
DISSERTATION
submitted to the

Combined Faculty of Natural Sciences and
Mathematics

of Heidelberg University, Germany
for the degree of

Doctor of Natural Sciences

Put forward by

Constantin Pape
Born in Göttingen, Germany

Oral examination: 24.06.2021

Scalable Instance Segmentation for Microscopy

Referees: Prof. Dr. rer. nat. Fred A. Hamprecht

Prof. Dr. rer. nat. Robert Strzodka

Abstract Modern microscopy techniques acquire images at very high rates, high spatial
resolution and with a large field of view. To analyze the large image data-sets acquired with
such microscopes, accurate and scalable automated analysis is desperately needed. A key
component is the instance segmentation of structures of interest, such as cells, neurons or
organelles.

In this thesis, we develop scalable methods for boundary based instance segmentation. We
make use of Lifted Multicut graph partitioning and develop a method achieving state-of-the-art
results on challenging benchmark data-sets. In order to scale this approach up, we introduce a
new approximate solver for Multicut and Lifted Multicut, which can solve problems that were
previously infeasible. We further establish a method to incorporate domain knowledge into the
segmentation problem, which can significantly improve quality. To overcome the brittleness of
seeded watersheds, used extensively in segmentation for microscopy, we introduce the Mutex
Watershed. This efficient algorithm can segment images directly from pixels without the need
for seeds or thresholds. Finally, we apply our methods in collaborative work, demonstrating
their utility to answer biological research questions.

In summary, our contributions enable scalable instance segmentation, thus eliminating one
of the major obstacles to the automated analysis of large microscopy data-sets.

Zusammenfassung Moderne Mikroskopie Verfahren ermöglichen Aufnahmen mit sehr
hoher Rate, hoher räumlicher Auflösung und großem Blickfeld. Um große Datensätze, die mit
solchen Mikroskopen aufgenommen wurden, zu analysieren werden akkurate und skalierbare
automatisierte Analyseverfahren dringend benötigt. Ein zentraler Bestandteil ist die Instanz
Segmentierung der zu untersuchenden Strukturen, wie etwa Zellen, Neuronen oder Organellen.

In dieser Arbeit entwickeln wir skalierbare Methoden zur Membran-basierten Instanz Seg-
mentierung. Wir benutzen Lifted Multicut Graph Partitionierung und zeigen, dass unsere
Methode beste Ergebnisse auf schwierigen Referenz-Datensätzen erzielen. Um diesen Ansatz
auf großen Daten anzuwenden entwicklen wir neue approximative Lösungsverfahren für Multi-
cut und Lifted Multicut, die zuvor undurchführbare Problem lösen können. Ausserdem führen
wir eine Methode zur Einbeziehung von domänen-spezifischen Wissen ein, welche die Seg-
mentierungsqualität signifikant verbessern kann. Um den marker-basierten Wasserscheiden
Algorithmus, der häufig in der Segmentierung von Mikroskopie Bildern verwendet wird, zu
verbessern, führen wir den Mutex Watershed ein. Dieser effiziente Algorithmus kann Bilder
direkt von Pixeln segmentieren, ohne Marker oder Grenzwerte zu benötigen. Wir wenden die
von uns entwickelten Methoden im Rahmen mehrerer Forschungs-Kollaborationen an und
demonstrieren ihre Tauglichkeit um biolgische Fragestellungen zu beantworten.

Unsere Arbeit ermöglicht skalierbare Instanz Segmentierung und beseitigt somit eines der
größten Hindernisse zur automatisierten Analyse von großen Mikroskopie Datensätzen.

5

Acknowledgments

First and foremost, I want to thank my two main supervisors, Professor Fred Hamprecht and
Doctor Anna Kreshuk, for their continued supervision and support of my research projects.
Since I have joined Fred’s research group as a master student, he sparked my interest in image
analysis and enabled me to work on exciting topics at the interface of computer science and
biology. Since working on my PhD, I have been jointly supervised by Anna, first as a senior
postdoc in Fred’s group, now as a group leader at EMBL Heidelberg. When she moved to
EMBL, I joined her group as a visiting scientist, giving me the opportunity to work on exciting
research projects in a great collaborative environment.

I want to thank the current and former members of the Image Analysis and Learning Lab at
Heidelberg University for many discussions and a great working environment. In particular, I
want to thank Steffen Wolf for countless hours working on joint research projects, including our
joint development of the Mutex Watershed. Thorsten Beier for introducing me to the wonders
of C++ and his nifty software libraries, that I still use on a daily basis. Nasim Rahaman, our
former resident neural network wizard, for helping me getting started with deep learning. I also
want to thank Alberto Bailoni for interesting joint work on segmentation algorithms, Roman
Remme and Lorenzo Cerrone for invaluable contributions to the Covid-IF project and Ullrich
Köthe for many fruitful discussions.

I want to thank the members of the Kreshuk Lab at EMBL Heidelberg, especially Adrian
Wolny for working on exciting ideas, Valentyna Zinchenko, Dominik Kutra, Fynn Beutten-
müller, Maxim Novikov, Alex Matskevytch, Qin Yu and all other members of the lab.

I want to thank Stephan Saalfeeld and Davi Bock for giving me the opportunity to join
Janelia Research Campus for an extended research visit and work on the forefront of problems
in connectomics. And I want to thank Larissa Heinrich, Philipp Hanslovsky, John Bogovic,
Scott Lauritzen and Arlo Sheridan for the joint projects we have worked on during my visit.

I want to thank Christian Tischer and Kimberly Meechan for our joint work on MoBIE and
the PlatyBrowser and Paola Bertucci, Giulia Mizzon, Jake Musser, Rachel Templin, Julian
Hennies, Hernando Martinez, Yannick Schwab and Detlev Arendt for joint work and many
discussions at EMBL. I also want to thank Vibor Laketa for joint work on the Covid-IF assay
and introducing me to high-throughput microscopy in the process.

Finally, I want to thank Barbara Werner for being an administrative hero and Professor
Robert Strzodka for agreeing to be the second referee for this thesis.

7

Contents

1 Introduction 13
1.1 Machine Learning for Image Segmentation 14

1.1.1 Graph-based Instance Segmentation 16
1.1.2 Instance Segmentation for Microscopy 17

1.2 Contributions . 18

2 Multicut and Lifted Multicut for EM Segmentation 21
2.1 Introduction . 21
2.2 Methods . 24

2.2.1 Boundary Prediction . 24
2.2.2 Superpixel Generation . 26
2.2.3 Edge Costs . 28
2.2.4 Multicut . 29
2.2.5 Lifted Edge Costs . 31
2.2.6 Lifted Multicut . 31

2.3 Results . 32
2.3.1 ISBI2012 challenge . 33
2.3.2 Lesion Study . 35
2.3.3 SNEMI3D Data-set . 36
2.3.4 Neuroproof Data-set . 37
2.3.5 CREMI challenge . 38

2.4 Conclusion . 38

3 Scalable Multicut and Lifted Multicut Segmentation 41
3.1 Introduction . 41
3.2 Related Work . 43
3.3 Methods . 45

3.3.1 Multicut Solver . 45
3.3.2 Lifted Multicut Solver . 46

9

3.4 Results . 50
3.4.1 Performance of extant Multicut Solvers 50
3.4.2 Performance and Accuracy of the Block-wise Multicut Solver 51
3.4.3 Scaling Behavior of the Block-wise Multicut Solver 53
3.4.4 Lifted Multicut solver . 56

3.5 Conclusion . 58

4 Improving Segmentation with Lifted Priors 59
4.1 Introduction . 59
4.2 Related Work . 62
4.3 Methods . 63

4.3.1 Sparse Lifted Edges . 64
4.4 Results . 66

4.4.1 Mouse Cortex Segmentation, EM 66
4.4.2 Drosophila brain segmentation, EM 68
4.4.3 Sponge segmentation, EM . 69
4.4.4 Lateral root segmentation, LM . 70

4.5 Discussion . 72

5 The Mutex Watershed 77
5.1 Introduction . 77
5.2 Related Work . 79
5.3 Methods . 81

5.3.1 Definitions and notation . 81
5.3.2 Seeded watershed from a mutex perspective 81
5.3.3 Mutex Watersheds . 83
5.3.4 Time Complexity Analysis . 84

5.4 Results . 86
5.4.1 Estimating edge weights with a CNN 86
5.4.2 ISBI Challenge . 87
5.4.3 Study on natural image segmentation 89

5.5 Conclusion . 90

6 Applications of Large-scale Segmentation 93
6.1 A cellular atlas for Platynereis dumerilii . 94

6.1.1 Segmentation . 95
6.1.2 Further Analysis . 99

10

6.2 Segmentation of a Sponge Choanocyte Chamber 104
6.2.1 Segmentation . 105
6.2.2 Analysis . 106

6.3 Immunofluorescence based Testing for SARS-CoV-2 Antibodies 109
6.3.1 Immunofluorescence Assay and Image Acquisition 110
6.3.2 Quantitative Analysis . 110
6.3.3 Assay Characterization and Validation 113

7 Conclusion 117

Appendices 119

A Appendix 121
A.1 Software . 121

A.1.1 Chunked Data Storage . 122
A.1.2 Distributed Computation . 123
A.1.3 MoBIE and Data Sharing . 124

A.2 Multicut and Lifted Multicut for EM Segmentation 126
A.3 Scalable Multicut and Lifted Multicut Segmentation 128

A.3.1 Performance of extant Multicut Solvers 128
A.3.2 Performance and Accuracy of the Block-wise Multicut Solver 129
A.3.3 Scaling Behavior of the Block-wise Multicut Solver 132

A.4 The Mutex Watershed . 132
A.4.1 Network Architecture and Training 132
A.4.2 Baseline Post-processing Methods 133
A.4.3 Study on Natural Image Segmentation 136

A.5 A cellular Atlas for Platynereis dumerilii . 137
A.6 Immunofluorescence based Testing for SARS-COV-2 Antibodies 138

A.6.1 Quantitative Analysis . 138
A.6.2 Assay Characterization and Validation 142

11

1 Introduction

Microscopy is a key technique used to study the processes underpinning life. Many of the
fundamental principles of biology were established due to the advent and improvement of
light microscopes. This includes the identification of cells as the basic unit of life by van
Leeuwenhoek in the 17th century or the discovery of neurons as the main component of
information processing in the brain by y Cajal in the early 20th century. Modern biology relies
on a variety of microscopy techniques for in situ, in vivo or in vitro imaging at different scales.
For example, multi-photon [81, 61] or light-sheet microscopes [99, 88] can image samples
in situ with a sub-micrometer resolution and a field of view of several millimeters. Serial
section or transmission electron microscopes [51, 85, 30] can image samples in vitro with
a resolution of a few nanometers and a field of view of several hundred micrometers. Cryo
electron microscopes [54, 157] can image samples in vitro with a resolution of a few angstroms
and a field of view of a few micrometers. The resulting image data can easily exceed a terabyte
(TB) in size for a single experiment due to the high spatial resolution and/or large field of view.
For such large data-sets systematic manual analysis is prohibitively time consuming and has to
be automated as much as possible. Take for example connectomics, a sub-field of neuroscience
with the goal of reconstructing the neural wiring diagram of (small) animals. This diagram is
made up of the neurons of the central nervous system and their connections via synapses. The
smallest neuronal processes have diameters of less than 100 nanometer and synapses can be as
small as 40 nanometer, while projections of a single neuron can encompass the whole nervous
system. Hence, a reliable reconstruction of the wiring diagram is only possible with volume
electron microscopy (EM). Even the brains of small animals imaged with this technique results
in very large data-sets: two recently acquired fruit-fly brains [242, 187] measure about 50 TB of
raw image data each. Figure 1.1 shows neuron reconstructions from [242], illustrating that this
tasks involves several scales. Manual or semi-automated reconstruction of specific circuits takes
multiple years of work for expert annotators [103, 57, 204, 150] and the reconstruction of the
full wiring diagram is infeasible without substantial automation. Other fields like cell biology
make use of EM to study the ultra-structure of cells [239, 152] or the cellular composition of
organisms [218, 43], resulting in data-sets of similar size.

A key requirement for automated analysis is the identification and delineation of the struc-
tures of interest, such as organs, cells, neurons or organelles, e.g. mitochondria. This task can
be solved via instance segmentation, a well-studied problem in computer vision. In recent

13

Figure 1.1: Neuron reconstruction in the fruit-fly brain. On the right, the outline of the whole brain and
the manual reconstructions of several neurons are shown. The left shows an EM zoom-in,
with reconstructed neurons overlaid in color. Figure from [242].

years, instance segmentation methods have improved significantly due to the adoption of con-
volutional neural networks (CNN), see Section 1.1. While research focuses mainly on natural
images, very similar methods can be applied to microscopy images. However, scaling instance
segmentation to large volumetric data is challenging and has hindered the full adoption of these
methods for EM and other volumetric microscopy.

In this thesis, we have developed high-quality and scalable instance segmentation methods for
volumetric data beyond the TB scale. Initially developed with the use-case of EM connectomics
in mind, we have used them to segment neurons in large EM volumes. They have already been
integrated in distributed computing solutions for large-scale neuron reconstruction [133]. Their
versatility also enabled the application in other fields of biology. See Figure 1.2 for an overview
of segmentation results for problems arising in connectomics, cell biology, evolutionary-
developmental biology and virology. This includes a cellular atlas of Platynereis dumerilii, a
small marine worm, build from the segmentation of all cells, nuclei and cellular ultra-structure;
representing the first EM instance segmentation for a complete small animal.

1.1 Machine Learning for Image Segmentation

Segmentation is a fundamental task in computer vision. It consists of finding and delin-
eating objects in a digital image or image volume. Different versions of this task exist: in
semantic segmentation, each pixel is assigned to a discrete set of categorical labels, e.g.
{road, tree, car, sky, pedestrian}. In instance segmentation, each pixel is assigned to the
instance of a specific category, e.g. {car1, car2, car3, ...}, or background. The number of
instances is usually unknown a priori. Combining these two tasks, semantic instance segmenta-

14

Figure 1.2: Applications of large-scale instance segmentation in this thesis. (A) cross section of the
segmentation of all cells and nuclei in an EM volume containing a Platynereis dumerilii
larva (Section 6.1). (B) cells and ultra-structure segmented from an EM volume of a sponge
choanocyte chamber (Section 6.2). (C) nuclei segmented in immunofluorescence images
for a Sars-CoV-2 antibody test (Section 6.3). (D) selection of neurites segmented in an EM
volume of fruit-fly neural tissue (Section 4.4.2).

tion asks for an assignment to both a semantic class label and, for non-background classes, to
an instance label. This thesis focuses on instance segmentation, which often needs a semantic
segmentation as prerequisite. Hence, we will briefly summarize the current leading approaches
for both tasks.

Most current semantic segmentation approaches are based on deep learning. This branch
of machine learning uses artificial neural networks for predictive tasks. Loosely inspired by
the nervous system, artificial neural networks consist of layers of non-linear functions, the

15

“neurons”, connected by learnable weights. Given an input image, semantic segmentation
networks predict the class membership probabilities for each pixel [130]. Here, we will focus
on methods trained via supervised learning: during training the network at hand is presented
with pairs of images and label maps and predicts the pixel-wise probabilities. The difference
between label map and prediction is measured with a loss function, e.g. cross entropy [68].
The networks weights are updated using stochastic gradient descent [182] or one of its modern
variants [104, 55]. These steps are repeated until the loss converges or some other stopping
criterion is met.

Most networks for computer vision are based on the convolutional neural network (CNN)
architecture. It is feed-forward, i.e. layers only receive input from previous layers, and neurons
are only connected in a local neighborhood. This reduces the number of parameters, while
keeping spatial context and introducing shift invariance. Unlike architectures for image classifi-
cation [112, 79], which predict a scalar label per image, networks for semantic segmentation
transform the input image into a label map with a fully convolutional architecture. Modern
architectures have improved the initial fully convolutional network [130] by introducing skip
connections [180], atrous convolutions [39] or multi-scale feature pyramids [127].

In the case of instance segmentation the label maps are permutation invariant. Take the
example of segmenting cars: here, it is arbitrary which car is labeled car1, car2, car3 and so
on. Hence, semantic segmentation methods, which use a loss function that is not permutation
invariant, cannot be applied directly. Various solutions have been proposed. For example,
predicting pixel-wise embeddings that can be clustered to obtain instances and are trained via a
contrastive [49] or spatial [156] loss function. Other approaches first predict object bounding
boxes, followed by the prediction of an instance mask per bounding box [78], or iteratively
predict object masks [91].

Here, we solve the instance segmentation problem via graph partitioning methods, see
Section 1.1.1, using CNN boundary predictions to construct the graph and estimate edge costs.

1.1.1 Graph-based Instance Segmentation

Images or volumes can be represented in terms of a graph G = (V,E) with nodes V and edges
E. Such a representation can be obtained either via a grid graph, where nodes correspond to
pixels and edges connect pixels in their local neighborhood, or a region adjacency graph, where
nodes correspond to groups of pixels, often called superpixels, and edges connect superpixels
that share a boundary. To obtain an instance segmentation, the nodes of a graph are grouped
into partition elements based on costs1 C associated with the edges2. The costs estimate the

1In the literature also often called weights.
2The partitioning procedure can also be informed by costs associated with the nodes; here we restrict ourselves to

the case with only edge costs.

16

likelihood of the incident nodes being part of the same partition element or of different partition
elements. They can be obtained from properties of the image, e.g. the gradient, directly or
predicted by an edge classifier.

An important graph-based segmentation methods is the seeded watershed [48, 145, 144],
which finds a partition by flooding a height-map, in our case corresponding to the edge costs,
starting from a set of seed nodes. It can be efficiently computed as a minimum spanning forest
via Kruskal’s algorithm [48, 144].

Another class of methods [62, 67, 161] is based on agglomerative clustering [224]. They
agglomerate nodes based on the edge costs until a stopping criterion, e.g. a cost threshold or a
preset number of partition elements, is met.

Both watershed and agglomerative clustering typically operate on unsigned graphs, i.e.
graphs which have only positive (attractive) edges costs. Hence, an additional stopping criterion,
like seeds, thresholds or a preset number of elements, is required to partition the graph. Defining
a good stopping criterion can be challenging, especially for large graphs where the number of
instances is often unknown. In contrast, Multicut [5, 6, 41] (also known as correlation clustering
[17]) operates on signed graphs with attractive and repulsive edge costs, removing the need
for a stopping criterion. Furthermore, the recently introduced Lifted Multicut [87] extends the
Multicut formulation by long range graph interactions, allowing a more expressive formulation
of the partition problem. However, solving the (Lifted) Multicut problem is NP-hard. Thus, in
practice efficient approximate solvers are required. See Section 2.2.4 and Section 2.2.6 for an
in-depth review of Multicut and Lifted Multicut graph partitioning.

In this thesis, we make use of the seeded watershed at the pixel level to obtain superpixels,
which are used to construct a region adjacency graph. Multicut and Lifted Multicut are used to
partition this graph, yielding the desired instance segmentation. One of our main contributions
is the introduction of approximate solvers for these two problems, making them applicable
for TB-sized volumetric microscopy data-sets. Furthermore in Chapter 5 we introduce the
Mutex Watershed an instance segmentation algorithm that is, similar to watershed, based on
Kruskal’s algorithm. Unlike watershed it can incorporate attractive and repulsive costs and can
thus provide an instance segmentation from grid graphs without seeds.

1.1.2 Instance Segmentation for Microscopy

Segmentation for microscopy has recently improved significantly through the wide adoption
of deep learning based methods. The U-Net [180, 35] is especially popular for semantic
segmentation tasks. To obtain an instance segmentation the network predictions have to be
further post-processed. For structures with “simple” shapes, this can be achieved by a seeded
watershed [132], methods using a shape-prior [191, 225, 200] or combining boundary and
bounding box predictions [86].

17

Such shape assumptions do not hold for many microscopy segmentation problems. Take
for example the case of neuron reconstruction, where individual neurons can extend through
significant parts of the volume and have a complex tree-like structure. The predominant
approach for such complex objects proceeds by predicting boundaries, computing superpixels
based on the boundary predictions, building a region adjacency graph from the superpixels and
partitioning this graph to obtain a segmentation [67, 5, 161, 120, 212]. See Section 1.1.1 for an
overview of graph-based partitioning. Alternative approaches extend single- [141, 91] or multi-
object [142] predictions recursively with a neural network. However, this requires repeated
network prediction per object, resulting in significantly larger computational requirements,
which prohibits the use in most academic settings [91, 124].

Applying graph-based methods to large volumetric microscopy data requires parallelizing
the boundary prediction, graph extraction and graph partitioning. The two former processing
steps can be parallelized by decomposing the volume into chunks, processing all chunks in
parallel and merging the results with a cheap global operation. However, parallelizing the graph
partitioning is more challenging, as this step relies on sequential algorithms. Thus, it is often
parallelized by computing the instance segmentation on chunks with overlap and then stitching
the results by matching segments in the overlap [179, 176] or by rerunning the segmentation
method on the overlap [141]. In contrast, the method we introduce in Chapter 3 solves the
partitioning problem for sub-graphs extracted from chunks, uses the solutions to reduce the size
of the global partitioning problem and then solves the reduced global problem. This approach
yields superior results compared to the local stitching approaches, see Section 3.4.2.

1.2 Contributions

This thesis develops scalable methods for instance segmentation that provide high-quality
segmentation for large microscopy data.

In Chapter 2 we give a more detailed overview of Multicut and Lifted Multicut partitioning.
We establish an instance segmentation pipeline that combines these partitioning methods
with boundary predictions from neural networks. It significantly improves the quality of
neuron segmentation from volume EM data and achieves state-of-the-art results on challenging
benchmark data-sets.

In Chapter 3 we introduce a new approximate solver for the Multicut and Lifted Multicut
problem. It can solve problems arising from instance segmentation for large volumetric data,
which were not feasible with extant approximate solvers. It operates by extracting sub-problems
from a spatial tiling of the volume, solving them, using their solutions to reduce the size of the
global problem and then solving the reduced global problem. Empirically, the segmentation
quality of this approach is on par with solutions from more computationally expensive approxi-

18

mate solvers. We also show that solving a reduced global problem yields significantly better
segmentation accuracy than more greedy approaches like stitching by overlap.

In Chapter 4 we use the Lifted Multicut to incorporate prior knowledge about the biological
system underlying the segmentation problem. We present a generic recipe to map such priors
to sparse lifted edges. It is applicable if priors can be spatially attributed. In this framework,
the priors are expressed probabilistically and can thus improve segmentation results even with
uncertain attribution. We show that this procedure improves segmentation results for a diverse
set of problems.

While the approximate solvers introduced for Multicut and Lifted Multicut enable the seg-
mentation of large volumes, these methods are still too costly to be applied directly on the
pixel level and thus rely on an initial over-segmentation. The Mutex Watershed introduced in
Chapter 5 tackles this issue: this greedy algorithm can be formulated similar to the seeded wa-
tershed, but it incorporates attractive and repulsive interactions. Thus, it can segment instances
directly from pixels without the need for seeds or other stopping criteria.

The methods developed in this thesis have been applied to segment large microscopy data-
sets in collaboration with biologists. In Chapter 6 we highlight three applications to show how
large-scale segmentation can help to make the most of such data-sets.

• We segment all cells and nuclei, as well as selected organelles, in a multiple TB-sized
EM volume containing the complete body of a Platynereis dumerilii larva. This effort
constitutes the first complete cellular segmentation of an animal imaged in EM. Our
segmentation is combined with genetic markers to build a cellular atlas of morphological
and genetic information at an unprecedented scale.

• We segment the cells and cellular ultra-structure in the choanocyte chamber of a sponge.
This enables the study of spatial interactions between different cell types in the volume,
strengthening the hypothesis that sponges contain pre-cursor neuronal cell types.

• We develop an image analysis pipeline for the quantitative evaluation of a high-throughput
microscopy Sars-Cov-2 antibody test. This work is based on extant segmentation meth-
ods, but leverages the tools to process TB-sized image data developed in this thesis.

Our methods and tools for scalable instance segmentation are available as open-source
software. This includes formats for efficient storage of large volumetric data and tools for
distributed computation, see further descriptions in Appendix A. They are already used in a
large-scale connectomics pipelines [133, 80] and used as dependencies in other microscopy
segmentation tools [236, 22].

19

2 Multicut and Lifted Multicut for EM
Segmentation

We have outlined the importance of instance segmentation for the analysis of microscopy
images in Chapter 1. The predominant approach for complex shapes consists of three steps
(cf. Section 1.1.2): boundary prediction, superpixel generation and graph-based merging of
superpixels. Agglomerative clustering techniques are widely used for merging superpixes (e.g.
[67, 212, 160]). In contrast, we merge superpixels by solving the Multicut problem [41, 17, 6]
or the Lifted Multicut problem [87], an extension that can incorporate long-range information.

In Section 2.2 we explain the foundations of the instance segmentation methods developed
in this thesis. In Section 2.3 we present results of our approach for the task of EM neuron
segmentation. These results are based on [21], a publication multiple authors have contributed
to: Thorsten Beier has adapted the Lifted Multicut problem to neuron segmentation, Nasim
Rahaman has implemented the CNN for boundary prediction and Timo Prange has developed
the watershed procedure for superpixel generation. We have developed edge features suitable
for anisotropic and isotropic data and integrated the separate steps into a common segmentation
pipeline. In addition, this chapter includes results we have contributed to [16]. At the time
of publication of [21] our approach achieved state-of-the-art on three challenging benchmark
data-sets. It is still the best performing method in the CREMI challenge [66], the latest and
most challenging of the benchmarks.

2.1 Introduction

In an effort to understand the physical correlates of information processing in animals the con-
nectomics community is acquiring volumetric EM images of neural tissue at an unprecedented
rate [4, 96, 27, 121, 205, 23, 31]. The rate of acquisition and the size of the data is far exceeding
the human capacity for neuron tracing, even when allowing for massively parallel annotation
[82, 30, 103, 34, 184, 98, 223, 125]. Hence, reliable automatic segmentation is urgently needed
for upcoming whole-brain data-sets (>50 TB per volume). In response, the computer vision
community is developing segmentation approaches to decrease the manual proof-reading effort,
with the ultimate goal of generating accurate segmentations fully automatically.

21

The progress of automated segmentation methods for connectomics has been largely driven
by ‘blind‘ challenges. They provide a training set comprising of raw data and labels and a test
set, which only provides raw data. Segmentation results for the test data can be submitted to a
server, where they are scored against the private test labels. The first neuron EM segmentation
challenge has been organized at the ISBI 2012 conference [13], followed by a challenge at
the ISBI 2013 conference [12] and the CREMI challenge organized at the MICCAI 2016
conference [66]. While the 2012 challenge offers a 3D data-set, it is highly anisotropic and
results are evaluated only in 2D. The two later challenges are evaluated fully in 3D and provide
significantly more, and more diverse, data. All three challenges remain open for submission,
but the test labels for [12] have been published as part of a larger connectomics data-set [96].

Since many neurites are locally similar, most segmentation procedures rely primarily on
boundary information. Such cell membrane probabilities can be estimated using neural networks
[90, 210, 42] or shallow classifiers such as a random forest [7], possibly augmented with a
conditional random field [97]. More recently, fully convolutional networks [130] have been
adopted for this task and architectures using skip connections [180, 35] or residual skip
connections [120] have improved boundary predictions significantly. Ideally, the connected
components of thresholded boundary predictions would already correspond to neurites. Given
that all boundary predictions available to date are imperfect, it is useful to first conservatively
group pixels into superpixels that afford the extraction of more expressive features. These
superpixels can then be grouped into tentative neurites in a second step, using approaches based
on agglomerative clustering [7, 217, 129, 92, 64, 160, 212, 67] or graph partitioning [6].

Following this approach, we develop a three step segmentation pipeline. First, we apply a
cascaded random forest, which needs few training labels, or a CNN, yielding higher accuracy
at the cost of more training labels, to predict membrane probabilities. See Section 2.2.1
for an overview of the different boundary estimators. Second, we aggregate the pixels into
superpixels to coarse grain the problem and extract higher order region information. Here, we
use a watershed algorithm based on the distance transform of the boundary predictions. This
approach yields large superpixels while being robust against gaps in the predictions, see also
Section 2.2.2. Finally, we merge superpixels into segments by solving the Multicut [6] or Lifted
Multicut [87] graph partitioning problem. See Section 2.2.3 and Section 2.2.4 for details on the
Multicut set-up and problem; Section 2.2.5 and Section 2.2.6 for details on the Lifted Multicut.
Figure 2.1 shows an overview of our segmentation pipeline applied to the ISBI2012 challenge.

This segmentation pipeline achieved state-of-the-art results on the three neuron segmentation
challenges 1, narrowing the gap between automated and manual segmentation accuracy. In
Section 2.3.2 we perform a lesion study for our pipeline, with the table in Figure 2.1 showing
how the accuracy degrades when deviating from the optimal choices.

1Results for [13] and [12] have since been improved upon. We are still state-of-the-art in [66].

22

a

b

c

d
e f

g

Figure 2.1: Our neuron segmentation pipeline. (a) Example of ISBI 2012 data. Membrane probabilities
(b) are used to find superpixels (c). Superpixel pairs are associated with attractive (cyan)
or repulsive (red) costs, informed by local appearance (d). We consider next neighbor
interactions (straight lines and straight dashed lines) in the region adjacency graph (e) and
additional longer range interactions (curved lines) for the Lifted Multicut. Solving the
respective partition problem yields tentative neurons (f). Results in (g) show the performance
reached on the ISBI 2012 challenge using: a cascaded random forest; the same with distance
transform watershed superpixels (DT WS) and Multicut (MC); our CNN; the same with
standard watershed superpixels and MC; the same with DT WS and MC; and finally the
proposed pipeline. Accuracies are measured by scores derived from the Rand index (RI) and
the variation of information (VI). Higher scores are better.

23

2.2 Methods

The instance segmentation method developed in this chapter and used throughout the thesis
operates in three steps: First boundary probabilities are predicted with a CNN or random
forest, see Section 2.2.1. Given these predictions, pixels are grouped into superpixels via
seeded watershed, see Section 2.2.2. The instance segmentation is then obtained via Multicut
(Section 2.2.4) or Lifted Multicut (Section 2.2.6). These graph partition problems are formulated
on the region adjacency graph derived from the superpixels and costs for regular (Section 2.2.3)
and lifted (Section 2.2.5) edges.

2.2.1 Boundary Prediction

Boundary probability prediction is a binary segmentation task corresponding to the separation
of pixels into foreground (membrane boundary) and background (inner-cellular space). To solve
this task, we use two different supervised machine learning approaches. The first approach
uses a CNN, see also Section 1.1. We use two different CNN architectures in this chapter, the
first based on inception modules [202], the second based on a 3D U-Net [35]. In the second
case, we predict affinities instead of boundaries. Affinities encode the pixel connectivity in
multiple output channels, each channel corresponding to the likelihood that a label transition
occurs between two pixels at a defined offset. For example, nearest neighbor affinities in 3d
contain three channels, each channel encoding the label transitions to the adjacent pixels in
z-, y- and x-direction. Figure 2.2 shows a raw image and ground-truth segmentation from the
ISBI2012 training data-set and the boundary / affinity labels derived from the segmentation
with the corresponding network predictions.

While CNNs currently yield the best segmentation results, they require a large amount of
training data. In addition, the training data should be annotated densely, i.e. each pixel in the
image should be labeled2. Hence, we have also developed a “shallow” classifier for this task, a
cascaded random forest. It can be trained from less and sparse annotations.

Cascaded Random Forest While providing high-quality segmentation results, the many
free parameters in neural networks call for copious amounts of densely labeled training data.
Seeking to alleviate this requirement, we use a cascaded random forest to predict membrane
probabilities. It is trained interactively with sparse labels and uses convolutional filters (e.g.
gaussian smoothing, laplacian of gaussian) applied to the raw data as features. Following
ideas from autocontext [209, 93], we perform two rounds of training and prediction. We have

2Training CNNs with sparse labels is possible, but in most cases yields inferior results.

24

implemented the random forest training in ilastik [22], a software package for interactive
machine learning.

In more detail, the first random forest is trained interactively, using multiple semantic classes:
membrane, cytoplasm, mitochondria, mitochondrial membrane, synaptic sites and “everything
else”. In the second round, the predictions for all classes are concatenated to the raw data
as new channels and the features are computed for all channels. Labels are again provided
interactively in ilastik, this time annotating only “boundary” and “background”.

ICv1 The network architecture, called ICv1, used for ISBI2012 and SNEMI experiments
is based on inception modules [202], uses strided 2D convolutions, max-pool operations and
deconvolutions in a fully convolutional setting [130]. Similar to [180] it combines high- and
low-resolution pathways to aggregate geometric and semantic features. Deviating from recent
trends [194], we use relatively large convolution kernels (up to 9× 9 pixels) to enhance the
field of view without introducing significant memory overhead. See Figure A.3 for a detailed
overview of the architecture.

The network makes extensive use of train and test time data augmentation, using random
linear and nonlinear transformations: flips, rotations and elastic deformations. During training,
these transformations are applied to both raw images and labels to increase the effective amount
of training data. During prediction, a transformation is applied to the raw images, followed by
the network and the inverse transformation applied to the network’s prediction. The process is
repeated for different transformations and the results are averaged. This augmentation method
makes used of the fact that the transformed images are clearly distinct from the originals,
but in appearance still similar to real tissue images. The network is trained using pixelwise
binary cross-entropy loss and using the Adam optimizer [104], see Section A.2 for all training
hyperparameters.

3d U-Net For the CREMI experiments we use a 3D U-Net [35], implementing the archi-
tecture proposed in [67], and predict long-and-short range affinities as described in [120]. In
addition to the standard training data augmentation techniques of random rotations, flips and
elastic deformations (see also previous paragraph), we simulate artifacts that are present in the
CREMI data-set, see also Section 2.3.5. In more detail, we randomly zero-out slices, decrease
the contrast of slices, simulate tears, introduce alignment jitter and paste artifacts extracted
from the training data. Both [67] and [120] have shown that these kinds of augmentations can
help to alleviate issues caused by EM-imaging artifacts. Test-time data augmentation is not
used. We use the L2 loss and the Adam optimizer to train the network.

25

200 nm

Figure 2.2: Training data and network predictions. From left to right: raw data with overlay of ground-
truth instance segmentation. Boundary target labels (upper diagonal) and corresponding
network prediction (lower diagonal); the image intensity encodes the pixel-wise boundary
likelihood. Affinity target channels (upper diagonal) and corresponding network predictions
(lower diagonal) for transition to the next pixel in x/y direction; the image intensity encodes
the likelihood of a label transition in x/y direction. Data from the ISBI2012 challenge, for
details on the network see Section 5.4.1.

2.2.2 Superpixel Generation

The field of view of neural networks is limited, typically a few hundred pixels in each spatial
dimension. Given that neurites are tube- or tree-like structures that extend across several thou-
sands of pixels at standard EM resolutions, this is a practically relevant limitation. Furthermore
computation on the pixel level is impractical for large image or volumetric data. To overcome
these limitation, pixels that, with a high confidence, belong to the same neurite can be grouped
into a superpixel. In the subsequent processing steps the original image can then be represented
in terms of superpixels, reducing the number of objects significantly. Sperpixels also allow the
extraction of more informative features that are not accessible at the pixel level. For example,
at the level of superpixels it is possible to answer questions like “how many mitochondria are
in this superpixel” or “what is the diameter of this section of neurite” that would be ill-posed at
the level of individual pixels. In the downstream processing of superpixels, they can usually
only be merged and not be split. As a consequence, a good superpixel should encompass as
many pixels as possible, but not extend beyond a single neurite.

For natural images, SLIC [1] or other algorithms that group pixels of similar appearance are
popular. Such algorithms are not useful for the task at hand: neurites usually do not differ much
in local appearance, but are separated by a membrane. In this setting, the watershed [25, 48,
145, 144] works well when applied to a (smoothed) pixelwise boundary probability map [7]
and seeding from local minima.

Standard electron microscopy sample preparation and staining protocols often lead to
perforations or slashes of neurite boundaries. These artifacts are a nuisance for the standard
watershed, as it may result in undesirable superpixels that span two adjacent neurites. As a

26

consequence, we here propose to first threshold the boundary probabilities; to then filter out
small connected boundary components; and to then compute the smoothed signed Euclidean
distance transform on the remaining boundaries. See Figure 2.3 for an illustration. This is
related to prior work on the stochastic watershed [8] and has the effect of closing slashes that
are narrower than the diameter of either adjacent neurite in the proximity of the slash.

100 nm

Figure 2.3: Generating distance transform watershed superpixels. From left to right: raw data, boundary
probability map, thresholding thereof, distance transform on the latter, and watershed
superpixels seeded by distance maxima. Note that the resulting superpixels are confined to
single neurites, in spite of ambiguous boundary evidence (arrow).

For isotropic data, the superpixels are generated in 3D. For data with a high degree of
anisotropy, no good 3D superpixels can be generated using this approach, because large gaps
in between membranes in adjacent slices often lead to a single superpixel spanning several
neurites. Hence, for such data we generate 2D superpixels for the individual images and stack
them across the anisotropic axis.

In the presence of myelin, we follow [111] and use ilastik [22] pixel classification to train
a myelin detector. Large myelin components are then turned into additional superpixels, see
Figure 2.4.

400 nm

Figure 2.4: Generating superpixels in the presence of myelin. From left to right: Part of SNEMI3D
test data, boundary probability map, distance transform watershed before and after myelin
correction.

27

2.2.3 Edge Costs

Given the superpixel over-segmentation, we can compute the region adjacency graph to obtain
a graph representation of the segmentation problem. In this graph each node corresponds to a
superpixel and two nodes are connected by an edge if their superpixels share a boundary. To
partition it via Multicut, we also need edge costs that represent the likelihood of the incident
nodes being joined (attractive) or separated (repulsive) in the partition.

These costs can be computed by accumulating the boundary probabilities (Section 2.2.1)
over the boundary pixels and then taking the average. This approach works well for accurate
boundary predictions, but can lead to inferior results if the predictions are of lower quality. It
does not make use of additional information like superpixel appearance or shape. Edge costs can
also be computed with a classifier, such as a random forest, based on features associated with
the edges. This classifier has to be trained on separate data with binary edge labels. Depending
on the type of edge features, it can take information beyond local boundary evidence into
account.

Here, we compute features taking into account boundary appearance, region appearance and
region shape. Recall that we use planar superpixels in the case of data with high anisotropy (cf.
Section 2.2.2). For planar superpixels the edges can be divided into two categories: intra-slice
edges connecting two superpixels in the same image plane and inter-slice edges connecting
two superpixels in adjacent planes. Intra-slice edges have a one dimensional boundary while
inter-slice edges have a two dimensional boundary.

Edge features based on boundary appearance For these features, we first compute
the response of convolutional filters (Gaussian smoothing, Hessian of Gaussian eigenvalues,
Laplacian of Gaussian, each at scales σ = {1.6, 4.2, 8.3}) using the raw data and boundary
probabilities as input. For anisotropic data, these filters are calculated either in 2D (for high
anisotropy) or in 3D but with reduced sigma in the anisotropic direction. The filter responses
are accumulated over superpixel boundaries using the following aggregate statistics: mean, sum,
minimum, maximum, variance, skewness, kurtosis and the {0.1, 0.25, 0.5, 0.75, 0.9} quantiles.

Edge features based on superpixel appearance For each superpixel, we compute:
its size, the eigenvalues of its inertial tensor, as well as the histogram (64 bins), kurtosis,
maximum, minimum, {0.1, 0.25, 0.5, 0.75, 0.9} quantiles, skewness, sum and variance of the
raw data accumulated over the superpixel. These values are mapped to the edges by taking
the minimum, maximum, sum and absolute difference of the incident superpixels’ values. In
addition, we compute the squared distance between the incident supervoxels’ centers of mass,
using uniform pixel weights and weighted by the raw data intensities.

28

Edge features for inter-slice edges For anisotropic data with planar superpixels we
compute the following features for inter-slice edges: the size of the union (when projecting
orthogonally onto the same slice) of the adjacent superpixels, the size of their intersection and
the ratios of intersection and union. In addition, we compute the ratio of the superpixels’ area
to circumference, mapped to edges via minimum, maximum and absolute difference.

This results in 625 features per edge. They are used by a random forest to predict, for each
edge, the probability of the incident nodes being separated in the partition. The training data
is obtained by mapping the ground-truth segmentation to superpixels and determining the
corresponding edge labels. The random forest predicts pseudo probabilities p in the range [0, 1],
but the costs c in the Multicut objective Equation 2.2 are expected to be in the range]−∞,∞[.
Negative values correspond to repulsive edges and positive values to attractive edges. To obtain
costs from probabilities, we use the negative log-likelihood:

c = log
1− p

p
+ log

1− β
β

. (2.1)

The boundary bias β influences the solution towards less (β ∈]0.0, 0.5[) or more (β ∈]0.5, 1.0[)
partition elements. We normalize the cost for each edge by its length (for 1D edges) or area
(for 2D edges). For anisotropic data with intra- and inter-slice edges we empirically find that it
is best to train a single classifier for both edge types, setting the the inter-slice edge features to
zero for intra-slice edges.

2.2.4 Multicut

Partitioning the nodes V of a graph G = (V,E) with signed costs C associated with the edges
E is a well studied problem [100, 41]. When the number of partition elements is unknown in
advance, it is known as the Multicut problem [94, 6, 5] or correlation clustering [17]. Following
[6], it can be formulated as Integer Linear Problem (ILP). In the following, we refer to an edge
as cut if the incident nodes are separated in the partition, i.e. part of different partition elements.
The ILP is formulated by introducing binary edge indicator variables ye that take the value 1 if
e is cut and 0 otherwise. The Multicut problem is then expressed as finding the minimal sum of
costs for cut edges under closedness constraints:

ỹ = arg min
Y

∑
e

ye ce subject to (2.2)

∀ C ∈ cycles(G) : ∀e ∈ C : ye ≤
∑

ê∈C\{e}

yê. (2.3)

Only a subset of binary edge labelings Y result in a valid partition. For example, consider a
triangular graph with nodes A,B,C. The labeling {(AB) = 0, (BC) = 0, (CA) = 1} is not a

29

valid partition: A and C are assigned to the same partition element via their mutual connection
to B. At the same time, they should be in distinct elements due to the cut edge between them; a
contradiction. Equation 2.3 enforces a valid partition by introducing cycle constraints. For each
edge e, they forbid edge cycles containing e that have a sum of indicator variables, excluding
ye, that is smaller than ye. In other words, if an edge is cut there must not be any path in
the graph connecting the incident nodes via edges that are not cut. Without these constrains,
the solution to Equation 2.2 would be to simply cut all repulsive edges. Figure 2.5 illustrates
the cycle constraints on a small graph together with the corresponding instance segmentation
problem.

Figure 2.5: Multicut constraints: a over-segmentation (top) and the corresponding region adjacency
graph (bottom) with edge costs. b partition when only optimizing Equation 2.2 without
taking the constraints expressed by Equation 2.3 into account. Edges that are cut (separating
the incident nodes) are bold in the segmentation and dashed in the graph. The edge that
is violating the cycle constraint is marked in red, the edges in the corresponding cycle are
orange. c the optimal partition under Multicut constraints.

In our context G is given by the region adjacency graph and the edge costs are derived from
pseudo probabilities for separating incident nodes, see also Section 2.2.3. Solving the Multicut
problem to optimiality is NP-hard and thus only feasible for instance segmentation problems
of modest size. Up to a few hundred thousand edges are feasible according to [6]. Approximate
solvers (e.g. [159, 14, 19]) that scale to larger problem sizes exist. Please refer to Chapter 3
for the solver contributed in this thesis and Section 3.2 for more details on other approximate
solvers.

30

2.2.5 Lifted Edge Costs

The Lifted Multicut problem [87] introduces lifted edges, which connect nodes that are not
connected by a regular edge in the initial graph. It then extends the Multicut objective to obtain
a partition consistent with the connectivity induced by initial graph in the presence of lifted
edges. See also Section 2.2.6. The lifted edges can be used to incorporate long range information
not available for adjacent pairs of superpixels, leading to more accurate segmentation results.
There are multiple approaches for introducing lifted edges and deriving the associated costs.
They can, for example, be derived from prior knowledge about the segmentation problem as in
Chapter 4. In this chapter, we add lifted edges between all pairs of nodes within a fixed distance
in the initial graph. The costs are estimated with a random forest as described in Section 2.2.3,
but using a different set of features.

Lifted edge features based Multicut connectedness The Multicut partition is com-
puted for five boundary bias values (Equation 2.1) in the range [0.3, 0.7]. This results in diverse
partitions, which merge nodes more or less aggressively. We use binary variables that indicate
whether the two incident nodes are part of the same or different partition elements as features.

Lifted edge features based on ultrametric distance We apply the ultrametric contour
map transform [10] to generate a complete dendrogram. The ultrametric distance (the height in
the dendrogram at which the two regions merge) is used as an additional feature for each lifted
edge.

Lifted edge features based on region appearance Equivalent to those described in
“Edge Features based on superpixel appearence” in Section 2.2.3.

To account for the fact that we have a considerably larger number of lifted than regular edges,
we normalize the costs of both edge types by their number. For anisotropic data with planar
superpixels, inter-slice lifted edges that are d slices apart are further weighted by a factor of
1/(1 + d).

2.2.6 Lifted Multicut

The Lifted Multicut [87] is an extension of the Multicut, which introduces a new set of edges
F called lifted edges. They connect nodes v and w not adjacent in the initial graph G. These
edges differ from “regular” graph edges by providing only a contribution to the energy (sum
of cut edges), but not inducing connectivity. They are introduced due to the observation that

31

non-local features can often inform the connectivity of (super)pixels. The presence of a non-
local attraction should however not result in “air bridges”, i.e. non-local edges that connect two
(super)pixels without a connection via regular edges.

With the sets of original edges E, lifted edges F , binary indicator variables Y , and costs C
associated with all edges in E ∪ F the Lifted Multicut objective can be formulated as

min
ye∈YEF

∑
e∈E∪F

ce ye subject to (2.4)

∀C ∈ cycles(G) : ∀e ∈ C : ye ≤
∑

ê∈C\{e}

yê (2.5)

∀vw ∈ F ∀P ∈ vw − paths(G) : yvw ≤
∑
e∈P

ye (2.6)

∀vw ∈ F ∀c ∈ vw − cuts(G) : 1− yvw ≤
∑
e∈C

(1− ye). (2.7)

The constraints (2.5) correspond to the Multicut constraints (Equation 2.3) and enforce a valid
partition induced by the regular edges. The constraints (2.6) ensure that for each cut lifted
edge vw, no path of not cut regular edges between the nodes v ad w exists. In other words, if
two nodes are separated according to the lifted edge between them, they must be in different
partition elements. Conversely, (2.7) ensures that for each not cut lifted edge vw, there exists
no cut, i.e. a binary partition, in G that is separating v and w. In other words, if two nodes are
joined according to the lifted edge between them, they must be in the same partition element.
See Figure 2.6 for an illustration of these constraints on a small graph.

The ILP corresponding to the Lifted Multicut contains more constraints than the Multicut
one, hence it is computationally even more expensive to find the optimal solution. Several
approximate solvers have been introduced, e.g. in [18, 102], and enable the application to larger
problems. Please refer to Chapter 3 for the Lifted Multicut solver contributed in this thesis and
to Section 3.2 for more details on other approximate solvers.

2.3 Results

We have evaluated our segmentation method on the blind ISBI2012 and CREMI challenges,
as well as on the publicly available SNEMI3D and Neuroproof data-sets. They each contain
separate training and test EM image volumes. We further perform a lesion study on the
ISBI2012 data to investigate the influence of the different configurations of our method.

For evaluation, we report the measures V rand
0.5 and V info

0.5 as defined in [13]. These are the
F1-scores derived from the structured segmentation accuracy measures “Rand index” and

32

Figure 2.6: Lifted Multicut constraints. a Graph and costs; regular connectivity and lifted edge (1,6).
b Multicut solution when treating (1,6) as regular edge; nodes 1 and 6 are joined, but not
connected by regular edges. c Lifted Multicut solution, nodes 1, 2, 3 and 6 are part of one
partition element. d Invalid partition: the cut regular edge (1,2) is violating Equation 2.5 due
to a path of not cut regular edges (orange). e Invalid partition: the cut lifted edge (1,6) is
violating Equation 2.6 due to a path of not cut regular edges (orange). f Invalid partition: the
not cut lifted edge (1,6) is violating Equation 2.7 due to cut regular edges (orange).

“Variation of Information” [13]. Both measures go beyond aggregating single pixel errors.
Instead, they summarize statistics of point pairs, verifying if they are in the same segment as
prescribed by the ground-truth.

2.3.1 ISBI2012 challenge

The ISBI 2012 challenge [13] is the most popular and competitive connectomics challenge to
date. It provides a training data-set with raw data and labels as well as a test data-set for which
the raw data is publicly available and segmentation results can be uploaded for evaluation. The
evaluation is performed using the measures V rand

0.5 and V info
0.5 for the image planes individually

and then averaged. Both data-sets cover approximately 2 × 2 × 1.5 microns of tissue from the
fruit-fly larval brain.

We segment the test volume using the Multicut and Lifted Multicut segmentation approach
outlined in Section 2.2, following the approach for anisotropic data. We use boundary proba-
bility maps produced by the network ICv1 and the cascaded random forest. The ground-truth
consist of a pixel-wise labeling of membrane boundaries vs inner-cellular space. It can be
used directly to train the neural network; the cascaded random forest is trained based on labels
provided manually in ilastik. In order to train the random forest for edge cost prediction, we
transform the provided labels into an instance segmentation by performing connected compo-

33

nents of the inner-cellular label for each image plane. Based on this instance segmentation, we
derive binary edge labels, see Figure 2.7. Following this procedure we can derive edge labels
only for the intra-slice edges. The inter-slice edges are still used in setting up the partition
problem, but their costs are implicitly learned through the training data available for intra-slice
edges. The Lifted Multicut results reported for this data-set were produced using all the features
described in Section 2.2.5 and lifted edges were created between all superpixels within a
distance of four in the initial graph.

200 nm

200 nm

Figure 2.7: ISBI2012 training data generation. Left: Raw data and annotations. Right: edge labels
derived for training the random forest. Edges are labeled either as repulsive (blue), attractive
(yellow) or are treated as unlabeled (cyan) if the attribution of the corresponding superpixels
to ground-truth instances was unclear.

At the time of publication of [21] the segmentation produced by the Lifted Multicut with
ICv1 predictions was the highest scoring entry in the ISBI2012 challenges leaderboard, see
Table 2.1. Since then several methods have improved upon these results, including our own
follow-up work (Chapter 5). Note that these improvements mainly stem from advancements in
network architecture or network training procedures and that several of the leading entries use
our segmentation method as post-processing [192, 226, 177]. See Section 2.3.2 for a thorough
comparison of the different configurations of our segmentation pipeline.

34

ISBI 2012 accuracy V rand
0.5 V info

0.5

LMC + ICv1 0.98262 0.98946

Quan et al. [177] 0.97804 0.98995

Wiehman et al. [230] 0.97714 0.98753

Chen et al. [38] 0.97682 0.98743

UNet [180] 0.97276 0.98662

Table 2.1: ISBI2012 challenge leaderboard at the time of publication of [21].

2.3.2 Lesion Study

To study the effectiveness of different configurations of our method, we have conducted a
lesion study with the data from the ISBI2012 challenge, the best-studied of the four data-sets.

First, we have investigated the use of different classifiers for predicting the membrane
probabilities. Table 2.2 shows the scores for the probability maps without additional post-
processing. The segmentation accuracy is evaluated by thresholding the probability maps at
different values, performing connected components, computing the accuracy measures and
reporting the best measure. In addition the border thinning described in [13] is used. Our neural
network, ICv1, performs substantially better than the cascaded random forest.

ISBI 2012 accuracy V rand
0.5 V info

0.5

Cascaded RF 0.89390 0.95440

ICv1 0.97735 0.98865

Table 2.2: Results of different probability maps on the ISBI test data.

Table 2.3 shows that (Lifted) Multicut segmentation significantly improves the segmentation
accuracy beyond what even the best boundary probability estimators can deliver. Apparently,
the (Lifted) Multicut can compensate for many errors made in the estimation of the probability
map; this additional processing substantially reduces the accuracy gap between ICv1 and the
cascaded random forest. Furthermore, we compare the superpixel generation using standard
and distance transform watersheds. The latter yields better results in all combinations.

The results shown above were obtained by solving the (Lifted) Multicut problem obtained
from a region adjacency graph set up in 3D. This approach pulls in 3D context through the
inter-slice edges and yields better results than solving a 2D problem separately for each slice,
see Table 2.4.

35

ISBI 2012 accuracy standard watershed DT watershed

V rand
0.5 V info

0.5 V rand
0.5 V info

0.5

Cascaded RF & MC 0.96229 0.98436 0.97907 0.98844

Cascaded RF & LMC 0.97040 0.98375 0.97852 0.98798

ICv1 & MC 0.98039 0.98855 0.98257 0.98946

ICv1 & LMC 0.97510 0.98757 0.98262 0.98946

Table 2.3: Performance of different boundary probability estimators, and different superpixel generators
combined with Multicut and Lifted Multicut.

ISBI 2012 accuracy V rand
0.5 V info

0.5

2D 0.97775 0.98886

3D 0.98257 0.98946

Table 2.4: 2D vs. 3D Multicut on the ISBI test set.

2.3.3 SNEMI3D Data-set

The SNEMI3D data-set [12] has been a blind challenge from 2013 to 2015, when a labeled
superset of training and test data was released with [96]. It contains data from the murine
cortex.

There are a number of important differences in the nature of raw data and annotations
compared to ISBI2012. First, the training ground-truth is given in terms of a 3d instance
segmentation (as opposed to a stack of binary membrane labels in ISBI2012). Second, the
data is better resolved along the z-axis. Third, segment boundaries in the ground truth are not
always properly aligned with the actual membranes in the raw data. Fourth, individual neurites
are separated by a “negative” class that covers membranes, but also inter-cellular space, myelin
sheaths and a few erroneously omitted thin processes.

To exploit the higher z-resolution, we supply each slice along with its two adjacent slices as
input to the network ICv1. To mitigate the inaccuracies in the training labels, we weight the
positive pixels (intra-cellular space) uniformly, but down weight the negative pixels (covering
everything else) with increasing distance from the positive regions, reaching zero weight beyond
a distance of seven pixels. Seeds for the distance transform watershed are found in 3d, and
superpixels are grown in 2d on a smoothed probability map. We observed that watershed quality
suffered for myelinated axons and replaced them with connected components of a binary myelin
classifier, see Section 2.2.2 for details. Training labels for intra- and inter-slice superpixel pairs

36

are obtained as usual. Lifted edges are introduced between all pairs of superpixels within a
distance of three in the region adjacency graph.

The SNEMI3D website also provides boundary probability maps shared by the authors of
[42], which we also use in our segmentation pipeline, see Table 2.5. At the time of publication
of [21] the segmentation produced by the Lifted Multicut based on ICv1 was the highest scoring
entry in the SNEMI3D challenge leaderboard, see Table 2.6. Since then several methods have
improved upon it [120, 91], again mostly leveraging advancements in network architectures
and training procedures.

SNEMI3D accuracy
(
V rand
0.5

)
ICv1 Ciresan [42]

Multicut 0.92698 0.92568

Lifted Multicut 0.93122 0.92892

Table 2.5: Results of Lifted and standard Multicut on SNEMI3D for probability maps generated with the
proposed ICv1 architecure and the Ciresan network [42]. The evaluation is done completely
in 3D, and higher numbers are better.

SNEMI3D accuracy V rand
0.5

Human value 0.94002

LMC + ICv1 0.93122

GALA [161] 0.8995

Table 2.6: SNEMI3D challenge leaderboard at the time of publication of [21]. The challenge organizers
have determined the human accuracy by comparing a second set of manual annotations
against the ground-truth used for scoring the submissions.

2.3.4 Neuroproof Data-set

To study performance on isotropic data, we have turned to the example data-set3 provided with
the NeuroProof software [205]. It consists of two FIBSEM image volumes, the corresponding
ground-truth segmentations as well as pre-computed membrane probability maps and super-
pixels. One of the volumes is used as training data, the other to evaluate the segmentation
results. We use the pre-computed probabilities and superpixels as input for the partition step of
our method, see the results in Table 2.7. For the Lifted Multicut, only the ultrametric distance
and region features were used, with lifted edges added for superpixels within a distance of

3https://github.com/janelia-flyem/neuroproof_examples

37

https://github.com/janelia-flyem/neuroproof_examples

two in the region adjacency graph. The resulting segmentation accuracies are higher than the
published state-of-the-art [205]. The numbers given are computed for an updated ground-truth
segmentation for the test data-set, where we have fixed a large segmentation error.

Neuroproof accuracy V rand
0.5 V info

0.5

Multicut 0.93646 0.96173

Lifted Multicut 0.94047 0.96400

Table 2.7: Results for the isotropic neuroproof data-set. The evaluation is done completely in 3D.

2.3.5 CREMI challenge

The CREMI challenge [66] is the latest blind neuron segmentation challenge. It contains
significantly more data than the previous challenges: three blocks of raw data and ground-truth
annotations for training as well as three blocks to test the algorithm performance. The blocks
come from different parts of the female adult fruit-fly brain, each block is 5 × 5 × 5 microns
large. Results for the test data can be uploaded to an evaluation server where they are scored
according to the geometric mean of 1− V rand

0.5 and the Variation of Information [140].
The data from the CREMI challenge is anisotropic and contains artifacts like missing

sections, staining precipitations and folds in the support film. To alleviate difficulties stemming
from misalignment, we use a version of the data that was elastically realigned by the challenge
organizers with the method of [185]. We apply the Lifted Multicut segmentation pipeline, based
on boundary predictions from a 3D U-Net, see Section 2.2.1 for details. At the time of writing
this approach holds the top entry in the CREMI leaderboard, see Table 2.8.

2.4 Conclusion

At the time of publication, [21] established Lifted Multicut segmentation as the state-of-the-art
method for EM neuron segmentation. Since then, methods for neuron segmentation have mainly
improved the neural network architectures and training procedures. Most notably, CNNs using
3D convolutions, many based on the 3D U-Net [35], have been adopted [67, 120] and better
loss function have been introduced: either adding a structured loss term [67] or an auxiliary loss
[120]. In addition, some novel approaches break with the common steps of boundary prediction,
superpixel generation and agglomeration: the Mutex Watershed [233] can agglomerate network
predictions from pixels directly (see also Chapter 5), Flood-Filling Networks [91] predict a
single object at a time and iterate this process to segment the full volume and 3C [142] can

38

Method
CREMI-Score

(lower is better)

3D U-Net + LMC 0.221

PNI [120] 0.228

3D U-Net + Clustering [16] 0.241

MALA [67] 0.276

CRU-Net [240] 0.566

LFC [169] 0.616

Table 2.8: Current leading entries in the CREMI challenge leaderboard. The scores are averaged over
three test data-sets and the CREMI-Score is computed via the geometric mean of 1− V rand

0.5

and the Variation of Information. Using boundary probabilities from a 3D U-Net, Lifted
Multicut segmentation holds the first rank.

segment multiple objects directly in a number of passes growing logarithmic with the number
of objects.

Nevertheless, the three step agglomeration approach, and especially Lifted Multicut, is still
relevant. Thanks to the superpixel over-segmentation and new solvers (see Chapter 3) these
methods scale better to large data than other approaches and can improve even high-quality
boundary maps to push the state-of-the-art: with a modern network architecture, our method is
leading on the most challenging connectomics benchmark (see Section 2.3.5) and several high
ranking methods in the ISBI2012 challenge use it to post-process their results [192, 226, 177].
Furthermore, the Lifted Multicut allows to incorporate long-range interactions not accessible
in the limited field of view of a CNN. This enables, for example, the expression of biological
priors in a probabilistic fashion (see Chapter 4).

While [120] have reported better than human performance on the SNEMI3D challenge,
in practice EM neuron segmentations are still not of sufficient quality to be used without
substantial proof-reading and correction efforts. All benchmark data-sets, even the CREMI
challenge, contain volumes of very modest size compared to real data-sets imaged for circuit
reconstruction and a quantitative evaluation of neuron segmentation accuracy at scale is still
lacking.

39

3 Scalable Multicut and Lifted Multicut
Segmentation

The instance segmentation method described in Chapter 2 yields accurate results for EM
neuron segmentation or other boundary based segmentation problems. However, solving the
(Lifted) Multicut to optimality is an NP-hard problem, prohibiting its direct application to large
data-sets. Several authors have introduced approximate solvers both for Multicut, e.g. [19, 20,
122], and Lifted Multicut, e.g. [18, 102]. They scale to larger problems while still yielding
accurate results. Still, these solvers are not efficient enough to optimize the problems arising
from TB-sized microscopy data-sets.

Here, we describe two novel approximate solvers, one for Multicut and the other for Lifted
Multicut, that scale to problems of sizes that were previously not feasible. Both solvers make
use of the over-segmentation that is underlying the graph to be partitioned. They decompose
the global problem into feasible sub-problems, using the over-segmentation as spatial domain.
Then, they solve the sub-problems and use the solutions to reduce the size of the global
problem. This step can be iterated, using increasingly larger sizes for the spatial decomposition,
until the reduced global problem is feasible with an extant solver. Note that this approach
relies on the spatial decomposition and is thus not applicable for (Lifted) Multicut problems
without underlying over-segmentation, or a similar spatial domain. This chapter is based on the
publication [166], the experiments have been updated. The extension of the approximate solver
to the Lifted Multicut was introduced in [167] (Chapter 4).

3.1 Introduction

Connectomics is a domain of neuroscience that strives to understand structure-function relations
in neural circuits from the directed graph of neural connections. The graph itself – the wiring
diagram of a nervous system – is usually reconstructed from very large stacks of neural tissue
images acquired by EM [30, 83]. Reconstruction of the graph consists of two major sub-
problems: tracing of neurons through the image stack and detecting synapses that connect the
neurons.

Unlike fluorescent labeling methods, which typically reveal a sparse subset of neurons, the
heavy metal stains used in EM label all cell membranes in a piece of brain tissue. Consequently,

41

neuron tracing or segmentation have to be based on boundary evidence and have to be performed
on images of very high resolution. At the same time, neural cells spread over very large volumes;
hundreds of GB of images have to be analyzed to reconstruct a graph which would be relevant
for biological analysis. Figure 3.1 shows one image extracted from such a data-set. Note
how the segmented neurons on the left pass through the whole image, while the diameter
of some processes in the inset on the right is so small they can only be distinguished at full
resolution. Recently, the first complete brain of an adult fruit-fly has been imaged [242], the
data-set measures over 50 TB. The on-going efforts to image the brains of small vertebrates are
anticipated to produce data-sets of equal or greater size, for example [85, 149, 121].

Until very recently, most of the effort of the computer vision community has concentrated on
solving the automated reconstruction problem correctly at small scale. Since the reconstruction
accuracy has not been sufficiently high for direct biological analysis, neuroscientists have
resorted to collective manual tracing [184, 28] or manual proof-reading of automatically
generated segmentations [103, 96, 175]. The hurdle of fully automated segmentation, however,
does not seem insurmountable any more: as we have demonstrated in Chapter 2, the gap to
human segmentation accuracy is shrinking on the relevant benchmark data-sets ISBI2012 [13],
SNEMI3D [12] and CREMI [66]. Recently, Lee et al. [120] have even demonstrated better-than-
human accuracy on the SNEMI3D challenge data-set.1 The question of scaling these methods
up from small challenge data to TB-sized data-sets without substantial loss in accuracy is now
starting to be addressed [179, 176, 141]. So far, this is achieved by performing the segmentation
block-wise and merging the solutions based on local evidence. Here, we propose to optimize a
global objective function instead, which allows to over-rule the local block solutions if evidence
at larger scale suggests it would lead to a better overall segmentation.

Our approach builds on the neuron segmentation pipeline of [21], see also Chapter 2, which
is based on (Lifted) Multicut graph partitioning. While this problem is NP-hard [41], practical
approximate solvers have recently been introduced. We extend the pipeline to perform the
global superpixel graph construction in a distributed manner (Section 3.3, Section A.1.2) and
propose a hierarchical block-wise approximate solver for the Multicut problem (Section 3.3.1)
and Lifted Multicut problem (Section 3.3.2). While the resulting solution is no longer globally
optimal, we demonstrate sufficient accuracy on data from the CREMI challenge (Section 3.4.2)
and excellent scaling behavior on a large cutout from the whole fruit-fly brain data-set of [242]
(Section 3.4.3).

1Although this claim is so far specific to the SNEMI3D data and does not hold true for larger data-sets yet.

42

Figure 3.1: Part of an image from the whole fruit-fly brain data-set [242]. Highlighted neurons were
segmented automatically with the proposed Multicut solver (some post-processing was
applied to merge small fragments). The inset on the right shows some of the smaller process
as well as a synaptic contact site, roughly in the middle.

3.2 Related Work

Most neuron segmentation pipelines in use today, e.g. [161, 64, 212], follow the same sequence
of steps: boundary probability prediction with a neural network, over-segmentation with a
seeded watershed and merging of the watershed superpixels into segments. See Section 1.1.2
and Section 2.1 for a more detailed discussion of this approach. Most existing methods for
neuron segmentation at scale [179, 176, 141] use GALA [160, 161], a method following the
three step approach, which uses agglomerative clustering with learned edge weights for merging
superpixels. To apply it at scale, these approaches partition the volume into blocks, potentially
with overlap, and apply GALA to each block independently and in parallel. The individual
solutions are then stitched to obtain a solution for the complete volume. In [179] this is achieved
by stitching segments across block boundaries according to the largest overlap. The authors
of [176] employ a similar strategy, but include heuristics to prevent false merges. In [141]
the solutions are stitched by re-applying the algorithm on the block overlaps. Flood-Filling
Networks [91], which predict a single object mask at a time, can be scaled without the need
for stitching. It is, however, necessary to apply the networks several times per object, with the
exact number of inference steps depending on the size of the object. While the inference can
be parallelized over objects, applying it to dense segmentation of neurons in a large data-set

43

requires computational resources that are unrealistic in an academic setting: it takes over a week
of computation with hundreds to thousands of graphics processing units or tensor processing
units2 to segment all neurons in a TB-sized data-set [91, 124].

The Multicut has first been applied to instance segmentation problems in [94, 5] and to EM
neuron segmentation in [6]. In these publications, the Multicut problem has been formulated as
an ILP, see also Equation 2.2, and solved to optimality with a cutting planes based approach.
However, being a NP-hard problem, this approach is not suitable for large problems. Conse-
quently, many authors have proposed approximate solvers that do not solve the Multicut to
optimality, but scale to problems of larger size.

An important class of approximate solvers is based on local search algorithms [122]: Greedy
Additive Edge Contraction [102] starts by placing all nodes in their own partition element and
putting the edges into a priority queue sorted by cost in descending order. It then draws edges
from the queue, merges the incident nodes and updates the costs accordingly. It terminates
when no more edges with positive cost exist. Greedy Fixation [122] proceeds in a similar
fashion, but fills the priority queue according to absolute cost. If an edge with negative cost
is drawn, it introduces a cannot link constraint between the corresponding partition elements.
This constraint prevents merging the two elements later in the algorithm. Cut, Glue and Cut
[20] operates in two phases: in the cut phase, the graph is recursively bipartitioned. In the
glue and cut phase, pairs of neighboring clusters are visited and bipartitioned via max-cut.
Kernighan-Lin [100] starts from an initial partition and tries to decrease the objective by moving
nodes between the boundaries of neighboring partitions.

A different approach is taken by Fusion Moves [19], which iteratively fuses the current
partition with new proposed partitions. In the context of structured learning for edge costs,
[114] have also introduced a hierarchical Multicut solver. Further approximate solvers based on
continuous relaxations of the ILP [159], message passing on a dual representation of the graph
[201], dual re-weighting applied to local search algorithms [117] and discrete optimization
heuristics [14] have been proposed. An interesting approach is taken by the Decomposition
Solver [2]: it decomposes the problem into components separated by only repulsive edges
and solves the problems for the individual components. This procedure does not sacrifice
optimality but whether it improves efficiency depends on the structure of the problem. For
example, Multicut problems arising in connectomics often have a dominating component
when decomposed in this manner, see also Section 3.3. In contrast to the approximate solvers
introduced so far, the (Lifted) Multicut solver proposed here, makes use of the spatial domain
afforded by the underlying over-segmentation. This enables an efficient spatial decomposition
of the problem and improves the efficiency of the solver significantly. However, it is only
applicable if the Multicut problem arises from an over-segmentation, or has a similar spatial

2Special purpose hardware for neural network inference.

44

domain.
The Lifted Multicut has been introduced as an extension to Multicut in [87], see also

Section 2.2.6. Some of the approximate Multicut solvers have already been adapted to it:
Greedy Additive Edge Contraction in [102], Kernighan-Lin in [102] and Fusion Moves in [18].

3.3 Methods

To evaluate the performance of extant Multicut solvers and our proposed solver, we set up
problems of different sizes. The problems are set up similar to [21], see also Section 2.2. Here,
we use a CNN based on the 3d U-Net architecture [35], see also Section 2.2.1. The edge costs
are estimated by averaging pixel-wise boundary probabilities, instead of using a random forest
based on edge features.

The problem set-up is implemented in a distributed fashion to run on a compute cluster. We
make heavy use of chunked data storage formats such as HDF5 or n5. See Section A.1.2 and
Section A.1.1 for details.

3.3.1 Multicut Solver

Here, we propose a Multicut solver for very large problems, such as the ones arising from
neuron segmentation in EM connectomics. We postulate that minimizing a global objective,
even for very large segmentation problems, is superior to the local approaches pursued in
previous work (cf. Section 3.2) and validate this claim experimentally in Section 3.4.2. To this
end, we exploit the fact that our partition problems arise from a region adjacency graph. Hence,
all nodes in the graph have a spatial domain afforded by their superpixels.

In more detail, our solver operates in multiple steps. First, it extracts sub-problems by tiling
the input space with (overlapping) blocks and assigning nodes to sub-problems according to the
overlap of their superpixels with the blocks. It then solves the sub-problems in parallel, using an
existing solver, and reduces the global problem by merging the nodes that are unambiguously
merged in the sub-solutions. The sub-problem extraction, solution and reduction can be iterated
with increasing block size until the reduced global problem is feasible for an existing solver.
See algorithm 2 for pseudo-code and Figure 3.2 for a graphical illustration.

The solver starts from a global problem, composed of a graph and edge costs (b), which are
derived from a superpixel over-segmentation (a). In the first iteration step (arrow 2), it extract
sub-problems (c) from the global problem by tiling the input space with (overlapping) blocks.
A node is assigned to the blocks that have any overlap with its corresponding superpixel. Hence,
a single node can be assigned to multiple sub-problems.

In the second iteration step (arrow 3) the sub-problems are solved in parallel and the binary

45

edge indicators are saved; (d) shows the sub-problem results with cut edges, i.e. edges to be
preserved in the partition, indicated by bold lines and edges to be merged indicated by dotted
lines.

In the third iteration step (arrow 4), the sub-results are projected to the global graph (e). Here,
we differentiate three types of edges (f):

• Connecting edges (green lines), for which the incident nodes belong to different sub-
problems.

• Shared edges (red lines), for which the incident nodes belong to multiple sub-problems.

• Unique edges (blue lines), for which the incident nodes belong to a single sub-problem.

Connecting edges are not merged in the reduction step. Shared edges are merged only if they
are merged in all sub-solutions containing this edge. Unique edges are merged if they are
merged in the corresponding sub-solution. The graph is reduced according to these merge
decisions and costs for the new edges are computed by summation (g).

These three steps can be iterated with increasing block size until the reduced problem is
feasible with an approximate solver. It is then solved (arrow 5) and the resulting partition (h) is
projected to the initial problem (arrow 6) to obtain the segmentation (i).

Note that merges performed in the reduction step cannot be undone later. Due to this fact,
the solver proposed here is approximate, even if an exact solver is used for the sub-problems.
Hence, we take a conservative approach: we do not merge connecting edges and only merge
shared edges if all corresponding sub-results vote for a merge. While the problem extraction is
described for a tiling with overlapping blocks in this section, we have found that overlaps are
not necessary in practice and have performed all experiments without it. Further note that the
solver is only applicable if a spatial domain exists and can be used for problem extraction.

3.3.2 Lifted Multicut Solver

Here, we adapt the block-wise Multicut solver from the previous section for Lifted Multicut
partitioning. Following the same steps, this solver extracts sub-problems by tiling the volume
into blocks, solves these sub-problems in parallel and uses the solutions to contract nodes to
reduce the problem size. This approach can be repeated for an increasing block size, until the
reduced problem becomes feasible with another approximate solver.

To apply it to Lifted Multicut partition, we also extract lifted edges during the sub-problem
extraction. Here, only lifted edges with incident nodes that are part of the same sub-problem
are taken into account. In the reduction step, the costs of lifted edges whose incident nodes
have not been merged are updated by summation. See algorithm 2 for pseudo-code.

46

Data: globalProblem, blockShape, overlap, nLevels
Result: nodePartition

1 problem = globalProblem;
for l in nLevels do

2 subProblems = extractSubproblems(problem, blockShape, overlap);
3 subSolutions = solveMulticutsInParallel(subProblems);
4 problem = reduceProblem(problem, subProblems);

blockShape *= 2;
end

5 nodePartition = solveMulticut(problem);
6 nodePartition = projectToGlobalGraph(nodePartition, globalProblem);
Algorithm 1: Block-wise Multicut solver. A given problem is reduced by solving sub-
problems and merging the graph accordingly for a given number of iterations. The reduced
problem is then solved and projected back to the global solution. Line numbers correspond
to the numbered arrows in Figure 3.2.

Note that lifted edges that are not part of any of the sub-problems at a given level will
still be considered at a later stage. This strategy, where we ignore lifted edges crossing block
boundaries, is in line with the idea that lifted edges contribute to the energy of the solution,
but do not induce connectivity. The considerations about optimality and necessity of a spatial
domain from Section 3.3.1 apply here as well.

47

-1

-1 -1-2 -2

-2 -2

1 -12
2

-1

-1

-1

2

-1-2 1
-2-1

-2
2

1
-12

-2

2
-1 1

-1 2

-1

-1

2

-1-2 1
-2-1

-2
2

-2
-2

2

1
-12

-2

2
-1 1

-1 2

1

2 2

33

4

4

5

6

I
t
e
r
a
t
i
o
n

S
t
e
p

ab

c

d

c

d

e f

g

h i

Figure 3.2: Block-wise Multicut solver: from the global problem (a, b) sub-problems are extracted (c)
and solved in parallel (d). The sub-solutions are projected to the global problem (e, g), blue
and red edges (f) are merged according to the sub-results. After a fixed number of iterations
(or when feasible), the reduced problem is solved (h) and projected to a segmentation (i).

48

Data: graph G, edge costs WE , lifted edges and costs F and WF , nLevels,
blockShape

Result: node partition P
Ĝ, F̂ , ŴE , ŴF = G,F,WE ,WF ;
for n in nLevels do

1 blocks = getBlocks(blockShape);
subPartitions = [];
/* this for-loop is parallelized */
for block in blocks do

2 Gsub,W
sub
E = getSubproblem(Ĝ, ŴE , block);

3 Fsub,W
sub
F = getLiftedEdges(Gsub, F̂ , ŴF);

4 Psub = solveLiftedMulticut(Gsub,W
sub
E , Fsub,W

sub
F);

subPartitions.append(Psub);
end

5 Ĝ, F̂ , ŴE , ŴF = reduceProblem(Ĝ, F̂ , ŴE , ŴF , subPartitions);
blockShape *= 2;

end
P = solveLiftedMulticut(Ĝ, F̂ , ŴE , ŴF);
P = projectToInitialGraph(G,P);

Algorithm 2: Block-wise Lifted Multicut solver. (1): getBlocks tiles the volume with
blocks of size blockShape. (2): getSubproblem extracts the sub-graph and corresponding
edge costs from the given block. (3): getLiftedEdges extracts the lifted edges, which have
both incident nodes in the given sub-problem, and costs. (4): solveLiftedMulticut solves
the lifted multicut problem using an approximate solver. (5): reduceProblem: reduces the
graph by merging nodes according to the sub-partition results. It also updates edge costs as
well as lifted edges and their costs accordingly.

49

3.4 Results

In Section 3.4.1 we evaluate extant Multicut solvers for medium size problems in order
to determine their suitability as internal solver in our proposed algorithm. We evaluate the
performance and accuracy of the proposed solver on the same problems in Section 3.4.2. In
Section 3.4.3, we evaluate its performance and scaling behavior on a much larger problem. The
extension to the Lifted Multicut is evaluated in Section 3.4.4.

We set up three problems of medium size for evaluating the performance of extant solvers
and our proposed Multicut solver. They are derived from three EM volumes made available by
the CREMI challenge [66]. Each volume measures 8×12×12 micrometer and shows a cutout
from the fruit-fly brain imaged at 40×4×4 nanometer [242]. In addition, each volume contains
a 5×5×5 micrometer crop with a ground-truth neuron segmentation. The entries for Level 0 in
Table 3.2 contain the properties of the Multicut problems.

3.4.1 Performance of extant Multicut Solvers

We evaluate the performance of several Multicut solvers on the level 0 problems from Table 3.2.
We use the local search based algorithms Greedy Additive Edge Contraction (gaec), Greedy
Fixation (gf), Kernighan Lin (kl) and Cut, Glue and Cut (cgc). We also use the Fusion Moves
solver (fm), indicating the solver used for sub-problems by concatenating its shorthand. In
addition, the ILP based solver (ilp) is used as internal solver for fm; by itself it does not scale to
the problems solved here. We warm-start kl with the solution from gaec and warm-start fm and
cgc with the solution from kl. Note that the decomposition solver is not suited to speed-up the
problems here, because they have one component of dominating size, see Table 3.2.

The results for all solvers and the three samples are shown in Table 3.1. We report the runtime,
the energy (Equation 2.2) and the validation score. This score is computed on cutout of the data,
for which ground-truth segmentation is available. We use the same score as used in the CREMI
challenge, the geometric mean of Adapted Rand Error [13] and Variation of Information [140].
To avoid decreased scores from merges that happen outside of the ground-truth region, we
run connected components on the cropped segmentation before scoring. Note that the scores
reported here are significantly worse than the current state-of-the-art (Section 2.3.5), in spite of
a very similar problem set-up. This can be explained by the fact that we have trained networks
in a leave-one-out fashion, in order to ensure that all data is un-seen during prediction.

The two greedy solvers gaec and gf, run significantly faster than other solvers, but converge
to sub-optimal solutions, which is also reflected in worse scores. The solver gaec is faster and
converges to a better solution than gf. The kl solver converges after less than 4 minutes for
all samples and can improve the energy and scores significantly. The fm_kl solver can further
improve energy and scores at the expense of a significantly longer run-time. All other solvers

50

either do not improve energies over kl (fm_gaec) or have a significantly longer runtime with
only marginal improvements (cgc, fm_ilp). In Section A.3.1 we further examine the runtime
performance of the different solvers.

Sample A Sample B Sample C

Solver Time [s] Energy Score Time [s] Energy Score Time [s] Energy Score

cgc 4873.3 -7.0698e+06 0.8819 4794.5 -6.0740e+06 0.8510 4808.9 -7.4642e+06 0.9074

fm_gaec 203.0 -7.0688e+06 0.9005 289.8 -6.0737e+06 0.8499 295.7 -7.4636e+06 0.9072

fm_ilp 5726.3 -7.0703e+06 0.8582 6777.1 -6.0746e+06 0.8226 5494.8 -7.4654e+06 0.8995

fm_kl 587.8 -7.0690e+06 0.8809 4344.8 -6.0745e+06 0.7774 2675.0 -7.4642e+06 0.8528

gaec 4.6 -7.0541e+06 0.9862 4.4 -6.0659e+06 0.9221 5.8 -7.4541e+06 0.9089

gf 25.2 -7.0505e+06 1.0005 20.9 -6.0593e+06 0.9274 28.4 -7.4497e+06 0.9694

kl 78.3 -7.0688e+06 0.9005 206.7 -6.0737e+06 0.8499 165.6 -7.4636e+06 0.9072

Table 3.1: Evaluation of extant approximate Multicut solvers on three problem arising from neuron
segmentation in EM. For accurate runtime comparisons we have performed all experiments
with a Intel Xeon Gold 6136 Processor, all solvers run in a single thread.

3.4.2 Performance and Accuracy of the Block-wise Multicut Solver

We evaluate our proposed block-wise solver (BMC) for the three medium sized problems.
Table 3.2 shows the properties of the initial problems (Level 0) and the properties after one
and two reduction steps (Level 1, 2). See Table A.1 for the configuration of the solver used
here. The first step reduces the problem size by about one order of magnitude. The reduction
afforded by the second step is only marginal. The reduced problems also change qualitatively:
the decompositions3 of the initial problems all have a component that contains over 90% of
the nodes. The reduced problems, especially at Level 2, decompose into more and smaller
components. The biggest component is still significantly larger than all others, but it does not
dominate the complete problem as is the case at Level 0. This fact makes the decomposition
solver (cf. Section 3.2) applicable for the reduced problems.

In Table 3.1, we compare our solver with the best Multicut results (MC) from Table 3.1.
In addition, we compare with several baseline stitching algorithms: For overlap, we perform
stitching by largest overlap [179, 176], starting from the same tiling as BMC, but adding a halo
of 5×50×50 pixels to the blocks to achieve spatial overlaps. We also compare to stitch-mc,
where we solve the Multicut problems arising from overlaps and stitch based on their solutions,

3Obtained by thresholding at cost zero and applying connected components.

51

Sample Level # Nodes # Edges # Components Max component size (%)

A 0 686,232 4,551,762 8,201 98.23

1 29,109 171,100 16,234 31.07

2 22,100 122,357 17,369 09.31

B 0 584,336 3,736,610 30,943 92.73

1 72,299 391,192 56,021 15.89

2 64,622 335,687 58,414 06.19

C 0 709,171 4,611,307 30,698 93.06

1 75,188 439,740 56,289 16.82

2 65,857 372,910 58,776 05.70

Table 3.2: Properties of the Multicut problems: the number of nodes and edges in the graph, the number
of connected components when thresholding edges at cost 0 and the size of the largest
component as percentage of the number of nodes. Level 0 are the initial problems, Level 1
and 2 after one and two iterations of problem reduction.

similar to the approach in [141]. Finally, we compare to greedy, where the sub-results are
stitched by merging attractive edges between the blocks (cf. connecting edges described in
Section 3.3.1).

We observe that the solution of BMC is significantly better than the MC solution for Sample
A, on par for Sample B and slightly worse for Sample C. The improved results for Sample A
are most likely an artifact due to low quality edge costs caused by EM imaging defects, see
Section A.3.2 for a closer discussion. Nevertheless, we observe that the BMC solutions do
not differ significantly in quality compared to MC, while being able to solve the problem 10
to 20 times faster. In contrast, the segmentation quality does suffer for the baseline stitching
approaches. Note that we report the best value over a range of overlap / merge thresholds for
the overlap / greedy stitching approaches. Still, their score is significantly worse on Samples B
and C. The results of stitch-mc are even worse. We assume that the problem resulting from the
overlap of 5 × 50 × 50 pixels are too small to yield an informative segmentation problem. We
have not optimized this parameter.

In addition, we compare different configurations for the BMC solver in Section A.3.2.
Overall, the algorithm is fairly robust against the choice of parameters; the block size is the
most important one. We also show in Table A.3 that the decomposition solver can indeed be
used to speed up solving the global problem.

52

Sample A Sample B Sample C

Method Time Energy Score Time Energy Score Time Energy Score

MC 587.8 -7.0690e+06 0.8809 4344.8 -6.0745e+06 0.7774 2675.0 -7.4642e+06 0.8528

BMC 67.0 -7.0524e+06 0.5624 182.0 -6.0419e+06 0.7821 139.0 -7.4346e+06 1.0441

overlap - -7.0314e+06 0.8148 - -6.0341e+06 1.0600 - -7.4393e+06 1.3189

greedy - -6.8761e+06 0.9649 - -5.8962e+06 1.2288 - -7.3447e+06 1.3022

stitch-mc - -6.4730e+06 1.2370 - -5.5767e+06 1.3029 - -7.2528e+06 1.5072

Table 3.3: Comparison of different methods on the three problems extracted from CREMI. For MC, we
report the result of fm_kl from Table 3.1. BMC is our proposed block-wise solver, overlap
stitches sub-solutions by overlap, greedy by merging attractive edges between the sub-
solutions and stitch-mc solves a Multicut on the overlap segmentation. All methods extract
the sub-problems from blocks of size 25×256× 256 pixels and use the fm_ilp solver for
sub-problems. BMC uses the fm_kl solver for the reduced global problem; the other methods
use an overlap size of 5×50 ×50 pixels. For overlap and greedy, we compute the solution for
different overlap / merge thresholds and report the result with the lowest energy. BMC uses
24 threads to solve sub-problems in parallel, using a Intel Xeon Gold 6136 Processor. We
have not optimized the efficiency for the baseline methods and thus do not report runtimes.

3.4.3 Scaling Behavior of the Block-wise Multicut Solver

To evaluate the scaling behavior of our proposed solver, we construct a large Multicut problem.
It is based on a 95 × 60 × 30 micrometer cutout from the full fruit-fly-brain [242], which is the
same data-set used for extracting the smaller problems. For this volume, we do not have any
ground-truth annotations available and can only compare the energies of different partitions.
Here, we also evaluate our distributed implementation of the problem set-up, see Table 3.4
for an overview of the runtimes on a compute cluster. Table 3.5 shows the properties of the
Multicut problem, both at the initial stage (Level 0) and after up to three iterations of problem
reduction (Level 1 to 3).

Table 3.6 shows the results of our solver applied to the large Multicut problem. Here, we
have used the Kernighan-Lin solver for sub-problems and have used the Decomposition solver,
using Kernighan-Lin internally, for the global problems. The results show that the energy of
the solution increases with the number of reduction iterations, while the runtime decreases due
to the further reduction of the global problem. Our solver can solve this, previously infeasible,
problem in under 40 minutes when using two or more reduction iterations.

We further investigate the scaling behavior of our solver, by plotting strong and weak scaling
for sub-problem extraction and solution, problem reduction and global solution. To this end,
we run these steps with a varying number of workers for a fixed problem size (strong scaling)

53

Stage #GPUs #Cores #Threads Runtime [min]

Inference 12 - - 87.6

Watershed - 200 - 15.1

Problem - 200 8 171.0

Table 3.4: Runtimes for the problem set-up on a compute cluster for the large Multicut problem. Only
the neural network inference uses gpus. For the other tasks we report the number of cores used
for “map-like” tasks, which run on multiple nodes and the number of threads for “reduce-like“
tasks, which run on a single node. See Section A.1.2 for details.

Level # Nodes # Edges # Components max component size %

0 85,012,571 556,282,289 5,260,500 90.77

1 13,650,761 82,095,065 8,256,407 32.13

2 11,260,960 66,021,137 8,767,569 16.34

3 10,237,143 58,574,608 9,062,027 07.62

Table 3.5: Properties of the large Mulicut problem. We report both the initial problem (Level 0) and the
problems after up to three iterations of problem reduction. Similar to Table 3.2 we observe
the largest reduction in the first iteration and observe that problems decompose better after
reduction. For details on the problem reduction please refer to Table 3.6.

or construct problems of different size and process them with a fixed number of workers (weak
scaling). For the construction of smaller problems, we use a spatial cutout of the complete
volume. Here, we start with an initial size of 512×512×512 pixels and iteratively increase the
size in each dimension by a factor of two until the complete volume size is reached.

The scaling of the sub-problem extraction and solution is shown in Figure 3.3. In the strong
scaling plot we see an almost linearly decrease of the runtime for up to 100 workers, until
hitting a plateau for 200 workers or more. Here, the number of workers is given by the number
of jobs times the number of threads per job. In the weak scaling plot we see a linear increase
with the problem size, which is measured by the number of edges in the graph. For this task,
individual jobs first load the complete graph, and then extract and solve the sub-problems in
parallel using threads. When only few sub-problems have to be processed per job, the serial
step of loading the graph starts to dominate the runtime, explaining the plateau in the strong
scaling plot. Note that each job loads the complete graph in order to extract the sub-problems.
It is possible, but more complex, to implement the problem extraction without having the

54

Level Sub-problems [min] Reduction [min] Global [min] Total [min] Energy

1 6.8 21.4 80.1 108.3 -8.60967e+08

2 0.7 4.1 5.9 38.9 -8.60410e+08

3 0.4 2.0 1.0 36.4 -8.60232e+08

Table 3.6: Block-wise Multicut solver results for a large Multicut problem. The columns “Sub-problems”,
“Reduction” and “Global” contain the runtimes for solving the sub-problems, reducing the
problem and solving the reduced global problem at the given level. “Total” contains the
full runtime for the given level. All computations were performed on Intel Xeon Gold
6136 Processors, using 32 jobs, each running with 16 threads, for solving the sub-problems.
Reduction and global solver run in a single job with 16 threads.

complete graph in memory. Potentially, this would improve the strong scaling behavior. Given
that the sub-problem extraction is currently not the limiting step (cf. Table 3.6), and that the
weak scaling suggests applicability to much larger problem sizes, we have not done so yet.

Figure 3.4 shows the scaling of the problem reduction. The strong scaling plot shows an
initial linear decrease of the runtime until hitting a plateau for more than four workers. The
weak scaling plot shows roughly linear scaling with the problem size. The reduction task runs
on a single node and parallelizes the computation of new edge costs and the serialization of the
reduced problem with threads. The dominating sequential step is merging the nodes, which is
implemented with a union find datastructure. In order to improve the strong scaling, one could
switch to a parallel implementation of this datastructure [136, 195]. Unfortunately, to the best
of our knowledge, such an implementation is not available in any standard library yet; we use
the union find implementation provided by boost.

Figure 3.5 shows the scaling of the global problem solution. The strong scaling plot shows
that the runtime is independent of the number of workers used, while the weak scaling shows
roughly linear scaling with the problem size. Here, we use the Decomposition solver, which
thresholds the graph edges at cost zero and extracts sub-problems from the resulting connected
components, for parallelization. In this case, more threads do not improve the runtime because
the biggest component is significantly larger than all others: for the Level 1 problem we
find that it comprises of 32.13% of the nodes, the next biggest component is only made up
of 4.2 ∗ 10−4%. Nevertheless, the reduction in size of the largest component affords a very
significant speed up compared to the Kernighan-Lin solver, cf. Table A.4. Further improvement
of the strong scaling of this step will prove challenging, because most extant Multicut solvers
are sequential algorithms. An exception is the Fusion Moves solver, for which new proposal
partitions can be generated in parallel. However, fusing the of proposals still has to be executed

55

Figure 3.3: Scaling of the sub-problem extraction and solution. (Left) Strong scaling behavior when
increasing the number of workers for the large Multicut problem. Here, the number of
workers is the product of jobs and threads per job. (Right) Weak scaling behavior with fixed
number of workers and increasing problem size, measured by the number of edges. Here,
we use 128 workers. In both plots, the different levels are plotted separately.

sequentially. It is thus unclear if adopting this strategy will improve the scaling significantly,
especially since the overall runtime of (serial) Fusion Moves is much larger compared to the
Decomposition solver. We have only evaluated a sequential implementation of Fusion Moves
here. Given the weak scaling behavior, the ability to decrease the problem size by further
reduction iterations and the runtime of less than 40 minutes for a very large problem, we expect
our solver to scale to the problems arising from even large microscopy segmentation data-sets
as is.

3.4.4 Lifted Multicut solver

We evaluate the extension of our solver to the Lifted Multicut (BLMC) in Table 3.7. Here, we
set up a Lifted Multicut problem for benchmarking purposes following a simplified procedure:
we extract a central 1×10× 10 micrometer volume from the fruit-fly neural tissue data-set used
in Section 4.4.2 and compute the region adjacency graph and costs for local edges based on
mean accumulated boundary probabilities. Then, we introduce lifted edges between all nodes
within a graph distance of two, setting their cost to the minimal edge cost along the weighted
shortest path between the incident nodes. The resulting problem contains approximately 34,000
nodes, 244,000 regular edges and 2,384,000 lifted edges.

56

Figure 3.4: Scaling of the problem reduction. (Left) Strong scaling behavior when increasing the number
of workers for the large Multicut problem. (Right) Weak scaling behavior with fixed number
of threads and increasing problem size. Here, we use eight threads.

We compare to the approximate solvers Greedy Additive Edge Contraction [102] (gaec),
Kernighan-Lin [102] (kl) and Fusion Moves [18] (fm). We warm-start kl with the gaec solution
and warm-start fm with the kl solution. The BLMC algorithm uses kl to solve sub-problems and
the reduced global problem.

The energies obtained by our solver are comparable with kl and fm, but it only needs a
fraction of their runtime. It is almost as fast as gaec, which yields inferior energies on its own.
While we only apply our solver for a single problem size here, we have used it for much larger
Lifted Multicut problems in Chapter 4 and Section 6.1.

Energy Time [s]

gaec -1585593.5 2.03

kl -1645876.7 174.69

fm_kl -1645876.7 181.48

BLMC -1630274.3 3.29

Table 3.7: Our proposed Lifted Multicut solver compared to three other approximate solvers. The
problem at hand arises from neuron segmentation in fruit-fly neural tissue (cf. Section 4.4.2)
and contains approximately 34,000 nodes, 244,000 regular edges and 2,384,000 lifted edges.

57

Figure 3.5: Scaling of the global problem solution. (Left) Strong scaling behavior when increasing the
number of workers for the large Mulicut problem. The solution runs on a single node and
uses the decomposition solver to parallelize sub-solutions via threads. (Right) Weak scaling
behavior with fixed number of threads and increasing problem size. Here, we use eight
threads.

3.5 Conclusion

We have introduced a hierarchical block-wise solver for the Multicut and Lifted Multicut in
this chapter. By evaluation on data from a neuron segmentation challenge and a much larger
data-set, we have demonstrated excellent scalability without a significant loss in segmentation
quality. We have shown that this approach is advantageous compared to greedy local scaling
strategies, which result in inferior segmentation results. The largest Multicut problem solved
here contains about 85 million nodes and 556 million edges. We can solve it in under 40
minutes, with a total runtime of approximately five hours for the segmentation of the complete
150 GB raw volume. In Section 6.1, we use our solvers for even larger Multicut and Lifted
Multicut problems to segment the cells in an EM volume containing a complete small animal.
Hence, solving the global partition problem can no longer be considered the bottleneck for
instance segmentation in the automated analysis of large microscopy image volumes.

The core idea of our algorithm – reducing the global partitioning problem instead of greedily
stitching sub-solutions – is not restricted to the Multicut problem. It can also be applied to
agglomerative clustering. However, given the inferior solutions obtained when applying only
gaec here, this approach would most likely be detrimental to the segmentation quality.

58

4 Improving Segmentation with Lifted
Priors

In Chapter 2, we have shown that Lifted Multicut can improve segmentation accuracy by
introducing lifted edges in a local graph neighborhood with generic edge features. Here, we
show that lifted edges can be used to express prior knowledge about the biological system
underlying the segmentation problem; improving accuracy based on information not available
otherwise due to their sparsity and/or large spatial distance.

This chapter, which is based on the publication [167], introduces a recipe to generate lifted
edges from such priors, given that they can be attributed spatially. The procedure proves to be
effective for a diverse set of problems, using rules such as “each cell should contain exactly one
nucleus” or “different neuronal tissue types should not be mixed in the same compartment”.

4.1 Introduction

Large-scale EM imaging is becoming an increasingly important tool in different fields of
biology. The technique was pioneered by the efforts to trace the neural circuitry of small
animals at synaptic resolution to obtain their connectome – a map of the neurons and the
synapses connecting them. In the 1980’s White et al. [228] mapped the complete connectome
of C. elegans in a manual tracing effort which spanned over a decade. Since then, throughput
has increased by several orders of magnitude thanks to innovations in EM image acquisition,
such as multi-beam serial section EM [56], TEM camera arrays [27], hot-knife stitching [76] or
gas cluster milling [75]. These innovations enable imaging larger volumes, up to the complete
brain of the fruit-fly larva [57] and even the adult fruit-fly [242]. Recently, studies based on
large-scale EM have become more common in other fields of biology as well [158, 164, 183,
172].

In light microscopy (LM), very large image volumes became routine even earlier [181,
115, 99], with Terabyte-scale acquisitions not uncommon for a single experiment. While the
question of segmenting cell nuclei at such scale with high accuracy has been addressed before
[3], cell segmentation based on membrane staining remains a challenge and a bottleneck in
analysis pipelines.

59

Given the enormous amount of data generated, automated analysis of the acquired images
is crucial; one of the key steps being instance segmentation of cells or cellular organelles.
In recent years, the accuracy of automated segmentation methods has increased significantly
due to the adoption of CNNs for semantic and instance segmentation [211, 42, 21, 67, 120,
91]. Still, it is not yet good enough to completely forego human proof-reading. Out of all
microscopy image analysis problems, neuron segmentation in volume EM turned out to be
particularly difficult [91] due to the small diameter and long reach of neurons and astrocytes.
Many other EM segmentation problems have not yet been fully automated either. Aside
from the complex morphology of objects of interest, EM sample preparation also renders the
segmentation problems more difficult: the heavy metal staining used in the sample preparation
labels all cellular components indiscriminately and forces segmentation algorithms to rely
on membrane detection to separate them. The same problem arises in the analysis of light
microscopy volumes with membrane staining, where methods originally developed for EM
segmentation also achieve state-of-the-art results [65, 236].

One of the major downsides of CNN-based segmentation approaches lies in their limited field
of view, making them overly reliant on local boundary evidence. Staining artifacts, alignment
issues or noise can severely weaken this evidence and often cause false merge errors where
separate objects get merged into one. On the other hand, membranes of cellular organelles or
objects with a small diameter often cause false split errors where a single structure gets split
into several objects in the segmentation.

Human experts avoid many of these errors by exploiting additional prior knowledge about
the expected object shape or constraints from higher-level biology. Following this observation,
several algorithms have recently been introduced to enable detection of morphological errors
in segmented objects [178, 244, 53, 138]. By looking at complete objects rather than a handful
of pixels, these algorithms can significantly improve the accuracy of the initial segmentation.
In addition to purely morphological criteria, Krasowski et al. in [110] suggested an algorithm
to exploit biological priors such as an incompatible mix of ultrastructure elements.

Building on such prior work, we introduce a general approach to leverage domain-specific
knowledge in order to improve the accuracy of boundary based segmentation methods. Our
method can be understood as a post-processing step for CNN predictions that pulls in additional
sparse and distant sources of information. It allows to incorporate a large variety of rules,
explicit or learned from data. It only requires that these rules can be expressed as the likelihood
of certain locations in the image to belong to the same object or to different objects. These
locations can be sparse and/or spatially distant.

60

a

b

c

d

a

b

c

e

a

e

b

c

d

e

d

61

Figure 4.1: Sparse lifted edges from domain knowledge for mammalian cortex (left), drosophila brain
(middle) and sponge choanocytes (right). a Raw EM data. b Superpixel edges with attractive
(green) and repulsive (red) costs derived from local boundary evidence. c Domain knowledge
mapped to superpixels: axon (blue) and dendrite (yellow) attribution (left); an object with
implausible morphology (red, center); shape priors for different organelles (one color per
segmented organelle, right). d Attractive (green) and repulsive (red) lifted edges derived
from c. e Lifted Multicut segmentation.

To incorporate such rules, we make use of the Lifted Multicut [87] graph partition problem.
Briefly, this extension of the Multicut partition problem introduces additional edges between
non-adjacent nodes, so-called lifted edges. They carry an energy contribution, but do not induce
connectivity. See Section 2.2.6 for details.
When domain knowledge can be expressed as rules that certain locations must or must not
belong to the same object, it can be distilled into lifted edges between the graph nodes
corresponding to these locations. We show that the cost of such lifted edges can be derived from
the strictness of the rules, which can colloquially range from "usually do / do not belong to the
same object" to "always / never belong to the same object". We demonstrate the versatility of
this approach by applying it to four segmentation problems, three in EM and one in LM. In
these problems, we make use of very different kinds of domain knowledge:

• Based on the knowledge that axons are separated from dendrites in mammalian cortex,
we use indicators of axon/dendrite attribution to avoid merges between different neuronal
processes (Figure 4.1(left)).

• Based on the knowledge of plausible neuron morphology, we correct false merge errors
in the segmentation of neuronal processes (Figure 4.1(center)).

• Based on the knowledge that certain organelles form long continuous objects, we re-
duce the number of false splits in instance segmentation of sponge choanocytes (Fig-
ure 4.1(right)).

• Based on the knowledge that a cell should only contain one nucleus, we improve the
segmentation of plant lateral root cells (Figure 4.5).

4.2 Related Work

Neuron segmentation for connectomics has been the main driver of the recent advances in
boundary-based segmentation for microscopy. As described in Section 1.1.2 and Section 2.1,

62

most methods follow a three step procedure: they predict boundaries, then compute a superpixel
over-segmentation and finally agglomerate the superpixels to obtain a segmentation.
Krasowski et al. [110] showed that this three-step procedure can be modified to incorpo-
rate sparse biological priors in the superpixel agglomeration step. They use the Asymmetric
Multi-Way Cut (AMWC) [113], a generalization of the Multicut for joint graph partition
and node labeling. Their method is based on the fact that, given the field of view of modern
electron microscopes, axon- and dendrite-specific ultrastructure should not belong to the same
neuronal compartments in mammalian cortex. While this approach can be generalized to
other domain knowledge, it has two important drawbacks. First, it cannot encode attractive
information. Second, it is only applicable when the information is of semantic nature. For
example, morphology-based false merge correction does not fit this category, because it detects
segmentation errors rather than providing semantic node labels.
The Lifted Multicut formulation has been used for neuron segmentation before by [21] (Chap-
ter 2). However, the lifted edges were added densely in a local graph neighborhood. Edge costs
were not derived from domain knowledge but rather learned in a supervised approach. These
lifted edges made the segmentation algorithm more robust against single missing boundaries,
but did not counter the problem of the limited field of view of the boundary predictor or prevent
biologically implausible objects. Note that this approach can be seen as a special case of the
framework proposed here, using generic, but weak knowledge about local morphology and
graph structure of segments. Besides Lifted Multicut, the recently introduced Mutex Water-
shed [233, 231] (Chapter 5) and generalized agglomerative clustering [16] can also exploit
long-range information.
While all the listed methods demonstrate increased segmentation accuracy, they do not offer a
general recipe on how to exploit domain-specific knowledge in a segmentation algorithm. We
propose a versatile framework that can incorporate such information from diverse sources by
mapping it to sparse lifted edges in the Lifted Multicut problem.

4.3 Methods

In the following, we describe our general recipe to map domain-specific knowledge to the lifted
edges, see Section 4.3.1. We then describe the four specific applications, each using a different
source of knowledge. In general, we set up the local problem, i.e. the region adjacency graph
and local edge costs, similar to Section 2.2. For a review of the Lifted Multicut, please refer to
Section 2.2.6.

63

4.3.1 Sparse Lifted Edges

Our main contribution is a general recipe how to express domain-specific knowledge via sparse
lifted edges. They are only added between graph nodes where attribution of this knowledge is
possible. The right side of Figure 4.2 illustrates this idea: nodes with attribution are shown by
red and blue segments and sparse lifted edges by green dashed lines. The left side shows the
approach of [21] (Chapter 2), where lifted edges are introduced between all nodes in a local
graph neighborhood.

Figure 4.2: (Left) Graph neighborhood of a single node (blue shaded segment) with local edges (blue
lines) and dense lifted edges (orange dotted edges). (Right) Neighborhood with sparse lifted
edges (green dotted edges), connecting nodes with domain knowledge attribution (blue and
red shaded segments).

The sparse lifted edges are constructed in several steps, see also Figure 4.1: we compute
superpixels, construct the corresponding region adjacency graph and derive edge costs from
local boundary evidence. Figure 4.1(b) shows the regular graph edges, marked green if attractive
and red if repulsive. Then, we map the domain specific knowledge to nodes of the graph, as
shown in (c). We then introduce sparse lifted edges between nodes with such attribution, shown
as dashed lines in (d). The sign and strength of the lifted edge can either be learned supervisedly
or derived explicitly, always indicating the likelihood of incident nodes being part of the same
segment or not. In Figure 4.1 (d), attractive lifted edges are marked green, repulsive lifted edges
red. If the likelihoods are expressed as (pseudo-) probabilities, they are transformed into signed
costs via Equation 2.1. Finally, we solve the resulting Lifted Multicut problem to obtain an
instance segmentation, see Figure 4.1(e).

Mouse Cortex Segmentation, EM This application shows how our method can be used
to incorporate the axon/dendrite attribution first introduced in [110]. We detect the axon-

64

and dendrite-specific elements and map them to graph nodes in the same way as [110], see
Figure 4.1(c), with blue shading for axon and yellow for dendrite attribution. The difference
to [110] comes in the next step: instead of introducing semantic node labels for "axon"
and "dendrite" classes, we add repulsive lifted edges between nodes with different semantic
attribution. The lifted edge costs are derived from an edge classifier trained in a supervised
fashion. Section 4.4.1 offers more details on the problem set-up and results.

Drosophila brain segmentation, EM For neurons in the insect brain, the axon/dendrite
separation is not pronounced and the approach described in the previous paragraph cannot
be applied. Instead, morphological information can be used to identify and resolve errors
in segmented objects. This was first demonstrated by [178], where a CNN was trained on
downsampled segmentation masks to detect merge errors. Meirovitch et al. in [141] detect
merge errors with a simple shape-based heuristic and then correct these with a MaskExtend
algorithm. Similarly, Zung et al. [244] have combined CNN-based error detection and flood
filling network-based correction. In their formulation both false merge and false split errors can
be corrected. Recently, [53, 138] have introduced an approach based on CNN error detection
followed by a simple heuristic to correct false merges and Lifted Multicut graph partitioning to
correct false splits.
This prior work convincingly demonstrates that false segmentation merge errors can be reliably
detected. Hence, we concentrate our efforts on error correction, emulating the detection
step with an oracle. We start from an initial segmentation and skeletonize all objects in this
segmentation. Next, for all skeletons, the oracle predicts for all paths between terminal nodes if
a false merge is present, i.e. whether the path crosses a boundary that was missed in the initial
segmentation. The oracle predictions are probabilistic and we evaluate the performance of our
method for different levels of noise applied to these predictions. We introduce lifted edges only
for the objects that contain at least one path with a false merge according to the oracle. For
these objects, we introduce repulsive lifted edges between the terminals of paths with false
merge predictions and attractive lifted edges between the terminals of all other paths. We use
the pseudo-probabilities generated by the oracle to compute costs for these lifted edges using
Equation 2.1. See Figure 4.1 for an example: the red object in the middle of panel (c) has been
identified as a false merge and the lifted edges introduced for this object are shown in panel (d).

Sponge segmentation, EM In this example, we tackle a segmentation problem in a
sponge choanocyte chamber [153], see Section 6.2 for a summary of the study. These structures
are built from several outer cells, the choanocytes, that enclose a cavity. These cells interact
with one or two central cells per chamber via flagella, which are surrounded by a collar of
microvilli. Our goal is to segment cell bodies, flagella and microvilli. This task is challenging

65

due to the large difference in sizes of these structures. Especially the segmentation of the thin
flagella and microvilli is difficult. Without the use of shape priors, the Multicut algorithm splits
them up into many small pieces.
In order to alleviate these false split errors, we predict which pixels in the image belong to
flagella and microvilli and compute an approximate instance segmentation via thresholding
and connected components. We map these instances to nodes of the region adjacency graph,
see right column in Figure 4.1(c). Then, we introduce attractive lifted edges between the
nodes attributed to the same component and repulsive lifted edges between nodes attributed to
different components, see panel (d).

Lateral root segmentation, LM Finally, we tackle a challenging segmentation problem
in light-sheet microscopy data: the segmentation of root cells in Arabidopsis thaliana. This
data was imaged with two channels, one with a staining for cell membranes the other with a
staining for nuclei. We use the first channel for boundary prediction, which forms the basis for
the usual problem set-up. The second channel is used to segment individual nuclei. We then
express the rule that a cell should only contain a single nucleus using sparse lifted edges. To
this end, repulsive lifted edges are introduce between nodes whose superpixels are mapped to
different nuclei instances. See Section 4.4.4 for more details on the problem set-up and results
that show the prevention of false merges in the cell segmentation.

4.4 Results

We study the proposed method on four different problems: i) neuron segmentation in murine
cortex with priors from axon/dendrite attribution, ii) neuron segmentation in the drosophila
brain with priors from morphology-based error detection, iii) instance segmentation in a sponge
choanocyte chamber with priors from attribution of semantic classes, iv) cell segmentation in
plant roots with priors from the "one nucleus per cell" rule. Table 4.1 summarizes the different
problem set-ups. We evaluate segmentation quality using the variation of information (VI)
[140], which can be separated into split and merge scores, and the adapted Rand index [13].
For all quality measures used here, a lower value corresponds to higher segmentation quality.

4.4.1 Mouse Cortex Segmentation, EM

We present results on a volume of murine somatosensory cortex that was acquired by FIBSEM
at 5 × 5 × 6 nanometer resolution. The same volume has already been used in [110] for a
similar experiment. To ensure a fair comparison between the two methods for incorporating
axon/dendrite priors, we obtained derived data from the authors and use it to set-up the

66

Edges Regular Dense Lifted Sparse Lifted

Drosophila EM Mean boundary evidence - False merge oracle predictions

Murine EM RF based on edge features
RF based on region/
clustering features Axon/dendrite attribution

Sponge EM Mean boundary evidence - Small class semantic segmentation
Arabidopsis LM Mean boundary evidence - Nucleus instance segmentation

Table 4.1: Overview of the four problem set-ups. RF stands for random forest.

segmentation problem.
This derived data includes probability maps for neuron membranes, mitochondria, axon and
dendrite attribution as well as a watershed over-segmentation and a ground-truth instance
segmentation. From this data, we set up the graph partition problem as follows: we build the
region adjacency graph G from the watersheds and compute costs for the regular edges with a
random forest based on the edge and region appearance features, using the same features as
[21]. Next, we introduce dense lifted edges up to a graph distance of three. We use a random
forest based on features derived from region appearance and clustering to predict their costs,
again see [21] for details. In addition to the region appearance features, which are only based
on raw data in [21], we also take into account the mitochondria attribution here. Next, we
map the axon/dendrite attribution to the nodes of G and introduce sparse lifted edges between
nodes mapped to different classes. We infer costs for these edges with a random forest based
on features from the statistics of the axon and dendrite node mapping. We use the fusion move
solver of [18] for optimizing the Lifted Multicut objective.
We divide the volume into a 1 × 3.5 × 3.5 micrometer block that is used to train the random
forests for edge costs and a 2.5 × 3.5 × 3.5 micrometer block used for validation. The random
forest predicting pixel-wise probabilities was trained by the authors of [110] on a separate
volume, using ilastik [22].
We compare the Multicut and AMWC results from [110] with different variants of our methods,
see Table 4.2. As a baseline, we compute the Lifted Multicut only with dense lifted edges and
without features from mitochondria predictions (LMC-D). We compute the full model with
dense and sparse lifted edges (LMC-S) with and without additional mitochondria features. In
addition, we compare to an iterative approach (LMC-SI) similar to the error correction approach
in Section 4.4.2. For this approach, we perform LMC-D segmentation first and introduce sparse
lifted edges only for objects that contain a false merge (identified by presence of both axonic
and dendritic nodes in the same object).
The LMC-D segmentation quality is on par with the AMWC, although it does not use any input

67

from the priors, showing the importance of dense lifted edges. Our full model with sparse lifted
edges shows significantly better quality compared to LMC-D. Mitochondria-based features
provide a small additional boost. The segmentation quality of the iterative approach LMC-SI is
inferior to solving the full model LMC-S, demonstrating the importance of joint optimization
of the full model with dense and sparse lifted edges.

Method VI-Split VI-Merge Rand Error

MC [110] 0.3471 0.6347 0.0787

AMWC [110] 0.4578 0.4935 0.0754

LMC-D 0.4144 0.4445 0.0891

LMC-S 0.4133 0.3788 0.0362
LMC-S (No Mitos) 0.4038 0.3966 0.0363

LMC-SI 0.5054 0.3998 0.0586

Table 4.2: Variants of our approach compared to [110]. The Rand Error measures the over-all segmenta-
tion quality, VI-Split measures the degree of over-segmentation and VI-Merge the degree of
under-segmentation. For all measures, lower scores corresponds to better segmentations.

4.4.2 Drosophila brain segmentation, EM

We test the false merge correction approach on a 68 × 38 × 44 micrometer FIBSEM volume
of the Drosophila medulla. The data was imaged at 8 × 8 × 8 nanometer in [205], who also
provide a ground-truth segmentation for the whole volume.
First, we train a 3D U-Net for boundary prediction on a separate 2 × 2 × 2 micron volume
imaged with the same microscope. We use this network to predict boundaries on the whole
volume and run watershed over-segmentation based on these predictions. Then, we set up
an initial Multicut problem with edge costs derived from the mean accumulated boundary
evidence. We obtain an initial segmentation by solving this problem with the block-wise solver
of [166] (Section 3.3.1).
In order to demonstrate segmentation improvement based on morphological features, we
skeletonize all sufficiently large objects using the method of [118] implemented in [215]. We
then predict false merges along all paths between skeleton terminal nodes, using the ground-
truth segmentation as oracle predictor. Note that [53] have shown that it is possible to train a
very accurate CNN to classify false merges based on morphology information in this set-up.
Given these predictions, we set up the Lifted Multicut problem by selecting all objects that

68

have at least one path with a false merge detection. For these objects, we introduce lifted edges
between the terminal nodes of all paths in the skeleton. We derive costs for these edges from
the false merge probability. Note that we use an imperfect oracle for some experiments, so the
merge predictions are not absolutely certain. We solve two different variants of this problem:
LMC-S, where we solve the complete problem using the solver introduced in Section 3.3.2.
And LMC-SI, where we only solve the sub-problems arising for the individual objects with
false merge detections. For this, we use the Fusion Moves solver of [18].
Table 4.3 compares the results of the initial Multicut (MC) with LMC-S and LMC-SI (using a
perfect oracle) as well as the current state-of-the-art segmentation from Flood Filling Networks
(FFN)1 [91]. We adopt the evaluation procedure of [91] and use a cutout of size 23 × 19
× 23 micrometer for validation. We use two different versions of the ground-truth, the full
segmentation and only a set of white-listed objects that were more carefully proofread. The
FFN segmentation and validation ground-truth was kindly provided by the authors of [91].
The results show that our initial segmentation is inferior to FFN in terms of merge errors, but
using LMC-SI we can improve the merge error to be even better than the FFN. Interestingly,
LMC-SI performs better than LMC-S. We suspect that this is due to the fact that we only add
lifted edges inside of objects with a false merge detection. Hence, LMC-S does not contain
more information than LMC-SI, while having to solve a much bigger optimization problem.
Figure 4.3 shows the segmentation quality when using an imperfect oracle by tuning its F-score
from 0.5 to 1.0 and measuring VI-split and VI-merge of the segmentation result. LMC-SI is
fairly robust against this noise; it starts with a better VI-merge than MC, even for F-Score 0.5.
Its VI-split gets close to MC for F-Scores larger than 0.75. In Figure 4.4 we show the initial
segmentation and three examples of corrected merges.

4.4.3 Sponge segmentation, EM

The two previous applications mostly profit from repulsive information derived from ultra-
structure or morphology. In order to show how attractive information can be exploited, we turn
to an instance segmentation problem in a sponge choanocyte chamber. The EM volume was
imaged with FIBSEM at a resolution of 15×15× 15 nanometer. We aim to segment structures
of three different types: cell bodies, flagella and microvilli. Flagella and microvilli have a small
diameter, which make them difficult to segment with a boundary based approach. On the other
hand, cell bodies have a much larger diameter and touch each other, which makes boundary
based segmentation appropriate.
In order to set-up the segmentation problem, we first compute probability maps for boundaries
as well as microvilli and flagella attribution using the autocontext workflow of ilastik [22]. We

1Note that the FFN was trained with more ground-truth data than our network.

69

Full Whitelist

VI-Split VI-Merge Rand Error VI-Split VI-Merge Rand Error

MC 1.5246 1.9057 0.6055 1.2189 0.6532 0.4143

LMC-S 1.6110 0.9405 0.4501 1.3050 0.2544 0.3891

LMC-SI 1.5773 0.5403 0.3335 1.2369 0.0122 0.2943

FFN 1.4653 0.6340 0.2838 0.8702 0.0559 0.1963

Table 4.3: Results on the drosophila EM data: Multicut (MC), Lifted Multicut solved for the complete
problem (LMC-S), Lifted Multicut solved separately for sub-problems derived from false
merge predictions (LMC-SI) and FFN [91]. We use a cutout for validation and evaluate with
the complete ground-truth segmentation (Full) and a subset of proof-read objects (Whitelist).

set-up the Lifted Multicut problem by computing watersheds based on the boundary maps,
extracting the region adjacency graph and computing costs for regular edges by mean accu-
mulated boundary probability. We do not introduce dense lifted edges. For sparse lifted edges,
we compute an additional instance segmentation of flagella and microvilli by thresholding
the corresponding probability maps and running connected components. Then, we map the
components of this segmentation to graph nodes. We connect nodes that are mapped to the
same component with attractive lifted edges and nodes mapped to different components with
repulsive lifted edges. We use the solver introduced in Section 3.3.2.
We run our segmentation approach on the whole volume of 70×75× 50 micrometer. For
evaluation, we use three cutouts of size 15×15×1.5 micrometer with ground-truth for instance
and semantic segmentation. We split the evaluation into separate scores for objects belonging
to the three different semantic classes. See Table 4.4 for the evaluation results, comparing
the sparse Lifted Multicut (LMC) to the Multicut baseline (MC). As expected the quality of
the segmentation of cell bodies is not affected, because we do not introduce lifted edges for
those. The split rate in flagella and microvilli decreases significantly leading to a better overall
segmentation for these structures.

4.4.4 Lateral root segmentation, LM

We segment cells in light-sheet image volumes of the lateral root primordia of Arabidopsis
thaliana from [236]. These volumes are taken from a time-lapse video consisting of 51 time
points, obtained in vivo in close-to-natural growth conditions. Each time point corresponds to a
3D volume of size 2048×1050×486 voxels with resolution 0.1625×0.1625×0.25 micrometer.
The volume has two channels, one showing a membrane marker, the other a nucleus marker.

70

Figure 4.3: Quality of the error detection based Lifted Multicut when tuning the F-Score of the oracle
false merge predictor from 0.5 to 1. We compare the approach where the complete problem
is solved (LMC-S) to the approach where sub-problems from false merge predictions are
solved individually (LMC-SI) with the Multicut baseline (MC).

We work on two selected time points: T45 and T49 taken from the later stages of development
where the instance segmentation problem is more challenging due to growing number of cells.
The time points have dense ground-truth segmentation for a 1000×450×200 voxels cutout
centered on the root primordia. Both cell and nucleus ground-truth segmentations are available.
A variant of 3D U-Net [35] was trained in order to predict cell membranes and nuclei respec-
tively. The two networks were trained on dense ground-truth from time points that are not part
of our evaluation. Apart from the primary task of predicting membranes and nuclei respectively,
both networks have an auxiliary task of predicting long-range affinities similarly to [120].
With these networks, we predict cell boundary probabilities and nucleus foreground probabili-
ties. We use the nucleus predictions to obtain a nucleus instance segmentation by thresholding
the probability maps at 0.9 and running connected component analysis.
We compute superpixels from the watershed transform on the membrane predictions and
compute costs for the regular edges via mean accumulated boundary probabilities. We set up
lifted edges by mapping the nucleus instances to superpixels and connecting all nodes whose
superpixels were mapped to different nuclei with repulsive lifted edges.
Table 4.5 shows the evaluation of segmentation results on the ground-truth cutouts. We can
see that LMC-S clearly improves the merge errors as well the overall Rand Error while only
marginally diminishing the split quality. Figure 4.5 shows an overview of the LMC result and

71

Figure 4.4: Drosophila EM segmentation. We detect merges in the initial segmentation (a) using an
oracle. The red, blue and yellow segments in (b) were flagged as false merges. (c) and (d)
show merged / correctly resolved objects.

two qualitative comparisons of MC and LMC results, highlighting merges that were prevented
by LMC. Note that not all merges can be prevented, even if the nuclei were segmented correctly,
because they can occur already in the watershed over-segmentation.

4.5 Discussion

Here, we have proposed a general purpose strategy to leverage domain-specific knowledge for
instance segmentation problems in microscopy image analysis. This strategy expresses the do-
main knowledge in the (long-range) lifted edges of the Lifted Multicut graph partition problem.
We apply the proposed strategy to a diverse set of difficult instance segmentation problems in

72

Method VI-Split VI-Merge Rand Error

Cells

MC 0.6058 0.0116 0.0783

LMC 0.6004 0.0116 0.0782

Flagella

MC 0.4728 0.0812 0.1205

LMC 0.2855 0.0812 0.0429

Microvilli

MC 3.1760 1.1101 0.7409

LMC 2.2745 1.1807 0.6973

Table 4.4: Quality of the sponge chonanocyte segmentation for cells, flagella and microvilli.

MC LMC-S

VI-Split VI-Merge Rand Error VI-Split VI-Merge Rand Error

Timepoint 45 0.3596 0.5918 0.1641 0.3740 0.5527 0.1517

Timepoint 49 0.4586 0.7116 0.2019 0.5153 0.5485 0.1873

Table 4.5: Comparison of Multicut and Lifted Multicut segmentation results for two time points taken
from the light-sheet root primordia data.

light and electron microscopy and consistently show an improvement in segmentation accuracy.
The improvement can be demonstrated even for imperfect prior information: segmentation
quality only starts to degrade at fairly high error levels in the lifted edge costs, see results in
Section 4.4.2.
For an application with ultrastructure based priors, we also observe that the Lifted Multicut
based formulation yields higher quality results than the AMWC formulation of [110]. We
believe that this is due to joint exploitation of dense short-range and sparse long-range informa-
tion. A complete joint solution, with both lifted edges and semantic labels, has recently been
introduced in [123]. We look forward to exploring the potential of this objective for the neuron
segmentation problem.
Clearly, not every kind of domain knowledge can be expressed in this form, and the final

73

accuracy improvement depends on the information content of the prior knowledge. Also, our
method cannot fix merge errors in the watershed segmentation underlying the graph, even if
priors indicating such an error are available, see results in Section 4.4.4.
Similar to the findings of [113], we demonstrated that prevention of merge errors is more
efficient than their correction: the joint solution of LMC-S is more accurate than iterative
LMC-SI. However, not all prior information can be incorporated directly into the original
segmentation problem. For these priors we demonstrate how to construct an additional resolving
step which can also significantly reduce the number of false merge errors. In the future we plan
to further improve our segmentations by other sources of information: matches of the segmented
objects to known cell types, manual skeletons or correlative light microscopy imaging.

74

a

b

c

b c

Figure 4.5: Segmentation results on light-sheet volumes of plant roots. (a) shows one complete image
plane with membrane channel and LMC segmentation for timepoint 49. (b) and (c) show
zoom ins of the yz plane with raw data and nucleus segmentation (left), MC segmentation
(middle) and LMC segmentation (right) with avoided merge errors marked by white arrows.
The two dashed lines in (a) show the cut planes for the zoom-ins. In (b) and (c) the nuclei
instances inside of cells falsely merged in the MC segmentation are highlighted. Note that
not all merge errors can be resolved by LMC; in some cases the watersheds are already
merged, see red arrow in (c).

75

5 The Mutex Watershed

The segmentation approaches introduced so far have been based on an initial superpixel over-
segmentation followed by a merging step. In certain cases it is difficult to generate satisfactory
superpixels, for example because they tend to omit objects with a small diameter or do not
adhere well to fuzzy boundaries. Thus, an approach that segments objects based on neural
network predictions directly, skipping the superpixel generation, is desirable. Unfortunately
(Lifted) Multicut segmentation does not scale to direct pixel-level segmentation for meaningful
volume sizes, even with the approximate solvers introduced in Chapter 3.
Here, we introduce the Mutex Watershed, an algorithm that fulfills the above requirement: it
introduces long-range repulsive interactions in a watershed-like algorithm. These interactions
remove the need for seeds or thresholds, enabling segmentation directly from affinity predictions
of a neural network. This chapter is based on the publication [233], which is joint work with
Steffen Wolf, who has equally contributed to algorithm development and experiments.

5.1 Introduction

Most image partitioning algorithms are defined over a graph encoding purely attractive inter-
actions. No matter whether a segmentation or clustering is then found agglomeratively (as
in single linkage clustering / watershed) or divisively (as in spectral clustering or iterated
normalized cuts), the user either needs to specify the desired number of segments or a termina-
tion criterion. An even stronger form of supervision is in terms of seeds, where one pixel of
each segment needs to be designated as such either by a user or automatically. Unfortunately,
clustering with automated seed selection remains a fragile and error-fraught process, because
every missed or hallucinated seed causes an under- or oversegmentation error. Although the
learning of good edge detectors boosts the quality of classical seed selection strategies (such as
finding local minima of the boundary map, or thresholding boundary maps), non-local effects
of seed placement along with strong variability in region sizes and shapes make it hard for any
learned predictor to place exactly one seed in every true region.
In contrast to the above class of algorithms, Multicut / correlation clustering partitions vertices
with both attractive and repulsive interactions encoded into the edges of a graph. Multicut has
the great advantage that a “natural” partitioning of a graph can be found, without needing to

77

Figure 5.1: Left: Overlay of raw data from the ISBI 2012 EM segmentation challenge and the edges for
which attractive (green) or repulsive (red) interactions are estimated for each pixel using a
CNN. Middle: vertical / horizontal repulsive interactions at intermediate / long range are
shown in the top / bottom half. Right: Active mutual exclusion (mutex) constraints that the
proposed algorithm invokes during the segmentation process.

specify a desired number of clusters, or a termination criterion, or one seed per region. Its great
drawback is that its optimization is NP-hard.
The main insight of this contribution is that when both attractive and repulsive interactions
between pixels are available, then a generalization of the watershed algorithm can be devised
that segments an image without the need for seeds, stopping criteria or thresholds. It examines
all graph edges, attractive and repulsive, sorted by their weight and adds these to an active set
iff they are not in conflict with previous, higher-priority, decisions. The attractive subset of the
resulting active set is a forest, with one tree representing each segment. However, the active set
can have loops involving more than one repulsive edge. See Figure 5.1 for a visual abstract.
In summary, our principal contribution, the Mutex Watershed, is a “best of both worlds”
algorithm that combines the Multicut’s desirable lack of hyperparameters with the small
computational footprint of Kruskal-type watershed algorithm.
The algorithm is presented in Section 5.3. In Section 5.4 we evaluate it against very strong
baselines. We choose a challenging data-set for neuron segmentation from EM image stacks
as benchmark. For this task, watershed segmentation is a key component: EM staining only
highlights membrane boundaries, discouraging the use of region cues for segmentation. By
incorporating long-range repulsions into the watershed procedure, we can obtain an accurate
segmentation from this step already, avoiding costly agglomeration as a post-processing step.
In addition, we present exploratory results on the BSDS500, demonstrating the applicability of
the proposed method to natural images.

78

5.2 Related Work

In the original watershed algorithm [220], seeds were automatically placed at all local minima
of the boundary map. Unfortunately, this leads to severe over-segmentation. Defining better
seeds has been a recurring theme of watershed research ever since. The simplest solution is
offered by the seeded watershed algorithm [25]: It relies on an oracle (an external algorithm
or a human) to provide seeds and assigns each pixel to its nearest seed in terms of minimax
path distance. In the absence of an oracle, automatic seed selection is challenging because
exactly one seed must be placed in every region. Simple methods, e.g. defining seeds by
connected regions of low boundary probability, do not work: The segmentation quality is
usually insufficient because multiple seeds are in the same region and/or seeds leak through the
boundary.
This problem is typically addressed by biasing seed selection towards over-segmentation
(with seeding at all minima being the extreme case). The watershed algorithm then produces
superpixels that are merged into final regions by more or less elaborate post-processing. This
works better than using watersheds alone because it exploits the larger context afforded by
region adjacency graphs. Many criteria have been proposed to identify the regions to be
preserved during merging, e.g. region dynamics [71], the waterfall transform [24], extinction
values [214], region saliency [155], and (α, ω)-connected components [197]. A merging
process controlled by criteria like these can be iterated to produce a hierarchy of segmentations
where important regions survive to the next level. Variants of such hierarchical watersheds are
reviewed and evaluated in [173].
These results highlight the close connection of watersheds to hierarchical clustering and
minimum spanning trees/forests [146, 154], which inspired novel merging strategies and
termination criteria. For example, [186] simply terminated hierarchical merging by fixing
the number of surviving regions beforehand. [135] incorporate predefined sets of generalized
merge constraints into the clustering algorithm. Graph-based segmentation according to [62]
defines a measure of quality for the current regions and stops when the merge costs would
exceed this measure. Ultrametric contour maps [9] combine the gPb (global probability of
boundary) edge detector with an oriented watershed transform. Superpixels are agglomerated
until the ultrametric distance between the resulting regions exceeds a learned threshold. An
optimization perspective is taken in [105], which introduces h-increasing energy functions and
builds the hierarchy incrementally such that merge decisions greedily minimize the energy.
The authors prove that the optimal cut corresponds to a different unique segmentation for every
value of a free regularization parameter.
An important line of research is based on the observation that superior partitionings are
obtained when the graph has both attractive and repulsive edges. Solutions that optimally
balance attraction and repulsion do not require external stopping criteria such as predefined

79

number of regions or seeds. This generalization leads to the NP-hard problem of correlation
clustering or (synonymous) Multicut (MC) partitioning, see Section 2.2.4 for details.
Another beneficial extension is the introduction of additional long-range edges. Thanks to their
larger field of view, the strength of these edges can often be estimated with greater certainty
than is achievable for the local edges used in standard watersheds. This has been used in [241]
to represent object size constraints by repulsive long-range edges, which is still an MC-type
problem. When long-range edges are also allowed to be attractive, the problem turns into the
more complicated lifted Multicut (LMC) [87], see Section 2.2.6 for details. Long-range edges
are also used in [120], as a side loss for the boundary detection CNN; but they are not used
explicitly in any downstream inference.
In general, striking progress in watershed-based segmentation has been achieved by learning
boundary maps with CNNs. This is nicely illustrated by the evolution of neuron segmentation
for connectomics. CNNs were introduced to this application in [90] and became, in much
refined form [42], the winning entry of the ISBI 2012 Neuro-Segmentaion Challenge [13].
Boundary maps and superpixels were further improved by progress in CNN architectures and
data augmentation methods, using U-Nets [180], FusionNets [177] or inception modules [21].
Subsequent post-processing with the GALA algorithm [161, 107], conditional random fields
[213] or the Lifted Multicut [21] (Chapter 2) pushed the envelope of final segmentation quality.
MaskExtend [141] applied CNNs to both boundary map prediction and superpixel merging,
while flood-filling networks [91] eliminated superpixels all together by training a recurrent
neural network to perform region growing one object at a time.
Most networks mentioned so far learn boundary maps on pixels, but learning works equally
well for edge-based watersheds, as was demonstrated in [243, 169] using CNN-generated edge
weights according to [211, 210]. Tailoring the learning objective to the needs of the watershed
algorithm by penalizing critical edges along minimax paths [210] or end-to-end training of
edge weights and region growing [234] improved results yet again.
Outside of connectomics, [15] obtained superior boundary maps from CNNs by learning not
just boundary strength, but also its gradient direction. Holistically-nested edge detection [238,
108] couples the CNN loss at multiple resolutions using deep supervision and is successfully
used as a basis for watershed segmentation of medical images in [32].
The present paper combines all these concepts (hierarchical clustering, attractive and repulsive
interactions, long-range edges, and CNN-based learning) into a novel efficient segmentation
framework. It can be interpreted as a generalization of [135], because we also allow for soft
constraints (which can be overridden by strong attractive edges), and constraints are generated
on the fly by a neural network rather than predefined. Our method is also related to greedy
additive edge contraction (GAEC) according to [102] and greedy fixation [122], but we handle
attractive and repulsive interactions separately and define edge strength between clusters by a
maximum instead of an additive rule.

80

5.3 Methods

5.3.1 Definitions and notation

We consider the problem of clustering a graph G(V,E+∪E−,W+∪W−) with both attractive
and repulsive edge attributes. The scalar attribute w+

e ∈ R+
0 associated with edge e ∈ E+ is a

merge affinity: the higher this number, the higher the inclination of the two incident vertices to
be assigned to the same cluster. Similarly, w−e ∈ R+

0 for e ∈ E− is a split tendency: the higher
this number, the greater the tendency of the incident vertices to be in different clusters.
In our application, each vertex corresponds to one pixel in the image to be segmented. Two
vertices may have no edge connecting them; or an attractive edge e ∈ E+; or a repulsive edge
e ∈ E−; or two edges at the same time, one attractive and one repulsive. Edges can be either
local/short-range (when connecting two pixels that are immediately adjacent in the image) or
long-range.
The Mutex Watershed algorithm, defined in Section 5.3.3, maintains disjunct active sets
A+ ⊆ E+, A− ⊆ E−, A+ ∩A− = ∅, that encode merges and mutual exclusion constraints,
respectively. Clusters are defined via the “connected” predicate:

∀i, j ∈ V : Πi→j = {pathπ from i to j withπ ⊆ E+}
connected(i, j) ⇔ ∃ path π ∈ Πi→j with π ⊆ A+ ⊆ E+

cluster(i) = {i} ∪ {j : connected(i, j)}

Conversely, the active subset A− ⊆ E− of repulsive edges defines mutual exclusion relations
by using the following predicate:

mutex(i, j) ⇔ ∃ e = (k, l) ∈ A− with

k ∈ cluster(i) and l ∈ cluster(j) and

cluster(i) 6= cluster(j)

Admissible active edge sets A+ and A− must be chosen such that the resulting clustering is
consistent, i.e. nodes engaged in a mutual exclusion constraint cannot be in the same cluster:
mutex(i, j)⇒ notconnected(i, j). The “connected” and “mutex” predicates can be efficiently
evaluated using a union find data structure.

5.3.2 Seeded watershed from a mutex perspective

One interpretation of the proposed method is in terms of a generalization of the edge-based
watershed algorithm [145, 144, 146] or image foresting transform [60]. This algorithm can only
ingest a graph with purely attractive interactions, G(V,E+,W+). Without further constraints,

81

∞

14

15

12

161720

8

14

18

9 5
157

6
161720

1214

18

9 5
157

6

161720

8

(a) (b)

∞
∞∞ ∞ ∞

Figure 5.2: Two equivalent representations of the seeded watershed clustering obtained using (a) a
maximum spanning tree computation or (b) Algorithm 3. Both graphs share the weighted
attractive (green) edges and seeds (hatched nodes). The infinitely attractive connections to
the auxiliary node (gray) in (a) are replaced by infinitely repulsive (red) edges between each
pair of seeds in (b). The two final clusterings are defined by the active sets (bold edges) and
are identical. Node colors indicate the clustering result, but are arbitrary.

the algorithm would yield only the trivial result of a single cluster comprising all vertices.
To obtain more interesting output, an oracle needs to provide seeds, namely precisely one
node per cluster. These seed vertices are all connected to an auxiliary node (see Figure 5.2
(a)) by auxiliary edges with infinite merge affinity. A maximum spanning tree (MST) on this
augmented graph can be found in linearithmic time; and the maximum spanning tree (or in
the case of degeneracy: at least one of the maximum spanning trees) will include the auxiliary
edges. When the auxiliary edges are deleted from the MST, a forest results, with each tree
representing one cluster [146, 145, 60].
We now reformulate this well-known algorithm in a way that will later emerge as a special case
of the proposed Mutex Watershed: we eliminate the auxiliary node and edges, and replace them
by a set of infinitely repulsive edges, one for each pair of seeds (Figure 5.2 (b)). Algorithm 3 is
a variation of Kruskal’s MST algorithm operating on the seed mutex graph just defined, and
gives results identical to seeded watershed on the original graph.
This algorithm differs from Kruskal’s only by the check for mutual exclusion in the if-statement.
Obviously, the modified algorithm has the same effect as the original algorithm, because the
final set A+ is exactly the maximum spanning forest obtained after removing the auxiliary
edges from the original solution. In the sequel, we generalize this construction by admitting
less-than-infinitely repulsive edges. Importantly, these can be dense and are hence much easier
to estimate automatically than seeds with their strict requirement of only-one-per-cluster.

82

Input: weighted graph G(V,E+,W+) and seeds S ⊆ V , such that
E− = {(si, sj)|i, j ∈ 1, . . . , |S|; i 6= j} is the set of infinitely repulsive edges
between all pairs of seeds;

Output: clusters defined by activated edges A+;
Initialization: A+ = ∅; A− = E−;
for (i, j) = e ∈ E+ in descending order of w+ do

if not connected(i, j) and not mutex(i, j) then
A+ ← A+ ∪ e ;

. merge i and j and inherit the mutex
constraints of the parent clusters

Algorithm 3: Mutex version of seeded watershed algorithm.

5.3.3 Mutex Watersheds

We now introduce our core contribution: an algorithm that is empirically no more expensive
than a MST computation; but that can ingest both attractive and repulsive cues and partition
a graph into a number of clusters that does not need to be specified beforehand. There is no
requirement of one seed per cluster, and not even of a hyperparameter that would implicitly
determine the number of resulting clusters.
The Mutex Watershed, Algorithm 4, proceeds as follows: given a graph with sets of attractive
and repulsive edgesE+ andE−, with edge weightsW+ andW− respectively, do the following:
sort all edges E+ ∪ E−, attractive or repulsive, by their weight in descending order into a
priority queue. Iteratively pop all edges from the queue and add them to the active set one by
one, provided that a set of conditions are satisfied. More specifically, if the next edge popped
from the priority queue is attractive and its incident vertices are not yet in the same tree, then
connect the respective trees provided this is not ruled out by a mutual exclusion constraint. If
on the other hand the edge popped is repulsive, and if its incident vertices are not yet in the
same tree, then add a mutual exclusion constraint between the two trees.
The crucial difference to Algorithm 3 is that mutex constraints are no longer pre-defined, but
created dynamically whenever a repulsive edge is found. However, new exclusion constraints
can never override earlier, high-priority merge decisions. In this case, the repulsive edge in
question is simply ignored. Similarly, an attractive edge must never override earlier and thus
higher-priority must-not-link decisions.

83

Input: weighted graph G(V,E+ ∪ E−,W+ ∪W−);
Output: clusters defined by activated edges A+;
Initialization: A+ = ∅; A− = ∅;
for (i, j) = e ∈ E+ ∪E− in descending order of W+ ∪W− do

if e ∈ E+ then
if not connected(i, j) and not mutex(i, j) then

merge(i, j): A+ ← A+ ∪ e;
. merge i and j and inherit the mutex

constraints of the parent clusters

else
if not connected(i, j) then

addmutex(i, j): A− ← A− ∪ e;
. add mutex constraint between i and j

Algorithm 4: Mutex Watershed

5.3.4 Time Complexity Analysis

Before analyzing the time complexity of Algorithm 4, we first review the complexity of
Kruskal’s algorithm. Using a union-find data structure the time complexity of merge(i, j) and
connected(i, j) is O(α(V)), where α is the slowly growing inverse Ackerman function, and
the total runtime complexity is dominated by the initial sorting of the edges O(E logE)[46].
To check for mutex constraints efficiently, we maintain a set of all active mutex edges

M [Ci] = {(u, v) ∈ A−|u ∈ Ci ∨ v ∈ Ci}

for every Ci = cluster(i) using hash tables, where insertion of new mutex edges (i.e.
addmutex) and search have an average complexity ofO(1). Note that every cluster can be effi-
ciently identified by its union-find root node. For mutex(i, j) we check if M [Ci]∩M [Cj] = ∅
by searching for all elements of the smaller hash table in the larger hash table. There-
fore mutex(i, j) has an average complexity of O(min(|M [Ci]|, |M [Cj]|). Similarly, during
merge(i, j), mutex constraints are inherited by merging two hash tables, which also has an
average complexity O(min(|M [Ci]|, |M [Cj]|).
In conclusion, the average runtime contribution of attractive edgesO(|E+| ·α(V) + |E+| ·M)
(checking mutex constrains and possibly merging) and repulsive edgesO(|E−| ·α(V) + |E−|)
(insertion of one mutex edge) result in a total average runtime complexity of Algorithm 4:

O(E logE + E · α(V) + EM). (5.1)

84

Figure 5.3: Runtime T of Mutex Watershed (without sorting of edges) measured on differently sized
sub-volumes of the ISBI challenge data, thereby varying the total number of edges E. We
plot T

|E| over |E| in a logarithmic plot, which makes T ∼ |E|log(|E|) appear as straight
line. A logarithmic function (green line) is fitted to the measured T

|E| (blue crosses) with
(R2 = 0.9896). The good fit suggests that empirically T ≈ O(E logE).

where M is the expected value of min(|M [Ci]|, |M [Cj]|). Using α(V) ∈ O(log V) ∈
O(logE) this simplifies to O(E logE + EM).
In the worst case O(M) = O(E), the Mutex Watershed Algorithm has a runtime complexity
of O(E2). Empirically, we find that O(EM) ≈ O(E logE) by measuring the runtime of
Mutex Watershed for different sub-volumes of the ISBI challenge (see Figure 5.3), leading to
an empirical complexity of O(E logE).

85

5.4 Results

We evaluate the Mutex Watershed on the challenging task of neuron segmentation in EM
image volumes. This application is of key interest in connectomics, the effort to reconstruct
neural wiring diagrams spanning complete central nervous systems. Neuron segmentation from
EM images is a challenging endeavor, since segmentation has to be based only on boundary
information (cell membranes) and some of the boundaries are not very pronounced. Besides,
cells contain membrane-bound organelles, which have to be suppressed in the segmentation.
Some of the neuron protrusions are very thin, but all of those have to be preserved in the
segmentation to arrive at the correct connectivity graph. While a lot of progress has been made
recently, only manual tracing yields sufficient accuracy for correct circuit reconstruction [189].
We validated the Mutex Watershed the most popular neural segmentation challenge: ISBI2012
[13]. We estimate the edge weights using a CNN as described in Section 5.4.1 and compare
with other entries in the leaderboard as well as with other common post-processing methods
for the same network predictions in Section 5.4.2.

5.4.1 Estimating edge weights with a CNN

The common approach to EM segmentation is to predict which pixels belong to a cell membrane
using a CNN. Different post-processing methods are used on top to obtain a segmentation,
see Section 1.1.2 for an overview of these methods. The CNN can be either trained to predict
boundary pixels [42, 21] or undirected affinities [120, 67], which express how likely it is for
a pixel to belong to a different cell than its neighbors. In this case, the output of the network
contains three channels, corresponding to left, down and next imaging plane neighbors in 3d.
The affinities do not have to be limited to immediate neighbors - in fact, [120] have shown that
introduction of long-range affinities is beneficial for the final segmentation, even if they are
only used as auxiliary loss during training. Building on their work, we train a CNN to predict
short and long-range affinities and then use those directly as weights for segmentation with the
Mutex Watershed.
We estimate the affinities/edge weights for the neighborhood structure shown in Figure 5.4.
To that end, we define local attractive and long-range repulsive edges. The choice of this
structure has to be motivated by the underlying data - we use a different pattern for in-plane
and between-plane edges due to the anisotropy of the validation data at hand. In more detail,
we picked a sparse ring of in-plane repulsive edges and additional longer-range in-plane edges
which were necessary to split regions reliably (see Figure 5.4a). We also added connections
to the indirect neighbors in the lower adjacent slice to ensure correct 3D connectivity (see
Figure 5.4b).
In total, C+ attractive and C− repulsive edges are defined for each pixel, resulting in C++ C−

86

(9, 4)(-9, 4)

(9,-4)(-9,-4)

(4, 9)

(4, -9)

(-4, 9)

(-4, -9) (0,-9)

(0, 9)

(9, 0)(-9,0)

(9,-9)

(9, 9)

(-9, -9)

(-9,9)

(0,-27)

(0, 27)

(27, 0)(-27,0)

(a) XY-plane neighborhood with local attractive edges, a
sparse repulsive edges with approximate radius 9 and
further long-range connections with distance 27

(b) Due to the high anisotropy of the data we limit the
Z-plane edges to a distance of 1. The direct neighbors
are attractive; the indirect neighbors are repulsive.

Figure 5.4: Local neighborhood structure of attractive (green) and repulsive (red) edges in the Mutex
Watershed graph. Due to point symmetry to the origin, we only predict half of the directions
with the neural network.

output channels in the network. We partition the set of attractive / repulsive edges into subsets
H+ and H− that contain all edges at a specific offset, attractive edges: E+ =

⋃C+

c H+
c and

repulsive edges analogously. Each element of the subsets H+
c and H−c corresponds to a specific

channel predicted by the network. We further assume that weights take values in [0, 1] and
adopt the same conventions for attractiveness / repulsion as in Section 5.3. For more details on
network architecture and training see Section A.4.1.
In our experiments, we pick a subset of repulsive edges, by using strides of 2 in the XY-plane
in order to avoid artifacts caused by occasional very thick membranes. Note that this stride is
not applied to local (attractive) edges, but only to long-range (repulsive) edges.

5.4.2 ISBI Challenge

The ISBI 2012 EM Segmentation Challenge [13] is the neuron segmentation challenge with the
largest number of competing entries. The challenge data contains two volumes of dimensions
1.5 × 2 × 2 microns with a resolution of 50 × 4 × 4 nm per pixel. The groundtruth is provided
as binary membrane labels, which can easily be converted to a 2D segmentation. To train a 3D
model, we follow the procedure described in [21] (Section 2.2).
The test volume has private groundtruth; results can be submitted to the leaderboard. They are

87

Figure 5.5: Mutex Watershed applied on the ISBI Challenge test data. For further images and a detailed
comparison to the baseline segmentation methods see Section A.4.2

evaluated based on the Adapted Rand Score (Rand-Score) and the Variation of Information
Score (VI-Score) [13], separately for each 2D slice.
Our method held the top entry in the challenge’s leader board at the time of publication, see
Table 5.1a. 1. This is especially remarkable, because it is simpler than the other high-scoring
methods. Similar to us, they rely on a CNN to predict boundary locations, but post-process its
output with the complex pipeline described in [21], that involves a NP-hard partitioning step.
In addition, we compare to baseline post-processing methods starting from our network pre-
dictions: thresholding (THRESH), two watershed variants (WS, WSDT), and one Multicut
variant (MC-LOCAL) only take into account short-range predictions. Lifed Multicut (LMC)
and another Multicut variant (MC-FULL) also use long-range predictions. For these baseline
methods we have only produced 2D segmentations for the individual slices, either because
the 3D results were inferior (THRESH, WS, WSDT) or infeasible to obtain (MC, LMC). In
contrast, the Mutex Watershed benefited from 3D segmentation. See Table 5.1b for the evalua-
tion results and see Section A.4.2 for further details on the baseline methods and a qualitative
comparison.
The three methods that use short- and long-range connectivity perform significantly better than
the other methods. Somewhat surprisingly, MWS performs better than MC-FULL and LMC,
which are based on a NP-hard partition problem. This might be explained by the lack of 3D

1Currently, the method proposed in [134], which also uses the Mutex Watershed, holds the top entry.

88

information in the two latter two approaches (solving the 3D model was infeasible).

Method Rand-Score VI-Score

UNet + MWS 0.98792 0.99183
M2FCN + LMC [192] 0.98788 0.99072

SCN + LMC [226] 0.98680 0.99144

FusionNet + LMC [177] 0.98365 0.99130

ICv1 + LMC [21] 0.98262 0.98945

(a) Top five entries at time of submission. Our Mutex Water-
shed (MWS) is state-of-the-art without relying on com-
plex lifted Multicut post-processing used by all other top
entries.

Method Rand-Score VI-Score Time [s]

MWS 0.98792 0.99183 43.32

MC-FULL 0.98029 0.99044 9415.8

LMC 0.97990 0.99007 966.0

THRESH 0.91435 0.96961 0.2

WSDT 0.88336 0.96312 4.4

MC-LOCAL 0.70990 0.86874 1410.7

WS 0.63958 0.89237 4.9

(b) Comparison to other segmentation strategies, all of
which are based on our CNN.

Table 5.1: Results on the ISBI 2012 EM Segmentation Challenge.

5.4.3 Study on natural image segmentation

We conducted exploratory experiments on the Berkeley segmentation data-set BSD500 [137]
to study the Mutex Watersheds applicability to natural images. Training a state-of-the-art edge
detection network on this small data-set requires a set of data-set specific optimization tricks
such as training with external data, multi resolution architectures and auxiliary losses [108]. In
this exploratory study we train a 2D version of the network used for the ISBI experiments to
predict the 2D connectivity pattern depicted in Figure 5.4a. To alleviate the small size of the

89

training set, we present this network with predictions from [238] as additional input channel.
In order to isolate the influence of the quality of the underlying affinities, we run ablation
experiments where we interpolate (via weighted average) between (a) affinities as predicted by
our neural network, (b) those obtained from the ground-truth and (c) uniform noise. We obtain
Mutex Watershed segmentations from the interpolated affinities for the BSD testset, size-filter
them (as the only post-processing step) and evaluate with the Rand Index. The “phase transition
diagram” resulting from these experiments is shown in Figure 5.6a; Figure 5.6b shows Rand
Index and Variation of Information obtained for several points on this diagram.
Observe that the vertices corresponding to (a) and (c) can be interpreted as structured and
unstructured noise on the ground-truth affinities (respectively). Hence, the results of our
experiments show that the Mutex Watershed is fairly robust against both types of noise; when
mixing the GT with noise, the quality of the segmentations is unaffected up to 60 % noise.
When mixing GT with NN predictions, it is unaffected to an even higher degree.
In addition, we compare to the result of [102], who use an approach similar to ours and solve
a Lifted Multicut based on long range potentials extracted from a pre-computed probability
map. In Section A.4.3, we show the segmentations resulting at different stages of interpolation
between GT, NN predictions and noise.

5.5 Conclusion

We have presented a fast algorithm for the clustering of graphs with both attractive and repulsive
edges. The ability to consider both obviates the need for the kind of stopping criterion or even
seeds that all popular algorithms, except for correlation clustering, need. The proposed method
has low computational complexity in imitation of its close relative, Kruskal’s algorithm.
At the time of publication of [233], the proposed algorithm, presented with informative edge
weights from a neural network, outperformed all known methods on a competitive bio-image
segmentation benchmark, including methods that operate on the very same network predictions.
Since then, this result was improved upon by [134], who have also used the Mutex Watershed
as part of their approach. In addition, the Mutex Watershed has also been included into another
connectomics segmentation approach [119] based on affinities derived from learned pixel
embeddings.
Furthermore, we have shown a close theoretical connection between the Mutex Watershed
and Multicut in follow-up work [231] and generalized the algorithm to semantic instance
segmentation, a common task in natural image segmentation challenges [44, 128, 151], in [232].
We have also used the Mutex Watershed for large scale microscopy segmentation problems,
see Section 6.1 for details.

90

(a) BSD500 segmentation quality of MWS
algorithm, given affinities from ground truth (top
corner), from a neural network (right corner) or
pure noise (left corner); plus hundreds of
experiments on weighted combinations of the
above. MWS segmentation quality (evaluated
with Rand index) degrades only once a large
amount of noise is added to the affinities.

NN GT Noise RI VI

100% 0% 0% 0.826 1.722

0% 100% 0% 0.901 0.927

0% 38% 62% 0.897 0.976

0% 33% 66% 0.820 1.912

80% 20% 0% 0.878 1.247

43% 0% 57% 0.813 2.127

43% 14% 43% 0.838 1.636

Keuper et al. [102] 0.82 1.75

(b) BSD500 scores at various interpolations
between the neural network predictions
(NN), ground-truth (GT) and noise. See
Section A.4.3 for example images of the
interpolated affinities. We include [102] as
a reference point, because they also use
long range potentials in their segmentation
method.

91

6 Applications of Large-scale
Segmentation

We have applied the methods developed in this thesis to large-scale segmentation problems
arising from biological research questions. Here, we highlight three applications that show the
versatility of our approaches. For each application, we explain the biological relevance and
show how our contribution enables further insight.
The first application (Section 6.1) is the segmentation of all cells, nuclei and selected organelles
in a 6 day old larva of Platynereis dumerilii imaged in EM. This work has been foundational to
the collaborative effort of building a detailed cellular atlas for this animal [218]. Section 6.1
is based on the publication [218], where several authors have equally contributed. Our main
contribution to this work are the different segmentations from EM, developing tools for data
exploration and sharing as well as integrating the segmentations with down-stream analysis.
The most relevant contributions from other authors for the results described here come from
Christian Tischer, who spearheaded the development of the viewer, Kimberly Meechan, who
performed the analysis of the cell morphology, gene expression and their correlation and
Hernando Vergara, who imaged the in-situ gene expression profiles and contributed to their
registration.
In Section 6.2, we describe a contribution to the publication [153] of Musser et al. Here,
we have contributed the automated segmentation of cells, microvilli and flagella in a sponge
choanocyte chamber and, together with Jakob Musser and Giulia Mizzon, contributed to the
subsequent analysis and visualization of this resource.
Finally, in Section 6.3 we describe an immunofluorescence microscopy assay for the detection
of SARS-CoV-2 antibodies, where we have contributed to the image analysis pipeline developed
to automatically score the antibody responses. This work is based on the publication [168],
where several authors have contributed; especially Roman Remme, who has set up the infected
cell classification and Vibor Laketa, who has designed the assay and performed all microscopy
imaging.
Besides these three publications, we have contributed to several other studies: the study [236]
investigates plant development using light-sheet microscopy and makes use of several of the
segmentation methods developed in this thesis. In [50] we have helped to set up an automated
segmentation approach used to investigate the development of the nervous system in mice. The

93

data exploration tools developed for [218] have been adapted for EM volumes of SARS-CoV-2
infected cells in [47]. Finally, we have applied the assay developed in [168] for a population
level serological study in [208] and adapted the assay for a drug reporter system in [165].

6.1 A cellular atlas for Platynereis dumerilii

Cells are the basic units of life. In multicellular organisms, distinct sets of genes are expressed in
different cells, producing the individual cellular traits that we call cell types [11]. Deciphering
how the genotype is decoded into a multicellular phenotype is therefore critical to understand
the development, structure and functioning of an entire body. Hence, we need to establish the
link between gene expression profiles and cellular morphologies. To achieve this integration,
data from different modalities has to be brought together: detailed cellular morphologies can
be reconstructed from high-resolution EM image volumes that stain the membranes of cells
and innner-cellular structures; gene expression profiles can be obtained from markers imaged
with light microscopy at lower resolution.
Here, for the first time, we combine cellular morphology and gene expression at sub-cellular
resolution for a full organism, a six day old larva of Platynereis dumerilii, a marine worm. To
this end, we segment all cells and nuclei in an EM volume of a specimen and register a gene
expression atlas [219] to this volume. Thus, we can assign gene expression information to
cells for the entire animal. We find that an unbiased clustering based on the gene expression
defines groups of cells that correlate well with anatomical units, in particular defining groups of
neurons that form coherent tissues separated by morphological boundaries. In order to integrate,
analyze and share the data derived from multiple modalities, we develop an open-source viewer
that we call MoBIE 1 and make all data available through it. We expect that the methods
developed here can be used to build similar cellular atlases for animals of comparable size.
The results described here have been achieved in a collaborative effort. Our main contribution
is the extension and application of the segmentation methods and integrating the segmentation
results with further analysis steps as well as contributing to the software for exploring and
sharing the data. The next section summarizes the segmentation contributions, followed by
an overview of further analysis results that highlight the methodological advances enabled
by large scale segmentation. While we have contributed to these results, these efforts have
been led by other partners in the collaboration: Hernando Martinez Vergara has composed the
gene expression atlas, Christian Tischer has led the efforts for registration and viewer software
development and Kimberly Meechan has done the main work behind the morphology analysis
and clustering.

1https://github.com/mobie/mobie

94

https://github.com/mobie/mobie

6.1.1 Segmentation

The EM image volume at hand captures a 6 day old larva of Platynereis dumerilii. It was
imaged at a pixel size of 10×10×25 nanometer with serial block face microscopy, resulting in
11,416 images. These images were aligned using SBEMImage [206] to obtain an image volume
of 275×260× 285 micrometer in physical dimensions and a size of 2.5 TB (compressed).
Given the complete specimen at ultra-structural resolution, we provide the segmentations of all
cells, all nuclei, the cuticle (epidermal skin layer), selected tissues and body parts as well as
nuclear chromatin and cilia for selected organs. In particular the segmentation of cells in this
data-set is challenging: the appearance of cells and their membrane is diverse throughout the
animals’ body. Membranes of sub-cellular structures often resemble cellular membranes and
some membranes are missing due to staining artifacts. To alleviate these issues, we make use
of the segmentations of structures discernible at coarser resolution, nuclei, tissues and organs,
and use them to inform the cellular segmentation.
We provide segmentations for the following tissues and organs of the animal: coelomic cavity,
glands, gut, secretory cells and yolk. These are large structures with a pronounced region
boundary. To segment them, we have used the ilastik carving workflow [22], which is based on
watersheds from seeds provided by the user, on downsampled data (80×80 ×100 nanometer).
To segment the nuclei, we have used the Mutex Watershed algorithm [233] (Chapter 5). First,
a 3D U-net [35] predicts short- and long-range pixel affinities and, for each pixel, predicts
whether it belongs to a nucleus or not. Based on these predictions, we obtain a nucleus instance
segmentation with the Mutex Watershed. The computations for the nucleus segmentation are
performed on data downscaled to a pixel size of 80×80 ×100 nanometer. Still, the whole
volume could not be processed in one piece, so we have applied the algorithm to blocks of
size 512×512×64 pixels and then combined the results into a full segmentation by solving
a Multicut problem following [166] (Chapter 3). The network was trained with 12 blocks of
manually annotated training data (each of size 400×400×120 pixels). We initially tried to
segment the nuclei with a method based on watershed over-segmentation, but observed frequent
merges of nuclei that touch across a small portion of their boundary, an issue observed only
very rarely when using the Mutex Watershed approach.
Cilia and cuticle are segmented with the same method as the nuclei, using the full resolution
(10×10×25 nanometer pixel size) data for the cilia segmentation, but only for the region
of segmented nephridia cells (see below). The cuticle segmentation is based on data down-
scaled to 40×40×50 nanometer. For both tasks, separate 3D U-nets were trained on manual
segmentations of the corresponding structures.
For the cell segmentation we rely on the Lifted Multicut segmentation approach of [167],
(Chapter 4). We obtain cell membrane predictions from a 3D U-net trained to predict short- and
long-range affinities. Here, we additionally insert the edges of tissue and organ segmentations

95

(see above), in order to avoid missing boundary signal due to the very different appearance
of some organ and tissue boundaries. The groundtruth annotations for this network consist of
8 blocks of 628×628×130 pixels and a larger block of size 1280×1280×120 pixels. Based
on the network predictions, we compute superpixels, region adjacency graph and edge costs.
We additionally exploit the nucleus segmentation to enforce separation of cells containing
different nuclei. To this end, we introduce lifted edges between nodes whose superpixels map
to the segmented nuclei, attractive for the nodes mapped to the same nucleus and repulsive
for the nodes mapped to different nuclei. Lifted edges are introduced up to a graph distance
of four and the attractive / repulsive edge cost is set to the maximum / minimum of the local
edge costs. The Lifted Multicut problem is solved by the hierarchical solver introduced in
[167] (Section 3.3.2). Since the repulsive lifted edges are only included up to a certain graph
distance, there are still objects in the cell segmentation that contain more than one segmented
nucleus. We find these in post-processing and separate them individually by running a graph
watershed seeded from the nodes mapped to the nuclei. The cell segmentation was performed
on data downscaled to a pixel size of 20×20×25 nanometer. Processing the whole volume
took a total of 30 hours. The first 10 hours were spent on neural network affinity prediction,
using 6 GPUs for parallelization. The remaining 20 hours were spent on the problem set-up and
solving the Lifted Multicut, using up to 600 CPU cores for parallelization. See Section 3.4.3
and Section A.1.2 for implementation details.
We leverage prior information from nuclei and tissue segmentation to mitigate segmentation
errors arising from ruptured cellular membranes and diverse appearance of cell membranes.
While these issues could in theory be mitigated by providing additional training data, this
process is very laborious for 3D segmentation. Instead, we rely on the nucleus segmentation
- a simpler problem which our algorithm solves to 99.0% accuracy (see below) - and tissue
segmentation, which can be achieved at lower resolution. Our use of nuclei as prior knowledge
assumes that every cell should contain only one nucleus, a constraint that is expected to be
true for almost all of the cells at this developmental stage. Furthermore, we proofread some
cells that are likely to contain a false merge, measured by a morphology based score. We
iterate through the top 1000 cells ranked by this score and correct the cells that contain a false
merge via graph watershed from user-generated seeds. This correction procedure was applied
to 154 falsely merged cells. In addition, we use Paintera [72] to perform more fine grained
proof-reading for some selected cells.
The cellular segmentation contains 11,402 cells with nuclei, see Figure 6.1(A) and achieves
accurate segmentations for different kinds of cells such as epidermal cells (B), muscles (C)
and nephridia (D). We measured nucleus sizes in the range from 33.6 to 147.5 µm3, and cell
sizes in the range from 59.8 to 1224.6 µm3. Note that neurites in the neuropil have not been
segmented, as they are not sufficiently preserved in the EM volume for automated segmentation.
The detail in the 3D ultrastructure volume and the cell segmentation provide a framework

96

for anatomical classification in a complete and unbiased manner. Here, we focused on the
larval nephridia (Figure 6.1 (D)). Previous transmission EM analysis had shown that the larval
nephridia are embedded between the body surface muscles and oblique muscles, and that the
tubule wall is formed from single cells wrapping around a tight lumen with six cilia constantly
present [74]. However, transmission EM on single sections could not resolve how many cells
contribute to this structure and how many distinct cilia they protrude into the lumen. This task
is now possible with our resource: we segmented all nephridial cilia as proof of principle that
comprehensive ultrastructure segmentation is possible with our resource and methods. The
two nephridia stereotypically comprise 7 cells per side, and each cell contributes several cilia
to the continuous central bundle. The bundles are made up of 85 and 78 cilia on the left and
right sides of the body, respectively. Furthermore, we observed a similar distribution of cilia
per cell for both sides and found that for a given cross-section of the lumen cilia belong almost
exclusively to one cell, see Figure 6.2 (B).
To quantify the segmentation accuracy, we validate the cell and nucleus segmentations against
8 slices (4 transversal, 4 horizontal) manually annotated by domain experts. The annotators
have marked nuclei and cell centers with circular annotations; each slice is annotated twice
and then the consensus annotation is used. For the cell segmentation, we distinguish two types
of errors: false merges, which are given by a segmented cell that is matched to more than
one annotation, and false splits, which are given by a cell without matching annotation or an
annotation matched to more than a single cell. Based on 406 annotations, we find 6.30 % false
splits and 3.23 % false merges. For the nucleus segmentation, we find false positive errors,
corresponding to a segmented nucleus without matching annotation, and false negative errors,
corresponding to an annotation without matching nucleus. We observe a false positive rate of
0.49 % and a false negative rate 0.55 % based on 2888 annotations. See Figure 6.2 (A) for
examples of annotations and the types of errors.

97

98

Figure 6.1: (A) Cells and nuclei are segmented in 3D in the whole EM volume. Horizontal section (top)
and transversal section (bottom) with 3D renderings of all cells (left half) and nuclei (right
half). The cellular segmentation yields accurate 3D reconstructions for the different cell
types. (B) Intertwining epithelial cells are reconstructed, see colored segments overlayed
with EM (top) and 3D rendering (bottom). (C) Long stretching muscles are segmented
correctly, see overlay with EM in the top image. This bundle of muscles is highlighted in the
bottom rendering, with the corresponding bundle on the other side colored less brightly and
all other reconstructed muscles rendered in brown. (D) We studied the nephridia in more
detail and also reconstructed their cilia bundle. Seven cells contribute to this bundle, see the
top image for an intersection of one of these cells and the bundle and the bottom image for a
3D rendering of the seven cells and cilia where each cilium is colored the same as the cell it
is attached to.

6.1.2 Further Analysis

Based on the complete cellular segmentation, we can compute detailed morphological descrip-
tions and use the segmented cells to integrate data from different modalities. Here, we first map
gene expression data to the EM data-set, then compute morphological descriptors of the cells
and correlate gene expression and morphology.

Gene Expression Atlas and Registration The number and position of cells at a given
developmental phase is stereotypical in Platens [222], which allows for the generation of gene
expression atlases for the whole body with cellular resolution. Here, we build on the gene
expression atlas from [219]. It was obtained by imaging genetic markers for 153 specimens
and registering the individual specimen to a common reference coordinate system via nucleus
positions. The marker images for individual specimen were then averaged to obtain a single
volume per marker. The gene expression atlas contains 205 image volumes for the different
markers at a pixel size of 0.55×0.55×0.55 micrometer, so at a significantly coarser resolution
than the EM data-set (10×10×25 nanometer).
We register the gene expression atlas to the EM coordinate system based on the nucleus signal,
which is available via DAPI2 in the former and via the segmented nuclei in the latter. The
registration is performed by first applying a similarity transformation followed by a sequence
of B-Spline transformations, using the software package elastix [106]. Based on 43 landmarks
that were manually identified in both data-sets, we find a median landmark discrepancy of 2.99
micrometer, which is less than one cell diameter. Figure A.9 illustrates the registration process
and shows examples for several gene expression maps overlaid with the EM after registration.

2DAPI is a fluorescent marker that binds to parts of the DNA and is used for fluorescent imaging of nuclei.

99

Cell Morphology and Clustering The combined resource of EM image volume, seg-
mented tissues, cells, nuclei and ultra-structure as well as gene expression data provides a rich
resource, which enables to investigate the link between gene expression and cellular morphol-
ogy. As a first step, we investigate how the segmented cells can be characterized based on their
morphology only and compute a set of 140 morphological descriptors per cell, derived from
cell and nucleus shapes, intensities and texture. Some of these descriptors are also derived from
a further segmentation of the nuclei into heterochromatin (electron dense part) and euchromatin
(less electron dense), using ilastik pixel classification [22]. The chromatin patterns are a proxy
for the DNA configuration inside the nucleus.
We visualize the high-dimensional space defined by the morphological descriptors using UMAP
[139] and further cluster the cells with graph-based community detection [26], resulting in
11 distinct clusters. Figure 6.2 (D) shows the clusters mapped onto the UMAP and (E) shows
them mapped to a cross-section of the EM: individual clusters cover anatomically distinct parts
of the animal. To further quantify the usefulness of our morphological descriptors, we use them
to recover pairs of cells that are bilateral partners, i.e. two corresponding cells in the left and
right part of the body3. For each segmented cell, we rank all other cells by their euclidean
distance in the descriptor space and find the first neighbor that is a potential bilateral partner.
The criterion for a potential partner is determined by the spatial distance of positions mirrored
at the symmetry plane of the animal, using the mean distance of 202 manually identified
bilateral partners as matching criterion. Figure 6.2 (C) shows the fraction of cells that have a
bilateral partner as K-th neighbor for different descriptor sets: all descriptors, restricted to the
descriptors derived from cell, nucleus or chromatin segmentation. These four sets of descriptors
perform significantly better than random assignment, demonstrating that they characterize the
cell morphology well.

3Platynereis has a bilateral symmetry, thus many, but not all, cells have a unique partner cell [219]

100

101

Figure 6.2: (A) Nuclei and cells were annotated by domain experts for 8 slices (4 transversal, 4 hori-
zontal), see the leftmost image for example annotations. We use these annotations to find
false merge errors, see the two middle images with arrows highlighting the cell membrane
not picked up, and false split errors, see the two rightmost images with arrows highlighting
parts of the cell that are split off in the segmentation. (B) The distribution of cilia per cell
is stereotypical for the nephridia on both sides of the animal. Cilia in a given cross-section
of the cilia bundle start off from the same cell, see segmented cilia colored by their origin
cell overlayed with the EM. Upper image shows a cross-section of the right nephridium,
lower image of the left one. (C) Bilateral pair analysis - the graph shows the fraction of cells
that find a potential bilateral partner within a certain number of neighbors when ranking all
other cells by the euclidean distance of morphological descriptors. The set “all” consists of
all descriptors, “cell” only consists of descriptors derived from the cell shape, texture and
intensity, same for “nucleus” and “chromatin”, but for the corresponding segmentation. The
baseline “randomized” is computed by taking the mean of 100 random rankings per cell.
(D) UMAP of the space defined by all morphological descriptors, colored by the 11 clusters
obtained from community based clustering. The gray boxes mark some distinct categories
of cells that can be identified based on the morphological descriptors. (E) Clusters from (D)
overlaid on a cross-section of the EM.

To further investigate the gene expression, we compute an expression value per gene for each
cell. Here, we use the fraction of the spatial overlap of the cell mask and gene expression;
resulting in a value in range 0 to 1. We visualize the space defined by the expression values
using UMAP and cluster the gene expression space, again using the community based approach
of [26]. This results in 15 distinct clusters, see Figure 6.3 (A). In (B) the same UMAP is
displayed with an overlay of the the segmented organs and tissues, showing that these have
distinct profiles in the gene expression space.
For a more detailed analysis of how gene expression relates to tissue boundaries, we focus on
the head, the region with the highest gene expression density. It is already highly subdivided at
six days [37]. We subdivide the head into nine anatomically distinct parts, referred to as ganglia
in the following, by manually assigning segmented cells, see Figure 6.3 (C). We notice that six
of the genetic clusters in the head show a clear spatial correlation to the anatomically defined
ganglia. To quantify this relationship, we calculate a specificity score for each genetic cluster
and the individual genes with the ganglia. We use the F1-score based on the fraction of cluster
cells (cells expressing the gene) belonging to the ganglion and the fraction of ganglia cells
that belong to the cluster (express the gene). Remarkably, for almost all ganglia the specificity
values for the individual genes were considerably lower than the specificity values for the gene
clusters (exceptions were ganglia 3 and 6 that are very small), see for example (D). Genes with

102

relatively high specificity values often encode known transcription factors4. Characterizing
these factors further we found that expression occurs in coherent and overlapping domains, but
covers several of the cluster-defined territories. These findings indicate that the Platynereis head
is subdivided into domains that are combined by expression of several transcription factors,
rather than a single factor, which largely correspond to morphologically distinct brain ganglia.

Figure 6.3: (A) UMAP of all cells based on the expression data of all 201 genes in the atlas. The
points are colored by their membership to the different gene expression clusters c0-c14. (B)
Segmented tissue and regions mapped onto the gene expression UMAP. (C) Comparison of
anatomically defined ganglia (top row) with genetically defined clusters (bottom row) in the
animal head. (D) Comparison of specificity of gene clusters and individual genes for the two
ganglia g1 and g9, showing the top 10 scoring genes / clusters.

Data Exploration The EM image volume, the segmentations and the registered gene
expression maps form a valuable resource, that we hope will enable further insights into the
relation of genotype and phenotype in Platynereis and beyond. However, the number and size

4Transcription factors are proteins that control the rate of DNA transcription and are often differentially expressed
across different tissues.

103

of image source, currently 231 sources adding up to over 2TB of lossless compressed data,
make it difficult to explore and interrogate the data for scientific discovery. We have therefore
developed a platform for multi-modal big image data exploration and sharing, short MoBIE,
to explore and share the data-set at hand and simplify the interaction with large multi-modal
image data in general. At its core, MoBIE is a viewer for large 3D data based on BigDataViewer
[174]. It is available as a Fiji plugin [188]. It makes use of the main features of BigDataViewer:
browsing large image data stored in a chunked pyramidal data format, arbitrary plane slicing
of 3D data and on-the-fly affine transformations that allow to simultaneously display data of
different resolutions, such as EM and genes in our case.
It provides additional features that are essential to efficiently interact with multi-modal data-sets
and segmentations: a user interface to select an arbitrary number of image sources, look-up
tables for displaying segmentations, tables linked with the segmented objects that can, for
example, be used to look up and visualize the cell morphology descriptors or their gene
expression. We also integrate 3D rendering of segmented objects via the Fiji 3D viewer
[190] and bookmarks to save and navigate to points of interests. For data access without
the need for downloading complete data-sets, the MoBIE viewer supports streaming data
from any S3 compatible web object store, see Section A.1.3 for details. For an overview
of the main elements of the MoBIE viewer, see Figure A.2. MoBIE is available as free
open source software at https://github.com/mobie/mobie-viewer-fiji; all
the data generated for the Platynereis data-set is available at https://github.com/
mobie/platybrowser-datasets.

6.2 Segmentation of a Sponge Choanocyte Chamber

Sponges are sister to nearly all other animals [227, 193]. Unlike most animals, they lack bona
fide neurons, muscles, and a gut. Rather, their body plan is composed of a few basic cell types
that act to create an efficient water pump for filter-feeding and waste removal. Among these,
the choanocytes form spherical chambers. They exhibit microvilli and a flagellum that beats
to drive water through the sponges pore system. Despite their simple organization, sponges
possess genes encoding conserved molecular machinery found in neurons and muscles of
bilaterian animals. This includes components of the bilaterian neuronal pre- and postsynapse
[126].
However, prior to the work of Musser et al. [153], which we have contributed to, cells with
integrative signaling functions were unknown. There, single cell RNA sequencing revealed
so-called neuroid cells, which express a genetic profile similar to neurons in biletarians, among
the identifiable cell types. These cells potentially form an early stage in the evolution of
neurons, presenting an important link in animal cell type evolution and the origins of the

104

https://github.com/mobie/mobie-viewer-fiji
https://github.com/mobie/platybrowser-datasets
https://github.com/mobie/platybrowser-datasets

nervous system. To determine their function, a 30 micrometer cubed FIBSEM volume was
imaged and correlative light microscopy was used to find back neuroid cells, see Figure 6.4.
The neuroid cells are located in the center of choanocyte chambers and interact spatially
with the chaonocytes, suggesting that they coordinate the choancytes flagella movements.
In order to analyze these interactions in more detail (Section 6.2.2), we have produced an
instance segmentations of all cell bodies, flagella and microvilli in the choanocye chamber
(Section 6.2.1).

6.2.1 Segmentation

To study the interaction of choancytes and neuroid cells in EM, we segment the relevant
structures, namely cell bodies of choanocytes, apopylar and neuroid cells as well as microvilli
and flagella. The size, shape and frequency of instances of these three classes differs greatly.
In addition the intensity histogram shifts between parts of the data-set that were imaged
in different sessions. These facts make the task at hand too challenging to be solved by a
simple thresholding based approach. Thus, we employ the Lifted Multicut based segmentation
workflow of [167], see also Section 4.3.
We use the autocontext workflow of ilastik [22] to generate boundary and semantic probabilities.
This algorithm consists of multiple stages of pixel classification. In an individual stage a random
forest classifier predicts semantic class probabilities for each pixel. The classifier is trained
from sparse labels and uses the responses of convolutional filter banks applied to the input
data as features. Each stage is presented with the raw data and the predictions of the previous
stage, thus refining the predictions from the previous stage. Here, we perform three stages
of autocontext: in the first and second stage, we predict six different classes: background,
object boundary (corresponding to membranes of cells, flagella and microvilli), cytoplasm,
nucleus, flagellum and microvillus. In the third stage, we only predict object boundary versus
background. See Figure 6.5 (b) for exemplary predictions from the second stage.
We use the boundary predictions from the third stage and the class predictions from the
second stage to perform Lifted Multicut based segmentation, see also Figure 6.5: first, distance
transform watershed superpixels are generated from the boundary predictions, see panel (c).
The region adjacency graph is built from the superpixels and edge costs are derived from
the mean accumulated boundary probabilities. The graph is then augmented by sparse lifted
edges: we first compute the connected component of the thresholded microvilli and flagella
predictions, see panel (e). Then, we map the resulting segments to graph nodes via overlap
with the corresponding superpixels. Attractive lifted edges are then introduced between nodes
mapped to the same objects, see panel (f). The resulting Lifted Multicut problem is solved with
the algorithm introduced in [167] (Section 3.3.2).
Note that segmentation via the Multicut problem based on the graph without lifted edges is also

105

possible. However, we observe that this segmentation heavily over-segments microvilli and
flagella. Both structures have an elongated shape with small diameter, which results in small
superpixels and non-robust estimates for the edge costs based only on boundary predictions.
Hence, we add the attractive lifted edges derived from more robust semantic predictions to
alleviate the degree of over-segmentation. The segmentation obtained via connected compo-
nents on the thresholded predictions on its own is of inferior quality; it falsely merges almost
all cell bodies and systematically lacks segments for microvilli. For a quantitative comparison
between Multicut and Lifted Multicut segmentation, please refer to Section 4.4.3. Note that
the problem set-up there also includes repulsive lifted edges. This is omitted here, because
under-segmentation of microvilli was not a concern; see also Section 6.2.2.

6.2.2 Analysis

For further analysis, the cell bodies from the automated segmentation were proofread and
microvilli forming the collar around the flagella were merged into a single object. This was
achieved manually using the proof-reading tool paintera [72].
The volume contains two neuroid cells situated inside the chamber, see Figure 6.4 panels (a) to
(c). The first neuroid cell is positioned in the center of the chamber (violet cell in (a)), with the
second cell residing near the apopylar pore (red cell in (b)).
Our reconstruction revealed that both neuroid cells form multiple protrusions, each directed
towards the collar of individual choanocytes, see panels (b) to (f). Strikingly, nearly all exten-
sions from the neuroid cells contact and enwrap one or more microvilli (panels (d) to (e)), with
each extension reaching to a different choanocyte collar. In several cases, we also observed
neuroid cell extensions in close proximity to flagella, and even orienting themselves along the
main flagella axis. Flagella in close contact with the neuroid protrusions emerged straight, and
then bent, contrasting with the undulatory, corkscrew-like appearance of normal motile cilia,
suggesting they may not be actively beating.
Overall these spatial interactions confirm that communication between neuroid cells and
choanocytes through neurotransmitters is possible. Hence, neuroid cells are likely to play a key
role in the coordination of choanocyte movements and are thus likely to represent an important
stage in the evolution of neural cell types.

106

Figure 6.4: FIBSEM of neuroid-choanocyte interaction. (a) Rendered 3D volume of choanocyte chamber
with neuroid cell (violet). (b) Segmented volume showing two neuroid cells (violet and red)
contacting flagella and microvillar collars of three choanocytes (blue, turquoise, and green)
and apopylar cells (yellow). (c) Segmented neuroid cell (violet) with filopodia extending
into the microvillar collar (turquoise). (d-f) 2D images of neuroid cells (choNrd; purple and
red) filopodia extending into, and enwrapping, choanocyte microvilli (Mv; turquoise and
dark blue), and contacting apopylar cell (Apo; yellow).

107

Figure 6.5: We derive semantic and boundary predictions (b) from the raw data (a) using the ilastik
autocontext workflow. We compute a watershed over-segmentation (c) and build a graph with
edge costs derived from boundary evidence; indicated by green (attractive) and red (repulsive)
lines in (f). In addition, we compute an instance segmentation based on thresholding flagella
and microvilli predictions from (b) and map these to watershed segments / graph nodes (e).
We introduce attractive lifted edges (green dashed lines in (f)) between nodes that were
mapped to the same segment. We solve the lifted Multicut problem to obtain the instance
segmentation (d).

108

6.3 Immunofluorescence based Testing for SARS-CoV-2
Antibodies

The recent emergence of the novel coronavirus SARS-CoV-2 [237, 89] and the rapid pandemic
spread of the virus has dramatic consequences in all affected countries. Testing for SARS-CoV-
2 infection and tracking of transmission and outbreak events are of paramount importance to
control the pandemic. The sequence of the viral genome became available only weeks after
the initial reports on COVID-19 and allowed rapid development of reliable and standardized
quantitative PCR based tests for direct virus detection [45]. While these tests are the key to
identify acutely infected individuals, monitoring and tracking of SARS-CoV-2 specific antibody
levels becomes highly important to understand the immune response against SARS-CoV-2 and
monitor infection levels in the general population. Therefore, specific, sensitive and reliable
methods for the quantitative detection of virus specific anti-bodies are urgently needed from
the beginning of an emerging pandemic.
Compared to approaches for direct virus diagnostics by PCR, development of test systems for
detection of SARS-CoV-2 specific antibodies proved to be more challenging. While ELISA [58]
based antibody test kits for SARS-CoV-2 serological diagnostics are commercially available,
the initially marketed test kits underwent a rapid development and approval process; thus only
small sample sizes were used for validation. Consequently, sensitivity and specificity of the test
systems often failed to meet the practical requirements [229]. Thus, complementary strategies
to test for antiviral antibodies that can be rapidly deployed in situations where commercially
available kits are either not yet developed or not available are an important addition to the
diagnostic toolkit.
Immunofluorescence (IF) using virus infected cells as a specimen is a classical serological
approach in virus diagnostics and has been applied to coronavirus infections [36]. The advan-
tages of IF are that it does not depend on specific diagnostic reagent kits or instruments and
that the specimen contains all viral antigens expressed in the cellular context, thus providing
high information content. The main disadvantage of the IF approach, as it is typically used
in serological testing, is its limited throughput capacity due to the involvement of manual
microscopy handling steps and sample evaluation based on visual inspection. Furthermore,
visual classification is subjective and thus not well standardized and yields only binary results.
Here, we address those limitations, making use of high-throughput microscopy and image
analysis methods developed for basic research. We establish and validate a semi-quantitative,
semi-automated workflow for SARS-CoV-2 specific antibody detection, combining the ad-
vantages of IF with a reliable and objective readout and high throughput compatibility. The
protocol described here was developed in response to the emergence of SARS-CoV-2, but it
represents a general approach that can be adapted for the study of other viral infections and is

109

suitable for rapid deployment to support diagnostics of emerging viral infections in the future.
It has already been applied to validate other serological tests in a large population study [208]
and has been integrated into a new reporter system for drug discovery [165].

6.3.1 Immunofluorescence Assay and Image Acquisition

We set up the IF analysis using cells infected with SARS-CoV-2 as samples. African green
monkey kidney epithelial cells [162] (Vero E6 cell line) are used for infection with SARS-CoV-
2, virus production and IF. Our strategy involves a direct comparison of the IF signal when
mixing the examined serum with infected and non-infected cells in the same sample. This
enables the clear identification of positive reactivity in spite of a variable and sometimes high
nonspecific background from human sera. Preferential antibody binding to infected compared
to non-infected cells indicates the presence of specific SARS-CoV-2 antibodies in the examined
serum. Under our conditions, infection rates of 40% to 80% of the cell population were
achieved, allowing for a comparison of infected and non-infected cells in the same well of
the test plate. An antibody that detects double-stranded RNA (dsRNA) produced during viral
replication was used to distinguish infected from non-infected cells within the same field of
view. The bound SARS-CoV-2 antibodies are detected using fluorophore-coupled secondary
antibodies against human IgG, IgA or IgM.
In summary, the assay and image acquisition proceeds as follows: Vero E6 cells are seeded into
96-well plates infected and immunostained using anti-dsRNA antibody and patient serum, fol-
lowed by indirect detection using a mixture of anti-IgG and anti-IgA/IgM secondary antibodies.
Images are acquired using an automated widefield microscope. Figure 6.6 panel (A) provides
an overview of these steps, panel (B) shows example IF images for a COVID-19 patient and a
healthy donor.

6.3.2 Quantitative Analysis

To obtain a measure for specific antibody binding we perform automated segmentation of
cells and classify them into infected and non-infected based on the dsRNA staining. We then
measure fluorescence intensities in the serum channel per cell as a proxy for the amount of
bound antibodies for both infected and non-infected cells. The ratio between these values for
infected and non-infected cells is used to score the SARS-CoV-2 antibody response. To enable
training of a machine learning approach for cell segmentation and to directly evaluate infected
cell classification, we have manually labeled cells and annotated them as infected/non-infected
in ten images, chosen from five positive and five control samples. Figure 6.7 presents an
overview of all analysis steps; the full description of all steps can be found in Section A.6.1.
Briefly, our approach works as follows:

110

First, we manually discard all images that contain obvious artifacts such as large dust particles or
dirt and out-of-focus images. Then, images are processed to correct for the uneven illumination

Figure 6.6: Principle of the immunofluorescence assay for SARS-CoV-2 antibody detection. (A) Scheme
of the IF workflow and the SARS-CoV-2 antibody detection. (B) Representative images
showing immunofluorescence results using a COVID-19 patient serum (positive control,
upper panels) and a negative control serum (lower panels), followed by staining with a
anti-IgG secondary antibody. Nuclei (gray), IgG (green), dsRNA (magenta) channels and
a composite image are shown. White boxes mark the zoomed areas. Dashed lines mark
borders of non-infected cells that are not visible at the chosen contrast setting. The insets
show that infected cells have a much higher intensity than non-infected cells in the serum
channel for the positive control, while showing the same intensities in the negative control.

111

profile in each channel. Next, we segment individual cells with a seeded watershed algorithm
[25], using nuclei segmented via StarDist [191] as seeds and boundary predictions from a U-Net
[180, 236] as height map. We have evaluated this approach using leave-one-out cross-validation
and measured an average precision [59] of 0.77 ± 0.08 (i.e., on average 77% of segmented cells
are matched correctly to the corresponding cell in the annotations). Combined with extensive
automatic quality control, which discards outliers in the results, the segmentation was found
to be of sufficient quality for our analysis. Especially since robust intensity measurements are
used to reduce the effect of remaining errors.
We then classify the segmented cells into infected and non-infected, by measuring the 95th
percentile intensities in the dsRNA channel and classifying cells as infected if this value
exceeded 4.8 times the noise level, determined by the mean absolute deviation. This factor
and the percentile were determined empirically using grid search on the manually annotated
images (see above). Using leave-one-out cross validation on the image level, we found that this
approach yields an average F1-score of 84.3%.
In order to make our final measurement more reliable, we discard whole wells, images or
individual segmented cells based on quality control criteria that were determined by inspection
of initial results. Those criteria include a minimal number of non-infected cells per well;
minimal and maximal number of cells per image; minimal cell intensities per image; and
minimal and maximal sizes of individual cells.
To score each sample, we computed the intensity ratio:

r =
mI

mN
(6.1)

Here, mI is the median serum intensity of infected cells and mN the median serum intensity
of non-infected cells. For each cell, we compute this intensity via the mean pixel intensity
in the serum channel, excluding the nucleus area, where we did not observe serum binding.
This value is subtracted by the background intensity, which is measured on two control wells
that do not contain any serum per plate. See Figure 6.8 for example segmentations and the
corresponding scores.
We use efficient implementations for all processing steps and deploy the analysis software on a
computer cluster to rapidly process the large amounts of image data. For visual inspection, we
have further developed an open-source software tool (PlateViewer) for interactive visualization
of high-throughput microscopy data. It can be used in a final quality control step to visually
inspect positive hits. For example, inspection with PlateViewer allowed us to identify a charac-
teristic spotted pattern co-localizing with the dsRNA staining, that was sometimes observed in
the IgA channel upon staining with negative control serum. Samples displaying this pattern
were discarded from further analysis.

112

Figure 6.7: Schematic overview of the image analysis pipeline. Initially, images are subjected to the man-
ual quality control, where images with acquisition defects are discarded. A pre-processing
step is then applied to correct for barrel artifacts. Subsequently, a cell segmentation is
obtained via seeded watershed, using a nucleus instance segmentation as seeds and boundary
probabilities computed with a neural network as height map. Lastly, using the virus marker
channel, each cell is classified as infected or not infected and the infection score is computed.
A final automated quality control identifies and automatically discards non-conform results.
All intermediate results are saved in a database to ensure full reproducibility of the results.

6.3.3 Assay Characterization and Validation

Here, we characterize our proposed assay and compare it with an established ELISA test
approved for diagnostic use5. A main concern regarding serological assays for SARS-CoV-2
antibody detection is the occurrence of false positive results. In particular, these false positives
may originate from cross-reactivity of antibodies that originated from infection with any of the
four types of common cold Corona viruses (ccCoV) circulating in the population, as is the case
for SARS-CoV and MERS-CoV [143]. Also, acute infection with Epstein-Barr virus (EBV)
or cytomegalovirus (CMV) may result in unspecific reactivity in human sera [116, 69]. We
therefore selected negative control samples consisting of 218 sera collected before the fall of
2019, comprising samples from healthy donors (n = 105, cohort B), patients that tested positive

5Euroimmun, Lübeck, Germany

113

Figure 6.8: Examples of results from the automated image analysis pipeline. Panels display images that
correspond to three different ratio scores, indicated above the images. White boxes mark the
zoomed area. Cells in the insets are highlighted with yellow or cyan boundaries, indicating
infected and non-infected cells, respectively.

for ccCoV several months before the blood sample was taken (n = 34, all four types of ccCoV
represented; cohort A), as well as patients with diagnosed Mycoplasma pneumoniae (n = 22;
cohort Z), EBV or CMV infection (n = 57, cohort E). We further selected 57 sera from 29 PCR
confirmed COVID-19 patients, collected at different days’ post symptom onset, as positive
samples (cohort C).
Based on the scores (Equation 6.1) obtained for the samples of cohorts A, B, C and Z we
defined the threshold separating negative from positive scores for each of the antibody channels.
Since we envision the use of the assay for screening approaches, we decided to assign more
weight to specificity at the cost of sensitivity and arrived at thresholds 1.39, 1.31, and 1.27 for
IgA, IgG and IgM antibody channels based on ROC curve analysis [245]. For more details
on this analysis, please refer to Section A.6.2. We validated the classification performance on
negative control cohort E, that was not used for threshold selection, and detected no positive
scores.

Assay specificity characterization While the majority of the control samples tested
negative in ELISA measurements as well as in the IF analyses, some false positive readings
were obtained in each of the assays, in particular in the IgA specific analyses, see Table 6.1.
Roughly 10.6 % (IgA) or 3 % (IgG) of the samples were classified as positive or potentially
positive by ELISA. The respective proportion of false-positive obtained based on IF, 0% for
IgA and 0.9% for IgG, were lower, indicating higher specificity of the IF readout compared
to the ELISA measurements. Importantly, false positive readings did not correlate between
ELISA and IF, see Figure A.10. We conclude that applying both methods in parallel and using

114

the “double positive” definition for classification notably improves specificity of SARS-CoV-2
antibody detection.

Negative cohort IF IgM IF IgA IF IgG ELISA IgA ELISA IgA

B (n=105) 1 0 1 7 5

A (n=34) 0 0 1 3 1

Z (n=22) 0 0 0 2 0

E (n=57) 0 0 0 11 1

Total (n=218) 1 (0.5%) 0 (0.0%) 2 (0.9 %) 23 (10.6%) 7 (3.2%)

Table 6.1: Summary of positive results obtained by ELISA and IF for the negative control samples. The
classification of ELISA results followed the definition of the test manufacturer. Cohort B:
healthy donors, cohort A: patients that tested positive for ccCoV, cohort Z: patients with
diagnosed Mycoplasma pneumoniae, cohort E: patients with EBV or CMV infection.

Assay sensitivity characterization In order to determine the sensitivity of our IF assay,
we used the positive samples from cohort A. These samples have been collected from patients
within 5 to 27 days post symptom onset. Again, samples were measured both in IF and ELISA.
For an assessment of sensitivity, we stratified the samples according to the day post symptom
onset, as shown in Table 6.2. The correlation between the semi-quantitative values was assessed
in Figure A.11. For both methods, and for all antibody classes, mean values and the proportion
of positive samples increased over time. In all cases, only positive values were obtained for
samples collected later than 14 days post symptom onset, in accordance with other reports
[163, 131]. At the earlier time points (up to day 14), a similar or higher proportion of positive
samples was detected by IF compared to ELISA for IgG.

Days after symptoms IF IgM IF IgA IF IgG ELISA IgA ELISA IgG

<11 (n=17) 7 (41%) 9 (53%) 7 (41%) 11 (65%) 3 (18%)

11-14 (n=24) 18 (75%) 19 (79%) 19 (79%) 19 (79%) 16 (67%)

>14 (n=16) 16 (100%) 16 (100%) 16 (100%) 16 (100%) 16 (100%)

Total (n=57) 42 (73%) 44 (77%) 42 (73%) 46 (80%) 34 (60%)

Table 6.2: Positive results obtained for sera from COVID-19 patients collected at the indicated days post
symptom onset.

115

7 Conclusion

In this thesis, we have established a method for boundary based segmentation problems in EM
and other microscopy modalities based on the Lifted Multicut partition problem (Chapter 2). In
order to scale this approach to large microscopy data-sets, we have introduced a block-wise
solver for Mulicut and Lifted Multicut, that enables solving previously infeasible problems
(Chapter 3). In addition, we have shown in Chapter 4, how lifted edges can be used to express
domain specific knowledge and thus significantly improve the segmentation accuracy by
making use of information not available locally. We have also introduced the Mutex Watershed
(Chapter 5), an algorithm that, combined with high quality predictions from a CNN, enables
instance segmentation directly from pixels, eliminating the often brittle step of seed generation
for “normal” watersheds. Finally, we have applied these methods in several collaborative studies
(Chapter 6), demonstrating their utility in biological research. In summary, our contributions
enable instance segmentation for large microscopy data-sets, the previously missing link in
automated image analysis for such data-sets. Given the increasing acquisition throughput and
field of view of modern microscopes, we envision that our contribution will provide crucial
help in the analysis of many such data-sets for a wide range of biological applications.
Largely due to the recent adoption and improvement of deep learning methods, the segmentation
quality is often sufficient for downstream analysis tasks directly, or with only minor corrections.
These methods, however, need large amounts of training data to produce such high-quality
segmentations. Given the elimination of scaling as a bottleneck, generating enough training
data has become the new rate-limiting step for (high-quality) automated instance segmentation.
Especially, since ground-truth segmentations can only be produced by domain experts for
many microscopy segmentation problems. Recent advances in self-supervised learning for
image classification [40, 84, 70, 77] offer a perspective solution. By solving an unsupervised
contrastive learning task, these methods learn to generate representations that can be fine-tuned
for the target task with only small amounts of extra training data. Astonishingly, they often
produce results of the same, or even higher, quality than methods trained fully supervised.
In a very recent contribution, the authors of [216] have adapted these methods to semantic
segmentation for natural images with some success. We are optimistic that similar methods
will also be applicable in microscopy and in fact have contributed to preliminary work towards
this goal [235].
Here, Mutex Watershed offers an interesting perspective: this algorithm is fast enough to

117

provide user corrections for instance segmentation in an interactive fashion. In fact, we have
already developed a prototype for a correction tool based on this idea1. In the future, we hope to
use this approach for providing the labels necessary to fine-tune unsupervised representations
in an interactive manner.
Another promising future direction of research is the extension of the block-wise Multicut
solver. On the one hand, it could be extended to other Multicut applications than instance
segmentation by finding suitable spatial domains. On the other hand, this algorithm could be
extended to more generalizations of the Multicut, such as higher order Multicuts [95], higher
order Lifted Multicuts [101] or Multicut formulations for joint node partitioning and labeling
[123, 113].

1https://github.com/constantinpape/affogato/blob/master/example/
interactive/interactive_napari.py

118

https://github.com/constantinpape/affogato/blob/master/example/interactive/interactive_napari.py
https://github.com/constantinpape/affogato/blob/master/example/interactive/interactive_napari.py

Appendices

119

A Appendix

A.1 Software

The methods developed as part of this thesis are made available as open-source software. They
are already used by several other publications, e.g. [134, 119, 192, 226, 177, 16, 80] and
as dependency of other software libraries: ilastik [22] and plantseg [236] use the Multicut
functionality provided by elf (see below) and Neurokube [133], a framework for EM neuron
segmentation via Kubernetes, makes use of our scalable segmentation implementation for large
scale neuron segmentation.
While implementing our methods, we have used, whenever possible, available open source
software. Especially numpy [73], scipy [221], scikit-image [215], scikit-learn [171] and vigra
[109] are used for numerical algorithms, image analysis methods and machine learning algo-
rithms. We made heavy use of napari [196] for visualization and use pytorch [170] for training
and inference of neural networks.
Novel algorithms are implemented in C++ for efficiency reasons. They have either been
contributed to nifty1, a library for image segmentation and graph partitioning initially developed
by Thorsten Beier or were implemented in affogato2, a library for affinity based segmentation
methods that we have implemented together with Steffen Wolf. Both libraries make use of
xtensor3 for multi-dimensional arrays and pybind11 4 to generate python bindings.
For convenient training of neural networks, we have implemented torch-em5, a wrapper around
pytorch that provides commonly used functionality for microscopy segmentation.
To make the segmentation functionality and other methods developed in this thesis available
in a convenient and unified manner, we have implemented elf6. This python library offers a
high-level functional interface for the segmentation algorithms and other image analysis tools.

1https://github.com/DerThorsten/nifty
2https://github.com/constantinpape/affogato
3https://github.com/xtensor-stack/xtensor
4https://github.com/pybind/pybind11
5https://github.com/constantinpape/torch-em
6https://github.com/constantinpape/elf

121

https://github.com/DerThorsten/nifty
https://github.com/constantinpape/affogato
https://github.com/xtensor-stack/xtensor
https://github.com/pybind/pybind11
https://github.com/constantinpape/torch-em
https://github.com/constantinpape/elf

A.1.1 Chunked Data Storage

Efficient access to large volumetric data is often implemented using a chunked multi-
dimensional data format. Instead of contiguously storing the data, these formats store it
in multi-dimensional chunks of a fixed size. This data layout enables efficient access to sub-
volumes because only chunks overlapping with the request have to be loaded, see Figure A.1.

Figure A.1: Multi-dimensional (nd) data storage layouts. Example shown in 2d, extension to higher
dimensions is trivial. (a) Contiguous storage: the data is serialized as single buffer, here
using row-major layout. (b) Chunked storage: the data is serialized into multiple buffers,
one for each chunk of fixed nd size. (c) Rows can be efficiently accessed in contiguously
stored data. (d) Accessing columns is inefficient, because all interleaving rows (dashed
lines) have two be loaded. (e) Loading columns is efficient for chunked storage and ap-
propriate chunk size. The panels are extracted from https://support.hdfgroup.
org/HDF5/doc/Advanced/Chunking.

The most popular for chunked data storage is HDF5 [63]. It implements it using a single file
filesystem that also support hierarchical grouping of data containers. In addition, it enables

122

https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking
https://support.hdfgroup.org/HDF5/doc/Advanced/Chunking

compression by applying compression filters to chunks. Chunks can be read from the data in
parallel.
However, placing all chunks in a single file introduces two important drawbacks: it is not,
naively7, possible to write data in parallel, even if the chunks to be written do not overlap. It is
also not straight-forward to access individual chunks in HDF5 files in a web store, for example
an AWS S3 bucket.
To tackle these issues, two file formats, n5 [29] and zarr [147], have recently emerged in the
bio-imaging community. Instead of storing chunks in a single file, they store them as individual
files and also implement compression on a per chunk basis. This design enables naive parallel
read and write operations and access in a web store on a per chunk basis. The effort to further
standardize and merge these data formats, with the stated goal to establish a standard file format
for microscopy images, is ongoing [148]. Note that HDF5 has introduced so-called region
references [63], which enable placing chunks in different files as well. However, this feature is
not supported by all HDF5 implementations yet and thus not widely adopted in the bio-imaging
community.
In this thesis, we make heavy use of these emerging data-formats to enable parallel I/O. These
data formats also enable the cloud based data access for MoBIE, see Section A.1.3. We have
also implemented z58, a C++ library to read and write these file formats. It also offers python
bindings that implement the same interface as the popular h5py9 library.

A.1.2 Distributed Computation

While the software for instance segmentation that we have described in the first paragraphs
of Section A.1 is implemented with efficiency in mind, it does not, on its own, scale to large
microscopy data-sets. In particular, it must be possible to process data that is significantly
larger than main memory to deal with such data-sets. To this end, we have implemented
cluster_tools10, a high-level python library that implements our instance segmentation methods
for distributed computing. It makes use of the n5 file format (see previous section) to enable
processing volumetric data of arbitrary size, making use of chunked parallel read and write
operations. It uses luigi11 to build workflows and cache progress. It supports slurm and lsf
compute clusters and is extensible to other scheduling systems.

7HDF5 can be used with MPI to support parallel write access [63]. This mode of operation is however not widely
used by the bio-imaging community, which uses a wide variety of programming languages and tools, which
often do not support MPI.

8https://github.com/constantinpape/z5
9https://github.com/h5py/h5py

10https://github.com/constantinpape/cluster_tools
11https://github.com/spotify/luigi

123

https://github.com/constantinpape/z5
https://github.com/h5py/h5py
https://github.com/constantinpape/cluster_tools
https://github.com/spotify/luigi

For embarrassingly parallel tasks, such as neural network inferences, it relies on inter-process
communication through files to map each worker to its assigned part of the input volume. For
some of the computational steps a map-reduce like approach is necessary. Take the example of
building a region adjacency graph from a segmentation. In a first step, the sub-graphs for all
chunks are computed using the embarrassingly parallel approach. In a second step the complete
graph is constructed by iterating over the sub-graphs, identifying the unique nodes and edges
and introducing a consecutive edge index. The “reduction” steps are implemented in nifty and
run on a single node.
Within cluster_tools we provide scalable implementations of neural network inference, wa-
tershed segmentation, (Lifted) Multicut problem extraction, the block-wise (Lifted) Multicut
solver and many other image analysis algorithms. See Section 3.4.3 for performance measure-
ments when applied to a large segmentation problem.

A.1.3 MoBIE and Data Sharing

We have developed MoBIE as part of [218] to explore and share this large data-set. Since then,
we have extended the tool significantly and it is also being used for several other projects,
including [47].
In a nutshell, MoBIE consists of two parts: first, a data specification for large image data,
making use of chunked data formats (see Section A.1.1) and multi-scale image pyramids. It
also supports tables, stored as tab separated values and defines metadata, stored according to a
json schema. Second, a viewer that can load data stored according to the MoBIE specification,
both from the filesystem or a S3 compatible web object store.
The viewer is available as a Fiji plugin [188]. It uses BigDataViewer [174] to display the image
data. It implements additional functionality for exploring segmentations and data associated
with the segmented objects, which is stored in tables. It further supports 3D rendering of
segmented objects and image volumes, a convenient annotation mode, interactive scatter plots,
grid views and bookmarks that can be used to serialize and recreate the full viewer state.
Figure A.2 shows selected functionality for the data of [218].
The development of MoBIE has been joint work with Christian Tischer and Kimberly Meechan.
It is available as open source software at https://mobie.github.io/; the Fiji viewer
can be installed from the MoBIE Fiji update site.

124

https://mobie.github.io/

Figure A.2: Core functionality of MoBIE with example data from [218]: (A) User interface to select
image sources, change their appearance, and navigate to specific locations in the animal.
(B) viewer window showing the SBEM image in a region of the animals head, with the
gene expression signal for six different genes. (C) viewer window of the same section as in
(B), displaying the cellular segmentation and a table storing attributes for the segmented
objects. (D) Screenshot of the full user interface illustrating the integration of modalities and
additional functionalities: the expression of gene “arx” is shown in yellow; three segmented
neurons are shown next to it; below is shown the annotation table highlighting the rows that
correspond to the objects selected. Next to it, the 3D Viewer window shows a rendering of
the selected cells; the colors for a given object are identical in the 2D Viewer overlay, 3D
rendering and table. Below the main menu, the log window shows a ranked list of the gene
expression where the mouse cursor is positioned (white arrow).

125

A.2 Multicut and Lifted Multicut for EM Segmentation

Training hyperparameters of the ICv1 network: The network was trained using pixel-
wise binary cross-entropy loss. Binary boundary / no-boundary target labels were smoothed
[203] by computing the pixelwise negative exponential of the euclidean distance transform, The
raw image batches were normalized to zero mean and unit variance. The optimizer Adam [104]
was used with the following optimization hyperparameters: step size α = 0.0002, exponential
decay rates for moment estimates β1 = 0.9, β2 = 0.999, and a fuzz factor ε = 10−8 for
numerical stability. A L2 weight decay term with coefficient λ = 0.0005 was added to the
objective and dropout [199] (p = 0.5) was used.

126

A" B" C" D" E" F" G" H"
5122 2562 1282 642 1282 2562 5122

48 160 240 1024 240 160 48

5122

1

5122

1

2562

160

9"x"9"

9"x"9"
32

Next"
48

Input"
1

7"x"7;"s2"

5"x"5" 3"x"3"

1"x"1"3"x"3"

3"x"3"

Next"

128

64 64

6464

160

Previous"
48

Previous)

5)x)5) 3)x)3;)s2)

1)x)1)p3)x)3;)s2)

3)x)3)

160

64 64

9664

7)x)7) 5)x)5) 3)x)3)

1)x)1) 1)x)1)

3)x)3)

48 64100

48 64

Next)

160

240

Previous)

1)x)1) 3)x)3;)s2)

p3)x)3;)s2)

3)x)3)

240

192 512

192

Next)
1024

A"
5122

48

5122

1
B"

2562

160

5122

48
C"

1282

240

2562

160
D"

642

1024

1282

240

1"x"1" 3"x"3" 5"x"5"

3"x"3" 1"x"1"
384 384260

200 200

1024

3"x"3"

7"x"7" 3"x"3"

us"2"x"2"

512

18060

Next"

Previous"

240

3"x"3"

3"x"3" 5"x"5"

5"x"5"3"x"3"

5"x"5"

200

140 140

8080

160

Previous"
240

us"2"x"2"

Next"
160

5"x"5"

9"x"9" 5"x"5"

5"x"5"5"x"5"

5"x"5"

128

60 72

4848

60

Previous"
320

Next"
48

3"x"3"
48

us"2"x"2"

9"x"9"

1"x"1"

Softmax"
2

Previous"
48

5"x"5"

3"x"3"
16

16

32

E"
1282

240

642

1024
F"

2562

160

1282

240
G"

2562

48

1282

160

160

H"
5122

2

5122

48

Figure A.3: ICv1 neural network architecture. Purple boxes represent convolutional layers with kernel
size M × N , ELU non-linearity, and “same” border handling (i.e. the input and output
images have identical shapes). Green boxes annotated with pM × N ; sS denote max-
pooling layers over M ×N patches with stride S; while those annotated with M ×N ; sS
represent convolutional layers with stride S. Both layers reduce the image width and height
by a factor S. Orange boxes annotated us M × N show upscaling layers, where pixels
in the input feature maps are repeated M times vertically and N times horizontally. The
numbers next to arrows specify the number of feature maps flowing from one layer to the
next. Boxes with M outgoing arrows imply that the output of the layer is replicated M
times, while boxes with N incoming arrows imply that the layer receives N inputs, which
are concatenated depth-wise (i.e. along the feature axis) before being processed.

127

A.3 Scalable Multicut and Lifted Multicut Segmentation

A.3.1 Performance of extant Multicut Solvers

In addition to the results in Table 3.1, we plot the energy versus runtime for all three problems
in Figure A.4, Figure A.5 and Figure A.6. The initial decrease in energy afforded by the
greedy solvers gaec and gf happens on a much faster time-scale compared to the subsequent
decrease by the other solvers. Here, gaec converges faster, and to a lower energy, than gf.
The kl solver converged within less than four minutes for all three problems and affords a
further improvement in energy compared to gaec. The fm based solvers take longer to converge
and afford only a small improvement in energy; here fm_kl offers the best trade-off between
improvement and additional runtime. The cgc solver also provides only a marginal improvement
in the energy while taking long to converge.

Figure A.4: Performance of different solvers for the Sample A Multicut problem.

128

Figure A.5: Performance of different solvers for the Sample B Multicut problem.

A.3.2 Performance and Accuracy of the Block-wise Multicut Solver

In addition to the comparison of the block-wise Multicut solver to other methods in Table 3.3,
we compare different configurations of our solver. Table A.1 compares the performance and
accuracy for iterating the extraction and reduction step up to three times. Table A.2 compares
different block sizes for sub-problem extraction. Table A.3 compares different solvers for
solving the sub-problems and solving the reduced global problem.
We find that the energy of the partition decreases with increasing number of iterations. This is
expected, as the solver moves further away from the optimal solution when solving a global
problem that is further reduced. However, the less optimal solution does not have an adverse
effect on the segmentation quality; the scores are on par for all three configurations. For the
medium size problems the runtime is roughly the same for the different iteration numbers. Note
that this does not hold true for larger problems, where the global solution starts to dominate the
runtime, see Section 3.4.3.
The size of the blocks used for sub-problem extraction has a more significant influence on the

129

Figure A.6: Performance of different solvers for the Sample C Multicut problem.

segmentation quality. Here, quite surprisingly, using the smallest block size yields a significantly
better score for Sample A and B, while achieving a worse energy. This fact hints at a modeling
issue, i.e. incorrect edge costs that result in the optimal Multicut solution not corresponding to
the best segmentation. While this effect needs further study, it is likely to be data-set specific.
Our initial hypothesis is that it is caused by EM imaging artifacts and the resulting low-quality
network predictions. This explanation is consistent with the observation that these artifacts are
more prevalent in Samples A and B compared to Sample C. Furthermore, the runtime increases
significantly for the largest block size.
The choice of different solvers for sub-problems and global problem does not have a large
influence on the segmentation quality. Only using kl for both leads to a slightly worse score
compared to the other combinations. Using the expensive ilp solver for sub-problems leads to a
significant increase in runtime.

130

Sample A Sample B Sample C

Iterations Time Energy Score Time Energy Score Time Energy Score

1 88.0 -7.0600e+06 0.7187 130.0 -6.0614e+06 0.8429 128.0 -7.4506e+06 1.0777

2 79.0 -7.0590e+06 0.7078 117.0 -6.0598e+06 0.8538 106.0 -7.4492e+06 1.0809

3 91.0 -7.0587e+06 0.7009 140.0 -6.0595e+06 0.8432 118.0 -7.4491e+06 1.0858

Table A.1: Different number of problem reduction iterations. We have used an initial block size of 50
× 512 × 512 pixels and increase it by a factor of 2 in each dimension for every iteration.
The solver fm_ilp is used to solve sub-problems and fm_kl to solve the global problem.
Sub-problem extraction and reduction have used 24 workers for paralleization.

Sample A Sample B Sample C

Blocksize Time Energy Score Time Energy Score Time Energy Score

25, 256, 256 67.0 -7.0524e+06 0.5624 182.0 -6.0419e+06 0.7821 139.0 -7.4346e+06 1.0441

50, 512, 512 89.0 -7.0600e+06 0.7189 127.0 -6.0614e+06 0.8429 170.0 -7.4506e+06 1.0777

100, 1024, 1024 2423.0 -7.0735e+06 0.6702 1677.0 -6.0743e+06 0.8286 2012.0 -7.4652e+06 1.0986

Table A.2: Different blocksizes. The solver fm_ilp is used to solve sub-problems and fm_kl to solve the
global problem. Sub-problem extraction and reduction have used 24 workers for paralleiza-
tion. We have only used a single extraction and reduction iteration.

Sample A Sample B Sample C

Solvers Time Energy Score Time Energy Score Time Energy Score

fm_ilp-decomp 65.0 -7.0599e+06 0.7189 86.0 -6.0614e+06 0.8429 78.0 -7.4506e+06 1.0777

fm_ilp, fm_kl 88.0 -7.0600e+06 0.7136 124.0 -6.0614e+06 0.8429 123.0 -7.4506e+06 1.0777

fm_kl, kl 13.0 -7.0584e+06 0.7305 17.0 -6.0604e+06 0.8721 17.0 -7.4496e+06 1.0590

ilp-fm, kl 77.0 -7.0605e+06 0.7230 5192.0 -6.0614e+06 0.8472 475.0 -7.4520e+06 1.0560

kl, kl 8.0 -7.0556e+06 0.7396 8.0 -6.0588e+06 0.9361 6.0 -7.4482e+06 1.0758

Table A.3: Different solvers for sub-problems and global problem. We have only used a single extraction
and reduction iteration and a blocksize of 50 × 512 × 512 pixels. Sub-problem extraction
and reduction have used 24 workers for paralleization.

131

A.3.3 Scaling Behavior of the Block-wise Multicut Solver

In addition to the results in Section 3.4.3, we compare the Decomposition, using Kernighan-
Lin as internal solver, with using Kernighan-Lin to solve the complete problem. As shown
in Table A.4, the solution of both approaches is identical while the Decompositon solver is
significantly faster due to the decomposition into sub-problems, see Table 3.5.

Kernighan-Lin Decomposition

Level Time [min] Energy Time [min] Energy

1 468.5 -8.60967e+08 80.1 -8.609670e+08

2 70.1 -8.60410e+08 5.9 -8.604099e+08

3 16.4 -8.60232e+08 1.0 -8.602317e+08

Table A.4: Solving large Multicut problem with Kernighan-Lin and Decomposition solvers. Compu-
tations were performed on an Intel Xeon Gold 6136 Processors, using a single thread for
Kernighan-Lin and 8 threads for Decompositon.

A.4 The Mutex Watershed

A.4.1 Network Architecture and Training

We use the 3D U-Net [180, 35] architecture, as proposed in [67].
Our training targets for attractive / repulsive edges ŵ± can be derived from a ground truth label
image L̂ according to

ŵ+
e =

1, if L̂i = L̂jwith e = eij

0, otherwise
(A.1)

ŵ−e =

0, if L̂i = L̂jwith e = eij

1, otherwise
(A.2)

Here, i and j are the indices of image pixels and eij denotes the edge connecting them. Next,
we define the loss terms

J +
c = −

∑
e∈H+

c
(1− w+

e)(1− ŵ+
e)∑

e∈H+
c

((1− w+
e)2 + (1− ŵ+

e)2)
(A.3)

132

J −c = −
∑

e∈H−
c
w−e ŵ

−
e∑

e∈H−
c

((w−e)2 + (ŵ−e)2)
(A.4)

for attractive edges (i. e. channels) and repulsive edges (i. e. channels). Equation A.3&A.4
is the Sørensen-Dice coefficient [52, 198] formulated for fuzzy set membership values and a
product T-norm. During training we minimize the sum of attractive and repulsive loss terms
J =

∑C+

c J +
c +

∑C−

c J −c . This corresponds to summing up the channel-wise Sørensen-Dice
loss. The terms of this loss are robust against prediction and/or target sparsity, a desirable
quality for neuron segmentation: since membranes are very thin, they occupy very few pixels in
the volume. More precisely, if w+

e or ŵ+
e (or both) are sparse, we can expect the denominator∑

e((w
+
e)2+(ŵ+

e)2) to be small, which has the effect that the numerator is adaptively weighted
higher. In this sense, the Sørensen-Dice loss at every pixel i is conditioned on the global image
statistics, which is not the case for a Hamming-distance based loss like Binary Cross-Entropy
or Mean Squared Error.
We optimize this loss using the Adam optimizer and additionally condition learning rate decay
on the Adapted Rand Score [13] computed on the training set every 100 iterations. During
training, we augment the data set by performing in-plane rotations by multiples of 90 degrees,
flips along the x- and y- axis as well as elastic deformations. At prediction time, we use test time
data augmentation, presenting the network with seven different versions of the input obtained
by a combination of rotations by a multiple of 90 degrees, axis-aligned flips and transpositions.
The network predictions are then inverse-transformed to correspond to the original image, and
the results averaged.

A.4.2 Baseline Post-processing Methods

The predictions of out CNN can be post-processed directly by the Mutex Watershed algorithm.
To ensure a fair comparison, we transform the same CNN predictions into a segmentation using
other popular post-processing methods. We start from simple thresholding (THRESH) and
seeded watershed. Since these cannot take long-range repulsions into account, we generate a
boundary map by taking the maximum12 values over the attractive (short-range) edge channels.
Based on this boundary map, we introduce seeds at the local minima (WS) and at the maxima
of the smoothed distance transform (WSDT). For both variants, the degree of smoothing was
chosen such that each region receives as few seeds as possible, without however causing severe
under-segmentation. The performance of these three baseline methods in comparison to Mutex
Watershed is summarized in Table 5.1b. The methods were applied only in 2D, because the high

12The maximum is chosen to preserve boundaries.

133

degree of anisotropy leads to deteriorating quality of results when applied in 3D. In contrast,
the Mutex Watershed can be applied in 3D out of the box and yields significantly better 2D
segmentation scores.
Qualitatively, we show patches from our results in Figure A.7. The major failure case for WS
(Figure A.7e) and WSDT (Figure A.7f) is over-segmentation caused by over-seeding a region.
The major failure case for THRESH is under-segmentation due to week boundary evidence
(Figure A.7d). In contrast, the Mutex Watershed produces a better segmentation, only causing
minor over-segmentation (Figure A.7a, Figure A.7b).
Note that, in contrast to most pixel-based post-processing methods, our algorithm can take long
range predictions into account. To compare with methods which share this property, we turn to
the Multicut and Lifted Multicut - based partitioning for neuron segmentations as introduced in
[6] and [18]. We compute costs corresponding to edge cuts from the affinities estimated by the
CNN via:

se =

log w+
e

1−w+
e
, if e ∈ E+

log 1−w−
e

w−
e
, otherwise,

(A.5)

We set up two Multicut problems: the first is induced only by the short-range edges (MC-
LOCAL), the other by short- and long-range edges together (MC-FULL). Note that the solution
to the full connectivity problem can contain “air bridge”, i.e. pixels that are connected only by
long-range edges, without a path along the local edges connecting them. However, we found
this not to be a problem in practice. In addition, we set up a lifted Multicut (LMC) problem
from the same edge costs.
Both problems are NP-hard, hence it is not feasible to solve them exactly on large grid graphs.
For our experiments, we use the approximate Kernighan Lin [100, 102] solver. Even this allows
us to only solve individual 2D problems at a time. The results for MC-LOCAL and MC-FULL
can be found in Table 5.1b. The MC-LOCAL approach scores poorly because it under-segments
heavily. This observation emphasizes the importance of incorporating the longer-range edges.
The MC-FULL and LMC approaches perform well. However, the Mutex Watershed yields a
better segmentation still, probably because it is evaluated for the full 3d problem, which is not
feasible for the Multicut based segmentation.

134

(a) Mutex Watershed (b) Mutex Watershed

(c) Multicut partitioning based
segmentation (MC-FULL)

(d) Thresholding of local boundary maps
(THRESH)

(e) Watershed, seeded at local minima of the
smoothed input map (WS)

(f) Distance Transformed Watershed (WSDT)

Figure A.7: Mutex Watershed and baseline segmentation algorithms applied on the ISBI Challenge
test data. Red arrows point out major errors. Orange arrows point to difficult, but correctly
segmented regions. All methods share the same input maps.

135

A.4.3 Study on Natural Image Segmentation

Figure A.8 shows the segmentations we have obtained for different points of the phase transition
diagram (Figure 5.6a).

ground truth NN = 80%; GT=20%; Noise = 0% NN = 100%; GT=0%; Noise = 0%

NN = 0%; GT=38%; Noise = 62% NN = 43%; GT=14%; Noise = 43% NN = 43%; GT=0%; Noise = 57%

Figure A.8: MWS segmentations (red lines and color fill) of one arbitrary BSD500 image, given
affinities (gray values) interpolated between neural net predictions (NN), ground-truth
(GT) and uniform noise. The algorithm proved to be reasonably robust against noise in the
affinities.

136

A.5 A cellular Atlas for Platynereis dumerilii

Figure A.9: Registration of gene expression signal to the EM data. (A) illustrates the registration
procedure, where we register the DAPI signal to the segmented nuclei in EM, using a
sequence of of non-deformable and deformable transformations. (B) to (H) show different
gene expression maps overlaid with the EM data. The registration accuracy has a precision
of about one cell radius and shows good adherence for know markers, such as myosin (mhc)
for muscles in (C) or glutamate synthase (glt1) for neuropil in (E) and (H).

137

A.6 Immunofluorescence based Testing for SARS-COV-2
Antibodies

A.6.1 Quantitative Analysis

Manual Annotations Two of our processing steps require manually annotated data: in
order to train the CNN used for boundary and foreground prediction, we need label masks
for the individual cells. To determine suitable parameters for the infected cell classification,
we need a set of cells classified as being infected or non infected. We have produced these
annotations for 10 images with the following steps: first, we created an initial segmentation
following the approach outlined in Section 6.3.2, using boundary and foreground predictions
from the ilastik [22] pixel classification workflow, which can be obtained from a few sparse
annotations. We then corrected this segmentation using the annotation tool BigCat13. After
correction, we manually annotated these cells as infected or non-infected. Note that this mode
of annotations can introduce two types of bias: the segmentation labels are derived from an
initial segmentation. Small systematic errors in the initial segmentation, that were not found
during correction, could influence the boundary prediction network. More importantly, when
annotating the infected/non infected cells, both the serum channel and the virus marker channel
have to be available to the annotators, in order to visually delineate the cells. This may result in
subconscious bias, and the possibility of the observed intensity in the serum channel influencing
the decision on the infection status of a cell.

Preprocessing We perform minimal preprocessing (i.e. flat-field correction) to compensate
for uneven illumination of the microscope system [207]. First, we subtract a constant CCD
camera offset ccdoffset. Then, we correct uneven illumination by dividing each channel by a
corresponding corrector image flatfield(x, y):

processed(x, y) =
raw(x, y)− ccdoffset

flatfield(x, y)− ccdoffset
. (A.6)

The corrector image is obtained as the normalized average of all images of the corresponding
channel, smoothed by a normalized convolution with a gaussian filter with a bandwidth of 30
pixels. This image has to be recomputed if the microscopy set-up changes. Full background
subtraction is performed later in the pipeline using either the background measured on wells
that (deliberately) do not contain any serum or, if not available, using a fixed value that was
determined manually.

13https://github.com/saalfeldlab/bigcat

138

https://github.com/saalfeldlab/bigcat

Segmentation Cell segmentation forms the basis of our analysis method. In order to obtain
an accurate segmentation, we make use of both the DAPI and the serum channel. First, we
segment the nuclei in the DAPI channel using the StarDist method [191] trained on data from
[33]. Note that this method yields an instance segmentation: each nucleus in the image is
assigned a unique ID. In addition, we predict per pixel probabilities for the boundaries between
cells and for the foreground (i.e. whether a given pixel is part of a cell) using a 2D U-Net [180]
based on the implementation of [236]. This method was trained using the ten annotated images,
see above. The cells are then segmented by the seeded watershed algorithm [25]. We then use
the nucleus segmentation, dilated by three pixels, as seeds and the boundary predictions as
height map. In addition, we threshold the foreground predictions, erode the resulting binary
image by 20 pixels and intersect it with the binarised seeds. The result is used as a foreground
mask for the watershed. The dilation/erosion is performed to alleviate issues with very small
nucleus segments/imprecise foreground predictions. In order to evaluate this segmentation
method, we train ten different networks using leave-one-out cross-validation, training each
network on nine of the manually annotated images and evaluating it on the remaining one. We
measure the segmentation quality using average precision [59] at an intersection over union
(IoU) threshold of 0.5. We measure a value of 0.77± 0.08 with the optimum value being 1.0.

Infection Classification To distinguish infected from non infected cells, we use the
dsRNA virus marker channel: infected cells show a signal in this channel while the non-
infected control cells should ideally not be visible, see Figure 6.8. We classify each cell in the
cell segmentation individually, using the following procedure: first, we denoise the marker
channel using a white tophat filter with a radius of 20 pixels. To account for inaccuracies in the
cell segmentation (the exact position of cell borders is not always clear), we then eroded all cell
masks with a radius of 5 pixels and thereby discard pixels close to segment boundaries. This
step does not lead to information loss, since the virus marker is mostly concentrated around the
nuclei. On the remaining pixels of each cell, we compute the 0.95 quantile q of the intensity
in the marker channel. For the background pixels (as predicted by the CNN), we compute the
median intensity b of the virus marker channel across all images in the current plate. Finally,
we classify the cell as infected if q exceeds b by more than a given threshold:

q −median(b) > t. (A.7)

For additional robustness against intensity variations, we adapt the threshold based on the
variation in the background of the plate. Hence, we define it as a multiple of the mean absolute
deviation of all background pixels of that plate with M = 4.8:

t = M mad(b). (A.8)

139

To determine the optimal values of the parameters used in this procedure, we used the cells
manually annotated as infected/non-infected and performed a grid search over the following
parameters:

• quantiles: 0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995

• M : 0 to 10 in intervals of 0.1

To estimate the validation accuracy, we performed leave-one-out cross-validation on the image
level. This yields an average validation F1-score of 84.3%, precision of 84.3% and recall of
84.8%. These values are the arithmetic means of the individual results per split.

Immunoglobulin Intensity Measurements In order to obtain a relative measure of an-
tibody binding, we determine the mean intensity and the integrated intensity in each segmented
cell from images recorded in the IgG, IgA, or IgM channel. A comparative analysis revealed
that the mean intensity was more robust against the variability of cell sizes, whereas using
the integrated intensity as a proxy yielded a higher variance in non-infected cells. Thus, mean
intensity per cell was chosen as a proxy for the amount of antibody bound. Non-specific
auto-fluorescence signals require a background correction of the measured average serum
channel intensities. For background normalization, we use cells (two wells per plate) that were
not immunostained with primary antiserum. From this, we compute the background to be the
median serum intensity of all pixels of images taken from this well. This value is subtracted
from all images recorded from the respective plate. In case the control wells are not available,
the background value for subtraction is determined manually.

Scoring The core interest of the assay is to measure the difference of antibody binding to
cells infected with the coronavirus in comparison to non-infected cells. To this end, utilizing the
results of the image analysis, we compute the following summary statistics of the background
corrected antibody binding of infected cells, I , and of non-infected cells, N :

mI = median(I) (A.9)

mN = median(N) (A.10)

σN = mad(N) (A.11)

Using these, the ratio r, difference d and robust-z-score z are computed:

r =
mI

mN
(A.12)

d = mI −mN (A.13)

z =
mI −mN

σN
(A.14)

140

We compute above scores for each well and each image, taking into account only the cells that
passed all quality control criteria (see below). While the final readout of the assay is well based,
image scores are useful for quality control.

Quality Control We perform quality control of the images and analysis results at the level
of wells, images and cells. The entities that do not pass quality control are not taken into
account when computing the score during final analysis. We exclude wells that contain less
than 100 non-infected cells, that have a median serum intensity of infected cells smaller than
three times the noise level (measured by the median absolute deviation), or that have negative
intensity ratios, which can happen due to the background subtraction. Out of 1736 wells
corresponding to the samples processed as part of validation (Section 6.3.3), 94 did not pass
the quality control, corresponding to 5.4% of wells. At the image level, we visually inspect
all images and mark those that contain imaging artifacts using a viewer based on napari14.
We distinguish the following types of artifacts during the visual inspection: empty, unstained
or over-saturated images, as well as images covered by a large bright object. In addition,
we automatically exclude images that contain less than 10 or more than 1000 cells. These
thresholds are motivated by the observation that too few or too many cells often result from a
problem in the assay. Thus, 296 of the total 15,624 images were excluded from further analysis,
corresponding to 1.9% of images. Out of these, 295 were manually marked as outliers and only
a single one did not pass the subsequent automatic quality control. Finally, we automatically
exclude segmented cells with a size smaller than 250 pixels or larger than 12,500 pixels, that
most likely correspond to segmentation errors. These limits were derived by the histogram of
cell sizes investigated for several plates. Two percent of the approximate 5.5 million segmented
cells did not pass this quality control. In addition, we have also manually inspected all samples
scored as positives. For the IgA channel, we have found a dotty staining pattern in ten cases
that produced positive hits based on intensity ratio in negative control cohorts, but does not
appear to indicate a specific antibody response. We have also excluded these samples from
further analysis.

Implementation In order to scale the analysis workflow to the large number of images
produced by the assay, we implemented an open-source python library to run the individual
analysis steps. This library allows rerunning experiments for a given plate for newly added data
on demand and caches intermediate results in order to rerun the analysis from checkpoints in
case of errors in one of the processing steps. To this end, we use a file layout based on hdf5
to store multi-resolution image data and tabular data. The processing steps are parallelized
over the images of a plate, if possible. We use efficient implementations for the U-Net[236],

14https://github.com/napari/napari

141

https://github.com/napari/napari

StarDist[191] and the watershed algorithm 15 as well as other image processing algorithms[215].
We use pytorch 16 to implement GPU-accelerated cell feature extraction. The total processing
time for a plate (containing around 800 images) is about 2 hours and 30 minutes, using a
single GPU and 8 CPU cores. In addition, the results of the analysis as well as meta-data
associated with individual plates are automatically saved in a centralized MongoDB database
17 at the end of the workflow execution. Apart from keeping track of the analysis outcome
and meta-data, a user can save additional information about a given plate/well/image in the
database conveniently using the PlateViewer. All source code is available open source under
the permissive MIT license at https://github.com/hci-unihd/batchlib.

A.6.2 Assay Characterization and Validation

Decision Threshold Selection In order to determine the presence of SARS-CoV-2 spe-
cific antibodies in patient sera, it was necessary to define the decision threshold r̂. If a measured
intensity ratio r is above the decision threshold r̂, then the serum is scored as positive for
SARS-CoV-2 antibodies. For this an ROC analysis was performed [245]. Each possible choice
of r̂ for a test corresponds to a particular sensitivity/specificity pair. By continuously varying
the decision threshold, we measured all possible sensitivity/specificity pairs, known as ROC
curves, see Figure A.12. To determine the appropriate r̂ we considered two factors:

• The undesirability of errors or relative cost of false-positive and false-negative classifica-
tions.

• The prevalence, or prior probability of disease.

These factors can be combined to calculate a slope in the ROC plot

m =
costfalsepositive

costfalsenegative

1− P
P

, (A.15)

where P is the prevalence or prior probability of the disease. The optimal decision threshold
r̂, given the false-positive/false-negative cost ratio and prevalence, is the point on the ROC
curve where a line with slope m touches the curve. As discussed in Section 6.3.3, a major
concern regarding serological assays for SARS-CoV-2 antibody detection is the occurrence
of false-positive results. Therefore, we choose m to be larger than one in our analysis. In
particular, we determine r̂ for the choice of m = 10 (see Figure A.12).

15http://ukoethe/github.io/vigra
16https://pytorch.org/
17https://www.mongodb.com

142

https://github.com/hci-unihd/batchlib
http://ukoethe/github.io/vigra
https://pytorch.org/
https://www.mongodb.com

Figure A.10: Correlation between SARS-CoV-2 specific IF and ELISA results for the negative control
panel obtained in IgA (A) or IgG (B) measurements. Each dot represents one serum sample.
Blue, healthy donors; red, ccCoV positive; green, CMV positive; orange, EBV positive;
black, mycoplasma positive. Bottom panels represent zoomed-in versions of the respective
top panel to illustrate the borderline region. (C) IgM values for the indicated negative
control cohorts determined by IF. Since a corresponding IgM specific ELISA kit from
Euroimmun was not available, correlation was not analyzed in this case. In some cases,
antibody binding above background was undetectable by IF in non-infected as well as in
infected cells, indicating low unspecific cross-reactivity and lack of specific reactivity of
the respective serum. In order to allow for inclusion of these data points in the graph, the
IF ratio was set to 1.0. Dotted lines indicate the optimal separation cut-off values defined
for sample classification, gray areas indicate borderline results in ELISA.

143

Figure A.11: Correlation between IgA or IgG values obtained by ELISA and IF for sera from 29 COVID-
19 patients collected at different days’ post infection. In some cases, antibody binding
above background was undetectable by IF in non-infected as well as in infected cells,
indicating low unspecific cross-reactivity and lack of specific reactivity of the respective
serum. In order to allow for inclusion of these data points in the graph, the IF ratio was set
to 1.0. Dotted lines indicate the cut-off values defined for classification of readouts, gray
areas indicate borderline values.

144

Figure A.12: ROC plot for immunofluorescence (IgM, IgG and IgA) assays. Solid lines show all
possible pairs of (false-positive rate, true-positive rate) or, equivalently (1 - specificity,
sensitivity) derived from varying the tests’ decision threshold. Stars show the optimal
threshold for our choice of prevalence and costs that corresponds to a slope of m =
(costfalsepositive ∗ (1 − P))/(costfalsenegative ∗ P) = 10. Discriminating only between sera
from negative samples and sera from COVID19 patients collected later than 14 days after
symptom onset improves the accuracy of the test.

145

Publications

I have contributed to the following publications as part of work on this thesis. I am first author
or co-first author on the peer-reviewed publications 3, 10, 11, 12 and 18. I am co-author on the
peer-reviewed publications 2, 4, 6, 7, 14, 16, 17 and 20.
I am co-first author on the preprints 15, which is currently under review. I am co-author on the
preprints 1, 5, 8, 13 and 19, which are currently under review.

1. Alberto Bailoni, Constantin Pape, Steffen Wolf, Thorsten Beier, Anna Kreshuk, and
Fred A Hamprecht. “A generalized framework for agglomerative clustering of signed
graphs applied to instance segmentation.” In: arXiv preprint arXiv:1906.11713 (2019).

2. Alberto Bailoni, Constantin Pape, Steffen Wolf, Anna Kreshuk, and Fred A Hamprecht.
“Proposal-Free Volumetric Instance Segmentation from Latent Single-Instance Masks.”
In: German Conference on Pattern Recognition (2020).

3. Thorsten Beier, Constantin Pape, Nasim Rahaman, and Timo et al. Prange. “Multi-
cut brings automated neurite segmentation closer to human performance.” In: Nature
Methods 14.2 (2017), pp. 101–102.

4. Mirko Cortese, Ji-Young Lee, Berati Cerikan, Christopher J Neufeldt, Viola MJ Oorschot,
Sebastian Köhrer, Julian Hennies, Nicole L Schieber, Paolo Ronchi, Giulia Mizzon, et al.
“Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morpholo-
gies.” In: Cell host & microbe 28.6 (2020), pp. 853–866.

5. Senthilkumar Deivasigamani et al. “Microglia complement signaling promotes neuronal
elimination and normal brain functional connectivity.” In: bioRxiv (2021).

6. Larissa Heinrich, Jan Funke, Constantin Pape, Juan Nunez-Iglesias, and Stephan Saalfeld.
“Synaptic cleft segmentation in non-isotropic volume electron microscopy of the com-
plete drosophila brain.” In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer. 2018, pp. 317–325.

146

7. Artem Lukoyanov, Isabella Haberbosch, Constantin Pape, Alwin Krämer, Yannick
Schwab, and Anna Kreshuk. “Synthetic patches, real images: screening for centrosome
aberrations in EM images of human cancer cells.” In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer. 2019, pp. 523–
531.

8. Jacob M Musser, Klaske J Schippers, Michael Nickel, Giulia Mizzon, Andrea B Kohn,
Constantin Pape, Jorg U Hammel, Florian Wolf, Cong Liang, Ana Hernandez-Plaza,
et al. “Profiling cellular diversity in sponges informs animal cell type and nervous system
evolution.” In: BioRxiv (2019), p. 758276.

9. Felix Pahmeier, Christopher J Neufeldt, Berati Cerikan, Vibhu Prasad, Costantin Pape,
Vibor Laketa, Alessia Ruggieri, Ralf Bartenschlager, and Mirko Cortese. “A Versatile
Reporter System To Monitor Virus-Infected Cells and Its Application to Dengue Virus
and SARS-CoV-2.” In: Journal of virology 95.4 (2021).

10. Constantin Pape, Thorsten Beier, Peter Li, Viren Jain, Davi D Bock, and Anna Kreshuk.
“Solving Large Multicut Problems for Connectomics via Domain Decomposition.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017,
pp. 1–10.

11. Constantin Pape, Alex Matskevych, Adrian Wolny, Julian Hennies, Giulia Mizzon,
Marion Louveaux, Jacob Musser, Alexis Maizel, Detlev Arendt, and Anna Kreshuk.
“Leveraging domain knowledge to improve microscopy image segmentation with lifted
multicuts.” In: Frontiers in Computer Science 1 (2019), p. 6.

12. Constantin Pape, Roman Remme, Adrian Wolny, Sylvia Olberg, Steffen Wolf, Lorenzo
Cerrone, Mirko Cortese, Severina Klaus, Bojana Lucic, Stephanie Ullrich, et al.
“Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific anti-
bodies in human sera: A semi-quantitative, high throughput, microscopy-based assay
expands existing approaches to measure SARS-CoV-2 specific antibody levels in human
sera.” In: BioEssays 43.3 (2021), p. 2000257.

13. Akhmedkhan Shabanov, Daja Schichler, Constantin Pape, Sara Cuylen-Haering, and
Anna Kreshuk. “Unsupervised temporal consistency improvement for microscopy video
segmentation with Siamese networks.” In: bioRxiv (2021).

14. Burkhard Tönshoff et al. “Prevalence of SARS-CoV-2 Infection in Children and Their
Parents in Southwest Germany.” In: JAMA Pediatrics (Jan. 2021).

147

15. Hernando M Vergara, Constantin Pape, Kimberly Meechan, Valentyna Zinchenko, Chris-
tel Genoud, Adrian A Wanner, Benjamin Titze, Rachel Templin, Paola Yanina Bertucci,
Oleg Simakov, et al. “Whole-body integration of gene expression and single-cell mor-
phology.” In: bioRxiv (2020).

16. Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk, Ullrich
Köthe, and Fred A Hamprecht. “The Mutex Watershed and its Objective: Efficient,
Parameter-Free Graph Partitioning.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020).

17. Steffen Wolf, Yuyan Li, Constantin Pape, Alberto Bailoni, Anna Kreshuk, and Fred A
Hamprecht. “The Semantic Mutex Watershed for Efficient Bottom-Up Semantic Instance
Segmentation.” In: Proc. ECCV’2020 (2020).

18. Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk, Ullrich
Köthe, and Fred Hamprecht. “The Mutex Watershed: Efficient, Parameter-Free Image
Partitioning.” In: Proc. ECCV’18 (2018).

19. Adrian Wolny, Qin Yu, Constantin Pape, and Anna Kreshuk. “Sparse Object-level
Supervision for Instance Segmentation with Pixel Embeddings.” In: arXiv preprint
arXiv:2103.14572 (2021).

20. Adrian Wolny et al. “Accurate and versatile 3D segmentation of plant tissues at cellular
resolution.” In: eLife 9 (July 2020). Ed. by Christian S Hardtke, Dominique C Bergmann,
Dominique C Bergmann, and Moritz Graeff, e57613.

148

Bibliography

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and
Sabine Susstrunk. “SLIC superpixels compared to state-of-the-art superpixel methods.”
In: IEEE Trans. Pattern Anal. Mach. Intell. 34.11 (2012), pp. 2274–2282.

[2] Amir Alush and Jacob Goldberger. “Break and conquer: Efficient correlation clustering
for image segmentation.” In: International Workshop on Similarity-Based Pattern
Recognition. Springer. 2013, pp. 134–147.

[3] Fernando Amat, William Lemon, Daniel P Mossing, Katie McDole, Yinan Wan, Kristin
Branson, Eugene W Myers, and Philipp J Keller. “Fast, accurate reconstruction of cell
lineages from large-scale fluorescence microscopy data.” In: Nature Methods 11 (July
2014), p. 951.

[4] James R. Anderson et al. “Exploring the retinal connectome.” In: Mol. Vis. 17 (Feb.
2011), pp. 355–379.

[5] Bjoern Andres, Jorg H Kappes, Thorsten Beier, Ullrich Kothe, and Fred A Hamprecht.
“Probabilistic Image Segmentation with Closedness Constraints.” In: Computer Vision
(ICCV), 2011 IEEE International Conference on. IEEE. 2011, pp. 2611–2618.

[6] Bjoern Andres, Thorben Kroeger, Kevin L Briggman, Winfried Denk, Graham Knott,
Ullrich Koethe, and Fred A Hamprecht. “Globally Optimal Closed-surface Segmenta-
tion for Connectomics.” In: Proc. Europ. Conf. Comp. Vision (2012), pp. 1–14.

[7] Björn Andres, Ullrich Köthe, Moritz Helmstaedter, Winfried Denk, and Fred A Ham-
precht. “Segmentation of SBFSEM volume data of neural tissue by hierarchical classi-
fication.” In: Pattern Recogn. (2008), pp. 142–152.

[8] Jesús Angulo and Dominique Jeulin. “Stochastic watershed segmentation.” In: Proc.
ISMM Rio de Janeiro 1 (2007), pp. 265–276.

[9] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. “Contour Detection and Hierarchical
Image Segmentation.” In: IEEE Trans. Patt. Anal. Mach. Intell. 33.5 (2011), pp. 898–
916.

[10] Pablo Arbelaez. “Boundary Extraction in Natural Images Using Ultrametric Contour
Maps.” In: Proc. CVPRW (2006), pp. 182–182.

149

[11] Detlev Arendt, Jacob M Musser, Clare VH Baker, Aviv Bergman, Connie Cepko,
Douglas H Erwin, Mihaela Pavlicev, Gerhard Schlosser, Stefanie Widder, Manfred D
Laubichler, et al. “The origin and evolution of cell types.” In: Nature Reviews Genetics
17.12 (2016), pp. 744–757.

[12] Ignacio Arganda-Carreras, Sebastian Seung, Ashwin Vishwanathan, and Daniel R
Berger. SNEMI3D: 3D Segmentation of neurites in EM images. URL: http://
brainiac2.mit.edu/SNEMI3D/ (visited on 04/04/2016).

[13] Ignacio Arganda-Carreras et al. “Crowdsourcing the creation of image segmentation
algorithms for connectomics.” In: Front. Neuroanat. 9.November (2015), pp. 1–13.

[14] Shai Bagon and Meirav Galun. “Optimizing Large Scale Correlation Clustering.” In:
arXiv preprint arXiv:1112.2903 3 (2011).

[15] Min Bai and Raquel Urtasun. “Deep Watershed Transform for Instance Segmentation.”
In: arXiv:1611.08303 (2016).

[16] Alberto Bailoni, Constantin Pape, Steffen Wolf, Thorsten Beier, Anna Kreshuk, and
Fred A Hamprecht. “A generalized framework for agglomerative clustering of signed
graphs applied to instance segmentation.” In: arXiv preprint arXiv:1906.11713 (2019).

[17] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation clustering.” In: Mach.
Learn. 56.1-3 (2004), pp. 89–113.

[18] Thorsten Beier, Björn Andres, Ullrich Köthe, and Fred A Hamprecht. “An efficient
fusion move algorithm for the minimum cost lifted multicut problem.” In: European
Conference on Computer Vision. Springer. 2016, pp. 715–730.

[19] Thorsten Beier, Fred A. Hamprecht, and Jörg H. Kappes. “Fusion Moves for Correlation
Clustering.” In: Proc. CVPR (2015). 1, pp. 3507–3516.

[20] Thorsten Beier, Thorben Kroeger, Jorg H Kappes, Ullrich Kothe, and Fred A Ham-
precht. “Cut, glue & cut: A fast, approximate solver for multicut partitioning.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2014, pp. 73–80.

[21] Thorsten Beier, Constantin Pape, Nasim Rahaman, and Timo et al. Prange. “Multicut
brings automated neurite segmentation closer to human performance.” In: Nature
Methods 14.2 (2017), pp. 101–102.

[22] Stuart Berg, Dominik Kutra, Thorben Kroeger, Christoph N Straehle, Bernhard X
Kausler, Carsten Haubold, Martin Schiegg, Janez Ales, Thorsten Beier, Markus Rudy,
et al. “Ilastik: interactive machine learning for (bio) image analysis.” In: Nature Methods
(2019), pp. 1–7.

150

http://brainiac2.mit.edu/SNEMI3D/
http://brainiac2.mit.edu/SNEMI3D/

[23] Manuel Berning, Kevin M. Boergens, and Moritz Helmstaedter. “SegEM: Efficient
Image Analysis for High-Resolution Connectomics.” In: Neuron 87.6 (2015), pp. 1193–
1206.

[24] Serge Beucher. “Watershed, Hierarchical Segmentation and Waterfall Algorithm.” In:
Proc. ISMM’94. Vol. 94. 1994, pp. 69–76.

[25] Serge Beucher and Fernand Meyer. “The morphological approach to segmentation:
the watershed transformation.” In: Optical Engineering-New York-Marcel Dekker
Incorporated 34 (1992), pp. 433–433.

[26] Vincent D Blondel, Jean-Lou Guillaume, Renaud Lambiotte, and Étienne Lefebvre.
“The Louvain method for community detection in large networks.” In: J of Statistical
Mechanics: Theory and Experiment 10 (2011), P10008.

[27] Davi D. Bock, Wei-Chung Allen Lee, Aaron M. Kerlin, Mark L. Andermann, Greg
Hood, Arthur W. Wetzel, Sergey Yurgenson, Edward R. Soucy, Hyon Suk Kim, and
R. Clay Reid. “Network anatomy and in vivo physiology of visual cortical neurons.”
In: Nature 471.7337 (Mar. 2011), pp. 177–182.

[28] Kevin M Boergens, Manuel Berning, Tom Bocklisch, Dominic Bräunlein, Florian
Drawitsch, Johannes Frohnhofen, Tom Herold, Philipp Otto, Norman Rzepka, Thomas
Werkmeister, et al. “webKnossos: efficient online 3D data annotation for connectomics.”
In: Nature Methods 14.7 (2017), pp. 691–694.

[29] Johm Bogovic, Igor Pisarev, Philipp Hanslovsky, Neil Thistlethwaite, and Stephan
Saalfeld. 2020. URL: https://github.com/saalfeldlab/n5.

[30] Kevin L Briggman and Davi D Bock. “Volume electron microscopy for neuronal circuit
reconstruction.” In: Current opinion in neurobiology 22.1 (2012), pp. 154–161.

[31] Randal Burns, Joshua?T Vogelstein, and Alexander?S Szalay. “From Cosmos to Con-
nectomes: The Evolution of Data-Intensive Science.” In: Neuron 83.6 (Sept. 2014),
pp. 1249–1252.

[32] Jinzheng Cai, Le Lu, Zizhao Zhang, Fuyong Xing, Lin Yang, and Qian Yin. “Pancreas
Segmentation in MRI Using Graph-Based Decision Fusion on Convolutional Neural
Networks.” In: Proc. MICCAI. 2016.

[33] Juan C Caicedo, Allen Goodman, Kyle W Karhohs, Beth A Cimini, Jeanelle Ackerman,
Marzieh Haghighi, CherKeng Heng, Tim Becker, Minh Doan, Claire McQuin, et al.
“Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl.” In:
Nature methods 16.12 (2019), pp. 1247–1253.

151

https://github.com/saalfeldlab/n5

[34] Albert Cardona, Stephan Saalfeld, Stephan Preibisch, Benjamin Schmid, Anchi Cheng,
Jim Pulokas, Pavel Tomancak, and Volker Hartenstein. “An Integrated Micro- and
Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial
Section Electron Microscopy.” In: PLoS Biol. 8.10 (Oct. 2010), e1000502.

[35] Ozgun Cciccek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf
Ronneberger. “3D U-Net: learning dense volumetric segmentation from sparse annota-
tion.” In: International conference on medical image computing and computer-assisted
intervention. Springer. 2016, pp. 424–432.

[36] Paul KS Chan, King-Cheung Ng, Rickjason CW Chan, Rebecca KY Lam, Viola CY
Chow, Mamie Hui, Alan Wu, Nelson Lee, Florence HY Yap, Frankie WT Cheng, et al.
“Immunofluorescence assay for serologic diagnosis of SARS.” In: Emerging infectious
diseases 10.3 (2004), p. 530.

[37] Thomas F Chartier, Joran Deschamps, Wiebke Dürichen, Gáspár Jékely, and Detlev
Arendt. “Whole-head recording of chemosensory activity in the marine annelid
Platynereis dumerilii.” In: Royal Society Open Biology 8.10 (2018), p. 180139.

[38] Hao Chen, Xiao Qi, Jie Cheng, and Pheng Heng. “Deep contextual networks for
neuronal structure segmentation.” In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 30. 1. 2016.

[39] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. “Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs.” In: IEEE transactions on pattern analysis and
machine intelligence 40.4 (2017), pp. 834–848.

[40] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A sim-
ple framework for contrastive learning of visual representations.” In: International
conference on machine learning. PMLR. 2020, pp. 1597–1607.

[41] Sunil Chopra and Mendu R Rao. “The partition problem.” In: Mathematical Program-
ming 59.1-3 (1993), pp. 87–115.

[42] Dan C Ciresan, Alessandro Giusti, Luca M Gambardella, and Jurgen Schmidhuber.
“Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Im-
ages.” In: Proc. NIPS (2012).

[43] Steven J Cook, Charles M Crouse, Eviatar Yemini, David H Hall, Scott W Emmons, and
Oliver Hobert. “The connectome of the Caenorhabditis elegans pharynx.” In: BioRxiv
(2019), p. 868513.

152

[44] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. “The Cityscapes
Dataset for Semantic Urban Scene Understanding.” In: Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2016.

[45] Victor M Corman, Olfert Landt, Marco Kaiser, Richard Molenkamp, Adam Meijer,
Daniel KW Chu, Tobias Bleicker, Sebastian Brünink, Julia Schneider, Marie Luisa
Schmidt, et al. “Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-
PCR.” In: Eurosurveillance 25.3 (2020), p. 2000045.

[46] Thomas H Cormen. Introduction to algorithms. MIT press, 2009.

[47] Mirko Cortese, Ji-Young Lee, Berati Cerikan, Christopher J Neufeldt, Viola MJ
Oorschot, Sebastian Köhrer, Julian Hennies, Nicole L Schieber, Paolo Ronchi, Giu-
lia Mizzon, et al. “Integrative imaging reveals SARS-CoV-2-induced reshaping of
subcellular morphologies.” In: Cell host & microbe 28.6 (2020), pp. 853–866.

[48] Jean Cousty, Gilles Bertrand, Laurent Najman, and Michel Couprie. “Watershed cuts:
Minimum spanning forests and the drop of water principle.” In: IEEE transactions on
pattern analysis and machine intelligence 31.8 (2008), pp. 1362–1374.

[49] Bert De Brabandere, Davy Neven, and Luc Van Gool. “Semantic instance segmentation
with a discriminative loss function.” In: arXiv preprint arXiv:1708.02551 (2017).

[50] Senthilkumar Deivasigamani et al. “Microglia complement signaling promotes neuronal
elimination and normal brain functional connectivity.” In: bioRxiv (2021).

[51] Winfried Denk and Heinz Horstmann. “Serial Block-Face Scanning Electron Mi-
croscopy to Reconstruct Three-Dimensional Tissue Nanostructure.” In: PLOS Biology
2.11 (Oct. 2004).

[52] Lee R Dice. “Measures of the amount of ecologic association between species.” In:
Ecology 26.3 (1945), pp. 297–302.

[53] Konstantin Dmitriev, Toufiq Parag, Brian Matejek, Arie E Kaufman12, and Hanspeter
Pfister. “Efficient correction for em connectomics with skeletal representation.” In:
British Machine Vision Conferemce (BMVC) (2018).

[54] J Dubochet and AW McDowall. “Vitrification of pure water for electron microscopy.”
In: Journal of Microscopy 124.3 (1981), pp. 3–4.

[55] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient methods for online
learning and stochastic optimization.” In: Journal of machine learning research 12.7
(2011).

153

[56] AL Eberle, S Mikula, R Schalek, J Lichtman, ML Knothe Tate, and D Zeidler. “High-
resolution, high-throughput imaging with a multibeam scanning electron microscope.”
In: Journal of microscopy 259.2 (2015), pp. 114–120.

[57] Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade,
Casey M Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram
Gerber, et al. “The complete connectome of a learning and memory centre in an insect
brain.” In: Nature 548.7666 (2017), pp. 175–182.

[58] Eva Engvall and Peter Perlmann. “Enzyme-Linked Immunosorbent Assay, Elisa.” In:
The Journal of Immunology 109.1 (1972), pp. 129–135.

[59] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. “The pascal visual object classes (voc) challenge.” In: International journal
of computer vision 88.2 (2010), pp. 303–338.

[60] Alexandre X Falcão, Jorge Stolfi, and Roberto de Alencar Lotufo. “The image foresting
transform: Theory, algorithms, and applications.” In: IEEE Trans. Patt. Anal. Mach.
Intell. 26.1 (2004), pp. 19–29.

[61] Jingtao Fan, Jinli Suo, Jiamin Wu, Hao Xie, Yibing Shen, Feng Chen, Guijin Wang,
Liangcai Cao, Guofan Jin, Quansheng He, et al. “Video-rate imaging of biological
dynamics at centimetre scale and micrometre resolution.” In: Nature Photonics 13.11
(2019), pp. 809–816.

[62] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. “Efficient Graph-Based Image
Segmentation.” In: Int. J. Comput. Vision 59.2 (2004), pp. 167–181.

[63] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. “An
overview of the HDF5 technology suite and its applications.” In: Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases. 2011, pp. 36–47.

[64] Jan Funke, Bjorn Andres, Fred A. Hamprecht, Albert Cardona, and Matthew Cook.
“Efficient automatic 3D-reconstruction of branching neurons from EM data.” In: Proc.
CVPR (June 2012), pp. 1004–1011.

[65] Jan Funke, Lisa Mais, Andrew Champion, Natalie Dye, and Dagmar Kainmueller. “A
Benchmark for Epithelial Cell Tracking.” In: The European Conference on Computer
Vision (ECCV) Workshops. Sept. 2018.

[66] Jan Funke, Stephan Saalfeld, Davi Bock, Srini Turaga, and Eric Perlman. Circuit
Reconstruction from Electron Microscopy Images. URL: https://cremi.org/
(visited on 08/27/2020).

154

https://cremi.org/

[67] Jan Funke, Fabian Tschopp, William Grisaitis, Arlo Sheridan, Chandan Singh, Stephan
Saalfeld, and Srinivas C Turaga. “Large scale image segmentation with structured loss
based deep learning for connectome reconstruction.” In: IEEE transactions on pattern
analysis and machine intelligence 41.7 (2018), pp. 1669–1680.

[68] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning.
Vol. 1. 2. MIT press Cambridge, 2016.

[69] HA Goossens, MK Nohlmans, and AE Van Den Bogaard. “Epstein-Barr virus and
cytomegalovirus infections cause false-positive results in IgM two-test protocol for
early Lyme borreliosis.” In: Infection 27.3 (1999), pp. 231–231.

[70] Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao Wang,
Vivek Pai, Mannat Singh, Vitaliy Liptchinsky, Ishan Misra, Armand Joulin, et
al. “Self-supervised pretraining of visual features in the wild.” In: arXiv preprint
arXiv:2103.01988 (2021).

[71] M. Grimaud. “New measure of contrast: the dynamics.” In: Proc. Image Algebra
and Morphological Processing. Ed. by P. D. Gader, E. R. Dougherty, & J. C. Serra.
Vol. 1769. SPIE Conf. Series. 1992, pp. 292–305.

[72] Philipp Hanslovsky et al. saalfeldlab/paintera: Paintera 0.27.0. Version paintera-0.27.0.
Mar. 2021. URL: https://doi.org/10.5281/zenodo.4652869.

[73] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli
Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J
Smith, et al. “Array programming with NumPy.” In: Nature 585.7825 (2020), pp. 357–
362.

[74] Christian Hasse, Nicole Rebscher, Wencke Reiher, Kathrin Sobjinski, Erhard Moer-
schel, Lothar Beck, Kristin Tessmar-Raible, Detlev Arendt, and Monika Hassel. “Three
consecutive generations of nephridia occur during development of Platynereis dumerilii
(Annelida, Polychaeta).” In: Developmental dynamics 239.7 (2010), pp. 1967–1976.

[75] Kenneth J Hayworth, David Peale, Zhiyuan Lu, C Shan Xu, and Harald F Hess. “Serial
Thick Section Gas Cluster Ion Beam Scanning Electron Microscopy.” In: Microscopy
and Microanalysis 24.S1 (2018), pp. 1444–1445.

[76] Kenneth J Hayworth, C Shan Xu, Zhiyuan Lu, Graham W Knott, Richard D Fetter,
Juan Carlos Tapia, Jeff W Lichtman, and Harald F Hess. “Ultrastructurally smooth thick
partitioning and volume stitching for large-scale connectomics.” In: Nature methods
12.4 (2015), p. 319.

155

https://doi.org/10.5281/zenodo.4652869

[77] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momentum con-
trast for unsupervised visual representation learning.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 9729–9738.

[78] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. “Mask r-cnn.” In:
Proceedings of the IEEE international conference on computer vision. 2017, pp. 2961–
2969.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for
image recognition.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 770–778.

[80] Larissa Heinrich, Jan Funke, Constantin Pape, Juan Nunez-Iglesias, and Stephan
Saalfeld. “Synaptic cleft segmentation in non-isotropic volume electron microscopy
of the complete drosophila brain.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2018, pp. 317–325.

[81] Fritjof Helmchen and Winfried Denk. “Deep tissue two-photon microscopy.” In: Nature
methods 2.12 (2005), pp. 932–940.

[82] Moritz Helmstaedter. “Cellular-resolution connectomics: challenges of dense neural
circuit reconstruction.” In: Nat. Methods 10.6 (May 2013), pp. 501–507.

[83] Moritz Helmstaedter, Kevin L Briggman, Srinivas C Turaga, Viren Jain, H Sebastian
Seung, and Winfried Denk. “Connectomic reconstruction of the inner plexiform layer
in the mouse retina.” In: Nature 500.7461 (2013), pp. 168–174.

[84] Olivier J Hénaff, Skanda Koppula, Jean-Baptiste Alayrac, Aaron van den Oord, Oriol
Vinyals, and João Carreira. “Efficient Visual Pretraining with Contrastive Detection.”
In: arXiv preprint arXiv:2103.10957 (2021).

[85] David Grant Colburn Hildebrand, Marcelo Cicconet, Russel Miguel Torres, Woohyuk
Choi, Tran Minh Quan, Jungmin Moon, Arthur Willis Wetzel, Andrew Scott Cham-
pion, Brett Jesse Graham, Owen Randlett, et al. “Whole-brain serial-section electron
microscopy in larval zebrafish.” In: Nature 545.7654 (2017), pp. 345–349.

[86] Reka Hollandi, Abel Szkalisity, Timea Toth, Ervin Tasnadi, Csaba Molnar, Botond
Mathe, Istvan Grexa, Jozsef Molnar, Arpad Balind, Mate Gorbe, et al. “nucleAIzer: A
parameter-free deep learning framework for nucleus segmentation using image style
transfer.” In: Cell Systems (2020).

[87] Andrea Horňáková, Jan-Hendrik Lange, and Bjoern Andres. “Analysis and optimization
of graph decompositions by lifted multicuts.” In: International Conference on Machine
Learning. 2017, pp. 1539–1548.

156

[88] Jan Huisken, Jim Swoger, Filippo Del Bene, Joachim Wittbrodt, and Ernst HK Stelzer.
“Optical sectioning deep inside live embryos by selective plane illumination mi-
croscopy.” In: Science 305.5686 (2004), pp. 1007–1009.

[89] Coronaviridae Study Group of the International et al. “The species Severe acute res-
piratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-
CoV-2.” In: Nature microbiology 5.4 (2020), p. 536.

[90] Viren Jain, Joseph F Murray, Fabian Roth, Srinivas Turaga, Valentin Zhigulin, Kevin L
Briggman, Moritz N Helmstaedter, Winfried Denk, and H Sebastian Seung. “Super-
vised learning of image restoration with convolutional networks.” In: Proc. Intl. Conf.
Comp. Vision (2007), pp. 1–8.

[91] Michał Januszewski, Jörgen Kornfeld, Peter H Li, Art Pope, Tim Blakely, Larry
Lindsey, Jeremy Maitin-Shepard, Mike Tyka, Winfried Denk, and Viren Jain. “High-
precision automated reconstruction of neurons with flood-filling networks.” In: Nature
methods 15.8 (2018), p. 605.

[92] Cory Jones, Ting Liu, Nathaniel Wood Cohan, Mark Ellisman, and Tolga Tasdizen.
“Efficient semi-automatic 3D segmentation for neuron tracing in electron microscopy
images.” In: J. Neurosci. Methods 246 (May 2015), pp. 13–21.

[93] Elizabeth Jurrus, Antonio RC Paiva, Shigeki Watanabe, James R Anderson, Bryan
W Jones, Ross T Whitaker, Erik M Jorgensen, Robert E Marc, and Tolga Tasdizen.
“Detection of neuron membranes in electron microscopy images using a serial neural
network architecture.” In: Med. Image Anal. 14.6 (2010), pp. 770–783.

[94] Jörg Kappes, Markus Speth, Björn Andres, Gerhard Reinelt, and Christoph Schn.
“Globally optimal image partitioning by multicuts.” In: Energy Minimization Methods
in Computer Vision and Pattern Recognition. Springer. 2011, pp. 31–44.

[95] Jörg Hendrik Kappes, Markus Speth, Gerhard Reinelt, and Christoph Schnörr. “Higher-
order segmentation via multicuts.” In: Computer Vision and Image Understanding 143
(2016), pp. 104–119.

[96] Narayanan Kasthuri, Kenneth Jeffrey Hayworth, Daniel Raimund Berger, Richard
Lee Schalek, José Angel Conchello, Seymour Knowles-Barley, Dongil Lee, Amelio
Vázquez-Reina, Verena Kaynig, Thouis Raymond Jones, et al. “Saturated reconstruc-
tion of a volume of neocortex.” In: Cell 162.3 (2015), pp. 648–661.

[97] Verena Kaynig, Thomas Fuchs, and Joachim M Buhmann. “Neuron geometry extraction
by perceptual grouping in sstem images.” In: Proc. CVPR (2010), pp. 2902–2909.

157

[98] Verena Kaynig, Amelio Vazquez-Reina, Seymour Knowles-Barley, Mike Roberts,
Thouis R. Jones, Narayanan Kasthuri, Eric Miller, Jeff Lichtman, and Hanspeter Pfister.
“Large-scale automatic reconstruction of neuronal processes from electron microscopy
images.” In: Med. Image Anal. 22.1 (2015), pp. 77–88.

[99] Philipp J. Keller, Annette D. Schmidt, Joachim Wittbrodt, and Ernst
H.K. Stelzer. “Reconstruction of Zebrafish Early Embryonic Develop-
ment by Scanned Light Sheet Microscopy.” In: Science 322.5904 (2008).
bibtex*[publisher=American Association for the Advancement of Sci-
ence;eprint=https://science.sciencemag.org/content/322/5904/1065.full.pdf], pp. 1065–
1069.

[100] Brian W Kernighan and Shen Lin. “An efficient heuristic procedure for partitioning
graphs.” In: The Bell system technical journal 49.2 (1970), pp. 291–307.

[101] Margret Keuper. “Higher-order minimum cost lifted multicuts for motion segmenta-
tion.” In: Proceedings of the IEEE International Conference on Computer Vision. 2017,
pp. 4242–4250.

[102] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guillaume Lavoué, Thomas
Brox, and Bjorn Andres. “Efficient decomposition of image and mesh graphs by lifted
multicuts.” In: Proceedings of the IEEE International Conference on Computer Vision.
2015, pp. 1751–1759.

[103] Jinseop S Kim et al. “Space-time wiring specificity supports direction selectivity in the
retina.” In: Nature 509.7500 (May 2014), pp. 331–336.

[104] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization.”
In: Proc. ICLR (2014).

[105] B. Ravi Kiran and Jean Serra. “Global–local optimizations by hierarchical cuts and
climbing energies.” In: Pattern Recognition 47.1 (2014), pp. 12–24.

[106] Stefan Klein, Marius Staring, Keelin Murphy, Max A Viergever, and Josien PW
Pluim. “Elastix: a toolbox for intensity-based medical image registration.” In: IEEE
transactions on medical imaging 29.1 (2009), pp. 196–205.

[107] Seymour Knowles-Barley, Verena Kaynig, Thouis Ray Jones, Alyssa Wilson, Joshua
Morgan, Dongil Lee, Daniel Berger, Narayanan Kasthuri, Jeff W Lichtman, and
Hanspeter Pfister. “RhoanaNet Pipeline: Dense Automatic Neural Annotation.” In:
arXiv:1611.06973 (2016).

[108] Iasonas Kokkinos. “Pushing the boundaries of boundary detection using deep learning.”
In: arXiv:1511.07386 (2015).

158

[109] Ullrich Köthe. Generische Programmierung für die Bildverarbeitung. BoD–Books on
Demand, 2000.

[110] NE Krasowski, Thorsten Beier, GW Knott, Ullrich Köthe, Fred A Hamprecht, and
Anna Kreshuk. “Neuron segmentation with high-level biological priors.” In: IEEE
transactions on medical imaging 37.4 (2017), pp. 829–839.

[111] Anna Kreshuk, Robert Walecki, Ullrich Koethe, Mortimer Gierthmuehlen, Dennis
Plachta, Christel Genoud, Kristin Haastert-Talini, and Fred A. Hamprecht. “Automated
Tracing of Myelinated Axons and Detection of the Nodes of Ranvier in Serial Images
of Peripheral Nerves.” In: J. Microsc. 259 (2) (2015), pp. 143–154.

[112] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with
deep convolutional neural networks.” In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

[113] Thorben Kroeger, Jörg H Kappes, Thorsten Beier, Ullrich Koethe, and Fred A Ham-
precht. “Asymmetric cuts: Joint image labeling and partitioning.” In: German Confer-
ence on Pattern Recognition. Springer. 2014, pp. 199–211.

[114] Thorben Kroeger, Shawn Mikula, Winfried Denk, Ullrich Koethe, and Fred A Ham-
precht. “Learning to segment neurons with non-local quality measures.” In: Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention.
Springer. 2013, pp. 419–427.

[115] Uros Krzic, Stefan Gunther, Timothy E Saunders, Sebastian J Streichan, and Lars
Hufnagel. “Multiview light-sheet microscope for rapid in toto imaging.” In: Nature
Methods 9 (June 2012), p. 730.

[116] Barry Ladizinski and Christopher Sankey. “Acute Epstein-Barr virus infection and
human immunodeficiency virus antibody cross-reactivity.” In: The American journal
of medicine 127.6 (2014), e9–e10.

[117] Jan-Hendrik Lange, Andreas Karrenbauer, and Bjoern Andres. “Partial optimality and
fast lower bounds for weighted correlation clustering.” In: International Conference on
Machine Learning. PMLR. 2018, pp. 2892–2901.

[118] Ta-Chih Lee, Rangasami L Kashyap, and Chong-Nam Chu. “Building skeleton models
via 3-D medial surface axis thinning algorithms.” In: CVGIP: Graphical Models and
Image Processing 56.6 (1994), pp. 462–478.

[119] Kisuk Lee, Ran Lu, Kyle Luther, and H Sebastian Seung. “Learning Dense Voxel
Embeddings for 3D Neuron Reconstruction.” In: arXiv preprint arXiv:1909.09872
(2019).

159

[120] Kisuk Lee, Jonathan Zung, Peter Li, Viren Jain, and H Sebastian Seung. “Super-
human accuracy on the SNEMI3D connectomics challenge.” In: arXiv preprint
arXiv:1706.00120 (2017).

[121] Wei-Chung Allen Lee, Vincent Bonin, Michael Reed, Brett J. Graham, Greg Hood,
Katie Glattfelder, and R. Clay Reid. “Anatomy and function of an excitatory network
in the visual cortex.” In: Nature 532.7599 (Apr. 2016), pp. 370–374.

[122] Evgeny Levinkov, Alexander Kirillov, and Bjoern Andres. “A comparative study of
local search algorithms for correlation clustering.” In: German Conference on Pattern
Recognition. Springer. 2017, pp. 103–114.

[123] Evgeny Levinkov, Jonas Uhrig, Siyu Tang, Mohamed Omran, Eldar Insafutdinov,
Alexander Kirillov, Carsten Rother, Thomas Brox, Bernt Schiele, and Bjoern Andres.
“Joint graph decomposition & node labeling: Problem, algorithms, applications.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 6012–6020.

[124] Peter H Li, Larry F Lindsey, Michał Januszewski, Mike Tyka, Jeremy Maitin-Shepard,
Tim Blakely, and Viren Jain. “Automated reconstruction of a serial-section EM
Drosophila brain with flood-filling networks and local realignment.” In: Microscopy
and Microanalysis 25.S2 (2019), pp. 1364–1365.

[125] Jeff W. Lichtman, Hanspeter Pfister, and Nir Shavit. “The big data challenges of
connectomics.” In: Nat. Neurosci. 17.11 (Nov. 2014). Perspective, pp. 1448–1454.

[126] Benjamin J Liebeskind, Hans A Hofmann, David M Hillis, and Harold H Zakon.
“Evolution of animal neural systems.” In: Annual review of ecology, evolution, and
systematics 48 (2017), pp. 377–398.

[127] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge
Belongie. “Feature pyramid networks for object detection.” In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2017, pp. 2117–2125.

[128] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. “Microsoft coco: Common objects in
context.” In: European conference on computer vision. Springer. 2014, pp. 740–755.

[129] Ting Liu, Cory Jones, Mojtaba Seyedhosseini, and Tolga Tasdizen. “A modular hier-
archical approach to 3D electron microscopy image segmentation.” In: J. Neurosci.
Methods 226 (Apr. 2014), pp. 88–102.

[130] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for
semantic segmentation.” In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 3431–3440.

160

[131] Quan-Xin Long, Bai-Zhong Liu, Hai-Jun Deng, Gui-Cheng Wu, Kun Deng, Yao-Kai
Chen, Pu Liao, Jing-Fu Qiu, Yong Lin, Xue-Fei Cai, et al. “Antibody responses to
SARS-CoV-2 in patients with COVID-19.” In: Nature medicine 26.6 (2020), pp. 845–
848.

[132] Filip Lux and Petr Matula. “Cell Segmentation by Combining Marker-Controlled
Watershed and Deep Learning.” In: arXiv preprint arXiv:2004.01607 (2020).

[133] Matthew Madany, Kyle Marcus, Steven Peltier, Mark H Ellisman, and Ilkay Altintas.
“NeuroKube: An Automated and Autoscaling Neuroimaging Reconstruction Frame-
work using Cloud Native Computing and AI.” In: 2020 IEEE International Conference
on Big Data (Big Data). IEEE Computer Society. 2020, pp. 320–330.

[134] L Mais, P Hirsch, and D Kainmueller. “PatchPerPix for instance segmentation.” In:
Lecture Notes in Computer Science 12370 (2020), pp. 288–304.

[135] Filip Malmberg, Robin Strand, and Ingela Nyström. “Generalized hard constraints for
graph segmentation.” In: Scandinavian Conference on Image Analysis. Springer. 2011,
pp. 36–47.

[136] Fredrik Manne and Md Mostofa Ali Patwary. “A scalable parallel union-find algo-
rithm for distributed memory computers.” In: International Conference on Parallel
Processing and Applied Mathematics. Springer. 2009, pp. 186–195.

[137] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A Database of Human Segmented Natural
Images and its Application to Evaluating Segmentation Algorithms and Measuring
Ecological Statistics.” In: Proc. 8th Int’l Conf. Computer Vision. Vol. 2. July 2001,
pp. 416–423.

[138] Brian Matejek, Daniel Haehn, Haidong Zhu, Donglai Wei, Toufiq Parag, and Hanspeter
Pfister. “Biologically-Constrained Graphs for Global Connectomics Reconstruction.”
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 2089–2098.

[139] Leland McInnes, John Healy, and James Melville. “Umap: Uniform manifold approxi-
mation and projection for dimension reduction.” In: arXiv preprint arXiv:1802.03426
(2018).

[140] Marina Meilua. “Comparing clusterings by the variation of information.” In: Learning
theory and kernel machines. Springer, 2003, pp. 173–187.

[141] Yaron Meirovitch, Alexander Matveev, Hayk Saribekyan, David Budden, David Rol-
nick, Gergely Odor, Seymour Knowles-Barley Thouis Raymond Jones, Hanspeter
Pfister, Jeff William Lichtman, and Nir Shavit. “A Multi-Pass Approach to Large-Scale
Connectomics.” In: arXiv preprint arXiv:1612.02120 (2016).

161

[142] Yaron Meirovitch, Lu Mi, Hayk Saribekyan, Alexander Matveev, David Rolnick,
and Nir Shavit. “Cross-Classification Clustering: An Efficient Multi-Object Tracking
Technique for 3-D Instance Segmentation in Connectomics.” In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 8425–8435.

[143] Benjamin Meyer, Christian Drosten, and Marcel A Müller. “Serological assays for
emerging coronaviruses: challenges and pitfalls.” In: Virus research 194 (2014),
pp. 175–183.

[144] Fernand Meyer. “Minimum spanning forests for morphological segmentation.” In:
Mathematical morphology and its applications to image processing. 1994, pp. 77–84.

[145] Fernand Meyer. “Topographic distance and watershed lines.” In: Signal processing
38.1 (1994), pp. 113–125.

[146] Fernand Meyer. “Morphological multiscale and interactive segmentation.” In: WS on
Nonlinear Signal and Image Processing. 1999, pp. 369–377.

[147] Alistair Miles et al. zarr-developers/zarr-python: v2.4.0. Version v2.4.0. Jan. 2020.

[148] Josh Moore et al. “OME-NGFF: scalable format strategies for interoperable bioimaging
data.” In: bioRxiv (2021).

[149] Josh Lyskowski Morgan, Daniel Raimund Berger, Arthur Willis Wetzel, and Jeff
William Lichtman. “The fuzzy logic of network connectivity in mouse visual thalamus.”
In: Cell 165.1 (2016), pp. 192–206.

[150] Alessandro Motta, Manuel Berning, Kevin M Boergens, Benedikt Staffler, Marcel
Beining, Sahil Loomba, Philipp Hennig, Heiko Wissler, and Moritz Helmstaedter.
“Dense connectomic reconstruction in layer 4 of the somatosensory cortex.” In: Science
366.6469 (2019).

[151] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja
Fidler, Raquel Urtasun, and Alan Yuille. “The Role of Context for Object Detection
and Semantic Segmentation in the Wild.” In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2014.

[152] Andreas Müller, Deborah Schmidt, C Shan Xu, Song Pang, Joyson Verner D’Costa,
Susanne Kretschmar, Carla Münster, Thomas Kurth, Florian Jug, Martin Weigert, et al.
“3D FIB-SEM reconstruction of microtubule–organelle interaction in whole primary
mouse β cells.” In: Journal of Cell Biology 220.2 (2021).

[153] Jacob M Musser, Klaske J Schippers, Michael Nickel, Giulia Mizzon, Andrea B Kohn,
Constantin Pape, Jorg U Hammel, Florian Wolf, Cong Liang, Ana Hernandez-Plaza,
et al. “Profiling cellular diversity in sponges informs animal cell type and nervous
system evolution.” In: BioRxiv (2019), p. 758276.

162

[154] Laurent Najman. “On the equivalence between hierarchical segmentations and ultra-
metric watersheds.” In: J. of Mathematical Imaging and Vision 40.3 (2011), pp. 231–
247.

[155] Laurent Najman and Michel Schmitt. “Geodesic saliency of watershed contours and
hierarchical segmentation.” In: IEEE Trans. Pattern Analysis and Machine Intelligence
18.12 (1996), pp. 1163–1173.

[156] Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool. “Instance
segmentation by jointly optimizing spatial embeddings and clustering bandwidth.” In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 8837–8845.

[157] Adrian Pascal Nievergelt, Gonzalo Alvarez Viar, and Gaia Pigino. “Towards a mecha-
nistic understanding of cellular processes by cryoEM.” In: Current opinion in structural
biology 58 (2019), pp. 149–158.

[158] Jonathon Nixon-Abell, Christopher J Obara, Aubrey V Weigel, Dong Li, Wesley R
Legant, C Shan Xu, H Amalia Pasolli, Kirsten Harvey, Harald F Hess, Eric Betzig, et al.
“Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in
the peripheral ER.” In: Science 354.6311 (2016), aaf3928.

[159] Sebastian Nowozin and Stefanie Jegelka. “Solution stability in linear programming
relaxations: Graph partitioning and unsupervised learning.” In: Proc. ICML (2009),
pp. 769–776.

[160] Juan Nunez-Iglesias, Ryan Kennedy, Toufiq Parag, Jianbo Shi, and Dmitri B Chklovskii.
“Machine learning of hierarchical clustering to segment 2D and 3D images.” In: PloS
ONE 8.8 (2013), e71715.

[161] Juan Nunez-Iglesias, Ryan Kennedy, Stephen M Plaza, Anirban Chakraborty, and
William T Katz. “Graph-based active learning of agglomeration (GALA): a Python
library to segment 2D and 3D neuroimages.” In: Frontiers in neuroinformatics 8 (2014),
p. 34.

[162] Natacha S Ogando, Tim J Dalebout, Jessika C Zevenhoven-Dobbe, Ronald WAL
Limpens, Yvonne van der Meer, Leon Caly, Julian Druce, Jutte JC de Vries, Marjolein
Kikkert, Montserrat Bárcena, et al. “SARS-coronavirus-2 replication in Vero E6 cells:
replication kinetics, rapid adaptation and cytopathology.” In: The Journal of general
virology 101.9 (2020), p. 925.

163

[163] Nisreen MA Okba, Marcel A Müller, Wentao Li, Chunyan Wang, Corine H
GeurtsvanKessel, Victor M Corman, Mart M Lamers, Reina S Sikkema, Erwin de
Bruin, Felicity D Chandler, et al. “Severe acute respiratory syndrome coronavirus 2-
specific antibody responses in coronavirus disease patients.” In: Emerging infectious
diseases 26.7 (2020), pp. 1478–1488.

[164] Shotaro Otsuka, Anna M Steyer, Martin Schorb, Jean-Karim Heriche, M Julius Hossain,
Suruchi Sethi, Moritz Kueblbeck, Yannick Schwab, Martin Beck, and Jan Ellenberg.
“Postmitotic nuclear pore assembly proceeds by radial dilation of small membrane
openings.” In: Nature structural & molecular biology 25.1 (2018), p. 21.

[165] Felix Pahmeier, Christopher J Neufeldt, Berati Cerikan, Vibhu Prasad, Costantin Pape,
Vibor Laketa, Alessia Ruggieri, Ralf Bartenschlager, and Mirko Cortese. “A Versatile
Reporter System To Monitor Virus-Infected Cells and Its Application to Dengue Virus
and SARS-CoV-2.” In: Journal of virology 95.4 (2021).

[166] Constantin Pape, Thorsten Beier, Peter Li, Viren Jain, Davi D Bock, and Anna Kreshuk.
“Solving Large Multicut Problems for Connectomics via Domain Decomposition.” In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2017, pp. 1–10.

[167] Constantin Pape, Alex Matskevych, Adrian Wolny, Julian Hennies, Giulia Mizzon,
Marion Louveaux, Jacob Musser, Alexis Maizel, Detlev Arendt, and Anna Kreshuk.
“Leveraging domain knowledge to improve microscopy image segmentation with lifted
multicuts.” In: Frontiers in Computer Science 1 (2019), p. 6.

[168] Constantin Pape, Roman Remme, Adrian Wolny, Sylvia Olberg, Steffen Wolf, Lorenzo
Cerrone, Mirko Cortese, Severina Klaus, Bojana Lucic, Stephanie Ullrich, et al.
“Microscopy-based assay for semi-quantitative detection of SARS-CoV-2 specific
antibodies in human sera: A semi-quantitative, high throughput, microscopy-based
assay expands existing approaches to measure SARS-CoV-2 specific antibody levels in
human sera.” In: BioEssays 43.3 (2021), p. 2000257.

[169] Toufiq Parag, Fabian Tschopp, William Grisaitis, Srinivas C Turaga, Xuewen Zhang,
Brian Matejek, Lee Kamentsky, Jeff W Lichtman, and Hanspeter Pfister. “Anisotropic
EM segmentation by 3D affinity learning and agglomeration.” In: arXiv preprint
arXiv:1707.08935 (2017).

[170] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Py-
torch: An imperative style, high-performance deep learning library.” In: arXiv preprint
arXiv:1912.01703 (2019).

164

[171] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. “Scikit-learn: Machine learning in Python.” In: the Journal of machine
Learning research 12 (2011), pp. 2825–2830.

[172] André F Pereira, Daniel J Hageman, Tomasz Garbowski, Christof Riedesel, Ulf Knothe,
Dirk Zeidler, and Melissa L Knothe Tate. “Creating high-resolution multiscale maps of
human tissue using multi-beam SEM.” In: PLoS computational biology 12.11 (2016),
e1005217.

[173] Benjamin Perret, Jean Cousty, Silvio J.F. Guimaraes, and Deise S Maia. “Evaluation
of hierarchical watersheds.” In: (2017). HAL preprint 01430865.

[174] Tobias Pietzsch, Stephan Saalfeld, Stephan Preibisch, and Pavel Tomancak. “Big-
DataViewer: visualization and processing for large image data sets.” In: Nature methods
12.6 (2015), pp. 481–483.

[175] Stephen M Plaza. “Focused proofreading: efficiently extracting connectomes from
segmented EM images.” In: arXiv preprint arXiv:1409.1199 (2014).

[176] Stephen M Plaza and Stuart E Berg. “Large-Scale Electron Microscopy Image Segmen-
tation in Spark.” In: arXiv preprint arXiv:1604.00385 (2016).

[177] Tran Minh Quan, David GC Hilderbrand, and Won-Ki Jeong. “FusionNet: A deep fully
residual convolutional neural network for image segmentation in connectomics.” In:
arXiv:1612.05360 (2016).

[178] David Rolnick, Yaron Meirovitch, Toufiq Parag, Hanspeter Pfister, Viren Jain, Jeff W
Lichtman, Edward S Boyden, and Nir Shavit. “Morphological error detection in 3d
segmentations.” In: arXiv preprint arXiv:1705.10882 (2017).

[179] William R Gray Roncal, Dean M Kleissas, Joshua T Vogelstein, Priya Manavalan,
Kunal Lillaney, Michael Pekala, Randal Burns, R Jacob Vogelstein, Carey E Priebe,
Mark A Chevillet, et al. “An automated images-to-graphs framework for high resolution
connectomics.” In: Frontiers in neuroinformatics 9 (2015).

[180] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks
for Biomedical Image Segmentation.” In: Proc. MICCAI (2015), pp. 234–241.

[181] Loïc A Royer, William C Lemon, Raghav K Chhetri, Yinan Wan, Michael Coleman,
Eugene W Myers, and Philipp J Keller. “Adaptive light-sheet microscopy for long-term,
high-resolution imaging in living organisms.” In: Nature Biotechnology 34 (Oct. 2016),
p. 1267.

[182] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning representa-
tions by back-propagating errors.” In: nature 323.6088 (1986), pp. 533–536.

165

[183] Matthew RG Russell, Thomas R Lerner, Jemima J Burden, David O Nkwe, Annegret
Pelchen-Matthews, Marie-Charlotte Domart, Joanne Durgan, Anne Weston, Martin L
Jones, Christopher J Peddie, et al. “3D correlative light and electron microscopy of
cultured cells using serial blockface scanning electron microscopy.” In: J Cell Sci 130.1
(2017), pp. 278–291.

[184] Stephan Saalfeld, Albert Cardona, Volker Hartenstein, and Pavel Tomančák. “CAT-
MAID: collaborative annotation toolkit for massive amounts of image data.” In: Bioin-
formatics 25.15 (2009), pp. 1984–1986.

[185] Stephan Saalfeld, Richard Fetter, Albert Cardona, and Pavel Tomancak. “Elastic volume
reconstruction from series of ultra-thin microscopy sections.” In: Nature methods 9.7
(2012), p. 717.

[186] Philippe Salembier and Luis Garrido. “Binary Partition Tree as an Efficient Represen-
tation for Image Processing, Segmentation, and Information Retrieval.” In: IEEE Trans.
Image Proc. 9 (2000), pp. 561–576.

[187] Louis K Scheffer, C Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin-ya Takemura,
Kenneth J Hayworth, Gary B Huang, Kazunori Shinomiya, Jeremy Maitlin-Shepard,
Stuart Berg, et al. “A connectome and analysis of the adult Drosophila central brain.”
In: Elife 9 (2020), e57443.

[188] Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark
Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Ben-
jamin Schmid, et al. “Fiji: an open-source platform for biological-image analysis.” In:
Nature methods 9.7 (2012), pp. 676–682.

[189] Philipp Schlegel, Marta Costa, and Gregory SXE Jefferis. “Learning from connectomics
on the fly.” In: Current opinion in insect science (2017).

[190] Benjamin Schmid, Johannes Schindelin, Albert Cardona, Mark Longair, and Mar-
tin Heisenberg. “A high-level 3D visualization API for Java and ImageJ.” In: BMC
bioinformatics 11.1 (2010), pp. 1–7.

[191] Uwe Schmidt, Martin Weigert, Coleman Broaddus, and Gene Myers. “Cell detection
with star-convex polygons.” In: International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2018, pp. 265–273.

[192] Wei Shen, Bin Wang, Yuan Jiang, Yan Wang, and Alan Yuille. “Multi-stage Multi-
recursive-input Fully Convolutional Networks for Neuronal Boundary Detection.” In:
arXiv preprint arXiv:1703.08493 (2017).

166

[193] Paul Simion, Hervé Philippe, Denis Baurain, Muriel Jager, Daniel J Richter, Arnaud
Di Franco, Béatrice Roure, Nori Satoh, Éric Quéinnec, Alexander Ereskovsky, et al.
“A large and consistent phylogenomic dataset supports sponges as the sister group to
all other animals.” In: Current Biology 27.7 (2017), pp. 958–967.

[194] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition.” In: CoRR abs/1409.1556 (2014).

[195] Natcha Simsiri, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. “Work-
efficient parallel union-find.” In: Concurrency and Computation: Practice and Experi-
ence 30.4 (2018), e4333.

[196] Nicholas Sofroniew et al. napari/napari: 0.4.7rc1. Version v0.4.7rc1. Mar. 2021.

[197] P. Soille. “Constrained Connectivity for Hierarchical Image Decomposition and Sim-
plification.” In: IEEE Trans. Patt. Anal. Mach. Intell. 30.7 (2008), pp. 1132–1145.

[198] Thorvald Sørensen. “A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of the vegetation
on Danish commons.” In: Biol. Skr. 5 (1948), pp. 1–34.

[199] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A simple way to prevent neural networks from overfitting.”
In: J. Mach. Learn. Res. 15.1 (2014), pp. 1929–1958.

[200] Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. “Cellpose:
a generalist algorithm for cellular segmentation.” In: Nature Methods 18.1 (2021),
pp. 100–106.

[201] Paul Swoboda and Bjoern Andres. “A Message Passing Algorithm for the Minimum
Cost Multicut Problem.” In: arXiv preprint arXiv:1612.05441 (2016).

[202] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. “Going deeper
with convolutions.” In: Proc. CVPR (2015), pp. 1–9.

[203] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew
Wojna. “Rethinking the inception architecture for computer vision.” In: arXiv preprint
arXiv:1512.00567 (2015).

[204] Shin-ya Takemura, Arjun Bharioke, Zhiyuan Lu, Aljoscha Nern, Shiv Vitaladevuni,
Patricia K Rivlin, William T Katz, Donald J Olbris, Stephen M Plaza, Philip Winston,
et al. “A visual motion detection circuit suggested by Drosophila connectomics.” In:
Nature 500.7461 (2013), pp. 175–181.

167

[205] Shin-Ya Takemura et al. “Synaptic circuits and their variations within different columns
in the visual system of Drosophila.” In: Proc. Natl. Acad. Sci. USA 112.44 (2015).

[206] Benjamin Titze, Christel Genoud, and Rainer W Friedrich. “SBEMimage: versatile
acquisition control software for serial block-face electron microscopy.” In: Frontiers in
neural circuits 12 (2018), p. 54.

[207] Dejan Tomaževič, Bostjan Likar, and Franjo Pernuš. “Comparative evaluation of
retrospective shading correction methods.” In: Journal of microscopy 208.3 (2002),
pp. 212–223.

[208] Burkhard Tönshoff et al. “Prevalence of SARS-CoV-2 Infection in Children and Their
Parents in Southwest Germany.” In: JAMA Pediatrics (Jan. 2021).

[209] Zhuowen Tu. “Auto-context and its application to high-level vision tasks.” In: Proc.
CVPR (2008), pp. 1–8.

[210] Srinivas C Turaga, Kevin L Briggman, Moritz Helmstaedter, Winfried Denk, and
H Sebastian Seung. “Maximin affinity learning of image segmentation.” In: Proc. NIPS
(2009), pp. 1865–1873.

[211] Srinivas C Turaga, Joseph F Murray, Viren Jain, Fabian Roth, Moritz Helmstaedter,
Kevin Briggman, Winfried Denk, and H Sebastian Seung. “Convolutional networks
can learn to generate affinity graphs for image segmentation.” In: Neural computation
22.2 (2010), pp. 511–538.

[212] Mustafa Gokhan Uzunbas, Chao Chen, and Dimitris Metaxas. “An efficient conditional
random field approach for automatic and interactive neuron segmentation.” In: Med.
Image Anal. 27 (2016), pp. 31–44.

[213] Mustafa Gökhan Uzunbaş, Chao Chen, and Dimitris Metaxas. “Optree: a learning-
based adaptive watershed algorithm for neuron segmentation.” In: Int. Conf. Medical
Image Computing and Computer-Assisted Intervention (MICCAI’14). 2014, pp. 97–
105.

[214] Corinne Vachier and Fernand Meyer. “Extinction value: a new measurement of per-
sistence.” In: Worksh. Nonlinear Signal and Image Processing. Vol. 1. 1995, pp. 254–
257.

[215] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias, François Boulogne,
Joshua D Warner, Neil Yager, Emmanuelle Gouillart, and Tony Yu. “scikit-image:
image processing in Python.” In: PeerJ 2 (2014), e453.

[216] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool.
“Unsupervised semantic segmentation by contrasting object mask proposals.” In: arXiv
preprint arXiv:2102.06191 (2021).

168

[217] Amelio Vazquez-Reina, Michael Gelbart, Daniel Huang, Jeff Lichtman, Eric Miller,
and Hanspeter Pfister. “Segmentation fusion for connectomics.” In: Proc. Intl. Conf.
Comp. Vision (2011), pp. 177–184.

[218] Hernando M Vergara, Constantin Pape, Kimberly Meechan, Valentyna Zinchenko,
Christel Genoud, Adrian A Wanner, Benjamin Titze, Rachel Templin, Paola Yanina
Bertucci, Oleg Simakov, et al. “Whole-body integration of gene expression and single-
cell morphology.” In: bioRxiv (2020).

[219] Hernando Martinez Vergara, Paola Yanina Bertucci, Peter Hantz, Maria Antonietta
Tosches, Kaia Achim, Pavel Vopalensky, and Detlev Arendt. “Whole-organism cel-
lular gene-expression atlas reveals conserved cell types in the ventral nerve cord of
Platynereis dumerilii.” In: PNAS 114.23 (2017), pp. 5878–5885.

[220] Luc Vincent and Pierre Soille. “Watersheds in digital spaces: an efficient algorithm
based on immersion simulations.” In: IEEE Trans. Pattern Analysis Machine Intelli-
gence 6 (1991), pp. 583–598.

[221] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et
al. “SciPy 1.0: fundamental algorithms for scientific computing in Python.” In: Nature
methods 17.3 (2020), pp. 261–272.

[222] Pavel Vopalensky, Maria Antonietta Tosches, Kaia Achim, Mette Handberg-Thorsager,
and Detlev Arendt. “From spiral cleavage to bilateral symmetry: the developmental
cell lineage of the annelid brain.” In: BMC biology 17.1 (2019), p. 81.

[223] Adrian A. Wanner, Christel Genoud, Tafheem Masudi, Lea Siksou, and Rainer W.
Friedrich. “Dense EM-based reconstruction of the interglomerular projectome in the
zebrafish olfactory bulb.” In: Nat. Neurosci. 19.6 (June 2016). Article, pp. 816–825.

[224] Joe H Ward Jr. “Hierarchical grouping to optimize an objective function.” In: Journal
of the American statistical association 58.301 (1963), pp. 236–244.

[225] Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, and Gene Myers. “Star-
convex polyhedra for 3d object detection and segmentation in microscopy.” In: The
IEEE Winter Conference on Applications of Computer Vision. 2020, pp. 3666–3673.

[226] Maurice Weiler, Fred A Hamprecht, and Martin Storath. “Learning Steerable Filters
for Rotation Equivariant CNNs.” In: arXiv preprint arXiv:1711.07289 (2017).

[227] Nathan V Whelan, Kevin M Kocot, Tatiana P Moroz, Krishanu Mukherjee, Peter
Williams, Gustav Paulay, Leonid L Moroz, and Kenneth M Halanych. “Ctenophore
relationships and their placement as the sister group to all other animals.” In: Nature
ecology & evolution 1.11 (2017), pp. 1737–1746.

169

[228] John G White, Eileen Southgate, J Nichol Thomson, and Sydney Brenner. “The
structure of the nervous system of the nematode Caenorhabditis elegans.” In: Philos
Trans R Soc Lond B Biol Sci 314.1165 (1986), pp. 1–340.

[229] Jeffrey D Whitman, Joseph Hiatt, Cody T Mowery, Brian R Shy, Ruby Yu, Tori N
Yamamoto, Ujjwal Rathore, Gregory M Goldgof, Caroline Whitty, Jonathan M Woo,
et al. “Evaluation of SARS-CoV-2 serology assays reveals a range of test performance.”
In: Nature biotechnology 38.10 (2020), pp. 1174–1183.

[230] Stiaan Wiehman and Hendrik de Villiers. “Semantic segmentation of bioimages using
convolutional neural networks.” In: 2016 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2016, pp. 624–631.

[231] Steffen Wolf, Alberto Bailoni, Constantin Pape, Nasim Rahaman, Anna Kreshuk, Ull-
rich Köthe, and Fred A Hamprecht. “The Mutex Watershed and its Objective: Efficient,
Parameter-Free Graph Partitioning.” In: IEEE Transactions on Pattern Analysis and
Machine Intelligence (2020).

[232] Steffen Wolf, Yuyan Li, Constantin Pape, Alberto Bailoni, Anna Kreshuk, and Fred
A Hamprecht. “The Semantic Mutex Watershed for Efficient Bottom-Up Semantic
Instance Segmentation.” In: Proc. ECCV’2020 (2020).

[233] Steffen Wolf, Constantin Pape, Alberto Bailoni, Nasim Rahaman, Anna Kreshuk,
Ullrich Köthe, and Fred Hamprecht. “The Mutex Watershed: Efficient, Parameter-Free
Image Partitioning.” In: Proc. ECCV’18 (2018).

[234] Steffen Wolf, Lukas Schott, Ullrich Köthe, and Fred Hamprecht. “Learned Watershed:
End-to-End Learning of Seeded Segmentation.” In: Proc. ICCV’17 (2017).

[235] Adrian Wolny, Qin Yu, Constantin Pape, and Anna Kreshuk. “Sparse Object-level
Supervision for Instance Segmentation with Pixel Embeddings.” In: arXiv preprint
arXiv:2103.14572 (2021).

[236] Adrian Wolny et al. “Accurate and versatile 3D segmentation of plant tissues at cel-
lular resolution.” In: eLife 9 (July 2020). Ed. by Christian S Hardtke, Dominique C
Bergmann, Dominique C Bergmann, and Moritz Graeff, e57613.

[237] Fan Wu, Su Zhao, Bin Yu, Yan-Mei Chen, Wen Wang, Zhi-Gang Song, Yi Hu, Zhao-
Wu Tao, Jun-Hua Tian, Yuan-Yuan Pei, et al. “A new coronavirus associated with
human respiratory disease in China.” In: Nature 579.7798 (2020), pp. 265–269.

[238] Saining Xie and Zhuowen Tu. “Holistically-nested edge detection.” In: Proc. ICCV’15.
2015, pp. 1395–1403.

170

[239] C Shan Xu, Song Pang, Gleb Shtengel, Andreas Müller, Alex T Ritter, Huxley K
Hoffman, Shin-ya Takemura, Zhiyuan Lu, H Amalia Pasolli, Nirmala Iyer, et al.
“Isotropic 3D electron microscopy reference library of whole cells and tissues.” In:
bioRxiv (2020).

[240] Tao Zeng, Bian Wu, and Shuiwang Ji. “DeepEM3D: approaching human-level perfor-
mance on 3D anisotropic EM image segmentation.” In: Bioinformatics 33.16 (2017),
pp. 2555–2562.

[241] C. Zhang, Julian Yarkony, and Fred A. Hamprecht. “Cell detection and segmentation
using correlation clustering.” In: Proc. MICCAI’14. 2014, pp. 9–16.

[242] Zhihao Zheng, J Scott Lauritzen, Eric Perlman, Camenzind G Robinson, Matthew
Nichols, Daniel Milkie, Omar Torrens, John Price, Corey B Fisher, Nadiya Sharifi,
et al. “A complete electron microscopy volume of the brain of adult Drosophila
melanogaster.” In: Cell 174.3 (2018), pp. 730–743.

[243] Aleksandar Zlateski and H Sebastian Seung. “Image segmentation by size-dependent
single linkage clustering of a watershed basin graph.” In: arXiv:1505.00249 (2015).

[244] Jonathan Zung, Ignacio Tartavull, Kisuk Lee, and H Sebastian Seung. “An error detec-
tion and correction framework for connectomics.” In: Advances in Neural Information
Processing Systems. 2017, pp. 6818–6829.

[245] Mark H Zweig and Gregory Campbell. “Receiver-operating characteristic (ROC) plots:
a fundamental evaluation tool in clinical medicine.” In: Clinical chemistry 39.4 (1993),
pp. 561–577.

171

	Abstract
	Zusammenfassung
	Acknowledgments
	1 Introduction
	1.1 Machine Learning for Image Segmentation
	1.1.1 Graph-based Instance Segmentation
	1.1.2 Instance Segmentation for Microscopy

	1.2 Contributions

	2 Multicut and Lifted Multicut for EM Segmentation
	2.1 Introduction
	2.2 Methods
	2.2.1 Boundary Prediction
	2.2.2 Superpixel Generation
	2.2.3 Edge Costs
	2.2.4 Multicut
	2.2.5 Lifted Edge Costs
	2.2.6 Lifted Multicut

	2.3 Results
	2.3.1 ISBI2012 challenge
	2.3.2 Lesion Study
	2.3.3 SNEMI3D Data-set
	2.3.4 Neuroproof Data-set
	2.3.5 CREMI challenge

	2.4 Conclusion

	3 Scalable Multicut and Lifted Multicut Segmentation
	3.1 Introduction
	3.2 Related Work
	3.3 Methods
	3.3.1 Multicut Solver
	3.3.2 Lifted Multicut Solver

	3.4 Results
	3.4.1 Performance of extant Multicut Solvers
	3.4.2 Performance and Accuracy of the Block-wise Multicut Solver
	3.4.3 Scaling Behavior of the Block-wise Multicut Solver
	3.4.4 Lifted Multicut solver

	3.5 Conclusion

	4 Improving Segmentation with Lifted Priors
	4.1 Introduction
	4.2 Related Work
	4.3 Methods
	4.3.1 Sparse Lifted Edges

	4.4 Results
	4.4.1 Mouse Cortex Segmentation, EM
	4.4.2 Drosophila brain segmentation, EM
	4.4.3 Sponge segmentation, EM
	4.4.4 Lateral root segmentation, LM

	4.5 Discussion

	5 The Mutex Watershed
	5.1 Introduction
	5.2 Related Work
	5.3 Methods
	5.3.1 Definitions and notation
	5.3.2 Seeded watershed from a mutex perspective
	5.3.3 Mutex Watersheds
	5.3.4 Time Complexity Analysis

	5.4 Results
	5.4.1 Estimating edge weights with a CNN
	5.4.2 ISBI Challenge
	5.4.3 Study on natural image segmentation

	5.5 Conclusion

	6 Applications of Large-scale Segmentation
	6.1 A cellular atlas for Platynereis dumerilii
	6.1.1 Segmentation
	6.1.2 Further Analysis

	6.2 Segmentation of a Sponge Choanocyte Chamber
	6.2.1 Segmentation
	6.2.2 Analysis

	6.3 Immunofluorescence based Testing for SARS-CoV-2 Antibodies
	6.3.1 Immunofluorescence Assay and Image Acquisition
	6.3.2 Quantitative Analysis
	6.3.3 Assay Characterization and Validation

	7 Conclusion
	Appendices
	A Appendix
	A.1 Software
	A.1.1 Chunked Data Storage
	A.1.2 Distributed Computation
	A.1.3 MoBIE and Data Sharing

	A.2 Multicut and Lifted Multicut for EM Segmentation
	A.3 Scalable Multicut and Lifted Multicut Segmentation
	A.3.1 Performance of extant Multicut Solvers
	A.3.2 Performance and Accuracy of the Block-wise Multicut Solver
	A.3.3 Scaling Behavior of the Block-wise Multicut Solver

	A.4 The Mutex Watershed
	A.4.1 Network Architecture and Training
	A.4.2 Baseline Post-processing Methods
	A.4.3 Study on Natural Image Segmentation

	A.5 A cellular Atlas for Platynereis dumerilii
	A.6 Immunofluorescence based Testing for SARS-COV-2 Antibodies
	A.6.1 Quantitative Analysis
	A.6.2 Assay Characterization and Validation

