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Preface

Many spaces which naturally occur in topology and algebraic geometry are
not manifolds, but have a decomposition as a disjoint union of manifolds.
Examples include algebraic varieties, orbit spaces of proper smooth group
actions on manifolds and mappings cylinders of maps between manifolds.

In 1998 M. Kreck began to develop a concept of stratified spaces such that
their bordism theory leads to a homology theory, which has the same coeffi-
cients as the singular homology. He presented geometrical proofs of various
classical results such as the Kiinneth-Formula or the Hurewicz-Theorem. At
the same time one began to develop the interest in the objects themselves.
After more than 4 years of developments, M. Kreck introduced the category
of stratifolds, stratified spaces, together with an algebra of real valued func-
tions satisfying some subtle conditions. In this thesis we will focus on two
subclasses of stratifolds with more geometrical structure, namely p-stratifolds
and cornered p-stratifolds.

Roughly speaking, in the case of p-stratifolds, topological spaces are con-
structed by attaching manifolds with boundary by a map to the space, which
is already inductively constructed. The other way to think of p-stratifolds
is to think of the generalization of CW-complexes, where one uses arbitrary
manifolds with boundaries instead of unit balls D". The attaching map has
to fulfil certain properties and, in contrast to CW-complexes, is a part of the
data.

This thesis is divided into three parts. In the first chapter we give defi-
nitions of different kinds of stratifolds: stratifolds, locally trivial stratifolds,
parametrized stratifolds and cornered p-stratifolds. We give the general def-
initions and work out an alternative geometrical description, which will be
used in the following chapters. The second and third chapters deal with two
different problems and can be read separately.

The second chapter investigates the resolution of p-stratifolds. The defi-
nition of the resolution is modelled on the definition from algebraic geometry,
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see [Hi].

In contrast to algebraic varieties, resolutions of p-stratifolds in general
do not exist, even for isolated singularities, where the topological space is
obtained from a manifold with boundary by collapsing boundary components
to single points. But in this case M. Kreck stated a simple necessary and
sufficient condition (Theorem 2.2.1). In this thesis, we investigate the case of
isolated singularities in more detail, find necessary and sufficient conditions
for the existence of so-called optimal resolutions (Theorem 2.2.5), then go on
with the classification of optimal resolutions in the even-dimensional case and
state our classification result in Theorem 2.2.8, which is valid from dimension
6 and up.

We also consider algebraic varieties and show that every algebraic vari-
ety with isolated singularities admits a canonical structure of a p-stratifold.
We further conclude, that a hypersurface with isolated singularities always
admits an optimal resolution.

The special case of 4-dimensional p-stratifolds with isolated singularities
will be treated in §2.2.3.

In the next section we apply the methods developed by dealing with
isolated singularities to the general situation of p-stratifolds. We obtain
results for the existence of (optimal) resolutions up to deformation of the
attaching map of the highest dimensional manifold (Theorems 2.3.2 & 2.3.3).

Section 2.4 is concerned with a special case of a p-stratifold, which is
built out of a sphere by attaching a higher-dimensional manifold via a differ-
ential fibre bundle on the boundary. In this situation, we give an inductive
construction of a resolution and show that the sufficient condition for the
existence of the resolution derived in the previous section is also necessary
in this special situation (Corollary 2.4.2). P-stratifolds of this type occur for
example if one takes a Witten space, 7-dimensional closed Riemannian man-
ifold W with iso(W) = SU(3) x SU(2) x U(1), where SU(3) x SU(2) x U(1)
acts transitively, and divides out an S' € iso(IW). We investigate optimal
spin resolutions of 6-dimensional p-stratifolds built out of a 2-sphere (the
quotient W/S! described above is precisely of this type), see Theorem 2.4.3.
We further state a classification result for optimal resolution in Theorem
2.4.10. Then we leave the world of resolutions and address the connections
of p-stratifolds to Mather’s abstract pre-stratified spaces.

In the last chapter we establish the main theorem, which states that ev-
ery abstract pre-stratified space in the sense of Mather [Ma] is a cornered
p-stratifold. We first give an introduction to abstract pre-stratified spaces.
Secondly we define, analogously to stratifolds with boundary, abstract pre-
stratified spaces with boundary and extend some results concerning con-
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trolled vector fields to the bounded objects in §3.3.1. In addition we show
that by using the algebra of controlled real valued functions on an abstract
pre-stratified space, we obtain a stratifold (Lemma 3.3.7). In §3.4 we aim
to construct a cornered parametrization on an abstract pre-stratified space
(Theorem 3.4.2). Since various classes of singular spaces, such as Whitney
stratified spaces, algebraic varieties and orbit spaces of proper smooth group
actions on manifolds admit a structure of an abstract pre-stratified space, the
last theorem implies that they admit a structure of a cornered p-stratifold
as well.

The research described in this thesis took place in the years 1999-2002,
during which period I was resident in the University of Heidelberg. Most of
all, I wish to thank my supervisor Professor Matthias Kreck for the invaluable
assistance he has offered me and the helpful comments and suggestions he has
made. I owe my knowledge of this subject to his teaching and 1 was able to
write this thesis only with the help of his constant encouragement and inter-
est. My thanks also go to Christian Ewald, Augusto Minatta, Markus Ulke
and Julia Weber for many mathematical and non-mathematical discussions.
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Chapter 1

Introduction to Stratifolds

In this chapter we give the basic definition of stratifolds, the objects we
are going to work with. Stratifolds are topological spaces, together with an
algebra of real valued maps satisfying some subtle conditions. As the name
suggests a stratifold admits a decomposition into smooth manifolds, and is
therefore a stratified space. The concept was developed by M. Kreck in [Kr2]
and [Kr3], where you can find more information about and results regarding
stratifolds.

We start with the general definition of stratifolds and then go on to de-
scribe two special classes of stratifolds, namely p-stratifolds and cornered
p-stratifolds.

1.1 Stratifolds

In this section we give a brief introduction to stratifolds. For various exam-
ples, explicit arguments and applications we refer to [Kr2].

We use the language of differential spaces introduced by Sikorski [Si].
First of all, however, we have to introduce some notation.

Definition: An algebra C C C°(X) is called locally detectable if a continuous
function f : X — R is in C if and only if for each z € X there is an open
neighbourhood V' of z and an element g € C such that g|y = flv.

To obtain a feeling for the use of locally detectable algebras we introduce
the following notation. If C C C°(X) is an algebra and U an open subspace
of X, we consider the algebra C(U) which is defined as the continuous maps
f U — R such that for each x € U there is an open neighbourhood V C U

1
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of x and g € C such that g|y = f|y. Obviously, if f € C, then f|y isin C(U).
Using this language, an algebra C of functions on X is locally detectable if
and only if C(X) = C.

Now, if C is a locally detectable algebra, we can construct functions in C
in the following way, which is commonly known and used for the construction
of continuous or smooth functions. Suppose that we have a covering of X
by open subsets U;, i.e. X = UU;, and that we have elements f; € C(U;)
such that for all 7 and j we have fi|v,nv; = fjlvinu;- Then there is a unique
function f € C such that for all 7 we have f|y, = f;. Clearly there is a
unique continuous function f with this property and we only have to show
that f € C. For this we use that C is locally detectable. For each z € X
there is an 4 such that € U; and, since f|y, € C(U;), there is an open
neighbourhood V of z in U; and ¢ € C such that g|y = fy implying f € C,
if C is locally detectable.

Definition: A differential space is a pair (X,C), where X is a topological
space and C C C°(X) an algebra of continuous functions such that

1. C is locally detectable,

2. forall fi,..., fr € C and g : R¥ — R, a smooth function, the function
z+— g(fi(z),..., fe(z)) isin C.

We have discussed the use of the first condition above already. The second
condition is obviously desirable to construct new elements of C by composi-
tion with smooth maps.

The considerations above show that if M is a k-dimensional smooth man-
ifold then (M,C*°(M)) is a differential space. This is the fundamental class
of examples which is the model for our generalization to stratifolds in the
following discussion. We further note if a differential space (X,C) admits
a smooth structure such that C*°(X) = C, then this smooth structure is
uniquely determined.

Definition: Let (X,C) and (X',C’) be differential spaces. Then we define
C(X,X') as the continuous maps f : X — X' such that for all p € C' we
have pf € C. We call such a map a morphism from (X,C) to (X',C’).
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We define a stratifold as a differential space with certain properties. The
main consequence of these properties will be that the space is decomposed
into a disjoint union of smooth manifolds of various dimensions. If only a
single dimension occurs we will get a smooth manifold. Thus there should be
a natural decomposition of a differential space into subspaces (which should
be smooth manifolds in the end). We begin with a definition of this decom-
position.

Let (X,C) be a differential space. For a point x € X we define the germ
of function near x as the equivalence classes of f € C(U) for an open neigh-
bourhood U of X, where f : U — R is equivalent to f’': U' — R if there
is an open neighbourhood V- C U NU’ of z such that f|y = f'|y.

Definition: Let (X,C) be a differential space and = € X. The vector space
of derivations at x is called the tangent space of X at x and denoted by 7, X.

We define the subspace
X' :={z € X|dimT, X =i}
We impose conditions on C which make X" an i-dimensional smooth manifold.

For a subset Y in a differential space (X,C) we consider the germ of
smooth functions near Y. This is an equivalence class of functions in C(V) for
some open neighbourhood V of Y in X, where two such functions f : V— R
and f': V' — R are equivalent if there is an open neighbourhood V" C VNV’
with g|y» = ¢'|y». We denote the set of germs by I'(Y; X). For example if
Y = z is a point we obtain the previously defined germ I'(z) = I'(z; X). The
restriction to Y gives a map * : T(Y; X) — CO(Y).

Now we are able to formulate the condition:

- There is a smooth structure on X* such that for each z in X* there is
an open neighbourhood W of x in .# such that

DWW NXEW) = C®(W N XY
is an isomorphism.

Note that this smooth structure is unique.

As a consequence of the above condition we see that for each x € X' the
germ of smooth functions on X' is isomorphic to the germ I'(x) of functions
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in C(U) under the restriction map for some open neighbourhood of z in X.
In particular we see that the dimension of X' is i.

We call X the i-stratum of X. In other concepts of spaces which are
decomposed as smooth manifolds the connected components of X are called
the strata but we prefer to collect the i-dimensional strata into a single stra-
tum. We call UiSTXi =: X" the r-skeleton of X.

Definition: A k-dimensional stratifold is a differential space (.,Cs(X)),
where . is a locally compact Hausdorff space with countable basis, the
skeleta X are closed subspaces and for each j > i we require .#i N .7 = ().
In addition we assume:

1. for all i < k there is a smooth structure on .#* such that for each z in
" there is an open neighbourhood W of x in . such that

i TW NS W) — C°(W NS
is an isomorphism,

2. dimT, < k for all x € ., i. e. all tangent spaces have dimension
<k,

3. for each z € . and open neighbourhood U € ., there is a function
p € Cs(X) such that p(z) # 0 and supp p C U.

The last condition implies, that every open covering of a stratifold . ad-
mits a subordinated partition of unity out of elements of Cg(.%). One says,
& is paracompact with respect to Cs(.7).

We denote with I'(.#%, M;.) the set of germs of morphisms from an open
neighbourhood of .#* in .# to a smooth manifold M, considered as stratifold
together with differentiable maps. As the next consequence we note:

Proposition 1.1.1. Let M be a smooth manifold. The inclusion induces an
isomorphism

D(F, M; )| 1 2 C®(F, M),

between the germs of maps near ¢, which are in I'(#*, M;X), and the
smooth maps from ¢ to M.
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See [Kr3| for a proof. An important consequence is that for all strata we
have a canonical germ of retractions

WiIUi—)yi,

where U; is an open neighbourhood of .#% in .. We have to apply Proposi-
tion 1.1.1 to the identity map from .#* to 7.

The following is a simple consequence of the definition of a stratifold:

Proposition 1.1.2. There are representatives of the canonical germs of re-
tractions '
m U, — yz’

such that for all j > 1
mim;(x) = mi(x)

whenever both sides are defined.

This proposition allows an alternative description of a stratifold. Namely,
a k-dimensional stratifold . gives a decomposition into the strata .#* for
0 < i < k together with germs of retractions ; : U; — . such that for all
j>1

mim;(x) = mi(x)

whenever both sides are defined. These maps are smooth on all strata. In
addition, for each map f € Cg(.#) there are representatives of the canonical
germs of retractions m; : U; — %%, such that flu; commutes with all 7;, i.e.

frj(z) = f(x),

whenever defined.

In turn, suppose we have a space .#, together with a decomposition into
smooth manifolds .#* of dimension < k, the strata, and germ of retractions
m Uy — %, which are smooth on all strata, such that for all j > i we
have m;mj(x) = m;(z) whenever both sides are defined. Then we can define
an algebra C(r,; () consisting of continuous functions f : . — R, which
are smooth on all strata and, such that there exist representatives of the
canonical germs of retractions 7; : U; — %, such that f|y, commutes with
all m;. The tuple ({ &}, [{m; : Ui — #*}]) is called controlled stratification
on .#.

If we require that . is locally compact with countable basis and para-
compact with respect to C¢,,}(-#) and if the condition
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- for all i < j we have .#iN .7 =)

holds, then
(', Ciziy ()

is a k-dimensional stratifold. Thus we have shown:

Proposition 1.1.3. There is a bijection between stratifolds and spaces .
with controlled stratification such that # is paracompact with respect to the
algebra Cyr;3 (), and for all i < j we have ' N7 = .

In analogy with maps from a smooth manifold to a smooth manifold we
call the morphisms f from a stratifold .# to a smooth manifold smooth maps.

1.2 Locally trivial stratifolds

In this section we present a special class of stratifolds, which have “nice”
neighbourhood retractions.

Definition: Let . be a stratifold and M a smooth manifold. A smooth
map p : . — M is called a stratifold bundle if for each x € M there is
an open neighbourhood V of x in M, a stratifold F' and an isomorphism of
stratifolds ¢, making the following diagram commutative:

o:pY(V) VxF
X\ pr;
vV

Now we consider a stratifold ., a stratum .#* and a canonical germ of
retractions [r; : U; — .%%], introduced in the last section.

One can require 7; to be a stratifold bundle, but this condition in gen-
eral depends on the representative m;. To avoid this difficulty we make the
following definition.

Definition: A stratifold .7 is called locally trivial if for each 7 and for each
representative m; : U; — .%* of the germ of retractions, there is an open
neighbourhood U! of ." in Uj;, such that mi|yr is a stratifold bundle.

Amongst the locally trivial stratifolds one can distinguish subclasses by
imposing conditions on the fibre. For example one can require that the germ
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of all fibres of m; is the germ of some cone (locally coned) or of the products
of some cones (locally trivial product coned).

In the following sections we are going to introduce another large class of
stratifolds.

1.3 c-manifolds

In this thesis we are studying a special class of stratifolds, namely stratifolds
with (cornered) strats, which come with much more structure. To give a def-
inition of these objects we first need a notion of c-manifolds. A c-manifold
(collared manifold) is a manifold with boundary, together with a representa-
tive of the collar, where we allow more general collars than in the classical
theory.

First we have to introduce some notation. A pair of topological spaces is
a space X, together with a subspace S. We denote a pair by (X, S).

Furthermore, let U be a neighbourhood of S in X, together with the
following continuous functions:

- a retraction 7 : U — S and

- p:U —0,00).

Given a continuous map ¢ : S —» (0, 00), we introduce the following subsets

of U.
U(‘sw,p) = {z € U‘p(w) =0(n(z))}
Us = {ze€U|p(z) < d(n(x))}
U(ifp) = {zeU|p(z) <d(n(x))}

In many cases in this thesis, the space S is a smooth manifold such that
p~1(0) = S and § is a smooth map. The sets U(fr‘fp) Ugr‘fp) are then neighbour-
hoods of S in contrast to U(‘smp).

EXAMPLE:

Let S be a smooth manifold. Consider X := S x [0,00) and identify S with
S x {0} € X. The space X itself is an open neighbourhood of S and the
maps 7 and p are given by pr, and pr, respectively. Let 6 be a constant map
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with value ¢ > 0. Then

(S x [O,oo))‘gw) = Sx{c},
(S x [O,oo))(ff’p) = S x[0,c¢) and
(S x [0,00))(572/)) = Sx[0,c].

If the maps 7 and p are the obvious ones as in the case of S x [0, 00), we
omit the subscript (7, p) and just write (S x [0,00))° for a given map 4.

We further define

(S x (0,00))20 | := (S x [0,00))(<7r‘fp) NS x (0,00),

(mp) "~

analogously (S x (0,00))¢, , and (S x (O,OO))(S:,I,)-

Definition: Let (W,0W) be a pair of topological spaces, such that oW
and W — OW are smooth manifolds and OW is closed in W. A collar is a
homeomorphism

c: (0W x [0,00))<* —V,

where § : OW — (0,00) is a continuous map and V is an open neigh-
bourhood of OW in W, such that c|swx oy is the identity map to W and
c|(owx(0,00))<¢ is a diffeomorphism onto V' — oW

If § is a constant map, we obtain a classical definition of the collar, see
[BJ, Def. 13.5].

The germ is an equivalence class of collars, where two collars ¢ : (OW X
[0,00))<% — W and ¢’ : (OW x [0,00))<? — W are called equivalent,
if there is a map 0", such that €[y «[0,00))<5” = €'l(awx[0,00))<”- As usual,
when we consider equivalence classes, we denote the germ represented by a
collar ¢ by [c].

Passing to the germ allows us to choose our neighbourhood (W x [0, c0)) <%
of OW of a particular nice form. For example if OW is compact then we can
always choose J to be a constant map with the image {¢}, leading to a neigh-
bourhood OW x [0, ¢).

Definition: An n-dimensional c-manifold W is a pair of topological spaces
(W, 0W), where W := W —0W is a smooth n-dimensional manifold and 0W
is a closed subspace and an (n — 1)-dimensional manifold, together with a
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germ of collars [c]. We call OW the boundary of W.

REMARK: According to the Collar-Theorem (compare [BJ, Thm. 13.6]),
each manifold admits a collar of a constant length, that means (OM x
[0,00))<® = OM x [0,¢) for an ¢ > 0. On the other hand, a collar in our sense
leads to a collar of constant length by a simple reparametrization, which in
general changes the equivalence class.

We allow that OW is empty. Then, of course, a c-manifold is nothing but
a smooth manifold (without boundary, or better with an empty boundary).
Thus the smooth manifolds are incorporated into the world of c-manifolds as

those c-manifolds W with OW = ().

One of the main reasons for introducing c-manifolds is that a collar is
what we need to glue manifolds.

Let W and W' be c-manifolds with OW = dW'. As a topological space
the glued manifold is obtained from the disjoint union of W and W' by
identifying points in the boundary. To describe the smooth structure we
construct this space differently.

We choose representatives of the collars ¢ : (OW x [0,00))<* — W
and ¢’ : (W x [0,00))<? — W' and introduce the reflection s on OW x
[0, 00) which maps (z,t) to (xz,—t). Then we obtain a topological space from
the disjoint union of W, W’ and (8W x [0,00))<0 U s((dW x [0,00))<%) C
OW x (—o0,00) by passing to the quotient space identifying (z,t) € (OW X
(0,00))<? with ¢(z,t) and (z,t) € s((0W x (0,00))<?) with c/(x, —t). The
resulting space is a Hausdorff space. It has a countable basis and the smooth
structure on this space is characterized by the property that the canonical
projections (identification maps) on W, W’ and (dW x [0, 00))< U s((dW x
[0,00))<?) are diffeomorphisms on their images. Thus we have constructed
a smooth manifold denoted

W Usw —aw W',

whose underlying topological space is of course the space described above
obtained from W and W’ by identifying points in the boundary. This mani-
fold only depends on the germ of the collars ¢ and c'.
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Definition: Let W be a c-manifold and N a smooth manifold. A ¢c-map from
W to N is a continuous map f : W — N such that f|}; is smooth and there
is a representative of the germ of collars ¢ : (OW x [0,00))<° — V C W of
W, such that for all (z,t) € (OW x [0,00))<° we have

fle(z, 1)) = f(x)

Thus, a c-map is a smooth map, which is constant in the direction of the
collar in a small neighbourhood of the boundary.

We also introduce the concept of manifolds with corners, as usually
equipped with collars.

Definition: A smooth k-dimensional manifold with corners is a topological
manifold W with boundary, together with a maximal smooth atlas ¢; : U; —
V;, where Uj is an open subset of W and V; an open subset of R? X (Rso)* 7.
The p-face of W is the set

P(W) :={z € W[ chart ¢ : U — V C R x(Rx0)*? with ¢(z) € R’ x{0}}.

This definition is independent of the choice of charts, see [Kr3]. The boundary
of W is the disjoint union of the faces OW = Uy<p<r—107(W).

w

Figure 1.1: Manifold with corners.

In an obvious way one defines a collar of W to be a sequence of diffeomor-
phisms ¢, : U, — V,, for 0 < p < k —1, where U, is an open neighbourhood
of (W) x {0} in P(W) x (R>o)*? and V, is an open neighbourhood of
OP(W) in W, such that c,|arw o} = id . In addition a compatibility condi-
tion is required, as described in the following.

Let (¢1,...,%;) be a tuple of real numbers, and let I = (i1,...,i5) € N°
be a multi-index such that 1 <4, < iy < --- < iy < 7. Set

tr = (til,...,tis) eR
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and
t; forjglI

HER by (= {0 forj eI

We require the compatibility condition for the collars

Cp(x’ (tla s ’tk—P)) = CP-I—S(CP(‘%" ff)’ tf)’

for all I € N¥°77% with 1 <4y <ip < -+ < ig_p_s < k — p, whenever both
sides make sense.

For example, for a 2-dimensional manifold with corners, one requires the
compatibility conditions

C()(.’l?, (tl,tQ)) = C1(C0(.’L‘, (tl,O)),tQ) and
co(z, (t1,t2)) = ci(co(z, (0,t2)),t1).

7/ ci(co(z, (t1,0)), t2)
= C1(Co($a (O’tQ))’tl)
o0 |
o T
C()(.Z', (tl,O))

Figure 1.2: Compatibility of the collars.

As in the case of c-manifolds, one goes over to germs of collars.

Definition: A c-manifold with corners is a smooth manifold with corners,
together with a germ of collars.

REMARK: After passing to possibly smaller U,’s and V,’s we can always
achieve that y € im ¢, Nim c,y, if and only if

y=cp(x, (s - -, temp)) = Cprs(ep(w, T, 1)

for suitable (z, (t1,...,tk—p)) and multi-index I. We often make use of this
property without explicit mention.
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The c-manifolds clearly form a subclass of c-manifolds with corners.

To define a category of c-manifolds with corners, we need a notion of
morphisms. In order to do this, we first introduce two classes of maps between
c-manifolds with corners.

Let f: W — W' be a smooth map between c-manifolds with corners
and 0PW; be a connected component of 0PW. We say that f is retracting
along OPW; if there is a representative of the germs of collars ¢, : U, — V},
around 0PW; such that for all (z, (¢1,...,tk—p)) € U, we have

flep(z,t .. teyp)) = f(2).

We say that f is commuting with the collars along OPW; if there is a compo-
nent "W/ of PW' and representatives of germs of collars c, : U, — V,, of
o*Wj and ¢, : U’y — V', of 0PW] such that f(0P?W;) C 0PW/ and

F(ep(@, (b1, 1)) = Sy(F (@), (11, st ).

Definition: A morphism from a c-manifold W with corners to a c-manifold
W' with corners is a smooth map f : W — W' such that for each compo-
nent OPW; of OPW either f retracts along 0PW; or commutes with the collars
along 0PW;. The class of morphisms is denoted by Comc (W, W).

REMARK: If W is a c-manifold without corners, then the morphisms Copc (W, R)
are precisely the c-maps.

One reason for introducing c-manifolds with corners is that the product
of two c-manifolds W := W, x Wy is a c-manifold with corners. Given
two representatives of the collars ¢; and cy of Wi and W, respectively, it is
possible to construct a representative of the collar of W, but the construction
in general depends on the choice of the representatives, see [Kr2].

Nevertheless we note the following observation:

Proposition 1.3.1. Every c-manifold with corners admits a smooth struc-
ture of a manifold with boundary.

To see this, we define a map

hy: [0,00) x [0,00) — R x [0,00)
rexp(ip) —  1exp(i2¢p)

where we identify R? with C.
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Figure 1.3: Straightening the corners.

The map is a homeomorphism and a diffeomorphism outside of {0}. It-
erating the procedure we obtain a homeomorphism hy : (R)* — RF ! x
[0,00). Thus, every m-dimensional c-manifold with corners is locally diffeo-
morphic to R™~! x [0, c0), which implies the proposition. According to collar
theorem ([BJ, Thm. 13.7]), every manifold with boundary is equipped with
a collar, and two different collars are isotopic.

Finally, we establish a connection between manifolds with corners and
stratifolds.

Lemma 1.3.2. Let W be a c-manifold with corners. The pair (W, Ccmc(W, R))
18 a stratifold.

Proof. We make use of the Proposition 1.1.3 and give a decomposition of
W into smooth manifolds together with retractions. The decomposition is
given by {9?W}, and W. Since W is open, the neighbourhood of W in W is
given by W itself, and the retraction is the identity map. A neighbourhood
around OPW is given by U, := V], and m,(c,(z, (t1,-..,tk—p))) := x, where
¢, : U, — 'V}, is a representative of the collars. The compatibility relation
of the collars implies the compatibility of the retractions {m,}. It is easy to
verify, that W is paracompact with respect to the algebra Cr,1(W). The
fact that the map f is in Comc (W) if and only if f is an element of Cr, (W)
finishes the proof.

O

1.4 Parametrized stratifolds

In this section we will define parametrized stratifolds. These are stratifolds
which are constructed by attaching manifolds with boundary by a map to the
already inductively constructed space. The attaching map has to fulfil some
subtle properties. For more detailed information regarding parametrized
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stratifolds and various applications see [Kr2, Kr3|.

Definition: A k-dimensional strat of a topological space X is a proper
continuous map f : W — X such that f|;, W —s f(W) is a homeomor-
phism, where W is a k-dimensional c-manifold.

Given a family of strats f; : W* — X, we call a continuous map
p: X — R smooth with respect to {f;} if all compositions pf; : W¢ — R
are smooth c-maps. For a smooth manifold M, a map g : M — X is called
smooth with resp. to f; if for all smooth maps p : X — R with resp. to f;
the composition pg is again smooth.

EXAMPLE:
Let W be a smooth compact n-dimensional c-manifold and define X :=
W Uy z, where the boundary is collapsed to a single point. Take as strat the
canonical projection f, : W — X. It is an immediate consequence of the
definition of c-maps that a map p : X — R is smooth if and only if p is
continuous, the restriction p|;; W — R is smooth and p is constant on a
small neighbourhood of x € X.

It is also not hard to verify that a map ¢ : M — X from a smooth
manifold M to X is smooth if and only if the restriction g| o-10) is smooth.

Definition: A parametrization on a stratifold (#,Cs(.¥)) is a family of
strats {f; : W' — .} such that

- Lifi(Wh) =7,

- dim W' =4,

- f; is a morphism of stratifolds for all 7,

- filyii : W' — f;(W") is an isomorphism for all 7,

- a subset U C X is open if and only if for all i the set f;*(U) is open
in W

Two parametrisations {f; : Wi — %} and {f; : W' — .7} are called
isomorphic or equivalent if there are isomorphisms ¢; : W¢ — W* of c-
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manifolds, making the following diagram commutative:

Note that a map f : . — .7 is smooth with respect to {f; : W* — 7}
if and only if it is smooth with respect to {f; : W* — #}. This allows us
to make the following definition.

Definition: An m-dimensional parametrised stratifold (short p-stratifold) is
a stratifold (7, Cs(.¥)), together with an equivalence class of parametriza-
tions [{fi : W' — }i<i<my] such that

Cs(#) ={f: ¥ — R| [ is smooth with respect to parametrisation}.

The class of p-stratifolds will be denoted by PS.

The manifolds W* are not supposed to be non-empty, in particular the
dimension of a p-stratifold can not be derived from the underlying topological
space. To avoid misunderstandings, we assume throughout this thesis, that
the top stratum is non-empty.

The condition .#iN.%7 = @ for i < j implies that f;(OW?) C Uj<i_1 f;(W9).

In the case of all strata below the top dimension being empty, we obtain a
common manifold without boundary, together with its diffeomorphism class.

Recall, that the union ©¥ := UF_, f;(W?) is called the k-skeleton of .7.
The codimension 1 skeleton ¥™~! is denoted simply by . Using the collar
of W™ the (m — 1)-skeleton 3 is equipped with the germ of neighbourhoods
[UX] by taking

US = (frn Uid ) (c((OW™ x [0, 00))<%) »),

Ufmpr1|awmx{o}
where ¢ : (OW™ x [0,00))<® —s W™ is a representative of the germ of the
collar. The collar also gives us a retraction r : U — ..

If we want to point out the dependency on the representative c, we use
the notation UX,.
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Define further the germ of closed neighbourhoods, after choosing a smooth
map ¢ : OW™ — (0, 00), by setting

US = (fm Uid ) (c((OW™ x [0,00))=%2) Uy, o, »).

lawm™ x {0}

In the case of a singularity ¥™ !, decomposed into compact connected
components ¥;, the preimage L; := (f,) '(Z;) is a compact collection of
boundary components of W™, called the link of the singularity ;. Hence
there always exists a representative of the germ of collars with constant length
along L;. In this case, the germ of closed neighbourhoods [UY] has a repre-
sentative L;UY; by setting UY; := (f,Uid )(c;(L; x [0,£:/2]) Uiy |1, 0y 201
where ¢; : L; x[0,¢;) — W™ is a representative of the germ of collars around
L;.

The following result by M.Kreck [Kr2] is a constructive description of
stratifolds.

Lemma 1.4.1. Let X be a topological space and f; : W' — X for0<i<m
be strats satisfying the following conditions:

- l—lsz(WZ) = y:
- dimW* =14,
- fildOW?) C Ujci 1 f; (W),

the restriction f;|awi is smooth with resp. to f; for j <i—1,

a subset U C X is open if and only if for all j the set fj_l(U) 1S open
in W1,

Then the pair (X, Cyy,3y) is an m-dimensional p-stratifold with parametrization
{fi: Wt — Z}], where

Cisp (L) ={f : & — R| [ is smooth with respect to parametrisation}.

1.5 Cornered p-stratifolds

In this section we present another class of stratifolds, of which the p-stratifolds
we studied before are a special case. The idea is to replace c-manifolds as
objects of which the p-stratifolds are built, with c-manifolds with corners.
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Using c-manifolds WW* with corners instead of c-manifolds we define cor-
nered strats in the same way as strats in the last paragraph. In the same
way using cornered strats, one defines cornered parametrisation in exactly
the same way as introduced in §1.4. The 3rd condition

- fi: W' — ¥ is a morphism of stratifolds

makes sense using Lemma 1.3.2.

Given a family of cornered strats f; : W — X, we call a continuous map
p: X — R smooth with respect to {f;} if all compositions pf; : W¢ — R
are morphisms of c-manifolds with corners. The equivalence relation on cor-
nered parametrisations is done in the similar way using isomorphisms of
c-manifolds with corners. Again one notes, the the condition “being smooth
with respect to cornered parametrisation” is independent on the choice of
the representative. For an explicit definition see [Kr3].

Definition: An m-dimensional cornered p-stratifold is a stratifold (., Cs(%)),
together with an equivalence class of cornered parametrizations [{f; : W —
<} ri<i<my] such that

Cs(L)={f: — ]R‘ f is smooth with respect to cornered parametrisation}.

The class of cornered p-stratifolds will be denoted by CPS.

As in the case of p-stratifolds there is a pure geometrical (constructive)
description of cornered p-stratifolds. Recall from 1.3.2 that a c-manifold with
corners together with an algebra of morphism to R is a stratifold, in particular
the boundary of W, the codimension 1 skeleton, is again a stratifold.

Lemma 1.5.1. Let X be a topological space and f; : W' — X for0<i<m
be cornered strats satisfying the following conditions:

- dim W' =,
- fi(OW?) C Ujci 1f;(W),

- for all p : (Uj<i1fj(W?)) — R, such that pf; : Wi — R is a
morphism for all j <1 —1, the map pfi|aws is in Cs(OW?),

- a subset U C X 1s open if and only if for all j the set fj_l(U) 1S open
in W1,
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Then the pair (X,Cqyy) is an m-dimensional cornered p-stratifold with cor-
nered parametrization [{f; : W* — }], where

Ciy( L) ={f: — ]R|f is smooth with respect to parametrisation}.

We begin with some preparations and assume in the following that we
have a space X fulfilling the conditions of the last lemma. The requirement
on the “attaching maps” f|ay: in the definition of cornered p-stratifolds is
essential. It allows us to do inductive constructions on X using the collars
of OW7 to proceed from the (5 — 1)st stratum to the higher dimensional one.
(Here we call the manifold X7 := f;(1?) the i-strata and set ©7 := Li;<; X" the
i-skeleton.) To see this, consider an open subset D of fZ(W’) and construct
open neighbourhoods D’ of D in ¥/ for j > i. We do this inductively on j,
where the first step is done by setting D* := D. Assume we have already
constructed D*~! for k — 1 > 4. Let ff denote the restriction of f; on the
p-dimensional face 9”(W*) and let c’; : Uj — W* be a representative of the
collar around 9P (W*). Define first

D} = (fi Uid ) (ch (/D)7 (D*) x [0,00)F) N UE) Uppucgape-» D*)

where Ugr,(gyr-» denotes the following gluing prescription: f X {0}f=P .
(flg)_l(Dk_l) X{O}k_p — Dk_l, (33, 0) — f;:(ﬂ?) Then set DF := UOSPSkleS'
This is clearly an open neighbourhood of D in X*.

Every open subset U of X is again provided with cornered strats satisfying
the conditions of the lemma by setting Wi, := f; *(U) and fY := filwi
W¢ — U. Thus it makes sense to speak of smooth maps (with respect to
strats) on open subsets of X.

Now we want to construct smooth retractions 7 from D* to D. We again
argue inductively. Set m; = id and assume that we have already defined 7;_;.
On every DF there are canonical retractions 7}, : Df — D given by :

[meaf) e = fle b b))
mr_1(z)  for x € D*!

Since D* is attached via fi to D*!  the assignment above defines a well
defined map, which is smooth since m;_; is smooth. Thus, according to the
4th condition of the lemma, m,_; ff is smooth as well.

Proposition 1.5.2. The map m, : D¥ — D given by Uo<p<k—17, @5 well-
defined and is a smooth retraction.
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Proof. One only has to show that the assignment is well-defined. First ob-
serve that since mg_ify = Tk 1fk|opwry and since w1 fy, is smooth, the
map Tg_1 f,f retracts along every collar c,’f for 0 < r < k—1. Let now

y = (frlys) '(z) € im cf Nim ¢}, ,, then

y= C’;(z, (t1; - - 7tk—p)) = C’;+s(c’;(z, (tAI); tr)

for suitable (z, (¢1,...,tk—p)) and I. Then

W) = mea I () 2
7Tk—1f£+s(2) = Wk—lf;f(z) = Tri(x)v

where the equation () is true because m,_; ff*° retracts along the collars.
Thus the map is well defined and the proposition is proved.
U

Summarizing the discussion above, we have shown:

Lemma 1.5.3. Every stratum X* = fZ(WZ) possesses an open neighbourhood
U(X?) and a retraction m; : U(X?) — X*, which is smooth with respect to

(P,

REMARK: If we change the representatives of the germs of collars the neigh-
bourhoods will also change, but their germ is still well defined.

The last lemma shows that ({ fz(W’)}, (U (W“), 7;)]) is a controlled strat-
ification on X. Furthermore from the definition of 7;’s we conclude:

Lemma 1.5.4. A map f : X — R is smooth with respect to {f;} if and
only if f € Cpr3(X).

Let m; : U(X") — X' be representatives of the germs of neighbourhood
retractions, defined above. Define the set of germs of functions around X°
by

(r} (X?) :={g € Cr;y(U)| U is an open neighbourhood of X* in X}/ ~

where (¢g: U — R) ~ (¢’ : U' — R) if there is an open neighbourhood U”
of X*in UNU' such that g|gr = ¢'|pn.
The restriction gives us a well defined map:

T - F{m}(Xi) — COO(XZ)
[f:U—R — flxi: X'—R
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Lemma 1.5.5. The map 7; described above is an isomorphism of algebras.

Proof. The map is injective, for given g : U' — R and ¢’ : U — R there
is a representative of the neighbourhood germ 7y : U(X*) — X" such that
grxi(r) = g(z) and g'nxi(z) = ¢'(x) for all x € U(X?). From g|x: = ¢'|x
it follows that g(z) = gnyi(z) = ¢g'mxi(z) = ¢'(x) for all z € U(X?), hence
g = ¢ € Tyr3(X?). For surjectivity, take a map h € C*(X") and consider
a representative mxi : U(X") — X*. The composition hmyi gives a smooth
extension of h to a neighbourhood of X?, and the lemma is proved.

U

We see that every smooth map defined on a stratum fZ(WZ) has a unique
smooth extension to the space X. But the condition on the attaching maps
in the Lemma, 1.5.1 allows even more.

Lemma 1.5.6. Let X be as above and f : ¥* — R a smooth map with
respect to {f;};<i on the i-skeleton of X. Then there exists a smooth map
g: X — R such that g|lsi = f.

Proof. Tt is enough to show the statement in the case of 7 4+ 1 strats on X,
the general case will then follow inductively. Consider ff;.; : OWt — R.
According to the 4th condition of the Lemma 1.5.1 this is a morphism, an el-
ement of Cs(OW*!). Let {c, : U, — V,,} be a representative of the collars of
Wi, Set U := U,V and define hyy : U — Rby hy(cy(z, (t1, .. -, tiv1 p))) :=
ffir1(x). First we show that the map is well defined. Let

Y= C:D(xa (tlﬂ S ’ti+1*p)) = cp-i-S(cp(ma (tAI)a tl)
Then

A

hu (Cpes(Cp(2; (11)), 1))

Fhi(eple, (i)
ffi-f—l(x) = hU(Cp(.T, (tla s ati—l—l—]))))a
where the equality (*) is true because of the definition of the retractions on
the boundary W' and the fact that ff;;; commutes with the retractions.
Let now A be a closed neighbourhood of OW**!, contained in U. Then we
can use a smooth partition of unity on X! := f;,; (W*) to obtain a map
h : X**! — R such that h|4 = (hy)|a. Define finally g :== h f : X =
XY — R, which is a smooth map on X according to the construction.
U

—~
*
NS

Using similar arguments one obtains:

Lemma 1.5.7. FEvery X with properties as above possesses a smooth parti-
tion of unity.
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Summarizing the discussion we conclude that the pair (X, Cf}(X)) =
(X, Cir;3(X)) is a stratifold, as stated in Lemma 1.5.1.

One advantage of cornered p-stratifolds over those without corners is
that the product of stratifolds (with or without corners) is in the canonical
way an object with corners. Although it is possible to define a product of
two p-stratifolds without corners again as an object without corners using
the straightening of the corners, the construction in general depends on the
choice of representatives of the germ of collars. For an explicit argument, see
[Kr3].

Using Proposition 1.3.1, we conclude

Proposition 1.5.8. FEvery stratifold with cornered strat structure admits a
structure of a p-stratifold, which is unique up to isotopy.

Still in the category of cornered p-stratifolds, we give an example similar
to the product of stratifolds, which will play an important role in §3.4.

EXAMPLES:

1. Let W be a c-manifold with corners and § : W — (0, 0¢) a smooth map.
Consider W := (W x [0,00))<%. Then W is again a smooth c-manifold with
corners. Observe first that since (W x [0,00))’ = graph(d) = W, the space
W is a topological manifold. The faces of W are given by

{(0PW x(0,00))<?, (8PW x(0,00))°, PW x{0}},, Wx{0} and (W x (0, 0))’.

Next we give the collars of the faces. Let {c, : U, — V},} be a representative
of the collar of W, then we define the following collars of W

Cpi1 = ¢y xid : (U, x (0,00))<% — VI/
¢y (U x [0,00))<% —s W
(u,) — (cp(u), d(pry(u)) — 1)
[ = ¢, xid : (U x [0, oo))<‘5°P — W
¢ = id xid : (WX[Ooo)) — W
¢, (W x[0,00))<0 — W
(z,1) — (z,0(z) — 1)

This gives W the structure of a c-manifold with corners.

2. Let now . be a cornered p-stratifold and § : . — (0, oo) a smooth
map. We will give the topological space .# := (. x [0,00))<’ a canonical
structure of a cornered p-stratifold. Set W* := (W*~1x[0, 00))<%. According
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Figure 1.4: New manifold with corners W.

to the previous discussion, this is again a c-manifold with corners. Define
strats f, = fr_1 x id W’“ — .. We now have to verify that the strats
satisfy the conditions of Lemma 1.5.1. All conditions except the 4th one are
obviously fulfilled. And for the 4th condition, one observes that for every
morphism p : ¥¥~1 — R such that p(fr_; x id ) is again a morphism, the
last map retracts near

OW* =1 x {0} and (OW*~! x [0, 00))?
and the boundary of W* is given by
o(W*k) =

(W 1 % [0,00))=° Ugwr-1xqopugaw 1 xoeos (WFH x {0} U WEE x [0, 00))°).

Thus we have shown, that . is a cornered p-stratifold.

1.6 Stratifolds with boundary

Once one knows how to build products with R in the category of stratifolds,
one can introduce stratifolds with boundary in the same way as c-manifolds,
see [Kr3] for details. We omit the construction of products and objects with
boundary in the category of stratifolds and refer to [Kr2] and [Kr3]. In the
case of (cornered) p-stratifolds the construction is very simple. One takes
fixid : Wi x R — . x R as strats, where W* x R has an obvious struc-
ture as c-manifold (with corners).

To introduce a collar in the case of p-stratifolds we first recall:

Definition: An isomorphism of cornered p-stratifolds ¢ : ¥ — < between
cornered p-stratifolds is a homeomorphism such that there are isomorphisms



1.6. STRATIFOLDS WITH BOUNDARY

23

of c-manifolds with corners ¢, : W/ — W/ making the following diagram
commutative for every j:

St g

fi T Tfj

Wi — iy
REMARK: An isomorphism of cornered p-stratifolds is certainly an isomor-
phism of stratifolds, but the converse is in general false, since an isomorphism
of stratifolds does not control the velocity of the collar. Consider, for exam-
ple, the half open interval I := [0, 1) together with two collars the inclusion
c:[0,1/2) < I and the map € : [0,1/2) — I with ¢(z) := 2z. The iden-
tity map id : I — I is certainly an isomorphism of stratifolds since the
retractions induced by the collars are equivalent. The collars themselves are
admittedly not equivalent, hence the identity map is not an isomorphism of
p-stratifolds.

A cornered p-stratifold with boundary is then a pair (#,0.%), where
S =S — 0.7 as well as 0.7 are cornered p-stratifolds and 0.7 is closed in
&, together with a germ of collars [c : (0.7 x [0,00))< — .#], such that
Clazx{oy is the identity map and c|(g.(0,00))<¢ i an isomorphism of cornered
p-stratifolds onto its image, where (im c) is open in .%.

One also introduces the gluing of stratifolds along a common boundary
in exactly the same way as for c-manifolds. A detailed construction can be
found in [Kr2].
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Chapter 2

Resolution of singularities

We have seen that stratifolds are objects with singularities. In this chapter,
we introduce the notion of a resolution of a stratifold and study the existence
and uniqueness of resolutions in some special cases in the category of p-
stratifolds. The existence of strats, i.e. of attaching maps, is essential in the
following discussion.

2.1 Resolution of stratifolds

A stratifold can be seen as a space with singularities. A natural question
which occurs in this context is to try to resolve the singularities, leaving the
smooth top stratum untouched.

Definition: Let . be an m-dimensional stratifold. A resolution of . is a
map p: . — % such that

_ ¥ is a smooth manifold;

- p is a proper morphism,;

- the restriction of p to p~1(.#™) is a diffeomorphism onto .#™;

- p~H(#™) is dense in 7.

As already mentioned, the only results we have take place in the category
of p-stratifolds. The existence of the attaching maps allows us to construct
resolving manifolds under certain conditions. Since a p-stratifold is a strati-
fold with additional structure, we also impose an additional requirement on
the resolution.

25
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Definition: Let ¥ be an m-dimensional p-stratifold. A resolution of & as
a p-stratifold is a resolution p : . — . such that additionally

- the inclusion ¥ := p~'(2) < UL := p~1(UX) is a homotopy equiva-
lence for a representative of the neighbourhood U of ¥;
A resolution p : ¥ — .¥ is called optimal, if p s Y —» Yis an [n/2]-
equivalence.

If V is an algebraic variety, Hironaka has shown [Hi| that there is a resolu-
tion of singularities in the sense of algebraic geometry. The above topological
definition is modelled on the one from algebraic geometry. All conditions are
analogous except the new one, which is always fulfilled in the context of al-
gebraic geometry. As explained in [BR], a neighbourhood U of the singular
set X of an algebraic variety V' such that the inclusion ¥ — U is a homotopy
equivalence can be obtained from a proper algebraic map p : V — R with
¥ = p~1(0) by taking U = p~1[0,r), provided r > 0 is small enough. Thus
for a resolution p : V — V the preimage U= p~!(U) is a neighbourhood
of 32 := p~*(¥) in V obtained from 5 := pp, hence the inclusion 3 < U is a
homotopy equivalence.

If one representative of the top strat f, : W* — .¥ comes from a
manifold with more structure, e.g. oriented or spin, the isomorphism class
of domains of top strats are equipped with the induced structure. In such
cases we introduce corresponding resolutions, which have more structure.

Definition: Let . be a p-stratifold with oriented W™. A resolution p :
S — & is called an oriented resolution, if 7 is oriented and pl,-1( )
is orientation preserving. Analogously, if W" is spin, then p : S — S s
called a spin resolution if . is spin and p|,-1(n) preserves the spin structure.

As mentioned in the introduction, we are particularly interested in the
classification of resolutions. Thus we have to decide when we are going to
consider two resolutions as equivalent. We can restrict our attention to the
resolving manifolds and introduce a relation on them, e.g. diffeomorphism,
but in this case we completely ignore an important part of the resolution
data, namely the resolving map. Hence, one can ask for diffeomorphisms
between the resolving manifolds commuting with the resolving maps. This
relation is very strong and, therefore, very hard to control. In the following
definition, we combine these two ideas.
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Definition: Let . be a p-stratifold and p : ¥ — % and p' : ' —>
< two resolutions of .. We call the resolutions equivalent, if, for every
representative of the neighbourhood germ UX., there is a diffeomorphism
¢e 1 ¥ — %" such that the following holds:

-~ poe=pon.¥ — UL, and

- rplpe = rp on Uic, where r : UL, — X is the neighbourhood’s
retraction.

This means outside of an arbitrary small neighbourhood of the singularity,
the diffeomorphism commutes with the resolving maps and near X it only
commutes after the composition with the retraction.

Observe that ¢, gives a diffecomorphism U, —» 8UXA]L.

2.2 Isolated singularities

The situation simplifies very much if we consider only p-stratifolds with
isolated singularities, where the construction of the strats is done in two
steps only. The first step is the choice of a countable number of points
{z;}iercn, which become the isolated singularities. The second step is the
choice of a smooth manifold W of dimension m, together with a proper map
g : OW — {x;};, where {z;}; is considered as a 0O-dimensional manifold,
and the collection of boundary components f~!(z;) is equipped with a germ
of collars. The stratifold is obtained by forming

=W Ug {.’L’Z}Z

We reformulate this in a slightly different way.

Definition: An m-dimensional p-stratifold . is said to have isolated sin-
gularities if #* = forallz € {1,...,m — 1}.

The zero dimensional stratum .#° is a countable set of points {;}:c ICN
and the topological space .# in this case is homeomorphic to W™ Uy, |,vm
{z;};- Thus, . depends on the diffeomorphism type of W™ and L; :=
(fm)'(z;), the collection of boundary components mapped to a singular
point z;.

It is not hard to verify that, in the special case of p-stratifolds with iso-
lated singularities, the map g : M — . from a smooth manifold to .¥ is a
morphism if and only if the restriction g|4-1(5»_x) is smooth.
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The most important examples of such stratifolds are algebraic varieties
with isolated singularities.

EXAMPLE (Algebraic varieties with isolated singularities):

Consider an algebraic variety V' C R" with isolated singularities, i.e. the
singular set X is zero-dimensional. Let s; € X be a singular point. There is
nothing to do if s; is open in V. Otherwise consider the distance function p;
on R" given by p;(z) := ||z — s;|[%. It is well known that there is an &; > 0
such that on V,(s;) := V N D, (s;), the restriction p;|v.. (s} has no critical
values. Here D,,(s;) denotes the closed ball in R" of radius ¢; centred at s;.

Set OV, (s;) == V..(s;) N 0D, (s;).

s

Figure 2.1: An algebraic variety V with an isolated singularity at sj.

v

By following the integral curves of the gradient vector field of pi|‘/si_{5i}i
we obtain a diffeomorphism

h: 0V, (s:) x [0,¢;) Ve, — {5}
pro %
[07 gi)

being the identity on 0V, (s;) x {0}, see [H, §6.2]. We extend this map to a
continuous map B
h: 0V, (si) x [0,&)] — V¢,.

Finally, we define a c-manifold W (with obvious collar) by setting
W=V — (WD, (5:)) Uia OVz,(s:) % [0, &)

The map f =id Uh : W — V gives V the structure of a p-stratifold with
isolated singularities, compare Figure 2.2.

Since every complex algebraic variety is in particular a real one, we obtain
the same result for a complex algebraic variety with isolated singularities.
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w

Figure 2.2: Stratification of V.

CONCLUSION: FEwvery real or complex algebraic variety with isolated singular-
ities admits a canonical structure of a p-stratifold.

2.2.1 Resolution of isolated singularities

In contrast to algebraic varieties, resolutions of stratifolds in general do not
exist, not even for isolated singularities. But in this case there is a simple
necessary and sufficient condition, see [Kr3].

Theorem 2.2.1. An n-dimensional p-stratifold with isolated singularities
admits a resolution if and only if each link of the singularity L; vanishes in
the bordism group ,_1.

EXAMPLE: The p-stratifold .¥ = CP? x I Uy {z, 21} with the obvious
strats, such that f(CP? x {0}) = zq and f(CP? x {1}) = 1, does not admit
a resolution.

Although the proof of the theorem can be found in [Kr3], it is useful to
understand its nature for the succeeding results.

One of the basic tools for constructing a resolving map is the following
lemma, which can be proved with the help of Morse theory, see [Kr3].

Lemma 2.2.2. Let M be a smooth compact manifold with boundary. There
18 a thin compact subspace X of M and a continuous map OM — X,
such that M is homeomorphic to OM x [0,1] U X, where on OM x [0, 1) the

homeomorphism can be chosen to be a diffeomorphism.

In other words, every smooth manifold with boundary arises from its col-
lar by attaching a thin set. The notation thin stands for the complement of
a dense set. With this information, we are ready to prove Theorem 2.2.1.
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Proof of Theorem 2.2.1. Let p: % —» .7 be a resolution. Set M, := U;.
Since M; is a compact manifold with boundary L;, we obtain [L;] = 0 in
Q1.

oOn the other hand let M; be a compact manifold bounded by L; and let
f(W) be the top stratum of .. Set . := W Uy (L;M;) and construct the
following resolving map with the help of the last Lemma:

S 2W Ui (L % [0,6] Uy, X;) —= W U; (Li x [0,6;] U {z;}) =

TN

P

O

We have shown above that every algebraic variety with isolated singular-
ities admits a structure of a p-stratifold. One may ask the converse question.
When does a p-stratifold with isolated singularities admit an algebraic struc-
ture? The following Theorem of Akbulut and King [AK, Thm. 4.1] clarifies
the situation in the case of a complex algebraic structure.

Theorem 2.2.3. A topological space X is homeomorphic to an algebraic set
with isolated singularities iof and only if X is obtained by taking a smooth
compact manifold M with boundary OM = U]_,L;, where each L; bounds,
then crushing some L;’s to points and deleting the remaining L;’s.

Combining this result with Theorem 2.2.1 we immediately obtain:

Corollary 2.2.4. A p-stratifold . with isolated singularities is homeomor-
phic to an algebraic set with isolated singularities if and only if . admits a
resolution.

The question of optimal resolutions simplifies in the situation of isolated
singularities. It is not hard to verify that a resolution p : S — S is opti-
mal if and only if the manifolds UY; are ([n/2] — 1)-connected.

Before proceeding with the existence of an optimal resolution, we have to
explain the notation. For a topological space X, let X (k) be the k-connected
cover of X, which always comes with a fibration p : X (k) — X. For further
information, see, for example, [Ba]. We take X to be the classifying space BO
and denote by QE%®) the bordism group of closed n-dimensional manifolds,
together with a lift of the normal Gauss map (compare [St, Chap. IJ).
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Theorem 2.2.5. An n-dimensional p-stratifold with isolated singularities
admits an optimal resolution if and only if the normal Gauss map v; :
L; — BO admits a lift over BO{[n/2] — 1) such that [L;, ;] vanishes in
QBO ([n/2] = 1) for every link of the singularity L,.

For the proof, see [Gr|. As an example, we obtain the following corollary.

Corollary 2.2.6. Let .# be a p-stratifold with parallelizable links of isolated
singularities L;. Assume every L; is bounded by a parallelizable manifold,
then . admits an optimal resolution.

ExAMPLE (Resolutions of hypersurfaces with isolated singularities):
Let p : R*! — R be a polynomial with isolated singularities {s;};, i.e.
s; € V :=p1(0) and s; is an isolated critical point of p. Assume further that
the points s; are not open. According to a previous example, the hypersurface
V' admits a canonical structure of a p-stratifold. We have to investigate the
link of the singularity, which is given by 0V, (s;).

Choose a § > 0 such that all ¢ with |c| < ¢ are regular values of p and take
¢ such that p~*(c) # (0. Then p—*(c) is a smooth manifold with trivial normal
bundle. With the help of a gradient vector field we see that p~'(c) N SZ(s;)
is diffeomorphic to p~'(0) N SZ(s;) = OV, (si). Thus, OV, (si) = p~'(c) N
ST (s;) = d(p~'(c) N D2 (s;)). We see that a resolution always exists, and
since the bounding manifolds are automatically parallelizable, we even obtain
an optimal resolution after choosing an appropriate bordism (compare with
Figure 2.3).

(—¢)

not optlmal)

optlmal

Figure 2.3: p(z,y,2) = 2% + 3> —
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In the case of a complex polynomial p : C**' — C (n > 0), every
deformation p~'(c) gives us an optimal resolution, provided ||c|| is small
enough. This follows from a result of Milnor [Mi2, Thm. 6.5] which states
that M := p~*(c) N D?"2(s;) is homotopy equivalent to a wedge of u > 1
copies of S™ and thus (n — 1)-connected.

ConcLusioN: Let K denote the field of real or compler numbers and let
n > 1. Each hypersurface V. = p~1(0) in K" with isolated singularities ad-
mits an optimal resolution. In the case of K = C, the deformation p~'(c)
is itself the total space of an optimal resolution, provided ||c|| is small enough.

Consider another interesting class of p-stratifolds with isolated singular-
ities, namely those arising from a smooth group action.

Definition: A smooth S'-action on a smooth manifold M is called semi-
free if the action is free outside of the fixed point set, i.e. if gr = x for a
ge St g#1and v € M, then hx = z for all h € SL.

Lemma 2.2.7. Let M be a closed oriented manifold with semi-free S*-action
with only isolated fized points. Then M/S' admits an oriented resolution if
and only if dim M = 0(mod 4).

Proof. Let dim M = n. There is nothing to show if the action is free. Thus let
x € M be a fixed point. The differential of the action gives a representation
of St on T,M and there is an equivariant local diffeomorphism from T, M
onto a neighbourhood of = in M. According to [BT, Prop. (IL.8.1)], every
irreducible representation of S* on R is equivalent to:

z 0 ... ... 0 zZm 0 ... L. 0
0 - : 0 :
: ZMn/2 () : . 0
0 ... ... 0 1 0 ... ... 0 2"™nr
considered as a representation on considered as a representation on
Cx..-xCxDRif nisodd Cx---xC,if nis even

Since the action is semi-free and z an isolated fixed point we conclude
that dim M is even. We can further assume n; = 1 for all ¢+ € {1,...,n/2}.
Let dim M = 2m and let {xi,...,zx} be the set of fixed points. Choose
equivariant disks D,, around z;. In this situation we have

]\4/51 = (M_ uibmi)/slu{xla---axk}'
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The domain of the top strat is then given by W™ := (M — 1;D,,)/S" and
the singular set is ¥ := {z1,...,2,}. The links of singularities are given
by L; & S?m1/81 = CP™ . Using Theorem 2.2.1 we conclude that the
resolution exists if and only if [CP™ '] vanishes in Q59 ,. For m = 2] + 1
the signature of CP™ ! is equal to 1, hence CP™ ! does not bound. In the
case of an even m = 2| +2 we have CP%*! = §4+3 /81 = S(H!*1)/S?, where
S(H*1) /ST is the sphere bundle

S2 — S3/Slc—> S(HH—I)/Sl

|

S(H+1)/S? = HP!

and the associated disk bundle bounds.
O

The classification of optimal resolutions is quite a difficult problem. For
if .7 is an optimal resolution of ., then .#4S is again optimal for an arbi-
trary homotopy sphere S. In particular, consider the sphere S™ stratified as
D™ U pt, then every homotopy sphere 8™ gives us a resolution of S™. Thus,
we weaken the problem and ask for the equivalence up to a homotopy sphere.

Definition: rljwo resolutions .% — 7 and ' — . are called almost
equivalent if 4S8 is equivalent to .’ for a homotopy sphere S.

Before formulating the classification result, we need to introduce some
notation.

Let B be a fibration over BO, a normal B-structure on a manifold M is
a lift v of the normal Gauss map v : M — BO to B.

Definition: Let B be a fibration over BO.

1. A normal B-structure v : M — B of a manifold M in B is a normal
k-smoothing if it is a (k + 1)-equivalence.

2. We say that B is k-universal if the fibre of the map B — BO is
connected and its homotopy groups vanish in dimension > k + 1.

Obstruction theory implies that if B and B’ are both k-universal and admit
a normal k-smoothing of the same manifold M, then the two fibrations are
fibre homotopy equivalent. Furthermore, the theory of Moore-Postnikov de-
compositions implies that for each manifold M there is a k-universal fibration
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B* over BO admitting a normal k-smoothing (compare [Ba, §5.2]). Thus,
the fibre homotopy type of the fibration B* over BO is an invariant of the
manifold M and we call it the normal k-type of M.

There is an obvious bordism relation on closed n-dimensional manifolds
with normal B-structures and the corresponding bordism group is denoted
Q%p:BﬁBO)

Theorem 2.2.8. For n > 2, let S — S and ' — . be two opti-
mal resolutions of a 2n-dimensional p-stratifold . with isolated singularities
{z:}ier, such that each link L; is (n — 2)-connected. Assume further that for
a suitable representative UY. the following conditions hold for all i € I:

- there exist normal (n — 1)-smoothings of US; and Uf]; wn a fibration
B — BO, compatible on the boundaries;

- U, Ug Uf?; is elementary.

If n is odd, then 5’?}'3 almost equivalent to S X
If n is even, then Ztk(S™ x S™) is almost equivalent to #'4k(S™ x S™) for
ake{0,1}.

We have to explain the last condition in the theorem.

Let M be a 2n-dimensional (n — 1)-connected manifold. According to
the Hurewicz-Theorem every element of H,(M) is represented by a map
S™ — M. Using a result of Haefliger [Hae] we can without loss of general-
ity assume that the map S™ — M is an embedding, and two embeddings
which correspond to the same homology class are regular homotopic. Thus,
assigning its normal bundle to an embedded sphere gives us a well defined
map v, : Hy(M) — 7,_1(SO(n)).

Definition: An (n — 1)-connected closed 2n-dimensional manifold M is
called elementary if H,(M) admits a Lagrangian £ with respect to the self
intersection form such that (v).|; = 0.

The proof of the Theorem is based on surgery and is carried out in [Gr].
In the next paragraph, we are going to find an algebraic description of the
last condition in the theorem.
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2.2.2 Algebraic invariants

In this section we will find algebraic invariants, which allow us to decide
whether an (n — 1)-connected closed 2n-dimensional manifold is elementary
or not (n > 2).

Recall the algebraic data corresponding to such a manifold M. We have
a triple (H, A, v,), where H = H,,(M) is a free Z-module, A : H x H — Z is
the intersection product and v, : H — m,_1(S0,,) is a normal bundle map,
described in the previous section. The map v, is not a homomorphism, but
satisfies the following equation:

V*($+y) :y*(m)-l—z/*(y)—i-a/\(x,y), (*)

where 0 : Z = m,(S") — m, 1(SO,) is the boundary map from the long
exact homotopy sequence of the fibration SO(n) — SO(n+ 1) — S", see
[W1].

Thus, we obtain an algebraic object, the set 7, of triples (H, A, v, ), where
H is a free Z-module, A : H x H — Z is an (—1)"-symmetric unimodular
quadratic form and v, : H — m,_1(SO,,) is a map satisfying (x). We want
to investigate the assumptions under which an element (H,A,v,) € T, is
elementary, i. e. when H possesses a Lagrangian £ with respect to A such
that v, |, = 0.

We begin with an observation that for a 4k-dimensional manifold the
normal bundle, information can be replaced by the stable normal bundle
map.

Lemma 2.2.9. Let n be even and let S®™ — M?™ be an embedding. The
normal bundle v(S™) of S™ in M is trivial if and only if v ® R is trivial and
the Euler class of v(S™) vanishes.

Thus, instead of considering (H, A, v,) € T, we can go over to (H, A, sv,),
where sv, : H — m,_1(SO) corresponds to the stable normal bundle map.
Since the Euler class of an embedded sphere representing x € H can be
identified with the self intersection class we conclude:

Lemma 2.2.10. Let n be even. Then (H,A,v,) € T, is elementary if and
only if (H, A, sv,) is elementary.

Let 7, denote the set of triples (H, A, sv,), with H and A as above and
sv, : H — m,_1(S0O) a homomorphism. According to the different possibil-
ities for m,_1(SO) we distinguish 3 cases.
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(1) m,1(SO) = 0.
CrLAam: (H, A, sv,) € 7,7 is elementary if and only if sign(A) = 0, where sign
denotes the signature of a quadratic form.

(2) Tp_1(SO) = Z. Since A is unimodular it induces an isomorphism H —»
H*, which we also denote by A. The map sv, gives an element of H* and we
consider k,,, :== A~'(sv,) € H.

CLamM: (H,A,sv,) € T7 is elementary if and only if sign(A) = 0 and
2, = 0.

(3) m,_1(SO) = Zs. Let (H, A, sv,) be an element of 7,* with vanishing signa-
ture and suppose A is of type ], i.e. A(z,z) =0 (mod 2) for all z € H. Note
that since n # 8 in this case, an elementary element corresponding to a man-
ifold always has a type II quadratic form. Thus, the dimension of H is even
and according to [Mil, Lem. 9] we can choose a basis {\1,..., Ak, 1, - -, fg }
satisfying

A()\Z, /\]) = 0, A(,U,Z, ,U,J) =0 and A(/\Z, ,U,J) = 5”

Consider the set of all elements z € H with A(z, z) = 0 and denote its image
under canonical projection on H ® Zy by H°. This class ®(H, A, sv,) :=
Zle sV (i) svi(11;) € Zgy is well-defined and is equal to the value sv, takes
most frequently on the finite set H°, the class is called Arf invariant.
CLAIM: An element (H, A, sv,) € 7,° with type I] form A is elementary if
and only if sign(A) =0 and ®(H, A, sv,) = 0.

Consider now the case of an odd n. The quadratic form is now skew sym-
metric. Depending on the values of v, there are again three different cases

(compare [Ke]), which were studied in [W1].

(4) m,-1(SOy) = 0. In this case every element of 7, is elementary.

—~~

5) Tp—1(SOy) = Zs. Asin (3), we can define the Arf invariant ®(H, A, v,) =
K L V(M) va(pi) € Zsy, using a symplectic basis {\1,..., Ag, 1, ..., i} of

i=

=[]

LAIM: An element (H, A, v,) € T, is elementary if and only if ®(H, A, v,) =

Q)

(6) 7, 1(SO,) = Zy @ Zy. We consider again the stable normal bundle map
sv, : H — Zs, the projection on the first component. As in (2) using A, we
obtain an element £ (determined mod 2H) with sv,(z) = A(k,z) (mod 2)
forall z € H.
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CrAmM: An element (H, A, v,) € T, is elementary if and only if ®(H, A, v,) =
0 and pryv.(k) = 0, where pr, denotes the projection on the second compo-
nent.

Proof. ad (2): Let (H,A,sv,) be elementary and £ = (\{,...)\;) a La-
grangian with sv,|; = 0. Thus sign(A) = 0 and 0 = sv,(\;) = Ak, \i)
for all 1 <4 < k. Since £ is maximal it follows that k,,, € £ and therefore
sV, (Ksp,) = 0.

On the other hand let sign(A) = 0 and sv.(ks,) = 0. Choose a basis
{)\1, ey )\k, M1, - - ,;Lk} of H such that A()\Z, )\J) =0 and A()\z; /,L]) = 51]

There is nothing to show if k;,, = 0. Otherwise we can without loss of
generality assume that sv,(\;) = 0 for all i > 1, since sv, is a homomorphism.
Recall the equality sv.(v) = A(kg,,v) Yv € H. Since kg, € H there are
a;,b; € Z such that k,, = Zle(ai)\i + bip;). Consider a sub-Lagrangian
L= Aoy, M) U kg, & L) build £ := (g, ..., A, Rsp. ), Where Ry, is a
primitive element of H with k,, € (R, ). This is a Lagrangian, satisfying
st = 0. In the case of kg, € L', the coefficients a1, by,. .., b, have to be
zero, thus £ = (Aq,..., \) is a Lagrangian with the desired property.

ad (3): The conditions are obviously necessary. To see that they are also
sufficient choose a symplectic basis {1, ..., A\g, pi1,-- -, px} of H. Sort the
generators in the following way

s (Ng) = sva(pi) = 1 for i <,
sv(A) =0 for i > s,

where s is an integer between 0 and k. The assumption ®(H) = S5 | st (\)sva (1) =
0 implies that s = 0(mod 2). Construct a new basis {\|,..., .} for H by
the substitution

Agi 1= Agi 1+ Agi, Ao = Moi 1 — Hai,
a1 = Hai Ha; = A2
for 2¢ <'s, and
A=A i = M
for 7 > s. This new basis is again symplectic and satisfies the condition
sv(\}) =+ = s (N,) = 0.
O

Knowing the algebraic description of elementary manifolds, we formulate
a special case of Theorem 2.2.8.
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Corollary 2.2.11. Let S — . and S — .F be two resolutions of a
2n-dimensional p-stratifold # having (n—2)-connected links of isolated singu-
larities. Assume that n = 6 (mod 8)and that US; and Uf]; are parallelizable
with compatible parallelization on the boundary. Let further e(US;) = e(US))
and sign(US;UsUS}) = 0. Then there is a k € {0,1} such that Stk(S™x S™)
is almost equivalent to '$k(S™ x S™).

2.2.3 4-dimensional results

In this section we consider the exceptional case of a 4-dimensional p-stratifold
and give a similar classification result in that situation.

For a 4-dimensional stratifold ., every link of the singularity L; is a 3-
dimensional manifold. According to the computation of 2, by Thom [Th2]
we immediately obtain from Theorem 2.2.1:

Corollary 2.2.12. A four-dimensional p-stratifold with isolated singularities
always admits a resolution.

If we further assume the links to be oriented we can use the following
result:

Proposition 2.2.13. FEvery orientable 3-manifold is parallelizable, hence in
particular spin.

Proof. Let M be an orientable 3-manifold. The tangent bundle 7'M is trivial
if and only if the classifying map g : M — BQOj is null-homotopic. Accord-
ing to Whitehead’s theorem this is the case if and only if the induced map
in homotopy g. : m(M) — m;(BOj3) is trivial for ¢ = 0,...,3. The last
statement is clearly true if all Stiefel-Whitney classes w;(M) vanish. Since
M is orientable w;(M) = 0. For the third Stiefel-Whitney class we have
the equality ws(T'M) = e(M)mod 2, and the right side vanishes by Poincaré
duality. By the Wu formula we have w;(M) = v; and wo(M) = v? + vs.
From the definition of the Wu classes we see that v, = 0 if S¢? = 0, and the
triviality of the 2nd Stiefel-Whitney class is clear for dimension reasons.

O

The normal 1-type of a simply connected 4-dimensional spin-manifold is
given by BSpin. Since Q3" = 0 (see [Mi3, Lem. 9]) we obtain the following
corollary from Theorem 2.2.5.

Corollary 2.2.14. A four-dimensional p-stratifold with isolated singulari-
ties admits an optimal resolution if and only if all links of singularities are
orientable.
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Let us concentrate on resolutions by spin manifolds.

We have to develop some notation in the topological category. Use
BTOP to denote the classifying space of topological vector bundles and
let BTOPSpin be the 2-connected cover over BTOP. Let M be a simply
connected 4-manifold. Using the Wu-Formula we can explain the Stiefel-
Whitney-classes of M. We call the topological manifold M spin if we (M) van-
ishes. One can show that the topological Gauss map of M lifts to BTOPSpin
if and only if M is spin. Note further that if such a lift exists, it is unique.

Using [Krl, Thm. 2] and the h-cobordism-Theorem in dimension 4 [Fr,
Thm. 10.3] we formulate:

Theorem 2.2.15. Let M and My be compact 4-dimensional topological spin
manifolds with e(M,) = e(Ms) and let g : OM; — OM; be a homeomorphism
compatible with the induced spin-strucures on the boundaries. If My Uy M,

: . BTOPSpi .
vanishes in QPTOPM then g can be extended to a homeomorphism G

Mytk(S? x S%) —» Mytk(S? x S2) for k € {0,1}.

We call two resolutions topologically equivalent if the diffeomorphism ¢,
in the definition of equivalent resolutions in §2.1 is replaced by a homeomor-
phism. Using this notation, we obtain the following classification result in
dimension four:

Theorem 2.2.16. Let . — . and %' — . be two optimal resolutions
of a 4-dimensional p-stratifold .# with isolated smgulamtzes {x;}icr, such that
each link L; is connected. Assume that both . and &' are spin and that
for a suitable representative US of the neighbourhood germ, the following
conditions hold for all v € 1:

- e(U%;) = e(U)),

- the spin-structures of US; and Ufl; coincide on the boundary,

- sz’gn(Ufﬁi Us Uf?;) =0.
Then $k(S? x S2) is topologically equivalent to .#'4k(S? x S?) for a k €
{0,1}.

Proof. As in the proof of Theorem 2.2.8 we conclude that it is enough to show
that the diffeomorphism on the boundary dUY; —» GUZA?’ can be extended
to a homeomorphism on US;#k(S? x S?) — UZ’jjk(52 x S?%). Since the
resolutions are optimal, the manifolds UY; and U Z’ are 1-connected, hence
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M =TS, Ug Uﬁ; is again l-connected. In order to apply Theorem 2.2.15
we have to show that the closed 4-dimensional spin manifold with vanishing
signature is bordant to a homotopy sphere. Then we apply the topological
4-dimensional Poincaré conjecture proved by Freedman [Fr, Thm. 1.6] and
obtain the desired statement.

We want to use surgery to prove that M is bordant to a homotopy sphere.
Since M is spin and sign(M) = 0, there is a basis {1, ..., Ag, g1, ..., pg} of
H,y(M) satisfying

ANy Aj) =0 A(ps, 1) =0 A(N, ) = 6ije

We can not use the Haefliger’s embedding theorem in dimension 4, but ac-
cording to [Fr, Thm. 3.1, 1.1] every generator J; is represented by a topo-
logical embedding S? x D? — M. Knowing this we can proceed in exactly
the same way as in the proof of Theorem 2.2.8, see [Gr].

It remains to show that the conditions of the theorem are true for every
representative of the neighbourhood germs [UY;], once we have checked them
on one representative. If ¢; : L; x[0,¢;/2] —  and §; : L; x[0,¢;/2] — .7
with €; < €] are two representatives of the germ of collars around L;, then
there exists a positive €] < €;/2 such that c¢; coincides with €; on L; x [0, "].
We choose a diffeomorphism 7; : [0,¢;/2] — [0,¢}/2] with n =id on [0, /]
The map induces an isomorphism

UEici — UZZ@
flei(z, 1)) — f(Ci(z, ni(1)))

being the identity on a small neighbourhood of ¥; C /. This gives us
a diffeomorphism between UY;., and UX;; making the following diagram
commutative:

lu lu

8?2'1’%% Uﬁ/iq = Uﬁ,iéi <—36Uﬁ/iéi

This completes the proof.
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2.3 First approach to the resolution of non
isolated singularities

In this section we apply the methods obtained by dealing with isolated sin-
gularities to the general situation of a p-stratifold. We start with an n-
dimensional p-stratifold . with strats f; : W* — .. Denote as usual
the (n — 1)-skeleton by X. Observe that we can always assume .# to be
Wn Uy, Y. Since, given a representative f, : W" — % of the top
strat, we can give the space fn(W”) LI QW™ a structure of a c-manifold us-
ing the bijection f,|i» U id|agw-W" — fo(W™) U @W™. Thus, the strat
id ;. gy U flown : Fo(Wm) L OW™ —s .7 is equivalent to f, : W — .&.

lown

In this section we always assume that & = W™ Uy, ... . We further
assume throughout this section that ¥ has a decomposition {%;};c;cn into
compact connected components. Set g := f,|awn : OW"™ — X and consider
the links of the singularities L; := g~ '(3;). Further denote the restriction of
g to L; by g;. Since the manifolds L; are compact, we can always choose a
representative of the germ of collars ¢ : (W x [0,00))<® — W such that
0|1, (z) = 2¢; for all x € L;. In the following we will always use this repre-
sentative and denote its restriction to (L; x [0,00))<? by c;.

In the same way as in the case of isolated singularities we conclude:

Proposition 2.3.1. If a p-stratifold .7 admits a resolution then [L;, g;] van-
ishes in the bordism group Q, 1(%;) for alli € J.

Now assume the link [L;, g;] is zero bordant in Q,_;(%;). Thus there is
a manifold M; together with a map G; : M; — ¥; with OM; = L; and
Gilr, = gi- We apply Lemma 2.2.2 and obtain a closed thin subset X; of
M; and a map h; : OM; — X; such that OM; x [0,¢;] Uhiprylon, x ey i 1S
homeomorphic to M;. Further, the homeomorphism can be chosen in such a
way that it is the identity on the boundary and a diffeomorphism outside of
X;. We are in a similar situation as in the case of isolated singularities. We
are finished here if there is a map p; : X; — X; such that g; = p;h;, for this
would give us a resolution

S =W Uawn—awnxqoy (Ui(Li X [0, €] Uppry:Lixfes}—ox; Xi))

id U(U; (id Ups))

wn Uawn=awnx {0} (Ui(Li X [Oa gi] Ugipry:Lix{e:}+X; EZ)) =5
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Consider the map p; := G|x, : X; — X;. Unfortunately we only know that
its composition with h; is homotopy equivalent to g;. The homotopy is given
by the collar:

H;: Li—— L; x {t} C M;

\ lGiLix{t}

2
We summarize the discussion in the following theorem.

Theorem 2.3.2. Let ¥ = W™ Uy X be a smooth n-dimensional p-stratifold.
Then g is homotopic to g' such that ' = W™ Uy ¥ admits a resolution if
and only if [L;, g;] vanishes in Q,_1(%;) for all i € J.

EXAMPLE: Let . = W4 Ug X be a 4-dimensional p-stratifold with oriented
domain W* of a representative of the top strat and singular set ¥, decom-
posed into compact connected components {¥;};. We are interested in the
existence of an oriented resolution up to deformation of g. Denote as usual
the links of singularities by L; := ¢ '(2;). According to Theorem 2.3.2,
the obstructions to finding such a resolution are given by [L;, g;] € Q5°(%;),
where ¢; denotes the restriction of g to L;. Apply the Atiyah-Hirzebruch
spectral sequence to Q7(%;). The E?-term is given by H;(X;, Q7°(pt)).

7, ® ® ® ° ®

H;(%;)

Thus, we obtain an isomorphism Q59(%;) — H3(%;) given by [N, h] —
h.([N]). In summary, we obtain:

CONCLUSION: . admits an oriented resolution up to deformation of g if
and only if (g;)«[L;] = 0 in H3(%;) for alli € J.
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Now we want to collect necessary conditions for the existence of an opti-
mal resolution.

We start again with an n-dimensional p-stratifold ¥ = W™ U, ¥ with
(n — 1)-skeleton . Let {X;};c; be the decomposition of ¥ into compact
connected components. Suppose . admits an optimal resolution 7 : S —
. Set M; := r~*(UX?). Thus, M; is a non-empty connected manifold
with boundary, and the boundary is isomorphic to L; := g~ *(%;), the link of
the singularity. The neighbourhood’s retraction UY; — ¥; gives us a map
G; : M; — X; extending the given map on the boundary. In the same way
as for isolated singularities, we consider the map

GiXViZMZ'—)EZ'XBO,

where v; denotes the normal Gauss map. We look at the Moore-Postnikov
tower of this map, the [n/2]-floor gives us a fibration p; : B; — ¥; x BO
with fibre F; having the properties:

- m(F;) = 0 for i > [n/2] and
- G; X v; : M; — X; admits a lift over B; by an [n/2]-equivalence:

B;
Gi XVj lp'
2

We know that both G; and G; X v; are [n/2]-equivalences. So by considering
the following commutative diagram

(Giy lpn pi

we conclude that pr; p; is also an [n/2]-equivalence. We summarize necessary
conditions for the existence of an optimal resolution: For all ¢ € J there
should exist a fibration p; : B; — Y; X BO such that

1. m;(F;) = 0 for j > [n/2], where F; is the fibre of p;,
2. pryp; is an [n/2]-equivalence,

3. g; Xv; : Ly — ¥; x BO admits a lift g; X v; over B;,
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4. [L;, pry g; X v;] vanishes in Q%759 where the fibration over BO is
given by pr, p;.

These conditions are also sufficient if we again slightly deform the attaching
map.

Theorem 2.3.3. Let ¥ =W" U, X be an n-dimensional p-stratifold. Then
g is homotopic to g' such that /' = W" Uy X admits an optimal resolution
if and only if there are fibrations p; : B; — Y; x BO fulfilling the above
conditions 1 to 4.

Proof. We only have to verify that our conditions are sufficient. So suppose
they are fulfilled. Then we can choose an n-dimensional manifold M; bound-
ing L; together with a lift 7; : M; — B; of the normal Gauss-map making
the following diagram commutative:

B;
Vi lprzm
M; o BO

such that the restriction of the lift to the boundary L; coincides with the
given map pry g; X ;.

Using Proposition 4 from [Kr1] we can assume 7; to be an [n/2]-equivalence,
so we conclude that the map

is an [n/2]-equivalence as well. According to Lemma 2.2.2 we can write M;
as L; x [0,&;] Up, X; and obtain an optimal resolution

S =W Uawn=awnx {0} (Ui(Lsi X [0, €3] Up;pry:0ixfei}»x; Xi))

id U(U@'(id UGi‘X)

W™ Uswn=awnx oy (Ui(Li X [0, ;] Ugipr,.Lix{ei} sz 2i)) = &

where ¢} = G| x,hi.
]

EXAMPLE: As in the previous example, consider a 4-dimensional stratifold
& = W*U, ¥ built from an oriented manifold W* and the singularity ¥,
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decomposed into compact connected components ;. Let us discuss the exis-
tence of an oriented optimal resolution up to deformation of g. According to
Theorem 2.3.3, we first have to find a fibration F; — B; Liy > X BSO with
mj(F)=0for j > 2 and B, — ¥; x BSO — X, a 2-equivalence, and a lift

g; X v; of g; X v; + Ly — X; x BSO over B; such that [L;, g; X v;] vanishes
in QPi— B0,

Given such a fibration we obtain the following exact homotopy sequence:

WQ(BSO) = ZQ

|

O—>7TQ(BZ') —>7TQ(EZ' X BSO) —>7T1(EL') —>7T1(BZ') —>7T1(Ei X BSO)

Iy

7r2(2i) 7r1(2i)

Thus the fibre F; is the Eilenberg-MacLane space K (G, 1), where G =
coker((pi)* : 7T2(Bi) — WQ(EZ' X BSO)) Since 7T2(Ei X BSO) = ’ﬂ'g(zi) EBZ/?
and my(%;) C im (p;)*, there are only two possibilities for G, namely G = 0
or G =17/2.

In the first case, we obtain B; := X; x BSO and p; is given by the identity
map.

Using the the Atiyah-Hirzebruch spectral sequence from the last example
we see that all differentials below d° are trivial, thus we conclude: QFi755¢
is isomorphic to H3(B;) = H3(BSO) ® H3(%;) @ H1(3;) ® Z/2, where the
isomorphism is given by [N, o] — (Zn)«([V]).

In the second case, we additionally assume that ¥; is 1-connected. Then,
according to a result by Baues [Ba, §5.2], the fibration p; : B; — %;x BSO is
a pull-back of the path-fibration over K(Z/2,2) viaa map 6; : ¥; x BSO —
K(Z/2,2). We can consider 6; as an element of Hom(my(%;) x Z/2,Z/2).
Considering again the above homotopy sequence, we see that 6; is surjective
and my(%;) lies in the kernel of 6;. Thus, there is only one possibility for 6;,
namely

(z,y) — oy

leading to B; = 3; X BSpin. The map p; is given by id X p, where p denotes
the standard fibration p : BSpin — BO.
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CONCLUSION: The stratifold W* U, X with a simply connected singularity
admits an optimal resolution up to deformation of g if and only if (g;)«[L;] =
0e H3(Zz) and (Vz)*([Lz]) =0¢€ Hg(BSO) f07“ all 1 € J.

As in the case of isolated singularities, we obtain the following classifica-
tion result using Corollary 3 from [Krl].

Theorem 2.3.4. Let . be a 2n-dimensional stratifold with compact con-
nected components {X;}ics of . Two optimal resolutions p : S — . and
p S — S of 7 are equivalent up to connected sum with r(S™ x S™) if
and only if for every i € J:

- e(Uf?i) = e(Uf?;),

- there is a fibration B; — X; x BO and lifts of p; X v; and p} x v, over
B; by (n — 1)-equivalences, compatible with the diffeomorphism on the
boundary such that

- [US; Us U] vanishes in QFi=59

Here p; denotes the composition of p|ﬁi,- with the retraction to ¥;, and p; is
the corresponding map Uf]; — XL

2.4 Differential fibre bundles over spheres

In this section we consider another special case of p-stratifolds. Just as
in the case of isolated singularities, we assume that there is only one non
empty stratum aside from the top one, i.e., we consider an m-dimensional
p-stratifold . with strats f,, : W™ — ¥ and f, : W" — ¥, with
S £ Y # .S and W = for all j < m,j # n.

The manifold W™ is a smooth manifold without boundary, thus we can
identify W™ with its image in .. Using the discussion at the beginning of
the last section, we can choose a representative of the parametrization such
that . = W™ U, W™, where g denotes the restriction of f,, to OW™. To
simplify the notation we will work with this parametrization throughout this
section.

Assume further that the manifold W™ is the n-sphere and that the attach-
ing map ¢ is a differential fibre bundle. Set W := W™ and denote the fibre
of g : OW — S™ with F. Since OW is compact, there is a representative of
the germ of collars ¢ : OW x [0,4e) — W.
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2.4.1 Construction of a resolution

From the last section we know that one necessary condition for the existence
of a resolution of . is a zero-bordism of L := W in Q,_1(S™). With
the help of the Theorem of Saard, we see that the fibre F' also has to be
zero-bordant. Thus, assume there is a manifold 7" such that 0T = F'.

First we consider the easiest case where the fibre bundle g : L — S™ is
trivial. In this situation we know that L is diffeomorphic to the product space
Fx S™ Now we can write down an obvious resolution, namely W Ugy T x S™.
To specify the resolving map, we again make use of the Lemma 2.2.2 and
decompose T as F' x [0,e] U, X. The resolving map is then given by:

WUT x 8" =W Up=pxqoy £ % 5" X [0, ] Utz y,e)s (o) glag)) X X 5"

sk -

WuUS" =W Ur=rxq F x 8" x 0, €] Ugpry:Lx{e}—sn S

If the fibre bundle is not trivial, we consider the sphere as D% U D,
two disks identified along the common boundary. We obtain two trivial fibre
bundles by restricting the given one to each disk. Let

a: S"! — Diff(F)

contain the gluing information, such that the gluing map of the fibre bundle,
which we also denote by «, is given by

a: S"IxF — SvlixF
(x,y) > (z,a(r)y)

The idea is to resolve the stratifold .# step by step, where in each step
the dimension of the singularity, i.e. the dimension of the attached sphere, is
reduced until we find ourselves in the familiar case of isolated singularities.

Since the bundle restricted to a disk is trivial with unique trivialization,
we can resolve the restriction over D} by building D% x T" and the one over
D™ by D™ xT', where T" and 1" are zero-bordisms of F'. Apply Lemma 2.2.2
onT and T" and write T' = F'x[0, 4€]Up x4} X and T" = F'x[0, 4e]Upy 43 X'
Let €: F' x [0,4¢) — T and €' : F x [0,4¢) < T’ be the collars of T and T’
given by the identity. Now consider the manifold

W1 =W Uaw (D_?_ X TUM D7_l X TI),
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where

pr: ST xE(F x[0,3¢]) — S"tx &(F x[0,3¢])
(z,€(y,1)) — (z,¢(aa(y),1)) -

The boundary of W is given by
S x (F x [3¢, 46] Upxaey X) U S x (F x [3¢, 4e] Upxaey X)

axid [gn-1y py 3e}

and we specify a collar d : 9W; x [0,3¢) — W using the decomposition of
T and T" to give the collar on S"™! x F x {3e} Ugxia S ! x F x {3¢} and
then using a collar of length [0, 3¢) of S"~' in D and D".

Figure 2.4: The space D} x T'U,, D™ x T".

We have a map from 0W; to S™ ! given by the projection to the first
factor. This map is obviously a submersion and thus, according to the The-
orem of Ehresmann, a fibration. Later we will give the explicit description
of this new bundle. The fibre over a point z € S™ ! is diffeomorphic to
T Uqy(y) T" and we can without loss of generality assume that this manifold is
again zero-bordant. For if this is not the case, we can pass to the manifold
T'H(T Un(zy T') instead of 7. Remember that we assumed the link L to be
zero-bordant in ,,_;(S™).

Set g, := pr; : OW; — 8™ ! and consider a new stratifold . :=
Wi U, S™! with obvious strats.

The following theorem allows an inductive approach indicated at the be-
ginning of the section.
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Theorem 2.4.1. If . admits a resolution so does .7 .

Proof. Let ¢ : OW x[0,4¢) < W be a representative of the germ of collars and
consider the neighbourhood UY = ¢(L x [0, 3¢]) Uy.,ssn S™ of the singularity.

——

Figure 2.5: The neighbourhood UX.

Within this neighbourhood look at the following neighbourhood of S* ! C
S™:
Ay = (8" X Oy F Uy, S™1 X Oy F') x [0,8) Uy, S™7,

where

- (9. F denotes the cone of length 2¢ over F, i.e.

Co.FF =
Coc F'

(F x [0,2¢))/¢(F x {0}) and
'(F % [0,2¢)) /¢ (F x {0});

- the additional product with [0,¢) is given using a small collar of "}
in D" and D" and identifying S™ ' x [0, ) with its image, and

- the gluing maps \; are the following:

A: S X E(F x [g,20)) — S xE(F X [g,2¢))
(z,¢(y,1)) — (2, (a(y), 1))

and

Ao i=pr;: (S*1x¢(F x[0,e]) Uy, S" I x&(F x0,¢]) x {0} — S 1L
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The complement of this set in UY. is diffeomorphic to
AQ = D'_,:_ X CgEF U, D" x CgEFI,
where the sets are glued together via:

A3 S"IXE(F x (6,3¢]) — S™ x €(F X (g,3¢])
(z, €(y, 1)) — (z,¢(aa(y), 1))

Using the collar d of 0W; in W, of length 3¢ we build the following neigh-
bourhood of the singularity:

Bl = d(an X [0,8]) UM2 Sn_l

where po := g1pr;|sw, xf0}- Now consider the complement of this set in the
subset of .| given by

d(0W; x [0,2¢]) U, S™ .
We see that the resulting space is diffeomorphic to
32 = Di X (F X [E, 48] UFX{46} X) UDE X (F X [5,48] UFX{45} X’)
13
where the map p3 : S* 1 x €(F x (g,3¢]) — S" ! x &(F X (g, 3¢]) is given

by U3($’é(yat)) = (l‘,é’(aw(y),t)).

After all these preparations we can write down a continuous map ¢ :
S — & satistying the following conditions:

1. ¢ (W) is dense in .#;, where W will be considered as W Uy c(OW x
[0, 3¢]).

2. @y — W is a diffeomorphism.

W Us B2 U Bl

S

W Us Ay U A

where the maps on B; and B, are identities (more precisely id x (4e —id ))
outside of X and X', which are mapped to the corresponding cone points.
Now we can complete the proof. Let p : F — 7 be a resolution of
71, then one easily verifies that ¢p : F — .7 is a resolution of .7.
O
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Corollary 2.4.2. Let . be an m-dimensional stratifold having only two
non-empty strats f,, : W™ — % and f, : W™ — 7, such that

- W™ = Uie S (a countable union of spheres) and
- Gi := fml|L; 1 Li—>S! is a differential fibre bundle.

Assume that every link of the singularity S* given by L; := (fm|ow=) *(SF)
bounds in Qy,—1(S™). Then . admits a resolution.

REMARK: (Special case of a resolution.) After introducing the general
approach to reach a resolution, we see that there are a lot of choices one has
to make in each step. One observes that we can take 7" to be T (in the
case of oriented resolution 7" with opposite orientation). In the next step we
can take the zero bordism 7" x I, bounding T" Uy T and so on, until we get
to the last induction step. Thus, we obtain a resolution depending on fewer
indeterminates.

2.4.2 Bundle description

In this section, we want to understand the bundles we get in the induction
step described above. To do this, we give an explicit description of the
trivialization and the gluing map.

We recover that we start with a bundle F' — L — S™ where the fibre F
is zero-bordant. Let the gluing information be stored in o : S™* ' — Diff(F).
Next, we choose bounding manifolds 7" and 7", i.e. 9T = F' = 071" and build
a new bundle S" ! x T U, S ! x T — S~ L.

Set a = a|Di_1 and @ := a|pn-1. Without loss of generality we can
assume the equality «y(0) = id = a_(0). To describe the trivialization we
first consider the following map:

y: DV ' xOT xI — DV 'xoT x1
(Z‘,y,t) — (:E,oz+(t$)y,t)

where I denotes the unite interval [0,1]. Now we define the trivialization ¢
of the new vector bundle by setting:
-1
DI x Ty :p7 1

n—1 n—1 i
DYt xTx{0} D+ x 0T x IU@PT1|(D1—1x6T)X{1} D+ xT

’ lv ’

D x T Uy, D T DI T {0) Dy ' x 9T x ITU Dyl x T

XT—

id _
XT— ! prl‘(Di LxoT)x {1}
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The map ¢ is well-defined. To see this, let (z,y,0) € D_’fl x 0T x I, then
we compute

’y(x,y,O) = (x,a+(0)y,0) = (m,y,O) ~ ('Tay) =id (xay)a

and for (z,y,1) € DT ' x 0T x I

7(377 Y, 1) = (37, a+(x)y, 1) ~ (.I, a+(:c)y) =id (ZC, a+($)y)'
In the same way, one obtains a trivialization on D"~! x T U, D™ x T" using
the map a_ instead of a . The gluing map’s information is concentrated in

s Diff(OT x )41,

. — (y,t) = (a_(zt)ai (zt)y, 1),
and can be extended with identity to

B Y E— lef((aT xTU T) Uarx {0} T Uarx{1} TI)

This describes the new fibre bundle over S™~!.

2.4.3 Optimal spin resolutions of fibrations over S?

In this section, we will find necessary conditions under which the construc-
tion introduced in 2.4.1 leads to an optimal resolution. We use the special
case of construction where one uses the same bordism above each disk to
construct a resolution.

We only study 6-dimensional p-stratifolds with spin top stratum attached
to a 2-sphere.

The interest in such spaces partially comes from physics and was seized
by M. Kreck (see [Kr3]).

There are two classes of spaces which are of particular interest: Wit-
ten spaces and Calabi-Yau-manifolds. A Witten space is a 7-dimensional
closed Riemannian manifold W with iso(W) =2 SU(3) x SU(2) x U(1), where
SU(3) x SU(2) x U(1) acts transitively. A Calabi- Yau-manifold is a closed
Kéhler manifold M with ¢;(M) = 0 and dim¢ M = 3. One asks: Is there
a geometric connection between Witten spaces and Calabi-Yau-manifolds?
The first naive idea, finding S* € iso(W) such that W/S! is Calabi-Yau,
unfortunately does not work. M. Kreck showed that in the case where W/S*
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is smooth, it is not spin. Thus, one has to work with a space W/S! having
singularities. M. Kreck studied a special case X := S° x S3/S', where the
action is given by z(z,t) := (2%xz,2%y). This space has a p-stratifold struc-
ture of the type we consider in this section. For this special X, M. Kreck
constructed an optimal resolution by a Calabi-Yau.

Let S = W U, S? be a 6-dimensional p-stratifold and f : OW — S? a
smooth fibre bundle with fibre F'. The construction of the resolution takes

place in three steps. See §2.4.1 for details. First we choose a zero bordism 7T’
of F' and build

R; = 0W x IUBRX{O} (Di X T Uyxid D% X T)
This is again a six dimensional manifold with boundary
OR1 = 0R+ 5" xT U, S* x T,

The second boundary component admits a fibration over S' using the pro-
jection onto the first factor. The fibre is given by 7' Uy 7.

In the next step, we take as a zero-bordism of T'Uy T the cylinder M :=
T x I and obtain

Ry := Ry U51><TUa51><T (D1 x M U,Bxid l)1 X M),
where 3 : S% x OM — S° x OM is the gluing map. We have
ORy = OW + S% x M Ug S° x M.

Finally, we choose a zero-bordism Z (consisting of two connected compo-
nents) of the second component of the boundary and obtain

R3 = R2 U(’)Z Z.

Since we start with a spin manifold W, we are interested in spin resolu-
tions.

Theorem 2.4.3. Let ¥ = W U, 52 be a 6-dimensional stratifold with spin
manifold W and simply connected fibre F'. Then . admits an optimal spin
resolution.

Proof. Since (EP™ = Q™ = , observe that there are spin-bordisms T and
Z =7y + Zyof F and S° x M Ug S° x M respectively. Using [Krl, Prop. 4]
we can without loss of generality assume that 7', as well as, Z; is 1-connected.
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According to the Theorem of Whitehead, the resolution S — L s op-
timal if and only if US? = Rj is 1-connected and H,(U'S?) maps bijectively
onto Hy(S?) = Z. Thus, we have to control the generator of Ho(S?) during
the construction.

Let us first see that using 7" and Z as above the manifold Rz is simply
connected. Since we assumed 7' to be 1-connected, the manifold R, is again
simply connected according to the Seifert-van Kampen-Theorem. To see that
Ry is simply connected, note that every map S* — D' x M Ugyiq D' x M
can be deformed to OR;, hence Ry is 1-connected. Finally Rj3 is simply con-
nected as well using again the Seifert-van Kampen-Theorem.

Now we investigate Hs(R3). The manifold R; is obviously homotopy
equivalent to Di x TUD? x T. Use the Mayer-Vietoris sequence and obtain
the following exact sequence:

HQ(Di X T) &) H2(D% X T)

Hy(D2 xTUD?*UT)

Hl(Sl X F) = Hl(Sl)

Hence, the relevant generator of Hy(S?) = H;(S!) survives in R; and
maps bijectively onto H;(S").

We proceed with the next step in our construction and consider the
Mayer-Vietoris sequence for R, leading to the following commutative dia-
gram:
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o

I | |

H,(T) ® Ho(T) Hy(T) ® Ho(T) Hy(M) ® Ho(M)

| |

Hy(S' X T U, S* x T) — Hy(D?* x TUD? x T) @ Hy(D* x M U D' x M)

|

1%

H,(SY) ® H,(F) H (S")® H,(F)
a |
2(H,(S") @ H\(T)) 2(H,(D?*) @ H\(T))

From this diagram, we conclude that the relevant free factor Z = H;(S;) C
Ho(D?xTUD?XT) = Hy(R;) does not lie in the image of Ho(S'XTU,S'xT)
and, therefore, maps injectively into Ho(Ry).

The last step concerns the manifold R3, which is built from R, after
choosing a zero-bordism Z of S x M Ug S° x M. A part of the Mayer-
Vietoris sequence is the following.

HQ(aRQ) I HQ(RQ) @ HQ(Z) I HQ(Rg) ——— 0

Adding the corresponding sequences for 0Rs; and R, we obtain:

Hy(M) & Hy(M) d o &  HMeHM)
2(Hao(M Ug M) Ho(D?2 x TUD? x T) @ Ho(D' x M U D' x M)
Hy(0R,) Hy(Rs)

Thus our Z C Hj(Rs) does not lie in the image of Hy(ORs) and will,
therefore, be injectively mapped to Hy(R3).

Summarizing the discussion, we conclude that the map Ry — S, is 1-
connected. To make the map 3-connected as desired, we have to eliminate
the remaining classes except the mentioned 7Z, which maps bijectively onto
Hy(S?).

From the Mayer-Vietoris sequence for R3; we see that every homology
class © € Hy(Rj3) comes from a class &' € Ho(Ry) @ Hy(Z). We have seen
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that since H;(F') = 0, the relevant homology classes of Hy(Ry) only come
from Hy(T) = Hy(M), but these classes can be represented as classes of
Hy(Z) since 0Z = 5% x M Uz S° x M.
First note that every homology class of Z is represented by an embedding
S? < Z, see [Hae]. Since Z is spin, it admits a framing of the 2-skeleton,
hence, every embedded 2-sphere has trivial normal bundle. Thus, we can
perform surgery (see [Krl, Lemma 2]) to eliminate these classes and the
theorem is proved.
O

2.4.4 Equivalent resolutions

In this section, we investigate the classification of optimal resolutions in the
6-dimensional case treated in the last section. Thus, we consider stratifolds
& = W U, S?, where W is a 6-dimensional spin manifold with boundary
OR =: L and the attaching map ¢ : L — S? is a differential fibre bundle.
The classification of the resolutions is a rather complicated intension, even
in the case of isolated singularities, see, for example, [Gr]. We weaken the
requirements a little bit by introducing the following definition.

Definition: Let . be a stratifold, and p:.¥ — . and p' : .9 — .% be
two resolutions of .. We call the resolutions weakly equivalent if, for every
representative of the neighbourhood germ UY., there is a diffeomorphism
Ve : ¥ —s 9" such that p'oe = p on S —US...

The classification is based on the following theorem of M. Kreck, which
is proved in [Krl].

Theorem 2.4.4. Let M and M' be two simply connected 2(2q+1)-dimensional
manifolds with normal 2q-smoothings in a fibration B — BO. Let ¢ :

OM—0M' be a diffeomorphism compatible with the normal 2q-smoothings

v and V'. Let further

-e(W)=eW') and
- WU, (W), 707 =0€ Q.

Then the diffeomorphism on the boundary can be extended to a diffeomor-
phism ® : M— M.

Now we are going to adapt the theorem to our special situation. Let S
and .’ be two optimal resolutions of the stratifold .¥ = W UX. Set M :=



2.4. DIFFERENTIAL FIBRE BUNDLES OVER SPHERES

57

US and M’ := UY, then M and M’ are smooth manifolds with boundary
diffeomorphic to OW. Assume that M and M’ are spin with compatible spin
structure on the boundary. The normal 2-type of M and M’ is CP* x BSpin.
Thus, we obtain the following corollary.

Corollary 2.4.5. Let Z and %' be two optimal resolutions of the 6-dimensional
stratifold ¥ = W UX, with simply connected singularity ¥ (decomposed into
compact connected components ¥;) and spin manifold W. Assume that Us,
and Uf]; are spin with compatible spin structure on the boundary. Then 5%

15 weakly equivalent to S if the following conditions are fulfilled:

- e(US;) = e(US) and

- [US U US] = 0 in QP™(CP™).
Proof. _We see that the conditions of Theorem 2.4.4 are fulfilled for the man-
ifolds UY; and UX.. Thus, the diffeomorphism on the boundary can be
extended to a diffeomorphism U3; — UX.. From the definition of the res-
olutions and from the construction of the diffeomorphism on the boundary,

we see that the obtained diffeomorphism extends in the obvious way to a
diffeomorphism . — .’ having the desired properties.

As carried out in the proof of Theorem 2.2.16, it is enough to consider
one representative of the neighbourhood germ.
U

We will investigate the second condition in the corollary and compute
Q" (CP>). In order to do this, we first need some information concerning
complete intersections.

Complete intersections

In this section, we recover some facts about complete intersections. Let
fiy--- fr € Clzg, ..., xyer] be homogeneous polynomials with degree f; = d;,
such that the gradients are all linearly independent.

Definition and Remark: The space
X(f1,., fr) = {z € CP""|fi(z) = --- = f.(z) = 0} C CP™*"

is called the complete intersection of complex dimension n of the polynomials

Jioooos fr
Since the gradients of the polynomials are linearly independent, X (fi, ..., f)

is a complex submanifold of dimension n in CP"*".
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A natural question is: Given another polynomials fi,... f, with degreef;
= degreef], are the manifolds X (fi, ..., f;) and X(f1,..., f/) diffeomorphic?
This question was answered by Thom in the early fifties.

Theorem 2.4.6. Let fi,..., f, be polynomials as above. The complete in-
tersection X (f1,...,fr) depends up to diffeomorphism only on the degrees
di,...,d,.

From now on we write X (ds,...,d,) for X(f1,..., f;) or shorter X(d),
where d = (di,...,d,) is the multi-degree. Set |d| := [],_, d;, the total de-
gree of X (d), which will turn out to be a diffeomorphism invariant if n > 3.

The homology of X (d) can be almost completely computed with the help
of the following theorem of Lefschetz.

Theorem 2.4.7. For n > 2 the manifold X (d) is simply connected and the
inclusion © : X(d) — CP™" is an n-equivalence, i.e. i, : m;(X(d)) —
7;(CP™") is an isomorphism for j < n an an epimorphism for j = n.

The next interesting question concerns the characteristic classes. The fol-
lowing results can be proved using the basic techniques of differential topol-
ogy.

Let H be the dual of the Hopf bundle. First of all, we have to compute
the tangent bundle of X (d). Since it is a submanifold of CP"*" we obtain
the following bundle equality TCP™*" | x4 = TX (d) ® v(X(d); CP"*"). The
tangent bundle of CP™*" is stably well known, namely TCP"*"®R = (n+r+
1)H. We now compute the normal bundle of X (d) in CP™*". Let v := 1*H be
the pull back of the Hopf bundle to our complete intersection X (d). Denote
with ¢ the d-fold tensor product of . It is easy to prove:

v(X(d);CP™) =" @@
Combining the facts together we see that T X(d) is stably isomorphic to
(n+r+1)y—(y*&---®~%). From this we conclude:
Lemma 2.4.8. The total Chern class of X (d) is given by

o(TX(d) = (142" [ +djz) ™,
j=1
where x :=i*cy(H). Thus, for the total Pontrjagin class we have

p(TX(d) = (1+ 2™ (1 + da?) .

i=1

With this information, we are ready to compute Q™ (CP>).
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The bordism group QP"CP>

We apply the Atiyah-Hirzebruch-Spectral Sequence to compute the bordism
group Qg""CP>. Consider the E*-term, given by H,(CP>; Q*™), which by
the universal coefficient theorem is equal to H,(CP>) @ C2P™",

Z]2 e

7.]2 e

The three interesting d? differentials are well known. The two maps
Hg(CP*>®) — H4(CP*;Z/2) and Hg(CP>) — Hg(CP>;Z/2) are given
by the composition of the reduction modulo 2 with the dual of the second
Steenrod square.

Hy(CP=) P gy(cP>;7,/2) ®C% H,(CP>; 7,/2)

Hy(CP=) P Hy(cP>;7,/2) ®C% Hy(CP>; 7,/2)

The third map Hg(CP*;Z/2) — H4(CP>;Z/2) is given just by the dual
of Sq?.

H,(CP>)
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Let z € H>(CP*™;Z/2) be a generator of the cohomology ring of CP>,
then z? generates H*(CP>;Z/2) and z*® generates Hé(CP>;Z/2). Accord-
ing to the Cartan-formula, we obtain

Sq¢*(2?) = S¢*(x)x + S¢*(x)x + Sq* (x)Sq* (z) = 22° = 0 € H*(CP™;Z/2)
and using this computation
S¢?(2®) = S¢?(x)x? = 2*.

Thus, both differentials Ho(CP*°;Z/2) — H,(CP*;Z/2) and Hg(CP*®) —
H,(CP>;Z/2) are zero and the differential Hg(CP*) — Hg(CP*>;Z/2) is
surjective. Since there are no more relevant differentials, we obtain the fol-
lowing exact sequence

0 — F — QP™(CP®) — He(CP®) — 0
where the space F' comes from the exact sequence
0— PP s F —7Z/2—0.

Here we identified the £ with Q™. We now have to decide whether the
last sequence splits or not. For this we need additional information about
the occurring bordism groups. The generator of Q"™ is the Kummer surface
K, the complete intersection in CP3 given by the homogeneous polynomial
z* 4+ y* + 2*. There is also a map from Q™ to QF™" (CP*) given by K —
K x 8%, where the map to CP* is given by K x $* — §*> — CP>. Further
there is a map from Q""" (CP>) to Z mapping [M, f] to (f*zUp:(M)/2, [M]).
Observe that since M is spin, the first Pontrjagin class is always even. The
fact is that the composition

QP — OP(CP®) — Z

is injective. This allows us to compute Q™ (CP>). Summarizing the previ-
ous considerations, we obtain the following commutative diagram:

Z
/ T[M,f]'—)(f*zUpl(M)/Z[M])
QPin(CP) Hg(CP*®) —0

0 F [M, fl= f«([M])
A:xs2

0— QP F 72 0
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The question of whether the lower sequence splits or not is now equiva-
lent to the existence of [X, f] € Q" (CP*), such that f*([X]) = 0 and
(ffrUp(X)/2,[X]) = —12.

For, if such an X exists, then by exactness of the first sequence we
know that X comes from F. We now consider 2X € F which obviously
maps to 0 in Z/2 and thus, there is an X € Q™ with X x S§? = 2X.
Considering now Y := K x S? 4+ 2X, we see that (f*z Up(Y)/2,[Y]) =
(ffzUpi (K x 8?)/2,[K x S?]) + 2(f*x Up1(X)/2,[X]) =24 —-2-12 = 0.
Thus, K maps to 2X in the lower sequence, which implies that it does not
split.

We are going to construct such a manifold X. Consider the complete
intersection X' := {[z1, 20, 23, 24] € CP*|2} = 0}. Using Lemma 2.4.8, we
compute the Chern and thus the Pontrjagin classes of X'.

c(X)=(5-3)z
p1(X') = (56— 3%)z?

From the formula for the Chern classes, we see wy(X') = ¢;(X")mod (2) = 0,
thus X' is spin. From the second equation, we obtain the first Pontrjagin
class pi(X') = —4z2.

Now we consider X := X'—3[CP3,:] and conclude (z3, f.[X]) = ((f*z)3, [X]) =
((f*z)3,[X']) — 3((s*z)3,CP3®) = 3 — 3 = 0, which implies f,[X] = 0.

I

Using the fact that f*(z) generates X’ (Theorem 2.4.7) and the equality
((f*z)3,[X']) = 3 already used in the previous consideration, we compute

(frrUp(X)/2,[X]) = (frzUp(X')/2,[X"]) — 3(i*x Up,(CP?)/2,[CP?])
= (—2(f*z)3,[X"]) — 3(223, [CP?]) = —6 — 6 = —12.

To summarize we obtain:
Theorem 2.4.9. There is an isomorphism

Qrm(Cp®) — 787
(M, ] — (2, AIM]), 55 (f*2 Upi(X) /2, [X]))

Knowing the relevant bordism group Q™ (CP*), we obtain the following
classification result:
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Theorem 2.4.10. Let . and %' be two optimal resolutions of the 6-dimensional
stratifold & = W U, S?, with spin W. Assume that the spin structure on

M = TUS? and M := US? is compatible with the diffeomorphism on the
boundary ¢ : OM — OM' for a representative of the neighbourhood’s germ
[US?] of S%. Let 7 : M — S? and #' : M' — S? be the maps given by the
composition of the resolving maps with the neighbourhood’s retraction on S?.
Assume further that

- the following diagram is commutative:

H2(S?) = 7,
* (7)*
0N )
H2(0M) o H2(OM")

- e(M) =e(M') and

-p(MUM)Uu*z =0 for all z € HS(CP*®), where u : M UM' —
CP*>® = K(Z,2) is the map upr Up upr, where upr corresponds to 7*(1)
and upy corresponds to (7#)*(1).

Then & is weakly equivalent to .

Proof. According to Corollary 2.4.5 and Theorem 2.4.9, we have to verify
that the class u,[M U M'] vanishes in Hg(CP*). The cohomology ring of
CP® is well known to be a polynomial ring in one generator of dimension
two, again denoted by z.

u,JMUM'| =0 & (2% u,[MUM]) =0 (uz?,[MUM]) =0

Consider the exact cohomology sequence. Since ujy; and u,e coincide on
the boundary, the inclusion j*(u) vanishes in H?(OM). Hence, there are
cohomology classes vy, and vy fitting into the diagram:

H>(M,0M) & H?(M',0M') — H2(M U M') — H?(OM)

(Var, Vag) b o Ut J 0

Thus, we conclude

((var)"2)* = ((urr)'@)’ = u[M UM =0
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The condition on the left side is always fulfilled, since the triple products
on H?(.) and on H%(.#') are completely determined by the corresponding
products on H?(.¥).

As in the proof of Theorem 2.2.16, we see that it is enough to verify the

conditions for one representative of the neighbourhood germ.
O
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Chapter 3

Connections to other stratified
spaces

One natural question arises when dealing with p-stratifolds. What is the
connection of our new objects to the old concepts of stratification? First of
all, one can think of the stratifolds as objects with singularities. As already
mentioned in §2.1, our definition of resolutions is the same as from alge-
braic geometry, adapted to our category. We now ask about the similarities
of these two sorts of singular spaces. In the case of isolated singularities,
we gave an answer to this question in an example from §2.2. On the other
hand a stratifold is a stratified space, so we are interested in its connection
to the stratified spaces studied earlier, for example Whitney stratified spaces.

Consider a real algebraic set V' C R", which is the common locus of
finitely many polynomials. The singular set XV of all points where V fails to
be a smooth manifold is again an algebraic set (of strictly lower dimension).
Thus, one obtains a finite filtration V=V™ 2D V™1 D...D VDO V-1 =
by defining V¢! to be XV if dimV*? = 4, and to be V¢ if dimV* < i. The
space V¢ — V* ! is a smooth manifold of dimension 4 (perhaps empty). This
decomposition makes V' a stratified space.

Apart from the observation made in §2.2, which states that every algebraic
variety with isolated singularities admits a structure of a p-stratifold, there is
another result [BCR, Prop. 9.4.4] establishing a connection between algebraic
varieties and p-stratifolds.

Theorem 3.0.11. Let Z C S be two closed and bounded semi-algebraic
sets. Let f be a non-negative continuous semi-algebraic function on S such

that f~1(0) = Z. Then there are § > 0 and a continuous semi-algebraic
mapping h : f71(6) x [0,8] — f71([0,d]), such that f(h(x,t)) =t for every

65
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Az

Figure 3.1: Naive stratification of the Whitney umbrella.

(z,t) € f71(0) x [0,6], h(z,0) =z for every x € f~1(5), and h|s-1(g)xj0,5] s
a homeomorphism onto f~'(]0, d]).

The proof of this theorem uses a triangulation, which is not canonical.
It is also not clear if one can make the attaching map smooth in our sense.
Nevertheless, the theorem implies the following result.

Corollary 3.0.12. Every algebraic variety admits a structure of a topological
p-stratifold.

One can try to adapt the idea used for isolated singularities and “slide”
along the gradient vector field towards the singular set. But it is generally
not clear whether the gradient flow converges, and, if this is the case, whether
the resulting map is smooth. We will not follow up this idea in this thesis,
but will investigate other concepts of stratification.

3.1 Stratified spaces

We start with a very general notion of stratified spaces.

Definition: Let X be a locally compact topological space with countable
basis. A stratification of X is a partition X = {X;} of X into locally fi-
nite, pairwise disjoint, locally closed subsets of X, such that each X; is a
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smooth manifold. We call the pair (X, X) a stratified space and the mani-
folds X; € X the strata of X. The class of stratified spaces is denoted by SF.

Definition: An isomorphism of stratified spaces (X,X’) and (Y,)) is a
homeomorphism ¢ : X — Y, such that for all X; € X there exists Y; € ),
such that ¢(X;) = Y; and ¢|x, is a diffeomorphism. Denote the class of
isomorphisms between stratified spaces with ISOgp.

As smooth maps on (X, X), we take
Csp(X) :={f € CO(X)‘f|X1. is smooth VX; € X},

where C%(X) denotes the continuous maps on X.

3.2 Whitney stratified spaces

We now concentrate our attention on Whitney stratified spaces. In two
fundamental papers [Wh1, Wh2], Whitney developed some ideas on stratifi-
cations and introduced his conditions (A) and (B).

To motivate these conditions, consider again an algebraic variety V', with
stratification as explained before. With this construction, the strata need
not have geometrically “well-behaved” neighbourhoods, this means that the
local topological type need not be locally constant along the strata. The sim-
ple illustration of this fact is provided by the Whitney umbrella, an algebraic
set in R®, which is the locus of y?> — z22. The construction above gives us a
stratification consisting of a surface with two connected components and a
line, see Figure 3.1.

If we take a point on the z-axis and sketch the intersection of a small ball
centred at that point with V', we obtain the neighbourhoods illustrated in
Figure 3.2.

Clearly, something rather special happens at the origin, where the local
topological type changes. If we now split the z-axis into z < 0, z = 0 and
z > 0, we obtain a second stratification of the Whitney umbrella, indicated
in the Figure 3.3.

To avoid such situations as in Figure 3.1, the following condition was
introduced.

Definition: If X and Y are smooth submanifolds of R", then X is Whitney
reqular over Y if, whenever (x;); C X and (y;); C Y are sequences of points
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z2<0 z=0 z>0

Figure 3.2: Three different neighbourhoods.

both converging to some y € Y, such that the lines [; = Z;7; converge to
a line [ (in the Grassmannian of 1 - dimensional subspaces of R") and the
tangent spaces T, X converge to a space 7 (in the Grassmannian of (dim X)-
dimensional subspaces of R"), then

(A) T,Y C 7 and

(B)lC.

Definition: A stratification X on a subset X of R” is called Whitney strat-
ification if it satisfies the following conditions:

- Every X; € X is a smooth submanifold of R".

- Whitney regularity condition: Any stratum Y € X is regular over any
other stratum X € X.

- Frontier condition: Let X,Y be strata with X NY # ), then X C Y
(i.e. the frontier of a stratum is a union of strata).

A pair (X, X) is called a Whitney stratified space.

It is easy to see that the stratification of the Whitney umbrella in Fig.
3.1 is not a Whitney stratification. The surface fails to be Whitney-regular
over the z-axis at the origin. On the other hand, the stratification of Fig.
3.3 is a Whitney stratification.

Various theories have been developed around Whitney stratified spaces.
In [GM] the theory of Morse-Functions for Whitney stratified spaces was
studied. Stratified Morse theory is the natural extension of Morse theory to
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Az

Figure 3.3: Another stratification of the Whitney umbrella.

include singular spaces. One of the the fundamental results is the following
Theorem [GM, p. 6], which states a similarity between singular and non-
singular theory.

Theorem 3.2.1. Let X C R" be a compact Whitney stratified space, and
f : X — R a restriction of a smooth function on R* to X. As c varies
within the open interval between two adjacent critical values, the topological
type of X<, remains constant, where critical value means critical value of f,
restricted to some stratum.

In [Go], M. Goresky introduced “geometric” chains and cochains and de-
veloped homology and cohomology in the context of Whitney stratifications.

Much research concerning Whitney stratified spaces makes use of an ad-
ditional structure on the spaces, which one obtains using the conditions (A)
and (B). We will study this structure in the next section.

3.3 Abstract pre-stratified spaces

In this section, we introduce the concept of abstract pre-stratified spaces
developed by J. Mather in [Ma]. We additionally define abstract pre-stratified
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spaces with boundary and extend some results of Mather to bounded objects.
First we need the notion of tubular neighbourhoods.

Definition: Let (V,S) be a stratified space. A system of tubular neighbour-
hoods of V is a set {Nx}xes of triples Nx = (Nx,7x, px) where for each
XeS

- Nx is an open neighbourhood of X in V,

- mx : Nx — X is a continuous retraction and

- px : Nx — [0,00) is a continuous function such that
- X = px'(0).

We call Nx the tubular neighbourhood of X, mx the local retraction and px
the tubular function on X.

REMARK: Let W be a Whitney stratified space. In particular W consists
of manifolds locally closed embedded into R". In this situation, we obtain
a canonical system of tubular neighbourhoods of W from the Riemannian
normal bundle of each stratum X.

For any two strata X and Y we set

Nxy = NxNY, 7xy =7x|nxy: PXY = Px|Nxy-
Of course Nxy may be empty, in which case the two mappings above are
also empty.
Definition: A system of tubular neighbourhoods {(Nx,7x, px)} is said to
be controlled if the following conditions are satisfied:
- (mx,y,pxy): Nxy — X x (0,00) is a smooth submersion.

- For any strata X,Y and Z we have

TxyTy,z(v) = 7xz(v)
pPxyTy,z(v) = px,z(v)

whenever both sides make sense.
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Two controlled systems of tubular neighbourhoods {(Nx,7x,px)} and
{(N%, 7', p'x)} are called equivalent if, for all X € S, there is a neighbour-
hood U of X in Nx N N, such that nx|y = 7|y and px|v = p/x|v. The
equivalence class is called the germ of controlled systems of tubular neigh-
bourhoods or simply the controlled neighbourhood structure.

Definition: An abstract pre-stratified space is a triple (V, S, N') such that:

1. V is a Hausdorff, locally compact topological space with a countable
basis for its topology.

2. § is a family of locally closed subsets of V', such that V is the disjoint
union of the members of §. The members of S will be called strata of
V.

3. Each stratum of V' is a topological manifold (in the induced topology),
provided with a smooth structure.

4. The family § is locally finite, i.e. every point of V' has a neighbourhood
which meets at most finitely many strata.

5. The family S satisfies the axiom of the frontier: if X,Y € S and
YNX #0, then Y C X.

6. N =[{Nx = (Nx,7x,px)}] is a controlled neighbourhood structure.

Denote by APS the class of abstract pre-stratified spaces.

REMARK: Taking the equivalence class of tubular neighbourhood systems in
the above definition corresponds to passing to equivalence classes of abstract
pre-stratified spaces as intended by Mather, see [Ma, §8].

IfY ¢ X and Y # X, we write Y < X. The relation is obviously
transitive, i.e Z <Y and Y < X imply Z < X.

Definition: The length of the longest chain X; < X5 < --- < X}, of strats
of an abstract pre-stratified space V is called the depth of V and is denoted
by depth(V).

From the normality of arbitrary subsets of an abstract pre-stratified space,
it follows that we can always choose representatives of the neighbourhood
structure satisfying:

- If X, Y are strata and Nxy # 0, then X < Y.



72

CHAPTER 3. CONNECTIONS TO OTHER STRATIFIED SPACES

- If X,Y are strata and Nx N Ny # (), then X and Y are comparable,

i.e., one of the following holds: X <Y, Y < X,or X =Y.

We often make use of this property without explicit indication.

EXAMPLES:

1.

Every smooth manifold is an abstract pre-stratified space with only one
stratum.

. A manifold M with boundary admits a structure of an abstract pre-

stratified space with two strata, namely M and OM. The existence of
a tubular neighbourhood follows from the Collar Theorem.

Let V be a pre-stratified space and U an open subset of V. Then U
has a canonical structure of a pre-stratified space by setting SY :=
{XNU|X € 8 and NV = [{(Ng,ﬂX\N)U(,pﬂN%)}], where N{ :=
UNmy'(NxNU). In particular, if S a closed stratum of V, then V — S
has a canonical structure of a pre-stratified space.

. Let V be a pre-stratified space and M a smooth manifold without

boundary. Then V' x M has a structure of a pre-stratified space, taking
X X M to be the strata for every stratum X of V', the neighbourhoods
Nxwy = Nx x M with mappings mxxa = 7x X id and pxxa =
Px ©Ppry.

. The open cone CV = V x (0,1]/V x {1} over a pre-stratified space

V' admits a structure as a pre-stratified set, setting as strata {X x
(0,1)|X € S} U {pt} and taking for X x (0,1) the neighbourhood
structure defined in the previous example and, around the top point,
the space C'V itself with canonical projection onto {pt} and the tubular
function py = (1 — pry).

The following theorem completes the list of examples of abstract pre-stratified
spaces.

Theorem 3.3.1. Every Whitney stratified space admits a structure of a pre-
stratified space.

One has to show the last condition, i.e., find a controlled neighbourhood
structure. This was done by Mather [Ma, Lemma 7.1], where the structure
is unique up to isotopy, see [Ma, Proposition 6.1].
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Definition: Let (V;S,N) be an abstract pre-stratified space and M a
smooth manifold. Denote with Capg(V, M) the class of continuous functions
f:V — M, satistying:

- f|x is a smooth map for all X € S,

- for every stratum X, there is a neighbourhood N% of X in Nx such
that f(z) = frx(z) for all x € N¥.

The maps from Caps(V, M) are called smooth or controlled. The map f
is called a controlled or smooth submersion if f|x is a submersion for each
stratum X of V.

Let (V',S,N) be another abstract pre-stratified space. A continuous
map ¢ : V — V' is called an isomorphism of abstract pre-stratified spaces
if ¢ € ISOgF and, for all X € S, there are representatives Nx and N;(X) of
the neighbourhood structure of X and ¢(X) respectively, such that

prx () = myx) (p(2)) and  py(x)(@(2)) = px (o).

Definition: Let (V,S,N) be an abstract pre-stratified space , X € S a
stratum of V and Nx = (Nx,7x, px) a representative of the neighbourhood
structure. Further let § : X — (0,00) be a continuous map. Recall the
definition from §1.3 and set
5 . A6
NX T NX(WX,PX)
Analogously we define NS and N5°.
One should keep in mind that N ;‘5 not only depends on the map 4, but

also on the chosen neighbourhood Ny. If, for example, N is another neigh-
bourhood of X with N% C Nx, then N'5’ # N’ in general.

One useful property of abstract pre-stratified spaces is the following:

Lemma 3.3.2. Let (V,S,N) be an abstract pre-stratified space and X € S a
stratum of V. For every representative N of the neighbourhood germ of X
there exists a representative Nx C N such that for every open neighbourhood
U of X in Nx, there exists a smooth map § : X — (0,00), such that
Ng° C U and (7x,px) : N3® — (X x (0,00))<° is proper and surjective.

Proof. We start with a representative N of the neighbourhood germ of X,
equipped with tubular functions 7% and p/y. For an arbitrary z € X, we
choose a compact neighbourhood A¢ of = in N%.
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Claim: There is an open neighbourhood B of x in X and an n € N, such
that (7')~""(B) N (px) ' (0,1/n) N AS C U.

Assume that this claim is false. Let ¢ be a manifold chart around x with
o(z) =0 € RE. Set B, := ¢ '({y € R¥||]y|]| < 1/n}), then B,,; C B,
and every open neighbourhood of z in X contains the open set B, for a big
enough n € N. According to the assumption, for every n € N there is an
yn € () H(By) N (py) 1(0,1/n) N AS — U. Since the sequence y, lies in
the compact set A5 we can without loss of generality assume y, converges
to a point y € AZ. If this is not the case, we can go over to a convergent
subsequence. From this construction, we obtain 7' (y) = lim 7’ (y,,) = = and
P (y) = lim p/y (y,) = 0, hence we get limy,, = z, which is a contradiction to
the choice y, ¢ U.

Set Ny := N, N (UzA¢) and define 7x := 7y |y, and px := py|n,. Then
for every x, there is an open set B, of z in X, and an n, € N, such that
7% (By) N pxt[0,1/ny) € U N Nx. Define 6, : A5 — (0,00) by setting
0z := 1/ng, where n, is chosen as above. Use a smooth partition of unity
on X to combine these maps in a smooth map 6 : X — (0, 00), satisfying
N? CcUn Ny.

For the second statement, we observe that we can choose ¢, such that
((mx|ngo), (px|ngo)) T (@, 8) = ((mxag), (px|ag)) ™ (,). This implies that
the preimage of every point is compact. Since a submersion is always an
open mapping, this implies the properness.

O

From now on we assume that every tubular neighbourhood considered
has the property stated in the last lemma.

According to the last lemma, for every stratum X of an abstract pre-
stratified space V, there is a smooth map dx : X — (0,00), such that
(7x, px) : N3 — (X x [0,00))<%* is proper and a smooth submersion
restricted on every stratum Y # X. Assume {x takes the minimum € on X.
In this case we can replace dx with the constant function € : X — (0, 00),
#» ¢ and obtain a proper submersion (7x,px) : N5 — X x [0,¢). If

this is not the case, we can replace px with p'y(v) := px(y)/dx(7x(y)). The
map (mx, pyx) : Nx®* — X x [0,1) is then proper and a smooth submersion
restricted to any stratum Y # X. Further, p'y satisfies the compatibility
relation:

prr(mea(®) __pxsl)

Pxymyz(v) = Ox(mxymy,z(v))  Ox(mx,2(v))
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Nevertheless, one should keep in mind that such a replacement of p in general
changes the isomorphism class.

According to [Ma, Cor. 10.2], we conclude:

Lemma 3.3.3. For every stratum X of an abstract pre-stratified space V
there is a representative of the neighbourhood germ Nx, and a smooth map
§: X — (0,00), such that (7x,px) : N5 — X — (X x (0,00))<% is a
locally trivial fibration, where the trivialization is an isomorphism of abstract
pre-stratified spaces.

Once we know that open subsets preserve the structure, how to build the
product with an open interval (0,1), and what the isomorphisms are, we can
define objects with boundary.

In the same way as in the case of c-manifolds or p-stratifolds, we first
define collars.

Definition: Let (P,0P) be a pair of topological spaces such that P =
P — OP and OP are abstract pre-stratified spaces and 0P is closed in P. A
collar is a homeomorphism

c: (0P x [0,00))<° — U,

where § : 0P — (0, 00) is a continuous map and U an open neighbourhood
of OP in P such that c|spxyoy is the identity map and c|(gpx(o,00))<¢ 1S an
isomorphism of abstract pre-stratified spaces onto U — OP.

As before we go over to germs of collars. This is an equivalence class of
collars, where two collars are equivalent if they coincide on (9P x [0, 00))<°
for an appropriate map 6 : 9P — (0, 00).

Definition: An abstract pre-stratified space P with boundaryis a pair (P, 0P)
consisting of abstract pre-stratified spaces P:=P— 9P and 0P, together
with a germ of collars [c]. The abstract pre-stratified space 0P is called the
boundary of P, and P := P — 9P the interior of P.

The class of abstract pre-stratified spaces with boundary is denoted by
APS;.

EXAMPLES:

1. The class of c-manifolds provides examples of abstract pre-stratified spaces
with boundaries by setting P = (P, 0P) and taking the germ of collars of 0P
in P.

2. The closed cone CV :=V x [0,1]/V x {1} over an abstract pre-stratified
space V is an abstract pre-stratified space with boundary V' x {0}. The
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interior C'V — 0C'V is the open cone, which has a canonical structure as an
abstract pre-stratified space as indicated in a previous example. A collar is
an obvious inclusion V' x [0,1) — C'V.

Definition: Let (P,0P) be an abstract pre-stratified space with boundary
and T a c-manifold. A continuous map g : P — T is called smooth if g|s €

C APS(IOD, 70”), glap € Caps (0P, 0T), satisfying the compatibility condition

g(c(a:, t)) = é(g(l’), t)

for suitable representatives ¢ and ¢ of the germ of collars of P and T re-
spectively. A map h : P — M to a smooth manifold is called smooth if
h(c(z,t)) = h(zx) for a suitable representative c.

Definition: Let f € Caps(V, M) be a smooth map. A point ¢ € M is called
a regular value of f if, for all z € f~'(t), the restriction f|x to the stratum
X containing x has x as a regular point. The point z is called regular point
of f. As usual, one denotes the complement of the regular values and the
regular points critical values resp. critical points.

According to Sard’s theorem, the set of critical values has measure zero
in M. Another classical result regarding regular points is the following.

Lemma 3.3.4. The set of reqular points of an abstract pre-stratified space
1S open.

Proof. Let f : V — M be a smooth map and z € V a regular point of
f, i.e., x is a regular point of f restricted to the stratum X containing =x.
After passing to a possible smaller neighbourhood Ny, we may assume that
f commutes with mx on Nx. Since the set of regular points is open on every
smooth manifold, there is an open subset U of z in X, such that f has no
critical points on U. Consider now U := W;(I(U ). Suppose there exists a
critical point y € U, lying in a stratum Y, then D, f is not surjective. Using
the commutativity of f with mx, we conclude

Dyf = Dy(f’]TX) = Dﬂ'x(y)nyTrX

Since mx is a submersion, it follows that Dy, f is not surjective as well,

leading to a contradiction to the choice of U.
]

As in the case of smooth manifolds, we conclude.
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Lemma 3.3.5. Let f : V — M be a smooth map andt € M a regqular value
of f. Then f~'(t) has a canonical structure as an abstract pre-stratified space.

Analogously for a smooth map f : P — M from an abstract pre-stratified
space (P, 0P) with boundary to a manifold M and for at € M being a reqular
value both for flp and flap, the preimage f~1(t) is again an abstract pre-
stratified space with boundary (f|sp)~'(t).

Proof. As strata of f~'(t) we take X/ ® := (f|x)"'(t) for all X € S. Since
t was assumed to be regular, all strata are smooth manifolds. After passing
to a possibly smaller neighbourhood Ny, we can assume that f commutes
with 7x on Nx for all X € S. Now we set

NXf—1<t> = NX|xf—1(t)
Txs=1@y = TX |Xf—1<t>
Pxs=1@) = PX\Xf—los)

We only have to show that the maps are well-defined, the required relations
will then follow from the corresponding statements for mx and px. But this
is a consequence of the compatibility of f with mx. Let x € Ny -1, then
f(z) = f(rx(z)), hence 7x(z) € f~(y).

The case of an abstract pre-stratified space with boundary follows anal-
ogously using the corresponding result for manifolds with boundary and the
compatibility with the collar.

U

Since every abstract pre-stratified space V' is a Hausdorftf, locally compact
topological space having a countable basis of the topology, it follows, as in the
case of stratifolds, that V' is metrizable and paracompact. The next lemma
shows that V' even has a smooth partition of unity.

Lemma 3.3.6. Let V be an abstract pre-stratified space and U an open cov-
ering of V. There exists a subordinated smooth partition of unity.

Proof. We prove the following assertion, from which the statement of the
lemma follows using classical arguments.

Claim: Let z € V and let U be an open neighbourhood of z. There exists
a smooth map A : V — [0,00) with compact support supp A C U and
A(z) # 0.

Let X be the stratum containing x. According to Lemma 3.3.2, after
possible reduction of Nx there is an open neighbourhood D of x in X and
an n € N such that 7' (D) N p%'[0,1/n) C U N Nx. Choose a function
Ax : X — [0, 00) satisfying the desired properties for D and a smooth map
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n : [0,00) — [0, 00) such that n(t) = 1 for ¢ € [0,1/4n) and n(t) = 0 for
t > 1/2n. Now define the map A : 7' (D) N py'(0,1/n) — [0, 00) by setting
AMz) == n(px(x))Ax(mx(x)). This map can be extended by zero to V' and
has the desired properties. Note that since n(t) = 1 near zero the map A is
indeed smooth.

O

One does not require the strata of an abstract pre-stratified space (V, S, N)
to have different dimensions. But since strata of the same dimension can not
be incident, i.e., XNY = @ for X,Y € S with dimX = dimY, we can
always find representatives of the neighbourhood germs Nx and Ny with
Nx N Ny = (. Thus, after collecting the strata of the same dimensions to
a single stratum we can assume without loss of generality that all strata of
V have different dimensions. Let X* denote the collection of strata up to
dimension k, i.e. ¥* := {X|dim X < k}. An abstract pre-stratified space
V is called finite-dimensional if there exists kK € N such that V = ¥*. The
class of finite-dimensional abstract pre-stratified spaces (with strata having
different dimensions) will be denoted by APSF.

Summarizing the discussion we conclude.

Lemma 3.3.7. Let (V,S,N) be an element of APS*. The pair (V,Caps(V))
15 a locally trivial stratifold.

In the last section of this chapter, we see that V' even admits a structure
of a cornered p-stratifold.

3.3.1 Vector fields and flows

Definition: Let (V,S,N) be a pre-stratified space. A stratified vector field
n on V is a collection of smooth vector fields {nx|X € S}, where nx is a
smooth vector field on X.

Let N = [{Nx = (Nx, 7x, px)}] be the controlled neighbourhood struc-
ture on V.

Definition: A stratified vector field n on V is said to be controlled if the
following conditions are satisfied: For any stratum Y there exists a neigh-
bourhood Ny, of Y in Ny such that for any second stratum X > Y and any
v € Ny, N X, we have

Dpyx nx(v) = 0
Dry x nx(v) = ny my,x(v)
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One very useful tool in constructing controlled vector fields is the following
lemma [Ma, Prop. 9.1].

Lemma 3.3.8. Let f : V. — M be a controlled submersion and & a smooth
vector field on M. Then there exists a controlled vector field n on V making
the following diagram commutative for every stratum X

X —-7X

fl g lDfx

M—TM

When considering abstract pre-stratified spaces with boundary it is useful
to have a relative version of the lemma above.

Definition: Let (V,0V) be an abstract pre-stratified space with boundary.
A controlled vector field on (V,0V) is a pair (n,n?) such that 7 is a controlled
vector field on ‘0/, and 7?2 is a controlled vector field on 9V, satisfying the
compatibility condition

n(e(z,t)) = De(w, t)n’(z)

for a representative c of the germ of collars.

Lemma 3.3.9. Let (V,0V) be an abstract pre-stratified space with boundary,
(T,0T) a c-manifold and ¢ : V. — T a smooth submersion. For any smooth
vector field (&,€9) on T, there is a controlled vector field (n,n°) on (V,0V),
such that Don(v) = £(p(v)) and Den®(w) = £€%(o(w)) for allv € V and
w € V.

Proof. Studying the proof of Lemma 3.3.8 in [Ma], we see that the proof is
carried out inductively on the dimension of the abstract pre-stratified space.
In the inductive step, one takes local vector fields on the higher dimensional
stratum satisfying the desired conditions, and puts them together with a
partition of unity to form a global vector field. Hence, we only have to
check that the vector field 7 on ¢(dV x (0,00))<° defined by 7j(c(x,t)) :=
Dc(xz,t)n?(z) satisfies the desired properties for a representative ¢ of the
germs of collars, where 7° is a vector field on 0V obtained with the help of
Lemma 3.3.8.

Choose collars ¢ : (OV x[0,00))<? < V) of 8V and d : (0T x[0, 00))<? —
T satisfying all compatibility relations. We first show that 7 is controlled.
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For this we compute:

Drx(7i(c(z,1))) = Drx(Dc(z,t)n°(z)) =
D(nxc(z,t))n°(x) = D(c(max (), t))n°(x) =
De(max (x),t) Dmoxn®(z) = De(max (), t)n’(mox (z)) =
fi(c(mox (), 1)) = f(rx(c(z,1))).

Analogously, one computes: 7px(c(z,t)) = 0. To show the connection to &
we compute:

Doij(c(z, t)) = Do(Dc(z, t))n°(z) =
D(¢c(z, t))n°(x) = D(d(¢(z),t))n°(z)
Dd(p(x),t)Dp(x)n’(x) = Dd(p(z),1)%(p(v)) =
£(d(p(x),1)) = &(p(c(z,1))).

O

Let V be a topological space. A flow on V is a continuous map « :
R x V — V, such that az;4(v) = apas(v) for all ¢, s € R and for all v € V.
Now suppose V' is an abstract pre-stratified space (V,S,N), and « is
stratum preserving. Further let n be a stratified vector field on V. We say
that n generates « if the following condition is satisfied: For any v € V', the
mapping ¢ — a;(v) of R into V' is smooth as a mapping into the stratum

which contains v and
d
dt( t ))‘t:() = 77(”)

Let (n,0n) be a controlled vector field on an abstract pre-stratified space
(V,0V) with boundary. A ﬂow on (V,0V) is a pair of flows (o, a?), such
that « is a flow on V and o? is a flow on 8V satisfying

a(c(z, 1), 5) = c(a’(z, 5), 1)
for a representative c of the germ of collars.

In analogy to smooth manifolds, one defines local flows and explains the
notion of vector fields generating local flows. For details, see [Ma, §9], where
the proof of the following lemma can also be found.

Lemma 3.3.10. Let n be a controlled vector field on an abstract pre-stratified
space V.. Then n generates a unique mazximal local flow (J, c).
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REMARK: It follows from the control condition of n that

px(ay(s)) = px(y) and mx(ay(s)) = try(y)(s)

for appropriate representatives of the neighbourhood germs Ny.

We again formulate a relative version of the lemma.

Lemma 3.3.11. Let (n,n?) be a controlled vector field on an abstract pre-
stratified space (V,0V) with boundary. Then (n,n°) generates a unique maz-
imal local flow ((J, ), (J?,a?)).

Proof. Let (J, ) be the maximal local flow on V and (J2, a?) be the maximal
local flow on 9V and let ¢ : (OV x [0,00))<° < V be a representative of
the germ of collars for 0V, such that (n,7%) is compatible with c. First
of all, observe that {(c(z,t),s)|(z,t) € (OV x (0,00))<°, (z,5) € J°} =

J N (c(@V x (0,00))<% x R) =: J. Define the following map:

Then we have

%a(c(x,t),s)|s_o = %c(a“’(x,s),t) =
Dc(aa(x,s),t)d%aa(x,s)|S:0 = Dc(a”(,0),t)n°(x) =
De(z, H)n? (z) = n(c(z,1)).

Hence @ solves the differential equation, furthermore
a(c(x,),0) = e(a®(z,0),1) = e(,1) = al(c(z, 1), 0).

Since the solutions are unique, & has to coincide with o on J, thus (o, a?)
satisfies the flow condition.
]

EXAMPLES:

1. Let (V,S8,N) be an abstract pre-stratified space and X € X a stratum
of V. The subspace Nx — X inherits a canonical structure of an abstract
pre-stratified space from V as explained previously (remembering that X is
closed in Ny).

According to Lemma 3.3.2; there exists a smooth map ¢’ : X — (0, 00) and
a representative of the neighbourhood germ Ny = (Nx, 7, px), such that

(7TX;/0X) Ny —X — (X % (O,OO))<5’
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is a proper surjective submersion on each stratum. The compatibility condi-
tions for mx and px, restricted to each stratum, imply that the above map
is a controlled submersion. By Lemma 3.3.8 there exists a controlled vector
field n on Nx — X with the following conditions:

Drxn = 0
Dpxn = &

Let a: J' — Nx—X be the maximal local flow generated by 7. Consider
the real valued function pxay : (az,b;) — R for a fixed z € X and compute
its derivative:

d d

@an/x(t) = Dpx 0 és(t) = (Dpxn)(ea(t)) = dt

In the first equation, we used the chain rule, then the fact that n generates
a and finally, the second condition on 7.
Thus, after the canonical identification & +— (4, dt) we obtain
d
— ) =1
In view of the initial condition, it follows that

px az(t) =1+ px(z). (%)

With this information, it is possible to determine the range of definition of
the flow «, namely

J' ={(@,t)| = px(z) <t < &'(rx(2)) — px(2)}-

The first condition of the flow leads to the equality
Tx ag(t) = mx(z). (%)

Combining equality (*) with (**), we see that by setting a,(—px(z)) =
7x(z), the flow a can be continuously extended to

J =A{(z,1)| — px(z) <t < '(mx(z)) — px(2)}-

2. Let (V,0V) be an abstract pre-stratified space with boundary, X a stra-
tum of V and X a stratum of 9V, such that c(dX x (0,00))<* ¢ X
for a representative ¢ of the germ of collars. Let Nx = (Nx,7x, px) and
Naox = (Nax,Tax, pax) be representatives of the neighbourhood structures
of X resp. 0X, such that ¢c(Nyx x (0,00))<* C Nx. Shrinking the collar ¢ on
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the manifold (X x [0, 00))<*, we see for X := (90X x|0, oo))<)‘Uc\(aXX(0 sogy <

that the pair (X,0X) is a c-manifold. Let &' : X — (0,00) be a smooth
map, such that

(WX,px) : NX - X — (X X (O,OO))<6I and
(Tox,pox): Nox —0X — (80X x (0,00))<?

are proper surjective submersions. Such a map ¢’ always exists, since we can
choose the appropriate map on 0X, first extend it with the help of the collar
to c(0X x (0,00))<* and use a smooth partition of unity to extend it to a
smooth map on X with the desired properties. Consider

T = (80X x[0,00) x (0,00)){<H<0}y
oT = (0X x (0,00))<?.

(X x (0,00))<7,

€l (o x (0,00))< X1d

Then (T,07T) is a c-manifold with the interior 7 = (X x (0,00))< and
the germ of collars [c'], where ¢’ : (0T x (0,00))*"" —s T is given by
c’((z,t), ) := (c(z, 5), ).

We build (P, dP) in the same way by setting

P = ((Nax —0X) x [0,00))<)
aP = NaX—aX.

NX —X) and

Uel (g5 —0%)x (01001 <A (

We obtain an abstract pre-stratified space (P, 0P) with boundary with the
germ of collars [c”], where ¢” := ¢|((n,,_ax)x[0,00)<>- The interior of P is

given by P=Ny-X.
Define a map ¢ : P — T by the assignment

olp = (mx,px) : Nx =X — (X x (0,oo))<‘5' and
vlop = (max,pax) : Nox — 0X — (0X x (0, oo))<‘5'.

According to the definition of (P, dP) and (7, 0T), the map ¢ is continuous,
furthermore, both ¢|p and ¢|gp are controlled submersions. We verify the
compatibility condition:

p(c(z,1)) = (mx(c(z,1)), px(c(z, 1)) =
(c(mox (z), 1), pox (x)) = c'(p(x),1).

Thus, ¢ : P — T is a smooth surjective submersion.
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Let (n,1%) be a controlled vector field on (P, dP) satisfying
Dgn = (0,%) and
Do’ = (0,4

We can now combine Lemma 3.3.9 and Lemma 3.3.11 with the first part of
the example and obtain the maximal local flow ((J', a), (J'?,a?)) with

J'={(z, 1) = px(z) <t <&'(rx(2)) — px(2)}

and

T ={(y,9)| = pax(y) <5 < &' (max(y)) — pox (y)}-
Setting a,(—px (2)) = 7x(2) and a2(—pax(y)) := Tox(y), the flow can be
continuously extended to (J, J?) with

J=A{(z, 1) - px(z) <t < '(mx(2)) — px(2)}

and
J? ={(y,9)] = pox(y) < s < &' (max(y)) — pox(y)}-

3.4 Main Theorem

Finally, we are going to prove that every abstract pre-stratified space admits
a structure of a cornered p-stratifold.

First of all, we need to make some technical preparations.

Proposition 3.4.1. Let . be a cornered p-stratifold having only strats of
dimension > m, and let S be an m-dimensional manifold. Let further g :
& — S be a smooth map and § : S — (0,00) a smooth map on S. Then

j = (:7 X [Oa OO))S(Sg ngﬁ:(yX[O:oo))ég_)S S

admits a structure of a cornered p-stratifold with boundary 8. = . x {0}.

Proof. Let f; : W' — .# be the strats of . We want to apply Lemma
1.5.1 and construct cornered strats for .. Define for £ > m manifolds
Wk = (WF1 x (0,00))<%fk-1, Tn a canonical way this is a c-manifold with
corners. Moreover, the space (. x (0,00))S% has a canonical stratifold
structure as described in an example in §1.5. In dimension m, we define

W™ := S. For k # m, the strats of .# are given by f; : W¢¥ — .7,
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the composition of strats of (# x (0,00))<% with the canonical projection
(. x (0,00))=% — & and f,, : W™ — % is the inclusion.
The maps f are proper continuous maps, being homeomorphisms on the

interiors of W*. We now have to show that f,(@W*) C X¥!. There is
nothing to show for £ = m. Otherwise

OW* = (OW* ! x (0,00)) <091 U 0ow* =1 (0,00))%9 k-1 (WE < (0,00)) 9 k1.

We compute fy(OW* x (0,00))S%fi-1) = (i (IWF) x (0,00))<%9 €
(2F2 % (0,00))<% 1S = S+ and fi (W*! x (0,00))%fk-1) C § C SF-L.
Finally, we observe that the maps are smooth because (.7 x [0,00))<% is a

stratifold and g : ¥/ — S was assumed to be a smooth map. Thus, S is a
stratifold with cornered strats. The collar of .# x {0} in .# is obvious.
U

In the following discussion, we assume all abstract pre-stratified space
to have strata of different dimensions. We further denote the class of finite
dimensional abstract pre-stratified spaces with boundary by APSf. Next
we need a concept which allows us to compare abstract pre-stratified spaces
with stratifolds. This can be done using the weak definition of stratification
introduced in §3.1.

Given a stratified space (X, X') and a map § : X — (0, 00), the product
space (X x (0,00))<? is again a stratified space, where the stratification is
given by {(X; x (0,00))<°}. Knowing this, we can define objects with bound-
ary, as explained for abstract pre-stratified spaces with boundary.

Definition: Let (X,0X) and (Y,0Y) be two stratified spaces with bound-
ary. A map ¢ : X — Y is called an isomorphism of stratified spaces with
boundary if (¢ : X — V) € ISOgp, (¢|ox : 0X — 8Y) € ISOgp, and
there are representatives of the germs of the collars ¢ : (90X x [0,00))<° < X
and d : (OY x [0,00))< < Y such that ¢(c(z,t)) = d(¢(z),t) for all
(z,t) € (0X x [0,00))<?

We are now going to establish a connection between abstract pre-stratified
spaces and cornered p-stratifolds and prove the following statement:

Let (V,S,N) be a finite dimensional abstract pre-stratified space. There is a
cornered p-stratifold # and an isomorphism of stratified spaces ¢ : V — 7.

Since the actual proof is rather technical we are going to give an overview
of the construction.



86 CHAPTER 3. CONNECTIONS TO OTHER STRATIFIED SPACES

We prove the theorem inductively on the depth of V. Let X = X; <
Xy < --- < X} be the longest chain of V.

We shall see that the construction can be carried out separately for each
chain. Thus, we always assume that the space V has only one chain of
length k£ and that X is connected.

There is nothing to show for £ = 1. To familiarize ourselves with the
arguments, we also provide a proof of the next induction step. Thus, assume
k=2.

Choose §' : X — (0, 0c0) such that

(mx,px) : Nx =X — (X x (0, OO))QSI

is a proper surjective submersion for a suitable representative of the neigh-
bourhood germ of X. Set Fx := (mx, px) : Ny — (X x [0,00))<? and let
§:=4¢"/4.

Define a smooth manifold P = Fg'((X x (0,00))?) and consider (P x
[0,00))<%"x . According to Example 1 from §1.5, this is a manifold with
boundary M U N, where M = P x {0} and N = P x [0,00)"%. Set

S = (P X [Oa OO))S(SWX waprlzN—>X X.

According to Proposition 3.4.1, the space . is a p-stratifold with boundary
0 = M.

Use the vector field n from Example 1 in §3.3.1 together with the correspond-
ing local flow « and construct the following map

©p : 54 — F'(X x [0,00))%°
(P x[0,00))™ 35 (2,1) +— ag(-1)
X2y — Yy

For (z,t) = (z,0mx(x)) € (P x [0,00))°™) we have px(x) = dnx(z) and,
therefore, a,(—dmx(z)) = az(—p(z)) = mx(x). Hence the map is well de-
fined, and the flow properties imply that the map is an isomorphism of strat-
ified spaces.

We now consider the space T := X, — F;'(X x (0,00))<%. This is a
smooth manifold with boundary 8T := Fx'(X x (0,00))°, where the collar
is given by

d: 0T x[0,00)<"x < T
(z,1) — ().

Recall that px (a,(t)) = t+px(z), therefore, for z € 9T, we obtain px (ay(t)) =
t+0(mx(z)) < 24.
Now glue T" and . together along 0. = 0T and obtain the desired map

p:=id Upp:TUyg ¥ —V
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The properties of the flow guarantee the requirements on .

Figure 3.4 illustrates that the construction can be carried out separately
for each connected component of the “deepest” stratum of V. The figure
shows an abstract pre-stratified space with one-dimensional stratum con-
sisting of three connected components, namely X, X’ and X", and a two-
dimensional stratum having X' and X? as connected components.

v

Figure 3.4: Abstract pre-stratified space of depth 2.
In the inductive step we assume k& > 2. Before proceeding with the
detailed proof, let us explain some basic ideas of the construction. Again

we consider the smallest stratum X in the chain and define three spaces:
B :=p,'[0,¢), A:=py'(e) and D =V — p,'[0,¢].

.

Figure 3.5: Decomposition of V'

v

Space A is again an abstract pre-stratified space according to Lemma
3.3.5, but has smaller depth than V. Thus, according to the inductive as-
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sumption, the space A admits a structure of a cornered p-stratifold. The
same is true for the space lo), where we again assume that V' has only one
chain of depth k, since the construction can be carried out for each of the
“deepest” strata X separately. Observe that we may assume D to be open in
V, since X is closed. To see that B also admits a structure of a p-stratifold,
we again make use of the flow constructed in the example from §3.3.1 to ob-
tain a homeomorphism between B and (A4 x (0, c0))<%7x Urx bl 4 .o
being a diffeomorphism on every stratum. Thus, we can apply Préposition
3.4.1 to obtain a structure of a cornered p-stratifold on B. Therefore, we
have 3 spaces admitting a cornered p-stratifold structure.

Figure 3.6: Sub- Figure 3.7: Sub- Figure 3.8:  Sub-
space B. space A. space D.

Our next task is to put the pieces together to obtain a stratciﬁcation of V.
This can be done using the “collar of A” in B as well as in D as indicated
in Figures 3.6 and 3.8.

So we start with the actual proof of the theorem. Since the construction
should respect the collar in order to perform the last gluing step, we need
more control.

Theorem 3.4.2. Let (V,0V) be a finite dimensional abstract pre-stratified
space with boundary, then (V,Caps(V)) admits a parametrization, which
gives (V,0V) a structure of a cornered p-stratifold with boundary.

The proof is based on the following lemma. First of all, we recall that for
every stratum 0X of dV, we can build a c-manifold X U 0X with bound-
ary 0X, where X is the corresponding stratum in f/, see the example after
Lemma 3.3.11. If the closure of a stratum Y of V in V does not meet
0V, we simply set Y = Y. Using Lemma 3.3.2 we can choose a c-map
§x : X — (0, 00), such that

(mx.px): N3P — X — (X x(0,00)<%Ix  and
(Tox, pax) : N;;Xb’( —0X — (80X x (0, 00))<0xlox

are proper surjective submersions for representatives (Nx,7x,px) and
(Nax, Tax, pax) of the neighbourhood germs of X and 0X respectively. We
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may also assume that ¢(Npx x (0,00))<* C Nx for a representative of the
collar ¢ : (QV % [0,00))<* < V, and that for an n-dimensional stratum X
that space V — X7(V) — N)%‘sx/Q is open in V, and 8V — X" "1(9V) — NGS;X/?
is open in OV. Recall that ¥ denotes the k-skeleton, the collection of strata
up to dimension k.

In the following lemma {0x} and {Nx, Nsx} are assumed to satisfy the
above conditions.

Lemma 3.4.3. There is a map

o {(V,{6x},{Nx, NBX})‘V € APS}}

|

{(Z,¢)|7 € CPSy, (¢ : & — V) € ISOgp, for a V € SFy}

such that for ®(V, {ox}, {Nx, Nax}) = (L, ) the following conditions hold:
1. p: & — V.

2. For every stratum % of 7 there are representatives U(#*) and N
of the neighbourhood structures of /% and X := (%), making the
following diagram commutative:

U(yk)L‘NX

ﬁkl lnx

Fk _%r . X
The corresponding statement for 0. and OV is also true.

Proof. Let (V,0V) be an abstract pre-stratified space with boundary. We
argue inductively on the depth of V. There is nothing to show for depth(V') =
1. Hence let depth(V) = depth(V) =k > 2, and let X = X; < --- < X}, be
the longest chain in V.

Figure 3.9 shows an abstract pre-stratified space with boundary. The
interior consists of a 1-dimensional stratum X, a 2-dimensional stratum de-
composed in two connected components, and a 3-dimensional stratum “filling
the box”. The boundary of V' has 0X as its smallest stratum. The “tunnel”
indicates a d-neighbourhood around X. Observe that the neighbourhoods in

V and 0V can be chosen as compatible.
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v

an

/

av,

0X

Figure 3.9: Abstract pre-stratified space with boundary.

Step 1: Preparation of data.

Let ¢ : (OV x [0,00))<* < V be a representative of the germ of collars,
and let X be the stratum of OV such that ¢(Nax % (0,00))<* C Nx. Observe
that since X is a “deepest” stratum of X, it is closed in V. Similarly the
stratum 0X is closed in dV. This brings us to the situation of the second
example of the last section. We define

X := (80X x [0,00))<* X

el 5 x (0,000)<

and conclude that (X, X) is a c-manifold with a representative of the neigh-

bourhood germ ¢* := ¢|(gxx[o,00)<* 1 (0X % [0,00))<* < X. In addition,
for the map ¢ := 6y : X — (0, 00) the functions

(Wx,px) : NX - X — (X X (O,OO))<6, and
(Wax,pax) : N(?X —0X — (8X X (O,OO))<JI

are proper surjective submersions. Let ((J, ), (J?, a?)) be the flow from the

example of the last section, corresponding to the vector field (0, %).

We denote with Fx the map (7x,px) : Nx — X x [0,00) and let Fyx
be the map (msx, pax) : Nox —> 0X X [0,00). We also define

NX = (NaX X [0, OO))<)‘ U NX and

aNX = NaX

€l Ny x (0,00 <A

and obtain an abstract pre-stratified space (N x, N x) with boundary with

a representative of the germ of collars ¢Vx := Cl(Npx x[0,00)<> © (Nax X
[0,00))<* =< Nx. The compatibility of mx with m5x as well as px with psx
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implies_that Fx := Fyx U Fx becomes a smooth submersion from Ny — X
onto (X x (0,00))<?".

Step 2: Construction of ® on some subspaces of V.

After the preparations we set § := 1/46" and define

B = Fg'(X x[0,00))%
OB = Fy'(X x (0,00))°

The space B — 0B is an open subset of V' and, therefore, an abstract pre-
stratified space. The space 0B is also an element of APS according to Lemma
3.3.5. We make the pair (B, 0B) into an abstract pre-stratified space with
boundary by specifying the collar

d?: (0B x[0,00))<"™x — B-X
(z,t) — oy (—t).

The properties of the flow guarantee the requirements on d?. We also define
the corresponding sets on the boundary of V.

B = F(0X x[0,00))%

0B Fy (90X x (0,00))°

The collar is given by:

dB: (0B x [0,00))mx —s B—9X
(z,t) —  ad(-t).

We are going to construct the map ® on (B, dB), as well as on (B, dB), where
one takes induced neighbourhoods, and the corresponding maps dy are given
by restriction of the given ones. To make the construction compatible, note
that the restriction of the collar of V' to B gives us a map

c?: (0B x (0,0))* — OB
(z,t) — c(x,t)

leading to the abstract pre-stratified space with boundary (0B, dB), where
OB := (83 x [0, OO))<)‘ UcaB:(aéx(O,oo))AﬁaB 0B.

Since we assumed that V' has only one chain of length k, the abstract
pre-stratified space 0B has a strictly smaller depth than V. Using the
inductive assumption, we may therefore assume that there is a cornered
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p-stratifold .35 with boundary and an isomorphism of stratified spaces
with boundaries ¢35 : %55 — OB fulfilling the conditions of the theo-
rem. Set Shp = S — 0555 and S5 = 0555 . Let ¢lsp denote the
restriction of @zz on the interior ¢|y,, : s — 0B, and respectively
Pop = Pl t Sop — 0B.

We have a controlled map mx U mgx : 0B — X, thus, according to
the inductive assumption, the map (7x U mox)pgp is a smooth map from
S5 to X. Set gap = Txpanpr; @ (Fap X [0,00))™x%r — X and
9o = ToxPapPry i (Fpp X [0,00))0x%es —s HX.

We again make use of our flow « to construct the following map.

0B : (Fop x [0,00))S0mxvos y, X 2 B
(‘y@B X [07 Oo))S‘SWX(paB =/ (l', t) — atpaB(w)(_t)
X > Y — Y

S/

For (z,t) € g x[0,00))°™x%25 we have psp(z) € 0
therefore, px(pap(x)) = 6(mx(vsp(z))). Hence

and t = d(mx(¢(x))),

a%é(m)(—t) = awag(w)(—pxwaB(x)) = 7x(ps5(z)) = gan(x,1),
which implies that @gp is well-defined.

Analogously using o, we obtain a well defined map ¢ 5, defined as follows.

<67 . a®uid 7
5 (Fpp x [0,00))0mx%05 U, - 0X — B
(Lo X 0,00)) 5070905 5 (2,8) > af (1)
0X > Y — Y
According to Proposition 3.4.1, the spaces
S = (Sop x [0,00))*0mx%05 Uy, X and
Ty = (S x [0,00))0m0x%08 Uy . 0X

are cornered p-stratifolds, thus we define ®(B) := (.#3, @) and ®(B) :=
(Z3, ¢p) using the corresponding neighbourhoods and 4’s.

Step 3: Verifying the properties of ®.

We verify the requirements on (.5, ¢g). The properties of the flow, along
with the definition of the collars of .#g and @p, imply that 7 : g — B
is an isomorphism of stratified spaces with boundary. It remains to show
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the compatibility with neighbourhoods and retractions. The strata of Sy
are given by 5t 1= (Fky x (0,00))<9"x%08 and X. The neighbourhoods
around .75 are

U5 = (U(Sp) x (0,00))"x%02%m 0 T
and the retractions w,fH are given by

TP U(jgﬂ) — jg“
(w, ) +— (15 (u),?)

According to the inductive assumption, after passing to a possibly smaller
U(ZL,), we can assume that there exists a representative NZ? of the tubular
neighbourhood of Y := @yp(.#%;), making the following diagram commuta-
tive.

U (y 6kB) 22N )@B
WaBl lﬂ,ﬁB
k Y
5”3’“3 ¥YoB Y

Let Z be a stratum of B such that ¢g(.#5+") = Z, then Z = dB(Y x
(0,00))<9™x . Thus, we have a commutative diagram

(U(Fh5) x (0, 00))mxposmi®  T2E0 (NDB 5 (0, 00))0x —== N

7rkB+1l l/vr?,Bxid ng

. -1 i
y§+1 (d) (‘pan d) (Y X (0’ oo))(STfX c? Z

where the first square commutes according to the definition of 7, and the
second square, since ¢ is an isomorphism of abstract pre-stratified spaces.
Furthermore, one notes that the composition ¢®ryp x id is nothing but
our map ¢p, thus, we have shown the compatibility around .#%;. We still
have to consider the stratum X. According to the construction of .7z, one
neighbourhood of X is given by (.#3p x (0, 00))<"™x%22U X and the retraction
is ™ := mxpsppr; Uid , thus, we immediately obtain the desired commutative
(Fsp % (0,00))S0mxvor [ X

diagram:
w -
X “ X

Thus, the second condition of the theorem is fulfilled. In summary, we have
shown that (.5, ¢g) fulfils the requirements of the theorem. The arguments

¥B
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in the case of (5, pp) are exactly the same.

Step 4: Finishing the construction.

Finally, we consider the remaining part of V. Let

C = V-Fy (X x[0,00)%%) and

8C = AV — Foy((0X x [0,00))%).
The pair (C, 0C) is an abstract pre-stratified space with boundary, where the
collar is ¢¢ := cl(acx[0,00))<r- According to the inductive assumption, there is

a stratifold .#¢ with cornered strats and an isomorphism of stratified spaces
with boundaries ¢¢ : Sz — C. Consider further

D = V—-Fg((X x[0,00))<%) and
oD = F'((X x[0,00))%).

The pair (D,0D) is again an abstract pre-stratified space with boundary,
where the collar is given by

cl: (0D x [0,00))"™x — D
(z,t) > ay(t).

Thus, there exists a cornered p-stratifold .#p with boundary and an isomor-
phism ¢p : p — D of stratified spaces with boundary. Observe further
that D = C, hence p = o and 95 =@ .

oD

oC
Figure 3.10: Stratified space “with two boundaries”.
Figure 3.10 demonstrates the situation. The interior of the “box” is

D=C , where 0C is the front and the back part, whereas 0D consists of the
bottom and the top parts of the “box”.
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We further define

D = 9V — F;}((8X x[0,00))<%) and
oD Fx((0X x [0,00))°),

where the collar of the pair (D, dD) is given by

c?: (0D x [0,00))%7x — D
(z,1) — ad(t).
Let ®(D) = (%, ¢p), now glue .#p with .#5 together to form a stratifold
# and let 8. := S5 Uy L5 be the corresponding stratifold on the bound-
ary. First of all, note that we have a map ¢y = pp Upz : 0. — 0V,
which, by the construction an isomorphism of stratified spaces, satisfies the
properties of the theorem, and a map ¢ := pp Upp : & — ‘0/, which is
also an isomorphism of stratified spaces.

We now specify a collar of 8.7 in ., the map e : (0.7 x (0, 00))Hvos —s
#, by the assignment

e (x,1) for z € 0.7
B ~
(z,1) > 4 (z,1) for z € 0.7
(eB(y,t),5) forz = (y,5) € (9.7 x (0,00))<mox%0s
X (z,1) for x € 0X

where €% denotes the collar of . and e® denotes the collar of .%5. The
construction implies that the map satisfies the properties of the collar.

To see that e is compatible with o5~ and ¢ ;, we only have to show the
compatibility on .#5. For z = (y, s) € (%5 % (0,00))<™x%s5 we compute

p(e(z,1)) = @(eP(y,t),s) = a, eagy(s) =

a/cé(qoaé(y),t)(s) = CB(agBB(y)(S)at) = c(p(z),1).
Thus, we set .7 := S U0 using the collar constructed above and define
¢ = ¢4 Upsy. The discussion above implies that ¢ : ¥ — V' is an iso-

morphism of stratified spaces with boundaries having the desired properties.

0

Now we finish the proof of the theorem.
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Proof of Theorem 3.4.2. Let (V,0V) be a finite dimensional abstract pre-
stratified space with boundary. Choose a system of mappings dx and the
representatives of the neighbourhoods structure Nx and Nyx for every stra-
tum X of V satisfying the usual conditions. Using Lemma 3.4.3 we obtain a
cornered p-stratifold . and an isomorphism of stratified spaces ¢ : & — V.
Let [{f; : W' — #}] be the parametrization of ., then the composition
[{ofi : W' — V}] equips V with a parametrization. According to the sec-
ond property of ¢, the parametrization makes ((V,Caps(V)), (9V, Caps(8V)))
into a cornered p-stratifold with boundary.

Since the tubular maps mx of V as well as Tox are submersions, restricted
to small enough neighbourhoods, we immediately see that the resulting strat-
ifold is locally trivial.

U

Let us make some remarks concerning the behaviour of the map ®.
Let V and V' be two abstract pre-stratified spaces with ®(V) = (V') =
(«Z,¢). The second condition on ® implies the compatibility of 7x and
m'y. The maps px are also reconstructible. To see this, observe that given
a stratifold . together with distance mappings p; : U(%%) — [0,00),
such that (p;)|» is smooth for all j and (p;) '(0) = ., the stratifold
S = (S x[0,00))%% Ugpr,:(#x[0,00))?9—x X from Proposition 3.4.1 again has
this property. The strata of .7 are given by (.% x (0,00))<% and X. A
representative of the neighbourhood germ of (.%; x (0,00))<% is given by
(U(H) x (0,00))<% and we define p; := p;pr;. The neighbourhood around
X is just (7 x (0,00))5% Ugpy (#x[0,00))59x X and we set:

. _ Jog(z) =t for z = (z,t) € (< x (0,00))=%
Px(7) = {O for z € X

In the special case of our construction, the map g is given by 7x ¢, where
¢ ¥ — Ais an isomorphism of stratified spaces, where the space A is
a subset of an abstract pre-stratified space V with A = {z € Vl|px(z) =
d(mx(x))}. We conclude that px(x,t) = dmx(p(x)) —t = px(p(x)) — t.

In general, it is not clear how to construct such a distance map on a
cornered p-stratifold, hence we do not see that every locally trivial cornered
p-stratifolds comes form an abstract pre-stratified space.

REMARK: Straightening the corners in every step of the construction would
assign a p-stratifold (without corners) to every abstract pre-stratified space
and a map 9J, but, as already mentioned in §1.3, the construction would in
general depend on § and would not be canonical. Furthermore, the algebra
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of maps obtained from the parametrization will in general differ from the one
of controlled maps. Using Proposition 1.5.8 we nevertheless obtain:

Corollary 3.4.4. Let V be an abstract pre-stratified space. There exists a
p-stratifold (7, C(L), [{fi}]) such that V is isomorphic to . as stratified

space.

Theorem 3.4.2 allows us to embed various stratified spaces into the cat-
egory of stratifolds with (cornered) strat structure and to give answers on
questions addressed at the beginning of the chapter.

The first conclusion is a direct consequence of Theorem 3.3.1.

Corollary 3.4.5. Every Whitney stratified space admits a structure as a
cornered p-stratifold.

Using Corollary 3.4.4, we see that the last observation extends the result
of Thom [Th2, Thm. 2.B.1] to non-compact Whitney stratified spaces.

One should be careful with the notion of smooth maps. If X C RY is a
Whitney stratified space, a continuous map f : X — R is called smooth
if there is a smooth map F : RY — R, such that f = F|x. Let V(X) =
(X,8,N) be an abstract pre-stratified space and ®(V (X)) = (., ¢). Then
f is in general not smooth on .. Vice versa for a smooth map g : ¥ — R
the composition gp~' does not generally extend to a smooth map on RY.
For examples, see [GWPL, Ex. 2.1].

Since any semi-algebraic set V € R® admits a canonical Whitney strat-
ification X having finitely many semi-algebraic strata [GWPL, Theorem
(I.2.7)], we conclude using Theorem 3.3.1:

Corollary 3.4.6. Any semi-algebraic set V' admits a structure as a cornered
p-stratifold.

Note that the stratification A of V' is not the one given by regular re-
spectively singular points. We already saw in §3.2, in the example of the
Whitney umbrella that we had to refine this first stratification. However,
Whitney showed that the set of points where the Whitney conditions are not
satisfied is again semi-algebraic, so the refinement is canonical.

The orbit space M/G of a smooth group action of a compact Lie group
G on a smooth manifold M is an abstract pre-stratified space (even Whitney
stratified), as carried out in [Fe], hence we obtain another large class of
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objects mapping into the category of cornered p-stratifolds. The strata are
obtained by taking the connected components of the subsets of points whose
isotropy groups are conjugated.

Corollary 3.4.7. The orbit space M /G of a smooth group action of a com-
pact Lie group G on a smooth manifold M admits a structure as a cornered
p-stratifold.

In conclusion, we provide a diagram, which shows the connection of var-
ious classes of spaces to the stratifolds.

p-Stratifolds

Algebraic Cornered
Varieties

Mather’s Abstract
Pre-Stratified

Spaces

|

Orbit Spaces Stratifolds

Whitney
Stratified Spaces
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