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Abstract

Around 10 % of the world population suffers from chronic kidney disease. While the initial
stimulus of kidney injury may vary, fibrosis represents the common end-stage of nearly all
kidney diseases. However, the pathogenesis of renal fibrosis remains not well understood due to
the complexity of the kidney tissue, heterogeneity of kidney cells as well as high heterogeneity
across patients. The kidney is one of the most complex organs and consists of a multitude of
different cell types such as podocytes, proximal tubular cells, distal tubular cells, endothelial
cells, pericytes, fibroblasts and myofibroblasts. Myofibroblasts have been previously identified
as the central conductors in fibrosis. After kidney injury, myofibroblasts expand and produce
excess extracellular matrix, which in return can lead to pathologic tissue remodeling and loss of
kidney function.

In order to better understand the pathogenesis of renal fibrosis on a cellular level, I analyzed
single-cell RNA sequencing (RNA-seq) data of renal perivascular cells, which were isolated by
fluorescence activated cell sorting (FACS) using the cell markers Gli1, Ng2, Myh11, Pdgfrb and
Cd31. FACS, as well as single cell library generation was performed in collaboration by
Christoph Kuppe, MD, PhD of the RWTH Uniklinik Aachen. The cell markers Gli1, Ng2,
Myh11, Pdgfrb are common markers for identification of fibroblasts, pericytes, endothelial cells
and epithelial cells, while Cd31 is used as a marker of endothelial cells within the perivascular
niche of the kidney. Based on the sorted cells, I performed cell-type specific functional studies
including analysis of pathway and transcription factor activity as well as ligand receptor
interaction analysis. When interpreting outputs, I integrated renal fibrosis-related ligands,
receptors, pathways and transcription factors all together. Based on the integrated data, I was able
to identify 6 key biological motives in fibrosis, which were supported by prior studies.
Additionally, I identified several driver genes of myofibroblast differentiation in renal fibrosis.
Literature studies confirmed that 40 of these genes were previously identified as driver genes of
myofibroblast differentiation or fibrosis-related genes.

In a second step, I conducted bulk-level microarray data analysis of chronic kidney disease
samples to identify potential candidates for drug repositioning. By reversely matching the disease
signatures to datasets of drug-treated cell lines, I identified 20 small molecules as
drug-repositioning candidates for 9 different kidney diseases. One of the drugs, “Nilotinib”, was
already approved by the FDA. Nilotinib is known to ameliorate renal fibrosis in rats by inhibiting
Pdgfr signaling. Consistent with this, the single-cell study also identified that the Pdgfa-Pdgfrb
interaction with subsequent JAK-STAT downstream signaling is a key pathway leading to renal



fibrosis.

In summary, I analyzed renal fibrosis-causing biological pathways, transcription factors, ligand
receptor interaction and cell differentiation on a single cell level. To better understand the
pathogenesis of fibrosis, I interpreted results by combining biological pathways, transcription
factors and ligand receptor interaction analysis, and collapsed these into well-known pathological
motives, which are consistent with prior studies on kidney fibrosis. Additionally, I identified
several novel candidate genes that may play a central role in pericyte (or fibroblast) to
myofibroblast differentiation. Some of these genes will be validated experimentally. At a bulk
data level, I performed drug repositioning analysis for 9 different chronic kidney diseases and
identified the FDA-approved drug “Nilotinib” as a candidate for drug repositioning for kidney
fibrosis. This work opens up new possibilities to understand the pathogenesis of renal fibrosis on
a single cell level and enables drug-repositioning for renal fibrosis on single cell level.



Zusammenfassung

Ungefähr 10 % der Weltbevölkerung leidet an einer chronischen Niereninsuffizienz. Obwohl der
initiale Stimulus einer akuten Niereninsuffizienz variiert, stellt die Nierenfibrose das
gemeinsame Endstadium fast aller Nierenerkrankungen dar. Nichts destotrotz bleibt die
Pathogenese der Nierenfibrose aufgrund der Komplexität des Nierengewebes, der Heterogenität
der Nierenzelltypen und der großen Heterogenität von Patienten nicht gut verstanden. Die Niere
stellt eines der komplexesten Organe dar und besteht aus einer Vielzahl unterschiedlicher
Zelltypen wie Podozyten, proximalen Tubuluszellen, distalen Tubuluszellen, Endothelzellen,
Perizyten, Fibroblasten und Myofibroblasten. Myofibroblasten wurden in vorherigen Arbeiten
bereits als Schlüssel-Zellpopulation in der Pathogenese der Fibrose identifiziert. Nach einer
Nierenschädigung expandieren Myofibroblasten und produzieren massiv extrazelluläre Matrix,
welche wiederum zu einem pathologischen Gewebeumbau und Verlust der Nierenfunktion führt.

Um die Pathogenese der Nierenfibrose auf Zell-Ebene besser zu verstehen, analysierte ich
Einzel-Zell RNA Sequenzierungs-Datensätze von perivaskulären Zellen aus murinen Nieren,
welche mittels fluoreszenzaktivierte Zellsortierung (FACS) unter Verwendung der perivaskulären
Zellmarker Gli1, Ng2, Myh11 und Cd31 isoliert wurden. Sowohl FACS als auch die Erstellung
der Einzelzell-Bibliotheken wurden in Zusammenarbeit von Dr. Christoph Kuppe der RWTH
Uniklinik Aachen durchgeführt. Die Zellmarker Gli1, Ng2, Myh11, Pdgfrb sind verbreitete
Marker zur Identifizierung von Fibroblasten, Perizyten, Endothelzellen und Epithelzellen,
während Cd31 als Marker für Endothelzellen in der perivaskulären Nische der Niere verwendet
wird. Mit den isolierten und Einzel-Zell sequenzierten Zellen führte ich auf Einzel-Zell Ebene
funktionelle Analysen aus, wie unter anderem die Analyse der Signalweg- und
Transkriptionsfaktor Aktivität und Liganden-Rezeptor-Interaktionsanalysen. Zur Auswertung der
Ergebnisse integrierte ich Signalwegs-Aktivität, Transkriptionsfaktor-Aktivität und die
Ergebnisse der Liganden-Rezeptor Interaktionsanalyse. Anhand der integrierten Daten konnte ich
6 biologische Schlüsselprozesse identifizieren, welche im Konsens mit früheren Studien sind.
Darüber hinaus identifizierte ich mehrere Treibergene einer Myofibroblasten-Differenzierung in
der Pathogenese der Nierenfibrose. Literaturstudien bestätigten, dass 40 Gene davon bereits als
Treibergene einer Myofibroblasten-Differenzierung oder Fibrose-verwandte Gene identifiziert
wurden.

In einem zweiten Schritt führte ich eine Microarray-Datenanalyse von Nierenproben mit



chronischer Niereninsuffizienz durch, um Medikamente für eine potentielle Repositionierung zur
Therapie der Nierenfibrose zu identifizieren. Durch den umgekehrten Abgleich der
Krankheitssignaturen aus den Microarray Datensätzen mit Sequenzierungsdaten von mit
Medikamenten behandelten Zelllinien identifiziere ich 20 Medikamente als potentielle
Kandidaten für 9 verschiedene Nierenerkrankungen. Eines der Medikamente, "Nilotinib", wurde
bereits von der FDA zugelassen. Frühere Studien konnten zeigen, dass Nilotinib in Ratten eine
Nierenfibrose reduziert indem es den Pdgfr Signalweg inhibiert. In Übereinstimmung damit
konnte ich in der Einzelzellstudie nachweisen, dass die Interaktion von Pdgfa und Pdgfrb sowie
der nachgeschaltete JAK-STAT-Signalweg ein Schlüsselprozess ist, welcher eine Nierenfibrose
induziert.

Zusammenfassend habe ich in meiner Promotion Nierenfibrose-induzierende Signalwege,
Transkriptionsfaktoren, Liganden-Rezeptor-Interaktion und Zell-Differenzierung auf Einzel-Zell
Ebene analysiert. Um die Pathogenese der Fibrose besser zu verstehen, integrierte ich
biologische Signalwege, Transkriptionsfaktoren und Liganden-Rezeptor-Interaktionsanalysen
und fasste diese zu bekannten pathologischen Prozessen zusammen, welche in Übereinstimmung
mit bestehenden Studien in der Nierenfibrose sind. Darüber hinaus identifizierte ich mehrere
Gene, welche möglicherweise eine zentrale Rolle in der Differenzierung von Perizyten (oder
Fibroblasten) zu Myofibroblasten spielen. Verschiedene dieser Gene werden zusätzlich
experimentell validiert. Mittels Bulk-RNA Datensätzen führte ich schließlich
Medikamenten-Repositionierungsanalysen für 9 verschiedene Nierenerkrankungen durch und
identifizierte das von der FDA zugelassene Medikament "Nilotinib" als einen Kandidaten für
eine Repositionierung für Nierenfibrose. Diese Arbeit eröffnet neue Möglichkeiten, die
Pathogenese der Nierenfibrose auf der Einzel-Zell-Ebene zu verstehen und ermöglicht die
Medikamenten-Repositionierung für Nierenfibrose auf einem Einzel-Zell-Level.
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1. Introduction

Transcriptomics indicate entire transcript sets, i.e., all ribonucleic acid (RNA) molecules
expressed in a given cell or tissue [1]. RNA molecules, such as messenger RNAs (mRNAs),
microRNAs, etc., transfer genetic information from DNA to proteins within the cytosol of cells
or regulate gene expression, making them key to understanding cellular processes, development,
and disease [2].

Microarrays allow for the rapid detection of RNA by probing the cDNA (transcripts) with
known, short sequences on microchips. This technology has been used to aid drug development
by monitoring changes in gene expression in response to drug treatments [3]. Unfortunately,
microarray technology is dependent on probe design, which can vary between hybridization
approaches [4].

In contrast to microarray, RNA sequencing (RNA-seq) directly reads the cDNA sequence,
promoting the discovery of novel transcripts and splice junctions [2],[4]. Although the process
was initially low-throughput and expensive, high-throughput DNA sequencing methods
developed around 2008 have allowed the generation of numerous RNA-seq data sets.
Researchers have applied these abundant RNA-seq data sets for estimating cell-type composition
using various deconvolution tools, such as CIBERSORT [5]. Using well-studied transcriptomics
profiles for each cell type, RNA-seq data can be deconvoluted or regenerated into a cell
types-by-gene matrix. Unfortunately, data set heterogeneity limits these applications.

To address this heterogeneity, single-cell level data collection was initiated in 2009 [6].
Single-cell sequencing technologies isolate a single cell from samples, amplify the entire
genome, and identify the cDNA, which enables diverse groups of heterogeneous cell types to be
distinguished and the discovery of new cell populations. This method expands biologically
functional studies to the cell-type level and can be used to infer cellular communication and
differentiation between various cell types. Single-cell level studies are also more effective than
bulk-level transcriptomic data when interpreting complex diseases and can be used to translate
between animal and human investigations. For example, Crinier et al. used single-cell RNA-seq
(scRNA-seq) to identify blood and spleen natural killer (NK) cell subsets in mice and humans,
with 2 major subtypes found to be similar between the 2 organisms [7].
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1.1 Preprocessing single-cell RNA-seq data from mouse renal fibrosis

Single cell RNA-seq technique

Since its introduction in 2009, a range of new single-cell sequencing techniques has been
developed. Over the past 10 years, the throughput (number of cells) of single-cell techniques has
increased from 10 cells to 1,000,000 cells, which was made possible by advancements in
single-cell isolation techniques [8]. Understanding the diverse cell isolation techniques and
associated sequencing methods used in scRNA-seq studies is essential because the throughput
and read depth affect the computational analysis and biological interpretations.

Single cell isolation

Conventional scRNA-seq relies on micropipette, fluorescence-activated cell sorting (FACS), or
laser capture microdissection to isolate single cells. These methods are suitable for detecting rare
cells using fluorescent reporters or cell surface markers. This plate-based approach minimizes the
capture of multiple cells at the expense of throughput.

More recent isolation techniques, such as droplet encapsulation, have enhanced throughput [9].
Droplet encapsulation dilutes cell suspensions to a specific concentration, allowing for the
probabilistic encasing of single cells into droplets (water in oil) [9]. Since 2015, this approach
has been used with 3 major sequencing platforms: inDrop, Drop-seq, and 10X (Chromium)[8].
Compared to conventional, plate-based approaches that isolate approximately 100–1,000 cells,
these droplet-based techniques can detect 1,000–10,000 cells in a single experiment. However,
high cell concentrations are required to maximize the number of cells detected and isolated in
droplets because of low capture efficiency [9].

Isolation techniques are known to affect the performance of sequencing platforms [10].
FACS-based sequencing platforms, such as Smart-seq2 and massively parallel RNA single-cell
sequencing (MARS-seq), can process approximately 100–1,000 cells, while the droplet-based
Drop-seq, inDrop, and 10x increase performance to approximately 1,000–10,000 cells.

Sensitivity and accuracy

In 2017, Svensson et al. compared the technical sensitivity and accuracy of approximately 30
scRNA-seq techniques [11]. This study used the identical spike-in RNA standards at known
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concentrations across the experiments to compute technical sensitivity and accuracy as defined
below [11].

(1) “Sensitivity: the number of input spike-in molecules at the point at which the
probability of detection reaches 50 %” [11]

(2) “Accuracy: the Pearson product-moment correlation (R) between estimated expression
levels and actual input RNA-molecule concentration (ground truth)” [11]

High sensitivity permits the detection of weakly expressed genes. High accuracy detects
expression variation corresponding to the true biological differences in mRNA abundance across
cells [11]. Svensson et al. found that traditional bulk RNA sequencing was more accurate than
scRNA-seq protocols. While some scRNA-seq protocols displayed high, stable accuracy, others
(genome and transcriptome sequencing (G&T-seq), cell expression by linear amplification and
sequencing (CEL-seq), and MARS-seq) were unstably and variably accurate across experiments
[11]. All single-cell protocols had higher sensitivity than bulk sequencing, particularly
SMARTer, CEL-seq2, STRT-seq, and inDrop, indicating their capacity to detect single-digit,
input spike-in molecules [11]. The group also found out that sequencing depth affects sensitivity
more than accuracy. From this analysis, the microwell-based methods, single-cell universal
poly(A)-independent RNA-seq (SUPeR-seq), which uses a total-RNA protocol, and CEL-seq2,
which amplifies cDNA by in vitro transcription rather than PCR, performed best [11].

Comparing Drop-seq, inDrop, and 10X

Microwell-based scRNA-seq methods have advantages such as low cost and high throughput
[12]. Microwell-based scRNA-seq methods are low cost and high throughput [12]. However, the
lack of commercially available protocols has prevented microwell-based scRNA-seq techniques
from being widely adopted [12]. In contrast, droplet microfluidics has rapidly developed to
process dozens of thousands of droplets/second and produce millions of droplets, thus increasing
throughput and reducing costs [12]. There are currently 3 main droplet-based systems for
scRNA-seq: inDrop [13],[14],[15],[16], Drop-seq [17], and 10X Genomics Chromium (10X)
[18]. All 3 methods use similar approaches for generating the droplets, differentiating individual
cells, and employing unique molecular identifiers (UMI) for bias correction but differ in bead
manufacture, barcode design, and cDNA amplification [12]. Zhang et al. compared these 3
systems using the same cell samples and data analyses [12]. They found 10X to have higher
sensitivity, detecting approximately twice as many UMIs as inDrop and Drop-seq [12].
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The computational analysis of single cell RNA-seq data

scRNA-seq data are characterized by their large size, heterogeneity, and excessive zeros. As
such, scRNA-seq data must be treated differently than conventional bulk data analyses used for
microarray or RNA-seq data.

The first step of analyzing large, sparse data sets is reducing the dimension of the features and
samples. Data features (e.g., genes) can be reduced to those explaining the variance in the data
set (highly variable genes) using a nonparametric approach. Butler et al. used the Seurat: R
toolkit to select these features through variance-stabilizing transformation (vst) [19]. They
applied LOESS nonparametric regression to the mean-variance relationship of log-scaled data to
obtain a LOESS fitted model, which was used to select the 2,000 most variable genes [19]. Data
were then scaled so that the mean expression across cells was 0 with a variance of 1, resulting in
an almost normal distribution [19].

Principal component analysis (PCA) can then be used to reduce the dimensionality of the scaled
data. Reduced single-cell data can be clustered. A high computing system is generally required
to avoid slow processing associated with higher numbers of cells. Thus, efficient clustering or
classification methods should be employed in a CPU system. Hierarchical and partitional
clustering are the major clustering techniques, with k-means and hierarchical clustering most
frequently used across fields. K-means clustering splits the data into K different clusters and
measures the new center of each cluster. Each data can be assigned to a cluster which has a
centroid close to the data. After all data are assigned newly, the centroids are remeasured. This
clustering requires repeated steps to find the centroid that explains the data clusters. Hierarchical
clustering is also unsuitable for heterogeneous data sets. This clustering clusters the two closest
data together, and then integrates the two most similar clusters. This process is also iterative and
continues until one big cluster is made up. Iterative steps don't fit the clustering for
high-dimensional datasets because of hgh computing time. Therefore, high-dimensional data sets
often require other clustering approaches, such as density-based and graph-based clustering.

Density-based clustering is based on the assumption that a cluster is made of contiguous regions
of high density or separated by areas of low density [20]. This assumption requires all clusters to
have the same amount of density. While this method has been used for high-dimensional data
sets, it is inappropriate for use on high-dimensional, unknown biological data sets.

Graph-based clustering is fast when handling big data sets. It uses adjacent values in a cell-cell
similarity matrix to identify the 5–30 most similar neighboring cells for each cell. Communities
of several single cells are then compiled to maximize the modularity score, e.g., similarity values
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(edge score) within the community. Graph-based clustering begins with a single, randomly
chosen node (a cell), which is joined to another node if the connection results in the highest
modularity change. Communities aggregate with one another until the whole community
includes all cells [21]. This step is called optimization, and the number of communities is called
a resolution. Graph-based clustering fits high-dimensional and unknown biological data sets but
is complicated by the choice of optimal cluster number and cannot prove a biological story.
Some researchers try to generate many communities (clusters) and label them by cell type, which
is useful because identical cell types can then be merged, or considered as independent sub-cell
types, or filtered out if they are not biologically meaningful.

In late 2019, Korsunsky et al. developed Harmony, a new scaling method with fuzzy clustering
[22]. Harmony has been used to correct normalized data sets or PCA embedding matrices. It is
similar to k-means clustering but measures the probability of cluster membership ranging from 0
to 1 rather than binary [23]. Fuzzy clustering assumes that single cells can belong to more than 1
cluster. This approach has performed well when integrating multiple scRNA-seq data sets.

Annotation is the most important step in scRNA-seq data analysis as it affects subsequent
analyses, including biological interpretations. Unfortunately, scRNA-seq data from the same
tissue or animal model can differ due to technical and biological factors, such as the sequencing
machines, cell cycle stage, and period in the life span. Ibrahim et al. addressed this by using the
number of cells expressing marker genes in a given cluster rather than using the expression value
itself[24]. This binary approach alleviates technical effects. The authors also developed a new
concept, specificity score, which captures how exclusively and highly a gene is expressed in a
given cluster using a Bayesian approach[24]. Using these 2 concepts, biologists can map each
cluster to each cell type based on their knowledge of the biology.

Biological interpretation on single cell RNA-seq data

Functional-level studies

There are several ways to interpret scRNA-seq data functionally, including gene set enrichment
analysis (GSEA), Enrichr, AUCell, AddModuleScore, and PROGENy [25], [26], [27], [28], [29],
[30]. Since its development in 2005, GSEA has frequently been used for bulk-level data analysis
[25]. For a given gene set, GSEA uses a running-sum statistic that increases for each gene in the
ranked data that is a member of the gene set and decreases if it is not in the gene set to calculate
an enrichment score (ES). The method calculates the maximum deviation from 0 by a weighted
Kolmogorov–Smirnov-like statistic [25]. Enrichr is similar to GSEA and ranks biological
pathways or terms based on the shared number of genes with a public database, such as GO
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Biological Process (2018), using a proportion test modified from the Fisher exact test [26], [27].
In 2017, AUCell, a GSEA tool for scRNA-seq, was developed, which applied the area under the
curve (AUC) concept to the ES [28]. AUCell calculates the AUC score of the recovery curve for
the top 5 % of genes ranked in each cell [28]. For this purpose, AUC corresponds to the
proportion of genes in the gene set that are highly expressed in each single cell, with cells
expressing many genes in a specific pathway having higher AUCs. This helps identify active
gene sets (pathways) across all data sets or user-defined cell populations. In 2016, Tirosh et al.
developed AddModuleScore, which calculates the average expression levels of a given gene set
at a single-cell level and subtracts the aggregated expression of a randomly-selected feature set
[29]. PROGENy measures the activity score of 14 biological pathways, including TGFb, WNT,
PI3K, Trail, p53, and NFkB, in a given cell population using a specialized weight matrix
corresponding to the correlation matrix between genes and the pathways [30]. High correlation
values indicate that a gene was positively regulated by a particular pathway and vice versa.
PROGENy scores are averaged across cells in a given cell population for each pathway while
retaining a data set’s biological context [30].

Virtual Inference of Protein-activity by Enriched Regulon analysis (VIPER) has been used
widely to infer the relative activity of transcription factors in each sample[31]. The activity of
each transcription factor is calculated through its targets, which are identified from well-known
databases, such as the cell-context-specific interaction network (interactome) or DoRothEA[32].
Holland et al. demonstrated that VIPER, in conjunction with the DoRothEA database, performed
well for the functional interpretation of scRNA-seq data [30].

Cell differentiation

There have been several tools to perform pseudotime analysis. Pseudo-time analysis is a
computational approach to explore cell dynamics, such as the cell differentiation by ordering
single cells along developmental trajectories. Several tools have been developed to perform
pseudo-time analysis.

Diffusion maps assume that single cells follow diffusion-like dynamics during differentiation
[33]. Like other scRNA-seq tools, it uses a cell-to-cell distance matrix but preserves the
non-linear structure of the data through density normalization [33]. Diffusion maps have been
applied to single-cell data for dimension-reduction and ordering of cells along the differentiation
path [33].

Slingshot identifies the lineage structure using a cluster-based minimum spanning tree (MST)
[34]. MST maps connections between adjacent clusters to infer lineages. Slingshot can be
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performed in an unsupervised or semi-supervised manner by specifying initial point clusters
[34]. If the initial time point is specified, Slingshot maximizes the number of clusters shared
between lineages.

Two major tools, Velocyto[35] and scVelo[36], use an RNA velocity approach to infer the
trajectory of gene expression. RNA velocity relies on the concept that a gene’s pre-mRNA to
mRNA ratio indicates whether its expression will increase or decrease. Specifically, if mRNA
abundance is higher than pre-mRNA, mRNA will decrease to maintain homeostasis at the
mRNA level. While Velocyto assumes that all genes have a common splicing rate, scVelo
considers that this can be violated if the data set consists of several heterogeneous cell types with
diverse kinetics. scVelo measures the full transcriptional dynamics of splicing kinetics with a
likelihood-based dynamic model. By extending deterministic models (i.e., Velocyto) to
probabilistic events, scVelo considers that RNA velocity occurs in a wide variety of systems
normally found in development [36]. scVelo also estimates the rates of transcription, splicing,
and degradation at a gene level [36].

Another pseudo-time analysis, PAGA, was reported by Wolf et al.[37]. PAGA generates a
network whose nodes correspond to clusters (cell populations) and whose edge weights represent
the connectivity between clusters [37]. This population-based network connects 2 clusters if the
number of inter-edges exceeds the number of randomly generated inter-edges, such that the
connection weight represents the confidence supporting an actual connection [37]. Wolf et al.
modified the original diffusion pseudo-time approach and applied it to PAGA to identify lineages
at a cell population network level [37].

Intercellular communication

Cell-to-cell communication is typically categorized into 4 signaling systems: paracrine signaling,
autocrine signaling, endocrine signaling, and signaling by direct contact. Paracrine signaling
occurs between 2 adjacent cells. Autocrine signaling refers to a cell targeting itself by hormones
or chemical messengers. Endocrine signaling occurs between 2 distant cells.

Many researchers have developed new tools to infer cell-to-cell interactions using single-cell
data with prior knowledge of receptor-ligand interactions. Several databases, including
FANTOM5 [39], ICELLNET [40], and OmniPath [41], report ligand-receptor pairs. FANTOM5
is a visualization and query tool for ligand-receptor interactions in humans[39]. As part of the
FANTOM5 project, Ramilowski et al. presented a map of cell-to-cell communication between
144 human cell types, based on the expression profiles of 642 ligands and their 589 receptors
[39]. Using known ligand-receptor pairs and public protein-protein interaction (PPI) information,
they generated 2,422 interaction pairs [39]. In 2020, Noël et al. introduced ICELLNET, which
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manually curated ligand-receptor pairs focused on immune-related pathways, such as growth
factors, cytokines, chemokines, immune checkpoints, hormones, Notch signaling, and antigen
binding [40]. While this database includes only a small number of interactions (~400), it is
meaningful for inferring cell-to-cell communication from an immunological point of view [40].
OmniPath takes other public databases providing numerous, diverse PPIs from more than 115
databases. It provides useful tools, including an R package, a Cytoscape plug-in, and a Python
module [41]. OmniPath also provides various metadata, including the number of papers
supporting the ligand-receptor pairs and their related biological functions.

Several algorithms, such as CellPhoneDB and CellChat, have been developed to identify
potential interactions. CellPhoneDB infers interactions based on the percentage of cells (1–99 %)
expressing ligand-receptor pairs between cell populations [42]. This tool provides a
measurement of the p-value for each pair used to infer cell-to-cell communication [42]. CellChat,
a more advanced version of CellPhoneDB, was developed in 2021 [43]. CellChat’s database
includes ligand-receptor information from the KEGG Pathway database and antagonists
interfering with specific interactions [44]. It categorizes interactions into 3 types: paracrine /
autocrine, extracellular matrix (ECM)-receptors, and cell-to-cell contacts. Each ligand-receptor
interaction is annotated with the functionally-related signaling pathway from KEGG [43].
CellChat was reported to outperform CellPhoneDB in identifying stronger interactions [43].

Renal fibrosis

Kidneys are complex organs with complicated structures, including glomeruli,
tubulo-interstitium, and vasculature. Each section of the kidney has its own function and
associated cell types, making it challenging to understand kidney diseases. Approximately 12 %
of the world’s population suffers from chronic kidney disease (CKD) [45], which has a
significantly high mortality rate [46].

Renal fibrosis, inflammation and myofibroblasts

Renal fibrosis is the known common end-point of CKD. Renal fibrosis is the functional decline
of the kidney due to excessive epithelial injury and inflammation. At the cellular level, epithelial
cells and their vascular capillaries are lost, and activated myofibroblasts, matrix, and
inflammatory cells are accumulated [47]. Activated macrophages are crucial mediators during
acute inflammation. They generate large quantities of profibrotic factors and modify the
microenvironment. As inflammation continues, a combination of infiltrating leukocytes and
activated intrinsic renal cells lead to the production of profibrotic cytokines and growth factors
[49]. This leads to the recruitment and activation of myofibroblasts and subsequent accumulation
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of ECM, which is the hallmark of renal fibrosis [48],[49],[50]. Renal ECM involves a network of
collagens, elastin, glycoproteins, and proteoglycans, which are potential specific, non-invasive
renal fibrosis biomarkers [50].

Renal fibrosis, a perivascular niche and pericytes

The perivascular niche corresponds to the microenvironments around a vessel [51]. It is
heterogeneous, being composed of numerous, diverse cell types, including pericytes, endothelial
cells, and immune cells [51],[52].

Pericytes are multi-functional cells embedded in the middle of the basement membrane of
capillaries wrapped around endothelial cells [53]. In the kidney, pericytes are associated with
glomeruli and cortical and medullary peritubular capillaries. Pericytes serve multiple functions,
including scaffolding cells for development, maintaining vasculature, and contributing to
intercellular signaling along the vessel or between vessels [54].

Due to their interaction with diverse cells, pericytes are considered important to the pathogenesis
of kidney disease [52]. Yang et al. studied the relationship between pericytes and renal fibrosis
using putative endothelial progenitor cells (pEPCs), which are known to alleviate fibrosis [55].
They reported that pEPCs attenuated renal fibrosis by decreasing the migration of pericytes and
their differentiation into myofibroblasts [55].

Biological pathways in renal fibrosis

TNF-α, TGF-β, connective tissue growth factor (CTFG), IL-6 (JAK/STAT), Wnt/β-catenin
signaling, p53, mitogen-activated protein kinase (MAPK), and NF-κB have been associated with
renal fibrosis. TNF-α and TGF-β regulate NF-κB, p53, and CTFG, which in turn induce
JAK/STAT, NF-κB, MAPK, and Wnt signaling[56]. All of these pathways are connected by
c-Jun N-terminal kinases (JNKs), which include JNK1 (Mapk8 in mice), JNK2 (Mapk9 in mice),
and JNK3 (Mapk10 in mice). JNK is a downstream protein of the noncanonical TGF-β,
canonical PDGF, and noncanonical Wnt signaling pathways and augments skin fibrosis via
crosstalk between these signaling pathways. JNK promotes secretion of TGF-β and crosstalk
with STAT3 (JAK/STAT) to activate pro-fibrosis [57]. In this process, STAT3 and TGF-β are
strongly associated with MAPK signaling. JNK, p38, EGFR, RAS/ERK, and PI3K signaling are
also involved. During renal fibrosis, vascular endothelial growth factor (VEGF) and hypoxia
contribute to the disease. However, these pathways are localized to endothelial cells, pericytes,
and podocytes in the perivascular space of the kidney.
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Transforming growth factor-β (TGF-β) signaling

Transforming growth factor-β (TGF-β) has been known as a central mediator of diverse cellular
processes including growth, differentiation, wound repair, apoptosis and the pathogenesis of
fibrosis [58]. In renal fibrosis, TGF-β has been considered as a potent profibrotic key in
excessive accumulation of extracellular matrix proteins leading to renal fibrosis [58]. There are
3 major isoforms of TGF-β, TGF-β1, TGF-β2 and TGF-β3, all of which are expressed in the
kidney and have been believed to induce ECM protein production in renal fibrosis [58].
However, recent studies demonstrated that TGF-β2 and TGF-β3 are likely to be involved in
antifibrotic effects [58].

Regarding TGF-β signaling, the TGF-β1 ligand binds to TβRII, assembles a heteromeric
complex of TβRII, phosphorylates the kinase domain of TβRI and leads to the activation of the
receptor-activated or regulatory Smads, Smad2 and Smad3 [58]. Smad4 forms the complex with
both Smad2 and Smad3 and then moves into the nucleus in order to regulate the expression of
target genes. All Smad proteins don’t cooperate with TGF-β signaling like Smad2 and Smad3.
For example, Smad7 negatively regulates TGF-β signaling by recruiting E3 ubiquitin ligases
[58]. The TGF-β signaling activates not only (1) Smad2/3 but also the (2) Ras-Raf-MEK-ERK
pathway (called MAPKK-ERK), (3) NF-κB pathway and (4) TGF-β-activated kinase 1 (TAK1)
related pathway leading to the activation of MKK4-JNK and MKK3-p38 pathways. MKK4-JNK
activates transcription factors activator protein-1 (AP-1) and MKK3-p38 pathways stimulate
transcription factor 2 (ATF-2), respectively [58]. Except for Ras-Raf-MEK-ERK pathways, all of
these four downstream are known to promote renal fibrosis.

As well, TGF-β1 activates p53 (Trp53 in mice) phosphorylation which in turn, interacts with
activated SMADs and leads to the subsequent binding of p53/SMAD3 to target promoters [59].
p53 phosphorylation is one of key causative factors because p53 upregulates ALK5 (Tgfbr1 in
mice), SMAD3 (Smad3 in mice), TGF-β1 (Tgfb1 in mice), TGF-β3 (Tgfb3 in mice), CTGF
(Ccn2 in mice), CCN2, α-smooth muscle actin (α-SMA, Acta2 in mice) and plasminogen
activator inhibitor-1 (PAI-1, Serpine1 in mice) which contribute to a complex feed-forward loop
to keep a profibrotic renal microenvironment [59]. One regulator of p53 function in the context
of renal injury is the serine/threonine kinase tumor suppressor ataxia telangiectasia mutated
(ATM, Atm in mice) [59].

Recent studies demonstrated that anti-TGF-β1 by deleting TβRII has not shown promising
results for treating renal fibrosis [58]. This is caused by the effect of the inactive form of
TGF-β1 (called latent form of TGF-β1). The latent TGF-β1 transgenic mice increased the
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expression of Smad7 which inhibits the NF-κB while deactivating the TGF-β, which can be
interpreted as tissue homeostasis [58]. As well, Tgf-β1-null mice displayed severe inflammatory
responses with massive penetration of both lymphocytes and macrophages in many organs,
which indicates TGF-β1 has anti-inflammatory effects. [58]. TGF-β1 promotes autophagy
through the TAK1-MKK3-p38 signaling pathway, which induces the intracellular degradation of
collagen and protects cells against cell apoptosis by this induction of autophagy with the
activation of TAK1 and AKT [58]. This mechanism is important because the autophagy
deficiency has been characterized in progressive renal fibrosis, especially, mice deficient in
autophagic protein Beclin 1 and Podocyte-specific deletion of the Atg5 gene resulted in renal
injury [58].

TGF-β signaling has diverse feedback regulation through downstream signaling. TGF-β1 induces
Smad7 which in turn, negatively regulates TGF-β1 [58]. Smad2 deletion leads to Smad3
phosphorylation, which allows Smad3 to bind to a collagen promoter (COL1A1, Col1a1 in mice)
and finally, auto-induce TGF-β1 [58]. However, over-expressed Smad2 mitigates
TGF-β1-induced Smad3 phosphorylation and type 1 collagen accumulation [58]. Klotho protein
(Kl, Klb in mice), one of endogenous modulators of TGF-β signaling upregulates autophagy
reaction of TGF-β1. Proteoglycans are the key components of the extracellular matrix, but
proteoglycan “decorin” is the antagonist of  TGF-β1 by binding to active TGF-β1 [58].

Wnt/β-catenin signaling

Wnt signal transduction has been known to regulate injury repair, pathogenesis of diverse human
disease and embryogenesis [60]. A Wnt ligand binds to a seven-pass transmembrane Fz receptor
with lipoprotein receptor related protein 6 (LRP6, Lrp6 in mice) or LRP5 (Lrp5 in mice). The
Wnt-Fz-LRP6 complex phosphorylates LRP6 via recruiting the scaffolding protein Dishevelled
(Dvl), activates Axin complex, and in turn, stabilizes β-catenin which travels into the nucleus to
regulate Wnt target genes by forming complexes with TCF/LEF [60], [61]. Secreted
frizzled-related protein 4 (SFRP4, Sfrp4 in mice), an endogenous extracellular Wnt antagonist,
inhibits the activation of β-catenin and in the end, attenuates renal fibrosis in UUO mice [60]. It
was believed that the stimulated Wnt signaling caused the accumulation of β-catenin (Ctnnb1 in
mice) which lead to the upregulation of target genes including c-Myc (Myc in mice), Twist
(Twist1 in mice), TCF1(Tcf7, Tcf1, Hnf1a in mice), and fibronectin (Itgb1, Fn1, Itga5, etc in
mice) in the study on renal epithelial cells [62]. As well as these genes, Snail1 (Snai1, Snai2,
Sani3 in mice), plasminogen activator inhibitor-1 (PAI-1, Serpine1 in mice), matrix
metalloproteinase 7 (Mmp7 in mice), and multiple components of the renin–angiotensin system
(RAS), such as angiotensinogen (Agt in mice), renin (Ren1, Ren2 in mice), angiotensin
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converting enzyme (Ace, Ace2 in mice), and angiotensin receptor type 1 (Agtr1a in mice) have
been highlighted as keys of fibrosis-related genes of Wnt signaling [60].

Like Transforming growth factor-β (TGF-β) signaling, Klotho protein is also considered as an
important antagonist protein in the Wnt signaling of renal fibrotic models. This protein has been
known to be upregulated in the renal tubular epithelium of the healthy kidney, but downregulated
in CKD [60]. The Klotho dysregulates the Wnt/β-catenin signaling, reduces the deposition of
extracellular matrix and diminishees the cytokine production [60]. However, TGF-β1 can block
Klotho and then promote β-catenin to induce myofibroblasts activation leading to renal fibrosis
[60].

Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling

The JAK/STAT pathway includes JAK1-JAK3 and receptor tyrosine kinase 2 and seven STAT
proteins, STAT1,2,3,4, STAT5a, STAT5b and STAT6) where STAT3 has been known as a key
factor of this pathway [63]. JAK-STAT signaling mediates cytokines, epidermal growth factor
(EGF) and platelet-derived growth factor (PDGF) [63]. IL-6 cytokines start the JAK-STAT
signaling by binding to the receptor, inducing dimerization of glycoprotein 130 receptors which
in turns, phosphorylates STAT3 at Tyrosine 705th site [63]. This phosphorylated STAT protein
translocates to the nucleus and regulates it’s target gene expression [63]. The binding sites of
STAT3 are related to fibroblasts activation and profibrotic pathways such as lipocalin 2 (Lcn2),
tissue inhibitor of metalloproteinase 1 (Timp1), and PDGF-B (Pdgfb) [63]. As well as these
genes, it has been known that STAT3 targets the promoter of kidney injury molecule-1 (KIM-1 in
humans, Havcr1 in mice). STAT3 also binds to diverse transcription factors including Nanog,
c-Myc, and Twist [63].

The JAK/STAT pathway is inhibited by the protein inhibitor of activated STAT3 (PIAS3 in
humans, Pias3 in mice) by binding the activated STAT3 dimers [63]. Krüppel-like factor 4
(KLF4 in humans, Klf4 in mice), a zinc finger transcription factor, negatively regulates
JAK/STAT pathway in podocytes in the similar way of PIAS3 protein [63]. As well, seven
protein tyrosine phosphatases (PTPs in humans, Ptprm, Ptpn1, Ptprt, Ptprk, Ptpru in mice) also
inhibit JAK/STAT pathway by dephosphorylation of STAT3 [63]. The suppressor of cytokine
signaling (SOCS, Socs1 and Socs3 in mice ) induced by STAT activation is also involved in the
negative feedback loop of STAT activation [63].
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vascular endothelial growth factor (VEGF) signaling

Endothelial cells secrete paracrine signals including VEGF and Ang-1 to retain their
homeostasis. Both VEGF and Ang-2 induce that pericytes surrounding endothelial cells detach
from the vessel walls, making empty space for endothelial cells to generate new branches. In
endothelial cells, VEGF upregulates the Notch ligand Delta-like protein 4 (DLL4) which leads to
sprouting vessels, in turn, activates Notch signaling in neighboring cells to promote the
elongation of these cells. At the same time, this Notch signaling reduces the expression of
VEGFR2 in order to enable only newly generated tip cells to react to Notch signals [64].

As well as podocytes, VEGF is also expressed in the thick ascending limb (TAL), the proximal
and distal tubules with a lesser extent. VEGF receptors (VEGFR1 and VEGFR2) exist on
endothelial cells in both the peritubular capillaries and glomerular capillary loops. Like the
relationship between podocytes and endothelial cells within the glomerulus, VEGF contributes to
maintaining peritubular capillary health in tubules by upregulating hypoxia-inducible factor
(HIF)-mediated transcriptional under the lack of oxygen conditions [64].

Here, HIF is a master regulator in hypoxia, upregulating the transcription of more than 100 genes
including Epo, glucose transporters, VEGF, and glycolytic enzymes. This transcriptional factor is
a heterodimer of HIF-α and HIF-β. HIF-β is always expressed regardless of oxygen, but HIF-α
expression is strongly regulated by the amount of oxygen. One of two active isoforms of HIF-a,
HIF-1α is increased in response to hypoxia, and in turn, augments the HIF-1 response in tubular
epithelial cells. The other active isoforms of HIF-a, HIF-2α are expressed in endothelial cells and
interstitial fibroblasts [64].

The effect of HIF protein should be interpreted by the area of the kidney where renal fibrosis
occurs. The specific deletion of HIF-1α in proximal tubular cells alleviates kidney fibrosis and
macrophage infiltration in a mouse unilateral ureteral obstruction (UUO) model which indicates
that HIF-1α in proximal tubular cells promotes kidney fibrosis. However, other studies
demonstrated that excessive amounts of HIF-1α and HIF-2α in mutant mice had lower blood urea
nitrogen with attenuated glomerular and tubulointerstitial damage but similar tubulointerstitial
fibrosis [64].

Tumor necrosis factor alpha (TNF-a)

In macrophages, renal tubular cells, and mesangial cells, TNF-α is expressed to regulate damage,
inflammation and cell death signaling mediated by c-Jun and NF-кB [56]. TNF-α is
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overexpressed for healing especially by TNFR2 [56]. An animal study, it has been known that
TNF-α plays a major role in renal inflammation and fibrosis by promoting M1-like macrophages,
releasing monocyte chemoattractant protein-1 (MCP-1/CCL2), interleukin-1β, and TGF-β1 in
glomerular disease and in the end, augmenting the acute kidney injury to CKD transition. [56].

Activation of mitogen-activated protein kinase (MAPK) and p38

There are 3 major MAPK pathways, (1) TGFβ/p38, (2) mitogen-activated protein kinase
(MAPK), and (3) P13k/AKT/mTOR signaling pathways. The TGFβ/p38 mitogen-activated
kinase can be activated by the TGFβ pathway, which can subsequently upregulate TP53 [65].
TGFβ/p38 is independent of the canonical SMAD signaling.. The canonical MAPK kinase
pathway is initiated by the extracellular growth factors (GFs), inflammatory cytokines and stress
which activate receptor tyrosine kinases (RTKs) on the cell membrane [65] [66]. For example,
epidermal growth factor receptor EGFR activates the MAPK pathway. RAS, RAF and MEK are
the order of downstream pathways which in turn stimulates the ERK1/2 transcription factor
activator [65]. As an example, there are p38 mitogen-activated protein kinase (MAPK) pathways
and c-Jun N-terminal kinase (JNK) MAPK [65]. RTKs and RAS also activate The
P13K/AKT/mTOR cascade which is involved in cell growth [65]. Here, The p38
mitogen-activated protein kinase (MAPK) pathway has been known to be involved in the
proinflammatory and profibrotic mediators productions related to inflammation, apoptosis, and
fibrosis [67]. Studies with mouse UUO models and IgA nephropathy patients showed that COL1
and phosphorylated p38 protein expression in the kidneys were increased, whereas these proteins
were downregulated in mice with p38 MAPK inhibitors [67].

Single-cell studies of renal fibrosis

In 2018, Park et al. analyzed approximately 44,000 cells from the whole kidney of healthy mice
[68]. They distinguished 21 major cell types and identified a novel transitional cell type existing
between intercalated cells (ICs) and principal cell types (PCs)[68]. Cell trajectory analysis
revealed that the Notch signaling pathway mediated these transitions. They also noted that these
transitions were associated with metabolic acidosis, which is commonly found in CKD[68].

In 2020, Rudman-Melnick et al. published a comprehensive atlas of single-cell transcriptional
changes during acute kidney injury (AKI) in a mouse unilateral ischemia/reperfusion (UIR)
model [69]. They traced transcriptional changes and reported potential, novel markers of AKI
[69]. Surprisingly, they found that AKI induces “mixed-identity cells,” which express markers of
diverse renal cell types associated with kidney development [69].
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Transgenic reporter mice have been used to investigate renal fibrosis. A key system involves the
use of Cre recombinases isolated from bacteriophage P1, which catalyzes the ligation and
cleavage of DNA at its specific nucleotide recognition sites (loxP) [69]. Mouse lines that link the
expression of Cre to a gene of interest can be combined with a reporter (e.g., tdTomato) that is
induced upon Cre activation, allowing for controlled expression of the reporter genes. Gene
modulation in these systems is controlled by tamoxifen (t2), which acts as a ligand to activate
t2-dependent Cre recombinases in vivo. Using this method, a number of time- and tissue-specific
mouse mutants have been developed [70].

Kuppe et al. profiled the transcriptomes of proximal and non-proximal tubule cells from normal
and fibrotic kidneys at a single-cell level to determine where ECM secretion initiated during
CKD [71]. They used a diffusion map to analyze the scRNA-seq data, which indicated that
myofibroblasts were generated from pericytes and fibroblasts [71]. This study used
Pdgfrb-CreER-tdTomato transgenic reporter mice, which co-express Pdgfrb with tdTomato in a
Cre-dependent manner, allowing for the identification of cells expressing Pdgfrb. Pdgfrb was
found to be expressed in mesenchymal populations and epithelial, endothelial, and immune cells
[71]. Similarly, Gli1-CreER-tdTomato mice were used to detect perivascular niches in the kidney
[72].

To investigate renal fibrosis–related biological pathways, intercellular communication, and cell
differentiation at a single-cell level, my collaborator, Dr. Christoph Kuppe at RWTH Uniklinik
Aachen, and I initiated an scRNA-seq project in normal and renal fibrosis mice in 2019 (Figure
1.1.1.B). From early 2019 to late 2020, Dr. Kuppe generated Pdgfrb-CreER-tdTomato,
Gli1-CreER-tdTomato, Ng2-CreER-tdTomato, and Myh11-CreER-tdTomato normal and renal
fibrosis mouse lines. These transgenic reporter mice express tdTomato only in the perivascular
niche because it is co-expressed with Gli1, Ng2, Myh11, and Pdgfrb, which are known to be
expressed in the kidney perivascular niche. These 4 genes are normally expressed in fibroblasts,
myofibroblasts, pericytes, parietal epithelial cells, and, rarely, endothelial cells. Dr. Kuppe also
produced a data set from endothelial cells of renal fibrosis mice by sorting Cd31+ cells. Cd31
(Pecam1 in mice) is a well-known marker for endothelial cells. Data from normal mouse
endothelial cells were obtained from a public data set [73]. All data sets were analyzed using
Seurat, PROGENy, DoRothEA, Harmony, CellChat, scVelo, etc (Figure 1.1.1.A). This thesis has
the output from the analysis.
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Figure 1.1.1. The experimental design and computational pipeline of this single cell RNA-seq project from
mice renal fibrosis. (A) Single-cell RNA-seq data analysis consists of basic preprocessing which includes filtering
out cells & genes, normalizing count-matrix datasets, reducing data by PCA & UMAP, and then clustering. For the
preprocessed data set, Dr. Kuppe labelled each cluster to the cell type for 9 different data sets (the 10th data set from
public data with its annotation). For the labelled data sets, I integrated datasets in 2 different ways while removing
batch effects and remaining batches (non-batch corrected integration), separately. For the non-batch corrected
integrated data set, pathway activities, transcription factor (TF) activities were measured, and intercellular
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communication were performed. For the batch-corrected normalized data set, it had minus values as minimum. So, I
scaled the data, and then took only positively scaled data. Gene set enrichment test was performed on this data, and
the outputs represented the main features of cell types fully. With this biological point, cell differentiation was also
conducted on the same batch-corrected positively scaled data. (B) This figure illustrates perivascular niche of kidney
in the left panel, and the experimental designs of Pdgfrb-creER-tdTomato mice, Gli1-creER-tdTomato mice,
Ng2-creER-tdTomato mice, Myh11-creER-tdTomato mice per each condition (white mice is normal mice, red mice is
renal fibrosis mice) in the right panel. The Gli1, Ng2, Myh11 and Pdgfrb genes with tdTomato are co-expressed in
fibroblasts (blue colored cells), myofibroblasts (green colored cells), percityes (orange colored cells), parietal
epithelial cells (Olive colored cells) and rarely, endothelial cells (red colored cells). Cells expressing tdTomato are
detected by the expression of tdTomato, and cell labeling is performed by Christoph Kuppe. The Cd31+ endothelial
cells from sham and UUO mice were omitted from this figure.
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1.2 Drug repositioning using microarray data

Drug repositioning involves expanding the use of approved drugs for other diseases.
Conventional drug discovery consists of target identification, screening of active compounds,
preclinical studies, and phase I–IV clinical trials, which can take approximately 13 years and cost
in excess of $1 billion [74],[75]. Drug repositioning is faster and less costly [76]. For example,
Dr. Gilla Kaplan demonstrated thalidomide’s potential for treating inflammation and
tumorigenesis in 1991 [77]. The pharmaceutical company, Celgene, initiated the repositioning of
thalidomide for the treatment of multiple myeloma in 1998, which was approved by the FDA in
2006 [78]. As another example, Cypress Bioscience found that milnacipran, which they were
developing as an antidepressant, had dual activity for relieving fibromyalgia [79].

Computational approaches in drug repositioning

There are various approaches for drug repositioning. Researchers seek to identify drugs that
share protein targets (on-target), modes of action, or signal transduction pathways experimentally
[76]. Gene expression patterns have also been used to understand the effects of drugs and infer
drug repositioning by reversely matching to disease data.

In 2006, the microarray-based Connectivity Map (CMap) project produced 564 gene expression
profiles from 5 cancer cell lines, 453 of which described their response to distinct drug
treatments [80]. Using CMap, Ramsey et al. identified a new drug candidate, entinostat, for
treating acute myeloid leukemia [81]. CMap has advanced numerous other instances of drug
repositioning [82]. The NIH launched a new program in 2014, the Library of Integrated Cellular
Signatures (LINCS), which developed a cost-effective transcriptomics assay based on Luminex
bead technology and generated 1,400,000 gene expression profiles representing approximately
20,000 perturbagens across approximately 15 cell lines (LINCS-L1000) [83].

These large data sets necessitated the development of novel approaches to analyze disease or
drug-treated data and visualize output, such as L1000CDS2 [84]. L1000CDS2 was developed for
identifying drug candidates by comparing signatures from the disease state to LINCS-L1000.
The L1000CDS2 tool queries gene expression profiles from LINCS-L1000 and converts the
expression value to a characteristic direction for each gene, prioritizing the direction, rather than
the magnitude, of gene expression changes. This direction is a vector 90° to the hyperplane,
separating the normal and drug-treated samples (or disease) in N-dimensional space (where N
corresponds to the number of genes). Based on the direction, the normal and drug-treated sample
(or disease) signatures can be collapsed into 1-D values, which can be compared. This approach,
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called characteristic direction [85], is similar to the concept of differentially expressed genes.
The L1000CDS2 tool provides the top 50 ranked small molecules that show high cosine
distances based on these profiles [84].

Transcriptomics data and clinical studies from Chronic kidney disease

The 2018 CKD medication reports (https://www.ncbi.nlm.nih.gov/books/NBK492989/) indicate
several types of drugs for the treatment of CKD, including angiotensin-converting enzyme
inhibitors or sartans for decreasing blood pressure, statins for reducing cholesterol, and aspirin
for preventing clotting [86],[87]. However, it remains unclear whether these 3 types of
medication are suitable for treating CKD. Drug repositioning for CKD, particularly
computationally based drug repositioning using transcriptomics data sets, could accelerate the
efficient identification of new, potential medications for CKD.

The development and advancement of microarray technology have led to the generation of
several CKD transcriptomics data sets. While these data sets are smaller than for other diseases
(e.g., cancers), there are several biologically meaningful public data sets in the Gene Expression
Omnibus (GEO). For example, Nephroseq (https://www.nephroseq.org/) provides 26 public gene
expression data from renal disease in both humans and mice, especially human data of which has
detailed clinical information [88]. Tajti et al. analyzed human CKD data from 5 different public
data sets and 9 different CKD subtypes, using non-tumor parts of kidney cancer nephrectomy
tissues as controls [89]. In 2017, I performed drug repositioning using the L1000CDS2 tool to
match expression data from these 9 CKD subtypes to the drug-treated data sets reversely in
LINCS-L1000 [84],[89].
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2. Methods

2.1  Single cell RNA-Seq data preprocessing from mice renal fibrosis

UMI mapping to reference genome

CellRanger (version v3.2.0) was used to map reads of fastq files generated by 10x technology to
mouse reference genome (GRCm38.p6). Several softwares for read mapping and quality controls
were built in CellRanger, such as STAR [90], EmptyDrops [91], etc. STAR has been used for
mapping reads in bulk RNA-Seq, and EmptyDrops was developed for single cell RNA-Seq data,
especially, to infer empty droplets from the data set with. CellRanger provided the quality reports
for the data, such as how many cells were detected, the mean reads for each cell, the total number
of reads, the percentage of reads mapped confidently to exonic regions and intronic regions, etc.
I focused on two information; the reads mapped confidently to exonic regions and sequencing
saturation. If the percentage of reads mapped to exonic regions was lower than 50%, and the
sequencing saturation could not reach the point around 0.5, I decided that the data set was not
suitable for further analysis. In other words, if many reads from the data set were mapped to the
intron region in the reference genome, I considered the data set to have a lack of mRNA volume.
As well, if the sequence saturation was severely low, I inferred that this data didn’t have enough
genes suitable for further analysis.

For the data set passed through criteria described above, I used barcodes.tsv, genes.tsv and
matrix.mtx as outputs generated by CellRanger. Regarding the output, “barcode.tsv” has the
information of cell barcodes corresponding to each single cell and “genes.tsv” includes all of the
genes from the reference genome. The last output, “matrix.mtx” file has the information of how
many times each Unique Molecular Identifier (UMI) was mapped to each gene in given single
cells. Instead of using reads, using Unique Molecular Identifier (UMI) is the uniqueness of 10x
technology. This Unique Molecular Identifier (UMI) was developed to solve the technical issues
caused by Polymerase Chain Reaction (PCR). Polymerase Chain Reaction (PCR) has been used
to amplify reads because the amount of reads from samples were very small so without PCR, it is
difficult to map reads to reference genome. However, by chance, specific reads could be
amplified more times than other reads. In order to solve this issue, a short length of nucleotide,
UMI, is added to each read of barcodes in single cells before PCR. Here, barcodes are used for
naming each single cell differently. In other words, all reads from the identical single cell have
the same barcode. With this technique, I could get the output from equally amplified reads per
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each single cell. Compared to other single cell projects, this project focused on the specific cells
targeted by Gli1, Ng2, Myh11, Pdgfrb. In the case of the Gli1, Ng2, Myh11 and Pdgfrb, these
genes were combined with the tdTomato genes when generating the transgenic reporter mice.
Supplementary table 4.1.1 described tdTomato sequence.

Filtering cells and genes and normalization

After I obtained three outputs (matrix.mtx, barcode.tsv and genes.tsv) from CellRanger, I
analysed them with Seurat. First step was to filter out cells based on two criterias. If some cells
expressed less than 200 genes and some genes were detected in less than 3 cells, I decided that
such cells and genes were not suitable for further analysis. Additionally, I defined dead cells if
the reads mapped to mitochondrial genes had higher than 80 % of total read counts. This is
because apoptotic cells induce the expression of mitochondrial genes and transport them into the
cytoplasm in mammalian cells. Compared to RNA-sequencing from single nuclei, single cell
data is based on cytoplasm so I had to check the fraction of mitochondrial genes. In general, 5
~10 % has been used for the suitable percentage of mitochondrial genes in a single cell.
However, some specific cell types of the kidney, such as proximal tubules, need more active
transporting systems because of the reabsorbing filtrates passed through glomerulus. So, I used
80 % as the maximum percentage cutoff. With the filtered data, I divided UMI counts with the
total number of counts for each cell, multiplied the normalized counts by a scale factor ( default
value is 10,000 ) and then log-transformed them.

Getting highly variable genes, transforming data linearly and running PCA

Normalized matrices were too big and heterogeneous to perform further analysis so that I needed
to select features which explained high variance across cells. In order to select features, I used
the function variance-stabilizing transformation (vst) in Seurat which uses LOESS with the
mean-variance relationship of log-scaled data, and obtains a LOESS fitted model [19]. LOESS
regression has been one of the nonparametric regression methods used for non-linear relation
between explanatory variables and response variables [19]. With LOESS regression, Seurat
found the fitted model and selected the top 2,000 highly variable genes. Seurat scaled the data by
setting mean as 0 and variance as 1 for each gene [19]. Here, I gained 2,000 features as highly
variable genes in a normalized, scaled data matrix. As a next step, I reduced the dimensions of
cells with principal component analysis (PCA). PCA has been used to reduce big data into small
one while keeping the variance of data. When I chose how many dimensions to take after
reducing dimensions, I used an elbow plot which had the information about the standard
deviations for each dimension. For nine different data sets, I took around 40 ~ 50 principal
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components until the steep slope of the elbow plot became flat.

Graph-based clustering

After reducing dimensions, I used a function, “FindClusters” in Seurat to perform clustering
[21]. This is based on graph-based clustering, especially K-nearest neighbors. There were many
approaches on clustering, hierarchical clustering, density-based clustering and consensus
clustering. The reason I chose graph-based clustering in Seurat was first, the data set was high
dimensional sparse and heterogeneous so I didn’t use density-based clustering which assumes all
density of clusters should be the same. With the same reason, I decided that measuring euclidean
distance between cells was not a promising approach so I didn’t conduct hierarchical clustering.
In addition, I analysed big data sets so computationally it was not suitable to use consensus
clustering which requires high operations and long running time. Graph-based clustering has
been known to be useful to analyse big, heterogeneous and sparse data because it uses the
concept, a network. Inside this graph-based clustering, it has two processes, first is to find
neighbors, second is to find a community connecting neighbors. In detail, the first starts with a
similarity matrix driven by the data set reduced by PCA. Based on the similarity matrix, Seurat
connects top 20 similar cells for each cell, re-weight edges of cells based on the shared neighbors
(SNN), and then measures a modularity score for the connected cells [21]. When measuring the
modularity score, Seurat randomly chooses one single cell as a starting point and then connects
cells in a way to maximize a modularity score by the Louvain algorithm [21]. When all of the
cells are connected, the modularity score becomes zero. The modularity score would be max
only with an optimal partition. Sometimes, the optimal case couldn’t be the only one. In order
words, I could find several different cases on ideal clusterings which maximize modularity score
written below :

where “nc” is the number of communities (clusters) and “Lc” is the total number of links in
cluster “c” and “Kc” is the total node degree in cluster “c” and “L” is the total number of links.
Seurat provides several clustering outputs based on a parameter named “resolution” and also
recommends using resolution diversely. Some researchers use Silhouette width to choose the
most ideal clustering output. However, the data set for this project consisted of similar cell types,
so I decided to take as many clusters as I could and then merge some clusters if they have similar
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gene expression patterns for the marker genes. In order to move on to the next step, annotation, I
made UMAP (Uniform Manifold Approximation and Projection) plots and Heatmap plots for the
clustering output coloring known marker genes of the kidney [92]. UMAP has been widely used
for 2-dimension reduction by building up a high-dimensional graph representation (topological
representation) of the data, and then optimizing a low-dimensional graph as similar as possible.

Cluster Annotation and differentially expressed genes

After getting clusters from Seurat, I used genesorteR [20], a R package which provides the
summarized information for each cluster. Instead of mapping clusters to cell types, it measured
the fraction of cells which express each gene in a given cluster. If the normalized UMI count of a
gene in a given cluster is higher than the median of non-zero UMI counts across the single cells,
it counts the cell expressing the gene [20]. As well, it provides genesorteR’s unique value,
specificity score [20]. This score represents how exclusively and highly a given gene is
expressed for each cluster by a Bayesian approach using three different prior probabilities as
below:

Where the P(E|H) is the probability of cells expressing the gene “E” in a given cell type, “H”.
The P(H) is the fraction of the cell type “H” across all cells, P(E) is the probability of cells
expressing the gene “E” in all cells. Instead of the specificity score, I mainly used one of the
prior probability, “CondGeneProb”, P(E|H). The reason I used this probability was that this score
doesn’t conduct comparisons between clusters. So, I could get independently summarized
information on the matrix with genes in given clusters. With the matrix, the fraction of cells
expressing genes (“CondGeneProb”), Christoph Kuppe, MD, PhD in RWTH Uniklinik Aachen
mapped each cluster to the cell type with known gene markers. In the case of the differentially
expressed gene for each cell type, “FindAllMarkers” in Seurat was used [19]. This tool applied a
Wilcoxon Rank Sum test, one of nonparametric tests which don't require normally distributed
data as an input.

Integration

For integration, two approaches were used, Harmony and Seurat [22], [93]. Seurat provided an
integration approach using canonical correlation analysis with mutual nearest neighbors [93].
Canonical Correlation Analysis (CCA) has been used to connect two sets of multiple variables to
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make high correlation between the variables. In order words, this approach minimizes the cosine
distances between two linear projections from paired variables in a lower dimensional space.
Like PCA, I chose the number of canonical components which explains the variance of the data
set. After reducing dimensions, Seurat performed L2-normalization to the canonical correlation
vectors. It represents that the direction of vectors is more important than the magnitude of the
vector in a data set because the data set was reduced by CCA. As a next step, Seurat used Mutual
Nearest Neighbors (MNN) [93]. This concept is based on graph-based clustering, such as Shared
Nearest Neighbors. Seurat connected a single cell with five other cells which shared neighbors
with the single cell. This is called “identifying anchors”. Based on this approach, I integrated our
data set and then re-run PCA in order to reduce the dimension of the data set. And then, I made a
UMAP for visualization and then evaluated if the integration makes sense biologically or not.

As well as Seurat’s standardized integration method, recently, harmony has been used widely for
integration [22]. It measured the possibility of cells belonging to multiple clusters, in which the
possibility ranges from 0 to 1. Harmony maximizes the diversity between clusters while
minimizing the effect of batches by computing new centroids from centers of batches in a given
cluster [22]. Harmony corrected normalized data sets or PCA embedding matrices. Here, I
selected the first approach to use Harmony on the normalized matrix. And then, I got highly
variable genes based on the corrected normalized matrix, scaled and then performed data
reduction by PCA and UMAP.

After integration was complete, I computed cell-type correlation for the integrated data set. As an
input, positively scaled gene expression matrices were used. genesorteR was applied to collapse
the positively scaled gene expression matrix from single cell level to cell type level. genesoreR
measured how many cells expressed the genes in a given cell type level. Pearson correlation was
used to measure the similarity at a cell type level. The formula of measuring similarity is written
below:

cor(a,b) =

Biological interpretation

Functional-level studies

The Functional level studies I performed consist of 2 main parts, measuring pathway activity
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scores and transcription factor activity scores.

Pathway activity score

Computing the pathway activity score consists of 3 different types, first is to use the given
weight matrix by PROGENy for each pathway, second is to get module score at a single cell
level with a known gene set of pathway and the last one is to use gene set enrichment approach
with public gene set data sets at a cell type level.

I measured PROGENy score for 14 biological pathways in a given cell population (Estrogen,
Androgen, TGFb, WNT, PI3K, Trail, p53, NFkB, TNFa, EGFR, MAPK, JAK-STAT, Hypoxia
and VEGF) [30]. I used the gene-by-pathway weight matrix for 14 pathways where the weight
value indicates the correlation between genes and 14 pathways. Positively high weight means
that this gene was upregulated by this pathway positively and vice versa. Briefly, this correlated
weight matrix was generated from experiment data sets blocking a known pathway, such as
Estrogen, TGFb, WNT, etc. With a matched normal data set to the perturbed experiments,
PROGENy measured the z-score of each gene in the perturbed data set [30]. PROGENy
conducted multiple linear regression between the z-score as a dependent variable and the meta
information of all experiments as an independent variable and got a correlation coefficient for
each gene in a given pathway [30]. Among lots of correlation coefficients, PROGENy provided a
significant correlation coefficient for each pathway as a weighted matrix. I applied PROGENy to
the normalized data set, and averaged PROGENy scores in a given cell population for each
pathway. For visualization, I made a heatmap [30].

At a single cell level, I measured extracellular matrix (ECM) scores with a module score. I
gained specific gene sets of ten different ECM related biological categories, such as collagenes,
ECM glycoproteins, ECM regulators, proteoglycans, etc from MsigDB [25]. With these gene
sets, I used “AddModuleScore” in Seurat [29]. This function averaged the expressions of genes
set at a single cell level and then subtracted this value by the aggregated expression of 100 genes
selected randomly [29]. Regarding the random selection, first, all features (genes) were binned
based on  the averaged values and second, the control features (genes) were selected for each bin.

For gene set enrichment tests with public gene sets, Enrichr was used [26]. Enrichr requires
inputs with the type of “gene list” or “gene list with ranking” instead of gene expression values
like what GSEA needs. Gene expressions at very low levels are the main feature of single cell
RNA-seq so that Enrichr is more suitable for single cell level studies than GSEA. When selecting
genes, top 100 highly expressed genes in a positively scaled matrix were used instead of
differentially expressed genes. This is because the data sets were composed of similar cell types,
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so only top 5 or 10 differentially expressed genes have meaningful differences to separate cell
types. However, for the enrichment studies, I need at least 50 or 100 genes to get statistical
power. For this, the top 100 highly expressed and positively scaled genes were used. AUCell was
used to rank genes based on “CondGeneProb” for each cell type [28]. The Enrichr script in R
was used for this study. EnrichR automatically queried the public gene set of pathways from “GO
Biological Process 2018” [27].

Transcription factor activity score

When I inferred the activity of transcription factors, the Virtual Inference of Protein-activity by
Enriched Regulon analysis (VIPER) was used to measure the relative activity of each
transcription factor [31]. The activity of each transcription factor was calculated by using its
known targets, in which the targets and transcription factors were provided by the well known
databases, DoRothEA [32].

Intercellular communication

For inferring intercellular interactions, quality-based, CellChat and quantity-based, ICELLNET
with genesorteR were used.

First, for running CellChat, a library-size normalized matrix was used. The CellChat infers
intercellular interactions by four delicate steps. First is to find differentially expressed genes for
each cell population compared to others, using the Wilcoxon rank sum test (p value < 0.05) [43].
Second is to use a statistically robust mean instead of measuring averages when calculating
averaged gene expression [43]. As a third, the CellChat measures the intercellular probability
with a random walk based network propagation approach [43]. In other words, it maps gene from
the expression matrix on a validated protein-protein interactions from STRINGdb and then it
measures the probability, the main concept of which is a hill equation used in measuring the
coefficient when ligands interact with receptors in a chemical reaction [94], [95]. As a last step,
CellChat identifies the significant ligand-receptor interactions in the given two cell populations
by permuting the group annotation of cells.

ICELLNET database and genesorteR were used to perform separate intercellular
communications in order to expand the output from CellChat. ICELLNET provides manually
curated pairs of ligands and receptors, especially, immune-related pathways, such as growth
factors, cytokines, chemokines, hormone, checkpoints, notch signaling and antigen binding [40].
I used the source of ligand and receptors of the ICELLNET because there has been a strong
correlation between immune response and renal fibrosis. I measured the percentage of cells
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expressing the ligand and receptors to infer the intercellular communications in given two
populations. When measuring the percentage of cells, the “CondGeneProb” of genesorteR was
used [24].

Cell differentiation

In a bulk RNA-Seq field, the number of pre-mRNA (unspliced mRNA) molecules has been used
to infer if the mRNA will be upregulated or repressed. The assumption is that if mRNA
abundance of a gene is higher than that of pre-mRNA, the mRNA will decrease in order to keep
homeostasis of the mRNA level. Computationally, the amount of both pre-mRNA and mRNA
are measured when reads are mapped to the reference genome. The amount of pre-mRNA of a
gene is the number of reads mapped to both the intron and exon, called this an “unsplied” read. If
the read is mapped to the exon area in the genome, it is called a “spliced” read corresponding to
mRNA.

This approach recently has been used for single cell RNA-Seq. data to infer cell dynamics, such
as cell differentiation. This pseudotime analysis or trajectory inference has been applied to
predict which cells or cell types are the highly differentiated or the origin of differentiations.
This approach uses diverse methods including diffusion map and minimum spanning tree (mst).
PAGA infers pseudotime based on similarity between transcriptome profiles at a cell population
level and then combines this with a diffusion map [37]. Slingshot applies a Minimum Spanning
Tree (MST) to cell populations [34].

Unlike the methods like PAGA and Slingshot, RNA velocity has also been used at a single cell
level. There are two main tools which adopted this approach, Veloctyo [35] and scVelo [36]. The
main assumption of Velocyto is that all genes have a common splicing rate [35], but scVelo
disagreed with this assumption and then developed an advanced approach with a
likelihood-based dynamical model [36]. scVelo assumes that for each single cell, RNA velocity
could have a wide variety of dynamics like developments [36].

In order to do cell differentiation study for this project, three approaches were used, PAGA[38],
scVelo[36] and Velocyto[35]. Normalized matrices of two integrated data are required as input
data for PAGA and scVelo (including Velocyto). Additionally, a batch-corrected positively scaled
matrix was also used (including Velocyto) because the batch-corrected normalized matrix had
negative values as a minimum. First, PAGA measured the population similarity based on the
modularity which is computed by the number of neighboring cells. Second, PAGA measured
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pseudotime with the modified diffusion map, and then map this pseudotime to the collapsed map
where each node is cell type and each edge is the modularity score [38]. In the case of the scVelo,
first, matrices of integrated data sets were used as well as bam files, one of the outputs of
CellRanger. Based on these two inputs, scVelo inferred pseudotime by 3 different models,
deterministic, stochastic and dynamical models. Here, the deterministic model corresponds to the
Velocyto model. These three models were used to infer pseudotime, and then the most suitable
model was selected based on the pseudotime matched to biological knowledge. When the
pseudotime model was selected, PAGA collapsed the velocity values at a cell type level, and
made the directions of time flows which move from lower velocity to higher one. In detail, the
direction was made by the transition probability between two single cells. This transition
between two single cells was computed by comparing the gene expression changes (gene by cell)
with the velocity (gene by cell) by cosine correlation [36]. As well, scVelo measured the
differentially inferred velocity genes for each cell type in a given model, in order words, the
genes in a given cell type which is transcriptionally regulated differently compared to all other
cell types [36]. For this analysis, scVelo used a differential expression test by Welch t-test on the
inferred velocity expression [36].

2.2 Drug repositioning on chronic kidney disease microarray data

Characteristic Direction approach was applied to the normalized microarray data set on 9
different human chronic kidney diseases [85],[89]. The assumption of the Characteristic
Direction is that in vector spaces, the direction of vectors made by genes is more important than
the magnitude like gene expression values. The Characteristic Direction approach identified the
hyperplane which separates disease and control by a linear discriminant analysis. As a next step,
the software found a linear line which had a 90 degree angle to the hyperplane, and calculated the
cosine (cosine similarity) between the linear line and a vector of each gene [85].

I used this output as an input to L1000CDS2 [84]. This software automatically called the profiles
of drug-treated cell line data in which gene expressions were already converted to cosine by the
Characteristic Direction [85]. I ran the L1000CDS2 software and got the top 50 small molecules
in a descending order from the highest score of 1-cosine values between two profiles of
drug-treated and disease. If the score was the highest, the two profiles were the most reversely
matched to each other. As an output, meta information matched to the top 50 ranked molecules
were given, such as the score from 1-cosine, DrugBank link, Cell-line, Does, Time, p value, etc. I
used only the name of small molecules without considering other annotations for further
analysis. In order to take significant drug candidates, I calculated the adjusted p-values with
Benjamini-Hochberg correction and filtered out those which had higher than 0.05 adjusted
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p-values. After I found common drug candidates from at least 3 different CKD diseases,
literature curations were conducted in order to know which molecules have scientific evidence
on the therapeutic potential of the drug candidates for the CKD [89].
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3. Results

This section describes the analysis of single-cell RNA-seq (scRNA-seq) in mouse renal fibrosis
models and drug repositioning using human chronic kidney disease (CKD) microarray data sets.

3.1  Single cell RNA-Seq data preprocessing from mice renal fibrosis

Data preparation and read alignments

scRNA-seq was performed using 10 different reporter mice (Gli1, Myh11, Ng2, Pdgfrb, and
Cd31), each in normal (sham) and renal fibrosis (unilateral ureteral obstruction model, UUO)
mouse models. Dr. Kuppe (RWTH Uniklinik Aachen) generated 9 different data sets, with public
data used for the Cd31 normal mouse data [73].

CellRanger was used to align reads from the fastq files to the reference genome and generate a
gene expression count matrix. The mouse data sets were assessed using CellRanger quality
reports, which include the number of detected cells and mean reads per cell (total number of
sequenced reads divided by estimated number of cells). The number of sequenced cells ranged
from 2,000–10,000 with 20,000–80,000 mean reads/cell across all data sets. The quality reports
also include information regarding the fraction of reads mapped confidently to exonic regions,
which was crucial to reviewing sequencing quality. Data sets with < 50 % of the reads mapped
confidently to exonic regions were removed.

Filtering, Clustering and Annotation

After aligning with CellRanger, Seurat was used to filter cells and genes and to cluster and
annotate reads. Cells with a high percentage of reads mapped to mitochondrial genes (> 80 %)
and those expected to be doublets based on an unexpectedly high number of expressed genes or
reads were filtered out of the data. Mitochondrial genes typically comprise < 20 % of RNA in
most organs, but kidneys are known to require higher mitochondrial function, necessitating the
higher (80 %) cut-off. Cells expressing fewer than 200 genes or genes detected in < 3 cells were
also removed.

After filtering, Seurat was used for unsupervised clustering [93].Various numbers of clusters
were generated depending on resolution. Only specific clusters expressing the tdTomato marker
gene were used in subsequent analyses. As the Cd31 mice, sham (normal) and UUO (renal
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fibrosis), did not express tdTomato, all clusters expressing the Cd31 gene were used in
downstream analysis.

Each cluster was then assigned to a cell type (Figure 3.1.1). The Gli1 sham mice data contained
pericytes, vascular smooth muscle cells (VSMCs), endothelial cells, Schwann cells, and 12
different fibroblasts, while the Gli1 UUO mice data were comprised of 2 different pericytes,
VSMCs, Schwann cells, 3 different fibroblasts, 11 different myofibroblasts, neurons, and unclear
cell types. In Myh11 sham mice data, adipocytes, 4 different fibroblasts, pericytes, and neurons
were identified, while 10 different fibroblasts, myofibroblasts, pericytes, and unclear cell types
were detected in the Myh11 UUO mice data. Pdgfrb sham mice data were annotated as neurons,
pericytes, and 8 different fibroblasts, while the Pdgfrb UUO mice data were composed of 3
different myofibroblasts, 4 different fibroblasts, epithelial cells, pericytes, and podocytes. The
Cd31 sham mice data contained arteriole, ascending vasa recta, capillary, descending vasa recta
(DVR), postcapillary venule, and vein-related cell types (Table 3.1.1). The Cd31 UUO mice data
were annotated as glomerular (glm), lymphatic (lymph), fenestrated (fnst), medullary (mdl), and
DVR endothelial cells by Dr. Kuppe.

compartment I compartment II compartment III sub types subtypes based on phenotype

cortex vein

cortex capillary
angiogenic, interferon,
and postcapillary vein

cortex artery

cortex arteriole efferent

cortex glomeruli arteriole afferent juxtaglomerular apparatus

cortex glomeruli arteriole efferent juxtaglomerular apparatus

cortex glomeruli capillary

medulla vasa recta AVR papilla, interferon

medulla vasa recta DVR papilla, interferon

medulla arteriole

medulla capillary
angiogenic, interferon
and postcapillary vein

Table 3.1.1. The cell type labeling table of the Cd31 sham mice data set. This table shows the categorization of
cell type annotation of Cd31 sham mice data sets. Arteriole is the small branch of an artery heading to capillaries.
Vasa recta is the straight arterioles which enter the medulla as the descending straight arterioles (DVR), and leave
the medulla to ascend to the cortex with the straight venules (AVR). Capillaries connect arteries (from heart) to vein
(to heart).
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Figure 3.1.1. The clustering and annotation outputs of 10 different data sets. All figures from Figure A (Gli), B
(Ng2), C (Myh11) and D (Pdgfrb) are composed of 4 sub-figures. Inside Figure A-D, the upper panel (upper left and
right figures) is from normal mice (SHAM), below one (below left and below right) from renal fibrosis mice (UUO),
left panel (upper left and below left) from clustering outputs, right panel (upper right and below right) from
annotation colored by cell-types. Each color corresponds to different cell types. Fibroblasts are blue, myofibroblasts
are green, neurons & schwann are yellow, pericytes are pink, podocytes are orange, parietal epithelial cells are olive,
vascular smooth cells are dark orange, unclear are gray. Figure E is the annotation output of Cd31 normal mice, F is
from Cd31 renal fibrosis mice. Purple means endothelial cells, olive for medullary endothelial cells, red for
glomerular endothelial cells. In figure F, descending vasa recta endothelial cells (DVR), endothelial cells (endo),
glomerular endothelial cells (glm) and medullary endothelial cells (mdl) have 2 different sub cell types marked 1 and
2.
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Figure 3.1.2. The expression of td-Tomato across 9 different data sets. All figures from Figure A (Gli), B (Ng2),
C (Myh11), D (Pdgfrb) have two kinds of dot plots with the tdTomato expression, upper figure is from normal mice
(SHAM), below one from renal fibrosis mice (UUO). In the case of the Figure D (Pdgfrb), the panel below (renal
fibrosis mice) had two kinds of dots plots from 2 different data sets. Each color corresponds to different cell types.
Fibroblasts are blue, myofibroblasts are green, neurons & schwann are yellow, pericytes are pink, podocytes are
orange, parietal epithelial cells are olive, vascular smooth cells are dark orange, unclear are gray. These plots
indicate that all annotated clusters express enough tdTomato.

The data and cell types used in this work are summarized in Figures 3.1.3 and 3.1.4. The Cd31
sham data is the largest data set, with a total of 10,186 cells. Fibroblasts are the most frequent
cell type, with a total of 14,328 cells, followed by myofibroblasts with 3,915 cells. The number
of genes ranges from 10,075–19,104 across all data sets.
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Figure 3.1.3. The summary of all data sets. This figure consists of three different tables.The green-colored table
explains the number of genes and the number of cells for each data set, Gli1, Ng2, Myh11, Pdgfrb and Cd31. Blue
table shows the number of cells which belong to each cell type including fibroblasts, pericytes, myofibroblasts,

various types of endothelial cells, etc. Orange table shows the total number of cells per cell type across all data sets.
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Figure 3.1.4. The summary of all data sets II. The total number of cells per cell type across all data sets ordered
by the number of cells from highest to lowest.
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Integration

For data integration, two different tools were used, Seurat and Harmony [93], [22]. Before the
integration, cell labelings were already conducted for each 10 different reporter mice data set, so
the integration approaches were evaluated by UMAP and cell-type wise correlation matrix.
Figure 3.1.5.E shows the graphical overview on data integration for Figures 3.1.5-7. Figure
3.1.13 displays the overview for Figures 3.1.8-12.

In Figure 3.1.5, two UMAP and cell type-specific UMAP were displayed. Figure 3.1.5 has the
integrated output of all sham mice from Gli1, Ng2, Myh11, Pdgfrb and Cd31. The left panels (A
and C) are from the Seurat and the right panels (B and D) are from Harmony. The upper figures
(A and B) are UMAP, and lower ones have several UMAP figures coloring only one cell type.
Figure 3.1.5.A shows that Seurat integrated all data sets into one big cluster regardless of
different cell types, but Figure 3.1.5.B exhibits separate clusters for each cell type such as
fibroblasts, pericytes and endothelial cells. In the lower panel of the same figure (Figure C & D),
A-G corresponds to adipocytes, endothelial cells, fibroblasts, glomerular endothelial cells,
medullary endothelial cells, neurons, pericytes, schwann and vascular smooth muscle cells
(vSMC). In Figure 3.1.5.D, I could see that (C) fibroblasts, (G) pericytes, (F) neurons and (B-E)
endothelial cells have their own distinct clusters with reduced batch effect in Harmony
integration output and it is better than the Seurat where all cell types gather together. The same
situation is also found in the output of all integrated UUO mice data sets in Figure 3.1.6. The
lower panel (Figure C&D) of the figure 3.1.6 have A-O, in order, DVR endothelial cells,
endothelial cells, fenestrated endothelial cells, fibroblasts, glomerular endothelial cells,
lymphatic endothelial cells, medullary endothelial cells, myofibroblasts, neurons, parietal
epithelial cells, pericytes, podocytes, schwann, unclear, and vSMC. Compared to the output of
Seurat in the Figure.3.1.6.A, the harmony UMAP shows clear separation between endothelial
cells and non-endothelial cells. In Figure 3.1.6.D, interestingly, (H) myofibroblasts and (J)
pericytes were scattered in diverse clusters because of the heterogeneity of these cell types.

  

37

https://paperpile.com/c/McMDPa/2Gy0a
https://paperpile.com/c/McMDPa/8l6Xq


38



Figure 3.1.5. The UMAP and facets of all sham mice data sets integrated by Seurat and Harmony. The left
panels (Figure A and Figure C) are from the Seurat, and the right panels (Figure B and Figure D) are from Harmony.
The upper figures (Figure A and Figure B) are UMAP, and lower ones (Figure C and Figure D), facets. In facets,
there are 9 different cell types, in Figure 3.1.5 C and D, (A) adipocytes, (B) endothelial cells, (C) fibroblasts, (D)
glomerular endothelial cells, (E) medullary endothelial cells, (F) neuron, (G) pericytes, (H) schwann and (I) vascular
smooth muscle cells (vSMC). Figure E is the graphical overview on the data integration for Figures 3.1.5-7. Data
integration was conducted by three approaches, Harmony, Seurat and non-integration approach. For UMAP,
Harmony, Seurat were used. For correlation matrix, Harmony, Seurat, non-integration approach were used.

Figure 3.1.6. The UMAP and facets of all UUO mice data sets integrated by Seurat and Harmony. The left
panels (Figure A and Figure C) are from the Seurat, and the right panels (Figure B and Figure D) are from Harmony.
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The upper figures (Figure A and Figure B) are UMAP and lower ones (Figure C and Figure D), facets. In facets,
there are 15 different cell types, (A) DVR endothelial cells, (B) endothelial cells, (C) fenestrated endothelial cells,
(D) fibroblasts, (E) glomerular endothelial cells, (F) lymphatic endothelial cells, (G) medullary endothelial cells, (H)
myofibroblasts, (I) neuron, (J) parietal epithelial cells, (K) pericytes, (L) podocytes, (M) schwann, (N) unclear and
(O) vSMC.

In order to review if the Harmony integration has a huge artificial effect, cell type-specific
correlation was measured on integrated data sets. Additionally, in order to compare the effect of
Harmony, all sham and all UUO raw data sets were put together into one matrix without any
integration methods. Before measuring the correlation, all data sets were normalized, scaled and
then took positive values. This is because first, the scaled data set has zero as mean, so it doesn't
fit measuring correlations in a cell-type specific way where all positively and negatively scaled
values were averaged close to zero for the given cell type. Second, the batch-corrected
normalized matrix has minus values as a minimum whereas the non-batch-corrected normalized
matrix has zero value as a minimum. So, normalization matrices of these two approaches were
not comparable. Third, positively scaled values indicate that the genes were upregulated over
mean across all cells, in other words, which can represent the feature of the given cell types
without any noise and lowly expressed values. Based on these three reasons, normalized and
scaled values were not suitable for cell-type correlation measurement so I used only positively
scaled values. However, even the positively scaled gene expression has a low scale between
maximum and zero so instead of using the average in a given cell type for the correlation, the
“CondGeneProb” of genesorteR was used. In other words, the correlation was measured in a
binary way at cell-type level.

Figure 3.1.7 has 6 different cell type-specific correlation matrices measured by Pearson
correlation on the “CondGeneProb” matrix computed by genesorteR [24]. The left panels (A and
D) are from the Seurat, the middle (B and E) from the non-integration approach and the right (C
and F) from Harmony. The upper panels (A,B and C) are from all sham mice and the lower ones
(D,E and F) from all UUO mice.

In Figure 3.1.7.A (Seurat integration), only a few clusters (cluster “b”,”c”) show strong
correlations where cluster “b” and “c” include all endothelial cells from Cd31 sham. Others have
weak correlation even within the same cell types in cluster “d” (18 fibroblasts from Gli1, Pdgfrb,
Myh11, Ng2 and 1 neuron from Ng2). Figure 3.1.7.B (non-integration approach) have several
clusters with strong correlations, in detail, cluster “a” corresponds to all endothelial cells from
Cd31, cluster “b” & “c” involve fibroblasts across all data sets such as Gli1, Ng2, Myh11 and
Pdgfrb and cluster “d” & “e” have neurons and pericytes from all data sets. These correlations
were matched with cell-type wise biological knowledge more than the Figure 3.1.7.A. Figure

40

https://paperpile.com/c/McMDPa/cGPqb


3.1.7.C (Harmony integration) has the same trend with Figure 3.1.7.B (non-integration
approach), but Figure C (Harmony integration) shows a bit better cell-type correlation than
Figure 3.1.7.B (non-integration approach). In Figure 3.1.7.C, cluster “b”, “c” and “d” have only
fibroblasts and have more clear separation from the cluster “e” including percityes and neuron.
However, in Figure B, the pericytes and neuron clusters (“d”,”e”) have over 0.5 similarity with
fibroblasts clusters (“b”, “c”) compared to Figure 3.1.7.C (Harmony integration). Briefly,
Harmony gathered the same (or similar) cell types more closely, and separated different cell
types to each other. So, Harmony was better than Seurat, and it's a bit more preferable than a
non-integration tool, which indicates that Harmony had less artificial effect compared to
non-integration approach. Figure 3.1.7.D-F are the correlation matrices from all UUO mice data
integrated by Seurat (D), non-integration tool (E) and Harmony (F). Like the correlation output
of all sham mice data sets, those of all UUO mice data sets displayed a similar phenomenon with
the correlation of all sham data integration where integration Harmony (F) is better than Seurat
(D), and it’s slightly more superior than non-integration method (E).

Figure 3.1.7. The cell type-specific correlation matrices on the integrated data sets. The left panels (A and D)
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are from the Seurat, the middle (B and E) from the non-integration approach and the right (C and F) from Harmony.
The upper panels (A,B and C) are from all sham mice and the lower ones (D,E and F) from all UUO mice.
Regarding the non-integration method, the same preprocess was applied such as, normalizing, measuring highly
variable genes and scaling after putting multiple data sets together into one matrix like what Seurat and Harmony
did. Cell type-specific correlation was measured by Pearson correlation on “CondGeneProb” matrix computed by
genesorteR.

For the smaller data set integration, Harmony was also used and tested. The graphical overview
is described in Figure 3.1.13. In Figure 3.1.8-11, there are large and small UMAP figures for
Gli1, Ng2, Myh11 and Pdgfrb, separately. Like when comparing the correlation matrix of
integration on the all integrated data set, the same approaches were applied, but without Seurat.
In Supplementary Figure 4.1.1, Figure A & C are the outputs by the non-integration tool and
Figure.B & D by the Harmony. The two cell type correlation matrices look similar to each other,
but Harmony made two pericytes from sham and UUO mice closer to each other than the
non-integration tool in Supplementary Figure 4.1.1.B (Gli1) and D (Myh11) and 4.1.2.B (Ng2).
However, Pdgfrb integration by Harmony has almost similar correlation matrices with the
non-integration tool.

Figure 3.1.8. The UMAP and facets of Gli1 integration by Harmony. Figure A is the UMAP of Gli1 integrated
by Harmony, respectively. Figure B has several UMAP figures which color only one cell type (colors are divided by
the condition, UUO and SHAM).
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Figure 3.1.9. The UMAP and facets of Myh11 integration by Harmony. Figure A is the UMAP of Myh11
integrated by Harmony, respectively. Figure B has several UMAP figures which color only one cell type (colors are
divided by the condition, UUO and SHAM).

Figure 3.1.10. The UMAP and facets of Ng2 integration by Harmony. Figure A is the UMAP of Ng2 integrated by
Harmony, respectively. Figure B has several UMAP figures which color only one cell type (colors are divided by the
condition, UUO and SHAM).
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Figure 3.1.11. The UMAP and facets of Pdgfrb integration by Harmony. Figure A is the UMAP of Pdgfrb
integrated by Harmony, respectively. Figure B has several UMAP figures which color only one cell type (colors are
divided by the condition, UUO1, UUO2 and SHAM).

In the case of the Cd31 mice data set, Harmony separated Cd31 sham from Cd31 UUO in Figure
3.1.12 regardless of common cell types of sham and UUO mice. It represents high heterogeneity
of renal endothelial cells [73]. When it comes to the integration approaches, the Harmony and
non-integration approach generated similar cell-type correlation outputs to each other in
Supplementary Figure 4.1.3 where the upper figure (A) was by non-integration tool and the
below (B) by Harmony.

44

https://paperpile.com/c/McMDPa/rXwlh


Figure 3.1.12. The UMAP and facets of Cd31 integration by Harmony. (A) The UMAP of Cd31 integrated by
Harmony. (B) Several UMAP figures which color only one cell type, but color is divided by the samples, red (cortex
sham), green (glomerulus sham), blue (medulla sham) and purple (UUO).

In summary, the integration study shows that first, Harmony fits the single cell data integration
composed of similar cell types by gathering same (or similar) cell types closely and separating
different cell types distantly. Second, it has less artificial effect when compared with the
non-integration approach.
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Figure 3.1.13. The graphical overview of data integration. This figure is the graphical overview on the data
integration for Figure 3.1.8-12. “+” means integration. (A) Gli1 sham and UUO data integration, (B) Ng2 sham and
UUO data integration, (C) Myh11 sham and UUO data integration, (D Pdgfrb sham and UUO data integration and

(E) Cd31 sham and UUO data integration. Data integration was conducted by three approaches, Harmony, Seurat

and non-integration approach. For UMAP, Harmony was used. For correlation matrix, Harmony, Seurat,
non-integration approach were used.
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Biological interpretation on single cell RNA-seq data

Functional-level studies

Pathway and transcription factor activity studies

All pathways of Progeny are linked to each other in cells, but for the efficient interpretation,
these pathways could be collapsed into 3 categories, (1) c-Jun N-terminal kinase (JNK)-related
(TNF-a, TGF-β, NF-κB, JAK-STAT, p53, Wnt), (2) MAPK-related (MAPK, PI3K, EGFR) and
(3) endothelial cells-related (VEGF, Hypoxia). Other pathways were excluded for biological
interpretation. Figure 3.1.14 displays the Progeny outputs of Gli1, Ng2 and Myh11 data sets.
JNK-related pathways (TNF-a, TGF-β, NF-κB, JAK-STAT, p53, Wnt) were upregulated across
cells in Gli1, Ng2, Myh11 UUO mice more than sham mice. However, PI3K (MAPK-related
pathways) didn’t have such a clear separation between UUO mice and sham mice data (one
sample t-test, p-value=0.41, FDR=1). This implies that JNK-related pathways gave effect on the
formation of renal fibrosis more than PI3K pathway.

Figure 3.1.14. The PROGENy results from Gli1, Ng2 and Myh11 data sets. (A) The PROGENy output from
Gli1 sham and UUO, (B) Ng2 sham and UUO and (C) Myh11 sham and UUO. The x-axis of all figures involves 14
different PROGENy pathways for each condition (SHAM and UUO), the y-axis corresponds to the PROGENy
activity. The significance was measured by a one sample t-test in which the null hypothesis was that PROGENy
scores in UUO were not greater than sham, and the p-value was corrected by bonferroni. ( “****” if FDR < 1e-04,
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“***” if 1e-04 < FDR < 0.001, “**” if 0.001< FDR < 0.01, “*" if 0.01< FDR < 0.05, “ns” if 0.05 < FDR < 1). The
p-values and adjusted p-values are listed in Supplement table 4.1.2.

Figure 3.1.15 shows the highly variable transcription factors across cell types in Gli1, Ng2,
Myh11, Pdgfrb data. Atf2 (except for Myh11 UUO data), Smad3 and Myc (except for Pdgfrb
UUO data) were found as interesting and significant statistically (Supplements 4.1.3). These
outputs are matched with the output of PROGENy, TGF-β (Samd3, Atf2) and MAPK (Myc).
Those transcription factors are known as downstream-related genes of those pathways.
Interestingly, structure specific recognition protein 1 (Ssrp1) was also found as significant in
Gli1, Ng2, Myh11 UUO datasets but the literature evidence is insufficient to support the
biological link between this gene and renal fibrosis.

Figure 3.1.15. The DoRothEA violin plots from Gli1, Ng2, Myh11 and Pdgfrb data sets. The DoRothEA output
from (A) Gli1 sham and UUO, (B) Ng2 sham and UUO, (C) Myh11 sham and UUO and (D) Pdgfrb sham and UUO.
The x-axis of 4 figures involve diverse cell types divided by condition, sham and UUO. The y-axis consists of 10
highly variable transcription factors. Each color corresponds to cell types, fibroblasts (blue), myofibroblasts (green),
neuron & schwann (yellow), parietal epithelial cells (dark olive), pericytes (red), podocytes (orange), vascular
smooth muscle cells (dark orange), and unclear(grey). The transcription factor activity range from 10 to -10 in Gli1
sham and UUO, 5 to -10 in Ng2 sham and UUO, 10 to -12.5 in Myh11 sham and UUO, 10 to -10 in Pdgfrb sham
and UUO mice data set. Biologically important transcription factors were marked by a red line. The p-values and
adjusted p-values are listed in Supplements 4.1.3.
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Interestingly, the Progeny and DoRothEA outputs of Pdgfrb data exhibit different patterns from
Gli1, Ng2 and Myh11. Figure 3.1.16.A shows that MAPK-related pathways including MAPK
and PI3K separated Pdgfrb UUO mice from sham mice rather than JNK-related pathways and
EGFR. It infers that MAPK was the key factor causing renal fibrosis more than JNK-related
pathways in the Pdgfrb UUO mice data set. In Figure 3.1.16.B, Cd31 data shows the VEGF and
Hypoxia pathways were over-expressed and more significant in UUO mice than sham mice.
NF-κB, TGF-β and TNF-a also were also highly scored pathways in Cd31 UUO mice than sham
mice. It indicates JNK-related pathways with VEGF and Hypoxia, were associated with the
pathogenesis of renal fibrosis in Cd31 UUO mice data, in other words, endothelial cells.
Interestingly, there was a report to support this output. In vitro 3D collagen gel culture assays,
IL-6 and TNF-a promotes inflammatory-endothelial to mesenchymal transformation (EndMT)
through an Akt/NFκB-dependent pathway in both adult valve endothelium [96]. Here, I inferred
that upregulated JNK-related pathways would induce renal fibrosis in a situation of up-regulated
hypoxia and angiogenesis (upregulated VEGF) in endothelial cells of mice renal fibrosis.

Figure 3.1.16. The PROGENy results from Pdgfrb and Cd31 data sets. There are two PROGENy outputs, (A)
Pdgfrb sham and UUO, (B) Cd31 sham and UUO. The x-axis of 3 figures involves 14 different PROGENy
pathways, the y-axis corresponds to the PROGENy activity. The significance was measured by a one sample t-test in
which the null hypothesis was that PROGENy scores in UUO were not greater than sham, and the p-value was
corrected by bonferroni. ( “****” if FDR < 1e-04, “***” if 1e-04 < FDR < 0.001, “**” if 0.001< FDR < 0.01, “*” if
0.01< FDR < 0.05, “ns” if 0.05 < FDR < 1). The p-values and adjusted p-values are listed in Supplements 4.1.2.

Figure 3.1.17 has the outputs of DoRothEA of Cd31 UUO mice data set. Several up-regulated
transcription factors were found in Cd31 UUO mice higher than sham mice, Klf6, Kmt2a, Mef2a,
Myc, Stat2, Taf1, Tead1 and Tead4. Biologically, Klf6 has been known to upregulate the
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expression of TGF‐β and induce the process of epithelial‐mesenchymal transition (EMT), one of
the causes leading to renal fibrosis [97]. As well, Klf6 enhances tubular epithelial injury by using
glomerular endothelial cells [97]. Interestingly, it was matched with the DoRothEA output of
Cd31 UUO mice in that Klf6 was highly expressed across glomerular endothelial cells than other
cells in Cd31 sham mice. The pathway-wise output (PROGENy in Figure 3.1.16) which shows
that TGF-β signaling was upregulated across all glomerular endothelial cells in both sham and
UUO mice. Here, it infers that Klf6 transcription factors induced the activated TGF-β signaling
to promote renal fibrosis in the glomerular endothelial cells. Kmt2a has insufficient literature
studies which show the pathological relation with renal fibrosis. In the case of the Mef2a, this
gene is one of transcription factors to activate angiogenesis directly downstream from VEGFA
[98]. This prior study is matched with the PROGENy and DoRothEA output of Cd31 UUO mice
data sets in that VEGF pathway activity and Mef2a transcription factor activity were enhanced
across cells in Cd31 UUO mice, especially in glomerulus and DVR in medulla. Regarding Myc,
this gene has been known to be increased in tubular epithelial cells when the endothelial to
mesenchymal transition (EndMT) activates hypoxia. Pharmacologically, suppression of Myc in
tubular epithelial cells alleviated fibrosis [96]. Interestingly, the hypoxia pathway had higher
activity across cells in the Cd31 UUO mice data set than the Cd31 sham mice data in PROGENy
output, and Myc transcription factor activity was upregulated in glomerulus and DVR. Stat2,
Taf1, Tead1 and Tead4 have a lack of prior studies related to renal fibrosis in endothelial cells.
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Figure 3.1.17. The DoRothEA results from Cd31 sham and UUO mice data sets. (A) The x-axis of DoRothEA
outputs involve diverse cell types divided by condition, sham (Medulla sham (yellow), Glomerulus sham (purple)
and Cortex sham(blue)) and UUO (red). The y-axis consists of 10 highly variable transcription factors. Red box is
renal fibrosis mice (UUO). The transcription factor activity ranges from 10 to -10. All sub cell type numbers (“_1”,
”_2”…) are independent per each cell type and each condition. For example, sub-celltype 2 of fibroblasts (“fb_2”) of
SHAM is not related to the sub-cell type 2 of fibroblasts (“fb_2”) of UUO.

Pathway activity studies at a single cell level and a cell type level

As a next step, the extracellular matrix (ECM) scores were computed with the function,
“AddModuleScore” of Seurat across 4 different data sets, Gli1, Myh11, Ng2, Pdgfrb. Figure
3.1.18 shows the module scores of 10 different gene sets related to ECM in a given cell type. The
maximum score is close to 2, and the minimum is close to zero or a negative value due to the
subtraction approach in the “AddModuleScore” function. Each color corresponds to each
different cell type, fibroblasts (red), myofibroblasts (green), pericytes (blue) and vascular smooth
muscle cells (vSMC, purple). In Figure 3.1.18, fibroblasts or myofibroblasts had higher module
scores than pericytes and vascular smooth muscle cells (VSMC) in Gli1, Ng2, Myh11 and
Pdgfrb. Regarding the gene set from “NABA BASEMENT MEMBRANES”, UUO mice data of
Gli1, Myh11 and Ng2 UUO mice data had a higher module score than sham. In the Pdgfrb data
set, myofibroblasts in UUO mice didn’t have higher module scores than fibroblasts across
conditions.
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Figure 3.1.18. The ECM score of the Gli1 sham and UUO data set for the 10 different ECM-related different
gene sets. These violin plots show the modularity score across all data sets for 10 different ECM-related gene sets
per each cell type. Fibroblasts (red color, “fb”) and myofibroblasts (green color, “mfb”) had a tendency of having
higher modularity than other cell types, pericytes (blue color, “prc”) and vascular smooth muscle cells (purple color,
“vSMC”) across all data sets.

To identify significant biological pathways for each cell type, a gene set enrichment test with
EnrichR was conducted. The key of this study is about how many genes are used because a few
genes (< 20) can make a significant signal even if only 1 or 2 genes are shared with a gene set of
known pathways, but it was the limitation of this project. This is because data sets in this project
were composed of similar cell types so that it was difficult to get the enough number of
differentially expressed genes (DEG). In order to find alternative genes to DEGs, I utilized the
batch-corrected & positively-scaled matrix. For the datasets, I ranked the genes based on the
score of the “CondGeneProb” (the percentage of cells expressing a gene per each cell type) in a
given cell type and then, took top 100 genes for each cell type, in other words, it is the top 100
genes widely expressed in a given cell type. Additionally, I took only positively scaled gene
expression values by collapsing all negative values as zero, so highly expressed over the average
across all data sets were used too.

Figure 3.1.19 shows the enrichment results from Enrichr in Gli1, Myh11 and Ng2 data. The
value (color) is the negatively log 10 scaled adjusted p.value, and the dot size corresponds to the
shared number of genes with the public database “GO Biological Process 2018”. Only significant
pathways (adjusted.p.value < 0.05) were marked as dots. The figure 3.1.19.A shows that the
positive regulation of fibroblast proliferation, positive regulation of stress fiber assembly,
positive regulation of focal adhesion assembly, positive regulation of cell−matrix adhesion,
neutrophil activation involved in immune response were significant across many myofibroblasts,
especially, type 2, 4, 5, and these pathways were rarely detected in sham mice as significant
pathways. It was interesting that these pathways have been known as the myofibroblasts' typical
characteristic. As well, the negative regulation of programmed cell death was only detected in
many myofibroblasts. It indicates that myofibroblasts kept remaining and then induced immune
responses because the B cell differentiation and the positive regulation of lymphocyte
differentiation were also identified as significant pathways in UUO (not shown in figures). In the
output of integrated Myh11 data (Figure 3.1.19.B), similar pathways like Gli1 were detected as
significant. Surprisingly, the negative regulation of cell death was also found in only
myofibroblasts. However, regarding the positive regulation of fibroblast proliferation, it was
detected as significant across many cell types in both Myh11 UUO and sham. The Ng2
integrated data set also shows a similar output like Myh11 in Figure 3.1.19.C.
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Figure 3.1.19. The GO-term enrichment score of the integrated Gli1, integrated Ng2 and integrated Myh11
data sets. The upper figure (A) is the enrichR output inferred from Gli1 data sets integrated by Harmony and the
lower ones (B) is from Myh11 data sets, (C) is from Ng2 integrated by Harmony. Top100 highly and widely
expressed genes in a given cell type were used.

Regarding the integrated Pdgfrb data set in Figure 3.1.20.A, the positive regulation of fibroblasts
proliferation is shown as significant in only 2 cell types, fibroblasts type 1 and myofibroblasts
type 2 in Pdgfrb UUO mice. The cellular response to cytokine stimulus, the endodermal cell
differentiation, regulation of extrinsic apoptotic signaling pathway via death domain receptors,
positive regulation of focal adhesion assembly, positive regulation of extrinsic apoptotic
signaling pathway via death domain receptors, positive regulation of chemokine production and
the positive regulation of cell−substrate adhesion were also identified as significant in Pdgfrb
UUO mice data like other data sets. However, the negative regulation of cell death was not
identified as significant pathways in both fibroblasts and myofibroblasts in Pdgfrb UUO. For the
integrated Cd31 data set in Figure 3.1.20.B, several significant pathways were found, such as the
positive regulation of fibroblast proliferation and cellular response to cytokine stimulus.
Interestingly, the regulation of fibroblast proliferation was detected as significant across some
cell types in both Cd31 sham and UUO. However, the positive regulation of fibroblast
proliferation was only found in Cd31 UUO. In the case of the cytokine-related signaling, it was
significant across all Cd31 UUO and sham (not shown in the figure). This is because the
endothelial cells directly contact immune cells in capillaries or arteries.
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Figure 3.1.20. The GO-term enrichment score of the integrated Pdgfrb and Cd31 data sets separately. (A) The
Enrichr outputs from Pdgfrb data sets integrated by Harmony. (B) EnrichR output from Cd31 data sets integrated by
Harmony. Top100 highly and widely expressed genes in a given cell type were used. Red boxes (A) or lines (B)
correspond to UUO mice where (below the red line) yellow means medullary endothelial cells from UUO, purple is
glomerular endothelial cells from UUO and grey is global endothelial cells from UUO mice. Out of the red line, blue
corresponds to cortex endothelial cells from sham, purple to glomerular endothelial cells from sham, yellow to
medullary endothelial cells from sham.
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Intercellular communication

In order to understand intercellular signaling across cell types, two different approaches were
used, first was to infer intercellular talks based on the percentage of cells expressing the ligands
and receptors (> 10% in a given two cell types) with ICELLNET database [40]. Second was to
use a more delicate way to apply the hill function with differentially expressed genes in given
two cell types by CellChat [43]. The outputs of the first approach are Figure 3.1.21-22 and 24.
The second approach outputs are displayed in Figure 3.1.23, 25 and Supplement Figure 4.1.4-5
and 4.1.7.

In Figure 3.1.21, there are 4 outputs which show cell to cell communication in (A) Gli1, (B)
Myh11, (C) Ng2, and (D) Pdgfrb sham mice data sets. Each color corresponds to biological
pathways like Notch signaling (blue), growth factor (light blue), cytokine (olive), chemokine
(green), checkpoint (red), hormone (pink) and non-specified signaling (grey).The x-axis consists
of family, LR (ligands & receptors), sender (cell types) and receiver (cell types). The y-axis is the
accumulated “CondGeneProb” by the summation of the minimum of the two “CondGeneProb”
values from the given ligand and receptor.
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Figure 3.1.21. The intercellular communication of the Gli1, Myh11, Ng2 and Pdgfrb sham data set. (A) Gli1,
(B) Myh11, (C) Ng2 and (D) Pdgfrb. Each color corresponds to biological pathways like Notch signaling (blue),
growth factor (light blue), cytokine (olive), chemokine (green), checkpoint (red), hormone (pink) and non-specified
signaling (grey). The x-axis consists of family, LR (ligands & receptors), sender (cell types) and receiver (cell
types). The y-axis is the accumulated “CondGeneProb” of detected ligands and receptors. The thickness of the
curve is the accumulated minimum percentage of cells expressing the ligand or the receptor of the interaction in a
given family.

Figure 3.1.21 includes the outputs from sham mice data sets, (A) Gli1, (B) Myh11, (C) Ng2 and
(D) Pdgfrb. The maximum accumulated values (Y-axis) across data sets ranged from 0.8 to 24.6,
and mainly cytokine responses occupied lots of all the detected interactions of ligands and
receptors. Pdgfa-Pdgfra, Mif-Cd74 were found across all sham data sets. Datasets-wise, in
Figure 3.1.21.D (Pdgfrb), all cell types had cytokine-associated immune response and the
accumulated values is almost 25, the top value among all data sets.

Figure 3.1.22 shows the outputs from all UUO mice data sets, (A) Gli1, (B) Ng2, (C) Myh11 and
(D) Pdgfrb. The accumulated “CondGeneProb'' values had 19.6 as minimum and 66 as maximum
across data sets. Chemokine-related immune responses were detected more often in UUO mice
than sham mice data across all data including Gli1, Ng2, Myh11 and Pdgfrb. Tgfb1-Tgfbr2 &
Tgfbr1, Fn1-Itgbv, Mif-Cd74 and Vegfa-Nrp1 were detected commonly across all UUO mice data
sets. Regarding Vcam1-Itgb1 & Itga9, two receptors, Itga9 and Itgb1, were identified in the Ng2,
Myh11 and Pdgfrb UUO mice data set compared to sham mice data where only Itgb1 was
expressed. In addition, Tgfb1, Tgfb2 and Tgfb3 were up-regulated across all UUO mice than
sham. In the case of the Mif-Cd74, macrophage migration inhibitory factor (Mif) is an important
pathogenic factor of renal inflammation leading to the Acute Kidney Injury (AKI) via a
CD74-Mif-NF-κB-dependent mechanism [100]. Interestingly, the Mif-Cd74 interactions were
also identified in all sham and UUO mice data in Figure 3.1.21 and 22, but NF-κB pathways
were upregulated in the Progeny output of UUO mice than sham across all data sets in Figure
3.1.14 and 16. Here, I inferred that Mif-CD74-NF-κB-dependent mechanism contributed to
leading renal fibrosis on Gli1, Ng2, Myh11, Pdgfrb UUO data. Pdgfrb UUO mice had different
outputs from other Gli1, Ng2 and Myh11 UUO mice data sets. In Figure 3.1.22.D, Pdgfrb UUO
mice data sets had less accumulated “CondGeneProb'' than other UUO mice data. This is because
the Pdgfrb gene in the td-tomato Pdgfrb+ UUO mice targeted different types of cells from Gli1,
Ng2 and Myh11 UUO mice.
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Figure 3.1.22. The intercellular communication of the Gli1, Myh11, Ng2 and Pdgfrb UUO data set. (A) Gli1,
(B) Myh11, (C) Ng2 and (D) Pdgfrb. Each color corresponds to biological pathways like Notch signaling (blue),
growth factor (light blue), cytokine (olive), chemokine (green), checkpoint (red), hormone (pink) and non-specified
signaling (grey). The x-axis consists of family, LR (ligands & receptors), sender (cell types) and receiver (cell
types). The y-axis is the accumulated “CondGeneProb” of detected ligands and receptors. The thickness of the
curve is the accumulated minimum percentage of cells expressing the ligand or the receptor of the interaction in a
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given family.

The number of cells in Gli1, Ng2, Myh11, Pdgfrb were diverse to each other. I checked if the
number of cells affected the number of ligand-receptor interactions, in which the number of
communications was divided by the number of cells. The ratio was 0.08 (144 interactions / 1645
cells) in Gli1 sham, 0.11 (297 interactions /2682 cells) in Gli1 UUO, 0.01 (6 interactions /549
cells) in Ng2 sham, 0.08 (420 interactions /5072 cells) in Ng2 UUO, 0.01 (21 interactions /1716
cells) in Myh11 sham, 0.08 (638 interactions /7355 cells) in Myh11 UUO, 0.17 (204 interactions
/1166 cells) in Pdgfrb sham, 0.10 (175 interactions /1689 cells) in Pdgfrb UUO mice data set.
Pdgfrb sham data has a higher ratio even though it has a lower number of cells than Pdgfrb UUO.
Gli sham has the similar number of cells of Ng2 sham, but the ratio is totally different. It means
that there was less effect from the cell sizes on the number of ligand-receptor interactions.

Figure 3.1.23. The CellChat intercellular communication of the Gli1, Myh11, Ng2 and Pdgfrb sham and UUO
mice data sets. There are 8 signalings including non-canonical WNT (A), Pdgf (B,E,H), IGF (C), MIF (D), MK (I),
CXCL (G), PTN (J) and PERIOSTIN (K) signalings. All circle plots consist of cell type as nodes with the
interactions (as edges). Each edge represents the total interaction strength (or weight) between any two cell groups,
which means thicker edges indicate a stronger signal. Weight refers to communication probabilities measured by the
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law of mass action with the amounts of the modeled ligand-receptor. In a given two circle plot, two plots have the
same maximum values of edges so two plots can be comparable to each other.

As a next step, CellChat was used [43]. CellChat database and ICELLNET databases share
almost 50 percent of ligands and receptors, but CellChat infers the ligand-receptor interactions in
a more delicate way while categorizing the pairs with information from the KEGG Pathway
database [40]. In Figure 3.1.23, CellChat inferred that Pdgfb-related signaling was upregulated in
the cell to cell communications in Gli1 UUO (Figure B) & Ng2 UUO mice (Figure H) & Myh11
UUO (Figure E) than sham mice. As well, MK-related signaling was upregulated in both Ng2
UUO (Figure I) & Myh11 UUO (Figure F), IGF signaling (Figure C) & MIF signaling (Figure
D) in Gli1 UUO, and SPP1 (Not shown in the Figure 3.1.23) & PTN (Figure J) & PERIOSTIN
signaling (Figure K) in Pdgfrb UUO.

In order to know if the signalings are associated with the renal fibrosis, diverse literatures were
reviewed. Platelet-derived growth factors (PDGFs) are normally expressed in renal mesenchymal
cells, epithelial cells and injury [101]. The PDGF receptor-expressed mesenchymal cells have
autocrine and paracrine effects, which are involved in renal diseases [101]. In the MK-related
signaling (midkine gene), Mdk (+/+) mouse models of renal ablation developed renal failure
compared with Mdk (-/-) mice [102]. Non-canonical WNT signaling promotes the downstream
c-Jun N-terminal kinase (JNK) activation which in turn, activates both non-canonical TGF-b and
PDGF signaling, which leads to fibrosis in the kidney [103], [57]. However, the Insulin-like
growth factor (IGF) signaling is related to the attenuation of renal fibrosis by mediating vascular
homeostasis and endothelial function [104]. Mif signaling in renal fibrosis is mentioned earlier,
and both PTN and PERIOSTIN signaling are written below.

In Supplementary Figure 4.1.4, there were 4 signalings as gene-wise interactions, Pdgfa-Pdgfrb
in both Gli1 (Figure B,D) and Myh11 (Figure F,H), Wnt5a-Fzd1 in Gli1 (Figure A,C), Mdk-Sdc2
in Myh11 (Figure E,G). Regarding the Pdgfa-Pdgfrb interactions, pericytes or endothelial cells
sent signals in Gli1 and Myh11 sham mice data (Figure B,F), but in the matched UUO mice data,
myofibroblasts and fibroblasts were also involved as senders as well as pericytes and endothelial
cells (Figure D, H) Regarding the non-canonical Wnt signaling (Wnt5a-Fzd1) in Gli1 and MK
signaling (Mdk-Sdc2) in Myh11, fibroblasts or myofibroblasts acted as a sender in both sham
mice and UUO mice (Figure A, C, E, G), but the singal weight was a way higher in UUO mice
than sham mice.

In Supplementary Figure 4.1.5.B,D,F,H, There are 4 different signals, Mdk-Sdc2, Pdgfa-Pdgfrb,
Ptn-Sdc2 and Postn-(Itgav+Itgb5) found in Ng2 (Figure A,B,C,D) and Pdgfrb (Figure E,F,G,H).
UUO mice had more diverse interactions than shaam across Ng2 and Pdgfrb. Biologically, there
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has been a lack of studies which explain how Mdk-Sdc2 and Wnt5a-Fzd1 are connected to renal
fibrosis directly. Pdgfrb has been studied as an important protein causing renal fibrosis.
PDGFR‐β activation alone is sufficient to induce progressive renal fibrosis and failure [105].
Additionally, in Pdgfd (-/-) mice, renal interstitial fibrosis was reduced in two models of renal
injury, which was associated with reduced phosphorylation of PDGFR-β and p38 (Mapk14 in
mice) as a downstream mediator [106]. The downstream of Pdgfa-Pdgfrb interaction is related to
JAK-STAT, PI3K, Ras-MAK signaling [107]. Here, the PROGENy output of UUO mice in Gli1,
Ng2 and Myh11 displays that JAK-STAT signaling was upregulated across cells in UUO rather
than sham, but PI3K, MAPK were not in Figure 3.1.14. A&C. Additionally, p38 (Mapk14) gene
was rarely expressed in the Gli1, Ng2 and Myh11 UUO data set compared to Pdgfrb UUO data
in Supplementary Figure 4.1.6. So, it represents that in Gli1, Ng2, Myh11 UUO mice data set,
Pdgfa-Pdgfrb-JAK-STAT signaling would be one of the main factors which induced renal
fibrosis and this is matched to other prior study in which PROGENy showed the highest activity
in the JAK/STAT pathway in Foxd1Cre::Pdgfrb+/J mice model where PDGFR‐β signaling was
activated in renal FoxD1+ mesenchymal cells [105].

Regarding the MIF signaling, Mif-Ackr3 interactions were identified in Gli1 UUO mice data
(Not in Figures). MIF has been known to induce CD74 complexes with CXCR2, CXCR4, or
CXCR7 (Ackr3 in mice), which in turn activate chemokine expression [108]. NF-κB pathways
were upregulated in Gli1 UUO than Gli sham mice (Figure 3.1.14.A). Here, it infers that the
Mif-CD74-CXCR7 (Ackr3 in mice)-NF-κB-dependent mechanism would contribute to renal
fibrosis especially in Gli UUO mice. The CellChat output of Pdgfrb mice data shows different
features compared to other data sets, Gli1, Ng2 and Myh11. Two signaling, PTN and PERISTON
signaling were found interesting. In sham, only one fibroblast sent a signal but, in UUO, diverse
myofibroblasts and fibroblasts delivered signals to other cell types (Supplementary Figure
4.1.5.E-H). Here, the interesting thing is that the ligand of PERIOSTIN signaling, Postn is
known to be involved in P38 MAPK pathway leading to induce renal fibrosis [109]. This result is
matched to the PROGENy output of Pdgfrb mice data where MAPK pathway was up-regulated
across Pdgfrb UUO mice data rather than Pdgfrb sham mice data (Figure 3.1.16.A). p38
(Mapk14) gene was more expressed in the Pdgfrb UUO than the Gli1, Ng2 and Myh11 UUO
data set in Supplementary Figure 4.1.6. Pleiotrophin (PTN) has been known to promote the
growth, survival, and migration of various cells. However, the direct evidence between the PTN
and renal fibrosis is not enough.

Cd31 sham data consisted of diverse cell types. location-wise, there were 4 main parts from
glomerular (glomeruli), cortical (cortex), medullary (medulla) of kidney compartments, and vasa
recta in which the capillary networks supply blood to the medulla (ascending and descending). it
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was abbreviated into “g”, “c” , “m”, “AVR” and “DVR” in order. Inside of each compartment, it
was divided into 4 more parts, artery, capillary, arteriole and vein. As abbreviations, “art”, “cap”,
“arteriole”, and “vein” were used here, respectively. The arteriole was subdivided into two parts,
afferent and efferent arteriole which brings blood to the glomerulus and carries blood away from
the glomerulus, respectively. Here, arteriole/efferent and arteriole/afferent have one more sub
type, juxtaglomerular apparatus. Capillary is labelled as 4 different types, capillary/angiogenic,
capillary/interferon, postcapillary venule and capillary. AVR and DVR were also subdivided into
papilla and interferon. This annotation was from the public paper because Cd31 sham mice data
were from the public data set [73]. In the case of the Cd31 UUO data set, the labelling was
simpler than the Cd31 sham mice data set. endothelial cells, medullary endothelial cells
(mdl_endo), fenestrated endothelial cells (fnst_endo), glomerulus endothelial cells (glm_endo),
descending vasa recta (DVR_endo) and lymphatic endothelial cells (lymph_endo).

Figure 3.1.24.A is the output from Cd31 sham
mice, Figure 3.1.24.B from Cd31 UUO mice
data. In the sham mice data, diverse pathways
were detected like hormone, cytokine,
chemokine, growth factor, notch
signaling-related immune signaling, etc.
However, Cd31 UUO mice had non-hormone
related immune responses compared to Cd31
sham mice data. Additionally, the accumulated
“CondGeneProb” score of Cd31 sham (around
150) was higher than Cd31 UUO mice (around
80). When measuring the detected interactions
ratio in which the number of communications
were divided by the number of cells, the raio
was 0.05 (577 interactions /10186 cells) in
Cd31 sham, 0.05 (467 interactions / 8635
cells) in Cd31 UUO mice.
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Figure 3.1.24. The intercellular communication
of the CD31 sham and UUO mice data set. (A)
Cd31 sham, (B) Cd31 UUO. Each color
corresponds to biological pathways like Notch
signaling (blue), growth factor (light blue),
cytokine (olive), chemokine (green), checkpoint
(red), hormone (pink) and non-specified signaling
(grey). The x-axis consists of family, LR (ligands
& receptors), sender (cell types) and receiver (cell
types). The y-axis is the accumulated
“CondGeneProb” of detected ligands and
receptors. The thickness of the curve is the
accumulated minimum percentage of cells
expressing the ligand or the receptor of the
interaction in a given family. In Figure A,
Glomeruli, cortex, medullary and vasa recta
(ascending and descending) are “g”, “c” , “m”,
“AVR” and “DVR” of each. Artery, arteolie,
capillary, and vein are “artery”, “art”, “cap”, and
“vein”. Afferent and efferent are “aff” and “eff”.

Capillary is labelled as angiogenic (“ang”), interferon (“I”), postcapillary(“postcap”) venule and capillary. Papilla is
“P” and interferon is “I”. In B, there are endothelial cells (endo), medullary endothelial cells (mdl_endo), fenestrated
endothelial (fnst_endo), glomerulus endothelial (glm_endo), descending vasa recta (DVR_endo) and lymphatic
endothelial cells (lymph_endo)

In Figure 3.1.25, two signalings were found as interesting, APELIN and SEMA3 in Cd31 UUO
mice. The APELIN (Apln- Aplnr) signaling was upregulated in Cd31 UUO than Cd31 sham mice
data in Figure 3.1.25.A & Supplementary Figure 4.1.7.A. The SEMA3 signaling includes
ligands, Sema3a (Semaphorin 3 A), d, f, g and it’s receptors, Nrp1+Plxna2, Nrp2+Plxna2 and
Nrp2+Plxna4 (“+” means co-receptors). All of these interactions were not found in the Cd31
sham. Only Sema3d-(Nrp1+Plxna2) were detected in Cd31 sham mice, whereas in Cd31 UUO
mice data set, Sema3a − (Nrp1+Plxna2), Sema3d − (Nrp1+Plxna2), Sema3d − (Nrp2+Plxna2),
Sema3d − (Nrp2+Plxna4), Sema3f − (Nrp2+Plxna2), Sema3f−(Nrp2+Plxna4),
Sema3g−(Nrp2+Plxna2) were detected. The Figure 3.1.25.B and Supplementary Figure 4.1.7.B
include only the part of these outputs, Sema3d and Sema3f -related interactions in Cd31 sham
and UUO mice data set. Sema3d were found in both Cd31 sham and UUO mice data, but the
weight of the inferred signal is a way higher in Cd31 UUO than sham in Figure 3.1.25.B where
the edge width is comparable between Cd31 sham and UUO. Sema3f (Supplementary Figure
4.1.7.B) and Sema3a (Not shown in figure) were co-expressed and interacted with
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Nrp1/2+Plxna2 in Cd31 UUO but not in Cd31 sham mice data set.

Figure 3.1.25. The CellChat intercellular communication of the CD31 sham and UUO data set. There are 2
different signalings, (A) APELIN (Apln-Aplnr), (B) SEMA3 (Sema3d-(Nrp1, Plxna2), Sema3f-(Nrp2, Plxna2)). The
interaction width represents communication probabilities measured by the law of mass action with the amounts of
the modeled ligand-receptor and each node corresponds to the cell type.

Biologically, The Apelin (Apln) has been described as a tip cell-enriched gene and activates the
Apelin receptor (Aplnr) [110], [111]. Like VEGF and Notch signaling which regulate tightly
vascular sprouting, Apelin signaling is involved in the angiogenesis independently which
induces endothelial cells into a pro-angiogenic state [111]. Contrary to Apelin, Sema3f and
Sema3a have been known to be involved in anti-angiogenesis by competing with VEGF, in
which new blood vessels are not generated from pre-existing vessels in endothelial cells [112].
Renal failure is associated with defective angiogenesis [113]. In detail, the lack of delivery of
angiogenesis and persistent hypoxia induce tissue destruction in glomerulonephritis, ischemic
nephropathy, and tubulointerstitial fibrosis [114]. Additionally, it has been known that the
upregulation of antiangiogenic factors would contribute to the deficiency of capillary recovery in
the kidney [64]. Interestingly, the VEGF and Hypoxia signal of PRGOENy was higher across
cells of Cd31 UUO than Cd31 sham (Figure 3.1.16.B). Here, I inferred that Sema3f and Sema3a
would be one of the main factors leading to renal fibrosis by interacting with both Nrp1/2 and
Plxna4 against high activity of VEGF in Pdgfrb mice data.
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Cell differentiation

Fibroblasts are involved in wound healing by removing the fibrin clot, generating both new
extracellular matrix (ECM) and collagen structures [115]. As well, fibroblasts differentiate into
myofibroblasts, which reduce the margins of the wound and disappear by apoptosis after wound
healing so that severe skin contraction cannot happen [116]. However, if the myofibroblasts
remain abnormally, it makes excessive deposition of the extracellular matrix and finally leads to
the destruction of the normal kidney and loss of renal function [117]. As well as fibroblasts,
pericytes are also known to differentiate into myofibroblasts [118]. So, cell differentiation into
myofibroblasts has been considered an important factor in renal fibrosis, but this differentiation
has been poorly understood.

The Figure 3.1.26 has 8 different pseudo-times (Figure.C-J) and 2 umaps (Figure.A and B) of the
Gli1 integrated by Harmony (Figure.A,C,E,G) and without any integration tool (Figure.B,D,F,H).
Figure 3.1.26.C and D are from deterministic model, Figure E and F from stochastic model,
Figure G and H are from dynamical model and the last 2 figures (Figure I and J) from an
additional pseudotime, named “latent time” inferred by the same dynamical model too. In order
to choose the most suitable pseudotime, the flow of colors were checked out from black to
yellow if it matched with biological knowledge of differentiation to myofibroblasts. Comparing 3
different scVelo models, deterministic and stochastic models in UUO had more yellow colors
(differentiated) than the dynamical model. Additionally, myofibroblasts (dotted area) of the Gli1
data integrated by Harmony (Figure 3.1.26.C) have more differentiated areas than the other cell
types (out of dotted area) as well as the non-integration approaches too (Figure 3.1.26.D). The
data integrated by Harmony were used for further analysis. As a next step, I interpreted the
direction computed by the inferred pseudotime between every two cell types in Figure 3.1.26.K.
The deterministic model (Figure 3.1.26.K) suited the biological point more than the other two
models in that more number of directions moved from sham to UUO mice. Finally, based on the
model, the top 100 differentially velocity-measured genes for each cell type were measured, and
the output of myofibroblasts type 5 is in Figure 3.1.26.L.

In the Figure 3.1.26.L, in the myofibroblasts type 5 in Gli1 UUO mice, some interesting genes
were found out, Vegfd, Smoc2, Kcnma1, Hhip and Sept4. The Vegfd (vascular endothelial growth
factor D) has been known to induce the myofibroblasts growth, migration and the synthesis of
collagens in hearts [119]. Smoc2 (SPARC related modular calcium binding 2) has been studied to
facilitate a fibroblast-to-myofibroblast transition as well as stress fiber formation, migration,
proliferation and the production of extracellular matrix [120]. Silencing of either Kcnma1
(potassium calcium-activated channel subfamily M alpha 1) showed that it mitigated the TGF-β1
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activity, in turn, downregulates α-SMA which is known to induce myofibroblast differentiation
[121]. Hhip (hedgehog interacting protein) gene activates the downstream of TGFβ1 including
both Smad2 and Smad3 and induces endothelial to mesenchymal transition leading to endothelial
fibrosis and apoptosis in diabetes [122]. Sept4 (septin 4) is involved in liver fibrosis, and
especially the change of SEPT4 gene expression was observed to be associated with fibrotic
changes [123].

Additionally, I inferred pseudotime in a different approach by PAGA in Figure 3.1.29.M. Unlike
scVelo, PAGA measured pseudotime while using both transcriptome profiles and the prior
knowledge on the origin cell type. PAGA assumed that the most differentiated cell was the
fibroblasts type 9 in sham mice, and inferred that a lot of cell types in Gli1 integrated data had
the same time point. However, it was not useful to do more additional analysis and didn’t fit
biological knowledge.

Figure 3.1.26. The scVelo’s pseudotime of Gli1 integrated data. Figure A and B are two UMAP integrated by
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Harmony and non-integration approach, respectively. It had only fibroblasts (blue), myofibroblasts (green), pericytes
(red), vSMC (yellow) and endothelial cells (purple). In Figure C-J, pseudo times were inferred by deterministic
(Figure C,D), stochastic (Figure E,F), dynamical (Figure G,H) and latent time (Figure I,J) by dynamical mode. The
Figure on the left side in C-J is from data integrated by Harmony, right is from the merged without any integration
one. It only included fibroblasts, myofibroblasts, pericytes and vSMC. The most differentiated cells are colored by
yellow and the opposite has black and purple colors. In Figure M, the top figure shows the short lineages inferred by
scVelo. In Figure L, for the cell type myofibroblasts type 5, top 20 velocity genes are listed with a gene expression
matrix in which single cells are ordered by inferred by pseudo time (Time moves from pericytes of SHAM in blue,
pericyte type1 of UUO in green, pericyte type 2 of UUO in purple to myofibroblasts type 5 of UUO in pink). Figure
M  is the diffusion map of PAGA.

I studied the pseudotime of Myh11 data in the same way as Gli1. Pseudotime was inferred by all
different models, deterministic, stochastic and dynamical models. Like Gli1 data, the
deterministic model (not shown in figures) and stochastic model (Figure 3.1.27.C) inferred
pseudotime with the right biological point. Even though there were minor differences between
the two outputs from deterministic and stochastic models, the stochastic model performed better
than the deterministic model biologically (Figure 3.1.27.C). Figure 3.1.27.E shows the directions
inferred by PAGA based on the pseudotime by stochastic model. The top 20 differentially
expressed velocity genes for myofibroblasts type 1 were displayed in Figure 3.1.27.F. Several
genes were found as interesting, Adam19, Aldh1a2, Tpm1, Nkd2, Palld in the top 20
differentially expressed velocity genes for myofibroblasts type 1 in Myh11 UUO mice. Adam19
(ADAM metallopeptidase domain 19) gene has been studied to be a therapeutic target for renal
fibrosis [124]. Aldh1a2 (aldehyde dehydrogenase 1 family member A2) is an enzyme which has
been known to be important in nephrogenesis and is upregulated almost 50-fold in
myofibroblasts [125]. Tpm1 (tropomyosin 1) has recently been revealed that the MicroRNA
MiR-29c can lead to renal fibrosis attenuation and inhibit myofibroblasts formation by
suppressing Tpm1 [126]. Nkd2 (NKD inhibitor of WNT signaling pathway 2) has been identified
as one of myofibroblast-specific genes in human kidney fibrosis [71]. Like Aldh1a2, Fap
(fibroblast activation protein alpha) is also known as one of upregulated genes in the
myofibroblasts [125]. Palld (Palladin, cytoskeletal associated protein) is over-represented in both
tumor-related fibroblasts and kidney disease [127]. As a last step, I used the PAGA, and the
output from PAGA was not suitable for the further analysis in Figure 3.1.27.G.
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Figure 3.1.27. The scVelo’s pseudotime of Myh11 integrated data. Figure A and B are two UMAP integrated by
Harmony and non-integration approach, respectively. It only includes fibroblasts (blue), myofibroblasts (green),
pericytes (red), vSMC (yellow) and endothelial cells (purple). In Figure C-D, pseudo-times were inferred by a
stochastic model (Figure C (harmony), D (non-integration tool)). The most differentiated cells are colored by yellow
and the opposite has black and purple colors. Figure E shows the short lineages inferred by scVelo based on the
stochastic model. In Figure F, for the cell type myofibroblasts type 1, top 20 velocity genes are listed with a gene
expression matrix in which single cells are ordered by inferred by pseudo time (Time flows from fibroblasts type 4
of UUO in pink to myofibroblasts type 1 of UUO in blue). Figure G is the diffusion map of PAGA.

Regarding Ng2 pseudotime analysis, I applied the same approach as Gli and Myh11. The
pseudotime inferred by the deterministic model fitted biological knowledge (Figure 3.1.28.C
(integrated by Harmony), D (integrated by non-integration tool)). In fibroblasts type 3 in Ng2
UUO, I found Dapk2, Fhl2, Eln and Sorbs2 as interesting velocity genes (Figure 3.1.28.F).
Dapk2 is interesting in the top 20 genes in fibroblasts type 3 in Ng2 UUO. Dapk2 (death
associated protein kinase 2) knocked-out mice have some resistance to the accumulation of
extracellular matrix in experimental renal fibrosis indicating that Dapk2 plays a crucial role in
profibrotic kidney injury [128]. Fhl2 (four and a half LIM domains 2) is one of the genes which
lead to the TGF-β1-induced tubular epithelial-to-mesenchymal transition through interacting
with Wnt/β-catenin signaling [129]. Regarding Eln, Eln (elastin) was downregulated in Txndc5
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(thioredoxin domain containing 5) null mice alleviating the over-expression of ECM protein
genes in the mouse kidneys injury [130]. The silencing of Sorbs2 (sorbin and SH3 domain
containing 2) with the knockdown of Kcnq1ot1 inhibits proliferation and fibrosis in diabetic
nephropathy cells in humans [131]. I used the PAGA, and then reviewed the output in Figure
3.1.28.G. Two pseudo times inferred by scVelo and PAGA have similar time flow, but the output
from PAGA had less time differences across cells in UUO so it was not suitable for further
analysis.

Figure 3.1.28. The scVelo’s pseudotime of Ng2 integrated data. Figure.A and B are two UMAP integrated by
Harmony and non-integration approach, respectively. It only includes fibroblasts (blue), myofibroblasts (green),
pericytes (red), vSMC (yellow) and endothelial cells (purple). In Figure C-D, pseudo times were inferred by a
deterministic model (Figure C (integrated by Harmony), D (integrated by non-integration tool)). The most
differentiated cells are colored by yellow and the opposite has black and purple colors. Figure.E shows the short
lineages inferred by scVelo based on the determinist model. In Figure F, for the cell type fibroblasts type 3, top 20
velocity genes are listed with a gene expression matrix in which single cells are ordered by inferred by pseudo time
(Time flows from pericytes of SHAM in purple, pericytes of UUO in green, fibroblasts type 1 of UUO in pink to
fibroblasts type 3 of UUO in blue). Figure.G is the diffusion map of PAGA.

Figure 3.1.29, I reviewed the both pseudotime and directions for the Pdgfrb integrated data, and
then chose the deterministic mode for the further analysis. In myofibroblasts type 1 of Pdgfrb
UUO mice, there were interesting velocity genes, Il34, Sorbs2, Calcrl, Fit1, Dcn, Gucy1A1. Il34

68

https://paperpile.com/c/McMDPa/oijOL
https://paperpile.com/c/McMDPa/1Thoz


(interleukin 34) has been famous to stimulate macrophages-mediated tubular epithelial cells
destruction during acute kidney disease, which worsens chronic kidney disease and increases
chemokines reactions [132]. In the case of Calcrl (calcitonin receptor-like), RAMP1 (receptor
activity modifying protein 1), RAMP2 (receptor activity modifying protein 2) and CRLR (Alias
Calcrl) were upregulated in a rat model of renal injury, especially, upon induction of fibrosis for
obstructive nephropathy [133]. In diabetic nephropathy (DN), KCNQ1OT1 (KCNQ1 opposite
strand/antisense transcript 1) and SORBS2 (sorbin and SH3 domain containing 2) were
overexpressed. Both knockdowns of these two genes, KCNQ1OT1 and SORBS2 suppressed
proliferation, fibrosis and increased apoptosis in DN cells by repressing NF-ĸB pathway [131].
Fit-1 (interleukin 1 receptor-like 1) is the vascular endothelial growth factor (VEGF) receptor 1
and soluble Flt-1 antagonizes VEGF [134]. High soluble Flt-1 concentrations in patients with
chronic kidney disease (CKD) displayed that it was directly associated with dysfunction of renal
function [134]. Dcn (decorin) is one of the negative feedback loops of TGF-β which is
implicated in renal fibrosis [135]. sGCα1 (Gucy1A1) has less literature which showed the direct
relation between renal fibrosis and sGCα1 (Gucy1A1), but there is a report that this gene was
overexpressed in fibrotic livers 2 times more than healthy livers [136]. I used the PAGA and
then reviewed the output in Figure 3.1.29.G. The PAGA output was not matched with biological
knowledge of disease models.
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Figure 3.1.29. The scVelo’s pseudotime of Pdgfrb integrated data. Figure.A and B are two UMAP integrated by
Harmony and non-integration approach, respectively. It only includes fibroblasts (blue), myofibroblasts (green),
pericytes (red), vSMC (yellow) and endothelial cells (purple). In Figure C-D, pseudo times were inferred by a
deterministic model (Figure C (integrated by Harmony), D (integrated by non-integration tool)). The most
differentiated cells are colored by yellow and the opposite has black and purple colors. Figure.E shows the short
lineages inferred by scVelo based on the determinist model. Figure E shows the short lineages inferred by scVelo. In
Figure F, for the cell type myofibroblasts type 1, top 20 velocity genes are listed with a gene expression matrix in
which single cells are ordered by inferred by pseudo time (Time flows from pericytes of UUO in green,
myofibroblasts type 2 of UUO in blue to myofibroblasts type 1 of UUO in red). Figure G is the diffusion map of
PAGA.

In summary, I reviewed top 20 velocity genes per cell type of interest across all the renal fibrosis
mice data, and 40 genes were already studied as renal fibrosis driver genes or fibrosis-related
genes in other prior researches in kidneys, livers or hearts (Table 3.1.2). It indicates that this
analysis was trustworthy, and other genes with insufficient literature evidence could be novel
genes which can have high association with renal fibrosis.
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Table 3.1.2. The 44 velocity genes with prior studies in renal or heart fibrosis. This table shows the 44 velocity
genes were identified by cell differentiation studies on Gli1 UUO, Ng2 UUO, Myh11 UUO and Pdgfrb UUO with
literature studies. Blue color corresponds to the fibrosis-related genes, whereas the pink color indicates the
repair-related genes. The most right column shows how many times the same genes were found across data sets, the
lowest column displays the number of papers which explains the relation between the gene and fibrosis.
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3.2 Drug repositioning on chronic kidney disease microarray data

I performed drug repositioning for human chronic kidney disease. For bulk-level data analysis, 5
different public data sets were used, GSE20602, GSE32591, GSE37460, GSE47183 and
GSE50469 [89]. The 9 different chronic kidney diseases include diabetic nephropathy (DN),
hypertensive nephropathy (HN), lupus nephritis (LN), IgA glomerulonephritides (IgAN),
membranous glomerulonephritis (MGN), minimal change disease (MCD), focal segmental
glomerulosclerosis (FSGS), focal segmental glomerulosclerosis with minimal change disease
(FSGS_MCD) and rapidly progressive glomerulonephritis (RPGN).

As a first step, I calculated the cosine similarity between a characteric direction of disease and a
gene by the public tool (http://www.maayanlab.net/CD/) [85]. The characteristic direction was a
linear line which had 90 degrees to the hyperplane which separated disease and health controls
by LDA (Linear Discriminant Analysis) in gene-wise vector space. Secondly, I added the cosine
profile of disease to the L1000CDS2 webtool (maayanlab.cloud/l1000cds2/). For each 9 chronic
kidney diseases, the webtool provided top 50 ranked drug candidates which were reversely
matched to the disease transcriptomics profiles of 9 CKD separately. Figure 3.2.2 has 9 circular
graphs including the name of drug candidates, the number of cell lines, how many hours and
how much the drugs were treated to that cell line. In order to simplify the drug candidates, I
chose the drug candidates found in at least over 3 different chronic kidney diseases as below:

Small
molecule

Name of
Small molecule

The list of subtypes of CKD
reversely matched to the
signature of small molecule

The number of
subtypes of CKD

BRD-K04853698 LDN-193189 mcd,fsgs,rpgn,ht,igan,mgn,dn 7

BRD-A75409952 wortmannin fsgs_mcd,fsgs,rpgn,ln,igan,mgn 6

BRD-K71199328 YL-55 fsgs_mcd,mcd,ht,igan,dn 5

BRD-A34205397 suloctidil mcd,fsgs,ln,ht,dn 5

BRD-K81528515 nilotinib mcd,ht,igan,dn 4
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BRD-K80786583 BRD-K80786583 mcd,ht,igan,dn 4

BRD-A80502530 cinobufagin mcd,fsgs,ht,igan 4

BRD-A75144621 digoxin mcd,ht,mgn,dn 4

BRD-K99252563 QL-XII-47 fsgs_mcd,ln,dn 3

BRD-K93034159 cladribine fsgs_mcd,mcd,ht 3

BRD-K76703230 YM-155 mcd,ht,dn 3

BRD-K64517075 heliomycin fsgs,ht,dn 3

BRD-K36740062 GSK-1070916 fsgs,ln,mgn 3

BRD-K16533489 I-606051 mcd,ln,dn 3

BRD-K06792661 narciclasine ht,igan,dn 3

BRD-A77467113 EMF-sumo1-11 fsgs,ht,mgn 3

BRD-A67788537 salermide mcd,ht,dn 3

BRD-A62184259 cycloheximide fsgs,rpgn,ln 3

BRD-A52650764 ingenol fsgs,ln,mgn 3

BRD-A19633847 perhexiline ht,mgn,dn 3

Table 3.2.1. The table of the collapsed list of drug (small molecule) candidates across all 9 chronic kidney
diseases. This table shows the information of 20 small molecules including a name, which & how many CKD
subtypes belong to each drug / small molecule candidate.

I performed literature curations for the above 20 small molecules in Table 3.2.1. The 4 of 20
small molecules were identified to have prior studies which support the possibility that they
could be used as a treatment for CKD. LDN-193189 (BRD-K04853698) is a BMP signaling
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inhibitor. In 2015, Kajimoto et al. found out that this molecule prevented endothelial cells from
dysfunction in chronic kidney disease mice [137]. Wortmannin as a PI3K inhibitor was studied
to protect streptozotocin (STZ)-induced proteinuric renal disease in mice which had early
diabetic nephropathy as well [138]. Narciclasine (BRD-K06792661) has an anti-inflammatory
component which showed that this reduced the macrophage infiltration in UUO mice [139].
Interestingly, I found a drug approved by the FDA, Nilotinib (BRD-K81528515) [140]. This
study showed the possibility that nilotinib could be used as a drug candidate for chronic kidney
disease by attenuating renal disease progression and inflammation [140].

Figure 3.2.1. The 9 different circular graphs of top 50 ranked drug candidates from L1000CDS2 for the 9
different chronic kidney diseases. There are 9 circular graphs of top 50 drug (small molecules) candidates from the
9 different chronic kidney disease, (A) diabetic nephropathy (DN), (B) hypertensive nephropathy (HN), (C) lupus
nephritis (LN), (D) IgA glomerulonephritides (IgAN), (E) membranous glomerulonephritis (MGN), (F) minimal
change disease (MCD), (G) focal segmental glomerulosclerosis (FSGS), (H) focal segmental glomerulosclerosis with
minimal change disease (FSGS_MCD) and (I) rapidly progressive glomerulonephritis (RPGN). Each graph shows the
meta information of top 50 drug (small molecules) candidates for each disease. Inner (grey) circle area represents how
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many hours small molecules were treated for in a range of 3 hours to 24 hours. Middle (blue) circle area captures how
much of the small molecules were treated ( from 0.31 um to 120.0 um ). The outer circle area is how many times
small molecules were inferred as candidates. In the case of the BRD-K0679266 (Figure A), it was mentioned 8 times
in the list of top 50 candidates, which 8 corresponds to the number of different cell lines used for the drug treatment.
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4. Supplements

ATAACTTCGTATAATGTATGCTATACGAAGTTATTAGGTCCCTCGACCTGCAGCCCAAGCTAGATCGAATT
CGGCCGGCCTTGTACGCGTTAAGTGCAACACGATCCCGCCACCATGGTGAGCAAGGGCGAGGAGGTCA
TCAAAGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCATGAACGGCCACGAGTTCGAGATCGAG
GGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCC
CCCTGCCCTTCGCCTGGGACATCCTGTCCCCCCAGTTCATGTACGGCTCCAAGGCGTACGTGAAGCACC
CCGCCGACATCCCCGATTACAAGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACT
TCGAGGACGGCGGTCTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCACGCTGATCTACAAG
GTGAAGATGCGCGGCACCAACTTCCCCCCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGA
GGCCTCCACCGAGCGCCTGTACCCCCGCGACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGC
TGAAGGACGGCGGCCACTACCTGGTGGAGTTCAAGACCATCTACATGGCCAAGAAGCCCGTGCAACTG
CCCGGCTACTACTACGTGGACACCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAA
CAGTACGAGCGCTCCGAGGGCCGCCACCACCTGTTCCTGGGGCATGGCACCGGCAGCACCGGCAGCGG
CAGCTCCGGCACCGCCTCCTCCGAGGACAACAACATGGCCGTCATCAAAGAGTTCATGCGCTTCAAGGT
GCGCATGGAGGGCTCCATGAACGGCCACGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACG
AGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTG
TCCCCCCAGTTCATGTACGGCTCCAAGGCGTACGTGAAGCACCCCGCCGACATCCCCGATTACAAGAAG
CTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGGCGGTCTGGTGACCGT
GACCCAGGACTCCTCCCTGCAGGACGGCACGCTGATCTACAAGGTGAAGATGCGCGGCACCAACTTCC
CCCCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCACCGAGCGCCTGTACCCC
CGCGACGGCGTGCTGAAGGGCGAGATCCACCAGGCCCTGAAGCTGAAGGACGGCGGCCACTACCTGG
TGGAGTTCAAGACCATCTACATGGCCAAGAAGCCCGTGCAACTGCCCGGCTACTACTACGTGGACACCA
AGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTACGAGCGCTCCGAGGGCCGC
CACCACCTGTTCCTGTACGGCATGGACGAGCTGTACAAGTAAGAATTGTGTTGCACTTAACGCGTACAA
GGCCGGCCCTGCAGGAATTCGATATCAAGCTTATCGATAATCAACCTCTGGATTACAAAATTTGTGAAAG
ATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTTTAATGCCTTTGTATCAT
GCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTTGCTGTCTCTTTATGAGGAG
TTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCTGACGCAACCCCCACTGGTTGG
GGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCCCCTCCCTATTGCCACGGCGGAAC
TCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTGTTGGGCACTGACAATTCCGTGGTGT
TGTCGGGGAAATCATCGTCCTTTCCTTGGCTGCTCGCCTGTGTTGCCACCTGGATTCTGCGCGGGACGTC
CTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTTCCTTCCCGCGGCCTGCTGCCGGCTCTGCGG
CCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCGGATCTCCCTTTGGGCCGCCTCCCCGCATCGAT
ACCGTCGACCTCGACCT

Supplementary Table 4.1.1. The sequence of tdTomato used when running CellRanger.
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Supplementary Table 4.1.2. The table of p-value, adjusted p-value for the PROGENy score in UUO mice
compared to sham mice. PROGENy were measured for 5 different integrated data sets. For each 14 pathways, the
significance was measured by a one sample t-test in which the null hypothesis was that PROGENy scores in UUO
were not greater than sham, and the p-value was corrected by bonferroni. The t-tests were performed after reviewing
density plots, Q-Q plots to check if it’s normal distribution.
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Supplementary Table 4.1.3. The table of p-value, adjusted p-value for the 10 different transcription factor
activity scores in UUO mice compared to sham mice. DoRothEA and VIPER were used to measure transcription
factor activity scores for the top 10 highly variable transcription factors across cell types. For those transcription
factors, the significance was measured by a one sample t-test in which the null hypothesis was that transcription factor
activity scores in UUO were not greater than sham, and the p-value was corrected by bonferroni. The t-tests were
performed after reviewing density plots, Q-Q plots to check if it’s normal distribution.
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Supplementary Figure 4.1.1. The cell type correlation on the integrated matrix of Gli1 and Myh11. The upper
panel (A and B) is from Gli1 integrated data sets combined without any integration tool (A) and Harmony (B). The
lower panel (C and D) from Myh11 integrated data set combined without any integration tool (C) and Harmony (D).
Cell type-specific correlation was measured by Pearson correlation on “CondGeneProb” matrix computed by
genesorteR. All sub cell type numbers (“_1”, ”_2”…) are independent per each cell type such as fibroblasts,
myofibroblasts, pericytes, etc. For example, sub-celltype 2 of fibroblasts (“fb_2”) in SHAM is not related to the
sub-cell type 2 of fibroblasts (“fb_2”) in UUO.
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Supplementary Figure 4.1.2. The cell type correlation on the integrated matrix of Ng2 and Pdgfrb. The upper
panel (A and B) is from Ng2 integrated data sets combined without any integration tool (A) and Harmony (B). The
lower panel (C and D) from Pdgfrb integrated data set combined without any integration tool (C) and Harmony (D).
Cell type-specific correlation was measured by Pearson correlation on “CondGeneProb” matrix computed by
genesorteR. All sub cell type numbers (“_1”, ”_2”…) are independent per each cell type such as fibroblasts,
myofibroblasts, pericytes, etc. For example, sub-celltype 2 of fibroblasts (“fb_2”) in SHAM is not related to the
sub-cell type 2 of fibroblasts (“fb_2”) in UUO.
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Supplementary Figure 4.1.3. The cell type correlation on the integrated matrix of Cd31. The cell-ctype
correlation matrices of Cd31 combined by (A) the non-integration tool and (B) Harmony. Cell type-specific
correlation was measured by Pearson correlation on “CondGeneProb” matrix computed by genesorteR.
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Supplementary Figure 4.1.4. The CellChat intercellular communication of the Gli1 and Myh11 data. There are
3 different signalings, Wnt5a-Fzd1, Pdgfa-Pdgfrb and Mdk-Sdc2. The interaction width represents communication
probabilities measured by the law of mass action with the amounts of the modeled ligand-receptor and each node
corresponds to the cell type. (A) the intercellular interactions of Wnt5a-Fzd1 from Gli1 sham mice data, (C) from Gli1
UUO mice data. (B) the intercellular interactions of Pdgfa-Pdgfrb from Gli1 sham mice data, (D) from Gli1 UUO
mice data. (E) the intercellular interactions of Mdk-Sdc2 from Myh11 sham mice data, (G) from Myh11 UUO mice
data. (F) the intercellular interactions of Pdgfa-Pdgfra from Myh11 sham mice data, (H) Pdgfa-Pdgfrb from Myh11
UUO mice data.
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Supplementary Figure 4.1.5. The CellChat intercellular communication of the Ng2 and Pdgfrb data. There are 4
different signals, Mdk-Sdc2, Pdgfa-Pdgfrb, Ptn-Sdc2 and Postn-(Itgav+Itgb5). The interaction width represents
communication probabilities measured by the law of mass action with the amounts of the modeled ligand-receptor and
each node corresponds to the cell type. (A) the intercellular interactions of Mdk-Sdc from Ng2 sham mice data, (C)
same interaction from Ng2 UUO mice data. (B) the intercellular interactions of Pdgfa-Pdgfrb from Ng2 sham mice
data, (D) from Ng2 UUO mice data. (E) the intercellular interactions of Ptn-Sdc2 from Pdgfrb sham mice data, (G)
from Pdgfrb UUO mice data. (F) the intercellular interactions of Postn-(Itgav+Itgb5) from Pdgfrb sham mice data,
(H) from Pdgfrb UUO mice data.
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Supplementary Figure 4.1.6. The gene expression of p38 and JNK across data. Mapk14 and 11 are known as
p38, and Mapk8 and 9 are c-Jun N-terminal kinases (JNK). (A) Gli sham and UUO mice data, (B) Ng2, (C) Myh11
and (D) Pdgfrb. p38 and JNK are highly expressed in fibroblasts type3 in the Pdgfrb UUO mice data set compared to
other data sets.
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Supplementary Figure 4.1.7. The CellChat intercellular communication of the CD31 sham and UUO data set.
There are (A) The upper panel displays the intercellular interactions of APELIN from Cd31 sham mice data, the
lower one from Cd31 UUO mice data. (B) The upper panel shows the intercellular interactions of Sema3d-(Nrp1,
Plxna2) from Cd31 sham mice data, the middle one from Cd31 UUO mice data and Sema3f-(Nrp2, Plxna2) the
lower one from Cd31 UUO mice data.
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5. Discussion

From June 2017 to December 2020, I worked on single-cell RNA-seq data analysis from mice
renal fibrosis and bulk RNA-seq data analysis from human chronic kidney disease. In the mice
renal fibrosis studies at a single cell level, I used scRNA-seq data from Gli1-CreER-tdTomato,
Ng2-CreER-tdTomato, Myh11-CreER-tdTomato, and Pdgfrb-CreER-tdTomato mice and Cd31
sorted mouse cells to trace the pathology of renal fibrosis. Gli1, Ng2, Myh11, and Pdgfrb are
expressed in fibroblasts, myofibroblasts, pericytes, neurons, and, rarely, endothelial cells around
the perivascular niche of the kidney. In these mouse lines, the genes of interest were genetically
tagged with tdTomato, allowing the cells to be sorted by color (fluorescent orange) and
computationally by sequence. Cd31 is used as an endothelial cell marker without the requirement
for a fluorescent tag. Dr. Kuppe performed these experiments in normal and renal fibrosis mice,
generating 9 data sets. The 9 different data sets were labeled by Dr. Kuppe. Additionally, I used
public data for Cd31 sham mice (normal mice).

I used CellRanger for aligning reads and Seurat for preprocessing and clustering. I found
Harmony to perform better than Seurat for data integration, resulting in fewer artificial effects
from the integration algorithms as compared to data merged by non-integration approaches.
However, the batch-corrected, normalized data from Harmony produced negative values (e.g., 0
had meaning) and was further preprocessed by scaling before being used for GSEA and cell
differentiation studies. The GSEA output fully represented the biological features of cell types.
For other downstream analyses, such as functional and intercellular communication studies, I
used data merged without any integration as they produced stronger and clearer signals than
batch-corrected, positively scaled data (Figure 5.1.1.A).

Downstream analysis consisted of 3 major parts: pathway/transcription-factor functional studies,
intercellular communication, and cell differentiation. The functional studies were subdivided into
3 additional parts: 1) pathway studies with PROGENy, 2) Enrichr using gene sets from GO
Biological Process (2018), and 3) transcription factor studies with DoRothEA and VIPER.
PROGENy has its own gene-by-pathway weight matrix for its 14 built-in pathways to compute
pathway activities [30]. Enrichr calls a gene set from GO Biological Process (2018) and ranks
biological pathways or terms from that gene set [26]. DoRothEA provides transcription factors
with their targets (genes), and VIPER calculates transcription factor activity based on the
expression of target genes. I used 2 different tools, CellChat and ICELLNET database with
genesorteR, to analyze intercellular communication. CellChat is useful for inferring intercellular
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communication using differentially expressed genes, mass actions, and agonists and antagonists
[43]. As ICELLNET [40] with genesorteR [20] simply queries the gene set for known
ligand-receptor interactions identified in CellChat, it was used as a complementary approach to
CellChat. scVelo was used for the cell differentiation study [36].

Figure 5.1.1. The graphical overview of data-analysis pipeline on single cell RNA-seq. data (left) and drug
repositioning (right). This thesis has two main parts, the single-cell RNA-seq data analysis from mice renal
fibrosis (Figure A) and drug-repositioning on 9 different chronic kidney disease microarray data sets (Figure B). In
Figure A, single-cell RNA-seq data analysis consists of basic preprocessing which includes filtering out cells &
genes, normalizing count-matrix datasets, reducing data by PCA & UMAP, and then clustering. For the
preprocessed data set, Chrisotph Kuppe labelled each cluster to the cell type for 9 different data sets (the 10th data
set from public data with its annotation). For the labelled data sets, I integrated datasets in 2 different ways while
removing batch effects and remaining batches (non-batch corrected integration), separately. For the non-batch
corrected integrated data set, pathway activities, transcription factor (TF) activities were measured, and intercellular
communication were performed. For the batch-corrected normalized data set, it had minus values as minimum. So, I
scaled the data, and then took only positively scaled data. Gene set enrichment test was performed on this data, and
the outputs represented the main features of cell types fully. With this biological point, cell differentiation was also
conducted on the same batch-corrected positively scaled data. The right panel, Figure B shows the
drug-repositioning analysis on the microarray data from 9 different chronic kidney diseases (CKD). Data sets were
already preprocessed by Ferenc Tajti and Mahmoud M. Ibrahim. The preprocessed data were used to measure the
disease-causing direction in gene-wise vector space between disease and healthy controls for each CKD. Cosine
similarities between the direction and each gene were measured. The 9 different cosine profiles for each CKD were
used as an input for a tool, L1000CDS2 in order to match the disease profile to drug-treated data of LINCS-L1000
reversely. For the 20 drug candidates found in at least over 3 different CKD, literature study was conducted in order
to know which drugs were already proved experimentally by other researchers.

I interpreted the functional studies (pathway/transcription factor activities) along with
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intercellular communication results. Interestingly, I connected several ligand-receptor pairs with
biologically matched signaling pathways (or transcription factors), consistent with previous renal
fibrosis research. Specifically, I found a greater number of Pdgfa-Pdgfrb interactions in renal
fibrosis mice than normal mice, which was connected to upregulated JAK-STAT signaling in
renal fibrosis mice [105], [107]. Additionally, MIF-CD74-CXCR7 (Ackr3 in mice) interactions
were associated with activated NFkB pathways in the renal fibrosis mice [108]. I also discovered
interactions between Postn (ligands) and Igtav + Itgb5 (2 receptors) with p38 MAPK pathways
in the renal fibrosis mice [109]. These 3 pathways appear to function in the pathology of renal
fibrosis, consistent with previous work (Figure 5.1.2). PDGFR was also identified as a target in
the drug repositioning study, as nilotinib, identified as a drug repurposing candidate for CKD, is
known to inhibit the progression of CKD by inactivating PDGFR [140]. Hypoxia, which induces
endothelial to mesenchymal transition (EndMT), was upregulated in the PROGENy outputs in
endothelial cells of renal fibrosis, particularly when Myc is activated (Figure 5.1.2). Myc
suppression is reported to alleviate fibrosis in tubular epithelial cells [96]. Another transcription
factor, Klf6, was implicated owing to its role in upregulating TGF‐β, which in turn induces
epithelial‐mesenchymal transition (EMT) [96]. Another transcription factor, Klf6, was
implicated owing to its role in upregulating TGF‐β, which in turn induces
epithelial‐mesenchymal transition (EMT) [97]. TGF‐β activates TNF-α and NF-κB, promoting
EndMT and leading to renal fibrosis. Additionally, Sema3f and Sema3a were found to be
co-expressed in the endothelial cells of renal fibrosis mice with upregulated VEGF. Interestingly,
these semaphorins are known to compete with VEGF, inhibiting VEGF-promoting angiogenesis
[112] and potentially leading to renal fibrosis.
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Figure 5.1.2. The graphical summary of renal fibrosis-related ligand-receptor interactions and pathways
shared with other prior studies. Left figure (Figure A) represents the normal kidney in mice and the right (Figure.
) is renal fibrosis in mice. Two kidneys figures include glomerular and proximal tubules with blood vessels
(Arteriole, glomerular capillary and another capillary). Figure D has a legend about cell types with colors,
fibroblasts with blue, myofibroblasts with green, percityes with orange, parietal epithelial cells with olive,
endothelial cells with red, tubular epithelial cells with dark cyan, mesangial cells with grey, and extracellular matrix
(ECM) with a white sharp shape. In Figure.B, there are 6 different renal fibrosis-related ligand-receptor interactions
with matched pathways. These 6 different pathological stories were identified in this study, and proved by other
prior studies.

I performed cell differentiation studies with scVelo, which uses 3 different models to infer
pseudo-time: deterministic, stochastic, and dynamic. These models make different assumptions
about the splicing rate/gene [36]. I used all 3 models to fit the data sets and reviewed the
pseudo-time outputs to select the model that best fit the biological knowledge. Typically, the
deterministic model was optimal, with the stochastic model occasionally employed. Positively
scaled data sets generally gave more biologically meaningful outputs than the normalized data
merged without integration. Using the selected model, scVelo provided the top 100
differentiation-related genes that were transcriptionally upregulated in each cell type [36]. I
curated the top 20 genes found in the specific cell types that represent biologically meaningful
lineages for each data set (Gli1, Ng2, Myh11, and Pdgfrb). There were 220 genes (117 unique
genes) in the 11 selected cell types across the 4 data sets, 40 of which had already been validated
as driver genes or upregulated genes in kidney, liver, or heart fibrosis. This suggests that the
genes with lack of prior studies, but identified in this work could be novel genes involved in
renal fibrosis, which will be validated by Dr. Kuppe.

I also conducted drug repositioning studies using data processed by Tajti et al. from 9 CKD
microarray data sets [89]. I matched the CKD expression profiles to the LINCS-L1000
drug-treated data sets using the L1000CDS2 tool [84]. Cosine similarities between each gene and
disease-causing direction were used as input for L1000CDS2 instead of gene expression values,
as the direction of gene expression is assumed to be more important than the magnitude of the
values. The disease-causing direction is represented as a single line in gene vector space 90° to
the hyperplane separating the disease and healthy data sets. I found 20 common drug candidates
with reversely matching profiles to at least 3 different CKDs. Four of these had already been
experimentally validated, and nilotinib is FDA-approved.

Several challenges arose during these single-cell and bulk-level renal fibrosis studies. First, the
lack of original raw files from the normal mouse endothelial cell data (Cd31 sham data) limited
the cell differentiation studies. Second, single-cell level drug repurposing could not be performed
due to the time requirements for data production and unexpected delays caused by COVID-19.

90

https://paperpile.com/c/rkl0Kf/6PPMt
https://paperpile.com/c/rkl0Kf/6PPMt
https://paperpile.com/c/rkl0Kf/eeu7v
https://paperpile.com/c/McMDPa/tdoTY


Third, there were combined technical and lineage effects when generating data sets. Each
reporter mouse was generated in a different batch. So, it was difficult to identify the right
biological stories from each reporter mouse after integrating data sets. Fourth, Cd31 sham and
UUO mice data had different levels of cell-type annotations because the Cd31 sham mice came
from a public database with its annotation.
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