniformly bounded.
We infer from decay estimate (4.13) for ψD and 〈RD〉Ω = 0 that

‖WD(·, t)‖Lp(Ω)k ≤ C
∫ t

0
e−λ1D(t−τ)

(
‖αD(·, τ)‖Lp(Ω)m + |Ω|1/p|bD(τ)|

+ ‖(WD + ψD)(·, τ)‖Lp(Ω)k + ‖GD(·, τ)‖Lp(Ω)k
)

dτ
(4.37)

holds for each finite p ≥ 1 with a similar estimate for p = ∞. As in Proposition
4.4, we have to control the terms αD and bD. This can be done by Assumption L1p
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4 Long-time intervals

as in the linear case using a condition for the Jacobian J instead. For convenience,
let us use the same notation as in the linear case, compare to notation (4.11), and
abbreviate the Jacobian defined by (4.33) in the form

J(x, t) =
A∗(x, t) B∗(x, t)

C∗(x, t) D∗(x, t)

 .
Then components αD,bD satisfy a shadow problem whose solution is given byαD(·, t)

bD(t)

 =
∫ t

0
W(t, τ)

 B∗(·, τ)(WD + ψD)(·, τ) + FD(·, τ)
〈D∗(·, τ)(WD + ψD)(·, τ) + GD(·, τ)〉Ω

 dτ (4.38)

where we used the evolution system W induced by the linearization. This system is
given by evolution operators W(t, s) for t, s ∈ R≥0, s ≤ t, defined by

ξ(·, t) = W(t, s)ξ(·, s), ξ(·, 0) =
 ξ0

1

〈ξ0
2〉Ω

 , (4.39)

where ξ ∈ C(R≥0;Lp(Ω)m × Rk) is the unique solution of the homogeneous linear
shadow problem

∂ξ1

∂t
−Du∆ξ1 = A∗(x, t)ξ1 + B∗(x, t)ξ2 in Ω× R>0,

dξ2

dt = 〈C∗(·, t)ξ1〉Ω + 〈D∗(·, t)ξ2〉Ω in R>0,

ξ1(·, 0) = ξ0
1 in Ω, ξ2(0) = 〈ξ0

2〉Ω

endowed with zero Neumann boundary conditions for ξ1 if necessary. As in the
linear case considered in (4.11), let us assume that the shadow evolution system
W is uniformly bounded in Lp(Ω)m × Rk for some 1 ≤ p ≤ ∞, i.e., there exists a
constant C > 0 independent of time such that

‖W(t, s)ξ0‖Lp(Ω)m×Rk ≤ C‖ξ0‖Lp(Ω)m×Rk ∀ ξ0 ∈ Lp(Ω)m × Rk, s, t ∈ R≥0, s ≤ t.

We will still name this Assumption L1p having in mind that it is induced by the
linearization J of the nonlinear problem.

Proposition 4.8. Let assumptions A1–A4, B, and L1p hold for some 1 ≤ p ≤ ∞.
Then for any α ∈ (0, 1], δ0 ∈ (0, 1/2] with γ := 2δ0 + (α − 1) ∈ (0, 1] there exist
constants C,D0 > 0 independent of time T and diffusion D such that for all times
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4.2 The nonlinear case

T ≤ D1−α and all D ≥ D0 the solution (αD, βD) of system (4.30)–(4.32) satisfies

sup
t∈[0,T ]

(
‖αD(·, t)‖Lp(Ω)m + ‖βD(·, t)‖Lp(Ω)k

)
≤ CD−γ. (4.40)

Proof. We already estimated WD and received a relation to αD,bD in inequality
(4.37) above. In view of estimate (4.29) for FD,GD, where

βD = βD + ψD = bD + WD + ψD,

and Assumption A3 on ψD, we observe for each δ0 ≥ 0

‖WD(·, t)‖Lp(Ω)k ≤ C
∫ t

0
e−λ1D(t−τ)

(
‖αD(·, τ)‖Lp(Ω)m + |Ω|1/p|bD(τ)|

)
dτ

+ C
∫ t

0
e−λ1D(t−τ)‖WD(·, τ)‖Lp(Ω)k dτ + C|Ω|1/pD−1

(4.41)

with a similar estimate for p =∞. To obtain a corresponding inequality for αD,bD,
we consider the explicit formulaαD(·, t)

bD(t)

 =
∫ t

0
W(t, τ)

 B∗(·, τ)(WD + ψD)(·, τ) + FD(·, τ)
〈D∗(·, τ)(WD + ψD)(·, τ) + GD(·, τ)〉Ω

 dτ.

Applying the stability assumption L1p on W , Assumption A4 and estimate (4.29)
for truncations FD,GD to the latter integral, this yields

‖αD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)| ≤ C
∫ t

0
‖(WD + ψD)(·, τ)‖Lp(Ω)k dτ

+ C
∫ t

0
‖FD(·, τ)‖Lp(Ω)m + ‖GD(·, τ)‖Lp(Ω)k dτ

≤ C
∫ t

0
‖WD(·, τ)‖Lp(Ω)k dτ

+ C
∫ t

0
χ{τ≤logD/(λ1D)}|Ω|1/p|bD(τ)| dτ

+ C|Ω|1/p
(
D−1(1 + t) +D−2δ0t

)
.

For obvious reasons, we restrict ourselves to δ0 ≤ 1/2. Since logD/D → 0 as
D →∞ by L’Hospital’s rule, we absorb bD on the left-hand side and obtain

sup
t∈[0,T ]

(
‖αD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)|

)
≤ C

∫ T

0
‖WD(·, τ)‖Lp(Ω)k dτ

+ C|Ω|1/p
(
D−1 +D−2δ0T

)
.

(4.42)
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4 Long-time intervals

Inserting the above estimate (4.42) into inequality (4.41) for WD leads to an estimate
for WD, more precisely, we obtain

sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k ≤ C sup
t∈[0,T ]

∫ t

0

(
e−λ1D(t−τ) +D−1

)
‖WD(·, τ)‖Lp(Ω)k dτ

+ C|Ω|1/pD−1
(
1 +D−2δ0T

)
.

Taking the supremum over t yields

sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k ≤ CD−1(1 + T ) sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k + CD−1(1 +D−2δ0T )

and absorbing terms on the left-hand side for all T ≤ D1−α implies for D ≥ D0

sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k ≤ CD−min{1,2δ0+α}.

Using estimate (4.42) for αD, for each γ := 2δ0 + (α− 1) ∈ (0, 1] there holds

sup
t∈[0,T ]

(
‖αD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)|

)
≤ C

(
D−2δ0T +D−1T

)
≤ CD−γ

for D ≥ D0 = D0(γ). As a consequence, γ > 0 implies 2δ0 + α > 1 and
‖WD‖Lp(Ω)k ≤ CD−1. The relation βD = WD + bD implies an estimate for βD.

If Assumption L1p holds with p =∞, we already obtain a corresponding estimate in
L∞(ΩT ) for solutions to the truncated problem (4.30)–(4.32). If this is not the case,
Hölder’s inequality yields bounds for the norms of αD, βD in the parabolic space
Lp,r(ΩT ) for each 1 ≤ r <∞, for instance,

‖αD‖p,r ≤ T 1/r‖αD‖p,∞ ≤ CD−γ+ 1
r

(1−α)

and similarly for βD. Actually the latter inequalities imply, either for p = 1 = n

or for p > n/2, an L∞(ΩT ) estimate for diffusing components using a bootstrap
argument for parabolic equations. This can be done in the same manner as for the
linear case, compare to Proposition B.10 and especially inequality (B.23). For non-
diffusing components we apply Assumption L0 to the corresponding ODE subsystem
induced by a submatrix A11(x, t) of A∗(x, t) of the above Jacobian J defined in
(4.33). Combining both methods, we reach at
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4.2 The nonlinear case

Proposition 4.9. Let assumptions A1–A4, B as well as L0 and L1p hold for some
finite p ≥ 1 = n or p > n/2 for n ≥ 2 and choose r as in (B.14). Then there exist
triples (α, δ0, r) ∈ (0, 1]× (0, 1/2]× (1,∞) and constants C,D0 > 0 independent of
T,D such that for all T ≤ D1−α and D ≥ D0 there holds

‖αD‖L∞(ΩT )m ≤ CD2(1−α)
(
D−γ +D−(2−α)/r

)
, (4.43)

‖βD‖L∞(ΩT )k ≤ CD(1−α)
(
D−γ +D−(2−α)/r

)
(4.44)

for γ = 2δ0 + (α − 1) ∈ (0, 1] from Proposition 4.8. Moreover, for diffusing compo-
nents αD,i we have the same convergence rate as for βD.
If Assumption L1p holds with p = ∞, estimate (4.40) is true without requiring As-
sumption L0, and we may choose D−γ as a convergence rate for each component,
see Proposition 4.8.

Proof. If p =∞, there is nothing to show, see Proposition 4.8 and estimate (4.40).
Note that uniform boundedness of the evolution system W of the entire shadow
system in L∞(Ω)m × Rk is sufficient, thus no boundedness of the ODE subsystem
stated in Assumption L0 is needed.
Let us assume p < ∞ and start with a diffusive component zd of the truncated
problem (4.30)–(4.32) written as in equation (B.8), i.e.,

∂zd
∂t
− d∆zd = Rd(x, t).

Proposition B.10 yields a constant C > 0 such that

‖zd‖L∞(ΩT ) ≤ CT 1−1/r‖Rd‖p,r

for some r > 1 defined by (B.14). This constant C is independent of time T and
only depends on a lower bound for the diffusion d and parameters of the systems.
Thus, it remains to find an estimate for ‖Rd‖p,r. We infer from the right-hand side
of the truncated system (4.30)–(4.32) that

‖Rd‖p,r ≤ C (‖αD‖p,r + ‖βD‖p,r + ‖ψD‖p,r + max{‖FD‖p,r, ‖GD‖p,r}) .

Assumption A3 on ψD and Lemma 4.6 with βD = βD + ψD yields

‖Rd‖p,r ≤ C
(
‖αD‖p,r + ‖βD‖p,r +D−1/r +D−2δ0T 1/r

)
.
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4 Long-time intervals

As a consequence of Proposition 4.8, above a priori estimates for αD, βD in Lp,r(ΩT )
and T ≤ D1−α for some α ∈ (0, 1] imply

‖zd‖L∞(ΩT ) ≤ CD(1− 1
r

)(1−α)
(
D−γ+ 1

r
(1−α) +D−1/r +D−2δ0+ 1

r
(1−α)

)
.

Since γ = 2δ0 + (α− 1) ≤ 2δ0, we further estimate

‖zd‖L∞(ΩT ) ≤ CD1−α
(
D−γ +D−(2−α)/r

)
.

To obtain an analog estimate for αD, we restrict our consideration to condition L0
for the subsystem of non-diffusing components. In the following, α̃D represents the
corresponding vector of non-diffusing components. Then, by using the notion of
Assumption L0 and equation (4.30), this error component is given by

α̃D(·, t) =
∫ t

0
Ũ(t, τ)R̃D(·, τ) dτ

for some right-hand side R̃D ∈ L∞(ΩT )m̃ that only depends linearly on diffusing
components of αD, βD + ψD and components of FD which we already estimated.
Using uniform boundedness of the evolutionary subsystem Ũ stated in Assumption
L0, we obtain

‖α̃D‖L∞(ΩT )m̃ ≤ C
∫ T

0
‖R̃D(·, τ)‖L∞(Ω)m̃ dτ ≤ CD2(1−α)

(
D−γ +D−(2−α)/r

)
.

Specifically, we employed the corresponding estimate for diffusing components zd
and that FD can be estimated by βD = βD + ψD, too.

4.2.2 Convergence results

We are now in a position to draw a conclusion for the original errors (UD,VD)
using estimates for the truncated problem in the last section. In order to dispose
of truncation, we infer from results of Proposition 4.9 that the truncated solution
(αD, βD), for sufficiently large diffusion D, is located in a neighborhood of 0 where
the cut-off is not required.

Theorem 4.10. Let the assumptions A1–A4, B, L0, and L1p hold for some p with
p ≥ 1 = n or p > n/2 if n ≥ 2 and let r ∈ (1,∞) given by (B.14). Then there exist
lower bounds α0 = α0(r) ∈ (0, 1), D0 > 0 and a constant C > 0 such that for any
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4.2 The nonlinear case

α ∈ [α0, 1), D ≥ D0 and times T ≤ D1−α we have the uniform estimates

‖uD − u‖L∞(ΩT )m ≤ CD−3(1−α), (4.45)

‖〈vD〉Ω − v‖L∞((0,T ))k ≤ CD−4(1−α), (4.46)

‖vD − v− ψD‖L∞(ΩT )k ≤ CD−4(1−α). (4.47)

All diffusive components have a convergence rate of the same order, i.e., D−4(1−α).
For p = ∞, without requiring Assumption L0, similar estimates hold true with a
convergence rate D−(1−α) for any component.

Proof. To get rid of truncation, it suffices to show

‖αD‖L∞(ΩT )m + ‖βD‖L∞(ΩT )k ≤ D−δ0 ∀ D ≥ D0 (4.48)

since in that case Θ is not needed anymore in equation (4.25) for HD and we
obtain HD = H. By considering the two cases, above and below the critical time
t∗ := δ0 logD/(λ1D) for construction (4.28), we deduce HD = H in the following.

• If t ≤ t∗, we obtain ρ
(

2λ1Dt
logD

)
= 1 by 2δ0 ≤ L and thus,

HD(αD, βD, x, t) = ρ

(
|βD|
L

)
H(αD, βD, x, t).

Additionally, there holds ρ
(
|βD|
L

)
= 1 since by definition of L = Cv0 + 2

|βD| ≤ |βD|+ |ψD| ≤ D−δ0 + CgD
−1 + (L− 2)e−λ1Dt ≤ L

for all large enough D ≥ D0.

• If t > t∗, then e−λ1Dt ≤ D−δ0 and thus, for large D

|βD| ≤ |βD|+ |ψD| ≤ D−δ0 + CgD
−1 + (L− 2)D−δ0 ≤ LD−δ0 .

Clearly, |βD| ≤ |Dδ0βD| ≤ L and we find once again by definition (4.28) that

HD(αD, βD, x, t) = HD(αD, βD, x, t) = H(αD, βD, x, t).

This means that the cut-off does not affect right-hand sides of the truncated prob-
lem (4.30)–(4.32) if one restricts to the trajectory of the solution (αD, βD). By
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4 Long-time intervals

uniqueness of solutions to problem (4.30)–(4.32), we conclude (αD, βD) = (UD,VD)
and estimates (4.43)–(4.44) from Proposition 4.9 are also valid for the original error
functions (UD,VD) on the domain ΩT .

In the case of p =∞, estimate (4.40) holds true and it remains to satisfy γ > δ0 such
that inequality (4.48) is valid. The latter is equivalent to α > 1 − δ0 and choosing
α0 = 1− δ0 yields the estimate

‖UD‖L∞(ΩT )m , ‖VD‖L∞(ΩT )k ≤ CD−(1−α).

For the case of p < ∞, in view of the results of Proposition 4.9, it remains to find
triples (α, δ0, r) such that

δ0 < 2(α− 1) + γ and δ0 < 2(α− 1) + (2− α)1
r

is satisfied where γ = 2δ0 + (α − 1). For existence of such triples, we define the
following two restrictive curves (one depends on the parameter r as well)

α > `(δ0) := 1− 1
3δ0 and α > `r(δ0) := r

2r − 1δ0 + 1− 1
2r − 1 .

While ` is strictly monotone decreasing with `(1/2) = 5/6 < 1, the function `r is
strictly increasing with `r(0) ∈ (0, 1) since 1 < r < ∞. Thus, we always find such
triples for small enough δ0 > 0.
More precisely, the intersection of `r and ` is given by one point for δ0 = 3

5r−1 . We
have at least 1 > α > 5/6 for both functions and we have a triangular restrictive
area for r ≤ 7/5 given by 1 > α > `(δ0). For 7/5 < r < 2 there is a quadrilateral
area where both lines restrict the possible values of α < 1. A triangular area induced
by 1 > α > `r(δ0) restricts for r ≥ 2.
Since these conditions are quite opaque, our goal is to further simplify inequalities
(4.43)–(4.44) under consideration of the particular case δ0 ≤ 1/(2r). In this case
we have δ0 < δ0 and the only restriction is given by `(δ0) < α < 1. Notice that
α > `(δ0) is equivalent to δ0 > 3(1− α) and the assertion follows from estimates in
Proposition 4.9.

Theorem 4.10 is an extension of [75, Theorem 3] to intermediate time ranges that
scale with the diffusion parameter D. A natural extension of Assumption L1p lead-
ing to global-in-time estimates is deferred to Chapter 5. It is clear from Corollary
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4.2 The nonlinear case

3.4 that there are similar estimates for the temporal and spatial derivatives using
above estimates resp. the weak formulation for VD, hence we omit details.

The polynomial growth in time in estimates of Theorem 4.10 is due to the fact that
the evolution systems U and W are uniformly bounded. As already mentioned in
the linear case following on the definition of condition L0, similar estimates can be
derived if the evolution systems are only uniformly bounded by some polynomial,
compare [21, Definition 1.15], [31, Definition 2.7]. The proof of Theorem 4.10 can
be adapted if there are constants C > 0, d ≥ 0 independent of time such that for
s, t ∈ R≥0, s ≤ t there holds

‖W(t, s)ξ0‖Lp(Ω)m×Rk ≤ C
(
1 + (t− s)d

)
‖ξ0‖Lp(Ω)m×Rk ∀ ξ0 ∈ Lp(Ω)m × Rk,

and similarly some C > 0, d̃ ≥ 0

‖U(t, s)ξ0‖L∞(Ω)m̃ ≤ C
(
1 + (t− s)d̃

)
‖ξ0‖L∞(Ω)m̃ ∀ ξ0 ∈ L∞(Ω)m̃

if necessary. The statement of Proposition 4.8 remains the same apart from a dif-
ferent restriction T ≤ D(1−α)/(d+1). Proposition 4.9 holds with

‖αD‖L∞(ΩT )m ≤ CD
(1−α)

[
1
d+1 + 1

d̃+1

] (
D−γ +D−

1
r [1+ 1−α

d+1 ]
)
,

‖βD‖L∞(ΩT )k ≤ CD(1−α)/(d+1)
(
D−γ +D−

1
r [1+ 1−α

d+1 ]
)

using both restrictions T ≤ D(1−α)/(d+1) and T ≤ D(1−α)/(d̃+1). Theorem 4.10 is a
direct consequence with modified estimates

‖UD‖L∞(ΩT )m ≤ CD
−(1−α)

[
1+ 1

d+1 + 1
d̃+1

]
,

‖VD‖L∞(ΩT )k ≤ CD
−(1−α)

[
1+ 1

d+1 + 2
d̃+1

]
.

The above result of Theorem 4.10 enables us to check various model solutions for
uniform convergence on long-time scales, see for instance the model examples and
references in Chapter 6. Let us consider again [53] as a particular application, espe-
cially [53, Theorem 4]. Assumption L1p can be checked using numerical simulations
and Thereom 4.10 accordingly applies on long-time scales, e.g., around stable sta-
tionary solutions of the shadow system.
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4 Long-time intervals

Furthermore, we can improve the convergence rate in [53, Theorem 3] to be of order
D−1 by the following basic arguments.

Corollary 4.11. Let (uD,vD) and (u,v) be a uniformly bounded, globally defined
diffusive solution of system (1.1)–(1.3) and shadow solution of system (1.4)–(1.6),
respectively. If g−〈g〉Ω is uniformly bounded in Ω×R≥0, the error VD = vD−v−ψD
satisfies the uniform estimate

‖VD − 〈VD〉Ω‖L∞(Ω×R≥0)k ≤ CD−1 (4.49)

for some C > 0 independent of diffusion D.

Proof. Recall that WD := VD − 〈VD〉Ω satisfies system (3.3)–(3.4), i.e.,

∂WD

∂t
−Dv∆WD = g(uD,vD, x, t)− g(u,v, x, t)

− 〈g(uD,vD, ·, t)− g(u,v, ·, t)〉Ω in Ω× R>0

endowed with homogeneous zero flux boundary and zero initial conditions. Uniform
boundedness of the right-hand side in the latter equation yields the uniform estimate

‖VD − 〈VD〉Ω‖L∞(Ω×R≥0)k ≤ CD−1

for some C > 0 independent of diffusion by Proposition B.3 and Lemma 2.1.

In the case of autonomous problems, where f ,g do not depend explicitly on time,
uniform boundedness of the diffusive solution (uD,vD) and the shadow solution
(u,v) as stated in [53, Theorems 1, 2] implies uniform boundedness of the function
g−〈g〉Ω. Hence, Corollary 4.11 applies to [53] with VD−〈VD〉Ω = vD−〈vD〉Ω−ψD.
Recall that estimate (3.16) holds for ψD which implies that the component vD
becomes almost spatially homogeneous as time grows;

‖(vD − 〈vD〉Ω)(·, t)‖L∞(Ω)k ≤ CD−1 ∀ t ∈ [T (D),∞)

where T (D) is defined consequent on estimate (3.16).

Remark that Proposition 4.8 and Theorem 4.10 can be proven in a similar way for
the Hilbertian case p = 2 using energy estimates. Such energy estimates are also
employed in [53, 75]. The method which can be used to prove the convergence

64



4.3 Dissipative systems

result in Theorem 4.10 uses error estimates for L2 dissipative shadow systems – a
smaller class of systems for which uniform boundedness of the corresponding evo-
lution system is often easier to verify. General dissipativity conditions imposed on
the linearized shadow operator in Lp, which imply Assumptions L0 and L1p, are
discussed in the subsequent section.

4.3 Dissipative systems

We already established in Example 3.6 that introducing diffusion in a system of
ordinary differential equations or in a reaction-diffusion-type system may cause in-
stability of the corresponding stationary solution. As a natural consequence, the
same holds concerning (uniform) boundedness of the evolution system U andW de-
fined by equation (4.6) and (4.39), respectively. Although assumptions L0 and L1p
are not necessary for long-time convergence results, the following example shows
again that violating the assumptions might imply no reasonable long-time error
estimates.

Example 4.12. Take an eigenfunction wj of −∆ for some j ∈ N from Proposition
A.1 and consider initial values u0 = 0 ∈ R2, v0 = wj for the linear problem

∂uD
∂t
−Du∆uD = A∗uD + B∗vD in Ω× R>0, uD(·, 0) = u0 in Ω,

∂vD
∂t
−D∆vD = 0 in Ω× R>0, vD(·, 0) = v0 in Ω,

∂uD
∂n

= 0,
∂vD
∂n

= 0 on ∂Ω× R>0

for constant coefficients A∗ ∈ R2×2,B∗ ∈ R2×1. The corresponding shadow limit
is given by (u, v) = (0, 0) for each diagonal Du ∈ R2×2

≥0 . Since the mean value
correction ψD reduces to

ψD(·, t) = S∆(Dt)v0 = e−Dλjtwj

and VD ≡ 0, we focus on the error system

∂UD

∂t
−Du∆UD = A∗UD + B∗ψD in Ω× R>0, UD(·, 0) = 0 in Ω,

∂UD

∂n
= 0 on ∂Ω× R>0.
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4 Long-time intervals

Projecting the solution on the eigenspace spanned by wj, we infer

UD(·, t) =
∫ t

0
eAD,j(t−τ)B∗ψD(·, τ) dτ

where we used the shifted matrix

AD,j = A∗ − λjDu =
a− λjDu

1 b

c d− λjDu
2

 .
In order to get a bounded semigroup for Du = 0, we choose a > 0, tr(A∗) < 0 and
det(A∗) > 0, i.e., A∗ is a stable matrix in the ODE case. To find unstable modes
in the case of Du 6= 0, we consider the eigenvalues µ± of AD,j which are real for
δD = det(AD,j) < 0 since τD = tr(AD,j) < 0. Clearly, µ− ≤ tr(A) < 0 but µ+ > 0
causes instability as the following shows. For fixed λj > 0 choose δD < 0, which is
possible for Du

1 ≥ 0 small and Du
2 large since

δD = λ2
jD

u
1D

u
2 − λj(aDu

2 − |d|Du
1 ) + det(A∗).

Fixing λj,Du as above, we find a real diagonal matrix and a corresponding real
invertible matrix S such that

AD,j = S

µ+ 0
0 µ−

S−1.

The matrix exponential thus is given by

eAD,jtB∗ = S

eµ+t 0
0 eµ−t

S−1B∗

and choosing the eigenvector B∗ = S
(
1 0

)T
yields exponential growth of the error

UD(·, t) =
∫ t

0
eAD,j(t−τ)B∗ψD(·, τ) dτ =

∫ t

0
eµ+(t−τ)−DλjτB∗wj dτ.

In a similar way, we conclude that the evolution system U which is simply induced
by a semigroup (U(t))t∈R≥0 cannot be bounded since for u0 = B∗wj with B∗ defined
above we find

U(t)u0 = eµ+tB∗wj = eµ+tu0.
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4.3 Dissipative systems

The preceding example shows that boundedness of the evolution system U0 induced
by the matrix multiplication A∗ if Du = 0 does not carry over to the case of Du 6= 0,
though the one dimensional case might be misleading. The aim of the present sec-
tion is to discuss several notions of dissipativity which imply Assumption L resp.
L0 and L1p. A further, much simpler characterization of dissipativity which makes
use of a quadratic form is given in the case of the subsystem considered in condition
L resp. L0.

Let us first consider the evolutionary subsystem U from Assumption L to describe the
principle of dissipativity. Notice that Assumption L0 does not involve any diffusion
but the same method equally applies to diffusion matrices Du with non-negative
entries. The corresponding evolution operators of U are induced by the solution ξ

of
∂ξ

∂t
−Du∆ξ = A∗(·, t)ξ in Ω× R>0, ξ(·, 0) ∈ Lp(Ω)m, (4.50)

compare to equation (4.6) and Assumption L. In terms of evolution systems resp.
semigroups, the above problem is a problem of perturbation theory in which context
we disturb the Laplacian (which generates a contraction semigroup) by a bounded
evolution operator A∗(·, t) (which generates a strongly continuous evolution system).
Considering the case of constant matrices A∗ as in Example 4.12, [106] provides
several conditions to prove stability of solutions to the partly diffusive system (4.50)
and thus uniform boundedness of the corresponding evolution operators.
In the more general case, where A∗ is still time-independent but depends on the space
variable x, boundedness (even contractivity) of the perturbed semigroup induced by
the sum A∗+Du∆ may be shown if A∗ fulfills a dissipativity condition. Concerning
contractivity, [23, Chapter III, Theorem 2.7] applies the condition

‖y‖Lp(Ω)m ≤ ‖(I − λA∗)y‖Lp(Ω)m ∀ λ ∈ R>0,y ∈ Lp(Ω)m. (4.51)

It should be mentioned that some authors assume accretivity or monotonicity of−A∗
instead. Nevertheless, these conditions imply the same estimates, see for instance
[8, Theorems 7.4, 7.8] and references therein.
The time-dependent case can be treated in the same way, compare [49, Theorem 1]
for contractive evolution systems. Since we only need boundedness of the perturbed
evolutionary system in Assumption L, we follow the more general approach used in
[66]. Therefore, consider the bounded multiplication operators A∗(·, t), of either the
linear case or the linearized nonlinear case in the setting (4.33), and let us assume
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4 Long-time intervals

Dp Let κ : R≥0 → R≥0 be a continuous function with κ ∈ L1(R≥0) such that

(1− λκ(t))‖y‖Lp(Ω)m ≤ ‖(I − λA∗(·, t))y‖Lp(Ω)m (4.52)

is satisfied for all y ∈ Lp(Ω)m, λ ∈ R>0, and t ∈ R≥0.

Note that κ ≡ 0 corresponds to [49, Theorem 1] already mentioned above. There are
several equivalent formulations of dissipativity condition (4.52), see [90, Remark 1.2]
or [23, Chapter II, Proposition 3.23] and references therein. Especially, condition
(4.52) is equivalent to dissipativity of A∗(·, t) − κ(t)I on Lp(Ω)m in the sense of
inequality (4.51) for each time t ∈ R≥0. This can be seen using a characterization
from [90, Remark 1.2] via the duality map J on Lp(Ω)m, which we will describe after
having a look at the implication of condition (4.52). Actually, dissipativity of A∗
in the sense of inequality (4.52) yields uniform boundedness of the corresponding
evolution system U for each non-negative, diagonal diffusion matrix Du ∈ Rm×m

≥0 .

Proposition 4.13. Let A∗ : Ω × R≥0 → Rm×m be a measurable, locally bounded
matrix-valued function satisfying Assumption Dp for some 1 ≤ p ≤ ∞. Then the
corresponding evolution system U induced by Du∆ + A∗(·, t) is uniformly bounded
on Lp(Ω)m for the same exponent p.

Proof. The same reasoning as in the proof of Proposition 2.3 applies and the mild
solution ξ of problem (4.50), which defines the evolution operators U(t, s) of U , is
given by

ξ(·, t) = U(t, s)ξ(·, s) = Su(t− s)ξ(·, s) +
∫ t

s
Su(t− τ)A∗(·, τ)ξ(·, τ) dτ. (4.53)

We will follow the ideas of [90, Remark 2.2] to obtain an estimate for the non-smooth
integral solution ξ. Since the integral is an absolutely converging Bochner integral in
L∞(Ω)m, the same holds in Lq(Ω)m for each 1 ≤ q <∞. Hence, for each t > h > 0

ξ(·, t) = Su(h)ξ(·, t− h) +
∫ t

t−h
Su(t− τ)A∗(·, τ)ξ(·, τ) dτ

= Su(h)ξ(·, t− h) + hA∗(·, t)ξ(·, t) + hr(·, t;h)

where ‖r(·, t;h)‖Lp(Ω)m → 0 holds by Lebesgue’s differentiation theorem for the
remainder r as h → 0 [3, Proposition 1.2.2]. Using dissipativity condition (4.52)
with λ = h > 0 yields

(1− hκ(t))‖ξ(·, t)‖Lp(Ω)m ≤ ‖Su(h)ξ(·, t− h) + hr(·, t;h)‖Lp(Ω)m
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4.3 Dissipative systems

≤ ‖ξ(·, t− h)‖Lp(Ω)m + h‖r(·, t;h)‖Lp(Ω)m

since Du∆ generates a contraction semigroup (Su(t))t∈R≥0 on Lq(Ω)m for each ex-
ponent 1 ≤ q ≤ ∞ by Lemma 2.1. Rewriting above inequality and letting h → 0,
we gain an estimate for the upper left Dini derivative of the norm:

D−‖ξ(·, t)‖Lp(Ω)m ≤ κ(t)‖ξ(·, t)‖Lp(Ω)m ∀ t > 0

In view of Proposition B.2, ξ ∈ C(R>0;Lq(Ω)m) for each 1 ≤ q ≤ ∞, and moreover
ξ ∈ C(R≥0;Lq(Ω)m) for q < ∞. A well-known result of monotonicity from [95,
Appendix I, Theorem 2.1] implies

‖ξ(·, t)‖Lp(Ω)m ≤ exp
(∫ t

s
κ(τ) dτ

)
‖ξ(·, s)‖Lp(Ω)m ∀ s, t ∈ R>0, s ≤ t.

Uniform boundedness of the evolution system U is a consequence of κ ∈ L1(R≥0).
For p <∞, continuity of the solution yields estimates up to s = 0. For p =∞, the
latter estimate holds for all s, t ∈ R>0, s ≤ t. Estimating formula (4.53) for s = 0
with the help of Gronwall’s inequality, we obtain a similar estimate which relates
time t ≥ 0 to time s = 0. The obtained constant might differ from exp(‖κ‖L1(R≥0)
but we choose their maximum in the case p = ∞. Hence, we established uniform
boundedness of the evolution system U .

The result of Proposition 4.13 states that dissipativity of the operators A∗ implies
uniform boundedness of the corresponding evolution system induced by Du∆ + A∗.
However, the converse is not true in general, compare Example 3.6 and 5.3 below.
In practice, dissipativity condition (4.52) is not easy to be verified but as mentioned
above, by [90, Remark 1.2], (4.52) is equivalent to dissipativity of A∗(·, t) − κ(t)I.
The latter means that for all λ ∈ R>0, y ∈ Lp(Ω)m, and t ∈ R≥0 there holds

‖y‖Lp(Ω)m ≤ ‖(I − λ(A∗(·, t)− κ(t)I))y‖Lp(Ω)m . (4.54)

This equivalence can be verified via the duality map J , see [23, Chapter II, Propo-
sition 3.23] or [91, Chapter I, Proposition 2.1]. The characterization (4.54) is useful
in particular if the duality set is just a singleton:
For 1 < p <∞, inequality (4.52) resp. (4.54) is equivalent to

∫
Ω

(y∗)T (A∗(·, t)− κ(t)I) y dx ≤ 0 ∀ y ∈ Lp(Ω)m, t ∈ R≥0. (4.55)
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4 Long-time intervals

Indeed, by [23, Chapter II, Example 3.26 (ii)], the duality map satisfies J(y) = {y∗}
for y∗ ∈ Lq(Ω)m where y∗ = 0 for y = 0 and

y∗ = y|y|p−2

‖y‖p−2
Lp(Ω)m

for y 6= 0.

Remember that the dual pairing satisfies 〈y∗,y〉 = ‖y∗‖2
Lq(Ω)m = ‖y‖2

Lp(Ω)m with
conjugate exponent q = (p − 1)/p, and Lp(Ω)m is again uniformly convex choosing
the (squared) vector norm |y(x)|2 = ∑m

i=1 |yi(x)|2 [13, Theorem 1].

It turns out that there is even a simpler criterion for dissipativity of multiplication
operators on Lp(Ω)m which is independent of the exponent p. More precisely, above
inequalities (4.52)–(4.55) can be checked via pointwise estimates of the correspond-
ing quadratic form

q(x, t) : Rm → R, y 7→ yT (A∗(x, t)− κ(t)I)y. (4.56)

Such a condition is already used in the time-independent case [88, Propositions 6,
7]. Moreover, pointwise estimates of the latter quadratic form are a well-known
technique in the context of classical solutions to preserve contractivity of the corre-
sponding evolution system [56, Theorem 2.3].

Lemma 4.14. Let κ be given by Assumption Dp for some measurable, bounded func-
tion A∗ : Ω×R≥0 → Rm×m and q be defined as above in (4.56). Then, dissipativity
condition (4.52) on Lp(Ω)m for some 1 ≤ p ≤ ∞ is equivalent to q(x, t) ≤ 0 on Rm

for a.e. (x, t) ∈ Ω × R≥0. Moreover, inequality (4.52) holds for all 1 ≤ p ≤ ∞ if
and only if it holds for one exponent p.

Proof. Let q ≤ 0 for a.e. (x, t) ∈ Ω × R≥0. Since conditions (4.52)–(4.55) are all
equivalent for 1 < p <∞, we integrate q ≤ 0 for a symmetric choice of vectors y(x)
instead of y∗ and y and obtain inequality (4.55). For p ∈ {1,∞}, we use continuity
of the Lp norm with respect to p since we already established estimate (4.54) for
all 1 < p < ∞. Uniform boundedness of coefficients of A∗ implies boundedness
of A∗ − κI and thus, I − λ(A∗(t) − κ(t)I) is invertible for small λ > 0 due to
Neumann’s series. By dissipativity, compare [23, Chapter II, Proposition 3.14], the
latter operator is invertible for all λ > 0 and estimate (4.54) yields

‖(I − λ(A∗(·, t)− κ(t)I))−1y‖Lp(Ω)m ≤ ‖y‖Lp(Ω)m
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for all y ∈ Lp(Ω)m and 1 < p < ∞. The result follows by letting p → 1 or p → ∞
where [1, Theorem 2.14] applies since |Ω| <∞. Thus, q ≤ 0 implies dissipativity.
Now, let dissipativity inequality (4.52) be fulfilled and assume q is not non-positive,
i.e., there is a set Ω1 ⊂ Ω with |Ω1| > 0 and some time point t ≥ 0 as well as
y ∈ Rm \ {0} such that

q(x, t)y = yT (A∗(x, t)− κ(t)I)y > 0

holds for a.e. x ∈ Ω1. Using measure theory, we find uniform bounds

0 < q0 ≤ q(·, t)y ≤ q1 <∞

almost everywhere on a possibly smaller set Ω2 ⊂ Ω1 with positive measure. Let us
consider yp ∈ Lp(Ω)m for p <∞ given by

yp(x) :=
χΩ2

(x)
(q(x, t)y)1/py.

This bounded vector-valued function satisfies
∫

Ω
(y∗p)T (A∗(·, t)− κ(t)I) yp dx =

∫
Ω2
|y|p−2‖yp‖2−p

Lp(Ω2)m dx

= ‖(q(·, t)y)−1‖2−p
Lp(Ω2)m > 0

which is a contradiction to condition (4.55), and thus to (4.52) for 1 < p <∞. For
p = 1,∞, choosing again the squared vector norm |y(x)|2 = ∑m

i=1 |yi(x)|2, let us
consider y2 ∈ L∞(Ω)m in preceding definition. One infers that

|(I − λ(A∗(·, t)− κ(t)I))y2|2 = |y2|2 + λ2 |(A∗(·, t)− κ(t)I)y2|2 − 2λ

holds on the set Ω2. For small enough λ > 0, the right-hand side of the latter
equation is smaller than |y2|2 since A∗, κ,y2 are bounded functions on Ω2. This
leads to a contradiction to dissipativity condition (4.54) also for the cases p ∈ {1,∞}
since ∥∥∥∥(|y2|2

)1/2
∥∥∥∥
Lp(Ω2)

≤
∥∥∥∥(|y2|2 − λ

)1/2
∥∥∥∥
Lp(Ω2)

Lemma 4.14 shows that dissipativity assumption Dp is independent of the exponent
p and it provides a simple way to check Assumption L resp. L0 for use in Theorems
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4.1, 4.5 and Theorem 4.10, respectively. Notice that condition L0 only considers a
subsystem A11(x, t) ∈ Rm̃×m̃ of A∗ for which diffusion is not relevant and for which
we can check dissipativity in Lp(Ω)m̃ for some (and hence all) 1 ≤ p ≤ ∞. Since
A11 is non-symmetric in general, one can verify definiteness of the corresponding
quadratic form q defined in (4.56) by looking equivalently on the real eigenvalues of
the symmetric part

1
2
(
A11(x, t) + A11(x, t)T

)
− κ(t)I ∈ Rm̃×m̃.

Non-positivity of its eigenvalues λ(x, t) pointwise for almost every (x, t) ∈ Ω× R≥0

implies condition L0. As a precaution, let us recall a consequence of linear algebra
also demonstrated in Example 5.3 below: a non-positive quadratic form q implies
Re(λ) ≤ 0 for all eigenvalues λ(x, t) of A11(x, t) but in general there is no equiva-
lence for non-symmetric matrices.

Now let us turn to the evolution system W induced by the linear resp. linearized
shadow system written as

∂ξ1

∂t
−Du∆ξ1 = A∗(x, t)ξ1 + B∗(x, t)ξ2 in Ω× R>0,

dξ2

dt = 〈C∗(·, t)ξ1〉Ω + 〈D∗(·, t)ξ2〉Ω in R>0,

ξ1(·, 0) = ξ0
1 in Ω, ξ2(0) = 〈ξ0

2〉Ω

endowed with zero Neumann boundary conditions for ξ1 if necessary, see definition
(4.12) resp. (4.39). Using the operator notation (4.11), let us rewrite the shadow
problem as an ordinary differential equation in the Banach space Lp(Ω)m × Rk,

d
dtξ = DS∆ξ + L0(t)ξ in R>0, ξ(0) =

 ξ0
1

〈ξ0
2〉Ω

 ,
where L0(t) is a linear operator given by its action on ξ = (ξ1, ξ2)T induced by the lin-
ear right-hand side of the shadow problem. By Assumption A1 resp. A4, (L0(t))t∈R≥0

is a family of bounded operators on Lp(Ω)m×Rk, and the full operator DS∆+L0(t)
can be seen as a perturbation of the matrix operator DS∆ = diag(Du∆,0) which
generates a contraction semigroup on Lp(Ω)m×Rk for all 1 ≤ p ≤ ∞. Let us apply
the principle of dissipativity for L0(t) as we already did for the evolution system U .
The associated evolution system W on Lp(Ω)m × Rk is determined by the unique
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mild solution ξ of the shadow problem as in Proposition 2.6. More precisely,

ξ(·, t) = W(t, s)ξ(·, s) = S(t− s)ξ(·, s) +
∫ t

s
S(t− τ)L0(τ)ξ(·, τ) dτ

where the integral is an absolutely converging Bochner integral in L∞(Ω)m × Rk

and we set Dv = 0 in definition (2.5) of (S(t))t∈R≥0 . Let us assume in analogy to
Assumption Dp

D1p Let % : R≥0 → R≥0 be a continuous function with % ∈ L1(R≥0) such that

(1− λ%(t))‖y‖Lp(Ω)m×Rk ≤ ‖(I − λL0(t))y‖Lp(Ω)m×Rk (4.57)

is satisfied for all y ∈ Lp(Ω)m × Rk, λ ∈ R>0, and t ∈ R≥0.

Recall that using the duality map one obtains an equivalent integral inequality
similar to estimate (4.55) for 1 < p < ∞. The latter has a quite convenient form
for L2 energy estimates:

∫
Ω

yT (L0(·, t)− ρ(t)I) y dx ≤ 0 ∀ y ∈ L2(Ω)m × Rk, t ∈ R≥0

Following the proof of Proposition 4.13, we reach at

Proposition 4.15. Let the linear operators L0(t) : Lp(Ω)m × Rk → Lp(Ω)m × Rk

defined above for each t ∈ R≥0 satisfy Assumption D1p for some 1 ≤ p ≤ ∞ and
uniformly bounded coefficients A∗,B∗,C∗ and D∗. Then the corresponding shadow
evolution systemW induced by DS∆+L0(t) is uniformly bounded on Lp(Ω)m×Rk for
the same exponent p, thus W satisfies Assumption L1p. Moreover, the evolutionary
subsystem U and Ũ satisfies Assumption L and L0, respectively.

Proof. By the same reasoning as in the proof of Proposition 4.13, we obtain the
estimate

D−‖ξ(·, t)‖Lp(Ω)m×Rk ≤ %(t)‖ξ(·, t)‖Lp(Ω)m×Rk ∀ t > 0

for the upper left Dini derivative of the norm. In view of Proposition B.2, we have
ξ ∈ C(R≥0;Lp(Ω)m × Rk) for each p <∞ since the integrand in the above implicit
integral equation of ξ is bounded locally-in-time and thus integrable. Moreover,
ξ ∈ C(R>0;Lp(Ω)m × Rk) for each 1 ≤ p ≤ ∞ and the same implication as in the
proof of Proposition 4.13 follows for each 1 ≤ p ≤ ∞, i.e.,

‖ξ(·, t)‖Lp(Ω)m×Rk ≤ exp
(∫ t

s
%(τ) dτ

)
‖ξ(·, s)‖Lp(Ω)m×Rk .
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Since % ∈ L1(R≥0), this yields uniform boundedness of the evolution system W .
Considering the subsystem A∗(·, t) of the linear operator L0(t), dissipativity is in-
herited by the full system L0(t). Clearly for 1 < p < ∞, we infer from condition
(4.55) that dissipativity of L0(t)− %(t)I in Lp(Ω)m ×Rk implies dissipativity of the
corresponding subsystem A∗(·, t)− %(t)I in Lp(Ω)m since y∗ = (y∗1,y2)T for

y = (y1,y2)T ∈ Lp(Ω)m × Rk with ‖y‖2
Lp(Ω)m×Rk := ‖y1‖2

Lp(Ω)m + |y2|2.

For p ∈ {1,∞}, the same can be shown as in the proof of Lemma 4.14 by contra-
diction, assuming q ≤ 0 does not hold almost everywhere. Due to the results of
Lemma 4.14 and Proposition 4.13, Assumption D1p for some 1 ≤ p ≤ ∞ implies
Assumption L resp. L0 for all 1 ≤ p ≤ ∞.

Unfortunately, the author is not aware of a simple characterization of dissipativity
of the shadow operators L0(t), similar to the quadratic form in Lemma 4.14. Nev-
ertheless, I want to mention a simple consequence in the Hilbertian case p = 2.
Dissipativity of the linearized part

J(x, t) =
A∗(x, t) B∗(x, t)

C∗(x, t) D∗(x, t)


in the sense of condition (4.52) in L2(Ω)m+k or the equivalent formulation due to
Lemma 4.14, i.e.,

yT (J(x, t)− κ(t)I)y ≤ 0 ∀ y ∈ Rm+k, a.e. (x, t) ∈ Ω× R≥0,

implies dissipativity of L0(t)−κ(t)I for the shadow system in L2(Ω)m×Rk. However,
the converse does not hold true. Choosing for instance an eigenfunction wj of −∆
from Proposition A.1 for some j ∈ N, it can be seen by means of Lemma 4.14 that

J(·, t) =
0 0

0 wj

 with L0(t) = 0.

Nevertheless, using the well-known interpolation theorem of Riesz-Thorin [8, The-
orem 4.32], we want to record the following helpful lemma concerning dissipativity
of the linear shadow operator

L0(t) : Lp(Ω)m × Rk → Lp(Ω)m × Rk,
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L0(t)
ξ1

ξ2

 (x) =
 A∗(x, t)ξ1(x) + B∗(x, t)ξ2

〈C∗(·, t)ξ1〉Ω + 〈D∗(·, t)ξ2〉Ω

 .
which is bounded for each 1 ≤ p ≤ ∞, for instance, by Assumption A4.

Lemma 4.16. Let the bounded linear operator L0(t) defined above satisfy Assump-
tion D1pi for some 1 ≤ p1, p2 ≤ ∞ with p1 < p2 and uniformly bounded coeffi-
cients A∗,B∗,C∗ and D∗. Then L0(t) satisfies the dissipativity condition D1p for
all p1 ≤ p ≤ p2 with the same function %. Moreover, if L0(t) satisfies the dissipa-
tivity condition D1p for all 1 ≤ p1 < p < p2 ≤ ∞ with the same %, then D1p is
satisfied for all p1 ≤ p ≤ p2 with the same function %.

Proof. Uniform boundedness of coefficients of the Jacobian J implies boundedness
of L0 − ρI and thus, I − λ(L0(t) − ρ(t)I) is invertible for small λ > 0 due to
Neumann’s series. By dissipativity, compare [23, Chapter II, Proposition 3.14], the
latter operator is invertible for all λ > 0 and we obtain the estimate (4.54) for pi:

‖(I − λ(L0(t)− ρ(t)I))−1y‖Lpi (Ω)m×Rk ≤ ‖y‖Lpi (Ω)m×Rk , i = 1, 2

An application of the Theorem of Riesz-Thorin implies condition D1p for all values
p with p1 ≤ p ≤ p2.
If Assumption D1p is satisfied on an open interval p1 < p < p2, then continuity of
the norm ‖ · ‖Lp(Ω)m implies for p→ p1 resp. p→ p2 that

‖(I − λ(L0(t)− ρ(t)I))−1y‖Lpi (Ω)m×Rk ≤ ‖y‖Lpi (Ω)m×Rk

holds for all y ∈ Lpi(Ω)m × Rk and i = 1, 2. Note that this is also valid for p2 =∞
since |Ω| <∞ [1, Theorem 2.14].

It is clear from Proposition 4.13 and Proposition 4.15 that, once shown dissipativ-
ity condition D1p for the full shadow system, Theorem 4.10 can be applied for a
sufficiently big exponent p.
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Solutions to both problems, the diffusive problem (1.1)–(1.3) and its shadow problem
(1.4)–(1.6), may exhibit various limiting behavior as time tends to infinity. Insta-
bilities such as exponential growth in time were already illustrated in Example 3.6.
Similar to ordinary differential equations, even blow-up phenomena occur, e.g., in
Example 2.4 and in the discussion of integro-driven blow-up following on Proposi-
tion 2.6, respectively. Concerning global existence, we infer from Theorem 3.3 that
a global shadow solution of system (1.4)–(1.6) implies that diffusive solutions of sys-
tem (1.1)–(1.3) exist almost globally – in the sense that the solution exists on every
large finite time interval at least for all diffusivities D which are large enough (see
Example 3.5). This chapter is devoted to the question whether the shadow solution
is a reasonable approximation of the diffusive solution concerning asymptotics.
To prove convergence results, we already applied a stabilizing effect to ensure that
diffusive solutions of system (1.1)–(1.3) stay nearby the shadow limit. Such a result
is achieved via linearization around the shadow solution in Theorem 4.10. It is well
known that exponential stabilization of the linearized system often leads to global
estimates for the corresponding nonlinear system. The next section shows that this
concept is in fact expedient to obtain a valuable shadow approximation on the global
time scale. Uniform global error estimates are derived in Section 5.1.
Moreover, in searching for a way to check stability assumptions L0 and L1p, the
spectrum of a linear shadow operator is characterized in Section 5.2. This also
allows to verify stability or instability results for stationary solutions of the (nonlin-
ear) shadow system, in the reaction-diffusion-ODE case of shadow limits [69] and the
classical shadow limit case [80], respectively. As a byproduct, linearization around
steady states of the partly diffusive system (1.1)–(1.3) yields a similar spectral de-
composition. Using this characterization, destabilizing effects already established
in Examples 3.6 and 4.12 arising from an unstable subsystem become reasonable.
The spectral analysis is completed with several nonlinear examples from [69, 71] to
which the obtained results can be applied in order to study stability of stationary
solutions.
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5 Asymptotic behavior

5.1 Convergence results

This section is again based on the truncation method used in the foregoing chap-
ters to prove convergence results. The reader is requested to consult Section 4.2
for further details. A natural assumption for global estimates is some exponential
stability of the corresponding shadow evolution system induced by its linearization.
We already used this concept in the linear case for Assumption L1p, compare to the
global estimates (4.10) and (4.23).
Consider the evolution system W defined by equation (4.12) resp. (4.39) which is
generated on Lp(Ω)m×Rk by the linearization around the shadow solution. Let the
evolution systemW be uniformly exponentially stable. This means that there exists
a constant C > 0 and an exponent σ > 0, both independent of time, such that for
all s, t ∈ R≥0, s ≤ t there holds

‖W(t, s)ξ0‖Lp(Ω)m×Rk ≤ Ce−σ(t−s)‖ξ0‖Lp(Ω)m×Rk ∀ ξ0 ∈ Lp(Ω)m × Rk.

For the case of p = ∞ this assumption leads to global estimates as the following
analog of Proposition 4.8 already indicates.

Corollary 5.1. Let assumptions A1–A4, B, and L1p hold with some 1 ≤ p ≤ ∞
and uniform exponential stability exponent σ > 0. Then, for any δ0 ∈ (0, 1/2], there
exist constants C,D0 > 0 independent of diffusion D such that for all D ≥ D0 the
solution (αD, βD) of the truncated problem (4.30)–(4.32) satisfies

‖αD‖Lp(Ω×R≥0)m + ‖βD‖Lp(Ω×R≥0)k ≤ CD−2δ0 . (5.1)

Proof. We already estimated the function WD = VD − 〈VD〉Ω in inequality (4.41),
where we reached at

‖WD(·, t)‖Lp(Ω)k ≤ C
∫ t

0
e−λ1D(t−τ)

(
‖αD(·, τ)‖Lp(Ω)m + |Ω|1/p|bD(τ)|

)
dτ

+ C
∫ t

0
e−λ1D(t−τ)‖WD(·, τ)‖Lp(Ω)k dτ + C|Ω|1/pD−1,

with a similar estimate for p =∞. To obtain a corresponding inequality for αD,bD,
we consider the representationαD(·, t)

bD(t)

 =
∫ t

0
W(t, τ)

 B∗(·, τ)(WD + ψD)(·, τ) + FD(·, τ)
〈D∗(·, τ)(WD + ψD)(·, τ) + GD(·, τ)〉Ω

 dτ.
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5.1 Convergence results

Applying the uniform exponential stability condition of Assumption L1p and esti-
mate (4.29) for the truncated nonlinearities FD,GD yield

‖αD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)| ≤ C
∫ t

0
e−σ(t−τ)

(
‖(WD + ψD)(·, τ)‖Lp(Ω)k

+ ‖FD(·, τ)‖Lp(Ω)m + ‖GD(·, τ)‖Lp(Ω)k
)

dτ

≤ C
∫ t

0
e−σ(t−τ)‖WD(·, τ)‖Lp(Ω)k dτ + C|Ω|1/pD−2δ0

+ C
∫ t

0
e−σ(t−τ)χ{τ≤logD/(λ1D)}|Ω|1/p|bD(τ)| dτ.

Absorption of the supremum of the function bD on the left-hand side can be done
in the same way as in Proposition 4.8. This results in

sup
t∈[0,T ]

(
‖αD(·, t)‖Lp(Ω)m + |Ω|1/p|bD(t)|

)
≤ C

∫ T

0
e−σ(t−τ)‖WD(·, τ)‖Lp(Ω)k dτ

+ C|Ω|1/pD−2δ0

where we restrict ourselves to exponents δ0 ≤ 1/2 and D ≥ D0. Combining above
inequalities leads to an estimate for WD, more precisely,

sup
t∈[0,T ]

‖WD(·, t)‖Lp(Ω)k ≤ CD−1.

Since T > 0 is not specified in the latter inequality, we obtain a global estimate for
the truncated solution. Since βD = WD + bD, we infer

‖αD‖Lp(Ω×R≥0)m + ‖βD‖Lp(Ω×R≥0)k ≤ CD−2δ0

from the above inequality for αD,bD.

The usual way of disposing of truncation in the nonlinear case and getting L∞(ΩT )
estimates yields an analog of Theorem 4.10.

Theorem 5.2. Let the assumptions A1–A4, B, L0, and L1p hold for some p with
p ≥ 1 = n or p > n/2 if n ≥ 2 and some uniform exponential stability exponent
σ > 0 of the evolution system W. Let r ∈ (1,∞) be given by (B.14). Then there
exist lower bounds α0 = α0(r) ∈ (0, 1), D0 > 0 and a constant C > 0 such that for
any α ∈ [α0, 1), D ≥ D0 and T ≤ D1−α we have

‖uD − u‖L∞(ΩT )m ≤ CD−3(1−α), (5.2)
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5 Asymptotic behavior

‖〈vD〉Ω − v‖L∞((0,T ))k ≤ CD−4(1−α), (5.3)

‖vD − v− ψD‖L∞(ΩT )k ≤ CD−4(1−α). (5.4)

Concerning p =∞, we have global estimates

‖uD − u‖L∞(Ω×R≥0)m + ‖vD − v− ψD‖L∞(Ω×R≥0)k ≤ CD−1 (5.5)

without requiring Assumption L0.

Proof. To get rid of truncation, it is sufficient to show

‖αD‖L∞(ΩT )m + ‖βD‖L∞(ΩT )k ≤ D−δ0 ∀ D ≥ D0

as in the proof of Theorem 4.10. If p =∞, we can choose 2δ0 = 1 in estimate (5.1)
and remove the cut-off due to 2δ0 > δ0 to obtain the global estimate

‖αD‖Lp(Ω×R≥0)m + ‖βD‖Lp(Ω×R≥0)k ≤ CD−1.

For the case of p <∞, we restrict our time interval in view of the bootstrap method
of Ladyzenskaja employed in the proof of Proposition 4.9. Since

‖αD‖p,r, ‖βD‖p,r ≤ CT 1/rD−2δ0 and ‖Rd‖p,r ≤ C
(
T 1/rD−2δ0 +D−1/r

)
,

there holds along the same lines of the proof of Proposition 4.9

‖βD‖L∞(ΩT ) ≤ D(1−α)
(
D−2δ0 +D−(2−α)/r

)
, ‖αD‖L∞(ΩT ) ≤ D(1−α)‖βD‖L∞(ΩT )

for all times T ≤ D1−α. In order to dispose of truncation, it remains to find triples
(α, δ0, r) such that the inequalities

δ0 < 2(α− 1) + 2δ0 and δ0 < 2(α− 1) + (2− α)1
r

are satisfied. For existence of such triples, we again define two restrictive curves

α > `(δ0) := 1− 1
2δ0 and α > `r(δ0) := r

2r − 1δ0 + 1− 1
2r − 1 .

As in the proof of Theorem 4.10, the function `r is strictly increasing and ` is de-
creasing. Thus, we always find such triples for small enough δ0 > 0.
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To further simplify above inequalities, we consider the particular case δ0 ≤ 1/(2r).
In this case, since δ0 < δ0 = 2

4r−1 is smaller than the value δ0 of intersection of ` and
`r, the only restriction is given by `(δ0) < α < 1. Notice that α > `(δ0) is equivalent
to δ0 > 2(1− α) and the results above lead to

‖UD‖L∞(ΩT )m ≤ CD−3(1−α) and ‖VD‖L∞(ΩT )k ≤ CD−4(1−α).

Recall the definition of the error functions in (3.1). Since |Ω| <∞, the spatial mean
value 〈VD〉Ω = 〈vD〉Ω − v can be estimated uniformly too.

We omitted the fact that diffusive components of the error UD possess the same
convergence rate as VD, see Proposition 4.9. If the evolution system U satisfies an
exponential stability condition in Assumption L0 in addition, then all components
of UD have the same convergence rate as VD. Recall that the time-restriction in
above uniform estimates is due to exponential stability for finite p <∞ but the case
p =∞ can be regarded in many applications, see Chapter 6.

Theorem 5.2 enables us to check various models for a global convergence result
of the shadow approximation. Particular applications are discussed in Chapter 6
including models from [53, 60, 82]. Since the subsystem inducing Ũ is simply a
system of ordinary differential equations on L∞(Ω)m̃, it is quite standard to check
Assumption L0, also for the case of p =∞. Recall that we do not require condition
L0 if Assumption L1p holds with p = ∞. Nevertheless, verification of Assumption
L1p is not an easy task and, possibly, numerical simulations have to be applied.
Let us briefly review dissipative systems already discussed in Section 4.3 which imply
an exponential stability condition. Assume that for some η ∈ R>0 and non-negative
κ ∈ C(R≥0) ∩ L1(R≥0) the stronger condition

(1− λ(κ(t)− η))‖y‖Lp(Ω)m̃ ≤ ‖(I − λA11(·, t))y‖Lp(Ω)m̃ (5.6)

is satisfied for all y ∈ Lp(Ω)m̃, λ ∈ R>0, and t ∈ R≥0. Following the proof of Propo-
sition 4.13, one verifies that this condition implies a uniform exponential stability
of the evolutionary subsystem Ũ in Lp(Ω)m̃ with exponent η > 0 in Assumption L0.
Note that, similar to estimate (5.6), the inequality

(1− λ(%(t)− σ))‖y‖Lp(Ω)m×Rk ≤ ‖(I − λL0(t))y‖Lp(Ω)m×Rk (5.7)
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5 Asymptotic behavior

leads to an application of Theorem 5.2 using an exponential stability condition for
the shadow evolution system W in Assumption L1p with exponent σ > 0.
Let us recall that dissipativity of an operator in the sense of condition (4.52) or
(4.57) in Section 4.3 is not enough to have exponential stability of the corresponding
evolution system. Both notions are not related to each other for general systems,
e.g., for U and m ≥ 2, as the following example shows.

Example 5.3. Consider the constant matrix operators

A1 =
−1 −5

0 −1

 and A2 =
 0 1
−1 0

 .
(i) A1 is not dissipative in Lp(Ω)2 for a positive eigenvalue of its symmetric part,

see Lemma 4.14. However, the semigroup with elements U1(t) = eA1t exhibits
exponential stability since A1 possesses only the eigenvalue −1, thus with
negative real part [23, Chapter I, Theorem 3.14].

(ii) Since the symmetric part of A2 equals 0, the operator is dissipative by Lemma
4.14. However, by [23, Chapter I, Example 2.7], A2 induces the semigroup
(U2(t))t∈R≥0 with

U2(t) = eA2t =
 cos(t) sin(t)
− sin(t) cos(t)


which features no exponential stability and is just bounded.

Finally, I want to emphasize that stability condition L1p is sufficient but not neces-
sary for long-time convergence results. The decoupled system of Example 3.5 shows
that global estimates may exist without (exponential) stability.

Example 5.4. Consider the partly diffusive system

∂uD
∂t

= u2
D − (a− vD)2u3

D in Ω× R>0, uD(·, 0) = u0 in Ω,
∂vD
∂t
−D∆vD = vD in Ω× R>0, vD(·, 0) = v0 in Ω,

∂vD
∂n

= 0 on ∂Ω× R>0
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5.1 Convergence results

for a 6= 0. The shadow limit (u, v) is uniformly bounded for v0 := w1, u
0 > 0 a.e. in

Ω as already shown in Example 3.5, satisfying v ≡ 0. The component u is given by

∂u

∂t
= u2 − a2u3

and a2u(·, t)→ 1 as t→∞ by monotonicity of the solution pointwise in space. The
unstable subsystem of v implies absence of stability of the evolution system induced
by the linearized shadow operators

L0(t) =
u(·, t)(2− 3a2u(·, t)) 2au(·, t)3

0 1

→
−|a|−2 2|a|−5

0 1

 as t→∞.

Even Theorem 4.10 would not apply to this situation. Nevertheless, using Bohl
exponents as in [14, Corollary 4.2] for the subsystem of u, we obtain exponential
stability of the corresponding evolution system U for some exponent η > 0. The
cut-off procedure (4.30)–(4.32) yields

βD = (et − 1)ψD with 〈βD〉Ω = 0

where βD is globally bounded by CD−1 due to ψD(·, t) = e−λ1Dtw1. The correspond-
ing equation (4.38) for αD may be written as

αD(·, t) =
∫ t

0
U(t, τ)

[
B∗(·, τ)(βD + ψD)(·, τ) + FD(αD, βD, ·, τ)

]
dτ

for bounded B∗(·, t) = 2au(·, t)3. An application of Lemma 4.6 yields the estimate

‖αD(·, t)‖L∞(Ω) ≤ C
∫ t

0
e−η(t−τ)‖(βD + ψD)(·, τ)‖L∞(Ω) dτ + CD−2δ0 .

The special form of βD implies ‖αD‖L∞(Ω×R≥0) ≤ CD−2δ0 and 2δ0 = 1 is chosen to
remove the truncation. We finally obtain global error estimates with a convergence
rate of order D−1.

A natural question concerning long-time behavior is whether stability carries over
from the shadow system (1.4)–(1.6) to the full diffusive system (1.1)–(1.3). In the
case of classical reaction-diffusion systems, this question was studied in [32, 79] for
(global) attractors. However, due to the lack of diffusion terms in case of partly dif-
fusive systems, the solution map is not compact anymore. Reaction-diffusion-ODE
systems thus can be seen as a partially degenerated reaction-diffusion system for
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5 Asymptotic behavior

which the methods used in [32, 79] to ensure attractors are not applicable. Nev-
ertheless, using linearized stability analysis for the corresponding diffusive system
around a steady state constructed from a shadow solution, [78, 103, 109] or [38]
succeeded and (asymptotic) stability carries over in these cases.

5.2 Linearized stability

In many applications of differential and integro-differential equations, asymptotic
behavior is governed by steady states, i.e., time-independent solutions of the corre-
sponding system. Using a linearization around some steady state, it is often possible
to verify stability properties via the spectrum of the linearized operator. Hence, to
check the stability condition L1p, knowing the location of the spectrum of the lin-
earized shadow operator is of prior interest. In the following section, I will present
a complete characterization of the latter spectrum for shadow systems of the form
(1.4)–(1.6). As a byproduct, the same method of proof leads to a similar representa-
tion of the spectrum of the partly diffusive operator linearized around a stationary
solution of system (1.1)–(1.3).
Using linearization principles, we are able to apply our results to detect stability of
steady states as, for instance, [80, Appendix] for a classical shadow system or [38,
Theorem 3.9] for a reaction-diffusion-ODE system. Also cases in which steady states
of the partly diffusive system are constructed from a shadow solution are treatable
[38, 78, 103, 109]. Instabilities resulting from an unstable subsystem as we already
established in Examples 3.6 and 4.12 are merely a consequence of Proposition 5.7
or 5.13 stated below. It has to be mentioned that the following characterization of
the spectra also can be applied to instability results presented in [69] for shadow
systems and in [71] for partly diffusive systems. Concerning non-smooth bounded
steady states, the latter characterization generalizes [69, Theorem B.1] and [71,
Theorem 2.11], respectively.

5.2.1 Steady states of the shadow system

Let us consider a bounded steady state solution of the shadow system (1.4)–(1.6),
i.e., a solution (u,v) ∈ L∞(Ω)m × Rk of the integro-differential problem

−Du∆u = f(u,v, x) in Ω, ∂u
∂n

= 0 on ∂Ω,

0 = 〈g(u,v, ·)〉Ω.

84



5.2 Linearized stability

Stability or instability properties are often verified using linearization around a
steady state of the nonlinear problem, see [14, Chapter VII, Theorem 2.1], [40,
Theorem 5.1.1], [108, Proposition 4.17] and their subsequent statements about in-
stability. Further references concerning instability can be found in [69, Theorem
B.1] and [71, Theorems 2.1, 2.11]. Certainly, their results crucially depend on the
underlying Banach space on which the operator acts, e.g., Lp(Ω)m+k,W 1,p(Ω)m+k

or, in more abstract words, some domain of the fractional operator (aI −D∆)α for
some a, α > 0 [40, Definition 1.5.4].
Let us exemplarily consider the case of a linearization in Lp(Ω)m × Rk which we
need to verify Assumption L1p in the time-independent case (u,v) = (u,v). In
doing so, we receive an impression of the methods used to analyze the spectrum
of the linearized operator and the reader may adapt them to other function spaces
if necessary. Let f ,g be once continuously differentiable with respect to the un-
known variables u,v according to Assumption A4. Hence, it can be verified that
the linearization is induced by the linear operator

Lξ(x) = DS∆ξ(x) +
 A∗(x)ξ1(x) + B∗(x)ξ2

〈C∗(·)ξ1〉Ω + 〈D∗(·)ξ2〉Ω

 .
Here, we used the same notation as in the Jacobian (4.33) for the uniformly bounded
entries A∗,B∗,C∗,D∗ being the parts of the Jacobian of (f ,g) evaluated at the
shadow steady state (u,v). Let us resort equations to obtain the following form of
the diffusion matrix

DS = diag(Du,0) = diag(0,D+,0)

for some diagonal matrix D+ ∈ R`×`
>0 and denote m̃ = m − ` ≥ 0 the number of

zeroes on the diagonal of Du ∈ Rm×m
≥0 . Then the linearized operator L has the form

L


ξ11(x)
ξ12(x)
ξ2

 =


0

D+∆ξ12(x)
0

+


A11(x)ξ11(x) + A12(x)ξ12(x) + B1(x)ξ2

A21(x)ξ11(x) + A22(x)ξ12(x) + B2(x)ξ2

〈C1ξ11〉Ω + 〈C2ξ12〉Ω + 〈D∗〉Ωξ2

 , (5.8)

where ξ11 ∈ Lp(Ω)m̃, ξ2 ∈ Rk. Owing to Lemma 2.1, (S∆(τ))τ∈R≥0 is a strongly
continuous contraction semigroup on Lp(Ω) for each finite 1 ≤ p < ∞. Defining
(S+(t))t∈R≥0 similarly to definition (2.5) yields a strongly continuous contraction
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semigroup on Lp(Ω)` generated formally by D+∆. The generator of (S+(t))t∈R≥0 ,

Hp : D(Hp) ⊂ Lp(Ω)` → Lp(Ω)`,

is a densely defined, closed, linear, unbounded operator [23, Chapter II, Theorem
1.4]. We additionally choose ξ12 ∈ D(Hp) such that the operator L given by (5.8)
is well-defined. Using the domain D(Hp) of the generator Hp of the heat semi-
group (S∆(τ))τ∈R≥0 on Lp(Ω) from the scalar-valued case in Lemma 2.1, we identify
D(Hp) = D(Hp)` ⊂ W 1,p(Ω)`. Since f ,g are continuously differentiable, bounded-
ness of the steady state (u,v) yields boundedness of the second operator in definition
(5.8) induced by the Jacobian evaluated at (u,v). Thus, the full operator L is un-
bounded for ` > 0, closed, linear, and densely defined [23, Chapter III, Theorem
1.3]. It even generates an analytic semigroup for 1 < p <∞ in view of Lemma 2.1
and [23, Chapter III, Proposition 1.12].
Concerning the stability condition we are faced with in Assumption L1p, it is impor-
tant to understand the location of the spectrum σ(L) in the complex plane. Recall
that analyticity of the semigroup generated by L implies validity of the spectral
mapping theorem for 1 < p <∞ [23, Chapter IV, Corollary 3.12]. This implies, for
instance, that uniform exponential stability can be deduced from a negative spec-
tral bound s(L) := sup{Reλ | λ ∈ σ(L)} [23, Chapter V, Theorem 1.10]. As in the
finite-dimensional case, one has to be careful if the spectral bound of L is zero. In
this case uniform boundedness of the semigroup is not derivable in an easy way, see
[21, Chapter III, Theorem 1.11]. Subsequently, we observe that the spectrum of the
shadow operator L has a quite different decomposition depending on zero entries of
the matrix Du ∈ Rm×m

≥0 .

For Du ∈ Rm×m
>0 and m = 1, [80, Appendix] already considered the spectrum and

showed its discreteness. Let us prove this for completeness in case of systems.

Proposition 5.5. Let Du ∈ Rm×m
>0 and L be the shadow operator defined in (5.8)

on D(Hp)m × Rk ⊂ Lp(Ω)m × Rk for matrices A∗,B∗,C∗,D∗ with bounded entries
in L∞(Ω). Then the spectrum σ(L) is a discrete set of eigenvalues of L for each
finite 1 < p <∞ and for the particular case p = 1 = n.

Proof. We will apply [50, Chapter III, Theorem 6.29] by showing compactness of
the resolvent (λI − L)−1 for some real, large λ. Since A∗,B∗,C∗,D∗ are uniformly
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bounded in L∞(Ω) and ξ2 ∈ Rk, we can solve the first equation of

(λI − L)ξ = ψ ⇔

 (λI −Du∆−A∗)ξ1(x)−B∗(x)ξ2 = ψ1(x),

−〈C∗ξ1〉Ω + (λI − 〈D∗〉Ω)ξ2 = ψ2

with respect to ξ1 for sufficiently large real λ > ‖A∗‖L∞(Ω)m×m as an elliptic problem
in ξ1 for each (ψ1, ψ2) ∈ Lp(Ω)m × Rk. Existence and uniqueness in W 1,p(Ω)m for
large λ follows from Lemma A.3. By Lemma B.5, a weak solution ξ1 ∈ W 1,p(Ω)m is
an element of D(Hp) ⊂ W 1,p(Ω)m. The resulting equation for ξ2 ∈ Rk is

H(λ)ξ2 = ψ2 + 〈C∗(λI −Du∆−A∗)−1ψ1〉Ω

where we used the matrix-valued function

H : ρ(Du∆ + A∗)→ Ck×k, λ 7→ λI − 〈D∗〉Ω − 〈C∗(λI −Du∆−A∗)−1B∗〉Ω.

Recall that the resolvent (λI−Du∆−A∗)−1 is holomorphic in λ ∈ ρ(Du∆+A∗) [23,
Chapter IV, Proposition 1.3]. Hence, we may apply [77, Theorem] (wherein local
boundedness assumption A3 is derived from the first resolvent identity) to infer
holomorphy of the operator H. The determinant det(H) is the sum of products
of holomorphic functions in λ and, consequently, it is holomorphic itself. By the
identity theorem for holomorphic functions, it has only a discrete set of zeroes or is
identically zero. The latter case is impossible since the above equation is solvable
with respect to ξ2 at least for all large real λ. To see this, we recall the resolvent
estimate

‖(λI −Du∆−A∗)−1‖ ≤ M

λ− w
for some w,M ∈ R≥0 [23, Chapter II, Theorem 3.8]. In combination with the
triangle inequality for matrix norms, this yields that the matrix H(λ) is invertible
for all sufficiently large real λ, hence ρ(L) 6= ∅.
It remains to show compactness of the resolvent for one λ ∈ ρ(L). The resolvent is
given by the solution ξ,

ξ1 = (λI −Du∆−A∗)−1 (ψ1 + B∗ξ2) ,

ξ2 = H(λ)−1
(
ψ2 + 〈C∗(λI −Du∆−A∗)−1ψ1〉Ω

)
,
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5 Asymptotic behavior

of the equation (λI−L)ξ = ψ. As usual, the compact embedding W 1,p(Ω) ↪→c Lp(Ω)
from [1, Theorem 6.3] implies compactness of the resolvent (λI − Du∆ − A∗)−1

with image D(Hp)m ⊂ W 1,p(Ω)m [23, Chapter II, Proposition 4.25]. Since matrix
operators such as H(λ)−1 are compact on finite-dimensional spaces such as Rk,
compactness of the resolvent (λI − L)−1 follows from [8, Proposition 6.3].

Now let us assume that Du ∈ Rm×m
≥0 has some zero on its diagonal. For simplicity,

let us assume the above form (5.8) of the shadow operator L defined on the domain
Lp(Ω)m̃×D(Hp)`×Rk. To study invertibility of the operator λI−L for some λ ∈ C,
we focus on the following system of equations

(λI − L)ξ = ψ ⇔


(λI −A11)ξ11 −A12ξ12 −B1ξ2 = ψ11,

−A21ξ11 + (λI −D+∆−A22)ξ12 −B2ξ2 = ψ12,

−〈C1ξ11〉Ω − 〈C2ξ12〉Ω + (λI − 〈D∗〉Ω)ξ2 = ψ2

for ψ ∈ Lp(Ω)m × Rk. Let A11 also denote the bounded multiplication operator
induced by the matrix A11(x) on Lp(Ω)m̃ [104, Proposition 2.2.14]. If λ /∈ σ(A11),
the first equation can be solved resulting in

ξ11 = (λI −A11)−1 [ψ11 + A12ξ12 + B1ξ2] =: f11(λ, ξ12, ξ2). (5.9)

Let us first characterize the spectral values of L in ρ(A11). Equation (5.9) shows
that the above system can be reduced to a spectral problem which can be treated
similarly to the classical shadow limit case Du ∈ Rm×m

>0 in Proposition 5.5.

Lemma 5.6. Let Du ∈ Rm×m
≥0 , D+ ∈ R`×`

>0 for some 0 ≤ ` < m and let L be the
shadow operator defined in (5.8) on Lp(Ω)m̃ × D(Hp)` × Rk ⊂ Lp(Ω)m × Rk for
bounded coefficient matrices A∗,B∗,C∗,D∗ and a finite 1 < p <∞. Then

Σ := σ(L) ∩ ρ(A11) ⊂ σp(L)

is a discrete (probably empty) set of eigenvalues of L. Moreover,

σ(L) ⊂ σ(A11) ∪̇Σ.

If ` = 0 or space dimension n = 1, the above assertion for L also holds for the
particular cases p ∈ {1,∞} or p = 1, respectively.
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5.2 Linearized stability

Proof. Provided λ ∈ ρ(A11) we have already

(λI − L)ξ = ψ ⇔


ξ11 = f11(λ),

(λI −D+∆− f12(λ))ξ12 − f2(λ)ξ2 = h12(λ),

−〈g12(λ)ξ12〉Ω + (λI − 〈D∗〉Ω − g2(λ))ξ2 = h2(λ)

for f11 defined in (5.9) and

f12(λ) = A22 + A21(λI −A11)−1A12, f2(λ) = B2 + A21(λI −A11)−1B1,

g12(λ) = C2 + C1(λI −A11)−1A12, g2(λ) = 〈C1(λI −A11)−1B1〉Ω,

h12(λ) = ψ12 + A21(λI −A11)−1ψ11, h2(λ) = ψ2 + 〈C1(λI −A11)−1ψ11〉Ω.

The subsystem for (ξ12, ξ2) can be treated in a similar way as in the proof of Propo-
sition 5.5. The aim of the proof is to apply an analytic Fredholm theorem [33,
Theorem 4.34] to show discreteness of the remaining spectrum Σ. Let us first show
solvability for some λ ∈ ρ(A11). The resolvent mapping λ → (λI −A11)−1 of the
multiplication operator A11 is a well-defined function with values in L∞(Ω)m×m [35,
Proposition 2.2]. Since A11 generates a uniformly continuous semigroup, we obtain a
resolvent estimate of (λI−A11)−1 [23, Chapter II, Theorem 3.8]. The latter implies
that f12 is uniformly bounded for all large λ. Hence, the elliptic problem

(λI −D+∆− f12(λ))ξ12 − f2(λ)ξ2 = h12(λ)

can be solved in the weak sense with respect to ξ12 ∈ D(Hp)` depending on the large
parameter λ and ξ2, see Lemma A.3. Invertibility of λI − L is finally equivalent to
solving equation

(λI − 〈D∗〉Ω −M(λ))ξ2 = h(λ)

with respect to ξ2 ∈ Rk where

M(λ) = g2(λ) + 〈g12(λ) [λI −D+∆− f12(λ)]−1 f2(λ)〉Ω,

h(λ) = h2(λ) + 〈g12(λ) [λI −D+∆− f12(λ)]−1 h12(λ)〉Ω.

For sufficiently large λ, resolvent estimates of (λI−A11)−1 and (λI−D+∆−A22)−1

for small perturbations via f12(λ) such as in [23, Chapter III, Theorem 1.3] imply
that M(λ) is uniformly bounded in λ and is small with respect to the matrix norm
on Rk. Estimating the matrix λI−〈D∗〉Ω−M(λ) from below then yields invertibility
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5 Asymptotic behavior

of the latter matrix, hence λ ∈ ρ(L) 6= ∅.
Finally, solving the subsystem for (ξ12, ξ2) is equivalent to studying invertibility of
the operator I − k(λ) for the operator-valued function

k :ρ(A11)→ L(Lp(Ω)` × Rk),

λ 7→

(lI −D+∆)−1 [(λ− l)I + f12(λ)] −(lI −D+∆)−1f2(λ)
−(lI − 〈D∗〉Ω)−1〈g12(λ)·〉Ω (lI − 〈D∗〉Ω)−1 [(λ− l)I + f12(λ)]


for some l > 0. Similar to the proof of Proposition 5.5, holomorphy of resolvents
implies that k is analytic in λ ∈ ρ(A11). Let us recall that, for sufficiently large
l > 0, the resolvents (lI −D+∆)−1 and (lI − 〈D∗〉Ω)−1 are compact in Lp(Ω)` and
Rk, respectively, and k(λ) is compact. Application of an analytic Fredholm theorem
[33, Theorem 4.34] yields that the subsystem is uniquely solvable with respect to
(ξ12, ξ2) ∈ D(Hp)` × Rk for all λ ∈ ρ(A11) \ Σ, where Σ is a discrete set in C. For
values λ ∈ Σ we infer an eigenfunction (ξ12, ξ2) 6= 0 of the eigenvalue equation of the
subsystem, using h12 = 0,h2 = 0. Determining ξ11 via equation (5.9) yields that all
λ ∈ Σ are eigenvalues of L, too.
In the degenerated case ` = 0, without any diffusive component, Σ is determined by
all λ ∈ ρ(A∗) such that

H(λ) = λI − 〈D∗〉Ω − 〈C∗(λI −A∗)−1B∗〉Ω

is not invertible in Rk (compare to Proposition 5.5 by formally setting Du ≡ 0).

Let us remark that the discrete set Σ is not necessarily closed. However, all accu-
mulation points are included in σ(A11) by the following argument. A sequence of
eigenvalues µj ∈ Σ ⊂ σp(L) has corresponding eigenfunctions such that the singular
sequence of normalized eigenfunctions implies limj→∞ µj ∈ σ(L) which is a subset
of σ(A11) ∪ Σ, hence limj→∞ µj ∈ σ(A11).

The multiplication operator induced by the subsystem A11 on Lp(Ω)m̃ may cause
problems while inverting the operator λI − L [69, Theorem B.1]. In general, the
third equation of the above eigenvalue problem is not uniquely solvable with respect
to ξ11. To recognize this, let us show σp(A11) ⊂ σp(L) in case of Du ≡ 0 using the
characterization given in [35, Corollary 2.6]. Accordingly, for each λ ∈ σp(A11) there
is a subset Ω1 ⊂ Ω with positive measure |Ω1| > 0 such that for arbitrary functions
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φ ∈ Lp(Ω1) we have eigenfunctions ξ1,φ ∈ Lp(Ω)m̃ of the form

ξ1,φ(x) =

φ(x)y(x) for x ∈ Ω1,

0 for x ∈ Ω \ Ω1

with (λI −A11)ξ1,φ = 0,

for a fixed y ∈ L∞(Ω1)m̃ and 1 ≤ p ≤ ∞. From the eigenvalue problem

(λI − L)ξ = 0 ⇔

 (λI −A∗)ξ1,φ(x)−B∗(x)ξ2 = 0,

−〈C∗ξ1,φ〉Ω + (λI − 〈D∗〉Ω)ξ2 = 0

it is deduced that the operator λI−L cannot be injective in case of Du ≡ 0. Indeed,
concerning ξ2 = 0, the linear integral operator

C̃∗ : Lp(Ω1)→ Rk, φ 7→ 〈C∗yφ〉Ω

cannot be injective due to the rank theorem, hence λ ∈ σp(L).

A complete characterization of the spectrum of the multiplication operator A11 is
given in Proposition C.1. Moreover, it is shown that the spectrum is essential. This
fact enables us to verify that σ(A11) is a part of the essential spectrum of the shadow
operator L.

Proposition 5.7. Let A∗,B∗,C∗,D∗ be matrix-valued functions with entries in
L∞(Ω) according to shadow operator L defined by (5.8) on Lp(Ω)m × Rk for some
1 < p <∞. Then there holds

σ(L) = σ(A11) ∪̇Σ,

where Σ ⊂ σp(L) is the discrete (possibly empty) set defined in Lemma 5.6. The
same is true for the particular case p = 1 = n. If Du ≡ 0, i.e., ` = 0 and A11 = A∗,
we have σp(A∗) ⊂ σp(L), and the assertion holds for p ∈ {1,∞} too.

Proof. It remains to show σ(A11) ⊂ σ(L) since from the considerations in Lemma
5.6 we already have

ρ(A11) ∩ Σ = Σ ⊂ σ(L) ⊂ σ(A11) ∪̇Σ.

As L is a 3 × 3 operator matrix defined in (5.8), this situation corresponds to [47,
Theorem 4.1 (i)]. However, in view of Proposition 5.5, we apply [5, Theorem 2.2] to
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5 Asymptotic behavior

show σess(A11) = σess(L), and follow the ideas of the proof of [35, Theorem 4.2] which
uses similar methods. From Proposition C.1 we infer σ(A11) = σess(A11) = σess(L),
once shown above equality. Let us show σess(A11) = σess(L):
In order to apply [5, Theorem 2.2] we permute the operator matrix L in (5.8).
Let us consider a permutation matrix P ∈ R(m+k)×(m+k) with P2 = I which is an
isomorphism from Lp(Ω)m̃× (Lp(Ω)`×Rk) to (Lp(Ω)`×Rk)×Lp(Ω)m̃. Then λI−L
is a Fredholm operator if and only if λI − L̃ is Fredholm where L̃ = P−1LP, hence
σess(L) = σess(L̃). This is a consequence of the fact that the invertible operator P
is Fredholm and λI − L̃ = P−1(λI − L)P is a composition of Fredholm operators
[8, Chapter 6]. We apply the results of [5] to the closed operator L̃ given by

L̃ :=
A B

C D

 .
We take the bounded multiplication operator D := A11 on X2 := Lp(Ω)m̃ and A

is given by the ` + k equations of (5.8) induced by reaction-diffusion and shadow
system on X1 := Lp(Ω)` × Rk with domain D(Hp)` × Rk. In view of Proposition
5.5 and previous discussions, the operator A is densely defined and closed with
non-empty resolvent set and compact resolvent. Consequently, the operators B,C
in notation of [5] consist of bounded multiplication operators as well as integral
(shadow) operators. Note that S(µ) for µ ∈ ρ(A) in assumption (e) of their paper
is given by

S(µ) = D − C(A− µI)−1B,

where we can choose S0 = D and compactness of M(µ) = S(µ)− S0 follows from a
standard perturbation result for the compact resolvent (µI −A)−1 [50, Chapter III,
Theorem 4.8]. Then σess(L̃) = σess(S0) is a consequence of [5, Theorem 2.2] since L
is a closed operator. This shows σess(L) = σess(A11).

Let us remind ourselves of remarks after [35, Proposition 4.4]; values in σp(A11) need
not to be elements of the point spectrum of L for Du 6= 0 in general. Moreover, since
σess(L) possibly also contains eigenvalues, the discrete set Σ in the above splitting
of the spectrum might not contain all eigenvalues of L.

Remark that time-dependent linearizations which are asymptotically comparable to
linearized systems evaluated at the steady state have similar stability properties, see
[14, Corollary 4.2] or [16, Theorem 5]. I will give several examples in Chapter 6 for
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5.2 Linearized stability

which Assumption L1p will be checked using this method. It is needless to say that
the result of Proposition 5.7 is not limited to just verify Assumption L1p for Theo-
rems 4.10 and 5.2. In many cases, stability and instability of stationary solutions to
the shadow problem (1.4)–(1.6) can be examined using this characterization for its
linearization. Let us return to the simple Example 3.6 where instability of steady
states is inherited from the unstable subsystem with a > 0.

Example 5.8. Steady states of the linear shadow system of Example 3.6 satisfy

−Du∆u = au+ bv in Ω, ∂u

∂n
= 0 on ∂Ω,

0 = c〈u〉Ω + dv.

Integration over Ω yields 〈u〉Ω = v = 0 since the matrix M induced by a, b, c, d is
invertible. Du = 0 would already imply (u, v) = 0 since u is spatially homogeneous
for v is so. If Du > 0, there might be additional non-trivial solutions (u, v) = (wj, 0)
for several values a,Du > 0 satisfying a = Duλj > 0, j ∈ N.
Concerning instability of steady states, let us consider the linear system of Example
3.6 around some (u, v). Then solutions are given by the analytic semigroup in-
duced by L. By the spectral mapping theorem, the spectral bound s(L) equals the
growth bound of the generated semigroup [23, Chapter IV, Corollary 3.11]. Hence,
instability of the steady state due to exponentially growing solutions follows from
a positive spectral bound s(L) > 0. If Du = 0, then σ(A∗) = {a} immediately
yields instability of (u, v) = 0 by Proposition 5.7 since a > 0. If Du > 0, we know
from Proposition 5.5 that σ(L) = σp(L) and we search possible eigenfunctions, i.e.,
non-trivial solutions ξ = (ξ1, ξ2) ∈ D(Hp)× R of

(λI − L)ξ = 0 ⇔

 (λ−Du∆− a)ξ1(x)− bξ2 = 0,

−c〈ξ1〉Ω + (λ− d)ξ2 = 0.

Integration over Ω yields (λI −M)〈ξ〉Ω = 0. If λ ∈ σ(M), then we can choose
constant functions ξ = 〈ξ〉Ω 6= 0 and deduce σ(M) ⊂ σ(L). If λ ∈ ρ(M), then
〈ξ1〉Ω = 0 = ξ2 and the above problem reduces to find ξ1 6= 0 satisfying Neumann
boundary conditions and (λ −Du∆ − a)ξ1 = 0. The last problem is only solvable
with ξ1 6= 0 if λ = a− λjDu for j ∈ N by Proposition A.1. All in all,

σ(L) = σ(M) ∪
⋃
j∈N
{a− λjDu},
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5 Asymptotic behavior

and instability arises from a > λj0D
u for some j0 ∈ N since M is stable by assump-

tions in Example 3.6. Take into account that parameter values 0 < a < λ1D
u would

not lead to instability of the classical shadow limit.

Let us conclude this section with two nonlinear examples. The following model
originating from [69, Appendix C] was recently also targeted in control theory [41].

Example 5.9. Bounded steady states of the shadow Gray-Scott model

∂u

∂t
= −(B + k)u+ u2v in Ω× R>0, u(·, 0) = u0 in Ω,

dv
dt = B(1− v)− 〈u2〉Ωv in R>0, v(0) = 〈v0〉Ω

are given by (u, v) ∈ L∞(Ω)× R with u = (B + k)v−1χΩ1
for some measurable set

Ω1 ⊂ Ω and v > 0 satisfies a quadratic equation. Instability of non-homogeneous
steady states was discussed in [69, Remark C.2] via σ(A11) = {±(B+k)} for B, k > 0
and |Ω1| > 0 since the shadow operator L ∈ L(L∞(Ω)× R) is given by

L(u(x), v) =
−(B + k) + 2(B + k)χΩ1

(x) u2(x)
−2(B + k)〈χΩ1

·〉Ω −B − 〈u2〉Ω

 .
Note that the constant steady state (0, 1) satisfies σ(L) = {−(B + k),−B} and is
locally asymptotically stable [14, Chapter VII, Theorem 2.1].

Finally, I will discuss linearized stability of steady states of the shadow limit for a
quite popular activator-inhibitor system.

Example 5.10. Consider a shadow system of Gierer-Meinhardt type with a possibly
inhomogeneous coefficient, compare [110, Chapter 7].

∂u

∂t
= −µ(x)u+ upv−q in Ω× R>0, u(·, 0) = u0 in Ω,

τ
dv
dt = −v + 〈ur〉Ωv−s in R>0, v(0) = 〈v0〉Ω.

Here, we have real parameters p > 1, q, r, τ > 0, s ≥ 0 and u0 ≥ 0, 〈v0〉Ω > 0.
The coefficient µ ∈ L∞(Ω) satisfies µ(x) ≥ µ0 > 0 for a.e. x ∈ Ω. Non-negative
steady states are given by (u, v) ∈ L∞(Ω)× R with u = (µ−1vq)1/(p−1)χΩ1

for some
measurable set Ω1 ⊂ Ω with |Ω1| > 0 and a real number v > 0 determined by an
integral over µ−1/(p−1). The corresponding linearized shadow operator is given by
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L ∈ L(L∞(Ω)× R) with

L(u(x), v) =
−µ(x) + p(µ−1χΩ1

)(x) −qup(x)v−(q+1)

r〈ur−1v−s·〉Ω −1− s〈urv−(s+1)〉Ω

 .
By Proposition C.1, the spectrum σ(A11) of the multiplication operator is given by
the essential range of −µ+pµ−1χΩ1

in Ω. Depending on µ, a positive spectral radius
s(A11) > 0 would already lead to instability by Proposition 5.7 and [14, Chapter
VII, Theorem 2.3].
In the case µ ≡ 1, instability of steady states (u, v) results from σ(A11) = {−1, p−1}
since p > 1. Hence, the constant steady state (1, 1) as well as inhomogeneous steady
states are all unstable. Recall the works [61, Corollary 1.3], [85] which consider
linearized stability of steady states to the classical shadow system with a diffusion
Du > 0 for the u-component and µ ≡ 1. In contrast to the above shadow problem,
[85, Theorem B] reveals stable configurations for some parameter sets in the classical
shadow case.

5.2.2 Steady states of the diffusive system

Let us study the spectrum of the diffusive counterpart of the linearized shadow
operator L. Consider a bounded steady state of system (1.1)–(1.3), i.e., a solution
(uD,vD) ∈ L∞(Ω)m+k of the problem

−Du∆uD = f(uD,vD, x) in Ω, ∂uD
∂n

= 0 on ∂Ω,

−Dv∆vD = g(uD,vD, x) in Ω, ∂vD
∂n

= 0 on ∂Ω.

According to Assumption A4, f ,g are once continuously differentiable with respect
to the unknown variables u,v. The linearization is induced by the operator

LDξ(x) = D∆ξ(x) + JD(x)ξ(x)

where we used the Jacobian JD of (f ,g) evaluated at the steady state (uD,vD).
As already mentioned for shadow systems, stability or instability properties may of-
ten be verified using linearization, see references at the beginning of the last section.
Hence, knowing its spectrum becomes important for many applications.
Following the same ideas leading to the definition of (S(t))t∈R≥0 in (2.5) yields a
strongly continuous contraction semigroup on Lp(Ω)m+k for each 1 ≤ p <∞ gener-
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ated formally by D∆. The corresponding generator of (S(t))t∈R≥0 ,

Hp : D(Hp) ⊂ Lp(Ω)m+k → Lp(Ω)m+k,

is a densely defined, closed, linear operator [23, Chapter II, Theorem 1.4]. Let us
once again split Du = diag(0,D+) in its zero and positive part, for 0 ∈ Rm̃×m̃

≥0

and D+ ∈ R`×`
>0 (note that m = m̃ + `). This yields D(Hp) = Lp(Ω)m̃ × D(Hp)`+k

as a domain for the unbounded operator LD and boundedness of the steady state
results in a bounded multiplication operator JD induced by the Jacobian evaluated
at (uD,vD). Subsequently, let us take Lp(Ω)m+k as the underlying function space
to get an impression of the method in use. Using perturbation theory, the operator
LD can be defined by

LD = Hp + JD : D(Hp) ⊂ Lp(Ω)m+k → Lp(Ω)m+k (5.10)

for each 1 ≤ p <∞. The operator LD is still unbounded, closed, linear, and densely
defined [23, Chapter III, Theorem 1.3]. It even generates an analytic semigroup by
[23, Chapter III, Proposition 1.12] and the spectral mapping theorem is valid for
1 < p <∞ [23, Chapter IV, Corollary 3.12].

Similar to the shadow case, the spectrum σ(LD) differs in its structure depending
on zero entries of Du ∈ Rm×m

≥0 . Let us begin with the case of no zero entries.

Proposition 5.11. Let Du ∈ Rm×m
>0 and let LD be the diffusive operator defined in

(5.10) on D(Hp)m+k ⊂ Lp(Ω)m+k for a bounded coefficient matrix JD and a finite
1 < p <∞. Then σ(LD) is a discrete set of eigenvalues of LD. The same holds for
the particular case p = 1 = n.

Proof. Let Du ∈ Rm×m
>0 , then it follows in a straight forward manner from [50,

Chapter III, Theorem 6.29] that σ(LD) is a discrete set of eigenvalues. To see this,
take some real number λ > ‖JD‖L∞(Ω)m×m and consider the resolvent (λI − LD)−1

which is the solution operator of the elliptic problem

(λI − LD)ξ = ψ ∈ Lp(Ω)m+k

endowed with zero flux boundary conditions. Existence and uniqueness for large
λ follows from Lemma A.3. By Lemma B.5, a weak solution ξ ∈ W 1,p(Ω)m+k is
an element of D(Hp) ⊂ W 1,p(Ω)m+k. The compact embedding W 1,p(Ω) ↪→c Lp(Ω)
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from [1, Theorem 6.3] finally implies compactness of the resolvent for λ ∈ ρ(LD)
[23, Chapter II, Proposition 4.25].

Now let us assume that Du ∈ Rm×m
≥0 possesses m̃ zeroes. Rewrite the linear operator

LD similarly to the shadow case (5.8) in the form

LD

ξ1

ξ2

 (x) =
 0

D+∆ξ2(x)

+
A11(x)ξ1(x) + B̃(x)ξ2(x)

C̃(x)ξ1(x) + D̃(x)ξ2(x)

 (5.11)

where ξ1 ∈ Lp(Ω)m̃, ξ2 ∈ D(Hp)`+k, and D+ ∈ R(`+k)×(`+k)
>0 comprises all positive

entries of D. Recall that A11, B̃, C̃, and D̃ are assumed to be bounded matrices.
Let us start from the problem

(λI − LD)ξ = ψ ⇔

 (λI −A11)ξ1 − B̃ξ2 = ψ1,

−C̃ξ1 + (λI −D+∆− D̃)ξ2 = ψ2

for some λ ∈ C. According to [104, Proposition 2.2.14], we denote the multiplication
operator induced by A11 on Lp(Ω)m̃ still by A11. Then the first equation can be
solved for λ ∈ ρ(A11) with respect to

ξ1 = (λI −A11)−1(ψ1 + B̃ξ2).

Similarly to the case Du ∈ Rm×m
>0 one shows

Lemma 5.12. Let Du ∈ Rm×m
≥0 have at least one diagonal entry which is zero and

let D+ ∈ R(`+k)×(`+k)
>0 be the positive part of D for some 0 ≤ ` < m. Let LD be the

partly diffusive operator defined in (5.11) on Lp(Ω)m̃ × D(Hp)`+k ⊂ Lp(Ω)m+k for
bounded coefficient matrices and a finite 1 < p <∞. Then

ΣD := σ(LD) ∩ ρ(A11) ⊂ σp(LD)

is a discrete (probably empty) set of eigenvalues of LD. Moreover, there holds

σ(LD) ⊂ σ(A11) ∪̇ΣD.

The same is true for the particular case p = 1 = n.

Proof. For λ ∈ ρ(A11) invertibility of λI − LD is equivalent to solving

(λI −D+∆−M(λ))ξ2 = η2 (5.12)
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with respect to ξ2 ∈ D(Hp)`+k for

M(λ) = D̃ + C̃(λI −A11)−1B̃ and η2 = ψ2 + C̃(λI −A11)−1ψ1.

Let us first show that this equation is solvable for some λ ∈ ρ(A11). Since the
bounded multiplication operator A11 induces a uniformly continuous semigroup, we
obtain a resolvent estimate of (λI −A11)−1 for all large λ [23, Chapter II, Theorem
3.8]. Hence, M(λ) is uniformly bounded for all large λ and the last equation (5.12)
can be solved with respect to ξ2 ∈ D(Hp)`+k as an elliptic problem.
We apply an analytic Fredholm theorem [33, Theorem 4.34] to prove that equation
(5.12) is not uniquely solvable with respect to ξ2 ∈ D(Hp)`+k only if λ ∈ ρ(A11) is
contained in a discrete set ΣD of eigenvalues of LD. To do this, let us note that
solving problem (5.12) is equivalent to solving equation

[
I + (lI −D+∆)−1 ((λ− l)I −M(λ))

]
ξ2 = η̃2

for some sufficiently large l > 0 where η̃2 = (lI − D+∆)−1η2. Calculations from
Proposition 5.11 apply to show compactness of the resolvent (lI −D+∆)−1. Hence,

k(λ) := −(lI −D+∆)−1 ((λ− l)I −M(λ))

is compact for each λ ∈ ρ(A11) and k is analytic in λ since the resolvent mapping of
A11 is. An application of the Fredholm theorem to [I−k(λ)]ξ2 = η̃2 yields the claim
ΣD ⊂ σp(LD) since equation (5.12) is solvable for some λ > 0 large enough.

We infer that ΣD need not to be closed but accumulation points are included in
σ(A11) by the same argument as for Σ following on Lemma 5.6. Let us remind our-
selves of the characterization of the spectrum σ(A11) of the multiplication operator
in Lp(Ω)m̃ in Proposition C.1. The following result is the analogon of Proposition
5.7 and is inspired by the partly diffusive case considered in [71, Sections 4.3, 4.4].
The latter work concerns a system of two equations with m̃ = 1. The subsequent
proposition generalizes the results from [71] to systems with compartments of ar-
bitrary size and to less regular boundaries ∂Ω ∈ C0,1. Along the same lines of the
proof of Proposition 5.7 we can show

Proposition 5.13. Let A11, B̃, C̃, D̃ be matrix-valued functions which have entries
in L∞(Ω) according to the linear operator LD defined by (5.11) on Lp(Ω)m̃+(`+k) for
some 1 < p < ∞. Then, using the same notation for the multiplication operator
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5.2 Linearized stability

induced by A11 on Lp(Ω)m̃, we have

σ(LD) = σ(A11) ∪̇ΣD

where ΣD ⊂ σp(LD) is the discrete (possibly empty) set defined in Lemma 5.12. The
same is true for the particular case p = 1 = n.

Proof. From the above considerations we already know the relation

ρ(A11) ∩ ΣD ⊂ σ(LD) ⊂ σ(A11) ∪ ΣD.

It is sufficient to show σess(A11) ⊂ σ(LD) since from Proposition C.1 we infer
σ(A11) = σess(A11). We apply [5, Theorem 2.2] to show σess(A11) = σess(LD).
For an application of [5, Theorem 2.2] we have to resort above operators. Using
the notation of their paper, we take the bounded multiplication operator D := A11

in X2 := Lp(Ω)m̃ and A is given by the ` + k equations of operator (5.11) induced
by the reaction-diffusion terms on X1 := Lp(Ω)`+k. In view of Proposition 5.11
and previous discussions, A is a densely defined, closed operator with non-empty
resolvent set and compact resolvent. The remaining operators B,C in notation of
[5] consist of bounded multiplication operators. Note that in assumption (e) of their
paper S(µ) for µ ∈ ρ(A) is given by

S(µ) = D − C(A− µI)−1B,

where we can choose S0 = D and compactness of M(µ) = S(µ) − S0 holds by [50,
Chapter III, Theorem 4.8]. Then σess(LD) = σess(S0) = σess(A11) is a consequence
of [5, Theorem 2.2] since LD is a closed operator.

Following discussions after [35, Proposition 4.4], there holds σp(A11) 6⊂ σp(LD) in
general. Moreover, ΣD in the above splitting of the spectrum might not contain all
eigenvalues of LD since σess(LD) possibly also contains eigenvalues.

Let us conclude this chapter with some examples discussing stability of steady states
of some particular diffusive problems. Returning to Example 3.6, we will see that,
similar to the shadow case, instability from the linearization LD is inherited from
the unstable subsystem with a− λjDu > 0.
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5 Asymptotic behavior

Example 5.14. Steady states of the linear system in Example 3.6 satisfy

−Du∆uD = auD + bvD in Ω, ∂uD
∂n

= 0 on ∂Ω,

−D∆vD = cuD + dvD in Ω, ∂vD
∂n

= 0 on ∂Ω.

The trivial steady state is 0 and integration over Ω yields 〈uD〉Ω = 〈vD〉Ω = 0 for
any other stationary solution, since M is invertible with det(M) > 0 and tr(M) < 0.
There exists a non-trivial steady state if and only if 0 ∈ σp(LD) and it remains to
compute σ(LD).

If Du = 0, Proposition 5.13 implies σ(LD) = {a} ∪ ΣD where λ ∈ ΣD is given by
those λ 6= a for which equation (5.12) is not uniquely solvable. The latter is the case
if and only if (λ−d−c(λ−a)−1b) = −Dλj for some j ∈ N0. These values are actually
all eigenvalues of the shifted matrix MD,j = M − λjD. We have tr(MD,j) < 0 for
all D > 0, j ∈ N0 but

det(MD,j) = det(M)− aλjD

changes its sign for a > 0 and all j ∈ N for growing D. Apart from a > 0, additional
instabilities arise due to some λ ∈ ΣD with positive real part. Since a > 0 and
det(M) > 0, we conclude that 0 ∈ σp(LD) if and only if 0 ∈ σ(MD,j) for some
j ∈ N. The last condition is satisfied if and only if 0 = det(MD,j). Hence, non-
trivial steady states exist of the form (uD,j, vD,j) = wjzD,j for several small diffusion
D with some eigenvector zD,j of the matrix MD,j. They disappear, however, for
growing D and 0 is the only steady state of the diffusive system. From a > 0 and

σ(LD) = {a} ∪ ΣD = {a} ∪
⋃
j∈N0

σ(M− λjD)

it is clear that all steady states are unstable if Du = 0.

If Du > 0, we know from Proposition 5.11 that σ(LD) = σp(LD) and we search
for possible eigenfunctions. For each eigenvector zD,j of the shifted matrix MD,j

we can choose an eigenfunction ξ = zD,jwj for the operator LD where we used
the eigenfunction wj of −∆ corresponding to λj. This shows one inclusion of the
equality ⋃

j∈N0

σ(M− λjD) = σp(LD). (5.13)
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5.2 Linearized stability

Indeed, an eigenfunction ξ of LD corresponding to eigenvalue λ ∈ C is a non-trivial
weak solution ξ = (ξ1, ξ2) ∈ D(Hp)2 of

(λI − LD)ξ = 0 ⇔

 (λ−Du∆− a)ξ1 − bξ2 = 0,

−cξ1 + (λ−D∆− d)ξ2 = 0.

Testing with eigenfunctions wj ∈ W 1,q(Ω) for some j ∈ N0 in each component yields

(λ−MD,j)ξj = 0 for ξj =
∫Ω ξ1wj dx∫

Ω ξ2wj dx


where we used the weak formulation of wj from Proposition A.1, see Corollary A.2
for regularity. Since (wj)j∈N0 forms a spectral basis of L2(Ω), ξj cannot vanish for
all j if p ≥ 2. Thus, there is some index j for which ξj 6= 0 is an eigenvector to
MD,j. If p < 2, density of the span of eigenfunctions in L2(Ω) ⊂ Lp(Ω) carries over
to Lp(Ω) and the same argument applies. Using identity (5.13), the spectrum on
LD can be studied via the matrices MD,j. It is not difficult to show tr(MD,j) < 0
provided tr(M) < 0 and

det(MD,j) = det(M)− dλjDu + λjD(λjDu − a).

There are again non-trivial steady states for several values of diffusions (Du, D) if
and only if det(MD,j) = 0, which are stable since tr(MD,j) < 0. As D →∞, almost
all eigenvalues stabilize due to λjDu−a > 0 but some indices satisfy det(MD,j) < 0
and we have instability (recall a > λj0D

u for some j0 ∈ N in Example 3.6). Also if
λjD

u = a for some j ∈ N, then det(MD,j) = −bc 6= 0. In any case, 0 is the only
remaining steady state as D →∞, which is unstable.

The example above also applies to results obtained in [106, Theorem 4.2] for general
linear diffusive systems with constant coefficients. We refer to the literature given in
[106] for further investigations concerning diffusion-driven instability. Let us briefly
discuss similarity of the shadow spectrum σ(L) with its diffusive counterpart σ(LD)
for the zero solution faced with in Example 5.14.

• Let Du = 0. Stability of the shadow solution via Re(λ) < 0 for all spectral
values λ ∈ σ(L) implies stability of the diffusive solution by [106, Theorem
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4.2] using the inclusion

{a} ∪ σ(M) = σ(L) ⊂ σ(LD) = {a} ∪
⋃
j∈N0

σ(M− λjD).

Clearly, instability of the shadow solution via Re(λ) > 0 for all λ ∈ σ(L) yields
instability for the diffusive system.

• Let Du > 0. Stability of the shadow solution via Re(λ) < 0 for all λ ∈ σ(L)
implies stability of the diffusive solution by [106, Theorem 4.2],

σ(L) = σ(M) ∪
⋃
j∈N
{a− λjDu} and σ(LD) =

⋃
j∈N0

σ(M− λjD).

We infer from Example 5.14 that instability via Re(λ) > 0 of the shadow
solution yields instability for the diffusive system, either due to σ(M) ⊂ σ(LD)
or a− λj0Du > 0 for some j0 ∈ N0.

• Let Du ≥ 0 and a ≤ 0. If the shadow solution is stable while some spectral
value satisfies Re(λ) = 0, stability for the diffusive problem can be shown
via resolvent estimates [21, Theorem 1.11]. We refer to [80, Lemma 2.3] for
a representation of the resolvent operator of LD. For instance, Example 4.2
corresponds to this degenerated case.

In the nonlinear case, there are mainly two ways showing instability via linearization.
On the one hand, superlinear decay of the nonlinear reaction term in combination
with a non-empty intersection of the spectrum with the complex right half-plane
is sufficient for instability, see [97, Theorem 1] or [14, Chapter VII, Theorem 2.3]
for bounded operators. On the other hand, a growth estimate of the nonlinear
reaction term with respect to two different norms and a spectral gap close to the
imaginary axis lead to instability, see [26, Theorem 2.1] or [14, Chapter VII, Theorem
2.2] for bounded operators. The latter method is used to provide the instability
result [71, Theorem 2.11] which can be generalized to systems and discontinuous,
bounded steady states in view of Proposition 5.13. Let us conclude with the diffusive
counterparts of Examples 5.9 and 5.10 applying to the latter instability result in [71].

Example 5.15. Non-negative steady states (uD, vD) of the partly diffusive Gray-
Scott model

∂uD
∂t

= −(B + k)uD + u2
DvD in Ω× R>0, uD(·, 0) = u0 in Ω,
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5.2 Linearized stability

∂vD
∂t
−D∆vD = B(1− vD)− u2

DvD in Ω× R>0, vD(·, 0) = v0 in Ω,

endowed with zero flux boundary conditions for vD satisfy uDvD = B+k or uD = 0,
i.e., uD = (B + k)v−1

D χΩ1
for some measurable set Ω1 ⊂ Ω and vD satisfies a

corresponding nonlinear elliptic problem. Uniqueness of the corresponding linear
elliptic problem yields vD = 1 if Ω1 = ∅, see Lemma A.3. The linearization around
the constant steady state (0, 1) satisfies

σ(LD) = {−(B + k)} ∪
⋃
j∈N0

{−B − λjD}.

Hence, (0, 1) is locally asymptotically stable [106, Theorem 4.2]. All other steady
states (also non-homogeneous if they exist) are unstable as shown in [71, Section
3.1] via σ(A11) = {B + k} for B, k > 0.

The corresponding diffusive system of activator-inhibitor type from Example 5.10
can be treated in a similar way. Additional model examples satisfying Du = 0 can
be found in [71, 105] where instability is investigated, too.

Example 5.16. Non-negative, bounded steady states (if they exist apart from con-
stant ones) of the partly diffusive system

∂uD
∂t

= −uD + upDv
−q
D in Ω× R>0, uD(·, 0) = u0 in Ω,

τ
∂vD
∂t
−D∆vD = −vD + urDv

−s
D in Ω× R>0, vD(·, 0) = v0 in Ω

are of the form (uD, vD) ∈ L∞(Ω)2 with

uD(x) = v
q/(p−1)
D (x)χΩ1

(x)

for some measurable (not necessarily connected) subset Ω1 ⊂ Ω. Here, vD > 0
satisfies an elliptic problem with zero Neumann boundary conditions. There holds
|Ω1| > 0 because uD = 0 and uniqueness of the elliptic problem would imply vD = 0,
see Lemma A.3, which yields no reasonable steady state of the above system.
Similar to Example 5.10, linearization yields σ(A11) = {−1, p− 1}. Since p > 1 and
elements of the discrete set ΣD possibly accumulate only in σ(A11), this implies a
spectral gap of σ(LD) near the imaginary axis and [71, Theorem 4.8] applies to show
instability of these steady states [71, Theorem 2.11]. Recall that even the constant
steady state (1, 1) is unstable no matter what relation holds between the parameters
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5 Asymptotic behavior

q, r, τ > 0 and s ≥ 0; although there are stable constellations for the ODE case.
For the more complex case Du > 0, we refer for instance to the survey [109, Section
5.4] in which non-homogeneous steady states are constructed and their stability is
investigated. Actually, there exist stable, so called spike patterns in contrast to the
case of Du = 0 discussed here.
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6 Model examples

There is a huge amount of applications arising from diverse fields of natural sciences,
see e.g. [27, 60, 82, 83, 94], subject to sufficiently large diffusion components. Since
the classical shadow approximation is well studied [32, 53, 78, 79, 86, 109], this
chapter is mainly devoted to reaction-diffusion-ODE models. I refer to Examples
5.9 and 5.10 based on models of Gray-Scott type [29] and Gierer-Meinhardt type
[28]. These examples as well as Model 6.1 below include classical shadow problems
and reaction-diffusion-ODE type problems. The following model examples in this
chapter rather illustrate various dynamics of solutions of both the shadow limit and
the diffusive problem than show differences to classical shadow systems (see Intro-
duction). The aim of this chapter is to exemplify the results of this thesis in showing
accuracy of the shadow approximation on different time scales for distinct models.

Before studying each model in detail, let us briefly depict the general approach to
applications of the above main theorems 4.10 and 5.2. Model assumptions A1–A4
are not difficult to check. Usually nonlinearities are continuously differentiable with
respect to the solution variables (u,v), hence they satisfy the local Lipschitz con-
dition A1 on page 12. Boundedness of initial conditions stated in Assumption A2
on page 12 depends on the considered model. The differentiability assumption A4
on page 52 is satisfied by a nonlinearity which is of class C2 with respect to the
unknown solution and which possesses uniformly bounded gradients. Note that in
many cases the nonlinearities are time-independent, hence the decay estimate (4.13)
for the mean value correction in Assumption A3 on page 44 is trivially satisfied.
Assumption B on page 51 concerning global existence and uniform boundedness of
the shadow limit is more delicate and has to be checked for each model in partic-
ular. As can be seen in the following examples, it is often useful to consider the
corresponding differential equation for the masses (〈u〉Ω,v) in order to show some
properties of the shadow limit (u,v) itself. There are several techniques to show
global existence and uniform bounds of solutions of which I just mention a few: al-
most linear growth of nonlinearities, feedback arguments, maximum principles and
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invariant rectangles for ordinary differential equations as well as reaction-diffusion
equations, see [12] and the books [14, Chapter VII] or [94].
Concerning linearization, it is quite standard to check Assumption L0 on the ODE
subsystem using Bohl exponents as in [14, Chapter III, §3]. A Bohl exponent deter-
mines the exponential growth of the evolution operators from which we can derive
stability of the evolution system. This concept is a generalization of the growth
bound of a semigroup to time-dependent evolution systems. Alternatively, to show
Assumption L0 stated on page 49, one can use the dissipativity condition Dp on
page 68 in its equivalent form given in Lemma 4.14. Nevertheless, Assumption L1p
stated on page 43 is crucial for an application of Theorem 4.10 resp. Theorem 5.2
and an analytical verification is not easy. Stability of Bohl exponents for evolution
systems under time-dependent perturbations, which tend to zero as t → ∞, often
allows reducing considerations to some known dynamics, e.g., stationary or periodic
structures. In such a situation, the linearized evolution equation is asymptotically
comparable to the linearized equation of the stationary pattern. This stability prop-
erty is well known for bounded operators [14, Corollary 4.2] but is also applicable for
perturbed unbounded operators, see [16, Theorem 5], [96, Corollary 4.2] or [40, §7.1].

Now let us turn to three model examples to see the methodology described above
in more detail. The following models have been selected to present various dy-
namics of solutions of both the shadow limit and the diffusive problem. At first,
a Lotka-Volterra-type system from ecology is considered which has only constant
steady states [82]. While this model features global convergence results, the fol-
lowing models show that accuracy of the shadow approximation highly depends on
the time scale. The well-known Lengyel-Epstein model from [60] exhibiting various
patterns demonstrates convergence results on different time scales depending on the
pattern. Finally, following [27], a system modeling stem-cell dynamics highlights the
discrepancy between the diffusive system and its shadow limit for asymptotic time
scales. Although the shadow is a valuable approximation for intermediate times
according to Theorem 4.10, the dynamics of the two problems differs drastically as
time t→∞.

6.1 Predator-prey model

Consider a closed system describing predator-prey dynamics, with a predator de-
noted by uD and a mobile prey vD. In fresh-water ecology, a biological example
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6.1 Predator-prey model

can be given by Hydra and Daphnia where the predator Hydra is sedentary, i.e.,
Du = 0 [82, Example (b)]. The following model adapted from [82] includes both
cases Du = 0 and Du > 0. The corresponding (partly) diffusive system reads

∂uD
∂t
−Du∆uD = −puD + bvD in ΩT , uD(·, 0) = u0 in Ω, (6.1)

∂vD
∂t
−D∆vD = (d− auD − cvD)vD in ΩT , vD(·, 0) = v0 in Ω, (6.2)

∂uD
∂n

= 0, ∂vD
∂n

= 0 on ∂Ω× (0, T ). (6.3)

Here, a, b, c, d, p > 0 are constants and the initial values u0, v0 ≥ 0 satisfy Assump-
tion A2 as well as non-negativity almost everywhere in Ω with 〈v0〉Ω > 0. The
corresponding shadow limit is given by

∂u

∂t
−Du∆u = −pu+ bv in ΩT , u(·, 0) = u0 in Ω, (6.4)

dv
dt = (d− a〈u〉Ω − cv)v in (0, T ), v(0) = 〈v0〉Ω (6.5)

where u is endowed with a zero flux boundary condition if Du > 0. If we integrate
the mild solution u of differential equation (6.4) over Ω, compare Proposition 2.6 and
Proposition B.3, we obtain an ODE system for the masses (〈u〉Ω, v). This system
admits the global attractor (u, v) where

u = dp

cp+ ab
and bv = pu.

Convergence to the equilibrium is a consequence of the radially unbounded Lyapunov
functional

L(〈u〉Ω, v) = a

2(〈u〉Ω − u)2 + b(v − v − v log(v/v))

adapted from [82], where L is dissipative on trajectories, i.e.,

dL
dt = −ap(〈u〉Ω − u)2 − bc(v − v)2 ≤ 0.

Thus, we obtain the asymptotics (〈u〉Ω, v) → (u, v) as t → ∞ as well as u → u,
since

u(·, t)− 〈u〉Ω(t) = (Su(t)u0 − 〈u0〉Ω)e−pt → 0 for t→∞.
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Hence, all assumptions A1–A4, B are satisfied. For an application of Theorem 5.2,
it remains to compute the linearization

J(x, t) =
 −p b

−av(t) d− 2cv(t)− au(x, t)


around the shadow limit (u, v). The corresponding shadow evolution system W
defined in (4.39) is induced by the operator

DS∆ + L0(t) : Lp(Ω)× R→ Lp(Ω)× R,

L0(t)
ξ1

ξ2

 (x) =
 −pξ1(x) + bξ2

−av(t)〈ξ1〉Ω + (d− 2cv(t)− a〈u(·, t)〉Ω)ξ2


where DS = diag(Du, 0) ∈ R2×2

≥0 is a diagonal matrix.

Lemma 6.1. Let (u, v) be a shadow solution of system (6.4)–(6.5) for bounded
initial conditions u0, v0 ≥ 0 satisfying 〈v0〉Ω > 0. Then assumptions L0 and L1p
are satisfied for p =∞. Moreover, the corresponding evolution system is uniformly
exponentially stable for the exponent η = p > 0 and some σ > 0, respectively.

Proof. Assumption L0 is satisfied since (U(t))t∈R≥0 with U(t) = Su(t)e−pt is uni-
formly exponentially stable with exponent η = p > 0. The semigroup (Su(t))t∈R≥0

generated by Du∆ on L2(Ω) is given by Su(t) = S∆(Dut), see the definition in (2.5).
Concerning the evolution system W defined for Assumption L1p on page 56, let us
split the shadow operators L0(t) = L∞ + B(t) for operator matrices

L∞,B(t) :Lp(Ω)× R→ Lp(Ω)× R,

L∞

ξ1

ξ2

 (x) =
 −pξ1(x) + bξ2

−av〈ξ1〉Ω − cvξ2

 =:
A11ξ1(x) +B∗ξ2

C∗〈ξ1〉Ω +D∗ξ2

 ,
B(t)

ξ1

ξ2

 (x) =
 0
−a(v(t)− v)〈ξ1〉Ω + [−2c(v(t)− v)− a(〈u(·, t)〉Ω − u)] ξ2

 .
Since limt→∞B(t) = 0 with respect to the operator norm on L∞(Ω)× R, evolution
systems induced by DS∆+L0(t) and DS∆+L∞ are asymptotically comparable. We
will show that it remains to consider the latter semigroup for exponential stability
of the former evolution system. To recognize this, we start from the definition ofW
in condition L1p. This evolution system is given by evolution operators W(t, s) for
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t, s ∈ R≥0, s ≤ t, defined by

ξ(·, t) = W(t, s)ξ(·, s), ξ(·, 0) = ξ0 ∈ Lp(Ω)× R,

where ξ ∈ C(R≥0;Lp(Ω)m × Rk) is the unique solution of the shadow problem

∂ξ

∂t
−DS∆ξ = L0(t)ξ = L∞ξ + B(t)ξ in Ω× R>0

endowed with zero Neumann boundary conditions for ξ1 if necessary. We split the
full operator into a time-independent, possibly unbounded part L = DS∆+L∞ and
the bounded time-varying operator family (B(t))t∈R≥0 . We are able to compare both
evolution systems, the system W∞ induced by a semigroup (W∞(t))t∈R≥0 which is
generated by the operator L and the full evolution system W , using the integral
representation

W(t, s)ξ0 = W∞(t− s)ξ0 +
∫ t

s
W∞(t− τ)B(τ)W(τ, s)ξ0 dτ ∀ 0 ≤ s ≤ t

from [23, Chapter VI, Theorem 9.19]. Once we have shown uniform exponential
stability for (W∞(t))t∈R≥0 , estimations in Lp(Ω)× R for 1 ≤ p ≤ ∞ yield

‖W(t, s)ξ0‖Lp(Ω)×R ≤ Ce−σ∞(t−s)‖ξ0‖Lp(Ω)×R

+
∫ t

s
Ce−σ∞(t−τ)‖B(τ)‖L∞(Ω)×R‖W(τ, s)ξ0‖Lp(Ω)×R dτ.

Gronwall’s inequality results in the estimate

‖W(t, s)ξ0‖Lp(Ω)×R ≤ Ce−σ∞(t−s) exp
(∫ t

s
C‖B(τ)‖L∞(Ω)×R dτ

)
‖ξ0‖Lp(Ω)×R.

Although the theory of Bohl exponents was established for bounded operators in [14,
Chapter III, pp. 118], the same estimates used to prove [14, Corollary 4.2] apply
to the above estimate in the context of semigroup theory, see further [96, Corollary
4.2], [16, Theorem 5] or [40, §7.1, p. 195]. More precisely, since limt→∞B(t) = 0,
for each γ ∈ (0, 1) there is a t0 > 0 such that C‖B(t)‖L∞(Ω)×R ≤ γσ∞ for all t ≥ t0.
This implies the following estimate

‖W(t, s)ξ0‖Lp(Ω)×R ≤ C̃e−γσ∞(t−s)‖ξ0‖Lp(Ω)×R
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for C̃ = C exp(
∫ t0

0 C‖B(τ)‖L∞(Ω)×R dτ). Hence, uniform exponential stability carries
over from the evolution system W∞ to the full evolution system W on Lp(Ω) × R,
provided limt→∞B(t) = 0.
Using the spectral mapping theorem [23, Chapter IV, Corollary 3.12] for analytical
semigroups, it is well known that uniform exponential stability of the semigroup
(W∞(t))t∈R≥0 can be verified via the spectrum of its generator L = DS∆ + L∞.
It remains to show Re(λ) < 0 for all λ ∈ σ(DS∆ + L∞) for uniform exponential
stability of the evolution system W∞ resp. W [23, Chapter V, Theorem 1.10]. We
infer from Proposition 5.7 that in case of Du = 0

σ(L) = σ(L∞) = {A11} ∪ Σ,

where Σ consists of all eigenvalues of the constant coefficient matrix

J∞ =
A11 B∗

C∗ D∗

 .
Note that A11 = −p < 0 and both eigenvalues of J∞ have negative real parts since
tr(J∞) = −p− cv < 0 and det(J∞) = (pc+ ab)v > 0.
From Proposition 5.5 we know that σ(DS∆ + L∞) is a discrete set for Du > 0 and
one could follow the strategy of [80, Appendix]. However, since the evolution of the
linear shadow limit is quite simple, we apply a different approach. The semigroup
(W∞(t))t∈R≥0 is defined by the solution ξ = (w, z) of ∂tξ −DS∆ξ = L∞ξ. While
w(·, t)− 〈w〉Ω(t) = (Su(t)w0 − 〈w0〉Ω)e−pt, integration yields

〈ξ〉Ω =
〈w〉Ω

z

 (t) = exp(J∞t)
〈w0〉Ω
〈z0〉Ω

 .
It is well-known from the theory of ODEs that 〈ξ〉Ω decays exponentially to zero
since J∞ is a stable matrix [14, Chapter I, Theorem 4.1]. Choosing σ ∈ R>0 such
that σ < min{p,minλ∈σ(J∞) |Reλ|} yields an estimation of both expressions. This
results in

‖W∞(t)ξ0‖L∞(Ω)×R = ‖ξ(·, t)‖L∞(Ω)×R ≤ Cσe−σt‖ξ0‖L∞(Ω)×R

for some Cσ > 0. Thus, Assumption L1p is satisfied for p = ∞ and each Du ≥ 0
with a uniformly exponentially stable evolution system W .
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In summary, Theorem 5.2 yields global estimates

‖uD − u‖L∞(Ω×R≥0) + ‖vD − v − ψD‖L∞(Ω×R≥0) ≤ CD−1.

Note that the results on Lyapunov functions in [39, Proposition 2.1] is also applicable
to partly diffusing systems. The same Lyapunov function which is known from the
theory of ODEs can be extended to the reaction-diffusion case. Consequently, (u, v)
is the only positive attractor for the diffusive system (6.1)–(6.3) and (u, v) is globally
(for positive initial data) asymptotically stable by Lyapunov’s direct method.

6.2 Lengyel-Epstein model

Consider the partially diffusive Lengyel-Epstein model in [36, Section 5.7.2] origi-
nated from [60]. For constants a, b > 0, it is given by the following system

∂uD
∂t

= a−
(

1 + 4vD
1 + u2

D

)
uD in ΩT , uD(·, 0) = u0 in Ω, (6.6)

∂vD
∂t
−D∆vD = b

(
1− vD

1 + u2
D

)
uD in ΩT , vD(·, 0) = v0 in Ω, (6.7)

∂vD
∂n

= 0 on ∂Ω× (0, T ). (6.8)

Those equations originally model the Chlorite-Iodide-Malonic Acid (CIMA) reaction
in [60], wherein uD describes an activator which is set to be immobile in system (6.6)–
(6.8) and vD is a diffusing inhibitor. The corresponding shadow limit reduction of
equations (6.6)–(6.8) yields the following system of integro-differential equations

∂u

∂t
= a−

(
1 + 4v

1 + u2

)
u in ΩT , u(·, 0) = u0 in Ω, (6.9)

dv
dt = b

〈(
1− v

1 + u2

)
u
〉

Ω
in (0, T ), v(0) = 〈v0〉Ω. (6.10)

Fundamental properties of the shadow solution are summarized in the following
proposition.

Proposition 6.2. Let u0, v0 ≥ 0 a.e. in Ω satisfy Assumption A2. Then there
is a unique solution (u, v) ∈ C1(R≥0;L∞(Ω) × R) of system (6.9)–(6.10) which is
uniformly bounded and each component is non-negative. Moreover, assumptions
A1–A4 and B are fulfilled.
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Proof. Existence and uniqueness of a local-in-time mild solution is provided by
Proposition 2.6. For non-negative initial data u0, v0 ≥ 0 the shadow limit com-
ponent u is non-negative due to

u(·, t) = Û(·, t)u0 +
∫ t

0
Û(·, t)Û−1(·, τ)a dτ

for
Û(·, t) = exp

(
−
∫ t

0
1 + 4v(τ)

1 + u2(·, τ) dτ
)
.

Similarly, v ≥ 0 since

v(t) = V (t)〈v0〉Ω +
∫ t

0
V (t)V −1(τ)b〈u(·, τ)〉Ω dτ

for
V (t) = exp

(
−b

∫ t

0

〈
u(·, τ)

1 + u2(·, τ)

〉
Ω

dτ
)
≤ 1.

The first component u is bounded uniformly by max{a, ‖u0‖L∞(Ω)} due to exponen-
tial decay of (Û(x, t))t∈R≥0 . If v were unbounded, i.e., v(t) ≥ 1 + ‖u‖2

L∞(Ω×R≥0) for
some t ≥ t0, then v would decrease and we obtain boundedness, to the contrary.
Since the nonlinearities in system (6.9)–(6.10) are of class C2 with respect to (u, v),
also their derivatives evaluated at the bounded shadow limit are uniformly bounded.
In summary, assumptions A1–A4 and B are fulfilled.

To check stability assumption L1p, we consider the non-symmetric Jacobian

J(x, t) =
−1− 4v(t) 1−u2(x,t)

(1+u2(x,t))2 −4 u(x,t)
1+u2(x,t)

b− bv(t) 1−u2(x,t)
(1+u2(x,t))2 −b u(x,t)

1+u2(x,t)

 =
A∗(x, t) B∗(x, t)
C∗(x, t) D∗(x, t)

 (6.11)

evaluated at the shadow limit (u, v) with shadow operator

L0(t) : Lp(Ω)× R→ Lp(Ω)× R,

L0(t)
ξ1

ξ2

 (x) =
 A∗(x, t)ξ1(x) +B∗(x, t)ξ2

〈C∗(·, t)ξ1〉Ω + 〈D∗(·, t)ξ2〉Ω

 .
Let us consider the following two examples for an application of Theorems 4.10 and
5.2. A shadow solution close to the homogeneous stationary solution and a shadow
limit close to a non-homogeneous stationary solution of problem (6.9)–(6.10).
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6.2 Lengyel-Epstein model

Example 6.3. Let (u, v) → (u, v) converge uniformly in L∞(Ω) as t → ∞, where
the unique constant steady state is given by u = a/5 and v = 1 + u2. Decompose

L0(t) = L∞ + (L0(t)− L∞) with lim
t→∞
‖L0(t)− L∞‖L(L∞(Ω)×R)) = 0

for the steady state shadow operator

L∞ : Lp(Ω)× R→ Lp(Ω)× R,

L∞

ξ1

ξ2

 (x) = 1
v

(3u2 − 5)ξ1(x)− 4uξ2

2bu2〈ξ1〉Ω − buξ2

 =:
Aξ1(x) +Bξ2

C〈ξ1〉Ω +Dξ2

 .
We infer from [14, Corollary 4.2] that uniform exponential stability of the full evo-
lution system W induced by L0 on L∞(Ω) × R is inherited from the semigroup
(exp(L∞t))t∈R≥0 generated by the shadow operator L∞ at the steady state. By
virtue of the spectral mapping theorem [23, Chapter I, Lemma 3.13] for uniformly
continuous semigroups, it remains to check the spectrum of the shadow operator
L∞ at the steady state. We conclude from Proposition 5.7 that

σ(L∞) = {A} ∪ Σ = {A} ∪ σ(J∞)

where the Jacobian J∞ at the steady state is given by

J∞ = 1
v

3u2 − 5 −4u
2bu2 −bu

 .
Since det(J∞) = ab/v > 0, it remains to check A, tr(J∞) < 0 for exponential
stability of the semigroup generated by L∞. From the calculations

A < 0 ⇔ 3u2 < 5 ⇔ a2 <
125
3

we infer (also in the case of A ≤ 0) that

tr(J∞) = v−1[(3u2 − 5)− bu] ≤ −bv−1u < 0.

This shows that Assumption L1p is satisfied for all 1 ≤ p ≤ ∞ with an exponential
stability for some σ > 0 if a2 < 125/3, and Theorem 5.2 applies for estimates.
If however A = 0, i.e., 3a2 = 125, let us consider (u, v) = (u, v), and we can check
boundedness of the semigroup using a characterization via the resolvent of L∞ [21,
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Chapter III, Theorem 1.11]. It is not difficult to invert λI − L∞ explicitly for each
λ ∈ C, Re(λ) > 0,

λ(λI − L∞)−1

ψ1

ψ2

 (x) =
ψ1(x) + BC

λ(λ−D)−BC 〈ψ1〉Ω + λB
λ(λ−D)−BCψ2

λC
λ(λ−D)−BC 〈ψ1〉Ω + λ2

λ(λ−D)−BCψ2

 .
Using |〈ψ1〉Ω| ≤ max{1, |Ω|−1}‖ψ1‖Lp(Ω) for each finite 1 ≤ p < ∞, we reach at the
resolvent estimate ‖(λI−L∞)−2‖ ≤ C|λ|−2 in Lp(Ω)×R where C is independent of
p <∞. Then condition (b) of Theorem 1.11 in [21, Chapter III] is satisfied and its
proof yields uniform boundedness of the semigroup with a bound independent of p
for all large p <∞. Continuity of the Lp norm yields the same bound in L∞(Ω)×R
([1, Theorem 2.14] applies since |Ω| < ∞). Hence, Theorem 4.10 is applicable for
a2 ≤ 125/3 and p =∞ where (u, v) ≡ (u, v) is constant.

The next example shows that even discontinuous, non-monotone patterns of the
Lengyel-Epstein model (6.6)–(6.8) can be approximated globally by its discontinuous
shadow limit.

Example 6.4. Consider space-dependent steady states (u(x), v) of the shadow sys-
tem (6.9)–(6.10). Since v is constant, the first equation yields

(a− u)(1 + u2) = 4uv

with at most three constant solutions 0 < ui = ui(v) < a depending on v > 0. Thus,
a steady state may be written in the form (u, v) ∈ L∞(Ω)× R where

u(x) =
3∑
i=1

uiχΩi(x) (6.12)

is a step function for some measurable, disjoint sets Ωi ⊂ Ω with |Ωi| ≥ 0. The
second equation (6.10) yields a relation between sets Ωi and solutions ui:

3⋃
i=1

Ωi = Ω,
3∑
i=1
|Ωi|(5ui − a) = 0 (6.13)

Notice that the sets Ωi are not necessarily connected and u may have infinitely many
jumps in Ω, hence it is not monotone in general. Such a construction is done for
instance in [36, Section 5.4].
We check the spectrum of the linearized shadow operator L which depends on v > 0

114



6.2 Lengyel-Epstein model

and the model parameters a, b > 0. It consists of

σ(A11) =
3⋃
i=1

{
−1− 4v(1− u2

i )
(1 + u2

i )2

}

and the discrete set Σ which is given by the (at most four) solutions λ ∈ ρ(A11) of
the complex equation

H(λ) = λ− 〈D∗〉Ω − 〈C∗(λ− A11)−1B∗〉Ω = 0. (6.14)

The space-dependent coefficients A11, B∗, C∗, D∗ result from the linearization (6.11)
around the steady state (u, v). Certainly, there are a lot of unstable patterns. How-
ever, let us give an example inspired from [36, Section 5.7.2] to which our convergence
results apply.

Take the parameter value a = 6 and consider 4v = 10, then there exist three constant
solutions ui = i for i = 1, 2, 3 of the first equation (6.9). It is easy to compute the
Jacobians Ji evaluated at (ui, v) for each case:

J1 =
−1 −2
b −0.5b

 , J2 =
 0.2 −1.6

1.3b −0.4b

 , J3 =
−0.2 −1.2

1.2b −0.3b


We infer that a combination of only two values u1, u3 by (6.12) and (6.13) is successful
with |Ω1| = 9|Ω3| > 0 and Ω2 = ∅. Since the Jacobian around (u, v) is given by

J(x) = J1χΩ1
(x) + J3χΩ3

(x),

we immediately see that σ(A11) = {−1,−0.2} ⊂ R<0 does not induce any instability,
and it remains to check Σ for an application of Theorem 5.2 (Note that a combination
including u2 implies instability). We will verify

Σ ⊂ {λ ∈ C | Re(λ) ≤ −σ} =: Sσ

for some σ > 0 following the proof of [36, Corollary 3.10]. To do so, it remains to
show that the complex number H(λ) defined in equation (6.14) is non-zero for each
λ ∈ C \ Sσ. From the above specific form of the Jacobian J we infer that

A11 = −0.2− 0.8χΩ1
, B∗ = −1.2− 0.8χΩ1

,
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C∗ = b+ 0.2bχΩ3
, 〈D∗〉Ω = −4.8b|Ω3|/|Ω|.

Consider the real part of H(λ), then for λ1 := Reλ and B∗C∗ < 0 in Ω

ReH(λ) = λ1 − 〈D∗〉Ω −
〈
B∗C∗(λ1 − A11)
|λ− A11|2

〉
Ω
> 0

for λ1 > −σ where σ := min{infx∈Ω |A11(x)|, |〈D∗〉Ω|} > 0. In the latter estimate we
used the fact that 〈D∗〉Ω, A11, B∗C∗ are bounded from above by a negative number
since b > 0. Considering the steady state (u, v), or shadow limits (u, v) converging
uniformly to the steady state, Theorem 5.2 applies and we obtain global convergence

‖uD − u‖L∞(Ω×R≥0) + ‖vD − v − ψD‖L∞(Ω×R≥0) ≤ CD−1.

Remark that the shadow solution (u, v) is no steady state of the diffusive problem
(6.6)–(6.8) although we have a global estimate. Concerning the diffusive problem, I
want to mention a result of the authors of [71] due to private communication which
has not yet been published: They found a method to show existence of steady states
close to the above non-degenerated constant steady states (ui, v) in a suitable sense.
Moreover, their work allows to study stability properties of the constructed steady
states with spectral methods similar to those used in this thesis, see Section 5.2.

Recall that, in case of classical shadow limits with another fixed diffusion in equation
(6.6), all non-monotone, stationary patterns of Example 6.4 are unstable, compare
[87, Theorem 4.1] or [84] for Ω = (0, 1) ⊂ R.

6.3 Stem cell model

Consider a model of stem cell dynamics in [27] consisting of two compartments de-
noted by stem cells uD and mature cells vD. The self-renewal rate s(vD) which
depends on vD is given here by a diffusing component wD. We refer to [10] for a dif-
ferent infinite-dimensional extension of the model of ordinary differential equations
in [27] and for further literature. Let us consider the system

∂uD
∂t

= (2awD − 1) puD in ΩT , uD(·, 0) = u0 in Ω, (6.15)
∂vD
∂t

= 2 (1− awD) puD − dvD in ΩT , vD(·, 0) = v0 in Ω, (6.16)
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∂wD
∂t
−D∆wD = 1− kvDwD − wD in ΩT , wD(·, 0) = w0 in Ω, (6.17)

∂wD
∂n

= 0 on ∂Ω× (0, T ) (6.18)

for constant parameters a, k, d, p > 0 with a < 1. The corresponding shadow limit
of equations (6.15)–(6.18) is given by the following system of integro-differential
equations

∂u

∂t
= (2aw − 1) pu in ΩT , u(·, 0) = u0 in Ω, (6.19)

∂v

∂t
= 2 (1− aw) pu− dv in ΩT , v(·, 0) = v0 in Ω, (6.20)

dw
dt = 1− k〈v〉Ωw − w in (0, T ), w(0) = 〈w0〉Ω. (6.21)

Fundamental properties of the shadow solution are summarized in the following
result.

Proposition 6.5. Let u0, v0, w0 ≥ 0 a.e. in Ω satisfy Assumption A2 and let
〈w0〉Ω < 1/a. Then there is a unique solution (u, v, w) ∈ C1(R≥0;L∞(Ω)2 × R) of
the shadow system (6.19)–(6.21) which is uniformly bounded and each component is
non-negative. Hence, assumptions A1–A4 and B are satisfied.

Proof. Proposition 2.6 yields local-in-time solutions for which regularity results from
the following reformulations of the implicit integral equations (2.6)–(2.7). In view
of ordinary differential equation (6.19), u is given by the formula

u(·, t) = u0 exp
(
p
∫ t

0
2aw(τ)− 1 dτ

)
≥ 0. (6.22)

Continuity of the local solution w implies differentiability of u. Similarly, w is
positive since

w(t) = h(t)〈w0〉Ω +
∫ t

0
h(t)h−1(s) ds (6.23)

for the exponential function

h(t) := exp
(
−
∫ t

0
1 + k〈v〉Ω(τ) dτ

)
.

In order to show non-negativity of v, let us assume v0 > 0 a.e. in Ω. The general
case v0 ≥ 0 can be shown by approximation from above with v0,ε := v0 + ε > 0 and
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the fact that problem (6.19)–(6.21) depends continuously on its initial condition.
Consider the function z := u/v ≥ 0 which is well-defined locally in time. The
quotient z satisfies the generalized logistic equation

∂z(·, t)
∂t

= z(·, t) [(d+ (2aw(t)− 1)p)− 2p(1− aw(t))z(·, t)] =: z[a(t)− b(t)z],

for some a, b ∈ C1([0, T ]), some T > 0 and z(·, 0) ≥ 0. Clearly, if u0(x) = 0 for some
x ∈ Ω, then u(x, t) = 0 for all times. Integrating equation (6.20) yields

v(x, t) = e−d(t−t0)v(x, t0) +
∫ t

t0
e−d(t−τ)b(τ)u(x, τ) dτ ≥ 0. (6.24)

Thus, to show non-negativity of v, it remains to consider x ∈ Ω for which z(x, 0) > 0.
On the one hand, we conclude z ≥ 0 from representation (6.24) if b ≥ 0. On the
other hand, if b changes its sign and becomes negative at some t0 ≥ 0, we infer

z(·, t) = A(t, t0)z(·, t0)−
∫ t

t0
A(t, τ)b(τ)z2(·, τ) dτ ≥ 0

with evolution operators A(t, s) = exp
(∫ t
s a(τ) dτ

)
. If b changes again its sign and

becomes positive at some t0 ≥ 0, we make use of formula (6.24). Hence, we obtain
z ≥ 0 in any case.
In order to verify Assumption B, let us first note that w is uniformly bounded by
max{1, 〈w0〉Ω} due to v ≥ 0 and the representation (6.23). This implies global
existence since u and v do not blow-up in finite time T > 0. The latter follows
from an estimation of equations (6.22) and (6.24), respectively. To show uniform
boundedness of the shadow limit, let us integrate the shadow limit equations to
obtain a system of ordinary differential equations for the masses (〈u〉Ω, 〈v〉Ω, w)

d〈u〉Ω
dt = (2aw − 1) p〈u〉Ω in (0, T ), 〈u〉Ω(0) = 〈u0〉Ω, (6.25)

d〈v〉Ω
dt = 2 (1− aw) p〈u〉Ω − d〈v〉Ω in (0, T ), 〈v〉Ω(0) = 〈v0〉Ω, (6.26)
dw
dt = 1− k〈v〉Ωw − w in (0, T ), w(0) = 〈w0〉Ω. (6.27)

We first show uniform boundedness of the solution to system (6.25)–(6.27) using
techniques of ordinary differential equations. We will show that the uniform bound
on w does imply a uniform bound for 〈v〉Ω. If 〈v〉Ω were unbounded as t → ∞, we
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would have
〈v(·, t)〉Ω ≥

4a− 1
k

∀ t ≥ t∗

for some t∗ ≥ 0. Using the equation (6.23) for w, this implies

w(t) ≤ e−4at〈w0〉Ω +
∫ t

0
e−4a(t−τ) dτ ≤ 1

2a

for all sufficiently large t. Consequently, 〈u〉Ω is uniformly bounded by formula
(6.22). This, in turn, would imply uniform boundedness of 〈v〉Ω by equation (6.24),
what yields a contradiction. Hence, w and 〈v〉Ω are uniformly bounded. Next, we
make use of the assumption 〈w0〉Ω < 1/a to show uniform boundedness of 〈u〉Ω.
Let us assume 〈v0〉Ω > 0 for the moment. Applying the same idea as above, let us
consider the logistic equation for the quotient z = 〈u〉Ω/〈v〉Ω ≥ 0 given by

d
dtz = z(t)[a(t)− b(t)z(t)].

Due to the above assumptions and w ≤ max{〈w0〉Ω, 1}, we have b(t) ≥ b0 > 0 as
well as a(t) ≤ a0 <∞ for all t ∈ R≥0, and thus

d
dtz ≤ z(t)[a0 − b0z(t)].

A standard comparison principle for ordinary differential equations yields

〈u〉Ω
〈v〉Ω

= z ≤ max
{
a0

b0
,
〈u0〉Ω
〈v0〉Ω

}

and 〈u〉Ω is uniformly bounded, too. If 〈v0〉Ω = 0, formula (6.24) shows that v is
either identical to zero if u ≡ 0 or is positive on (t0,∞) if u becomes positive at
t0 ≥ 0. Hence, the above method applies to the quotient z on [t0 + 1,∞) and shows
boundedness of 〈u〉Ω.
The latter result implies uniform boundedness of the shadow component u since
the function u has the same growth factor as 〈u〉Ω, see representation (6.22). An
estimation of v given by formula (6.24) implies validity of Assumption B. Since the
smooth nonlinearities do not depend explicitly on space or time, assumptions A1–A4
are fulfilled.
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Let us consider a steady state (u, v, w) in L∞(Ω)2 × R of the shadow system for an
application of Theorem 4.10. Stationary solutions of both the diffusive system and
the shadow system are specified in the next result.

Proposition 6.6. The diffusive system (6.15)–(6.18) admits only constant steady
states in L∞(Ω)3 given by

S0 = (0, 0, 1) and S∗ = (u∗, v∗, w∗) =
(
d

p

2a− 1
k

,
2a− 1
k

,
1
2a

)
.

The shadow problem (6.19)–(6.21) possesses the constant steady states S0 and S∗ as
well as non-homogeneous steady states

S = (u, v, w) ∈ L∞(Ω)2 × R>0 with pu = dv,

where spatial means 〈u〉Ω = u∗, 〈v〉Ω = v∗, and w = w∗ are prescribed.

Proof. From the first two steady state equations of system (6.15)–(6.18) we obtain
puD = dvD and inserting 2avDwD = vD in the elliptic equation for wD yields

−D∆(wD − 1) + (wD − 1) = − k

2avD ∈ L
∞(Ω). (6.28)

A solution wD − 1 resp. wD of problem (6.28) endowed with zero flux boundary
conditions is an element of W 1,2(Ω). As the right-hand side is in Lp(Ω) for p > n,
this solution is necessarily continuous as a bootstrap argument similar to the proof
of Corollary A.2 shows. Consider the measurable sets

Ω0 := {x ∈ Ω | wD(x) 6= 1/(2a)} and Ω1 = Ω \ Ω0,

of which Ω0 is open and Ω1 ⊂ Ω is compact in Rn since wD is continuous. We infer
from the first two equations (6.15)–(6.16) that uD = 0 = vD in Ω0. Consequently,
testing the above elliptic problem (6.28) with ϕ ∈ C∞c (Ω0) yields the following weak
Dirichlet problem

∫
Ω0
D∇(wD − 1)∇ϕ+ (wD − 1)ϕ dx = 0 ∀ ϕ ∈ C∞c (Ω0).

An application of the Theorem of Lax-Milgram from [8, Theorem 9.21] on W 1,2
0 (Ω0)

yields wD ≡ 1 on Ω0. Note that we need no boundary regularity or connectivity of
Ω0 for Poincaré’s inequality [8, Corollary 9.19]. Since wD is a continuous function,

120



6.3 Stem cell model

which is identical 1 on Ω0 and 1/(2a) on the complement Ω1, we have shown that
either |Ω0| = 0 or |Ω1| = 0, which results in either S0 or S∗.
Concerning bounded steady states (u, v, w) ∈ L∞(Ω)2 × R of the shadow problem
(6.19)–(6.21), the analysis is easier since w is a real number. The case w 6= 1/(2a)
implies the steady state S0 as above. In case of w = 1/(2a) only spatial mean values
of u and v are prescribed, having pu = dv in mind.

Let us consider a shadow limit reduction around stationary shadow solutions. For an
application of Theorem 4.10, we compute the linearization of the shadow problem
to verify Assumption L0 and L1p stated on page 49 and page 56, respectively.
Linearization of the system (6.19)–(6.21) at the semitrivial point S0 = (0, 0, 1) of
the shadow system yields the following Jacobian

J(0, 0, 1) =


2a− 1 0 0

2(1− a)p −d 0
0 −k −1

 .

We do not consider this semitrivial steady state in much detail but we mention
that, due to [14, Chapter VII, Theorem 2.3], S0 is unstable for the shadow system
for parameters 2a > 1, since

σ(L) = σp(L) = {2a− 1,−d,−1}.

If 2a < 1, we have local asymptotic stability by [14, Chapter VII, Theorem 2.1].
Considering non-trivial steady states given by S (including S∗), we focus on positive
masses for 2a > 1, a condition which is usually satisfied in applications. To verify
Assumption L1p, we consider the non-symmetric Jacobian

J(u(x), v(x), w) =


0 0 2apu(x)
p −d −2apu(x)
0 −kw∗ −(1 + kv(x))

 =
A11 B∗(x)

C∗ D∗(x)



evaluated at the shadow limit S = (u, v, w) with shadow operator

L : L∞(Ω)2 × R→ L∞(Ω)2 × R,

L

ξ1

ξ2

 (x) =
A11ξ1(x) + B∗(x)ξ2

C∗〈ξ1〉Ω + 〈D∗〉Ωξ2

 .
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Clearly, 〈D∗〉Ω = −2a and σ(A11) = {−d, 0} by Proposition C.1. Since in the
definition of L only B∗ is space-dependent, the discrete set Σ from Proposition 5.7
actually is the set of eigenvalues of the constant matrix

J(u∗, v∗, w∗) =


0 0 2apu∗

p −d −2apu∗

0 −kw∗ −2a

 .

Using the Routh-Hurwitz criterion for stability, we infer that all λ ∈ Σ satisfying

λ3 + (d+ 2a)λ2 + dλ+ p2ku∗ = 0

have negative real parts if and only if

d(d+ 2a)− p2ku∗ > 0 ⇔ (d+ 2a) > p(2a− 1). (6.29)

Since a < 1, the last inequality is satisfied if for instance p ≤ d+2. Due to 0 ∈ σ(L),
an immediate application of Theorem 4.10 is not obvious in the case of assumption
(6.29). To show boundedness of the semigroup generated by the shadow operator
L, we will apply [21, Chapter III, Theorem 1.11]. Inverting λI − L explicitly yields

(λI − L)−1

ψ1

ψ2

 (x) =
ξ1(x)

ξ2


with components

ξ1(x) = (λI −A11)−1(ψ1(x) + B∗(x)ξ2),

ξ2 = ψ2 + C∗(λI −A11)−1〈ψ1〉Ω
λ− 〈D∗〉Ω −C∗(λI −A11)−1〈B∗〉Ω

for each λ ∈ C, Re(λ) > 0. Independently of 1 ≤ p < ∞, we obtain the estimate
|〈ψ1〉Ω| ≤ max{1, |Ω|−1}‖ψ1‖Lp(Ω). Since λ(λI −A11)−1 is uniformly bounded in λ,
we reach at the following resolvent estimate in Lp(Ω)2 × R

‖(λI − L)−2‖ ≤ C|λ|−2

where C is independent of p < ∞. Then condition (b) of Theorem 1.11 in [21,
Chapter III] is satisfied and its proof yields uniform boundedness of the semigroup
with a bound independent of p for all large p < ∞. Continuity of the Lp norm
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6.3 Stem cell model

implies the same bound in L∞(Ω)2 × R, as [1, Theorem 2.14] applies for |Ω| < ∞.
Hence, Theorem 4.10 is applicable with p =∞.

Above calculations in combination with the result of Theorem 4.10 show that the
shadow approximation around S is in fact useful on intermediate time scales T of
the order T ∼ D` for some 0 < ` < 1, provided stability assumption (6.29) holds.
However, the different stationary solutions in Proposition 6.6 already indicate a
mismatch of asymptotic behavior between solutions of the diffusive problem (6.15)–
(6.18) and the shadow problem (6.19)–(6.21). A stability consideration of the above
non-homogeneous steady states of the shadow problem will subsequently confirm
this. Let us start from a linearized stability analysis for the system (6.25)–(6.27)
of masses provided that a, d, p satisfy inequality (6.29) and 1/2 < a < 1. The
latter conditions imply local asymptotic stability of the constant steady state S∗ as
a solution of the system (6.25)–(6.27) of ordinary differential equations [14, Chapter
VII, Theorem 2.1]. Concerning the shadow system around the steady state S, the
standard linearized stability analysis does not apply since 0 ∈ σ(L). For this reason
nonlinear stability of S for the shadow system has to be considered.

Proposition 6.7. Let 1/2 < a < 1 and d, p satisfy inequality (6.29). Then steady
states S with positive entries and S∗ are nonlinearly stable (for non-negative initial
data) in L∞(Ω)2×R, but not asymptotically stable. More precisely, the shadow limit
from Proposition 6.5 locally converges to(

u0

〈u0〉Ω
u∗,

u0

〈u0〉Ω
v∗, w∗

)

if non-negative initial conditions satisfy ‖(u0 − u, v0 − v, 〈w0〉Ω − w)‖L∞(Ω)2×R ≤ δ

for sufficiently small δ > 0.

Proof. Starting close to a steady state with positive entries implies that initial data
is non-negative and the assumptions of Proposition 6.5 are fulfilled. The initial
conditions for the masses (〈u〉Ω, 〈v〉Ω, w) satisfy the estimate

|(〈u0〉Ω − u∗, 〈v0〉Ω − v∗, 〈w0〉Ω − w∗)| ≤ ‖(u0 − u, v0 − v, 〈w0〉Ω − w)‖L∞(Ω)2×R ≤ δ.

Hence, for sufficiently small δ > 0, the local asymptotic stability of S∗ for the system
(6.25)–(6.27) of ordinary differential equations implies local convergence

〈u(·, t)〉Ω → u∗, 〈v(·, t)〉Ω → v∗, w(t)→ w∗ as t→∞.
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As mentioned above, the growth factor of u and 〈u〉Ω equals in the sense that

u(·, t) = u0g(t), 〈u(·, t)〉Ω = 〈u0〉Ωg(t) for g(t) := exp
(
p
∫ t

0
2aw(τ)− 1 dτ

)
.

This implies local convergence in L∞(Ω) of the shadow component u as t→∞;

u(·, t)→ u0

〈u0〉Ω
u∗.

Although the spatial mean of this limit equals 〈u〉Ω = u∗, the limit differs in general
from u and no asymptotic stability is possible. We infer local convergence of v from
representation (6.24) and the fact that w(t) and b(t) = 2p(1 − aw(t)) converge as
t→∞. Actually, we have w(t)→ w∗,

v(·, t)→ u0

〈u0〉Ω
v∗

and the shape of u0 is inherited by v. In order to show nonlinear stability of the
shadow system, we use triangle inequality twice to obtain an estimate for u:

‖u(·, t)− u‖L∞(Ω) ≤
∥∥∥∥∥u(·, t)− u0

〈u0〉Ω
u∗
∥∥∥∥∥
L∞(Ω)

+ 1
|〈u0〉Ω|

∥∥∥−u0(〈u0〉Ω − u∗) + 〈u0〉Ω(u0 − u)
∥∥∥
L∞(Ω)

,

while
u(·, t)− u0

〈u0〉Ω
u∗ = u0

〈u0〉Ω
(〈u(·, t)〉Ω − u∗).

To estimate v, let us write

v(·, t)− v = v(·, t)− p

d
u(·, t) + p

d
(u(·, t)− u).

The sum ∂t(u+ v) = −d(u+ v) + (d+ p)u implies

v(·, t)− p

d
u(·, t) = e−dt

(
v0 − p

d
u0
)

+
(

1 + p

d

) [
e−dtu0 − u(·, t) +

∫ t

0
de−d(t−τ)u(·, τ) dτ

]
= e−dt

(
v0 − v − p

d
(u0 − u)

)
−
(

1 + p

d

) ∫ t

0
e−d(t−τ)∂τu(·, τ) dτ
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6.3 Stem cell model

owing to partial integration and pu = dv. Since |〈u0〉Ω| ≥ |u∗| − δ ≥ 1/2|u∗| for
sufficiently small δ > 0, we obtain the estimates

‖u(·, t)− u‖L∞(Ω) ≤ Cu
(
|〈u(·, t)〉Ω − u∗|+ |〈u0〉Ω − u∗|+ ‖u0 − u‖L∞(Ω)

)
,

‖v(·, t)− v‖L∞(Ω) ≤ Ca,p,d

(
‖u(·, t)− u‖L∞(Ω) + ‖u0 − u‖L∞(Ω) + ‖v0 − v‖L∞(Ω)

+
∫ t

0
e−d(t−τ)

(
‖u‖L∞(Ω) + ‖u(·, τ)− u‖L∞(Ω)

)
|w(τ)− w∗| dτ

)
.

Herein, we used ∂tu = 2apu(w−w∗) under the integral and accumulated all constants
of the system in Ca,p,d > 0. These estimates together with local asymptotic stability
of the masses (〈u〉Ω, 〈v〉Ω, w) imply stability of the shadow system in L∞(Ω)2×R.

It is remarkable that the initial shape of the shadow limit component u persists as
t → ∞. The shape of the component u and is even inherited by the component v
modulo some factor. Let us for example choose initial conditions oscillating around
the constant steady state S∗:

(u0, v0, w0) = (u∗ + δ1wj1 , v
∗ + δ2wj2 , w

∗ + δ3wj3)

for some δi ∈ R, i = 1, 2, 3, and eigenfunctions wji , ji ∈ N, from a spectral basis
of −∆ in Proposition A.1. Since in this case the masses are time-independent and
given by S∗, we obtain the shadow solution

u ≡ u0, v(·, t) = p

d
u0 + e−dt

(
v0 − p

d
u0
)
, w ≡ w∗.

The behavior of the shadow limit and its diffusive approximants is illustrated by sim-
ulations on the domain Ω = (0, 1) ⊂ R using eigenfunctions wji(x) =

√
2 cos(jiπx),

ji = 4i, parameter values

a = 2/3, p = 1, d = 2, k = 1/30 (6.30)

and initial conditions

u0(x) = 20 + 4 cos(4πx),

v0(x) = 10 + 4 cos(8πx),

w0(x) = 0.75 + 1.5 cos(12πx).

(6.31)
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Whereas the shadow components u and w are time-independent and given by

u(x, t) = u0(x) = 20 + 4 cos(4πx) and w(t) = 〈w0〉Ω = 0.75,

the component v converges to 0.5u0 as t→∞ as shown in Figure 6.1. The shadow
components are obtained via an implicit Euler scheme of spatial mesh size h = 10−3

and temporal mesh size k = 10−3. The spatial mean value in equation (6.21) is
handled as a mean value of the discretized solution in the latter algorithm.

Figure 6.1: Shadow component v of system (6.19)–(6.21) for parameter set (6.30)
and initial conditions from (6.31).

In contrast to this behavior of the shadow system, the diffusive problem (6.15)–(6.18)
only has constant steady states for each diffusion D > 0 as shown in Proposition
6.6. Simulations for the same parameter setting (6.30) and initial conditions (6.31)
are shown in Figure 6.2. They are obtained with the pdepe solver of MATLAB for
a spatial mesh size h = 4 · 10−3 and temporal mesh size k = 1. These simulations
indicate that (uD, vD, wD)→ S∗ as t→∞ for big diffusion parameters D such that
no global convergence result as in Theorem 5.2 is possible. Hence, the dynamics of
the two problems differ drastically as time tends to infinity, although the shadow
limit is a valuable approximation for intermediate times as an application of Theorem
4.10 shows above. Since numerical simulations take place on finite time scales,
one might run the risk of misinterpreting the corresponding visualization of the
approximate shadow solution. As this example shows, a usage of the shadow limit

126



6.3 Stem cell model

might yield no information on the asymptotic behavior of the approximated diffusive
solution.

Figure 6.2: Diffusive components (uD, vD, wD) of system (6.15)–(6.18) for parameter
set (6.30), initial conditions (6.31) and for a diffusion coefficientD = 100.
The steady state is given by S∗ = (20, 10, 0.75).

Inspired from the behavior of the solution (uD, vD, wD) in simulations similar to
Figure 6.2, a natural question concerning stability of the steady state S∗ arises.
Unfortunately, linearization is not helpful to determine stability of the steady state
S∗ of the diffusive system (6.15)–(6.18) either. A linearization around S∗ yields

LD =


0 0 2apu∗

p −d −2apu∗

0 −kw∗ −2a+D∆

 .

The subsystem A11 corresponding to the ODE subsystem satisfies σ(A11) = {0,−d}.
Hence, Proposition 5.13 yields 0 ∈ σ(LD) = σ(A11) ∪̇ΣD. Following the proof of
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Lemma 5.12, we infer that ΣD = σ(LD) ∩ ρ(A11) is given by

ΣD =
⋃
j∈N0

σp(MD,j) for MD,j =


0 0 2apu∗

p −d −2apu∗

0 −kw∗ −2a−Dλj

 ,

where λj are the eigenvalues associated to −∆ from Proposition A.1. Since λ0 = 0,
we again assume that stability inequality (6.29) holds. For sufficiently large D > 0
and j ∈ N the matrices MD,j have only real, negative roots by Cardano’s formula.
One of these eigenvalues diverges to −∞ as j → ∞ and, since their product is
−dp(2a − 1) < 0 independent of λjD, one eigenvalue converges to 0 from below
as j → ∞. Hence, 0 ∈ σ(LD) \ σp(LD) is an approximate eigenvalue and there is
no spectral gap such that methods from center manifold theory are not applicable
for nonlinear stability analysis either. Using resolvent estimates [21, Theorem 1.1]
for the diffusive linearized operator similar to above calculations for the shadow
operator, one can show linearized stability of the problem. Nevertheless, nonlinear
stability of the equilibrium S∗ remains undetermined.

Let us conclude this example with one more comment on the current work of the
authors of the scientific paper [71]. They establish a method to construct non-
homogeneous steady states to the diffusive system (1.1)–(1.3) close to constant
steady states. The authors assume that the latter steady states are non-degenerated
in the sense that the linearization around the steady state implies an invertible ma-
trix for which the submatrix corresponding to the ODE subsystem is invertible as
well. For instance, Example 6.4 applies to this setting with two non-degenerated
constant steady states. However, the current model 6.3 possesses a non-degenerated
steady state S0 and a degenerated steady state S∗ arising from the explicit form of
LD above. Proposition 6.6 shows that the method of the authors of [71] does not
apply to this degenerated case.
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7 Conclusion and Outlook

This research aimed to investigate the relation between a reaction-diffusion-ODE
system for large diffusive components and its shadow limit on long-time scales.
There have been only few qualitative attempts including [62, 75] which analyze such
a long-time behavior. This thesis extended the uniform convergence results [7, 75]
which already exist on short-time intervals to large time intervals including uniform
error estimates.
Motivated by applications such as [36, 69], only low regularity assumptions on the
solutions, the initial datum of the system and on the domain Ω were made, see next
section Basics. Solutions of the partly diffusive system and its shadow limit were
compared using uniform error estimates with respect to the L∞(Ω × (0, T )) norm.
The latter estimates, which depend explicitly on an upper bound of the time T ,
were obtained by linearization of the original system around the shadow solution.
Additional stability assumptions on the linearized shadow system and the ODE sub-
system allowed to show convergence results either for times scaling with the least
positive diffusion D tending to infinity, i.e., T ∼ D` for some ` ≥ 0, or for the
asymptotic time scale T = ∞. Moreover, the errors were estimated by a bound
proportional to a power of the inverse D−1 as D → ∞. Compare the following
sections The linear case and The nonlinear case for details.
Such estimates provide information on the long-term dynamics of reaction-diffusion-
type models from results obtained for their associated shadow limit. To obtain a
comprehensive picture of this limit process, the thesis included a critical discussion
of the made assumptions with various examples and applications from natural sci-
ences. This detailed study showed that a shadow limit reduction has characteristic
time scales on which a uniform approximation result can be achieved under addi-
tional stability assumptions on a shadow system. Details can be found in the last
concluding section.
Apart from further details on the most relevant results including the main steps of
the proofs and challenges of this work, possible directions of future work are depicted
in the following sections.
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7 Conclusion and Outlook

Basics

The semigroup framework in this thesis allows to study the uniform shadow limit
approximation for classical reaction-diffusion systems and reaction-diffusion-ODE
systems. With a minor modification, one may also include the case m = 0. This
corresponds to [100, Theorem 14.17] in which all diffusion coefficients tend to infinity.
Although the used techniques are well known, the theory of existence and uniqueness
of mild solutions for both the diffusive system and its shadow system defined on
a domain with a Lipschitz boundary could not be found in standard textbooks.
Chapter 2 reviews fundamental results for bounded, mild solutions of both systems
under low boundary regularity. In order to obtain error estimates, we followed
the approach from [75]. The latter considers a linearization of the diffusive system
around the shadow solution to obtain error estimates. In general, a shadow solution
is space- and time-dependent and probably of low regularity in space [69]. This
motivated the low regularity of solutions in this thesis.
It was crucial to properly define the heat semigroup (S∆(τ))τ∈R≥0 within this low-
regular setting of [18] and to recombine this with the notion of mild solutions similar
to [94]. The heat semigroup for zero flux boundary conditions is hypercontractive
and satisfies a uniform decay estimate similar to [112],

‖S∆(τ)(z0 − 〈z0〉Ω)‖L∞(Ω) ≤ Ce−λ1τ‖z0 − 〈z0〉Ω‖L∞(Ω) ∀ τ ∈ R≥0, z
0 ∈ L∞(Ω),

which was essential for the entire work. It has to be emphasized that such an
estimate for some λ1 > 0 can also be verified for different boundary conditions and
even for more general parabolic differential operators, see [94, Part I, Lemma 3] and
references following on Lemma B.4 in this work. Hence, the general framework in
this thesis is not restricted to zero flux boundary conditions but rather applies to a
wide class of problems that satisfy the above decay estimate.
For instance, a shadow limit can be performed for boundary conditions of Robin
type [32, Equations (1.6)–(1.8)]. More generally, instead of considering (1.1)–(1.2)
endowed with zero flux boundary conditions, the reaction-diffusion-type system

∂uD
∂t
−Du∆uD = f(uD,vD, x, t) in ΩT , uD(·, 0) = u0 in Ω,

∂vD
∂t
−Dv∆vD = g(uD,vD, x, t) in ΩT , vD(·, 0) = v0 in Ω,

Du∂uD
∂n

+ Mu(x)uD = 0, Dv ∂vD
∂n

+ Mv(x)vD = 0 on ∂Ω× (0, T )
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can be studied for some diagonal matrices Mu,Mv with entries in L∞(Ω). The
shadow system as D = minj=1,...,kD

v
j →∞ is then given by

∂u
∂t
−Du∆u = f(u,v, x, t) in ΩT , u(·, 0) = u0 in Ω,

dv
dt = 〈g(u(·, t),v(t), ·, t)〉Ω + Mvv in (0, T ), v(0) = 〈v0〉Ω.

The shadow component u still satisfies the boundary condition Du ∂u
∂n +Mu(x)u = 0

on ∂Ω× (0, T ) and the additional linear term in the second equation arises from the
boundary integral

Mv = − 1
|Ω|

∫
∂Ω

Mv(x) dx.

Such a shadow system is considered in [67] for Robin boundary conditions. Concern-
ing future research, it would be interesting to adapt the current work to different,
even time-dependent differential operators and other boundary conditions such as
the above ones. A further step could be to consider additional advection terms such
as models including self- or cross-diffusion [45, 57, 107]. All these possible directions
should be compared to the more abstract but also more regular setting in [7, Section
3.1] satisfying an exponential decay estimate.

The linear case

Starting from a shadow solution, a direct comparison of solutions of the diffusive
system and its singular limit bares its own difficulties. In order to obtain estimates
up to the initial time t = 0, a suitable mean value correction was incorporated
similar to [75]. The latter correction term ψD decays as time grows and is negligible
in error estimates on long-time scales, compare decay estimate (4.13).
The linear case already includes all main aspects of extending the uniform error
estimates obtained in [75] to long-time intervals. Hence, understanding this case in
detail allows a deeper insight in the limit process of the shadow approximation for
general nonlinear systems.
Using a stability condition for the evolution of the linear ODE subsystem as in [55],
we could show uniform convergence results in Theorem 4.1 on time scales of the order
T ∼ D` for some ` ∈ [0, 1), where D →∞. In Theorem 4.5, we found that the space-
dependence of coefficients required a further stability condition on the entire shadow
system for long-time error estimates. Both stability conditions are uniform in time
and space, i.e., we assumed uniform stability of the subsystem of ordinary differential
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equations in L∞(Ω)m̃ and of the shadow system in L∞(Ω)m × Rk. Finally, global
error estimates up to T =∞ were derived under the stronger condition of uniform
exponential stability of the linear evolutionary system. Using a bootstrap argument
for parabolic equations, the stability condition on the linear shadow system could be
relaxed to uniform stability in Lp(Ω)m × Rk for sufficiently large p ≥ 1. Additional
examples illustrated that the stability conditions are optimal in the sense that they
are required to obtain convergence results.

The nonlinear case

In approaching general semilinear problems – with nonlinearities that are space-
dependent as well as time-dependent –, the main part of this dissertation made use
of the powerful tool of linearization. It turned out that the stability of the evolution
system induced by the linearization around the shadow limit yields a natural con-
dition for solutions of the diffusive system to stay nearby the shadow solution for
all large diffusions. Using the truncation method from [75], the remaining nonlinear
part was cut off and uniform estimates for the localized error functions were derived.
The stability conditions implied that the localized errors are small with respect to
the L∞(Ω× (0, T )) norm. This in turn made the truncation redundant as diffusion
D grows and estimates for the original errors were obtained in Theorem 4.10 and
Theorem 5.2. Such estimates allow to deduce long-time behavior of the solution to
the reaction-diffusion system (1.1)–(1.3) solely from the corresponding behavior of
its shadow limit (1.4)–(1.6).
Example 5.4 showed that, in general, instability of the evolution system induced by
the linearization around the shadow solution does not imply divergence of the error
functions. The stability assumptions are sufficient conditions for convergence results
on long-time scales and are far from being necessary in the nonlinear case. Classical
works for the shadow limit suggest that there could be a similar result implying
instability of the diffusive solution close to an unstable shadow solution. It would
be interesting to address such a scientific issue in future studies.

Verification of stability conditions

The last parts of this thesis were devoted to possible analytical ways of verifying
the two stability assumptions described in the last two sections. Nevertheless, a
verification using numerical simulations is also reasonable and inevitable in many
cases [53, 87].
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Dissipativity conditions for the evolution system induced by the linearization were
discussed in Section 4.3 with respect to different Lp spaces, following the approach in
[66] for time-dependent evolution systems. It was shown that this is a much stronger
stability assumption compared to the one we required in Theorem 4.10. However,
the notion of dissipativity is useful in particular if diffusion is involved in the cor-
responding shadow system: we only had to impose conditions on the linearization
without diffusion to obtain a stable shadow evolution system.
In many applications, structures are considered which converge as t → ∞ to a
stationary solution, i.e., a time-independent solution of the shadow problem. Con-
cerning a linearization around such a structure, it was shown that the stability be-
havior of the corresponding linearized evolution system can be deduced solely from
its linearization at the steady state. Using the relation between the spectrum of the
linear steady state operator and its corresponding semigroup resulted in a second
possibility of how to verify stability assumptions of the established theorems. The
spectrum of the corresponding linear, stationary shadow operator was characterized
for reaction-diffusion-ODE systems. As a consequence, stability properties of sta-
tionary patterns could be derived not only for an application of the proven theorems
but also for a linearized stability analysis of the nonlinear shadow problem. This
characterization of the spectrum showed that the instability result in [69, Appendix
B] is not restricted to a pure point spectrum.

Partly diffusive system vs. shadow system

It is well known that the shadow limit is a valuable approximation of reaction-
diffusion-type equations for short-time intervals, i.e., T = O(1) as D → ∞. In
particular, solutions of both systems can be compared and error estimates can be
derived with respect to the L∞(Ω× (0, T )) norm [32, 75]. This dissertation showed
that an extension of the uniform error estimates for long-time intervals may fail with-
out additional stability assumptions as described above. It turned out that different
time scales have to be considered in showing accuracy of the shadow approximation.
We distinguished estimates on long-time intervals [0, T ] with T ∼ D` scaling with
diffusion for 0 < ` < 1 and global estimates on [0,∞) including asymptotic behav-
ior. Examples in Chapter 6 highlighted that validity of the approximation on short-
or long-time intervals does not extend to an approximation result on a larger time
scale and, in particular, on the global time scale. Consequently, in using the shadow
solution as a simplification of the solution to the reaction-diffusion-type system, nu-
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merical simulations on finite time scales have to be interpreted with caution.
Asymptotic behavior of solutions to both systems, the partly diffusive system and
its shadow limit, have been studied extensively for the classical shadow limit [32,
78, 87, 109]. It is remarkable that most proofs in [32], revealing a relation between
compact attractors of the reaction-diffusion system and its shadow limit, do not
apply to reaction-diffusion-ODE systems. This is due to a loss of compactness of
the solution map induced by the ODE subsystem. Reaction-diffusion-ODE systems
thus can be seen as a partially degenerated reaction-diffusion system.
However, linearized stability analysis in this thesis indicated that the behavior of
solutions to both systems is similar around stable stationary patterns of the shadow
limit. This similarity was reflected in the fact that the same method of proof which
lead to a characterization of the spectrum of a linear shadow operator was applicable
to characterize the spectrum of a linear partly diffusive operator. Such a spectral
decomposition can be used to verify stability of steady states to the partly diffusive
system (1.1)–(1.3); for instance, for steady states which are constructed from sta-
tionary shadow solutions as in [78, 103, 109] or [38]. Concerning future work, the
spectral characterization of Proposition 5.13 could be a basis for a generalization
of the instability result [71, Theorem 2.11] for reaction-diffusion-ODE systems: in-
stead of regular steady states, one might be able to consider bounded, discontinuous
steady states.
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A Spectral theory for the Laplacian

Solving the heat equation (2.1) on the Hilbert space L2(Ω) is essentially based on a
Galerkin approximation which makes use of a spectral basis of the Laplace operator
[24, Section 7.1]. Following the idea of [100, Chapter 11, §A], it is shown that a
bounded domain with Lipschitz boundary ∂Ω is sufficient for existence of such an
orthonormal basis in L2(Ω).

Proposition A.1. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1. Then there
exists a spectral basis (λj, wj)j∈N0 such that

−∆wj = λjwj in Ω,
∂
∂nwj = 0 on ∂Ω

is satisfied in the weak sense, i.e.,
∫

Ω
∇wj∇ϕ dx = λj

∫
Ω
wjϕ dx ∀ ϕ ∈ H1(Ω).

This sequence has the following properties:

(1) (λj)j∈N0 is a non-decreasing sequence of non-negative eigenvalues satisfying

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj →∞ (j →∞).

Each eigenspace is finite-dimensional.

(2) The set of eigenfunctions (wj)j∈N0 ⊂ H1(Ω) form an orthonormal basis for
L2(Ω) and an orthogonal basis for H1(Ω) = W 1,2(Ω).

(3) The normed eigenfunction for the principal eigenvalue λ0 = 0 is w0 = |Ω|−1/2

and the corresponding eigenfunctions satisfy 〈wj〉Ω = 0 for each j ≥ 1.

Proof. We use a spectral decomposition theorem for compact, self-adjoint operators
on separable Hilbert spaces such as L2(Ω) [8, Theorem 6.11]. For this purpose, it
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suffices to show that the inverse of the negative Laplacian induces a compact and
self-adjoint operator on some separable Hilbert subspace of L2(Ω). Define the closed,
separable subspaces

L := {f ∈ L2(Ω) | 〈f〉Ω = 0} ⊂ L2(Ω) and H := L ∩H1(Ω) ⊂ H1(Ω)

with inherited norms, where 〈f〉Ω denotes the spatial mean value of f ∈ L2(Ω).
Consider the weak formulation of Poisson’s equation −∆u = f for some arbitrary
f ∈ L , i.e., search for u ∈ H satisfying

∫
Ω
∇u∇ϕ dx =

∫
Ω
fϕ dx ∀ ϕ ∈ H1(Ω). (A.1)

The choice of L guarantees the existence of a solution u ∈ H1(Ω). Indeed, by
considering ϕ − 〈ϕ〉Ω, one can replace ϕ ∈ H1(Ω) by ϕ ∈ H in the variational
formulation above to apply the theorem of Lax-Milgram [8, Corollary 5.8]. To show
coercivity of the bilinear form, recall that Poincaré’s inequality holds on H [24,
§5.8.1, Theorem 1]. The restriction to solutions u ∈ H is crucial for uniqueness
since a solution is only unique up to additive constants on the connected set Ω.
Having the theorem of Lax-Milgram in mind, we define the solution operator

T : L→ H ⊂ L, f 7→ u

on the Hilbert space L. This operator assigns each right-hand side f ∈ L to the
corresponding weak solution u ∈ H of the elliptic boundary value problem (A.1).
The theorem of Lax-Milgram shows continuity of T due to the estimate

‖u‖H1(Ω) ≤ C‖f‖L2(Ω)

for some constant C > 0. The compact embedding H1(Ω) ↪→c L2(Ω) of Rellich-
Kondrachov’s theorem in [8, Theorem 9.16] implies compactness of T [23, Chapter
II, Proposition 4.25]. Thus, it remains to show that the inverse of the negative
Laplace operator, denoted by T , is a self-adjoint operator. Using the variational
formulation (A.1), we obtain

(Tf, g)L =
∫

Ω
gTf dx =

∫
Ω
∇(Tg)∇(Tf) dx =

∫
Ω
fTg dx = (f, Tg)L
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since for all f, g ∈ L we have test functions Tf, Tg ∈ H. This computation also
shows that the spectrum of T only consists of non-negative real eigenvalues [8,
Proposition 6.9].
Now we are able to apply a spectral decomposition to the space L with respect to
T [8, Theorem 6.11]. This results in a sequence (µj, wj)j∈N of eigenvalues µj ≥ 0
and eigenfunctions wj ∈ H of the operator T which form an orthonormal basis of
L. In view of the variational equation (A.1), the functions (wj)j∈N are also pairwise
orthogonal in H. In order to obtain a spectral basis of the negative Laplacian, we
consider the reciprocals λj = µ−1

j for j ∈ N and we receive
∫

Ω
∇wj∇ϕ dx = λj

∫
Ω
wjϕ dx ∀ ϕ ∈ H. (A.2)

Recall that every ϕ ∈ H1(Ω) can be written as a sum of an element in H and its
spatial mean value

ϕ = ϕ− 〈ϕ〉Ω + 〈ϕ〉Ω.

Thus, the variational equation (A.2) holds for all ϕ ∈ H1(Ω) since wj ∈ H, i.e.,
〈wj〉Ω = 0. To provide an orthonormal basis of L2(Ω) itself, we add constants by
choosing w0 = |Ω|−1/2 ∈ H1(Ω) and consider the sequence of eigenfunctions (wj)j∈N0

of the operator −∆. We observe that all eigenvalues of −∆ must be non-negative
and that we obtained all positive ones, yet including their eigenspaces. Additionally,
since Ω is connected, the corresponding eigenspace to the eigenvalue λ0 = 0 is
spanned by the normed eigenfunction w0 = |Ω|−1/2. We infer from formulation
(A.2) that (wj)j∈N0 forms an orthogonal basis of H1(Ω) as well. Consequently, for
each j ∈ N, the eigenfunctions wj satisfy 〈wj〉Ω = 0 and change their sign on Ω.
It remains to prove assertion (1) of the above listing. Compactness of T implies
0 ∈ σ(T ) [8, Theorem 6.8]. If 0 was an eigenvalue of the operator T , its eigenspace
would consist of all f ∈ L such that

∫
Ω
fϕ dx =

∫
Ω
∇(Tf)∇ϕ dx = 0 ∀ ϕ ∈ H.

The fundamental lemma of calculus of variations yields f = 0 since the equation
actually holds for each ϕ ∈ H1(Ω) – a contradiction to a non-zero eigenspace.
Hence, all eigenvalues µj of T are positive and have finite-dimensional eigenspaces
[8, Theorem 6.11]. The latter implies an infinite sequence (µj)j∈N of eigenvalues of T
converging to 0 and, consequently, 0 an approximate eigenvalue of T . The sequence
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A Spectral theory for the Laplacian

of reciprocals shows that (λj)j∈N diverges to infinity. All in all, assertions (1)–(3)
are proven, if we arrange the eigenvalues monotonically increasing.

In the same manner one can proof a result for the eigenvalue problem corresponding
to a general uniformly elliptic differential operator of second order with lower order
terms. The operator can be endowed with a possibly different boundary condition
such as a Robin boundary condition [100, Chapter 11, §A].
Certainly, the regularity of the eigenfunctions depends on the regularity of the
boundary ∂Ω as the following Corollary shows.

Corollary A.2. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1. Then a spectral
basis (λj, wj)j∈N0 of −∆ from Proposition A.1 satisfies wj ∈ W 1,p(Ω) for each finite
1 ≤ p < ∞, and consequently wj ∈ C(Ω). Moreover, a boundary ∂Ω of class
∂Ω ∈ C`−1,1 for some ` ∈ N yields orthogonal eigenfunctions wj ∈ H`(Ω), and
similarly wj ∈ C`−1(Ω).

Proof. The first result is a bootstrap argument in combination with Sobolev embed-
dings. The right-hand side λjwj ∈ W 1,2(Ω) = H1(Ω) of the eigenvalue problem can
be embedded in Lq(Ω) for some q > 2 [1, Theorem 4.12]. We infer from elliptic regu-
larity theory that the solution in fact satisfies wj ∈ W 1,q(Ω), see Lemma A.3 below.
Applying this bootstrap procedure k ≥ n/2 times leads to wj ∈ W 1,n(Ω). Sobolev
embedding results in wj ∈ Lp(Ω) for all 1 ≤ p <∞. Finally, elliptic regularity yields
wj ∈ W 1,p(Ω) for all 1 ≤ p <∞ and the eigenfunction wj has a representative which
is Hölder continuous [1, Theorem 4.12]. The second result is due to higher elliptic
regularity theory for weak solutions [30, Theorem 2.2.2.5]; compare to [8, Theorem
9.26] for ∂Ω ∈ C`. Classical solutions are again recovered by the above bootstrap
argument which implies wj ∈ W `,p(Ω) for all 1 ≤ p <∞.

The following result on existence and uniqueness of solutions to the Poisson equation
(A.1) on Lp(Ω) already implied higher regularity of the eigenfunctions in the last
statement. This is similar to the theorem of Lax-Milgram for the Hilbertian case
p = 2 [8, Corollary 5.8]. Moreover, this result allows a characterization of the
abstract domain of the heat semigroup on Lp(Ω) in Lemma B.5.

Lemma A.3. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1, f ∈ Lp(Ω) for
some 1 < p <∞ and c ∈ L∞(Ω). Consider the elliptic boundary value problem

−∆w + c(x)w = f in Ω,
∂
∂nw = 0 on ∂Ω
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in the weak sense, i.e., search for a solution w ∈ W 1,p(Ω) such that it holds
∫

Ω
∇w∇ϕ dx =

∫
Ω

(f − c(x)w)ϕ dx ∀ ϕ ∈ W 1,q(Ω) (A.3)

for 1
p

+ 1
q

= 1. Then there exits a unique weak solution w ∈ W 1,p(Ω) provided c ≥ 0
a.e. in Ω is not identically zero. Moreover, we have the estimate

‖w‖W 1,p(Ω) ≤ C‖f‖Lp(Ω) (A.4)

where C > 0 does not depend on f or w. The same is true for the case n = 1 = p.
If c ≡ 0, we have existence of a solution w ∈ W 1,p(Ω) which is unique up to constants
if and only if 〈f〉Ω = 0. In this case there holds

‖∇w‖Lp(Ω) ≤ C‖f‖Lp(Ω).

Proof. This is essentially a result from elliptic regularity theory. For n = 1, Ω is
just a bounded interval and the result is clear by integration of the corresponding
ordinary differential equation. For n ≥ 2, [19, Theorem 5] provides a similar result
for an elliptic operator with oscillating principle part but a Lipschitz boundary with
small Lipschitz constant. However, since the principal part of −∆ has only constant
coefficients and is symmetric, we can adapt the proof to the situation above. The
assumption of leading coefficients with small BMO norm is trivially fulfilled and
Theorem 1–3 in [19] remain valid in our situation. Moreover, Lemmata 6 and 9
which are used in the proof of [19, Theorem 5] still applies. Since the principal part
of −∆ is constant, we have N0 = 0 in estimate (47) and the crucial inequality (48) in
their paper is valid independent of the Lipschitz constant of the boundary. Finally,
the result of [19, Theorem 5] remains valid.

Recall that the spectrum of −∆ considered on Lp(Ω) is independent of 1 ≤ p <∞
by [2, Example 1.2]. The same independence holds for uniformly elliptic operators,
see [2, Example 5.2]. We deduce from Corollary A.2 and the weak formulation (A.3)
in W 1,p(Ω) that (wj)j∈N0 ⊂ W 1,p(Ω) are also corresponding eigenfunctions in Lp(Ω)
to the eigenvalues λj of −∆.

Basic examples for Lipschitz domains are given by hyperrectangles. In this case, the
Fourier theory yields

141



A Spectral theory for the Laplacian

Example A.4. For an interval Ω = (a, b) ⊂ R for some a < b the functions

wj(x) :=


1√
b−a for j = 0,√

2
b−a cos

(
jπ x−a

b−a

)
for j ∈ N

serve as a spectral basis for −∆ endowed with zero flux boundary conditions which
has the eigenvalues (λj)j∈N0 given by

λj =
(
jπ

b− a

)2
.

If Ω = ∏n
i=1(ai, bi) ⊂ Rn for some ai < bi, then a product ansatz yields for each

multi-index k = (k1, . . . , kn) ∈ Nn
0

wk(x1, . . . , xn) =
n∏
i=1

wki(xi) and λk =
n∑
i=1

λki ,

where wki are given by the one-dimensional case above for each i = 1, . . . , n.
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B Parabolic regularity theory

For solving the heat equation (2.1) with less boundary regularity than used for
the standard semigroup theory in [8, 92] or [94], I recall the existence theory on
the Hilbert space L2(Ω). The latter is essentially based on semigroup theory and
Fourier techniques which make use of a spectral basis of the Laplacian deduced
in Proposition A.1 [24, Section 7.1]. Subsequently, we define the heat semigroup
(S∆(t))t∈R≥0 according to [18] and show its hypercontractivity stated in Lemma 2.1
which is crucial for the entire work. Additionally to the Hilbertian case, L∞(ΩT )
estimates are derived for solutions of the inhomogeneous heat equation with explicit
dependence on time T .

B.1 The heat semigroup

Let us recall some basics from semigroup theory. An introduction to the topic and
further results on semigroup theory can be found for example in [8, 17, 23, 40, 92]
or [94]. This semigroup approach is motivated by the fact that the solution of the
homogeneous heat equation can be represented in a short way by a semigroup acting
on the initial value.

Definition B.1. Let (B, ‖ · ‖) be a Banach space and let (S(t))t∈R≥0 ⊂ L(B) be a
family of linear, bounded operators satisfying the conditions of a semigroup, i.e.,

S(t+ s) = S(t)S(s) ∀ t, s ∈ R≥0,

S(0) = I.

The semigroup (S(t))t∈R≥0 is called strongly continuous if for all z ∈ B the so called
orbit

ξz : R≥0 → B, t 7→ S(t)z
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B Parabolic regularity theory

is continuous. A strongly continuous semigroup (S(t))t∈R≥0 is called contractive if

‖S(t)z‖ ≤ ‖z‖ ∀ z ∈ B, t ∈ R≥0

is satisfied. The generator A of a strongly continuous semigroup (S(t))t∈R≥0 is
defined on the domain

D(A) :=
{
z ∈ B

∣∣∣∣ lim
t↘0

S(t)z − z
t

exists in B
}

and is uniquely given by the limit

Az := lim
t↘0

S(t)z − z
t

∀ z ∈ D(A).

Many applications of semigroups arise from the consideration of evolution equations
such as initial value problems on some Banach space B, i.e.,

d
dtu(t) = Au(t) for t > 0, u(0) = u0 ∈ B.

Let us assume that (A,D(A)) is the generator of a strongly continuous semigroup
(S(t))t∈R≥0 and u0 ∈ D(A). Then the function t 7→ u(t) := S(t)u0 is differentiable,
hence, it is the unique solution of the above initial value problem [23, Chapter II,
Proposition 6.2]. The operator A : D(A) ⊂ B → B is usually unbounded but linear,
closed and densely defined on B [23, Chapter II, Lemma 1.3, Theorem 1.4]. In
applications, a differential operator is given on some Banach space and the aim is
to find a solution of the above initial value problem via its semigroup. However,
the identification of the generator of the semigroup and its abstract domain which
is defined by the semigroup is not trivial, and the latter might even differ from the
given differential operator. In the case of the Laplacian A = −∆ with a certain
domain, we use the fact that −∆ induces a quadratic form on the Sobolev space
H1(Ω) = W 1,2(Ω).

Proposition B.2. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1, z0 ∈ L2(Ω).
Then the homogeneous heat equation

∂z

∂t
−∆z = 0 in Ω× R>0,

∂z

∂n
= 0 on ∂Ω× R>0, z(·, 0) = z0 in Ω
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has a unique variational solution z ∈ C(R≥0;L2(Ω)) ∩ C1(R>0;L∞(Ω)) satisfying
z ∈ L2(0, T ;H1(Ω)) for each T > 0. The solution is given by the Fourier expansion

z(x, t) = (S∆(t)z0)(x) =
∑
j∈N0

e−λjt(z0, wj)L2(Ω)wj(x)

where (λj, wj)j∈N0 is a spectral basis of −∆ from Proposition A.1.

Proof. We will apply [8, Theorem 7.7] to get a unique solution given via the semi-
group defined in [18, Theorem 1.3.9]. The latter author considers the closed, non-
negative quadratic form

Q : H1(Ω)→ R≥0, f 7→ Q̃(f, f) with Q̃(f, g) =
∫

Ω
∇f∇g dx

with dense domain C∞(Ω) ∩H1(Ω). Thus, by [17, Theorem 4.12], Q is induced by
a non-negative self-adjoint operator H ≥ 0 on L2(Ω) via

Q(f) = (H1/2f,H1/2f)L2(Ω) for f ∈ D(H1/2) = H1(Ω).

Due to [18, Theorem 1.2.10], the abstract domain D(H) ⊂ H1(Ω) is given by the
following characterization:

f ∈ D(H) ⇐⇒ f ∈ H1(Ω) and there exists a function g ∈ L2(Ω) such that

Q̃(f, ϕ) = (H1/2f,H1/2ϕ)L2(Ω) = (g, ϕ)L2(Ω) ∀ ϕ ∈ H1(Ω).

As usual in the weak sense, we identify Hf = g and obtain the estimate

‖f‖2
H1(Ω) = ‖f‖2

L2(Ω) + (g, f)L2(Ω) ≤ C
(
‖f‖2

L2(Ω) + ‖Hf‖2
L2(Ω)

)
for all f ∈ D(H). Obviously, H is an extension of −∆ for smooth functions and H

is densely defined since C∞c (Ω) ⊂ D(H). As a self-adjoint operator, H is necessarily
closed in L2(Ω). Writing

‖(λI +H)z‖2
L2(Ω) = λ2‖z‖2

L2(Ω) + 2λ(Hz, z)L2(Ω) + ‖Hz‖2
L2(Ω)

for λ ∈ R, z ∈ D(H), it is not difficult to infer from H ≥ 0 that the resolvent of −H
exists for each λ > 0 with the estimate

‖(λI +H)−1‖ ≤ 1
λ
.
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Due to the well-known characterization of contraction semigroups by Hille and
Yosida in [17, Corollary 2.22], −H with domain D(H) generates a strongly con-
tinuous semigroup of contractions (S∆(t))t∈R≥0 on L2(Ω). The semigroup may then
be defined by the formula used in [18, Theorem 1.3.2], see [23, Corollary 5.5, Chapter
III]. Since −H is densely defined, we extend the unique solution of

d
dtz(t) +Hz(t) = 0 for t > 0, z(0) = z0 ∈ D(H)

given by z(t) = S∆(t)z0 to all z0 ∈ L2(Ω). The solution z ∈ C(R≥0;L2(Ω)) is
still continuous due to strong continuity of the semigroup. However, it may lose
its differentiability at t = 0 and we get a possibly singular time derivative. To see
this and, furthermore, to obtain higher regularity for t > 0, we apply [8, Theorem
7.7] to the self-adjoint, maximal monotone operator H on L2(Ω) in the sense of [8,
Definition in §7.1]. The latter theorem yields z ∈ Ck(R>0;D(H`)) for all integers
k, ` ∈ N0 where D(H0) := L2(Ω). Let us show how this yields higher regularity
in space using the above characterization of the domain D(H). It suffices to prove
z ∈ Ck(R>0;W 1,p(Ω)) for all k ∈ N0, 1 ≤ p < ∞ since Sobolev’s embedding yields
W 1,p(Ω) ⊂ L∞(Ω) for p > n. According to [8, Section 7.3] the domain D(H`) is
given by

D(H`+1) = {z ∈ D(H`) | Hz ∈ D(H`)} ∀ ` ∈ N.

Using the characterization of D(H), we infer that D(H) ⊂ W 1,2(Ω). Sobolev’s
embedding implies D(H) ⊂ Lp2(Ω) for some p2 > 2 [1, Theorem 4.12]. Elliptic
regularity theory from Lemma A.3 in combination with this embedding yields

D(H`) ⊂ W 1,p`(Ω) for 1
p`

= 1
2 −

`− 1
n

.

Applying this bootstrap procedure ` ≥ n/2 times leads to D(H`) ⊂ W 1,n(Ω). The
Sobolev embedding results in W 1,n(Ω) ⊂ Lp(Ω) for all 1 ≤ p < ∞. Finally, elliptic
regularity yields D(H`+1) ⊂ W 1,p(Ω) for all 1 ≤ p <∞ and the solution z(·, t) has a
representative which is Hölder continuous for each t > 0 [1, Theorem 4.12]. Hence,
the boundary condition is satisfied in the sense of distributions by the trace operator
W 1,p(Ω) ↪→ W−1/p,p(∂Ω) from [30, Theorem 1.5.1.2].
To determine the Fourier coefficients, we recall that the unique solution z solves the
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following variational equation for all t > 0

d
dt

∫
Ω
z(x, t)ϕ(x) dx+

∫
Ω
∇z(x, t)∇ϕ(x) dx = 0 ∀ ϕ ∈ H1(Ω).

Since z(·, t) ∈ L2(Ω), we can expand this function in a Fourier series using Proposi-
tion A.1 and get for all t ≥ 0

z(·, t) =
∑
j∈N0

bj(t)wj with bj(t) =
∫

Ω
z(x, t)wj(x) dx.

Inserting the series in the variational formula and choosing ϕ = wi for i ∈ N0 yields
an ordinary differential equation

d
dtbi(t) + λibi(t) = 0 for t > 0.

Solving this with respect to the initial condition leads to the series representation.
Concerning the regularity z ∈ L2(0, T ;H1(Ω)), we note that the partial sums

zm(·, t) =
m∑
j=0

e−λjt(z0, wj)L2(Ω)wj

of the Fourier series form a Cauchy sequence in this space. Indeed, for ` > m ≥ 0

‖zm − z`‖2
L2(0,T ;H1(Ω)) =

∑̀
j=m+1

∫ T

0
(1 + λj)e−2λjt dt |(z0, wj)L2(Ω)|2

≤ C
∑̀

j=m+1
|(z0, wj)L2(Ω)|2 −→ 0 (as m, `→∞)

due to Parseval’s equality for z0 ∈ L2(Ω) and C = 1/2 + 1/(2λ1).

We remark that the set of more regular functions

H2
N(Ω) := {u ∈ H2(Ω) | ∂nu = 0 a.e. in Ω}

is included in D(H) defined in the above proof. In general, elliptic regularity is
restricted for low-regular boundaries such as ∂Ω ∈ C0,1 [30, Section 4.4.3]. By
the characterization of contraction semigroups via maximal dissipative generators
in [17, Theorem 6.4], we obtain H2

N(Ω) ( D(H) for a general Lipschitz boundary
∂Ω ∈ C0,1. As shown in [113, Theorem 2.15], there holds D(H) = H2

N(Ω) in case of
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∂Ω ∈ C1,1 since [30, Theorem 2.4.1.3] is used for this boundary regularity.

As a simple consequence of Duhamel’s formula, we obtain the following result for
inhomogeneous initial value problems.

Proposition B.3. Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1, z0 ∈ L2(Ω)
and r ∈ L2(ΩT ) be given. Then the inhomogeneous heat equation

∂z

∂t
−∆z = r(x, t) in ΩT , (B.1)
∂z

∂n
= 0 on ∂Ω× (0, T ), z(·, 0) = z0 in Ω (B.2)

has a unique mild solution z ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)), given by the
separation of variables formula

z(x, t) = S∆(t)z0 +
∫ t

0
S∆(t− s)r(·, s) ds (B.3)

=
∑
j∈N0

e−λjt(z0, wj)L2(Ω)wj(x) +
∫ t

0

∑
j∈N0

e−λj(t−s)(r(· , s), wj)L2(Ω)wj(x) ds.

In addition, z0 ∈ H1(Ω) implies a weak solution z ∈ L∞(0, T ;H1(Ω)) which has a
weak derivative ∂tz ∈ L2(ΩT ), and the weak formulation

(∂tz(·, t), ϕ)L2(Ω) + (∇z(·, t),∇ϕ)L2(Ω) = (r(·, t), ϕ)L2(Ω) ∀ ϕ ∈ H1(Ω)

holds for a.e. t ∈ (0, T ).

Proof. It is well known from [92, Section 4.2] that there exists a unique mild solution
z ∈ C([0, T ];L2(Ω)) of problem (B.1)–(B.2). This is given by the integral formula

z(·, t) = S∆(t)z0 +
∫ t

0
S∆(t− s)r(·, s) ds

where the contraction semigroup (S∆(t))t≥0 on L2(Ω) is defined in Proposition B.2.
In order to show that z is an element of L2(0, T ;H1(Ω)) resp. L∞(0, T ;H1(Ω)), it
is again sufficient to prove the Cauchy property of the corresponding partial sums
given by expression (B.3). For ` > m ≥ 0 we obtain by Hölder’s inequality

‖(zm − z`)(·, t)‖2
H1(Ω) ≤

∑̀
j=m+1

(1 + λj)e−2λjt |(z0, wj)L2(Ω)|2
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+
∑̀

j=m+1
(1 + λj)

(∫ t

0
e−λj(t−s)(r(·, s), wj)L2(Ω) ds

)2

≤
∑̀

j=m+1
(1 + λj)|(z0, wj)L2(Ω)|2

+ (T + 1)
∫ t

0

∑̀
j=m+1

|(r(·, s), wj)L2(Ω)|2 ds

and the same reasoning as in the proof of Proposition B.2 applies to obtain a Cauchy
sequence in the corresponding Banach space.
Concerning the weak formulation, we use Galerkin’s approximation. Following this
classical approach, one might establish a notion of weak solutions for z0 ∈ L2(Ω)
using the dual space of H1(Ω) [24, Section 7.1]. Since we will use this result for
more regular initial data z0 ∈ H1(Ω), a proof for this case shall be given here for
completeness. Using the previous ansatz given by formula (B.3), the partial sums
can be written as

zm(·, t) =
m∑
j=0

cj(t)wj =
m∑
j=0

(
e−λjt(z0, wj)L2(Ω) +

∫ t

0
e−λj(t−s)(r(· , s), wj)L2(Ω) ds

)
wj

and converge to the mild solution z in L2(0, T ;H1(Ω)). By construction, each partial
sum satisfies an equation of type (B.1)–(B.2) in the weak sense. Testing this weak
formulation with the orthogonal spectral basis (wj)j∈N0 of H1(Ω) from Proposition
A.1 yields

(∂tzm(·, t), wj)L2(Ω) + (∇zm(·, t),∇wj)L2(Ω) = (r(·, t), wj)L2(Ω) (B.4)

for each j = 0, . . . ,m and a.e. t ∈ (0, T ).
Our aim is to show weak convergence of a subsequence of (∂tzm)m∈N0 in L2(ΩT ).
This will then lead to a weak solution satisfying ∂tz ∈ L2(ΩT ). Since L2(ΩT ) is
reflexive, it remains to show boundedness of (∂tzm)m∈N0 in L2(ΩT ). We multiply the
variational formulation (B.4) with time derivatives c′j of the Fourier coefficients for
each j = 0, . . . ,m and sum up to get

(∂tzm, ∂tzm)L2(Ω) + (∇zm,∇(∂tzm))L2(Ω) = (r, ∂tzm)L2(Ω) ∀ m ∈ N0.

Reformulation and Young’s inequality imply an estimate of the form

‖∂tzm‖2
L2(Ω) + 1

2
d
dt‖∇zm‖

2
L2(Ω) ≤

1
2‖r‖

2
L2(Ω) + 1

2‖∂tzm‖
2
L2(Ω).
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Integration over (0, T ) yields

1
2‖∂tzm‖

2
L2(ΩT ) + 1

2
(
‖∇zm(·, T )‖2

L2(Ω) − ‖∇zm(·, 0)‖2
L2(Ω)

)
≤ 1

2‖r‖
2
L2(ΩT ).

In view of the Fourier coefficients, we get cj(0) = (z0, wj)L2(Ω) and may further
estimate

‖∂tzm‖2
L2(ΩT ) ≤ ‖r‖2

L2(ΩT ) + ‖∇z0‖2
L2(Ω).

The uniform bound then implies a weakly convergent subsequence – which will still
be denoted by (∂tzm)m∈N0 – with a limit v ∈ L2(ΩT ). Actually, we will see that v
equals the weak derivative ∂tz satisfying the usual partial integration

∫ T

0
∂tz(·, t)ϕ(t) dt = −

∫ T

0
z(·, t)ϕ′(t) dt ∀ ϕ ∈ C∞c ((0, T )).

To recognize this, let w ∈ L2(Ω) be arbitrary and consider ϕw ∈ L2(ΩT ) for some
test function ϕ ∈ C∞c ((0, T )). On the one hand, we obtain by Fubini’s rule and
weak convergence

∫ T

0

(
∂tzm(·, t), ϕ(t)w

)
L2(Ω)

dt =
∫

ΩT
∂tzm(x, t)ϕ(t)w(x) d(x, t)

−→
(∫ T

0
v(·, t)ϕ(t) dt, w

)
L2(Ω)

as m → ∞. On the other hand, since ∂tzm are weak derivatives with coefficients
c′j ∈ L2((0, T )), we have

(∫ T

0
∂tzm(·, t)ϕ(t) dt, w

)
L2(Ω)

=
(
−
∫ T

0
zm(·, t)ϕ′(t) dt, w

)
L2(Ω)

= −
∫

ΩT
zm(x, t)ϕ′(t)w(x) d(x, t)

−→
(
−
∫ T

0
z(·, t)ϕ′(t) dt, w

)
L2(Ω)

with similar arguments. As w ∈ L2(Ω) is arbitrary, this implies

∫ T

0
v(·, t)ϕ(t) dt = −

∫ T

0
z(·, t)ϕ′(t) dt,

and uniqueness of weak derivatives yields ∂tz = v ∈ L2(ΩT ).
It remains to deduce the weak formulation for a.e. t ∈ (0, T ). For this purpose, let
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us express an arbitrary v ∈ H1(Ω) by its Fourier series with partial sums

v` =
∑̀
j=0

djwj for dj = (v, wj)L2(Ω).

Multiplying the weak formulation (B.4) with dj and ϕ ∈ C∞c ((0, T )), summing up
and integrating over (0, T ) yields for all m ≥ `

∫ T

0
(∂tzm, ϕv`)L2(Ω) dt+

∫ T

0
(∇zm, ϕ∇v`)L2(Ω) dt =

∫ T

0
(r, ϕv`)L2(Ω) dt.

We pass to the weak limit z as m→∞ to obtain for all ` ∈ N0

∫ T

0
(∂tz, v`)L2(Ω)ϕ dt+

∫ T

0
(∇z,∇v`)L2(Ω)ϕ dt =

∫ T

0
(r, v`)L2(Ω)ϕ dt.

For ` → ∞ we can substitute v` by the arbitrary function v ∈ H1(Ω). Since the
test function ϕ ∈ C∞c (Ω) was arbitrary as well, the fundamental lemma of calculus
of variations implies the weak formulation for a.e. time t ∈ (0, T ).

Remark that above propositions may be shown for different parabolic differential
operators as well as other boundary conditions [15, Theorem 2.4].
Now, we are capable of proving Lemma 2.1 which we recall for a comprehensible
proof, and write simply z instead of z0.

Lemma B.4 (Lemma 2.1). Let Ω ⊂ Rn be a bounded domain with ∂Ω ∈ C0,1 and
λ1 > 0 the first non-zero eigenvalue of −∆ endowed with zero Neumann boundary
conditions. Then there exists a constant C > 0, merely depending on Ω, such that
for all 1 ≤ q ≤ p ≤ ∞

‖S∆(τ)z‖Lp(Ω) ≤ Cm(τ)−
n
2 ( 1

q
− 1
p)e−λ1τ‖z‖Lq(Ω) ∀ τ ∈ R>0 (B.5)

holds for all z ∈ Lq(Ω) satisfying 〈z〉Ω = 0. Here, we denote m(τ) = min{1, τ}.
Moreover, (S∆(τ))τ∈R≥0 is a contraction semigroup on Lp(Ω) for each 1 ≤ p ≤ ∞,
which is strongly continuous for 1 ≤ p <∞ and analytic for 1 < p <∞.

Proof. The first part of this lemma has been proven with similar arguments in [94]
or [112] assuming stronger boundary regularity ∂Ω ∈ C2,α. For completeness, a
proof along the same lines of [112, Lemma 1.3] is given here but estimates for the
heat kernel from [18, Theorem 3.2.9] for a Lipschitz boundary are used instead.
The second part of this lemma is a consequence of [18, Theorems 1.3.9, 1.3.3] and
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analyticity follows from [18, Theorems 1.4.1, 1.4.2].
Finally, let us derive decay estimate (B.5). Using spectral theory developed in
Proposition B.2, we can express the semigroup action by a Fourier series

(S∆(τ)z)(x) =
∑
j∈N0

e−λjτ (z, wj)L2(Ω)wj(x)

On the one hand, for z ∈ L2(Ω) with 〈z〉Ω = 0, we can use that λ0 = 0 and
w0 = |Ω|−1/2 is constant and obtain

‖S∆(τ)z‖L2(Ω) ≤ e−λ1τ‖z‖L2(Ω) ∀ τ ∈ R≥0. (B.6)

On the other hand, [18, Theorem 2.4.4] shows that (S∆(τ))τ∈R≥0 is hypercontractive
and maps L2(Ω) to L∞(Ω) for each τ > 0. Thus for each τ > 0, x ∈ Ω, the map
z 7→ S∆(τ)z(x) ∈ L2(Ω)∗ can be represented by a function K(τ, x, ·) ∈ L2(Ω), the
so called heat kernel, such that

(S∆(τ)z)(x) =
∫

Ω
K(τ, x, y)z(y) dy.

We infer an estimation of the heat kernel from [18, Theorem 3.2.9], more precisely,

0 ≤ K(τ, x, y) ≤ C1m(τ)−n/2 exp
(
−(x− y)2

C2τ

)
=: fτ (x− y),

where m(τ) = min{1, τ} as in [94, Part I, Lemma 3]. Using Young’s inequality, we
get for r ≥ 1 with 1

p
+ 1 = 1

q
+ 1

r

‖S∆(τ)z‖Lp(Ω) ≤
(∫

Ω

(∫
Ω
K(τ, x, y)|z(y)| dy

)p
dx
)1/p

≤ ‖fτ ∗ (|z|χΩ)‖Lp(Rn)

≤ ‖fτ‖Lr(Rn)‖z‖Lq(Ω).

The evaluation of the Gauss integral yields a constant C3 = C1(C2π)n/2 > 0 only
depending on Ω such that for all τ > 0 and r ≥ 1

‖S∆(τ)z‖Lp(Ω) ≤ C3m(τ)−n/2τn/(2r)‖z‖Lq(Ω) ≤ C3m(τ)−
n
2 ( 1

q
− 1
p)‖z‖Lq(Ω). (B.7)
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In view of the latter inequality (B.7), estimate (B.5) holds for small τ ∈ (0, 2).
Thus, it remains to consider τ ≥ 2, i.e., m(τ) = 1. In the following argument, we
distinguish the cases p < 2 resp. p ≥ 2.

• If 1 ≤ p < 2, then Hölder’s inequality and the semigroup properties imply

‖S∆(τ)z‖Lp(Ω) ≤ |Ω|
1
p
− 1

2‖S∆(τ)z‖L2(Ω) ≤ |Ω|
1
2‖S∆(τ − 1)S∆(1)z‖L2(Ω),

which can be further estimated using inequalities (B.6), (B.7). Since we assume
1 ≤ q ≤ p ≤ 2, we obtain

‖S∆(τ)z‖Lp(Ω) ≤ |Ω|
1
2 e−λ1(τ−1)‖S∆(1)z‖L2(Ω) ≤ |Ω|

1
2 e−λ1(τ−1)C3‖z‖Lq(Ω).

• If p ≥ 2, we proceed in a similar way using semigroup properties and estimates
(B.7), (B.6) to reach at

‖S∆(τ)z‖Lp(Ω) = ‖S∆(1)S∆(τ − 1)z‖Lp(Ω) ≤ C3‖S∆(τ − 1)z‖L2(Ω)

= C3‖S∆(τ − 2)S∆(1)z‖L2(Ω) ≤ C3e−λ1(τ−2)‖S∆(1)z‖L2(Ω).

Applying once more inequality (B.7) for q ≤ 2 resp. Hölder’s inequality for
q > 2 yields

‖S∆(τ)z‖Lp(Ω) ≤ C3e−λ1(τ−2) max{C3, |Ω|
1
2}‖z‖Lq(Ω).

All in all, estimate (B.5) holds for all τ > 0 where C is independent of p, q.

Remark that different uniformly elliptic differential operators of second order with
possibly different boundary conditions induce similar semigroup estimates, see [4,
Theorem 4.9] and subsequent remark therein for Robin boundary conditions. Even
for space- and time-dependent parabolic coefficients, there are general works on
Gaussian bounds by [15] and [58] including estimates of the evolution operators.

The following final result characterizes the abstract domain of the generator of the
heat semigroup (S∆(τ))τ∈R≥0 for low boundary regularity ∂Ω ∈ C0,1. In this general
case, the Laplace operator is not defined on a domain in W 2,p(Ω).

Lemma B.5. Let 1 < p < ∞ and the semigroup (S∆(τ))τ∈R≥0 be defined as in
Lemma B.4 with generator Hp : D(Hp) ⊂ Lp(Ω)→ Lp(Ω). Then the domain D(Hp)
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is characterized by D(Hp) = W 1,p
N (Ω) where

w ∈ W 1,p
N (Ω) :⇔ w ∈ W 1,p(Ω) and there exists a function f ∈ Lp(Ω) such that

(∇w,∇ϕ)L2(Ω) = (f, ϕ)L2(Ω) ∀ ϕ ∈ W 1,q(Ω).

As usual in the weak sense, we identify Hpw = f and obtain the estimate

‖w‖W 1,p(Ω) ≤ C
(
‖w‖Lp(Ω) + ‖Hpw‖Lp(Ω)

)
for all w ∈ D(Hp). Additionally, if 〈w〉Ω = 0, we obtain

‖w‖W 1,p(Ω) ≤ C‖∇w‖Lp(Ω) ≤ C‖Hpw‖Lp(Ω).

Proof. This characterization of the domain D(Hp) is shown similar to [113, Theorem
2.15]. Starting from the quadratic form Q on H1(Ω) as in the proof of Proposition
B.2, we have shown in Lemma B.4 that the latter induces sectorial operators on
Lp(Ω) for each finite 1 < p < ∞ [23, Chapter II, Theorem 4.6]. However, this was
just an abstract result without knowledge of the domain. The same can be done
analog to [113, Theorem 2.12] while we note that the preceding results from [113,
Propositions 2.1, 2.3] hold for each λ ∈ C \ {0} with Reλ ≤ 0. The operators which
we gain by this procedure are sectorial in the sense of [23, Chapter II, Definition 4.1]
and generate analytic semigroups [23, Chapter II, Proposition 4.3]. The semigroups
coincide on the dense subset Lp(Ω)∩L2(Ω) of Lp(Ω) with the ones defined above by
[18, Theorem 1.4.1]. As a consequence, each bounded semigroup operator coincides
on Lp(Ω) and hence, the unique generator Hp of the semigroup can be characterized
using the method of [113, Section 2.4].
First of all, we have W 1,p

N (Ω) ⊂ D(Hp) since we can identify Hpw = f ∈ Lp(Ω) in
the weak sense for each w ∈ W 1,p

N (Ω), compare to Proposition B.2. Conversely, let
w ∈ D(Hp), i.e., there exists some f ∈ Lp(Ω) with f = Hpw and w ∈ Lp(Ω). Let us
consider some constant c > 0 for which we obtain a unique solution w̃ ∈ W 1,p(Ω) of
the elliptic problem

−∆w̃ + cw̃ = f + cw

in its weak formulation (A.3). Actually, w̃ ∈ W 1,p
N (Ω) since

−∆w̃ = f + c(w − w̃) ∈ Lp(Ω).
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Since Hpw = f , this can be rewritten as (Hp + cI)(w̃ − w) = 0 and considering
the weak formulation (A.3) for this problem yields w̃ = w by uniqueness. All in
all, D(Hp) = W 1,p

N (Ω) and we obtain above estimates which hold on W 1,p
N (Ω) by

estimate (A.4) and Poincaré’s inequality.

B.2 A bootstrap argument

Let us consider a bounded weak solution z ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω))
which solves the following linear parabolic equation

∂z

∂t
− d∆z = R(x, t) in ΩT , (B.8)

∂z

∂n
= 0 on ∂Ω× (0, T ), z(·, 0) = 0 in Ω (B.9)

with right-hand side R ∈ Lp,r(ΩT ) and diffusion d, see Proposition B.3. The aim of
this section is to show L∞(ΩT ) estimates for the solution z which depend explicitly on
time T and the mixed norm ‖R‖p,r. This is based on a bootstrap method developed
by Ladyzenskaja in [59, Chapter III, §7] which essentially uses parabolic Lp,r(ΩT )
estimates in combination with the well-known truncation method of Stampacchia.
Within this procedure, the exponent p is restricted due to Sobolev embeddings by
p ≥ 1 = n and p > n/2 for n ≥ 2. The parameter 1 ≤ r ≤ ∞ is chosen according to
[59, Chapter III, §7], see definition (B.14) below.
The Lebesgue space Lp,r(ΩT ) is given by all measurable functions ψ on ΩT with
finite mixed norm

‖ψ‖p,r :=
(∫ T

0

(∫
Ω
|ψ(x, t)|p dx

)r/p
dt
)1/r

for 1 ≤ p, r <∞

and an obvious modification for r = ∞ [59, Chapters I, II, §1 in both cases]. It is
well known that Lp,r(ΩT ) = Lr(0, T ;Lp(Ω)) for p, r <∞ since simple functions are
dense in both spaces with the same norm [3, Section 1.1]. If we do not specify the
region of integration within the notation ‖ · ‖p,r, we assume to integrate over ΩT .

For simplicity, we normalize the right-hand side R of equation (B.8) by dividing
with ‖R‖p,r. Due to linearity of the latter parabolic equation, the rescaled solution
z̃ equals the former solution z but divided by the norm ‖R‖p,r. Our goal is to prove
that ‖z̃‖L∞(ΩT ) can be estimated by a power of T . In achieving this goal, we estimate
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the positive part of z̃ − h for h ∈ R≥0, more precisely, the measurable function

(z̃ − h)+ := max{z̃ − h, 0}.

Let us define its positivity set

Ah(t) = {x ∈ Ω | z̃(x, t) > h} for t > 0. (B.10)

In order to find an estimate for z̃ in L∞(ΩT ), we will show existence of h > 0 such
that |Ah(t)| = 0 for a.e. t > 0. In the end, rescaling establishes a corresponding
bound for the original solution z in terms of T and ‖R‖p,r. I follow the strategy
of the proof of Theorem 7.1 in [59, Chapter III, §7] and adapt calculations to our
situation. For simplicity, we write

Bh := (z̃ − h)+ and Bh := 〈(z̃ − h)+〉Ω.

First of all, we derive an estimate for ‖Bh − Bh‖p̂,r̂ for some p̂, r̂ to be determined.
Since for almost every time t ∈ [0, T ] we have Bh(·, t) ∈ H1(Ω), the well-known
Gagliardo-Nirenberg interpolation inequality holds (see [1, Theorem 5.8] for n ≥ 2 or
[59, Chapter II, Theorem 2.2] for n ≥ 1). The latter inequality yields in combination
with Poincaré’s inequality [24, §5.8.1, Theorem 1]

‖Bh(·, t)−Bh(t)‖Lp̂(Ω) ≤ %‖∇xBh(·, t)‖ωL2(Ω)‖Bh(·, t)−Bh(t)‖1−ω
L2(Ω), (B.11)

with ω = n/2− n/p̂ and % depending on Ω, n, and 2 ≤ p̂ ≤ ∞. We observe ranges
0 ≤ ω ≤ 1/2 for n = 1, 0 ≤ ω < 1 for n = 2. For n ≥ 3 we use the Sobolev
conjugate 2∗ of 2 which restricts p̂,

2 ≤ p̂ ≤ 2∗ := 2n
n− 2 ,

and implies 0 ≤ ω ≤ 1. Following the method of Ladyzenskaja, we choose a pa-
rameter r̂ such that we are able to make use of our differential equation (B.8), and
especially of the bound ‖R̃‖p,r = 1. Using the weak formulation of equation (B.8)
in L2(ΩT ), an Lp̂,r̂(ΩT ) estimate can be deduced from inequality (B.11) by choosing
ωr̂ = 2 [59, Chapter II, §3]. We reach at the following estimate.

Lemma B.6. Let h ∈ R≥0, ωr̂ = 2, and consequently 2 < p̂ ≤ ∞ in estimate
(B.11). Then there exists a constant C > 0 which depends only on %, r̂, and p̂ such
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that

‖Bh −Bh‖2
p̂,r̂ ≤ Cd−2/r̂

(1
2‖Bh‖2

2,∞ + d‖∇xBh‖2
2,2

)
. (B.12)

Proof. Let us apply inequality (B.11) to the case ωr̂ = 2 to deduce

‖Bh −Bh‖p̂,r̂ =
(∫ T

0
‖Bh(·, τ)−Bh(τ)‖r̂Lp̂(Ω) dτ

)1/r̂

≤ %

(∫ T

0
‖∇xBh(·, τ)‖ωr̂L2(Ω)‖Bh(·, τ)−Bh(τ)‖(1−ω)r̂

L2(Ω) dτ
)1/r̂

≤ %

(∫ T

0
‖∇xBh(·, τ)‖2

L2(Ω)‖Bh(·, τ)‖r̂−2
L2(Ω) dτ

)1/r̂

from the fact that the mean Bh is the minimum of the parabola s 7→ ‖Bh− s‖2
L2(Ω).

The spatial gradient can be connected to the weak formulation by estimating

‖Bh −Bh‖2
p̂,r̂ ≤ %2d−2/r̂

(
d
∫ T

0
‖∇xBh(·, τ)‖2

L2(Ω) dτ
)2/r̂

‖Bh‖2(1−2/r̂)
2,∞

≤ %2d−2/r̂
(2
r̂
d‖∇xBh‖2

2,2 +
(

1− 2
r̂

)
‖Bh‖2

2,∞

)

where we used Young’s inequality for the exponent r̂/2 ≥ 1.

In order to obtain an estimate for the expression ‖Bh‖p̂,r̂, we aim for a similar
estimate of the spatial mean Bh to compare Bh to R̃ as well.

Lemma B.7. For each h ∈ R≥0 there holds the integral inequality

Bh(t) ≤ |Ω|−1
∫ t

0

∫
Ah(τ)

|R̃(x, τ)| dx dτ. (B.13)

Proof. For convenience, we omit the tilde in the following proof. In order to obtain
inequality (B.13), we formally test the corresponding weak formulation of equation
(B.8) for z with right-hand side R by B`−1

h = (z − h)`−1
+ for ` > 1. To do this

mathematically rigorously, we consider bounded test functions

ϕδ(·, t) := (z(·, t)− h)`−1
+ χAh+δ(t) ∈ H

1(Ω)

for arbitrary δ > 0, a.e. t ∈ (0, T ) and obtain
∫
Ah+δ(t)

∂tz(z − h)`−1
+ dx+ d(`− 1)

∫
Ah+δ(t)

|∇z|2(z − h)`−2
+ dx
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=
∫
Ah+δ(t)

R(x, t)(z − h)`−1
+ dx

in view of Proposition B.3. Notice that the second term on the left-hand side is
non-negative. Moreover, the bounded function (z− h)` satisfies (z− h)` ∈ H1(0, T )
for a.e. x ∈ Ω which implies (z − h)`+ ∈ H1(0, T ) by [1, Lemma 8.34] and

1
`

∫
Ah+δ(t)

∂t(z − h)`+ dx ≤
∫
Ah+δ(t)

R(x, t)(z − h)`−1
+ dx.

By dominated convergence, we conclude that Ah+δ(t) can be substituted as δ → 0
by Ah(t) or simply by Ω as domain of integration. Integration over (0, t) yields

1
`

∫
Ω

(z(x, t)− h)`+ dx ≤
∫ t

0

∫
Ah(τ)

R(x, τ)(z − h)`−1
+ dx dτ

in view of the initial condition z(·, 0) = 0. Finally, the theorem of dominated
convergence implies estimate (B.13) in the limit `→ 1.

Following the current method of Ladyzenskaja, we choose parameters r, κ1 according
to [59, Chapter III, §7], i.e., we choose

1
r

+ n

2p = 1− κ1 ∈ (0, 1) (B.14)

for given 1 ≤ p ≤ ∞ with slight modifications for n = 1

1
1− κ1

≤ r ≤ 2
1− 2κ1

and κ1 ∈ (0, 1/2) for n = 1,

1
1− κ1

≤ r ≤ ∞ and p ≥ n

2(1− κ1) >
n

2 for n ≥ 2.

Furthermore, we define parameters

p̂ := (1 + κ) 2p
p− 1 , r̂ := (1 + κ) 2r

r − 1 for κ := 2κ1/n < 1 (B.15)

with ranges

2(1 + κ) ≤ p̂ ≤ ∞, 4 ≤ r̂ ≤ 4(1 + κ)
κ

for n = 1,

2(1 + κ) ≤ p̂ ≤ 2n(1 + κ)
n− 2(1− κ1) , 2(1 + κ) ≤ r̂ ≤ 2(1 + κ)

κ1
for n ≥ 2.
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In particular, p̂ satisfies the requirements of inequality (B.11) and above Lemma B.6
is applicable since ωr̂ = 2. For each h ∈ R≥0 and p > 1 consider the integral

µ(h) =
∫ T

0
|Ah(τ)|r̂/p̂ dτ =

∫ T

0
|Ah(τ)|γ dτ (B.16)

for which we will show µ(h) = 0 for some h ∈ R≥0 to establish an upper bound for
the solution z̃. Recall that γ = (1− 1/p)/(1− 1/r) > 0 in this case and Ah defined
in (B.10) is the positivity set of z̃ − h. For the case p = 1 = n, a modification of µ
is required since definition (B.16) does not yield any information on the measure of
the positivity set Ah(t). Instead, Ladyzenskaja proposes in [59, footnote on p. 185]
to use

µ(h) := |Ph| where Ph = {t ∈ [0, T ] | |Ah(t)| > 0} (B.17)

for p = 1 = n. Having these definitions in mind, the following is a consequence of
Lemma B.7.

Corollary B.8. Let h ∈ R≥0 and 1 ≤ p, r ≤ ∞ be chosen according to the parameter
setting (B.14). Then there holds

‖Bh‖p̂,r̂ ≤ T 1/r̂|Ω|1/p̂−1µ(h)1−1/r (B.18)

provided definitions (B.16) and (B.17) for the function µ and p̂, r̂ given by (B.15).

Proof. Let R̃ be normalized in the Lp,r(ΩT )-norm. A further estimation of inequality
(B.13) using Hölder’s inequality results in

|Ω|
∣∣∣Bh(t)

∣∣∣ ≤ ∫ T

0
‖R̃(·, τ)‖Lp(Ω)|Ah(τ)|1−1/p dτ ≤

(∫ T

0
|Ah(τ)|γ dτ

)1−1/r

where γ = (1 − 1/p)/(1 − 1/r) > 0 for p > 1. With regard to the mixed norm, we
obtain

‖Bh‖p̂,r̂ =
(∫ T

0

(∫
Ω
|Bh(τ)|p̂ dx

)r̂/p̂
dτ
)1/r̂

≤ sup
τ∈[0,T ]

|Bh(τ)||Ω|1/p̂T 1/r̂

≤ T 1/r̂|Ω|1/p̂−1
(∫ T

0
|Ah(τ)|γ dτ

)1−1/r

.

For the case p = 1, we start again from inequality (B.13) and further estimate

Bh(t) ≤ |Ω|−1
∫ T

0

∫
Ah(τ)

|R̃(x, τ)| dx dτ
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≤ |Ω|−1
∫ T

0
χPh(τ)‖R̃(·, τ)‖L1(Ω) dτ.

Applying Hölder’s inequality and ‖R̃‖1,r = 1 yield Bh(t) ≤ |Ω|−1µ(h)1−1/r where we
use definition (B.17) of µ. As shown above, this implies

‖Bh‖p̂,r̂ ≤ T 1/r̂|Ω|−1µ(h)1−1/r.

Recall that p̂ =∞, r̂ = 4 for p = 1 = n while 1 < r <∞.

Combining the above results, we gain an estimate for ‖Bh‖p̂,r̂ which still depends
on the spatial gradient of Bh. However, the embedding

L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ⊂ Lp̂,r̂(ΩT )

is a consequence of the choice of the exponents and allows to dispose of the gradient.

Lemma B.9. Let p, r satisfy the setting (B.14) and let κ, p̂ and r̂ be defined as in
(B.15). Then, for arbitrary h ∈ R≥0, T ≥ 1, the function Bh = (z̃ − h)+ can be
estimated by

‖Bh‖p̂,r̂ ≤ CT 2/r̂µ(2κ+1)/r̂(h) (B.19)

where the constant C > 0 does only depend on Ω, n, the parameters p, r and a lower
bound of the diffusion d.

Proof. Let us once again omit the tilde. Above lemmata imply the inequality

‖Bh‖2
p̂,r̂ ≤ C1d

−2/r̂
(1

2‖Bh‖2
2,∞ + d‖∇xBh‖2

2,2

)
+ C2T

2/r̂µ4(1+κ)/r̂(h). (B.20)

For a further estimation, we test the scaled version of the parabolic equation (B.8)
with Bh = (z − h)+ to reach at

1
2‖Bh‖2

2,∞ + d‖∇xBh‖2
2,2 ≤

∫ T

0

∫
Ah(τ)

R(z − h)+ dx dτ. (B.21)

Let us first consider p > 1. We use twice Hölder’s inequality for p, r > 1 to gain
∫ T

0

∫
Ah(τ)

R(z − h)+ dx dτ ≤ ‖(z − h)χΩT (h)‖p/(p−1),r/(r−1)
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B.2 A bootstrap argument

where we used ΩT (h) := {(x, t) ∈ ΩT | z(x, t) − h > 0}. Applying the parabolic
Hölder inequality [59, Chapter II, §1] to the characteristic function on ΩT (h) implies

‖(z − h)χΩT (h)‖p/(p−1),r/(r−1) ≤ ‖(z − h)+‖p̂,r̂µ(2κ+1)/r̂(h), (B.22)

where p̂, r̂ are defined as in (B.15). Hence, we may apply estimate (B.20) to the
function Bh = (z − h)+ and obtain by Cauchy’s inequality for some δ > 0

‖(z − h)χΩT (h)‖p/(p−1),r/(r−1) ≤ δ
(
C1d

−2/r̂
(1

2‖Bh‖2
2,∞ + d‖∇xBh‖2

2,2

)
+C2T

2/r̂µ4(1+κ)/r̂(h)
)

+ (4δ)−1µ2(2κ+1)/r̂(h).

Inserting the latter estimate into inequality (B.21) and absorbing terms on the left-
hand side (for small δ > 0 in case of a lower bound d ≥ d0), this yields

1
2‖Bh‖2

2,∞ + d‖∇xBh‖2
2,2 ≤ C

(
T 2/r̂µ4(1+κ)/r̂(h) + µ2(2κ+1)/r̂(h)

)
.

Since µ(h) ≤ |Ω|r̂/p̂T and we consider very long time intervals [0, T ], the assertion
follows from estimate (B.20).
A similar argument which involves the positivity set Ph is used to verify the case
p = 1 = n. In doing so, only estimate (B.22) has to be verified for the modified
definition of µ since Lemma B.6 remains valid. The former is still a consequence of
Hölder’s inequality applied to the integral on the left-hand side of estimate (B.22).
Apart from this modification, the assertion follows along the same lines using the
estimate µ(h) ≤ T .

Next, we use estimate (B.19) of Lemma B.9 to obtain decay estimates for the func-
tion µ. A well-known truncation lemma due to Stampacchia then yields an estimate
for the diffusive component z after rescaling with ‖R‖p,r.

Proposition B.10. Let z ∈ L2(0, T ;H1(Ω)) ∩ C([0, T ];L2(Ω)) be a bounded weak
solution of the initial boundary value problem (B.8)–(B.9) with R ∈ Lp,r(ΩT ) and
parameter values p, r given by (B.14). Then there exists a constant C > 0 which
only depends on Ω, n, p, r and a lower bound of the diffusion d such that the diffusive
component z satisfies the estimate

‖z‖L∞(ΩT ) ≤ CT 1−1/r‖R‖p,r. (B.23)
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Proof. Due to inequality (B.19) there holds

‖(z̃ − h)+‖p̂,r̂ ≤ CT 2/r̂µ(2κ+1)/r̂(h).

To derive decay estimates for µ, we estimate the left-hand side from below. Therefore
let h̃ > h ≥ 0 which implies z − h > (h̃ − h) on Ah̃(t). An integration over
Ah̃(t) ⊂ Ah(t) yields

|Ah̃(t)|1/p̂(h̃− h) ≤ ‖(z̃ − h)+‖Lp̂(Ah(t))

for p > 1 resp. p̂ < ∞. For p = 1, we may take the supremum over x in the
inequality (h̃− h)χPh̃(t) ≤ (z̃ − h)+χPh̃(t) which holds on Ah̃(t). Integrating over t
yields the lower bound

µ(h̃)(h̃− h)r̂ ≤ ‖(z̃ − h)+‖r̂p̂,r̂.

Both bounds for the decreasing function µ imply the relation

µ(h̃) ≤ (CT 2/r̂)r̂

(h̃− h)r̂
µ2κ+1(h) ∀ h̃ > h ≥ 0.

Then a technical lemma of Stampacchia [101, Lemma 4.1] applies (with the same
constant C) to the function µ and yields extinction:

µ(h) = 0 for all h ≥ h0 = 21+1/(2κ)CT 2/r̂µ(0)2κ/r̂

The definition of µ leads to z̃ ≤ h0 a.e. in ΩT . Since −z̃ satisfies the same type
of equation as z̃ with −R̃ instead of R̃, we obtain the estimate ‖z̃‖L∞(ΩT ) ≤ h0.
Accordingly rescaled, this means

‖z‖L∞(ΩT ) ≤ h0‖R‖p,r ≤ CT 1−1/r‖R‖p,r

where we used again |µ(h)| ≤ |Ω|r̂/p̂T and the parameter setting (B.15).
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C Multiplication operators

Each matrix A ∈ L∞(Ω)m×m induces a corresponding multiplication operator

MA : Lp(Ω)m → Lp(Ω)m, z 7→ Az

where (Az)(x) := A(x)z(x) for each z ∈ Lp(Ω)m. Since ‖MA‖ ≤ ‖A‖∞, this is
a bounded, linear operator for each 1 ≤ p ≤ ∞ [104, Proposition 2.2.14]. Let us
simply write A instead of MA in the following. The knowledge of the spectrum of
a multiplication operator A allows us to characterize the spectrum of the shadow
operator L defined in (5.8) and the partly diffusive operator LD defined in (5.10).
We refer to [22, Chapter IX] and [35, Sections 1-3] for several characterizations of
the spectrum σ(A) of the multiplication operator A on Lp(Ω)m for 1 ≤ p <∞. The
following result concerning the essential spectrum is known for the case p = 2 by
[35, Proposition 3.2, Corollary 3.4] and for the scalar case by [102, Proposition 3].
A generalization to arbitrary exponents 1 ≤ p ≤ ∞ is given next.

Proposition C.1. Let A ∈ L∞(Ω)m×m,m ∈ N, and let A denote its corresponding
multiplication operator on Lp(Ω)m for some 1 ≤ p ≤ ∞. Then there exists a null
set N ⊂ Ω such that

σ(A) =
⋃

x∈Ω\N
σ(A(x)). (C.1)

Moreover, the whole spectrum is essential in the sense of Wolf, i.e.,

σ(A) = σess(A) := {λ ∈ C | λI −A is not a Fredholm operator}.

Proof. Boundedness of the multiplication operator leads to a non-empty resolvent
set ρ(A) 6= ∅. For 1 ≤ p <∞, [22, Chapter IX, Theorem 2.4] states

σ(A) = {λ ∈ C | |Nλ,ε| > 0 ∀ ε > 0} =: ess−σ(A(Ω)),
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C Multiplication operators

for measurable sets

Nλ,ε := {x ∈ Ω | dist(λ, σ(A(x))) < ε}.

On the one hand, along the same lines of that proof, σ(A) ⊂ ess−σ(A(Ω)) also
holds for p = ∞. On the other hand, the proof of σ(A) ⊃ ess−σ(A(Ω)) given
in [22, Chapter IX, Theorem 2.4] does not apply for p = ∞. In order to prove
the above representation (C.1) of the spectrum, it remains to show the inclusion
ess−σ(A(Ω)) ⊂ σ(A) and [22, Chapter IX, Remark 2.3] yields the result.
Using the idea of [35, Theorem 3.3], we show that each λ ∈ ess−σ(A(Ω)) is in the
spectrum of A. As the characteristic polynomial of the matrix A(x) factorizes with
eigenvalues λi(x) ∈ C, we obtain

| det(λI −A(x))| =
m∏
i=1
|λ− λi(x)| ≥ dist(λ, σ(A(x)))m (C.2)

for a.e. x ∈ Ω. This estimate yields the inclusion

Γλ,ε := {x ∈ Ω | | det(λI −A(x))| < εm} ⊂ Nλ,ε

and we conclude that

Γλ := {x ∈ Ω | det(λI −A(x)) = 0} (C.3)

satisfies 0 ≤ |Γλ| ≤ limε→0 |Nλ,ε| as the limit of the above subsets of Nλ,ε as ε→ 0.
The sequence (|Γλ,ε|)ε>0 of non-negative numbers is non-increasing as ε → 0 with
a limit which is either positive or zero. In the former case, we conclude that Γλ
defined in (C.3) has positive measure which is equivalent to λ ∈ σp(A) using [43,
Theorem 2.1] or [35, Theorem 2.5]. In the latter case, |Γλ| = limε→0 |Γλ,ε| = 0, we
show that the injective operator λI−A is not bounded from below, hence λ ∈ σ(A).
Although we know from λ ∈ ess−σ(A(Ω)) that |Nλ,ε| > 0 for all ε > 0, there are
still two possibilities for the zero sequence (|Γλ,ε|)ε>0: either |Γλ,ε| > 0 for all ε > 0
or the sequence becomes stationary in the sense that |Γλ,ε| = 0 for all 0 < ε ≤ ε0

and some ε0 > 0. In both cases we construct a sequence (fj)j∈N ⊂ Lp(Ω)m with
‖fj‖Lp(Ω)m = 1 for which ‖(λI −A)fj‖Lp(Ω)m → 0 as j →∞, hence λI −A can not
be bounded from below.
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• Let |Γλ,ε| > 0 for all ε > 0. Thus, we are able to extract a decreasing subse-
quence (Γλ,εj)j∈N with εj → 0 as j →∞ such that

|Γλ,εj | > 0, Γλ,εj+1 ⊂ Γλ,εj and
∣∣∣Γλ,εj \ Γλ,εj+1

∣∣∣ > 0.

By choosing measurable sets Mj ⊂ Γλ,εj \ Γλ,εj+1 with |Mj| > 0 for all j ∈ N
we obtain the estimate

εmj+1 ≤ | det(λI −A(x))| < εmj ∀ x ∈Mj. (C.4)

This enables us to apply [35, Lemma 3.1] to the matrix (λ−A(x))−1. Conse-
quently, we find measurable vector-valued functions vj : Mj → Cm satisfying

|vj(x)|2 = 1 and
∣∣∣(λI −A(x))−1vj(x)

∣∣∣
2

=
∣∣∣(λI −A(x))−1

∣∣∣
2

for all x ∈ Mj, where we used the Euclidean norm | · |2 on Cm and for the
induced matrix norm | · |2. Define uj(x) = (λI − A(x))−1vj(x) as well as
functions fj ∈ Lp(Ω)m by

fj(x) = cp(j)
uj(x)
|uj(x)|2

χMj
(x)

where cp(j) = |Mj|−1/p for p <∞ and cp(j) = 1 for p =∞. Here, we fix | · |2
as the vector norm on Cm. This implies

‖fj‖pLp(Ω)m =
∫

Ω
|fj(x)|p2 dx = 1

with an obvious modification for p =∞. Applying λI −A to fj yields

(λI −A(x))fj(x) = cp(j)χMj
(x)vj(x)

∣∣∣(λI −A(x))−1
∣∣∣−1

2
.

From the invertibility condition (C.4) we infer
∣∣∣(λI −A(x))−1

∣∣∣−1

2
≤ dist(λ, σ(A(x))) ∀ x ∈Mj

where we used [23, Chapter IV, Corollary 1.14]. A combination of estimates
(C.2) and (C.4) yields

dist(λ, σ(A(x))) < εj ∀ x ∈Mj,
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C Multiplication operators

which implies
‖(λI −A)fj‖Lp(Ω)m ≤ εj.

Since εj → 0, λ is an approximate eigenvalue of A, i.e., λ ∈ σ(A).

• Let |Γλ,ε| = 0 for all 0 < ε ≤ ε0. The definition of Γλ,ε yields the pointwise
invertibility condition

| det(λI −A(x))| ≥ εm0 > 0 for a.e. x ∈ Ω.

Taking Mj := Nλ,εj ⊂ Ω with |Mj| > 0 for any zero sequence (εj)j∈N, we find,
similar to the above reasoning, a sequence (fj)j∈N ⊂ Lp(Ω)m satisfying

‖(λI −A)fj‖Lp(Ω)m ≤ εj.

Since εj → 0, λ is an approximate eigenvalue of A, i.e., λ ∈ σ(A). Note
that in this case, Nλ,εj cannot become stationary since then Mj and fj would
become stationary which implies (λI −A)fj = 0 – a contradiction to fj 6= 0.

It remains to show that λI−A is not Fredholm for all λ ∈ σ(A). To do so, we prove
that for each λ ∈ σ(A) either λI −A has no closed range or an infinite-dimensional
kernel. This implies that λI −A is not Fredholm.
If λ ∈ σp(A), notice that the results [35, Lemma 2.4, Theorem 2.5] hold indepen-
dently of 1 ≤ p ≤ ∞. Hence, the first part of the proof of [35, Proposition 3.2]
is still applicable: we infer σp(A) ⊂ σess(A) from an infinite-dimensional kernel of
λI −A containing a subspace isomorphic to Lp(Γλ) due to [35, Corollary 2.6].
If λ ∈ σ(A) \ σp(A), we necessarily have |Γλ| = limε→0 |Γλ,ε| = 0. From above rea-
soning we know that λI−A is not bounded from below. Thus, the injective operator
λI −A cannot have closed range by [8, Theorem 2.19, Remark 18] and λI −A is
not a Fredholm operator. Recall that the constructed sequence (fj)j∈N ⊂ Lp(Ω)m

is in fact singular, see [20, Chapter 9, Definition 1.2], subject to a similar choice of
disjoint sets Mj in the second case above.

Remark that the above proof may be shortened extremely for the cases 1 ≤ p <∞.
One can essentially use the same method of proof from [35, Proposition 3.2] for the
case p = 2 having the characterization from [22, Chapter IX, Proposition 1.4] for
the dual multiplication operator in mind.
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[14] Ju.L. Daleckĭı, M.G. Krĕın, Stability of solutions of differential equations in
Banach spaces. Translations in Math. Monographs, Vol. 43, Amer. Math. Soc.
Providence, 1974.

[15] D. Daners, Heat kernel estimates for operators with boundary conditions.
Math. Nachr., Vol. 217, No. 1 (2000), pp. 13-41.

[16] R. Datko, Uniform asymptotic stability of evolutionary processes in a Banach
space. SIAM J. Math. Anal., Vol. 3, No. 3 (1972), pp. 428-445.

[17] E.B. Davies, One-parameter semigroups. LMS Monographs No. 15, Academic
Press London, 1980.

[18] E.B. Davies, Heat kernels and spectral theory. Cambridge Tracts in Math.,
Vol. 92, Cambridge Univ. Press Cambridge, 1989.

[19] H. Dong, D. Kim, Elliptic equations in divergence form with partially BMO
coefficients. Arch. Rational Mech. Anal., Vol. 196 (2010), pp. 25-70.

[20] D.E. Edmunds, W.D. Evans, Spectral theory and differential operators. 2nd
Edition, Oxford Mathematical Monographs, Clarendon Press Oxford, 2018.

[21] T. Eisner, Stability of operators and operator semigroups. Operator Theory:
Advances and Applications, Vol. 209, Birkhäuser-Verlag Basel, 2010.
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