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ABBREVIATIONS 

CNS              Central nervous system 
DSM 5           Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
ICD                International Classification of Disease 
DALY             Disability-adjusted life years 
GABA             Gamma-aminobutyric acid 
MRI                Magnetic resonance imaging 
BOLD             Blood-oxygen-level-dependent 
DWI                Diffusion weighted imaging 
GWAS            Genome-wide association study 
PRS                Polygenic risk scores 
PANSS           Positive and Negative Syndrome Scale 
DTI                 Diffusion tensor imaging 
GNM              Generative network model 
NCT               Network control theory  
TMS               Transcranial magnetic stimulation 
RDoC             Research Domain Criteria 
PLS                Partial least squares 
CCA               Canonical correlation analysis 
AA                  Ambulatory assessment 
EMA               Ecological momentary assessment  
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1 INTRODUCTION 

1.1 A brief introduction to the origin, diagnosis, and treatment of schizophrenia 

In 1887, Dr. Emil Kraepelin firstly defined schizophrenia as a discrete mental 

disorder, which he thought was primarily an illness of the brain and particularly a form 

of dementia (Kraepelin 1987). Thus, he named it ‘dementia praecox’ (early dementia) 

to distinguish it from other dementias, such as Alzheimer’s disease. Considering that 

the illness was not dementia and could also occur late, Krapelin’s name was 

misleading, so a Swiss psychiatrist, Eugen Bleuler, coined the term “schizophrenia” 

in 1911 (Bleuler 1911). The word “schizophrenia” translates roughly as “splitting of 

the mind” to describe a fragmented, disorganized thinking, which should not be 

confounded with split in multiple personalities. Schizophrenia remains a broad 

syndromic concept, like most other psychiatric disorders, although the etiology 

originates undoubtedly in the central nervous system (CNS) (Meyer-Lindenberg 

2010a).  

Currently, the diagnosis of schizophrenia still depends on the personal history of 

patients and the examination of the mental state. Despite decades of research on 

schizophrenia, the underlying neurobiological abnormalities remain elusive, mainly 

due to the complexity of psychiatric disorders (Kapur, Phillips, and Insel 2012). To 

date, there is no biomarker to establish the diagnosis of schizophrenia, in contrast to 

many neurological disorders, for example epilepsy, which can be diagnosed and 

classified using electroencephalography (Sabers and Kjær 2014). Schizophrenia is 

diagnosed based on the criteria of the American Psychiatric Association’s Diagnostic 

and Statistical Manual of Mental Disorders, Fifth Edition (DSM 5), or the World Health 

Organization’s International Classification of Disease (ICD) 10th revision. According 

to DSM 5, two or more of the symptoms (including delusions, hallucinations, 

disorganized speech, grossly disorganized or catatonic behavior, negative 

symptoms, such as diminished emotional expression) should be present for more 

than one month, and at least one of them must be among the first three symptoms 

listed (Edition 2013). Similarly, ICD 10 regards persistent delusions and 

hallucinations, thought disorder, experiences of influence, passivity, or control as the 

core symptoms of schizophrenia, and signs must also persist for at least one month. 
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Overall, both DSM and ICD have promoted better diagnostic agreements and 

improved the reliability of psychiatrists’ diagnosis of schizophrenia.  

According to DSM 5, the lifetime prevalence of schizophrenia is approximately 1%. 

Schizophrenia patients suffer from different symptoms and have poorer social, 

educational and occupational outcomes, substantial loss in disability-adjusted life 

years (DALY), and lower fertility (Hjorthøj et al. 2017; Davidson et al. 2016; Haukka, 

Suvisaari, and Lönnqvist 2003). As the current primary treatment, antipsychotic 

medications, such as clozapine and olanzapine, effectively reduce “positive” 

psychotic symptoms, like delusions. The efficiency of these drugs primarily results 

from blocking dopamine receptors, particularly the D2 receptor, suggesting that 

increased dopamine activity may be involved in the pathophysiology of schizophrenia 

(Howes and Kapur 2009). However, since dopamine receptor antagonism is not an 

efficient treatment strategy for cognitive deficits and partly negative symptoms as well 

(Yang and Tsai 2017), schizophrenia patients still suffer from functional and 

vocational impairments in their daily life. In addition, there is a lag of two to four 

weeks between the blockade of dopamine receptors and clinical response, implying 

that acute dopamine receptor blockade might not be sufficient for solely explaining 

the reduction of symptoms in response to antipsychotic treatment (Marder and 

Cannon 2019). In recent years, more and more drugs targeting other 

neurotransmitter receptors, such as those for glutamate and gamma-aminobutyric 

acid (GABA), which can also help mitigate cognitive dysfunction and negative 

symptoms, are now under study (Maric et al. 2016). In summary, despite the 

significant progress made in recent years to improve the diagnosis and treatment of 

schizophrenia, we need to better understand the neurobiological alteredities 

underlying this complex disorder. Here, neuroimaging has established itself as a 

promising tool for achieving the goal, as it allows in-vivo assessment of brain 

functioning. In combination with genetic and neuropsychological methods, novel 

models of brain (dys-)function may ultimately advance our understanding of brain 

alteredities in schizophrenia, paving the way for new therapeutic interventions and 

prevention strategies.   

1.2 Genetic and cognitive research of schizophrenia 

Schizophrenia is a heterogeneous syndrome, which appears to result from the 

disruption in the interaction of genetic and environmental factors during 

neurodevelopment. The advances of epidemiology, pharmacology, imaging, and 
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genetics make it possible to put these insights together for further scientific advance 

and even optimization of clinical practice. 

1.2.1 Genetic studies in schizophrenia 

Genetic epidemiological studies suggest that the heritability of schizophrenia is about 

80% (Hilker et al. 2018). The introduction of high-throughput sequencing has made 

genome-wide experiments possible to investigate the molecular genetics of 

schizophrenia. The largest multi-stage schizophrenia genome-wide association study 

(GWAS) to date identified 128 independent genetic loci ('Biological insights from 108 

schizophrenia-associated genetic loci'  2014). These significant associations were 

enriched for genes distributed mainly in three clusters: neurotransmitters, immune 

system and potentially neurotrophic factors, which adds evidence for the link of these 

processes with schizophrenia pathophysiology. Recent work suggests that studies of 

genetic susceptibility in schizophrenia might be enhanced by identifying so-called 

“intermediate phenotypes”, which are quantitative traits that are reliable and heritable 

and show greater prevalence in unaffected relatives of patients than in general 

population. These phenotypes are believed to be related more intimately to 

fundamental aspects of brain dysfunction in heritable mental disorders. 

1.2.2 Cognitive dysfunction in schizophrenia 

Historically, schizophrenia was first called dementia praecox, a term focusing on the 

cognitive deterioration accompanying the syndrome. Later, the defined core 

symptoms shifted towards the core symptoms of psychosis, such as delusions and 

hallucinations, perhaps because they stand out most and appear most disturbing to 

the social environment and society. Since current antipsychotics do not have much 

effect on cognitive dysfunction, true functional and vocational rehabilitation is difficult 

for patients with schizophrenia. Consequently, it becomes more and more critical to 

develop new treatments that can also remediate cognition except for mitigating 

psychosis (van Os and Kapur 2009). Neuroimaging is a promising tool to explore the 

neurogenetics risk and cognitive dysfunction of schizophrenia.      

1.3 Neuroimaging studies of schizophrenia 

Neuroimaging techniques, such as magnetic resonance imaging (MRI), positron 

emission tomography, and electroencephalography, are the primary tools for 

understanding the biological basis for psychopathology. Unlike clinical symptoms, 
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neuroimaging biomarkers could serve as accessible and objective indices to help 

decide whether individuals suffer from a particular disease and which treatment might 

be optimal and best predict the treatment outcome.  

1.3.1 Brief introduction of MRI 

MRI is based on nuclear magnetic resonance and is a noninvasive imaging 

technique that can be used to describe the anatomical structure, physiological 

functions, and the molecular composition of tissues. Briefly, when placed in a strong 

magnetic field, atoms are forced to be aligned with that field. Through applying a 

radiofrequency current to the atoms, these atoms are stimulated and spin out of 

equilibrium. When the radiofrequency field is turned off, the atoms will gradually 

recover to the spin movements under the strong magnetic field. The recovery 

duration and the amount of energy released vary for different brain tissues, therefore 

differentiating grey and white matter and enabling to acquire high-dimension 

structural images. Functional MRI measures a proxy of brain neural activity based on 

the blood-oxygen-level-dependent (BOLD) signal. The BOLD signal measures the 

hemodynamic response - a lagged signal (about 2 seconds delay) and physiological 

consequence of neural activity. At regions of neural activity, neurons require an 

increased amount of oxygen, which causes changes in the level of oxyhemoglobin 

and deoxyhemoglobin. Hemoglobin has different magnetic properties in its oxygen 

binding, where deoxygenated hemoglobin is paramagnetic and oxygenated 

hemoglobin is diamagnetic, both of which can be detected using MRI. Even though 

functional MRI is an indirect measure of neural activity, it can provide high spatial 

resolution whole-brain functional images (around 3mm) that measure both resting-

state (baseline) and task-state brain activity. Diffusion weighted imaging (DWI) is 

another MRI technique allowing for the reconstruction of neural tracts by measuring 

the restricted diffusion of water in brain tissue. DWI can be used to describe the 

integrity of white matter fibers and infer structural connectivity between brain regions.  

1.3.2 Disconnection hypothesis of schizophrenia 

More than one century ago, Wernicke first suggested that schizophrenia arises from 

aberrations of the brain’s association fibers (Wernicke 1906). The advent of 

neuroimaging techniques provided powerful tools to test and extend these ideas by 

mapping brain structure and function. First evidence of functional differences in brain 

metabolism was detected by Ingvar et al. using a Xenon-based imaging technique, 
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who found an altered distribution of frontal blood flow in patients with chronic 

schizophrenia (Ingvar and Franzén 1974a, 1974b). In line with these findings, 

structural differences in brain morphology were first described based on computed 

tomography scans: Johnstone found increased lateral ventricle volume in 

schizophrenia patients compared to age-matched controls (Johnstone et al. 1976). 

Since schizophrenia was suggested as a disorder of brain connectivity, exploring the 

interactions of regional brain activity may provide important insights into the neural 

alteredities in this disorder.  Volkow first reported the disturbing correlation of 

metabolic patterns among different brain areas under both resting and task 

conditions in chronic schizophrenics (Volkow et al. 1988). The advent of modern 

neuroimaging techniques, particularly MRI, enabled researcher to quantify structure 

and function of human in-vivo without any potentially harmful side effect. These early 

neuroimaging studies showing altered brain connectivity in schizophrenia were 

candidate circuit analyses based on previous knowledge of pathophysiology, testing 

the dyadic connectivity between two single brain regions using seed-based 

connectivity analyses. One prominent example described an impaired decoupling 

between prefrontal regions and the hippocampus during working memory. These 

early accounts provided experimental evidence in humans for the “dysconnection 

hypothesis” of schizophrenia by Friston and Firth (Friston and Frith 1995), followed 

by more general characterizations of schizophrenia as a dysconnection disorder 

(Pettersson-Yeo et al. 2011; Stephan, Friston, and Frith 2009). The idea of dyadic 

interactions has been further developed into a network perspective, providing a more 

powerful tool to describe functional interactions at a whole brain level simultaneously, 

and not only between two single brain areas. 

1.3.3 Basic concepts of connectomics 

In recent years, connectomics has provided prominent tools for the studies of altered 

connectivity in schizophrenia. Connectomics was initially referred to a complete 

structural description of the brain’s physical wiring and was later extended to refer to 

a map of the brain functional interactions (Biswal et al. 2010). The central principle of 

connectomics is to describe the entire set of connection of the brain as a connectivity 

matrix. For analysis purposes, the connectivity matrix can be represented in an 

abstract representational space, called a graph. A graph consists of nodes (which 

represent brain regions) and edges (which represent the connections between brain 

regions). The most common way to define nodes is to use a priori brain parcellation, 
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such as Automated Anatomical labeling (Tzourio-Mazoyer et al. 2002). The approach 

to defining edges depends on the data modality one uses to construct the 

connectivity matrix. For functional MRI, edges can be the correlation of mean time-

series of two brain areas, while in DWI data, edges reflect the reconstructed white 

matter tracts based on the diffusion of water molecules in brain tissue. After building 

the connectivity matrix, one can directly compare the connectivity strength (how 

strongly the activity of one region is synchronized with the activity of another, or the 

number of fiber tracts between two regions) between groups or use tools from graph 

theory to investigate the local and global aspects of brain network organization. For 

example, one of most basic metrics from graph theory is degree, which is the sum of 

connections attached to a given node. High-degree nodes are called hubs and can 

be thought of being important in a network, as they are important for communication 

processes. Brain regions that are commonly found to have a high degree are for 

example the medial prefrontal cortex and the posterior cingulate cortex. Another 

common metric, clustering coefficient, is defined as the number of existing triangle 

connections around a given node divided by the number of all possible triangles. 

Clustering indicates how well a node is integrated with its neighboring nodes, 

conveying important insight about the local connectivity structure. These graph 

metrics can be used to describe large-scale functional aspects of the brain’s 

architecture, such as segregation and integration. Segregation in the brain is the 

ability for specialized processing within interconnected groups of brain regions, while 

integration is the ability to combine specialized information from distributed brain 

regions.  

With the variable metrics provided by graph theory, human brain networks have been 

found  to be organized in a highly efficient small-world manner: high level of local 

clustering for local information processing and the existence of long-range 

connections ensuring global communication efficiency and integrating information 

between different brain regions (Sporns et al. 2004). Furthermore, normalized path 

length (shortest path distance between two nodes) between frontal and parietal areas 

was correlated with intellectual quotient, indicating a strong association between the 

global efficiency of brain network and intellectual performance (van den Heuvel et al. 

2009). Research in the network topology has gained new knowledge about the 

fundamental principles underlying the human connectome organization. Therefore, it 
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is worthwhile to extend this research to investigate the altered connectome in 

schizophrenia. 

 
Figure 1.1 Basic concepts and measures of connectome and graph theory. (a) Structural connectivity can be fiber 

tracts between two brain regions constructed by DWI, while functional connectivity can be the correlation of 

time series of two regions. (b) Circles represent nodes, and lines represent edges. A and B are two different brain 

regions. The edge between them could be functional connectivity represented by the correlation between their 

time series, or white matter fiber tracts reconstructed with diffusion tensor imaging. The degree of node C is 4, 

which is higher than other nodes and could be regarded as the hub of this network. The clustering coefficient of 

node D is 0.33, indicating that 2 of 3 neighbors have one connection. The picture of fiber tracts comes from DSI 

Studio (http://dsi-studio.labsolver.org/).  

 

1.3.4 Neuroimaging connectomics in schizophrenia 

Relative to candidate circuit analysis, connectome-wide analysis can evaluate all 

possible connections simultaneously, therefore providing comprehensive mapping of 

disease-related changes. Previous findings indicate a relatively diffuse and context-

independent reduction of functional connectivity in schizophrenia (Fornito et al. 2011; 

Zalesky et al. 2011; Supekar et al. 2019; Alexander-Bloch et al. 2010; Bassett et al. 

2012), particularly affecting the functional interactions among the hubs of the human 

connectome, for example frontal cortex and posterior regions (Crossley et al. 2014). 

There is also a more circumscribed and context-dependent increase in functional 

connectivity (Fornito et al. 2012). And early work indicates that these functional 

alteredities have an anatomical basis. 

Besides directly comparing connectivity strength between schizophrenia patients and 

healthy controls, previous studies have also reported the topological disturbances of 

structural and functional brain networks in schizophrenia. Brain networks in 

schizophrenia may be characterized by a subtle randomization showing reduced 
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clustering (Liu et al. 2008; Kim et al. 2014; van den Heuvel et al. 2010; Bassett et al. 

2008) and modularity (Alexander-Bloch et al. 2010) and increased topological 

integration (Whitfield-Gabrieli et al. 2009) and robustness (Lynall et al. 2010b) as well 

as altered rich club organization (van den Heuvel, Sporns, Collin, Scheewe, Mandl, 

Cahn, Goñi, et al. 2013; Collin et al. 2014). In addition, brain networks show affected 

dynamic reconfiguration (Braun, Schäfer, et al. 2016; Du et al. 2018; Sun et al. 

2019), which may underlie altered brain function and clinical symptoms observed in 

schizophrenia.  In summary, a connectome perspective on schizophrenia has 

provided important insights about the dysfunction of specific brain regions, candidate 

brain circuits, and sub-networks in addition to emphasizing the importance of 

conceptualizing schizophrenia as a disorder of disrupted interconnected complex 

systems. These findings deepen our understanding of schizophrenia as a disorder of 

disconnection. 

1.3.5 Linking gene and cognition to brain network 

 Imaging genetics has increased our understanding of the neurogenetic mechanism 

of schizophrenia (Meyer-Lindenberg 2010b). Imaging genetics combines genetics 

and neuroimaging to investigate the effect of genetic risk variants on brain structure 

and function. Early studies used genetic risk variants that come from candidate 

genes or top hits from GWAS. For example, healthy carriers of rs1344706 in 

ZNF804A, which is the first common genetic variant showing genome-wide 

association with schizophrenia, exhibit significant gene dosage-dependent changes 

in the functional correlation between dorsolateral prefrontal cortex and hippocampus 

(Esslinger et al. 2009), which corresponds to the findings in schizophrenia patients 

(Schneider et al. 2017; Rasetti et al. 2011). Considering that hundreds of common 

genetic polymorphisms each confer only very small effects to the overall risk for 

schizophrenia, novel measures were developed to represent the cumulative influence 

of each locus on the genetic risk for developing schizophrenia. One simple but widely 

used method is polygenic risk scores (PRS), which models the additive effect of 

alleles associated with a disorder status and allow the application of the power of 

large-scale GWAS to small samples (Dima and Breen 2015). PRS for schizophrenia 

were found to be associated with the activity of the dorsolateral prefrontal cortex 

during a working memory task (Miller et al. 2018) and cortical gyrification (Liu et al. 

2017) in healthy controls. These findings validate the disturbed brain structure and 

function as intermediate phenotypes in schizophrenia. These intermediate 
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phenotypes lie between risk genotypes and disease phenotypes and are closer to 

gene function than the disease itself, representing therefore useful targets for 

molecular genetic studies. 

Previous studies have found associations between brain network efficiency and 

intelligence (van den Heuvel et al. 2009), and the connectivity deficits in offspring 

(Collin et al. 2017) and siblings (Collin et al. 2014) of schizophrenia patients. 

Furthermore, using a longitudinal dataset, Collin found that affected local connectivity 

organization was related to longitudinal increase in overall Positive and Negative 

Syndrome Scale (PANSS) scores and decrease in total intelligence quotient (Collin et 

al. 2016). Thus, neuroimaging studies of cognition dysfunction in schizophrenia may 

predict the course of illness and help to find neurobiological biomarkers as treatment 

targets.   

1.4 Novel network tools 

However, current neuroimaging connectomic studies of schizophrenia have not yet 

found neurobiological biomarkers that can significantly impact the diagnosis or 

treatment of individual patient. To move beyond the simplicity of descriptive and 

associative mapping of human brain networks using graph theory, we need more 

realistic and mechanistic network models that characterize the brain as a complex 

system. Gaining a more causal understanding of the pathophysiological processes 

on the neural network level may help identifying novel treatment targets that could 

truly improve diagnosis and treatment. 

1.4.1 Necessity of novel network tools 

While graph theory and connectomics help us to identify some fundamental principles 

of the brain organization that might underlie normative cognitive function, these 

insights are usually derived from statistical differences in graph theory parameters or 

from correlations between these parameters and behavior or cognitive measures. 

However, these parameters do not offer any information on how the brain is 

organized to support so many cognitive (dys-)functions, and correlations do not allow 

inferences on causal relationships. For example, the functional network in 

schizophrenia shows reduced clustering, implying decreased local integration, but 

this findings does not tell us when and why the reduced clustering happens or how it 

leads to different symptoms. Therefore, to move beyond these graph-theoretical 
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parameters to causal factors, we need newly generative or even mechanistic network 

models rather than current descriptive models in schizophrenia research. 

1.4.2 Introduction of generative network models 

There are many models for seeking mechanisms underlying the evolution and 

development of the network. One of them is the generative network model (GNM), a 

flexible framework for generating networks based on a set of wiring rules that may 

suggest the mechanisms underlying how the network functions, develops, and 

evolves. Generative models have been used widely to investigate the worldwide web, 

social system, and evolution of protein interaction networks (Betzel and Bassett 

2017).  

To construct the generative models of the brain network, one needs to define two 

essential elements: the generative algorithm and the objective function. The 

generative algorithm is the probability function of connection formation, which could 

be the combination of different wiring rules. For example, ‘the rich get richer’, namely 

that the connectivity between high-degree nodes is more likely to form than between 

low-degree nodes; the closer two nodes are, the higher likelihood there is a 

connection between them. And the objective function is to perform quantitative 

comparisons between synthetic networks created by generative models and 

empirical networks constructed from neuroimaging. There are different methods to 

define the objective function, which are suited to answer different research questions. 

One can regard edge overlap as the objective function, which accounts for the exact 

configuration of nodes and edges. While it is useful to compare synthetic and 

observed networks based on edge configuration, this has also significant flaws. For 

example, a small-world network, which could be represented by a ring lattice plus a 

few shortcut connections that can reduce the characteristic path length of the 

network, matches most of the edges in the lattice network. However, the global 

efficiency of these two networks is profoundly different: the small-world network is 

more suitable for information communication because of the shortcut connections. So 

from a structural perspective, these two networks are nearly perfect matches, but 

from a functional point, the two networks are highly dissimilar. Another potential 

approach is to compare a set of topological properties between the synthetic and the 

observed networks (Vértes et al. 2012; Betzel, Avena-Koenigsberger, Goñi, et al. 

2016). This approach is flexible and can include different sets of network metrics. 

However, we need to note that many network metrics are correlated with each other. 
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And even though synthetic networks match the observed network in terms of 

topological properties, this does not mean that they share the same set of edges. 

Therefore, one needs to define the proper probability function of connection 

formation and objective function of network comparison based on their specific 

research question or based on previous studies. After determining the generative 

algorithm and the objective function, one can start to optimize the objective function 

by selecting model parameters. 

There has already been a couple of application of generative models to large-scale 

brain networks in humans. Vertes defined different generative models with varying 

combinations of wiring rules and found that compared to other models, one two-factor 

model could better simulate a set of critical topological properties of grouped 

functional brain network (Vértes et al. 2012). There were two competing factors in 

this model: a distance penalty on wiring cost of building and maintaining long-range 

connections; and a topological term favoring edges between brain areas with similar 

connection patterns. In addition, slightly detuned model parameters could reasonably 

simulate the same set of altered topological properties of brain networks in the 

schizophrenia group. Another study on the generative model of the human brain 

connectome found that the same set of wiring rules can optimally simulate a set of 

topological features of individual structural brain network (Betzel, Avena-

Koenigsberger, Goñi, et al. 2016). Furthermore, with a lifespan dataset, the authors 

of the study found that model parameters change progressively, implying a 

rebalancing of generative factors underlying human connectome during aging. These 

studies provide potential chances to dig deeply into the mechanisms underlying the 

dysfunction in the human connectome by simulating the altered formation of brain 

networks with models like GNMs.  

 

Figure 1.2 Framework of the generative network model. After setting up the probability function of connection 
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formation P(a, b)(a and b are two brain regions), one can construct the synthetic network. In the probability 

function, E and K are two different factors representing varying wiring rules. 𝛼 and 𝛽 are the model parameters 

that control the influence level of the corresponding factor on connectivity formation. And they need to be 

picked up so that the synthetic network will optimally simulate the edge configuration or topological properties 

of the observed network. The synthetic network will then be compared to the observed network based on the 

objective function that one defines. Brain networks are drawn with BrainNet Viewer (Xia, Wang, and He 2013). 

1.4.3 Thesis goals and publications 

Given the evidence reviewed above, it is adequate to conclude that there is a lack in 

research that investigates the altered formation of individual brain network in 

schizophrenia, or genetic factors or functional consequences of the altered formation. 

In this thesis I aim to elucidate: 

1) what the differences in the process of brain network formation between 

schizophrenia patients and healthy controls are,  

2) whether genetic risk factors contribute to the altered formation, 

3) whether the altered formation has an influence on cognitive function.  

To answer these questions, I construct generative network models across patients, 

relatives and healthy controls and compare the model parameters between groups. I 

will apply polygenic risk scores and endophenotype to explore the effects of genetic 

factors and correlate model parameters with cognitive measures to explore the 

influence on cognition. 

The findings reported in this thesis form the basis of two published peer reviewed 

first-author papers of the doctoral candidate: 

1) Xiaolong Zhang, Urs Braun, Heike Tost, Danielle S. Bassett. Data driven 

approaches to neuroimaging analysis to enhance psychiatric diagnosis and therapy. 

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020 Jan 7. pii: 

S2451-9022(19)30355-6. doi: 10.1016/j.bpsc.2019.12.015. 

2) Xiaolong Zhang, Urs Braun, Anais Harneit, Zhenxiang Zang, Lena S. Geiger, 

Richard F. Betzel, Junfang Chen, Janina I. Schweiger, Kristina Schwarz, Jonathan 

Rochus Reinwald, Stefan Fritze, Stephanie Witt, Marcella Rietschel, Markus M. 
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2 STUDY 1: DATA DRIVEN APPROACHES TO NEUROIMAGING 
ANALYSIS TO ENHANCE PSYCHIATRIC DIAGNOSIS AND 
THERAPY 

2.1 Abstract 

Combining advanced neuroimaging with novel computational methods in network 

science and machine learning has led to increasingly meaningful descriptions of 

structure and function in both the normal and altered brain, thereby contributing 

significantly to our understanding of psychiatric disorders as circuit dysfunctions. 

Despite its marked potential for psychiatric care, this approach has not yet extended 

beyond the research setting to any clinically useful applications. Here we review 

current developments in the study of neuroimaging data using network models and 

machine learning methods, with a focus on their promise in offering a framework for 

clinical translation. We discuss three potential contributions of these methods to 

psychiatric care: (i) a better understanding of psychopathology beyond current 

diagnostic boundaries, (ii) individualized prediction of treatment response and 

prognosis, and (iii) formal theories to guide the development of novel interventions. 

Finally, we highlight current obstacles and sketch a forward-looking perspective of 

how the application of machine learning and network modeling methods should 

proceed to accelerate their potential transformation of clinically useful tools. 

2.2 Introduction 

For the past several decades, neuroimaging techniques such as MRI, positron 

emission tomography, near-infrared spectroscopy, and electrophysiology, have 

leveraged an expanding array of available tools to evaluate human brain structure 

and function. These techniques have proven essential for extending cognitive 

neuroscience (Shine et al. 2016; Braun et al. 2015), delineating new mechanisms in 

pathophysiology (Lo et al. 2015), verifying long-standing pathophysiological 

hypotheses (Laruelle et al. 2005), and characterizing macro-circuit contributions to 

(dis)ordered human behavior (Esslinger et al. 2009; Buchel and Dolan 2000). 

Although, neuroimaging research in psychiatry has revolutionized the clinical 

perspective on the pathophysiology of major psychiatric disorders, diagnostic 

neuroimaging remains confined to the academic environment.  As part of clinical care 

in psychiatry (Mayberg 2014; Macqueen 2010), it is mainly used as a tool to rule out 
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potential “organic” origins of psychiatric symptoms such as tumors, trauma, or 

inflammation. The reasons for lack of translation are many, and range from general to 

neuroimaging-specific. General reasons include the large heterogeneity within 

diagnostic entities, and the long established use of a phenomenological rather than a 

biological classification of disorders; reasons specific to neuroimaging include the 

common use of rather simplistic models of brain function, descriptive rather than 

predictive tools, and group-level analysis. 

Changing perspective, it might be useful to ask: What are the most pressing 

challenges currently faced by clinicians? Psychiatric diagnostics often resemble 

working assumptions, with a patient presenting a variety of symptoms such as 

hallucinations, delusions, and neurocognitive impairments. In stark contrast to other 

medical disciplines that use laboratory tests and diagnostic imaging to offer a 

diagnosis within hours, a thorough psychiatric investigation can span days to weeks, 

requiring a third-party history and the building of a trusting patient-physician 

relationship to reveal symptom details and the extent of functional impairment. 

Experienced clinicians often foresee the most probable diagnosis, but they still face 

unpredictable challenges as to what medication the patient will most likely respond to 

and what course his or her disease will take in the future. In navigating these 

challenges, current psychiatric research has increasingly turned to new data driven 

approaches with the aim of developing expeditious and more accurate predictors of 

diagnosis and treatment. 

Here we describe novel data driven approaches to neuroimaging with a focus on 

network science and machine learning, discuss current obstacles in study design and 

analysis strategies, and highlight potential future directions that might provide useful 

clinical applications. The specific content that we review was identified by a literature 

search for keywords including both methodological terms “network model” and 

“machine learning”, as well as outcome measures such as “prediction” and 

“subtypes”. Furthermore, we focused on a subset of that literature comprised of 

studies that integrate both analysis methods: network science and machine learning. 

The reader may also be interested in other more extensive reviews that focus 

separately on either network neuroscience in psychiatry (Fornito, Zalesky, and 

Breakspear 2015; Braun et al. 2018) or machine learning in psychiatry (Janssen, 

Mourao-Miranda, and Schnack 2018).  Here, we seek to describe the unique 

potential of combining both approaches to advance subtype detection and prediction. 
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In particular, we begin by describing how network science can provide increasingly 

more realistic, biologically valid, and useful models of brain function. We then turn to 

a discussion of how these models can be used to (i) gain a better understanding of 

brain dysfunction and psychopathology beyond established diagnostic boundaries, 

(ii) provide valuable information about individual treatment and prognosis, and (iii) 

guide future development of novel interventions. We acknowledge that our scope is 

broad and we must inevitably pass over many important details. We encourage the 

interested reader to peruse our extensive bibliography (and the bibliographies within 

them) for further study. 

 
Figure 2.1 Room for improvement: Schematic of potential applications of network neuroscience and machine 

learning to enhance psychiatric care. Current applications concentrate on identifying neural correlates of the 

pathology of diagnostic entities. However, clinical and scientific data favors the idea of a dimensional 

description of mental disorders. Therefore, identifying subtypes or internally homogenous groups will help 

unravel the complicated mechanisms involved and inform the selection of different treatment options for 

different subgroups. The prediction of individual response to various treatments could assist clinicians in 

choosing the most promising therapeutic option for individual patients.  Finally, a mechanistic understanding of 

dynamic brain processes will be useful for developing novel interventions. Brain network maps were made with 

BrainNet Viewer (Xia, Wang, and He 2013). H means healthy controls and P means psychosis. 

2.3 Networks as increasingly realistic models of brain (dys-)function 

Converging evidence from decades of neuroscience research supports the notion 

that brain function arises from the complex interaction of multiple components, from 

individual neurons to large-scale areas (Cajal 1995; Swanson 2003). In the 19th 

century, pioneers like Wernicke, Meynert, and Dejerine put forward the idea that 

psychiatric disorders arise from disruptions in highly coordinated interactions. This 

notion continues to shape the modern conception of psychiatric disorders as 

disconnection syndromes or brain circuit dysfunctions (Catani and ffytche 2005). 
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Simultaneously, neuroimaging models of mental disorders have shifted from 

emphasizing dysfunction of specific brain regions (Braak and Braak 1991; 

Weinberger et al. 2001) to characterizing disruptions of interconnected neural 

systems, paralleling the rapid advances in connectomics (Sporns, Tononi, and Kotter 

2005). 

In recent years, the neuroimaging community has constructed increasingly accurate 

maps of these structural and functional connections with unprecedented detail 

(Hagmann et al. 2007; Cole et al. 2014). In combination with new analytical tools 

from the field of network science, these approaches have given rise to a new field of 

research referred to as connectomics or network neuroscience (Bassett and Sporns 

2017). The map of large-scale connections within the brain is termed a “connectome” 

or “brain network,” and offers a comprehensive description of whole-brain interactions 

(Fornito and Bullmore 2015). Careful study of such networks has offered an 

increasingly precise account of brain function, and how that function relates to inter- 

and intra-individual differences in cognition, emotion, and behavior. The application 

of connectomes has also enabled detailed descriptions of how mental disorders 

affect brain structure and function, which in turn has offered new insights into the 

shared traits of different brain disorders (Bullmore and Sporns 2012; Crossley et al. 

2014). With this knowledge, investigators may be able to transform conventional 

descriptions of case-control differences in neurobiological measures to novel 

inferences regarding the underlying pathophysiological mechanisms of 

psychopathology (Fornito, Zalesky, and Breakspear 2015). 

2.4 Novel network approaches to understanding mechanisms of disease 

Despite marked advances, these network approaches have remained rather static 

and descriptive, and generally ignored the complex dynamics of brain function, 

thereby failing to provide mechanistic insights. To better probe mechanisms, a novel 

set of tools has recently been adapted that allow increasingly realistic and 

mechanistic models of brain dynamics and function.  

2.4.1 The previous application and potential direction of generative network models  

One particularly promising tool is GNM, which offers an appealing framework to 

uncover mechanisms of function in brain networks (Betzel and Bassett 2017). GNM 

formalizes the stepwise development, growth, or evolution of networks based on 
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different wiring rules, each comprising a posited network mechanism (Bertolero and 

Bassett 2019). Examples include a rule penalizing distance or a rule enforcing a 

topological property; note here that a network’s topology is the architecture of its 

connectivity pattern. These wiring rules, which can be chosen to reflect 

neurodevelopmental factors such as the time of development or to reflect 

neurobiological factors such as brain function (Park and Newman 2004; Newman 

2010), determine the likelihood that a specific connection is instantiated. Once 

constructed, one can then compare the synthetic networks generated by the models 

to the real networks estimated from neuroimaging data, thereby explicitly testing 

different mechanistic explanations of the observed topology. The approach thus 

allows the identification of potential neurobiological and developmental processes 

that drive the growth and evolution of brain networks. Previous research has provided 

convergent evidence in favor of a growth model that penalizes long-distance 

connectivity and, at the same time, favors complex topological features (Vertes et al. 

2012); the implicit balance falls in line with current theories of an economic trade-off 

between minimizing wiring cost and forming valuable topological patterns in the 

development of brain networks (Bullmore and Sporns 2012). Importantly, GNM has 

been used to capture age-related changes in network architecture during healthy 

brain development: the penalty for long-distance connections weakens with age 

(Betzel, Avena-Koenigsberger, Goni, et al. 2016), consistent with a preferential 

decrease in the number of short-distance fiber tracts over time (Lim et al. 2015). 

These observations make GNM an attractive approach for explaining and predicting 

aberrant brain development in psychiatric disorders as they aim to provide insight into 

underlying mechanisms leading to observed data. 

Although applications to mental disorders are rare, the few existing applications of 

GNM to brain network dysfunction are promising. Studies in schizophrenia have 

found that brain networks in disease can be equally well modeled with the same 

(simple) set of parameters as healthy networks (Zhang et al. 2019), but the 

contributions of these parameters to the formation of brain networks differ 

significantly. Most prominently, schizophrenia patients show a decreased penalty for 

long-distance connectivity (Vertes et al. 2012), allowing for a greater abundance of 

long-distance connections. Notably, this empirical finding is consistent with previous 

observations showing a greater proportion of long-distance connections in 

schizophrenia than in healthy controls (Bassett et al. 2008; Alexander-Bloch et al. 
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2013). Importantly, a recent study links these aberrant network formation processes 

to polygenic risk for schizophrenia and cognition, emphasizing the role of impaired 

genetic processes in the neurodevelopment of large scale brain networks (Zhang et 

al. 2019).  

GNM is in some sense a computational sandbox in which to perform numerical 

experiments that may be difficult to perform with state-of-the-art empirical 

technologies. Specifically, with well-established generative models based on 

biologically grounded wiring rules, one could manipulate or perturb the networks in 

targeted ways (Betzel and Bassett 2017) to evaluate neurodevelopmental alterations 

(e.g., autism, schizophrenia) (Vertes and Bullmore 2015; Braun et al. 2018). Such 

manipulations are accessible to in silico approaches but impossible in vivo; yet, they 

are critical for identifying and probing the underlying causal mechanisms that might 

explain how psychiatric disorders develop. For example, computational models 

based on structural brain networks can be used to predict specific effects of dynamic 

lesions (Alstott et al. 2009), or the multifactorial interaction and spread of pathological 

processes in neuro-degenerative diseases that integrate multiple data modalities 

(Iturria-Medina et al. 2017).  An additional field of application lies in the development 

of longitudinal GNM, which could be used to study the reconfiguration or adaption of 

brain networks in response to genetic and environmental factors. 

2.4.2 Evaluate brain states with network control theory 

A second novel framework for mechanistic inquiry is network control theory (NCT): a 

powerful approach with which to investigate the controllability of complex biological 

systems (Campbell et al. 2015). Here, the term controllability refers to the potential 

for a dynamical system to be driven to particular states, and is frequently 

accompanied by a study of the control inputs necessary for the system to reach those 

states. NCT is built upon a dynamic system model that serves to explain how 

changes in the activity of a single node in a network can, over time, result in spatially 

diffuse and system-level effects depending on the structure of the white matter 

network (Kim et al. 2018). The network itself, along with the dynamics of the system, 

serves to define the energy landscape that the system traverses. That landscape 

may be characterized by low valleys, along which the system easily walks, or high 

hills, which the system cannot traverse without additional energy injected from 

exogenous sources. 
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Applying control theory to large-scale neuroimaging data (Gu et al. 2017), recent 

studies have found that brain areas in the default mode system are ideally wired to 

facilitate transitions into easy-to-reach brain states; formally, such states are those  

that require little input energy, such as performing easy tasks. In contrast, areas in 

the cognitive control system are ideally wired to facilitate transitions into hard-to-

reach states (Gu et al. 2015). Moreover, energetically optimal target states are 

reminiscent of activation in the default mode system, suggesting that the baseline of 

the brain is optimized for the swift enactment of common state transitions (Betzel, 

Gu, et al. 2016). Notably, these control properties undergo significant changes during 

development: human brains appear to optimize controllability (to both near and 

distant states) while sacrificing global synchronizability, which is a structural predictor 

of the ability of regions to support the same dynamic pattern in the network (Tang et 

al. 2017). Intuitively, this trade-off supports the emergence of diverse dynamics, 

which is a requirement for complex human cognition. Applying network control theory 

to the study of altered cognition, evidence demonstrates a decreased specificity in 

control processes following mild traumatic brain injury (Gu et al. 2017). Schizophrenia 

patients display decreased controllability and stability of working memory network 

dynamics compared to healthy controls, consistent with the notion that alterations in 

cognitive function can stem from an altered energy landscape of the underlying 

network architecture (Braun et al. 2019). 

In addition to the ability of NCT to study intrinsic control properties of human brain 

networks, the framework of NCT can be used to ask how external perturbations can 

be optimally delivered to drive the system into a desired state. This capability is 

particularly important as neurostimulation treatments, such as deep brain stimulation 

and transcranial magnetic stimulation (TMS), are increasingly considered as circuit-

based treatments for psychiatric disorders (Krystal and State 2014). Imaging 

research has recently made headway in trying to understand the mechanisms 

underlying the clinical response to stimulation therapies by comparing the functional 

connectivity of different regions of interest (e.g., dorsolateral prefrontal cortex, 

subgenual anterior cingulate cortex) before and after stimulation (Philip, Barredo, 

Aiken, et al. 2018; Philip, Barredo, van 't Wout-Frank, et al. 2018). Yet, these studies 

have been limited by their ability to offer a mechanistic account of how focal 

simulation impacts both local and distant brain areas, and by extension global brain 

dynamics. Here, NCT has begun to offer exciting pathways to more accurately model 



STUDY 1: DATA DRIVEN APPROACHES TO NEUROIMAGING 
ANALYSIS TO ENHANCE PSYCHIATRIC DIAGNOSIS AND THERAPY 
 

21 

and predict the impact of local perturbations as delivered by neurostimulation and 

related approaches (Taylor et al. 2015). 

By applying NCT to whole-brain structural networks derived from diffusion weighted 

imaging data, one recent study constructed a model of large-scale human brain 

network dynamics in the form of regional changes in signal power (Stiso et al. 2018). 

Incorporating electrocorticography (ECoG) data collected from the same sample 

during direct electrical simulation, the model predicts the brain state transitions 

induced by stimulation, and the energy required for different state transitions. A full 

93% of the variance in the required energy could be explained by three variables 

(two from the white matter connectome and one from the ECoG signals): the 

determinant ratio (quantification of the relation between the strength and 

heterogeneity of direct connectivity from the controlling node to others), the persistent 

modal controllability, and the initial brain state. Such studies demonstrate the promise 

of NCT in developing models that can predict a patient’s response to brain 

stimulation, and can be used to optimize that stimulation to achieve a target brain 

state (Bassett, Xia, and Satterthwaite 2018). 

2.4.3 Future direction of network models 

The field now stands at an exciting juncture in which the measures from these 

network models can be usefully combined with our heightened understanding of 

genetic risk for psychiatric disorders. In the simplest and most direct of approaches, 

one can evaluate the correlation between network measures and (i) gene expression 

or co-expression estimates, (ii) disease-specific polygenetic risk scores, and (iii) 

estimates of neuromodulatory receptor expression levels from cutting-edge 

imputation methods utilizing genotype data across the whole genome (Zhang et al. 

2019). Such efforts can be naturally extended by incorporating information from 

multivariate methods, such as partial least squares (PLS) (Grellmann et al. 2015), to 

further increase our understanding of the network manifestations of genetic risk for 

psychiatric disorders.  

While these modern network methodologies have greatly improved our mechanistic 

understanding of neuropsychiatric disorders and offer exciting possibilities for 

translation to new diagnostic or therapeutic tools in psychiatry, their application will 

remain limited if they are applied to traditional group comparison paradigms that do 

not respect the dimensional nature of psychiatric disorders. Therefore, in the 
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following paragraphs we aim to illustrate how the integration of novel data-driven 

approaches can facilitate or even redefine the nature of brain-behavior relationships. 

 

Figure 2.2 Introduction to brain networks and overview of novel network modeling approaches. (A) A structural 

brain network can be constructed by estimating the location of white matter fibers using diffusion tensor imaging 

data. A functional brain network can be constructed by computing the correlation between two regional time 

series using functional magnetic resonance imaging data. (B) Generative network models (GNM) simulate the 

development of brain networks based on simple, biologically interpretable rules. Starting from a seed network, 

GNMs add connectivity by estimating the probability (P) of connection formation until the number of 

connections in the synthetic network is the same as that in the observed network. Then, by evaluating how 

similar the synthetic network is to the observed network, GNMs can be used to test different wiring rules. (C) 

Constructed from a structural connectome, network control theory can help investigate how the stimulation of 

one brain region impacts the activity of other local and distant regions through the underlying pattern of white 

matter tracts. Brain network maps were made with BrainNet Viewer. 

2.5 Crossing diagnostic boundaries and identifying disease subtypes  

Current categorical definitions of psychiatry are based on observable signs and 

symptoms. As the standard for clinical practice, they are catalogued in the ICD (santé 

et al. 1992) and the DSM (Association 2013). However, the nature of psychiatric 

nosology impedes progress towards elucidating and treating mental disorders as 
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biological entities: different mechanisms may lead to the same disorder, and multiple 

symptoms can occur within one patient (Feczko et al. 2019; Hyman 2010; Insel and 

Cuthbert 2015). Therefore, the National Institute of Mental Health has launched the 

Research Domain Criteria (RDoC) project to understand the nature of mental health 

and illness in terms of biological dimensions that can span from genetics to circuits to 

behaviors (Insel 2014; Insel et al. 2010). Admittedly, RDoC’s focus on 

neurobiologically anchored constructs and systems does not require that these 

constructs and systems be transdiagnostic, nor that they explain subtypes. 

Nevertheless, RDoC does provide a useful perspective that may help us to achieve 

the ultimate goal of realizing precision medicine for psychiatry -- a diagnostic system 

based on a deeper understanding of the biological and psychosocial basis of the 

disorders, that can better explain patient heterogeneity. Notably, population 

heterogeneity is a key challenge in psychiatric research, and has motivated the 

search for more homogeneous subtypes defined by biological variables or clinical 

features. However, subtypes defined purely from biology may miss important 

architectural motifs characteristic of clinical features, while subtypes defined purely 

by clinical features may miss important organizational principles of biology. 

2.5.1 The application of bifactor models to psychopathology 

Many prior studies have used bifactor models to evaluate the structure of 

psychopathology (Bonifay, Lane, and Reise 2017; Simms et al. 2008). By parsing 

diverse components of symptoms, such work sheds light on how such disorders are 

assessed, described, and studied. Bifactor models enforce a hierarchy resulting in a 

set of orthogonal latent factors that explain residual variances along the hierarchy. 

Such factors are arguably more interpretable than raw scores. Bifactor models have 

repeatedly identified a general liability factor for psychopathology underlying the 

shared risk for many mental disorders; this factor has been coined the ‘p factor’ in 

analogy to the general ‘g factor’ in the study of human intelligence (Gottfredson 

1998). By relating these factors to brain network data, mounting evidence suggests 

that this common liability, as well as a few specific latent factors from these models, 

are related to brain network organization (Braun 2018). Specifically, the general 

liability factor tracks alterations in visual-fronto-parietal connectivity and cerebellar 

connectivity (Romer et al. 2018; Elliott et al. 2018). Interestingly, the anatomical 

pattern of these effects differs from those tracking cross-diagnostic brain alterations 
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(Goodkind et al. 2015), a distinction which might be due to the large heterogeneity 

within diagnostic categories (Wolfers et al. 2018). The distinction further highlights 

the potential of dimensional approaches to align better with biological entities 

(Sheffield et al. 2017). 

2.5.2 Dimensional methods for linking psychopathology to brain network 

Many researchers have argued that such dimensional approaches are likely closer to 

the underlying biological causes. Yet, progress remains slow because dimensional 

approaches require large datasets spanning several categorical diagnostic domains 

as well as marked dimensional variation in psychopathology. With large datasets, 

one can begin to link psychopathology to brain networks using such promising 

approaches as PLS (Kebets et al. 2019) and canonical correlation analysis (CCA) 

(Smith et al. 2015). In contrast to previous work defining subtypes based purely on 

symptoms (Van Dam et al. 2017; Maglanoc et al. 2019) or neuroimaging features 

(Clementz et al. 2016), a pioneering study of a neurodevelopmental cohort applied 

sparse CCA to link a wide range of symptoms to functional brain networks, and found 

four dimensions of psychopathology across clinical diagnostic boundaries: mood, 

psychosis, fear, and externalizing behaviors. Each dimension was related to specific 

patterns of functional connectivity; for example, compared to a null model, the 

psychosis dimension exhibited stronger connectivity and weaker segregation 

between the default mode system and the fronto-parietal and salience systems. The 

results suggest that sparse CCA may help to elucidate the high heterogeneity within 

each diagnostic category and high comorbidity among psychiatric disorders (Xia et al. 

2018). Another study, which focused on patients with depression, first used CCA to 

identify two linear combinations of functional connectivity features (similar to principal 

components) that were associated with specific combinations of clinical symptoms. 

By applying hierarchical clustering to these two components (Drysdale et al. 2017), 

the study identified four subtypes in the participant population. After identifying 

subtypes, it is important to determine whether they have some external validity and 

utility (Williams 2017), such as predicting response to treatment (Etkin 2019). Thus, 

the study went on to demonstrate that the subtypes could be diagnosed with high 

specificity and sensitivity in individual patients and could be used to predict the 

patient’s response to TMS therapy. Collectively, these findings suggest that the 

identification of subtypes with neuroimaging biomarkers transcends current 
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diagnostic boundaries and may be useful in selecting therapies for specific patients 

(Abi-Dargham and Horga 2016; Williams 2016).  

2.5.3 Hybrid ways for identifying subtypes 

It is important to note that supervised approaches are biased towards the 

assumptions made and unsupervised approaches are sensitive to wrong or 

incomplete data, which may result in unusual groupings (Feczko et al. 2019). Hybrid 

approaches, such as functional random forest (Feczko et al. 2018) and surrogate 

variable (Leek et al. 2012) analysis, have been developed to overcome these 

limitations. Hybrid approaches take both continuous dimensions and latent classes 

into account, and also allow for a direct comparison of model fit (Borsboom et al. 

2016; Eaton et al. 2014; Whalen 2017). In a hallmark study of this kind, an 

exploratory factor analysis was performed on 49 subscales from 10 questionnaires 

and a hybrid hierarchical clustering was applied to the resultant factor scores (Van 

Dam et al. 2017). The investigators found two, four, and eight nested groups: the 

highest clustering level differentiated between functionally adaptive and maladaptive 

groups, and the middle clustering level separated problem type (internalizing vs. 

externalizing problems) and behavioral type (sensation seeking vs. 

extraverted/emotionally stable). Such hybrid approaches, which can delineate 

homogenous subgroups spanning disease severity, can yield clinically meaningful 

groups showing important neurobiological differences (Georgiades et al. 2013). By 

identifying subtypes tied to outcomes, hybrid approaches may ultimately help to 

refine psychiatric nosology (Feczko et al. 2019). 

2.5.4 Necessity of ambulatory assessment to evaluate dynamic symptoms 

While these novel tools have shown great promise in detecting novel dimensional 

brain-behavior relationships, they still rely on single time point questionnaires and 

scores that are acquired in clinical and laboratory settings, and therefore might not 

accurately capture intra-subject dynamics in behavior, emotions, and mood 

(Cornblath, Lydon-Staley, and Bassett 2019). Ambulatory assessment (AA) is an 

important research tool that can minimize retrospective biases while collecting 

ecologically valid data including behavior, biological and physiological data, and self-

reports through so-called ecological momentary assessment (EMA), usually 

assessed via electronic diaries on smartphones (Wilhelm, Perrez, and Pawlik 2012), 
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capturing life as it is lived (Bolger, Davis, and Rafaeli 2003). Furthermore, AA can 

also provide indices for emotional dynamics, for example the standard deviation of 

time series and emotional inertia (Ram and Gerstorf 2009; Waugh et al. 2017). AA 

has been widely used in clinical psychology (Trull and Ebner-Priemer 2013; Trull and 

Ebner-Priemer 2020) to investigate the mechanisms and dynamics of 

psychopathological symptoms (Ebner-Priemer et al. 2007), predict 

psychopathological symptoms (Wichers et al. 2010), monitor treatment effects 

(Geschwind et al. 2011), predict treatment success (Peeters et al. 2010), prevent 

relapse (Spaniel et al. 2008) and administer interventions (Clough and Casey 2011; 

Nahum-Shani et al. 2018). Combining neuroimaging with AA could therefore provide 

a promising avenue to evaluate the ecological validity of neuroimaging findings 

(Wilhelm and Grossman 2010; Forbes et al. 2009).  

In addition to improving measurement and capturing dynamics in symptoms, 

combining AA with neuroimaging may provide insights into the complex interactions 

between psychiatric symptoms in real life and their underlying neurobiological 

correlates. To more fully understand interactions between symptoms, recent work 

building on the network perspective of psychopathology (Borsboom 2017; Borsboom 

et al. 2018) has demonstrated that it is feasible to model the dynamical and 

reciprocal interactions of symptoms within psychiatric patients (Pe et al. 2015; 

Bringmann et al. 2015). The use of these models for clinical practice is currently 

being examined (Groen et al. 2019; Wichers et al. 2017). Investigators in this area 

note the difficulties in identifying common causes for disorders and present an 

alternative to common cause perspectives of psychiatric disorders by highlighting the 

intuitive notion that symptoms of disorders causally interact, an interaction which can 

in principle be measured with EMA/AA (Borsboom 2017; Lydon-Staley, Barnett, et al. 

2018). From this perspective, once a symptom is triggered by an event or set of 

events, symptom activation spreads through the symptom network via causal 

symptom associations. Strongly connected symptom networks contain feedback 

loops that lead to the reverberation of symptom activity (Yang et al. 2018; Borsboom, 

Cramer, and Kalis 2018). Symptom activity then becomes self-sustaining, and this 

persistent activation of symptoms in the absence of triggering events reflects a state 

of psychiatric disorder. First steps towards using individual symptom networks to 

better guide psychotherapeutic intervention have been made, demonstrating that the 

interaction and dynamics of individual symptoms provide additional information that 
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the group means do not offer (Ebner-Priemer et al. 2015; Dejonckheere et al. 2019). 

This effort seems particularly important, as the perspective focuses on the interaction 

between symptoms and likely involves additional mechanisms/aspects of brain 

(dys)function. Therefore, it could prove fruitful in the future to combine neuroimaging 

and real-life assessments of psychiatric symptoms using EMA/AA to uncover novel 

neural signatures of symptom interactions that, by facilitating the sustained 

reverberation of symptom activity over time, are responsible for maintaining states of 

psychiatric disorders (Lydon-Staley, Kuehner, et al. 2018).  

2.5.5 Summary 

Altogether, dimensional approaches that can relate dynamic behavioral measures to 

brain networks may help identify psychiatric subtypes, crossing the current diagnostic 

boundaries. These more homogeneous subgroups could then be used to investigate 

the underlying neurobiological mechanisms for specific symptoms and also help 

guide the selection of treatment options.  

 

Figure 2.3 Schematic of sparse canonical correlation analysis (sCCA) and its application to subtype 

identification. (A) sCCA seeks the linear combinations of brain connectivity and clinical symptoms that 
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maximize their correlation and identifies components that are linear combinations of connectivity features 

correlated with linear combinations of clinical symptoms. (B) The scatterplot of the components can help 

identify subgroups of a given population of interest. (C) After identifying different subtypes, it is important to 

test validity and evaluate utility, such as by predicting patient response to treatment.  

2.6 Prediction of treatment response 

Although a number of treatment alternatives are available for all psychiatric disorders 

(Ridding and Rothwell 2007; van Os and Kapur 2009; Sabella 2018), innovation in 

the development of novel therapeutic options has been slow in the past several 

decades. The side effects of antipsychotic drugs are still the main reason for 

discontinuation of drug treatment causing relapse (Fikreyesus, Soboka, and Feyissa 

2016). Moreover, other current therapeutic options including psychotherapy or 

electroconvulsive therapy work well, but much time is lost in finding the appropriate 

therapy for an individual patient. Currently, there exists no objective (bio-)markers 

that predict which treatment would be optimal for a particular patient (Abi-Dargham 

and Horga 2016). A reliable, individualized prediction of the treatment outcome could 

help clinicians and patients avoid unnecessary costs of ineffective treatment, and 

weigh the chances of recovery against the risk of possible adverse effects. Previous 

studies have found that antipsychotics, such as ketamine, dextromethorphan, and 

paroxetine, can affect brain activation (Abler et al. 2011; Francois et al. 2016), 

connectivity (Grimm et al. 2015; Zang et al. 2018), and network topology (Braun, 

Schafer, et al. 2016). Other complementary studies have found that TMS can also 

alter connectivity (Bilek et al. 2013). Collectively, this work suggests that brain 

network features are sensitive to pharmacology and neural stimulation, and can be 

used to predict individual treatment response. In further support of this potential, 

there have been several large-scale clinical trials, such as the Establishing 

Moderators and Biosignatures of Antidepressant Response for Clinical Care for 

Depression (EMBARC) (Pizzagalli et al. 2018), the International Study to Predict 

Optimized Treatment-Depression (iSPOT-D) (Maller et al. 2018), and other studies 

(Morgieve et al. 2014; Ball, Stein, and Paulus 2014) that have identified biomarkers 

predicting specific response to a range of interventions by assessing the statistical 

relationships between treatment improvement and pre-therapy brain structure and 

function. While these studies have demonstrated the major potential of predictive 

approaches to develop potential prognostic biomarkers for predicting response to 

treatment, many were limited in predicting outcomes only at the group level and not 
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at the individual level, and often lacked validation in an independent sample, thus not 

demonstrating enough specificity, sensitivity and generalizability to transfer the 

findings to clinical practice (Ball, Stein, and Paulus 2014).  

As the application of network science and machine learning methods to psychiatry 

grows, an increasing number of studies demonstrate individual-level prediction of 

treatment response using methods like support vector machines, structural equation 

modeling, and random forest (Mourao-Miranda et al. 2011; Ball et al. 2018; 

Koutsouleris et al. 2018; Reggente et al. 2018). Testing on samples ranging from 

dozens to several hundred, some even from multiple sites, studies have shown the 

capacity to classify responders from nonresponders with an accuracy of 82% on an 

individual level (Hahn et al. 2015). However, 82% still means that almost one fifth of 

patients received the wrong treatment, and thus larger datasets are needed to train 

the prediction model to improve accuracy. Moreover, in clinical practice the problem 

is even more complicated because doctors need to be able to select among several 

therapeutic options. Therefore, future work is needed to evaluate approaches to 

compare a single patient’s predicted response to different treatments (Dunlop et al. 

2017). Before translating these findings into actual clinical practice (Siegle 2011), 

researchers need to assess whether these biomarkers work well in psychiatric 

patients at different stages of disease or from different genetic, racial, socioeconomic, 

or ethnic backgrounds, and whether data preprocessing and analysis methods have 

an effect on the performance of these biomarkers (Passos and Mwangi 2018; Braun 

et al. 2012). 

2.7 Future Perspectives 

Promising tools from network science and machine learning to obtain neuroimaging 

biomarkers may refine the nosology of psychiatric disorders and optimize 

individualized treatment selection (Bzdok and Meyer-Lindenberg 2018; Passos, 

Mwangi, and Kapczinski 2016). But before such methods can make an impact on 

clinical practice, they need to be validated and replicated with large, independent 

samples (Janssen, Mourao-Miranda, and Schnack 2018). While using these large-

scale datasets, it is important to improve the measurement reliability within individual 

samples (Ball et al. 2017), for example by assessing the minimum data requirements 

and optimizing analytic strategies (Esteban et al. 2019). Such efforts are essential 

while searching for clinically useful biomarkers and can reduce the sample size 
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required for targeted effect size (Zuo, Xu, and Milham 2019). Emerging methods, 

such as generative network modeling and network control theory, can help gain 

insights into the mechanisms underlying how brain networks function, or grow and 

evolve, and can provide tools to manipulate and perturb brain networks in targeted 

ways (Betzel and Bassett 2017; Bassett, Xia, and Satterthwaite 2018). Longitudinal 

data from both healthy individuals and clinically high-risk samples offer a precious 

chance to investigate the formation of normal and altered brain networks, which 

might help us to better understand the time-varying nature of many psychiatric 

disorders (Cannon 2015; McInnis and Greden 2016).  

2.8 Conclusion 

Here we have reviewed a set of key studies that apply machine learning and network 

science to neuroimaging data to deepen the mechanistic understanding of 

psychiatry, identify dimensional subtypes with brain-behavior relationships, and 

predict individual treatment response. We suggest that the emerging methods could 

not only promote psychiatric research, but also provide biomarkers that improve the 

precision of diagnosis and personalized treatment. Such inspiring future prospects 

will only be realized by a concerted and continued effort in the field to bridge the gap 

between emerging methodological approaches and their clinical application. Because 

resources are scarce, each emerging methodological approach will need to be 

stringently evaluated for its potential before being chosen for additional development 

towards translation.   
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3 STUDY 2: GENERATIVE NETWORK MODELS OF ALTERED 
STRUCTURAL BRAIN CONNECTIVITY IN SCHIZOPHRENIA 

3.1 Abstract 

Alterations in the structural connectome of schizophrenia patients have been widely 

characterized, but the mechanisms remain largely unknown. Generative network 

models have recently been introduced as a tool to test the biological underpinnings of 

altered brain network formation. We evaluated different generative network models in 

healthy controls (n=152), schizophrenia patients (n=66), and their unaffected first-

degree relatives (n=32), and we identified spatial and topological factors contributing 

to network formation. We further investigated how these factors relate to cognition 

and to polygenic risk for schizophrenia. Our data show that among the four tested 

classes of generative network models, structural brain networks were optimally 

accounted for by a two-factor model combining spatial constraints and topological 

neighborhood structure. The same wiring model explained brain network formation 

across study groups. However, relatives and schizophrenia patients exhibited 

significantly lower spatial constraints and lower topological facilitation compared to 

healthy controls. Further exploratory analyses point to potential associations of the 

model parameter reflecting spatial constraints with the polygenic risk for 

schizophrenia and cognitive performance. Our results identify spatial constraints and 

local topological structure as two interrelated mechanisms contributing to regular 

brain network formation as well as altered connectomes in schizophrenia and healthy 

individuals at familial risk for schizophrenia. On an exploratory level, our data further 

point to the potential relevance of spatial constraints for the genetic risk for 

schizophrenia and general cognitive functioning, thereby encouraging future studies 

in following up on these observations to gain further insights into the biological basis 

and behavioral relevance of model parameters. 

3.2 Introduction 

Schizophrenia is a highly heritable neurodevelopmental disorder (Sullivan, Daly, and 

O'Donovan 2012; Lee et al. 2012; Sullivan, Kendler, and Neale 2003) characterized 

by abnormalities in perception, cognition, affect, behavior, and social functioning (van 

Os and Kapur 2009). Converging evidence supports the notion that wiring disruptions 

of brain networks may partially underlie these alteredities (Fornito et al. 2012; 
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Fitzsimmons, Kubicki, and Shenton 2013; van den Heuvel and Fornito 2014). 

Previous studies have found marked differences in the brain network architecture in 

schizophrenia (van den Heuvel, Sporns, Collin, Scheewe, Mandl, Cahn, Goni, et al. 

2013; van den Heuvel et al. 2010) and delineated alterations in their structural 

development (Zalesky et al. 2015). More generally, human brain networks show a 

complex architecture favoring topologically advantageous properties while minimizing 

material and metabolic costs, in line with the proposal that the developmental 

architecture of the human brain connectome results from an economic trade-off 

between minimizing wiring costs and allowing adaptively valuable topological 

features (Bullmore and Sporns 2012). Indeed, there is evidence for alterations in both 

connection distance (Alexander-Bloch et al. 2013; Bassett et al. 2008) and network 

topology including reduced local clustering and modularity (Liu et al. 2008; 

Alexander-Bloch et al. 2010) in schizophrenia, consistent with a biased trade-off 

between wiring cost and topology (Bullmore and Sporns 2012). However, the 

principles by which brain networks form and facilitate disturbances in schizophrenia 

are poorly understood. 

Current network neuroscience approaches predominantly focus on descriptive 

individual or population-level differences, offering little insight into the mechanisms 

that give rise to network alterations in brain disorders (Vertes and Bullmore 2015; 

Braun et al. 2018). The recent adoption of generative network models (GNMs) may 

help to address some of these limitations. For example, predictive (Beul, Grant, and 

Hilgetag 2015) and random network models (Kaiser, Hilgetag, and van Ooyen 2009; 

Samu, Seth, and Nowotny 2014; Song, Kennedy, and Wang 2014) have been used 

to investigate  cortical wiring principles, and applications of generative network 

models to brain network across species have substantially increased our 

understanding of preserved and species-specific evolutionarily features (Horvat et al. 

2016; Kaiser and Hilgetag 2004). GNMs formalize the stepwise development, growth, 

or evolution of networks, which can potentially be linked to brain development if the 

wiring rules mimic neurodevelopmental factors (Kaiser and Hilgetag 2004; Betzel and 

Bassett 2017). One can then compare synthetic networks generated by the model to 

empirical brain networks reconstructed from neuroimaging data, thereby explicitly 

testing different mechanistic explanations that might govern their (disordered) 

structural formation (Betzel and Bassett 2017; Bassett and Sporns 2017). Two recent 

examples have tested different wiring rules of healthy brain networks, finding 
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converging evidence for a two-factor model where one factor accounts for the spatial 

embedding of brain networks by penalizing spatially distant connections while the 

other factor enhances the complexity of local topological organization (Betzel, Avena-

Koenigsberger, Goni, et al. 2016; Vertes et al. 2012). The model parameters could be 

potentially linked to biological processes as they account for the metabolic cost of 

wiring and the strength of a Hebbian-like wiring rule, in part buttressed by the fact 

that they undergo progressive changes over the lifespan and show alterations in 

disease states (Betzel, Avena-Koenigsberger, Goni, et al. 2016; Vertes et al. 2012). 

In addition to their biological plausibility and developmental sensitivity, an appropriate 

model of brain network architecture might illuminate genetic aspects underlying 

network alterations and formation in mental disorders. An important strategy is the 

examination of unaffected first-degree relatives of patients, who have an increased 

familial risk for developing the disorder (Erk et al. 2014; Rasetti and Weinberger 

2011; Collin et al. 2017). This strategy allows for the identification of intermediate 

brain phenotypes linked to psychiatric risk independent of potential disease-related 

confounders (Rasetti et al. 2011). In addition, the genetic contributions to these 

phenotypes can be studied with modern genetic approaches utilizing the potential of 

cumulative genetic risk scores.  

Here, we combined GNMs with imaging genetics to identify potential developmental 

mechanisms promoting the altered formation of structural brain networks in 

schizophrenia. Building on a family of previously described and validated generative 

models (Betzel, Avena-Koenigsberger, Goni, et al. 2016), we first replicated their 

optimal-fitting model in a healthy sample, and subsequently applied it to a group of 

unaffected first-degree relatives and schizophrenia patients. Following the hypothesis 

of an aberrant balance between wiring cost and topological properties during network 

formation in schizophrenia, we tested whether these model parameters show the 

quality of an intermediate phenotype. Moreover, on an exploratory level we examined 

the model parameters for potential associations with schizophrenia polygenic risk and 

cognitive function. 

3.3 Materials and Methods 

3.3.1 Participants 

Patients were recruited from the Department of Psychiatry and Psychotherapy at the 

Central Institute of Mental Health in Mannheim, Germany. Diagnoses were made by 
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staff psychiatrists. Clinical evaluation included ascertainment of personal and family 

history, and detailed physical and neurological examination. Patients were excluded 

if: (i) they were aged <18 or >65 years, or (ii) they had a history of brain trauma or 

neurological disease. We studied 152 healthy controls (HC) without a first-degree 

relative with mental illness (mean [SD] age, 30.32 [10.28] years; 94 women), 32 

unaffected first-degree relatives (REL) of patients with schizophrenia (33.25 [11.50] 

years, 19 women), and 66 unrelated patients satisfying DSM-IV-TR criteria for 

schizophrenia (SZ, 32.77 [9.26] years; 20 women). All participants provided written 

informed consent for the protocols approved by the local Ethics Committee of the 

University of Heidelberg. 

3.3.2 Neuroimaging data acquisition and processing 

Diffusion Weighted Imaging (DWI) data were acquired with a 3-T Siemens Trio 

scanner using two echo planar imaging (EPI) sequences with different parameters: 1) 

32 channel multi-array head-coil, TE/TR = 86/8400 ms, 2 mm slice thickness, field of 

view (FOV) = 256*256 mm2, 64 slices, and 46 diffusion directions at b-value of 1000 

s/mm2; 2) 12 channel coil, TE/TR = 86/14000 ms, 2 mm slice thickness, FOV = 

256*256 mm2, 64 slices, and 60 diffusion directions at b-value of 1000 s/mm2. A total 

of 163 participants were scanned with the first sequence and 87 participants were 

scanned with the second sequence. 

DWI data were preprocessed with standard routines implemented in the software 

package FSL (https://fsl.fmrib.ox.ac.uk/fsl/) including correction for head motion and 

eddy currents, extraction of non-brain tissues (Smith 2002), and linear diffusion 

tensor fitting. After estimating the diffusion tensor, we performed deterministic whole-

brain fiber tracking using a modified FACT algorithm (Yeh et al. 2013). When 

performing deterministic whole-brain fiber tracking, we initiated 1,000,000 streamlines 

for each subject and removed those with a length of less than 10 mm. To construct 

the structural connectome, the cerebral cortex was parcellated into 360 areas 

(Glasser et al. 2016) and the number of streamlines connecting every pair of brain 

areas was used as an estimate of structural connectivity. Notably, if the number of 

streamlines connecting two regions was less than 5, we set the connection weight to 

zero to minimize bias due to false positives (Zhang et al. 2015; Zhu et al. 2019) and 

to enforce an averaged network density of ~2.5% across subjects. As inter-

hemispheric connections cannot be adequately modeled, we focused on the right 

https://fsl.fmrib.ox.ac.uk/fsl/
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hemisphere (180 areas) following the precedent set in related prior work (Betzel, 

Avena-Koenigsberger, Goni, et al. 2016; Vertes et al. 2012). To compare the 

structural connectome between groups and retain connections not only according to 

weight but also according to length, every connection was required to be present in 

at least 70% of subjects (Roberts et al. 2017).      

3.3.3 Construction of generative network models  

For each subject, we constructed synthetic networks using generative models (Figure 

1). After defining a seed network consisting of all edges that were consistently 

identified across all subjects, edges between nodes were added one at a time until 

the number of edges in the synthetic network conformed to that of the observed 

network. The relative probability of edge formation was evaluated at each step 

according to the equation: 

 

(1)       P(u, v ) =  E(u, v)η ∗  K(u, v)γ. 

 

Here E(u, v) denotes the fiber distance between brain areas u and v, which was 

obtained using a streamline-based quantification of distance (Roberts et al. 2017). 

Note that η controls the edge length; when η is negative, short-distance edges are 

favored, whereas when η is positive, long-distance edges are favored. The term 

K(u, v) represents the topological relationship between brain areas u and v, and 

γ represents the relative importance of the topological term. Importantly, K(u, v) can 

be varied to realize different wiring rules. All topological parameters are defined in 

Table S2 and were computed using the Brain Connectivity Toolbox 

(https://sites.google.com/site/bctnet/Home) as implemented in MATLAB. 

In this study, we limited our analysis to four generative models, each representing 

one of four previously-studied classes: the geometric model, the degree-product 

model, the clustering-product model, and the matching index (MI) model (Betzel, 

Avena-Koenigsberger, Goni, et al. 2016). In the geometric model, the probability of 

forming a connection between two brain regions is a function of their fiber distance 

(represent by the spatial parameter: η), based on the intuition that brain regions are 

less likely to be connected if they are further apart. In the degree-product, clustering-

product, and MI models, the connection probability function includes an additional 

topological term (represent by the parameter γ) which is the product of degrees 

https://sites.google.com/site/bctnet/Home
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(number of connections of a brain region) between two nodes, the product of 

clustering coefficients (fraction of connected triangles around a brain region) between 

two nodes, or the normalized number of nearest neighbors in common between two 

nodes (homophily), respectively. Here, the intuition would be that two brain regions 

are more likely to be connected if their connectivity profiles are similar rather than 

dissimilar. 

To evaluate the fitness of synthetic networks and to optimize models, we define an 

energy function that measures how dissimilar a synthetic network is from the 

observed network as follows: 

 

(2)       E = max  (KSk,  KSc, KSb,  KSe) ,                                                        

 

Here, each term is a Kolmogorov-Smirnov statistic that compares degree (k), 

clustering coefficient (c), betweenness centrality (b), and edge length (e) distributions 

of synthetic and observed networks. Since we defined energy as the maximum of the 

four statistics, smaller energy indicated greater fitness. 

We used classical Monte Carlo methods to find the parameters (η, γ) that generated 

networks with minimal energy, i.e. networks that were most similar to the observed 

networks. The procedure starts from randomly sampling 2000 points from the defined 

parameter space. Then, by computing the energy at each point and dividing the 

whole parameter space into a subset of Voronoi cells, we sample points preferentially 

within Voronoi cells with low energy. We repeated this procedure five times until it 

converged to a (locally) optimal solution. Further details regarding this process can 

be found in Ref. (Betzel, Avena-Koenigsberger, Goni, et al. 2016).  

To explore whether our optimal-fitting model could capture other structural network 

alteredities in schizophrenia, we also calculated the global efficiency, modularity (Q, 

the degree to which the network may be subdivided into such clearly delineated 

groups where edges are more likely within groups than between groups, Newman’s 

community detection algorithm with default resolution parameter, gamma=1 

(Newman 2004)) and hub degree (defined as the mean degree of the top 10% 

highest-degree nodes), and then compared them between HC and SZ in both 

synthetic and observed networks. 



STUDY 2: GENERATIVE NETWORK MODELS OF ALTERED 
STRUCTURAL BRAIN CONNECTIVITY IN SCHIZOPHRENIA 
 

37 

 
Figure 3.1 Overview of generative network models. Deterministic whole-brain fiber tracking was performed to 

reconstruct white mater pathways, from which we constructed structural networks linking 180 regions of 

interest. By retaining edges present in all subjects, a seed network was created and then edges were added 

stepwise with a certain probability of edge formation, P(u, v ), until the number of connections in the synthetic 

network was the same as that in the observed structural network. The fitness of the synthetic network was 

evaluated by comparing the degree, clustering coefficient, betweenness centrality, and edge length distributions 

between the synthetic network and the observed structural network. We used BrainNet viewer to visualize brain 

networks (Xia, Wang, and He 2013).    

3.3.4 Cognitive assessment and factor construction 

In a subset of 120 individuals (74 healthy controls, 21 relatives, and 25 patients), we 

assessed a range of cognitive subdomains frequently impaired in schizophrenia 

(including attention and psychomotor speed, executive function, memory, impulsivity, 

and social emotional cognition) using the Cambridge Neuropsychological Test 

Automated Battery (CANTAB) (Mesholam-Gately et al. 2009; Barch and Ceaser 

2012). Because the CANTAB measures displayed significant shared variance, we 

performed a principal component analysis (PCA) to reduce the redundancies and 

minimize potential for Type I error (Levin et al. 2013). For this purpose, we selected 

two main outcome measures per test and performed a PCA, which resulted in five 
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components whose eigenvalues were larger than 1. The first component accounted 

for 27.1% of the variance, and factor loadings with lower factor values indicated 

better individual cognitive performance and captured mainly executive function and 

memory. The detailed description of methods and a full list of included outcome 

measures and cognitive factors are provided in the supplementary methods and table 

S1. 

3.3.5 Polygenic risk score     

We used standard methods to extract genomic DNA from Ethylenediaminetetraacetic 

acid blood to perform genome-wide SNP (single nucleotide polymorphism) 

genotyping of all individuals using the Infinium PsychArray (Illumina Inc). Quality 

control (QC) and imputation was performed with Gimpute (Chen, Lippold, et al. 2018) 

including the following steps: Removal of SNPs with sex chromosome 

heterozygosity, a missing rate greater than 0.05, deviation from Hardy-Weinberg 

equilibrium in controls (P < 10-6) and autosomal heterozygosity deviation of greater 

than 0.2 as well as removal of samples with a missing rate greater than 0.02. 

Phasing and imputation were conducted using SHAPEIT and IMPUTE2 (Howie, 

Donnelly, and Marchini 2009; Howie et al. 2012; Delaneau, Zagury, and Marchini 

2013) with the imputation reference panel from the 1000 Genome Project dataset 

(August 2012, 30,069,288 variants, release “v3.macGT1”). After imputation, we only 

retained SNPs with an imputation INFO score larger than 0.6, minor allele 

frequencies larger than 0.01 and successfully imputed in at least 20 individuals. The 

proportion of alleles shared identity-by-decent estimated using PLINK(Chang et al. 

2015) (www.cog-genomics.org/plink/1.9/) was used to identify relatedness for all 

pairs of samples. A threshold of π ̂ > 0.2 was used to identify related pairs of samples 

and exclude one member of each pair at random. 

To control for population stratification, we performed a PCA on the linkage-

disequilibrium pruned set of autosomal SNPs using GCTA (Yang et al. 2011). Then 

we excluded outliers whose principal components were larger than six standard 

deviations from the group mean and used the first five principal components as 

covariates in the following association analyses of model parameters. 

We computed the polygenic risk score with PRSice v-2, while the expected value of 

the missing genotypes was imputed based on the sample allele frequency (Euesden, 

Lewis, and O'Reilly 2015). In this study, genome-wide association (Schizophrenia 
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Working Group of the Psychiatric Genomics 2014) nominal P < 0.05, was used to 

achieve a balance between the number of false-positive and true-positive risk alleles 

(Wray et al. 2014; Agerbo et al. 2015). The association analyses were repeated for 

thresholds of nominal P < 0.01 and of nominal P < 0.1. 

3.3.6 Olanzapine equivalents 

To investigate the effect of antipsychotics on the results, we converted the daily 

doses of patients’ antipsychotic medication to olanzapine equivalents (OLZe) 

according to the classical mean dose method presented by Leucht and colleagues 

(Leucht et al. 2015). This method is based on the analyses of 13 oral second-

generation antipsychotics, haloperidol, and chlorpromazine compared with 

olanzapine 1 mg/d. To obtain OLZe, we weighted the mean dose of each 

antipsychotic by the study’s sample size and finally divided by the weighted mean 

olanzapine dose. 

3.3.7 Statistical analysis 

For each participant, we tuned the parameters (η, γ) to the range where the 

generative model always produced synthetic networks with near-lowest energy, i.e. 

networks that were most similar to the observed structural brain networks, by using 

the Monte Carlo methods mentioned above. Within this range, we analyzed the top 

1% minimal-energy synthetic networks (100 networks per participant, 10,000 

networks in total). We compared individual averaged energy of these top 1% lowest-

energy synthetic networks between the four types of generative models and between 

different groups of participants using a repeated-measures analysis of variance 

(ANOVA) with the Statistical Package for the Social Sciences 24. We compared the 

parameters of the optimal-fitting model between groups using a general linear model.  

In order to exclude the effect of antipsychotics on our results, we computed individual 

olanzapine equivalents and then assessed the correlation coefficient between those 

values and the model parameters. 

Furthermore, to investigate the genetic association of the model factors and to 

circumvent the potential effect of confounding factors not related to the genetic risk 

for the disorder in patient populations (Chen, Ursini, et al. 2018), we assessed the 

correlation between the parameters of the optimal-fitting model and polygenic risk 

scores in healthy controls only while controlling for age, sex, DWI protocol, temporal 
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signal to noise ratio (tSNR) (Roalf et al. 2016), and the first five principal components 

of population structure. To evaluate the behavioral relevance of the identified model 

parameters, we assessed the correlation coefficient between the parameters of the 

optimal-fitting model and the individual cognitive factor loadings, while controlling for 

age, sex and tSNR in the three groups separately. 

3.4 Results 

3.4.1 Sample characterization 

The groups were matched for age, education, tSNR, and head motion, but not for sex 

and acquisition protocol (see detailed demographic and clinical characteristics as well 

as image quality control parameters in Table 1). To account for the group differences 

in these latter variables, we included sex and DWI protocol as covariates in all 

analyses that included multiple groups. The demographic and neuroimaging 

characteristics for the participants of the different acquisition protocols are provided in 

Table S3. 

 

Table 1: Demographic, clinical and neuroimaging characteristics 

 Healthy controls 

(n = 152) 

First-degree 

relatives 

(n = 32) 

Schizophrenia 

patients 

(n = 66) 

F or χ² 

value 

P value 

Demographic 

characteristics 

     

Age (years) 30.32 ± 10.28 33.25 ± 11.50 32.77 ± 9.26 1.977 0.141 

Sex (male / female) 58/94 13/19 46/20 18.95 < 0.001 

Acquisition protocol 

(32/12 channel coil) 

76/76 21/11 66/0 50.71 < 0.001 

Education (years) 15.40 ± 1.60 15.19 ± 2.34 14.86 ± 2.17 1.881 0.155 

Clinical characteristics      

PANSS positive n.a n.a. 14.61 ± 7.54 - - 

PANSS negative n.a n.a 14.51 ± 8.27 - - 

PANSS general n.a n.a 31.70 ± 11.42 - - 

PANSS total n.a n.a 60.82 ± 23.51 - - 

Duration of illness 

(years) 

n.a. n.a. 10.44 ± 8.34 - - 

Olanzapine equivalents 

(n= 52) 

n.a. n.a. 15.04 ± 8.91   
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QC parameters      

DTI: mean relative 

root-mean-square 

displacement (mm) 

0.31 ± 0.10 0.33 ± 0.12 0.35 ± 0.18 1.844 0.160 

DWI: tSNR 5.85 ± 0.29 5.76 ± 0.25 5.85 ± 0.26 1.491 0.227 

PANSS = Positive and Negative Syndrome Scale (Kay, Fiszbein, and Opler 1987). tSNR = temporal signal to 

noise ratio, QC = quality control 

 

3.4.2 Generative Network models 

Comparison between the four network models revealed significant differences in 

mean energy (repeated measures ANOVA: F(3,453) = 2964.277, p < 0.001) in HC, 

with the MI model showing the lowest energy level (see Figure 2). The Akaike 

information criterion is -746 for the one-factor (spatial) model and -1219 for the two-

factor (MI) model. Inline with this result, the Bayesian Information Criterion of the 

one-factor model is -742, and of the two-factor model is -1212. Both results imply that 

the quality of the two-factor model is superior to that of the one-factor model (see 

Supplementary Results for further details). Importantly, when including all diagnostic 

groups in the analysis, the group-by-model-type interaction was not significant 

(repeated measures ANOVA with group as a between-subjects factor, and with sex 

and DWI protocol as covariates: F(6,735) = 0.870, p = 0.516), arguing for the same 

pattern across all groups. We did not find a sex-by-model interaction (F(3,735) = 

1.155, p = 0.326). We however found a significant protocol-by-model interaction 

effect (F(3,735) = 26.37, p < 0.001), which comes from the spatial and clustering-

product models (see Supplementary Figure 6 for more details). Hence, in our 

subsequent investigation we focused on the analysis of the MI model, as among the 

four tested classes of generative network models it provided the optimal fit to the 

individual, experimentally-derived structural networks across diagnostic groups. We 

show the energy landscape and the parameter distribution of the MI model for 

different groups in the supplement (Figure S2).  Compared to MI models for the 

randomized networks, MI models for observed network showed lower energy and 

significantly different parameters distributions (Figure S4), implying that the MI model 

contains meaningful information that is worth investigating further. To show how 

similar the synthetic networks and observed networks were at the edge level, we 

calculated the percent in edge overlap and the percent of correctly-modelled subjects 

for each edge among different groups (Figure S3). 
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Figure 3.2. Four classes of GNMs: Individual energy was significantly different among the four types of models 

(p < 0.001) without a significant model by group interaction (p = 0.516). The matching index model showed the 

lowest energy. 

 

When comparing global efficiency, modularity, and hub degree between groups, we 

detected significant between-group differences in global efficiency (ANOVA, with 

same covariates; F(2,245) = 5.289, p = 0.006) and in hub degree (ANOVA; F(2,245) 

= 3.875, p = 0.022) in the observed networks. In the synthetic networks, we also 

detected a marginal between-group difference in hub degree (ANOVA; F(2,245) = 

2.751, p = 0.066), and a significant difference in global efficiency (ANOVA; F(2,245) = 

3.967, p = 0.02). No group differences were found in modularity for either the 

observed data (ANOVA; F(2,245) = 0.088, p = 0.916) or the synthetic network 

(ANOVA; F(2,245) = 0.039, p = 0.962, see Figure 3A). Our definition for hub degree 

ensures that every network has the same number of hubs. Importantly, our results 

are robust to variation in the threshold that defines hubs. Specifically, we find that 

when using a threshold of 8%, the hub degrees of healthy controls are higher than 

the hub degrees of patients and relatives for both the observed networks (F(2,245) = 

3.462, p = 0.033) and for the synthetic networks (F(2,245) = 2.408, p = 0.092). 
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Similarly, when using a threshold of 12%, the hub degrees of healthy controls are 

higher than the hub degrees of patients and relatives for both the observed networks 

(F(2,245) = 4.138, p = 0.017) and the synthetic networks (F(2,245) = 2.578, p = 

0.078). The findings are consistent with what we see at the threshold of 10%. Please 

see Figure S5 for scatterplots of observed networks (data) and synthetic networks 

(model) in hub degree, global efficiency and modularity for each group. 

 
Figure 3.3 Topological characteristics in health and disease. (A) Comparison of several network characteristics 

in data and model between healthy controls (HC), relatives (REL) and schizophrenia patients (SZ). The matching 

index model captured the altered hubness and global efficiency in SZ well, while also modeling no modularity 

difference between groups. The deep blue bars represent the global efficiency, modularity, and hub degree of the 

synthetic network (model) and observed network (data) in HC, respectively, while the blue bars represent REL 

and light blue bars represent SZ. Bars indicate mean values. Error bars indicate 95% confidence intervals. 

Asterisks denote significant difference between diagnostic groups. (B) Visualization of parameter effects on 

network structure for a single subject. The topological parameter γ mainly influences the degree distribution with 

larger γ  corresponding to the occurrence of more and larger hubs, while the distance parameter η  mainly affects 

the edge distance distribution. Here, η = -1.2 and γ = 0.24 correspond to the optimal-fitting model.  

 

In Figure 3B, we illustrate the synthetic network structure of a single subject at 

different parameter values, thereby offering an intuition regarding the roles of each 
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parameter in the MI model. As expected, the two parameters η and γ are strongly 

anti-correlated (Pearson correlation: r = -0.613, p < 0.001) in HC, and this relation 

was conserved across diagnostic groups (relatives: r = -0.535, p = 0.002, patients: r = 

-0.492, p < 0.001). Investigating the between-group differences of the two 

parameters, we found a significant between-group effect on the distance parameter η 

(ANOVA, with sex and DTI protocol as covariates; F(2,245) = 4.777, p = 0.009) and 

also on the topological parameter γ (ANOVA, same covariates; F(2,245) = 3.054, p = 

0.049, see Figure 4). The effect sizes (Partial Eta Squared) of the significant group 

difference were 0.038 (η) and 0.024 (γ). Post-hoc analyses confirmed significant 

differences between HC and SZ (η: F(1,214) = 3.956, p = 0.048; γ: F(1,214) = 4.707, 

p = 0.031) as well as between HC and REL in η (F(1,180) = 8.970, p = 0.003), but not 

in γ (F(1,180) = 2.609, p= 0.108). We found no significant correlation between 

individual olanzapine equivalents and model parameters in SZ (η: r = -0.121, p = 

0.393; γ: r = 0.092, p = 0.517). We did not find any significant correlation between 

model parameters and positive or negative syndrome scale scores (see the 

Supplementary Results for further details). While the varying size of parcellations in 

the atlas can potentially impact the number of successive streamlines, this factor did 

not influence our main results (see Supplementary Results). 
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Figure 3.4. Group differences in parameters: in the matching index model, there was a significant between-group 

effect on the distance parameter η (p = 0.009) and on the topological parameter γ  p = 0.049) correcting for sex 

and DTI protocol. Red lines indicate mean values and boxes indicate one standard deviation from the mean. 

Asterisks denote significant difference between all diagnostic groups. 

 

3.4.3 Polygenic risk score 

Based on the observed alterations in topological network formation in schizophrenia 

patients and healthy individuals at familial risk for schizophrenia, we further 

examined, on an exploratory level, potential associations to polygenic risk for 

schizophrenia. All healthy controls were of Caucasian ethnicity. A PCA plot to 

account for potential population stratification is provided in the Supplement (Figure 

S1). There was a significant group-difference in the genetic risk scores (ANOVA; 

F(2,194) = 7.685, p = 0.001) with SZ showing the highest risk scores. To characterize 

the influence of genetic risk for schizophrenia on both model parameters, we 

correlated the individual participants’ risk scores with η and γ. We found a significant 

positive association for the distance parameter η (rpar = 0.173, p = 0.045, where 

“rpar” refers to a partial correlation that treats age, sex, and principal components as 

covariates. Figure 5A) and a weaker, trend-wise negative association for the 

topological parameter γ (rpar = -0.154, p = 0.073) in HC for all genetic variants with a 

nominal genome-wide significant association to schizophrenia (P < 0.05, 

uncorrected). The 95% confidence interval of the correlation coefficient for PRS and 

η estimated by bootstrapping is (0.003, 0.345). Supplemental analyses confirmed the 

robustness of this finding to the choice of significance threshold used for polygenic 

risk score computation: for a nominal P < 0.01, we obtained rpar = 0.154 and p = 

0.074 for η, and we obtained rpar = -0.156 and p = 0.071 for γ, while for a nominal P 

< 0.1, we obtained rpar = 0.196 and p = 0.022 for η, and we obtained rpar = -0.174 

and p = 0.043 for γ.   

3.4.4 CANTAB 

Based on the observed alterations in topological network formation in schizophrenia 

patients and healthy individuals at familial risk for schizophrenia, we further 

examined, on an exploratory level, potential associations to cognitive function. 

Exploring the correlation between the individual participants’ scores of the first 

component and the distance parameter η (or the topological parameter γ), we found 
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a significantly negative association for η (r = -0.261, p = 0.029, Figure 5B) and no 

association for γ (r = 0.108, p = 0.374) in HC. The 95% confidence interval of the 

correlation coefficient for the first component and η estimated by bootstrapping is (-

0.482, -0.014). No association was found in relatives (η: r = -0.137, p = 0.589; γ: r = 

0.035, p = 0.890) or in patients (η: r = 0.261, p = 0.240; γ: r = -0.133, p = 0.556). As 

expected, healthy controls showed lower factor loadings compared to relatives and 

patients (F(2, 115) = 7.680, p = 0.001). We did not detect any correlation between 

the other four cognitive components and the network model parameters.  

 
Figure 3.5. Correlation of polygenic risk score and cognition. (A) Individual polygenic risk score for 

schizophrenia was significantly positively associated with η (rpar = 0.173, p = 0.045). Here η denotes the 

residuals after regressing out covariates. (B) After performing principal component analysis on 13 main outcome 

measures of the neuropsychological test battery, we obtained five components whose eigenvalues were larger 

than 1, and we found a significant negative correlation between the first component and η  (r = -0.261, p = 0.029) 

in healthy controls. As in panel (A), η denotes the residuals after regressing out covariates. 

 

3.4.5 Influence of data quality measures and DTI protocol 

We did not detect a significant correlation between model parameters and head 

motion (η: r = －0.008, p = 0.906; γ: r = -0.001, p = 0.983) or temporal signal to noise 

ratio (η: r = 0.069, p = 0.28; γ: r = 0.006, p = 0.923). 

Limiting our analysis to the subset of individuals acquired with the same DTI protocol 

(32 channel coil), we still found a significant between-group effect on η (ANOVA, with 

sex as a covariate: F(2,159) = 4.827, p = 0.009), and a trend-wise significant 

between-group effect on γ (ANOVA, with sex as a covariate: F(2,159) = 2.798, p = 

0.064). We list the network density for each group and each protocol separately 

(Tables S4 and S5). 
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3.5 Discussion  

In this study, we replicate prior work in GNM (Betzel, Avena-Koenigsberger, Goni, et 

al. 2016) by demonstrating that the resulting synthetic networks simulate many 

properties of structural brain networks in both health and disease. We further identify 

significant differences between healthy controls, first-degree relatives and 

schizophrenia patients for the two optimally-fitting model parameters in a pattern that 

aligns with the increasing familial risk for schizophrenia. Specifically, these 

differences imply lesser geometric constraints and lesser topological constraints in 

the processes driving network formation in schizophrenia. Moreover, additional 

exploratory analyses suggest potential associations between network formation 

parameters, schizophrenia polygenetic risk and latent features of cognitive 

functioning, respectively. Notably, these observations highlight a potential plausible 

explanation of how genetic risk contributes to the malformation of brain networks and 

cognitive dysfunction, although future studies are needed to validate the biological 

basis and behavioral relevance of model parameters. 

Our study extends the current state of the field in several notable ways. Firstly, our 

data replicate previous accounts of a superior performance of a model integrating 

geometric constraints and topological complexity of structural brain networks (Betzel, 

Avena-Koenigsberger, Goni, et al. 2016). This observation aligns well with the current 

theory that the regular formation of brain networks follows an important evolutionary 

rule (Chklovskii, Schikorski, and Stevens 2002; Kaiser and Hilgetag 2006; Chklovskii 

and Koulakov 2004) by minimizing the metabolic cost of building and maintaining 

long-range axonal connections(Chklovskii 2004) while preserving the adaptive 

properties of the human connectome, such as the capacity for information processing 

(Costa Lda, Kaiser, and Hilgetag 2007) through formation of topological features 

(Bullmore and Sporns 2012). 

Secondly, when extending this framework to model mechanisms of connectome 

formation in schizophrenia patients and first-degree relatives, we detected no 

significant between-group differences in the fit between the synthetic networks and 

the observed networks across models. Importantly, this suggests that the same 

wiring rules can equally well describe both normal and altered brain network 

formation. Previous studies have found increased connection distance of brain 

networks (Alexander-Bloch et al. 2013; Bassett et al. 2008) and altered network 

topology including reduced clustering and modularity (Liu et al. 2008; Alexander-



STUDY 2: GENERATIVE NETWORK MODELS OF ALTERED 
STRUCTURAL BRAIN CONNECTIVITY IN SCHIZOPHRENIA 
 

48 

Bloch et al. 2010; Lynall et al. 2010a) in schizophrenia (see Figure 3A). In line with 

this prior work, theoretical accounts suggest that the altered organization of brain 

networks in schizophrenia may result from a biased trade-off between generative 

factors of homophilic attraction and distance penalization in the process of brain 

network formation (Bullmore and Sporns 2012). To probe further, we tested whether 

individual model parameters contributed differently to network formation in all three 

study groups. We identify smaller values of the distance parameter η in HC than in 

relatives and patients, while values of the topological parameter γ were higher in HC 

than in relatives and patients. This said, larger η values in relatives and patients 

indicate a lower distance penalization, thus increasing the edge length distribution, 

which is consistent with the increased connection distance of brain networks in 

schizophrenia (Alexander-Bloch et al. 2013; Bassett et al. 2008). Since the 

topological parameter mainly influences the degree distribution  (see our Figure 3B), 

smaller γ values in patients and relatives indicate the presence of fewer and smaller 

hubs) (Vertes et al. 2012). This observation corroborates previous findings 

suggesting that brain networks in schizophrenia are less clustered and have fewer 

hubs (Bassett et al. 2008; van den Heuvel et al. 2010). Notably, the presence of 

decreased spatial constraints and homophilic association in our sample of unaffected 

first-degree relatives suggests that these network mechanisms may resemble 

intermediate phenotypes, i.e., relate to the increased familial risk for schizophrenia 

rather than being epiphenomena of potential confounds such as antipsychotic 

medication.  

Thirdly, we explored the associations between model parameters and schizophrenia 

polygenic risk in healthy individuals. We identified a weak, but nominally significant 

positive correlation between polygenic risk and the distance parameter η. In addition, 

we detected a trend-wise negative association between polygenic risk and the 

topological parameter γ. Together these findings suggest that increasing genetic risk 

load for schizophrenia leads to a diminished distance penalization and local 

homophily of the structural brain connectome. While these effects are small and do 

not survive correction for multiple comparison, they are in the range of commonly 

observed effect sizes for polygenetic risk associations (Dudbridge 2013) and provide 

an interesting observation that could potentially guide replication efforts in future 

studies. In general, two interconnected factors are thought to contribute to the 

formation of long distance connections in the brain: a) neurons connect to each other 
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at an early stage of neurodevelopment when the neural system is small in scale, and 

b) at later stages, axons follow developmental pathways already established by 

earlier pioneer neurons (fasciculation) (Kaiser 2017). Studies in animals models 

suggest that most neurons already form early connections in a spatially localized 

system (Varier and Kaiser 2011) where navigation through differential expression of 

guidance molecules is feasible. Importantly, the genes coding for such guidance 

molecules have been repeatedly implicated in the pathophysiology of schizophrenia 

(Aoki-Suzuki et al. 2005; Eastwood and Harrison 2008; Shi et al. 2004). It is 

interesting to speculate that altered spatial expression of guidance molecules 

imposes less spatial constraints on brain network formation, and these fine-scale 

mechanisms are reflected in our large-scale model parameters. However, these 

observations critically require replication in larger datasets and further call for 

integrating novel, spatially differentiated methods of gene-expression such as the 

Allen Brain Atlas.  

Moreover, we additionally sought to investigate the association of the generative 

network parameters with a broad and general marker of cognition in an exploratory 

manner. We found a negative correlation between the distance parameter η and 

individual scores of the first principal cognitive factor, predominantly capturing 

converging aspects of executive function and memory, in HC. In particular, we 

observed that larger values of η (reflecting less geometric constraints, thus a higher 

probability of long distance connections) were associated with better cognitive 

performance. Healthy human brain networks usually contain only a small fraction of 

long-distance shortcuts preferentially linking hub regions (Alexander-Bloch et al. 

2013; Bullmore and Bassett 2011). Although these long-distance connections are 

expensive in terms of material and metabolic cost, they greatly reduce the path-

length of information transfer between spatially remote regions, thus increasing the 

potential for efficient information processing in a binary network (Buzsaki et al. 2004; 

Bullmore and Sporns 2012). A number of previous studies have shown that more 

topologically efficient structural and functional networks are associated with 

enhanced cognitive performance (Giessing et al. 2013; Breckel et al. 2013). Cross-

species comparisons of connectome have suggested that modifications of human 

brain connectivity that are beneficial for higher cognitive function may also render 

humans vulnerable to brain dysfunction (van den Heuvel et al. 2019). On one hand, 

long-range connections are essential to maintain the integrity of the expanding brain 
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network and are therefore under positive selection pressure (Hofman 2014). On the 

other hand, these long range connections are at an increased vulnerability (Crow 

1997) due to their increased metabolic cost and also due to their topological 

importance. Hence brain disorders such as schizophrenia manifest themselves in 

alterations of these long-range connections. Indeed, previous studies have shown an 

increased proportion of long-range connections in schizophrenia resulting in brain 

networks shifted towards random networks (Lo et al. 2015). The association of the 

distance parameter η and cognition was not detectable in schizophrenia patients and 

first-degree relatives, suggesting an optimum in the number of long-range 

connections potentially exceeded in those populations, meaning that a higher 

proportion of long-range connections in patients and relatives may not lead to higher 

network efficiency, but subtle randomization (Lo et al. 2015).  

There are a number of methodological considerations that deserve discussion. 

Firstly, even complete correspondence of two networks does not necessarily imply 

that both models have been shaped by the same biological mechanism(s). While we 

have attempted to limit interpretational restraints by external validation with other 

well-established network features, it is important to note that generative models can 

be used to offer candidate mechanisms for an observed topology, but cannot 

conclusively prove that a given candidate mechanism actually occurred in the 

developing organism (Betzel and Bassett 2017). Secondly, while GNMs can provide 

insights into the formation of structural brain networks, they do not explicitly model 

neurodevelopmental processes. Such investigations are warranted, and will require 

longitudinal datasets as well as the use of an advanced GNM framework explicitly 

modeling variant developmental processes within subjects. Finally, our sample size 

used here is relatively small for investigating associations between model parameters 

and polygenic risk score and cognitive scores, calling for bigger sample sizes and 

replications in independent samples in future studies.  

In conclusion, we show that the distinct wiring rules can simulate normal and altered 

network formation in humans, resemble intermediate connectomic phenotypes for 

schizophrenia familial risk and manifest as altered spatial and topological 

characteristics of brain connectome formation in schizophrenia and first-degree 

relatives. We further demonstrate preliminary evidence that the GNM model 

parameters can be linked to schizophrenia polygenic risk and explore their relevance 

for cognitive functions frequently disturbed in schizophrenia. Together, these data 
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suggest that brain network formation is under genetic control, is potentially optimized 

to support cognitive functioning and is disturbed in heritable developmental disorders 

such as schizophrenia. While these results provide an important first step to harness 

the potential of GNM by linking it to neurobiologically interpretable factors, 

longitudinal studies in developmental cohorts are needed to further elucidate 

successful and aberrant brain connectome formation. 

3.6 Supplements 

3.6.1 Supplementary methods 

Principal component analysis of CANTAB measures 

CANTAB measures included Emotion Recognition Task (ERT), Pattern Recognition 

Memory (PRM), Spatial Span (SSP), Stocking of Cambridge (SOC), Reaction Time 

(RTI), Attention Switching Task (AST) and Information Sampling Task (IST). We 

selected two main outcome measures per test (with the exception of SOC, for which 

only one outcome measure is available) and performed a PCA. The first component 

was consistently negatively correlated with correct response rates and positively 

correlated with latency (or reaction times) across the seven test domains, suggesting 

that lower factor values indicate better individual cognitive performance. The detailed 

description and a full list of outcome measures across tasks and the resulting 

cognitive factors are provided in Table S1. 

3.6.2 Supplementary results 

Correlation of model parameters and PANSS scores 

We did not find any significant correlations between model parameters and positive 

(η: r = 0.110, p = 0.398, γ: r = -0.158, p = 0.223), negative (η: r = -0.039, p = 0.766, γ: 

r = 0.069, p = 0.595), general (η: r = 0.036, p = 0.781, γ: r = -0.042, p = 0.746) and 

total (η: r = 0.039, p = 0.763, γ: r = -0.047, p = 0.719) PANSS (Positive and Negative 

Syndrome Scale) scores. 

 

Akaike information criterion analysis 

To quantify the bias and variance of one-factor vs two-factor models, we computed 

the AIC (Akaike information criterion) and Bayesian Information Criterion (BIC), which 

are estimators of out-of-sample prediction error and thereby the relative quality of a 

statistical model for a given set of data.  Here, AIC = n*log(RSS/n) + 2*K, where n is 
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the number of subjects, K is the number of factors in the model, and RSS is the sum 

of squares of the maximal difference between best-fit network and observed network 

in terms of clustering coefficient, degree, edge length and betweenness centrality. 

The AIC of the one-factor (spatial) model is -746, and of the two-factor (matching 

index) model is -1219. Similarly, the BIC can be computed using the following 

formula: BIC = n*log(RSS/n) + K*log(n), but penalizes additional model factors more 

severely. In line with the AIC results, the BIC of the one-factor model is -742, and of 

the two-factor model is -1212.  Both results imply that the quality of the two-factor 

model is superior to that of the one-factor model.  

 

Normalizing the number of streamline by ROI size 

To demonstrate the robustness of our results to the effect of correcting for ROI size, 

we normalized the number of streamlines by ROI size and repeated our analysis 

using the same methods as described in our main analysis. We found no difference 

between non-normalized and normalized network models in terms of energy 

(F(1,249) = 0.391, p = 0.532) and could replicate the observed group differences in 

terms of model parameters (η: F(2, 245) = 4.516, p = 0.012 ; γ: F(2, 245) = 3.749, p = 

0.025), suggesting that our results are not driven by the variation in ROI size. 

 

  

Figure S1. Scatterplot of the first and second principal components of the PCA on genetic data. 
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Figure S2. Energy landscape of matching index model (A) and distribution of parameters of optimal-fitting 

matching index model (B) for different groups of subjects 

 

 

Figure S3. For each edge, the percent of correctly-modelled subjects in healthy controls (HC), relatives (REL), 

and patients (SCZ). We quantified the edge-level similarity between simulated and empirical graphs, reporting 

the percent overlap between common edges. On average, we found that edge overlap was 56.3% (57.05% for 

healthy controls, 55.6 % for relatives and 54.87% for patients). We did not find any significant group difference 

in edge overlap (F(2, 245)= 2.255, p = 0.107). This finding suggests that more than half of the edges were 

simulated correctly, and that our model can simulate both the formation of normal and altered brain networks 

from the perspective of edge overlap. We also computed the average degree for each region of both empirical 

networks and the best-fitting networks. Individual averaged degree for empirical networks was negatively 
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correlated with the relative difference in degree between empirical networks and synthetic networks (r = -0.5548, 

p < 0.001). This finding indicates that higher-degree regions were simulated better than regions with only few 

edges. 

 

Figure S4. Distributions of model fit and model parameters for observed brain networks and randomized 

networks. We randomized the connectomes of the 75 healthy controls from 32 channels while preserving both 

the degree and edge length distribution by using codes from Betzel and Bassett (Betzel and Bassett 2018) and 

applied the matching index model to these randomized networks. Compared to our original model, we found a 

significant difference in the model fit (F(1, 74) = 1988, p < 0.001 ) with models for randomized networks 

showing lower fit. We also found a significant difference in both model parameters (η: F(1, 74) = 1622, p < 

0.001 ; γ: F(1, 74) = 210, p < 0.001 ) between the best-fitting models for observed brain networks and for 

randomized networks. 
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Figure S5. Scatterplots of observed networks (data) and synthetic networks (model) in hub degree, global 

efficiency and modularity in healthy controls (HC), relatives (REL) and patients (SCZ). 

 

Figure S6. Protocol-by-model interaction between spatial and clustering-product models. There is a significant 

protocol-by-model interaction effect (F(3,735) = 26.37, p < 0.001), which comes from an interaction between the 

spatial and clustering-product models. This driving interaction results from a similar energy distribution of these 

two models and the marked between-subject variation in energy.       
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Table S1. Neuropsychological measures and respective factor loadings 

Measures Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

SSP span length -0.579   -0.323 0.350 

SSP mean time 0.371 0.329  -0.629  

IST correct win  0.644   -0.406 

IST error  -0.507 -0.340  0.458 

PRM mean latency 0.670  -0.332   

PRM correct -0.491  0.529  0.345 

SOC problems solved -0.338 0.620    

RTI movement time 0.379  0.618  0.360 

RTI reaction time 0.714  0.409   

AST correct trials -0.442 0.313  0.582 0.319 

AST mean latency 0.729     

ERT mean latency 0.605 0.468    

ERT correct -0.652     

 

Note: ERT, Emotion Recognition Task; PRM, Pattern Recognition Memory; SSP, Spatial Span; SOC, Stocking 

of Cambridge; RTI, Reaction Time; AST, Attention Switching Task; IST, Information Sampling Task. 
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Table S2. Definitions of complex network measures 

Measure Definition 

Basic concepts N is the set of all nodes in the network, and n is the number of nodes. aij 

is the connection status between node i and j. 

Degree Number of links connected to a node i, ki  =  ∑ aijj∈N  . 

Hub degree  The mean degree of the hubs, and hubs are top 10% highest-degree 

nodes. H =   
1

nh
∑ kii∈Nh

, where Nh is the set of hubs, and nhis the 

number of hubs. 

Global efficiency Average inverse shortest path length in the network, 

E =  
1

n
∑

∑ dij
−1

j∈N,j≠i

n−1i∈N , where dijis the shortest path between i and j. 

Clustering coefficient The fraction of triangles around a node i, Ci =  
2ti

ki(ki−1)
, and ti =

1

2
∑ aijaihajhj,h∈N , which is the number of triangles around node i. 

Modularity The degree to which the network may be subdivided into such clearly 

delineated groups where edges are more likely within groups than 

between groups  (Newman’s spectral community detection with default 

resolution parameter, gamma=1), Q =  ∑ [euu − (∑ euvv∈M )2]u∈M , where 

M is the nonoverlapping modules, and euv is the proportion of all links 

that connect nodes in module u with nodes in module v. 

Matching index Normalized measure of the overlap in the connection pattern of two 

nodes i and j, mij =  
2 ∑ ai.∗aj

ki+kj
, where aiis the connection vector of node i, 

and .* means dot product.   

Betweenness centrality The fraction of all shortest paths in the network that contain a given node 

i, bi =
1

(n−1)(n−2)
∑

phj(i)

phj
h,j∈N

h≠j,h≠i,i≠j

, where phjis the number of shortest 

paths between h and j, and phj(i) is the shortest path between h and j 

passing through i. 
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Table S3. Demographic and neuroimaging characteristics of participants for the different acquisition protocols 

  12 channel coil 

(n = 87) 

32 channel coil 

(n = 163) 

F or χ² value P value 

 

Age (years) 

HC 33.67 ± 10.21a 26.92. ± 9.23 18.16 <0.001 

REL 30.91 ± 10.97 34.48 ± 11.83 0.69 0.413 

SCZ - 32.77 ± 9.26 - - 

 

Sex (male/female) 

HC 32/44 26/50 1 0.316 

REL 6/5 7/14 1.347 0.246 

SCZ - 46/20 - - 

 

Education (years) 

HC 15.34 ± 2.02 15.45 ± 1 0.18 0.67 

REL 14.95 ± 2.72 15.31 ± 2.18 0.162 0.691 

SCZ - 14.86 ± 2.17 - - 

DTI: mean relative root-

mean-square displacement 

(mm) 

HC 0.32 ± 0.07 0.31 ± 0.12 0.903 0.343 

REL 0.32 ± 0.05 0.34 ± 0.14 0.185 0.67 

SCZ - 0.35 ± 0.18 - - 

DTI: temporal signal to noise 

ratio 

HC 5.74 ± 0.33 5.96 ± 0.19 24.65 < 0.001 

REL 5.61 ± 0.26 5.84 ± 0.21 7.04 0.013 

SCZ - 5.85 ± 0.26 - - 

Values denotes mean ± standard deviation. 

To explore the effect of scanning protocol on our results, we compared the two model parameters from the 

matching model between different protocols. We did not find any significant difference in eta (F(1,145) = 0.461, 

p = 0.498) or in gamma (F(1,145) = 3.838, p = 0.052) for different protocols in healthy controls, which suggests 

that the sample size affects the group-difference in eta and gamma when limiting our analysis to subjects from 

the same protocol. 

 
Table S4. Network density for each group  

 Healthy controls Relatives Patients F value P value 

Density of seed 

network 

0.21% 0.21% 0.21% - - 

Density of target 

network 

2.69% ± 0.12%a 2.62% ± 0.12% 2.61% ± 0.21%  8.345 < 0.001 

Number of added  

connections  

800 ± 38 776 ± 39 773 ± 68 8.345 < 0.001 

Valuea denotes mean ± standard deviation. 

We computed the correlation between the number of added connections and energy, detecting no significant 

association (r= -0.008, p = 0.902). This result implies that the number of added edges do not influence the model 

fit. 
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Table S5. Empirical network density for different acquisition protocols and groups 

 12 channel coil 32 channel coil F value P value 

Healthy controls 2.68% ± 0.1% 2.71% ± 0.13% 2.321 0.13 

Relatives 2.69% ± 0.11% 2.58% ± 0.11% 6.856 0.014 

Patients - 2.61% ± 0.21% - - 

F value  8.218 - - 

P value  < 0.001 - - 

Valuea denotes mean ± standard deviation.  

Network density was not correlated with model energy (r = 0.161, p = 0.404), implying that protocol-effect on 

network density did not affect model fit. There were significant differences in the network density between 

different groups for 32 channel coil (p < 0.001) after controlling for temporal signal-to-noise and head motion, 

implying that group-differences in density are not due to noise, but the clinical difference of groups. 
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4 GENERAL DISCUSSION 

4.1 Results summary 

This thesis is based on two original first author publications of the doctoral candidate. 

Firstly, I reviewed studies of network models and machine learning that could 

potentially promote the transfer from lab experiments to clinical practice. I then 

applied one of these promising methods: the generative network model, to 

investigate the altered brain network formation in schizophrenia and the link to 

genetic risk and cognitive dysfunction. 

The first study aimed to describe novel data-driven methods, mainly focusing on 

network models and machine learning, which may overcome the obstacles in current 

psychiatric study design and promote the clinical transfer of lab findings. The advent 

of neuroimaging techniques and the application of connectome and graph theory 

have provided numerous useful tools for psychiatric research and greatly improved 

our understanding of the underlying psychopathology of mental disorders by 

exploring related alterations in brain structure and function. However, these findings 

currently do not have significant influence on psychiatric diagnosis and therapy yet. 

The reasons for the lack of translation range from general to neuroimaging-specific. 

Therefore, the thesis reviewed psychiatry studies that adopted novel network models 

and machine learning methods, different from conventional case-control comparisons 

of descriptive measures. Firstly, network models can help gain an in-depth 

understanding of the psychopathology of the complex and dynamic disorders beyond 

current diagnostic boundaries. For example, one can establish generative models 

based on biologically meaningful wiring rules and then manipulate or perturb 

networks in targeted ways to investigate the neurodevelopmental changes during the 

disease process. And it is also possible to predict the spreading process of 

neurodegenerative diseases with computational models. A second network method, 

network control theory, is built on a dynamic system model and mainly studies how 

the activity of one node can affect the rest of the system. Derived from diffusion-

weighted imaging and working with electrocorticography data, NCT could estimate 

the energy needed for different states transitions (Stiso et al. 2018). The application 

of NCT may help explain the function mechanism of neurostimulation therapy, such 

as transcranial magnetic stimulation, and then improve individual treatment outcome. 

Secondly, dimensional approaches, such as CCA, could define psychopathological 
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subgroups by linking psychopathology to brain network with a transdiagnostic 

dataset. These subgroups show different psychopathological dimensions and distinct 

patterns of brain connectivity (Xia et al. 2018). Importantly, these subgroups may 

help select treatment options for individuals (Drysdale et al. 2017). Thirdly, 

individualized prediction of therapy outcomes using machine learning methods also 

provides the potentials to select personalized therapy solutions. In summary, these 

emerging methods could provide neurobiological biomarkers that improve the 

precision of diagnosis and personalized treatment after they are stringently evaluated 

for their potentials. 

In the second study, based on different wiring rules, we applied generative models to 

simulate a set of critical topological properties of structural brain networks in healthy 

controls, patients with schizophrenia, and relatives of patients. We found that the 

matching index model, a combination of geometric constraints and a homophilic 

attachment rule, works optimally among the four tested classes of generative models. 

There were significant differences in the two parameters of the matching index 

model, which control the level of geometric and nongeometric constraints 

respectively, between healthy controls and patients as well as the relatives, 

suggesting that model parameters fulfil indeed some of the basic requirements of a 

promising intermediate phenotype. Notably, the group differences are consistent with 

previous findings that there was a higher proportion of long-range connections in 

schizophrenia (Bassett et al. 2008) and that brain networks in schizophrenia are less 

clustered and have fewer hubs (van den Heuvel et al. 2010). Therefore, the 

dysfunctional brain network in schizophrenia could be simulated with the generative 

models. Furthermore, in the following exploratory study, we found the associations of 

the model parameter to genetic risk for schizophrenia and cognitive function. These 

findings may help explain altered brain network formation in schizophrenia, and help 

elucidating some of the “driving” genetic factors and resulting cognitive disturbances.  

4.2 Novel network models and machine learning methods for clinical psychiatry 

4.2.1 Novel network models for understanding mechanism of disorders 

Understanding the organization principles of the human brain network has long been 

the main challenge for neuroscience. In the past decades, graph theory has provided 

many new methods to analyze the complex anatomical and functional brain 

networks. Brain networks have been found to show specific topological properties: 
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small-worldness, the existence of hubs, modular structure, among others. 

Neuropsychiatric disorders are nowadays recognized as dysconnectivity syndromes, 

and graph theory has been applied to investigate the altered properties of structural 

and functional networks in disorders. Although brain network research in psychiatry 

has revolutionized the clinical view on the pathophysiology of psychiatric disorders, 

diagnostic and therapeutic markers are still confined to use in research 

environments. Except for the highly heterogeneous character of current psychiatric 

diagnosis, network metrics widely used are descriptive, oversimplifying the complex 

dynamics of brain function, thereby providing limited mechanistic insights, not to 

mention the clinical translations. 

Novel network models and machine learning methods have been adopted to promote 

current psychiatric research further and look for neurobiological biomarkers for 

psychiatric diagnosis and treatment. One promising network tool, generative network 

models, produces synthetic networks showing the same properties of empirical 

networks on the basis of different wiring rules, each representing a posited 

mechanism. The application of generative models to the Drosophila protein 

interaction network suggested that different mechanisms, such as duplication-

mutation-complementation and linear preferential attachment, were suitable for 

reproducing different sets of subgraphs (Middendorf, Ziv, and Wiggins 2005), 

validating the potentials to infer growth mechanisms with GNMs. While for large-scale 

brain networks in humans, generative models with two competing wiring rules could 

simulate a group of important topological properties of the human functional network 

(Vertes et al. 2012). On the one hand, the two competing constraints correspond to 

the economic trade-off of brain organization between minimizing wiring cost and 

allowing the emergence of valuable topological principles, which accompanies the 

evolution, growth and adapting to changing cognitive demands of brain networks 

(Bullmore and Sporns 2012). On the other hand, both model factors show some 

degree of face validity as biological mechanisms underlying brain network formation. 

Penalty on connectivity distance may be caused by that axonal growth cones detect 

the gradients of increasing concentration of guidance molecules towards the source 

(Song and Poo 2001), and that the concentration of the molecules decays 

exponentially as the square of the distance between growth cone and source 

(Goodhill 1997). The homophilic attachment is compatible with Hebb’s law that 

neuronal groups share common inputs from the same neighboring group are more 
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likely to be activated simultaneously and therefore to form direct connections 

between them. After applying the established generative model to the schizophrenia-

group functional connectome, Vertes found that the altered network topology could 

be simulated with detuned model parameters. Combining the same generative model 

and a lifespan dataset, Betzel found model parameters show progressive changes 

with age, suggesting a rebalancing of growth factors underlying the brain network 

formation across the lifespan (Betzel, Avena-Koenigsberger, Goñi, et al. 2016). With 

well-constructed generative models on the basis of biologically meaningful wiring 

rules, we can perturb the networks in targeted ways to investigate the 

neurodevelopmental alternations in disorder process, and also predict the 

pathological development, thus potentially informing interventions in psychiatric 

disorders in which wiring patterns have disrupted. 

Another novel network model, which is suitable for evaluating the dynamic system of 

the human brain, is network control theory. NCT mainly studies how the activity or 

input of a single node impacts the rest of the system over time through the white 

matter anatomical network. By applying NCT to neuroimaging data, recent studies 

have investigated the intrinsic control properties and also the neurodevelopmental 

changes: brain regions in the default mode system are ideally wired for the transitions 

into easy-to-reach “unchallenging” brain states while regions in the cognitive control 

system are ideally wired for hard-to-reach “demanding” states (Gu et al. 2017; Gu et 

al. 2015); human brains optimize controllability while sacrificing global 

synchronizability during development (Tang et al. 2017). In addition to general 

principles in healthy controls, NCT may also offer mechanistic explanations for the 

effect of neurostimulation treatments in psychiatric disorders and further provide 

models that can predict the impact of local perturbations delivered by 

neurostimulation. In one recent study, the NCT model predicts the brain states 

transitions induced by direct electrical stimulation, thus having the potential to 

optimize the stimulation to achieve a target brain state.     

4.2.2 Identifying disorders subtypes across diagnostic boundaries 

Current discrete definitions of psychiatry are on the basis of signs and symptoms, 

which hinders researchers from elucidating psychiatric disorders as biological 

entities: disorders share altered brain structure and function and cognitive 

dysfunction. Dimensional approaches, such as CCA and PLS, which link 

psychopathology to brain networks, can define more homogeneous subgroups that 
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show both distinct dimensions of psychopathological characteristics and brain 

features. By applying CCA to a neurodevelopmental cohort, Xia identified four 

dimensions of psychopathology across diagnostic boundaries: mood, psychosis, fear 

and externalizing behaviors, each related with specific patterns of functional 

connections (Xia et al. 2018). After identifying two components that correspond to 

specific combinations of functional connectivity features and clinical symptoms using 

CCA, the other study applied hierarchical clustering to the components and defined 

four subtypes of depression (Drysdale et al. 2017). More importantly, these subtypes 

could be diagnosed in individual patient and predict the response to TMS therapy, 

which offers vitally external validity and clinical utility. These novel approaches may 

help to solve the heterogeneity problem existing in the field of psychiatry: different 

causal mechanisms may link to the same disorder, and multiple symptoms can 

happen to one individual. The identified subgroups are beneficial for understanding 

the physiological and biological correlates of specific cognitive function and mental 

health, and may also help guide the treatment for typical subtypes of patients. 

4.2.3 Prediction of treatment response    

 There are different treatment options for psychiatric disorders, such as 

antipsychotics and neural stimulations. However, the side effects of the 

antipsychotics can lead to impaired patient compliance and drug discontinuation, 

thereby causing relapse. Therefore, reliable individual-prediction of treatment 

outcome will help doctors select the suitable treatment that optimizes the chance of 

recovery and minimizes adverse effects. Previous studies have found that both 

antipsychotics and stimulation can impact brain network features and that there have 

been several large-scale clinical trials that identify biomarkers that may predict the 

response to different interventions (Pizzagalli et al. 2018; Maller et al. 2018). The 

main analysis approach is linking the treatment performance to pre-therapy brain 

structure and function. The reason why these studies have not influenced clinical 

practice is lack of specificity, sensitivity, and generalizability. This is explained, at 

least in parts, by the abundant focus of analyses on group level (and not individual 

level) results and the lacking validation of findings in independent datasets. Then 

machine learning methods start to play a role in predicting individual-level treatment 

response, and some of these models can achieve an accuracy of 82% on individual 

level while separating responders from nonresponders (Hahn et al. 2015). Despite 

this, there are still parts of patients for which information on optimal treatment is 
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lacking to date. Before individual-prediction of response to treatment can be applied 

to clinical practice, there are still some issues that need to be considered, for 

example, the response to different treatment options, patients at different stages of 

the disease, and coming from different genetic, racial or socioeconomic backgrounds, 

and the stability of analysis process. 

Except for applying novel network models and machine learning methods to 

psychiatric research, we should also take the measurement reliability within individual 

samples into account, which will reduce the sample size required for target effect size 

(Zuo, Xu, and Milham 2019). Only when we narrow the gap between these emerging 

approaches and clinical application gradually with continued efforts, will the identified 

neurobiological biomarkers significantly improve the precision of diagnosis and 

personalized treatment.  

4.3 Application of generative network models in schizophrenia 

Schizophrenia is a complex neurodevelopmental and highly heritable disorder that 

manifests altered behavior, cognition, and social functioning, which may result from 

altered brain connections (van Os and Kapur 2009). Neuroimaging studies have 

found significant differences in the brain network architecture ranging from specific 

connections to topological measures in schizophrenia (van den Heuvel et al. 2010; 

Fornito et al. 2012). However, these studies focused on descriptive measures, which 

provided limited information for the altered formation of brain networks. Therefore, 

based on our review above that introduces novel network models and machine 

learning methods, we chose to apply the generative network model to investigate the 

potential mechanisms underlying the dysfunctional formation of structural brain 

networks in schizophrenia. 

We firstly constructed the structural brain networks in healthy controls, unaffected 

relatives of patients with schizophrenia and schizophrenia patients, and then 

simulated individual structural network with four classes of generative models 

representing different combinations of wiring rules. After that, we evaluated the 

fitness of different classes of models by comparing a set of topological metrics 

between observed and synthetic networks, thus selecting an optimal-fitting model. 

Then we compared the parameters of the optimal-fitting model between different 

diagnostic groups. At last, we also explored the association of network formation 

parameters, the polygenic risk for schizophrenia, and latent features of cognitive 

function. 



GENERAL DISCUSSION 
 

66 

We did not find any significant difference in the model fitness between groups, 

implying generative models could equally simulate both the normal and altered 

formation of structural brain networks. Among four tested classes of generative 

models, the optimal-fitting model consists of two competing factors: one favors short-

range connections; the other supports connections between nodes sharing similar 

connection patterns. This is consistent with the current theory for the formation of 

brain networks: the economic trade-off of brain network organization between 

minimizing wiring cost and favoring adaptively valuable topological properties 

(Bullmore and Sporns 2012). Through comparing the parameters of the optimal-fitting 

model, we found decreased distance penalty and lower topological facilitation in 

relatives and patients. Decreased distance penalty is consistent with a higher 

proportion of long-range connections in schizophrenia (Bassett et al. 2008), while 

lower topological facilitation corresponds to fewer hubs in schizophrenia (van den 

Heuvel et al. 2010), implying a biased trade-off between distance penalty and 

hemophilic attraction in the process of brain network formation. The difference in the 

model parameter between healthy controls and relatives suggests parameters of 

network formation as a potential neuroimaging intermediate phenotype signaling 

familial genetic risk. Apart from the influence of disease risk on model parameters, 

there was also a nominally significant and positive association of individual polygenic 

risk with the distance penalty parameter in healthy controls. The association may be 

related to genes coding guidance molecules in the formation process of long-

distance connections, since these genes are also implicated in the pathophysiology 

of schizophrenia (Eastwood and Harrison 2008; Aoki-Suzuki et al. 2005). So I 

speculate that different gene expression of guidance molecule leads to less spatial 

constraints on brain network formation in schizophrenia, which need to be evaluated 

in larger datasets. In my second publication, my coworkers and myself reported a 

significantly negative correlation between distance parameter and cognitive 

performance, namely that a higher proportion of long-range connections was related 

to a better cognitive function. Long-distance connections could greatly decrease the 

path length of information transfer between remote brain regions, thus improving 

potentially the efficiency of information processes in brain networks (Buzsáki et al. 

2004). And the higher efficiency of brain networks is correlated with increased 

cognitive function (Giessing et al. 2013). Therefore, a higher proportion of long-range 

connections is related to both higher genetic risk for schizophrenia and higher 
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cognitive performance. While initially apparently counterintuitive, these observations 

may correspond to findings from cross-species comparisons of the brain 

connectome, which suggested that modifications of human brain connections, on the 

one hand, are beneficial for higher cognitive function, but on the other hand, may 

make human brains vulnerable to dysfunction (van den Heuvel et al. 2019).  

4.4 Limitations and Future directions 

The results reported in this dissertation bear several limitations worthwhile 

discussing. Firstly, even though the matching index model successfully simulated a 

set of importantly topological properties optimally among four tested classes of 

generative models, this does not implicate that the formation of observed and 

simulated synthetic networks is underpinned by the same biological mechanism. So 

my findings can only offer candidate mechanisms for the tested topology, but cannot 

conclusively prove a given candidate mechanism. Secondly, while generative models 

can provide information on the formation of the brain network, they do not explicitly 

simulate the neurodevelopmental processes. 

Therefore, in the future, to identify the biological mechanisms underlying the 

formation of the brain network in more detail, the field should add biologically-

grounded factors into the generative models (Betzel and Bassett 2017). Once 

establishing those more biologically valid generative models, researchers could 

perturb, or manipulate networks (e.g., by brain stimulation methods or in drug 

challenges) to investigate the perturbation process of the connectome in healthy 

individuals and patients. What is more, building generative models for a longitudinal 

dataset could simulate the dynamic neurodevelopmental process and further provide 

insights into the dynamic process of disease. 
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5 SUMMARY 

Schizophrenia is a serious and chronic mental disorder, which brings not only 

suffering to patients, but also much burden to families and society. Current diagnosis 

is mainly based on criterion-based systems, including ICD and DSM, which describe 

various symptoms of schizophrenia, and antipsychotic drugs are only relatively 

effective for positive symptoms, but not for negative symptoms and cognitive 

dysfunction. Previous neuroimaging studies have not provided stable biomarkers for 

clinical practice. Part of the reason lies in the focus of analysis on group-level, static, 

and descriptive research approaches. 

To improve this situation, I firstly reviewed novel network models and machine 

learning methods that have the potentials to dig deeply into the mechanisms of 

disease, define psychopathological subgroups across current diagnostic boundaries, 

and predict individual response to treatment. Secondly, I chose and applied one 

promising network tool, generative model, to investigate the altered brain network in 

schizophrenia. Among the four classes of models, one two-factor model combining 

spatial constraints and topological facilitation could equally simulate the normal and 

altered formation of brain networks. By comparing the model parameters, relatives 

and schizophrenia showed lower spatial constraints and topological facilitation, which 

is consistent with the topological perturbation in disease. And spatial constraints in 

healthy controls may be linked to polygenic risk for schizophrenia and cognitive 

function. In sum, this thesis provides promising analysis approaches and application 

examples that may help elucidate the complex and dynamic neurodevelopmental 

process of mental disorders. The reported insights have been published in two peer-

reviewed first-author publications by the doctoral candidate.  
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