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Epigenetic reprogramming of macrophages in chronic diseases

Summary

Macrophages are innate immune cells and maintain a prominent role in host defense, tissue
homeostasis, and immune response. Diverse macrophage populations reside in most tissues,
and their immense plasticity, mediated through distinct gene-regulatory and epigenetic
mechanisms, allows macrophages to react to an altered microenvironment quickly. The
adaptation ofmacrophages occurs both in physiological and pathological conditions,making
them a key determinant of many inflammatory and non-inflammatory diseases. The clear
link between disease progression, epigenetic reprogramming, and functional adaptations
is frequently unknown. This doctoral thesis aims to comprehensively characterize the
epigenomes and coinciding transcriptional patterns ofmacrophages andmonocytes inmuco-
obstructive lung disease and breast cancer, two chronic diseases with a significant health
burden worldwide.

The first part of this doctoral thesis addresses the role of the mucostatic airway
microenvironment on epigenetic reprogramming of airway macrophages (AMs). Mucus
obstruction and chronic airway inflammation characterize many chronic lung diseases
such as cystic fibrosis and chronic obstructive pulmonary disease. Utilizing the Scnn1b-
transgenic mouse model of muco-obstruction, we determined epigenetically regulated
and differentially activated pathways and transcription factors involved in inflammatory
responses and macrophage polarization. Enhanced activation of AMs in muco-obstructive
lungs was validated via single-cell surface marker expression. Ex vivo stimulation of AMs
from healthy lungs with mucus per se induced gene expression changes, reminiscent of
those observed in AMs frommuco-obstructed lungs. Furthermore, Scnn1b-transgenic AMs
showed functional impairment in efferocytosis and phagocytosis capacities. In addition,
excessive inflammatory responses upon lipopolysaccharide stimulation, mediated through
epigenetic priming by enhanced activity and expression of Irf1, were revealed.

Collectively, these results depict that mucostasis induces epigenetic reprogramming of
AMs, leading to phenotypic and functional changes favoring tissue damage and disease
progression. Targeting epigenetically altered AMs may support therapeutic approaches in
patients with muco-obstructive lung disease.

The secondpart of this doctoral thesis examines the epigenetic reprogramming of tumor-
associatedmacrophages (TAMs) by breast cancer. The development of breast cancer induces
the accumulation of TAMs within the tumor microenvironment, which acquire a distinct
phenotype and tumor-promoting functions. Yet, the epigenetic mechanism underlying the
differentiation of TAMs from bone marrow-derived monocytes remains largely unknown.
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Using the 4T1 orthotopic mouse model, we showed that the presence of breast cancer
significantly altered the DNA methylation landscape of macrophages and monocytes.
The cancer-specific methylome of TAMs was dissected in DNA methylation patterns
originating from bone marrow-derived monocytes, as well as TAM-specific alterations.
These modifications in the DNA methylation landscape coincided with a cancer-
specific transcriptome enriched in aggressive breast cancer subtypes and associated with
shorter cancer-specific survival. Utilizing a single-cell gene expression atlas of the tumor
microenvironment,we linkeddisease-specific signals to the cancer-specificDNAmethylation
landscape of TAMs. Collectively, these analyses highlighted the role of TGF-β, IFN-γ,
and CSF1 in the reprogramming of TAMs, mediated by the transcription factors FOSL2,
RUNX3, and STAT1. Furthermore, using a reference-free deconvolution approach, we
identified aTAM-specificDNAmethylation signature associatedwith high tumor grade and
immunosuppressive functions, such as the induction of Cd274, encoding for the immune
inhibitory receptor-ligand PD-L1.

Together, these results provide evidence that the epigenetic landscape of macrophages
and monocytes is perturbed by breast cancer, reflecting molecular mechanisms of TAM
reprogramming and patient outcomes.

In summary, the epigenetic characterization of macrophages from different chronic
diseases provides novel insights into the role ofDNAmethylation and chromatin accessibility
in macrophage activation and reprogramming by an altered microenvironment. The results
depict that the presence of a muco-obstructive airway or tumor microenvironment has
a substantial impact on the epigenome of the respective tissue-resident macrophages and
further affects their transcriptional landscapes as well as essential macrophage functions.
Furthermore, the data allow the identification of prognostic and diagnosticmarkers and pave
the development of macrophage-targeted therapies.
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Epigenetische Umprogrammierung vonMakrophagen in
chronischen Erkrankungen

Zusammenfassung

Makrophagen sind angeborene Immunzellen und spielen eine zentrale Rolle bei der Gewe-
behomöostase, Wirtsabwehr und Immunantwort. Diverse Makrophagenpopulationen be-
finden sich in den unterschiedlichsten Geweben und ihre enorme Plastizität, die durch ver-
schiedene genregulatorische und epigenetische Mechanismen ermöglicht werden, erlaubt es
Makrophagen, schnell auf eine veränderte Mikroumgebung zu reagieren. Die Anpassung
vonMakrophagen erfolgt sowohl unter physiologischen sowie unter pathologischen Beding-
ungen, was sie zu einer wesentlichen Komponente vieler inflammatorischer und nicht-
inflammatorischer Erkrankungenmacht. Der direkte Zusammenhang zwischen Krankheits-
progression, epigenetischer Umprogrammierung und funktionellen Anpassungen ist häufig
unbekannt. Ziel dieser Doktorarbeit ist es, die Epigenome und die damit einhergehenden
Transkriptionsmuster vonMakrophagen undMonozyten bei mukoobstruktiver Lungener-
krankung und Brustkrebs, zwei chronischen Erkrankungen mit einer signifikanten Gesund-
heitsbelastung weltweit, umfassend zu charakterisieren.

Der erste Teil dieser Doktorarbeit befasst sich mit dem Einfluss der mukostatischen Mi-
kroumgebung der Atemwege auf die epigenetische Umprogrammierung von Atemwegs-
makrophagen (AM). Mukusobstruktion und Atemwegsentzündung charakterisieren viele
chronische Lungenerkrankungen wie Mukoviszidose und chronisch-obstruktive Lungen-
erkrankung (COPD). Unter Verwendung des Scnn1b-transgenen Mausmodells der Mu-
koobstruktion haben wir epigenetisch regulierte und differentiell aktivierte Signalwege und
Transkriptionsfaktoren bestimmt, die an einer Entzündungsantwort und Makrophagen-
polarisation beteiligt sind. Die verstärkte Aktivierung von AM in mukoobstruktiven Lun-
gen wurde über die Expression von Einzelzell-Oberflächenmarkern validiert. Die Ex-vivo-
Stimulation von AM aus gesunden Lungen mit nativemMukus induzierte Genexpressions-
veränderungen, die an jene erinnert, die in AM aus mukoobstruktiven Lungen beobachtet
wurden. Darüber hinaus zeigten Scnn1b-transgene AM eine funktionelle Beeinträchtigung
der Efferozytose- undPhagozytosekapazitäten.Außerdemwurden exzessive Entzündungsre-
aktionen nach Lipopolysaccharid-Stimulation festgestellt, die durch epigenetisches Priming
in Form einer erhöhten Aktivität und Expression von Irf1 vermittelt wurden.

Zusammengenommen zeigen diese Ergebnisse, das Mukostase eine epigenetische Um-
programmierung von AM induziert, die zu phänotypischen und funktionellen Veränderun-
gen beiträgt und somit Gewebeschäden und Krankheitsprogression begünstigt. Die gezielte
Behandlung epigenetisch veränderter AM könnte therapeutische Ansätze bei Patienten mit
mukoobstruktiver Lungenerkrankung ermöglichen.
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Der zweite Teil dieser Doktorarbeit untersucht die epigenetische Umprogrammierung
von Tumor-assoziierten Makrophagen (TAM) durch Brustkrebs. Die Entwicklung des
Mammakarzinoms induziert innerhalb der Tumormikroumgebung die Akkumulation von
TAM, welche einen ausgeprägten Phänotyp und tumorfördernde Funktionen akquirieren.
Der epigenetischeMechanismus, welcher der Differenzierung von TAMs aus Knochenmark
stammendenMonozyten zugrunde liegt, ist jedoch noch weitgehend unbekannt.

Mit Hilfe des orthotopen 4T1-Brustkrebs-Mausmodells konnten wir zeigen, dass die
Anwesenheit von Mammakarzinomen die DNA-Methylierungslandschaft von Makropha-
gen und Monozyten maßgeblich veränderte. Das krebsspezifische Methylom von TAM
wurde in unterschiedliche DNA-Methylierungsmuster aufgeschlüsselt, die ihren monozy-
tären Ursprung, sowie TAM-spezifischen Veränderungen reflektieren. Diese Modifikation
der DNA-Methylierungslandschaft ging mit einem krebsspezifischen Transkriptom einher,
das in aggressiven Brustkrebs-Subtypen angereichert und mit einem verkürzten Patienten-
überleben assoziiert war. Unter Verwendung eines Einzelzell-Genexpressionsatlas der Tu-
mormikroumgebung konnten wir krankheitsspezifische Signale mit der krebsspezifischen
DNA-Methylierungslandschaft von TAMs in Verbindung bringen. Zusammengenommen
verdeutlichtendieseAnalysendieRolle vonTGF-β, IFN-γundCSF1 inderUmprogrammie-
rung vonTAMs, vermittelt durch dieTranskriptionsfaktoren FOSL2, RUNX3und STAT1.
Darüber hinaus identifizierten wir mit Hilfe eines referenzfreien Dekonvolutionsansatzes ei-
ne TAM-spezifische DNA-Methylierungssignatur, die mit einem erhöhten Tumorgrad und
mit immunsuppressiven Funktionen, wie der Induktion von Cd274, das für den immun-
inhibitorischen Rezeptor-Liganden PD-L1 kodiert, assoziiert war. Zusammengefasst liefern
diese Ergebnisse den Beweis, dass die epigenetische Landschaft von Makrophagen und Mo-
nozyten durch Brustkrebs perturbiert wird, was wiederum die molekularen Mechanismen
der TAM-Umprogrammierung und Patientenverläufe widerspiegelt.

Gemeinsam betrachtet liefert die epigenetische Charakterisierung von Makrophagen
aus verschiedenen chronischen Erkrankungen neue Einblicke in die Rolle der DNA-
Methylierung und Chromatinzugänglichkeit bei der Makrophagenaktivierung und -
umprogrammierung durch eine veränderteMikroumgebung.Die Ergebnisse zeigen, dass das
Vorliegen einer muko-obstruktiven Atemwegs- oder Tumormikroumgebung einen wesent-
lichen Effekt auf das Epigenom der jeweiligen Makrophagen hat und darüber hinaus deren
Transkriptionslandschaft sowie essentielle Funktionen beeinflusst. Zusätzlich ermöglichen
die Daten die Identifizierung von prognostischen und diagnostischen Markern und ebnen
denWeg für die Entwicklung von auf Makrophagen ausgerichteten Therapien.
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1
Introduction

Macrophages are a heterogeneous population of innate immune cells residing inmost tissues.
They are involved in developmental processes, tissue homeostasis, host defenses, as well as
the promotion or resolution of immune responses with potential consequences on tissue
damage or repair64. Plasticity is a key hallmark of the monocyte to macrophage lineage
and enables them to quickly adapt to a changing microenvironment. Responses to various
signals are mediated through distinct gene-regulatory and epigenetic mechanisms, providing
macrophage-specific phenotypes and functions177,223,293. Adaptation ofmacrophages occurs
both in physiological and pathological conditions, making them a crucial determinant in the
initiation and progression of both inflammatory and non-inflammatory diseases177,223,293.
Yet, a clear link between disease progression, epigenetic reprogramming, and functional
adaptations of macrophages has not been established for many pathologies.

The present thesis aimed to comprehensively characterize the epigenome and
transcription dynamics of macrophages and monocytes, exemplified in two chronic
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diseases with a worldwide health burden. We investigated how epigenetic mechanisms affect
the phenotype and function of airway macrophages in muco-obstructive lung diseases
as well as tumor-associated macrophages and bone marrow-derived monocytes in breast
cancer. Accordingly, the introduction covers the topics epigenetics (section 1.1), ontogeny
and functions of macrophages (section 1.2), muco-obstructive lung disease (section 1.3),
and tumor-associated macrophages in breast cancer (section 1.4).
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1.1 Epigenetics

1.1.1 Epigenetic layers

The termepigenotype has beenperceivedbyWaddington in 1942,whodescribed amolecular
mechanism“bywhich the genes of the genotype bring about phenotypic effects”316. Thereby
Waddington attempted to explain the developmental processes, linking the genotype to
observable traits, known as the phenotype. In the 1970s and 1980s, the heritable aspect
of epigenetics was introduced by Holiday based on various studies focusing on cellular
memory144. The conceptwas further revised byWu andMorris, whounderstood epigenetics
as mitotically and meiotically heritable changes in gene function that do not involve
alterations in the DNA sequence327. Nowadays, the term epigenetics can be defined as “the
study of phenomena and mechanisms that cause chromosome-bound, heritable changes to
gene expression that are not dependent on changes to DNA sequence”69.

Epigenetic changes affect many cellular and physiological traits that may result
from environmental factors or be part of normal developmental processes. Although
the genome sequence is mostly static, the dynamic epigenome allows stem cells to
differentiate into many distinct cell types with diverse phenotypes and functions8. Besides
the development, additional factors, such as age, environment, and disease, can influence
gene expression by various epigenetic mechanisms227. Specific processes with a prominent
role of epigenetics include cellular differentiation, genomic imprinting, X chromosome
inactivation, carcinogenesis, DNA repair, and drug resistance, among many other examples.

Based on the advent and rapid improvement of next-generation sequencing methods,
various non-genetic factors contributing to cellular functions, traits, and phenotypes have
been identified and characterized as the epigenome. Multiple layers constitute the epi-
genome, including DNA modifications, post-translational histone modifications, histone
variants, nucleosome position and occupancy, RNA modifications, non-coding RNAs,
and the three-dimensional chromatin conformation. These epigenetic layers can facilitate
the interaction of transcription factors (TFs) at cis-regulatory elements and regulate gene
expression (Fig. 1.1).

Modifications at the single nucleotide level include the covalent binding of a methyl
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group at the carbon 5 (C5) position of cytosines (5-methylcytosine, 5-mC), further referred
to asDNAmethylation285. The role and functionofDNAmethylation as an epigeneticmark
and gene-regulatory modification is discussed in detail in section 1.1.2.

Many post-translational histone modifications have been identified at the single
nucleosome level, including methylation, acetylation, and phosphorylation of histone tails.
Together with histone variants, histone modifications regulate DNA binding around the
nucleosome core and influence the chromatin structure and accessibility. Additionally,
histone variants and modifications allow the recruitment of the transcriptional machinery,
including TFs285. They can be profiled by chromatin immunoprecipitation followed by
sequencing (ChIPseq) as well as a variety of novel next-generation sequencingmethods, such
as CUT&RUN278, which are based on similar principles.

At the chromatin level, nucleosome positioning affects the chromatin accessibility,
which in turn regulates the transcription of genes at cis-regulatory elements. Cis-regulatory
elements include gene-regulatory regions such as promoters and enhancers that play a central
role during development and differentiation as well as disease initiation and progression.
Chromatin accessibility can be profiled by the assay for transposase-accessible chromatin
sequencing (ATACseq)40. Furthermore, techniques such as micrococcal nuclease digestion
with deep sequencing (MNaseSeq) have been used since 2008 to profile nucleosome
occupancy267. A detailed introduction to the chromatin architecture and accessibility can
be found in section 1.1.3.

The three-dimensional organization of chromatin constitutes a pivotal role in gene
regulation. Promoter-enhancer interactions andmore global mechanisms such as chromatin
compaction can control gene expression andmajor cellular functions.The chromatin’s three-
dimensional structure can be profiled with chromosome conformation capture assays, such
as 3C71. The recently developed high-throughput variant Hi-C has enabled the examination
of chromatin organization at the high spatial level and aided the discovery of topological
associating domains (TADs) of self-interacting chromatin184.

At the transcript level, a prominent roleof non-coding RNAs has been described in gene
regulation147. Types of non-coding RNAs include transfer RNAs (tRNAs) and ribosomal
RNAs (rRNAs), as well as a variety of sparser long and short non-coding RNAs (ncRNAs).
Both the presence of the ncRNA itself as well as a large number of RNAmodifications can
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interfere with gene expression on transcriptional and post-transcriptional levels. According
to the epigenome, the entirety of RNAmodifications, which affect gene expression, has been
named the epitranscriptome322.

Epigenomic profiling has been the key to discover associations between DNA and
chromatin features with genomic functions. These investigations shed light on molecular
processes that have a crucial impact on cellular processes of any kind. That way, epigenetics
facilitated the identification of phenotypic markers in diagnostics and prognostics and
will drive the discovery of novel treatment options for chronic pathologies such as muco-
obstructive lung diseases and cancer24.

1.1.2 DNAmethylation

Arguably the most studied epigenetic layer is DNA methylation. It was discovered by
Hotchkiss in 1948149 and proposed as a putative epigenetic mark with a role in gene
regulation by Holliday, Pugh, and Riggs in 1975145. DNA methylation describes a DNA
molecule’s covalent and reversible modification with a methyl group81. It occurs mainly on
cytosines in the context of cytosine-phosphate-guanine dinucleotides (CpG) and ismediated
via so-called DNA methyltransferases (DNMTs)224. While passive demethylation describes
the gradual loss of DNAmethylation during cell division, active demethylation requires the
enzymatic machinery of ten-eleven translocation (TET) family proteins152. The interplay
between these different active and passive methylating and demethylating forces eventually
determines the DNAmethylation landscape of a cell, also called the methylome.

In somatic cells, the methylome follows a bimodal distribution. Around 80% of the
28 million CpGs in the human genome and 21 million CpGs in the murine genome
are methylated279. CpG-dense regions can be found in so-called CpG islands (CGis) that
frequently overlap with active transcriptional start sites and remain mainly resistant to
methylation. On average, CGis show DNA methylation levels of 10%, and cis-regulatory
elements, such as enhancers, depictmethylation levels ranging from10% to 50%191,282.Under
homeostasis, about 15% to 21% of all CpGs dynamically change methylation in the context
of development281,349. On the contrary, pronounced aberrations of the DNA methylation
landscape can be found in chronic malignancies, such as cancer254.
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Early studies of the epigenome showed a correlation between DNA methylation and
gene silencing. Correspondingly, DNA methylation has been linked to X-chromosome
inactivation, genetic imprinting, and gene silencing23,181,210. Although DNA methylation
is widely recognized as a repressive epigenetic mark, the relationship between DNA
methylation and gene expression is undoubtedly more complex than initially proposed. For
instance, CpGs in gene bodies of transcribed genes are usuallymethylated, and someTFs can
bind methylated DNA and induce transcription334.

To understand these biological processes, DNA methylation profiling technologies are
necessary.Over the past decades, amultitude ofmethodologies has beendeveloped, including
DNAmethylation assays based onmethylation-sensitive restriction enzymes (e.g.,MREseq),
5-mC-specific antibodies (e.g., MeDIPseq), or bisulfite conversion-based techniques (e.g.,
Infinium MethylationEPIC Bead Chip and whole-genome bisulfite sequencing (WGBS))
that enable genome-wide DNA methylation profiling at single CpG resolution336.
Nowadays, WGBS is accepted as the gold standard for DNA methylation profiling, but
classical WGBS requires large amounts of DNA (>1 µg). This has been drastically reduced
with the introduction of tagmentation-based methods, such as tagmentation-based WGBS
(tWGBS) (requiring∼20 ng of genomic DNA)319 or post-bisulfite adaptor tagging (PBAT)
WGBS that allows the generation of DNAmethylation profiles of single cells54

1.1.3 Chromatin architecture and accessibility

To efficiently pack the genome, DNA is wrapped around histones, the building blocks of
eukaryotic nucleosomes. These nucleosomes are the major component of chromatin that
dynamically adapts its structure throughout cell cycle stages. Each nucleosome consists
of two DNA turns, spanning 145-147 base pairs (bps), and the histone octamer, mainly
composed of two copies of the core histone proteins H2A, H2B, H3, and H4133,189. These
core histoneproteins canbe replacedwithnon-canonical variants296 or bemodified at various
histone tail positions343. Post-translational histone modifications include methylation,
phosphorylation, acetylation, ubiquitylation, and sumoylation and affect their biochemical
properties302. Thereby, they affect diverse biological processes such as transcriptional
activation and inactivation, chromosome packaging, as well as DNA damage and repair.
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Awell-studied example of histone modifications is the histone tails’ acetylation on lysine
residues. Histone acetylation can directly affect the chromatin architecture by weakening
the DNA binding to the histone core207. The process of histone acetylation is mediated
via histone acetylases, enzymes belonging to the group of epigenetic writers. Together
with readers and editors, these enzymes establish and modify the histone code207. Post-
translational histone modifications frequently correlate with chromatin accessibility and
reflect certain functionalities of genomic regions related to gene expression regulation207.
In addition to the recruitment of TFs to chromatin, active remodeling, for example, via
the SWI/SNF complex, can alter nucleosome occupancy or completely evict nucleosomes
from the chromatin53. Initial changes in chromatin accessibility are frequently caused by
the binding of so-called pioneer TF factors that can recruit additional TFs to stabilize a
nucleosome-depleted region342. Since active cis-regulatoryDNAelements, such as promoters
and enhancers, are generally accessible, profiling the chromatin accessibility can be used to
identify gene-regulatory regions involved in cell type identity or disease development226,275.

Many methods have been developed to profile chromatin accessibility, such as the
genome-wide profiling technique ATAC that relies on the enzymatic cleavage of accessible
chromatin and DNA transposition followed by sequencing207. This approach, combined
with additional profiling methods, can lead to accurate gene expression models concerning
enhancer-promoter interaction, TF binding, and other gene regulatory functions.
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1.2 Ontogeny and functions of macrophages

1.2.1 Ontogeny of macrophages and its implication in inflammation and disease

Macrophages, first discovered by Metchnikoff in the late 1800s, are tissue-resident innate
immune cells and contribute tohomeostasis anddisease283. They are found inmostmetazoan
and are characterized by their ability to ingest dying cells, noxious particles, and pathogens,
such as microbes and viruses. Furthermore, they are involved in regulating tissue growth
and homeostasis as well as host protection64. Therefore, substantial work has gone into
discovering their origins (summarized in Fig. 1.2) and functions in tissues at homeostasis,
inflammation, and in sterile inflammatory conditions, such as cancer or atherosclerosis330.

Tissue-resident macrophages were previously thought to be derived entirely from
the adult hematopoietic system, with stem cells in the bone marrow differentiating to
monocytic precursors in the blood. However, this hypothesis has been abandoned due
to the development of genetic mouse and lineage tracing models. These experiments
demonstrated that tissue-resident macrophages at steady-state do not require input from
the blood but rather originate from early embryonic precursors and maintain their
populations through proliferation87,115,118,141,159,263,268,298. However, certain populations of
tissue-resident macrophages require to be replenished via monocytes, e.g., macrophages in
the dermis, intestine, mammary gland, and a subpopulation of the heart require bloodborne
precursors to preserve their pool11,87,103,155,297,348. Simultaneously, tissues such as the lung,
brain, and liver maintain their populations independently from adult monocytes at steady-
state87.

Macrophages originate from multiple sources during embryonic development225. In
mice, primitive hematopoiesis begins in the yolk sac with the emergence of early erythro-
myeloid progenitors (EMPs)140. The second, transient hematopoietic wave, is defined by late
EMPs and lymphomyeloid progenitors from the yolk sac, traveling to the fetal liver and giving
rise to fetal livermonocytes99,185,228. The third and final wave of hematopoiesis starts with the
emergence of hematopoietic stemcells from the para-aortic splanchnopleura.Hematopoietic
stem cells seed the fetal liver before migrating to the spleen and bone marrow162,263.
All other lineages of the hematopoietic system arise from the bone marrow, including
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Figure 1.2: Macrophage lineages and TAM origin.Macrophages originate from at least three different embryonic sources:
(i) EMPs in the yolk sac and (ii) fetal liver, which give rise to fetal liver monocytes, as well as (iii) macrophage/dendritic
cell progenitor cells from the bone marrow. According to their origin, macrophage precursors differentiate into tissue‐
resident macrophages that populate almost all tissues.Most tissue‐resident macrophagesmaintain themselves at a steady‐
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macrophages, but in most cancers, monocytes are the primary origin of TAMs. In response to tumor growth, monocytes
undergo a distinct differentiation to TAMs. Figure adapted from Cassetta and Pollard, 201847.
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macrophage/dendritic cell progenitor cells that differentiate into classical monocytes. Thus,
lineage tracing has indicated that tissue-resident macrophages originate from three different
embryonic sources, according to their origin: (i) EMP in the yolk sac and (ii) fetal liver, and
(iii) macrophage/dendritic cell progenitor cells in the bone marrow176,235.

The diversity of tissue-residentmacrophages ismediated through unique gene regulatory
mechanisms and distinct epigenomic landscapes177,268. The latter also provides a means for
their plasticity and allows for crosstalk between the tissue niche’s microenvironment and
tissue-specific macrophage functions. This has been comprehensively shown by Lavin et al.,
2014, who defined the vast enhancer landscape of tissue-resident macrophages associated
with unique gene expression profiles177. The prominent role of the microenvironment in
the epigenetic landscape and macrophages’ high plasticity has been further investigated
by transplanting bone marrow precursors and terminally differentiated macrophages into
a different microenvironment. The new tissue niche was sufficient to completely reshape
their expression profiles177. These results indicate the possibility of specific tissue-resident
macrophage populations to serve as a therapeutic source of macrophages and the potential
of macrophage deregulation by an altered microenvironment in chronic diseases223,293.

Besides macrophage heterogeneity, the dominant receptor of almost all macrophage
differentiation and survival processes is the colony-stimulating factor 1 (CSF1) receptor
(CSF1R)48. Genetic deletion or pharmaceutical inhibition leads to the dramatic depletion
of almost all macrophages in mice, except in the lung, in which macrophages are regulated
via CSF2. However, additional tissue-specific cytokines and growth factors are dictated by
the microenvironment to maintain macrophages’ local identity223.

Even though many tissues do not rely on monocyte input at steady-state, monocytes are
significant contributors to themyeloid cell pool during inflammation134. This is possible due
to the variety of monocytes’ chemokine receptors, making them susceptible to signals from
damaged or infected tissues. Amongst others, the following scenarios have been observed
in which monocyte recruitment to macrophage compartments occurs, even in tissues that
generally maintain their macrophage pool independently: Atherosclerosis256,294, spinal cord
and skeletal muscle injury6,274, regression of fibrosis209,249, and allergic skin85. Furthermore,
following macrophage depletion (e.g., influenza infection of the lung), the proliferation of
tissue-resident macrophages is observed to repopulate the niche134. Whether age plays a
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relevant role in the expansion of tissue-resident macrophages or recruitment of monocytes
remains to be examined in detail134.

In addition to infectious diseases, tumor growth poses a unique challenge to the
host, as it is both sterile yet pathogenic. In most solid tumors, macrophages are the
predominantmyeloid cell population66,246. Tumor-associatedmacrophages (TAMs) ofmost
cancer entities were found to have a monocytic origin in experiments using transplanted
fluorescently labeled bone marrow68,67. However, this was revisited upon recent findings
that tissue-resident macrophages have a dual source. Together, two possible routes of TAM
development in a given tissue have been suggested: (i) Tissue-resident macrophages of
monocytic or embryonic origin change their phenotype during carcinogenesis and become
TAMs. (ii) Recruited monocytes that undergo a distinct differentiation step become TAMs
in response to tumor initiation and growths. The majority of findings related to TAMs
have been made in mouse tumor models of the breast or lung103,66,246, where major TAM
populations are thought to be monocyte-derived103. For instance, a breast cancer mouse
model demonstrated that the monocyte to TAM differentiation requires Notch signaling
through the TF RBPJ103. This represented the first study to show a distinct differentiation
pathway of TAMs compared to recruited tissue-resident macrophages. However, its role
in other mouse models and different tumor types remains unknown101,102. Other studies
identified ß-catenin–mediated transcriptional activation of FOS-like antigen 2 (FOSL2) and
repression of the AT-rich interaction domain 5A (ARID5A) to drive reprogramming of
TAMs from a tumor-suppressing into a tumor-supporting phenotype264.

The distinct differentiation trajectories of macrophages explain why meaningful TAM-
expression signatures used i.a. as prognostic biomarkers have only been generated comparing
TAMs with healthy tissue-resident counterparts46,308. Comparison with macrophages or
monocytes derived from other tissues such as the spleen or bone marrow captures
developmental aspects of monocyte to macrophage differentiation instead of the disease-
specific alterations of interest 308. These findings emphasize macrophages’ plasticity and
show that the global transcriptome is mainly defined by tissue-specific signals that can be
further disturbed by tumor development or other alterations in the microenvironment.
In addition, these results highlight the importance of a proper experimental system when
investigating TAM functions and reprogramming.
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Yet, the exact mechanisms by which macrophages andmonocytes evolve into TAMs and
further support tumor development remain largely unknown. In particular, the underlying
epigenetic modifications involved in TAM reprogramming have not been addressed by the
current literature yet.

1.2.2 Functions and models of macrophage activation

In steady-state, macrophages perform a variety of functions to maintain tissue homeostasis.
These functions include the removal of apoptotic cells, a process called efferocytosis,
regulation of angiogenesis, as well as extracellular matrix, and tissue remodeling138,242,329.
Moreover, macrophages can execute specialized functions depending on their tissue,
such as recycling heme by red pulp macrophages in the spleen167 and postnatal synapse
remodeling of microglia in the brain229,265. Distinct phenotypes and functions of
macrophages further suggest the importance of microenvironmental signals in macrophage
programming109,121,177.

However, one of the most prominent functions of macrophages is their role as
gatekeepers in defending the host against infections and injury. Therefore, macrophages
participate in defense responses, surveying most organs for a sign of infection. The
recognition of pathogen-associated molecular patterns via pattern-recognition receptors,
including Toll-like receptors (TLRs) involved in detecting lipopolysaccharide (LPS), is the
basis to mount antimicrobial effector functions. This includes the uptake of microbes, in a
process called phagocytosis, the release of effector molecules, and the recruitment of other
innate and adaptive immune players to mount a full immune response229,265. Furthermore,
the detection of danger-associatedmolecular patterns released by apoptotic and necrotic cells
can trigger macrophage responses and cause sterile inflammation119.

The process by whichmacrophages adopt functional programs in response to a cytokine
milieu of a particular microenvironment is named macrophage polarization213. Although
not unique among immune cells, a simplified classification of macrophage phenotypes,
derived from in vitro experiments, has divided them into two groups215: classically (M1)
and alternatively (M2) activatedmacrophages (Fig. 1.3.a). M1macrophages are polarized by
LPS exposure, similarly to macrophages that arise in response to Interferon-gamma (IFN-γ)
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Figure 1.3: Models of macrophage activation. (a) Model of discrete macrophage activation. Simplified macrophage
classification in classically (M1) and alternatively (M2) activated macrophages. Different chemicals or cytokines can
stimulatemacrophage polarization in vitro. (b) Continuous spectrummodel ofmacrophage activation, inwhichmacrophage
programming and functions are recognized as multidimensional and dynamic, which can’t be simplified into a bipolar
scheme. Represents different phenotypes of macrophages identified in vivo. Figure adapted from Guilliams and van de
Laar, 2015 125.
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production during Th1 responses (Type I). Accordingly, certain functions such as pathogen
killing and antigen presentation have been assigned to M1 macrophages. On the contrary,
M2macrophages respond to cytokines characteristic of Th2 responses (Type II), such as IL-
4 and IL-13.M2macrophages fulfill anti-inflammatory functions such aswoundhealing and
tissue remodeling120.

However, while significant to the extreme in vitro settings or during acute inflammation,
the strict bimodalmacrophage polarizationmodel is not transferable to the complex immune
responses observed in vivo213. Recent efforts to further characterize the heterogeneity of
macrophage’s activation states gave rise to a spectrum model (Fig. 1.3.b), which includes
bacterial-killing, wound healing, antigen presentation, and many more functional modules
of macrophages125,331. Distinct macrophage functions are not necessarily mutually exclusive
and can co-occurwithin the same population. Furthermore, recent in vivo studies of primary
TAMs have shown that the original classification of pro-tumoral M2 and anti-tumoral M1
TAMs are not observed when comparing TAMs from breast cancer patients to appropriate
healthy references46.

15



1.3 Muco-obstructive lung disease

1.3.1 Causes and consequences of mucociliary dysfunction and airway muco-
obstruction

A spectrum of chronic lung diseases, sharing the fundamental hallmarks of mucus
obstruction and chronic airway inflammation, can be classified as muco-obstructive lung
disease. Among them are rare mono-genetic conditions like cystic fibrosis (CF) and primary
ciliary dyskinesia, as well as common complex lung diseases such as chronic obstructive
pulmonary disease (COPD), non–cystic fibrosis bronchiectasis, and asthma35,347,92. Clinical
features of muco-obstructive lung disease include cough, sputum overproduction, episodic
exacerbations, alveolar destruction (emphysema), and inflammation of the bronchial tubes
(chronic bronchitis, also known as bronchiolitis)157.

In healthy persons, the mucus layer lining the surface of the airways is well-hydrated
and allows rapid mucus transport from distal airways towards the trachea. This transport is
possible due to a balanced ion transport: Cl- secretion via the cystic fibrosis transmembrane
conductance regulator (CFTR) and Na+ absorption via the epithelial sodium channel
(ENaC), allowing a balanced water transport by airway epithelia143. Furthermore, airway
surface-hydration is monitored by cilial mechanosensing of mucus concentrations. This
results in a mucus layer consisting of 2% solids and 98% water in healthy airways137,161 (Fig.
1.4.a).

In contrast, in muco-obstructive lung diseases, abnormal epithelial fluid absorption
causes depletion of the airways surface liquid, increasedmucus concentrations, and enhanced
osmotic pressure in the mucus layer35. In pathological conditions, mucus concentrations
of around 8% solids are sufficient to cause muco-obstructive lung disease137,161. However,
already moderately hyper-concentrated mucus (>2%) is associated with compressed cilia and
reduced mucus transport in vivo. Severe hyper concentration causes complete flattening of
cilia and eventually mucostasis and adhesion. Static mucus can be expectorated by coughing
as a backup mechanism. However, mucus in small airways accumulates and causes airflow
obstruction, favoring infection and inflammation42,179 (Fig. 1.4.b).

In healthy conditions, airwaymucus comprises approximately 98%water, 0.9% salt, 0.8%
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Figure 1.4: Muco‐obstructive lung disease. (a) In the healthy lung, a well‐balanced epithelial sodium (Na+) absorption
via ENAC, as well as secretion of chloride (Cl‐) via CFTR, leads to a hydrated airway surface. This enables mucociliary
clearance of inhaled particles and pathogens. (b) In patients with muco‐obstructive lung disease, an imbalanced ion
transport (impaired Cl‐ secretion and increased Na+ absorption) combined with mucin hypersecretion leads to hyper‐
concentrated and dehydrated mucus. Eventually, this causes impairment of mucociliary clearance and accumulation of
mucus, which precipitates infection and inflammation (e.g., activated AMs).
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globular proteins, and 0.3% high-molecular-weight mucin polymers257. Its hydration status
can be determined as the ratio between wet to dry mucus content or by measuring mucin
concentration137,161. MUC5B and MUC5A are the two major synthesized and secreted
respiratory mucins and form a mesh-like gel with many concentration-dependent features
affecting mucociliary transport93. Mucin concentrations are raised in muco-obstructive
lung diseases and correlate with disease pathogenesis. Although MUC5AC and MUC5B
concentrations are elevated, MUC5B is the dominant mucin by concentration (10:1 over
MUC5AC) in normal human lower and diseased airways. Mucus hyper concentration can
be further enhanced by mucin hypersecretion, for example, caused by cigarette smoke35,161.

Although muco-obstructive lung diseases are very heterogenous, a unifying aspect is an
early manifestation of the disease in the small airways (bronchioles). Airways are defended
against infections via mechanical clearance of mucus and pathogens, as well as the release of
antimicrobial proteins and peptides secreted by the airway epithelium and immune cells218.
In animal models, reduced mucus clearance and eventual formation of mucus plaques
within airway lumens can induce the full spectrum of muco-obstructive lung diseases,
including airflow obstruction and inflammation. Thus, plug formation is often associated
with bacterial or viral infections, further enhancingmucin secretion.However, recent studies
of experimental mouse models indicate that mucus per se can trigger key symptoms of
muco-obstructive lung diseases, such as chronic airway inflammation and emphysema-like
structural lung damage, even in the absence of bacterial infection106,164,187,197,259.

Further unifying features of muco-obstructive lung diseases are exacerbations.
Exacerbations are defined as a change in the patient’s perception of well-being associated
with seeking health care or an alteration in the patient’s medical regime. They substantially
impact the overall disease progression rate and severity, including the loss of lung functions93.
Recent findings indicate that the spread of muco-obstructive lung disease to previously
unaffected regions causes exacerbations78. A putative trigger for the spread of the disease are
bacteria or viruses aspirated from the upper airways into the lung rather than a change in
the overall microbiome composition. This concept is supported by a similar microbiome
detected before and during exacerbations60,309. Exacerbations must be treated sturdily to
prevent permanent lung function loss42,137.

The most extensively studied muco-obstructive lung disease is CF. The increased mucus
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concentrations and excessive mucus accumulation in CF patients’ lungs are due to an
autosomal recessive genetic disorder mediated via CFTR251. Nearly 1,700 CF-causing
mutations have been described63. In addition, a deregulated Na+ absorption by ENaC has
been reported in CF patients, indicating coregulation of the two ion channels25. CF affects
several body systems, but morbidity and mortality are mainly caused by bronchiectasis,
small airway obstruction, and progressive respiratory impairment. Mucus extracted from
CF patients at lung transplantation had solid concentrations ranging from 10-15%42,137,161.
Interestingly, enhanced mucin concentrations and inflammatory cell numbers preceded
bacterial infections in a pediatric CF cohort, emphasizing the inflammatory potential of
mucus per se90.

Perhaps the mildest example of mucin hyper concentration in the group of muco-
obstructive lung diseases is one of the most common respiratory diseases, COPD129,142,247.
COPD is the fourth leading cause of death worldwide, and patients manifest non-reversible,
long-term breathing problems and airflow obstruction247. Epidemiological data suggest that
cigarette smoke exposure correlates with mucin concentrations and is the primary cause of
COPD161. In addition, other environmental factors, such as air pollution, dust fumes, and
chemicals, as well as genetic predispositions, like α-1 antitrypsin deficiency, might influence
COPD risk15. Furthermore, previous studies showed that mucin hyper concentration was
associated with disease severity, increased airflow obstruction, and higher exacerbation rates.
The epithelial defects in the airways of COPD patients, causingmucus hyper concentration,
are complex and still an ongoing area of research. Cigarette smoke exposure may cause
abnormalities inCFTR-mediated secretion ofCl- and amplifies hypersecretion ofMUC5AC
andMUC5B44,55,142.

The most direct approach to treat muco-obstructive lung diseases is the rehydration
of mucus to reduce pathological concentrations. This is achieved by the inhalation of
osmotically active aerosols, such as hypertonic saline or mannitol. Inhalation agents are
shown to reduce the frequency of exacerbation and increasemucociliary clearance in patients
with CF4,79. Current clinical developments focus on direct modulators of ion transport that
might redirect Cl- absorption to secretion, leading to a restored airway-surface hydration92.
However, at the moment, the only disease-specific therapy available is Ivacaftor. This drug
potentiates residual CFTR function and is approved for CF patients with specific CFTR
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mutations250.
Although epigenetic regulation behind mucus hypersecretion and the consequences on

structural or inflammatory cells could offer an appealing therapeutic strategy for reversing
altered cellular functions in muco-obstructive lung diseases, it is largely unexplored. Existing
studies on CF, COPD, and asthma were frequently restricted to array-based approaches or
lacked cellular resolution. Thus, most studies have been performedwith samples from airway
epithelium, blood, or even whole lung41,50,193,212,280,291,337. To provide a comprehensive,
unbiased, and genome-wide epigenetic characterization, multi-omics profiling of isolated
lung cell types must be performed, and functional consequences need to be addressed in
detail.

1.3.2 Airway macrophages in muco-obstructive lung diseases

AMs are essential for lung homeostasis and host protection. They reside in the lumen of
the conducting airways and at the distal airspaces. Like most macrophage populations, AMs
have a high degree of plasticity, retaining adequate immune responses to invading pathogens
while preventing pro-inflammatory responses to cellular debris or inhaled particles. Previous
s´tudies have shown that inmuco-obstructive lungdiseases, AMsare activated, dysfunctional,
and often correlate with disease pathogenesis and severity43. Changes in AM functions
include impairments in efferocytosis and phagocytosis capacities, lysosomal killing, and
increased release of inflammatory mediators, causing impaired tissue homeostasis and
reduced barrier functions14,104,180,306.

In COPD, enrichment of pigmented macrophages was identified around small airways
and was associated with peribronchiolar fibrosis98. A key hallmark of COPD is emphysema,
which is caused by infiltrating immune cells with a prominent role of macrophages and
neutrophils. Their recruitment ismost likely due to released cytokines from injured epithelial
cells70,73. Infiltratingmacrophages and neutrophils are the central effector cells, contributing
to emphysema by releasing proteolytic enzymes like neutrophil and macrophage elastases94.
Matrix metallopeptidase 12 (MMP12) is the key contributor to lung destruction in smoke-
induced airway inflammation andmuco-obstructivemousemodels135,306.Moreover, a recent
single-cell transcriptome study of a small cohort ofCOPDpatients confirmed transcriptional
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plasticity and macrophages’ heterogeneity in the alveolar space. It revealed signatures
associated with reduced cellular motility, altered lipid metabolism, and mitochondrial
dysfunction of macrophages in COPD16.

Like COPD, CF is associated with airway inflammation and an increased influx
of neutrophils and macrophages56. These innate immune cells are thought to release
proteases that damage the respiratory epithelium causing progressive structural lung damage.
Furthermore, impairment of essential macrophage functions, such as reduced recognition
of pathogens and decreased phagocytic capacity, can cause chronic airway infections in
patients with CF2,169,262. The unique role of CFTR dysfunction and the muco-obstructive
microenvironment on macrophage functions has not been addressed today.

As mentioned in section 1.2.2, recent work points to an epigenetic regulation in
the activation of macrophages with the lung microenvironment playing a central role in
shaping distinct transcriptional and epigenetic patterns109,113,121,177. This was demonstrated
by replacing tissue-resident lung macrophages with bone marrow-derived monocytes
(BMDMs)293. The transplanted BMDMs acquired a lung-specific gene expression profile
and functioned similarly to lung macrophages. Also, completely differentiated peritoneal
macrophages transferred into the lung upregulated AM-specific genes, demonstrating the
microenvironment’s ability to modify and reprogram macrophage identity independent of
developmental origins177.

1.3.3 Scnn1b-transgenic mouse model of airway muco-obstruction

Although muco-obstruction is a common hallmark of many chronic lung diseases, the
mechanism causing disease phenotype and pathogenesis has received little attention. To
gain in vivo knowledge of disease pathogenesis, mouse models can help to recapitulate
and understand known disease hallmarks. The creation of mouse models mimicking the
CF phenotype was already attempted in the early 90s by generating mouse strains with
mutations in the Cftr locus using homologous recombination257. These Cftr-/- mice, as well
as further attempts, exhibited defects in intestinal Cl- secretion, producing a severe CF-
like gastrointestinal phenotype. However, Cftr-/- mice did not develop muco-obstructive
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lung disease, and no airway mucus plugging, goblet cell metaplasia, or spontaneous airway
inflammation were observed323.

Absorption of airway surface liquid

Mucus dehydration

Mucociliary clearance dysfunction

Mucus obstruction

Scnn1bCCSP

β-Epithelial Na⁺ channel (βENaC) in Club cells

Figure 1.5: Scnn1b‐Tg mouse model of airway muco‐obstruction. Graphical representation of the mechanism causing
muco‐obstruction in the Scnn1b‐Tg mouse model. Overexpression of the Scnn1b‐Tg under a Club cell‐specific promoter
causes elevated βENaC expression in the airways. Increased Na+ uptake leads to heightened absorption of airway surface
liquid and mucus dehydration. Pathological mucus concentrations compress the periciliary layer and abolish mucociliary
clearance and eventually elicit muco‐obstructive disease hallmarks.

As an alternative approach, our collaborators Mall et al. generated a transgenic mouse
model (Fig. 1.5) with an airway-specific overexpression of the b-subunit (Scnn1b, sodium
channel epithelial 2 beta subunit) of EnaC to mimic CF ion transport pathophysiology
in the lung of affected patients (in addition to impaired CFTR function, airways of CF
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patients show an increased ENaC activity)195. The increased Na+ absorption in the airways
of Scnn1b-transgenic (Tg) mice resulted in the first animal model with spontaneous muco-
obstruction, mimicking a CF-like lung disease with airway mucus obstruction, goblet
cell metaplasia, mucus hypersecretion, chronic airway inflammation, reduced clearance
of bacterial pathogens, and high pulmonary mortality107,196,195,197. The studies of the
Scnn1b-Tg mouse phenotype provided a proof-of-concept that airway surface liquid
depletion, induced by increased Na+ absorption, causes mucociliary dysfunction, initiating
a CF/COPD-like lung disease and muco-obstruction in vivo.

23



1.4 Tumor-associated macrophages in breast cancer

1.4.1 Breast cancer

Breast cancer is the most frequent malignancy and the leading cause of mortality in women
worldwide. Most breast cancer patients are above the age of fifty, but younger women and
rarely men are diagnosed with breast cancer as well165,292.

Early stages of breast cancer, defined by cancer in the breast with or without
axillary lymph node spread, are curable in most cases (70-80%) due to improvements
in multimodal therapies. In contrast, advanced breast cancer, that metastasized to other
organs is not considered curable using current approaches. Control of symptoms and
survival prolongation are the main goals of treatment. Nowadays, breast cancer treatment
decisions, mainly consisting of locoregional and systemic therapy, are primarily influenced
by histological and molecular characteristics132.

Although all breast cancers arise in the terminal duct lobular units of the collecting
duct, breast cancer is considered a heterogeneous disease. Breast cancers are separated into
preinvasive and invasive lesions on a histological level, with ductal carcinoma and lobular
carcinoma being the most frequent subtypes. In 2000, Perou et al. reported an intrinsic
classification system consisting of gene expression patterns of 496 genes, enabling the
classification of breast cancer in four subtypes236: Luminal A and luminal B (expressing
the estrogen receptor (ER)), basal-like, and human epidermal growth factor receptor 2
(HER2)-enriched (without ER expression). Other studies have repeatedly identified these
subtypeswith varying genes included in the diagnostic signature150. The classification system
has evolved into a 50-gene classifier (PAM50) introducing the claudin-low subtype, largely
carved out of the basal-like group28. The PAM50 classifier contains hormone receptor and
proliferation-related genes, as well as genes with myoepithelial and basal features and a
significant prognostic and predictive value for breast cancer patients1,28,116,150.

Widely used in a clinical setting are the five surrogate intrinsic subtypes132: Luminal
A-like, luminal B-like HER2-, luminal B-like HER2+, HER2-enriched, and triple-negative
breast cancer (TNBC). Those subtypes are based on histology and immunohistochemistry
of essential proteins, such as ER, progesterone receptor (PR), HER2, and the proliferation
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marker Ki67. Tumors expressing ER or PR are called hormone receptor-positive breast
cancers and allow endocrine therapy to block tumor growth. In general, the five surrogate
intrinsic subtypes are clinically valuable and imply distinct treatment options61,270. Luminal
A-like tumors show low-risk features such as low grade, high ER and PR expression, and
low proliferation. In contrast, luminal B-like subtypes express ER and, to a lesser extent, PR,
show high grade and high proliferation risk. HER2-positive tumors show more frequently
intermediate or high histological grade features and have a low or absent expression of ER
and PR, as well as medium to high proliferation. No surrogate biomarker was identified for
the claudin-low intrinsic transcriptomic subtype associated with poor survival and increased
expression of an epithelial-to-mesenchymal gene signature. TNBC, not expressing ER, PR,
norHER2, aswell as non-luminal types, reveal aggressive features such as high grade andhigh
proliferation. Since TNBC does not respond to hormonal therapy, it is considered the most
aggressive and has a worse prognosis than other types of breast cancer190,270.

Before recent technological advances in DNA methylation profiling, epigenetic breast
cancer studies were restricted to a small number of genes27,76,88. For instance, the tumor
suppressor gene breast cancer gene 1 (BRCA1), involved in DNA repair mechanisms, is
associated with an increased risk of developing breast cancer as well as other cancer entities
and was shown to be regulated via DNA methylation151,170. Furthermore, these studies
demonstrated that the overall DNA methylation varies in different tumor subtypes and
between cancerous and stromal tissues. The progress of superior next-generation sequencing
technologies and improved bioinformatic analysis enabled genome-wide investigation of
DNA methylation patterns in breast cancer. In 2012, The Cancer Genome Atlas (TCGA)
network assayed the so far largest breast cancer DNAmethylation cohort, consisting of 802
breast tumors165. DNA methylation profiling on bulk tumor samples was performed by
Infinium DNA HM450 methylation arrays, in addition to copy number, gene expression,
exome-sequencing and microRNA profiling. Using ER-positive tumors from the TCGA
breast cancer cohort, an integrative analysis of DNA methylation and transcriptomic
landscapes was performed by Koboldt et al. in 2012165. They identified several epigenetic
hotspots functionally deregulated in ER-positive tumors as well as further epigenetic
alterations in luminal-B tumors. Integration of gene expression and DNA methylation by
Bell et al., 2019 revealed three TNBC sub-clusters with distinct prognoses22. Also, the role of
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DNAmethylation, alongwith copy number alterations in regulatingmicroRNAexpression,
has been shown in the TCGA breast cancer cohort9.

Overall, a multitude of breast cancer methylomes has been published. A shortcoming
of them has been listed above. The vast majority of these breast cancer DNA methylation
studies focused on promoter regions due to their established gene regulatory role. However,
more recent studies have progressed to gene bodymethylation95 and gene regulatory regions
such as enhancers96,139. An overall positive correlation between DNA methylation in the
gene body region and gene expression was observed. At cis-regulatory elements, such as
enhancers, decreased DNA methylation was associated with increased TF-binding and
enhanced transcription. Additionally, a study by Holm et al. included several normal cell
types instead of bulk tissues as healthy references and thereby identified seven breast cancer
clusters with distinct DNA methylation landscapes146. The dominant DNA methylation
patterns were shown to reflect the tissue of origin, in addition to specific DNAmethylation
patterns driving cancer-specific gene expression.

Further generation of whole-genome methylomes of breast cancers, as demonstrated
in the dissertation of R. Batra, who utilized the METABRIC breast cancer cohort, will
highlight the role of DNA methylation and intratumor heterogeneity in epithelial tumor
evolution18. In addition, complementary studies focusing on the epigenetic dissection of
individual cell types are essential to understand distinct mechanisms of reprogramming and
variations within the tumor microenvironment.

1.4.2 The role of tumor-associated macrophages in breast cancer

Though initially studied as a clonal disease, it is now widely accepted that tumors are
evolving ecosystems, consisting of tumor, stromal, and infiltrating immune cells, as well as
extracellular matrix components. It has been shown that genomically stable, non-cancerous
cells, including stromal and infiltrating immune cells, are recruited by the tumor andundergo
reprogramming to support tumor progression. Among the stromal cell types that have been
identified in the tumor microenvironment are endothelial cells, which compose the blood
and lymphatic circulatory system, pericytes, and cancer-associated fibroblasts (CAFs). The
immune cell types combine various innate and adaptive immune cells, including T-cells, B-
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cells, natural killer cells, dendritic cells, neutrophils, eosinophils, mast cells, and TAMs158

(Fig. 1.6.a).
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Figure 1.6: The tumor microenvironment and TAMs at a glance. (a) A simplified overview of the cellular components of the
tumor microenvironment. Tumors consist of cancer and stromal cells (e.g., CAFs and pericytes) as well as immune infiltrates
of the adaptive (e.g., T‐cells and B‐cells) and innate (e.g., TAMs, neutrophils, and eosinophils) immune system. (b) TAMs
can originate from tissue‐resident macrophages but primarily develop from recruited bone marrow‐derived monocytes.
TAMs drive tumor progression through various pro‐tumoral functions, including the support of metastasis, invasion, and
intravasation, resistance to therapy, stem cell maintenance, immune regulation, and angiogenesis.

In particular, in solid tumors, such as breast cancer, immune cells can constitute up to
50% of the entire tumor mass, with TAMs being the most frequent immune infiltrate47.
Initially, these infiltrating immune cells were thought to be part of the body’s immune
response to fight tumors, which is still proposed for tumor onset today. In these early stages,
the adaptive and innate immune systems react to proliferating tumor cells and can reduce
cancer incidence82. However, it is now widely accepted that upon tumor development, the
tumor microenvironment is reprogrammed to support tumor progression, while immune-
cell mediated cytotoxicity is being suppressed. Substantial clinical and experimental evidence
indicate that TAMs have a significant role in tumor progression and are often associatedwith
poor overall prognosis as well as resistance to therapy200.

As described in detail in section 1.2.1, TAMs primarily originate from BMDMs,
recruited through inflammatory signaling of tumor cells as well as other players within
the tumor microenvironment. As shown in mouse models of breast cancer, recruited
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BMDMs develop via a distinct differentiation step into TAMs (e.g., by RBPJ activity)
and facilitate tumor progression7,103,245. However, in glioblastoma and pancreatic ductal
adenocarcinoma, TAMs originate from EMPs developed in the embryonic stage’s yolk
sac36,51,305 (Fig. 1.6.b). Nevertheless, tumors promote TAM progenitors’ recruitment and
induce differentiation into tumor-associated phenotypes46,308. Chemoattractants with a
prominent role in monocyte recruitment include chemokines such as CCL2, CCL5, IL34,
VEGF, and CSF113,198,199, as well as components of the complement system34.

In addition to their role as chemotactic factors, these chemokines have been shown to
activate unique transcriptional programs involved in the functional skewing ofmacrophages
towards a pro-tumoral macrophage phenotype163. In particular, CSF1 has been described as
a potent monocyte attractant, macrophage survival factor, and activation signal, promoting
immunosuppressive TAMs244. In addition to signals originating from tumor cells (such
as CSF1 and tumor growth factor beta (TGF-β)), additional components of the tumor
microenvironment, such as T-cells74,233,277, and eosinophils (e.g., IL4 and IL13) (Kratochvill
et al. 2015), as well as stromal cells (e.g., IL1 and TGF-β) can secrete factors associated
with the skewing and subversion of macrophage functions168. An essential role of the
Th2 environment, including chemokines and growth factors such as IL4, CSF2, TGFB1,
and ARG1, has been shown to contribute to an immunosuppressive reprogramming of
TAMs74,117,287. Overall, distinct pathways of TAM reprogramming between different tumor
entities and subtypes have been described.

A diversity of TAMfunctions supporting tumor development, including the promotion
of angiogenesis, tissue invasion, intravasation, and metastasis, as well as the induction
of resistance to cancer therapy, stem cell maintenance, and immune regulation, have
been illustrated (Fig. 1.6.b). For example, the secretion of growth factors such as EGF
has been shown to directly stimulate cancer cells’ proliferation131. The secretion of
proteases by TAMs can cause the digestion of extracellular matrix components, promoting
tumor dissemination46. Production of reactive oxygen and nitrogen species can cause
genetic instability34, a hallmark of cancer, which further enables resistance to chemo-
and radiotherapy. Moreover, TAMs can promote an immunosuppressive phenotype
of regulatory T-cells. This is possible due to the production of immunosuppressive
chemokines, such as IL10 andTGF-β186,317, as well as through the presentation of inhibitory
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transmembrane proteins, such as PD-L1208,289,317

The contributionof genetic and epigenetic changes aswell as specificmolecular pathways
involved in the rewiring of cancer cells into their malignant state have been well studied.
Yet, we lack an overarching view of the alterations and molecular pathways orchestrating
macrophage function in tumors. So far, a prominent role has been assigned to several
TFs, including STAT, NF-κB, FOS, IRF, and TFs of the bHLH TF-family175,198. Among
the bHLH TF-family, the oncogene c-MYC has been shown to, directly and indirectly,
regulate pro-tumoral genes, such as VEGF,MMP9,HIF-1α, and TGF-β in TAMs234. Since
c-MYC is also involved in cancer cells’ proliferation, it represents a promising target for
tumor therapies202,204. Furthermore, a recent publication focusing on lung cancer showed
a prominent role of β-catenin–mediated transcriptional activation of FOSL2 and repression
of ARID5A in TAM reprogramming264.

Despite the accepted function of epigenetic regulation in macrophage development and
inflammation, its role in TAM reprogramming is not well understood. A comprehensive
appreciation of alterations in the DNA methylation landscape, and the functional
consequences of TAM reprogramming, are urgently needed to drive the development of
prognostic and diagnostic markers, as well as anti-cancer therapies reversing the tumor-
promoting functions of TAMs in breast cancer.
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2
Aims

Apart from their diverse functions in health, macrophages have a pivotal role in many
inflammatory and non-inflammatory diseases. Due to their immense plasticity, macrophages
can respond to various signals within their tissue niche. Understanding the epigenetic
and gene-regulatory mechanism of macrophage reprogramming in response to an altered
microenvironment may enable improved prognosis and treatment of patients with various
diseases. The present thesis aimed to comprehensively characterize the epigenome of
macrophages and monocytes in muco-obstructive lung disease and breast cancer, two
chronic diseases with a worldwide health burden. Additionally, we evaluated how these
epigenetic alterations and coinciding transcriptional programs influence macrophage-
specific phenotypes and functions.
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2.1 Investigating the epigenetic reprogramming of airway
macrophages in muco-obstructive lung disease

Many chronic lung diseases, such as CF and COPD, are characterized bymucus obstruction
and airway inflammation, although theirmechanistic link remains largely elusive35,92,347. The
first part of the present thesis focused on the role of themucostatic airwaymicroenvironment
on epigenetic reprogramming ofAMs and resulting transcriptomic and phenotypic changes.
Therefore, the Scnn1b-Tg mouse, sharing critical features with CF and COPD, such as
mucus plugging, emphysema-like structural lung damage, and chronic airway inflammation,
was utilized106,164,187,197,259 . The primary aims were:

1. Identify and characterize genome-wide alterations in the DNA methylation, chromatin
accessibility, and transcriptome landscape of AMs frommuco-obstructed and healthy mice.

2. Integrate epigenetic alterations with gene expression profiles to investigate models of
macrophage activation.

3. Examine heterogeneity of macrophage activation on the level of single-cell surface markers.

4. Investigate monocyte recruitment to the muco-obstructed lung.

5. Test the function of mucus per se as an immunomodulatory stimulus of AMs.

6. Investigate functional impairment of AMs from muco-obstructive lungs by testing their
efferocytosis and phagocytosis capacities.

7. Compare LPS responses on the level of chromatin accessibility, gene, and protein expression
in AMs from Scnn1b-Tg, Cftr-/-, and wild type (WT) mice.

The characterization and understanding of phenotypical and functional changes in AMs
regarding theunderlying epigenetic and transcriptomicmechanismswill support therapeutic
approaches in patients with muco-obstructive lung disease.
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2.2 Determining the cancer-specific DNAmethylation landscape of
tumor-associated macrophages and monocytes in breast cancer

In the tumor microenvironment of breast cancer, TAMs are the most frequent immune cell
infiltrates47. They can regulate primary tumor growth, vascularization, metastatic spread,
and tumor therapy47,200. It has been shown that TAMs provide these tumor-promoting
functions by a unique transcriptome and phenotype compared to healthy references, making
them an attractive target for novel therapeutic approaches46,264,308. However, the epigenetic
mechanisms involved in TAM reprogramming are not well studied and were the central
objective of the second part of this thesis. The 4T1 orthotopic breast cancer mouse model
was utilized to isolated macrophage and monocyte populations from the breast and bone
marrow. Specific aims included:

1. Identify and characterize genome-wide alterations in the DNA methylation and
transcriptome profiles of macrophages and monocytes in breast cancer.

2. Dissect the epigenetic reprogramming of TAMs into BMDM-derived and TAM-specific
changes.

3. Integrate epigenetic alterations with gene expression profiles to define DNA methylation-
dependent gene expression changes.

4. Identify and characterize cancer-specific transcriptional alterations anddefine transcriptional
immune signatures as prognostic and diagnostic markers for breast cancer patients.

5. Investigate cell-to-cell interactions within the tumormicroenvironment that drive epigenetic
reprogramming of TAMs.

6. Deconvolute DNAmethylation profiles and define a TAMDNAmethylation signature as a
prognostic and diagnostic marker for patient stratification.

The resulting epigenetic and transcriptional blueprint of macrophages and monocytes in
breast cancer will significantly impact the understanding of TAM reprogramming and
indicate relevant signaling pathways, therapeutic approaches, as well as prognostic markers.
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3
Results

3.1 Epigenetic reprogramming of airway macrophages drives
polarization and inflammation in muco-obstructive lung
disease

3.1.1 Airway macrophages from mice with muco-obstructive lung disease are
epigenetically distinct

AMs exhibit a high level of plasticity, and recent studies indicate that the lung
microenvironment plays an essential role in shaping the epigenetic landscape of tissue-
resident AMs. In the present thesis, we investigated DNA methylation (tWGBS),
chromatin accessibility (ATACseq), and gene expression (RNA sequencing (RNAseq))
of AMs to improve our understanding of the function of the muco-obstructive airway
microenvironment on the epigenetic landscape of AMs and its role in the regulation of gene
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expression (Fig. 3.1.a).
AMs were isolated from Scnn1b-Tg and WT mice by fluorescence-activated cell sorting

(FACS) (Fig. 3.1.b). Sorted cells reached >95% purity as confirmed by back-sorting. No
differences between the total number of AMs from Scnn1b-Tg andWT lungs were observed
(Fig. 3.1.c). We further stained AMs from Scnn1b-Tg and WT mice with fluorescently
labeled antibodies against SCNN1B and the macrophage-specific receptor MerTK to show
that transgenic overexpression of Scnn1b, under the control of the club cell secretory protein
(CCSP) promoter, is not present in AMs. Fluorescence microscopy analysis confirmed the
absence of SCNN1B in Scnn1b-Tg andWTMerTK+ AMs. In comparison, culturedmurine
tracheal epithelial cells (mTEC), used as controls, showed a strong signal for SCNN1B (Fig.
3.1.d). Consequently, alterations in the epigenome and transcriptome of AMs from muco-
obstructive lungs can be attributed to an altered airway microenvironment of Scnn1b-Tg
mice.

tWGBS provided robust DNAmethylation profiles at single CpG resolution, as shown
by following quality control criteria. Amerged genome-wideCpGcoverage of at least 15x per
group, a coverage of >95% of all CpGs, and a bisulfite conversion rate, as determined by CH
(where H corresponds to adenine, thymine, or cytosine) methylation levels of chromosome
19, of >98%, were observed. As expected for homogenous cell populations, global DNA
methylation analysis revealed a similar bimodal β-value distribution in Scnn1b-Tg and WT
AMs (Fig. 3.1.e). No genome-wideDNAmethylation changes (average CpG β-value =0.73)
were observed, comparing both genotypes.

To define discrete alterations of DNA methylation, differential methylation analysis
between Scnn1b-Tg and WT AMs was performed and revealed 1,926 differentially
methylated regions (DMRs, Fig. 3.2.a). These DMRs were associated with 1,625 genes,
and the majority (1,404) showed hypomethylation in Scnn1b-Tg AMs. The comparison of
chromatin accessibility at identified ATACseq peaks revealed 390 differentially accessible
regions (DARs) associated with 312 genes (Fig. 3.2.d). The majority of them showed
increased accessibility in Scnn1b-Tg AMs (339 DARs). As expected, hierarchical clustering
of the identified epigenetic alterations segregated AMs according to their genotypes (Fig.
3.2.b and c), confirming Scnn1b-Tg specific modifications in the DNA methylation and
chromatin accessibility landscape.Regionoverlap and enrichment analysis ofDMRs revealed
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Figure 3.1: Purified AMs from muco‐obstructive mice do not overexpress Scnn1b‐Tg. (a) Graphical representation of the
experimental workflow to characterize the epigenome (tWGBS and ATACseq) and transcriptome (RNAseq) of Scnn1b‐Tg
and WT AMs. (b) Gating strategy for sorting of AMs from dissociated lungs. (c) Quantification of the total number of AMs
in the lung of Scnn1b‐Tg and WT mice. The data show mean ±SEM of n =8‐9 for each group. (b) Representative images
of SCNN1B and MerTK expression on AMs and mTECs by immunofluorescence microscopy (n =3). (e) Histogram of the
β‐value distribution and mean DNA methylation levels in Scnn1b‐Tg (n =3) and WT AMs (n =4).
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Figure 3.2: AMs frommicewithmuco‐obstructive lung disease are epigenetically distinct fromWTAMs. (a) Distribution of
DNA methylation differences in Scnn1b‐Tg (n =3) vs WT AMs (n =4) DMRs. DMRs are defined by at least three CpGs with
adjusted P value <0.05, width of >50 bps, and an average change of DNAmethylation >0.1. (b and e) Hierarchical clustering
based on (b) DMRs methylation and (e) DARs accessibility. (d) Volcano plot of the differential chromatin accessibility
analysis of Scnn1b‐Tg (n =4) vs WT AMs (n =3). DARs are defined by an adjusted P value <0.05 and absolute log2 fold
change >1. Red dots: DARs with increased accessibility in Scnn1b‐Tg AMs; blue dots: DARs with reduced accessibility in
Scnn1b‐Tg AMs. (c and f) Annotation and enrichment of (c) DMRs and (f) DARs to gene regulatory regions stratified in
hypo‐ and hypermethylated DMRs, and open and closed DARs, respectively. LOLA enrichment analysis: *, P value <0.05;
**, P value <0.01; ***, P value <0.001. (g) Integrated analysis of overlapping DARs and DMRs. P values were calculated by
Pearson correlation coefficient. The gray diagonal represents the linear regression. Shaded areas are the confidence interval
of the correlation coefficient at 95%. (h) Locus plots of selected DMRs and DARs showing average DNA methylation and
chromatin accessibility of Scnn1b‐Tg andWT AMs. Shaded areas indicate 95% confident intervals. The gray boxes indicate
CGis, enhancers, DMRs, and DARs (from top to bottom).
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hypomethylated DMRs enriched in promoters, promoter flanking regions, enhancers,
and CTCF-binding sites (Fig. 3.2.c). DARs depicted a similar pattern of enrichment in
enhancers and open chromatin regions (Fig. 3.2.f ), highlighting a potential gene-regulatory
role of the identified epigenetic alterations.

To elucidate the interconnection of decreased DNA methylation and open chromatin
and vice versa, an integrated analysis of DMRs and DARs was performed. 63 overlapping
regions were identified that showed a strong inverse correlation (Fig. 3.2.g; Pearson
correlation: R= -0.74; P value <0.001). These regions included coherently hypomethylated
loci with increased accessibility in Scnn1b-Tg AMs that were associated with 58 genes.
Amongst others, genes involved in cytokine signaling, such as Il1r1, Tank, and Smurf1,
were identified. Additionally, multi-omics integration depicted genes like Infgr2, Zfp704,
and Sec14l, previously associated with chronic lung diseases (Fig. 3.2.g and h)41,239,241.

To address the functional significance of the identified DMRs and DARs on TF
binding and their role in gene regulation, we characterized Scnn1b-Tg-specific alterations
in the epigenome for enrichment in TF binding motifs. Regions with decreased DNA
methylation and increased chromatin accessibility in Scnn1b-Tg AMs were enriched for
TF motifs with a known role in inflammatory responses and macrophage polarization.
For example, highly enriched motifs for the TFs C/EBP, IRF2, IRF3, and STAT6 were
identified in hypomethylated Scnn1b-Tg vs WT DMRs (Fig. 3.3.a) and motifs for the
inflammation-associatedTFs JUNB,FRA1,NFκB-p65 (RELA), aswell as theM2polarizing
TF ATF3 in DARs with increased accessibility in Scnn1b-Tg compared WT AMs (Fig.
3.3.b)37,80,97,126,272. Furthermore, we were interested in potential regulators of the observed
changes in chromatin accessibility. Upstream regulator analysis identified cytokines, such as
TGF-β, TNF-α, IFN-γ, IL-4, and bacterial-derived LPS, as activators in Scnn1b-Tg AMs.
These upstream regulators confirm the abovementioned TFs (Fig. 3.3.a and b) involved in
their signaling pathways201.
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Figure 3.3: Epigenetic alterations in Scnn1b‐Tg AMs are associated with inflammatory responses and macrophage
polarization. (a and b) Motif enrichment of (a) DMRs and (b) DARs (adjusted P value <0.05) stratified in hypo‐ (hypo)
and hypermethylated (hyper) DMRs and DARs with decreased (closed) and increased (open) accessibility in Scnn1b‐Tg vs
WT AMs, respectively. (c) Upstream regulator analysis of chromatin accessibility changes.

3.1.2 Epigenetic patterns of reduced DNA methylation and increased chromatin
accessibility coincide with transcriptional activation of Scnn1b-transgenic
airway macrophages

DNA methylation, chromatin accessibility, and TF binding are key regulators of gene
expression. To examine the effect of the identified epigenetic changes on the transcriptional
activity of AMs from muco-obstructive lungs, RNAseq of Scnn1b-Tg and WT AMs was
performed.

Unsupervised hierarchical clustering of the gene expression profiles segregated Scnn1b-
Tg and WT AMs (Fig. 3.4.a), suggesting an interconnection of gene expression,
DNA methylation, and chromatin accessibility in AMs. Overall, differential gene
expression analysis comparing Scnn1b-Tg with WT AMs, revealed 117 upregulated and 46
downregulated differentially expressed genes (DEGs) (Fig. 3.4.b). Loss ofDNAmethylation
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Figure 3.4: Epigenetic patterns of reduced DNA methylation and increased chromatin accessibility coincide with
transcriptional activation of Scnn1b‐Tg AMs.(a) Unsupervised hierarchical clustering of gene expression in Scnn1b‐Tg and
WT AMs (n =6). (b) Volcano plot of differential gene expression analysis. DEGs are defined by an adjusted P value <0.1,
absolute log2 fold change >0.5. Red dots: increased expression in Scnn1b‐Tg AMs; blue dots: reduced expression in
Scnn1b‐Tg AMs. (c) Integrated visualization of gene expression and promoter DNAmethylation changes. DNAmethylation
differences of promoter DMRs (<5kbs from transcriptional start sites) vs gene expression changes of the corresponding
DEGs (adjusted P value <0.1). P values were calculated by Pearson correlation coefficient. The gray diagonal represents
the linear regression. Shaded areas are the confidence interval of the correlation coefficient at 95%. (d) Integrated analysis
of chromatin accessibility and gene expression changes. Log2 fold change of DARs (adjusted P value <0.05) and DEGs
(adjusted P value <0.1). P values were calculated by Pearson correlation coefficient. The The gray diagonal represents the
linear regression. Shaded areas are the confidence interval of the correlation coefficient at 95%. (e) Locus plots of selected
DMRs and DARs showing average DNA methylation and chromatin accessibility of Scnn1b‐Tg andWT AMs. Shaded areas
indicate 95% confident intervals. The gray boxes indicate CGis, enhancers, DMRs, and DARs (top to bottom). Normalized
gene expression for the respective genes is plotted alongside the locus plots. P values were determined by differential
gene expression analysis with DESeq2.
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at promoterDMRswas associatedwith increased gene expression levels. In contrast, a gain of
DNAmethylationwas commonly associatedwith decreased transcription. An overall inverse
correlation (Pearson correlation: R =-0.45; P value <0.05) of promoter methylation and
gene expression was shown (Fig. 3.4.c). For chromatin accessibility, the reverse pattern was
observed. DARs with increased accessibility were associated with increased gene expression
and vice versa. An overall positive correlation (Pearson correlation: R =0.59; P value
<0.001) was shown for DARs annotated to the closest gene (Fig. 3.4.d). Interleukin 1 alpha
(Il1a) and insulin-like growth factor 1 (Igf1) were two prominent examples of promoter
hypomethylation with increased gene expression in Scnn1b-Tg AMs. Il1α is a cytokine
that has previously been shown to contribute to sterile inflammation and tissue damage in
children with CF12,31,106,211. Igf1 is a pleiotropic growth factor linked to lung formation,
tissue remodeling, and inflammation in a variety of lung diseases such asCF,COPD, asthma,
and acute lung injury (Fig. 3.4.c-e)321. Furthermore, genes associated with macrophage
polarization (Ccl17, Cxcr1, H2-Aa, H2-Ab1), inflammation (Ezr, CD74), and remodeling
(Ctsd) were identified by the integration of chromatin accessibility and gene expression (Fig.
3.4.d and e). Inmacrophages, Ezr (ezrin) is required for Toll-like receptor (TLR) 4-mediated
LPS signaling and bacterial host defense75. CathepsinD (Ctsd) is associatedwith emphysema
in smokemodels344, and theAM surfacemarkerCd74 contributes to neutrophil aggregation
in the airways295.

Notably, changes inDNAmethylationor chromatin accessibility didnot always correlate
with gene expression, showing the complex interaction of certain epigenetic marks and
transcription. DNA methylation does not always act as a repressive mark, and induction
of gene expression is not always guaranteed for genes associated with open cis-regulatory
regions. These results support the view that epigenetic patterns do not necessarily translate
into transcriptional regulation but rather facilitate the recruitment of additional factors that
can induce or repress gene expression.
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3.1.3 Airway macrophages from muco-obstructive lungs are activated and
proinflammatory

To assess the biological significance of the identified transcriptional changes, we performed
pathway and gene ontology enrichment analysis using the 163 Scnn1b-Tg vs WT DEGs.
This analysis revealed an overrepresentation of gene ontology terms associated with
migration (e.g., leukocyte migration and cell migration regulation), immune processes (e.g.,
chemokine signaling pathway, neutrophil degranulation, and cytokine production), and
tissue remodeling (Fig. 3.5.a) – all previously identified hallmarks of the Scnn1b-Tg mouse
model and muco-obstructive lung diseases106,197,306,347.

We further applied gene sets, relevant for lung diseases and cell physiology to
obtain a comprehensive impression of the complex biological pathways implicated in
AM alterations261. Gene set enrichment analysis (GSEA) showed the enhanced activation
of pathways associated with AM activation, plasticity, and adaptation to environmental
perturbations or disease pathogenesis (Fig. 3.5.b). Frequently, these pathways are
deregulated in chronic diseases, such as cancer341, atherosclerosis284, or rheumatoid
arthritis108. In detail, both M1 and M2 macrophage activation signatures were upregulated
in Scnn1b-Tg compared to WT AMs. Besides, gene sets derived from human expression
signatures of differentmuco-obstructive lung diseases, such as CF, COPD, and asthma, were
strongly enriched in the gene expression profile of Scnn1b-TgAMs.Differential expression of
M1- andM2-polarizationmarkers (e.g.,M1: Ptgir,Cd86; M2: Arg1,Mmp12,Ccl17,Cxcr1,
Ccl22, Trem2, Ptgs1) and genes implicated in muco-obstructive diseases were independently
verified by qPCR (Fig. 3.5.c). Similar to the upstream regulator analysis of chromatin
accessibility, activators involved in the induction of both type I (LPS, TNF, IFN-γ) and type
II immunity (IL-4) were identified as upstream regulators of Scnn1b-Tg vs WT AM gene
expression changes. Additionally, IFNAR, IKBKB, and IL-1β were identified as activators
of Scnn1b-Tg AMs (Fig. 3.5.d).

Together, these results suggest that the muco-obstructive microenvironment drives
epigenetic changes on both DNA methylation and chromatin accessibility level. Moreover,
a strong association between epigenetic changes and transcriptional activation of Scnn1b-Tg
AMs, affecting immune processes and tissue remodeling, was observed.
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Figure 3.5: Transcriptome of Scnn1b‐Tg AMs is enriched for proinflammatory pathways and macrophage polarization.
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Figure 3.5: Transcriptome of Scnn1b‐Tg AMs is enriched for proinflammatory pathways and macrophage polarization.
(a) Overrepresentation analysis of Scnn1b‐Tg vs WT AMs DEGs (adjusted P value <0.1, absolute log2 fold change >0.5)
with pathways and gene ontologies. (b) Barcode plots of significantly enriched gene sets in Scnn1b‐Tg AMs. Gene sets
relevant to lung diseases and cellular physiology are defined by Saini et al., 2014. NES: normalized enrichment score. (c)
qPCR validation of Arg1, Mmp12, Anpep, Ptgs1, Ccl22, Ccl17, Trem2, Cxcr1, Ptgir, Cd86, Igf1, and Ig2bp3 gene expression
changes. The data show log2 fold change ±SEM of n =17‐20 per group. Unpaired, two‐tailed Mann‐Whitney U test: *,
P value <0.05; **, P value <0.01; ***, P value <0.001. (d) Upstream regulator analysis of Scnn1b‐Tg vs WT AMs gene
expression changes.

Next, we validated the enhanced activation of AMs from muco-obstructive mice and
addressed the question of AM heterogeneity on a single-cell level. Therefore, we stained
cell type-specific markers (CD45.2, Siglec-F, CD11c, CD64, MerTK, and CD163), in
addition to macrophage activation markers (M1: CD11b, CD86, MHCII, CD68, and
CD38; M2: CD206, CD163, CD200R, CD209A, MGL2, and CLEC7A), and performed
high-dimensional flow cytometry of Scnn1b-Tg andWT lungs. Quantification of the surface
markers revealed an increased frequency of CD11b+ and MHCII+ AMs in Scnn1b-Tg
compared to WT lungs (Fig. 3.6.a and b). To further distinguish different populations of
the innate and adaptive immune response, uniformmanifold approximation and projection
(UMAP) was performed on gated leukocytes (Fig. 3.6.c). No cluster of cells unique for
Scnn1b-Tg or WT lungs was identified. However, differential surface marker expression
showed the downregulation of Siglec-F and upregulation of CLEC7a, CD11b, and CD68
on Scnn1b-Tg compared toWTAMs (Fig. 3.6.d).

To further assess AM heterogeneity, we divided Scnn1b-Tg andWTAMs into four sub-
clusters and investigated their surfacemarker expression (Fig. 3.6.e).Notably, all sub-clusters
were contributed by Scnn1b-Tg and WT AMs and represented by M1 and M2 activation
markers (Fig. 3.6.f ), indicating a mixed phenotype of AMs. An exclusive presentation of
MHCII was shown for cluster 4, and cluster 1 was represented by CD163 expressing AMs.
According to the overall increase of MHCII+ AMs in the lungs of Scnn1b-Tg mice, an
increased abundance of cluster4 AMs was observed in Scnn1b-Tg lungs (Fig. 3.6.g).

Collectively, these results confirm an increased activation of AMs in muco-obstructive
disease and show a mixed phenotype of AMs. They further support the idea that in
vivo macrophage phenotypes are multidimensional and cannot be categorized into binary
states201,331.
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Figure 3.6: Single‐cell analysis of macrophage surfacemarker expression validates enhanced activation of Scnn1b‐Tg AMs.
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Figure 3.6: Single‐cell analysis of macrophage surfacemarker expression validates enhanced activation of Scnn1b‐Tg AMs.
(a) Gating strategy to identify leukocytes and AMs from Scnn1b‐Tg and WT dissociated lungs. (b) Frequency of AMs with
indicated surface marker expression, defined by back gating. The data show mean ±SEM of n =10 per group. Unpaired,
two‐tailed Mann‐Whitney U test: *, P value <0.05; **, P value <0.01; ***, P value <0.001. (c) UMAP of 50,000 randomly
sampled Scnn1b‐Tg and WT leukocytes. (d) Differential surface marker expression of Scnn1b‐Tg vs WT AMs, defined by
cluster analysis. Red dots: surface markers for classical macrophage polarization (M1); blue dots: surface markers for
alternative macrophage polarization (M2). (e) UMAP of 50,000 randomly sampled Scnn1b‐Tg and WT AMs. (f) Scaled M1
and M2 surface marker expression of AM clusters. (g) Differential AM cluster abundance. P values were generated by
fitting a linear model. n =10 per group.

3.1.4 Monocytes do not contribute to the macrophage pool in muco-obstructive
lungs

Most tissue-resident macrophage populations, including AMs in the lung, are self-
renewing. They arise from fetal progenitors and require minimal input from monocytes
in homeostasis124,134. However, in response to inflammation and macrophage depletion,
monocytes can be recruited to the lung, where themicroenvironment eventually shapes them
into cells that closely resemble tissue-resident AMs173,335.

We applied a computational deconvolution method to evaluate if recruited monocytes
play a substantial role in muco-obstructive lung disease and constitute the AM pool.
Multi-Subject Single-Cell deconvolution (MuSiC) allows the characterization of cell type
compositions from bulk RNAseq data by utilizing cell type-specific gene expression from
single-cell RNAseq (scRNAseq) references320. First, we used macrophage and monocyte
populations from the single-cell atlas of the aging lung as a reference5. As observedby the flow
cytometry analysis in Fig. 3.1, deconvolution revealed a homogenous cell type composition
of above 99% AMs in all samples (Fig. 3.7.a). No differences between Scnn1b-Tg and WT
AMs were observed. To exclude potential biases in the cell type estimation by only using a
reference of homeostatic lungs, we further utilized a scRNAseq dataset that characterized
the inflammatory macrophage heterogeneity on a single-cell level214. Mould et al. collected
AMs during health, peak inflammation, and resolution of inflammation. In doing so, the
authors defined fetal-derived tissue-resident AMs (enriched in clusters 1 and 2) and bone
marrow-derived recruited AMs (enriched in clusters 3, 4, and 5). Deconvolution of our bulk
RNAseq data showed a homogenous composition of all our Scnn1b-Tg andWT samples of
cluster 1 tissue-resident AMs (Fig. 3.7.b).
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Finally, comparison of Scnn1b-Tg vs WT AMs gene expression changes with
transcriptional alterations of fetal-derived tissue-resident vs recruited bone-marrow-derived
AMs, generated in a bleomycin-induced lung fibrosis model209, showed no correlation
(Pearson correlation: R=0.03) and aneglectable overlapof differentially expressed genes (Fig.
3.7.c).

Figure 3.7: Monocytes do not replenish AMs in muco‐obstructive lungs. (a and b) Deconvolution of Scnn1b‐Tg and WT
AM bulk transcriptomes with (a) scRNAseq of macrophage and monocyte populations, selected from the single‐cell atlas
of the aging lung and (b) scRNAseq of AM clusters, identified in homeostatic and inflammatory mouse lungs, reflecting the
cellular origin of AMs. (c) Comparison of gene expression changes in Scnn1b‐Tg vsWTAMswith resident vs recruited AMs,
identified inMisharin et al., 2017. Red dots: significant upregulation in both datasets; blue dots: significant downregulation
in both datasets. P values were calculated by Pearson correlation coefficient. The gray diagonal represents the linear
regression. Shaded areas are the confidence interval of the correlation coefficient at 95%.

Overall, these results indicate that monocyte-derived AMs play an insignificant role in
the Scnn1b-Tg mouse model. In case monocyte recruitment to the muco-obstructive lung
has taken place at an earlier time point, the differences with fetal-derived tissue-resident AMs
are not detectable anymore and don’t contribute to the activated state of AMs in the muco-
obstructed lung.
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3.1.5 Mucus stimulates immune responses in airway macrophages

Various stimuli in the airway can potentially alter the phenotype of macrophages and cause
epigenetic and transcriptional changes110,113,121,177. We stimulated primary AMs from WT
mice with multiple concentrations and durations of native mucus to test its effect on mac-
rophage activation. Therefore, the expression of genes associated with AM plasticity (Ccl22,
Ccl17, Mmp12, and Arg1) and inflammation in chronic lung diseases (Il1a and Il1b) were
evaluated 6, 12, and 24 hours (hrs) post mucus stimulation. Concentrations ranging from
0.1-10% mucus were applied. All tested genes showed induction post mucus treatment,
similar to the changes detected in freshly sorted Scnn1b-Tg compared toWTAMs (Fig. 3.8).
Induction of Ccl17, Ccl22, and Il1b gene expression was transient, with a peak 6 hrs post
mucus treatment. For Il1a and Mmp12, we observed a sustained induction at most time
points. Further concentration-dependent induction for Mmp12 was shown. Arg1 was the
only gene that displayed a delayed induction with transcripts detectable 24 hrs post mucus
treatment.

These results show that mucus has the direct potential to activate AMs and induce gene
expression patterns involved in inflammation and macrophage polarization. Since mucus
concentrations are abnormally raised in many chronic lung diseases35, this finding has
possible implications for disease pathogenesis and treatment options.

3.1.6 Muco-obstructive lung disease impairs macrophage-specific functions

To prevent the release of danger-associated molecular patterns and secondary necrosis from
dying cells in chronically inflamed airways, clearance of apoptotic cells by a process called
efferocytosis is indispensable266. To study in vivo efferocytosis capacities of Scnn1b-Tg
and WT AMs, we performed intratracheal instillation of apoptotic cells labeled with a
pH-sensitive dye (pHRodo). Under acidic conditions, as found in the lysosome of AMs,
pHRodo emits fluorescence that can be measured via flow cytometry post isolation of
AMs via lavage. Analysis of pHRodo-positive AMs showed a reduction in the clearance
of apoptotic cells in Scnn1b-Tg compared to WT AMs, revealing reduced efferocytosis
capacities of AMs in muco-obstructive lung disease (Fig. 3.9.a).
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Figure 3.8: Mucus stimulates immune responses inWT AMs. (a‐f) Gene expression levels of (a) Ccl2, (b) Ccl17, (c)Mmp12,
(d) Arg1, (e) Il1a and (f) Il1b in WT AMs treated with incrasing mucus concentrations or medium (med) control for 6, 12
and 24 hrs, respectively. Gene expression levels were asessed via qPCR. The data show mean ± SEM of n =10 per group.
One‐way ANOVA with Tukey’s test: *, P value <0.05; **, P value <0.01; ***, P value <0.001 compared to medium.

Furthermore, muco-obstructive lung disease is characterized by bacterial airway
infections that can trigger acute exacerbations and heavily influence the overall rate of disease
progression, including patient survival271. To evaluate the role of AMs in muco-obstructive
lung diseases during bacterial infections, we assessed the phagocytic capacities ofAMs ex vivo,
using E. coli particles labeled with pHRodo. Flow cytometry showed reduced uptake of E.
coli particles in Scnn1b-Tg AMs than WT AMs, reflecting a phagocytosis impairment (Fig.
3.9.b).

To assess the role and response of AMs to bacterial stimulation, we treated primary
AMs from Scnn1b-Tg and WT mice ex vivo with bacteria-derived LPS for 6, 12, and 24
hrs. Baseline expression of the proinflammatory cytokines Il1b, Il6, Il12b, and Tnf was
not significantly changed in AMs from the different genotypes (Fig. 3.10.a; Nos2 was
undetectable, data not shown). LPS treatment preceded a robust inflammatory response of
Scnn1b-Tg andWTAMs onmRNAand protein levels. Comparable expression ofNos2, Il6,
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Figure 3.9: Scnn1b‐Tg AMs are impaired in efferocytosis and phagocytosis capacities. (a and b) Analysis of (a) efferocytosis
and (b) phagocytosis capacities of Scnn1b‐Tg and WT AMs. Representative flow cytometry plots (left panels) and the
proportion of pHRodo‐positive AMs (right panels) are shown. The data show mean ±SEM of (a) n =17‐19 and (b) n =7.
Unpaired, two‐tailed Mann‐Whitney U test: **, P value <0.01; ***, P value <0.001.

Il1b, and Il12b on mRNA (Fig. 3.10.b) and IL-6 and IL-23 on protein level (Fig. 3.10.c)
were detected 6 hrs post LPS treatment. mRNA levels forMmp12 and protein levels for IL-
1β and CCL2 were already significantly upregulated in Scnn1b-Tg AMs at 6 hrs. IL-1β and
IL-12 protein levels were below the detection limit.

Immune responses are tightly regulated and self-limiting to reduce excessive
inflammation and tissue damage in the affected organ216. Accordingly, a substantial
reduction in gene and protein expression was observed for most analyzed genes 12 hrs post
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Figure 3.10: The muco‐obstructive lung microenvironment in Scnn1b‐Tg mice induces prolonged and hyperinflammatory
immune responses in AMs.

50



Figure 3.10: The muco‐obstructive lung microenvironment in Scnn1b‐Tg mice induces prolonged and hyperinflammatory
immune responses in AMs. (a) Gene expression, assessed by qPCR, of Il1b, Il6, Il12b, and Tnf in AMs from primary
uncultured Scnn1b‐Tg and WT mice at baseline. P values were determined by unpaired, two‐tailed Mann‐Whitney U test.
(b) Gene expression of Nos2, Il6, Il1b, Il12b, and Mmp12 from Scnn1b‐Tg and WT AMs, Scnn1b‐Tg, and WT peritoneal
macrophages, as well as Cftr‐/‐, and Cftr+/+ AMs, at indicated time points post LPS treatment, assessed by qPCR. Gene
expression was normalized to medium‐teated samples. Unpaired, two‐tailed Mann‐Whitney U test: *, P value <0.05; **,
P value <0.01; ***, P value <0.001. ND, not detectable. (c) Protein expression of IL‐1α, IL‐6, IL‐23p40/p19, CCL2, and
CXCL1, at indicated time points, post‐medium and LPS treatment of Scnn1b‐Tg, Cftr‐/‐, and WT AMs. Protein levels were
assessed by cytokine bead array. One‐way ANOVAwith Tukey’s test: */#/$/+, P value <0.05; **/##/$$/++, P value <0.01;
***/###/$$$/++, P value <0.001. *, Scnn1b‐Tg LPS vs WT LPS; #, Scnn1b‐Tg medium vs Scnn1b‐Tg LPS; $, Cftr‐/‐ medium
vs Cftr‐/‐ LPS; +, WT medium vs WT LPS. The data show mean ±SEM of (a) n =17‐18, (b‐c) n =8‐10 for Scnn1b‐Tg and WT
AMs, n =4 for peritoneal macrophages, and n =6‐12 for Cftr‐/‐ AMs.

LPS treatment (Fig. 3.10.b). However, a considerable upregulation was still shown for all
measured genes (Nos2, Il6, Il1b, Il12b, andMmp12) and the majority of measured proteins
(IL-1β, IL-6, IL-23, and CCL2) in Scnn1b-Tg compared to WT AMs (Fig. 3.10.b and c).
Only the chemokine CXCL1 showed increased induction in WT AMs 12 hrs post LPS
treatment. Still, 24 hrs post LPS treatment, a prolonged and increased response of the genes
Il6, Nos2, Il12b, and Mmp12 and the proteins IL-1β, IL-6, and CCL2 were observed in
Scnn1b-Tg compared toWTAMs.

In contrast, macrophages obtained from the peritoneum of Scnn1b-Tg and WT mice
showed no differences in gene expression patterns post LPS treatment (Fig. 3.10.b),
highlighting a lung-specific macrophage phenotype induced by the muco-obstructive
microenvironment. To further validate the role of the airway microenvironment on AM
responses, we utilized mice deficient in the cystic fibrosis transmembrane conductance
regulator (Cftr-/-). Cftr-/- causes CF in humans but fails to produce a muco-obstructive lung
disease in knock-out mice123. Similar to macrophages from the peritoneum, no differences
in LPS responses between Cftr-/- andWTAMs were detected (Fig. 3.10.b and c). Together,
these results show the clear role of the local muco-obstructive microenvironment in shaping
proinflammatory and prolonged immune responses of AMs to LPS.

To get an in-depth understanding of the proinflammatory and prolonged immune
response of AMs from muco-obstructive lungs, paired RNAseq and ATACseq on LPS and
medium-treated AMs were performed. The 12 hrs time point was used to capture the most
pronounced alterations. Dimensionality reduction by principal component (PC) analysis
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(PCA)of thewhole transcriptome and chromatin accessibility landscape revealed segregation
of LPS from medium-treated cells in PC1, explaining 73% and 71% of the variability,
respectively (Fig. 3.11.a and b). Segregation of the mouse genotypes was shown in PC2,
explaining about 7% of the assays’ overall variability. As expected, overrepresentation analysis
of the top 100 genes explaining the variability found in PC1 depicted pathways and gene
ontologies involved in immune responses (e.g., response to LPS), immune activation, and
host defense (Fig. 3.11.c). Similar pathways and gene ontologies associated with immune
responses, such as interferon, cytokine, and anti-viral responses, were further enriched
in PC2. These results validate the hyperinflammatory immune responses of Scnn1b-Tg
compared to WT AMs, detected by qPCR and cytokine bead array, and indicate mediation
of this process via enhanced interferon signaling. Accordingly, inflammatory regulators, such
as LPS and the TFs NFκB, IFN-γ and STAT6, were predicted activators in the upstream
regulator analysis of gene expression changes comparing Scnn1b-Tg withWTAMs post LPS
treatment (Fig. 3.11.f ).

In total, 246DEGs (Fig. 3.11.d) and 897DARs (Fig. 3.11.e) were identified, indicating
transcriptional reprogramming and a rearrangement of the chromatin architecture in LPS-
treated AMs frommuco-obstructive lungs. Furthermore, DARs with increased accessibility
in Scnn1b-Tg AMs were strongly enriched for TF motifs regulating inflammatory responses
(e.g., IRF1, IRF2, IRF3, IRF8, NFY, and NFκB-p65; data not shown; detailed interference
of TF activity in Fig. 3.12.a).

To evaluate epigenetic differences of Scnn1b-Tg compared toWTAMs, in relationship to
differences in chromatin accessibility of regions responsive toLPS treatment, wedefinedLPS-
responsive DARs (Fig. 3.11.g) and compared their accessibility in Scnn1b-Tg andWTAMs
(Fig. 3.11.h). This revealed increased accessibility of LPS-responsive regions in LPS-treated
Scnn1b-Tg compared to LPS-treated WT AMs (Fig. 3.11.h; top panel). Notably, already
in primary uncultured Scnn1b-Tg AMs, a pattern of increased accessibility was depicted
in Scnn1b-Tg AMs (Fig. 3.11.h; bottom panel). These results indicate proinflammatory
epigenetic priming of AMs inmuco-obstructive lung disease, which emerges as an enhanced
immune response upon exposure to a pathophysiological relevant stimulus like LPS.

Gene expression is essentially determined by the activity of distinct TFs that can bind
alone or cooperatively to their respectivemotif at accessible chromatinwithin gene regulatory
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Figure 3.11: Genome‐wide profiling confirms hyperinflammatory responses and indicates epigenetic priming of Scnn1b‐Tg
AMs. (a and b) Unsupervised PCA of (a) RNAseq (n =3) and (b) ATACseq (n =3) data from Scnn1b‐Tg and WT AMs post
LPS treatment for 12 hrs. (c) Enrichment of pathways and gene ontologies of the top 100 genes explaining PC1 (left panel)
and PC2 (right panel) of RNAseq data. (d and e) Volcano plot visualizing the LPS response in Scnn1b‐Tg vs WT AMs on
(d) gene expression level (DEG: adjusted P value <0.05; log2 fold change >1; red dots: significantly upregulated genes in
Scnn1b‐Tg AMs; blue dots: significantly upregulated genes inWT AMs) and (d) chromatin accessibility level (DAR: adjusted
P value <0.05; absolute log2 fold change >2; red dots: increased accessibility in Scnn1b‐Tg AMs treated with LPS; blue
dots: increased accessibility in WT AMs treated with LPS). (f) Upstream regulator analysis of gene expression changes in
Scnn1b‐Tg vs WT AMs, treated for 12 hrs with LPS. (g) Volcano plot visualizing the treatment response (LPS vs medium)
of AMs on chromatin accessibility level. DAR: adjusted P value <0.05; absolute log2 fold change >2; red dots: increased
accessibility in LPS treated AMs; blue dots reduced accessibility in LPS treated AMs. (h) Profile plot of LPS responsive
DARs, visualized for LPS treated Scnn1b‐Tg and WT AMs (top panel) and primary uncultured Scnn1b‐Tg and WT AMs at
baseline (lower panel). P values were determined by student’s t‐test.
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regions. To study the role of specific TFs on the hyperinflammatory immune responses of
Scnn1b-Tg AMs, we performed multi-omics integration of the RNAseq and ATACseq data
fromLPS-treatedAMs. Prediction ofTF activitywas performedusing the software diffTF26.
A total of 80 differentially active TFs were identified, of which 60% showed increased activity
in Scnn1b-TgAMs (Fig. 3.12.a). Integration of gene expression data allows diffTF to classify
TFs in transcriptional repressors and activators. 38% and 45% of the differentially active
TFs were predicted as activators and repressors, respectively. For 17%, no definite status was
assigned (undetermined). The estimatedTF activity strongly correlated (Pearson correlation:
R =0.45, P value =3.1x10-5) with mean TF target gene expression changes, defined by the
respective TF binding motif’s presence within the promoter region (Fig. 3.12.b).

Next, we clustered highly significant TFs based on their position weight matrix,
which resulted in the grouping of TFs based on their TF-family, with an overall
consistent change of TF activity. TFs with increased or decreased activity in
Scnn1b-Tg AMs post LPS treatment clustered together. The cluster of TFs with the
most robust TF activity in Scnn1b-Tg AMs belonged to the interferon response factor (IRF)
family, including IRF1, IRF2, IRF3, IRF7, IRF8, and IRF9 (Fig. 3.12.c). In addition to
the enhanced TF activity, Irf1 was induced on gene expression level in LPS-treated samples
and further upregulated in LPS-treated Scnn1b-Tg AMs (P value <0.05; Fig. 3.12.d). These
results imply a significant role of IRF1 in orchestrating proinflammatory and prolonged
LPS responses in AMs frommuco-obstructive lung disease.

In addition to the LPS-treated samples, differential TF activity analysis was performed
on Scnn1b-Tg, and WT AMs cultured in medium for 12 hrs (Fig. 3.13.a). Overall, very
similar results were obtained. A comparison of TF-activity from both analyses revealed a
strong correlation (Pearson correlation: R =0.53, P value =2e-05) of the LPS- and medium-
treated comparisons (Fig. 3.13.b).

These results further support the hypothesis that AMs from muco-obstructive airways
are epigenetically primed for enhanced inflammatory responses.Whilemuch is known about
how LPS-mediated signaling activates the IRF TF-family240, little has been reported about
its function in macrophages of the muco-obstructive airway microenvironment. Here, we
show that the IRF TF family’s activity, particularly IRF1, is increased in Scnn1b-Tg AMs
and associated with increased expression of hyperinflammatory genes under inflammatory
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Figure 3.12: Multi‐omics integration reveals enhanced TF activity of IRF1 in Scnn1b‐Tg AMs post LPS treatment.

55



Figure 3.12: Multi‐omics integration reveals enhanced TF activity of IRF1 in Scnn1b‐Tg AMs post LPS treatment. (a)
Differential TF activity analysis of Scnn1b‐Tg vs WT AMs post 12 hrs of LPS treatment. TF activity and adjusted P values
are visualized. Size represents the number of TF binding sites (TFBS). Green labeled TFs are predicted activators, red
labeled TFs are predicted repressors, and black labeled TFs have no direction assigned. (b) Correlation of TF activity of
significantly enriched TFs (adjusted P value <0.001) in Scnn1b‐Tg vs WT AMs treated with LPS and mean target gene
expression change. The gray diagonal indicates the linear regression. (c) Clustering of significantly activated TFs (adjusted
P value <10e‐6) based on their position weight matrixes’ similarity. Coloring of tree leaves based on TF activity. Color of
labels defined by TF class. (d) Normalized Irf1 gene expression obtained by RNAseq (Scnn1b‐Tg LPS vs WT LPS) in treated
and untreated Scnn1b‐Tg andWT AMs. The data showmean ± SEM of n =3. P values were determined by differential gene
expression analysis with DESeq2.

Figure 3.13: Hyperinflammatory responses are primed in Scnn1b‐Tg AMs. (a) Differential TF activity analysis of medium
treated Scnn1b‐Tg vs WT AMs. TF activity and adjusted P values are visualized. Size represents the number of TFBS.
Green labeled TFs are predicted activators, red labeled TFs are predicted repressors, and black labeled TFs have no
direction assigned. (b) Incorporation of significantly enriched TFs (adjusted P value <0.05) of the LPS (Fig. 3.12) andmedium
comparison of Scnn1b‐Tg vs WT AMs. The gray diagonal indicates the linear regression.
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conditions. Future experimentswill show if IRF1 inhibition provides a therapeutic approach
for muco-obstructed patients suffering from bacterial exacerbations.

57



3.2 Cancer-specific DNA methylation landscape of macrophages
and monocytes in breast cancer

3.2.1 Epigenetic profiling of macrophages and monocytes in breast cancer reveals
cancer-specific DNAmethylation landscape

To investigate the role of DNA methylation in cancer-specific reprogramming of
macrophages, we isolated TAMs via FACS from primary BALB/c-derived 4T1 orthotopic
tumors four weeks post 4T1 tumor cells injection. As normal references, tissue-resident
mammary gland macrophages (MGs) were isolated from healthy mice. Previous studies in
genetically engineeredmousemodels have suggested amonocytic origin of TAMs7,245. It was
shown that monocyte recruitment from the bone marrow and further TAM differentiation
is triggered by tumor development and utilizes distinct differentiation pathways compared
to macrophage differentiation at a steady state103. Thus, we hypothesized that alterations in
the DNA methylation landscape are already present in BMDMs from tumor-bearing mice
(BMDM-T),whichwere consequently isolated via FACS aswell. BMDMs fromhealthymice
(BMDM-H) were used as respective controls (Fig. 3.14.a).

WGBS by the low-input protocol, PBAT232 yielded high bisulfite conversion rates
and CpG coverages (>99% Bisulfite conversion rate; >15x genome-wide CpG coverage
per replicate) with as little as 1000 cells/sample. Notably, analysis of global DNA
methylation levels revealed an overall DNA hypomethylation in TAMs compared to MGs
and BMDMs (Fig. 3.14.b). Differences in global DNAmethylation are frequently observed
in tumors but are uncommon for non-transformed cells89. However, whereas global
DNA hypomethylation in cancer cells is often accompanied by CGi hypermethylation, no
differences were observed for these regions between the investigated samples (Fig. 3.14.c).
Unsupervised PCA of the 200,000 most variable CpGs segregated all groups, with PC1
separatingmacrophages fromBMDMsandPC2 separatingTAMs fromMGsandBMDM-T
fromBMDM-H, indicating a uniqueDNAmethylation profile of each group (Fig. 3.14.d).

As explained in detail in section 1.2meaningful conclusions can only be generatedwhen
comparing TAMs with MGs, their healthy tissue-resident counterparts46,308. Therefore,
DMR calling between TAMs and MGs was performed to define coherent changes in DNA
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Figure 3.14: WGBS profiling of macrophages and monocytes in the 4T1 orthotopic breast cancer mouse model. (a)
Graphical representation of the experimental workflow. (b and c) Average (b) CpG and (c) CGis methylation per group.
For exploratory analysis, only CpGs with a coverage <5 in at least two samples were used. (b and c) Student’s T‐test. ns, P
value >0.05; **, P value <0.01; ***, P value <0.001, ns, P value >0.5. (d) PCA of the 200,000 most variable CpGs (WGBS)
in TAMs (n =2), MGs (n =3), BMDM‐T (n =4), and BMDM‐H (n =4) samples.

methylation. This confirmed the global DNAmethylation analysis and revealed pronounced
alterations in the DNA methylation landscape. 7,042 hypo- and 2,860 hypermethylated
TAM vs MG DMRs were identified (Fig. 3.15.a), enriched for gene regulatory regions
such as promoter and promoter-flanking regions (Fig. 3.15.b). To gain insights into
the potential role of these regions in regulating signaling pathways, we performed locus
overlap, and Molecular Signatures Database (MSigDB) hallmarks enrichment analysis (Fig.
3.15.c). MsigDB hallmarks are a collection of annotated gene sets, representing well-defined
biological states and processes288. Enrichment analysis showed a clear overrepresentation
of hypomethylated TAM vs MG DMRs, associated with inflammation (e.g., Il2/Stat5
signaling, Il6/JAK/Stat3 signaling, and IFN-γ response) and growth factor signaling (e.g.,
TGF-β signaling and TNF-α signaling via NFκB). These results were also reflected in the
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enrichment of TF binding motifs (Fig. 3.15.d and e). Inflammation-associated TF families
such as IRF (e.g., IRF8) and STAT (e.g., STAT1) were overrepresented in hypomethylated
TAM vs MG DMRs. Furthermore, TF families associated with developmental processes
(e.g., RUNT), macrophage polarization (e.g., STAT), and TGF-β signaling (e.g., bZIP)
were among the most significantly enriched TF-families. Notably, the TFs Runx3 (RUNT
TF-family), Stat1 (STAT TF-family), and FosL2 (bHLH TF-family) exhibited promoter-
flanking hypomethylation (Fig. 3.15.f and g), indicating a gene regulatory effect of
these DMRs on TF expression. Further prominent examples of DMRs with a potential
role in TAM reprogramming included the promoter-flanking hypomethylation of the
transmembrane receptors Tgfbr1 (Fig. 3.15.h) and Ifngr1.

In contrast to the pairwise comparison of TAMs vs MGs, we observed only minor
differences in the DNA methylation landscape of BMDM-T compared to BMDM-H. In
total, 179 hypo- and 79 hypermethylated DMRs were identified (Fig. 3.16.a). However,
enrichment of similar immune-related MSigDB hallmarks (e.g., Il6/JAK/STAT3 signaling,
IFN-α, and IFN-γ response) were shown within hypomethylated BMDM-T vs BMDM-H
DMRs (Fig. 3.16.b), indicating a BMDM trajectory towards the TAM DNA methylation
landscape. Correspondingly, the TF motif analysis revealed enrichment of STAT, RUNT,
and bZIP TF-families in hypomethylated BMDM-T vs BMDM-H DMRs (Fig. 3.16.c and
d).

Collectively, this WGBS data represent the first comprehensive characterization of the
DNAmethylation landscape in TAMs and BMDM-T of breast cancer and cancer in general.
Utilizing a recently developed low-inputDNAmethylationprofilingmethod,wewere able to
produce high-quality references of healthy tissue-residentMGs andBMDM-H.Comparison
of TAMs and MGs disclosed a cancer-specific DNA methylation landscape. It highlighted
known tumor microenvironment drivers, such as the TF FOSL2, previously reported in
the reprogramming of macrophages by lung cancer17,128. In addition, novel putative drivers
of the TAMs epigenome, like the TF RUNX3, were identified. The recognized TFs can
be further exploited to generate prognostic signatures and develop novel drugs, explicitly
targeting theseTFs. In addition, an early effect of breast cancer on the epigenomeof BMDMs
was shown, demonstrating a systemic impact of breast cancer progression and an early
reprogramming of TAM progenitors.
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Figure 3.15: Cancer‐specific DNA methylation landscape of TAMs in breast cancer.
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Figure 3.15: Cancer‐specific DNA methylation landscape of TAMs in breast cancer. (a) Distribution of DNA methylation
differences in TAM (n =2) vs MG (n =3) DMRs. DMRs are defined by at least three CpGs with an adjusted P value <0.05, a
width of >50 bp, and an average change of DNAmethylation >0.1. (b) Annotation and enrichment of TAM vsMGDMRs to
gene regulatory regions, stratified in hypo‐ and hypermethylated regions. (c) MSigDB hallmarks enrichment of TAM vsMG
DMRs stratified in hypo‐ and hypermethylated regions. (d and e) TF motif enrichment of TAM vs MG DMRs stratified in
hypo‐and hypermethylated regions. (d) TFmotifswere grouped by TF‐family. (f‐h) Locus plots of selectedDMRs, annotated
to the (f) Runx3, (g) Stat1, and (h) Tgfbr1 locus, showing average DNAmethylation of TAMs, MGs, BMDM‐T, and BMDM‐H.
The gray boxes indicate CGis (top) and TAM vs MG DMRs (bottom).

Figure 3.16: BMDMs in breast cancer reveal minor alterations in the DNAmethylation landscape. (a) Distribution of DNA
methylation differences in BMDM‐T (n =4) vs BMDM‐H (n =4) DMRs. DMRs are defined by at least three CpGs with
an adjusted P value <0.05, a width of >50 bp, and an average change of DNA methylation >0.1. (b) MSigDB hallmarks
enrichment of BMDM‐T vs BMDM‐HDMRs stratified in hypo‐and hypermethylated regions. (c and d) TFmotif enrichment
of BMDM‐T vs BMDM‐H DMRs stratified in hypo‐and hypermethylated regions. (c) TF motifs were grouped by TF family.

To further dissect the DNA methylation differences between TAMs and MGs, we
performed hierarchical clustering on the DNA methylation levels of the 9,902 identified
TAMvsMGDMRs in all samples. Hierarchical clustering segregated theDNAmethylation
profiles of each group, with TAMs forming an independent cluster together with BMDMs
(Fig. 3.17.a). Further k-means clustering of the DMRs, identified 6 DMR clusters that
depicted a unique methylation profile within the different groups (Fig. 3.17.b). Clusters
4 and 6 were identified as specifically hypomethylated in TAMs compared to MGs and
BMDMs, indicating TAM-specific alterations in the DNAm landscape. Similarly, cluster 5
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revealed an intermediate methylation level in TAMs compared to BMDMs and MGs. The
remaining clusters 1, 2, and 3 showed similar methylation levels in TAMs and BMDMs
compared to MGs. Similar methylation levels in these clusters indicate the putative cellular
origin of TAMs, which are BMDMs7,245. In detail, clusters 1 and 2 were hypomethylated,
and cluster 3 was hypermethylated in TAMs and BMDMs compared toMGs.

To functionally interpret these unique DNA methylation programs, we performed TF
motif enrichment of the identified DMR clusters and applied the enrichment results to a
hierarchical cluster analysis (Fig. 3.17.c). TFmotif analysis depicted a similar enrichment of
TFs in DMR clusters with comparable methylation levels in the different groups. Clusters 1
and 2, hypomethylated in TAMs and BMDMs, showed the most substantial enrichment for
TFmotifs within theRUNTTF-family (e.g., RUNX).Also, TFmotifs ofCEBP andNFIL3
were strongly enriched. Cluster 4 and 6, specifically hypomethylated in TAMs, showed the
most substantial enrichment for TFmotifs from the bZIP TF-family, such as FRA1, FRA2,
and FOSL2. Notably, TF motifs strongly enriched in clusters 1 and 2 were also identified
to a lesser extend in cluster 6. Cluster 3, hypermethylated in TAMs and BMDMs, showed
enrichment for different TFs of the MAF TF-family and the TF TCF21.

Further characterization of the DNA methylation programs of TAMs by MSigDB
hallmarks enrichmentc explained which DMR clusters contributed to the overall identified
signaling pathways of TAM vs MG DMRs in Fig. 3.15.c. Notably, cluster 4, specifically
hypomethylated in TAMs, was uniquely enriched for TGF-β signaling. Additionally,
enrichment of epithelial to mesenchymal transition, Il6/JAK/STAT3, TNF-α signaling, and
IFN-γ response was found in cluster 4. Similar hallmarks were identified in the TAM and
BMDMhypomethylated clusters 2 and6.Cluster 1, hypomethylated inTAMs andBMDMs,
was enriched for IL2/STAT5 and Notch signaling. WNT-β catenin signaling was attributed
to the TAM and BMDMhypermethylated cluster 3.

Overall, these results show how the DNA methylation landscape of TAMs can be
dissected into different DNA methylation programs. We identified programs unique for
TAMs (TAM-specific) and DNA methylation programs reminiscent of their monocytic
origin. Most TFs and MSigDB hallmarks identified in the overall TAM vs MG comparison
(Fig. 3.15) were attributed to one of the 6DMR clusters, further disentangling the function
and origin of cancer-specific alterations in the DNAmethylation landscape of TAMs.
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Figure 3.17: Dissection of the TAM DNA methylation landscape reveals BMDM‐derived epigenetic patterns and TAM‐
specific alterations. (a) Hierarchical clustering of TAMvsMGDMRs in all samples. DMR clusterswere identified by k‐means
clustering (k =6). (b) Median DNA methylation of each cluster in every group of samples. (c) Hierarchical clustering of TF
motif enrichment results for DMRs in every cluster. P values are set to a maximum of ‐log10(P value) =50. (d) MsigDB
hallmarks enrichment of DMRs in every cluster. Rows are ordered by hierarchical clustering.
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3.2.2 Epigenetic reprogramming of macrophages and monocytes in breast cancer is
correlated with cancer-specific transcriptional profiles

DNA methylation is a known regulator of gene expression, and transcriptional
reprogramming ofmacrophages by breast cancer has been described in previous studies46,308.
To explore functional consequences of the identified cancer-specific DNA methylation
landscape, RNAseq of TAMs, MGs, BMDM-T, and BMDM-Hwas performed.

Similar to the described WGBS data, unsupervised PCA of the 5,000 most variably
expressed genes revealed segregation of all groups (Fig. 3.18.a). Macrophages and BMDMs
were separated in PC1, and PC2 separated TAMs and BMDM-T from MGs and BMDM-
Hs, respectively, indicating a strong impact of breast cancer on the transcriptional landscape
of macrophages and monocytes.

Next, differential gene expression analysis in a group-wise manner was executed for all
comparisons (TAM vs MG, BMDM-T vs BMDM-H, BMDM-H vs MG, BMDM-T vs
TAM, BMDM-T vs MG, and BMDM-H vs TAM). Hierarchical clustering of the union set
of 47,562 DMRs from all comparisons (Fig. 3.18.b) exposed the same arrangements as the
hierarchical clustering of all 5,919 identifiedDEGs (Fig. 3.18.c). Each group formed its own
cluster, and further separation of BMDMs frommacrophageswas depicted. These clustering
results show a significant effect of the tissue niche (macrophages in the breast vsmonocytes in
the bonemarrow) that is further perturbed by cancer-specific signals (BMDM-T vs BMDM-
H and TAMs vs MGs). Additionally, similar clustering of DMRs and DEGs suggested an
interconnection of DNAmethylation and gene expression in macrophages and monocytes.
Indeed, Pearson correlation analysis of DMR methylation levels and gene expression of
their annotated genes revealed an overall inverse correlation (median Pearson correlation
estimate =-0.32; Fig. 3.18.d). A total of 6,985 significantly correlating DMRs/gene pairs
(Pearson correlation P value <0.05) associated with 3,254 different genes was identified.
This substantial number of correlating DMR/gene pairs depicts an essential role of DNA
methylation in the gene regulation of macrophages and monocytes. It also shows their
immense plasticity in adjusting to different tissue niches and environmental stimuli, as
provided by the tumor microenvironment.

Notably, a large proportion of correlating DMR/gene pairs depicted differential
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Figure 3.18: Cancer‐specificDNAmethylation landscape ofmacrophages andmonocytes is correlatedwith transcriptional
alterations. (a) PCA of the 5,000 most variable genes (RNAseq) in TAMs (n =3), MGs (n =2), BMDM‐T (n =4), and BMDM‐
H (n =7). (b and c) Hierarchical clustering of (b) a union set of 47,562 DMRs and (c) 5, 919 DEGs from all comparisons
(TAM vs MG, BMDM‐T vs BMDM‐H, BMDM‐H vs MG, BMDM‐T vs TAM, BMDM‐T vs MG, and BMDM‐H vs TAM).
DMRs are defined by at least three CpGs with an adjusted P value <0.05, a width of >50 bp, and an average change of
DNA methylation >0.1. DEGs are defined by an adjusted P value <0.05 and an absolute log2 fold‐change >1. (d) Pearson
correlation of DMR methylation levels and gene expression of annotated genes (DMRs are annotated to the overlapping
or closest gene with a maximum distance of <10 kbs). Average DMRmethylation and gene expression per group is used. (e)
Venn diagram of TAM vs MG and BMDM‐T vs BMDM‐H DMRs, overlapping with correlating DMRs (Pearson correlation
with gene expression, P value < 0.05). (f) Venn diagram of TAM vs MG and BMDM‐T vs BMDM‐H DEGs, overlapping with
correlating genes (Pearson correlation with DMR methylation; P value < 0.05).
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expression and methylation in the TAM vs MG comparison (1,336 DMRs (Fig. 3.18.e)
and 463DEGs (Fig. 3.18.f ). Aligned visualization ofDNAmethylation and gene expression
depicted the robust correlation of many DMR/gene pairs (Fig. 3.19.a). Most frequently an
inverse correlation was identified: DMR hypomethylation correlated with gene induction
and DMR hypermethylation with gene repression (Fig. 3.19.b). The hypomethylated
fraction of functional TAM vs MG DMRs revealed enrichment for TGF-β and TNF-
α signaling as well as IFN-γ response, indicating an apparent effect of the cancer-specific
DNAmethylationonTAMtranscriptional profiles (Fig. 3.19.c). Further overrepresentation
of leukocyte-related processes and inflammation was shown for the overlapping DEGs
(Fig. 3.19.e and f ). Again, TFs of the STAT and RUNT TF-families were found to be
enriched in hypomethylated TAM vs MG DMRs correlating with gene expression (Fig.
3.19.d). Examples of correlating DMR/gene pairs with significant expression induction
in TAMs included the transcription factor Runx3, the checkpoint inhibitor Cd247, the
transmembrane receptorTgfbr1, and the class II major histocompatibility complex geneH2-
Eb1 (Fig. 3.19.g).

Complementing our previous analysis, the multi-omics integration depicted a clear role
of DNAmethylation in the transcriptional reprogramming of TAMs. Particularly, pathways
driven by microenvironmental stimuli, such as TGF-β, TNF-α, and IFN-γ, were enriched
in the fraction of hypomethylated TAM vsMGDMRs that correlated with a cancer-specific
transcriptome ofTAMs. Putative drivers ofTAMreprogramming, such asRunx3, andTAM
effector genes with an immunosuppressive function on the tumor microenvironment, like
Cd274, seemed to be regulated via DNAmethylation.

Due to overall minor differences in the BMDM-T vs BMDM-H comparison, a small
subset of 41 DEGs (Fig. 3.18.f ) and 9 DMRs (Fig. 3.18.e) were overlapping with the
correlating DMR/gene pairs. Similar to the TAM vs MG comparison, the majority of
correlatingDMR/gene pairs depicted an inverse correlation (Fig. 3.20.a andb).Notably, the
overlapping fraction of DEGs induced in BMDM-T was associated with processes involved
in leukocyte adhesion (Fig. 3.20.c). Adhesion of leukocytes to the vascular epithelium is
crucial during BMDM recruitment to the tumor microenvironment and a prerequisite for
TAM expansion.
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Figure 3.19: Epigenetic reprogramming of TAMs in breast cancer is correlatedwith a cancer‐specific transcriptional profile.
(a) Hierarchical clustering of correlating DMR/gene pairs overlapping with TAM vs MG DEGs (left; Pearson correlation
with gene expression, P value < 0.05). DMR/gene pairs with a negative (top) and positive (bottom) Pearson estimate
are visualized separately. Average DMR methylation (left) and gene expression (right) per group are visualized. Rows are
ordered by hierarchical clustering of DNA methylation levels. (b) Scatterplot of TAM vs MG DMR methylation differences
and gene expression changes. DMRs are annotated to the overlapping or closest gene with a maximum distance of <10
kbs. Red dots: genes significantly upregulated in TAMs vs MGs; blue dots: genes significantly downregulated in TAMs vs
MGs. (c) MSigDB hallmarks enrichment of TAMvsMGDMRs, overlappingwith correlatingDMRs (Pearson correlationwith
gene expression, P value <0.05), stratified in hypo‐ and hypermethylated DMRs. (d) TF motif enrichment of TAM vs MG
DMRs, overlapping with correlating DMRs (Pearson correlation with gene expression, P value <0.05), stratified in hypo‐
and hypermethylated DMRs. (e and f) Pathway and gene ontology enrichment of TAM vs MG genes, overlapping with
DMR/gene pairs, stratified in (e) up‐ (left) and (f) downregulated genes (right). (g) Examples of correlating DMR/gene pairs.
Average gene expression and DMR methylation are visualized on the x‐ and y‐axis, respectively. P values were calculated
by Pearson correlation coefficient. The gray diagonal represents the linear regression. Shaded areas are the confidence
interval of the correlation coefficient at 95%.
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Figure 3.20: Epigenetic reprogramming of BMDMs in breast cancer is correlated with transcriptional changes involved in
leukocyte recruitment. (a) Hierarchical clustering of correlating DMR/gene pairs that overlap with BMDM‐T vs BMDM‐H
DEGs (left; Pearson correlation with gene expression, P value < 0.05). DMR/gene pairs with a negative (top) and positive
(bottom) Pearson correlation estimate are visualized separately. AverageDNAmethylation (left) and gene expression (right)
per group are visualized. Rows are ordered by hierarchical clustering of DMRmethylation levels. (b) Scatterplot of BMDM‐
T vs BMDM‐H DMR methylation differences and gene expression changes. DMRs are annotated to an overlapping or
closest gene with a maximum distance of <10 kbs. Red dots: genes significantly upregulated in BMDM‐T vs BMDM‐H. (c
and d) Pathway and gene ontology enrichment of BMDM‐T vs BMDM‐H genes, overlapping with correlating DMR/gene
pairs, stratified in (c) up‐ (left) and (d) downregulated genes (right).
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3.2.3 Cancer-specific transcriptional profile of tumor-associated macrophages is
associated with breast cancer subgroups and poor clinical outcomes in breast
cancer patients

To further characterize the identified cancer-specific transcriptional alterations of TAMs, we
defined upstream regulators of the 1,421 TAM vs MG DEGs (Fig. 3.21.a and b). Similar
to the MSigDB enrichment results of TAM vs MG DMRs, upstream regulator analysis
identified IFN-γ, TNF-α, TGFB1 as key activators of gene expression. In addition, themajor
macrophage growth factors CSF1 (Fig. 3.25.f ) and CSF2 (Fig. 3.21.b) were determined as
upstream activators. The identification of CSF1 validates the prominent role of this growth
factor in monocyte recruitment and TAM reprogramming77. Moreover, the results show
the multifunctional role of TGFB1 in the suppression of immunosurveillance by the tumor
microenvironment300.

We further assessed the prognostic relevance of our findings for human breast cancer
patients. Therefore, we utilized the largest human breast cancer gene expression cohort
METABRIC62, and explored a TAM-specific expression signature. Upregulated DEGs in
TAMs compared to MGs, which were highly expressed in breast cancer samples, defined
this signature. A previous breast cancer study identified a CSF1 response signature linked to
higher tumor grade and decreased ER and PR expression20. In addition, tumors with a high
CSF1 signature expression revealed an increasedmutation rate. Applying this CSF1 response
signature, we stratified the METABRIC breast cancer cohort into CSF1-high, CSF1-mid,
and CSF1-low groups and evaluated TAM signature expression. This showed an increased
expression in the CSF1-high compared to CSF1-mid and CSF1-low groups (Fig. 3.21.c).
According to the role of CSF1 in monocyte recruitment, a strong overall correlation (Fig.
3.21.d; Pearson correlation: R =0.43, P value <0.001) of the TAM signature expression and
macrophage infiltration of the different breast cancer samples, predicted via CIBERSORT,
was observed217.

Next, we assigned the tumor samples to breast cancer molecular subtypes based on
the PAM50 classification system28. The highest expression of the TAM signature was
shown in the aggressive claudin-low, HER2, and basal compared to luminal A or B breast
cancer subtypes (Fig. 3.21.e). Together, these results validate the association of TAMs
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Figure 3.21: The cancer‐specific transcriptional profile of TAMs is associated with breast cancer subgroups and poor
clinical outcomes in breast cancer patients. (a) Volcano plot of TAM vs MG differential gene expression analysis. DEGs
are defined by an adjusted P value <0.05, absolute log2 fold change >1. Red dots: increased expression in TAMs; blue
dots: reduced expression in TAMs. (b) Upstream regulator analysis of TAM vs MG gene expression changes. The bar’s
color indicates the activation (red) or repression (blue) of genes regulated by the identified upstream regulators. (c) Median
expression of the TAM signature in the human breast cancer cohort, METABRIC, stratified by CSF1 signature expression.
TAM signaturewas compiled of highly expressed (>0.05 quantile) and significantly upregulated TAMvsMGDEGs (adjusted
P value <0.05 and log2 fold change > 1) that are expressed in the METABRIC cohort. (d) Correlation of TAM signature
expressionwithmacrophage infiltration score in theMETABRIC cohort, predicted by CIBERSORT. P valueswere calculated
by Pearson correlation coefficient. The gray diagonal represents the linear regression. Shaded areas are the confidence
interval of the correlation coefficient at 95%. (e) Median expression of the TAM signature in the human breast cancer
cohort, METABRIC, stratified by the molecular PAM50 classifier. (f) Cancer‐specific survival of the METABRIC cohort
according to TAM signature expression (+/‐1SD of median TAM signature expression). (c and e) One‐way ANOVA with
Tukey’s post hoc multiple comparisons test. **, P value <0.01; ***, P value <0.001.
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with aggressive breast cancers and depict the significance of the 4T1 breast cancer mouse
model in the study of breast cancer TAMs. Therefore, we continued investigating whether
the identified TAM signature was associated with clinical outcomes in the METABRIC
cohort. Consistently with our previous findings, high expression of the TAM signature was
associated with a shortened cancer-specific survival (Fig. 3.21.f ).

To understand which genes contribute to worse clinical outcomes in breast cancer
patients, k-means clustering on all TAM vs MG DEGs, identified in the 4T1 orthotopic
mouse model, was performed (Fig. 3.22.a). A comparable clustering result as shown in
the TAM vs MG DMRs analysis of Fig. 3.17 was revealed. TAMs clustered together with
BMDM samples, and 6 DEG clusters with different expression levels in the distinct groups
were identified (Fig. 3.22.b). All clusters with increased gene expression in TAMs compared
to MGs (clusters 1, 2, and 3) were associated with a shorter cancer-specific survival (Fig.
3.22.c). Additionally, these clusters were enriched for pathways involved in inflammatory
processes, such as IFN-γ signaling, positive regulation of cell migration and Neutrophil
degranulation (Fig. 3.22.d). Strikingly, the most prominent effect on patient survival was
obtained with cluster 3 DEGs that showed decreased expression in MGs compared to
TAMs compared to BMDMs. Since previously published studies used BMDMs or other
macrophage populations as healthy references32,222, the identified genes in cluster 3 with a
critical role in patient survival were missed in their TAM signatures. Cluster 5 DEGs, with
decreased gene expression inTAMs and BMDMs, compared toMGs, had the opposite effect
on patient survival. Increased expression was associated with an increase in cancer-specific
survival.

Overall, these results show that pathways identified in the DNA methylation landscape
of TAMs are reflected in the cancer-specific transcriptome of TAMs, associated with
aggressive breast cancer subtypes andpoor clinical survival. Additionally, these results further
emphasize the role of BMDM gene expression patterns in TAMs.

To elaborate the transcriptional alterations in themonocytic origin ofTAMs, differential
expression analysis between BMDM-T and BMDM-H was performed. 111 in BMDM-
T upregulated, and 96 downregulated DEGs were identified (Fig. 3.23.a). Although
overall differences were minor compared to the TAM vs MG comparison, similar upstream
regulators of transcription, such as IFN-γ, TNF-α, and CSF2, were identified (Fig. 3.23.b).
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Figure 3.22: Cluster analysis reveals a TAM transcriptional program with high expression in BMDMs and strong effect on
patient survival. (a) Hierarchical clustering of TAM vs MG DEGs in all samples. DEG clusters were identified by k‐means
clustering (k =6). (b) Median gene expression of each cluster in every group. (c) Cancer‐specific survival of the METABRIC
cohort according to the expression of genes identified in every cluster (+/‐1SD of median cluster DEGs expression). (d)
Enrichment of pathways and gene ontologies of DEGs, identified in the different clusters.
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These findings reflect a cancer-specific effect on gene expression patterns in BMDMs and
support our results of transcriptional and epigenetic reprogramming in the monocyte to
TAM trajectory.

Figure 3.23: Characterization of cancer‐specific transcriptional alterations of BMDMs in breast cancer. (a) Hierarchical
clustering of BMDM‐T vs BMDM‐HDEGs in all samples. DEGs are defined by an adjusted P value <0.05, absolute log2 fold
change >1. (b) Upstream regulator analysis of BMDM‐T vs BMDM‐H gene expression changes. The bar’s color indicates
the activation (red) or repression (blue) of genes regulated by the identified upstream regulators.

3.2.4 Complex signaling within the tumor microenvironment is associated with the
cancer-specific DNAmethylation landscape of tumor-associated macrophages

The central pathways and upstream activators regulating the identified DEGs and DMRs
(e.g., IFN-γ, TGF-β, CSF1, and TNF-α) suggested microenvironmental signals to be
drivers of TAM reprogramming. We, therefore, utilized a publicly available scRNAseq
dataset of BALB/c-derived 4T1 orthotopic tumors269 to understand the origin of these
microenvironmental signals. Using Seurat286, we identified 14 clusters assigned to their
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putative cell type identity by cross-referencing cluster-specific marker genes with published
resources. Eight different cell types of the tumor microenvironment, in addition to cancer
cells of epithelial origin, were depicted (Fig. 3.24.a). Overall, macrophages accounted
for >60% of all sequenced cells (Fig. 3.4.b), confirming previous reports that identified
macrophages as the most prominent immune cell infiltrate of breast cancer47,314. On the
contrary, only around 25% of all cells accounted for cancer cells.

Next, we applied a model for predicting cell-to-cell interactions based on known
ligand/receptor pairs (CellPhoneDB)84.Network construction of the cell-to-cell interactions
within the 4T1-single-cell dataset revealed CAFs and cancer/epithelial cells to be the major
interaction hub ofmacrophages (Fig. 3.24.c). In total, over 400 interactions ofmacrophages
with other cell types of the tumormicroenvironmentwere identified (Fig. 3.24.d), validating
the abundant interactions of TAMs111. The crosstalk included the interaction of the
inhibitory molecule CD274 on macrophages with PDCD1 on T-cells, and CD80 on B-
cells, macrophages, and neutrophils. Also, the inhibitory receptorCTLA4, expressed byNK-
and T-cells, was predicted to interact with CD80 and CD86 onmacrophages, indicating the
diverse immune checkpoints of the tumor microenvironment.

Although CellPhoneDB models potential ligand/receptor interactions based on their
expression, it does not account for downstream transcriptional or epigenetic effects in the
interacting cell type of interest. To determine the ligand/receptor interactions with the
most substantial impact on TAM reprogramming, we further prioritized ligands based
on their capacity to activate TFs, identified in the TAM DNA methylation landscape
(Fig. 3.25.b). We specifically investigated the intersection (Fig. 3.25.a) of predicted
ligand/receptor interactions (Fig. 3.25.c), overlapping with cytokines and growth factors
that have the potential to activate TFs243 (Fig. 3.25.d) determined in the TF motif analysis
of hypomethylated TAM vsMGDMRs (Fig. 3.25.e). Utilizing this approach, we identified
seven key ligands (TGFB3, TGFB1, IFN-γ, CSF3, CSF1, CCL4, and CCL2), signaling via
six receptors (TGFBR1, IFNGR, CSF3R, SIRPA, CCR5, and CCR2) and 12 TFs (STAT4,
STAT3, STAT1, RUNX, NFκB-P65-REL, NFKB-P50, FOSL2, FLI1, ATF3, ATF2, and
AP-1) that explain TAM reprogramming in breast cancer. Noteworthy, 6 of the 7 identified
ligands were also predicted as upstream regulators in the TAM vs MG expression analysis
(TGFB3, TGFB1, IFN-γ, CSF3, CSF1, and CCL2), confirming the critical role of these
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Figure 3.24: scRNAseq reveals complex signaling of macrophages within the tumor microenvironment.
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Figure 3.24: scRNAseq reveals complex signaling of macrophages within the tumor microenvironment. (a) UMAP
representation of breast cancer, obtained from scRNAseq of the 4T1 orthotopic breast cancer mouse model. Data was
acquired from Sebastian et al., 2020. The color labeling indicates annotated cell types. (b) Proportions of the different
cell types, identified via scRNAseq. (c) Chord diagram of predicted ligand/receptor interactions of macrophages with cell
types specified in the scRNAseq of the 4T1 orthotopic mouse model. Ligand/receptor interactions were predicted via
CellphoneDB. Macrophage interactions with a P value <0.05 are visualized. (d) Dot plot of all ligand/receptor interactions
of macrophages with a P value <0.05.

ligands and their effect on DNAmethylation in TAM reprogramming (Fig. 3.25.f ).
Among these ligands, we were able to show that TGFB3 was released by CAFs, cancer

cells, and pericytes and interacted via TGFBR1, which was predicted to activate FOSL2 in
TAMs. Similarly, TGFB1 had a dual-source from CAFs and endothelial cells and interacted
via TGFBR1, leading to the activation of FOSL2 and STAT3. In contrast, IFN-γ was
shown to be secreted by NK-/T-cells and interacted via Type II IFNR. Downstream of
IFNγ, a multitude of TFs (STAT4, STAT1, RUNX1, RUNX, NFκB-P65-REL, and AP-
1) were activated and enriched in hypomethylated TAM vs MG DMRs. Furthermore, the
major macrophage growth factor, CSF1, was shown to have various sources in the tumor
microenvironment. Interaction with SIRPA led to the proposed activation of NFκB-P65-
REL andNFvB-P50 inTAMs. Supporting the central role of the identifiedTFs in the cancer-
specific reprogramming of TAMs, Stat1,Runx3, and FosL2 gene expression was found to be
significantly induced in TAMs compared toMGs and BMDMs (Fig. 3.25.g).

In summary, within a highly complex signaling network of the tumormicroenvironment
in breast cancer, wewere able to identify prominentmicroenvironmental regulators of TAM
DNAmethylation and transcription. We were able to specify their source within the tumor
microenvironment and designated the involved receptors andTFs causing the transcriptional
and epigenetic switch in TAMs.

3.2.5 Tumor-associated macrophage DNA methylation signature is associated with
breast cancer subgroups and poor clinical outcomes in breast cancer patients

Differential methylation signals can potentially arise from cell type compositions of the
analyzed samples. To a certain extent, this bias was avoided by fluorescently activated cell
sorting of macrophage and monocyte populations by specific surface markers. However,
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Figure 3.25: Epigenetic reprogramming of TAMs can be linked to specific ligand/receptor interactions within the tumor
microenvironment.
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Figure 3.25: Epigenetic reprogramming of TAMs can be linked to specific ligand/receptor interactions within the tumor
microenvironment. (a) Venn diagram of ligands predicted to interact with macrophages, ligands identified as upstream
regulators of TAM vs MG gene expression changes, and ligands with an activating effect on TFs, identified in the TF
motif analysis of hypomethylated TAM vs MG DMRs. Ligand/receptor interactions were predicted via CellphoneDB.
(b) Dot plot of prioritized ligand/receptor interactions. Ligand/receptor interactions were prioritized by an overlap of
ligands predicted to interact with macrophages, and ligands with an activating effect on TFs, identified in hypomethylated
TAM vs MG DMR TF motif enrichment. (c) Graphical representation of the data integration and ligand prioritization
workflow. Ligand/receptor interactions are integrated with ligand/TF activation and TF motif information. (d) Alluvial plot
indicating the selected ligands and their impact on TF activity. (e) Selected TFs identified in the TF motif enrichment of
hypomethylated TAMvsMGDMRs. (f) Selected upstream regulators identified in the TAMvsMG comparison, overlapping
with ligands predicted to interact with macrophages, and ligands with an effect on TF activity, identified in the TF motif
analysis of hypomethylated TAM vs MG DMRs. (g) Gene expression of TFs identified as differentially expressed (adjusted
P value <0.05 and absolute log2 fold change >1) in the TAM vs MG comparison.

further heterogeneity might be present on an epigenetic level, or cancer-specific alterations
are not present in all sampled cells (e.g., unchanged MGs or BMDMs within the TAM
samples).

To control for this bias, we performed reference-free deconvolutionwithMeDeComthat
allows thedecompositionofDNAmethylomes into latentmethylation components (LMCs)
and their respective proportions in each sample192. The resulting LMCs correspond to the
underlying sources of variation in the bulk methylomes, and the proportions quantify their
relative contribution to each bulk sample.

In total, five LMCs, explaining the methylation levels of a union set of DMRs from
all comparisons, were identified, and a differential enrichment in the distinct groups was
observed (Fig. 3.26.a and b): LMC1 was uniquely enriched in TAMs and depleted in MGs
and BMDMs; LMC2 was enriched in MGs and depleted in TAMs; LMC3 was enriched
in BMDM-T and TAMs, and depleted in MGs; LMC4 was enriched in MGs and depleted
in BMDMs; LMC5 was enriched in BMDM-H and depleted in TAMs and MGs. These
deconvolution results confirmed our prior assumption of the sampled TAM methylomes
being composed mainly out of a unique TAM DNA methylation signature (LMC1) and
to a lesser extend of BMDM-T (LMC3) andMGmethylomes (LMC4).

To functionally annotate these LMCs, we determined the DMRs specifically
hypomethylated in one LMC compared to the average methylation of the DMRs in
the remaining LMCs. By using a very stringent cutoff (delta >0.7), we treated the obtained
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Figure 3.26: Deconvolution of DNA methylation landscapes identifies a unique TAM signature associated with cancer‐
specific pathways and breast cancer subtypes.
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Figure 3.26: Deconvolution of DNA methylation landscapes identifies a unique TAM signature associated with cancer‐
specific pathways and breast cancer subtypes. (a) Hierarchical clustering of recovered LMC proportions in each sample,
identified by reference‐free deconvolution using MeDeCom (k =5 and λ =0.01). Methylation levels of a union track of
DMRs from all comparisons (TAM vs MG, BMDM‐T vs BMDM‐H, BMDM‐H vs MG, BMDM‐T vs TAM, BMDM‐T vs
MG, and BMDM‐H vs TAM) were used for deconvolution analysis. (b) PCA of DNA methylation levels of DMRs from all
comparisons and the DNAmethylation levels of DMRs annotated to the different LMCs. (c) MSigDB hallmarks enrichment
of DMRs associated with the identified LMCs. All MSigDB hallmarks with a P value <0.05 are shown. (d and e) TF motif
enrichment of DMRs associated with LMCs. (d) Top 10 TF motifs per LMC and (e) all LMC1 TF motifs with an adjusted
P value < 0.05 are shown. (f) Median DNA methylation of LMC1 DMRs in primary solid tumors and normal tissue of the
TCGA breast cancer cohort. (g) Median DNA methylation of LMC1 DMRs in the TCGA breast cancer cohort, stratified by
the PAM50 molecular classifier. (f and g) One‐way ANOVA with Tukey’s post hoc multiple comparisons test. *, P value
<0.05; ***, P value <0.001.

sites as LMC-specific and further used them forMsigDB hallmarks enrichment (Fig. 3.26.c)
and TF motif analysis (Fig. 3.26.d). Specifically, the 333 LMC1 DMRs were of interest,
since LMC1 was uniquely enriched in TAMs and therefore depicted a cancer-specific
TAM DNA methylation signature. Exclusive enrichment of TGF-β, TNF-α, IFN-γ, and
Il6/JAK/STAT3 signaling and the MSigDB hallmark mitotic spindle was observed for
LMC1 DMRs (Fig. 3.26.c). Furthermore, the MsigDB hallmarks complement system and
MTORC1 signaling were enriched in these regions. Accordingly, hypomethylated LMC1
DMRs showed enrichment for TF motifs belonging to the BZIP (e.g., FOSL2, FRA1, and
FRA2), IRF (e.g., IRF1, IRF3, and IRF8), RUNT (e.g., RUNX), and STAT (e.g., STAT1,
STAT3, STAT4, and STAT5) TF-family. Also, RBPJ1, the transcriptional regulator of
Notch signaling and a TF essential for monocyte to TAM differentiation in a transgenic
mousemodel of breast cancer103, showed robust enrichment in LMC1DMRs (Fig. 3.26.e).

Previous studies46,308 as well as our own findings (Fig. 3.21) demonstrate the suitability
of TAM expression signatures as prognostic and diagnostic markers for breast cancer.
However, DNA methylation-based immune signatures have not been purposed for this
analysis, yet. Therefore, we sought to utilize the identified LMC1 signature in a large DNA
methylation cohort of breast cancer165. We investigated LMC1DMRs that overlapped with
450k Illumina probes of the TCGA-breast cancer cohort post lift-over from the mm10 to
the hg19 reference genome. This revealed reduced DNA methylation of LMC1 DMRs in
primary solid tumors than solid normal breast tissue (Fig. 3.26.f ). Furthermore, we assigned
patient samples to their respective breast cancer molecular subtypes, based on the PAM50
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classification, and investigated LMC1DNAmethylation (Fig. 3.26.g). Patient samples from
the basal and Her2 PAM50molecular subtypes revealed lower DNAmethylation compared
to luminal A or B samples. For a random set of CpGs, no significant differences between
tumor and normal and within the different PAM50 molecular subtypes were identified,
indicating an LMC1-specific instead of a genome-wide hypomethylation in tumors and
aggressive breast cancer subtypes.Together, these results emphasize an association of the
TAM DNA methylation signature, driven by tumor microenvironmental-derived stimuli
like TGF-β, TNF-α, and IFN-γ, as well as TFs, such as RUNX3, FosL2, STAT1, and RBPJ1
with more aggressive breast cancer subtypes.

Gene annotation of the TAM DNA methylation signature showed an association of
LMC1 DMRs with 44 TAM vs MG DEGs. The majority of them (40 DEGs) were
significantly upregulated (adjusted P value <0.05; log2 fold change >1) in TAMs (Fig.
3.27.a). Notably, the signature contained surface-membrane receptors (e.g., Tgfbr1 and
Ifngr2) and TFs (e.g., Runx3 and Stat1) with a role in TAM reprogramming. Also, the
immune inhibitory ligand, Cd274, was identified within these DEGs. Consistent with the
TAM expression signature of Fig. 3.21, stratification of the METABRIC breast cancer
cohort with annotated LMC1DMRs that overlapped with upregulated TAMvsMGDEGs
showed increased expression levels in claudin-low and basal compared to luminal A or
B breast cancer subtypes (Fig. 3.27.b)). Also, stratification based on the CSF1 signature
expression20 revealed an increased LMC1 signature expression in CSF1-high compared to
CSF1-mid and -low groups (Fig. 3.27.c). Accordingly, a significant correlation between
the LMC1 signature expression and macrophage infiltration was observed (Fig. 3.27.d).
Furthermore, patients with a high LMC1 signature expression also had a substantial decrease
in cancer-specific survival (Fig. 3.27.e).

Overall, such data reinforces the necessity of homogenous reference samples for
computational deconvolution analysis and the concept of TAMs in promoting cancer
progression. They will further guide the identification of unique TAM DNA methylation
and expressionmarkers that provide the possibility for new therapeutic approaches as well as
diagnostic and prognostic marker discovery.
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Figure 3.27: Genes annotated to TAM DNA methylation signature are associated with poor clinical outcomes in breast
cancer patients and confirm the role of Runx3 and Stat1 in TAM reprogramming. (a) Hierarchical clustering of TAM vs MG
DEGs (adjusted P value <0.05 and absolute log2 fold change >1), annotated to LMC1 DMRs. LMC1 DMRs are annotated
to an overlapping or closest gene with a maximum distance of <10 kbs. (b and c) Median expression of genes significantly
upregulated in the TAM vs MG comparison (adjusted P value <0.05 and log2 fold change >1) and annotated to LMC1
DMRs, in human breast cancer cohort METABRIC, stratified by (b) the PAM50 molecular classifier and (c) CSF1 signature
expression. (d) Correlation of the expression of genes, significantly upregulated in TAM vsMG (adjusted P value <0.05 and
log2 fold change >1) and annotated to LMC1 DMRs, with macrophage infiltration in patients of the METABRIC cohort.
The macrophage infiltration score was calculated by the sum of M0, M1, and M2 macrophages predicted by CIBERSORT.
P values were calculated by Pearson correlation coefficient. The gray diagonal represents the linear regression. Shaded
areas are the confidence interval of the correlation coefficient at 95%. (e) Cancer‐specific survival of theMETABRIC cohort
according to the expression of genes significantly upregulated in TAM vsMG (adjusted P value <0.05 and log2 fold change
>1) and annotated to LMC1DMRs (+/‐ 1 SD ofmedian TAM signature expression). (b and c) One‐way ANOVAwith Tukey’s
post hoc multiple comparisons test. ns, P value >0.05; ***, P value <0.001.
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4
Discussion

4.1 Epigenetic reprogramming of airway macrophages drives
polarization and inflammation inmuco-obstructive lung disease

UsingWGBS and ATACseq, we demonstrated that the altered airway microenvironment in
muco-obstructive lung disease causes proinflammatory changes in the epigenetic landscape
of AMs. We revealed that Scnn1b-Tg AMs are deregulated in the DNA methylation
and chromatin accessibility level, with alterations enriched for gene-regulatory regions
such as promoters and enhancers. Those changes favor the binding of TFs involved
in inflammation and macrophage polarization and correlate with the induction of a
transcriptional program enriched for macrophage activation, inflammatory processes, and
tissue remodeling. Activation of AMs in muco-obstructive lungs was confirmed via high-
dimensional single-cell analysis of protein surface markers and showed a mixed phenotype
of classical and alternative macrophage activation. Deconvolution of RNAseq data revealed
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that monocyte recruitment to the muco-obstructed lung plays a neglectable role in the
Scnn1b-Tg model of muco-obstructive lung disease. On the contrary, stimulation of WT
AMs with native mucus induced a transcriptional program reminiscent of the one observed
in Scnn1b-Tg AMs, showing the direct immunomodulatory effect of mucus. Moreover,
functional consequences of the epigenetic modifications in Scnn1b-Tg AMs were shown
by impaired efferocytosis and phagocytosis, and a prolonged hyperinflammatory response
uponLPS challengewas depicted. Impaired LPS responses on transcriptional and chromatin
accessibility levels were linked to increased TF activity of the IRF TF-family in Scnn1b-Tg
AMs. These findings will guide the development and improvement of immunomodulatory
therapies for muco-obstructive lung diseases, such as CF and COPD.

AMs reside in different airway niches of the lung and are exposed to unique
environmental signals. In muco-obstructive lung disease, these niches include regions
of dehydrated and excess mucus, as well as mucus plugging, causing local hypoxia,
increased apoptosis, necrosis, infection, and inflammation35. Our findings show that AMs
undergo epigenetic reprogramming due to sustained exposure to signals provided by the
microenvironment of muco-obstructed airways. Reduced DNA methylation and increased
chromatin accessibility of gene regulatory regions and TF-binding motifs that play a crucial
role in macrophage activation, plasticity, and inflammation (e.g., IRF2/3, ATF3, NFKB,
AP-1, CEBP, and STAT6) were observed. Different gene-regulatory roles can be assigned
to the identified TFs. IRF2/3 and ATF3 suppress macrophage inflammation, while NFKB
and AP-1 stimulate inflammatory responses80,126,153. Classical macrophage activation is
promoted by NFκB and AP-1, while alternative activation is stimulated by CEBP, STAT6,
and ATF3307. Additionally, some of the discovered TFs have been previously linked to
chronic lung diseases. AMs fromCF patients show increased nuclear translocation ofNFκB,
and increased NFκB expression has been demonstrated in the airways of patients with
COPD and asthma83,311. STAT6 is involved in the IL-33-induced release of IL-13, which
plays a critical role in type II inflammation of the airways105,172,325. Modifications in other
epigenetic layers have been previously shown in AMs from COPD patients. Increased
acetylation of histones within promoter regions was linked to enhanced baseline expression
of inflammatory markers. Notably, this hyperinflammatory phenotype persisted even after
prolonged ex vivo culture105,172,325. Correspondingly, AMs from patients with asthma
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revealed increased expression of inflammatory genes linked to repressed histone deacetylase
activity augmentedby the increased enzymatic activity of histone acetylases.These alterations
weren’t observed in asthmatic patients’ peripheral bloodmononuclear cells, emphasizing the
role of the local muco-obstructive microenvironment in AM function59.

According to the epigenetic alterations in Scnn1b-Tg AMs, transcriptional profiling
showed coinciding changes in gene expression. Significant upregulation of classical (e.g.,
Ccl2, Ptgir,Ccl9, Il1a,Marcks,H2-Aa, andH2-Eb1) and alternative markers of macrophage
activation (e.g., Mmp12, Arg1, Trem2, Ccl22, Ccl17, and Ptgs1) were observed. Upstream
regulator analysis of the transcriptome and chromatin accessibility predicted the respective
stimuli for classical (IFN-γ and LPS) and alternative (IL-4) macrophage activation. In fact,
the muco-obstructive microenvironment of Scnn1b-Tg lungs supports AM activation in
both directions. Increased expression of IL-4, IL-13, and TNF-α as well as a higher bacterial
burden has been shown in previous studies105,187,197. Together, these findings suggest the
presence of AM subtypes or a mixed AM phenotype in Scnn1b-Tg mice. Instead of the
emergence of novel AM subpopulations in Scnn1b-Tg compared to WT mice, analysis
of AM heterogeneity by high-dimensional single-cell flow cytometry revealed activation
of already existing AM subpopulations in muco-obstructive lungs (decreased expression
of Siglec-F and increased expression of CLEC7A, CD68, CD11B in Scnn1b-Tg AMs).
The single-cell analysis also showed the presence of classical and alternative macrophage
markers on the same AM populations. These results indicate a mixed phenotype of AMs
in Scnn1b-Tg lungs and emphasize a spectrum model of macrophage activation. In contrast
to the simplified classification of macrophages into pro- (M1) and anti-inflammatory
(M2) functions, macrophages can acquire multiple tasks, reflecting cellular adaptations
to environmental perturbations125,331. These results align with a recent scRNAseq study
of COPD patients, confirming the absence of novel AM subpopulations in the muco-
obstructed lung16. The study further confirmed AM plasticity and heterogeneity and
revealed thedifficulty of inter-patient heterogeneity inCOPD, emphasizing the role ofmouse
models for the basic molecular understanding of muco-obstructive lung disease.

In contrast to common mouse models of induced lung fibrosis and acute lung
inflammation, monocyte recruitment to the muco-obstructed lung plays a neglectable role
in Scnn1b-Tg mice209,214. In both previous studies, the authors have demonstrated that
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recruited monocytes express higher levels of proinflammatory and profibrotic genes than
resident AMs. However, fate mapping also revealed that recruited mfonocytes commit to
an AM fate over time. Utilizing these references, we have demonstrated that AMs in the
muco-obstructed lung resemble tissue-resident AMs. Furthermore, the data indicates that
no monocyte recruitment occurs at six weeks of age. If monocyte recruitment to the lung
has taken place at an earlier time point, they have completely adapted to the transcriptional
phenotype of AMs from Scnn1b-Tg lungs.

Many immunomodulatory factors in chronic obstructive lung diseases may interact
with AMs and drive proinflammatory epigenetic reprogramming. Mucus is one putative
immunomodulatory factor, as it can directly bind to leukocyte receptors through mucin
glycans164,273. Ex vivo stimulation of WT AMs with native mucus showed upregulation
of genes (e.g., Arg1, Mmp12, Il1a, Ccl17, and Ccl22), reminiscent of the Scnn1b-Tg AM
phenotype. These results imply the direct interaction of mucin glycoproteins with AM
receptors in muco-obstructive lungs. In line with this interaction, binding of MUC5B to
Siglec-F on lung eosinophils has been shown previously164,273. This interaction induced the
apoptosis of eosinophils in allergic inflammation, although an effect on AMs expressing
Siglec-F was not observed. MUC2 expression has been shown to repress inflammation in
the gut and further induce tolerance in DCs273. Further understanding of the interaction
betweenmucus/mucins and AMdysfunction will help develop new therapeutic approaches
targeting the underlying cause of many chronic lung diseases.

For AMs, the identified disease-related epigenetic alterations had marked functional
implications. Crucial AM functions, such as efferocytosis and phagocytosis, were decreased,
and treatment of Scnn1b-Tg AMs with LPS induced significantly more cytokines than LPS-
treaded WT AMs. The enhanced and prolonged LPS-response of Scnn1b-Tg AMs was
shown onmRNAand protein levels. A clear role of themuco-obstructedmicroenvironment
in priming hyperinflammatory responses was given, as Scnn1b-Tg macrophages from the
peritoneum or AMs from Cftr-/- mice (Cftr-/- mice do not develop a muco-obstructive lung
phenotype) responded similarly toWT controls. Infections with gram-negative bacteria like
P. aeruginosa are common in CF and other muco-obstructive lung diseases. The resulting
excessive inflammatory responses can harm the host’s tissue integrity and homeostasis29,86.

Integrated analysis of the chromatin accessibility and transcriptome data of LPS
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treated AMs revealed the IRF transcription factor family and especially IRF1 as mediators
of prolonged and hyperinflammatory LPS responses. In addition, previous research has
indicated that IRF1 plays a vital role in LPS-induced acute lung injury328. Together, these
results suggest that increased IRF1 signaling inAMs frommuco-obstructed lungsmight lead
to the high morbidity and mortality seen in patients with CF and COPD, who frequently
experience acute pulmonary exacerbations29,86,311,315.

Recent advancements in epigenetic inhibitors targeting the bromodomains and extra
terminal domain (BET) family of proteins have shown their therapeutic potential in cancer,
inflammatory, and autoimmune diseases21,114,219. In particular, their function to counter
immunoinflammatory damage via the regulation of enhancer activity has been described.
Therefore, we postulate a BET-targeted therapy in modulating macrophages’ inflammatory
responses in chronic lung diseases to refine the overall therapeutic strategies of muco-
obstructed lung diseases.
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4.2 Cancer-specific DNA methylation landscape of tumor-
associated macrophages and monocytes in breast cancer

Utilizing a low-inputWGBS protocol, we provided the first comprehensive characterization
of the DNA methylation landscape of TAMs and BMDM-T in breast cancer and
cancer in general. By comparing TAMs from the 4T1 orthotopic breast cancer mouse
model with their healthy counterpart, MGs, we were able to show massive alterations
in the TAM epigenome on a global and focal level. We defined known as well as novel
putative tumor microenvironment drivers and showed the fundamental involvement of
DNA methylation in the process of TAM reprogramming. Even in the bone marrow
compartment, epigenetic reprogramming of monocytes by breast cancer was exposed.
Further dissection of TAM alterations identified TAM-specific epigenetic programs as well
as DNA methylation patterns originating from their monocytic progenitors. Alterations
in the DNA methylation landscape were correlated to a cancer-specific transcriptome of
TAMs and BMDM-Ts, associated with aggressive breast cancer subtypes, macrophage
infiltration, and poor clinical outcomes in a human cohort of breast cancer patients. Further
dissection of the cancer-specific signature established the significance of BMDM-originating
transcriptional patterns in the outcomes of breast cancer patients. By integrating scRNAseq
data of the breast cancer mouse model, we mapped microenvironmental stimuli within the
tumor microenvironment, responsible for TAM reprogramming, and identified critical TFs
involved in this process. Using a reference-free deconvolution approach, we further detected
a unique TAMDNAmethylation signature. Differential methylation of the TAM signature
was associated with aggressive breast cancer subtypes and high tumor grade in human breast
cancer patients. Collectively, our results highlight the TFs, STAT1, RUNX3, and FOSL2
in TAM reprogramming and as potential targets for TAM-based therapeutic interventions.
Alongwith recent evidence of the role ofTAMs in chemo- and immunotherapy resistance221,
our study pinpoints the need to investigate the epigenetic landscape of TAMs in human
cancers and identify markers and mechanisms for TAM-specific targeting.

Previous studies in cancermousemodels have shown that TAMs are ofmonocytic origin
in most cancer entities, and further TAM expansion via proliferation is possible103,66,246. In
breast cancer, a cancer-specific reprogramming of monocytes to TAMs upon macrophage
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differentiation has been indicated7,103,102,245. However, clinical translation of TAM
transcriptome signatures has only been achieved upon comparing TAMs with their healthy
tissue counterpart –MGs308. This discrepancy emphasizes the highplasticity ofmacrophages
and their potential to quickly adapt to a specific microenvironment109,121,177. In the
case of TAMs, recruited monocytes adapt to the tissue niche and are further dictated
by cancer-specific signals46. Accordingly, we performed a comprehensive comparison of
TAMs with MGs and identified massive alterations in the DNA methylation landscape.
Genome-wide hypomethylation, in addition to focal changes, enriched for gene-regulatory
regions such as promoters were identified. Furthermore, TF-binding motifs (e.g., ATF3,
CEBP, FRA1, FRA2, FOSl2, JUNB, NFIL3, and RUNX) and pathways involved in
macrophage polarization and inflammation (e.g., IFN-γ response, IL2/STAT5 signaling,
IL6/STAT3/signaling), as well as tumor-specific reprogramming ofmacrophages (e.g., TGF-
β signaling, TNF-α signaling via NFκB), frequently associated with alternative macrophage
polarization, were shown.

Further dissection of the TAMDNAmethylation landscape revealed distinct epigenetic
programs with a dual origin. A subset of DMRs showed similar methylation levels to
BMDMs, whereas the remaining regions showed TAM-specific DNAmethylation changes.
These results emphasize a monocytic origin of TAMs in the 4T1 orthotopic breast cancer
mouse model. In addition, further complementation of the TAM DNA methylation
landscape by cancer-specific differentiationwas shown. BMDM-originating patterns showed
the most significant enrichment for inflammatory pathways such as IFN-γ response, TNF-
α, and IL6/JAK/STAT3 signaling, as well as developmentally associated TFs, such as
CEBP, RUNX, and NFIL365,160,340. In contrast, TAM-specific alterations were explicitly
enriched for tumor-microenvironment-associated pathways, including the signaling via
the anti-inflammatory cytokine TGF-β238. Accordingly, enrichment of TF-binding motifs,
previously assigned to the alternative polarization ofmacrophages, such asATF3 andFOSL2,
were identified in the TAM-specific DNAmethylation programs264,307.

Macrophage polarization has been classified into proinflammatory M1 and anti-
inflammatory M2 states201, and TAM phenotypes have often been described as M2-like in
the case of tumor-supporting, immunosuppressiveTAMs65.However, the beforementioned
TFs and pathways support TAM polarization in both directions: TAM-specific programs
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enriched for pathways and TFs known to regulate M2 functions; BMDM-originating
programs enriched for pathways and TFs known to regulate M1 functions. These results
reinforce the current trend in macrophage biology that states that macrophage phenotypes
aremore complex and cannot be classified into binary states125,331. Additionally, it validates a
recent transcriptome study that showed no preferential enrichment neither of M2- nor M1-
associated genes in TAMs of human breast and endometrial cancer46.

Transcriptional profiling and multi-omics integration of TAMs, MGs, and BMDMs
depicted a strong correlation between DNAmethylation and gene expression. In particular,
alterations in the DNA methylation landscape between TAMs and MGs were inversely
correlatedwith a cancer-specific transcriptional program. Similar to previous studies, wewere
able to identify aTAMexpression signature and showed its associationwithhigh tumor grade
and poor clinical outcomes in human breast cancer patients46,112. Furthermore, our TAM
signature’s highest expressionwas observed in themost aggressive breast cancer subtypes and
within a CSF1-high group, previously associated with higher tumor grade20. Corresponding
to the role of CSF1 in monocyte recruitment and differentiation77, TAM signature
expression was correlated with the overall macrophage infiltration in human breast tumors,
validating macrophage density as a predictor of poor survival47. These results demonstrate
that an appropriate cancermousemodel, such as the 4T1orthotopic breast cancermodel, can
directly lead to clinically translatable results. Generation of prognostic signatures based on
TAM transcriptomes could be tested in prospective clinical trials (especially when targeting
the tumor microenvironment, as done by CSF1 inhibition231,299,332) to assess treatment
performance.

As shown for the DNA methylation landscape, the monocytic origin of TAMs was
also reflected within distinct transcriptional programs. Notably, TAM vs MG DEGs with
an intermediate expression level in TAMs compared to BMDMs and MGs allowed the
most substantial segregation in patient survival. Patients with a high expression of these
genes showed the worst cancer-specific survival. Since these highly predictive DEGs would
have been missed comparing TAMs with BMDMs, these results emphasize the necessity of
comparing TAMs with their healthy tissue counterparts when investigating TAM-related
gene expression changes and functions. Macrophage phenotypes are strongly dictated by
their tissue niche, albeit of potential differences in their ontogeny46,308.
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A distinct transcriptional program of monocytes has been reported in human renal
carcinoma, as well as colorectal and breast cancer46,52. Accordingly, wewere able to show that
BMDMs from the 4T1mousemodel respond to breast cancerwith a tumor-specific program
on the level of gene expression and DNA methylation. Epigenetic and transcriptional
alterations of BMDMs highlight the systemic effect of cancer and an early reprogramming
of TAMprogenitors. Although overall changes were weaker in comparison to the alterations
identified in TAMs, enrichment of similar pathways (e.g., IFN-γ response, Il5/JAK/STAT3
signaling), upstream regulators (e.g., IFN-γ, TNF, CSF1, and CSF2), and TFs (e.g., STAT1)
were identified. The enrichment of STAT1 TF motifs validates the prominent role of CSF1
in the recruitment and reprogramming of BMDMs to TAMs. It has been demonstrated
that CSF1 is the key chemoattractant of monocytes and activates STAT1 TF-activity20,310.
In addition, CSF1R inhibition delays mammary tumor growth in murine models102,174.
Collectively, these results highlight the potential in reducing tumor progression by inhibiting
monocyte to TAM reprogramming as early as in the bone marrow compartment200. The
present dissertation shows a novel function of DNA methylation in regulating these
processes and could help identify therapeutic approaches targeting the epigenome.

To elucidate the crosstalk between TAMs and the tumor microenvironment, we
utilized a publicly available scRNAseq dataset of the 4T1 orthotopic breast cancer mouse
model269. Notably, TAMs were the strongest infiltrate within the tumor microenvironment
and accounted for more sequenced cells than cancer cells. We were able to define
ligand/receptor interactions of TAMs with cancer cells as well as other components of the
tumor microenvironment. Most frequently, interactions of TAMs with cancer-associated
fibroblasts and cancer cells were identified, but further interactions with most tumor
microenvironment components were shown. This highlights the complex interplay of the
tumor microenvironment involved in TAM reprogramming. It also depicts the difficulties
in developing in vitro models to study TAM differentiation: cancer-cell conditioned media
or co-culture with cancer cells might not provide all the necessary signals to induce TAM
differentiation as observed in vivo.

Further integration of the ligand/receptor interaction results with publicly available
ligand/TF interaction data243, together with our multi-omics characterization, allowed
the definition of crucial tumor microenvironment signals (TGFB3, TGFB1, IFN-IFN-γ,
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CSF3, CSF1, CCL4, and CCl2) and TFs (STAT4, STAT3, STAT1, RUNX1, RUNX,
NFκB-P65-REL, NFκB-P50, FOSL2, FLI1, ATF3, ATF2, and AP-1) responsible for
TAM reprogramming. The identified TFs Stat1, Runx3, and FosL2 also showed significant
induction on gene expression level. STAT1 is a known regulator of IFN-γ signaling
and, as mentioned, is activated upon CSF1 response20,310. Furthermore, the presence of
STAT1-positive TAMs was an independent prognostic factor for shorter disease-specific
survival in follicular lymphoma3, and its role in inducing an immunosuppressive tumor
microenvironment in breast cancer has been described206. The function of FOSL2 in TAM
reprogramming has recently been reported for lung cancer264. Sarode et al. showed that
beta-catenin-mediated transcriptional activation of FOSL2 and repression of ARID5Adrive
a gene regulatory switch in macrophages to tumor-promoting TAMs. Although our data
indicate induction of FOSL2 via the growth factors TGFB1 and TGFB3, a general role of
FOSL2 inTAMreprogramming acrossmany cancer entities is conceivable.Notably, STAT1,
RUNX3, and FOSL2 seemed to be induced via hypomethylation, further highlighting the
gene-regulatory role of DNAmethylation in TAM phenotypes.

In contrast to STAT1 and FOSL2, no function of RUNX3 has been described in TAM
biology. However, the RUNT-related TF-family is evolutionarily conserved, and significant
roles have been defined for many developmental and biological processes, e.g., the role of
RUNX3 in the differentiation of CD8+ T-cells or the function of RUNX1 as a tumor
suppressor gene inAML10,326. As previously reported, we identified the regulation ofRunx3
by promoter hypomethylation244. In addition to the strong representation of RUNXmotifs
in hypomethylated TAM vsMGDMRs and induction ofRunx3 gene expression in TAMs,
we were able to identify RUNX motifs within a functional DMR annotated to the Cd274
locus. Cd274 encodes for the inhibitory transmembrane protein PD-L1 and can trigger the
inhibitionof adaptive immune cells290. Indeed, ligand/receptor interaction analysis predicted
the interaction of PD-L1 on TAMs with PDCD1 on T-cells and CD80 on B-cells. The
expression of PD-L1 on tumor-infiltrating immune cells has previously been associated with
an immunosuppressive macrophage phenotype and an aggressive malignant potential in
patients with lung and ovarian cancer122,289. Cancer immunotherapy targeting PD-L1 and
CTLA-4 has achieved remarkable success and has been approved by the Food and Drug
Administration to treat solid tumors, including breast cancer39. Further investigation of the
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epigenetic mechanism regulating Cd274 in TAMs could help identify immune checkpoint
blockade biomarkers for breast cancer.

In addition to a TAM gene expression signature, we generated a DNA methylation-
based immune signature using the reference-free deconvolution method MeDeCom192.
This approach reduced the overall number of 47,562 DMRs to 333 regions, specifically
hypomethylated in an LMC only present within TAM samples. The presence of this
LMC highlights the unique epigenetic immunoediting of TAMs. Additionally, differential
hypomethylation of the TAM signature was found in human tumors compared to normal
samples and in the most aggressive breast cancer subtypes. Methylation-based classifiers
have already been generated for brain tumors and show the potential to transform tumor
pathology in clinics due to the robust and reproducible profiling technology45. Future
generations of large whole genome-bisulfite datasets of breast cancer patients with long-
term follow-up data will help determine TAMDNAmethylation signatures’ prognostic and
diagnostic potential in patient stratification.

Further characterization of the identified TAM DNA methylation signature validated
signaling pathways (e.g., TGF-β, TNF-α, and INF-γ signaling), as well as crucial TFs (e.g.,
STAT1, FOSL2, and RUNX) involved in TAM reprogramming. Additionally, it showed
enrichment for TF motifs of RBPJ1. A previous report revealed that monocyte to TAM
differentiation in a genetic breast cancer mouse model requires Notch signaling through the
transcriptional regulatorRBPJ103. Confirmation of this finding emphasizes the potential of a
conservedmechanism inTAMreprogramming and shows the strength ofDNAmethylation
profiling techniques in identifying these processes.

Annotation of the TAM DNA methylation signature allowed us to evaluate patient
survival in the human breast cancer expression cohort METABRIC62. Similar to the
TAM expression signature, an association between TAM signature expression, macrophage
infiltration, and patient survival was observed. In addition, the majority of genes annotated
to the TAM DNA methylation signature showed a strong expression induction in TAMs
and repeatedly identified the TFs Stat1 and Runx3, highlighting their role in TAM
reprogramming.

Overall, the present thesis reinforces the concept of TAMs in the promotion and
progression of breast cancer and shows a fundamental role ofDNAmethylation in regulating
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these processes. Furthermore, the investigation of DNA methylation and gene expression
landscapes allows the identification of drivers in TAM reprogramming. Thus, it provides
opportunities for new therapeutic targets and allows predictive as well as diagnostic marker
discovery.
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5
Conclusion and perspectives

The present doctoral thesis focused on macrophages, innate immune cells present in
essentially all tissues. Macrophages play a primary role in tissue homeostasis, host
defense, and the orchestration of immune responses64. On the contrary, dysfunctional
macrophages have a significant pathophysiological impact and contribute to many
inflammatory and non-inflammatory diseases . Although the respective tissue niche
shapes diverse macrophage populations through distinct gene-regulatory mechanisms,
common functionalities of macrophages are given177,223,293. These include efferocytosis and
phagocytosis, as well as appropriate immune responses to pathological stimuli138,242,329.
To mount an effective immune response upon pathogen infection, rapid induction of
inflammatory signals and further self-limitation to reduce excessive inflammation and tissue
damage must be assured216. However, inappropriate macrophage activation, mediated
through specific signals within the altered microenvironment, induces uncontrolled
macrophage responses, such as excessive inflammation, tissue remodeling, or the support of
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tumor progression29,47,86. Therefore, macrophages’ homeostatic, reparative, and protective
functions are subverted, causing the association between macrophage states and disease
progression.

The mechanisms behind macrophage reprogramming and dysfunction are frequently
not understood. Potential causes can be presumed within an alteredmicroenvironment, and
consequences might be reflected in the macrophages’ epigenetic and transcriptional
landscapes. To exemplify these mechanisms and consequences of macrophage
reprogramming, we characterized macrophages’ and monocytes’ epigenomes as well as
coinciding transcriptional patterns in two chronic diseases. Collectively, we demonstrated
epigenetic reprogramming of macrophages and monocytes by an altered microenvironment
and proposed a direct impact on gene regulation and macrophage functions.

Muco-obstruction and breast cancer are two distinct diseases with a worldwide health
burden, affecting different organs and diverse classes of tissue-resident macrophages. Yet,
we were able to identify specific commonalities of macrophage reprogramming as well
as alterations and mechanisms of macrophage recruitment. We generated a genome-wide
epigenetic map of tissue-resident macrophages from both diseases and defined alterations
in the epigenome and transcriptome compared to their healthy counterparts. In the case
of the Scnn1b-Tg mouse model of muco-obstruction, changes of Snn1b-Tg compared to
WT AMs were defined on chromatin accessibility, DNA methylation, and gene expression
level. Additionally, alterations in essential macrophage functions, such as efferocytosis,
phagocytosis, as well as in the responses tomucus and a pathophysiological relevant stimulus,
LPS, were analyzed. For TAMs from the 4T1 orthotopic mouse model of breast cancer, we
focused on alterations in the DNA methylation and transcriptome landscape compared to
their healthy counterpart, MGs, and in relation to their cellular origin BMDMs.

Breast cancer heavily reprogrammed the DNA methylation landscape of TAMs
compared to MGs on a global level. TAMs accumulate in the tumor microenvironment
because of the recruitment and reprogramming of BMDMs103,66,246. Consequently, the
monocytic origin was reflected in the DNA methylation landscape that depicted DNA
methylation programs similar to those observed in BMDMs. In contrast, only focal changes
in the DNA methylation level of Scnn1b-Tg compared to WT AMs were observed.
Accordingly, further investigation excluded monocyte-recruitment to the muco-obstructive
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lung and indicated the reprogramming of the local AM pool. Yet, these differences in
ontogeny do not represent a tissue-specific phenomenon but are instead a disease-related
characteristic. Previous studies have shown the recruitment of inflammatory monocytes to
the lung upon inflammation in fibrosis or virus infection209,249.

Although thedistinctmacrophagepopulationswere reprogrammed to adifferent extend,
we detected similar inflammatory signatures in tissue-resident macrophages from both
chronic diseases. Most notably was the identified pro-inflammatory IFN-γ program. IFN-
γ is a cytokine critical for innate and adaptive immune responses against viruses, bacteria,
or other infections. In addition, it is associated with a variety of autoinflammatory and
immune diseases. IFN-γ alone or in combination with LPS can induce a classically activated
macrophage phenotype (M1)213,215. In combination with previous studies, our results
indicate a different origin of the enriched IFN-γ programs. Whereas IFN-γ was shown to be
secreted fromNK-/T-cellswithin the tumormicroenvironmentof breast cancer, an increased
bacterial burden could explain theM1 signature found enriched in Scnn1b-TgAMs105,187,197.

In addition to the pro-inflammatory M1 signature, Scnn1b-Tg AMs and TAMs from
breast cancer were enriched for an alternatively activated macrophage (M2) program on
an epigenetic and gene expression level (e.g., enrichment of TGF-β and IL-4 signatures).
The presence of M1, together with M2 markers, contradicts the binary macrophage
polarization system and indicates an immense complexity in the in vivo setting. The
plasticity of macrophage phenotypes should be defined in a spectrum model since stimuli
supporting the activation of macrophages into pro-and anti-inflammatory states can be
present simultaneously125,331. For AMs from Scnn1b-Tg mice, the presence of diverseM1 or
M2 polarized subpopulations was excluded via single-cell high-dimensional flow cytometry,
and a mixed phenotype was shown. Also, for TAMs, the co-occurrence of M1 and M2
programs was indicated, by the presence of M1 and M2 pathways, in the same DNA
methylation program, uniquely present within the TAM samples.

Future studies should dissect the phagocyte system on a single-cell level. These analyses
will clearly show the presence of M1 and M2 subpopulations or a mixed phenotype within
a diseased organ. In addition, a multimodal single-cell analysis will help to understand the
identified gene-regulatory networks and indicate trajectories ofmacrophage reprogramming.
Although modern computational methods can infer trajectories via pseudotime or velocity
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analyses, time-resolved or linage tracing studies will be needed to comprehensively map the
reprogramming of monocytes and macrophages in different chronic diseases.

In addition, future studies need to validate the identified alterations in human patient
cohorts. Whereas large breast cancer multi-omics datasets already exist62,165, isolated TAMs
from human breast cancer patients have only been profiled on a transcriptional level46. Yet,
we found differential transcription and methylation of in mice generated TAM signatures
in severe breast cancer subtypes. Similarly, existing studies of muco-obstructive lung disease
have primarily focused on mixed samples (whole lung tissue, epithelium, blood, lavage) and
not on defined cell populations41,50,193,194,212,280. In addition, DNAmethylation studies were
frequently limited to a small set of patients or using array-based methods50, restricting the
epigenetic analysis to a selected part of the genome.

Ultimately, similar to the functional analysis of AMs from Scnn1b-Tg and WT mice,
functional characterization of TAMs compared to MGs and BMDMs remains to be
investigated in the context of epigenetic reprogramming by breast cancer. In the case of
TAMs, the effect of epigenetic reprogramming on tumor progression is of central interest,
and crosstalk between TAMs and cancer cells should be further investigated. This could
be achieved by coculture assays, including TAMs and cancer cells, as well as the specific
inhibition or knockdown of identified signals within the tumor microenvironment in vivo.

Albeit these remaining questions, the present thesis represents the first comprehensive
genome-wide characterization of the DNA methylation landscape in AMs from muco-
obstructive lung disease as well as TAMs in breast cancer. Our work highlights the benefit
of analyzing isolated cell types instead of bulk tissues or tumors and emphasizes the specific
effects of certain chronic diseases on the tissue-resident macrophage pool. It has shown the
immense potential of genome-wide profiling methods in identifying epigenetic drivers and
thediscoveryof diseasemarkers thatwill providenovel diagnostic andprognostic approaches,
as well as the possibility for new therapeutic options targeting macrophages.
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6
Material and methods

6.1 Epigenetic reprogramming of airway macrophages drives
polarization and inflammation in muco-obstructive lung
disease

6.1.1 Mice

Scnn1b-Tg and Cftr-/- (gut-corrected) mice on a C57BL/6 background were bred in-
house under pathogen-free conditions and genotyped as described previously195,345. 6-
week old female mice were used for FACS sorting experiments. Gender-matched 6-week
old mice were used in all further experiments. As control animals, WT littermates were
used. All animal experiments have been reviewed and authorized by the local authorities
(Regierungspräsidium Karlsruhe, Germany).
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6.1.2 Isolation of airway macrophages by lavage

Mice were anesthetized by intraperitoneal injection of 120 mg/kg ketamine and 16 mg/kg
xylazine (Sigma-Aldrich, Darmstadt, Germany) and further exsanguinated. Primary AMs
were obtained by flushing the lungs three times with 800 µl PBS plus 5 mM EDTA (Sigma-
Aldrich). The lavage was repeated twice. For ex vivo treatment experiments, 3-4 washes were
pooled to maximize the number of AMs.

6.1.3 Isolation of peritoneal macrophages

Euthanization of mice was performed by cervical dislocation. Primary peritoneal
macrophages were obtained by injecting 10 ml of PBS supplemented with 5 mM EDTA
(Sigma-Aldrich) into the peritoneum and further fluid aspiration.

6.1.4 Culture and treatment of primary macrophages with lipopolysaccharide and
mucus

For LPS treatment, collected cells were seeded into a flat-bottom 96-well plate in complete
DMEM (1 g/L D-Glucose, L-Glutamine, Pyruvate; Gibco, Dreieich, Germany) containing
10% heat-inactivated FCS (Gibco), 1x penicillin-streptomycin (Gibco), and 2 mM L-
glutamine (Gibco) to a final count of 100,000 AMs/well. For baseline gene expression
analysis, adhering cells were resuspended in 200 µl Trizol (Thermo Fisher Scientific GmbH,
Dreieich, Germany). For baseline gene expression, 1 hr post cell seeding at 37 °C, 5% CO2,
non-adherent cells were washed from the plate with prewarmed PBS. Adherent cells were
resuspended in 200µlTrizol (ThermoFisher ScientificGmbH). ForLPS treatment, adherent
cells were exposed to 100 ng/ml LPS (P. aeruginosa) (Sigma-Aldrich) for 6, 12, and 24 hrs.
Complete DMEM was used as control. For mucus treatment, AMs were cultured with
different concentrations (0%, 0.1%, 1%, 2%, 5%, and 10%) of bovine submaxillary gland
mucus (MerckMillipore, Darmstadt, Germany). Supernatants were collected, and adherent
cells were resuspended in 200 µl Trizol (Thermo Fisher Scientific GmbH).
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6.1.5 Primary mouse tracheal epithelial culture

To isolate the trachea, mice were anesthetized by intraperitoneal injection of 120 mg/kg
ketamine and 16mg/kg xylazine (Sigma-Aldrich) and exsanguinated. Tracheas were opened,
washed inDMEM/F-12 (Gibco) containing 1% penicillin-streptomycin (Gibco), transferred
into 20 ml dissociation medium containing 1.4 mg/ml protease E (Sigma-Aldrich) and
0.1 mg/ml DNase I (Roche Diagnostics GmbH, Mannheim, Germany), and incubated
overnight at 37 °C. Heat-inactivated FCS (Gibco) was used to stop the enzymatic reaction.
Cells were then resuspended through a 100 µm cell strainer (BD Biosciences, Heidelberg,
Germany), resuspended in DMEM/F-12 supplemented with heat-inactivated FCS (Gibco),
4.4 µg/ml insulin (human recombinant zinc; Gibco), and 0.1 mg/ml primocin (InvivoGen,
Toulouse, France), and seeded into bacterial culture dishes. 2 hrs post-incubation at 37
°C, non-adherent epithelial cells were seeded on transwell filters (Costar, Sigma-Aldrich),
coated with collagen from human placenta (Sigma-Aldrich). The protocol from Horani
et al., 2013 was adapted for submerged mouse tracheal epithelial culture (mTEC/Plus)
and air-liquid interface culturing (ALI, mTEC/SF)148. The primary medium for both
culturing approaches consists of DMEM/F-12 (Gibco) supplemented with 15 mMHEPES
(Carl Roth GmbH & Co. KG, Karlsruhe, Germany), 3.6 mM NaHCO3 (ApplieChem
GmbH, Darmstadt, Germany), 4 mML-glutamine (Gibco), and 1x penicillin-streptomycin
(Gibco). The submerged culture medium was prepared as followed; primary medium
was supplemented with 10 µg/ml insulin (human recombinant zinc, Gibco), 5 µg/ml
transferrin (Sigma-Aldrich), 25 ng/ml recombinant human epidermal growth factor (EGF,
Gibco), 30 µg/ml bovine pituitary gland extract (BPE, Sigma-Aldrich), 5% heat-inactivated
FCS (Gibco). The ALI culture medium was prepared as followed; primary medium was
supplemented with 5 µg/ml insulin (human recombinant zinc, Gibco), 5 µg/ml transferrin
(Sigma-Aldrich), 5 ng/ml EGF (Gibco), 30 µg/ml BPE (Sigma-Aldrich) and 1 mg/ml BSA
(SERVA Electrophoresis GmbH, Heidelberg, Germany) reconstituted in HBSS (Gibco).
Before use, retinoic acid (RA, Sigma-Aldrich) was added to mTEC/Plus and mTEC/SF
medium (final concentration 5x10-8 M). The submerged culture mediumwasmodified after
three days, and trans-epithelial resistance was assessed on day five. Cells were moved to ALI
culture conditions usingmTEC/SFmedium-plus RAwhen a 1000 /cm2was reached. Every
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other day, a medium change was performed, and surfaces were washed with PBS.

6.1.6 Immunofluorescence microscopy

Cells were fixed for 10 minutes (mins) with 4% paraformaldehyde (Otto Fischer GmbH
& Co. KG, Saarbrucken, Germany), permeabilized for 8 min with 0.2% Triton X-100
(ApplieChem GmbH), and blocked for 15 min with 1% BSA (SERVA Electrophoresis
GmbH). Staining was performed for 60 min at 37 °C with rabbit anti-mouse-SCNN1B
(1:200, kindly provided by Prof. Dr. C. Korbmacher, University Erlangen-Nuremberg),
rat anti-mouse-MerTK (1:20; R&D Systems Inc., Wiesbaden, Germany) and mouse anti-
mouse-acetylated-α-tubulin (1:200; Life Technologies, Dreieich, Germany). Next, the
respective secondary (ab’)2 fragment goat anti-rabbit IgG (AF647, 1:200, LifeTechnologies),
F(ab’)2 fragment goat anti-rat IgG (AF488, 1:300, Life Technologies), F(ab’)2 fragment
goat anti-mouse IgG (AF488, 1:200, Life Technologies), and Hoechst 33258 (1:20000, Life
Technologies) were applied for 2 hrs at room temperature. Images were acquiredwith a Leica
TCS SP8 camera (Leica Microsystems, Wetzlar, Germany) and analyzed with the LASX
v3.5.19976 software.

6.1.7 Fluorescence-activated cell sorting of airway macrophages for sequencing

For FACS, 1 ml dispase (BD Biosciences) was intratracheally instilled into the lungs and
plugged by instillation of 300 µl low melting agarose (1%). When agarose was solidified, the
whole lung, including the tracheobronchial tree, was extracted and incubated in 2ml dispase
for 35 min at room temperature. To stop the reaction, complete DMEM was added, lungs
were mashed with a plunger, the tracheobronchial tree was removed, and the cell suspension
was pushed through a 100 µm cell strainer (BD Biosciences). Following red blood cell lysis
(RBC lysis buffer, eBiosciences, Dreieich, Germany), the cell suspension was enriched using
CD45+ magnetic beads separation, according to the manufacturer’s instructions (Miltenyi
Biotech, Bergisch Gladbach, Germany). After positive selection, cells were counted, and
antibody concentrations were calculated based on the collected cell numbers and initial
antibody titration (Table 6.1). Following staining with fluorochrome-conjugated antibodies
againstmurineCD45.2, Siglec-F, andCD11c, cellswere incubated for 5minwithpurified rat
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IgG2b anti-mouse CD16/CD32 receptor antibody (BDBiosciences, Heidelberg, Germany)
in FACS buffer containing 1% BSA (SERVAElectrophoresis GmbH,Heidelberg, Germany)
and 5 mM EDTA (Sigma-Aldrich). 5 min before sorting samples were stained with 7-AAD
(0.25 µg/ml per 1x106 cells; Biolegend, London, UK) to exclude dead cells. Sorting was
performed at the EMBL Flow Core Facility, Heidelberg, Germany. A standard BD Fusion,
equipped with 100 -mW 405 -nm, 100 -mW 488 -nm, 80 -mW 561 -nm, 80 -mW 640 -
nm lasers, and an ND2.0 filter in front of the FSC photodiode, a nozzle size of 100 μm,
and corresponding BD FACSFlow sheath pressure of 20 psi, matched with a transducer
frequency of 32 kHz, was used for AM sorting. The input pressure was changed to ensure
that an event populated every fifth to the sixth drop. A purity check of sorted cells was done
on selected samples from each run. Purities were ranging from 95% to 99%. SortedAMswere
either immediately processed or treated with 100 ng LPS for 12 hrs for nucleic acid isolation
and sequencing.

Table 6.1: Antibody panels used for efferocytosis and phagocytosis assays, high‐dimensional flow cytometry, as well as
FACS.

Efferocytosis and Phagocytosis

Antibody Clone Fluorophor
Dilution
for BAL cells

Supplier

Siglec-F E50-2440 BUV395 1:400 BD Biosciences
CD11c N418 BV421 1:400 BD Biosciences
CD45.2 104 AF700 1:400 BD Biosciences
Surface stain

Antibody Clone Fluorophor
Concen-
tration
1x106 cells

Supplier

CD206 C068C2 PE-Cy7 1 mg/ml Biolegend
CD301b
(MGL2)

URA-1 PE-Dazzle 594 2 mg/ml Biolegend

CD369
(CLEC7A)

bg1fpj PerCp-
eFluor710

1 mg/ml eBiosciences
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CD64 X54-5/7.1 BV711 1 mg/ml Biolegend
MerTK 2B10C42 PE 1 mg/ml Biolegend
MHCII M5/114.15.2 BV510 0.25 mg/ml Biolegend
CD200R OX110 AF647 2 mg/ml BD Biosciences
CD38 90 Pacific Blue 1 mg/ml Biolegend
CD86 GL-1 PerCp-Cy5.5 2 mg/ml Biolegend
CD68 FA-11 APC 1mg/ml Biolegend
CD163 TNKUPJ Super Bright

436
2 mg/ml eBiosciences

CD209a 5H10 BV786 2 mg/ml BD Biosciences
CD11b M1/70 BV605 0.25 mg/ml Biolegend
CD11c N418 BV421 0.5 mg/ml BD Biosciences
CD45.2 104 AF700 0.5 mg/ml BD Biosciences
Siglec-F E50-2440 BB515 0.25 mg/ml BD Biosciences
FACS

Antibody Clone Fluorophor
Concen-
tration
1x106 cells

Supplier

CD11c N418 BV421 0.5 mg/ml BD Biosciences
Siglec-F E50-2440 PE 0.25 mg/ml BD Biosciences
CD45.2 104 AF700, APC,

PE-Cy7
0.5 mg/ml BD Biosciences

6.1.8 Staining and flow cytometry for surface marker expression analysis

To obtain a single-cell suspension, lungs were perfused with PBS and digested with 1
mg/ml Collagenase D (Roche Diagnostics GmbH, Mannheim, Germany) and 30 µg/ml
DNAse I (Roche Diagnostics GmbH). After 1 hr incubation at 37 °C on a shaker, the
digested lungs were mechanically placed through a 100 µm cell strainer (BD Biosciences,
Heidelberg, Germany). After 1 hr at 37 °C on a shaker, red blood cell lysis was performed
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(RBC lysis buffer, eBiosciences), and two million cells were used for further staining.
In FACS buffer containing 1% BSA (SERVA Electrophoresis GmbH), 5 mM EDTA
(Sigma-Aldrich), and 0.05% sodium azide (Sigma-Aldrich), cells were incubated for 5 min
with purified rat IgG2b anti-mouse CD16/CD32 receptor antibody (BD Biosciences),
followed by staining with fluorochrome-conjugated antibodies against murine CD45.2,
Siglec-F, CD11b, CD11c, CD64, MerTK, CD200R, CD206, CD163, CD38, CD86,
CD68, MHCII, MGL2, CLEC7A, and CD209A (Table 6.1) in brilliant stain buffer
(BD Biosciences) for 25 min at 4 °C. Next, the APC-eFlour780 live/dead fixable dye was
applied for 30 minutes at 4 °C (1:1000; eBiosciences). Samples were measured on a standard
405/488/561/640 nm laser engine CYTEK Aurora (Cytekbiosciences, Freemont CA,
USA). Data were preprocessed and analyzed for frequencies using the FACSDiva software
and FlowJo 10.4 (BD Biosciences). Cell-types were defined by the expression of specific
surface markers: Alveolar macrophages (AM): CD45.2+, CD64+, MerTK+, CD11c+, and
SiglecF+; Interstitialmacrophages (IM):CD45.2+, CD64+,MerTK+,MHCII+, and SiglecF-;
Dendritic cell cluster 1 (DC1): CD45.2+, CD64-,MerTK-, SiglecF-,MHCII+, CD11c+, and
CD11b+; Dendritic cell cluster 2 (DC2): CD45.2+, CD64-, MerTK-, SiglecF-, MHCII+,
CD11c+, and CD11b-; Neutrophils: CD45.2+, CD64-, MerTK-, CD11b+, SiglecF-, and
MHCII-; Eosinophils: CD45.2+, CD64-, MerTK-, CD11b+, and SiglecF+; B-cells (BC):
CD45.2+, CD64-, MerTK-, SiglecF-, MHCII+, and CD38+; structural cells: CD45.2-.

6.1.9 Staining and flow cytometry for efferocytosis and phagocytosis assays

Murine LA4 ATCCCCL-196 cells (5x105 cells/ml; ATCC, Wesel, Germany) were used for
the efferocytosis assay.Apoptosiswas induced by incubatingLA4ATCCCCL-196 cells for 3
hrswith 1µMstaurosporine (EnzoLife Sciences (ELS)AG,Lausen, Switzerland).According
to themanufacturer’s instructions, apoptotic cellswere labeledwith an equimolar solutionof
Annexin V-Biotin (Biolegend) and pHRodo Red Avidin (Thermo Fisher Scientific GmbH)
inAnnexinV staining buffer (Biolegend).After 15min at room temperature, a total of 1x106
apoptotic cells were resuspended in 50 µl PBS and intratracheally administered into mice
anesthetized with isoflurane. 2-3 hrs post-administration, mice were sacrificed, and airway
macrophages were isolated by lavage.
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For the phagocytosis assay, AMs were obtained by lavage and incubated for 1 hr with
or without the phagocytosis inhibitor Cytochalasin D (10 µM, Sigma-Aldrich) in complete
DMEM.pHRodoRedE. coli bioparticles (ThermoFisher ScientificGmbH)were added and
incubated for 1 hr, according to the manufacturer’s instructions. Staining was performed
with purified rat IgG2b anti-mouse CD16/CD32 receptor antibody (BD Biosciences)
in FACS buffer containing 1% BSA (SERVA Electrophoresis GmbH), 5 mM EDTA
(Sigma-Aldrich), and 0.05% sodium azide (Sigma-Aldrich) for 5 min. Next, fluorochrome-
conjugated antibodies against murine Siglec-F, CD45.2, and CD11c (Table 6.1) were added
for 25 min at 4 °C in the dark. After washing, cells were incubated for 30 min at 4 °C with
APC-eFlour780 (1:1000; eBiosciences). Data were acquired on a BD LSRFortessa equipped
with 20 -mW 355 -nm, 50 -mW 405 -nm, 50 -mW 488 -nm, 50 -mW 561 -nm, 40 -mW
640 -nm lasers, and an ND1.0 filter in front of the FSC photodiode. Internalization of LA4
cells and E. coli bioparticles in AMs was followed with the pHrodo dye. Further analysis was
performed using the FACSDiva and FlowJo 10.4 software (BD Biosciences).

6.1.10 RNA isolation and quantitative PCR

Trizol (Thermo Fisher Scientific GmbH) and RNeasy Mini Kit (Qiagen, Düsseldorf,
Germany)were applied according to themanufacturer’s instructions to extractRNA. cDNA
was generated by reverse transcription (Superscript III, Invitrogen, Dreieich, Germany) and
used for quantification by qPCR. Thermo Fischer Scientific probes to assay Il1b, Il12b,
Mmp12, Arg1, Ccl22, Ccl17, CD86, Cxcr1, Trem2, Ptgs1, Ptgir, Anpep, Igf1, and Igf2bp3
together withGapdh (primer limited) were used in duplex runs.
For Il6, the following primers and probe were applied:
fwd, 5´-GAGGATACCACTCCCAACAGACC-3’,
rev, 5´-AAGTGCATCATCGTTGTTCATACA-3´;
probe, 5´-FAM-CAGAATTGCCATTGCACAA-TAMRA-3´;
and for Tnf:
fwd, 5´-CATCTTCTCAAAATTCGAGTGACAa-3´;
rev, 5´-TGGGAGTAGACAAGGTACAACCC-3´;
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probe 5´-FAM-CACGTCGTAGCAAAC-3´ (Eurofins Genomics GmbH, Ebersberg,
Germany).
Gapdh was used as a reference, and fold induction was calculated by the 7500 Real-Time
PCR System SDS Software (Applied Biosystems, Dreieich, Germany).

6.1.11 Chemokine and cytokine detection

The cytometric bead array (BD Biosciences) was used according to manufacturer’s
instructions to analyze supernatants obtained from medium and LPS treated AMs for IL-
6, IL-1α, IL-23, TNF-α, CCL2, CCL3, and CXCL1. Quantification was performed on a
BD FortessaLSR according to a standard curve with the BD Cytometric Bead Array FCAP
Array Software v3 (BD Biosciences).

6.1.12 Nucleic acid isolation for sequencing

According to the manufacturer’s instructions, DNA and RNA were isolated using Trizol
reagent (Thermo Fisher Scientific GmbH) following AllPrep DNA/RNA Mini Kit
(Qiagen). For RNA isolation, DNAse I (RNase-free DNAse set, Qiagen) digestion was
performed. For RNA and DNA isolation, Proteinase K (Puregene Proteinase K, Qiagen)
digestion was performed. Agilent Bioanalyzer (Agilent Technologies Germany GmbH &
Co. KG, Waldbronn, Germany) was used to determine DNA and RNA quality. All RNA
samples used for sequencing required anRNA integrity number (RIN) >8.5.Quantification
was performed by Qubit fluorometry (Thermo Fisher Scientific GmbH).

6.1.13 Tagmentation-based whole-genome bisulfite sequencing library preparation

tWGBS was performed as previously described with 20 ng DNA per sample319. Each
tagmentation reaction was split into four sequencing libraries with different barcodes and
then pooled in equimolar amounts to reach a final concentration of 10 nM. Libraries were
sequenced at the DKFZ Genomics and Proteomics Core Facility (Heidelberg, Germany)
using paired-end, 125 bps, on one lane of a HiSeq2000 v4 sequencer (Illumina, San Diego,
CA, USA) per sample.
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6.1.14 Assay for transposase-accessible chromatin sequencing library preparation

ATACseq libraries were prepared according to the Omni-ATAC protocol58. 50,000 viable
cells/sample were used. The tagmentation reaction was stopped by the addition of 20 µl
of 5 M Guanidinium thiocyanate (Sigma-Aldrich), and transposed chromatin was purified
using 30 µl of AMPure XP beads (Beckman Coulter, Brea, CA, USA) and 110 µl of
PEG buffer containing 2.5 M NaCl and 20% PEG 8000 (Sigma-Aldrich). Post library
amplification, DNA was purified with a left-sided size selection applying 1.4x of AMPure
XP beads (Beckman Coulter), which were finally resuspended in 1x elution buffer (Qiagen).
Library size distributionwas checked byAgilent Bioanalyzer (AgilentTechnologiesGermany
GmbH & Co. KG), and concentrations were measured by Qubit fluorometry (Thermo
Fisher Scientific GmbH). Multiplexes of 4 samples per lane were sequenced at the DKFZ
Genomics andProteomicsCore Facility using aHiSeq2000 v4, paired-end, 125bps platform
(Illumina).

6.1.15 RNA sequencing library preparation

TheDKFZGenomics andProteomicsCore Facility preparedpaired-end sequencing libraries
of baseline, LPS-, and medium-treated samples from total RNA using the SMART-Seq
v4 Ultra Low Input RNA Kit (Takara Bio, Saint-Germain-en-Laye, France). Sequencing
was performed at the DKFZ Genomics andProteomics Core Facility on a HiSeq 2000
v4, paired-end, 125 bps platform (Illumina). EMBL Genomics Core Facility (Heidelberg,
Germany)prepared single-end sequencing libraries of baseline samples from totalRNAusing
the NEBNext Ultra II Directional RNA Library Prep Kit from Illumina. Sequencing was
performed at EMBLGenomics Core Facility on a NextSeq 500, single-end, 75 bps platform
(Illumina).

6.1.16 Tagmentation-based whole-genome bisulfite sequencing data processing

tWGBS reads were trimmed using Trimmomatic33 v0.36 and aligned against the mouse
reference genome mm10 using bwa mem182 v0.7.8, invoking the parameter “-T 0”.
Alignment duplicates were marked with Picard38 v1.125 MarkDuplicates. Methylation
calling was performed withMethylDackelRyan v0.3.0, andM-bias was removed by excluding
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the five base pairs at the two ends of the reads from methylation calling. Samples used for
downstream analysis had a bisulfite conversion rate >98%, andmore than 95% of all reference
CpGs were covered. Each Scnn1b-Tg and WT group of replicates had a genome-wide CpG
coverage of >20x.

6.1.17 Assay for transposase-accessible chromatin sequencing data processing

ATACseq reads were processed using the ENCODE ATACseq pipeline with default
parameters156. Mm10 was used as a reference genome. Samples applied for downstream
analysis achieved >50 million non-duplicated, non-mitochondrial reads, an irreproducible
discovery rate <2, and a fraction of reads in peaks >0.5.

6.1.18 RNA sequencing data processing

RNAseq data were processed with the nf-core RNAseq pipeline91 v1.2 using default
parameters. Reads were aligned to the mouse reference genome mm10 by applying the
software HISAT2, with -unstranded option. For single-end data, the -singleEnd option was
used. Transcripts were assembled with StringTie and the gene code gene annotation release
M20100. Stringties’237 prepDE.py script (setting: -eb) was applied to generate gene counts.

6.1.19 DNAmethylation smoothing and differential DNA methylation analysis

TheRpackageBsseq130 v1.20.0was used to smooth (bsmooth) theDNAmethylationprofiles
with default parameters. DMRs between Scnn1b-Tg and WT AMs were called in a pair-
wise comparison using DSS230 v2.32.0. Regions with >3 CpGs, a length of >50 bps, a delta
of >0.1, and a Benjamin-Hochberg corrected P value <0.05 were selected as statistically
significant.

6.1.20 Differential chromatin accessibility analysis

The R package DiffBind281 v2.14.0 was used to perform differential accessibility analysis.
A common peak set was defined by the presence of a peak in at least two samples. edgeR
was applied255 as the statistical method of differential accessibility analysis. For the LPS
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treatment experiment, the date of library preparation was included as a blocking factor to
adjust for batch effects. TheLPS treatment effectwas identified by extracting count values for
consensus peaks and defining amulti-factor design including the batch, genotype, treatment,
and genotype/treatment interaction (∼ batch + genotype + treatment + genotype: treatment),
usingDESeq2188 v1.26.0.The treatment covariatewas extractedusing the following contrast:
c(“treatment”, “medium”, “LPS”). LPS responsive regionswith an adjustedP value<0.05 and
a log2 fold-change>2were considered significantlymore accessible inLPS vsmedium-treated
samples. Annotation of differentially accessible regions was performed using the R package
ChIPseeker339 v1.22.1 and TxDb.Mmusculus.UCSC.mm10.knownGene19 v3.10.0.

6.1.21 Differential gene expression analysis

Identification of differentially expressed genes was performedwith theRpackageDESeq2188

v1.26.0. For the group-wise comparison of baseline replicates, the littermate was included
in the design formula to adjust for batch effects. For the analysis of the LPS stimulation
experiment, the library preparation date was included as a covariate. Adjusted P values
and log2 fold changes to fulfill statistical significance are mentioned in the respective figure
legends.

6.1.22 Enrichment of gene regulatory regions

The R package LOLA276 v 1.16.0 was used to enrich DMRs andDARs with multi-cell gene
regulatory regions from Ensembl333. DMRs andDARs with an adjusted P value <0.05 were
stratified in hypo- and hypermethylated and increased and decreased accessibility in Scnn1b-
Tg vs WT AMs, respectively. Enrichment was performed against a random background of
DMRs or the consensus peak set of DARs.

6.1.23 Hierarchical cluster analysis

Hierarchical cluster analysis of DNA methylation levels was performed by calculating
the Manhattan distance of all DMRs and performing a complete linkage clustering.
Similarly, Euclidean distance of TMM normalized counts of DARs was used for chromatin
accessibility258,282. For gene expression, regularized log-transformed gene counts were
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calculated using DESeq2188 v1.26.0 and applied to batch removal with the limma253 v3.42.2
function removeBatchEffect. z-Scaled values were used to calculate Euclidean distance, and
clustering was performed with theWard’s method.

6.1.24 Transcription factor motif analysis of differentially methylated and
differentially accessible regions

DNA motif enrichment was performed using the command-line tool Homer136 v4.9.1
and the parameter -size_given. All DMRs and DARs with an adjusted P value <0.05 were
stratified in hypo- and hypermethylated or opened and closed regions.

6.1.25 Locus plot

The R package gviz127 v1.30.3 was used to generate locus plots.

6.1.26 Upstream regulator analysis

According to the developer’s manual, upstream regulator analysis with a prediction of the
activation state was done usingQIAGEN’s Ingenuity PathwayAnalysis. Upstream regulator
analysis is based on prior knowledge of expected effects between transcriptional regulators,
such as TFs, cytokines, and receptors, and their target genes stored in the Ingenuity
Knowledge Base. Upstream regulator analysis of chromatin accessibility was performedwith
genes annotated to DARs. For this purpose, the R package ChIPseeker339 v1.22.1 and
TxDb.Mmusculus.UCSC.mm10.knownGene19 v3.10.0 was applied.

6.1.27 Gene set enrichment analysis

GSEA with custom gene sets, obtained from Saini et al.261, was performed using the R
package clusterProfiler338 v3.12.0. The fgsea algorithm was applied as the statistical method
of choice.
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6.1.28 Overrepresentation analysis of pathways and gene ontologies

Overrepresentation analysis of pathways and gene ontologies was performed using the
webtoolMetascape346. For the baseline expression analysis, allDEGswith an adjustedP value
<0.1 were used. For the LPS stimulation analysis, the top 100 genes explaining the variance
in PC1 and PC2 were applied.

6.1.29 Analysis of surface marker expression

Flow cytometry data were preprocessed using FACSDiva software and FlowJo 10.4 (BD
Biosciences). Leukocytes were defined based on the expression of CD45.2. Fluorescence
intensities were exported for further analysis according to the workflow described by
Nowicka et al.220. In short, fluorescence intensities were transformed with the arcsine-
square-root transformation, and cell clustering was performed with the R packages
FlowSOM312 v1.18.0 and ConsensusClusterPlus324 v1.50.0. 20 meta clusters were defined
that were assigned to cell types based on the expression of specific surface markers: Airway
macrophages: CD45.2+, CD64+, MerTK+, CD11c+, and SiglecF+; Interstitial macrophages:
CD45.2+, CD64+, MerTK+, MHCII+, and SiglecF-; Dendritic cells: CD45.2+, CD64-,
MerTK-, SiglecF-, MHCII+, and CD11c+; Neutrophils: CD45.2+, CD64-, MerTK-,
CD11b+, SiglecF-, and MHCII-; Eosinophils: CD45.2+, CD64-, MerTK-, CD11b+, and
SiglecF+; B-cells: CD45.2+, CD64-, MerTK-, SiglecF-, MHCII+, and CD38++ Visual
representation with UMAP was performed by subsampling 5,000 cells per sample and the
R package umap304 v0.2.4.1. To perform differential surface marker expression, stratified by
cell types, a linear mixed model was applied, including the flow cytometry experiments’ date
as a covariate. Differentially expressed surface markers were defined by an adjusted P value
<0.05. Similarly, differential cluster abundancy was performed on the frequency of AM sub-
clusters by applying a linearmixedmodel including the flow cytometry experiments’ date as a
covariate. The differential abundance of AM sub-clusters was defined by an adjusted P value
<0.05.
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6.1.30 Deconvolution of RNA sequencing data

Deconvolution of bulk RNAseq with scRNAseq datasets was done with the R package
MuSiC318 v0.1.1. Processed and annotated scRNAseq from the single-cell atlas of the aging
lung5 and single-cell atlas of inflammatory airspace macrophages214 were kindly provided by
the authors. Only macrophage and monocyte clusters were used for the deconvolution with
the single-cell atlas of the aging lung. All clusters were used for cell type estimation with the
single-cell atlas of inflammatory airspace macrophages.

6.1.31 Principal component analysis

For gene expression analysis, batch removed regularized log-transformed values were applied
to the base R function promp. In the case of ATACseq data, log-transformed normalized
counts per consensus peaks were generated with the R package DiffBind282 v2.14.0 and the
DESeq2188 v1.26.0 function rlog, further applied to prcomp.

6.1.32 Profile plots

The R package peakSeason203 v0.1.0 was used to visualize profile plots. P values were
determined with the student’s t-test after a Shapiro test verified the normal distribution.

6.1.33 Transcription factor activity analysis

Differential transcription factor activity was assessed by diffTF26 v1.3.3, using ATACseq
and RNAseq data. Analytical mode with default parameters, comparing Scnn1b-Tg and
WT AMs treated with LPS or medium, was applied. As a reference, in silico predicted
transcription factor binding sites for 442 mouse transcription factors were used171. The
transcription factor class (activator, repressor, or undetermined) was determined by
integrating gene expression data of matching samples. Mean target gene expression was
calculated for transcription factors with an adjusted P value < 0.001 by taking the average
expression log2 fold change for each gene with the respective transcription factor motif
<1,500 bps away from the transcriptional start site.
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6.1.34 Hierarchical cluster analysis of transcription factors motifs

Differentially active TFs (adjusted P value <0.001) were clustered based on their position
weight matrix similarity. For this purpose, clustering results from the RSAT suite were
acquired205.

6.1.35 Code and data availability

All data analysis is based on publicly available software and is described in section 6. The
generated sequencing data have been deposited in the NCBI Gene Expression Omnibus
under the accession number GSE154808.

6.1.36 Statistical analysis

Statistical analyses were performed using R301 v3.6 or GraphPad Prism 6 (GraphPad
Software Inc., San Diego, USA). For qPCR and cytokine bead array results, two-group
comparisons were performed using unpaired, two-tailed Mann-Whitney U test, and multi-
group comparisons were performed using one-way ANOVA with Tukey’s or Bonferroni’s
multiple comparison test.

6.1.37 Custom schematics

Custom schematics were created with BioRender and Affinity Designer.
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6.2 Cancer-specific DNA methylation landscape of macrophages
and monocytes in breast cancer

6.2.1 Mice

BALB/c mice were maintained under specific pathogen-free conditions at the Weizmann
Institute of Science (WIS, Rehovot, Israel) animal facility. All animal experiments were
performed according to institutional guidelines and approved by the local ethics committee
at the WIS (IACUC 40471217- 2).

6.2.2 4T1 cancer cell line culture

4T1 cells stably expressing firefly luciferase (pLVX-Luc) were kindly provided by Z. Granot
(HUJI, Jerusalem, Israel). The cancer cell line was cultured in DMEMwith 10% fetal bovine
serum (FBS) (Invitrogen). The medium was exchanged every other day.

6.2.3 Orthotopic injection of 4T1 cells to the mammary fat pad

Eight weeks old BALB/c female mice were injected under anesthesia with 100,000 4T1 cells
expressing luciferase reporter (4T1-Luc) in 50 µl PBS to the mammary fat pad.

6.2.4 Isolation ofmammary glandmacrophages and bonemarrow-derivedmonocytes
from healthy mice

Euthanization of mice was performed by cervical dislocation of 12 weeks old Blab/c mice
to extract the mammary fat pad. The mammary fat pad was minced and dissociated
with 5 ml gentleMACS dissociation buffer consisting of DMEM (Biological Industries,
Cromwell, CT, USA), 0.02 g collagenase II (MerckMillipore), 0.02 g collagenase IV (Merck
Millipore), and 0.005 g deoxyribonuclease (Invitrogen). The reaction was stopped by 20 ml
of complete DMEMmedium (DMEM, 10% FBS, and 1% Penicillin-Streptomycin) added to
the dissociation buffer followed by filtration through a 70 μm strainer. Red blood cell lysis
was performed with red blood cell lysis buffer (Biolegend), and cells were centrifuged for
5 min at 350 g, and 4 °C. Tissue-resident macrophages were enriched via positive selection
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for F4/F80. Therefore, the pellet was resuspended in MACS buffer containing PBS, 0.5%
BSA (Merck Millipore), and 250 mg EDTA (J.T.Beaker, Phillipsburg, New Jersey, USA)
and further incubated with anti-F4/80 MicroBeads (Miltenyi Biotech). According to the
manufacturer’s instructions, tissue-resident macrophage enrichment was performed.

From the same mice, Tibia and Femur leg bones were dissected to isolate BMDM from
healthymice. Bones were flushed withMACS buffer using a 5ml syringe with a 25G needle.
The flushed cells from the bone marrow were then centrifuged at 500 g for 5 min and
resuspended in red blood cell lysis buffer.

6.2.5 Isolation of tumor-associated macrophages and bone marrow-derived
monocytes from tumor-bearing mice

Fourweeks post 4T1-Luc cells injection,micewere sacrificed via cervical dislocation.Tumors
were isolated from the mammary fat pad, minced, and digested in 5 ml digestion buffer,
consisting of 5 ml RPMI (Biological Industries), 0.005 g deoxyribonuclease (Invitrogen),
and 15mg collagenase A (Sigma-Aldrich) using a gentleMACSdissociator (Milteny Biotech)
with the default program for solid tumors. The dissociated cells were strained through a 70
µm cell strainer and centrifuged for 7 min at 350 g. Red blood cells were lysed using a red
blood cell lysis buffer. Immune cells were enriched via the surface marker CD45. Therefore,
the pellet was resuspended in MACS buffer and incubated with anti-CD45 MicroBeads
(Milteny Biotech). Immune cell enrichment was performed according to the manufacturer’s
instructions.

BMDM isolation of tumor-bearing mice was performed as described for BMDM from
healthy mice in section 6.2.4.

6.2.6 Fluorescence-activated cell sorting of tumor-associatedmacrophages,mammary
gland macrophages, and bone marrow-derived monocytes

Isolated cells were incubated with TrueStain FcXTM anti-mouse CD16/32 (Biolegend) for
10 min on ice to perform FC receptor blockage. TAMs and BMDMs were incubated in
MACS buffer for 30 min at 4 °C and stained with fluorochrome-conjugated antibodies
(Table 6.2) against murine CD11b, F4/F80, Gr1, and the live/dead staining DRAQ7TM
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(Biolegend). A similar approach was used for mammary gland macrophages. Staining was
performedwithout the anti-Grl antibody. Following staining, cells were washed withMACS
buffer. Cells were gated based on marker expression. BMDMs: DRAQ7−, CD11b+, Gr1+,
and F4/80low; MGs: DRAQ7-, CD11b+, and F4/F80+; TAMs: DRAQ7-, CD11b+, Gr1-,
and F4/F80+. Cells were sorted using FACSAria III (BD Biosciences) into Eppendorf tubes
containing 40 µl of lysis/binding buffer of Dynabeads mRNA DIRECT Purification Kit
(Thermo Fisher Scientific) for RNA isolation. The remaining cells were collected for DNA
isolation into FACS tubes containing 1ml complete DMEMmedia.

Table 6.2: Antibody panels used for FACS.

Antibody Clone Fluorophor
Concentration
per 100 µl

Supplier

CD11b M1/70 PB 1 µl Biolegend
F4/80 BM8 FITC 1 µl Biolegend
Gr1 RB6-8C5 PerCP-Cy5.5 1 µl Biolegend

6.2.7 DNA isolation for sequencing

Isolation of DNA from sorted cells was performed with the DNeasy Blood & Tissue
Kits (Qiagen) according to the manufacturer’s instructions. DNA was eluted in 30 µl
DNase/RNase-free water, and DNA concentrations were detected by Qubit fluorometry
(Invitrogen).

6.2.8 Whole-genome bisulfite sequencing by post-bisulfite adaptor tagging library
preparation

The single-cell bisulfite sequencing protocol, utilizing PBAT, was applied to generateWGBS
data of low input material54. As input, 6 ng of purified DNA or 1,000 cells, which were
directly sorted into RLT Plus buffer (Qiagen), were used. A total of 10 µl of cell suspension
was applied to the protocol, including the following changes: A single preamplification
step was performed for 90 min at 37 °C. 14 cycles of library amplification were conducted
with default PCR parameters. Libraries were purified by applying a 0.7x SPRI selection
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using Ampure XP beads (Agencourt). The libraries’ molarities were calculated based on
concentrations measured with the Qubit dsDNA Assay (Thermo Fisher Scientific) and
fragment size distribution, measured with the high sensitivity D5000 Assay for the Agilent
Tapestation (Agilent Technologies Germany GmbH & Co. KG). A second round of 0.7x
beads purification was applied to the libraries. Libraries were sequenced using paired-end,
150 bps, on one lane per sample of a HiSeq X sequencer (Illumina) at the DKFZ Genomics
and Proteomics Core Facility.

6.2.9 RNA sequencing library preparation

For the preparation of RNAseq libraries, 1,000 cells from each population were sorted into
40µl of lysis buffer (ThermoFisher Scientific).mRNAwas capturedwith15µl ofDynabeads
oligo(dT) (Thermo Fisher Scientific), washed, and eluted at 85 °Cwith 10 µl of 10mMTris-
Cl (pH 7.5). A derivation of the MARSseq protocol described by Jaitin et al. was used to
prepare RNAseq libraries154. Sequencing was performed at WIS on a NextSeq 500, paired-
end, 75 bps platform (Illumina).

6.2.10 Whole-genome bisulfite sequencing by post-bisulfite adaptor tagging data
processing

WGBS data, generated with the PBAT protocol, was processed by the Omics IT and
Data Management Core Facility (DKFZ, Heidelberg). Preprocessing of the reads was
performed according to Delacher et al., 201772. Reads were aligned using an updated
version of the pipeline published by319, which was implemented as a Roddy Workflow
in the automated One Touch Pipeline252. Briefly, adaptor sequences of raw reads were
trimmed using Trimmomatic33. Sequencing reads were then in silico bisulfite-converted
(C>T for the first read in the pair, G>A for the second). The software BWA-MEM182

was used with default parameters to align the converted reads to the in silico bisulfite-
converted reference genome mm10, extended with the PhiX and lambda phage sequences.
After alignment, reads were converted back to their original state, considering reads with a
mapping quality ≥25 and nucleotides with a Phred-scaled quality score ≥25. PCR duplicate
removal was performed per library using Picard38. Methylation calling and M-bias QC
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was performed using MethylDackel314 v0.4.0 and the parameters –OT 6,0,6,140 –OB
2,145,12,150, according toM-bias plot quality control.

6.2.11 RNA sequencing data processing

RNAseq datawere processed by the LSCFBioinformatics pipeline of theWIS as described in
Kohen et al., 2019166. Themouse reference genomemm10was used, and readswithmultiple
mappings were excluded.

6.2.12 Differential DNA methylation analysis

Methylation profiles of all samples were imported with the R package Bsseq130 v1.20.0.
DMRs of all comparisons (TAM vs MG, BMDM-T vs BMDM-H, BMDM-H vs MG,
BMDM-T vs TAM, BMDM-T vs MG, and BMDM-H vs TAM) were called in a pair-wise
comparisonwithDSS230 v2.32.0.Regionswith>3CpGs, a length of >50bps, a delta of >0.1,
and a Benjamin-Hochberg corrected P value <0.05 were selected as DMRs.

6.2.13 Principal component analysis

For PCA and further exploratory analysis of WGBS data, CpGs were filtered by a coverage
>5 in >2 samples from the same group and a coverage <0.99 percentile of all CpG coverages.
Methylation levels of the 200,000most variable methylated CpGs were applied to the R base
function prcomp. For RNAseq data, variance stabilizing transformation (vst) was applied to
normalized gene counts, usingDESeq2188 v1.26.0, further applied to batch removal with the
limma253 v3.42.2 function removeBatchEffect. Finally, the base R function prcompwas used
on the 5,000 most variably expressed genes.

6.2.14 Enrichment of gene regulatory regions and Molecular Signatures Database
hallmarks

The R package LOLA276 v 1.16.0 was used to enrich DMRs with multi-cell gene regulatory
regions from Ensembl100 and MSigDB hallmark gene sets183. DMRs of each comparison
were stratified in hypo- and hypermethylated regions and enriched to a background
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containing a union set of DMRs from all comparisons. The LOLA database of MSigDB
hallmarks was generated by annotating the gene sets’ promoter and gene body regions using
the R package TxDb.Mmusculus.UCSC.mm10.knownGene19 v3.10.0.

6.2.15 Transcription factor motif enrichment by transcription factor families

The command-line tool GimmeMotifs313 v0.14.4 was used to define enriched DNA TF
motifs by TF-family. GimmeMotif was applied with default options on DMRs, stratified
in hypo- and hypermethylated regions. TF motifs were grouped by TF-family. The most
significant P value per TF-family was visualized.

6.2.16 Transcription factor motif enrichment of differentially methylated regions

Transcription factor motif analysis was performed as described in section 6.1.24.

6.2.17 Differential gene expression analysis

DEGs were identified using the R package DESeq2188 v1.26.0. Group-wise comparisons
(TAM vsMG, BMDM-T vs BMDM-H, BMDM-H vsMG, BMDM-T vs TAM, BMDM-T
vsMG, and BMDM-HvsTAM)were performed by creating a design formula, including the
group and date of library preparation, to adjust for batch effects. DEGs were defined by an
adjusted P value <0.05 and an absolute log2 fold change >1.

6.2.18 Locus plot

Locus plots were generated as described in section 6.1.25.

6.2.19 Hierarchical cluster analysis

Hierarchical cluster analysis ofDMRs,DEGs, TFmotif enrichments, andLMCproportions
was performed using the R package Pheatmap248 v1.0.12. Complete-linkage clustering was
applied on theEuclidean distance of absolutemethylation values, z-scaled gene expression188,
-log10(P values) of enriched TF motifs136, and LMC proportions. In detail, for the
hierarchical cluster analysis of gene expression, vst function was applied to normalized
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gene counts, using the R package DESeq2188 v1.26.0. These were further used for batch
removal with the limma253 v3.42.2 function removeBatchEffect before z-scaling. For the
cluster analysis of DMRs and DEGs, the resulting tree was cut into six clusters using the
Pheatmap248 v1.0.12 function cutree (k=6).

6.2.20 Integration of whole-genome bisulfite sequencing and RNA sequencing data

For the integration of DNA methylation and gene expression, average DMR methylation
per group was calculated and annotated to genes with the R package ChIPseeker339 v1.22.1
and TxDb.Mmusculus.UCSC.mm10.knownGene19 v3.10.0. Average gene expression per
group was calculated post variance stabilizing transformation (vst) of normalized gene
counts188, which were further used for batch removal using limma253 v3.42.2 function
removeBatchEffect. As a batch, the date of library preparationwas specified.DMR/gene pairs
were further integrated via Pearson correlation. Correlating DMR/gene pairs were defined
by a P value <0.05. Overlap analysis with DMRs from the TAM vs MG or BMDM-T vs
BMDM-H comparison was performed with the findOverlaps function from the R package
GenomicRanges178 v1.38.0. For the joined visualization of DMR methylation differences
and gene expression changes in a scatter plot, delta methylation values from the differential
methylation analysis with DSS230 v2.32.0 and log2 fold changes from the differential gene
expression analysis with DESeq2188 v1.26.0 were used.

6.2.21 Overrepresentation analysis of pathways and gene ontologies

Overrepresentation analysis of pathways and gene ontologies was performed as described in
section 6.1.28.

6.2.22 Upstream regulator analysis

Upstream regulator analysis was performed as described in section 6.1.26.

6.2.23 Utilized publicly available datasets

Following publicly available datasets were used for the analysis in section 3.1.2:
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(a) METABRIC cohort62: METABRIC gene expression data and associated clinical
information were obtained from the cBioPortal for cancer genomics database49. Non-
classified molecular subtypes and normal samples were removed from the analysis. For
survival analysis, events were limited to 120 months of overall survival and censored based
on cancer-related deaths (died of cancer = 1; living or died of other causes = 0).

(b) TCGA (breast cancer) cohort165: TCGA breast cancer Illumina Human Methylation
450k array data were obtained using the R package TCGAbiolinks57 v2.14.0. Probes were
transferred from hg19 to mm10 reference genome via the R package liftOver30 v1.10.0.
Overlaps with LMC1 DMRs were identified with the findOverlaps function from the R
package GenomicRanges178 v1.38.0.

(c) 4T1 orthotopic mouse model scRNAseq269: The raw count matrix was obtained from
DRYAD. The analysis was performed with the R package Seurat286 v 3.2.2. Cells with fewer
than 200 detected genes per cell and genes expressed by fewer than two cells were removed.
Normalizationwas performed using the LogNormalizemethod and a scaling factor of 1,000.
Clusters were defined by constructing a k-nearest-neighbor graph based on the Euclidean
distance in PCA space (dimensions =1:20) using the FindNeighbors function. Clusters were
then applied to the Louvain algorithm to iteratively group cells together by the FindClusters
function (resolution =0.5). A total of 14 clusters were identified in the 4T1 scRNAseq
data assigned to 8 different cell types by cross-referencing cluster-specific marker genes to
published resources.

6.2.24 Tumor-associated macrophages expression signature

The TAM expression signature was defined by selecting DEGs that were upregulated in
TAMs compared to MGs (adjusted P value <0.05 and log2 fold change >1) and expressed
>0.05 percentile of all genes. The gene list was further filtered based on co-expression in the
METABRIC cohort by selecting genes with a human ortholog62.

6.2.25 Survival analysis

For survival analysis using the TAM expression signature, TAM vsMGDEG clusters, or the
TAMmethylation signature, annotated to upregulatedTAMvsMGDEGs (adjustedP value
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<0.05 and log2 fold change >1), average signature expression per patient in theMETABRIC
cohort was calculated62. Patients were assigned to the high or low expression group by having
a higher or lowermean signature expression than themedian +/-1 SD of all patients. Cancer-
specific survival was used as an endpoint. The analysis was performed with the R package
survival303 v3.1.8.

6.2.26 Uniform manifold approximation and projection

Visual representation of the scRNAseq 4T1 breast cancer dataset was performed with
Seurat’s286 v 3.2.2 RunUMAP function, using the first 20 dimensions. PCA was used as
the dimensional reduction method for UMAP input.

6.2.27 Prediction of ligand/receptor interactions

To study cell-to-cell interactions in the 4T1 scRNAseq dataset, normalized gene counts were
exported, andmouse gene symbolswere converted to thehumanHUGOgenenomenclature.
Ligand/receptor interactions were investigated using CellPhoneDB84 v2.1.4. Prioritization
of ligand/receptor interactions was done by examining the overlap of predicted ligands
with ligands that can activate identified TFs in the TF motif enrichment of TAM vs MG
hypomethylated DMRs. Therefore, a database curated by Pro et al.,2018 was applied243,
and functionally validatedmouse ligand/TF interactions were selected. Further overlap with
upstream regulators (P value <0.05) from the TAM vs MG comparison and the molecular
type cytokine or growth factors was visualized.

6.2.28 Deconvolution of DNAmethylation landscapes

Latentmethylation componentswere identified usingMeDeCom192 v0.3.0.MeDeComwas
applied on the union track of DMRs from all comparisons (TAM vs MG, BMDM-T vs
BMDM-H, BMDM-H vs MG, BMDM-T vs TAM, BMDM-T vs MG, and BMDM-H
vs TAM) using the following parameters: NINIT=10, NFOLDS=10, ITERMAX=300.
The model was optimized using cross-validation error (CVE), with different λ values and
a diverse number of components. Parameters were selected based on a stabilized CVE at k =5
and λ =0.01. DMRs, specifically hypomethylated in an LMC, were identified by comparing
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the average methylation of the remaining LMCs, using a cutoff delta >0.7. LMC1 DMRs
were used to define the TAM methylation signature. To investigate the TAM methylation
signature in the METABRIC expression cohort, the signature was further subsetted by
selecting DMRs that were annotated to genes upregulated in the TAM vs MG comparison
(adjusted P value <0.05 and log2 fold change >1)62.

6.2.29 Code

All data analysis is based on publicly available software and is described in section 6.

6.2.30 Statistical analysis

Statistical analyses were performed using R301 v3.6.

6.2.31 Custom schematics

Custom schematics were created with BioRender and Affinity Designer.
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Abbreviations

Table 6.3: List of abbreviations.

Abbreviation Definition
% Percentage
5-methylcytosine; 5-mC Carbon 5 position of cytosines

A ARID1A AT-rich interaction domain 5A
ATACseq Assay for transposase-accessible chromatin sequencing

B BMDM Bone marrow-derived monocyte
BMDM-H Bone marrow-derived monocyte from healthy mice
BMDM-T Bone marrow-derived monocyte from tumor-bearing mice
bp base pair

C C5 Carbon 5
CCSP Club cell secretory protein
cDNA Complementary DNA
CF Cystic fibrosis
CFTR Cystic fibrosis transmembrane conductance regulator
CGi Cytosine-phosphate-guanine dinucleotide island
ChIPseq Chromatin immunoprecipitation followed by sequencing
chr Chromosome
COPD Chronic obstructive pulmonary disease
CpG Cytosine-phosphate-guanine dinucleotide
CSF1 Colony-stimulating factor 1
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CSF1R Colony-stimulating factor 1 receptor
Ctsd Cathepsin D

D DAR Differentially accessible region
DEG Differentially expressed gene
DMR Differentially methylated region
DNA Deoxyribonucleic acid
DNMT DNAmethyltransferase
dNTP Deoxynucleoside triphosphate

E EDTA Ethylenediaminetetraacetic acid
EMP Erythro-myeloid progenitor
ENaC Epithelial sodium channel
ER Estrogen receptor
Ezr Ezrin

F FACS Fluorescence-activated cell sorting
FOSL2 FOS-like antigen 2
FSC Forward Scatter

G GSEA Gene set enrichment analysis
H H2O Water

H3K27ac Histone H3 lysine 27 acetylation
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