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Introduction

Natural disasters have always had a major influence on human civilizations. From the great

Lisbon earthquake in 1755, to Hurricane Katrina in 2005, to the recent COVID-19 pandemic,

natural disasters have had the power to shape the process of society’s development. Over

the 1950–2019 period natural disasters have affected 113 million people every year, which

translates into an average yearly economic loss of USD 12 billion (Guha-Sapir & CRED, 2020).

While richer economies are more resilient to damage from natural hazards, poorer countries

and especially poorer people are overexposed to them, are more vulnerable, and have a

reduced capacity to deal with the short- and long-term consequences of disasters (Hallegatte

et al., 2016). A current study estimates that if there were no disasters next year, 26 million

people would be able to get out of extreme poverty (Rozenberg & Hallegatte, 2016).1 The

recently declared “climate emergency” (Ripple et al., 2019), which refers to the increasing

number and intensity of climate-related hazards, such as droughts, floods, or tropical cyclones

(IPCC, 2014; Knutson et al., 2020), puts even more pressure on finding adequate policy

responses to the threat of natural disasters. Driven by the increasing integration of the local

and global economy, local disasters could additionally evolve into cascading risks for a whole

country and the international economy (Wenz & Levermann, 2016).

The international community has realized the increasing risk of and damage from natural

disasters and aims to reduce their negative consequences. One example for their efforts is

the Paris Agreement 2015 adopted by the participating countries of the United Nations

Framework Convention on Climate Change (UNFCCC) to limit the rise in the global average

temperature to below 2◦C to prevent dangerous climate change. This agreement calls the

participating countries to an “[...] assessment of climate change impacts and vulnerability,

with a view to formulate nationally determined prioritized actions [...]” and urges them

to “[...] recognize the importance of averting, minimizing and addressing loss and damage

1Extreme poverty refers to people living on less than USD 1.9 per day.
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associated with the adverse effects of climate change, including extreme weather events [...]”

(UNFCCC, 2015, 10–12). In the same year, the United Nations member states have also

agreed on a broader agreement to prevent risks and damage from all types of disasters. The

Sendai Framework for Disaster Risk Reduction 2015–2030 formulates specific goals for 2030,

such as a substantial reduction of disaster mortality, affectedness, and economic damage, and

demands a better understanding of disaster risk and impacts (UNISDR, 2015).

These impacts can be manifold and include, for example, effects on birth weight (Deschenes

et al., 2009), conflict (Hsiang et al., 2013; Nel & Righarts, 2008), economic growth (Felbermayr

& Gröschl, 2014; Strobl, 2012), energy supply (Auffhammer et al., 2017), migration (Boustan

et al., 2012; Strobl, 2011), and trade (Felbermayr & Gröschl, 2013; Hamano & Vermeulen,

2019). For many effects, the exact extent and the underlying mechanism are not completely

understood. For example, for the effects on economic growth, some studies find positive

growth effects from natural disasters (e.g., Albala-Bertrand, 1993; Cuaresma et al., 2008),

whereas other studies find negative consequences (e.g., Felbermayr & Gröschl, 2014; Strobl,

2012). The duration of disaster impacts is also empirically unclear. While some evidence shows

that the impacts last only a few months (Heinen et al., 2018), other studies find medium-term

impacts of several years (Elliott et al., 2015; Strobl, 2012) or even long-term impacts of up

to 20 years (Hsiang & Jina, 2014). However, before effective efforts to reduce disaster risk

and damage can take place, the exact extent of the damage and the underlying mechanisms

of the impacts must be better understood. Geospatial methods paired with satellite data

can help to better target policies when local damage data are incomplete or scarce (UNDRR,

2019). Moreover, to reduce potential negative disaster consequences, one needs fast and

objective disaster aid, which can have positive economic recovery effects (Bjørnskov, 2019;

Davlasheridze et al., 2017; de Mel et al., 2012). Targeting international disaster aid to people

in need is especially important, given its small size compared to the damage caused by natural

disasters (Becerra et al., 2014, 2015; UNDRR, 2019). However, previous research has shown

that national and international relief is prone to political influences rendering it less effective

(Bommer et al., 2019; Cohen & Werker, 2008; Fink & Redaelli, 2011).

In light of these findings, this thesis has two goals. The first is to better understand how

natural disasters influence the economy and society. The second is to analyze how national

and international disaster relief respond to natural disasters. In all chapters, I use geospatial

analyses to combine geophysical, hydrological, or meteorological data with socioeconomic
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Figure A: Reported number of events and affected people – Tropical cyclones and earthquakes,
1950–2019
Notes: This figure shows the reported number of natural disasters and reported number of affected
people for for tropical cyclones and earthquakes for the period 1950–2019. The data source for this figure
is the EM-DAT database (Guha-Sapir & CRED, 2020).

data to analyze the respective research questions of the chapters and overcome potential

data measurement problems. I focus on two different disaster types: tropical cyclones and

earthquakes. For both types of disasters, one observes an increase in the reported number of

events and affected people since 1950 (see Figure A). Tropical cyclones are one of the most

frequent and most damaging climate hazards. Their damage amounts to USD 2,111 billion,

and there are approximately 44 yearly damage events for the 1980–2018 period (Guha-Sapir

& CRED, 2020; Munich Re, 2018). Earthquakes occur less frequently than tropical cyclones

but can also have devastating consequences when they occur. In the past decades, they have

been responsible for 20,000 deaths per year on average (UNDRR, 2019).

My thesis is structured as follows. The first two chapters focus on the impacts of tropical

cyclones on economic sectors (Chapter 1) and coastal settlements (Chapter 2). In the

remaining two chapters, I analyze the policy responses to natural disasters. Chapter 3

comprises an analysis of the political bias in national disaster aid after hurricanes in the

United States, and Chapter 4 examines the allocation of international disaster relief after the

2015 Nepal earthquake. Figure B displays how the individual chapters interact.

3
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In the next paragraphs, I highlight the contributions and connections of the individual

chapters in more detail. The thesis starts by analyzing the impacts of tropical cyclones,

which are large rotating wind systems in the subtropics and one of the most damaging

climatic disasters. Because of their randomness in timing and their intensity, they pose a

considerable threat to local economies. In view of the continuously growing interconnection

between economic sectors, it is important to understand direct sectoral and spillover effects

between the sectors when developing a holistic damage analysis (Shughrue et al., 2020; Wenz

& Levermann, 2016). In Chapter 1, I analyze direct and indirect sectoral GDP responses

to tropical cyclones in a global sample of 205 countries for the 1970–2015 period. I use a

meteorological wind model to derive a new local damage function that takes account of the

different exposure of sectors. Together with global data on sectoral GDP growth per country,

I disentangle the sectoral impact of tropical cyclones. Furthermore, I identify spillover effects

between the individual sectors. My findings help to better understand important economic

trickle-down effects of natural disasters. With this chapter, I can identify sectors that show no

direct GDP effects but affect other sectors through a change in their input-output structure.

In the second chapter of this thesis, I turn to the impacts of tropical cyclone-generated

storm surges. This chapter focuses on the areas with the highest risk of tropical cyclone

damage, the so-called low elevation coastal zones (LECZ). For these areas, the greatest threats

are tropical cyclone-driven storm surges. Due to data scarcity, this damage component of

tropical cyclones has been mostly ignored in the empirical literature. In Chapter 2, in joint

Impacts

Chapter 1
Economic sectors

Chapter 2
Coastal population

Chapter 4
International disaster aid

Policy
Responses

Chapter 3
National disaster aid

Tropical Cyclones

Earthquakes

Figure B: Overview of chapters
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work with my co-author Eric A. Strobl, I close this gap by generating a tropical cyclone-

generated storm surge data set for every tropical cyclone ever recorded. We then use these

data to analyze how many people are still living in high-risk areas and how the total, urban,

and rural coastal populations have changed in response to storm surge damage in the past 70

years. Even though we find that some adaptation of coastal settlements in the most recent

decades has taken place, still more than 32 million people live in storm surge-exposed areas.

Overall, Chapters 1 and 2 provide evidence of long-term consequences of natural disasters.

In Chapter 1, I show that, even 17 years after the occurrence of a tropical cyclone, negative

sectoral growth effects remain. The results of Chapter 2 demonstrate that changes in coastal

settlements can still be detected up to 10 years after a storm surge event. Both chapters

highlight that still much has to be done to reduce long-term impacts of natural disasters.

One possibility to achieve this goal is to allocate disaster aid after natural disasters in a

fast and needs-based manner. However, as part of distributive politics (Fink & Redaelli,

2011), disaster aid is prone to political bias (Bommer et al., 2019) that might distort effective

help. Chapters 3 and 4 thus analyze the potential political bias in national and international

disaster aid responses.

In Chapter 3, together with Stephan A. Schneider, I use the objective tropical cyclone

damage measures developed in Chapters 1 and 2 to answer the question, to what extent the

allocation of federal disaster aid in the United States is influenced by the party interests of

the ruling president. By analyzing all hurricane strikes in the 1965–2018 period, we indeed

find a political bias, which only exists for medium-intensity hurricanes where the decision

for granting aid is unclear. In total, 13% (USD 500 million) of the U.S. annual federal aid

budget is spent out of political motives, where presidents help politically aligned governors.

With our results, we are the first to find a nonlinear political alignment effect in distributive

politics, which highlights that many previous empirical results in the distributive politics

literature tend to be oversimplified by assuming a linear relationship of the functional form

assumptions in their analyses.

Given these comparably large political distortions in national disaster relief, the final

chapter of this thesis analyzes whether there are also distortions in international disaster aid.

In the case where a disaster is so disastrous that a whole country is overwhelmed by it, the

UN can call for internationally coordinated help using a so-called flash appeal. This occurred

in response to the 2015 Nepal earthquake which killed 8,800 people and affected nearly a

5



Introduction

fifth of Nepal’s population (Guha-Sapir & CRED, 2020). In Chapter 4, together with Vera

Z. Eichenauer, Andreas Fuchs, and Eric A. Strobl, I analyze the allocation of international

disaster aid. By using a new data set on geo-coded international aid of the UN flash appeal

in Nepal, we study whether its allocation follows physical and socioeconomic vulnerabilities.

While the first distribution of international disaster aid corresponds to geophysical damage,

the later funding decisions are biased by caste, geographical, and political considerations.

Chapters 3 and 4 show that the distribution of urgently needed aid after disasters is

foremostly prone to political and religious influences. To be more effective, domestic and

international disaster aid should become more need-oriented in the future, and institutional

mechanisms should be designed to reduce political and other biases. Only with these changes

at hand we will potentially achieve a situation where we have a “build-back-better in recovery,

rehabilitation, and reconstruction” of the economy, as stated in priority area 4 of the Sendai

Framework for Disaster Risk Reduction (UNISDR, 2015). Beside of the identification of

political biases in international and national disaster relief, this thesis contributes to a better

understanding of the timing and mechanism of the economic effects of natural disasters by

identifying directly and indirectly affected sectors. What is more, this thesis is the first to

systematically analyze the influence of storm surge damage on coastal settlements. Finally,

this thesis helps to better identify damage of natural disasters by developing new data sets,

which I explain in more detail in the next section.

Data Contribution and Methodological Approach

With my dissertation, I contribute several data sets to the research community. In Chapter 1,

I generate a new tropical cyclone damage data set that distinguishes between different sectoral

exposures in generating a weighted damage function. The damage data set incorporates a

meteorological wind field model that calculates spatial and time-varying wind speeds for all

tropical cyclones recorded. I then spatially join it with different exposure data sets. While,

for the majority of sectors, the population is a suitable exposure weight (Elliott et al., 2019;

Heinen et al., 2018), this is not true for the agricultural sectors. For these sectors, I use

agricultural land as an exposure weight. The resulting damage data are at a resolution of

0.1◦ × 0.1◦, which I then aggregate to a country-year panel data set for 205 countries for the

1950–2015 period.2 In Chapter 2, I generate a new global data set for tropical cyclone-driven
20.1◦ corresponds to approximately 10 km at the equator.
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storm surges. Besides tropical cyclone wind speed and pressure input, our model combines

data on the coastal and ocean geography, the current tide, and the angle at which storms

make landfall. With these inputs we can generate, in a hydrodynamic model, one-hourly

inundation maps for coastal areas at risk at a spatial resolution of 0.1◦ × 0.1◦ for all tropical

cyclones of the 1850–2015 period. In Chapter 3, besides using wind and storm surge damage,

we process hurricane-related rainfall data from Roth (2018) and join it on a 0.01◦ × 0.01◦

grid to the individual U.S. counties.3 We thus create a panel data set for hurricane-related

excessive rainfall damage for all counties for the 1965–2018 period.

In all chapters, I use geospatial analyses to combine physical disaster intensity data

with socioeconomic data to answer the respective research questions. By generating new

measures of disaster damage, I thereby advance the damage impact literature. The majority

of empirical studies uses report-based data to measure potential damage (Lazzaroni & van

Bergeijk, 2014). However, using report-based data in empirical analyses of disaster impacts

has several disadvantages: they are prone to measurement errors, such as under- or over-

reporting (Kousky, 2014), they include only disasters above a certain damage threshold

(Davlasheridze et al., 2017), and they are mostly based on insurance data leading to further

selection and endogeneity problems (Felbermayr & Gröschl, 2014). By modeling damage

directly from physical-intensity data, I circumvent these problems. In all chapters, I use

geophysical intensity measures to model the impacts of the natural disasters researched.

In Chapters 1–3, I use these modeled geophysical intensity variables in multivariate panel

ordinary least squares fixed-effects regression models to analyze the respective research

questions. Certain regions may have a higher probability of being hit by a natural disaster.

However, in all panel data regression models, I account for this possibility by including

location fixed effects. Therefore, the researched natural disasters are random draws from

the underlying probability distribution and are thus plausibly exogenous to the dependent

variables analyzed. These circumstances then allow me to causally identify the main effects

analyzed. I further control for time fixed effects and area-specific trends over time, to further

account for potential unobservable factors. In Chapter 4, I use negative binomial and ordinary

least squares regression models to analyze the allocation decisions of the UN flash appeal at

the municipality level. As I only have cross-sectional data for this chapter’s analysis, a causal

identification of the effects is not always possible. However, I construct an earthquake damage

30.01◦ corresponds to approximately 1 km at the equator.
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function from geophysical indicators and a pre-event building type distribution, which are

both exogenous to the post-event disaster aid. Additionally, reverse causality is also not

a concern, as most variables are collected prior to the earthquake. Furthermore, I try to

minimize omitted variable concerns by including a large set of control variables and regional

fixed effects.

Summary of the Chapters

Chapter 1

Tropical cyclones are responsible for nearly half of natural disaster damage worldwide and

have an enormous impact on economic development. However, their potentially negative

influences on economic outcomes is not well understood. In order to design efficient adaptation

and mitigation policies in the future, it is important to identify sectors at high risk and

sectoral spillover effects. Therefore, I analyze direct and indirect responses of seven economic

sector aggregates to tropical cyclone damage in a global sample of 205 countries for the

1970–2015 period. I generate a new tropical cyclone damage measure that considers different

exposure weights of the sectors. In a multivariate panel data fixed-effects analysis, I find an

immediately negative sectoral GDP growth effect for two sectoral aggregates – agriculture,

hunting, forestry, and fishing, as well as wholesale, retail trade, restaurants, and hotels. While

the agricultural sectors recover after four years, in the wholesale retail trade, restaurants,

and hotels sector aggregate, the negative influence of tropical cyclone damage persists up

to 17 years. By analyzing sectoral Input-Output data, I can only identify minor sectoral

spillover effects. However, the analysis reveals the crucial role of the manufacturing sector

aggregate. This chapter adds to the literature on the macroeconomic effects of disasters and

the Input-Output analysis of disasters. The findings can be used to inform international

and national policymakers in specifying their adaptation and mitigation strategies to climate

change.

Chapter 2

People in low elevation coastal zones are at a high risk of tropical cyclone-generated storm

surge damage. However, no global data set on this damage exists. In this chapter, we

close this gap by generating the first global data set on storm surges resulting from tropical
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cyclones. In a hydrodynamic model, we include data on the topography of the ocean and

coast, the respective tidal cycle, and the motion and intensity of tropical cyclones to estimate

global storm surge damage on a 10 x 10 km resolution for the 1850–2015 period. To identify

the exposure of coastal populations and their responses over time, we combine these data

with historical spatial population data, which are available at a 10 x 10 km resolution and

decadal frequency. We find that, on average globally, the regions with the highest storm surge

hazard lie in Eastern Asia, North America, and South-Eastern Africa and that three quarters

of exposed coastal populations live in Eastern, South-Eastern, and Southern Asia. In our

fixed-effects panel data analysis with data for the 1950–2010 period, we identify a negative

response of coastal population counts to storm surges. However, when we decompose this

effect over time, we observe that the negative response only begins in the two most recent

decades, while for the first decade (1960), we see a net increase in populations in storm

surge risk zones. Our findings oppose many existing studies that are based on older data or

population projections, which show that people migrate to disaster-prone areas. With this

chapter, we add to two strands of the literature, on the disaster impacts of tropical cyclones

literature and on the settlement responses to natural disasters literature. Our findings and

the generated data set can help policymakers to better understand the current exposure and

past responses of coastal populations to the risk of storm surges.

Chapter 3

Natural disasters can have severe negative effects on local populations, and fast disaster aid is

needed to reduce the potential damage. However, natural disasters also create possibilities for

politicians to increase their prestige. The U.S. federal disaster declaration process is especially

prone to this threat because, in this system, the decision to grant federal disaster aid funds

relies solely on the president. Our theoretical model predicts that the president’s discretionary

power is greatest for medium-intensity disasters, when the public opinion on whether to grant

aid is ambiguous. We test the model predictions in a multivariate panel fixed-effects model

by using damage data of all hurricane strikes between the 1965–2018 period. We model the

spatial destructiveness of hurricanes by using data on wind speed, rainfall, and storm surge

damage. By interacting hurricane intensity with political alignment in a flexible regression,

we show a nonlinear political alignment effect, which is most pronounced for medium-intensity

hurricanes and about eight times higher than the average effect. Additionally, the effect is

9
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higher in election years and for hurricanes closer to the elections in November. In contrast to

the alignment bias for medium-intensity hurricanes, we identify no political influence for low-

and high-intensity hurricanes. Overall, we find that every year about USD 500 million are

spent out of political motives for federal disaster relief. This corresponds to 13% of the overall

hurricane-related aid. With this chapter, we add to several strands of the literature including

the strand on alignment bias in intergovernmental transfers, the strand on accountability of

politicians by the electorate, the strand on executive decision-making in the United States,

and the strand on disaster impacts. Our analysis points out weaknesses in the U.S. federal

disaster system which could be reduced, for example, by installing an expert commission for

decisions regarding political disaster funds for low- and medium-intensity disasters, with the

president remaining in charge of extreme events.

Chapter 4

The 2015 Nepal earthquake was one of the most destructive natural disasters in the history

of Nepal. The damage was so great that, four days after the earthquake, a so-called UN

flash appeal was issued, which calls for a coordinated disaster aid effort by the international

community. The flash appeal identified 184 projects, and requested USD 422 million to

help Nepal. By using a georeferenced data set of these aid projects, we first analyze the

allocation decision of the design stage of the flash appeal. Our analysis combines data on

physical damage, based on earthquake ground shaking intensities and house characteristics,

socioeconomic data, electoral statistics, and geographical characteristics. We find that at the

design stage aid projects are located in areas with the greatest amount of damage. However,

other socioeconomic vulnerability variables do not play into the allocation decision. Out of

the 184 proposed aid projects, only 64 actually received funding, and our analysis shows that

these funding decisions were distorted by ethnic, political, and religious considerations. With

this chapter, we contribute to the literature on humanitarian aid and disaster impacts. Our

analyses show that need orientation on both stages – design and funding – for international

flash appeals should be improved.
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Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts

1.1 Introduction

Tropical cyclones can have devastating economic consequences. Globally they are among the

most destructive natural hazards. From 1980–2018 tropical cyclones were responsible for

nearly half of all natural disaster losses worldwide, with damage amounting to an aggregate of

USD 2,111 billion (Munich Re, 2018). Driven by climate change, at least in some ocean basins

(Elsner et al., 2008; Mendelsohn et al., 2012), and the higher exposure of people in large

urban agglomerations near oceans (World Bank, 2010), the overall damage and the number

of people affected by tropical cyclones have been increasing since the 1970s (Guha-Sapir &

CRED, 2020). Thus, tropical cyclones are and will continue to be a serious threat to the life

and assets of a large number of people worldwide.

In order to design effective mitigation and adaptation disaster policies to this threat, it is

important to understand the economic impact of natural disasters. Economic sectors most

vulnerable to direct capital destruction of tropical cyclones must be identified. However,

time-delayed effects must also be taken into account since some damage, such as supply-chain

interruptions or demand-sided impacts, will only be visible after a certain time lag (Botzen

et al., 2019; Kousky, 2014). Perhaps the most challenging task is to identify critical sectors

that may be responsible for widespread spillover effects leading to substantial modifications

in other sectors’ production input schemes. This study aims to better understand the sectoral

impacts of tropical cyclones by looking at the direct and indirect effects in a large data set

covering 205 countries from 1970–2015. Additionally, a new damage measure is developed

that considers the varying levels of exposure of different sectors.

From a theoretical perspective, a natural disaster can have both positive and negative

effects. Direct negative impacts can result from the destruction of productive capital,

infrastructure, or buildings, and thereby can generate a negative income shock for the whole

economy (Kousky, 2014). Positive effects include, for instance, as a consequence of the

destruction of capital, that the marginal productivity of capital increases, making it more

attractive to invest in capital in the affected area (Klomp & Valckx, 2014). Furthermore, a

shortage in the labor force can lead to a wage increase, which can serve as an incentive for

workers from other regions to migrate to the affected region, also leading to a positive effect

(Hallegatte & Przyluski, 2010). Given the different theoretical possibilities, it is not surprising

that the empirically identified effects are rather ambiguous. They can best be summarized by
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three possible hypotheses: recovery to trend, build-back-better, and no recovery (Chhibber &

Laajaj, 2008).

The recovery to trend hypothesis characterizes a pattern where after a negative effect in

the short run, the economy recovers to the previous growth path after some time. Possible

mechanisms for this situation are, for example, additional capital flows – such as remittances

from relatives living abroad (Yang, 2008) – international aid (de Mel et al., 2012), insurance

payments (Nguyen & Noy, 2019), or government spending (Ouattara & Strobl, 2013), which

help the economy reach its pre-disaster income level. Other studies identify negative effects

that are only significant in the short run but are insignificant in the long run (Bertinelli &

Strobl, 2013; Elliott et al., 2015; Strobl, 2012). The build-back-better hypothesis describes

a situation where natural disasters first trigger a downturn of the economy, which is then

followed by a positive stimulus, leading to a higher growth path than in the pre-disaster

period. This hypothesis is supported by empirical findings for a positive GDP growth effect

for Latin American countries (Albala-Bertrand, 1993), for high-income countries (Cuaresma

et al., 2008), and for a cross-section of 153 countries (Toya & Skidmore, 2007). In contrast to

this, the no recovery hypothesis states that natural disasters can lead to a permanent decrease

of the income level without the prospect of reaching the pre-disaster growth path again. This

could result from a situation where recovery measures are not effectively implemented or where

various negative income effects accumulate over time (Hsiang & Jina, 2014). Additionally,

low- and middle-income countries suffer the greatest losses from natural disasters (Felbermayr

& Gröschl, 2014).

This paper contributes to two strands of the literature. First, I add to the research area

on the macroeconomic effects of disasters. Older empirical studies suffer to a large extent

from endogeneity problems in their econometric analysis because their damage data are based

on reports and insurance data, such as the Emergency Events Database (EM-DAT) database.

Such data are positively correlated with GDP (Felbermayr & Gröschl, 2014) and prone to

measurement errors (Kousky, 2014). More recent studies have started to use physical data,

such as observed wind speeds, to generate a more objective damage function for the impacts

of tropical cyclones (e.g., Bakkensen et al., 2018; Elliott et al., 2019; Felbermayr & Gröschl,

2014; Hsiang, 2010; Strobl, 2011). To address the varying economic exposure of affected

areas, studies have used population (Strobl, 2012), nightlight intensity (Heinen et al., 2018)

or exposed area (Hsiang & Jina, 2014) to weight the respective physical intensities of tropical

13



Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts

cyclones. However, an area weight has the disadvantage of including largely unpopulated

areas, such as deserts, which are economically meaningless. In contrast, for the agricultural

sector, it would be misleading to take a nighttime light or a population weight, since these

areas have a rather low population density. Therefore, I propose a new damage measure that

explicitly considers these different exposures. For the agricultural sector, I use the fraction of

exposed agricultural land, while for the remaining sectors, I use gridded population data.

Furthermore, only a minority of studies explicitly investigate the disasters’ influences on

sectoral economic development. For example, Loayza et al. (2012) investigate the effect of

natural disasters on three sectors (agriculture, manufacturing, service) in a global sample for

the period 1961–2005. Based on damage estimates from EM-DAT, the authors find a negative

effect for the agricultural and a positive effect for the industrial sector. Based on physical

intensity data, Hsiang (2010) analyzes the effect of Hurricanes on seven sectoral aggregates

in a regional study for 26 Caribbean countries. He finds a negative effect for the ISIC sectors

agriculture, hunting, forestry, and fishing (A&B), mining, and utilities (C&E), wholesale,

retail trade, restaurants, and hotels (G–H), but a positive effect for the construction sector

(F). Other studies analyze the disasters’ impact on single sectors, such as the agricultural

(Blanc & Strobl, 2016; Mohan, 2017) or the manufacturing sector (Bulte et al., 2018).

In total, I extend this research area in three ways: First, I introduce a new objective

damage measure that allows for sector-specific exposure of tropical cyclones. It is based

on a physical wind model and thereby overcomes criticism of report-based damage data.

Second, I use this new damage data to analyze all (exposed) countries (84) to tropical

cyclones worldwide, which allows me to obtain more generalizable results.4 Third, I conduct

a thorough assessment of the long-term sectoral influences of tropical cyclones, as there is

evidence, that long-term effects on total GDP exist (Felbermayr & Gröschl, 2014; Hsiang &

Jina, 2014; Onuma et al., 2020). For sectoral GDP effects, however, no such evidence exists

so far.

Second and most importantly, I contribute to the literature on Input-Output analysis

of natural disasters. While there exists a lot of theoretical work on the importance of

cross-sectional linkages in consequence of a shock (see, e.g., Acemoglu et al., 2012; Dupor,

1999; Horvath, 2000), recent empirical studies focus on the shock propagation in production

4This is an improvement in comparison to Hsiang (2010) who only focuses on 26 Caribbean countries, which
are highly exposed but only account for 11% of global GDP in 2015 (United Nations Statistical Division,
2015c).
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networks within the United States of America (Barrot & Sauvagnat, 2016) or after single

natural disasters, such as the 2011 earthquake in Japan (Boehm et al., 2019; Cole et al.,

2019). These empirical studies all share that they use firm-level data to draw conclusions

on upstream and downstream production disruptions. However, little is known about the

empirical Input-Output effects across broader sectors after a natural disaster shock. In a

single country study on floods in Germany, Sieg et al. (2019) show that indirect impacts

are nearly as high as direct impacts. For tropical cyclones, no empirical cross-country study

on indirect effects exists so far. With this paper, I close this research gap by using an

Input-Output panel data set to analyze potential sectoral interactions after the occurrence of

a tropical cyclone. This allows me to analyze whether any key sectors exist that, if damaged,

result in direct damage of other sectors.

The main causal identification stems from the exogenous nature of tropical cyclones,

whose intensity and position are difficult to predict even 24 hours before they strike (NHC,

2016). Based on a fine-gridded wind field model, I generate a new sector-specific damage

measure weighted by either agricultural land use or population data. This exogenous measure

allows me to identify an immediate negative growth effect of tropical cyclones for two out of

seven sectoral aggregates including agriculture, hunting, forestry, and fishing and wholesale,

retail trade, restaurants, and hotels. The largest negative impacts can be attributed to the

annual growth in the agriculture, hunting, forestry, and fishing sector aggregate, where a

standard deviation increase in tropical cyclone damage is associated with a decrease of 262

percentage points of the annual sectoral growth rate. This corresponds to a mean annual

global loss of USD 16.7 billion (measured in constant 2005 USD) for the sample average. In

the years following a tropical cyclone, the majority of sectors experience negative growth

effects. Within the agriculture, hunting, forestry, and fishing sectors, the negative effects

become less pronounced with a zero effect being present after four years, while the wholesale,

retail trade, restaurants, and hotels sectoral aggregate experiences a persistent negative growth

even after 20 years.

Based on the Input-Output analysis, there are only a small number of significant sectoral

shifts. This suggests that the production chains of the economy are only slightly disrupted

by tropical storms, and indirect impacts are thus negligible. Nevertheless, we can learn from

this analysis the important role of those manufacturing sectors that are not directly affected.

They are responsible for a demand shock in the mining and quarrying sectoral aggregate,
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leading to delayed negative growth effects being persistent over 10 years. At the same time,

other sectors demand more from the manufacturing sectors, resulting in a zero aggregate

negative effect for them. Additionally, within the agriculture, hunting, forestry, and fishing

sectors, only the fishing sector experiences indirect negative effects. Moreover, for the vast

majority of sectors, the indirect effects do not last longer than one year.

The remainder of this chapter is structured as follows: section 1.2 contains a description

of the data source, introduces the construction of the tropical cyclone damage measure, and

presents descriptive statistics. In section 1.3, the empirical approach is described. Section 1.4

presents the main results as well as robustness checks. Section 1.5 concludes with a discussion

of the results and highlights policy implications.

1.2 Data

1.2.1 Tropical Cyclone Data

Tropical cyclones are large, cyclonically rotating wind systems that form over tropical or

sub-tropical oceans and are mostly concentrated on months in summer or early autumn

in both hemispheres (Korty, 2013b). Their destructiveness has three sources: damaging

winds, storm surges, and heavy rainfalls. The damaging winds are responsible for serious

destruction of buildings and vegetation. In coastal areas, storm surges can lead to flooding,

the destruction of infrastructures and buildings, the erosion of shorelines, and the salinization

of the vegetation (Le Cozannet et al., 2013; Terry, 2007). Torrential rainfall can cause serious

in-land flooding, thereby augmenting the risk coming from storm surges (Terry, 2007).

Since the commonly used report-based EM-DAT data set (Lazzaroni & van Bergeijk, 2014)

has been criticized for measurement errors (Kousky, 2014), endogeneity, and reverse causality

problems (Felbermayr & Gröschl, 2014), I use meteorological data on wind speeds to generate

a proxy for the destructive power of tropical cyclones.5 This approach is in line with previous

empirical studies (e.g., Hsiang, 2010; Strobl, 2011, 2012), but I advance this literature by

generating a sector-specific damage function. I take advantage of the International Best

Track Archive for Climate Stewardship (IBTrACS) provided by the National Oceanic and
5For example, Loayza et al. (2012) use data from EM-DAT as main input for their explanatory variables.
They are, however, aware of data problems, such as incomplete reports, fluctuating quality of the reports, and
correlation with GDP. Therefore, they take five-year averages of the number of affected people normalized by
the total population as main explanatory variable. In comparison, in my analysis, I take meteorological data
as input which is exogenous to the political and economic situation, contains all existing tropical cyclones,
and has no quality fluctuations.
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Atmospheric Administration (Knapp et al., 2010). It is a unification of all best track data on

tropical cyclones collected by weather agencies worldwide. Best track data are a postseason

reanalysis from different available data sources, including satellites, ships, aviation, and

surface measurements, that are used to describe the position and intensity of tropical cyclones

(Kruk et al., 2010).6

To calculate a new aggregate and meaningful measure of tropical cyclone damage separated

by economic sectors on a country-year level, I make use of the CLIMADA model developed by

Aznar-Siguan & Bresch (2019) at a resolution of 0.1◦.7 The model employs the well-established

Holland (1980) analytical wind field model to calculate spatially varying wind speed intensities

around each raw data observation track.8 The model is restricted to raw data wind speed

intensities above 54 km/h and it interpolates the 6-hourly raw data observations from the

IBTrACS data to hourly observations.9

Consequently, for each grid point g, a wind speed S is calculated depending on the

maximum sustained wind speed (M), the forward speed (T), the distance (D) from the storm

center, and the radius of the maximum wind (R) 10:

Sg =


max(0, ((M − abs(T)) ∗ R

D

3
2 ∗ e1− R

D

3
2
) + T), if D < 10 ∗ R from center to outer core

0, if D > 10 ∗ R out of radius.
(1.1)

As a result, I generate hourly wind fields for each of the 7,814 tropical cyclones in my sample

period (1970–2015).11 Figure 1.1 illustrates the resulting modeled wind fields for Hurricane

Ike in 2008 on its way to the U.S. coast. The individual colors represent different wind speed

intensities. The wind speed drops with distance to the center of the hurricane and as soon as

it makes landfall.

6Further details on the data on tropical cyclones can be found in Appendix 1.6.1.
70.1◦ corresponds to approximately 10 kilometers at the equator.
8See the CLIMADA manual for further details on the methods used https://github.com/davidnbresch/climada/
blob/master/docs/climada_manual.pdf.

9For the latitude and longitude the model takes a spline interpolation, whereas for intensity and time
observations it uses a linear interpolation.

10The radius of maximum wind (R, in km) is related to the latitude (L) of the respective raw data tropical
cyclone position in the following way:

R =


30, if L 5 24◦

30 + 2.5 ∗ abs(L) − 24, if L > 24◦

75, if L > 42◦.

11Since the tropical cyclone data are available at global coverage since 1950, I will extend my database later
for further specifications.
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One major effort of this paper is to generate a new meaningful sectoral damage variable

on a country-year level. In total, I use two different aggregation methods. First, I account for

the economic exposure by weighting the maximum occurred wind speed per grid cell and year

by the number of exposed people living in that grid cell relative to the total population of the

country. This is a well-established method (Elliott et al., 2019; Heinen et al., 2018; Strobl,

2012). However, since agricultural areas are seldom highly populated using a population-

weighted damage function for the agricultural sectors would be biased. Therefore, I propose

a new spatial exposure weight for the agricultural sector, namely agricultural land, which

consists of the sum of land used for grazing and crops in km2 per grid cell. All weights are

available in the HYDE 3.2 data set (Klein Goldewijk et al., 2017) at a spatial resolution of

around 10x10 kilometers.12 To avoid potential endogeneity concerns, I lag the respective

weights by one period.

Figure 1.2 demonstrates why it is important to differentiate between exposed agriculture

and population. Panel a displays the percentage of agricultural land, whereas b shows the

distribution of population in Australia in 2008. A damage function that takes into account

only the exposed population would underestimate the damage caused to the agricultural

sector, given the large unpopulated but agriculturally used areas in the north and west of

Australia.

It has been shown that the damage of tropical cyclones increases non-linearly with wind

speed and occurs only above a certain threshold. I follow Emanuel (2011) by including the

Figure 1.1: Wind field model for Hurricane Ike, 2008

12Before 2000, only decadal data are available. Hence, I interpolate the data to generate yearly observations.
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cube of wind speed above a cut-off wind speed of 92 km/h. Taking all considerations together,

I calculate the following tropical cyclone damage for each country i and year t:

Damagei,t =

∑
g∈i wg,t−1

Wi,t−1
∗
∑
g∈i

S(max)3g,t1S(max)>92, (1.2)

where wg,t−1 are the exposure weights, agricultural land, or population, in grid g in period

t − 1. The sum of these exposure weights wg,t−1 is divided by the total sum of the weights

Wi,t−1 in country i in period t − 1. This index is then multiplied by the cubed maximum wind

speed S(max)3g,t in grid g and year t as calculated by Equation 1.1 but only for values above

92 km/h.

There are two important points to note about this tropical cyclone damage variable. First,

I only use the damage fraction due to maximum wind speed of tropical cyclones. Even though,

I thereby omit potential rainfall and storm surge damage, it is a common simplification in

the literature (Elliott et al., 2019; Hsiang, 2010; Strobl, 2011, 2012). However, to control for

possible rainfall damage, I conduct a robustness test which includes a variable for precipitation

(see Appendix Table 1.24 and and Figures 1.26–1.32) For storm surge damage this is not

possible, since there exists no global data set so far.

Second, only the maximum wind speed per grid cell and year is used for the calculation of

the tropical cyclone damage. This means that if a grid cell of a country was exposed to two

storms in one year, only the physically more intense storm is considered. In the sample used,

70% of all grid-points are hit once by a tropical cyclone per year, whereas 20% are hit twice

Figure 1.2: Agricultural land and population count in Australia, 2008
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and 10% more than twice. To allow for the possibility of multiple tropical cyclones per year

and country, I conduct two robustness tests. In the first test, I introduce a variable which

counts the yearly frequency of tropical cyclones above 92 km/h per country (see Appendix

Table 1.40 and Figures 1.26–1.32). In the second test, I take the mean wind speed cubed

(S(mean)3g,t ) above 92 km/h per grid and year to calculate the damagei,t (see Appendix Table

1.41 and Figures 1.26–1.32).

1.2.2 Sectoral GDP Data

The sectoral GDP data originate from the United Nations Statistical Division (UNSD)

(United Nations Statistical Division, 2015b). Sectoral GDP is defined as gross value added per

sector aggregate and is collected for different economic activities following the International

Standard Industrial Classification (ISIC) revision number 3.1. Gross value added is defined

by the UNSD as “the value of output less the value of intermediate consumption” (United

Nations Statistical Division, 2015a). The variables are measured in constant 2005 USD. The

different economic activities are classified as follows with the respective ISIC codes given in

parentheses: agriculture, hunting, forestry, and fishing (A&B); mining, and utilities (C&E);

manufacturing (D); construction (F); wholesale, retail trade, restaurants, and hotels (G–H);

transport, storage, and communication (I); other activities (J–P), which include, inter alia,

the financial and government sector. Appendix 1.6.2 provides a more detailed description

of the composition of the individual ISIC categories. The data are collected every year for

as many countries and regions as possible.13 The sample used in my analysis covers the

1970–2015 period and includes a maximum of 205 countries.14

1.2.3 Input-Output Data

To analyze potential sectoral shifts within the economy after a tropical cyclone, I take

advantage of the Input-Output data of EORA26 (Lenzen et al., 2012, 2013). It contains data

on 26 homogeneous sectors for 189 countries from 1990 until 2015 and is the only Input-Output

panel data set with (nearly) global coverage available. However, one disadvantage of the
13If the official data of the countries or regions are not available, the UNSD consults additional data sources.
The procedure is hierarchical and reaches from other official governmental publications over publications
from other international organizations to the usage of data from commercial providers (United Nations
Statistical Division, 2015b).

14The sample is larger than the maximum size of recognized sovereign states as it also includes quasi-
autonomous countries such as the Marshall Islands, if data are provided for them by the UNSD. Furthermore,
one can argue that only countries exposed to tropical cyclones are relevant for this analysis; therefore, Table
1.36 provides a regression of the main result for exposed countries only.

20



Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts

EORA26 data set is that parts of the data are estimated and not measured. On the other

hand, EORA26 works continuously on quality check reports and compares its result to other

Input-Output databases such as GTAP or WIOD.15

To be consistent with the remaining analysis, I aggregate the given 26 sectors to the

previously used seven sectoral aggregates.16 For my analysis, I calculate the Input-Output

coefficients by dividing the specific input of each sector by the total input of each sector given

in the transaction matrix of the data:

IO j ,k
t =

Input j ,kt

TotalInput jt
(1.3)

The resulting Input-Output coefficients IO j ,k range between 0 and 1 in year t. They indicate

how much input from sector k is needed to produce one unit of output of sector j. Consequently,

the Input-Output coefficients give an idea of the structural interactions of sectors within an

economy and hence help to disentangle the indirect effects of tropical cyclone damage.17

1.2.4 Further Control Data

As tropical cyclones are highly correlated with higher temperature and precipitation (Auffham-

mer et al., 2013), I control for the mean temperature and precipitation of a country in further

specifications. For both variables, I use the year-by-year variation calculated from the Cli-

matic Research Unit (CRU) version 4.01, which is available at a resolution of approximately

5 kilometers since 1901 (University of East Anglia Climatic Research Unit et al., 2017).

Together with further control variables, Table 1.2 in Appendix 1.6.3 lists the exact definition

of all variables used.

1.2.5 Descriptive Statistics

Figure 1.3 shows the country-year observations of the tropical cyclone damage variable for (a)

exposed agricultural land and (b) exposed population. Country-year observations above two

standard deviations are labeled with the respective ISO3 code. While the distribution reveals

15I decide not to use the WIOD database because its country sample is not very exposed to tropical cyclones.
Additionally, the GTAP database is not available to me and only covers a few years.

16I also explore the effects on the 26 individual sectors later in this paper.
17I decide to only examine changes in the Input-Output coefficients and not indirect costs because this
approach almost needs no assumptions. Input-Output models that analyze indirect costs, such as the
Inoperability Input-Ouptut model (Haimes & Jiang, 2001) or the Ghosh model (Ghosh, 1958), require many
problematic assumptions (Oosterhaven, 2017).
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Figure 1.3: Distribution of tropical cyclone damage, 1970–2015

Notes: This figure demonstrates the distribution of the tropical cyclone damage variable (in standard deviations)
for exposed agricultural areas (a) and exposed population (b) from 1970–2015.

that on average, geographically smaller countries, such as Hong Kong, Dominica or Jamaica,

have a higher damage, there exists a difference between both damage measures, even for the

highly exposed countries. Moreover, extreme damaging tropical cyclones are relatively rare.

A one standard deviation strong event has a probability of 8.9% among events above zero for

agricultural damage and 8% for population damage.18

To demonstrate the average intersectoral connections within my sample, Figure 1.4 displays

the average Input-Output coefficients for all countries for all available years (1990–2015).

The different colors represent different average coefficients, ranging from 0 (light purple) to

0.24 (dark purple). On average, the sector aggregates agriculture, hunting, forestry, and

fishing (A&B) and mining and utilities (C&E) are only slightly dependent on other sectors,

while there is a stronger dependence for the remaining sectoral aggregates. The cross-sectoral

dependence is most pronounced for manufacturing (D) and other activities (J–P). This is

not surprising since the manufacturing (D) sector needs a lot of input materials from other

18The underlying calculations for these numbers are as follows: agricultural damage: 91/1027 = 0.0886,
population damage: 82/1035 = 0.0801.
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Figure 1.4: Heatmap of Input-Output coefficient averages, 1990–2015
Notes: Input-Output coefficients show how much input one sector needs to produce one unit of
output. The coefficients range between zero and one.

sectors (Sieg et al., 2019), and the sector other activities (J–P) comprises, among others, the

financial sector. Tables 1.3 and 1.4 in Appendix 1.6.4 show the main descriptive statistics for

all variables used in this study.

1.3 Empirical Approach

1.3.1 Direct Effects

In order to examine tropical cyclones as exogenous weather shocks, I pursue a panel data

approach with year and country fixed effects in a simple growth equation framework (Dell

et al., 2014; Strobl, 2012). The analysis is conducted on a country-year level. To identify the

causal effects of tropical cyclone intensity on sectoral per capita growth, I use the following

set of regression equations, which constitutes my main specifications:

Growth j
i,t−1−>t = α

j + β j ∗ Damagei,t + γ j ∗ Zi,t−1 + δ
j
t + θ

j
i + µ

j
i ∗ t + ε ji,t, (1.4)

where the dependent variable Growth j
i,t−1−>t is the annual value added per capita growth rate

of sector j in country i. The main specification is estimated for each of the j(= 1, ...,7) sector

aggregates separately. Damagei,t is the derived damage function for country i at year t from

Equation 1.2. Consequently, β j is the coefficient of main interest in this specification. By

calculating the annual sectoral GDP per capita growth rate, I lose the first year of observation

of the panel. The sample period hence reduces to 1971–2015. In further specifications, I
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include additional control variables Zi,t−1 to account for potential socioeconomic or climatic

influences. Moreover, I include time fixed effects δt to account for time trends and other

events common to all countries in the sample. The country fixed effects θi control for

unobservable time-invariant country-specific effects, such as culture, institutional background,

and geographic location. Additionally, I allow for country-specific linear trends µi ∗ t. This

assumption is relaxed in further specifications by allowing more flexible country-specific

trends (e.g., squared). The error term εi,t is clustered at the country level.

The growth literature predicts that some potential positive or negative impacts of natural

disasters emerge only after a few years. It is therefore important to examine their effects over

time (Felbermayr & Gröschl, 2014). To analyze the effect of tropical cyclones in the longer

run, I introduced lags of the tropical cyclone damage variable to the main specification 1.4.

Since the tropical cyclone data has global coverage since 1950, I am able to introduce lags

of up to 20 years without losing observations of my dependent variable, which ranges from

1971–2015. This allows me to identify which of the competing hypotheses – build-back-better,

recovery to trend, or no recovery – is appropriate for which sector. In detail, this model can

be described by the following set of regression equations:

Growth j
i,t−1−>t = α

j +

20∑
L=0
(β

j
t−L ∗ Damagei,t−L) + γ j ∗ Zi,t−1 + δ

j
t + θ

j
i + µ

j
i ∗ t + ε ji,t, (1.5)

where all variables are defined as in Equation 1.4. I show point coefficient estimates as well

as accumulated effects and error statistics calculated via a linear combination of the lagged

βt−L coefficients.19

1.3.2 Indirect Effects

To analyze potential indirect effects which could emerge because of changes in the Input-

Output composition of the individual sectors, I test the following set of equations for the

different Input( j)-Output(k) combinations:

IO j ,k
i,t = α

j ,k + β j ,k ∗ Damagei,t + λ j ,k ∗ IO j ,k
i,t−1 + γ

j ,k ∗ Zi,t−1 + δ
j ,k
t + θ

j ,k
i + µ

j ,k
i ∗ t + ε j ,ki,t , (1.6)

19This approach follows Hsiang & Jina (2014) which analyze the accumulated long-term GDP growth effects
of tropical cyclones worldwide. I expand their approach by not looking at overall GDP but at disaggregated
GDP responses for seven sectoral aggregates. Furthermore, I use a more specific damage function than
Hsiang & Jina (2014) which takes account of different sectoral exposure.
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where IO j ,k
i,t indicates the Input-Output coefficient of sectors j and k in year t and country i.

Depending on the level of aggregation, I run 49 (7*7) or 676 (26*26) different regressions. In

contrast to Equation 1.4 I introduce a lagged dependent variable, since I suspect a strong path

dependence of the Input-Output coefficient, i.e., most sectors plan their inputs at least one

period ahead. Additionally, the lagged dependent variable controls for a sluggish adjustment

to shocks of the individual sector input composition. The remaining variables are defined as

in Equation 1.4. In general, this analysis reveals production scheme transformations that can

result from both supply and demand changes of the sectors due to tropical cyclones.

1.3.3 Identification Strategy

The main causal identification stems from the occurrence of tropical cyclones, which are

unpredictable in time and location (NHC, 2016) and vary randomly within geographic regions

(Dell et al., 2014). As demonstrated in Figure 1.3, their intensity and frequency are spread

considerably between years and countries. Additionally, tropical cyclone intensity is measured

by remote sensing methods and other meteorological measurements. After controlling for

country and time specific effects, my estimation approaches allow for a causal identification

of the direct and indirect responses to tropical cyclones’ damages with only little assumption

needed (Dell et al., 2014). To underpin the causal identification, I conduct a falsification

test, where I introduce leads instead of lags of the Damage variable, as well as a Fisher

randomization test. Furthermore, one could also argue that the estimation results are biased

by the fact that certain regions have a higher exposure to tropical cyclones than others.

However, the country fixed effects partly control for this concern. Additionally, I cluster the

standard errors at broader regional levels as a further robustness test.

As tropical cyclones are exogenous to sectoral economic growth, the greatest threat to

causal identification could arise by omitting important time-varying climatic variables that

are correlated with tropical cyclones (Auffhammer et al., 2013). Therefore, I include the mean

level of temperature and precipitation as additional climate controls in a further specification.

Both variables are associated with the occurrence of tropical cyclones since they only form

when water temperatures exceed 26 ◦C and torrential rainfalls usually constitute part of

them.

To be in line with the related growth literature, I estimate a further specification where I

add a set of socioeconomic control variables (Felbermayr & Gröschl, 2014; Islam, 1995; Strobl,
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2012). It comprises the logged per capita value added of the respective sector j to simulate a

dynamic panel model, the population growth rate, a variable for openness (i.e., imports plus

exports divided by GDP), and the growth rate of gross capital formation.20 Including these

socioeconomic control variables introduce some threats to causal inference. First, as shown by

Nickell (1981), there is a systematic bias of panel regressions with a lagged dependent variable

and fixed effects. However, it has been demonstrated that this bias can be neglected if the

panel is longer than 15 time periods (Dell et al., 2014). As my panel has a length of 25–45

years, depending on the chosen model, I assume this bias will not influence my analysis.21

Second, all control variables are measured in t-1 to reduce potential endogeneity problems

stemming from the fact that control variables in t can also be influenced by tropical cyclone

intensities in t (Dell et al., 2014). Admittedly, this will not fully solve potential endogeneity

problems, and concerns about bad controls (Angrist & Pischke, 2009) and “over-controlling”

(Dell et al., 2014) remain.

Finally, the standard errors εi,t could be biased by the autocorrelation of unobservable

omitted variables (Hsiang, 2016). To deal with this problem, I will re-estimate my regression

models with Newey-West (Newey & West, 1987) as well as spatial HAC standard errors

(Fetzer, 2020; Hsiang, 2010), which allow for a temporal correlation of 10 years and a spatial

correlation of 1000 kilometer radius.22

Generally speaking, the proposed models offer a simple but strong way for causal interpre-

tation of the impact of tropical cyclones on sectoral growth. The weighted tropical cyclone

damage variables are orthogonal to economic growth as well as the Input-Output coefficients,

and the panel approach allows me to identify the causal effect.

20The logged per capita value added is not included for the robustness tests of the indirect effects of model
1.6, because it already compromises a lagged dependent variable.

21For the dynamic analysis, the panel length is 65 years, and for the Input-Output regression, it comprises 20
years.

22I tested my data extensively for outliers having a high influence on my results. In particular, I calculated the
leverage and dfbeta of the damage coefficient. Observations were excluded if they were above the (2k + 2)/n
threshold for leverage and above the 2/sqrt(n) threshold for dfbeta. In total, I exclude five country-year
observations from my analysis: Dominican Republic 1979, Grenada 2004, Montserrat 1989, Myanmar 1977,
and Saint Lucia 1980. However, as an additional robustness test, I also show a regression where I include
these outliers and the results remain unchanged.
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1.4 Results

1.4.1 Direct Effects

Table 1.1 presents the results of the main specification for each of the seven annual sectoral

GDP per capita growth rates. The coefficients show the increase of the respective damage

variable by a standard deviation. Previous empirical studies on the relationship between

economic development and tropical cyclone damage found a negative influence on GDP

growth (e.g., Bertinelli & Strobl, 2013; Gröger & Zylberberg, 2016; Strobl, 2011). My results

indicate that this negative aggregate effect can be attributed to two sectoral aggregates,

including agriculture, hunting, forestry, and fishing; manufacturing and wholesale, retail

trade, restaurants, and hotels. Tropical cyclones have the largest negative effect on the

agriculture, hunting, forestry, and fishing aggregate compared to other sectoral aggregates.

The absolute size of this effect is approximately more than 2.5 times the size of the coefficient

in the wholesale, retail trade, restaurants, and hotels sector aggregate. In general, a one

standard deviation increase in tropical cyclone damage is associated with a decrease in the

annual growth rate in the sector aggregate agriculture, hunting, forestry, and fishing of 2.62

percentage points. For the sample average (0.88) of the regression of Column (1), this effect

Table 1.1: The effect of tropical cyclone damage on sectoral GDP growth

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.6219*** -0.7682 -0.7242 0.7306 -1.1552** -0.4861 -0.1886

(0.4582) (0.8424) (0.5211) (0.6645) (0.5129) (0.3649) (0.2642)
[0.0000] [0.3629] [0.1661] [0.2729] [0.0254] [0.1843] [0.4762]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0000 0.3629 0.1661 0.2729 0.0254 0.1843 0.4762
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the period
1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For
the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in
t-1, whereas for the remaining sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects as well as country-specific linear trends.
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can be translated into a decrease of 298 percent, as displayed in Figure 1.5. In terms of

total losses, this decrease results in a mean yearly loss of USD 16.7 billion (measured in

constant 2005 USD) for the sample average (USD 5.63 billion). This large negative effect is

not surprising. The agricultural sector relies heavily on environmental conditions as most

of its production facilities lie outside of buildings and are hence more vulnerable to the

destructiveness of tropical cyclones. In addition to damaging wind speed, salty sea spread

and storm surge can cause salinization of the soil, leaving it useless for cultivation.

These results are line with previous empirical studies. Hsiang (2010) also finds the largest

negative effects of tropical cyclones for the agricultural sector aggregate, while Loayza et al.

(2012) demonstrate that only the agricultural sector is negatively affected. Mohan (2017)

provides further evidence that in Caribbean countries agricultural crops are more severely

affected by hurricanes compared to livestock.

For the sector aggregate wholesale, retail trade, restaurants, and hotels, a one standard

deviation increase in tropical cyclone damage cause a decrease of -1.16 percentage points of

the annual per capita growth rate. Put in relation to the sample average per capita growth

rate (2.53%), the effect translates to a decrease of -46%. Hsiang (2010) also finds a negative

effect of hurricanes for this sectoral aggregate for the Caribbean countries, whereas Loayza

Figure 1.5: Effects of tropical cyclone damage on sectoral GDP growth
Notes: This figure shows the effect of a one standard deviation increase in tropical cyclone damage on the
per capita sectoral GDP growth rate compared to the sample average (in %). The error bars depict the 95%
confidence intervals.
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et al. (2012) find no significant for the service sector.23 Likely reason for this downturn could

be less (domestic and international) touristic income for the restaurant and hotel sectors

(Hsiang, 2010; Lenzen et al., 2019). In consequence to tropical cyclone damage, less tourists

visit affected countries (Hsiang, 2010), since they perceive these destinations as too risky to

travel to (Forster et al., 2012).

It is not empirically clear how long past tropical cyclones influence present economic

growth rates. While some studies provide evidence of only a short-term economic impact

of tropical cyclones (Bertinelli & Strobl, 2013; Elliott et al., 2019), Felbermayr & Gröschl

(2014) show that storms from the previous five years can also have a negative growth effect.

In addition, in a recent working paper, Hsiang & Jina (2014) even demonstrate a long-term

negative impact of tropical cyclones of up to 20 years.
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Figure 1.6: Cumulative lagged influence of tropical cyclone damage on sectoral GDP growth (20
years)
Notes: The y-axis displays the cumulative coefficient of tropical cyclone damage on the respective per capita
growth rates, and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the
respective 95% confidence intervals and the red line indicates the respective (connected) cumulative point
estimates. The underlying estimations can be found in Tables 1.12–1.13 in Appendix 1.6.4.

23Loayza et al. (2012) only differentiates between three sectors: agriculture, manufacturing, and service.
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Figure 1.6 illustrates the cumulative point estimates of the past influence of tropical

cyclone damage on the different sectoral growth variables.24 The x-axis represents the lags of

the damage variable, while the y-axis indicates the size of the cumulative coefficient β (in

standard deviations). The gray shaded area specifies the respective 95% confidence bands,

and the red line depicts the connected estimates. Appendix 1.6.4 presents further statistics:

Figures 1.13–1.15 show the cumulative results for different lag lengths (5, 10, 15), and Tables

1.12–1.13 exhibit the underlying estimations. The individual point estimates are shown in

Figures 1.9–1.12, while Tables 1.5–1.11 show the regression results.

Figure 1.6 demonstrates that three out of seven sectoral aggregates suffer from delayed

negative impacts of tropical cyclones. The agriculture, hunting, forestry, and fishing sector

aggregate first depicts negative growth rates but then quickly recovers after four years.

Despite having the largest negative shock, destroyed capital is relatively quickly replaced.

The situation is completely different in the wholesale, retail trade, restaurants, and hotels

sector aggregate, where a negative influence can be observed over almost the entire 20-year

period. This finding undermines the evidence presented in the main specification: Even

several years after the occurrence of a tropical cyclone, tourists avoid restaurants and hotels

in devastated areas. This behavior most likely speaks for an enduring risk adjustment of

tourists.

Surprisingly, the sector aggregate mining and utilities turns negative three years after the

tropical cyclone has hit the country. As section 1.4.2 demonstrates, this effect may be driven

by less demand from the manufacturing sectors. Upon examining the underlying estimates in

Tables 1.12-1.13 in Appendix 1.6.4, it is evident that the transport, storage, communication

sectoral aggregate also turns negative, at least at the 90% confidence interval.25

In total, the majority of all sectoral aggregates experience lagged negative growth effects

due to tropical cyclones. This finding clearly opposes the build-back-better hypothesis as well

as the recovery to trend hypothesis. It rather points to the presence of (delayed) negative

effects of tropical cyclones from which the sectors cannot recover. The result offers a better

understanding of the finding of Hsiang & Jina (2014), who show that tropical cyclones have

long-lasting negative impacts on GDP growth by demonstrating which sectors are responsible

24The cumulative effects are calculated by F-tests of the respective lag lengths; for example, the coefficient
and confidence intervals after two years are calculated by the F-test: Damage+L1.Damage+L2.Damage.
The tests are conducted with the STATA command parmest (Newson, 1998).

25After one year, we can also detect a positive effect in the construction sector, which is not surprising given
the higher number of orders due to reconstruction efforts.
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for the long-lasting GDP downturn that they identify. Additionally, this finding undermines

the urgency to analyze past influences beyond one or two years when examining the economic

impacts of natural disasters.

1.4.2 Indirect Effects

The analysis of the past influences of tropical cyclone damage demonstrates that the sectoral

growth response following a tropical cyclone is a complex undertaking. It remains unclear

if there exists some key sector, which, if damaged, results in a negative shock for the other

sectors. Additionally, it is unexplained how the sectors are interconnected and if their

structural dependence changes. Therefore, in this section, I investigate, by means of the

Input-Output analysis, how the sectors change their interaction after a tropical cyclone has hit

a country. This will provide further insights into whether production processes are seriously

distorted by tropical cyclones. To the best of my knowledge, this is the first paper that

analyzes global sectoral interactions after the occurrence of a tropical cyclone.

Since the sample period is reduced to 1990–2015 due to data availability, I re-estimated

the regression model of the main specification 1.2 for the reduced sample of model 1.6. Table

1.21 in Appendix 1.6.4 reveals that even with the smaller sample, all previously found effects

can be identified again. Therefore, we can be sure that the reduced sample size does not

drive the new results.

Figure 1.7 illustrates the connections of significant changes of the Input-Output coefficient

together with the effect size relative to the sample average of the respective Input-Output

coefficients in parentheses (in %) resulting from model 1.6. The coefficients are interpreted by

a one standard deviation increase in tropical cyclone damage (above zero).26 For example, due

to a standard deviation increase of tropical cyclone damage, the manufacturing sectors use

0.66% less input from the construction sector aggregate relative to the average Input-Output

coefficient (0.0045) to produce one unit of output. The red and green arrow colors represent

significant negative and positive effects, whereas the color intensities denote different p-values.

Circle diameters represent the average proportional share on total GDP ranging from 32%

(other activities), over 12% (manufacturing) to 6% (construction).27

26The underlying estimations can be found in Tables 1.14–1.20 in Appendix 1.6.4.
27The other proportional shares on total GDP are: Wholesale, retail trade, restaurants, hotels (15%);
agriculture, hunting, forestry, fishing (14%); mining and utilities (10%); transport, storage, communication
(8%).
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Figure 1.7: Significant effects of tropical cyclone damage on Input-Output coefficients
Notes: This figure shows the significant effects of a one standard deviation increase in tropical
cyclone damage on the respective Input-Output coefficient. The number in parentheses compares
the coefficients to the sample average of the respective Input-Output coefficient (in %). Note
that Input-Output coefficients can only range between 0–1. Circle diameter is proportional to the
average sectoral share on total GDP. The arrows depict all significant coefficients between the
sectoral aggregates, with negative coefficients in red and positive in green. The start of the arrow
shows the input, and the end denotes the respective output. Asterisks and color intensities indicate
p-values according to: *** p<0.01, ** p<0.05, * p<0.1.

Tropical cyclones only lead to a small number of production process changes with coeffi-

cients being relatively small. Out of 49 parameter estimates, only 12 are significantly different

from zero.28 As expected, the heavily damaged agriculture, hunting, forestry, and fishing

sector aggregate experiences the most changes. It asks for less input from the wholesale,

retail trade, restaurants, hotels and mining and utilities sector aggregates, which results from

a supply shock in the agricultural sector. Concurrently, the construction sector demands

significantly more input (1.84%) from the agriculture, hunting, forestry, and fishing sector.

This change can be regarded as reconstruction efforts, which is also reflected in the relatively

rapid recovery of the agricultural sector aggregate in Figure 1.6. The second most indirectly

affected sector is the construction sector. It demands more input from three other sector

aggregates, while the manufacturing sectors use less input from it. Given these positive

28The manufacturing sectors use significantly less input from itself, which is not shown in Figure 1.7.
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demand effects, one may ask why a significant contemporaneous positive direct effect for the

construction sector cannot be seen. One reason could be that the destruction of productive

capital outweighs the higher number of orders. However, one year later, as shown in Figure

1.6, these positive demand shocks lead to a positive growth impulse in the construction sector.

Compared to the existing literature, the non-existing of a direct positive contemporaneous

response of the construction sector is a new finding. For example, Hsiang (2010) finds an

immediate positive response of the construction sector. In a similar manner, Mohan & Strobl

(2017) find evidence that a positive growth effect of the construction sector, financed by

international aid or government programs, lead to a fast recovery of South-Pacific Islands

after tropical cyclones.29

Since the EORA26 database also offers the data decomposed for 26 sectors, this section

demonstrates the results of model 1.6 in more detail. It would be tedious to show 26x26

regression models; Figure 1.8 thus reduces the complexity of the analysis by showing only

the sign of the significant coefficients together with color intensities representing different

p-values.

Figure 1.8: Significant effects of tropical cyclone damage on disaggregated Input-Output coefficients
Notes: The colored areas depict all significant coefficients between the sectors, with negative coefficients in red
and positive in green. Color intensities indicate p-values according to: p<0.01, p<0.05, p<0.1.

29I also tested for lagged cumulative effects. The results can be found in Figure 1.16 in Appendix 1.6.4. They
show that there are nearly no lagged responses present. I also checked for different lag lengths, but could
hardly find any effect above a lag length of five years.
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Figure 1.8 reveals some patterns that are not visible on the aggregate level. The most

interesting changes can be observed within the single sectors of the manufacturing (D)

aggregate. They ask significantly less input from other sector aggregates, while, at the same

time, sectors from other aggregates ask more input from the manufacturing sectors. These

opposing production changes may be one of the reasons why we can see no aggregate direct

cost effects. Nevertheless, it unveils the importance of the manufacturing sectors, as already

demonstrated by their strong intersectoral connection in Figure 1.4. This importance for

the sectoral composition was already demonstrated by Bulte et al. (2018). The authors find

that after the 2008 Wenchuan Earthquake neighboring counties suffer from indirect negative

growth effects due to changes within the manufacturing sectors.

The sectors least affected by indirect changes are the agriculture (ag), recycling (re),

private households (ph), and export (ex) sectors. Figure 1.8 also offers an explanation for

the downturn of the mining and utilities (C&E) sector aggregate after some years, as shown

in Figure 1.6: The manufacturing sectors ask significantly less input from it. Additionally,

it becomes clear that the fishing sector is responsible for the negative supply shock in the

agriculture, hunting, forestry, and fishing sector aggregate. Possible reasons for these indirect

effects, could be changes in fishing patterns in response to tropical cyclones (Bacheler et al.,

2019) or the destruction of vessels. While the importance of the fishing sector for indirect

tropical cyclones’ effects is a novel finding, it does not mean that other agricultural sectors

do not exhibit negative direct effects.30

It is evident from this analysis that many potential production changes are canceled out

because of counteracting indirect effects. This may be the reason why, on the aggregate level

for indirect influences (see Figure 1.7), we can only see significant changes in one quarter

of all Input-Output connections, while in Model 1.4 for the direct costs, only two sector

aggregates are negatively affected. Furthermore, although the manufacturing sector shows no

direct monetary damage, it is responsible for several changes in the production schemes of

other sectors, leading to a monetary downturn in the mining and utilities (C&E) sectoral

aggregate.

30In light of this finding, one could question the reliability of the agricultural weighting scheme for the
damage variable. Therefore, I re-estimate the results of Equation 1.4 and 1.6 with the population weighted
damage for the agricultural sectoral aggregate. Appendix Table 1.43 and 1.54 show that the results remain
qualitatively unchanged.
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1.4.3 Sensitivity Analysis

To underline the credibility of my regression analyses, I test the sensitivity of my results in

various ways. First, I run two randomization tests: a Placebo test by using leads instead

of the contemporaneous measure of the damage variable and a Fisher randomization test,

where I randomly permute the years.31 Second, to rule out potential omitted variable biases,

I include additional climatological variables (precipitation and temperature) and a set of

socioeconomic variables (population growth rate, economic openness, the growth rate of the

gross capital formation, and logged per capita value added of the respective sector).32 Third,

I test different trend specifications: region-specific, nonlinear, and no trends at all. Fourth, to

alleviate concerns of biased uncertainty measures (Hsiang, 2016), I calculate different standard

errors: Newey-West standard errors with a lag length of 10 years and Conley-HAC standard

errors, allowing for a spatial and temporal dependence within a radius of 1000 kilometers and

within a time span of 10 years. Furthermore, I cluster the standard errors at broader regional

levels to account for the event that tropical cyclones can also affect neighboring countries

within one region.33 Finally, I test two sub-samples, one with all potential outliers and one

where I include only the countries exposed to tropical cyclones.34

Appendix 1.6.5 exhibits the resulting robustness tests for the direct and indirect sectoral

effects.35 For the direct sectoral effects, the significant results remain robust in all different

specifications underlining their credibility for the empirical model used. While the placebo

test yields no significant coefficients, the coefficients and p-value remain relatively stable

in all remaining robustness tests, as summarized in Figure 1.18. Furthermore, the results

of the randomization test show that the H0 of no effect of tropical cyclone damage can be

rejected at the 1% and 5% level of confidence for the agriculture, hunting, forestry, and fishing

and wholesale, retail trade, restaurants, and hotels sectors, respectively. The results of the

Input-Output analysis, summarized in Appendix 1.6.5.2, are a little less robust. However, on

31For the Placebo test I have to forward the damage variable by two periods, since the damage in t index
consists of the affected agricultural land/exposed population in t-1. To implement the Fisher randomization
test, I use the code generated by Heß (2017) and randomly permute the years of the tropical cyclone damage
variable for 2000 repetitions. By doing so, I test the null-hypothesis of no effect of the damage variable.

32Since climatological impacts are most likely nonlinear, I also include squared precipitation and temperature
in a further robustness test.

33These regions include East Asia and Pacific, Europe and Central Asia, Latin America and Caribbean,
Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa.

34Exposed countries are defined as having at least one positive damage observation over the sample period.
35Appendix 1.6.5 first shows the results of the randomization tests, followed by coefficient plots that summarize
the remaining specifications. The underlying tables are only included for the direct sectoral effects, while
the robustness tables for the Input-Output analysis are available upon request.
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average, the previously found effects can be replicated for 10 out of the 12 robustness tests.36

Given the reduced quality of the data and a shorter time span (20 years), the Input-Output

analysis still offers solid results.

1.5 Conclusion

This study provides an explanation about which sectors contribute to an overall negative

GDP-effect identified by previous studies (Elliott et al., 2015; Noy, 2009; Strobl, 2012). To

quantify the destructiveness of tropical cyclones, I construct a new damage measure based

on meteorological data weighted by different exposure of the sectors. I show that tropical

cyclones have a significantly negative impact on the annual growth rate of two sectoral

aggregates: agriculture, hunting, forestry, and fishing and wholesale, retail trade, restaurants,

and hotels. The dynamic analysis reveals that past tropical cyclones have a negative influence

on the majority of sectors providing evidence for the no recovery hypothesis discussed in

the literature. The Input-Output analysis demonstrates that production processes are only

slightly disturbed by tropical cyclones. However, we still can learn from this analysis of how

certain direct effects evolve.

The outcomes of this study can serve as a guide for local governments and international

organizations to revise and refine their adaptation and mitigation strategies. The findings

can help them to identify the sectors for which they must reduce disaster risk. The results

indicate that the policies should focus on the direct costs of tropical cyclones. Immediately

after the disaster, the policy should concentrate on the agriculture, hunting, forestry, and

fishing, and the wholesale, retail trade, restaurants, and hotels sector aggregates, as they

are most vulnerable, and/or recovery measures have not been conducted efficiently in these

sectors. Likewise, the contemporaneous, non-significant effect for the remaining sectors can

be explained as a result of lower vulnerability and/or efficient recovery measures, which

attenuate the potentially negative effect of tropical cyclones. In the years following the

tropical cyclone, the efforts should be broadened to support the mining, and utilities, and the

transport, storage, and communication sectors. Most worryingly, the majority of all sectors

experience delayed negative effects underpinning how far away the international community

remains from a build-back better or recovery to trend situation for tropical cyclone-affected

economies. As the manufacturing sectors are responsible for much of the counterbalancing of
36The robustness tests that frequently fail are those with Conley-HAC and Newey-West standard errors.
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indirect effects, they should not be forgotten by policymakers, even though they show no

direct negative effects.

Better post-disaster assistance is not the only required improvement; policymakers should

also find ways to better prepare the affected sectors of their economy for possible effects

of tropical cyclones before they strike. However, the presented results are generalized for

205 countries at most, and every specific country should make an analysis of their specific

vulnerability and individual exposure. Nonetheless, the results can provide general guidance

for international disaster relief organizations that are active in various countries on how

to direct their long-run disaster relief programs. The results are particularly pressing, as

tropical cyclones will continue to intensify due to global warming (Knutson et al., 2020), and,

simultaneously, more people will be exposed to tropical cyclones. In this respect, the results

of this research can also be used to calculate the future costs of climate change.
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1.6 Appendices

1.6.1 Tropical Cyclone Data

The unified data of the IBTrACS data set identifies each storm uniquely by assigning an

identification number, its geospatial position and its intensity given by maximum sustained

wind speed and minimum sea level pressure. The data are reported at six-hour intervals. Data

from IBTrACS are available from 1842 until today, but global coverage of the measurement

has only been guaranteed since the start of satellite remote sensing in the late 1970s (Schreck

et al., 2014). However, this restriction is for the most part only a concern for non-land-

falling tropical cyclones as land-falling tropical cyclones were already covered by the other

measurement methods (Knapp, 2016). For my analysis, I use the latest published version,

the “IBTrACS-All data” version v03r09, for the 1950–2015 period.

One pitfall of the IBTrACS data is that the data of the maximum sustained wind speed of

the different weather agencies are aggregated according to different rules. Weather agencies in

the North Atlantic basin use the maximum sustained wind speed average over a one-minute

period, agencies from China and Hong Kong use two-minute periods, agencies from India use

three-minute periods, and the remaining agencies use ten-minute periods, which is the norm

of the World Meteorological Organization (Kruk et al., 2010). As the conversion factor to

consistent ten-minute averages is contested, the IBTrACS data set stopped converging it since

version 03 (Kruk et al., 2010). This inconsistent measurement introduces a measurement error

in the data, where maximum sustained wind speed over a one-minute period is approximately

13% higher than over a ten-minute period (National Weather Service, 2015). However, this

bias can partly be attenuated by country fixed effects.37

37To further control for this potential bias, I calculate a specification with tropical cyclone basin fixed effects,
instead of country fixed effects. Appendix Table 1.42 and Figures 1.26–1.32 show the respective robustness
tests.
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1.6.2 Detailed Description ISIC Sector Classification

A) Agriculture, hunting and forestry

1) Agriculture, hunting and related service activities
2) Forestry, logging and related service activities

B) Fishing

3) Fishing, aquaculture and service activities incidental to fishing

C) Mining and quarrying

4) Mining of coal and lignite; extraction of peat
5) Extraction of crude petroleum and natural gas; service activi-

ties incidental to oil and gas extraction, excluding surveying
6) Mining of uranium and thorium ores
7) Mining of metal ores
8) Other mining and quarrying

D) Manufacturing

9) Manufacture of food products and beverages
10) Manufacture of tobacco products
11) Manufacture of textiles
12) Manufacture of wearing apparel; dressing and dyeing of fur
13) Tanning and dressing of leather; manufacture of luggage, hand-

bags, saddlery, harness and footwear
14) Manufacture of wood and of products of wood and cork, ex-

cept furniture; manufacture of articles of straw and plaiting
materials

15) Manufacture of paper and paper products
16) Publishing, printing and reproduction of recorded media
17) Manufacture of coke, refined petroleum products and nuclear

fuel
18) Manufacture of chemicals and chemical products
19) Manufacture of rubber and plastics products
20) Manufacture of other non-metallic mineral products
21) Manufacture of basic metals
22) Manufacture of fabricated metal products, except machinery

and equipment
23) Manufacture of machinery and equipment n.e.c.
24) Manufacture of office, accounting and computing machinery
25) Manufacture of electrical machinery and apparatus n.e.c.
26) Manufacture of radio, television and communication equipment

and apparatus
27) Manufacture of medical, precision and optical instruments,

watches and clocks
28) Manufacture of motor vehicles, trailers and semi-trailers
29) Manufacture of other transport equipment
30) Manufacture of furniture; manufacturing n.e.c.
31) Recycling

E) Electricity, gas and water supply

32) Electricity, gas, steam and hot water supply
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33) Collection, purification and distribution of water

F) Construction

34) Construction

G) Wholesale and retail trade; repair of motor vehicles, mo-
torcycles and personal and household goods

35) Sale, maintenance and repair of motor vehicles and motorcycles;
re-tail sale of automotive fuel

36) Wholesale trade and commission trade, except of motor vehicles
and motorcycles

37) Retail trade, except of motor vehicles and motorcycles; repair
of personal and household goods

H) Hotels and restaurants

38) Hotels and restaurants

I) Transport, storage and communication

39) Land transport; transport via pipelines
40) Water transport
41) Air transport
42) Supporting and auxiliary transport activities; activities of travel

agencies
43) Post and telecommunications

J) Financial intermediation

44) Financial intermediation, except insurance and pension funding
45) Insurance and pension funding, except compulsory social secu-

rity

46) Activities auxiliary to financial intermediation

K) Real estate, renting and business activities

47) Real estate activities
48) Renting of machinery and equipment without operator and of

personal and household goods
49) Computer and related activities
50) Research and development
51) Other business activities

L) Public administration and defense; compulsory social secu-
rity

52) Public administration and defense; compulsory social security

M) Education

53) Education

N) Health and social work

54) Health and social work

O) Other community, social and personal service activities

55) Sewage and refuse disposal, sanitation and similar activities
56) Activities of membership organizations n.e.c.
57) Recreational, cultural and sporting activities
58) Other service activities

P) Activities of private households as employers and undiffer-
entiated production activities of private households

59) Activities of private households as employers of domestic staff
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60) Undifferentiated goods-producing activities of private house-
holds for own use

61) Undifferentiated service-producing activities of private house-
holds for own use

Q) Extraterritorial organizations and bodies

62) Extraterritorial organizations and bodies
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1.6.3 Definitions and Sources of Variables

Table 1.2: Definitions and sources of variables

Variable Definition Units Source

Growth rate pc sector A&B Annual per capita growth rate of the ISIC sector A&B: agri-
culture, hunting, forestry, and fishing

2005 const. USD, % United Nations Statistical Division (2015c)

Growth rate pc sector C&E Annual per capita growth rate of the ISIC sector C&E: mining,
manufacturing, and utilities

2005 const. USD, % United Nations Statistical Division (2015c)

Growth rate pc sector D Annual per capita growth rate of the ISIC sector D: manufac-
turing

2005 const. USD, % United Nations Statistical Division (2015c)

Growth rate pc sector F Annual per capita growth rate of the ISIC sector F: construc-
tion

2005 const. USD, % United Nations Statistical Division (2015c)

Growth rate pc sector G–H Annual per capita growth rate of the ISIC sector G–H: whole-
sale, retail trade, restaurants, hotels

2005 const. USD, % United Nations Statistical Division (2015c)

Growth rate pc sector I Annual per capita growth rate of the ISIC sector I: transport,
storage, communication

2005 const. USD, % United Nations Statistical Division (2015c)

Growth rate pc sector J–P Annual per capita growth rate of the ISIC sector J–P: other
activities

2005 const. USD, % United Nations Statistical Division (2015c)

Input-Output coefficients Input-Output coefficients: Specific input divided by total in-
put

Lenzen et al. (2012, 2013)

Damage Weighted cubic wind speed by exposed population or agricul-
tural land

km3/h3 Own modeling after Knapp et al. (2010)

Population Count Population counts Inhabitants/gridcell Klein Goldewijk et al. (2011)
Cropland Total cropland area km2/gridcell Klein Goldewijk et al. (2011)
Grazing Land Total land used for grazing km2/gridcell Klein Goldewijk et al. (2011)
Temperature Yearly mean air temperature Degree Celsius University of East Anglia Climatic Research

Unit et al. (2017)
Precipitation Yearly precipitation mm University of East Anglia Climatic Research

Unit et al. (2017)
Log pc value added Logarithm of the per capita value added of the respective ISIC

sector
2005 const. USD United Nations Statistical Division (2015c)

Trade openness Imports plus exports divided by GDP 2005 const. USD, % United Nations Statistical Division (2015c)
Population growth Annual population growth rate % United Nations Statistical Division (2015c)
Capital growth Annual growth rate of the gross capital formation 2005 const. USD, % United Nations Statistical Division (2015c)
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1.6.4 Additional Statistics and Results

Table 1.3: Summary statistics

Variable Obs. Mean St. dev. Min Max Mean if storm St. dev. if storm

Damage (agriculture) 8,750 74,433.30 600,971.10 0.00 23700000.00 174,749.50 911,327.40
Damage (population) 8,750 74,753.80 613,559.80 0.00 25100000.00 175,501.90 930,734.80
Growth rate pc sector A&B 8,500 0.88 10.63 -80.28 167.28 1.04 9.08
Growth rate pc sector C&E 8,500 3.75 30.44 -99.75 995.48 4.07 23.27
Growth rate pc sector D 8,500 2.61 26.63 -95.24 1,745.50 2.29 9.88
Growth rate pc sector F 8,500 3.24 25.78 -96.31 1,453.02 2.67 14.62
Growth rate pc sector G–H 8,500 2.53 12.74 -80.57 459.62 2.33 7.26
Growth rate pc sector I 8,500 3.70 15.50 -91.94 659.28 3.51 7.36
Growth rate pc sector J–P 8,500 2.55 10.45 -77.67 375.99 2.55 5.34
Temperature 8,229 19.77 8.25 -17.30 29.60 20.14 8.66
Precipitation 8,229 1,247.85 867.93 9.80 6,699.00 1,543.78 888.15
Log pc value added A&B 8,683 5.40 0.79 2.34 8.23 5.47 0.76
Log pc value added C&E 8,676 4.97 2.23 -4.13 11.26 5.09 2.04
Log pc value added D 8,683 5.66 1.82 -3.06 10.52 5.97 1.77
Log pc value added F 8,685 5.06 1.85 -1.97 9.31 5.42 1.79
Log pc value added G–H 8,684 6.04 1.67 0.49 10.30 6.41 1.59
Log pc value added I 8,683 5.36 1.76 -0.84 9.23 5.68 1.66
Log pc value added J–P 8,685 6.78 1.92 0.43 11.03 7.14 1.87
Trade openness 8,428 195.47 834.45 0.07 18,015.42 1,116.75 0.10
Population growth 8,500 1.73 1.94 -54.70 19.27 1.39 -16.55
Capital growth 8,293 6.27 30.73 -376.22 1,263.33 4.89 19.50
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Table 1.4: Summary statistics Input-Output coefficients

Obs. Mean St. dev. Min Max
IOA&B,A&B 4647 .1662722 .1709245 1.00e-06 .974811
IOA&B,C&E 4647 .0121479 .0124637 4.56e-06 .1369842
IOA&B,D 4647 .0846725 .0552218 .000056 .299829
IOA&B,F 4647 .0037546 .0043553 0 .131224
IOA&B,G-H 4647 .0356446 .0355103 4.56e-08 .4175104
IOA&B,I 4647 .0219238 .0179971 9.25e-06 .1859521
IOA&B,J-P 4647 .070706 .0536481 .000173 .4691
IOC&E,A&B 4647 .0008422 .0016779 3.97e-08 .0258813
IOC&E,C&E 4647 .1514745 .1176578 .0000802 .9996359
IOC&E,D 4647 .0537984 .0564091 .000087 .884369
IOC&E,F 4647 .0277999 .0226761 2.06e-08 .1834678
IOC&E,G-H 4647 .0192595 .0145801 1.29e-06 .1063142
IOC&E,I 4647 .0486505 .0301493 .000016 .398454
IOC&E,J-P 4647 .0881599 .0518342 .0000348 .4748183
IOD,A&B 4647 .0563642 .0542414 1.42e-07 .5359839
IOD,C&E 4647 .0393183 .0466088 .000141 .60063
IOD,D 4647 .2399205 .1103603 .000605 .998675
IOD,F 4647 .0045227 .002871 7.39e-08 .0316864
IOD,G-H 4647 .0536236 .0230651 4.00e-06 .214414
IOD,I 4647 .0359096 .0153304 .0000742 .1480716
IOD,J-P 4647 .0855877 .040535 .0000556 .3476429
IOF,A&B 4647 .0033265 .0053454 0 .080139
IOF,C&E 4647 .0161254 .0139202 2.74e-07 .1273087
IOF,D 4647 .2098782 .0715656 8.39e-07 .4854064
IOF,F 4647 .0395914 .0822892 0 .996022
IOF,G-H 4647 .0645109 .0290355 1.10e-06 .2101925
IOF,I 4647 .0395516 .0194235 4.22e-06 .1451188
IOF,J-P 4647 .098781 .0484502 .000022 .376105
IOG-H,A&B 4647 .0084109 .010755 1.65e-06 .1156533
IOG-H,C&E 4647 .0158055 .0088905 9.37e-06 .0968774
IOG-H,D 4647 .0711979 .0433933 4.00e-06 .624181
IOG-H,F 4647 .0061702 .0042947 5.93e-09 .0553494
IOG-H,G-H 4647 .053871 .0695904 .0000693 .9245332
IOG-H,I 4647 .061231 .0328779 .000019 .473436
IOG-H,J-P 4647 .1391351 .0555886 .0003702 .5434914
IOI,A&B 4647 .0004068 .0012979 2.22e-08 .015707
IOI,C&E 4647 .0099685 .0087259 .00002 .099051
IOI,D 4647 .0620294 .0393132 .0000266 .3060028
IOI,F 4647 .0087888 .0061438 2.04e-08 .0458489
IOI,G-H 4647 .0276095 .0295263 3.00e-06 .252107
IOI,I 4647 .1094513 .0749535 .0000306 .9978023
IOI,J-P 4647 .1300935 .0564797 .0001369 .313433
IOJ-P,A&B 4647 .0026576 .0092353 6.00e-06 .257432
IOJ-P,C&E 4647 .0122318 .0075814 .000102 .0716968
IOJ-P,D 4647 .0565184 .029694 .0000751 .2703193
IOJ-P,F 4647 .0173059 .0090651 0 .076051
IOJ-P,G-H 4647 .0231643 .0119405 .0000253 .1070365
IOJ-P,I 4647 .0318075 .0144938 .0000448 .1364643
IOJ-P,J-P 4647 .1450746 .0787744 .000394 .740301
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Table 1.5: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate agriculture,
hunting, forestry, fishing

Dependent Variables: Per capita growth rate (%) in sector aggregate
Agriculture, hunting,

forestry, fishing
Agriculture, hunting,

forestry, fishing
Agriculture, hunting,

forestry, fishing
Agriculture, hunting,

forestry, fishing

(1) (2) (3) (4)

Damaget -2.6275*** -2.6406*** -2.5945*** -2.5847***
(0.4531) (0.4556) (0.4503) (0.4556)
[0.0000] [0.0000] [0.0000] [0.0000]

Damaget-1 -0.4314 -0.4681 -0.4076 -0.4047
(0.4467) (0.4532) (0.4500) (0.4497)
[0.3353] [0.3029] [0.3662] [0.3691]

Damaget-2 1.4378*** 1.4368*** 1.4179*** 1.4161***
(0.3995) (0.4028) (0.4083) (0.4022)
[0.0004] [0.0005] [0.0006] [0.0005]

Damaget-3 0.2373 0.2169 0.2185 0.2152
(0.3331) (0.3256) (0.3279) (0.3305)
[0.4771] [0.5060] [0.5059] [0.5156]

Damaget-4 1.1155* 1.1231* 1.1233* 1.1374*
(0.5863) (0.5828) (0.5793) (0.5818)
[0.0585] [0.0553] [0.0539] [0.0519]

Damaget-5 -0.0860 -0.0638 -0.0172 -0.0268
(0.3097) (0.3083) (0.3104) (0.3077)
[0.7815] [0.8363] [0.9559] [0.9306]

Damaget-6 -0.3046 -0.3012 -0.2889
(0.4460) (0.4259) (0.4235)
[0.4953] [0.4802] [0.4958]

Damaget-7 -0.1822 -0.1972 -0.2056
(0.5307) (0.5404) (0.5513)
[0.7317] [0.7156] [0.7095]

Damaget-8 -0.8401 -0.8437 -0.8357
(1.2063) (1.1881) (1.1967)
[0.4870] [0.4784] [0.4858]

Damaget-9 -0.2056 -0.2377 -0.2458
(0.4608) (0.4477) (0.4542)
[0.6559] [0.5960] [0.5890]

Damaget-10 0.2774 0.2851 0.2979
(0.4825) (0.4631) (0.4773)
[0.5659] [0.5387] [0.5332]

Damaget-11 0.6831 0.6864
(0.7825) (0.7740)
[0.3837] [0.3762]

Damaget-12 0.5987 0.5896
(0.4491) (0.4456)
[0.1841] [0.1873]

Damaget-13 0.5975** 0.6132**
(0.3017) (0.3059)
[0.0490] [0.0463]

Damaget-14 -0.6914* -0.6979*
(0.4100) (0.4051)
[0.0932] [0.0865]

Damaget-15 -0.2214 -0.2189
(0.4041) (0.4006)
[0.5844] [0.5854]

Damaget-16 0.0631
(0.2907)
[0.8283]

Damaget-17 -0.1343
(0.3827)
[0.7261]

Damaget-18 0.2813
(0.3274)
[0.3912]

Damaget-19 -0.1659
(0.5556)
[0.7655]

Damaget-20 0.0244
(0.1876)
[0.8966]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.0000 0.0000 0.0000 0.0000
Mean DV 0.8800 0.8800 0.8800 0.8800

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.6: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate mining,
utilities

Dependent Variables: Per capita growth rate (%) in sector aggregate
Mining, utilities Mining, utilities Mining, utilities Mining, utilities

(1) (2) (3) (4)

Damaget -0.6876 -0.5101 -0.4927 -0.4347
(0.8734) (0.9150) (0.8834) (0.9616)
[0.4321] [0.5778] [0.5776] [0.6517]

Damaget-1 -0.7455 -0.8769 -0.8343 -0.8934
(0.7873) (0.8026) (0.7857) (0.8479)
[0.3448] [0.2759] [0.2896] [0.2933]

Damaget-2 0.7484 0.7583 0.8130 0.8259
(0.6098) (0.6138) (0.6176) (0.6286)
[0.2212] [0.2181] [0.1895] [0.1904]

Damaget-3 -0.9537** -0.9694** -0.9714** -0.9672**
(0.4539) (0.4599) (0.4579) (0.4729)
[0.0368] [0.0363] [0.0351] [0.0421]

Damaget-4 -0.3247 -0.3908 -0.3862 -0.3796
(0.3517) (0.3638) (0.3695) (0.3960)
[0.3569] [0.2840] [0.2972] [0.3389]

Damaget-5 -0.4838* -0.4029* -0.3679 -0.3992
(0.2583) (0.2437) (0.2536) (0.2476)
[0.0625] [0.0998] [0.1484] [0.1085]

Damaget-6 -1.1859** -1.2196** -1.1819**
(0.4730) (0.5131) (0.4967)
[0.0129] [0.0184] [0.0183]

Damaget-7 -0.5146 -0.4506 -0.4911
(0.3822) (0.3920) (0.4168)
[0.1797] [0.2517] [0.2400]

Damaget-8 0.2670 0.2856 0.3268
(0.3256) (0.3305) (0.3144)
[0.4131] [0.3885] [0.2998]

Damaget-9 -1.8192* -1.8233* -1.8472*
(1.0021) (1.0098) (1.0186)
[0.0709] [0.0725] [0.0712]

Damaget-10 0.9977 1.0499 1.1008
(0.6531) (0.6605) (0.6855)
[0.1281] [0.1135] [0.1098]

Damaget-11 -0.5780 -0.6148
(0.5170) (0.5562)
[0.2648] [0.2703]

Damaget-12 0.6477 0.6350
(0.4428) (0.4434)
[0.1451] [0.1536]

Damaget-13 0.3826 0.4128
(0.5633) (0.5500)
[0.4977] [0.4537]

Damaget-14 -0.0418 -0.0526
(0.6378) (0.6398)
[0.9478] [0.9345]

Damaget-15 0.6175 0.6515
(0.7947) (0.8284)
[0.4381] [0.4325]

Damaget-16 -0.0241
(0.8067)
[0.9762]

Damaget-17 -0.3680
(0.5713)
[0.5202]

Damaget-18 0.2299
(0.5707)
[0.6874]

Damaget-19 -0.6999
(0.5209)
[0.1805]

Damaget-20 0.7053
(0.8842)
[0.4260]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.0000 0.0000 0.0000 0.0000
Mean DV 3.7458 3.7458 3.7458 3.7458

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.7: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate manufac-
turing

Dependent Variables: Per capita growth rate (%) in sector aggregate
Manufacturing Manufacturing Manufacturing Manufacturing

(1) (2) (3) (4)

Damaget -0.7744 -0.6328 -0.5932 -0.6580
(0.5118) (0.4759) (0.4708) (0.4413)
[0.1318] [0.1852] [0.2091] [0.1375]

Damaget-1 -0.3449 -0.3864 -0.4121 -0.3278
(0.5540) (0.5974) (0.5993) (0.6004)
[0.5343] [0.5184] [0.4925] [0.5857]

Damaget-2 -0.8700 -0.8277 -0.8301 -0.8441
(0.5939) (0.5821) (0.5779) (0.5906)
[0.1445] [0.1566] [0.1524] [0.1545]

Damaget-3 0.3528 0.2814 0.2392 0.2274
(0.4764) (0.4708) (0.4590) (0.4481)
[0.4598] [0.5508] [0.6028] [0.6123]

Damaget-4 0.3191 0.3004 0.3181 0.3357
(0.4506) (0.4650) (0.4647) (0.4519)
[0.4797] [0.5190] [0.4944] [0.4585]

Damaget-5 -0.2016 -0.1280 -0.1582 -0.1330
(0.4904) (0.4855) (0.5077) (0.5085)
[0.6814] [0.7923] [0.7556] [0.7939]

Damaget-6 0.4072 0.4422 0.4179
(0.4026) (0.4073) (0.4064)
[0.3131] [0.2788] [0.3049]

Damaget-7 1.6369** 1.6176** 1.6485**
(0.7152) (0.7124) (0.7055)
[0.0231] [0.0242] [0.0204]

Damaget-8 -0.3192 -0.3443 -0.3760
(0.5348) (0.5369) (0.5329)
[0.5512] [0.5221] [0.4813]

Damaget-9 -1.5212 -1.5311 -1.5149
(0.9531) (0.9427) (0.9532)
[0.1120] [0.1059] [0.1135]

Damaget-10 0.6595 0.6194 0.5703
(0.4769) (0.4789) (0.4961)
[0.1682] [0.1973] [0.2517]

Damaget-11 0.2667 0.3225
(0.2858) (0.3103)
[0.3518] [0.2999]

Damaget-12 0.1428 0.1468
(0.4045) (0.4030)
[0.7244] [0.7161]

Damaget-13 -0.1894 -0.2056
(0.3984) (0.4187)
[0.6350] [0.6238]

Damaget-14 0.2558 0.2630
(0.3295) (0.3233)
[0.4385] [0.4168]

Damaget-15 -0.7252* -0.7666*
(0.3965) (0.4048)
[0.0689] [0.0597]

Damaget-16 0.2342
(0.3046)
[0.4428]

Damaget-17 0.2235
(0.2860)
[0.4354]

Damaget-18 0.1259
(0.2085)
[0.5464]

Damaget-19 0.7305*
(0.3708)
[0.0502]

Damaget-20 -0.9221
(0.6077)
[0.1307]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.2321 0.1081 0.0087 0.0000
Mean DV 2.6095 2.6095 2.6095 2.6095

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.8: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate construc-
tion

Dependent Variables: Per capita growth rate (%) in sector aggregate
Construction Construction Construction Construction

(1) (2) (3) (4)

Damaget 0.6080 0.5245 0.4851 0.4199
(0.6260) (0.6393) (0.6323) (0.6430)
[0.3325] [0.4129] [0.4439] [0.5144]

Damaget-1 2.6311** 2.6978** 2.7381** 2.7534**
(1.1531) (1.1470) (1.1793) (1.1488)
[0.0235] [0.0196] [0.0212] [0.0174]

Damaget-2 -1.6493* -1.6037* -1.5749* -1.6063*
(0.8377) (0.8226) (0.8130) (0.8257)
[0.0503] [0.0526] [0.0541] [0.0531]

Damaget-3 -1.7602*** -1.6796*** -1.6273*** -1.6556***
(0.4487) (0.4626) (0.4648) (0.4489)
[0.0001] [0.0004] [0.0006] [0.0003]

Damaget-4 -0.0905 -0.1140 -0.1654 -0.2049
(0.6021) (0.5750) (0.5996) (0.6076)
[0.8806] [0.8430] [0.7829] [0.7363]

Damaget-5 0.0690 0.0223 0.0271 0.0113
(0.7443) (0.7373) (0.7371) (0.7475)
[0.9262] [0.9759] [0.9707] [0.9879]

Damaget-6 -1.0995** -1.0783** -1.1177**
(0.4633) (0.4671) (0.4647)
[0.0186] [0.0220] [0.0171]

Damaget-7 0.0687 0.0857 0.0964
(0.4763) (0.4669) (0.4873)
[0.8855] [0.8545] [0.8433]

Damaget-8 1.6210* 1.6803* 1.6541*
(0.9750) (0.9757) (0.9884)
[0.0980] [0.0866] [0.0958]

Damaget-9 1.4358** 1.4250** 1.4181**
(0.6005) (0.5921) (0.5756)
[0.0177] [0.0170] [0.0146]

Damaget-10 -0.6059** -0.5987** -0.6467**
(0.2685) (0.2791) (0.2885)
[0.0251] [0.0331] [0.0261]

Damaget-11 -0.5109 -0.5271
(0.5518) (0.5639)
[0.3555] [0.3510]

Damaget-12 -0.5298 -0.5381
(0.6212) (0.6260)
[0.3947] [0.3910]

Damaget-13 1.2311 1.2136
(1.1028) (1.0968)
[0.2656] [0.2698]

Damaget-14 0.2925 0.2873
(0.9485) (0.9502)
[0.7581] [0.7627]

Damaget-15 -0.0251 -0.0529
(0.3925) (0.3886)
[0.9491] [0.8919]

Damaget-16 -0.5861*
(0.3420)
[0.0880]

Damaget-17 -0.4172
(0.6622)
[0.5294]

Damaget-18 -0.1922
(0.3900)
[0.6226]

Damaget-19 0.4175
(0.4051)
[0.3039]

Damaget-20 -0.2049
(0.2578)
[0.4276]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.0000 0.0000 0.0000 0.0000
Mean DV 3.2388 3.2388 3.2388 3.2388

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.9: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate wholesale,
retail trade, restaurants, hotels

Dependent Variables: Per capita growth rate (%) in sector aggregate
Wholesale, retail
trade, restaurants,

hotels

Wholesale, retail
trade, restaurants,

hotels

Wholesale, retail
trade, restaurants,

hotels

Wholesale, retail
trade, restaurants,

hotels

(1) (2) (3) (4)

Damaget -1.1769** -1.1636** -1.1665** -1.1895**
(0.5216) (0.5343) (0.5317) (0.5317)
[0.0251] [0.0306] [0.0294] [0.0263]

Damaget-1 -0.0479 -0.0801 -0.1049 -0.0936
(0.5161) (0.5332) (0.5395) (0.5403)
[0.9261] [0.8807] [0.8461] [0.8626]

Damaget-2 -0.2738 -0.2956 -0.3109 -0.2848
(0.2400) (0.2435) (0.2374) (0.2390)
[0.2554] [0.2262] [0.1917] [0.2347]

Damaget-3 -0.2410 -0.2624 -0.2908 -0.2768
(0.2378) (0.2306) (0.2278) (0.2258)
[0.3120] [0.2564] [0.2032] [0.2216]

Damaget-4 0.2640 0.2649 0.2323 0.2346
(0.2349) (0.2428) (0.2496) (0.2561)
[0.2625] [0.2765] [0.3531] [0.3607]

Damaget-5 -0.1599 -0.1490 -0.1426 -0.1183
(0.2364) (0.2377) (0.2484) (0.2544)
[0.4996] [0.5315] [0.5665] [0.6424]

Damaget-6 -0.0454 -0.0794 -0.0722
(0.2788) (0.2764) (0.2760)
[0.8708] [0.7741] [0.7940]

Damaget-7 -0.3164 -0.3272 -0.3076
(0.3797) (0.3849) (0.3855)
[0.4056] [0.3963] [0.4258]

Damaget-8 -0.6149 -0.6285 -0.6202
(0.5242) (0.5272) (0.5252)
[0.2422] [0.2345] [0.2390]

Damaget-9 -0.3311 -0.3650 -0.3482
(0.2344) (0.2388) (0.2340)
[0.1594] [0.1278] [0.1383]

Damaget-10 0.1107 0.1148 0.1026
(0.3226) (0.3186) (0.3101)
[0.7319] [0.7190] [0.7411]

Damaget-11 -0.3550 -0.3461
(0.2501) (0.2556)
[0.1574] [0.1772]

Damaget-12 0.0860 0.0966
(0.1860) (0.1853)
[0.6444] [0.6027]

Damaget-13 0.0246 0.0273
(0.2290) (0.2291)
[0.9146] [0.9053]

Damaget-14 -0.6195 -0.5974
(0.4335) (0.4253)
[0.1545] [0.1617]

Damaget-15 -0.2120 -0.2104
(0.1901) (0.1802)
[0.2662] [0.2443]

Damaget-16 0.0808
(0.1772)
[0.6490]

Damaget-17 0.0653
(0.1978)
[0.7418]

Damaget-18 -0.1388
(0.2015)
[0.4918]

Damaget-19 0.4196**
(0.1768)
[0.0185]

Damaget-20 0.1802
(0.3450)
[0.6019]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.0000 0.0003 0.0000 0.0000
Mean DV 2.5256 2.5256 2.5256 2.5256

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.10: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate transport,
storage, communication

Dependent Variables: Per capita growth rate (%) in sector aggregate
Transport, storage,
communication

Transport, storage,
communication

Transport, storage,
communication

Transport, storage,
communication

(1) (2) (3) (4)

Damaget -0.5071 -0.4901 -0.4922 -0.5464
(0.3708) (0.3755) (0.3607) (0.3582)
[0.1729] [0.1933] [0.1738] [0.1287]

Damaget-1 0.1078 0.1025 0.0706 0.0890
(0.3787) (0.3723) (0.3672) (0.3592)
[0.7761] [0.7834] [0.8477] [0.8046]

Damaget-2 -0.6321** -0.6508** -0.6910** -0.7171***
(0.2768) (0.2757) (0.2697) (0.2694)
[0.0234] [0.0192] [0.0111] [0.0084]

Damaget-3 0.0341 0.0355 0.0165 0.0016
(0.2741) (0.2647) (0.2700) (0.2691)
[0.9010] [0.8935] [0.9513] [0.9952]

Damaget-4 0.0163 -0.0151 -0.0287 -0.0614
(0.3971) (0.3990) (0.3957) (0.3952)
[0.9673] [0.9698] [0.9422] [0.8768]

Damaget-5 0.2730 0.2602 0.2475 0.2535
(0.2892) (0.2842) (0.2921) (0.2955)
[0.3462] [0.3609] [0.3978] [0.3920]

Damaget-6 -0.4360 -0.4293 -0.4769*
(0.2875) (0.2779) (0.2798)
[0.1309] [0.1240] [0.0899]

Damaget-7 -0.3668 -0.4075 -0.3878
(0.3245) (0.3420) (0.3499)
[0.2596] [0.2348] [0.2690]

Damaget-8 0.1728 0.1510 0.1112
(0.5338) (0.5449) (0.5508)
[0.7465] [0.7819] [0.8402]

Damaget-9 -0.1954 -0.2129 -0.1991
(0.2675) (0.2621) (0.2635)
[0.4661] [0.4176] [0.4508]

Damaget-10 -0.4255** -0.4540** -0.4994**
(0.1894) (0.1972) (0.1996)
[0.0257] [0.0223] [0.0131]

Damaget-11 0.2563 0.2603
(0.4631) (0.4645)
[0.5805] [0.5758]

Damaget-12 -0.1970 -0.1973
(0.2412) (0.2407)
[0.4150] [0.4134]

Damaget-13 -0.2124 -0.2478
(0.2475) (0.2563)
[0.3917] [0.3348]

Damaget-14 -0.3103 -0.3094
(0.3806) (0.3797)
[0.4159] [0.4161]

Damaget-15 -0.4994*** -0.5263***
(0.1736) (0.1711)
[0.0044] [0.0024]

Damaget-16 -0.2597
(0.2497)
[0.2994]

Damaget-17 0.0558
(0.2539)
[0.8264]

Damaget-18 -0.4558**
(0.1959)
[0.0209]

Damaget-19 0.3820
(0.2513)
[0.1300]

Damaget-20 -0.4261*
(0.2430)
[0.0811]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.0024 0.0002 0.0007 0.0000
Mean DV 3.7030 3.7030 3.7030 3.7030

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.11: Lagged influence of tropical cyclone damage on GDP growth of sector aggregate other
activities

Dependent Variables: Per capita growth rate (%) in sector aggregate
Other activities Other activities Other activities Other activities

(1) (2) (3) (4)

Damaget -0.1957 -0.1992 -0.1983 -0.1986
(0.2653) (0.2701) (0.2741) (0.2726)
[0.4616] [0.4616] [0.4701] [0.4672]

Damaget-1 0.3164* 0.3095* 0.3163* 0.3207*
(0.1764) (0.1782) (0.1716) (0.1743)
[0.0743] [0.0840] [0.0667] [0.0672]

Damaget-2 0.0273 -0.0005 -0.0147 0.0115
(0.2312) (0.2195) (0.2134) (0.2190)
[0.9060] [0.9983] [0.9451] [0.9582]

Damaget-3 -0.0826 -0.0844 -0.0872 -0.0737
(0.1412) (0.1356) (0.1354) (0.1317)
[0.5593] [0.5342] [0.5203] [0.5762]

Damaget-4 0.0314 0.0175 0.0105 0.0145
(0.2182) (0.2183) (0.2235) (0.2171)
[0.8856] [0.9364] [0.9625] [0.9470]

Damaget-5 0.1313 0.1167 0.1297 0.1435
(0.1549) (0.1588) (0.1625) (0.1602)
[0.3976] [0.4630] [0.4256] [0.3714]

Damaget-6 -0.2200 -0.2209 -0.1996
(0.1667) (0.1638) (0.1623)
[0.1884] [0.1788] [0.2200]

Damaget-7 -0.5182 -0.5235 -0.5060
(0.3682) (0.3664) (0.3610)
[0.1609] [0.1546] [0.1625]

Damaget-8 -0.1524 -0.1565 -0.1374
(0.1293) (0.1302) (0.1258)
[0.2396] [0.2305] [0.2761]

Damaget-9 -0.0685 -0.0803 -0.0805
(0.1915) (0.1868) (0.1871)
[0.7207] [0.6677] [0.6673]

Damaget-10 -0.3355** -0.3338** -0.3326**
(0.1636) (0.1630) (0.1598)
[0.0416] [0.0419] [0.0387]

Damaget-11 0.1267 0.1200
(0.2717) (0.2727)
[0.6414] [0.6605]

Damaget-12 0.0901 0.1043
(0.2600) (0.2621)
[0.7294] [0.6911]

Damaget-13 0.0736 0.0931
(0.1716) (0.1895)
[0.6685] [0.6239]

Damaget-14 -0.2511 -0.2361
(0.2044) (0.1998)
[0.2206] [0.2388]

Damaget-15 -0.0480 -0.0384
(0.1275) (0.1208)
[0.7066] [0.7510]

Damaget-16 -0.1259
(0.1884)
[0.5050]

Damaget-17 -0.0509
(0.1613)
[0.7526]

Damaget-18 0.1624
(0.1738)
[0.3512]

Damaget-19 0.2999***
(0.1126)
[0.0084]

Damaget-20 0.3898
(0.4822)
[0.4199]

N 8,500 8,500 8,500 8,500
Clusters 205 205 205 205
P-value 0.3635 0.0001 0.0000 0.0000
Mean DV 2.5519 2.5519 2.5519 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard
errors by countries in parentheses (), and p-values in brackets []. The coefficients show the
effect of a one standard deviation increase in tropical cyclone damage on the per capita growth
rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind
speed observations. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted
by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Table 1.12: Lagged cumulative influence of tropical cyclone damage on sectoral GDP growth (0–9 years)

Dependent Variables: Per capita growth rate (%) in sector aggregates

Accumulated damage effects after: 0
years

1
year

2
years

3
years

4
years

5
years

6
years

7
years

8
years

9
years

Agriculture, hunting, -2.5847*** -2.9894*** -1.5733*** -1.3581** -0.2207 -0.2475 -0.5364 -0.7421 -1.5777 -1.8236
forestry, fishing (0.4556) (0.6064) (0.5989) (0.6257) (0.9810) (1.1938) (1.2518) (1.1060) (1.5156) (1.6854)

[0.0000] [0.0000] [0.0093] [0.0311] [0.8222] [0.8360] [0.6687] [0.5030] [0.2991] [0.2805]
Mining, utilities -0.4347 -1.3281** -0.5021 -1.4693 -1.8489* -2.2481** -3.4300*** -3.9211*** -3.5943*** -5.4415***

(0.9616) (0.6495) (0.9336) (1.0208) (0.9635) (0.8910) (0.8866) (1.0249) (1.0404) (1.5957)
[0.6517] [0.0422] [0.5913] [0.1516] [0.0564] [0.0124] [0.0001] [0.0002] [0.0007] [0.0008]

Manufacturing -0.6580 -0.9857 -1.8298* -1.6024 -1.2667 -1.3997 -0.9818 0.6667 0.2908 -1.2242
(0.4413) (0.6982) (1.0553) (1.1886) (1.0598) (1.1366) (1.2176) (1.1558) (1.2954) (1.8766)
[0.1375] [0.1595] [0.0844] [0.1791] [0.2334] [0.2196] [0.4210] [0.5647] [0.8226] [0.5149]

Construction 0.4199 3.1734** 1.5671 -0.0886 -0.2935 -0.2822 -1.3998 -1.3034 0.3507 1.7688
(0.6430) (1.5599) (1.4459) (1.6583) (1.3940) (1.8048) (1.9385) (1.7578) (1.4824) (1.6819)
[0.5144] [0.0432] [0.2797] [0.9575] [0.8334] [0.8759] [0.4710] [0.4592] [0.8132] [0.2942]

Wholesale, retail -1.1895** -1.2831** -1.5680*** -1.8448*** -1.6101** -1.7285** -1.8006** -2.1082** -2.7285** -3.0767**
trade, restaurants, (0.5317) (0.5111) (0.5520) (0.5966) (0.6731) (0.7312) (0.7562) (0.8723) (1.1894) (1.3632)
hotels [0.0263] [0.0128] [0.0050] [0.0023] [0.0177] [0.0190] [0.0182] [0.0165] [0.0228] [0.0251]
Transport, storage, -0.5464 -0.4574 -1.1745* -1.1729 -1.2342 -0.9808 -1.4577 -1.8455 -1.7342 -1.9333
communication (0.3582) (0.5481) (0.6388) (0.7866) (0.8444) (1.0020) (1.0969) (1.1639) (1.2830) (1.3875)

[0.1287] [0.4049] [0.0674] [0.1375] [0.1454] [0.3288] [0.1854] [0.1144] [0.1780] [0.1650]
Other activities -0.1986 0.1221 0.1337 0.0599 0.0744 0.2179 0.0183 -0.4877 -0.6251 -0.7056

(0.2726) (0.2826) (0.3602) (0.3968) (0.4851) (0.5311) (0.5864) (0.6128) (0.6558) (0.6657)
[0.4672] [0.6661] [0.7110] [0.8801] [0.8783] [0.6820] [0.9751] [0.4270] [0.3416] [0.2904]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. F-tests of panel OLS regression results with clustered standard errors by countries in parentheses (), and p-values in brackets []. The
coefficients show the effect of a one standard deviation increase in tropical cyclone damage accumulated over different years on the per capita growth rate in a given sectoral aggregate.
The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed observations. The independent
variable is Damaget, which is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population in t-1. All regressions include country and year fixed effects as well
as country-specific linear trends.

52



U
nraveling

the
E
ffects

ofTropicalC
yclones

on
E
conom

ic
Sectors

W
orldw

ide:
D
irect

and
Indirect

Im
pacts

Table 1.13: Lagged cumulative influence of tropical cyclone damage on sectoral GDP growth (10–20 years)

Dependent Variables: Per capita growth rate (%) in sector aggregates

Accumulated damage effects after: 10
years

11
years

12
years

13
years

14
years

15
years

16
years

17
years

18
years

19
years

20
years

Agriculture, hunting, -1.5257 -0.8392 -0.2497 0.3636 -0.3343 -0.5532 -0.4901 -0.6243 -0.3430 -0.5089 -0.4845
forestry, fishing (1.5593) (1.4932) (1.6496) (1.6716) (1.8635) (1.9798) (2.0824) (2.0996) (2.2881) (2.3054) (2.2923)

[0.3290] [0.5747] [0.8799] [0.8280] [0.8578] [0.7802] [0.8142] [0.7665] [0.8810] [0.8255] [0.8328]
Mining, utilities -4.3407*** -4.9555*** -4.3205** -3.9076* -3.9602* -3.3087 -3.3328 -3.7008 -3.4709 -4.1708 -3.4655

(1.3957) (1.8049) (2.0143) (1.9848) (2.2766) (2.2232) (2.2751) (2.4650) (2.6024) (2.9363) (2.9092)
[0.0021] [0.0066] [0.0331] [0.0503] [0.0834] [0.1382] [0.1445] [0.1348] [0.1838] [0.1570] [0.2350]

Manufacturing -0.6539 -0.3314 -0.1846 -0.3903 -0.1272 -0.8938 -0.6595 -0.4360 -0.3100 0.4204 -0.5016
(1.7681) (1.8058) (2.0077) (2.2014) (2.1249) (2.2555) (2.4040) (2.4435) (2.4294) (2.5437) (2.8126)
[0.7119] [0.8546] [0.9268] [0.8595] [0.9523] [0.6923] [0.7841] [0.8586] [0.8986] [0.8689] [0.8586]

Construction 1.1221 0.5950 0.0569 1.2705 1.5579 1.5050 0.9188 0.5016 0.3094 0.7269 0.5220
(1.7752) (1.9211) (2.2023) (2.4460) (2.9568) (2.9755) (3.1644) (3.2770) (3.2086) (3.0947) (3.1083)
[0.5280] [0.7571] [0.9794] [0.6040] [0.5988] [0.6136] [0.7718] [0.8785] [0.9233] [0.8145] [0.8668]

Wholesale, retail -2.9741** -3.3202** -3.2236** -3.1963** -3.7937** -4.0041** -3.9233** -3.8580** -3.9968** -3.5772* -3.3970*
trade, restaurants, (1.2533) (1.3953) (1.4542) (1.5393) (1.6894) (1.7692) (1.8532) (1.8745) (1.9393) (1.9157) (1.9666)
hotels [0.0186] [0.0183] [0.0277] [0.0391] [0.0258] [0.0247] [0.0355] [0.0408] [0.0406] [0.0633] [0.0856]
Transport, storage, -2.4327 -2.1724 -2.3697 -2.6174 -2.9269 -3.4532* -3.7129* -3.6571 -4.1130* -3.7310 -4.1570
communication (1.4760) (1.5800) (1.7156) (1.8306) (1.9560) (2.0391) (2.1587) (2.2660) (2.3168) (2.4371) (2.5539)

[0.1009] [0.1707] [0.1687] [0.1543] [0.1361] [0.0919] [0.0870] [0.1081] [0.0773] [0.1273] [0.1051]
Other activities -1.0382 -0.9182 -0.8139 -0.7209 -0.9570 -0.9954 -1.1212 -1.1721 -1.0097 -0.7098 -0.3201

(0.6989) (0.7375) (0.8542) (0.8682) (0.9444) (0.9810) (1.0815) (1.1432) (1.1841) (1.1733) (1.2970)
[0.1389] [0.2145] [0.3418] [0.4074] [0.3121] [0.3115] [0.3011] [0.3064] [0.3948] [0.5459] [0.8053]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500 8,500

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. F-tests of panel OLS regression results with clustered standard errors by countries in parentheses (), and p-values in brackets []. The
coefficients show the effect of a one standard deviation increase in tropical cyclone damage accumulated over different years on the per capita growth rate in a given sectoral aggregate.
The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed observations. The independent
variable is Damaget, which is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by
exposed agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population in t-1. All regressions include country and year fixed effects as well as
country-specific linear trends.
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Figure 1.9: Lagged influence of tropical cyclone damage on sectoral GDP growth (5 years)
Notes: The y-axis displays the coefficient of tropical cyclone damage on the respective per capita growth rates
and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the respective 95%
confidence interval and the red line the respective (connected) point estimates. The underlying estimations
can be found in Tables 1.5–1.11 in Appendix 1.6.4.
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Figure 1.10: Lagged influence of tropical cyclone damage on sectoral GDP growth (10 years)
Notes: The y-axis displays the coefficient of tropical cyclone damage on the respective per capita growth rates
and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the respective 95%
confidence interval and the red line the respective (connected) point estimates. The underlying estimations
can be found in Tables 1.5–1.11 in Appendix 1.6.4.
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Figure 1.11: Lagged influence of tropical cyclone damage on sectoral GDP growth (15 years)
Notes: The y-axis displays the coefficient of tropical cyclone damage on the respective per capita growth rates
and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the respective 95%
confidence interval and the red line the respective (connected) point estimates. The underlying estimations
can be found in Tables 1.5–1.11 in Appendix 1.6.4.
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Figure 1.12: Lagged influence of tropical cyclone damage on sectoral GDP growth (20 years)
Notes: The y-axis displays the coefficient of tropical cyclone damage on the respective per capita growth rates
and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the respective 95%
confidence interval and the red line the respective (connected) point estimates. The underlying estimations
can be found in Tables 1.5–1.11 in Appendix 1.6.4.
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Figure 1.13: Cumulative lagged influence of tropical cyclone damage on sectoral GDP growth (5
years)
Notes: The y-axis displays the cumulative coefficient of tropical cyclone damage on the respective per capita
growth rates and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the
respective 95% confidence interval and the red line the respective cumulative (connected) point estimates.
The underlying estimations can be found in Tables 1.12–1.13 in Appendix 1.6.4.
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Figure 1.14: Cumulative lagged influence of tropical cyclone damage on sectoral GDP growth (10
years)
Notes: The y-axis displays the cumulative coefficient of tropical cyclone damage on the respective per capita
growth rates and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the
respective 95% confidence interval and the red line the respective cumulative (connected) point estimates.
The underlying estimations can be found in Tables 1.12–1.13 in Appendix 1.6.4.
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Figure 1.15: Cumulative lagged influence of tropical cyclone damage on sectoral GDP growth (15
years)
Notes: The y-axis displays the cumulative coefficient of tropical cyclone damage on the respective per capita
growth rates and the x-axis shows the years since the tropical cyclone passed. The gray areas represent the
respective 95% confidence interval and the red line the respective cumulative (connected) point estimates.
The underlying estimations can be found in Tables 1.12–1.13 in Appendix 1.6.4.
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Table 1.14: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate
agriculture, hunting, forestry and fishing (A&B)

Dependent Variables: Input-Output coefficient (IO)

IOA&B,A&B IOA&B,C&E IOA&B,D IOA&B,F IOA&B,G-H IOA&B,I IOA&B,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget -0.00004 -0.00008* -0.00034 -0.00004 -0.00027** -0.00016 -0.00038

(0.00075) (0.00005) (0.00041) (0.00003) (0.00012) (0.00014) (0.00027)
[0.95825] [0.08510] [0.40568] [0.19239] [0.01954] [0.24485] [0.15445]

IOA&B,A&B
t-1 0.81383***

(0.04690)
[0.00000]

IOA&B,C&E
t-1 0.93027***

(0.05625)
[0.00000]

IOA&B,D
t-1 0.85587***

(0.01276)
[0.00000]

IOA&B,F
t-1 1.24487***

(0.15348)
[0.00000]

IOA&B,G-H
t-1 0.84204***

(0.02799)
[0.00000]

IOA&B,I
t-1 0.85337***

(0.02055)
[0.00000]

IOA&B,J-P
t-1 0.90448***

(0.01996)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.16618 0.01220 0.08494 0.00377 0.03579 0.02204 0.07102

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the
remaining sector aggregates it is weighted by exposed population in t-1. The dependent variables are Input-Output
coefficients (IO) and can range between 0-1. For example the coefficient IOA&B,D

t displays how much input the sector
aggregate A&B needs from sector aggregate D to produce one unit of output. The sector abbreviations represent
the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities (C&E),
manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport, storage, and
communication (I), other activities (J-P). All regressions include country and year fixed effects as well as country-
specific linear trends.
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Table 1.15: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate
mining and utilities (C&E)

Dependent Variables: Input-Output coefficient (IO)

IOC&E,A&B IOC&E,C&E IOC&E,D IOC&E,F IOC&E,G-H IOC&E,I IOC&E,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget 0.00002* 0.00106 -0.00025 -0.00014 -0.00015 -0.00020 -0.00010

(0.00001) (0.00154) (0.00025) (0.00012) (0.00017) (0.00021) (0.00045)
[0.09364] [0.49122] [0.31567] [0.25528] [0.36630] [0.34866] [0.82336]

IOC&E,A&B
t-1 0.74893***

(0.06455)
[0.00000]

IOC&E,C&E
t-1 0.84491***

(0.05335)
[0.00000]

IOC&E,D
t-1 0.89889***

(0.01903)
[0.00000]

IOC&E,F
t-1 0.89490***

(0.02000)
[0.00000]

IOC&E,G-H
t-1 0.81616***

(0.05525)
[0.00000]

IOC&E,I
t-1 0.81922***

(0.05698)
[0.00000]

IOC&E,J-P
t-1 0.89500***

(0.02070)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00084 0.15156 0.05376 0.02778 0.01925 0.04862 0.08812

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the
remaining sector aggregates it is weighted by exposed population in t-1. The dependent variables are Input-Output
coefficients (IO) and can range between 0-1. For example the coefficient IOC&E,D

t displays how much input the sector
aggregate C&E needs from sector aggregate D to produce one unit of output. The sector abbreviations represent
the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities (C&E),
manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport, storage, and
communication (I), other activities (J-P). All regressions include country and year fixed effects as well as country-
specific linear trends.
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Table 1.16: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate
manufacturing (D)

Dependent Variables: Input-Output coefficient (IO)

IOD,A&B IOD,C&E IOD,D IOD,F IOD,G-H IOD,I IOD,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget 0.00052* -0.00031 -0.00152* -0.00003* -0.00033 -0.00029 -0.00036

(0.00029) (0.00028) (0.00085) (0.00002) (0.00022) (0.00022) (0.00022)
[0.0770] [0.2632] [0.0768] [0.0811] [0.1348] [0.1899] [0.1064]

IOD,A&B
t-1 0.85952***

(0.03335)
[0.0000]

IOD,C&E
t-1 0.77462***

(0.04997)
[0.0000]

IOD,D
t-1 0.80588***

(0.04449)
[0.0000]

IOD,F
t-1 0.96723***

(0.06204)
[0.0000]

IOD,G-H
t-1 0.84009***

(0.03605)
[0.0000]

IOD,I
t-1 0.90409***

(0.06205)
[0.0000]

IOD,J-P
t-1 0.87878***

(0.01853)
[0.0000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.05578 0.03927 0.23938 0.00452 0.05355 0.03589 0.08555

Notes: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for
the remaining sector aggregates it is weighted by exposed population in t-1. The dependent variables are Input-
Output coefficients (IO) and can range between 0-1. For example the coefficient IOD,F

t displays how much input
the sector aggregate D needs from sector aggregate F to produce one unit of output. The sector abbreviations
represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities
(C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport,
storage, and communication (I), other activities (J-P). All regressions include country and year fixed effects as
well as country-specific linear trends.
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Table 1.17: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate
construction (F)

Dependent Variables: Input-Output coefficient (IO)

IOF,A&B IOF,C&E IOF,D IOF,F IOF,G-H IOF,I IOF,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget 0.00006*** -0.00006 0.00142* -0.00073 0.00019 -0.00009 0.00053**

(0.00002) (0.00011) (0.00078) (0.00082) (0.00023) (0.00021) (0.00023)
[0.00111] [0.57363] [0.07080] [0.37456] [0.40417] [0.67856] [0.02526]

IOF,A&B
t-1 0.85276***

(0.02954)
[0.00000]

IOF,C&E
t-1 0.81229***

(0.03102)
[0.00000]

IOF,D
t-1 0.77678***

(0.08966)
[0.00000]

IOF,F
t-1 0.85699***

(0.07010)
[0.00000]

IOF,G-H
t-1 0.83059***

(0.01923)
[0.00000]

IOF,I
t-1 0.79211***

(0.05507)
[0.00000]

IOF,J-P
t-1 0.86569***

(0.01474)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00326 0.01606 0.20939 0.03962 0.06433 0.03951 0.09867

Notes: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas
for the remaining sector aggregates it is weighted by exposed population in t-1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOF,G-H

t displays how
much input the sector aggregate F needs from sector aggregate G-H to produce one unit of output. The sector
abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining,
and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H),
transport, storage, and communication (I), other activities (J-P). All regressions include country and year fixed
effects as well as country-specific linear trends.

64



Unraveling the Effects of Tropical Cyclones on Economic Sectors Worldwide: Direct and Indirect Impacts

Table 1.18: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate
wholesale, retail trade, restaurants and hotels (G-H)

Dependent Variables: Input-Output coefficient (IO)

IOG-H,A&B IOG-H,C&E IOG-H,D IOG-H,F IOG-H,G-H IOG-H,I IOG-H,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget 0.00011** 0.00010** 0.00058 0.00002 0.00158 -0.00001 0.00049

(0.00005) (0.00004) (0.00045) (0.00002) (0.00119) (0.00019) (0.00063)
[0.04378] [0.01794] [0.20337] [0.32710] [0.18587] [0.96554] [0.44368]

IOG&H,A&B
t-1 0.86464***

(0.03825)
[0.00000]

IOG&H,C&E
t-1 0.82509***

(0.02879)
[0.00000]

IOG&H,D
t-1 0.86836***

(0.03732)
[0.00000]

IOG&H,F
t-1 0.79217***

(0.02664)
[0.00000]

IOG&H,G-H
t-1 0.84379***

(0.07443)
[0.00000]

IOG&H,I
t-1 0.87736***

(0.02081)
[0.00000]

IOG&H,J-P
t-1 0.91386***

(0.02899)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean DV 0.00831 0.01580 0.07093 0.00617 0.05380 0.06116 0.13920

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the
remaining sector aggregates it is weighted by exposed population in t-1. The dependent variables are Input-Output
coefficients (IO) and can range between 0-1. For example the coefficient IOGH,F

t displays how much input the sector
aggregate G-H needs from sector aggregate F to produce one unit of output. The sector abbreviations represent
the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities (C&E),
manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport, storage, and
communication (I), other activities (J-P). All regressions include country and year fixed effects as well as country-
specific linear trends.
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Table 1.19: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate
transport, communication and infrastructure (I)

Dependent Variables: Input-Output coefficient (IO)

IOI,A&B IOI,C&E IOI,D IOI,F IOI,G-H IOI,I IOI,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget 0.00001 -0.00002 0.00039 0.00002 0.00001 0.00061 0.00014

(0.00001) (0.00004) (0.00042) (0.00003) (0.00016) (0.00055) (0.00072)
[0.37763] [0.59378] [0.35267] [0.48078] [0.96794] [0.27302] [0.84708]

IOI,A&B
t-1 0.75844***

(0.06742)
[0.00000]

IOI,C&E
t-1 0.83975***

(0.03543)
[0.00000]

IOI,D
t-1 0.79606***

(0.03055)
[0.00000]

IOI,F
t-1 0.84223***

(0.02507)
[0.00000]

IOI,G-H
t-1 0.81081***

(0.07214)
[0.00000]

IOI,I
t-1 0.75830***

(0.09322)
[0.00000]

IOI,J-P
t-1 0.85232***

(0.02148)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00041 0.00996 0.06178 0.00877 0.02755 0.10965 0.12995

Notes: ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas
for the remaining sector aggregates it is weighted by exposed population in t-1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOI,F

t displays how much
input the sector aggregate I needs from sector aggregate F to produce one unit of output. The sector abbreviations
represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities
(C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport,
storage, and communication (I), other activities (J-P). All regressions include country and year fixed effects as
well as country-specific linear trends.
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Table 1.20: Effects of tropical cyclone damage on Input-Output coefficients of sector aggregate other
activities (J-P)

Dependent Variables: Input-Output coefficient (IO)

IOJ-P,A&B IOJ-P,C&E IOJ-P,D IOJ-P,F IOJ-P,G-H IOJ-P,I IOJ-P,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget 0.00004 0.00000 0.00043* 0.00003 0.00004 -0.00003 -0.00012

(0.00003) (0.00005) (0.00023) (0.00008) (0.00009) (0.00016) (0.00039)
[0.24367] [0.93791] [0.05994] [0.73487] [0.70197] [0.85695] [0.75992]

IOJ-P,A&B
t-1 0.71852***

(0.27363)
[0.00938]

IOJ-P,C&E
t-1 0.87298***

(0.03855)
[0.00000]

IOJ-P,D
t-1 0.77269***

(0.08736)
[0.00000]

IOJ-P,F
t-1 0.80920***

(0.03406)
[0.00000]

IOJ-P,G-H
t-1 0.79393***

(0.05463)
[0.00000]

IOJ-P,I
t-1 0.88210***

(0.04426)
[0.00000]

IOJ-P,J-P
t-1 0.76232***

(0.07446)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00266 0.01221 0.05630 0.01723 0.02307 0.03172 0.14495

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the respective Input-Output coefficients. The standard
deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated for the whole
sample of positive wind speed observations. Damaget is the weighted damage measure for tropical cyclone
intensity in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population in
t-1. The dependent variables are Input-Output coefficients (IO) and can range between 0-1. For example the
coefficient IOJ-P,F

t displays how much input the sector aggregate JP needs from sector aggregate F to produce
one unit of output. The sector abbreviations represent the following sector aggregates: agriculture, hunting,
forestry, and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale,
retail trade, restaurants, and hotels (G-H), transport, storage, and communication (I), other activities (J-P).
All regressions include country and year fixed effects as well as country-specific linear trends.
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Table 1.21: Robustness – Input-Output sample

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.6738*** -0.7476 0.0793 -1.2425 -1.1227*** -0.0780 -0.0272

(0.6167) (0.5568) (0.6927) (1.2898) (0.3678) (0.4348) (0.3057)
[0.0000] [0.1810] [0.9090] [0.3367] [0.0026] [0.8578] [0.9293]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.0000 0.1810 0.9090 0.3367 0.0026 0.8578 0.9293
Mean DV 0.8402 3.3496 2.5646 3.8989 2.7094 4.1525 2.4175

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1990 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as country-specific linear trends.
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Figure 1.16: Cumulative lagged influence of tropical cyclone damage on Input-Output coefficients (5 years)
Notes: The y-axis displays the cumulative coefficient of tropical cyclone damage on the respective Input-Output coefficient and the
x-axis shows the years since the tropical cyclone passed. The gray areas represent the respective 95% confidence interval and the red
line the respective cumulative (connected) point estimates.
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1.6.5 Robustness Statistics

1.6.5.1 Direct Effects

Table 1.22: Robustness – Placebo test

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.2800 0.1413 -0.1306 0.3074 -0.0170 0.2501 -0.0656

(0.2114) (0.3928) (0.3284) (0.5417) (0.2709) (0.2010) (0.1130)
[0.1868] [0.7195] [0.6912] [0.5710] [0.9499] [0.2147] [0.5623]

N 8,092 8,092 8,092 8,092 8,092 8,092 8,092
Clusters 205 205 205 205 205 205 205
P-value 0.1868 0.7195 0.6912 0.5710 0.9499 0.2147 0.5623
Mean DV 0.8735 3.9027 2.6874 3.2847 2.5517 3.7559 2.5872

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the period
1971 through 2015. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2.
For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural
land in t+1, whereas for the remaining sector aggregates it is weighted by exposed population in t+1. All
regressions include country and year fixed effects as well as country-specific linear trends.
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Figure 1.17: Randomization tests – Sectoral GDP growth
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2,000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.4
(red bar).
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Figure 1.18: Overview robustness tests – Sectoral GDP growth
Notes: Coefficient plots for different robustness tests for direct effects of tropical cyclone damage of model 1.4. The underlying
regressions are shown in Tables 1.23–1.46.
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Table 1.23: Robustness – Temperature control variables

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5247*** -0.8171 -0.6918 0.8478 -1.3570*** -0.4830 -0.1038

(0.4758) (0.9290) (0.5825) (0.7365) (0.5137) (0.4061) (0.2855)
[0.0000] [0.3802] [0.2364] [0.2511] [0.0089] [0.2358] [0.7167]

Temperaturet -0.4693 -0.2674 -0.0911 -0.2456 -0.2755 0.5192 0.2818
(0.3236) (0.9645) (0.6324) (0.5503) (0.3549) (0.4588) (0.3586)
[0.1486] [0.7819] [0.8856] [0.6559] [0.4385] [0.2592] [0.4330]

N 7,992 7,992 7,992 7,992 7,992 7,992 7,992
Clusters 193 193 193 193 193 193 193
P-value 0.0000 0.6779 0.4863 0.4668 0.0201 0.3020 0.6974
Mean DV 0.8441 3.7568 2.6349 3.2407 2.4850 3.7287 2.5230

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate.
The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated
for the whole sample of positive wind speed observations. The sample covers the period 1971 through 2015.
Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate
agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the
remaining sector aggregates it is weighted by exposed population in t-1. Temperature is measured in degree
Celsius. All regressions include country and year fixed effects as well as country-specific linear trends.

Table 1.24: Robustness – Precipitation control variables

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5641*** -0.8320 -0.7753 0.8379 -1.3739*** -0.4842 -0.0960

(0.4760) (0.9105) (0.5694) (0.7375) (0.5127) (0.4124) (0.2849)
[0.0000] [0.3619] [0.1749] [0.2573] [0.0080] [0.2418] [0.7366]

Precipitationt 0.0008 0.0003 0.0019 0.0002 0.0004 0.0000 -0.0002
(0.0005) (0.0013) (0.0016) (0.0015) (0.0004) (0.0007) (0.0003)
[0.1204] [0.7892] [0.2435] [0.8765] [0.3310] [0.9829] [0.5946]

N 7,992 7,992 7,992 7,992 7,992 7,992 7,992
Clusters 193 193 193 193 193 193 193
P-value 0.0000 0.5776 0.2191 0.5078 0.0221 0.4908 0.8182
Mean DV 0.8441 3.7568 2.6349 3.2407 2.4850 3.7287 2.5230

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate. The
standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated for the
whole sample of positive wind speed observations. The sample covers the period 1971 through 2015. Damaget
is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate agriculture,
hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. Precipitation is measured in milimeters. All
regressions include country and year fixed effects as well as country-specific linear trends.
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Table 1.25: Robustness – Precipitation and temperature control variables

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5590*** -0.8312 -0.7752 0.8387 -1.3730*** -0.4860 -0.0969

(0.4760) (0.9102) (0.5694) (0.7388) (0.5129) (0.4113) (0.2856)
[0.0000] [0.3623] [0.1750] [0.2577] [0.0081] [0.2388] [0.7348]

Precipitationt 0.0007 0.0003 0.0019 0.0002 0.0004 0.0001 -0.0002
(0.0005) (0.0013) (0.0016) (0.0015) (0.0004) (0.0007) (0.0003)
[0.1390] [0.8013] [0.2334] [0.8887] [0.3650] [0.9198] [0.6437]

Temperaturet -0.4423 -0.2554 -0.0202 -0.2378 -0.2619 0.5217 0.2760
(0.3204) (0.9533) (0.5958) (0.5401) (0.3556) (0.4599) (0.3556)
[0.1690] [0.7891] [0.9730] [0.6602] [0.4623] [0.2580] [0.4386]

N 7,992 7,992 7,992 7,992 7,992 7,992 7,992
Clusters 193 193 193 193 193 193 193
P-value 0.0000 0.7682 0.2853 0.6748 0.0369 0.4925 0.8517
Mean DV 0.8441 3.7568 2.6349 3.2407 2.4850 3.7287 2.5230

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate. The
standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated for the
whole sample of positive wind speed observations. The sample covers the period 1971 through 2015. Damaget
is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate agriculture,
hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. Precipitation is measured in milimeters and
temperature in degree Celsius. All regressions include country and year fixed effects as well as country-specific
linear trends.
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Table 1.26: Robustness – Precipitation and temperature squared control variables

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5586*** -0.8335 -0.7780 0.8432 -1.3795*** -0.4952 -0.1046

(0.4716) (0.9085) (0.5621) (0.7390) (0.5088) (0.4082) (0.2825)
[0.0000] [0.3601] [0.1679] [0.2553] [0.0073] [0.2265] [0.7117]

Precipitationt 0.0074*** 0.0000 0.0058*** -0.0008 0.0033*** 0.0043*** 0.0028***
(0.0018) (0.0045) (0.0021) (0.0026) (0.0011) (0.0015) (0.0010)
[0.0000] [0.9949] [0.0055] [0.7661] [0.0024] [0.0040] [0.0034]

Precipitation2
t -0.0000*** 0.0000 -0.0000** 0.0000 -0.0000*** -0.0000*** -0.0000***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
[0.0001] [0.9333] [0.0320] [0.6513] [0.0012] [0.0003] [0.0009]

Temperaturet 0.5378 -0.6870 0.8767 0.0846 -0.2075 0.6124 0.1631
(0.3452) (0.7100) (0.7258) (0.6794) (0.5370) (0.5837) (0.5643)
[0.1209] [0.3345] [0.2286] [0.9010] [0.6996] [0.2955] [0.7729]

Precipitation2
t -0.0343*** 0.0168 -0.0328* -0.0133 -0.0003 -0.0009 0.0063

(0.0117) (0.0409) (0.0196) (0.0210) (0.0137) (0.0165) (0.0130)
[0.0037] [0.6821] [0.0961] [0.5284] [0.9829] [0.9554] [0.6292]

N 7,992 7,992 7,992 7,992 7,992 7,992 7,992
Clusters 193 193 193 193 193 193 193
P-value 0.0000 0.8272 0.0047 0.8527 0.0062 0.0046 0.0175
Mean DV 0.8441 3.7568 2.6349 3.2407 2.4850 3.7287 2.5230

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate. The
standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated for the
whole sample of positive wind speed observations. The sample covers the period 1971 through 2015. Damaget
is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate agriculture,
hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. Precipitation is measured in milimeters and
temperature in degree Celsius. All regressions include country and year fixed effects as well as country-specific
linear trends.
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Table 1.27: Robustness – Socioeconomic control variables

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5111*** -0.5517 -0.5968 0.8748 -1.0761* -0.3748 -0.0754

(0.4702) (0.8971) (0.5615) (0.6245) (0.5929) (0.3934) (0.2932)
[0.0000] [0.5392] [0.2891] [0.1628] [0.0710] [0.3419] [0.7973]

Log pc value addedt-1 -8.6382*** -10.3300*** -14.7435* -12.7315*** -7.6492*** -8.5118*** -7.2226***
(1.0997) (3.6141) (7.9749) (3.6421) (1.1502) (1.9726) (1.2506)
[0.0000] [0.0047] [0.0660] [0.0006] [0.0000] [0.0000] [0.0000]

Population growtht-1 -0.2484 0.5531 0.7243 0.5887 0.0752 -0.1808 -0.0675
(0.1671) (0.6103) (0.8187) (0.5371) (0.1833) (0.4064) (0.1861)
[0.1388] [0.3659] [0.3774] [0.2743] [0.6822] [0.6568] [0.7173]

Capital growtht-1 0.0009 0.0272 0.0040 0.0412* 0.0535** 0.0358* 0.0060
(0.0058) (0.0165) (0.0270) (0.0240) (0.0254) (0.0187) (0.0088)
[0.8712] [0.1018] [0.8828] [0.0873] [0.0365] [0.0561] [0.4967]

Trade opennesst-1 0.0008*** 0.0026** 0.0027* 0.0019** 0.0008** 0.0006 0.0009**
(0.0002) (0.0013) (0.0014) (0.0008) (0.0004) (0.0003) (0.0004)
[0.0014] [0.0434] [0.0648] [0.0216] [0.0442] [0.1119] [0.0156]

N 8,249 8,249 8,249 8,249 8,249 8,249 8,249
Clusters 203 203 203 203 203 203 203
P-value 0.0000 0.0275 0.0000 0.0000 0.0000 0.0004 0.0000
Mean DV 0.8576 3.7800 2.6098 3.2809 2.5274 3.7516 2.5350

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries in
parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase in tropical
cyclone damage on the per capita growth rate in a given sectoral aggregate. The standard deviations are 2,236,738 for the
agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed observations.
The sample covers the period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land
in t-1, whereas for the remaining sector aggregates it is weighted by exposed population in t-1. All regressions include
country and year fixed effects, country-specific linear trends, and the respective socioeconomic control variables, which
are all measured in t-1: log per capita value added of the re-spective sector, population growth rate, openness, investment
rate.
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Table 1.28: Robustness – Socioeconomic control variables for sector aggregate A&B

Dependent Variables: Per capita growth rate (%) in sector aggregate
Agriculture,
hunting,
forestry,
fishing

Agriculture,
hunting,
forestry,
fishing

Agriculture,
hunting,
forestry,
fishing

Agriculture,
hunting,
forestry,
fishing

(1) (2) (3) (4)
Damaget -2.5365*** -2.6476*** -2.6670*** -2.6664***

(0.4652) (0.4647) (0.4607) (0.4607)
[0.0000] [0.0000] [0.0000] [0.0000]

Log pc value addedt-1 -8.5243***
(1.0985)
[0.0000]

Population growtht-1 -0.2480
(0.1627)
[0.1291]

Capital growtht-1 -0.0005
(0.0059)
[0.9267]

Trade opennesst-1 0.0002
(0.0002)
[0.3385]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0000 0.0000 0.0000 0.0000
Mean DV 0.8576 0.8576 0.8576 0.8576

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.29: Robustness – Socioeconomic control variables for sector aggregate C&E

Dependent Variables: Per capita growth rate (%) in sector aggregate
Mining,
utilities

Mining,
utilities

Mining,
utilities

Mining,
utilities

(1) (2) (3) (4)
Damaget -0.5328 -0.8364 -0.8396 -0.8080

(0.8298) (0.7722) (0.7741) (0.7727)
[0.5215] [0.2800] [0.2794] [0.2969]

Log pc value addedt-1 -10.1346***
(3.5445)
[0.0047]

Population growtht-1 0.2839
(0.6254)
[0.6503]

Capital growtht-1 0.0327*
(0.0169)
[0.0550]

Trade opennesst-1 0.0010
(0.0010)
[0.3256]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0093 0.5181 0.1043 0.3530
Mean DV 3.7800 3.7800 3.7800 3.7800

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.30: Robustness – Socioeconomic control variables for sector aggregate D

Dependent Variables: Per capita growth rate (%) in sector aggregate
Manu-

facturing
Manu-

facturing
Manu-

facturing
Manu-

facturing
(1) (2) (3) (4)

Damaget -0.5286 -0.7829* -0.7348 -0.7210
(0.5327) (0.4602) (0.4668) (0.4655)
[0.3222] [0.0904] [0.1170] [0.1230]

Log pc value addedt-1 -14.4572*
(7.8463)
[0.0669]

Population growtht-1 0.7290
(0.8938)
[0.4157]

Capital growtht-1 0.0128
(0.0213)
[0.5470]

Trade opennesst-1 0.0006**
(0.0003)
[0.0436]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0447 0.1760 0.2657 0.0469
Mean DV 2.6098 2.6098 2.6098 2.6098

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.31: Robustness – Socioeconomic control variables for sector aggregate F

Dependent Variables: Per capita growth rate (%) in sector aggregate
Construc-

tion
Construc-

tion
Construc-

tion
Construc-

tion
(1) (2) (3) (4)

Damaget 0.8510 0.6745 0.6548 0.6910
(0.5943) (0.6648) (0.6539) (0.6606)
[0.1537] [0.3116] [0.3179] [0.2968]

Log pc value addedt-1 -12.4440***
(3.5391)
[0.0005]

Population growtht-1 0.1896
(0.4891)
[0.6987]

Capital growtht-1 0.0440**
(0.0216)
[0.0430]

Trade opennesst-1 0.0002
(0.0003)
[0.4814]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0012 0.5386 0.0705 0.4603
Mean DV 3.2809 3.2809 3.2809 3.2809

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.32: Robustness – Socioeconomic control variables for sector aggregate G–H

Dependent Variables: Per capita growth rate (%) in sector aggregate
Wholesale,

retail
trade,
restau-
rants,
hotels

Wholesale,
retail
trade,
restau-
rants,
hotels

Wholesale,
retail
trade,
restau-
rants,
hotels

Wholesale,
retail
trade,
restau-
rants,
hotels

(1) (2) (3) (4)
Damaget -0.9141 -1.0459* -1.0937** -1.0486*

(0.6028) (0.5453) (0.5456) (0.5460)
[0.1310] [0.0565] [0.0464] [0.0562]

Log pc value addedt-1 -7.6211***
(1.1515)
[0.0000]

Population growtht-1 -0.0566
(0.2039)
[0.7815]

Capital growtht-1 0.0548**
(0.0263)
[0.0385]

Trade opennesst-1 0.0003
(0.0002)
[0.1595]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0000 0.1531 0.0202 0.0610
Mean DV 2.5274 2.5274 2.5274 2.5274

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.33: Robustness – Socioeconomic control variables for sector aggregate I

Dependent Variables: Per capita growth rate (%) in sector aggregate
Transport,
storage,
communi-
cation

Transport,
storage,
communi-
cation

Transport,
storage,
communi-
cation

Transport,
storage,
communi-
cation

(1) (2) (3) (4)
Damaget -0.3690 -0.4633 -0.5150 -0.4829

(0.4063) (0.3740) (0.3775) (0.3823)
[0.3648] [0.2169] [0.1740] [0.2080]

Log pc value addedt-1 -8.5883***
(1.9869)
[0.0000]

Population growtht-1 -0.2716
(0.4565)
[0.5525]

Capital growtht-1 0.0380*
(0.0206)
[0.0663]

Trade opennesst-1 0.0004
(0.0002)
[0.1348]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0001 0.4088 0.0604 0.1841
Mean DV 3.7516 3.7516 3.7516 3.7516

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.34: Robustness – Socioeconomic control variables for sector aggregate J–P

Dependent Variables: Per capita growth rate (%) in sector aggregate
Other

activities
Other

activities
Other

activities
Other

activities
(1) (2) (3) (4)

Damaget -0.1455 -0.2366 -0.2530 -0.2431
(0.2663) (0.2463) (0.2478) (0.2477)
[0.5855] [0.3380] [0.3085] [0.3276]

Log pc value addedt-1 -7.1717***
(1.2283)
[0.0000]

Population growtht-1 -0.1124
(0.2103)
[0.5935]

Capital growtht-1 0.0094
(0.0086)
[0.2775]

Trade opennesst-1 0.0004
(0.0003)
[0.1080]

N 8,249 8,249 8,249 8,249
Clusters 203 203 203 203
P-value 0.0000 0.5462 0.3059 0.1739
Mean DV 2.5350 2.5350 2.5350 2.5350

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results
with clustered standard errors by countries in parentheses (), and p-values
in brackets []. The coefficients show the effect of a one standard deviation
increase in tropical cyclone damage on the per capita growth rate in a given
sectoral aggregate. The standard deviations are 2,236,738 for the agricultural
and 2,269,395 for the remaining sectors, calculated for the whole sample of
positive wind speed observations. The sample covers the period 1971 through
2015. Damaget is the weighted damage measure for tropical cyclone intensity
in year t. For the sector aggregate agriculture, hunting, forestry and fishing
it is weighted by exposed agricultural land in t-1, whereas for the remaining
sector aggregates it is weighted by exposed population in t-1. All regressions
include country and year fixed effects, country-specific linear trends, and
the respective socioeconomic control variables, which are all measured in t-1:
log per capita value added of the re-spective sector, population growth rate,
openness, investment rate.
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Table 1.35: Robustness – With outliers

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.6049*** -0.0986 -0.9457** 2.0446 -0.8982** -0.5571** -0.2636

(0.3414) (3.2776) (0.4771) (1.3543) (0.4137) (0.2477) (0.1782)
[0.0000] [0.9760] [0.0488] [0.1326] [0.0311] [0.0256] [0.1406]

N 8,611 8,611 8,611 8,611 8,611 8,611 8,611
Clusters 210 210 210 210 210 210 210
P-value 0.0000 0.9760 0.0488 0.1326 0.0311 0.0256 0.1406
Mean DV 0.8767 24.2969 2.6107 3.2691 2.5209 3.6908 2.5528

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as country-specific linear trends.
These regressions explictly include the following identified outliers: Dominican Republic 1979, Grenada
2004, Montserrat 1989, Myanmar 1977, Saint Lucia 1980.

Table 1.36: Robustness – Only exposed countries

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5656*** -1.0617 -0.7166 0.8698 -1.2040** -0.3823 -0.1959

(0.4683) (0.8886) (0.5185) (0.6384) (0.5029) (0.3552) (0.2694)
[0.0000] [0.2356] [0.1706] [0.1767] [0.0189] [0.2850] [0.4693]

N 3,622 3,622 3,622 3,622 3,622 3,622 3,622
Clusters 84 84 84 84 84 84 84
P-value 0.0000 0.2356 0.1706 0.1767 0.0189 0.2850 0.4693
Mean DV 1.0412 4.0654 2.2929 2.6719 2.3282 3.5110 2.5494

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as country-specific linear trends.
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Table 1.37: Robustness – Region-specific linear trends

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5604*** -0.5822 -0.5362 0.8452 -1.1757** -0.5040 -0.1541

(0.4057) (0.9474) (0.5813) (0.5620) (0.5189) (0.3246) (0.2740)
[0.0000] [0.5396] [0.3574] [0.1342] [0.0245] [0.1220] [0.5744]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0000 0.5396 0.3574 0.1342 0.0245 0.1220 0.5744
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as regional-specific linear trends.
The regions are East Asian and Pacific, Europe and Central Asia, Latin America and the Caribbean,
Middle East and North Africa, North America, South Asia, Sub-Saharan Africa.

Table 1.38: Robustness – Country-specific nonlinear trends

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.4560*** -0.5203 -0.7438 0.7197 -1.2175** -0.4722 -0.1869

(0.4411) (1.0678) (0.5316) (0.6839) (0.5234) (0.3745) (0.2677)
[0.0000] [0.6266] [0.1633] [0.2939] [0.0210] [0.2088] [0.4859]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0000 0.6266 0.1633 0.2939 0.0210 0.2088 0.4859
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as country-specific nonlinear trends.
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Table 1.39: Robustness – Without country-specific linear trends

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5655*** -0.6040 -0.5440 0.8345 -1.1767** -0.5056 -0.1614

(0.4086) (0.9613) (0.5817) (0.5570) (0.5225) (0.3264) (0.2721)
[0.0000] [0.5305] [0.3507] [0.1356] [0.0254] [0.1229] [0.5537]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0000 0.5305 0.3507 0.1356 0.0254 0.1229 0.5537
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects.

Table 1.40: Robustness – Frequency (country)

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.3963*** -0.5540 -0.6960 1.1408* -1.0266* -0.4081 -0.1089

(0.4796) (0.7744) (0.5261) (0.6542) (0.5495) (0.3736) (0.2796)
[0.0000] [0.4752] [0.1874] [0.0827] [0.0631] [0.2759] [0.6973]

Frequencycountry -0.4371*** -0.4442 -0.0586 -0.8507*** -0.2667* -0.1617 -0.1652**
(0.1425) (0.4659) (0.1941) (0.2871) (0.1367) (0.1122) (0.0678)
[0.0025] [0.3415] [0.7632] [0.0034] [0.0524] [0.1512] [0.0156]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0000 0.5650 0.3772 0.0061 0.0053 0.1669 0.0278
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate.
The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors, calculated
for the whole sample of positive wind speed observations. The sample covers the period 1971 through 2015.
Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate
agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the
remaining sector aggregates it is weighted by exposed population in t-1. Frequencycountry counts the number
of tropical cyclones above 92 km/h per year and country. All regressions include country and year fixed effects
as well as country-specific linear trends.
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Table 1.41: Robustness – Mean wind speed

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Mean Damaget -2.4532*** -0.9061 -0.7252 0.5341 -0.5721 -0.0855 0.1042

(0.5941) (0.5948) (0.5363) (0.7637) (0.3649) (0.3207) (0.3102)
[0.0001] [0.1292] [0.1778] [0.4851] [0.1185] [0.7901] [0.7374]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0001 0.1292 0.1778 0.4851 0.1185 0.7901 0.7374
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate. The
standard deviations are 1,930,581 for the agricultural and 1,910,947 for the remaining sectors, calculated for
the whole sample of positive wind speed observations. The sample covers the period 1971 through 2015. Mean
Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the sector aggregate
agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t-1, whereas for the
remaining sector aggregates it is weighted by exposed population in t-1. Mean Damaget is based on the mean
wind speed per country and year above 92 km/h. All regressions include country and year fixed effects as well
as country-specific linear trends.

Table 1.42: Robustness – Basin fixed effects

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5060*** -0.7693 -0.4317 0.9662* -1.1553** -0.4572 -0.1666

(0.4241) (0.7883) (0.5961) (0.5703) (0.5066) (0.3176) (0.2688)
[0.0000] [0.3303] [0.4698] [0.0918] [0.0236] [0.1515] [0.5362]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 205 205 205 205 205 205 205
P-value 0.0000 0.3303 0.4698 0.0918 0.0236 0.1515 0.5362
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the period
1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For
the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in
t-1, whereas for the remaining sector aggregates it is weighted by exposed population in t-1. All regressions
include tropical cyclones’ basin and year fixed effects as well as country-specific linear trends.
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Table 1.43: Robustness – Population Weight for sector aggregate A&B

Dependent Variables: Per capita growth rate (%) in sector aggregate
Agriculture, hunting, forestry, fishing

(1)
Damaget -2.5242***

(0.4423)
[0.0000]

N 8,500
Clusters 205
P-value 0.0000
Mean DV 0.8800

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression
results with clustered standard errors by countries in parentheses
(), and p-values in brackets []. The coefficients show the effect
of a one standard deviation increase in tropical cyclone damage
on the per capita growth rate in a given sectoral aggregate. The
standard deviation is 2,269,395, calculated for the whole sample
of positive wind speed observations. The sample covers the period
1971 through 2015. Damaget is the weighted damage measure
for tropical cyclone intensity in year t. It is weighted by exposed
population in t-1. All regressions include country and year fixed
effects as well as country-specific linear trends.

Table 1.44: Robustness – Conley HAC standard errors

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5655*** -0.6040 -0.5440 0.8345 -1.1767** -0.5056 -0.1614

(0.4068) (0.8961) (0.6600) (0.5451) (0.5318) (0.3565) (0.2712)
[0.0000] [0.5003] [0.4098] [0.1258] [0.0269] [0.1561] [0.5519]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as country-specific linear trends. For
all regressions, Conley HAC standards with a maximum lag length of 10 and a spatial cutoff of 1000 km
are calculated.
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Table 1.45: Robustness – Regional clusters

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.6219*** -0.7682 -0.7242 0.7306 -1.1552** -0.4861 -0.1886

(0.2809) (1.1861) (0.5725) (0.6953) (0.4053) (0.4685) (0.1426)
[0.0001] [0.5412] [0.2527] [0.3339] [0.0292] [0.3395] [0.2341]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
Clusters 7 7 7 7 7 7 7
P-value 0.0001 0.5412 0.2527 0.3339 0.0292 0.3395 0.2341
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by
regions in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard
deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate.
The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining sectors,
calculated for the whole sample of positive wind speed observations. The sample covers the period 1971
through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in year t. For the
sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in
t-1, whereas for the remaining sector aggregates it is weighted by exposed population in t-1. The regions
are East Asian and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East
and North Africa, North America, South Asia, Sub-Saharan Africa. All regressions include country and
year fixed effects as well as country-specific linear trends.

Table 1.46: Robustness – Newey-West standard errors

Dependent Variables: Per capita growth rate (%) in sector aggregate

Agriculture,
hunting,
forestry,
fishing

Mining,
utilities

Manu-
facturing

Construc-
tion

Wholesale,
retail
trade,
restau-
rants,
hotels

Transport,
storage,
communi-
cation

Other
activities

(1) (2) (3) (4) (5) (6) (7)
Damaget -2.5950*** -0.5325 -0.6506 0.8369 -1.1619** -0.4921 -0.1500

(0.4370) (1.0325) (0.6882) (0.5510) (0.5665) (0.3429) (0.2806)
[0.0000] [0.6060] [0.3445] [0.1288] [0.0403] [0.1513] [0.5929]

N 8,500 8,500 8,500 8,500 8,500 8,500 8,500
P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean DV 0.8800 3.7458 2.6095 3.2388 2.5256 3.7030 2.5519

Notes: ∗p < 0.1,∗ ∗ p < 0.05,∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors
by countries in parentheses (), and p-values in brackets []. The coefficients show the effect of a one
standard deviation increase in tropical cyclone damage on the per capita growth rate in a given sectoral
aggregate. The standard deviations are 2,236,738 for the agricultural and 2,269,395 for the remaining
sectors, calculated for the whole sample of positive wind speed observations. The sample covers the
period 1971 through 2015. Damaget is the weighted damage measure for tropical cyclone intensity in
year t. For the sector aggregate agriculture, hunting, forestry and fishing it is weighted by exposed
agricultural land in t-1, whereas for the remaining sector aggregates it is weighted by exposed population
in t-1. All regressions include country and year fixed effects as well as country-specific linear trends. For
all regressions Newey-West standard errors with a maximum lag length of 10 years are calculated.
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1.6.5.2 Indirect Effects

Table 1.47: Robustness – Placebo test Input-Output coefficients of sector aggregate (A&B)

Dependent Variables: : Input-Output coefficients (IO)

IOA&B,A&B
t IOA&B,C&E

t IOA&B,D
t IOA&B,F

t IOA&B,G-H
t IOA&B,I

t IOA&B,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 -0.00134 -0.00002 -0.00001 -0.00001 -0.00015 0.00003 -0.00011

(0.00133) (0.00005) (0.00037) (0.00002) (0.00014) (0.00010) (0.00041)
[0.31705] [0.70470] [0.97559] [0.66644] [0.30366] [0.79136] [0.79816]

IOA&B,A&B
t-1 0.80645***

(0.05008)
[0.00000]

IOA&B,C&E
t-1 0.85656***

(0.00966)
[0.00000]

IOA&B,D
t-1 0.84284***

(0.01386)
[0.00000]

IOA&B,F
t-1 0.78281***

(0.05125)
[0.00000]

IOA&B,G-H
t-1 0.82225***

(0.03118)
[0.00000]

IOA&B,I
t-1 0.84184***

(0.02293)
[0.00000]

IOA&B,J-P
t-1 0.87825***

(0.01491)
[0.00000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.16742 0.01225 0.08573 0.00379 0.03616 0.02231 0.07167

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas
for the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOA&B,D

t displays how
much input the sector aggregate A&B needs from sector aggregate D to produce one unit of output. The sector
abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining,
and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H),
transport, storage, and communication (I), other activities (J-P). All regressions include country and year fixed
effects as well as country-specific linear trends.
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Table 1.48: Robustness – Placebo test Input-Output coefficients of sector aggregate (C&E)

Dependent Variables: Input-Output coefficients (IO)

IOC&E,A&B
t IOC&E,C&E

t IOC&E,D
t IOC&E,F

t IOC&E,G-H
t IOC&E,I

t IOC&E,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.00001 0.00313 -0.00058 -0.00006 -0.00021 -0.00017 -0.00026

(0.00001) (0.00258) (0.00039) (0.00020) (0.00018) (0.00031) (0.00063)
[0.36703] [0.22702] [0.13804] [0.74574] [0.24310] [0.58776] [0.67726]

IOC&E,A&B
t-1 0.73657***

(0.06345)
[0.00000]

IOC&E,C&E
t-1 0.83415***

(0.05844)
[0.00000]

IOC&E,D
t-1 0.89133***

(0.02168)
[0.00000]

IOC&E,F
t-1 0.88360***

(0.02112)
[0.00000]

IOC&E,G-H
t-1 0.79680***

(0.06043)
[0.00000]

IOC&E,I
t-1 0.79961***

(0.05834)
[0.00000]

IOC&E,J-P
t-1 0.87720***

(0.02265)
[0.00000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00084 0.15083 0.05438 0.02809 0.01938 0.04883 0.08881

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas
for the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOC&E,D

t displays how
much input the sector aggregate C&E needs from sector aggregate D to produce one unit of output. The sector
abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining,
and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H),
transport, storage, and communication (I), other activities (J-P). All regressions include country and year fixed
effects as well as country-specific linear trends.
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Table 1.49: Robustness – Placebo test Input-Output coefficients of sector aggregate (D)

Dependent Variables: Input-Output coefficients (IO)

IOD,A&B
t IOD,C&E

t IOD,D
t IOD,F

t IOD,G-H
t IOD,I

t IOD,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.00020 -0.00020 0.00012 -0.00000 -0.00001 -0.00002 0.00017

(0.00019) (0.00016) (0.00140) (0.00002) (0.00012) (0.00009) (0.00027)
[0.2990] [0.1977] [0.9332] [0.7865] [0.9369] [0.8179] [0.5261]

IOD,A&B
t-1 0.83958***

(0.03525)
[0.0000]

IOD,C&E
t-1 0.75357***

(0.05013)
[0.0000]

IOD,D
t-1 0.79306***

(0.04695)
[0.0000]

IOD,F
t-1 0.83620***

(0.01902)
[0.0000]

IOD,G-H
t-1 0.78251***

(0.03204)
[0.0000]

IOD,I
t-1 0.82467***

(0.02131)
[0.0000]

IOD,J-P
t-1 0.84057***

(0.01983)
[0.0000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.05549 0.03909 0.24042 0.00452 0.05353 0.03586 0.08546

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas
for the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOD,F

t displays how much
input the sector aggregate D needs from sector aggregate F to produce one unit of output. The sector abbreviations
represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities
(C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport,
storage, and communication (I), other activities (J-P). All regressions include country and year fixed effects as well
as country-specific linear trends.
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Table 1.50: Robustness – Placebo test Input-Output coefficients of sector aggregate (F)

Dependent Variables: Input-Output coefficients (IO)

IOF,A&B
t IOF,C&E

t IOF,D
t IOF,F

t IOF,G-H
t IOF,I

t IOF,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.00004** -0.00008 0.00058 0.00016 0.00021 0.00009 0.00079*

(0.00002) (0.00008) (0.00049) (0.00116) (0.00020) (0.00015) (0.00041)
[0.02802] [0.35420] [0.23891] [0.88889] [0.28878] [0.55218] [0.05359]

IOF,A&B
t-1 0.82738***

(0.02152)
[0.00000]

IOF,C&E
t-1 0.80762***

(0.03261)
[0.00000]

IOF,D
t-1 0.75346***

(0.09827)
[0.00000]

IOF,F
t-1 0.85201***

(0.07531)
[0.00000]

IOF,G-H
t-1 0.80791***

(0.02005)
[0.00000]

IOF,I
t-1 0.77454***

(0.05936)
[0.00000]

IOF,J-P
t-1 0.85000***

(0.01407)
[0.00000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00319 0.01603 0.21046 0.03908 0.06434 0.03950 0.09892

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas
for the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOF,G-H

t displays how
much input the sector aggregate F needs from sector aggregate G-H to produce one unit of output. The sector
abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining,
and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H),
transport, storage, and communication (I), other activities (J-P). All regressions include country and year fixed
effects as well as country-specific linear trends.
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Table 1.51: Robustness – Placebo test Input-Output coefficients of sector aggregate (G-H)

Dependent Variables: Input-Output coefficients (IO)

IOG-H,A&B
t IOG-H,C&E

t IOG-H,D
t IOG-H,F

t IOG-H,G-H
t IOG-H,I

t IOG-H,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.00006 0.00001 0.00025 0.00001 0.00282 0.00017 0.00047

(0.00006) (0.00004) (0.00031) (0.00003) (0.00192) (0.00024) (0.00093)
[0.25606] [0.84014] [0.41821] [0.83753] [0.14446] [0.45985] [0.60896]

IOG-H,A&B
t-1 0.85308***

(0.03951)
[0.00000]

IOG-H,C&E
t-1 0.82517***

(0.03417)
[0.00000]

IOG-H,D
t-1 0.86195***

(0.04354)
[0.00000]

IOG-H,F
t-1 0.78960***

(0.02916)
[0.00000]

IOG-H,G-H
t-1 0.83892***

(0.07918)
[0.00000]

IOG-H,I
t-1 0.85301***

(0.02086)
[0.00000]

IOG-H,J-P
t-1 0.90666***

(0.03344)
[0.00000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean DV 0.00826 0.01583 0.07150 0.00622 0.05366 0.06138 0.13970

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas
for the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOG-H,F

t displays how
much input the sector aggregate G-H needs from sector aggregate F to produce one unit of output. The sector
abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining,
and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H),
transport, storage, and communication (I), other activities (J-P). All regressions include country and year fixed
effects as well as country-specific linear trends.
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Table 1.52: Robustness – Placebo test Input-Output coefficients of sector aggregate (I)

Dependent Variables: Input-Output coefficients (IO)

IOI,A&B
t IOI,C&E

t IOI,D
t IOI,F

t IOI,G-H
t IOI,I

t IOI,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.00000 0.00000 -0.00008 0.00000 0.00003 0.00111 -0.00001

(0.00000) (0.00003) (0.00020) (0.00003) (0.00007) (0.00082) (0.00056)
[0.45717] [0.88410] [0.69209] [0.99657] [0.61316] [0.17533] [0.98117]

IOI,A&B
t-1 0.73506***

(0.06792)
[0.00000]

IOI,C&E
t-1 0.81433***

(0.03431)
[0.00000]

IOI,D
t-1 0.78372***

(0.03216)
[0.00000]

IOI,F
t-1 0.84054***

(0.03044)
[0.00000]

IOI,G-H
t-1 0.78946***

(0.07373)
[0.00000]

IOI,I
t-1 0.74516***

(0.09716)
[0.00000]

IOI,J-P
t-1 0.83369***

(0.01953)
[0.00000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00041 0.00998 0.06225 0.00886 0.02776 0.10992 0.13054

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas
for the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are
Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOI,F

t displays how much
input the sector aggregate I needs from sector aggregate F to produce one unit of output. The sector abbreviations
represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities
(C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport,
storage, and communication (I), other activities (J-P). All regressions include country and year fixed effects as well
as country-specific linear trends.
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Table 1.53: Robustness – Placebo test Input-Output coefficients of sector aggregate (J-P)

Dependent Variables: Input-Output coefficients (IO)

IOJ-P,A&B
t IOJ-P,C&E

t IOJ-P,D
t IOJ-P,F

t IOJ-P,G-H
t IOJ-P,I

t IOJ-P,J-P
t

(1) (2) (3) (4) (5) (6) (7)
Damaget+2 0.00005 -0.00001 0.00027 0.00010 0.00007 0.00010 0.00077

(0.00004) (0.00006) (0.00020) (0.00007) (0.00007) (0.00015) (0.00052)
[0.19941] [0.82050] [0.17815] [0.16892] [0.34915] [0.47840] [0.13686]

IOJ-P,A&B
t-1 0.47027***

(0.04664)
[0.00000]

IOJ-P,C&E
t-1 0.85946***

(0.03964)
[0.00000]

IOJ-P,D
t-1 0.72580***

(0.08154)
[0.00000]

IOJ-P,F
t-1 0.79041***

(0.03416)
[0.00000]

IOJ-P,G-H
t-1 0.76205***

(0.05821)
[0.00000]

IOJ-P,I
t-1 0.83273***

(0.01998)
[0.00000]

IOJ-P,J-P
t-1 0.74783***

(0.07843)
[0.00000]

N 4,128 4,128 4,128 4,128 4,128 4,128 4,128
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.00256 0.01218 0.05638 0.01734 0.02314 0.03174 0.14534

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the respective Input-Output coefficients. The standard deviations are 2,236,738 for
the agricultural and 2,269,395 for the remaining sectors, calculated for the whole sample of positive wind speed
observations. Damaget+2 is the weighted damage measure for tropical cyclone intensity in year t+2. For the sector
aggregate agriculture, hunting, forestry and fishing it is weighted by exposed agricultural land in t+1, whereas for
the remaining sector aggregates it is weighted by exposed population in t+1. The dependent variables are Input-
Output coefficients (IO) and can range between 0-1. For example the coefficient IOJ-P,F

t displays how much input
the sector aggregate J-P needs from sector aggregate F to produce one unit of output. The sector abbreviations
represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining, and utilities
(C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H), transport,
storage, and communication (I), other activities (J-P). All regressions include country and year fixed effects as well
as country-specific linear trends.
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Table 1.54: Robustness – Population weight for Input-Output coefficients of sector aggregate A&B

Dependent Variables: Input-Output coefficient (IO)

IOA&B,A&B IOA&B,C&E IOA&B,D IOA&B,F IOA&B,G-H IOA&B,I IOA&B,J-P

(1) (2) (3) (4) (5) (6) (7)
Damaget -0.00025 -0.00013** -0.00056 -0.00005* -0.00033** -0.00022 -0.00047

(0.00081) (0.00006) (0.00051) (0.00003) (0.00013) (0.00017) (0.00035)
[0.75815] [0.02745] [0.26628] [0.09233] [0.01341] [0.21042] [0.17662]

IOA&B,A&B
t-1 0.81383***

(0.04689)
[0.00000]

IOA&B,C&E
t-1 0.93030***

(0.05625)
[0.00000]

IOA&B,D
t-1 0.85592***

(0.01274)
[0.00000]

IOA&B,F
t-1 1.24489***

(0.15347)
[0.00000]

IOA&B,G-H
t-1 0.84205***

(0.02798)
[0.00000]

IOA&B,I
t-1 0.85344***

(0.02055)
[0.00000]

IOA&B,J-P
t-1 0.90449***

(0.01996)
[0.00000]

N 4,490 4,490 4,490 4,490 4,490 4,490 4,490
Clusters 182 182 182 182 182 182 182
P-value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Mean DV 0.16618 0.01220 0.08494 0.00377 0.03579 0.02204 0.07102

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. Panel OLS regression results with clustered standard errors by countries
in parentheses (), and p-values in brackets []. The coefficients show the effect of a one standard deviation increase
in tropical cyclone damage on the per capita growth rate in a given sectoral aggregate. The standard deviation is
2,269,395, calculated for the whole sample of positive wind speed observations. Damaget is the weighted damage
measure for tropical cyclone intensity in year t. It is weighted by exposed population in t-1. The dependent variables
are Input-Output coefficients (IO) and can range between 0-1. For example the coefficient IOA&B,D

t displays how
much input the sector aggregate A&B needs from sector aggregate D to produce one unit of output. The sector
abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B), mining,
and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G-H),
transport, storage, and communication (I), other activities (J-P). All regressions include country and year fixed
effects as well as country-specific linear trends.
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Figure 1.19: Randomization tests – Input-Output coefficients of sector aggregate A&B
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.20: Randomization tests – Input-Output coefficients of sector aggregate C&E
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.21: Randomization tests – Input-Output coefficients of sector aggregate D
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.22: Randomization tests – Input-Output coefficients of sector aggregate F
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.23: Randomization tests – Input-Output coefficients of sector aggregate G–H
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.24: Randomization tests – Input-Output coefficients of sector aggregate I
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.25: Randomization tests – Input-Output coefficients of sector aggregate J–P
Notes: This figure shows the Fisher randomization test results for the damaget variable where the years are permuted for 2000
repetitions. It displays the kernel density plots (blue) of the randomization coefficient estimates together the results of model 1.6
(red bar). The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry, and fishing (A&B),
mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and hotels (G–H), transport,
storage, and communication (I), other activities (J–P).
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Figure 1.26: Overview robustness tests – Input-Output coefficients of sector aggregate A&B
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate A&B. The sector abbreviations represent the following sector aggregates: agriculture, hunting,
forestry, and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants,
and hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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Figure 1.27: Overview robustness tests – Input-Output coefficients of sector aggregate C&E.
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate C&E. The sector abbreviations represent the following sector aggregates: agriculture, hunting,
forestry, and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants,
and hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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Figure 1.28: Overview robustness tests – Input-Output coefficients of sector aggregate D
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate D. The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry,
and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and
hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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Figure 1.29: Overview robustness tests – Input-Output coefficients of sector aggregate F
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate F. The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry,
and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and
hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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Figure 1.30: Overview robustness tests – Input-Output coefficients of sector aggregate G–H
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate G–H. The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry,
and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and
hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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Figure 1.31: Overview robustness tests – Input-Output coefficients of sector aggregate I
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate I. The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry,
and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and
hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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Figure 1.32: Overview robustness tests – Input-Output coefficients of sector aggregate J–P
Notes: This figure shows coefficient plots for different robustness tests for indirect effects of tropical cyclone damage on Input-Output
coefficients of sector aggregate J–P. The sector abbreviations represent the following sector aggregates: agriculture, hunting, forestry,
and fishing (A&B), mining, and utilities (C&E), manufacturing (D), construction (F), wholesale, retail trade, restaurants, and
hotels (G–H), transport, storage, and communication (I), other activities (J–P).
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2 | The Global Long-Term Effects of Storm Surge

Damage on Human Settlements in Coastal Areas

This chapter is joint work with Eric A. Strobl. It has not yet been published.

Abstract: People in low-lying coastal areas live under the potentially great threat of
damage due to coastal flooding from tropical cyclones. Understanding how coastal population
settlements react to such events is of high importance for society in order to consider
future potential adaptation strategies and policies. In this study, we generate a new global
hydrological data set on storm surge damage for the period 1850–2010. By combining this
new data set with spatial data on human populations at a resolution of 10 km, we analyze the
influence of storm surge damage on the rural, urban, and total population in low elevation
coastal zones. We find that 8% of the global coastal population moved away per decade
over the 1950–2010 period as a consequence of storm surges, on average. It is the urban
population where we find the largest reductions (-15%). We show that the exposed coastal
population has adapted over time and started to reduce its exposure in recent decades. This
finding applies to most regions, with the exceptions of North America, Oceania, and Western
Asia.



The Global Long-Term Effects of Storm Surge Damage on Human Settlements in Coastal Areas

2.1 Introduction

The influence of nature on human settlements is immense. While a friendly and calm

environment can lead to prosperity and growth, a hostile environment with frequent natural

disasters can result in stagnation, collapse, and even death. In this regard, tropical cyclones

are arguably one of the most significant climatic events to pose a threat to the prosperous

development of human societies. For instance, during the 1970–2019 period, Guha-Sapir &

CRED (2020) estimate that tropical cyclones have caused deaths of up to 962,000 people

and costs of nearly USD 1,600 billion. A number of factors contribute to damage induced

by tropical cyclones, but mainly these are storm surges, high wind speeds, and extreme

precipitation. The greatest threat resulting from a tropical cyclone to coastal populations

is generally the accompanying storm surge (Needham et al., 2015), and around 250 million

people are vulnerable to storm surge events every year (Intergovernmental Panel on Climate

Change, 1994). Particularly people in low elevation coastal zones (LECZ), which are defined

as areas contiguous to the coastal shoreline that are below 10 m above sea level, have the

highest flooding risk. In the (near) future, sea level rise and the intensification of tropical

cyclones through climate change, as well as rapid human-induced land subsidence are likely to

further increase local exposure (Bhatia et al., 2019; Mendelsohn et al., 2012; Rahmstorf, 2017;

Woodruff et al., 2013). Current cost estimates of this increased exposure amount to 1 trillion

USD per year by 2050 (Hallegatte et al., 2013). Reducing exposure can thus be economically

meaningful. This is also reflected in a current study by Hallegatte et al. (2016). The authors

estimate that reducing the exposure to floods of poor people by 5% in Malawi, would result in

a reduction of asset losses by yearly USD 2.2 million. According to the authors this reduction

would lead to a well-being gain of USD 19 million per year. Therefore, understanding how

coastal exposure to storm surge damage has developed is of great importance in designing

economically appropriate risk reduction policies.

The economic possibilities, transportation access, geopolitical considerations, and recre-

ational opportunities have generally made living near the coast attractive to humans

(de Sherbinin et al., 2012; Fang & Jawitz, 2019; Hauer et al., 2020). Unsurprisingly, set-

tlements near the coast then have tended to urbanize earlier (Motamed et al., 2014). This

attraction may be so strong to induce positive population growth even in multi-hazard coastal

areas (de Sherbinin et al., 2012; Kocornik-Mina et al., 2020). In fact, currently around 634
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million (McGranahan et al., 2007) to 1.4 billion (Neumann et al., 2015) people are living in

coastal flooding zones, and different studies estimate that this population will continue to

grow in the future (Hallegatte et al., 2013; Jongman et al., 2012; Neumann et al., 2015). The

decision to live in a high risk area should depend on net expected gains and this calculation

is likely to be updated as new events occur (Cameron & Shah, 2015). However, there exists

evidence that people seem to systematically underestimate the losses of tail risk climatic

events (Botzen et al., 2015). Moreover, damaging events such as floods have been shown

to actually cause inward migration to affected areas (Boustan et al., 2012), in particular by

poorer people (McCaughey et al., 2018; Strobl, 2011). Nevertheless, the current evidence

is much too limited in scope and context to draw any conclusions with regard to the likely

adjustment behavior of the growing coastal population across the globe to the possibility

of more and/or more intense tropical storm surges. However, without knowing the exact

exposure and how it has changed over time, possible disaster risk policies lack the foundation

for an evidence-based decision.

In this study, we explicitly analyze how local population sizes in potentially hazardous

areas respond to storm surges caused from tropical cyclones. Because storm surge levels

from tropical cyclones at the global level are hard to model, no global tropical cyclone-driven

storm surge data set exists. Most studies instead focus on wind effects (see, e.g., Felbermayr

& Gröschl, 2014; Hsiang, 2010; Strobl, 2011), while a minority of studies also includes

precipitation damage (Bakkensen et al., 2018). Previous studies analyzing the exposure of

coastal populations to coastal flooding have used extreme sea level data to derive the exposure

to storm surge threats and combined it with climate change or socioeconomic scenarios

(Bouwer, 2018; Hallegatte et al., 2013; Hauer, 2017). Such static statistical analysis is suited

for risk assessment rather than for the causal identification of the relationship between storm

surges and human settlement outcomes. Unfortunately, while there are historical observations

of actual storm surges available, these are extremely limited in time, space, and quality.

For example, the widely used SURGEDAT data set comprises only 172 validated empirical

observations since 1897 (Needham & Keim, 2012). One step forward in modeling storm

surge damage was the recently established Global Tide and Surge Reanalysis (GTSR) model

for a global time series of general storm surge threats from 1979–2014. It combines inputs

from the ERA-interim reanalysis data38 for wind speed and pressure with tidal inputs in a
38The ERA-interim reanalysis data are produced by the European Centre for Medium-Range Weather Forecasts
(ECMWF). Reanalysis data are usually long-term weather and climate observations that are collected by
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hydrodynamic model (Muis et al., 2016). However, because of the coarse spatial and temporal

resolution of the ERA-interim reanalysis input, approximately 75 km and 6h respectively, the

derived model outputs tend to underestimate the observed storm surge levels (Bloemendaal

et al., 2019; Muis et al., 2016). Additionally within the GTSR data, it is not possible to

attribute coastal storm surge heights specifically to tropical cyclones, since they do not

constitute an individual input of the model.

The main contribution of this study is the development of the first tropical cyclone-

generated storm surge data set of all historical tropical cyclones. This new data set not only

covers a very long time period (1860–2010). It also allows one to estimate storm surge water

levels attributable to specific historical events. Storm surges usually form for two reasons

– pressure differences between the eye of the storm and the surrounding environment and

strong winds. Moreover, the magnitude of the storm surge depends on the coastal and ocean

geography (bathymetry), the current tide, the forward speed of the tropical cyclone, and the

angle at which the storm makes landfall. Our data set is based on a hydrodynamic model that

combines all of these input factors and allows us to calculate one-hourly coastal inundation

maps at a resolution of 10 × 10 km for all tropical cyclones ever recorded in the International

Best Track Archive for Climate Stewardship (IBTrACS) (Knapp et al., 2010).

We combine our storm surge damage data with local time-varying (decadal) population

data from the HYDE data set (Klein Goldewijk et al., 2017), which is available at a resolution

of 10 km after 1700. For our analysis, we include all grids in LECZ that lie in countries

that had at least one positive storm surge observation in our data set. Using a multivariate

grid-cell-level-fixed-effects panel regression model at a resolution of 10 x 10 km, we analyze

the causal responses of the local total, rural, and urban populations in LECZ to storm surge

damage globally and in terms of nine world regions. If data coverage of the tropical cyclones

allows it, our sample ranges from 1860–2010. This range is only possible for regions within

the North Atlantic basin, which compromises North America and Central America and the

Caribbean. For the global sample and the other regions, the period reduces to 1950–2010.39

To see if there may have been any adaptation in the population’s response to storm surge

damage, we also identify decadal differences in our estimates. Additionally, we investigate

whether factors such as the agricultural suitability of the land or income levels may have

different methods during different time periods. Within the reanalysis data set these different methods are
harmonized by one common method to make the data comparable across time periods.

39Since we are looking at decadal data, and the last data entry for population data is 2015, the last fully
observed decade is 2010.
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played a role in preventing people from moving away from hazardous areas. Our analysis

contributes to the debate on whether (long-term) adaptation to disasters is taking place,

an issue especially urgent in the light of climate change and increasing coastal population

numbers. Hence, politicians and international organizations can learn from our analysis in

terms of where and to what extent people are exposed to coastal storm surges, and how

coastal populations have responded to such events over the last 70 years. Policymakers can

use our damage and exposure estimates to improve and update coastal flood plain maps.

What is more, our results can also serve as an input for cost-benefit analyses and to better

assess coastal populations’ vulnerabilities considering different socioeconomic and institutional

backgrounds in the future.

We find that Eastern Asia, North America, and South-Eastern Africa are the regions most

exposed to past storm surges. While in all regions, fewer people live in exposed compared

to non-exposed LECZ, one can observe a simultaneous population increase in both zones in

some world regions, such as Western Asia. In 2010, three quarters of all people exposed to

storm surge threats lived in Eastern Asia, South-Eastern Asia, and Southern Asia. In general,

the urban population is more exposed than the rural population. We show, that in response

to storm surges, fewer people live in exposed areas on average. However, this was not true

over the entire time period of our analysis; rather, we can identify a shift from positive to

negative local population numbers in more recent decades for most regions. What is more, it

is the urban population which drives our effect, while the rural population tends to be bound

to agricultural resources.

The remainder of this paper is structured as follows. Section 2.2 describes the data sources,

provides an estimation of the storm surge damage, and presents summary statistics. Section

2.3 describes our method and empirical identification strategy, and Section 2.4 presents the

main results. Section 2.5 concludes with a discussion of the results and policy implications.

2.2 Data

2.2.1 Storm Surge Damage

Storm surges can cause different kinds of damage in LECZ. They can lead to coastal flooding,

the destruction of infrastructure, the erosion of the shoreline, and the salinization of vegetation,

leaving it useless for agricultural cultivation (Le Cozannet et al., 2013). Furthermore, compared
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to wind speed and rainfall, they are the most frequent cause of tropical cyclone-related deaths.

Storm surges typically arise due to two characteristics. First, the strong cyclone winds

generate giant waves that move toward the coastlines. Second, there is a fast, transitory rise

in the local sea level due to a decline in the atmospheric pressure in the eye of the tropical

cyclone (Terry, 2007). The magnitude of storm surges additionally depends on the tidal

circle, i.e., high tides amplify the wave height, whereas low tides reduces it. What is more,

the bathymetry, which refers to the geography of the ocean’s surface, is another important

influence on the storm surge height. Other relevant factors are the forward speed of the storm

and the impact angle of the tropical cyclone on the coast.

The storm surge model we employ is based on the DELFT3D model, which is an open-

source hydrodynamic software, offered by the University of Delft.40 With this software one

can globally model different hydrological processes. We used the code offered and rewrote

it for our global tropical cyclone-based storm surge model.41 The main input of our model,

tropical cyclone raw data, comes from the International Best Track Archive for Climate

Stewardship (IBTrACS), which is a combination of all available best track tropical cyclone

data worldwide (Knapp et al., 2010). We use the v03r10 version, which provides six-hourly

tropical cyclone raw data observations (location, minimum sea level pressure, wind speed)

for all storms over the 1842–2017 period. As indicated by the decadal distribution of the

tropical cyclone raw data in Appendix Figure 2.15, only storms within the North Atlantic

basin were consistently tracked from the 1850s onward (see also Appendix Figures 2.17 and

2.20). Global coverage of landfalling tropical cyclones is approximately reached by 1940, and

we thus restrict the global sample of tropical cyclones to the 1940–2017 period (Kossin et al.,

2013). For the extended period from the 1850s onward, we limit our sample to only those

storms that fully or partially transpassed the North Atlantic basin and to countries that lie

at least partially within this basin (Central America and the Caribbean and North America).

This applies to the analyses shown in Figures 2.7 and 2.8. For the bathymetry input, we use

data from GEBCO 8.2 (British Oceanographic Data Centre, 2010). It contains a continuous

terrain model for the ocean and the coast at a spatial resolution of approximately 1 km

(30 arc-seconds) at the equator and is generated by ship and satellite data. For the tidal

40Appendix Figure 2.12 summarizes our modelling steps.
41The model is written in MATLAB and the computation time for the global model is 72h, parallelized on a
10-core computer.
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conditions we take the TPXO 7.2 Global Inverse Tidal Model (Egbert & Erofeeva, 2002)

which contains time series of all ocean tides globally.

Since we are only interested in coastal population at risk of storm surges, we restrict

our model to areas around potentially exposed LECZ. To reduce computation time, we split

the exposed LECZ into different model areas. Figure 2.1 plots the 48 identified model areas

for our storm surge model. We only consider tropical cyclones with a maximum raw track

distance of 100 km to the coasts in our model areas, which leaves us with 6504 tropical

cyclones.42 For each of these raw tracks, we calculate pressure drop and wind fields for every

hour of their observation time since both are important factors for storm surges.43

The basis of the calculation of the storm surge model builds a three-dimensional grid

that allows us to combine the bathymetry and tidal information with tropical cyclone inputs

(pressure drop and wind fields, velocity, and angle of landfall). The resolution is 0.1◦ x 0.1◦,

which corresponds to approximately 10 km at the equator. For the third dimension, we only

include areas below 10 m in altitude since storm surges are normally not higher than 10

m.44 With these inputs, we then calculate each tropical cyclone’s storm surge-related water

level (above sea level) for every hour of their observation time. From these hourly maps we

subsequently take the maximum water level per grid and per tropical cyclone further into

Figure 2.1: Covered areas of storm surge model

42The reasons for not including more tropical cyclones with a higher distance are the following: First, tropical
cyclones with a distance higher than 100 km seldom cause any significant damage. Second, to guarantee a
feasible computation time of the model, we must restrict the model only to potentially damaging tropical
cyclones.

43Compared to previous models, we are not using a simple rectangular grid, but a more precise curve-linear
spiderweb grid as a basis for the field calculations. The pressure drop and wind fields are based on the
well-established Holland (1980) model. For further information on the Holland model see Chapter 1.2.1.

44See Appendix Figure 2.10 for an illustration of the 3D grid in the Gulf of Mexico.
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account. To not falsely overestimate the tidal component of the model, we only select coastal

grids within a radius of 500 km around each tropical cyclone.

To test the sensitivity of our modeled storm surge data, we compare it to the few validated

observations available from the Global Peak Surge Map database (Needham & Keim, 2012).45

Figure 2.2 plots four tropical cyclones with the resulting storm surge levels (color scale) and

compares them with storm surge observations at the coast. In all cases our model is very

close to actual coastal storm surge observations. In Appendix Figure 2.9 we plot 101 storm

surge observations with a high level of confidence of a correct observation against our modeled

storm surge levels. The root-mean-square error is 0.95, and the R2 corresponds to 64.3%, a

relatively high value given that our storm surge model runs at a spatial resolution of 10 km.

Figure 2.3 shows the average modeled storm surge inundation levels along the coast

for the years 1940–2010.46 The average water levels range between 0 m and 5.4 m. The

Figure 2.2: Validation examples for storm surge model
Notes: This figure compares the modeled storm surge heights against historic observations of the SURGEDAT
data set for four different tropical cyclones.

45The data are freely available at http://surge.srcc.lsu.edu/data.html (accessed 25 October 2020).
46We start in decade 1940, because global coverage of tropical cyclones starts here. Since the population data
are decadal until 2000 and the last yearly data entry is in 2015, we take the decade 2010 as our last data
entry. Consequently, our storm surge model covers the 1940–2010 period.
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exposure of storm surge damage is globally unequally distributed. The regions Eastern Asia,

North America, and South-Eastern Africa experience the highest levels of storm surge-related

flooding on average, with mean water levels in exposed LECZ of 0.24 m, 0.14 m, and 0.1

m, respectively. The least exposed regions are Europe (0.05 m), Central America and the

Caribbean (0.04 m), and Western Asia (0.02 m). At the country level, as plotted in Appendix

Figure 2.16, the most exposed countries on average are South Korea (0.38 m), Comoros (0.27

m), Taiwan (0.27 m), North Korea (0.26 m), Mozambique (0.24 m), Madagascar (0.24 m),

Japan (0.2 m), the Philippines (0.2 m), Hong Kong (0.19 m), and China (0.17 m).47

To translate the modeled water levels into damage, we use a previously employed damage

index for the destruction of residual infrastructures (Genovese & Green, 2015), which is

capped at 70% destruction. Consequently, we calculate the Storm surge damage in grid i

and year t as follows:

Storm surge damageit = MIN[0.168341 ∗Water levelit,0.7] (2.1)

To combine the yearly Storm surge damageit with the decadal population data, we take the

mean per decade d.

Figure 2.3: Average storm surge levels induced by tropical cyclones, 1940–2010
Notes: This figure shows the average storm surge water levels in meters (color scale) along the coast resulting
from our model, averaged over 1940-2010.

47Appendix Figures 2.17–2.23 show the individual annual exposure for each country categorized by region,
and Appendix Figure 2.16 lists all countries ordered by mean exposure.
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2.2.2 Wind Speed and Rainfall Damage

To control for other potential damage of tropical cyclones to coastal populations, we need

data on the two remaining damage sources, wind speed and rainfall. To obtain an accurate

estimate of spatial wind speed from the IBTrACS raw data (Knapp et al., 2010), we use the

model generated by Kunze (2021).48 This model calculates wind fields with spatially varying

wind speeds for each tropical cyclone at a resolution of 10 x 10 km because the tropical

cyclone raw data give no indication of the spatial destructiveness of the wind speeds. Due to

the physical nature of energy dissipation during a storm, the relationship between wind speed

and damage is best proxied in a cubic manner (Emanuel, 2006). To account for this, we use

the following damage index (Wind damageis), describing the fraction of property damaged at

grid i by wind exposure to tropical cyclones (Emanuel, 2011):

Wind damageis =
v3
is

1 + v3
is

, (2.2)

where

vis =
M AX[(Vis − Vthresh),0]

vhal f − vthresh
. (2.3)

Vis is the maximum wind speed of storm s at grid i where, in our context, each point i

corresponds to a population grid i’s centroid. Vthresh is the threshold below which no damage

occurs, and Vhalf is the threshold at which half of the property is damaged. We assume Vthresh

and Vhalf to be 93 km/h (i.e., 50 kts) and 203 km/h (i.e., 150 kts), respectively (Emanuel,

2011). Within each year, we take the maximum Wind damagei per grid i, from which we

calculate the mean Wind damageid per decade d.

For tropical cyclone-related rain damage, we use the parametric R-CLIPER model (Lonfat

et al., 2007). Based on the estimated wind fields, this model calculates the respective rain

fields in mm/h for each tropical cyclone in our sample. We do not calculate a damage function

for rainfall since we would need more information on the surface geography to calculate a

meaningful function. Within each year, we take the maximum Rain f alli per grid i, from

which we calculate the mean Rain f allid per decade d.

48This model is an application of the CLIMADA model (Aznar-Siguan & Bresch, 2019). For further details
see Chapter 1.2.1. Figure 1.1 shows an example of the modeled wind fields for Hurricane Ike.
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2.2.3 Population Data

For population data, we use the historic gridded population data of the History Database of

the Global Environment (HYDE) data set version 3.2.1, which provides global population

maps for every 10 years from 1700 until 2000 and yearly data for the 2000–2015 period (Klein

Goldewijk et al., 2017). This data set is a combination of different historic databases to

generate an internally consistent spatial population data set over a long time series. It is based

among others on historical data from Livi Bacci (2007), Maddison (2001), McEvedy & Jones

(1978), Populstat (Lahmeyer, 2004), and country-specific local sources (Klein Goldewijk et al.,

2017).49 In a spatial weighting procedure based on population density from the Landscan

(2006) satellite, historic maps of total, urban, and population counts are then generated

(Klein Goldewijk et al., 2011). It is the only globally available data source for long-term

population maps (Leyk et al., 2019). For our statistical analysis, we utilize the decadal data

from 1860–2010. The decade d corresponds to the mean for the years d to d − 9. For example,

the decade 1860 is the mean of the years 1851–1860.50 We restrict our data to years where

we have data for the whole decade. Since the first storm observation is in 1842 and the last

population observation in 2015, our sample period is at most 1860–2010. Given the missing

data in the global tropical cyclone data set before 1940, our sample period for the global

analysis is restricted to 1950–2010. The HYDE data set offers data on total, rural, and urban

population counts measured in inhabitants/grid cell at a spatial resolution of around 10 km,

from which we form our dependent variable Population for the different types measured.51

Since we are only interested in people living in LECZ, we use data from the Shuttle Radar

Topography Mission (SRTM) elevation data set (Brecht et al., 2007; McGranahan et al.,

2007) to identify land areas contiguous with the coastline up to 10 m above sea level.52

Figure 2.4 depicts the development of population counts for LECZ exposed (orange solid

line) and not exposed (purple dash-dotted line) to storm surge damage over the 1860–2010

period for each region. In all regions, fewer people live in exposed than in non-exposed

LECZ. Moreover, in most exposed localities the population growth rate is lower compared

49A complete list of country-specific local sources is presented in the Supplementary files of Klein Goldewijk
et al. (2017). Other major inputs can be found at https://themasites.pbl.nl/tridion/en/themasites/hyde/
basicdrivingfactors/population/references.html, last accessed November 2021.

50See the method section for a more precise description of the time dimension.
51The exact spatial resolution of the data set is 0.5 arc minutes.
52The underlying map layer for country borders originates from DIVA GIS. See Appendix Figure 2.11 for an
example of identified LECZ in Asia. We test our main specification for a non-LECZ sample in Appendix
Table 2.39 as a placebo test.
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Figure 2.4: Population count for low elevation coastal zones exposed and not exposed to storm surge
damage, 1860–2010
Notes: The different world regions include countries that experienced at least one positive storm surge
observation over the sample period. Orange lines represent population trends for low elevation coastal zones
in exposed regions that never experienced a storm surge event. Purple lines are population trends for low
elevation coastal zones that experienced at least one storm surge event.

to non-exposed LECZ, particularly in more recent decades. If one compares the population

development in LECZ to those living in other areas (Appendix Figure 2.14), one discovers

that, since 1970 in Oceania, relatively more individuals live in LECZ, but as demonstrated in

Figure 2.4, an increasing number of these have chosen to live in unexposed LECZ. Population

trends in South-Eastern Asia depict a similar behavior. The general spatial population

change between 1950 and 2010 reveals (Appendix Figure 2.13) that there has been a rural net

population exodus in most industrialized countries. Conversely, most regions in Asia, Africa,

and South America have seen widespread population growth in all parts of the country.

Our new storm surge data set allows us to better describe current exposure than previous

studies because our data set is based on past storm surge events. It is arguably more precise

than the data previously used in the literature. Previous empirical studies (Bakkensen &

Mendelsohn, 2016; Bouwer & Jonkman, 2018) have mainly based their analysis on incomplete

observational data such as SURGEDAT which contains only 172 validated observations since

1897 (Needham & Keim, 2012). In contrast our data set consists of 6,504 storm surge events

for the 1842–2015 period. Figure 2.5 illustrates how many people are still living in exposed

areas in 2010, classified by region and population type (rural and urban). Panels a–c display

the distribution of total population by nine world regions for different levels of past exposure.

Column 1 of Panel a shows that most people with more than one past storm surge event of

any height live in South-Eastern Asia (57.66 million). If one compares Panels a–c, one can
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observe that the higher the past exposure, the fewer people live in these areas. Additionally,

Figure 2.5 reveals that the majority of threatened population lives in Eastern, South-Eastern

and Southern Asia. For all exposure levels displayed, these regions comprise at least 76%

of the globally exposed population. Although there appears to be a negative correlation

between level of exposure and population, in 2010 6.43 million people were still living in

a highly exposed area with more than 100 2 m storm surge events having occurred in the

1950–2010 period. Of these 6.43 million people, 6 million are living in Eastern Asia, followed

by 0.39 million in South-Eastern Asia, and 0.04 million in South-Eastern Africa.

Relative to the total population exposure shown in Panels a–c, Panels d–f illustrate which

part of the population (rural or urban) was most exposed in 2010. These panels show the

quantile distribution of the rural and urban country populations at risk, where the plotted

Figure 2.5: Storm surge exposed population, 2010
Notes: Panels a–c show the exposed total population in nine world regions. Panel a displays the number of
people living in areas that experienced more than 1, 50, or 100 storm surge events above zero between 1950
and 2010. Panel b displays the number of people living in areas that experienced more than 1, 50, or 100
storm surge events above 1 m between 1950 and 2010. Panel c displays the number of people living in areas
that experienced more than 1, 50, or 100 storm surge events above 2 m between 1950 and 2010. Panels d–f
show the quantile distribution (letter values) of exposed rural and urban populations per country in 2010 for
different levels of exposure. The plotted boxes are the successive letter values, which range from the fourths
(25%) (bottom box) up to the 256th (0.4%) (highest box). In total, there are seven letter values plotted. As
an example, in the left column of Panel d the respective letter values are labeled. The diamonds represent the
corresponding most extreme country observations.
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boxes refer to different quantiles (letter values) of the distribution.53 These are the fourth

(25%), the eights (12.5%), the 16th (6.25%), the 32nd (3.13%), the 64th (1.6%), the 128th

(0.8%), and the 256th (0.4%) quantiles. The bottom box of each distribution refers to the

fourth quantile, i.e., 25% of all country observations fall in that box, and the top most box

refers to the 256th quantile, i.e., 0.4% of all country observations fall in the box range. The

diamond illustrates the most extreme country observation. Accordingly, while comparing

rural and urban population country distributions at risk, the figure demonstrates that urban

populations live at higher risk, but at the same time, with higher exposure there are fewer

differences. The most extreme observation (diamond) refers in all cases to rural or urban

population at risk living in China.

With our new storm surge data, we were able to show how many people are still living

in exposed areas in 2010. In Figures 2.4 and 2.5, we have seen that there exists a negative

correlation between the level of exposure and number of people. In the next section, we

introduce our method for systematically identifying this result.

2.3 Method and Empirical Identification

To analyze the influence of past storm surge damage on coastal population, we pursue a

multivariate grid-cell-level-fixed-effects panel data regression approach. We restrict our sample

to LECZ that lie within countries that have been exposed to at least one tropical cyclone.54

The level of analysis are the 49,115 exposed coastal zones’ grid cells at a resolution of 10

x 10 km, which we observe globally over seven decades. This leaves us with 343,805 panel

observations over the 1950–2010 period. As our main specification we estimate the following

model:

Populationid = α + βStorm surge damageid + γWind damageid + δRain f allid

+θi + µd + νj ∗ d + εid,
(2.4)

where Storm surge damageid, Wind damageid, and Rain f allid are the means of decade d

averaged over the yearly data from d − 9 to d in grid i. Populationid is the total, rural, or

urban population count of decade d in grid i. The grid-specific fixed effects θi capture effects

53Letter values are order statistics that help to better illustrate and understand the tails of a distribution
(Hofmann et al., 2017). We use the boxenplot-command in Python Seaborn to generate the plot.

54Appendix Tables 2.40 and 2.41 relax this restriction by including all exposed coastal zones within a radius
of 50 and 100 km, respectively.
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that do not change over time, such as culture, geography, or institutional background. To

control for events common to all grids within a specific decade, we include decade fixed effects

µd. We also include country j-specific linear time trends (νj ∗ d) that account for changing

patterns over time for the individual countries, such as changes in the population growth

rate, improvements in coastal protection, resulting in less vulnerability, or changes in climate

patterns.55 Standard errors are clustered by affected grid × decade × country.56 Affected

grid is defined as either having a positive value for Storm surge damageid, Wind damageid,

or Rain f allid.

The occurrence and intensity of tropical cyclones are arguably random by nature, as

complex processes, such as storm surges, are hard to predict. In fact, even 24 hours before

a potential land fall, the error margin of the intensity and location of the respective storm

is still high (NHC, 2016). Consequently, one can argue that the estimated coefficient β on

storm surge captures the causal impact of storm surge on population count after accounting

for grid-cell-level fixed effects. More precisely, it is likely that individuals will make location

decisions in part with respect to their expectations of factors, such as storm surge, i.e., with

regard to their expected local distribution of such events. Assuming a stable distribution

over the sample period, the location-specific fixed effects θi will control for these expectation-

based decisions. Thus, the remaining variation in Storm surge damageid, after controlling for

Wind damageid and Rain f allid, consists of only random realizations from the local distribution.

One remaining confounding factor that might render estimates on Storm surge damageid

non-causal could be that other climatic factors, such as temperature, might be correlated

with storm surge and affect local population (Auffhammer et al., 2013; Hsiang, 2016). We

account for this potential influence by including data on temperature in a robustness test (see

Appendix Table 2.31). Another remaining possible violation of the identifying assumption

could be that the distribution of local storm surge is time varying rather than time invariant,

and that local populations are aware of this and adjust their expectation regarding the local

distribution of storm surge accordingly. However, arguably this is unlikely to be a realistic

concern, as any sort of tropical storm signal is only likely to emerge with climate change

over the very long run (Emanuel, 2011). To further argue for a causal identification of our

55In Appendix Table 2.33 we also include nonlinear time trends.
56We also test for other cluster choices: country, ADM1, region, and affected grid × decade. Appendix Tables
2.35–2.38 show the results.
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model, we conduct a Fisher randomization test, where we randomly reshuffle storm surge

observations between decades (see Appendix Figure 2.30).

To analyze possible heterogeneities by decade, we introduce an interaction term to Equation

2.4, where we interact each tropical cyclone damage variable with a decadal indicator variable

(
2010∑

k=1960,1970,...
ρk ∗ Decadek). The model then transforms to:

Populationid = α+βStorm surge damageid+
( 2010∑
k=1960,1970,...

ρkDecadek×Storm surge damageid

)
+ γWind damageid +

( 2010∑
k=1960,1970,...

λkDecadek ×Wind damageid

)
+ δRain f allid +

( 2010∑
k=1960,1970,...

ξkDecadek × Rain f allid

)
+ θi + µd + νj ∗ d + εid, (2.5)

where all variables are defined as in Equation 2.4. From this estimation, we calculate the

average effects of Storm surge damage per decade, i.e., the results of the F-tests β + ρ1960,

β + ρ1970, β + ρ1980, β + ρ1990, β + ρ2000, and β + ρ2010. The base decade for all regressions is

1950.

To further explore heterogeneous treatment effects, we run modifications of Model 2.4,

where we include interactions with agricultural crop suitability and income. For data on crop

suitability, we take the Overall Crop Suitability (1961-1990) data assembled in the GLUES

project at a resolution of 1 km (Zabel et al., 2014). We spatially join the satellite data with

our data set and form four different bins according to the data’s 0.25, 0.5, and 0.75 percentile

cutoffs. The bins refer to low (0–3), middle (3–22), high (22–48), and highest agricultural

suitability (>48). The base category is zero suitability. Data on income classes correspond

to World Bank country income classifications, available from 1987–2019.57 For the period

1990–2010 we employ the mode of the four different income classes (low, lower middle, upper

middle, high income) per country and decade. For the decades 1950–1980 or other missing

entries, we use the last available income class entry for each country. The base category

refers to high income countries. Appendix Tables 2.42–2.51 show summary statistics for all

variables used, both globally and differentiated by nine world regions.

57The data are available at http://databank.worldbank.org/data/download/site-content/OGHIST.xls (ac-
cessed 25 October 2020).
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2.4 Results

By using decadal panel data from 1950–2010 at a resolution of 10 km x 10 km for LECZ in

77 storm surge-exposed countries, we analyze the effect of storm surge damage on local total,

rural, and urban population counts by means of a multivariate fixed-effects panel regression

model. Table 2.1 shows the results for the global sample from 1950–2010. As already indicated

Table 2.1: The average effect of storm surge damage – All exposed countries

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,765 -2,155 -9,590
(3,254.40) (1,328.91) (3,838.30)
[0.02] [0.11] [0.01]

Wind damage -10,324 -484 -10,122
(7,432.14) (2,406.80) (6,649.50)
[0.17] [0.84] [0.13]

Rainfall -19 -.69 -15
(16.38) (8.07) (11.85)
[0.25] [0.93] [0.21]

Observations 343,805 343,805 343,805
Clusters 785 785 785
Mean dependent variable 10,973 5,641 7,206
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends.

by the descriptive Figures 2.4 and 2.5, we find a negative effect of storm surge damage on the

total population count (Column 1). While storm surge damage also has a negative influence

on the urban population count (Column 3), wind damage and rainfall never have a significant

influence on any population type. This result underlines the importance to account for storm

surges, when analyzing the damage of tropical cyclones. Panel a of Figure 2.6 displays the

storm surge damage coefficients of Columns 1–3, interpreted by a one standard deviation

increase. If storm surge damage increases by a standard deviation (0.1128), there is a decrease

of 876±721 people living in an exposed grid. Compared to the average population living in

an exposed grid (10,973), this constitutes a reduction of 8% per decade. This average effect

on the total population count seems to be driven by people who inhabit exposed urban areas

(-1,081±850), while for rural populations the effect amounts to a reduction of -243±294.
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Figure 2.6: Effects of storm surge damage on the global total, rural, or urban population count,
1950–2010
Notes: Panel a displays the average effect for all exposed countries. The numbers represent the mean estimator
with the relative effect in comparison to the sample average in parentheses. Panels b–d show the average
effects of a standard deviation increase in storm surge damage per decade for the total (b), rural (c), and
urban (d) population counts compared to 1950. The numbers represent the mean estimator with the relative
effect in comparison to the sample average per decade in parentheses. Panel e displays the marginal effect of
storm surge damage on the rural (blue) and urban (orange) population counts for different classes of crop
suitability. The classes refer to the 0.25, 0.5, and 0.75 percentile cutoff points of the crop suitability data.
They are 0–3 for low suitability, 3–22 for middle suitability, 22–48 for high suitability, and larger than 48 for
highest suitability. The base category is zero crop suitability. The numbers represent the mean estimator with
the relative effect in comparison to the sample average in parentheses. Panel f shows the marginal effects of
storm surge damage on rural (blue) and urban (orange) population count for different World Bank income
classes. The base category is the high income class. The numbers represent the mean estimator with the
relative effect in comparison to the sample average in parentheses. In all panels the line widths characterize
the 90%, 95%, and 99% confidence intervals. The standard deviation of a storm surge above zero is 0.1128.

Panels b–d depict the average effects per decade compared to 1950 for the total, rural,

and urban population counts with the implied percentage impact relative to the decadal

population mean given in parentheses.58 While for the total population in 1960, more of the

population (+1,187±1,001) lived in exposed areas after storm surge damage as a consequence

of coastal flooding, for every subsequent decade, the coefficients become increasingly negative,

and significantly so in 2000 (-1,109±879) and 2010 (-1,552±985). One could argue that the

lower coefficients in recent decades are due to more people moving to the coast. However,

58The underlying estimations are in Appendix Tables 2.2–2.4.
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when we compare these absolute coefficients with their respective decadal means (given in

parentheses), we also observe a decrease in recent decades. One should note in this regard

that this effect is net of the country-specific linear trends included in all specifications, which

account for country-specific factors such as population growth.

A similar behavior can be observed for people living in urban areas (Panel d). For rural

areas (Panel c) the qualitative pattern is analogous but with no decadal coefficient being

statistically different from zero at the 95% confidence interval. This analysis implies that,

while there was on average an overall net negative impact over time, adaptation has taken

place in recent years. This adaptation effect is largely driven by urban populations, perhaps

unsurprisingly since these tend to be more mobile and have access to more financial resources

to move away from hazardous areas (McCaughey et al., 2018; Plane et al., 2005). In contrast,

rural populations tend to be bound to local resources to a greater degree because of, for

example, agricultural possibilities (Hauer et al., 2020). This behavior is underlined by Panel

e, which plots the average effect of storm surge damage for different levels of local crop

suitability.59 For the highest levels of crop suitability (75th percentile), one discovers a

positive effect only for rural populations, although strictly speaking we cannot make any

causal inference from this result as crop suitability may be correlated with other factors that

drive parameter heterogeneity.

Panel f displays the heterogeneous treatment effects for World Bank income classes.60

It shows that rural and urban people in low income areas do not move away from areas

hit by storm surges compared to people in high income countries, as indicated by their

insignificant coefficients. For lower and upper middle income countries, we find significant

negative coefficients. As before, the effect is more negative for urban compared to rural

populations.

When looking at the effect of past storm surges on the total, rural, and urban populations

for different world regions (Figure 2.7), one notices different responses by region.61 For the

majority of regions, the reaction of the population is negative as a result of a damaging

storm surge, with the strongest negative effects seen in Central America and the Caribbean (-

901±391) and South-Eastern Asia (-2,128±1,429). In relation to the average population living

in LECZ, the effects in the two aforementioned world regions are also relatively high, with

59The underlying estimations can be found in Appendix Tables 2.5 and 2.6.
60Appendix Tables 2.7 and 2.8 display the respective estimations.
61The underlying estimations are shown in Appendix Tables 2.9–2.17.
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Figure 2.7: Effects of storm surge damage on the global total, rural, or urban population count for
different world regions
Notes: The numbers and the white dot show the effect of a standard deviation increase (0.1128) in storm
surge damage on total, rural, or urban population count. The number in parentheses displays the effect size
relative to the respective population count sample average. The line widths characterize the 90%, 95%, and
99% confidence intervals.

reductions of 35% and 20%, respectively. For Eastern Asia, the effect for the total population

is not significant, as already indicated by the high number of people living in exposure in

Figure 2.5. There is no significant effect in North America, whereas one can identify a

relatively strong, positive response on the total population in Western Asia (+6,737±6,737),

and a moderate positive effect on the rural population in Oceania (+18±19). Again, for most

regions, urban populations seem to be the driving force behind the reduction effect on the

total population, with notable exceptions in South-Eastern Africa and South-Eastern Asia.

Figure 2.8 depicts the regional responses of the total population to storm surge damage

per decade compared to 1950.62 For most exposed world regions, we see a trend moving from

positive to increasing negative coefficients in recent decades. However, this behavior cannot

be detected for North America, Oceania, and Western Asia. In Eastern Asia, we can observe

a decreasing pattern, although only the most recent decade is statistically significant at the

62Appendix Tables 2.18–2.26 show the corresponding estimation results.
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Figure 2.8: Effects of storm surge damage per decade on the total population count for different
world regions
Notes: The figure shows the effect of a standard deviation increase in storm surge damage (0.1128) on the
total population count per decade for nine different world regions. The plotted coefficients are the average
effects per decade compared to 1950. The line widths characterize the 90%, 95%, and 99% confidence intervals.

95% confidence level. For Oceania, there is a small but increasing pattern over time, and the

same is true for Western Asia. Again, the urban population effect per decade mimics the

effect of storm surge damage on the total population (see Appendix Figure 2.27). However,

this is not true for rural populations (see Appendix Figure 2.26), where a decreasing pattern

with negative responses can only be found for South-Eastern Africa, Southern, South-Eastern,

and Western Asia. When one examines the decadal effect over the period 1860–2010 for

Central America and the Caribbean and North America (see Appendix Figures 2.28 and

2.29), one detects that, for Central American and the Caribbean, the decreasing pattern had

already started in the 1870s. By contrast, for North America, the longer series looks rather

like a positive trend.

To test the sensitivity of the main statistical analysis (Panel a of Figure 2.6), we check for

different sub-samples, clustering, and model specifications in Appendix 2.6.3. We experiment

with excluding potential outliers larger than Cook’s distance of 4/n (Appendix Table 2.27).
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Since the population data might be inflated by smaller numbers, we calculate sub-samples,

where we exclude unpopulated areas, areas below 10 inhabitants, and areas below 100

inhabitants (Appendix Tables 2.28–2.30). As warmer temperatures are associated with

tropical cyclones, we include temperature as an additional control variable in a further test

(Appendix Table 2.31). Since there is evidence that climate might have a nonlinear impact

(Burke et al., 2015), we also experiment with squared climate controls in another robustness

test (Appendix Table 2.32). In a similar vein, we also include squared country-specific time

trends (Appendix Table 2.33). As there was an improvement in the measurement of tropical

cyclones with the start of satellite measurement in 1979, we also run a sub-sample with a

restricted time period of 1980–2010 (Appendix Table 2.34). Additionally, we conduct different

clustering choices of the standard errors: country, ADM1, region, and affected grid × decade

(Appendix Table 2.35–2.38). In all conducted robustness tests, the p-value of the storm surge

damage coefficient for total population count remains below 0.05. Notable exceptions are the

robustness tests with regional clustering (Appendix Table 2.37) and with the reduced sample

period (Appendix Table 2.34), where the p-values are larger than 0.05 but still below the 0.1

threshold.63

Furthermore, we run a Fisher randomization test, where we randomly redistribute storm

surge events between decades for 1,000 repetitions (Appendix Figure 2.30). The test yields

that 98.1% of the t-statistics of the randomly allocated storm surge events are larger than

the t-statistic of our model (-2.39). Hence, we can be relatively confident that our results

are not random, but due to a systematic pattern. What is more, we conduct a Placebo test

in Appendix Table 2.39 where we restrict the sample to non-LECZ areas. As expected, we

find no significant effect for the storm surge damage variable. In a similar manner, we run

two analyses where we include all coastal areas irrespective of the altitude in a radius of

50 km (Appendix Table 2.40) and 100 km (Appendix Table 2.41). With the exception of a

significant negative effect on urban populations for the 50 km sample, we find no significant

effect of storm surge damage on total, rural, and urban populations in both samples.

63The coefficient estimates for the urban population count are a little bit less robust with only 8 out of 12
conducted robustness tests yielding a p-value below 0.1. As the coefficient for the rural population count
in Table 2.1 is only slightly insignificant, it is not surprising that only 5 out of 12 robustness tests show a
p-value less than 0.1.
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2.5 Conclusion

This is the first study to have employed historical tropical storm data, population exposure,

and a global storm surge model to investigate what role exposure to storm surge has played

in the distribution of populations along the world’s coasts. There have been considerable

differences in exposure to storm surge damage across the globe, with regions like Eastern Asia,

North America, and South-Eastern Africa being most affected. When it comes to population

exposure, we find that three quarters of all people at risk live in Eastern, South-Eastern

and Southern Asia. This finding is in line with previous extreme value statistical studies

(Hallegatte et al., 2013; Jongman et al., 2012; Neumann et al., 2015). Simultaneously, we

observe that the share of people on the coast living in the potentially most dangerous areas,

the LECZ, is decreasing in most regions. Nevertheless, compared to non-coastal areas, there

are some regions, such as Oceania and South-Eastern Asia, where LECZ have witnessed a

relative increase in population. Perhaps unsurprisingly, it is the urban rather than the rural

population that has been most exposed to storm surge events (Neumann et al., 2015).

Our regression analysis allowed us to systematically link the trends observed in terms

of storm surge events and coastal population counts. Overall, we find that greater storm

surge exposure has globally led to a reduction of the population in the LECZ, where a one

standard deviation storm surge event leads to an 8% reduction in the total population per

exposed 10 x 10 km grid and decade. This finding contrasts many previous studies, which

found evidence of no migration (Fischer & Malmberg, 2001; Kocornik-Mina et al., 2020),

no permanent migration (Bohra-Mishra et al., 2014; Lu et al., 2016), or even net-positive

migration (Boustan et al., 2012; de Sherbinin et al., 2012) in response to flooding. Our

results appear to be primarily driven by people living in urban areas and may be due to the

likelihood that they have more means than rural residents whose income depends on local

natural resources (Hauer et al., 2020). In fact, we show that the impact of storm surges on

population counts in rural areas depends on the crop suitability of the area. We also find

that, in (currently) richer countries, the net reduction in population after storm surges is

larger than in their poorer counterparts. This result may be because richer individuals are

more mobile than poorer ones, a feature that has been, for instance, observed in the United

States after hurricanes (Strobl, 2011). Poor populations are sometimes trapped by natural

disasters, as they are more vulnerable and have fewer financial resources to move away (Black
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et al., 2013). This finding could also be explained by the cheaper housing costs inducing

these people to move to more dangerous areas (McCaughey et al., 2018).

Our panel structure allows us to decompose the estimated effect over time. This decompo-

sition suggests that overall there has been a slowly evolving structural change in the response

of populations to storm surge events. More precisely, while in earlier decades these led to

a net increase in population numbers, over time this response has reversed into a net fall.

Possible reasons for the previous rise may be that the damage due to storm surges induced

creative destruction (Cavallo & Noy, 2011), in that it induced new opportunities for growing

industries such as manufacturing, tourism, and transportation (Barragán & de Andrés, 2015)

and hence net population growth. The fall of exposed populations in recent decades after

damaging storm surge events is encouraging, as it suggests that on average coastal populations

adapt to this recurring threat and relocate. This finding is most likely not driven by increases

in mortality due to storm surges since other studies find a fall in storm surge-related deaths

in recent years (Bakkensen et al., 2018; Bouwer & Jonkman, 2018).

We notably find considerable differences across regions in terms of how storm surges affect

population counts in LECZ. In particular, while most regions on average saw their populations

in these areas reduced because of storm surges, Oceania’s rural populations and Western

Asia’s urban populations responded positively, while there was no effect on North America’s

rural and urban populations. For the latter region, this may not be surprising, as it has

been shown that much of the coastal population growth has been driven by productivity and

quality of life gains (Rappaport & Sachs, 2003). Furthermore, for urban residents in Western

Asia, it could be that they prefer living near the coast even though that often means living

in an exposed area, given the milder coastal climate compared to dry hinterland (Mansour,

2019). As most areas in Oceania consist of small islands and people heavily depend on coastal

and oceanic fishing, (rural) people hardly seem to have any other choice than living in LECZ

(Hanich et al., 2018). However, as we have shown, people try to move to unexposed LECZ.

Overall, our findings suggest individuals show adaptive behavior, at least for some regions

in modern times, in response to damaging storm surge events. If, as has been predicted,

climate change is likely to lead to at least greater, if not more frequent, storm surge events

after tropical cyclones (Knutson et al., 2020), then we should expect the share of population

in exposed LECZ to decline. However, projected sea level rise (Kulp & Strauss, 2019) and

future population growth, especially in Asia (Hallegatte et al., 2013), could very well offset
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or even outweigh our effect. Furthermore, it must be pointed out that, as of 2010, 32 million

people were still living in median-exposed LECZ (more than 100 1-m historic events) and

6.4 million in highly-exposed (more than 100 2-m historic events) LECZ. Our results are a

first step to better understand the responses of coastal populations to storm surge damage.

Policy makers can use our results to further analyze them in cost-benefit analyses. In this

regard, better disaggregated data on global insurance coverage, reconstruction aid, protection

measures, or other flood adaptation policies, would be helpful to assess costs and benefits of

staying in or resettle from a storm surge area.

Our analysis is limited by the fact that we do not incorporate the role of protection

measures, which could be artificial, such as dykes, or natural, such as mangroves and coral

reefs, in our storm surge modeling. Hence, we are likely to overestimate storm surge heights

in high income countries (Ward et al., 2017), leading to potential attenuation bias. However,

since we do not take sea level rise or human-induced land subsidence into account, we tend

to underestimate the experienced storm surge threat (Wrathall et al., 2019). Additionally, a

finer and more flexible grid (Bloemendaal et al., 2019; Muis et al., 2016), the consideration

of river flows and deltas (Eilander et al., 2020), and more precise elevation data such as

CostalDEM (Kulp & Strauss, 2019) could improve the precision of our storm surge model

output.

Another limitation of our analysis is that we can only derive conclusions regarding the

impacts of storm surge events in terms of local population counts. These changes may be

due to inward migration, outward migration, births, and/or deaths. In terms of migration

patterns, one should note that a number of studies have shown that there is likely to be net

outward migration (Berlemann & Steinhardt, 2017; Boustan et al., 2020), although the actual

underlying dynamics may be more complex. For instance, in the United States hurricanes

have been shown to induce people to both move out of affected coastal areas and others to

move into them, with the latter likely due to new employment opportunities caused by the

destruction (Strobl, 2011). While there are likely to be some deaths as a response to natural

disasters such as storm surges (Frankenberger et al., 2020), it appears their overall death rate

has substantially declined over time (Bakkensen et al., 2018; Bouwer, 2018). Finally, with

regard to births, the evidence is rather mixed: there are likely some short-term declines (Lin,

2010) but also possibly some increases in fertility, depending on the strength of the storm or
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the time horizon (Evans et al., 2010). More disaggregated data in terms of the drivers of the

components of population counts would allow one to explore these facets further.
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2.6 Appendices

2.6.1 Supplemental Figures

Figure 2.9: Observational data vs. storm surge model results
Notes: This figure compares the modeled storm surge heights against 101 historic
observations of the SURGEDAT data set with a high level of confidence.

139



The Global Long-Term Effects of Storm Surge Damage on Human Settlements in Coastal Areas

Figure 2.10: Grid example for the Gulf of Mexico
Notes: This figure shows an example of the 3D-grid used for the storm surge model in the Gulf of Mexico and
surrounding LECZ.
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Figure 2.11: Identified low elevation coastal zones in Asia
Notes: This figure shows an example of the identified low elevation coastal
zones (LECZ) in Asia.

141



The Global Long-Term Effects of Storm Surge Damage on Human Settlements in Coastal Areas

Figure 2.12: Schematic figure of the storm surge model steps with input data
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Figure 2.13: Percentage changes in total population count over different time periods
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Figure 2.14: Population count for low elevation coastal zones and remaining areas, 1860–2010
Notes: The different world regions include countries that experienced at least one positive storm surge
observation. Purple lines constitute population trends for low elevation coastal zones, whereas orange lines are
population trends in remaining areas (non-low elevation coastal zones).
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Figure 2.15: Worldwide occurrence of tropical cyclones per decade, 1850–1960
Notes: The blue lines are tropical cyclone raw data tracks.
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Figure 2.16: Yearly mean storm surge damage, 1940–2010
Notes: The 77 exposed countries or areas are ordered by their mean exposure. Storm surge damage is a
damage index ranging from 0 to 0.7.
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Figure 2.17: Yearly mean storm surge damage in North America, 1850–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in North America. Storm
surge damage is a damage index ranging from 0 to 0.7.
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Figure 2.18: Yearly mean storm surge damage in Europe, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in Europe. Storm surge
damage is a damage index ranging from 0 to 0.7.
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Figure 2.19: Yearly mean storm surge damage in Eastern Asia, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in Eastern Asia. Storm
surge damage is a damage index ranging from 0 to 0.7.
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Figure 2.20: Yearly mean storm surge damage in Central America and Caribbean, 1850–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in Central America and
Caribbean. Storm surge damage is a damage index ranging from 0 to 0.7.
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Figure 2.21: Yearly mean storm surge damage in South-Eastern Africa, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in South-Eastern Africa.
Storm surge damage is a damage index ranging from 0 to 0.7.

151



The Global Long-Term Effects of Storm Surge Damage on Human Settlements in Coastal Areas

0
.1

.2
.3

0
.1

.2
.3

1940 1960 1980 2000

1940 1960 1980 2000

Oman United Arab Emirates

Yemen

M
e

a
n

 s
to

rm
 s

u
rg

e
 d

a
m

a
g

e

Years

Western Asia

Figure 2.22: Yearly mean storm surge damage in Western Asia, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in Western Asia. Storm
surge damage is a damage index ranging from 0 to 0.7.
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Figure 2.23: Yearly mean storm surge damage in Oceania, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in Oceania. Storm surge
damage is a damage index ranging from 0 to 0.7.
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Figure 2.24: Yearly mean storm surge damage in Southern Asia, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in Southern Asia. Storm
surge damage is a damage index ranging from 0 to 0.7.
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Figure 2.25: Yearly mean storm surge damage in South-Eastern Asia, 1940–2010
Notes: This figure shows the yearly mean storm surge damage by country or area in South-Eastern Asia.
Storm surge damage is a damage index ranging from 0 to 0.7.
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Figure 2.26: Effects of storm surge damage per decade on the rural population count for different
world regions
Notes: The figure shows the effect of a standard deviation increase in storm surge damage (0.1128) on the
rural population count per decade for nine different world regions. The plotted coefficients are the average
effects per decade compared to 1950. The line widths characterize the 90%, 95%, and 99% confidence intervals.
The numbers represent the mean estimator with the relative effect in comparison to the sample average per
decade in parentheses.
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Figure 2.27: Effects of storm surge damage per decade on the urban population count for different
world regions
Notes: The figure shows the effect of a standard deviation increase in storm surge damage (0.1128) on the
urban population count per decades for nine different world regions. The plotted coefficients are the average
effects per decade compared to 1950. The line widths characterize the 90%, 95%, and 99% confidence intervals.
The numbers represent the mean estimator with the relative effect in comparison to the sample average per
decade in parentheses.
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Figure 2.28: Effects of storm surge damage per decade on the total, rural, and population count in
Central America and the Caribbean, 1860–2010
Notes: The figure shows the effect of a standard deviation increase in storm surge damage (0.1128) on the
total, rural, and urban population count per decade for Central America and the Caribbean. The plotted
coefficients are the average effects per decade compared to 1950. The line widths characterize the 90%, 95%,
and 99% confidence intervals. The numbers represent the mean estimator with the relative effect in comparison
to the sample average per decade in parentheses.
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Figure 2.29: Effects of storm surge damage per decade on the total, rural, and population count in
North America, 1860–2010
Notes: The figure shows the effect of a standard deviation increase in storm surge damage (0.1128) on the
total, rural, and urban population count per decade for North America. The plotted coefficients are the
average effects per decade compared to 1950. The line widths characterize the 90%, 95%, and 99% confidence
intervals. The numbers represent the mean estimator with the relative effect in comparison to the sample
average per decade in parentheses.
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2.6.2 Underlying Tables for Figures

Table 2.2: The average decadal effect of storm surge damage – Total population count

Rural population count
1960 1970 1980 1990 2000 2010

Storm surge damage 1,187 582 79 -514 -1,109 -1,552
(509.73) (370.18) (351.57) (356.83) (447.91) (501.75)
[0.02] [0.12] [0.82] [0.15] [0.01] [0.00]

Observations 343,805 343,805 343,805 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by affected
grid × decade × country in parentheses (), and p-values in brackets []. The coefficients show the
marginal effect of the different tropical cyclone damage types on Rural population count. The
sample covers the decades from 1950 through 2010 for all low elevation coastal zones in exposed
countries. Storm surge damage is the mean storm surge damage function of decade d averaged
over the yearly data from d-9 to d in grid cell i. All regressions control for Wind damage and
Rainfall and include decade and grid fixed effects as well as country-specific linear trends.

Table 2.3: The average decadal effect of storm surge damage – Rural population count

Rural population count
1960 1970 1980 1990 2000 2010

Storm surge damage 272 140 -65 -181 -357 -312
(232.31) (211.76) (218.60) (195.14) (243.21) (224.77)
[0.24] [0.51] [0.77] [0.35] [0.14] [0.17]

Observations 343,805 343,805 343,805 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by affected
grid × decade × country in parentheses (), and p-values in brackets []. The coefficients show the
marginal effect of the different tropical cyclone damage types on Rural population count. The
sample covers the decades from 1950 through 2010 for all low elevation coastal zones in exposed
countries. Storm surge damage is the mean storm surge damage function of decade d averaged
over the yearly data from d-9 to d in grid cell i. All regressions control for Wind damage and
Rainfall and include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.4: The average decadal effect of storm surge damage – Urban population count

Urban population count
1960 1970 1980 1990 2000 2010

Storm surge damage 1,273 582 -20 -741 -1,373 -1,767
(611.90) (403.04) (360.97) (407.12) (490.84) (548.25)
[0.04] [0.15] [0.95] [0.07] [0.01] [0.00]

Observations 343,805 343,805 343,805 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by affected
grid × decade × country in parentheses (), and p-values in brackets []. The coefficients show
the marginal effect of the different tropical cyclone damage types on Urban population count.
The sample covers the decades from 1950 through 2010 for all low elevation coastal zones in
exposed countries. Storm surge damage is the mean storm surge damage function of decade
d averaged over the yearly data from d-9 to d in grid cell i. All regressions control for Wind
damage and Rainfall and include decade and grid fixed effects as well as country-specific linear
trends.

Table 2.5: The average effect of storm surge damage for different levels of crop suitabilities – Rural
population count

Rural population count
Low suitability Middle suitability High suitability Highest suitability

Storm surge damage -2,760 -2,588 -2,638 8,965
(1,946.52) (1,600.25) (1,642.59) (5,098.28)

[0.16] [0.11] [0.11] [0.08]
Observations 343,805 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid ×
decade × country in parentheses (), and p-values in brackets []. The coefficients show the marginal effects of
Storm surge damage on the rural population count for different classes of crop suitability. The classes refer
to the 0.25, 0.5, 0.75 percentile cutoff points of the crop suitability data. They are: 0–3 for low suitability,
3–22 fir middle suitability, 22–48 for high suitability, and greater than 48 for highest suitability. The base
category is 0 crop suitability. The sample covers the decades from 1950 through 2010 for all low elevation
coastal zones in exposed countries. Storm surge damage is the mean of decade d averaged over the yearly
data from d-9 to d in grid cell i. All regressions control for Wind damage and Rainfall and include decade
and grid fixed effects as well as country-specific linear trends.

Table 2.6: The average effect of storm surge damage for different levels of crop suitabilities – Urban
population count

Urban population count
Low suitability Middle suitability High suitability Highest suitability

Storm surge damage -11,712 -10,855 -5,567 -8,155
(5,038.74) (4,386.42) (4,884.41) (9,085.49)

[0.02] [0.01] [0.25] [0.37]
Observations 343,805 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid ×
decade × country in parentheses (), and p-values in brackets []. The coefficients show the marginal effects of
Storm surge damage on the urban population count for different classes of crop suitability. The classes refer
to the 0.25, 0.5, 0.75 percentile cutoff points of the crop suitability data. They are: 0–3 for low suitability,
3–22 for middle suitability, 22–48 for high suitability, and larger than 48 for highest suitability. The base
category is 0 crop suitability. The sample covers the decades from 1950 through 2010 for all low elevation
coastal zones in exposed countries. Storm surge damage is the mean of decade d averaged over the yearly
data from d-9 to d in grid cell i. All regressions control for Wind damage and Rainfall and include decade
and grid fixed effects as well as country-specific linear trends.
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Table 2.7: The average effect of storm surge damage for different income classes – Rural popuation
count

Rural population count
Low income Lower middle income Upper middle income

Storm surge damage -4,676 -6,188 -4,973
(2,564.38) (1,891.85) (2,650.02)
[0.07] [0.00] [0.06]

Observations 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by
affected grid × decade × country in parentheses (), and p-values in brackets []. The co-
efficients show the marginal effects of Storm surge damage on rural popuation count for
different World Bank income classes. The base category is high income class. The sample
covers the decades from 1950 through 2010 for all low elevation coastal zones in exposed
countries. Storm surge damage is the mean of decade d averaged over the yearly data from
d-9 to d in grid cell i. All regressions control for Wind damage and Rainfall and include
decade and grid fixed effects as well as country-specific linear trends.

Table 2.8: The average effect of storm surge damage for different income classes – Urban popuation
count

Urban population count
Low income Lower middle income Upper middle income

Storm surge damage -8,685 -15,777 -15,917
(10,327.95) (7,337.45) (5,776.56)

[0.40] [0.03] [0.01]
Observations 343,805 343,805 343,805

Notes: Panel ordinary least squares regression results with clustered standard errors by af-
fected grid × decade × country in parentheses (), and p-values in brackets []. The coefficients
show the marginal effects of storm surge damage on the urban popuation count for different
World Bank income classes. The base category is high income class. The sample covers
the decades from 1950 through 2010 for all low elevation coastal zones in exposed countries.
Storm surge damage is the mean of decade d averaged over the yearly data from d-9 to d
in grid cell i. All regressions control for Wind damage and Rainfall and include decade and
grid fixed effects as well as country-specific linear trends.

Table 2.9: The average effect of storm surge damage – Central America and Caribbean

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,991 -1,452 -8,854
(1,763.69) (198.02) (1,999.92)
[0.00] [0.00] [0.00]

Wind damage -5,919 -544 -4,517
(3,154.90) (982.20) (2,984.01)
[0.06] [0.58] [0.13]

Rainfall 2.8 -1 2.5
(3.89) (1.07) (3.89)
[0.47] [0.34] [0.51]

Observations 70,128 70,128 70,128
Clusters 584 584 584
Mean dependent variable 2,587 1,098 1,988
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1860 through 2010
for all low elevation coastal zones in exposed countries in Central America and Caribbean. Storm surge damage is the
mean storm surge damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage
is the mean decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and
Rainfall is the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to
d in grid cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.10: The average effect of storm surge damage – Eastern Asia

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -22,843 779 -34,145
(11,846.38) (6,192.59) (13,647.22)

[0.06] [0.90] [0.02]
Wind damage -44,672 -724 -46,159

(23,143.04) (8,137.68) (22,523.02)
[0.06] [0.93] [0.04]

Rainfall 30 21 23
(54.25) (13.99) (61.12)
[0.58] [0.13] [0.71]

Observations 36,771 36,771 36,771
Clusters 63 63 63
Mean dependent variable 36,944 19,884 24,297
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries in Eastern Asia. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.

Table 2.11: The average effect of storm surge damage – Europe

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -2,489 -493 -1,671
(1,150.24) (663.88) (1,287.14)
[0.03] [0.46] [0.20]

Wind damage 17,565 8,162 16,411
(8,094.24) (4,882.50) (10,420.82)
[0.03] [0.10] [0.12]

Rainfall 6.7 -19 9.6
(33.38) (12.75) (35.71)
[0.84] [0.14] [0.79]

Observations 60,956 60,956 60,956
Clusters 96 96 96
Mean dependent variable 3,904 810 3,708
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through
2010 for all low elevation coastal zones in exposed countries in Europe. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.12: The average effect of storm surge damage – North America

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage 2,665 -130 2,885
(3,740.38) (288.53) (3,688.13)
[0.48] [0.65] [0.44]

Wind damage 2,464 -142 2,612
(4,800.22) (405.41) (4,875.78)
[0.61] [0.73] [0.59]

Rainfall -21 -1.1 -21
(11.95) (1.35) (11.87)
[0.08] [0.40] [0.08]

Observations 122,480 122,480 122,480
Clusters 80 80 80
Mean dependent variable 2,576 394 2,428
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1860 through 2010
for all low elevation coastal zones in exposed countries in North America. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.

Table 2.13: The average effect of storm surge damage – Oceania

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -1,086 160 -1,386
(479.12) (86.09) (460.99)
[0.03] [0.07] [0.00]

Wind damage -6,851 -221 -6,422
(6,964.77) (343.83) (6,774.67)
[0.33] [0.52] [0.35]

Rainfall -16 .99 -16
(5.29) (1.02) (4.67)
[0.00] [0.33] [0.00]

Observations 38,591 38,591 38,591
Clusters 89 89 89
Mean dependent variable 1,741 348 1,510
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through
2010 for all low elevation coastal zones in exposed countries in Oceania. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.14: The average effect of storm surge damage – South-Eastern Africa

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -8,292 -7,976 -5,475
(5,013.38) (3,544.74) (3,767.37)
[0.10] [0.03] [0.15]

Wind damage -17,413 -5,733 -4,477
(18,785.94) (5,490.82) (20,934.90)

[0.36] [0.30] [0.83]
Rainfall 8.6 .94 3.4

(10.45) (6.65) (7.67)
[0.41] [0.89] [0.66]

Observations 13,216 13,216 13,216
Clusters 90 90 90
Mean dependent variable 6,425 3,757 3,468
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through
2010 for all low elevation coastal zones in exposed countries in South-Eastern Africa. Storm surge damage is the mean
storm surge damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is
the mean decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and
Rainfall is the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to
d in grid cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.

Table 2.15: The average effect of storm surge damage – South-Eastern Asia

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -18,868 -11,027 -17,906
(6,393.74) (3,671.29) (5,146.95)
[0.00] [0.00] [0.00]

Wind damage 12,255 1,608 10,686
(17,371.72) (6,906.30) (12,945.36)

[0.48] [0.82] [0.41]
Rainfall -7 8.7 -3.2

(20.22) (9.73) (16.23)
[0.73] [0.37] [0.85]

Observations 77,658 77,658 77,658
Clusters 108 108 108
Mean dependent variable 10,835 6,650 6,086
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries in South-Eastern Asia. Storm surge damage is the mean storm
surge damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.16: The average effect of storm surge damage – Southern Asia

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -39,097 -20,726 -29,834
(23,917.97) (13,347.76) (22,122.03)

[0.11] [0.13] [0.18]
Wind damage -43,746 -23,101 -44,207

(59,312.62) (20,243.39) (47,181.69)
[0.46] [0.26] [0.35]

Rainfall -171 -85 -89
(93.65) (42.63) (62.83)
[0.07] [0.05] [0.16]

Observations 25,536 25,536 25,536
Clusters 58 58 58
Mean dependent variable 29,907 19,099 15,627
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries in Southern Asia. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.

Table 2.17: The average effect of storm surge damage – Western Asia

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage 59,746 -4,994 47,001
(29,723.88) (2,737.74) (21,361.23)

[0.05] [0.08] [0.03]
Wind damage -177,520 8,068 -145,965

(76,106.89) (8,193.00) (85,857.62)
[0.02] [0.33] [0.10]

Rainfall -23 -4.9 -35
(69.58) (6.79) (78.55)
[0.74] [0.48] [0.66]

Observations 6,811 6,811 6,811
Clusters 44 44 44
Mean dependent variable 4,728 1,093 4,299
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries in Western Asia. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean
decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is
the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid
cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.18: The average decadal effect of storm surge damage - Central America and Caribbean

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage -325 -524 -927 -1,383 -1,484 -1,711
(106.42) (80.29) (94.29) (190.32) (211.24) (249.75)
[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Observations 70,128 70,128 70,128 70,128 70,128 70,128

Notes: Panel ordinary least squares regression results with clustered standard errors by
affected grid × decade × country in parentheses (), and p-values in brackets []. The
coefficients show the average effect of storm surge damage on Total population count for
different decades compared to 1950. The sample covers the decades from 1860 through
2010 for all low elevation coastal zones in exposed countries in Central America and
Caribbean. Storm surge damage is the mean storm surge damage function of decade d
averaged over the yearly data from d-9 to d in grid cell i. All regressions control forWind
damage and Rainfall and include decade and grid fixed effects as well as country-specific
linear trends.

Table 2.19: The average decadal effect of storm surge damage - Eastern Asia

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage 1,327 486 -398 -1,031 -1,805 -2,190
(1,385.33) (1,226.84) (1,274.51) (1,304.01) (1,549.20) (1,093.13)
[0.34] [0.69] [0.76] [0.43] [0.25] [0.05]

Observations 36,771 36,771 36,771 36,771 36,771 36,771

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid ×
decade × country in parentheses (), and p-values in brackets []. The coefficients show the average effect of
storm surge damage on Total population count for different decades compared to 1950. The sample covers
the decades from 1950 through 2010 for all low elevation coastal zones in exposed countries in Eastern
Asia. Storm surge damage is the mean storm surge damage function of decade d averaged over the yearly
data from d-9 to d in grid cell i. All regressions control for Wind damage and Rainfall and include decade
and grid fixed effects as well as country-specific linear trends. All regressions include decade and grid fixed
effects as well as country-specific linear trends.

Table 2.20: The average decadal effect of storm surge damage - Europe

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage 93 -47 -231 -410 -477 -691
(227.80) (147.28) (101.21) (178.37) (193.77) (285.63)
[0.68] [0.75] [0.02] [0.02] [0.02] [0.02]

Observations 60,956 60,956 60,956 60,956 60,956 60,956

Notes: Panel ordinary least squares regression results with clustered standard errors by affected
grid × decade × country in parentheses (), and p-values in brackets []. The coefficients show the
average effect of storm surge damage on Total population count for different decades compared
to 1950. The sample covers the decades from 1950 through 2010 for all low elevation coastal
zones in exposed countries in Europe. Storm surge damage is the mean storm surge damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions
control for Wind damage and Rainfall and include decade and grid fixed effects as well as
country-specific linear trends. All regressions include decade and grid fixed effects as well as
country-specific linear trends.
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Table 2.21: The average decadal effect of storm surge damage - North America

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage 531 1,059 762 889 835 209
(529.70) (727.94) (762.42) (823.16) (809.82) (506.80)
[0.32] [0.15] [0.32] [0.28] [0.31] [0.68]

Observations 122,480 122,480 122,480 122,480 122,480 122,480

Notes: Panel ordinary least squares regression results with clustered standard errors by
affected grid × decade × country in parentheses (), and p-values in brackets []. The
coefficients show the average effect of storm surge damage on Total population count for
different decades compared to 1950. The sample covers the decades from 1860 through
2010 for all low elevation coastal zones in exposed countries in North America. Storm
surge damage is the mean storm surge damage function of decade d averaged over the
yearly data from d-9 to d in grid cell i. All regressions control for Wind damage and
Rainfall and include decade and grid fixed effects as well as country-specific linear trends.

Table 2.22: The average decadal effect of storm surge damage - Oceania

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage -144 -155 -37 -12 -9.2 46
(239.10) (148.90) (94.26) (65.64) (77.41) (58.24)
[0.55] [0.30] [0.69] [0.86] [0.91] [0.43]

Observations 38,591 38,591 38,591 38,591 38,591 38,591

Notes: Panel ordinary least squares regression results with clustered standard errors by
affected grid × decade × country in parentheses (), and p-values in brackets []. The coeffi-
cients show the average effect of storm surge damage on Total population count for different
decades compared to 1950. The sample covers the decades from 1950 through 2010 for all
low elevation coastal zones in exposed countries in Oceania. Storm surge damage is the
mean storm surge damage function of decade d averaged over the yearly data from d-9 to d
in grid cell i. All regressions control for Wind damage and Rainfall and include decade and
grid fixed effects as well as country-specific linear trends. All regressions include decade
and grid fixed effects as well as country-specific linear trends.

Table 2.23: The average decadal effect of storm surge damage - South-Eastern Africa

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage -1,425 -1,144 -1,044 -1,308 -1,445 -1,865
(1,236.07) (875.85) (781.73) (910.30) (850.47) (1,124.14)
[0.25] [0.19] [0.19] [0.15] [0.09] [0.10]

Observations 13,216 13,216 13,216 13,216 13,216 13,216

Notes: Panel ordinary least squares regression results with clustered standard errors by affected
grid × decade × country in parentheses (), and p-values in brackets []. The coefficients show the
average effect of storm surge damage on Total population count for different decades compared to
1950. The sample covers the decades from 1950 through 2010 for all low elevation coastal zones in
exposed countries in South-Eastern Africa. Storm surge damage is the mean storm surge damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions
control for Wind damage and Rainfall and include decade and grid fixed effects as well as country-
specific linear trends. All regressions include decade and grid fixed effects as well as country-specific
linear trends.
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Table 2.24: The average decadal effect of storm surge damage - South-Eastern Asia

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage 1,022 220 -583 -1,355 -2,229 -2,687
(781.78) (660.81) (664.92) (642.64) (929.66) (742.34)
[0.19] [0.74] [0.38] [0.04] [0.02] [0.00]

Observations 77,658 77,658 77,658 77,658 77,658 77,658

Notes: Panel ordinary least squares regression results with clustered standard errors by affected
grid × decade × country in parentheses (), and p-values in brackets []. The coefficients show the
average effect of storm surge damage on Total population count for different decades compared
to 1950. The sample covers the decades from 1950 through 2010 for all low elevation coastal
zones in exposed countries in South-Eastern Asia. Storm surge damage is the mean storm surge
damage function of decade d averaged over the yearly data from d-9 to d in grid cell i. All
regressions control for Wind damage and Rainfall and include decade and grid fixed effects as
well as country-specific linear trends. All regressions include decade and grid fixed effects as
well as country-specific linear trends.

Table 2.25: The average decadal effect of storm surge damage - Southern Asia

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage 2,641 -2,026 -4,184 -6,501 -8,337 -14,192
(5,513.90) (3,034.08) (3,797.24) (3,174.71) (2,928.71) (4,338.25)
[0.63] [0.51] [0.28] [0.05] [0.01] [0.00]

Observations 25,536 25,536 25,536 25,536 25,536 25,536

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid ×
decade × country in parentheses (), and p-values in brackets []. The coefficients show the average effect of
storm surge damage on Total population count for different decades compared to 1950. The sample covers
the decades from 1950 through 2010 for all low elevation coastal zones in exposed countries in Southern
Asia. Storm surge damage is the mean storm surge damage function of decade d averaged over the yearly
data from d-9 to d in grid cell i. All regressions control for Wind damage and Rainfall and include decade
and grid fixed effects as well as country-specific linear trends. All regressions include decade and grid fixed
effects as well as country-specific linear trends.

Table 2.26: The average decadal effect of storm surge damage - Western Asia

Total population count
1960 1970 1980 1990 2000 2010

Storm surge damage 2,922 5,550 4,147 11,594 6,600 13,605
(3,964.39) (4,691.12) (2,800.31) (7,940.80) (3,202.12) (7,066.21)
[0.47] [0.24] [0.15] [0.15] [0.05] [0.06]

Observations 6,811 6,811 6,811 6,811 6,811 6,811

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid ×
decade × country in parentheses (), and p-values in brackets []. The coefficients show the average effect of
storm surge damage on Total population count for different decades compared to 1950. The sample covers
the decades from 1950 through 2010 for all low elevation coastal zones in exposed countries in Western
Asia. Storm surge damage is the mean storm surge damage function of decade d averaged over the yearly
data from d-9 to d in grid cell i. All regressions control for Wind damage and Rainfall and include decade
and grid fixed effects as well as country-specific linear trends. All regressions include decade and grid fixed
effects as well as country-specific linear trends.
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2.6.3 Robustness Tests

Figure 2.30: Randomization test for storm surge damage
Notes: This figure shows the t-statistics of the Fisher randomization test results for the storm
surge damage variable where the decades are permuted for 1000 repetitions. It displays the kernel
density plots (blue) of the randomized t-statistics together with the results of the main model
(Figure 3, Panel a) (red bar).

Table 2.27: Robustness – Excluding outliers

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -1,099 -810 -1,465
(385.08) (430.48) (448.52)
[0.00] [0.06] [0.00]

Wind damage -2,021 -2,239 247
(737.70) (1,159.75) (1,306.32)
[0.01] [0.05] [0.85]

Rainfall -3.8 3.1 -8
(1.74) (2.32) (2.99)
[0.03] [0.18] [0.01]

Observations 171,652 171,652 171,652
Clusters 350 350 350
Mean dependent variable 2,529 1,748 1,328
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends. In this regression all outliers larger than Cook’s
Distance of 4/N are excluded.
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Table 2.28: Robustness – Excluding unpopulated areas

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,901 -2,199 -12,577
(3,281.58) (1,366.42) (8,178.42)
[0.02] [0.11] [0.12]

Wind damage -10,312 -1,320 -8,334
(7,480.87) (2,597.37) (19,432.26)
[0.17] [0.61] [0.67]

Rainfall -19 -.87 -53
(16.47) (8.60) (33.54)
[0.25] [0.92] [0.11]

Observations 340,426 324,210 85,443
Clusters 785 783 756
Mean dependent variable 11,082 5,980 28,847
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends. In this regression all oberservations with zero
population are excluded.

Table 2.29: Robustness – Excluding areas with less than 10 people

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -9,131 -2,631 -12,621
(3,805.82) (1,674.95) (8,232.38)
[0.02] [0.12] [0.13]

Wind damage -10,730 -1,321 -8,247
(8,180.27) (2,783.97) (19,470.38)
[0.19] [0.64] [0.67]

Rainfall -18 -.93 -53
(17.66) (9.19) (33.64)
[0.31] [0.92] [0.11]

Observations 300,591 281,939 84,986
Clusters 785 783 756
Mean dependent variable 12,550 6,876 29,002
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends. In this regression all oberservations with less
than 10 people are excluded.
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Table 2.30: Robustness – Excluding areas with less than 100 people

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -10,330 -2,928 -13,241
(4,637.70) (2,151.72) (8,767.58)
[0.03] [0.17] [0.13]

Wind damage -11,304 -857 -8,255
(9,126.16) (3,005.22) (19,881.63)
[0.22] [0.78] [0.68]

Rainfall -19 -2.6 -53
(18.64) (9.66) (34.54)
[0.31] [0.79] [0.12]

Observations 247,723 227,254 80,278
Clusters 784 782 756
Mean dependent variable 15,219 8,521 30,700
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends. In this regression all oberservations with less
than 100 people are excluded.

Table 2.31: Robustness – Including temperature controls

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,735 -2,215 -9,533
(3,254.44) (1,336.63) (3,823.69)
[0.02] [0.10] [0.01]

Wind damage -9,832 -369 -9,665
(7,410.11) (2,398.03) (6,626.68)
[0.18] [0.88] [0.15]

Rainfall -19 -.75 -15
(16.43) (8.06) (11.92)
[0.25] [0.93] [0.22]

Temperature -217 -171 -183
(260.26) (109.12) (266.62)
[0.41] [0.12] [0.49]

Observations 308,665 308,665 308,665
Clusters 785 785 785
Mean dependent variable 12,198 6,279 7,999
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. Temperature is the
mean decadal tropical cyclones’ temperature (in degree Celsius) of decade d averaged over the yearly data from d-9 to
d in grid cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.32: Robustness – Including squared climate controls

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,436 -2,370 -9,137
(3,398.42) (1,405.34) (3,933.96)
[0.03] [0.09] [0.02]

Wind damage -9,777 -410 -9,579
(7,486.21) (2,392.90) (6,702.92)
[0.19] [0.86] [0.15]

Rainfall -23 2 -21
(20.07) (9.18) (15.80)
[0.25] [0.83] [0.18]

Rainfall2 .0047 -.0027 .0065
(0.01) (0.00) (0.01)
[0.52] [0.46] [0.26]

Temperature -378 -107 -377
(254.15) (91.38) (269.78)
[0.14] [0.24] [0.16]

Temperature2 12 -4.9 15
(7.41) (2.76) (6.76)
[0.10] [0.07] [0.03]

Observations 308,665 308,665 308,665
Clusters 785 785 785
Mean dependent variable 12,198 6,279 7,999
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. Temperature is the
mean decadal tropical cyclones’ temperature (in degree Celsius) of decade d averaged over the yearly data from d-9 to
d in grid cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.

Table 2.33: Robustness – Squared country specific time trend

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,554 -2,199 -9,277
(3,139.31) (1,280.10) (3,742.80)
[0.02] [0.09] [0.01]

Wind damage -10,857 -1,029 -10,330
(7,476.87) (2,535.68) (6,637.10)
[0.15] [0.68] [0.12]

Rainfall -14 1.8 -11
(16.95) (8.51) (12.09)
[0.42] [0.83] [0.36]

Observations 343,805 343,805 343,805
Clusters 785 785 785
Mean dependent variable 10,973 5,641 7,206
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific squared trends.
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Table 2.34: Robustness – Sample period 1980-2010

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -6,409 -692 -6,503
(3,190.14) (979.93) (3,242.25)
[0.05] [0.48] [0.05]

Wind damage 1,777 1,231 2,539
(5,343.77) (1,567.28) (5,077.76)
[0.74] [0.43] [0.62]

Rainfall -.93 2.6 -.43
(8.22) (3.39) (7.87)
[0.91] [0.44] [0.96]

Observations 196,460 196,460 196,460
Clusters 443 443 443
Mean dependent variable 13,789 6,524 9,653
SD storm surge damage 0.1157 0.1157 0.1157

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades 1980 through 2010 for
all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function of
decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends.

Table 2.35: Robustness – country clustering

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,765 -2,155 -9,590
(2,447.24) (1,434.44) (3,223.06)
[0.00] [0.14] [0.00]

Wind damage -10,324 -484 -10,122
(7,256.51) (3,248.08) (5,885.59)
[0.16] [0.88] [0.09]

Rainfall -19 -.69 -15
(19.84) (12.28) (10.28)
[0.34] [0.96] [0.15]

Observations 343,805 343,805 343,805
Clusters 91 91 91
Mean dependent variable 10,973 5,641 7,206
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by country in parentheses (), and
p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone damage types on the
total, urban and rural population counts. The sample covers the decades from 1950 through 2010 for all low elevation
coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function of decade d averaged
over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage function of decade d
averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical cyclones’ rainfall
(in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include decade and grid
fixed effects as well as country-specific linear trends.
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Table 2.36: Robustness – Admin level 1 clustering

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,765 -2,155 -9,590
(2,368.45) (1,167.23) (2,446.47)
[0.00] [0.07] [0.00]

Wind damage -10,324 -484 -10,122
(6,014.90) (2,795.89) (5,766.01)
[0.09] [0.86] [0.08]

Rainfall -19 -.69 -15
(18.16) (11.39) (12.27)
[0.30] [0.95] [0.23]

Observations 343,805 343,805 343,805
Clusters 80 80 80
Mean dependent variable 10,973 5,641 7,206
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by administrative level 1 in
parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends.

Table 2.37: Robustness – Region clustering

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,765 -2,155 -9,590
(3,709.30) (1,942.56) (5,116.83)
[0.07] [0.30] [0.10]

Wind damage -10,324 -484 -10,122
(9,110.97) (1,637.79) (8,253.29)
[0.29] [0.78] [0.25]

Rainfall -19 -.69 -15
(19.69) (10.92) (10.48)
[0.36] [0.95] [0.19]

Observations 343,805 343,805 343,805
Clusters 9 9 9
Mean dependent variable 10,973 5,641 7,206
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by region in parentheses (), and
p-values in brackets []. The regions are Central America and Caribbean, Eastern Asia, North America, Oceania, South-
Eastern Africa, South-Eastern Asia, Southern Asia, and Western Asia. The coefficients show the marginal effect of
the different tropical cyclone damage types on the total, urban and rural population counts. The sample covers the
decades from 1950 through 2010 for all low elevation coastal zones in exposed countries. Storm surge damage is the
mean storm surge damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage
is the mean decadal wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and
Rainfall is the mean decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to
d in grid cell i. All regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.38: Robustness – Affected area × decade clustering

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -7,765 -2,155 -9,590
(2,995.80) (996.37) (4,448.75)
[0.02] [0.05] [0.05]

Wind damage -10,324 -484 -10,122
(9,204.63) (1,673.26) (7,915.73)
[0.28] [0.78] [0.22]

Rainfall -19 -.69 -15
(12.67) (5.23) (10.14)
[0.16] [0.90] [0.17]

Observations 343,805 343,805 343,805
Clusters 14 14 14
Mean dependent variable 10,973 5,641 7,206
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade in
parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage function
of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends.

Table 2.39: Robustness – Non LECZ

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -987 312 -3,607
(4,442.99) (1,307.28) (4,022.91)
[0.82] [0.81] [0.37]

Wind damage -5,163 -261 -5,279
(3,767.70) (1,961.78) (3,414.24)
[0.17] [0.89] [0.12]

Rainfall 1.6 .75 .13
(14.73) (10.14) (9.33)
[0.91] [0.94] [0.99]

Observations 3,838,212 3,838,212 3,838,212
Clusters 926 926 926
Mean dependent variable 3,313 2,152 1,826
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for all non low elevation coastal zones in exposed countries. Storm surge damage is the mean storm surge damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal
wind damage function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean
decadal tropical cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All
regressions include decade and grid fixed effects as well as country-specific linear trends.
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Table 2.40: Robustness – Coastal area of 50 km

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage -2,350 -1,022 -4,534
(1,659.25) (972.30) (2,189.66)
[0.16] [0.29] [0.04]

Wind damage -4,858 756 -4,918
(5,428.84) (1,648.54) (5,108.02)
[0.37] [0.65] [0.34]

Rainfall -21 -1.5 -20
(9.15) (4.56) (7.74)
[0.03] [0.75] [0.01]

Area Coastal 50 km Coastal 50 km Coastal 50 km
Observations 734,426 734,426 734,426
Clusters 845 845 845
Mean dependent variable 7,747 4,130 5,054
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for coastal areas of 50 km in exposed countries. Storm surge damage is the mean storm surge damage function of
decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends.

Table 2.41: Robustness – Coastal area of 100 km

Total population count Rural population count Urban population count
(1) (2) (3)

Storm surge damage 138 -104 -2,409
(1,592.68) (946.67) (1,861.07)
[0.93] [0.91] [0.20]

Wind damage -3,895 1,062 -4,218
(4,989.27) (1,555.81) (4,616.65)
[0.44] [0.49] [0.36]

Rainfall -22 -4 -21
(9.39) (4.82) (7.22)
[0.02] [0.41] [0.00]

Area Coastal 100 km Coastal 100 km Coastal 100 km
Observations 1,041,852 1,041,852 1,041,852
Clusters 847 847 847
Mean dependent variable 6,811 3,779 4,312
SD storm surge damage 0.1128 0.1128 0.1128

Notes: Panel ordinary least squares regression results with clustered standard errors by affected grid × decade × country
in parentheses (), and p-values in brackets []. The coefficients show the marginal effect of the different tropical cyclone
damage types on the total, urban and rural population counts. The sample covers the decades from 1950 through 2010
for coastal areas of 100 km in exposed countries. Storm surge damage is the mean storm surge damage function of
decade d averaged over the yearly data from d-9 to d in grid cell i, Wind damage is the mean decadal wind damage
function of decade d averaged over the yearly data from d-9 to d in grid cell i, and Rainfall is the mean decadal tropical
cyclones’ rainfall (in mm) of decade d averaged over the yearly data from d-9 to d in grid cell i. All regressions include
decade and grid fixed effects as well as country-specific linear trends.
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2.6.4 Additional Tables

Table 2.42: Summary Statistics – LECZ global sample

Observations Mean St.dev. Min Max
Total population count 343,805 10,973.10 41,039.03 0.00 2.22e+06
Rural population count 343,805 5,640.89 18,278.40 0.00 1.66e+06
Urban population count 343,805 7,206.26 37,787.83 0.00 1.76e+06
Storm surge damage 343,805 0.02 0.07 0.00 0.70
Wind damage 343,805 0.01 0.02 0.00 0.48
Rainfall (mm) 343,805 15.85 24.10 0.00 195.02
Storm surge water level (m) 343,805 0.15 0.43 0.00 7.34
Temperature (Degr. Celsius) 308,665 10.78 13.43 -27.61 30.95
Crop suitability 343,805 27.36 24.89 0.00 92.19

Table 2.43: Summary Statistics – LECZ in Central America and Caribbean

Observations Mean St.dev. Min Max
Total population count 30,681 4,569.67 18,380.20 0.00 587916.00
Rural population count 30,681 1,692.46 5,870.93 0.00 242874.00
Urban population count 30,681 3,793.86 17,485.16 0.00 501164.00
Storm surge damage 30,681 0.03 0.06 0.00 0.58
Wind damage 30,681 0.01 0.03 0.00 0.19
Rainfall (mm) 30,681 30.44 21.75 0.00 128.71
Storm surge water level (m) 30,681 0.20 0.36 0.00 4.65
Temperature (Degr. Celsius) 30,681 10.73 9.61 -11.51 27.93
Crop suitability 30,681 32.91 25.89 0.00 92.19

Table 2.44: Summary Statistics – LECZ in Eastern Asia

Observations Mean St.dev. Min Max
Total population count 36,771 36,944.01 71,789.49 2.00 1.69e+06
Rural population count 36,771 19,884.06 25,281.32 0.00 580450.00
Urban population count 36,771 24,296.98 73,694.44 0.00 1.63e+06
Storm surge damage 36,771 0.05 0.12 0.00 0.70
Wind damage 36,771 0.02 0.03 0.00 0.40
Rainfall (mm) 36,771 32.79 30.75 0.13 195.02
Storm surge water level (m) 36,771 0.32 0.72 0.00 5.27
Temperature (Degr. Celsius) 36,771 2.06 5.76 -11.99 22.45
Crop suitability 36,771 39.39 23.88 0.00 86.00
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Table 2.45: Summary Statistics – LECZ in Europe

Observations Mean St.dev. Min Max
Total population count 60,956 3,903.60 14,934.74 0.00 476189.00
Rural population count 60,956 810.19 3,462.80 0.00 161356.00
Urban population count 60,956 3,708.26 15,159.07 0.00 476189.00
Storm surge damage 60,956 0.01 0.03 0.00 0.37
Wind damage 60,956 0.00 0.00 0.00 0.05
Rainfall (mm) 60,956 0.71 2.08 0.00 26.61
Storm surge water level (m) 60,956 0.04 0.18 0.00 2.99
Temperature (Degr. Celsius) 33,236 -8.59 6.89 -26.88 10.13
Crop suitability 60,956 10.16 16.61 0.00 79.93

Table 2.46: Summary Statistics – LECZ in North America

Observations Mean St.dev. Min Max
Total population count 53,585 4,601.67 23,271.81 0.00 1.13e+06
Rural population count 53,585 602.30 1,356.09 0.00 16,870.00
Urban population count 53,585 4,415.76 22,987.61 0.00 1.05e+06
Storm surge damage 53,585 0.02 0.06 0.00 0.63
Wind damage 53,585 0.01 0.03 0.00 0.31
Rainfall (mm) 53,585 17.83 22.64 0.00 116.54
Storm surge water level (m) 53,585 0.12 0.40 0.00 7.34
Temperature (Degr. Celsius) 46,165 -2.06 8.63 -27.61 21.57
Crop suitability 53,585 17.96 20.71 0.00 88.83

Table 2.47: Summary Statistics – LECZ in Oceania

Observations Mean St.dev. Min Max
Total population count 38,591 1,740.56 8,662.71 0.00 258929.00
Rural population count 38,591 347.65 1,494.23 0.00 83,546.50
Urban population count 38,591 1,509.62 8,444.29 0.00 234084.60
Storm surge damage 38,591 0.02 0.07 0.00 0.70
Wind damage 38,591 0.00 0.01 0.00 0.20
Rainfall (mm) 38,591 13.78 20.97 0.00 136.80
Storm surge water level (m) 38,591 0.14 0.42 0.00 6.18
Temperature (Degr. Celsius) 38,591 21.42 5.65 -1.89 30.30
Crop suitability 38,591 28.67 21.91 0.00 84.00

Table 2.48: Summary Statistics – LECZ in South-Eastern Africa

Observations Mean St.dev. Min Max
Total population count 13,216 6,425.05 29,569.39 0.00 742390.00
Rural population count 13,216 3,757.05 19,084.41 0.00 476915.60
Urban population count 13,216 3,468.45 19,981.27 0.00 364403.20
Storm surge damage 13,216 0.05 0.12 0.00 0.69
Wind damage 13,216 0.00 0.01 0.00 0.13
Rainfall (mm) 13,216 19.21 23.59 0.00 120.12
Storm surge water level (m) 13,216 0.32 0.75 0.00 5.14
Temperature (Degr. Celsius) 13,216 22.87 4.53 -5.38 29.95
Crop suitability 13,216 24.55 21.35 0.00 89.00
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Table 2.49: Summary Statistics – LECZ in South-Eastern Asia

Observations Mean St.dev. Min Max
Total population count 77,658 10,834.79 43,900.83 0.00 2.22e+06
Rural population count 77,658 6,649.52 24,418.37 0.00 1.66e+06
Urban population count 77,658 6,086.03 34,795.95 0.00 1.73e+06
Storm surge damage 77,658 0.02 0.06 0.00 0.67
Wind damage 77,658 0.00 0.02 0.00 0.48
Rainfall (mm) 77,658 11.94 25.46 0.00 188.12
Storm surge water level (m) 77,658 0.14 0.39 0.00 5.11
Temperature (Degr. Celsius) 77,658 22.82 6.07 -8.72 30.95
Crop suitability 77,658 39.00 23.56 0.00 87.99

Table 2.50: Summary Statistics – LECZ in Southern Asia

Observations Mean St.dev. Min Max
Total population count 25,536 29,907.36 69,553.50 0.00 1.92e+06
Rural population count 25,536 19,099.36 29,023.98 0.00 750183.20
Urban population count 25,536 15,627.33 67,768.59 0.00 1.76e+06
Storm surge damage 25,536 0.02 0.05 0.00 0.44
Wind damage 25,536 0.00 0.01 0.00 0.16
Rainfall (mm) 25,536 22.96 22.01 0.00 137.18
Storm surge water level (m) 25,536 0.12 0.31 0.00 2.64
Temperature (Degr. Celsius) 25,536 12.59 7.31 -10.83 28.65
Crop suitability 25,536 35.47 26.31 0.00 83.00

Table 2.51: Summary Statistics – LECZ in Western Asia

Observations Mean St.dev. Min Max
Total population count 6,811 4,727.67 26,097.54 0.00 724493.00
Rural population count 6,811 1,092.83 3,187.95 0.00 61,983.00
Urban population count 6,811 4,299.10 25,825.23 0.00 634361.10
Storm surge damage 6,811 0.01 0.02 0.00 0.12
Wind damage 6,811 0.00 0.00 0.00 0.05
Rainfall (mm) 6,811 1.63 4.85 0.00 41.26
Storm surge water level (m) 6,811 0.03 0.09 0.00 0.72
Temperature (Degr. Celsius) 6,811 11.63 7.41 -8.73 26.35
Crop suitability 6,811 0.40 1.89 0.00 41.79
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3 | Disastrous Discretion – The Nonlinear Political Bias

in U.S. Hurricane Relief

This chapter is joint work with Stephan A. Schneider.

Another version of this chapter has appeared as:

Schneider, S. A., & Kunze, S. (2021). Disastrous Discretion: Ambiguous Decision Situations

Forster Political Favoritism. KOF Working Papers No. 491.

Abstract: Allocation decisions are vulnerable to political influence, but little is known
about when politicians can use their discretion to pursue their strategic goals. We show the
nonlinearity of political favoritism in an exogenous framework of U.S. disaster relief. Based on
a simple theoretical model, we demonstrate that political biases are most pronounced when
the need for a disaster declaration is ambiguous. Exploiting the spatiotemporal randomness of
all hurricane strikes in the United States from 1965–2018, we find that presidents favor areas
governed by their fellow party members when allocating disaster declarations. Our nonlinear
estimations reveal that political influence varies immensely with respect to storm intensity.
The alignment bias for medium-strength hurricanes exceeds standard linear estimates eightfold.



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

3.1 Introduction

Natural disasters constitute severe negative shocks for people in affected regions. But disasters

also create opportunities for politicians. They can show their leadership skills in the light of a

catastrophic event that attracts substantial public attention and may be able to use disaster

relief as an instrument for strategic fund distribution. This raises concerns of political factors

undermining an efficient allocation of disaster assistance.

In this paper, we use random spatiotemporal variation in physical hurricane intensities

to identify a nonlinear political bias in U.S. federal disaster declarations. Previous analyses

of various political-economic settings provide evidence for different forms of home-region

favoritism (e.g., Burgess et al., 2015; Carozzi & Repetto, 2016; Gehring & Schneider, 2018;

Hodler & Raschky, 2014) and increased government spending to politically aligned areas

(e.g., Berry et al., 2010; Brollo & Nannicini, 2012; Curto-Grau et al., 2018; Fiva & Halse,

2016).64 However, little is known about whether politicians generally act in a self-interested

manner or whether only specific situations foster such behavior that results in the biased

allocations that the literature observes. We argue that political-economic relationships are in

fact nonlinear, being over-proportionally strong in ambiguous situations that allow politicians

to make targeted use of their discretion (cf. Durante & Zhuravskaya, 2018; Hodler et al.,

2010). Studying the political reaction to hurricanes, we show that the strength of the political

bias in executive decision-making on whether to provide disaster relief depends on the degree

to which a specific event presents a favorable opportunity for strategic behavior. To the best

of our knowledge, this is the first empirical analysis that reveals how the strength of political

favoritism in a distributive policy, such as public disaster relief, varies systematically with

the severity of the respective situation.

Based on a simple theoretical model, we derive that political effects are only moderate

when examining the average of all disaster events. However, in the case of medium-strength

disasters, when public opinion on whether to provide aid is divided, political influence is

substantially larger. These are the situations in which political actors are in a relatively

64In addition, evidence exists that governments favor areas with electorally more important constituents in
their funding allocations (e.g., Kauder et al., 2016; Kriner & Reeves, 2015). Similarly, manifold evidence
documents political biases and the existence of political budget cycles in the domain of foreign aid (e.g.,
Bommer et al., 2019; Dreher et al., 2019; Faye & Niehaus, 2012) and the Bretton-Woods-institutions (e.g.,
Eichenauer et al., 2020; Lang & Presbitero, 2018). Kuziemko & Werker (2006) and Dreher et al. (2009)
show, for instance, that states with a temporary seat on the U.N. Security Council receive more U.S. aid
and a higher number of World Bank projects respectively. Gassebner & Gnutzmann-Mkrtchyan (2018) find
that countries voting in line with the United States are more likely to be given trade preferences.
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better position to (mis)use their discretionary power. In contrast, biased behavior should

not be politically affordable and thus not be prevalent if a disaster is either very weak or

very strong: the allocation of disaster relief is unambiguously required in the latter case and

clearly unwarranted in the former. Acting against the public opinion in such situations could

be politically costly.

To test these propositions, we present an empirical assessment of all hurricane-related

federal disaster declarations issued by U.S. presidents between 1965–2018. We analyze random

shocks from hurricanes, whose physical damage we model by using fine-grid meteorological

data. For every hurricane that hit the United States in our 54-year sample period, we apply

a meteorological model to estimate the individual spatial destructiveness on a 1 × 1 kilometer

scale. Focusing the analysis on U.S. hurricanes has both high socioeconomic relevance and

several empirical advantages.

First, hurricanes are the most destructive natural disasters in the United States, with

high economic relevance and substantial public attention. Within the last decade, hurricanes

have been responsible for more than 50% of all disaster-related damage. The 2017 hurricane

season has been the costliest in the United States to date: the three major hurricanes, Harvey,

Irma, and Maria, alone caused 3,167 fatalities and USD 278 billion in damage.65

Second, the random trajectories and varying physical strengths of hurricanes at different

locations make them an ideal object of research in our county-level analysis. Given different

baseline risks between counties, for which we control by including county fixed effects and time

trends, the timing, location, and severity of hurricane strikes are random and unpredictable

(e.g., Aguado & Burt, 2015; Hsiang, 2010; Strobl, 2011).

Third, by combining new data on all causes of hurricane damage (wind speed, rainfall,

and storm surge) with our political-economic framework, we are able to present new causal

evidence on whether the U.S. disaster relief system provides relief to the regions most strongly

affected or whether efficient allocation is actually undermined by political factors. We study

the issuance of federal disaster declarations – a unilateral decision of the U.S. president in

response to an exogenous shock (Gasper & Reeves, 2011). We focus on the president’s binary

choice to declare an event a disaster or not. A federal disaster declaration is the requirement

for the provision of relief by the Federal Emergency Management Agency (FEMA). The

65The source for all numbers cited in this paragraph is as follows: https://www.ncdc.noaa.gov/billions/, last
accessed August 6, 2020.
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president does not decide the actual relief payment amounts, which FEMA bureaucrats

determine during the recovery phase in the years to follow.66

To that end, we observe a quasi-experiment in which politicians are randomly selected by a

stochastic natural process to react to a shock unpredictable in timing and location. Hurricanes

trigger the political decision-making process. Since the hurricane season usually ends before

major elections take place in November, all political factors are predetermined when the

disaster strikes; for example, the governor of an affected state, who requests federal relief

from the president, is either politically aligned or unaligned with the president. Based on the

observed disaster intensity, the president must make a decision as to whether a federal disaster

declaration is necessary. To capture the causal political alignment effect, our identifying

assumption is that, conditional on location, year, time trends, and random hurricane strength,

there exists no other explanatory factor that systematically explains both the changing

political alignment status and the probability of a county receiving a disaster declaration.67

Our data allow us to flexibly estimate heterogeneous political effects for different levels of

disaster intensity. By interacting our political variable of interest with high-dimensional

polynomial and semi-parametric hurricane intensity measures, we can test our hypothesis of a

nonlinear political bias without making any strict functional form assumptions for hurricane

damage or the unknown pattern of political influence.

Our results show that the probability of receiving a disaster declaration is significantly

higher on average when the requesting governor and the president are co-partisans. However,

the 2.7-percentage point increase we find on average for all storm intensities conceals the

actual heterogeneity of the effect and underestimates its economic significance. Our flexible

nonlinear estimations show that political factors are up to eight times more important

for medium-strength disasters. The probability of observing a disaster declaration in an

area with medium damage increases by up to 21 percentage points if the governor and the

66For details about the relief system, see Section 3.2.1 and Appendix 3.7.1. Data on the actual relief amounts
paid out by FEMA for hurricane disasters are only available for a limited period starting in 1998. Similarly,
we collected data on governors’ declaration requests via a Freedom of Information Act inquiry from FEMA.
However, the available time period is only 1992–2015. We show estimations using these data in the appendix.
Both analyses yield insignificant results, but we do not see the results as conclusive due to the stark data
limitations. We thus focus the analysis on actual declarations as the observable outcomes of the declaration
process to assess the degree of political bias in disaster relief allocations. Regions affected by disasters also
experience an influx of transfers other than disaster declaration funds. However, the influence of politics
cannot be isolated when examining general social welfare payments, disaster loans, private donations or
efforts by other non-profit organizations. These all play an important role in disaster response.

67To rule out remaining endogeneity concerns about the alignment status, we show that our results hold in
subsamples of close election outcomes, where it is essentially random whether the incumbent governor is
aligned or unaligned with the president.
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president are from the same party. For low and extremely high wind speeds, the influence of

political alignment is close to zero and insignificant. Taking the heterogeneous relationship

into account, we calculate that the political alignment effect for hurricane-related disasters

amounts to at least USD 500 million on average per year. In comparison, conventional average

estimates from the related literature underestimate the economic magnitude by a factor of 3

to 5.

We document that other political factors are also highly influential for intermediate storm

intensities and show further heterogeneities of the analyzed relationship. For instance, our

results indicate that areas with low electoral support for the president’s party receive fewer

declarations and that the alignment effect is more pronounced for governors who have been

elected with smaller margins. Using triple interactions, we analyze within- and between-year

political relief cycles. We find that presidents are more likely to declare a disaster for storms

occurring closer to elections in November.

The results hold in various alternative specifications, e.g., when including 10 lags of

hurricanes or declarations, and when allowing a separate disaster intensity function for each

state. We also restrict the analysis to various subsamples (excluding, for instance, individual

decades or states, dropping observations with high leverage and outliers, and focusing on

swing states and coastal counties). In addition to showing various robust alternative choices

regarding conventional levels of one- or two-way clustering, we employ a randomization

approach based on simulations with placebo-treatment allocations. Not relying on any

parametric clustering assumptions, we can infer a positive relationship between declarations

and political alignment for a broad range of intermediate wind intensities.

Our findings add to several strands of the literature. First, we contribute to the literature

on the alignment bias in intergovernmental transfers. Various studies document this effect for

different countries (e.g., Brollo & Nannicini 2012, for Brazil; Quinckhardt 2019, for Germany;

Arulampalam et al. 2009, for India; Bracco et al. 2015, for Italy; Fiva & Halse 2016, for

Norway; Curto-Grau et al. 2018, for Spain; and Larcinese et al. 2006, for the United States).

While this literature establishes that alignment with the central government is an important

political factor to understand biases in distributive politics ‘on average’, it remains unclear how

this relationship varies in different situations and whether the described linear relationships

in the literature are conclusive (see Lang & Presbitero, 2018). Our analysis provides the

first systematic test for a nonlinear political bias. We show that specific constellations shape

185



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

politicians’ incentives so that some allocation decisions are prone to an alignment bias, while

others are not.

Second, we thereby relate to the debate on whether and when politicians are effectively held

accountable for their actions by the electorate (e.g., Balles et al., 2020; Besley & Burgess, 2002;

Besley & Case, 1995; Christenson & Kriner, 2019; Snyder & Strömberg, 2010). Focusing on

the importance of media attention, Durante & Zhuravskaya (2018) and Djourelova & Durante

(2019) demonstrate how politicians time unpopular executive and military actions to days

when public attention in the United States is diverted by other events. The novel approach

of our analysis is that we do not refer to unrelated third events that divert public attention

but that the treatment heterogeneity of the disaster itself creates a variety of situations that

are more or less suitable for strategic political behavior. Our results correspond to the notion

that politicians rather find it feasible to act in a politically biased fashion when they are not

confronted with a situation in which the electorate clearly expects a particular action. Our

theoretical model also establishes the role of public opinion as an important factor to control

politicians’ unilateral actions.

Third, in studying executive decision-making in the United States, we add to the literature

on U.S. distributive politics. Existing studies find, for instance, that states with a higher

vote share for the president in previous elections (e.g., Dynes & Huber, 2015; Larcinese et al.,

2006), areas electing president’s co-partisan House members (Berry et al., 2010; Kriner &

Reeves, 2015), and those with Congress members who belong to the majority party (Albouy,

2013) receive more spending. Recent evidence from Bostashvili & Ujhelyi (2019) documents

the existence of political budget cycles in U.S. highway spending.68

Previous studies on U.S. disaster declarations suggest that election-year cycles exist and

that electorally more important or competitive states are favored in the allocation of disaster

relief; however evidence on the existence of an alignment bias is mixed (see Garrett & Sobel,

2003; Gasper, 2015; Reeves, 2011). While these analyses cover 8 to 25 years, our county-level

panel spans 54 years (1965–2018). Importantly, our approach differs from these analyses

by modeling disaster intensity directly from fine-grid physical data instead of relying on

68Further evidence on political budget cycles mostly exists for developing countries and young democracies
(Aidt et al., 2020; Brender & Drazen, 2008; Gonschorek et al., 2018; Shi & Svensson, 2006). Cole et al. (2012)
and Besley & Burgess (2002) find, for instance, that Indian governments increase calamity relief and public
food distribution in election years. However, Potrafke (2020) and Schneider (2010) find election-year shifts
in budget composition toward more visible government expenditures in established democracies, Bjørnskov
& Voigt (2020) show electoral cycles in state of emergency declarations after terrorist attacks, and Bohn &
Sturm (2020) present evidence for dampening effects of expected economic downturns.
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potentially endogenous reported damage estimates like, e.g., the frequently used SHELDUS or

EM-DAT data. These data sets have several shortcomings. The damage data are self-reported

or stem from insurance claims and governmental reports, which results in measurement bias.

Furthermore, they include only disasters above a certain monetary threshold, which leads

to incomplete coverage. Appendix 3.7.3 summarizes the criticism regarding the usage of

reported damage data (see also Dell et al., 2014; Felbermayr & Gröschl, 2014; Gallagher,

2019). We overcome these issues by applying physical and meteorological data to proxy

for hurricane damage directly, which allows for an exogenous identification of impacts on a

fine-grid level.

Fourth, by applying the physical hurricane damage model, our contribution applies recent

insights from the disaster impact literature in a political-economic framework. We thereby

relate to studies on the effects of extreme weather events (e.g., Auffhammer, 2018; Bakkensen

et al., 2018; Elliott et al., 2019; Kalkuhl & Wenz, 2020; Noy, 2009). This literature establishes

the analysis of exogenous random weather shocks such as hurricanes in economics and studies

their manifold socioeconomic consequences (Dell et al., 2012; Deryugina, 2017; Deryugina

et al., 2018; Elliott et al., 2015; Felbermayr & Gröschl, 2014; Hsiang & Jina, 2014; Klomp,

2016; Kunze, 2021; Strobl, 2011, 2012). We advance the damage literature by using not

only a selection of possible physical sources of hurricane damage but the entirety of them:

wind speed, rainfall, and storm surge. Overall, spatial wind speed intensities remain the

most important physical explanatory variable in our model since storm surge is only present

at the coast and precipitation is highly localized. However, controlling for damage in a

comprehensive way is useful to isolate political influence from objective factors of need for

the issuance of a disaster declaration.

The disaster impact literature demonstrates that relief, prevention, and insurance are

important to mitigate damage from natural disasters (e.g., Cohen & Werker, 2008; Davlash-

eridze et al., 2017; Healy & Malhotra, 2009). Hence, it is essential that these mechanisms

function efficiently (e.g., Eichenauer et al., 2020; Klomp, 2016; Strobl, 2011). Our findings

add to the understanding of the biased behavior of politicians in disaster relief allocation

decisions. Learning more about these political-economic processes is crucial for designing

better functioning mechanisms in the future.

The paper is structured as follows: after motivating our study by presenting a brief

theoretical framework for the political economy of disaster relief allocation and deriving our
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main hypothesis, Section 3.3 describes our data. We explain the storm intensity measures

and how we use them to model disaster severity. Subsequently, we outline our empirical

strategy in Section 3.4. Section 3.5 contains the results from the empirical estimations and

provides various sensitivity tests. The paper concludes with a discussion of the implications

of our findings regarding the functioning of democratic control of politicians in general and

the specific potential changes to the relief system that we propose.

3.2 Disaster Relief Allocation: A Political-Economic

Framework

In this section, we describe the disaster declaration process and introduce a simple model

for the president’s rationale in allocating disaster relief. We use these to derive our main

hypothesis of a heterogeneous political alignment bias. It relates to theoretical models on

the political economy of fiscal federalism that account for interactions of different levels of

government (e.g., Bracco et al., 2015; Curto-Grau et al., 2018; Dixit & Londregan, 1998; Geys

& Vermeir, 2014). Our model is mainly based on Arulampalam et al. (2009) and Solé-Ollé &

Sorribas-Navarro (2008), who assert that the central government can behave opportunistically

by using its discretion in grant allocation to make politically motivated transfers to local

governments. We adapt the structure of these models to the U.S. disaster declaration

framework. Our model introduces the impact of natural disasters and the allocation of

disaster relief.69 Before presenting the model set-up, the following section briefly explains the

system of federal disaster declarations in the United States (see also Appendix 3.7.1 for an

in-depth discussion).

3.2.1 Disaster Declarations in the United States of America

The U.S. president has the executive power to declare a federal disaster, which results in

the allocation of federal funds. The declaration process has been in place since 1950 and

has “changed very little over time” (Lindsay & McCarthy, 2015, 20). It works as follows: if

a natural disaster appears to overwhelm local and state capacities in an affected area, the
69The purpose of our model is to generate insights for the empirical framework of U.S. disaster declarations.
However, the model could be developed further to be applicable to other types of aid or salient distributive
policies that concentrate benefits in certain regions while being financed through general taxes. This applies,
for instance, to international development aid, redistribution schemes intended to support economically
weaker regions, or funds being allocated according to eligibility criteria, e.g., in the EU (see, e.g., Asatryan
& Havlik, 2020; Budjan & Fuchs, forthcoming; Gehring & Schneider, 2018, 2020; Michaelowa et al., 2018).
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state’s governor can initiate a preliminary damage assessment and send an official disaster

declaration request to the president.70 Based on the information collected from the state,

FEMA makes a recommendation to the White House, but it is solely at the president’s

discretion whether or not to declare the event a federal disaster (see, e.g., FEMA, 2017b).

Presidents have wide discretionary power regarding under which circumstances and in which

areas they declare a disaster and which requests they deny. Their decision does not require

any explanation or justification (Reeves, 2011). The president issues a declaration to a specific

state and explicitly lists the counties eligible for federal help.71 Only contingent upon a

presidential disaster declaration can FEMA initiate its work on site.

There exist two types of disaster declarations: emergency declarations, which are financially

capped and intended to ensure a quick response, and major disaster declarations, which are

more comprehensive and essentially release a potentially unlimited amount of money once they

are issued. Disaster declarations can cover both public and individual assistance, under which

individuals may, for instance, receive financial grants, temporary housing, unemployment

benefits, or crisis counseling (see also Appendix 3.7.1). Crucially, FEMA determines the

amount of financial assistance needed and decides which individuals or public entities in the

declared area are eligible for relief.

The model that we present in the following section takes the interactions of the different

levels of government into account and formalizes the unilateral decision-making of the president

as well as the reaction of the electorate.

3.2.2 Theoretical Model

3.2.2.1 Model Set-Up and Theoretical Embedding

We study presidential disaster declarations in a two-party system where local governments can

be aligned (A) or unaligned (U) with the federal government. Our model incorporates voters’

electoral reactions to declarations accounting for their own utility and fairness concerns. As

disaster relief is non-programmatic and connected to individual past events, we focus on

70To facilitate reading, we use the term “governor”. However, tribal chief executives, the mayor of Washington
D.C., and the heads of U.S. trust or commonwealth territories, have the same rights to request declarations.

71While the governor can propose counties for the disaster declaration, “the president [...] may choose to
include some but not all of the counties recommended by the governor” (Sylves, 2008, 83–84). Notably,
the president can even declare an emergency without a gubernatorial request when “he determines that
an emergency exists for which the primary responsibility for response rests with the United States [...]”
(McCarthy, 2014, 9).
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retrospective voting.72 We show that the declaration behavior of vote-maximizing presidents

differs with the alignment status of the affected counties.

In our model, hurricanes with intensities si ∈ [0,+∞) randomly hit counties i = {1, ...,N},

with populations normalized to 1. The corresponding damage h(si) is strictly increasing in si.

U.S. presidents have the power to issue federal disaster declarations Di ∈ {0,1} at the county

level. Relief amounts ψh(si) for each declaration are determined by FEMA, where ψ ∈ (0,1)

is the fixed share of damage mitigated due to disaster relief.

Disaster declarations are highly visible. They are usually accompanied by substantive

public attention and media coverage, providing information to voters and thereby bringing

the issue of disaster relief to the fore.73 The fact that decisions regarding the issuance of

disaster declarations are straightforward to understand and directly observable by voters

distinguishes our study from related models in the literature where voters can only rate the

indirect consequences of allocations or politicians’ efforts (e.g., Arulampalam et al., 2009;

Bracco et al., 2015; Geys & Vermeir, 2014; Hodler et al., 2010).

For simplicity, we assume that voters’ electoral decisions are defined by only two criteria.

First is a fixed ideological position X, which represents the ensemble of all other political

preferences as a point on a one-dimensional spectrum (cf. Dixit & Londregan, 1998; Solé-Ollé

& Sorribas-Navarro, 2008). The ideology spectrum in county i follows a single-peaked county-

specific distribution with Xi ∈ (−∞;∞). The respective cumulative distribution function Φ(Xi)

is common knowledge. More negative values of X denote a stronger ideological bias of voters

toward the party of the president.

Second, the voters’ electoral decisions depend on the effect of federal disaster relief on

their utility ui. Various studies find that voters blame the government and punish incumbents

if a natural disaster occurs (e.g., Cole et al., 2012). However, Gasper & Reeves (2011) show

empirically that the electorate behaves ‘attentively’ and rewards politicians in elections for a

vigorous disaster response, including federal disaster relief spending.74 We incorporate these
72Regarding social transfers in general, voters react to both past spending (e.g., de La O, 2013; Levitt &
Snyder, 1997; Manacorda et al., 2011) and future promises (Elinder et al., 2015).

73The media plays an important role as an intermediary in disaster assistance by communicating information
to the electorate. Eisensee & Strömberg (2007) show that the amount of U.S. aid in response to a foreign
disaster was higher over the 1968–2002 period if the disaster received more media attention. Strömberg
(2004) demonstrates that U.S. counties with many radio listeners received more relief funds in new deal
spending, and Besley & Burgess (2002) show that Indian governments spend more on relief in the case of
food shortages in regions in which newspaper circulation is higher. While we do not explicitly model the
media, our theory accounts for different levels of national public attention (cf. Durante & Zhuravskaya,
2018).

74See, for example, the evidence presented by Bechtel & Hainmueller (2011) for Germany, Cole et al. (2012) for
India, Lazarev et al. (2014) for Russia, and Gasper & Reeves (2011) as well as Healy & Malhotra (2009) for
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reactions by integrating disaster damage and relief in the voters’ private utility function ui

with u′i > 0 and u′′i < 0:

ui
(
−h(si) ·

(
1 − Di · ψ

)
− τ

)
. (3.1)

Hurricane damage h(si) decreases voters’ utility. However, receiving a disaster declaration Di

mitigates hurricane damage by the factor ψ. Therefore, voters’ private utility gain from a

declaration in their county is strictly positive and increases with disaster intensity si. Relief

is funded by lump-sum taxes τ = N−1 ∑N
k=1

(
Dk · ψh(sk)

)
.

As shown by Alesina & Angeletos (2005), societies value redistribution more if they

perceive that wealth outcomes are, to a larger extent, determined by luck. Furthermore,

experimental and empirical evidence demonstrates that voters consider social and fairness

concerns in their preferences for redistributive policies, such as disaster relief (Bechtel &

Mannino, 2017; Durante et al., 2014; Meya et al., 2020). To account for this, we introduce

a fairness component fi = α
∑N

j=1, j,i
(
Dj · (sj − s)

)
, by which voters assess declarations to all

other counties. The threshold s > 0 is the disaster strength above which voters start to

support relief provision to another county. The smaller the difference sj − s, the smaller is

the potential electoral reward or punishment from voters outside county i. Finally, α>0

denotes the relative importance of fairness considerations or the strength of the national

public opinion.

Based on this and taking the voters’ ideological positions Xi into account, voter i decides

to vote for the party of the president if

ui + fi ≥ Xi . (3.2)

In general, however, presidential disaster declarations are preceded by a governor’s request.

We assume that voters also account for the local governor’s efforts and attribute some share

of the utility gain from disaster relief to the governor’s party. That is, if the governor is

politically unaligned with the president, the president’s party might capture less of the voters’

reward for a declaration, even in a federal election (cf. Curto-Grau et al., 2018; Geys &

Vermeir, 2014). Therefore, we define θ as the amount of ‘vote leakage’ (Arulampalam et al.,

2009; Solé-Ollé & Sorribas-Navarro, 2008), i.e., the share of voter goodwill that the party

the U.S. A recent reanalysis of Gasper & Reeves (2011) by Gallagher (2019) finds no evidence for attentive
behavior of the electorate after applying corrections to the data used (see also our discussion about the
shortcomings of reported damage data in Appendix 3.7.3).
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of the president does not receive.75 In unaligned counties, the electorate’s support for the

president’s party is then defined as

(1 − θ)ui + fi ≥ Xi + θui . (3.3)

If the state government and the president happen to be aligned, there is no ‘vote leakage’ to

the opposition party (θ = 0). The expression simplifies to Equation 3.2, and the president’s

party captures the entire electoral benefit from a declaration.

In practice, θ > 0 represents the conflicting incentives that presidents face when declaring

a disaster in an unaligned county. Neither governors nor presidents can be assumed to

willingly offer a stage for the opposing party to claim the benefits of disaster relief, but they

would also want to benefit from the electoral reward of a declaration themselves. In the

aligned case (θ = 0), incentives to support co-partisans are manifold as politicians need them

to follow through with their political agenda or to defend their political legacy (Alesina &

Tabellini, 2007). Particularly for upcoming election campaigns, where key aligned politicians

act as major endorsers and campaigners for their parties’ candidates, it is important to

strengthen their own political team and alliances (cf. Ansolabehere & Snyder, 2006; Carozzi

et al., forthcoming; Zudenkova, 2011).

In summary, the president faces two different voter reaction functions when deciding on

disaster declarations for aligned (A) and unaligned counties (U):

X̂A
i = ui + fi ≥ Xi (3.4)

X̂U
i = (1 − 2θ)ui + fi ≥ Xi . (3.5)

X̂A
i and X̂U

i are the thresholds below which all voters vote for the party of the president. By

issuing a disaster declaration, the president can shift X̂i. Thus, presidents’ decisions can alter

the number of votes for their parties by making some voters with ideological positions close

to the threshold change their vote decision. The degree to which a disaster declaration shifts

75We focus the analysis on presidents, who have the declaration decisions in all counties at their disposal.
As we assume that local governors only care about the utility of their own constituents, they always have
an incentive to request disaster relief (cf. Carozzi & Repetto, 2016; Weingast et al., 1981) We restrict the
analysis to the case where θ ∈ [0,0.5]. Values > 0.5 (i.e., the governor’s party capturing more benefits from a
presidential declaration than the presidents themselves) would imply reversed incentives for the president as
the marginal utility of declarations becomes negative in unaligned counties (Solé-Ollé & Sorribas-Navarro,
2008).

192



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

X̂i depends on various factors. It will for instance take a larger shift to the right if hurricane

intensity s is higher and if the respective governor is politically aligned.

3.2.2.2 Model Solution and Implications

We assume that presidents maximize the electoral support for their party across all counties

using the following objective function:

max
DA

m ,DU
n

N A∑
m=1
Φ(X̂A

m) +

NU∑
n=1
Φ(X̂U

n ), (3.6)

where DA
1 , ...D

A
N A and DU

1 , ...,D
U
NU are the N = NU + NA declaration decisions in all aligned

(A) and unaligned counties (U). The first-order conditions (FOCs) of this optimization are

the ceteris paribus differences in electoral support for the president from issuing a declaration

in county i. To simplify the notation in this discrete optimization, we write the FOCs as

∆ΦA
i = 0 and ∆ΦUi = 0, respectively.76 To isolate the alignment effect, we assume that the

distribution function Φ and voter preferences ui are equal in aligned and unaligned counties.

Based on the FOCs, presidents decide to declare a disaster in all counties where they

receive a positive electoral response. Due to the fairness component, presidents only receive

positive support from declarations for hurricanes with damage h(si) > h(s∗). Ceteris paribus,

this critical hurricane intensity threshold s∗ however differs between aligned (A) and unaligned

counties (U). The utility increase from a declaration for voters is higher the more severe the

destruction h(si) is. Due to vote leakage, the president receives a higher reward for issuing

a declaration for the same hurricane intensity in aligned counties compared to unaligned

counties. Therefore s∗U > s∗A is required so that ∆ΦA = ∆ΦU = 0 holds with any 0 < θ < 0.5.

The critical hurricane strength above which it is beneficial for the president to issue a disaster

declaration is higher for unaligned counties than for aligned counties.

To evaluate when the alignment bias – the difference between s∗U and s∗A – is higher,

we discuss the other relevant parameters in the model. First, the alignment bias is stronger

when the amount of vote leakage θ is higher. Second, if fairness considerations α are stronger,

voters weight the effects on inhabitants of other counties relatively higher. A stronger public

opinion undermines the strength of the alignment bias (cf. Besley & Burgess, 2002; Durante

76∆ΦA and ∆ΦU are short notations for ∆ΦA
i = Φ

(
ui(Di = 1, si)+ fi

)
+(N−1) ·Φ

(
u−i+α(si−s)+α

∑N
j=1, j,−i Dj (sj−

s)
)
− Φ

(
ui(Di = 0, si) + fi

)
+(N − 1) · Φ

(
u−i + α

∑N
j=1, j,−i Dj (sj − s)

)
and

∆ΦU
i
= Φ

(
(1 − 2θ)ui(Di = 1, si) + fi

)
+(N − 1) · Φ

(
u−i + α(si − s) + α

∑N
j=1, j,−i Dj (sj − s)

)
− Φ

(
(1 − 2θ)ui(Di =

0, si) + fi
)
+(N − 1) · Φ

(
u−i + α

∑N
j=1, j,−i Dj (sj − s)

)
.
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& Zhuravskaya, 2018; Snyder & Strömberg, 2010). Likewise, the alignment bias is weaker if

the president is office-motivated to a lesser degree (cf. Hodler et al., 2010). Third, if there

are fewer voters with strong ideologies, i.e., the distribution of Φ is narrower around zero, the

potential electoral benefits from a declaration increase. There are more voters that switch

their electoral decision due to a declaration.

Apart from the emergence of an average alignment bias, we derive the crucial refinement

that certain constellations influence the incentives of election-motivated politicians such that

some allocation decisions are susceptible to an alignment bias while others are not. For

hurricanes with very high [very low] intensities, all affected counties unanimously receive

[do not receive] a declaration. An alignment bias occurs only in counties that fall within

an intermediate interval of disaster severity. In these cases, the president only declares a

disaster if a county is aligned. This theoretical result corresponds to our hypothesis that

political considerations in relief allocation only come into play for medium-strength disasters,

i.e., when public opinion is not entirely for or against issuing a declaration. These are the

situations in which politicians can make use of their discretion to pursue their strategic

political goals. We test our theoretical result of a heterogeneous political bias in our empirical

analysis.

3.3 Data

3.3.1 Hurricane Data

Hurricanes are chaotic weather shocks that hit the United States in a season usually ranging

from June to November each year.77 Even 48 hours before landfall, the exact hurricane

location is impossible to predict (Aguado & Burt, 2015; Rappaport et al., 2009), which is

reflected in the chaotic behavior of hurricane raw tracks displayed in Panel a of Figure 3.1.

In general, hurricanes have three major damage sources: wind, excessive rainfall, and storm

surge along the coast. As wind intensity is highly correlated with the other two damage

sources, it is common in the literature to use wind speed as the sole damage proxy (Hsiang,

2010; Kunze, 2021; Strobl, 2011). We additionally model damage using new rainfall and

coastal flooding data to account for all possible hurricane damage. However, as rainfall is

77See Appendix 3.7.2 for details about hurricane genesis and impacts.
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highly localized and storm surge occurs only in coastal counties, we utilize wind intensity as

our primary damage variable while always controlling for the other two factors.

To model hurricane damage, we use meteorological data on wind speed from the In-

ternational Best Track Archive for Climate Stewardship (IBTrACS) data set provided by

the National Oceanic and Atmospheric Administration (Knapp et al., 2010) for the years

1965–2018. It contains data on all hurricanes, tropical storms, and tropical depressions

collected from various weather agencies via satellites, ships, airplanes, or weather stations.

The raw tracks data include six-hourly observations of the exact position, wind speed, and

minimum sea pressure of each storm. However, the raw data tracks, as displayed in Panel a

of Figure 3.1, have no information on the spatial size and destructiveness of hurricanes. To

calculate spatial destructiveness, we apply Kunze’s (Kunze, 2021) implementation of the

meteorological CLIMADA model (Aznar-Siguan & Bresch, 2019), which generates spatially

varying wind fields for each individual storm track in the sample at a resolution of 1×1 km.

Figure 3.1: Hurricane raw tracks and modeled Wind Speed average, 1965–2018
Notes: Panel a displays the tropical cyclone raw tracks (red lines). Panel b shows the average
annual Wind Speed exposure for the period 1965–2018 computed from our meteorological wind
field model. The colors represent different average Wind Speed intensities, ranging from purple
(0 km/h) to yellow (>70 km/h).
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Appendix 3.7.4 describes the wind field model in more detail. In total, we have data on

275 tropical cyclones in our sample. Panel b of Figure 3.1 displays the average wind speed

exposure over the 1965–2018 period, as derived from our wind field model.

The variable Wind Speed represents the maximum annual hurricane-related wind speed

in each county. We thereby account for the most damaging hurricanes per county and year,

which are responsible for the majority of catastrophic consequences and are established as a

valid predictor of destruction and disaster declarations (Hsiang, 2010; Murnane & Elsner,

2012; Nordhaus, 2010; Strobl, 2011). Appendix Figure 3.29 shows the strong relationship

between Wind Speed and the likelihood of observing a disaster declaration. The majority of

counties has one hurricane event per year (66%). Around 22% have two events per year. To

account for the possibility of multiple shocks, we include the yearly frequency of hurricanes

in a robustness test for our estimation. Since the hurricane data are available at a higher

time frequency than years, we also generate a variable that indicates the exact month for the

strongest hurricane per county-year observation. In comparison to other political-economic

studies, the usage of the physical intensity data is a clear advantage. Older studies (e.g.,

Davlasheridze et al., 2017; Eisensee & Strömberg, 2007; Gasper, 2015; Healy & Malhotra,

2009; Reeves, 2011) rely primarily on reported damage data, such as SHELDUS or EM-DAT,

which are prone to measurement errors, missing data, and endogeneity (Felbermayr & Gröschl,

2014; Gallagher, 2019; Kousky, 2014). We discuss their shortcomings in Appendix 3.7.3. We

circumvent these problems by applying objective and exogenous physical intensity measures

to model damage from hurricanes.

Figure 3.2 displays the annual variation of the Wind Speed variable at the county level.

One can see that the exposure to hurricanes varies significantly over time. Given the nature

of the wind field model, observations well below the common hurricane threshold of 119 km/h

are present in our data for two reasons. First, the raw data include all tropical cyclones. In

addition to hurricanes, the IBTrACS data set also covers less intense tropical storms and

tropical depressions. Second, the wind field model computes wind intensities for the whole

extent of the hurricane. Typically, the most intense wind speeds occur around the eyewall, at

the center of the hurricane, while wind speeds decrease when moving further away from the

center. To show the robustness of our approach, we also calculate specifications without less

intense tropical cyclones and with a specific hurricane damage function proposed by Emanuel
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(2011), which uses a specific functional form with a lower bound cut-off value (see Appendix

3.7.4).

To also account for the two remaining damage sources of hurricanes, namely, storm surge

and rainfall, we control for their influence in all our specifications. We use the newly developed

storm surge data set by Kunze & Strobl (2020) to generate the maximum inundation level (in

meters) per county and year (Storm Surge). The data set is based on a hydrodynamic model

that generates one-hourly water level maps at the coast for all tropical cyclones recorded in

the IBTrACS data set (Knapp et al., 2010). In addition, we also control for hurricane-related

Rainfall, which is another cause of hurricane damage (Bakkensen et al., 2018). Unlike wind

speed, precipitation does not decrease steadily when moving away from the storm’s center.

Our variable captures the maximum total rainfall (in mm) collected from weather stations

during individual hurricanes in affected counties. We construct the Rainfall variable from

the raw data of Roth (2018). The special feature of our rainfall data is that they solely

capture daily precipitation from hurricanes at exact coordinates. Rainfall thus accounts for

the maximum hurricane-related precipitation value per county and year.

3.3.2 Disaster Declarations

The raw data for our dependent variable Declaration originate from the openFEMA database

(FEMA, 2019), which contains a county listing of all disaster declarations since 1965. Conse-

Figure 3.2: Yearly variation of maximum Wind Speed per county,
1965–2018
Notes: Each point in the figure represents one county-level Wind Speed
observation over the period 1965–2018.
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quently, our level of analysis is the county-year level. We construct Declaration as an indicator

of 1, if a county received at least one hurricane-related disaster declaration in a given year

and 0 if otherwise. Following Reeves (2011), we include both major disaster declarations and

emergency declarations for our indicator.78 We also present results with a separate indicator

for emergency and major disaster declarations. In our data, 8,094 county-year observations re-

ceived at least one Declaration. Furthermore, we collected information on disaster declaration

denials by the president via a Freedom of Information request (2019-FEFO-00419) to FEMA.

Unfortunately, data on rejected requests for hurricane disasters only cover the 1992–2015

period, with only 188 county-year declaration denials reported to us by FEMA in connection

with tropical cyclones.79 The variation is too small to infer any robust relationships, but for

completeness we show results where we include data on FEMA requests in the Appendix

(Table 3.11).

3.3.3 Political Variables of Interest

To assess the effect of governors and presidents being fellow party members, we construct the

variable Aligned Governor based on data from Klarner (2013) and the National Governors

Association. It takes a value of 1 if the president and the governor belong to the same political

party and 0 if otherwise.80 On average, the Aligned Governor status changes 10.7 times for

an individual county during the 54 years of our sample. Analogously, we construct binary

variables for congressional politicians’ party affiliations (Aligned Representative) and for the

two incumbent senators (Aligned Senators) of the state being co-partisans of the president.81

Additionally, we exploit data on past election outcomes to test further political channels.

For instance, we create two indicator variables for high- and low-support districts. The

78In addition to declarations in the incident type category ‘Hurricane’, we include declarations from the
categories ‘Coastal Storm’, ‘Flooding’, and ‘Severe Storm(s)’ if they contain a clear reference to a specific
tropical cyclone in their title or can be matched via the date of occurrence to storms in our data set.
We exclude the exceptional evacuation for Hurricane Katrina victims where all counties in the nation
that hosted evacuees received a declaration despite not being affected by the hurricane. Only 2% of the
county observations received more than one declaration per year. Using the number of declarations as a
dependent variable might cause problems due to double-declarations for individual disasters (see Reeves,
2011). Declaration is not prone to these outliers. Nonetheless, we show results using the count variable
Declarations (total annual number of declarations per county and year) in the Appendix.

79According to FEMA, this data set is complete with no deletions or exemptions.
80The variable indicates the party affiliation at the beginning of November (i.e., at the point of a potential
presidential election). In case of independent governors we code it as 0.

81We further construct the variable Party Alignment, which counts how many of the aforementioned political
actors are aligned with the president’s party. We use election data to generate variables for party affiliations
of incumbent House members. The data were provided by James M. Snyder. Previous versions of this data
set are used in Hainmueller et al. (2015) and Eggers et al. (2015). To match voting district data from the
House to individual counties, we apply a population weighting procedure. To code Aligned Senators, we use
state-level election results from the CQ Voting and Elections Collection.
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variable High Support District takes a value of 1 if the incumbent president’s party gained

more than 60% of the votes in the most recent election, and 0 otherwise. If it won less than

40% in the last election, the variable Low Support District is coded as 1. We also analyze

close-election subsamples and how the alignment bias differs with respect to the margin of

victory of the respective governors in the previous gubernatorial election.

We document all variables explained above, as well as further covariates and their sources,

in Appendix 3.7.5. Observations in our data cover all counties from the contiguous United

States if they have a positive value for Wind Speed, Rainfall, or Storm Surge.82 The final

panel data set consists of 85,309 county-year observations over the 1965–2018 period. As a

robustness test, we also show results using a fully balanced panel including observations not

affected by a hurricane in a specific year, which inflates the data set with zeros (see Figure

3.18). Table 3.1 shows descriptive statistics for the main variables used in the analysis (see

Appendix 3.7.5 Table 3.3 for the full summary statistics).

3.4 Empirical Strategy

We analyze U.S. presidents’ disaster declaration decisions after hurricanes hitting the United

States. As Section 3.2.1 explains, presidents have the discretion to declare an event a disaster

or not. We use a setting that allows us to identify systematic political biases in the declaration

decisions.

Table 3.1: Summary statistics of main variables

Observations Mean St.dev. Min Max
Declaration 85,309 0.08 0.27 0.00 1.00
Emergency Declaration 85,309 0.03 0.18 0.00 1.00
Major Declaration 85,309 0.06 0.24 0.00 1.00
Declarations 85,309 0.11 0.41 0.00 5.00
Aligned Governor 85,309 0.46 0.50 0.00 1.00
Aligned Representative 85,309 0.47 0.50 0.00 1.00
Aligned Senators 85,309 0.30 0.46 0.00 1.00
Alignment Count 85,309 1.94 1.25 0.00 4.00
Wind Speed 85,309 24.28 37.37 0.00 352.71
Rainfall 85,309 57.77 67.63 0.00 1,538.73
Storm Surge 85,309 0.04 0.27 0.00 6.01
Hurricane Month 84,947 8.38 1.35 5.00 11.00

82We exclude Hawaii, Alaska, and Washington D.C., and all U.S. overseas territories from the analysis due to
their locations, lack of data availability or quality in the observation period, and their different political and
electoral rights.
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Previous studies document political influence in distributive politics. However, analyses

of government spending often deal with various sources of endogeneity and uncertainty about

the channels of the effect. What is often unclear is whether the observed favoritism is due

to the politicians’ direct actions or engagements in different forms of log-rolling. Usually,

executive politicians can also control the timing of their decisions to a certain extent as part

of an endogenous process. Political alignment biases have a mechanical explanation in that

an incumbent’s ideology is consistent with the spending preferences of the areas from which

politicians receive the most electoral support and that are more often politically aligned.

Our strategy overcomes potential endogeneity issues by exploiting the fact that, conditional

on location, hurricane incidence and severity are random (e.g., Dell et al., 2014; Deryugina,

2017; Kunze, 2021; Strobl, 2012). That is, we observe a quasi-experiment in which politicians

are randomly selected by a stochastic natural process to react to a shock unpredictable in

timing and location. Hurricanes trigger the political decision-making process (i.e., politicians

cannot opt-out or postpone their decision). A current exogenous event prompts them to make

a declaration decision given a current exogenous event. At this point in time, all political

factors are predetermined; for example, the governor of an area hit by a storm is either

aligned or unaligned with the president. An additional property of hurricanes is that the

hurricane season ranges from June to November. It therefore typically ends before general

elections take place in November, which could alter the alignment status, potentially causing

reverse causality problems.

Furthermore, the shock that politicians face is characterized by highly heterogeneous

treatment patterns. Hurricanes have different strengths, and, for each individual storm,

damage can range from devastating (for areas hit by the eye of a hurricane) to very light (for

those affected by outer bands of a storm system). This heterogeneity in the degree to which

areas are affected corresponds to different levels of need for a declaration in each place. As

explained in the previous section, we rely on the assumption that stronger hurricanes, ceteris

paribus, cause more damage.83

It is evident that our estimation strategy can only work in a fixed-effects-within estimation

framework. Locations differ in their exposure to hurricanes, for example, coastal counties

in the Southeastern United States have a higher baseline risk of a tropical storm affecting
83To also account for the possibility that different levels of wind speed region-specifically correspond to different
levels of damage and need for relief between locations (e.g., due to differences in wealth, infrastructure, etc.),
we show that our results are robust to allowing separate damage proxies for each state in Appendix Figure
3.22.
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them. Additionally, some counties might have a more vulnerable infrastructure or population

than others. We account for such unobserved heterogeneities that are constant over time by

including county fixed effects. Similarly, differences between years (e.g., due to extraordi-

nary storm seasons), government administrations, national elections, and general technical

improvements, can cause heterogeneities between years. Year fixed effects capture these

differences. Additionally, some structural differences between locations may have changed

over the course of our 54-year-long panel. For instance, climatic changes may have altered

the baseline pattern of storm occurrence, mitigation efforts may have changed over time, or

the vulnerability of the population may have changed. We thus allow for individual linear

time trends for each county. Accordingly, the following least-squares equation represents the

starting point for our analysis:

Declarationi,t = α+βAligned Governors,t+γWind Speedi,t+X′i,t µ+σi+τt+σi×Tt+εi,s,t, (3.7)

where Declaration is the binary indicator for disaster declarations received by county i in

year t.84 Our main variable of interest is the indicator Aligned Governor. Additionally, Xi,t

represents the vector of further explanatory variables, including other potential hurricane

damage sources such as Rainfall and Storm Surge, and the alignment statuses of the House

representatives and senators (Aligned Representative and Aligned Senators). The equation

contains county fixed effects (σi), year fixed effects (τt), and county-specific linear time

trends (σi × Tt). The error term is defined as εi,s,t . While the inclusion of further covariates

might improve efficiency, we do not include socioeconomic controls that are themselves likely

outcomes of the exogenous storm shocks (see, e.g., Dell et al., 2014). Nevertheless, we show

in Appendix Table 3.7 and Figure 3.24 that our results do not change significantly when we

add a vector of socioeconomic controls including county-level income, population, and race.

Throughout the analysis, our identifying assumption for the estimation of political

influence is that, conditional on the location, year, time trends, and hurricane strength, no

84We estimate least-squares fixed effects within regressions using the reghdfe-command (written by Correia,
2017) in STATA. For robustness, Appendix Table 3.6 also shows maximum-likelihood estimates from
conditional fixed effects logit and probit models. We also run Poisson and Poisson Pseudo-Maximum
Likelihood (PPML) models using the number of Declarations as the dependent variable and controlling for
the number of hurricane events in a year. Coefficients of Aligned Governor are positive and significant in all
alternative models. Average partial effects from the logit and probit regressions are nearly the same size as
the coefficients in the linear probability model.
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other explanatory factor systematically explains both the political alignment status and the

probability of a county to receive a disaster declaration. A remaining concern might be that

political alignment is not the result of an exogenous process. To show that our results are

not flawed due to any systematic correlations with unobserved factors, we run robustness

tests that draw on close election outcomes. In situations where incumbent governors win

the election by a very close margin, it is quasi-random whether the state they represent is

politically aligned or unaligned with the incumbent president because the alignment status

changes discontinuously at the 50% threshold (e.g., Brollo & Nannicini, 2012; Eggers et al.,

2015; Pettersson-Lidbom, 2008). We document the robustness of our full-sample findings in

subsamples defined by different closeness bandwidths (see Figure 3.5).

The baseline equation presented above takes a structural approach in modeling storm

damage by assuming a linear relationship between Wind Speed and disaster declarations.

This strict functional form assumption might be an acceptable proxy, but abandoning it has

major advantages for our study. First, we can show that our results do not depend on any

potentially erroneous functional form assumption and that they hold when disaster severity is

modelled flexibly. Second, and most importantly, only dropping this static linear assumption,

allows us to test our main hypothesis of heterogeneous political effects.

To account for nonlinearities in a flexible way, we introduce two approaches. First, we

replace the linear Wind Speed variable with a Wind Speed polynomial (
∑4

h=1 γhWind Speedhi,t).

We additionally interact the entire polynomial with our political variable of interest (Aligned

Governor). The equation then becomes:

Declarationi,t = α + βAligned Governors,t +
4∑

h=1
γhWind Speedh

i,t

+

4∑
h=1

(
δhWindSpeedh

i,t × AlignedGovernors,t
)
+X′i,t µ + σi + τt + σi × Tt + εi,s,t .

(3.8)

We aim for a parsimonious baseline model in order not to inflate the regression unneces-

sarily with additional parameters, which allows us to analyze subsamples or to add further

interactions. Based on a sequence of F-tests, we select a quartic Wind Speed polynomial for

our baseline model. Note that our results are robust to including higher order polynomials

up to the ninth degree (see Appendix Table 3.21).85

85To select a baseline for the Wind Speed polynomial, we run a sequence of F-tests for all possible choices in
which we compare an unrestricted model including interacted Wind Speed polynomials up to degree n with
a more restricted nested model with degree n − 1. Using both backward and forward selection, we end up
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The second approach is inspired by Schlenker & Roberts (2009) and Deschênes & Green-

stone (2011): it models hurricane strength semi-parametrically by defining bins of wind speed
10∑
j=1

γjWind Class ji,t . These are dummy variables that indicate whether the respective obser-

vations of Wind Speed fall into a certain interval. Analogously to the polynomial approach,

all dummy variables are then interacted with the political variable of interest. Wind Speed

can hence flexibly affect the probability of a disaster declaration, and we can estimate a

separate marginal effect of the interacted political factor for every wind intensity interval.86

To make use of the fine-grid variation of our hurricane and declaration data, we run

disaggregated estimations at the county level. The main variable of interest, Aligned Governor,

varies on the state level. However, disasters are declared for specific counties within states.

The underlying standard error structure cannot be assumed to be independent across counties

and years since hurricanes affect neighboring counties in a similar way, and declarations are

issued in bundles of counties. Furthermore, a county’s history of storms and declarations or

its geographic location might induce autocorrelation. To be conservative regarding inference,

all our estimations allow error correlation both within and between observations, and we

cluster standard errors on the state × year and county level. For a discussion on applying

two-way clustered standard errors see, for example, Cameron & Miller (2015). Appendix

Table 3.4 and Figure 3.14 show that our results are robust to all possible conventional choices

of clustering the standard errors, which include clustering at the county, county and year,

year, state, state × year, hurricane, and hurricane × state level. Additionally, the results

are also robust to arbitrary spatial heteroskedasticity and autocorrelation consistent (HAC)

errors (Colella et al., 2019) that allow errors to be correlated within a 1,000 km radius and

10 years.

Furthermore, we calculate a permutation p-value based on a nonparametric inference

method using placebo treatment allocation in the spirit of Chetty et al. (2009). Using this

simulation, we can also calculate confidence intervals for the political effect at each wind

speed without a parametric clustering assumption. None of the alternative inference methods

with a polynomial of the fourth degree. Higher order polynomials do not yield a significantly better fit to
explain declarations. Appendix Table 3.8 shows the respective F-statistics. Note that we cannot simply
rely on conventional damage functions or simpler functional forms used in the literature as we model the
political effect of disaster declarations and not only, e.g., hurricane damage. Additionally, we particularly
argue in our theoretical model that the political influence is nonlinear.

86The Wind Speed bins each consist of a 25 km/h interval between 0 and 225 km/h and one additional category
representing all wind observations above 225 km/h. Zero Wind Speed observations are the omitted category
(observations only treated with positive storm-associated rainfall). The only functional form assumption of
this approach is that effects are constant within bins.
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suggest that we falsely reject the null hypothesis in the broad intermediate range of wind

intensities that we show the relationship to be robust for.

3.5 Results

3.5.1 Average Alignment Effects

Turning to the results, we first provide estimates for the average relationship of political

alignment and disaster declarations. This approach adds to results on the alignment bias from

the previous empirical literature but making use of our fine-grid hurricane data. Table 3.2

shows the results of six fixed effects regressions explaining the issuance of disaster declarations.

All estimations include county and year fixed effects and use the entirety of the 85,309 county-

year-observations affected by a hurricane from 1965–2018. Our estimations control for storm

intensity directly. In all regressions, coefficients of Wind Speed and our additional Rainfall

control are highly significant, explaining a large share of the overall variation in disaster

declarations.87 Notably, when comparing Column 1, which only includes the hurricane

measures, with the other specifications in Table 3.2, neither the coefficient size nor the

significance of the hurricane variables is affected by the inclusion of the political variables.

A one standard deviation increase (approx. 39 km/h) raises the probability of a disaster

declaration by about 7.5 percentage points.

The second column adds our main variable of interest, i.e., Aligned Governor. The

estimated coefficient of 0.032 is highly significant with a p-value of 0.006. Standard errors

in Table 3.2 are two-way clustered at the state × year and county level to account for both,

error correlation of counties within a state and correlation within counties over time. The

coefficient signifies that, ceteris paribus, counties have, on average, a 3.2 percentage points

higher chance of receiving a disaster declaration if the president and the governor are aligned.

The coefficient of Aligned Governor remains remarkably stable when including other political

variables of interest. Aligned Representatives and Aligned Senators are also related to a higher

probability of receiving a disaster declaration (Column 3). Unlike governors, representatives

and senators are not directly involved in the process of requesting declarations. However, they

87Storm Surge is significant and positive in the first four columns but shows an insignificant coefficient close
to zero once we include the Wind Speed-polynomial. While Wind Speed and Rainfall explain the variation
of Declaration in all counties, Storm Surge is only an important factor in low-elevation coastal zones (see
Section 3.3.1 and Kunze & Strobl, 2020). In addition, Storm Surge is highly correlated with higher orders of
Wind Speed. We still include Storm Surge in all our regressions to capture all potential damage sources of
hurricanes directly.
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Table 3.2: Average regression results

Dep. Var.: Declaration (1) (2) (3) (4) (5) (6)
Aligned Governor 0.032 0.027 0.027 0.027 0.026

(0.012) (0.011) (0.011) (0.011) (0.011)
[0.006] [0.020] [0.011] [0.013] [0.014]

Aligned Representative 0.012 0.010 0.010 0.010
(0.005) (0.005) (0.005) (0.005)
[0.017] [0.054] [0.054] [0.048]

Aligned Senators 0.026 0.024 0.027 0.026
(0.013) (0.014) (0.014) (0.014)
[0.045] [0.091] [0.060] [0.066]

Wind Speed (St. Dev.) 0.075 0.075 0.075 0.074
(0.007) (0.007) (0.007) (0.007)
[0.000] [0.000] [0.000] [0.000]

Rainfall (St. Dev.) 0.072 0.072 0.072 0.069 0.069 0.069
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Storm Surge (St. Dev.) 0.032 0.031 0.031 0.030 -0.002 -0.002
(0.010) (0.010) (0.010) (0.010) (0.009) (0.009)
[0.001] [0.001] [0.001] [0.002] [0.806] [0.789]

Time Trends X X X
Wind Speed Polynomials X
Wind Speed Bins X
Observations 85,309 85,309 85,309 85,309 85,309 85,309
The table displays regression coefficients with two-way clustered standard errors on the state ×
year and county level in parentheses (Appendix Table 3.4 documents robustness toward alternative
clustering choices). P-values are shown in brackets. All estimations use the linear fixed effect-within
estimator and include county and year fixed effects (Appendix Table 3.6 shows the robustness of the
results to using alternative estimations such as conditional logit and probit). Wind Speed, Rainfall,
and Storm Surge are shown in standard deviation increases (above zero). Standard deviations
for Wind Speed, Rainfall, and Storm Surge are 38.78 km/h, 68.17 mm, and 0.8 m, respectively.
Models 4-6 include county-specific linear time trends. ‘Wind Speed Bins’ signifies the usage of the
semi-parametric approach to model wind speed and. ‘Wind Speed Polynomials’ indicates the usage
of quartic polynomials. The sample runs from 1965-2018 in all regressions.

also lobby the president, for example, by writing supporting letters for governors’ requests.88

Significance for the senators is lower than for the representatives. The latter represent smaller

areas, making it more likely that their entire electoral district is affected.

In the fourth column of Table 3.2, we allow for the existence of county-specific time

trends, which account for any structural changes affecting the baseline probability of a county

receiving federal disaster relief. While the coefficient of our main variable of interest, Aligned

Governor, stays at the same level and even increases its p-value (0.011), the estimates for the

representatives and senators are somewhat weaker.

Although these first results support the evidence for an alignment bias ‘on average’ that

other studies have documented, we rate these average estimates as insufficient to uncover

the true pattern of political influence. The previous approach treats all situations as equal

in terms of potential exertion of political influence. However, as our theory section (3.2.2)

88As Sylves (2008, 91) explains, “researchers have discovered in presidential library documents evidence that
presidents considering a disaster declaration [...] receive, as a matter of routine, a list of the names of the
lawmakers whose districts are affected by a disaster event.”
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outlines, we hypothesize that the strength of political effects is very heterogeneous and highly

dependent on the situation facing politicians. Attempts to capture the alignment effect with a

single parameter thus involve overly stark assumptions and simplifications. To solve this issue,

we introduce two flexible approaches that do not impose a strict functional form assumption.

This then allows us to determine individual alignment effects for each storm intensity.

Columns 5 and 6 form the basis for our flexible estimations. By including a quartic Wind

Speed polynomial and 10 separate 25 km/h wind speed bins, respectively, the marginal effect

of hurricane strength now varies for different levels of Wind Speed. While the average political

effects remain unchanged in these estimations, we allow our political variable of interest to

interact with the flexible hurricane measures to obtain separate estimates of political influence

for the different storm intensities in the following section.89

3.5.2 Main Results: Heterogeneous Alignment Bias

Our fine-grid storm data allow us to drop the static assumption of a homogeneous polit-

ical alignment bias. By interacting Aligned Governor with all factors of the Wind Speed

polynomial (in the polynomial regression) and all individual Wind Speed bins (for the semi-

parametric approach), we examine the alignment bias in a nuanced way and find a much

more differentiated pattern of political influence.

Figure 3.3 demonstrates marginal effects of Aligned Governor for different levels of

Wind Speed.90 The marginal effects, both in the polynomial (solid green line) and the semi-

parametric bin approach (dashed dark green line), take the hypothesized hump-shaped form.

As expected, coefficients in the semi-parametric step-function vary more wildly, but the

estimates are quantitatively similar. While point estimates are close to zero and insignificant

for weak wind speeds, the marginal effects increase with storm intensity, becoming significant

at the 95% confidence level at around 52 km/h (32 mph) in the polynomial estimation. These

are typically non-catastrophic situations in which the president issues emergency declarations

to ensure the functioning and quick repair of damaged crucial infrastructure or organize local

evacuations. The highest alignment effects arise for 144 km/h (89 mph) in the polynomial

89To show the robustness of the average effects, we run several specifications. Appendix Table 3.5 includes
a variable for past Declaration and past Wind Speed. Table 3.6 demonstrates that our results are robust
to different regression model choices (logit, probit, Poisson, Poisson pseudo-maximum likelihood). Finally,
our findings still hold when we include a set of lagged socioeconomic control variables covering logs of
Population, Black Population, Real Income, and Per Capita Real Income (see Table 3.7).

90We calculate marginal effects and standard errors using the predictnl-command in Stata. Marginal effects
for Aligned Governor are derived from the main effect and the Wind Speed-interactions (β + δ1Wind Speed+
δ2Wind Speed2 + δ3Wind Speed3 + δ4Wind Speed4).
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and the 125 km/h (78 mph) to 150 km/h (90 mph) interval in the semi-parametric approach.

At its maximum, the estimated marginal effect is 0.21. This is about eight times higher

than the average relationship from Table 3.2, which underlines the scope of heterogeneity

present in political effects. Marginal effects decrease again for stronger wind speeds, turning

insignificant for observations higher than 192 km/h (119 mph).

The importance of accounting for the distinct heterogeneity of the relationship becomes

evident when making a rough calculation of the associated relief payments. Using the

predicted amount of disaster relief in a county for a certain storm strength, its probability

distribution and the previously calculated nonlinear political alignment effect, we calculate

that the political component of hurricane relief amounts to roughly USD 500 million per

year. This corresponds to about 13% of the total hurricane relief paid out by FEMA. Note

that this figure only contains FEMA’s public assistance and individual assistance but no

other spending categories such as, e.g., hazard mitigation. Our calculation is therefore a

lower-bound estimate. A holistic approach to quantify the total political bias would need to

also include, for instance, the difference in long-term costs due to the presence or absence

of initial relief and potential indirect costs (cf. Davlasheridze et al., 2017; Deryugina, 2017).

Figure 3.3: Alignment bias for different levels of Wind Speed
Notes: The figure displays marginal effects of Aligned Governor for different levels ofWind
Speed, derived from the polynomial estimation (solid green line) and the semi-parametric
approach (dashed dark green line). The light green shaded area and the dashed gray
lines represent 95% confidence intervals applying two-way clustered standard errors on
the state × year and county level. The sample covers 85,309 county-year observations
from 1965–2018.
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Notably, if we used the constant alignment effect for all disasters from Table 3.2, the resulting

political relief would only add up to USD 100 million, about one-fifth of the result we obtain

with our nonlinear model.

To better understand the economic significance of our heterogeneous political alignment

effect, we draw a comparison to the political economy literature on the allocation of U.S. federal

spending. Analyzing a wider range of federal funds, Larcinese et al. (2006) report a 2.7%

increase due to gubernatorial alignment with the president. Albouy (2013), Berry et al. (2010),

and Kriner & Reeves (2015) all find increases in the order of 4% for aligned federal politicians

in high-variation government spending programs. Although accurate comparisons of studies

are impossible due to the different spending categories, our average estimate indicates a

similar magnitude (see Table 3.2). However, if we account for the nonlinear nature of the

relationship, we find a substantially higher political and economic relevance.

The results demonstrate that the alignment bias is in fact negligible when locations

experience very weak or extremely strong wind speeds. It seems hardly possible for a

politician to declare an event a disaster if the impact was not destructive, even if party

politics yield incentives to do so. Similarly, it seems politically impossible to deny a county a

declaration in the case of a catastrophic hurricane impact. However, the middle of the wind

speed spectrum shows where presidents use their discretionary power to declare disasters.

Counties experiencing such wind speeds typically are counties not hit by the eye of the

respective hurricane but are still affected by its wind field, rainfall, and potential flooding,

thus resulting in damage to property. These situations leave political actors with the most

leeway: if the president is undecided about whether to declare a disaster because a county

experienced intermediate damage and either decision would be politically justifiable, the

importance of party affiliation increases and more likely becomes the factor to tip the scales.91

Despite the length of our 54-year sample period, the number of hurricane events is limited.

We conduct a resampling-based randomization inference to show the robustness of our findings

91The focus of our contribution is on the alignment bias in declaration decisions. It is also relevant but beyond
the scope of our paper to evaluate to what degree politicians actually benefit from issuing declarations
(see previous studies by Gasper & Reeves, 2011; Healy & Malhotra, 2009; Reeves, 2011). In Appendix
Figure 3.30, we provide correlational evidence in line with their findings. This is naturally a noisy and
inconclusive estimation because we only cover one disaster type, and many other relevant influences enter
the vote decision within the four years of a presidential term. However, the figure shows that there exists
a correlation between issuing a declaration and the change in the president’s county vote share in the
next election. Being negative and insignificant for weak wind intensities, the relationship is positive and
significant for strong hurricanes. If presidents do not issue a declaration for intense disasters, they lose
votes. Qualitatively, this result also fits our assumptions about voter behavior in the theory section, with
declarations for higher wind intensities being associated with a higher electoral reward.
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Figure 3.4: Randomization inference
Notes: The figure displays the estimated marginal effects using the true data in
green. The gray lines represent marginal effects from each of the 1,000 regres-
sions with the placebo treatments. Placebo-simulations were computed with our
polynomial baseline regression. For each simulation run, we randomly reshuffle
governor alignment status but kept the structure of the panel; i.e., we assign
the same placebo treatment to all observations from a state within a year and
we keep the total number of treatments per state as in the original data. Ap-
pendix Figure 3.15 shows a graphical representation of the permutation p-value
(pperm. = N−1 ∑N

i=i 1[|β | < |βi,placebo |]).

beyond alternative conventional one- and two-way-clustering choices. Appendix Figure 3.14

documents this randomization. We run a simulation in which we randomly reshuffle the

alignment status between years within each state (i.e., keeping constant the number of aligned

years within a state and ensuring that all counties of a state still share the same alignment

status in the same year). This randomization approach provides a way to validate that our

distinct hump-shaped pattern does not arise from placebo allocations of political alignment.

Figure 3.4 displays the estimated marginal effects from 1,000 regressions with the random

placebo treatments in gray and the true alignment status in green for comparison. For

intermediate wind speeds, all effects of the placebo-simulations fall short of exceeding the

estimated marginal effects using the actual alignment status. For most simulated runs, the

effect is close to zero for low and intermediate wind speeds. Extremely high values of Wind

Speed are rare, and, therefore, the simulations fan out on the right. This larger spread

represents the higher uncertainty of our estimate due to the lower frequency of high-intensity

hurricanes (cf. Figure 3.2 and Appendix Figure 3.11).
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Similar to the procedure for the synthetic control method that Abadie et al. (2015)

propose, we can use the simulated coefficients for randomization inference and calculate a

permutation p-value for our estimate at different levels of Wind Speed. To this end, we divide

the number of runs for which the absolute value of the placebo alignment effect βi,placebo

exceeds the estimates β using the true data at each Wind Speed by the total number of

simulations N:

pperm. =
1
N

N∑
i=i

1[|β| < |βi,placebo |].

We hence obtain a permutation p-value for every Wind Speed level and can derive the 95%

confidence interval therefrom (see Appendix Figure 3.15). Based on this randomization

inference approach, Aligned Governor has a positive and significant effect in the Wind Speed

interval [55,190] km/h, which is very close to the interval [52,192] km/h, that we received

from applying conventional two-way clustering to the standard errors (see Figure 3.3).

3.5.3 Sensitivity and Robustness

Before analyzing further heterogeneities of the political mechanism, we study the robustness

of our main result. The results of the polynomial approach are qualitatively similar when we

use different polynomials. Appendix Figure 3.21 shows marginal effects for polynomials of the

third degree to ninth degree. As derived in Section 3.4, we use the fourth-degree polynomial

as a baseline. To ensure clarity of the graphical representation, the following multi-panel

figures display marginal effects only for the fourth-degree polynomial approach given that

all flexible estimations, including the semi-parametric approach, yield qualitatively similar

results.

Despite the chaotic trajectories of hurricanes, which randomly select politicians to make a

decision on disaster relief, a remaining concern for our identification is the endogeneity of the

political-economic process that results in the alignment patterns we observe. It is therefore

important to rule out any unobserved factors that systematically explain both alignment and

declarations and are not yet captured by fixed effects, time trends, and controls, are eliminated

from the equation. To deal with this concern, we study whether our results hold in situations

where political alignment is quasi-randomly determined, i.e., in subsamples characterized

by close electoral outcomes. A vast amount of literature has studied discontinuities due to

electoral thresholds (e.g., Brollo & Nannicini, 2012; Curto-Grau et al., 2018; Eggers et al.,
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Figure 3.5: Robustness – Close election subsamples
Notes: This figure shows the sensitivity of our result in subsamples with different election-winning bandwidths.
The light green shaded area represents the 95% confidence interval applying two-way clustered standard errors
on the state × year and county level.

2015; Pettersson-Lidbom, 2008). In our case, political alignment changes if a politician from

the opposite party wins one of the two offices. For instance, Aligned Governor discontinuously

switches from 0 to 1 as soon as the candidate from the opposition party receives more votes in

the election than the aligned incumbent governor. We can therefore use state-level electoral

outcomes to define situations in which governors are just aligned or just unaligned with the

president by a small margin.92 Figure 3.5 shows the results for different bandwidths of close

election outcomes. The results turn negative and insignificant for high wind speeds, but

otherwise the results are not qualitatively different from what we obtain in the full sample.

92In addition to tight outcomes in gubernatorial elections, the U.S. winner-takes-all system in combination
with the electoral college produces situations in which the electoral votes from one or few close states are
pivotal for the outcome of the election; take, for instance, the 2000 Bush vs. Gore election outcome in
Florida. We account for these quasi-random alignment outcomes when defining our respective close election
subsamples. We assign observations either the margin of victory of the most recent gubernatorial election or
the respective margin of victory from the closest state that would have tipped the respective presidential
election if this margin was closer. The broader the bandwidth (defined as half the margin of victory) chosen
to define the closeness samples, the more observations the sample includes.
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Similarly, we test how the alignment bias differs with regard to how close a governor won

the previous election. Presidents might behave more generously in providing declarations to

medium-affected counties if they think their co-partisan governor needs an additional boost

to secure reelection. Analogously, governors might also request more relief in these situations.

Based on past statewide election outcomes, we split the alignment variable into four dummies

defined by different gubernatorial margins of victory. Figure 3.6 shows that the relationship

tends to be stronger for governors with narrower margins of victory. While the alignment

effect arises in all instances, it is significantly positive in a broader Wind Speed range for

governors who faced more competitive elections.93

The main estimation approach assumes that a certain level of wind speed corresponds to

equal need for a disaster declaration at each location. However, it is possible that regions

with a higher hurricane frequency might be more resilient to higher wind intensities. To

demonstrate that our results do not depend on the assumption of a nationwide uniform

resilience level, we allow separateWind Speed effects for each state. Panel a of Appendix Figure

3.22 shows that the marginal effect estimates of our main specification remain essentially

unchanged.

As different regions may have developed in divergent ways over the course of our 54-year

panel, we want to control for the possibility that this factor influenced our findings. We

employ county × decade fixed effects to account for within-county changes over time in a

more flexible way than using linear time trends. This specification results in a slightly wider

confidence interval (see Panel b of Appendix Figure 3.22).

The chaotic nature of hurricanes can result in wildly erratic treatment patterns, and one

might be concerned that particular states or time periods drive our results. To alleviate these

reservations, we run 48 regressions, each excluding all observations from one individual state

at a time. Panel a of Figure 3.16 exhibits that dropping individual states in no case results in

a major difference from the baseline. We apply the same approach to individually omit each

of the six decades that our data cover. Likewise, the result is robust to excluding individual

decades. However, the most recent decades seem to affect the results more. This outcome

is not surprising since the introduction of the Stafford Act in 1989 and the integration of

93In Appendix Figure 3.20, we restrict the analysis to a subsample of states where there was a switch of
the party receiving the majority of the statewide votes in one of the last three presidential (Panel a) or
gubernatorial elections (Panel b). In Panel a, the peak of the alignment effect shifts to a somewhat higher
Wind Speed, but otherwise the relationship in swing states is not significantly different from what we find for
the full sample.
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Figure 3.6: Alignment effects for Governors with different margins of victory
Notes: This figure illustrates how the alignment effect depends on the margin of victory (MOV) of the
requesting governors. The solid green lines in the four panels display marginal effects of separate Aligned
Governor indicators (depending on the margin of victory) from one joint regression. Panel a shows the
marginal effect of Aligned Governor if the governor’s statewide MOV in the previous election was larger than
20 percentage points; Panel b shows if the MOV was between 10 and 20 percentage points; Panel c indicates
if the MOV was between 5 and 10 percentage points; and Panel d shows if the MOV was smaller than 5
percentage points. The light green shaded area represents the 95% confidence interval applying two-way
clustered standard errors on the state × year and county level.

FEMA into the Department of Homeland Security (in 2003) were reforms that gave more

power and discretion to the president.

Coastal counties are generally more strongly affected by hurricanes and face the additional

hazard of storm surges. To test whether the relationship is driven by counties that face a

higher baseline risk of hurricane strikes, we split the sample into coastal and non-coastal states.

We use the definition of coastal watershed counties from NOAA, excluding non-Atlantic and

non-Gulf counties in accordance with Strobl (2011). Appendix Figure 3.18 shows that the

political bias is significantly positive in both samples but is in fact stronger in non-coastal
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counties. For almost all hurricanes, non-coastal counties experience less damage than coastal

counties. The coast thus receives the most public attention regarding the event, and politically

driven relief allocation is less feasible there. However, the president can include more inland

counties in the disaster declaration and base this decision partly on partisan considerations.

We run a series of further robustness tests. If we restrict the sample to cover only

emergency declarations or the more comprehensive major disaster declarations (see Appendix

Figure 3.17), the maximum marginal effect for major declarations corresponds to stronger

hurricane intensities than for emergency declarations. Estimates for extreme wind speeds

for emergency declarations are noisier as the president issues this declaration type to ensure

a quick response in non-catastrophic situations. However, both disaster types are subject

to the alignment bias for intermediate hurricane intensities. Adding an additional variable

that controls for the yearly frequency of hurricanes in each county (see Panel a of Appendix

Figure 3.24) does not change the results. In Panel b, we replace the Wind Speed variable

with the damage index proposed by Emanuel (2011). Given the assumptions of the damage

index (see Appendix 3.7.4) the results are qualitatively and quantitatively similar. Expressed

in km/h, we find a significant political alignment bias for wind speeds between 93 km/h and

165 km/h (damage index = 0.22).

We further increase the flexibility of our specification by allowing polynomial interactions

of alignment with the other hurricane damage measures (Rainfall and Storm Surge) in Panel

a of Appendix Figure 3.26. In Panel b, we include interactions of Aligned Senators and

Aligned Representatives with the Wind Speed polynomial. Panel c allows for all interactions

together. Neither specification alters the results substantially. In Panel d of Appendix Figure

3.26, we additionally control for non-hurricane-related disaster declarations in the respective

counties as one potentially omitted factor, but the estimate of Aligned Governor does not

change. This result is not surprising as the occurrence of hurricanes is orthogonal to other

disasters and the existing political or economic conditions in a county.

Likewise, the results are not sensitive to adding a vector of socioeconomic controls (Panel

c of Figure 3.24), using satellite-based rain and temperature controls on the county level

(Panels d and e of Figure 3.24), and excluding the hurricane-related Rainfall data (Panel

f). It is also imaginable that long, persistent past hurricane shocks or declaration decisions

influence today’s alignment status or probability of receiving a declaration. In Appendix

Figure 3.25, we explicitly control for this by adding 10 lags of Wind Speed (Panel a) and 10
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lags of the dependent variable Declaration (Panel b). Both estimations yield the same result

as our main model. Furthermore, Panel c of Figure 3.18 shows that our results are robust to

a different sample definition wherein we include only observations with a positive Wind Speed.

Panel d of Figure 3.18 demonstrates that using a fully balanced panel of all contiguous U.S.

counties (which inflates the number of zero-observations) yields a similar result. The results

also prove robust to excluding outliers with high leverage, i.e., above Cook’s distance cut-off,

and without low- or high-intensity hurricanes (see Appendix Figure 3.19).

3.5.4 Additional Political Influences and Relief Cycles

As we found an alignment bias in the allocation of disaster declarations for medium hurricane

intensities, we analyze further sources of political influence in this section. The president might

take political factors other than alignment with the governors into account. We previously

estimated the heterogeneous impacts of Aligned Representative and Aligned Senators – political

actors who are not directly involved in the declaration process – analogously to Aligned

Governor. The results are statistically weaker, but, qualitatively, the same pattern emerges:

the relationship is positive and significant only for intermediate Wind Speed observations and

is insignificant for both, low and high storm intensities (Figure 3.7, Panels a and b).94

From an electoral strategy perspective, the geographical distribution of different groups

in the electorate is pivotal. To win an election and secure majorities in the United States’

first-past-the-post system, politicians need their core supporters to turn out and try to win

in contested areas. Two hypotheses from the distributive politics literature, the so-called core

and swing voter hypotheses, suggest that politicians therefore have incentives to target these

areas when they try to exert tactical redistribution (e.g., Cox & McCubbins, 1986; Lindbeck

& Weibull, 1987). Neither hypothesis predicts that strongholds of the opposition party are

favored.

94In Appendix Figure 3.23, we use Alignment Count as an alternative to the three individual variables. It
represents the number of key politicians (i.e., governors, representatives, or senators) aligned with the
president. For this count variable, we receive a significant result that is qualitatively similar to that for the
politicians individually.
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Figure 3.7: Heterogeneous political effects
Notes: The figure displays marginal effects for
the variables of interest depicted on the verti-
cal axes from eight polynomial regressions. The
green shaded areas represent 95% confidence in-
tervals applying two-way clustered standard er-
rors on the state × year and county level. In
each specification, we add the respective variable
of interest as well as its interactions with the
Wind Speed polynomial to our baseline for the
estimation of heterogeneous effects. In Panel c
High Support District is and indicator that takes
the value 1 if the candidate from the party of
the incumbent president received more than 60
percent of the two-party vote share in the previ-
ous congressional election; Low Support Districts
in Panel d are those where the president’s party
received less than 40 percent. Panel e plots the
difference of the alignment effect between Repub-
licans and Democrats based on a triple interac-
tion. In Panels f and g Presidents’ First Term
and Presidential Election Year are indicators for
a president’s first term and presidential election
years, respectively. In Panel h Hurricane Month
depicts the month in which the hurricane caus-
ing the strongest Wind Speed-observation in a
specific year made landfall in the United States.
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To test these propositions, we interact dummy variables for counties in High Support

Districts and Low Support Districts of the incumbent president’s party from recent congres-

sional elections with the wind speed polynomial.95 Panel c of Figure 3.7 indicates that for

high-support districts, the marginal interaction effects are positive and slightly significant

only for a narrow Wind Speed range but again show the characteristic hump-shaped pattern.

In contrast, counties in Low Support Districts (Panel d), ceteris paribus, have a significantly

lower probability of receiving a disaster declaration for intermediate storm intensities. For

low-support counties, the marginal effects curve shows exactly the opposite shape. The esti-

mations yield a significant negative effect for medium disasters. This suggests that presidents

do not perceive investing political capital in counties whose citizens are unlikely to help

them to win an election as a winning strategy, which is in line with both the core and the

battleground hypotheses.

Another obvious characteristic to distinguish is the effect of aligned governors for the

two major parties, Republicans and Democrats. To test this effect, we further interact

Aligned Governor with an indicator for being in the Republican party. Panel e of Figure

3.7 displays the differences of the alignment effect for Republicans and Democrats from this

triple interaction. The differences are insignificant. As our swing state subsample already

suggested (Appendix Figure 3.20), the alignment bias does not appear to be attributable to

a single party.

If the reason for the observed political bias is electorally motivated, one would expect the

relationship to become potentially stronger in election years. In Panels f and g of Figure 3.7,

we interact the Wind Speed polynomial with a dummy variable taking a value of 1 in a

president’s first term (f) and presidential election years (g), respectively. Both regressions

show that presidents are, ceteris paribus, more likely to issue a disaster declaration for medium

wind speeds in their first term and for low wind speeds in election years as compared to other

years.

The hurricane season ranges from June to November, with most of the strongest storms

occurring from August to October. Major elections in the United States usually take place in

95We code High Support District as those districts where the incumbent president’s party candidate received
more than 60% of the two-party vote share in the previous congressional election. Low Support Districts
represent those where they won less than 40%. We use results from the congressional elections for this
analysis because redistricting creates additional orthogonal variation. While much of the variation on the
county and state levels for the other elections is captured by county fixed effects, counties occasionally
belong to different congressional districts with different levels of electoral competition over the course of our
54-year sample period.
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early November. To exploit this fact, we additionally collected data on the month in which

the strongest hurricane-related Wind Speed occurred in each county and year. By interacting

a linear variable for Hurricane Month with the Wind Speed polynomial, we see that – for

the same levels of Wind Speed – storms that occur later in the year are related to a higher

probability of a disaster declaration. One possible explanation for the seasonal variation of

more declarations in the fall could thus be a within-year political alignment cycle, where

presidents tend to declare more disasters closer to elections. However, one can, of course,

still find alternative explanations for both between- and within-year political budget cycles

(Eichenauer, 2020) and the previous tests alone are not more than indicative.

To show more convincing evidence for the existence of political budget cycles in U.S.

disaster relief, we pursue two strategies: a placebo test for the within-year cycle, because

Hurricane Month should only play a role in election years, and a comparison of the alignment

bias between election and non-election years, as our theory predicts stronger alignment effects

in election years. For both tests, we need to run regressions including triple interactions.

That is, we interact the quartic Wind Speed polynomial with two political variables of

interest at once. For the regressions shown in Panels a and b of Figure 3.8, we add the

expression
∑4

h=1
(
Wind Speedhi,t×Aligned Governors,t×Election Yeart

)
to the estimation equa-

tion. For Panel c of Figure 3.8, we add the term
∑4

h=1
(
Wind Speedhi,t ×Hurricane Monthi,t ×

Election Yeart
)
to our model.

Panel a of Figure 3.8 shows the results of the triple interaction regression by plotting the

marginal effect of Aligned Governor on the vertical axis. The graphic distinguishes alignment

effects by Presidential Election Year equaling 1 in election years (dashed blue line) or 0 in no

election years (solid green line). Panel b does the same for Any Election Year, an indicator

additionally accounting for congressional and gubernatorial election years. In both panels,

the relationship emerges in all years, but the estimate of the alignment effect is larger and

more significant for election years than for non-election years. However, Appendix Figure

3.27 shows in Panels a and b that the difference between both curves is not significant.

Considering within-year political alignment cycles, Panel c of Figure 3.8 tests how the

month effect differs for election years (dashed blue line) and non-election years (solid green

line). In non-election years, the estimated effect of Hurricane Month is close to zero and

insignificant. In election years, however, it is positive and significant for intermediate storm

intensities. Panel c of Appendix Figure 3.27 shows that this triple interaction yields a
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Figure 3.8: Political relief cycles – Marginal effects from triple interactions
Notes: The figure displays marginal effects for the variable specified on the respective vertical axis from three
polynomial estimations including triple interactions. In each specification, we add the depicted variables
of interest as well as all possible cross-interactions with the Wind Speed polynomial to our baseline for the
estimation of heterogeneous effects. Shaded areas represent 95% confidence intervals applying two-way clustered
standard errors on the state × year and county level. In Panel a, the dashed blue line displays marginal effects
of Aligned Governor in presidential election years. The green solid line shows the estimated effect of Aligned
Governor if Presidential Election Year equals 0. In Panel b, the dashed blue line displays marginal effects of
Aligned Governor in years of major elections (i.e., presidential, gubernatorial, or congressional elections). The
green solid line shows the estimated effect of Aligned Governor if Any Election Year equals 0. In Panel c,
the dashed blue line shows the effect of Aligned Governor in election years. The green solid line displays the
estimated effect of Hurricane Month if Any Election Year equals 0.

significant difference for the within-year declaration cycle between election years and non-

election years. That is, hurricanes of equal intensity have a higher probability of being

declared a disaster if they occur in a later month, but only in election years. The rationale

here is that promising generous relief potentially has a higher leverage effect if the disaster is

a salient topic just before an election.

All results contribute to the notion that there exists a political (alignment) bias in

U.S. disaster relief. As our analysis demonstrates, one must look beyond average effects to
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understand the specifics of political influence in this domain. In our concluding remarks, we

discuss how these findings add to our understanding of executive politicians’ behavior and

how they matter in terms of policy implications.

3.6 Conclusion

We have analyzed the political economy of disaster relief, employing a novel hurricane damage

data set and focusing on hurricane-related disaster declarations in the United States from

1965–2018. Based on a simple theoretical framework, we have demonstrated that the issuance

of disaster declarations involves a political bias: counties with a governor who is a co-partisan

of the incumbent U.S. president, on average, have a significantly higher probability of receiving

a federal disaster declaration. The main contribution of our study stems from the empirical

analysis of nonlinearities in political alignment effects from applying flexible interaction

models. We find a persistent nonlinear alignment bias where presidents only use their

discretion strategically for hurricanes of medium intensity. While political influence only plays

a minor role on average, strategic political considerations are about eight times more relevant

for medium-intensity storms. Furthermore, self-interest and party political motivations seem

to drive the results since we find stronger effects in election years and for hurricanes closer to

elections in November. Therefore, the alignment bias is most pronounced, and the potential

political returns are higher. Our results prove robust to including county-specific time trends;

lagged dependent variables; including other covariates and their lags; and omitting individual

decades, states, or hurricane outliers.

The results from our analysis show the necessity of accounting for possible effect het-

erogeneities in analyses of political-economic relationships. Disregarding the complexity

of political-economic relationships in statistical estimations means that the actual nexuses

remain potentially concealed and the economic consequences underestimated: while our

hump-shaped continuum for the marginal effects of political alignment corresponds to annual

political hurricane-relief spending of about USD 500 million, conventional average estimates

for the same calculation would only suggest about one-fifth of this amount. Generally speak-

ing, political influence may depend more on the specific constellations and opportunities

that politicians face than previously revealed. Regarding disaster relief, we have shown

that politicians do not require the occurrence of random third events that distract public
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attention from their strategic actions. They can exploit specific ambiguous decision-making

situations that arise within the impact range of a single disaster event in a biased manner.

The results from our analysis by no mean imply that politicians are not responsive to the

needs of the electorate. In situations that clearly require a certain decision, we do not find

evidence for political biases. However, we observe that democratic control of political actors

does not prevent favoritism in ambiguous decision situations, particularly if they expect a

high electoral return. Politicians behave strategically if the situation allows. As we have

demonstrated, the degree of opportunity for strategic behavior can be very heterogeneous.

The resulting question is whether the functional form assumptions in political-economic

analyses in general tend to oversimplify the underlying processes by neglecting potentially

nonlinear relationships. As the nonlinear effects are substantial and persistent with regard to

disaster assistance, future research should evaluate whether our findings are generalizable to

other political-economic research areas. Potential relationships include various distributive

policies where spending allocation involves a certain conditionality or eligibility criteria, e.g.,

in the EU, in international organizations, or in international aid. Whenever it is not clear

that, for instance, certain domains in an underdeveloped region should receive supportive

funding, political considerations have a higher potential to become the factor to tip the scales.

It is important to acknowledge that our findings are not necessarily externally valid for other

spending areas; but they should change the a-priori assumptions when observing comparable

processes and when a lack of transparency or data availability prevents credible empirical

testing.

As our findings point at an inefficiency in the disaster relief system, there are certain

direct policy implications. The current mechanism makes ex-post spending more attractive

for politicians than investing in preparedness, which creates a moral hazard problem. Ex-post

relief is directly visible and better suited as a political tool than preparedness spending because

the benefits of preparedness only emerge in the long-run and are not directly attributed to

the politicians.96 A loan-based system, higher state cost shares, more local responsibility

96Research shows that the government could reduce the need for ex-post spending by showing appropriate
preparedness action. Davlasheridze et al. (2017) calculate that a 1% increase in ex-ante spending would
reduce future damage by 2%. Healy & Malhotra (2009) estimate that USD 1 spent on preparedness
mitigates future damage by USD 15. A second moral hazard problem emerges among local governments and
individuals in highly exposed regions. If they have hope that the government will bail them out (particularly
in a favorable political constellation), they have an incentive to underinvest in preparedness and insurance,
which increases disaster vulnerability.
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or payments conditional on states’ preparedness efforts would make relief a less politically

attractive instrument (Platt, 1999, 290; Lindsay & McCarthy, 2015).

In addition to these commonly suggested improvements, we propose institutional changes

to address political influence in the disaster declaration process. First, technical improvements

such as better satellite imagery would allow effective data-based issuance of declarations for

disasters. In general, more rule-based criteria for disaster declarations or formulas derived

from measures of affectedness and need would constitute an improvement, promoting fairness,

predictability, and transparency. Second, as we do not find politicized spending patterns in

the case of extreme events, the president could remain in charge of these events to ensure a

quick disaster response. For intermediate cases or situations that might require a declaration

not meeting predefined thresholds, the president should be required to request a mandate

from an independent expert commission. Third, a sensible approach might be to depoliticize

disaster declarations (cf. evidence by Bostashvili & Ujhelyi, 2019, on civil service reforms)

and assign declaration authority to a suitable and skilled bureaucrat, comparable to a central

banker, who does not have to run for reelection.

Admittedly, the probability for substantive changes to the process in the currently polarized

political situation in the United States is low. The Senate and president have blocked past

reform attempts by FEMA (Sylves, 2008, 100–101). While the U.S. relief system might not

be easy to reform, countries that aim to establish or improve a system of disaster relief should

draw the necessary conclusions from the existing empirical findings. This recommendation

is most relevant for the many developing countries that are highly exposed and prone to

various natural hazards. The urgent need to design an efficient disaster preparedness and

relief system is reflected in the fact that the urban coastal population – and therefore the

vulnerability to hurricanes – will likely continue to grow.

Improving resilience to natural disasters, which are expected to increase in severity in the

course of climate change, will certainly constitute a major challenge of the 21st century. As

Strömberg (2007, 212) notes, “it is essential that relief be given where it can do most good.”

A key component to ensuring this is a well-functioning system of disaster relief. Disasters

would then not constitute an opportunity for political gain, but rather an opportunity to

observe the advantages of a modern welfare state in disaster recovery.
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3.7 Appendices

3.7.1 Disaster Relief in the United States of America

3.7.1.1 Brief Historical Review

For the first 160 years of U.S. nationhood, the role of the federal government with respect to

disaster assistance was minor. Congress had to pass ad-hoc legislation when the federal state

decided to provide aid on occasions of catastrophic events (Barnett, 1999). This changed in

1950 when Congress decided to make disaster relief provision an executive responsibility of

the president, establishing the system of presidential disaster declarations with the Federal

Disaster and Relief Act (Platt, 1999; Sylves, 2008). It “put in place a standard process by

which Governors of states could ask the President to approve federal disaster assistance

for their respective states and localities” (Sylves, 2008, 49). Since then, a federal disaster

assistance system has existed, to deliver relief to regions in case state or local capacities

are overwhelmed in the wake of natural events such as floods, earthquakes, droughts, fires,

hurricanes, or other severe storms (Platt, 1999). The federal role in disaster response and

recovery gradually expanded and became the primary source for disaster funding (FEMA,

2017b; Lindsay & McCarthy, 2015). FEMA’s budget for relief payments over the last 10

years (2010–2019) has averaged USD 13.63 billion (Painter, 2019).

To bundle the previously scattered responsibilities for federal disaster management,

including disaster preparation, mitigation, response, and recovery, under one roof, the

FEMA was established in 1979 (FEMA, 2017a). The Robert T. Stafford Disaster Relief and

Emergency Assistance Act from 1988 constitutes the current legislation for federal disaster

relief. Among others, it augmented the discretion of presidents in judging what qualifies for

disaster assistance, permits declarations for further classes of natural and certain non-natural

catastrophes, and established a hazard mitigation program (Downton & Pielke Jr., 2001;

Sylves, 2008). Despite the gradual expansion of the scope of federal disaster assistance and the

large number of major and minor amendments to this legislation, the process of presidential

disaster declarations has “changed very little over time” (Lindsay & McCarthy, 2015, 20).
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3.7.1.2 The Disaster Declaration Process

Federal disaster relief in the United States is contingent upon a presidential disaster declaration.

The president must declare an event a federal disaster before FEMA can start determining

the amount of financial assistance and the individuals or entities eligible for relief. If a severe

disaster strikes, an affected state has to activate its own emergency plan first since the United

States follows a “bottom-up” approach in disaster management (McCarthy, 2014). If the

governor then detects that the state and local resources are insufficient to provide an effective

response, they can initiate a preliminary damage assessment (PDA), thereby collecting

damage records and unmet needs at the local level (FEMA – EMI, 2017). Thereafter, the

governor can formally request federal aid from the president (see FEMA, 2011, 2017b). The

official request includes information from the PDA and a description of the disaster impact as

well as the state’s efforts to cope with it and an attestation that disaster response is beyond

the state’s capabilities. In the letter, the governor also states which counties they believe

qualify for federal assistance (FEMA – EMI, 2017; Sylves, 2008, 83–84).

In the next step, the White House receives a recommendation from federal FEMA

bureaucrats regarding the declaration decision, but it is solely at the president’s discretion

whether to declare the event a disaster (Downton & Pielke Jr., 2001; FEMA, 2017b). Presidents

have wide discretionary power over which circumstances and areas they declare a disaster

and when they deny a request (Sylves, 2008, 79).97 Each presidential declaration is for a

specific state and explicitly lists the counties eligible for federal help under the declaration.

Declarations may be statewide, but only a limited number of counties are typically included

Figure 3.9: The disaster declaration process
Notes: Sketch of the main steps in the process of federal disaster declarations in the United States.

97Presidents are obliged not to use a fixed set of rules for their decisions because “[n]o geographic area shall
be precluded from receiving assistance [...] solely by virtue of an arithmetic formula or sliding scale based
on income or population” (Stafford Act, 1988). FEMA applies certain per capita damage formulas (using
data from the PDA) for its recommendation (McCarthy, 2014).
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in the disaster area (Downton & Pielke Jr., 2001; Sylves, 2008).98 In exceptional cases, the

president can declare an emergency without a gubernatorial request when “he determines

that an emergency exists for which the primary responsibility for response rests with the

United States [...]” (McCarthy, 2014, 9).

Two types of disaster declarations can be issued by the president: emergency declara-

tions and major disaster declarations (McCarthy, 2014). The Stafford Act (1988) defines

emergencies as

“any occasion or instance for which, in the determination of the President, federal

assistance is needed to supplement state and local efforts and capabilities to save

lives and to protect property and public health and safety, or to lessen or avert

the threat of a catastrophe [...].”

As a supplement to local and state efforts, emergency declarations should ensure a quick

response and functioning of essential services (McCarthy, 2014). Emergency declarations

have existed since 1974, and they are limited in scope, being restricted to USD 5 million for

a single declaration. The vague language of the Stafford Act gives the president significant

discretion and often creates ambiguity for governors regarding which situations qualify for

emergency assistance (Sylves, 2008, 60).

The second category of declarations is the “major disaster declaration”, which makes

a wide range of assistance available both for short-term and permanent work in response

to large scale disasters (FEMA, 2011; McCarthy, 2014). While major disaster declarations

are only issued post-disaster, emergencies are sometimes even declared in anticipation of a

severe event, such as the imminent landfall of a strong hurricane, to prepare the post-disaster

response and to evacuate particularly vulnerable regions (Lindsay & McCarthy, 2015). A

state can thus, in principle, receive a pre-hurricane emergency and a post-hurricane major

disaster declaration for the same event: “While federal expenditures may be little different,

the number of declarations in these instances is doubled” (Lindsay & McCarthy, 2015). This

circumstance influences the choice of the dependent variable. While emergency declarations

are financially capped, major disaster declarations can essentially release an unlimited amount

of money, once they are issued. As long as eligibility requirements are fulfilled, FEMA is

entitled to provide support (Platt, 1999, 21).

98Sylves (2008, 83–84) explains that “the president [...] may choose to include some but not all of the counties
recommended by the governor.” If necessary, counties can be added to a declaration within 30 days after
the declaration (Sylves, 2008, 83–88; FEMA, 2017b).
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Notably, although “FEMA – not the president – decides how much money to allocate”

(Sylves, 2008, 101) once a declaration is issued,

“the ultimate decision to approve or reject a governor’s request for a declaration

is made by the president, not by FEMA officials. In effect, FEMA officials have

little leeway in matters of presidential declaration decision-making.” (Sylves, 2008,

94)

The sequential procedure of governors requesting and the president granting or denying

declarations existed throughout and was stipulated in “[b]oth the 1950 law and the Stafford

Act of 1988” (Sylves, 2008, 79).

3.7.1.3 FEMA Programs and Disaster Relief Funding

Federal assistance can be divided into public assistance (PA), individual assistance (IA),

and the hazard mitigation grant program (HM). PA is FEMA’s largest and most frequently

activated program (Lindsay, 2014). Under this program, local government and non-profit

organizations receive monetary, personnel, technical, or advisory assistance for removing

debris and repairing or replacing various types of damaged public infrastructure (Lindsay,

2014; Sylves, 2008). While federal help was mainly restricted to the initial repair of crucial

infrastructure and the distribution of essentials in the 1950s and 1960s, further programs,

such as IA (established in 1974), have since emerged. These include temporary housing,

grants to rebuild, and legal and mental health services, as well as a larger range of possible

payments to communities (Lindsay & McCarthy, 2015; Platt, 1999, 15–17).

IA comprises a selection of programs to meet individual and household needs. This may

include, for instance, temporary housing, grants to repair and replace uninsured property

destroyed by the event, food coupons, crisis counseling, disaster-related unemployment

compensation, and help to guarantee the physical or mental health of those affected (DHS,

2018; Lindsay, 2014). When individual residents apply for monetary help, FEMA inspectors

determine eligibility and the exact amount of grants. Currently, the maximum amount that

an individual can receive is USD 33,000 (FEMA, 2017c).

HM usually aggregates 15% of the overall amount of federal assistance under a declaration

(FEMA, 2018). It funds projects intended to “prevent or reduce long term risk to life and

property from natural hazards” (FEMA, 2011) in accordance with existing FEMA-approved

HM plans.
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Federal disaster management receives funding through the Disaster Relief Fund (DRF),

which is composed of regular annual appropriations by Congress and unspent authority

carried over from previous years. FEMA manages the DRF and usually uses it to finance

disaster relief for disasters up to a damage level of USD 500 million. In the case of extreme

disasters, the president must ask Congress to release supplemental appropriations if the DRF

is otherwise depleted. Granting supplemental appropriations and regular replenishments of

the DRF is the only way that the legislative branch is directly involved in the declaration

process (Sylves, 2008, 54). Over the years, the largest number of supplemental spending bills

have been passed in the event of hurricanes (Schroeder, 2018). For a comprehensive overview,

see Schroeder (2018).
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3.7.2 Hurricanes

Hurricanes constitute the most severe and destructive class of storms.99 A hurricane is a

cyclonically rotating, atmospheric low-pressure system with a typical diameter of the order

of 600 km, though storms vary considerably regarding their size (Aguado & Burt, 2015, 384;

Korty, 2013a, 481–485). By definition, “hurricanes have sustained wind speeds of 119 km/h

or greater” (Aguado & Burt, 2015, 383); the most intense hurricanes can contain peak winds

of more than 350 km/h (Aguado & Burt, 2015, 384).

Hurricanes’ origins are usually cloud clusters forming over the western African coast.100 A

small fraction of these tropical disturbances encounter conditions that foster the development

of an organized rotating low-pressure system (i.e., a tropical depression) that drifts westward

over the Atlantic. Essential condition for hurricane formation are humid conditions and a

high water temperature (>27◦C/81◦F) to supply the storm with energy, no air-inversions or

strong vertical winds, and a minimum distance from the equator, thus implying a sufficiently

strong Coriolis force (Kraus & Ebel, 2003, 156–158; Aguado & Burt, 2015, 389). These

criteria restrict the development of hurricanes to the marine area 5-20◦N. If all preconditions

are met, a self-intensifying rotating system can emerge, potentially becoming strong enough

to be called a tropical storm (wind speeds above 63 km/h) or a hurricane (Kraus & Ebel,

2003, 158; Korty, 2013a, 481–482). The self-reinforcement stems from the release of latent

heat from condensation in the absorbed air, which unleashes even more energy within the

clouds, leading to further storm growth as long as conditions remain favorable (Aguado &

Burt, 2015, 389–391).

In an established tropical storm, air flows inward to an extreme low-pressure core (the eye).

While moving inward, the tropical cyclone absorbs latent energy from the warm ocean surface.

Closer to the core, condensation and the release of warmth let air rise, which then spirals

anticyclonically outbound. Some air also slowly sinks within the eye, which is characterized

by very low wind speeds. The storm’s highest intensity is within the eye-wall, the towering

band of clouds 10–20 km from the storm’s center. Moving away from the center, wind speed

decreases quickly and steadily (Aguado & Burt, 2015, 385–386; Deryugina, 2017). The
99As our study deals with tropical cyclones in an American context, we use the term ‘hurricane’, the
conventional expression for storms in the North-Atlantic and East-Pacific basin. It is a synonym for ‘tropical
cyclone’ (Indian Ocean and Australia) and ‘typhoon’ (West Pacific).

100This is true for the majority of storms hitting the U.S. East Coast or the Gulf of Mexico area. Hurricanes
also exist in the West Pacific, but most of them move away from land and thus, do not affect the contiguous
United States; nevertheless, some make landfall in Mexico and affect the Southwestern United States
(Aguado & Burt, 2015, 382).
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strength of a hurricane is generally measured by its maximum sustained surface wind speed

(Kraus & Ebel, 2003, 143–145).

Alongside extreme winds, hurricanes produce heavy precipitation. Rainfall within the

hurricane is also most intense around the center. However, precipitation does not diminish

as steadily as in the case for wind speeds when moving outward. The separated bands

of clouds spiraling outward can cause heavy rainfall off the center (Aguado & Burt, 2015,

384–385; Deryugina, 2017; Strobl, 2011). Despite a strong overall correlation of storm strength

and total rainfall, Lonfat et al. (2004) report a high asymmetry of hurricane precipitation.

Additionally, Konrad et al. (2002) find that local precipitation rates can vary greatly within

a single storm. Presumed causes for the vast heterogeneities in rainfall are differences in

the speed of movement, the storm’s diameter, and the shape of the crossed area (Knight &

Davis, 2009; Konrad et al., 2002). The high degree of heterogeneity in precipitation patterns

highlights the importance of using not only wind data but also rain data.

Forecasts on the approximate locations of hurricane landfall are only reliable a few days

in advance – today, 48 hours before landfall, the average accuracy is 150 km because of the

wildly-erratic nature of hurricane paths (Aguado & Burt, 2015, 404–405). A typical hurricane

season spans from June 1 to November 30, with most storms occurring between July and

October.
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3.7.3 Shortcomings of Reported Damage Data

The majority of the distributive politics literature evaluates political influence by studying

damage outcomes that emerge from endogenous processes. Existing studies on the political

economy of disaster relief predominantly use reported damage measures from insurance

data or databases such as EM-DAT or SHELDUS. A general criticism is that the measures

are not comparable between different types of hazards (Gall et al., 2009). In addition, the

construction of the estimates in data sets such as EM-DAT is mostly “based on insurance

claims or news stories” (Felbermayr & Gröschl, 2014, 92). This can create measurement

errors and selection issues. In data sets covering a long time span or many regions, temporal

or spatial heterogeneities in the quality of reporting and sources can cause biased estimates

(Strobl, 2012).

Analyses of U.S. disaster declarations frequently use loss estimates from the SHELDUS

database (e.g., Gasper, 2015; Healy & Malhotra, 2009); this method also has its shortcomings.

First, only disasters above a threshold of USD 50,000 are included prior to 1995 (Davlasheridze

et al., 2017), making the data truncated. Second, SHELDUS covers self-reported data by

individual weather stations, which results in a large number of missing observations (see

Gallagher, 2019). As Gallagher (2019) explains in his reanalysis of Gasper & Reeves (2011),

the usage of SHELDUS in the context of disaster declarations is problematic as one observes

many declarations for situations with seemingly no damage according to these data. Third,

to obtain county-level estimates, SHELDUS divides state-level losses equally among counties

(Davlasheridze et al., 2017; Gasper & Reeves, 2011). Gasper & Reeves (2011) and Healy &

Malhotra (2009) attempt to account for this by adopting population weights so that smaller

counties are not over-represented. Finally, Gall et al. (2009) detect an inconsistency: estimated

total losses from SHELDUS are lower than insured losses reported in other databases.

As explained in the paper, we attempt to overcome these issues by modelling damage

directly from meteorological hurricane intensity measures. Our data are complete for our

observation period (1965–2018), not truncated or exogenous, and do not suffer from any of

the biases listed above.
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3.7.4 Hurricane Data

Wind Speed

To generate a measure for hurricane damage, we adopt the tropical cyclone data that Kunze

(2021) assembled with a higher resolution of 1×1 km for the United States. We use data from

the International Best Track Archive for Climate Stewardship (IBTrACS), version v03r10,

for the years 1965–2018 (Knapp et al., 2010). This meteorological data set contains all best

track tropical cyclone data collected from weather agencies worldwide. Tropical cyclones are

tracked via aviation, buoys, ships, satellites, and weather stations. The resulting data include

the wind speed, minimal sea pressure, and location of the center of all tropical cyclones

recorded every six hours. To generate spatially varying wind speeds out of the IBTrACS raw

data, we run a meteorological wind field model. We consider all wind speed observations

above a cutoff of 54 km/h. The code of this model is based on the CLIMADA model from

Aznar-Siguan & Bresch (2019) but is adopted to the special needs of the IBTrACS data. It

contains the well-established wind field model by Holland (1980), which calculates for each

raw data track point

S =


max

(
0,

(
(M − abs(T)) ∗ R

D

3
2 ∗ e1− R

D

3
2 )
+ T

)
, if D < 10 ∗ R from center to outer core

0, if D > 10 ∗ R out of radius,
(3.9)

where S corresponds to the resulting wind speed. It depends on the forward speed T , the

distance D from the tropical cyclone center, and the maximum wind radius R. The model

is restricted to tropical cyclones above a raw data wind speed of 54 km/h and a maximum

coastal distance of 500 km. It computes one-hourly asymmetric wind fields at a resolution of

0.01◦ (approximately 1 km) for every tropical cyclone in our sample. From these calculated

wind fields, we take the maximum wind speed per year and per county to construct our Wind

Speed variable. Figure 3.10 shows the calculated wind fields for Hurricane Matthew hitting

the U.S. East Coast in 2016.

One can see that the wind speed diminishes with increasing distance from the center (red

dotted line) and after landfall. Figure 3.11 shows the distribution of the Wind Speed variable

for all hurricanes over the entire sample period. While lower wind speeds are very frequent,

catastrophic events are rather rare.
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Figure 3.10: Wind field model and raw data track of Hurricane Matthew, 2016
Notes: The figure displays modeled asymmetric wind fields from our damage model for
Hurricane Matthew. The colors indicate wind speed intensities. The red dotted line
corresponds to the IBTrACS raw data track.

Figure 3.11: Distribution of hurricane Wind Speeds > 0, 1965–2018

232



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

In Panel b of Figure 3.24, we replace our Wind Speed damage variable with the damage

function that Emanuel (2011) proposes. He suggests specific wind speed thresholds above

which a certain percentage of physical damage occurs or above which 50% of the physical

infrastructure is destroyed. Consequently, for each hurricane s in county i we calculate the

following damage index:

Damageis =
v3
is

1 + v3
is

, (3.10)

where

vis =
max[(Sis − Sthresh),0]

Shal f − Sthresh
. (3.11)

Sis is the maximum wind speed of storm s in county i as calculated in Equation 3.9. As

proposed by Emanuel (2011), we take 93 km/h as the threshold (Sthresh) where physical

damage starts and 203 km/h as the cutoff where half of the property is destroyed (Shal f ).

The resulting damage index ranges from 0 (no damage) to 1 (all buildings destroyed).
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Rainfall and Storm Surge

Data on hurricane-related precipitation were provided by Roth (2018) in raw spreadsheet

format. These tables report rainfall measures for hurricanes, tropical storms, and tropical

depressions from weather stations at geographic locations in North America. We use data

from all storms in his data set, if they caused rainfall in the contiguous United States.

As a first step, we calculate total rainfall (in mm) for every storm and every location

from the daily records in the data over the entire period of rainfall from the hurricane.101 On

a spatial 0.01◦ × 0.01◦ grid, we match the data to individual counties. Since flood damage

increases with rainfall (Downton & Pielke Jr., 2001), we assume that the strongest rainfall

events in a county had the highest likelihood of causing a declaration. We thus keep the

strongest precipitation value from each county in each year.

Figure 3.12: Distribution of weather stations for hurricane Rainfall data

We do not modify the data by interpolating or extrapolating between individual grid

points. The degree of spatial interpolation would be an arbitrary choice, and it may lead

to biased estimates because local extremes that cause a declaration would potentially be

smoothed out from the distribution. As the above map (Figure 3.12) illustrates, our raw data

contain rain stations in the majority of counties.

To generate our Storm Surge variable for coastal storm surge damage from hurricanes, we

rely on the hydrodynamic model developed by Kunze & Strobl (2020). Within this model,

the authors calculate the coastal inundation depth for each tropical cyclone in the IBTrACS

Knapp et al. (2010) data set. The model runs at a spatial resolution of 0.1◦ and combines
101The data include precipitation that arises from the potential influence of weather fronts interacting with

the tropical storm (Czajkowski et al., 2011; Knight & Davis, 2009).
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inputs from tides, bathymetry, and tropical cyclone wind speed, and pressure drop fields in a

hydrodynamic simulation using the DELFT3D software. Based on this model, we calculate

the maximum inundation depth per county and year.
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3.7.5 Variable Description and Summary Statistics

Declaration Indicator taking the value 1 if a county is assigned at
least one federal Emergency Declaration or Major
Disaster Declaration in connection to a hurricane in a
respective year, and 0 otherwise. All declarations from
the categories ‘Hurricane’, ‘Coastal Storm’, ‘Flooding’,
and ‘Severe Storm(s)’ in the data provided by FEMA are
included if they contain a clear reference to a specific
hurricane or tropical storm in their title or could be
matched via the date of occurrence to storms in our wind
and rain data set. The data exist on the county level
since 1965, which restricts our analysis to the time
period 1965–2018. Source: OpenFEMA Data set:
Disaster Declarations Summaries – V1
(https://www.fema.gov/openfema, downloaded on
October 16, 2017 for declarations until 2015 and on May
20, 2019 for 2016–2018).

Emergency Declaration Analog to Declaration but restricted to Emergency
Declarations.

Major Declaration Analog to Declaration but restricted to Major Disaster
Declarations.

Declarations Sum of hurricane-related federal Emergency Declarations
and Major Disaster Declarations in a county in a given
year.

Aligned Governor Indicator variable that takes the value 1 if governor and
president are fellow party members and 0 otherwise.
Independent governors are coded as unaligned. The
variable captures alignment status as of November, before
gubernatorial/presidential elections. (Source: Klarner
(2013) (until 2010); for 2011–2018 coded from the
National Governors Association; https://www.nga.org).

Aligned Representative Indicator variable that takes the value 1 if the majority
of a county is affiliated with a district that is represented
by a politician from the incumbent president’s party in
the House of Representatives, and 0 otherwise. District
vote results were provided by James M. Snyder. For
missing data and corrections, data from the CQ Voting
and Elections Collection
(https://library.cqpress.com/elections/ and
https://ballotpedia.org/) were used.
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Aligned Senators Indicator variable that takes the value 1 if a state is
represented by two politicians from the incumbent
president’s party in the Senate, and 0 otherwise. The
variable is coded from Senate election results, obtained
from the CQ Voting and Elections Collection.

Alignment Count A count variable, which represents the number of key
politicians (Governor, Senators, and House
Representative) that are co-partisans of the president in
a respective county. It can thus take the values 0, 1, 2, 3,
and 4.

Wind Speed Maximum wind speed per county and year in km/h.
(Source: see Appendix 3.7.4).

Rainfall Maximum tropical cyclone related rainfall in mm per
county and year. Source: Roth (2018). For further
details see Appendix 3.7.4.

Storm Surge Maximum storm surge water level in meters per county
and year. Source: Kunze & Strobl (2020).

Wind Speed Count Variable that counts the number of tropical cyclones
with a positive wind speed per county and year.

Rainfall Count Variable that counts the number of hurricanes that
produced positive rainfall in a county in a given year in
the data derived from Roth (2018).

Hurricane Month The month of the strongest tropical cyclone per county
and year. (Source: see Appendix 3.7.4).

Mean Annual Rainfall Mean precipitation per county and year in millimeter
calculated from https://prism.oregonstate.edu/.

Mean Annual Temperature Mean temperature per county and year in degree Celsius
calculated from https://prism.oregonstate.edu/.

High Support District Indicator variable taking the value 1 if the candidate of
the incumbent president’s party obtained more than 60
percent of the vote share in a district in the most recent
election and 0 otherwise.

Low Support District Indicator variable taking the value 1 if the candidate of
the incumbent president’s party obtained less than 40
percent of the vote share in a district in the most recent
election and 0 otherwise.
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Presidential Election Year Indicator variable taking the value 1 in a presidential
election year and 0 otherwise.

Any Election Year Indicator variable taking the value 1 if at least one major
election (presidential, congressional, gubernatorial) takes
place and 0 otherwise. Data for gubernatorial election
years are provided by Klarner (2013). Presidential
elections are held all 4 years and congressional elections
in even years. Missing data for gubernatorial elections
were retrieved from ballotpedia.org (last accessed April 1,
2020).

Presidents’ First Term Indicator for presidents’ first electoral terms.

Years Pres. Runs for
Reelection

Indicator for years in which a president runs for second
term.

Electoral Votes Number of electoral votes of a state in the Electoral
College. Source: The American Presidency Project.

County Vote Change
(Pres.)

Difference between the vote share of the incumbent
president’s party in the upcoming and the most recent
presidential election. Derived from the data by James
M. Snyder and complemented with information from the
County Presidential Election Returns 2000–2016 MIT
Election Data Sciene Lab
(https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/VOQCHQ, downloaded
March 15, 2019).

Last Term Governor Indicator for governors that are in their last term due to
a constitutional restriction. Source: Klarner (2013).

Population (log) Natural logarithm of population per county and year.
Source: NBER.

Black Population (log) Natural logarithm of black population per county and
year. Source: ttps://seer.cancer.gov/popdata/yr1969_
2018.19ages/us.1969_2018.19ages.adjusted.exe.

Income (log) Natural logarithm of income in current USD 1,000 per
county and year. Source: U.S. Bureau of Economic
Analysis (BEA).

Income per Capita (log) Per capita income in current USD per county and year.
Source: U.S. Bureau of Economic Analysis (BEA).
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Table 3.3: Summary statistics

Observations Mean St.dev. Min Max
Declaration 85,309 0.08 0.27 0.00 1.00
Emergency Declaration 85,309 0.03 0.18 0.00 1.00
Major Declaration 85,309 0.06 0.24 0.00 1.00
Declarations 85,309 0.11 0.41 0.00 5.00
Aligned Governor 85,309 0.46 0.50 0.00 1.00
Aligned Representative 85,309 0.47 0.50 0.00 1.00
Aligned Senators 85,309 0.30 0.46 0.00 1.00
Alignment Count 85,309 1.94 1.25 0.00 4.00
Wind Speed 85,309 24.28 37.37 0.00 352.71
Rainfall 85,309 57.77 67.63 0.00 1,538.73
Storm Surge 85,309 0.04 0.27 0.00 6.01
Wind Speed Count 85,309 0.68 0.96 0.00 7.00
Rainfall Count 85,309 1.86 1.32 0.00 8.00
Hurricane Month 84,947 8.38 1.35 5.00 11.00
Mean Annual Rainfall 85,258 1,132.29 340.87 18.04 3,976.14
Mean Annual Temperature 85,258 14.18 4.16 -0.36 25.83
High Support District 85,309 0.32 0.47 0.00 1.00
Low Support District 85,309 0.38 0.49 0.00 1.00
Presidential Election Year 85,309 0.26 0.44 0.00 1.00
Any Election Year 85,309 0.55 0.50 0.00 1.00
Presidents’ First Temperature 85,309 0.66 0.47 0.00 1.00
Years President Runs for Reelection 85,309 0.17 0.38 0.00 1.00
Electoral Votes 85,309 15.01 9.23 3.00 55.00
County Vote Change (Pres.) 81,412 -3.08 12.63 -71.98 88.32
Last Term Governor 71,297 0.41 0.49 0.00 1.00
Population (log) 85,240 10.43 1.31 3.69 16.13
Black population (log) 79,741 7.24 2.66 0.00 14.17
Income (log) 78,013 17.27 1.98 9.17 24.84
Income per Capita (log) 78,013 13.72 1.25 10.10 16.83
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3.7.6 Robustness – Average Alignment Effects

Figure 3.13: Randomization inference (average effect)
Notes: The figure displays the distribution of simulated coefficients of Aligned
Governor for 1,000 simulation runs with placebo treatments for the regression in
Table 1, column 4. The green bar represents the coefficient using the true data.

240



D
isastrous

D
iscretion

–
T
he

N
onlinear

PoliticalB
ias

in
U
.S.H

urricane
R
elief

Table 3.4: Robustness – Alternative clustering

Dep. Var.: Declaration (1) (2) (3) (4) (5) (6) (7) (8)
Aligned Governor 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

(0.002) (0.002) (0.010) (0.014) (0.011) (0.014) (0.009) (0.011)
[0.000] [0.000] [0.008] [0.055] [0.013] [0.061] [0.004] [0.013]

Aligned Representative 0.010 0.010 0.010 0.010 0.010 0.012 0.011 0.011
(0.002) (0.002) (0.006) (0.005) (0.005) (0.006) (0.005) (0.005)
[0.000] [0.000] [0.080] [0.068] [0.058] [0.030] [0.036] [0.042]

Aligned Senators 0.024 0.024 0.024 0.024 0.024 0.026 0.023 0.023
(0.002) (0.002) (0.014) (0.015) (0.014) (0.015) (0.012) (0.013)
[0.000] [0.000] [0.087] [0.128] [0.097] [0.070] [0.057] [0.072]

Wind Speed (St. Dev.) 0.074 0.074 0.074 0.074 0.074 0.075 0.074 0.074
(0.002) (0.002) (0.006) (0.010) (0.008) (0.010) (0.007) (0.009)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Rainfall (St. Dev.) 0.069 0.069 0.069 0.069 0.069 0.072 0.070 0.070
(0.002) (0.001) (0.008) (0.007) (0.005) (0.006) (0.005) (0.006)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Storm Surge (St. Dev.) 0.030 0.030 0.030 0.030 0.030 0.031 0.028 0.028
(0.006) (0.005) (0.010) (0.011) (0.009) (0.011) (0.009) (0.010)
[0.000] [0.000] [0.004] [0.007] [0.001] [0.003] [0.001] [0.003]

Cluster County County & Year State Year State x Year Spatial Hurricane x State Hurricane
Observations 85,309 85,309 85,309 85,309 85,309 85,309 83,071 83,071
Notes: The table displays regression coefficients with different clustered standard errors in parentheses for the estimation in column 4 in the main
results table. P-values are shown in brackets. All estimations use the linear fixed effect-within estimator and include county and year fixed effects.
Wind Speed, Rainfall, and Storm Surge are shown in standard deviation increases (above zero). Standard deviations for Wind Speed, Rainfall, and
Storm Surge are 38.78 km/h, 68.17 mm, and 0.8 m, respectively. Model 1-5 include county-specific linear time trends. Model 6 includes a HAC
arbitrary spatial-temporal clustering with a radius of 1000 km up to 10 years. The sample runs from 1965-2018 in all regressions.
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Table 3.5: Robustness – Lags of Declaration and Wind Speed

Dep. Var.: Declaration (1) (2)
Aligned Governor 0.029 0.027

(0.011) (0.011)
[0.006] [0.012]

Aligned Representative 0.010 0.011
(0.005) (0.005)
[0.055] [0.040]

Aligned Senators 0.022 0.025
(0.013) (0.014)
[0.104] [0.075]

Wind Speed (St. Dev.) 0.073 0.074
(0.007) (0.008)
[0.000] [0.000]

Rainfall (St. Dev.) 0.067 0.069
(0.005) (0.005)
[0.000] [0.000]

Storm Surge (St. Dev.) 0.031 0.030
(0.009) (0.009)
[0.001] [0.002]

Lags Declaration Wind Speed
Observations 85,309 85,309
Notes: The table displays regression coefficients with two-
way clustered standard errors on the state × year and
county level in parentheses. P-values are shown in brack-
ets. All estimations use the linear fixed effect-within esti-
mator and include county and year fixed effects as well as
county-specific linear time trends. The regression model
in column (1) includes 10 lags of the Declaration variable,
and the model in column (2) includes 10 lags of the Wind
Speed variable. Wind Speed, Rainfall, and Storm Surge are
shown in standard deviation increases (above zero). Stan-
dard deviations forWind Speed, Rainfall, and Storm Surge
are 38.78 km/h, 68.17 mm, and 0.8 m, respectively. The
sample runs from 1965-2018 in all regressions.
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Table 3.6: Robustness – Alternative models

Dep. Var.: Declaration(s) (1) (2) (3) (4)
Aligned Governor 0.607 0.301 0.385 0.385

(0.043) (0.023) (0.023) (0.135)
[0.000] [0.000] [0.000] [0.004]

Aligned Representative 0.159 0.083 0.109 0.109
(0.040) (0.021) (0.026) (0.060)
[0.000] [0.000] [0.000] [0.072]

Aligned Senators 0.498 0.246 0.339 0.339
(0.044) (0.024) (0.029) (0.171)
[0.000] [0.000] [0.000] [0.048]

Wind Speed (St. Dev.) 0.926 0.489 0.452 0.452
(0.021) (0.011) (0.015) (0.043)
[0.000] [0.000] [0.000] [0.000]

Rainfall (St. Dev.) 0.765 0.413 0.204 0.204
(0.018) (0.009) (0.013) (0.031)
[0.000] [0.000] [0.000] [0.000]

Storm Surge (St. Dev.) 0.092 0.034 -0.089 -0.089
(0.083) (0.043) (0.043) (0.046)
[0.264] [0.429] [0.037] [0.056]

Model logit probit Poisson PPML
Observations 64,579 64,579 68,616 64,579
Notes: The table displays regression coefficients for different estimation mod-
els with SE in parentheses. P-values are shown in brackets. Conditional FE
logit and probit estimations are computed using the Stata package written
by Fernández-Val & Weidner (2016). For the Poisson pseudo-maximum like-
lihood (PPML) estimation, we use the package developed by Correia et al.
(2020). In the logit and probit model, the dependent variable is Declaration,
whereas for the remaining models it is Declarations. All models include
county and year fixed effects. Wind Speed, Rainfall, and Storm Surge are
shown in standard deviation increases (above zero). Standard deviations
for Wind Speed, Rainfall, and Storm Surge are 38.78 km/h, 68.17 mm, and
0.8 m, respectively. The sample runs from 1965-2018 in all regressions.
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Table 3.7: Robustness – Socioeconomic control variables

Dep. Var.: Declaration (1) (2) (3) (4) (5) (6)
Aligned Governor 0.032 0.027 0.027 0.026 0.026

(0.012) (0.011) (0.011) (0.011) (0.011)
[0.006] [0.020] [0.013] [0.014] [0.015]

Aligned Representative 0.011 0.009 0.009 0.009
(0.005) (0.005) (0.005) (0.005)
[0.024] [0.078] [0.078] [0.070]

Aligned Senators 0.026 0.023 0.026 0.025
(0.013) (0.014) (0.014) (0.014)
[0.049] [0.104] [0.070] [0.076]

Population (log)t-1 0.010 0.011 0.012 -0.003 -0.003 -0.004
(0.004) (0.005) (0.005) (0.004) (0.003) (0.003)
[0.019] [0.017] [0.011] [0.348] [0.291] [0.204]

Black Population (log)t-1 -0.007 -0.007 -0.005 -0.007 -0.007 -0.007
(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)
[0.004] [0.008] [0.028] [0.009] [0.009] [0.009]

Real Income (log)t-1 0.014 0.012 0.010 0.008 0.008 0.009
(0.006) (0.006) (0.006) (0.007) (0.007) (0.007)
[0.014] [0.041] [0.108] [0.281] [0.252] [0.209]

Per Capita Real Income (log)t-1 -0.019 -0.017 -0.014 -0.009 -0.010 -0.011
(0.009) (0.009) (0.009) (0.009) (0.009) (0.009)
[0.037] [0.064] [0.135] [0.336] [0.267] [0.222]

Wind Speed (St. Dev.) 0.075 0.075 0.075 0.074
(0.008) (0.007) (0.007) (0.007)
[0.000] [0.000] [0.000] [0.000]

Rainfall (St. Dev.) 0.072 0.072 0.071 0.069 0.069 0.069
(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Storm Surge (St. Dev.) 0.032 0.031 0.031 0.030 -0.002 -0.002
(0.010) (0.010) (0.010) (0.010) (0.009) (0.009)
[0.001] [0.001] [0.001] [0.002] [0.813] [0.797]

Time Trends X X X
Wind Speed Polynomials X
Wind Speed Bins X
Observations 85,309 85,309 85,309 85,309 85,309 85,309
Notes: The table displays regression coefficients with two-way clustered standard errors on the state ×
year and county level in parentheses. P-values are shown in brackets. All estimations use the linear fixed
effect-within estimator and include county and year fixed effects. Wind Speed, Rainfall, and Storm Surge
are shown in standard deviation increases (above zero). Standard deviations for Wind Speed, Rainfall, and
Storm Surge are 38.78 km/h, 68.17 mm, and 0.8 m, respectively. Model 4-6 include county-specific linear
time trends. ‘Wind Speed Bins’ signifies the usage of the semi-parametric approach to model wind speed.
‘Wind Speed Polynomials’ indicates the usage of quartic polynomials. The sample runs from 1965-2018 in
all regressions.
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3.7.7 Robustness and Further Results – Heterogeneous Alignment Bias

3.7.7.1 Standard Errors and Randomization Inference

Figure 3.14: Robustness – Alternative clustering choices
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived
from our polynomial estimation (solid green line). The light green shaded area represents the 95 percent
confidence interval applying the alternative clustering levels as indicated in the panel titles. Panel f applies
a HAC arbitrary spatial-temporal clustering with a radius of 1,000 km up to 10 years. The sample covers
county-year observations from 1965–2018.
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Figure 3.15: Randomization inference – Simulated p-value
Notes: The figure displays the permutation p-value (pperm. = N−1 ∑N

i=i 1[|β| < |βi,placebo |]) of the
marginal effect of Aligned Governor for every Wind Speed in green, in bold print for the interval
significant at the 95% confidence level derived from the simulation displayed in the paper. The
gray dashed line represents the coefficient size using the true data.
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3.7.7.2 Subsamples

Figure 3.16: Robustness – Omitting states and decades
Notes: This figure shows the sensitivity of our result to the omission of groups of observations. It displays
marginal effects of Aligned Governor from individual regressions, where each regression omits all observations
from one state (a) or decade (b). The panels show separate lines for the predicted marginal effects from each
regression. The transparent shaded areas indicate the respective 95% confidence intervals applying two-way
clustered standard errors on the state × year and county level.

Figure 3.17: Major disaster declarations and emergency declarations
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived from
our polynomial estimation (solid green line). The light green shaded area represents the 95 percent confidence
interval applying two-way clustered standard errors on the state × year and county level. The sample covers
county-year observations from 1965–2018. In Panel a, the dependent variable is Major Declaration and in
Panel b Emergency Declaration.
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Figure 3.18: Robustness – Subsamples
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived
from our polynomial estimation (solid green line). The light green shaded area represents the 95 percent
confidence interval applying two-way clustered standard errors on the state × year and county level. Panel a
uses a subsample of coastal counties and Panel b non-coastal counties. Panel c includes only observations with
a positive Wind Speed observation. Panel d uses a full balanced panel, including observations with both zero
Wind Speed and Rainfall.
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Figure 3.19: Robustness – Excluding outliers
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived
from our polynomial estimation (solid green line). The light green shaded area represents the 95 percent
confidence interval applying two-way clustered standard errors on the state × year and county level. The
sample covers county-year observations from 1965–2018. Panel a excludes all observations with wind speeds
below the 10% percentile (13 km/h). Panel b excludes all observations with wind speeds above the 99%
percentile (183 km/h). Panel c excludes all observations above a leverage of (2k + 2)/n. Panel d excludes all
observations with a higher Cook’s distance measure of 4/n.

249



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

Figure 3.20: Swing states and different terms of the presidents
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived
from our polynomial estimation (solid green line). The light green shaded area represents the 95 percent
confidence interval applying two-way clustered standard errors on the state × year and county level. The
sample covers county-year observations from 1965–2018. Panel a restricts the sample to swing states in terms
of the presidential election (all observations in which the statewide majority shifted at least once in the
last three elections). Panel b restricts the sample to swing states in terms of the gubernatorial election (all
observations in which the statewide majority shifted at least once in the last three elections).
Panel c shows the results for presidents in their first term and Panel d for their second term.
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3.7.7.3 Alternative Specifications and Triple Interactions

Figure 3.21: Robustness – Higher Wind Speed polynomials
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived from
our polynomial estimation (solid green line). The light green shaded area represents the 95 percent confidence
interval applying two-way clustered standard errors on the state × year and county level. The sample covers
county-year observations from 1965–2018. Panel a-f apply a Wind Speed polynomial with different polynomial
degrees.
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Figure 3.22: Robustness – County × decade fixed effects & state-specific Wind Speed controls
Notes: This figure shows the sensitivity of our main result with more flexible estimation models. The figure
displays marginal effects of Aligned Governor for different levels of Wind Speed (solid green line). The light
green shaded area represents 95% confidence intervals applying two-way clustered standard errors on the state
× year and county level. The sample covers county-year observations from 1965–2018. Panel a adds separate
linear Wind Speed effects for each state added to our polynomial estimation. Panel b includes county × decade
fixed effects in our polynomial estimation.
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Figure 3.23: Additional specifications and further political factors
Notes: The figure displays marginal effects for the variables of interest depicted on the vertical axes from
four polynomial regressions. The shaded areas represent 95 percent confidence intervals applying two-way
clustered standard errors on the state × year and county level. The sample covers county-year observations
from 1965–2018. In Panel a Alignment Count is a variable that indicates how many of the major politicians
(governor, senators, representative) are aligned with the president. In Panel b Governor’s Last Term Possible
is an indicator taking the value 1 if governors are in their last term due to a constitutional restriction that
prohibits them to run for the office again. Panel c includes an indicator for congressional election years. Panel
d interacts an indicator for years in which an incumbent president runs for reelection with the Wind Speed
polynomial.
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Figure 3.24: Robustness – Alternative specifications
Notes: This figure shows the robustness of our main result to alternative specifications. The panels display
marginal effects of Aligned Governor for different levels of Wind Speed, derived from our polynomial estimation
(solid green line). The light green shaded area represents the 95 percent confidence interval applying two-way
clustered standard errors on the state × year and county level. The sample covers county-year observations
from 1965–2018. Panel a includes two variables that account for the frequency of Wind Speed and Rainfall
incidences respectively. Panel b includes the wind speed damage index as proposed by Emanuel (2011) instead
of our Wind Speed measure. In Panel c the estimation includes Population (log), Black Population (log),
Income (log), Income Per Capita (log), all lagged by one year. Panel d includes additional temperature
controls (Mean Annual Temperature) from the Prism data base. Panel e uses alternative rainfall data (Mean
Annual Rainfall) from the Prism data base. Panel f omits the Rainfall and Storm Surge control variable.
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Figure 3.25: Robustness – Lags
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived
from our polynomial estimation (solid green line). The light green shaded area represents the 95 percent
confidence interval applying two-way clustered standard errors on the state × year and county level. The
sample covers county-year observations from 1965–2018. Panel a adds the first ten lags of Wind Speed and
Panel b the first ten lags of Declaration.
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Figure 3.26: Robustness – Polynomial controls and other declarations
Notes: The figure displays marginal effects of Aligned Governor for different levels of Wind Speed, derived
from our polynomial estimation (solid green line). The light green shaded area represents the 95 percent
confidence interval applying two-way clustered standard errors on the state × year and county level. The
sample covers county-year observations from 1965–2018. Panel a includes additional polynomial interactions
of Aligned Governor with Rainfall and Storm Surge and Panel b adds polynomial interactions of Wind Speed
with Aligned Representatives and Aligned Senators. Panel c allows for all interactions as described in Panel a
and b. In Panel d we additionally control for the number of other disaster declarations per county and year.
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Figure 3.27: Political relief cycles – Marginal effects from triple interactions
Notes: The figure displays marginal effects for the variable specified on the respective vertical axis from three
polynomial estimations including triple interactions. In each specification, we add the depicted variables
of interest as well as all possible cross-interactions with the Wind Speed polynomial to our baseline for
the estimation of heterogeneous effects. Shaded areas represent 95% confidence intervals applying two-way
clustered standard errors on the state × year and county level. In comparison to the triple interaction figure
shown in the paper, this figure shows only the marginal effects of the respective triple-interacted coefficients,
i.e. displaying the differences in marginal effects between election years and non-election years directly.
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3.7.8 Main Results – Detailed Tables and Additional Figures

Table 3.8: Sequential F-tests for Wind Speed polynomials x Aligned Governor

F-statistic p-value

9 vs 8 .4112046 .6629178

8 vs 7 1.177131 .3084152

7 vs 6 1.09806 .3337564

6 vs 5 .9970591 .3691808

5 vs 4 .5066077 .602628

4 vs 3 3.843388 .0216092

3 vs 2 15.35145 2.47e-07

Notes: The table displays the results
of seven F-tests based on our poly-
nomial regression model presented in
the paper. We test the unrestricted
model of polynomial degree n against
its restricted alternative with degree
n − 1 as depicted in the leftmost col-
umn. Each restriction consists of
two coefficients, the excluded Wind
Speed-polynomial and its interaction
with Aligned Governor. The p-values
document which restrictions are asso-
ciated with a significantly better fit
to explain the variation in the depen-
dent variable Declaration.

258



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

Figure 3.28: Predicted average probabilities for Declaration = 1

Notes: The figure shows the predicted probability for a disaster declaration in an
average county depending on alignment status derived from our baseline regression.
The dashed blue line represents the estimated average declaration probability if a
county is aligned, the green solid line plots the probability for unaligned counties
respectively. Rainfall and Storm Surge enter the prediction with regards to their
average levels. All estimations include county- and year fixed effects as well as
linear county-specific time trends. The shaded areas show 95% confidence intervals
based two-way clustered standard errors on the state × year and county level.

259



Disastrous Discretion – The Nonlinear Political Bias in U.S. Hurricane Relief

Table 3.9: Polynomial regression results of main specification

Dep. Var.: Declaration (1)
Wind Speed 0.0008

(0.0009)
[0.3902]

Wind Speed2 -0.0000
(0.0000)
[0.3445]

Wind Speed3 0.0000
(0.0000)
[0.0280]

Wind Speed4 -0.0000
(0.0000)
[0.0056]

Rainfall 0.0010
(0.0001)
[0.0000]

Storm Surge -0.0030
(0.0105)
[0.7777]

Aligned Governor 0.0033
(0.0087)
[0.7067]

Aligned Governor × Wind Speed -0.0016
(0.0012)
[0.1730]

Aligned Governor × Wind Speed2 0.0001
(0.0000)
[0.0161]

Aligned Governor × Wind Speed3 -0.0000
(0.0000)
[0.0263]

Aligned Governor × Wind Speed4 0.0000
(0.0000)
[0.0701]

Aligned Representative 0.0093
(0.0052)
[0.0741]

Aligned Senators 0.0258
(0.0138)
[0.0628]

Time Trends X
Observations 85,309
Notes: The table displays regression coefficients
of the main polynomial specification with two-way
clustered standard errors on the state × year and
county level in parentheses. P-values are shown
in brackets. All estimations use the linear fixed
effect-within estimator and include county and
year fixed effects. The sample runs from 1965-
2018 in all regressions.
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Table 3.10: Bins regression results of main specification

Dep. Var.: Declaration (1)
Wind Speed Bin 1 0.0052

(0.0191)
[0.7848]

Wind Speed Bin 2 0.0179
(0.0140)
[0.1999]

Wind Speed Bin 3 0.0292
(0.0210)
[0.1642]

Wind Speed Bin 4 0.0757
(0.0233)
[0.0012]

Wind Speed Bin 5 0.1088
(0.0432)
[0.0119]

Wind Speed Bin 6 0.1732
(0.0639)
[0.0068]

Wind Speed Bin 7 0.4687
(0.0628)
[0.0000]

Wind Speed Bin 8 0.5879
(0.0742)
[0.0000]

Wind Speed Bin 9 0.5219
(0.1026)
[0.0000]

Wind Speed Bin 10 0.7337
(0.0584)
[0.0000]

Rainfall 0.0010
(0.0001)
[0.0000]

Storm Surge -0.0032
(0.0104)
[0.7583]

Aligned Governor 0.0032
(0.0083)
[0.6973]

Aligned Governor × Wind Speed Bin 1 -0.0031
(0.0268)
[0.9069]

Aligned Governor × Wind Speed Bin 2 0.0012
(0.0197)
[0.9517]

Aligned Governor × Wind Speed Bin 3 0.0838
(0.0379)
[0.0271]

Aligned Governor × Wind Speed Bin 4 0.1023
(0.0353)
[0.0038]

Aligned Governor × Wind Speed Bin 5 0.1833
(0.0523)
[0.0005]

Aligned Governor × Wind Speed Bin 6 0.2360
(0.0760)
[0.0019]

Aligned Governor × Wind Speed Bin 7 0.1137
(0.0813)
[0.1620]

Aligned Governor × Wind Speed Bin 8 0.0670
(0.1038)
[0.5186]

Aligned Governor × Wind Speed Bin 9 0.1910
(0.1103)
[0.0835]

Aligned Governor × Wind Speed Bin 10 -0.0338
(0.0764)
[0.6578]

Aligned Senators 0.0252
(0.0137)
[0.0661]

Aligned Representative 0.0096
(0.0051)
[0.0622]

Time Trends X
Observations 85,309

Notes: The table displays regression coeffi-
cients of the main bin specification with two-
way clustered standard errors on the state
× year and county level in parentheses. P-
values are shown in brackets. All estima-
tions use the linear fixed effect-within esti-
mator and include county and year fixed ef-
fects . The sample runs from 1965-2018 in
all regressions.
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3.7.9 Additional Correlations and Results

Figure 3.29: Relationship of Wind Speeds and disaster Declarations
Notes: The figure shows the predicted probability for a disaster declaration from
three different estimations with Wind Speed as the explanatory variable. The
specification represented by the black dotted line uses only a linear Wind Speed
variable, the green solid line applies a quartic Wind Speed polynomial, and the blue
dashed line applies ten Wind Speed 25 km/h bins. All estimations include county-
and year fixed effects as well as linear county-specific time trends. The shaded
areas show 95% confidence intervals based two-way clustered standard errors on
the state × year and county level.
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Table 3.11: Declaration turndowns and relief amounts

Declaration
Public

Assistance
Projects

Total
Public

Assistance
(log)

(1) (2) (3)
Aligned Governor 0.014 1.734 0.806

(0.015) (27.522) (0.469)
[0.347] [0.950] [0.089]

Aligned Representative 0.006 -27.292 0.258
(0.006) (21.503) (0.345)
[0.306] [0.207] [0.457]

Aligned Senators 0.000 -2.921 -0.880
(0.012) (23.884) (0.566)
[0.970] [0.903] [0.124]

Time Trends X X X
Wind Speed Polynomials X X X
Observations 3,677 1,249 1,239
Notes: The table displays regression coefficients with two-way clustered stan-
dard errors on the state × year and county level in parentheses. P-values are
shown in brackets. All estimations use the linear fixed effect-within estimator
and include county and year fixed effects as well as county-specific linear time
trends and Rainfall controls. indicates the usage of quartic polynomials. The
sample in column 1 includes all county-year observations for which FEMA in-
dicated (via FOIA and openFEMA data) that federal relief has been requested
between 1992-2015. In panels 2 and 3 the sample covers all county-year obser-
vations for which a federal disaster declaration has been issued and a positive
amount of public assistance has been provided (1998-2015).

Figure 3.30: Declarations and election outcomes
Notes: This figure shows the relationship between issuing a disaster
declaration and the change in the incumbent president’s party county-level
vote share in the upcoming presidential election, which is the dependent
variable in this regression. It displays marginal effects of Declarations for
different levels of Wind Speed, derived from our polynomial estimation (solid
green line). The light green shaded area represents the 95 percent confidence
interval applying clustered standard errors on the state level. The sample
covers county-year observations from 1965–2018.
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Abstract: We examine the design and implementation of the United Nations Flash Appeal
triggered in response to the highly destructive 2015 Nepal earthquake. We consider how
local need and various distortions affect the proposed project number, the proposed financial
amount, and the subsequent funding decision by aid donors. Specifically, we investigate
the extent to which the allocation of this humanitarian assistance follows municipalities’
affectedness and their physical and socioeconomic vulnerabilities. We then analyze potential
ethnic, religious, and political distortions. Our results show that aid allocation is associated
with geophysical estimates of the earthquake damage. Controlled for disaster impact, however,
aid allocation shows little regard for the specific socioeconomic and physical vulnerabilities.
It is also worrisome that the allocation of the flash appeal commitments favors municipalities
dominated by higher castes and disadvantages those with a greater distance to the Nepali
capital Kathmandu.
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4.1 Introduction

On April 25, 2015, a 7.8-magnitude earthquake struck central Nepal.102 More than 100

subsequent aftershocks followed, of which the largest reached an intensity of 7.3 on May 12.

It was one of the most destructive natural disasters in the history of Nepal. The disaster

triggered substantial international attention. It is estimated to have killed 8,800 people and

affected more than 5.6 million (Guha-Sapir et al., 2016), which constituted almost a fifth of

Nepal’s population.

Four days after the earthquake, the United Nations (UN) Office for the Coordination of

Humanitarian Affairs (UNOCHA, 2016), in collaboration with the Office of the Humanitarian

Coordinator (OHC), the Nepalese government, and humanitarian partners, issued a strategic

response plan for Nepal, a so-called flash appeal.103 Flash appeals have become important

components of humanitarian relief in emergency situations, as demonstrated by the 76 flash

appeals the UN has issued over the 2005–2016 period. During this time, the international

donor community spent USD 190 billion alone on flash appeals to satisfy humanitarian needs

and stimulate economic reconstruction. As can be seen from the list of the 20 largest events

in Table 4.1, the 2015 Nepal earthquake triggered the seventh largest flash appeal in terms

of its financial size. A common hope and expectation is that the criteria for choosing the

location of aid projects after a disaster are based on disaster affectedness and the specific

vulnerabilities of municipalities. Meaningful aid allocation is particularly salient since nine

out of ten flash appeals are underfunded (UNOCHA, 2018).

The 2015 UN Nepal Earthquake Flash Appeal identified 184 projects and requested USD

422 million in order to provide life-saving assistance and protection for the Nepalese people in

the five months after the earthquake (AidData, 2016a).104 Although 77 donor organizations

responded to the Flash Appeal, a third of the requested amount remained unmet as of May

102Nepal, a landlocked country situated between China and India, has 29 million inhabitants, of which 15%
live below the poverty line of USD 1.90 (PPP) a day (World Bank, 2018). It is home to 125 ethnic
(caste) groups. After a civil war (1996–2006), the country became a secular republic in 2008. It now is a
multi-party democracy with the Communist Party of Nepal and the Nepali Congress being the dominant
parties. The new political constitution has been in force since September 2015. According to the “Polity
Score” of the Polity IV data set, Nepal is coded as a democracy with a value of 6 on a 21-point scale from
10 (full autocracy) to 10 (full democracy) (Marshall et al., 2018).

103While a flash appeal responds to new disasters, annually consolidated appeals cover protracted crises. This
study only covers the former. The decision to issue an appeal is primarily left to field staff but the affected
government should be consulted (UNGA, 1991).

104The revised flash appeal of May 4, 2015 is available at https://www.humanitarianresponse.info/sites/www.
humanitarianresponse.info/files/documents/files/nepal_earthquake_2015_revised_flash_appeal_final_
0.pdf, accessed January 27, 2017.
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Table 4.1: List of 20 largest UN flash appeals (2005–2016)

Flash appeal
Revised

requirements
(in mUSD)

Total resources
available

(in mUSD)
Covered

1 PAKISTAN Floods July 2010 1,963 1,371 69.9%
2 YEMEN 2015 1,601 915 57.1%
3 HAITI Earthquakes January 2010 1,502 1,101 73.3%
4 INDIAN OCEAN Earthquake/Tsunami December 2004 1,409 1,248 88.5%
5 SOUTH ASIA Earthquake October 2005 561 368 65.5%
6 MYANMAR Tropical Cyclone Nargis May 2008 477 349 73.1%
7 NEPAL Earthquake April 2015 422 282 66.8%
8 PAKISTAN Floods August 2011 357 157 44.0%
9 LIBYA Unrest and Neighbouring Countries Feb. 2011 336 279 83.1%
10 IRAQ 2016 284 276 97.4%
11 KENYA Post-Election Emergency January 2008 208 137 66.0%
12 AFGHANISTAN 2016 152 60 39.6%
13 PHILIPPINES Typhoon Ketsana September 2009 144 63 43.7%
14 HAITI Hurricane Matthew October 2016 139 86 62.2%
15 HAITI Hurricane Gustav and Tropical Storm Hanna Sept. 2008 121 73 60.5%
16 GEORGIA Crisis August 2008 114 73 63.9%
17 LEBANON Crisis July 2006 97 119 123.2%
18 KYRGYZSTAN Civil unrest June 2010 94 69 72.8%
19 NIGER Drought/Locust Invasion Food Security Crisis 2005 81 59 72.7%
20 INDONESIA Java Earthquake May 2006 80 43 53.4%

Notes: Own calculations with data from UNOCHA (2018).

2018 (UNOCHA, 2018).105 However, the spatial heterogeneity across municipalities is large.

This holds with respect to the number of aid projects, the proposed financial amount, and the

degree to which proposed projects obtained funding commitments by international donors.

This raises the question: What factors explain the selection of project locations and the

provision of the requested funds?

By studying the allocation of UN flash appeal aid, we contribute to the broader literature

on the allocation of humanitarian aid. A first strand investigates aid allocation across countries

and emergencies, where emergency aid has been shown to increase with disaster severity,

but is also driven by media coverage and is prone to political bias (Bommer et al., 2019;

Drury et al., 2005; Eisensee & Strömberg, 2007; Fink & Redaelli, 2011; Fuchs & Klann, 2013;

Raschky & Schwindt, 2012). A much smaller second strand analyzes the allocation of disaster

relief within disaster-affected areas. For example, Benini et al. (2009) and Wiesenfarth &

Kneib (2010) study relief supply to earthquake-affected communities in Pakistan after the

2005 earthquake and find that needs and logistical convenience of locations affect aid delivery.

Francken et al. (2012) investigate politico-economic factors underlying aid allocation across

communities in Madagascar in the aftermath of Cyclone Gafilo in 2004. They uncover that

domestic aid is provided to regions where governments have stronger incentives to respond,

105The five largest official donors are the United States of America, the Central Emergency Response Fund,
Norway, Canada, and the United Kingdom (see https://fts.unocha.org/appeals/486/summary, accessed
December 13, 2018).
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specifically those with higher radio coverage and with stronger political support from the

ruling administration. At the same time, their results suggest that foreign aid is distributed

to poorer areas and to those that are more easily accessible.

Our study adds to this smaller and less developed second strand of the literature by exam-

ining the role of UN flash appeals. To the best of our knowledge, no existing study analyzes

the geographic pattern of proposed and funded projects following UN flash appeals—despite

their importance in the immediate aftermath of a disaster.106

Studying the allocation of emergency aid is important as these flows are intended to

improve the humanitarian situation of the population living in disaster-affected areas. Beyond

the mere humanitarian aspect, empirical findings suggest that post-disaster aid can boost

economic growth (Bjørnskov, 2019), speed up the recovery process of microenterprises (de Mel

et al., 2012), and play a role in reducing the likelihood of escalating government repression in

democracies (Wood & Wright, 2016).107 Even critics of ‘general’ development aid support the

continued provision of emergency relief following devastating disasters (Moyo, 2009). Since

humanitarian aid flows are surprisingly small in comparison to the damage caused (Becerra

et al., 2014, 2015), a need-oriented aid allocation is particularly salient.

By analyzing the humanitarian response triggered by the 2015 Nepal earthquake, this

study addresses two (sequentially) related aspects of flash appeals. We study the municipal

characteristics that influence the number of emergency aid projects and the financial amount

committed to a particular municipality. First, we analyze the determinants of project-locations

in the design stage of the 2015 UN Nepal Earthquake Flash Appeal across municipalities.

Second, we investigate which proposed project locations obtain funding from international

donors.

Our study makes use of a new, and so far unexploited, georeferenced aid data set from

AidData that contains information on proposed and ultimately funded aid projects that have

been a part of the 2015 UN Nepal Earthquake Flash Appeal (AidData, 2016a). These data

cover 156 out of 184 projects in more than 850 locations. We combine these aid data with

106This article also adds to a burgeoning literature on the subnational allocation of development aid (Dreher
et al., 2019; Dreher & Lohmann, 2015; Strandow et al., 2016). However, emergency aid is distinct from
other development aid given its goal and time horizon. Emergency aid is relatively “high-speed” assistance,
especially after fast-onset disasters. Donors react in days, if not hours, rather than the years that it takes
to design and implement more long-term development strategies.

107Donor countries can also benefit from humanitarian aid if it boosts the donors’ image in the recipient
country. In this regard, Andrabi & Das (2017) show that for the 2005 Pakistan earthquake, trust in
Americans and Europeans increased in earthquake-affected areas, i.e., areas that also benefited from aid
inflows.
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data on nighttime light and rainfall intensity, survey data, and electoral statistics at the

local level, to evaluate whether the allocation and subsequent financing of humanitarian aid

projects in Nepalese municipalities are based on actual disaster impact and the population’s

specific vulnerabilities or rather biased by particular interests. To assess the disaster impact,

we use peak ground acceleration maps provided by USGS (2017a) and combine them with

damage functions. We argue that this provides a suitable indicator for potential destruction

from earthquakes to short buildings up to seven stories (USGS, 2017c). We evaluate whether

aid allocation decisions also reflect socioeconomic and physical vulnerabilities of the affected

population using measures of municipalities’ level of development, their exposure to rainfall,

and their distance to the Nepalese capital Kathmandu, amongst others. Finally, we test for

ethnic, religious, and political distortions in aid giving by analyzing the role of a municipality’s

share of Hindus and privileged caste population, as well as the vote share of Nepal’s two

dominant parties in the 2013 Constituent Assembly elections.

Our empirical results show that aid allocation in the framework of the 2015 Nepal

Earthquake Flash Appeal lacks need orientation and shows ethnic and political biases. At

the design stage, the location choice is not guided by municipalities’ level of development,

as proxied by nighttime light. Moreover, it shows little regard for other socioeconomic

and physical vulnerabilities – the exception being that municipalities with less solid house

foundations receive more aid projects. Municipalities populated by upper castes receive

more projects. The strongholds of the two major Nepali parties also benefit from larger

aid amounts in the design stage. On the positive side, the initial appeal project proposals

correlate positively with the extent of earthquake damage. However, the funding decisions

of the international donor community show little regard of socioeconomic and physical

vulnerabilities.

We conclude that the geographic selection of aid projects is distorted at all levels of

decision-making. Therefore, the need orientation of geographic project selection and funding

should be strengthened. This would involve different actors, namely UNOCHA, the OHC,

and the national government during the design of flash appeals, as well as donor countries,

multilateral donors, and non-state donors during the funding and coordination phase.

The remainder of the paper proceeds as follows. In Section 2, we outline the decision-

making process that underlies the 2015 UN Nepal Earthquake Flash Appeal. We also discuss

the factors that should (not) guide the selection and funding of project locations according
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to the flash appeal document and from a humanitarian perspective. Section 3 presents

our research design and the data. We use various proxies for the needs and vulnerabilities

of Nepalese municipalities to analyze whether these factors guide aid distribution. We

then explore alternative allocation rules which could explain the lack of need orientation.

Specifically, we test for ethnic, religious, and political distortions. In Section 4, we present

and discuss our empirical results. Finally, Section 5 summarizes our findings and outlines

potential avenues for future research.

4.2 The 2015 Nepal Earthquake Flash Appeal

A flash appeal is a planning tool to respond to major disasters. The UN initiates flash appeals

in the direct aftermath of largescale sudden-onset disasters that require a fast and coordinated

response that exceeds the capacity of the affected government, plus any single UN agency

(UNOCHA, 2013). Flash appeals are presented within five to seven days of the occurrence

of the emergency and include contextual information with a roadmap for all humanitarian

organizations involved in disaster relief. The appeal document outlines a strategy on relief

and rehabilitation plans for the months following the disaster, lists specific emergency aid

projects, and determines the required resources (UNOCHA, 2015b,c). The assessment of

required resources serves to fundraise with international donors.

The UN Resident Coordinator and/or Humanitarian Coordinator (HC) initiates the

appeal process in consultation with the affected government and a so-called Humanitarian

Country Team, which is a strategic, operational decision-making and oversight forum led

by the HC. The decision to start an appeal process is, on the one hand, based on a rapid

assessment of the scale and severity of the disaster and, on the other hand, a function of the

respective national government’s capacity to cope with the consequences. The implementation

of flash appeals does not require permission from the government, but there is rarely any

opposition. In practice, the government typically plays a key role in designing the appeal.

Flash appeals are usually revised about a month later. Revised flash appeals typically include

more complete information, improved and in-depth assessments, and describe more clearly

the required early-recovery aid projects.108

108The websites https://fts.unocha.org/content/guide-funding-response-plans-andappeals and https://www.
unocha.org/sites/dms/CAP/FAs_What_you_need_to_know.pdf (accessed March 21, 2020) provide more
information on humanitarian response plans and appeals.
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One of the financially largest emergency appeals was the Flash Appeal for the Response

to the Nepal Earthquake, which was issued on April 29, 2015, i.e., four days after the first

earthquake hit central Nepal.109 At that point in time, government sources estimated a

death toll of 5,006 people and the number of injured people amounted to 10,194. The appeal

document called the donor community to collect USD 415 million “to reach over 8 million

people with life-saving assistance and protection in the next three months” (UNOCHA, 2015c).

This estimate of the required resources was based on initial results of damage assessments,

earthquake intensity mapping, and secondary data analysis.

One month later, on May 29, 2015, the UNOCHA issued a revision of the Flash Appeal

(UNOCHA, 2015b). The update intended to strengthen linkages between the recovery and

rehabilitation program of the Nepali government and extended the appeal duration from

three to five months. This also allowed the Flash Appeal to account for the damage caused by

the severe aftershock on May 12, 2015. The goal was then to collect USD 422 million for 2.8

million affected and vulnerable people. The appeal document emphasizes that “[r]elief efforts

will need to continue to identify and respond to distinct structural and situational factors that

increase vulnerabilities at both local and community levels, including for women, children, the

elderly, minorities and people with disabilities” (UNOCHA, 2015b, 6). UNOCHA based its

assessment of the severity of needs on a severity index that “combines indicators that measure

earthquake impact (damaged buildings, injured persons, migration), physical vulnerability

(landslide and flood risk, road accessibility), and socioeconomic vulnerability (caste/ethnicity,

gender inequality, Human Development Index)” (UNOCHA, 2015b, 9).

The context just described suggests a number of different aspects, which were important

to the allocation of aid after the earthquake. First, it highlights that the degree to which

certain areas were affected by the earthquake was intended to be an important criterion

for aid allocation. The physical intensity of the earthquake showed considerable spatial

variation across and within the five Nepali development regions. More specifically, the

earthquake triggered the worst consequences in the Central and Western Region, including

the Kathmandu Valley. Importantly, housing conditions played a crucial role in how the

severity of the earthquake translated into damage. Many Nepalese homes are characterized

by fragile outer walls and unstable foundations. As the revised appeal emphasizes, “the

condition of houses is considered to be the most relevant proxy indicator for people in need”

109Appendix Table 4.5 provides a timeline of the events surrounding the 2015 Nepal earthquake flash appeal.
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(UNOCHA, 2015b, 53).110 We will test below whether municipalities that had been more

severely affected by the earthquake received more proposed and subsequently funded projects.

Beyond the degree to which certain areas are affected by the catastrophe, the Flash Appeal

attributes an important role to the protection of the most vulnerable populations (UNOCHA,

2015c). As the updated appeal document emphasizes, “[m]any people affected by the disaster

are highly vulnerable on the basis of socioeconomic, language, religious, caste, ethnic and

geographic factors” (UNOCHA, 2015b, 6). Starting with socioeconomic vulnerabilities, the

document explicitly demands that “the diversity of affected communities is addressed when

engaging the community” (UNOCHA, 2015b, 3). Relief activities should explicitly cover “all

vulnerable groups, including internally displaced persons (IDPs), host communities, ethnic

and indigenous groups and other affected people” (UNOCHA, 2015c, 4).111 Biases in favor of

privileged groups in the Flash Appeal proposal and subsequent allocation of aid would thus

thwart this principle.

In spite of the appeal’s stated goal to prioritize the most vulnerable population groups,

Amnesty International (2015, 10) expressed its concern that “the Government of Nepal and

humanitarian agencies had still not adequately factored social and economic disparities into

their relief operations.” Dissatisfaction with the distribution of relief aid within Nepal also

sparked protests (Bhagat, 2015). Indeed, the Asia Foundation (2017) warns that Dalits, of

which 90% live below the poverty line, and other lower ranked castes suffer particularly from

obstacles that prevent their economic recovery. While the report also presents evidence that

lower-caste people are not less likely to access aid, they do appear to struggle to receive relief

aid according to their needs.112 Lam & Kuipers (2019, 326) come to similar conclusions

based on their policy analysis and field research in the aftermath of the earthquake. They

argue that the Dalits “are often excluded from the community” and have trouble “accessing

adequate information from local officials.”

We provide a systematic test below of whether the design and financing of flash appeal

projects are indeed targeted at poor municipalities and (dis)favors municipalities populated
110See also, for instance, Rota et al. (2008) and de Ruiter et al. (2017) in the context of other earthquakes.
111A report by the (Asia Foundation, 2017, vi-vii) concludes that “[h]igher demand for food is found among

disadvantaged groups: people in more remote areas, of low income, low education, low caste and Janajatis
[Nepal’s indigenous peoples] and those with a disability.”

112A case study carried out at Dartmouth College discusses this issue: “Already exposed to lower standards of
healthcare, these [low-caste] people were often offered help last although their need was generally greatest –
more low-caste people lived in poorly constructed houses, which collapsed. The majority of Nepali doctors
and volunteers were high-caste, so sometimes prone to prioritize high-caste victims over Dalits.” See details
at https://journeys.dartmouth.edu/NepalQuake-CaseStudies/castebased-inequality/ (accessed May 11,
2018).
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by Hindus, the dominant religion, and high-caste people. To analyze whether aid giving

in the framework of the Flash Appeal is considering socioeconomic vulnerabilities, we will

investigate whether the level of development and the religious and caste composition of a

municipality are associated with the number of proposed and funded projects. Given Nepal’s

track record of socioeconomic exclusion (e.g., Murshed & Gates, 2005; Sharma, 2006), one is

likely to expect at least some biases in favor of privileged groups in the allocation of flash

appeal aid.113

Turning from socioeconomic to physical vulnerabilities of municipalities, the appeal

documents express concerns that rural and remote areas are disadvantaged when it comes

to receiving aid. The Kathmandu International Airport, for example, played the dominant

role in delivering aid to Nepal. Since it is the only Nepalese airport that could handle

medium to large aircrafts, nearly all international aid arrived in Kathmandu. This may

have made it less likely that projects were carried out in remote areas populated by poor

people. In this regard, the updated appeal document highlighted that “864,000 people in

remote villages are in immediate need as they have lost their homes and live below the

poverty line” (UNOCHA, 2015b, 5). However, according to observers, civil servants were

“notorious for being unaccountable, corrupt and prejudiced towards the lowest castes” (The

Economist, 2015). Additionally, evidence from a study carried out by Barber (2016) suggests

that lower-caste members were not proactively engaged in the earthquake response provided

by international donors and that those from remote communities had difficulty in obtaining

relief.114

Moreover, the impending monsoon season had implications for needs across all sectors:

“Reaching these most vulnerable communities is a priority to ensure that they are provided with

adequate shelter and basic needs to strengthen their resilience ahead of the heavy monsoon

rains which begin in June and can last until September” (UNOCHA, 2015b, 5). Importantly,

this monsoon further impeded earthquake relief operations (UNOCHA, 2015a). In the

empirical analysis below, we explore whether particular attention was given to municipalities

that are geographically remote and vulnerable to heavy monsoon rain.

113Paudel & Ryu (2018) find that ethnic differences were already prevalent in how Nepalese ethnic groups were
affected by the 1988 Nepal earthquake. Using a difference-in-differences setting, they show that human
capital of low-caste groups deteriorated more permanently than when compared to high-caste groups.

114A case study carried out at Dartmouth College finds that the “internalization of the caste-system served in
some instances to marginalize the needs of low-caste people in the face of disaster.” See details at https:
//journeys.dartmouth.edu/NepalQuake-CaseStudies/caste-based-inequality/ (accessed May 20, 2020).
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The official procedures for flash appeals recommend a strong coordination between UN

agencies, NGOs, and the local government. This involvement of Nepalese parliamentarians

and government officials opens the door for a potential impact of local politicians on the

design and implementation of the appeal. Anecdotal evidence suggests that domestic political

favoritism and patronage biased aid allocation in Nepal. Amnesty International (2015, 12)

documents such claims according to which “the official distribution of tarpaulins favored

those with familial, political or other institutional connections and loyalties” and reports

that parliamentarians misappropriated tents originally intended for disaster victims. The

human rights organization is particularly worried about political favoritism and patronage in

municipalities that are dominated by a single party and that are demographically heteroge-

neous with respect to their religious, caste, and ethnic composition. For example, Amnesty

International (2015, 10) notes that “[t]he District Committee Secretary of Nepal Congress

(NC) in Nuwakot reportedly provided relief materials to one ward (where the majority of the

population were NC supporters) in his VDC [village development committee] in Nuwakot”

and that the Communist Party of Nepal “was also said to have manipulated relief distribution”

in the Kavre district. In addition to the analysis of ethnic and religious biases mentioned

above, we will thus test how municipalities governed by one of Nepal’s leading parties fare in

terms of proposed projects and aid funds.

We now turn to our empirical framework to test whether disaster affectedness, socioeco-

nomic and physical vulnerabilities, as well as political favoritism are reflected in the 2015

Nepal Earthquake Flash Appeal.

4.3 Data and Method

4.3.1 Empirical Design

Our study combines data on the location of emergency aid projects proposed and funded in the

framework of the 2015 UN Nepal Earthquake Flash Appeal with measures of earthquake impact

collected through remote sensing and census data. Our unit of analysis are municipalities,

so-called village development committees (VDCs). The VDCs correspond to the fourth

subnational administrative (ADM4) level in Nepal and are grouped into 75 districts (ADM3)

in 14 zones (ADM2) located in five regions (ADM1).
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We proceed in two steps. In the first step, we analyze the spatial distribution of aid projects

in the design stage of the Flash Appeal. Specifically, we analyze the spatial distribution of

proposed appeal locations by constructing the no. of proposed projects. In a variant of this

first step, we also analyze the spatial distribution of financial amounts as requested by the

OHC using proposed financial amount (ln). This variable is the logged financial value in US

dollars of all appeal projects proposed for a municipality.

In the second step, we analyze the funding decision. The humanitarian aid obtained by a

municipality is the outcome of individual funding decisions by international donors. As first

dependent variable, we use no. of funded projects, which is the number of funded project

locations in a given municipality. In addition to this count variable, we also analyze the

financial amount of donor support provided. The variable funded financial amount (ln) is the

logged financial value in US dollars of all funded appeal projects committed to a municipality.

To isolate the factors shaping the decision-making at the funding stage, we include the number

of proposed projects or, respectively, the requested project amount as a covariate to explain

deviations from the proposal. Finally, we use the share of funding obtained, which is the

ratio of the funded aid amount to the proposed aid amount. In this final specification, we are

restricted to the sample of those 1,290 municipalities that were proposed by the UNOCHA

and the OHC as a location for at least one appeal project.115

For each stage in the appeal process, we run Negative Binomial (NB) regressions whenever

the project number is the dependent variable and Ordinary Least Squares (OLS) regressions in

all other cases. NB regression is appropriate for count outcome variables that are non-negative

and over-dispersed.116 NB regression is a generalization of the Poisson estimation and is

based on a gammaPoisson mixture distribution. This allows the variance to be larger than

the mean, as is the case in our data. We estimate the following cross-sectional NB regression

at the municipal level i:

E(ProjectNumberi |Di,Xi,PPi) = αi ∗ exp(D′i β +X′iγ + δPPi), (4.1)

115We use this restricted sample because the ratio is undefined whenever the denominator, the proposed aid
amount, is zero.

116We do not use the zero-inflated negative binomial regression to model the excessive zeros because this
would require the assumptions that, first, excess zeros are generated by a process separate from that of the
count values and that, second, these excess zeros can be modeled independently. We do not believe that
these two assumptions hold for our data.
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where αi, the latent exposure of a municipality i, is estimated from the data. The matrix D

includes both the physical intensities of the first earthquake and the main aftershock, while

the matrix X includes the remaining covariates described below. As mentioned earlier, the

proposed number of projects PP is included in models analyzing the funding stage. Our unit

of analysis i consists of 2,796 Nepalese municipalities.117 Standard errors are calculated to be

robust to heteroscedasticity and clustered at the level of Nepalese districts (ADM3), within

which errors are thus allowed to correlate.118

For the continuous dependent variables, we deploy the following cross-sectional OLS

equation:

yi = α +D′i β +X′iγ + δPAi + εi, (4.2)

where y alternatively refers to any of the three continuous dependent variables, the proposed

financial amount (ln), the funded financial amount (ln), or the ratio of funding obtained.

As mentioned above, the proposed project amount PA is included in models analyzing the

funding stage.

The cross-sectional nature of our data and the lack of a clean identification strategy do

not always allow for a causal interpretation. However, our disaster impact measures are

constructed from physical measures and from damage functions. The latter are based on

pre-event distributions of building types and engineering-based relationships between peak

ground acceleration and damage ratios of buildings by type. They are thus exogenous to

emergency aid. Most other variables – such as religion and geographical features – cannot

be affected by post-earthquake disaster aid as they were collected prior to the earthquake.

Reverse causality is thus unlikely to be a concern in our setting.119 In spite of the exogeneity

of the earthquake, omitted-variables might still affect our results. We attempt to mitigate this

concern by including a rich set of covariates in our baseline model and by running regressions

with fixed effects at the zone (ADM2) level in robustness checks.

117We drop all VDCs in zones (i.e., ADM2 regions) that were entirely unaffected by the immediate earthquake
according to the destruction index defined below.

118We cluster at the ADM3 level since we distribute those projects that are only localized at the ADM3 level
to all VDCs (i.e., ADM4 regions) in that ADM3 region (using an equal split as we describe in footnote 21
below). Funding amounts per VDC are thus correlated within ADM3 areas. However, as a robustness
check, we also show results where we cluster by zone (i.e., ADM2 regions). The results are similar (see
Appendix Tables 4.15 and 4.16).

119It is however possible that measurement error in the disaster impact measure is systematically related to
the dependent variable in a spatial sense. We cannot estimate the size of such a potential bias but do not
believe that the measurement error is large and systematically related to the dependent variable.
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4.3.2 Data on the 2015 UN Nepal Earthquake Flash Appeal

The primary data source for the dependent variables is UNOCHA’s Financial Tracking Service

(FTS) (UNOCHA, 2018).120 The database collects international humanitarian funding flows

since 1992 and has frequently been used in empirical analyses of humanitarian aid (e.g., Fink

& Redaelli, 2011; Fuchs & Klann, 2013; Fuchs & Öhler, 2019; Raschky & Schwindt, 2012). A

major innovation over previous work using FTS data is that we analyze subnational rather

than cross-country variation in the allocation of humanitarian aid. Specifically, we use a new,

and so far unexploited, geospatial data set by AidData (2016a). It contains the geographic

location of 156 of the total 184 Nepal Earthquake Flash Appeal projects registered in FTS, of

which funding was requested for 142 in the revised Flash Appeal of May 29, 2015.121 These

142 projects were assigned to 821 project locations.122 We use these data to build the five

dependent variables described above.

While the upper panel of Figure 4.1 shows the spatial distribution of the proposed appeal

projects, the lower panel displays the number of funded projects by municipality. Only 64

(56) out of the 184 (142) proposed appeal projects (with geocoded locations) obtained any

funding from donors. In total, the 156 geocoded appeal projects received USD 280 million.

Appendix Table 4.6 lists the 20 largest flash appeal projects funded by the international

donor community.

4.3.3 Disaster Impact

The need for emergency aid increases with the severity of the catastrophe. To capture the

disaster impact, we employ physical measures of disaster severity.123 The literature in this

regard makes increasing use of geo-referenced physical variables to measure the intensity

120The started goal of FTS “is to give credit and visibility to donors for their generosity and to show the total
amount funding and resource gaps in humanitarian appeals” (UNOCHA, 2015c). Humanitarian funding
is usually reported to FTS by the recipient organization and not the donor because the former is best
informed about the final usage of funds.

121184 – 156 = 24 of the proposed appeal projects could not be geocoded because of the nature of the project
or a lack of information on the location of implementation.

122For projects geocoded at the district (ADM3) level, i.e., one layer above our spatial unit of analysis, we
attribute a project to all VDCs in this ADM3 unit and evenly split the requested and proposed project
amount across these VDCs. This implies that 3,023 of 3,957 ADM4 locations are recipients of a proposed
project. If a project is coded both at the ADM3 level and at the ADM4 level, we only keep the ADM4
location.

123Most of the cross-country literature uses the number of fatalities or the total number of affected people
from the International Disasters Database (EM-DAT) as a measure of disaster impact (Guha-Sapir &
CRED, 2020; Lazzaroni & van Bergeijk, 2014). The EM-DAT data has been criticized for various reasons
(e.g., Felbermayr & Gröschl, 2014). For our study, we need subnational variation of disaster severity and
EM-DAT has to date only been geo-referenced for the Philippines by AidData.
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(b) Number of (partly) funded humanitarian aid projects

Figure 4.1: Spatial distribution of proposed and funded aid projects of the 2015 UN Nepal earthquake
flash appeal across municipalities

of natural disasters (Berlemann, 2016; Bertinelli & Strobl, 2013; Felbermayr & Gröschl,

2014; Fisker, 2014; Hsiang, 2010; Kunze, 2021; Strobl, 2011, 2012). These measures have

the advantage that they are exogenous to economic outcomes of interest such as economic

development, thus allowing for causal inference. To measure the physical intensity of the

earthquake in Nepal, we use peak ground acceleration (PGA) maps provided by USGS

(2017a,b), which is arguably a suitable indicator for potential destruction from earthquakes

to buildings up to seven stories tall (USGS, 2017c).

Importantly, the damage suffered from earthquakes will not only be determined by the

physical features of the event, but also depends on the type of building affected.124 To take

account of this, we use information on the housing building types provided by the 2011

Census (Central Bureau of Statistics, 2011) in conjunction with fragility curves by building

types developed by the Global Earthquake Safety Initiative project (GESI) (Geohazards

124For example, Bilham (2010) demands the construction of earthquake-resistant buildings to prevent further
increases in the death toll of earthquakes.
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International & United Nations Centre for Regional Development, 2001). More specifically,

building types are classified into nine different categories.125 Each building type itself is then

rated according to the quality of the design, the quality of construction, and the quality

of materials. Total quality is measured on a scale of zero to seven, depending on the total

accumulated points from all three categories. According to the type of building and the

total points acquired through the quality classification, each building is then assigned one

of nine vulnerability curves, providing estimates of the percentage of building damage for a

set of 28 peak ground acceleration intervals. In order to use these vulnerability curves for

Nepal, we first allocate each of the five building types given in the 2011 Census to one of

the less aggregated categories of the GESI building classification.126 Given that we have

no information as to the quality of buildings in Nepal in terms of design, construction, and

materials, we instead assume that building quality is homogenous across building types.

In order to derive a municipality i-specific earthquake destruction index, ED, we compute

the following:

EDi =

5∑
s=1

wsiDRs(PGAi), (4.3)

where w is the share of building type s in municipality i, and DR is the damage ratio of the

building type s given the observed local peak ground acceleration PGA in municipality i as

defined for high-quality buildings. For our analysis, we construct two variables, immediate

damage, which captures the destruction of the main earthquake on April 25, and aftershock

damage, which reflects the destruction of the major aftershock on May 12. The resulting

measure is a damage ratio, which ranges from 0 (no building is destroyed) to 1 (all buildings

are destroyed).

Figure 4.2 shows the spatial variation of our measures of disaster impact, immediate

damage (Panel a) and aftershock damage (Panel b), across municipalities. The stars mark

the respective epicenter of the two shakes. The different colors stand for different damage

experiences according to our earthquake destruction index, ranging from light orange (“weak”)

to dark orange (“extreme”). Around 2.75% of our sample villages experience extreme damage

with 87.5% to 100% of all buildings predicted by the index as being destroyed by the immediate

earthquake. Both panels demonstrate that the majority of destruction occurs in municipalities
125Wood, steel, reinforced concrete, reinforced concrete or steel with unreinforced masonry infill walls,

reinforced masonry, unreinforced masonry, adobe and adobe brick, stone rubble, and lightweight shack or
lightweight traditional.

126For those buildings in the other or unassigned category, we assumed they were of the most vulnerable type,
namely, lightweight shack (e.g., corrugated iron sheet) or lightweight traditional (e.g., bamboo).
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Figure 4.2: Spatial distribution of damage from the 2015 Nepal earthquake
across municipalities
Notes: The red stars mark the epicenter of the respective shake. Scale: Percentage
of buildings destroyed per municipality: 0%-12.5% (weak), 12.5%-25% (light), 25%-
37.5% (moderate) 37.5%-50% (strong), 50%-62.5% (very strong), 62.5%-75% (severe),
75%-87.5% (violent), 87.5%-100% (extreme).

northwest and northeast of Kathmandu, whereas the relatively highly populated southern

regions experience only weak or light damage.

Given that our index is not based on actual damage, it will inevitably involve some

measurement error. In the classical sense, this could produce some attenuation bias and

implies that our estimates would need to be interpreted as lower bounds. Hypothetically, there

could also be systematic measurement error in that the error is correlated with the amount of

aid given. We believe that this is unlikely since two of the underlying drivers of our damage

index are based on the physical relationships (the shake maps and fragility curves). The

only remaining potential culprit is our necessary assumption of building-type homogeneity
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within districts, which could be correlated with other ex-ante event local characteristics, such

as inequality, which we do not control for but also determine aid giving. Given our list of

covariates, it seems reasonable to assume that the remaining, i.e., uncontrolled, correlation

between aid and potential measurement error is very small.

4.3.4 Socioeconomic and Physical Vulnerabilities

On the one hand, poorer municipalities are more vulnerable to the consequences of the

earthquake and have a higher self-aid capacity. On the other hand, economically more

important municipalities might have a higher ability to make their needs heard. First, to

account for the level of development of municipalities, we use the average monthly nighttime

light intensity (average nightlight pre-earthquake) from January 2012 to March 2015. In

doing so, we are following a growing literature that proxies local economic output with

nighttime light intensity (Alesina et al., 2016; Chen & Nordhaus, 2011; Hodler & Raschky,

2014; Michalopoulos & Papaioannou, 2014). In the absence of accurate GDP data, nighttime

light offers a viable alternative since it correlates highly with survey-based measures of wealth

(Weidmann & Schutte, 2016). Furthermore, Bertinelli & Strobl (2013) have provided evidence

that nighttime light intensity is able to capture reported destruction from hurricanes in

Caribbean countries.

Previous studies have mostly used the nighttime light series for stable light from the

Defense Meteorological Satellites Program (DMSP), which offers stable and filtered yearly

average data. However, it has several drawbacks, including overglow effects around cities

(Small et al., 2005) and top-coding problems of city centers (Bluhm & Krause, 2018; Doll, 2008).

We thus instead use data from the recently launched Visible Infrared Imaging Radiometer

Suite (VIIRS) satellite, which since April 2012 has on a monthly basis offered stable, filtered,

and uncensored data. For our analysis, we downloaded the Version 1 Nighttime VIIRS Day/

Night Band Composites available from the Earth Observations Group at NOAA/NDGC for

January 2012 until August 2016 (NOAA, 2017). Importantly, the VIIRS images overcome

most of the stated criticism of the DMSP images (Levin & Zhang, 2017). As a matter of fact,

Li et al. (2013) provide evidence that the VIIRS nighttime light images have a substantially

higher correlation with regional economic activity in China than the DMSP images. Moreover,

with a ground footprint of 742 m * 742 m, VIIRS data provides a resolution 45 times higher

than the DMSP images (Elvidge et al., 2013). This allows us to identify nighttime light
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luminosity even in a low electrified country such as Nepal, as can be seen in Appendix Figure

4.6.127 The figure furthermore shows that most of the nighttime light intensity is concentrated

in the Kathmandu Valley and the southern part of Nepal, whereas the northern regions only

have a little luminosity. These spatial differences in nighttime light intensity correspond

to the actual distribution of economic activities and population in the country. Second,

as another measure of self-aid capacity, we calculate the percentage of households within

each municipality with a solid house foundation using the 2011 Census (Central Bureau of

Statistics, 2011). Features of housing quality such as housing foundation are used in many

asset-based wealth indices of household surveys in developing countries (e.g., Demographic

and Health Surveys and UNICEF Multiple Indicator Cluster Surveys). We define solid house

foundations as houses built on a cement foundation. The map in Appendix Figure 4.7 shows

how the share of solid houses is distributed across the municipalities in the regression sample.

Third, larger and more populated municipalities are more likely to host more affected

people and suffer from larger damage. This follows from pure logic of scale. Thus, they are

not only more likely to receive emergency aid in general but also more of it. Therefore, we

control for the area, admin 4 area, and the (logged) population size of the municipalities,

population, using data from the 2011 Census (Central Bureau of Statistics, 2011). The map

in Appendix Figure 4.8 shows the population density of municipalities in Nepal in 2011.

Accordingly, most of Nepal’s population lives in the Kathmandu Valley or in southern Nepal,

which corresponds to our observation concerning nighttime light intensity (see Appendix

Figure 4.6).

Fourth, transport infrastructure plays a crucial role for aid delivery and we thus account

for each municipality’s distance to the nearest airport and to Nepal’s capital, Kathmandu,

with its particularly important Kathmandu International Airport. Specifically, we include

the distance from each municipality to the nearest airport in (logged) kilometers (distance

to closest airport), as measured from its centroid. The Tribhuvan airport in Kathmandu is

the only international airport that can handle medium- to large-sized planes, but there are

various smaller airports in Nepal. These are crucial for getting supplies to the respective

areas since roads are non-existent or in a bad condition, especially after the earthquake(s) in

2015. The closest airport from the epicenter of the earthquake in Ghalychok municipality is

34 km away. Moreover, the distance to Kathmandu is an indicator for accessibility of affected

127VIIRS lights are measured in albedo radiance (W cm2sr−1).
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municipalities to international relief teams, as much of the international help was stranded at

the international airport in Kathmandu. The distance to Kathmandu from the Ghalychok

municipality is around 60 km. To take into consideration the remoteness of the individual

municipality, we add the logged distance to Kathmandu as an additional explanatory variable

for our regression. Our distance variables can thus be interpreted as proxies for delivery costs.

Remote municipalities might receive less aid projects since it is more efficient to allocate

more aid to easy-to-reach locations.

Fifth, municipalities with a higher mean rainfall will have a greater need for humanitarian

aid if the earthquake destroyed their houses and roads. This is due to the monsoon season,

which typically starts in June and lasts until September every year. Thus, we add mean

rainfall over the period 1998–2014, measured in millimeter for each municipality, and, to

account for simple nonlinear effects, the mean rainfall squared. To derive this measure, we use

the monthly precipitation raster maps of the Tropical Rainfall Measuring Mission (TRMM),

which are available from 1998 with a spatial resolution of 0.25◦ (Huffmann et al., 2014).

Finally, areas already affected by the 1988 earthquake might be more vulnerable to the

adverse consequences of the 2015 earthquake. While being less consequential than the 2015

earthquake, the 1988 earthquake, which was of magnitude 6.7 on the Richter scale, was fatal

as well with 721 causalities. More 2015 disaster aid might be directed to the areas affected

by the 1988 earthquake, for example, to compensate for a worse health and educational

infrastructure.128 Indeed, Paudel & Ryu (2018) demonstrate that there are adverse long-term

consequences of the 1988 earthquake on educational outcomes today. To disentangle the

effects of the 2015 earthquake from the one in 1988, we add a binary variable, 1988 earthquake,

that takes a value of one if a municipality had been affected by the 1988 earthquake (i.e.,

had a PGA larger than zero). To create the 1988 earthquake dummy, we use the peak PGA

maps prepared by USGS (2016).129

4.3.5 Ethnic, Religious, and Political Distortions

Although Nepal is a secular democracy today and has made significant progress in terms of

women empowerment (Paudel & de Araujo, 2017), the social and religious caste system still

128We thank an anonymous referee for raising this point. In the case of “building back better” (Chhibber &
Laajaj, 2008), it could also be that areas affected by the 1988 earthquake have a better rather than worse
infrastructure than unaffected areas.

129We use a dummy rather than an earthquake destruction index since we do not have any information on
the housing building types for 1988 available.
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plays a role in the life of many people (e.g., Nagoda & Nightingale, 2017; Williams et al., 2020).

In the Nepalese society, the upper castes include the Brahmins and Chhetris.130 Although

the caste system was officially abolished in 1963, caste-based discrimination remains an issue.

The upper castes still have an overproportioned influence on many decisions in Nepal and are

disproportionally represented in governance institutions (Dalit Civil Society Organizations’

Coalition for UPR & International Dalit Solidarity Network (IDSN), 2015; DFID & World

Bank, 2006). It is therefore likely that the upper castes are well represented in the offices

guiding the allocation of humanitarian aid. They might thus favor those municipalities where

a high percentage of their fellow caste members live. To measure possible ethnic and religious

favoritism, we calculate the percentage of privileged castes within each municipality of our

sample using the 2011 Census (Central Bureau of Statistics, 2011). Panel a of Figure 4.3

displays the spatial distribution of privileged castes, which varies considerably within our

sample. Furthermore, we include the percentage of Hindu households at the district level

(Hindu), also constructed from the 2011 Census data. Panel b of Figure 4.3 demonstrates

that Hindus are mostly concentrated in the middle and lower districts of Nepal and, therefore,

are less likely to live in the Himalaya regions. To measure possible political favoritism and

patronage in the allocation and funding of humanitarian aid, we use district-level data from

the 2013 Constituent Assembly elections, the last national elections before the earthquake in

2015 to compute the respective percentage of the two largest parties in Nepal, the Nepali

Congress Party and the Communist Party of Nepal (Election Commission Nepal, 2013).

Figure 4.4 shows the spatial distribution of both variables.

4.3.6 Existing Aid Networks

It is possible that the OHC plans to make use of the existing aid infrastructure to implement

emergency projects quickly and effectively and thus chooses project locations accordingly.

In addition, better information on post-disaster needs might be available to the OHC from

places where (local) aid staff work or have worked. To test whether municipalities where

international donors have a track record of aid activities are more or less likely to be selected

as destinations of emergency aid, we use information on the locations of these general

development aid projects from AidData (2016b). The data have been geo-referenced by using
130Following Paudel & de Araujo (2017), we consider Brahmins and Chhetris as higher castes. In contrast

to Murshed & Gates (2005), we thus exclude the Newar cultural group from our definition of privileged
castes. The Newar people are a civilization that has their own caste system that is similar to the Hindu
caste system. It would thus be inaccurate to consider the entire Newar cultural group as a privileged caste.
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Figure 4.3: Spatial distribution of privileged castes and Hindu households across
municipalities

the project information contained in the Aid Management Platform (AMP) within the Aid

Information Management System (AIMS) of Nepal’s Ministry of Finance. This includes

148 projects, which were implemented in more than 15,088 locations. Their aggregate value

amounts to more than USD 1.32 billion. For our analysis, we calculate the probability of

receiving aid in a given year over the 2002–2014 period, general aid probability, for each

municipality in our sample.

Table 4.2 provides descriptive statistics of all variables employed in our paper. As can be

seen, around 11.6 projects are proposed for each municipality on average, which corresponds

to USD 2.4 million. Of these 11.6 projects, 6.5 get funded on average, which amounts to

almost USD 1.0 million. According to our damage index, the immediate earthquake damage

resulted on average in 19% of all houses being destroyed, whereas an average of 6% were
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Figure 4.4: Spatial distribution of voting shares of dominant parties across
municipalities

destroyed by the aftershock earthquake. The average municipality has 7,200 inhabitants, 11%

of the population live in houses with a solid foundation, emits with 0.28 Wcm2sr−1 only very

little light at night, has an area of 27 square kilometers, a yearly rainfall of 153 mm, and is

128 km away from Kathmandu and 24 km from the next airport. On average, 77% of the

population are Hindu and 21% belong to privileged castes. The Communist Party of Nepal

had a vote share of 24% and the Nepali Congress Party 25% on average in the 2011 election.

Appendix Table 4.7 lists all definitions with data sources, and Appendix Table 4.8 provides a

correlation matrix for all variables employed in this paper.
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Table 4.2: Descriptive statistics

Count Mean Std. dev. Min Max
Dependent variables
No. of proposed projects Count 2,816 11.56 19.78 0.00 75.00
No. of funded projects Count 2,816 6.49 10.76 0.00 40.00
Proposed financial amount 1,000 USD 2,816 2,429.42 2,905.68 0.00 9,834.33
Funded financial amount 1,000 USD 2,816 960.77 1,282.14 0.00 5,232.67
Share of funding obtained Ratio 2,816 0.18 0.22 0.00 0.60

Disaster impact variables
Immediate damage Ratio 2,816 0.19 0.23 0.00 0.98
Aftershock damage Ratio 2,816 0.06 0.16 0.00 1.00

Socioeconomic and physical vulnerabilities
Population Count 2,816 7,193.51 12,822.10 0.00 255,465.00
Solid house foundation % 2,816 10.55 13.53 0.00 77.86
Pre-earthquake nightlight W cm-2 sr-1 2,816 0.28 0.33 0.10 6.39
Urban location Dummy 2,816 0.03 0.17 0.00 1.00
Admin 4 area km2 2,816 27.43 53.31 1.17 888.55
Mean rainfall mm 2,816 152.54 15.98 36.20 182.99
Distance to Kathmandu km 2,816 128.30 64.45 0.00 271.28
Distance to airport km 2,816 24.42 13.16 0.19 67.48
1988 earthquake Dummy 2,816 0.76 0.43 0.00 1.00

Ethnic, religious, and political distortions
Hindu % 2,816 76.88 14.45 26.08 97.39
Privileged castes % 2,804 21.28 20.92 0.00 96.02
Communist Party of Nepal % 2,816 24.29 8.93 6.95 39.82
Nepali Congress Party % 2,816 25.39 8.13 10.83 40.84

Existing aid networks
General aid probability Ratio 2,797 0.12 0.07 0.08 0.62

4.4 Results

4.4.1 Design Stage: Proposed Projects

We start by examining the factors associated with the number of proposed Flash Appeal

projects per municipality. Column 1 of Table 4.3 presents the marginal effects at the mean

of the covariates, where we exclude the variables proxying ethnic, religious, and political

distortions in the design of the Flash Appeal. Apart from our measures of earthquake

severity, Column 1 also includes measures of socioeconomic vulnerabilities (logged population,

solid house foundation, and average nighttime light before the earthquake), and of physical

vulnerabilities (the municipality’s logged area in square kilometers, mean rainfall and its

square in the years before the earthquake (1998–2014), logged distance to Kathmandu

and to the nearest airport, and the 1988 earthquake dummy), and existing aid networks

(the probability of receiving general development aid projects in the decade before the

earthquake). As expected, a municipality’s likelihood to obtain a proposed appeal project

increases with the earthquake destruction index of the major shake (April 25, 2015) and the

major aftershock (May 12, 2015). This is indicated by the statistically significant marginal

effects of immediate damage and aftershock damage. Quantitatively, a one-standard deviation
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increase in immediate damage corresponds to an increase in the number of proposed projects

by 0.9.131 Put differently, a municipality that is completely damaged (index value of one)

receives 3.8 more projects than a municipality that is unaffected by the major shake. The

impact of the aftershock still receives economically and statistically significant attention albeit

it is considerably less. A completely damaged municipality obtains only 2.6 more projects

than one completely unaffected by the aftershock. These results for the exogenous proxies of

earthquake damage show that the location choice of the Flash Appeal follows actual needs

on the ground—but only to a certain extent as we will show when we analyze potential

distortions below.

Table 4.3: Design stage – Proposed flash appeal projects after the 2015 Nepal earthquake

(1) (2) (3) (4)
No. of
proposed
projects

No. of
proposed
projects

Proposed
financial

amount (ln)

Proposed
financial

amount (ln)
Immediate damage 3.842** 3.245** 7.312** 7.229**

[1.682] [1.266] [3.140] [3.081]
Aftershock damage 2.589*** 2.494*** 4.700*** 3.079

[0.637] [0.598] [1.626] [2.099]
Population (ln) -0.124 0.030 -0.833*** -0.445*

[0.126] [0.081] [0.284] [0.238]
Solid house foundation (%) -0.072*** -0.045** -0.075** -0.018

[0.026] [0.019] [0.037] [0.030]
Pre-earthquake nightlight (ln) -1.094* -0.556 -1.417 -0.561

[0.580] [0.386] [1.013] [0.796]
Admin 4 area (ln) 0.783*** 0.651*** 0.972** 0.604

[0.247] [0.216] [0.476] [0.449]
Mean rainfall 0.134 0.078 0.270 0.264*

[0.128] [0.083] [0.164] [0.156]
Mean rainfall squared 0.000 0.000 -0.001 -0.001

[0.000] [0.000] [0.001] [0.001]
Distance to Kathmandu (ln) -3.185*** -2.432*** -4.247*** -4.282***

[0.742] [0.522] [0.819] [0.811]
Distance to airport (ln) -0.525 0.077 -1.572* -0.926

[0.372] [0.276] [0.931] [0.815]
1988 earthquake 1.185 1.644* -1.631 0.926

[0.927] [0.908] [2.112] [1.523]
General aid probability 2.850 2.008 2.958 5.810

[1.916] [1.232] [4.891] [4.066]
Privileged castes (%) 0.014** -0.025

[0.006] [0.020]
Hindu (%) -0.012 0.012

[0.020] [0.050]
Communist Party of Nepal (%) -0.005 0.227**

[0.043] [0.109]
Nepali Congress Party (%) 0.106** 0.198**

[0.043] [0.091]
Adjusted R-squared 0.526 0.605
N of observations 2796 2793 2796 2793
N of clusters 47 47 47 47

Notes: Results in Columns 1 and 2 are estimated with NB regression and Columns 3 and
4 with OLS. Columns 1 and 2 show marginal effects at the mean. Robust standard errors
(in brackets) are clustered at the district level (ADM3). * (**, ***) indicates statistical
significance at the 10% (5%, 1%) level.

1313.842*0.23.
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It is also reassuring that, according to Column 1 of Table 4.3, geographically larger areas

and areas with less solid house foundations still receive more aid, as indicated by the respective

statistically significant marginal effects on admin 4 area (ln) and solid house foundation

(%). While it seems at first sight that poorer regions get more projects in the proposal, the

significant negative effect of pre-earthquake nightlight disappears once we control for ethnic,

religious, and political biases later on. Moreover, the marginal effects on population (ln) and

mean rainfall (and its squared term) do not reach statistical significance at conventional

levels. This implies that more populous municipalities, those that were more affected by

an intense monsoon in the past, and those that were less developed at the time of the

earthquake do not receive more aid. Turning to our distance variables, the insignificant

marginal effect of distance to airport (ln) suggests that municipalities closer to an airport

are not attracting more proposed projects. However, we find that municipalities closer to

the capital receive more proposed projects in the Flash Appeal, as indicated by the highly

significant negative marginal effect of distance to Kathmandu (ln). If decision-makers allocate

aid dollars where they see the biggest bang-for-the-buck, they naturally disadvantage more

distant, hard-to-reach locations.

The marginal effect of general aid probability is positive but does not reach statistical

significance at conventional levels. We thus do not find evidence for aid inertia in that

municipalities that have benefitted from general development aid in the past are not more

likely to be included in the Flash Appeal.

Summarizing our results so far, it appears that socioeconomic and physical vulnerabilities

are not sufficiently taken into consideration when the locations of proposed projects are

assembled in the Flash Appeal. These results qualify our earlier interpretation of a need-based

allocation of aid.

In Column 2 of Table 4.3, we find some evidence suggesting that ethnic and political

distortions play a role. While there is no indication that municipalities with a higher share of

Hindus receive more or less proposed projects, regions with a higher share of privileged castes

receive significantly more projects at the design stage. According to the marginal effect of

privileged castes (%), a municipality that is entirely populated by Brahmins and Chhetris

receives 1.4 additional proposed projects compared to a municipality without high-caste

people.
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We also examine how the municipal share of privileged castes interacts with immediate

and aftershock damage by enhancing the specification of Column 2 with the two interaction

terms. The marginal effects are presented graphically in Panels a and b of Appendix Figure

4.9.132 Municipalities with a higher share of privileged castes receive significantly more aid

projects only when low levels of immediate damage have been registered, i.e., when less than

40% of buildings are damaged (at the 90% level of significance). Ethnic favoritism disappears

at high levels of immediate damage where need considerations seem to dominate. Turning to

the aftershock, we observe that significantly more projects flow to municipalities with a larger

share of privileged cases at all levels of aftershock damage. Finally, there is evidence that

typical strongholds of the Nepali Congress Party receive favorable treatment at the design

stage.

Ultimately, there is evidence that typical strongholds of the Nepali Congress Party receive

favorable treatment at the design stage. Municipalities with a 10% higher vote share receive 1.1

additional aid projects. We present the importance of the factors associated with the number

of proposed projects in Figure 4.5. The figure displays the effect of a one-standard-deviation

increase in the number of proposed projects per municipality for each of the statistically

significant variables.

We repeat our analysis with logged proposed financial amounts rather than project

numbers as the dependent variable. The results in Columns 3 and 4 largely support our

Figure 4.5: Significant regression results – Design stage
Notes: This figure shows the effect of a one standard deviation increase on the number of proposed projects
per municipality. Based on results from Table 4.3, Column 2. The corresponding standard deviations can be
found in Table 4.2.

132We estimate a linear probability model since the interpretation of interaction effects is not straightforward
in nonlinear models (Ai & Norton, 2003).

290



Distortions in Aid Allocation of United Nations Flash Appeals: Evidence from the 2015 Nepal Earthquake

earlier findings. We again discover a strong response to municipalities’ damage following the

major shock and – albeit less robust – the aftershock.133

From a humanitarian perspective, it is worrisome that we again find that municipalities

closer to Kathmandu obtain more aid and that the design is also not responsive to the level

of development of municipalities, as measured by nighttime light emissions. The negative

coefficient on population (ln) even suggests that larger municipalities receive smaller financial

amounts of aid rather than more support for the larger amount of (needy) people. There

is however also some good news. Municipalities with less solid house foundations, arguably

those with a lower self-aid capacity, and those with heavier rain receive more aid, but the

significance of these effects depends on the specification.

We again find some evidence suggesting that political favoritism or patronage plays a role.

More specifically, we find that larger financial amounts flow into strongholds of the Nepali

Congress Party, the party that was in power at the time of the design of the Flash Appeal.

The same is true for the Communist Party of Nepal.134 While it appears counter-intuitive

at first sight that the strongholds of the major opposition party were similarly favored, the

Nepali government had a large interest in buying support for the upcoming referendum on

the Nepali constitution (Sharma & Barry, 2015). All remaining variables show no significant

marginal effects in the full specification in Column 4 of Table 4.3.135

To close this subsection, we test whether the distortions identified by our analysis are

driven by rural and remote areas. To do this, we break our sample into (1) municipalities close

to Kathmandu (<50 km) and municipalities distant to Kathmandu (>50 km), as well as (2)

urban and rural municipalities and rerun our main regressions.136 While we report the detailed

regression results in Appendix Tables 4.11 and 4.13, we only highlight the most interesting

results here. First, our finding that municipalities with larger population shares of privileged

castes receive more proposed projects is only visible in remote and rural municipalities. The
133Note that the coefficient on aftershock damage loses its statistical significance when we control for potential

ethnic, religious, and political distortions in Column 4, but it regains statistical significance when we
run regressions with binary indicators for each zone (ADM2 region) to account for unobserved regional
characteristics zone dummies (see Appendix Table 4.9).

134The coefficients on Communist Party of Nepal (%) and Nepali Congress Party (%) are not statistically
significantly different from one another.

135Our major findings are largely robust when we exclude Nepal’s capital from the sample. We provide detailed
regression results in Appendix Table 4.9. We also examine whether the municipal share of privileged castes
interacts with immediate and aftershock damage by enhancing the specification in Column 4 of Table 4.3
with the two interaction terms (see Appendix Figure 4.9, Panels c and d). Across all damage levels, we do
not find that a higher municipal share of privileged castes affects the requested amount of aid.

136Urban municipalities are defined following the Central Bureau of Statistics (2014) definition. Note that
the urban designation could not be made with our source for some VDCs due to the Nepali municipality
district reform in 2014.
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same holds for municipalities with a larger vote share for the Nepali Congress Party. Second,

there is some evidence that areas closer to Kathmandu are advantaged in all four subsamples,

i.e., central, remote, urban and rural parts of the country.

4.4.2 Funding Stage: Committed Projects

Table 4.4 analyzes the funding stage. Columns 1 and 3 display the results with the number

of funded projects, and Columns 2 and 4 show those with the funded financial amount as the

dependent variable, respectively. Qualitatively, the results in the first two columns largely

mimic those for the design stage in Table 4.3.137 Quantitatively, the marginal effects tend to

be smaller, which partly reflects the fact that the 2015 Nepal Earthquake Flash Appeal has

been underfunded.

To understand the mechanisms at the funding stage, we need to disentangle it from the

design stage. Therefore, Columns 3 and 4 include the number of proposed projects and

the proposed financial amount, respectively, as additional covariates. By conditioning on

proposed aid, we can analyze the factors that are associated with deviations from the initial

proposal.

It appears that the funding decisions of donors aggravate some of the distortions in aid

allocation. First, donors are more likely to support and provide more funding to projects

closer to Kathmandu, which likely reflects accessibility for aid delivery. In other words,

logistical convenience matters, which is in line with the findings for Pakistan in Benini et al.

(2009). Second, we find that areas that already suffered from the 1988 earthquake are more

likely to get their projects funded. Finally, since there is no evidence that the share of the

privileged castes plays a role for the number of funded projects once we control for proposed

aid, the bias from the design stage seems to persist. The bias based on a municipality’s

electoral record even seems to aggravate as suggested by the positive and highly significant

marginal effect of Nepali Congress Party (%) and the weaker but still significant marginal

effect of Communist Party of Nepal (%).

There are a few positive aspects to highlight. First, donors put more emphasis on the

aftershock damage, which was undervalued at the design stage (Column 4). Second, donors

137The only noteworthy exception is the positive and now weakly significant marginal effect of general aid
probability in Column 1. Projects appear to be more likely to be carried out in municipalities that have
benefited from general development aid in the past. The marginal effect suggests that a municipality
that received an aid project on an annual basis obtains funding for 1.8 additional Flash Appeal projects
compared to a municipality that never received general development aid over the 2002–2014 period.
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Table 4.4: Funding stage – Funded flash appeal projects after the 2015 Nepal earthquake

(1) (2) (3) (4) (5)
No. of
funded
projects

Funded
financial

amount (ln)

No. of
funded
projects

Funded
financial

amount (ln)

Share of
funding
obtained

Immediate damage 2.153** 6.765** -0.914* 0.177 -0.066
[0.897] [2.884] [0.491] [0.215] [0.066]

Aftershock damage 1.825*** 3.364* -0.330 0.557*** 0.145**
[0.420] [1.848] [0.369] [0.207] [0.065]

Population (ln) 0.015 -0.389* -0.005 0.017* 0.005
[0.062] [0.216] [0.042] [0.009] [0.004]

Solid house foundation (%) -0.034** -0.018 -0.018*** -0.002 -0.001
[0.014] [0.027] [0.007] [0.001] [0.001]

Pre-earthquake nightlight (ln) -0.465 -0.502 -0.044 0.010 -0.024
[0.290] [0.729] [0.134] [0.047] [0.016]

Admin 4 area (ln) 0.465*** 0.579 0.197*** 0.029 0.017
[0.156] [0.414] [0.073] [0.020] [0.011]

Mean rainfall 0.054 0.242* 0.025 0.001 -0.001
[0.064] [0.140] [0.034] [0.008] [0.005]

Mean rainfall squared 0.000 -0.001 0.000 0.000 0.000
[0.000] [0.001] [0.000] [0.000] [0.000]

Distance to Kathmandu (ln) -1.780*** -4.123*** -0.664*** -0.221*** -0.134***
[0.363] [0.752] [0.219] [0.046] [0.022]

Distance to airport (ln) 0.008 -0.814 -0.081 0.030 0.035*
[0.212] [0.735] [0.108] [0.044] [0.020]

1988 earthquake 1.287* 0.819 1.392** -0.026 0.038
[0.683] [1.399] [0.588] [0.077] [0.058]

General aid probability 1.778* 5.447 1.450 0.152 0.223**
[0.934] [3.837] [1.042] [0.305] [0.098]

Privileged castes (%) 0.010** -0.022 0.002 0.001 0.001**
[0.005] [0.018] [0.002] [0.001] [0.000]

Hindu (%) -0.001 0.008 0.004 -0.003 -0.001
[0.015] [0.046] [0.009] [0.003] [0.002]

Communist Party of Nepal (%) 0.005 0.201** 0.031* -0.006 -0.003
[0.033] [0.099] [0.017] [0.005] [0.003]

Nepali Congress Party (%) 0.070** 0.189** 0.071*** 0.008 0.005
[0.032] [0.085] [0.019] [0.007] [0.003]

No. of proposed projects 0.070***
[0.016]

Proposed financial amount (ln) 0.911***
[0.008]

Adjusted R-squared 0.623 0.999 0.668
N of observations 2793 2793 2793 2793 1290
N of clusters 47 47 47 47 24

Notes: Results in Columns 1 and 3 are estimated with negative binomial regressions and Columns 2,
4, and 5 with OLS. Columns 1 and 3 show marginal effects at the mean. Robust standard errors (in
brackets) are clustered at the district level (ADM3). * (**, ***) indicates statistical significance at the
10% (5%, 1%) level.

fund more projects in municipalities with less solid house foundations and channel higher

amounts to larger municipalities as suggested by the significant marginal effects on solid

house foundation (%) and population (ln) in Columns 3 and 4, respectively. It is, however,

worrisome that most of the weaknesses of the design stage are not corrected at the funding

stage. For example, we find no robust evidence that municipalities with heavy monsoon rain

or those with a large share of low-caste people obtain more funding since the corresponding

coefficients on mean rainfall and privileged castes (%) are not statistically significant at

conventional levels in Columns 3 and 4.
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In Column 5 of Table 4.4 the dependent variable is the ratio of the received funding from

international donors to the requested aid amount. We confirm that donors are more likely to

fund municipalities suffering from the aftershock than originally planned according to the

Flash Appeal. In line with our earlier findings, there is no evidence that funding decisions

respond to the specific socioeconomic and physical vulnerabilities. Rather the results suggest

that projects in municipalities closer to Kathmandu obtain a larger share of funding. We find

that donors support their aid darlings by channeling more funds to previous aid beneficiaries.

Instead of sticking to the plans outlined in the Flash Appeal, donors appear to cuddle their

aid darlings. If a municipality’s propensity of past aid receipt increases from 0 (never received

general development aid) to 1 (received aid each year), then the ratio of the received funding

increases by 22%. Finally, we observe that donors favor municipalities populated by higher

castes also in the funding stage, which strengthens the ethnic bias from the design stage. A

municipality that is entirely inhabited by privileged castes obtains an additional funding

share of ten percentage points compared to a municipality without high-caste people.138

Taken together, our results suggest that the need orientation of the spatial project selection

and funding should be strengthened at all levels of decision-making: during the design of

flash appeals by UNOCHA and the OHC, as well as in the coordination and funding phase of

donor countries and non-state donors.

4.5 Concluding Remarks

Four days after the 2015 Nepal earthquake, when the UN issued its Flash Appeal, the

death toll already stood at 5,006 and the number of injured people was at five-figure levels

(UNOCHA, 2015c). At that point in time, national and international relief efforts were already

underway, but were far from meeting the needs on the ground. To scale up such efforts, the

Flash Appeal called upon the international community to provide an additional USD 422

million in response to the most urgent humanitarian needs over a period of three months.

From the inception of UN flash appeals in 2003 until 2015, a total of 78 such appeals have

been launched to quickly respond to the severe fast-onset humanitarian disasters worldwide.

However, their design and implementation have been largely ignored by scholarly research.
138We also checked for the impact of an exclusion of Kathmandu from our sample and ran regressions with

binary indicators for each zone (ADM2 region). We provide detailed regression results in Appendix Table
4.10. While some variables lose statistical significance in some specifications, our major conclusions are
unaffected. Finally, remote and rural municipalities dominated by privileged castes obtain funding for a
larger share of their proposed aid funds (Columns 8 and 9 of Appendix Tables 4.12 and 4.13).
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This paper attempts to fill this gap. More specifically, we analyzed the factors that drive

the selection of proposed and funded project locations, as well as the size of the funds in

the framework of the 2015 Nepal Earthquake Flash Appeal. By doing so, we have not only

provided the first quantitative analysis of the design and implementation of UN flash appeals,

but also contributed to the emerging literature on the subnational analysis of aid allocation

(Briggs, 2014, 2017, 2018; Dreher et al., 2019; Findley et al., 2011; Nunnenkamp et al., 2017;

Öhler et al., 2019).

Our results suggest that the allocation of proposed project locations is related to earthquake

damage. However, other local need indicators, such as the population size and the level

of development of municipalities (as proxied by nighttime light emissions), appear to not

influence the design of flash appeals in the expected direction. There is also evidence that

municipalities close to the Nepalese capital are more likely to attract projects. Even if this

were the outcome of cost-benefit analyses, this finding highlights that individuals living in

more distant, hard-to-reach locations are disadvantaged. Given that remote locations are

also likely to be disadvantaged by national decision-makers, it is worrisome that international

donors do not fill the void. Moreover, in some specifications, we find evidence that the spatial

distribution of privileged castes and the vote shares of Nepal’s major political parties drive aid

decisions. This is worrisome given the mandate of the UN. What is more, funding decisions

counteract the need orientation of project proposals and show little regard for the specific

socioeconomic and physical vulnerabilities of the affected population. Although these results

should be treated with caution because of the above discussed concerns about causality

and measurement error, one may carefully conclude that the need orientation of geographic

project selection should be strengthened and that further measures are warranted to reduce

the influence of ethnic and political distortions in the design and implementation of flash

appeals. More precisely, UNOCHA and the OHC need to choose more carefully the proposed

project locations in the design phase of the Flash Appeal, while international donors should

improve the need orientation of their funding decisions.

Our study has some weaknesses that future research hopefully will be able to address.

First, since the present paper focuses only on decisions made after a single disaster, it is an

open question as to whether our findings can be generalized to other UN flash appeals. Future

research should thus investigate other major catastrophes as more geo-referenced aid data

become available to increase the external validity of our findings. Second, although previous
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research shows for other parts of the world that measures of disaster impact based on physical

features of the event and damage functions like ours were valid proxies (Anttila-Hughes &

Hsiang, 2013), it remains only an estimate of actual destructions. Future research could

endeavor to use daytime remote-sensing data on the state of physical infrastructure to obtain

a more comprehensive picture of changes in local wealth in the aftermath of disasters. Third,

we were not able to analyze gender as a form of exclusion since we focus on the geospatial

allocation of aid. Future studies could look at this with individual-level data that allows one

to detect discrimination between the two sexes. Fourth, while data availability restricted the

focus of the present paper on the design and funding of flash appeal projects, research in

the future could analyze whether such projects are indeed (successfully) carried out on the

ground.

Finally, it would be interesting to analyze differences in aid allocation decisions between

different types of funding organizations and different types of implementing organizations.

Donors can be grouped into members of the OECD’s Development Assistance Committee

(DAC) and non-DAC bilateral donors, international organizations, non-governmental organi-

zations (NGOs), and companies. More precisely, some donors might allocate aid to better

use than others, as they select where and by whom aid projects are carried out. For example,

regarding the decision to provide emergency aid, Fuchs & Klann (2013) find that nonDAC

donor countries attach relatively more importance to political motives and that authoritarian

donor countries favor countries rich in natural resources and disfavor democracies. Investigat-

ing differences in the extent to which different donors are more or less need-oriented than

others would be a valuable addition to the literature on ‘non-traditional’ donors (Acht et al.,

2015; Dreher et al., 2011; Fuchs & Vadlamannati, 2013; Nunnenkamp & Öhler, 2011; Semrau

& Thiele, 2017).

These and other endeavors that carry out evidence-based research on UN flash appeals are

highly warranted. Moreover, climate change is likely to make extreme weather events more

frequent and lead to an increase in the incidence of climate-related catastrophes (Easterling,

2000). At the same time, the number of conflicts has been on the rise over the past years

(Dupuy & Rustad, 2018). These developments will increase the frequency of UN flash appeals

and will fuel demands to increase the transparency on the allocation of emergency aid,

including the design, implementation, and effects of flash appeals.
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4.6 Appendix

Table 4.5: Timeline of the 2015 Nepal earthquake flash appeal

Date Event

2015-04-25 Earthquake (7.8 Magnitude) (major shake)

2015-04-25 Aftershock (6.6 Magnitude)

2015-04-25 Aftershock (6.7 Magnitude)

2015-04-26 Aftershock (6.7 Magnitude)

2015-04-29 Launch of initial Flash Appeal (April-July, USD 415 million)

2015-04-29 First aid reaches Nepal

2015-05-04 Update of initial Flash Appeal document

2015-05-12 Earthquake (7.3 Magnitude) (major aftershock)

2015-05-29 Launch of revised Flash Appeal (April-September, USD 422 million)

2015-06-13 Arrival of Monsoon season

2015-09-20 Constitution of Nepal came into effect

2015-09-30 End of revised relief phase (due to monsoon season)

2015-10-11 Change of government

Notes: The sources for this table are: Bhattacharjee (2016); UNOCHA (2015b,c), and
internet research.
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Table 4.6: List of the 20 largest funded 2015 Nepal earthquake flash appeal projects

Emergency Food Assistance to Earthquake Affected Populations 23.1 mUSD
Logistics Augmentation and Coordination in Response to the Earthquake in Nepal 14.8 mUSD
Provide live saving emergency Water, Sanitation and Hygiene services for earthquake affected population, especially women and children in Nepal 14.0 mUSD
Provision of Emergency Shelter, Non Food Items (NFI) and shelter support to self-recovery to Earthquake Affected Population in Nepal for 25,000 12.8 mUSD
Vulnerable Households
Provision of Humanitarian Air Services in Nepal 11.2 mUSD
Provision of Education in Emergencies to Earthquake-Affected Children in Nepal 10.4 mUSD
Equitable emergency and lifesaving primary health care services for mothers, newborns and children 10.1 mUSD
Shelter support through NFIs and training 8.7 mUSD
Emergency Shelter 7.0 mUSD
Addressing health needs in the earthquake affected population 6.6 mUSD
Comprehensive Emergency Nutrition Response for Children and Mothers 5.6 mUSD
Prevention and response to protect children in affected areas. 5.3 mUSD
Emergency assistance to re-establish agricultural-based livelihoods of vulnerable earthquake-affected smallholder farmers in the six most affected 5.2 mUSD
districts in Nepal
Emergency and transitional shelter assistance to earthquake-affected populations 4.4 mUSD
Protection monitoring, legal and psychosocial support to people affected by earthquake 4.0 mUSD
Oxfam WASH Earthquake Response 3.6 mUSD
Rehabilitation of community based infrastructure and emergency employment for immediate livelihoods support 3.5 mUSD
Shelter assistance for 20,000 most vulnerable earthquake-affected families 3.4 mUSD
Coordination response 3.3 mUSD
To deliver a shelter response that supports appropriate, flexible, progressive solutions to affected, vulnerable populations that contributes to their own 3.2 mUSD
self recovery to provide a safer, more resilient and durable shelter

Notes: The source for this table is (UNOCHA, 2016).

298



Distortions in Aid Allocation of United Nations Flash Appeals: Evidence from the 2015 Nepal Earthquake

Figure 4.6: Spatial distribution of nighttime light prior to the 2015 Nepal
earthquake across municipalities
Notes: The figure displays nighttime light intensity (measured in W ∗ cm−2 ∗ sr−1)
assembled from the VIIRS satellite.

Figure 4.7: Spatial distribution of households with solid house foundation
(cement) across municipalities, 2011
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Figure 4.8: Spatial distribution of Nepal’s population (population count) across
municipalities, 2011
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Table 4.7: Variable list with definitions and sources

Definition Data Source
Dependent variables
No. of proposed projects Number of proposed disaster aid projects in the munici-

pality
AidData (2016a)

No. of funded projects Number of funded disaster aid projects in the municipality AidData (2016a)
Proposed financial amount
(USD) (ln)

Financial value of all proposed disaster aid projects in the
municipality (in 1000 US$)

AidData (2016a)

Funded financial amount
(USD) (ln)

Financial value of all funded disaster aid projects in the
municipality (in 1000 US$)

AidData (2016a)

Share of funding obtained Ratio of funded to requested financial value of disaster aid
projects in the municipality

AidData (2016a)

Disaster impact variables
Immediate damage Earthquake destruction index of the first earthquake

(April 25, 2015) for the highest quality building type sce-
nario, ranging from 0 (no destruction) to 1 (all building
are destroyed)

USGS (2017b)

Aftershock damage Earthquake destruction index of the major aftershock
earthquake (Mai 12, 2015) for the highest quality build-
ing type scenario, ranging from 0 (no destruction) to 1
(all building are destroyed)

USGS (2017c)

Socioeconomic vulnerabilities
Population (ln) Logarithm of the population size of the municipality Central Bureau of

Statistics (2011)
Solid house foundation (%) Percentage of households with solid house foundation (ce-

ment) in the municipality in 2011
Central Bureau of
Statistics (2011)

Pre-earthquake nightlight
(ln)

Average nighttime light intensity in the municipality be-
tween January 2012 to March 2015

NOAA (2017)

Urban location Binary variable equal to 1 if a VDC was declared as an
urban municipality

Central Bureau of
Statistics (2014)

Physical vulnerabilities
Admin 4 area (ln) Logarithm of the area (km2) of the municipality Central Bureau of

Statistics (2011)
Mean rainfall Mean rainfall over the period 1998-2014 per municipality

in mm
Own calculations
based on Huffmann
et al. (2014)

Distance to Kathmandu (ln) Logged distance from the municipality centroid to Kath-
mandu in kilometer

Own calculations

Distance to airport (ln) Logged distance from the municipality centroid to the clos-
est airport in kilometer

Own calculations

1988 earthquake Binary variable equal to 1 if the municipality was affected
by the 1988 earthquake (i.e., had a PGA larger than zero)

USGS (2016)

Ethnic, religious and political distortions
Hindu (%) Percentage of Hindus within the respective district (ad-

ministrative level 3)
Central Bureau of
Statistics (2011)

Privileged castes (%) Percentage of people belonging to the Brahmin (“brah-
manhill” and “brahmantarai”) and Chhetri (“chhetree”)
castes in the municipality

Central Bureau of
Statistics (2011)

Communist Party of Nepal
(%)

Percentage of votes won by the Communist Party of Nepal
(unified Marxist-Leninist) at the 2013 election within the
respective district (administrative level 3)

Election Commis-
sion Nepal (2013)

Nepali Congress Party (%) Percentage of votes won by the Nepali Congress Party at
the 2013 election within the respective district (adminis-
trative level 3)

Election Commis-
sion Nepal (2013)

Existing aid networks
General aid probability Probability to receive general aid over the period 2002-

2014
AidData (2016b)
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Table 4.8: Correlation matrix

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
(1) Immediate damage 100%
(2) Aftershock damage 35% 100%
(3) Population (ln) -1% -6% 100%
(4) Admin 4 area (ln) 5% 3% -16% 100%
(5) Mean rainfall 23% -2% 10% 7% 100%
(6) Pre-earthquake nightlight (ln) -5% -9% 31% -48% -7% 100%
(7) Solid house foundation (%) -14% -14% 22% -36% -8% 75% 100%
(8) Distance to Kathmandu (ln) -74% -34% -7% 14% -29% -25% -6% 100%
(9) Distance to airport (ln) 0% -4% 4% 13% -7% -15% -15% 9% 100%
(10) 1988 earthquake 32% 23% 2% -6% -4% 16% 1% -42% -12% 100%
(11) General aid probability 4% 14% 2% 10% -4% 4% 6% -7% 4% 11% 100%
(12) Privileged castes (%) 17% 15% -6% 3% 36% -19% -20% -14% -17% -24% 0% 100%
(13) Hindu (%) -32% -23% 17% -37% -9% 34% 36% 23% 11% -44% -4% -2% 100%
(14) Communist Party of Nepal (%) -2% 17% -22% 29% 27% -48% -44% 14% 1% -31% -9% 41% -21% 100%
(15) Nepali Congress Party (%) 14% -3% -23% 29% 27% -45% -42% 1% -16% -35% -11% 46% -11% 61% 100%
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Table 4.9: Robustness – Design stage (based on Table 4.3)

(1) (2) (3) (4) (5) (6)
Table 4.3, col. 2 Table 4.3, col. 4

Baseline Exclude ADM2 Baseline Exclude ADM2
Kathmandu FE Kathmandu FE

Immediate damage 3.245** 2.859** 0.173 7.229** 6.556* 4.710**
[1.266] [1.131] [0.112] [3.081] [3.297] [1.966]

Aftershock damage 2.494*** 2.216*** 0.287** 3.079 2.945 3.848*
[0.598] [0.558] [0.136] [2.099] [2.137] [2.152]

Population (ln) 0.030 0.030 0.000 -0.445* -0.431* -0.203
[0.081] [0.077] [0.012] [0.238] [0.234] [0.167]

Solid house foundation (%) -0.045** -0.042** -0.006** -0.018 -0.018 -0.043
[0.019] [0.018] [0.003] [0.030] [0.031] [0.026]

Pre-earthquake nightlight (ln) -0.556 -0.558 -0.070 -0.561 -0.446 0.622
[0.386] [0.397] [0.061] [0.796] [0.874] [0.775]

Admin 4 area (ln) 0.651*** 0.610*** 0.071*** 0.604 0.630 0.539
[0.216] [0.202] [0.026] [0.449] [0.451] [0.352]

Mean rainfall 0.078 0.076 0.013 0.264* 0.270* 0.149
[0.083] [0.077] [0.010] [0.156] [0.158] [0.163]

Mean rainfall squared 0.000 0.000 0.000 -0.001 -0.001 0.000
[0.000] [0.000] [0.000] [0.001] [0.001] [0.001]

Distance to Kathmandu (ln) -2.432*** -2.270*** -0.420*** -4.282*** -4.760*** -2.230*
[0.522] [0.524] [0.105] [0.811] [1.008] [1.292]

Distance to airport (ln) 0.077 0.056 0.007 -0.926 -0.994 -0.771
[0.276] [0.249] [0.035] [0.815] [0.821] [0.584]

1988 earthquake 1.644* 1.477* 0.462* 0.926 0.832 -2.377*
[0.908] [0.834] [0.269] [1.523] [1.531] [1.321]

General aid probability 2.008 1.797 0.348* 5.810 5.315 1.672
[1.232] [1.107] [0.194] [4.066] [4.205] [4.055]

Privileged castes (%) 0.014** 0.013** 0.002** -0.025 -0.024 -0.017
[0.006] [0.006] [0.001] [0.020] [0.019] [0.016]

Hindu (%) -0.012 -0.009 -0.006** 0.012 0.013 -0.072
[0.020] [0.018] [0.003] [0.050] [0.051] [0.045]

Communist Party of Nepal (%) -0.005 -0.004 0.010* 0.227** 0.232** 0.254**
[0.043] [0.038] [0.006] [0.109] [0.109] [0.103]

Nepali Congress Party (%) 0.106** 0.094** 0.009 0.198** 0.198** 0.101
[0.043] [0.039] [0.007] [0.091] [0.092] [0.082]

Adjusted R-squared 0.605 0.598 0.716
N of observations 2793 2735 2793 2793 2735 2793
N of clusters 47 46 47 47 46 47

Notes: The dependent variable is no. of proposed projects in Columns 1–3 and proposed financial amount (ln) in
Columns 4–6. Results in Columns 1–3 are estimated with NB regression and Columns 4–6 with OLS. Columns
1–3 show marginal effects at the mean. Robust standard errors (in brackets) are clustered at the district level
(ADM3). * (**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.10: Robustness – Funding stage (based on Table 4.4)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Baseline Exclude ADM2 Baseline Exclude ADM2 Baseline Exclude ADM2

(Table 4.4,
col. 3)

Kath-
mandu FE (Table 4.4,

col. 4)
Kath-
mandu FE (Table 4.4,

col. 5)
Kath-
mandu FE

Immediate damage -0.914* -0.949** -0.082*** 0.177 0.196 0.224 -0.066 -0.056 -0.026
[0.491] [0.475] [0.029] [0.215] [0.215] [0.175] [0.066] [0.064] [0.047]

Aftershock damage -0.330 -0.381 -0.074** 0.557*** 0.563*** 0.468** 0.145** 0.151** 0.073
[0.369] [0.366] [0.033] [0.207] [0.208] [0.218] [0.065] [0.066] [0.059]

Population (ln) -0.005 -0.003 -0.002 0.017* 0.017* 0.010 0.005 0.005 0.002
[0.042] [0.040] [0.004] [0.009] [0.009] [0.007] [0.004] [0.004] [0.004]

Solid house foundation (%) -0.018*** -0.015** -0.001** -0.002 -0.002 -0.001 -0.001 -0.001 0.000
[0.007] [0.007] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Pre-earthquake nightlight (ln) -0.044 -0.055 0.006 0.010 0.011 -0.003 -0.024 -0.022 -0.016
[0.134] [0.142] [0.012] [0.047] [0.050] [0.044] [0.016] [0.019] [0.016]

Admin 4 area (ln) 0.197*** 0.188*** 0.008 0.029 0.029 0.023 0.017 0.018 0.010
[0.073] [0.068] [0.005] [0.020] [0.020] [0.019] [0.011] [0.011] [0.009]

Mean rainfall 0.025 0.031 -0.001 0.001 0.001 0.000 -0.001 -0.002 -0.004
[0.034] [0.033] [0.002] [0.008] [0.008] [0.006] [0.005] [0.005] [0.005]

Mean rainfall squared 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Distance to Kathmandu (ln) -0.664*** -0.700*** -0.072*** -0.221*** -0.205*** -0.273*** -0.134*** -0.121*** -0.139***
[0.219] [0.222] [0.017] [0.046] [0.055] [0.076] [0.022] [0.030] [0.030]

Distance to airport (ln) -0.081 -0.090 -0.001 0.030 0.031 0.036 0.035* 0.036* 0.044***
[0.108] [0.096] [0.009] [0.044] [0.043] [0.040] [0.020] [0.020] [0.010]

1988 earthquake 1.392** 1.255** 0.115** -0.026 -0.024 0.017 0.038 0.037 0.033
[0.588] [0.538] [0.052] [0.077] [0.077] [0.101] [0.058] [0.059] [0.046]

General aid probability 1.450 1.250 0.067 0.152 0.172 0.173 0.223** 0.233** 0.157*
[1.042] [0.948] [0.061] [0.305] [0.305] [0.267] [0.098] [0.096] [0.088]

Privileged castes (%) 0.002 0.002 0.000* 0.001 0.001 0.001 0.001** 0.001** 0.000**
[0.002] [0.002] [0.000] [0.001] [0.001] [0.001] [0.000] [0.000] [0.000]

Hindu (%) 0.004 0.005 -0.001 -0.003 -0.003 -0.002 -0.001 -0.001 -0.002
[0.009] [0.008] [0.001] [0.003] [0.003] [0.004] [0.002] [0.002] [0.002]

Communist Party of Nepal (%) 0.031* 0.031* 0.004*** -0.006 -0.006 -0.007 -0.003 -0.003 -0.003
[0.017] [0.017] [0.001] [0.005] [0.005] [0.005] [0.003] [0.003] [0.003]

Nepali Congress Party (%) 0.071*** 0.065*** 0.007*** 0.008 0.008 0.008 0.005 0.005 0.004
[0.019] [0.017] [0.002] [0.007] [0.007] [0.008] [0.003] [0.003] [0.005]

No. of proposed projects 0.070*** 0.065*** 0.007***
[0.016] [0.015] [0.001]

Proposed financial amount (ln) 0.911*** 0.911*** 0.918***
[0.008] [0.008] [0.007]

Adjusted R-squared 0.999 0.999 0.999 0.668 0.649 0.708
N of observations 2793 2735 2793 2793 2735 2793 1290 1232 1290
N of clusters 47 46 47 47 46 47 24 23 24
Notes: The dependent variable is no. of funded projects in Columns 1–3, funded financial amount (ln) in Columns 4–6, and share of funding obtained in Columns 7–9. Results in
Columns 1–3 are estimated with NB regression and Columns 4–9 with OLS. Columns 1–3 show marginal effects at the mean. Robust standard errors (in brackets) are clustered
at the district level (ADM3). * (**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.11: Robustness – Design stage (sample split with distance to Kathmandu, based
on Table 4.3)

(1) (2) (3) (4) (5) (6)
Table 4.3, col. 2 Table 4.3, col. 4

Baseline <50km
from

>50km
from Baseline <50km

from
>50km
from

Kath-
mandu

Kath-
mandu

Kath-
mandu

Kath-
mandu

Immediate damage 3.245** 33.076*** 0.795** 7.229** 0.828 11.748**
[1.266] [3.586] [0.318] [3.081] [0.760] [5.461]

Aftershock damage 2.494*** 23.837*** 0.057 3.079 1.234 0.392
[0.598] [5.461] [0.309] [2.099] [0.984] [3.695]

Population (ln) 0.030 -2.093** -0.008 -0.445* -0.108 -0.329
[0.081] [0.997] [0.028] [0.238] [0.201] [0.243]

Solid house foundation (%) -0.045** 0.096 -0.013** -0.018 -0.028 -0.045
[0.019] [0.112] [0.006] [0.030] [0.023] [0.033]

Pre-earthquake nightlight (ln) -0.556 -6.847** -0.053 -0.561 0.069 0.733
[0.386] [3.375] [0.151] [0.796] [0.477] [1.292]

Admin 4 area (ln) 0.651*** -1.662 0.136*** 0.604 -0.461 0.562
[0.216] [1.210] [0.052] [0.449] [0.289] [0.452]

Mean rainfall 0.078 -0.929 0.045* 0.264* -0.415 0.346*
[0.083] [1.728] [0.027] [0.156] [0.245] [0.173]

Mean rainfall squared 0.000 0.002 -0.000* -0.001 0.001 -0.001*
[0.000] [0.006] [0.000] [0.001] [0.001] [0.001]

Distance to Kathmandu (ln) -2.432*** -16.168** -1.673*** -4.282*** -2.212 -7.407*
[0.522] [6.735] [0.548] [0.811] [1.357] [3.853]

Distance to airport (ln) 0.077 6.438* -0.017 -0.926 0.926 -1.230
[0.276] [3.753] [0.081] [0.815] [0.795] [0.940]

1988 earthquake 1.644* -0.174 0.926 -1.125
[0.908] [0.229] [1.523] [1.748]

General aid probability 2.008 19.358* -0.084 5.810 2.329 2.922
[1.232] [10.533] [0.384] [4.066] [1.799] [6.251]

Privileged castes (%) 0.014** -0.035 0.004** -0.025 -0.005 -0.017
[0.006] [0.043] [0.002] [0.020] [0.004] [0.019]

Hindu (%) -0.012 0.133 -0.012 0.012 -0.036 -0.035
[0.020] [0.113] [0.009] [0.050] [0.026] [0.061]

Communist Party of Nepal (%) -0.005 0.272 0.004 0.227** 0.127 0.242
[0.043] [0.405] [0.013] [0.109] [0.074] [0.146]

Nepali Congress Party (%) 0.106** -0.103 0.034** 0.198** 0.118 0.184
[0.043] [0.436] [0.016] [0.091] [0.073] [0.135]

Adjusted R-squared 0.605 0.346 0.550
N of observations 2793 457 2336 2793 457 2336
N of clusters 47 14 41 47 14 41

Notes: The dependent variable is no. of proposed projects in Columns 1–3 and proposed financial amount
(ln) in Columns 4–6. Results in Columns 1–3 are estimated with NB regression and Columns 4–6 with OLS.
Columns 1–3 show marginal effects at the mean. Robust standard errors (in brackets) are clustered at the
district level (ADM3). * (**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.12: Robustness – Funding stage (sample split with distance to Kathmandu, based on Table 4.4)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline <50km
from

>50km
from Baseline <50km

from
>50km
from Baseline <50km

from
>50km
from

(Table 4.4,
col. 3)

Kath-
mandu

Kath-
mandu

(Table 4,
col. 4)

Kath-
mandu

Kath-
mandu

(Table 4.4,
col. 5)

Kath-
mandu

Kath-
mandu

Immediate damage -0.914* -1.806* -0.291 0.177 -0.150*** 0.497* -0.066 -0.066*** -0.046
[0.491] [0.946] [0.227] [0.215] [0.032] [0.255] [0.066] [0.015] [0.077]

Aftershock damage -0.330 -1.417 -0.364 0.557*** -0.001 0.800*** 0.145** 0.002 0.135*
[0.369] [1.482] [0.230] [0.207] [0.031] [0.248] [0.065] [0.013] [0.074]

Population (ln) -0.005 -0.071 -0.018 0.017* -0.002 0.016 0.005 -0.002 -0.004
[0.042] [0.158] [0.015] [0.009] [0.004] [0.011] [0.004] [0.002] [0.004]

Solid house foundation (%) -0.018*** 0.017 -0.008 -0.002 0.001* -0.001 -0.001 0.001** 0.000
[0.007] [0.025] [0.005] [0.001] [0.001] [0.001] [0.001] [0.000] [0.001]

Pre-earthquake nightlight (ln) -0.044 -0.163 0.022 0.010 -0.003 0.001 -0.024 -0.005 -0.033
[0.134] [0.439] [0.099] [0.047] [0.017] [0.061] [0.016] [0.008] [0.020]

Admin 4 area (ln) 0.197*** -0.476* 0.048** 0.029 -0.012* 0.006 0.017 -0.007* 0.013
[0.073] [0.271] [0.024] [0.020] [0.006] [0.018] [0.011] [0.003] [0.008]

Mean rainfall 0.025 -0.257 0.029 0.001 0.000 0.006 -0.001 -0.002 0.013**
[0.034] [0.215] [0.019] [0.008] [0.008] [0.007] [0.005] [0.003] [0.005]

Mean rainfall squared 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 -0.000**
[0.000] [0.001] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Distance to Kathmandu (ln) -0.664*** -1.322 -0.758*** -0.221*** -0.062 -0.018 -0.134*** -0.033 -0.310***
[0.219] [1.022] [0.277] [0.046] [0.041] [0.077] [0.022] [0.021] [0.091]

Distance to airport (ln) -0.081 0.183 -0.050 0.030 0.035 0.027 0.035* 0.016 0.012
[0.108] [0.546] [0.048] [0.044] [0.025] [0.040] [0.020] [0.012] [0.019]

1988 earthquake 1.392** 0.186 -0.026 0.013 0.038 -0.094**
[0.588] [0.170] [0.077] [0.081] [0.058] [0.044]

General aid probability 1.450 -0.093 0.362 0.152 -0.110 0.171 0.223** -0.042 0.167**
[1.042] [1.722] [0.272] [0.305] [0.092] [0.342] [0.098] [0.036] [0.078]

Privileged castes (%) 0.002 -0.002 0.000 0.001 0.000 0.001 0.001** 0.000 0.001*
[0.002] [0.004] [0.001] [0.001] [0.000] [0.001] [0.000] [0.000] [0.000]

Hindu (%) 0.004 0.044 -0.001 -0.003 0.000 -0.003 -0.001 0.000 -0.002
[0.009] [0.034] [0.003] [0.003] [0.001] [0.003] [0.002] [0.001] [0.002]

Communist Party of Nepal (%) 0.031* 0.212** 0.011 -0.006 0.001 -0.013** -0.003 0.001 -0.007***
[0.017] [0.084] [0.007] [0.005] [0.003] [0.006] [0.003] [0.001] [0.002]

Nepali Congress Party (%) 0.071*** 0.237** 0.037*** 0.008 0.001 0.015 0.005 0.000 0.011**
[0.019] [0.094] [0.010] [0.007] [0.003] [0.009] [0.003] [0.001] [0.004]

No. of proposed projects 0.070*** 0.514*** 0.027***
[0.016] [0.035] [0.007]

Proposed financial amount (ln) 0.911*** 0.953*** 0.910***
[0.008] [0.005] [0.008]

Adjusted R-squared 0.999 0.999 0.999 0.668 0.593 0.749
N of observations 2793 457 2336 2793 457 2336 1290 451 839
N of clusters 47 14 41 47 14 41 24 12 18

Notes: The dependent variable is no. of funded projects in Columns 1–3, funded financial amount (ln) in Columns 4–6, and share of funding obtained in Columns 7–9. Results
in Columns 1–3 are estimated with NB regression and Columns 4–9 with OLS. Columns 1–3 show marginal effects at the mean. Robust standard errors (in brackets) are
clustered at the district level (ADM3). * (**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.13: Robustness – Design stage (urban vs. non-urban, based on Table 4.3)

(1) (2) (3) (4) (5) (6)
Table 4.3, col. 2 Table 4.3, col. 4

Baseline Urban Non- Baseline Urban Non-
urban urban

Immediate damage 3.245** 1.030** 3.206** 7.229** 13.599*** 7.064**
[1.266] [0.418] [1.252] [3.081] [3.720] [3.058]

Aftershock damage 2.494*** -0.042 2.552*** 3.079 -4.297 3.146
[0.598] [0.212] [0.606] [2.099] [3.750] [2.083]

Population (ln) 0.030 0.105 0.034 -0.445* -0.454 -0.436*
[0.081] [0.078] [0.084] [0.238] [0.725] [0.248]

Solid house foundation (%) -0.045** 0.002 -0.045** -0.018 -0.065 -0.016
[0.019] [0.007] [0.019] [0.030] [0.061] [0.030]

Pre-earthquake nightlight (ln) -0.556 -0.235 -0.629 -0.561 1.992 -0.650
[0.386] [0.212] [0.431] [0.796] [1.507] [0.858]

Admin 4 area (ln) 0.651*** -0.069 0.679*** 0.604 -0.337 0.659
[0.216] [0.083] [0.219] [0.449] [0.664] [0.464]

Mean rainfall 0.078 0.160 0.081 0.264* 0.467 0.266*
[0.083] [0.139] [0.085] [0.156] [0.838] [0.155]

Mean rainfall squared 0.000 0.000 0.000 -0.001 -0.001 -0.001
[0.000] [0.000] [0.000] [0.001] [0.003] [0.001]

Distance to Kathmandu (ln) -2.432*** -0.523** -2.511*** -4.282*** -1.635 -4.337***
[0.522] [0.221] [0.546] [0.811] [1.116] [0.828]

Distance to airport (ln) 0.077 -0.067 0.062 -0.926 -0.215 -0.949
[0.276] [0.096] [0.284] [0.815] [0.909] [0.824]

1988 earthquake 1.644* -0.344 1.752* 0.926 0.808 1.009
[0.908] [0.242] [0.930] [1.523] [1.370] [1.559]

General aid probability 2.008 2.682*** 1.864 5.810 14.387*** 5.427
[1.232] [0.882] [1.352] [4.066] [4.697] [4.700]

Privileged castes (%) 0.014** 0.001 0.014** -0.025 -0.012 -0.024
[0.006] [0.005] [0.006] [0.020] [0.044] [0.020]

Hindu (%) -0.012 -0.014* -0.010 0.012 0.110** 0.013
[0.020] [0.008] [0.020] [0.050] [0.049] [0.050]

Communist Party of Nepal (%) -0.005 0.015 -0.005 0.227** 0.446*** 0.223**
[0.043] [0.012] [0.044] [0.109] [0.093] [0.109]

Nepali Congress Party (%) 0.106** 0.003 0.107** 0.198** 0.129 0.197**
[0.043] [0.014] [0.043] [0.091] [0.109] [0.091]

Adjusted R-squared 0.605 0.598 0.716
N of observations 2793 2735 2793 2793 2735 2793
N of clusters 47 46 47 47 46 47

Notes: The dependent variable is no. of proposed projects in Columns 1–3 and proposed financial amount
(ln) in Columns 4–6. Results in Columns 1–3 are estimated with NB regression and Columns 4–6 with OLS.
Columns 1–3 show marginal effects at the mean. Robust standard errors (in brackets) are clustered at the
district level (ADM3). * (**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.14: Robustness – Funding stage (urban vs. non-urban, based on Table 4.4)

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Baseline Urban Non- Baseline Urban Non- Baseline Urban Non-

(Table 4.4,
col. 3) urban (Table 4.4,

col. 4) urban (Table 4.4,
col. 5) urban

Immediate damage -0.914* 0.108 -0.915* 0.177 0.349 0.179 -0.066 -0.021 -0.063
[0.491] [0.224] [0.497] [0.215] [0.236] [0.213] [0.066] [0.053] [0.065]

Aftershock damage -0.330 -0.035 -0.321 0.557*** 0.514** 0.556*** 0.145** 0.195*** 0.147**
[0.369] [0.205] [0.376] [0.207] [0.223] [0.206] [0.065] [0.059] [0.065]

Population (ln) -0.005 -0.022 -0.002 0.017* 0.029 0.017* 0.005 0.011 0.005
[0.042] [0.040] [0.042] [0.009] [0.029] [0.009] [0.004] [0.017] [0.004]

Solid house foundation (%) -0.018*** -0.011** -0.017** -0.002 0.000 -0.002 -0.001 0.001 -0.001
[0.007] [0.005] [0.007] [0.001] [0.001] [0.001] [0.001] [0.001] [0.001]

Pre-earthquake nightlight (ln) -0.044 0.119 -0.053 0.010 0.035 0.015 -0.024 -0.037 -0.018
[0.134] [0.133] [0.146] [0.047] [0.058] [0.047] [0.016] [0.022] [0.017]

Admin 4 area (ln) 0.197*** -0.011 0.214*** 0.029 0.011 0.033 0.017 0.010 0.019
[0.073] [0.079] [0.075] [0.020] [0.034] [0.020] [0.011] [0.021] [0.011]

Mean rainfall 0.025 0.199 0.026 0.001 0.004 0.001 -0.001 0.170*** -0.001
[0.034] [0.153] [0.035] [0.008] [0.034] [0.008] [0.005] [0.050] [0.005]

Mean rainfall squared 0.000 -0.001 0.000 0.000 0.000 0.000 0.000 -0.001*** 0.000
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Distance to Kathmandu (ln) -0.664*** -0.053 -0.671*** -0.221*** -0.151** -0.222*** -0.134*** -0.098*** -0.132***
[0.219] [0.109] [0.230] [0.046] [0.060] [0.046] [0.022] [0.023] [0.022]

Distance to airport (ln) -0.081 -0.029 -0.084 0.030 0.033 0.029 0.035* 0.024* 0.035*
[0.108] [0.090] [0.111] [0.044] [0.039] [0.045] [0.020] [0.013] [0.020]

1988 earthquake 1.392** 0.085 1.445** -0.026 -0.110 -0.022 0.038 -0.090* 0.040
[0.588] [0.253] [0.604] [0.077] [0.066] [0.077] [0.058] [0.043] [0.058]

General aid probability 1.450 1.193** 1.576 0.152 0.067 0.212 0.223** 0.187** 0.264**
[1.042] [0.506] [1.180] [0.305] [0.217] [0.337] [0.098] [0.078] [0.103]

Privileged castes (%) 0.002 0.007* 0.002 0.001 -0.001 0.001 0.001** 0.000 0.001**
[0.002] [0.003] [0.002] [0.001] [0.002] [0.001] [0.000] [0.001] [0.000]

Hindu (%) 0.004 0.001 0.004 -0.003 -0.006** -0.003 -0.001 -0.004*** -0.001
[0.009] [0.005] [0.009] [0.003] [0.003] [0.003] [0.002] [0.001] [0.002]

Communist Party of Nepal (%) 0.031* 0.012*** 0.032* -0.006 -0.003 -0.006 -0.003 0.000 -0.003
[0.017] [0.005] [0.017] [0.005] [0.007] [0.005] [0.003] [0.002] [0.003]

Nepali Congress Party (%) 0.071*** 0.009 0.072*** 0.008 0.001 0.008 0.005 -0.004*** 0.005
[0.019] [0.008] [0.019] [0.007] [0.005] [0.007] [0.003] [0.001] [0.003]

No. of proposed projects 0.070*** 0.024*** 0.071***
[0.016] [0.007] [0.016]

Proposed financial amount (ln) 0.911*** 0.908*** 0.911***
[0.008] [0.009] [0.008]

Adjusted R-squared 0.999 0.999 0.999 0.668 0.918 0.669
N of observations 2793 82 2711 2793 82 2711 1290 30 1260
N of clusters 47 38 47 24 19 24

Notes: The dependent variable is no. of funded projects in Columns 1–3, funded financial amount (ln) in Columns 4–6, and share of funding obtained in Columns 7–9. Results
in Columns 1–3 are estimated with NB regression and Columns 4–9 with OLS. Columns 1–3 show marginal effects at the mean. Robust standard errors (in brackets) are
clustered at the district level (ADM3). * (**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.15: Robustness – Design stage (ADM2 cluster, based on Table
4.3)

(1) (2) (3) (4)
Table 4.3, col. 2 Table 4.3, col. 4

Baseline ADM2 Baseline ADM2
cluster cluster

Immediate damage 3.245** 3.245** 7.229** 7.229*
[1.266] [1.501] [3.081] [3.650]

Aftershock damage 2.494*** 2.494*** 3.079 3.079
[0.598] [0.688] [2.099] [2.118]

Population (ln) 0.030 0.030 -0.445* -0.445
[0.081] [0.077] [0.238] [0.284]

Solid house foundation (%) -0.045** -0.045*** -0.018 -0.018
[0.019] [0.014] [0.030] [0.018]

Pre-earthquake nightlight (ln) -0.556 -0.556 -0.561 -0.561
[0.386] [0.440] [0.796] [1.015]

Admin 4 area (ln) 0.651*** 0.651*** 0.604 0.604
[0.216] [0.183] [0.449] [0.325]

Mean rainfall 0.078 0.078 0.264* 0.264*
[0.083] [0.089] [0.156] [0.132]

Mean rainfall squared 0.000 0.000 -0.001 -0.001
[0.000] [0.000] [0.001] [0.001]

Distance to Kathmandu (ln) -2.432*** -2.432*** -4.282*** -4.282***
[0.522] [0.353] [0.811] [0.881]

Distance to airport (ln) 0.077 0.077 -0.926 -0.926
[0.276] [0.155] [0.815] [0.906]

1988 earthquake 1.644* 1.644 0.926 0.926
[0.908] [1.011] [1.523] [1.201]

General aid probability 2.008 2.008 5.810 5.810*
[1.232] [1.356] [4.066] [3.046]

Privileged castes (%) 0.014** 0.014* -0.025 -0.025
[0.006] [0.008] [0.020] [0.021]

Hindu (%) -0.012 -0.012 0.012 0.012
[0.020] [0.026] [0.050] [0.077]

Communist Party of Nepal (%) -0.005 -0.005 0.227** 0.227**
[0.043] [0.042] [0.109] [0.083]

Nepali Congress Party (%) 0.106** 0.106*** 0.198** 0.198**
[0.043] [0.033] [0.091] [0.058]

Adjusted R-squared 0.605 0.716
N of observations 2793 2793 2793 2793
N of clusters 47 8 47 8

Notes: The dependent variable is no. of proposed projects in Columns 1–2 and pro-
posed financial amount (ln) in Columns 3–4. Results in Columns 1–2 are estimated
with NB regression and Columns 3–4 with OLS. Columns 1–2 show marginal effects
at the mean. Robust standard errors (in brackets) are clustered at the district level
(ADM3) in Columns 1 and 3 and at the zone level (ADM2) in Columns 2 and 4. *
(**, ***) indicates statistical significance at the 10% (5%, 1%) level.
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Table 4.16: Robustness – Funding stage (ADM2 cluster, based on Table 4.4)

(1) (2) (3) (4) (5) (6)
Baseline ADM2 Baseline ADM2 Baseline ADM2

cluster cluster cluster
Immediate damage -0.914* -0.914** 0.177 0.177 -0.066 -0.066

[0.491] [0.451] [0.215] [0.102] [0.066] [0.043]
Aftershock damage -0.330 -0.330 0.557*** 0.557** 0.145** 0.145*

[0.369] [0.270] [0.207] [0.221] [0.065] [0.072]
Population (ln) -0.005 -0.005 0.017* 0.017** 0.005 0.005

[0.042] [0.026] [0.009] [0.006] [0.004] [0.003]
Solid house foundation (%) -0.018*** -0.018** -0.002 -0.002 -0.001 -0.001

[0.007] [0.007] [0.001] [0.001] [0.001] [0.001]
Pre-earthquake nightlight (ln) -0.044 -0.044 0.010 0.010 -0.024 -0.024**

[0.134] [0.152] [0.047] [0.033] [0.016] [0.010]
Admin 4 area (ln) 0.197*** 0.197*** 0.029 0.029*** 0.017 0.017*

[0.073] [0.048] [0.020] [0.007] [0.011] [0.008]
Mean rainfall 0.025 0.025 0.001 0.001 -0.001 -0.001

[0.034] [0.040] [0.008] [0.006] [0.005] [0.005]
Mean rainfall squared 0.000 0.000 0.000 0.000 0.000 0.000

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]
Distance to Kathmandu (ln) -0.664*** -0.664*** -0.221*** -0.221*** -0.134*** -0.134***

[0.219] [0.183] [0.046] [0.043] [0.022] [0.020]
Distance to airport (ln) -0.081 -0.081 0.030 0.030 0.035* 0.035*

[0.108] [0.085] [0.044] [0.017] [0.020] [0.015]
1988 earthquake 1.392** 1.392* -0.026 -0.026 0.038 0.038

[0.588] [0.758] [0.077] [0.066] [0.058] [0.066]
General aid probability 1.450 1.450** 0.152 0.152 0.223** 0.223**

[1.042] [0.739] [0.305] [0.110] [0.098] [0.079]
Privileged castes (%) 0.002 0.002 0.001 0.001 0.001** 0.001*

[0.002] [0.002] [0.001] [0.001] [0.000] [0.000]
Hindu (%) 0.004 0.004 -0.003 -0.003 -0.001 -0.001

[0.009] [0.007] [0.003] [0.002] [0.002] [0.001]
Communist Party of Nepal (%) 0.031* 0.031*** -0.006 -0.006 -0.003 -0.003

[0.017] [0.008] [0.005] [0.005] [0.003] [0.004]
Nepali Congress Party (%) 0.071*** 0.071*** 0.008 0.008 0.005 0.005

[0.019] [0.012] [0.007] [0.009] [0.003] [0.005]
No. of proposed projects 0.070*** 0.070***

[0.016] [0.017]
Proposed financial amount (ln) 0.911*** 0.911***

[0.008] [0.006]
Adjusted R-squared 0.999 0.605 0.598 0.716
N of observations 2793 2735 2793 2793 2735 2793
N of clusters 47 46 47 47 46 47

Notes: The dependent variable is no. of funded projects in Columns 1–2, funded financial amount (ln) in
Columns 3–4, and share of funding obtained in Columns 5–6. Results in Columns 1–2 are estimated with NB
regression and Columns 3–6 with OLS. Columns 1–2 show marginal effects at the mean. Robust standard
errors (in brackets) are clustered at the district level (ADM3). * (**, ***) indicates statistical significance at
the 10% (5%, 1%) level.
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Figure 4.9: Interaction of disaster impact with privileged castes
Notes: Panels a and b show marginal effects with 90% confidence intervals for extensions of the baseline
specification in Column 2 of Table 4.4 and Panels c and d for the baseline specification in Column 4 of Table
4.4. Specifically, we add two interaction terms to the respective baseline specification: (i) between privileged
castes and immediate damage in Panels a and c and (ii) between privileged castes and aftershock damage in
Panels b and d.
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