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Abstract  
RNA editing is an epitranscriptomic modification of rising prominence in health and disease. It 

is catalyzed by enzymes from the families of 'Adenosine Deaminases Acting on RNA’ (ADAR) or 

‘Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like’ (APOBEC). Multiple RNA 

editing deaminases, however, not only can they edit RNA, but also mutate DNA. ADARs particularly, 

are naturally capable of editing dsRNA co-transcriptionally, as well as mutating DNA in DNA/RNA 

hybrids. Although, the mutagenic role of ADARs is well-studied in vitro, its relevance with in vivo 

models has yet to be explored. DNA/RNA hybrids (or R-loops) form co-transcriptionally in the human 

genome between the nascent RNA and the template DNA strand, and I hypothesized that ADARs can 

access them to mutate the DNA strand in the hybrid, after losing touch with the nascent RNA-target. 

Here, I focus on ADAR1, which is overexpressed in Multiple Myeloma (MM) leading to aberrant editing 

activity and poor disease outcomes. RNA-seq and Whole-Exome Sequencing (WES) matched datasets 

from 23 MM patients pre- and post-relapse revealed acquisition of unique mutations post-relapse, 

enriched in the vicinity of RNA editing events pre-relapse. For proof-of-concept experiments in cell 

lines, I employed site-directed mRNA editing tools to target ADARs to specific transcripts, and 

evaluated whether ADAR-mediated DNA mutation was generated in their cognate genes. I found that 

ADARs may mutate genomic DNA in a rate of 1 in 25 000. Last, I explored the evolutionary impact of 

mutagenesis mediated by RNA editing enzymes (ADARs and APOBECs) in single-stranded RNA viral 

genomes from SARS-CoV-2 and showed that RNA editing enzymes may drive genome evolution by 

gradually accumulating co-occurring mutations, which similarly in cancer biology would translate to 

clonal expansion for tumor adaptation. Overall, my findings, suggest that DNA mutations may arise as 

collateral genomic damage by RNA editing deaminases, the initial job of which was to edit the cognate 

transcript in situ.  
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Zusammenfassung 
Die RNA-Edierung ist eine epitranskriptomische Modifikation von aufkommender Bedeutung 

für Gesundheit und Krankheit. Es wird durch Enzyme aus den Familien der "Doppelsträngige RNA-

spezifische Adenosin-Desaminase" (DRADA oder ADAR) oder "apolipoprotein B mRNA editing 

enzyme, catalytic polypeptide-like" (APOBEC) katalysiert. Multiple RNA-Editing-Deaminasen können 

jedoch nicht nur RNA editieren, sondern auch DNA mutieren. Insbesondere ADARs sind von Natur aus 

in der Lage, dsRNA kotranskriptionell zu edieren sowie DNA in DNA/RNA-Hybriden zu mutieren. 

Obwohl die mutagene Rolle von ADARs in vitro schon gut untersucht ist, ist ihre Relevanz für in vivo 

Modelle größtenteils noch zu erforschen. DNA/RNA-Hybriden (oder R-Loops) bilden sich im 

menschlichen Genom zwischen dem entstehenden RNA und der Matrize, und ich stellte die Hypothese 

auf, dass ADARs auf sie zugreifen können, um den DNA-Strang im Hybrid zu mutieren, nachdem sie 

den Kontakt mit dem entstehenden RNA-Ziel verloren haben. Hier konzentriere ich mich auf ADAR1, 

das beim Multiplen Myelom (MM) überexprimiert wird, was zu einer aberranten Edieraktivität und 

schlechten Krankheitsverläufe führt. RNA-seq und Sequenzierung des gesamten Exoms (WES) 

übereinstimmende Datensätze von 23 MM-Patienten vor und nach dem Rückfall zeigten den Erwerb 

einzigartiger Mutationen nach dem Rückfall, angereichert in der Nähe von RNA-Edierereignissen vor 

dem Rückfall. Für Proof-of-Concept-Experimente in Zelllinien habe ich ortsgerichtete mRNA-

Edierungs-Tools verwendet, um ADARs auf bestimmte Transkriptionen abzuzielen, und ich habe 

bewertet, ob ADAR-vermittelte DNA-Mutation in den verwandten Genen erzeugt wurde. Ich fand 

heraus, dass ADARs genomische DNA mit einer Rate von 1 zu 25 000 mutieren könnten. Zuletzt habe 

ich den evolutionären Einfluss der Mutagenese vermittelt durch RNA-edierende Enzyme (ADARs und 

APOBECs) in einzelsträngigen RNA-Virusgenomen aus SARS-CoV-2 untersucht, und ich zeigte, dass 

RNA-edierende Enzyme die Genomentwicklung vorantreiben könnten, indem sie schrittweise 

gleichzeitig auftretende Mutationen akkumulieren, was in der Krebsbiologie analog wäre zu einer 

klonalen Expansion zur Tumoranpassung. Insgesamt deuten meine Ergebnisse darauf hin, dass DNA-

Mutationen als kollaterale genomische Schäden durch RNA-edierende Desaminasen auftreten könnten, 

deren ursprüngliche Aufgabe darin bestand, das verwandte Transkript in situ zu edieren. 
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1. Introduction 
1.1 The significance of RNA modifications 

RNA modifications play a prominent role in cellular homeostasis, in tissue development, but 

also in health and disease, by regulating gene expression through type- and site-specific modifications 

on the transcript level (Frye et al., 2018; Livneh et al., 2020). Recent advances in epitranscriptomics, 

the field that studies RNA modifications, have unveiled a great deal of diversity in 1) the types of RNA 

modifications, 2) the types of modified RNAs and 3) the topology within the modified transcript, which 

subsequently impact translation (Hoernes and Erlacher, 2017). Up to date, there are over 170 different 

kinds of RNA modifications described in the mammalian epitranscriptome, most of which are found in 

the tRNA and rRNA, and a few have also been found in the mRNA (Delaunay and Frye, 2019). 

 tRNA modifications are amongst the very well-studied and are crucial for the correct tRNA 

structure and function, including the proper anticodon loop formation, aminoacylation and tRNA 

metabolism (El Yacoubi et al., 2012). rRNA modifications generally contribute to structural ribosomal 

stability, while they cluster at functionally crucial ribosomal sites, such as the peptidyltransferase center 

and the decoding site, guaranteeing the efficacy and accuracy of translation (Sloan et al., 2017). For 

mRNA modifications, on the other hand, there is not an utterly clear rule for their effect overall on the 

mRNA; there are examples of RNA modifications involved in mRNA decay, transcript stability or 

translation (Hoernes and Erlacher, 2017; Frye et al., 2018). Modifications most frequently found on the 

mRNA are summarized in Figure 1.1. In brief, among the modifications found on the mRNA, grouped 

by the originally modified base are:  

• Methylation of Adenosines: N6-methyladenosine (m6A) appears to be one of the most abundant 

modifications, written cooperatively by a complex of 7 proteins (purple-highlighted in Figure 

1.1), but methylation is primarily catalyzed by methyltransferase-like 3 (METTL3) upon 

substrate recognition of METTL14 (Roundtree et al., 2017). Furthermore, N6,2′-O-

dimethyladenosine (m6Am) is catalyzed by the Phosphorylated CTD Interacting Factor 1 

(PCIF1), later termed as Cap Adenosine N6-Methyltransferase (CAPAM), as it methylates the 

first Adenosine transcribed to create the mRNA cap structure (Cowling, 2019; Sendinc et al., 

2019). N1-methyladenosine (m1A), is one of the most rare modifications found on the mRNA 

(Schwartz, 2018) and it is written by a complex of tRNA (adenine-N(1)-)-methyltransferases 

TRMT6 (substrate recognition) and TRMT61A (catalytic subunit) (Safra et al., 2017).  

• Methylation of Cytosines: 5-methylcytosine (m5C) is written on the mRNA by the RNA 

methyltransferase NSUN2 in various sites throughout the transcript (Bohnsack et al., 2019). 

Hydroxylation of m5C, catalyzed by the Tet methylcytosine dioxygenases (TETs) activity, leads 

to the formation of 5-hydroxymethylcytosine (hm5C), which is thought to play an important role 

in differentiation, as it has been found in mouse embryonic stem cells (ESCs) in abundance in 
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transcripts of key pluripotency-related factors and its levels decrease during differentiation  (Lan 

et al., 2020). 

• Pseudouridylation of Uridine: isomerization of uridine to pseudouridine (ψ) on the mRNA in 

human cells appears to be generally accumulated in response to environmental stress (Carlile et 

al., 2014). ψ is catalyzed by pseudouridine synthetases (PUSs) or a small ribonucleoprotein 

complex with DKC1 (Dyskerin Pseudouridine Synthase 1) as its catalytic subunit (Balogh et 

al., 2020).  

• Deamination of Adenosines and Cytosines: this modification is generally known as RNA 

editing and it results in base change: Adenosines are deaminated to Inosines, which are 

recognized as Guanosines, (hereafter A-to-I(G) editing) by enzymes of the ADAR family 

(Adenosine Deaminases Acting on RNA), while Cytosines are deaminated to Uracils (hereafter 

C-to-U editing) by enzymes of the APOBEC family (apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like) (Keegan et al., 2001). RNA editing is the main focus of the present 

dissertation and their physiological roles, as well as the shift of their function in cancer are 

reviewed in detail in the subchapter 1.2.  

 
Figure 1.1 Scheme representing the mRNA modifications and their respective transcript topology. Namely the 

modifications shown are: N6-methyladenosine (m6A), N6,2′-O-dimethyladenosine (m6Am), N1-methyladenosine 

(m1A), 5-methylcytosine (m5C), 5-hydroxymethylcytosine (hm5C), pseudouridine (ψ). The writer(s) of each 

modification are shown above the modifications in light-blue and purple shapes. For further information, see main text 

above. Adapted figure from Delaunay and Frye, 2019. Adapted by permission from Springer Nature Customer Service 

Centre GmbH: Springer Nature, Nature Cell Biology, “RNA modifications regulating cell fate in cancer”, Delaunay and 

Frye, Copyright: Springer Nature Limited (2019).  

Overall, RNA modifications are widespread and diverse. They comprise an extensive repertoire 

of chemical modifications, and they occur on most of the types of RNA found in a cell, often with 

specific transcript topology. Though the functional consequence of most remains unclear, emerging 

evidence suggests that in aggregate they provide an additional layer of regulation on the transcript level. 

In this dissertation, I will focus on A-to-I and C-to-U (on- and off-target) RNA editing and in particular 

how they impact cancer development and progression.  
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1.2 The polynucleotide deaminases and their known functions 

1.2.1 Adenosine Deaminases Acting on RNA (ADARs) 

 The most abundant type of RNA editing by deamination is the Adenosine-to-Inosine (A-to-I) 

conversion (Figure 1.2a) catalyzed by enzymes of the family of Adenosine Deaminases Acting on RNA 

(ADAR) (Zinshteyn and Nishikura, 2009). There are three ADARs in humans, only two of which 

(ADAR1 and ADAR2) demonstrate A-to-I deaminase activity (Slotkin and Nishikura, 2013). As 

summarized in Figure 1.3b, all ADARs have a deaminase domain and at least two double-stranded RNA 

(dsRNA) binding domains (Slotkin and Nishikura, 2013). ADAR1 is expressed ubiquitously in two 

isoforms, ADAR1-p110 (~110 kDa) and ADAR1-p150 (~150 kDa), which are being generated through 

alternative promoters (George and Samuel, 1999). ADAR1-p110 is constitutively expressed, while 

ADAR1-p150 is expressed through an interferon inducible promoter upstream the one responsible for 

the ADAR1-p110 expression (George et al., 2005). Through this alternative promoter usage, the protein 

sequence of ADAR1-p150 is longer than the one of ADAR1-p110 by an additional exon at the N-

terminus, encoding for an extra Z-DNA binding domain. This additional Z-DNA binding domain 

provides ADAR1-p150 with a nuclear export signal (NES), allowing its presence into the cytoplasm 

where it is mostly found, while ADAR1-p110 resides in the nucleus through nuclear localization signal 

(NLS) present in the dsRNA binding domain closer to the C-terminus, also present in ADAR1-p150 

(Poulsen et al., 2001).  

 
Figure 1.2 Adenosine-to-Inosine deamination and the enzymes of the ADAR family. (A) Chemical reaction of A-

to-I deamination, in which an Adenosine loses an amino-group and is converted to inosine. (B) The ADAR family 

consists of three main enzymes: ADAR1, which has two isoforms (ADAR1-p150 and ADAR1-p110), ADAR2 and 

ADAR3. All ADARs contain deaminase and dsRNA binding domains, while Z-DNA biding domains are present only 

in the isoforms of ADAR1, and an arginine-rich (R) domain in ADAR3. Adapted figure from Slotkin and Nishikura, 

2013. Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Genome 

Medicine, “Adenosine-to-inosine RNA editing and human disease”, Slotkin and Nishikura, Copyright: BioMed Central 

Ltd (2013). 
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As mentioned above, A-to-I RNA editing is widespread in the human transcriptome; it is mainly 

driven by ADAR1 and it is particularly prevalent in Alu element sequences of transcripts, majorly 

present in introns and untranslated regions (UTRs) (Athanasiadis et al., 2004; Kim et al., 2004; Levanon 

et al., 2004). Although mRNAs can be post-transcriptionally edited by the mainly cytoplasmic ADAR1-

p150 isoform, its abundance in intronic regions of pre-mRNAs highlighted that this modification can 

also occur co-transcriptionally and it is, in fact, tightly coordinated with pre-mRNA splicing 

(Laurencikiene et al., 2006; Licht et al., 2019). A number of transcript-targets have been identified for 

ADAR1, highlighting its prominent role in targeting components of a number of molecular pathways 

and cellular functions (Lamers et al., 2019): its primary function is to edit endogenous dsRNAs, in order 

to inhibit response to them as non-self dsRNAs, which would normally activate the RIG-I-Like Receptor 

pathway (RLP) and stimulate interferon (IFN) type-I response (Liddicoat et al., 2015). Although the last 

highlights the importance of ADAR1 in immunity, allowing the host to trigger antiviral response, pro-

viral roles have been suggested as well for this enzyme, as it can block RLP or PKR (Protein Kinase R), 

which also recognizes dsRNA (George et al., 2009). Despite its role in immunity, A-to-I editing also 

plays a prominent role in cancer primarily attributed to ADAR1 activity (discussed in subchapter 1.2.3), 

which is overexpressed in several cancer types (Han et al., 2015) and, interestingly, it is moreover 

involved in diversifying sequence of RNA viral genomes, such as in HIV-1 (Doria et al., 2009) or the 

novel coronavirus SARS-CoV-2 (Giorgio et al., 2020). The last, will be discussed in subchapter 1.2.4.  

The other catalytically active deaminase of the family, ADAR2, is also nuclear and it is 

suggested to be responsible for the few editing events described in the coding sequence (CDS) of the 

transcripts (Nishikura, 2010). For instance, thanks to ADAR2 editing targeting the CDS of the transcript 

of GRIA2 (encoding for the glutamate receptor subunit B; GluR-B in mice), a glutamine-to-arginine (Q-

to-R) amino acid change makes the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) 

receptor impermeable to calcium, which is crucial for the brain function (Brusa et al., 1995; Higuchi et 

al., 2000). In vitro experiments have demonstrated that ADAR1 and ADAR2 homodimerize for editing 

dsRNA, while ADAR3 remains a monomer (Cho et al., 2003). ADAR3 is not a catalytically active 

deaminase; it is expressed in brain and contains an arginine-rich (R) domain, which allows the enzyme 

to bind to single-stranded RNA (ssRNA), as well as to dsRNA through the respective domains (Chen et 

al., 2000). Recent findings demonstrate that ADAR3 may be an inhibitor for ADAR2 to edit RNA, as 

for example it binds to the GRIA2 transcript in human glioblastoma tumors and hinders the crucial Q-

to-R editing by ADAR2 (Oakes et al., 2017).  

 Overall, ADAR-mediated RNA editing not only is it crucial for a number of functions as 

discussed thus far, but also it is essential for life. ADAR1-deficient mice die during embryogenesis for 

a number of reasons, including high IFN type I levels, liver failure, dysfunctional hematopoiesis and 

extended apoptosis (Hartner et al., 2004; Wang et al., 2004; Hartner et al., 2009; Mannion et al., 2014). 

In human, mutations in the ADAR1 gene and in particular in key domains (i.e. deaminase, Z-DNA 

binding, dsRNA binding domains) are problematic and causal to diseases. For instance, 9 mutations (7 



Introduction 

 16 
 

of which in the deaminase domain) are causal to Aicardi-Goutières syndrome, a rare neurological 

disorder with high inflammation levels of the brain and skin (Rice et al., 2012). About 130 mutations 

throughout the ADAR1 CDS are further associated with another rare genetic disorder, dyschromatosis 

symmetrica hereditaria, which is characterized by hyper- and hypopigmented macules on the extremities 

(Kono et al., 2014). Furthermore, downregulation of ADAR2, which leads to minimal editing levels of 

GRIA2 at the Q-to-R site is associated with deterioration of motor neurons in amyotrophic lateral 

sclerosis, a fatal neurodegenerative disease, but also with glioblastoma, an advanced-stage brain 

malignancy of astrocytes (Maas et al., 2001; Kawahara et al., 2003). Conclusively, ADAR-mediated 

RNA editing is required for systemic homeostasis and its deregulation my lead to severe cases in human 

disease.  

 

1.2.2 The AID/APOBEC family  

The AID/APOBEC (Activated Induced Cytidine Deaminase / Apolipoprotein-B-mRNA 

Editing enzyme Catalytic polypeptide-1) is a family of cytidine deaminases, which according to Salter 

et al., 2016, they are “united by structure and divergent in function”. In human, the AID/APOBEC 

family consists of 11 enzymes, APOBEC1, APOBEC2, APOBEC3A-D, APOBEC3F-H (collectively 

referred to as APOBEC3s), APOBEC4 and AID (Conticello et al., 2007). Not all the members of the 

AID/APOBEC family are deaminases; Cytidine deamination leads to Uridine, generally known as C-

to-U editing and it is catalyzed by APOBEC1, some APOBEC3s and AID (Conticello et al., 2005). The 

first cytidine deaminase to be discovered was APOBEC1, which deaminates the Cytidine in a CAA 

codon (amino acid Q2180) of the pre-mRNA of apolipoprotein B (ApoB), leading to a stop codon 

(UAA) and therefore a truncated protein, known as ApoB-48 (Teng et al., 1993). ApoB-48 is expressed 

primarily in the small intestine, while ApoB-100, deriving from the unedited transcript of ApoB in liver 

(Blanc and Davidson, 2003). The two proteins present distinct functions relevant to their tissue-specific 

expression; ApoB-100 is an LDL-R (Low Density Lipoprotein Receptor) ligand, but ApoB-48 misses 

the ligand domain and it is instead involved in chylomicrons metabolism (Zheng et al., 2006).  

The aforementioned recoding effect of RNA editing in ApoB expression is an example of the 

striking biological impact RNA editing may have. However, RNA editing events in the coding regions 

are rather rare; comparative transcriptome-wide screens between Apobec1-/- and wild-type (WT) mice 

from jejunal epithelial cells of their small intestine revealed that APOBEC1 edits Cytidines within AU-

rich regions in transcript 3’UTRs, a finding that indicates that RNA editing may also be involved in 

transcript regulation or processing (Rosenberg et al., 2011). APOBEC1 edits single-stranded RNA 

(ssRNA) normally with the help of other proteins, known as cofactors, which recognize ribonucleotide 

motifs (mooring sequences) and “tether” the editing enzyme to the on-target Cytidine (Keegan et al., 

2001). The most well-known cofactors of APOBEC1 are RBM47 (RNA Binding Motif 47) and A1CF 

(APOBEC1 Complementation Factor), which each recruits APOBEC1 to certain transcripts (Blanc et 

al., 2019). Indeed, Rbm47-deficient mice fail to edit specific transcripts, different from those that A1CF-
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deficient mice fail to edit, while mice with double deficiency (of both RBM47 and A1CF) present a 

global decrease of RNA editing but not utter loss (Fossat et al., 2014; Snyder et al., 2017). This suggests 

that APOBEC1 may have occasionally additional cofactors than the aforementioned ones, considering 

the fact that RBPs (RNA Binding Proteins) present similarities in sequence, the encoded protein 

domains, and their preferential binding motifs (Dominguez et al., 2018). It is not unlikely, that the 

cofactors of APOBEC1 may also function as “molecular switches”, determining the function of the 

deaminase, not only by enhancing target-transcript specificity and versatility, but also by allowing 

APOBEC1 to mutate DNA instead of RNA. And this is because, it has been shown in E. coli that when 

APOBEC1 is ectopically expressed is capable of mutating DNA without its cofactors (Harris et al., 

2002), while mutational signatures compatible with APOBEC1 activity where also detected in advanced 

esophageal adenocarcinoma cells (Saraconi et al., 2014). Therefore, APOBEC1 residing in the nucleus 

to edit pre-mRNA with the help of cofactors (Chester et al., 2003), may also mutate DNA without them; 

a likely scenario is that this dual role of APOBEC1 may be coordinated co-transcriptionally (as 

summarized in Figure 1.3), in which APOBEC1 may lose touch with its cofactor and the “on-hold” 

nascent RNA and access the ssDNA coding strand of the transcribed locus (Tasakis et al., 2019).  

 
Figure 1.3 RNA editing and DNA mutation by APOBEC1 may be co-transcriptionally coordinated. RNA editing 

enzymes, known to edit RNA co-transcriptionally, here showing APOBEC1 and its two predominant cofactors (RBM47 

and A1CF). It is, however, also known that APOBEC1 can gain access and mutate DNA without a co-factor (Harris et 

al., 2002). It is possible that APOBEC1 may lose its touch with the nascent RNA and mutate DNA in situ. A DNA 

molecule in close proximity to the nascent RNA will by necessity be the cognate gene of the transcribed locus. Therefore, 

RNA editing and DNA mutation by the same enzyme (here APOBEC1, but not limited to it) may be temporally linked 

during transcription. Figure from Tasakis et al., 2019. It is reused under the Creative Commons License 4.0. This 

illustration was created by myself. 
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 The second deaminase from the AID/APOBECs to be discovered was AID (Activated Induced 

Cytidine Deaminase, encoded by the Aicda locus), which is expressed in germinal center B cells and  

plays a prominent role in adaptive immunity, as it is involved in antibody diversification through Class 

Switch Recombination (CSR) and Somatic Hypermutation (SHM) of the Immunoglobulin (Ig) locus 

(Muramatsu et al., 1999, 2000). AID was originally thought to be an RNA editing enzyme due to 

similarities with APOBEC1 in structure and deamination activity (Muramatsu et al., 1999), and also 

because their genetic loci were generated in the mammalian genome through gene duplication (Muto et 

al., 2000; Conticello et al., 2007). It was, however, demonstrated in vitro that AID deaminates ssDNA 

(Dickerson et al., 2003), which at Ig loci is accessible by AID during transcription thanks to R-loop 

formation between the nascent RNA and the template strand (Ramiro et al., 2003; Sohail et al., 2003). 

Therefore, there is a strong strand bias for C-to-U AID-mediated editing at Ig loci, which may be 

incorporated in the DNA sequence as an A:T base pair through DNA replication, or lead to DNA break 

because of Base Excision Repair (BER) mechanisms resulting in CSR or translocations (Longerich et 

al., 2006).  

 Other enzymes that are catalytically active deaminases from the AID/APOBEC family are the 

subfamily of APOBEC3s; there are seven different APOBEC3s (3A-D, 3F-H) expressed in human, 

while only one in mouse (Conticello et al., 2005). APOBEC3s are predominantly expressed in immune 

system cells and have key functions in anti-retroviral immune response, but also in regulating the innate 

retrotransposon activity (Chiu and Greene, 2008; Stavrou and Ross, 2015). Most of APOBEC3s are 

primarily cytoplasmic (besides APOBEC3B being mostly nuclear and APOBEC3A and -3C being both 

nuclear and cytoplasmic), where they are catalytically active against a number of RNA viruses, targeting 

their cDNA intermediates (Salter et al., 2016). One of the most well-studied members of this subfamily 

is APOBEC3G, which is an antiviral against HIV-1 targeting its ssDNA reverse-transcribed 

intermediates (Sheehy et al., 2002). Interestingly, APOBEC3G is “hijacked” into the HIV virions, in 

which it actually mutates the cDNA of HIV-1, but because of the Vif (Viral infectivity factor) of HIV 

enhancing the proteasome-mediated proteolysis of APOBEC3G, enhancing the viral infectivity 

(Lecossier et al., 2003; Mangeat et al., 2003; Marin et al., 2003). APOBEC3s are potent ssDNA mutators 

and APOBEC3A and -3B, as they can access and reside in the nucleus, are involved in aberrant 

hypermutation of cancer genomes, a phenomenon termed “kataegis”, as first discovered in breast 

cancers (Nik-Zainal et al., 2012). It was later shown that APOBEC3A can also edit RNA in monocytes 

and macrophages (Sharma et al., 2015) and it has been recently demonstrated that, RNA editing and 

DNA mutation by APOBEC3A are in fact co-dependent, because mutations in the DNA can be 

monitored through “hotspots” of RNA editing activity (Jalili et al., 2020). Given the fact that 

APOBEC3s can bind to ssRNA as well (Salter et al., 2016), it is not impossible that more APOBEC3s 

can present this versatile role of RNA/DNA targeting, perhaps with the right cofactor, which has yet to 

be discovered (Tasakis et al., 2019).  
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1.2.3 Implications of ADARs and AID/APOBECs in cancer mutagenesis 

Cancer is a disease characterized by unprecedented heterogeneity in genetics, tissue pathology, 

leading to a diverse clinical presentation and progression (Fisher et al., 2013; Janku, 2014). The first 

attempt to interpret cancer development through mutagenesis was the “two-hit” hypothesis as proposed 

in 1971 by Alfred Knudson. According to this hypothesis, there are at least two mutations required for 

cancer development: one in a proto-oncogene to turn to an oncogene, to enhance cell proliferation, and 

one in a tumor-suppressor gene, so as forfeit the cellular capabilities control cell division so as to escape 

death (Knudson, 1971). Ever since that model was proposed, has become indisputably evident that 

cancer mutagenesis is well beyond two mutations; in most cases the mutational load is high to allow 

tumor evolution and adaptation (Martincorena and Campbell, 2015; Chalmers et al., 2017). Tumor 

development follows a clonal evolution model, according to which they originate from progenitor cells 

(also known as cancer stem cells), progressively anchoring mutations in the genome through selection 

and expansion (Beck and Blanpain, 2013). The set of mutations arising during tumorigenesis, is 

considered to be a load of errors that occur primarily during DNA replication, which repair mechanisms 

fail to correct, but it becomes more and more evident that deaminases, such as APOBECs, are actively 

involved in cancer mutagenesis by introducing non-canonical bases in the genome, which may be 

corrected by mismatch repair mechanisms (Chen et al., 2014). Such a mechanism, is for instance in case 

of C-to-U DNA editing, the recognition of Uracil (U) in the DNA by UDG (Uracil-DNA Glycosylase), 

which removes Us from the DNA and activates the BER pathway (Petljak and Maciejowski, 2020).  

APOBECs often drive mutagenesis in a number of cancers throughout tumorigenesis with 

specific mutational signatures associated with their activity (Petljak et al., 2019). As also mentioned in 

subchapter 1.2.2, one of the first examples of APOBEC-mediated mutagenesis in cancer was the 

discovery that APOBEC3A and APOBEC3B correlate with clusters of C-to-T mutations, termed as 

“kataegis” mutations, originally inferred from mutation data from breast cancer genomes (Nik-Zainal et 

al., 2012; Starrett et al., 2016), which shaped a predictive signature with prognostic value (D’Antonio 

et al., 2016). APOBEC-mediated mutagenesis, however, is a pan-cancer phenomenon and has been 

detected in a number of cancer cell lines (Jarvis et al., 2018; Maura et al., 2018; Petljak et al., 2019). 

APOBEC1-mediated mutational signatures have also been detected in cancer cell line genomes, as 

introduced in subchapter 1.2.2 (Saraconi et al., 2014), and previous in vivo data demonstrated that 

APOBEC1-deficient mice presented reduced tumor burden indicating a direct link between the 

deaminase activity and cancer progression (Blanc et al., 2007). However, it should be noted that as 

discussed in subchapter 1.2.2, APOBEC1 is both an RNA editor and a DNA mutator in the context of 

(Saraconi et al., 2014), which appears to be the case also for APOBEC3A, which was originally thought 

to be a DNA mutator, but also proven to be an RNA editor (Jalili et al., 2020). Therefore, polynucleotide 

deaminases, present versatility in the target substrates and their coordination editing RNA and mutating 

DNA co-transcriptionally (Figure 1.3), may be key to tumorigenesis.  
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ADAR-mediated RNA editing is also shown to be key to tumorigenesis, with ADARs being 

overexpressed in virtually all tumors compared to their normal tissues, leading to elevated A-to-I editing 

activity, except for kidney chromophobe and renal papillary tumors (Han et al., 2015). Editing tumor 

load is indeed exceptionally high, found also more abundant in transcript CDSs, leading to 

transcriptomic diversity during tumorigenesis (Paz-Yaacov et al., 2015). Certain editing events in 

particular transcripts have been, in fact, described as driver events; for example, the transcript of AZIN1 

hepatocellular carcinoma (Chen et al., 2013) and the transcript of GLI1 in Multiple Myeloma (Lazzari 

et al., 2017). Although it is evident that there is a certain preponderance in particular transcripts at certain 

cancer types, the transcriptome-wide RNA editing activity (which is aberrant) should be overall 

considered in the context of oncogenesis, as shown to be crucial for instance in MM prognosis (Teoh et 

al., 2018). Furthermore, ADARs may also present a dual role of editing RNA and mutating DNA, in 

vitro data demonstrate that ADARs deaminate DNA when that is in DNA/RNA hybrids (Zheng et al., 

2017), and this appears to be crucial for resolution of telomeric R-loops and genomic stability in cancer 

cells (Shiromoto et al., 2021). This, naturally raises the question whether in the right context ADARs 

can also function as DNA mutators genome-wide and especially in the context of cancer, which is not 

unlikely, considering their overexpression and aberrant targeting in that context. All in all, both ADARs 

and APOBECs are shown to be contributing to tumorigenesis (Figure 1.4), by dynamically shifting their 

functions in multiple ways, which may involve altering their targeting activity, aberrantly editing RNA 

or mutating DNA or both, therefore enhancing tumor evolution and adaptation through genomic, 

transcriptional and subsequent proteomic heterogeneity (Tasakis et al., 2019). 

 
Figure 1.4 ADARs and AID/APOBECs contribute to tumor heterogeneity. According to clonal evolution models in 

cancer, tumorigenesis begins with a healthy cell being transformed to a cancer stem cell due to oncogenic hits forming 

a primary tumor. The primary tumor further evolves by receiving additional hits by deaminases, leading to altered coding 

information and heterogeneous proteomic profiles due to aberrant RNA editing or DNA mutation because of aberrant 

ADAR or AID/APOBEC functions. Figure from Tasakis et al., 2019. It is reused under the Creative Commons License 

4.0. This illustration was created by myself. 
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1.2.4 APOBEC and ADAR mediated mutagenesis in the ssRNA viral genome of SARS-CoV-2 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causal agent of 

the Coronavirus Disease 2019 (COVID-19), detected first in Wuhan, China in December 2019 (Wang 

et al., 2020). The rapid worldwide spread of SARS-CoV-2 led to the declaration of COVID-19 as a 

pandemic on March 11th 2020 by the World Health Organization (Cucinotta and Vanelli, 2020). By July 

2021, more than 180 million individuals were infected, causing the death of nearly 4 million individuals 

(“WHO Coronavirus (COVID-19) Dashboard”). SARS-CoV-2 belongs to the betacoronavirus genera 

of the Coronaviridae family and is a single-stranded and positive-sense RNA (ssRNA+) virus (Machhi 

et al., 2020). Its genome (~29.9kb) is organized in ten ORFs (Open Reading Frames) by annotation, six 

of which encode for functional and structural elements, such as Nsp12 (Non-structural protein 12) 

encoding for the viral RNA-dependent RNA polymerase (RdRp deriving from ORF1ab, the Spike (S) 

glycoprotein from ORF2, the envelope protein (E) from ORF4, the membrane protein (M) from ORF5 

and the nucleocapsid protein (N) from ORF9 (Chan et al., 2020; Kim et al., 2020; Hu et al., 2021). The 

S protein of SARS-CoV-2 is key to the viral infectivity, since it is recognized by the receptor ACE2 

(Angiotensin-Converting Enzyme 2) in lungs, leading to membrane fusion with the cell membrane and 

subsequent internalization of the virus (Yi et al., 2020). Although it was initially thought that the 

proofreading activity of the RdRp is tight, thanks to Nsp14, which functions as a 3’à5’ exonuclease 

proofreader and is  of the viral Replication-Transcription Complex (RTC) (Ogando et al., 2020), a 

number of SARS-CoV-2 variants have been identified (Rambaut et al., 2020), several of which were 

characterized as variants of concern (VOCs) because of mutations in the S protein, based on which the 

current immunization strategies rely on (Darby and Hiscox, 2021).  

Diversification of the SARS-CoV-2 genome is a challenging topic, especially when it triggers 

the equilibrium of population immunity, which is key to the resolution of the pandemic. As introduced 

in subchapter 1.2.2, ADARs and APOBEC3s are capable of deaminating the viral genomes, as part of 

their anti-viral properties, thus leaving their characteristic mutational fingerprint (Nishikura, 2010; 

Stavrou and Ross, 2015; Liu et al., 2018). 65% of the documented mutations for SARS-CoV-2, up to 

date, are C-to-U and A-to-G base changes (Klimczak et al., 2020; Wang et al., 2020), which likely the 

result of RNA deaminases (Giorgio et al., 2020). APOBEC3s deaminate single-stranded RNA or DNA 

(Jalili et al., 2020; Sharma et al., 2015) and the ssRNA genome of SARS-CoV-2 appears to be indeed a 

substrate of APOBEC3s, according to recent deamination motif analyses (Poulain et al., 2020). ADARs 

deaminate dsRNA (Keegan et al., 2001); and in the case of SARS-CoV-2 dsRNA instances can be 

formed during viral replication, which are actually recognized by MDA5 (Yin et al., 2021), known to 

interplay with ADAR1 in recognizing non-self dsRNAs within the cell (Liddicoat et al., 2015). 

Therefore, host-dependent RNA editing activity may diversify the SARS-CoV-2 ssRNA genome and 

that can be potentially traceable within a given population of infected individuals. The last is also a 

major interest of the present dissertation, which I explore under the scope of evolution.  



Introduction 

 22 
 

1.3 Site-directed RNA editing technologies 
Recent advances in the field of epitranscriptomics have emerged with several promising tools 

to perform targeted and site-directed RNA editing on the mRNA. The original idea and experiments 

were carried out by Woolf, Chase and Stinchcomb in 1995 (Woolf et al., 1995), for which they suggested 

that G-to-A DNA mutations can be transiently corrected on the mRNA by A-to-I (I recognized as G) 

RNA editing, for which they delivered oligoribonucleotides complementary to the target-region on the 

transcript. Their target-region was a premature stop codon (UAG) in the dystrophin mRNA, which upon 

activation through ADAR-mediated RNA editing (UAG to UGG, translated as stop codon to tryptophan) 

it led to expression of a downstream encoded luciferase reporter gene. Activation of the UAG stop codon 

through A-to-I RNA editing, is an advantageous idea that most of the recent site-directed editing 

technologies are still employing to test their specificity and efficacy; however now, in most cases it 

activates a gene of fluorescence (e.g. eGFP, as in 4.2.5 and 4.2.6), allowing immediate quantification of 

editing on the cell (through FACS) and transcript levels (Montiel-Gonzalez et al., 2019).  

Site-directed mRNA editing tools have been developed and optimized primarily for ADAR-

mediated (A-to-I) editing, while there are a few for C-to-U editing as well (Abudayyeh et al., 2019; 

Huang et al., 2020). For A-to-I site-directed editing, an oligoribonucleotide (hereafter guide-RNA or 

gRNA) antisense to the mRNA target is required, forming the dsRNA substrate ADARs prefer (Figure 

1.5). This is the principle most such tools rely on and, furthermore, it has been shown that A-to-I editing 

is more specific and efficient for the A-targets that are mismatched to Cs (Cytidines) in the dsRNA, 

flanked by complementary oligomers in the dsRNA, the length of which (and thus of the gRNAs) varies 

between the different tools (Montiel-Gonzalez et al., 2019; Vogel and Stafforst, 2019). For the present 

chapter, I provide an overview of the A-to-I site-directed editing tools, which I group by whether they 

recruit the endogenously expressed ADAR or an exogenously introduced engineered version of the 

enzyme. I particularly focus on the “λN-ADAR” (Montiel-Gonzalez et al., 2013), “LEAPER” (Qu et 

al., 2019) and “RESTORE” (Merkle et al., 2019)  tools, which I employed for my experiments, presented 

and discussed in this dissertation (see chapter 4.2). 

 
Figure 1.5 The principle of A-to-I site-directed RNA editing. An antisense guide-RNA (gRNA) is delivered against 

the mRNA target, to form the dsRNA substrate that ADARs require to edit. The Adenosine-target to be specifically 

deaminated is forming an A:C mismatch in the dsRNA substrate, while it is flanked by complementary base pairs. 

Adapted figure from Casati et al., 2021. Adapted by permission from Springer Nature Customer Service Centre GmbH: 

Springer Nature, Epitranscriptomics. RNA Technologies, vol 12. Springer, Cham, “ADAR-Mediated RNA Editing and 

Its Therapeutic Potentials”, Casati B, Stamkopoulou D, Tasakis RN, Pecori R, Copyright: The Authors (2021). 



Introduction 

 23 

1.3.1 Tools incorporating exogenous editing enzymes 

A number of the site-directed RNA editing tools available, co-deliver gRNAs, which may be 

chemically modified or shape a certain structure through sequence, and engineered editing enzymes, 

which may derive from fusing different protein domains with specific function, one of which is typically 

an ADAR deaminase domain. One of the very first tools developed was the “λN-ADAR”, developed by 

Maria Montiel-Gonzalez, Joshua Rosenthal and colleagues (Montiel-Gonzalez et al., 2013). The 

technology behind this tool relies on the N protein of the λ-phage (hereafter λΝ peptide), which binds 

to boxB hairpins on the RNA. Therefore, they fused the deaminase domain of ADAR2 (ADARDD) with 

a λΝ peptide, which is to bring the deaminase domain to edit the Adenosine-target on the mRNA, after 

binding to boxB hairpins on gRNA (Figure 1.6). With this set-up, they were successful in editing 

adenosines at about ~10% editing but not specifically to a single site. Therefore, their system underwent 

optimization and they achieved higher editing efficiency and specificity (up to ~70%), notably by: 1) 

designing guides with A:C mismatches between the mRNA and the gRNA, 2) by fusing more than one 

λΝ peptides with the ADARDD, 3) by evaluating the flanking nucleotides to the target (UAG was the 

most efficient, with A-target in bold) and 4) by inferring hyperactive mutants of the ADARDD, with the 

E488Q being the prominent one (Montiel-González et al., 2016). Additionally, to evaluate the 

aforementioned parameters on the cellular and RNA levels, they constructed a stable cell line from 

HEK293T cells, containing a cassette expressing mCherry followed by an inactivated eGFP gene due 

to a premature stop codon UAG, which they targeted for eGFP activation through UAG>UGG editing 

on the endogenous transcript of the cassette. This cell line, that I also use for my experiments (chapter 

4.2.5 and 4.2.6), is hereafter termed as HEK293T-W58X and they employed it to evaluate on-target 

editing efficiency and off-target events, which were still present, but reduced later on after fusing a 

nuclear localization signal (NLS) with the 4λN-ADAR (Vallecillo-Viejo et al., 2017). For my 

experiments, I use the 4λN-ADAR E488Q mutant (chapter 4.2.5). 

 
Figure 1.6 Simplified scheme recapitulating site-directed mRNA editing with the λN-ADAR tool. The deaminase 

domain of ADAR2 (ADARDD) is fused with λΝ peptides, which bind to BoxB hairpins of the gRNA, antisense to the 

mRNA target. The specific Adenosine to be edited is in a deliberate A:C mismatch within the dsRNA formed between 

the mRNA and the gRNA. Adapted figure from Casati et al., 2021. Adapted by permission from Springer Nature 

Customer Service Centre GmbH: Springer Nature, Epitranscriptomics. RNA Technologies, vol 12. Springer, Cham, 

“ADAR-Mediated RNA Editing and Its Therapeutic Potentials”, Casati B, Stamkopoulou D, Tasakis RN, Pecori R, 

Copyright: The Authors (2021). 
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 Other popular and widely-used tools that incorporate an exogenous editing enzyme are the 

“SNAP-ADAR” and “REPAIR”, which was evolved to “RESCUE”. Thorsten Stafforst (Stafforst and 

Schneider, 2012) developed a system that incorporates SNAP-ADAR, which is a fusion of the 

deaminase domain of the human ADAR1 and a self-labelling protein SNAP-tag, that stems from a 

human alkyltransferase (O6-alkylguanine-DNA). SNAP-ADARs can covalently bind to gRNAs tagged 

with O6-benzylguanine and, thus, editing the target specifically with minimal off-target effects in vitro. 

Further optimization of this tool led to higher guide specificity and editing efficiency in endogenous 

transcripts as well (Vogel et al., 2014, 2018). A CRISPR/Cas-based tool, named “REPAIR”, is also 

available in the “toolbox” of site-directed RNA editing technologies; Feng Zhang and colleagues fused 

the deaminase domain of the hyperactive ADAR2 (E488Q mutant) with a Cas13 enzyme (dCas13b), 

which is recruited to the Adenosine-target on the mRNA with a gRNA that contains a stem loop due to 

a repetitive sequence and specifies the target with the aforementioned A:C mismatch (Cox et al., 2017). 

The same group of scientists further optimized the system, primarily to efficiently edit endogenous 

transcripts and also further mutated residues of the ADAR2 deaminase domain, which allowed them to 

transform their original editing enzyme to perform C-to-U RNA editing as well; this version of was 

named RESCUE (Abudayyeh et al., 2019).   

 

1.3.2 Tools recruiting endogenous and unmodified ADARs 

  Thanks to the rapid development of RNA technologies, such as the aforementioned ones, 

editing RNA molecules in vitro or endogenous transcripts in cell lines at specific sites, has empowered 

novel concepts for development of RNA therapeutics. As discussed in Nature (Reardon, 2020), One of 

the advantages of RNA engineering is that potential off-target effects of editors on the transcript are 

rather transient, especially when compared to genome editing technologies, such as CRISPR, where 

there undesired off-targets can be permanently fixed into the genome. The “transiency” of such 

therapeutics, may appear as a limitation at first, however many scientists in the field see it as an 

opportunity for flexible therapies that could alleviate pain, metabolic disorders, in addition to cancer or 

other genetic diseases. In fact, editing RNA can happen without “heavy machinery” (as in CRISPR for 

instance) and this gives hope for more efficient in vivo delivery of site-directed editing components in 

therapies. Currently, there are multiple tools available, that promise site-directed RNA editing with 

simply delivering gRNAs which can recruit the endogenously expressed ADARs, instead of co-

delivering an engineered enzyme.  

 One of the first tools that achieved site-specific mRNA editing incorporating the unmodified 

human ADAR2 is the “GluR2-ADAR” (Wettengel et al., 2017). As also discussed in the chapter 1.2.1, 

ADAR2 naturally targets the pre-mRNA of the glutamate receptor B (gluR-B), which contains a specific 

hairpin, also known as R/G editing site (Stefl et al., 2010). Therefore, Wettengel et al engineered gRNAs 

that contain hairpins as encoded by the gluR-B to tether ADAR2 to edit the Adenosine-target (again, in 

A:C mismatch between the mRNA and the gRNA). They showed that when they co-delivered the 
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enzyme with the aforementioned type of gRNAs they could yield up to 65% editing on-target in 

premature stop codons in vitro and about 10% editing in endogenous transcripts. But most importantly, 

they showed that when delivering only the gRNAs, site-directed editing was still possible by the 

endogenously expressed ADAR. The same group, of Thorsten Stafforst, further optimized this system 

and developed a method called “RESTORE” (Merkle et al., 2019), for which they show that A-to-I site-

directed editing is feasible by the endogenous ADAR1, when they target mRNAs with chemosynthetic 

antisense oligonucleotides (ASOs), as shown in Figure 1.7. The ASOs (shown as “GluR2-adRNA” in 

the Figure 1.7) carry the GluR2 motif (ADAR-recruiting domain) and specific chemical modifications 

which are: phosphorothioate on 4 terminal residues at the 3’ end and 2’-O-methylations throughout the 

ASO.  

 
Figure 1.7 Schematic representation of the principle behind the RESTORE tool. A chemically modified antisense 

oligoribonucleotide to the target (mRNA) containing the GluR2 motif (shown overall as GluR2-adRNA) is employed to 

recruit the endogenously expressed ADAR1 for site-directed mRNA editing. The target-site is defined on the mRNA 

target-transcript with an A:C mismatch as previously described. Adapted figure from Casati et al., 2021. Adapted by 

permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Epitranscriptomics. RNA 

Technologies, vol 12. Springer, Cham, “ADAR-Mediated RNA Editing and Its Therapeutic Potentials”, Casati B, 

Stamkopoulou D, Tasakis RN, Pecori R, Copyright: The Authors (2021). 

 In a more recent tool, LEAPER (Leveraging Endogenous ADAR for Programmable Editing of 

RNA), Qu et al. showed that endogenous ADARs can also be recruited by non-chemically modified 

gRNAs, which they called ADAR-recruiting RNAs (arRNAs) and are expressed with plasmid vectors 

(Qu et al., 2019). According to their method (general scheme shown in Figure 1.8), the typical length of 

an arRNA is between 71-111 bases, in which the A-target is centered with an A:C mismatch. Qu et al, 

explored all the possibilities for concluding that this layout is the most efficient for their method; in 

particular, they tested an A:G mismatch for defining the Adenosine-target (shown in Figure 1.8 as A:G) 

concluding to no on-target editing and confirmed that the UAG (Adenosine-target in bold) is the most 

efficiently editable trinucleotide. Additionally, they showed that the longer the arRNA, the more on-

target editing is achieved, but also it is more likely to have off-targets within the region on the mRNA 

the arRNA binds. Finally, they confirmed that ADAR1 is the endogenous enzyme that their system 

recruits. Overall, they present a single-molecule method for site-specific editing, which can be very 
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efficient (~80% on-target editing in overexpressed target transcripts and up to 30% in endogenous 

transcripts).  

 
Figure 1.8 Scheme showing the principle of the LEAPER method. ADAR-recruiting oligoribonucleotides (LEAPER-

arRNA) are employed to define the target-region on the mRNA. The Adenosine-target should be in an A:C mismatch, 

while A:G mismatches are not efficient targets. arRNAs recruit the endogenous ADAR. Adapted figure from Casati et 

al., 2021. Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, 

Epitranscriptomics. RNA Technologies, vol 12. Springer, Cham, “ADAR-Mediated RNA Editing and Its Therapeutic 

Potentials”, Casati, Stamkopoulou, Tasakis, Pecori, Copyright: The Authors (2021). 

 All in all, there is a number of different tools available for precise and efficient site-directed 

mRNA editing. Such RNA editing methods are a bright hope for next-generation therapeutics and with 

more in the making (Katrekar et al., 2021), their application in medical care is simply a matter of time. 

However, before that happens, it is crucial to know all the possibilities that such applications may bring 

about. In particular, I am employing site-directed mRNA editing methods (4λΝ-ADAR and LEAPER) 

(chapter 4.2) to explore off-target effects on genomic DNA, which I present as proof-of-concept for 

ADARs being able to mutate cancer genomes. 
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1.4 RNA editing detection from Next-Generation Sequencing data 
As discussed up to now, RNA modifications are of great significance in health and disease, with 

new concepts and related technologies constantly emerging, such as the aforementioned site-directed 

RNA editing tools (chapter 1.3). Sequencing technologies are key to detecting and validating RNA 

modifications and, in particular RNA editing, a mechanism that naturally leads to base changes on the 

transcript, easily detectable from cDNA amplicons. Traditionally, C-to-U and A-to-I(G) editing has been 

detected from Sanger sequencing chromatograms, in which the edited site appears as a double peak of 

the original and the edited bases, as for example in (Athanasiadis et al., 2004; Ohlson et al., 2007; 

Rosenberg et al., 2011; Ekdahl et al., 2012; Fu et al., 2017; Kluesner et al., 2021), and demonstrated in 

Figure 1.9. To ensure that such sites are indeed a result of RNA editing, genomic DNA (gDNA) 

amplicons from the same region and same lysate of cells are also necessary, in which the double peak 

should be absent from the respective sites and, therefore, they are not Single Nucleotide Polymorphisms 

(SNPs) or somatic mutations. For a certain site of the Sanger chromatogram, RNA editing is quantified 

as the percentage (%) of the peak height of the edited base to the sum of the peak heights of both the 

edited and original bases (Kluesner et al., 2018).  

 
Figure 1.9 Detection of RNA editing with Sanger Sequencing from cDNA amplicons. RNA editing, in this example 

A-to-I(G), is detected from a cDNA amplicon as double peak of the original and the edited bases in a site from Sanger 

sequencing chromatograms (noted with a blue arrow; cDNA panel). A genomic DNA (gDNA) amplicon with absence 

of the double peak from the same site (blue arrow; gDNA panel) is necessary to validate this site as an RNA editing 

event. The percentage (%) of editing is the percentage of the height of the edited base to the overall sum of heights of 

the edited and original bases in the same site. In this case it is about 20% editing. The data and the illustration used in 

this figure are generated by myself from experiments presented in chapter 4.2.5.     

1.4.1 De novo detection of RNA editing from NGS data 

Although Sanger sequencing is an easy, fast, accurate and affordable method for validating 

RNA editing events in sites where one would expect them to, it is not powerful enough for de novo 

detection of RNA editing transcriptome-wide. The first computational analyses that employed expressed 

sequenced tags (ESTs) and large-scale human cDNA data yielded 12723 putative A-to-I editing sites  in 

1637 genes primarily found in Alu repeats (Levanon et al., 2004), which exponentially magnified the 

known ADAR editome from just 19 sites, as previously known (Morse and Bass, 1999). However, the 

aforementioned analysis, or other ones arriving to the same conclusions (Athanasiadis et al., 2004), due 

cDNA gDNA
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to gDNA data unavailability, did not exclude the possibility that single nucleotide variations (SNV) 

detected from the cDNA could in fact be SNPs. A few years later, when Next Generation Sequencing 

(NGS) was better established, Jin Billy Li, Erez Levanon and colleagues (Li et al., 2009), performed the 

first analysis for transcriptome-wide RNA editing detection from NGS data by comparing site-by-site 

base calls from RNA and gDNA from the same human samples. They reported overall 239 sites after 

stringent filtering and excluding regions of Alu elements, which are error-prone due to their repetitive 

sequence. They validated with sanger sequencing and found that 15 out of 18 sites detected were 

consistently edited throughout the individuals of their cohort in multiple tissues, while the rest 3 sites 

were tissue-specific editing events. The principle of RNA and DNA comparisons for de novo detection 

of RNA editing is still followed, while the accuracy of detection is only getting better, thanks to the 

constant optimization of NGS strategies and the emergence of standardized and widely used 

bioinformatics tools and pipelines (Auwera et al., 2013).   

 Although RNA/DNA comparisons provide a realistic resolution for the RNA editome, it is not 

always easy to figure out which enzyme is responsible for an editing event. For example, a C-to-U 

editing can occur due to deamination of a couple of APOBEC enzymes (eg APOBEC1, APOBEC3A) 

and in this case RNA/DNA comparisons cannot be conclusive about the writer of the modification. 

However, the writers of A-to-I and C-to-U editing are well-known and thanks to CRISPR/Cas tools one 

is able to knock them out (KO) when possible and look for editing sites present in transcriptome of the 

wildtype (WT) version of the same cells, which are absent from the KO version. Such comparisons 

(RNAwt/RNAko), allow the accurate detection of the relevant editing sites from NGS data deriving 

from a particular writer, while they eliminate the background noise. This method has been previously 

employed for APOBEC1 and allowed the identification of novel targets (sites and transcripts), the 

deamination motif and preferred transcript topology APOBEC1 has in mouse small intestine enterocytes 

(Rosenberg et al., 2011). Furthermore, RNAwt/RNAko comparisons of the same enzyme in mouse 

dendritic cells, revealed the underlying diversity of RNA editing in the transcripts of the same cell 

population, which underlines the transcriptomic sequence heterogeneity at a single-cell resolution 

(Harjanto et al., 2016).  

 

1.4.2 RNA editing in large-scale data and databases 

Thanks to advances in sequencing technologies, such as RNA-seq, and bioinformatics tools, as 

described above, the impact of RNA editing in fundamental biological processes, as well as in health 

and disease, is more and more evident and it is currently at the spotlight of public attention (Reardon, 

2020). High-throughput data, often publicly available, have enhanced large-scale processing of cohorts 

of data, reporting loads of RNA editing in a diversity of datasets, including sets with great clinical 

relevance, such as human tumors (Paz-Yaacov et al., 2015). The raw counts of RNA editing sites, 

detected from NGS data as previously described, has till very recently been the measure of the RNA 

editing load in a number of studies, as for example in (Lazzari et al., 2017). However, this measure of 



Introduction 

 29 

RNA editing activity is reliable for comparisons only between samples that derive from the same 

experimental set up, due to potential batch effects or other technical artifacts. Inter-sample comparisons 

from different experiments or even studies, has become possible with a new measure for A-to-I RNA 

editing quantification, the Alu Editing Index or AEI (Roth et al., 2019). AEI relies on the editability of 

Alu SINEs, which is the hotspot of A-to-I RNA editing (Bazak et al., 2014). Therefore, AEI is defined 

as the ratio of A-to-G mismatches to the total overage of Adenosines in predetermined regions, which 

for human would be the Alu SINEs (Roth et al., 2019). This tool, however, is not limited only for human 

data, it can be employed for other organisms and for any other set of predetermined regions, provided 

that the selected regions are highly edited so that the signal-to-noise ratio can be adequately high (Roth 

et al., 2019). Elevated RNA editing activity as usually seen in human tumors, is also accompanied by 

regional “hyper-editing” activity, which in RNA-seq data is represented with reads that would contain 

several mismatches compared to the reference sequence. Such reads would fail to align against the 

region of a reference genome with a typical RNA-seq aligner, like STAR, as they would be considered 

problematic, presumably with sequencing errors. These reads (also termed “hyper-edited”), when re-

evaluated and re-aligned they reveal a number of new sites, which can be of great importance (Porath et 

al., 2014). Re-alignment of potential hyper-edited reads and AEI for inter-sample comparisons, is also 

taken into consideration for data related to the present dissertation.  

The extend of known RNA editing targets is constantly increasing. Large-scale data analyses 

and extensive experimental set ups have led to compiling public databases, robustly documenting targets 

of RNA editing enzymes in a high resolution for several organisms. DARNED (Database of RNA 

editing; Kiran et al., 2013) and RADAR (Rigorously Annotated Database of A-to-I RNA editing; 

Ramaswami and Li, 2014) are one of the first databases for documenting primarily A-to-I RNA editing 

events in human, mouse and drosophila. REDIportal, developed and maintained by the developers of 

REDItools, started as an Atlas of the human of RNA editing in human tissues by Ernesto Picardi, 

Graziano Pesole and colleagues (Picardi et al., 2015b, 2017), which was further expanded with editing 

data from additional human cell lines (Lo Giudice et al., 2020b, 2020a; Schaffer et al., 2020) and editing 

data from nascent mouse pre-mRNAs (Licht et al., 2019). Moreover, editing also impacts on the 

sequence and function of non-coding RNAs with emerging clinical relevance in cancer (Han et al., 2015; 

Nishikura, 2016). MiREDiBase (miRNA Editing Database) documents putative and experimentally 

validated RNA editing events found in miRNAs (Marceca et al., 2021).  
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2. Aims of the dissertation  
It is overall evident by now that RNA editing is a crucial component of transcriptome 

diversification and regulation, since it can naturally impact potentially all mRNA topologies (i.e. 

primarily introns and UTRs, less frequently exons) or non-coding RNAs, which can shift dynamically 

to facilitate disease development and progression, such as in cancer (Han et al., 2015; Paz-Yaacov et 

al., 2015; Nishikura, 2016). However, multiple deaminases present a versatile role; they can be both 

RNA editors and DNA mutators, often seen in cancer; APOBEC1, originally thought to be only an RNA 

editor, is now known to be able to mutate esophageal adenocarcinoma genomes (Saraconi et al., 2014) 

and when APOBEC1 is deleted in mice models, tumor burden is significantly reduced (Blanc et al., 

2007). APOBEC3A and APOBEC3B are DNA mutators involved in a phenomenon termed as 

“kataegis” mutations in cancer genomes (Nik-Zainal et al., 2012), but as recently shown APOBEC3A 

can also edit RNA (Sharma et al., 2015), and this appears to be necessary for mutating DNA (Jalili et 

al., 2020). Furthermore, for ADARs it is known that they can mutate DNA in vitro when that is in 

DNA/RNA hybrids (Zheng et al., 2017), a role that ADAR1 presents in telomere stability in certain 

cancer cell lines (Shiromoto et al., 2021). ADAR1, however, is overexpressed in virtually all cancers, 

with very few exceptions (i.e. kidney) (Han et al., 2015), subsequently associated with elevated editing 

activity (Paz-Yaacov et al., 2015). A possibility that I explore with this dissertation is that ADARs - and 

particularly ADAR1 as a ubiquitous RNA editor - are contributing to cancer development and 

progression not only as RNA editors, but also as DNA mutators. With RNA editing being co-

transcriptional (Laurencikiene et al., 2006), DNA mutations by ADARs must be arising in genes of 

highly edited transcripts, in the vicinity of RNA editing sites, because of ADARs opportunistically 

accessing the genome within R-loops formed during transcription. In other words, I assume that the 

more edited a transcript is, the more likely its gene will be mutated by ADARs, a phenomenon which 

may occur as a “collateral damage” of a hyper-editing ADAR. The goal of this dissertation is to address 

this hypothesis through the following aims: 

• Aim 1: I explore the mutagenic role of ADAR1 in Multiple Myeloma (MM), a cancer in which 

it is substantially overexpressed, and I draw correlations from NGS data from MM patients, in 

order to detect ADAR1-dependent DNA mutations in genes whose transcripts are edited by 

ADAR1 on the RNA level.  

• Aim 2: I present proof-of-concept experiments in cell lines, for which I recruit ADARs with 

guide-RNAs targeting specific transcripts, in order to perform site-directed mRNA editing, and 

I look for DNA mutations in the cognate locus.  

• Aim 3: I address this concept from an evolutionary perspective, for which I explore the impact 

of host-dependent RNA editing in ssRNA viral genomes from SARS-CoV-2 isolates from a 

given population, considering that mutations may gradually accumulate within the population, 

similar to how mutations could clonally expand within a cell population from a tumor.  
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3. Materials and Methods 
3.1 General practices for calling RNA editing sites from RNA-seq 

Calling RNA editing sites from total RNA-seq (NGS data) relies on pipeline of steps that 

generally involves: quality control (QC) of the reads sequenced from RNA-seq libraries, mapping (also 

known as aligning) of the reads to the different regions of the appropriate reference genome, post-

alignment proper data treatment (eg removal of PCR duplicates), base calling per genomic coordinate 

(aforementioned as sites), filtering of SNPs or noise to conclude to the list of RNA editing candidate 

sites and, last, functional their functional annotation. Here, I summarize step by step a typical pipeline, 

noting the appropriate software and options I used, allowing me to detect RNA editing sites from NGS 

data. As discussed in subchapter 1.4.1, there are two main strategies to detect RNA editing sites: (1) 

through RNA vs DNA comparisons (RNA/DNA), for which DNA variant sites (SNPs) are subtracted 

from the SNV calls from the RNA-seq, leading to the RNA editing candidates (Diroma et al., 2019) and 

(2) through comparing variant sites called from RNA-seq of a WT cell line vs the variant sites from 

RNA-seq from a writer-KO line of the same type (RNAwt/RNAko), as performed in (Rosenberg et al., 

2011; Harjanto et al., 2016). RNA-seq libraries are typically prepared in replicates per condition (for 

example triplicates per RNAwt and RNAko). For library preparation there is a number of strategies and 

manufacturers. One of the most popular is the Illumina® Platforms and their HiSeq sequencing 

technology, as described in Lerner et al., 2021. The pipeline I used for calling RNA editing, as well as 

DNA mutation calls, is summarized below and also shown in Figure 3.1.  

 
Figure 3.1 Scheme summarizing a generalized pipeline for RNA editing calling from RNA-seq. Quality control 

with FastQC and adapter trimming with TrimGalore takes place prior to alignment. RNA-seq data are aligned with 

STAR and aligned data are deduplicated with Picard, sorted and indexed with Samtools. Base calling from aligned RNA-

seq is performed with REDItools, either by RNAwt vs DNA or RNAwt vs RNAko comparisons (see chapter 1.4.1), 

against the same reference genome (mm10 for mouse and hg19 for human). RNA editing candidates are called de novo 
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by obtaining the consensus edited sites in the RNAwt (replicates 1-X) which show no variation in the RNAko or DNA 

(replicates 1-X). The candidates are annotated for genomic features and function. Adapted figure from Lerner et al., 

2021. Adapted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, RNA Editing. 

Methods in Molecular Biology, vol 2181. Humana, New York, NY, “C-to-U RNA Editing: From Computational 

Detection to Experimental Validation”, Lerner, Kluesner, Tasakis, Moriarity, Pecori, Copyright: Springer Science 

Business Media, LLC, part of Springer Nature (2021). 

Pipeline steps 

All software and resources I used, described below, are summarized in Table 3.1.  

1. QC and adapter trimming: I performed quality control (QC) of the raw RNA-seq data 

(unprocessed data upon sequencing) with the widely used QC tool for RNA-seq data “FastQC” 

(resource availability at Table 3.1). This allowed me to obtain metrics and statistics for 

important parameters which are taken into consideration for the downstream analysis, such as 

the overall sequencing and data quality, the GC content, the levels of PCR duplicates and the 

overrepresented sequences, which typically include the sequencing adapters from the library 

preparation. I performed trimming of the sequencing adapters using the tool TrimGalore (Table 

3.1), so as to maximize the number of mapped reads and their mapping quality. At this step the 

file type is “fastq” and there are two fastq files per sample, if the libraries were sequenced in 

paired-end layout. Trimming of the pairs takes place simultaneously per sample.   

2. Alignment (mapping): I aligned the “trimmed” reads (“fastq” files) against the appropriate 

reference genome with the ultrafast RNA-seq aligner “STAR” (Dobin et al., 2013) or GSNAP 

(Wu and Watanabe, 2005). The pairs of each sample are both employed for producing the 

paired-end aligned data, now represented in a single “bam” filetype. The reference genomes are 

publicly available from multiple resources, notably ENSEMBL and UCSC (see Table 3.1). For 

my analyses I employed the latest versions available (in fasta format) at the time of analysis, 

which for human was “hg19”. Genomes were appropriately indexed prior to alignment, as 

prescribed by the different aligners, so as to generate genome-specific sequence and genomic 

feature information.  

3. Post-alignment treatment: after alignment, the mapped data (now in bam files; one per 

sample) undergo removal of duplicated reads, which are typically present due to a PCR step in 

library preparation. I  performed this step using Picard tools or Samtools (Li et al., 2009) 

software (see Table 3.1). This step is important because it allows me to retrieve the realistic 

representation of variant frequency, by excluding variation which may occur due to technical 

artifacts. Furthermore, I indexed and sorted the deduplicated alignments (in bam format, 

obtaining additional “bai” files), as required for the base calling step, described below.  

4. Base calling coordinate-wise: at this step transcriptome-wide information for every genomic 

coordinate is collected, and in particular the base composition of every coordinate covered by 

reads. To obtain this lists of base calls per sample from the aligned and properly treated RNA-

seq as mentioned above, I employed REDItools (Picardi and Pesole, 2013; Picardi et al., 2015a; 
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Lo Giudice et al., 2020b). REDItools provide multiple options depending on the type of 

comparison (RNA/DNA or RNAwt/RNAko). Using REDItools, I obtained the base calls from 

each sample and their replicates separately. For the coordinates to further considered for calling 

the RNA editing sites, I required that they are covered by at least 10 reads and there must be at 

least 3 bases in one coordinate that support the variation (SNV), so as to exclude potential 

sequencing errors. For the same reason, I excluded SNVs that are in the first 5 bases of a read 

or present in homopolymeric regions of more than 5 of the same nucleotides. Additionally, in 

paired-end experiments I required that the SNV must be supported by at least one read-pair. 

Last, I did not consider sites with poor mapping or sequencing quality.  

5. RNA editing candidates: For the variant calling between the RNA/DNA or RNAwt/RNAko I 

considered only the coordinates with base calls that passed the aforementioned criteria. In this 

step, the candidates for RNA editing sites were compiled by those coordinates that gave a 

positive editing signal in the RNAwt (i.e. when the reference base is A, there’s an A>G SNV of 

at least 10% variation frequency), which is absent from the same and equally well-covered 

coordinate in RNAko (or DNA). For de novo editing detection, the RNA editing candidates 

must be give a positive editing signal in all replicates, while this is absent from all replicates of 

the RNAko or DNA. For DNA-seq data, somatic variants were called following the typical 

GATK pipeline for best practices from the Broad Institute (DePristo et al., 2011; Auwera et al., 

2013).  

6. Annotation: the last step of the pipeline involves the profiling of those sites with regards to 

their genetic information and their potential functional impact. There are multiple annotation 

tools available, designed for several types of data. REDItools provide their own annotation 

scripts (Picardi et al., 2015a), which I used for every coordinate-based list of multiple features, 

which for example were Alu repeats for human (RepeatMasker database), SNP databases 

(dbSNP), transcript topology and isoform (i.e. from RefSeq) or other custom made lists from 

UCSC Table browser. Specifically for human data, I used the oncotator tool, which allows 

parallel coordinate-based annotation from multiple sources (Ramos et al., 2015).  
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Table 3.1 Software and resources availability described in the RNA editing calling pipeline, summarized by: 

software for RNA-seq processing, RNA editing and mutation calling tools, reference genome resources (sequence & 

features), annotation software and resources. Sofware citations (when available) are given in the main text (subchapter 

3.1).  

Software for RNA-seq processing 

FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

TrimGalore https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/   

STAR https://github.com/alexdobin/STAR  

Picard https://github.com/broadinstitute/picard  

Samtools http://www.htslib.org/  

RNA editing and mutation calling 

REDItools https://github.com/BioinfoUNIBA/REDItools  

GATK Best Practices https://gatk.broadinstitute.org/  

Reference genome resources (sequence & features) 

ENSEMBL https://www.ensembl.org/info/data/ftp/  

UCSC  https://genome.ucsc.edu/  

Annotation software and resources 

Oncotator  https://github.com/broadinstitute/oncotator  

RepeatMasker https://www.repeatmasker.org/  

RefSeq https://www.ncbi.nlm.nih.gov/refseq/  

dbSNP https://www.ncbi.nlm.nih.gov/snp/  

UCSC Table Browser http://genome.ucsc.edu/cgi-bin/hgTables  
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3.2 Methods Aim 1  

3.2.1 Multiple Myeloma patient data  

RNA-seq (paired-end and non-stranded) and WES data from Multiple Myeloma (MM) patients 

were obtained through access to the CoMMpass MMRF study (https://themmrf.org/; dbGaP accession 

number phs000748; http://www.ncbi.nlm.nih.gov/gap;), thanks to a collaboration with Dr. Alessandro 

Laganà and Dr. Samir Parekh at the Icahn School of Medicine at Mount Sinai, New York, USA. Dr. 

Laganà previously processed RNA-seq, WES and clinical data from overall 590 patients from the 

aforementioned MMRF study for expression, Copy Number Variation (CNV), and A-to-I quantification 

analyses (measured with the Alu Editing Index; Roth et al., 2019) to correlate with patient survival data. 

These methods Dr. Laganà followed, are published in our joint preprint (Tasakis et al., 2020). I focused 

on a subset of 23 MM patients (Patient identifiers are shown as row names in the heatmap of Figure 

4.2D) from the aforementioned cohort, who each had matched RNA-seq and WES data from two 

timepoints of the disease: tumors at presentation (Timepoint 1 or TP1) and tumors at relapse (Timepoint 

2 or TP2), so as to correlate A-to-I RNA editing events in TP1 with mutation candidates in TP2. The 

methods I performed for this patient data are presented and explained in the subchapter 3.2.2 and also 

described in Tasakis et al., 2020. 

 

3.2.2 RNA editing, DNA mutation calling and correlation analyses in 23 Multiple Myeloma 

patients with matched RNA-seq and WES data. 

I processed RNA-seq and WES data from 23 MM patients at two timepoints of the disease, 

whom I focused on for the correlation analyses of RNA editing and DNA mutation by ADAR1 (see 

3.2.1). I aligned their RNA-seq against the human reference genome GRCh37 (hg19) and all annotation 

and gene models were based on Ensembl version 74 (see Table 3.1 for reference genome resources and 

availability). I aligned RNA-seq data using the aligner GSNAP v. 2017-06-20 (Wu and Watanabe, 2005) 

using the default parameters. I marked PCR read-duplicates with Picard, and I sorted and indexed the 

aligned data with Samtools v. 0.1.19 (Li et al., 2009). With the help of Dr. Laganà, I realigned RNA-

seq unmapped reads to further include hyperedited reads as preciously described (Porath et al., 2014) 

and I processed the WES data according to the recommendations of the ‘GATK Best Practices’ 

(DePristo et al., 2011; Auwera et al., 2013).  

In this case, I performed an RNA/DNA comparison to call RNA editing, following the 

principles explained in subchapter 3.1. I employed REDItools v1 and followed the developers’ 

recommendations to pre-process the data as explained above and call RNA editing events in both 

timepoints of the MM patients (Picardi and Pesole, 2013; Picardi et al., 2015a). In bried, I employed the 

REDItoolDenovo.py script to Single Nucleotide Variations (SNVs) when compared to reference 

genome (hg19). I only further considered SNVs from well-covered sites (³10 reads), with variation 

being supported by concordant read-pairs, having at least 10% variation frequency, which is also 

supported by at least 3 reads and, finally, reported by REDItools as statistically significant (p-
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value£0.05). RNA editing candidates were those sites from the aforementioned selected set, that showed 

no variation in their matched mutation calls from WES data. With the help of Dr. Laganà I called 

mutations from WES data using the mutation calling pipelines Strelka2 (Kim et al., 2018) and VarDict 

(Lai et al., 2016). I considered coordinates reporting variation from the WES data from well-covered 

sites (³10 reads) of good mapping and sequence quality from any variation frequency percentage. I 

correlated A-to-I RNA editing events from the TP1 with mutations from TP2 within ±20bp distance per 

patient, using the R programming language (v. 4.0.2; R Core Team, 2020) and the package ‘Tidyverse’ 

for data processing and visualization (v. 1.3.0, Wickham et al., 2019).  I validated the matching “editing-

to-mutation” candidates with the tool bam-readcount (https://github.com/genome/bam-readcount) and I 

annotated the validated sites with the tool Oncotator v.1.9.9.0 (Ramos et al., 2015). Last, I performed 

pathway enrichment analysis using the tool SLAPenrich (Iorio et al., 2018).  

 

3.2.3 Experimental validation of RNA editing in Multiple Myeloma cell lines 

I used two typical Multiple Myeloma cell lines, KMS-20 and KMS-11, which were a kind gift 

from Dr. Parekh, to experimentally validate RNA editing sites in transcripts I found edited according to 

the in-silico analysis in patients from the MMRF Cohort (see 3.2.1). I cultured cells from the 

aforementioned cell lines in suspension in complete growth media, which is RPMI 1640 with L-

glutamine and sodium bicarbonate (from Sigma-Aldrich), supplemented with 10% Fetal Calf Serum 

(FCS; from PAN Biotech) and 1% Penicillin-Streptomycin (from Sigma-Aldrich). I used 2x106 cells per 

sample to treat with growth media supplemented with 10U and 100U IFNα (from ThermoFisher 

Scientific) for 96h. I extracted simultaneously total RNA and gDNA from about 5x105 cells per sample 

with the AllPrep DNA/RNA Mini Kit (Qiagen). I treated the extracted RNA with TURBO DNAse 

following the manufacturer’s instructions (ThermoFisher Scientific). I then generated amplicons for 

EIF2AK2 (see chapter 4.1.3) from gDNA with the Q5 High-Fidelity DNA polymerase (New England 

Biolabs), as well as cDNA amplicons from the RNA with the OneStep RT-PCR kit (Qiagen), both with 

primers Eif2ak2-Fw and Eif2ak2-Rv (see Appendix A). I purified the PCR products with the NucleoSpin 

Gel and PCR Clean-up kit (Macherey-Nagel), which I sent for sequencing with both forward and reverse 

primers at Microsynth Seqlab GmbH, in Goettingen, Germany. Last, I quantified RNA editing across 

the Sanger sequencing chromatograms using the tool MultiEditR (Kluesner et al., 2021). For these 

experiments, I received help from Dr. Violetta Leshchenko in culturing and maintaining the cell cultures 

and Ms. Pavithra Nedumaran helped me with the IFNα treatment experiment.  
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3.3 Methods Aim 2 

3.3.1 Cell lines and culture  

Ramos Burkitt’s lymphoma human cell lines 

The Ramos wildtype B-cell line (RA 1 ATCC CRL-1596) was purchased from ATCC. Ramos 

AID-/- clones were a kind gift by Dr. Jeroen Guikema, Academic Medical Center, Amsterdam, The 

Netherlands. I generated the Ramos ADAR1-/- cells by transfecting (see transection methods in 3.3.3) 

plasmids co-expressing Cas9 (pSpCas9), gRNAs targeting ADAR1 in exon 3 (gRNA-01-Fw and gRNA-

01-Rv, Appendix B) and exon 4 (gRNA-02-Fw and gRNA-02-Rv, Appendix B), as well as eGFP. As 

control I used gRNA-NT (-Fw and -Rv, Appendix B), which has no target in the genome. The relevant 

plasmids were previously generated by my colleague Dr. Riccardo Pecori, using as backbone the vector 

pSpCas9(BB)-2A-GFP (PX458, Plasmid #48138, Addgene – listed as Crispr-pl in Appendix C) 

originally from (Ran et al., 2013). 24h upon transfection, I sorted the GFP-positive cells (chapter 3.3.5) 

in 96-well plates, containing conditioned media, as in a single cell per well layout, which I further 

propagated. I upscaled successfully grown clones and, with the help of the student Ms. Dimitra 

Stamkopoulou, I tested them for absence of ADAR1 protein with Western blot (ADAR1 antibody 

#14175l from Cell Signaling Technology) with control protein the GAPDH (antibody #2118, Cell 

Signaling Technology), for which I also validated absence of A-to-I editing in the MAVS transcript 

(Figure 4.7), a known ADAR1 target (Li et al., 2021).  

I cultured all Ramos cell lines in suspension, within their optimal range of growth (2x105-1x106 

cells/mL), with media containing RPMI 1640 with L-glutamine and sodium bicarbonate (from Sigma-

Aldrich), supplemented with 10% Fetal Calf Serum (FCS; from PAN Biotech) and 1% Penicillin-

Streptomycin (from Sigma-Aldrich). For conditioned media used for all Ramos cell lines, I prepared 

with equal fractions of fresh sterile media and culture media after harvesting cultures within the optimal 

range of growth. For the last component, I centrifuged the cultures (500xg for 5min at Room 

Temperature) and I filtered the supernatant through a sterile 0.22um filter (Stericup and Steritop, 

Millipore). I incubated all Ramos cells in a pre-humidified incubator with 37oC and 5% CO2 for 

mammalian cell cultures.  

 

Human Embryonic Kidney (HEK293T) cell lines 

 Wildtype HEK293T cell line (ATCC CRL-3216) was purchased from ATCC. A version of 

HEK293T cells expressing a cassette of mCherry-2A-eGFP[W58X] under a CMV promoter, hereafter 

named as HEK293T-W58X cell line, which was originally generated by Montiel-Gonzalez et al., 2013, 

and it was a kind gift by Dr. Joshua Rosenthal, Marine Biology Laboratory, The University of Chicago, 

IL, USA. This cell line has a premature UAG stop codon in the codon 58 of the eGFP gene and upon 

A-to-I(G) RNA editing (UAG>UGG) reconstitutes eGFP expression and, thus, eGFP fluorescence. I 

maintained HEK cells in Dulbecco’s Modified Eagle Medium (DMEM; Sigma-Aldrich) with 4500mg/L 

glucose, supplemented with 5% Fetal Calf Serum (FCS; PAN Biotech) and 1% Penicillin-Streptomycin 
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(Sigma-Aldrich). I prepared conditioned media for HEK cells with the appropriate media in equal 

portions of fresh and culture media, which I prepared in the same way explained above for the Ramos 

cell lines.  

 All cell lines I employed for the experiments presented in this dissertation were checked for 

contamination at Multiplexion GmbH, Heidelberg, Germany and were found free of Mycoplasma and 

viruses (Squirrel Monkey Retrovirus and Epstein-Barr virus). The biosafety level of all cell lines 

employed was classified as S1.  

 

3.3.2 Plasmids and gRNAs generation 

The plasmids I employed in the experiments presented in this dissertation are listed in Appendix 

C, along with their specific characteristics. I generated plasmids expressing gRNAs for site-directed 

mRNA editing using the same vector (listed in Appendix C as gRNA-pl) and the gRNA sequences along 

with their targets and characteristics are summarized in Appendix B. In brief, gRNA expression was 

driven by the polymerase III promoter in the U6 RNAi Entry Vector (Invitrogen), which was a kind gift 

by Dr. Joshua Rosenthal. I generated plasmids expressing different gRNAs with the NEBuilder HiFi 

DNA Assembly Cloning Kit (New England Biolabs), incorporating the aforementioned vector in 

linearized dsDNA format and a 120bp ssDNA oligo coding for the gRNA and having complementary 

ends to the ends of the linearized vector in the appropriate orientation. I generated the linearized vector 

with Q5 PCR (see 3.3.4; primers pENTR-Fw, pENTR-Rv) and I purified it through agarose gel extraction 

(see 3.3.4).  

I generated stocks for all plasmids by transforming 50uL of competent DH5 E. coli cells, 

previously prepared as in Inoue et al., 1990, with 10ng of the respective plasmid. Prior mixing the 

competent cells with the plasmid DNA, I thawed the competent cells on ice for 20min, and upon adding 

the plasmid DNA, I incubated the mix on ice for 25min. I heat-shocked the mix at 42oC for 45sec and 

incubated it on ice for 2min. I then added 1mL of LB medium to the mix, which I further incubated for 

45min at 37oC in shake (500rpm) in an Eppendorf shaker. LB broth was purchased from Sigma-Aldrich 

and dissolved in demineralized water VE, following manufacturer’s instructions. Upon incubation, I 

centrifuged the culture at 11 000xg for 1min and aspirated the supernatant. I resuspended the sediment 

in 20uL of LB medium, which I evenly spread on LB-agar plates with the appropriate antibiotic 

resistance (Appendix C) and incubated overnight (16h) at 37oC. I inoculated single colonies picked by 

the agar plates in 200mL of LB media with the appropriate antibiotic resistance, which I incubated 

overnight at 37oC in shake (500rpm). I isolated the relevant plasmid from the cultures using the HiPure 

Plasmid Maxiprep kit (Invitrogen), following manufacturer’s instructions. I measured plasmid 

concentrations using nanodrop (ThermoFisher Scientific) and adjusted stock concentrations for all 

plasmids to 1ug/uL of the eluted product, which was stored at -20oC. Last, I validated the plasmids with 

Sanger Sequencing, which was performed at Microsynth Seqlab GmbH, in Goettingen, Germany.  
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 Alternative to vector-based gRNA expression, for a few experiments (see 4.2.4) I transfected 

gRNAs directly upon in vitro transcription (IVT). For gRNA IVT, I employed the method previously 

published by Kellner et al., 2019. For each gRNA, I incorporated a pair of two ssDNA oligos: one 

positive-sense ssDNA oligo with the sequence T7-3G (5’- GAAATTAATACGACTCACTATA GGG-

3’) and an antisense ssDNA oligo containing the complementary sequence of T7-3G, followed by the 

antisense gRNA sequence. The principle behind this method is that T7 polymerase recognizes the T7-

3G sequence and synthesizes the gRNA using its antisense sequence as a template. Upon an annealing 

reaction of the aforementioned oligos with Standard Taq buffer (New England Biolabs), I incubated the 

reaction at 95oC for 5min and which I slowly cooled down at a PCR-thermocycler (Bio-Rad) to 4oC 

with 0.1oC/s. I performed IVT reactions using the HiScribe T7 Quick High Yield RNA Synthesis Kit 

(New England Biolabs) following the manufacturer’s instructions. I incubated The IVT reactions at 

37oC for 4h at a PCR-thermocycler (Bio-Rad). I treated the products with DNAse I (New England 

Biolabs) for 15min at 37oC to digest the template DNA oligos. I purified the products containing the 

gRNAs using the Monarch RNA Cleanup Kit (New England Biolabs). The average yield of this method 

was about 5ug/uL of gRNAs, which I estimated with Qubit fluorometric quantification (ThermoFisher 

Scientific). gRNAs produced with IVT were stored at -20oC until further use. For transfection of Ramos 

cells (see 4.2.4) 5ug of each arRNA was used per transfection of 2x106 cells.  

 

3.3.3 Transfection methods 

For transfection of Ramos cell lines (see 3.2.1), which grow in suspension, I employed the 

Amaxa Cell Line Nucleofector Kit V (Lonza) and the protocols followed relied on the manufacturer’s 

instructions: the day before transfection, I split Ramos cell cultures at 1:5 ratio towards being in 

exponential growth phase on the day of transfection. I counted 2x106 viable cells per sample with a 

Neubauer hemocytometer after staining with trypan blue (Sigma-Aldrich). I centrifuged the appropriate 

culture volume at 90xg for 10min at room temperature and I resuspended the pelleted cells in 100uL of 

nucleofector solution V per sample. In a certified cuvette by the manufacturer for the Nucleofector 2b 

apparatus (Lonza), I mixed the amount of plasmid DNA (typically 2ug) with 100uL of the cell 

suspension (in solution V) for one sample. I inserted the cuvettes in the Nucleofector 2b for 

electroporation with the program O-006, appropriate for the Ramos cell lines according to the 

manufacturer. Upon electroporation, I added immediately 500uL of warm culture media (RPMI, 

10%FCS, 1%P/S) to the sample. I transferred the samples to wells of a 12-well plate, containing 1mL 

of pre-incubated culture media. I incubated the transfected cells for 24h in humidified 37°C - 5% CO2 

incubator until further handling. I found that the transfection efficiency of Ramos cells for plasmid DNA 

was about 20% following the aforementioned procedure, which agrees with the manufacturer’s 

guidelines (Lonza).  

I transfected HEK293T adherent cells (see 3.3.1) with lipofectamine 2000 (ThermoFisher 

Scientific) following the manufacturer’s guidelines. For most transfections with lipofectamine 2000 
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performed for the experiments presented in this thesis, I followed protocols for 6-well plate layouts. A 

day prior to transfection, I detached the cells with trypsin (Sigma-Aldrich) after washing with PBS 

(Dulbecco’s Phosphate Buffered Saline, Sigma-Aldrich). I seeded 7x105 viable cells per well in 2mL 

culture media (DMEM, 10%FCS, 1%P/S) to achieve confluency between 80-90% on the day of 

transfection. On transfection day, I changed the media to 700uL OptiMEM (Sigma-Aldrich) per well. I 

diluted the total amount of plasmid DNA (typically between 2-4ug) in 150uL of OptiMEM per sample. 

I mixed 10uL of Lipofectamine 2000 with 140uL OptiMEM per sample and I incubated it for 5min at 

room temperature. I mixed the lipofectamine-containing solution (150uL) with the diluted plasmid DNA 

(150uL), which I further incubated for 20min. The final solution containing complexes of plasmid DNA 

and lipids was gently and evenly added to the appropriate samples. I incubated the transfected samples 

in humidified 37°C - 5% CO2 incubator for 6h and then I replaced the transfection media with regular 

culture media. For transfections in 24-well plates or 10cm dishes, the number of cells, plasmid DNA 

mass and reagent volumes were down- or up-scaled respectively, following the manufacturer’s 

instructions.  

 

3.3.4 RNA/DNA extraction and amplicon generation 

I pelleted down harvested Ramos or HEK293T cells (typically <5x106) with centrifugation at 

500xg for 4min at room temperature. I aspirated growth media and I washed the cells by resuspension 

of the pellet in 1mL of PBS. Cells were recentrifuged at the same speed and time. I aspirated the 

supernatant and I lysed the cell pellets with 350uL of buffer RLT Plus enriched with β-mercaptoethanol 

(10uL per mL of RLT Plus) from the AllPrep DNA/RNA Mini Kit (Qiagen). Following the kit 

instructions, I simultaneously isolated total RNA and genomic DNA (gDNA) from the harvested cells. 

I treated the extracted RNA with TURBO DNAse (ThermoFisher Scientific) to eliminate cross-

contamination of gDNA from the procedure. I generated amplicons from gDNA with the Q5 High-

Fidelity DNA polymerase (New England Biolabs), and cDNA amplicons from RNA were with the 

OneStep RT-PCR kit (Qiagen). All the PCR primers for amplicons generation are summarized in the 

Appendix A. I purified the PCR products with the NucleoSpin Gel and PCR Clean-up kit (Macherey-

Nagel). Purified PCR amplicons were sequenced at Microsynth Seqlab GmbH, in Goettingen, Germany. 

Last, I quantified base editing across the Sanger sequencing chromatograms using the tool MultiEditR 

(Kluesner et al., 2021).  

 Deep-amplicon Next-Generation Sequencing (NGS) was performed at Eurofins Genomics 

GmbH, NextGen Sequencing lab, Konstanz, Germany under the “NGSelect Amplicon 2nd PCR” service. 

I generated amplicons in the lab with the respective PCR primers for each product (Appendix A) 

attached to overhangs of Illumina MiSeq adapters, indicated by the manufacturer. The coverage was 

about 60K read pairs per amplicon in 2x300bp read mode. I processed the amplicon NGS data, for QC, 

adapter trimming and were aligned with STAR (see subchapter 3.1) against the VH germline sequence 

(IGHV4-34*01, IMGT). I generated the reference genome according to Dobin et al., 2013, with 
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specifications for small genomes. I screened the aligned data for site-specific base change with 

REDItools2 (Table 3.1, subchapter 3.1) and with command-line BLAST (BLAST® Command Line 

Applications User Manual, 2008) to count mutations and gaps per read pair.  

 I used a qPCR method to measure the expression of ADAR1 and ADAR2 in all Ramos cell 

lines (see 3.3.1 and 4.2.3). I employed DNAse-treated RNA from two biological replicates per condition 

(Ramos WT, AID-/- and ADAR1-/-) and performed cDNA synthesis using the ProtoScript - First Strand 

cDNA synthesis kit (New England Biolabs), following the manufacturer’s recommendations: In brief, I 

used as an input 300ng of DNAse-treated RNA (measured with Qubit RNA BR Assay Kit, 

ThermoFisher Scientific) per sample and mixed it with the Random Primer Mix (60uM) to a final 

volume of 8uL. After 5min at 65oC in a PCR thermocycler, I set up the reverse transcription reaction 

(M-MuLV), by adding on top 10uL of M-MuLV Reaction Mix and 2uL of M-MuLV Enzyme Mix, 

bringing the reaction to a final volume of 20uL per sample. As negative controls, I set a non-template 

control (no RNA) and a non-enzyme containing control (M-MuLV Enzyme Mix). I incubated the cDNA 

synthesis reactions for 5min at 25oC and then at 42oC for 1h in a PCR thermocycler. I inactivated the 

enzyme at 80oC for 5min and proceeded to the qPCR. For the qPCR, I used the iTaq Universal SYBR 

Green Supermix from Bio-Rad, following the manufacturer’s instructions for reactions with final 

volumes of 10uL with an input of 15ng per sample: 5uL of iTaq mix (2x), 0.5uL from each of the 

Forward and Reverse primers (10uM), 2uL nuclease-free H2O and 2uL of the template cDNA 

(7.5ng/uL). The qPCR primers used for ADAR1 were qADAR1-Fw and -Rv, for ADAR2 were qADAR2-

Fw and -Rv. As expression controls, I measured the expression of the genes GAPDH and ACTB 

(qGAPDH-Fw, -Rv and qActb-Fw, -Rv respectively. All primer sequences can be found in Appendix 

A. Non-template and non-enzyme controls were also incorporated in this step. The instrument I used 

was the CFX Connect Real-Time PCR System from Bio-Rad laboratories, for which I followed the 

manufacturer’s recommendations (protocol: 1) 95oC for 3min, 2) 95oC for 5sec, 3) 60oC for 30sec, 4) 

Repeat steps 2-4 39X more, 5) Melt curve 75oC to 95oC, increment 0.2oC for 10sec). Expression data 

were processed with the relevant CFX Maestro Software (v. 4.0.2325.0418; Bio-Rad laboratories), for 

which ADAR1 and ADAR2 expression was normalized against both the GAPDH and ACTB expression.  

 

3.3.5 Flow cytometry  

IgM staining of Ramos WT and AID-/- cells  

 I harvested Ramos WT and AID-/- cells typically between 1-3x106 cells per sample. I 

centrifuged the cells at 400xg for 5min at room temperature, aspirated the media and resuspended the 

cell pellet in 1mL PBS supplemented with 0.5% FCS per sample. I pelleted down the cells again and 

aspirated the supernatant, but leaving about 10uL for lightly dissolving the pellet by flicking the tube. 

Per sample, I diluted 1uL of APC-conjugated goat anti-human IgM antibody (Jackson Immunoresearch) 

in 200uL of PBS (with 0.5% FCS) and added to the cells. I incubated the cell-antibody mix on ice and 

in dark for at least 30min. I added 1mL of PBS (with 0.5% FCS) and pelleted down the cells with 
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centrifugation. I aspirated the supernatant and washed the pellet once more with 1mL PBS (with 0.5% 

FCS). To observe cell viability, I further stained the cells with propidium iodine (PI). I resuspended the 

sample pellets in a solution containing 10uL PI (Invitrogen), 1uL of RNAse A (Invitrogen) and 200uL 

of PBS with 0.5% FCS. Upon PI addition, I incubated the samples for 5min at room temperature and 

kept them thereafter on ice until/during the analysis. Staining controls were one antibody and PI 

unstained sample, a PI-only stained sample and an antibody-only stained sample.  

 

Sample preparation  

I collected harvested cells that required IgM staining (Ramos cells) and prepared them as 

explained above. For samples with endogenous fluorescence that did not require additional staining, 

such as of the HEK mCherry-GFP cassette, I harvested pelleted cells (centrifuge 400xg for 5min at room 

temperature) and washed once with 1mL PBS supplemented with 0.5% FCS. For cells undergoing 

sorting I resuspended them in 500uL (per 2x106 cells) of PBS with 2% FCS, while for FACS analysis 

in PBS with 0.5% FCS. All samples prior to analysis or sorting were filtered through Falcon 5 mL 

polystyrene test tubes, with cell strainer snap cap (purchased from Corning).  

 

Instruments for FACS analysis and sorting 

For FACS analysis I used the instruments FACSCalibur (BD) and Millipore Guava EasyCyte 

HT (ThermoFisher Scientific). In particular, I analyzed the samples stained with the anti-IgM staining 

protocol as discussed above, with FACSCalibur with the lasers: 640nm (FL4) to detect APC 

fluorescence and 488nm (FL2) to detect PI. I used Millipore Guava EasyCyte HT (ThermoFisher 

Scientific) for analyzing fluorescence with mCherry (561nm, Red-R detector) and eGFP (488nm, 

Green-B detector) from the HEK cell lines (see 3.3.1). For cell sorting I used the instrument FACSAria1 

(BD) and in particular the lasers 561nm (Yellow-Green) for PI and mCherry, 640nm (Red) for APC, 

488nm (Blue) for GFP. All instruments employed were provided, along with kind assistance in analysis 

and sorting, by the DKFZ Flow Cytometry Facility. For processing flow cytometry recorded data I used 

the software FlowJo v.10.6.2.  
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3.4 Methods Aim 3 

3.4.1 SARS-CoV-2 sequence data 

I overall retrieved 62 211 genome-wide SARS-CoV-2 sequences from the NCBI SARS-CoV-2 

Resources portal (https://www.ncbi.nlm.nih.gov/sars-cov-2/; “NCBI SARS-CoV-2 Resources” ), 

isolated from infected individuals (humans) in the USA from the first 15 months of the COVID-19 

pandemic (collected between January 5th and March 31st, 2021).   

 

3.4.2 Mutation calling and annotation  

 Mutations in the SARS-CoV-2 sequences (see subchapter 3.4.1) were reported by comparing 

the different sequences against the sequence of the first isolate from the original human infection in 

Wuhan, China (Accession number NC_045512, RefSeq; Wu et al., 2020), which I used as a reference 

genome. I aligned the different SARS-CoV-2 sequences using the software “VIRULIGN” (Libin et al., 

2019), which reported mutations (also termed SNVs) in a codon-correct fashion. I further processed the 

different mutations called to evaluate the amino acid changes, employing R programming language (v. 

4.0.2; R Core Team, 2020) and the package ‘Tidyverse’ (v. 1.3.0, Wickham et al., 2019), to therefore, 

note which mutations were missense or silent. I annotated all reported mutations according to the NCBI 

RefSeq SARS-CoV-2 genome annotation (NC_045512, RefSeq). I furthermore visually inspected 

alignments for validating most mutations called and their potential amino acid changes. As predominant 

mutations in aggregate throughout the dataset I considered those mutations which are present in at least 

10% of the sequences (separately for 2020 and 2021). I further profiled the dataset for the different 

SARS-CoV-2 lineages reported thus far, in order to detect reported variants of concern (VOCs), using 

the “pangolin” tool (https://github.com/cov-lineages/pangolin), which follows the PANGO 

nomenclature (Rambaut et al., 2020). In order to detect low-frequency mutations in the Spike protein, 

which is key for the viral infectivity (see subchapter 1.2.4), or in the different VOCs, so as to evaluate 

their abundance shift in time, I considered mutations found in more than 0.1% of the sequences, so as 

to eliminate possible sequencing errors.    

  The students Mr. George Samaras, Ms. Alexandra Paulus, Ms. Gabrielle Whitehouse, Ms. 

Anna Jamison and Ms. Michelle Lee helped me by processing about 8 000 genomes altogether from 

2020 to obtain mutation calls as described above, following the pipeline I established. The complete 

pipeline is presented and explained in the subchapters 3.4.2 - 3.4.4, as well as described in Tasakis et 

al., 2021. They furthermore contributed in the visual inspection, validation and curation of the mutation 

calls from the 8 000 genomes they processed.  

 

3.4.3 Analysis of signatures of co-existing mutations 

In order to evaluate whether SARS-CoV-2 mutations are gradually accumulating over time 

through host-dependent RNA editing activity (but also other co-existing mechanisms), I defined a set of 

all the different possible combinations of the predominant mutations. I used the combinations I found 
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in the dataset, to infer a reference of putative mutational signatures overall. I focused on the signatures 

found in more than 0.1% of the viral isolates, for which I constructed time-scaled phylogenetic tree with 

the tool IQ-TREE 2 (Minh et al., 2020).  

 

3.4.4 Downstream analysis and visualization  

 For all analyses, data processing, statistics and visualization I used the R programming language 

(v. 4.0.2; R Core Team, 2020), unless specified otherwise as in 3.4.1-3.4.3. I specifically used the 

package ‘Tidyverse’ (v. 1.3.0, Wickham et al., 2019) for data management and visualization, and the 

packages, ‘msa’ (Bodenhofer et al., 2015), ‘treeio’ (Wang et al., 2020) and ‘ggtree’ (Yu et al., 2017) for 

further analysis and visualization of the time-scaled phylogenetic tree. 
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4. Results and Discussion 
4.1 Aim 1: ADAR1-mediated RNA editing correlates with acquisition of 

specific DNA mutations during Multiple Myeloma progression.  

4.1.1 Preface 

Multiple Myeloma (MM) is a cancer of antibody-secreting plasma cells amassing in the bone 

marrow, which may lead to marrow failure and/or bone destruction (Anderson et al., 2009). It is 

estimated that in 2021 in the United States alone, there will overall be about 34 920 newly diagnosed 

MM cases and 12 410 new deaths related to the disease (Siegel et al., 2021). The clinical image of MM 

is broadly heterogeneous, which has a great impact on the treatment of the disease; patients may present 

the relevant symptoms to different extends, while some may remain asymptomatic for extended periods 

of time prior to diagnosis (Alexanian and Dimopoulos, 1994). Apart from the phenotypic diversity 

characterizing the disease, patient-derived MM tumors are highly heterogeneous considering their 

genomic architecture, which comprises of chromosomal translocations, associated aberrant class-switch 

recombination, hyperploidy events, accompanied by elevated mutational load in key genes (Chng et al., 

2007). Although there is an abundance of genetic events described in MM, there is no clear consensus 

of specific genetic drivers across MM patients. But what is rather specific, is that the vast majority of 

the aforementioned genetic events described in MM are aggregating in genomic loci critical for plasma-

cell fate and longevity, as reviewed by Morgan et al., 2012.  

A key characteristic of MM is that mutations or other genetic events in myeloma plasma cells 

are generating a diverse set of clones, which are being selected and they further evolve (Fakhri and Vij, 

2016; Lagana et al., 2017; Corre et al., 2018). The most common chromosomal translocation in MM is 

the gain of additional copies of the chromosomal fraction 1q21, which is found in about 40% of newly 

diagnosed MM patients and is associated with poor disease outcomes (Nemec et al., 2010). Interestingly, 

1q21 is also the genomic location of the ADAR1 gene, and 1q21 gain is one way that MM tumors 

overexpress ADAR1 leading to elevated A-to-I RNA editing hyper-activity, which is associated with 

poor prognosis (Lazzari et al., 2017; Teoh et al., 2018). Previous analyses performed by Dr. Alessandro 

Laganà in a cohort of 590 MM patients (MMRF; see 3.2.1) validated that 1q21 gain is indeed associated 

with over-expression of ADAR1, elevated and aberrant RNA editing activity and poor prognosis in the 

aforementioned cohort of patients. Furthermore, Dr. Laganà found that MM patients without 1q21gain, 

may also over-express ADAR1 through interferon (IFN) induction, naturally accompanied by elevated 

RNA editing activity, which in the overall cohort appears to be uniquely associated with poor survival, 

regardless of whether the patients had the 1q21 gain or not. The overall RNA editing activity measured 

by the Alu Editing Index (AEI; Roth et al., 2019) correlated with the expression of ADAR1 and not 

ADAR2 (minimally expressed) in the cohort. The aforementioned findings by Dr. Laganà are published 

in our joint preprint (Tasakis et al., 2020). Relying on Dr. Laganà’s previous findings, I considered that 

Multiple Myeloma tumors is the ideal scenario to test whether the aberrant A-to-I RNA editing activity 
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by ADAR1 can correlate with acquisition of DNA mutations specific to ADAR1 activity. Therefore, 

from the aforementioned cohort of 590 patients (MMRF), I focused on a subset of 23 MM patients, who 

had matched RNA-seq and WES sequencing data from two successive timepoints of the disease. This 

cohort allowed me to address my hypothesis of whether ADAR1-dependent RNA editing in the earlier 

patient timepoints would lead to acquisition of DNA mutations by the same enzyme in the later 

timepoint upon selection.  

 

4.1.2 ADAR1 as an RNA editor and likely a DNA mutator in Multiple Myeloma  

As introduced in the chapter 1.2.1, ADARs are primarily known as RNA editing enzymes (also 

referred to as RNA editors), which deaminate Adenosines (A) to Inosines (I; recognized as Guanosines, 

G) within double-stranded RNA (dsRNA) instances (Nishikura, 2010). Recent in vitro data, 

notwithstanding, showed that ADARs can also deaminate As in the DNA when they are within double-

stranded instances of DNA/RNA hybrids, which are also known as R-loops (Zheng et al., 2017). R-

loops are abundantly present in mammalian genomes and can occur co-transcriptionally, when the 

nascent RNA chain exits the RNA polymerase and hybrids with the template negative-sense DNA 

strand, leaving the coding (positive-sense) strand unpaired (Sanz et al., 2016). Considering that since 

ADAR-mediated RNA editing can be co-transcriptional (Laurencikiene et al., 2006), I hypothesized 

(visualized in Figure 4.1) that ADARs may lose their touch with the dsRNA target and opportunistically 

access R-loops formed in situ to edit the RNA strand of the hybrid, which would be their primary job, 

but they may also deaminate As in the DNA strand of the R-loop (the template/negative-sense DNA 

strand of the locus). The last, should they not be corrected, they may lead to A-to-G mutations in the 

negative-sense strand, readable as T-to-C mutations from the positive-sense strand. Alternatively, 

should repair mechanisms have taken place, they may give rise to other mutations deriving from Ts.  

 
Figure 4.1 Hypothesis model in which an ADAR is an RNA editor of a certain transcript and a DNA mutator of 

its cognate gene. ADARs edit double-stranded RNA (dsRNA) co-transcriptionally. Hybrids of the nascent RNA (red 

strand) and the template DNA strand (light blue) may hybrid, forming R-loops within the transcription bubble, which I 

hypothesize that ADARs may access toward targeting the RNA but may also mutate DNA in the vicinity. Adapted figure 

from Tasakis et al., 2020. It is reused under the Creative Commons License 4.0. This illustration was created by myself. 
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 Relying on the aforementioned proposed model (Figure 4.1), I tested my hypothesis by 

employing data from 23 MM patients, available from the MMRF study (see 3.2.1), who had matched 

RNA-seq and WES data available from two timepoints of the disease; tumors at presentation or 

diagnosis (Timepoint I or TP1) and tumors at relapse (Timepoint II or TP2). As shown in Figure 4.2A, 

I called A-to-I(G) RNA editing sites from TP1 and matched them to T-derived mutations (T-to-*) 

uniquely identified in TP2. I focused on the unique mutations in TP2, because these must be the ones 

that have been selected as advantageous for the relapsing tumors (TP2), considering the rules applying 

for the clonal evolution in MM tumors (Lagana et al., 2017), as introduced in the subchapter 4.1.1. I 

furthermore required the unique T-derived mutations (TP2) to be within 20bp distance up- or down-

stream the RNA editing event, relying on the previous findings of Zheng et al., 2017 showing that the 

footprint of an ADAR on a double-stranded nucleic acid structure is about 20bp. Following this analysis 

pipeline (Figure 4.2A), I obtained a list of editing-to-mutation matches summarized in the heatmap 

shown in Figure 4.2B. In this heatmap, the editing-to-mutation matches are tallied by the genes they are 

mapped into (columns) and per patient (rows), while the candidates shown are the ones shared by at 

least 25% of the patients. I additionally profiled the editing-to-mutation matches with regards to their 

gene topologies and I found that the vast majority of the mutation candidates were mapped in non-

coding regions such as introns or 3’UTRs, which is compatible with the transcript topology pattern that 

ADAR1 typically edits RNA within Alu repeats (Athanasiadis et al., 2004; Chung et al., 2018).  

Within the top mutated candidates (Figure 4.2B), I found genes, the transcripts of which were 

previously suggested as targets of ADAR1-mediated editing in biological systems other than MM. The 

top candidate was EIF2AK2 encoding for the Protein Kinase R (PKR), the transcript of which was 

previously shown as edited in B cells (Wang et al., 2013), and which I also validated in MM cell lines 

in collaboration with Dr. Violetta Leshchenko and Ms. Pavithra Nedumaran (see 4.1.3). Another top 

candidate was MDM4, which is known as a p53 inhibitor (Danovi et al., 2004), the transcript of which 

was also reported as edited (Hong et al., 2018). Additional candidates from the top quartile I found 

mutated, such as LRRC28, ADAM19, COPE, EDARADD had transcripts predicted as edited in the 

database REDIportal (Picardi et al., 2017). Pathway enrichment analysis (Figure 4.2D), which I 

performed with the pathway-level analysis tool SLAPenrich (Iorio et al., 2018), revealed that the 

correlative-to-editing mutation candidates affect pathways, such as p53, JAK-STAT, hematopoietic, 

proteasome signaling among others, previously suggested to be crucial for MM (Dehghanifard et al., 

2018). It is overall encouraging to observe, that the majority of the top-candidates from my analysis 

have been previously suggested to be targets of ADAR1 on the transcript level, which validates the 

accuracy of the first necessary part of my analysis with regards to calling A-to-I RNA editing sites from 

TP1. It should be noted, that the RNA editing analysis I performed from the TP1 has revealed previously 

unknown targets of ADAR-mediated editing specifically in MM, notably those of EIF2AK2 and MDM4. 

My correlative analysis that their cognate genes may be mutated on a later stage in the disease (TP2), 

provides a mechanistic insight of how mutations can be acquired during the course of the disease.  
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Figure 4.2 Correlation of ADAR1-dependent RNA editing and DNA mutation in Multiple Myeloma. (A) 

Schematic representation of the ADAR1-dependent editing-to-mutation analysis within the 23-patient cohort (see also 

3.2.2). A-to-I(G) RNA editing sites were called through RNA/DNA(WES) comparisons in Timepoint I (TP1) and were 

matched to unique T-derived (T-to-*) mutations called from Timepoint II (TP2) within windows of ±20bp from the 

editing events. This analysis produced a list of “editing-to-mutation matches” correlating ADAR1-dependent RNA 

editing sites with mutation candidates per patient. (B) Heatmap summarizing the counts of editing-to-mutation matches 

per gene (columns) and per patient (rows). Only genes-candidates found in 25% or more the patients are shown. The top 

candidate was EIF2AK2, encodes for Protein Kinase R (PKR), among others in the top quartile previously suggested to 

be targets of ADAR1 on the RNA level, such as MDM4 or ADAM19. (C) The mutation candidates were profiled for 

their gene topology and variant classification per patient. Most of the mutations were found in 3’UTRs or introns, where 

ADAR1 typically edits within Alu repeats. A non-negligible amount was also found within the CDS. (D) Significantly 

enriched pathways affected by the mutation candidates. All panels in this figure are from Tasakis et al., 2020 and are 

reused under the Creative Commons License 4.0. All data and illustrations were produced by myself. 
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4.1.3 EIF2AK2 transcript is a target of ADAR1 in Multiple Myeloma cell lines. 

Up to this point, I have presented correlative data that A-to-I RNA editing, most likely by 

ADAR1 (see 4.1.1), may lead to DNA mutation in a cohort of 23 MM patients. Here, I present 

experimental data supporting that the transcript of EIF2AK2, encoding for PKR, is indeed a target of 

ADAR1 in the context of MM. To address that, I employed two typical MM cell lines: KMS-11 and 

KMS-20. KMS-11 is a cell line representing MM in a later disease stage of B-cell differentiation (Namba 

et al., 1989). Upon isolating total RNA and gDNA from bulk cultures of KMS-11 and KMS-20 cells, I 

generated cDNA and gDNA amplicons for the 3’UTR of the EIF2AK2 transcript and gene respectively, 

amplifying regions found as edited from my original in silico analyses from the patient data (see 4.1.2), 

following the methods described in detail in 3.2.3. Sanger sequencing chromatograms from the 

aforementioned cDNA amplicons revealed A-to-G double peaks, absent from the gDNA amplicons of 

the respective locus in both KMS-20 and KMS-11 cell lines (highlighted sites in Figure 4.3A). The last 

sites, were consistent with sites found as edited on the RNA from the human patient data, but I overall 

observed more sites dispersedly edited in the cDNA amplicons from the KMS-11 cell line.  

As introduced in 1.2.1, ADAR1 has two isoforms: ADAR1-p110, which is nuclear and 

constitutively expressed, and ADAR1-p150, which shuttles between the nucleus and the cytoplasm and 

it is expressed through an interferon (IFN) inducible promoter (Lamers et al., 2019). Therefore, to 

address from a functional perspective that ADAR1 is editing the transcript of EIF2AK2, I challenged 

KMS-11 cells with 10U and 100U of IFNα with the help of Ms. Pavithra Nedumaran (see 3.2.3), and 

generated cDNA and gDNA amplicons 96h post-treatment. I found that RNA editing levels were 

increased in two dimensions. First, the per-site RNA editing increased gradually with IFNα treatment. 

For instance, as shown in the Figure 4.3B, the site chr2:37,327,859 was 68% edited on the transcript 

level in untreated cells, but reached nearly complete editing (~97%) when treated with 100U IFNα for 

96h. Second, more sites were found significantly edited throughout the transcript, and again they 

gradually increased when IFNα doses were increased, as shown in Figure 4.3C. With this functional 

assay, I validate that EIF2AK2 is indeed a target of ADAR1 on the RNA. Provided that my hypothesis 

is true, as envisioned in Figure 4.1, ADAR1 may also function as a DNA mutator of the cognate genes 

of its target transcripts, such as EIF2AK2 which appears to be the top candidate of my in-silico analysis 

in the patient data of MM progression. To address that, I will first further explore the correlative in silico 

data (subchapter 4.1.4) and I will further present proof of concept experiments (subchapter 4.2), for 

which I target ADAR1 to a certain transcript and I look for subsequent acquisition of DNA mutation in 

its genomic locus.  
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Figure 4.3 Experimental validation of ADAR1-mediated RNA editing in the EIF2AK2 transcript. (A) Sanger 

sequencing from cDNA and gDNA amplicons of the 3’UTR of EIF2AK2 (Eif2ak2-Fw and Eif2ak2-Rv primers; 

Appendix A) were generated from total RNA and genomic DNA (gDNA) respectively, which were simultaneously 

extracted from cultures of KMS-11 and KMS-20 cells. A-to-G double-peaks were detected in the cDNA amplicons 

(highlighted in yellow along with a range of genomic coordinates according to hg19), while absent from the respective 

positions of the gDNA amplicons, indicating A-to-I editing events. Overall, more A-to-G double-peaks were detected 

in the cDNA amplicons of KMS11 cells. (B) KMS-11 cells were challenged with 10U and 100U dosages of IFNα (IFN) 

for 96h and A-to-I editing, detected from cDNA (labelled as RNA) amplicons, in the position chr2:37,327,859 gradually 

increased from 68% (Untreated cells) to 85% in 10U-96h treated cells and then to 97% in 100U-96h treated cells. (C) 

In the samples treated with IFN (10U-96h and 100U-96h) more sites were found significantly edited (light-blue dots), 

while the levels of A-to-I editing (%) gradually increased as also shown in panel B. The bars indicate the mean value of 

the editing % across sites per sample. Editing quantification and relevant statistics were performed with the tool 

MultiEditR (Kluesner et al., 2021) following the default parameters. All panels in this figure are from Tasakis et al., 

2020 and are reused under the Creative Commons License 4.0. All data and illustrations in this figure were produced by 

myself. Ms. Pavithra Nedumaran helped me with the IFN treatment of KMS-11 cells. Dr. Violetta Leshchenko 

maintained the cell cultures prior to IFN treatment.  
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4.1.4 ADAR1-dependent RNA editing and DNA mutation may jointly facilitate Multiple Myeloma 

progression.  

I previously presented correlative data between ADAR1-dependent RNA editing and 

acquisition of specific DNA mutations during MM progression in a cohort of 23 patients (see 4.1.2). I 

furthermore showed that the top candidate from this analysis, EIF2AK2 encoding for PKR, is indeed a 

target of ADAR1 in MM cell lines (see 4.1.3). Here, I employ the patient data from my aforementioned 

analysis to further explore the possibility that the acquisition of specific T-derived mutations is due to 

the dual role of ADAR1 as an RNA editor and also a DNA mutator in the context of MM. First, I focused 

on four candidates from the top quartile of the aforementioned analysis (Figure 4.2B), EIF2AK2, 

MDM4, ADAM19 and LRRC28, and asked where the acquired T-derived mutations (in TP2) of interest 

would “localize” with regards to the original RNA editing events in TP1 per patient. As demonstrated 

in Figure 4.4A, I defined windows of 41bp centralized by an RNA editing site, in which I called the 

mutation candidates ±20bp up- or down-stream an RNA editing event. The newly acquired mutations 

uniquely found in TP2 and not in TP1, are shown as “lollipops” to their respective genomic coordinates 

in the same figure. The T-derived (or A-derived, depending gene-orientation), highlighted in red are 

mostly found within the editing-defined 41bp windows or near them, while the rest of the mutations 

(highlighted as grey) are randomly distributed. It should be noted at this point, that the majority of the 

newly acquired mutations in TP2 were of variation frequency values of between 1-5%, which is why 

the number of visualized mutations in Figure 4.4A is relatively high in some patients (for example 

MMRF_2194 for EIF2AK2). To purge potential sequencing errors, I cross-validated that these mutations 

were present in both WES and RNA-seq calls from the same timepoint (TP2).  

According to my main hypothesis (model demonstrated in Figure 4.1), DNA mutations in genes 

by ADAR1 may not be the molecular purpose of this deaminase, but rather an off-target effect of their 

aberrant and hyper-editing activity which may present in tumors. As a first step toward further exploring 

this hypothesis, I aggregated the number of editing-to-mutation counts from my original analysis per 

patient and correlated this with their Alu Editing Index (AEI), the measure of their RNA editing activity. 

As shown in Figure 4.4B, the count of editing-to-mutation matches significantly correlates with the AEI 

in TP1 and not in TP2, which is consistent with my hypothesis that mutations may be introduced as off-

target effects. However, the weak correlation of editing-to-mutation with the overall RNA editing 

activity in TP2, drove me to question whether this may also be due to changes of RNA editing activity 

from TP1 to TP2 per patient. Indeed, the 23-patient cohort I investigated is practically grouped in two: 

14 patients significantly decrease their RNA editing activity from TP1 to TP2, while 9 patients show an 

increase (Figure 4.4C). This observation encouraged me to test whether there are discrepancies between 

the two groups with regards to the acquisition of T-derived mutation. Indeed, as demonstrated in Figure 

4.4D, I found that the patients who decrease their editing activity, present a significant enrichment of T-

derived mutations acquired in their ±20bp editing-defined windows, while the patients increasing their 

editing activity do not. When I extended the editing-defined windows to ±100bp the significance trend 
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remained, in favor of the patients who decrease their editing activity. This may indicate that once DNA 

mutation is fixed there may be no necessity for RNA editing anymore, which can be mechanistically 

explained by the fact that the preferred motifs of ADAR1 on the RNA are altered due to mutation.  

 
Figure 4.4 Multiple Myeloma progresses either through fixation of ADAR1-dependent DNA mutations or 

elevated RNA editing activity. (A) EIF2AK2, ADAM19, MDM4, LRRC28 were within the top quartile of candidates 

for ADAR1-dependent DNA mutation (see Figure 4.2B). This schematic representation shows tracks of particular 

genomic regions for a few patients as an example, on which the yellow parts are the editing-defined windows from TP1. 

Editing-defined windows may be overlapping due to multiple RNA editing events in close proximity within a region. 

On the tracks, “lollipops” show the unique mutations found in TP2. Highlighted in red are all the T-derived mutations 

for the positively oriented genes (+) in the given regions and the A-derived for the negatively oriented genes (-). Most 

of the newly acquired T- or A-derived mutations, depending on gene orientation, in TP2 are found within or near the 

editing-defined windows. (B) The abundance of editing-to-mutation matches correlates with the RNA editing activity 

(measured with the Alu Editing Index; AEI) significantly in TP1 (p=6.7x10-4, R=0.66), but not in TP2 (p=0.4, R=0.18) 

in the 23-patient cohort. R stands for the Pearson’s correlation and p for the p-value. (C) The change of RNA editing 

activity (AEI) between TP1 and TP2 groups the patients in those who significantly decrease their AEI (n=14; Wilcoxon 

test, p=2.1x10-3) and those who increase or keep their AEI to similar levels (n=9; Wilcoxon test, p=0.077 non-

significant). The different patients are color-coded and lines between TP1 and TP2 are connecting the AEI values of 

each patient. (D) Fisher’s tests for enrichment of the T-derived mutations (or A-derived depending on gene orientation) 

versus others within the ±20 editing-defined windows are significantly enriched (p-val=6x10-4, Odds Ratio >1) for the 

patients decreasing their AEI from TP1 to TP2 and not those who increase their AEI. When editing-defined windows 

are extended to ±100bp, the trend of enrichment remains in favor of those patients who decrease their AEI (p-val<2.2x10-

16, Odds Ratio >1). All panels in this figure are from Tasakis et al., 2020 and are reused under the Creative Commons 

License 4.0. All data and illustrations were produced by myself.   
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4.1.5 Discussion  

 Multiple Myeloma (MM) is a hematological malignancy, accounting for about 10% of blood 

cancers, which entails a diverse genetic architecture and clinical image, often complicating the decision 

making in the clinic for the proper treatment regime (Alexanian and Dimopoulos, 1994; Morgan et al., 

2012). One of the most frequent chromosomal abnormalities, detected in about 40% of newly diagnosed 

cases in MM, is the gain of 1q21 copies, associated with poor survival and disease outcomes (Nemec et 

al., 2010). 1q21 is also the chromosomal locus of ADAR1 in the human genome and previous studies 

showed that 1q21 gain is a mechanism through which ADAR1 (both p110 and p150 isoforms) is 

overexpressed in MM, leading to transcriptome-wide and aberrant A-to-I RNA editing associated with 

poor survival (Lazzari et al., 2017; Teoh et al., 2018). However, Dr. Laganà showed that ADAR1 may 

also be overexpressed in patients without the 1q21 gain through interferon induction, leading to similar 

disease phenotypes (data published in our joint preprint, Tasakis et al., 2020). This mechanism of 1q21-

dependent or independent ADAR1 overexpression, which I summarize in the first part of the scheme of 

Figure 4.5, has also been proposed in breast cancer (Fumagalli et al., 2015). Therefore, the principles of 

ADAR1-dependent RNA editing in MM and its crucial impact on the disease progression have been 

well studied and understood. Here, I explored a different possibility for ADAR1, particularly about its 

ability of mutating DNA.  

It was previously reported from in vitro data that ADARs can deaminate Adenosines in the 

DNA within DNA/RNA hybrids, instances also known as R-loops (Zheng et al., 2017). In mammalian 

genomes, R-loops are formed genome-wide, they are conserved and have an average size of ~80-300bp 

(Sanz et al., 2016; Chen et al., 2019; Stolz et al., 2019; Malig et al., 2020). Although R-loops were 

originally considered to be transcriptional byproducts, they are in fact shown to be involved in 

fundamental processes, such as Class-Switch Recombination, and they have furthermore been presented 

as a potential threat to genome stability (Aguilera and García-Muse, 2012). R-loops are resolved by 

RNAse H, which degrades the RNA strand of the DNA/RNA hybrid (Amon and Koshland, 2016). 

Interestingly, it was recently shown in cancer cell lines that ADAR1, and in particular the nuclear 

isoform p110, deaminates unpaired Adenosines (to Inosines, recognized as Guanosines) against 

Cytidines in either the DNA or RNA strand of telomeric R-loops, enhancing RNAse H to resolve the R-

loop and prevent their accumulation which may lead to genomic instability (Shiromoto et al., 2021). R-

loops, however, are formed genome-wide co-transcriptionally between the nascent RNA and the 

template strand (Sanz et al., 2016). RNA editing can also be co-transcriptional (Athanasiadis et al., 2004; 

Laurencikiene et al., 2006). I therefore hypothesized that an ADAR may lose touch with its dsRNA 

target and access an R-loop formed between the template DNA strand and the nascent RNA, presumably 

to edit RNA, but it may also mutate the DNA strand of the hybrid in the vicinity of the original editing 

event (Figure 4.1). The result of an ADAR deaminating an Adenine in the DNA, will lead to 

Hypoxanthine (“behaving” like a Guanine and pairing with Cytosine) which may or may not be 

corrected by repair mechanisms (Budke and Kuzminov, 2006; Pang et al., 2012). This would lead to an 
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A-to-G mutation in the template (negative-sense) DNA strand or broadly A-deriving mutations if repair 

mechanisms have taken place. A-to-G (or A-deriving) DNA mutations from the negative-sense strand 

are read computationally as T-to-C (or T-deriving) mutations from the positive-sense reference strand.  

 In Multiple Myeloma, both ADAR1 isoforms (p110 and p150) are overexpressed in 1q21-

positive tumors, while in 1q21-negative tumors ADAR1-p150 is overexpressed through IFN induction, 

and ADAR2 is generally expressed in very low levels, as others found (Lazzari et al., 2017) and Dr. 

Laganà confirmed (Tasakis et al., 2020). As introduced in 1.2.1, ADAR1-p110 is constitutively 

expressed and is primarily nuclear, while the interferon-inducible ADAR1-p150 is mostly cytoplasmic, 

though it can present in the nucleus (Lamers et al., 2019). Fundamentally, one would expect that 

ADAR1-dependent DNA mutation would be due to ADAR1-p110 activity, as others have also indicated 

(Shiromoto et al., 2021). I, therefore, focused on a set of 23 MM patients from a cohort of originally 

590 patients with validated ADAR1 overexpression and subsequent elevated RNA editing activity 

(Tasakis et al., 2020). I focused on the set of 23 patients because each patient has with matched RNA-

seq and WES data from two successive timepoints of the disease: tumors at diagnosis (TP1) and tumors 

at relapse (TP2). I called RNA editing sites from TP1 and matched them to T-derived DNA mutations 

unique for TP2 (Figure 4.2A), allowing me to focus on a set of mutations that were positively selected. 

I required that the mutations fall within a window of ±20bp from the editing event, following the findings 

of Zheng et al., 2017 about the footprint of an ADAR on double-stranded nucleic acid moieties. I found 

a number of genes mutated (in TP2), whose transcripts I previously found highly edited (in TP1), 

summarized in Figure 4.2B. I found that the vast majority of the subsequent mutations, correlated to 

RNA editing, were in Introns or 3’UTR encoding regions (Figure 4.2C), where ADAR1 usually edits 

RNA within Alu repeats (Athanasiadis et al., 2004), in genes crucial for tumorigenesis (i.e. p53, 

Apoptosis) and of high relevance for MM (i.e. Proteasome, Hematopoietic cell lineage), as my pathway 

analysis showed (Figure 4.2D).  

 The top gene-candidate I found mutated as correlated to editing was EIF2AK2, which encodes 

for the Protein Kinase R (PKR). PKR is a crucial regulator of a number of cellular pathways, notably 

involved in infection, inflammation (through the NFkB pathway) and tumorigenesis (Gal-Ben-Ari et al., 

2019), the last of which is not surprising considering the fact that PKR interacts with p53, playing a 

prominent role in its tumor-suppressor function (Yoon et al., 2009). To validate that EIF2AK2 is indeed 

targeted by ADAR1 on the RNA level, I employed two representative MM cell lines (KMS-11 and 

KMS-20) and, first, generated cDNA amplicons for the 3’UTR of EIF2AK2 in which I detected A-to-I 

editing events absent from the gDNA (Figure 4.3A). Second, I challenged KMS-11 cells with increasing 

concentrations of IFNα and I found proportionally higher levels of RNA editing per position, but I also 

found more positions edited (Figure 4.3B-C). This is causal to the ADAR1 activity and in particular to 

the interferon-inducible ADAR1-p150. Furthermore, it is overall encouraging to see within my top 

candidates, genes such as EIF2AK2 as well as others (i.e. MDM4, ADAM19, LRRC28), whose 

transcripts were previously predicted to be edited by ADAR1 according to the REDIportal database (Lo 
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Giudice et al., 2020b; Picardi et al., 2017). Notably, MDM4, which is also a validated target of ADAR1 

(Hong et al., 2018), is an inhibitor of p53 directly linked to tumor formation (Danovi et al., 2004). 

Therefore, provided that my hypothesis is true, which I experimentally address through proof of concept 

experiments in 4.2, aberrant ADAR1-dependent RNA editing may lead to generation of mutations in 

key components for MM progression.  

 I furthermore explored the patient data to evaluate the acquisition of specific T-derived 

mutations in TP2 post-relapse. I found that the newly acquired T-derived mutations were generally 

enriched within or near the editing-defined windows of TP1 (Figure 4.4A) and the abundance of editing-

to-mutation events was strongly correlated with the ADAR1-dependent RNA editing activity in TP1, 

but not in TP2 (Figure 4.4B), which aligns with my original hypothesis that DNA mutation by ADAR1 

may be generated as a “collateral damage” during its canonical RNA editing activity. I moreover wished 

to explore from the data available how the DNA mutation dynamic overlays with the RNA editing 

activity. I observed within my 23-patient cohort, that 14 patients decreased their RNA editing activity 

from TP1 to TP2, while 9 of them increased it or kept it at similar levels (Figure 4.4C). Therefore, I 

tested whether either of the group had an enrichment of T-derived mutations over the other. I found 

(Figure 4.4D) that patients who decrease their RNA editing activity had a significant enrichment of the 

newly acquired T-derived mutations in TP2, indicating that generation of DNA mutation by ADAR1 in 

key components for the disease may stabilize in the long run the effects of the editability of the cognate 

transcript. Mechanistically, this could be doable by the fact that the preferred target motifs of the enzyme 

have now an altered sequence preventing the enzyme to edit RNA in situ.  

 My findings thus far underscore a strong correlation between RNA editing and DNA mutation 

by ADAR1, a role which may have a strong impact on MM development and progression (summarized 

in Figure 4.5), and likely to other cancer types as ADAR1 is overexpressed in the vast majority of 

cancers (Han et al., 2015). I employed MM patient data from two timepoints of the disease and found 

newly acquired mutations in the later timepoint (TP2), attributable to ADAR1 editing activity in the 

earlier timepoint (TP1). The on-average variation frequency of newly acquired DNA mutations was 

about ~5%. The relatively low frequency of the newly acquired DNA mutations in TP2, may be 

explained due to the fact that these mutations are sub-clonal, because most of the individuals from the 

23-patient cohort did not show high clonal expansion in their relapsed tumors, according to analyses of 

Dr. Laganà. Despite of the low frequency, such mutations may still be of high interest, because they 

provide the grounds for further selection and evolution, which is crucial for MM tumors (Walker et al., 

2014; Corre et al., 2018). This phenomenon has been previously described as genetic surfing, according 

to which mutations may remain at low frequencies until they are brought to prominence through positive 

selection (Peischl et al., 2016). Additionally, it is important to recall the mutation rates of other 

deaminases presenting dual roles as RNA editors and DNA mutators; for instance, APOBEC1 mutates 

genomic DNA in a rate of about 1/10 000 bp (Saraconi et al., 2014).  
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 All in all, I have presented patient data suggesting that ADAR1 may be both an RNA editor of 

certain transcripts, as well as a DNA mutator of their cognate genes. The latter may be an off-target 

effect or “collateral damage” to the genome, because of the aberrant RNA editing activity of ADAR1. 

This role may be shared by other deaminases, such as APOBEC1 (Saraconi et al., 2014) or APOBEC3A 

(Jalili et al., 2020), which can provide in-depth explanations about how cancers may expand their 

mutational spectra toward tumor generation, adaptation and evolution.  

  

 
Figure 4.5 The proposed model of how the dual role of ADAR1 as an RNA editor and a DNA mutator may 

facilitate Multiple Myeloma progression. Multiple Myeloma (MM) tumors overexpress ADAR1 either through 1q21 

copy-number gain (1q21+) or through interferon induction, leading to aberrant and elevated RNA editing activity, which 

is associated with poor survival. Aberrant RNA editing activity of highly edited transcripts may or may not lead to 

acquisition of ADAR1-dependent DNA mutations as “collateral damage” in their cognate genes resulting in decrease of 

RNA editing activity (AEI). Overall, ADAR1 may facilitate tumor adaptation in MM toward progression of the disease, 

both through RNA editing or DNA mutation in key components, such as PKR or MDM4, affecting the p53 or NFkB 

pathways among others. Figure from Tasakis et al., 2020. It is reused under the Creative Commons License 4.0. This 

illustration was produced by myself. 
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4.2 Aim 2: Experimental evidence of ADAR1-mediated mutagenesis 

4.2.1 Preface 

As introduced in chapter 1.3, there are currently several tools available for performing site-

directed A-to-I RNA editing at specific adenosines in a transcript. In brief, this is chiefly possible with 

a small antisense oligoribonucleotide (RNA), complementary to the targeted transcript region, that 

transiently constitutes a dsRNA substrate for ADARs to act on. Such small RNA oligos are termed 

“guide” RNAs (hereafter gRNAs) and, depending on the tool employed, they either recruit endogenous 

ADARs or engineered enzymes, which typically incorporate the deaminase domains of ADARs and 

they are co-delivered with gRNAs (Casati et al., 2021). Overall, most of the site-directed mRNA editing 

tools available can edit efficiently on-target (adenosines on transcripts that are mismatched against 

cytidines on the gRNAs; see chapter 1.3), however off-target editing on the transcript, especially within 

the gRNA-defined targeted region, is also abundantly observed (Montiel-Gonzalez et al., 2013; Cox et 

al., 2017; Vallecillo-Viejo et al., 2017; Wettengel et al., 2017). 

 Recent findings revealed that ADARs can mutate DNA as well under certain circumstances. 

First, in vitro experiments with gRNAs targeting adenosines of the ssDNA M13 bacteriophage genome, 

showed that ADAR-mediated DNA editing is possible within DNA:RNA hybrids (Zheng et al., 2017). 

Then, it was recently shown also in vitro that in human telomeric repeats, which are prone to R-loop 

(DNA/RNA hybrid) formation, A:C mismatches in either the DNA or the RNA strand of an R-loop are 

resolved to I:C pairs through ADAR1 editing, allowing RNAse H2 to degrade the RNA strand of the 

hybrid and resolve the R-loop (Shiromoto et al., 2021). Indeed, depletion of ADAR1 in different 

telomerase-positive cancer cell lines led to telomeric R-loop accumulation and genomic instability, as 

shown in the same study (Shiromoto et al., 2021). Although it is evident from the aforementioned in 

vitro and cell-line data that ADAR1 is capable of mutating DNA, especially within the context of R-

loops in human telomeres, it is not known how this mutagenic activity could be coordinated with its 

original function of being an RNA editor or whether ADAR1 can mutate DNA globally in the human 

genome.  

I previously hypothesized (see 4.1.2), that ADAR1 can act both as RNA editor of a transcript 

and a DNA mutator of its cognate gene, within the context of R-loops formed co-transcriptionally. I 

tested this hypothesis in 23 Multiple Myeloma patients, who each had matched RNA-seq and WES 

tumor data from two timepoints of the disease, at diagnosis (pre-relapse) and at relapse (see 4.1), and I 

showed that newly acquired and specific mutations at relapse were predominantly found in genes, whose 

transcripts were highly edited by the overexpressed ADAR1 at diagnosis (pre-relapse). This data 

suggests that ADAR1 can potentially be a global DNA mutator, with related DNA mutations being 

acquired as collateral damage of its aberrant RNA editing activity. To prove that ADAR-mediated 

mutagenesis is a consequence of its RNA editing activity, I employ a series of site-directed mRNA 

editing experiments, for which I target specific transcripts and look for DNA mutations in their genomic 

loci. For targeting ADAR to specific transcripts, I leveraged the power of three available tools; 
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LEAPER, which promises to recruit the endogenously expressed ADAR1 with unmodified gRNAs (Qu 

et al., 2019; introduced in chapter 1.3.2), the 4λN-ADAR tool for which an ADAR deaminase domain, 

bound to λΝ-peptides, co-delivered with a gRNA that contains BoxB loops to tether the deaminase via 

the λΝ-peptides (Montiel-Gonzalez et al., 2013; introduced in 1.3.1) and the RESTORE tool, which 

recruits the endogenously expressed ADAR1 with gRNAs containing GluR2 loop motifs (Merkle et al., 

2019; introduced in 1.3.2).  

 

4.2.2 Loss of IgM through DNA mutation in the V region of Ramos cells 

Activation Induced Cytidine Deaminase (AID) protein is the product of Aicda gene and is in 

principle responsible for somatic hypermutation (SHM) and class-switch recombination (CSR) of 

antibody genes (Muramatsu et al., 2000). Ramos Burkitt’s lymphoma B cell line is a model for SHM; 

Ramos cells express IgM antibodies, which are further diversified only through constitutive 

hypermutation of the immunoglobulin V gene (VH) at a rate of 2.8x10-3/bp mutations (Sale and 

Neuberger, 1998). Diversification of IgM through AID-dependent mutation in the VH can be easily 

detected as IgM loss through FACS with about 10-20% of the cell population being IgM- (Upton and 

Unniraman, 2011). Indeed, I stained Ramos WT cells with an anti-human IgM antibody and I observed 

loss of IgM at about 19.4% of the overall cell population (Q4, AID WT, Figure 4.6). When I stained 

AID-/- Ramos cells, in which expression of AID is lost, they also lose the ability to hypermutate and 

therefore I showed that they lose surface IgM expression (Figure 4.6 AID-/-). This has been previously 

reported as a measure of hypermutation (Cook et al., 2007). Finally, when I transfected Ramos AID-/- 

cells with plasmid vectors (mAID-cDNA-pl, Appendix 3) that express the cDNA of AID, they lose IgM 

again (Figure 4.6, AID-/- +mAID), as also shown in (Al-Qaisi et al., 2018).  

Overall, these findings validate that the VH of Ramos cells can function as mutation reporter, 

since mutations in that gene can lead to IgM loss, which is a phenotype that can be easily detected 

through FACS. Therefore, I leverage the power of this system to estimate whether ADAR-dependent 

RNA editing can lead to DNA mutation. In the next experiments (chapter 4.2.4), I target the VH region 

of Ramos AID-/- cells with a site-directed mRNA editing tool (LEAPER, Qu et al., 2019), which recruits 

the endogenously expressed ADAR1. 
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Figure 4.6 Loss of IgM in Ramos B cell line due to mutation in the immunoglobulin V gene by AID. Ramos wild-

type (WT) cultures expressing AID have both IgM+ and IgM- populations (Q4, 19.4%). AID-/- Ramos cells, only have 

IgM+ populations, independently of how long they have been cultured (IgM- in Q4, <2%). Transient expression of 

mouse AID (mAID) with vectors expressing its cDNA, reconstitute the IgM- populations in AID-/- cells (Q4, 28.8%). 

Cells were stained with anti-human IgM antibody with APC fluorophore (anti-huIgM-APC) and Propidium Iodine to 

exclude dead cells. The gating strategy for the FACS analysis is provided in Appendix D, Part 1. Adapted figure from  

Tasakis et al., 2020. It is reused under the Creative Commons License 4.0. The processed data and illustration were 

produced by myself. The raw FACS data were generated jointly with Ms. Dimitra Stamkopoulou.  

 

4.2.3 ADAR1 is the major A-to-I deaminase in Ramos cells 

As introduced in chapter 1.2.1, A-to-I RNA editing is catalyzed by two enzymes of the ADAR 

family, ADAR1 and ADAR2. ADAR1 is ubiquitously expressed and is mostly responsible for the vast 

majority of A-to-I RNA editing in the transcriptome. Site-directed mRNA editing tools, and in particular 

the LEAPER tool which I employ here (see 4.2.4), reportedly recruit the endogenous ADAR1 for on-

target editing with gRNAs, as discussed in chapter 1.3. Therefore, I validated with an expression and 

functional assay that ADAR1 is the major A-to-I deaminase in Ramos cells. Expression of ADAR1 and 

ADAR2 was measured from the cDNA of Ramos AID-/-, WT and ADAR1-/- cells with qPCR (Figure 

4.7A). ADAR1 is abundantly expressed in Ramos AID-/- and WT cells, while absent in the ADAR1-/-

. ADAR2 is expressed at very low levels in all Ramos cell lines. Low levels of ADAR1 detected with 

qPCR in the ADAR1-/- cells is due to the fact that the ADAR1 locus that was knocked out (see 3.3.1) 

may still be transcribed, but ADAR1 is not functional in the same cell line. Indeed, when I performed 

Sanger sequencing of the endogenous MAVS cDNA, a known target of ADAR1 (Li et al., 2021), 

showed no A-to-I(G) RNA editing sites, while the same sites were edited in both Ramos WT and AID-

/- cells. Overall, this data show that ADAR1 is expressed and functional in the Ramos AID-/- cells, in 

which I will target ADAR1 in their VH region aiming to induce DNA mutations that will be reported as 

loss of IgM.   
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Figure 4.7 ADAR1 is the major A-to-I deaminase in Ramos cells. (A) qPCR from the cDNA of Ramos AID-/- (AID-

KO), Ramos WT (WT) and ADAR-KO (ADAR-/-) cells for the transcripts of ADAR1 (primers qADAR1-Fw and -Rv, 

Appendix A) and ADAR2 (qADAR1-Fw and -Rv) showed abundant ADAR1 expression in AID-/- and WT Ramos cells 

and very low expression levels of ADAR2 in all cell lines. Expression was normalized with the housekeeping genes beta 

Actin (qActb-Fw and -Rv) and GAPDH (qGAPDH-Fw and -Rv). (B) RNA editing sites detected in cDNA amplicons of 

MAVS (Mavs-Fw and Mavs-Rv) in AID-/- (AID-KO) and WT Ramos cells were absent from the ADAR1-/- cell line, 

validating that ADAR1 is functional in Ramos AID-/- and WT cells. RNA editing sites are highlighted in yellow with 

the percentage (%) of editing on top of each site on the chromatogram.  

4.2.4 Loss of IgM after targeting the VH transcript and gDNA with gRNAs  

Up to this point, I have presented experiments that demonstrate that introduction of DNA 

mutations at the VH gene of Ramos AID-/- cell leads to IgM loss, which is an easy read out detectable 

by FACS. Furthermore, I have validated that ADAR1 is the predominantly A-to-I deaminase in Ramos 

AID-/- (and WT) cells in terms of expression and function. Here, I employ a site-directed mRNA editing 

tool, LEAPER, which has been previously shown to recruit the endogenously expressed ADAR1 with 

an antisense oligoribonucleotide (gRNA) to the target-transcript (Qu et al., 2019). However, the gRNAs 

employed to target a transcript are also complementary to the sequence of the coding strand (positive-

sense) of the cognate genomic locus. It is known from in vitro experiments (Zheng et al., 2017), that 

ADARs can deaminate DNA within DNA/RNA hybrids. Therefore, I hypothesize that gRNAs can 

temporarily hybrid with the coding DNA strand of a genomic locus, whose transcript is targeted with a 

gRNA, allowing ADAR to mutate the coding strand (Figure 4.8A). Similarly, that should also happen 

when antisense oligoribonucleotides hybrid with the template DNA strand (negative-sense) and perhaps 

more efficient than antisense oligoribonucleotides to the template DNA strand, because there is no 

complementarity competition with the transcript.  

I designed unmodified gRNA and oligos (78-81nt long) - hereby termed as arRNAs (ADAR-

recruiting RNAs) - according to (Qu et al., 2019) for targeting the VH region against the transcript or 

coding strand, as well as against the template strand of the VH genomic locus. Scheme in Figure 4.8B 

summarizes all arRNAs employed and the regions of targeting within the VH locus. The sequences of 

all arRNAs are provided in Appendix B. arRNAs targeting the template DNA strand were 
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complementary to the target throughout the sequence, while arRNAs targeting the coding strand, and 

therefore the transcript, were designed for an A:C mismatch centered within the target:arRNA hybrid.  

 
Figure 4.8 Targeting of the VH gDNA with site-directed mRNA editing strategies. (A) Transcripts targeted with an 

antisense oligoribonucleotide (here arRNA, recruiting the endogenous ADAR1) may also temporarily hybridize with 

the coding strand of the of the genomic locus. ADAR1 may edit the coding DNA strand of the  hybrid, as it has been 

shown in vitro that it can deaminate DNA within DNA:RNA hybrids (Zheng et al., 2017). (B) The layout of 5 arRNAs 

recruited to edit the VH transcript or mutate the cognate genomic locus. arRNAs targeting the coding strand (dark blue) 

are antisense also to the transcript of the VH locus and form an A:C mismatch at the center of the DNA:arRNA hybrid. 

arRNAs targeting the template strand (light blue) are designed to be complementary throughout the hybridized region 

of DNA:arRNA. arRNAs 1, 2 and 4 were 81nt long and arRNAs 3 and 5 were 78nt long. The sequence of arRNAs is 

provided in Appendix B.  

Although the capability of ADARs mutating DNA has been shown in vitro (Zheng et al., 2017) 

and correlated with cell phenotypes in cell lines (Shiromoto et al., 2021), the potential mutation rate of 

ADAR1 is not known. It is expected that the mutation rate is lower than the rate of RNA editing by the 

same deaminase (Saraconi et al., 2014) and, thus, it is very likely that mutations by ADAR1 may be 

undetectable with the strategies employed in the field thus far. This is after compiling knowledge from 

other RNA editors showed to also be DNA mutators (i.e. APOBEC1 from Saraconi et al., 2014) as well 

as from the previously presented correlative editing-to-mutation data in Multiple Myeloma (Chapters 

4.1.2 and 4.1.4, Tasakis et al., 2020). In Ramos cells, the mutation reporter system I employ, it has been 

observed that loss of IgM through SHM is often accompanied by DNA strand breaks (DSBs) within the 

VH (Sale and Neuberger, 1998). Therefore, I employ pairs of arRNAs (shown in Figure 4.8B) targeting 

the VH region of Ramos AID-/- cells at distances within the range of 205-225bp (by the center of the 
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arRNA), so as to enhance loss of IgM through DSBs, if ADAR1 has mutated the targeted genomic locus 

of VH. I employed different pairs of the arRNAs, targeting the coding strand (arRNA1+3, aRNA2+3), 

template strand (arRNA4+5) or both strands (arRNA1+5, arRNA2+5). arRNAs were expressed by the 

same U6-vector (gRNA-pl, Appendix C) transfected in Ramos AID-/- cells. As a positive control, I 

transfected a vector expressing the cDNA of mAID (mAID-cDNA-pl, Appendix C) and as negative 

control an arRNA (hereafter as arRNA(-)) with no target in the genome (Appendix B). An additional 

negative control was a mock culture of Ramos AID-/- cells. Upon transfection, I cultured the cells for 5 

weeks in bulk. FACS analysis of viable cells stained with an anti-human IgM antibody bound to APC 

fluorophore is summarized in Figure 4.9A and I performed it jointly with Ms Dimitra Stamkopoulou. I 

observed loss of IgM in two cultures in which the pairs of arRNA1 and arRNA5 (arRNA1+5) or arRNA2 

and arRNA5 (arRNA2+5) were co-delivered. The IgM-negative (IgM-) population for arRNA1+5 was 

14.7%, while for arRNA2+5 was 26.7%. gDNA amplicons of the VH (primers Vh-gDNA-Fw and -Rv, 

Appendix A) followed by Sanger Sequencing showed a signal of T-derived mutations in the vicinity of 

the on-target RNA editing site (Figure 4.9B). Signal of mutations was absent from the arRNA(-) control 

(Appendix D, Part 3).  

Both samples in which I observed loss of IgM, had a common layout with regards to the pair of 

arRNAs, which is summarized in Figure 4.9C; an 81nt-long arRNA antisense to the coding strand (and 

also the cognate transcript) centered by a C in its sequence towards the A:C mismatch within the hybrid 

of target (arRNAs 1 or 2), and a 78-nt long arRNA antisense to the template strand (arRNA 5) at a 

distance of about 200bp from their centers. To explore the possibility of IgM loss due to DNA mutation 

or DSBs within the window of ~200bp, in the two samples that prominently showed IgM- populations, 

I performed deep-amplicon NGS in VH amplicons from the bulk gDNA of both samples (arRNA1+5 

and arRNA2+5) and the AID-/- negative control (Mock). Although in the predominant IgM- samples 

more sequences (a sequence is a read-pair covering the entire amplicon) appeared heterogeneously 

mutated, the specificity of mutation in certain sites was minimal (Figure 4.9D). Similarly, even though 

there were widespread small gaps (2-8bp) per sequence in the IgM- samples compared to the control, 

large deletions (>30bp) were not abundant (Figure 4.9E).   
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Figure 4.9 Loss of IgM upon arRNA delivery and associated outcomes in the gDNA of VH. (A) Histogram 

summarizing the IgM+ population is noted at the Mock negative control (Ramos AID-/- cells from culture) and IgM- 

populations in the positive control (Ramos AID-/- transfected with the cDNA of mouse AID - mAID) and the samples 

arRNA1+5 and arRNA2+5 in which abundant IgM loss was observed. The IgM- population is virtually absent from 

AID-/- and very minimal in the arRNA(-) negative control (arRNA with no target), while the IgM- subpopulation peaks 

emerge in the arRNA1+5 and arRNA2+5 samples 5 weeks after transfection. Dotplots are available in Appendix D, Part 

2. (B) AID-/- cells transfected with pairs emerge in the arRNA1+5 and arRNA2+5 show abundant loss of IgM versus 

cells transfected with the control arRNA. T-derived mutation signal is reported in VH amplicons from gDNA, which was 
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extracted from bulk cultures, in the region where ADAR1 was targeted to on the VH transcript. For the arRNA1+5 

transfected cells, signal of T-to-A mutation right next to the on-target A, lead to a Y-to-N amino-acid change (tyrosine-

to-asparagine) altering the last codon of the Framework Region 1 (FR1; according to IMGT). While for the arRNA2+5 

transfected cells, T-to-C mutation signal in the two upstream positions from the A-target on the RNA are observed, 

which are in the range of the last three codons of CDR1 by IMGT. This mutation leads to a Y-to-H (tyrosine-to-histidine) 

amino acid change. These mutation signals were absent from the arRNA(-) sample (see Appendix D, Part 3). (C) arRNAs 

combinations presenting the most prominent IgM- populations have the same layout of bi-stranded targeting: an 81nt-

long arRNA is antisense to the coding positive-sense strand with an A:C mismatch in hybrid and a 78-nt arRNA antisense 

to the template (negative-sense) strand. The arRNAs are in ~200bp distance measured by the center of their sequences. 

(D, E) Deep amplicon NGS data from the highly IgM- populated samples (arRNA1+5 and arRNA2+5) blasted by read-

pair against the germline sequence of Ramos VH, reveal numerous mutations, as demonstrated by a shift in the 

distributions of counts of mismatches per sequence, when compared to the Mock negative control. No site-specific 

mutations were detected in depth. The same data also revealed a higher count of small gap openings (2-8bp) in sequences 

(read-pairs) from the arRNA-transfected samples. The gating strategy for Ramos B cells is provided in Appendix D, Part 

1 and FACS data are down-sampled to 20000 cells per sample for all the samples. Panel B is adapted from Tasakis et 

al., 2020 under the Creative Commons License 4.0 and was produced by myself. The raw FACS data presented in panels 

A and B were generated jointly with Ms Dimitra Stamkopoulou.  

The data I presented thus far, have given indications of potential ADAR1-dependent DNA 

mutations as reported by the loss of IgM in AID-/- Ramos B cells. However, these observations have 

further raised two major questions. First, I observed a transient but significant drop of IgM expression 

(Figure 4.9A), which rebound later. This, may be due to either RNAi (RNA interference; Hannon, 2002) 

effect for the arRNAs antisense to the transcript (arRNA1, 2 and 3) or also due to short R-loop formation 

with the template strand, thus generating a substrate for RNAseH (Shiromoto et al., 2021). To test this, 

I transfected the same arRNAs directly in Ramos cells upon in vitro transcription (IVT) and, indeed, I 

observed loss of IgM within a 3-week window post-transfection (Figure 4.10), as further discussed 

below. Second, the loss of IgM post-rebound I present here, derive from bulk cultures at 5 weeks post-

transfection with arRNAs expressed from transfected plasmid vectors (gRNA-pl, Appendix C). 

However, in those cultures I did not detect evidence of targeted VH RNA editing early in transfection 

(between 24h and 120h post-transfection), again quite possibly because of the overall drop in IgM 

transcript levels, so that the transcripts actually targeted for editing would also be removed by RNAi or 

RNAseH. These experiments offered valuable insights into the system, which I have redesigned 

accordingly and I provide an alternative solution in the subchapter 4.2.5.   

As I mentioned above, I observed an overall decrease in IgM expression, which may be due to 

RNAi effects of the arRNAs antisense to the transcript or resolution by RNAseH of a temporary short 

R-loop formed between the arRNA and the template (negative-sense) strand. To evaluate whether 

absence of RNA editing from cDNA amplicons of the VH region, may be due to such effects, I 

transfected Ramos AID-/- cells with each arRNA produced by IVT separately and I monitored loss of 

IgM between 24h and 21 days post-transfection. As positive control, I included cells from Ramos AID 

WT culture. For negative controls, I transfected the same arRNA(-) to Ramos AID-/- cells. Apart from 
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the mock sample as before (culture of AID-/- cells), I included an additional negative control (mock-

trf), which is cells without any arRNA undergoing the transfection process. The latter was added because 

in the previous experiment there was a minimal IgM- population in the arRNA(-) sample (Figure 4.9A, 

Appendix D, Part 2, panel arRNA(-) ) and I wanted to confirm that this was background noise,  perhaps 

due to transfection. Indeed, as I show in Figure 4.10, both the mock-trf and mock samples showed 

similar minimal abundance of IgM- populations (~5%). As expected, Ramos WT cells presented IgM- 

populations between ~13-26%, while AID-/- culture was purely IgM+. At 24h post-transfection, I did 

not observe IgM- populations, but 7days or even 14 days post-transfection IgM- populations reached up 

to ~96%. At 21 days post-transfection most of the populations retreated back to being primarily IgM+, 

except for arRNA5 which showed an increase from 21% to 40.7% compared to the previous timepoint. 

I did not detect RNA editing or DNA mutations in the VH cDNA and gDNA amplicons from the bulk 

for neither of the timepoints.  

 
Figure 4.10 IgM loss through transient mechanisms independent of deamination. Previous observations of overall 

decrease in IgM expression indicated that there might be mechanisms, such as RNAi or resolution of transient R-loops 

between arRNAs and the template negative-sense DNA strand by RNAseH. arRNAs were delivered directly upon in 

vitro transcription to Ramos AID-/- cells and loss of IgM was monitored between 24h and 7 days post-transfection. 

Abundant loss of IgM at 7- and 14-days post-transfection in combination with IgM gain at 21 days post-transfection, 

indicate that arRNAs can interfere with expression of the locus or the transcript independent of deamination. Positive 

control was Ramos WT (AID WT) cells from culture. Negative controls were Ramos AID-/- cells from the culture 

(Mock), Ramos AID-/- cells transfected without RNA (Mock-trf) and Ramos AID-/- cells transfected with arRNA(-). 

Percentages in the IgM- panels of the histograms note the percentage of the IgM- population. arRNA sequences are 

provided in Appendix B. Gating strategies of Ramos cells are provided in Appendix D, Part 1.  

My findings highlight that loss of IgM may be a valuable system for reporting DNA mutation, 

as previously shown (Sale and Neuberger, 1998), but it is not ideal at the current form for RNA editing, 

as it may be masked by various parameters as shown above, such as transient loss of IgM, perhaps due 
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to an RNAi-like effect (Hannon, 2002) or even a downregulation due to RNAseH mediated resolution 

of R-loops (Shiromoto et al., 2021). While I reckon that the Ramos system I presented thus far is 

valuable, it needs to be engineered into one whose readout is gain, rather than loss of IgM, where gain 

is the result of a stop codon reversion, a situation to which ADAR-mediated editing is naturally suited 

(Montiel-Gonzalez et al., 2019). Such a system would be to engineer a Ramos AID-/- cell line that is 

IgM- due to a premature stop codon UAG in the VH region, such that upon UAG>UGG editing it would 

lead to IgM gain, also detectable via FACS. This would ensure that the original population is edited on 

the RNA and only this population would be further evaluated for DNA mutation. This experiment is 

currently ongoing and such cell line is being created by exploring and propagating the IgM- cells upon 

transient transfection of AID cDNA in Ramos AID-/- cells, followed by single-cell clonal expansion 

and selection of a clone with a specific stop codon which can then be reverted using relevant gRNAs 

(Figure 4.6, panel AID-/- +mAID). This was inspired by a cell line experiment (HEK293T-W58X, see 

3.3.1), in which a premature UAG is present within an inactivated eGFP gene that is transcribed; upon 

editing (UAG>UGG) an active eGFP protein is produced. This system for reporting editing was 

originally described in (Montiel-Gonzalez et al., 2013) and in the next subchapter I will present data 

that indicate permanent activation of eGFP by ADAR1, very likely through DNA mutation in clones 

that originated from a priming population of cells, purely editing the eGFP activation site on the RNA.  

 

4.2.5 eGFP activation: a gain of function strategy to report ADAR-dependent mutations  

As I concluded above, one of the major parameters for detecting RNA editing in endogenous 

transcripts is to eliminate the background of cells, which were not successfully transfected with the 

components required for site-directed mRNA editing. To achieve that, I present an alternative 

experimental set up, originally employed in Montiel-Gonzalez et al., 2013, which provides an easily 

readable output for cell populations with successfully edited endogenous transcripts. For this experiment 

I employed a HEK cell line (HEK-293T-W58X, see chapter 3.3.1), which expresses a cassette 

comprising of a gene expressing mCherry fluorescent protein and a gene expressing an inactivated eGFP 

protein due to a premature stop codon UAG, separated by the sequence of a self-cleaving 2A peptide 

(Figure 4.11A). Site-directed A-to-I(G) editing targeting the aforementioned UAG stop codon on the 

transcript, transiently changes the stop codon sequence to a tryptophan codon (UAG>UGG), leading 

therefore an actively fluorescent eGFP protein (Figure 4.11A). This system, providing a readout that 

can be easily monitored through FACS, allowed me to isolate a priming cell population, in which RNA 

editing reportedly occurs, and which I focused on for detecting ADAR-dependent DNA mutation on-

target.  
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Figure 4.11 eGFP activation through A-to-I site-directed RNA editing. (A) Stably transfected HEK cells expressing 

a cassette of mCherry, 2A and inactivated eGFP due to a premature UAG stop codon were employed to monitor site-

directed mRNA editing. Cells with successfully A-to-I edited UAG>UGG codons express an activated fluorescent 

eGFP. This system has been originally described in Montiel-Gonzalez et al., 2013. (B) The λΝ-ADAR tool with gRNAs 

targeting the eGFP activation site (gGFP) was employed and RNA editing was monitored in the transfected cell 

populations at 48h, 72h and 96h post-transfection. GFP-activated populations (Q2) were ranging between 18.2% and 

19.1% of their original populations. As negative control, cells were transfected with 4λΝ-ADAR and a gRNA with no 

target against the transcriptome (gCtr). RNA editing was quantified for the gGFP samples by Sanger sequencing 

chromatograms of cDNA amplicons (pmCherry-Fw and peGFP-Rv, Appendix A) of the mCherry and eGFP cassette 

from the total RNA of the GFP-activated populations (Q2: mCherry-positive and eGFP-positive) and for the gCtr control 

by the Q1 population (mCherry+). On-target RNA editing was 30% at 48h, 34% at 72h and 28% at 96h post-transfection, 

while no editing was detected from gCtr. Negative controls were set for all timepoints, the gCtr included in the figure is 

from 72h post-transfection. Gating strategies for the FACS analyses are available in Appendix D, Part 4.  

For the following experiments I employed the λΝ-ADAR site-directed mRNA editing tool 

(Montiel-Gonzalez et al., 2013 and chapter 1.3.1, for which a gRNA with BoxB loops recruits an ADAR 

deaminase domain, which is bound to λΝ peptides. In this set-up I particularly employed a λΝ-ADAR 

that has 4 λΝ peptides, expressed by a plasmid (4λΝ-ADAR-pl, Appendix C) upon transfection in HEK 

cells (see 3.3.3). Additionally, a gRNA with two BoxB loops targeting the aforementioned UAG stop 

codon of eGFP (gGFP) and a control gRNA with no target in the transcriptome (gCtr) were employed 

(sequences in Appendix B). gRNAs were also expressed by plasmid vectors, under the same promoter 

and characteristics (gRNA-pl, Appendix C). I transfected HEK cells expressing the mCherry-2A-eGFP 

cassette with co-delivered plasmid vectors for 4λΝ-ADAR and gGFP (at ratios 1:5) and I monitored 
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between 48h and 96h post-transfection for eGFP activation with FACS. Negative controls were set for 

all timepoints by co-delivering 4λΝ-ADAR and gCtr in the same amounts at the same number of cells. 

As shown in Figure 4.11B, the GFP-activated cell populations were ranging between 18.2%-19.7% (Q2) 

throughout the timepoints tested, while entirely absent from the negative controls (gCtr). I sorted the 

double-positive for mCherry and eGFP cells and I generated cDNA amplicons (primers pmCherry-Fw 

and peGFP-Rv, Appendix A) for the mCherry-2A-eGFP cassette from the total RNA of each population. 

On-target RNA editing in the UAG stop codon, quantified from Sanger sequencing chromatograms, was 

ranging between 28% and 34%, peaking at 72h post-transfection (Figure 4.11B). No on-target editing 

was detected in the gCtr negative controls (Q1 population, mCherry-positive) in amplicons from the 

same transcript.  

As shown above, there is a discrepancy between the levels of editing measured by the eGFP 

activation on the cellular level and the percentage of editing measured on the transcript level. This is 

because even low levels of edited transcripts expressed by the mCherry-2A-eGFP cassette will produce 

active eGFP protein within a cell. It is also not entirely clear, up to date, whether RNA edited transcripts 

are differentially translated compared to unedited transcripts from the same locus. I previously discussed 

(chapters 4.1.2 and 4.1.4) that DNA mutation by ADAR1 is more likely to rise in genes of highly edited 

transcripts. Therefore, employing the eGFP-activation system presented thus far, I looked for ADAR-

dependent mutations in cells primed by a cell population with the highest editing levels on the transcript 

thus far. Therefore, I repeated a transfection of HEK cells expressing the mCherry-2A-eGFP cassette, 

with the same layout and controls (see chapter 3.3.3) and 72h post-transfection, I sorted the strictly 

double-positive (mCherry+ and eGFP+) population (25 000 cells) in bulk (Figure 4.12A). No eGFP+ 

cells were recorded in the control (gCtr). I validated on-target RNA editing from a second replicate in 

the gGFP sample at 33% editing 72h post-transfection, and no RNA editing by the gCtr (Figure 4.12A). 

I further cultured in bulk the sorted double-positive cells (25 000) from the sample that showed eGFP 

activation due to editing and the same number of cells from the gCtr were further cultured for a total of 

2 weeks post-transfection.  

A window of time, such as 2 weeks post-transfection, is crucial for the eGFP-activated priming 

population to expand and meanwhile lose the plasmids of the original transfection. Especially in this 

context this is important, because the goal is to obtain permanent GFP-activated clones due to 

UAG>UGG DNA mutation on-target by ADAR. After 2 weeks post-transfection, I sorted the 

propagated cells from the original GFP-activated population (gGFP – 2 weeks) and the control (gCtr – 

2 weeks) as single cells in 96-well plates. As demonstrated in Figure 4.12B very few cells remained 

double-positive (~5 /10 000 recorded cells) from the GFP-activated priming population (gGFP – 2 

weeks), while the control remained virtually clear (gCtr – 2 weeks). I managed to rescue about 400 cells 

in total from the gGFP – 2 weeks sample. After 2 weeks, I screened the clones which successfully grew 

(~90) for eGFP with optical microscopy. I observed that 1 clone presented a heterogeneously eGFP+ 

population. Since the relevant plasmids were not under selection, this observation suggests a DNA 
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mutation event. Indeed, transformation of E. coli competent cells with lysate of the aforementioned 

clone, growing in the appropriate antibiotic resistant agar plates for the respective plasmid (Appendix 

C), did not reveal any bacterial colonies. 

I expanded the aforementioned clone for an additional week and I sorted at 5 weeks overall 

post-transfection, again for the double-positive population, but this time this population included more 

intensely eGFP+ cells (Figure 4.12C). To confirm that this is a DNA mutation event, I sorted the double-

positive population (~850 cells) in lysis buffer and I extracted gDNA as well as total RNA were 

simultaneously by the lysate. I generated and sequenced amplicons from the cDNA and the gDNA of 

the mCherry-2A-eGFP. I detected a double A-to-G peak in the on-target codon indicating 18% base 

change from the cDNA, though not from the gDNA amplicon. Although this observation would 

traditionally indicate an RNA editing event and not a DNA mutation event, it is unlikely that this is the 

case. First, because I did not detect the plasmids encoding the required components for RNA editing in 

the clone as mentioned above, and secondly, it is unknown how many copies of the cassette are in the 

cells of the clone. After a closer inspection of the FACS plots for the heterogeneously GFP-activated 

clone (Figure 4.12C), it is obvious that mCherry fluorescence for the double-positive population is also 

very high, while this cell line alone robustly presents a distribution of mCherry intensities (y axis in all 

FACS plots of Figures 4.11 and 4.12). These observations indicate that the mCherry-2A-eGFP cassette 

is heterogeneously present in different number of genomic copies in the cell population and, therefore, 

it is very likely, for example, if only one genomic copy has a UAG>UGG mutation and it is expressed, 

while there are more unmutated that are not expressed (or at least not all), then detection of this mutation 

is not possible with Sanger sequencing. In a publication I have also contributed to, we have previously 

shown that the limit of accurate detection for base editing is 5% (Kluesner et al., 2021). 

  To recapitulate the findings, I isolated 25 000 eGFP-activated cells through A-to-I RNA editing 

72h post-transfection and I further expanded them for growth. After 2 weeks of expansion, in which the 

originally transfected plasmids should be minimally present, I observed that very few cells remained 

eGFP-activated. I single-cell sorted about 400 cells and ~25% of them grew to clones. 1 clone presented 

heterogeneous eGFP-activation. I simultaneously extracted gDNA and total RNA from the eGFP+ cells 

from the lysate of that clone. I generated cDNA and gDNA amplicons for the mCherry-2A-eGFP 

cassette. 5-weeks post-transfection, I detected 18% A-to-G base change on-target in the UAG codon 

which activates eGFP from the cDNA amplicon. 
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Figure 4.12 Strategy for detection of ADAR-dependent DNA mutation through eGFP-activation in HEK cells. 

(A) HEK cells expressing the mCherry-2A-eGFP cassette, which encodes for an inactivated eGFP due to a premature 

UAG stop codon (see figure 3.6A) were transfected with 4λΝ-ADAR and a gRNA targeting the UAG stop codon towards 

eGFP activation (gGFP). Upon 72h post-transfection the double-positive (mCherry+ GFP+) cells, in which 33% editing 

was detected on target from cDNA amplicons of the cassette, were sorted in bulk (25 000 cells). A negative control in 

which a gRNA with no target (gCtr) was transfected instead, did not show double-positive cells and no on-target editing 

from cDNA of the same cassette. (B) Double-positive cells from the gGFP sample and same number of cells from the 

gCtr sample were propagated for further growth for 2 weeks. Upon propagation, very few cells remained double positive 

(red arrow in panel gGFP – 2 weeks), while the same cells were virtually absent from the gCtr sample (gCtr – 2 weeks). 

Double-positive cells were sorted in 96-well plates as single cells, rescuing about 400 double-positive cells in total. (C) 

After 2 weeks, clones from about 25% of the original number of single cells grew. Clones were screened for eGFP+ 

signal and 1 clone with heterogeneous eGFP signal was rescued. The clone was cultured for an additional week and 

sorted, revealing a few double positive cells (red arrow, mCherry+ GFP+, 0.74%). Double-positive cells were sorted in 

lysis buffer and total RNA and gDNA was extracted simultaneously. Amplicons from the cDNA and gDNA of the 

cassette (pmCherry-Fw and peGFP-Rv, Appendix A) were sequenced and A-to-G base change was detected from the 

cDNA amplicon at 18% on-target. Gating strategies for FACS data are provided in Appendix D, Part 4.  

My preliminary findings presented thus far indicated that ADARs may mutate genomic DNA 

in a rate of 1 in 25 000, estimated by the number of GFP-activated clone at the endpoint that rose from 

a population 25 000 edited cells. Of course, this was only an initial observation. In order to show DNA 

mutation from gDNA amplicons and additionally to validate the aforementioned rate, I repeated the 

experiment as described above and upscaled the priming population of edited cells to 350 000 at 72h 

post-transfection. This time, I kept them in culture for additionally 2 more weeks prior to single-cell 

sorting for clone generation. At the endpoint (7 weeks overall post-transfection), I obtained 7 clones 

which were again heterogeneously GFP+ (Figure 4.13A), from which I detected 23% A-to-G base 
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change from the clone IV, again from the cDNA amplicon of double-positive sorted cells (Figure 

4.13B). In this repeat, the respective rate would be 1 in 50 000. Although these findings were 

encouraging, I did not detect DNA mutation from the gDNA amplicons. Therefore, I wondered whether 

this had something to do with the fact that the λΝ-ADAR tool employs an engineered deaminase that 

needs to be exogenously co-delivered with the gRNAs (Montiel-Gonzalez et al., 2013; Montiel-

González et al., 2016). For this reason, I performed another experiment (see 4.2.6) following the same 

strategy as described above, but this time with the tool RESTORE (Merkle et al., 2019) which recruits 

the ADAR1 for site-directed editing.  

 
Figure 4.13 Upscaled repeat for detecting ADAR-dependent DNA mutation with the λΝ-ADAR tool. Following 

the same strategy as described and summarized in figure 4.12, (A) 7 clones were detected as heterogeneously GFP+ at 

the endpoint (7 weeks post-transfection), originating from 350 000 (noted as 350K) cells as priming edited population. 

The double-positive cells (mCherry+ and GFP+, noted in the FACS plots as GFP+) ranged from about 2% up to 19% of 

the overall population in the respective clones. Mock was a negative control of propagated cultured cells upon 

transfection with the gCtr (Appendix B). (B) 20 000 double-positive cells from the upscaled clone IV were sorted in 

lysis buffer for total RNA and gDNA extraction. cDNA and gDNA amplicons (pmCherry-Fw and peGFP-Rv, Appendix 

A) from the cassette were generated and sequenced. 23% A-to-G base change was detected from the cDNA on-target. 

Gating strategies for the FACS data followed as described in Appendix D, Part 4.  
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4.2.6 Validation of ADAR1-dependent DNA mutation upon eGFP activation through RNA editing 

in HEK cells 

Up to this point I have shown that gain of function methods (i.e. activation of GFP by reversing 

a premature stop codon, see 4.2.5) are more reliable to report site-directed RNA editing than loss of 

function methods (i.e. loss of IgM, see 4.2.4). By employing the cell line HEK-293T-W58X (see chapter 

3.3.1), which expresses a cassette of mCherry and an inactive GFP due to a premature stop codon (Figure 

4.11), I showed that gain of GFP signal through site-directed mRNA editing and monitoring potentially 

subsequent DNA mutation events is easily detectable through FACS, as also validated from sequencing. 

I previously showed (see 4.2.5) employing the 4λΝ-ADAR system that the potential mutation rate by 

ADAR could be 1 in 25 000 (number of endpoint GFP+ clones in the total number of priming edited 

cells). However, the desired A-to-G base change was from cDNA amplicons but not from gDNA. Here, 

I employ a different tool, RESTORE (Merkle et al., 2019 and chapter 1.3.2), which recruits the 

endogenously expressed ADAR1 as reported by Merkle et al., 2019, which is the major A-to-I 

deaminase in HEK cells, with ADAR2 being minimally expressed in the same cell line (Schaffer et al., 

2020). My colleagues, Dr. Riccardo Pecori, Ms Beatrice Casati, previously produced a plasmid vector 

missing the last 5bp from the CMV promoter and with that being the only difference with the gRNA-pl 

(Appendix C) vector I have used throughout my experiments. Their version of the gRNA-pl, expressing 

a gRNA targeting the premature UAG stop codon toward GFP activation (gGFP_R, sequence in 

Appendix B), showed higher RNA editing efficiency at 72h post-transfection at on the transcript level 

than the usual gRNA-pl vector. Therefore, I used their vector-based gGFP_R gRNA to recruit ADAR1 

to edit the transcript of the mCherry-GFP cassette toward GFP activation in the HEK-239T-W58X cell 

line.   

 At 72h post-transfection with the gGFP_R guide, I sorted 25 000 double-positive (mCherry+ 

and GFP+) cells, establishing the priming population of edited cells on which I focus on detecting a 

subsequent ADAR1-depenent DNA mutation (Figure 4.14A Stage I). As a negative control I used a 

gRNA with no target (gCtr, Appendix B), which showed absence of double-positive cells at 72h post-

transfection like the gGFP_R did (5% double positive cells, Figure 4.14B). I propagated for 2 weeks the 

priming population of 25 000 (noted in Figure 4.14A as 25K) edited cells and a culture of equal number 

of cells from the bulk gCtr-transfected culture. As I explained in 4.2.5, propagating the culture is crucial 

for allowing the plasmid to be diluted out and eventually lost from the culture, as I apply no selection 

pressure. Because of the fact that in the preliminary experiment (see 4.2.5) I obtained heterogeneously 

GFP+ clones at the endpoint, I decided to repeat the sorting of the remaining double-positive cells in 

bulk (36 000 cells rescued from the original gGFP_2-transfected culture) in order to increase the chances 

of eliminating the non-mutated cells (Figure 4.14A). After 3 weeks in culture (5 weeks overall post-

transfection), I single-cell sorted the double-positive cells (Figure 4.14A, Stage II) in ten 96 well-plates 

containing conditioned media (see 3.3.1 and 3.3.5). The cells I sorted in a single-cell layout were <0.1% 

relatively intensely double-positive from the overall population (Figure 4.14C, red arrow), while absent 
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from the negative control (gCtr – 5 weeks, Figure 4.14C). The seeded 96 well-plates were further 

cultured for growth for 3 weeks and 70% of the wells seeded (673 out of 960) turned viable clones. I 

screened the grown clones for GFP+ signal with optical microscopy and 61.2% of them had mostly 

heterogeneously GFP+ clones, similarly to what I observed in the endpoint of the preliminary 

experiment presented in 4.2.5. I selected 56 clones, which showed >50% GFP+ signal, and expanded 

them for further growth in 24WP for 3 additional days (Figure 4.14A, Screening). 16 out of the 56 

expanded clones remained highly GFP+, with one of them being 100% GFP. I further detached and 

isolated the cells from all the grown clones (overall 8 weeks post-transfection) and half of the clones 

underwent FACS analysis, while I simultaneously extracted RNA and gDNA from the rest hald of the 

clones. I generated cDNA and gDNA amplicons (primers pmCherry-Fw and peGFP-Rv, Appendix A) 

from the mCherry-GFP cassette and sequenced them. In Figure 4.13D (Stage III), I summarize 

histograms for the GFP signal from the FACS analysis from the endpoint clones (I - XVI). As shown in 

the relevant figure panel (4.14D), all clones presented heterogeneously GFP+ signal, absent from the 

control (gCtr), with one clone (IV) being almost entirely GFP+. As shown in Figure 4.14E, I detected 

100% A-to-G base change from both the cDNA and gDNA amplicons of the entirely GFP+ clone (GFP+ 

98.5%), within the on-target codon that reverts the UAG stop codon to a tryptophan-encoding codon 

(UGG), absent from the respective amplicons of the negative control gCtr. It should be noted that in the 

rest of the clones I could not detect on-target A-to-G base change from neither cDNA or gDNA 

amplicons from RNA and gDNA isolated from the unsorted clones. It is not unlikely that due to presence 

of unedited/unmutated on the UAG target GFP- cells, the base calling did not pass the limit of detection. 

To shed a light on this, I am currently having experiments in which I am to sort the GFP+ cells and 

sequence amplicons for their cassette with deep-amplicon NGS sequencing.  

 All in all, with this experiment I have obtained evidence that ADAR1 may mutate genomic 

DNA in a rate of 1 in 25 000, accounted by the number of endpoint GFP+ clones (with validated A-to-

G DNA mutation on-target) to the number of edited cells compiling the priming population. For this 

experiment I employed the tool RESTORE, which recruits the endogenously expressed ADAR1 

(Merkle et al., 2019), to induce RNA editing reported as a gain-of-function for GFP activation, on which 

I focused on and detected a subsequent DNA mutation by ADAR1 on target. In ongoing experiments, I 

am performing repeats in which I am upscaling the priming population (similarly to what I did in 4.2.5) 

to validate the mutation rate, while I will include an additional negative control which will be a HEK-

293-W58X ADAR1-/-. The last cell line is currently being generated by the student Mr. George 

Samaras.  
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Figure 4.14 Experimental validation of ADAR1-dependent mutation through eGFP activation upon site-directed 

mRNA editing with the tool RESTORE. (A) A schematic representation of the strategy followed along with the main 

findings or observations. See main text of 4.2.6 for the detailed explanation. (B) FACS data 72h post-transfection 

representing the generation of the priming population (25 000 or 25K as shown in Stage I of panel A) of the double-
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positive (mCherry+ and GFP+) cells upon transfection of the gGFP_R (GFP-activating gRNA, designed according to 

RESTORE). The rate of double-positive cells was 5.14% of the overall gated population. As a negative control gCtr 

guide with no target against the transcriptome was used and a double-positive population was absent. The number of 

events recorded in the original population was 10 000 cells. (C) 5 weeks post-transfection (Stage II in panel A), the 

remaining double-positive cells (0.064%) from the propagated population from the priming edited cells (gGFP_R) was 

sorted in conditioned media in 96 well-plates in a single-cell layout toward clone generation. Equal number of cells from 

the propagated gCtr original sample was analyzed as a negative control. The number of gated cells was 50 000. (D) 

Upon clone generation, 16 clones from the ones that successfully grew remained highly GFP+. The 16 clones (I - XVI) 

were upscaled in 24 well-plates for three days. 8 weeks overall post-transfection, half of each clone underwent FACS 

analysis (Stage III in panel A) and the other half for RNA/DNA extraction and amplicon generation. In the multi-

histogram plot, the GFP+ signal is summarized per clone (I – XVI). As a negative control, a gCtr fraction from the 

original negative control was included. The number of overall recorded events per clone was 10 000, besides clone V 

for which 3 000 cells were available (E) The clone IV from the endpoint (Stage III in panel A, also shown in panel D), 

showed an almost entirely (98.5%) double-positive signal, a phenotype which is explained by a DNA mutation (shown 

from both cDNA and gDNA amplicons of the mCherry-GFP cassette, primers in Appendix A) which is 100% on-target 

and has reverted the stop codon UAG (shown as TAG) to UGG (shown as TGG). No double-positive population or on-

target A-to-G base change was detected in the negative control (gCtr). The number of recorded events was 10 000 for 

both the clone IV and the gCtr. Gating strategies followed as in Appendix E - part 4. This observation validates an 

ADAR1-dependent DNA mutation in a rate of 1 in 25 000. For this experiment I employed a vector, which Dr. Riccardo 

Pecori and Ms. Beatrice Casati designed, to efficiently express the gGFP_R.  

4.2.7 Discussion  

As previously discussed throughout this dissertation, A-to-I RNA editing is a widespread 

modification in the human transcriptome, found in transcript topologies with repetitive sequences that 

form dsRNA, such as Alu elements (Athanasiadis et al., 2004). Both ADAR1 and ADAR2 have 

demonstrated deamination activity, but the major driver of A-to-I editing in the transcriptome is 

ADAR1, which is ubiquitously expressed across tissues in two isoforms ADAR1-p150 and ADAR1-

p110 (Zinshteyn and Nishikura, 2009). ADAR1-p110 is constitutively expressed and resides in the 

nucleus, while ADAR1-p150 expression is induced by interferon (IFN) through an IFN inducible 

promoter, found in a Z-DNA binding domain, which is absent from the ADAR1-p110 isoform (Lamers 

et al., 2019). Although ADAR1-p150 can be temporarily in the nucleus, it is mostly cytoplasmic due to 

a nuclear export signal (NES), which is also present in the Z-DNA binding domain (Poulsen et al., 2001). 

ADAR1 functions, primarily attributed to the isoform ADAR1-p150, have been primarily associated 

with preventing cellular response to endogenous self-dsRNAs as non-self through A-to-I RNA editing 

(Liddicoat et al., 2015, 2016). Furthermore, ADAR1 is found overexpressed in the vast majority of 

tumors (Han et al., 2015), leading to elevated A-to-I RNA editing activity and enhancing transcriptomic 

heterogeneity in tumors (Paz-Yaacov et al., 2015), often associated with poor prognosis as discussed, 

for instance, for multiple myeloma in chapter 4.1 and also shown by Lazzari et al., 2017; Tasakis et al., 

2020; Teoh et al., 2018.  

More recently, it has been shown that ADAR1 can deaminate DNA within DNA/RNA hybrids 

(R-loops) in vitro (Zheng et al., 2017), which is shown to be a crucial function of ADAR1-p110 ensuring 
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telomeric stability in cancer cells (Shiromoto et al., 2021). R-loops, however, are formed genome-wide 

(Yan et al., 2019) and in chapter 4.1, I presented data correlating RNA editing and DNA mutation by 

ADAR1 with the context of R-loops in Multiple Myeloma. I hypothesized that DNA mutation by 

ADAR1 may not necessarily be the primary function of the enzyme, but rather a collateral damage of 

elevated RNA editing activity, which may be a genome-wide phenomenon in tumors. In this chapter, I 

have presented a series of experiments as proof of this concept. First, I leveraged the power of the VH 

immunoglobulin gene of Ramos AID-/- cells and showed that it can function as a reporter for DNA 

mutation through loss of IgM (chapter 4.2.2). Then, I ensured that ADAR1 is the major A-to-I deaminase 

expressed in Ramos B cells and therefore in the AID-/- cells of the same cell line (chapter 4.2.3). To 

report the potential mutagenic role of ADAR1 in Ramos AID-/-, I recruited the endogenous enzyme 

with the site-directed mRNA editing tool LEAPER (Qu et al., 2019) with multiple pairwise 

combinations of gRNAs, so as to induce loss of IgM (chapter 4.2.4). Loss of IgM was observed in 

Ramos AID-/- cells, the VH genomic locus of which was targeted with a gRNA targeting the coding 

positive-sense strand (and therefore the transcript) and a gRNA about 200bp downstream targeting the 

template negative-sense strand (Figure 4.8C). It has been recently discovered, that the footprint of an 

ADAR dimer for editing dsRNA is 50bp in cis (Song et al., 2020), which would translate to 170Å 

distance along the DNA strand. However, it is not entirely impossible that similar distance can be 

achieved by an ADAR dimer in trans in a genomic locus, such as the VH region. Provided that the 

experiments presented here get validated (such as with the reversion of the stop in the IgM- Ramos AID-

/- cell line, suggested in 4.2.4), it is worth engineering new gRNAs which target the VH in different parts 

of the genomic region, so as to explore the optimal distance required between the gRNAs for ADAR1 

to mutate gDNA.   

Despite the encouraging observations of IgM loss upon targeting the VH region with gRNAs, 

no specific mutations or double-strand breaks in the VH could be associated with this phenotype nor 

RNA editing was detected in the early stages of the experiment. I observed an overall drop in IgM 

expression and, therefore, I tested potential side-effects of the gRNAs. I delivered gRNAs directly upon 

in vitro transcription and I observed abundant loss of IgM through 14 days post-transfection, which at 

21 days IgM populations were regained (Figure 4.10). No RNA editing or DNA mutation data supported 

the observed loss of IgM. This may be due to two reasons: 1) the gRNAs targeting the positive-sense 

coding strand and, therefore the transcript, may function as small-interfering RNAs (siRNAs) and 2) for 

the gRNAs targeting the negative-sense template strand this may be due to resolution of transient R-

loops between the gRNA and the template strand by RNAseH, as reported by Shiromoto et al., 2021.  

These limitations encouraged me to reconsider the system for reporting that RNA editing may 

lead to DNA mutation. First, it is crucial to eliminate the background of cells in which RNA editing did 

not occur and then propagate the specifically RNA-edited cell population to look for DNA mutations. 

As discussed in chapter 4.2.5, I employed a HEK cell line, previously described in Montiel-Gonzalez et 

al., 2013, which expresses a cassette of mCherry and an in inactivated eGFP due to a premature UAG 
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stop codon (Figure 4.11A). I employed the λN-ADAR tool, developed by the same group to edit the 

eGFP transcript, which lead to UAG>UGG editing with a specific gRNA (gGFP) and, therefore, 

produced a fluorescent eGFP protein (Figure 4.11B). I sorted eGFP-activated cells after 72h post-

transfection, the timepoint that showed the highest level of editing (33%) on the transcript. 25 000 eGFP-

activated cells were the priming population, which I focused on to look for DNA mutation (Figure 

4.12A). I propagated this population for further growth for 2 weeks, allowing the loss of the plasmids 

with the editing components (4λN-ADAR-and gGFP). The very few cells that remained eGFP-activated 

were sorted in single cells (Figure 4.12B) and 2 weeks after I screened the successfully grown clones 

for eGFP signal. 1 clone showed heterogeneously eGFP-activation and was expanded for an additional 

week. I generated and sequenced cassette amplicons from cDNA and gDNA of the eGFP-activated cells 

from the clone sorted (Figure 4.12C). I detected 18% of A-to-G base change in cDNA amplicons, but 

not from gDNA amplicons 5 weeks post-transfection. Although base change is reported from the cDNA, 

this observation may still be a DNA mutation. Throughout my FACS analyses, the HEK cells expressing 

the mCherry and eGFP cassette, showed diversity in mCherry fluorescence and the eGFP-activated cells 

were mostly at high mCherry fluorescence. This means that the cassette is likely incorporated in the 

genome of HEK cells in definitely more than one copies, which may be the reason why this mutation 

does not pass the limit of detection from gDNA amplicon chromatograms. If this is true, my findings 

are the first indication for the mutation rate by ADAR in a cell population, occurring at 1 in 25 000, 

accounted by the number of eGFP-activated clones in the number of the priming GFP-activated cell 

population. To validate the mutation rate and hopefully detect A-to-G mutations from the gDNA 

amplicons of the mCherry/eGFP cassette, I upscaled the priming population of eGFP-activated cells due 

to RNA editing to 350 000. Following the same strategy as the original experiment (but increasing the 

incubation time for 2 more weeks prior to single-cell sorting), I obtained 7 clones at the endpoint being 

heterogeneously eGFP+ (Figure 4.13A), similar to what I observed before, which accounts the mutation 

rate for this experiment at 1 in 50 000. However, I detected again A-to-G base change (~23%) from the 

cDNA and not gDNA amplicons of the cassette (Figure 4.13B). I therefore wondered whether my 

observations thus far (particularly not being able to detect A-to-G base change from the gDNA 

amplicons), has something to do with the fact that the λN-ADAR tool is employing an engineered 

deaminase domain and not an endogenously expressed ADAR.  

To address whether ADAR1-dependent RNA editing would lead to DNA mutation by the 

endogenous enzyme, I employed RESTORE, a site directed mRNA editing tool which recruits the 

endogenously expressed ADAR1 with a gRNA containing a GluR2 loop (Merkle et al., 2019 and chapter 

1.3.2). My colleagues, Dr. Riccardo Pecori and Beatrice Casati, previously designed an efficient plasmid 

vector (see 4.2.6, gGFP_R) which activates eGFP in the HEK cell line expressing the mCherry/eGFP 

cassette I  have used thus far. I transfected this cell line with the aforementioned gGFP_R plasmid vector, 

along with the appropriate controls, and I repeated the experiment following an optimized experimental 

pipeline to properly eliminate the background of unedited cells (summarized in Figure 4.14A and 
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explained in 4.2.6). 72h post-transfection I generated 25 000 eGFP-activated cells through RNA editing 

as the priming population, on which I later focus to detect DNA mutation (Figure 4.14B). After 2 weeks 

in culture I sorted the remaining double-positive (eGFP and mCherry) cells in bulk to eliminate the 

background of unedited cells and propagated them for further growth for three weeks with no selection 

pressure for keeping the gGFP_R plasmid. 5 weeks post-transfection, I performed a single-cell sorting 

experiment (Figure 4.14C) for the remaining small double-positive population (<0.1%). 8 weeks overall 

post-transfection about 70% of the wells seeded with single cells successfully grew, of which ~61% 

were heterogeneously eGFP+ after screening with optical microscopy. 56 clones were highly eGFP+ 

(>50% of the clone), which I further expanded in 24 well-plates for 3 days. 16 clones from the 

propagated ones remained eGFP+, with one being purely eGFP+ (Clone IV; FACS data shown in Figure 

4.14D). I isolated RNA and gDNA from the bulk of the clones (not sorted for double-positive) and I 

generated cDNA and gDNA amplicons for the mCherry/eGFP cassette. As I show in the figure 4.14E, 

I detected 100% A-to-G base change from the gDNA amplicon of the clone IV within the on-target 

UAG codon, which is reverted to UGG through mutation and explains the phenotype, absent from the 

negative control. This experiment validates for the first time a likely ADAR1-dependent DNA mutation 

with a rate of 1 in 25 000 (rate counted as 1 endpoint clone arising from the overall number of priming 

edited cells). In ongoing experiments, I am upscaling the priming population of edited cells to validate 

the mutation rate of ADAR1, while I will include an additional negative control, which is an ADAR1-

/- HEK cell line containing the mCherry/eGFP cassette.  

To conclude, the experiments I presented thus far, have clarified a number of points with regards 

to the appropriate strategies that should be employed to detect DNA mutations by ADARs, while I 

reported that ADAR1-dependent DNA mutation may occur in a rate of 1 in 25 000. These experiments 

are a proof of concept to support the correlative data I drew between RNA editing and DNA mutation 

from MM patiens (see 4.1) and ultimately validate my original hypothesis, according to which ADAR1 

may mutate genomes as a collateral damage of its original editing activity (Figure 4.1). Finally, my 

experimental findings also provide a better insight for genome editing tools incorporating ADARs, 

which are currently in development.  
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4.3 Aim 3: RNA deaminases drive SARS-CoV-2 genome evolution 

4.3.1 Preface 

As introduced in the chapter 1.2.4, the ssRNA(+) genome of SARS-CoV-2 or its dsRNA 

intermediates is targeted by deaminases from both the ADAR and APOBEC families, with C-to-U and 

A-to-G changes compiling about 65% of the documented mutations thus far (Giorgio et al., 2020; 

Klimczak et al., 2020; Poulain et al., 2020; Wang et al., 2020). In particular, it has been shown that 

enzymes from the APOBEC3 subfamily are likely driving the C-to-U mutagenesis in SARS-CoV-2 

(Poulain et al., 2020). As per the A-to-G mutagenesis, the cytoplasmic isoform ADAR1-p150 is the one 

generally editing the double-stranded intermediates of RNA viruses replicating into the cytoplasm 

(Lamers et al., 2019), which appears to be the case for other RNA viruses as well, such as HIV-1 (Doria 

et al., 2009). It is therefore clear that RNA deaminases are mutating the SARS-CoV-2 genome, as well 

as how they do that mechanistically. However, what remains unclear is how the variation due to RNA 

deaminases is shaping the evolution of the viral genome. And in the case of SARS-CoV-2, the virus 

responsible for the ongoing COVID-19 pandemic (Cucinotta and Vanelli, 2020), this is crucial to know 

as several variants of concern (VOCs) appear to have been evolved worldwide, being able to bypass the 

population immunity and further trigger and prolong the pandemic.  

Here, I hypothesize that RNA deaminases are actually responsible for the variant evolution of 

SARS-CoV-2 in the following way: as infection from one individual to another occurs, an RNA 

deaminase may mutate the viral genome introducing a founding mutation, which if selected, it will pass 

to the next individual infected; and when inter-individual infection continues, more mutations will be 

selected and co-exist in the genome. From an evolutionary perspective, this is similar to how tumors 

also select and build their mutational loads, only from selection and expansion of mutations from one 

cell to the other within the entity; a phenomenon called clonal evolution (Greaves and Maley, 2012). A 

clear example is Multiple Myeloma, the focus of my first aim in the present dissertation (see 4.1), in 

which clonal evolution upon a strict selection of myeloma plasma cells is key in disease progression 

(Lagana et al., 2017). Therefore, here I am leveraging the power of publicly available SARS-CoV-2 

sequence data from the United States (see 3.4.1) to address my bigger question from a fast-track 

evolution perspective, which is no other than exploring whether it is in the destiny of RNA deaminases 

to damage genomes, by introducing mutations opportunistically, which upon selection may be 

damaging.  

 

4.3.2 SARS-CoV-2 genome gradually accumulates specific mutations over time.  

I obtained overall 62 211 SARS-CoV-2 genome wide sequences, from which I called single-

nucleotide variations (SNVs), comparing them against the reference sequence of SARS-CoV-2 (see 

3.4.1), isolated from the first individual infected in Wuhan China in December 2019 (Wu et al., 2020). 

The sequence cohort I employed represents infections in the United States from the first 15 months of 

the COVID-19 pandemic (see 3.4.1). First, I calculated the number of SNVs per sequence and, as shown 
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in Figure 4.15A, the median number of SNVs per sequence (also termed here as viral isolate) and per 

date is gradually increasing with time, indicating that SARS-CoV-2 is indeed gradually accumulating 

mutations as infection rates continue to rise. To obtain the intrinsic pattern of mutations, I asked how 

many kinds of different SNVs were found in the viral genome, counting an SNV from each genomic 

coordinate once. I found (Figure 4.15B), that C-to-U (shown as C>T) was the predominant SNV, 

followed by G-to-U (G>T), A-to-G (A>G) and U-to-C (T>C) at very similar levels, as well as G-to-A 

(G>A), as other studies also found (Giorgio et al., 2020; Klimczak et al., 2020). C>T mutations are 

attributed to APOBEC3 activity (Poulain et al., 2020), while A>G and T>C to ADAR1 activity, with 

the latter to have raised as an A>G change in the negative-sense strand of the dsRNA viral intermediate 

as suggested by Giorgio et al., 2020, similarly to what I described for Figure 4.1. I then tallied robustly 

the different kinds of SNVs separately for each Open Reading Frame (ORF) of the SARS-CoV-2 

genome (Figure 4.15C), and I observed that different SNVs were enriched for different ORFs. For 

instance, C>T SNVs were enriched over others in ORF1a, 1b, 5(M), 8 and 9(N), A>G in ORF2 encoding 

for the Spike protein, and G>T in ORF3a. As shown in the Figure 4.14C, it is not surprising that longer 

ORFs are aggregating more mutations, however the enrichment of specific kinds of SNVs in individual 

ORFs indicates the aggregation of specific mutations.    

 
Figure 4.15 The genome of SARS-CoV-2 gradually accumulates specific kinds of SNVs over time. (A) Histogram 

demonstrating that the median of SNVs per sequence (viral isolate; y axis) is steadily increasing over time (Collection 

Date in x axis). Collection dates with at least 5 sequences per day were considered. (B) Bar plot showing the intrinsic 

pattern of mutations in the SARS-CoV-2 genome. SNV substitutions (x axis) were counted throughout the viral genome 

once per genomic coordinate. (C) Different Open Reading Frames (ORFs; x axis) are showing differential mutational 
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bias for example for C>T (ORF 1a, 1b, 5(M), 8, 9), A>G (ORF2(S)), likely through selection of specific mutations. The 

lengths of the different ORFs are given in parentheses below their labels across the x axis in kb. Figure from Tasakis et 

al., 2021. Reused under the Creative Commons License 4.0. The illustration was produced by myself, for the mutation 

calls I received help for a part of the raw data generation as explained in 3.4.2.  

My findings thus far, underline that SARS-CoV-2 is not keeping a stable genome, but instead 

it gradually accumulates different mutations. As shown in Figure 4.15C, the distributions of different 

SNVs tallied robustly per ORF were different than the intrinsic pattern of mutation of the overall viral 

genome (Figure 4.15B), which indicated that the enrichment of specific SNVs in different ORFs is due 

to the recurrence of specific mutations. Indeed, Dr. Marilyn Diaz and Prof. Laurent Verkoczy observed 

that the ratio of missense to silent mutations per SNV (for A>G, T>C, C>T and G>A) was >1, indicating 

positive selection for specific mutations (Tasakis et al., 2021). Therefore, I explored the entire viral 

genome for specific mutations and calculated their frequency within the cohort of sequences. First, I 

focused only in the cohort of sequences from the first 12 months of the pandemic in the United States 

(calendar year 2020) and I found 14 specific missense mutations present in at least 10% of the sequences, 

summarized in Table 4.1 and shown in Figure 4.16A.  

Table 4.1 The 14 predominant mutations found in the SARS-CoV-2 genome in 2020. This table summarizes 

information for the predominant mutations found in at least 10% of the genomes in 2020, and in particular: their SNV 

change to the nucleotide level with the respective position in the genome, the ORF they are found in, the subsequent 

amino acid change and the associated protein function, along with the frequency (%) in the cohort. The mutations shown 

are ranked by Frequency and are also shown in Figure 4.16A. Table from Tasakis et al., 2021 and is reused under the 

Creative Commons License 4.0. This table was produced by myself. I received help for generating mutation calls from 

a fraction of the raw data as explained in 3.4.2.  

Change 

(Nucleotide) 

ORF Change 

(Amino Acid) 

Protein Function  %Frequency 

C14408T 1b P323L RNA-dependent RNA polymerase 82.03% 

A23403G 2 (S) D614G Spike protein; between the RBD and S2 

domains 

80.76% 

G25563T 3a Q57H APA3 viroporin – accessory protein 57.62% 

C1059T 1a T85I Nsp2 48.79% 

C27964T 8 S24L Ig-like protein 15.22% 

T28144C 8 L84S Ig-like protein 14.07% 

C10319T 1a L89F Peptidase C30 12.98% 

A17858G 1b Y541C DNA/RNA helicase domain 12.34% 

C17747T 1b P504L DNA/RNA helicase domain 12.19% 

A18424G 1b N129D Nsp14; 3’-5’ exonuclease 11.08% 

C21304T 1b R216C Nsp16 10.93% 

C28472T 9 P67S Nucleocapsid 10.78% 

G25907T 3a G172V Viroporin 10.76% 

C28869T 9 P199L Nucleocapsid 10.53% 
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The predominant mutations I found in SARS-CoV-2 in 2020 (>10% of the genomes; shown in 

Figure 4.16A and Table 4.1), primarily because of C>U(T) or A>G nucleotide changes pinpointing to 

APOBEC and ADAR activity respectively, had frequencies that varied. Some of them were significantly 

more abundant than others, such as P323L or D614G present in more than 80% of the genomes, which 

drove me to consider that some of them (ie D614G or P323L) perhaps appeared earlier than others and 

were selected. Therefore, I tested their densities within the cohort over time and I found that they follow 

4 distinct patterns (Figure 4.16B). Mutations of pattern A (Figure 4.16B), appeared later in 2020, while 

mutations of patterns B or D appeared generally from the beginning and remained in the cohort with 

variation of abundance throughout the year and mutations of pattern C were present abundantly in the 

beginning and later on disappeared. Here, I give an overview of the mutations grouped by their patterns: 

A. As mentioned above, pattern A is a group of mutations that appeared later in the year at the cohort I 

investigated. Therefore, it is not surprising that they are not within the top ones in the list of 

predominant mutations for 2020. The most frequent of the group (12.98%) and the one that appeared 

the earliest was L89F (Leucine to Phenylalanine), recoding the peptidase C30 encoded by ORF1a, 

also reported by (Wang et al., 2020a). Two additional mutations were the N129D (Asparagine to 

Aspartic-acid at 11.08%) and R216C (Arginine to Cysteine at 10.93%), which co-appeared about the 

same time, recoding the Nsp14 (3’-5’ exonuclease) and Nsp16 respectively from ORF1b as also 

reported by (Pater et al., 2021). Three more mutations, the least frequent, from the group were G172V 

(Glycine to Valine at 10.76%; also found in Hassan et al., 2020) recoding the viroporin expressed by 

ORF3a, as well as P67S (Proline to Serine at 10.78%) and P199L (Proline to Leucine at 10.53%) 

recoding residues from the viral nucleocapsid encoded by ORF9(N), and found in (Pater et al., 2021).  

B. This pattern groups the most abundant mutations in the cohort. The D614G (Aspartic acid to Glycine 

at 80.76%) recodes residues from the Spike protein (ORF2) and it has been extensively discussed in 

the literature, as it was the first mutation to be associated with increased viral infectivity (Hou et al., 

2020). The P323L (Proline to Leucine at 82.03%; also reported by Toyoshima et al., 2020) recodes 

the viral RNA-dependent RNA polymerase encoded by ORF1b and is the first mutation detected in 

the cohort I investigated and the most abundant. Two additional mutations in the group are T85I 

(Threonine to Isoleucine at 48.79%; Laha et al., 2020) recoding the non-structural protein 2 (Nsp2) 

encoded from ORF1a and the mutation Q57H (Glutamine to Histidine at 57.62%; Hassan et al., 

2020) recoding the viroporin expressed by ORF3a.  

C. The mutations that follow the pattern C appeared early in the cohort of 2020, but disappeared halfway 

the year. Two mutations were recoding the DNA/RNA helicase domain by ORF1b were P504L 

(Proline to Leucine at 12.19%) and Y541C (Tyrosine to Cysteine 12.34%). Furthermore, an L84S 

(Leucine to Serine at 14.07%) mutation was recoding the Ig-like protein encoded by ORF8. They 

were previously also found in Wang et al., 2021.  

D. The last pattern I found, contains only one mutation the S24L (Serine to Leucine at 15.22%; Wang 

et al., 2021) which also recodes the Ig-like protein. This mutation presents a very interesting pattern, 
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according to which it “surfs” at small-to-medium range frequencies overtime since the beginning of 

the 2020.  

My findings thus far show that the different predominant mutations in 2020 as described above, 

can potentially co-occur in groups within the cohort of sequences I investigated. I found 4 distinct 

patterns, three of which group at least three mutations (A-C), while the fourth (D) could tag along 

periodically with either of the three above. Therefore, my results thus far indicate that in 2020 there 

were at least 3 different major versions (variants) of the SARS-CoV-2 genome in the United States.  

 

 
Figure 4.16 Selected mutations in the SARS-CoV-2 genome and their dynamic shift of abundance throughout the 

2020. (A) Frequency plot (% frequency in y axis) of the missense mutations detected in the cohort across the SARS-

CoV-2 genome (x axis), organized in distinct ORFs. The predominant missense mutations detected in 2020 in SARS-

CoV-2 are highlighted with dark-purple and labelled according to their amino acid change and protein position. A 

detailed description of these mutations is given in Table 4.1, as well as in the main text. (B) Density plots showing the 

abundance throughout the year 2020 for each of the predominant mutations highlighted in panel A. These mutations are 

grouped by four different patterns (A-D) with regards to their abundance in the cohort over time, indicating that 

mutations may co-occur in at least three different variant versions of the SARS-CoV-2 genomes. Adapted figure from 

Tasakis et al., 2021 under the Creative Commons License 4.0. Data and illustration were produced by myself. I received 

help in generating mutation calls for a fraction of the raw data as explained in 3.4.2. 
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4.3.3 Signatures of co-occurring mutations can explain the SARS-CoV-2 genome evolution 

As I showed above, the different mutations predominantly found in the SARS-CoV-2 genome 

can be grouped within different patterns of presence through time within the cohort of sequences I 

investigated for 2020. In particular, I detected 3 main patterns (A-C) of mutations, according to which 

some mutations were present throughout the cohort, some appeared later and some appeared early but 

disappeared early in 2020. I, therefore, hypothesized that mutations may co-exist in the circulating viral 

genomes and if that is true, they can provide an in-depth resolution to study the genome evolution of 

SARS-CoV-2 toward variant establishment in the population. To address that, I employed an alternative 

approach, which is unbiased to previous nomenclatures proposed to describe the variation of SARS-

CoV-2 (i.e. PANGO, as in suggested by Rambaut et al., 2020). My approach is inspired by the COSMIC 

signatures, which in cancer biology is employed to profile the mutational spectra of tumors (Alexandrov 

et al., 2020, 2013). First, I profiled every genome in the cohort to obtain information of whether the 

relevant sequence had either of the predominant mutations. Relying on that, I compiled a signatures 

“thesaurus”, which contains all the putative signatures of the co-existing predominant mutations 

detected in my dataset. This is demonstrated in the heatmap of Figure 4.17, in which a signature 

(columns) is defined by whether the predominant mutations (summarized in Table 4.1 and rows of the 

heatmap) where found (dark blue) or not (light yellow). I overall detected 48 distinct signatures (s1-48), 

along with the signature s0, which stands for the viral genomes that do not contain any of the 

predominant mutations in 2020. It should be noted, that the signatures were originally compiled with 

8 000 SARS-CoV-2 genomes (see 3.4.2) employed for the analysis due to data availability. When more 

data from 2020 became available and I included them, there was no change for the predominant 

mutations found in 2020, nor a proportional difference of each signature to the overall cohort.   

 
Figure 4.17 Putative signatures of co-occurring mutations in 2020. Unique combinations of the 14 predominant 

mutations detected in 2020 (rows) are compiling 48 distinct putative signatures (columns; s1-48) detected in the cohort 

of SARS-CoV-2 genomes. s0 is the non-variant genome as per this analysis and is also included in the heatmap. The 

number of genomes profiled with each signature is given in the red labels across the x axis. Signatures are ranked by 

their abundance and the ones present in more than 0.1% of genomes were further considered for the downstream 

analyses. The presence or absence of a mutation in a given signature is colored with blue or yellow respectively. Figure 

from Tasakis et al., 2021 under the Creative Commons License 4.0. The data and illustration were produced by myself. 
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 For the downstream analysis, I focused on the signatures that were found in 0.1% or more of 

the cohort of genomes in 2020, representing the top 15 most abundant signatures I found in 2020, 

including the non-variant s0. I obtained the first sequence found in the cohort from each of the top 15 

signatures, along with the reference sequence for SARS-CoV-2 isolated from the patient-zero in Wuhan, 

China (Wuhan-Hu-1) and performed a real-time phylogenetic analysis (see 3.4.3). In Figure 4.18, I 

present the real-time phylogenetic tree that derived from the analysis, rooted to the Wuhan-Hu-1 (purple 

dot), noting the first (light blue) and last (red) sequence detected (by date) per signature in the cohort, 

along with the mutations acquired (red) or lost (grey) in the different clades. I found that the s0 was one 

of the first detected, along with signatures s1, s12 and s17, containing the mutations of pattern C 

(ORF1b: P504L, ORF1b: Y541C and ORF8: L84S). All those signatures were not detected ever since 

late May 2020. Instead, they were replaced by other signatures, which gradually accumulated mutations. 

One of the first acquired were the ORF1b: P323L and ORF2(S): D614G, leading to s6, followed by 

ORF3a: Q57H and ORF1a: T85I, leading to s22, followed by ORF8: S24L and ORF1a: L89F toward 

s34. A mutational burst of ORF1b: N129D, R216C, 3a: G172V, 9(N): P67S and P199L has led to one 

of the most predominant signatures s48. Throughout this process a number of other related signatures 

appeared, but the most prevalent (also in abundance; see Figure 4.17) toward the end of 2020, was the 

signatures s6, s22 and s48. These three signatures likely represent three major variants circulating the 

United States as I predicted above relying on the patterns A-D.  

 
Figure 4.18 Time-scaled phylogenetic analysis relying on the signatures detected in 2020. 14 signatures of co-

occurring predominant mutations in 2020 and the non-variant (s0) as per this analysis, were found in more than 0.1% of 

the SARS-CoV-2 genomes. The first sequences found in 2020 from each signature were employed for a time-scaled 

phylogenetic analysis (see 3.4.3), which revealed a gradual and processive acquisition of mutations (red labels in the 
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tree branches), with occasional losses (grey labels) toward more complex signatures over time. The original isolate of 

SARS-CoV-2 (reference genome, see 3.4.1), noted as “Wuhan-Hu-1” (purple dot) in the phylogenetic tree was the root 

for this analysis. The first and the last viral genomes detected from each signature in 2020 are annotated on the tree with 

blue and red dots respectively. The non-variant s0 (labelled in red) and the less complex signatures s1, s12 and s7 defined 

by mutations from pattern C (see Figure 4.16B), disappeared early on by June 2020. Most of the viral genomes thereafter 

were profiled with signatures of increased complexity, which all contain the S:D614G (besides the shortly present s8) 

and ORF1b:P323L. The first group that appeared was the one of signatures s2, s6, s11, s22, compiled by mutations of 

pattern B. Downstream, the viral genomes further acquired mutations of patterns A and D (see Figure 4.16B), first 

revealing the signatures s28 and s34, and a burst of additional mutations from pattern A, likely originating from June 

2020, formed the signatures s48, s41 and s42. By the end of the year 2020 or very early 2021 the predominant signatures 

were overall s6, s22 and s48. Adapted figure from Tasakis et al., 2021 and under the Creative Commons License 4.0. 

The data and illustration were produced by myself.  

4.3.4 Appearance of Variants of Concern is shifting the SARS-CoV-2 mutational profile from 

2020 to an entirely different in 2021.  

Thus far, I have shown that the SARS-CoV-2 genome aggregates mutations progressively, most 

of which are attributable to ADAR and APOBEC activity as introduced in 1.2.4 and 4.3.1. As host-to-

host infections continue to occur, mutations are being generated, selected and further expand setting a 

different genomic profile for SARS-CoV-2 that is rapidly changing. In fact, the non-variant genomic 

profile (Wuhan-Hu-1 or s0 in Figure 4.17) is not circulating since late May 2020. My data have shown 

that by the end of 2020 there are three major variants (s6, s22 and s48) that were circulating the United 

States. These variants have been generated through gradual accumulation of selected mutations within 

the population. However, since late 2020 a number of variants were already reported, which were noted 

as variants of concern (VOCs) because of accumulated mutations in the spike protein, a key component 

in SARS-CoV-2 infection (see 1.2.4; Rambaut et al., 2020). The presence of such variants, being 

evolutionarily fit to potentially bypass the population immunity and out-crowd other less infectious 

variants from the population (Darby and Hiscox, 2021), is another parameter that I consider in my 

analysis. Here, I apply the signature-based methods I have described thus far from 2020 to mid-2021, 

but I also consider that VOCs may be masking the mutations of the homegrown variants I explored thus 

far.  

 I first focused on the ORF2 genomic region of SARS-CoV-2, which encodes for the spike 

protein, which is crucial for the viral infectivity and mutations in the spike raise concern for generation 

of more infectious variants (Darby and Hiscox, 2021). The only mutation as predominant in the spike 

protein thus far is the D614G (Table 4.1). However, I found a number of mutations in very low 

frequencies. In Figure 4.19A, I present the low frequency spike mutations (LFSM; >0.1% of the 

genomes) per quarter of the year 2020 (Q1-Q4), highlighting the different subunits of the spike: RBD 

(Receptor-binding domain), FCS (Furin Cleavage site), FP (Fusion Peptide), HR1 (Heptad Repeat 1) 

and HR2. Although in low frequencies, the abundance of mutations increases dramatically from Q1 to 

Q4, especially in the RBD which is binding to the host’s receptor ACE2 for initiating the infection (see 

1.2.4 and Yi et al., 2020). Interestingly, I also observed that near the FCS there is a hypermutable region 
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(675-681), which even has a single residue Q677 being mutated in multiple ways (Q677H by different 

nucleotide changes or Q677R). This LFSM is a dynamic pool providing the grounds for selection and, 

indeed, a few of those mutations rose to prominence in 2021 (Figure 4.19B). I performed the same 

analysis for 2021 (as I did for 2020), in order to report the predominant mutations of 2021. In Figure 

4.19B, I summarize the mutations found in >10% of the genomes in 2021 alone and I highlight with red 

the mutations that were novel for 2021. Additionally, I noted with an asterisk (*) the mutations which I 

previously observed as LFSM and are carried in the cohort because of VOCs that rose to prominence, 

as I present in the next paragraph.   

 
Figure 4.19 A fraction of low frequency spike mutations become predominant in 2021. (A) Throughout 2020 there 

was only one predominant mutation (>10% of the genomes) in the Spike protein (D614G; shown in Figure 4.16A), 

however a number of low frequency spike mutations (LFSMs; >0.1% frequency) was being accumulated throughout the 

year 2020. This plot shows the number of sequences (n; SARS-CoV-2 genomes) that each LFSM was found in the 

different quartiles(Q1-Q4) of 2020. The different mutations are discussed in the main text of 4.3.4. The different domains 

of the Spike protein are color-coded: in red is the receptor binding domain (RBD), in green the furin cleavage site (FCS), 

in orange the fusion peptide (FP), in turquoise is the heptad repeat region-1 (HR1) and in violet the heptad repeat region-

2 (HR2). (B) Frequency plot of the predominant missense mutations (n=34; >10% frequency) detected from the SARS-

CoV-2 genomes isolated in 2021. 12 of the previously identified predominant mutations in 2020 are still predominantly 
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found in 2021 (shown in purple labels) and 22 new ones prominently appeared (highlighted in red). A few of the LFSMs 

found in the Q4 of 2020 became prominent Spike mutations in SARS-CoV-2 in 2021 (noted with asterisks), which is 

due to the abundance of variants of concern (VOCs) in 2021. Not all predominant mutations are labelled. The complete 

set of mutations is in the heatmap of Figure 4.21. Adapted figure from Tasakis et al., 2021 under the Creative Commons 

License 4.0. The data and illustration were produced by myself based on suggestions by Dr. Marilyn Diaz (for panel A). 

 As I showed in Figure 4.19B, in 2021 alone I overall detected 34 predominant mutations (>10% 

of the genomes), 12 of which were previously reported as predominant in 2020 (Figure 4.16A). From 

2020 to 2021, the mutations P504L and Y541C found in the ORF1b lost their prominence, but 22 new 

ones rose to prominence in 2021 (labelled in red in Figure 4.19B and summarized in Figure 4.21). By 

the end of 2020 a number of VOCs were reported worldwide (Sanyaolu et al., 2021), a handful of which 

I also found the cohort I investigated covering genomes till the end of March 2021, after profiling my 

dataset with the pangolin tool (see 3.4.2) for the PANGO lineages (Rambaut et al., 2020; O’Toole et al., 

2021). The variants I detected with the number of genomes (n) in parentheses are summarized here 

below and their defining mutations in the Spike-encoding ORF2 are shown in Figure 4.20: 

• B.1.1.7 (n=5166): first detected in September 2020 in the United Kingdom and rapidly spread 

worldwide, being identified as very infectious and able to escape antibody neutralization 

(Davies et al., 2021; O’Toole et al., 2021; Planas et al., 2021),  

• B.1.429 (n=2285) and B.1.427 (n=1030): first detected in California, United States in July and 

June 2020 respectively (McCallum et al., 2021), 

• B.1.526 (n=150): detected first in New York City, United States (West et al., 2021), 

• P.1 (n=52): first reported in Brazil in February 2020 as a highly concerning variant due to being 

able to escape neutralizing antibodies (Maggi et al., 2021; P. Wang et al., 2021), 

• B.1.351 (n=39): first reported in South Africa in October 2020 and shown to also be able to 

escape antibody neutralization (Planas et al., 2021).  

 
Figure 4.20 Variants of concern detected and their defining spike mutations. 6 different variants of concern (VOCs) 

were detected in the cohort of SARS-CoV-2 genomes in 2021. In this schematic representation the different Spike 

mutations, which define each VOC, are shown across the protein sequence. The different domains of the protein are 

color coded, same as in Figure 4.19A. Figure from Tasakis et al., 2021. It is reused under the Creative Commons License 

4.0. This illustration was produced by myself. 
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 After comparing the defining Spike mutations of the different variants shown in Figure 4.20, 

with the predominant mutations I found in the first three months of 2021 (Figure 4.19B and 4.21), I 

realized that the mutations reported as predominant were mostly because they were carried in due to the 

increasing abundance of the VOCs. For example, the mutations S13I, W152C and L452R are 

predominant due to the B.1.427/B.1.419, while A570D, S982A, P681H, D1118H, are due to B.1.1.7 

and N501Y is due to B.1.1.7, B.1.351, and P.1 together. For the same reason, the mutations T183I, 

A890D, I1412T are in ORF1a are also predominant due to B.1.1.7 and the D260Y in ORF1b due to 

B.1.427/B.1.419 (Tzou et al., 2020; O’Toole et al., 2021). However, I noticed that there are mutations, 

such as the ORF1a: M1788I, which were not found in any VOCs from the ones I detected in my dataset. 

Therefore, I extended the signatures analysis I described above and, first, projected the signatures I 

found in 2020 to 2021, and second, I called new signatures from the mutations found prominent in 2021 

alone in the exact same way as I described before. I found that the signature s48 (Figure 4.17 and 4.18) 

was the only one from 2020 that was still abundant (about 20% of the genomes in 2021) across the 

United States, while a few others were barely detectable. Furthermore, I found 348 new putative 

signatures in 2021 (starting with ‘i’; summarized in heatmap of Figure 4.21) and I realized that the VOCs 

were appearing in my dataset as different, yet related, signatures (Figure 4.22). For example, B.1.1.7, 

the most abundant VOC in my dataset (up to March 2021) had primarily the signature i342, but also as 

i335 or i300 etc. (Figure 4.22).  

 
Figure 4.21 Putative signatures of co-occurring predominant mutations in 2021. Heatmap summarizing the unique 

combinations of mutations predominantly found in SARS-CoV-2 genomes in 2021 (rows), which compile a set of overall 

348 new signatures (columns). Presence or absence of mutation in a given signature is noted with blue or yellow 

respectively. The number of genomes supporting a signature is given in a red label across the x axis and only signatures 

with more than 9 genomes are demonstrated. The signature s48 (not shown), first detected in 2020, was also abundantly 

present in 2021 as the top signature (5838 genomes). Adapted figure from Tasakis et al., 2021 under the Creative 

Commons License 4.0. The data and illustration were produced by myself. 
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 The signature-approach I propose here, which relies on the unique combinations of co-existing 

mutations, is a method that provides an in-depth resolution with regards to the acquisition of mutations, 

which in the case of SARS-CoV-2 is dynamic. As I present in the Figure 4.22, all the VOCs I detected 

in the data covering through March 2021, have been profiled with more than one signatures. B.1.1.7 is 

mainly present in my dataset with the signature i342, and less frequently with a number of other 

signatures (i.e. i300-348). In this case i342 is the typical B.1.1.7 variant with its defining mutations as 

in (O’Toole et al., 2021) and the other signatures are representing B.1.1.7 sub-variants, perhaps specific 

to the United States. The same applies for the variants B.1.427/B.1.429 primarily sharing the signature 

i179, but also appearing in other signatures (i.e. i144-200). However, despite of the presence of the 

VOCs in the first quarter of 2021, the thus-far non-concerning lineage B.1.2 was still abundant in the 

United States, representing 1/3 of the total number of genomes in 2021. The signature s48 that “grew” 

in the United States in 2020, as I showed earlier (see 4.3.3), and is still prevalent in the dataset in 2021, 

accounting about ¼ of the genomes profiled with B.1.2. However, more signatures, such as i264 and 

i286, which are related to s48 are abundant for B.1.2 as well and likely evolved from s48. Despite the 

fact that this clade of the lineages has not been identified yet as problematic, it is not unlikely that it may 

in fact be one, since there is a clear positive selection for s48 and related signatures.  

 To conclude, the genomic profile of SARS-CoV-2 has significantly changed ever since the 

beginning from the pandemic and the jump from 2020 to 2021 was crucial, especially considering the 

presence of VOCs. In Figure 4.23, I focus in States that had an adequate number of sequences covering 

the 15 first month of the pandemic I investigated. The first striking observation is that the non-variant 

s0 version of the virus is absent as of June 2020 in all States, if present. For instance, according to my 

findings, Florida (FL) or Maryland (MD) never had the non-variant version. Furthermore, from the 

beginning of the pandemic and before 2021, there were a number of different signatures of co-existing 

mutations circulating already, but by the end of 2020 a few were being selected. For example, in 

California (CA), Massachusetts (MA) and Maryland (MD), s6, s22 and s48 were the ones present mostly 

by the end of 2020, while in Wisconsin (WI) and Washington (WA) s6 and s48 were the major ones. In 

Florida, s48 was prominent only as of early 2021, which may have happened through migration of viral 

genomes. From 2020 to 2021, the only signature that unanimously remains is the s48, while a plethora 

of new signatures appears in 2021 (starting with ‘i’), shifting virtually entirely the mutational profile of 

the SARS-CoV-2. The same time, VOCs were abundantly present and in many different mutational 

profiles (Figure 4.22). B.1.1.7 was the major VOC I found in early 2021, representing in about 20% of 

the viral genomes (highlighted signature colors in red, Figure 4.23). Even more abundant, however, and 

more diverse as per signatures, was the “non-concerning” lineage B.1.2 (signature labels in blue, Figure 

4.23). Overall, the viral genome has changed dynamically ever since the beginning of the pandemic, as 

many different variants appear through gradual accumulation of mutations, which is likely through the 

continuous infections. This variation, especially in the spike protein, but also important in the other 

genomic regions of SARS-CoV-2 is crucial for vaccination strategies or emerging therapeutics.  
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Figure 4.22 A mutational signature approach provides high resolution in SARS-CoV-2 genome evolution. 6 

different variants of concern were abundantly detected in 2021 within the cohort of SARS-CoV-2 genomes: B.1.1.7, 

B.1.429, B.1.427, B.1.526, B.1.351 and P.1. However, the predominant lineage of genomes (1/3 of the cohort) is the 

non-concerning B.1.2 thus far. This Sankey diagram shows the different signatures of co-occurring mutations detected 

in 2021 in >0.01% of the cohort (left) and to which variant lineages their respective genomes belong to (right). Although 

there are some major signatures profiling a variant lineage (i.e. i342 for B.1.1.7), there is a number of additional 

signatures per lineage. The thickness of the different connections corresponds to the abundance of the genomes 

supporting the connection. The number of genomes per signature are shown in Figure 4.21. Figure from Tasakis et al., 

2021. It is reused under the Creative Commons License 4.0. The data and illustration were produced by myself. 
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Figure 4.23 The mutational signatures of SARS-CoV-2 underline a dynamically changing profile, which is diverse 

even between different geographic locations of the United States. This multi-faceted density plot shows the 

abundance of each signature (y axes; found in at >0.1% of genomes) over time (x axes) throughout the year 2020 and 

the first quartile of 2021 for 6 states. The states of California (CA), Florida (FL), Massachusetts (MA), Maryland (MD), 

Washington (WA) and Wisconsin (WI), were selected because they had adequate number viral genomes (n) covering 
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the complete collection time of the cohort (the entire 2020 and first quartile of 2021). The shaded areas at the beginning 

and the end of each plot correspond to the time in which limited data were only available. Density curves are filled 

gradually changing colors to show transition in time. Overall the mutational profile of SARS-CoV-2 has utterly changed 

from 2020 to 2021. The non-variant s0 is absent since June 2020, while it was not detected at all in FL and MD. About 

the same time s0 disappeared, the signature s48 among others emerged and in 2021 s48 remained the predominant 

signature. s48 belongs to the B.1.2 lineage and in 2021 more related signatures of the same lineage emerged (highlighted 

in blue), which evolved by acquiring new mutations. The utter shift in 2021 is also partly due to the appearance of VOCs 

due to migration, and in particular the B.1.1.7 (related signatures to this variant are highlighted in red). Figure from 

Tasakis et al., 2021. Reused under the Creative Commons License 4.0. The data and illustration were produced by 

myself. 

4.3.5 Variants of concern accumulate additional Spike mutations and are further evolving.  

I previously found that VOCs, such as B.1.1.7, B.1.427/B.1.429, B.1.526, P.1 and B.1.351, were 

present in my dataset (see Figure 4.20 and associated text) and were profiled with different signatures 

of co-occurring mutations in their genomes (Figure 4.22). This suggests that VOCs may accumulate 

mutations and further evolve. In the cohort I investigated, most of the VOCs appeared in the United 

States by the end of 2020 and were abundant in the first quarter of 2021. As shown in Figure 4.24, the 

most abundant VOC is the B.1.1.7 (n=5166 genomes), while B.1.429 and B.1.427 were also abundant 

with n=2285 and n=1030 genomes respectively, followed by B.1.526 (n=150), P.1 (n=52) and B.1.351 

(n=39). Such variants warrant surveillance due to the spike mutations they carry, which may interfere 

with immunization strategies, such as vaccinations (Darby and Hiscox, 2021). Therefore, I focused on 

the spike protein and identified spike mutations other than their defining ones (shown in Figure 4.20). 

As shown in Figure 4.24, I identified a number of spike mutations some of which were sporadic (blue 

labels; low frequency but >0.1% of VOC genomes) and others were more frequent and recurrent (red 

labels). The latter ones are noted as of the date of their appearance and detected thereafter in overall 

frequency of >1% of genomes per VOC.  

Interestingly, the mutation L5F, which I first detected as LFSM “surfing” throughout 2020 in 

low frequencies (see Figure 4.19A), now appears recurrently in B.1.1.7, B.1.429, B.1.526 and P.1 

genomes. This mutation has now been described thus far as problematic, but there is a clear positive 

selection for it, as my data show. Furthermore, B.1.427 genomes have acquired S13I and W152C 

mutations, which are part of the defining mutations of B.1.429. It should be noted, that these two separate 

variants are now appearing as a merged B.1.427/B.1.429 (McCallum et al., 2021). Because of examples 

as such, I looked into the possibility that SARS-CoV-2 may recombine, as others in the literature have 

noted this possibility (Gallaher, 2020), but I did not detect in my cohort of genomes evidence of 

recombination. Moreover, mutations such as Q677H or Q677R, T859I, V1040F, V1176F or E1202Q, 

which I also found as LFSM in 2020 are appearing in low frequency mutations in the Spike of VOCs in 

2021, which indicates that there is a driving force for recurrent mutations. This can potentially be 

possible due to ADAR or APOBEC activity, considering that they have preferential deamination motifs 

(Giorgio et al., 2020; Mourier et al., 2021), which could explain mutations in specific genomic positions. 
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Figure 4.24 Variants of concern are further evolving by acquiring additional spike mutations. 6 VOCs were 

detected in the cohort of SARS-CoV-2 genomes from the end of 2020, but primarily in the first quartile of 2021. The 

VOCs detected by abundance were B.1.1.7 (n=5166), B.1.429 (n=2285), B.1.427 (n=1030), B.1.526 (n=150), P.1 

(n=52), B.1.351 (n=39). Frequency histograms for every VOC are showing the number of isolates (n; y axes) over time 

(x axes). On the histograms, additional spike mutations, other than their defining ones (Figure 4.20), are annotated with 

labels at the time of their first appearance. Labels in bold red are showing recurrent mutations found in more than 1% of 

the genomes from the respective VOC thereafter, while labels in light blue are showing less frequent mutations (<1% 

and >0.1% of genomes). L5F is a recurrent mutation, which is now found in almost all the VOCs and was also detected 

as an LFSM (Figure 4.19A), “surfing” in low frequencies in 2020. Additional mutations were found as LFSMs, such as 

Q677H, Q677R, T859I among others. Adapted figure from Tasakis et al., 2021 under the Creative Commons License 

4.0. The data and illustration were produced by myself based on suggestions by Dr. Marilyn Diaz, Prof. Laurent 

Verkoczy and Prof. Papavasiliou.  

4.3.6 Discussion  

The first case of COVID-19 was reported in Wuhan, China in December 2019 after an infection 

of a novel coronavirus, later termed as SARS-CoV-2 (Wang et al., 2020). SARS-CoV-2 is a positive-

sense single-stranded RNA (ssRNA+) coronavirus and its rapid worldwide spread led the World Health 

Organization to declare COVID-19 a global pandemic on March 11th, 2020 (Cucinotta and Vanelli, 

2020). Up until the third quartile of 2020, it was widely believed that SARS-CoV-2 is keeping a stable 

genomic profile, because its genome encodes for a non-structural protein 14 (Nsp14) guaranteeing a 

strict proofreading activity during RNA synthesis toward viral replication, also found in SARS-CoV-1 

(Rausch et al., 2020). However, by early 2021 and even more so now, a number of variants have been 

reported as concerning (termed as Variants of Concern or VOCs) due to mutations in the viral Spike 

protein, which is recognized by the host’s receptor ACE2 initiating the infection (Sanyaolu et al., 2021). 

I hypothesized that the driving force behind the accumulation of mutations in the SARS-CoV-2 genome 
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is the continuous interindividual spread of the virus through infection for two major reasons: 1) 

intracellular enzymatic mechanisms, such as ADARs or APOBECs deaminases, may be the reason for 

generating mutations in the viral genome, and 2) through successful infections, mutations may be 

selected toward enhancing SARS-CoV-2 for immune evasion, establishing an overall “efficient” viral 

profile to bypass immunity. Therefore, as infections continue to occur with time they should be 

accumulating progressively though selection and expansion.  

I tested my hypothesis in a cohort of 62 211 fully covered and publicly available SARS-CoV-2 

genomes isolated from infected individuals from the United States from early 2020 up until March 2021 

(see 3.4.1). First, I found that mutations in the viral genome are indeed gradually accumulating over 

time as I hypothesized (Figure 4.15A) and, second, the intrinsic pattern of mutations in my cohort 

(Figure 4.15B) pinpoints to primarily APOBEC and ADAR deaminase activity in the viral genome, as 

others also found (Giorgio et al., 2020; Klimczak et al., 2020). The vast majority of mutations across 

the SARS-CoV-2 genome were C-to-U(T) which are generally attributed to the activity of APOBEC3 

deaminases, which is mechanistically possible since they can target ssRNA (Poulain et al., 2020). This 

broadens even more the horizons of the functions of the APOBEC3 subfamily, especially considering 

that they were previously considered as antivirals (Stavrou and Ross, 2015). A-to-G or T-to-C base 

changes in the viral genome have been attributed ADAR activity on dsRNA intermediates of SARS-

CoV-2 during viral replication (Giorgio et al., 2020), which should be fundamentally possible by the 

primarily cytoplasmic and interferon-inducible ADAR1-p150 isoform as also suggested for other 

viruses (Doria et al., 2009; Lamers et al., 2019). However, it is not impossible that other RNA 

modifications in the SARS-CoV-2 genome have given rise to mutations. For example, the G-to-U(T) 

change, which is also prevalent in the intrinsic pattern (Figure 4.15B), may be due to methylated m22G 

or m1G guanosines according to a high throughput method for identifying RNA modifications through 

cDNA sequencing (Ryvkin et al., 2013). Intracellular mechanisms of RNA modification and editing can 

therefore be crucial for SARS-CoV-2 genome evolution as infections continue to occur and the virus is 

aggregating mutations progressively.  

A first step to explore with my dataset how the genome of SARS-CoV-2 has evolved, was to 

evaluate the predominant mutations in the viral genome. I observed that the distribution of the various 

Single Nucleotide Variations (SNVs) in aggregate per Open Reading Frame (ORF) of the SARS-CoV-

2 genome (Figure 4.15C) was different from the intrinsic pattern of mutations (Figure 4.15B). This was 

due to the fact that specific mutations were enriched in the different ORFs. I therefore screened the 

SARS-CoV-2 genome and I found that in 2020 there were 14 predominant mutations (in at least 10% 

of the sequences/genomes of the cohort), summarized in Table 4.1 and Figure 4.16A. Most of these 

mutations were due to C-to-U(T) or A-to-G/T-to-C base changes and among the top ones I found the 

mutation D614G (>80% frequency) in the Spike protein. D614G was the first mutation thoroughly 

explored as it was noted as concerning, due to association with increased infectivity and severity of 

COVID-19 (Hou et al., 2020). But other mutations I also found as predominant, were in key components 
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of the virus, such as the P323L (~82% frequency) in the RNA-dependent RNA polymerase or the N129D 

in the proof-reading exonuclease Nsp14 (~11% frequency). Due to discrepancies in the mutation 

frequencies, I considered that there may be different timing patterns between the different mutations, as 

per when they appeared in the cohort or when they were brought to prominence. I indeed found that the 

14 predominant mutations in 2020 (Figure 4.16A and Table 4.1) were grouped into four distinct different 

patterns (A-D, Figure 4.16B) with regards to their abundance during 2020. Particularly, pattern A 

represents a group of mutations that appeared in the second half of 2020 (ORF1a: L89F, 1b: N129D, 

R216C, 3a: G172V, N: P199L, N: P67S), pattern B entails mutations that were abundantly present 

throughout 2020 (ORF1a: T85I, 1b: P323L, S:D614G, 3a: Q57H), while pattern C mutations that were 

abundant early in 2020 (ORF 1b: P540L, Y541C, 8:L84S) and disappeared as soon as the mutations of 

pattern A appeared, and last, one mutation (ORF8: S24L) which follows a unique pattern D,  appearing 

to “surf” throughout the year 2020. These findings indicate that there were at least three major SARS-

CoV-2 genomic variants circulating the United States in 2020, according to my findings.  

Noticing that the different predominant mutations in 2020 were appearing in groups, I decided 

to further explore the genome evolution of SARS-CoV-2 with a signature approach of co-existing 

mutations (for the predominant ones in 2020), inspired by the COSMIC signatures which profile cancer 

genomes (Alexandrov et al., 2020, 2013). I first compiled a “dictionary” of signatures, which I 

constructed by calling all the different combinations of mutations existing in my cohort, accounting for 

overall 48 putative signatures (s1-s48; Figure 4.17), different than the non-variant genome (s0). I 

focused for the downstream analyses on the signatures that profiled at least 0.1% of the genomes in my 

cohort, which was 15 variant signatures and the non-variant s0. I performed a time-scaled phylogenetic 

analysis employing multiple sequence alignments of the first genomes profiled with my cohort for each 

signature (and annotated the last from each in the time scale), including the reference genome of SARS-

CoV-2 (Wuhan-Hu-1), which was the viral isolate from the first infected individual (Wu et al., 2020). 

As shown in Figure 4.18, my signatures approach provided in-depth resolution in studying how the 

SARS-CoV-2 genome evolved throughout 2020 and up until very early 2021. Signatures defined with 

the mutations of pattern C (s1, s12 and s7) along with the non-variant s0, were the ones that appeared 

first, but disappeared as soon as signatures related with the mutations of pattern B arrived, likely through 

genetic “drift” for selection (Slatkin and Excoffier, 2012). From this clade of signatures, s6 and s22 

remained predominant till the end of 2020 and very early 2021. Of note, is the mutation S:D614G, which 

clearly provides a selection advantage through genomic fitness, as suggested by others (Plante et al., 

2020), considering that a signature which lost this mutation (s8) faded out rapidly in 2020. A number of 

serial acquisition of mutations led to a mutational “burst”, which likely occurred in June 2020 with the 

mutations I described above following pattern A, and gave rise to three signatures (s42, s41 and s48) 

from which s48 remained predominant toward the end of 2020 and early 2021. It is not unlikely that 

this mutational burst may be associated with the mutation 1b:N129D in the exonuclease Nsp14, which 

could potentially downgrade the proof-reading activity of Nsp14 allowing more mutations to occur. 
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Overall, I found three signatures (s6, s22 and s48) likely compiling three distinct variants of SARS-

CoV-2 circulating in 2020 and early 2021 in the United States.  

  The signatures approach I discussed above to describe the genome evolution of SARS-CoV-2 

in the United States, may also be beneficial for predicting mutations currently in low frequency which 

may come to prominence upon positive selection. I focused on the Spike protein, which is key for the 

SARS-CoV-2 infection process (Luan et al., 2020) and I called all the low-frequency spike mutations 

(LFSM) detected per quarter (Q1-Q4) of 2020 (Figure 4.19). In Q1, I detected only 2 LFSMs (L5F and 

V438A), while there was a gradual accumulation of LFSMs throughout the year ending up in Q4 of 

2020 with a pool of mutations, which may not appear now as problematic but they may in fact be if 

positively selected. From 2020 to 2021, many of the LFSMs I detected were brought to prominence 

(>10% of genomes) in 2021 alone. In Figure 4.19B, I summarize predominant mutations (overall 34, 

also shown in Figure 4.21) detected in 2021, of which 22 were new compared to 2020 (highlighted in 

red) and some spike mutations were seen as LFSMs in Q4 2021 (noted with an asterisk). However, this 

is partly due to the arrival and rapid prominence of the different VOCs in the United States as of early 

2021 (Darby and Hiscox, 2021). I profiled all the sequences in my cohort with the PANGO lineages to 

detect VOCs (Rambaut et al., 2020) The VOCs I found in the cohort I investigated (summarized in 

Figure 4.20 with their defining Spike mutations) were predominantly B.1.1.7 (n=5166), B.1.429 

(n=2285) and B.1.427 (n=1030), but I also detected other less abundant VOCs (B.1.526, P.1 and 

B.1.351). Most of the newly acquired mutations in 2021 were found in the predominant VOCs I 

detected, but not all (i.e. 1a:M1788I). Therefore, I repeated the signature generation and profiling 

pipeline to call new signatures for 2021 (Figure 4.21) and I also projected the signatures of 2020 (Figure 

4.17) to the genomes isolated in 2021 to evaluate the genome evolution through its mutational profile. 

First, I found that the signature s48 from 2020 was still abundant (5838 viral isolates) and in fact the 

most abundant in 2021. From the newly inferred signatures, I called 348 non-variant putative signatures 

in 2021 (starting with “i”, summarized in Figure 4.21). When I overlaid the variant PANGO lineages 

with the signatures of both 2020 and 2021 only for the sequences isolated in 2021 (Figure 4.22), I 

realized that the second most abundant signature i342 was in fact B.1.1.7, but the same VOC lineage 

was present in my dataset, though less frequently, with more signatures (i300-i348). The same case was 

for the lineage B.1.2, which is in fact a “core” lineage since the beginning of 2020, and majorly entails 

the signatures s48, i286 and i264. Although the three first months of 2021, which compiles my dataset, 

is a short time to draw real-time phylogeny, it is evident that the viral genome is further evolving. And 

that includes both the VOCs and the B.1.2 lineage, which by the time of my analysis was not identified 

as problematic. All in all, with the appearance of the VOCs the mutational profile of SARS-CoV-2 has 

shifted dramatically across the United States throughout the pandemic (Figure 4.23). The three major 

variants my analysis suggested by the end of 2020 (s6, s22 and s48) “drifted” for selection when the 

VOCs appeared with only s48 remaining, likely being still “fit” to compete the positive selection of 

VOCs through fitness in the population.  
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The last aspect I explored was the further evolution of the VOCs, as the diverse profiling of 

signatures per lineage suggested (Figure 4.22). As I show in the Figure 4.24, the different VOCs I 

detected acquired new mutations in their Spike protein, other than their defining ones (Figure 4.20). 

Some of the mutations acquired were more abundant (in more than 1% of the genomes, highlighted in 

red) than others (>0.1% of genomes in light blue). A number of mutations were previously detected as 

LFSM in 2020 (Figure 4.19A) or in other VOCs (Figure 4.20), such as L5F, V1176F, Q677H, E1202Q, 

T859I, S13I or W152C. Of note, is the mutation L5F which I found as an LFSM in small frequencies 

throughout 2020 and is now recurrently found in a many VOCs, such as B.1.1.7, B.1.429, B.1.526 and 

P.1. Additionally, the mutations S13I and W152C are defining mutations for B.1.429, but they are also 

occasionally found in B.1.427. Last, it should be noted that there is likely a strong selection for 

phenylalanines (F) in the Spike protein, considering that most of the more abundant and recurrent 

mutations lead to that amino acid replacement (i.e. L5F, L54F, L18F, V1176F, S98F among others). 

Therefore, my findings indicate that VOCs are also further evolving, by acquiring new mutations, 

naturally undergoing selection through infection. Although it was suggested that the SARS-CoV-2 

genome may recombine (Gallaher, 2020), I could not detect evidence of recombination in the cohort I 

investigated. However, what I believe that is a likely scenario is that APOBECs or ADARs are behind 

these recurrent mutations, considering that they have preferential deamination motifs (Eggington et al., 

2011; Poulain et al., 2020). This can also be the reason why same mutations in the SARS-CoV-2 genome 

have been convergently evolved in different parts of the world (Martin et al., 2021; Zhou et al., 2021), 

and furthermore why infected individuals also acquire new mutations (some of which recurrent and 

found in my data) in the different genomic copies of their viral load during persistent infections (Kemp 

et al., 2021).  

 All in all, my findings underscore important aspects in the genome evolution of SARS-CoV-2, 

a major driving force of which is the RNA deaminases. Here, I presented and discussed data from an 

evolutionary perspective which give crucial insights for my bigger question in this dissertation, which 

is the genomic damage by RNA deaminases.    
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5. Conclusions and Future Perspectives  
The family of Adenosine deaminases acting on RNA (ADAR) comprises of 3 enzymes, two of 

which, ADAR1 and ADAR2, have demonstrated deaminase activity; both these enzymes deaminate 

Adenosines-to-Inosines (A-to-I), where Inosines are recognized as Guanosines (G), which is also known 

as RNA editing. (Nishikura, 2010). A number of functions have been described for ADAR1. It has been 

demonstrated that it deaminates endogenous dsRNAs, so as to block cellular response to them as non-

self dsRNAs which would stimulate components of the RIG-I-Like Receptor pathway (RLP), such as 

MAVS or MDA5 and induce interferon (IFN) type-I response (Liddicoat et al., 2015). Although the last 

highlights the importance of ADAR1 in immunity, allowing the host to trigger antiviral response, pro-

viral roles have been suggested as well for this enzyme, as it can block RLP or PKR (Protein Kinase R), 

which also recognizes dsRNA (Lamers et al., 2019). The 3’UTR of the EIF2AK2 transcript, which 

encodes PKR, is actually a target of deamination by ADAR1, as previously suggested (Toth et al., 2009), 

which I validated as presented in chapter 4.1.3. This is perhaps a way for ADAR1 to downregulate PKR, 

through interfering with translation of its transcript.  

However, the impact of ADAR1 in crucial homeostatic mechanisms does not stop there. It has 

been demonstrated that ADAR1 is several human tumors leading to consequently high A-to-I RNA 

editing activity, with few exceptions such as types of kidney cancer (Han et al., 2015). Elevated A-to-I 

RNA editing in tumors, promotes transcriptomic heterogeneity, which likely impacts proteomic 

heterogeneity as well (Paz-Yaacov et al., 2015). Multiple Myeloma (MM) is no exception; ADAR1 is 

overexpressed in Multiple Myeloma, either through copy-number gain (1q21 amplification) or IFN 

induction, as Dr. Laganà found (Tasakis et al., 2020), similarly shown in breast cancer as well 

(Fumagalli et al., 2015). MM patients with high A-to-I RNA editing activity, consequence of the 

ADAR1 overexpression, show poor disease outcomes, as previously shown (Lazzari et al., 2017; Teoh 

et al., 2018), regardless of whether they have the 1q21 gain or not (Tasakis et al., 2020). But here, I 

explored a different possibility for ADAR1. Recent findings show that ADARs can deaminate DNA 

within DNA/RNA hybrids in vitro (Zheng et al., 2017), which appears to be a crucial function of 

ADAR1 in maintaining genomic stability by mutating DNA within R-loops of the telomeres (Shiromoto 

et al., 2021). However, R-loops are formed genome-wide co-transcriptionally (Chen et al., 2019), which 

raises the possibility that ADAR1 may globally mutate genomic DNA. I hypothesized that, since RNA 

editing can also be co-transcriptional (Laurencikiene et al., 2006), ADAR1 may “lose touch” with the 

target-transcript and access R-loops in the cognate locus, formed between the template strand and the 

nascent RNA, so as to edit RNA and mutate DNA. Therefore, ADAR1-dependent mutations should be 

found in genes, whose transcripts are (highly) edited (Figure 4.1). I tested this hypothesis in 23 MM 

patients who have matched RNA-seq and WES data from two timepoints of the disease (pre- and post-

relapse) and I obtained correlative data of RNA editing events pre-relapse and unique DNA mutation 

events post-relapse, likely selected, in the vicinity of the RNA-editing sites (see 4.1.2). The top candidate 
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was the EIF2AK2 gene, which encodes for PKR, which besides its crucial antiviral role, is involved with 

p53, NFkB or apoptotic pathways among others and may impact cancer development and progression 

(Gal-Ben-Ari et al., 2019). Furthermore, not all MM patients retained their global RNA editing activity 

post-relapse; patients who presented decreased levels of A-to-I RNA editing (measured with the Alu 

Editing Index; (Roth et al., 2019)), showed an enrichment of acquiring new mutations possibly through 

ADAR1 activity, which suggests that they may have achieved the same functional outcome, compared 

to the other group of patients, but now through “fixing” into the genome a permanent DNA mutation 

(see 4.1.4).  

These data, are the first to correlate ADAR-dependent gDNA mutagenesis, in a fashion that 

DNA mutation may not be the primary function of the enzyme, but it may arise as a collateral genomic 

damage by an enzyme that aberrantly edits RNA in situ (Aim 1). Therefore, ADAR-dependent DNA 

mutations will be mostly found in genes whose transcripts are edited. If this is true, then I would have 

described a novel mechanism that cancers may take advantage of, to expand their mutational spectra. 

To prove that, I employed a series of experiments presented in chapter 4.2, using site-directed mRNA 

editing tools (principles described in 1.3) to induce A-to-I editing in certain transcripts and look for 

DNA mutations in their cognate genes. First, I employed Ramos B-cells, which lose expression of IgM 

through somatic hypermutation in the VH region by AID (Sale and Neuberger, 1998). Ramos AID-/- B-

cells do not mutate their VH and, therefore, homogeneously present IgM+ cell populations (see 4.2.2). I 

therefore recruited the endogenous ADAR1, which is the major A-to-I deaminase expressed in these 

cells (see 4.2.3), with gRNAs (designed as in (Qu et al., 2019)) in pairs targeting both the coding 

(positive-sense) and template (negative-sense) strands of the locus. I observed abundant loss of IgM in 

cells with bi-stranded targeting accompanied by minimally specific DNA mutation signal, but no RNA 

editing was detected prior to that in the transcript of the VH. After troubleshooting I realized that the loss 

of function experiment is prone to specific artifacts that may be related to editing, but lead to undesired 

outcomes (see 4.2.4). Therefore, I took an alternative approach which allowed me to first report RNA 

editing and then look for DNA mutations, only in the subset of cells that reported high rates of RNA 

editing through a gain of function approach. For this, I relied on a HEK cell line that expresses an 

mCherry/eGFP cassette, in which the eGFP gene is inactivated through a premature stop codon (UAG) 

and, thus, the cells are not eGFP-fluorescent (originally described in Montiel-Gonzalez et al., 2013). I 

targeted the UAG stop codon with a gRNA, employing the λN-ADAR tool (Montiel-Gonzalez et al., 

2013) and isolated 25 000 cells which were editing the UAG stop codon (UAG>UGG, and therefore 

activating eGFP). After 5 weeks, I obtained 1 eGFP-activated clone, which reported an A-to-G base 

change within the originally targeted UAG stop codon (see 4.2.5). This was a first indication that ADAR 

may mutate in a rate of 1 in 25 000. In a repeat, I upscaled the priming population of eGFP-activated 

cells via RNA editing and I found overall 7 clones that contained eGFP-activated cells, which would 

adjust the mutation rate to 1 in 50 000. However, because the A-to-G base change was detected from 

cDNA amplicons of the cassette, I tried an alternative tool, RESTORE, which recruits the endogenous 
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ADAR1 (Merkle et al., 2019), and in a priming population of 25 000 eGFP-activated cells via site-

directed mRNA editing I detected 1 clone which was purely eGFP+ due to 100% A-to-G base change 

on-target from the gDNA amplicons. With this finding I reported a validated ADAR1-dependent 

mutation in a rate of 1 in 25 000 (see 4.2.6), also achieving the ‘Aim 1’ of my dissertation. Replicates 

of this experiment are currently ongoing to validate the ADAR1-dependent mutation rate. In a similar 

fashion, and especially because the Ramos AID-/- system remains important for the reasons above (also 

discussed in chapter 4.2.4 and 4.2.7), a Ramos AID-/- IgM- cell line due to a premature UAG stop codon 

in the VH gene is being engineered, so as to additionally introduce RNA editing bias, which will be 

reported as IgM gain.  

Finally, I explored the concept of genomic alteration by RNA deaminases under the perspective 

of evolution, which was the ‘Aim 3’ of my dissertation. To do that, I leveraged the fact that RNA 

deaminases from both ADAR and APOBEC families are known to mutate viral genomes (Samuel, 2012; 

Stavrou and Ross, 2015), which also appears to be the case for SARS-CoV-2, the coronavirus 

responsible for COVID-19 (Giorgio et al., 2020; Klimczak et al., 2020). RNA editing of SARS-CoV-2 

is host dependent (Giorgio et al., 2020), which suggests that mutations by RNA deaminases can 

potentially be introduced from host-to-host, allowing the gradual accumulation of mutations throughout 

the viral genome relatively rapidly. A related phenomenon in cancer biology, would be the accumulation 

of selected mutations through clonal evolution (Greaves and Maley, 2012), rules that ADAR-dependent 

mutations in cancer genomes, as I discussed throughout this dissertation, will likely follow. To address 

mutational expansion by RNA deaminases on SARS-CoV-2, I employed a publicly available dataset of 

fully-covered SARS-CoV-2 genomes (see 3.4.1) during the first year of the pandemic from the United 

States, where lockdown or related regulations were not as strict as in other countries at the time. I found 

that the viral genome throughout the year was indeed gradually accumulating mutations (Figure 4.15), 

many of which co-occurred as “signatures” on the genome (Figures 4.17, 4.18, 4.21), leading to a 

substantially different genomic profile toward the first quarter of 2021 (Figures 4.18 and Figure 4.23). 

The intrinsic pattern of mutations (including synonymous and nonsynonymous changes) ranked C-to-

T(U), A-to-G or T(U)-to-C changes amongst the most abundant SNVs (Figure 4.15B), and the majority 

of the predominant mutations were of those base changes (Table 4.1), which is very likely through 

APOBEC and ADAR activity on the viral genome, as also suggested by others (Giorgio et al., 2020; 

Miladi et al., 2020; Poulain et al., 2020; Simmonds, 2020). Furthermore, it is suggested that certain 

mutations in SARS-CoV-2 genome, may have convergently emerged from different parts of the world 

(van Dorp et al., 2020; Zhou et al., 2021), which is something that RNA deaminases could very likely 

be responsible of, since they are known to have preferential deamination motifs (Chen and MacCarthy, 

2017). This, may in fact be “good news” as the viral evolution might “exhaust” available deamination 

motifs in the near future, which may slow down the diversification of the viral genomes and, thus, 

attenuate the emergence of variants of concern (McCormick et al., 2021), which are also under evolution 

(Figure 4.24), and hopefully terminate the pandemic faster. 
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To conclude, RNA deaminases play a prominent role in health and disease, regulating several 

components of pathways crucial to homeostasis. Novel roles and mechanistic functions of these 

enzymes are constantly expanding their potential. Here, I focused on ADARs and their emerging 

versatile role of not only being RNA editors, but also potentially DNA mutators. I focused on Multiple 

Myeloma, a cancer which is sensitive to ADAR1 activity, and I showed the potential impact of genome-

wide ADAR1-mediated mutagenesis in disease progression, starting from patient data. I hypothesize 

that this phenomenon is not limited to Multiple Myeloma, but rather is exploited by most tumors (all of 

which express high levels of ADAR1) to expand their mutational spectra and therefore adapt. I further 

employed a series of proof-of-concept experiments involving site-directed mRNA editing tools, to 

explore the possibility that ADAR-mediated RNA editing may drive specific DNA mutation. These 

experiments have addressed a number of open questions in the field and have given important answers 

to the concept of ADAR-mediated mutagenesis, but have also provided a better insight for genome 

editing tools with ADARs, which are currently in development.   
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6. Appendix A 
Table A1. List of primers used for amplicons generation. Primers are summarized by name, 

Sequence in the 5’à3’ orientation and the melting temperature (oC) for each (Tm). 

Name Sequence (5’à 3’) Tm (oC) 

Eif2ak2-Fw TCCAAATCAAATTAACCCCATAAGAGCCAC 61 

Eif2ak2-Rv AGAGGAGTTGGCAACTAATTGGATGTGGGG 66 

pENTR-Fw TTTTTTCTAGACCCAGCTTTCTTGTA 57 

pENTR-Rv GGTGTTTCGTCCTTTCCACA 56 

qADAR1-Fw CACTTCCAGTGCGGAGTAGC 64 

qADAR1-Rv CCCTGCCGCGGATTCATT 58 

qADAR2-Fw CTGACACGCTCTTCAATGGTT 62 

qADAR2-Rv GGCGCAGTTCGTTCAAGAT 58 

qActb-Fw TGGAGAAAATCTGGCACCACACC 70 

qActb-Rv GATGGGCACAGTGTGGGTGACCC 76 

qGAPDH-Fw GAAGGTGAAGGTCGGAGTC 60 

qGAPDH-Rv GAAGATGGTGATGGGATTTC 58 

Mavs-Fw TACCCTGCCTGGCCTCAAACTATTA 74 

Mavs-Rv ACTTCATGCTGTCTGGGAGCAA 66 

Vh-cDNA-Fw TGAAACACCTGTGGTTCTTCCT 58 

Vh-cDNA-Rv GGGAATTCTCACAGGAGACGA 57 

Vh-gDNA-Fw CCCCAAGCTTCCCAGGTGCAGCTACAGCAG 71 

Vh-gDNA-Rv GCGGTACCTGAGGAGACGGTGACC 66 

pmCherry-Fw CGCCTACAACGTCAACATCAAGC 70 

peGFP-Rv GGACTGGGTGCTCAGATAATGGTT 72 
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7. Appendix B 
Table A2. List of gRNAs. gRNAs are summarized by name, sequence (5’à3’) and target-transcript. 

Underlined parts of the sequence represent BoxB loops, underline parts in red represent GluR2 loops 

and the C in bold stands for the A:C mismatch for the targeted adenosine (see 1.3.1). Asterisks (*) in 

the name note that the gRNA was used for generating a knock-out of the target with the respective 

gRNA.  

Name Sequence (5’à 3’) Target 

gRNA-01-Fw* caccGCTAGAGGAAGCCAAAGCCA ADAR1(exon 3) 

gRNA-01-Rv* aaacTGGCTTTGGCTTCCTCTAGC ADAR1(exon 3) 

gRNA-02-Fw* caccGGACAGGAGACGGAATTCGC ADAR1(exon 4) 

gRNA-02-Rv* aaacGCGAATTCCGTCTCCTGTCC ADAR1(exon 4) 

gRNA-NT-Fw* caccGTATTACTGATATTGGT None 

gRNA-NT-Rv* aaacACCAATATCAGTAATAC None 

arRNA1 tggcggatccagctccagtagtaaccactgaaggacccaccaCaaacaccgcaggtgaggg

acagggtctccgaaggcttc 
VH 

arRNA2 gccccttccctgggggctggcggatccagctccagtagCaaccactgaaggacccaccata

aacaccgcaggtgagggaca 
VH 

arRNA3 agacgtccataccgtacctcccgtctgtgccaggactcgcccCagtaataactctcgcacagt

aatacacagccgtgt 
VH 

arRNA4 gaagccttcggagaccctgtccctcacctgcggtgtttatggtgggtccttcagtggttactactg

gagctggatccgcca 
VH 

arRNA5 acacggctgtgtattactgtgcgagagttattactagggcgagtcctggcacagacgggaggt

acggtatggacgtct 
VH 

arRNA(-) or 

gCtr 

caggagggcgggccctgaaaaagggccatgggatgcccatcgaagatgagggtgagggcc

ctgaaaaagggcccgggggcgg 
None 

gGFP tcagggtagtggccctgaaaaagggccaagtgttggcCatggaacaggtagttttcggccct

gaaaaagggcctagtgcaaat 
eGFP 

gGFP_R ggtgaatagtataacaatatgctaaatgttgttatagtatccacctagtgacaagtgttggcCatg

gaacaggtagttt 
eGFP 
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8. Appendix C 
Table A3. List of plasmids. Plasmids are summarized by name, the product they express and under 

which promoter, what antibiotic resistance they have and if they have any other characteristics. The 

Addgene codes or other product number identifiers are provided in methods of the Aim 2, chapter 3.3.  

Name Product Promoter Resistance Other 

characteristics 

gRNA-pl gRNA U6 Kanamycin  

Crispr-pl gRNA, pSpCas9 U6, CBh Ampicillin NLS, GFP 

mAID-cDNA-pl mAID CMV (pcDNA3.1) Ampicillin  

4λΝ-ADAR-pl 4λΝ-ADAR CMV Ampicillin  
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9. Appendix D 
Part 1 - Gating strategy of Ramos WT and AID-/- cells. 

Related information to chapters 3.3.5, 4.2.2 and 4.2.4 
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Part 2 - Loss of IgM after targeting the VH region with vector-expressing gRNAs 

Related information to 3.3.5, and 4.2.4 and Figure 4.9  

 
Part 3 – Chromatogram of arRNA(-) VH gDNA amplicon at the region of target arRNA1 and 

arRNA2 

 
The chromatogram on the left from Tasakis et al., 2020 and it is reused under the Creative Commons License 4.0. I 

produced the data and the illustration.  
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Part 4 – Gating strategy for HEK293T-W58X cells  

Related information to chapters 4.2.5 and 4.2.6 
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