
Dissertation

submitted to the

Combined Faulties for the Natural Sienes and for Mathematis

of the Ruperto-Carola University of Heidelberg, Germany

for the degree of

Dotor of Natural Sienes

Presented by

Diploma-physiist: Jorge M. Pe~narrubia-Garrido

born in: Valenia, Spain



.



SATELLITE DYNAMICS

IN SPIRAL GALAXIES

WITH DARK MATTER HALOES

Referees: Pr. Dr. Andreas Just

Pr. Dr. Joseph W. Fried



.



Zusammenfassung:

Diese Doktorarbeit analysiert die dynamishe Evolution der Satelliten-Galaxien

in einer, von einer massiven dunklen Korona (dunkle Materie) umgebenen Spiral-

Galaxie. Die Hauptziele sind: (i) die Durhf�uhrung einer detaillierten theoretishen

Analyse der dynamishen Reibung, d.h. des Prozesses, der die Vershmelzung der

Satelliten verursaht und (ii) der Einuss der Abplattung der dunken Korona auf

diesen Prozess sowie deren Konsequenzen f�ur die Beobahtungssatellitdistribution.

Abstrat

This study analyses the dynamial evolution of satellite galaxies in spirals em-

bedded in a Dark Matter halo. The main goals of this Thesis have been: (i) The

performane of a detailed theoretial analysis of dynamial frition, the main pro-

ess that leads to satellite merges into the more massive parent galaxies and (ii)

the inuene that the aspheriity of haloes indues on this proess and the possible

onsequenes on the observational satellite distribution.
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Chapter 1

General introdution

1.1 Prefae

In 1933, the Swiss astronomer Fritz Zwiky suggested the presene of a non-deteted large amount

of mass in galaxy-lusters in order to explain the disrepany between the observed veloity dis-

persion of the galaxies belonging to the Coma luster and that expeted from the virial theorem,

where the total mass was estimated from the luminous omponent. In the past deades, as-

tronomers observe that the ontent of luminous matter, also alled baryoni mass omponent, is

too low to aount for the gravity of not only galaxy lusters but also of single galaxies and large

sale strutures in the Universe.

The \missing mass problem" �nds a remedy if one assumes that there is a large fration of

mass, whose existene an solely be inferred from its gravitational e�ets, the so-alled Dark

Matter.

From that year on, a huge number of artiles, books, onferenes, projets et., have tried to

put light on the nature and properties of the Dark Matter. However, this problem has been around

for deades, and there is now onsensus that we do not know what the most ommon material in

the Universe is. It is deteted only gravitationally, and does not seem to emit or absorb substantial

eletromagneti radiation at any known wavelength. The universal average density of Dark Matter

determines the ultimate fate of the Universe, and it is lear that the amount and nature of Dark

Matter stands as one of the major unsolved puzzles in siene.

The aim of this thesis is to make a little step further.

1.2 Standard Big Bang theory and Dark Matter

The most favoured piture of the Universe is based on the Big Bang senario. So far, this theory

has been able to give an expliit explanation for the Cosmi Bakground Radiation (CBR) and

the observations of large sale strutures formed by galaxies and lusters of galaxies.

1.2.1 Ination

The Big Bang theory postulates that the Universe orginally had a point-extension with singular

energy density followed by an exponential expansion (inationary proess) that gave rise to a

at isotropi Universe (null urvature) nearly homogeneous. Ination onsists of a short period

of aelerated superluminal expansion of the early Universe, at the end of whih the \standard"

desription of the Big Bang model is applied.

In general relativity, a spatially homogeneous and isotropi Universe is desribed by the

Friedmann-Lemaitre-Robertson-Walker metri (e.g., Landau & Lifshitz 1989),

ds

2

= �dt

2

+ a(t)

2

�

dr

2

1�Kr

2

+ r

2

(d�

2

+ sin

2

�d'

2

)

�

1



2 CHAPTER 1. GENERAL INTRODUCTION

where (t; r; �; ') are o-moving oordinates, K is the urvature (K = 0, K > 0 and K < 0 imply

a at, lose and open Universe, respetively) and a(t) is the sale-fator of the Universe that

aounts for its expansion. With this metri, Einstein's equations of general relativity redue to,

�a

a

= �

4�g

3

(�

m

+ 3P

m

) +

�

3

;

H

2

�

�

_a

a

�

2

=

8�G

3

�

m

�

K

a

2

+

�

3

;

where  = 1, �

m

and P

m

are, respetively, the energy density and pressure of the matter ontent

of the Universe, whih is assumed to be a perfet uid. H and � are the Hubble parameter and

the osmologial onstant, respetively.

For simpliity, we onsider solely the ase K = 0. Interpreting the presene of � as a uid

with energy and pressure �

�

= �=(8�G), P

�

= ��=(8�G) (note that negative pressure implies a

repulsive fore) so that,

�a

a

= �

4�G

3

(�+ 3P );

�

_a

a

�

2

=

8�G

3

�;

where � � �

m

+ �

�

and P � P

m

+ P

�

.

Ination is de�ned as the epoh in the history of the Universe (t � 10

�34

s) when �a > 0, i.e

P < ��=3.

There are several proposal for ination. Historially, the prototype has been the exponential

expansion orresponding to de Sitter's solution of Einstein's equations (�

m

= P

m

= 0),

a(t) = a

0

e

Ht

;

H =

�

�

3

�

1=2

:

More reently, ination is obtained by assuming that an early time the energy density of the

osmologial uid was dominated by a salar �eld alled inaton (�), where � =

_

�

2

=2+V (�), V (�)

and

_

�

2

=2 being the potential and kineti energy of the salar �eld. In the regime V (�) �

_

�

2

=2,

one an show that the solution of Einstein's equations an be wiritten as,

a(t) = a

0

exp

�

Z

H(t)dt

�

;

where H

2

(t) ' 8�GV (�)=3. The geometrial de Sitter solution is therefore assoiated to a quan-

tum �eld desription where � = �

0

with the potential V = V

0

= onst:

The exponential growth of the sale fator means that, during the ination epoh, the pertur-

bation wavelengths inherent to the osmologial uid soon exeeded the Hubble radius H

�1

'

onst:, thus the utuation amplitudes were \frozen".

One the ination has ended, the Hubble radius inreases faster than the sale fator, so

that the utuations reenter the Hubble radius and strutures in the matter and in the radiation

bakground start to grow. The major suess of ination is that it provides the spetrum of

perturbations, whih an be ompared to that the Cosmi Bakground Radiation.

1.2.2 Dark Matter ontent in the Universe

Ination postulates that the Universe is at and isotropi. From Einstein's equations this requires

the density of matter to be � = �

rit

= 3H

2

=(8�G), i.e 
 � 8�G�=(3H

2

) = 1, whih is assumed

by the standard osmology. If the osmologial onstant is not zero one has that null urvature

implies 
 + 


�

= 1, where 


�

= �=(3H

2

).
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Observations at the present day, however, provide a \luminous" (i.e, matter that an be deteted

from eletromagneti emissions, also alled baryoni matter) density around 


b

' 0:0024 (Fukugita

et al. 1998). Therefore, \luminous" matter alone annot aount for the Universe atness. This

problem has found solution by assuming that the \missing mass" is formed by Dark Matter. In

the standard osmology frame 
 = 


b

+


m

= 1.

In order to hek this hypothesis, researhers usually have followed three independent lines of

investigation: (i) alulus of the primordial baryoni abundane at the Universe (assuming that

the total amount of matter is onstant), (ii) analysis of the CBR utuations and (iii) formation

of large strutures in the Universe.

Big Bang Nuleosynthesis

After the initial adiabati inationary proess, the Universe starts to ool down. At t � 10

�4

s

(T ' 1:2�10

12

K), the formation of partiles is in equilibrium, with nuleons n ! p and leptons

  ! e

�

,   ! �

�

. These partiles interat through eletro-weak and gravitational fores.

The standard piture of the matter reombination after this evolutionary phase of the Universe

is given by the Big Bang Nuleosynthesis (BBN, see e.g. Carr 1994 for a review). BBN assumes

that the primordial abundane of nuleons an be determined by their present observational value

and two free-parameters,

� �

n

b

n



' 2:72� 10

�8

�

T

2:73K

�

�3




b

h

2

;

� being the fration between the number of photons and baryons (stritly speaking nuleons) at

a given time and h = H

0

=100 km s

�1

kp, the present Hubble parameter. The seond parameter

is N

�

, the number of relativisti speies.

The proton to neutron ratio at that time plays a very important role in order to ompare the

primordial with the atual abundane of baryoni elements. It is estimated as n=p = exp(�Q=T

fr

),

where Q is the neutron-proton mass di�erene, Q = 1:293 MeV and T

fr

� (N

�

G=G

4

f

)

1=6

' 1 MeV

is the \freeze-out" temperature, resulting from the break of the hemial equilibrium n  ! p

as the temperature dropped. The abundane of free neutrons is, thus, diretly dependent of N

�

through the value of T

fr

. In the standard osmology N

�

= 3 and therefore n=p ' 1=6 at T ' 1

MeV.

The nuleosynthesis hain begins with the formation of deuterium in the proess p(n; )D. The

rate of the proess is very low until the number of photons with energy higher than the deuterium

photo-dissoiation falls, whih ours at T ' 0:1 MeV. Due to the low density of the Universe at

that time, only 2-body reations suh as D(p; )

3

He,

3

He(D,p)

4

He are important.

Nearly all the surviving neutrons at the beginning of nuleosynthesis end up bound in the most

stable isotope of Helium,

4

He. Heavier nulei suh as T and

7

Be annot be reated due to the

strong repulsion between nulei. The Helium abundane an be obtained from the ratio between

neutrons and protons n=p as,

4

He/H= 2(n=p)=(1 + n=p) ' 0:25, whereas the abundane of other

elements suh as Deuterium and Tritium depends on the value of �.

One given � and N

�

, BBN theory predits the universal abundanes of D,

3

He,

4

He and

7

Li,

whih are essentially determined at t � 180 s. However, their observations an be solely arried

out at muh later epohs. The main problem in the omparison results as a onsequene of the

stellar nuleosynthesis and other galaxy hemial proesses, whih alters the primordial values.

The value of � (and therefore the baryon density 


b

) is determined from the Cosmi Bakground

Radiation and the measurements of the primordial elements abundanes as a funtion of time

(redshift), subsequently extrapolated to null metaliity. Whereas the former provides the value

of n



�xed by the present CBR temperature, the observed abundanes of D,

3

He,

4

He and

7

Li

onstrain the possible value of �. Sine 


b

= 2:65� 10

�13

h

�2

�, one has that,

0:0095 � 


b

h

2

� 0:023:

First one must note that 


b

� 1, i.e., baryons annot lose the Universe. Furthermore,

the observed luminous matter is 


lum

' 0:0024h

�1

, so that 


b

� 


lum

, whih indiates that
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most baryons are optially dark. This is onsistent with the abundane of baryoni Dark Matter

(i.e, bodies, suh as Massive Massive Compat Objets \MACHOs" that are formed by baryoni

matter but annot be diretly observed, see below), whih has been estimated in galaxies as




h

' 0:011h

�1

(R

h

=35kp) (Fih & Tremaine 1991), where R

h

is the halo radius.

Finally, either if the osmologial parameters are 
 = 


m

= 1, 


�

= 0 (standard piture CDM),

or 


m

' 0:313, 


�

' 0:687 (�CDM), as reent observations of the CMB and the large redshift

survey (2dFGRS) suggest (Perival et al. 2002), we infer that most matter in the universe takes

a non-baryoni form. This result is a key point for the Dark Matter osmology.

Formation of large strutures

The Big Bang theory postulates the formation of galaxies, luster of galaxies and large strutures

as a onsequene of perturbations in the initial matter density, whose relis an be nowadays

observed as utuations in the Cosmi Bakground Radiation.

In this sheme, the growth rate and evolution of perturbations are highly dependent on the

matter nature. Sine the Universe is more homogeneous on large sales, one expets that these

utuations follow a power spetrum for whih the Fourier amplitude an be desribed as jÆ(k)j

2

/

k, where k is the wave number. Further, in standard osmology, it is assumed that the spetrum

phases are independent, whereas the amplitudes have a Gaussian distribution about the mean.

At the epoh of radiation domination, perturbations with wavelengths smaller than the horizon

grew very slowly. At that time, the Universe was highly homogeneous (and isotropi) as expeted

from the ination senario. As the temperature dropped, the mass density (by hypothesis \old",

i.e., non-relativisti) starts dominating over that of massless partiles. The power spetrum P (k)

remains proportional to the wave number for wavelengths larger than the horizon radius. However,

on sales smaller than the horizon the growth is slower, with a power spetrum asymptotially

P (k) / k

�3

as k !1 (see Ostriker 1993 for a review).

The main di�erentiation between baryoni and Dark Matter evolution ours at this time.

Whereas Dark Matter density evolve around the initial over-density points, the baryoni pertur-

bation growth was kept small due to the repulsive eletro-magneti fore between the ionized

atoms until matter reombines at about z � 10

3

(t � 180 s). At this moment, baryons fall into the

Dark Matter potential wells that were already formed, evolving to the present \visible" strutures.

Due to the delay in the perturbation growth, any model based purely on baryoni matter

(i.e., 


m

= 0 and 


b

= 1) would need of large amplitudes in the utuation spetrum at the

reombination time, whih is not onsistent with the utuations observed in the CBR.

The Dark Matter senario is very suessful in order to reprodue the large sale strutures

(larger than 1 Mp) in the Universe (Bahall et al. 1999). However, during last years some obser-

vations of matter struture on small sales (few kiloparses) may be in onit with preditions

of Dark Matter, whih onstitutes a topi of disussion nowadays:

(i) The density pro�le of galaxies in the inner few kiloparses appear to be muh shallower than

predited by N-body simulations of Dark Matter (Navarro, Frenk & White 1997).

(ii) The entral density of Dark Matter haloes is observed to be �



' 0:02M

�

p

�3

, roughly in-

dependent of the halo mass (Firmani et al 2000b), meanwhile CDM (Cold Dark Matter) predits

�



' 1M

�

p

�3

in dwarf galaxies, inreasing to larger masses (Moore et al. 1999b).

(iii) The number of dwarf galaxies in the Loal Group is signi�antly fewer than predited by

CDM, with the disrepany growing the higher the numerial resolution is (Moore et al. 1999a,

Klypin et al. 1999).

(iv) Observational distribution of satellites around isolated spiral galaxies show that most of them

follow polar orbits with respet to the dis plane (Zaritsky & Gonz�alez 1999), whereas the CDM

numerial alulations show that the satellite distribution mimis the mass distribution of the DM

halo.

The observed disrepanies (i)-(iii) may have a single ause: CDM produes systems with an

over-onentration of Dark Matter in the most inner regions. In order to solve the apparent disrep-

anies between CDM preditions and observations on small sales, a plethora of new alternatives

have been suggested. Some of suh theories are motivated from partiles physis onsiderations,
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Sale/Objet �=�

�

Solar neighbourhood 5

Elliptial galaxy ores 12h

Satellite galaxies 30

Loal Group 100

Group of galaxies 260h

Cluster of galaxies 400h

Table 1.1: Mass-to-light ratio for di�erent sales and systems. h denotes the normalised Hubble

onstant (between 0.4 and 1) and �

�

the mass-to-light ratio of the Sun.

though all of them retain the desirable properties of CDM on large sales. For instane, it has

been proposed that DM is warm (e.g Colin et al 2000), repulsive (Goodman 2000), uid (Peebles

2000), self-interating (Spergel & Steinhardt 2000) among others whih, with di�erent degrees of

auray, solve the problem.

However, the point (iv) remains without explanation. One of the aims of this Thesis is to give

an insight on the physial proesses that may ontribute to the observed anisotropy of the satellite

distribution.

1.3 Evidenes for Dark Matter

Historially, the most robust evidene for Dark Matter ame from the rotation urves of spiral

galaxies. Using 21 m emission, the veloities of louds of neutral hydrogen an be measured as

a funtion of r, the distane from the entre of the galaxy. In almost all ases, after a rise near

r = 0, the veloities remain nearly onstant out as far as an be measured. By Newton's law for

irular motion GM(r)=r

2

= v

2

=r, this implies that the density drops like r

�2

at large radius and

that the mass at large radii. One r beomes greater than the extent of the mass, one expets the

veloities to drop as r

�1=2

but, usually, this is not seen, suggesting that the Dark Matter extension

around spirals is far beyond the baryoni extension as it is found in lusters of galaxies.

In 1974, Ostriker et al. and Einasto et al. proposed the presene of large amounts of Dark

Matter around even isolated galaxies whih would reprodue the observed at rotational urves

of galaxies at large distanes. The Dark Matter would be loated in giant \haloes" extending out

to several times the radius of the luminous matter and ontaining most of the galaxy mass. These

haloes also extend around luster of galaxies, with masses of around 10

14

� 10

15

M

�

.

There is a great deal of new evidene on Dark Matter in lusters of galaxies, oming from

gravitational lensing, from X-ray gas temperatures, and from the motions of luster member

galaxies.

To measure the amount of Dark Matter in a given sale, authors usually determine the value

of the mass-to-light ratio �, de�ned as the fration between the mass and luminosity density,

providing therefore, the amount of mass that produes the observed luminosity. Evidently, bodies

omposed mostly by Dark Matter will lead to large values of �. In Table 1.1 the values of the

mass-to-light ratios are given for di�erent sales and systems (Binney & Tremaine 1987, hereinafter

BT). From this Table appears learly that the more distant the objets are (equivalently to larger

sales), the more dominates the Dark Matter over the baryoni omponent. As we see below, this

fat has given oasion for the development of alternative theories that question the Newton's

gravity at large sales going, therefore, against the Dark Matter solution for the \missing mass

problem".

1.4 Dark Matter andidates

In the standard piture, CDM provides the observed mass distribution on large sales under, solely,

two assumptions: (i) Dark Matter partiles move on non-relativisti veloities at early ages and



6 CHAPTER 1. GENERAL INTRODUCTION

(ii) it interats only through the gravitational fore. There is no shortage of ideas as to what kind

of partiles have suh properties. In fat, the problem is the opposite. Serious andidates have

been proposed with masses ranging from 10

�5

eV = 1:8 10

�41

kg= 9 10

�72

M

�

(axions) up to

10

4

M

�

(blak holes). That's a range of masses of over 75 orders of magnitude! It should be lear

that no one searh tehnique ould be used for all Dark Matter andidates.

Even �nding a onsistent ategorisation sheme is diÆult, so that here we merely inlude the

most important suggestions for the Dark Matter omponents.

1.4.1 Baryoni Dark Matter

The main baryoni andidates are the Massive Compat Halo Objet (Maho) lass of andidates.

These inlude brown dwarf stars, Jupiters, and 100M

�

blak holes. Brown dwarfs are spheres of

H and He with masses below 0:08M

�

, so they never begin nulear fusion of hydrogen. Jupiters

are similar but with masses near 0:001M

�

. Blak holes with masses near 100M

�

ould be the

remnants of an early generation of stars whih were massive enough so that not many heavy

elements were dispersed when they underwent their supernova explosions. Other, less popular,

baryoni possibilities inlude fratal or speially plaed louds of moleular hydrogen. The non-

baryoni andidates are basially elementary partiles whih are either not yet disovered or have

non-standard properties.

1.4.2 Non-baryoni Dark Matter

Among the non-baryoni andidates there are several lasses of partiles whih are distinguished

by how they ame to exist in large quantity during the Early Universe, and also how they are

most easily deteted.

Among the partile Dark Matter andidates an important distintion is whether the partiles

were reated thermally in the Early Universe, or whether they were reated non-thermally in

a phase transition. Thermal and non-thermal relis have a di�erent relationship between their

reli abundane and their properties suh as mass and ouplings, so the distintion is espeially

important for Dark Matter detetion e�orts. For example, the Wimp lass of partiles an be

de�ned as those partiles whih are reated thermally, while Dark Matter axions ome mostly

from non-thermal proesses.

The largest lass is the Weakly Interating Massive Partile (Wimp) lass, whih onsists of

literally hundreds of suggested partiles and forms through thermal proesses at early stages of

the Universe. The most popular of these Wimps is the neutralino from super-symmetry (see Carr

1994 for a review).

Thermal reation ours early, when the Universe was at very high temperature, thermal

equilibrium obtained, and the number density of Wimps (or any other partile speies) was roughly

equal to the number density of photons. As the Universe ooled the number of Wimps and

photons would derease together as long as the temperature remained higher than the Wimp

mass, interating solely through gravitational fore.

The density required by the Cold Dark Matter osmology (CDM) is 


matter

= 1. Wimp partiles

would aount for this density if the annihilate into ordinary partiles through eletroweak fores.

Therefore, one hypothesis is that any stable partile whih annihilates with an eletroweak sale

ross setion is bound to ontribute to the Dark Matter of the Universe. It is interesting that

theories suh as super-symmetry, invented for entirely di�erent reasons, typially predit just suh

a partile.

Non-thermal relis are also thought to provide the mass density obtained from the CDM model.

The best example of a non-thermal partile Dark Matter andidate is the axion. This partile

would have null mass at the earliest stage of the Universe. However, when the temperature of

the Universe ooled below a few hundred MeV (QCD energy sale), the solution of the QCD

Lagrangian predits a new equilibrium state where the partile has non-null mass. These partiles

would be observed as a oherent axion �eld ondensate �lling the Universe whih onstitutes the

Dark Matter. The reli energy density is thus related to the QCD potential, whih in turn is
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related to the axion mass, a free parameter of the model. If the axion mass is m

a

' 10

�5

ev, the

we obtain 


matter

' 1. Axions ould then aount for the mass density in the Universe, even if

they are so light.

Finally, if the tau and/or muon neutrinos had a mass in the 2 eV to 100 eV range, they ould

make up all or a portion of the Dark Matter.

1.4.3 Distintion between \old" and \hot" Dark Matter

A Dark Matter andidate is alled \hot" if it was moving at relativisti speeds at the time when

galaxies ould just start to form (when the horizon �rst ontained about 10

12

M

�

). It is alled

\old" if it was moving non-relativistially at that time. This ategorisation has important ram-

i�ations for struture formation, and there is a hane of determining whether the Dark Matter

is hot or old from studies of galaxy formation. Hot Dark Matter annot luster on galaxy sales

until it has ooled to non-relativisti speeds, and so gives rise to a onsiderably di�erent primor-

dial utuation spetrum. Of the above andidates only the light neutrinos would be hot, all the

others would be old.

1.5 Non-Newtonian gravity

The Modi�ed Newtonian Dynamis (MOND) has been found as an alternative to solve the \missing

mass problem". The basis of this explanation is the suggestion that, although the Newtonian

gravity has been suessfully heked on the Solar System sale, it breaks down on the sale of

galaxies. In partiular, the proposal by Milgrom (1983) that the e�etive law of attration beomes

more like 1=r in the limit of low aelerations has been able to reprodue some systemati aspets

of this disrepany between galaxy and groups of galaxies (reviewed by Sanders 1990).

The MOND alternative predits the preise form of the rotation urve of a spiral galaxy if the

observed mass distribution is given and the value of a single universal parameter a

0

. Usually, the

mass-to-light ratio of the visible dis is used as a free parameter in order to �t rotation urves

obtained from the 21-m emission of the neutral hydrogen.

The simple MOND formula for the gravitational fore an be written as

�(g=a

0

)g = g

n

; (1.1)

where g

n

is the Newtonian aeleration and

�(x) = 1; x� 1 �(x) = x; x� 1; (1.2)

that an be approahed by the analyti funtion

�(x) = x(1 + x

2

)

�1=2

; (1.3)

It is straightforward to show that rotation urves are asymptotially at in the low aeleration

limit if the mass bounded is �nite so that

V

4



= GMa

0

: (1.4)

Although Non-Newtonian gravity suessfully desribes the at rotation urves of spiral galaxies,

there is a large list of physial proesses that �nd no explanation fromMOND, suh as gravitational

lensing, formation of large sale strutures in the Universe, tidal disruption of satellites...et, whih

makes the Dark Matter senario the most favoured solution for the \missing mass" problem.

1.6 From satellite dynamis to Dark Matter osmology

The study of the satellite galaxy dynamis in spiral galaxies may help to determine the Dark

Matter nature.
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Rotational urves of spiral galaxies show that for r > 30 kp the halo potential dominates

over that of the baryoni omponents (bulge and dis), whereas satellite galaxies an be found

at distanes as large as 500 kp from the parent galaxy entre (Zaritsky et al. 1993). Other

systems like globular luster and halo stars are very hard to detet for r > 50 kp. Satellite

galaxies, therefore, represent in galaxies the most important indiator in order to investigate the

halo potential and also, indiretly, its shape.

Measuring the mass distribution around galaxies provides a ritial test for osmologial mod-

els. The Dark Matter senario predits density pro�les saling as r

�2

at intermediate sales, whih

give rise to the observed at rotation urves, whereas at large distanes the mass distribution is

steeper � / r

�3

(Navarro, Frenk & White 1997). The hallenge in omparing theory with obser-

vations arises from the diÆulty of �nding a visible traer to measure the mass. One of the most

ommonly used is the neutral hydrogen emission (HI), whih is deteted well beyond the optial

boundary, providing density pro�les that go as r

�2

(e.g Sofue & Rubin 2001). However, HI lines

are only deteted within 30� 50 kp. X-rays emissions, observed in elliptial galaxies and luster

of galaxies, su�er from a similar limitation in order to give insight of the mass distribution at large

distanes.

Gravitational lensing provides a more promising method to study the outer parts of galaxies (e.g,

Smith et al. 2001 and referenes therein). Unfortunately, the existing data annot distinguish

between the r

�2

and r

�3

pro�les in the outer most regions, where the errors are large. Moreover,

at suh distanes, neighbour galaxies an a�et the data.

Satellite galaxies represent the most helpful indiator for the mass distribution at large dis-

tanes. The main disadvantage of this method onsist in the large number of satellites neessary

to perform good statistis. As a result, observational e�orts in this �eld are somewhat limited

(Zaritsky et al. 1993, Zaritsky et al. 1997, MKay et al. 2002). This method onstraints the mass

distribution in two manners:

First, the veloity distribution of satellites an determine whether the density pro�le drops

at large radii, as the osmologial models predit. Although the singular isothermal sphere is

usually employed at large distanes as an extrapolation of at rotation urves, none of the Dark

Matter models give rise to suh a mass distribution, but all of them predit that � / r

�3

in the

outer most region of DM systems. This slope does not depend on the mass density, sine CDM

with 


matter

= 1 as well as �CDM with 


m

= 0:3, 


�

= 0:7, have the same slope (Klypin et

al. 2001), neither depends it on the Dark Matter nature sine hot, old and self-interating Dark

Matter models make the same predition (e.g. Spergel & Steinhardt 2000), nor on the halo mass:

haloes ranging from galaxy luster masses to dwarf masses all present � / r

�3

for large distanes

(Navarro, Frenk & White 1997). Only the Modi�ed Newtonian Dynamis (MOND) give rise to a

singular isothermal density pro�le, therefore, with onstant veloity dispersion (�). The studies

arried out so far lead to ontraditory results. Whereas Zaritsky et al. (1993) and Zaritsky

et al. (1997) �nd that � does not deline with distane and that it does not orrelate with the

luminosity of the parent galaxy, MKay et al. (2002) (using a muh larger sample of satellites)

agree that � ' onst:, though they observe that � / L

0:5

, where L is the luminosity of the parent

galaxy. Lastly, in a very reent paper, Prada et al. (2003) use the observational data of MKay et

al. (2002) and show that � dereases with distane (obtaining the r

�3

dependene in the density

pro�le), and that � / L

0:3�0:5

. In this ase, a new seletion riterion gives rise to di�erent results.

The results of Prada et al. (2003) go diretly against the MOND postulates.

The study of satellite galaxies may also indue onstraints on the Dark Matter nature through

their distribution with respet to the dis plane. Zaritsky et al. (1993) and Zaritsky & Gonz�alez

(1999) show that most of the satellites are found in polar orbits, this anisotropy being stronger

the more distant the satellite are from the parent galaxy. There are two possible reasons that

explain suh a distribution: (i) The phase-spae of satellite formation may be limited to volumes

where the predominating orbits are polar. (ii) Evolutionary proesses may remove those satellites

with low and intermediate orbital inlinations, so that nowadays most of satellites are observed

following polar orbits.

The urrently favoured CDM theory of galaxy formation postulates that the formation of a

massive spiral galaxy like our own is a onsequene of the hierarhial assembly of sub-galati dark
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haloes, and the subsequent aretion of ooled baryoni gas in a virialized, galaxy-sale dark halo

(e.g Peaok 1999). One galaxies form due to the ollapse of matter around over-density peaks

in the strongly homogeneous bakground at the early stages of the Universe, they subsequently

interat with eah other, forming more massive systems or being destroyed in the assemble proess.

This is alled hierarhial galaxy evolution. In this frame, less massive galaxies, suh as satellite

galaxies, usually merge into the neighbour, more massive, ones (parent galaxies), following a

proess alled satellite deay. The main driving mehanism that ontrols the satellite deay is

dynamial frition whih, as the name indiates, indues the progressive angular momentum loss

that leads to the �nal merge of both galaxies.

On the another hand, CDM osmology predits the formation of highly attened triaxial haloes,

that beome nearly oblate due to the dis formation (Dubinsky 1994). From CDM, haloes would

follow a Gaussian distribution of aspet ratios, q

h

� =a > 0, where  and a are the minor and

major axes of an oblate spheroid, of mean < q

h

>= 1=2 and dispersion equal to 0.15.

These theoretial results have been supported by several observational evidenes of halo attening.

Observations of gravitational lensing (Maller et al. 2000; Gonz�alez et al. 1999; Maller et al. 1997;

Keeton & Kohanek 1998), galati dis warps (Binney 1992), X-ray detetions (Buote et al. 2002),

stellar kinematis (Olling & Merri�eld 2000), HI emissions (Olling 1996, Bequaert, Combes &

Viallefond 1997), polar ring galaxies (Arnaboldi et al. 1993, Sakett et al. 1994) and preessing

dusty diss (Steinman-Cameron, Kormendy & Durisen 1992), give evidenes that Dark Matter

haloes are attened, with minor to major axis-ratios ranging from 0.2 to 0.9. None of these

measures oniliate with spherial haloes.

However, the data outlined above su�er from a strong limitation: they are available for r < 50

kp.

The aim of this doument is to give insights on the halo shape from the satellite dynamis

investigation. Sine satellites are observed as far as 500 kp from the parent galaxy, this study

may also onstrain the halo density pro�le at large radii. Both investigations will provide a hint

on the Dark Matter nature.

1.7 Sheme of the investigation

In Fig. 1.1 we show the sheme of our analysis.

From the observational data we onstrut a galaxy model that desribes a spiral galaxy like the

Milky Way (Chapter 3). We follow subsequently two lines of investigation:

� N-body alulations.One the galaxy and satellite models are given, we build up the initial

systems in equilibrium (Setion 2.2) in order to perform N-body alulations to determine

the di�erenes that the halo shape (Chapter 7) and the dis and bulge presene (Setion 9.3)

indue on the satellite dynamis.

� Semi-analyti alulations. Observations of satellite galaxies provide a statistial view

of the satellite evolution in spiral galaxies. The number of satellites per host galaxy ranges

usually from 0 to 5, with the probability p of �nding a system with n satellites going as

p = 0:43

n

(Zaritsky et al. 1993). This implies that host galaxies with small number of

satellites are more likely to be observed than those with a large n. In order to produe

theoretial data to ompare with, one needs to arry out a large number of alulations

to over as muh orbital parameter spae as possible. Unfortunately, this kind of study

is not possible with the present omputational apabilities due to the prohibitive CPU-

expense. For that reason, we build a semi-analyti ode (Chapter 4) that, in a self-onsistent

way, reprodues the N-body satellite evolution after �xing a free parameter (the Coulomb

logarithm), denoted in the sheme as the \omparison" between the semi-analyti and N-

body data. The galaxy and satellite models are those employed for the N-body simulations.

The semi-analyti ode is very simple: it solves the equations of motion of the point-mass

satellite within the galaxy potential. Dynamial frition (the fore that every body su�ers

when moving through a bakground of muh lighter partiles) is implemented as an external
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fore. This ode also alulates the mass loss indued by tidal fores and rapid enounters

with the dis and bulge (shoks) whih aounts for M

s

(t) along the satellite evolution.

The main driving mehanism that ontrols the progressive satellite deay in spiral galaxies

embedded in a more massive Dark Matter halo is dynamial frition. Due to its apital

importane, we arry out an exhaustive analysis in Chapter 5 and 6. The key point of this

study is based on the di�erenes that the halo shape (more onretely, the halo attening)

may indue on the satellite dynamis through the ation of dynamial frition (Chapters 7

and 8). If these di�erenes are strong, one should be able to appreiate them in the obser-

vational distribution of satellites (Chapter 10). The question mark in the sheme represents

the following question: \do the hierarhial senario with the present osmologial models,

where Dark Matter haloes around spiral galaxies are predited to be attened, reprodue the

observed satellite distribution?". If yes, this would favour the widely aepted Dark Matter

osmology, otherwise, one should re-examine our atual view of the satellite formation and

evolution and, perhaps, even the \missing mass" problem.

THEORETICAL MODELS

Initial conditions

N−body calculations Dynamical Friction

Mass Loss

COMPARISON

SEMI−ANALYTIC

SCHEME

OBSERVATIONS

?

Figure 1.1: Sheme of the investigation arried out.

1.8 The astrophysiists' tool: Numerial odes

Astrophysis has a ruial disadvantage in front of other branhes of physis, one annot play

around with several galaxies in a lab in order to investigate proesses suh ollisions, mergers...et.

To solve this problem, researhers onstrut numerial models that are thought to reprodue what

is observed. Subsequently, numerial algorithms based on Newton's laws are used in order to

alulate the dynamial evolution of these elestial objets (the use of N-body odes is the most

extended, in whih systems are formed by a large number of partiles solely interating through

the gravitational fore). More sophistiated numerial algorithms an also implement gaseous

omponents and stellar evolution.
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This is the �rst approximation. Even if one assumes that these models are reasonably aurate,

galaxies are so omplex that additional simpli�ations must be adopted. Here we omment those

that our N-body alulations impliitly assume:

� Collisionless ode. Galaxies are huge, in mass as well as in extension and number of

stars (for example, the Milky Way is omposed of about 10

11

stars, with a diameter of

about 20 kp= 4:3 � 10

9

AU= 6:2 � 10

20

m). So far, there is not a numerial algorithm

apable to evolve suh a number of partiles. For example, the galaxy model employed in

our numerial alulations is omposed of 1:6� 10

6

N-body partiles. This means that eah

partile has a mass of around 10

5

M

�

. However, if one omputes the probability of a ollision

between two \stars", one will �nd that the time-sale is longer than one Hubble time. For

suh a ase, the general desription of a galaxy an be given by its distribution funtion,

whereas the evolution is alulated by solving the ollisionless Boltzman equation (e.g BT).

In this ase, the galaxy potential is not sensitive to the N-body partile mass. Whereas this

equation provides the evolution of the general galaxy properties, it would be non-sense to

use a ollisionless ode to determine the Solar System evolution, sine on suh small sales,

two-body e�ets are important.

� Mass of N-body partiles. Galaxies are omposed of bodies with masses ranging from

0:1M

�

(brown dwarfs) to 100M

�

(blak holes) or even larger. N-body algorithms, however,

usually evolve systems formed by equal-mass partiles (see, as an example, superbox in

Setion 2.1), with masses typially m = 10

5

; 10

6

M

�

. Although at �rst look to assume that

all partiles have the same mass seems a very rough approximation, atually, it is not. The

self-potential of a galaxy (whih mostly determines the satellite dynamis) is not dependent

on the partiles masses in a kiloparse sale. Even blak holes with thousands of solar masses

in the entre of galaxies hange the veloity urve only within one kp. Again, for suh a

system the most appropriate is to use a ollisionless ode, whih are not sensitive to the

mass spetrum of the N-body galaxy partiles.

Although the galaxy evolution an be aurately desribed by ollisionless algorithms, the

satellite-galaxy interation is a two-body enounter proess. In this ase, the number of

partiles, as well as the resolution of the ode, shall inuene the satellite evolution. This is

learly shown in Setion 8.6, where the number of galaxy partiles (N) is inreased 8 times.

We observed that, whereas the overall evolution of the satellite is nearly independent of N ,

the survival time of the satellite is, however, approximately a 15% redued. It is important

to remark that, despite this result indiates that the time-dependene of proesses suh

satellite deay, mass loss, nutation and preession are sensitive to N , the desription of the

proesses themselves is not.

� Absene of gas. Pure N-body algorithms do not inlude a gaseous omponent. Although

this omponent plays an important role in models that desribe the dis struture (bar

formation, spiral arms and dissipation proesses), it an be negleted in order to analyse the

dynamis of satellite galaxies. The reason is found in the low abundane of gas if ompared

to the stelar population. The total masses of HI and HII have been derived for hundreds

of spiral galaxies, observing that M

gas

=M

dyn

is around 3 � 10

�3

(Sa galaxies) up to 0.1

(S galaxies), where M

gas

=M

HI

+M

HII

and M

dyn

is the estimation of the galaxy mass

(Binney & Merri�eld 1998). Sine the gas omponent follows roughly the mass distribution

of the stellar dis, the ontribution to the satellite dynamis an be negleted for distanes

larger than a few dis sale-lengths, where the Dark Matter dominates the galaxy potential

(as it is observed from the galaxy rotation urves).

� Stellar evolution. The properties of stars, suh as mass, luminosity and extension hange

along their evolution, mostly depending on their initial mass and metaliity. Despite of their

importane in systems with small number of partiles (suh as globular and open lusters),

stellar evolution proesses are usually negleted in galaxy dynamis. As we ommented

above, the individual properties of stars are not determinant in order to study the galaxy
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dynamis, as long as the number of partiles in the system leads to a typial time-sale of

two-body enounters longer than the Hubble time. In this ase, the total mass of the system

as well as its mass distribution fully determines the potential of the galaxy. The main

advantage of using numerial odes that reprodue the stellar evolution is the possibility to

ompare the resulting alulations with spetroopi observations.

1.9 Overview of this Thesis

In this Setion we show a brief summary of the ontents of eah Chapter.

The goal of Chapter 2 is to desribe the basis of the ollisionless N-body treatment employed to

desribe the satellite evolution in spiral galaxies. We use a partile-mesh algorithm alled super-

box, whih provides a high omputational veloity even with a large number of partiles. Another

advantage of this ode is that relaxation proesses are nearly negligible along the alulations. In

the seond Setion we outline the sheme employed ir order to build up the initial galaxy with

N-body partiles. This method (Boily, Kroupa & Pe~narrubia 2001) was reated to onstrut spiral

galaxies in nearly equilibrium with the possibility of implementing the halo attening as an input

parameter. The CPU-time required for the operation is the same as for a galaxy with spherial

halo, therefore, improving the eÆieny in front of other algorithms, e.g. Hernquist (1991), for

whih the CPU-expense sales as the square of the partile number.

In Chapter 3 we present the galaxy and satellite models employed in our investigation. The

galaxy is formed by the dis, the bulge and a Dark Matter halo. Whereas the former are determined

by observations of the baryoni struture in the Milky Way, the later is inferred from the rotational

urve and X-rays measurements. The satellite model is based on observations of dwarf spheroidal

galaxies. The density pro�les of eah system, the fore and the veloity dispersion expressions are

outlined in this Chapter, together with the parameters that determine their properties. We also

provide here the parameters of superbox, suh as the resolution, grid sizes and time-step sine

they depend on the galaxy and satellite parameters.

Although superbox is a high eÆient N-body ode, an investigation of the satellite distribution

in spiral galaxies would require thousands of simulations in order to explore the orbital parameter

spae of the satellite galaxy, its mass range and the inuene of di�erent Dark Matter models on its

evolution. We have found a remedy by developing a self-onsistent semi-analyti algorithm

that solves the satellite's equations of motion and mass evolution (Chapter 4). This ode onsumes

10

4

times less CPU time that superbox alulations. The basis of the ode is simple: assuming

that the galaxy does not evolve as a response to the satellite presene, the fore ating on the

satellite is the sum of the galaxy �eld (alulated from the density pro�le) plus two-body enounters

with the bakground partiles, the so-alled dynamial frition. The internal properties of the

satellite are then determined by its total amount of mass and mass pro�le along the orbit. Due

to the dependene of the two-body proesses on the N-body parameters, suh as resolution and

number of partiles, the semi-analyti algorithm implements two free quantities to be �tted to the

N-body data: the dis and halo Coulomb logarithms.

The main driving mehanism that ontrols the dynamial evolution of our satellite galaxy is

dynamial frition. Due to its importane, we analyse in detail the theoretial treatment of

this proess in Chapter 5 and generalise the expressions for attened systems. We also study the

ontribution of the �rst order frition indued by the system inhomogeneity and the dependene

of the Coulomb logarithm on the galato-entre distane.

In Chapter 6 we hek the analyti expressions of Chapter 5 by implementing them into our

semi-analyti ode. The results are ompared to the N-body alulations from superbox. For

simpliity, the galaxy model is formed by a spherial Dark Matter halo without dis and bulge.

One of the main topi of investigation of this Thesis is the e�ets that the halo aspheriity

may indue on the satellite dynamis and evolution. The analysis follows two approahes:

� First, in Chapter 7 we arry out numerial N-body alulations overing a wide range of

orbital parameters and satellite masses. These simulations inlude a baryoni omponent in
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the form of a dis and a bulge embedded within a spherial and a attened Dark Matter

halo with the same harateristis, so that a diret omparison an be performed.

� Seond, we attempt to reprodue the numerial data with our analyti treatment. In order

to separate the dis and bulge e�ets to those indued by the halo attening, in Chapter 8

we arry out N-body alulations removing dis and bulge, so that the parent galaxy is

formed by a attened halo. Subsequently, we ompare our analyti treatment of anisotropi

dynamial frition (implemented in the semi-analyti algorithm) with the resulting N-body

alulations. The satellite mass evolution M

s

(t) is obtained from the N-body data.

In Chapter 9, we ompare those simulations of Chapter 7 (the galaxy inludes the baryoni

omponents) with the self-onsistent semi-analyti analysis, whih inludes the mass loss

sheme outlined in Chapter 4. The goal is to hek the auray of this algorithm in order

to desribe the satellite dynamis and mass evolution in spiral galaxies for di�erent values

of the halo axis-ratio.

The self-onsistent semi-analyti ode beomes an extremely important tool in order to analyse

the evolution of the satellite distribution indued by dynamial proesses, suh as dynamial

frition, mass segregation and mass loss, and their dependene on the halo shape and extension.

The results have a lear onnetion to Dark Matter osmology, sine the omparison with observa-

tional measurements of satellites will give insights on: (i) the initial satellite distribution, (ii) the

halo morphology and (iii) the halo extension, between others. This study is too ambitious to be

performed in one Chapter of this Thesis, so that in Chapter 10 we present the preliminary results

of this investigation, as well as the most reent observations of the satellite galaxy distribution in

spiral galaxies.
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Chapter 2

The N-Body Code

2.1 Brief introdution to Superbox

superbox is a partile mesh ode with high resolution sub-grids. The program alulates the

aelerations using a high order NGP (`nearest grid point') fore alulation sheme based on the

seond derivatives of the potential. A self-onsistent system of several galaxies an be treated by

forming sub-grids whih follow the motion of eah galaxy. The relaxation proesses are negligible,

even in time sales of a Hubble time.

The main advantage of Superbox is its omputational veloity even with a big number of

partiles (several millions), however the ode is highly dependent on the geometry of the system.

Whereas the hierarhial tree and diret N-body methods do not su�er from this problem, the

partile number has a big limitation and they need a softening to avoid the two-body relaxation

e�ets and meanwhile the diret N-body methods have a dependene of the CPU-time on the

number of partiles saling as N

2

p

, the mesh-odes have a linear dependene. However, Superbox

depends on the number of grid ells (N

g

), with the CPU-time going as N

g

logN

g

. Our alu-

lations are limited to N

g

= 64

3

, whih gives the best number for resolution/CPU-time with the

present omputer resoures at the institute.

We shall introdue the theoretial desription of the ode. For a detailed study on its apabil-

ities and limitations see Fellhauer et al. (2000) and Klessen and Kroupa (1998).

2.1.1 Method

The ode develops three alulations at eah time-step that an be shemed as follows,

(i) The density at eah grid-ell is alulated from the distribution of N-body partiles.

(ii) Using the Poisson equation, the potential is found by developing a Fast Fourier Transform

(FFT).

(iii) One the potential at eah point is known, a leap-frog sheme is applied to alulate the

hanges over veloity and position.

Density array

The �rst step of the ode is to alulate from an input �le with the position and veloity of eah

partile the array of mass densities, denoted as �

i;j;k

, where (i; j; k) are the Cartesian oordinates

of one grid ell. This is done by using a `partile-in-ell' method, the simplest one being the NGP

(Nearest Grid Point) algorithm. Another alternative would be to use a `Cloud-in-Cell' method. If

the number of N-body partiles is large this is not neessary, sine the spatial density is smoothed

enough. Taking all the partiles in the same galaxy with the same mass, m = M

gal

=N

p;gal

, the

density in one grid ell is alulated simply by ounting the number of partiles in that ell.

15
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Our partile 3D-distribution, n(~x), is taken as

n(~x) =

X

�

Æ

3

(~x� ~x

�

); (2.1)

where eah partile is onsidered as a point of position ~x

�

= (x

�

; y

�

; z

�

).

As we explained in the introdution, the NGP ('nearest grid point') is used to alulate the fore,

so our smoothing kernel, W (~x;�~x), is simply the 3D top-hat funtion, �(�)

W (~x;�~x) = �(

x

�x

)�(

y

�y

)�(

z

�z

); (2.2)

being �~x = (�x

�

;�y

�

;�z

�

) the vetor of smoothing lengths whih is given by the resolution

seleted for our ode, and the funtion �(�) de�ned as

�(�) =

8

<

:

0 j � j>

1

2

1

2

j � j=

1

2

1 j � j<

1

2

Therefore the mass density in the grid is

�(~x) = mW Æ n = m

Z

W (~x� ~x

0

;�~x)n(~x

0

)d

3

~x

0

; (2.3)

where m is the partile mass and Æ denotes the onvolution operator. Beause of the �nite

resolution, the density is smoothed so that eah grid ell has a onstant density. Mathematially

this an be represented by de�ning a `mesh sampled funtional' �

y

(~x) in the three dimensional

mesh

�

y

(~x) =

a

(~x) Æ �(~x); (2.4)

the 3D operator

`

(~x) being the `sampling funtion'

a

(~x) =

N

X

i;j;k=0

Æ(x� x

i;j;k

)Æ(y � y

i;j;k

)Æ(z � z

i;j;k

); (2.5)

where i; j; k are the indies of grid-ells of entre ~x

i;j;k

= (x

i;j;k

; y

i;j;k

; z

i;j;k

).

Potential alulation

One we know the density array, the potential in eah grid ell, �

i;j;k

, is the addition of the

potentials at eah grid,

�

i;j;k

= G

N�1

X

a;b;=0

�

a;b;

H

a�i;b�j;�k

; (2.6)

with i; j; k = 0; 1; : : : ; N � 1, where N denotes the number of ells for dimension, so N

3

= N

g

,

and H

i;j;k

is a Green's funtion.

The Poisson equation is muh easier to solve in the Fourier spae, so making the transforma-

tions,

�̂

a;b;

=

N�1

X

i;j;k=0

�

i;j;k

exp

�

�

p

�1

2�

N

(ai + bj + k)

�

(2.7)

^

H

a;b;

=

N�1

X

i;j;k=0

H

i;j;k

exp

�

�

p

�1

2�

N

(ai + bj + k)

�

;
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where the symmetry is taken by doing N = 2

K

, being K > 0 an integer. Then this two values are

multiplied ell by ell, to know the potential we make the inverse Fourier's transformation

�

i;j;k

=

G

N

3

N�1

X

a;b;=0

�̂

a;b;

^

H

a;b;

exp

�

p

�1

2�

N

(ai + bj + k)

�

: (2.8)

This is alled the Fast Fourier Transform (FFT) method. The seletion of the Green's funtion is

in this formulation

H

i;j;k

=

1

p

i

2

+ j

2

+ k

2

(2.9)

H

000

=

4

3

;

with i; j; k = 1; 2; : : : ; N . The value of H

000

is arbitrary, sine it aounts for the weighting of the

partile self-gravity inside a grid-ell. Numerial test show that the best one for low number of

partiles per ell is H

000

= 1, while for a big number H

000

= 4=3 is seleted. The reason is that the

�rst value exludes the e�et of the `self-gravity' of the partiles whih an leads to non-physial

results (if the partile is not in the entre of the ell, it an feel the aeleration of its own gravity,

proportional to the distane to the entre). This problem disappears with the seond value of

H

000

, but the energy onservation with time is not so aurate.

Lastly, for the exat solution employing the FFT-algorithm we have to double the number of

grids (2N) and suppose grids with zero density at the edge of the system, by this we have the

next symmetry relationships

H

2n�i;j;k

= H

2n�i;2n�j;k

= H

2n�i;j;2n�k

= H

2n�i;2n�j;2n�k

= (2.10)

= H

i;2n�j;2n�k

= H

i;j;2n�k

= H

i;j;k

;

This gives the 3D-potential of our isolated system in the area i; j; k = 0; 1; : : : ; (N-1). The low-

storage algorithm for the FFT in 3D is taken from Hohl (1970).

In eah grid ell we have a value of the mass density, whih an be obtained from the fun-

tional �

y

(~x) integrating it spatially (by de�nition of delta funtion). These values an be rep-

resented as �

y

m

= f�

i;j;k

; i; j; k = 0; 1; : : : ; Ng. One we know �

y

m

, the grid potentials �

y

m

=

f�

i;j;k

; i; j; k = 0; 1; : : : ; Ng are alulated by doing a FFT, and diretly the mesh sampled fun-

tional �

y

(~x) =

`

(~x)�(~x) again by integrating in an arbitrary volume. The funtion �(~x) is the

smoothed gravitational potential.

The leap-frog sheme

One the potential is known, one an determine the aeleration at eah point of the grid-ell, the

orbit integration being easily alulated employing the leap-frog sheme.

In order to �nd the aeleration of eah partile, we have to de�ne the one-dimensional di�er-

ene operator. It gives the spatial gradients in eah Cartesian diretion, for the x-diretion

D

x

(x; y; z;�x) =

1

2�x

n

Æ(x +�x)� Æ(x��x)

o

Æ(y)Æ(z): (2.11)

To keep learer the notation,we keep the analysis in one dimension. The x-omponent aeleration

at �rst order is

a

(1)

x

(x; y; z;�x) = D

x

Æ�(~x) =

�(x+�x; y; z)� �(x ��x; y; z)

2�x

: (2.12)

The mesh sampled aeleration is known by the ation of the sample funtional, so a

y(1)

x

(x; y; z;�x) =

`

(~x)a

(1)

x

(x; y; z;�x). Again, integrating over an arbitrary volume we an determine the aeler-

ations in eah ell entre, obtaining the set a

y(1)

m;x

= fa

(1)

x;i;j;k

; i; j; k = 0; 1; : : : ; Ng de�ned as,

a

(1)

x;i;j;k

=

�

i+1;j;k

� �

i�1;j;k

2�x

; (2.13)
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where the mesh is onstruted so that 2�x = x

i+1;j;k

�x

i�1;j;k

. The alulus in x and y diretions

is analogous.

The resolution (and therefore the energy and angular momentum onservation) is improved

by the alulus of the seond order aelerations (for instane in the x-diretion) from the grid

entral points (x

i;j;k

; y

i;j;k

; z

i;j;k

) � (x; y; z),

a

(2)

x

(x+ dx; y + dy; z + dz) = a

(2)

x

(x; y; z) + (2.14)

�a

x

�x

(x; y; z)dx+

�a

x

�y

(x; y; z)dy +

�a

x

�z

(x; y; z)dz +O(d~x

2

);

where we have de�ned the o�set to the entre of the grid

dx = x� x

i;j;k

<

�x

2

(2.15)

dy = y � y

i;j;k

<

�y

2

dz = z � z

i;j;k

<

�z

2

:

At this point, one has to remain in mind the di�erene between the mesh spaing �~x and the

quantities d~x, the �rst are given by the resolution of the ode, meanwhile the seond are de�ned

in eah grid ell in order to a better omputation of the aeleration. In fat, this freedom on

the hoie of the values of d~x will be used to alulate the aeleration inside the grid ell. This

sheme avoids the disontinuities present on the fore alulation.

In the new sheme the resolution is not as important as the one de�ned before beause the

goodness of the fore alulation depends diretly on d~x (whih is related to the mesh spaing �~x

in the sense that larger mesh spaing implies larger interpolation ranges and, therefore, poorer

alulation). If we take d~x as the distanes of the partiles to the entre of the grid ell, then the

error of the aeleration is approximately < dx

2

+ dy

2

+ dz

2

>, i.e the squared averaged distane

of all the ell partiles to the ell entre, whereas in the old sheme the error is the mesh spaing

�~x.

Following the development of our sheme, the next step is to alulate the aelerations in

terms of the grid potential. For that we an approah the divergenes as di�erenes at �rst order

a

(2)

x

(x; y; z;�x) =

��

�x

(x; y; z;�x) � D

x

� (2.16)

�a

x

�x

(~x;�~x) =

�

2

�

�x

2

(~x;�~x) � D

xx

�

�a

x

�y

(~x;�~x) =

�

2

�

�x�y

(~x;�~x) � D

xy

�

�a

x

�z

(~x;�~x) =

�

2

�

�x�z

(~x;�~x) � D

xz

�:

The values of the aeleration in eah grid ell, for that we only have to use the mesh sampled

operator to know the sampled aeleration a

y(2)

x

=

`

(~x)a

(2)

x

, and then integrate this funtion over

an arbitrary volume to obtain a set of aeleration values a

y(2)

m;x

= fa

(2)

x;i;j;k

; i; j; k = 0; 1; : : : ; Ng

de�ned as

a

(2)

i;j;k;x

(d~x) =

�

i+1;j;k

� �

i�1;j;k

2�

+

�

i+1;j;k

+�

i�1;j;k

� 2�

i;j;k

(�x)

2

dx (2.17)

+

�

i+1;j+1;k

� �

i�1;j+1;k

+�

i�1;j�1;k

� �

i+1;j�1;k

4�x�y

dy

+

�

i+1;j;k+1

� �

i�1;j;k+1

+�

i�1;j;k�1

� �

i+1;j;k�1

4�x�z

dz:

The treatment in y and z diretions is analogous.

One we know the aeleration for eah partile one has to integrate the motion equation in time.
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Figure 2.1: The �ve grids in superbox. Solid lines denote the partiular grid. The partiles are

ounted in the shaded areas. In the grid 4 we plot an hypothetial grid for a seond galaxy

This is done in the simplest way, following the so alled `leap-frog sheme'. To give an example,

we an imagine the l-partile in the position x with veloity in the x-diretion whih feels an

aeleration the x-omponent, then the integration of its orbit in the time step n+ 1 is

v

n+1=2

x;l

= v

n�1=2

x;l

+ a

n

x;l

�t (2.18)

x

n+1

l

= x

n

l

+ v

n+1=2

x;l

�t; (2.19)

where �t is the time step. As we an see, in the leap-frog sheme the position and aelerations

are alulated in eah n time step , while the veloities are interpolated between two time steps.

This kind of time integration is very sensible in the hoie of �t so we have to be areful in taking

this value small enough to get a good onservation of energy and momentum. Generally the time

step is ompared with the `rossing time' of the system (t

ross

), taking �t � 0:02t

ross

.

2.1.2 The grids

superbox is strutured in the following way: For eah galaxy there are 5 grids with 3 di�erent

resolution, so that the potential felt by one partile is the sum of the potentials alulated in eah

grid. The grid struture is plotted in Fig. 2.1. These sheme allows us to resolve zones where a

big onentration of partiles is present, for instane the ore of a galaxy or globular luster, by

using poorer resolution where we don not need it.

The grids are as follows:

� Grid 1 gives the highest resolution. In our simulations this grid overs 3 sale lengths of

our exponential dis. As we an see i the �gure, its length is 2R

ore

. All the partiles with

r � R

ore

produe the potential of this most inner grid.

� Grid 2 has an intermediate resolution. Its length is 2R

out

, but the partiles whih are used

to ompute the density, and therefore the potential, are also the partiles stored in grid 1.
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� Grid 3 has just the same size and resolution as grid 2, but here we store the partiles with

R

ore

� r � R

out

.

� Grid 4. ontains the whole system. All the partiles with r � R

out

are inluded. This grid

has the lowest resolution.

� Grid 5 stores the partiles that sape from the system ,i.e r � R

out

. This grid has the same

resolution and size as the grid 4.

All the grids have the same number of ells per dimension, N . However we need four grids to

give the boundary ondition � = 0 neessary for the Fourier transformations, so in fat there are

N � 4 ative ells per dimension in eah grid.

Sine the potential is additive, we an ombine the di�erent grid potentials for eah partile

depending on its position:

�(r) = [�(R

ore

� r)�

1

+ �(r �R

ore

)�

2

+�

3

℄�(R

out

� r) + �(r �R

out

)�

4

+�

5

; (2.20)

where �(�) = 1 for � > 0 and �(�) = 0 otherwise. The suÆx of �

i

; i = 1; : : : ; 5 denotes the grid in

whih the potential is alulated. In this ontext this means that

� Partiles with r � R

ore

feel the potentials form the grids 1,3 and 5 in order to alulate the

aeleration.

� Partiles in the range R

ore

� r � R

out

feel the potential from grids 2,3 and 5.

� Finally, the aeleration of the partiles with r > R

out

is alulated from the potential of

the grids 4 and 5.

� Partiles with r > R

system

are removed.

We should note that, the gain of resolution in zones with high density also entails the presene

of the disontinuities at the grid boundaries. This problem is usually avoided by seleting the grid

sizes orresponding to points of low density gradient.

2.2 Building up the initial onditions

1

The sheme used to onstrut the initial galaxy model follows that proposed by Hernquist (1993).

This method builds up the di�erent subsystems whih form the galaxy (namely, the dis bulge and

halo) so that the out-oming galaxy is formed in nearly dynamial equilibrium. Obviously, this

approah have the advantage over the Barnes' (1988) of a resulting system loser to the sought

equilibrium.

In pratie, the Hernquist's sheme has been shown to be a powerful method when embedding

the dis in a galaxy where the omponents have spherial morphology. However, if the purpose

is to onstrut a spiral galaxy with axi-symmetri haloes (or bulges), the CPU-time required for

the operation inreases up to prohibitive times, saling as N

2

, where N is the number of N-body

partiles, mainly due to the omputation of the veloity dispersions in the three-diretions.

A possible solution has been found by Boily, Kroupa & Pe~narrubia (2001). This method ap-

proximates the equilibrium state, whih one would obtain from the integration of the Boltzmann

equations in axi-symmetri systems, by transforming the spherial solution into two dimensions.

For suh a purpose, we use the potential iso-ontours, the multi-omponent galaxy being on-

struted by perturbing the veloity �eld of the individual omponent, with its subsequent adap-

tation to the bakground potential (axi-symmetri). The time required is, therefore, as for the

spherial system.

In this Setion, we present briey the basis of this sheme (for a detailed disussion together

with the analysis of the stability of the resulting systems see Boily,Kroupa & Pe~narrubia 2001).

1

Setion based on: Boily, Kroupa & Pe~narrubia (2001)
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2.2.1 Method

The basi steps of the method onsists in building an oblate system from a transformations of the

spherial symmetri equilibria. The key point is that, if we onsider as given the mass pro�le of

the galaxy, it is then suÆient to onstrut the veloity �eld to math the gravity. So that, we

perform the following steps:

(i) Given the desired spatial anisotropy e

2

= 1� 

2

=a

2

, where a;  are the major and minor axis

lengths, respetively, we arry out the homologous transformation (R; z) ! (R

0

; z

0

) = (R; z �

p

1� e

2

).

(ii) The veloity anisotropy e

v

is alulated from e and the galaxy potential. As in (i) a homologous

transformation is performed, additionally we impose the virial ondition so that the transformed

system is nearly in equilibrium.

The veloity anisotropy. Homogeneous system

Let's onsider a homogeneous ellipsoid with elliptiity. The potential of the homogeneous and

oblate system an be alulated as sum of similar shells (BT), giving for the axisymmetri ase

�(~x

int

) = ��G�[I(e)a

2

�A

R

(e)R

2

�A

z

(e)z

2

℄; (2.21)

where

I(e) = 2

p

1� e

2

e

arsin(e) (2.22)

A

R

(e) =

p

1� e

2

e

2

"

arsin(e)

e

�

p

1� e

2

#

A

z

(e) = 2

p

1� e

2

e

2

"

1

p

1� e

2

�

arsin(e)

e

#

:

These values remain onstant in the inner part of the homogeneous oblate and aomplish that

A

z

� A

R

.

The equations of motion of a single star within a given potential are

�x

i

= r

i

�: (2.23)

The veloity anisotropy of the star, e

v

, an be onneted to the galaxy potential by averaging

the squared veloity omponents in the vertial and planar diretions (de�ned from the potential

axi-symmetry plane) over one orbit so that

< v

2

z

>

< v

2

R

>

=

A

z

< z

2

>

A

R

< R

2

>

=

A

z

A

R

(1� e

2

) � 1� e

2

v

; (2.24)

whereas for homogeneous systems the potential anisotropy e

�

an be alulated analytially

from the iso-ontour lines

e

2

�

= 1�

�

z

2

R

2

�

2

�

= 1�

A

R

A

z

: (2.25)

Combining these last two equations, one �nds that the anisotropy of the veloity ellipsoid is

e

v

=

�

e

2

� e

2

�

1� e

2

�

�

1=2

: (2.26)

Therefore, sine the three elliptiities satisfy e

�

< e

v

< e, the veloity ellipsoid is never as at as

the mass distribution that gives rise to it.
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The veloity anisotropy. Inhomogeneous system

The appliations of this equation is atually limited sine the galaxies are formed by peak density

pro�les. In this ase, the potential does not usually have an analyti form. However, if we assume

that most of the mass for suh systems is onentrated in the inner regions, one an expand the

resulting potential in harmoni series, this approximation being valid when the orbit avoids the

inner part of the galaxy. This expansion an be written as (Goldstein 1980)

�(r; �) = �

GM

0

r

+

GM

0

2r

3

(I

z

� I

R

)P

2

(os �) +O

�

a

r

�

4

; (2.27)

where tan � = z=R, P

n

(x) is a Legendre polynomial and M

0

the mass within r. The value a

denotes the major axis of the ellipsoid. The quantities I

i

denote the eigen-omponents of the

inertia tensor per unit mass, de�ned as

I

i

�

Z

�(r)(r

2

� x

2

i

)d

3

r:

Supposing that e = onst, the moments of inertia are onstant. Thus for r >> a >  the

quadrupole, and therefore e

�

, tends to zero as a=r

3

, the veloity anisotropy approahes to e

v

= e.

A realisti mass distribution in equilibria will have a value of e

v

between a homogeneous and

point mass distributions. From the potential expansion, the interpolated value between these two

possibilities is hosen as

e

2

v

= e

2

�

+ (e

2

� e

2

�

)

s

1�

< r

2

>

r

2

g

; (2.28)

where e

�

is numerially alulated from the potential iso-ontours. This approximation has been

shown by Boily, Kroupa & Pe~narrubia (2001) to yield to adequate equilibria. This ondition

assuranes that the veloity elliptiity is the same for all the partiles with equal binding energy,

so that if the \star" is loated at some radius r (in spherial oordinates), the value < r

2

> denotes

the averaged squared radius inside the volume 4�r

3

g

=3, where r

g

is de�ned,

r

g

=

GM

�W

;

M being the mass enlosed within r and,

W = 2�

Z

r

0

�(x)�(x)x

2

dx;

is the binding energy at r.

We should note that the interpolated funtion of e

v

yields to veloity ellipsoids that aomplish,

e

v

' e;

for a large set of density pro�les.

The spherial symmetri veloity distribution

If the veloity distribution is isotropi, the veloity ellipsoid aomplishes that v

2

r

= v

2

�

= v

2

�

.

From the Jeans equations in spherial oordinates (BT, eq. 4-27)

v

2

r

=

1

�(r)

Z

1

r

�(r)

d�

dr

dr =

1

�(r)

Z

1

r

�(r)

GM(r)

r

2

dr; (2.29)

� being the potential and M(r) the total mass inside r. Assuming isotropy, the veloity ompo-

nents are subsequently onverted to Cartesian oordinates.
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We assume that the veloity distribution an be loally desribed by a Maxwellian form

F (v) =

�

1

2�v

2

r

�

3=2

exp

�

�v

2

2v

2

r

�

exp

�

v

2

es

2v

2

r

�

; (2.30)

where v is the veloity of one halo partile and v

2

r

is the one-dimensional veloity dispersion in the

radial diretion (using the same notation as BT). In pratie all bound partiles have veloities

below the loal esape veloity v

es

�

p

�2�(r), whih e�etively sets an upper limit for v in

eq. (2.30). This ondition needs from a proper renormalisation, whih is done by imposing,

v

2

= 3�(r)

2

;

where � is the one-dimensional veloity dispersion at r and �

2

= v

2

r

for non-rotating systems.

From spheres to axi-symmetry

Given the spherial morphologies of the mass distribution and the potential, one an perform an

homologous transformation

(R; z)! (R

0

; z

0

) where R

0

= R; z

0

= z

p

1� e

2

: (2.31)

One the spherial system is transformed into a axi-symmetri one, we make use of the virial

theorem to �nd the modi�ation of the veloity �eld, whih tellx us that the potential energy of

the star after the oordinate transformation should be invested in kineti energy, thus, for eah

partile

T

i

= E

i

� �(r

i

)! T

0

i

= T

i

+

�(r

i

)� �

obl

(R

i

; z

i

)

2

; (2.32)

where the sub�x \obl" denotes the potential of the ellipsoidal system.

The veloity transformation of the partile i that satis�es the virial ondition and follows

eq. (2.28) is

v

0

i

=

�

2T

0

i

2T

i

� v

2

z

e

2

v

�

1=2

� (v

x

; v

y

; v

z

p

1� e

2

v

); (2.33)

the quantities < r

2

> and r

g

alulated prior the transformation (2.31).

It is evident that this transformation sales linearly with the number of partiles, whereas the

Hernquist shemed has a CPU dependene saling as N

2

. The resulting systems were found to

yield to adequate equilibria for a large set of models and parameters even for highly attened

systems.

This new method allows us to onstrut galaxy models with number of partiles as high as

N = 1:4 10

6

; 1:2 10

7

for the high resolution investigation of satellite deay in attened haloes.

2.2.2 Setting the galaxy in equilibrium

The galaxy system is onstruted near the equilibrium state. However, due to the di�erent fore

resolutions existing between the build-in ode and superbox, before injeting the satellite the

system shall be evolved for a few dynamial times until it settles in equilibrium. If the resolution

is not too poor, the resulting density pro�le must nearly trae the initial one.

In Fig. 2.2 we plot the omparison of the analyti density pro�le of the model H1 (see Chapter 6)

and the numerial outputs from our ode before and after integrating the galaxy one dynamial

time

2

. The results show a ontration of the inner shells and the respetive expansion of the outer

2

The system is onsidered in equilibrium when the Lagrange radii (de�ned as the radius at whih the spherially

enlosed mass amounts to 10, 20..90 % of the total mass) show small evolution.
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Figure 2.2: Comparison between the density pro�le after and before integrating it one dynamial

time. The solid urve represent the analyti pro�le. We use the galaxy model H1 (see Chapter 6).

ones whih, in any ase, is not higher than 5%. More worrying is the lak of resolution at the most

inner part of the galaxy (r < 5 kp), whih may indue an underestimation of dynamial frition

at late-times of the satellite orbit.

One that the galaxy and satellite systems are virialized, the satellite is injeted with an initial

veloity and position whih determines the orbital parameters.

2.3 Satellite mass loss

The ation of tidal fores indue a satellite mass loss along its evolution. The satellite mass plays

an important role in order to determine the ultimate fae of its evolution and survival. The

sheme employed is widely used by several authors to desribe the satellite mass evolution (see

e.g., Vel�azquez & White (1999), hereinafter VW, Klessen & Kroupa 1998).

The mass remaining bound to the satellite,M

s

(t), is known by omputing the potential energy

�

i

< 0 of eah satellite partile presumed bound to the satellite, and its kineti energy (T

i

) in

the satellite frame. Following PKB, partiles with E

i

= m

s

T

i

+m

s

(�

i

+ �

ext

) > 0 are labelled

unbound, where m

s

is the mass of one satellite partile and the potentials

�

i

= �

X

i 6=j

Gm

s

p

jr

i

� r

j

j

2

+ �

2

(2.34)

�

ext

= j�

g

(r

s

)j;

the softening being � = 0:1 = 0:35 kp, whih is the resolution of the inner grid foused on the

satellite entre-of-density r

s

, and �

g

the galaxy potential at this point, where the tidal ontribution

is negleted. All the partiles of the satellite are thus assumed to feel the same external potential,

whih is an useful and suÆiently aurate approximation, taking into aount that most of the

bound partiles are loated very lose to this point.

Partiles with E

i

> 0 are removed and the proedure repeated until only negative energy

partiles are left.
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The mass is alulated eah �t = 0:312 Gyr, so that the semi-analyti ode interpolates the

value for intermediate points at eah time-step. The error is of the order of �M(t)=�t, going

linearly with the mass loss. This means that the interpolation might introdue not negligible

di�erenes at times where the mass loss is signi�ant (i.e late times of the satellite evolution).



26 CHAPTER 2. THE N-BODY CODE



Chapter 3

Galaxy and satellite models.

superbox parameters

Along our studies we ompare the results from the semi-analyti ode to those found from the N-

body omputations of Pe~narrubia, Kroupa & Boily (2001), hereinafter PKB. The models employed

to desribe the galaxy mass distribution are, therefore, the same. A subset of our spherial models

are similar to the models of VW, whih failitates an inter-omparison of di�erent numerial

treatments.

In this Chapter we provide the density pro�le of the galaxy and satellite models employed in our

investigation as well as the analyti expressions of gravitational fore and veloity dispersion that

orrespond to eah mass pro�le.

The N-body parameters are summarised in last Setion. Due to the strong dependene of

these parameters on the galaxy and satellite models, we deide to outline them here and not in

Chapter 2.

3.1 Parent galaxy model

The galaxy is omposed by dis, bulge and a Dark Matter halo. The total ontribution of the

galaxy �eld to the fore experiened by the satellite is

F

g

= F

d

+ F

b

+ F

h

:

3.1.1 Dark Matter Halo (DMH)

We use a attened non-singular isothermal pro�le to desribe the Dark Matter Halo. Although,

in priniple, the exat pro�le of the DMH remains unknown, the observational rotational urves

imply that the haloes an be desribed by isothermal systems. For simpliity, following the sheme

developed by Hernquist (1993), the mass pro�le of the halo is taken as

�

h

(R; z) =

M

h

�

2�

3=2

r

ut

exp

�

�

1

r

2

ut

�

R

2

+

z

2

1� e

2

�

�

(3.1)

�

1

R

2

+ z

2

=(1� e
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ut

�

1
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2
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2

;

where

m

2

0

= R

2

+

z

2

1� e

2

; (3.2)

27
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Figure 3.1: Mass distribution of the halo model H1. The dotted line represents the orresponding

pro�le of a singular isothermal sphere with the same mass at r

ut

.

and M

h

being the DMH mass, r

ut

the ut-o� radius, e

2

= 1 � q

2

h

the eentriity, q

h

the halo

axis-ratio and  its ore-radius. The normalisation onstant � an be simpli�ed,

� � f1�

p

��exp(�

2

)[1� erf(�)℄g

�1

= 1 +

p

�� + (� � 2)�

2

+O(�

3

); (3.3)

where � = =r

ut

' 1=24 in our alulations. For � = 1=24 we �nd � ' 1:076 ! 1 already and

hene thereafter we set � = 1 in our analysis.

This density pro�le leads to the mass distribution plotted in Fig. 3.1, where we make use of

the halo parameters of the model H1 (see Table 3.1).

The fore from this density distribution is derived following Chandrasekhar (1960)

F

h;i

= �2�M

s

Gx

i

Z

1

0

du

(1 + u)

2

(1 + e

2

+ u)
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(u)℄ (3.4)
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2

+ u)

3=2

�

h

[m

2

(u)℄;

where x

i

= x; y and,

m

2

(u) =

R

2

1 + u

+

z

2

1� e

2

+ u

: (3.5)

The veloity distribution of this system an be desribed by a Gaussian with veloity dispersions

alulated from the Jeans equations (see e.g BT) and the mass distribution (3.1). In a system

with axi-symmetry, the veloity dispersion ellipsoid has two omponents (�

R

; �

z

), i.e the parallel

and perpendiular veloity dispersions with respet to the plane of axi-symmetry, respetively.

The solutions of the Jeans equations with spherial symmetry are obtained by means of the

method proposed by Boily, Kroupa & Pe~narrubia (2001). The 1D veloity dispersion is alulated
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Figure 3.2: Cirular veloity and veloity dispersion urves of our halo H1. It is also plotted the

veloity dispersion for a singular isothermal sphere of the same enlosed mass at r

ut

.

for a spherial system as

�

2

= �

1

�

h

Z

�

h
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0

)

d�

h

(r

0

)

dr

0

dr

0

(3.6)
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)
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02
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0

;

The pro�le of suh a funtion is plotted in Fig. 3.2 for the parameters orresponding to the halo

model H1, together with the irular veloity urve. We also inlude the veloity dispersion for a

singular isothermal sphere with the same mass at the ut-o� radius.

The perpendiular and parallel omponents are, respetively

�

R

= � (3.7)

�

z

= �

p

1� e

2

v

;

the veloity anisotropy e

2
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= 1� q

2

v

being alulated as

e
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(r) = e
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+ (e

2

� e

2

�

)

r

1�

< r

2

>

r

2

; (3.8)

where e

�

, e are the potential and mass eentriity at r, respetively, and < r

2

> is the mass-

weighted average of r

2

inside the volume 4�r

3

=3. This method was found to yield systems with

adequate numerial equilibria (see Boily, Kroupa & Pe~narrubia 2001 for a detailed explanation).

We note that for a singular isothermal system formed by ellipsoids of onstant eentriity, one

an readily hek that < r

2

>= r

2

, therefore, having that e

v

= e

�

= e. In our ase, the density

pro�le is not singular but =r

ut

= 1=24, so that < r

2

>' r

2

, as it is shown in Boily, Kroupa &

Pe~narrubia (2001).
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3.1.2 Dis

Observations of the Milky Way and other spiral galaxies suggest that the dis an be reprodued

by a exponential density pro�le in the axi-symmetry diretion (Freeman 1970) and isothermal

sheets in the vertial diretion (Bahall & Soneira 1980, Spitzer 1942), therefore, the dis mass

distribution being

�

d

(R; z) =

M

d

4�R

2

d

z

0

exp(�R=R

d

)seh

2

(z=z

0

); (3.9)

M

d

being the dis mass, z

0

the vertial thikness and R

d

the exponential sale length in the

radial diretion. The mass pro�le deays exponentially with R and is omposed of isothermal

sheets along the vertial diretion. Veloities are assumed to have a Gau�ian distribution. The

square of the radial veloity dispersion is taken to be proportional to the surfae density (see

Lewis & Freeman 1989), v

2

R

/ �(R) = �(0)exp(�R=R

d

), where the onstant of proportionality

is determined by �xing Toomre's Q-parameter at the Solar radius. Following VW, we selet

Q

�

= Q(R

�

) = 1:5. The vertial omponent of the veloity ellipsoid is v

2

z

= �G�(R)z

0

in

agreement with an isothermal sheet (Spitzer 1942). The azimuthal omponent is obtained from

the epiyli approximation �

2

�

= v

2

R

�

2

=(4


2

) (e.g. BT).

Sine, (i) the mass of the dis is � 7% of the halo and (ii) the anisotropy of the dis potential

an be negleted at distanes where the satellite orbits, we alulate it simply as

F

d

= �

GM

d

(r

0

< r)r

r

3

: (3.10)

Note that this equation neglets the potential quadrupole, whih is an aurate approximation

in the range of distanes where the satellite moves, sine eq. (2.27) shows that this term goes as

1=r

3

. In pratie, the potential quadrupole an indue signi�ant e�ets if the satellite is loated

at r � R

d

. However, we stop our alulations at that point.

To ompute the dis veloities, we have made use of the epiyle approximation (BT) where

V

2

;d

= R

2




2

(R) = R

�

��

g

�R

�

z=0

; (3.11)


(R) being the irular frequeny and �

g

= �

d

+�

h

+�

b

the galaxy potential. The dis potential

is

�

d

= �

GM

d

(r

0

< r)

r

; (3.12)

and the veloity dispersions for our dis model

�

2

d;R

(R) = �

2

d;R

(0)exp(�R=R

d

) (3.13)

�

2

d;z

(R) = �G�(R)z

0

�

2

d;�

(R) = �

2

d;R

�

2

=(4


2

);

where �

2

= �

2

�

d

=�R

2

� 3


2

is the epiyle frequeny. Along our aluli, we approximate �

d

�

�

d;�

, with �

R

(0) = 100 km/s (Lewis & Freeman 1989).

We have to note that, di�erently to TB, we have hosen to �x our dis parameters as those at

t = 0, i.e, without evolution. In this way, we avoid a parameter dependene on the dis evolution

whih, in fat, is extremely ompliated and goes further our study.

3.1.3 Bulge

For the bulge we adopt the spherial Hernquist pro�le (Hernquist 1990)

�

b

=

M

b

2�

a

r(r + a)

3

; (3.14)
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where M

b

is the bulge mass and a the spherial sale length. This analytial pro�le �ts the de

Vauouleurs law (de Vauouleurs 1948).

The fore indued by the bulge being

F

b

= �

GM

b

(r + a)

2

e

r

; (3.15)

where e

r

is the unity vetor in the radial diretion.

The veloity dispersion, as obtained from the Jeans equations, follows the expression (Hernquist

1990)

�

2

b

�

�

v

2

r

=

GM

b

12a

�

12r(r + a)

3

a

4

ln

�

r + a

r

�

� (3.16)

r

r + a

�

25 + 52

r

a

+ 42

�

r

a

�

2

+ 12

�

r

a

�

3

��

:

3.1.4 Galaxy parameters

Our system of units is suh that M

d

= R

d

= 1 and G = 1. Aording to Bahall, Smith &

Soneira (1982), M

d

= 5:6 � 10

10

M

�

and R

d

= 3:5 kp for the Milky Way whih we adopt as a

typial primary galaxy model, so that time and veloity units are, respetively, 1:3� 10

7

yr and

262 kms

�1

. The half-mass radius of the dis is loated at R

0:5

� 1:7R

d

= 5:95 kp, with a rotation

period of 13 time units.

For our N-body investigations we make use of 6 di�erent galaxy models, whih an be separated

in two groups: Models G (from \galaxy") and models H (from \halo"). Whereas the former inlude

dis, bulge and halo as outlined above, in the later we onsider the galaxy as a pure halo by

removing the dis and bulge omponents. Therefore our notation implies Gn = dis+bulge+Hn,

where n = 1; :::; 5.

In Table 3.1 we present the galaxy parameters used in the N-body and semi-analyti alula-

tions (note that the \number of partiles" is only useful for N-body simulations).

3.1.5 Remarks

As VW point out, there are some aveats to keep in mind onerning the above models: (i) The

DMHs are possibly too small in mass and extension. Zaritsky & White (1994) show, by studying

satellite orbits in the Loal Group and external galaxies, that DMH limits may extend beyond 200

kp with masses over 2� 10

12

M

�

. However, as VW omment, the veloity urves of our DMHs

G1 and G2 are onsistent with the largest veloities observed for stars in the solar neighbourhood

(Carney & Lathman 1987), and they are possibly massive enough to give realisti veloities of

satellites on eentri orbits. (ii) The DMHs may be too onentrated. Persi, Salui & Stel

(1996) argue for a DMH ore radius of  = (1 ! 2)� R

opt

, R

opt

= 3:2R

d

, where R

d

is the dis

sale-length. However the DMH parameters were seleted to avoid bar formation in the dis. We

observed that a less onentrated DMH or bulge allows a stable dis to form a bar after few satellite

passages. With our , the presene of a bar is avoided at least until the destrution of the satellite.

3.2 Satellite model

Following PKB and VW, we selet King models (King 1966) with onentration  = log(rt=r) =

0:8, where r



and r

t

are the ore and \tidal" radii, respetively. Central potential and onentration

are related, any of them parametrising the model, so that  = 0:8 ! 	(0) = 5�

2

, where � is the

one-dimensional veloity dispersion.

For omparison between our semi-analytial ode and N-body simulations it is neessary to

inlude the satellite mass loss whih, of ourse, depends on the satellite pro�le. The King pro�les
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Symbol Value(ph.u) Value (m.u)

Dis N

d

100000

M

d

5:60� 10

10

M

�

1.00

R

d

3.50 kp 1.00

z

0

1.40 kp 0.40

Q

�

1.50 1.50

R

�

8.50 kp 2.43

Bulge N

b

33328

M

b

1:87� 10

10

M

�

1/3

a 0.53 kp 0.15

DMH (H1) N

h

1400000

(spherial)

M

h

7:84� 10

11

M

�

14.00

 3.50 kp 1.00

q

h

1.00 1.00

r

ut

84.00 kp 24.00

DMH (H2) N

h

1400000

(oblate)

M

h

7:84� 10

11

M

�

14.00

q

h

0.60 0.60



a

3.80 kp 1.10





2.28 kp 0.65

r

ut

84.00 kp 24.00

DMH (H3) N

h

1400000

(spherial)

M

h

7:84� 10

11

M

�

14.00

 3.50 kp 1.00

q

h

1.00 1.00

r

ut

133.00 kp 38.00

DMH (H4) N

h

1400000

(oblate)

M

h

7:84� 10

11

M

�

14.00

q

h

0.60 0.60



a

3.80 kp 1.10





2.28 kp 0.65

r

ut

133.00 kp 38.00

DMH (H5) N

h

11200000

(oblate)

M

h

7:84� 10

11

M

�

14.00

q

h

0.60 0.60



a

3.80 kp 1.10





2.28 kp 0.65

r

ut

84.00 kp 24.00

Table 3.1: Primary galaxy models. Oblate models have an aspet ratio q

h

= 0:6. The units are

suh that Ph.u. means 'physial units', and m.u. 'model units'.
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are obtained by solving numerially the Poisson's equations with spherial symmetry in the satellite

frame (BT)

�

s

(	) = �

1

�

e

	=�

2

erf

�

p

	

�

�

�

r

4	

��

2

�

1 +

2	

3�

2

��

; (3.17)

d

dr

�

r

2

d	

dr

�

= �4�G�

s

(	)r

2

;

from whih M

s

(r) is alulated.

In the lower panel of Fig. 4.3 we plot the mass pro�le of a King satellite of onentration

 = 0:8 used along the numerial and semi-analyti alulations. Note that most of the mass is

within r < 4r



.

In our semi-analyti alulations, the satellite is onsidered a point-mass, so that its motion

within the galaxy potential does not depend on the satellite pro�le. This approximation is aurate

enough whenever the satellite ore radius is larger than its distane to the galaxy entre. If this

ondition is not aomplished, we onsider that it has merged into the parent galaxy.

We suppose that the satellite remains spherial, with its internal properties hanging over time.

The satellite struture is fully spei�ed eah time step by its pro�le, tidal and ore radius, mass,

and the amount of heating it has experiened. The satellite is onsidered as disrupted if the mass

is smaller than 10% of its initial mass.

3.2.1 Satellite parameters

The satellite onentration and \tidal radius" are seleted originally from N-body riteria: it must

be aomplished that all satellite partiles are bound at t = 0. This ondition is provided by the

density ontrast, �

s

(r

t

)=�

g

(r

a

) � 3, at the minimum apo-entri distane where we initially loate

the satellites (r

a

= 55 kp), �

g

(r) being the averaged density of the galaxy (same proedure as

VW). Tables for the numerial rendition of the orresponding King pro�les an found in BT or

in the original paper of King (1966). Table 3.2 summarises the parameters, while Fig. 3.3 plots

rotational urves. Note that we use the same M

s

, r



and \r

t

" despite plaing the satellites at

di�erent apo-galatia r

a

� 55 kp, whih inreases the true tidal radius of the satellite, though

the stability ondition at t = 0 is still well-aomplished. We do this rather than using di�erent

r



or r

t

in order to study the same satellites on di�erent orbits.

We note that our satellites are muh more massive than the Milky Way dSph satellites whih

haveM

s

� 10

8

M

�

, but our adopted values are typial for the satellites that enter distant samples

suh as used by Holmberg (1969) and Zaritsky & Gonz�alez (1999).

3.3 superbox parameters

The seletion of the numerial parameters depends on the galaxy and satellite models. The riteria

are hosen in order to maximise the N-body ode eÆieny, i.e, reduing numerial errors and the

CPU-expense.

We use Superbox (Fellhauer et al. 2000) to evolve the galaxy-satellite system. Superbox is a

highly eÆient partile mesh-ode based on a leap-frog sheme, and has been already implemented

in an extensive study of satellite disruption by Kroupa (1997) and Klessen & Kroupa (1998). For

more details see Chapter 2.

The N-body simulations arried out implement the following parameters:

Our integration time step is 0:39 Myr whih is about 1=25th the dynamial time of satellite S2.

We have three resolution zones, eah with 64

3

grid-ells: (i) The inner grid overs out to 3 radial

dis sale-lengths, whih ontains � 90 % of the dis mass, providing a resolution of 350 p per

grid-ell. (ii) The middle grid overs the whole galaxy, with an extension of 24 dis sale-lengths

(84 kp) for the models G1 and G2, giving a resolution of 2.8 kp per grid-ell. The satellite

always orbits within this grid exept when it reahes the dis, avoiding ross-border e�ets (see
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S1

S2

Figure 3.3: Rotational urve of the satellite models S1 and S2 (see Table 3.2 for the harateristis

of eah one).

Fellhauer et al. 2000). For the models G3 and G4, the middle grid extends to 141 kp and has a

resolution of 4.7 kp per grid-ell. The orbits of the satellites are loated within this zone. (iii)

The outermost grid extends to 348 kp and ontains the loal universe, at a resolution of 11.6

Kp.

As for the satellite grid-struture, the resolutions are 816 p per grid-ell for the inner grid

that extends to 24.48 kp, 1.2 kp per grid-ell for the middle grid whih extends to 36 kp,

and 11.6 kp per grid-ell for the outermost grid that overs the loal universe. Only the inner

and middle grids move along with the satellites, remaining positioned on their entre-of-density

loations. The outer grid is idential for primary galaxy and satellite.

Klessen & Kroupa (1998) ompared alulations performed with SUPERBOX with diret-

integration N-body alulations and found good agreement. Spei�ally, they veri�ed that varying

the grid resolution by fators of a few did not lead to unstable satellite models. The stability of the

satellite models does not depend strongly on the values adopted here. Furthermore, based on the

omparison with the diret-integration method, the heating introdued by two-body e�ets prove

entirely negligible for the model satellites we onsider. The seletion of grid parameters ensures

the onservation of energy and angular momentum for satellites in isolation over times as long as

our alulations to a high degree. Conservation of total energy and angular momentum is better

than 1% for all the models.

The dis is poorly resolved in the z{diretion and we do not study its evolution in any detail.

We veri�ed that the dis parameters do not evolve for galaxies in isolation (no satellites). Sine

Superbox is a mesh ode, a poor z-resolution for the dis is expeted due to the limited number

of grids. This provokes the dis modelled here to be unrealistially thik, however it does provide

a quadrupolar (non-spherial) potential of the appropriate magnitude. A mesh ode has the

advantage that it does not introdue self-heating sine it does not alulate two-body interations,

whih would have been signi�ant in the dis given the �nite number of partiles used (see the

disussion in VW).

One of the main advantages of superbox, however, is that the e�ets on the satellite dynamis

due to two-body interations are drastially redued by the low mass of the halo partiles (see

Steinmetz & White 1997). Furthermore the dis heating by halo partiles is minimised sine eah

omponent partile masses are in a one-to-one ratio.
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Symbol Value(ph.u) Value (m.u)

S1 N

s

40000

M

s

5:60� 10

9

M

�

0.10

	(0)=�

2

0

5.00 5.00

r



1.00 kp 0.29

r

t

6.31 kp 1.80

 0.80 0.80

< r > 1.64 kp 0.47

�

0

52:00kms

�1

0.20

S2 N

s

40000

M

s

1:12� 10

10

M

�

0.20

	(0)=�

2

0

5.00 5.00

r



1.00 kp 0.29

r

t

6.31 kp 1.80

 0.80 0.80

< r > 1.64 kp 0.47

�

0

74:00kms

�1

0.28

Table 3.2: Satellite models. 	(0) = �(r

t

)� �(0), �(0) being the entral potential and �(r

t

) the

potential at the tidal radius (following BT notation); �

0

is the veloity dispersion at the entre,

and < r > the average radius of the satellite.

Lastly, we note that the N-body parameters outlined in this Setion remain unhanged in all

our investigations.
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Chapter 4

The semi-analyti ode

In this Chapter we briey present the ode used to solve the satellite dynamis within di�erent

physial systems. Our algorithm simpli�es the proesses that inuene the satellite dynamis

along the orbit, by separating them into di�erent analytial approahes: (i) The parent galaxy

fore given in Chapter 3, (ii) dynamial frition and (iii) satellite mass loss. This sheme is similar

to that employed by Taylor & Babul (2001) (hereinafter TB) and it is shown to give aurate

results.

Data from high resolution odes give important insights on the physial proesses ourring

along the satellite orbit. However, due to the omplexity of the satellite-galaxy interation it is hard

to quantify, sometimes even distinguish, the mehanisms that determine the satellite properties.

To solve this limitation a huge parameter spae must be explored, the parameters being arefully

seleted so that some proess is thought to dominate ever the others in order to deouple them.

Unfortunately, the main disadvantage of the numerial odes is that they are extremely expensive

omputationally, foring a redution of the parameter range. Moreover, the satellite dynamis and

evolution may be inuened by numerial quantities, suh as number of partiles and resolution.

A omplementary approah to the study of the satellite evolution has been found in the semi-

analyti methods. These odes are extremely fast (for example, the alulations arried out by

Pe~narrubia, Kroupa & Boily 2001, hereinafter PKB summarised in Chapter 7, take over 10

4

longer than those with the semi-analyti approah outlined in this Chapter), and the ontrol over

the proesses to study is total, so that they are useful to determine the relative importane of

eah galaxy omponent on the satellite evolution. The semi-analyti shemes also su�er from

strong limitations, (i) not all physial proesses an be inluded and (ii) of ourse, they are high

dependent on the theories employed, although, this also gives oasion for heking the auray

of the theoretial approahes on reproduing the numerial data (e.g the theoretial investigation

of dynamial frition in spherial and attened systems, Chapters 6 and 8, respetively).

The semi-analyti sheme is similar to the one of TB. However, we must note that, whereas

they alulate the mass loss from gravitational shoks by omputing the tidal fores ating on

the satellite galaxy, we introdue the analyti estimations of Gnedin & Ostriker (1999) based on

their N-body simulations to aount for the dis shoks and those of Gnedin & Ostriker (1997) for

the bulge shoks. The formul� given by these authors avoid the overestimation of tidal heating

observed by TB in low eentri satellites by analysing in detail the re-distribution of energy after

the shok as a funtion of the time-sale of the enounter (see for more details Setion 4.3).

The semi-analyti ode that we present in this Chapter has two free parameters to be alibrated

from the numerial data: The dis and halo Coulomb logarithms.

37
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4.1 The integration of the equations of motion

The algorithm employed to solve the di�erential equations

a =

d

2

x

dt

2

= F

g

+ F

df

;

where F

g

is the fore from the galaxy system (see Chapter 3), and F

df

that due to the dynamial

frition (see Chapter 5), is based on the Bulirsh-Stoer method (for a omplete desription see

Press et al. 1986).

This method gives high-aurate solutions with minimal omputational e�ort. It is based on an

adaptative step-size sheme, being ideal therefore for systems with non-smooth potentials, as may

be the ase for satellites following high eentri orbits.

The fores made by eah galaxy omponent, namely the dis, bulge and halo, on the satellite

are outlined in Chapter 3 for onveniene.

This subroutine uses two free parameters: (i) The desired preision for the solutions x(t), whih

is alled EPS. This number ontrols the error of the integration at eah time step. Subsequent

errors are slightly umulative, thus the numerial solution slowly deviates from the theoretial one

as the number of time steps inreases. (ii) The initial value of the time step, denoted as h

try

.

Contrary to non-adaptative odes, for instane a Runge-Kutta algorithm, in the Bulirsh-Stoer

sheme numerial errors are nearly independent of the initial time step seletion.

However, the CPU time of the integration does depend on it. If one selets an extremely large

h

try

, the algorithm must make more iterations in order to ahieve the desired preision, whenever

a extremely small h

try

mishandles the power of the interpolation sheme, leading to a total number

of time steps unneessarily large. A h

try

� 1=r(t = 0) (in model units) takes a good advantage of

the ode apability.

In eah step [t; t + h

try

℄, the Burlirsh-Stoer algorithm interpolates the solution using a pre�xed

analytial funtion, dividing the interval h

try

in smaller steps until the di�erene x

i

(t + h

try

) �

x

i

(t) < EPSh

try

dx

i

=dt, therefore the smoother the potential is the lower the number of subdivisions

should be.

To hek the preision of our algorithm, we test it with the well known Keplerian potential,

� = GM=r, omparing the results to the analytial solutions for EPS=10

�5

(full line),10

�6

(dotted

line). In the upper-left panel of Fig. 4.1, we plot the evolution of the distane r(t) from the

numerial integration to the Kepler solution r

t

(t), the time given in dynamial time units. If we

give the same physial values toM and r as in the following setions, we obtain a time-sale range

of the order of one Hubble time. The di�erene between both is about 10

�4

, being onstant along

the integration as expeted. Analogously, the di�erene of eentriities shown in the upper-right

panel (e[t = 0℄ = 0:75) is also of the same order, both with slight sensitivity on the value of EPS.

In the lower left and right panels, we plot the angular momentum and energy onservation, being

respetively of the order of 10

�8

and 10

�7

.

In Fig. 4.2 equivalent omparisons are done for more irular orbits (e[t = 0℄ = 0:64). A notable

improvement is found in the eentriity evolution as well as in the energy-angular momentum

onservation, noting the error in r(t) remains fairly the same. From these results, we dedue that

the auray of the ode is sensitive, although within tolerable limits, to the potential gradients,

being higher the smaller the initial eentriity is.

One being proved the high auray of the solutions, we �x the free parameters as, h

try

= 0:1

and EPS= 10

�5

along our alulations.

4.2 Dynamial frition fore

As Chandrasekhar (1943) showed, a body travelling within a bakground of muh lighter partiles

will experiene a fore opposed to its sense of motion due to the formation of a density wake.

This \drag-fore" auses the angular momentum and energy loss of the satellite, the so-alled
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Figure 4.1: Comparison between the numerial and analytial solutions of an orbit in the Kepler

potential for the distane (upper-left) and the orbital eentriity (upper-right), together with the

energy (lower-right) and angular momentum (lower-left) onservation. EPS is �xed to 10

�5

(full

lines) and 10

�6

(dotted lines). The time is given in dynamial times and the initial eentriity is

e(t = 0) = 0:75.
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Figure 4.2: As Fig. 4.1 for e(t = 0) = 0:64.
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dynamial frition. If this body is a satellite orbiting around a spiral galaxy, the dereasing energy

and angular momentum auses the satellite sinking into inner zones of the galaxy potential.

Reent studies of Hashimoto, Funato & Makino (2002) have shown that a varying Coulomb

logarithm may �t better in the inner part of the galaxy, where Chandrasekhar's expressions rash

due to the steep potential gradient. We have investigated this possibility in Chapter 6 and om-

pared to the usual dynamial frition (i.e, that with onstant Coulomb fator). For simpliity, we

outline the frition equations in this Chapter, whereas here we merely desribe the ase in whih

the Coulomb logarithm does not depend on the satellite position.

Our galaxy model is divided into three subsystems: halo, dis and bulge, eah of them exerting

a drag fore over the satellite. Along our study, we have hosen to neglet the bulge dynamial

frition. The analyti expressions that desribe the density pro�le and veloity dispersion of eah

galaxy omponent are outlined in Chapter 3 for onveniene.

4.2.1 Halo dynamial frition

As ommented above, the Chandrasekhar's expressions for dynamial frition annot explain some

e�ets observed in N-body alulations of satellite deay within attened haloes (PKB). We arry

out a detailed study on the dynamial frition sheme in Chapter 5, whereas here we give the

expressions implemented in the semi-analyti ode.

We use Binney's formul� for dynamial frition whih desribe the satellite deay in systems

with an anisotropi veloity distribution, reovering Chandrasekhar's expression if the veloity

distribution is isotropi. In Cartesian oordinates Binney's equations beome

F
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;

where i = x; y and (�

R

; �

z

) is the veloity dispersion ellipsoid in ylindrial oordinates with loal

eentriity e

2

v

= 1� (�

z

=�

R

)

2

. We denote ln�

h

as the Coulomb logarithm of the halo and
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:

As Binney shows, the mass M

s

will su�er a derease of its orbital plane inlination whenever

B

z

> B

R

(oblate halo). If the orbit is either oplanar or polar, the inlination remains onstant

sine, respetively, either the perpendiular or the planar omponent of v is zero. One an easily

hek that this expression reprodues Chandrasekhar's when e

v

= 0.

F

h

= �4�GM

2

s

�

h

(R; z)ln�

�

erf(X)�

2X

p

�

e

�X

2

�

v

s

v

3

s

; (4.2)

where X = jv

s

j=

p

2�.

The derivation of Binney assumes that a massive point partile moves through an in�nite

medium of muh lighter partiles with anisotropi Maxwellian veloity distribution (in our ase

�

z

=�

R

< 1). The inlusion of the Coulomb logarithm is made to avoid the divergene of the

alulus when one integrates over the impat parameter in an in�nite medium (Chandrasekhar

1943). In priniple, this parameter an be expressed as � = b

max

=b

min

, where b

max

and b

min

are

the maximum and minimum impat parameters respetively. As Binney points out, the value of
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� depends on the veloity of the satellite, though this dependene may be onsidered as negligible

for most of the values of the orbital parameters (for more details see Chapters 5 and 6).

Several studies of satellite deay have shown that Chandrasekhar's dynamial frition is a-

urate enough if the Coulomb logarithm remains as a free parameter to �t to the N-body data

(e.g. van den Bosh et al. 1999, Colpi et al. 1999, VW) sine it also depends on the ode and

the number of partiles employed. For instane, Prugniel & Combes (1992) and Whade & Donner

(1996) �nd that dynamial frition is arti�ially inreased due to numerial noise if the partile

number is small. Similar di�erenes were also noted in the omputations by Klessen & Kroupa

(1998) of satellite harassment using di�erent odes.

The Coulomb logarithm is also sensitive to the satellite extension. BT suggest that the formula

derived for the ase where the satellite is a point-mass will only slightly overestimate the drag

experiened by an extended body, therefore we do not inlude the orretion sine it has to be

�xed from numerial alulations.

4.2.2 Dis dynamial frition

Following TB, we use Chadrasekhar's formula to reprodue the dynamial frition exerted by the

dis

F

df;d

= �4�GM

2

s

�

d

(< v
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)ln�

d

v
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jv

rel

j

3

; (4.3)

v

rel

= v �V

;d

being the relative veloity between the satellite and the dis rotation, where we

have negleted the veloity dispersion ontribution, ln�

d

is the Coulomb logarithm of the dis and

�

d

(< v
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) = �

d
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�
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)�
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d
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�

e
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2
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;

where X

d

= jv

rel

j=

p

2�

d

.

The presene of the fator 1=v

2

rel

in the eq.(4.3) implies that the dis dynamial frition shall

not be negligible ompared to the one of the halo when the satellite orbit is nearly oplanar (low

orbital inlination) and prograde. In this ase, for a irular orbit v

rel

� �

d;�

.

As TB, we smooth the dis density in the vertial diretion by doubling the value of z

0

to

avoid errors in alulating dynamial frition for oplanar satellites, where the z-omponent of the

potential has steep hanges over small sales.

4.3 Analyti treatment of satellite mass loss

The satellite dynamis is highly dependent on the ratio of the satellite to the galaxy mass, mostly

through dynamial frition, therefore, it is neessary to implement some analytial sheme able

to reprodue the satellite mass evolution along the orbit. In this Setion, we introdue the two

methods employed along our alulations.

Satellites experiene mass loss whenever the external potential is stronger than the binding

energy of its omponents. This material beomes unbound and an subsequently esape from the

satellite. Depending on the variation rate of the external potential, we an distinguish between

two regimes: (i) Tidal mass loss, when the potential hanges slowly and (ii) tidal heating, for rapid

variations.

Tidal mass stripping

In the �rst regime, the amount of bound mass is determined by the tidal radius (King 1962),

whih is de�ned for a spherially symmetri satellite as the distane to the satellite entre where

the satellite and the galaxy fore anel out. If the satellite follows a irular orbit the system an
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be onsidered as stati in a rotational frame, and one an estimate the tidal radius as (King 1962,

BT)

R

t

�

�

GM

s

!

2

� d

2

�=dr

2

�

1=3

; (4.4)

where ! is the angular veloity of the satellite and � the potential of the main system.

This estimate is valid when: (i) The satellite mass is muh smaller than the one of the parent

galaxy and (ii) R

t

is small ompared to the satellite distane to the galaxy entre. Even under

these onditions, the mass within R

t

is not exatly equal to the bound mass, sine there may be

partiles that have (small) positive energy and stay in transient orbits within the satellite (e.g.

BT).

If the satellite follows a non-irular orbit one an still use eq. (4.4) to alulate the instan-

taneous tidal radius, now ! being the instantaneous angular veloity. For these kind of orbits,

the mass loss ours nearby the peri-galation where the fore gradient is maximum (e.g, PKB,

Piatek & Pryor 1995). In our aluli, the transient orbits are assumed as of seond order ompared

to the total amount of mass stripped out by the peri-galation passages, so that the time these

partiles need to esape is onsidered muh shorter than the orbital period.

Whereas eq. (4.4) is quite aurate in aounting for the mass loss of satellites in oplanar

orbits, tidal shoks will dominate the mass loss proess of satellites following orbits inlined with

respet to the dis plane.

Tidal heating

Satellites travelling through regions where the external potential hanges rapidly su�er tidal

shoks. This proess an be desribed as perturbations with a given frequeny that add en-

ergy to the satellite partiles. The shoks will our near the galaxy entre, where the dis and

bulge indue a steep fore gradient.

As a result of the shok, Gnedin & Ostriker (1999) (herinafter GO) show that the satellite is

ontrated, with following expansions and re-ontrations until it reahes a �nal state of equilib-

rium, in whih the binding energy is smaller than originally and the satellite has expanded. This

non-equilibrium phase lasts for their models around 20 satellite dynamial times.

The study of tidal shoks is far beyond our purpose. We mainly follow the method of GO in

order to alulate the energy gained from dis shoks, whereas for the bulge we use the analytial

expressions of Gnedin & Ostriker (1997).

1) Dis shoks.

Using the harmoni approximation, the �rst and seond order terms of the averaged energy

hange per unit mass of stars with positions r = (x; y; z) and veloities v with respet to the

satellite entre due to dis shoks are given by Spitzer (1987) and Kundi� & Ostriker (1995),

respetively

h�Ei
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(r)(1 + �

d

)

9V

2

z

A

2
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where g

m

is the maximum vertial aeleration produed by the dis, V

z

is the vertial omponent

of the satellite veloity and v is the root mean squared veloity of the satellite. The fator �

d

denotes the dis two-point orrelation funtion, whih depends on (r; v) and takes a value of -0.3

from the GO alulus.

The energy injetion of the shok is distributed to eah satellite star depending on its orbital

parameters. The funtions A

1

(x) and A

2

(x) are alled adiabati orretions and aount for the
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energy distribution within the satellite after the shok. There are several approximations to the

adiabati orretions: (i) Spitzer (1987) simpli�es the satellite as a set of 1D harmoni osillators

whih absorb energy resonantly to the vertial orbital frequeny of the satellite. (ii) The Linear

theory of Weinberg (1994) assumes the stars as a 3D non-linear osillators. This allows a wider

set of frequenies that may enter in resonane with the satellite motion. As a result, Weinberg

shows that the Spitzer's alulation underestimates the energy absorption in the inner part of

the satellite. (iii) Along our study, we use the results of GO who, omparing the Weinberg's

expressions with N-body simulations, �nd the following adiabati orretions

A

1

(x) = (1 + x

2

)

�

1

(4.6)

A

2

(x) = (1 + x

2

)

�

2

;

where x � t

d;sh

=t

orb

(r), i.e, the ratio between the shok duration and the satellite orbital period

at a given radius

t

d;sh

=

Z

V

z

t

orb

(r) = 2�

r

v(r)

:

As it is dedued from the last de�nitions, the value of A tends to zero as x tends to in�nity,

whereas it approahes asymptotially to one for x ! 0. The adiabati orretions therefore have

small values in the inner part of the satellite, where the frequenies of the stars are muh higher

than the satellite frequeny, this is the so-alled adiabati zone, tending to one in the outer most

region of the satellite.

Whereas Weinberg (1994) predits 

1

= 

2

= 3=2, independently of t

sh

, GO show that these

exponents do depend on the shok duration, i.e, on the satellite orbital parameters. They alulate

the value of the exponents from the best �t to N-body alulations. The results are shown in their

Table 2, obtaining that (

1

; 

2

) take values from (2.5,3) for rapid shoks (t

d;sh

� t

orb

(r

h

), r



being

the satellite half mass radius) to (1.5,1.75) for slow shoks (t

d;sh

� 4t

orb

(r

h

)).

2) Bulge shoks.

The energy gain from a bulge shok is dedued by Gnedin & Ostriker (1997) by alulating

the tidal �eld of a extended system at the peri-entre
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where R

p

; V

p

are the distane and the veloity of the satellite at that point and �(R

p

) de�ned as,
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m

b

(R) �Mb(R)=M

b

being the normalised mass distribution at radiusR andm

0

b

(R) � dlnm

b

(R)=dlnR.

For a Hernquist bulge we �t �

b

= �0:4.

In the numerial alulations of GO the satellite is desribed by a King model of onentration

 = 0:86, very similar to the model we use ( = 0:8), whih allows us to implement their results in

the semi-analyti sheme. Eq. (4.5) and (4.7) an be rewritten as
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where < �E >

t

sh

=0

is the energy hange during a shok of in�nitesimal duration and t

sh

the

shok time-sale. The exponents of the adiabati orretions 

1

; 

2

are those outlined above.

Our treatment of mass loss distinguishes from that of TB in two points: (i) The re-distribution

of energy within the satellite depends on the position of the star through the adiabati orretion

term, whih redues the shok e�ets in the inner zone of the satellite and (ii) the adiabati

exponent depends on the shok regime, whereas TB �x  = 2:5, assuming most of the heating

indued by rapid shoks.

In Fig. 4.3 we show the radial pro�le of the energy gain (upper panel) and shell expansion (lower

panel, from eq.[ 4.8℄) after a shok of one time-step duration. The dis is the main ontributor to

the shok, the energy injetion from the bulge being around three orders of magnitude smaller.

As we ommented, the adiabati orretions prevent from energy enhane at the inner part of the

satellite (approximately r < 5r



), tending monotonially to one as we go farther out. The small

gain of energy at the inner part leads to a negligible expansion of the shells, so that the mass

pro�le within this zone an be approximated as that of the King model before the shok.

One must onsider that tidal fores interat with the satellite ontinuously along its orbit.

Following GO, we assume a Gaussian-shape evolution for the time evolution of the tidal interation,

whih is entred at the time (t

0

) when the tidal fore experienes a maximum and its dispersion

is equal to the shok time-sale. As GO we de�ne the funtion

I

2

imp

�
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3�

�

�t
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sh

�

2

exp

�
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(t� t
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2
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2

sh

�

;

whih multiplies the energy hanges of equations (4.5) and (4.7). The approximation has been

shown to be aurate in order to reprodue the tidal e�ets along the satellite orbit. We note

that the expression has been normalised so that it reovers the same total energy hange as the

impulsive shok t

sh

! 0.

Our ode is onstruted so that the energy gained after eah time-step aumulates (the energy

injeted in the satellite grows monotonially in time, sine for eah tidal shok the averaged

�E > 0) meanwhile the satellite pro�le remains unhanged. Despite that after the �rst shok the

satellite is not a King model any more, from the work of PKB, Piatek & Pryor (1995) and GO, we

an assert that this is fully onsistent as long as the satellite energy is not dramatially inreased,

i.e, for early and middle times. As Fig. 4.3 shows, the inner part of the satellite is barely hanged

after a shok, whereas the outer part reeives most of the energy. The partiles of this region

are, either beause of the subsequent redution of binding energy or by the tidal radius evolution,

stripped out. If a non-mixing shells is assumed, the inner part of the satellite an be onsidered

to follow the initial King pro�le for most part of its evolution.
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Figure 4.3: Upper panel: Energy gain (in model units) after a dis and bulge shok of duration

�t as a funtion of the satellite radius. The alulus orresponds to the �rst peri-entre passage

of the model G1S145 (see Chapter 7). Lower panel: Mass shell expansion. Due to its small value

we multiply the values of �r=r by a fator 10. It is also plotted the mass pro�le for omparison.

Fig. 4.4 illustrates the shok interations along the orbit G1S145 (see Chapter 8). In the upper

panel we plot the energy addition at eah time, whereas the lower panel show the umulative energy

along the orbit (we assume that the energy hange from tidal shoks aomplishes E[t + �t℄ =

E[t℄+�E, i.e., it aumulates). The main ontribution omes from the dis-satellite interations,

approximately two orders of magnitude higher than those with the bulge. As expeted, shoks

our at the peri-galation passages, where the dis and bulge tidal fores reah their respetive

maximums.

This �gure also shows that shoks are high eÆient when the satellite veloity and t

shok

derease.

Meanwhile the �rst produes stronger tides on the satellite partiles, the seond enhanes the

wideness of the Gaussian, leading to larger interations.

To determine the hanges experiened by the satellite after the energy injetion, we assume

that the ulterior mass distribution does not involve shell rossing. Under this ondition, a hange

of energy E ! E +�E result in an expansion of the satellite

�r =

�Er

2

GM

s

(r)

; (4.8)

so that the mass distribution (3.17) after the tidal shok is M

s

(r

0

) =M(r+�r) =M(r). As this

equation suggests, some material will be expanded out of the tidal radius whih, therefore, will

enhane the satellite mass loss. As we assumed for the energy funtion, the shell radii expand

monotonially in time after eah tidal shok.

As TB omment, this tehnique su�ers from some limitations: (i) The assumption of virial

equilibrium between the satellite shoks. Numerial alulations (e.g, PKB, Piatek & Pryor 1995)

show that this approximation is aurate only in the inner parts of the satellite, where the veloity

dispersion results nearly onstant after the shok, whereas the outer parts are subsequently re-

virialized. (ii) To approximate �Er

2

as a quantity independent of radius (null shell rossing) is

stritly true only for the outer parts of the satellite. The heating experiened by the inner regions
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Figure 4.4: Upper panel: Energy addition (without adiabati orretions) along the orbit G1S145.

The values are in model units G = M

d

= Rd = 1, see Chapter 3. Lower panel: Total umulative

energy along the orbit.

is over-estimated by a fator that depends on the mass pro�le and is larger the more onentrated

the satellite is. (iii) The mass loss sheme does not aount for the angular momentum of the

esaping partiles, whih may indue hanges on the satellite orbit.

The implementation of the satellite mass evolution in our semi-analyti ode give rise to a

self-onsistent desription of the satellite dynamis in spiral galaxies that will be employed in

Chapters 9 and 10.

The analytial expressions of mass loss inevitably introdues errors on the value ofM

s

that may

depend on the satellite orbital parameters. One of the main topis of this work is the omparison

between di�erent analysis of dynamial frition, for whih a high auray in the value of the

satellite mass is neessary. For that reason, in suh studies we use the numerial urve of M

s

along the orbit integrated by the semi-analytial ode (see Setion 2.3).

4.4 Calulus of the Energy and angular momentum

Axisymmetri systems have three onstant of motion: the energy, the omponent of the angular

momentum perpendiular to the axi-symmetry plane (that we denote as L

z

) and a third value

with no analytial representation. The total angular momentum L

2

= L

2

R

+ L

2

z

is, however, not

onstant along the satellite orbit (see e.g BT), but has periodi variations that orrespond to a

preession of the orbital plane around the z-axis and a nutation of the angular momentum vetor.

Sine the dynamial frition fore is direted ontrary to the satellite veloity, it ats by de-

reasing the angular momentum and energy of the satellite whih indues a monotoni sink into

the inner regions of the halo potential.

We alulate the energy and angular momentum of the satellite as follows,
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2

v

2
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L

z

=

�

r� v

�

z

= xv

x

� yv

z

;



4.4. CALCULUS OF THE ENERGY AND ANGULAR MOMENTUM 47

employing Cartesian oordinates along our aluli

(r;v) = (x; y; z); (v

x

; v

y

; v

z

):

Whereas the dis and bulge potentials are simply alulated as,
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< r)

r

the subindex i = d; b andM(r

0

< r) being the mass enlosed within the radius r, the halo potential

needs a more ompliated alulus.

The potential of the halo onsidered as a heterogeneous ellipsoid with density of the form (3.1).

At an internal point (R; z) it an be alulated from Chandrasekhar (1960) as
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where 	(m
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) is de�ned as
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h
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; (4.11)

and m

2

(u) as in (3.5) and a an be interpreted as the size of the halo in whih the satellite is

embedded, whih is hosen to be a = r

ut

.

The angular momentum is diretly alulated from the position and veloity (r;v) at eah

time step. We should note that, due to the nature of the semi-analytial ode, it is not inluded

the e�ets that the mass loss introdues on the angular momentum evolution, whih may be not

negligible in orbits with strong variations of the galaxy potential, for instane, in low eentri

orbits.

Remark

We also use this sheme to alulate the energy and angular momentum evolution from the N-body

data given by superbox.

Whereas the kineti energy is diretly alulated from the numerial output, the value of the

potential is derived by making use of eq. (4.10). In doing this, we assume that,

(i) N-body haloes follow perfetly the distribution funtion given in the eq. (3.1) negleting, there-

fore, the evolution subsequent to the implementation of the system in superbox. This was proved

by the numerial test of Boily, Kroupa & Pe~narrubia (2001) to be an aurate approximation as far

as the satellite remains in the inner part of the halo (where around the 80 per ent of the mass is

inluded). (ii) We also neglet the hange in the distribution due to the self response of the system

to the satellite presene. (iii) We do not take into aount the motion of the halo entre-of-mass

due to the satellite orbit, whih is of the order of M

s

=M

g

, where r is the satellite initial radius.

This approximation auses the presene of periodi osillations in the angular momentum and in

the energy urves as we show in following Chapters.
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Chapter 5

Dynamial frition theory

5.1 Introdution. Mathematial tools

A gravitating body moving through a bakground of lighter partiles su�ers from a drag fore due

to the interation with its own indued wake. For ollisionless systems the lassial Chandrasekhar

expression (Chandrasekhar 1943), based on the perturbation theory, has been shown to be useful

in determining the orbital deay of lusters and satellites around spherial bakgrounds, suh as

elliptial galaxies (e.g Lin & Tremaine 1983, Cora, Muzzio & Vergne 1997 and referenes therein).

Although this formula was inferred for uniform bakgrounds, it is often applied to inhomogeneous

systems by making use of the loal approximation and negleting the �rst and higher orders of

dynamial frition. There are still open issues, for whih the e�ets of Chandrasekhar expression

on the satellite dynamis are not lear. For instane, several authors laim (e.g Colpi, Mayer &

Governato 1999, Cora, Muzzio & Vergne 1997) that this treatment of dynamial frition leads

to a irularisation of the orbit that is not present on the numeris, whereas van de Bosh et al.

(1999), making a statistial survey of satellite eentriities, do not observe suh an e�et.

Reently, there have been applied other perturbation shemes in other to give a desription

of the frition from the global interation satellite-galaxy. For example, the Theory of Linear

Response (TLR) has been suessful in desribing the deay of satellites in spherial systems (Colpi,

Mayer & Governato 1999, Nelson & Tremaine 1999). This method infers analytially the olletive

response of the bakground to the satellite motion (the satellite is onsidered as a perturbation)

and alulates the gravitational fore of the perturbed partiles (wake) on the satellite. Despite

the ompleteness of the method, it su�ers from di�erent limitations: (i) This sheme assumes a

spherial symmetri bakground. The develop of the sheme to other symmetries would be very

ompliate, (ii) the dynamial frition fore is a result of a time integral that preserves the atual

dynamis of the satellite and the dynamis of the galaxy bodies. One an readily see the numerial

ompliations that in pratie this fat inludes: to alulate dynamial frition at a given position

(with a given veloity) it is neessary to know all the previous positions along whih the satellite

moved.

Another sheme to desribe the drag fore experiened by satellites orbiting around spherial

systems has been arried out by S�anhez-Saledo & Brandenburg (1999, 2001). The investigation

was done for a gaseous bakground with an inhomogeneous density pro�le. The results are given

in terms of the loal response of the galaxy to the satellite perturbation, �nding that (i) the deay

time is independent of the initial eentriity, (ii) the Coulomb fator � = b

max

=b

min

(where, b

max

and b

min

are the maximum and minimum impat parameters, respetively) varies linearly with the

satellite galato-entre distane, (iii) besides the frition fore direted against the satellite motion

(the so-alled \drag fore") it appears a perpendiular omponent of the order of the parallel one.

It is however unlear how to interpret the results for a stellar system, although it seems obvious

that the perpendiular omponent may be not negligible, playing a important role in aounting

for the hange over the satellite orbital eentriity.
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We have based our investigation of dynamial frition on the perturbation theory, following the

method of Chandrasekhar and, a posteriori Binney (1977). The aim is to develop the �rst order

term of dynamial frition and infer the e�ets that it may indue on the satellite dynamis. We

also larify the approximations employed when using Chandrasekhar's and Binney's formul� and

the limits inherent to them. Along our study, we analyse the e�ets of the veloity dependene of

the Coulomb fator and show its importane in order to alulate the �rst order term. Reently,

Hashimoto, Funato & Makino (2002) have shown that a linearly dependent Coulomb fator �ts

better to the numerial alulations in pure stellar galaxies (as it has been found in gaseous

systems). In this Chapter we apply the perturbation theory and the loal approximation to �nd a

funtion �(r) that agrees with the our analytial sheme. In subsequent Chapters we investigate,

�rst, the degree of improvement of this assumption in �tting the numerial results and, seond,

the di�erenes that it yields on the satellite dynamis.

5.1.1 Analytial method

In this Setion the basis of the method we follow is explained, together with the approximations

employed and the onditions under whih an be applied.

The perturbation theory

A massive body travelling through a medium of muh lighter partiles experienes enounters that

an be treated like two-body ollisions; higher order enounters like three-, four-body ollisions

are negligible.

The perturbation theory assumes that the �nal hange over the satellite properties is the sum

of small alterations as a result from individual (independent) two-body enounters.

Therefore, the ondition under this theory an be employed is

m=M

s

<< 1;

where m is the mass of a bakground partile and M

s

the mass of the heavy body.

Let's assume that the massive body moves through a medium with distribution funtion f(r;v).

The perturbation theory assures that, if �v is the hange over the veloity ofM

s

after a two-body

ollision, the total hange at a given time is

Z Z

�vd�f(r;v)d

3

rd

3

v;

where the integration is over a given volume of the impat parameter phase-spae and � is a

funtion that depends on the relative veloity between the massive body and the bakground

partiles (as we shall see, this funtion is linear if assuming straight line enounters).

The straight line approximation

The hange over the veloities of two partiles that ollide an be desribed in isolation, as the

motion of a redued partile with mass � = mM

s

=(m+M

s

) in a Keplerian potential � = �(m+

M

s

)=r, where r is the relative distane between both partiles (see e.g BT, Setion 7.1), whih

is equivalent to the absene of an external potential during the enounter. De�ning t = 0 as the

minimum relative distane and (x; z) as the oordinates of the partile m relative to the bodyM

s

,

we have that the extrapolation to t! 1 results to an evolution of the relative veloity V ! V

0

,

and z ! b

0

, where z is omponent perpendiular to V

0

. The value b

0

is the so-alled impat

parameter.

It is evident that if the medium is inhomogeneous, it appears an external potential during the

two-body enounter that varies the dynamis and, therefore, the �nal hange over the massive

body veloity. The possible dependene of dynamial frition on the system inhomogeneity is still

unlear and beyond our study. However, it is neessary to larify the approximation that one
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usually assumes when applying Chandrasekhar's formula for non-homogeneous systems, whih is

alled the straight line approximation.

To determine the auray of this approximation, one must �rst alulate the exat ollision

equations in suh a medium.

The orbit of two partiles that move in a medium with a given density pro�le and ollide an

be inferred from the equations

d

2

R

m

dt

2

= F

g

(R

m

)�

GM

r

2

e

r

(5.1)

d

2

R

M

dt

2

= F

g

(R

M

)�

Gm

r

2

e

r

;

where R denotes the distane to the galaxy entre, r the relative distane between both partiles,

with unit vetor e

r

, and F

g

being the galaxy fore.

These equations represent atually the redued three body problem in a �xed potential, with

no analytial solution. To go deeper into the problem, we must simplify our equations by making

some assumptions.

The �rst one is to alulate the e�et of the galaxy potential as a tidal interation, by expanding

the fore as

F

g

(R

m

) = F

g

(R

m

) +rF

g

�

�

m

r

m

+ :::+O

�

r

m

R

m

�

(5.2)

F

g

(R

M

) = F

g

(R

m

) +rF

g

�

�

m

r

M

+ :::+O

�

r

M

R

m

�

;

where we de�ne the vetors

R = R

m

+ r;

and R

m

being the entre-of-mass of the pair M;m, i.e,

R

m

�

MR

M

+mR

m

M +m

:

The potential of a spherially-symmetri system �

g

is

�

g

= �

GM

g

(R)

R

� 4�G

Z

1

R

�(r

0

)r

0

dr

0

; (5.3)

whih produes a tidal fore per unit mass

F

tid

� rF

g

�

�

m

� r = �

�

2

�

g

�R�R

�

�

�

�

m

� r =

GM

0

R

3

m

�

(3�� �

0

)(n � r)n� �r

�

; (5.4)

where M

0

is the total mass of the galaxy, �(R) the normalised mass pro�le and �

0

(R) a funtion

de�ned as

� =

M

g

(R)

M

0

(5.5)

�

0

=

d�(R)

dlnR

;

and n is the unitary vetor direted to the entre-of-mass of the pair n � R

m

=R

m

.

At order (r=R

m

) eq.(5.2) beomes therefore

d

2

R

m

dt

2

= F

g

(R

m

) +rF

g

�

�

m

r

m

�

GM

r

2

e

r

(5.6)

d

2

R

M

dt

2

= F

g

(R

m

) +rF

g

�

�

m

r

M

�

Gm

r

2

e

r

:
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The relative motion of the two partiles with respet to the entre-of-mass is from last equation

and eq.(5.4),

d

2

r

dt

2

=

GM

0

R

3

m

r

�

(3�� �

0

)(n � e

r

)n� �e

r

�

�

G(M +m)

r

2

e

r

; (5.7)

de�ning the relative vetor,

r = r

m

� r

M

= re

r

:

Therefore, in the tidal approximation the three-body problem is simpli�ed. Of ourse, this

approximation is only valid in the range r=R

m

<< 1. We an see that the fore is not radial but

has a omponent parallel to the galato-entre vetor n whih, as a matter of fat, implies that the

tidal fore makes the angular momentum not to be onstant along the interation. Equivalent to

the motion in an axis-symmetri system we have that the omponent L

z

=onst, with the z-axis

perpendiular to e

r

.

The evolution of the relative distane in suh a potential is given by the equations (BT, Setion

3.2),

�r = �

GM

0

R

3

m

r��

G(M +m)

r

2

(5.8)

�z =

GM

0

R

3

m

r(3�� �

0

) os �;

where os � = n � e

r

.

These equations represent the �rst step in order to exatly determine the e�ets of the galaxy

potential on the desription of the two-body enounter. However, due to the omplexity of suh a

subjet, we deided to postpone it for a further work.

The meaning of the \straight line approximation" in inhomogeneous systems is now lear, sine

this is just to assume that the tidal fore an be negleted in front of the two-body fore along

the whole interation, i.e

G(M +m)

r

2

>>

GM

0

R

3

m

r:

For purposes that we see below, it is onvenient to de�ne the sale parameter

l

tid

=

�

(M +m)

M

0

jj(3�� �

0

)(n � e

r

)n� �e

r

jj

�

1=3

R

m

; (5.9)

so that the validity of the approximations holds for r << l

tid

, equivalently to the anterior ondition.

We note, that l

tid

!1 for systems with onstant fore, suh as an in�nite homogeneous medium.

The loal approximation

Contrary to the analytial treatments of dynamial frition that suppose the satellite as a pertur-

bation of the bakground, our sheme analyses diretly the perturbation of the system partiles

on the satellite motion. In this work frame, the properties of these partiles are given loally,

whih means that, so to say, the satellite \does not remember its orbit", i.e, the dynamial frition

is independent of the previous interation along its motion. This approximation assumes that

the bakground remains unhanged despite of the satellite presene, having therefore a onstant

distribution funtion.

In pratie, this allows us to treat the global properties of the systems loally by expanding

the spatial distribution funtion n(r) as

n(r) = n(r

M

) +rn

�

�

r

M

(r� r

M

) +O

�

r � r

M

r

�

2

; (5.10)

if the distribution funtion takes the form F (r;v) = n(r)f(v), where the spatial dependene of

the distribution funtion in veloity spae is negleted by means of the loal approximation.
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One an see that this approximation is only valid if (i) the satellite does not alter dramatially

the distribution funtion of the system and (ii) the distribution funtion aomplishes that at r

r � r

M

<<

n

rn

�

�

�

�

r

M

0

� l;

where l is density sale-length.

For following alulations, it is useful to de�ne the density gradient vetor,

^
n =

rn(r

M

)

jjrn(r

M

)jj

: (5.11)

5.2 Dynamial frition in inhomogeneous systems

We make use of the perturbation theory in order to determine the hange over the satellite veloity

due to enounters with �eld partiles. This sheme is a fair approximation sine galaxies have a

huge partile number with muh lower mass than that of the satellite, whih we onsider as a rigid

body. Interations satellite-bakground partile are treated as two-body ollisions, negleting the

ase of higher number of enounters ourring at one due to its sare probability.

Consider �rst that the mass M travels through a bakground of in�nite number of partiles of

mass m. The system is not homogeneous but has a distribution funtion f(x;v

m

). We are inter-

ested in the study of dynamial frition in systems with an axi-symmetri distribution funtion,

whih is assumed to be Gaussian in the veloity spae

f(x;v

m

) � n(x)f(v

m

) (5.12)

f(v

m

) �

1

(2�)

3=2

exp[�(v

2

R

=2�

2

R

+ v

2

z

=2�

2

z

)℄

�

2

R

�

z

;

where (�

R

; �

z

) are the omponents of the veloity distribution spheroid oriented to the axi-

symmetry plane and aomplishing that �

R

> �

z

. These both quantities are onstant, being

related by the de�nition of eentriity e

2

v

� 1��

2

z

=�

2

R

. The results obtained for suh a distribution

an be extrapolated to spherial symmetri systems in the limit e

v

= 0.

By means of the straight line approximation, the hange of veloities experiened by a partile

of mass M , moving with veloity v

M

, due to a enounter with a muh lighter partile of mass m

with veloity v

m

is (BT, eqs. 7-10)

j�v

M?

j =

2mbV

3

0

G(M +m)

2

�

1 +

b

2

V

4

0

G

2

(M +m)
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�
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(5.13)

j�v

Mk

j =

2mV

0

M +m

�

1 +

b

2

V

4

0

G

2

(M +m)

2

�

�1

;

where V

0

= V(t = �1), V = v

m

�v

M

being the relative veloity between both partiles,and

b their impat parameter. The notation assumes the perpendiular and parallel values of �v

M

with respet to the vetor V

0

. We de�ne

a(V

0

) =

G(M +m)

V

2

0

;

to simplify the notation. We note that this quantity has distane dimension and orresponds to

the impat parameter with 90

Æ

deetion..
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5.2.1 Enounter rate and mean-�led orretion

Following Binney's alulus, we shall de�ne a oordinate system suh the z-axis is parallel to the

relative veloity V

0

and the x-axis parallel to the unity vetor
^
x � [(V

0

� rn) � V

0

℄=k(V

0

�

rn)�V

0

k. Let � be the angle between V

0

and rn.

In this frame the rate at whih M enounters \stars" that have veloities in the veloity-spae

element d

3

v

m

and impat-parameters between b and b+ db is

d� = bdb � d� � V

0

� f(r;v

m

)d

3

V

0

� dA � V

0

� f(r;v

m

)d

3

V

0

; (5.14)

where dA = bdbd� is the element of area in the plane with normal vetor V

0

. The fat that

the distribution funtion remains onstant along the relative veloity diretion, with the rate of

enounters being proportional to V

0

, is a diret onsequene of the straight line approximation.

Had the presene of the main �eld produed by the inhomogeneous density pro�le taken into

aount, the entre-of-mass of the two-body systems would be aelerated, leading to a time-

dependent enounter rate (see Setion 5.2). Even if employing the straight line approximation, it

is neessary to subtrat the mean-�eld fore that appears when integrating along the V

0

diretion

due to the inhomogeneity of the spatial distribution funtion. Denoting the mean-�eld fore within

the interval z; z + dz as dF

mf

we have by symmetry that

dF

mf

=

Gmf(r;v

m

)dAdzd

3

V

0

b

2

+ z

2

(b; z) (5.15)

F

mf

= Gmf(r;v

m

)d

3

V

0

dA

Z

1

�1

(b; z)

b

2

+ z

2

dz

= 2Gmf(r;v

m

)dAd

3

V

0

b

b

2

;

the only term that survives is that parallel to the impat parameter vetor. The main-�eld

ontribution, therefore, shall be removed when integrating over the perpendiular hange of the

satellite veloity.

5.2.2 Integration over impat parameters

The ontribution to the fore is due to the partile ow aross the plane (r � V

0

) = 0 in the

element of area dA (see Fig 5.1). The oordinates in the plane are x = (x; y; 0).

The integration over b is arried out in the interval (b

0

; b

1

), b

0

; b

1

being the minimum and

maximum impat parameters, respetively. The physial meaning of these two quantities is up to

now an open topi of disussion.

Usually, if the satellite is a point-mass, b

0

is interpreted as the impat parameter for whih the

angle deetion is �=2, whereas it is estimated as b

0

' r

h

for an extended body, where r

h

is the

half-mass radius.

The onept of maximum impat parameter is even harder to disern. Initially it was used to

avoid the divergene of the spatial integration of eqs. (5.13), relating its onrete value to the

mass extension of the system. Due to the dependene of the satellite dynamis on the parameters

of the numerial alulations (suh as the partile number, resolution ...et), the value of b

1

is

�tted to the resulting urves. Reently, Hashimoto, Funato & Makino (2002) have laimed the

possibility of a maximum impat parameters that linearly depend on the satellite galato-entre

distane, observing a quantitative improvement of the �t to the numerial results.

For ompleteness, the value of b

1

must agree with the diverse approximations employed along

our study.

(i) The loal approximation. The integration over b annot be extended to distanes larger than

n(r)=rn(r), for whih this approximation loses its validity, thus

b

1

�

n(r)

rn(r)

� l;
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x
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Figure 5.1: Coordinate system used along our aluli.

(ii) The straight line approximation and the perturbation theory. These both shemes imply that

the ollision time (�

ol

� 2b=V

0

) must be shorter than the loal dynamial time (�

dyn

� l=v

M

). In

this ase, sine the enounter ours in a short time, the line straight approximation simpli�es the

approah of the partile m to the partile M as a straight line, and the perturbation theory an

be employed sine the veloity hange of M is small. This ondition an be written as

�

ol

=

2b

V

0

<< �

dyn

=

l

v

M

:

Combining (i) and (ii) one �nds that, aording with our sheme, the maximum impat pa-

rameter is

b

1

= l �min

�

1;

V

0

2v

M

�

;

whih an be approximated by the funtion

b

2

1
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+Q

2

l

2

V

2

0

4v

2

M

+ V

2

0

; (5.16)

guaranteeing b

1

> b

0

8V

0

. The fator Q is introdued ad ho to �t to the numerial data.

Integration at order 0

For omparison, we inlude the alulus of dynamial frition at order 0 of the spatial distribution

expansion around the satellite position r

M

, whih orresponds to Chandrasekhar's formula. The

integration over the perpendiular veloity hange is zero by symmetry, so that at this order only

the parallel omponent ontributes to the frition fore. From eq. (5.13)
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m(M +m)n(r
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f(v
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) ln�;
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Figure 5.2: Coulomb logarithm as a funtion of V

0

. We use a singular isothermal model for the

galaxy density pro�le and a mass ratio of M=M

g

= 0:01, where M

s

= 0:1.

where

� �

�

1 + b

2

1

=a

2

(V

0

)

1 + b

2

0

=a

2

(V

0

)

�

1=2

(5.18)

is the so-alled 'Coulomb fator'. In the literature, one usually �nds that � = b

1

=b

0

= onst� 1,

negleting, therefore, its veloity dependene (i.e, assuming a(V

0

) = a(V

0

= �). To illustrate

the order of auray of this assumption, in Fig. 5.2 we plot the resulting Coulomb logarithm of

inserting eq. (5.16) into (5.18), denoted as ln�(v

s

; V

0

), for three di�erent values of the satellite

veloity. As we an see, it approahes asymptotially to a given value as the relative veloity

inreases, whereas it tends to zero for V

0

! 0, whih represents a natural ut-o� for dynamial

frition at low relative veloities. It interesting to note that, in the regime of high satellite veloities,

the variability of ln� inreases.

The approximation of hoosing a onstant Coulomb fator, whose value desribes the satellite

deay in numerial alulations, an be interpreted as the average over a ertain range of satellite

veloities, for whih the Coulomb logarithm within v

M

�� is onsidered onstant (note that, sine

the veloity distribution is Gaussian, the maximum ontribution to the frition fore omes from

those bakground partiles with V

0

= v

M

).

Integration at 1st order

After integrating over d� one an readily hek that the only term surviving is that parallel to b,

whih orresponds to the perpendiular omponent of the veloity hange. After orreting the

mean-�eld e�ets of eq. (5.15) one has

�v

M?

d� � F

mf

= �2Gmrn(r)
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whih, after the integration over the impat parameters, leads to the fore

F

(1)

= �2Gmn(r

M

)

Z

d

3

V

0

f(v

m

)

Z

b

1

b

0

db

b

2

�

1 +

b

2

a

2

(V

0

)

�

�1

(5.19)

�

Z

2�

0

b(os�; sin �)

rn(r

M

)

n(r

M

)

= �

2�Gmn(r

M

)

l

sin �

Z

d

3

V

0

f(v

m

)a

2

(V

0

) ln� �
^
x;

where
^
x is a vetor perpendiular to V

0

, ln � the Coulomb logarithm de�ned in eq. (5.18) and �

the angle between rn and

^

V

0

.

5.2.3 Integration over veloity spae

The equations for the parallel and perpendiular terms of dynamial frition are integrated for

systems with veloity distributions presented in eq. (5.12).

Integration at order 0

The integration at order 0 is given in Binney (1977). For ompleteness, we reprodue the alulus.

Assuming that the Coulomb logarithm is onstant, one has that from eq. (5.17) the integration

over veloity is atually equivalent to the fore integration of the \mass distribution" f(v

m

),

1

Z

d

3

v

m

V

0

V

2

0

f(v

m

) ln� = hln �i

d

dv

M

Z

d

3

v

m

f(v

m

)

V

0

; (5.20)

where hln �i is the averaged Coulomb logarithm.

Rewriting the distribution funtion (5.12) in elliptial oordinates one has

f(m

2

) =

1

(2�)

3=2

exp[�m

2

℄

�

2

R

�

z

; (5.21)

where

m

2

=

v

2

R

2�

2

R

+

v

2

z

2�

2

z

:

The veloity distribution is therefore formed by equivalent homeomoids with onstant axis-ratio,

whih allows us to use the sheme found by Chandrasekhar (1960) to derive the \potential" for

suh a distribution f(v

m

) = f(m

2

) at the \point" v

M

. The integrals I

i

= r

i

V an be written,

I

i

=

Z

d

3

v

m

V

0;i

V

2

0

f(v

m

) =

d

dv

i;M

Z

d

3

v

m

f(m

2

)

V

0

:

Be a shell of \mass" dM = 4��

2

R

�

z

f(m

2

)m

2

dm. Sine the \potential" V inside a shell is

onstant one has that V (v

M

) = V (0), therefore

dV =

GdM

4��

2

R

�

z

Z

d

3

v

m

V

0

=

GdM

4��

2

R

�

z

Z

d

3

v

m

v

m

=

GdM

8��

2

R

�

z

Z

S

v

2

m

dw;

where w is the solid angle integrated over the surfae S.

In spherial oordinates (v

m

; �; �) the modulus an be written as

1

v

2

m

=

os

2

�

�

2

z

+

sin

2

�

�

2

R

;

1

Sine by de�nition V

0

= v

m

� v

M

, the integration over the veloity spae is independent of the in�nitesimal

we selet, this means, the alulus is equivalent either integrating over d

3

v

m

or over d

3

V

0

.
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inserting this equation and integrating over �

dV =

dM

2

�

z

Z

�=2

0

se

2

� sin �d�

(�

2

R

+ �

2

z

tan

2

�)

1=2

(�

2

z

+ �

2

R

tan

2

�)

1=2

= �dM

Z

1

0

du

(�

2

R

+ u)(�

2

z

+ u)

1=2

;

where u = �

2

z

tan

2

�. Integrating over dm from m = 1 to m(u) one has that

I

i

=

d

dv

i;M

Z

d

3

V

0

f(m

2

)

V

0

(5.22)

= 2��

2

R

�

z

d

dv

i;M

Z

1

0

du

(�

2

R

+ u)(�

2

z

+ u)

1=2

Z

m

2

1

f(m

2

)dm

2

= ��

Z

1

0

dq

�(q; e

v

)

f(m

2

)

2v

i

�

2

i

=�

R

+ q

;

where the subindex i = (R; z) and

�(q; e

v

) = (1 + q)

p

1� e

2

v

+ q; q =

u

2�

2

R

m

2

(u) =

v

2

R

2�

2

R

+ u

+

v

2

z

2�

2

z

+ u

:

Inserting the value of I

i

into eq. (5.17) one �nds

F

(0)

i

= �

p

2��

h

(r)G

2

M

2

s

p

1� e

2

v

hln �i

�

2

R

�

z

B

i

v

i

: (5.23)

The values of B

i

are in ylindrial oordinates,

B

R

=

Z

1

0

dq

(1 + q)

2

(1� e

2

v

+ q)

1=2

exp

�

�

v

2

R

=2�

2

R

1 + q

�

v

2

z

=2�

2

R

1� e

2

v

+ q

�

B

z

=

Z

1

0

dq

(1 + q)(1� e

2

v

+ q)

3=2

exp

�

�

v

2

R

=2�

2

R

1 + q

�

v

2

z

=2�

2

R

1� e

2

v

+ q

�

:

As Binney shows, the mass M

s

will su�er a derease of its orbital plane inlination whenever

B

z

> B

R

(oblate halo). If the orbit is either oplanar or polar, the inlination remains onstant

sine, respetively, either the perpendiular or the planar omponent of v is zero. One an easily

hek that this expression reprodues Chandrasekhar's when e

v

= 0.

The redution of the veloity integration into the potential sheme is, unfortunately, not pos-

sible for non-onstant Coulomb fators, due to the dependene on V

0

rather that on v

m

. In this

ase, the \density" f(v

m

) ln[�(V

0

)℄ an not be expressed as a funtion of m

2

, whih makes the

potential not to be onstant in the inner part of a shell, the integrations being more ompliate.

The simplest alulation is for a oordinate system oriented in the veloity spae, where the

z-axis is parallel to the veloity v

M

. De�ning the vetor (n

x

; n

y

; n

z

) as parallel to the veloity

dispersion ellipsoid, we have that �

0

= os �

0

= n

z

� v̂

m

, � =
^
v

M

�

^

V

0

and �

M

= n

z

� v̂

M

, whih

aomplishes v̂

m

� n

z

= os �

0

= os(� + �

M

)

v

2

m

= V

2

0

+ v

2

M

+ 2v

m

v

M

os � (5.24)
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m
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2

R

�
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�
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v

v

2

m

2�

2

R
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2

�

0
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;
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where �

v

= 1=(1 � e

2

v

) � 1 and, therefore, with null value if the system has isotropi veloity

distribution.

Substituting the de�nition of v

m

and �

0

one �nds the \simple" form of the distribution funtion

in this oordinate system

f(V

0

; �; v

M

; �

M

) =

1

(2�)

3=2

�

2

R

�

z

exp(�X

2

�W

2

) exp(�u os �) (5.25)

exp[��

v

(X

2

+W

2

) os

2

(� + �

M

)℄ exp[��

v

u os � os

2

(� + �

M

)℄;

where W = V

0

=

p

2�, X = v

M

=

p

2� and u = 2WX .

The integrals are,

I =

Z

d

3

V

0

V

0

V

2

0

f(v

m

) ln�(V

0

)

=

Z

dV

0

sin �d�d�V

0

f(V

0

; �; v

M

; �

M

) ln�(V

0

);

where it has been used that d

3

V

0

= V

2

0

dV

0

sin �d�d�. The integration over � is trivial, leading to,

I = 2�v

M

Z

1

0

dV

0

V

0

ln �(V

0

)

Z

�=2

��=2

d� sin �f(V

0

; �; v

M

; �

M

): (5.26)

The presene of �

M

in the integral aounts for the result of Binney, who obtains an anisotropi

frition due to the inequality B

z

> B

R

in eq. (5.23). This e�et vanishes if neither the Coulomb

logarithm nor the distribution funtion depend on � as it is the ase of systems with spherial

symmetry. The integration over � is not analytial if the distribution funtion is that of eq. (5.25).

In Appendix B we develop the integrals for the isotropi ase, showing that the solution reovers

Chandrasekhar's equations if the Coulomb logarithm is onstant. If ln� is written in the form of

eqs. (5.16) and (5.18), the integration of eq. (5.26) with e

v

= 0 leads to

F

(0)

=

2�G

2

mn(r

M

)(M +m)

2

�

2

Z

1

0

dW ln �g(W ) (5.27)

� K

h

Z

1

0

dW ln �g(W );

where

g(W ) =

2

p

�

exp(�W

2

�X

2

)

WX

�

osh(2WX)�

sinh(2WX)

2WX
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(5.28)

�

2

= 1 +

Q

2

l

2

a

2

(X) + b

2

0

X

2

4X

2

+W

2

: (5.29)

In Fig. 5.3 we plot the dependene of the zero order dynamial frition on the satellite velo-

ity. We use an isothermal halo to alulate the galaxy parameters due to its simpliity, whih

aomplishes that M=M

g

is inversely proportional to the galatro-entre distane. We note that

the variation of ln � is independent of the model by means of the loal approximation. The �tting

fator Q = 1. The Chandrasekhar formula is plotted for the ase hln �i = 1:5 (dashed line).

The fore tends to zero for small and large veloities whereas the maximum is loated around

the irular veloity v

M

=

p

2� (X = 1). The �gure shows a derease of the frition at small

distanes due to the presene of the fator l in the Coulomb logarithm. This distane dependene

is not present in Chandrasekhar's formula, so that we expet strong di�erenes in the deay urves

depending on whih formula we use. In the ase of �xing l to some value, a proper seletion of

Q (or equivalently ln�) will produe similar results in the orbital evolution, onluding that, the

dependene of � on the relative veloity introdues small variations on the resulting fore.
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Figure 5.3: Zeroth order dynamial frition as a funtion of the satellite veloity and the satellite

mass ratio. The Chandrasekhar frition is plotted for hln �i = 1:5 (dashed line).

Integration at �rst order

The integration over veloities of the �rst order frition is done in a similar manner. We note that

the unit vetor perpendiular to the relative veloity was de�ned as

^
x =

^
n� (

^
n �

^

V

0

) �

^

V

0

jj
^
n� (

^
n �

^

V

0

) �

^

V

0

jj

;

where the have made use of the freedom in the seletion of �.

Seleting the same oordinate system as that of the integration at order zero, we have that

Z

2�

0

xd� = �(1 + os

2

�)
^
e

?

+ 2� sin

2

�
^
v

M

;

where

^
e

?

=

^
n� (

^
n �

^
v

M

) �
^
v

M

jj
^
n� (

^
n �

^
v

M

) �
^
v

M

jj

is an unit vetor perpendiular to the satellite veloity. We denote hereinafter \parallel" and

\perpendiular" as referring to the satellite veloity vetor. From eq. (5.20) the integrals are

I

k

= 2�

Z

1

0

dV

0

ln(V

0
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Z

�=2

��=2
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(5.30)
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d� sin �(1 + os

2

�)

f(V
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; �

M

)

V

2

0

:

The integration over � is only analyti for systems with isotropi distribution. The result is

given, as for the zero order integration, in Appendix B being

F

(1)

k

= �

1

2

G(M +m)

4�

2

l
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1
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Figure 5.4: Evolution of 	 along the orbit H1S130a.

where 	 is de�ned as os	 =
^
n �

^
v

M

and the funtion

h(W ) =

2

p

�

exp(�W

2

�X

2

)sinh(2WX): (5.32)

As Binney found, the �rst order dynamial frition diverges as the relative veloity tends to zero

if the Coulomb logarithm is onstant. However, taking into aount the veloity dependene this

divergene disappears, what avoids implementing a lower ut-o� on V

0

.

The �rst order term has been divided into two vetorial omponents with respet to the satellite

veloity, where the magnitude of of them depends on the orientation of the orbit. Going to

the extreme ases one has that, (i) irular orbits lead to the banishment of the parallel term

(os	 = 0) whereas the perpendiular term an be onsidered a small orretion to the main �eld

of the galaxy expeting, therefore, no substantial e�ets on the orbital shape, (ii) for radial orbits

the term surviving is the parallel one. In this ase, the �rst order frition ats as a orretion to

the zeroth order. In Fig. 5.4we plot the typial evolution of 	 for a satellite following an orbit

with e = (r

a

� r

p

)(r

p

+ r

a

)

�1

= 0:5, where r

a

; r

p

are apo and peri-entre, respetively (this orbit

orresponds to the model H1S130a, see Chapter 6). The diretion between F

(0)

and F

(1)

varies

within a range of 40

o

, whereas 	 = �=2 orresponds to the apo and peri-entre passages.

In Fig. 5.5 we show the amplitude of the �rst order frition ompared to the zeroth order.

The main di�erene between is that, whereas F

(0)

tends to zero for small satellite veloities, the

�rst order has a non-zero value for X = 0, whih auses the radio to diverge in this limit. The

ratio deays quikly with inreasing veloities sine this term is proportional to 1=v

4

M

(meanwhile

F

(0)

/ 1=v

2

M

). We also observe no strong di�erenes between the amplitude of the �rst order

omponents.

It is interesting to remark the smaller dependene of F

(1)

on the mass ratio (i.e galato-entre

distane) as ompared to the zeroth order term. This is due to the presene of the fator l = r

M

=2

in the denominator. This fat aounts for the inrease of the �rst order frition as the satellite

goes to inner regions of the system and vieversa when it moves outwards. However, the Coulomb

logarithm has the opposite dependene on the satellite distane, whih redues the �nal derease

of F

(1)

for inreasing radii.
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Figure 5.5: Ratio of the omponents of the �rst order dynamial frition and the zeroth order for

di�erent veloities and mass ratios.

After analysing the amplitude and diretion of the �rst order fore, we expet small hanges

over the satellite orbit if this term is inluded, whih will be studied in detail in Chapter 6 by

omparison with numerial alulations. If this is the ase, and the new term an be negleted we

onsider not neessary a further study in systems with anisotropi veloity distribution.



Chapter 6

Dynamial frition in spherial

systems

6.1 Introdution

In Chapter 5 we have presented the di�erent approahes to dynamial frition obtained by means

of the perturbation theory. Here, we attempt to determine the degree of auray of eah of

them in order to reprodue the dynamial frition e�ets in systems with spherial symmetry and

density pro�le �(r).

The additional use of the loal approximation allows the separation between the e�ets of the

parallel and perpendiular omponents of the veloity hange, with respet to the relative veloity

of the enounter whih, after integrating over the impat parameters, orrespond to the zeroth

(F

[0℄

) and �rst (F

[1℄

) order of dynamial frition, respetively. The integration over the spatial

part of the impat parameter spae introdues in both orders a new funtion ln�, the so-alled

Coulomb logarithm. Following the loal approximation, we have shown in Setion 5.2 that it

depends on V

0

; v

s

; l, the relative veloity, the satellite veloity and the sale length l =

�

�

�=r�

�

�

,

respetively. After integrating over the veloity part of the impat parameter spae d

3

V

0

, the

Coulomb logarithm aomplishes that � = �(v

s

; l).

Our investigation overs the following studies,

� Case 1: Standard dynamial frition: alulus at zeroth order with onstant

Coulomb logarithm.

Authors have usually employed this approximation to alibrate the semi-analyti odes by

�tting the data to the numerial results. Following this sheme, the Coulomb logarithm is

onsidered as a free parameter, where the dependene on the density pro�le, the satellite

veloity and the relative veloity are negleted, by the fat that the logarithm varies slowly in

the range of l; v

s

along a typial orbit and that the integration over dV

0

is mainly weighted by

values of V

0

where the Coulomb logarithm is pratially independent of the relative veloity.

Along the orbit, the approximation of � independent of l and v

s

is equivalent to onsider

the average over these two fators. From eq. (5.17)

hln �i =

1

T

Z

C

dt

R

d

3

V

0

V

0

=V

2

0

f(v

m

)ln�(l; v

s

; V

0

)

R

d

3

V

0

V

0

=V

2

0

f(v

m

)

; (6.1)

where C denotes the satellite orbit and T the period. The distribution funtion in the

veloity spae is f(v

m

) and V

0

the relative veloity of the two-body enounter. If the

Coulomb logarithm is �tted to a set of orbits, this average extends to a sum over these

orbits.

� Case 2a: Dynamial frition at zeroth order with � = �(v

s

; V

0

).

Instead of using a onstant parameter hln �i, in Chapter 5 is presented a Coulomb fator that

63
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expliitely gives the funtion � = �(v

s

; V

0

; l) (see eq. 5.28), whih is developed in order to

introdue the diverse limits that the perturbation theory and the loal approximation indue

when integrating over the impat parameter spae. Despite that this expression depends on

the galato-entre distane through the typial distane l, we also arry out alulations

where l is �xed to the initial value

�

�

�=r�

�

�

r

0

, where r

0

is the initial distane, in order to

ompare expliitely the e�ets of the veloity dependene (v

s

) in the Coulomb logarithm.

The �tting proedure that we present below leads to the value of � that better �ts to the

numerial data, whih is equivalent to the average over l. One expets this average to be

more aurate the more irular the orbit is, sine the range of variation of v

s

is smaller.

� ase 3a: Dynamial frition at zero order with � = �(v

s

; V

0

; l).

The value of l is alulated at eah point and introdued in the Coulomb logarithm in order

to integrate over d

3

V

0

. In a reent paper Hashimoto, Funato & Makino (2002) arry out

N-body simulations in order to analyse the e�ets of the linear dependene of the Coulomb

fator on the galato-entre distane, �nding that the semi-analytial orbit �ts better to

the numerial one if � = r

s

=1:4�, where � is the softening sale-length of the N-body ode,

interpreted as the minimum impat parameter. Moreover, sine dynamial frition is redued

at the peri-galation passages, the exessive orbit irularisation su�ered by the satellite

if using Chandrasekhar's formula with onstant hln �i is redued. Unfortunately, they only

use one orbital model, so that it is unlear whether this approah of dynamial frition

also produes aurate �ts for a set of orbits with di�erent eentriities. It is important

to remark that they treat the satellite as a point-mass, whih an be approximated as a

Plummer sphere with ore radius equal to the smoothing-length of the numerial ode. The

role played by the satellite mass loss in determining the orbital dynamis is ambiguous

if a omparison between our results and those of Hashimoto, Funato & Makino (2002) is

performed sine, as we show below, the general behaviour of the radial evolution learly

shows strong di�erenes.

� Case 4b and 5b: Dynamial frition at �rst order.

We inlude the �rst order terms of dynamial frition, whih arise from the system inho-

mogeneity, in order to investigate the e�ets on the satellite orbit. We do not inlude the

analysis for ln� =onst sine this approah leads to a divergent solution of F

(1)

when in-

tegrating over dV

0

. Binney (1977) found a possible solution by inluding ad ho a lower

ut-o� for small relative veloities, whih should be treated as a free-parameter. To avoid

the presene of this term, this study is arried out using a the Coulomb logarithm de�ned

in the eq. (5.28) for the two averages of � orresponding to the ases 2 and 3.

We employ the galaxy model presented in Chapter 3 for this analysis. We arry out a set

of numerial alulations, where the initial system is builded following the sheme presented in

Setion 2.2. and evolved by superbox. Subsequently, the semi-analyti ode of Chapter 4 is used

to �t this data with the di�erent theoretial analysis. The satellite mass evolution is alulated

from the numerial data (see Setion 4.3) and introdued as an external input in the semi-analyti

ode to avoid the possible disrepanies indued by the theoretial mass loss sheme. Even though,

the treatment of the satellite as a point-mass neglets e�ets suh the hange of angular momentum

due to an anisotropi mass loss and those arising from the galaxy potential ating on the tidal

arms, whih may alter the satellite orbit whenever the mass hange beomes important.

6.2 Numerial alulations

6.2.1 Galaxy and satellite parameters

The seletion of the satellite and galaxy parameters used along our study is outline in Chapter 3.

We analyse dynamial frition in the spherial halo H1. This will permit the analyse of the

dis and bulge e�ets on the satellite dynamis in a following Chapter.
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The values of the galaxy and satellite (S1 model) parameters an be found in the Tables 3.1

and 3.2, respetively.

6.2.2 N-body parameters

The numerial simulations were arried out by using the partile mesh-ode Superbox (see Chap-

ter 2) to evolve the galaxy-satellite system.

The system used was exatly that of PKB, with the di�erene that we remove the dis and

bulge omponents. In this paper a detailed desription of the system and the grid struture is

presented, whereas here we merely summarise the most important orbital parameters.

Our integration time step is 0:39 Myr whih is about 1=25th the dynamial time of the satellite.

We have three resolution zones, eah with 64

3

grid-ells: (i) The inner grid overs out to 3 radial

dis sale-lengths, providing a resolution of 350 p per grid-ell. (ii) The middle grid overs the

whole galaxy, with an extension of 24 dis sale-lengths (84 kp), giving a resolution of 2.8 kp

per grid-ell. The satellite always orbits within this grid exept when it reahes the dis, avoiding

ross-border e�ets (see Fellhauer et al. 2000). (iii) The outermost grid extends to 348 kp and

ontains the loal universe, at a resolution of 11.6 Kp.

As for the satellite grid-struture, the resolutions are 816 p per grid-ell for the inner grid

that extends to 24.48 kp, and 1.2 kp per grid-ell for the middle grid whih extends to 36 kp.

Only the inner and middle grids move along with the satellites, remaining positioned on their

entre-of-density loations. The outer grid is idential for primary galaxy and satellite.

6.2.3 Orbital parameters

We arry out a set of alulations varying the parameters of the satellite that remark the di�erenes

between the di�erent analytial treatments, when applying both of them to the deay of a satellite

within a spherial halo. By symmetry, the initial orbital inlination is irrelevant to the satellite

dynamis. For the analysis of Chandrasekhar's expression using diverse Coulomb logarithms we

onentrate our study on the satellite's initial orbital eentriity, de�ned as e = (r

a

� r

p

)=(r

a

+

r

p

), where r

a

; r

p

are the apo and peri-galation, respetively, sine other orbital and satellite

parameters are not hanged. With this de�nition, e = 0 implies irular orbits and e = 1 radial

orbits.

The eentriity evolution may be an indiator of the auray of the analytial expressions

and may also determine whether it is neessary to inlude additionally the perpendiular term of

dynamial frition. The study of the e�ets of this term should over a wider range of satellite

masses, sine the spei� frition at �rst order goes as F

(1)

/ M

2

s

whereas F

(0)

/M

s

. However,

this goes beyond our aim, sine the purpose of this study is merely the qualitative analysis of the

�rst term e�ets and not a detailed parameter survey.

The system galaxy-satellite is onstruted as follows: Before injeting the satellite into the

primary galaxy we allow the galaxy and satellite to settle into a stationary state by integrating

the isolated systems for a few dynamial times with Superbox (as in Kroupa 1997). Examples

of the stationarity of multi-omponent galaxies are given in Boily, Kroupa & Pe~narrubia (2001).

The satellite is then plaed at apo-galation with a veloity determined by the irular veloity

at the initial distane and the desired eentriity.

The parameters of the numerial experiments are listed in Table 6.1. We denote our numer-

ial experiments as H1+S1+harater, whih means that the parent galaxy and the satellite are

desribed by the models H1 and S1, respetively, whereas the harater de�nes the initial orbital

eentriity.

6.3 The �tting proedure

The analytial expressions presented in Chapter 5 have two free parameters one the orbit and the

satellite model are �xed, namely, the averaged Coulomb logarithm hln �i and the �tting fator Q.
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Name Gal. Sat. e r

p

r

a

model model [kp℄ [kp℄

H1S1a H1 S1 0.5 18.0 55.0

H1S1 H1 S1 0.0 55.0 55.0

H1S1d H1 S1 0.7 8.5 55.0

H1S1e H1 S1 0.3 27.5 55.0

H1S1f H1 S1 0.6 12.3 55.0

H1S1g H1 S1 0.8 5.3 55.0

Table 6.1: The numerial experiments. The peri- and apo-galatia are r

p

and r

a

, respetively,

and e = (r

a

� r

p

)=(r

a

+ r

p

) is the orbital elliptiity .

Authors usually �t by eye these two values to numerial data, the semi-analyti orbit approah-

ing as muh as possible to the numerial one, so that the overall orbital evolution is reprodued.

This proedure an atually be onsidered as the \alibration" of the semi-analyti ode, whih

must be done arefully if a detailed inter-omparison between di�erent shemes of dynamial fri-

tion is desired. For that reason we present in what follows a method to desribe the auray of

the semi-analyti sheme.

We propose the parameter � to measure the degree of exatitude of the �t, where

�

2

=

1

k

k

X

i=1

�

(x

i

� x

i;n

)

2

+ (y

i

� y

i;n

)

2

+ (z

i

� z

i;n

)

2

+ �

2

(r

0

)(t

i

� t

i;n

)

2

�

; ; (6.2)

(x; y; z) being the Cartesian omponents of the position at the peri and apo-galatia and t the

time at whih the satellite passes by these points. The subindex n denotes the numerial values

and �(r

0

) the veloity dispersion at the initial galato-entre distane. The sum is over a given

number of orbits k.

We note that this seletion of the �t auray may be weighted by the �t at the apo-galation

points �r

i

=jr

i

j and �t=t instead of the absolute values. However, this has been proved to smooth

the dependene of � on the Coulomb logarithm and Q, making harder the seletion of these free

parameters.

The de�nition of the �tting fator aounts for the divergene of the numerial and semi-

analytial satellite position vetor and also the possibility that the urves of both radial evolu-

tions beome out-of-phase in time. By de�nition, � is equivalent to the disrepany between the

numerial and semi-analytial position evolution per unit orbit. The seletion of the maximum

and minimum galato-entre distanes for omparison permits a diret ontrol over the orbital

eentriity evolution, although the measure of � an be extended to the other points without loss

of generality.

The value of k depends on the objetives of the study. For instane, if the aim is to �nd the

best alibration for long times, as it may be to reprodue the satellite deay in spiral galaxies, the

number of orbits should over most of the orbit evolution. In this Chapter, however, we pretend

to larify the e�ets of the �rst order of dynamial frition. Due to its small magnitude, these

e�ets are expeted to be at least omparable to those indued by the mass loss and other physial

proesses, suh the galaxy feed-bak. For that reason, we limit our �t to the �rst satellite orbits,

namely, k = 2; 3, for whih we expet the �rst order of dynamial frition to dominate over the

other seondary proesses (we note that for k = 2; 3 the mass loss is always smaller than 10% even

for radial orbits). In some ases, however, the di�erenes that the analytial models generate are

too small to di�erentiate the orbits, being fored to enhane the value of k.

6.4 Dynamial frition analysis

The aim of this Setion is to answer two questions: (i) whih of the �ve approahes presented above

produe the best �t to the numerial data and, therefore, omes loser to the best desription of
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case 1 case 2a case 3a

Figure 6.1: � values as a funtion of the free parameters ln� and Q for the satellite orbit H1S130a.

We plot the result of the approahes denoted as ase 1, 2 and 3 presented above. The measure

of � is done for two number of orbits, k = 3; 4 (solid and dotted lines respetively). The x-axis

measures the ln� for the ase of onstant Coulomb logarithm, whereas for the other ases the

funtional parameter is Q.

dynamial frition in spherial systems, and (ii) whih are the di�erenes that eah approah

introdue on the satellite orbit evolution, putting espeial emphasis on the problem of the orbit

irularisation.

6.4.1 Comparison between the di�erent approahes

We make use of the �tting fator � to �x the free parameters hln �i and Q. Assoiated with

eah �t is the error per unit orbit, de�ned as the �tting fator of the best �t, whih allows the

determination of the quality of eah dynamial frition approah in order to desribe the numerial

data.

Fitting a given simulation

First, we develop the �tting analysis for a given numerial alulation. In Fig. 6.1, we plot

the funtion � = �(hln �i) and � = �(Q) for the model H1S130a, whih we suppose to be a

representative ase. Evidently, the best �t orresponds to the minimum of eah urve. The

alulus was done for k = 3; 4 sine k = 2 produe barely di�erenes between the di�erent

analytial approahes.

Contrary to the results of Taylor & Babul (2001), the �t auray is very sensitive to the

seletion of the Coulomb logarithm, sine the �tting parameter � shows strong disrepanies for

small variations of hln �i. This behaviour hanges if the free parameter is inside the Coulomb

logarithm and not the Coulomb logarithm itself. In this ase, the shallower dependene of ln� on

Q makes harder the seletion of the best �t (note that dln� = 1=� � d�=dQ � dQ � dQ).

The results shemed in Table 6.2 shows a similar degree of auray independently of how the

Coulomb logarithm is averaged. This is atually not surprising sine:
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Case Order k hln �i Q

min

�

min

(kp)

1 ln�=onst zero 3 2.1 0.7

zero 4 2.1 1.0

2a � = �(v

s

; V

0

) zero 3 1.3 0.8

zero 4 1.3 1.0

3a � = �(v

s

; V

0

; l) zero 3 2.3 0.6

zero 4 2.3 0.8

Table 6.2: Results of the �tting proedure applied to the numerial alulation H2S130a for eah

of the �ve approahes of dynamial frition. The seond olumn, denoted as \order" represent the

order of the fore expansion, so that \zero" means dynamial frition treated at zero order and

\�rst" at �rst order.

(i) As several authors have shown, a onstant Coulomb logarithm has shown to be a good approx-

imation in order to reprodue dynamial frition in spherial systems. The reason an be found in

the shallow dependene of a logarithmi funtion on its variable (for the model H1S130a, the value

of v

2

s

=2�

2

lies within the range [0:7; 1:5℄). Taking into aount that the largest ontribution of the

bakground partiles to dynamial frition is from those with V

0

' v

s

, one an readily hek in

Fig. 5.2 shows that the value of the Coulomb logarithm is approximately 2.1, whih orresponds

to the averaged value along the orbit.

(ii) The dependene of the Coulomb logarithm on the relative veloity V

0

leads to small di�erenes.

This an be explained by the main weight of the veloities V

0

=

p

2� � 1 in the integral over dV

0

where, for this range of satellite veloities, the Coulomb logarithm an be onsidered onstant.

(iii) Lastly, the inlusion of the typial distane l � �=r� improves the auray of the �t in

around 40%. This will be disussed in detail in following setions.

We note that the value of Q

min

is larger than in the ase 2a, so that dynamial frition at the

peri-galatia is of similar magnitude in both approximations.

The di�erent analysis of dynamial frition produe disrepanies to the numerial data that

barely inrease if the average is done for an additional orbit (k = 4), whih indiates that the

value of free parameters that lead to �

min

may also produe the best for the rest of the orbit. This

is analysed in following setions.

The best �t produes disrepanies of around �

min

= 1 kp per unit orbit whih, for the model

H1S130a, represents di�erenes in the orbital eentriity of de=e ' 3% and of the order of 4 per

ent in the radial amplitude. It is unlear whether these small disrepanies are purely due to our

treatment of dynamial frition or, however, are produed by other physial proesses suh the

system feedbak and mass loss or, however, by numerial reasons, suh the ode resolution, the

time-step seletion...et. Nevertheless, new implementations of the semi-analyti ode in order to

derease � is beyond our purposes.

Fitting a set of simulations

We expet higher disrepanies between the numerial data and the di�erent semi-analytial ap-

proahes sine the range of variation of the orbital parameters enhanes the larger the number

of simulations to �t. For instane, nearly irular orbits aomplish that l; v

s

'onst along their

evolution, whih makes � = �(v

s

; V

0

) and � = �(v

s

; V

0

; l) to be similar to the averaged Coulomb

logarithm hln �i, ontrary to high eentri orbits, whih su�er dramati hanges of both l and v

s

.

The dependene of the �t on the initial eentriity is plotted in Fig. 6.2 for the models H2s130a,

H2s130g and H2S130

1

. For the three treatments of the Coulomb logarithm, the free parameters

that produe the best �t vary as a funtion of the initial eentriity. In the range of eentriities

[0; 0:8℄ this variation is hln �i 2 (1:9; 2:2) and Q 2 (1:5; 2:2), Q 2 (3:2; 4:3) for the ases 2a and 3a

1

The omparison between numerial and semi-analyti data is usually done at the peri and apo-entres in order

to alulate �. In the ase of irular orbits this alulus is arried out eah 0.5 Gyr, approximately the period of

the H1S1a orbit.
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Figure 6.2: Fit of the models H2S130, H2s130a, H2s130g. Solid and dotted lines denote aluli

of � for k = 3; 4, respetively.

whih represents approximately a 15, 35 and 30 per ent of variation, respetively.

In Fig. 6.3 we plot the �tting parameters after averaging eq. (6.2) over the numerial al-

ulations presented in Table 6.1. As expeted, the di�erent averages of the Coulomb logarithm

produe di�erent degrees of auray if the range of orbital parameters su�er strong variations.

From this plot we dedue that,

(i) the approximation of onstant Coulomb logarithm leads to disrepanies of around 1.8 kp for

k = 3 to 2.9 kp for k = 4 indiating a poorer auray whenever the number of orbits inreases.

It is remarkable that the best �t orresponds to hln �i = 2:1 as for the simulation H2S130a, whih

implies that this average does not strongly depend on the orbital eentriity as shown in Fig. 6.2.

(ii) the assumption � = �(v

s

; V

0

) produes a similar auray also with similar dependene on

the number of orbits. All seems to indiate that the addition of the relative veloity dependene

to the Coulomb logarithm sarely hanges the fore obtained if � is onstant.

(iii) a inter-omparison between the di�erent approahes to the Coulomb logarithm shows that

the �tting fator of eq. (6.2) produes the smallest disrepany when the variable l is not averaged

but has the form l = �=r�. In this ase, �

min

is minimum for the �rst 3,4 orbits. The small

dependene on k may indiate that it is also the best analyti approah for the rest of the orbit,

although this will be analysed in a following Setion.

The alulus of �

min

when dynamial frition is alulated at �rst order leads to negligible

di�erenes for the ase 2b as well as for 3b, suggesting a poor ontribution of this term in order

to alter the satellite orbit.

These results fully agree to those of Hashimoto, Funato & Makino (2002). They �nd that the

best �t to the satellite deay of a point-mass satellite within a singular isothermal halo is ahieved

if the Coulomb fator takes the form � = r

s

=1:4�

s

, where �

s

is the softening length of the satellite

partile, rather than if it is onsidered onstant. Inserting the orbital and galaxy parameters into

eq. (5.28), and assuming that the biggest ontribution to dynamial frition is from those partiles

with V

0

= X one has

�

2

= 1 +

Q

2

l

2

a

2

(V

0

) + b

2

0

X

2

4X

2

+W

2

'

Q

2

l

2

5b

2

0

:
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case 1 case 2a case 3a

Figure 6.3: Same as Fig. 6.1 but the parameter � as result of the average over the numerial

alulations of Table 6.1.

The approximation holds for most of the two-body enounters along the orbit, whih is equivalent

to the assumption that one usually �nds in the literature � = b

max

=b

min

where the veloity

dependene of b

max

, X

2

=(4W

2

+X

2

), is removed. Taking into aount that, as last �gures show,

dynamial frition is maximum at X = v

s

=

p

2� = 1, then � ' Qr

s

=(2b

0

p

5) ' r

s

=(1:35b

0

), whih

nearly reprodues the value of Hashimoto, Funato & Makino (2002).

6.4.2 Orbital evolution. The Coulomb logarithm.

We employ the model H2S130a to ompare the orbit evolution of the di�erent theoretial ap-

proahes to the Coulomb logarithm. The omparison is done for the zeroth order of dynamial

frition, whereas the �rst order is studied below. The free parameters hln �i and Q are those of

Table 6.2.

The di�erenes that the three approahes (ases 1, 2a and 3a) produe on the integration

over relative veloities are plotted in Fig. 6.4. We have employed a singular isothermal sphere

to reprodue our halo. As a result of applying the loal approximation, the seletion of � only

aounts for the value of K

h

. The use of the singular isothermal sphere simpli�es the seletion

of the satellite distane and the galaxy veloity dispersion, so that one the satellite and galaxy

mass are known at a give point the fration M=M

g

/ 1=r

s

and � = M

g

=(4�=3r

3

s

) = onst are

easily alulated for the rest of distanes.

If the dependene of the Coulomb fator on the radial distane is inluded, a strong varia-

tions of the integral between the apo-entre (approximately M=M

g

= 0:01) and the peri-entre

(M=M

g

= 0:03) is observed, this last being smaller. If the Coulomb logarithm is onsidered on-

stant, the integration has values similar to the ase of � = �(V

0

; v

s

), proving that the dependene

of the Coulomb fator on the relative veloity leads to small hanges on the frition fore. Sine

these resulting urves lie within the apo-entre and peri-entre fores, the ase 1 and 2 an be

ontemplate as an average of the ase 3a over the radial distane along this orbit.
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, using the three

di�erent analytial approahes to the Coulomb fator. The halo is modelled by a singular isother-

mal sphere, so that the mass ratio is inversely proportional to the galato-entre distane. We

note that the satellite veloity varies for the model H2s130a within the range X 2 [0:7; 1:5℄:

The distane evolution

For a better understanding of the �tting results, we must analyse the e�ets that eah analyti

treatment of the Coulomb logarithm introdues in the satellite orbit evolution. Due to the small

di�erenes between the ase 1 and 2, for simpliity, we deide to onentrate the study on the

ases 1 and 3.

In Fig. 6.5 is plotted the satellite deay of the numerial alulation (dotted line), and that

reprodued by the semi-analytial ode supposing � =onst (full line, ase 1) and � = �(v

s

; V

0

; l)

(dashed line, ase 3a). The values of hln �i and Q are those shemed in Table 6.2.

One an distinguish between two epohs in the radius evolution, for whih the dynamial frition

shemes reprodue with di�erent degree of auray the numerial data.

Along the �rst orbits, the ase 1 and 3 produe similar �t to the numerial result, reeted in

Fig. 6.1, where �

min

for the ase 3a is smaller than for the ase 1.

This behaviour su�ers a radial hange at late times of the orbit. The numerial evolution of the

galato-entre distane shows a strong derease of the apo and peri-galation distanes for k > 7,

whih an not be reprodued by none of the Coulomb fators that we employ. The approximation

of onstant Coulomb logarithm omes loser to the time-sale of the deay, however, the small

rate of peri-galation redution leads to the so-alled \orbital irularisation", a strong derease

of the orbital eentriity. The proess of irularisation will be ommented expliitely below.

We must note that these results do not ome into ontradition to those found by Hashimoto,

Funato & Makino (2002). They arry out a numerial alulation in order to study the e�ets

of having � / r

s

in omparison with hln �i=onst, whih orresponds to our ase 3a and 1,

respetively. Di�erently to our study, the numerial alulations were arried out using a point-

mass satellite, whih avoids the mass loss e�ets, meanwhile the satellite extension an be assumed

as the smoothing length of the numerial ode. They �nd that � / r

s

produes better �ts along

most of the orbit than the typial approximation of onstant Coulomb logarithm. However, in
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Figure 6.5: Galato-entre distane evolution for the analytial treatments 1 (solid line) and 3

(dashed line) ompared to the numerial one (dotted line, orresponding to the model H2S130a).

their numerial experiments the strong derease of radial distane is not visible at late orbital

times so that the deay time-sale is also well reprodued.

The main di�erene between the system employed along this study and that of Hashimoto,

Funato & Makino (2002) is the satellite model. Although the auses of the rapid deay at late-

times are unlear, it may be likely aused by some physial proess related to the satellite mass

loss, sine it is at these times when most of the mass is stripped away due to the galaxy tidal

fores. This should be studied in detail although, due to its omplexity, it goes further our work.

The energy and angular momentum evolution

In spherial potentials the orbit of the satellite is fully determined by two onstant of motion, the

energy and the angular momentum vetor. Dynamial frition auses a progressive derease of

this last, whih leads to the satellite sink into the inner regions of the galaxy, this proess is alled

\satellite deay". As a onsequene, the absolute value of the energy inreases. It is interesting

to analyse the evolution of the onstant of motion along the orbit to analyse the di�erenes that

the di�erent approahes of dynamial frition indues on the deay proess. In Fig. 6.6 we plot

in the upper and middle panels the energy and angular evolution for the ase 1 (solid line) and

3a (dashed line) for the orbit H1S130a. Both variables are normalised to the initial value. The

energy evolution learly shows that dynamial frition alters the orbit mainly at the peri-entres

passages. The enhanement of jEj at those points is equivalent to the subsequent derease of

the apo-galation distanes, i.e the satellite deay. The stronger inrease of energy by the peri-

galation passages an be understood by a simple alulus. With

_

E = v

M

_v

df

, where _v

df

is the

veloity hange due to the drag fore and

_

L = L _v

df

=v

M

one has that

_

E

_

L

=

v

2

M

L

; (6.3)

whih holds along the whole orbit, independently of the eentriity. The smooth derease of

angular momentum implies a large enhanement of

_

E at the peri-galatia, sine the satellite

veloity is maximum at those points (see Fig. 6.7, dashed line).
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Figure 6.6: Seular evolution of spei� energy, angular momentum and orbital eentriity. We

plot the analytial treatments 1 (solid line) and 3a (dashed line) ompared to the numerial

urve (dotted line, orresponding to the model H2S130a). The eentriity is de�ned as e =

(r

a

� r

p

)=(r

a

+ r

p

), where r

a

; r

p

are the apo and peri-galation distanes, respetively. Triangles

orrespond to onstant Coulomb logarithm whereas we use squares for the ase � = �(l), ase 3a.

The omparison between the analyti approahes leads to the same results as those obtained

from the radius evolution shown in Fig. 6.5.

The eentriity evolution

It is well known that dynamial frition with onstant Coulomb logarithm leads to rates of orbit

irularisations not present in the numerial alulations. As Fig. 6.5 shows, the large irular-

isation, i.e eentriity derease, is equivalent to a progressive apo-galation deline and nearly

onstant peri-galation distanes.

In Fig. 6.6 we ompare the evolution of the orbital eentriity alulated for the ases 1 and 3

to that of the numerial experiment H2s130a. The results show, as expeted, that the assumption

of hln �i =onst indues a deline of e from early times on, su�ering high rate of eentriity

derease for k > 6 similar to that of the numerial alulus. This irularisation is remarkably

redued if � = �(l).

One an readily hek that, with our de�nition of eentriity

_e =

_r

a

(1� e)� _r

p

(1 + e)

r

a

+ r

p

; (6.4)

therefore, the ondition of onstant eentriity along the orbit evolution is _e = 0,

_r

a

= _r

p

1 + e

1� e

; (6.5)

where (1 + e)=(1 � e) � 1, i.e, if the eentriity is onstant, the apo-galation distane de-

reases faster than the peri-galation one. The irularisation implies that the redution of r

a

is

aelerated, as one an see in Fig. 6.5 for the standard ase (solid line).
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We onlude that none of the analytial approahes �t aurately the numerial eentriity

evolution, although the overall derease is well reprodued if � = �(l). The numerial eentriity

is nearly onstant for k < 6 su�ering a strong deline until the satellite sinks to the galato-entre.

This behaviour ontrast to that of point-mass satellites (whih su�er barely irularisation) and

may be due to the mass loss, sine the redution of the mass is maximum at the late times of the

evolution.

6.4.3 Dynamial frition at �rst order

The �tting proedure arried out to �x the free parameters has shown that the �rst order dynamial

frition barely alters the results. To understand the reasons, we analyse the di�erenes that this

term introdues on the satellite orbit evolution. We use Q = 2:8, that orresponds to the best

over the set of numerial alulations.

Figure 6.7: Ratio evolution of the �rst to zeroth order term of dynamial frition for the model

H2S130a (solid line). We also plot the normalised distane (dotted line) and veloity of the satellite

(dashed line) along the orbit evolution. It is assumed � = �(l).

In Fig. 6.7 we plot the ratio F

(1)

=F

(0)

along the satellite orbit H2S130a assuming that � = �(l).

For a better analysis, it is also plotted the evolution of the normalised galato-entre distane and

satellite veloity.

As expeted, the �rst order ontribution is maximum at the apo-galatia and minium at the

peri-galatia. The relative maximums are due to the hange of sign of os	 (see Chapter 5).

The ratio diverges as the satellite sinks to the galato-entre due to the 1=l proportionality in the

�rst order frition.

The di�erenes on the radius and position evolution that the �rst order adds are plotted in

Fig. 6.8. The plot indiates that the �rst order fore barely introdues hanges over the satellite

orbit, the main e�et being a slight shift of the orbit to larger radii whih leads to a seular

prolongation of the orbital period over large times.

The small ontribution of this term an be understood by analysing its diretion and magnitude

along the orbit evolution. The �rst order frition at the peri-gation is parallel to the mean �eld

fore, this means that this term ats like a orretion to F

g

, the galaxy fore, whih aomplishes
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F

(1)

=F

g

� F

(1)

=F

(0)

expeting, therefore, small e�ets where the orbit is supposed to experiene

most of the variation (Piatek & Pryor 1995). Between the peri and apo-galatia, the diretion

of F

(1)

with respet to the zeroth order forms an angle  2 (�=4; �=2) for the model H2s130a,

therefore, the orretion parallel being of the order of 10% along the major part of the orbit whih,

as Fig. 6.8 shows, leads to small e�ets.

Figure 6.8: E�ets of the addition of the �rst order frition term on the radius evolution. Sine

the e�ets are small we show the radial distane di�erene �r

M

(solid line) and the di�erene

in the position jr

M;hom

� r

M;inh

j (dashed line), both measured in kp. We also plot the satellite

distane evolution normalised to its initial value r

M

=r

0

(dotted line).

The expliit evolution of the vetorial omponent of F

(1)

is plotted in Fig. 6.9. Meanwhile the

perpendiular omponent (with respet to v

s

) is direted to the inner part of the galaxy along the

whole orbit (the unit vetor is de�ned as e

?

= f
^
n� [

^
v

s

Æ
^
n℄Æ

^
v

s

g=jj
^
n� [

^
v

s

Æ
^
n℄Æ

^
v

s

jj, where
^
n is the

density gradient vetor), the parallel one an be diret (	 > �=2) or opposite (	 < �=2) aligned

to the veloity vetor. In the �rst ase, 	 > �=2, the zeroth order frition beomes lower by the

ation of the parallel omponent of F

(1)

whereas, if 	 < �=2, the zeroth order inreases, leading

to positive values of �E. The perpendiular omponent of F

(1)

barely ontributes to the satellite

torque torque sine, despite this term is maximum by the peri-galation passages, the diretion

is nearly parallel to the position vetor and, therefore, perpendiular to the veloity vetor whih

leads to negligible drag fores.

6.5 Conlusions

We have found that the best �t to the numerial data for the �rst orbits of the satellite evolution

is ahieved if � / r

s

, in lear agreement with the results of Hashimoto, Funato & Makino (2002).

However, if the satellite is modelled as a system ompound by several thousand of N-body partiles,

this treatment of the Coulomb logarithm leads to an underestimation of dynamial frition at late

times of the satellite orbit, ontrary to what is observed for point-mass satellites. We think that

this di�erene in the deay proess may be onneted to the redution of angular momentum and

energy due to an anisotropi mass loss, sine it ours at times similar to the beginning of the
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Figure 6.9: Dynamial frition omponents. The zeroth order is normalised to the satellite ve-

loity as well as the parallel omponent of the �rst order term, whereas the perpendiular one is

normalised to the galatro-entre distane. The values are in model units.

rapid sink. This hypothesis should be studied in detail, whih goes further our purposes.

The assumption of onstant Coulomb logarithm, widely used by several authors, produes a

good agreement with the numerial experiments in order to desribe the time-sales of the deay,

but not in traing aurately the orbit itself.

The di�erenes introdued on the satellite dynamis by the dependene of � on the relative

veloity an be negleted.

The �rst order frition also leads to a negligible inuene on the satellite dynamis due to its

low magnitude. Moreover, the diretion the peri-galation, parallel to mean fore, also ontributes

to the low eÆieny of this term in order to hange the satellite orbit.



Chapter 7

Satellite deay in attened haloes

7.1 Abstrat

1

We arry out a set of self-onsistent N -body alulations to ompare the deay rates of satellite

dwarf galaxies orbiting a dis galaxy embedded in a Dark Matter halo (DMH). We onsider both

spherial and oblate axisymmetri DMHs of aspet ratio q

h

= 0:6. The satellites are given di�erent

initial orbital inlinations, orbital periods and mass. The live attened DMHs with embedded diss

and bulges are set-up using a new fast algorithm, MaGalie (Boily, Kroupa & Pe~narrubia 2001).

We �nd that the range of survival times of satellites within a attened DMH beomes � 100%

larger than the same satellites within a spherial DMH. In the oblate DMH, satellites on polar

orbits have the longest survival time, whereas satellites on oplanar prograde orbits are destroyed

most rapidly. The orbital plane of a satellite tilts as a result of anisotropi dynamial frition,

ausing the satellite's orbit to align with the plane of symmetry of the DMH. Polar orbits are not

subjeted to alignment. Therefore the deay of a satellites in an axisymmetri DMH may provide

a natural explanation for the observed lak of satellites within 0� 30

Æ

of their host galaxy's dis

(Holmberg 1969; Zaritsky & Gonz�alez 1999).

The omputations furthermore indiate that the evolution of the orbital eentriity e is highly

dependent of its initial value e(t = 0) and the DMH's shape.

7.2 Galaxy and satellite models. Orbital parameters

The host and satellite galaxy models used for our alulations are outlined in Chapter 3. In Fig. 7.1

we plot plot the rotational urves for the model G1.

We arry out a set of alulations varying the parameters of the satellite and the primary

galaxy that inuene the satellite{primary galaxy interation. These parameters are: (i) the

initial orbital inlination (i), de�ned as the angle between the initial angular momentum vetor

of the satellite and the initial angular momentum of the dis, (ii) the satellite's mass, (iii) the

satellite's apo-galati distane, (iv) its orbital eentriity, and (v) the DMHs elliptiity, 1� q

h

.

Before injeting the satellite into the primary galaxy we allow the galaxy and satellite to

settle into a stationary state by integrating the isolated systems for a few dynamial times with

Superbox (as in Kroupa 1997). Examples of the stationarity of multi-omponent galaxies are

given in BKP. The satellite is then plaed at apo-galation with a veloity that determines the

value of the orbital eentriity by multiplying the irular veloity by 0 � � � 1. We note that

the orbit of the satellites are rosettes. The parameters of the numerial experiments are listed in

Table 7.1.

1

Chapter based on: Pe~narrubia J., Kroupa P. & Boily C.M., 2001, MNRAS, 333, 779

77
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Name Gal. Sat. i

i

e r

p

r

a

model model [kp℄ [kp℄

G1S100 G1 S1 0

Æ

0.5 18 55

G1S1180 G1 S1 180

Æ

0.5 18 55

G1S145 G1 S1 45

Æ

0.5 18 55

G1S1135 G1 S1 135

Æ

0.5 18 55

G1S190 G1 S1 90

Æ

0.5 18 55

G2S100 G2 S1 0

Æ

0.5 18 55

G2S115 G2 S1 15

Æ

0.5 18 55

G2S130 G2 S1 30

Æ

0.5 18 55

G2S145 G2 S1 45

Æ

0.5 18 55

G2S160 G2 S1 60

Æ

0.5 18 55

G2S190 G2 S1 90

Æ

0.5 18 55

G2S1135 G2 S1 135

Æ

0.5 18 55

G1S100e G1 S1 0

Æ

0.3 30 55

G1S190e G1 S1 90

Æ

0.3 30 55

G2S100e G2 S1 0

Æ

0.3 30 55

G2S190e G2 S1 90

Æ

0.3 30 55

G1S100 G1 S1 0

Æ

0 55 55

G1S145 G1 S1 45

Æ

0 55 55

G1S190 G1 S1 90

Æ

0 55 55

G2S100 G2 S1 0

Æ

0 55 55

G2S190 G2 S1 90

Æ

0 55 55

G1S200 G1 S2 0

Æ

0.5 18 55

G1S245 G1 S2 45

Æ

0.5 18 55

G1S290 G1 S2 90

Æ

0.5 18 55

G2S200 G2 S2 0

Æ

0.5 18 55

G2S245 G2 S2 45

Æ

0.5 18 55

G2S290 G2 S2 90

Æ

0.5 18 55

G3S200 G3 S2 0

Æ

0.7 20 110

G3S245 G3 S2 45

Æ

0.7 20 110

G3S290 G3 S2 90

Æ

0.7 20 110

G4S200 G4 S2 0

Æ

0.7 20 110

G4S245 G4 S2 45

Æ

0.7 20 110

G4S290 G4 S2 90

Æ

0.7 20 110

Table 7.1: The numerial experiments. The peri- and apo-galatia are r

p

and r

a

, respetively,

and e = (r

a

� r

p

)=(r

a

+ r

p

) is the orbital eentriity.
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Vc,full

Vc,d

Vc,b

Vc,h

Figure 7.1: Total ontribution from the three G1 galaxy omponents (dis, bulge and halo, see

Table 3.1) to the irular veloity (solid line). We also plot the irular veloity for eah galaxy

omponent. On very small sales (r < 1 kp) the bulge aounts for the bulk of V



. Further out,

the dynamis is dominated by the halo. The solar radius is at R

�

= 8:5 kp.

7.3 Satellite Deay

We disuss our results in general terms below before going into detailed onsideration of the mass

loss and survival of satellites (Setion 7.3.2), and the orbital evolution of the inlination angle,

eentriity and preession, respetively (Setions 7.3.3 to 7.3.5).

7.3.1 Introdutory omments

We denote by `G1S145' the ompound primary galaxy made, in this ase, of a spherial DMH plus

embedded dis and bulge, G1, and satellite S1, in an orbital plane initially set at an inlination

angle i = 45

Æ

with respet to the plane of symmetry of the system. In what follows we take this

model as referene, but all models followed a similar evolution.

There are two main physial mehanisms that regulate the satellite's orbital deay: (i) dynam-

ial frition from the dis, bulge and DMH, and (ii) tidal interations, ausing internal heating

and mass loss. The evolution of the satellite's orbital radius and mass pro�le highlight the basi

harateristis of these two proesses. Dynamial frition auses a steady derease of the satel-

lite's apo- and peri-entres in time as shown on Fig. 7.2 (dotted line). From t = 0 and until t < 3

Gyr, both quantities, apo- and peri-entres, derease monotonially. When t > 3 Gyr, the orbital

radius r � 5 or smaller, and the orbital deay is not monotoni anymore. The proximity to the

dis means that non-radial fores a�et strongly the remaining evolution, along with the struture

of the satellite.

To measure hanges in the struture of the satellite, we plotted the ten-perentile Lagrange

radii entred on the density maximum of the satellite (Fig. 7.2, solid lines). At t � 4 Gyr, the

galati tidal �eld has inated the satellite to the extent that half of its initial mass is spread
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throughout the volume irumsribed by its orbit. We note that the inner 10 per ent Lagrange

radius is largely una�eted until the very late stages of integration. Our strategy for determining

the orbital parameters of the satellite therefore onsisted in loating the position of the density

maximum of the inner-most Lagrange radius, whih then de�nes a referene oordinate.

0 1 2 3 4 5
0

20

40

60

time (Gyr)

Figure 7.2: Evolution of the satellite's Lagrange radii (solid urves, de�ned as the radius at whih

the spherially enlosed mass amounts to 10%, 20%....,90%) for the model G1S145. The dotted

line represents the distane of the satellite's entre of density to entre of the primary galaxy.

Distanes are in kp. The overall evolution is similar in all other models (Table 7.1).

7.3.2 Mass loss and disruption times

To alulate the mass remaining bound to the satellite, M

s

(t), we ompute the potential energy

�

i

< 0 of eah satellite partile presumed bound to the satellite, and its kineti energy (T

i

) in the

satellite frame. Following VW, partiles with E

i

= T

i

+m

s

(�

i

+�

ext

) > 0 are labelled unbound,

wherem

s

is the mass of one satellite partile. Partiles with E

i

> 0 are removed and the proedure

repeated until only negative energy partiles are left. �

ext

= GM

g

(r < r

s

)=r

s

> 0 is the external

potential from the primary galaxy at the satellite's entre-of-density (r

s

). All the partiles of the

satellite are thus assumed to feel the same external potential, whih is a useful and suÆiently

aurate approximation, taking into aount that most of the bound partiles are loated very

lose to this point. For example, in Fig. 7.2 most of the satellite's mass lies at a distane less than

4 kp from the position of the entre-of-density until the satellite's disruption. This approximation

fails whenever the satellite's size is omparable to its distane to the galaxy entre.

Satellites lose mass due to the galaxy's tidal fores. The mass loss happens mostly at peri-

galation, sine the gradient of the galaxy's gravitational fore reahes a maximum at that point

(see Fig. 7.2). This is seen indiretly in the osillations of Lagrange radii, always in phase with the

orbit of the satellite: the satellite �lls its Rohe lobe and onsequently responds strongly to the

hanging tidal �eld. Thus a derease of the apo-galation distane implies an enhaned mass loss.

The evolution of satellites exposed to strongly varying tidal �elds is disussed at length by Piatek
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G1S100

G1S1180

G1S145

G1S190

G1S1135

G2S130

G2S160

G2S190

G2S115

G2S100

G2S145

G2S1135

Figure 7.3: Evolution of the satellite mass for M

s

= 0:1M

d

and eentriity e ' 0:5.

Figure 7.4: As Fig. 7.3 for satellites with M

s

= 0:1M

d

and initial eentriity e ' 0:3 and e = 0.

(Note that the time-axis has hanged sale.)

& Pryor (1995) for one peri-galati passage, whereas long-term satellite harassment is addressed

by Kroupa (1997) and Klessen & Kroupa (1998). Consequently, we will not study the internal

evolution of the satellites apart from the bound mass fration.

Satellites with M

s

= 0:1M

d

Fig. 7.3 shows the evolution of the satellite mass for di�erent initial orbital inlinations for satellites

with M

s

�M

s

(0) = 0:1M

d

and eentriity e ' 0:5. From this �gure we an assert that: (i) The

satellites are disrupted ompletely at about the same time they reah the galati dis (Fig. 7.2).

(ii) For all the models, the survival time is, at least, 1 Gyr (25%) longer than the equivalent

simulations of VW (upper panel of Fig. 7.3). We onsider this di�erene to be indiative of the

unertainty intrinsi to methods that approximate ollisionless dynamis. The di�erene omes

about, in part, due to di�erent numbers of partiles, but also due to the spatial resolution of the

method. Prugniel & Combes (1992) and Whade & Donner (1996) �nd that dynamial frition is

arti�ially inreased due to numerial noise if the partile number is small. Similar di�erenes were
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G1S200
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Figure 7.5: As Fig. 7.3 for satellites with M

s

= 0:2M

d

. (Note that the time-axis has hanged

sale.)

also noted in the omputations by Klessen & Kroupa (1998) of satellite harassment using di�erent

odes. However, we observe that the range of disruption times for our models G1S1 (as used by

VW) is approximately the same, indiating that dis e�ets are well reprodued by our ode and

giving on�dene to the following results we obtain using attened DMHs. (iii) Flattened DMHs

spread the range of disruption times. In Fig. 7.3 we an see that, for satellites with M

s

= 0:1M

d

embedded within spherial DMHs this range is � 1:2 Gyr (upper panel), polar satellites having

the longest survival time. For satellites with the same mass but within attened DMHs the range

grows to � 2:7 Gyr (lower panel). (iv) Satellites with a high orbital inlination within attened

DMHs have longer survival times than satellites within spherial DMHs with the same initial orbit.

For instane, taking the polar satellite as the extreme ase, G2S190 survives � 1 Gyr longer than

G1S190. (v) Satellites with low orbital inlination su�er the ontrary e�et: those within spherial

DMHs survive longer than those within attened DMHs. Taking the prograde and oplanar orbit

as the extreme ase, G1S100 survives � 0:6 Gyr longer than G2S100.

In Fig. 7.4 we ompare polar and oplanar satellites within attened and spherial DMHs with

orbital eentriity e � 0:3 and 0 to obtain an indiation of the dependeny of the life-time on e

(orbits with intermediate inlination also have intermediate survival times, Fig. 7.3). As expeted,

less eentri orbits lead to longer survival times, sine the peri-galati distane is larger and,

moreover, tidal fores are weaker. Furthermore, the survival times show a larger spread. Less

eentri orbits survive longer, so that anisotropi dynamial frition has a longer time to at. We

an see that oplanar satellites within a spherial DMH (model G1S100e) deay � 0:3 Gyr later

than a oplanar satellite within a attened DMH (model G2S100e), while the deay time of a polar

satellite within a spherial DMH (model G1S190e) is � 0:5 Gyr shorter than the orresponding

satellite in the attened DMH (model G2S190e). Thus, the range of survival times inreases from

about 2.1 Gyr to 4.2 Gyr. This range beomes even larger for irular orbits.

This state of a�airs is summarised in Fig. 7.6 for all satellite models, whereas Table 7.2 ompares

the deay times for S1 satellites in dependene of the orbital eentriity and inlination. The

table niely shows that the survival time inreases signi�antly with dereasing eentriity. It

also shows that oblate DMHs lead to onsistently larger di�erenes, �� , between the deay times
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mods.G1S1 (e=0.70)

mods.G2S1 (e=0.70)

mods.G1S1e (e=0.45)

mods.G2S1e (e=0.45)

mods.G1S1c (e=0)
mods.G2S1c (e=0)

mods.G1S2 (e=0.70)
mods.G2S2 (e=0.70)

mods.G3S2 (e=0.80)

mods.G4S2 (e=0.80)

Figure 7.6: The time � when the satellite mass reahes 10 per ent of its initial value, M

s

(�) =

0:1M

s

, or the satellite has sinked to the galaxy entre is plotted vs the initial orbital inlination.

Upper panel is for satellite models S1 in primary galaxies G1 and G2, whereas the lower panel

shows the results for satellites S2. Note that in all ases � inreases with inreasing i < 90

o

for

galaxies embedded in a spherial and a attened DMH, due to dynamial frition on the dis. The

e�et of this is partiularly niely seen from the di�erent slopes, d�=di, for prograde (i = 0� 90

Æ

)

and retrograde (i = 90� 180

Æ

) orbits. The inrease is signi�antly larger for satellites orbiting in

attened DMHs, and beomes larger for dereasing orbital eentriity (Table 7.2) and dereasing

satellite mass, whih allows longer oupling of the satellite to the anisotropi veloity �eld in the

DMH.

for polar and oplanar orbits, �� onsistently being approximately 100 per ent larger in attened

DMHs than in spherial DMHs (��

obl

� 2��

sph

). This is the key result of this study.

Satellites with M

s

= 0:2M

d

The temporal evolution of satellite masses with M

s

= 0:2M

d

is shown in Fig. 7.5. There are no

signi�ant di�erenes in survival times for satellites in spherial and attened DMHs if r

a

= 55 kp.

At the same time, the dependeny on the inlination dereases, ausing the range to be narrower

in both ases. The ause is the fast deay of the satellites, so that the anisotropy of the DMH's

veloity dispersion does not have enough time to at. To better assess this, we introdue a set

of omputations seleting larger initial apo-galati distanes (models G3 and G4). The ut-o�

radius of the Galaxy is inreased, whih hanges the rotational urve (see Fig. 7.1). The results

are also plotted in Fig. 7.5. A similar spread of survival times as for models with M

s

= 0:1M

d

and 'G2' attened DMHs beomes evident; the range of disruption times for spherial (G3) and

attened DMHs (G4) are, respetively, � 1 and � 2 Gyr.

The results onerning the disruption times seen on Fig. 4 between small and large DMHs
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model e(t = 0) �

0

� �

90

� �� �

�(i = 0) �(i = 90) �

90

� �

0

[Gyr℄ [Gyr℄ [Gyr℄

G2S1(obl) 0 10.1 12.9 2.8

G1S1(sph) 0 11.3 12.0 0.7

G2S1e(obl) 0.3 6.1 10.3 4.2

G1S1e(sph) 0.3 6.8 9.2 2.4

G2S1(obl) 0.5 3.8 6.5 2.7

G1S1(sph) 0.5 4.4 5.6 1.2

Table 7.2: Summary of deay times for satellite models S1 (M

s

= 0:1M

d

) in oblate (obl) and

spherial (sph) DMHs with di�erent initial orbital eentriity e and orbital inlination i. �

0

is the

deay time when the satellite that is initially on an orbit with inlination i = 0

o

has lost 90 per

ent of its mass or has sinked to the galaxy entre, whereas �

90

is the deay time for polar orbits

(i = 90

o

).

(G1/G3 and G2/G4 pairs displayed on Fig.4, bottom panel) are related to one another as

follows. DMHs G3 and G4 have the same mass as G1 and G2, but are more extended by

a fator � = 133 kp=84 kp = 1:58 (Table 3.1). This implies that the dynamial time-sale

(/ 1=

p

G�), i.e. the periods of satellites on equivalent orbits, are longer in haloes G3 and G4

by a fator

p

�(G2)=�(G1) = 1:58

3=2

= 2. Orbits in G3 and G4 equivalent to those in G1 and

G2, respetively, are orbits with semi-major axes extended by � in a homologous mapping of

the systems. Our satellite orbits, however, have apo-galati distanes in G3 and G4 twie as

large as in DMHs G1 and G2. The orbital times of models G3S2nn and G4S2nn are in total

1:58

3=2

� 2=1:58 = 2 � 2=1:58 � 2:5 times longer than models of satellites in DMHs G1 and G2.

This is approximately what we observe from omparing the urves on Fig. 4 with DMHs G1/G3

or G2/G4.

On the top panel of Fig. 7.5, the time when M(t)=M(0) � 0:10 is t � 2:5 Gyr for all G1

models. If the homologous transformation applied stritly, the urves for the G2 halo models

should approah 7 Gyr when M(t)=M(0) = 1=10. The fat that they are spread between 6 and 7

Gyr, and thus deviate from the homologous map, indiates that the dis and bulge, whih were

left unhanged, play an important role in the mass deay rate of the satellites. Furthermore, this

estimation suggests that the time-sales for orbital deay are ontrolled by the DMH, while the

ombined tidal �eld of the dis and bulge ontributes mainly to mass stripping. Similar onlusions

would apply for the G2/G4 models shown on the bottom panel of the �gure.

Prograde versus retrograde orbits

Results for models with spherial DMHs may be divided into two aording to whether the orbit

of the satellite is aligned with the dis's angular momentum vetor (prograde) or anti-aligned

(retrograde). Keeping the initial satellite veloity vetor unhanged, a prograde orbit is found for

an initial orbital inlination angle 0

Æ

< i < 90

Æ

, and retrograde orbits in the one 90

Æ

< i < 180

Æ

.

Table 3 lists four models with spherial G1 DMHs and eentriity e = 0:5 (top segment in the

Table). Models G1S100 and G1S1180 are respetively prograde and retrograde with respet to

the dis, but are otherwise idential. From Fig. 7.3 (top panel) we �nd for these two simulations

a 90% mass-loss after � 4 Gyr and 5:3 Gyr, respetively, an inrease of nearly 25% ; a similar

onlusion applies for models G1S145 and G1S1135. These �ndings are qualitatively similar with

those of VW: (i) Satellites on prograde orbits lose angular momentum faster than their retrograde

ounterparts, leading to more rapid deay. (ii) Polar orbits have a similar deay rate as retrograde

orbits, as found from omparing model G1S190 and G1S1135, Fig 7.3. This implies that our

treatment of the live dis aptures the essential physis relevant for this work.
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Figure 7.6 summaries the �ndings for deay rates for the simulations performed. Point (i)

above also applies to attened DMHs. However, Fig. 7.6 suggests in this ase that the di�erene

in deay rates between prograde and retrograde orbits is redued by about 80 % for attened

DMHs.

For spherial DMHs the above results an be understood partially by onsidering Chan-

drasekhar's expression (Chandrasekhar 1960) for dynamial frition,

F

df

= �

4�G

2

M

2

s

(t)�(< v

s

)ln�

�v

3

v

s

; (7.1)

�v = j~v

s

� ~v

m

j being the relative veloity between the satellite and the dis partile bakground,

v

m

is the dis partile veloity and �(< v

s

) the density alulated only for those partiles with

veloity less than the satellite's veloity v

s

, and ln� the Coulomb logarithm, an be estimated

as � = p

max

=p

min

. In this expression, p

max

is the maximum impat parameter, and p

min

the

minimum impat parameter (onventionally taken as the half-mass radius of the system). Sine

these quantities are not well de�ned, the Coulomb logarithm remains, to a ertain degree, an

adjustable parameter. The �ttings arried out in Chapter 6 show that ln� ' 2.

The di�erent deay rate between prograde orbits and their retrograde ounterparts is aused,

in part, by the dis's dynamial frition when the satellite is near perigalation. Retrograde orbits

have a muh higher relative veloity �v due to the dis's rotation and, therefore, they su�er a

smaller drag fore. The bulge or the DMH's dynamial frition make no di�erenes sine both are

non-rotational and spherial, whih also explains the small di�erenes of deay rates between the

polar and the retrograde ase (in both ases dynamial frition through the dis an be negleted

ompared to the DMH's dynamial frition). In addition to dynamial frition, resonanes between

the satellite and the dis inuene the orbital deay, but a detailed analysis goes beyond the aim of

this work. As for the di�erent deay rates depending on the satellite's mass, the spei� dynamial

frition fore varies with M

s

, so that satellites with M

s

= 0:2M

d

su�er a two times larger frition

than those with M

s

= 0:1M

d

.

7.3.3 Orbital inlination i

Binney (1977) extended the dynamial frition fore (eq. 7.1) to non-isotropi veloity �elds. He

showed how anisotropi frition leads to orbit alignment with the veloity ellipsoid plane of sym-

metry of the host galaxy. Here dis and DMH spheroids de�ne a unique z = 0 plane of symmetry,

ommon to both mass distribution and veloity ellipsoid. We may, therefore, antiipate enhaned

satellite orbit alignment relatively to Binney's analysis, due to the non-uniform, aspherial mass

pro�le.

In Fig. 7.7 we graph the time-evolution of the diretion angle i for a set of simulations with

oblate G2 DMHs (q

h

= 0:6) and S1 satellites (solid lines on the �gure) as well as two referene

runs with spherial G1 DMHs (dotted lines on the �gure).

The average of the orbital inlination i(t) dereases monotonially in time for satellites orbiting

in attened DMHs whih have initially i 6= 0

Æ

or 90

Æ

. The derease in i(t) is more appreiable for

smaller values of i(0). This is seen for instane by omparing the urves with i(0) = 15

Æ

and 30

Æ

to the solutions with i(0) = 60

Æ

and 90

Æ

. For the latter, polar orbit, no deay of i(t) is observed

for the duration of the integration, whereas for the i(0) = 15

Æ

ase the orbit aligns fully with the

plane of symmetry of the system (oinident with the dis of the host galaxy).

By ontrast, satellites orbiting in spherial DMHs show little or no deay of i(t), for all initial

values of i (dotted lines, Fig. 7.7). This learly indiates that the anisotropi DMH, and not the

dis, drives most of the orbital evolution and alignment, sine in all ases a galati dis is present.

The �gure also reveals periodi osillations of i(t) for satellites on inlined orbits, of frequeny

approximately in tune with the satellites' orbital motion. Inspetion of the �gure shows this to be

the ase for systems with either spherial or attened DMHs. Note that no suh osillations in i(t)

is observed for polar or o-planar orbits. These osillations orrespond to the so-alled nutation

e�et, whih is present in the motion of bodies in anisotropi potential (see Appendix A).
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Figure 7.7: Evolution of the orbital inlination for models G2S100, G2S115, G2S130, G2S190 (full

lines, satellites within the attened DMH) and G1S145, G1S190 (dotted lines, satellites within

the spherial DMH), until they retain 10% of their initial mass.

Nutation an examined in two phases, (i) when the satellite orbit is motion is dominated by

the halo potential and (ii) where the dis potential dominates.

For 0 < t < 3 Gyr the satellites orbital radius r

s

� R

d

. Over this interval of time, the orbits

are suh that those obtained for attened DMHs lead to muh larger osillations in i(t) ompared

with the solutions with spherial DMHs. We therefore attribute these osillations to torques from

the DMH ating on the satellites

� = r�r� = R

�

��

�z

� z

��

�R

�

e

�

whih by symmetry arguments must lie in the plane of the axi-symmetri galaxy. The torque

� is positive or negative aording to the phase of the orbit. This orresponds to the nutation

formulation.

For t > 3 Gyr the situation is similar for all alulations, independently of the morphology of

the DMH. Thus the osillations we observe learly for attened-DMH orbits are now notieable

for the solutions with spherial DMHs, too. In this phase of evolution, r

s

� R

d

or less so that the

dis potential ontributes most of the fore felt by the satellite and hene the torque � ating on

it. At this stage, a oupling between the dis response and the satellite motion is expeted: we

observed that these osillations are highly softened in alulations with a stati dis and bulge.

Sine the orbital angular momentum L � r

s

v

s

m

s

and �L = �dt � r

s

G�(r

s

=v

s

), where � is the

dis's surfae density, both L and the angular momentum arued �L over one revolution will be

of omparable magnitude if v

2

s

� GM

d

=r

s

, i.e. when the dis potential is the predominant ontrib-

utor to the fore ating on the satellite. The diretion angle i(t) varies therefore wildly towards

the end of the simulations in all ases save the oplanar i(0) = 0

Æ

one, for whih � = 0 at all times.

The osillations or periodi utuations we have disussed are subjet to enhanements owing

to our hoie of a grid numerial method of integration. The Cartesian grid ode limits the

vertial resolution of a thin dis. Consequently the response of the dis to heating by the satellite
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is not orretly quanti�ed. Furthermore, one the remnant satellite has merged with the disk,

the position of it's entre of density beomes ill-de�ned by virtue of the satellite easing to exist

as a bound entity; i(t) will reet this unertainty for t > 3 Gyr. With 32 mesh points spread

over a length of 3R

d

, the position of the entre-of-density and the dis struture are resolved to

l ' 3R

d

=32 � r

s

=10 when r

s

� R

d

. Hene the error on the angle i may be estimated to be

sin i � i = l=r

s

� 1=10 or 5

Æ

approximately. This puts into perspetive the magnitude of the

osillations seen on Fig. 6 for t > 3 Gyr, though without aounting for them fully. This leads

us to onlude that the physial e�et of the torque � by the dis on the satellite is qualitatively

orret, although the quantities somewhat unertain.

7.3.4 Orbital eentriity

In Fig. 7.8 we plot the eentriity evolution for satellites with massM

s

= 0:1M

d

. The eentriity

is alulated from the value of r

a

(t) and r

p

(t) until the satellite has 10 % of its initial mass.

G1S100
G1S145
G1S190

G1S100e
G1S190e

G1S100c
G1S190c

G2S100
G2S145
G2S190

G2S100e
G2S190e

G2S100e
G2S190e

Figure 7.8: The eentriity evolution for some of the models.

The orbital eentriity does not remain onstant as dynamial frition shrinks the orbit. The

evolution of e(t) depends on e(t = 0) and i(t = 0), but from Fig. 7.8 we observe that the general

behaviour is for the orbits to remain nearly onstant. The only learly evident exeption is prograde

model G2S100 (e(0) = 0:5), whih shows a pronouned derease of e(t). In this ase, dynamial

frition from the attened DMH plus dis is so large that the apo-galati distane dereases muh

faster than the peri-galati distane. Close inspetion shows that this is merely the extreme of

a general trend. Comparing the o-planar prograde orbits (i = 0

o

: GnS100, GnS100e, GnS100;

n= 1; 2) with the polar orbits (i = 90

o

: GnS190, GnS190e, GnS190), it is evident that the former

show a stronger sensitivity on initial eentriity than the latter. The e�et is suh that irular

o-planar prograde orbits irularise. Dis{satellite oupling via dynamial frition and indution

of spiral modes in the dis and assoiated transfer of angular momentum between satellite and dis

are the likely reason, but we do not dwell longer on this, as dis-satellite oupling is not the main

topi of this work, whih in any ase does not resolve the dis vertial struture. We merely state

here that the data in Fig. 7.8 suggest that orbits tend to remain with nearly onstant eentriity,

ourring that e(t) dereases when dynamial frition is strong
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G2S145

G1S145

G2S160

G2S130G2S115

G1S190,G2S190

Figure 7.9: The preession angle P for some of our models.

This behaviour agrees with that found by van den Bosh et al. (1999). They perform numerial

alulations using a galaxy models similar to G1, with satellite masses on the order of that of our

models S1. They observe that the eentriity remains remarkably onstant. Unfortunately, they

do not inlude alulations with e(0) < 0:6. We note in passing that our results disagree with

those found by Prugniel & Combes (1992), who observe that initially irular orbits rapidly aquire

eentriity.

7.3.5 Orbital preession

The orbital plane of a satellite and its unbound partiles preesses in a attened potential whih

smears out the tidal debris stream. The preession angle, P (t), is alulated by projeting the

orbital angular momentum vetor onto the galati xy plane and measuring its hange with time.

In Fig. 7.9 we plot P for some of our models. The preession, dP=dt, inreases at later times due

to the anisotropy of the dis's potential, the satellite having deayed to its viinity.

As expeted, attened DMHs lead to larger preession. Comparing models G1S145 (satellite

within a spherial DMH) and G2S145 (satellite within a attened DMH), we observe that the

hange of P is, respetively, ' 50

Æ

and ' 150

Æ

, i.e, approximately three times larger at t = 3

Gyr. Sine the DMH is spherial for models with G1 the preession of the orbital plane is due

to the dis gravitational quadrupole moment. The orbital plane preesses faster the smaller its

inlination is, orbits with i � 45

o

preessing by 180

o

in 3 Gyr. Polar orbits do not preess at all.

7.3.6 Tidal streams

The aretion history of the Milky Way and other major galaxies leaves signatures in the form of

old tidal streams in the DMHs of these galaxies as found in observational surveys suh as that of

Dohm-Palmer et al. (2001), or Mart

�

inez-Delgado et al. (2001). The detetion of the Sagittarius

dwarf tails (Iabata et al. 1994) therefore likely is a generi features of large galaxies.

Theoretial models of this proess have shown good agreement with observations (Helmi &

White 1999; Zhao et al. 1999; Helmi & de Zeeuw 2000). The hanges in orbital inlination i and
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the orbital preession in attened systems imply that the tidal debris emanating from a disrupting

satellite will signi�antly spread out in i, whih will make reonstrution of the aretion history

of a major galaxy diÆult if its DMH is attened.

In Fig. 7.10 we plot the deviation angle of the satellite's partiles from the initial orbital plane

in three time snaps. This is done for models G1S145 and G2S145 (Fig. 7.10, i(0) = 45

Æ

), and

for G1S190 and G2S190 (Fig. 7.11, i(0) = 90

Æ

). The �rst time-snap shows satellite partiles after

�rst passage through perigalation at t = 0:62 Gyr, the seond one is at an intermediate time

(t = 1:52 Gyr) while the last frame is at a late stage of the satellite orbit. The debris does not

remain in the initial orbital plane. This e�et beomes more pronouned the loser the satellite is

to the galaxy's entre, when the mass loss (Fig. 7.3) and the osillations of the orbital inlination

(Fig. 7.7) primarily our, and the larger the number of perigalation passages is. From Fig. 7.10

we also observe that the deviations from the orbital plane are enhaned when the DMH is attened

sine satellite orbits within oblate DMHs align with the symmetry plane (i.e. i(t)! 0). Fig. 7.11

shows that the spread of satellite debris is muh smaller for satellites in polar orbits than for those

with intermediate inlinations, sine inlination deay and osillations vanish for polar orbits.
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Figure 7.10: a: Deviation angles for all satellite partiles from the initial orbital plane (i = 45

Æ

).

The left olumn depits model G1S145 (spherial DMH), and the right olumn shows G2S145

(attened DMH). Rows show three time snaps (given in Gyr). In the last one, the satellite has

been fully destroyed.

7.4 Conlusions

In order to assess the importane of dynamial frition in extended oblate DMHs on the distribu-

tion of satellite galaxies around their primary, we perform self-onsistent N -body omputations of

satellite galaxies with masses amounting from 10 to 20 per ent of the primary's dis. The satel-

lites are plaed on di�erent orbits in spherial and attened DMHs that have embedded galati

diss and bulges.

The alulations with spherial DMHs lead to results in good agreement with those obtained

by VW. Modest di�erenes in quantities are attibuted to the inreased mass resolution of our

alulations ompared with theirs, as well as di�erent linear resolution (grid size versus smoothing

length of their TREE algorithm).
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Figure 7.11: b: As Fig. 7.10 but for models G1S190 (spherial DMH) and G2S190 (attened

DMH), with initial inlination i = 90

Æ

.

Satellites evolving in spherial DMHs on prograde orbits relatively to the primary galaxy's

dis rotation deay faster than satellites on retrograde orbits or on polar orbits. This results from

orbital resonanes between the dis and the satellites.

Of partiular interest, however, is that our results demonstrate that non-isotropi dynamial

frition in attened DMHs works as a removal mehanism of satellites with low-inlination orbits,

whereas it enhanes the survival time of satellites on near polar orbits. Thus, satellites on polar

orbits survive about 70 per ent longer than satellites on orbits that have a small inlination

relative to the primary galaxy's dis (Table 7.2), irrespetive of the relative orbital sense (Fig. 7.6)

in an oblate DMH with axis ratio q

h

= 0:6. This is the key result of this investigation.

This result helps understand the distribution of dwarfs galaxies in the Milky Way. Sine they

are mainly distributed near the galati pole (Carney et al. 1987) we may infer a seletion of

survivor dwarfs from a primordial population. The aelerated orbital deay and alignment with

the dis of dwarfs within a attened halo would go some way towards aounting for the data.

However if the masses dedued for these satellites ( 10

8

solar, ompared with 10

9

for our models)

is a good measure of their mass at the formation time, our omputations indiate times as long as

a Hubble time for e�etive mergers. Disrepanies in timesale may well be aounted for if we

substitute for the isothermal halo the more onentrated NFW (Navarro, Frenk & White 1995)

models or haloes with a steeper usp (Moore et al. 1998): when eah halo model is saled to

the same integrated mass inside the solar radius, the partile veloity dispersion in these models

drops faster with radius than for isothermal spheres. Beause of the strong dependene of frition

on veloity dispersion, this would redue the timesale for orbital deay very muh and o�set the

e�et of redued satellite masses. We have not, however, performed alulations with di�erent

halo mass pro�les.

Our omputations further show that satellites on orbits with eentriity e � 0:5 and with

masses larger than 10 per ent of their primary galaxy's dis merge within only a few Gyr with

the primary galaxy. The time it takes to merge inreases with dereasing orbital eentriity

(Fig. 7.6). We therefore dedue that massive satellites around distant galaxies, suh as typially

enter the samples that show the Holmberg e�et, may be preferentially on near-irular polar

orbits or on orbits with apo-galatia further away from their primary galaxy than about 130 kp.
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The alulations also suggest that the orbital eentriity remains nearly onstant for most of

the orbits. Only o-planar satellites within a attened halo su�er an evident irularisation due

to the strong dynamial frition.

We also note that the high preession rates of satellite orbits in attened DMHs and the

derease in orbital inlination leads to tidal debris streams being ompletely smeared apart for

initially inlined orbits.

We want to omment that, despite our use of only two values for the satellite mass in our

alulations, this range seems to be representative to reprodue the typial mass of the satellite

that Holmberg (1969) and Zaritsky & Gonz�alez (1999) �nd in their observations when the initial

apo-galati distanes is seleted properly (Ibata et.al 2001). As Tormen (1997) �nds in his

numerial alulations of hierarhial galaxy lusters history, more massive satellites (� 10

11

)

are unlikely to survive due to the large drag fore they su�er. On the other hand, though less

massive satellites (� 10

8

solar) feel a negligible drag fore, they are quikly disrupted after some

peri-galation passages due to their low binding energy.

This paper has sought to quantify the e�et of aspherial DMHs on the orbits of galati

satellites. The analysis suggests enhaned Holmberg deay, yet what an we say of a population of

satellites as a whole? Our model satellites require a few orbits around the host galaxy if dynamial

frition is to be e�etive. Thus within one Hubble time a satellite would require = 5 revolutions

(say) or t = 2 Gyr for a single revolution at most. In the Milky Way the orbital time t = 200 Myr

at r = 10kp; assuming an isothermal halo with � / r

�2

, the ritial orbital time t = 2 Gyr would

be found at r = 50 kp or so. In other words, satellites that are too far from the host galaxy

will not have time to experiene dynamial frition and hene will not have su�ered Holmberg

deay. On the other hand, satellites loser to their host galaxy will merge quikly through the

proess desribed here. Zaritsky et al. (1999) have noted that satellite populations tend to remain

isotropially distributed for satellites with r > 50 Kp.

A more elaborate study is under way, and ultimately we aim at making a statistial study of a

modelled observational sample to infer if the Holmberg e�et an indeed be produed by attened

DMHs.



92 CHAPTER 7. SATELLITE DECAY IN FLATTENED HALOES



Chapter 8

Dynamial frition in attened

systems

8.1 Introdution

The most aepted galaxy formation theory assumes that large-sales strutures grew from small

amplitude Gaussian utuations at the early-stages of the Universe. In hierarhial models, these

utuations derease with inreasing sales, resulting in the formation of low-mass objets that

may merge, building up even more massive strutures. The shape and morphology of these objets

are strongly dependent on the osmologial models, as one an onlude from the N-body om-

putations, although none of them predit spherial strutures. The most suessful hierarhial

theory is the so-alled Cold Dark Matter model (CDM). In this framework, aspherial bound Dark

Matter (DMHs) form as a result of gravitational lustering. Dubinsky (1994) �nds in his omputer

simulations a Gaussian distribution of DMH aspet ratios, q

h

� =a > 0, where  and a are the

minor and major axes of an oblate spheroid, of mean < q

h

>= 1=2 and dispersion equal to 0.15.

Other theories are the Hot Dark Matter model, that predits haloes as round as q

h

= 0:8 (Peebles

1993), or Dark Matter andidates suh as old moleular gas (Pfenniger, Combes & Martinet 1994)

and massive deaying neutrinos (Siama 1990), that produe strutures as attened as q

h

= 0:2.

Observationally, measures of the galaxy axis-ratio beomes a hard subjet open to speulation

due to the large spread of values that result from di�erent models. The most used tehniques are

usually: (i) Stellar kinematis. Olling & Merri�eld 2000 obtain an axis-ratio of q

h

� 0:8 for our

Galaxy. This method has the disadvantage of having aess to information of our Galaxy only

at small sales. (ii) The ying gas layer method (Olling 1996, Bequaert, Combes & Viallefond

1997) assumes that the HI emission of the Milky Way omes from gas in hydrostati equilibrium

in the Galati potential, it produes axis-ratios as low as q

h

� 0:3 for the galaxies NGC 891 and

4244, (iii) Warping gas layer. Hofner & Sparke 1994 obtain axis-ratios of approximately 0.7 for

NGC 2903 and of q

h

� 0:9 for NGC 2841, 3198, 4565 and 4013, (iv) X-ray isophotes. Boute &

Canizares 1998 measure values of q

h

� 0:5 for NGC 3923, 1332 and 720, (v) Polar ring galaxies

(Arnaboldi et al. 1993, Sakett et al. 1994) �nd an axis-ratio of q

h

� 0:3 for NGC 4650A, 0.5 for

the galaxy A0136-0801 and 0.7 for AM2020-504, (vi) Preessing dusty diss (Steinman-Cameron,

Kormendy & Durisen 1992), measure an axis-ratio of 0.9 for the galaxy NGC 4753.

The last method, whih we fous on, is the analysis of satellite dynamis. There are two dif-

ferent approahes to infer the halo shape from satellites.

First, one may attempt to reprodue the observed tidal streams of the Milky Way satellites as

done, for instane, by Ibata et al. 2000 who use measures of veloity, position and struture of the

Sagittarius dwarf galaxy to onstrain the initial parameter spae and, subsequently, they alulate

in detail the satellite mass loss. They �nd that the Milky Way annot be more attened than

q

h

� 0:9, otherwise tidal streams would be too spread and thik ompared to the observations.

The seond approah is a statistial study of satellite distribution around spiral galaxies. Holm-
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berg (1969) and Zaritsky & Gonz�alez (1999) point out that satellites around dis galaxies are

found more often aligned with the poles of the host galaxy, the so-alled 'Holmberg e�et' whereas

Quinn & Goodmann (1986) �nd in their N -body study that the dis alone annot aount for

the original statistial distribution of Holmberg's data. A remedy may be sought in the form

of an extended non-spherial DMH. An anisotropi veloity (and mass) distribution will ause a

satellite's orbit to align with the axes of the veloity ellipsoid of the host galaxy (Binney 1977,

hereinafter B77).

For both shemes, a large number of numerial alulations is needed. In the �rst ase, one should

integrate several \possible" initial orbital parameters to �nd the best �t to the observed satel-

lite harateristis, whereas in the seond ase the satellite initial parameters should statistially

reprodue the distributions expeted from the osmologial models. So far this is prohibitively

time-expensive using any of the present N-body algorithms. The aim of this Chapter is to im-

plement a simple analyti sheme for traking the dynamial evolution of substruture within

attened as well as spherial DMH's.

The N-body omputations of Pe~narrubia, Kroupa & Boily 2001, (hereinafter PKB), where it

is analysed in detail the e�ets of the halo aspheriity on the satellite deay and disruption, show

that the isotropi Chandrasekhar's dynamial frition is not able to explain the results obtained

(see Chapter 7 for a summary). For that reason, we implement Binney's expression for dynamial

frition in systems with anisotropi veloity dispersions (B77) in our ode, whih also reprodues

Chandrasekhar's for null anisotropy.

In Chapter 6 we arry out a detailed study of the e�ets that the dependene of the Coulomb

logarithm ln� on the relative veloity of the two-body enounters and the galato-entre distane

indue on the satellite dynamis. The results indiate that the assumption � = �(r

s

) leads to

the best �t for the �rst satellite orbits, in agreement with Hashimoto, Funato & Makino (2002).

However, this dependene produes orbits that systematially overestimate the satellite deay

times (de�ned as the time the satellite needs to sink into the galaxy entral region, whih we

assume equivalent to the ondition r

s

< 3 kp). If ln�=onst. the orbit is reprodued less

aurately but the deay times are more preise. This quantity is fundamental for the later study

on the satellite distribution around spiral galaxies, thus we deide to analyse in detail only Binney's

expressions for aspherial systems.

We have also shown that the e�ets of the system inhomogeneity on the satellite orbit (through

the �rst order term of dynamial frition) are negligible. We deide, therefore, not to implement

F

(1)

in our alulations.

Our goal is to hek whether, as Chandrasekhar's expression for spherial haloes, it is reason-

ably aurate to use the results of B77 to reprodue dynamial frition in aspherial systems. We

also ompare the results of using Chandrasekhar's formula in axi-symmetri systems to determine

the e�ets of the veloity anisotropy on the satellite deay.

The method followed is essentially that presented in Chapter 6.

8.2 Galaxy and satellite parameters

The galaxy and satellite parameters an be found in Chapter 3. We limit our study to the set of

halo parameters enlosed in the model H2, whereas the satellite model orresponds to S1. The

galaxy model H2 orresponds to the one of G2, where the dis and bulge have been removed, so

that the output data an be used to analyse the dis and bulge e�ets on the satellite motion.

The values of the galaxy parameters an be found in Table 3.1. We arry a single simulation

with the model H5 in order to infer the dependene of our numerial experiments with the galaxy

partile number.
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Name Gal. Sat. i e r

p

r

a

model model [kp℄ [kp℄

H2S100 H2 S1 0

Æ

0.5 18 55

H2S130 H2 S1 30

Æ

0.5 18 55

H2S145 H2 S1 45

Æ

0.5 18 55

H2S160 H2 S1 60

Æ

0.5 18 55

H2S190 H2 S1 90

Æ

0.5 18 55

H2S100 H2 S1 0

Æ

0.3 30 55

H2S130 H2 S1 30

Æ

0.3 30 55

H2S145 H2 S1 45

Æ

0.3 30 55

H2S160 H2 S1 60

Æ

0.3 30 55

H2S190 H2 S1 90

Æ

0.3 30 55

H2S100e H2 S1 0

Æ

0.7 10 55

H2S130e H2 S1 30

Æ

0.7 10 55

H2S145e H2 S1 45

Æ

0.7 10 55

H2S160e H2 S1 60

Æ

0.7 10 55

H2S190 H2 S1 90

Æ

0.7 10 55

H5S145 H5 S1 45

Æ

0.5 18 55

Table 8.1: The numerial experiments. The peri- and apo-galatia are r

p

and r

a

, respetively,

and e = (r

a

� r

p

)=(r

a

+ r

p

) is the orbital elliptiity .

8.3 Numerial alulations

8.3.1 Code parameters

The numerial simulations were arried out by using the mesh-ode Superbox (see Chapter 2)

to evolve the galaxy-satellite system.

The system used was exatly that of PKB, with the di�erene that we remove the dis and bulge

omponents. In this paper a detailed desription of the system and the grid struture is presented,

whereas here we merely give a brief desription of the most important orbital parameters.

The grid-struture of the halo and satellite orresponds to that outlined in Chapter 6 and PKB

. The time-step is also �xed to the same value to make possible a inter-omparison of the veloity

anisotropy e�ets, not only by employing the semi-analyti ode, but also through the numerial

data.

8.3.2 Orbital parameters

We arry out a set of alulations varying the parameters of the satellite that remark the di�erenes

between the expressions (4.1) and (4.3), i.e Binney's and Chandrasekhar's formul�, when applying

both of them to the deay of a satellite within a attened halo. These parameters are:

(i) the initial orbital inlination (i), de�ned as the angle between the initial angular momentum

vetor of the satellite and the initial angular momentum of the dis. We expet the inlination to

derease in time as predited by Binney, whih shall not our by using Chandrasekhar's formula.

We note that all the alulations proeed with the same orbital sense, whih is irrelevant sine the

halo is non-rotating.

(ii) The satellite's initial orbital eentriity, de�ned as e = (r

a

� r

p

)=(r

a

+ r

p

), where r

a

; r

p

are

the apo and perigalation, respetively.

A wider study of the parameter-spae (as the satellite mass, initial apo-galation distane...et),

is arried out by PKB. Sine they do not introdue di�erenes between the two equations of dy-

namial frition, we �x these values along the set of omputations.

The system galaxy-satellite is onstruted as outlined in Setion 6.2.

The parameters of the numerial experiments are listed in Table 8.1.
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8.4 Halo Dynamial Frition

As ommented above, Chandrasekhar's expression annot explain some e�ets observed in N-

body alulations of satellite deay within atten haloes (PKB). Our aim is to hek Binney's

approximation (B77) for systems with anisotropi veloity dispersion (for a detailed study of the

frition fore see Chapter 5).

For simpliity, we reprodue here the analyti formul� employed along this study. If the

distribution funtion in the veloity spae is axi-symmetri, the spei� zeroth order frition fore

is (B77)

F

i

= �

p

2��

h

(R; z)G

2

M

s

p

1� e

2

v

ln�

h

�

2

R

�

z

B

R

v

i

(8.1)

F

z

= �

p

2��

h

(R; z)G

2

M

s

p

1� e

2

v

ln�

h

�

2

R

�

z

B

z

v

z

;

where i = x; y and (�

R

; �

z

) is the veloity dispersion ellipsoid in ylindrial oordinates with

onstant eentriity e

2

v

= 1 � (�

z

=�

R

)

2

. We denote ln�

h

as the Coulomb logarithm of the halo

and

B

R

=

Z

1

0

dq

exp(�

v

2

R

=2�

2

R

1+q

�

v

2

z

=2�

2

R

1�e

2

v

+q

)

(1 + q)

2

(1� e

2

v

+ q)

1=2

B

z

=

Z

1

0

dq

exp(�

v

2

R

=2�

2

R

1+q

�

v

2

z

=2�

2

R

1�e

2

v

+q

)

(1 + q)(1� e

2

v

+ q)

3=2

As Binney shows, a body with mass M

s

will su�er a derease of its orbital plane inlination

whenever B

z

> B

R

(oblate halo). If the orbit is either oplanar or polar, the inlination remains

onstant sine, respetively, either the perpendiular or the planar omponent of v is zero. One

an easily probe that this expression reprodues Chadrasekhar's when e

v

= 0, i.e,

F

h

= �4�GM

2

s

�

h

(R; z)ln�

d

�

erf(X)�

2X

p

�

e

�X

2

�

v

s

v

3

s

; (8.2)

where X = jv

s

j=

p

2�.

One important aspet to note is that both expressions of dynamial frition have an anisotropi

halo density in base of the loal approximation (whih is denoted by �

h

= �

h

[r; �℄, where � is the

azimuthal angle de�ned by the angular momentum vetor). In pratie, this implies that the only

di�erene between both expression is that made by the anisotropy of the veloity distribution.

8.5 Fixing the Coulomb logarithm

Making use of the �tting proedure detailed in Chapter 6, we proeed to �x the Coulomb logarithm

by requiring the best �t of the semi-analyti to the numerial data during the �rst 3 and 4

orbits assuming, therefore, that the mass loss e�ets an be negleted along the early time of the

evolution. In Fig. 8.1 we plot the �ts of some of the experiments, onretely, those with inlinations

30

Æ

, 45

Æ

and 60

Æ

(olumns), with eentriities 0.3, 0.5 and 0.7 (raws). For eah model, the semi-

analyti ode is employed to generate the satellite orbit using Chandrasekhar's (gree lines) and

Binney's (blak lines) formula to reprodue dynamial frition. The �tting parameter �, de�ned

as the disrepany of the satellite position between numerial and semi-analyti data (eq. 6.2) is

alulated for the �rst 3 and 4 orbits, denoted with solid and dotted lines respetively. This �gure

learly shows that Chandrasekhar's formula poorly desribes the dependene of the satellite orbit

with the initial inlination, leading to a wider dispersion of the Coulomb logarithm values (for this

range of inlinations, between 30

Æ

and 60

Æ

, ln� 2 [0:9; 2:8℄). If Binney's expression is used, the

variation of ln� is highly redued (ln� 2 [2:3; 2:5℄), whih proves that this sheme suessfully
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Figure 8.1: Fitting parameter for diverse orbital eentriities and inlinations. Dotted lines

denote �ttings of the �rst 4 orbits, whereas solid lines of the �rst 3 orbits. We use dashed and

dotted-dashed lines to represent the results from Chandrasekhar's expression for k = 4 and 3

orbits, respetively.

Frition k ln� �

min

(kp)

Binney 3 2.4 1.3

4 2.4 2.0

Chandrasekhar 3 2.1-2.2 8.1

4 2.1-2.2 10.6

Table 8.2: Results of the �tting proedure applied to the numerial alulation of Table 8.1 for

both formul� of dynamial frition.

desribes the e�ets of the anisotropi veloity dispersion on the satellite deay, independently of

the orbital inlination. These di�erenes beome muh larger if the range of inlinations is wider.

We must note that Binney's formula also presents barely dependene on the satellite een-

triity, ontrary to Chandrasekhar's expression.

Even if the eentriity and inlination are �xed, i.e the �t is over a given model, Binney's frition

improves the auray of the �t from 50-150% with respet to Chandrasekhar's result.

If Chandrasekhar frition is used, the Coulomb logarithm that produes the best �t beomes

lower as the inlination inreases. As we will see below, sine dynamial frition is proportional

to ln�, the use of the averaged value implies an overestimation of the fore for high inlinations

and vieversa.

The �nal averaged over the numerial experiments of Table 8.1 is plotted in Fig. 8.2. This

�gure shows the high disrepanies produed by Chandrasekhar's expression if the �t is for a

large range of orbital inlinations and eentriities, as expeted. The minimum of the urves

determines the value of ln� that leads to the best �t for both formul�of dynamial frition, whih

we summarised in Table 8.2. The values of �

min

denote the error per unit urve assoiated with

the �t.
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Chandr. k=3

Binney k=4

Binney k=3

Chandr. k=4

Figure 8.2: Average of the �tting parameters over the alulations of Table 8.1.

8.6 The veloity anisotropy e�ets

In this Setion, we make a omparison of the di�erent e�ets that the veloity anisotropy indues

on the evolution of the satellite orbit.

8.6.1 Satellite deay and mass loss

One of the most important e�ets of dynamial frition is the monotoni redution of the orbital

angular momentum and energy along the satellite evolution that leads to a progressive derease

of the averaged galato-entre distane. The numerial alulations arried out by PKB show a

strong dependene of the deay time on the initial inlination that must be ompared to analyti

estimations.

In Fig. 8.3 we plot the radius evolution (left olumn) and mass evolution (right olumn) for

those models with e = 0:5. The value M

s

(t) being numerially alulated as explained in Se-

tion 4.3. From this �gure, we onlude that Binney's expression learly produes more aurate

results than Chandrasekhar's one for the whole range of orbital inlinations. This result is not

surprising due to the small dependene of the Coulomb logarithm on the inlination and een-

triity as it is shown in Fig. 8.1.

Additionally, the value of ln� that produes �

min

�ts not only the �rst two and three orbits, but

also suess in reproduing the deay time of the satellite.

PKB observe that oplanar satellites su�er higher frition than those following polar orbits,

leading to survival times over 70% longer. Due to the presene of dis in their galaxy model, it

is unlear the ontribution of the dis anisotropy on the deay di�erentiation as a funtion of the

inlination. Our numerial alulations where the dis and bulge are removed show a range of

survival times that goes from 3.7 Gyr up to 6 Gyr, using the same orbital parameters and halo

attening as PKB. This implies a deay time di�erentiation of around 60% between polar and

oplanar satellites, whih indiates that the dis ontribution might be of the order of 10%. The

e�ets of the dis on the satellite orbit are studied in more detail in Chapter 9.

Depending on the symmetry of the halo distribution, one an observe the following e�ets:
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Figure 8.3: Radius and mass evolution for the models of Table 8.1 with e = 0:5. Dotted lines

represent the numerial evolution, whereas full and dashed lines the data obtained from the semi-

analyti ode using Binney's and Chandrasekhar's expressions to desribe the dynamial frition

proess.
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� Spherial mass distribution. Isotropi veloity distribution Satellites orbiting sys-

tems with spherial distribution funtion move along orbits that do not depend on their

orientation with respet to the symmetry axis (see Chapter 6).

� Flattened mass distribution. Isotropi veloity distribution The spatial aspheriity

provokes a strong di�erentiation of the satellite deay as a funtion of the orbital inlination.

Assuming the loal approximation as valid, dynamial frition in suh a system an be

reprodued by Chandrasekhar 's formula. Although this distribution annot be found in the

Nature, it is interesting as an exerise.

� Flattened mass distribution. Anisotropi veloity distribution The main inuene

of the veloity anisotropy on the satellite orbit is the attenuation of the spatial anisotropy

e�ets, whih is equivalent to B

R

< B

z

in Binney's formula (eq. 8.1, oblate systems). As

Fig. 8.3 shows, if one assumes an isotropi distribution in veloity spae (B

R

= B

z

) or,

equivalently, we use Chandrasekhar's formula to reprodue dynamial frition, this leads to

an overestimation of dynamial frition for low inlinations and a underestimation for those

satellites following high inlined orbits.

For simpliity, we do not plot the radial evolution for e = 0:3; 0:7 sine these results have been

proved to be independent of the initial eentriity.

Along the orbit, the satellite loses mass due to the ation of tidal fores on the satellite partiles.

The absene of dis and bulge makes the time-sale of the tidal fore to be shorter than the motion

of the satellite partiles around the entre-of-mass. In this regime, the mass stripped by the tidal

fore an be properly reprodued by the alulus of the Lagrange points, i.e those where the

external galaxy potential is equal to the satellite self-potential (see Setion 4.3).

The mass evolution represented in Fig. 8.3 is di�erent to that found PKB. They observe in their

numerial experiments that all satellites with M

s

= 0:1M

d

and r

0

= 55 kp are destroyed before

the remaining bound part of the satellite reahes the entral region of the galaxy, independently on

the orbital eentriity and inlination (see Chapter 7). However, if the dis and bulge are removed

(implementing the same satellite models and initial orbital parameters), the mass evolution shows

a nearly monotoni derease whih leads to the inoming of bound satellites in the inner most part

of the galaxy. Due to the importane of the dis and bulge e�ets on the satellite dynamis and

mass evolution, we arry out a detailed study in Chapter 9.

8.6.2 Evolution of the orbital inlination and eentriity

Orbits around non-spherial systems have inlinations (i) that do not remain onstant but su�er

periodial osillations due to nutation (see Appendix A). One �xed the initial onditions, the

amplitude and frequeny of the nutation remain onstant if the frition fore is removed from the

equations of motion whereas, if it is implemented, proesses suh the nutation and preession vary

aordingly to the angular momentum and radial distane evolution. Our interest fous now on

the e�ets indued by the veloity anisotropy on the satellite inlination along the orbit.

In his work, Binney (B77) predits the progressive redution of i due to dynamial frition

if the veloity dispersion ellipsoid is axi-symmetri (�

R

; �

z

) and �

R

> �

z

. By symmetry, the

inlination derease will not our if the orbits are either oplanar (i = 0

Æ

) or polar (i = 90

Æ

).

The inlination evolution of models with e = 0:5 is plotted in Fig. 8.4 (left olumn), where dotted

lines denote the numerial data and solid and dashed lines the semi-analyti evolution if dynamial

frition is reprodued by Binney's and Chandrasekhar's formul�, respetively.

This Figure shows the redution of the averaged i predited by Binney and observed by PKB in

their numerial alulations. After the satellite has sinked to the most inner region of the halo, the

inlinations are as low as 10

Æ

barely dependent on their initial value. This large derease of i is well

reprodued by Binney's expression, although the nutation proess shows disrepanies with the

numerial result, whih is onneted with the poor �t of the orbit, despite the aurate desription

of the overall deay proess (this is also observed when applying Chandrasekhar's expression for
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Figure 8.4: Inlination and eentriity evolution for the models of Table 8.1 with e = 0:5. Dotted

lines represent the numerial evolution, whereas full and dashed lines the data obtained from

the semi-analyti ode using Binney's and Chandrasekhar's expressions to desribe the dynamial

frition proess.

dynamial frition in spherial systems, see Chapter 6).

As expeted, the orbital inlination of oplanar and polar satellites remains onstant.

If dynamial frition is reprodued by Chandrasekhar's formula, i.e the veloity distribution is

assumed isotropi, the averaged value of i does not hange along the orbit, whih learly omes

into ontradition with the numerial results.

In Fig. 8.5 and 8.6 (left olumns) we plot the omparison for models with e = 0:7; 0:3,

respetively. The results show barely dependene on the eentriity. It is interesting to note that,

independently of e, orbits that are neither oplanar nor polar present high drops of the mean value

of i. After the satellite sinks to the entre, the �nal orbital inlination lies for all the models in

between 10-20

Æ

.

We must remark the importane of the auray of the Binney's formula in order to desribe

orretly the proess of inlination derease that satellites su�er in axi-symmetri systems. This

result is ruial to simulate properly the satellite motion and to investigate the satellite distribution

around spiral galaxies.

Like the orbital inlination, the eentriity is one of the orbital parameters that an be indi-

retly measured from observations to determine the satellite motion around a galaxy. The right

olumn of Fig. 8.4 shows the omparison of the numerial eentriity evolution with both semi-

analyti approahes. As it was observed in Chapter 6, if the Coulomb logarithm is assumed

onstant, the analyti formul� of dynamial frition leads to an overestimation of the eentri-

ity derease, whih ours mostly at the late-times of the orbit evolution, the so-alled orbital

irularisation, and beomes stronger for low inlined orbits, those that su�er higher dynamial
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Figure 8.5: As Fig. 8.4 for models with e = 0:7. Note that the time-sale has a di�erent value.
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Figure 8.6: As Fig. 8.4 for models with initially e = 0:3. Note that the time-sale has a di�erent

value.
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Figure 8.7: Energy and angular momentum evolution along the orbits with e = 0:5. The numer-

ial evolution is denoted by dotted lines, whereas the semi-analyti data is represented by solid

and dashed lines if dynamial frition is reprodued by Binney's and Chandrasekhar's formul�,

respetively. The quantities E and L

z

are normalised to the initial value.

frition. Fig. 8.5 and Fig. 8.6 indiate that the irularisation inreases if the initial orbital e-

entriity is higher and dereases for more irular orbits. Both dynamial frition expressions

reprodue aurately the eentriity evolution for the �rst orbital periods, however at late-times

the eentriity exhibits a redution not present in the numerial alulations that an be as high

as 30% for low inlined satellites following high eentri orbits.

8.6.3 Energy and angular momentum evolution

A attened system possesses two analyti onstants of motion, the energy and the omponent of

the angular momentum perpendiular to the axi-symmetry plane (that we denote as L

z

). The

total angular momentum L

2

= L

2

R

+L

2

z

is, however, not onstant along the satellite orbit (see e.g

BT), but has periodi variations that orrespond to a preession of the orbital plane around the

z-axis.

Sine the dynamial frition fore has an opposite sense with respet to the satellite veloity,

it ats dereasing the angular momentum and energy whih indues a monotoni sink into the

inner regions of the halo potential. The redution of angular momentum, therefore, implies an

inrease of the energy (in absolute value), sine the potential enhanes for dereasing radius. Due

to the low magnitude of dynamial frition if ompared to the mean �eld fore, we expet an easier

omparison between numerial and semi-analyti data by the slow variation of L

z

and E along

the orbit. In Fig. 8.7 we plot the hanges over E and L

z

due to dynamial frition for the models

with e = 0:5. The results are equivalent to those of the radial evolution. The Chandrasekhar's
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Figure 8.8: Comparison between the model H2S145 (full line) and H5S145 (dotted lines).

formula overestimates dynamial frition for low inlined orbits and underestimate it for high

inlined orbits. For orbits with i < 45

Æ

, this appears as a stronger redution of the z-omponent

of angular momentum and, equivalently, a large inrease of the energy. The e�et is ontrary for

satellites with i > 45

Æ

.

This �gure illustrates how the kineti energy of the satellite is lost via frition, being observed by

the halo partiles. At the end of the simulation the angular momentum has a null value, i.e the

satellite remains in the inner most part of the galaxy.

It is interesting to note that the energy and angular momentum evolution present small osil-

lations along their evolution. This behaviour is due to the self-response of the halo to the satellite

motion. Sine superbox preserves the total energy and angular momentum, the halo also moves

around the entre-of-mass of the system. Due to the omplexity of the feedbak, it annot be

reprodued analytially, so that we deide to �x the halo entre-of-mass as the oordinate origin

in the semi-analyti ode (see Chapter 4).

8.6.4 Inreasing the number of partiles

The seletion of the Coulomb logarithm has been shown to be sensitive to numerial parameters

like the number of N-body partiles and the resolution of the ode (e.g Klessen & Kroupa 1998,

Fellhauer et al. 2000), through the dependene of the satellite-galaxy partiles enounters on these

fators.

In a very reent paper Spinnato et al (2003) show that the value of the Coulomb fator � is

inversely proportional to the system size, whih an be interpreted as the ell size for a ollision-

less partile-mesh ode suh as superbox. They show that, if the number of partiles is large

enough, the value of ln� approahes asymptotially to some quantitative value. In order to infer

whether the Coulomb logarithm that we �nd is sensitive to the partile number (N), we arry out

a alulation where N is eight times larger (halo model H5). The omparison between the satellite

deay is plotted in Fig. 8.8. We observe a derease of the deay time of around 15% (i.e inrease

of the frition fore) for inreasing N whih also auses a faster redution of the z-omponent of

the angular momentum and the orbital inlination (note that the �nal value of i is for both ases
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the same). Fitting the Coulomb logarithm yields to the new value ln�=2.6, i.e 8% larger than for

the model H2.

We think that this relatively small variation of the Coulomb logarithm indiates that the asymp-

toti value as a funtion of N might be lose to N � 10

7

. Though the variation of ln� is relatively

small, one an appreiate in Fig. 8.8 that the satellite orbit is signi�atively altered.

8.7 Conlusions

To asses the auray of Binney's equations (B77) in order to reprodue the satellite deay in

attened Dark Matter haloes, we perform a set of numerial alulations varying the orbital

inlination as well as the eentriity of the satellite.

The results of the omparison are ontrasted to the widely used Chandrasekhar's formula.

By means of the loal approximation, both equations inlude the spatial attening through the

aspherial density pro�le. This means that the di�erenes on the satellite motion indued by eah

treatment of dynamial frition ome from the anisotropy in veloity spae, whih is implemented

in the alulus of B77.

The auray of Binney's and Chandrasekhar's formul� in �tting the numerial orbits is deter-

mined by the alulus of the parameter �

2

=

P

(r

num

�r)

2

+�

2

�t

2

at the peri and apo-entres for

a given number of orbits. If dynamial frition is reprodued by Binney's equation, this quantity

shows disrepanies of approximately �

min

= 2 kp per unit orbit after averaging over the set of

experiments and for the �rst three orbits, meanwhile Chandrasekhar's formula produes values of

around � = 10 kp.

We onlude that Binney's expression faithfully reprodues the proess of dynamial frition in

anisotropi systems. The �t is as aurate as that employing Chandrasekhar's formula in isotropi

systems (see Chapter 6).

The omparison of the orbits resulting from Chandrasekhar's and Binney's expression of dy-

namial frition give us the possibility of asses the e�ets of the veloity anisotropy on the satellite

dynamis. We have proved that,

(i) if the density pro�le is in both equations � = �(r; �), where � = �=2� i is the azimuthal angle,

the orbits generated by Chandrasekhar's formula overestimate the satellite deay time for polar

orbits and underestimate it for oplanar ones. One e�et of the veloity anisotropy is then to

redue the interval of deay times as a funtion of the orbital inlination. The Binney's expression

has proved to reprodue aurately the numerial results independently of the initial eentriity.

Comparing the interval obtained by PKB to that where dis and the spherial bulge are removed,

we an assert that the dis anisotropy makes it about 10% wider for a dis with massM

d

= 0:1M

h

.

(ii) Dynamial frition in systems with anisotropi veloity distribution leads to a marked derease

of the orbital inlination (i) whih is well reprodued by Binney's expression. After the satellite

sinks to the most inner region of the galaxy, i lies within 10-20

Æ

, independently of the initial value.

(iii) The study of the energy and angular momentum evolution as a funtion of the orbital inli-

nation on�rm the results of (i) and (ii).

The semi-analyti eentriity evolution, either employing Chandrasekhar's formula or Binney's

one, shows the so-alled irularisation proess, de�ned as the progressive redution of e along

the orbit. This variation is stronger for inreasing frition (like along oplanar orbits or during

the late-times of the evolution) and barely takes plae in the numerial alulations. A possible

solution my be sought in the galato-distane dependene of the Coulomb logarithm, as proposed

by Hashimoto, Funato & Makino (2002). Despite we �nd that it improves the desription of the

orbit at early-times, this sheme also overestimates the satellite deay time for all the experiments

(see Chapter 6 for more details). The small irularisation along the orbit agrees with the results

of van den Bosh et al. (1999).

Our experiments show the e�ets that the presene of dis and bulge introdue on the satellite

mass loss by omparing them to those of PKB. This is analysed in detail in Chapter 9 , though

we an advane that their absene leads to the survival of a bound remanent after the satellites

omes to the inner most region of the halo, ontrary to the results of PKB. This results on�rms
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the importane of the dis and bulge presene in order to reprodue realistially the satellite

distribution around spiral galaxies.

The dependene of our results on the number of N-body partiles is small. Inreasing N by a

fator eight yields to di�erenes of 8% in the value of the Coulomb logarithm.

This study has proved that Binney's expression of dynamial frition is aurate in order to

desribe the satellite deay in attened haloes, independently of the initial orbital inlination

and eentriity. The results, therefore, allow the implementation of the semi-analyti ode of

Binney's equation to arry out a statistial analysis of the satellite evolution around attened

systems, whih would be time prohibitive if one utilises a N-body ode.



Chapter 9

Dis and bulge e�ets on the

satellite

9.1 Introdution

The urrently favoured old Dark Matter theory of galaxy formation postulates that the formation

of a massive spiral galaxy like our own is a onsequene of the hierarhial assembly of sub-galati

dark haloes, and the subsequent aretion of ooled baryoni gas in a virialized, galaxy-sale

dark halo (e.g Peaok 1999). Numerial alulations based on this piture are able to, at least

qualitatively, reprodue the harateristis of a dis galaxy (e.g Navarro & Steinmez 2000), though

some diÆulties still remain, like the overestimation of the dis vertial width and the number of

satellite galaxies.

The study of the repeated lose enounters and merges of the galaxy substrutures seems to

be meaningful to investigate the properties and evolution of galaxies a�eted by suh proesses.

Several N-body alulations were performed during the last deade in order to analyse the inuene

of minor mergers on galati diss in greater detail (e.g Quinn et al. 1993, VW). One of the main

onlusions was that merging satellite within the range of mass ratios M

s

=M

d

' 0:05; 0:2 an

ause a vertial thikening of the baryoni dis of a fator between 2 and four, depending on the

galato-entre distane, due to the response of the \stars" to the satellite perturbation. However,

the huge parameter spae of suh studies ompliates the overall inferene of the e�ets indued

by the merging proess on the dis evolution. The quantitate results also depend ruially on

parameters like the gas ontent and behaviour in the dis, indued by star formation or by the

satellite orbit.

Here in this Chapter, we attempt to study the problem from the opposite point of view, for-

mulating the following question: how does the dis (and bulge) presene a�et the dynamis, the

merging rate and the mass evolution of satellites? This subjet of investigation has been widely

analysed by arrying out numerial experiments (e.g Quinn & Goodman 1983 and VW) and with

semi-analyti modelling (T�oth & Ostriker 1992, Taylor & Babul 2001, hereinafter TB) in order

to determine the merging rate as a funtion of the orbital and galaxy parameters. These treat-

ments agree, that the main mehanism that suessfully desribes the satellite orbital evolution

is dynamial frition (see Chapter 5 for a detailed theoretial desription . Depending on the

parameters of the orbit, galaxy and satellite, this proess may lead either to the �nal merge of the

satellite into the galaxy or to its previous destrution.

Despite of the small mass ratio of the dis and bulge if ompared to that of the halo, the

baryoni omponent

1

may play an important role in order to aelerate the mass loss of the

1

Hereinafter, we take the liberty of denoting the dis and bulge partiles as the \baryoni omponent of the

galaxy", regarding that in superbox these partiles are idential to those of the Dark Matter halo, interating to

eah other only through gravity. Our de�nition, therefore, goes beyond the N-body sheme and it is thought to

give insights in a osmologial bakground.

107
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satellite via tidal shoks (e.g Sptizer 1987, Kundi� & Ostriker 1995, Gnedin & Ostriker 1997,

Gnedin & Ostriker 1999) and the enhanement of the deay rate when the satellite omes some

sale-lengths lose to these galaxy omponents, as onluded from the study of TB. Thus, the mass

loss also ontrols through dynamial frition (regarding that the spei� frition fore aomplishes

F

df

/M

s

[t℄) the deay proess.

In Setion 9.3 we investigate the e�ets that the dis and bulge presene indue on the satellite

orbit and evolution by omparing the numerial alulations of Chapters 6 and 8 , where the galaxy

is formed by a pure Dark Matter halo with axis-ratio 1 (spherial) and 0.6 (oblate axi-symmetri),

respetively, to those where the dis and bulge substrutures are inluded in the modelling of the

galaxy (Chapter 7, orresponding to the numerial experiments of PKB). In both ases, we use

spherial and axi-symmetri haloes, attempting to determine the inuene of the halo shape on

the dis and bulge ontributions.

In the seond part of this Chapter, Setion 9.4, we want to determine the auray of the self-

onsistent semi-analyti ode (Chapter 4) in order to desribe the satellite evolution. Whereas

in previous Chapters the satellite mass is implemented as an external output obtained from the

N-body data, so that e�ets indued by mass loss an be distinguished from those indued by

dynamial frition, in this Chapter we make use of the mass loss sheme outlined in Setion 4.3.

The results an be ompared with those obtained by TB using a similar semi-analyti ode. One

must, however, bear in mind that TB uses the numerial experiments arried out by VW in order

to selet the free parameters (dis and halo Coulomb logarithms plus the \energy fator", whih

multiplies eq. 4.5 and 4.7), whereas we use those of PKB. In both ases, galaxy and satellite models

are the same.

We expet di�erenes in the �nal value of the Coulomb logarithms sine: (i) the models of PKB

are omposed by nine times more N-body partiles for the halo and double the dis partiles and

(ii) PKB and VW make use of di�erent N-body methods, (mesh and tree odes, respetively).

If the semi-analyti treatment proves to produe an aurate desription of the numerial data,

we shall use this ode to arry out a statistial survey of the satellite distribution around spiral

galaxies in a following Chapter.

9.2 Numerial experiments

In this Setion the numerial experiments arried out along our study are outlined. We attempt

to analyse of the dis and bulge e�ets on the satellite dynamis and mass evolution. With that

purpose in mind, we ollet the alulations arried out in previous Chapters, whih possess the

same orbital, satellite and superbox parameters, the only di�erene being the presene of dis

and bulge. These parameters are summarised in Table 8.1.

To analyse of the dis and bulge e�ets we employ four di�erent galaxy models, denoted as

H1, H2, G1 and G2, where \H" means the galaxy formed by a pure halo, \G" if bulge and dis

are inluded, \1" if the halo is spherial and \2" if it is attened with axi-ratio q

h

= 0:6. The

haraters \a,e" denote di�erent orbital eentriities.

For more information, we give expliitely the list of tables in whih the properties of the galaxy

omponents and the satellite an be found,

(i) Galaxy model H1, H2, G1 and G2: Table 3.1

(ii) Satellite models: S1 and S2: Table 3.2.

9.3 Numerial analysis

In this Setion we examine the satellite deay and mass loss of the models presented in Table 9.1

in order to determine the ontribution of the baryoni substruture on the satellite evolution.
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Halo Name Gal. Sat. i

i

e r

p

r

a

shape model model [kp℄ [kp℄

Spher. H1S1a H1 S1 { 0.5 18 55

q

h

= 1 G1S100 G1 S1 0

Æ

0.5 18 55

G1S1180 G1 S1 180

Æ

0.5 18 55

G1S145 G1 S1 45

Æ

0.5 18 55

G1S1135 G1 S1 135

Æ

0.5 18 55

G1S190 G1 S1 90

Æ

0.5 18 55

H1S1e H1 S1 { 0.3 30 55

G1S100e G1 S1 0

Æ

0.3 30 55

G1S190e G1 S1 90

Æ

0.3 30 55

Oblate H2S100 H2 S1 0

Æ

0.5 18 55

q

h

= 0:6 G2S100 G2 S1 0

Æ

0.5 18 55

H2S130 H2 S1 30

Æ

0.5 18 55

G2S130 G2 S1 30

Æ

0.5 18 55

H2S145 H2 S1 45

Æ

0.5 18 55

G2S145 G2 S1 45

Æ

0.5 18 55

G2S1135 G2 S1 135

Æ

0.5 18 55

H2S160 H2 S1 60

Æ

0.5 18 55

G2S160 G2 S1 60

Æ

0.5 18 55

H2S190 H2 S1 90

Æ

0.5 18 55

G2S190 G2 S1 90

Æ

0.5 18 55

H2S100e H2 S1 0

Æ

0.3 30 55

G2S100e G2 S1 0

Æ

0.3 30 55

H2S190e H2 S1 90

Æ

0.3 30 55

G2S190e G2 S1 90

Æ

0.3 30 55

Table 9.1: Numerial experiments. The peri- and apo-galatia are r

p

and r

a

, respetively, and

e = (r

a

�r

p

)=(r

a

+r

p

) is the orbital elliptiity. Galaxy models \G" inlude dis and bulge, whereas

in the models \H" the galaxy is only formed by the halo of the models \G". The numbers \1,2"

denotes spheriity and oblateness, respetively. Note that the galaxy models H1 are spherial, so

that the orbit is invariant with respet to the inlination. q

h

denotes the minor to major axis-ratio

of the halo.

9.3.1 Spherial halo

The progressive loss of angular momentum and energy through the ation of dynamial frition

leads to the monotoni derease of the satellite galato-entre distane. The ontribution of eah

galaxy subsystem to the drag fore annot be, in priniple, deoupled. However, the omparison

between di�erent orbital parameters may help to estimate the ontribution of eah omponent to

the satellite deay.

In the left olumn of Fig. 9.1 we plot the omparison of the radius evolution between the

models H1 and G1 for di�erent inlinations and eentriities. Sine the halo of the galaxies H1

and G1 is spherial, the only anisotropy of this last model is indued by the dis attening and

rotation (see Chapter 7 for a detailed disussion of the dependene of the survival time on the

orbital inlination).

This �gure shows that, for non-rotating haloes, the presene of the dis in the inner region of the

galaxy introdues a dependene of the deay time on the orbital sense of motion through dynamial

frition, so that prograde satellites (those with orbits aligned with the dis angular momentum

vetor) deay about 1 Gyr faster than the retrograde (anti-aligned) ones if i = 0

Æ

and around 0.5

Gyr for orbits with i = 45

Æ

. The numerial alulations also demonstrate that polar orbits survive

longer than those oplanar. This dependene of the deay times on the orbital inlinations ome

through the 1=�v

2

in dynamial frition, where �v is the relative veloity between the satellite
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Figure 9.1: Radius and mass evolution for the satellite models within H1 (spherial halo) and G1

(H1 plus dis and bulge) of Table 9.1.

and the dis partiles. These results are also found by VW.

Comparing the deay of satellites within H1 (full lines) and G1 (dotted and dashed lines)

galaxies we observe that, independently of the orbital eentriity, the deay times of satellites

within the galaxy model H1 are very similar to those within G1 moving on oplanar prograde

orbits. Apparently, one should expet longer deay times for models without dis and bulge,

due to the absene of dynamial frition from these omponents. Sine the frition fore goes as

1=�v

2

, intuitively, satellites within H1 galaxies should have similar or larger deay times than

those following orbits with i > 90

Æ

, where the relative veloity is larger and the dis frition an

be negleted if ompared with the halo one

2

, so that one would expet the model H1S1a to sink

into the galaxy entre in a time lose to the models G1S1n, where n � 90. This is, however, not

the ase due to the strong mass loss indued by dis via tidal fores and shoks along the orbit.

The right olumn of Fig. 9.1 shows the mass evolution of the satellite. Satellites within H1

2

The halo is non-rotational, whih implies that the di�erenes on the satellite motion as a funtion of the orbital

sense are indued by the dis rotational veloity. It is evident that prograde orbits, where the satellite moves with

the rotational sense of the dis, su�er more frition than the retrograde ones
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galaxies lose their angular momentum before they are destroyed by the ation of tidal fores, whih

in pratie means that these satellites reah the inner most region of the galaxy like a ompat

body with some per ent of their original mass. This behaviour ontrasts with the mass evolution

of the satellites within G1 galaxies, whih su�er a strong mass loss at late-times (when the dis

and bulge start to dominate the galaxy potential) that leads to their �nal destrution (the satellite

is onsidered destroyed if M

s

< 0:1M

s

[0℄). The larger bound mass of satellites orbiting in the H1

galaxy leads to an enhanement of dynamial frition that gives rise to shorter merge times.

This results show that the dis presene introdue two opposite e�ets:

(i) It enhanes dynamial frition mainly for prograde satellites following low inlined orbits, whih

have a minimum relative veloity with respet to the dis partiles. The larger value of dynamial

frition leads to shorter deay times.

(ii) It dereases the satellite mass through tidal heating and tidal fores (see Setion 4.3 for more

details). Satellites do not su�er from dis and bulge shoks if their orbits are oplanar. In this

ase, the dis tidal fore inreases as the satellite sinks to inner regions, being responsible for the

progressive mass loss. The dis and bulge dominates the galaxy potential for r

s

< 7 kp, whih

approximately is equivalent to the last Gyr of the satellite evolution, when most of the mass loss

ours (see Fig. 7.1). If the orbit is inlined with respet to the dis plane, rapid potential hanges

our when satellites ross the dis whih lead to a perturbative response of the satellite partiles.

As a result, their binding energy dereases. This proess is alled tidal heating or also tidal shok.

Tidal heating has been shown to be nearly independent of the orbital sense (Gnedin & Ostriker

1999). However, it depends on the orbital inlination, so that polar orbits su�er smaller heating

than low inlined ones due to the shorter duration of the shok.

The smaller value ofM

s

due to the dis e�ets provokes an overall redution of dynamial frition

and, therefore, larger deay times.

Sine satellites within H1 galaxies have deay times shorter or omparable to those within G1

galaxies, we onlude that the overall redution of dynamial frition due to the enhaned mass

loss dominates over the additional dis frition.

9.3.2 Flattened halo

In Fig. 9.2 we repeat the omparison for the galaxy models G2-H2. As we �nd for the models

G1-H1, the presene of the dis and bulge leads to a steep derease of the satellite mass at the

late-times, whih does not our if the baryoni galaxy omponents are removed. As a result, the

satellite deay times in both galaxies are omparable.

It is interesting to point out the di�erenes that the halo attening indue on the dis e�ets:

(i) Comparing prograde and retrograde orbits within G1 and G2 galaxies, we �nd that the satellite

deay times are very similar, as we observe for the models G2S145 and G2S1135 (prograde and

retrograde orbits, respetively).

(ii) The dependene of the deay time on the orbital inlination is mainly produed by the halo,

as the omparison between polar and oplanar orbits within the galaxy models G2 and H2 shows.

(iii) For most part of the orbit, the mass evolution of satellites within G2 galaxies is very lose

to that of satellites within H2 galaxies (like for the models G1S1, a rapid mass loss ours at

late-times due to tidal stripping). The di�erenes in the mass evolution are remarkably smaller

than for satellites within galaxies with spherial haloes. This may indiate a strong redution of

the resonane frequenies of the satellite partiles, although this goes further our topi of study.

Points (i) and (ii) indiate that the satellite deay within galaxies with haloes as attened as

q

h

= 0:6 may be largely dominated by the halo frition. The point (iii) also points out that the

dis ontribution to the mass loss via shoks is partly redued if the satellite moves in galaxies

with attened haloes. Like for the models G1S1, tidal fores made by the dis and bulge potentials

lead to the �nal satellite disruption at late-times of the evolution.
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Figure 9.2: Radius and mass evolution for the satellite models within H2 (oblate halo, q

h

= 0:6)

and G2 (H2 plus dis and bulge) of Table 9.1 with initial eentriity e ' 0:5.

9.4 Semi-analyti analysis

We attempt to reprodue the results of the previous setion employing the semi-analyti ode

developed in Chapter 4.

This ode suessfully desribes the satellite deay if the mass loss is alulated from the

numerial data (see Chapters 6 and 8). One ruial point, therefore, is the theoretial desription

of the mass evolution for the set of orbital and satellite parameters employed along the numerial

study.

In order to hek the semi-analyti sheme, we attempt to reprodue the numerial data of

PKB, whih present a set of orbital eentriities and satellite masses wide enough to over the

most important range of parameter spae used in the subsequent study of the satellite distribution

around spiral galaxies. Observational data mainly provides the number of satellites as a funtion

of the galato-entre distane and inlination, so that we put speial attention on the evolution of

these parameters.
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Figure 9.3: Averaged �tting parameters as a funtion of the halo Coulomb logarithm for models

of Table 9.1 with spherial and attened halo. Eah urve is obtained �xing the ln�

d

to a given

value. The alulus of � results from the average over the �rst four orbits (k = 4).

9.4.1 Fitting the Coulomb logarithms

The free parameters of the semi-analyti ode are the Coulomb logarithm of the dis and halo.

Due to the spherial symmetry of the bulge, the frition introdues no di�erentiation on the deay

time as a funtion of the orbital inlination. If one also has into aount the small extension of the

bulge system, we expet negligible e�ets on the satellite motion until it reahes the inner region

of the galaxy where Chandrasekhar's and Binney's expressions of dynamial frition lose auray.

We deide, therefore, to neglet the bulge ontribution to the total frition fore of the galaxy.

We selet the free parameters to the set of simulations presented in Table 9.1 using the �t-

ting proedure of Setion 6.3. Reproduing the numerial alulations will provide a wide range

of satellite and orbital parameters neessary to desribe the satellite merging in spiral galaxies

depending on the halo axis-ratio.

It is of speial interest to hek whether the ode an give aurately the deay time and

orbital inlination if a statistial study of the satellite distribution shall be arried out in following

Chapters. For that reason, the alulus of the �tting parameter � is done for k = 4, overing as

muh time of the orbital evolution as possible. Larger values of k orrespond to epohs where

the mass loss may alter strongly the satellite motion, leading to e�ets that an be onfused with

those from dynamial frition.

In Fig. 9.3 we plot the results of the �tting proedure. The panels shows the � parameters

averaged over the models of Table 9.1 as a funtion of the halo Coulomb logarithm for three

di�erent values of ln�

d

. The alulations of the left panel aount for G1 models, whereas those

of the right one for the G2 models. The values of the respetive Coulomb logarithms that produe

the best �t to the numerial data are summarised in Table 8.2. The values obtained in Chapter 6

and 8 (ln�

h

= 2; 2:4, respetively) indiate that the dis presene slightly dereases the overall

ontribution of the halo frition, the halo Coulomb logarithm being redued over 10% (spherial

halo) and 25% (attened halo). If ompared to the value of TB (ln �

h

= 2:4), who alibrate the

semi-analyti ode using the numerial experiments of VW), the redution is about 25%, despite
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Frition k ln�

h

ln�

d

�

min

(kp)

G1 models 4 1.9 1.0 3.4

G2 models 4 1.8 1.0 4.1

Table 9.2: Results of the �tting proedure applied to the numerial alulation of Table 9.1 for

G1 models (left panel) and G2 models (right panel).

the larger number of N-body partiles N leads to the inrease of the Coulomb logarithm (N

h

of

the VW's halo model is 9 times smaller in PKB's work, whereas N

d

is twie larger). This result

suggests that, whereas the e�ets indued by the galaxy subsystems are reprodued equivalently

in both numerial odes, the semi-analyti alibration of the Coulomb logarithm is sensitive to

the numerial sheme.

Contrary to the halo Coulomb logarithm, the dis frition shows values of ln�

d

that double that

of TB. Again, it is unlear the reason for suh an inrease, (i) one possibility an be the low

resolution of superbox in order to resolve the vertial struture of the dis, whih may lead to an

overestimation of dynamial frition (see Chapter 4), (ii) the seond possibility an be found in the

estimation of the dis parameters (suh the vertial length and entral veloity dispersion). TB �t

them to the �nal values one the satellite has been destroyed, however, we deide to use the initial

values, i.e without evolution, so that the ode an be use in a full onsistent way, independently

of the numerial results. Due to the dis heating both, the dis vertial length and the veloity

dispersions, beome larger after the satellite sink. This inrease likely produes an enhanement

of dynamial frition due to the smaller values of the satellite veloity with respet to the dis

partiles.

Of ourse, our treatment also su�ers from the \time dependene" of ln�

d

due to the variation of the

galaxy parameters along the satellite orbit. These \feedbak" e�ets partially redue the auray

of the semi-analyti ode. Unfortunately, they annot be removed at this level of approximation.

The omparison of the �t between G1 and G2 models also provides information. The degree of

auray �

min

shows a slightly better reprodution of the numerial data if the halo is spherial.

The lower dependene of ln�

h

of the dis value agrees with the numerial results, whih shows

that the e�ets due to the anisotropy of the halo distribution funtion dominate over those of

the dis within this range of orbital and satellite parameters. As a result, the seletion of ln�

h

beomes less sensitive to the magnitude of the dis frition.

It is interesting to remark the small dependene of ln�

h

on the halo anisotropy, whih makes

possible the use of the semi-analyti ode in a wide range of q

h

.

9.4.2 Satellite deay and mass loss

In Setion 4.3 we present the sheme implemented in the semi-analyti ode in order to treat

the satellite mass loss proess. Mass stripping is indued by the tidal �eld of the parent galaxy,

whih removes those partiles that beome unbound along the satellite evolution. As it is shown

above, this proess is highly enhaned through bulge and dis tidal shoks. Our semi-analyti

ode implements the Gnedin & Ostriker (1999) expressions of tidal heating, whih permits the

analysis of the satellite's mass evolution for a wide range of orbits

3

.

Satellites with medium eentriity e ' 0:5

Fig. 9.4 shows the satellite evolution on �ve orbits with di�erent inlinations within the galaxy

model G1. The angle i is that between the angular momentum vetor and the dis rotation, so

3

The main advantage of this semi-analyti treatment is that it provides the expressions of satellite heating in two

regimes, \rapid" and \slow", whih aounts for a wide range of orbital eentriities. The distintion omes from

the omparison of the shok time-sale and the dynamial time of the stars moving around the entre-of-mass of the

satellite. Denoting � as the shok time-sale and t

h

the dynamial time at the half-mass radius, the \rapid" shok

regime aomplishes � � t

h

(highly eentri orbits) and vieversa in the ase of \slow" shoks (nearly irular

orbits).
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Figure 9.4: Satellite deay and mass evolution as a funtion of the inlination for the models

G1S1 (spherial halo). The dotted lines represent the numerial results whereas the solid ones the

semi-analyti evolution. The dis and halo Coulomb logarithms are those given in Table 9.2.

that i < 90

Æ

and i > 90

Æ

denote prograde and retrograde orbits, respetively, meanwhile i = 0

Æ

and i = 90

Æ

are oplanar and polar orbits.

The semi-analyti sheme suessfully desribes the satellite deay (left olumn) independently of

the orbital inlination. The mass evolution (right olumn) also shows that the analyti approxima-

tions suessfully provide the bound mass for di�erent inlinations, the disrepany being less than

20% until the satellite has less than ten per ent of its initial mass. The label of auray is very

similar to that ahieved by TB using a semi-analyti approah to the tidal shok proess instead

of the analyti expressions that are employed in our sheme. We note that: (i) Chandrasekhar's

expression is used in order to reprodue the dis frition and (ii) meanwhile the satellite mass is

alulated from the N-body eah 0.312 Gyr, the semi-analyti odes providesM

s

(t) eah time-step

(0.0013 Gyr), whih explains the smooth mass evolution present in the numerial urves and the

high resolution of the semi-analyti ones.

Fig. 9.5 shows similar results for satellites within the galaxy G2 (attened halo). The bound

mass urves of inlined satellites (those with i 6= 0

Æ

; 90

Æ

) present strong \jumps" due to the

eentriity variation along the orbit whih enhanes the energy gain from tidal shoks. The

overall evolution, however, learly traes aurately the mass loss and the �nal destrution of the

satellites.

Our semi-analyti sheme also reprodues the dis e�ets on the deay time-sales of the

satellite observed in the numerial alulations of VW and PKB. In spherial haloes, prograde

orbits deay faster than the retrograde ones due to the dis dynamial frition so that, for example,

the oplanar (prograde) satellite G1S100 deays within a time 30% shorter than the G1S1180

(retrograde). This disrepany is in 0.5 Gyr enhaned by the semi-analyti ode, whih may

indiate an overestimation of dis dynamial frition. The orbital distintion depending on the

rotation sense is redued in non-rotating attened haloes due to the enhaned density, whih

inreases dynamial frition. One an observe that, meanwhile the di�erene in the deay time
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Figure 9.5: As Fig. 9.4 with the galaxy model being G2 (attened halo).

between the orbits G1S145 and G1S1135 is around a 10%, in attened haloes it omes down to

4% approximately, whih is aurately reprodued by the semi-analyti ode. In this ase, the

satellite deay time is dominated by the Dark Matter omponent.

As expeted, the minimum and maximum deay times our for the oplanar and polar orbits,

independently of the halo axis-ratio, whih de�ne the \deay time range" �t = �

90

� �

0

, where �

90

is the deay time of a polar orbit following PKB's notation. As PKB observe, the omparison with

attened haloes shows that ��(q

h

= 1) = 0:3��(q

h

= 0:6), so that the halo attening enhanes

the dependene of the deay time on the orbital inlination.

Satellites with e ' 0:3 and e = 0

In Fig. 9.6 we plot the omparison between the semi-analyti and numerial galato-entre distane

and mass evolution for models with e ' 0:3. The lower mean density along the orbits indues a

longer deay time due to to the derease of dynamial frition. The semi-analyti data reprodues

the e�ets made by the halo anisotropy as well as the deay time ranges, with disrepanies less

than 25%. The orbit is remarkably well traed in all the alulations.

The mass evolution shows a negligible mass loss proess until the late times of the orbit, when

it su�ers a dramati loss. Due to the low eentriity, the tidal radius aomplishes along most

of the orbit R

t

� r

t

, even taking into aount the heating expansion from the shoks. However,

the energy gain is umulative proess that leads to a strong expansion of the mass shells due to

the large number of dis(bulge)-satellite enounters, taking into aount that the satellite starts

rossing the dis for r

s

< 15 kp (if ompared to the e = 0:5 orbits). At some point of the

orbit, as a result of the tidal heating, even the inner most shells of the satellite have extensions

omparable to the tidal radius, whih leads to the rapid mass loss. The Fig. 5 of TB shows that, if

the adiabati orretion is assumed independent of the radius r (measured in the satellite frame),

the semi-analyti sheme overestimates the mass loss for orbit less eentri than e ' 0:5. Our

proposal, based on the semi-analyti work of Gnedin & Ostriker (1999) solves this problem by
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Figure 9.6: Satellite deay and mass evolution as a funtion of the inlination for the models with

e ' 0:3.

re-distributing the energy gain after the shok as a funtion of the satellite star radius, so that

the adiabati orretion aomplishes A(r � r

t

) ' 1 and A(r � r

t

) ' 0, whih strongly redues

the heating expansion in the inner most shells of the satellite (see for more details Chapter 4).

Fig. 9.7 shows than our sheme also reprodues the mass and radius evolution in the thresh-

old ase of quasi-irular orbits (note that irular orbits e = 0 are solely available in spherial

systems) for both halo shapes. The small osillations present in the numerial alulations are

likely produed by the galaxy response to the satellite gravity, whih makes the entre-of-mass of

this last not to be �xed (we reall that r

s

is measured from this point). However, the galaxy does

not behave as a rigid body, so that the less massive sub-omponents, suh as the dis and bulge,

will strongly reat to the satellite gravity and vieversa. For instane, if one assumes that the

halo remains at a �xed position, the dis-satellite pair will su�er hanges in their distane with

respet to the galaxy entre-of-mass of around �r ' r

s

M

s

=M

d

= 6 kp as we see in this plot. If

the galaxy potential is axi-symmetri, only satellites in the symmetry plane an move along orbits

with e = 0.

It is interesting to underline that these satellites barely su�er from tidal shoks, neither from

the dis nor from the bulge, so that the mass loss is purely indued by the galaxy tides (note that

for dis shoks h�Ei

t

sh

=0

/ g

2

m

, where g

m

is the vertial aeleration, see eq. 4.5, therefore going

as g

2

m

� 1=r

4

s

).

In the semi-analyti alulations, the absene of dis and bulge leads to the �nal survival of

a bound remanent after the satellite has sinked into the inner most part of the galaxy. However,

this ontrasts with the numerial results. The reason may be found in a lak of resolution in

order to alulate R

t

� r



kp. We omment this below. An insight in this diretion is that the
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Figure 9.7: As Fig. 9.6 for irular orbits in G1 and G2 galaxy models.

semi-analyti ode aurately reprodues the disruption of eentri satellites with e = 0:3, see

Fig. 9.6, sine for these orbits the tidal heating is stronger and the satellite is more expanded.

Satellites with mass M

s

= 0:2M

d

We test the eÆieny of the semi-analyti ode in order to desribe the satellite deay and mass

loss of more massive satellites. We make use of the numerial experiments G1S2 and G2S2 (with

di�erent inlinations) of PKB. They also present alulations with the galaxy models G3 and G4.

However, we shall not arry out omparisons with these simulations sine the grid resolution is

twie poorer than in the models G1 and G2, whih is expeted to hange the Coulomb logarithm

than better �ts to the numerial data.

In Fig. 9.8 we plot the mass and distane evolution for the models with M

s

= 0:2M

d

. The

�gure shows a good agreement between the semi-analyti and numerial satellite evolution. The

deay times are around twie redued if we double the satellite mass, as expeted from the linear

dependene of dynamial frition on M

s

. As PKB �nd, the range of deay times show little

dependene on the satellite mass. Whereas for M

s

= 0:1M

d

we have that ��(q

h

= 1)=�

90

' 0:2

and ��(q

h

= 0:6)=�

90

' 0:4, for M

s

= 0:2M

d

we �nd ��(q

h

= 1)=�

90

' 0:3 and ��(q

h

=

0:6)=�

90

' 0:4.

The small redution of the deay range when inreasing M

s

may be found in the fast deay

of the satellites if ompared to the same orbits and M

s

= 0:1M

d

, so that the e�ets indued by

the anisotropy veloity distribution do not have time enough to at before the satellite loses its

angular momentum.

As a result of the high binding energy of the satellite partiles, a bound remanent reahes the

inner most region of the galaxy, independently of the orbital inlination and halo attening. The



9.4. SEMI-ANALYTIC ANALYSIS 119

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 1 2 3 4 5
0

0.5

1

t (Gyr)

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0

20

40

60

0 1 2 3 4 5
0

20

40

60

t (Gyr)

Figure 9.8: Mass and galato-entre evolution for models with M

s

= 0:2M

d

and initial orbital

eentriity e ' 0:5. The galaxy models are G1 and G2.

polar satellites show a stronger mass loss rates in the late-times of the orbit evolution if ompared

to the numerial data whih, however, lead to small disrepanies in the distane evolution.

9.4.3 Orbital inlination

One of the main e�ets of the veloity anisotropy on the orbit evolution is the derease of the

orbital inlination through the dynamial frition ation. The Binney's expressions have been

proved to be aurate in order to reprodue suh a redution (see Chapter 8).

PKB propose the halo attening as a removal mehanism of satellites following low inlined

orbits, whereas it enhanes the survival times of satellites on near polar orbits. This result may

help to understand the anisotropi satellite distribution observed by Holmberg (1969), Zaritsky &

Gonz�alez (1999) and Carney et al. (1987), who �nd in their observational samples that most of

satellite galaxies are loated on near polar orbits.

Bearing in mind the statistial study of the satellite evolution, we attempt to test the semi-

analyti ode in order to desribe the inlination derease in attened Dark Matter haloes.

Satellites moving within axi-symmetri systems experiene periodi variations of the angular

momentum vetor known as \preession" and \nutation". For a better understanding of the

inlination evolution we put speial emphasis on the nutation proess.

The amplitude of the nutation � os � = os �

1

� os �

0

, where � = �=2 � i and �

1

; �

0

are the

maximum and minimum value of the azimuthal angle, an be approximated in the regime of low

aspheriity as (see Appendix A)
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�os � = (I

z

� I

R

)

3GM(r)

2a

2

hri

sin

2

�

0

os

2

�

0

; (9.1)

with a period of

T = 2�

hri

2

os

2

�

0

a

; (9.2)

I

i

being the inertia tensors of the galaxy per unit mass with respet to the axi-symmetry plane and

a the z-omponent of the angular momentum vetor, whih is a onstant of motion. The quantity

hri denotes the averaged galato-entre distane. Even if our system an not be onsidered nearly

spherial, these expressions reprodue the general evolution of the inlination and its dependene

on the orbital parameters. From these equations we expet that, (i) the angle � remains onstant

if the galaxy is spherial (I

z

= I

R

), (ii) oplanar and polar orbits (� = 0 and � = �=2, respetively)

do not su�er from nutation, (iii) the nutation period dereases due to the satellite deay and (iv)

the amplitude is nearly onstant along most part of the orbit, before the dis potential dominates

(the halo mass pro�le an be approximated as M(r) / r for r > 15 kp, see Fig. 7.1).

Fig. 9.9 shows the orbital evolution of satellites following inlined orbits, regarding that the

inlination of polar as well as oplanar satellites remains onstant along their evolution. The

periodi osillations of the inlination represent the nutation of the angular momentum, whih is

produed by the aspheriity of the mass distribution, whereas the progressive deay of the averaged

inlination is aused by the anisotropi veloity distribution.

The semi-analyti ode reprodues the inlination redution for di�erent initial values and

satellite masses, although with a slight underestimation at late-times of the orbit (the disrepany

is between 5 and 30 per ent depending on the initial inlination).

The numerial alulations also show inlination redution for satellites moving within the galaxy

model G1 (spherial halo), whih is likely produed by the anisotropi veloity distribution of the

dis. The semi-analyti results also show a small derease of i. The reason is unlear, sine the

dis dynamial frition is treated by Chandrasekhar's expression (in Chapter we prove that this

theoretial approximation to dynamial frition does not produe suh an e�et, even if the mass

distribution is axi-symmetri), and might be aused by the poor resolution at small distanes (the

variation of i ours at r

s

� 2 kp, where the approximation we use in our sheme may be not

valid). As expeted, massive satellites and those on low inlined orbits su�er stronger inlination

derease, due to the larger value of dynamial frition along the evolution.

The results an be likely improved if a more aurate theoretial treatment of the dis dynamial

frition is inluded whih, so far, goes beyond our purpose.

9.5 Conlusions

We on�rm the di�erentiation of the deay time depending on the orbital sense of motion, whih

agrees with the numerial alulations of PKB and VW. As PKB, we also observe in the semi-

analyti data that this dependene is redued if the galaxy halo is aspherial.

Our results agree with those of TB in order to asses the importane of the dis presene in

order to redue the satellite mass by means of tidal shoks at the peri-galation passages. The

semi-analyti sheme developed by Gnedin & Ostriker (1999) has been proved to reprodue the

satellite heating after the enounters with the dis and bulge if the energy gain adds up after eah

shok, whih leads to a progressive expansion of the satellite mass shells. As a result of the tidal

heating, satellites are destroyed before they reah the most inner region of the galaxy. Numerial

alulations where the dis and bulge were removed and those with more massive satellites show

that bound remanents of the satellite an survive and reah distanes omparable to the bulge

sale-length.

We have developed an analyti treatment of the satellite deay in spiral galaxies that reprodues

in a self-onsistent way the numerial alulations after the Coulomb logarithms of the di�erent

galaxy omponents are �xed.



9.5. CONCLUSIONS 121

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

0 2 4 6 8
0

20

40

60

80

t (Gyr)

0

20

40

60

80

80

100

120

140

160

0

20

40

60

80

0 2 4 6 8
0

20

40

60

80

t (Gyr)

Figure 9.9: Inlination evolution for satellites following inlined orbits.

This ode also reprodues the e�ets that aspherial Dark Matter haloes indue on the satellite

evolution, speially the deay time range and inlination derease, thanks to the use of Binney's

formul�. The results indiate that a better approximation to the dis frition might be neessary

to desribe more preisely the satellite dynamis at late-times of the orbit, where the dis potential

dominates. At this range of distanes, the mass evolution sheme implemented in the semi-analyti

ode an su�er from resolution limitations for satellites with a onentrated mass distribution

or for those with small shell expansion as a result of tidal heating, like for example, satellites

following irular or oplanar orbits, these last independently of the eentriity. The improvement

of the semi-analyti ode in the inner region of the galaxy is, however, diÆult to arry out.

Taking into aount that R

t

' [M

s

=M

g

(r

s

)℄

1=3

r

s

, one needs resolutions of the order of r

s

'

[M

g

(r

s

)=M

s

℄

1=3

r



� 2 kp to aount for the total destrution of satellite on orbits with negligible

tidal heating. The analyti approahes, however, are only valid in the distane range r

s

� r



= 1

kp. We note that, despite the mismath at late-times, the inuene on the satellite deay is

minimum due to the small galato-entre distane.

The remarkable auray of the semi-analyti sheme in order to reprodue the numerial data

for a wide range of orbital eentriities, inlinations and satellite masses gives us on�dene to

arry out a statistial survey of the satellite distribution around spiral galaxies in a following

Chapter.
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Chapter 10

Satellite distribution in attened

haloes

10.1 Introdution

1

In this Chapter we analyse the possible onnetion between satellite dynamis in attened Dark

Matter haloes and the anisotropi satellite distribution around spiral galaxies.

Pe~narrubia, Kroupa & Boily (2001), hereinafter PKB, �nd in their numerial alulations

that satellites initially loated at 55 kp su�er deays that are strongly dependent on the orbital

inlination, so that polar satellites survive around 70% longer that oplanar ones. These results

suggest dynamial frition as the mehanism that removes low inlined satellites, yet an this e�et

be extrapolated to a population of satellites as a whole? To answer this question, a statistial

survey of satellite orbits and masses is arried out and ompared with the observational data

available nowadays.

We must note that this is a preliminary study, whih will be analysed in depth in a following

projet. Here, the problem is presented, together with the main e�ets of the halo morphology on

the satellite distribution.

10.2 Observations

So far, there are two samples of satellite distributions around spiral galaxies whih are large enough

to be statistially treated.

The �rst was olleted by Holmberg (1969) and aounts for satellites within a projeted radius

of 50 kp from the dis, ounting optial ompanions on the Palomar Sky Survey plates. In order

to determine the orbital inlination with respet to the axi-symmetry plane, the seletion riterion

disards galaxies with dis inlinations larger than 30 degrees with respet to the line-of-sight.

The total number of primaries was 58, with 218 satellites. From these satellites, Holmberg found

45 ompanions (optial and physial) within 30

Æ

of the major axis and 173 between 30

Æ

and 90

Æ

.

Had these ompanions been observed in a statistial isotropi distribution (i.e, where the number

of satellites is independent of the inlination), the expeted number in the �rst bin would be

218=3 ' 73 instead of the observed 45.

Following the reasoning of Quinn & Goodman (1987), a possible solution for suh a remarkable

absene of satellites in low inlinations might be the extintion by the dust in the orbital plane.

However, sine the radial density pro�le of the dis is exponential with a typial sale-length of

3.5 kp (Bahall, Smith & Soneira 1982), satellites at distanes as large as 50 kp must su�er

1

This Chapter presents the preliminary results of the future paper Pe~narrubia, Kroupa & Just, to be submitted

to MNRAS. Although the study is not yet omplete, we want to show that the available observational data of the

satellite distribution around spiral galaxies presents a morphology not yet understood.

123
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from negligible light absorption. Quinn & Goodmann attempted to verify this data by sanning

the Fisher-Tully atalogue (1981) and the UGC (Nilson 1973), whih provides the magnitudes,

position angles, axis-ratios, red-shifts and the HI lines. After disarding those satellites with

veloities that di�er by no more than the HI line width and those that may not be bound to the

parent galaxies, they obtained only 7 satellites within 50 kp.

Contrary to Holmberg's result, the studies on satellite distribution arried out by Bush (1983)

and MaGillivray et al. (1982) present no evidene for polar alignment. At the present, there is

no on�rmation of the so-alled Holmberg e�et in the literature.

A new sample of galaxies was presented by Zaritsky et al. (1997), inluding 69 parent galaxies

with luminosities similar to that of the Milky Way and with distanes not larger than 100 Mp

(for H

0

= 75kms

�1

Mp

�1

). Around these spiral galaxies 115 satellites were identi�ed as physial

ompanions with, unfortunately, only 9 of them lying within 50 kp. The main result of this

survey is the presene of the Holmberg e�et at distanes larger than 250 kp, whereas for smaller

distanes the satellite distribution appears to be nearly isotropi. The apparent anisotropy at

large projeted radii is similar to that found by Holmberg for R < 50 kp.

The observations of Zaritsky et al. (1993) and Zaritsky & Gonz�alez (1999) give a range of apparent

magnitude within �m

v

2 [2; 7℄ ompared to the parent galaxies (we note that from the 115

satellites of the sample, 61 have �m

v

� 5 and approximately 35 �m

v

� 3, so that the observations

are mostly ful�lled by massive satellites). The onversion of the apparent magnitude into mass

an be estimated as

M

s

M

d

=

�

s

�

d

10

��m=5

; (10.1)

where � is the mass-to-light ratio (using the notation of BT). The range of masses is therefore

M

s

=M

d

2 �

s

=�

d

[0:06; 0:4℄. Sine most of the satellites sample are irregular, one expets �

s

=�

d

<

1. However, the type indiates that most of them are strongly altered by the ation of tidal �elds

of the parent galaxy. This means that they have lost a large fration of the initial mass, this e�et

being stronger for the low massive satellites due to their smaller binding energy.

10.3 The galaxy and satellite parameters

In this Setion we present the galaxy and satellite models employed in order to reprodue the

observed satellite galaxy distribution around spiral galaxies with properties similar to the Milky

Way. The models are illustrated in more detail in Chapter 3, whereas here we merely omment

some parameters hanged to aount for the larger distane sales used for this study.

10.3.1 The parent galaxy

The galaxy model is omposed by dis, bulge and halo. The halo ut-o� radius is expanded out

to r

ut

= 504 kp in order to investigate the satellite distribution at distanes as large as those

presented by Zaritsky et al. (1997). The ore-radius of the halo is  = 3:5 kp. Sine the halo

is nearly isothermal (r

ut

� ), the mass has been linearly enhaned so that the veloity urve

reprodues that determined by Bahall, Smith and Soneira (1982). The halo mass orresponds

to M

h

(r

ut

) = 84M

d

' 4:7� 10

12

M

�

. The halo axis-ratio q

h

is treated as a free parameter that

an be varied in order to disern the possible onnetion between halo shape and the observed

anisotropi satellite distribution.

10.3.2 The satellite

The satellite is a King model with onentration  = log

10

(r

t

=r



) = 0:8, where r



and r

t

are the

ore and \tidal" radii, respetively. These models �t early-type dwarf galaxies (Binggeli et al.

1984).

Sine the satellite is treated as point-mass, the inuene on the satellite model is through

mass loss, whih is negligible for distanes larger than 200 kp. Taking into aount that the halo
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distane distribution has a onstant surfae density and that, for the range of masses presented

below, satellites with initially R < 60 kp and M

s

= 0:1M

d

merge into the parent galaxy (inde-

pendently of the initial orbital eentriity), one has that the fration of satellites sensitive to a

possible onentration distribution is of the order of 30 per ent, whih is redued for more massive

satellites. This rough estimate is supported by the small hanges over the mass distribution after

the sample is evolved (see below).

10.4 Projetion e�ets

The �nal distribution of satellites with respet to the axi-symmetry plane will be di�erent after

projeting the positions on the sky. To estimate the e�ets that the random projetion introdues,

we make use of the analytial treatment of Quinn & Goodman (1986).

Consider �rst a oordinate system aligned to the veloity distribution ellipsoid where the

satellite position is given by the radius R and the inlination i with respet the axi-symmetry plane.

De�ning now a Cartesian oordinate system on the sky (x; z), z being the axis perpendiular to

the dis, the oordinate hange is equivalent to the Euler transformation (see Goldstein 1980)

x = R(os
 os � sin
 sin os i) (10.2)

y = R(sin
 os + os
 sin os i)

z = R sin sin i;

where 
 and  , are the asending node and mean anomaly, respetively.

The distribution funtion that one observes on the sky �(x; z) results from the average over the

funtion �(R; i) in the galaxy frame. Assuming a uniform distribution of irular obits R =onst,

the average over 
;  is straightforward, leading to the solution

�

s

(r; �) = �

�2

H(R

2

� r

2

)H(R

2

sin

2

i� r

2

sin

2

�)

p

R

2

� r

2

p

R

2

sin

2

i� r

2

sin

2

�

; (10.3)

where the suÆx s denotes that the average is done for a given satellite with oordinates in the

galaxy frame (R; i) and the Heavy-side funtion is de�ned as H(x) = 1 if x > 0 and H(x) = 0 if

x � 0. If we have a sample of irular orbits distributed as �(R; i), the resulting projeted surfae

density is

�(r; �) = �

�2

Z

1

0

dR

Z

1

�1

d(os i)�(R; i) (10.4)

�

H(R

2

� r

2

)H(R

2

sin

2

i� r

2

sin

2

�)

p

R

2

� r

2

p

R

2

sin

2

i� r

2

sin

2

�

;

the oordinates (r; �) being the projeted galato-entre distane and the projeted inlination

with respet to the dis plane, respetively.

Observational values of �(R; �) predit a larger number of satellites in high inlined orbits, i.e

� � �=2. Sine the projetion average redues this anisotropy, one may expet distributions in

the galaxy oordinates that might as extreme as

�(R; i) = �

0

R

2��

H(sin i� sin i

0

); (10.5)

orresponding to a spatial density distribution going as R

��

(� = 2 would aount for a homoge-

neous surfae density) and to the omplete absene of satellites with inlinations less than i

0

(or

larger than � � i

0

in the ase of retrograde satellites). The radial and angular dependene of the

resulting distribution funtion an be expressed as,

�(r; �) / r

1��

�

0

(�)

The funtion �(r; �) normalised to the value at 90

Æ

is shown in Fig. 10.1 for a given distane. As

expeted, the projetion e�ets strongly redue the anisotropy observed in the galaxy frame. The
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shallower the spatial distribution is (� ! 1) for a �xed i

0

, the weaker is the exess of satellites

in high inlined orbits. The anisotropy an be enhaned by hoosing i

0

suÆiently lose to zero,

however, even if all orbits are polar, i

0

= 90

Æ

, the number of satellites with � = 0

Æ

is not zero.

Figure 10.1: Projeted surfae density as a funtion of the inlination with respet to the dis plane

for several values of the minimum inlination (i

0

) and the power-law slope of the spatial density

pro�le (�). Dotted lines represent the orresponding distribution funtions before projetion

(normalised to the 90

Æ

value).

One an expet the urves presented in Fig. 10.1 to be barely dependent on the orbital een-

triity. Non losed eentri orbits result in a similar projeted distribution, sine (i) the satellite

spends most time at the apo-galation and (ii) the apsides of the orbit form an annuli in the or-

bital plane (assuming the dynamial time to be short ompared to the Hubble time). The resulting

time average is, therefore, similar to a irular orbit with R � R

a

, where R

a

is the apo-galation.

Holmberg (1969) and Zaritsky et al. (1997) observe anisotropies after averaging over a given

distane range of the order of �(0

Æ

)=�(90

Æ

) ' 0:52, whih would indiate a very signi�ant absene

of low inlined satellites in the galaxy frame together with a steep spatial distribution.

10.5 Experiments

The strong onstraints that observations produe indiate that there must be a mehanism that

removes those satellites within some minimum inlination, whih might be as high as 45

Æ

. In order

to assert whether dynamial frition in attened haloes an be responsible of suh an anisotropy,

we arry out an statistial survey of satellite evolution to ompare with the observational data.

We must note that one of the main inognita is the initial distribution of orbits and masses.

However, due to the omplexity that the initial satellite distribution may present, it is useful

�rst to arry out a separate study of the di�erent e�ets that the di�erent orbital parameters and

satellite masses indue on the �nal distribution, in order to obtain a feeling for the evolution.
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10.5.1 Inlination evolution

The inlination i of satellites moving within and around attened systems does not remain onstant

along the orbit. There are two driving mehanisms that determine the evolution of i: (i) the

nutation e�et and (ii) dynamial frition.

Nutation

Nutation arises due to the potential quadrupole (Q) of the galaxy. Due to the small dis exten-

sion (around 95 per ent of its mass lies within 3.5 kp) and taking into aount that Q � 1=r

3

(whereas the zeroth order of the potential expansion goes as 1=r) the galaxy quadrupole ating

on satellites is mainly produed by the anisotropi mass distribution of the halo.

For low halo aspheriity, nutation an be estimated as a funtion of the orbital and galaxy param-

eters (see Appendix A),

os i

1

� os i = (I

z

� I

R

)

3GM

2a

2

r

sin

2

i

1

os

2

i

1

(10.6)

�

�

1� os

�

a

r

2

os

2

i

1

t

��

;

where I

x

is an eigen-omponent of the inertia tensor per unit mass (aomplishing that I

z

> I

R

in oblate systems). We denote asM the mass inside the radius r, a the initial z-omponent of the

angular momentum vetor and i

1

the initial inlination. It is interesting to note that orbits with

i

1

= 0

Æ

; 90

Æ

remain with onstant inlination, whereas the maximum variation ours for those

with i

1

= 45

Æ

. Sine a is maximum for irular orbits, we expet a stronger nutation the more

eentri the orbits are.

Due to the nutation e�et, orbits initially at the apo-entre evolve to inlinations that are equal

or larger than the initial one, sine os i

1

� os i � 0. Assuming an orbital period muh shorter

than the Hubble time, the averaged time dependene of nutation is simply 1/2. The number

of satellites per unit inlination is N(i) = �

0

sin i, where �

0

independent of i indiates that the

distribution is isotropi. The hange over the inlination distribution is therefore

�(R; i) = R

2��

�

�

�

�

dN

d os i

�

�

�

�

= R

2��

�

�

�

�

dN

d os i

1

�

�

�

�

d os i

1

d os i

� (10.7)

R

2��

�

0

�

1�K sin

2

i

1

os i

1

+K os i

1

�

�1

;

where

K = (I

z

� I

R

)

3GM

2a

2

r

:

To hek this estimate, we arry out an experiment where dynamial frition is swithed o�

and ompare the resulting urve with the initial one, Fig. 10.2. We use a sample of 1000 satellites

homogeneously distributed within [39; 66℄ kp, (in order to obtain a phase-mixing we do not employ

a single value of the initial distane) and with orbital eentriity e = (R

a

�R

p

)=(R

a

+R

p

) = 0:3,

where R

a

; R

p

are the apo and peri-galatia, respetively. The points represent the expetation

from eq. (10.7), whih shows a remarkable agreement with the semi-analyti result if �tting K.

Stronger halo attening as well as more radial orbits will lead to a stronger anisotropy in the

inlination distribution only due to nutation.

Dynamial frition

Satellites moving through a bakground of less massive partiles with an anisotropi veloity

distribution su�er a monotoni derease of the averaged inlination via dynamial frition (see

Chapter 7). This redution is larger the stronger the frition fore beomes and a�ets neither

polar nor oplanar satellites. The e�et on the �nal distribution is, therefore, opposite to that

indued by nutation. However, whereas nutation is nearly independent of r in isothermal haloes,
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Figure 10.2: Distribution in inlination after the sample is evolved one Hubble time without

dynamial frition (solid line) ompared with the initial one (dashed line). Points represent the

analytial estimate from eq. (10.7) arbitrarily normalised with K = 0:8. The bin is 10

Æ

. The set of

1000 satellites are initially homogeneously distributed within [39; 66℄ kp with initial eentriity

e = 0:3. The halo axis-ratio is q

h

= 0:5.

dynamial frition sales as �

h

/ 1=r

2

, so that we expet the inlination derease at large distanes

to beome negligible.

10.5.2 Single orbital parameters and mass values

By means of dynamial frition, the satellite su�ers angular momentum loss that leads to the

progressive sink to the galaxy entre. The satellite deay time (whih as a matter of fat we

onsider equivalent to the survival time, even if satellites reah the inner most region of the

galaxy) is a funtion of the initial orbital parameters and mass

t

df

= t

df

(i; R

0

; e;M

s

);

where R

0

is the initial distane, i the inlination and e the orbital eentriity.

In a spherial isothermal sphere, the deay time of irular orbits goes as (e.g BT)

t

df

/

R

2

0

M

s

: (10.8)

If the satellite moves in an eentri orbit (e > 0) with apo-galation R

a

= R

0

, one expets

a shorter deay time than the same orbit with e = 0 sine (i) the initial angular momentum is

lower and (ii) dynamial frition at the peri-galation is roughly of the order of �(R

p

)=�(R

a

) =

(R

a

=R

p

)

2

larger than at apo-galation (note that the larger satellite veloity redues the frition

fore at R = R

p

, so that this value overestimates the fration).

The attening of the halo and the dis implies the deay time to be dependent on the satellite

inlination. PKB �nd that polar and oplanar orbits posses the maximum and minimum deay

time, respetively, whih agrees with the theoretial desription of dynamial frition seen in

Chapter 5. Polar satellites, therefore, survive longer than those in low inlination orbits.
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Figure 10.3: Distribution of satellites with initial (R

0

; e;M

s

) = (45 kp; 0; 0:1M

d

) as a funtion

of the inlination. Dotted and solid lines represent the initial (t = 0) and evolved (t = t

H

)

distributions. The dashed line aounts for the initial inlination distribution of surviving satellites.

The sample ontains 1000 satellites, from whih 277 survive. The bin is 10

Æ

wide and the halo

axis-ratio q

h

= 0:5. Note: urves are normalised to the number of satellites in the set.

Consider �rst a set of satellites with �xed parameters (R

0

; e;M

s

) and di�erent inlinations,

i 2 [0

Æ

; 180

Æ

℄, where i > 90

Æ

denotes that the orbital sense is retrograde to the dis rotation. We

assume that orbits survive when t

df

> t

H

the Hubble time (t

H

= 12 Gyr) and M

s

(t

H

) > 0:01M

d

(lower mass satellites would be missed by the observational magnitude limit). One has three

possible ases,

� t

df

(i = 90

Æ

) < t

H

, whih implies that no satellites an be observed after one Hubble time,

independently of the initial inlination.

� t

df

(i = 0

Æ

) � t

H

� t

df

(i = 90

Æ

), therefore, only those satellites with some i � i

0

(or

equivalently i � � � i

0

for the retrograde ones) an survive after one Hubble time and be

observed. We de�ne i

0

as the minimum inlination, whih is dependent on the parameters

(R

0

; e;M

s

).

� t

df

(i = 0

Æ

) � t

H

, all the satellites of the sample will survive.

It is evident, that neither the �rst ase nor the last one an ause the observational anisotropy

present in the inlination distribution. To show that only a distribution of satellites with initial

parameters orresponding to the seond ase will result to a anisotropi inlination distribution, we

arry out a simple experiment. We reate a sample of 1000 galaxies isotropially distributed within

a halo of axis-ratio q

h

= 0:5, with (R

0

; e;M

s

) = (45 kp; 0; 0:1M

d

), i.e., we loate all satellites at

the apo-galation with eentriity e ' 0 (regarding that orbits in attened haloes do not exist

sine L

R

, the planar omponent of the angular momentum, is not a onstant of motion).

After evolving the system we obtain the distribution plotted in Fig. 10.3, where the minimum

inlination is i

0

' 30

Æ

. The dashed line shows the initial inlination distribution of the surviving

satellites. As a result of the inlination derease along the orbit through dynamial frition, the

�nal distribution overs the range [30

Æ

; 150

Æ

℄. Had the orbital inlination remained onstant, the
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(1) (2) (3)

Figure 10.4: Minimum inlination as a funtion of the galato-entre distane for four satellite

masses. Satellites follow irular (e = 0) and highly eentri orbits (e = 0:8) within a attened

halo of axis-ratio q

h

= 0:5 (solid lines) and q

h

= 0:2 (dotted lines). Notation: i

0

= 90

Æ

indiates

that no satellite survives, whereas i

0

= 0

Æ

denotes the survival of all satellites. For a given mass,

satellites with initial R

0

; i

0

to the left of the urves do not survive independently of the initial

orbital eentriity. The resolution in inlination is 10

Æ

. Note that two panels are plotted for a

better distintion of the urves.

resulting distribution urve would present a nearly Heaviside funtion within the range [60

Æ

; 120

Æ

℄.

Applying eq. (10.5) to the resulting inlination distribution, we obtain a projeted anisotropy of

0.73 for � = 2 and 0.69 for � = 3 whih do not reprodue the observational value (0.52).

In Fig. 10.4 we plot the minimum inlination as a funtion of the galato-entre distane for four

satellite masses and two halo axis-ratios q

h

= 0:2; 0:5. The eentriity is �xed to e = 0 (irular

orbits) and e = 0:8 (highly eentri orbit) to determine the funtion i

0

= i

0

(R

0

;M

s

). This Figure

shows that satellites with M

s

= 0:1M

d

and initial distane R

0

= 45 kp, the minimum inlination

is i

0

' 60

Æ

for q

h

= 0:5, whih means that satellites with initial i < i

0

are all destroyed after one

Hubble time whereas those with i > i

0

survive. Looking at the M

s

= 0:2M

s

urve one sees that

for this initial distane (and eentriity) no satellite an be observed whereas if M

s

= 0:04M

d

again all survive independently of the initial inlination. The alulus for M

s

= 0:6M

d

represents

the extreme ase, for whih the satellite must be loated large initial distanes in order to observe

it at t = t

H

. If satellites move along high eentri orbits e = 0:8 the deay time is strongly

redued, so that minimum distane for survival is approximately 50% larger ompared with the

ase e = 0. This plot shows that satellites with M

s

� 0:6M

d

and R

0

of the order or larger than

250 kp will survive independently of the initial inlination and orbital eentriity.

It is also interesting to note that the expeted minimum inlination of the example shown in

Fig. 10.3 is i

0

' 60

Æ

, whih agrees with the resulting distribution represented by the dashed line

(no inlination evolution).

We must remark that the anisotropy of Fig. 10.3 an be inreased by seleting properly a

ombination of (R

0

; e;M

s

). For instane, samples of satellites in haloes q

h

= 0:5 with an initial

isotropi distribution and (R

0

; e;M

s

) = (24 kp; 0; 0:04M

d

); (40 kp; 0; 0:1M

d

); (60 kp; 0; 0:2M

d

)

would result after one Hubble time to a Heavy-side distribution with i

0

� 80

Æ

without inlination
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Figure 10.5: Distane distribution of the sample of Fig. 10.5 evolved one Hubble time. Solely

those satellites that survive are inluded in the alulus, N

T

= 277.

evolution.

If the halo is more attened, the range of initial distanes in whih one expets a resulting

anisotropi distribution beomes wider. The maximum e�et ours for massive satellites (M

s

=

0:2M

d

) for whih �r � r(i = 0

Æ

)� r(i = 90

Æ

) beomes �r(q

h

= 0:5) ' 0:25�r(q

h

= 0:2), whereas

if M

s

= 0:04 one has �r(q

h

= 0:5) ' 0:7�r(q

h

= 0:2).

The next question is how the distane distribution appears after the system is evolved. If

the deay rate was independent of the galato-entri distane, one would expet a Heaviside

distribution. However, the numerial alulations of PKB, as well as those of Chapter 8, show

that the rate is aelerated at distanes lose to the galaxy entre, so that the range of distanes

within the satellite might be found after one Hubble time will be smaller. In Fig. 10.5 we plot the

resulting distane distribution of Fig. 10.3. The histogram is not a Heaviside funtion though, it

presents a ut-o� at large distanes orresponding to satellites with initial inlination i

1

= 90

Æ

.

Due to the non-linear deay rate, the �nal distane is very sensitive to the initial inlination, so

that small variations of i

1

lead to strong di�erenes on the �nal distane, whih explains the larger

number of satellite at R(t = t

H

) � 10 kp. We onlude that, if originally all satellites are loated

at a given distane, the �nal distribution will be strongly peaked at R(t = t

H

; i

1

' 90

Æ

).

10.5.3 Distribution of orbital parameters and masses

To assume that satellites formed with a single set of (R

0

; e;M

s

) is strongly unphysial sine all

osmologial theories of galaxy formation predit values that follow distribution funtions. The

question is, how does a ontinuous distribution of orbital parameters and satellite masses alter the

�nal distribution?.

To answer it, we build up a sample of 1000 satellite galaxies with (e;M

s

) = (0; 0:1M

d

) ho-

mogeneously distributed, �(t = 0) = 2, within the range R

0

2 [20; 80℄ kp, whih inludes the

three ases disussed above: (i) satellites with R < 40 kp will deay before one Hubble time, (ii)

those with R > 60 kp are observed after one Hubble time independently of the initial inlination

and (iii)the survival of satellites with intermediate initial distanes depends on the initial orbital
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Figure 10.6: As Fig. 10.3 with the sample overing a range of initial distanes R

0

2 [20; 80℄ kp.

inlination. The resulting distribution is plotted in Fig. 10.6. The number of satellites after one

Hubble time is 580, approximately half of them lie within the range 0

Æ

< i

0

< 90

Æ

. The dashed

line (initial inlination distribution of the surviving satellites) shows still some anisotropy whih,

however, is strongly smoothed if ompared to that of Fig. 10.3. The distribution beomes nearly

isotropi due to the inlination derease along the evolution (solid line).

This exerise has been repeated hanging the orbital eentriity and satellite mass, leading

to the same onlusion: only a given fration of satellite masses and orbits, those for whih the

ombination of (R

0

; e;M

s

) makes 0

Æ

< i

0

< 90

Æ

, an produe the observed anisotropi inlination

distribution.

We want to emphasise the small dependene of the �nal distribution on the orbital sense. This

result agrees with the numerial alulations of PKB, who �nd that the di�erentiation in the deay

time between prograde and retrograde orbits (via dynamial frition) is strongly smoothed as a

result of the halo attening.

10.6 The initial satellite distribution

In this Setion we outline the initial set of satellite masses and orbits that outome from the

Monte-Carlo sheme one some initial distribution is assumed.

10.6.1 The satellite masses

The appearane of large substrutures in the Universe is usually desribed by small utuations

in the initial bakground density that lead to the present mass distribution through the so-alled

merger tree proess. In this senario, dark matter haloes form hierarhially through the aretion

and merging of smaller substrutures that ondensed from the utuations of the initial density

�eld.

Sine the ollapse and viralization of dark matter haloes is thought to be non-linear, authors

usually resort to N-body alulations in order to follow the formation and evolution of these
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Figure 10.7: Initial mass distribution for a sample of N

t

= 10000 satellites.

systems. Unfortunately, this sheme su�ers from strong limitations, like expensive omputational

times and low resolution.

The alternative an be found in the Press-Shehter formalism (Press & Shehter 1974). This

sheme has been found to be in remarkable agreement with the N-body omputations, providing

the initial mass distribution from the linear analysis of the utuation spetrum, and the orre-

sponding evolution through a hierarhial lustering (e.g, Efstathiou et al. 1988, Laey & Cole

1994 and referenes therein). This theory has also been extended (Bond et al. 1991, Laey &

Cole 1993) to follow the history of individual partiles in order to produe the merger-trees of

individual haloes.

In our study of the satellite distribution in spiral galaxies, we simply employ the Press-Shehter

sheme to reprodue the initial mass spetrum of satellites within a given halo. This theory predits

that the umulative total massM(M) below the mass M as

M(M) /M

1��

; (10.9)

where � has been found to have a value of 1/2 in order produe the best �t to numerial alulations

(Press & Shehter 1974, Laey & Cole 1993, Tormen 1997). We note that, though this distribution

diverges for M ! 0, the umulative mass is integrable.

Taking into dynamial onstraints, we limit our analysis to a range of massesM

s

2 [0:1; 0:6℄M

d

whih reovers most part of the observational data after the set of satellites has been evolved.

In Fig. 10.7 we plot the initial mass distribution obtained from the Press-Shehter formalism

within the range ommented above. The �gure is done for a set of 10000 satellites, 90 per ent of

them having 0:1M

d

�M

s

� 0:5M

d

.

10.6.2 Spatial distribution

Theoretial studies of hierarhial galaxy formation in the CDM frame, where the density peaks

that are site of galaxy ollapse in the Gaussian random �eld, predit triaxial systems (Bardeen et al.

1986). Using the CDM spetrum, osmologial N-body alulations (Frenk et al. 1988, Dubinsky

& Calberg 1991) result to highly attened haloes with prolate triaxial shapes (if  � b � a then
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isoth

NFW

Figure 10.8: Upper panel: Initial inlination distribution for three values of q

h

. The sample

of satellites ontains N

t

= 10000. Lower panel: Spatial distribution of satellites when using a

singular isothermal pro�le and that propose by NFW.

=b > b=a ' 0:5 and =a ' 0:5). The dissipative infall of gas during the formation of a galaxy

modi�es the halo shape, so that the axial ratio b=a grows to 0:7� 0:8 whereas =a barely hanges

(Dubinsky 1994).

CDM osmology predits the formation within haloes of substrutures with nearly sale free

density pro�le, that one an identify as satellite galaxies. Whereas it is not obvious that the

initial spatial distribution of suh objets should aount for the halo mass distribution, in this

preliminary study we assume that satellites follow the density pro�le of the parent galaxy. For

omparison, we also inlude samples with isotropi inlination distributions at t = 0.

Isothermal model

Consider �rst a attened halo with a singular isothermal pro�le, then

�

isoth

(R; i) =

�

0

R

2

�

os

2

(i) + sin

2

(i)=q

2

h

�

�1

; (10.10)

where �

0

is a onstant.

The �rst hypothesis in our work is that the satellite distribution follows the mass distribution of

the parent galaxy. We generate a sample of satellites using the Monte Carlo sheme by alulating

the probability of eah satellite to move along a orbit with initial inlination i. The normalised

umulative probability as a funtion of the inlination is from eq. (10.10)

^

P(< i) =

1

2

�

1 +

atanh[

p

1� q

2

h

os(i)℄

atanh

p

1� q

2

h

�

: (10.11)

The resulting initial inlination distribution (number of satellites per unit angle, �

0

), is plotted in

the upper panel Fig. 10.8 for three values of q

h

. We note that smaller halo axis-ratios give rise to

larger number of satellites at small orbital inlinations.

We also generate samples where the initial inlination distribution is isotropi, sine the results

are more straightforward to interpret.
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NFW model

Navarro, Frenk &White (1996), hereinafter NFW, use high-resolution N-body alulations in order

to investigate the struture of galati haloes and galaxy luster haloes. They �nd an \universal"

density pro�le that mathes halo masses ranging from dwarf satellites to those of rih galaxy

lusters

�

nfw

=

�

1

R(1 +R=R

s

)

2

; (10.12)

where R

s

is the sale-radius. This pro�le is nearly isothermal for small radii, produing a \ore"

for R � R

s

, i.e the entral part show a nearly onstant density pro�le, whih �ts better to

observations than models with a singular density urve for R ! 0. The outer region presents a

steeper pro�le, 1=R

3

, that results to a derease of the surfae density for R > R

s

. Although this

modelling of halo mass distribution solves problems like the un-orrelation between luminosity and

dynamis in bright galaxies (see NFW for more details) and math observations of intra-luster

strutures, some unertainties still remain, sine (i) the abundane of galaxies from the N-body

simulations is largely overestimated and (ii) the density pro�le is too steep at small radii to �t to

observations of dwarf galaxies.

The analysis of the satellite abundane as a funtion of the galato-entre distane may give

insights on the halo pro�le. With this aim in mind, we also employ the density pro�le of eq. 10.12 in

order to reprodue the satellite distribution. The normalised umulative probability as a funtion

of R is

^

P(< R) =

R

ut

+R

s

R +R

s

�

ln

�

R+ R

s

R

s

�

(R+R

s

)�R

�

(10.13)

�

�

ln

�

R

ut

+R

s

R

s

�

(R

ut

+R

s

)�R

ut

�

�1

;

where R

ut

is the halo ut-o� radius.

The omparison of the initial inlination distribution between the isothermal model and that

proposed by NFW is plotted in the lower panel Fig. 10.8 for a sample of N

t

= 10000 satellites. This

Figure shows that, ompared to isothermal distributions, NFW haloes provide a larger number of

satellites for R < R

s

= 250 kp whereas in the outer region this number dereases.

The range of distanes where we initially loate satellites aounts for the observational data

of Zaritsky et al. (1993), so that R 2 [40; 500℄ kp, approximately. Satellites with R < 40 kp

deay to the entre independently of the initial orbital eentriity (for the range of masses given

above). We expet that satellites with R > 300 kp su�er small frition due to the low density at

suh large distanes.

10.6.3 Eentriity distribution

The number of satellites as a funtion of the orbital eentriity that we use is that found by van den

Bosh et al. (1999). De�ning the initial orbital irularity as � = L=L



(E) where L



(E) = R



(E)V



is the initial angular momentum of a irular orbit with radius R



(E) = exp[(E � 1=2V

2



)=V

2



℄

and the same energy (note that 0 � � � 1, so that orbits with null irularity are radial and with

� = 1 irular). For an isothermal sphere one has that

1

x

2

+

2

�

2

ln(x) �

1

�

2

= 0; (10.14)

where the peri (R

p

) and apo-entre (R

a

) are given by the roots of the equality, the eentriity

being e(�) = (R

a

�R

p

)=(R

a

+R

p

) and x = R=R



.

Assuming that (i) orbits have an isotropi eentriity distribution and (ii) the energy of the

orbit is independent of the iulariity, van den Bosh et al. proves that if the galaxy potential
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Figure 10.9: Initial eentriity distribution for a sample of N

t

= 10000 satellites (solid line).

Points represent the initial distribution of � = v=V



.

an be written as � = V

2



log(R), the distributions of iulariity and energy are

P(E) =

R

u

H

V

2



exp

�

�

E

V

2



�

(10.15)

P(�) =

�

p

�

2

max

� �

2

;

where

u

H

=

Z

1

0

du exp(�u)

Z

�

max

0

�d�

p

�

2

max

� �

2

�

max

=

p

2u exp(�u+ 1=2);

denoting u = 2E=V

2



. The Monte-Carlo sheme employed to produe the distribution funtion

N = N(e) from this last equation is explained in detail in this paper.

In Fig. 10.9 we plot the eentriity distribution if the initial satellite energy is assumed in-

dependent of e. For tehnial reasons, it is useful to de�ne the quantity � � v=V



= R



(E)=R

0

�,

whih gives the initial veloity that leads to a given value of e. The distribution of � is represented

by dotted points. This �gure shows that most of the satellite move along orbits with intermediate

eentriities, avoiding irular as well as radial orbits. The averaged eentriity is �e = 0:55.

If the system is not an isothermal sphere, but it has the density pro�le presents a ut-o� radius

, van den Bosh et al. (1999) �nd for r

ut

= = 24 di�erenes in the distribution shape around

10% for e > 0:7 and negligible for smaller eentriities (see their Fig. 5).

10.6.4 Set of alulations

In Table 10.1 we present the samples employed for our study. The initial spatial distributions of the

satellite samples are those of eq. (10.10), isothermal, and (10.12) whih follows the NFW pro�le.

The initial inlination distributions are either isotropi or mathing the axis-ratio of the halo

(q = 0:2; 0:5). In all samples, the initial eentriity distribution is that outlined in Setion 10.6.3.
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Set Spatial distrib. Inlin. Distrib. q

h

N

t

N

e

1 Isoth. Isotropi 0.5 10

4

8442

2 Isoth. Isotropi 0.2 10

4

7398

3 Isoth. Flat. q = 0:5 0.5 10

4

7420

4 NFW Isotropi 0.5 10

4

7180

5 NFW Isotropi 0.2 10

4

7133

6 NFW Flat. q = 0:5 0.5 10

4

7369

Table 10.1: Set of alulations. N

t

denotes the initial number of satellites in the sample, whereas

N

e

after evolving it one Hubble time. q

h

is the halo axis-ratio of the parent galaxy. The spatial

as well as the inlination distributions are either isotropi or attened at t = 0.

We must omment that our initial sample of satellites is not in equilibrium, sine all orbit

are loated initially at the apo-entre. We expet, for instane, the �nal distribution to present

averaged distanes smaller than the initial one due to non-zero eentriity (besides the derease

indued by dynamial proesses suh dynamial frition) or the overall inrease of the orbital

inlination due to nutation.

10.7 Results

We present the evolved satellite samples presented above, together with the omparison with the

observational data of Zaritsky et al. (1997) and Holmberg (1969). The halo axis-ratio is a free

parameter to �t to the observed distributions, regarding that the most favoured osmologial

model predits a Gaussian aspheriity funtion entred at q

h

= 0:5.

10.7.1 Evolution of distane, mass and inlination

The �nal distributions of our samples are determined by omplex proesses suh as dynamial

frition and mass loss, whih highly depend on the initial orbital parameters of the satellites.

In order to illustrate how dynamial frition in systems with anisotropi veloity dispersions

alters the initial distributions, we plot in Fig. 10.10 the averaged radius and orbital inlination of

the evolved samples 1 and 2 as a funtion of the initial galato-entre distane (R

0

). The upper

panel shows that the �nal satellite radii are of the order of 20 to 80 % of their initial values by

means of dynamial frition. The derease of the mean galato-entre distane is learly dependent

on the radius where the satellites are initially loated. So that, for orbits lying at R

0

> 200 kp,

dynamial frition is muh more ineÆient that for orbits with R

0

< 200 kp. The plateau visible

at large radii indiates that a mean derease of 15-20 per ent an be expeted even for R

0

� 500

kp. The redution of the mean R is in this ase not aused by dynamial frition but by the

eentriity distribution (we reall that N(e) does not depend on R

0

). We onlude that dynamial

frition is negligible for R

0

larger than approximately 250 kp, independently of the halo shape,

whih agrees with the results of Fig. 10.4.

Dynamial frition strongly redues the galato-entre distane for R

0

< 200 kp, thus, a large

fration of satellites initially loated within this interval merge with the parent galaxy after one

Hubble time. Haloes with axis-ratio q

h

= 0:2 are less eÆient than those with q

h

= 0:5 in order

to remove satellites due to the stronger dependene of the satellite deay time on the orbital

inlination. This orresponds to the results plotted in Fig. 10.4, where it is shown that more

attened haloes inrease the survival times for those satellites with approximately i

0

> 20

Æ

,

independently of the initial mass and orbital eentriity.

The mass loss fration is plotted in the middle panel. We observe that only those satellites at

R

0

< 150 kp su�er mass loss. The satellite mass is stripped away by the ombined ation of tidal

fores and shoks. Both mehanisms produe non-negligible e�ets near the dis, R < 50 kp,

whih explains the nearly at urve for distanes larger than 200 kp. Satellites with larger radii



138 CHAPTER 10. SATELLITE DISTRIBUTION IN FLATTENED HALOES

Figure 10.10: Upper panel: Average of the evolved to initial distane ratio after the evolution

of the samples 1 (solid lines) and 2 (dotted lines) as a funtion of the initial radius R

0

. Middle

panel: Average of the mass variation after the evolution. Lower panel: Average of the inlination

variation.

have approximately the same mass after one Hubble time. it is interesting to note that satellites

embedded in highly attened haloes su�er, in average, lower mass loss. This is onneted to

the slower deay shown in the upper panel, sine larger average distanes imply weaker tidal

interations.

The inlination evolution also shows a lear dependene on the initial galato-entre distane.

Orbits initially at radii larger than 200 kp show enhaned inlinations after one Hubble time,

whih is probably due to nutation. Three aspets point to this explanation: (i) the average value of

i=i

0

is larger if the galaxy halo is more attened, (ii) dynamial frition is ineÆient for R

0

> 250,

the only fore ating on the satellite at those radii is, therefore, that indued by the aspherial

potential of the halo and (iii) in isothermal haloes, the satellite nutation is nearly independent

of the distane, whih would result to a roughly onstant inrease of the averaged inlination for

radii where the other fores ating on the satellite are negligible.

If satellites are lose to the dis, R

0

< 100 kp, dynamial frition dominates over nutation in

order to alter the orbital inlination. As PKB show, a strong redution of this quantity is expeted

if satellites move within haloes with anisotropi veloity distributions. The inlination derease is

around 5-10% larger if the halo has an axis-ratio q

h

= 0:2. The maximum redution of the orbital

inlination is around 20-25% of its initial value.

10.7.2 Inlination distribution

In Fig. 10.11 we plot the inlination distribution after evolution (t = t

H

= 12 � 10

9

yr). Panels

in the upper row shows the number of satellites per unit inlination for those satellites loated

with R 2 [9; 500℄ kp and R 2 [200; 500℄ kp (in the galaxy frame, i.e, radii are not projeted).

Comparing both panels we observe that the anisotropy of the distribution is stronger for satellites

at large radii if the initial distribution is isotropi (sets 1 and 2). However, if the initial distribution

follows that of the halo partiles, the �nal inlination of the satellites is roughly independent of
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the distane range. In this ase, the number of satellites in low inlinations is remarkably large,

obtaining a �nal distribution similar to that of the halo (oblate).

The omparison of the resulting histograms of the samples 1 and 2 (where the halo axis-ratio

is q

h

= 0:5; 0:2, respetively) show that (i) for highly attened haloes (q

h

= 0:2), the value of �

0

in

the whole range of distanes is larger for i < 15

Æ

, i > 75

Æ

than in haloes with q

h

= 0:5, whereas for

intermediate inlinations (i � 45

Æ

) we have that �

0

(q

h

= 0:2) < �

0

(q

h

= 0:5). (ii) If the alulus is

arried out for satellites loated at large radii (upper-right panel), both distributions show small

di�erenes. The anisotropy is, independently of q

h

, �

0

(0

Æ

) ' 0:6�

0

(90

Æ

).

The strong di�erentiation between the inner and the outer distributions is indued by the

dependene of the deay time on the galato-entre distane. In all of our samples, most of

the satellites orbiting at radii larger than 200 kp survive after one Hubble time evolution (see

Fig. 10.4). As Fig. 10.10 indiates, satellites initially loated at R

0

< 150 kp, su�er strong

deays, together with a marked derease of the orbital inlination that inreases the �nal number

of satellites moving along low inlined orbits. Dynamial frition also redues the main radii of

those satellites within 150 � R

0

� 250, though with barely inlination derease (PKB show that

the redution of i mainly ours at late times of the satellite evolution, when satellites are lose

to the galaxy entre. Within this range of initial distanes one has that, in average, R 2 [70; 175℄

kp after evolution expeting, therefore, low derease of the orbital inlination). This satellites

smooth the inlination distribution at R < 200 kp.

In the outer regions (R

0

> 250 kp) the e�et is the opposite. Dynamial frition is negligible and

the dominant e�et on the inlination evolution is nutation, whih a�ets the �nal distribution as

shown in Fig. 10.2. In the range 150 � R

0

� 250, however, the deay of satellites to R < 150 kp

ours mainly for those with low i, sine dynamial frition is stronger than for those following

near polar orbits (see PKB). This enhanes the anisotropy of the inlination distribution shown

in the upper-right panel of Fig. 10.11.

The upper-left panel shows that, whereas �

0

(90

Æ

) is barely independent on the distane sale,

the number of satellites with i < 45

Æ

enhanes for R < 200 kp due to the ow of satellites from

outer regions, whih is stronger the more attened the halo is.

In the lower raw panels we plot the distributions after projeting them into the sky. The main

e�et of the projetion is the strong redution of the anisotropy, so that, if for r > 200 kp one

has that �

0

(i = 0

Æ

) ' 0:6 �

0

(i = 90

Æ

), after projetion �

0

(� = 0

Æ

) ' 0:8 �

0

(� = 90

Æ

), whih

means that the projeted number of satellites on polar orbits ompared to that in oplanar is 25%

smaller

2

.

In both intervals, the resulting distributions di�er strongly to that observed by Zaritsky &

Gonz�alez (1999) (long-dashed lines) independently of the halo shape and initial inlination on-

�guration, espeially at large radii. The observational data show very large anisotropies whih

indiate that, in the galaxy frame, a large fration of satellites must move in nearly polar orbits.

Comparing these urves with those of Fig. 10.1 (where we assume that all satellite follow irular

orbits) one �nds that, in order to observe �

obs

(� = 0

Æ

)=�

obs

(� = 90

Æ

) � 0:04=0:12 ' 0:33 at

r > 200 kp, the distribution in the galaxy frame requires the total absene of satellites within

[0

Æ

; 80

Æ

℄ and spatial distributions saling as �(R) / R

�1

.

We must note, however, that the observational surfae density is zero for � = 0

Æ

. This indiates

that the data available are not omplete, sine even if all satellite move in (non-radial) polar orbits,

�

0

(0

Æ

) 6= 0 due to the projetion e�ets (see Setion 10.4).

A similar alulus was arried out for the samples 4, 5 and 6, orresponding to an initial

spatial distribution that follows the NFW pro�le. The results are very similar to those plotted in

Fig. 10.11, indiating that the �nal distribution of orbital inlinations is barely orrelated to the

initial satellite distribution in spae.

2

note that (i) � denotes the projeted satellite inlination with respet to the dis plane and (ii) we use projeted

distanes to di�erentiate the satellites that belong to the inner and outer distane ranges
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[200,500] kpc[9,500] kpc

Figure 10.11: Inlination distribution at t = t

H

. Upper raw: Inlination histograms for two

distane ranges (Samples 1, 2 and 3 of Table 10.1). Lower raw: Projeted distribution ompared

to the observational data of Zaritsky & Gonz�alez (1999).

10.7.3 Distane and mass distributions

In Fig. 10.12 we plot the �nal distribution of the projeted distanes and masses for the samples

1 and 4.

The distane distribution of the initially isothermal sample shows a linear derease for r > 100 kp,

i.e �(r) / r

�1

. Sine the apparent satellite-parent galaxy separation is redued by the projetion,

so that R

2��

! r

1��

(Setion 10.4, � = 2 for an isothermal pro�le), the linear behaviour of �(r)

indiates that, at large radii, the distane distribution su�ers barely hanges after the system has

been evolved, whih also ours when the satellite sample follows initially the NFW pro�le. As we

onlude in Setion 10.7.1, these results suggest that dynamial frition e�ets an be negleted

for R

0

> 250 kp.

For r < 100 kp we observe a strong derease of the satellite number. At this distane sale,

dynamial frition proves to be an eÆient mehanism in order to remove satellites, whih leads

to steep derease of �(r) for r ! 0 (see also the upper-panel Fig. 10.10).

In this panel, we also ompare the evolve distributions to the urve obtained from the observations

of Zaritsky et al. (1993). Unfortunately, the number of satellites belonging to the observational

sample is to low to produe aurate statistis in order to determine the initial pro�le that best

�t to observations.

The projeted samples show a lak of satellites for r > 300 kp. To solve this problem one should

initially loate more satellites at radii R

0

> 500 kp. However, it is not lear whether these bodies

are not a�eted by the bakground strutures present in the Dark Matter dominated Universe,

even if galaxies in the observational sample appear as isolated.

In the lower panel we represent the evolved mass distributions. The resulting mass spetra do

not di�er strongly to the initial mass sine mass removal mehanisms, like tidal fores and shoks,

are solely e�etive near the dis (R < 50 kp). Satellites with initial distanes larger than 150

kp (around 75% of satellites at t = 0) su�er a negligible mass loss along their evolution. As a
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result, the �nal distribution show small di�erenes depending on the initial density pro�le. These

are only visible for those satellites with initial masses between 0.1 and 0.2 dis masses, sine more

massive satellites own larger binding energies whih redue the mass stripping.

The best �t to the observational mass spetrum ours for �

s

=�

d

= 0:5. Satellites that originally

follow the NFW pro�le show stronger mass evolution than those with an isothermal spatial distri-

bution. The reason is that this sample presents a larger number of satellites at r < 50 kp, whih

indiates a higher interation with the dis (via shoks) and the inner galaxy potential (via tidal

mass stripping).

The evolved samples show a reasonable agreement for M

s

< 0:2M

d

. However, more massive

satellites are so far not observed, whih represent approximately the 40% of the total number of

satellites in our sample. It is not lear whether this an signi�atively alter the inlination and

distane distributions ommented above.

Isoth.

NFW

Observ.

Isoth.

NFW

t=0

Observ.

Figure 10.12: Upper panel: Projeted distane distribution after evolution ompared to obser-

vations of Zaritsky et al. (1993). Lower panel: Evolved mass distribution ompared to the

observational data of Zaritsky & Gonz�alez (1999). We use eq. (10.1), to onvert apparent magni-

tudes into satellite masses, where the best �t is found for �

s

=�

d

= 0:5. We denote N=N

e

as the

number of satellites per mass interval normalised to the number of surviving satellites after one

Hubble time.

10.8 Disussion

We have performed a statistial study of the satellite evolution in spiral galaxies based on the

hierarhial senario assumed by the CDM osmology. This investigation may put light on the,

so far, non-understood highly anisotropi distribution of satellites. The idea beyond this analysis

is the possible onnetion between the halo aspheriity, predited by CDM, with the loation of

satellites in spiral galaxies.

Observational data show projeted distributions that in the galaxy frame would imply the total

absene of satellites for orbital inlinations lower that 80

Æ

. If we assume that these samples are

omplete, there must be a strong mehanism that remove those satellites in low inlined orbits.
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Dynamial frition in spiral galaxies with attened haloes annot explain suh observations

with the initial satellite distributions employed in this exerise. The resulting inlination distri-

butions that we obtain are by far more isotropi than those observed by Zaritsky et al. (1993),

independently whether the initial spatial distribution follows an isothermal pro�le or that pro-

posed by NFW. Even haloes as attened as q

h

= 0:2 are not able to inrease the preferene of

satellite to be loated on high inlined orbits.

It is usually assumed that satellites formed in a spatial distribution that follows the Dark

Matter halo's one. However, the samples mathing the oblateness of halo at t = 0, remain oblate

after their evolution, i.e �(90

Æ

) < �(0

Æ

) whih, therefore, goes against the observational data.

A possible reason for suh a mismath with observations might be that the initial distributions

that we use do not orrespond to those in the Universe at early times. However, (i) the resulting

galato-entre distane distributions show a remarkable agreement with the observations for r <

300 kp, (ii) di�erent eentriity distributions to that proposed by van den Bosh et al. (1999)

would result to a hange of the slope of the distane distribution (for instane, if all satellite follow

nearly radial orbits, the projeted spatial distribution would appear steeper), but it is unlikely that

the �nal inlination distribution beame more anisotropi, sine it appears as barely dependent of

the spatial gradient. (iii) The satellite mass spetrum is not known. However, dereasing the mass

range seems not a remedy sine this would lead to a derease of the frition fore and, therefore,

a derease of the e�ets of the halo attening on the orbital inlination evolution.

We have analysed the evolutionary solution to the also known as \Holmberg problem" without

suess. A solution might be found in the initial distribution of inlinations. For instane, had

satellites formed initially in a prolate distribution, they would be observed today preferentially in

polar orbits if Dark Matter haloes are attened.

Another open question is whether the initial distribution is in equilibrium or, on the ontrary, it

follows the Dark Matter evolution on the galaxy sale at early times. This will be analysed in

Pe~narrubia, Kroupa & Just (2003) in more detail.
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Chapter 11

Summary

The results presented in this Thesis an be summarised as,

� Theoretial study of dynamial frition

In Chapter 5 we have presented a detailed develop of the method and the di�erent approxi-

mations that lead to the �nal expressions of dynamial frition in inhomogeneous systems.

The main results are:

(i) For ompleteness with the loal and the straight line approximations, the Coulomb log-

arithm must inlude a galato-entre distane dependene so that the maximum impat

parameter an be estimated as,

b

2

1

= b

2

0

+Q

2

+

�

�

jjrrhojj

�

2

V

2

0

4v

2

M

+ V

2

0

;

where b

0

is the minimum impat parameter, � is the system density pro�le, V

0

is the relative

veloity (in the straight line approximation) of the satellite-bakground partile enounter,

the satellite moving with a veloity v

M

and Q is a free parameter to �t to the N-body data.

The Coulomb logarithm in our sheme, therefore, provides the expliit dependene on V

0

; v

M

and �.

(ii) We also alulate the �rst order term of spei� dynamial frition that results from the

loal approximation, whih sales as F

[1℄

/ M

2

s

jjr�jj, whereas F

[0℄

/ M

s

�, whih implies

that the ratio F

[1℄

=F

[0℄

inreases for dereasing galato-entre distane and satellite mass.

We have also developed the expression of dynamial frition in attened systems, where

� = �(r; �), � being the azimuthal angle. The veloity dispersion ellipsoid of axi-symmetri

systems owns two omponents (�

R

; �

z

), whih aomplish �

R

� �

z

.

� Semi-analyti study of dynamial frition

In Chapter 4 we outline a semi-analyti ode that an reprodue the satellite dynamis

and evolution one the galaxy and satellite pro�les are provided. This ode implements

the analyti formul� of dynamial frition presented in Chapter 5 in order to test these

expressions as against the N-body data.

First, in Chapter 6 we hek dynamial frition in a spherial systems. The results indiate

that (i) the veloity dependene of the Coulomb logarithm an be negleted and (ii) for

satellites with initially M

s

= 0:1M

d

, where M

d

is the dis mass, the ontribution of F

[1℄

to dynamial frition is approximately 10� 30% at the peri and apo-galatia, respetively.

Moreover, sine F

[1℄
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^
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omponent of
^
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?

parallel to v

M

nearly vanishes after the average over one orbital period.

The resulting urves of the satellite's galato-entre distane evolution where F

df

= F

[0℄

+F

[1℄

and F

df

= F

[0℄

show disrepanies of solely 0.5 kp after 5 Gyr.

One it has been shown that neither the veloity dependene of the Coulomb logarithm nor

the addition of the �rst order term F

[1℄

introdue signi�ant e�ets on the satellite dynamis,
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in Chapter 8 we test the expressions of dynamial frition in axi-symmetri systems assuming

that ln� =onst and F

df

= F

[0℄

. We observe that (i) polar satellites survive longest, whereas

oplanar orbit present the fastest deay, (ii) for �

z

=�

R

= 0:6, the deay time of polar satellites

�

90

if ompared with that of oplanar ones �

0

aomplishes (�

90

��

0

)=(�

90

+�

0

) ' 0:26 (orbital

eentriity e = 0:5), (iii) the orbital inlination (i) su�ers a strong derease not observed in

spherial systems. Satellites, therefore, tend to align with the symmetry plane along their

evolution. For orbits not aligned with the symmetry axes, the �nal inlination after the

merge is i � 10 � 20

Æ

, independently of i(t = 0). The analyti expressions of Chapter 4

reprodue remarkably well these e�ets. We show that the anisotropy in veloity spae is

responsible for the inlination redution, whereas the dependene of the deay time on the

initial inlination is due to (i) the density attening, whih inreases �� = �

90

� �

0

and (ii)

the veloity anisotropy, whih redues �� . Sine (�

90

� �

0

)=(�

90

+ �

0

) ' 0:26 we onlude

that the attened density dominates the spread of deay times as a funtion of the orbital

inlination.

� Dis and bulge e�ets

An important aspet for osmologial studies is to determine the ontribution of the galati

baryoni omponents (namely, dis and bulge) to the satellite evolution. In Chapter 9 we

ompare the N-body evolution of several orbits in galaxies with and without bulge and dis

for two halo axis-ratios q

h

= 0:6 and q

h

= 1. The results an be summarised as follows:

(i) The dis and bulge presene enhanes the satellite mass loss through the ation of tidal

fores and tidal heating whih, as a result, slows down the satellite deay. On the another

hand, these omponents indue additional dynamial frition that redues the deay time.

Both e�ets are of the same magnitude, so that satellites in galaxies with and without a

baryoni mass fration present similar deay times. The dis rotation also di�erentiates

the satellite orbit with respet to its orbital sense (i.e., prograde and retrograde orbits), so

orbits anti-aligned with the dis rotation survive longer than those aligned (for example,

orbits with orbital inlinations i = 45

Æ

(prograde) and i = 135

Æ

in galaxies with q

h

= 1

show (�

135

� �

45

)=(�

135

+ �

45

) ' 0:06. However, this e�et is negligible if the halo is attened

q

h

= 0:6.

(ii) In the seond part of Chapter 9 we hek the auray of the self-onsistent semi-analyti

ode in order to desribe the satellite evolution in spiral galaxies (i.e., galaxies formed by

dis, bulge and Dark Matter halo). For that purpose, we implement a analyti sheme of

mass loss. The omparison is arried out for a large set of orbital parameters, satellite masses

and the two values of halo attening. We �nd that the semi-analyti algorithm reprodues

remarkably well the satellite dynamis as well as its mass evolution.

� Satellite distribution

In Chapter 10 we outline the present observational data of the satellite distribution in spiral

galaxies. This distribution is highly anisotropi, in the sense that the major part of satellite

galaxies is loated with � > 45

Æ

with respet to the dis plane. After the subtration of

the projetion e�ets, this anisotropy suggests the total absene of satellites with orbital

inlinations lower than approximately 80

Æ

.

The main goal of Chapter 10 is the analysis of the possible onnetion between the preferene

of satellites to move on high inlined orbits and the Dark Matter halo attening. The state

of a�airs is still preliminary. We evolve satellite samples with di�erent initial distributions:

(i) the initial spatial distribution is seleted either to be isothermal or to follow a Navarro,

Frenk & White (1997) pro�le, (ii) the initial inlination distribution is either isotropi or

it mathes the halo mass distribution. The galaxy parameters are assumed onstant and

independent of the satellite sample.

The evolved distributions show that, (i) the resulting anisotropy is roughly independent of

the initial spatial distribution, (ii) those samples that mimi the mass attening at t = 0,

present inlination distribution where the number of satellites moving on low inlined or-

bits is muh larger than those on nearly polar orbits (\oblate" shape) whih, therefore,
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goes against observations, (iii) those samples initially isotropi beome \prolate" as a on-

sequene of the halo attening. However, after projeting the sample onto the sky, the

�nal value �(0

Æ

)=�(90

Æ

) ' 0:8 (for q

h

= 0:5), where � is the surfae density as a fun-

tion of the inlination (� = 1 denotes isotropy), is by far lower than the observational one

�

obs

(0

Æ

)=�

obs

(90

Æ

) ' 0:33.

We want to ontinue with this investigation in a following projet, whih must inlude a

more realisti desription of the galaxy evolution. Satellite dynamis may give insights on

the halo shape and the initial satellite distribution, whih are diretly onneted with Dark

Matter models. Sine satellites are observed as far as 500 kp from the parent galaxy, this

study may also onstrain the halo density pro�le at large radii. These investigations will

provide a hint on the Dark Matter nature.
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Appendix A

Preession and nutation

Due to the omplexity of the motion of a partile within a axi-symmetri system, it is more straight

forward to analyse the evolution of the planes de�ned by the angular momentum (L) to desribe

the orbit of the satellite. In doing this, we shall apply the Euler angles for the satellite oordinates

(see Fig. A.1), de�ned as

!

x

=

_

� sin � sin +

_

� os (A.1)

!

y

=

_

� sin � os �

_

� sin 

!

z

=

_

� os � +

_

 ;

where ! is (Goldstein 1980)

v =

_

Re

R

+ _ze

z

+ ! � r: (A.2)

The position of the satellite in the orbital plane is determined by (R; z;  ;

_

R; _z;

_

 ), whereas the

plane itself by the angular momentum vetor, with oordinates (�; �). Note that eq. A.2 reovers

eq. 1B-23 of Binney & Tremaine (1987), hereinafter BT, if

_

� =

_

� = 0 8t.

Using this angles and spherial oordinates, the kineti and total energy of the satellite are

T =

1

2

(

_

R

2

+ _z

2

) +

1

2

R

2

!

2

z

+

1

2

z

2

!

2

R

(A.3)

E = T +�(r; �);

the potential supposed axi-symmetri. Using the Euler oordinates, the orbit of the satellite in

the orbital plane is de�ned by the potential and an be parametrised as (R[ ℄; z[ ℄).

Therefore, the Langrange funtion is

L =

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

!

2

R

+

1

2

R

2

!

2

z

� �(r; �) = (A.4)

=

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

(

_

�

2

+

_

�

2

sin

2

�) +

1

2

R

2

(

_

 +

_

� os �)

2

� �(r; �):

Sine in the Lagrangian � and  do not appear expliitely we have two onstant of motion

p

 

= r

2

sin

2

�(

_

 +

_

� os �) = R

2

!

z

� a (A.5)

p

�

= (R

2

os

2

� + z

2

sin

2

�)

_

� +R

2

os �

_

 � b;

the onstant a being simply the z-omponent of the angular momentum. After some algebra, one

ould easily hek that last equations are equivalent to

_

� =

b� a os �

z

2

sin

2

�

(A.6)

_

 =

a

R

2

� os �

b� a os �

z

2

sin

2

�

:
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z
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plane

Figure A.1: Euler oordinates of the satellite's position vetor (r) and the angular momentum

vetor (L).

It is straight forward to hek that if there is no variation of the angular momentum vetor, i.e,

_

� = 0 8t (whih, as we see later, is equivalent to have a spherial potential), then these last

equations redue to the ondition:

b = a os �; (A.7)

and therefore the angular momentum of the satellite is just

_

 R

2

= a = onst:

Substituting the onstant of motion in the equation of the energy (A.4) and using the de�nition

of the angular veloities (A.2) one �nds

E =

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

(

_

�

2

+

_

�

2

sin

2

�) +

1

2

R

2

!

2

z

+�(r; �) (A.8)

�

1

2

(

_

R

2

+ _z

2

) +

1

2

z

2

(

_

�

2

+

_

�

2

sin

2

�) + �

e�

;

where �

e�

= � + a

2

=(2R

2

) is the e�etive potential typially de�ned in axi-symmetri systems.

Note that E = E(a; b) is also a onstant of motion. From this last equation one ould solve the

evolution of � by quadratures if R[ (t)℄; z[ (t)℄ were known

_

�

2

sin

2

� =

�

E �

1

2

(

_

R

2

+ _z

2

)� �

e�

�

2(1� u

2

)

z

2

�

(b� a os �)

2

z

4

; (A.9)

where we substitute the value of

_

� from the eq. (A.7).

De�ning the variable:

u = os �;

it beomes

_u

2

=

�

E �

1

2

(

_

R

2

+ _z

2

)� �

e�

�

2(1� u

2

)

z

2

�

(b� au)

2

z

4

: (A.10)
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As expeted, the funtion f(u) is not determined for z ! 0 (f(u) = 0=0), orresponding to the

ase in whih the angular momentum is parallel to the z-axis, i.e, oplanar orbits.

It is immediate to �nd that the ondition of

_

� =

_

� = 0 8t is therefore equivalent to

E =

1

2

(

_

R

2

+ _z

2

) + �

e�

;

whih reovers eq. 3.53 of BT.

Until here, the development of these expressions has been done without loss of generality and it

holds for any partile moving within an axi-symmetri system. However, to arry on our study on

of the evolution Euler planes, we should use a determined potential and a given orbital eentriity.

We de�ne now:

�(u) = E �

1

2

(

_

R

2

+ _z

2

)� �

e�

= E �

1

2

(

_

R

2

+ _z

2

)�

a

2

2R

2

� �(u); (A.11)

whih aomplishes �(u) � 0 (the equality being for spherial systems).

Giving the initial onditions

_

�(t = 0) =

_

�(t = 0) = 0

u(t = 0) = u

0

;

it is straight forward to show that b = au

0

and �(u

0

) = 0 at t = 0. Sine the value of (R[ ℄; z[ ℄)

does not depend expliitely on �, the equation of the nutation beomes

_u

2

� f(u) = [�(u

0

)� �(u)℄

2(1� u

2

)

z

2

�

a

2

z

4

(u

0

� u)

2

: (A.12)

The funtion f(u) is limited to the interval (-1,1) orresponding to � 2 (��=2; �=2), thus any

value of u whih makes f(u) < 0 or loates out of this range has no physial meaning.

The solution of this last equation is in general not analytial, and should be alulated numer-

ially. However, it is interesting to estimate the behaviour of f(u). By de�nition f(u

0

) = 0, so

that the initial ondition is a root. For u tending to �1 the funtion is / �(u

0

� 1)

2

< 0, so that

the funtion is negative at � = ��=2. This implies that, at least, to roots must be present within

the interval u 2 (�1; 1)

Although this expression appears to be ompliate, one an atually analyse qualitatively the

evolution of � by alulating the points in whih

_

� hanges of sign, i.e, f(u) = 0.

Let's onentrate the our alulus in the interval 0 < u

0

< 1. Sine the initial ondition must by

de�nition be a root and sine f(u) < 0 for u ! 0, we an assert that within (0,1) there are two

roots, i.e, two values of � for whih

_

� is zero, that we all u

0

; u

1

. Out of this range, we have that

_

�

2

< 0 with, therefore, no physial meaning. The evolution of � limited within two �xed values

is alled nutation. At the same time, the variation of � implies a variation of � de�ned as the

preession of the orbit. (see Goldstein 1980).

One an atually alulate the magnitude of the nutation u

1

� u

0

by imposing f(u

1

) = 0.

However, this equality has no analytial solution for our system, and the root must be found

numerially.

In Fig. (A.2) we plot the funtion f(u) with initial onditions as in our model H2S145 (substi-

tuting the initial v

s

by the irular veloity). To determine the value of �(u) we alulate numeri-

ally the potential for di�erent �, whereas the onstant a is simply the z-omponent of the angular

momentum at t = 0 and E = �

e�

(u

0

). As we see, there are two roots, u

0

= os(�=4) � 0:71 and

u

1

� 0:5, i.e, �

1

� 60

Æ

. The amplitude of the nutation is therefore �� � 15

Æ

whih is slightly

lower than what we �nd in the numerial alulations.

The eq. (A.12) is a non-linear di�erential equation with no analytial solution. Even though,

it is interesting to obtain the dependene of the nutation on the orbital parameters. For that

purpose we attempt to solve it in the regime of low aspheriity, for whih it is aomplished that

z

2

j��j

a

2

<< 1: (A.13)
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Figure A.2: Behaviour of f(u) using the initial onditions of the model H1S145 to determine the

onstants.

The potential of an oblate halo with peaked density pro�le an be expanded in Harmoni series

�(u) = �

GM

r

+

GM

2r

3

(I

z

� I

R

)P

2

(u) +O

�

a

1

r

�

4

; (A.14)

where P

n

(u) is a Legendre polynomial and I

x

an eigen-omponent of the inertia tensor per unit

mass (aomplishing that I

z

> I

R

in oblate systems). We denote asM the mass inside the radius r

and a

1

the semi-major axis of the oblate. The equations of motion integration for suh a potential

leads to the solution

x

i

(t) = x

0;i

os

�

w

1

(t� t

0

)

�

�

1 +
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2

2
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2
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2
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2

�
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(t� t
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�

; (A.15)

where

w

2

2

=

9

2

I

z

� I

R

r

2

; w

2

1

= G��+ w

2

1

; �� =

M

4�r

3

=3

;

and x

i

the omponents of the position vetor in Cartesian oordinates. The average over one orbit

of period T = 2�=w

1

of the partile motion leads to the equation

< x

i

>

2

=

w

1

2�

Z

2�=w

1

t

0

x
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i

dt = x
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�

4

�
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2
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2

�

2

�

: (A.16)

Sine our aim is to give a general quantitative desription of the satellite evolution, in the regime

of low aspheriy, we shall approximate < x

i

>

2

' x

2

0;i

and therefore, for a satellite following a

irular orbit the averaged vertial omponent is < z

2

>= r

2

u

2

0

= onst.

De�ning the variable x = u�u

0

, the ondition of low aspheriity also implies x

1

= u

0

�u

1

<< 1,

where u

1

denotes the seond root of f(u). Sine the value of j��j is small we shall approximate

u

2
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� u

2

= (u

0

� u)(u

0

+ u) ' 2u

0

x, and 1� u
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' 1� u
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0
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�

; (A.17)

the solution is analytial and using our initial onditions it an be expressed as

x(t) = (I
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The solution gives an amplitude of

x

1

= (I

z

� I

R

)

3GM

a
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(1� u

2
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)u
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0

; (A.19)
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and a period of

T = 2�

r

2

u

2

0

a

: (A.20)

From the eq. (A.7), the preession in this regime is

_

� =

a(u
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� u)
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> (1� u
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2
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t

��

:

As it is dedued from the last equations,

(i) Preession and nutation vanish in spherial systems (for whih I

z

= I

R

).

(ii) Satellites following oplanar orbits do not present either preession or nutation. In the ase of

a satellite in a polar orbit, the nutation vanishes, su�ering however preession.

(iii) The nutation and preession periods are the same, both being proportional to r

2

=a.

(iv) The preession aomplishes that

_

� � 0 thus there is no hange of the preession sense.

Equivalently, the nutation makes that u

0

� u � 0 (oblate systems).

Consider that the Dark Matter halo employed in our numerial and semi-analyti alulations

has a density pro�le that an be approahed as

� =

�

2

2�Gr

2

1

sin

2

� + os

2

�=q

2

h

; (A.22)

then the moments of intertia di�erene an be written as
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In Fig. A.3 we plot the value of 3G(I

z

� I

R

)=(2�

2

r) as a funtion of q

h

. We an observe that the

maximum lies at q

h

' 0:4, whereas for the numerial alulations of Chapter 9 q

h

= 0:6, thus

I

z

� I

R

' 0:34

�

2

r

3G

;

the amplitude of nutation being

� os � ' 0:34�

2

M(r) sin

2

�

0

os

2

�

0

:

For a irular orbit with initially � = 45

Æ

and r = 55 kp, one has that from Fig. 3.1 and Fig. 3.2

M

h

(< 55kp) ' 0:65M

h

(r

ut

), whereas � ' 0:32�262kms

�1

, respetively. The amplitude estimate

is � os � � 0:025, so that �� � 10

Æ

. This is roughly the amplitude that we observe in Fig. 8.6.
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Appendix B

Integration over veloity spae

We arry expliitely out the integrals of eq. (5.26) and (5.30) whih orrespond to the integration

in veloity spae of the zeroth and �rst order dynamial frition, respetively.

The integral over �

Sine v

2

of the Dark Matter partiles is a funtion of �, we must speify the distribution fun-

tion before going on. The distribution funtion in veloity spae is a Gaussian for the expliite

integration, although the general results do not depend strongly on the speial shape of f(v

2

).

f(v

2

) =

1

(

p

2��)

3

exp(�

v

2
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2

)

1

(
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2��)

3

exp(�X

2

�W

2

) exp(�u�) (B.1)

with u = 2WX;

where where we de�ne � � os � for simpliity.

For the zeroth order term (eq. 5.26) one must solve
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�

�4�u

3

�

1 +

u

2

10

�

for u << 1;

and for the �rst order omponents (eqs. 5.30)
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�

8�

3

�

1 +

u

2

10

�

for u << 1;

where for ompleteness the Taylor expansions for small veloities are also given.

Inserting the results of the angle integration into the equations of both dynamial frition terms
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we �nd
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Here we used K

h

, expliitely given in eq. 5.28 and the funtion
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realling that � = �(X;W ), eq. (5.16) and (5.18).

For the inhomogeneous terms we get from eq. (5.30) the parallel omponent
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and the orthogonal omponent
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where we used analogous funtions
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with (B.11)

h(X;W ) =
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) sinh(2WX):

Chandrasekhar's frition formula

With the approximation of a Coulomb logarithm ln�

0

independent of W we �nd the standard

Chandrasekhar frition formula by solving the integral present in eq. (B.5) by parts
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Inserting this into eq. (B.5) we �nd the result
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Sine the maximum impat parameter depends on the loal sale length, it also depends on the

position of the satellite. The use of the global value hln �i neglets as well the position dependene

of the Coulomb logarithm.
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