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Artificial magnetic resonance contrasts based on microvascular geometry:
A numerical basis

Magnetic resonance imaging (MRI) is highly versatile, offering many contrast settings
inherently sensitivity to tissue microstructure at the sub-voxel scale (below the imaging
resolution). Since its invention, images produced with MRI have mainly been based on
classical reconstructions, with contrast determined by the signal attenuation from local
tissue and MRI sequence design. In the advent of machine learning becoming practical,
wide availability of computational power and high-resolution imaging such as laser
scanning microscopy, new processing techniques involving MRI interpretations based
on comparisons with known signals and ground-truth microstructure can be explored.
Data-driven signal classifications enable model-less predictions of tissue properties on a
single voxel level, offering artificial MRI contrasts. In this thesis, groundwork is laid for
the exploration of such contrasts and suitable MRI sequences, with a demonstration
of the feasibility of such an approach based on transverse relaxation for brain tumor
detection. The thesis is focused on the role of microvascular geometry on reversible
transverse relaxation in the context of tumor imaging. Comprehensive quantifications
of cancer-induced vessel remodeling are provided, and the effects thereof studied with
MRI simulations. Consequently, a numerical framework was developed for correlations
of MRI signal properties with underlying microstructure for further exploration of
artificial contrasts.

Künstliche Kontraste für die Magnetresonanztomographie basierend auf
mikrovaskulärer Geometrie: Numerische Grundlagen

Magnetresonanztomographie (MRT) bietet viele Gewebekontraste mit inhärenter Sen-
sitivität gegenüber Mikrostruktur und Dynamik unterhalb der Bildgebungsauflösung.
Bisher beruhte der Kontrast in MRT Aufnahmen weitestgehend auf klassischen Sig-
nalgewichtungen basierend auf dem Einfluss von lokalem Gewebe auf die messbare
Signalintensität unter den Einstellungen einer MRT Sequenz. Mit der zunehmenden Ver-
fügbarkeit von Rechenleistung, praktikabler künstlicher Intelligenz und der Möglichkeit
zur hochauflösenden, großskaligen Bildgebung echter Gewebemikrostruktur, beispiel-
sweise mithilfe der Laser-Scanning-Mikroskopie, eröffnen sich neue Möglichkeiten der
MRT Signalinterpretation durch Fokus auf erlernbare Signalsignaturen einzelner Bild-
punkte (Voxel) unter verschiedenen MRT-Sequenzen. Maschinelles Lernen ermöglicht
eine Modell-lose Interpretation komplexer Signalsignaturen zur Schätzung gewisser
Gewebeeigenschaften auf Voxel-Ebene für eine Art künstlichen MRT Kontrast durch
einen Vergleich mit bekannten Signalformen. In dieser Dissertation wurden numerische
Werkzeuge entwickelt, um hochaufgelöste 3D Daten echter Mikrovaskulatur umfassend
mit geometrischen und topologischen Maßen zu quantifizieren und deren Einfluss auf
MRT Messungen zu simulieren. Dies wurde in eine skalierbare numerische Prozessierung
verpackt, um MRT Signaleigenschaften mit Charakteristiken der zugrundeliegenden
Gefäßarchitektur in großskaligen, datenbasierten Untersuchungen zu korrelieren. Die
Gefäßgeometrie und -topologie in gesundem Hirngewebe und hochgradid malignen
Hirntumoren wurde umfassend untersucht und es konnte gezeigt werden, dass der
kollektive Einfluss von tumorgeschuldeten Gefäßremodellierungen auf die transversale
Relaxation in MRT eine Klassifizierung von Tumorsignalen auf Voxel-Ebene theoretisch
ermöglicht.
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1 Introduction

Since its invention in the 1970s, magnetic resonance imaging (MRI) has become a
powerful and multifaceted tool in medical practice, enabling the diagnosis and monitoring
of diverse pathologies previously undetectable with non-invasive methods. In contrast to
X-ray imaging, it is not based on the transmission and absorption of ionizing radiation
through tissue and therefore minimizes harmful effects on patients. Compared with
nuclear medical imaging methods such as positron emission tomography (PET) and
single-photon emission computed tomography (SPECT), the signal generated and
measured in MRI does not only contain spatial information about its origin within
the body. Based on the principles of nuclear magnetic resonance (NMR), the MRI
signal can encode useful information about the microscopic environment of the tissue it
originated from. Different MRI pulse sequence designs, pertaining to the radiofrequency
(RF) radiation used to excite and manipulate the spin system generating the NMR
signal, can be used to emphasize specific aspects of the tissue microenvironment.
The multitude of factors influencing the measurable NMR signal combines inter-

nal, tissue-inherent properties and external, hardware-specific conditions. Pertinent
microscopic tissue characteristics include thermodynamic degrees of freedom, e.g., vi-
brational and rotational states, which affect the relaxivity of the excited spin system,
macroscopically described by the relaxation times T1 and T2 (details in section 1.2.3).
Besides the sheer local spin density, usually referring to the proton density PD, the
molecular environment has different effects. Atoms proximal to the spin-bearing nuclei,
especially in nearby chemical bonds, can cause a so-called chemical shift of the Larmor
frequency by characteristically altering the electronic orbital shielding of the nuclei
from the external magnetic field [1, 2]. Also, magnetization transfer can occur between
different spins, changing the excited spin pool composition, relaxation characteristics
and on-resonance [3–5]. On mesoscopic length scales, the NMR signal is altered by
magnetic susceptibility variations within the tissue, which cause field deformations
and Larmor frequency inhomogeneities in their surroundings. Diffusion of spin-bearing
nuclei due to Brownian motion counters this effect by effectively averaging local Larmor
frequencies. Dynamic macroscopic conditions such as perfusion and physiological motion
also affect MRI in characteristic ways, often causing artifacts if not dealt with correctly.
In conjunction with the tissue properties just described, external factors from the

MRI scanner determine the measurable NMR signal. Influential scan parameters include
the external field strength B0, applied field gradients G, and the RF-pulse sequence
design; i.e., oscillating field amplitudes B1 and pulse durations with corresponding flip
angles α, as well as the timings between RF-pulses, namely the echo time TE, repetition
time TR, and inversion time TI for inversion recovery sequences [1]. Throughout the
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1 Introduction

years, unceasing technological improvements and new theories have sharpened our
intuition of “action” and “reaction” in the context of MRI. Actions with certain RF and
gradient pulses cause characteristic NMR signal reactions, which are determined by the
local constellation of aforementioned microscopic conditions and tissue characteristics.
Throughout the years, our technical comprehension, hardware engineering, and ability
to describe different factors mathematically have continuously improved, ultimately
enabling the brilliant imaging and diverse contrasts available today.

1.1 Motivation

Theoretical treatments since the 1990s have brought forth analytical descriptions of
the NMR signal evolution in certain idealized tissue microenvironments, predicting the
detailed course of transverse relaxation, i.e., the signal decay with relaxation times T2 and
T ∗2 (see section 1.2.3 for elaboration), in the presence of distinct magnetic susceptibility
inclusions. Approximate and exact mathematical solutions for the transverse relaxation
evolution have been found for tissue-embedded spheres (modeling, e.g., pulmonary
alveoli in lung tissue [6] or paramagnetic marker particles [7, 8]), filled cylinders
(modeling, e.g., straight blood vessels [9–13]), spheroids (modeling, e.g., red blood
cells or marrow within trabecular bones [14]), and nested cylindrical shells (modeling
myelinated axons [15]). Such analytical treatments, detailed in section 1.2.4, have shown
that the transverse relaxation from a macroscopic MRI voxel (three-dimensional (3D)
pixel) is influenced by the geometric properties of microscopic susceptibility inclusions
within that voxel, far below the MRI resolution, in a well-defined manner.

Exact mathematical solutions of these problems yield highly complex signal forms, as
demonstrated for the long cylindrical vessel model in section 1.2.4. In practice, fitting
such complex functions to real MRI data to determine the vessel radius and tissue volume
fraction is infeasible, especially with signal noise. Furthermore, idealized geometries
allow for an analytical solution, but oversimplify most organic tissue structures such as
capillary networks in the brain. This motivated a new, data-driven approach to the
problem of microstructure estimation through MRI, which I begin to pursue in this
thesis. I conjecture that characteristic microstructures in certain organs and tissue types
should produce recognizable NMR signatures, which can be learned using methods of
artificial intelligence for inference about microstructural anomalies within macroscopic
MRI voxels. It should be possible to learn healthy signal forms corresponding to
certain tissue types and specific pulse sequences by training classifiers for a machine
aided detection of deviations thereof. This way, each MRI voxel could be interpreted
individually by a trained classifier based on a combination of acquired signal intensities
from tailored pulse sequences - an impossible task for humans but well-fit for machine
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1.1 Motivation

learning. Since neighboring voxel signals in MRI are virtually independent, local clusters
of anomalously classified voxels may point out meaningful problems, even if they are
too small to be recognizable on an anatomical level by radiologists.

At this point, a random search for appropriate sequence designs or the direct use of
randomized sequences, mixing a range of NMR contrasts (as can be used for magnetic
resonance fingerprinting (MRF) [16]), should be avoided for multiple reasons. For
one, it would waste precious scan time on real MRIs. An ethical justification for such
overkill measurements would be hard to advocate before a basic proof-of-principle
and a prior search for sequence types useful for the detection of certain, characteristic
tissue anomalies. Moreover, different contrasts and sequence types are not standardized
across vendors, MRI scanners and RF coils. In consequence, the absolute signal
intensities of different contrasts depend on hardware and sequence design, complicating
an inclusion of different fundamental contrasts for the definition of a healthy tissue
signature generalizable across hardware. Therefore, within this thesis, I focus on a
single contrast type, namely the reversible transverse relaxation, typically associated
with the relaxation time T ′2 = 1/R′2, where R′2 = R∗2 − R2 (see section 1.2.3). This
choice for a starting point is motivated by the referenced theoretical studies [9–13].

A numerical approach is taken here to provide a proof-of-principle for a voxel-by-voxel
signal classification using the T ′2 evolution in the context of brain tumor diagnosis.
The MRI physics were implemented numerically to enable the production of a large
range of virtual measurements without wasting valuable scan time on real MRIs, while
having exact knowledge about the ground truth microstructure underlying each virtual
MRI voxel [17, 18]. The feasibility test is based on the influence of microvascular
deformations associated with tumor growth, grounded on the effects of naturally present
deoxyhemoglobin within blood [19]; the phenomenon behind the blood oxygenation
level dependent (BOLD) effect [20, 21].

The vascular compartment was isolated for this proof-of-concept because of its
omnipresence in living tissue, the strong remodeling effects of tumor growth on the
capillary network [22–25], and its observed consequences for BOLD-type measurements
[26, 27] (see section 1.2.5). Further, the blood susceptibility represents an externally
alterable factor, which can be manipulated by inhalation of special oxygen and carbon
dioxide mixtures, inducing hyperoxia or hypercapnia [28, 29], or by intravascular
contrast agent injection, e.g., with gadolinium chelates or superparamagnetic iron-oxide
nanoparticles (SPIONS) [30]. This offers an additional degree of freedom to alter
during MRI to probe perfusion characteristics through transverse relaxation, should
endogenous conditions not suffice. Such means are taken in dynamic susceptibility
contrast (DSC) imaging [31, 32] and specialized techniques, like vessel size imaging
(VSI) [33, 34] and vessel architectural imaging (VAI) [35–37].

3



1 Introduction

The BOLD effect is most prominently known from its use in functional MRI (fMRI),
where active brain regions show increased metabolic demands and associated dips of the
capillary blood oxygenation, temporarily changing local T2 and especially T ∗2 values [38].
Throughout a cycle of typically around ten seconds, the local blood oxygen saturation
initially drops, following neuronal activation, and is quickly compensated by a vascular
response through so-called neurovascular coupling, resupplying the region with freshly
oxygenated blood [39, 40]. Repeating T (∗)

2 -weighted MRI acquisitions over the course
of several seconds thus exposes regions with heightened neuronal and glial activity
[17, 41]. Similarly to fMRI, which tracks transverse relaxation rate changes over several
seconds, most DSC methods sample T2 and T ∗2 throughout the relatively long time
course of a contrast agent bolus pass-through [34, 42]. Such relaxation rate comparisons
from separate MRI acquisitions present several intricacies. Patient movement and
physiological dynamics between acquisitions can complicate a voxel registration and
ascription of signal variations to individual aspects. In a related manner, signal-impeding
conditions such as B0 inhomogeneities can change with varying anatomic conditions
and further hinder a correct interpretation of inter-acquisition signal changes.

The approach investigated in this thesis focuses on the intra-voxel NMR behavior
on much shorter time scales well below a second. As numerous theoretical, numerical,
and experimental studies have shown, transverse relaxation is not monoexponential in
heterogeneous tissues, exhibiting Gaussian and multiexponential decay forms [14, 43, 44].
Assuming most physiological conditions to be approximately constant over the time
course of typical transverse magnetization decay in biomedical imaging (below 0.5 s),
this signal range should be strongly influenced by static microstructural conditions like
the local capillary geometry. In this time range, vessel constrictions and dilations, as
well as oxygenation changes and pulsatile flow effects should be minimal [39, 45–47]. In
contrast to BOLD fMRI and DSC measurements, which probe physiological dynamics, in
this thesis, signatures of the intra-voxel MRI signal are analyzed for static physiological
conditions. It is investigated whether the collective effects of tumor-induced vessel
remodeling and angiogenesis theoretically alter the extravascular component [18] of the
integrated MRI voxel signal with endogenous T ′2 contrast clearly enough to be used for
automated tumor voxel classification.

A well-known difficulty in the interpretation of BOLD signal dynamics stems from
the fact that local blood oxygen fluctuations in the brain are normally accompanied
by cerebral blood volume (CBV ) variations due to vessel constrictions and dilations
[17, 39]. Furthermore, analytical treatments of dephasing effects in the cylindrical vessel
model, detailed in section 1.2.4, have shown that the blood oxygen saturation and vessel
radius have strongly correlated effects on transverse relaxation, which are difficult to
disentangle without additional constraining measurements of the blood oxygenation.
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1.1 Motivation

This predicament calls for more sophisticated vessel models, involving new parameters
in addition to the vessel radius and CBV to describe the capillary geometry. A more
realistic vessel network model may help solve degeneracies in the inverse problem of
inferring on capillary structure from macroscopic NMR signal characteristics.

Especially in the context of detecting pathological remodeling of capillary beds,
an understanding of the geometric and topological peculiarities of microvasculature
associated with certain diseases is important. The sheer ability to classify differences in
signal forms is not very useful if the origin of these differences remains unknown. In
addition to the achievable classification accuracy, it is crucial to identify which aspects
of the vasculature are distinct in which sense. Therefore, a large part of this thesis
is dedicated to the extensive quantification of large vascular networks in healthy and
pathological tissue. Full cerebrovascular networks of unprecedented extent, concerning
the combination of sample size and resolution, were analyzed comprehensively to
parametrize and quantify the differences between healthy and tumor-bearing brain
tissue on a large scale and attain statistically significant results from entire tissue
specimens in a mouse model. For this purpose, generalizable, automated, and highly
scalable quantifications of vessel geometry and topology were custom-written for use
with high-performance computation clusters or standard desktop computers, depending
on availability, to analyze 3D acquisitions of ground-truth microvasculature, e.g., from
fluorescence light sheet microscopy [48, 49] or multiphoton microscopy [50].

With the numerical toolkits developed in the course of this thesis, real microvascular
architectures acquired, e.g., with laser scanning microscopy [51, 52] or micro-computed
tomography (µCT) techniques [53], or created artificially [54, 55] can be used as a
substrate for MRI simulations with simultaneous quantifications of the underlying geo-
metric and topological parameters. The custom-developed programs can automatically
process arbitrarily large and arbitrarily shaped tissue sections in a partitioned manner
and resume progress where left off, should processing be interrupted at some point. This
allows for asymptotic studies, where virtual MRI voxels are sampled from the specified
tissue in a randomized way and preliminary results can be summarized in statistics at
any point. This framework is suitable for the generation of training, validation, and test
data for data-driven approaches of microvascular characterization from macroscopic
MRI signals using machine learning. This builds the basis for continuing studies of
the influence of microvascular architectures on MRI, e.g., to attempt regressions of the
quantified microvascular properties from T ′2 evolutions. Using the developed toolkits,
different approaches can be taken to identify plausible connections between character-
istic signal changes and certain vessel remodeling aspects. This may even aid in the
development of new vessel models incorporating relevant model parameters which are
distinctive in tumor-affected tissue and other pathologies.
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1 Introduction

Data-driven approaches may open up new avenues of signal interpretation, where
artificial contrasts can be defined, based on the signal form from a tailored sequence,
which has been learned for different tissue microenvironments. To begin this journey, I
conjecture that a promising approach should be the voxel-wise interpretation of MRI
signals from a fixed sequence type with variable echo times TE. With a fixed underlying
contrast used for the signal acquisition, e.g., T2, T∗2, or certain diffusion weighting,
hardware-specific effects on the signal intensity, such as coil sensitivity and B0 and
B1 inhomogeneities, can be circumvented, since they should be equal for a particular
sequence type, independent of its echo time. A processing based on relative signal
intensities at different echo times, normalized to the signal at a defined reference time,
with better adapted fit models, should generalize well for a vendor-independent method.
A basis for exploring suitable sequence and contrast types for different tissues, organs,
and pathologies is provided in this thesis and demonstrated for brain tumor effects on
the geometry and topology of the capillary bed.

1.2 Background

Although it maintains striking analogies to angular momentum, explaining the origin of
its name, spin is a fundamental property of elementary particles. In theory, it follows
as an inherent field characteristic from solutions of the Dirac equation, which combines
quantum mechanical operator correspondence to the observables of energy and impulse
(inspired by the Schrödinger equation) with the relativistic energy-impulse relationship
as postulated by Albert Einstein’s special relativity [56]. In the standard model of
particle physics, elementary particles can be divided into two families: fermions with
half-integer spin quantum numbers (s ∈ {1

2 ,
3
2 ,

5
2 , ...}) and bosons with full-integer spin

(s ∈ {0, 1, 2, 3, ...}). Fermions obey the Pauli exclusion principle, which forbids a
degeneracy of quantum mechanical states in a system, while bosons allow for an unlimited
number of particles in the same state. In consequence, our intuitive understanding of
matter, which “takes up” space, refers to fermion compositions (usually from stable spin-
1
2 fermions), while interactions are mediated by so-called gauge bosons (fundamental
spin-1 fields which couple to the fermions; i.e., photons, gluons, and W and Z bosons).
Currently, gravity is the only known fundamental force which is still best-described
separately by general relativity without the need for force-mediating bosons, while
particle mass itself can be explained by coupling to the Higgs field; responsible for the
only experimentally-observed elementary particle with zero spin (the Higgs boson).

Every atom is made up of a nucleus (containing protons and neutrons) and surrounding
electrons for neutral charge. The compact nucleus holds most of the atomic mass and the
electrons are responsible for chemical bonds between different atoms to form molecules.
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1.2 Background

As composite particles made up of quarks and gluons, protons and neutrons each carry
spin-1

2 . Different isotopes of elements have distinct nuclear spin quantum numbers,
which depend on the combination of proton and neutron spins in a complex way and
can range from s=0 to s=8 in naturally occurring isotopes. A general property of spin
is its quantization along one spatial direction (without loss of generality, usually referred
to as the z-axis). Quantum mechanical spin operators Ŝi obey the angular momentum
commutator relations [56]:

[Ŝi, Ŝj] = i~εijkŜk and [ ~̂S2, Ŝi] = 0 with i, j, k ∈ {1, 2, 3}, (1.1)

corresponding to axes {x, y, z}, respectively, and using Einstein notation for sums. In the
bra-ket notation, the eigenstates |s, sz〉 of operators ~̂S2 = Ŝ2

x + Ŝ2
y + Ŝ2

z and Ŝz yield the
following eigenvalues equations: ~̂S2|s, sz〉 = s(s+ 1)~2|s, sz〉 and Ŝz|s, sz〉 = ~sz|s, sz〉.
The spin orientation is quantized in one direction between −s and s in unit steps; i.e.,
sz ∈ {−s, −s+1, ..., s−1, s}. A transition between these states is only possible through
interaction with a vector boson (with spin s=1), such as a photon. In NMR, these
fundamental principles are taken advantage of for interrogations of diverse microscopic
conditions in spin-bearing samples and imaging with variable contrasts and resolution.

1.2.1 Basics of NMR

The particle spin ~s = (sx, sy, sz) is associated with a magnetic moment ~µ = γ~s through
the gyromagnetic ratio γ [1]. In an external magnetic field ~B0, there is a dipole
interaction energy E = −~µ · ~B0, which explains the Zeeman effect; i.e., the splitting
of quantized energy states and spectral lines in a magnetic field. The direction of the
external field ~B0 breaks the rotational symmetry of a system, leading to the quantization
of the spin component sz along ~B0. In consequence, an ensemble of particles with spin
quantum number s will undergo an energy splitting, with each particle’s energy offset
being determined by the spin’s z-component sz, leading to (2s+ 1) different potential
energy levels. Transitions between neighboring energy levels occur under absorption
or emission of a photon with the frequency ωL and energy E = ~ωL = 2 |~µ · ~B0| with
Planck’s reduced constant ~ = h/2π. The frequency ωL is called Larmor frequency [1].

NMR is commonly conducted with protons because they are most abundant in organic
tissue and have the convenient spin quantum number s = 1/2. Thus, there are two
quantization states: sz = ±1/2 with corresponding Zeeman energies E = −(±γ~B0/2)
at field strength B0 = | ~B0|. The transition is achieved with photons at Larmor frequency
ωL = γ| ~B0| with γ ≈ 2.67522 · 108 rad · s−1 · T−1 for protons [57]. High spin abundance
produces superior NMR signals with better signal-to-noise ratio (SNR). This is further
influenced by the field strength B0 and sample temperature T . More specifically, the
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1 Introduction

sum of individual magnetic moments ~µi of spins at location ~r compose the magnetization
~m(~r) = 1

V
·∑i ~µi in volume V , which is parallel to ~B0 in equilibrium. Using Maxwell-

Boltzmann statistics as an approximation for the high-temperature limit of Fermi-Dirac
statistics, it can easily be derived that the equilibrium magnetization ~m0 is given by [1]:

~m0(~r) = ρ(~r)~2γ2 s(s+ 1)
3kBT

~B0 (1.2)

with local spin density ρ(~r) and Boltzmann constant kB. This finding corresponds to
Curie’s law [1]. With protons (s = 1/2) at body temperature (T ≈ 37◦C), a little less
than 1 out of 10 million spins more are in the lower-energetic state (parallel to ~B0) than
in the antiparallel, higher-energy state per Tesla field strength B0. Because the energy
scales of the Zeeman effect are so minor and kBT � ~ωL, the thermal disturbance
is strong in clinical NMR environments, which is why high spin densities ρ and field
strengths B0 are desirable for a clear signal. After all, the sample magnetization ~m is
responsible for inducing a measurable current in the reception coils around the sample
(e.g., a human patient) through the electromagnetic waves it produces and the amplitude
of these waves is proportional to the magnetization magnitude ~m0.

In magnetic resonance (MR), the magnetization ~m is manipulated with on-resonant
RF radiation at the Larmor frequency to create mixed states of up and down spins. The
system dynamics can be derived entirely within quantum mechanics or semi-classically,
without any quantization principles - a fascinating property of NMR, lying at the
interface of quantum and statistical physics [58]. Using the Heisenberg picture, where
the time evolution of an observable operator is given by its commutator with the
system’s hamiltonian Ĥ, and the Hamilton operator for the Zeeman effect given by
Ĥ = − ~B · ~̂µ = −γ ~B · ~̂S, one finds for the magnetic moment operator µ̂k = γŜk:

d
dt µ̂k = i

~
[
Ĥ, µ̂k

]
= −i

~

[
γ ~B · ~̂S, γŜk

]
|

3∑
j=1

BjŜj =̂BjŜj (Einstein notation)

= γ2

i~Bj

[
Ŝj, Ŝk

]
|with Eq. (1.1)

= γ2εijkBjŜi

= γ(~̂µ× ~B)k . (1.3)

According to the Ehrenfest theorem, the above equations are equally valid for the
expectation values of the magnetic moment components 〈µk〉 = 〈ψ|µ̂k|ψ〉 [56].
For many-particle systems, the quantum mechanical density matrix formalism can

be used to derive the expectation values for all components of the magnetic moment
operator ~̂µ for a two-state system [59]. It interestingly yields the dynamics of the
magnetic moment expectation value, also in the presence of an oscillating magnetic
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1.2 Background

field ~B(t) = ~B0 + ~B1(t) with static field ~B0 = (0, 0, B0) and dynamic component
~B1(t) = (B1 cos(ωLt), B1 sin(ωLt), 0) with circular polarization [1, 59]:

〈µx〉 = γ2~2B0

4kBT
sin(ω1t) sin(ωLt) ,

〈µy〉 = γ2~2B0

4kBT
sin(ω1t) cos(ωLt) ,

〈µz〉 = γ2~2B0

4kBT
cos(ω1t) ,

where ωL = γB0 and ω1 = γB1. It follows from first principles that excitation photons
need to be circularly polarized and close to the Larmor frequency for absorption. Further,
the coherent excitation of an entire spin ensemble allows for a superposition of spin
states in which the expectation values of all spin components are determined, resulting
in a precession of the components transverse to the external magnetic field ~B0. The ratio
and relation between up- and down-quantized spins can be tuned through the power
and duration of the oscillating field ~B1(t) to facilitate a quasi-continuous transition
between longitudinal magnetization (parallel to ~B0) and transverse components.
It follows that the magnetization ~m = 1

V

∑
~µ of a many-particle spin system in

volume V can be tipped out of equilibrium with a circularly polarized, oscillating
magnetic field ~B1(t) at the Larmor frequency in a continuous way. The flip angle
α of the magnetization ~m is given by α = ω1τ = γB1τ , where τ is the duration of
application of the oscillating field ~B1; i.e., the RF pulse length [1]. Because only
the transverse magnetization precesses and causes oscillating electromagnetic fields,
a popular choice for initial excitation is the 90◦-pulse with α = 90◦, which produces
maximal transverse magnetization by tipping the entire longitudinal magnetization
~m0 perpendicular to ~B0. Another common RF-pulse is the 180◦-pulse, which inverts
the longitudinal magnetization to be antiparallel to ~B0 and mirrors the transverse
magnetization components. This is done for inversion recovery sequences and spin echo
production (see details in section 1.2.3).
As mentioned, the above results can also be derived without quantum mechanics

[58]. The first classical description of NMR was published by Felix Bloch in 1946 [60],
introducing the famous Bloch equations, which can be summarized in vector form:

d
dt ~m(t) = γ ~m(t)× ~B + 1

T1
(m0 −mz(t))~ez −

1
T2
~m⊥(t) (1.4)

with the equilibrium magnetization m0 pointing along the z-axis with unit vector ~ez,
longitudinal magnetization component mz and transverse magnetization ~m⊥. The
relaxation times T1 and T2 are variables of utmost importance in clinical imaging, which
will be elaborated in section 1.2.3. In addition to the first term on the right-hand side,
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1 Introduction

which stands in analogy to Eq. (1.3), Bloch identified the two fundamental relaxation
mechanisms with T1 and T2, often referred to as longitudinal (or spin-lattice) and
transverse (or spin-spin) relaxation [1].

Conceptually, the relaxation mechanisms can be understood as follows. Longitudinal
relaxation with T1 is an energy-driven process which gradually rebuilds the equilibrium
magnetization ~m0 by emitting photons (at the Larmor frequency) which transport off
energy from an excited spin system and distribute it to the surroundings; i.e., the
“lattice”. Transverse relaxation with T2 relates to the exchange of energy between indi-
vidual spins, which leads to a loss of the coherence within the many-particle system. In
consequence, the summed volume magnetization ~m = 1

V

∑
~µ decays due to interactions

between the magnetic moments µ and the resulting loss of phase coherence. Typically,
T2 decay occurs much faster than T1 relaxation, which is additionally incorporated in
the T2 mechanism. This is why NMR measurements including multiple excitations
traditionally demand long repetition times TR between excitations (on the order of
seconds), until longitudinal magnetization is sufficiently restored, even if the transverse
magnetization has long diminished and there is no more signal from the last excitation.
The NMR signal is measured by induction of a current in a receiving coil, typically

surrounding the sample to be examined, through Lenz’s law [61]. The magnetic field
fluctuations at the coil, which is often also used for RF transmission, are induced
from electromagnetic radiation from the entire excited sample simultaneously [1]. In
principle, these are the de-excitation photons escaping the spin system as part of the T1

relaxation mechanism. The signal S(t) received from an excited sample with volume V
is proportional to the integral transverse magnetization within that volume:

S(t) ∝ ~M⊥(t) =
∫
V
~m⊥(~r, t) d3r (1.5)

The signal S(t) is complex with two components, which can be measured in quadrature,
either with two perpendicular coils or artificially separated by signal-processing [1].
Since only the transverse magnetization ~m⊥ composes the signal, a description using
complex numbers of the form m⊥ = mx + imy is convenient for most applications.
In the most basic NMR experiment, following an ideal 90◦ excitation pulse at time

t = 0 without any additional manipulations in the form of RF pulses or magnetic field
gradient applications, the magnetization M⊥(t) will undergo a so-called free induction
decay (FID). In this case, Eq. (1.5) can be concretized as follows [1]:

SFID(t) ∝M⊥(t) =
∫
V
m0(~r) · e−t/T2(~r) · e−iωL(~r)t+φ0 d3r , (1.6)

with initial phase φ0 in the complex plane and ignoring varying, location-dependent
transmit and receive coil sensitivities.
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1.2 Background

1.2.2 From NMR to MRI

As outlined above, basic NMR measurements do not inherently contain spatial infor-
mation but rather offer a signal mixed from an entire sample within the magnetic
field B0. The transition to imaging with NMR is clever and quite simple. The basic
concept enabling imaging with NMR is the application of magnetic field gradients
~G = (Gx, Gy, Gz) for a linear dependence of the Larmor frequency on the location
ωL(~r) = γB0(~r) = γ[B0 + ~G · ~r] = γ[B0 +Gxx+Gyy +Gzz]. Depending on how many
dimensions the imaging should encompass, there are different methods that can be
combined for spatial encoding of the NMR signal.
For 2D imaging, which is common in clinical application, only a planar slice of the

sample within the scanner is excited with on-resonant RF radiation. This is achieved
by applying a field gradient normal to the plane of imaging, e.g., gradient ~G = (0, 0, Gz)
in the z-direction for a static field strength B0(z) = B0 +Gzz during RF irradiation.
The RF excitation pulse is designed with a certain band width of frequencies to contain
the Larmor frequencies ωL(z) = γB0(z) within a slice of desired thickness. For instance,
for a box-profile slice, the RF pulse would have the form of a sync function in the time
domain, attained by Fourier transformation of the box profile in the frequency domain.
Once transverse magnetization has been created in the imaging slice, Eq. (1.6)

governs its evolution in absence of further RF irradiation. With a new magnetic field
gradient in the imaging plane, e.g., ~G = (Gx, 0, 0), Eq. (1.6) takes the following form:

S(t) ∝M⊥(t) =
∫
V
m0(~r) · e−t/T2(~r) · e−i(ωL(~r)t+φ0) d3r

=
∫
x

∫
y

∫
∆z
m0(x, y, z) · e−t/T2(x,y,z) · e−iγ[B0+Gxx]t−iφ0 dz dy dx (1.7)

= e−i(γB0t+φ0) ·
∫
x

[∫
y

∫
∆z
m0(x, y, z) · e−t/T2(x,y,z) dz dy

]
e−iγGxxt dx

= e−i(γB0t+φ0) ·
∫
x
Py,∆z [m⊥(~r, t)] · e−iγGxtx dx

= e−i(γB0t+φ0) ·
∫
x
Py,∆z[m⊥](x, kx) · e−ikxx dx .

With the variable substitution kx(t) := γGxt, the signal S(kx) =̂S(t) is apparently
the Fourier transformed of the transverse magnetization m⊥(~r, t) = m0(~r) e−t/T2(~r),
projected over the z-slice thickness ∆z and the y-direction of the imaging field-of-view
(FOV): Py,∆z[m⊥](x, kx) =̂Py,∆z[m⊥(~r, t)] =

∫
y

∫
∆zm0(x, y, z) · e−t/T2(x,y,z) dz dy. The

transverse magnetization m⊥(~r, t), or more specifically, the initial magnetization m0(~r),
is proportional to the local spin density ρ(~r), which can be inferred upon through
inverse Fourier transformation of S(kx). This one-dimensional (1D) spatial encoding of
the NMR signal origin, which lets kx progress with the signal evolution time t, is called
frequency encoding.
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To achieve spatial encoding along an additional, linearly independent direction, such as
the y-axis, it does not suffice to apply a frequency encoding gradient like ~G = (Gx, Gy, 0),
since this would yield 1D frequency encoding on the diagonal between the x- and y-
axes. Instead, an analogous ky := γGyτ needs to be incremented with an independent
time parameter τ . This can be done through so-called phase encoding. Before the
application of a frequency encoding gradient ~Gf = (Gx, 0, 0), a phase encoding gradient
~Gp = (0, Gy, 0) is applied for a duration τ after spin excitation. This offsets the initial
phase φ0 of the transverse magnetization to a y-dependent value, which alters Eq. (1.7)
as follows:

S(t, τ) ∝M⊥(t, τ) =
∫
V
m0(~r) · e−(t+τ)/T2(~r) · e−i(ωL(~r)t+φ0(y,τ)) d3r

=
∫
x

∫
y

∫
∆z
m⊥(~r, t, τ) · e−i(γ[B0+Gxx]t+γ[B0+Gyy]τ) dz dy dx

= e−iγB0(t+τ)
∫
x

∫
y

[∫
∆z
m⊥(~r, t, τ) dz

]
e−iγ(Gxxt+Gyyτ) dy dx

= e−iγB0(t+τ)
∫
y

[∫
x
P∆z [m⊥(~r, t, τ)] e−iγGxtx dx

]
e−iγGyτy dy

= e−iγB0(t+τ)
∫
y

[∫
x
P∆z[m⊥](x, kx, y, ky) · e−ikxx dx

]
e−ikyy dy.

For simplicity of the intinstic T2 decay parametrization, the phase encoding gradient Gy

was assumed to follow immediately after excitation, with direct subsequent switching to
the frequency encoding gradient Gx. The 2D signal S(t, τ) =̂S(kx, ky), attained through
multiple acquisition repetitions with different gradient strengths Gy or durations τ
for varying phase encoding, can yield a map of the local transverse magnetization
projection within the slice P∆z [m⊥(~r, t, τ)], proportional to the spin density ρ(~r) by
two independent Fourier back transformations along kx and ky. The raw measurements
before inverse transformation are said to be acquired in k-space.

Phase encoding can be applied multiple times with independent gradients in different
directions, using different time interval variables in analogy to τ . This enables true
3D imaging, which omits the slice selection gradient during excitation but typically
incorporates two phase encoding directions with one frequency encoding axis. The
number of frequency encoding repetitions needed for such 3D imaging quickly increases,
scaling multiplicatively with the number of desired voxels in the y- and z-direction
(with frequency encoding along the x-direction). This is why, in practice, 2D imaging
with multiple slices is often used for a 3D coverage when a limited FOV along z suffices.
In some mostly experimental applications, such as spectroscopic imaging, frequency
encoding is omitted in place of phase encoding of all spatial directions [62]. This can
be done to avoid drowning inherent Larmor frequency off-resonances with artificial field
gradients in order to probe microscopic and metabolic conditions in more detail [63–65].
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1.2.3 Fundamental MRI constrasts

The combination of RF pulses and magnetic field gradient applications used for an
MRI measurement is called an MRI sequence. It determines the way the spin system
in a static magnetic field B0 is manipulated to produce signals as a type of answer to
certain interrogations. The “answer” signal from the sample depends on microscopic
tissue properties and the way the “question” is asked, i.e., the sequence design. It is
possible to emphasize different tissue characteristics with distinct aspects of sequence
design, tuning the so-called MRI contrast to weigh particular properties. The first
mathematical description of NMR already included the most fundamental contrast
types, parametrized by T1 and T2; cf. the Bloch equation, Eq. (1.4). In the following,
the most elemental contrasts are introduced in order to put the contrast studied in this
thesis (namely the T ′2 evolution), as well as the aim for creating artificial MRI contrasts,
into context.

Longitudinal relaxation was briefly discussed towards the end of section 1.2.1, following
the introduction of Eq. (1.4). It describes the process of the excited spin system
returning to thermal equilibrium, where the net magnetization ~m0 || ~B0 is recovered (see
Eq. (1.2)). This process is driven by the principle of energy minimization and gradual
de-excitation of nuclear spin states. This de-excitation is stimulated by fluctuating
magnetic fields from the microscopic and atomic environment due of thermal motion,
i.e., rotational and vibrational states. Since this is effectively a coupling of the excited
spins to the atomic “lattice”, longitudinal relaxation with T1 is often called spin-lattice
relaxation [1]. The energy-driven process is described by a limited exponential regrowth,
which solves the longitudinal component mz(t) of the Bloch equation (1.4):

mz(t) = mz(0) e−t/T1 +m0
(
1− e−t/T1

)
,

where mz(0) is the initial value immediately after the application of an RF pulse at
time t = 0 and m0 is the magnitude of the equilibrium magnetization as in Eq. (1.2).

The longitudinal magnetization component mz does not contribute to the induction
of a measurable NMR signal because it is parallel to the external field ~B0 and does
not precess. The T1 contrast is classically tuned with the repetition time TR of an
MRI sequence involving multiple excitation pulses. If an excitation pulse is applied
without sufficient temporal spacing TR to the last excitation, regions with long T1 will
exhibit weaker transverse magnetization and a hypointense signal because there was
not much longitudinal magnetization to be flipped, as opposed to regions with short
T1 that would already be closer to equilibrium ~m0 at the time of the next excitation.
Thus, relatively short repetition times TR in an MRI sequence emphasize T1 contrast.
Since T1 contrast is not a subject of this thesis, it will not be elaborated further.
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The second fundamental NMR contrast, which already appears in the Bloch equation
(1.4), relates to transverse relaxation; i.e., the decay of transverse magnetization m⊥.
Spin-spin relaxation with T2 originates from a similar microscopic mechanism as T1

relaxation, but with interactions and energy exchanges between excited and ground-state
spins [1]. The coherence in the system is gradually lost, even though energy does not
leave it. This T2 decay also occurs within so-called isochromats or spin packets, i.e.,
local ensembles of individual spins with equal Larmor frequency that form a “classical”
magnetization vector ~m = 1

V

∑
~µ, which is not subject to Heisenberg’s uncertainty

principle (in contrast to the magnetic dipole moment ~µ of an individual spin with only
one determinable component µz). As such, intrinsic spin-spin relaxation with T2 is
not reversible and commences as soon as transverse magnetization has been created.
According to Eq. (1.4), it resembles a mono-exponential decay, while ~m precesses
around ~B0 at the frequency ωL = γB0, following an RF excitation at t = 0 which
creates a transverse component m⊥ > 0:

m⊥(t) = m⊥(0) e−t/T2 (in the rotating frame with ωL = γB0).

Both T1 and T2 depend on the thermal degrees of freedom of the molecular and
atomic environment, as well as the field strength B0 and the gyromagnetic ratio γ
(when working with nuclei other than hydrogen). Spin de-excitation is most stimulated
when the local electromagnetic field fluctuations from movements of magnetic and
electric dipole moments due to thermal motion lie at frequencies close to the Larmor
frequency. At a typical field strength of B0 = 1.5T and human body temperature (37◦C),
longitudinal relaxation times T1 within the body lie somewhere between several hundreds
and several thousands of milliseconds, while T2 values mostly range more within several
tens to several hundreds of milliseconds (see Tab. 1.1 for some representative values).
The observed differences are due to the varying molecular structure and excited thermal
degrees of freedom in each tissue on a microscopic scale.

Tissue T1 (ms) T2 (ms)
Gray matter 950 100
White matter 600 80

Muscle 900 50
Fat 250 60

Cerebrospinal fluid 4500 2200
Blood 1200 100 (venous) - 200 (arterial)

Table 1.1: Approximate relaxation time values in different healthy tissue types, typically
observed at B0 = 1.5T and human body temperature of 37◦C. The T2 time
of blood depends on its oxygen saturation and the given values are exemplary
for typical voxels in a vein or an artery. Table reproduced from [1], p. 56.
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In addition to intrinsic spin-spin relaxation with T2, transverse magnetization from
an entire sample or imaging voxel undergoes an additional decay due to so-called
spin dephasing. In practice, magnetic field inhomogeneities on small length scales
cause the distribution of Larmor frequencies within a volume otherwise assumed to
be homogeneous, to broaden, resulting in deviations from a δ-peak at ω0 = γB0 with
external field strength B0. In the simplest case, this broadening has a Lorentzian profile
shape, leading to an additional exponential signal attenuation, commonly parametrized
with the relaxation rate R′2 = 1/T ′2. This concretizes Eq. (1.6), describing the integral
FID signal from volume V after an ideal 90◦ excitation from equilibrium ~m0, as follows:

SFID(t) ∝M⊥(t) =
∫
V
m0(~r) · e−t/T2(~r) · e−iωL(~r)t+φ0 d3r

= M0 · e−R2t · Ad(t) · e−iΩ(t) (1.8)

= M0 · e−R2t · e−R′2t · e−iΩ(t) = M0 · e−R
∗
2t · e−iΩ(t).

More generally, the dephasing attenuation Ad(t) = |〈eiφ(t)〉|, with individual spin packet
phase φ(t) =

∫ t
0 ωL(~r(t′)) dt′+φ0 during diffusion on the path ~r(t′) and ensemble average

〈·〉, can take arbitrary forms with a nonlinear phase evolution Ω(t) of the integral
magnetization M⊥(t). This is demonstrated in section 1.2.4. In the mono-exponential
approximation, Ad(t) ≈ e−R′2t, the relaxation rates R2 and R′2 are typically summarized
with R∗2 = R2 +R′2 and the associated relaxation time T ∗2 = 1/R∗2 [1].

In NMR imaging, the T2 or T ∗2 weighting of the signal is tuned with the echo time
TE. For a standard T ∗2 -weighted image, the frequency encoding described in section
1.2.2 is used to produce a so-called gradient echo at time TE after excitation. For
this purpose, a gradient in the frequency encoding direction is applied prior to signal
acquisition in order to offset the excited spin system to an initial value −k0 in k-space.
During acquisition, the frequency encoding gradient, also called read gradient, will lead
the system towards k-space center with k = 0 and typically beyond it to k = k0. At
the moment of reaching k = 0, a gradient echo is formed, corresponding to a signal
maximum, where artificial dephasing through gradient applications is reversed (modulo
diffusion effects). The gradient echo amplitude at time t = TE is T ∗2 -weighted with
respect to the spin excitation at t = 0 [1]. Thus, TE controls the impact of T ∗2 on the
local signal intensities.

Another type of echo that can be summoned in NMR is the famous spin echo, first
described by Erwin Louis Hahn in 1950 [66]. A spin echo forms at echo time TE if a
180◦ RF pulse is applied to a sample with transverse magnetization m⊥(t = 0) > 0 at
time t = TE/2. With correct B1 polarization in the transverse magnetization plane,
this leads to a complex conjugation of the transverse magnetization in the complex
description [1]. Conceptually, the 180◦ pulse mirrors the phase accumulated by each
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spin packet up to time t = TE/2, making it negative (when the coordinate axes and
φ = 0 are defined accordingly). Without diffusion, i.e., the random movement of
spins, all dephasing effects would be reversed at time t = TE, given that the magnetic
fields have not changed, even microscopically. This leads to a signal maximum at echo
time TE, of which the envelope is T2 weighted. For this reason, the T ′2 component of
transverse relaxation is said to be reversible, while T2 decay is irreversible. In practice,
diffusion hinders a perfect rephasing of spin packets at TE, but a maximum of transverse
magnetization with minimal dephasing effects is observed nonetheless. When TE is very
short in combination with a long TR, the signal intensity is mainly influenced by the
local spin density, commonly referred to proton density weighting in clinical imaging.

MRI is fundamentally affected by the structure and dynamics of the tissue it images.
Besides thermal motion and the molecular environment, pertinent factors include the
strength, barriers and isotropy of diffusion, as well as the distribution of magnetic
field inhomogeneities within the object being imaged. Inhomogeneities of the B0 field
can be owed to bad shimming, but they are also caused by spatial variations of the
imaged sample’s magnetic susceptibility χ. In medical imaging, such variations appear
on different length scales. In the human head, for instance, the susceptibility χ differs
significantly between the soft tissue within the skull and the air in the nasal cavity or
the skull itself (cf. Table 1 in [67]). In MRI at high field strengths, macroscopically,
such sudden susceptibility variations can cause artifacts around the material boundaries
because B0 is altered characteristically on a large scale and these regions become
off-resonant, which reduces the absorption rate of RF radiation at frequency ω0 = γB0

and therefore the pulse efficacy and initial transverse magnetization m⊥(t = 0).
On mesoscopic and microscopic length scales, below the dimensions of an MRI

voxel, blood vessels represent prevalent susceptibility inclusions within living soft
tissue, which otherwise approximately has the magnetic susceptibility of water. In
comparison, hemoglobin, the main protein in red blood cells, is slightly diamagnetic
when binding oxygen (oxyhemoglobin, χ . χwater) and notably paramagnetic without
oxygen (deoxyhemoglobin, χ > χwater) (see, e.g., Table 1 in [67]). This is the basis of
the BOLD effect [20, 38]. Decreasing blood oxygenation makes vessels and capillaries
more paramagnetic, which causes stronger field inhomogeneities within MRI voxels.
This, in turn, invokes additional spin dephasing and affects Ad(t) from Eq. (1.8). The
motivation of this thesis is rooted in the fact that Ad(t) is typically not mono-exponential
in heterogeneous media and multi-compartmental tissues [14, 43, 44]. Analytical and
numerical treatments of this problem have shown that the vessel geometry far below
the MRI resolution can theoretically be inferred upon through suitable modeling of
the dephasing attenuation Ad(t). In the following section, the most prominent classical
treatments with analytical methods are introduced for different conditions.
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1.2.4 Classical models of spin dephasing around vessels

A theoretical treatment of the dephasing effects caused by blood-filled vessels is pos-
sible under some simplifying assumptions. A representation of blood vessels to first
approximation is given by the single capillary model (SCM), which has been studied
extensively, as demonstrated in the following. Motivated by Krogh’s approach of de-
scribing the oxygen supply of tissue [68], the model can be used to describe a sparse,
regular arrangement of parallel vessels. With infinitely long, straight cylinders, the
problem can be reduced to 2D. The SCM describes regularly perfused tissue with a
hexagonal closest-packed arrangement of parallel vessels by focusing on only one repre-
sentative cell. The hexagonal supply cell surrounding the vessel can be approximated
by a round cylinder (cf. Fig. 1.1). The tissue between the vessel with radius RC and
supply cell boundary at radius RD, containing the signal-composing spins, is called
dephasing volume. The fractional blood vessel volume η = fV V in this model is given
by η = R2

C/R
2
D.

C. H. ZIENER, F. T. KURZ, AND T. KAMPF PHYSICAL REVIEW E 91, 032707 (2015)

non-Hermitean quantum mechanics, e.g., complex eigenvalues
and branching points. Hence, it is possible to describe the exact
time evolution of the free induction decay, which extends the
usually assumed exponential form.

Especially for medical applications, an accurate quantifi-
cation of physiological parameters is highly important for
clinical decision making and planning of therapy. Until now,
all methods to describe the free induction decay in biological
tissues are approximations of the real diffusion process.
Therefore, it is necessary to determine a full analytical solution
which is in agreement with experimental data, as presented in
this work.

II. MICROSCOPIC STRUCTURE AND DEPHASING

In principle, the myocardium and also the skeletal muscle
tissue can be considered as an arrangement of parallel
capillaries whose alignment can be described by Krogh’s
capillary model [9]. As visualized in Fig. 1, each of these
capillaries supplies a coaxial cylindrical volume with radius
RD in which the diffusion of the nuclear spins with diffusion
coefficient D occurs.

Due to the external magnetic field B0, each capillary
generates a local Larmor frequency that has the form of a
two-dimensional dipole field [10]:

ω(r,φ) = δωR2
C

cos(2φ)
r2

, (1)

with capillary radius RC and frequency shift δω on the capillary
surface δω = ω(r = RC,φ = 0). The regional blood volume
in the myocardial tissue is defined as

η =
R2

C

R2
D

. (2)

Generally, the influence of neighboring capillaries is not negli-
gible. However, Krogh’s capillary model only considers single
capillaries that cannot cover a space without overlapping.
Therefore, we chose the dephasing volume in such a way that
the volume fraction is preserved as demonstrated in Fig. 1.
The supply area equals the area of the respective hexagon and,
thus, the approximation used describes the real situation for
small volume fractions. We assume a regular arrangement,
i.e., in the cross-sectional view, the capillary is in the center
of a hexagon and has six nearest neighbors. Each hexagon
in Krogh’s capillary model (see Fig. 1) with side length a
and area A = 3

√
3a2/2 is replaced by a circle with radius

RD and the same area A = πR2
D . Therefore, the distance

between two capillaries is 2a = 2RD

√
2π/[3

√
3]. The effects

of neighboring capillaries can be neglected if the characteristic

FIG. 1. (Color online) Regular arrangement of parallel capillar-
ies in Krogh’s capillary model and stepwise simplification to a single
bloodfilled capillary [blue (gray) circle] with radius RC , which is
surrounded by the dephasing cylinder (black) with radius RD .

frequency δω at the surface of a capillary is much higher
than the frequencies caused by the six surrounding capillaries
with distance 2a. Using Eq. (1), we obtain the inequality
δω ≫ 6δωR2

C/[2a]2, that leads to an estimation for the volume
fraction: η ≪ 4π/[9

√
3] = 0.81.

The dephasing of the local transverse magnetization
m(r,φ,t) in the two-dimensional dipole field around a capillary
is described by the Bloch-Torrey equation [11]:

∂

∂t
m(r,φ,t) =

[
D' − iω(r,φ) − 1

T2

]
m(r,φ,t) , (3)

where T2 is the intrinsic spin-spin relaxation time of the tissue
surrounding the capillary. In the surrounding tissue inside the
dephasing cylinder (RC ! r ! RD), the diffusion process with
diffusion coefficient D occurs. In Krogh’s capillary model
reflecting boundary conditions are imposed on the surface
of the capillary as well as the surface of the dephasing
cylinder [12,13]:

∂

∂r
m(r,φ,t)

∣∣∣∣
r=RC

= 0 = ∂

∂r
m(r,φ,t)

∣∣∣∣
r=RD

. (4)

Initially, at t = 0 the local transverse magnetization
m(r,φ,t) = m0 is generated by an excitation pulse and due
to the dephasing and diffusion processes the local transverse
magnetization m(r,φ,t) evolves in time and space, governed
by the Bloch-Torrey equation with its respective boundary
conditions. However, the resolution of a clinical MR-scanner
does not allow to resolve m(r,φ,t) spatially. A typical imaging
voxel is more than one order of magnitude larger than the
dephasing volume of a single capillary. Therefore, the averaged
signal over the dephasing volume

S(t) =
∫ 2π

0

∫ RD

RC

m(r,φ,t)r drdφ (5)

is measured. In the following we will obtain explicit expres-
sions for the total signal in dependence of the underlying tissue
parameters.

III. SIGNAL FORMATION

The total signal that can be measured depends on the micro-
scopic tissue parameters of the myocardium that determine the
local magnetization around a single capillary. Here we give a
rigorous deviation of the exact time evolution of the signal. The
relation to previously developed approximative descriptions of
the dephasing process is discussed.

A. Exact solution

Recently, we presented an analytical solution of the Bloch-
Torrey Eq. (3) for dephasing in a two-dimensional dipole
field [13]. The local transverse magnetization can be given
in terms of the eigenfunction expansion

m(r,φ,t)
m0

= e
− t

T2

∞∑

m=0

∞∑

n=1

cnmce2m

(
φ,i

δωR2
C

2D

)

×Rnm(r)e
− λ2

nm
D

R2
C

t
, (6)

032707-2

Figure 1.1: Transition scheme between a regular, hexagonal vessel arrangement to the
single capillary model (SCM), adapted without change from [13] with kind
permission from the American Physical Society. In this 2D representation,
vessels are blue circles, surrounded by their supply/dephasing tissue.

In an external magnetic field ~B0 perpendicular to the cylindrical axis, a 2D-dipole
field forms around the vessel, which is paramagnetic due to a homogeneous distribution
of deoxyhemoglobin or contrast agent (see Fig. 1.2). The local Larmor frequency offset
ω2D(~r), resulting from this paramagnetic susceptibility inclusion, is given by [69]:

ω2D(r, φ) = δωR2
C

cos(2φ)
r2 , (1.9)

where the position ~r is described by the distance r = |~r| and angle φ (see Fig. 1.2,b).
The characteristic off-resonance δω = ω(r = RC , φ = 0) = γ∆χ/2B0 sin2 θ incorporates
the gyromagnetic ratio γ, effective perpendicular field strength B0 sin2 θ, and the
magnetic susceptibility difference between vessel interior and exterior ∆χ.
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B0
!

RC

r
!

a) b) c)

RD

Figure 1.2: Sketches of a) vessel cylinder (blue) with surrounding dephasing cylinder in
an external field ~B0, b) cross section of a vessel with capillary radius RC and
dephasing cylinder radius RD, c) surface plot of 2D-dipole field distortions
around a paramagnetic cylinder with perpendicular field component B0.

Strictly seen, the original Bloch equation, as presented in Eq. (1.4), only describes
NMR under static conditions without any physical movement of the spin-bearing parti-
cles. An extension of the Bloch equation, incorporating spin diffusion, was introduced
in 1956 and named the Bloch-Torrey equation [70]. In the following considerations,
T1-relaxation is omitted since it only affects the longitudinal magnetization separately.
The Bloch-Torrey equation for the local transverse magnetization m⊥(~r, t), which is
denoted as m(~r, t) in this section for notational simplicity, reads:

∂

∂t
m(~r, t) =

[
D∆− iω(~r)− 1

T2,0

]
m(~r, t). (1.10)

Here, D is the diffusion coefficient of the spin-bearing atoms or molecules (usually
water), ∆ = ∇2 is the Laplace operator, and T2,0 is the intrinsic spin-spin relaxation
time (see section 1.2.3).

Since transverse relaxation in MRI is typically assumed to be mono-exponential with
M(t) = M⊥(t) ≈M0 e−t/T

∗
2 , the so-called mean relaxation time approach can be used

to calculate the relaxation time T ∗2 [69]:

T ∗2 =
∫ ∞

0

M(t)
M0

dt. (1.11)

For clearer notation in the following, the total relaxation rate R∗2 = 1/T ∗2 can be divided
into intrinsic component R2,0 and a contribution from dephasing ∆R∗2:

R∗2 = R2,0 + ∆R∗2

= 1
T2,0

+ 1
∆T ∗2

.
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Analogous relationships exist for spin echo measurements. On top of intrinsic spin-
spin relaxation with R2,0, an additional spin echo attenuation with ∆T2 occurs when
the signal-composing protons diffuse through inhomogeneous magnetic fields:

R2 = R2,0 + ∆R2

= 1
T2

= 1
T2,0

+ 1
∆T2

.

Again, the mean relaxation time approach can be used to calculate the effective
relaxation time T2 from the spin echo amplitude MSE(t):

T2 =
∫ ∞

0

MSE(t)
M0

dt. (1.12)

In the treatments to follow, internal spin-spin relaxation with T2,0 is omitted because
this mono-exponential decay can simply be superimposed onto the dephasing effects,
which are the focus within this thesis.

Approximating solutions using the cylindrical vessel model

Many approaches have been taken to solve the Bloch-Torrey equation (1.10) for sym-
metrical model geometries such as the SCM. Since the 1990’s, several approximate
solutions for different diffusion regimes have been introduced and around twenty years
later, an exact solution valid for all diffusion conditions was presented [13, 71]. The
most prominent approximate solutions on the way to the most general one are briefly
introduced in the following in order to demonstrate the form of the dephasing atten-
uation from a cylindrical vessel in different diffusion regimes; i.e., no diffusion, slow
diffusion, and fast diffusion of the signal-composing spins in the extravascular space
around the vessel.

Static dephasing regime

The first successful analytical treatment of dephasing effects of local field inhomogeneities
in the SCM was published in 1994 [9]. In their considerations of the time, the authors
neglected diffusion of the water molecules in an attempt to solve the original Bloch
equation (1.4) with 2D dipole field inhomogeneities as in Eq. (1.9). Due to the complete
omission of diffusion effects, this solution is said to be valid in the static dephasing
regime. Such conditions can be approximately fulfilled by very large vessel diameters,
weak off-resonance magnitudes (arterial blood with high oxygen saturation and/or low
field strength B0), and/or very weak diffusion.
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For the total magnetization M(t) as determined from the volume integral in Eq.
(1.5), Yablonskiy and Haacke found the following description of the FID caused by a
single vessel [9, 72]:

MSCM,0(t) = h(ηδωt)− ηh(δωt)
1− η = η

1− η

∫ 1

η
J0(xδωt) dx

x2 , (1.13)

where h(x) is the extended hypergeometric function:

h(x) = 1F2

({
−1

2

}
;
{1

2 , 1
}

;−x
2

4

)
.

Also known as the Barnes extended hypergeometric function, pFq is defined in the
following way [73]:

pFq ({a1, ...ap} ; {b1, ..., bq} ; z) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

zk

k! (1.14)

with Pochhammer symbols (x)k, given by

(x)k = Γ(x+ k)
Γ(x) .

The alternative representation includes an integral over the first order Bessel function
with index zero, J0. The validity of this solution for the static dephasing regime of the
SCM is marked by the subscript on the integral transverse magnetization in Eq. (1.13).

The authors also extended their considerations to infinitely long, cylindrical vessel
distributions with small tissue volume fraction η = NπR2

C/V and random orientation
angles. In the hypothetical limit of infinitely many vessels N → ∞ (but constant η)
and a uniform distribution of angles, the following was found by averaging over vessel
orientations [74]:

MRVM,0(t) = exp
[
−η3

∫ 1

0
(2 + u)

√
1− u1− J0(δωtu)

u2 du
]

(1.15)

= exp
[
−η · 1F2

({
−1

2

}
;
{3

4 ,
5
4

}
;−δω

2t2

4

)
− 1

]
. (1.16)

Approximating this “random vessel model” (RVM) solution in static dephasing by
a mono-exponential decay with relaxation rate ∆R∗2,RVM,0 with the mean relaxation
approach as in Eq. (1.11), the decay rate contribution from dephasing is given by [13]:

∆R∗2,RVM,0 = 1
∆T ∗2,RVM,0

= 2ηδω
1 + η

. (1.17)
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It should be noted that the capillary radius RC does not appear in the solutions of
this model directly, but only through the blood volume ratio η. Spin echo considerations
in the static dephasing regime are trivial for temporally constant field inhomogeneities,
since no dephasing attenuation of the echo amplitude is observed with static conditions
and perfect rephasing. The static dephasing approximation provides good predictions
for scenarios where the length scale of local field inhomogeneities is much greater than
the diffusion distance expected during time t. In the cylinder model, this corresponds
to large vessels with RC �

√
Dt and/or low off-resonance magnitude δω.

Approximations including diffusion effects

Linear local field approximation

The first successful incorporation of spin packet diffusion through magnetic field per-
turbations from randomly oriented vessel cylinders was achieved by considering purely
linear local field variations [75]. This is a good approximation when diffusion effects
are relatively weak in comparison to the variance of local field strength. The authors
showed that, with water diffusion coefficient D, the complex transverse magnetization
can be approximated by the following ensemble average:

M(t) =
〈

exp
(
−iω(~r)t− D

3 [∇ω(~r)]2t3
)〉

,

leading to the final result:

MKP (t) = e

(
− η2
∫ π

0 sin θ dθ
∫ 1

0

[
1−exp

(
− 4D

3R2
C

δω2t3u3 sin4 θ

)
J0(δωtu sin2 θ)

]
du
u2

)

with nomenclature as before and the subscript KP standing for the original authors,
Kiselev and Posse. The result for spin echo measurements can be found in [75].
To treat fast diffusion, the authors solved the Bloch-Torrey equation using second

order perturbation theory. Strong diffusion leads to an averaging of the field inhomo-
geneities seen by each spin packet, slowing down the signal decay. This leads to a
reduced linewidth and more Lorentzian shape of the Fourier transformed of the total
magnetization time series M(t). For this reason, the fast diffusion case was coined the
“motional narrowing” or “diffusion narrowing” regime (DNR) [74]. For fast diffusion
limit, the linear field approximation leads to the same solution as the Gaussian phase
approximation, introduced in the following.

Gaussian phase approximation

In the early 2000’s, Sukstanskii and Yablonskiy approached the problem with fast
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diffusion by assuming Gaussian probability distributions of the spin packet phases for
permeable [76] and impermeable cylindrical vessels [77]. Here, only the impermeable
cylinder treatment is presented, since this conforms with the simplifications of the
simulations presented in publications I and V. Gaussian phase distributions allows for
the following formulation [74]:

M(t) = exp
(
−1

2〈φ
2(t)〉

)
= exp

(
−
∫ t

0
K(t′)(t− t′) dt′

)

with the two-point frequency correlation function K(t):

K(t) = 〈ω(~r)ω(~r0)P (~r, ~r0, t)〉. (1.18)

Here, P (~r, ~r0, t) is the probability of a spin packet diffusing from position ~r0 to ~r in
time t. In the case of unhindered diffusion, this would be a Gaussian distribution. In
Eq. (1.18), the angular brackets denote an averaging over spin packet positions ~r and
~r0, vessel positions, and vessel orientations.

An evaluation of these averages leads to the following signal attenuation [77]:

MSY (t) = exp
(
−128ηδω2R4

C

15π2D2

∫ ∞
0

g(ν2Dt/R2
C)

ν9 [J ′22 (ν) +N ′22 (ν)] dν
)
,

where J ′(ν) and N ′(ν) are derivates of the Bessel functions of the first and second kind,
respectively. For the FID, the function g(x) is given by:

gFID(x) = e−x + x− 1,

whereas dephasing during spin echo experiments with a 180◦ RF pulse at time t = TE/2
can be attained by inserting

gSE(t, x) =2 exp
(
−x

2DTE
2R2

C

)
+ 2 exp

(
−x

2D(2t+ TE)
2R2

C

)
− exp

(
−x

2D(t+ TE)
R2
C

)

+ x2D(t+ TE)
R2
C

− 3.

Strong collision approximation

An approach that is valid across the entire range of diffusion regimes [74] is known as the
“strong collision approximation”, which was introduced by Bauer and colleagues in 1999
[78, 79] and later extended [80]. The strong collision approximation replaces the diffusion
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operator in the Bloch-Torrey equation, D∆ in Eq. (1.10), with a stochastic Markov
process, enabling an evaluation of the integral magnetization M(t). The model was
originally derived for parallel capillaries as an approximation in the healthy myocardium,
where capillaries are approximately parallel over relatively long distances [79].

As a Markov process, the transition rate between different states of the system due
to diffusion only depends on the equilibrium probability of the final state. A major
consequence from the strong collision approximation is that the signal decay including
diffusion, M(t), can be connected to the solution for an equivalent geometry without
diffusion M0(t) via their respective Laplace transforms M̂(s) and M̂0(s) [78]:

M̂(s) = M̂0(s+ τ−1)
1− τ−1M̂0(s+ τ−1)

, (1.19)

with the Laplace transformation of a function f(t) given by:

f̂(s) =
∫ ∞

0
f(t) e−st dt.

The correlation time τ for infinitely long cylinders can be determined using the correla-
tion function K(t) and, in the cylindrical model, was shown to be [78]:

τC = −R
2
C

4D
ln η

1− η . (1.20)

The Laplace transformed M̂0(s) of the static dephasing magnetization MSCM,0(t) for
infinitely long cylinders, as given in Eq. (1.13), can be expressed as:

M̂SCM,0(s) = 1
(1− η)s

[
HC

(
s

ηδω

)
− ηHC

(
s

δω

)]

with the geometry-specific H-function for parallel cylinders:

HC(y) =

√√√√1 + sin4 θ

y2 . (1.21)

The H-function can be averaged over vessel orientations θ to the external ~B0 field to
determine HRC for randomly oriented cylinders [74]:

HRC(y) =
∫ π

0

sin θ
2

√√√√1 + sin4 θ

y2 = 3F2

({
−1

2 ,
1
2 , 1

}
,
{3

4 ,
5
4

}
;− 1

y2

)
, (1.22)

again, leading to the hypergeometric function as defined in Eq. (1.14).
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In general, the transverse magnetization M(t) can be attained by inverse Fourier
transformation of the frequency density of states p(ω):

MSC(t) = ρ
∫ ∞
−∞

p(ω) eiωt dω

with spin density ρ, assumed to be constant throughout the extravascular volume.
Naturally, the density of states p(ω) is the Fourier transformed of the signal M(t), thus:

p(ω) = 1
2πρ

∫ ∞
−∞

M(t)e−iωt dt (1.23)

= 1
2πρ

∣∣∣M̂(iω) + M̂∗(iω)
∣∣∣ = 1

πρ

∣∣∣ReM̂(iω)
∣∣∣ .

With the strong collision approximation, by inserting Eq. (1.19), it follows that:

p(ω) = 1
πρ

∣∣∣∣∣Re
{

M̂0(iω + τ−1)
1− τ−1M̂0(iω + τ−1)

}∣∣∣∣∣
= τ

π

∣∣∣∣∣∣∣Re

[∫

V

d3r

1 + iτ [ω − ω(~r)]

]−1

− ρ


−1
∣∣∣∣∣∣∣ .

With the 2D-dipole distribution of Larmor frequencies from Eq. (1.9), it can be shown
that for cylindrical geometries, the frequency density of states p(ω) is given by the
following for all diffusion regimes [72]:

p(ω) = τ

πρ

∣∣∣∣∣∣Re
 H

(
1+iτω
ητδω

)
− ηH

(
1+iτω
τδω

)
1−η
ρ

(1 + iτω)−H
(

1+iτω
ητδω

)
+ ηH

(
1+iτω
τδω

)

∣∣∣∣∣∣ , (1.24)

where theH-function should be substituted byHC from Eq. (1.21) for parallel capillaries
and HRC from Eq. (1.22) for random vessel orientations. Once the total magnetization
MSC(t) is attained through Fourier transformation of Eq. (1.24), the magnetization
time evolution expected from a spin echo experiment, MSC,SE(t), can be found as [72]:

MSC,SE(t) = e−t/τ + e−t/τ
τ

∫ t

0
eξ/τ

∣∣∣∣∣M
(
ξ

2

)∣∣∣∣∣
2

dξ. (1.25)

The validity of each approximating theory has been tested and compared [74]. Monte
Carlo simulations of spin dephasing around cylindrical vessels with different radii were
conducted to emulate different diffusion regimes. In Fig. 1.3, adapted from [74], the
relaxation rates ∆R∗2 and ∆R2, determined from mono-exponential fits to the simulated
signal attenuations, were plotted with the theoretical predictions from each treatment
introduced above. Each theory predicts dephasing quite well in its own range of validity.

24



1.2 Background

Figure 1.3: Relaxation rates ∆R∗2 and ∆R2 accountable to dephasing effects during
FID and spin echo experiments, adapted from [74] with the kind permission
of Elsevier. Simulations were compared with analytical predictions, with
solid lines for FID and dotted lines for spin echoes. In the legend, abbre-
viations refer to: Y&H - static dephasing regime, K&P - linear local field
approximation, S&Y - Gaussian phase approximation, and Bauer et al -
strong collision approximation. The simulations were conducted with blood
volume fraction η = 0.03 and blood oxygenation Y = 0.6.

The introduced theories show that even an approximating analytical treatment
of spin dephasing, despite very simple geometric assumptions, proves to be quite
cumbersome. For completeness, the exact solution of the Bloch-Torrey equation in
the SCM, introduced in 2012 by Ziener and colleagues [71] is briefly presented in the
following. This solution served as a ground truth for validations of the precision of the
dephasing simulations implemented for publication I (in 2D) and publication V (in 3D).

Exact solution of the cylindrical vessel model

The linearity of the Bloch-Torrey equation (1.10) concerning the local magnetization
m(~r, t) = m(r, φ, t) allows for a factorization ansatz, segregating the dependencies on
vector magnitude r and angle φ of the location ~r relative to the capillary center, as well
as time t:

m(r, φ, t) = T (t)R(r)Φ(φ). (1.26)

For the individual functions, new differential equations follow from the Bloch-Torrey
equation, which have been studied before. In summary, solutions of these individual
equations are identified and used in an eigenfunction expansion to form a full solution
of the present problem [71].
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The angle-dependent part is governed by the Mathieu differential equation:

∂2

∂φ2 Φm(φ) +
[
k2
m − iτδω cos(2φ)

]
Φm(φ) = 0,

where km is the angular eigenvalue to eigenfunction Φm. Due to the symmetry of the
2D-dipole field in Eq. (1.9), only the π-periodic, even Mathieu functions ce2m can
appear in the expansion of the sought solution:

Φm(φ) = ce2m(φ, iτδω/2).

The angular eigenvalue km is determined by the characteristic value a2m of the Mathieu
function ce2m:

k2
m = a2m(iτδω/2).

The radial part R(r) has to obey the Bessel differential equation, solved by the
eigenfunctions Rnm(r):

∂2

∂r2Rnm(r) + 1
r

∂

∂r
Rnm(r) +

[
λ2
nm

R2
C

− k2
m

r2

]
Rnm(r) = 0 (1.27)

with radial eigenvalues λ2
nm. Reflecting boundary conditions on the inner capillary

cylinder and outer dephasing cylinder are assumed for periodic solutions. This is
formulated by ∂rRnm(r)|r=RC = ∂rRnm(r)|r=RD = 0 for all eigenfunctions Rnm and has
the consequence that the solutions Rnm can be expressed as linear combinations of
Bessel functions J and Neumann functions Y with their derivatives denoted by a prime:

Rnm(r) = Y ′km(λnm)Jkm
(
λnm
RC

r

)
− J ′km(λnm)Ykm

(
λnm
RC

r

)
.

The radial eigenvalues λnm are forced to fulfill the following transcendental equation:

Y ′km(λnm)J ′km

(
λnm√
η

)
= J ′km(λnm)Y ′km

(
λnm√
η

)
, (1.28)

The indices of the Bessel and Neumann functions are given by the angular eigenvalue
km and Eq. (1.28) was solved numerically with complex root finding algorithms [13].

For the time-dependent part of the local magnetization in Eq. (1.26), the separation
ansatz with the Bloch-Torrey equation (1.10) yields:

R2
C

D

[
∂

∂t
+ 1
T2

]
Tnm(t) = −λ2

nmTnm(t),
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which is solved by:

Tnm(t) = exp
[
−t
(
λ2
nmD

R2
C

+ 1
T2,0

)]
. (1.29)

Intrinsic spin-spin relaxation with 1/T2,0 is included trivially in this solution, representing
a mere factor e−t/T2,0 .
The full solution for the local magnetization m(~r, t) follows from Eq. (1.26):

m(r, φ, t)
m0

= e−
t

T2,0

∞∑
m=0

∞∑
n=1

cnmce2m

(
φ, iδωR

2
C

2D

)
·Rnm(r)e

−λ2
nm

D

R2
C

t
, (1.30)

where m0 is the equilibrium magnetization which is flipped into the transverse plane by
a 90◦-excitation pulse at time t = 0. The expansion coefficients cnm are given by [71]:

cnm
2π =

A
(2m)
0 λ2

nmJ
′
km

(
λnm√
η

) [
J ′km(λnm)s′1,km

(
λnm√
η

)
− J ′km

(
λnm√
η

)
s′1,km(λnm)

]
[
J ′km(λnm)

]2[
λ2
nm − ηk2

m

]
−
[
J ′km

(
λnm√
η

) ]2[
λ2
nm − k2

m

]
(1.31)

with S ′1,km denoting the first derivative of the Lommel function and J ′km again referring
to the derived Bessel function. A(2m)

0 is the first Fourier coefficient of the even Mathieu
function ce2m and it, like the eigenvalues km, exhibits a dependence on δωR2

C/D. This
product is a dimensionless scalar that parametrizes the impact of diffusion effects in
the SCM. Low values of δωR2

C/D . 1 describe strong diffusion phenomena with a
significant averaging effect on the local Larmor frequencies seen by spin packets, whereas
high values of δωR2

C/D indicate that the diffusivity of water is weak compared to the
local field inhomogeneities. With increasing values, the resulting dephasing behavior
increasingly resembles the static dephasing regime [13].

An integration over the dephasing volume containing the spin packets with local trans-
verse magnetization m(r, φ, t), the total signal evolution from the integral magnetization
M(t) can be found to be given by [13]:

M(t)
M0

=
∫ 2π

0

∫ RD

RC

m(r, φ, t)
m0

r dr dφ

= e−t/T2,0
∞∑
m=0

∞∑
n=1

dnm exp
[
−λ2

nm

D

R2
C

t

]
(1.32)

with the expansion coefficients

dnm = 8η
1− η

[
A

(2m)
0

]2[
J ′km(λnm)s′1,km

(
λnm√
η

)
− J ′km

(
λnm√
η

)
s′1,km(λnm)

]2

[
J ′km(λnm)

]2[
λ2
nm − ηk2

m

]
−
[
J ′km

(
λnm√
η

) ]2[
λ2
nm − k2

m

] .

27



1 Introduction

Details about the functions, eigenvalues and expansion coefficients appearing in the
solutions in Eqs. (1.30) and (1.32) can be found in the original publications [71] and [13].
Discussions about the Mathieu functions and their characteristic values with imaginary
arguments can be found in [81] and an in-depth treatment of the modified Lommel
functions in this context is provided in [82].

Despite the crude simplifications of vessel geometry, the dephasing solutions take very
complicated forms, clearly deviating from mono-exponential decay with Ad(t) ≈ e−R′2t.
The solutions found, incorporating the cylindrical radius RC and tissue volume fraction
η, are too complex to be used for real signal fitting, especially with noise on the
measurable signal. Yet, it is inspiring to find that the mapping from microvascular
geometry to a macroscopic NMR signal is well-defined for this geometric model and
can even be solved exactly. This motivates the search for a dephasing-based method to
characterize microvascular properties and/or anomalies using T ′2-weighted MRI signals
with variable echo times to sample the voxel-wise dephasing attenuation Ad(TE). A
promising first application for such developments is cancer imaging, since tumors are
known to have dramatic remodeling effects on microvasculature.

1.2.5 Cancer imaging and its unsolved problems

Cancer is a prevalent pathology and responsible for many deaths each year. The time
of diagnosis and how far a malignant tumor has developed (tumor stage) have a great
impact on the prognosis and viable treatment options for the patient. Malignant brain
tumors, specifically the most commonly occurring, glioblastoma multiforme, typically
have very bad prognoses and often, are discovered too late for a promising treatment. A
medical imaging technique sensitive to early tissue alterations due to a growing tumor
on small length scales would be of enormous relevance to oncology.
Microstructural changes to tissue accompany different pathologies, including most

malignant tumor types. Neoplasia usually brings forth a modified cell mass composition,
density, and extracellular matrix, coinciding with altered diffusion properties, as well
as characteristic vascular adjustments to suit the metabolic needs of a growing tumor
[83–86]. Such changes to tissue microstructure, manifesting on length scales of several
micrometers or even nanometers, cannot be resolved directly with current medical
imaging techniques used for diagnosis and treatment monitoring in a non-invasive way.
Reliable tumor grading still demands invasive biopsies with histologic examinations;
a laborious process which only facilitates sampling of small tissue sections and is
unpleasant for the patient [87, 88].
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The development of non-invasive imaging techniques sensitive to specific aspects of
the tissue microenvironment has been an ambition of the MRI community for decades.
This has brought forth a wealth of techniques to probe biological, chemical, and physical
properties or surrogate biomarkers thereof for tumor diagnosis and phenotyping through
indirect imaging and sophisticated modeling [89–91]. An introduction of the available
methods, even just superficially, would blow the scope of this thesis and detour too
much from the focus of this study, but the most established medical imaging modalities
were summarized in a recent review of modern techniques sensitive to different aspects
of tissue malformations related to cancer; see Fig. 1.4 and the original publication [92].

Figure 1.4: Clinical imaging techniques sensitive to different aspects of tumor bi-
ology and microstructure (see [92] for elaboration). This image was
adapted without changes from García-Figueiras et al. [92], published
under the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

In brief, diffusion weighted and diffusion tensor imaging (DWI and DTI) use magnetic
field gradients to attenuate the local signal depending on diffusion in the gradient direc-
tion [93]. This enables a quantification of voxel-wise diffusion strength and anisotropy
[94], but also advanced interpretations of non-Gaussian diffusion [95, 96] and microstruc-
tural quantifications in certain tissue types [97, 98]. Molecular imaging facilitates the
detection and concentration assessment of certain molecules, gene expressions, and
metabolic processes based on spectroscopic imaging [99]. Magnetization transfer MRI
(MT-MRI) [5] has shown promising potential in cancer therapy monitoring [100, 101]
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and chemical exchange saturation transfer (CEST) MRI [102, 103] has successfully been
tested, e.g., for classification of IDH mutations [104], glioblastoma imaging [105], and
metastasis detection [106]. Tissue stiffness can be measured with MR elastography
(MRE), which images shear wave propagations with phase-sensitive MRI [107, 108]
and is well-applicable for tumor imaging [109, 110]. Despite the diversity of techniques
having been developed based on endogenous conditions, contrast enhanced MRI with
intravascular contrast agent administration still plays an important role in clinical
imaging of cancers based on altered tissue perfusion and vessel permeability [111–114].

Although dynamic contrast techniques remain as the clinical gold standard for non-
invasive measurements of microvascular anomalies [34, 115, 116], it is generally favorable
to avoid the use of exogenous contrast agents; for one, due to patient comfort but
also due to the high cytotoxicity of the commonly used gadolinium and possible long-
term depositions within the body [117, 118]. Currently, the contrast agent-free MRI
techniques closest to clinical use for assessing microvascular anomalies are arterial spin
labeling (ASL) [119] and intravoxel incoherent motion (IVIM) imaging [120]. Both of
these methods allow for quantitative estimations of voxel-wise blood volume and blood
flow, with possible applications for cancer diagnostics and tumor grading [121–124].

The BOLD effect is another promising candidate to replace intravascular contrast
agent administration, involving endogenous blood susceptibility variations. The link
between the activation of a brain region and associated blood oxygen fluctuations,
causing T ∗2 and T2 variations, is described by so-called neurovascular coupling [125, 126].
In healthy subjects, a drop of oxygen saturation is quickly compensated by fresh,
oxygen-rich blood, which restores the microscopic field homogeneity and local T2- and
T ∗2 -weighted signal intensities. The interpretation of such signal dynamics enables time-
resolved, in-vivo, non-invasive measurements of neuronal and metabolic activities within
the brain. Interestingly, brain tumors have been found to disrupt the neurovascular
system and function locally and nonlocally, also affecting the connectivity of different
brain regions [26, 27].

A comprehension of which types of anomalies of the neurovascular response system
are associated with brain tumors would offer entirely new possibilities for non-invasive
diagnoses and possibly even tumor grading. Unfortunately, the brain’s regional activa-
tion patterns and functional connectivity can vary quite significantly among different
individuals [127, 128] and be altered by many factors; e.g., personal fitness, emotional
state and arousal, but also neurological and psychiatric disorders [129–131]. Due to
the brain’s sheer complexity and the myriad of influential factors at play, a detailed
understanding of intra- and interpersonal fMRI signatures is still very far away. In
addition, there are many types of malignant brain tumors with distinct metabolic
characteristics and infiltration patterns that can affect different brain regions, commu-
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nication pathways, and neurovascular coupling very individually. Thus, a robust and
generalizable use of BOLD-based fMRI measurements for tumor-diagnostic purposes is,
at this point, an unrealistic goal as ambitious as it would be groundbreaking.

Technically, what complicates a diagnostic abstraction of fMRI methodology are
several aspects; mainly being the temporal and spatial scales of necessary MRI measure-
ments for a functional interpretation, in combination with the physiological complexity
and dynamics at these time and length scales. The neurovascular response within indi-
vidual voxels is typically measured over relatively long timescales on the order of 3−10 s,
with the sampling increment determined by the sequence repetition time TR (usually
0.5 − 3 s). Over the sampling timeframe of several seconds, microscopic conditions
within a voxel are influenced by external, macroscopic processes, such as heart beats,
pulsatile blood flow, breathing, significant vessel constrictions and dilations, dynamic
structural adaptation, and metabolic demands elsewhere [47, 132–134]. All of these
factors can influence the local BOLD signal. Further, besides the functional connectivity
of different brain regions, the anatomical connectivity of the cerebrovascular network can
lead to complex BOLD changes within voxels distant to neural activation sites, which
are directly connected through the vascular network topology but do not necessarily
have a functional link [135–137]. Interpreting functional connectivity from temporal
correlations of BOLD signal changes in different brain regions is complicated by many
physiological factors, of which the detailed interactions can further vary individually,
depending on age, health, fitness, and lifestyle [138, 139].

Many of the difficulties just mentioned may be evaded by reducing the relevant time
and length scales for an advanced MRI signal interpretation. Within time intervals of
less than around 200ms, most physiological conditions within an MRI voxel (typical
side lengths of around 1mm) are constant to good approximation. This includes
structural properties of the vasculature and local blood oxygenation. As malignant
tumors are known to promote vascular remodeling, involving vessel cooption, occlusion,
and angiogenesis [140–144], the microvascular geometry in afflicted tissue is often
peculiar in comparison to healthy tissue. In fact, the degree of this deformation has
been suspected to correlate with tumor malignacy [145–148]. In regions of tumor
growth, the microvascular properties which are approximately constant and minimally
influenced by external, physiological factors over short time scales should be distinctive
and recognizable. A successful voxel-wise characterization of microvasculature may
enable an improved prognosis of future tumor development and possibly assist in non-
invasive tumor grading. Moreover, a comparison of signal intensities within single voxels
minimizes unknown and disregarded nonlocal effects that may influence functional
connectivity and lead to a misinterpretation of signals from different tissue regions, as
would be interpreted in “classic” fMRI.

31



1 Introduction

While it makes sense to start vessel characterization for tumor diagnostics at the single
voxel level, a better understanding of the nonlocal connectivity of the cerebrovascular
network is of great importance for multiple reasons. For one, to understand a large
transport network, it does not suffice to concentrate on the small constituents or patches
of it. A vascular networks needs to be modeled and seen as such in order to comprehend
its function and different aspects of its design. Only once healthy brain vasculature
has been characterized as a network, e.g., with the principles of graph theory [149], the
effects of tumor growth on vascular connectivity can be studied. Such foundations may
pave the way towards a better understanding of the effects of brain tumor development
on fMRI and the phenomenon of neurovascular uncoupling. This was the motivation
for large-scale quantifications of the network topology of entire brain hemispheres and
a comparison with vascular networks in glioblastoma models, which is presented in
publication IV. To my best knowledge, these are the first comprehensive vessel network
quantifications of this kind, spanning the length scale of an entire brain at single
capillary resolution.
An overview of pertinent literature describing past structural imaging endeavors of

tumor vasculature is provided in the introductions and discussions of publications II,
III, and IV. A major contribution of the original research works in this thesis is the
development of a processing pipeline, which directly extracts quantitative, physical
information from large microscopic datasets of vessel networks of arbitrary resolution,
size, and shape. While publication III is focused around the determination of classical,
local, geometric features of real vessel architectures, in publications II and IV, topological
paradigms were applied to model the vasculature as a large system of many constituents,
forming one entity that can be parametrized with nonlocal quantities. These publications
offer new perspectives on large cerebrovascular networks and the remodeling effects of
glioblastoma multiforme.

With the numerical tools developed in the course of this thesis and introduced in the
following publications, the heterogeneous effects of tumor growth on tissue vasculature
can be studied individually, given the availability of 3D image data, e.g., from laser
scanning microscopy or microCT [150]. With an increasing prevalence of high-resolution,
large-scale imaging modalities and the ability to image vasculature selectively with
specialized contrasts or markers, the developed tools are hoped to assist in further
characterizations of organ-specific microvascular structures and characteristic effects of
different pathologies. Perhaps, this data-driven approach will elucidate new perspectives
on vascular pathologies, inspire the development of therapies to target specific aspects,
or identify new quantities with a well-defined influence on the macroscopic MRI signal
in order to devise more realistic vessel models [54, 151], incorporating, e.g., connectivity
or distributive characteristics.
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2 Thesis overview

This thesis is presented in cumulative format in accordance with the regulations of the
Department of Physics and Astronomy of the Ruperto-Carola University of Heidelberg.
It comprises five articles published in internationally acclaimed peer-reviewed journals.
Within this thesis, the individual manuscripts are referred to by roman numerals. I
am the first and principal author of publications II, IV, and V, shared first author
of publication III, and co-author of publication I. Conform with faculty regulations,
the publications with principal authorship have not been used and will not be used
for any other dissertation. The articles have been reproduced in this thesis with the
kind permissions of Elsevier (publications I and II), Sage Publishing (publication III),
Springer Nature (publication IV), and John Wiley & Sons, Ltd. (publication V). In
section 2.2, each publication is summarized in the context of this thesis. Copyright
information and individual author contributions to the articles are provided in chapter
3, preceding each publication.
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2.2 Thematic summary

2.2.1 Publication I

In publication I, it was investigated how different spatial arrangements and degrees of ir-
regularity in capillary arrays affect transverse relaxation. This study provides extensions
of the results formerly attained for perfectly periodic and regular, or completely random
arrangements of cylindrical vessels, using the traditional models applied previously for
analytical and numerical treatments, as described in section 1.2.4. Specifically, the
infinite cylindrical vessel model was embedded into different spatial arrangements and
the consequences for spin dephasing were compared with those of increasingly varying
capillary radii in a regular lattice and blood oxygen saturation changes. Theoretical
foundations were combined with numerical calculations to add a distributive dimension
to the models and compare the magnitude of their dephasing effects with those of vessel
geometric variations and blood oxygen fluctuations.

The dephasing process around a single, infinitely long, cylindrical vessel in the Krogh
model (see section 1.2.4) was compared with that of different periodic arrangements of
cylinders. In analogy to the description of crystal structures using a Bravais lattice,
unit cells were used to produce highly regular, periodic replications of capillaries with
hexagonal and square, planar arrangements. The effects of each pattern on the sub-voxel
Larmor frequency distribution were studied numerically. Further, the gap between
a perfect crystalline regularity and complete spatial randomness was bridged with a
continuous model, parametrizing the degree of disorder. Initially, spatial irregularity
was first introduced and tuned through random displacements of capillary centers
from a hexagonal lattice (using Gaussian distributed offsets with vanishing mean and
standard deviations σP ∈ [0, 2.5]µm with a regular inter-capillary distance of 16.5µm)
and the effects were compared with those of increasingly varying capillary radii (also
Gaussian distributed around a mean value µR = 1.94µm with standard deviations
σR ∈ [0.1, 0.5]µm). The findings justified further analyses with a constant capillary
radius throughout the arrays.
In search of a simple model to quantify the irregularity of capillary distributions

with a continuous parameter, not bound by any characteristic length scales or radius-
dependent limits, a plasma model from statistical physics was adopted in this study.
The two-dimensional (2D) one-component plasma (OCP) has previously been used to
parametrize the coronary capillary regularity, successfully differentiating heart muscle
tissue with different forms of cardiomyopathy [152]. Such an adaptation of the 2D-OCP,
traditionally describing the repulsion of identically charged particles within a plasma
in the canonical ensemble [153], is particularly motivated by a striking mathematical
analogy to the differential equation describing the distribution of oxygen sources in a
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tissue plane being supplied by concentration-driven oxygen diffusion, with perturbing
factors to an ideal placement being summarized in a type of temperature parameter
(see Appendix A2 of publication II for elaboration). Macroscopic states of the 2D-OCP
are fully determined by a single, dimensionless parameter Γ ∈ [0, inf), describing the
balance between energy minimization and entropy maximization for a given state.

In this publication, it was investigated how the order parameter Γ affects the transverse
relaxation rate R′2 accountable to capillary distributions. It was chosen as a candidate
for the continuous parametrization of spatial regularity in capillary networks to bridge
the gap between a perfect hexagonal lattice (Γ→∞) and uniform, random distribution
(Γ = 0). Numerical simulations were used to produce 2D point fields using the 2D-OCP
model with a range of Γ values. The point distributions produced this way were used
as the positions of parallel capillary segments in a plane. Motivated by the traditional
cylindrical vessel model commonly treated in the past (see section 1.2.4), the vessels were
approximated by infinite cylinders to enable a treatment in 2D. The effects of random
vessel orientations were analyzed for the limiting cases of completely random capillary
distributions (Γ = 0) and the hexagonal lattice (Γ→∞) with an analytical averaging
technique used in similar studies [9], revealing slower dephasing from randomly oriented
vessels.

A conclusion of this study was that the definition of an artificial MRI contrast
parametrizing microvascular disorder based on reversible transverse relaxation would
not be straight-forward using the cylindrical vessel paradigm. Starting with a hexagonal
lattice arrangement, the effects of varying vessel radii on intra-voxel Larmor frequency
distributions were found to be similar to those of increasing random deviations of
capillary positions from the crystal lattice, although the former were less pronounced in
comparison. With relatively disordered vessel positions, an additional Gaussian radius
distribution did not significantly change the signal shape any further, as compared
with uniform radii. Thus, the influence of the singular vessel geometry on transverse
relaxation depends on the distributive properties of the vessel network, having similar
effects on the intra-voxel frequency density of states ρ(ω), i.e., the histogram of Larmor
frequency offsets. The magnitude of these vessel-induced frequency deviations scales
linearly with the characteristic off-resonance δω = 2πχdo · (1 − Y ) · Hct · γB0, where
χdo is the magnetic susceptibility difference between deoxygenated and oxygenated
hemoglobin, Y ∈ [0, 1] is the blood oxygenation ratio, and Hct is the hematocrit.

An inclusion of diffusion effects, omnipresent in living tissue, yielded interesting
results with the 2D-OCP model. Water diffusion in the extravascular space smooths
off-resonance distributions and yields frequency histograms reminiscent of Lorentzian
profiles, smearing the characteristic asymmetry found for hexagonal vessel lattices
(see Fig. 10, c of publication I). Increasingly disordered vessel arrangements have a
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similar effect on ρ(ω) in the extravascular volume (see Fig. 8 of publication I). With
diffusion, the relaxation rate R′2 from exponential fitting scales approximately with 2δω,
as opposed to just linearly with δω, as for static dephasing.
The relaxation rate R′2 exhibited a peculiar dependence on the order parameter

Γ with varying off-resonance magnitude δω, but only under the inclusion of water
diffusion (cf. Fig. 12 and Tab. 2 in publication I). With dynamic dephasing, low
values of δω (weak fields B0 and/or low blood susceptibility χ) would cause stronger
R′2 relaxation in the 2D-OCP model than in the regular hexagonal lattice, whereas
large δω (high B0 and/or blood susceptibility) would show the opposite, with faster
relaxation in the regular hexagonal capillary arrangement. This finding suggests that
dynamic susceptibility contrast (DSC) may offer an effective handle on the capillary
regularity, as the transition between these opposing cases is expected to be continuous.
The effects of spatial irregularity in the capillary network on DSC MRI must be studied
in more detail, ideally with real vessel architectures, to validate a separability from
other vessel geometric and structural properties.

2.2.2 Publication II

As mentioned above, the 2D-OCP, used in publication I to model artificial capillary
distributions with different degrees of regularity, was first applied to the myocardium
[152], where capillary arrangement is known to be quite regular [154]. There, it was
found that an attribution of the order parameter Γ to tissue sections, e.g., as part
of a histopathologic examination, may aid the diagnosis of different causes of heart-
failure, such as dilated cardiomyopathy, ischemic cardiomyopathy, or inflammatory
cardiomyopathy. In publication I of this thesis, it was investigated whether a non-
invasive estimate of Γ values would theoretically be possible for individual MRI voxels,
based on intra-voxel spin dephasing typically characterized by R′2.

In publication II, the applicability of the 2D-OCP was analyzed for the identification
of malignant brain tumors in a mouse model. Brain tissue naturally presents more
intricate capillary beds with higher perceived disorder than myocardial tissue, especially
in areas overlapping multiple brain regions or white and grey matter. This investigation
was based on large, highly-resolved 3D image datasets acquired using fluorescence light
sheet microscopy, following the fluorescent labeling of vessel lumen with an intravascular
marker perfusion and subsequent tissue clearing [155], which had already been conducted
in this case for a previous study [49]. Single plane illumination microscopy (SPIM) [156]
yielded image stacks of the vasculature of entire mouse brains with 3.25µm in-plane
resolution and 5µm image spacing. The vessels were segmented using the segmentation
toolkit ilastik, based on interactive training and a random forest pixel classification,
which incorporates 3D intensity, edge, and texture information with variable smoothing
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[157, 158]. The segmented 3D vessel architecture was post-processed with custom-
written codes to correct for artifacts and masked manually to exclude badly imaged
tissue due to blurring on the edges of the field of view.

To emulate the voxel placement in realistic MRI acquisitions, the post-processed SPIM
image volumes were subdivided into 3D matrices of macroscopic cubes with 0.5mm
side length, representing virtual MRI voxels. The capillary centerline centroids in each
imaging plane and voxel were used for a Voronoi tessellation [159], subdividing the tissue
planes into polygons vaguely representing oxygen supply regions. Geometric properties
of the Voronoi polygons and nearest neighbor distances of capillary centerlines were
used to make Γ estimates for each imaging plane and virtual MRI voxel, following the
original methodology of Karch et al. [152], by comparing with the statistical properties
of simulated 2D-OCP realizations.

This was done for three healthy mouse brains and six entire glioblastoma xenografts
from the U87MG tumor cell line [49]. The automated pipeline estimated 27 489 Γ
values in healthy brain tissue and 18 209 values entirely within solid tumors. The
resulting sample means with standard errors were 〈ΓH〉 = 4.9±0.4 in healthy tissue and
〈ΓG〉 = 2.1± 0.4 in glioblastoma. It should be noted that the virtual MRI voxels from
healthy tissue included partial volume effects of white and grey matter and different
brain regions, without any specific placement or usage of a brain atlas. Tumor voxels
used for analysis were made sure to lie entirely within tumor tissue, as marked by
trained radiologists by manual mask drawing.

It was found that the 2D-OCP model may facilitate an identification of tumor tissue
within individual MRI voxels, based on an attribution of Γ values. A non-negligible
overlap of estimated Γ value ranges in healthy and pathologic voxels (cf. Fig. 4 of
publication II) is expected to originate from specific brain regions, where healthy tissue
naturally exhibits higher microvascular disorder, e.g., covering different tissue type
boundaries. Tumor detection based on estimated voxel Γ values is expected to improve
by additionally considering voxel neighborhoods and anatomical location, tempering
the effects of false positive classifications based on lower capillary regularity due to
partial volume effects.

2.2.3 Publication III

The findings of publication I, that varying vessel radius distributions and the capillary
regularity have similar effects on transverse relaxation, which are not separable based
on the cylindrical vessel model, motivated the search for a more comprehensive picture
of real microvasculature for NMR modeling. The laser scanning microscopy data used
in publication II visually suggested that tumor-induced vascular remodeling did not
only affect the spatial distribution of capillaries but also the individual vessel geometry.
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As has been found in previous studies, the orientational anisotropy of microvessels
is altered locally through tumor growth [160], while bifurcation angles, hierarchical
diameter scaling, and fractal properties can also be changed [83, 161–166]. Vessel radii
and tortuosity are typically elevated but individual manifestations are various and
depend on tumor type, malignacy, stage, and region [23–25, 146, 167].

Extending the codes written for the numerical processing of 3D fluorescence microscopy
data to estimate Γ values for real tissue in publication II, the determination of a
range of geometric parameters of the vasculature was implemented to characterize the
ground truth data. In publication III, the created code base is presented with several
possible applications, including the investigation of tumor growth (reusing the raw
data from publication II), comparison of vascular geometry in different brain regions,
and fundamental developmental studies. The quantitative parameters determined for
arbitrarily shaped (masked) tissue volumes included fractional vessel volume fV V
(CBV in intracranial applications), microvascular density MVD (number of vessel
segments per unit tissue volume), vessel surface area density ρA (lumen surface per unit
tissue volume), and vessel length density ρL (total vessel length sum per unit tissue
volume). These scalar measures quantify the perfusion density of tissue volumes.

In addition, the segmented vasculature was subdivided into vessel branches, i.e.,
individual segments between branching or end points, which can be approximated by
separate, tube-like geometries. Each vessel segment was labeled and characterized with
the following measures: mean radius r̄, branch length l, segment surface area A, and
tortuosity τ . The tortuosity τ = l/d was determined as a simple measure of vessel
curvature using its length l and end point separation d [168]. The lumen area A was
calculated from finite elements using a mesh obtained from the 3D intensity gradients
of the segmented image volumes. The nontrivial estimation of vessel radii for realistic,
warped structures was implemented as a custom-developed combination of two methods,
described in the Supplementary Material of publication III (see Supplemental Methods
and Supplemental Fig. 1). The accuracy of radius estimates for different segment
orientations was validated in the same material.

The automated quantification algorithms were implemented in a 3D tiling box
manner. Arbitrarily shaped and large tissue volumes with auxiliary 3D masking,
optionally including holes, are autonomously subdivided into cuboids of predefined
dimensions (tunable depending on the resolution and the size of the imaged structures
to enable sensibly fast processing). The cuboids are labeled sequentially and processed
individually, optionally in random order, to enable so-called asymptotic analyses,
where extremely large datasets can be partially quantified, preliminary results can be
combined intermediately, and a convergence towards certain statistical distributions
can be checked. The vessel properties within the cuboids are determined and artificially
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divided segments through partitioning are recovered in a subsequent steps, combining
the results from each segment piece. This allows for a characterization of large volumes
in a parallel or sequential manner, according to the available computer hardware. Should
processing be interrupted, the algorithm will pick up where left off in processing of
the individual cuboids. Additionally, this method separately quantifies the vasculature
within individual cuboids in analogy to the volume partitioning used in publication IIto
emulate macroscopic MRI voxels.
With image data reused for different biological studies, the utility of the developed

numerical toolkit was demonstrated with various SPIM datasets of mouse brains and
embryos. This methodological paper was aimed at sharing the developed quantification
algorithms with the research community, presenting its flexibility in different scenar-
ios. Despite the availability of expensive licenses for several highly professional and
versatile computer programs for the analysis of microscopy data to scientific standards,
we decided to develop our own custom processing codes, specialized for our desired
quantifications of vascular geometry in amorphous 3D vasculature. Considering the
size of our datasets (several Gigabytes per acquisition in minimal 8-bit format, with
several cubic millimeters of imaged tissue at single micrometer resolution, containing
order 105 − 106 vessel segments), resourceful and incremental processing needed to
be implemented to enable analyses on standard PCs. My custom-developed Matlab
code, presented in publication III, facilitated the aspired analyses on regular desktop
computers with optional parallelization, with the processible image size being limited
only by the addressable random access memory (RAM) available to Matlab.

2.2.4 Publication IV

The numerical processing pipeline introduced in detail in publication III was applied to
large, intact cerebrovascular networks in a mouse model in publication IV. Without
differentiating particular brain regions, the vascular geometry in six entire healthy
brain hemispheres was compared with two distinct models of glioblastoma, namely
from the U87 and the GL261 cell lines. All experimental animal data for this study
had also already been acquired for previous investigations [48, 49]. The objective
here was to extensively characterize the hallmarks of brain tumor microvasculature in
order to identify individual aspects to focus on in the search for new models of the
capillary architecture that could effectively discriminate healthy and cancerous brain
tissue. To the best of my knowledge, this article presents the first-ever graph theoretical
quantifications to this extent on real cerebrovascular networks in a mammal. These
were the largest vascular networks quantified this comprehensively to date.

It was found that the capillary geometry in the studied tumor xenografts was
so heterogeneous, that differences of the vessel segment geometry were difficult to
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formulate from the grand statistical consideration of entire tumors. High heterogeneity
and variance in different tumor regions smeared definite, local remodeling aspects to
the point of dissipation in the statistical comparison with entire brain hemispheres.
Only the perfusion density parameters fV V and MVD presented significant differences
in the large statistical comparison of entire GL261 tumors with healthy brain tissue,
whereas U87 tumors only exhibited significant differences within the tumor core. Notable
differences of the statistics of individual vessel geometric properties were only observed
between tumor cores and healthy brain tissue, while an inclusion of entire tumor volumes
counterbalanced the differences in the core to resemble healthy statistics in total (see
Fig. 1, b-g in publication IV). An explicit comparison of tumor cores with tumor
peripheries was previously provided in publication III (see Fig. 3 therein).

To augment the geometric quantifications of these cerebrovascular networks, I im-
plemented a comprehensive topological characterization in addition to the numerical
processing presented in publication III. This involved an automated mapping of the
vascular network to an undirected graph, describing vessel segments as connections
(edges) between branching and end points (nodes). The network topology was quantified
with a wide range of fundamental measures, including the network size (number of
nodes and edges), node density (per unit tissue volume), mean and maximum node
degree (number of connections to a node), and clustering coefficients, which parametrize
the interconnectedness of topologically neighboring nodes (see Tab. 2 of publication
IV for a summary).

The degree distributions exhibited nontrivial forms, because the networks were imaged
at a resolution comparable to the radii and lengths of the smallest capillary segments
(see Fig. 1, d-e in publication IV). This had a coarsening effect on the real networks,
where bifurcations less than ∼ 3− 5µm apart were summarized into a branching node
with degree k > 3 (whereas a simple bifurcation would have degree k = 3). In graph
theory, adjacent nodes without an edge connection in between are again summarized
into a single larger node [149], which resulted in high degree nodes with k > 10. Indeed,
this makes sense in an analysis of large vascular networks, since branching points
separated by distances shorter than the smallest vessel diameters can be considered
as single intersection points in the context of a large network (see the discussion in
publication IV).

To further study the network structure on larger length scales, a community unfolding
algorithm was applied to the basic graphs to reveal hierarchical clustering structures and
modularity within the networks. The employed Louvain algorithm [169] uncovered vessel
communities by maximizing intra-community clustering with minimal inter-community
connectivity. The communities were modeled as the nodes of a meta-network with
weighted connections, determined by the number of basic inter-community edges (see
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Fig. 3 of publication IV for illustration). Community structures were compared
and their connectivity was characterized with similar topological measures as the
basic networks. Additionally, the scaling of community size distributions, neighboring
community degree relationships, and mean shortest paths and network diameters in a
topological sense were analyzed (see Fig. 4 and Tab. 4 of publication IV).
All vascular networks presented interesting statistical distributions of node degrees

k, exhibited scale-free network characteristics, following a power law P (k) ∼ k−γ for
high degrees. Mean clustering coefficients C also followed a power law scaling with
node degrees k (see Fig. 2 and Tab. 2 of publication IV). All topological analyses
indicated a rather slight deformation of network structure from healthy brain tissue to
U87 tumors, but profound alterations in GL261 tumors. Tumor cores deviated from
healthy vasculature most dramatically in virtually every aspect. Perhaps most notably,
brain tumors were found to decompose large modular vessel communities of the healthy
mouse brain (in publication IV, see Fig. 3, b-d), presumably affecting the brain oxygen
regulation and neurovascular coupling [55, 139]. These findings are highly relevant
for building advanced models of vascular networks for MRI modeling, especially when
including hemodynamic effects and oxygen variations. The detrimental effects of tumor
growth on the network topology may further help explain neurovascular uncoupling and
aid a more reliable interpretation of BOLD fMRI aberrations for tumor diagnosis [26].

2.2.5 Publication V

After an extensive characterization of the real vascular networks imaged with high-
resolution laser scanning microscopy in publications II, III, and IV, the focus is taken
back to the influence of microvascular architecture on MRI. A fast and effective numeri-
cal implementation of the dephasing process for arbitrary susceptibility distributions
in 3D was custom-written in C++ with local CPU multithreading using OpenMP (see
https://www.openmp.org/). The simulations incorporate water diffusion in the ex-
travascular space for arbitrary virtual voxel dimensions with cuboid shape, with the
possibility to calculate spin dephasing during FID, gradient echo, and spin echo mea-
surements with optional field gradient pulses, e.g., for diffusion weighting. The focus in
publication V remained on dephasing during T ′2 weighted MRI acquisitions, motivated
by the theoretical studies summarized in section 1.2.4 and for direct comparability with
publication I.

To enable large-scale imaging simulations in feasible time frames, a numerical frame-
work was written for Unix-type operating systems using Bash shell scripting and Python
3 (see https://www.python.org/) for an orchestration of virtual voxel processing from
large, masked 3D datasets, as were analyzed in publications II - IV. A 3-level hierarchical
parallelization scheme was developed for quick deployment of highly parallelized and
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automated analyses on high performance computing (HPC) systems, conducting NMR
simulations and vessel quantifications in matching virtual MRI voxels with variable
dimensions (see Fig. 1 of publication V). The calculations were conducted on the tier
3 HPC cluster “bwForCluster MLS&WISO Production”, generously supported by the
state of Baden-Württemberg through the bwHPC and bwHPC-C5 projects, as well
as the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with
grant INST 35/1134-1 FUGG and extensions thereof. I applied for access to this cluster
shortly after beginning this doctoral project in order to enable the planned research
activities.

Custom bash scripts were written to invoke the scheduling system of the compute
cluster for parallel processing of individual microscopy datasets according to availability
of computational power. The message passing interface (MPI) [170] was implemented
for a parallelized treatment of virtual MRI voxels from each dataset across different
compute nodes, as specified flexibly by the user. The cores of each node were further
exploited fully through multithreading in the dephasing simulations and parallelization
of quantification and field calculation steps in Matlab (see Fig. 1 of publication V
for a graphical summary). Following an automated partitioning of each 3D dataset,
intra-voxel off-resonance distributions were calculated through an efficient convolution
in Fourier space, serving as the basic input to the C++ dephasing simulations, similar
to previous implementations [171, 172]. Different fit models were applied to dephasing
attenuation curves from each virtual voxel to produce fit parameter sets for all tissue
groups. The available SPIM datasets of the healthy mouse brain, U87, and GL261
glioblastoma were processed this way.

The fit parameters from simulated dephasing curves were used to test the feasibility of
classifying the voxel signal to differentiate healthy brain tissue from glioblastoma tissue
with different virtual voxel sizes. Support vector machine (SVM) classifiers were created
with varying numbers of training signals, which were altered to produce so-called learning
curves. These curves showed the classification accuracy, sensitivity and specificity in
dependence on the number of training signals. Training and prediction testing was
conducted with separate image datasets from different mice, with permutations in
prediction data and training data. This proof-of-principle study yielded promising
results despite limitations in the amount of data availability as well as imaging and
segmentation quality differences between mice. Even with bad signal-to-noise ratios
of the NMR signal, good classification accuracies well above 70% were reached. In
the range of testing, with 100 - 400µm side length, larger voxels facilitated better
classifications, whereas the GL261 tumors were generally better detected (cf. Figs. 2
and 4 of publication V). The results were motivating, considering that there was no
information about the voxel origins, nor any voxel neighborhood comparisons.
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2 Thesis overview

The numerical simulations implemented in 2D for publication I, as well as the more
general 3D simulations implemented for publication V were both validated using the
well-understood Krogh model with the exact analytical solution of the FID evolution
[13]. Different model geometries were created in 2D and 3D with specific cylinder
radii and tissue volume fractions in the physiological range. Numerical simulation
results were compared with exact solutions in each case, considering the magnetization
magnitude and phase evolution. The temporal and spatial discretization error estimates
implemented with the simulation allowed for a quick determination of sufficient time step
and field lattice spacings for an excellent agreement of the numerical simulations with the
exact solutions for each model geometry (see Supplemental Fig. S1 of publication V). The
time step discretization and field grid spacing for simulations with real capillary networks
was chosen using an analogous error estimation for general geometries, implemented
with the C++ simulations.
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A B S T R A C T

Tissue-inherent relaxation parameters offer valuable information about the arrangement of capillaries: in
an external field, capillaries act as magnetic perturbers to generate local inhomogeneous fields due to the
susceptibility difference of deoxygenated blood and the surrounding tissue. These field inhomogeneities
influence the free induction decay in a characteristic way, and, conversely, the above tissue parameters can
be recovered by multi-parametric fits of adequate theoretical models to experimentally sampled free induc-
tion decays. In this work we study the influence of different spatial patterns of capillary positions on the free
induction decay. Starting from the standard single capillary approximation (Krogh cylinder) for a symmetric
array of capillaries, the free induction decay is analyzed for increasingly random capillary positions, using a
previously described Gibbs point field model. The effects of diffusion are implemented with a flexible and
fast random walk simulation. We find that the asymmetric form of the obtained frequency distribution is
more robust against variations of capillary radii than against shifts of capillary positions, and further that, for
an inclusion of diffusion effects, the single capillary approximation models the uniform alignment of cap-
illaries in the hexagonal lattice to great accuracy. An increase in randomization of capillary positions then
leads to a significant change in relaxation times. This effect, however, is found less pronounced than that
of changes in the off-resonance field strengths which are controlled by the oxygen extraction fraction, thus
indicating that observed changes in BOLD imaging are more likely to be attributed to changes in oxygenation
than to capillary alignment.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The quantitative evaluation of subtle tissue changes that involve
microscopically small structures such as capillaries and cells is use-
ful in assessing the form, extent and dynamic change of patho-
physiological processes that are usually well below the resolution
of MR scanning devices in clinical routine. For example, Karch et
al. demonstrated a relationship between the degree of irregular-
ity of capillary arrangements in cardiac tissue and some cardiac
pathologies [1]. Likewise, techniques that are based on the BOLD

* Corresponding author at: Heidelberg University Hospital, Neuroradiology, Im
Neuenheimer Feld 400, Heidelberg,Germany.

E-mail address: felix.kurz@med.uni-heidelberg.de (F.T. Kurz).
1 Equal contribution.

(blood oxygen level-dependent) effect [2] can be used to evaluate
microstructural changes that are associated with hemodynamic and
metabolic pathology-related alterations in brain tissue (see [3] for
a review of some theoretical models). The range of applications is
large and stretches from diagnostic to monitoring and even thera-
peutic purposes [4,5]. With regard to magnetic resonance imaging
it is therefore important to know how much information about
microstructural patterns in a voxel can actually be extracted from the
corresponding MR signal.

On a microscopic scale, two intrinsic tissue properties dominate
the MR signal decay: the spatial pattern of magnetic susceptibility
inclusions in the tissue (e.g. the arrangement of capillaries in muscle
tissue that contain blood with paramagnetic properties [2]), and the
mobility of spins that surround these susceptibility inclusions. The
first effect can be described in terms of a local Larmor frequency y(r)
that encodes information about the shape of the microscopically small

http://dx.doi.org/10.1016/j.mri.2017.03.012
0730-725X/© 2017 Elsevier Inc. All rights reserved.
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magnetic perturbers (which generate local magnetic field inhomo-
geneities in an external field). The second effect is usually modeled as
a diffusion process that is characterized by the diffusion coefficient
D and boundary conditions that are imposed by the spatial arrange-
ment of the perturbers. The time evolution of the local transverse
magnetization is then determined by the solution of the Bloch-Torrey
equation (see below) that takes into account both susceptibility and
diffusion effects [6]. For capillary networks, several deterministic
analytical models about MR signal behavior were brought forward
recently [7–13], see also [14] and references therein. Most approaches
accurately describe the limiting regimes of static dephasing, where
diffusion effects are negligible, and the regime of strong diffusion
effects: the motional narrowing limit (see also [15,16]). They either
rely on assumptions on the spin phase distribution [8], an approxima-
tion of the NMR signal in weak fields [9], second order perturbation
theory for low diffusion effects [10], or stochastic approximations
of diffusion-mediated field fluctuations [17]. One recent approach
provides a solution of the Bloch-Torrey equation for the specific
spatial pattern of symmetrically positioned capillaries [12,13] that
is based on a single capillary approximation in analogy to Krogh’s
cylinder model [18]: in this geometrical model, it suffices to study
(restricted) diffusion in the Krogh cylinder around one capillary. The
Krogh model divides the biological tissue into independent paral-
lel cylindrical unit cells that each host one capillary in their center.
This necessarily leads to a loss of structural information, see also
Fig. 1. It was shown recently, however, that the signal evolution of
the magnetization inside a unit cell differs for quadratic and cir-
cular shapes [19]. In addition, the single capillary approximation
may be adequate for some tissues (e.g. muscle tissue [20–22]), but
most tissues do not display a uniform regular capillary position
arrangement (e.g. the heterogeneous construction of a capillary sup-
ply network for pathological tumor growth [23], brain capillaries [14]
or pathology-related capillary arrangements in cardiac tissue [1]).

In this work, we numerically evaluate and compare the influence
of simplified model geometries on the frequency distribution in one
MR voxel for square lattices, hexagonal lattices, the Krogh model and,
eventually, the transition towards irregularly arranged capillaries
(termed plasma) with the help of an entropy point field model that
was proposed recently [24]. The effects of diffusion of spin-carrying

particles are implemented with a random walk simulation. We show
that irregular patterns of capillaries have a substantial influence on
transverse relaxation times.

2. Methods

In this work, capillary arrangement patterns that cover the whole
tissue space are assumed as being either based on a square lattice,
a hexagonal lattice or a random positioning of capillaries (multi-
capillary models; Fig. 1b–d), whereas the Krogh model represents
the single capillary approximation where the study of the whole
capillary network is reduced to the study of axial spin diffusion
inside the concentric Krogh cylinder around one capillary (see also
Table 1 for a comparison of capillary-tissue volume fractions and
capillary densities in the different geometries). The volume elements
in which dephasing processes of spin-carrying particles occur are
then aligned as either quadratic prisms or hexagonal prisms (as
in the cross-section of a face-centered cubic Bravais lattice), see
Fig. 1c,d. This prevents remaining residual space between volume
elements. Here, we only consider the two-dimensional planes of cap-
illary cross-sections (see Fig. 1a–b); however, the results can easily
be generalized to three dimensions and are the same as long as the
capillaries remain parallel. This assumption may be reasonable for
muscle tissue [22], yet, in the Krogh model, a (spatially equally dis-
tributed) randomization of vessel orientations can be achieved by
considering the integration of the local frequency over the distribu-
tion function of the tilt angle b for randomly oriented cylinders, i.e.
sin(b)/2 (see also Section 3.5 below). In the following we will briefly
introduce the Krogh model and its implications on the frequency dis-
tributions for static and dynamic dephasing processes. We will then
evaluate the frequency distributions for square and hexagonal lat-
tices to compare them with that of the Krogh model for different
volume fractions.

2.1. Single capillary approximation: the Krogh model

The transition to the Krogh model or single capillary approxima-
tion consists in replacing the quadratic and hexagonal prisms with
cylinders of equal volume, see Fig. 1e–g. In this process, neighboring

Fig. 1. Capillary arrangement patterns for biological tissue. (a) Microscopic blood vessels in the brain cortex, provided courtesy of B. Tews, National Center for Tumor Diseases,
Heidelberg, Germany. (b) Schematic view of the cross section area (dotted blue line in (a)) with a random arrangement of capillary positions with variable radii. (c–d) Simplified
spatial pattern of the capillaries in (b) in a hexagonal lattice (c) and a square lattice (d): the underlying assumption is that bulk tissue can be divided into simple, uniform and
independent unit cells that each contain a single capillary. (e–f) Simplification steps for the transition of the hexagonal and the square lattice to the Krogh model: diffusion of
magnetization between the unit cells is modeled by reflective boundaries of the unit cells (exemplified in the blue trajectory for the hexagonal lattice). (g) The unit cell in the
Krogh model is simplified as a cylinder that co-axially surrounds a cylindriform capillary with radius RC. The two-dimensional dipolar off-resonance field, as given in Eq. (1) with
polar coordinates (r, 0), is portrayed in the Krogh cylinder with red (positive) and blue (negative) field portions.

49



F. Kurz et al. / Magnetic Resonance Imaging 40 (2017) 31–47 33

Table 1
Capillary volume fraction g for different spatial patterns of capillary arrangements.
RD: radius of the Krogh cylinder (see below or Fig. 1g), ICD: intercapillary distance; for
the two-dimensional one-component plasma (2D-OCP; see below): A = area of the
simulation box, m = number of capillaries within the simulation box.

Capillary volume fraction g

Square lattice
pR2

C
ICD2

Hexagonal lattice
2pR2

C√
3ICD2

Krogh model
R2

C
R2

D

2D-OCP
mpR2

C
A

cylinder surfaces necessarily overlap and should thus be considered
as mathematical entities and not as actual physical boundaries. A
detailed explanation and justification of this approach is detailed in
Refs. [25–27]. The Krogh model assumes that the tissue is built of
independent parallel cylindrical unit cells, each containing a coaxial
single blood filled cylindrical capillary (Fig. 1g) that supplies the unit
cell with oxygen and nutrients. In an external magnetic field, each
capillary then induces the local off-resonance field [28]

y(r,0) = dy R2
C

cos(20)
r2

(1)

in the surrounding supply area where diffusion and dephasing of the
magnetization take place, with polar coordinates r = (r,0) in a plane
perpendicular to the capillary axis. The capillary radius is denoted as
RC and dy = y(r = RC,0 = 0) is the characteristic frequency shift
on the surface of the capillary. The transverse dynamic magnetiza-
tion (in complex notation), m(r,0, t) = mx(r,0, t) + imy(r,0, t), can
eventually be obtained as the solution of the transverse part of the
Bloch-Torrey equation [6]:

∂

∂t
m(r,0, t) = [DD − i y(r,0)] m(r,0, t) , (2)

and the measurable MR signal of the transverse magnetization M(t)
follows as

M(t) =
∫

V
d3r m(r,0, t) (3)

=
∫ +∞

−∞
dy q(y)eiyt , (4)

where q(y) is denoted as the frequency distribution

q(y) =
1
V

∫

V
d3r d(y − y(r)) , (5)

with d(y) as the Dirac-Delta function and dephasing volume V. The
application of the single capillary approximation in this case is mean-
ingful since it allows a closed-form solution of the Bloch-Torrey
Eq. (2) in terms of an eigenfunction expansion [12,13]. With the
help of such a solution, fundamental effects of spin dephasing in a
dipole field can be investigated and understood. We provide further
details about this solution and its computational implementation
in Appendix A. It will be used to evaluate the accuracy of the ran-
dom walk algorithm by comparing theoretical and simulated free
induction decay in the Krogh model (see Section 3.3).

If diffusion is negligible, then q(y) corresponds to the local
Larmor frequency distribution, and, within the Krogh model, an
analytical expression can be given as [29]:

q(y) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g
1−g

dy
py2

√
1 − (

y
dy

)2 for |y| ≥ gdy

g
1−g

dy
py2

[ √
1 − (

y
dy

)2 −
√

1 −
(

y
gdy

)2
]

for |y| ≤ gdy

0 for |y| > dy ,

(6)

where capillary volume fraction g = R2
C/R2

D and RD represents the
radius of the Krogh cylinder. Generally, single spins can diffuse from
one supply area to the next one (see Fig. 1c). This problem is met with
reflecting boundary conditions that are imposed on the outer bound-
ary of the supply cylinder [30], see Fig. 1e. Reflecting boundaries are
also imposed on the surface of the capillary as is common practice in
theoretical modeling [26,31].

However, the radial symmetry of the original Krogh model is
broken by the angular dependence of the off-resonance field (see
Eq. (1) and Fig. 1). Furthermore, the reduction to one single capillary
neglects the contribution of the surrounding capillaries on the off-
resonance field in the original supply volume, see also [32]. While
typically small volume fractions g � 0.1 for some biological tissues
may justify this neglection [7,26], both issues (angular symmetry
and neighboring capillary contribution) can lead to serious prob-
lems when reassembling the bulk signal from the signal of the
independent unit cells.

2.2. Multi-capillary model

In contrast to the single capillary model, the multi-capillary
model assumes that the tissue is build up from (rectangular) unit
cells containing a single or multiple capillaries. The unit cell is sup-
posed to be aligned with the capillaries to allow the reduction of
the problem to two dimensions, as discussed above. Each of the unit
blocks contains the same number of capillaries with the same spa-
tial distribution. In order to meaningfully represent bulk tissue by
a single unit cell, Eq. (2) has to be solved with periodic boundary
conditions. This requires a periodic behavior of both, diffusion and
off-resonance field, see also Appendix B and Fig. 2. The specific prop-
erties of the microstructure are given by the capillary distribution
inside the unit cell. For the highly regular square or hexagonal lattice
we can use a simple unit cell that contains only one or two capillaries,
respectively. However, for irregularly arranged capillary positions, it
is necessary to account for a larger number of capillaries inside the
unit cell to ensure sufficient statistical averaging.

2.2.1. Unit cell tilt for square and hexagonal lattices
As the tissue is build up from rectangular unit blocks, the off-

resonance field of a single capillary can be written as (in Cartesian
coordinates)

y(x, y) = dy R2
C

[
x2 − y2]

cos(2a) − xy sin(2a)
[
x2 + y2

]2
, (7)

where a is the tilt angle of the external magnetic field B0 against
the x-axis of the coordinate system, see also Fig. 2. For non-zero tilt
angles a, the field at the border between two unit cells becomes dis-
continuous; however, by including the (long-range field) contribu-
tions of the surrounding capillaries, the off-resonance field becomes
periodic. Further details can be found in Appendix B.1.

In our simulations, we first calculated fields in a unit cell of size
15.36lm × 15.36lm with a resolution of Dx = 0.02lm with off-
resonance field frequency distribution q(y) from Eq. (5). Capillary
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a b

c d

e f

Fig. 2. Influence of the tilt angle a of a unit cell (or simulation box) against the external field B0. (a–d) Off-resonance field distribution for zero tilt a = 0◦ (a) and a tilt of a = 30◦

(b) between capillaries in a square lattice. (c–f) Schematic field representation for two capillaries in a square lattice. The field at the border between the unit cells is continuous
for a zero tilt (c,e), but not so for the tilted unit cell (d,f); in the latter case it changes the sign of y (y-axis in (e,f)) as a trajectory of a spin-carrying particle crosses the border
from one capillary at −1 to the capillary at +1 (represented by the arrows in (c,d)). For a = 0◦ , the field at the border of a unit cell that hosts one capillary is continuous, though
its normal derivative is not (see blue arrow in (c) and corresponding curve in (e)). The field then becomes discontinuous for a> 0◦ (here: a = 45◦): the black and blue curves in
(f) represent the black and blue arrows in (d), respectively. This problem is circumvented by including the contributions of the surrounding capillaries. The off-resonance field is
then periodic at the boundaries of a unit cell (see also Appendix B).

radii were chosen such that volume fraction g = 0.05 (see also
Table 1 for a comparison of the capillary volume fractions within
the four model geometries). Rectangular unit cells bases with area
|a1| • |a2| then produce N = |a1||a2|/Dx2 area elements where the
areas inside of capillaries were not considered (in line with previous
works, see e.g. [14] and references therein), such that off-resonance
distributions could be constructed from N′ = N[1 −g] points (square
lattice: N′ ≈ 560, 000, hexagonal lattice: N′ ≈ 325, 000), see also
Fig. 18 in Appendix B. Tilt angles a were evaluated in steps of 1◦

from 0◦ to 45◦. Higher tilt angles follow from symmetry considera-
tions (see also the Results section). Further details about the field
calculation are provided in Appendix B.

2.2.2. Two-dimensional one-component “plasma” as a descriptor of
irregular capillary positions

The irregularity of capillary positions changes the off-resonance
field distribution significantly, see Fig. 3. It can be quantified through
a recently proposed model by Karch et al. [24] who used a Gibbs point
field model to interpret the irregular pattern of capillaries. Briefly,
in this model, the capillary arrangement is allocated a “potential
energy” that is lowest for a purely uniform arrangement (in a
hexagonal lattice) and increases for deviations from this state. To

continue this analogy to statistical mechanics, changes in capillary
constellations can then be considered as “thermal” disturbances of
a system of identical point charges (capillaries) that exhibit a weak
repulsive interaction. Thus, capillaries arrange like charged parti-
cles in a two-dimensional one-component plasma (2D-OCP) (see
also [33,34]). In such a picture, the potential energy 0ij(r) between
two point charges (with charge q each) at points ri and rj is given as

0ij(r) = −q2 ln(rij/L) , (8)

where rij = |ri − rj| is the distance between the charges and L an
arbitrary scaling length. The equilibrium state of the plasma can then
be characterized by a single dimensionless constant

C =
q2

kBT
, (9)

where kB represents the Boltzmann constant. The parameter C is thus
a measure of the “thermal” disturbance of the whole system due to
its temperature T. In this model, the system state at T = 0 corre-
sponds to the state where the sum of potential energies between all
system point charges is minimal, i.e. a perfectly uniform alignment
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a b

Fig. 3. Off-resonance field distribution for the transition from (a) regular capillary positions in a hexagonal lattice to (b) an irregular capillary position pattern in a two-dimensional
one-component “plasma” (2D-OCP). The degree of irregularity can be characterized through one single parameter C [24]: high values of C signify highly ordered (symmetric)
spatial patterns (C = ∞: maximum regularity), whereas low values of C correspond to a significant “disturbance” of the regular arrangement.

of capillaries. When T > 0, the system deviates from the potential
energy minimum, and for T → ∞ or C = 0, the system corresponds
to a purely random capillary arrangement. To determine the “poten-
tial energy” U of a system of N capillaries, i.e. of N particles in the
Gibbs point field model, in a unit cell spanned by vectors a1 and
a2, we follow the methodology proposed in Karch et al. and apply
Ewald’s method of separating the potential energy U into terms with
short-range and a long-range interactions such that [24,34]

U =
N−1∑

i=1

N∑

j=i+1

0ij(rij) (10)

=
q2

4

∑

n

N∑

i,j

′
E1

(
f2[rij + n]2

)

+
p

A

∑

k
=0

exp
(
− |k|2

4f2

)

|k|2

∣∣∣∣∣∣

N∑

j=1

exp(i krj)

∣∣∣∣∣∣

2

+ Uconst . (11)

The first term in this sum represents the short-range interaction
energy contribution to the potential energy, with exponential integral

E1(z) =
∫ ∞

z

exp(−x)
x

dx , (12)

and the summation index n running over all lattice vectors n with
n = n1a1 + n2a2, n1, n2 ∈ N. The prime indicates that the term
for i = j is excluded for n = (0, 0). The parameter f represents an
adjustable parameter that controls the rate of convergence of the
two terms in Eq. (11); in analogy to [24], it was set to f = 6/b (b:
side length of the simulation box). The second term represents the
long-range (Coulomb) interactions as a sum in Fourier space over all
(reciprocal) lattice vectors k = m1b1 + m2b2, where b1 = 2p

a1
â1 and

b2 = 2p
a2

â2 (m1, m2 ∈ N, âi = ai
ai

). The cutoff value in Fourier space
was chosen as in [24]: [|k|/|k|min] ≤ 200. Parameter A represents the
area of the hexagonal simulation box. The last term Uconst represents
a possible energy contribution from a uniform background charge.
The simulations were then performed by the Metropolis Monte Carlo
method [35]. The change in potential energy, DU = Upre − Upost,
during the variation in position of a single particle can be allocated
the following probability

p(DU) = min
(

exp
(
DU
T

)
, 1

)
, (13)

(kB ≡ 1 without loss of generality). If a modification of the system
leads to a reduction in potential energy (DU≥0), we find p(DU) =
1, and the modification of the system is kept in the simulations.
In contrast, an increase in potential energy (DU < 0) leads to
0 ≤ p(DU) ≤ 1; with a random number x ∈ [0, 1] we accept the
modification of the system for x≤p and reject it for x > p. The proba-
bility p to change into an energetically unfavorable configuration thus
diminishes exponentially with larger energies. Eventually, the sys-
tem reaches thermal equilibrium where only changes occur between
microstates associated with one temperature T, i.e. C, that represents
the macrostate.

Physiologically, the model is consistent in that it assumes that
capillaries spatially distribute such that the oxygen supply of the
surrounding tissue is maximized so that capillaries will predomi-
nantly grow in areas with lower capillary density and, therefore,
will be distributed evenly in homogeneous tissue. One advantage
of this model is its simplicity: only one single parameter C governs
the degree of irregularity with C = ∞ corresponding to maximum

Fig. 4. Simulated frequency distributions for different numbers of capillaries. The
distributions correspond to 32 capillaries (light red curve; smoothed as black curve),
200 capillaries (green curve) and 1250 capillaries (blue curve) are depicted for a
standard deviation of 1lm of their positions around a regular arrangement, and
g = 0.05. A substructure in the frequency distribution becomes apparent for the
lowest number of capillaries due to the individual arrangement of capillaries. The
curves demonstrate that there is no significant error to expect from a number of
capillaries that is greater than 200, as used in [24] and in our simulations.
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regularity. For instance, for capillaries in cardiac muscle tissue the C

values were found to range between C ≈ 2–5 [24].
Frequency distributions for the 2D-OCP were calculated accord-

ing to Eq. (5). To circumvent artifacts that were generated by a
too low number of capillaries within a simulation box, we tested
constellations for different numbers of capillaries, see Fig. 4. Based
on these results, we chose a lower threshold of 200 capillaries for the
2D-OCP, leading to unit cells of about 250lm×430lm (ICD = 25lm).

The influence of individual capillary positions increases for a
decrease in the total number of capillaries to end in the characteristic
frequency distribution of a single capillary for one simulation box
(similar to the shape of that for the (square and hexagonal) lattice
and Krogh models). Boxes with only one (large) capillary were
already studied extensively in [19,36].

2.2.3. Random walk model
To study the effects of different capillary arrangements, an

efficient discrete-time continuous-space random walk was imple-
mented. This implementation provides the necessary flexibility to
adapt the algorithm to various boundary conditions, geometries,
diffusion coefficients and off-resonance frequencies. Further details

about the implementation can be found in Appendix B.2. Briefly, a
recursive search tree was used to detect collisions of random walk
trajectories with capillary surfaces. The endpoints of steps into the
capillary interior were then mirrored along the radial direction in
accordance with Neumann boundary conditions. A similar treatment
was implemented for the outer boundary of the simulation box;
however, the outer boundary was either implemented as reflecting
(of Neumann-type) for the Krogh model or cyclic (of inhomogeneous
Neumann-type) for the square and hexagonal lattice as well as the
2D-OCP.

3. Results

3.1. Frequency distribution and free induction decay for regular spatial
capillary patterns

For negligible diffusion effects D → 0, i.e. in the limit of static
dephasing, the frequency distribution of local off-resonance fre-
quencies coincides with the Fourier transform of the free induction
decay M(t) [29]. For instance, an exact monoexponential decay
is generated by a Lorentzian frequency distribution. Significant

Fig. 5. Frequency distribution for the hexagonal lattice (a,d,g), the square lattice (b,e,h) and the Krogh model (c,f,i). (a–c) Frequency distributions for three different volume
fractions g = 0.15 (black curve), g = 0.5 (blue curve), and g = 0.75 (green curve; non-smoothed curve in beige for the hexagonal lattice). The corresponding frequency
distributions with a continuous dependency on volume fraction g are shown in the row below (d–f). (g–h) Positions of the peaks for the above distributions in dependence
on g (blue, black and green dots) and corresponding curves (solid lines) based on empirical formulas (see main text). For the hexagonal lattice, two peaks are found that
are located at approximately y1 ≈ 8

5 gdy and y2 ≈ − 4
5 gdy. In the case of the square lattice, two peaks are symmetrically arranged around a major peak at y1 = 0: these

peaks are approximately located at y2,3 ≈ ±2gdy (h). The Krogh model exhibits two peaks at y1,2 = ±gdy according to Eq. (6).
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changes in frequency distributions caused by different spatial capil-
lary arrangements therefore reflect measurable changes in the free
induction decay. In Fig. 5, the simulated frequency distributions for
the hexagonal lattice, the square lattice and the Krogh model are
given for the different volume fractions g = 0.15, 0.5, and 0.75
(Fig. 5a–c) and in a three-dimensional representation for volume
fractions g = 0.05 − 0.9 (Fig. 5d–f; a = 0). The maximum vol-
ume fraction for the square lattice (where RC = ICD/2) is gmax =
pR2

C/[4R2
C] = p/4 ≈ 0.78, and for the hexagonal lattice (where also

RC = ICD/2) we find gmax = 2pR2
C/[4

√
3R2

C] ≈ 0.9, see also Table 1
and [37]. While the peak positions within the frequency distribution
for the Krogh model can be determined analytically as y1,2 = ±gdy

(see Fig. 5c,f,i), i.e. symmetrically located around y = 0, distribution
peaks for the square lattice model were numerically found at ≈2gdy
(see Fig. 5b,e,h). For both lattices, numerical relations between peak
frequency and volume fraction can be obtained (see Fig. 5g,h); the
hexagonal lattice displays two peaks in the frequency distribution
that are located at y1 = 2[0.813g − 0.008]dy and y2 = −[0.813g −
0.008]dy, whereas the three peaks for the square lattice are located
at y1 = 0 and y2,3 = ±[2.053g − 0.020]dy. Due to the superpo-
sition of fields of individual capillaries, the maximum off-resonance
is always higher than dy, likewise for the hexagonal lattice. The lat-
ter shows artifacts in the low frequency range (Fig. 5a, pink curve)
due to the specific regular field sampling along the interpolation
lattice (see Appendix B). However, these discretization errors disap-
pear for the simulation with dynamic dephasing since the random
walk algorithm replaces the regular field sampling through random
points.

Rotation of the lattices results in a dependence of the frequency
distributions on the tilt angle a, as discussed above, see Fig. 6. For
increasing a> 0, the negative peak in the frequency distribution for
hexagonal lattices splits into two peaks of which the peak closer
to y = 0 approaches the positive peak with which it unites for
a = 30◦, see Fig. 6a. For g = 0.1, the peak positions can then be
determined numerically in dependence on the title angle a as y1 =
0.081dycos(2a), y2 = [0.16a − 0.04]dy, and y3 = 0.081cos(2[a +
p/3]). The square lattice, however, keeps its symmetrically arranged
peaks, see Fig. 6b, and one can provide their positions for g ≈ 0.06
as y1 = 0, y2,3 = 0.11cos(2[a + p/4] ± p/2)dy. In both lattices,
it suffices to only study tilt angles a = 0 . . . 30◦ (hexagonal lattice)
or a = 0 . . . 45◦ (square lattice) due to the rotational symmetry of
the field distribution; e.g., the frequency distribution of the hexago-
nal (square) lattice for 30◦–60◦ (45◦–90◦) is the mirrored frequency
distribution of 0–30◦ (0–45◦) around the y-axis at 30◦ (45◦) in Fig. 6.

3.2. Introduction of irregularity in capillary positions and radii

We first examined the influence of (normally distributed) devi-
ations of capillary radii on the statistical frequency distribution for
capillaries within a hexagonal lattice, see Fig. 7a. For a mean radius of
lR = 1.94lm, normal distributions were constructed with standard
deviations sR that increased step-wise (DsR = 0.1lm) from sR =
0.1lm (black line in Fig. 7a) to sR = 0.5lm (light gray line in Fig. 7a).
Clearly, the characteristic peaks for purely uniform radii approach
each other for increasing standard deviations of the radius distri-
bution, but the distribution keeps its asymmetry. A similar effect,
though more pronounced, was observed for capillaries with uniform
radii in a hexagonal lattice whose positions were randomly displaced
from their standard position, where the displacement followed a
normal distribution with standard deviation sP = 0–2.5lm that was
step-wise increased with DsP = 0.5lm (ICD = 16.5lm), see Fig. 7b.
The resulting frequency distribution is similar to a Lorentzian dis-
tribution. A comparison of both effects may lead to the conclusion
that deviations from uniform radii are less significant than deviations
from the standard position in a regular lattice. Indeed, for a typi-
cal value of the thermal disturbance in the 2D-OCP for capillaries in

b

a

Fig. 6. Frequency distribution q(y) in dependence on tilt angle a for a hexagonal lat-
tice (a) and a square lattice (b). For the hexagonal (square) lattice, it suffices to only
display tilt angles a = 0 . . . 30◦ (a = 0 . . . 45◦) due to the rotational symmetry. While
the frequency distribution of the square lattice for increasing tilt angles a is symmet-
ric around y = 0 where it maintains its main peak, the tilt in the hexagonal lattice
produces an additional peak.

muscle tissue, C = 4 [24], and a normal distribution of radii around
lR with sR = 0.5lm, the resulting frequency distribution is almost
identical to that resulting for uniform radii lR, cf. the black and red
lines in Fig. 7c. Based on this result, and owing to the fact that bio-
logical tissues are usually prone to small blood volume fractions
g < 0.1 and rather small deviations of capillary radii in one imaging
voxel [7,26], the following analysis uses uniform radii.

To further comprehend the effects of randomized capillary posi-
tions in the 2D-OCP, we obtained the frequency distributions in
the static dephasing regime for different values of the parameter C

between 2 and 800, see Fig. 8a (results were averaged over 10 real-
izations of the same 2D-OCP, each hosting 200 capillaries). As the
plasma crystallizes in the hexagonal lattice structure, i.e. C→∞, the
two (asymmetric) peaks of the hexagonal lattice frequency distri-
bution are recovered (Fig. 5b). In the opposite limit, the frequency
distribution of the plasma resembles that of a Lorentzian distribu-
tion (as in Fig. 7c). The transition point at which the asymmetric
characteristic shape of the hexagonal lattice frequency distribution
vanishes can be determined as C ≈ 140, see the gray plane in Fig. 8b.
Conversely, coming from a “heated” plasma with increased C values,
the transition point represents a “crystallization” of the 2D-OCP. Nat-
urally, as diffusion effects become important, this transition point
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c

b

a

Fig. 7. Frequency distributions of the hexagonal lattice for (a) a normal distribution
of capillary radii with mean radius lR = 1.94lm and a step-wise increase of the stan-
dard deviation (DsR = 0.1lm) from sR = 0.1lm (black line) to sR = 0.5lm (light
gray line); and (b) for a random displacement of capillaries around their initial posi-
tion in the original hexagonal lattice, where the width of the displacement is normally
distributed and the direction is random, with a step-wise increase in the standard
deviation from 0 to 2.5lm (DsP = 0.5lm). The peaks for the regular arrange-
ment move towards a peak at y = 0 for an increase in standard deviation for both
distributions; however, the asymmetric form of the frequency distribution is more
robust against variations of radii than against randomization of capillary positions.
The resulting profile of the frequency distribution is similar to that of a Lorentzian
distribution. (c) Frequency distribution for the 2D-OCP with C = 4 (typical for cap-
illaries in myocardium [24]), g = 0.06, and ICD = 16.5lm for a normal distribution
of radii around lR (red line; sR = 0.5lm) and for constant radii lR (black line). Evi-
dently, a normal distribution of radii does not have a significant effect on the frequency
distribution for a 2D-OCP with low C values, but can, instead, be neglected.

shifts to larger C values since diffusion effects produce an increased
smear of the frequency distribution curves.

To further examine the influence of different unit cell tilt angles
a on our analysis, we simulated 2D-OCP frequency distributions for
different tilt angles a = 0◦, 10◦, 20◦, 30◦ at C = 10 and C = 100, see
Fig. 9. Each frequency distribution represents an averaged curve over
10 simulations (g = 0.06, ICD = 16.5lm). While there is still a small
effect of large tilt angles at C = 100, as indicated by a slight shift
of the frequency distribution at a = 30◦ (blue solid line) towards

the frequency distribution at a = 0◦ (red solid line), this shift is
non-existent at C = 10. However, since realistic (physiological and
pathological) C values in the myocardium are usually C < 5, as shown
in [24], we can safely neglect the effects of the unit cell tilt angle
in further analyses. The inclusion of diffusion effects will also pro-
duce an additional smear of the frequency distributions around their
center peak, see below, therefore further diminishing the shift in
frequency distribution curves with large tilt angles at larger C values.

3.3. Inclusion of diffusion effects

Diffusion effects were included in our simulations through a ran-
dom walk algorithm as described above and in Appendix B.2. To test
the accuracy of the algorithm, the transverse magnetization decay for
the Krogh model geometry was compared with the expected mag-
netization decay from the closed-form solution in the Krogh model
according to Eq. (A7) [12,13], see Fig. 10a. The coincidence of both
curves is evident; a closer look reveals that the expected statisti-
cal error, that results from the summation of residual phase errors
for each time step of the random walk, is in the same range as the
absolute difference of simulated and analytical magnetization decay,
see Fig. 10b, thus demonstrating the robustness of the implemented
algorithm. An upper limit for the expected error can be given as
|DM(t)| ≤ DymaxDt

√
m
N = 4.74 • 10−3 for typical values of Dymax ≤

150s−1 at Dt = 0.1ms (representing biologically reasonable values
of dy ≤ 1000s−1 and D ≤ 2lm2/ms), m =10 000 and N =100 000
(see Eq. (B6) in Appendix B.2).

The change of the frequency distribution for the hexagonal lattice
for varying diffusion constants D is shown in Fig. 10c: the char-
acteristic asymmetric shape is apparent for D = 0. However, for
increasing diffusion effects, the frequency distribution is increasingly
smeared around the origin. Already, for D ≈ 1lm2/ms, the frequency
distribution is only vaguely reminiscent of its anticipated asymmet-
ric shape but rather appears Lorentzian with a mean value that is
only slightly different from zero. With an additional randomization
of capillary positions with low values of C in the 2D-OCP, the mean
value approaches zero due to the statistical effects of the random
positioning.

3.4. Effect of spatial capillary irregularity on relaxation times

For the regime of static dephasing, the free induction decay fol-
lows as the Fourier transform of the frequency distribution q(y).
The imaginary part of the free induction decay, Im(M(t)), is gener-
ally non-zero since q(y) is not necessarily symmetric around y = 0
for large values of C or for the hexagonal lattice. Monoexponential
fitting can be effected with the absolute value of M(t), or with the
real part of M(t) provided the frequency distribution is almost sym-
metric around y = 0 (which may be the case for low values of C or
strong diffusion effects, see Figs. 8 and 10). In Fig. 11 we show the
effect of increasing C-values on the inverse relaxation time R′

2 = 1
T ′

2

for both monoexponential fitting routines. The fitting routines work
well for plasmas that exhibit a quasi-Lorentzian frequency profile,
but diverge when the plasma crystallizes at C ≈ 140, see also Fig. 8b.
The asymmetry of the frequency distribution then produces non-
negligible imaginary parts of M(t) which lead to changes of the free
induction decay that can be better fitted with smaller relaxation
rates. Relaxation time values in Table 2 were acquired as averages
over both fitting routines.

With the inclusion of diffusion effects, the relaxation rates R′
2 do

not scale linearly with the off-resonances as in the static dephasing
regime. Therefore, simulations were performed for different fre-
quency shifts dy in different external fields, see Fig. 12 for both
a typical 2D-OCP (C = 4) and a hexagonal lattice (C = ∞).
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a b

Fig. 8. Frequency distributions for randomized capillary positions in the 2D-OCP model; g = 0.1, ICD = 16.5lm. (a) Frequency distribution q(y) in the 2D-OCP model in
dependence on the parameter C that represents the “thermal” disturbance of the system and is a measure of the entropy of the spatial arrangement of capillaries. The two peaks
for high values of C (C = 250, 800) vanish for decreasing C-values and merge into one single peak around y ≈ 0 (see the red curve for C = 2). (b) Three-dimensional representation
of the frequency distribution in dependence on ln(C). The distribution splits into two peaks for increasing values of C at C≈140 (gray plane), that correspond to the two peaks of
the frequency distribution for the hexagonal lattice in Fig. 5a.

Relaxation times were then extracted with a monoexponential fit-
ting routine to the real part of the free induction decay (black and
green curves in Fig. 12). Interestingly, low off-resonance frequen-
cies cause a faster relaxation in the 2D-OCP when compared with
the hexagonal lattice (Fig. 12a), whereas high off-resonance fre-
quencies produce an inverse effect with a faster relaxation in the
hexagonal lattice (Fig. 12b), an effect that is due to the inclusion
of diffusion into the simulations. Table 2 lists relaxation times for
different realization of the 2D-OCP in the regime of static dephas-
ing and for additional diffusion effects for typical values of off-
resonance strengths dy = 100–1000s−1. For instance, capillary
blood with an oxygen extraction fraction of 0.4 and a hematocrit of
0.45 corresponds to dy = 2pDwdo • OEF • Hct •cB0 [7], with Dwdo =
0.27ppm [38] (do: deoxygenated-oxygenated) and gyromagnetic
ratio c = 2.675 • 108s−1T−1, giving dy = 160s−1 for 1.5T and dy =
730s−1 for 7T.

Relaxation times differ for all plasma realizations; specifically, a
trend of decreasing T ′

2 for increasing order parameter C at fixed dy

can be observed in the static dephasing regime [39]. Here, the aver-
aged (relative) deviation from a 2D-OCP at C = 800 (hexagonal
lattice) towards a plasma at C = 2 is 31.92% ± 0.04%. In the dynamic
dephasing case, the averaged deviation of relaxation times of 2D-OCP
at C = 4 from the hexagonal lattice is 21.65% ± 4.06%. However, the
trend of increasing relaxation rates for increasing off-resonance fre-
quencies dy is stronger in the dynamic dephasing case: whereas all

2D-OCP relaxation rates scale with dy in the static dephasing regime,
they scale with ∼2dy for dynamic dephasing.

3.5. Randomly oriented angle b between capillary axis and B0

Intra-voxel capillaries in biological tissues are usually randomly
oriented against the B0-field vector. To describe and include this
effect in our analysis we have to integrate the angle-dependent
transverse magnetization M(t) over an adequate angle distribution
function. As shown in [7], the distribution function P(b) for an angle
b between B0 and the capillary axis corresponds to P(b) = sin(b)/2,
and the magnetization M̂(t) for a randomized angle orientation (RAO)
reads:

M̂(t) =
∫ p

0
db

sin(b)
2

M(t) =
∫ p

0
db

sin(b)
2

〈eV̂(r,0,b)t〉r,0 (14)

where the Bloch-Torrey operator V̂(r,0,b) = DDr,0 − iy(r,0)sin2(b)
from Eq. (2), Dr,0 and 〈· · · 〉r,0 represents integration over the dephas-
ing volume. In our case, the dipole field y(r,0) of cylindrical capillar-
ies can be taken from Eq. (1) as

y(r,0) = dy
R2

C

r2
cos(20) (15)

= 2pDwdo[1 − Y]HctcB0
R2

C

r2
cos(20) , (16)

Fig. 9. Frequency distributions in the 2D-OCP at different tilt angles a. Frequency distributions averaged over 10 simulations each are shown for C = 10 (a) and C = 100 (b) for
a = 0◦ , 10◦ , 20◦ , 30◦ . It can be seen that there is only a small shift of the frequency distribution for a = 30◦ (blue solid line in (b)) towards the curve at a = 0◦ (red solid line).
This effect vanishes at C = 10. An inclusion of diffusion effects would produce an additional smear of the frequency distributions around the origin, therefore further diminishing
effects of large tilt angles a.
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Fig. 10. Theoretical and simulated FID for the Krogh model and diffusion-dependent off-resonance frequency distribution for the hexagonal lattice. (a) Theoretical FID (dashed
blacked line), as calculated from Eqs. (A1) and (3), and random walk simulation (dashed orange line) show an excellent agreement. (b) The error analysis of the absolute differ-
ence |DM|/M(0) of theoretical and simulated FID (blue curve) reveals errors that are in the range of the expected statistical error of the simulation (red curve; see Eq. (B6) in
Appendix B.2). dy = 936s−1, D = 1lm2/ms, RC = 2lm, g = 0.0533 and N = 100 000. (c) Frequency distribution and diffusion effects (hexagonal lattice). The static dephasing
limit with its two characteristic peaks is recovered at D = 0lm2/ms. The peaks at D = 1lm2/ms approach each other for increasing diffusion.

where we have inserted the susceptibility difference Dw between
capillary interior and surrounding tissue, Dw = 4pDwdo[1 − Y]Hct,
with Dwdo = 0.27ppm as above [38], hematocrit Hct and oxygen
extraction fraction [1 − Y] (Y: fraction of oxygenated blood), see
also [7].

Fig. 11. Differences in fitting routines for the free induction decay M(t) in the static
dephasing regime. For low (realistic) values of C, a monoexponential fit to the real part
of the magnetization, Re(M(t)) (red curve), and the absolute value, |M(t)| (blue-dashed
curve), yield similar results. The free induction decay follows from a Fourier transform
of the frequency distribution q(y). A frequency distribution that is not purely sym-
metric around y = 0 leads to a non-zero imaginary part of M(t) which in turn leads to
differences in the fitting behavior for real and absolute values of the transverse mag-
netization. The inverse relaxation rates R′

2 then peak for the monoexponential fit with
|M(t)| at C ≈ 140 or ln (C) ≈ 5, corresponding to the “crystallization” of the 2D-OCP, see
Fig. 8b. Values in Table 2 were acquired as averages over both fitting routines.

Interestingly, the Krogh model allows us to derive a closed-form
solution for M̂(t) in the static dephasing regime. By inserting Eq.
(15) into Eq. (14), the magnetization decay in the Krogh model for
the above angle orientation distribution function can be obtained as
(subindex “K” denotes the Krogh model)

M̂K(t)
M0

=
1

p
[
R2

D − R2
C

]
∫ p

0
db

sin(b)
2

∫

V
dV e−iy(r,0)sin2(b)t (17)

=
1

pR2
C

g

1 − g

∫ p

0
db

∫ 2p

0
d0

∫ RD

RC

rdr
sin(b)

2
eidyt

R2
C

r2 cos(20)sin2(b)

(18)

Table 2
Relaxation times for static and dynamic dephasing. For static dephasing, differences in
T ′

2 between randomly positioned and highly ordered capillaries are most pronounced
for small frequency shifts dy and low fields. Note also the differences in relaxation
times for the increases in dy at fixed C. The differences in T ′

2 for dynamic dephasing
are less pronounced and correspond to a change of approximately 15% of the value of
highly ordered capillaries (C = ∞).

T ′
2 [ms] (1.5 T) T ′

2 [ms] (7 T)

dy [s−1] 100 200 500 1000

Static C = 2 100.4 50.2 20.1 10
C = 5 96.6 48.3 19.3 9.7
C = 800 68.3 34.2 13.7 6.8

Dyn C = 4 395 111 25 10
C = ∞ 502 126 21 7
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a

b

Fig. 12. Simulated free induction decay and monoexponential fits for diffusion D =
1lm2ms−1 in a hexagonal lattice (C = ∞) and realistic plasma (C = 4) at (a) B0 =
1.5T and (b) B0 = 7T. Simulation data are shown as red dots. For low off-resonance
frequencies dy, the signal from the randomized capillary distribution of the plasma
decays faster than that of the hexagonal lattice (cf. green and red curves in (a)). This
behavior reverses for larger off-resonance frequencies (b). The imaginary part of M(t)
is in all cases smaller than 0.1. Further parameters: ICD = 17lm, g = 0.01, RC =
2.82lm. The respective relaxation rates R′

2 for monoexponential fits are provided in
Table 2.

=
1

R2
C

g

1 − g

∫ RD

RC

rdr
∫ p

0
db sin(b) J0

(
dyt

R2
C

r2
sin2(b)

)
(19)

=
p√
2R2

C

g

1 − g

∫ RD

RC

rdr J 1
4

(
R2

C

r2

dyt
2

)
J− 1

4

(
R2

C

r2

dyt
2

)
(20)

=
p

2
√

2

g

1 − g

∫ 1

g

dx
x2

J 1
4

(
x
dyt

2

)
J− 1

4

(
x
dyt

2

)
, (21)

with Bessel functions Jm(x), total initial magnetization M0 = m0V and
local magnetization m0 at t = 0, and radius RD of the Krogh cylinder
with g = R2

C/R2
D. The last integral can be solved analytically to give

M̂K(t)
M0

=
p

6
√

2

H(gdyt) − gH(dyt)
1 − g

, (22)

where

H(x) = J 1
4

(
x
2

)[
2[x2 + 1] J− 1

4

(
x
2

)
− x J 3

4

(
x
2

)]

+ x J− 3
4

(
x
2

)[
J− 1

4

(
x
2

)
− 2x J 3

4

(
x
2

)]
. (23)

The frequency distribution for a randomized angle orientation,
q̂(y), can eventually be obtained as the Fourier transform of the free
induction decay M̂(t) from Eq. (22). In Fig. 13a, for different blood
volume fractions g, we compare the numerically obtained frequency
distributions q̂(y) with the frequency distributions for the angle
b = p/2, i.e. perpendicular to the direction of B0. While the tradi-
tional frequency distributions in the Krogh model have two peaks at

c

b

a

Fig. 13. Frequency distributions q(y) and free induction decay M(t) for randomized
angle orientation (RAO). (a) Frequency distributions in the traditional Krogh model
(dashed line; the capillary axis is perpendicular to B0, see also Eq. (6)) and for RAO
(solid line, based on the Fourier transform of Eq. (22)), for different blood volume frac-
tions g. Both distribution forms exhibit symmetric peaks at y = ±gdy, but the RAO
distributions possess an additional peak at zero frequency. (b) FID of the RAO Krogh
model (dashed line; Eq. (22)) and the RAO 2D-OCP for C→0 (solid line; Eq. (24)). Both
models show a shift towards slower decay rates in their RAO form. (dy = 200s−1,
g = 0.05). (c) FID for different diffusion constants, based on the local gradient approx-
imation (Eq. (28); dy = 500, g = 0.05, RC = 10lm), for RAO and perpendicular angle
as above. The systematic RAO shift towards slower decay rates prevails for an increase
in diffusion effects.

y = ±gdy (see Fig. 5c and Eq. (6)), the frequency distributions in the
Krogh model for randomized angle orientations exhibit an additional
peak at y = 0.

The 2D-OCP for randomized vessel positions, or C→0, is given
as [7]:

M(t)
M0

= exp (g[1 − H0(dyt)]) , (24)

with the generalized hypergeometric function

H0( y) = 1F2

(
− 1

2
; 1

2
, 1; − y2

4

)
. (25)

We compare the effect of vessel orientation randomization on both
the Krogh model and the 2D-OCP in Fig. 13b for dy = 200s−1 and
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blood volume fraction g = 0.05. It can be seen that vessel orientation
randomization leads to a shift of similar proportion in both models
towards lower relaxation rates, i.e. the effect of RAO on the relax-
ation rate does not change the relative differences in relaxation rates
between a uniform capillary arrangement and that of a 2D-OCP with
low C values.

To add diffusion effects to the local magnetic field, we can make
use of the local gradient approximation that was first suggested
by [11]. It provides an expression for the short-time local magnetiza-
tion decay in terms of a small “effective” linear gradient

cG →
√

1
V

∫

V
dV [∇y(r)]2

that represents the spatial average over the local dipole field y(r,0),
see also [31] and Eq. (47) in [22]:

mLGA(r,0, t)
m0

= exp (−iy(r)t)
1
V

∫

V
d3r exp

(
− Dt3[∇y(r)]2

12

)
(26)

≈ exp

(
−iy(r)t − Dc2G2t3

12

)

= exp

(
−iy(r)t − Dt3

12
dy2 g[g + 1]

R2
C

)
, (27)

where we have replaced the integral on the right-hand-side in
Eq. (26) by its first order term.

As in the case of static dephasing, the total magnetization in the
dephasing volume of an imaging voxel follows from Eq. (14) as

MLGA(t)
M0

=
MK(t)

M0
exp

(
− t3

12
dy2

t
g[g + 1]

)
, (28)

with characteristic diffusion time t = R2
C/D and static dephasing

magnetization decay MK(t):

MK(t)
M0

=
H0(gdyt) − g H0(dyt)

1 − g
, (29)

where H0(y) corresponds to the hypergeometric function as given
in Eq. (25). Of note is the similarity between Eq. (29) for parallel
capillaries perpendicular to B0 and Eq. (22) for randomized angle ori-
entations. The magnetization decays M̂LGA(t) for different diffusion
constants D can then be obtained by numerical integration over the
angle orientation distribution as in Eq. (14), see Fig. 13c. The system-
atic RAO shift towards slower relaxation rates prevails for an increase
in diffusion effects.

3.6. Blood oxygenation and model extension to three dimensions

So far we have only incorporated a fixed oxygen extraction frac-
tion within our model. However, blood-filled capillaries are prone to
changing oxygen saturations that modify the susceptibility gradient
of the capillaries to the surrounding tissue. To adapt our two-
dimensional model to the changing oxygen characteristics in a cap-
illary network, we have to average the effects of different blood
oxygenation levels along a capillary axis, see Fig. 14a: the fraction of
oxygenated blood, Y, changes from the arterial to the venous end of
a capillary from approximately Y ≈ 1 to Y ≈ 0.5.

Every slice along the capillary axis possesses a specific off-
resonance value and is characterized by its thickness d =

√
2D • 2T∗

2,
i.e. the average distance that a magnetization package covers dur-
ing the relaxation time. For T∗

2 < T2 ≈ 50 ms and D ≈ 1.5lm2/ms
we find d ≈ 17lm. For a capillary length of 100lm we therefore

b

a

Fig. 14. (a) Schematic increase of off-resonance frequency dy = 4pDwdoHctcB0OEF
(see also Eq. (16)), with oxygen extraction fraction OEF = 1 − Y (Y: fraction of oxy-
genated blood), along a capillary axis êcap of length L. The increase in Y from the arterial
to the venous end can be approximated by slices of thickness d =

√
4DT∗

2 (the average
distance that a magnetization package covers during the relaxation time), such that
each slice can be modeled in the 2D-OCP. (b) Relaxation rate R∗

2 versus off-resonance
frequency dy for different volume fractions g. There is an approximate linear increase
of relaxation rates for larger values of dy. D = 1.5lm2/ms.

have approximately 5–10 different slices. We thus find for the total
magnetization

M3D(t)
M0

≈ 1
N

N∑

j=1

exp
(
−R∗

2,j
• t

)
, (30)

with index j running over the slices and R∗
2,j corresponding to the

(simulated) relaxation rates for the respective off-resonance fre-
quencies. Since the relaxation rate approximately increases linearly
for increasing off-resonance frequencies, see Fig. 14b, we can assume
for the magnetization along the capillary axis with length L:

M3D(t)
M0

≈ d
L

�L/d�∑

j=1

exp
(
−R̂∗

2( jd) • t
)

with (31)

R̂∗
2(l) =

l
L

[
R∗

2,ven − R∗
2,art

]
+ R∗

2,art , (32)

where R∗
2,art and R∗

2,ven represent the relaxation rate at the arterial and
venous end of the capillary, respectively.

The sum in Eq. (31) can be converted into an integral for infinites-
imally small slices such that

M3D(t)
M0

=
1
L

∫ L

0
dl exp

(
−R̂∗

2(l) • t
)

(33)

=
exp

(
−R∗

2,ven
• t

)
− exp

(
−R∗

2,art
• t

)

[
R∗

2,art − R∗
2,ven

]
• t

. (34)

When we assume a monoexponential decay for M3D(t) with relax-
ation rate R∗

2,3D, we can determine an estimate of R∗
2,3D by minimizing
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min

∥∥∥∥∥∥

exp
(
−R∗

2,ven
• t

)
− exp

(
−R∗

2,art
• t

)

[
R∗

2,art − R∗
2,ven

]
• t

− exp
(−R∗

2,3D
• t

)
∥∥∥∥∥∥

(35)

on t ∈ [0, ∞[ to arrive at

R∗
2,3D =

1
6

[
R∗

2,art + R∗
2,ven +

√
R∗ 2

2,art + 14R∗
2,artR

∗
2,ven + R∗ 2

2,ven

]
. (36)

Interestingly, even for large differences between R∗
2,art and R∗

2,ven,
the difference between R∗

2,3D from Eq. (36) and the arithmetic mean
between R∗

2,art and R∗
2,ven, R∗

2,mean = 1
2 [R∗

2,art +R∗
2,ven], remains small as

also shown in Fig. 15. For instance, for a typical R∗
2,ven ≈ 80s−1 at 7T

(see Table 2 in [13]), we see for a difference of 70–80s−1 between the
arterial end (R∗

2,art = 0–10s−1) and the venous end, that the (inter-
polated) quotient of R∗

2,3D/R∗
2,mean ≈ 0.95 at R∗

2,mean = 40–45s−1.
The differences at 1.5T are even smaller, e.g. R∗

2,ven ≈ 30s−1 and
R∗

2,art = 0–5s−1 lead to a quotient of approximately 0.98. The respec-
tive magnetization decays of R∗

2,3D and R∗
2,art are then practically the

same, see also below or Fig. 16.
A comparison of Krogh model and 2D-OCP can be accomplished

by setting

dy(l) =
l
L

[dyven − dyart] + dyart , (37)

in analogy to Eq. (32), where we recall that dy has a linear depen-
dence on blood oxygen fraction Y: dy ∝ [1 − Y]. The integration
for infintesimally thin slices, similar to the procedure in Section 3.5,
eventually yields

M3D,K(t)
M0

=
1
L

1
1 − g

∫ L

0
dl [H0(gdy(l)t) − gH0(dy(l)t)] (38)

=
1
4

1
1 − g

dyiG(gdyit) − gdyiG(dyit)
dyven − dyart

∣∣∣∣
dyi=dyven

dyi=dyart

, (39)

where “K” denotes the Krogh model, and

G( y) = [1 + 2y2] J0( y) + yJ1( y) − [1 + y2] 1F2

(
1
2

; 1,
3
2

; − y2

4

)
. (40)

The transverse magnetization decay from Eq. (39) is similar
to Eq. (22) (angle orientation randomization) and Eq. (29) (two-
dimensional Krogh model). In Fig. 16a we compare the transverse

Fig. 15. Relaxation rate estimation for an oxygen gradient along capillary axis. The
R∗

2,3D relaxation rate can be obtained from an integration over infinitesimally thin 2D-
OCP slices along the capillary length, see Eq. (36). The differences to the arithmetic
mean between arterial and venous end are very small for typical relaxation rates at
1.5 and 7 T, see main text.

a

b

Fig. 16. Transverse magnetization decay for differences in dy along the capillary axis.
(a) Magnetization decays in the Krogh model and the 2D-OCP (C→0) are shown for
relative differences Ddy = [dyven − dyart]/dyven = 0, 0.5, 1.0. There is a relaxation
rate decrease for an increase in Ddy (details see main text). (b) Magnetization decay
for Ddy = 0.5 in the 2D-OCP and approximative measures. Remarkably, the mono-
exponential fit to the 2D-OCP magnetization decay curve (R∗

2,fit = 6.93s−1) coincides
with the approximate magnetization decay with R∗

2,3D from Eq. (36) as obtained from
R∗

2,fit, art = 4.76s−1 and R∗
2,fit, ven = 9.51s−1. There are only slight differences to the

monoexponential decay with relaxation rate R∗
2,mean.

magnetization decays in the three-dimensional Krogh model, based
on Eq. (39), and the extension of the 2D-OCP to blood oxygenation
fraction, based on Eq. (24) and obtained by numerical integration
in analogy to Eq. (38), for (relative) differences between dyart and
dyven at g = 0.05 and dyven = 200s−1. For an increase in the dif-
ference Ddy between dyven and dyart, Ddy = [dyven − dyart]/dyven,
the relaxation rates decrease. For instance, the monoexponentially
fitted relaxation rates in the 2D-OCP increase from R∗

2,fit = 9.47s−1

at Ddy = 0 to R∗
2,fit = 6.93s−1 at Ddy = 0.5 and R∗

2,fit = 3.28s−1

at Ddy = 1. The respective relaxation rates in the Krogh model are
increased in comparison, e.g. R∗

2,fit = 10.89s−1 at Ddy = 0 in the
Krogh model versus R∗

2,fit = 6.93s−1 in the 2D-OCP. The relation
of these fitted values with the approximate R∗

2,3D from Eq. (36) and
the arithmetic mean, R∗

2,mean, are shown in Fig. 16b on a logarith-
mic scale. We used the monoexponentially fitted relaxation rates
R∗

2,fit,art = 4.76s−1 (from dyart = 100s−1) and R∗
2,fit,ven = 9.51s−1

(from dyven = 200s−1) to obtain the arithmetic mean R∗
2,mean =

7.14s−1 and R∗
2,3D = 6.93s−1 from Eq. (36). Remarkably, R∗

2,3D and the
actual fit value, R∗

2,fit, are identical which is also reflected in the coin-
cident curves in Fig. 16b (magenta dash-dotted line and dashed blue
line, respectively). The deviation from the R∗

2,mean decay (green dash-
dotted line) is also very small, indicating a useful approximative
measure.

4. Discussion

In this work we investigate the influence of spatial patterns of
capillaries in biological tissue in an external magnetic field on the
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free induction decay through numerical simulations, using standard
symmetric capillary arrangements and a recently proposed Gibbs
point field model to accommodate deviations from uniform capillary
positions [24]. The effects of diffusion of spin-carrying particles are
incorporated through a robust random walk algorithm. We exten-
sively study the free induction decay in the static dephasing regime
through its inverse Fourier transform, the off-resonance frequency
distribution, and provide numerical relations of the distribution peak
positions in dependence on the blood volume fraction for the reg-
ular square and hexagonal lattices and the Krogh model. We find
that differences in the peak positions of the frequency distributions
become negligible for small blood volume fractions (as also discussed
in [26,30,40]), which is appropriate for capillary networks in many
types of biological tissue (e.g. brain and muscle tissue [7,10]).

We further show that the influence of non-uniform capillary radii
on the off-resonance frequency distribution is lower than that of
increasingly randomized capillary positions within a 2D-OCP model
that is characterized by the order parameter C. A highly irregular
2D-OCP leads to a frequency distribution that, in contrast to the
asymmetric frequency distribution of a regular hexagonal lattice, is
increasingly smeared around the zero frequency while adopting a
profile similar to that of a Lorentzian distribution. In fact, such a dis-
tribution shape for randomly distributed objects was also found by
Yablonskiy et al. in the static dephasing regime [7].

This effect is important when considering the presence of diffu-
sion that causes an additional smear of the frequency distribution
around the zero frequency: increasingly symmetric or Lorentzian
profiles justify the use of monoexponential fitting routines to obtain
relaxation times, as one can also easily verify by taking a Lorentzian
frequency distribution q(y) to obtain the magnetization signal decay
from Eq. (4), see also [36].

It is also demonstrated that relaxation times for irregularly
arranged capillaries deviate around 20%–30% from a highly regular
configuration. However, this effect is weaker for dynamic dephasing
processes that involve statistical averaging and diffusion effects. In
addition, it is less pronounced than the effect of changes in relax-
ation rates that scale with off-resonance strength dy (see Table 2).
For instance, the oxygen extraction fraction in brain tissue ranges
between 35% and 60% [41], leading to the range dy = 107s−1–184s−1

(for B0 = 1.5T and Hct = 0.45). For dynamic dephasing at 1.5T,
however, this range produces changes of about 60% in relaxation
times (see Table 2) which is about three times higher than the effect
of capillary irregularity. Therefore, when we translate this result to
the context of evaluating capillarity heterogeneity as a biomarker
for pathology-associated tissue alterations (as exemplified for car-
diac tissue in [24]), a precise knowledge of tissue oxygen extraction
is necessary, e.g. through quantitative BOLD or quantitative suscepti-
bility mapping techniques [41,42]. Furthermore, the results indicate
that notable voxel-inherent signal changes in BOLD imaging are
likely to be attributed to alterations in the oxygenation status as
opposed to the geometric arrangement of capillaries.
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Appendix A. Analytical solution of the Krogh model

The solution of the Bloch-Torrey equation for spin dephasing in
the Krogh model was derived in [12,13]. For the local magnetization,
it is given in terms of the series expansion

m(r,0, t)
m0

=
∞∑

m=0

∞∑

n=1

cnmce2m

(
0,

i
2
dyR2

C

D

)
e

−k2
nm

D
R2

C
t

×
[

Y ′
km

(knm) Jkm

(
knm

RC
r
)

− J′km
(knm) Ykm

(
knm

RC
r
)]

, (A1)

with Bessel functions J and Y of the first and second kind, respec-
tively, with index km that represents the characteristic value a2m of
the corresponding p-periodic even Mathieu function ce with

k2
m = a2m

(
i
2
dyR2

C

D

)
, (A2)

see also [43] (with the polar coordinates r and 0, diffusion coefficient
D, capillary radius RC, and capillary surface frequency shift dy). The
eigenvalues knm solve the eigenvalue equation

Y ′
km

(knm) J′km

(
knm√

g

)
= J′km

(knm)Y ′
km

(
knm√

g

)
, (A3)

where g represents the blood volume fraction, and the expansion
coefficients cnm are given as

cnm = 2pA(2m)
0 k2

nm J′km

(
knm√

g

)

×
J′km

(knm) s′
1,km

(
knm√

g

)
− J′km

(
knm√

g

)
s′

1,km
(knm)

[
J′km

(knm)
]2 [

k2
nm − gk2

m
] −

[
J′km

(
knm√

g

)]2 [
k2

nm − k2
m

] , (A4)

where the first derivative of the Lommel function s1,km can be written
as [44]

s′
1,km

(x) =
2x

4 − k2
m

1F2

(
2; 2 − km

2
, 2 +

km

2
; − x2

4

)
(A5)

with generalized hypergeometric function pFq for p = 1 and q =
2. The parameter A(2m)

0 denotes the first Fourier coefficient of the
Mathieu function:

A(2m)
0 =

1
2p

∫ 2p

0
d0 ce2m

(
0,

i
2
dyR2

C

D

)
. (A6)

The transverse magnetization M(t) can eventually be found
as [13,45]:

M(t)
M0

=
∞∑

m=0

∞∑

n=1

dnme
−k2

nm
D

R2
C

t
(A7)

with expansion coefficients

dnm =
8g

1 − g

[
A(2m)

0

]2

×
[
J′km

(knm) s′
1,km

(
knm√

g

)
− J′km

(
knm√

g

)
s′

1,km
(knm)

]2

[
J′km

(knm)
]2 [

k2
nm − gk2

m
] −

[
J′km

(
knm√

g

)]2 [
k2

nm − k2
m

] . (A8)
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Fig. 17. Flow chart for the numerical simulations. Left box: calculation of the off-
resonance field. First, the unit cell with one or more capillaries is chosen and dis-
cretized. Then, for all lattice points, the value of ylattice(r) is calculated using Eq. (B1)
and stored in a lookup table. In the static dephasing regime, the frequency distribu-
tion q(y) was calculated by binning the field values for all lattice points (excluding the
points occupied by capillaries) in a histogram with the specified frequency resolution.
Right box: random walk simulation: in each time step a new position is calculated. If
a collision is detected (see Fig. 19), the model specific boundary conditions are han-
dled with care to correct the new position (see Fig. 20). The field at the new position
is interpolated from the lookup table and the phase accumulation is calculated. The
program eventually advances to the next time step.

Appendix B. Simulation

In the following we will detail the implementation of our numer-
ical simulation. The first part outlines the calculation of the off-
resonance field; the second part treats the incorporation of spin
diffusion in the local resonance field of the capillaries through a
random walk algorithm (see Fig. 17).

B.1. Off-resonance field calculation

In the multi-capillary approach, the contributions from the sur-
rounding capillaries to the local off-resonance field inside a unit cell
are considered. Due to the imposed periodic boundary conditions,
the use of rectangular unit cells is reasonable. As the problem is
essentially two-dimensional, the unit cell is spanned by the lattice
vectors a1 and a2. This is visualized in Fig. 18 for the square lat-
tice and the hexagonal lattice. The N capillaries inside each unit cell
are located at Li. The complete off-resonance field, generated by the
infinite lattice of unit cells, reads

ylattice(r) =
∑

n1,n2

N∑

i=1

y (r − Li + n1a1 + n2a2) , (B1)

where n1 and n2 number the unit cells inside the lattice and y(x) is
the single-capillary off-resonance field given in Eq. (7). Without loss
of generality, r is restricted to the center unit cell with n1 = n2 = 0
and excludes the capillary volumes located around Li. Additionally,
dy = 1 was used to allow simple scaling to arbitrary off-resonances.

For the case of the square and the hexagonal lattice, the values
of Li are known (see e.g. [46]). However, for a specific realization of
the plasma model, the positions Li have to be calculated according
to [24], see also Section 2.2.2.

For practical reasons, i.e. reasons of computational efficiency, it is
not possible to cover the whole lattice (n1, n2 ∈ {−∞, +∞}). Thus,
a cut-off radius Rmax was introduced that must be large enough to
ensure the periodicity of the field and small enough to allow time-
efficient computation. Hence, in Eq. (B1) only addends with |Li +
n1a1 + n2a2| ≤ Rmax were considered in the field calculation (see left
hand side in Fig. 18). The off-resonance field was calculated on an
equidistant Cartesian grid with resolution dai = |ai|/(Gi − 1) in the i-
th direction (see middle of Fig. 18), where Gi denotes the number of
grid points in this direction.

The generic simulation parameters for the three different geome-
tries are given in Table 3. To obtain a field for a specific volume
fraction g, capillary radius RC and off-resonance frequency dy the
generic field was adapted by defining an exclusion volume around
each capillary and rescaling of its amplitude. In our simulations, we
used the grid resolution of 0.02lm. This leads to a size of the unit
cell of 15.4lm×15.4lm for the square and 16.5lm×28.6lm for the
hexagonal lattice. To achieve the volume fraction g = 0.15, one has
to choose the corresponding capillary radius RC = 3.35lm. This res-
olution was considered sufficient, since improving the resolution did
not affect simulation results (see also Appendix B.2).

However, the grid resolution dai can vary for different scalings:
e.g. the variation of the volume fractions g while keeping the capil-
lary radii RC constant, requires variable values of the lattice vector
ai. For all lattices the calculated off-resonance field was stored for
further use.

B.2. Random walk simulation

The starting point of random walk trajectories were distributed
within the unit cell with exclusion of the capillaries interiors. For
each time step Dt, normal-distributed random numbers with zero
mean and standard deviation s =

√
2D Dt were calculated to

determine the jump to the next position.
Furthermore, at each time step, a collision detection was per-

formed to check if the new position was outside the unit cell or inside
a capillary. For the plasma model, the number of capillaries inside the
unit cell can become large (see Table 3). Therefore, a recursive search
tree was implemented (see Fig. 19). This allowed an efficient way
to detect collisions of the trajectory with capillaries, e.g. for a unit

Fig. 18. Scheme of the lattice geometries used for the off-resonance field calculation. Left: visualization of the cut-off radius. Middle: unit cell of the square lattice. Right: unit cell
of the hexagonal lattice. The cut-off radius Rmax defines the circle around the center of a unit cell. Only addends with Li + n1a1 + n2a2 ≤ Rmax are considered.
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Table 3
Simulation parameters for the field calculation. For the hexagonal lattice, the number
in parentheses for G1 and G2 is the number of grid points for the tilt angle a = 0◦ to
achieve a more accurate static frequency distribution.

|a2|/|a1| G1 G2 Rmax m

Square lattice 1 768 768 108|a1s| 1
Hexagonal lattice

√
3 826 (3304) 1430 (5720) 100|a1h| 2

Plasma model
√

3 3301 5716 10|a1p| 200

cell with 50 capillaries this resulted in a speed up of approximately
a factor of 10. If a collision was detected, the invalid position was
corrected according to appropriate boundary conditions: on the cap-
illary surface, the random walk trajectories were reflected (reflecting
or homogeneous Neumann boundary conditions, see Fig. 20). On the
outer boundary of the dephasing volume we installed either reflect-
ing (Krogh model) or cyclic (i.e. inhomogeneous Neumann) boundary
conditions (for square, hexagonal and 2D-OCP simulations).

If the new position at time t = jDt was accepted, the new phase
for the k-th trajectory was calculated via

Vk( jDt) = Vk ([ j − 1]Dt) + ylattice(rj)Dt. (B2)

As the off-resonance field was pre-calculated on a pre-defined grid,
the off-resonance frequency at the actual positions of the trajectory
was interpolated using bilinear interpolation. To obtain the trans-
verse magnetization M(t = jDt), the trajectories were averaged for
each time step:

M( jDt) =
1
K

K∑

k=1

[cos (Vk( jDt)) + i sin (Vk( jDt))] (B3)

where K is the number of sampled trajectories. As each trajectory
can be calculated independently, parallelization of the algorithm was
straight forward.

The accumulated phase error of one trajectory at time-point t
is given as DV(t) ≤ √

mDtDymax with m = � t
Dt � and Dymax ≈

dyR2
C

√
2DDt/r3. Due to the periodicity of the sine and cosine func-

tions in Eq. (B1), small relative off-resonance errors are not sufficient.
Since all phase information is already lost at DV(t) = p, the abso-
lute error Dymax can be estimated as Dymax < p√

mDt
. The error in

Fig. 20. Scheme of the boundary treatment used in the random walk simulations.
Top: capillary surface. The endpoints of forbidden steps into the capillary interior were
mirrored along the radial direction (left). For long steps in the capillary vicinity it is
possible that the steps jump “through” the capillary wall (right). However, those steps
are unlikely for the chosen mean step width and, thus, were allowed for reasons of
computational efficiency. Bottom: outer boundary of the unit cell. For the surface of
the dephasing volume in the Krogh model, the boundary treatment is analogous to
the reflection on the capillary (left). For the multi-capillary model, cyclic boundary
condition apply at the surface of the unit cell (right).

magnetization M then follows as

|DM(t)|2 =
K−1∑

k=0

[
∂M(t)
∂Vk(t)

]2

[DV(t)]2 (B4)

=
[DV(t)]2

K

K−1∑

k=0

[− sin (Vk(t)) + i cos (Vk(t))]2 , (B5)

Fig. 19. Scheme of the recursive collision detection in the random walk simulation. Left: to generate the search tree, the unit cell is subdivided into four quadrants. For each
quadrant, the number of contained capillaries is checked. If a quadrant contains more than a single capillary, it is again subdivided into four sub-quadrants. This procedure is
recursively repeated until each sub-quadrant contains one or no capillary. The advantage of this procedure lies in the fact that each point inside the unit cell can be easily and
quickly associated with a sub-quadrant, and only a collision with ≤1 capillary has to be checked. This allows the collision detection in ln(N), where N is the number of capillaries.
Right: sample trajectory and refined mesh of the search tree for an exemplary capillary distribution.
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therefore, we find

|DM(t)| ≤ DymaxDt
√

m
K

. (B6)
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a b s t r a c t 

Microvascular proliferation in glioblastoma multiforme is a biological key mechanism to facilitate tumor 

growth and infiltration and a main target for treatment interventions. The vascular architecture can be 

obtained by Single Plane Illumination Microscopy (SPIM) to evaluate vascular heterogeneity in tumor- 

ous tissue. We make use of the Gibbs point field model to quantify the order of regularity in capillary 

distributions found in the U87 glioblastoma model in a murine model and to compare tumorous and 

healthy brain tissue. A single model parameter � was assigned that is linked to tissue-specific vascular 

topology through Monte-Carlo simulations. Distributions of the model parameter � differ significantly 

between glioblastoma tissue with mean 〈 �G 〉 = 2 . 1 ± 0 . 4 , as compared to healthy brain tissue with mean 

〈 �H 〉 = 4 . 9 ± 0 . 4 , suggesting that the average �-value allows for tissue differentiation. These results may 

be used for diagnostic magnetic resonance imaging, where it has been shown recently that � is linked 

to tissue-inherent relaxation parameters. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 

Glioblastoma multiforme, the most common and lethal brain 

tumor to occur in humans, is highly angiogenic with fast progres- 

sion ( Gatson et al., 2012; Das and Marsden, 2013 ). Upon develop- 

ing an angiogenic phenotype ( Bergers and Benjamin, 2003 ), tumor 

cells regulate the biochemical environment and activate oncogenes 

to trigger the formation of new capillaries from preexisting ves- 

sels by different mechanisms ( Aghi and Chiocca, 2005; Ricci-Vitiani 

et al., 2010; Wang et al., 2010; Soda et al., 2011 ), e.g. , through en- 

dothelial cell proliferation and basement membrane degradation 

( Volpert et al., 1997 ). The newly formed tumor microvasculature 

is heterogeneous and increasingly variable in density and structure 

when compared to healthy brain microvasculature ( Gillies et al., 

1999; Carmeliet and Jain, 20 0 0 ), which impacts treatment efficacy 

∗ Corresponding author. 

E-mail address: felix.kurz@med.uni-heidelberg.de (F.T. Kurz). 

and strategies in irradiation and chemotherapy ( McDougall et al., 

20 02; 20 06; Hanahan and Weinberg, 2011; Good and Harrington, 

2013; Jain, 2013 ). 

Excellent experimental studies and modeling effort s have paved 

the way to understand microvasculature as an integral component 

of any functioning organ ( Wiedeman et al., 1981; Pries et al., 1990; 

Moody et al., 1990; Pries et al., 1995; Pries and Secomb, 20 0 0 ), also 

in the context of tumor growth ( Carmeliet and Jain, 20 0 0; Chap- 

lain and Anderson, 2004; Döme et al., 2007; Fukumura et al., 2010; 

Rieger and Welter, 2015 ), which has enabled the development of 

sophisticated biophysical models of how vascular networks are 

formed ( Scianna et al., 2013; Cai et al., 2016; Rieger et al., 2016; 

Spill et al., 2015; Perfahl et al., 2017 ), maintained, and dynami- 

cally adapted throughout the presence of metabolic, hemodynamic, 

and mechanical influences ( Cai et al., 2011; Pries et al., 1996; Pries 

and Secomb, 2008; Secomb et al., 2013 ). Decades of experimen- 

tal, theoretical, and numerical work have revealed a complex cou- 

pling between vascular architecture, tissue metabolism, and tumor 

https://doi.org/10.1016/j.jtbi.2020.110230 

0022-5193/© 2020 Elsevier Ltd. All rights reserved. 
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growth ( Owen et al., 2009; Welter et al., 2009; Vilanova et al., 

2018 ), while different approaches on modeling the capillary bed 

have increasingly elucidated the nonlinear interplay of vascular ge- 

ometry, rheology, lumen structure, and extravascular environment 

in regulating the supply and distribution of oxygen, nutrients, and 

drugs within tissue ( Boujelben et al., 2016; Fang et al., 2008; Gold- 

man, 2008; Macklin et al., 2009; Welter and Rieger, 2013; Wu et 

al., 2014 ). 

Decades of progress have made it evident that quantita- 

tive descriptions and modeling focused on local vessel geometry 

are not sufficient for a detailed understanding of tissue supply, 

metabolism, and phenomena like hypoxia ( Goldman, 2008 ). Nonlo- 

cal, topological characterizations of vascular networks can usefully 

augment local analyses and facilitate an understanding of collective 

phenomena. Recently, large cerebrovascular networks in healthy 

and tumor-bearing mice were quantified using graph theory, re- 

vealing tumor-induced remodeling of connectivity, concealed in ge- 

ometric vessel properties ( Hahn et al., 2019 ). Several studies have 

determined space-filling metrics on healthy and pathological vas- 

culature, including measures of self-similarity and fractal proper- 

ties ( Gazit et al., 1995; Smith et al., 1996; Gazit et al., 1997; Baish 

and Jain, 20 0 0; Gould et al., 2011 ). However, the utility of such 

measures has been subject to discussion in the biomedical com- 

munity, since results can depend on processing, realistic structures 

are not true fractal objects, and some parameters, such as the la- 

cunarity can vary strongly (errors of up to 50%) within cohorts and 

studies ( Mancardi et al., 2008 ). Furthermore, it is often difficult to 

construct a direct link between the determined quantities and the 

underlying biological concepts or insights. 

The complex arrangement and dynamic adaptivity of microvas- 

culature ( McDougall et al., 20 06; Pries and Secomb, 20 08 ), with 

a multitude of physiological influences constantly interacting, in- 

dicate that statistical methods may be better suited to quantify 

microvascular architecture, especially in the context of pathologi- 

cal remodeling ( Zou and Wu, 1995; Coffey, 1998; Guidolin et al., 

2004 ). It was demonstrated that the statistical distribution of 

nearest-vessel distances within tissue could grant new insights 

into vascular remodeling by parametrizing the shapes of tissue 

regions void of vasculature ( Baish et al., 2011 ), although in this 

parametrization, the U87 tumor model showed exceptions in the 

identified trends, rather resembling healthy tissue than other tu- 

mor types. Elsewhere, the vessel density distribution has been 

modeled and compared to random uniform distributions to iden- 

tify “angiogenic hotspots” in growing tumors ( Kather et al., 2015 ), 

whereas, in a different study, it was shown that local vascular 

density does not suffice in assessing radiation effects ( Scott et al., 

2016 ). There, a distance-dependent correlation measure, Ripley’s L 

function, was used to quantify vessel distribution inhomogeneity, 

which yielded more differentiable results after irradiation. 

Despite great progress in characterizing anomalies of tumor 

vasculature, such results have not been linked to any non-invasive 

imaging modalities, in order to be made useful for diagnostic pur- 

poses or treatment monitoring. Statistical methods rely on large 

histological tissue samples and high-resolution microscopy, provid- 

ing only retrospective insight. Nevertheless, if successfully linked 

to a noninvasive imaging method, statistical parametrizations of 

the microvasculature may be used to develop imaging biomarkers 

( Deng and Wang, 2017 ). High resolution fluorescence microscopy 

enables large-scale studies of the tumor microenvironment to an 

unprecedented extent, which, in turn, allows for an evaluation of 

different models for the characterization of tumor microvascula- 

ture, as well as correlations with other modalities, such as mag- 

netic resonance imaging (MRI) ( Breckwoldt et al., 2016, 2019 ). 

The aim of our study was to assess the value of an entropy 

point field model taken from statistical physics to characterize 

cerebral microvasculature, see also ( Karch et al., 2006 ). This model 

originally describes a system of identical interacting point charges 

in a canonical ensemble, that are embedded in an oppositely 

charged, uniformly distributed background ( de Leeuw and Per- 

ram, 1982 ). Therefore, hereafter, we refer to the model as one- 

component plasma (OCP). The OCP model has previously been 

used in thermodynamic simulations with great reliability (see, e.g. , 

( Alastuey and Jancovici, 1981; Caillol et al., 1982 )). An analogy be- 

tween Poisson’s equation, governing a plasma’s charge distribution, 

and the steady-state oxygen diffusion equation through tissue jus- 

tifies an application of this statistical model to capillary distribu- 

tions within living tissue ( Goldman, 2008 ). Through the incorpo- 

ration of a temperature parameter, this model bears the potential 

to collectively describe perturbing factors and dynamic adaptation 

of the capillary bed in a simple, statistical manner ( Karch et al., 

2006 ). Due to its sensitivity to the disorder and clustering of ves- 

sel distributions through a single dimensionless order parameter 

�, the OCP model can be linked to the vascular-induced relaxation 

rate of a single voxel in an MR experiment ( Kurz et al., 2017 ). It 

is therefore potentially relevant for the non-invasive evaluation of 

cerebrovascular pathology, specifically that of glioblastoma multi- 

forme, which thrives on microvascular proliferation ( Das and Mars- 

den, 2013 ). 

In this work, we combine advanced imaging technology and nu- 

merical methods to test the feasibility of a reliable differentiation 

between tumorous and healthy brain tissue. We apply the OCP to 

microvasculature in the murine brain, imaged using high resolu- 

tion light sheet fluorescence microscopy after optical clearing of 

the whole brain. Finally, the viability of using MRI to infer on the 

model parameter � in a voxel-wise manner for diagnostic purposes 

is discussed in light of these and previous results. 

2. Methods 

2.1. Monte-Carlo simulations of the entropy point field model 

A Metropolis-Monte-Carlo simulation ( Metropolis et al., 1953 ) 

was written in C++ to produce point distributions in “thermal”

equilibrium of the entropy point field model with predefined or- 

der parameters �, in analogy to the methodology in ( Karch et al., 

2006 ) (see Appendix A for details on the OCP model). In the simu- 

lation, N = 200 identically charged point particles were placed ran- 

domly into a hexagonal unit box with periodic boundary condi- 

tions. A simulation box with width b and height h = 

√ 

3 · b, repre- 

senting a hexagonal unit cell, allows for correct behaviour of the 

system during “crystallization” with an even particle number N 

( Caillol et al., 1982 ). 

In analogy to thermodynamics, a Gibbs system was simulated 

for a given �, i.e. fixed temperature T = q 2 /k B �, by “cooling” the 

initial random point distribution into an energetically appropri- 

ate configuration, associated with the chosen temperature. The 

Metropolis algorithm implements this process by attempting quasi- 

random moves of the charges and comparing the internal energy 

before a move, U old , with the energy after the hypothetical move, 

U new 

(see Appendix A.1 for details). The internal energy U is de- 

termined using Eq. (A.5) in Appendix A , with the convergence pa- 

rameter set to η = 6 /b, following the conventions of Karch et al., 

2006 for the truncation of sums. 

In the simulation, a certain position change is accepted with 

probability p ( �U ) that scales with the energy difference �U = 

U old − U new 

: 

p(�U) = min 

[
exp 

(
�U 

k B T 

)
, 1 

]
= min 

[
exp 

(
� · �U 

′ ), 1 

]
, (1) 

where U 

′ = U/q 2 is the dimensionless free energy (see 

Eqs. (A.3) and (A.4) in Appendix A ). The decision to accept or 

reject a new charge distribution is made by generating a uniformly 
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distributed, quasi-random number x ∈ [0, 1], leading to acceptance 

if x ≤ p ( �U ). Otherwise, the charge distribution is left in its state 

before the hypothetical move and the process is repeated with a 

new attempt. 

Each simulation was conducted with 10 5 attempted particle 

moves in order to reach thermal equilibrium. It was made sure 

that equilibrium was reached within the simulated time interval 

for the entire range of considered �-values by recording the in- 

ternal energy U after every accepted move and checking for con- 

vergence within the simulation time. 500 respective point distri- 

butions were produced for logarithmically incremented values be- 

tween � = 10 −7 and � = 10 2 , amounting to 58,0 0 0 charge distri- 

butions in total, with 500 additional random uniform distributions 

for reference ( � → 0). 

The produced point configurations were characterized using 

a custom-written script in Matlab R2017a (Mathworks, Natick, 

MA, USA), to correlate distributive properties with the underly- 

ing �-values. To omit density effects, the spatial coordinates were 

rescaled to units of the Wigner–Seitz radius a = (πρ) −1 / 2 with the 

number density ρ = N/A of N points in an area A ( Caillol et al., 

1982 ). The charge positions were taken as the bases for Voronoi 

(or Dirichlet) tessellations ( Okabe et al., 1999 ), where the box ar- 

eas were subdivided into so-called Voronoi polygons, one assigned 

to each reference charge, using the software kit Qhull ( Barber et al., 

1996 ). A Voronoi polygon consists of all the points that are closer 

to that cell’s corresponding oxygen source than to any other. 

For each charge distribution, nearest neighbor distances d and 

Voronoi cell attributes, namely the area A V , perimeter P V , edge 

number N e , and asphericity αV = P 2 
V 
/ (4 πA V ) were calculated in 

units of a (excluding boundary cells). The next neighbor distance 

d is given by the separation of the closest lying oxygen source to a 

reference source. The asphericity quantifies how strongly a Voronoi 

cell deviates from circular shape, with an asphericity of α = 1 de- 

scribing a circle and higher values α > 1 found for increasingly 

eccentric polygons ( Karch et al., 2006 ). For each topological prop- 

erty, mean and standard deviation within the plane were calcu- 

lated. From the 500 configurations produced for each �-value, the 

average of every statistical parameter was determined in order to 

build a statistical link between the order parameter � and the cor- 

responding distribution topology. 

2.2. Experimental data acquisition 

2.2.1. Animal preparation and imaging 

The vessel morphology of undissected, healthy and tumor- 

bearing mouse brains was imaged with the LaVision Biotec Ultra- 

microscope II, as described before ( Breckwoldt et al., 2016 ). Briefly, 

we injected 7.5 · 10 5 U-87MG cells (ATCC HTB-14), diluted in 5 μl 

sterile phosphate buffered saline, into the right brain hemisphere, 

2 mm lateral and 2 mm ventral of the bregma, in 9 week old, male 

NOD Scid Gamma mice (NSG, DKFZ, Heidelberg). The cells regu- 

larly tested negative for mycoplasma contamination in biweekly 

examinations before implantation. A total of n = 6 animals with 

glioblastoma were compared against n = 6 brain hemispheres from 

3 healthy mice (animal approval G223/14 by the regional animal 

welfare committee in Karlsruhe, Germany). 

For the fluorescent staining of vessel lumen, the animals were 

injected intravenously with 300 μl of 1 mg/ml concentrated lectin- 

FITC (Sigma-Aldrich, St. Louis, MO, USA). For tumor-bearing mice, 

this was done 21 days after tumor cell implantation. After 3 min of 

marker circulation, mice were sacrificed using a ketamine/xylazine 

overdose and transcardially perfused with 20 ml PBS and 20 ml 

4% PFA. The brain was then explanted and optically cleared us- 

ing the FluoClearBABB protocol ( Schwarz et al., 2015 ). Following a 

successful tissue clearing, Selective Plane Illumination Microscopy 

(SPIM) ( Ertürk et al., 2012 ) was used to image the labeled vascu- 

lature in the entire brain by fluorescent excitement of the lectin 

marker with 3.25 μm in-plane resolution and 5 μm between slices 

in the transverse plane. The following acquisition parameters were 

used: 5 μm stepsize, dynamic focus on (5-10 steps), camera expo- 

sure time of 686 ms, 16-bit low noise gain with combined left and 

right lightsheet. 

2.2.2. Segmentation of vascular architecture 

The vessels were segmented from the acquired image stacks 

using the interactive learning and segmentation software ilastik 

( Sommer et al., 2011 ). A 3D-Gaussian filter with an isotropic stan- 

dard deviation of σ = 1 (voxel units) was applied to the segmen- 

tations using the 3D-smoothing plugin in the ImageJ-distribution 

Fiji 2.0.0-rc-43/1.51r ( Schindelin et al., 2012 ). The volume was cast 

back to binary form with a hard intensity threshold at half of the 

maximum voxel value. A custom Matlab script was used to fill 

holes in the segmented vessels, followed by an additional noise re- 

moval to delete isolated voxel bunches with a volume of less than 

that of a sphere with a radius of 20 μm. Vessel center lines were 

extracted using the skeletonization algorithm ( Lee et al., 1994 ) in 

ImageJ. 

Binary masks were manually drawn for each image stack to ex- 

tract tumor tissue and well-imaged regions in the healthy brain for 

analysis. In the healthy specimens, this comprised the inner parts 

of the brain, including the midbrain, hippocampus, thalamus, hy- 

pothalamus, septum, striatum, caudate putamen, amygdala, as well 

as inner sections of the cerebral cortex and cerebellum. The ven- 

tricles, exhibiting autofluorescence, were excluded by the masks. 

Care was taken to incorporate as many brain regions as possible 

into the healthy controls in order to make a general comparison 

between tumor and healthy brain vasculature. 

2.2.3. Vascular irregularity in the entropy point field model 

A custom Matlab routine was written to determine �- 

distributions for glioblastoma and healthy brain vasculature, mod- 

eling vessel center lines as one dimensional sources of oxygen (see 

Appendix A for details). To test the feasibility of extracting the 

order parameter � from magnetic resonance imaging (MRI), the 

� estimations were performed on cubic subvolumes with a side 

length of 500 μm, dimensions that are representative of an MRI- 

voxel in clinical routine. The tissue regions validated for analysis 

by the masks were covered in a tiling box fashion, whereas only 

cubes entirely inside the masked regions were considered to avoid 

irregular boundary effects. 

For each imaging slice in a subvolume, the capillary centerlines 

cutting through that slice were interpreted as point-like oxygen 

sources. Due to the finite thickness of each imaging slice, in which 

vessel membranes were excited to fluoresce, some vessel segments 

were conceived as lying partially parallel to the imaging plane. 

Conceptually approximating the position of such a vessel segment 

in the infinitesimally thin center slice of the 5 μm thick imaging 

volume, the centroid of the skeleton piece was considered to as- 

sign a single point position to the oxygen source in such cases. 

For analysis, the point source coordinates were scaled to units 

of the Wigner–Seitz radius a = (πρ) −1 / 2 with density ρ = N/A of N 

oxygen sources in the area A . In analogy to the treatment of simu- 

lated point distributions, the vessel positions in each imaging slice 

were used for Voronoi tessellation ( Okabe et al., 1999 ) and means 

and standard deviations of polygon area A V , perimeter P V , edge 

number N e , asphericity αV , and the nearest neighbor distance d 

were determined. This approach to quantify the vascular degree of 

regularity was motivated by work published by Karch et al. in 2005 

and 2006 ( Karch et al., 2005, 2006 ), dealing with the perfusion of 

the human heart with different cardiomyopathies. To avoid statis- 

tical undersampling effects, slices containing less than 50 oxygen 

sources were excluded from the automated analysis. A schematic 
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Fig. 1. Schematic representation of data acquisition and processing. Tumor cells were injected into the brains of mice. Once a large tumor had developed, Lectin-FITC was 

injected to mark the vessel lumen, followed by a brain resection after marker circulation. Tissue clearing made the brain transparent, allowing for plane-wise excitation of 

the fluorescent marker. Light sheet microscopy (SPIM) was used to image the microvasculature of the entire brain in stacks of planes. Segmentation and artefact processing 

produced 3D binary vessel representations, as illustrated in the second row through average intensity projections of 200 μm thick sections (40 slices) of a healthy brain 

( right ) and a glioblastoma ( left ). The image data was gridded into cubes of 500 μm side length and cubes lying entirely within the respective regions of interest (encircled 

by dashed lines) were analyzed as demonstrated in the bottom row. In each qualified imaging slice, the vascular skeleton was used for Voronoi tessellation to provide an 

estimate for �. Ideally, each (500 μm) 3 cube would provide 100 �-values, from which �-distributions could be constructed to characterize the vasculature. 

summary of the data acquisition and processing conducted up to 

the point of analysis is given in Fig. 1 . 

Each valid image slice in a (500 μm) 3 cropped subvolume was 

used to attain an estimate for the order parameter �. The curves 

produced from plasma simulations were used to infer on the value 

of � for each examined image section. From the volumes marked 

by the binary masks, �-distributions were determined to statisti- 

cally characterize the disorder in tissue vascularization for both tis- 

sue types. 

3. Results 

3.1. Plasma simulations 

The increasing degree of regularity with � is clearly visible 

in point distributions produced by Metropolis-Monte-Carlo simu- 

lations with corresponding Voronoi tessellations ( Fig. 2 , a-c ). By 

averaging means and standard deviations of the considered topo- 

logical properties within each plane over all simulations for every 

considered �-value, useful relations between the order parameter 

and a point distribution’s expected topology could be revealed (see 

Fig. 2 , d-e and Fig. B.1 in Supplementary Material). As a reference, 

corresponding properties from 500 completely random (uniformly 

distributed) point distributions are illustrated at � = 10 −∞ , repre- 

senting expected topological properties of point sets without struc- 

ture. The results indicate that, for � < 10 −2 , the OCP model, as 

simulated in this study, loses its ordering properties and resembles 

uniform, random point distributions. For 10 −2 ≤ � ≤ 10 2 , polyno- 

mial fits to the mean topological properties with the decadic loga- 

rithm of � yielded continuous interpolations, which could be used 

to estimate � from suitable characteristics through backward in- 

ference using the attained curves (with fifth degree polynomials 

for all properties, except for the mean nearest neighbor distance 

〈 d 〉 , which was better described by a ninth degree polynomial, see 

Table 1 for details). 

All calculated characteristics (with the exception of the mean 

Voronoi cell perimeter 〈 P V 〉 ) presented dependences similar to 

those found in Fig. 2 , d-e (see Fig. B.1 in Supplementary Mate- 

rial). Of the average topological characteristics considered, partic- 

ularly the mean nearest neighbor distance 〈 d 〉 and Voronoi cell 

area standard deviation σ ( A V ) presented dynamic, well defined re- 

lations with the �-parameter, exhibiting relatively low variance 

among simulation runs. The characteristic plateau for � < 10 −2 , 

suggesting that the influence of the �-parameter was lost below 

this value, was taken into account in subsequent evaluations by 

assigning � = 0 in this range (corresponding to maximum entropy 

point distributions). 

3.2. Model application to experimental data 

The processed ultramicroscopy stacks from n = 6 glioblastoma 

xenografts and n = 6 healthy brain hemispheres provided a total of 
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Fig. 2. Results of plasma simulations. Exemplary point distributions (red points) and corresponding Voronoi tesselations (blue lines) with order parameters a) � = 0 . 1 , 

b) � = 4 , and c) � = 140 . Average of d) the mean nearest neighbor distance 〈 d 〉 and e) the standard deviation of Voronoi cell areas σ ( A V ) within, respectively, 500 point 

distributions simulated at different �-values. The mean value for each � is marked by a square marker, with error bars indicating the standard deviation among 500 

simulation runs. Below the markers, a solid curve shows piecewise polynomial fits to the discrete simulation points. 

Table 1 

Polynomial coefficients from least-squares fits to the relationships between � and the topologi- 

cal characteristics P t of modeled point distributions. In the dynamic region ( � > 0.01), all topological 

properties P t (in natural units of the Wigner-Seitz radius a ) are described well by a fifth degree poly- 

nomial of the form P t (�) = c 5 ( log �) 5 + c 4 ( log �) 4 + c 3 ( log �) 3 + c 2 ( log �) 2 + c 1 ( log �) + c 0 , with the 

exception of the mean nearest neighbor distance 〈 d 〉 , where a ninth degree polynomial better fits the 

relationship with c 6 = 0 . 0029 , c 7 = 0 . 0045 , c 8 = −0 . 0 0 02 , and c 9 = −0 . 0 0 05 . In the last column, the 

coefficient of variation R 2 , considering the averaged topological properties used for fitting, is given to 

parametrize the goodness of fit. In the plateau region ( � ≤ 0.01), the relationships are practically con- 

stant and resemble the properties of random point distributions (cf. Figs. 2 and B.1 in Supplementary 

Material). 

Topologic property P t c 0 / 10 −2 c 1 / 10 −2 c 2 / 10 −2 c 3 / 10 −2 c 4 / 10 −2 c 5 / 10 −2 R 2 

〈 d 〉 99.86 17.63 10.71 1.62 -2.08 -1.45 0.999 

σ ( d ) 40.55 -8.39 -4.99 -0.53 0.57 0.15 0.999 

〈 A V 〉 309.7 4.72 -0.37 -0.75 0.02 0.08 0.995 

σ ( A V ) 106.57 -50.39 -8.17 6.17 1.01 -0.5 0.999 

〈 P V 〉 712.8 2.36 -8.63 -3.22 0.92 0.43 0.999 

σ ( P V ) 109.5 -57.14 -7.27 8.17 0.94 -0.74 0.999 

〈 αV 〉 136.94 -7.02 -2.96 0.39 0.34 -0.01 0.999 

σ ( αV ) 18.6 -7.57 -2.15 1.22 0.28 -0.13 0.999 

〈 N e 〉 590.39 2.54 0.67 -0.39 -0.07 0.05 0.997 

σ ( N e ) 122.63 -14.92 -8.11 -0.37 0.77 0.11 0.999 

Table 2 

Means μ and standard deviations STD of the topological quantities used to characterize vessel distributions 

in each plane, found in healthy brain and glioblastoma tissue. 

d ( a ) A V ( a 
2 ) P V ( a ) αV N e 

Tissue type 〈 d 〉 σ ( d ) 〈 A V 〉 σ ( A V ) 〈 P V 〉 σ ( P V ) 〈 αV 〉 σ ( αV ) 〈 N e 〉 σ ( N e ) 

Healthy tissue 

μH 1.25 0.56 3.0 1.4 6.9 1.5 1.38 0.21 5.90 1.26 

STD H 0.07 0.05 0.1 0.3 0.2 0.3 0.04 0.05 0.04 0.09 

Glioblastoma 

μG 1.09 0.59 2.8 1.8 6.7 2.0 1.47 0.30 5.82 1.33 

STD G 0.13 0.07 0.3 0.5 0.4 0.4 0.10 0.12 0.12 0.15 

27,489 valid image slices from healthy tissue and 18,209 from tu- 

mor tissue (each 500 μm x 500 μm in size), after blinding through 

the masks. The cubic subvolumes for analysis were extracted from 

imaged tissue volumes of, on average, 14.0 ± 4.2 mm 

3 for healthy 

brain hemispheres and 9.2 ± 4.7 mm 

3 per bulk glioblastoma (with 

standard deviations), after approximately 40% isotropic shrinkage 

from clearing. 

In Table 2 , means and standard deviations of each topological 

quantity are given for healthy and tumor tissue, with correspond- 

ing histograms in Fig. 3 and B.2 in the supplements. All topologi- 

cal parameters presented differences between tissue types. Based 

on the plasma simulation results in Fig. 2 , d-e and supplemen- 

tary Fig. B.1, as well as the results of Karch et al., 2006 , an av- 

erage over two paramters, namely the mean nearest neighbor dis- 

tance 〈 d 〉 and a Voronoi cell attribute, the standard deviation of the 

area, σ ( A V ), were chosen as the most reliable indicators to deter- 

mine a final estimate of � for each slice. Although the variables 〈 d 〉 
and σ ( A V ) show some negative correlation (with correlation coeffi- 

cients r H = −0 . 72 for healthy datasets and r G = −0 . 39 for glioblas- 

toma datasets), they contain complementary information, with a 
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Fig. 3. Relative frequency histograms of topological parameters used to characterize oxygen source distributions in planes through healthy brain tissue and glioblas- 

toma multiforme. a) Mean nearest neighbor distance 〈 d 〉 and b) standard deviation of the Voronoi cell area, in units of the Wigner-Seitz radius a . 

Fig. 4. Distributions of estimated �-values in healthy brain tissue and glioblastoma. a) Relative frequency histogram for all samples combined with a bin width of 

�� = 0 . 5 , including 27,489 values from healthy brain tissue and 18,209 values from glioblastoma, and b) �-estimates for each individual sample, with gray points marking 

�-estimates from individual slices, sample averages as horizontal red lines, and 95% confidence intervals marked by light red shading around the mean values. 

stronger sensitivity of 〈 d 〉 to local clustering of vessels, while σ ( A V ) 

characterizes the cluster distribution throughout the entire plane. 

Using the fitted relations established through plasma simula- 

tions ( Fig. 2 , d-e and Table 1 ), the �-distributions presented in 

Fig. 4 were attained from the average of the two values mapped 

to each 500 μm square cross-section through the numerical in- 

version of the 〈 d 〉 ( �) and σ ( A V )( �) relationships. A two-sample t- 

test of the mean �-value from each independent sample rejected 

the null-hypothesis of distributions with equal means significantly 

( p = 0 . 0 0 027 ). Analogous tests with the sample mean distributions 

of surrogate parameters 〈 d 〉 and σ ( A V ) yielded p = 0 . 0 0 093 and 

p = 0 . 0026 , respectively. The mean �-values from sample averages 

were 〈 �H 〉 = 4 . 9 ± 0 . 4 in the healthy brain and 〈 �G 〉 = 2 . 1 ± 0 . 4 

in glioblastoma (with standard errors of mean). The total aver- 

ages from all samples mixed amounted to 〈 �H 〉 ′ = 4 . 84 ± 0 . 01 in 

healthy tissue and 〈 �G 〉 ′ = 1 . 93 ± 0 . 02 in glioblastoma. The dimen- 

sionless order parameter � is thus suited for the differentiation 

of healthy and pathological microvasculature in the case of U87 

glioblastoma multiforme. 

4. Discussion 

In this paper, we have presented a large-scale application of 

the entropy point field model in form of the OCP on murine brain 

vasculature, a highly irregular capillary environment, even in the 

healthy state. We could demonstrate that the OCP parametriza- 

tion allows for a discrimination of microvasculature in the healthy 

brain and glioblastoma multiforme on a 500 μm imaging scale. Our 

results indicate that the dimensionless entropy parameter � can 

differentiate healthy and pathological tissue with greater signifi- 

cance than the individual, intermediate parameters 〈 d 〉 and σ ( A V ), 

from which � was derived. In light of the random sampling of cu- 

bic (500 μm) 3 sections conducted on entire healthy mouse brains, 

these are motivating results. The analysis of randomly placed sec- 

tions throughout the healthy brain incorporated partial volumes 

from different brain regions within the 500 μm 

2 areas, which 

systematically increased microvascular irregularity in the healthy 

samples. A discrimination of different brain regions and more se- 

lective tissue extractions are expected to increase � values asso- 

ciated with healthy tissue, leaving potential for further improve- 

ments in tumor tissue classification based on �, e.g. , through the 

inclusion of brain region priors. 

After a rigorous study of the results of Karch et al. ( Karch et 

al., 2006 ) and the topological attributes included in their origi- 

nal work, we chose only a subset of two properties, the nearest 

neighbor distance mean 〈 d 〉 and Voronoi cell area standard devia- 

tion σ ( A V ), in order to attain an averaged estimate for �. This de- 

cision was based on several factors. An important prerequisite for 

the inclusion of a topological parameter was a large dynamic range 

and definite relationship between � and the topological attribute. 

Some, eventually non-included, parameters presented a high vari- 

ance and broad plateau in the region � < 10 −2 , hampering a reli- 

able estimate of � (cf. Fig. B.1 in Supplementary Material). 

The OCP quantifies the spatial regularity of microvasculature 

without focusing on local vessel geometry or indirect surrogate pa- 

rameters, which can be estimated from MRI to quantify tissue per- 

fusion characteristics, e.g. , through diffusion weighted intravoxel- 

incoherent motion (IVIM) imaging ( Bihan et al., 1988; Ahlgren 

et al., 2016 ), arterial spin labeling (ASL) ( Williams et al., 1992; 

van Osch et al., 2018; Zhang et al., 2019a ), or dynamic susceptibil- 

ity contrast (DSC) measurements, tracking relaxation rate changes 

during the pass-through of an intravascular contrast agent bolus 

( Ostergaard et al., 1996; Romano et al., 2012; Emblem et al., 2013; 

Troprès et al., 2015 ). While rigorous mathematical derivations ex- 

ist to predict the exact effects of certain vessel geometries on the 

transverse relaxation process during free induction decay ( Ziener 

et al., 2012; 2015; Kurz et al., 2016a; 2016c; 2018 ) and spin echo 

measurements ( Buschle et al., 2018; Kurz et al., 2016; Sukstan- 

skii and Yablonskiy, 2002 ), their complicated form has hindered 

prevalent applications in clinical and preclinical settings. Approx- 

imations for the extreme cases of negligible and very strong diffu- 
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sion, which can be made for very large or small vessel geometries, 

respectively, simplify the solutions slightly at the cost of more 

idealized presumptions ( Kiselev and Posse, 1998; Yablonskiy and 

Haacke, 1994 ). In any case, such analytical derivations have always 

assumed highly simplified cylindrical vessel representations, either 

in a perfectly regular or completely random (uniformly distributed) 

arrangement. 

We have recently shown that the OCP can be incorporated 

into the theory of NMR dephasing, successfully relating the �- 

parameter to the field-inhomogeneity induced transverse relax- 

ation rate R ′ 2 = R ∗2 − R 2 ( Kurz et al., 2017 ). With this model, the 

existing theory of transverse relaxation in capillary environments 

could be extended by implementing the degree of disorder through 

�. The OCP framework poses a simple model to continuously 

bridge the gap between perfect capillary regularity and complete 

disorder, the only cases for which classical relaxation theory had 

been developed up to this point. We have now shown that this 

potentially has high relevance for oncological imaging in the brain. 

In our previous study ( Kurz et al., 2017 ), we found that the 

effects of changes in the intravascular oxygen saturation can out- 

weigh the effects of different order parameters found in the phys- 

iological range. Our results, however, showed that the relationship 

between oxygenation changes and relaxation rate changes depends 

on �, motivating a way to gauge the effects of varying oxygena- 

tion through a comparison of transverse relaxation rates at dif- 

ferent blood susceptibilities (determined by the blood oxygenation 

and hematocrit) or through intravascular contrast agents as, e.g. , in 

( Troprès et al., 2004 ), in order to estimate the order parameter �

of the underlying microvasculature. By varying the blood suscepti- 

bility, the off-resonance magnitude δω is changed, impacting how 

the magnetization decays for capillary arrangements with different 

degrees of disorder (cf. ( Kurz et al., 2017 ), Figs. 11 and 12). This 

effect may be exploited to infer experimentally on � by measur- 

ing T 2 and T ∗2 to determine R ′ 2 = (1 /T ∗2 ) − (1 /T 2 ) at different blood 

susceptibilities, varied, e.g. , through prolonged inhalation of O 2 or 

CO 2 enriched gas ( Jochimsen and Möller, 2008; Shen et al., 2013 ). 

Stronger variations of blood susceptibility can be achieved in anal- 

ogy to other methods of microvascular quantification relating to 

vessel density, calibre, and arterio-venous proportions, using MRI 

during steady-state or dynamic manipulations of T 2 and T ∗2 , e.g. , by 

injecting superparamagnetic iron-oxide nanoparticles (SPIONs) or 

gadolinium-based contrast agents into the bloodstream (see, e.g. , 

vessel size imaging or vessel architectural imaging) ( Emblem et al., 

2013; Troprès et al., 2001; Farrar et al., 2010; Zhang et al., 2019b ). 

The development of such specialized methods should be con- 

ducted close to real MRI experiments, e.g. , through a simultane- 

ous acquisition of 3D T 2 and T ∗2 maps and corresponding, highly 

resolved microvasculature of the same tissue through in vivo mul- 

tiphoton microscopy ( Osswald et al., 2015 ) or subsequent ex vivo 

SPIM ( Breckwoldt et al., 2019 ), ideally in combination with a 

blood oxygenation-sensitive technique such as intrinsic optical sig- 

nal imaging ( Senarathna et al., 2019 ). Matching such datasets re- 

liably with a precise, well localized, rigid registration bears great 

challenges and their treatment exceeds the scope of this work. 

Furthermore, experimental studies of the quantitative influence of 

contrast agent injections on the blood susceptibility under consid- 

eration of arterial input functions and bolus dispersion during flow 

would aid a refinement of such methodology ( Calamante, 2013 ). 

We have shown the theoretical viability of using the OCP to sta- 

tistically differentiate healthy brain tissue from U87 glioblastoma 

multiforme, without discriminating gray or white matter, by com- 

bining advanced imaging methodology with an automated entropy 

assessment tool. The OCP serves as a simple model, governed by a 

single parameter � to quantify the degree of disorder in a vessel 

distribution, which has been successfully incorporated into NMR 

relaxation theory. Our findings show that the � parameter can 

serve as a reliable biomarker for tumor diagnostics in such com- 

plex vascular environments as the brain. Beyond possible applica- 

tions in MRI, a continuous parametrization of microvascular disor- 

der, as given by the OCP model, offers a valuable extension to local 

and periodic approaches of modeling large-scale oxygen supply to 

tissue ( Goldman, 2008 ). 
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Appendix A. Theory 

A1. The one-component plasma 

In statistical mechanics, Gibbs processes are frequently used to 

describe many-particle systems in thermal equilibrium with fixed 

temperature T , particle number N , and volume V . In such a canon- 

ical ensemble, the probability density f ( x 1 , ..., x N ) for finding a sys- 

tem of N interacting point charges in the state x 1 , ..., x N with coor- 

dinates x i for particle i ∈ {1, ..., N } is given by: 

f (x 1 , ..., x N ) = 

1 

Z 
exp 

{
−U(x 1 , ..., x N ) 

k B T 

}
, (A.1) 

where U ( x 1 , ..., x N ) is the system’s internal energy and k B is the 

Boltzmann constant. The canonical partition function Z incorpo- 

rates all possible configurations of the system and, in the simplify- 

ing case of massless point charges without kinetic energy, can be 

expressed as: 

Z = 

∫ 
�

exp 

{
−U(x 1 , ..., x N ) 

k B T 

}
d x 1 ... d x N . (A.2) 

In this idealized setting, the phase space � is spanned by all pos- 

sible particle positions, i.e. the cartesian product V 

N . 

Since the potential energy of the system only depends on the 

relative distances of the identical particles, the total energy is con- 

veniently expressed through a sum over pair interaction poten- 

tials φ( r ij ) for charge pairs i, j ∈ {1, ..., N } with separation r i j = 

| x j − x i | : 
U(x 1 , ..., x N ) = 

1 

2 

∑ 

i 

∑ 

j � = i 
φ(r i j ) . (A.3) 

The pair interaction potential can be chosen to scale logarithmi- 

cally with point separation: 

φ(r i j ) = −q 2 log 

(
r i j 

L 

)
, (A.4) 
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modeling the repulsion of particles with identical charge q . An ad- 

vantage of considering point particles with vanishing radius is that 

the particle density does not influence the macroscopic character- 

istics of the distribution in thermal equilibrium, therefore allow- 

ing for an arbitrary choice of the scaling constant L . A convenient 

gauge is the Wigner–Seitz radius a = (πρ) −1 / 2 with particle den- 

sity ρ = N/A, where the available area A constitutes the volume 

V in two dimensions. Scaling with the density ρ by setting L = a 

makes point distributions with different physical densities directly 

comparable. 

Especially in numerical treatments of the OCP, it is common 

practice to consider relatively small many-particle systems (on the 

order of 10 2 charges) with periodic boundary conditions, evad- 

ing boundary effects while keeping computational expense feasi- 

ble. Particularly useful in such cases, an alternative to Eq. (A.3) can 

be used to evaluate the total energy ( Ewald, 1921 ). Working with 

copies of the hexagonal unit cell of area A , containing N charges, 

each displaced by a translational vector n to periodically tile out 

an infinite plane, the total internal energy U of the system can be 

assessed as follows ( Karch et al., 2006 ): 

U = 

q 2 

4 

∑ 

n 

N ∑ 

i, j 

′ E 1 

[
η2 ( r i j + n ) 2 

]

+ 

π

A 

∑ 

k � = 0 

exp (−| k | 2 / 4 η2 ) 

| k | 2 ·
∣∣∣∣∣

N ∑ 

j=1 

q exp (i k · r i j ) 

∣∣∣∣∣
2 

−πN 

2 q 2 

4 η2 A 

− Nq 2 

4 

(
γ + log (η2 a 2 ) 

)
. (A.5) 

The first sum is evaluated in real space, running over all lattice 

vectors n and charge pairs i, j ∈ {1, ..., N } with separation vec- 

tor r i j = x j − x i . The prime on the inner sum indicates that the 

self-interaction term with i = j is left out for n = 0 . The second 

term is defined in Fourier space with the reciprocal unit vectors 

k , taking into account the long-range interactions of the system. 

As before, the particle charge is q and the Wigner-Seitz radius is 

denoted by a = (πρ) −1 / 2 . The exponential integral E 1 is given by 

( Abramowitz and Stegun, 1972 ): 

E 1 (z) = 

∫ ∞ 

z 

e −t 

t 
d t (A.6) 

and the adjustable parameter η influences the convergence rate of 

the real and reciprocal space sums. At last, γ = 0 . 5772 ... is Euler’s 

constant. 

A2. A model for the oxygen supply of tissue 

In scenarios where the OCP is used to model electrostatics, the 

logarithmic pair interaction potential in Eq. A.4 emerges from the 

classical approach of solving the 2D Poisson equation: 

ε��(x ) = −ρ(x ) = −2 πq 
∑ 

i 

δ(x − x i ) − C (A.7) 

with the charge density ρ( x ) consisting of point charges q at posi- 

tions x i , modeled by Dirac delta functions δ(x − x i ) , and a con- 

tinuous neutralizing background C , serving as source terms for 

the electrostatic potential �( x ) in a medium with permittivity ε
( Griffiths, 1999 ). In the context of this work, however, the logarith- 

mic interaction is additionally motivated by an analogy between 

the Poisson equation and the steady-state oxygen diffusion equa- 

tion in two dimensions: 

D �c(x ) = −I 
∑ 

i 

δ(x − x i ) + M, (A.8) 

with pointlike oxygen sources of intensity I at positions x i . 

Eq. A.8 governs the steady-state limit ( ∂ t c(x ) = 0 ∀ x ) of the lo- 

cal oxygen concentration c ( x ) in tissue with an isotropic oxygen 

diffusion coefficient D and homogeneous metabolic oxygen con- 

sumption rate M . In the steady-state case, Neumann boundary con- 

ditions are suitable, ∇c · n = 0 , forbidding flux at the boundaries 

with normal vector n . Neglecting axial diffusion, the 2D problem 

equivalently models 3D tissue perfused by infinitely long, parallel 

capillaries ( Kurz et al., 2017 ). Due to the statistical nature of our 

considerations and the fact that we are not trying to solve the dif- 

fusion equation for an actual source configuration, the requirement 

of long, parallel capillary segments is held loosely and the model is 

applied to approximate the distribution of vessels in arbitrary cuts 

through 3D samples. 

Assuming that angiogenesis in healthy growing tissue aims for 

a maximally effective vascularization of the organ, an ideal vessel 

construct should be quite regularly arranged to avoid long inter- 

vascular diffusion distances for oxygen but spare unnecessary en- 

ergy needed for vessel proliferation and perfusion ( Murray, 1926; 

Sherman et al., 1989 ). In order to evade a local oversupply of oxy- 

gen in certain regions, ideally, sources should be found at loca- 

tions with local minima of the steady-state concentration distri- 

bution c ( x ), just as electrical charges should arrange themselves in 

corresponding minima of the electrostatic potential �( x ). Conse- 

quently, neglecting boundary effects and further drawing on the 

analogy between �( x ) and c ( x ), the energetically most favorable 

and effective distribution of oxygen sources in a plane should be 

arranged in a regular hexagonal crystal lattice ( Caillol et al., 1982 ). 

The influence of competing growth processes and external fac- 

tors that perturb the formation of an optimal vessel architecture 

can be modeled by employing the canonical ensemble. It can be 

shown ( de Leeuw and Perram, 1982 ) that the macroscopic char- 

acteristics of an OCP with point charges q in thermal equilibrium 

at temperature T are fully embraced by the dimensionless, scalar 

coupling constant 

� = 

q 2 

k B T 
. (A.9) 

In essence, parametrizing the balance between energy minimiza- 

tion and entropy maximization, � can be understood as a measure 

for the regularity in a point distribution resulting from a Gibbs 

process. A first-order phase transition has been predicted and ob- 

served at � ≈ 140, see, e.g. , ( Choquard and Clerouin, 1983 ) or 

( Radloff et al., 1984 ), above which the plasma acquires a crystalline 

structure. Below this point, the model exhibits increasingly disor- 

dered point configurations for decreasing �-values. 

In the context of oxygen supply to tissue, we assume that the 

distribution of sources in an arbitrary plane, i.e. capillaries at po- 

sitions x i in Eq. A.8 , can be characterized statistically by the �- 

parameter of the OCP. The scalar coupling constant collectively en- 

compasses the physiological and pathological factors that lead to 

deviations of vessel structures from a maximally effective form, as 

well as dynamic variations of the capillary bed due to metabolic 

and hemodynamic interactions ( Vilanova et al., 2018; Zakrzewicz 

et al., 2002 ). Large values for � suggest a rather regularly arranged 

capillary bed, spread evenly throughout the tissue, while small val- 

ues indicate a less homogeneous vascularization. The main focus of 

this work is to determine and compare typical �-values in glioblas- 

toma and healthy brain tissue in mice, in order to assess the po- 

tential of the OCP for the development of tumor biomarkers. 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.jtbi.2020.110230 . 
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Appendix B. Supplementary figures

Figure B.1: Numerically attained topological parameter dependences on Γ.
The mean of topological quantity x within a point distribution is marked by 〈x〉 and its
standard deviation by σ(x), with x taking the following measures: a) Voronoi cell area
AV , b) nearest neighbor distance d, c-d) Voronoi cell perimeter PV , e-f) asphericity
αV = P 2

V /(4πAV ), and g-h) number of edges Ne. Mean values for each simulation
setting are marked by squares with error bars representing the standard deviation among
500 simulation runs for each Γ value. Distances are given in units of the Wigner-Seitz
radius a. Simulated datapoints are connected by polynomial fits (degree 5 for Γ > 0.1,
linear below) to clarify continuous relationships with Γ.
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Figure B.2: Relative frequency histograms of topological parameter distri-
butions obtained from Voronoi tesselations of imaged vessel distributions.
Specifically, means 〈x〉 and standard deviations σ(x) with x as the a) Voronoi cell area
AV , b) nearest neighbor distance d, c-d) Voronoi cell perimeter PV , e-f) asphericity
αV , and g-h) number of edges Ne. Length units were scaled by the Wigner-Seitz radius
a.

77





Publication III:
Partitioned quantification of vessel geometry

by cuboids

Title: Large-scale characterization of the microvascular geometry in develop-
ment and disease by tissue clearing and quantitative ultramicroscopy

Authors: Artur Hahn, Julia Bode, Allen Alexander, Kianush Karimian-Jazi,
Katharina Schregel, Daniel Schwarz, Alexander C. Sommerkamp,
Thomas Krüwel, Amir Abdollahi, Wolfgang Wick, Michael Platten,
Martin Bendszus, Björn Tews, Felix T. Kurz and Michael O. Breck-
woldt

Journal: Journal of Cerebral Blood Flow & Metabolism 271678X20961854
(2020)

DOI: 10.1177/0271678X20961854

Copyright: Open access under the Creative Commons Attribution 4.0 License,
https://creativecommons.org/licenses/by/4.0/. In the following, the
original article from https://doi.org/10.1177/0271678X20961854 is
reproduced in unmodified form.

Contributions: J.B., T.K., and B.T. established ultramicroscopy and tissue clearing.
Acquisition of ultramicroscopy datasets was performed by J.B. and
T.K. Programming of Matlab code and analysis was done by A.H.
and F.T.K. Image segmentation and training of the sample images
was performed by A.H. and A.A., A.C.S. and T.K. helped with
tissue clearing. T.K. performed tumor cell implantations. F.T.K.
provided analytical tools. B.T., F.T.K., and M.O.B. conceptualized
and supervised the study and performed analyses. A.H, B.T., F.T.K.,
and M.O.B. wrote the article with input from J.B., A. A., K.KJ.,
K.S., D.S., A.C.S., A.Ab., W.W., M.P., and M.B.

79

https://doi.org/10.1177/0271678X20961854
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0271678X20961854


Original Article

Large-scale characterization of the
microvascular geometry in development
and disease by tissue clearing and
quantitative ultramicroscopy
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Thomas Krüwel3, Amir Abdollahi6,7,8, Wolfgang Wick9,10,
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Felix T Kurz1 and Michael O Breckwoldt1,4

Abstract

Three-dimensional assessment of optically cleared, entire organs and organisms has recently become possible by tissue

clearing and selective plane illumination microscopy (“ultramicroscopy”). Resulting datasets can be highly complex,

encompass over a thousand images with millions of objects and data of several gigabytes per acquisition. This constitutes

a major challenge for quantitative analysis. We have developed post-processing tools to quantify millions of microvessels

and their distribution in three-dimensional datasets from ultramicroscopy and demonstrate the capabilities of our

pipeline within entire mouse brains and embryos. Using our developed acquisition, segmentation, and analysis platform,

we quantify physiological vascular networks in development and the healthy brain. We compare various geometric vessel

parameters (e.g. vessel density, radius, tortuosity) in the embryonic spinal cord and brain as well as in different brain

regions (basal ganglia, corpus callosum, cortex). White matter tract structures (corpus callosum, spinal cord) showed

lower microvascular branch densities and longer vessel branch length compared to grey matter (cortex, basal ganglia).

Furthermore, we assess tumor neoangiogenesis in a mouse glioma model to compare tumor core and tumor border.

The developed methodology allows rapid quantification of three-dimensional datasets by semi-automated segmentation

of fluorescently labeled objects with conventional computer hardware. Our approach can aid preclinical investigations

and paves the way towards “quantitative ultramicroscopy”.
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Introduction

Vascular remodeling is a key feature of development
and disease.1,2 Neoangiogenesis is a hallmark of cancer
and its investigation, both qualitatively and quantita-
tively is crucial for preclinical and clinical cancer
studies. Tumor neoangiogenesis is also closely linked
to tumor progression and metastasis formation.3

Histological (two-dimensional (2D)) analysis of serially
segmented sections and 3D image reconstruction is cur-
rently the gold standard to quantify vascular networks.
However, this is both time consuming and labor inten-
sive. Moreover, reconstructed volumes are generally
small.4 Current 3D-imaging techniques such as mag-
netic resonance imaging (MRI) and positron emission
tomography (PET) do not possess enough spatial
resolution to visualize the small capillaries of the
microvasculature, though perfusion techniques enable
functional probing of vascular parameters and tumor
vascularization.5–9 Micro-computed tomography
(mCT) has high resolution and can be combined with
capillary filling to investigate the microvasculature.9,10

Intravital laser scanning microscopy and multiphoton
microscopy also offer high spatial resolution (�200 nm)
but are limited by a penetration depth of �500 mm and
small field of view.10

Recently, selective plane illumination microscopy
(“ultramicroscopy”) in conjunction with tissue clearing
has gained significant interest. Several techniques have
been developed that use fluids and colloids with the
refractive index of proteins to render tissue fully trans-
parent.11–15 Tissue clearing of entire organs or even
organisms has recently been demonstrated and is
becoming an essential tool in the life sciences and espe-
cially neuroscience community for circuit reconstruc-
tion and the study of 3D cellular distributions.16,17

Light sheet microscopy speeds up the acquisition of
large datasets compared to confocal techniques and
resulting datasets can encompass several gigabytes
that can be recorded in a reasonable time. We have
previously described an approach for assessing glioma
microvessels in a mouse glioma model18,19 and have
shown that this approach is also feasible in human
glioma specimen.20 These approaches were, however,
limited to quantifications of small tissue blocks and
did not encompass the entire dataset due to lack of
segmentation and post-processing tools.

In the present work, we present a numerical pipeline

developed for the automated processing and analysis

of large bio-imaging datasets with a software imple-

mentation usable with conventional hardware. We
developed a Matlab program for the quantification of

vascular networks in arbitrary 3D imaging volumes

upon segmentation with specially trained classifiers in

ilastik21,22 and automated macro-implementations

for Fiji23 for pre-processing steps. The presented imag-

ing pipeline enables large-scale, in-depth studies of

vascular architecture in entire organs without the

need for histological sectioning or advanced computer
hardware.

Methods

Animal models

To assess the vessel architecture in a tumor context we

injected 7.5� 104 U87-MG cells in nineweeks old, male

NOD Scid Gamma (NSG; Jackson Laboratories, Bar

Harbor, USA; n¼ 6 mice). Cells were injected into the

right basal ganglia as described previously.24 Mice were

sacrificed for imaging 21 days post tumor cell implan-

tation. We compared intratumoral vessel morphology

with nontumor bearing healthy control mice (nine-
weeks old, male NSG; n¼ 3 mice with six analyzed

brain hemispheres).
For intravital dye labeling of the vasculature, mice

were anaesthetized with ketamine 10% (90 mg/g body-

weight) and xylazinhydrochloride 2% (7.5mg/g body-

weight) and injected intravenously with 100 mL of

Texas red lycopersicon esculentum (Tomato) lectin
(12mg/kg, Vector laboratories TL-11,761mg/mL).

After 5min of circulation, mice were transcardially per-

fused in deep anesthesia using 20mL PBS followed by

20mL 4% PFA. Embryos and whole brains were

harvested and fixed overnight in 4% PFA, followed

by PBS.
To study vessel morphology in development, we

used threemonths old, female, pregnant C57BL6/6N

mice (in house breeding at DKFZ) and extracted the

embryos at E13.5 after injection with lectin of the

mother animal in deep ketamine and xylazine hydro-

chloride anesthesia (n¼ 4 embryos) using the protocol

described above. All experiments were approved by the
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regional animal welfare authority

(Regierungspr€asidium Karlsruhe, animal protocols:

G127/16; DKFZ383) and were in accordance with the

Federation for Laboratory Animal Science

Associations (FELASA, category B) and Society for

Laboratory Animal Science (GV-Solas, standard

guidelines) and with the Guide for the Care and Use

of Laboratory Animals published by the U.S. National
Institutes of Health. Reporting complies with the

ARRIVE guidelines (Animal Research: Reporting in

Vivo Experiments).

Clearing and imaging

Embryos and brains were cleared using the

FluoClearBABB protocol over several days.25 In brief,

samples were dehydrated using an ascending buthanol

series from 30 to 100% (pH adjusted) for 24h each.

Embryos were transferred into BABB (pH-adjusted)

and incubated for 48h. After setting the refractive
index (RI) of tissue to the RI of the clearing solution,

samples became transparent. For imaging, a selective

plane illumination microscope was used

(Ultramicroscope II, LaVision Biotec, Bielefeld,

Germany). Overview images of embryos were performed

using 1x magnification (3.25mm in-plane resolution).

For magnifications of the vessel architecture of the

embryo brain we used up to 4� magnification (800 nm

in-plane resolution). For adult brains, a magnification of

1� was used (in-plane resolution of 3.25mm) in order to

acquire the entire brain, avoiding the necessity of stitch-

ing. For all experiments, the step size between image

acquisitions in the transverse plane was 5mm.

Image analysis

Masks were manually drawn over the raw image data

to delineate different regions to be analyzed individu-

ally and saved in equal-sized TIFF-stacks. The imaged

vasculature was segmented from the raw images using

the interactive learning and segmentation toolkit

“ilastik”.22 Random forest classifiers in ilastik were

trained simultaneously on all datasets from each

cohort using a standard desktop PC. The trained clas-

sifiers were used on the datasets in an automated fash-
ion using batch-processing in ilastik to export the

binary vessel segmentations. The resulting vessel struc-

tures were smoothed with a 3D-Gaussian filter with

isotropic r¼ 1 (voxel units) using the 3D-smoothing

plugin in the ImageJ distribution Fiji 2.0.0-rc-43/

1.51r.26 Subsequently, the smoothed data were binar-

ized with threshold at half of the voxel value range. A

custom-written Matlab script was used to fill hollow

vessels and holes in the binary vessel representations

(Matlab version R2016b, Mathworks, Natick, MA,

USA). Vessel centerlines were extracted with a
custom-written macro using the skeletonization
plugin in ImageJ.27 Branching points, vessel endpoints,
and intermediate vessel skeleton voxels were automat-
ically identified using the AnalyzeSkeleton plugin in
ImageJ.4

Automated quantification

Custom codes were written in Matlab to automatically
quantify vascular parameters contained within an
imaged volume of arbitrary shape, size, and resolution.
To accelerate the quantification of large datasets and
enable incremental analyses of large datasets, the devel-
oped program can dissect a given volume into cuboids
of chosen dimensions. This allows for asymptotic stud-
ies of arbitrarily large acquisition volumes. Using dif-
ferent masks, independent regions of a segmented
dataset can be analyzed individually.

Each subvolume from the 3D tiling box layout of
chosen dimensions, imposed on the masked image
data, is quantified with basic geometric measures in
physical units. This includes the fraction of blood
vessel volume in tissue, fVV, the microvascular density
MVD (branch segments per mm3 tissue volume), and
the vessel surface and length densities, qA (mm2 lumen
area per mm3 tissue volume) and qL (mm vessel length
per mm3 tissue volume), for a basic assessment of tissue
perfusion density in each subvolume. The vessel seg-
ments between branching and/or endpoints are sepa-
rately quantified as tubular objects; mean radius �r,
segment length l, Euclidean vessel endpoint separation
d, lumen surface area A, and tortuosity s¼ l/d.28

Through an a priori labeling of each vessel branch in
the original, undissected dataset, the vessel properties
determined from different partitioning subvolumes are
matched and combined to deliver estimates of the geo-
metric properties of actual vessel branches without arti-
ficial divisions. The quantification algorithm is tailored
to treat vascular networks with many small, interwoven
structures sized close to the pixel resolution and has
been validated with well-defined ground truth models
for precision (see Supplemental methods and
Supplemental Figure 1 for further details).

Parameter distributions characterizing the geometric
vessel properties of given datasets are saved for the
vasculature in the individual subvolumes and automat-
ically combined to deliver a global quantification of the
tissue regions marked by the masks. The geometric
characteristics of individual vessel segments are saved
in lists with matched entries of �r, l, A, and s. These lists
can be processed further for statistical analyses. The
processing order of the partitions from the 3D grid
can be chosen sequentially or randomly and already
analyzed subvolumes can be merged for combined
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statistics while the basic analysis of individual subvo-

lumes is still running in parallel. This offers the possi-

bility to analyze parameter distributions statistically

before an image was entirely processed. This can be

useful with large datasets and limited computational

power. Analyses can be restarted and will continue in

case of a system failure or limited computational time

slots, making our pipeline useful for processing large

datasets. The developed numerical pipeline including

validation scripts and a user documentation are avail-

able from the authors upon reasonable request.

Statistical analysis

Separate Matlab codes were developed to process the

extracted results, conduct statistical testing and provide

data visualizations. Vessel property distributions and

parameters extracted from the sampled subvolumes

were compared between different tissue groups.

Statistical hypothesis testing between groups was per-

formed with the nonparametric Kruskal–Wallis test in

Matlab, using mean parameter values from each speci-

men. We used nonparametric tests because sample size of

n¼ 3 to 6 animals was too small to test for normal dis-

tribution. Histograms and 2D-distribution representa-

tions can automatically be created with optional

discrimination of vessel segments in certain radius-,

length-, or tortuosity-ranges. Data are presented as

mean� standard deviation (S.D.) and p< 0.05 was con-

sidered significant (*p< 0.05; **p< 0.01; ***p< 0.001).

Results

For dissecting the microvascular anatomy in its entire-

ty, we employed an intravital dye labeling approach

using intravenously injected fluorescent lectins.29

Lectins were injected, animals sacrificed and cleared

using the FluoClearBABB protocol (Figure 1(a)).

After clearing, imaging was performed by selective

plane illumination microscopy. Labeled vessels were

segmented semi-automatically in the entire dataset

based on edge and texture features and fluorescence

intensity. We analyzed various vessel parameters

including vessel density, segment length, radius, tortu-

osity, surface area, and ratio of vessel volume within

the tissue. The analysis generated data points for

5� 104 to 3� 106 vessel segments per sample. To dem-

onstrate the utility of the approach, we probed micro-

vascular features in development, physiological, and

pathological conditions.

Uncovering divergent microvascular architectures

in different brain regions

Healthy mice were injected with lectin-FITC, sacrificed

and cleared. After clearing of the whole brain, both

Figure 1. Ultramicroscopy of the microvasculature in healthy mice. (a) Experimental outline for tissue preparation and SPIM.
Healthy, female black six wild-type mice were injected intravenously with fluorescent lectins to label the microvasculature before
perfusion. (b) Ultramicroscopic image processing and three-dimensional view of the analyzed regions of interest in the healthy mouse
brain, magnified images (dashed boxes) of cortex, basal ganglia, and corpus callosum. Yellow dashed lines indicate the segmented
subregions. (c) Images of the acquired z-stack. Step size is 5 mm. The entire stacks consisted of �600–1000 single-plane images. Scale
bar¼ 500 mm and 100 mm in magnified images in B.
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hemispheres were recorded by ultramicroscopy (n¼ 6
hemispheres from n¼ 3 mice). In order to investigate
microvascular parameters in different regions of the
healthy brain, we extracted vascular parameters in the
cortex (grey matter), corpus callosum (white matter),
and basal ganglia using masks and counter masks
(Figure 1(b) and (c), Supplemental movie 1, 2). Each
brain region contained distinct vascular properties: The
cortex yielded highest variance in microvascular densi-
ty (MVD) (Figure 2(a)). Overall, the mean MVD in the
corpus callosum was markedly lower (3.5� 0.9� 104

branch vessels/mm3) compared to the cortex (5.1�
1.6� 104mm�3, p< 0.05) and basal ganglia (4.8�
0.5� 104mm�3, p< 0.05, Figure 2(a) and (b)). Also,
the corpus callosum showed lower mean partial vessel
volumes fVV (corpus callosum; 0.18� 0.05 vs. cortex;
0.25� 0.04, p¼ 0.01) and longer vessel segments
(corpus callosum; 26.2� 3.5 mm vs. cortex; 21.43�
4.5 mm, p¼ 0.02). Vessel segments in the corpus

callosum also showed a trend towards higher tortuosity

compared to the other regions (corpus callosum;

1.16� 0.03 vs. cortex; 1.13� 0.02 and basal ganglia;

1.14� 0.01, p> 0.05). Similarly, while the mean vessel

surface density qA did not differ significantly (corpus

callosum; 36� 23mm�1 vs. basal ganglia; 41�
10mm�1 and cortex; 38� 11mm�1, p> 0.05), the

vessel length density qL underlined the reduced vascu-

lar proliferation in the corpus callosum (corpus callo-

sum; 534� 95mm�2 vs. basal ganglia; 793� 75mm�2,

p¼ 0.004 and cortex; 737� 96mm�2, p¼ 0.01). Mean

vessel radius and surface area did not differ significant-

ly between the examined brain regions (p> 0.05, Figure

2(a) and (b)).

Quantitative assessment of tumor angiogenesis

To investigate microvascular dynamics in a pathologi-

cal paradigm, we employed the U87-MG glioma

Figure 2. Microvascular parameters in the healthy mouse brain. (a) Histograms show quantification results from ultramicroscopic
images and demonstrate significant differences between the indicated vessel parameters in different regions of the healthy brain. (b)
Whisker plots demonstrate vessel parameters of different regions in the healthy brain (median with 50% quantile and extremal values
(whiskers) from n¼ 3 mice for six analyzed brain hemispheres. * ¼p<0.05.
C: cortex; Cc: corpus callosum; BG: basal ganglia.
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model (n¼ 6 mice). After lectin labeling of the micro-

vasculature and clearing, tumors were divided into two

separate tumor compartments: the tumor periphery,

representing the infiltrative zone (outer 50% of the

tumor, as measured from the centroid of the mask in

the radial direction) and the tumor core (inner 50%).

We hypothesized that the tumor core might show

major microvascular differences compared to the

tumor periphery (Figure 3(a), Supplemental movie 3).

However, contrary to our hypothesis, most vessel

parameters did not differ significantly between the

tumor core and tumor periphery (Figure 3(b) and

(c)), except the fractional vessel volume fVV (tumor

core; 0.16� 0.03 vs. tumor periphery; 0.20� 0.03,

p¼ 0.05). The mean vessel length density qL (tumor

core; 511� 143mm�2 vs. periphery; 633� 164mm�2,

p¼ 0.2) and surface density qA (tumor core; 30�

15mm�1 vs. periphery; 34� 17mm�1, p> 0.05) did

also not differ significantly.

Probing the microvasculature in development

To further extend our approach and show the applica-

bility to developmental studies, we assessed the micro-

vasculature in embryonic mice (e13.5, n¼ 4 embryos).

Intravenous lectin injection of the mother animal

resulted in excellent labeling of the entire embryonic

microvasculature, including microvessels in the nervous

system, parenchymal organs (e.g. heart, liver, kidney),

and cardiovascular system with high signal-to-noise

ratio (Figure 4(a), Supplemental movie 4, 5). We

focused our analysis on the central nervous system

and compared microvascular properties of the brain

and spinal cord (Figure 4(a) to (c)). Analysis of vessel

Figure 3. Microvasculature remodeling in the U87 glioma model. (a) Ultramicroscopic image processing and three-dimensional view
of region of interest in mouse U87 glioma tumors. Yellow dashed line indicates the segmented tumor area. (b) Histogram repre-
sentation of quantified vessel parameters showing tumor core and tumor periphery. (c) Whisker plots are shown for the obtained
parameters of U87 mouse tumors (n¼ 6 mice). Scale bar¼ 500 mm.
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parameters demonstrated that the spinal cord exhibits

significantly longer vessel segments with less branches

compared to the developing brain (mean vessel segment

length, spinal cord; 24.6� 7.8 mm vs. embryonic brain;

13.8� 1.6mm, p< 0.05, Figure 4(c)). This resulted in a

larger vessel surface area in the spinal cord compared

to the brain (spinal cord: 775.6� 150.6 mm2 vs. embry-

onic brain; 483.6� 66.5 mm2, p¼ 0.02). Furthermore,

the mean vessel density was significantly lower in the

embryonic spinal cord compared to the embryonic

brain (spinal cord; 5.4� 2.3� 104 vs. brain; 15.3�
6.3� 104, p¼ 0.02). While the vessel length density qL
exhibited a wide distribution (spinal cord; 313�
246mm�2 vs. brain; 475� 306mm�2, p> 0.05), the

mean vessel surface density qA showed significant dif-

ferences (spinal cord; 28� 6mm�1 vs. brain; 47�
8mm�1, p¼ 0.02). The mean vessel radius, tortuosity,

and fractional vessel volume showed no significant dif-

ferences between the embryonic brain and spinal cord

(Figure 4(c)).

Discussion

Vascular patterning is crucial for understanding

embryonic development, growth, and pathology.

Cancer is one of the most notable examples, in which

vessel parameters influence the prognosis and treat-

ment outcome.30 Neo-angiogenesis has been attributed

Figure 4. Assessing microvascular parameters in development. (a) Ultramicroscopic image processing and three-dimensional view of
the brain and spinal cord in the mouse embryo (e13.5). Yellow boxes indicate magnified regions (brain and spinal cord). (b) Histogram
representations of the quantified ultramicroscopic images demonstrate significant differences in vessel parameters between brain and
spinal cord. (c) Whisker plots show parameter statistics for the spinal cord and brain microvasculature (n¼ 4 embryos). Scale bar is
500 mm in embryo images, 250 mm in magnified brain images, and 100 mm in magnified spinal cord images. *¼ p<0.05.
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as a main denominator for tumor progression and
metastasis. This has led to an increased interest in
employing inhibitors of angiogenesis to curb cancer
and antiangiogenic agents have become standard of
care for, e.g. ovarian cancer or renal cell carcinoma.31

In addition, there is also ample evidence to suggest a
crucial role of vasculature parameters for the success of
chemotherapeutic and immunotherapeutic treatment
regimens.32 Paradoxically, in other tumor contexts,
antiangiogenic treatments have been linked to earlier
progression, increased invasion, and metastasis forma-
tion.33 Impaired microvascular function may lead
to tumor hypoxia, a crucial factor associated with the
development of resistant cell populations.34 Therefore,
further investigations into mechanisms of angiogenesis
and possible druggable targets in preclinical models are
warranted.35

Ultramicroscopy and tissue clearing using light sheet
microscopy have gained a lot of traction in recent
years, especially in the field of neuroscience.17

However, despite the unprecedented 3D resolution,
the utility of the technology has been mainly limited
to qualitative studies.36,37 The quantitative analysis of
ultramicroscopy datasets was significantly hindered by
the lack of analyses protocols and tools to segment all
objects of interest in the complex and large 3D datasets
that can easily encompass several gigabytes from a
single acquisition. In our study, the analysis of each
sample generated, on average, 5� 104 (in embryonic
spinal cord) to 3� 106 single data points (in healthy
brain samples). The technique employed by us can ana-
lyze vessel radii as small as 3mm, limited by the image
resolution, and robustly generates the main morpho-
logical microvascular parameters without the need for
high-performance computational hardware or expen-
sive proprietary licenses for image processing software
(with the exception MATLAB).

To demonstrate the utility of our platform, we
analyzed whole embryos as well as healthy and tumor
containing brain samples. The technique is also ame-
nable to other organs with good labeling efficacy
(Supplemental Figure 2). After clearing, microscopic
image acquisition of a tissue sample took �4 h. We
employed ilastik22 to segment the entire vasculature
contained in the image stacks, which took 30–90min
for classifier training and �4–6 h for automated pixel
classification and TIFF-export of an image stack of
1GB in an 8-bit format (1766� 1284� 446 (�109)
pixels). The segmented “angiome” was quantified
using custom-written MATLAB code designed to ana-
lyze and calculate the length of vessels between
branches, radius, tortuosity, surface area, and various
vessel density parameters. The automated quantifica-
tion of a 1 GB dataset containing 200,766 vessel
branches took �1 h with a standard, quad-core

computer and 16GB of random access memory
(RAM). The entire processing pipeline can be executed
on a standard personal computer, with the feasible
image size being limited only by the RAM addressable
by ilastik and MATLAB.

Our developed processing algorithm enables incre-
mental analyses of large datasets, processing 3D data in
a partitioned manner and saving partial results. If the
MATLAB quantification is interrupted, the code can
be restarted with identical settings to continue where it
left off, sparing already quantified subvolumes. This
makes “asymptotic analyses” possible. If appropriate
for a given investigation, long analyses can be termi-
nated once the parameter distributions reach an
asymptotic state, where further processing of more ran-
domly sampled subvolumes is not expected to change
relative parameter distributions. Such methods may
become relevant for future investigations such as, e.g.
large-tissue mCT or high-resolution, large field-of-view
imaging modalities.

Our analysis of different areas of the healthy brain
demonstrated a significant difference in several micro-
vascular parameters, such as vessel density, tortuosity
and partial vessel volume between cortex, basal gan-
glia, and corpus callosum. Our analysis demonstrated
that white matter regions like the corpus callosum have
longer vessel segments with less branches and lower
vessel density, consistent with lower energy demands
of long-range axonal projections compared to grey
matter regions of the cortex and basal ganglia.38 This
finding was mirrored in the embryonic spinal cord
when compared to the embryonic brain where branch
length and branch density in the spinal cord was also
lower compared to the brain.

The analysis of U87 tumors was performed on the
tumor core versus tumor periphery. In contrast to our
hypothesis that the infiltrative tumor border might
have increased vascular densities and more aberrant
vessel morphologies compared to the tumor core,
there were only minor differences between the two
tumor regions, except for the mean fractional vessel
volume, which was higher in the tumor periphery.
The absence of significant differences between the
other vessel parameters might be explained by the
lack of necrosis and rather uniform vascular patterning
in U87 tumors at the stage of analysis (day 21 after
tumor cell implantation). It is well conceivable that
pathological angiogenesis kicks in only at later tumor
stages (e.g. day 35 after tumor cell implantation) or is
more prominent in other, more invasive brain tumor
models.39

We further demonstrate the value of our approach
for developmental studies in mice embryos. We found
significant differences between microvasculature pat-
terns of different organs in the embryo. Our analysis
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of the microvasculature of brain and spinal cord
revealed differences in vessel branch densities consis-
tent with the idea that the higher neuronal density in
the brain requires higher vascular supply. The spinal
cord consisted of longer vessel segments with fewer
branches compared to the brain, presumably because
of the long fiber tracts and lower neuronal densities in
the spinal cord compared to the brain.

The quantitative analysis presented here constitutes
a proof-of-principle study to showcase the developed
pipeline. The data processing and analysis can be easily
adapted to different experimental setups. Limitations
of our study include the necessity to obtain high-
quality optical recordings with high signal-to-noise
ratio in order to achieve robust segmentations. We
found that the trainable toolkit “ilastik” provided the
best segmentation of our data, offering flexibility and
customization to suit different image types, and did not
demand excessive processing power, but the segmenta-
tion step can be substituted with a method of choice.
Our technique includes semi-automatic segmentation,
data post-processing, and comprehensive quantitative
analyses. By using a partitioning approach, the analysis
of an arbitrarily formed and sized 3D image segmenta-
tion can be conducted on standard desktop and laptop
computers without the need for advanced computing
resources, such as computing clusters or graphics cards.

While there are different image post processing tools
available, such as Imaris or Amira to visualize, analyze,
and quantify microscopy data, our processing pipeline
was optimized to quantify complex vascular structures
with microvessels sizes at the scale of the image reso-
lution. With a vessel radius estimation tailored to the
microvascular scale and connectivity, as well as the
entirely automated quantification of an extensive set
of basic geometric parameters, our pipeline is able to
efficiently analyze vascular datasets. While Imaris and
Amira offer powerful capabilities for data visualiza-
tion, animation, and interactive exploration, their gen-
erality and ability to deal with large input images is a
disadvantage in comparison to our pipeline. Such pow-
erful image processing tools allow manual data explo-
ration but could in our hands not characterize
thousands to millions of vessels in a given dataset.

The vessel radii found in this study and consequent-
ly also fractional vessel volumes are most likely over-
estimated by the imaging procedure and limited
resolution inherent to our experimental setup. Since
most capillaries are on the order of one to two pixels,
the overlaying point spread function leads to an
“over-estimation” of the segmentation, manual, and
automated alike. At an axial resolution of 3–5 mm,
this can amplify capillary radii and vessel volumes,
leading to artificially large values. This constitutes a
systematic error throughout the experiment.

Additional post-processing steps, e.g. morphological
thinning of the segmented images can be applied for
correction.18 Statistical analysis of the presented data is
difficult to perform due to the wealth of data: we com-
pared the mean of each parameter per mouse, thus
averaging thousands of data points per animal in
order to not overestimate effect sizes in our statistical
analysis. Our approach could further be extended to
radiomics and atlas-based registration as previously
highlighted40 and different other quantitative measures
can be implemented in the piecewise analysis, such as
local connectivity and regularity parametrizations.18

In summary, ultramicroscopy is a fast and straight-
forward technique that generates large datasets of
entire organs or organisms. Our described “toolbox”
can be used to investigate physiological and patholog-
ical states as well as treatment regimens in disease
models. Imaging of the microvasculature using SPIM
served as a proof of principle; our processing pipeline
can be applied to 3D data from any imaging modality,
e.g. mCT, magnetic resonance angiography, laser-
scanning, or electron microscopy. Our approach can
obtain robust and quantitative microvascular parame-
ters, which could be easily expanded to other fluores-
cent objects of interest that can be quantified in a
partitioned manner, e.g. immune cell distributions,
neuronal projections, or migratory patterns of fluores-
cently labeled stem or tumor cells to quantitatively map
cellular 3D distributions in entire organs and intact
organisms.
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Supplemental methods
Automated partitioning analysis

After the automated dissection of a segmented and post-processed input dataset, each
subvolume of desired dimensions (in 3D) is analyzed individually. Different regions of
interest (ROIs), marked by manually drawn masks on the original image data beforehand,
are considered exclusively within the cuboid subvolumes, also with partial volume
coverage. The subvolumes are analyzed consecutively, either sequentially following the
linear index of the partitions, or in random order to allow for asymptotic analyses of very
large datasets. The partitioned analysis can be terminated and picked up again where
left off, by restarting the program with identical settings. Quantifications are conducted
using the post-processed image stacks, containing the binary vessel architecture, as
well as the tagged skeleton data with differentiated centerline voxels. The voxel size
(resolution) along each imaging dimension needs to be specified and is used to provide
results with physical units (in our study, on the scale of micrometers).

Before partitioning the masked image volume for quantitative processing, the original
vessel segments in the undissected image are labeled. When the analysis of the indi-
vidual partitions is finished (or while it is still running, with some partitions finished),
a separate script can be executed in a second Matlab instance to merge the results
present thus far. The vessel properties determined in the individual partitions are
combined to deliver estimates of true vessel segment properties without artificial cuts
through processing. This is done by comparing the branch labels within each partition
with the original, globally labeled data. Vessel lengths and surfaces are added, while
tortuosity and mean segment radii are calculated by a weighted average using the
partitioned segment lengths as weights. The finally determined vessel properties are
written to lists in text files in matching order, with an additional text file showing
the labels of the corresponding branches in the original dataset. Thus, the vessels
corresponding to different labels can be located in the original dataset for visual analysis.

Perfusion density quantifications

Vascular density measures are determined for each subvolume of predefined dimensions.
The fractional vessel volume fV V is given by the ratio of voxels identified as blood
vessels to the total number of voxels within a region of interest in the cuboid, marked
by the respective mask. The MVD is calculated as the number of individual vessel
segments per mm3 tissue volume within a masked region. Vessel segments are defined
by the skeleton’s branch voxels between two branching/end points.
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The microvascular surface density ρA is quantified for each subvolume to give a
measure of lumen surface area with respect to tissue volume under supply. The vessel
surface area is determined in physical units of mm2 using the discrete voxel intensity
gradients along each imaging dimension. The discrete gradient is calculated by subtract-
ing intensities of voxels with an offset of one voxel length along each dimension. Taking
the absolute value, the resulting image stacks show vessel edges along each dimension
in binary form. The edge information along each dimension is combined and linearly
interpolated between voxels to attain the vessel surface as a tessellation of voxel surface
elements with known physical area (see next subsection for details). The sum of all
surface elements in a volume is normalized by the physical tissue volume in mm3 to
provide the vessel surface density ρA in mm−1. The total Euclidean skeleton length is
normalized with the tissue volume to provide the averaged vessel length density ρL for
the region of interest in mm/mm3.

Individual vessel quantifications

Individual vessel segments between branching points are labeled and analyzed geomet-
rically within each processing partition. The segment length l is obtained as the sum of
Euclidean inter-voxel distances along the vessel centerline between branching points
and/or end points, considering physical voxel dimensions. The segment tortuosity τ
is simply characterized by the ratio τ = l/d, with the geodesic endpoint separation d
[1]. This dimensionless quantity is often called the distance metric and gives a simple
quantification of the degree of curvature of a vessel segment [2].

The mean radius r̄ of a vessel segment is determined as the average over all radius
values r along its skeleton line. For each voxel on the centerline of a branch, the
radius r̄ at that point is estimated using two methods. The first method is a simple
implementation using Euclidean distance maps, generated with the Matlab-function
‘bwdist’ [3]. For each skeleton point, the nearest background voxel in the binary vessel
dataset is identified to determine the corresponding physical distance using the voxel
resolution. This works best for isotropic resolutions, since the distance map does not
consider physical pixel sizes. This method can be deactivated with a Boolean flag in
the script if the image resolution is too anisotropic. In this case, only the following
method is used to estimate the mean segment caliber.

A second radius value for each skeleton point is estimated using the lumen surface of
the vessels. Along each dimension, 2D-slices of the imaged volume are consecutively
scanned and vessel boundary voxels, surrounding each skeleton segment, are probed
to average their physical distance from the centerline. The distances in the standard
scanning slices (x-y-, x-z, and y-z plane) are projected onto the plane perpendicular
to the 3D orientation of the skeleton segment at the respective point of intersection
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with the scanning plane using a trigonometric correction with sin(α), where α is the
angle between the local 3D vessel skeleton orientation and the scanning plane at the
point of intersection P (see supplemental Fig. 1, A,B). This correction provides an
estimate of the radius values perpendicular to the vessel centerline. In each scanning
slice, the cut vessels with at least one skeleton pixel inside are processed to attain a
radius estimate from every pixel of the respective vessel cross section’s perimeter (see
supplemental Fig. 1, A,B for details). From all three scanning directions, the values
accumulated for each vessel segment are averaged to attain an estimate of the segment’s
mean radius.

The mean radius values from the second method are averaged with the radii from the
distance map method with equal weighting, unless deactivated due to strong resolution
anisotropy. The mean segment radius r̄ is quantified as the average of all values
determined for the respective vessel segment. During the second radius estimation
method, the area of each vessel surface element is added up to quantify the lumen
surface area A in µm2. Each geometric property is associated with the respective
segment label in a subvolume under analysis and saved in lists.

Vessel branches in the original input data were labeled before dissection. The proper-
ties of vessel instances divided by artificial dissection are determined by combining the
corresponding vessel piece characteristics. The mean branch radius r̄ and tortuosity τ
are averaged, using the respective segment lengths in different partitions as weights; the
length l and surface area A are summed for each vessel labeled in the original, masked
image volume.

Evaluation of quantification accuracy

Most quantitative measures determined by the custom algorithm in Matlab are well-
defined and straight-forward to calculate numerically (see previous subsections), given
a valid segmentation of the imaged vasculature. For realistic vessel networks with
tortuous segments and complex connectivity, the mean radius is an ill-defined property,
which is nontrivial to determine. Initially, we tried implementing a radius quantification
using virtual planes, oriented perpendicular to the 3D skeleton at each pixel of the
skeleton with different interpolation techniques and corrections to project and discern
individual vessel parts in arbitrarily placed planes through the discrete image volume.
This turned out to be problematic due to the interpolation of structures sized near the
resolution limit, thus we restarted with an entirely new approach avoiding interpolation,
specifically tailored to data with many relevant structures around the image resolution
(see previous subsection for details).

The radius quantification we present in this work was validated using synthetic
TIFF-stacks created with a custom Matlab script, holding “segmented” cylinders with
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well-defined radii at different 3D orientations and pixel dimensions of 3.25 x 3.25 x
5µm. Each synthesized volume contained 10 straight cylinders with identical 3D
orientation and different positions, but no intersections in order to avoid variable radii
at crossings (see supplemental Fig. 1, E,G for examples and relevant orientation
angles). The “polar” angle θ between the original imaging plane (3.25µm resolution)
and the orthogonal z-axis in stack direction (5µm steps) was varied in steps of 10◦

between 0◦ and 90◦, covering the non-periodic range. The in-plane angle ϕ between the
x- and y-axes was set to 0◦ and 45◦ to cover the two in-plane orientations that yield
the highest difference in effective pixel lengths of the in-plane axis perpendicular to
the cylinder orientation (3.25µm and

√
2 · 3.252 ≈ 4.6µm). Synthetic volumes were

produced with cylinder radii of 3, 6, 8, 10, 12, and 15µm, inspired by the radius
distributions found in the results of our study (see main Figs. 2-4).

Our assessment of the radius quantification accuracy is summarized in supplemental
Fig. 1, C, presenting the mean bias and its standard deviation for different 3D orien-
tations and radius values. Since the accuracy of the quantified radii strongly depends
on the segment’s orientation, more differentiated validation results are presented in
supplemental Fig. 1, D,F. For each modeled cylinder radius, the mean quantified
radii (from respectively 10 cylinders) are plotted with standard deviations for each
θ and ϕ angle individually. The validation shows that, under most circumstances,
the quantified radii agree very well with the ground truth. Since the algorithm was
optimized for structures near the resolution limit, the accuracy is best for small vessels
with mean radii r . 10µm, where most orientations yield deviations below 1µm, with
an exception for large cylinders at very small angles θ ≈ 10◦. Averaging over all angle
orientations, the mean quantification bias and variance are well within the limits of one
pixel size, as summarized in supplemental Fig. 1, C.
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Supplemental figures
A) B) C)

D) E)

F) G)

Supplemental Fig. 1: Quantification details and validation of determined
vessel radii. A) Sketch of a schematic 2D scanning plane with several vessels cutting
the plane (the tissue background is colored in gray). The central top vessel area (with
black outline) does not contain a skeleton segment in the depicted slice and is therefore
ignored in this slice. The vessel cuts containing labeled skeleton pixels are processed
by iterating over the perimeters of each area, marked by dashed black-colored lines,
matching the label color of the nearest contained skeleton branch. As demonstrated in
half of the bottom right vessel (purple), for each pixel on the perimeter of the cross
section, the distance to the nearest skeleton pixel is determined (considering the real
physical pixel resolution, making this approach stable even for very anisotropic pixel
dimensions). In cases where differently labeled skeleton branches lie within one vessel
cross section, the perimeter is processed piecewise with pixel distances assigned to
their closest branch (see top right and bottom left cross sections). Each radius value
determined within a scanning plane (x-y, x-z, and y-z plane), called rm, is projected
onto the plane orthogonal to the local 3D skeleton orientation. B) Sketch of a scanning
plane cutting a vessel as seen from above, with angle α between the skeleton and the
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scanning plane at skeleton pixel P. If a segment is not parallel to the imaging plane, the
measured radius rm is multiplied with sin(α) for a corrected radius rc, approximating
the true radius orthogonal to the vessel orientation. The rc values attained from all
perimeter pixels along each scanning direction are averaged for each branch label, which
yields mean segment radii based on the lumen shape. C) Accuracy validation summary
of the implemented radius quantification from analyzing model volumes with differently
oriented cylinders with pre-defined radius. The true cylinder radius is on the x-axis
and the radii quantified by the algorithm are shown as mean and standard deviation
over all tested vessel orientations (see panels D and F for details). The true radius
is plotted in black beneath the blue error bar lines and a deviation of the in-plane
resolution (3.25µm) is marked by thin dashed lines, with the z-resolution range (5µm)
as thin dotted lines. Panels D and F present the mean quantified radii of cylinders with
different orientations between the x and y axis (defined by the angle ϕ) and the z-axis
(parametrized by θ, see panel E) and predefined radii of r = {3, 6, 8, 10, 12, 15}µm.
The true radius is plotted as a bold dashed, horizontal line, while the quantified radii
of ten identically oriented but differently positioned cylinders are presented for each
angle θ between 0◦ and 90◦ through the mean and standard deviation among those ten
cylinders with blue connected error bars. For each model radius, the mean determined
radius and its standard deviation over the θ orientations is shown as orange error bars
across the entire range. The pixel resolutions are shown, added to and subtracted from
the true cylinder radius, by thin, dashed and dotted lines. D) The results for different
θ orientations with ϕ = 0◦, i.e., the cylindrical axis running parallel to the x-direction
with 3.25µm pixel size. F) The same analysis with cylinders oriented diagonally in the
x-y-plane with ϕ = 45◦. E) Visualization of the angles θ and ϕ with a 3D rendering of
synthesized cylinders (generated by the Volume Viewer plugin in Fiji) with a radius of
8µm at a resolution of 3.25 x 3.25 x 5µm and θ = 10◦. G) Volume rendering of 8µm
validation cylinders with θ = 10◦ and ϕ = 45◦ at our imaging resolution.
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Supplemental Fig. 2: Different organs of the mouse embryo in ultramicroscopy that
can be used for analysis and quantification (A). 3D rendering and maximum intensity
projection of a mouse embryo after lectin FITC labeling of the mother animal (B).
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Supplemental movie captions
Supplemental movies available online under https://doi.org/10.1177/0271678X20961854.

Supplemental movie 1: Ultramicroscopy of the healthy mouse brain. Raw im-
ages (left column) and segmented images (right column) are shown.

Supplemental movie 2: Healthy mouse brain regions (basal ganglia, corpus callosum,
and cortex) that were used for quantification.

Supplemental movie 3: Ultramicroscopy of U87 tumor bearing mice with segmented
SPIM images after clearing (left column) and segmented images after application of
the mask (right column). Tumor periphery (pseudocoloured in yellow) and tumor core
(pseudocoloured in blue) are shown.

Supplemental movie 4: Ultramicroscopy of the mouse embryo. Raw SPIM images
after clearing (left column) and segmented images before (middle column) and after
application of the mask (right column) are shown.

Supplemental movie 5: Ultramicroscopy of the mouse embryo spinal cord. Raw
SPIM images after clearing (left column) and segmented images before (middle column)
and after application of the mask (right column) are shown.
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Glioblastoma multiforme 
restructures the topological 
connectivity of cerebrovascular 
networks
Artur Hahn  1,2, Julia Bode3, Thomas Krüwel3, Gergely Solecki4,5, Sabine Heiland1, 
Martin Bendszus1, Björn tews3, Frank Winkler4,5, Michael O. Breckwoldt  1,6 & Felix T. Kurz1

Glioblastoma multiforme alters healthy tissue vasculature by inducing angiogenesis and vascular 
remodeling. To fully comprehend the structural and functional properties of the resulting vascular 
network, it needs to be studied collectively by considering both geometric and topological properties. 
Utilizing Single Plane Illumination Microscopy (SPIM), the detailed capillary structure in entire healthy 
and tumor-bearing mouse brains could be resolved in three dimensions. At the scale of the smallest 
capillaries, the entire vascular systems of bulk U87- and GL261-glioblastoma xenografts, their 
respective cores, and healthy brain hemispheres were modeled as complex networks and quantified 
with fundamental topological measures. All individual vessel segments were further quantified 
geometrically and modular clusters were uncovered and characterized as meta-networks, facilitating 
an analysis of large-scale connectivity. An inclusive comparison of large tissue sections revealed that 
geometric properties of individual vessels were altered in glioblastoma in a relatively subtle way, 
with high intra- and inter-tumor heterogeneity, compared to the impact on the vessel connectivity. A 
network topology analysis revealed a clear decomposition of large modular structures and hierarchical 
network organization, while preserving most fundamental topological classifications, in both tumor 
models with distinct growth patterns. These results augment our understanding of cerebrovascular 
networks and offer a topological assessment of glioma-induced vascular remodeling. The findings 
may help understand the emergence of hypoxia and necrosis, and prove valuable for therapeutic 
interventions such as radiation or antiangiogenic therapy.

Vascular networks are transport networks that provide vital substances such as oxygen and nutrients to living tis-
sue and remove biological waste products. Their characteristic morphology allows regulation of the surrounding 
biological environment, including thermoregulation and physiological ion balance to maintain tissue homeosta-
sis1. Motivated by energy cost minimization (Murray’s law2,3), healthy vasculature typically follows a hierarchical 
arterio-venous branching scheme, with blood flowing through thick arteries, successively branching into thinner 
arterioles, followed by capillaries and a similarly organized venous system, draining the tissue in vice-versa4. 
Forming efficient transport networks, healthy vessel constructs are inherent to tree-structured arterial and venous 
parts, interwoven by dense, regular capillary beds5–7.

Malignant tumors disrupt the local biochemical environment and regulation of pro- and antiangiogenic 
factors, such as vascular endothelial growth factor, angiopoietins and Ang-28,9. As a solid tumor grows, the 
pre-existing vasculature is adapted and constantly modified by several mechanisms including angiogenesis10, 
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vessel dilation11, regression, constriction, and occlusion12,13. The complex interplay of these processes, dynam-
ically regulated during tumor progression by biochemical, metabolic, mechanical, and hydrodynamic influ-
ences14,15, leads to highly heterogeneous vessel architectures throughout the tumor volume8,16, that may impact 
response to radiotherapy17.

Extensive research has been conducted to investigate the structure of tumor vasculature and how it sets itself 
apart from healthy vessel constructs. Most studies of this nature have focused on local vessel properties, such as 
microvascular density (MVD), vessel segment geometry and space-filling properties (see, e.g.18–21 and references 
therein). Although sophisticated models have been developed to analyze global properties of large-scale vessel 
architectures in theory22,23, topological analyses of vascular networks that consider properties such as local clus-
tering of vascular nodes or inter-node connectedness remain scarce and either focus on two-dimensional vascular 
networks24, smaller three-dimensional networks, e.g., of lymph nodes25, or subnetworks, including only certain 
vessel types26–30.

In general, experimentally extracted vessel networks are usually constrained to either small imaging volumes 
or limited resolution; full vascular networks in brain tissue, including small capillaries, could only be obtained 
histologically or by laborious combinations of multi-scale imaging modalities, as, e.g., in31,32. A recent approach 
using fluorescence ultramicroscopy, however, made it possible to image detailed micro- and mesoscopic vascular 
structures of entire organs33,34 and was successfully applied to mice brain35,36. A detailed structural and functional 
quantification of such entire vascular networks may unveil previously unknown consequences of vascular remod-
eling and aid the development of targeted antiangiogenic therapies.

In this study, we present numerical quantifications of blood vessel networks from entire GL261 and U87 glio-
blastoma xenografts in mice, as well as comparable healthy brain regions in a mouse model, including capillaries 
with diameters down to approximately 3 μm. Geometric properties of the vasculature, extracted from tumors and 
healthy brain hemispheres, were quantified using custom-written, highly scalable codes in Matlab (Mathworks, 
Natick, MA, USA). As in other quantitative studies of multi-scale vessel data, e.g.37, the fractional blood Vessel 
Volume (fVV), vessel length density ρL, and vascular surface density ρA were determined and the individual vessel 
segments were characterized by their mean radius r , length l, tortuosity τ  and surface area A. Augmenting the 
geometric analysis with graph theoretical analysis tools, the vessel architectures are modeled as undirected net-
works to reveal local and nonlocal topological properties. The connectivity characteristics are studied on multiple 
length scales with the help of a network theoretical community paradigm38.

High local heterogeneity within and among tumors makes a global geometric characterization of tumor vas-
culature difficult. Nevertheless, one would expect the mechanisms of vascular remodeling during tumor growth 
to reflect in the global network topology of the emerging vessel constructs. The graph theoretical framework 
offers powerful tools for the assessment of global network characteristics of large vascular systems, encompass-
ing 105–106 constituent segments. We present network theoretical quantifications on the largest cerebrovascular 
networks studied so far, resolve basic topological characteristics of healthy brain vasculature, and show how the 
vascular connectivity changes in U87 and GL261 glioblastoma.

Methods
Data acquisition. Tissue preparation and imaging. 3D vessel morphology was imaged ex vivo using fluo-
rescence light sheet microscopy as described before35. In brief, we injected . ⋅7 5 104 U-87MG (ATCC HTB-14) 
cells in 9 week old, male NOD Scid Gamma mice (NSG, DKFZ, Heidelberg) and 105 GL261 glioma cells (National 
Cancer Institute NCI, Bethesda, MD, USA) in 6–8 week old, female C57Bl/6J mice (Charles River Laboratories, 
Sulzfeld, Germany; n = 6 mice). The cells were tested biweekly for mycoplasma contamination with negative 
outcome. Cells were diluted in 5 μl sterile phosphate and buffered saline (PBS, Sigma-Aldrich Chemie GmbH, 
Taufkirchen, Germany) and injected in the striatum of the right hemisphere, 2 mm lateral and 2 mm ventral of the 
bregma. Respectively, =n 6 animals with glioblastoma were compared against =n 6 brain hemispheres from 

=n 3m  healthy mice as controls. All animal experiments were conducted in accordance with appropriate guide-
lines and approved by the regional ethics committee in Karlsruhe, Germany (permit numbers G223/14, G187/10, 
G188/12, G145/10, and G287/15).

21 days post tumor cell implantation for U87 specimens and 28 days post injection for GL261 mice, the 
animals were injected intravenously with 300 μl of lectin-FITC (Sigma-Aldrich, St. Louis, MO, USA) at a con-
centration of 1 mg/ml. After 3 minutes of incubation, mice were sacrificed by a ketamine/xylazine overdose. Mice 
were transcardially perfused with 20 ml PBS and 20 ml 4% PFA. The brain was explanted and optically cleared 
using the FluoClearBABB protocol34. Upon successful tissue clearing, Selective Plane Illumination Microscropy 
(SPIM) was employed to image the microvasculature in the entire brain by fluorescent excitement of the lectin 
marker (3.25 × 3.25 μm in-plane resolution and 5 μm between slices in the transverse plane) with the following 
acquisition parameters on an Ultramicroscope II (LaVision Biotec, Bielefeld, Germany): 100% laser power, 5 μm 
stepsize, dynamic focus on (5–10 steps), Andor camera exposure time of 686.345 ms, 16-bit low noise gain, left 
and right light sheet together.

Post-processing. The acquired image stacks were segmented using the interactive learning and segmenta-
tion toolkit ilastik39. To reduce noise, the binary vessel representations attained this way were smoothed with 
a 3D-Gaussian filter with isotropic standard deviation σ = 1 (voxel units), using the 3D-smoothing plugin in the 
ImageJ-distribution Fiji 2.0.0-rc-43/1.51r40. The volume was again binarized with intensity threshold at half of the 
maximum voxel value. A self-written script in Matlab was used to fill holes in the binary structures (i.e. “hollow” 
vessels) to correct for segmentation artefacts. A self-written Matlab script further reduced noise by removing 
isolated voxel bunches with a volume of less than a sphere with a 6 μm radius (based on 6-connectivity41).
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The skeletonization algorithm42 in ImageJ was used to extract the vessels’ center lines. The plugin 
AnalyzeSkeleton43 assigned a tag to each skeleton voxel, identifying end-points (with less than two neighboring 
skeleton voxels), junctions (with more than two neighbors), and so-called slab voxels (with exactly two neigh-
bors). The tagged skeletons were later used for vessel/node labeling and connectivity list construction.

Binary masks were manually drawn over each image stack to select the tumor volume and corresponding 
regions in the healthy brain hemispheres for analysis. Care was taken that only well-resolved regions with min-
imal blurring were incorporated in the control datasets. This comprised the inner parts of the brain, including 
the midbrain, hippocampus, thalamus, hypothalamus, septum, striatum, caudate, putamen, amygdala, and inner 
sections of the cerebral cortex and cerebellum. The ventricular system, exhibiting false fluorescence, was blinded 
by the masks. Tumor boundaries were assessed visually by two neuroradiologist physicians based on microvas-
cular anomalies (increased irregularity and overall tortuosity) in the tumor region. Tumor cores were masked 
separately based on a transition within the tumor vasculature from a more dense outer shell to a less vascularized 
center, presumed to exhibit hypoxia.

As detailed in41, segmentations are often ambiguous at structure boundaries, which can have great effects on 
vessel geometry at the given resolution. We suspect the images to be subject to “fluorescent overexposure”, which 
would cause background voxels to be illuminated and registered in the segmentation, causing vessels to appear 
thicker. To compensate for this over-fluorescence and over-segmentation, we implemented a circumferential 
thinning in Matlab, which eliminates the boundary layer voxels from the segmented structures, with the excep-
tion of voxels constituting the skeleton. All processing steps conducted leave the network topology unchanged 
by definition.

Geometric and topological analysis. Vessel geometry. The masked, binary image stacks were processed 
in Matlab R2016b (Mathworks, Natick, MA, USA) using custom written codes. The fraction of blood-filled tissue 
volume marked by perfused vessels was determined in a tiling box approach, quantifying the fractional vessel 
volume, fVV, with an isotropic resolution of 500 μm on the shrunken tissue. The same cubic subvolumes were 
used to determine the microvascular density, MVD, here defined as the number of individual vessel segments per 
mm3 tissue volume (after shrinkage due to tissue clearing). The vessel length density, ρL, and vascular surface 
density ρA, were defined as the total vessel length per shrunken tissue volume in each sample (mm/mm3), and as 
lumen surface area per tissue volume (mm2/mm3), respectively.

Geometric properties of the individual vessel segments, including mean radius r , segment length l and surface 
area A, were determined using custom Matlab codes on the binary and skeletonized image stacks. A detailed 
mean radius calculation was implemented along branch lines. The tortuosity τ of each vessel segment was quan-
tified by the ratio of true vessel length l and Euclidean endpoint separation d as τ = l d/ , often referred to as the 
distance metric44,45.

Network topology. To quantify the topology of the vasculature, the branching point connections were modelled 
as an undirected network by interpreting vessel branching and end points as nodes, interconnected by vessel 
segments as edges. Utilizing graph theory, the entire systems’ connectivity properties could be quantified, which 
enables an assessment of topological characteristics on different scales and allows for comparisons with random 
graph models and other types of complex networks. The topological properties under consideration are described 
in the following.

Scale-free characteristic. In each vascular network, the degree k of every node, i.e. the number of attached vessel 
branches, was determined, delivering the degree distribution P(k). The relative frequency distributions P(k) were 
modelled with a power law: ∼ γ−P k k( ) , introducing the degree exponent γ. It has been found that many real 
networks exhibit such degree distributions, often with γ≤ ≤2 3, identifying them as “scale-free networks46–48”.

Small-world characteristic. The “small-world” properties49,50 can be assessed with three topological measures: 
the characteristic path length L, the network diameter D, and the average clustering coefficient C. While, along 
with the total number of nodes N, L and D mirror global network traits, C offers insight into the nature of local 
node connectivity and the tendency towards forming graph theoretical cliques51.

The mean clustering coefficient C of a network is determined as the average of the clustering coefficients Ci of 
the individual nodes ∈ …i N{1, , }n . The clustering coefficient Ci can be defined as the ratio of the number of 
edges between the direct topological neighbors of vertex i and the maximum number of edges connecting all of 
its neighbors51. For a node i with ki neighbors and Ei connections between these neighbors, the clustering coeffi-
cient of the vertex is given by = −C E k k2 / ( 1)i i i i .

The characteristic path length L, also called the average shortest path length, describes the mean number of 
edges on a geodesic to link any two nodes connected by a path on the graph. An implementation of Johnson’s 
algorithm for the shortest paths problem was used from the MatlabBGL library version 4.052. The small-world 
property is associated with an exceptionally slow rise in L as the network size Nn grows53. The network diameter 
D is given by the maximum of all shortest paths, i.e. the greatest node pair separation in the topological sense. The 
diameter D can reflect the degree to which the small-world property is globally persistent.

Community unfolding. Expecting a hierarchical branching scheme2,3,6,7,54 with a tolerance for locally clustered, 
lattice-like capillary structures55–57, a modularity-based clustering approach was taken in this study. Using the 
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Louvain community unfolding algorithm58,59, the networks were partitioned recursively with the aim of maximiz-
ing the intracommunity connectivity while keeping intercommunity connections sparse.

The relative dominance of intracommunity edges in a partitioned network can be quantified by the modularity 
Q, defined as58:
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with −1 ≤ Q ≤ 1. For a weighted network, the adjacency matrix element Aij holds the weight of the edge connect-
ing nodes i and j, = ∑k Ai j ij is the weighted degree of node i, ci is the community that node i is assigned to, 

= ∑m Aij ij
1
2

 is a normalization factor (the sum over all edge weights) and δ(u, v) is the Kronecker-Delta with 
δ =u v( , ) 1 for =u v and δ =u v( , ) 0 otherwise.

Briefly, the Louvain method starts with every vertex assigned to its own community and then iteratively moves 
nodes to neighboring communities, always seeking an increase in modularity Q. Once a local maximum in Q is 
reached, the algorithm delivers a level of clustering with each node assigned to a community. In the next step, 
these communities are taken as meta-nodes with the intercommunity connections as edges. The clustering pro-
cess is repeated recursively on the resulting meta-networks until no more reassignments can increase the mod-
ularity and a global maximum in Q is reached. Each local maximum in Q is expected to reflect the modular 
structure of the network at a different scale58.

Community structure. In order to get a more comprehensible view of the giant networks concerning large-scale 
structures, the spatial distribution and structure of the uncovered communities were studied. We consider a com-
munity j, comprised of a subset ⊆ …Q N{1, , }j n  of = | |n Qj j  nodes from the total of Nn vertices. With the spatial 
coordinates →xq, ∈q Qj, of each node assigned to community j, the cluster’s node centroid →rj  could be determined: 
→ = ∑ →

∈r x n/j q Q q jj
.

The spatial extent Rj of community j can be parametrized by the mean Euclidean distance of its constituent 
nodes ∈q Qj from the community centroid →rj : = ∑ |→ − →|∈R x rj n q Q q j

1

j j
. In the topological sense, the size of a 

community is usually determined by its number of nodes nj
53. In the context of vascular networks, another sensi-

ble cluster size parametrization is the number of vessel segments (edges) ej included in cluster j.
A community’s topological perimeter is typically understood as the number of nodes in the community which 

are involved in connections to other communities53. A closely related quantity in the vascular context is the num-
ber of connecting edges of cluster j to other communities, reflecting the cluster’s supply situation. This measure is 
regarded as the perimeter P in this study.

Community connectivity. Each community was treated as a meta-node with weighted intercommunity edges, 
inherited from connected basic nodes in different clusters. The location of meta-node j was interpreted as the 
community centroid →rj , while its size is reflected by the parameters nj, ej and Rj. The community degree, defined 
as = +k e P2c j j j, , is a measure for the importance of cluster j as a supply entity in the network, summarizing size 
and connectivity in analogy to unclustered networks with allowed self-connectivity.

Graph theoretical quantifications of the clustered meta-networks include the assessment of degree distribu-
tions P(kc) and degree relations of neighboring communities, clustering coefficients Cc, as well as characteristic 
path lengths Lc and network diameters Dc. With the spatial location of every cluster, →rj , the shortest paths between 
communities were studied depending on their physical separation Δ (Δ = |→ − →|r rij j i  for communities i and j).

All statistical testing was conducted using the Kruskal-Wallis-Test, available with Matlab. This is a nonpara-
metric one-way ANOVA, which does not assume a Gaussian distribution of samples.

Results

Glioblastoma can mimic the large scale vessel geometry in healthy brain tissue. The data acqui-
sition process for the results presented is illustrated in Fig. 1a. In healthy controls, we found a mean fractional 
vessel volume of 〈 〉 = . ± .fVV 9 8 3 3%h  (with standard error of mean), which is in reasonable agreement with 
documented values of an intracranial mean 〈 〉 = . ± .fVV 5 8 0 4%ic  and maximum 〈 〉 ≈ .fVV 7 9%max  in the 
medulla and cerebral cortex, determined from micro-CT measurements at 20 μm isotropic resolution60. The 
incorporated 3D volume tiling with 500 μm cubes comprised a total of 1265 boxes in healthy tissue, 871 in U87 
tumors (101 in the core), and 364 in GL261 tumors (76 in the core). In total, approximately 4.4 million healthy 
vessel segments were compared to 1.8 million vessels in U87 glioblastoma (21 400 in the core region) and 380 000 
vessels in GL261 tumor tissue (22 200 in the core). Table 1 summarizes the mean geometric properties of the tis-
sue samples under consideration.

Distributions of the fractional vessel volume fVV and microvascular density MVD, determined over 500 μm 
cubes, were positively skewed in all tissue types (Fig. 1b,c). Values were significantly lower in full GL261 tumors 
(fVV: p = 0.007; MVD: p = 0.004 from testing with 6 vs. 6 sample means), while U87 glioblastoma showed density 
distributions similar to the healthy controls, when including the periphery (Table 1). The U87 tumor cores exhib-
ited more heterogeneity than the GL261 models. On the 500 μm scale, the U87 tumors featured regions with 
considerably decreased branching density MVD, while the fVV did not show matching voids (Fig. 1b,c). While 
vessel calibres and lengths were virtually unchanged in the full U87 specimens, the core vessels showed consider-
ably larger radii and branching lengths, which can account for heightened fVV at relatively low MVD. The GL261 
model showed opposite trends in the core, with shorter, thinner vessels, resulting in lower fVV despite higher 
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MVD. The vessel length density ρL was significantly lower in all tumor samples compared with healthy controls 
(U87 full: = .p 0 01; GL261 and cores: = .p 0 004 from testing with, respectively, 6 sample means, Table 1).

The increased vessel length in U87 glioblastoma, and especially its core, suggests suppressed branching and 
vessel occlusion, while the shift towards shorter segment lengths and smaller radii suggest more active 

Figure 1. Data acquisition and processing with geometric quantifications. (a) Schematic illustration of 
experimental procedures, including tumor cell and fluorescent marker injections, brain resection and clearing, 
with photographs of uncleared and cleared brains with cm scale, and Selective Plane Illumination Microscropy 
(SPIM). In the second row, an original image from a stack of a healthy mouse brain is presented on the right, 
with the binary segmentation overlay in red to the left (see Supplementary Movies 1, 2 and 3 for segmentation 
results in more detail). Below the brain segmentation image, an average intensity projection from a 200 μm 
thick section of a segmented, noise-filtered, and hole-filled image stack of a U87 glioblastoma is shown. To the 
right, the skeletonized version of the same dataset is presented, with branch voxels in orange and branching 
points in magenta. The vascular network quantifications on this post-processed data are illustrated in the last 
row. The vascular morphology assessment is clarified in a cube of 130 μm side length, marking a radius value r, 
length l and endpoint-separation d, as well as a segment’s surface area A. Using the vascular skeleton, the 
network topology is studied, which is illustrated by a clustered graph, presenting the spatial distribution of 
vessel communities in a U87 glioblastoma. From the geometric quantifications, relative frequency distributions 
of (b) fractional vessel volume fVV and (c) microvascular density MVD in cubes with 500 μm side length, and 
distributions of geometric characteristics of all individual vessel segments are presented: (d) mean vessel radius 
r , (e) segment length l, (f) surface area A, and (g) segment tortuosity τ.
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angiogenesis in the GL261 tumor core (Fig. 1d–f). The more sharply peaked radius distribution suggests a flat-
tened branching hierarchy in glioblastoma with respect to healthy vasculature3. The lumen surface area A per 
vessel segment is correlated with the length l and radius r , showing more clearly the opposing trends in U87 and 
GL261 vessel remodeling. The vessel tortuosity τ approximately followed shifted exponential distributions (with 
τ ≥ 1 by definition) in all tissue types (Fig. 1g) and is characterized by the median τ and 95%-quantile τ95 in 
Table 1.

The vessel tortuosity τ  again showed distinct alterations in each tumor model. In U87 glioblastoma and its 
core, both the median τ and upper quantile τ95 increased moderately from healthy controls to tumor cores 
( < .p 0 01 for core vs. control). In contrast, in GL261 models, the median τ decreased towards the core, while τ95 
strongly increased ( < .p 0 01 for full networks and cores vs. controls); the GL261 tumors upheld a large number 
of relatively straight segments with several very tortuous ones. Such heterogeneity with a tendency towards 
increased tortuosity is consistent with the findings of previous studies37. Analogous tests against healthy tissue on 
the remaining geometric vessel properties did not indicate statistical significance (〈 〉r : > .p 0 4; 〈 〉l : > .p 0 1; 〈 〉A : 

> .p 0 1 for all tumor sets, including cores). Extended sample sizes could show that the mean vessel tortuosity, if 
accessible, may serve as a biomarker for tumor vasculature, supporting previous findings in humans61,62.

Altered network topology in glioblastoma multiforme. We present the first topological quantifi-
cations on cerebrovascular networks of such size and resolution. The custom-written codes were validated on 
functional human brain networks previously quantified63 to assure correct numerical implementations.

Heterogeneous effects on local vessel connectivity in different glioblastoma types. By modeling branching and 
vessel end points as the nodes of a network, interconnected by vessel segments as edges, the connectivity in such 
large systems can be characterized using graph theory41,64. In accordance with an elevated MVD (edge density), 
the larger healthy tissue samples also featured higher node densities ρn, leading to healthy networks of larger size 
Nn and Ne compared with tumor networks (Table 2).

The degree k of a node corresponds to the number of vessels meeting at that vertex. The vascular skeletons 
exhibited high degree nodes, presumably at the intersection between arterial and venous tree branches with the 

〈V〉 mm3 〈fVV〉% 〈MVD〉 · 103 mm−3 〈ρL〉 mm−2 〈ρA〉 mm−1 〈R〉 μm 〈l〉 μm 〈A〉 μm2 τ τ95

Healthy networks 14.7 ± 4.1 10.3 ± 3.7 53 ± 10 980 ± 99 25.4 ± 10.0 . + .
− .

4 9 1 7
1 2

+
−

19 15
9

+
−

505 472
240

1.071 1.453

U87 full networks 8.3 ± 4.3 7.2 ± 1.6 38 ± 12 734 ± 145 16.8 ± 4.4 . + .
− .

4 9 1 7
1 2

+
−

20 16
10

+
−

547 566
267

1.079 1.463

U87 core networks 0.3 ± 0.3 3.0 ± 1.4 11 ± 8 268 ± 146 6.1 ± 3.9 . + .
− .

5 4 2 2
1 5

+
−

25 24
13

+
−

806 1089
446

1.080 1.481

GL261 full networks 2.8 ± 1.0 4.8 ± 0.9 23 ± 7 413 ± 74 13.8 ± 8.4 . + .
− .

5 0 1 7
1 3

+
−

18 16
9

+
−

491 466
235

1.070 1.553

GL261 core networks 0.3 ± 0.2 1.9 ± 0.1 13 ± 9 214 ± 103 7.5 ± 5.7 . + .
− .

4 4 1 3
1 0

+
−

17 16
8

+
−

386 361
177

1.066 1.557

Table 1. Global tissue properties from n = 6 healthy brain hemispheres (healthy networks) and tumor 
specimens (full networks and exclusively tumor cores). Means with standard deviation (SD) are given for the 
tissue volume of each specimen V (after shrinkage from clearing), fractional vessel volume fVV, microvascular 
density MVD, total vessel length density ρL (in mm/mm3), and vascular surface density ρA (in mm2/mm3). 
Arithmetic means and average directed deviations of geometric vessel properties with log-normal distributions, 
namely mean radius r , segment length l and surface area A. The exponentially distributed segment tortuosity τ 
is characterized by the median τ and 95%-quantile τ95.

〈ρn〉 · 103 mm−3 〈Nn〉 · 103 〈Ne〉 · 103 〈k〉 〈kmax〉 〈γ〉 〈C〉 〈β〉
Healthy networks 35.7 ± 13.7 505 ± 207 817 ± 330 3.24 ± 0.11 20.7 ± 4.1 8.72 ± 1.18 0.049 ± 0.012 2.36 ± 0.01

U87 full networks 27.4 ± 13.0 196 ± 99 286 ± 150 2.89 ± 0.15 17.3 ± 3.4 8.53 ± 1.38 0.056 ± 0.010 2.36 ± 0.01

U87 core networks 9.3 ± 6.4 3 ± 3 4 ± 4 2.29 ± 0.26 8.5 ± 2.6 2.79 ± 4.52 0.078 ± 0.021 2.2 ± 0.4

GL261 full networks 19.1 ± 5.1 52 ± 21 80 ± 36 3.06 ± 0.16 31.5 ± 9.2 5.35 ± 0.87 0.123 ± 0.019 1.4 ± 0.2

GL261 core networks 10.5 ± 7.0 3 ± 3 5 ± 5 2.67 ± 0.36 15.7 ± 8.6 4.18 ± 2.20 0.144 ± 0.004 1.6 ± 0.3

Random networks 31.6 ± 13.4 358 ± 216 561 ± 359 3.22 ± 0.19 14.3 ± 0.9 n.a. (1 ± 1) · 10−5 n.a.

Table 2. Mean basic network properties with SD among, n = 6 healthy and tumor-bearing specimens, respectively. 
Node density in (shrunken) tissue volume ρn, as well as the total number of branching nodes Nn and edges  
Ne per specimen. Mean local connectivity measures from all healthy and tumor specimens, including mean  
node degree k, maximum degree per specimen kmax, and clustering coefficient C; the scaling exponent β from 
fitting ∼ β−C k k( )i i i  is given with SD among samples. For comparison, corresponding quantities are also given 
for nr = 12 Erdös-Rényi graphs66 with node and edge numbers equal to the healthy and full U87 networks.  
n.a.: not applicable.
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dense capillary mesh5,20 or in angiogenic hotspots65, especially in the tumor periphery. In Supplementary Movies 4 
and 5, we show vascular nodes with degree k = 24 from a healthy network, and k = 14 from the U87 tumor 
periphery. The healthy microvascular networks consistently featured higher degree vertices than the U87 vessel 
networks, while the GL261 periphery yielded the highest kmax (Table 2 and Fig. 2a). The increased abundance of 
terminal branches with degree k = 1 in both tumor models is a strong indicator for angiogenesis (see inlay in 
Fig. 2a). Vessel endpoints constituted 20 ± 3% of all nodes in full U87 networks (36 ± 7% in the core) and 23 ± 2% 
of nodes in the GL261 networks (32 ± 4% in core), in contrast to 11 ± 2% in healthy networks (with SD among 
samples). In consequence, the mean node degree 〈 〉k  was decreased in both tumor models (Table 2). Nodes with 
degree =k 2 are an artefact of skeletonization and dealt with in the discussion.

In Table 2, mean local connectivity measures are given for the vascular networks, as well as comparable ran-
dom graphs66. Since the random networks were constructed from the same number of constituents as the healthy 
and U87 tumor networks, the node density ρn, the size parameters Nn and Ne, and the mean node degree 〈 〉k  are 
identical to the weighted means over the reference networks. Yet, as expected, the vascular networks are subject 
to greater organization and heterogeneity, which reflects in the considerably higher maximum degree kmax at 
unchanged mean degree k.

The degree distributions of the vascular networks approximately obey a power law ∼ γ−P k k( )  for higher 
degrees, with least squares fits for ≥k 5 showing good approximations of the vascular data (Fig. 2a). Despite 
unusually large exponents, this classifies the healthy and pathological vasculature as scale-free networks53, placing 
them in line with many complex networks in nature, including the human brain63, metabolic67, and protein net-
works68. While both tumor models decreased the exponent γ with respect to healthy networks, the change was 
much stronger in GL261 tumors when comparing full networks, whereas U87 cores showed the highest hetero-
geneity, followed by GL261 cores (see mean γ〈 〉 in Table 2).

Figure 2. Vascular network topology. (a) Degree distributions (mean with SD among samples) from n = 6 
healthy brain hemispheres, full U87 and GL261 tumors, and tumor cores, respectively. For comparison, the 
mean degree distribution from =n 12r  random Erdös-Rényi graphs66 with the corresponding node and edge 
numbers, is displayed as well, following a Poisson distribution. The large plot presents the distributions for 

≥k 3 on logarithmic axes, while the inlayed plot shows the full distributions on linear scales. The logarithmic 
plot includes straight lines in corresponding colors, representing power law fits to the vascular data. (b) 
Bivariate distributions of node clustering coefficients Ci with corresponding node degrees ki, including all nodes 
with ≥k 3 from all datasets and power law fits in corresponding colors. The marginal distributions of clustering 
coefficients Ci are displayed with a logarithmic ordinate axis to better illustrate differences along the entire 
range.
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The clustering coefficient C quantifies the degree to which a node’s neighboring nodes are well interconnected. 
Real, scale-free networks often have much higher clustering coefficients than comparable random networks, even 
with quasi-identical degree distributions53,69. Generally, the studied vascular networks presented much higher 
clustering than corresponding random graphs with mean 〈 〉 = ± ⋅ ≈ 〈 〉−C k N(1 1) 10 /r e

5 53. The tumor vascula-
ture exhibited an increased mean clustering coefficient 〈 〉C  compared to healthy networks, which, by definition, 
indicates a higher abundance of local vessel loops. Both pathological models showed stronger clustering in the 
tumor core, but the effects were much more amplified in GL261 tumors (Table 2).

Distributions of individual node clustering coefficients Ci with corresponding degrees ki are presented in 
Fig. 2b. U87 tumor networks had a slightly higher relative number of cliques around low degree branching points 
( ≤k 5), increasing the abundance of =C 1i  nodes. Although in rare occurrence, the healthy vessel networks 
featured nodes with slightly elevated clustering for most degree values above =k 5, as compared to the U87 tum-
ors, while GL261 tumors showed significantly increased clustering, also for high degree nodes ( < .p 0 004 for 
GL261 cores and full tumors; = .p 0 025 for U87 cores and > .p 0 1 for full U87 networks compared to controls, 
tested with mean C per tissue specimen).

The approximate scaling of node clustering coefficients with ∼ β−C k k( )i i i  has been identified as a hallmark of 
networks with hierarchical structure70. Robust power-law fits on the individual node values yielded the scaling 
exponents β given in Table 2. Despite the large spread of clustering coefficients Ci (Fig. 2b), the healthy and patho-
logical networks studied here can be classified as hierarchical networks.

Reshaped nonlocal connectivity. In order to quantify the vascular networks’ nonlocal topology, the branching 
nodes were clustered based on modularity, using the Louvain community unfolding algorithm58. An exemplary 
consecutive community unfolding process on a full U87 glioblastoma and healthy brain hemisphere is presented 
graphically in Fig. 3a. For the topological quantifications reported in the following, the partitioning schemes cor-
responding to global maximum modularity Q were used for each network (in Fig. 3a, the rightmost community 
networks). To suppress boundary effects, isolated communities (disconnected vessel clusters) including less than 
twenty edges were removed from our analysis.

Tumor-induced decomposition of large-scale community structures. The Louvain algorithm unveiled consider-
ably larger clusters in healthy vessel networks than it did in glioblastoma vasculature, with dramatic differences 
in tumor cores and amplified effects in the GL261 model. This reflects in the communities’ number of nodes n, 
number of vessel edges e, and the mean physical extent R, as well as the community perimeter P, i.e. the number 
of vessels to neighboring communities, with broader distributions in healthy networks and much smaller modu-
lar communities in all tumors (Table 3 and Fig. 3b–d).

At the highest partitioning level, determined by Eq. (1), the mean maximum modularity in healthy control 
networks was approximately 0.5. This modularity was maintained in tumors, but with much smaller vessel clus-
ters (see modularities 〈 〉Q  and node numbers 〈 〉n  in Table 3). While the modularity was slightly lower in tumor 
cores, it was even increased in GL261 tumors, compared to healthy controls, following a drastic breakdown of 
large vessel communities. Corresponding Erdös-Rényi networks, clustered with the same procedure, yielded 
maximum modularity close to zero, with mean value = ± ⋅ −Q̂ (6 32) 10r

7 from =n 12r  random networks. 
Practically, the same modularity was maintained in healthy and pathological vessel networks, but on substantially 
different community size scales.

The clustering sequence in Fig. 3a demonstrates that the healthy brain exhibits a more uniform distribution of 
differently sized clusters throughout the tissue, while the glioblastoma upholds large vessel communities asym-
metrically at its boundaries. The rightmost images show that modular clusters are disrupted and separated in the 
glioblastoma, and vessel communities are not as dense or large as they are in the healthy brain. This indicates 
that tumor-induced vessel remodeling leads to a breakdown of pre-existing topological clusters in order to form 
smaller supply entities, which could be regulated more independently.

The correlation between community size e and perimeter P can be associated with the isolation of modular 
vessel communities. Robust power-law fits to the roughly linear relationship on logarithmic axes (Fig. 3e), assum-
ing ∼ ξP e e( ) , yielded the exponents ξ in Table 4 (corresponding to the slopes plotted in Fig. 3e). An analogous 
quantification on large parts of the cortical vasculature in a mouse model documented an exponent of . ± .0 83 0 0430,  
where values between 2/3 and 1 were interpreted as a manifestation of weak community structure, while lower 
scaling exponents ξ would indicate the persistence of strongly isolated communities. Our results show that com-
munity interconnectivity differs in tumor core and periphery, but both tumor models showed consistent changes 
from healthy vasculature. Full tumor networks showed an increased exponent ξ with relatively little deviation 
from the assumed relationship. In contrast, tumor cores had lowered exponents with large uncertainty and 
stronger variance, with more pronounced differences to healthy tissue in the GL261 models.

For each vessel segment connecting a cluster to another, on average, a vessel community incorporated 〈 〉e P/  
internal edges (sample mean with SD from all communities given in Table 4). All types of vascular networks 
exhibited pronounced modular structures. Tumor vasculature exhibited higher heterogeneity in community iso-
lation with a tendency towards reduced cluster connectivity (Fig. 3e). Whereas communities were most modular 
in full GL261 networks including the periphery, the U87 model showed stronger community isolation in its core, 
with higher heterogeneity in tumor peripheries for both models.

Furthermore, the vessel communities in tumor tissue presented higher heterogeneity in vessel segment den-
sities, especially towards lower values (Fig. 3f; tumor networks featured communities with relatively large spatial 
extent R and low edge number e). The glioblastoma upheld vessel clusters with a low number of intercommunity 
segments P in a wide range of edge numbers e (Fig. 3e) and mean cluster radii R (Fig. 3g). The tumor networks 
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not only presented a significant breakdown of vascular community size, but also decomposed connectivity among 
existing communities.

The identified vessel communities form meta-networks on larger length-scales of several hundred microme-
ters. The connections between communities can be interpreted as weighted edges between community nodes (see 
graph illustration in Fig. 3a). Standard graph theoretical measures, derived from the undirected meta-networks 
of healthy and pathological vascular communities, revealed profound characteristics in the organization of 

Figure 3. Modular network structure. (a) Schematic graphs of the community unfolding process on an entire 
vascular network in a healthy brain hemisphere (top) and full U87 glioblastoma (bottom). Each level of 
partitioning represents a local maximum in modularity Q, attained with increasing community sizes. The 
rightmost graph shows the clustering scheme with global maximum modularity over a central slice of the 
original SPIM-image. Communities are depicted by circles with diameter and brightness (blue) proportional to 
cluster size ej, while the weight of a connection (the number of intercommunity vessel segments) is encoded in 
the edge thickness and brightness (red). Cluster positions are given by their centroid →rj . The specimens 
encompass comparable (shrunken) tissue volumes of = .V 12 11 mmh

3 and = .V 12 87 mmg
3 in healthy control 

and tumor tissue, respectively (excluding ventricular space in the healthy brain, blinded for analysis). To the 
right of the partitioning chains, projections of 100 μm thick sections of the skeletonized vessel data show 
community affiliation (at global maximum Q) through the color of each branch segment. Relative distributions 
of community size properties from all specimens follow, namely (b) internal number of edges e, (c) mean 
physical extent R, and (d) community perimeter P. Panel (e) presents the relationship between a community’s 
number of internal edges e and its perimeter P. Linear fits to the log-log-representation are plotted in lighter 
colors over the datapoints, presenting slopes ξ. The following plots illustrate the relationships between (f) 
community edges e and mean physical extent R, as well as (g) perimeter P and R.
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tumor-specific vessel clusters. Effects were again more pronounced in GL261 tumors, but from both models 
studied here, general trends may be extracted from our results.

The importance of a community as a supply entity is reflected by the community degree = +k e P2c , adapting 
the classical notion of the degree of a node with P connections to other nodes and e connections to itself (internal 
vessel edges). The clustered meta-networks did not show scale-free properties and degree distributions mainly 
reflected the breakdown of large vessel communities in healthy tissue. This effect was more pronounced in full 
GL261 networks, but produced similar degree distributions in the cores of both tumor models (Table 4 and 
Fig. 4a). In contrast to the basic vessel networks analyzed before, the meta-networks presented reduced clustering 
coefficients Cc between communities in glioblastoma, with higher heterogeneity and lower interconnectivity in 
tumor cores (Table 4 and Fig. 4b). The community clustering coefficients Cc did not present a distinct dependence 
on the degree kc, advocating a loss of the basic networks’ hierarchical organization in the large-scale 
meta-networks (Fig. 4b).

We observed a positive correlation between the degrees of directly connected communities in all vascular 
networks (Fig. 4c), which indicates that vessel communities are subject to assortative mixing71,72. Such mixing is 
based on large, well-connected communities that are preferentially attached to other communities of similar 
importance; an unexpected finding, as spatial networks typically yield flat 〈 〉kc1  distributions73. As robust power 
law fits assuming 〈 〉 ∼ κk k k( )c c c1  emphasized, the assortativity was more pronounced in glioblastoma vasculature 
(exponents κ in Table 4 shown as slopes of straight lines in Fig. 4c). Both tumor models presented very similar 
community sorting in the core, with little difference in entire GL261 networks, but more similarity of full U87 
networks with healthy cerebrovasculature. A significant increase of assortative mixing in tumor vasculature is 
clear in both models.

The communities in GL261 tumor tissue and all tumor cores tended to be connected to a smaller number of 
distinct neighboring clusters, while in the full U87 networks, communities had slightly more topological neigh-
bors than healthy networks. This indicates abnormally high community interconnectivity in the U87 periphery 
(Fig. 4d). A comparison of the mean number of unique neighboring clusters 〈 〉kc u,  (Table 4) with the mean com-
munity perimeter 〈 〉P  (Table 3) shows that intercommunity connections in a healthy network are often enforced 
by many more individual vessel segments. With much larger healthy communities (Table 3), this observation 
makes sense when considering the supply and drainage functions of the intercommunity connections to the clus-
ters, and it supports the notion of reduced community interconnectivity in tumor tissue.

In nonlocal connectivity, U87 and GL261 tumor-derived community networks presented diverse properties. 
Considerably higher densities ρc of much smaller vessel communities in tumor tissue can be associated with a 
rise in mean topological diameter Dc, i.e. the longest path through the network over communities, and mean path 
length Lc between any pair of connected communities, in relativity to reduced tumor network sizes in compari-
son to healthy controls (Table 4). Nevertheless, the vascular networks in tumor tissue exhibited relatively small 

〈Q〉 〈Nc〉 〈Nice〉 · 103 〈ρc〉 mm−3 〈ρice〉 · 103 mm−3 〈n〉 · 103 〈e〉 · 103 〈R〉 μm 〈P 〉
Healthy networks 0.51 ± 0.01 88 ± 21 25.18 ± 9.35 6 ± 2 1.8 ± 0.8 5.6 ± 3.1 8.8 ± 5.1 275 ± 74 573 ± 344

U87 full networks 0.50 ± 0.02 112 ± 30 8.17 ± 4.35 14 ± 7 1.2 ± 0.7 1.9 ± 1.3 2.8 ± 2.1 211 ± 65 173 ± 143

U87 core networks 0.43 ± 0.06 36 ± 24 0.08 ± 0.12 179 ± 147 0.3 ± 0.4 0.07 ± 0.06 0.09 ± 0.08 94 ± 35 5 ± 6

GL261 full networks 0.57 ± 0.03 204 ± 50 1.38 ± 0.89 77 ± 18 0.5 ± 0.3 0.3 ± 0.3 0.4 ± 0.5 110 ± 51 14 ± 26

GL261 core networks 0.48 ± 0.12 45 ± 30 0.06 ± 0.08 176 ± 58 0.2 ± 0.3 0.06 ± 0.05 0.09 ± 0.08 70 ± 25 3 ± 5

Table 3. Structural properties of communities uncovered in the vascular networks. Mean values with SD among 
samples are given for the final partitioning modularity Q, the number of communities per specimen Nc, the 
number of intercommunity edges Nice, the mean number of communities and intercommunity edges per mm3 
(shrunken) tissue volume, ρc and ρice, respectively, the mean number of nodes n and edges e  per community, as 
well as mean physical extent R  and perimeter P  of the communities within each sample.

ξ 〈e/P〉 〈kc〉 κ 〈kc u, 〉 〈Cc〉 〈Lc〉 〈Dc〉
Healthy networks 0.99 ± 0.01 18 ± 11 17780 ± 5930 0.18 ± 0.01 8.8 ± 1.7 0.51 ± 0.02 3.1 ± 0.4 7.3 ± 1.1

U87 full networks 1.11 ± 0.01 22 ± 35 5360 ± 2760 0.37 ± 0.01 9.2 ± 0.9 0.50 ± 0.04 3.1 ± 0.4 7.5 ± 1.4

U87 core networks 0.99 ± 0.12 27 ± 23 140 ± 130 0.88 ± 0.03 2.3 ± 1.1 0.28 ± 0.22 2.6 ± 1.0 5.7 ± 2.2

GL261 full networks 1.43 ± 0.01 58 ± 71 780 ± 370 0.87 ± 0.02 5.5 ± 0.9 0.40 ± 0.05 4.4 ± 0.4 11.0 ± 1.8

GL261 core 
networks 0.86 ± 0.15 39 ± 33 140 ± 100 0.87 ± 0.03 2.0 ± 0.8 0.17 ± 0.21 2.4 ± 1.3 6.0 ± 4.2

Table 4. Connectivity between communities. Isolation scaling exponents ξ from robust fits assuming ∼ ξP e e( ) , 
mean number of internal vessel segments per intercommunity edge e/P, mean community degree = +k e P2c  
and assortativity exponent κ from fits approximating the neighboring degree relationship with 〈 〉 ∼ κk k k( )c c c1 , 
mean number of unique topological neighbor-communities kc u, , community clustering coefficient Cc, 
characteristic path length Lc and diameter Dc of the meta-networks, averaged from all specimens, and given 
with SD.
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topological path length increases, which becomes more apparent in dependence of the physical separation Δ 
between the community centroids (Fig. 4e; the number of occurrences for each pair separation bin is presented 
in Fig. 4f).

The mean path length Lc(Δ) in full U87 tumor networks was not appreciably higher than in healthy tissue, 
even for large distances between community centroids in the millimeter range (Fig. 4e). U87 tumor cores and 
GL261 specimens were subject to more heterogeneity, with mean path lengths exhibiting a steeper rise with phys-
ical separation, but also over considerably smaller communities (see n, e, R in Table 3). Our results show that the 
well-connected U87 tumor periphery facilitates short path lengths between virtually all communities in the 
tumor. Despite a decreased intercommunity edge density ρice and communities with considerably smaller physical 
extent R and vessel numbers n (Table 3 and Fig. 3b,c), tumors maintained relatively short topological separations 
between communitites, even over large distances through the tissue.

Figure 4. Community interconnectivity. (a) Mean log-binned frequency distributions of community degree 
= +k e P2c  (with SD among samples), (b) community clustering coefficients Cc vs. kc, and (c) mean degree of 

neighboring communities 〈 〉kc1  vs. kc with fits 〈 〉 ∼ κk k k( )c c c1 . (d) Relative frequency distributions of the number 
of unique topological neighbor communities kc,u, (e) separation-dependent shortest path length Lc between two 
connected communities, separated by the Euclidean distance Δ ± δ/2 with increments of δ = 50 μm. The 
datapoints represent individual community-pair instances and the brighter lines connect the mean values over 
all datasets for each distance bin in Δ. (f) The number of community pairs with centroid separation Δ ± δ/2 
(with SD among samples).
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Discussion
We characterized entire, perfused vascular systems in healthy mice brain, U87- and GL261-glioblastoma xen-
ografts using basic geometric and network theoretical measures. The U87 cell line is known to have undergone 
genetic drift over recent years, growing in a solid, bulky manner instead of promoting diffuse infiltration of the 
brain parenchyma, like most human gliomas74. Furthermore, this tumor model has been found to have anoma-
lous microvascular properties, with vessel distributions rather resembling healthy vasculature than other tumors 
in some aspects75. The solid growth pattern of the U87-glioma aided in delineating the tumor tissue from healthy 
tissue to attain first quantifications of entire tumor-immanent vascular networks, with the highly angiogenic 
GL261 model serving for further comparison. The methods presented here can be applied to arbitrary 3D-image 
data, independent of the imaging technique, and therefore, they are transferable to humans and other pathologies.

Our results render the tumor tissue to be irregularly perfused with a high variation in local vessel densities and 
characteristic differences in core and periphery, consistent with general knowledge76,77. We did not observe any 
significant increase in blood volume fraction fVV or mean vessel radii r , as has been documented with different 
experimental methods and brain tumors, including the U87 cell line78–82. This is expected to be attributed to the 
tumor stage examined and the collective character of the geometric comparisons, which stand in contrast to local, 
selective analyses of angiogenic regions83.

In our integrative study of the full vascular network, we found U87 tumor tissue to feature very low vessel 
densities MVD, but relatively unchanged blood volume fractions fVV in some regions on the 500 μm scale. 
Increased vessel calibre in the U87 tumor core indicates hypoxic vasodilation, which can compensate the tissue’s 
fractional blood volume with very little perfused vessels84. While the main hallmarks of tumor angiogenesis are 
believed to be an elevated vessel density MVD and fractional blood volume fVV, dilated vessel radii r , higher 
tortuosity τ, and decreased branching lengths l85, our comparisons with vasculature from different regions of the 
healthy brain did not reveal elevated vessel densities significant on a global scale. The MVD and fVV were overall 
decreased in glioblastoma, while branching lengths l and vessel radii r  changed distinctly in both tumor models. 
Previous studies have shown that the above-mentioned properties, relating to vascular density, can change and 
decrease with tumor progression83, shifting angiogenic activity to the tumor periphery, while reducing the perfu-
sion density in the core77,86.

Our quantifications of healthy cerebrovascular networks included many brain regions with heterogeneous 
perfusion densities, without a differentiation of vessel types. The healthy networks featured high calibre arteries 
and veins that increased the average vessel radius. The tumor networks were in deficit of such large vessels, but 
presented a shift of small capillaries towards higher calibres, with the exception of GL261 tumor cores, which 
possibly included necrotic tissue. From our results, the dilation of small capillaries, related to tumor angiogen-
esis85,87, could be inferred in the GL261 periphery. In support of previous studies, we found that an elevated 
vessel tortuosity, even in singular, extreme cases, has the potential of serving as a geometric biomarker for tumor 
vasculature61,85,88.

Despite the disruptive effects of tumor growth on the local vasculature, the pathological vessel networks main-
tained basic classifications from graph theory that were also identified in healthy cerebrovascular networks, 
namely scale-free degree scaling with high exponents and the hierarchical clustering structure. This suggests that 
healthy and tumor-nurturing vascular networks both belong to the same class of transport networks with charac-
teristic properties and topological scaling in size. Nonetheless, the uncovered network topology provides hints as 
to how vascular networks in the glioblastoma form. The dramatically increased relative abundance of terminal 
branches with degree k = 1 (vessel endpoints) in the tumor networks is a strong indicator for neovascularization89, 
pointing to sprouting angiogenesis, vascular mimicry, or vasculogenesis as likely mechanisms90,91. Elevated vessel 
tortuosities τ and local clustering coefficients C in the glioblastoma support the impression of angiogenesis play-
ing an important role in the network formation, while promoting an increased abundance of vessel loops86. Not 
all signs point to angiogenesis, though; the decreased branching density MVD and longer vessel segments in 
tumor tissue are atypical for brain tumor angiogenesis85.

The breakdown in node diversity towards lower degree intersections, observed in tumor cores, indicates 
a degeneration of the preexisting vasculature during tumor development. This is supported by the significant 
decomposition of modular community sizes and general decrease in vascular density. Vessel occlusions on a large 
scale must have broken down the original, healthy network, eliminating high degree nodes and splitting existing 
vessel clusters. While tumor cores were supplied by sparse, very small and scarcely interconnected vessel com-
munities, the periphery was found to maintain larger communities with more diversity and higher community 
clustering.

In glioblastoma networks, practically the same modularity was maintained by smaller community structures 
with stronger assortative mixing. Large supply entities were abandoned during tumor growth with focus on local 
metabolic needs and the effective transport of nutrients and oxygen. With small, light vessel clusters, nutrient rich 
blood can be transported long distances without being deprived along the way through large, dense community 
structures. The prospective gain in long-range transport efficiency leaves regions along the way undersupplied. 
The topological remodeling observed here may play an important role in the formation of hypoxic and necrotic 
regions and should be further investigated over a time course during tumor progression.

Albeit a decreased volume density of intercommunity vessel edges ρice at considerably higher density, ρc, of 
smaller communities, the clustered glioblastoma networks presented relatively short characteristic path lengths 
Lc. The assortative mixing may be related to this aspect, which is, in effect, again geared towards the transport 
efficiency of the network. The small-world property has been investigated briefly on relatively large sections of the 
vibrissa primary sensory cortex of mice30. There, the absence of strict graph theoretical cliques was interpreted as 
an indicator that the studied microvasculature did not form small-world networks (cf.30, Online Methods). A 
reliable assessment of the small-world property should evaluate the scaling of the characteristic path length Lc 
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with the number of meta-nodes Nc
53. This is not possible with, respectively, 6 samples in similar size ranges, but 

one should note the short mean path length of 〈 〉Lc  ≈ 3–5, that separates most of the roughly 102 communities in 
each network.

Vasculature as a complex network. From a graph theoretical standpoint, the vascular networks quan-
tified in this study present very unusual topological properties. Many factors can be involved in forming these 
networks, but a consensus in most theoretical models, treating the formation of scale-free networks, is that the 
dynamic growth process plays a central role in the emergence of a power law degree distribution. This is an 
important aspect in the original Barabási-Albert model46, as well as most methods thereafter, incorporating, e.g., 
preferential attachment, fitness models, and edge dynamics (for review, see, e.g.53,69).

Although recent years saw numerous publications on scale-free networks with degree exponents γ ≤ 3, scien-
tific literature lacks the documentation and treatment of large, complex networks with high degree exponents, as 
encountered here. The similarity of γ-exponents in both types of networks suggests that the scale-free property 
with high degree exponents is immanent to large intracranial vessel networks, healthy and pathological, at the 
capillary scale. A previous study, modeling the Havers and Volkmann channels in cat humeri, revealed scale-free 
characteristics with degree exponents γ ≈ 3.7–3.892. Although arguably in a different system, these vascular net-
works also present unusually high scaling exponents.

It has been shown that scale-free networks can be very resilient against random failures, since, if a fraction of 
nodes chosen randomly is lost, a majority of them is expected to have low degree. In random networks, highly 
connected vertices, often called hubs, are usually responsible for the global connectedness in the graph53. Thus, 
for random networks, a certain abundance of hubs is important for a system’s stability and some models have 
shown that exponents γ < 3 result in increased robustness against random failures, while higher exponents lead 
to a quicker loss of global connectivity53,93. In the context of blood vessel networks, a node with high degree is not 
necessarily a node of central importance for nonlocal connectivity. Adapting the earlier argument, an increased 
exponent γ should result in a decreased likelihood of losing locally important high degree nodes from random 
failures. In this case, this speaks for a strong sustainability of the system’s diversity against stochastic damaging 
events.

The vascular networks exhibit relatively high clustering coefficients compared to random graphs. In the vascu-
lar context, high clustering coefficients manifest in local vessel loops consisting of only three edges, which guaran-
tees high network stability, but, in abundance, is inefficient for nutrient and waste transport. The predominance 
of closed paths in intracranial vasculature, though mostly formed by a larger number of edges, has been shown 
to serve in flow rebalancing upon vessel occlusion28,94. Large vessel loops were not investigated in this study, but 
increased clustering coefficients in the pathological networks indicate that glioblastoma promotes good condi-
tions for flow rebalancing and ensures local supply somewhat redundantly.

The vessel networks’ clustering with ∼ β−C k k( )i i i  is reminiscent of hierarchical networks. Such scaling has 
been found in some real networks and can be reproduced by several models, incorporating different network 
evolution mechanisms70,95. Although it has been reported that the scaling exponent in true hierarchical networks 
often takes on values β ≈ 1, and this has been proven analytically for two hierarchical network models96,97, devi-
ating values still present the power-law scaling with degree. To our knowledge, hierarchical clustering has not 
been observed in real networks embedded in Euclidean space. It has been assumed, so far, that the spatial con-
straints, linked to cost factors in connectivity, suppress the formation of such hierarchical structures in spatial 
networks70,73.

The basic vascular networks combined scale-free degree distributions with hierarchical scaling of clustering 
coefficients, while strictly embedded in Euclidian space. The scale-free property supports the stability of the net-
work over long time periods93, while the hierarchical organization can be expected to be related to the optimiza-
tion of transport efficiency7. To our knowledge, no comparable real network with such high degree and clustering 
exponents, γ and β, has been quantified before. The findings suggest that tissue vasculature, when modeled as 
an undirected network, may form a distinct class of networks with unprecedented properties. Such a conclusion 
demands further investigations, including more statistics and different vascular networks, but the motivation for 
such studies should hereby be established.

Methodological challenges. Intracranial vascular networks are composed of a myriad of individual vessel 
branches with different geometries. An attempt to study the full range of blood vessel instances pervading any 
animal tissue bears great experimental and computational challenges. The trade-off between high resolution and 
large acquisition volumes, that most imaging modalities are bound to, limits the capabilities to attain detailed and 
extensive anatomical information about full vascular systems. Regarding this compromise, the data acquisition 
enabling this study pushes the current frontiers of easily reproducible, large-scale biological imaging without 
need for co-registration or stitching.

The segmentation process plays a critical role in data treatment. Due to differently expressed imaging artefacts, 
each dataset was segmented individually with great care to reproduce the visual perception of vessels in the orig-
inal image stacks. It may be argued that this produces subjective segmentations with no clear thresholds or fixed 
parameters between datasets, but, on the available data, the results are superior to alternative, threshold-based 
methods. Furthermore, any masking procedure used to differentiate healthy and tumor tissue suffers a certain 
ambiguity in tissue boundaries, which can influence statistical results.

It should be noted that the SPIM imaging procedure only incorporates perfused vessels. This is a positive fea-
ture in our context, since occluded vessels do not contribute to the network’s function, and are, a fortiori, not of 
interest in this study. However, a caveat regarding the presented geometric quantifications arises from the tissue 
clearing, where dehydration leads to an isotropic volume shrinkage of up to 40%35, which translates to vessel 
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lengths and radii with a factor of . ≈ .0 6 0 841/3 . Since the smallest capillaries typically present in vivo diameters of 
around 4 μm98,99, a shrinkage of 40% would correspond to a reduced vessel diameter of 3.37 μm. In such extreme 
cases, with a resultion of 3.25–5 μm in our study, more than 90% of the enclosing voxel will still be illuminated by 
vascular contrast, thus still safely registering the voxel as containing vasculature in accordance with Risser et al., 
who validated that a resolution in our range is just high enough to register the entire microvasculature100.

A highly accurate quantification for small capillaries was not possible in this study, as vessels with radii below 
approximately 3 μm appear with single-voxel thickness. This pitfall was acceptable, as the aim of this paper was 
not to advance the large body of literature dealing with absolute geometric vessel properties, but to provide a 
detailed topological analysis of the entire microvasculature. The vascular network topology is not affected by tis-
sue shrinkage or vascular radius distortion, since it only considers connections between vessels. One exception 
are distance-dependent measures, in which case physical separations are expected to scale linearly with a factor 
close to . ≈ .−0 6 1 1861/3  in the original tissue before clearing35. The vessel connectivity, however, is robust under 
the imaging and post-processing and the geometric properties are comparable within the scope of an experiment. 
The inclusion of the smallest vessels in our analysis was crucial to uncover the true network topology, as the cap-
illary bed has been shown to have dense, mesh-like properties5,18.

A general issue with topological studies of biological data is the skeletonization process. Irregular surfaces and 
boundary perturbations cause single voxel stubs in the skeleton, which are by definition nodes with degree =k 241.  
Even though such nodes do not contribute to the vessel network in any sensible way, they were not removed from 
our analysis. Although pruning can help eliminate such nodes41, we refrained from such manipulations with 
arbitrary parameter choice in pruning length and method to avoid unnecessary data manipulation.

Another systematic effect of discrete image data is the emergence of high degree nodes. With high local node 
densities, neighboring branching points in the skeleton, e.g., consecutive bifurcations, can combine to vertices of 
high degree41. Examples are shown in Supplementary Movies 4 and 5. This effect produces long tails in the degree 
distributions, which, at first glance, may seem unphysiological. While higher resolution acquisitions are expected 
to break the high-degree nodes up into multiple low-degree branching points, the emerging power law in degree 
distributions is nonetheless meaningful at the treated length scale. From a large-scale perspective, branching 
points, which are separated by less than the diameter of the network’s smallest vessels, can sensibly be modeled as 
single meeting points of multiple vessels. When considered during the interpretation of the results, the implica-
tions of this caveat on our understanding of such large transport networks are rather constructive.

General topological properties of the cerebral vasculature have barely been quantified in the past. Although 
graph theoretical modeling has been applied to more and more anatomical systems in recent years22,64, our work 
provides the first multi-scale topological quantifications of the cerebral vasculature in a mammal to this detail. 
Furthermore, over the past decades, many studies have elucidated geometric and structural abnormalities of 
tumor vasculature in diverse settings and contexts14,15,23, but none have investigated the topological consequences 
of tumor growth on an entire vascular network.

The topological quantifications presented here only utilize a small subset of tools available in network theory 
to delineate the nature of complex networks. As the amount of data describing large systems and the availability 
of computational power have increased, a multitude of methods has been developed in the field of graph theory 
(see59 for a recent overview). Our quantifications of such large samples of the cerebral angiome are, to our knowl-
edge, the first of this scale and detail. The undirected graph framework was employed in order to deliver first basic 
network characteristics. On such large systems made up of many similar constituents, this approach has proven to 
be successful in uncovering previously veiled system properties. Future studies should build on these results and 
extend our understanding of large vascular systems as complex networks, how tumor development alters these 
networks, and how we can use this in treatment.

conclusions
In conclusion, we found that tumor growth can alter the vascular topology without substantial reflections in 
geometric features of individual vessels in large-scale considerations. Tools from network theory are capable of 
grasping collective changes to the vascular network that are concealed in local analyses. This could better facilitate 
the delineation and grading of different forms of vascular remodeling, as demonstrated with the glioblastoma 
models U87 and GL261. The fundamental graph properties characterizing the cerebrovascular network were 
maintained in the glioblastoma, but local and nonlocal clustering, as well as long-range connectivity were char-
acteristically rearranged, with more assortative mixing of strongly decomposed vessel communities. This may 
have profound implications on oxygenation and nutrient distribution to the tissue, which could be used for the 
development of tailored treatment strategies.
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Supplementary Movie 1: Segmentation of a healthy brain hemisphere. Segmentation 
results from a healthy mouse brain hemisphere, presenting raw imaging data from SPIM, 
overlaid with the binary vessel segmentation from ilastik in semitransparent red. The AVI-
movie (.avi) shows 300 consecutive image slices, each 5 µm apart, at 25 frames per 
second (fps). 

Supplementary Movie 2: Segmentation of a U87 glioblastoma. Segmentation results 
from a U87 glioblastoma specimen in a mouse brain, presenting raw SPIM data, overlaid 
with the binary vessel segmentation from ilastik in semitransparent red. The AVI-movie 
shows 500 consecutive image slices, each 5 µm apart, at 25 fps. 

Supplementary Movie 3: Segmentation of a GL261 glioblastoma. Segmentation 
results from a GL261 glioblastoma xenograft, with raw SPIM data, overlaid with the ilastik 
segmentation in semitransparent red. The AVI-movie shows 400 consecutive image 
slices, each 5 µm apart, at 25 fps. 

Supplementary Movie 4: High degree node in healthy tissue. AVI-movie, showing a 
volume rendering of a vascular subvolume from healthy grey matter, comprising a volume 
of 130 x 130 x 100 µm, depicting a node with degree k=24 (extended node voxels marked 
in glowing orange). The first 360° rotation shows the segmented and post-processed 
vasculature in semitransparent red, followed by the additional appearance of the vascular 
skeleton voxels, as used for analysis, in blue for another 360° rotation. For the last 
rotation, the discrete skeleton representation is replaced by tube structures, determined 
in the image processing software Amira 5.4.1 (Thermo Fisher Scientific, Waltham, MA, 
USA) for better visualization. The movie frames were created using Amira ResolveRT FEI 
5.4. 

Supplementary Movie 5: High degree node in U87 glioblastoma. AVI-movie showing 
a volume rendering of a vascular subvolume from a U87 glioblastoma's peripheral region, 
comprising a volume of 188 x 188 x 110 µm, depicting a node with degree k=14 (extended 
node voxels marked in glowing orange). The first 360° rotation shows the segmented and 
post-processed vasculature in semitransparent red, followed by the additional 
appearance of the vascular skeleton voxels, as used for analysis, in blue for another 360° 
rotation. For the last rotation, the discrete skeleton representation is replaced by tube 
structures, determined in the image processing software Amira for better visualization. 
The movie frames were created using Amira. 
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Remodeling of tissue microvasculature commonly promotes neoplastic growth; how-
ever, there is no imaging modality in oncology yet that noninvasively quantifies
microvascular changes in clinical routine. Although blood capillaries cannot be
resolved in typical magnetic resonance imaging (MRI) measurements, their geometry
and distribution influence the integral nuclear magnetic resonance (NMR) signal from
each macroscopic MRI voxel. We have numerically simulated the expected trans-
verse relaxation in NMR voxels with different dimensions based on the realistic
microvasculature in healthy and tumor-bearing mouse brains (U87 and GL261 glio-
blastoma). The 3D capillary structure in entire, undissected brains was acquired using
light sheet fluorescence microscopy to produce large datasets of the highly resolved
cerebrovasculature. Using this data, we trained support vector machines to classify
virtual NMR voxels with different dimensions based on the simulated spin dephasing
accountable to field inhomogeneities caused by the underlying vasculature. In predic-
tion tests with previously blinded virtual voxels from healthy brain tissue and GL261
tumors, stable classification accuracies above 95% were reached. Our results indicate
that high classification accuracies can be stably attained with achievable training set
sizes and that larger MRI voxels facilitated increasingly successful classifications,
even with small training datasets. We were able to prove that, theoretically, the
transverse relaxation process can be harnessed to learn endogenous contrasts for
single voxel tissue type classifications on tailored MRI acquisitions. If translatable to
experimental MRI, this may augment diagnostic imaging in oncology with automated
voxel-by-voxel signal interpretation to detect vascular pathologies.
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1 | INTRODUCTION
A hallmark of most tumor types is a characteristic remodeling of the existing microvasculature towards a more favorable environment for tumor
growth and cell proliferation throughout all stages of development.1–4 Specifically, the most malignant brain tumor, glioblastoma multiforme,
thrives on microvascular proliferation, with strong variations in vessel density and shape from tumor core to periphery.5–7 As of today, there exists
no radiological imaging modality directly sensitive to such pathological changes in capillary geometry that has made it to routine clinical transla-
tion. The gold standard for neuro-oncological imaging remains to be T1-weighted MRI with dynamic contrast enhancement using paramagnetic
agents based on gadolinium.8

Currently used medical imaging tools in clinical MRI typically examine pathological tissue alterations on a macroscopic scale through educated
comparisons of proximal voxel intensities by a radiological specialist. However, voxel-intrinsic relaxation characteristics of single imaging points
can encode useful information about the underlying tissue microenvironment. Of the assessable NMR decay curves from each voxel, which can
be sampled by varying acquisition schemes with different echo times and combinations of spin echo and gradient echo measurements, only a sin-
gle “snapshot” or small set of echo times are typically used to produce gray-scale images for radiological evaluation or quantitative maps with sim-
ple exponential decay rates R2 = 1/T2 and R2* = T2*.

The development of an in vivo, noninvasive imaging technique sensitive to microvascular reshaping on a sub-voxel level would tremen-
dously extend current possibilities of MRI instrumentation in medical imaging. It is conceivable that “abstract contrasts” could be defined to
classify or characterize individual voxel signals from custom MRI acquisitions based on sampling the nonlinear transverse relaxation process
at different echo times. Such abstract contrasts could be defined by tailored combinations of multiparametric signal features, which can be
uncovered and optimized in a data-driven manner, using numerical simulations to cost-efficiently explore a broad spectrum of MRI
sequences to optimize a classification or regression problem, like mapping the probability of an underlying tumor pathology to each MRI
voxel. In this example, the abstract contrast would be the probability of a voxel signal originating from tumor tissue or the associated tissue
type classification.

Numerical developments of such abstract contrast mappings based on standard, physical NMR contrasts must be guided by a known ground-
truth; in our case, using the microvascular tissue structure, which can be imaged in animal experiments at high resolution, eg, using fluorescence
microscopy techniques such as selective plane illumination microscopy (SPIM).6 The ground-truth tissue microstructure can be combined with
numerical modeling of relevant biophysical aspects and NMR physics to simulate MRI acquisitions in such tissue. Numerically, a vast range of
standard contrasts and weightings can be explored with relatively little expense, to develop custom MRI protocols which incorporate pulse
sequences to probe the relevant physical contrasts needed to define the abstract contrast.

Due to effectively paramagnetic deoxygenated hemoglobin, blood vessels embody omnipresent magnetic susceptibility inclusions in biologi-
cal tissue. Motivated by the blood oxygenation level-dependent (BOLD) effect,9,10 first attempts at defining abstract contrasts could be made with
endogenous means, abstaining from external contrast agents. A successful implementation of such abstract contrasts could offer invaluable assis-
tance in tumor diagnosis and monitoring, and aid in the planning of therapy regimes based on tumor microstructure. Furthermore, the in vivo ves-
sel susceptibility can be controlled experimentally in a dynamic or steady-state fashion by O2- or CO2-enriched gas inhalation11,12 or intravascular
contrast agents.7,13,14 This makes tissue vasculature an attractive ground-truth starting point for an exploration of abstract contrasts to identify
pathological anomalies affecting vascular geometry or function.

Theoretical work, especially during the past 3 decades, has pioneered the realm of microscopic tissue characterizations based on NMR
measurements.15–19 Such studies have analytically demonstrated that geometric properties of magnetically susceptible inclusions in tissue (like
blood vessels) far below the length scale of MRI resolutions can be quantified through sophisticated signal modeling techniques. It has been
shown that properties of simple geometric vessel or nerve models can be linked to the transverse relaxation induced by spin dephasing across an
imaging voxel in MRI.20–23

Although a simplified cylindrical vessel array can model some microvascular geometries quite well (as, eg, in the myocardium24), capillary
structures in such complex tissue environments as the brain can deviate strongly from a regular arrangement of long, straight cylinders. Recent
advances in high-resolution fluorescence microscopy with biological organisms have made it possible to attain full three-dimensional
(3D) reconstructions of the microvascular system in entire organs25 and small animals26 through postmortem imaging of undissected specimens in
single, semi-automated acquisitions. With the SPIM imaging employed here,6 upon an ex vivo tissue clearing procedure, the previously marked
vessel lumen in the semitransparent organ of interest can be excited to fluoresce within thin sheets in the transverse imaging plane. The volume
of interest is scanned in consecutive planes, producing image stacks of the entire specimen's tissue microstructure.

Tortuous and interwoven capillary networks cannot be modeled adequately with a small set of geometric signature parameters, as in the the-
oretical models referenced before. Nonetheless, the microvascular architecture induces transverse relaxation patterns during NMR measure-
ments, which may be characteristic of certain tissue types and pathologies. Motivated by theory, the collective geometric properties of the
microvasculature in an NMR voxel are expected to impact the transverse relaxation and its detailed form in a convoluted but systematic way.
Although they cannot be predicted analytically for complex, realistic vessel arrangements, we conjecture that such relaxation patterns could be
distinguishable using machine learning.
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In this work, we conduct an in silico investigation of whether the characteristic remodeling of local vessel geometries, induced during tumor
growth, can be sensed through the endogenous transverse relaxation process during a free induction decay (FID)-type experiment (with T2* relax-
ation). In this initial proof-of-concept, all biological tissue properties apart from the vessel architecture were set to be constant and equal in all
samples to refrain from introducing a bias, which could systematically amplify differences between healthy and pathological tissue. While the
assumption of constant blood oxygenation exaggerates the susceptibility impact of arterial vessels with respect to venous parts, we used this sim-
plification as a lowest order approximation for the realistic tissue environment. We refrained from conducting computationally highly demanding
blood flow simulations, which require suited boundary conditions and should ideally be coupled with metabolic demand and extravascular oxygen
diffusion models. Further, we avoid making simple ad hoc assumptions concerning the hemodynamics and intravascular oxygen distribution to
keep the systematic bias and error introduced minimal.

Our motivation was to challenge the idea of conducting independent tissue type classifications on each voxel of an MRI scan with statistical
machine learning methods based on extended sampling and parametrizations of the spin dephasing process. We used realistic 3D vessel struc-
tures from large, undissected mouse brains to numerically simulate the transverse relaxation accountable to spin dephasing due to magnetic field
inhomogeneities brought upon by the microvasculature. Support vector machine (SVM) classifiers for a dephasing-based tumor voxel identifica-
tion tool were trained and tested in several scenarios with two different glioma cell lines for a proof of principle. We included two different glioma
types with distinct growth patterns and angiogenic phenotypes: the U87 glioma model was derived from a human brain tumor with nondiffusely
infiltrative growth patterns and relatively homogeneous, leaky vessels, while GL261 is a syngeneic mouse model of glioblastoma multiforme with
diffusely infiltrative characteristics, stronger angiogenesis and hypoxia.27

We have combined state-of-the-art ultramicroscopy with a highly parallelized data-processing pipeline to investigate the dephasing
attenuation during hypothetical T2*-weighted MRI acquisitions with virtual NMR voxels at different length scales. We simulated the extra-
vascular signal contribution from diffusing water protons in virtual NMR voxels sampled from high-resolution 3D light sheet fluorescence
microscopy datasets, acquired from the brains of healthy and tumor-bearing mice (U87 and GL261 glioblastoma cell lines). The signal atten-
uation due to vessel-induced field inhomogeneities in single NMR voxels was parametrized in a sparse manner (with standard exponential
fit parameters and custom fit functions for the short- and long-time signal regimes) to deliver NMR relaxation features, which could be
linked to the originating tissue type through SVM classification. This endeavor should evaluate the theoretical feasibility of constructing sin-
gle MRI voxel classifiers, which are sensitive to brain tumor vasculature through a learned endogenous contrast using support vector
machines.

2 | METHODS
2.1 | Animal models, clearing and imaging
All experiments were conducted in line with standard guidelines of animal care and approved by the regional animal welfare committee (permit
numbers: G187/10, G188/12, G145/10, G287/15 and G223/14, Regierungspräsidium Karlsruhe, Karlsruhe, Germany). Details concerning animal
handling, preparation, and imaging have been elaborated in previous publications.28,29 In brief, we injected 7.5 x 104 U87 MG cells in 9-12 week-
old male NOD Scid Gamma mice (NSG; Jackson Laboratories, Bar Harbor, ME; n = 6 mice) and 105 GL261 glioma cells (National Cancer Institute,
Bethesda, MD), diluted in 2 μl sterile phosphate buffered saline (PBS, Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) in 6-8 week-old
female C57Bl/6 J mice (Charles River Laboratories, Sulzfeld, Germany; n = 6 mice), implanting in the right brain hemisphere, 2 mm lateral and
2 mm ventral of the bregma using a Hamilton syringe, driven by a fine step motor.

Mice with a U87 tumor were sacrificed for imaging 21 days posttumor cell implantation and mice with a GL261 tumor after ~ 4 weeks (once
a large intracranial tumor could be seen in the monitoring scan, which was conducted with the GL261 animals beginning 1 week after cell injec-
tion, using T1-weighted Gd-contrast-enhanced MRI scans on a 9.4 T BioSpec 94/20 USR [Bruker BioSpin GmbH, Ettlingen, Germany] with isotro-
pic 80 μm resolution). In addition to the tumor-bearing animals, n = 3 healthy, male, NOD Scid Gamma mice were sacrificed at 12 weeks of age
for healthy controls.

Before sacrificing, mice were anesthetized with ketamin 10% (90 μg/g bodyweight) and xylazinhydrochloride 2% (7.5 μg/g bodyweight) and
injected intravenously with 12 mg/kg Texas red Lycopersicon esculentum (Tomato) lectin (Vector laboratories TL-1176, 1 mg/ml) for intravital dye
labeling of the vasculature. After 5 minutes of circulation, mice were transcardially perfused in deep anesthesia using 20 ml of PBS followed by
20 ml of 4% PFA. The entire brain was explanted and fixed overnight in 4% PFA, followed by PBS. The undissected organs were cleared using the
FluoClearBABB protocol.30

Upon successful tissue clearing, a selective plane illumination microscope (Ultramicroscope II, LaVision Biotec, Bielefeld, Germany) was used
to image the microvasculature in the entire brain by fluorescent excitement of the lectin marker plane by plane. Imaging was performed using 2x
magnification (3.25 μm in-plane resolution) and the step size between slices in the transverse plane was set to 5 μm. Images were acquired using
two light sheets with 100% laser power, 686 ms of camera exposure, and 16-bit low noise gain.
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2.2 | Data processing
2.2.1 | Image postprocessing
The raw, TIFF-formatted image stacks, exported from the Ultramicroscope, were first segmented manually using the trainable segmentation
toolkit ilastik.31 The binary vessel architecture attained from ilastik in TIFF-stacks was treated with a simple hole-filling algorithm in Matlab to fill
hollow vessel segmentations (eg, some large vessels where the fluorescing lumen interior was not filled during segmentation). Finally, all isolated
blood voxel bunches which did not exceed a total (six-connected) volume of a sphere with a radius of 20 μm (33 510 μm3 volume) were elimi-
nated. This step served the purpose of reducing noise and segmentation artifacts in the tissue representation and the 20 μm sphere was an ad
hoc parameter based on empirical comparison with different values, starting at 6 μm, which would only eliminate singular or two connected but
isolated microscopy voxels at the dataset resolution.

Masks were manually drawn over the image stacks, blinding regions around the respective tissue of interest in each dataset. Tumors were
outlined based on our visual perception of abnormal vessel density and heightened tortuosity of the vasculature around the tumor site, indicating
vessel recruitment and angiogenesis.1 From the healthy brain acquisitions, well-imaged regions were outlined by the masks (excluding only the
outer cortex due to blurring) and the ventricular system was blinded due to autofluorescence. Each brain hemisphere of the healthy mice was
masked and treated independently, providing six tissue sources for healthy virtual voxels. In the following analyses, tissue subvolumes only
entirely within the masked regions were considered.

2.2.2 | Data partitioning and automation algorithms
We developed a custom processing pipeline for the segmented ultramicroscopy datasets using Python 3.6 (Python Software Foundation, https://
www.python.org/) with MPI parallelization,32 C++11 with OpenMP multithreading version 3.1 (OpenMP Architecture Review Board, https://
www.openmp.org/), Matlab R2017b (Mathworks, Natick, MA), and automation scripts written for the bash shell on unix systems to interact with
a cluster workload management system. To accelerate the production of training data for machine learning, a partitioning algorithm was written in
Python 3 to overlay the large, arbitrarily masked input stack with a regular grid of chosen 3D dimensions [s1, s2, s3]. From this grid, the algorithm
sampled image subvolumes in a parallel manner using multiple compute nodes with distributed memory, conducting off-resonance field calcula-
tions based on the contained microvasculature and starting NMR simulations with further parallelization through OpenMP (Figure 1).

To harness the full numerical power of high-performance computing (HPC) clusters, we implemented a hierarchical, three-level parallelization
algorithm (Figure 1B) to run on the BwForCluster MLS&WISO Production (see details in the Acknowledgements). A top-level script, the “job dis-
tributor”, takes a chosen set of segmented microscopy stacks and distributes them across the computational cluster for processing. This is done
by invoking the Moab Cluster Suite (Adaptive Computing, Naples, FL) workload scheduling system to employ computational resources as specified
by the user, with a variable number of computational nodes and cores for parallel execution on each image stack. If the resources requested
exceeded current availability, the job assignments remained in queue until the requested resources per dataset were free.

The Python scripts initialized on each dataset by the workload manager were parallelized through the Message Passing Interface MPI,32 using
Intel MPI with mpi4py33 on Intel Python 3.6.2 (Intel Corporation, Santa Clara, CA) with GCC 4.8.2 (Red Hat 4.8.2–15) for Linux. The parallel pro-
gram partitioned each masked microscopy dataset into subvolumes of size [s1, s2, s3]. Upon a successful test for mask coverage, a Matlab script
was executed by each worker node on its subvolume to calculate the magnetic field perturbations induced throughout the tissue subvolume by
deoxygenated hemoglobin assumed throughout the vasculature. From each side of a subvolume, 50 μm were removed from analysis to eliminate
edge effects, while the remaining virtual NMR voxel was used to simulate spin dephasing. The padding with 50 μm of tissue in each direction
offered a good trade-off between image data exploitation and local off-resonance integrity, since far-field effects beyond 50 μm were of the order
of 1% or less of the influence close to the vessels.

2.2.3 | Numerical simulations of spin dephasing
The procedure used to simulate spin dephasing within a given virtual voxel containing highly resolved vessel structures in 3D, dubbed the Finite
Perturber Method (FPM), has been described in detail elsewhere.34 Briefly, the local Larmor frequency shift Δω(r) caused by a distribution of a
magnetically susceptible material in a homogeneous external magnetic field B0 can be determined by a mathematical convolution of the paramag-
netic structure with the dipole field kernel d(r) in 3D:

Δω rð Þ= γB0 �Δχ rð Þ*d rð Þ, d rð Þ= 3cos2θ−1
4πr3
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with polar angle θ of position vector r to the external field orientation. In this relation, which can be derived using classical magnetostatics,35 the
perturber is described by the spatial distribution of the magnetic susceptibility difference Δχ = Δχ0(1 − Υ)Hct to the extravascular tissue, with
blood oxygen saturation Υ ∈ [0 : 1], hematocrit Hct, and susceptibility difference Δχ0 between fully oxygenated and deoxygenated blood.

The discrete 3D convolution was implemented in a computationally efficient way, making use of the Fourier convolution theorem.36
Accordingly, the above computation can be carried out as an entry-wise 3D matrix product in the spatial frequency domain, followed by an
inverse Fourier transformation:

Δω rð Þ= γB0 �F−1 F Δχ rð Þf g �F d rð Þf gf g:

This was implemented with discrete Fast Fourier Transformations in Matlab, taking into account the anisotropic imaging resolution from
ultramicroscopy. The characteristic off-resonance frequency δω0 = 2πγB0Δχ was set to δω0 = 500 rad/s−1, corresponding to an average
blood oxygenation of Υ ≈ 0.6 with Hct ≈0.4 and field strength B0 = 7 T. The blood composition was simplified with constant values and
the external magnetic field B0 was simulated longitudinal to the forward-facing mouse, as would be the case in a standard animal scanner.
Virtual voxels for simulation were sampled from all over the brain, except for the outer cortex due to image blurring at the boundaries.
Under inclusion of the capillary bed, which generally does not exhibit orientation anisotropy in brain tissue, vessel orientations are assumed
to be uniformly distributed within the virtual voxels.

The magnetization evolution in the extravascular tissue compartment was simulated following an ideal excitation pulse, producing fully
in-phase transverse magnetization across the NMR voxel at t = 0. The phase evolution of virtual spin packets placed randomly throughout
the tissue was simulated in the rotating frame of ω0 = γB0, based on the local off-resonance frequencies Δω(r) encountered during a 3D
discrete-time, continuous-space random walk with tunable time steps and Gaussian distributed step size to model water diffusion. This
random-walk implementation was motivated by the Bloch–Torrey equation, which governs the NMR signal evolution with proton diffusion
effects.37 In our simulations, the vessels acted as impermeable diffusion barriers toward the virtual spin packets and we omitted longitudinal
relaxation with T1, as well as intrinsic spin–spin relaxation in order to focus on dephasing effects from the Larmor frequency distribution

F IGURE 1 Data partitioning and processing. (A) Schematic flowchart of the numerical processing conducted on masked, segmented
ultramicroscopy datasets of 3D vascular structure (left image). Each volume partition of the grid that lies within the mask was modeled as a virtual
NMR voxel, containing the known microvasculature. Following a determination of the blood vessel induced off-resonance frequency distribution
within the virtual voxel (color-coded in a 2D cut through a cubic voxel with 100 μm side length; third image), the extravascular water proton
signal was numerically simulated in FID conditions. The magnetization decay accountable to spin dephasing was parametrized using different fit
functions and a differentiation between short- and long-time decay. (B) Schematic presentation of the implemented processing hierarchy. The
diagram should be read in rows across the full width of the image from top to bottom. The top level consists of postprocessing the image
segmentation and starting the partitioning algorithm on each microscopy dataset. On the computational cluster used, the top-level python script
was written to interact with the Moab scheduling system to distribute datasets to be processed across the cluster according to the availability of
requested resources (here, referred to as “schedule parallelization”). Using the message passing interface MPI, each dataset was simultaneously
treated by independent computational nodes of the network (dubbed “workers”), with over 100 parallel processes per dataset, depending on the
cluster exhaustion. On the BwForCluster used here, each worker node controls 16-40 computational cores, which are used through OpenMP
multithreading to simulate the magnetization precession during spin packet diffusion
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ω(r) and avoid introducing possibly biasing ad hoc relaxation rates for the different tissue types. It has been shown that the intravascular
signal decays relatively fast,38,39 and cerebral blood volume ratios below 10%25 yield accordingly low signal contributions even in the short-
time regime, thus an exclusion of its contribution was considered acceptable in this proof-of-concept. Our numerical implementation was
realized in C++ with OpenMP multithreading to simulate multiple spin packets in parallel, using an arbitrary number of processes which is
adjustable to hardware capabilities.

The simulation results were validated on a cylindrical vessel model with known closed-form solution for the signal decay M(t) including diffu-
sion effects.19 Our simulations reproduced the theoretically expected dephasing effects from different model geometries with very high accuracy
(see Figure S1). The simulation parameters set in this study were as follows: virtual voxel sizes in {100 μm, 200 μm, 300 μm, 400 μm} with 50 μm
excess tissue to each cubic side to avoid voxel boundary effects (with no overlap between neighboring subvolumes) were sampled from a grid
over the imaged, masked tissue in random order; mean extravascular spin packet density of 4 μm−3; water proton diffusion coefficient D = 1 μm2/
ms; diffusion time step δt = 0.1 ms; simulation time t = 1 second; resolution of grid with calculated field distortion: 3.25 x 3.25 x 5 μm3, with trilin-
ear interpolation between grid points; independent pseudo-random diffusion steps generated using the C++11 Mersenne-Twister random num-
ber engine mt19937_64 with system time seed and thread-dependent offset. The random numbers generated for different spin packet subsets
during OpenMP parallelization were tested successfully to be independent.

2.2.4 | Parametrization of dephasing relaxation
The two transverse components of the integral magnetization from each virtual voxel were saved in text files for the time series simulated. Differ-
ent levels of Rician noise40 were imposed on the signal M(t), defined with respect to the maximum signal magnitude M(t = 0) = M0 = 1, by adding
independent Gaussian noise to the real and imaginary magnetization components with signal-to-noise ratios SNR = {2, 4, 10, 50, 100, 300, 500}
prior to calculating the signal magnitude. The noisy magnetization decays were parametrized using scalar fit variables, attained through linear least
squares fits to the natural logarithm of the simulated signal magnitude. The different fit functions and their corresponding variables are summa-
rized in Table 1. The biexponential fit, which assumes the form M(t) = A1exp(−B1t)+A2exp(−B2t), was conducted through mixed linear and
nonlinear optimization, using a Matlab implementation of the Nelder–Mead simplex41 to minimize the sum of squared logarithmic errors for the
decay rates (with initial values B1 = 1 ms−1, B2 = 0) and linear least squares fitting for the amplitudes A1 and A2. For each fit parameter, a goodness
of fit variable was saved as a feature as well to consider the conformity of each decay with certain functional types, including piecewise fits with
different short- and long-time signal forms.

The number of spin packets composing the signal evolution in each simulation was of the order of 106-108 per virtual voxel, depending on
its dimensions. While dephasing was simulated over the duration of 1 second, a numerical noise regime was reached at some point, where the
residual signal, typically with a magnitude of below 10−3�M0, would exhibit brief drops to below 10−5�M0 with fast rephasing back to around
10−3�M0 and strong volatility with values in between (see Figure S2). Prior to adding Rician noise and fitting, the beginning of this numerical noise
regime was automatically determined for each simulated decay using a custom-written routine in Matlab. Specifically, a numerical finite difference
differentiation of log10(−lnM(t)) vs. log10(t) with signal magnitude M(t) and time t was conducted on consecutive time steps (see Figure S2 for
details):

b tð Þ= log10 − ln M t+ δtð Þ½ �½ �− log10 − ln M tð Þ½ �½ �
log10 t+ δt½ �− log10 t½ � ,

TABLE 1 Dephasing relaxation parametrizations. Different fit models and associated dephasing relaxation parameters serving as scalar
features for SVM classification . For each fit function, the time ranges it was applied to are specified in the third column, where “full time range”
refers to the dephasing signal up to the beginning of the numerical noise regime, “short time” denotes the short-time signal, and “long time” the
signal range between the short-time limit and the numerical noise regime. Multiple time range specifications mean that a fit model was applied to
different ranges individually. The sum of squared errors (SSE) was determined over the respective time range and the fit error (FE) quantifies the
half width of the 95% confidence interval on the respective fit parameters.
Fit model Dephasing parameters Time regime
M(t) = exp(−R2t) R2, T2 = 1/R2, SSE, FE Full-time range
M(t) = exp(−Qt2) Q, SSE, FE Short time, full range
M(t) = exp(−R2Lt - PL) R2L, PL, SSE Long time
M(t) = exp(−atb) a, b, SSE Short time, long time
M(t) = A1exp(-B1t) + A2exp(-B2t) A1, B1, A2, B2 Long time
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and with respect to the first signal time point M(t) = δt = 0.1 ms:

b0 tð Þ= log10 − ln M tð Þ½ �½ �− log10 − ln M δtð Þ½ �½ �
log10 t½ �− log10 δt½ � :

This yielded the time-dependent exponents b(t) and b 0(t) for t in milliseconds, under the assumption of M(t) = exp(−atb). The exponent b(t)
was averaged over a symmetric sliding window with a width of 20.1 ms for the sliding mean �b tð Þ. The variance of b(t) with respect to the sliding
average was calculated with var bð Þ= b tð Þ−�b tð Þ� �2 and again smoothed with a 20.1 ms sliding window mean for �var bð Þ. Empirically, it was found
that the first incidence of �var bð Þ≥50 reliably determined the beginning of the noise regime, while higher thresholds would result in later signal
truncation (see Figure S2). This ad hoc method was developed to avoid truncating signals too early, eg, when such noise may be superimposed on
a signal which is still decaying with meaningful information. In experimental MRI, this procedure is typically replaced by considering SNR
thresholds.

In prior theoretical studies,15,42,43 where the dephasing influence of spheroidal and cylindrical, paramagnetic inclusions was treated analyti-
cally, it was shown that the dephasing attenuation in such systems can generally be divided into a short-time regime with Gaussian decay form,
M(t) = exp(−Qt2), and a long-time regime with approximately Lorentzian behavior; M(t) = exp(−R2Lt). By parametrizing the signal with
M(t) = exp(−atb), the exponent b(t) was thus used to determine the end of the short-time regime for each signal. Indeed, the finite difference
quotients initially yielded b = 2 for all simulated signals, with different rates and forms of decrease (see Figure S2b,f). For b(t) from numerical dif-
ferentiation on consecutive time steps, the threshold marking the end of the short-time regime was empirically chosen at bt = 1.7. An analogous
exponent b 0(t) was calculated through finite difference quotients of the signal with respect to the first time step t = 0.1 ms, with a threshold at
b0t = 1.9. The two threshold-passing time points were averaged to result in a robust assessment of the transition from short- to long-time
regime, which was tested empirically on a large set of randomly sampled signals from all tissue types (see Figure S3).

2.3 | Machine learning using support vector machines
We used the LibSVM library44 with Python 3.6.1 to train SVM classifiers on the numerical NMR data. The spin-dephasing features of each virtual
voxel (see Table 1) were scaled for SVM training using svm-scale. A C-support vector classifier was used to divide the input data into two classes
through a hyperplane in the higher dimensional kernel image space. In an a priori test using linear and radial basis function (RBF) kernels, the RBF
was determined to be the better performing transformation for the problem at hand. The grid search function, included with LibSVM, was
implemented into the custom training algorithm using Python 3 to identify optimal SVM parameters on each training set prior to training on the
entire set. We used 3-fold cross-validation on the training data during the grid search to optimize C ∈ {2x} with x between −5 and 15 in steps of
2 and γ ∈ {2y} with y between −15 and 3 in steps of 2. Signals for subsequent prediction testing were excluded from the parameter optimization.

SVM training and testing were conducted on different, independent subsets of virtual NMR voxels to produce so-called learning curves,
which portray the prediction accuracy (percentage of correct NMR decay classifications) of a classifier on previously blinded signals, depending on
the number of training voxels used (see Table 2 for training set sizes). In any case, all training was performed on balanced datasets with equal

TABLE 2 Simulated signal contributions from imaged datasets. For every virtual voxel size (VVS, cubic voxels with side lengths of
100-400 μm), the number of virtual voxels extracted from each tumor-bearing mouse is presented. The first value in the second column is the
number of U87 tumor signals per mouse and the second value is the analogous quantity from mice with a GL261 tumor. The numbers are
relatively small because balanced sets were ensured, such that each mouse contributed equally to training. In any case, the number of contributed
tumor signals per mouse was matched with equal contributions from each healthy brain hemisphere. Since GL261 tumors were small compared
with the U87 specimens, for large virtual voxels (300 and 400 μm side length), all simulated signals from GL261 tumors were included (a total of
13 signals from 400 μm voxels and 53 signals from 300 μm voxels) and matched with an equal number of healthy tissue signals for training. In
these cases, predictions were tested on unbalanced datasets, mainly consisting of healthy tissue signals. The third column details the number of
training signals used to generate learning curves. Different stages of the learning curves are divided by vertical lines; and, for each stage, the first
training set size sb, the increment sd, and the last training set size se, are given in the form sb:sd:se. In any case, the training sets consisted of an
equal number of signals from tumors and healthy tissue.
VVS (μm) Virtual voxels per mouse (U87/GL261) Balanced training set sizes for learning curve generation (U87/GL261)
100 300/90 2:4:98|100:8:260|280:20:600|650:50:1000|1100:100:3000/

2:4:98|100:8:260|280:20:600|650:50:900
200 60/17 2:4:98|100:8:260|280:20:600/2:4:98|106:8:170
300 15/all (53 total) 2:4:98|100:8:260/2:4:106
400 5/all (13 total) 2:4:50/2:2:26
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contributions from each tissue group (healthy brain tissue and tumors). In the U87 tumor study, all training and prediction sets also consisted of
equal contributions from each mouse. For the smaller GL261 tumors, all available signals were used in the cases of 300 and 400 μm virtual voxel
side length (VVS), while training sets were still ensured to be group-balanced (see Table 2 for details).

2.4 | Statistical analysis
For U87 tumor classifications, training was conducted on different subsets of signals from, respectively, five animals with prediction testing exclu-
sively on the signals from the sixth, previously blinded, mouse. This was done, respectively, six times with different pairs of healthy and tumor-
bearing mice for prediction, such that each imaged mouse would be isolated for prediction once. For each of these learning curves, different ran-
dom permutations of the training signals were used to produce individual learning curve instances, which were averaged to yield results unbiased
of the training signal order. To keep computational expense feasible, the number of random training set permutations was varied for different vir-
tual voxel sizes: 100 permutations for VVS = 400 μm, 10 permutations for VVS = 300 μm, three permutations for VVS = 200 μm, and one permu-
tation for VVS = 100 μm.

For GL261 tumor signal classifications, the procedure was analogous to the U87 tumor model for VVS = 100 and 200 μm. Due to smaller
tumor sizes, for VVS = 300 and 400 μm, all available virtual voxels were used from GL261 tumors, matched with an equal number of healthy train-
ing signals for each training epoch, and predictions were conducted on the residual signals not used for training. While training sets were always
balanced, prediction sets were dominated by healthy signals during GL261 tumor classification with VVS of 300 and 400 μm. In the other cases,
where prediction sets were also balanced with equal signal contributions from tumors and healthy tissue, learning curves were also produced
exclusively from classification testing on these individual groups. In these cases, training was conducted using five mice from each group with pre-
diction tests on signals exclusively from the remaining healthy or tumor-bearing mouse, separately. As before, the prediction specimens were per-
muted so that each imaged mouse was subject to exclusive prediction testing once.

3 | RESULTS
3.1 | Classification of dephasing in U87 tumor tissue using all FID parametrizations
SVM classifiers were trained on randomly sampled signals from five U87 tumors and five healthy brain hemispheres, using the full set of FID fea-
tures listed in Table 1. Classifiers were tested on the simulated signals of the remaining mouse, with six permutations such that each mouse was
excluded once for prediction testing (see Figures S4-S7). The permutation-averaged results from training and prediction testing with different
SNR levels on the simulated dephasing signals are presented in Figure 2, with predictions on balanced sets, as well as signals exclusively from U87
glioblastoma or healthy brain tissue. The learning processes, results and accuracies presented in the following are fully reproducible.

The learning curves in Figure 2 indicate that robust classifiers can be trained for the tumor classification problem based on the dephasing fea-
tures. Especially with higher training data availability, the learning curves presented continuously rising prediction accuracies with little volatility
for minor training set changes. With sufficient amounts of training data, classification accuracies were also relatively stable under random permu-
tations of the training signal order (see Figures S4-S7). When permuting the imaged animals exclusively used for prediction testing, stronger vari-
ability was observed, which is certainly influenced by imaging and segmentation differences between mice, as well as the origin and placement of
the virtual NMR voxels used for training (more details in the Discussion).

Using all dephasing parametrizations from Table 1, stable prediction accuracies of 70%-80% could be maintained in predictions on sepa-
rately imaged and segmented datasets of mice which were completely excluded from any training. The classifiers were very robust against
noisy NMR data, performing well even with high levels of noise superimposed on the dephasing signal. At the lowest signal-to-noise ratio
of SNR = 2, the average prediction accuracy in the stable regime suffered only by around 5%-10% compared with the noise-free signal
(Figure 2).

With balanced prediction sets from healthy and pathological tissue, classification accuracies of 70%-75% were reached as of ~ 300-800
training signals from virtual voxels with side length VVS = 100 μm, depending on the noise level in the NMR data. For VVS = 200 μm, a mini-
mum of 600 training signals sufficed. Despite much more limited training sets, larger voxels with VVS = 300 μm granted prediction accuracies
of 75% above ~ 100 training signals and similar values were attained from VVS = 400 μm above 40 training instances (20 signals from
healthy brains and 20 from glioblastoma tissue, ie, four simulated dephasing processes from each training mouse). Our results suggest that,
for this tissue classification problem and the range of voxel sizes probed, larger NMR voxels grant higher classification success with less
training data.

Prediction tests conducted exclusively on healthy or tumor-born signals, individually, show that the classification accuracy on healthy test sig-
nals is higher than on tumor signals for all voxel sizes (Figure 2, second and third columns). With increasing training set sizes, tumor tissue
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prediction accuracies caught up to the healthy tissue rates and partly surpassed the latter, depending on the noise level included in the signals.
With sufficient training signals, the classification accuracies became approximately equal. The virtual voxel signals with VVS = 300 μm preserved
considerably lower classification specificity on tumor voxels throughout the entire training range, indicating that a stable classification regime was
not reached with the limited training set of at most 150 simulated signals.

F IGURE 2 Learning curves with different virtual voxel sizes and noise levels from classifications of healthy tissue vs. U87 glioblastoma using
the entire set of dephasing parametrizations. Plots presenting the mean prediction accuracy of grid-search optimized classifiers, achieved by
training with virtual voxel subsets from, respectively, n = 5 healthy brain hemispheres and U87 tumors at virtual voxel sizes of 100 (A-C), 200 (D-
F), 300 (G-I) and 400 μm (J-L), using all fit parameters listed in Table 1 as signal features. The prediction accuracy was plotted on the y-axis against
the number of training voxels on logarithmic x-axes. All plotted learning curves are averages from different permutations of prediction testing
animals and training subsets (see Figures S4-S7). All learning curve points, including the individual permutation cases, were created from balanced
training and prediction sets with equal contributions from glioblastoma and healthy brain voxels. The left column presents the mean prediction
accuracy on such balanced datasets. The center column depicts the prediction accuracies of classifiers tested exclusively on healthy voxel signals,
while the right column shows the analogy for virtual voxels extracted exclusively from U87 tumor tissue. In all scenarios, training sets were
balanced. For comparison, the classification accuracy of random guessing was plotted at 50%
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3.2 | Classification of dephasing in U87 tumors with a sparse FID parametrization
The above training and prediction scenarios were repeated with a subset of FID features, which were found to fit the simulated signals well with
a small set of parameters; the Gaussian decay rate Q in the short-time limit and the biexponential fit parameters A1, A2, B1, and B2 in the long-time
regime (see Table 1 and Figure S3). Posing a set of fit variables which can be determined when the dephasing process is superimposed with intrin-
sic spin–spin relaxation (a mono-exponential decay), these variables offer an efficient parametrization which could be applied to experimentally
sampled T2* decay (FID-like NMR measurements).

Compared with the above results from training with the full set of parameters in Table 1, classification accuracies were much more sensitive
to Rician NMR noise in this case (see Figure 3). For good signal-to-noise ratios of SNR ≥ 100, defined with respect to the maximum signal inten-
sity M(t = 0), prediction accuracies generally behaved more favorably than before, reaching higher values with less training data and more similar
specificity for both tissue groups. For all virtual voxel dimensions, mean prediction accuracies around 80% were reached with the small animal
cohort included in this study. Higher noise levels with SNR ≤ 50 resulted in dramatically lowered classification accuracies and more volatility in
the learning curves. High noise levels paired with too little training data tended to result in a classification bias towards healthy signals, leading to
increased prediction accuracies on healthy brain voxels and high rates of misclassification on tumor signals, whereas this bias was sometimes
opposite for extreme noise levels (cf. Figure 3, central and right columns), yielding generally unreliable predictions.

3.3 | Classification of dephasing in GL261 tumors
The microscopy data from mice with GL261 glioblastoma yielded smaller tumor samples, so the predictions on 300 and 400 μm voxels were made
on unbalanced datasets with more virtual voxels from healthy tissue for prediction testing. For smaller virtual voxels, prediction sets also con-
tained equal group contributions from animals excluded from training. For 300 and 400 μm NMR voxels, all available NMR decays were used from
each mouse (varying between animals), but care was taken to use only balanced training sets from GL261 tumors and healthy brain tissue. In
these cases, at each stage, classifiers were tested on the remaining signals not used for training. The classification performance on datasets includ-
ing at least one virtual voxel from each tissue group is presented in Figure 4.

The learning curves attained in the tumor classification problem with GL261 gliomas resembled their analogies from U87 tumors for small vir-
tual voxels with VVS of 100 and 200 μm. Again, the classification using all relaxation parametrizations in Table 1 was more robust against low
SNR (see Figure 4). Training classifiers with only the short-time Gaussian decay rate Q and biexponential fit parameters was also much more prone
to noise in this case, whereas the prediction accuracy on tumor signals was affected more dramatically (cf. Figure 5). Noise levels with SNR = 4-10
introduced a bias in the classification towards healthy signals, enhancing the true positive rate on healthy virtual voxels to over 95%, while tumor-
intrinsic signals were correctly classified at a mean rate of around 30% with SNR = 4 and accuracies around or above 50% for SNR = 2. For suffi-
cient training set sizes, the bias towards healthy classifications decreases for SNR ≥ 10, yielding similar specificity on healthy and pathological
signals.

Classifier performance exceeded the previous study case with signals from U87 glioblastoma, reaching 80%-90% on GL261 data using all FID
features. Similar performance was achieved using the sparse parametrization with Gaussian and biexponential fits for sufficient SNR ≥ 100 (see
Figures 4 and 5). With very limited training data availability for large NMR voxels with VVS of 300 and 400 μm, the classification bias in favor of
healthy signals dominated most of the tested range (see Figures 4 and 5, G-L). Again, the full set of dephasing parameters facilitated faster conver-
gence of learning curves with different SNR, but a stable prediction regime could not be reached with the available data. Overall, the results of
the GL261 tumor classification study support the previously motivated hypothesis that larger NMR voxels emphasize the dephasing differences
induced by angiogenesis and vascular remodeling in the brain, enabling more reliable signal classifications on individual NMR voxels.

4 | DISCUSSION
The successful proof-of-principle presented in this study indicates that it is possible to achieve a learning of abstract endogenous contrast tied to
a tissue type classification for brain tumors. The developed processing pipeline can be used to classify arbitrary tissue types, including vessel
structures from different organs and pathologies. As this decade represents the true advent of ultramicroscopy, the availability of high-resolution
vessel acquisitions is expected to become more relevant in coming years. The toolbox introduced in this work can be applied to a range of biologi-
cal systems to test the theoretical feasibility of achieving a signal classification based on tailored MRI sequences, and further to optimize such
sequences for certain classification tasks.

Our results provide strong evidence that the NMR voxel size has a considerable impact on the capabilities of a classifier, since different
vessel remodeling effects can be more pronounced on characteristic length scales. The voxel size influenced the behavior of our classifiers
for small training sets, as well as the slope of the learning curves, their speed of convergence, and presumably the maximum possible
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prediction accuracy. Our initial results suggest that high resolutions may be counterproductive for tumor signal classifications of this kind.
In proceeding studies, the generalizability of trained classifiers will be tested, eg, by training and testing with different virtual voxel dimen-
sions. With a growing amount of data for training, as well as further tuning of the voxel dimensions and relaxation parametrization, the
capabilities of support vector machines for voxel-by-voxel MRI classifications yet remain to be discovered. This numerical study with a small
cohort of 15 mice strongly motivates further microscopic acquisitions to increase the amount of available training data, include further
tumor models, and conduct more powerful statistical analyses.

F IGURE 3 Learning curves with different virtual voxel sizes and noise levels from classification of healthy tissue vs. U87 glioblastoma using a
sparse set of five dephasing parameters. Plots depicting the mean prediction accuracy of grid-search optimized classifiers, achieved by training
with virtual voxel subsets from, respectively, n = 5 healthy brain hemispheres and U87 tumors at virtual voxel sizes of 100 (A-C), 200 (D-F),
300 (G-I) and 400 μm (J-L), using only the short-time Gaussian decay rate and the parameters from long-time biexponential fits as signal features.
The mean prediction accuracy was plotted on the y-axis against the number of training voxels on logarithmic x-axes. All curves represent
averages from different permutations of prediction testing animals and training subsets (Figures S4-S7). Every individual learning curve point was
attained from balanced training and prediction sets with equal contributions from glioblastoma and healthy brain voxels. The left column presents
the mean prediction accuracy on mixed testing datasets. The center column depicts the prediction accuracies of classifiers tested exclusively on
healthy voxel signals and the right column shows the prediction accuracy on virtual voxels extracted exclusively from U87 tumor tissue. In all
scenarios, training sets were balanced. For comparison, the classification accuracy of a random classifier was plotted at 50%
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The classification accuracies in our study show potential for further improvement through higher training set sizes, signaled by the continuous
rising trends, observed in learning curves with sufficient signal SNR. Our results from training and testing classifiers on noisy dephasing data rev-
ealed that distinct relaxation parametrizations exhibit different stability against noise. Favorable goodness of fit does not guarantee robust classifi-
cation in this case. An extensive statistical study of sensible dephasing parametrizations and combinations thereof go beyond the scope of this
introductory proof-of-principle, but will be the subject of future considerations aiming at conducting automated dimensionality reductions on

F IGURE 4 Learning curves with different virtual voxel sizes and noise levels for the classification of healthy tissue vs. GL261 glioblastoma
using the entire set of dephasing parametrizations. Plots presenting the mean prediction accuracy of grid-search optimized classifiers at virtual
voxel sizes of 100 (A-C), 200 (D-F), 300 (G-I) and 400 μm (J-L), using all fit parameters listed in Table 1 as relaxation features. The prediction
accuracy was plotted on the y-axis against the number of training voxels on logarithmic x-axes. For virtual voxel side lengths VVS = 100 and
200 μm, training was conducted with virtual voxel subsets from, respectively, n = 5 healthy brain hemispheres and GL261 tumors with balanced
training and testing datasets. Larger virtual voxels yielded too little data for balanced prediction sets, therefore training was always conducted
with an equal number of healthy and pathological signals, while predictions were tested on predominantly healthy voxels. The left column shows
mean prediction accuracies on mixed sets of virtual voxels from tumors and healthy tissue. The center column presents prediction accuracies of
classifiers tested exclusively on healthy voxel signals and the right column shows the analogy for virtual voxels extracted exclusively from GL261
tumors. For orientation, the classification accuracy from random guessing was plotted at 50%
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NMR feature sets for such classification tasks to ultimately optimize experimental sequence designs for analogous real-life measurements. With
dephasing during FID-like measurements as a starting point, MRI acquisition techniques, sampling densities, and relevant echo time regimes are
design parameters which can be optimized to facilitate reliable signal fits for the relaxation parameters deemed most relevant for a classification
task. The developed software framework allows for effortless extensions to different sequence types, incorporating, eg, spin echoes, steady-state
free precession, diffusion weighting, or dynamic susceptibility measurements.

F IGURE 5 Learning curves with different virtual voxel sizes and noise levels for the classification of healthy tissue vs. GL261 glioblastoma
using the sparse set of relaxation parametrizations. Plots presenting the mean prediction accuracy of grid-search optimized classifiers at virtual
voxel sizes of 100 (A-C), 200 (D-F), 300 (G-I) and 400 μm (J-L), using the short-time Gaussian decay rate and long-time biexponential fit
parameters as relaxation features. The prediction accuracy was plotted on the y-axis against the number of training voxels on logarithmic x-axes.
For virtual voxel sizes VVS = 100 and 200 μm, training was conducted with virtual voxel subsets from, respectively, n = 5 healthy brain
hemispheres and GL261 tumors with balanced training and testing sets. Larger virtual voxels delivered too little data for balanced prediction sets,
therefore training was always conducted with an equal number of healthy and pathological signals, while predictions were tested on
predominantly healthy voxels. The left column shows mean prediction accuracies on mixed sets of simulated signals from tumors and healthy
tissue. The center column presents prediction accuracies on exclusively healthy voxel signals and the right column shows the analogy for virtual
voxels from GL261 tumor tissue. The classification accuracy of random guessing was plotted at 50%
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The simulation framework can be extended for biophysical aspects of physiological processes and the in vivo tissue microenvironment. This
includes, eg, blood flow and hemodynamics, oxygen transport and diffusion, vessel permeability, metabolic demands and interactions, and other
physiological aspects affecting blood susceptibility and extravascular water diffusion.5,45–47 In this initial study, we simplified the blood oxygena-
tion to be constant throughout the vasculature; a common practice in MR-focused biophysical modeling of microvascular networks.21,48,49 To
keep the systematic bias between healthy and tumor-intrinsic tissue voxels minimal and avoid introducing errors from false biological assumptions
or inadequate modeling, the oxygenation and other blood properties were set equal for both tissue types. In reality, not only the vascular geome-
try and topological connectivity in these tumor models are distinct in comparison with healthy cerebrovasculature,25 but so are the associated
hemorheology, vessel lumen characteristics, and blood oxygen saturations, exhibiting local hypoxia and necrosis.50–53 Such differences are
expected to translate to spin dephasing and amplify classification accuracies further, since comparable conditions are not present in the healthy
brain.

In this proof-of-concept study, we aimed at making minimal ad hoc assumptions about the physiology and, instead, focused on the ubiquitous
differences in local vessel geometry, which are temporally constant throughout an MRI acquisition. We therefore used equal blood composition
and oxygen saturations throughout all simulations. In experimental MRI acquisitions, the vessel susceptibility can be controlled through gas inhala-
tion or the injection of (super-) paramagnetic contrast agents, such as SPIONs or gadolinium chelates.13,14 Such intravascular contrast agents dra-
matically increase the vessel susceptibility, by far outweighing blood oxygenation-dependent effects, which in turn negates the impact of local
oxygenation variations. Upon the initial bolus wash-in, the vessel susceptibility can be considered approximately constant over the dimensions of
an MRI voxel on the timescale of an acquisition. Thus, if desired, the constant vessel susceptibility can be approximated in experimental settings.
A change of diffusion regime through higher blood susceptibility should be considered in the numerical simulation settings, possibly justifying a
static dephasing approximation,15 which is computationally far more efficient.

We have modeled a simplified biological environment that includes vessel-specific magnetic susceptibility and diffusion effects in the extra-
vascular space. Intravascular blood water signal was omitted in this study due to weak signal contributions, low blood volume ratio, and flow
effects of excited spins through each virtual voxel, which cannot be modeled in our framework with missing hemodynamics. In realistic MRI, the
entire biological system is present, there are hardware imperfections, and the signal decay is overlaid with longitudinal T1 and intrinsic spin–spin
relaxation. Nonetheless, a study isolating the vessel-specific effects, which can be substantial in realistic NMR experiments, was necessary to chal-
lenge the sheer possibility of such a signal classification in an optimal environment. The developed framework can also be used to model exoge-
nous, intravascular susceptibility contrast agents, which can be used to amplify the vessel-induced dephasing effects.

To improve the depiction of realistic biological and experimental settings, the simulation algorithms can be augmented with further features,
eg, by considering longitudinal relaxation and more realistic, locally varying blood compositions, as well as the intravascular blood water signal.
The intravascular blood oxygenation can be approximated numerically using blood flow simulations with suitable boundary conditions,54,55 or
determined experimentally within smaller tissue sections, eg, through spectral contrast optical coherence tomography angiography56 or by using
custom experimental setups.57 Generally, different microscopic imaging modalities offering higher resolutions and/or spatial isotropy should prove
beneficial for the classification quality.

Healthy brain tissue is known to present higher microvascular regularity compared with the highly heterogeneous tumor microenviron-
ment.6,58 In this study, virtual NMR voxels were sampled randomly from all over the healthy brain, including transition zones between brain
regions, white and gray matter. Large cubic subvolumes extracted from the healthy brain included different regions with distinct vascula-
tures, which are expected to have increased heterogeneity in the healthy signal simulations. The classification accuracy can most likely be
improved by training with healthy tissue samples from specific brain regions, with a separate tissue class for voxels overlaying different tis-
sues in boundary regions. This could hypothetically be combined in practice with a class probability type prediction from an independent
segmentation algorithm, identifying brain regions based on macroscopic voxel locations a priori. Tissue-specific vascular characteristics,
which vary throughout the brain, can be learned in the training process to increase the sensitivity of the classifier to possibly pathological
abnormalities.

For each classifier, the misclassification rate of healthy signals can be determined on known tissue samples a priori and modeled as statis-
tical noise in true classification tests. Since every voxel of an MRI acquisition is classified independently, but the misclassification noise should
either be randomly spread out or accumulated (eg, at brain region boundaries), an abnormal spatial clustering of pathological classifications
could pose a quite reliable tumor identifier if the classification capabilities demonstrated here can be translated to experimental MRI
scenarios.

This work served the purpose of conducting proof-of-principle type classification tests without major efforts to explore the vast field of sta-
tistical machine learning models possibly suitable for this problem. We used established SVM implementations and settings with a simple, easy-
to-manage grid-search optimization of the SVM hyperparameters. Two proven kernel functions, responsible for transforming the input features
to a higher-dimensional vector space, were tested here: the RBF and the linear kernel function. Furthermore, only FID-type dephasing was simu-
lated and parametrized with an ad hoc set of 24 scalar features from signal fits. Optimizing and ultimately reducing the feature catalogue to the
most relevant and robust parameters has the potential of improving classifiers immensely. Simulations involving advanced MRI sequences, such
as spin echo and diffusion-weighted MRI, may also extend the capabilities of this method.
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We observed effects of intra- and inter-tumoral heterogeneity when running the learning curve generation with different test animal pairs, as
well as random permutations of the balanced training data. High variances of prediction accuracy between training runs with different permuta-
tions of training data for small training set sizes are a hallmark of intra-tumor heterogeneity, including hypoxic and well-vascularized regions with
angiogenesis. A strong variance of learning curve accuracies when permuting the prediction test animals indicates inter-tumoral differences, but is
also affected by imaging and segmentation differences among animals, which could exhibit different artefacts, clearing and imaging quality.

The GL261 glioma could be identified more accurately despite smaller training set sizes. The GL261 model is known to be more angiogenic
than U87 representatives,27 and, although visual evaluations of the U87 capillary network in the image datasets facilitate untroublesome tumor
spotting, the automated classification of U87 signals proved to be more difficult. This may be explained by previous results, where it has been
shown that the early stage U87 glioma microvasculature resembles healthy brain tissue in some aspects, such as the statistical distribution of dis-
tances of extravascular tissue voxels to their nearest blood vessel,59 which is closely related to the microscopic distribution of off-resonant Larmor
frequencies probed in this study.

Our results, from a relatively small animal cohort, affirm the feasibility of constructing reliable NMR voxel classifiers for angiogenic tumors.
This motivates analogous test cases in other organs with distinctive vascular pathologies, eg, the heart muscle with cardiomyopathy.60 Regardless
of the application, future studies should focus on ranking the NMR features and investigating their statistical power, robustness against noise, and
the role of different relaxation parametrizations for classification problems. Based on their prediction stability for different NMR voxel sizes and
noise levels, optimal dephasing parametrizations should be sought for different experimental conditions concerning SNR and resolution. A reliable
treatment of this problem demands larger animal cohorts for more statistical power, but in this proof-of-principle, it could be shown that such
efforts are worth investing.

In conclusion, we have demonstrated the theoretical feasibility of a voxel-by-voxel type detection of brain tumors based on dephasing-
induced transverse relaxation patterns in FID-type NMR experiments. Using numerically simulated signal evolutions on virtual NMR voxels, inter-
sample classification accuracies beyond 90% could be achieved with surprisingly small training datasets, with characteristic improvements towards
larger voxels. Our results from a cohort of six tissue samples of each type, including two distinct tumor models, strongly motivate further studies
in this direction with expanded high-resolution vascular imaging. We have developed a highly scalable numerical toolkit to explore different exper-
imental conditions and MRI sequences in an idealized setting, focused around mesoscopic magnetic susceptibility inclusions within tissue, most
prominently embodied by blood vessels. This toolbox can be employed to design optimized MRI sequences with endogenous or exogenous con-
trast to exclusively sample the information-sensitive imaging parameter space in subsequent experimental acquisitions. If successfully translatable,
such tailored acquisitions could be used to train SVM classifiers to detect vascular pathologies and anomalies in real, in vivo MRI measurements
based on independent voxel classifications.
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Supplemental Fig. S1. Validation of the numerical dephasing simulations by 
comparison with closed-form solutions of the Bloch-Torrey equation. For the 
infinite cylindrical vessel model, a closed-form analytical solution of the Bloch-Torrey 
equation1 could be derived in previous studies2. Magnetization evolutions simulated on 
model geometries of a single cylindrical blood vessel with 5 µm radius (A) and B)) and 
15 µm radius (C) and D)), occupying, respectively, 5% and 25% tissue volume were 
plotted along with the corresponding analytical solutions of the magnetization evolution 
expected from these geometries. The top row shows the evolution of the real part of the 
total magnetization M(t), normalized to its starting value M0. The bottom row presents 
the frequency density of states p(𝜔), attained through a Fourier transformation of the 
complex magnetization decay. The results presented precisely coinciding curves, 
validating our numerical implementations, which, in contrast to the analytical solution, 
cannot only be applied to the cylindrical vessel model, but to arbitrary paramagnetic 
susceptibility distributions in 3D space. This validation proves the correct implementation 
of the underlying NMR physics in the simulations used to calculate spin dephasing 
based on the imaged microvasculature in real biological tissue. 
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Supplemental Fig. S2. Demonstration of automated noise regime and short-time 
limit assessment. Panels A-D demonstrate the automated detection of the numerical 
noise regime onset on a virtual voxel from healthy brain tissue: the full simulated 
dephasing relaxation process (A) is parametrized assuming M(t) = exp(-atb) to 
determine the time exponent b(t) through consecutive-step numerical differentiation, 
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presented in panel B along with the sliding-window average of b(t) over a 20.1 ms 
symmetric time window. The squared deviation of b(t) from its windowed mean is 
calculated and again averaged over the same sliding window (C). An empirically 
optimized threshold of 50 was chosen for the window-smoothed variance (green line in 
panel C), which, when first exceeded, marked the beginning of the time regime 
dominated by numerical noise, to be excluded from further analysis (D). Panels E-F 
present the automated determination of the transition from the short-time to the long-
time signal regime, based on the above parametrization of dephasing with variable time 
exponent b(t). Panel E shows the dephasing relaxation plotted as log10(-ln(M(t))) vs. 
log10(t), which renders the time exponent b as the slope of the curve. All simulated 
decays exhibited a characteristic decrease in slope, in this example, discernible around t 
= 10 ms. The exponent b(t), determined previously (B) was augmented with an analogy, 
b’(t), calculated through finite difference quotients at every time point with respect to 
t=0.1 ms (F). Thresholds of 1.7 and 1.9 for b(t) and b’(t), respectively, contributed 
estimates of the end of the short-time regime with Gaussian signal decay3, which were 
averaged to yield the sought transition point (G). In panel H, a Gaussian fit with M(t) = 
exp(-Qt2) to the short time dephasing signal from this example is presented (s. 
Supplemental Fig. S3 for more examples). 
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Supplemental Fig. S3. Examples of short-time Gaussian fits with long-time bi-
exponential fits to simulated dephasing relaxation. The reduced set of relaxation 
parameters tested for classification tasks is presented here, with an example from 
healthy brain tissue (A-C), U87 glioblastoma (GBM) (D-F), and GL261 GBM (G-I). The 
first column of panels depicts the entire simulated time frame with short-time Gaussian 
fits, assuming M(t) = exp(-Qt2) and long-time bi-exponential fits, modeling the signal as 
M(t) = A1exp(-B1t) + A2exp(-B2t). The second column zooms in on the short-time signal 
regime and the third column presents the signal regime before the dominance of 
numerical noise. The time points of signal regime transitions were determined 
automatically with the ad-hoc algorithm described in Supplemental Fig. S2. 
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Supplemental Fig. S4. Individual learning curves from different permutations of 
training and prediction testing subsets of virtual voxel signals, using the full set 
of relaxation parametrizations with weak NMR noise at SNR = 100. Panels A-F 
present training scenarios with predictions on different healthy and tumor-bearing mice, 
depicting individual learning curves from, respectively, 10 random permutations of the 
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training data from n=5 mice of each group. The learning curves from different training 
signal permutations are colored, with the mean prediction accuracy from 10 runs plotted 
in a bold black line. Panel G includes all learning curves from the different training and 
prediction data permutations, i.e., summarizing the results in A-F, with the total mean 
prediction accuracies for each training run in bold black, overlaying the colored curves 
from individual runs. Panel H shows the same mean learning curve in bold black as 
panel G, but with averaged prediction accuracies from the random training set 
permutations shown in distinct colors for each prediction animal pair (the bold black 
curves in panels A-F). 
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Supplemental Fig. S5. Individual learning curves from different permutations of 
training and testing subsets of virtual voxel signals, using the full set of relaxation 
parametrizations with strong noise at SNR = 2. Panels A-F present training scenarios 
with predictions on different healthy and tumor-bearing mice, depicting individual 
learning curves from, respectively, 10 random permutations of the training data from n=5 
mice of each group. The learning curves from different training signal permutations are 

A) B)

C) D)

E) F)

G) H)
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colored, with the mean prediction accuracy from 10 runs plotted in a bold black line. 
Panel G includes all learning curves from the different training and prediction data 
permutations, i.e., summarizing the results in A-F, with the total mean prediction 
accuracies for each training run in bold black, overlaying the colored curves from 
individual runs. Panel H shows the same mean learning curve in bold black as panel G, 
but with averaged prediction accuracies from the random training set permutations 
shown in distinct colors for each prediction animal pair (bold black curves in panels A-F). 
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Supplemental Fig. S6. Individual learning curves from different permutations of 
training and testing signals, using the sparse set of relaxation parameters from 
Gaussian short-time and bi-exponential long-time fits and low noise at SNR = 100. 
Panels A-F present training scenarios with predictions on different healthy and tumor-
bearing mice, depicting individual learning curves from, respectively, 10 random 
permutations of the training data from n=5 mice of each group. The learning curves from 

A) B)

C) D)

E) F)

G) H)
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different training signal permutations are colored, with the mean prediction accuracy 
from 10 runs plotted in a bold black line. Panel G includes all learning curves from the 
different training and prediction data permutations, i.e., summarizing the results in A-F, 
with the total mean prediction accuracies for each training run in bold black, overlaying 
the colored curves from individual runs. Panel H shows the same mean learning curve in 
bold black as panel G, but with averaged prediction accuracies from the random training 
set permutations shown in distinct colors for each prediction animal pair (bold black 
curves in panels A-F). 
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Supplemental Fig. S7. Individual learning curves from permutations of training 
and testing signal sets, using the sparse relaxation parametrization with Gaussian 
short-time and bi-exponential long-time decay and strong noise at SNR = 2. Panels 
A-F present training scenarios with predictions on different healthy and tumor-bearing 
mice, depicting individual learning curves from, respectively, 10 random permutations of 
the training data from n=5 mice of each group. The learning curves from different 

A) B)

C) D)

E) F)

G) H)
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training signal permutations are colored, with the mean prediction accuracy from 10 runs 
plotted in a bold black line. Panel G includes all learning curves from the different 
training and prediction data permutations, i.e., summarizing the results in A-F, with the 
total mean prediction accuracies for each training run in bold black, overlaying the 
colored curves from individual runs. Panel H shows the same mean learning curve in 
bold black as panel G, but with averaged prediction accuracies from the random training 
set permutations shown in distinct colors for each prediction animal pair (bold black 
curves in panels A-F). 
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4 Discussion

Many pathologies, especially chronic illnesses have characteristic effects on tissue
microstructure. Infamous examples are glioblastoma multiforme and other cancer
types, which alter the cellular tissue composition, metabolism, function, and nutritional
supply of affected organs. Neurodegenerative diseases such as Alzheimer’s, Parkinson’s,
dementia, and schizophrenia have also been suspected to be tied to microstructural
changes within the brain, suggested by an altered axon myelination [173, 174] and
microscopic iron accumulations in certain cells [175].

As a chronic disease progresses, it often increasingly deforms the tissue architecture
on a cellular level. This makes microstructure-sensitive medical imaging a field worth-
while advancing, anticipated to become increasingly relevant to clinical practice. It
can provide useful information about sub-resolution structures for diagnostics and
treatment monitoring [36]. As shown in the introduction to this thesis, MRI represents
a promising candidate for such developments due to its inherent sensitivity to microscopic
and mesoscopic tissue structure and dynamics, as well as the wealth of possible contrasts
to highlight different aspects. This is supported by the exponential increase of research
publications pertaining to microstructural MRI in recent years [176].
During the first half century since its invention in the 1970’s, MRI has evolved

tremendously in diversity and refinement. On the one hand, increasing technical
precision and sophisticated engineering have boosted the quality of imaging with more
powerful and homogeneous magnets, gradient coils, and RF transmission and reception
systems. On the other hand, continuous developments of new spin system preparation
and manipulation techniques with creative pulse sequence designs have conceived a
myriad of contrast types and signal weightings.

In medical imaging, sophisticated sequence designs have increasingly been combined
with external manipulations to not only produce new contrasts, but also probe the
responses of tissue to different conditions. Examples include the use of intravascular
contrast agents, e.g., for DCE or DSC [30, 34], and MRE, where tissue stiffness is probed
by imaging shear wave propagation from an external application of mechanical, sonic or
ultrasound compressions using MRI [107, 108]. Clinical and preclinical research regularly
finds promising use cases for different MRI techniques to image specific pathologies for
diagnostic aid, e.g., MRE for liver fibrosis and tumor imaging [109, 110].
Arguably, up to this point, most such applications of MRI in clinical imaging to

uncover or grade specific conditions have been discovered mainly through experiment
and experience. While the microscopic origins of disease-characteristic hypo- and hyper-
intensities of different contrasts can often be explained, at least on a phenomenological or
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qualitative level, clinically established gold-standards in diagnostics are often based on
experience and empirical findings built throughout years. For instance, malignant brain
tumors are often characterized with contrast-enhanced T1-weighted MRI, differentiating
enhancing and non-enhancing tumors, which reveals the intactness of the blood-brain
barrier and some tumor properties relating to the prognosis [177]. With some exceptions,
e.g., diffusion weighted MRI (DWI and DTI) [178], MRE [108, 179], MR-spectroscopic
imaging (MRSI) [180], and magnetic resonance thermometry [181] (see section 1.2.5 for
more details), MRI techniques rarely permit a direct quantitative interpretability of
measurements on a single voxel level for real, physical information about the underlying
tissue in gauged units. Most methods only allow for an assessment of relative changes
of the MRI signal, usually in comparison with other imaging voxels within the same
acquisition, to indicate tissue anomalies on a sub-voxel level.

With the rise of artificial intelligence (AI) and machine learning, this may change in
the future. While the past fifty years have mainly brought forth new MRI contrasts
based on physical manipulation of the sample magnetization and direct imaging of its
responses, data-driven methods can be expected to augment basic contrasts achievable
with MRI in the future. After all, letting a computer interpret a signal based on many
examples it has seen of healthy cases and how a measurement “should” look, in order to
detect deviations thereof, is not so much different from what has been done in the past
decades utilizing MRI in clinical imaging, just that the interpretation of new images
and comparison with known controls has been the responsibility of human radiologists,
relying on their training and experience. For one, trained physician specialists know
how a healthy anatomy should look with certain MRI contrasts and can recognize
tissue anomalies on a macroscopic level. Further, their experience, established textbook
knowledge, and ability to access and compare a wealth of data for all kinds of pathologies
acquired from around the world, grants them the possibility to interpret deviations
from the norm. A diagnosis is typically made based on combinations of the findings
from imaging with other conditions a patient has, e.g., from an anamnesis or laboratory
examinations.

Considering the status quo, it becomes apparent that AI could assist radiologists
in many of the tasks they implicitly carry out on their way to arriving at a diagnosis.
Based on images acquired with certain contrasts, a comparison with a database of
healthy and pathological signals by a computer could yield a healthy classification or a
set of possible conditions which have been seen causing the observed types of signal
anomalies. Hypothetical advantages of handing this task over to machines are manyfold.
For one, the amount of data that can be compared quantitatively by a computer in a
short time is horrendous. A computer would base its recommendations on quantitative
measures, which need to be transparent and explainable (an important requirement for
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machine learning in many real-life applications). This is a large research topic in the
field of AI, often referred to as explainable machine learning [182, 183], which has gained
tremendous attention in recent years. Naturally, explainability will play a central role
in such a system for medical diagnostics, since it would service with decision support
for physicians, as opposed to a decision automation, making high prediction accuracies
insufficient for an adoption in clinical practice. For a real benefit from such a system,
radiologist would need to know what exactly a certain diagnostic suggestion was based
on, e.g., which parts of an MRI.

The explainability of machine learning is not a serious point of concern for an
application in medical diagnostic support, though. Broad research with different
approaches and many promising developments are leading AI into an age of transparency
and explainable versions of most machine learning techniques already exist in some
form. A bigger obstacle for an effective machine-aided medical image interpretation
framework is the construction of high-quality databases for training, an appropriate
parametrization of acquisitions, and the definition of suitable metrics to assess similarity
between measurements, especially from different vendors and hardware. Relevant
technical questions concern appropriate feature extraction techniques, best length scales
of signal comparisons, and the relative weighting of different aspects. Metrics should
be sensitive enough to pathological alterations in all their heterogeneity, but flexible
enough to tolerate physiological and anatomical variations between healthy patients.
Clearly, there is still much work to be done on the path to such AI-based diagnostic
tools in the described form, but the possibilities are yet greater.

A major advantage of machine-aided signal interpretation, which human physicians
could not feasibly accomplish, is the possibility to classify and characterize signals from
individual MRI voxels. Trained radiologists can only make sense of an MRI acquisition
as a pixel matrix attained after image reconstruction from k-space (see section 1.2.2), by
comparing the intensities of multiple pixels in an arrangement as a whole image. With
machine learning, MRI signals can be interpreted directly in k-space, bypassing an image
reconstruction. To include spatial information of possible anomalies, the reconstructed
MRI signal can be processed on different length scales. Classically, entire images can
be compared for anatomical irregularities on a computer vision basis, emulating what a
radiologist would do. Additionally, machine learning and pattern recognition can be
applied in a convolutional way exclusively to local voxel neighborhoods. Finally, in the
special case of MRI, where each voxel can have multiple signal intensities based on the
applied contrasts and acquisition settings, voxel signals can be interpreted individually
without any information about spatial origin or voxel neighborhoods.

In this thesis, exhaustive preparations were made for such a voxel-wise signal inter-
pretation approach. Its applicability for a detection of brain tumors was tested under
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isolation of a specific signal component; the endogenous effect of microvascular geometry
on transverse relaxation. Furthermore, automated quantifications of microvascular
geometry and topology were implemented in a scalable way to process large datasets of
ground-truth 3D architectures for the production of sufficient training, validation, and
test data for machine learning. This way, dephasing effects of certain microstructures
can be correlated directly with specific aspects of their geometry and topology. Either
real anatomical data, as studied in the majority of this thesis, or different model
architectures (see publication I and section 4.2), can serve as input to study the effects
of different microstructural variations on the MRI voxel signal. For an effective use of
machine learning, sufficient data availability or quick production abilities are essential.

Depending on the amount of available training data, different machine learning
techniques can come into consideration for diagnostic decision support systems. With
limited data availability of less than ∼104 training samples, classical models like support
vector machines or decision tree methods such as random forests are suitable. Such
models require numerical feature vectors and cannot directly process raw image data,
calling for efficient feature extraction methods. With very many tunable parameters
and weights, neural networks, especially for deep learning, demand much more data in
the order of at least 105 or 106 instances for sensible training (sometimes considerably
more, depending on the network architecture). Deep neural networks with an increasing
number of hidden layers usually have an astronomical number of weights and connections
to be tuned and, in practice, the adaptation of pre-trained network architectures has
proven efficient for many classification purposes [184].

An advantage of neural networks, of which there are many types, e.g., convolutional
neural networks, is their ability to autonomously identify sensible data parametrizations
in their hidden layers (or latent space). This evades the need for feature definitions and
enables direct end-to-end learning of input signals and output quantities or classifications.
This is a major source of neural network flexibility and superior performance in many
classification tasks. In the medical context, this advantage may alleviate the problem
of finding appropriate similarity metrics of different acquisitions, but it would demand
a coordination and maintenance of extremely large databases to be used for anomaly
detection based on real training data. Such developments are conceivable in the
far future, but several obstacles are currently in the way of an effective realization.
Medical data processing is regulated individually by countries and the construction of a
widely accessible infrastructure to share anonymized data would demand international
cooperations on a political and administrative level. Also, general processing guidelines
and normalization techniques for data from different scanners would be needed.

Recent years have seen machine learning invading virtually all areas of medical
imaging, including numerous applications with MRI [185]. This is because the field
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offers so many possibilities of data-based enhancement, the number of medical scans
being conducted world-wide on a daily basis increases continuously, and the acquired
data is already being archived in a digital format in most cases. Combining more
of this data for a sophisticated interpretation of new acquisitions seems like a self-
evident continuation, of course presuming complete data anonymization. A review of
different use cases for AI in medical imaging would blow the scope of this thesis, but
application areas include image reconstruction, artifact minimization, sequence design,
image segmentation, and classification. For instance, the image reconstruction step,
i.e., the Fourier transformation in MRI, can be replaced by a deep neural network
to map k-space data to image space, which can be trained incorporating signal noise
and artifacts for increased resilience against such factors in comparison to traditional
reconstruction [186]. In another image reconstruction example, undersampled k-space
data can be Fourier transformed with k-space interpolation from machine learning [187].

The use of AI for disease detection based on MRI is still relatively rare, because it
is a more complex issue with many degrees of heterogeneity on several levels. Details
in anatomy and physiology can differ even among healthy humans. Influential factors
are genetics, age, prior health problems, and life style [138]. Further, pathological
phenotypes can differ substantially among individuals. A disease can appear in distinct
facets and also depend on different conditions, individual predisposition, other personal
factors as above, and mere chance. In some individuals, certain symptoms may evolve
and in others they may not, just as combinations of different simultaneous conditions can
influence particular pathological manifestations. This biological variance alone makes it
difficult to generalize and automate diagnostic processes. Also, the hardware, protocols,
and reconstruction steps of MRI can differ between vendors and devices, making a
direct comparison of signal intensities difficult when planning to collect training and
prediction data from different sites. Consequently, AI-aided diagnostics have recently
been applied more with X-ray imaging, which does not have such sensitive soft-tissue
contrasts [188, 189], and stained biopsies from histopathological examinations [190].

Quantitative MRI (qMRI) can generalize measurements across vendors and scanners
by determining quantitative relaxation parameters for each imaging voxel. A great
ambition of qMRI is to provide quantitative information about the degree of tissue
malformations from certain diseases, as opposed to merely weighted images, which
only reveal relative signal changes. A problem with this is the reasonable degree of
variation of basic relaxation rates R2 and R∗2 due to physiological dynamics such as
the blood oxygen saturation [9, 191, 192] (cf. Tab. 1.1 in section 1.2.3). Certain
value deviations often cannot be ascribed to invidivual microscopic conditions reliably.
Phenomenological models can connect the blood oxygen saturation Y and field strength
B0 to relaxation times T2 and T ?2 [193], but the quantitative relaxation times do not
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enable an inference on the microvascular architecture on sub-voxel length scales without
separate blood oxygenation measurements, e.g., with quantitative susceptibility mapping
(QSM) [194, 195] or quantitative BOLD [196–198]. For a voxel-wise characterization of
capillary geometry, most methods fall back on susceptibility contrast with paramagnetic,
intravascular contrast agents [30, 34] or at least hyperoxic/hypercapnic blood oxygen
variations in more experimental methods [29]. Yet a common denominator remains to
be the focus on relaxation rates attained from mono-exponential fitting of transverse
relaxation and changes thereof on longer time-scales of seconds, sampled with the
repetition time TR.

The approach pursued for artificial MRI contrast definitions in this thesis, demon-
strated with the tissue type classification in publication V, focuses on the more detailed
form of transverse megnetization decay for different echo times TE < TR. In their early
analytical treatments, Sukstanskii and Yablonskiy already predicted a Gaussian signal
attenuation in the short-time regime and a Lorentzian form in the long-time regime,
predicted for dephasing around arbitrarily oblate or prolate ellipsoidal susceptibility
distributions [14]. This has been confirmed experimentally [44] and numerically in my
simulations, showing good fit results assuming such functions.

Even better goodness of fit was achieved in publicaton V of this thesis using bi-
exponential functions for the long-time dephasing regime. Such signal behavior is
typically observed in multi-compartment tissues with different relaxation times of
distinct spin pools (e.g. fat and water), but has also been observed in T2-weighted
acquisitions of the human brain with brain tumors and edema [199]. Interestingly, in
publication V, we found that a bi-exponential T ′2 evolution is also invoked in a single,
extravascular spin pool by the microvasculature containing deoxygenated blood. This is
expected to be a consequence of diffusion, because with longer echo times, small-scale
field inhomogeneities are increasingly smeared, causing slower dephasing relaxation in
the long-time regime. This effect was also observed in publication I.

In publication V, the goal of a more diverse parametrization of transverse relaxation
within one repetition period TR was to become independent of absolute relaxation rates,
as determined in classical qMRI. The ambition was to achieve a sort of self-gauging by
comparing the relations between different fit parameters in the short- and long-time
dephasing regimes instead of relying on absolute relaxation strength. For support
vector classification, each feature was scaled to the range [−1, 1] to base predictions
mainly on relative relations between individual fit model parameters. The hyperplane
division implemented by SVMs was used to unveil how well-separated the healthy and
pathological signals were in the scaled parameter space through relative positions along
the different dimensions (scaled fit parameters). The improvement of classification
accuracies with radial basis function kernels indicated a nonlinear distribution pattern
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between tumor and healthy voxel signals, but the overall results and robustness to noise
showed that dephasing attenuation shapes differ significantly and definitely enough for
classification. With multiparametric fitting, robustness to noise was high compared to
traditional DSC-based vessel characterizations [200], whereas a direct comparison is
difficult because the binary tissue type classifications tested here fundamentally differ
from the quantitative vessel size, blood volume, and vessel architectural estimations
conducted in [200]. With the numerical framework developed throughout this project,
further studies to correlate individual vessel properties (e.g., the ones presented in
publications II, III, and IV) with the associated dephasing curves (from publication V)
should facilitate a better comparison with such established MRI methods.

A translation of the proposed voxel-wise signal interpretation from publication
V, using machine learning to yield purpose-specific artificial MRI contrasts, to real,
experimental MRI on humans is achievable, given ground-truth knowledge about the
artificial contrast in a sufficiently large number of training and validation samples. Since
training instances are given by individual voxels as opposed to entire image matrices, a
considerable dataset size is quickly attainable for training. In the example of tumor
detection or even grading, current gold-standard, contrast-enhanced MRIs could be
used as the ground-truth for training AI models in a classification of co-registered voxels
from MRIs without contrast enhancement, e.g., from pre-bolus acquisitions. In a very
recent preprint, contrast-enhanced T1 and T2 acquisitions, as well as diffusion-weighted
measurements for the apparent diffusion coefficient (ADC) of each voxel, were combined
with support vector classification in a similar approach to differentiate glioblastoma
recurrence from edema in the peritumoral region [201]. Here, classifications were based
on 270 radiomic features calculated from 5 x 5 x 5 voxel neighborhoods from the above
MRI acquisitions (with gadolinium enhancement) in a sliding window manner, also
using entire regions of interest. This more classical radiomics approach was not only
based on single-voxel contrast, but also incorporated surrounding voxel information,
in analogy to texture analysis methods [202], which certainly improves classifications.
Nonetheless, this study demonstrates the power of voxel-wise processing, since just ten
glioblastoma patients yielded over half a million MRI voxels for classification [201].

Biomedical studies using animal models are subject to discussion in many communities,
and justifiably so [203, 204]. In many animal studies, the question of how translatable
the findings are to human medicine remains vaguely answered [205, 206]. Concerning
the relevance of the results found in this thesis for a mouse model to human physiology,
it was recently found that most intracranial microvascular properties pertaining to
geometry, topology, and function are well translatable from mice to humans, with direct
equivalence of topology and simple scaling rules for geometry and hemodynamics [207].
Thus, the provided proof-of-principle for voxel-wise tumor classifications should be valid
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for humans as well. Further, the developed numerical tools for voxel-wise processing of
large datasets, including automated relaxation fits, organization of intermediate results
by predefined groups, optional matching with microstructural ground truth parameters,
and machine learning for classification or regression of voxel properties, dubbed artificial
contrasts, all packed in a highly scalable and parallelizable framework, can be readily
applied to human data from experimental MRI acquisitions or other imaging techniques.
Lastly, the custom-developed quantification tools demonstrated in publications II - IV,
specialized for amorphous vessel networks of arbitrary size and shape, can be applied
to segmented 3D data from virtually any imaging modality [208], including computed
tomography [209], magnetic resonance angiography [210], and 3D digital subtraction
angiography [211], as well as artificially constructed vessel networks [212–214].

The numerical developments in this thesis go beyond a mere proof-of-principle for
voxel-wise tumor classifications based on endogenous T ′2 contrast from variable echo time
imaging, as provided in publication V. A large part of this project was dedicated to an
extensive characterization of microvasculature within the healthy brain and glioblastoma
multiforme. This is because the ultimate goal of this endeavor is to correlate specific
vessel properties with voxel-level signal changes expected in MRI. The cylindrical vessel
model described in section 1.2.4 oversimplifies realistic microvasculature by assuming
parallel orientation, highly regular arrangement, and no interconnections between
cylinders. Intracranial vessel networks have been found to contain systematic loops
with functional purpose [215, 216] and a complex network structure made up of mesh-
like capillaries, intertwined with arterioles and venoles with hierarchical branching
into different generations of vessels with increasing calibers following certain scaling
rules [217–220]. Further, complex microvascular geometry has been found to influence
BOLD-based fMRI signals through its impact on T2 and T ∗2 significantly [221–223].

In publication I of this thesis, an extension of the well-studied SCM (presented in
section 1.2.4) was attempted with a spatial regularity parametrization for a step towards
more realistic capillary distributions. It was found that the cylindrical vessel model
could not facilitate a bijective mapping of the transverse relaxation form (considering
the density of states ρ(ωL) of intra-voxel Larmor frequencies, i.e., going beyond R′2) to
underlying vessel characteristics when including distributive irregularity as a degree of
freedom. Increasing vessel disorder was found to have the same effects on dephasing
as an increasing variance in radius distributions or stronger diffusion. This led to
the conclusion that more sophisticated vessel parametrizations are needed to describe
realistic, amorphous and interconnected microvasculature and its effects on transverse
relaxation. It is conjectured that a consideration of more vessel characteristics may solve
degeneracies in the mapping from tissue microstructure to the macroscopic NMR signal.
Therefore, a wide range of quantitative parameters was determined for real microvascular
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networks in publications II, III, and IV, in order to identify some characteristics which
are significantly altered by brain tumors on a large scale, as compared to the already
intricate and interweaved cerebrovasculature of the healthy brain.

With the developed numerical framework, vascular magnetic resonance fingerprinting
(vMRF) can also be conducted flexibly. Classical magnetic resonance fingerprinting
(MRF) aims for an acceleration of multiparametric MRI and improved robustness to
noise and artifacts in simultaneous, voxel-wise estimations of T1, T2, and T ∗2 [224, 225].
Based on a simulated dictionary of signals associated with certain tissue properties and
relaxation rates, the most probable property combination for each voxel is chosen based
on a type of scalar-product between the simulated and measured signal vectors [224].
Diverse MRF techniques have arisen for image reconstruction [226], but specialized
methods for microvascular characterizations have also been explored, usually referred
to as vMRF or MR vascular fingerprinting [227, 228].
These methods have relied on signal dictionaries created with simulations based on

idealized cylindrical vessel distributions, as studied analytically in section 1.2.4, with
systematic variations of the cylindrical geometry and blood oxygenation. Mean vessel
diameters RC , tissue volume fractions η, and blood oxygen saturation are then predicted
by vMRF for each voxel, based on dictionary matching [227]. Such an approach built
on the cylindrical vessel model may be too idealized for the detection of disease-specific
malformations, as these are not sufficiently parametrized by cylinders and demand
properties such as tortuosity, distributive heterogeneity, and connectivity, as shown
in publications II and IV. Also, the degeneracy of dephasing effects of the cylindrical
vessel model uncovered in publication I of this thesis motivates an approach based on
more realistic signal simulations.
Recently, real high-resolution angiograms have been used as the basis for vMRF

dictionary construction with an analogous numerical approach taken in publication
V of this thesis [229]. Still, the dictionary construction in vMRF generally demands
systematic variations of vessel characteristics, which has, up to this point, only been
achieved by artificial manipulations of angiograms, involving the deletion of certain
vessels (ordered by size) and inflation of vessel radii, which ultimately again produces
unnatural structures [229]. It is questionable whether such artificial vessel network
manipulations produce angio-architectures comparable to what may be found, e.g., in
cancer tissue. Within this thesis, only natural vessel architectures were used to study
the effects of microvascular geometry on spin dephasing. If necessary for dictionary
construction, the findings concerning tumor-related alterations of vessel geometry and
topology, presented in publications II - IV, could guide artificial network manipulations
or constructions for vMRF studies in analogy to previous the approaches [227, 229].
I conjecture that it may be possible to refrain from artificial vessel modifications
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and possibly focus more on building up dictionaries with different disease types in
an MRF analogy. Even just including several disease types or a certain class of
malignant tumors in a database seems like a worth-while endeavor. To limit the natural,
physiological variability of the healthy signals, positional priors could be used with a
voxel categorization, e.g., using a brain atlas [230]. By differentiating brain regions,
white and grey matter, or even cortical layers, a minimized variability of healthy
tissue microstructure should be achieved [55, 223, 231–233]. With a clustering analysis,
optionally unsupervised, the number of sensible tissue types to differentiate could be
determined. By choosing the number of healthy tissue groups, the natural variance
within each group could be tuned to minimize uncertainty of anomalous deviations
for specific artificial contrasts. For instance, if the mean capillary radius is defined
as the artificial contrast, the number of tissue groups could be set to the number of
brain regions observed with significantly differing vessel calibers in a sensible range.
This is expected to significantly improve the classification of pathological deviations of
individual voxel signals.

Previous successes of MRI-based intra-voxel capillary characterization typically in-
volved the intravascular administration of a super-paramagnetic contrast agent. The
vMRF approaches discussed above were no exception to this [227–229]. The pass-
through of a contrast agent bolus can reveal many local microvessel characteristics, with
sensitivity to blood volume fraction, flow velocity, mean vessel diameter, vessel length
density (see ρL in publications III and IV), and lumen permeability [34]. Further, with
vessel architectural imaging (VAI), the relative abundance of underlying arterioles as
compared to capillaries and venoles can be estimated for each MRI voxel when com-
paring simultaneous R2 and R∗2 changes during contrast agent pass-through [36, 234].
This is enabled by the increased sensitivity of R∗2 to large vessels, while R2 changes are
stronger for small and intermediate vessel diameters (cf. Fig. 1.3 in section 1.2.4 or
[74]). Despite the plethora of information it can reveal, the use of intravascular contrast
agents should be limited to maximize patient comfort and minimize the risk of side
effects like allergic reactions or long-term contrast agent depositions [117, 118]. Also, an
interpretation of dynamic R2/R∗2 changes for truly quantitative vessel characterizations
requires the definition of an arterial input function, which models the contrast agent
concentration as it passes and disperses through the vessel network [235, 236].

Alternative, endogenous approaches to vascular characterization based on MRI
without contrast agents include ASL [119] and IVIM imaging [120] (briefly mentioned
in section 1.2.5). In ASL, RF excitation is conducted outside of the imaging volume
and arterial blood with transverse magnetization flows into the imaging region. Signal
changes in comparison to reference acquisitions reveal local blood flow characteristics
[237, 238]. DSC measurements have been shown to be replaceable by ASL for relative
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cerebral blood flow estimation in the healthy brain [239] and high- and low-grade
gliomas [240], although DSC allows for better glioma grading [241]. IVIM imaging is
based on diffusion weighting and assumes quasi-undirected blood flow in capillaries
to emulate a “pseudo-diffusion” with measurable diffusion coefficients 5 − 10 times
greater than what is observed from Brownian motion [120]. A two-component signal
model allows the relative fraction of capillary volume to be estimated from IVIM. These
imaging methods can also be simulated numerically with the developed C++ code used
in publication V with appropriate extension of an intravascular spin pool (more on this
in section 4.2 about sensible continuations of this project).
The presented arguments make a data-driven approach of learning artificial MRI

contrasts look like a promising starting point for a new branch of MRI, involving model-
less interpretations of multiparametric acquisitions. Even though some pathologies can
result in similar fundamental MRI contrast alterations, it is conceivable that a more
detailed interpretation of single-voxel contrast combinations, e.g., from multi-parametric
or variable echo time imaging, may add an extra dimension to MRI that could solve some
of these degeneracies. In any case, a better understanding of microvascular architecture
on a quantitative basis will facilitate an improved capability to model and understand
the effects thereof on macroscopic MRI signals. Also, with the presented microscopic
imaging and processing framework, microstructural signatures of different neoplastic
pathologies can be highlighted from new perspectives for a better understanding of
system-wide functional alterations. This could, in turn, guide new approaches of tumor
signal recognition, either through machine learning, direct physical modeling, or a
combination of both, with hybrid modeling.

4.1 Reflection

As in any theoretical or numerical treatment of a real-world problem, models were used
and approximations were made to capture certain aspects of reality. Publications I and
II of this thesis adopted the cylindrical vessel model, which approximates capillaries by
long, straight cylinders, cutting through a plane with parallel orientation to each other.
This has been common practice in previous studies with similar aims of characterizing
the vessel geometric influence on the dephasing process in NMR, of which an overview
was provided in section 1.2.4. While the regular SCM may reasonably approximate
myocardial and skeletal muscle tissue [71, 242, 243], its application to brain and tumor
tissue is more difficult to justify. Intracranial vasculature is known to be relatively
tortuous [168, 244] and convoluted with complex network structures [216, 245], while
tumors have been found to additionally alter vessel tortuosity [146].
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In publication I, the classical SCM introduced in section 1.2.4 was extended with
the order parameter Γ to incorporate a continuous parametrization of distributional
irregularity between the previously treated cases of a hexagonal crystal lattice and
complete spatial randomness. In this study, the assumption of parallel vessel orientation
was strictly enforced. The simulations and calculations were conducted for such idealized
vessel systems in order to facilitate a systematic comparison of the effects of distribution
irregularity with the previously studied properties, namely vessel radius RC , tissue
volume ratio η, blood susceptibility χ, and diffusion strength D. Starting with the SCM
and a hexagonal lattice as a control, the effects of different arrangements were studied
and compared to the impact of increasingly variable radius distributions and different
diffusion coefficients. This study was meant to shed light on fundamental effects of
singular aspects in an idealized setting. In consequence, a direct applicability of its
results to real tissue is highly questionable, especially in the brain.

In publication II, the order parameter Γ was estimated for slices of tissue with 5µm
thickness, within which the vessel orientation was ignored. In this study, the 2D-OCP
was not used to study artificial vessel distributions, but rather to attribute an order
parameter to capillary constellations based on the positions of their centers within planes.
By analyzing statistical distributions of Γ values, the model could be applied without
enforcing parallelism of vessel segments. In this analysis, idealized tissue containing long,
parallel cylinders would yield sharp peeks at individual Γ values (with correctly oriented
planes for analysis). The shape and width of a Γ distribution from realistic tissue holds
additional information about the degree of disorder beyond a single plane. Specifically,
the variance of Γ values from the planes within a single MRI voxel can hold information
about the degree of deviation from vessel parallelism. The variance of Γ distributions
from different macroscopic voxels discloses the degree of heterogeneity on larger length
scales throughout the tissue. A caveat of this parametrization is its dependence on the
orientation of scanning planes in anisotropic tissue, but the implemented numerics offer
an averaging of three perpendicular scanning plane directions.

Publication II revealed broad Γ distributions, both in U87 glioblastoma and healthy
brain tissue. While statistically, the tissue types can be differentiated with sufficiently
many Γ probes, the overlap is large (cf. Fig. 4 of publication II). A contributing reason
for this was presumably the non-selective placement of virtual voxels over different
brain regions, incorporating partial volume effects from white and grey matter and
generally broadening healthy tissue distributions. True for all analyses conducted in this
thesis, an inclusion of additional spatial information and a categorization into different
brain regions using a brain atlas, e.g., from the Allen Institute for Brain Science (see
brain-map.org/api/index.html), would certainly boost the distinguishability of tumors
from healthy tissue (as suggested in the above discussion). This was demonstrated
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in publication III with a differentiation of healthy cortex, basal ganglia, and corpus
callosum. For MRI voxels lying on boundaries that overlap multiple tissue types, partial
volume effects and an increased uncertainty of estimated parameters could be taken
into account using a brain atlas registration.

Publication III showcases the flexibility of the developed quantification code in
determining vessel geometry in arbitrarily shaped tissue regions. Binary masks can be
used to include or exclude regions, allowing for combinations with flexible topological
structure including holes. These masks could also be extracted from a brain atlas for
further automation, but would require a reliable co-registration of the atlas to the
microscopic data, which is a highly active research field in itself [246]. To complement
the flexibility of the tailored vessel quantification program written within the course
of this thesis, publication IV demonstrated its scalability. With over a million vessel
segments per healthy brain hemisphere, to our knowledge, this work presented the most
comprehensive geometric quantifications of cerebrovasculature to date.

Publication IV further introduced the largest network-topological quantifications
of cerebrovasculature in healthy mammals and provided the first graph theoretical
perspective on vessel remodeling in entire brain tumors with such detail. At the
resolution of 3 − 5µm, corresponding to the length scale of the smallest network
constituents (capillaries), this study provided novel findings, revealing a very peculiar
network structure in healthy and pathological tissue, which combines several paradigms
of graph theory, which have, as far as we found, not been observed coinciding in real
networks. Some properties were previously even assumed to rule each other out (see the
discussion in publication IV). On larger length scales, the modular community analysis
also suggested that vascular clusters form a small-world network throughout a healthy
brain hemisphere, although a certain confirmation of this was not possible with the
available data. A clear observation and major result in publication IV was the dramatic
dismantling of modular vessel communities by glioblastoma.

Relatively new 3D microscopic imaging techniques with high resolution and large
field-of-view, as well as recent advances in the availability of computational power and
RAM have only enabled such analyses of real, large-scale vascular network connectivity.
The computational load and challenges such analyses bear could only be handled with
custom-developed numerical processing, resource-sparing coding, and the availability of
high performance computing (HPC) machines, generously provided by the bwForCluster
through the bwHPC and bwHPC-C5 projects of the state of Baden-Württemberg. The
graph theoretical quantifications presented in publication IV significantly augmented
previous topological characterizations of vascular networks, usually focused on particular
brain regions and smaller tissue sections [55, 231, 232, 247, 248], suggesting that
cerebrovascular networks at capillary resolution form a peculiar class of transport
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networks with nontrivial property combinations. These findings remain to be verified
in independent studies. In coming years, a better comprehension of vascular topology
on different levels is expected to improve our understanding of complex pathological
phenomena such as neurovascular uncoupling [26, 27].

Originally, the determination of mean capillary radii and fractional vessel volumes
was meant to facilitate a comparison of the transverse relaxation predicted by the
SCM (from section 1.2.4) with realistic parameter ranges found for healthy brain
tissue and glioblastoma. Comparing tumor vasculature with healthy cerebrovasculature
throughout the entire brain, it quickly became clear that vessel radii and cerebral
blood volume were not sufficient to capture the main aspects of tumor-induced vessel
remodeling (as demonstrated in publications II - IV and conform with previous literature
discussed in these articles). Also, a segregation of the individual aspects of remodeling
is not instructive in the context of treating the inverse problem of mapping dephasing
characteristics to underlying vessel properties, as was shown in publication I; where
spatial disorder, variance of radii, and diffusion turned out to have similar effects
on transverse relaxation. This was an additional motivator to directly simulate the
dephasing effects of realistic vessel geometries, as presented in publication V.

Despite real microvascular architectures being the substrate for the dephasing simula-
tions, the numerical methodology in publication V was riddled with approximations and
simplifying conditions, common in such studies [17, 18, 229]. For one, only extravascular
signal contributions were considered in order to evade making assumptions about blood
flow, a complex and computationally intense matter of its own (see section 4.2). Hema-
tocrit, blood oxygen saturation, and the distribution of deoxyhemoglobin were modeled
as constant throughout the vasculature within a virtual voxel, justifiable as a first ap-
proximation for short time scales of dephasing and small voxel dimensions below 1mm.
NMR signal was assumed to originate only from water protons, neglecting contributions
from other hydrogen atoms. Additional susceptibility-relevant inclusions such as iron
accumulations [249] and other sources of B0 inhomogeneity were ignored. Excitation
pulses were idealized with instantaneous effect and without B1 inhomogeneities. Lastly,
partial volume effects from white matter, gray matter, and cerebrospinal fluid were
ignored and extravascular space was modeled as isotropic without additional diffusion
barriers, with equal diffusion strength in all tissues to avoid introducing systematic
variability and focus on differences induced by vascular geometry. Possible extensions
towards more realistic conditions are discussed in section 4.2.

The segmentation of vessels from fluorescence microscopy presented a critical step in
publications II - V. Imaging artifacts and different qualities of vessel labeling and tissue
clearing add artificial variability to the datasets from different mice. Further, most of the
quantified geometric parameters presented in publications III and IV strongly depend
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on the vessel segmentation. The topological parametrizations presented in publications
II and IV, on the other hand, are robust against segmentation variations, since these
typically affect vessel thickness much more than the spatial distribution or network
connectivity (with the exception of insufficient labeling effects). The segmentation
toolkit used in this thesis (ilastik [157]) was chosen due to its generality, robustness
to varying contrast intensities, and flexibility to include different features based on
intensity, texture, and edge information, which could be tuned to the data [158]. This
was helpful in segmenting out different forms of artifacts, such as shadow streaks from
badly cleared tissue sections, which rarely occurred but could mimic very long, straight
vessels. Many specialized tools have been developed incorporating different metrics and
methods for vessel segmentation throughout the years [250]. Recently, convolutional
neural networks have outperformed more classical methods, producing excellent vascular
segmentations on large scales [251, 252]. The segmentations used in this thesis can
readily be replaced with more specialized methods to further improve data quality.

Regardless of all the simplifications in publication V, making healthy and pathological
tissue more similar than it would be in reality (e.g., concerning diffusion coefficients
and local blood oxygen saturations), the classification results based solely on single-
voxel dephasing call for further studies in this direction. High classification accuracies
of up to ∼95%, which could be achieved in publication V without using any voxel
neighborhoods or information about the anatomical origin of a signal, are highly
motivating, as they stand out in comparison to other studies with similar aim but far
more elaborate MRI acquisitions, e.g., with contrast enhancement, diffusion weighting,
or spectroscopic imaging [201, 253]. Due to the computational complexity of further
numerical refinements (see section 4.2), experimental analogies may be the more
economic pathway now that a proof-of-principle for a pathology-specific artificial MRI
contrast based on machine-aided dephasing interpretations has been provided.

A major open question remains for now, though: how well do the simulated differences
of transverse relaxation in brain tumors shine through over all the other influences
affecting the measurable signal in real MRI? Pertinent factors with an impact on
the voxel signal intensity are manifold (see chapter 1). The cellular environment of
extravascular space is far more complex than could be simulated, but has its own effects
on T ∗2 weighting [19], and in vivo physiology can be quite dynamic and difficult to
model [18, 45], especially on large length scales, including breathing, pulsatile flow,
and metabolic dynamics [46, 248]. Furthermore, hardware imperfections and patient
movement, as well as physiological motion within the body complicate imaging with a
voxel-level registration. Nonetheless, this is possible and imaging can be coordinated
with the cardiac cycle and breathing to mitigate pulsatile blood flow effects [47] for
better correspondence to simulated conditions through respiratory or cardiac gating.
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A sensible continuation of this research project should involve a validation of the
simulated dephasing effects from capillary blood in corresponding MRI experiments.
Two-photon microscopy is a powerful method for in vivo imaging of blood vessel geometry,
hemodynamics, and even oxygen saturation with sub-micrometer resolutions [254–256].
Recently, fMRI was performed in combination with this technique for microscopic blood
oxygenation and flow information in mice for which a corresponding BOLD fMRI signal
was acquired [257]. I have been involved with a closely collaborating research group
in the development of a similar “correlated imaging” approach [49], which is meant to
answer the above question and unveil differences and possible corrections between the
simulated and truly measured relaxation.

4.2 Outlook

The research conducted within the course of this thesis paves the road to many avenues
that can be pursued further to build on the attained insights and developed tools.
As mentioned above, the microscopic data acquisition performed for the analyses in
publications II - V, namely fluorescent light sheet microscopy [258], can be replaced
by analogous high-resolution imaging techniques such as multi-photon microscopy
[52], microCT [53, 150], or custom-built microscopy setups [259], ideally including
hemodynamic information and blood oxygen saturation in live situations [255, 256].
Spatial variations of hematocrit and blood oxygenation could be implemented into
the NMR simulations presented in publication V in a very straight-forward way. As
tumors are known to have distinct metabolism, such an augmentation is expected
to improve classification accuracies further. A correlation of topological connectivity
features and measured blood property distributions would also be interesting and may
provide valuable explanations for tumor-related neurovascular uncoupling [26].

If experimental imaging of the hemodynamics is not an available privilege, blood flow
simulations could provide more realistic distributions of hematocrit, blood oxygenation
and flow [260]. Numerous ways to go about this have been reported in literature, e.g.,
[45, 235, 236, 247, 248, 261–263]. Recently, a hybrid approach was presented to combine
individual models of the vasculature at different scales; specifically, the capillary bed and
the arteriolar and venular vessel trees, with specialized coupling terms at the interface
[139]. Such techniques offer an efficient way to model multiscale networks and account
for the profound differences of structure and topology at different scales [220, 264], as
well as complex rheological effects, such as the varying viscosity of blood depending on
the capillary radius and dynamic vascular adaptation [261, 265]. A second spin pool
for blood water could easily be added to the simulations with knowledge about blood
flow. Specifically relevant for studies of tumor vasculature, variable vessel permeability
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can be taken into account in hemodynamic and dephasing simulations, as tumors have
been found to produce leaky vessels with a hyperpermeable lumen, which increases
diffusion into and out of vessels [266]. Modeling of the extravascular compartment could
be refined, e.g., by implementing anisotropic diffusion along white matter tracts and
differing proton densities in white and gray matter.

Furthermore, additional MRI contrasts can easily be implemented in the simulations
of publications I and V. The fundamental contrasts with T1 and intrinsic T2, as described
in section 1.2.3, obey exponential forms and can be multiplied on top of the more
complex dephasing attenuation post-simulation. For an inclusion of diffusion effects in
spin echo simulations, 180◦ pulses and imaging gradients have already been implemented
numerically in the C++ framework. Diffusion weighting can readily be achieved with
the option of simulating arbitrary gradient pulse applications during dephasing. Since
the magnetization magnitude and phase are both simulated, susceptibility mapping
calculations from the simulated signal are already possible as well [195, 267]. With
numerical variations of the blood susceptibility, BOLD and DSC simulations can be
conducted with the C++ code as well [17, 18, 229]. This could be combined with blood
flow simulations for a more realistic evolution of dynamic contrast.

Especially with an extension to multiparametric MRI with several contrasts, fin-
gerprinting in analogy to vMRF [227, 229] could be conducted in several ways. In
combination with the quantification tools presented in publications II - IV of this thesis,
geometric and topological properties of real angio-architectures could be matched with
the MRI signals they are associated with. This could be done with a dictionary matching
approach, as has been attempted before [227–229], or with the help of machine learning,
as proposed in this thesis. To introduce systematic variations of vessel characteristics,
similar to the classical dictionary building approaches in previous vMRF implemen-
tations, sophisticated vascular network models should be used to construct artificial
architectures with geometric and topological properties matching real vasculature in
the tissue types to be mimicked.

Recently, multifaceted models have been proposed that capture many aspects of
microvasculature and allow for synthetic replications of a wide range of realistic prop-
erties [207]. Mathematical models specialized on tumor-characteristic vasculature are
also available and could also be used for a large-scale production of numerical tumor
phantoms for dictionary building [54, 151]. Such modeling approaches can be tested
and refined with the developed toolkits from this research project by quantifying real
microvasculature and transferring the results as inputs to the models. Further, the
NMR dephasing effects of numerical phantoms built from different models can be
simulated and compared to the effects of real vessel architectures in order to search for
suitable models in the context of microvessel characterization based on voxel-wise MRI
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processing. The most impactful aspects of microvascular geometry on MRI could be
uncovered this way.

Figure 4.1: Conceptual depiction of the enabled development of an artificial MRI con-
trast, defined by a binary classification: healthy brain tissue vs. glioblastoma
multiforme (as tested in the proof-of-principle in publication V). An average
intensity projection of high-resolution fluorescence light sheet microscopy
data of a mouse brain with U87 glioblastoma in the right hemisphere is
partially overlaid with semitransparent, virtual NMR voxels to demonstrate
the concept of artificial contrast; blue voxels correspond to healthy brain
tissue and red voxels to tumor tissue. This classification is learned based on
advanced dephasing parametrizations of numerically simulated transverse
relaxation in virtual voxels with known tissue type, extracted from training
samples, as introduced in publication V. The training data can be used to
determine NMR feature importance, relations, and consequently, the most
sensible settings for MRI sequences in analogous experimental acquisitions
(e.g., weighting schemes and echo times TE to attain the most important
relaxation features). With an increasing availability of training voxels, re-
laxation fitting could be bypassed using automated feature extraction or
direct time series interpretations with artificial neural networks.
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An advantage of simulating MRI numerically is the wide range of contrasts and
imaging settings that can be emulated fast and cheap. Another aim of the developed
numerical toolkit is to enable an optimization of MRI protocols for definitions of
specific artificial contrasts. After simulating a large number of different imaging
settings, machine learning algorithms or iterative reduction methods can reveal the
most important acquisition types for a successful signal classification or regression.
Feature importance and sensitivity analyses can reveal the relevant MRI contrasts and
echo time regimes for a specific artificial contrast definition (see Fig. 4.1), guiding
the design of an optimal MRI sequence for experimental translation with minimally
required acquisitions. Ultimately, the numerical tools presented here can be used to
investigate which vessel characteristics could be estimated from which MRI sequences
in an idealized environment without other perturbing factors. This could be applied to
diverse organs and pathologies in attempts to find reliable and useful artificial MRI
contrasts based on organ- and contrast-specific sequences.

167





5 Summary

Many serious pathologies evolve with tissue-altering effects on the cellular length scale.
This is why it is a great ambition of the medical imaging community to develop non-
invasive microstructural imaging modalities, ideally sensitive to some microscopic aspects
which are specifically modified by diseases. With a wide range of possible contrast
settings in soft tissue and a fundamental sensitivity to the tissue microenvironment,
MRI represents the ideal candidate for such developments. This thesis deals with
the remodeling effects of brain tumors on microvasculature and in turn, its effects on
transverse NMR relaxation. A comprehensive numerical framework was constructed
for automated quantifications of real vascular structures and simulations of its effects
on local NMR measurements. Both aspects can be correlated in this framework using
machine learning.

Transverse relaxation is a fundamental process causing signal decay in all NMR and
MRI measurements, which is influenced by magnetic field inhomogeneities within the
signal-yielding volume (referred to as a voxel in imaging). The protein deoxyhemoglobin,
contained in deoxygenated red blood cells, is paramagnetic with respect to the soft tissue
environment. The presence of partially deoxygenated blood causes characteristic dipolar
field distortions around vessels, which contributes to transverse relaxation. Theoretical
treatments of this situation with idealized vessel models have shown well-defined effects
of vessel geometry on the transverse relaxation, which may be used to make inferences
about the microvasculature underlying MRI voxels with characteristic decay functions.

Although malignant tumors are known to remodel the vasculature of afflicted tissue,
the resulting structures are difficult to describe with singular parameters and simple
vessel models. There is high intra- und inter-tumoral heterogeneity concerning the
resulting vascular structures, also depending on tumor type and grade. Despite a high
variability of individual aspects, microvasculature associated with brain tumors deviates
from its healthy counterpart from many perspectives. It can be suspected that the
collective alterations of healthy vascular architectures by malignant brain tumors could
influence transverse relaxation in a characteristic way, such that it can be used for
tumor detection based in local NMR measurements.
This thesis begins with an introduction to the fundamentals of MRI and the mech-

anisms behind transverse relaxation, followed by an overview over classical model
treatments of the vascular influence on transverse magnetization decay under different
conditions concerning diffusion, blood susceptibility, and external field strength. To
conclude the background information to this research project, different established
cancer imaging techniques are briefly covered and the difficulties with endogenous signal
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interpretations (without paramagnetic contrast agents) for microvascular characteriza-
tion are examined. The introduction motivates a search for more elaborate vessel models
to parametrize local and nonlocal alterations due to tumor growth, which could explain
characteristic effects observed in MRI based on transverse relaxation, e.g., BOLD fMRI.

Publication I extends the classical, well-studied cylindrical vessel model of transverse
NMR relaxation by incorporating an order parameter which quantifies the spatial
regularity of vessel distributions on a continuous range. It was found that this model is
non-injective, concerning the effects of capillary regularity and geometry on transverse
relaxation. An inverse mapping of transverse decay characteristics to microvascular
disorder, radius distribution, and diffusion strength was difficult in this simplified model,
but a definite correlation between transverse relaxation strength and the order parameter
was found. In publication II, the regularity parametrization underlying publication
I was applied to real microvasculature in brain tumors and healthy cerebrovascular
networks in a mouse model. The ground-truth 3D vessel structure of entire brains
was imaged with fluorescent light sheet microscopy and segmented for analysis. The
order parameter showed high variance in both tissue types, but could allow for an
identification of pathological tissue in large-scale statistical comparisons.

The difficulty of a reliable estimate of the order parameter from transverse relaxation
and the large variance of this parameter in healthy brain tissue motivated a more
extensive characterization of real microvasculature. Publication III demonstrated the
quantification of a wide range of geometric vascular properties in a partitioned manner
for cuboids reminiscent of MRI voxels in dimensions and arrangement (in a tiling box
manner). The custom-developed quantifications were validated with model cylinders
with known radii, different orientations and relations to the anisotropic 3D image
resolution. Vessel quantifications were demonstrated in different brain regions and
tumor core and periphery using custom masking with high flexibility. Different brain
and tumor regions showed distinct microvascular characteristics.

In publication IV, the cerebrovascular networks were quantified in their entirety.
Custom implementations of large-scale topological analyses of network connectivity
were demonstrated and yielded novel findings concerning the network structure of the
largest cerebrovascular networks analyzed this way to date. Studying two brain tumor
models, it was found that glioblastoma multiforme had highly detrimental effects on
large hierarchical clustering structures uncovered in the healthy brain vasculature. The
graph theoretical parametrizations and the findings presented in tumors may contribute
to a better understanding of the effects of brain tumors on the complex coupling between
neuronal activity and hemodynamic response, known as neurovascular coupling. This
may facilitate an improved interpretation of fMRI measurements based on transverse
relaxation, and their peculiarities observed with brain tumors.
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Finally, the focus returns to local effects of tumor growth on transverse magnetization
decay in publication V. The real angio-architectures analyzed in publications II - IV
were used as a substrate for NMR simulations to study the effects of real microvascular
geometry on transverse relaxation. Without a confounding vessel geometrical model
(as opposed to publication I), it was tested how well individual voxel signals could be
differentiated between tumors and healthy brain tissue only based on the transverse
decay as influenced by the local capillary geometry. A numerical framework to conduct
large-scale MRI simulations using high performance computing for quick data generation
was developed and introduced. Using support vector machines, motivating classification
accuracies of 70-95% were reached without any consideration of voxel neighborhoods
or anatomical signal origin. This provided a proof-of-principle for voxel-wise signal
classifications for artificial contrast definitions, e.g., tumor vs. healthy tissue classifi-
cation, based on transverse relaxation with endogenous contrast and constant blood
oxygenation. This may be a promising new approach for early tumor detection.

Microstructural imaging is expected to gain importance in clinical practice and become
more specialized on diverse diseases. The combination of MRI and machine learning
presents a promising pairing for this type of specialization. Dictionary-based techniques
have been arising with different use cases, but mostly omitting machine learning up to
this point. In this thesis, numerical tools were developed for the processing and analysis
of large 3D microscopy or microCT datasets of real microvasculature and simulations of
its effects in MRI, with automated tools incorporating machine learning to build a bridge
between vessel geometry and associated NMR signal characteristics. This numerical
framework represents the foundation for data-driven explorations of new microstructure-
sensitive MRI sequences and NMR-assessable microvascular characteristics.
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