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Summary

The aim of thesis was to improve the generation of transgenic medaka fish.

General transgenesis including transient expression of reporter genes and germ line

integration of reporter genes was improved by application of two novel techniques. In
addition, one of these methods allows for the first time efficient enhancer trapping in

fish.
First, a transposon-based approach using the artificially reconstructed Sleeping

Beauty (SB) transposon was established.

To address the potential of SB for transgenesis, microinjection experiments

were performed. Transgenes (GFP) and promoter fragments were flanked with the SB

recognition sequences (inverted direct repeats (IR/DR)) and injected into one-cell stage

medaka embryos with or without SB10 mRNA. Upon injection of a control construct,

that lacks SB recognition sequences and without transposase, only 13 % of surviving

embryos expressed GFP uniformly in the entire body. Conversely, when SB IR/DRs

were included, uniform, promoter-dependent expression was the predominant effect

(45 %). The presence of IR/DRs alone strongly enhanced promoter-dependent

transgene expression in G0, indicating that SB IR/DRs significantly enhance transient

transgene expression. G0 expression was a reliable indicator for the efficient selection

of transgenic founders. Embryos that exhibit a uniform GFP expression in G0 result in

the highest yield of transgenic fish. This facilitates an easy selection of putative founder

fish for medium- to large-scale approaches. The SB system enhanced total transgenesis

frequencies to 32 % compared to 4 % resulting from control construct injections. Single

copy SB-mediated insertion was verified by Southern blot analysis and sequence

analysis of flanking genomic sequences. Strikingly, 12 % (21/174) of the transgenics

featured typical characteristics of enhancer trap lines, i.e. spatially and/or temporally

restricted transgene expression due to regulation imposed by sequences adjacent to the

insertion site. Among 21 lines with novel expression patterns, a variety of different

patterns ranging from single cell types to whole organs were found. Thus, a set of

transgenic lines expressing GFP in developmentally important structures/organs can be
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established and used without devoting a major effort on the isolation and

characterization of promoter elements.

Second, a meganuclease approach was applied. Transgenes of interest were
flanked by two I-SceI meganuclease recognition sites, and co-injected together with the

I-SceI meganuclease enzyme into medaka embryos at the one-cell stage. The

recognition site comprises 18 bp that are asymmetrically cleaved, rendering it a very
rare cutter (app. once in 7x1010 bp of random sequence).

Upon injection, the promoter-dependent expression was strongly enhanced.

Already in G0, 78 % of injected embryos exhibited uniform promoter dependent

expression compared to 26 % when injections were performed without meganuclease.

The transgenesis frequency was raised to 30.5 % compared to 5-18 % for naked DNA.

Even more striking was the increase in germ line transmission rate. In standard

protocols it does not exceed a few percent, the number of transgenic F1 offspring of an

identified founder fish generated with I-SceI reached the optimum of 50 % in most

lines, indicating genome insertion events already at the one-cell stage. Southern blot

analysis showed that individual integration loci contain only one or few copies of the

transgene in tandem. Meganuclease co-injection thus provides a simple and highly

efficient tool to improve transgenesis by microinjection.
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Introduction

The introduction of genes into the germ line of animal or plant model systems is

one of the major technological advances in modern biology. Transgenic animals have
been instrumental in providing new insights into mechanisms of development and

developmental gene regulation, into the action of oncogenes and into the intricate cell

interactions within the immune system. Furthermore, the transgenic technology offers
exciting possibilities for generating precise animal models for human genetic diseases

and for producing large quantities of economically important proteins by means of
genetically engineered farm animals and fish.

The ectopic expression of transgenes in whole animals allows one to study gain-

of-function phenotypes. Alternatively, disruption of endogenous genes by random
transgene insertion or through targeted homologous recombination allows the study of

loss-of-function phenotypes, an approach that allows elucidating the biological role of a

gene. Transgenic technology is often used as a tool for identifying mutant genes after
they have been mapped to specific chromosomal loci (Antoch et al., 1997). By

employing reporter genes under the control of specific regulatory sequences, transgenic
techniques facilitate the functional dissection of the cis-acting elements responsible for

spatial and temporal gene expression patterns. In addition, tissues or cells expressing a

reporter transgene can be used in cell lineage analysis and transplantation experiments.
The establishment of methods to introduce exogenous genes into organisms, to

transmit these genes to the next generations, and to direct proper transgene expression
is one of the basic and indispensable criteria for an organism to be referred to as model

organism.
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1. Medaka - a Model System for Vertebrate Developmental
Genetics

Teleosts, such as the medaka, the pufferfish and the zebrafish, are increasingly
popular vertebrate model systems in various fields of biology (Kimmel, 1993;

Venkatesh et al., 2000; Westerfield, 1995; Wittbrodt et al., 2002; Yamamoto, 1975).

Two major reasons for their popularity are the relative ease of their application in
forward genetics and the relatively small genome size (medaka and pufferfish).

Medaka, Oryzias latipes, is a small egg-laying freshwater fish native to Asia
that is found primarily in Japan (Fig. 1A). The adult fish are about 3 cm long and can

tolerate a wide range of temperatures (4-40 °C). The male medaka can easily be

distinguished from the female by a clearly dimorphic dorsal fin and, once fertilized, the
female spawns a cluster of 20-40 eggs every day. Both eggs and embryos are

transparent and encased in a hardy chorion (Fig. 1B); consequently, the morphology of
the developing can easily be evaluated. Embryos hatch as young feeding fry 7 days

after fertilization and sexually mature within 6-8 weeks under laboratory conditions.

The physiology, embryology and genetics of medaka have been studied
extensively for the past 100 years (Yamamoto, 1975). Important advances in medaka

research include the establishment of inbred strains (Hyodo-Taguchi and Egami, 1985)

and the development of transgenesis protocols (Ozato et al., 1986). The development of
mutagenesis protocols (Shima and Shimada, 1991) led to the first systematic

mutagenesis screens for developmental phenotypes (Loosli et al., 2000) and, in

A B

Fig. 1: The medaka fish.
A, Lateral view of an adult, male medaka. B, Dorsal view of a medaka embryo at developmental
stage 21 (brain and otic vesicle formation). A and B belong to the inbred Cab strain of the
southern population.
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combination with detailed descriptions of medaka anatomy (Anken and Bourrat, 1998;

Ishikawa, 1997; Ishikawa, 2000), they have led to the characterization of many mutant
phenotypes that were recovered from these screens. Genomic resources and a detailed

linkage map also facilitated cloning of the genes that are responsible for these mutant
phenotypes (Fukamachi et al., 2001; Kondo et al., 2001; Loosli et al., 2001), which

shows the power and the potential of medaka as a genetic model system.

Considering the evolutionary distance between zebrafish and medaka of about
160 million years to their last common ancestor, which is also reflected in many

aspects of their biology, medaka provides an ideal resource for comparative studies.

Studies of distantly related vertebrate species permit the identification of conserved and
species-specific molecular mechanisms underlying development and evolution.
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2. Transgenesis in Fish

The transgenic technology was first applied to fish in the mid- 1980’s (Zhu et al.,

1985). Since then, transgenic fish have been widely used in both basic and applied

research. About 15 years ago it appeared like it would be pretty simple to deliver
exogenous DNA to medaka or zebrafish chromosomes; after all, the single fertilized

cell was unusually conspicuous, large, and encased in an optically clear chorion
permitting rapid microinjection of DNA solution. Alas, transgenic technology in both

model organisms has been deceptively difficult. The delivery of DNA into the cell was

about as trivial an exercise as predicted, but the DNA generally failed to integrate into
the host genome (Hackett, 1993; Iyengar et al., 1996; Westerfield et al., 1992).

Consequently, there were attempts to find mechanisms to deliver DNA more efficiently
into fish chromosomes. However, microinjection of plasmid DNA has proven to be a

reliable means of producing transgenic fish and remains the most widely employed

method, partially also due to the relative ease to perform this method and the lack for
special prerequisites. 

2.1 Methods of Transgene Delivery

Only techniques that yielded significant success in the generation of stable
transgenic fish will be discussed in this thesis, including retroviral infection (Lin et al.,

1994a), the use of micro-projectiles (Yamauchi et al., 2000; Zelenin et al., 1991) and

electroporation (Inoue et al., 1990). Applications that have not been successfully
applied for germ line transgenesis in fish like lipofection (Szelei and Duda, 1989) or

sperm carriers (Chourrout and Perrot, 1992; Lavitrano et al., 1989), although useful for
transient studies, will not be discussed.
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2.1.1 Retroviral Infection

Retroviruses use RNA as their genetic material. Following infection, the RNA

is transcribed by the virus-encoded reverse transcriptase. The resulting single-stranded
DNA is replicated as double-stranded DNA (dsDNA). The dsDNA viral genome then

integrates into the host genome in an essentially random fashion (Smith, 2002).
The Hopkins lab developed a pseudotyped retroviral vector that contains a

Moloney murine leukaemia virus-based genome packaged in the envelope protein of

the vesicular stomatitis virus (Burns et al., 1993; Lin et al., 1994a). Virus pseudotype
particles need to be injected into blastula-stage embryos (512-2000 cells) because the

viruses are not able to penetrate the chorion. Proviruses are able to integrate into the
germ lines of zebrafish at less than 0.1 % efficiency (Allende et al., 1996; Gaiano et al.,

1996a) and because of the delay in the delivery of the virus (blastula stage), the

embryos obtained by this protocol are highly mosaic. Nevertheless, this strategy has
been very successfully used for insertional mutagenesis (Allende et al., 1996;

Amsterdam et al., 1997; Gaiano et al., 1996b; Golling et al., 2002). However, there are
some drawbacks to these viruses (Ivics et al., 1999). First, because so little volume can

be injected, it is necessary to acquire very high titres of virus, which is not trivial.

Second, retroviral vectors exhibit difficulties to deliver genes that are stably expressed
over several generations although improvements were achieved recently (Linney et al.,

1999).  Third, the virus must be contained and handled with extreme care. Accordingly,

alternative means of gene delivery were needed that would have an early and narrow
window of activity to reduce mosaicism, have a high efficiency of integration and be

safe and easy to use by any lab.

2.1.2 Electroporation

Electroporation is a process by which high intensity electric field pulses

temporarily destabilize cellular membranes. During the destabilization period, DNA
molecules present in the surrounding media are able to permeate the cell’s external and

internal membranes to enter the cytoplasm and nucleoplasm (Lurquin, 1997). The
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electroporation process can be equilibrated to yield copy numbers (of integrated

transgenes) of between 1 and 20 copies per genome – an advantage compared with
microinjection (see below). In addition, large transgene molecules (> 150 kb) can be

transferred. The requirement for specialized equipment and extensive optimization
procedures for different systems have to be mentioned as major drawbacks.

Since 1990 electroporation has been finding greater favour for transgenesis in

fish and some success has been reported (Inoue et al., 1990 ; Ono et al., 1997).
However, in recent years electroporation of fertilized fish eggs has been more widely

used to perform transient transgenesis than to generate transgenic germ lines (Sussman,

2001; Tawk et al., 2002). To facilitate germ line transgenesis, electroporating sperm
before fertilization, represents an interesting variation on the electroporation technique

(Muller et al., 1992; Sin et al., 2000). However, integration of the foreign DNA occurs
infrequently, and the expression of the foreign genes is poor. The potential of sperm-

mediated gene transfer as a routine protocol for mass gene transfer in fish will be

dependent on the improvement of integration and expression of the foreign gene.

2.1.3 Particle Bombardment

It is worth considering a fairly novel technique, as an illustration of the many
and varied means by which emerging technologies are enabling gene transfer. In

particle bombardment, DNA may be adsorbed to spherical tungsten or gold particles

and transferred into cells by a particle gun. Once inside the target cell, the DNA is
solubilised and may be expressed (Klein and Fitzpatrick-McElligott, 1993). This

approach has been originally developed for plant transgenesis but has been shown to be
effective for transferring transgenes into animal cells in vivo (Cheng et al., 1993).

The procedure has been adapted to fertilized zebrafish eggs when transgenes

have been successfully delivered and expressed in the targeted embryos (Zelenin et al.,
1991). Only more recently transmission of transgenic green fluorescence protein (GFP)

to the germ line of medaka embryos has been achieved resulting in true transgenic F1
offspring (Yamauchi et al., 2000). However, the amount of research data presently

available is too little to permit definitive comparisons to other techniques.
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2.1.4 Embryonic Stem (ES) cells

Homologous recombination was first used in yeast and later in mouse to

directly alter the sequence of a known gene, which is known as gene targeting
(Capecchi, 1989). It does occur also upon plasmid injection into pronuclei of mouse

oocytes (Brinster et al., 1989), but with a very low frequency of 10-3 as compared to
non-homologous integration events. However, in the mouse system this problem is

solved by electroporating thousands of embryonic stem cells. Subsequent

positive/negative selection enables identification of proper homologous recombination
events (Joyner et al., 1991).

In medaka, ES cells (Mes1 for medaka embryonic stem cells) have been
established (Hong et al., 1996) and were found to contribute to organs of all three germ

layers in chimeras (Hong et al., 1998). However, generation of stable transgenic fish

has not been successful, due to the failure of ES cells to populate the germ line.
Although, cell cultures exhibiting characteristics of ES cells have been described in

zebrafish, only short-term cell cultures, which must be maintained in the presence of
cells from the rainbow trout, have produced germ line chimeras (Ma et al., 2001). It

remains to be determined if these cells will contribute to the germ line after long-term

culture, which is required for genetic manipulations involving homologous
recombination and selection.

2.1.5 Nuclear Transfer

As an alternative to embryonic stem cells, cultured somatic cells offer the

possibility of producing cloned animals with targeted genetic manipulations (Lai et al.,

2002; McCreath et al., 2000). Since the successful cloning of ‘Dolly’ using a somatic
nucleus (Wilmut et al., 1997), several successful cloning experiments using somatic

cells have been achieved, including recent reports describing gene-knockout sheep and

pigs produced by nuclear transfer from genetically manipulated somatic cells (Lai et
al., 2002; McCreath et al., 2000).
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Fish nuclei of blastula cells from different genera have been transplanted into

enucleated eggs to study the nucleo-cytoplasmic interaction (Zhu and Sun, 2000).
Wakamatsu and colleagues have demonstrated that diploid fertile medaka could be

produced by nuclear transfer using blastula cells as donors (Wakamatsu et al., 2001).
These findings show that nuclei prepared from fresh blastula cells can be

reprogrammed in fish to support embryonic and adult development. In 2002, the first

cloned zebrafish using long-term cultured cells, amenable to genetic manipulation, was
established (Lee et al., 2002).  Although, the current success rate of ~2 % does not

represent an improvement on transgenesis, the potential availability of cell cultures that

can be used for homologous recombination could pave the way for the gene targeting in
lower vertebrates.

2.1.6 Microinjection

In 1980, Gordon and co-workers demonstrated that exogenous DNA could be

introduced into the mouse genome simply by physical injection of DNA solution into
the zygote (Gordon et al., 1980). Subsequently, microinjection has become and

remained the most widely used method of germ line transgenesis in several species

including fish.
For medaka, a finely drawn glass needle, loaded with DNA solution, is used for

the injection. Under a common dissecting microscope, with the aid of a

micromanipulator, fertilized eggs are penetrated with the needle. The injection needle
is guided through the chorion into the cytoplasm of the cell of an embryo at the one cell

stage. Once the tip of the needle has entered the cytoplasm, approximately 1-2 nl of
DNA solution containing 105 to 107 DNA molecules is injected.

The first transgene to be delivered into medaka embryos was the d-crystalline

gene of chicken (Ozato et al., 1986). Transient expression of the transgene occurred in

a mosaic manner but no germ line transmission was observed.  It was only in 1988
when transgenesis by microinjection was successfully performed including transgene

expression and transmission to the next generation in a teleost genetic model system
(Stuart et al., 1988). Presently, microinjection provides the fastest and simplest means
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for germ line transgenesis and transient expression studies in fish (Chou et al., 2001;

Lin, 2000). However, techniques widely used in mouse and Drosophila such as
enhancer- and gene-trapping (Allen et al., 1988; Gossler et al., 1989; Korn et al., 1992;

O'Kane and Gehring, 1987; Rubin and Spradling, 1982), although attempted with
limited success in zebrafish (Bayer and Campos-Ortega, 1992) and frog (Bronchain et

al., 1999), have rarely been used due to low frequency of vector integration into the fish

genome. Consequently, technological improvements on transgenesis by microinjection
need to be met.

In order to develop enhancing strategies, one has to consider the fate of injected

DNA inside a cell. Influencing the fate of a transgene presents an obvious way to alter
both, transient transgene expression and integration into the host genome.

2.2 General Fates of Injected Transgenic DNA

When plasmid DNA is injected into medaka or zebrafish embryos, it may meet

with several different fates. (1) It may replicate and persist in the cell and its
descendants for several cell divisions. (2) It may integrate into the chromosomal DNA

of the cell or (3) the plasmid DNA may be lost from the embryo. Commonly, the first

two fates lead to embryos that are mosaics with respect to the presence of plasmid
DNA. In case of (1) mosaicism, the presence and/or expression of the transgene is due

to the uneven distribution and replication of the episomal DNA among daughter cells
(Fig. 2A and 10). Nearly all (90-99 %) fish that have integrated transgenes (2) will also

be mosaic for its presence and/or level of expression due to integration events

occurring later than the one cell stage (Hackett, 1993). Both, transient expression of the
transgene and germ line transmission are dependent on the time-point of integration.

The later an insertion event occurs the fewer somatic cells will contain an integrated
transgene that can be transmitted equally to descendent cells, directly influencing the

pattern of transient transgene expression (Fig. 2B, C and 10). Similarly, not all germ

cell precursors may have integrated the injected DNA leading to a mosaic germ line. If
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the germ line is mosaic, the proportion of transgenic F1 progeny depends on the degree

of mosaicism.

Only genomic integration within the one cell stage will undoubtedly lead to a
completely transgenic germ line resulting in 50 % of the F1 offspring expected to

inherit the transgene (Jowett, 1999).

2.2.1 Immediate Fate of Injected DNA – Transient Expression

Early developmental processes in injected embryos mainly determine the fate

and consequently the expression patterns of exogenous DNA. In fish, the period
following fertilization is characterized by a series of rapid cleavages with no distinct

growth phases and almost no transcription (Iyengar and Maclean, 1995). Subsequently,
the embryo enters the mid-blastula transition (MBT, in medaka at ~1024 cell stage)

coinciding with an abrupt loss of cell synchrony, massive upregulation of transcription,

Fig. 2: Fate of injected DNA.
Injected DNA may meet three different fates. A, DNA stays episomal (probably in concatemers)
and is expressed in small bright clones, due to uneven segregation. B, DNA integrates early in
development (1-2 cell stage). Depending on copy number of inserted transgenes its expression
level may vary but the germ line will be uniform, resulting in a large proportion of transgenic F1
progeny. C, DNA integrates at later stages. Mosaicism of both, transgene expression and germ
line depends on the time-point of insertion.

mosaic expression early integration late integration
A B C

small, strong clones,
no germ line transmission

large clones,
uniform germ line

smaller clones,
mosaic germ line
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onset of cell motility and elongation of the cell cycle (Aizawa et al., 2003; Andeol,

1994). The unfertilized fish egg contains a large store of proteins, provided by the
mother, to support the rapid cell cleavages including chromatin assembly proteins,

ligases, polymerases, etc. These proteins are thought to be responsible for the
concatemerization (formation of tandem arrays) and the extrachromosomal replication

of injected DNA (Vielkind, 1992; Volckaert et al., 1994).

Concatemers arising from circular injected DNA are largely arranged in a head
to tail fashion (Vielkind, 1992) while linear DNA is arranged randomly. For both

concatemerization has been found to happen very rapidly in medaka (Chong and

Vielkind, 1989). This short time renders induction of ligase production unlikely. It is
perhaps instead a direct result of the activity of stored ligases within the egg.

Replication of exogenous episomal DNA in the early fish embryo correlates with the
rapid DNA synthesis during these first cleavage stages. Thus, replication rates are

higher than degradation rates causing an increase of injected DNA. Only at post-

gastrula stages, a widespread degradation of foreign extrachromosomal DNA is
observed (Volckaert et al., 1994).

Expression of injected DNA has been found to be highly mosaic using both,
ubiquitous or specific regulatory elements (Stuart et al., 1990; Tsai et al., 1995). This

phenomenon is attributed to unequal distribution of transgene copies (Houdebine and

Chourrout, 1991) and differential replication. The latter may be the main reason for
variable expression observed within multinucleated or polyploid tissues such as muscle

cells or the yolk syncytial layer (YSL) (Williams et al., 1996). Transient expression in
fish has been found to follow distinct temporal patterns but is almost invariably found

to begin after the MBT stage. Repression of transcription prior to the MBT may be due

to a large excess of histones for use during the rapid early developmental stages
(Prioleau et al., 1994). Later, lengthening of the cell cycle and accumulation of newly

synthesized DNA results in a titration of excess histones allowing the onset of
transcription. These temporal expression patterns relate clearly to the persistence of the

injected DNA. Highest expression levels are observed at gastrula stages because of

extensive (also episomal) DNA replication during early cleavages and accumulation of
enzymes subsequent to the MBT. Decreasing levels of transient transgene expression in
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later rounds of cell divisions result from transgene degradation (Volckaert et al., 1994).

2.2.2 Late Fate of Injected DNA – Stable (Genomic) Expression

Exogenous DNA, after surviving the degradative processes of the cell, may

integrate into the host’s chromosomal DNA. The mechanism of transgene insertion is
largely unknown but is thought to involve a process of end-joining or illegitimate

recombination depending on random breaks in the chromosomes (Bishop and Smith,

1989). However, the existence of certain loci, which may be more amenable to
transgene insertion, has been proposed as well (Sutherland et al., 1993).

Confirmation of transgene integration has largely been observed by Southern
blot analysis. Since the million copies of transgenic copies can ligate to form high

molecular weight sequences, today more rigorous proof of integration is demanded.

The report of Stuart (Stuart et al., 1990) showed that extrachromosomal DNA could be
transmitted to the F1 progeny. Thus, the only unambiguous evidence for transgene

integration is given by the demonstration of classic Mendelian inheritance to 50 % of
the F2 progeny upon crossing of transgenic F1 to wild type fish. An alternative proof

can be obtained by sequencing of junction fragments between transgene and

chromosomal sequences.
What is apparent from the literature is that chromosomal integration commonly

occurs late in development, resulting in highly mosaic founder fish and low frequencies

of germ line transmission (Fig. 2B, C and 11). Although single site insertion is
frequently observed (Stuart et al., 1990; Tewari et al., 1992), multiple integration

events are also common (Culp et al., 1991). Another characteristic of integrated
transgenes represents its concatemerization that may lead to insertion of tandem arrays

of up to 2000 in number (Tewari et al., 1992). Disappointingly, integration of

transgenes has been found to affect its expression pattern in many unpredictable ways.
For example, it has been frequently observed that transgenes are influenced by

neighbouring sequences, a phenomenon called position effect. In addition, there have
also been problems with the silencing of transgenes as a result of mechanisms such as

DNA methylation and heterochromatin formation. It is notable that transgene
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integration as an intact single copy as opposed to a tandem array of multiple copies

may be desirable, since there is some evidence that tandem arrays may be more readily
inactivated by DNA methylation or heterochromatin formation (Dorer and Henikoff,

1002; Garrick et al., 1998; Mehtali et al., 1990). 
It is clearly important to avoid position effects if well-regulated expression of a

transgene is required  (see also section 2.3). The inclusion of introns has been found to

enhance expression of transgenes (Clark et al., 1993; Palmiter et al., 1991). Stretches of
DNA present at the boundaries of the ~20 kb chicken lysozyme gene locus have been

observed to insulate transgenes from position effects in mammalian cells and mice

(McKnight et al., 1992; Stief et al., 1989). It has been proposed that the presence of
matrix or scaffold attachment regions (MARs or SARs) is responsible for these

insulating effects by enabling the looping out of domains (Sippel et al., 1992).
Nevertheless, there are examples of insulating regions not consisting of MARs or SARs

(Kellum and Schedl, 1992; Noma et al., 2001) suggesting other possible mechanisms.

Silencing of transgenes following passage to F1 and beyond has been noted by
several groups (Culp et al., 1991; Stuart et al., 1988; Stuart et al., 1990; Tewari et al.,

1992). Transcription of RNA polymerase II genes can be inhibited by methylation of
cytosine residues at CpG sites (Eden and Cedar, 1994). Gibbs and co-workers

suggested that low levels of expression in F1 and F2 progeny of transgenic zebrafish

could be due to methylation of a number of sites within the transgene. They were able
to increase the expression levels by treating the embryos with 5-azacytidine, a potent

inhibitor of methylation (Gibbs et al., 1994b).

2.3 Strategies to Improve Transgenesis by Microinjection

Major drawbacks, e.g. mosaic transgene expression in G0, low insertion
frequency and mosaic germ line distribution have not yet been overcome. Moreover,

the transgenesis frequencies upon microinjection are still very variable depending on

the vector used and on the skills of the injector. Average stable transgenesis frequencies
range within 1-10 % (Collas and Alestrom, 1998; Culp et al., 1991; Lin et al., 1994b;
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Stuart et al., 1988; Stuart et al., 1990; Tanaka and Kinoshita, 2001) only exceptionally

reaching more than 20 % (Higashijima et al., 1997). Similarly, efficiencies of transient
expression of a transgene in the G0 generation vary between 10-50 % (Chou et al.,

2001; Higashijima et al., 1997) but are invariably mosaic. Generally, comparison
between different reports is difficult due to the differences of promoters and/or vector

design. Strategies of vector design affecting the transgenesis quality will be discussed

below.  Novel strategies that have been applied in this thesis will be introduced in
section 2.4 and thereafter.

2.3.1 Nuclear Localization Signal (NLS)

A key to transgenesis lies in efficient uptake of foreign genes by the cell

nucleus. Recent studies have shown that a limiting step in fish transgenesis resides in

slow nuclear import of DNA (Collas and Alestrom, 1997; Collas and Alestrom, 1998),
a situation likely to favour late and mosaic transgene integration into the germ line

(Culp et al., 1991; Stuart et al., 1988). Improvements in nuclear uptake of DNA have
resulted from the use of protein-DNA complexes. Non-covalent attachment of DNA to

karyophilic proteins including NLS peptides (CGGPKKKRKVG-NH2) has been shown

to enhance nuclear import and expression of DNA in cultured mammalian cells and
zebrafish (Collas and Alestrom, 1997; Fritz et al., 1996; Kaneda et al., 1989), whereas

covalent cross-linking of NLS peptides to DNA proved ineffective (Sebestyen et al.,

1998). In medaka and zebrafish reports on the use of non-covalent NLS peptide
applications are somewhat conflicting. Although Collas and co-workers reported

enhanced integration and expression, for other authors the effect of NLS peptide
remained elusive (Higashijima et al., 1997). However, the rationale behind this

approach appears logic and even if enhanced genomic integration of NLS-DNA

complexes is not necessarily a consequence of nuclear uptake, a more even segregation
of the foreign DNA resulting in more uniform, transient expression might be expected.

In conclusion, the NLS approach has not become a commonly used method so far,
indicating that improvements on both transient expression and transgenesis frequency

have not been sufficient.
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2.3.2 Restriction Endonuclease Mediated Integration (REMI)

Another promising technology that has been applied successfully in

Dictyostelium (Kuspa and Loomis, 1992) and Xenopus (Kroll and Amaya, 1996; Kroll
and Gerhart, 1994) involves the use of restriction endonucleases. In frogs, linearized

plasmid DNA and a restriction endonuclease, usually a 6 bp cutter (i.e. XbaI, etc), are
incubated together with sperm nuclei. Nuclei are then swelled and partially

decondensed in an interphase egg extract. By this means, plasmid DNA is introduced

into the nuclei and eventually integrates into the sperm genome utilizing endogenous
DNA repair mechanisms. Single nuclei are then transplanted into unfertilized eggs. A

variable fraction of these eggs (5-40 %) develops normally to the tadpole stage (Kroll
and Amaya, 1996). Transgenic embryos from gastrula to tadpole stages express the

transgene non-mosaically. In these experiments, the concentration of a frequently

cutting restriction enzyme is a very critical parameter. Amounts of enzyme that do not
exhibit deleterious effects due to fragmentation of the genome failed to result in any

significant improvement of transgenesis in medaka (J. Wittbrodt unpublished data).
A variation of this strategy, although based on a different mechanism, is the

application of extremely rare cutting enzymes (meganucleases) that do not cleave

within the genome but in the transgene vector only. By co-injection into fertilized
medaka embryos, thus skipping the transplantation step, this technique provides a

powerful means for fish transgenesis that will be presented in this thesis.

2.3.3 Boundary Regions

To avoid position effects, DNA methylation or changes of chromatin state

affecting transgene expression it is desirable to supply the transgene with regulatory
sequences. The importance of the inclusion of enhancer elements, introns and

appropriate polyadenylation (pA) signals is generally accepted (Iyengar et al., 1996).

Moreover, genes are thought to be organized on chromosomes as contiguous but
independent units known as expression domains (Elgin, 1990). These expression

domains are believed to remain insulated from neighbouring sequences by boundary
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regions. A feature commonly linked with such boundary elements is the ability to

protect against mechanism that affect gene expression as mentioned above (Kellum and
Schedl, 1991; Noma et al., 2001; Stief et al., 1989). 

Inverted terminal repeats (ITR) from adeno-associated virus (AAV) have been
used to improve transient transgene expression and insertion in mammalian cell culture,

frog, zebrafish and medaka (Chou et al., 2001; Fu et al., 1998; Hsiao et al., 2001; Philip

et al., 1994). AAV type 2, a non-pathogenic human virus, has a single-stranded DNA
genome with characteristic ITRs (Srivastava et al., 1983). Each ITR consists of 145

nucleotides of which the terminal 125 bp form palindromic hairpin structures that serve

as primers for AAV DNA replication. These hairpin structures also play a role in DNA
integration (Philip et al., 1994). It has been suggested that inverted terminal repeats

direct the injected DNA to the nucleus and thereby facilitate equal distribution of extra
chromosomal DNA to daughter cells (Fu et al., 1998; Hsiao et al., 2001). In addition,

Noma and co-workers identified inverted repeats acting as barriers for heterochromatin

spreading in fission yeast (Noma et al., 2001). However, using this technique, DNA
tends to remain episomal and the vectors are difficult to prepare due to the presence of

potentially deleterious repeated sequences (Chou et al., 2001).

2.3.4 Transposable Elements

Transposable elements are discrete segments of DNA capable of moving from

one locus to another in their host genome or between different genomes. They are
distributed across the living world and play a fundamental role as motors of genome

plasticity in all three classical biological kingdoms.
One of the major distinguishing features of transposable elements is whether

their transposition relies exclusively on DNA intermediates or includes an RNA stage

(Tab. 1). DNA elements (transposons and insertion sequences) can be found in both
prokaryotes and eukaryotes, whereas those with RNA intermediates (viral and non-

viral retrotransposons) are restricted to eukaryotic genomes.
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2.3.4.1 RNA Elements

RNA elements can be divided into those that carry long-terminal repeats (LTR)

(viral retrotransposons), those that do not (non-viral retrotransposons) and retroviruses
(Fig. 3). This classification is based on their mode of amplification and their general

characteristics. The common feature of all retroelements is their ability to generate

multiple DNA copies that can be integrated into new chromosomal positions
(Andersson et al., 1998).

The presence of envelope (env) genes distinguishes retroviruses from viral

retrotransposons. Some truncated endogenous retroviruses can be classified to belong
to the large family of viral retrotransposons because they lack functional env genes. In

some species, viral retrotransposons have been extensively characterized, like the

Retroelement

Non-Viral 
Retrotransposons 

Viral 
Retrotransposons 

RNA Intermediate

- LTR Element + LTR Element

SINE

LINE Retrovirus

+ env

LTR ORF1 ORF2 LTR

(Ty1, Copia, Gypsy)

LTR LTR

(THE 1)

LTR gag pol LTRenv

(Full-length endogenous/exogenous
retrovirus)

- RT

P Poly A

P Poly AORF1 ORF2

 + RT
(Alu, Dana)

(L1)

Fig. 3: The structure and relation ship between retroelements.
Triangles represent the short direct repeats flanking the retroelements. Internal promoters (P),
LTR elements, open reading frames (ORF), genes and poly A tails are indicated. (adapted from
(Andersson et al., 1998)
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human THE-1 element, the Copia elements in D. melanogaster and the Ty1 of S.

cerevisiae. The sequence similarity of viral retrotransposons to retroviruses, the
presence of reverse transcriptase (RT) and LTRs, imply that they might be the

predecessors of retroviruses or alternatively, truncated endogenous retroviruses.
Non-viral retrotransposons lack both, functional env genes and LTRs. They are

subdivided, based on the presence or absence of RT into long interspersed elements

(LINEs) and short interspersed elements (SINEs). None of the retrotransposons has
been used in transgenesis approaches yet. As mentioned in previous sections (2.1.1

Retroviral Infection), only retroviruses have been applied successfully in mutagenesis

screens (Golling et al., 2002).

2.3.4.2 DNA Elements

DNA transposons are characterized by the fact that their transposition does not

involve an RNA intermediate, but occurs in form of DNA. All DNA transposons
contain inverted repeats (IRs) at either end flanking a central region encoding for a

transposase, which catalyzes transposition. The transposase is expressed at very low
levels to strictly control the transposition to low frequencies. A transposition frequency

too high would cause a high rate of insertional mutagenesis resulting in a lower

evolutionary fitness of the host and therefore of the transposon.
If the transposase is functional, the transposon is termed autonomous. If due to

mutations the transposase is inactive, the transposon is termed non-autonomous, as it is
dependent on other transposons to provide a functional transposase for its transposition.

Most DNA transposons move via a non-replicative cut-and-paste mechanism, but some

exceptions transpose replicative via a DNA copy (Tab. 1).
Eukaryotic transposons move in a non-replicative manner via excision and

integration (cut-and-paste mechanism). For transposition, the transposase binds to the
IRs and cleaves the DNA, thereby precisely excising the transposon. Additionally the

transposase binds to the target DNA introducing a staggered cut leading to protruding

single strands. The DNA repair machinery accomplishes integration into the host
genome, resulting in target site duplications directly adjacent to the transposon ends.

The length of the direct repeats (DRs) is characteristic for the specific transposon.
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The P-element of Drosophila melanogaster is the most famous DNA

transposon, used for generating P-element insertion lines. P-element insertions can lead
to regulated reporter gene expression through an adjacent enhancer (Bellen et al., 1990;

O'Kane and Gehring, 1987) and can cause mutations (Cooley et al., 1988; Sentry and
Kaiser, 1992). Genomic regions flanking the insertion can be cloned by plasmid rescue

(Bellen et al., 1990). In the Drosophila P-element system, other factors than the

transposase are involved in the transposition event.

Type Structural
Features

Mechanism of
Movement Examples

DNA-Mediated Transposition

Bacterial Insertion
Sequences (IS)

~50 bp inverted
repeats flanking the
transposase and/or

resolvase

Excision or copying
of DNA and its

insertion at target site

IS1,
IS10

Bacterial Transposons

Central antibiotic
resistance gene
flanked by IS-

elements

Copying of DNA and
its insertion at target

site
Tn9

Eukaryotic
Transposons

Inverted repeats
flanking coding

region

Excision of DNA and
its insertion at target

site

P-elements,
TcEs,

Ac-and Dc-elements

RNA-Mediated Transposition

Viral
Retrotransposons

~250 to 600 bp direct
terminal repeats
(LTRs) flanking

reverse transcriptase,
integrase, and

retroviral-like Gag
protein

Transcription into
RNA from promoter
in left LTR by RNA

polymerase II
followed by reverse

transcription and
insertion at target site

Ty elements,
Copia elements

Non-Viral
Retrotransposons

Of variable length
with a 3’ AT-rich
region; full-length

copy encodes a
reverse transcriptase

Transcription into
RNA from internal

promoter; folding of
transcript to provide
primer for reverse

transcription
followed by insertion

at target site

F and G elements,
LINE and SINE

elements,
Alu sequences

Tab. 1: Major types of mobile DNA elements.   (adapted from Lodish et al. 2001)
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Therefore, attempts to use the P-element for transgenesis of non-drosophilid

insects, zebrafish and mammalian cells have been unsuccessful (Gibbs et al., 1994a;
Handler et al., 1993; Rio et al., 1988). In medaka, the DNA-transposon Tol2 has been

found which is a member of the hAT superfamily (hobo of Drosophila melanogaster,
Ac of maize and Tam3 of the snapdragon (Calvi et al., 1991)). This transposon has

inserted into the tyrosinase gene of the albino mutant and has been shown to be active

during medaka embryogenesis (Koga et al., 1995; Koga et al., 1996). Due to its
activity, it is not a candidate tool for transgenesis in medaka. However, it has been

successfully applied in zebrafish (Kawakami et al., 2000).

The application of an artificially reconstructed member of the Tc1/mariner
family of DNA transposons (Ivics et al., 1997) for transgenesis in medaka, together

with a more detailed introduction into this transposon family, will be presented below.

2.4 Novel Strategies to Improve Transgenesis by Microinjection

Two different strategies to improve transgenesis in medaka have been tested in
this thesis.  The first technique is based on the use of a very rare cutting restriction

endonuclease (meganuclease). This approach has been successfully applied to enhance

both, transgene expression in the G0 generation and transgenesis frequency. The
second technique involves Sleeping Beauty (SB), an artificially reconstructed member

of the Tc1/mariner family of transposons. This approach again improved transient and
stable transgenesis in medaka. In addition, SB-mediated transgenesis allows efficient

enhancer trapping resulting in transgenic fish that exhibit spatially and temporally

restricted patterns of GFP expression. These transgenic fish lines provide valuable
tools to biologists interested in the development and/or function of specific organs or

cell populations.
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2.4.1 The I-SceI Meganuclease

I-SceI is a homing endonuclease encoded by the mobile group I intron of the

large rRNA gene of S. cerevisiae (Beylot and Spassky, 2001; Jacquier and Dujon,
1985). This family of enzymes mediates the propagation of the intron by cutting intron-

less genes at the site of the intron insertion. Like restriction enzymes, homing
endonucleases cleave double-stranded DNA with high specificity in the presence of

divalent metal ions. However, they differ from restriction endonucleases in their

recognition properties and structures, as well as in their genomic location (Belfort and
Roberts, 1997). In particular, whereas restriction enzymes have short recognition

sequences (3-8 bp), homing endonucleases, despite their small size, recognize long
DNA sequences (12-40 bp). They have been classified into four families based on both

their sequence motifs and DNA cleavage mechanism (Mueller et al., 1993). The protein

I-SceI is a member of the largest class of homing enzymes, characterized by the
presence of either one or two conserved 12 amino acid residue sequence motifs

(LAGLIDADG).

 A T A AT A G G G
A T C C C

 C A G G G T A A T
 G T C C C A T T A T A T T

 A T A A-3’-OHT A G G G
A T C C C

 C A G G G T A A T
 G T C C C A T T A T A T T

Fig. 4: Mechanism of cleavage of the I-SceI meganuclease.
The meganuclease acts in monomeric form, recognizes and cleaves the DNA in an asymmetrical
fashion. It exhibits a low turnover, due to its strong association to the larger half-site.
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Most of these proteins, like I-SceI, carry the motif in duplicate and are

endonucleases. I-SceI has been purified as a monomeric globular protein of 235 amino
acids (Monteilhet et al., 1990). Its endonuclease activity requires Mg2+ or Mn2+ to

cleave DNA within its recognition sequence (TAGGGATAACAGGGTAAT) and
leaves a four bp overhang presenting a 3’-hydroxyl terminus (Monteilhet et al., 1990).

The enzyme displays a low turnover, probably because of its strong affinity for one of

the products of the cleavage reaction (Perrin et al., 1993) (Fig. 4).
Other than REMI, that carries the intrinsic risk to fractionate the genome,

extremely rare cutting meganucleases (I-SceI) could be employed for transgenesis,

acting only on sites introduced into the insertion construct.

In mammalian cell culture, preliminary experiments have shown that co-
transfection of plasmids bearing meganuclease recognition sites with expression

vectors encoding the corresponding meganuclease, efficiently led to stably transfected

cell lines with single copy integrations (A. Choulika, unpublished results). The 18 bp
recognition site of I-SceI is expected to be found only once in 7x1010 bp of random

sequence. Consequently, such a site has not been found in the medaka genome (109 bp).
The I-SceI meganuclease does not cut the genomic DNA, but acts solely to digest the

injected DNA.

Here, I report, in collaboration with the research group of J. -S. Joly, the
efficient generation of stably transgenic medaka strains by co-injection of the I-SceI

protein with reporter vectors flanked at both ends by the corresponding recognition
sites. We show that co-injection leads to a strong enhancement of the promoter

dependent expression already in G0 and an increased transgenesis frequency. Our data

suggests that this is due to integration at the one-cell stage.
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2.4.2 The Sleeping Beauty Transposon System

The Sleeping Beauty transposon is a member of the Tc1/mariner superfamily of

DNA transposons (Plasterk et al., 1999). It was synthetically reconstructed from several
inactive transposable elements in salmonid fish (Ivics et al., 1997), which had been

transpositionally inactive due to the accumulation of mutations in the transposase
coding region and, in most cases, additionally in the inverted repeats (vertical

inactivation).

Twelve partial salmonid-type TcE sequences from eight species were aligned and
conserved protein and DNA sequence motifs were identified that are supposed to

correspond to functionally important domains. The inactivating mutations were
eliminated based on the majority rule consensus sequence, thereby quasi-inverting 10

million years of divergence and accumulation of mutations, and reconstructing the

original functional transposon, or a similar one.
Members of the Tc1/mariner superfamily of transposons are, unlike the P-

element from Drosophila melanogaster, independent of specific host factors for
transposition (Vos et al., 1996). This is supported by the fact that these elements are

extraordinarily widespread in nature, ranging from single-cellular organisms to humans

(Plasterk, 1996). Consistently, SB transposase has been shown to efficiently mediate
transposition in cells from fish (carp), mouse, and human in culture (Ivics et al., 1997)

and has been used as a genetic tool in the mouse in vivo (Dupuy et al., 2002; Dupuy et

al., 2001; Fischer et al., 2001; Horie et al., 2001). It does not seem to interfere with
endogenous elements in these species.

SB belongs to the IR/DR subgroup of Tc1-like elements (TcEs) that
contain IRs of 210-250 bp flanking the central transposase coding region. Each IR

contains two direct repeats (DRs), one at either end, which constitutes the cores of the

binding sites for the transposase. The transposase binds to both DRs and adjacent
sequences, but only the outer DRs are utilized for cleavage and excision of the

transposon. The left and right IR are imperfect, with a match less than 80 % at the
centre, but perfect in the DRs. The DNA binding domain of the transposase that

provides specificity for salmonid-type IR/DRs spans the N-terminal half and includes a

bipartite nuclear localization signal (NLS). The C-terminal half comprises a glycine-
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riche sequence of unknown function and the DD (34) E domain that catalyses

transposition, termed after the highly conserved amino acid residues Asp, Asp, Glu, in
which the latter are separated by 34 amino acids (Fig. 5).

Transposons of the Tc1/mariner superfamily integrate into TA target

dinucleotides that become duplicated upon integration (Fig. 6). The presence of TcEs in
many different species indicates that, in contrast to P-elements, they are independent of

any host factors and therefore might be used for germ line transformation in many
different species. This hypothesis is corroborated by the fact that recombinant Tc1 and

mariner transposase are able to catalyze transposition in vitro without help of any other

factor (Lampe et al., 1996; Vos et al., 1996). Furthermore, vectors based on minos, a
TcE endogenous to Drosophila hydei, were successfully used for germ line

transformation of the fly Ceratis capitata. (Loukeris et al., 1995) and the mariner
element from Drosophila mauritiana was capable of undergoing transposition in the

protozoan Leishmania (Gueiros-Filho and Beverley, 1997).

Raz and colleagues used Tc3 from C. elegans to stably introduce a reporter
construct containing GFP  into zebrafish embryos by co-injection of the Tc3

transposase RNA together with the reporter flanked by inverted repeats (Raz et al.,
1998). In one line, they could show transposon-mediated integration, expression of the

reporter construct and germ line transmission.

Pilot experiments performed in our lab indicated the Sleeping Beauty

transposon system could be useful for medaka transgenesis (Henrich, 1999). Here I

systematically investigated the potential of S B to perform transient and stable

Fig. 5: Schematic drawing of an autonomous DNA transposon of a Tc1-like element.
The transposase (brown) mediates transposition. The transposase gene is flanked by inverted
direct repeats (IR/DRs), each of them containing two direct repeats (red arrowheads).

catalytic domainDNA binding domain

nls Transposase

IR/DRIR/DR D    D    E
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transgenesis. Furthermore, the applicability for enhancer traps, repeated transposition

and combination with other systematic tools used in developmental biology will be
evaluated.

It will be shown that the Sleeping Beauty transposon system efficiently

generates transgenic medaka lines with a high proportion of lines exhibiting novel,
spatially and temporally restricted GFP expression patterns. In addition, transient,

promoter dependent expression of the transgene is strongly enhanced using the SB

system.

TA
AT

AT GT-
-TG TAREPORTER

TG TATA
AC ATAT

TATA CA
ATAT GT

DSB REPAIR

Target site duplication

REPORTER

Fig. 6: Mechanism of transposition.
The TcE is excised by transposase mediated staggered double-strand breaks. Repair of DNA
results in a target site duplication at the insertion site.
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Aims of the Thesis

The primary goal of this thesis included the development of novel or enhanced

transgenesis technologies to facilitate studies in developmental biology using the

medaka fish, Oryzias latipes. The availability of fast and simple techniques to introduce
foreign DNA into fish embryos allowing the expression of transgenes is a prerequisite

for the modern developmental biologist to investigate the crucial processes of
embryogenesis.

Both, transient expression of episomal transgenes as well as stable integration

into the genome and expression in subsequent generations are equally important.
Moreover, generation of transgenic fish exhibiting novel tissue- or cell-specific patterns

of reporter transgene expression (enhancer trap) provides useful tools for the analysis

of these tissues or cell populations and the transcriptional regulation of the trapped
regulatory units during embryonic development under various conditions.

So far, microinjection of DNA into fish embryos at the one cell stage provides
the fastest and easiest approach. Unfortunately, the quality of transient promoter-

dependent expression of the transgene and the efficiency to generate stable transgenics

are very low (Collas and Alestrom, 1998; Culp et al., 1991; Lin et al., 1994a; Stuart et
al., 1988; Stuart et al., 1990; Tanaka and Kinoshita, 2001; Westerfield et al., 1992). In

addition, the frequency of enhancer traps in fish is even lower which prevented the
routinely use of this approach in fish (Bayer and Campos-Ortega, 1992).

I applied two different technologies to overcome these previous limitations.

First, co-injection of DNA and the meganuclease I-SceI (Jacquier and Dujon,
1985) enhanced transgene expression in the G0 generation by integration into the host

genome as early as the one cell stage. Thereby, allowing reliable promoter studies in
G0 and at the same time increasing the transgenesis frequency to ~30 %.

Second, by application of the artificially reconstructed transposon system

Sleeping Beauty (SB) (Ivics et al., 1997) transient transgene expression in G0 was
improved by equal segregation of episomal DNA. Insertion of the transgene into the

host genome at later stages of development led to a transgenesis frequency of ~32 %.
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Thus, these approaches represent the most potent tools to perform transgenesis

by microinjection in fish up to date. Moreover, the SB approach revealed its potential to
perform enhancer trap experiments, ~12 % of the transgenics featured typical

characteristics of enhancer-trap lines, i.e. spatially and/or temporally restricted

transgene expression due to regulation imposed by sequences adjacent to the insertion
site.
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Results

3. Application of the I-SceI Meganuclease in Medaka

3.1 Co-injection of Reporter Gene and I-SceI Meganuclease Leads
to Uniform Promoter Dependent GFP Expression in G0

In collaboration with Violette Thermes, I established the meganuclease protocol

for transgenesis in medaka. To assay the potential of meganuclease-mediated
transgenesis in medaka, we used two types of reporter constructs in which GFP is

driven by two different promoters: the moderate cytoskeletal-actin promoter of X.

borealis (pCSKAGFPS-I) for ubiquitous expression in the entire embryo (Condie et al.,
1990); and the muscle specific a-actin promoter of zebrafish (paact-GFPI2) for tissue

specific expression (Higashijima et al., 1997).  These two reporter constructs were

flanked at both ends by I-SceI meganuclease recognition sites.
Circular and linear plasmid-DNA was tested for transient expression in G0 by

injection into one-cell stage embryos (stage 2a, (Iwamatsu, 1994)) with or without I-

SceI meganuclease. When co-injecting I-SceI and plasmid DNA, a DNA concentration
of 10 ng/µl leads to efficient expression without significantly increasing the mortality

of the injected embryos. No further deleterious effects on embryo survival were

observed. GFP expression was then examined at a number of distinct developmental
stages using fluorescence binocular microscopy. GFP expression levels were similar

with both vectors; only those obtained with the muscle specific zebrafish a-actin

promoter (paact-GFPI2) will be presented in detail (Thermes* et al., 2002). 

Embryos were scored after three days of development (stage 31) when the
muscular a-actin GFP expression was easily detectable in striated cells. The embryos

were grouped according to the intensity of fluorescence in order to determine
quantitatively the level and distribution of transgene expression in each experiment
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(Fig. 7) by my collaborator Violette Thermes. Upon injection of circular or linear

plasmid without I-SceI enzyme, about fifty percent of the surviving embryos showed
no muscular fluorescence and were classified as negative  (Tab. 2). In the other

embryos, the amount of GFP positive cells ranged from a few cells (classified as weak,
24 % with circular plasmid and 29 % with linear plasmid), to an almost ubiquitous

labelling of muscle cells (strong, 5 % with circular plasmid and 3 % with linear

plasmid). When expression was detected in a large domain of the muscles, it was
qualified as moderate (21 % with circular plasmid and 19 % with linear plasmid).

Expression in individual muscle cells was always strong enough to be easily detected,

and no ectopic expression was observed (Tab. 2).

In contrast, when circular pa act-GFPI2 was co-injected with I-SceI

meganuclease, the GFP muscular expression was dramatically improved. About 76 %
of the embryos exhibited a moderate or strong expression in the trunk musculature, as

a-actin - GFP

a-actin - GFP

I-SceI

I-SceI
site

I-SceI
site

no weak moderate strong

Fig. 7: Transient expression of GFP driven by the zebrafish a-actin promoter in medaka
embryos (see (Thermes* et al., 2002)).
Co-injection of plasmid DNA containing the transgene flanked by I-SceI recognition sites and
meganuclease leads to an increased number of embryos with a promoter dependent muscular
expression pattern.
Left panel: Schematic drawing illustrating transient GFP  expression levels in G0 upon
injection of naked DNA or co-injection of I-SceI, respectively. Injected embryos are
represented as coloured spots indicating the level of fluorescence, as shown in the right panel.
Right panel: Embryos were grouped according to the level of GFP expression observed in
injected embryos at stage 31 (3 days post fertilization). The different expression levels are
illustrated with a colour code.
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compared to 26 % when injection was performed without enzyme. Specificity of this

effect was further validated by application of mutated or deleted meganuclease sites
(Tab. 2). Thus, transient transgene expression in G0 fish is readily and efficiently

improved applying the meganuclease protocol (Thermes* et al., 2002).

I-SceI
Negative

(%)
Weak
(%)

Moderate
(%)

Strong
(%)

Linear - 49 29 19 3
Circular - 50 24 21 5paact-GFPI2
Circular + 16 8 37 39
Circular + 72 14 8 6paact-GFPMI
Linear + 48 31 19 2

Circular + 69 14 12 5paact-GFPDI
Linear + 50 35 15 0

Using paact-GFPI2, the transient GFP muscular expression persisted in adult

fish. An important point was then to investigate if the transgene was transmitted to the

next generation more frequently upon co-injection of the meganuclease. In order to
analyze the transmission of the transgene to the progeny and, in particular, whether the

improved rate of GFP  expressing G0 fish also resulted in a higher germ line
transmission rate, we generated families of transgenic fish.

Tab. 2: Distribution of G0 GFP expression (see (Thermes* et al., 2002)).
Frequencies of different muscular GFP expression levels observed in embryos injected with paact-
GFPI2 alone or upon co-injection with I-SceI. Surviving embryos were scored after 3 days of
development (stage 31). Embryos were grouped according to the GFP muscular expression
pattern. Circular and linear paact-GFPMI (mutated I-SceI site) and DI (deleted I-SceI site) were
injected with meganuclease to test a hypothetical NLS activity of I-SceI.
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3.2 Generation of Germ Line Transmitting Fish by I-SceI
Meganuclease Co-injection

The two plasmids bearing the expression cassettes flanked by the I-SceI sites

were co-injected with and without I-SceI meganuclease (see above). All injected fish
exhibiting no GFP expression turned out to be negative for germ line transmission of

the transgene (data not shown). Injected GFP expressing G0 fish were selected as

putative founder fish, grown to sexual maturity, mated to wild-type partners and tested
for germ line transmission. Fish transmitting the functional transgene to the progeny, as

judged by GFP expression, were then selected as real founders. The GFP fluorescence
in their three-day-old progeny was then scored to estimate the germ line transmission

rate.

In control experiments, entire linear and circular paact-GFPI2 plasmids were

injected without the meganuclease. Of injected GFP expressing G0 fish only 5.9 % and
15.6 % respectively, were transgenics (Tab. 3). These transgenic founder fish also

showed a highly mosaic germ line. For most paact-GFPI2 G0 transgenic fish derived

from linear or circular plasmid injection only few F1 offspring did express GFP (Tab.

3). We observed an average germ line transmission rate of 15.1 % for the linear form,
and 17.6 % for the circular form, and a high standard deviation of 17.7 % and 22.2 %

(Tab. 3), respectively. This low rate is indicative of a late integration event after several
cell cleavages, taking place in only a fraction of the blastomeres contributing to the

germ line (Thermes* et al., 2002).

I-SceI Rate of G0
transgenics (%)

Average
transmission

rate

Standard
deviation

(s)
Linear - 2/35 (5.9) 15.1 % 17.7 %

Circular - 5/32 (15.6) 17.6 % 22.2 %paact-GFPI2
Circular + 11/36 (30.5) 48.4 % 9.1 %

pCSKAGFPS-I Circular + 20/65 (30.7) 49 % 10.3 %
Tab. 3: Transgenesis frequency and germ line transmission rates.
Rates of transgenic fish and transgene transmission to F1 progeny after injection into one-cell
stage medaka embryos. Circular plasmids and I-SceI were co-injected, and resulting fish were
tested for their ability to transmit the transgene to the F1 offspring.
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When I-SceI meganuclease was co-injected with circular plasmids (paact-

GFPI2 and pCSKAGFPS-I), 30.5 % and 30.7 % respectively, of GFP positive G0 fish

had F1 offspring expressing GFP. Moreover, 48.4 % and 49 %, respectively, of the F1
fish expressed the transgene with a low standard deviation of 9.1 % and 10.3 %,

respectively.

Fig. 8: Southern blot analysis of transgenic lines.
Southern blot analysis of genomic DNAs (10µg/lane) isolated from adult medaka F1 fish
resulting from outcrosses of G0 transgenic fish obtained by co-injection of pCSKAGFPS-I
(A) or paact-GFPI2 (B) with I-SceI meganuclease. Genomic DNA was digested with AflIII
(pCSKAGFPS-I) or BamHI (paact-GFPI2) (Thermes* et al., 2002), and hybridized with
corresponding insert probes, resulting from I-SceI and XhoI/EcoRV digestions, respectively
(see schematic representation). The copy number of integrated concatemers was estimated in
pCSKAGFPS-I transgenics, using a standard array of plasmid DNA. Lanes (1-3 and 6-7 in A;
1-4 in B) show integrations of less than eight copies of the whole linearized plasmid in
tandem as demonstrated by the presence of the expected fragment sizes (5.8kb, 1.6kb, 0.6kb
for pCSKAGFPS-I or 1.1kb, 2kb, 4.8kb for paact-GFPI2). Restriction patterns of ten out of
twelve investigated lines (lanes 1, 3, 4, 5 and 7 in the left panel; lanes 1-4 in the right panel)
suggest low copy numbers insertions at a single genomic locus.
Left panel, 1-10: plasmid standards. Quantities indicated on top of each lane correspond to
one to ten copies of plasmid integrated in the genome; C: control lane with uninjected wild
type fish. Right panel, lane P, paact-GFPI2 digested with BamHI; C: control lane with paact-
GFPI2 embryos injected without I-SceI. Abbreviations: A, AflIII; B, BamHI; E, EcoRI; S, I-
SceI; X, XhoI.
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The rate of co-injected embryos that turned out to be germ line transmitters is

higher than in the control experiment, and these transgenic fish transmitted the
transgene to about half of their progeny compared to only 15 percent in most control

transgenics. The improved expression in G0 obtained by co-injection with
meganuclease was thus positively correlated with both an enhanced transgenesis

frequency and an increased germ line transmission rate. Germ line transmission rates

close to 50 % are due to a single integration of the transgene at the one-cell stage,
leading to non-mosaic heterozygous transgenic fish.

To determine the nature of DNA integrations (the number of insertion loci and

the length of concatemers), we performed Southern blot analyses on genomic DNA
from independent F1 transgenics of fish co-injected with I-SceI (Fig. 8). Genomic DNA

was first digested with restriction enzymes that cut the insert and the plasmid (AflIII for
pCSKAGFPS-I; BamHI for paact-GFPI2). Blots were hybridized with insert probes

obtained by digestion with either I-SceI for pCSKAGFPS-I (Fig. 8!left panel, schematic

diagram) or XhoI/EcoRV for paact-GFPI2 (Fig. 8 right panel, schematic diagram).

Southern blot analysis of nine independent transgenic lines revealed insertions

of the entire plasmid in tandem arrays (Fig. 8 left panel, lanes 1, 2, 3, 6 and 7; Fig. 8
right panel lanes 1, 2, 3 and 4), as demonstrated by the presence of the expected

fragments (5.8 kb, 1.6 kb and 0.6 kb for pCSKAGFPS-I; and 1 kb, 2 kb and 4.8 kb for
paact-GFPI2) (Fig. 8). This pattern also suggested that I-SceI sites were still present in

the genome of all these transgenics, which was thereafter confirmed by Southern blots
on DNA digested by I-SceI (data not shown). The copy number of integrated

concatemers was estimated in pCSKAGFPS-I transgenics, using a standard array of
plasmid DNA. Copy numbers range from only one or two copies of the injected

constructs (Fig. 8 left panel; lanes 3, 4, 5, 7 and 8) to a maximum of eight copies in all

of the lines analyzed, significantly lower than reported for standard transgenesis in fish,
where up to 2000 copies were reported to integrate in tandem clusters (Hackett, 1993;

Iyengar et al., 1996).
In other cases (Fig. 8 left panel, lane 4, 5), the absence of the internal fragment

found in concatemers (5.8 kb fragment lane 4 and 5) indicates a single copy insertion.

The restriction pattern is consistent with insertions at more than one locus as more than
two junction fragments were detected. Segregation analysis however suggested
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integration of the functional copy at a single site. For I-SceI mediated integration, two

junction fragments are expected for both vector ends as found in lanes 1, 3, 4, 5, 7 (Fig.
8 left panel) and lanes 1-4 (Fig. 8 right panel), indicating single- or double-sided I-SceI

mediated insertion of the entire plasmid in tandem at a single locus. Hybridisation
bands in lanes 2, 6 and 8 indicate several insertion loci, as demonstrated by the

presence of several junction fragments. Taken together, in the majority of the lines

analyzed, the functional reporter integrated as single copy element or low copy number
tandem repeat into mostly single sites within the genome, in striking contrast to the

high copy numbers of tandem repeats reported to integrate in standard transgenesis

approaches (Hackett, 1993; Iyengar et al., 1996).

In addition to the promoter dependent expression obtained in the transgenic
lines, interestingly, one of twenty independent transgenic lines obtained with

pCSKAGFPS-I, exhibited an intriguingly specific and stable expression pattern (Fig. 9)

in the F1 generation. Transgenic line 634 shows expression of GFP in regions of the
fore- and hindbrain. At stage 21 (brain and otic vesicle formation) GFP expression is

induced in this line. During further development of these brain structures, GFP

Fig. 9:Pattern in F4 medaka embryos upon co-injection of pCSKAGFPS-I and
meganuclease.
Dorsal (A) and lateral (B) view of a transgenic embryo (line 634) at stage 33 (organogenesis),
anterior is to the left. GFP expression is detected in the diencephalons (de), cerebellum (ce)
and rhombomere 3 (rh).

de ce rh de ce rh

st. 33634F4 st. 33634F4
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expression is confined to precise morphological areas. Anteriorly, the lenses and the

dorsal to medial diencephalon are GFP positive including the epiphysis and the
habenulae. In the anterior part of the hindbrain, GFP can be detected in the most

ventral part of the cerebellum, which is referred to as rhombomere 1. Rhombomere 2 is
negative while GFP is expressed again in the entire rhombomere 3.

This indicates that this reporter construct was sensitive to position effects and

may be useful for enhancer or gene trapping strategies.

3.3 Improvement in G0 Transgene Expression is Not Linked to a
Nuclear Targeting Activity of the Meganuclease

Three explanations for the increased efficiency of I-SceI transgenesis can be
contemplated. First, cleavage of the transgene by the enzyme promotes rapid

integration, probably by counteracting the endogenous ligase activity fusing the

transgene into multimers and thereby sustaining a high number of transgene copies as
short linear fragments. Second, I-SceI cleaves the host genome and thereby promotes

integration of the transgene through endogenous non-homologous end joining. Third, I-
SceI binds to the transgene and promotes nuclear localization of the transgene.

Although it is not known if I-SceI has an implicit nuclear localization activity, it is

known that I-SceI binds its recognition site tightly, both before and after cleavage
(Jacquier and Dujon, 1985).

Since I-SceI cleavage is expected randomly only once in 7x1010 bp, the second
possibility is very unlikely. Furthermore, Southern blot analyses of the transgenic lines

excluded this possibility, as it provided no evidence for a unique, reappearing

integration site. In addition, in mammalian cell cultures, no evidence for preferential
integration sites was found when flanking regions of several tenths of insertions were

analyzed (A. Choulika, unpublished data).
To assess whether the increased efficiency of transgenesis is due to a nuclear

localization activity of the I-SceI meganuclease, linear or circular control constructs

bearing deleted (paact-GFPDI) or mutated (paact-GFPMI) recognition sites (both are
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bound, but not cleaved by the meganuclease  were co-injected with or without the

meganuclease (Tab. 2) (Colleaux et al., 1988)(Thermes* et al., 2002).
Advantage was taken of the tight correlation of uniform promoter dependent

expression in G0 and the germ line transmission rate to quantitatively address this
question. Following injection, embryos were grouped according to the criteria

described above (Fig. 7). The distribution of the transient GFP expression in G0

embryos injected with circular and linear paact-GFPMI, containing a modified

meganuclease site that allows enzyme binding but not cleavage, or with circular and
linear paact-GFPDI in which the meganuclease site has been deleted was determined.

GFP expression data using those two constructs were highly reminiscent of those

obtained in control experiments involving the injection of the circular and linear paact-

GFPI2 in the absence of the enzyme (Tab. 2).  Thus, in none of the cases enhanced

transgenesis rates were observed, indicating that a putative NLS located in the enzyme
is not sufficient to mediate efficient integration. It is still possible however that it

contributes to the translocation of the digested DNA to the nucleus.
Taken together the primary reason for the increased efficiency of transgenesis is

the cleavage of the transgene by the I-SceI meganuclease that mediates efficient

integration.
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4. The SB Transposon System in Oryzias Latipes

4.1 Application of the SB System Results in Increased Numbers of
G0 Embryos Uniformly Expressing GFP

A

B C

Fig. 10: Generation of founder fish by microinjection of circular DNA into one-cell stage
medaka embryos.
A, Circular plasmid DNA containing an expression cassette with the cytoskeletal-actin
promoter (pink box) of X. borealis driving GFP (green box), and a SV40 poly A signal (grey
box) was injected into one-cell stage medaka embryos as control construct. To test the SB
transposon system, this expression cassette was flanked by SB recognition sequences
(inverted direct repeats, IRDR, transposon, yellow box) and injected with or without SB10
transposase mRNA. B, Medaka embryo 3 days after injection showing mosaic expression of
GFP. C, Medaka embryo 3 days after injection showing promoter dependent ubiquitous
expression of GFP.
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To efficiently use an animal model system for transposon-mediated

transgenesis, it needs to be free of (cryptic) endogenous elements that could be

mobilized by the newly introduced transposase. The absence of such sequences in the

medaka genome was verified functionally by over-expression of the SB transposase in

wild type medaka upon injection of SB10 mRNA into embryos. Even at the highest

concentration, no effects on embryonic survival or development were observed (data

not shown). In addition, low stringency Southern blot analysis using the inverted

terminal repeats (IR/DRs) that serve as recognition elements for the SB transposase as a

probe did not yield a signal, indicating that the medaka genome is free of endogenous

elements capable of transposition by the SB transposase.

To address the potential of the SB transposon and the SB10 transposase for

transgenesis, early one-cell stage embryos were co-injected with a reporter vector

(transposon) and mRNA encoding the SB transposase (Fig. 10).
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Fig. 11: The SB transposon system enhances transient GFP expression.
GFP expression was monitored in G0 upon injection of control construct (Control) or reporter vector
(transposon) and upon co-injection of transposon with SB10 mRNA (transposon + SB10 mRNA).
After 3 days of development, embryos were grouped in expression groups according to the level of
transgene expression (A-C). Percentages of surviving embryos exhibiting GFP expression are
indicated within the bars. n, number of experiments (amount of embryos per experiment is indicated
within brackets).
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The reporter contained an expression cassette with the cytoskeletal-actin

promoter/enhancer (cska) of X. borealis (Condie et al., 1990) to drive moderate,
ubiquitous expression of GFP. This expression cassette was flanked by the terminal

inverted repeats of SB containing the binding sites of the transposase. Injections were
performed with or without SB10 mRNA. A similar vector, lacking SB recognition

sequences (control construct), was used for control injections. In contrast to mosaic

expression due to transient transcription of non-integrated plasmids (Winkler et al.,

1991 ), an early integration event leads to the transmission of the transgene to all of the

daughter cells, and thus results in GFP expression in large clones of cells (Fig. 2 and

10). To distinguish between these two possibilities, embryos were screened for GFP

expression at day three of development.

The injected embryos were scored and grouped according to the degree of

mosaicism in GFP expression: (A) no GFP expression, (B) mosaic expression only and

(C) ubiquitous GFP expression (Fig. 10B, C, 11). Upon injection of control construct

in the absence of SB recognition sequences and transposase, only 13 % of surviving

embryos expressed GFP uniformly in the entire body. Almost 40 % did not show any

fluorescence and about one half expressed GFP in mosaic cell clones of variable size,

in accordance with results previously reported for DNA microinjection (Chou et al.,

2001). Conversely, when SB IR/DRs were included, uniform, promoter dependent
expression was the predominant result. This was observed in 41 % of the surviving

embryos co-injected with the transposon and SB10 mRNA or injected with the
transposon only (Fig. 11). Thus, the presence of IR/DRs strongly enhanced promoter

dependent transgene expression in G0, indicating that SB IR/DRs, similar to the ITRs

of adeno-associated virus (AAV) (Chou et al., 2001), significantly enhance transient
transgene expression.
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4.2 Establishment of Stable Transgenic Lines Using the SB System

To further examine to whether GFP expression in G0 positively correlates with

germ line transmission of the transgene, I analysed the F1 offspring of all three
expression groups for inheritance of the transgene. G0 fish were mated to wild type and

the F1 offspring was screened for GFP expression (Fig. 12).

This analysis showed that G0 expression was a reliable indicator for efficient
transgene transmission. Application of the SB transposon alone or in combination with

SB10 mRNA enhanced total transgenesis frequencies to 31 % (174/560) compared to 4
% (3/70) resulting from control construct injections. Strongly expressing G0 fish

injected with the SB transposon (group C), transmitted GFP expression in 39 %

(118/305) or 45 % (33/74) with or without transposase, respectively. On the other hand,
of the fish injected with the control construct and showing uniform G0 expression (13

% of injected survivors, expression group C), only 14 % (2/14) stably transmitted GFP

to the next generation. From the mosaic G0 fish (expression group B), 14 % (4/28) or

24 % (12/50) founded stable transgenics with transposon only or in combination with

SB10 mRNA, respectively, while only 3 % (1/34) transmitted a functional transgene to
the F1 generation when the control construct had been injected. GFP negative G0 fish

(expression group A) transmitted a GFP expressing transgene to the next generation in

9 % (7/77) of the analysed fish only upon injection of the complete SB system.

These numbers indicate a positive correlation between the expression of the

transgene in G0 and the frequency of stable transgenics. Embryos that exhibit a
uniform GFP expression in G0 result in the highest yield of transgenic fish. This

facilitates an easy selection of putative founder fish for medium- to large-scale

approaches.
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4.3 Genomic Integration of Single or Multiple Copies

To investigate the molecular nature of the integrations, I performed Southern
blot analysis on GFP positive F1 fish using GFP coding sequence as a probe. Five lines

are shown, including three transgenics with novel expression patterns (Fig. 13A; lanes

2, 4-5), and two lines expressing GFP in a promoter dependent manner (Fig. 13A; lane
1, 3).

The copy numbers of the integrated transgenes were determined to range from a
single copy (lane 7) to more than 10 copies (lane 10). The transgenic line SV (lane 3)

revealed a banding pattern consistent with a single copy insertion mediated by SB10. In

order to verify the proposed mechanism of SB10-mediated transposition in medaka, the
SV insertion was analysed in more detail by cloning and sequencing flanking genomic

regions. Comparison to the wild type locus revealed TA target site duplications

Fig. 12: Transgenesis frequencies are enhanced upon application of the SB transposon
system.
Bars indicate transgenesis frequencies of each G0 expression group (A-C). Line indicates total
transgenesis frequency, including screened embryos of all F0 expression groups. Percentages of
transgenic F1 embryos per G0 expression group are indicated within the bars. Percentages of
transgenic F1 embryos per injected construct (irrespective of transient GFP expression) are
indicated above the line.

0 0
9

3
14

24

14

45
39

4

29
32

0

5

10

15

20

25

30

35

40

45

50

Control Transposon Transposon +
SB10 mRNA

Injected Construct

Tr
an

sg
en

es
is 

Fr
eq

ue
nc

y 
(%

) F1 originating from F0
expression group A 

F1 originating from F0
expression group B 

F1 originating from F0
expression group C 

Total Transgenics (from
F0 expression groups A-
C)



Results

46

flanking the inserted SB transposon, a molecular hallmark of transposition of Tc1-like

elements (Henrich, 1999; Ivics et al., 1997; Plasterk et al., 1999) (Fig. 13B).
Most of the other lines revealed plasmid tandem head-to-tail insertions (Iyengar

et al., 1996) either at a single locus or at multiple independent sites (Fig. 13A and data
not shown). This is likely due to the strong DNA ligation and replication activity in

early fish embryos (Hackett, 1993). I cannot exclude the possibility that transgene

concatemers can be inserted into the genome by the proposed mechanism (Tab. 4).
In contrast to reports that a concatemeric array of transgenes induce silencing of

the transgenic locus (Garrick et al., 1998) we find stable expression of the transgenes in

tandem arrays over so far up to 7 generations. This hints at a transgene activity-
stabilizing function of SB IR/DR sequences. Recently, similar results have been

reported by Noma and co-workers who identified inverted repeats, shielding
euchromatic regions of the mating-type locus of the fission yeast, thereby acting as

barriers for heterochromatin spreading (Noma et al., 2001).

I could show that multiple insertions can be segregated by selective screening in
subsequent generations. Already in siblings of the F2 generation the number of

independent insertions in F1 (at least 4; Fig. 13C lane 1) of line DE was reduced (lane
2-3). In addition, I observed a reduction of ubiquitous GFP expression in some specific

transgenic lines upon selective screening over several generations, likely due the

decrease of multiple independent insertions.
The degree of mosaicism of the germ line is indicative of the time point of

transgene integration. A single integration event at the one-cell stage results in a non-
mosaic heterozygous fish that transmits the transgene to 50 % of its offspring, while

greater fractions indicate multiple independent insertions. I analyzed the frequency of

germ line transmission from identified G0 founders to their F1 progeny. Between 8 %
and 60 % of the offspring showed GFP expression indicating single or multiple

insertion events between the 1-8 cell stages (Tab. 4). The transgenes were subsequently
inherited in a Mendelian fashion over many generations without any alteration of

expression level or pattern.
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D
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Fig. 13: Southern analysis of transgenic lines and genomic locus of SB10-mediated insertion
in transgenic line SV.
A, Southern blot on F1 offspring of five independent transgenic lines. Genomic and plasmid
DNA was digested with BamHI and separated by gel electrophoresis (0.8 %). Lines 511 and 587
(lanes 1, 5) show insertions of multiple copies (more than 10) of the entire plasmid in tandem
array. Line 587 (lane 5, see Fig. 14) reveals an independent integration of a GFP fragment in
addition. Similarly, line YES (lane 4; see Fig. 14) resembles whole plasmid integration with
reduced copy number (1-2). Transgenic line DE (lane 2; see Fig. 14) shows integration of entire
plasmid in arrays and at least two independent insertions at different loci. Line SV (lane 3) shows
a banding pattern that is in accordance with a SB10-mediated insertion of a single copy of the
expression cassette. Copy number of insertions was determined by comparison to linearized
plasmid, ranging from 1 to 10 copies (lanes 7-10). B, Wild type locus (WT) of SV insertion.
Target site of SB10 transposase (TA dinucleotide) is marked in red. SB10-mediated insertion of a
single copy of the expression cassette flanked by IR/DRs  (light blue) of transgenic line SV (SV)
leads to the predicted duplication of the TA target site (red). C, Segregation of multiple
independent insertions was analyzed with transgenic line DE. At least 4 independent insertions in
F1 (lane 1) were reduced in generations F2 (lane 2) and F4 (lane 3) while specific G F P
expression was retained. Copy number was determined as in A (lane 4); GFP coding sequence
was used as probe. D, Schematic drawing of the injected vector. GFP coding sequence was used
as a hybridization probe.
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4.4 High Frequency Generation of Spatially and Temporally
Restricted Expression Patterns in F1 Progeny

We screened 560 fish that were injected with the SB transposon only (128) or co-

injected with the SB10 transposase (432) and established 174 independent transgenic
fish lines expressing GFP. F1 offspring of the majority of the founders exhibited

ubiquitous GFP expression according to promoter activity. Strikingly, however, 12 %

(21/174) of the transgenics featured typical characteristics of ‘enhancer-trap’ lines, i.e.
spatially and/or temporally restricted transgene expression due to regulation imposed

by sequences adjacent to the insertion site. I showed previously that the relatively weak
cska promoter/enhancer element of X. borealis might be used to generate novel patterns

of expression (section 3.2). Accordingly, I found one novel pattern among seventy fish

injected with the control construct. Injections of transposon without transposase
resulted in ~2 % (2/128) novel patterns. Noticeably, SB10 transposase augmented

pattern formation almost 3-fold: nineteen out of 432 screened fish injected with the

complete SB system exhibit novel GFP expression patterns.
Among those 21 lines with novel expression patterns, we found a variety of

different patterns ranging from single cell types to whole organs (Fig. 14A-I and Tab.
4). A number of lines expressed GFP in ectodermally derived organs, but we also

identified specific expression in tissues derived from other germ layers. For several

lines, inheritance of appropriate transgene expression was observed now up to the 7th
generation.

Thus, among the transgenic lines we have established up to now, novel GFP

patterns are generated in an unbiased fashion. We found lines specifically expressing

GFP in the anterior retina (Fig. 14A), telencephalon and mid-hindbrain boundary (Fig.

14B), otic vesicles (Fig. 14C) or in lens and specific cells of the hindbrain (Fig. 14D).

Among others, we identified transgenic lines with GFP expression in olfactory bulbs,

olfactory neurons and habenulae (Fig. 14E), along the notochord (Fig. 14F), in

ventricles of the heart (Fig. 14G), the yolk (Fig. 14H), somites and trunk muscles (Fig.

14I)(Grabher et al., 2002; Henrich, 1999).
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The GFP expression pattern of the transgenic line DE was analyzed in more

detail using confocal microscopy and 3D-surface reconstruction. Medaka embryos are

covered with a 2-layer chorion that has a hard inner layer and a soft outer surface. The
chorion interferes with the confocal optics reducing the image quality. Therefore,

Fig. 14: Stable transgenic lines with spatially and temporally restricted GFP expression
patterns.
Collection of nine specific transgenics (A-I) showing expression of GFP in various tissues or
organs; developmental stages are indicated; anterior is to the left (A-G). A, SR, GFP expression
is enhanced in anterior cells of the retina. B, MH, strong GFP expression in telencephalon, mid-
hindbrain boundary and along the spinal chord. C, Houichi (Hoi), otic vesicles and tectum show
expression of GFP. D, 587, GFP is enhanced in lens and a row of cells in the ventral hindbrain.
E, DE, olfactory bulbs, olfactory neurons and habenulae exhibit GFP expression. F, Tomoe
(Tom), cells of the notochord express GFP. G, YES, ventricles of the heart are GFP positive. H,
428F, GFP expression in epidermis of the yolk, frontal view. I, 576M, strong GFP signal in
somites, dorsal view. ha, habenulae; hb, hindbrain; hv, heart ventricles; le, lens; mhb, mid-
hindbrain boundary; nc, notochord; ob, olfactory bulbs; ov, otic vesicles; re, retina; so, somites;
tel, telencephalon; tec, tectum; ys, yolk.
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embryos dechorionated with medaka hatching enzyme were used for confocal analyses

of living embryos. The hatching enzyme is a protease, which is secreted from the
hatching gland and dissolves the inner layer of the chorion (Lee et al., 1994). The

remaining soft outer layer can then be removed with sterile forceps. Dechorionated
embryos develop normally and at the same rate as embryos with a chorion. However,

more careful handling is necessary as dechorionated embryos are fragile. Living

embryos at various developmental stages were embedded in agarose and subjected to
confocal microscopy.
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Fig, 15: The pattern of GFP expression of the transgenic line DE in development.
The figure shows a medaka embryo at various stages of development (A-D, M lateral, E-H, N
dorsal, I-L, O frontal). At st. 23 (A, E, I) expression is already strong in the presumptive
diencephalon. In subsequent stages (st.25: B, F, J; st 28: C, G, K) this area is expanding and
reaches the olfactory placodes. At stage 30 GFP expression appears restricted to the olfactory
bulbs, olfactory neurons and the epiphysis (D, H, L, M-O). Additionally, GFP covers the dorsal
part of the habenulae and more ventrally several pretectal and diencephalic nuclei (see also Fig.
16).
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Series of optical section were thereafter used to perform computational 3D-

surface reconstruction of the GFP positive tissue. DE shows specific expression of
GFP in the telencephalic/diencephalic region (Fig. 16). Expression is already strong at

stage 23 (41 hpf/12 somites) in the dorsal brain region between the eyes, which will
later give rise to the diencephalon. In subsequent stages, this area is expanding in size

reaching more ventral tissues until it becomes visible in the developing olfactory

placodes. At stage 30 (82 hpf/35 somites) GFP expression appears restricted to the
olfactory bulbs and neurons and the epiphysis. Additionally, GFP covers the dorsal part

of the habenulae and probably the anterior optic tectum. Expression of GFP includes

several pretectal and diencephalic nuclei that correspond to one or two layers of the
torus semicircularis, which is a caudal and dorsal part of the mesencephalon. Its

homologue in mammals is called the inferior colliculus and it is an important centre for
processing auditory information.
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on den

ts

A B

Fig. 16: Close-up of a 3D-surface reconstruction of a transgenic DE embryo.
DE embryo at stage 30. Anterior is to the left. A, Semilateral view of GFP expressing tissue;
anterior optic tectum (aot), epiphysis (ep) and habenulae (ha). B, Ventral view of the same
embryo; olfactory bulbs (ob), olfactory neurons (on), diencephalic nuclei (den) and torus
semicircularis (ts)
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Line Injection
Germ line

transmission
frequency

Type of
insertion

Integration
mechanism

GFP expression
pattern

381 #1
(SV)

Transposon
+

SB10
nd Insert only SB10 Ubiquitous

381 #2
(YES)

Transposon
+

SB10
nd

Complete
tandem
array

Illegitimate
SB10 Heart ventricles

381 #3
(587)

Transposon
+

SB10
nd

Complete
tandem
array

Illegitimate
SB10

Lens, habenulae,
pineal gland,

posterior tectum,
central row of
cells in ventral

hindbrain

381 #4
(DE) Transposon 8.1 %

Complete
tandem
array

Random
plasmid

integration

Olfactory pits,
diencephalon,

epihysis

381 #5
(576M)

Transposon
+

SB10
27.7 % Partial array

Random
plasmid

integration

Somites,
muscles

381 #6
(428F)

Transposon
+

SB10
55.5 % Partial array

Random
plasmid

integration
Yolk sac

381 #7
(Tom)

Transposon
+

SB10
10.3 % Partial array

Random
plasmid

integration

Anterior neural
tube, posterior

notochord

MH
Transposon

+
SB10

23.7 % nd nd
Telencephalon,
mid-hindbrain
boundary, CNS

Hoi
Transposon

+
SB10

6.1 % nd nd Otic vesicle

294 #1
(SR) Control 15.8 %

Complete
tandem
array

Random
plasmid

integration
Retina

Tab. 4: Summary of presented transgenic medaka enhancer trap lines.
The enhancer trap lines presented in this thesis are summarised here. Type of injection, germ line
transmission frequency, type of insertion, the proposed integration mechanism and a description of
the GFP expression pattern are described where determined. nd, not determined
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Transgenic lines exhibiting such a specific marker gene expression are

perfectly suited to sort GFP positive cells (FACS) and to generate tissue specific
cDNA libraries to be used for the identification of specifically expressed genes. In

addition, such lines and their libraries facilitate the determination of gene expression
variations in a mutant background.
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Discussion

5. I-SceI Meganuclease and the SB Transposon System
Mediate Highly Efficient Transgenesis in Fish

In this work, I aimed for the development of novel or enhanced transgenesis

technologies to facilitate studies in developmental biology using the medaka fish,
Oryzias latipes. The availability of fast and simple techniques to introduce foreign

DNA into fish embryos allowing the expression of transgenes is a prerequisite for

biologists to investigate the crucial processes of embryogenesis.
Both, transient expression of episomal transgenes as well as stable integration

into the genome and expression in subsequent generations are equally important.
Moreover, generation of transgenic fish exhibiting novel tissue- or cell-specific patterns

of reporter transgene expression (enhancer trap) provides useful tools for the analysis

of these tissues or cell populations and the transcriptional regulation of the trapped
regulatory units during embryonic development under various conditions.

Microinjection of DNA into fish embryos at the one cell stage provides the
fastest and easiest approach. Unfortunately, the quality of transient promoter-dependent

expression of the transgene and the efficiency to generate stable transgenics are very

low (Collas and Alestrom, 1998; Culp et al., 1991; Lin et al., 1994a; Stuart et al., 1988;
Stuart et al., 1990; Tanaka and Kinoshita, 2001; Westerfield et al., 1992). In addition,

the frequency of enhancer traps in fish is even lower which prevented the routinely use
of this approach in fish (Bayer and Campos-Ortega, 1992).

I applied two different technologies to overcome these previous limitations. I

established a meganuclease-mediated approach and a transposon-based approach
enabling rapid and stable integration of transgenes into the genome of medaka. Both

techniques strongly enhance transgenesis in fish at several levels.
Application of the meganuclease results in an improved G0 expression

(transient expression) of an injected DNA construct (Fig. 7): mosaic expression of the

reporter gene in injected embryos is greatly diminished, overcoming one of the main
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pitfalls of transgenesis in fish. This result opens the way to easy and reliable promoter

studies in fish already in G0 without the immediate need to establish stable transgenic
lines.

Second, this technique significantly increases the frequency of positive founder

fish in G0, thus improving transgenesis frequency (Tab. 3). I also observed that
expression of reporter gene in adult injected fish correlates with the transmission of the

transgene to the next generation. Therefore, the tools presented here greatly simplify
the time- and space-consuming selection of transgenics by identifying potential founder

fish already in the G0 generation.

Third, and maybe most strikingly, the germ line transmission rates in
transmitting families reach about 50 % in I-SceI experiments (Tab. 3). Thus, a few G0

fish selected by GFP expression are sufficient to establish a transgenic line with limited

screening effort in F1. Southern blot analysis indicated single to few integration events
in individual lines. Germ line transmission rates of close to 50 % may be due to a single

integration of the transgene into one-cell stage embryos, leading to non-mosaic
transgenic fish. Equally possible are multiple independent insertions in different cells at

later stages, creating a mosaic germ line by which the different insertions are inherited

to different F1 fish. In both cases, transgenic carriers are easily identified. However, the
observed tight correlation of uniform GFP expression in G0 with high germ line

transmission rates and the segregation analyses in cases with several integrations
consistently argue for early integration event(s) in meganuclease injected embryos

leading to uniform G0 patterns and transgenesis.

Transgene integration never occurred as long concatemers, a feature otherwise
encountered in transgenic fish (Hackett, 1993; Iyengar et al., 1996), and known to

eventually result in gene silencing in vertebrates (Garrick et al., 1998). Instead, I found
that the transgene was integrated in short repeats and consequently not silenced (Fig.

8). In these two independent series of stable transgenic lines, I detected integrations of

repeated units of inserts linked to plasmid still bearing I-SceI sites (Fig. 8). The reason
why I-SceI sites are still present in the transgene insertions of these fish remains

unclear. One likely hypothesis is that I-SceI is unable to fully overcome the strong
ligase activity present in fish egg cytoplasm, by cutting the concatemers. The enzyme

indeed only cuts iso-stoechiometrically and remains linked to the longer half of the
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recognition site after cleavage (Colleaux et al., 1988). In addition to the requirement for

cleavage by I-SceI, it is possible that the continued stable binding of the enzyme to the
DNA ends plays a role in the high frequencies of transgenesis, possibly by protecting

the linear monomers from degradation.

The very long recognition site of I-SceI renders the meganuclease a very rare
cutter (once in 7x1010 bp). Therefore, it appears unlikely that I-SceI cuts the medaka

genome (109 bp). Furthermore, all investigated transgenic lines showed different
insertion patterns in Southern analysis. I thus think that the improved transgenesis

efficiency by the meganuclease is mediated by a mechanism different from that

described for REMI (restriction endonuclease mediated integration).
Taken together, the co-injection of the integration construct with the I-SceI

meganuclease that cuts only flanking to the insert leads to early integration of a

functional insert already at the one-cell stage. The co-injected enzyme likely
counteracts the endogenous ligase activity, preventing the generation of long

concatemers found upon the injection of circular or linear DNA and thus provides more
recombinogenic ends that facilitate highly efficient integration. Due to this early

integration, transgenic founders are easily identified in G0. Furthermore, the early

integration warrants a very high germ line transmission rate of nearly 50 %.

The second technique introduced in this thesis, the SB transposon system, also
facilitates the generation of transgenic medaka fish. Transgenesis is strongly enhanced

by the presence of the SB recognition sites alone (transposon), even in the absence of

SB10 transposase. Other than in “conventional” transgenesis, the expression of the
transgene is stable in subsequent generations even if it is integrated in tandem arrays.

In contrast to control injections, the mosaicism of reporter gene expression was
greatly reduced in G0 fish injected with the SB transposon. Efficient promoter-

dependent expression in G0 depends on the presence of IR/DRs. Although ~45 % of

these G0 fish are transgenic founders, the other half was not transmitting GFP,
indicating that, in contrast to the meganuclease approach, in those fish ubiquitous

expression was not mainly due to early integration. Thus, widespread GFP expression
in G0 appears to be due to an equal distribution of extrachromosomal plasmid DNA. A

similar mechanism, the direction of the injected DNA to the nucleus, has been



Discussion

57

suggested for the ITRs of AAV in Xenopus and zebrafish (Weitzman et al., 1996). This

allows an even segregation of transient, non-integrated reporter DNA. Consequently,
the SB transposon also provides a useful tool for transient expression studies upon

injection of G0 embryos.

Furthermore, the uniform expression of the transgene in G0 embryos injected
with transposon only or the complete SB system is a reliable marker for the efficient

selection of transgenic founders, limiting a time- and space-consuming screening effort
in F1. It was shown that SB10 acts with the proposed mechanism integrating a single

copy insert sequence into a TA dinucleotide in the transgenic line SV. However,

transgenesis frequencies using the transposon are comparable with or without
transposase (32 or 29 %, respectively) and thus appear relatively independent of the

SB10 transposase. Do IR/DRs influence transgene integration of inserted DNA? For

AAV-ITRs, palindromic sequences that fold into hairpin structures and function as
origins of replication, it has been suggested that they also play a crucial role in the

process of integration (Cooley et al., 1988). Mammalian cell culture experiments
revealed an improvement of integration frequency when reporter genes were flanked by

AAV-ITR sequences over control reporters (Balague et al., 1997). The IR/DRs of SB

may perform similar functions, although such structural properties remain to be shown.
Transgenesis by direct microinjection of DNA is the most convenient and cost

effective technique for many vertebrate prolific species (fish, mouse, rat, rabbit, pig,
cow). However, the rate of foreign gene integration used to be very low and constituted

the major limitation for transgenesis. In these species the meganuclease-mediated

approach or the SB transposon system technique, which are both simple and efficient,
have many potential applications in basic research and biotechnology.

Although, different routes to enhance transgenesis have been followed since the

first report of a transgenic fish (Stuart et al., 1988) (Müller et al., 2002), only little

progress was achieved in establishing ‘enhancer-trap’-like technologies so far (Bayer
and Campos-Ortega, 1992), mainly due to low transgenesis frequencies.

Here I present that both techniques introduced above can be used as highly
efficient tools for the generation of transgenic medaka fish with an intriguing potential

to randomly generate novel patterns of GFP expression.
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Transgenesis mediated by I-SceI leads in one out of twenty cases to temporally

and spatially specific expression patterns most likely due to the insertion of the
transgene in the vicinity of enhancer elements (Fig. 9). This indicates that the reporter

construct is sensitive to position effects and may be useful for enhancer or gene

trapping strategies. Most of the meganuclease-mediated transgenics showed promoter-
dependent expression patterns. I suggest that the single transgenic line with a specific

pattern resulted randomly due to the high general transgenesis frequency, in contrast to
any specific role that could be appointed to the meganuclease itself.

However, using the same reporter construct flanked by IR/DRs, the SB system

is more efficient in generating transgenic fish that exhibit novel specific gene
expression patterns. These patterns range from single cell types to larger tissues or

organs (Fig. 14), and do not show a bias for any germ layer.

Strikingly, compared to control injections or injections of transposon alone, in
the presence of SB10 transposase, novel expression patterns were found at high

frequency, indicating a preference of integration adjacent to regulatory sequences that
is facilitated by the transposase. SB10 transposase co-injection uniquely increases the

generation of novel random patterns of reporter gene expression almost three-fold

compared to injections of control constructs or transposon in the absence of
transposase. This result is not only due to the high integration frequency, because

techniques such as the meganuclease approach, that reaches comparable transgenesis
efficiencies, do not result in a comparable trapping activity (Thermes* et al., 2002).

Approaches using viral constructs in fish, although leading to efficient integration and

mutagenesis, have not been shown to be useful as enhancer trapping tools so far. This
renders the SB  transposon system also a promising tool to perform gene trap

experiments.

Similar to the P-element of Drosophila (Tsubota et al., 1985), SB integration in

medaka might be favoured in the vicinity of transcriptional regulatory elements. The

target site for SB transposition is part of a palindromic AT-rich sequence (ataTAtat)

(Vigdal et al., 2002). Transgene insertion may be directed to AT-rich scaffold

attachment regions or matrix-attached regions by the SB10 transposase even if the

integration event itself is not mediated by the transposase.
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This could account for the increased frequency of novel expression patterns

obtained by transposon/transposase co-injections. These regions are frequently

comprised of control elements that maintain independent realms of gene activity

(Vigdal et al., 2002). Fractions of which might also cohabit with transcriptional

enhancers or silencers (Boulikas, 1995; Sandmeyer et al., 1990).

The enhancement of transgenesis frequencies combined with the random

generation of novel expression patterns using the SB transposon system enables the fast

and simple generation of a wide range of random GFP expression patterns. For an

average sized lab 5000 injections per month are a feasible goal and, enhanced by the SB

system, could give rise to more than 900 transgenic lines, of which 110 are expected to

show a differential expression pattern. Thus, a set of transgenic lines expressing GFP

in developmentally important structures/organs can be established and used without

devoting a major effort on the isolation and characterization of promoter elements.

These enhancer trap lines are useful for a variety of applications relevant for

basic or applied research. Transgenic fish showing specific spatial or temporal

expression patterns can be used as tissue specific molecular markers especially in the

context of mutant analysis. Crossing a specific GFP transgenic to a mutant of interest

allows investigation of the GFP expressing tissue during development in the mutant

background that will result in a fast elucidation of subtle changes of organ or cell

development in vivo. Specific expression patterns within the brain provide interesting

tools for neuroanatomists to identify developmentally or functionally related structures

in the embryonic and adult brain. Moreover, analysis can be performed using confocal

microscopy, time-lapse and 3D-reconstruction to obtain a highly realistic view of

embryonic development in all dimensions (see supplementary CD). GFP expressing

cells can easily be isolated by fluorescence-activated cell sorting (FACS), which in turn

allows the establishment of pure cell cultures and the construction of tissue or cell type

specific cDNA libraries. In the context of mutant analysis, such cDNA libraries enable

subtractive approaches to compare gene expression profiles between wild type and

mutant cells or tissues. Many more applications can be realised depending on the nature

of the transgenic line available. Finally, yet importantly, these lines can be used to
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identify the regulatory elements that are responsible for the spatially and temporally

restricted gene expression. For the rapid isolation of genomic DNA flanking the

insertion, splinkerette PCR (Devon et al., 1995) was successfully applied for the

transgenic line SV. However, independent insertions need to be segregated by

successive out-crossing prior to cloning attempts, which is possible within one

generation as shown for the transgenic line DE. Problems with tandem arrays can be

overcome by pre-selection of the flanking fragments after Southern blotting. The

ongoing sequencing of the medaka genome (Shima et al., 2003; Wittbrodt et al., 2002)

and genomic resources available are crucial prerequisites for the isolation and

identification of DNA sequences near insertion sites on a larger scale and for the

characterisation of the genes controlled by the trapped regulatory elements in vivo.



Discussion

61

5.1 Future Aspects

5.1.1 Gene Targeting

The I-SceI meganuclease has been used previously in mammalian cells

(Johnson and Jasin, 2001) and Drosophila (Lankenau et al., 2003; Rong and Golic,
2000; Rong and Golic, 2001; Rong et al., 2002) for gene targeting. Gene targeting is

the modification of an endogenous gene by recombination between an exogenous DNA
fragment and a homologous endogenous target gene, mediated by a DNA repair

mechanism of the host. This allows specific ablation of genes to study their function in

a complete loss-of-function approach. So far, the only vertebrate amenable to this
technique is the mouse, taking advantage of the ES cell technology.

Cells have evolved numerous repair pathways to contend with various types of

DNA damage (Friedberg et al., 1995). The significance of DNA repair is apparent, as
defects in repair mechanisms are linked to diseases and malignancy (Vogelstein and

Kinsler, 1998). One type of rare but severe lesions, a DNA double-strand break (DSB),
poses a particular threat to genomic integrity. In bacteria and yeast, homologous

recombination (HR) has long been known to be a major mechanism for the repair of

DSBs. In addition to non-homologous end joining (NHEJ), a pathway exclusively
dedicated to the repair of DSBs, HR has also been shown to be a major DSB repair

pathway in mammalian cells (Rouet et al., 1994). By NHEJ, DNA ends are joined with
little or no base pairing at the junction and the end joining may be associated with

insertions or deletions. In order to repair a DSB by HR, a second DNA molecule with

homology to the region to be repaired must be available to serve as template. In this
process, called gene conversion, the information from the donor sequence is copied into

the broken locus, making the repaired locus an exact copy of the donor sequence.
The mouse model offers the advantage of ES cells that are transfected with a

linearized donor vector and subsequently screened by positive/negative selection for

successful homologous recombination events. Linearization of the donor vector
provides DNA containing DSBs, by that activating the host DNA repair machinery

(Muller, 1999).
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In Drosophila, lacking ES cell technology, it is difficult to introduce a linear

DNA molecule into germ cells. Recently, a method to generate such a linear fragment
in vivo has been reported, accompanied by the demonstration of gene targeting. For

targeting, the FLP recombinase and I-SceI meganuclease expression are induced to

generate the DSBs that stimulate HR. Additional studies have also shown that in
principle gene targeting in Drosophila could also be achieved by using I-SceI alone,

although at lower efficiencies (Gong and Golic, 2003). These low efficiencies have
been coupled with a highly efficient repair of I-SceI mediated DSBs that in the design

of this particular experiment performed by Gong and Golic results in low amounts of

donor vector.
The results I obtained on transgenesis frequency applying the meganuclease in

medaka suggest that I-SceI is actively participating in an integration event. Not only the

linearization step itself, producing DSBs, promotes integration into the genome as
injection of in vitro linearized DNA fragments resulted in lower transgenesis

frequencies. This is indicative of an additional function performed by the meganuclease
as discussed earlier.

I-SceI meganuclease thus provides potential to be used for gene targeting also in

medaka. The situation for such an approach resembles more the situation given for
Drosophila than for the mouse model as medaka ES cells so far failed to contribute to

the germ line (Hong et al., 1998). Also lacking small reporter genes that could be used
to screen for successful recombination events, the screening procedure in medaka will

demand other methods. Injection of hundreds to thousands of medaka embryos is a

manageable task, however PCR screening of G0 fish and F1 offspring would overload
the capacity of fish facilities of most labs. Thus, efficient screening in G0 is mandatory.

In medaka, the green fluorescent protein (GFP) provides an alternative to mini marker
genes. Detailed knowledge of target gene sequence and genomic structure is a

prerequisite for gene targeting. A donor vector should contain sequence of the first or

second exon, in frame disrupted by a promoter-less GFP and flanked by two I-SceI

recognition sites (Fig. 17).
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The homology region on either end of the GFP open reading frame should be as

large as possible (0.5 to 10 kb). It will be important that the 5’ homology region does
not contain functional promoter sequence. Ideally, co-injection of meganuclease with

circular or in vitro linearized vector results in ends-out or replacement targeting. The
donor vector would replace the endogenous exon; subsequently successful HR is

scored by GFP expression controlled by the endogenous promoter of the target gene

(Fig. 17). Only GFP expressing embryos will then be raised and tested for germ line
transmission.

To achieve homology regions large enough to enhance HR probability also
intronic sequence may be used albeit the use of isogenic sequence should then be aimed

for (te Riele et al., 1992). The design of such a donor vector is currently under

development in our laboratory.

exon3GFP (in frame) pA

exon1 exon2 exon3promoter

I-SceI I-SceI

exon1 exon3promoter GFP (in frame) pA

X X

donor vector

genomic locus

targeted locus

Fig. 17: Replacement gene targeting.
The donor vector contains a GFP insertion in the second exon of a target gene. The homology
region includes 5’ and 3’ intron sequences and the third exon flanked by two I-SceI sites. The
donor vector is linearized in vivo or in vitro by I-SceI co-injection and digestion. After
homologous recombination, the second exon of a target gene is disrupted by an in frame GFP
insertion followed by a poly adenylation signal and several stop codons. Successful HR events
are scored upon GFP expression according to endogenous promoter control.
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5.1.2 Genetic Transposition

Besides the potential of transposons to enhance the initial integration of

exogenous DNA into the genome of a host as discussed above, transposons offer more
possibilities.

Fig. 18: Scheme for a transposon-mediated genetic insertional mutagenesis or enhancer
trap screen.
A, After initial transgenesis, transgenic F1 offspring (blue) carrying the transposon may be
crossed to a transposase source line (green) harbouring the SB transposase under control of a
germ line specific (vasa) or heat-shock inducible promoter. Offspring thereof may be screened
for mutant phenotypes. B, Alternatively, transgenic F1 offspring carrying a transposon (with a
specific or heat-shock inducible promoter driving GAL4/VP16 and UAS/CFP as an internal
control) (blue) may be crossed to a UAS effector line harbouring a gene of interest under UAS
control (orange).

XG0
putative founder wild type

F1

X X
SB line UAS line

remobilisation 
(mutagenesis)

Cross remobilised offspring to wild type, 
intercross F1 and screen for phenotypes

Screen offspring for phenotypes

GAL4/VP16 in specific tissue 
by specific promoter or 

trapped regulatory element 
(gain-of-function, enhancer trap)

specific or 
ubiquitous 

GFP expression

specific or 
ubiquitous 

GFP expression

specific
GFP expression

A B
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Transposons are able to move actively within a genome. This feature renders

transposon systems an attractive candidate for insertional mutagenesis or enhancer- and
gene-trapping experiments. In contrast to insertional mutagenesis by retroviral vectors

that can integrate into the host genome only once, transposons may be used for

repeated insertions. One initially integrated transposon can be activated to remobilize
by its transposase. This is especially interesting concerning transposons that move in a

cut-and-paste mechanism. Providing a conditional transposase source within the germ
line, reporter gene-containing transposons can be remobilized to identify insertions that

in the next generation result in mutant phenotypes linked to the reporter gene

expression (Fig. 18A).
In theory, a single fish with a transposon insertion mated to a fish containing a

transposase source could be used to perform a permanent F1 mutagenesis screen.

Insertional mutagenesis bears the advantage of providing a marker of known sequence
to the mutagenized locus. Thus, the identification of the affected gene is highly

facilitated, and the adjacent genomic sequences can be determined by inverse PCR.
This resembles the principle applied in Drosophila, where females carrying the gene

encoding for the transposase can be simply crossed with males carrying a non-

autonomous P-element, resulting in remobilization of the P-element in the offspring
and insertion into other loci (Robertson et al., 1988). The mandatory prerequisite,

however, is a highly efficient transposon system.
Similarly, initially integrated enhancer- or gene-trap vectors may be

remobilized to isolate novel expression patterns. The injection of hundreds or

thousands of single embryos as described previously (see section 4) could be omitted
by application of a stable genetic transposase source. The SB system, independent of

host factors, may provide the prerequisites to apply sophisticated technologies
developed in invertebrates for the use in a vertebrate like medaka.
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5.1.3 The GAL4/UAS System in Medaka

The most common way to analyze the function of any gene cloned in fish is to

mis-express its wild type product, or an altered variant of it, by mRNA injection. This
method rapidly yields insights into the developmental function of a gene, but it is also

hampered by some disadvantages. Thus, mRNA injections are unspecific with respect
to the tissue and developmental stage of expression. This makes it difficult to determine

the function of a gene product in any given process. In addition, if the gene product

plays a role during early stages of embryogenesis, the phenotypic consequences may
obscure the effects on later stages. So far, no methods are available for the mis-

expression of a gene product in medaka in a directed stage- and tissue-specific manner.
In Drosophila, on the other hand, one such method – the GAL4/UAS system

(Brand and Perrimon, 1993) – is routinely used to analyze the function of

developmental genes (e.g. (Brand Andrea et al., 1995)). The technique is based on two
different kinds of transgenic strains, called activator or driver and effector lines. In an

activator line the gene for the yeast transcriptional activator GAL4 is placed under the
control of a specific promoter, while in the effector line the gene of interest is fused to

the DNA-binding motif of GAL4 (Upstream Activating Sequences, UAS). The effector

gene will be transcriptionally silent unless animals carrying it are crossed to those of an
activator line. In the progeny of this cross, expression of the effector gene will reflect

the pattern of expression of GAL4 in the activator, which is ultimately dependent on the
promoter that has been used to control it. This, of course, allows controlled ectopic

expression of the effector gene. The establishment of the GAL4/UAS method for

targeted gene expression in medaka is highly desirable for several reasons (Scheer and
Campos-Ortega, 1999). A steadily increasing number of genes cloned from medaka

could then be analyzed in more detail than is feasible with mRNA injections.

Expression of GAL4 under the control of a heat-shock promoter in a variety of stages
and tissues through activation by UV or IR laser in single cells or tissues could provide

a meaningful tool for developmental studies (Halloran et al., 2000). In combination
with a transposon system like SB, various driver lines could be randomly generated in

an enhancer like fashion by transposition (Fig. 18B).
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Appendix to Discussion

7. Appendix A: Application of the I-SceI Meganuclease in
Medaka

7.1 Establishing a Heat-Shock Inducible GAL4 Driver Line Reveals
a Major Toxicity Upon Over-expression

In order to investigate the function of known genes within specific tissues in an

organism I combined the meganuclease system and the SB system with the UAS/GAL4

system used in flies (Brand and Perrimon, 1993).

Co-injection with I-SceI

1-cell stage embryo

DR IRGAL4/VP16pADRIR zfHSPpA CFP 4xUAS/dHSP

I-SceII-SceI

Fig. 19: Generation of a heat-shock inducible GAL4/VP16 driver line.
I-SceI recognition sites flank the insert to facilitate genomic integration. SB inverted repeats are
placed at the inner flanks to allow subsequent remobilization of the insertion. A zebrafish heat-
shock promoter drives expression of the GAL4/VP16 fusion protein. CFP is placed under
control of four UAS  elements on the same vector as an internal control of GAL4/VP16
expression. Circular plasmid (pCG 6.0Sce) was co-injected with I-SceI meganuclease and
surviving embryos were raised to sexual maturity. F1 offspring of injected G0 x wild type
matings were screened for CFP expression by a 2 minute heat-shock at 42 °C in a waterbath.
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This would allow establishment of specific driver lines expressing CFP as

internal marker driven by GAL4/VP16. By crossing the driver lines to effector lines
containing genes of interest under UAS control specific miss-expression studies could

be performed.

Moreover, the transposon system would eventually allow the remobilization of
insertions, combining the GAL4/UAS system with a genetic enhancer trap screen (Fig.

18). A heat-shock inducible driver line was successfully established (Fig. 19, 20).
Although control experiments involving transient expression of GAL/VP16

were promising, stable transgenics revealed a major toxicity of GAL4/VP16 when

systemically expressed from within the genome. This leads to general retardation of
GAL4/VP16 expressing embryos compared to heat-shocked control embryos (Fig. 20).

Fig. 20: Genomic expression of GAL4/VP16 results in a retardation phenotype.
Transgenic medaka embryos were heat-shock induced for 5-30 minutes at 42 °C. Dorsal view;
anterior is to the left. Expression of GAL4/VP16, monitored by CFP expression, leads to
retardation of embryonic development. The severity of the phenotype is dose dependent. Short
induction (5 minutes) shows less effect on embryogenesis but does not result in detectable CFP
expression within the entire embryo. Long induction (>5 minutes) results in high CFP expression
leading to strong retardation and embryonic lethality. A, transgenic embryo after 10 minutes at
42 °C. B, wild type sibling after 10 minutes at 42 °C as a control.

A B
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The degree of toxicity is dependent on the expression level. This dose

dependence suggests that the GAL4/VP16 fusion protein sequesters the basal
transcription machinery in excess, thereby resulting in a retardation phenotype.

Although, I could show that the GAL4/UAS system is principally usable in medaka,

transactivation by the GAL4/VP16 fusion protein appears to be too strong.
The potential applicability of this transgenic line for induction of GAL4/VP16

within single cells or groups of cells by IR or UV (Halloran et al., 2000) laser is under
investigation in collaboration with a Japanese research group. Laser induction might

allow more subtle induction that in addition will not affect the entire embryo.

Furthermore, application of wild type GAL4 protein, mini-GAL4 proteins (Wu et al.,
1996) exhibiting lower transactivation potential or identification of the minimum

duration of a heat-shock resulting in sufficient but non-toxic GAL4 activation might

solve this problem.

8. Appendix B: The SB Transposon System in Oryzias Latipes

8.1 Repeated Germ Line Transposition Does Not Occur Upon
Genetic Transposase Induction

Owing to their inherent nature to move from one chromosomal location to

another within and between genomes, transposable elements have been exploited as

genetic vectors for genetic manipulations in several organisms (Bellen et al., 1989;
Jaenisch, 1988). Transposon tagging is a well-established technique in which

transposons are mobilized to jump into genes, thereby inactivating them by insertional
mutagenesis. In the process, the inactivated genes are tagged by the transposable

element, which then can be used to recover the mutated allele. Although, insertional

mutagenesis is less efficient and less random than chemical treatment, it is such a
powerful technique for the generation of recoverable mutations that it will undoubtedly

be useful in medaka developmental genetics. 
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Transposon tagging can also be used in enhancer trap screens. A marker gene,

such as GFP, can act as a reporter for genomic transcriptional enhancer-like elements

located sufficiently close to the inserted transposon (see section 4.4). The same
procedures that generate insertional, loss-of-function mutants or trap regulatory

elements can be used to deliver genes that will confer new phenotypes to cells (see
sections 3, 4 and 7). Application of transposase by mRNA injection in single embryos

is too work intensive to be used for genetic screens.

1-cell stage embryo

CSKA GFP pA pA Sleeping Beauty zfHSP
I-SceI I-SceI

Co-injection with I-SceI

heatshock +       -        +        -         +        -

heat-shock
SB

vasa
SB

3.5 kb
4.2 kb

      control            1      2      3      4       5

A

B C

Fig. 21: Efficient repeated SB-mediated transposition only occurs in somatic cells.
A, circular plasmid (pzHSPSBGFPS-I) was injected into 1-cell stage medaka embryos. Putative
founder fish were selected based upon their GFP expression, rose to sexual maturity and crossed
to wild type fish. B, GFP expressing F1 offspring was collected and tested for SB inducability by
RT-PCR. Similarly, embryos of a transgenic line expressing SB under control of the germ line
specific vasa promoter were tested by RT-PCR. Three independent transgenic heat-shock lines
and the vasa-SB line have been tested in B, showing constitutive or inducible SB transcription. C,
the vasa-SB line was crossed to the transgenic Yes line (harbouring the transposon as tandem
repeats of the entire vector). Offspring was raised to adulthood and tested for transposition events
by Southern analysis. GFP coding sequence was used as a probe. Genomic DNA was digested
with BamHI. Control lanes show the GFP signal of 3 individuals of the original Yes line. Lanes
1-5 show 5 independent F1 individuals of vasa-SB x Yes matings. Lanes 1,3 and 4 clearly show
an additional GFP signal at about 4.2 kb, indicative for a transposition event. Offspring of these
individuals was again investigated by Southern analysis. The novel GFP  signal was not
transmitted to the next generation  (data not shown) suggesting that the initial transposition
occurred in somatic cells only.
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The advantages of transposons take effect only if they are applicable in a

genetic manner, by crossing transgenic lines harbouring a transposase source to a target
line harbouring the transposon (Fig. 18). I investigated the remobilization potential of

SB using genetically stable (constitutive) or conditional (inducible) transposase sources

(transgenic lines). A germ line specific driver line (vasa SB) (Shinomiya et al., 2000)
was already available; a heat-shock inducible driver (HSP SB) (Halloran et al., 2000)

was established in addition (Fig. 21A, B).
Upon crossing to target lines (SV, Yes) I got promising results in G0 with both

driver lines, 30 % (5/15) of the investigated fish showed an additional reporter signal

on Southern blots (Fig. 21C). Suspiciously, they all were of the same size, suggesting
hot spots of insertions at a nearby locus. Unfortunately, this additional signal was not

transmitted to further generations. Within 35 F1 and 30 F2 individuals, none showed

transposition within the germ line as validated by Southern analysis (data not shown)
but only somatic transposition in G0 occurred with high efficiencies. These results led

to the conclusion that the activity of SB is not sufficient to perform a reasonable genetic
mutagenesis screen. The transposon I used was flanked by a left and a right inverted

direct repeat (IR/DR). The two original recognition sequences are not identical and

may reduce the transposition efficiency. Meanwhile, cell culture experiments have
shown that usage of two identical left repeats does enhance the transposition frequency

at least two-fold (Z. Ivics, personal communication).  Application of the SB system
with enhanced IR/DRs therefore may yield higher efficiencies also in medaka.
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Materials and Methods

9. Materials

9.1 Buffers and Media

All buffers not specifically described in this section were prepared according to

standard protocols (Sambrook et al., 1989) using highly deionized water (millipore),
unless indicated differently. Sterilization was achieved by autoclaving.

LB Medium (Luria-Bertani Medium)
10 g Tryptone

  5 g Yeast extract

10 g NaCl
ad 1 l Deionized H2O.

pH adjusted to 7.0 with 5 N NaOH; sterilized. If necessary, 100 mg/ml ampicillin were

added.

LB Agar
15 g agar were dissolved in 1 l LB medium, allowed to cool down to 60˚ C,

supplemented with antibiotics if necessary, and poured into 9 cm diameter petri dishes.

ERM (Embryo Rearing Medium)
0.1 % (w/v) NaCl

0.003 % (w/v) KCl
0.004 % (w/v) CaCl2x2H2O

0.016 % (w/v) MgSO4x7H2O
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10x Yamamoto Ringer Solution
7.5 % (w/v) NaCl
0.2 % (w/v) KCl

0.2 % (w/v) CaCl2x2H2O

adjusted to pH 7.3 with HCl

SSC
3 M NaCl

0.3 M Sodium citrate

TE
1   mM EDTA pH 8.0

10 mM Tris/HCl pH 8.0

TAE
40 mM Tris base

20 mM Acetic acid

  1 mM EDTA pH 8.0

TEN9
100 mM Tris/HCl pH 8.5

10 mM EDTA

200 mM NaCl
1 % SDS

Denaturing Solution

1.5 M NaCl
0.5 M NaOH

Neutralising Solution
1.5 M NaCl
0.5 M Tris/HCl pH 7.5
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Embryo Injection Plates
1.5 % agarose was dissolved in water (1/3 dH2O + 2/3 tap water) and poured

into 9 cm petri dishes. Before the agarose had solidified, a plastic mould was put on top

to form troughs in the agarose. Finally, the mould was removed and the troughs were

used to align and orient the embryos for injection.

Gel loading buffer (6x)
15% (w/v) ficoll (type 400, Pharmacia)

0.05% (w/v) bromphenol blue

0.05% (w/v) xylene cyanol FF

9.2 Enzymes and Standards

• Shrimp alkaline phosphatase, Roche

• Klenow fragment of DNA polymerase I, Roche
• LaTaq DNA polymerase, TaKaRa Biomedicals

• T4 DNA ligase, Roche

• Restriction enzymes, Roche or New England Biolabs (NEB)
• GeneRuler 100 bp DNA ladder, ready-to-use, MBI Fermentas

• 1 kb DNA ladder, Stratagene

9.3 Kits

• QIAquick Gel Extraction Kit, QIAgen

• QIAquick PCR Purification Kit, QIAgen
• QIAfilter Plasmid Maxi Kit, QIAgen

• QiaPrep Spin Miniprep Kit, QIAgen

• RNeasy Mini Kit, QIAgen
• Ambion mMessage machine SP6 Kit, Ambion

• Ambion mMessage machine T7 Kit, Ambion
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• Topo TA Cloning Kit, Invitrogen

• Gene Images Alkphos Direct Labelling and Detection System, CDP-Star,
Amersham

• Megaprime DNA labelling systems, Amersham

• Rapid hyb buffer, Amersham

9.4 Chemicals

All chemicals not listed were supplied by Sigma-Aldrich or Merck.

• Agarose, ultraPure, GibcoBRL

• Ampicillin, Sigma-Aldrich
• BSA, New England Biolabs

• dNTPs, Stratagene

• (a32-p)-dCTP 3000 Ci/mmol, Amersham

• Phenol equilibrated, stabilised/Chloroform/Isoamylalcohol (25:24:1),
AppliChem

• X-gal, BTS Biotech Trade & Service

• IPTG, Roche
• Polyethylene glycol (PEG) 8000, Merck

9.5 Bacteria

• DH10B, Stratagene
• XL1-Blue, Stratagene

• TOP10F’, Invitrogen



Materials and Methods

76

9.6 Vectors

These vectors were used as staring material for DNA cloning or templates for in
vitro transcription (numbers in brackets (X) designate the lab-internal plasmid stock

number, if existent).

pCS2+ (221) as in vitro transcription vector (constructed by D. Turner and R. Rupp,

1993)

pBSKS+ (22) cloning vector, Stratagene

pCRII-Topo (from Topo TA Cloning Kit, Invitrogen)

pCSKA GFP Wuerzb. (294) contains humanised GFP under control of the Xenopus

borealis cytoskeletal-actin promoter with a SV40 polyadenylation signal (kind gift of

M. Schartl)

pECFP-N1, Clontech. ECFP bears 6 aa substitutions (compared to wild type GFP) to

shift excitation/emission spectrum, with the emission maximum in blue, to enhance
brightness and solubility. More than 190 silent mutations are introduced to adjust the

codon usage to preferred human codons

pBSD700 Sleeping Beauty (380) (kind gift of Z. Ivics) containing a left and a right

Sleeping Beauty IR

pBSSK/SB10  (362) (kind gift of Z. Ivics) in vitro transcription vector for S B

transposase (kind gift of Z. Ivics)

pzHSP70/4prom (574) containing a 1.5 kb fragment of the zebrafish HSP70 promoter

(kind gift of J. Warren)

pCGGal (731) a GAL4/VP16 fusion construct is driven by the cska promoter and
followed by a SV40 pA signal
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ISceI-pBSII SK+ (765) pBSII SK+ backbone with the MCS flanked by two inverted I-

SceI recognition sites

pCG3.0C (739) contains a UAS-CFP-SV40 pA cassette flanked by a left and right SB

IR/DR

9.7 Equipment

• Incubators

Gallenkamp Plus II (for 50 ˚C, 55 ˚C, 65 ˚C)
Heraeus, Karlsruhe (for embryo breeding at 28 ˚C)

Hybaid Micro-4 spinning wheel incubator, MWG Biotech
• Hybridisation oven BFED 53, Fischer, Schwerte, Germany

• Microcentrifuge Eppendorf centrifuge 5417C

Gel electrophoresis chamber Hoefer HE Mini Submarine electrophoresis unit,
Pharmacia Biotech, USA

• PCR Multicycler PTC 200, Biozym

• Electroporator: BioRad GenePulser II
• Electroporation cuvettes: BioRad Gene Pulser cuvette 0.1cm, BioRad

• UV crosslinker: UV Stratalinker 2400
• Needle puller P-30, Sutter Instrument Co, USA

• Microinjector Eppendorf 5242

• Micromanipulator Leica
• Stereo microscopes

Stemi 2000, Leica, Wetzlar
MZ FLIII fluorescence stereomicroscope, Leica

with a 370 nm to 420 nm excitation filter and a 455 nm LP emission

filter and a Jenoptik ProgRes C14 UV Camera
Both with transillumination by a Schott/Leica KL 1500 electronic cold light

source
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9.8 Additional Materials

• Nylon membranes: GeneScreen Plus Hybridization Transfer Membrane NEF
976, NEN Life Science Products; Hybond N+, Amersham

• Nitrocellulose filters (for dialysis) 0.025mm, white, 13 mm, millipore

• Borosilicate glass capillaries with filament GC-100F10, Clark Electromedical

Instruments
• Films Kodak BioMax Light-1, Eastman Kodak Co

• Films Kodak BioMax MR-1, Eastman Kodak Co
• Whatmann 3MM chromatography paper

• Vacutainer SST II Plus, BD Bioscience

9.9 Medaka Stocks

Wild type medaka (Oryzias latipes) from a closed stock at EMBL-Heidelberg

were kept as described (Köster et al., 1997).

10. Methods

10.1 Isolation of Genomic DNA from Adult Fish

Adult fish were anaesthetised in ice water for at least 10 min and ground up in a

pre-cooled mortar filled with liquid nitrogen. The resulting powder was suspended in 5

ml TEN 9 buffer. 5 mg proteinase K and 250 ml 20 % SDS, were added for lysis, and

the suspension was thoroughly mixed by pipetting up and down with a 10 ml glass
pipette. The sample was poured into 15 ml falcon tubes and incubated overnight at 50

˚C in a spinning wheel incubator. Proteins were removed by phenol / chloroform

extraction. For this, the solution was cooled down to RT, transferred to a vacutainer,
supplemented with 3 ml phenol / chloroform / isoamylalcohol (25:24:1) and mixed by
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shaking. To allow the phases to separate, the solution was left for 30 min and

subsequently centrifuged for 1 h at 3000 rpm and rt. The upper, aqueous phase, now
separated from the lower organic phase by the wax-layer of the vacutainer, was

transferred to a fresh vacutainer, mixed with another 3 ml of phenol / chloroform /

isoamylalcohol and centrifuged for 20 min at 3000 rpm and rt. The upper, aqueous
phase, containing the purified genomic DNA was transferred to a new 15 ml Falcon

tube, and the DNA was precipitated by adding 0.6 vol. (3 ml) of isopropanol. The DNA
became visible as filaments and could be collected with a metal hook and transferred to

an Eppendorf tube filled with 500 ml 70 % ethanol to be washed by gentle mixing.

After sedimentation in a centrifuge for 5 min at 4000 rpm, removing of the ethanol

supernatant, and air-drying, the DNA pellet was resuspended in 400 ml TE buffer (pH

8.0) at 40 ˚C overnight.

10.2 Southern Blot Hybridisation

20 mg of genomic DNA were digested o/n with 100 Units of restriction enzyme

and an aliquot of 8-10 mg was separated by gel electrophoresis on a 0.8 % agarose gel

at 65 V for 5 h. (~ 2.5 V/cm electrode distance). After staining with ethidium bromide

for 20 min the gel was examined under UV illumination to ensure proper separation.

The gel was rinsed with water to remove ethidium bromide, incubated in 300 ml 0.2 N
HCl for 10 min with gentle agitation to depurinate the DNA by acidic hydrolysis for

better transfer. The HCl was removed and the gel was rinsed several times. The gel was
incubated in 250 ml denaturing solution for two times 10 min each with gentle

agitation. The denaturing solution was removed, and the gel was incubated for 15 min

in 250 ml neutralising solution. The gel was placed upside down on a wick of
Whatmann 3MM paper on a glass plate above a reservoir of 20 x SSC buffer, with the

ends of the wick hanging into this reservoir. A nylon membrane of a size 3 mm less
than the gel in length and width was equilibrated for 1 min in water and for 10 min in

20 x SSC and placed on top of the gel. A stack of Whatmann paper, again 7 mm less

than the nylon membrane in length and width was put on top of the membrane, with the
lowest sheet of Whatmann paper wet in SSC before. Up most a 3 cm stack of paper
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towels and a glass plate was put to pin down the setup, and the reservoir was covered

with plastic wrap to prevent evaporation during the transfer. Any air bubble trapped
between the glass plate, the lower Whatmann paper, the gel, the nylon membrane, and

the wet upper Whatmann paper had to be removed to ensure complete and even

transfer. With this setup, the transfer of DNA fragments to the nylon membrane was
driven o/n by capillary forces. After the transfer was completed, the nylon membrane

was marked on the upper side with the positions of the gel slots and dried on a
Whatmann paper. The DNA fragments were crosslinked to the membrane by UV

exposure (UV Stratalinker 2400, autocrosslink).

Probe labelling was performed using the Megaprime DNA labelling system
(Amersham) to obtain a final concentration of 2-5 ng per ml hybridisation buffer

according to the manufacturers protocol.

Hybridisation was performed using the Rapid-hyb buffer according the
manufacturers protocol for high stringency hybridisations.

Autoradiography was performed for 2 h to several days at –80 degree Celsius
using Kodak BioMax MR-1 films.

10.3 Sequencing

Sequencing was performed by the EMBL sequencing core facility.

10.4 Microinjections

10.4.1 Meganuclease

Medaka embryos and adults of the inbred Cab strain were used in all

experiments. Fertilized eggs were collected immediately after spawning (at the onset of
light) and placed in pre-chilled Yamamoto’s embryo rearing medium (Yamamoto,

1975). For injection, one-cell stage embryos were transferred to 4 °C to arrest

development. In all experiments, a pressure injector (Eppendorf 5242) was used with
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borosilicate glass capillaries (GC100T(F), Clark Electromedical Instruments).

Capillaries were backfilled with the injection solution (DNA: 10 ng/µl; commercial
meganuclease buffer (Roche or New England Biolabs Buffer): 0,5x; meganuclease I-

SceI: 0.2 units/µl). DNA was prepared using a Qiagen Maxiprep kit. DNA was injected

through the chorion into the cytoplasm of the one-cell stage embryos. Embryos were
raised to sexual maturity and outcrossing to wild type fish identified transgenic carriers.

Rates of germ line transmission of identified transgenic founder fish were then
established to determine the percentage of transgenic F1 offspring.

10.4.2 Sleeping Beauty

Capillaries were backfilled with the injection solution (DNA: 50-100 ng/µl;
Yamamoto buffer: 1x; SB10 mRNA: 100 ng/µl). To test for functional endogenous SB

recognition sequences (IR/DRs) SB10 mRNA was injected in concentrations up to 400
ng/ µl. DNA was prepared using a Qiagen Maxiprep kit and dialysed using

nitrocellulose filters. DNA was injected through the chorion into the cytoplasm of the

one-cell stage embryos. Embryos were raised to sexual maturity; transgenic carriers
were identified by out crossing to wild type fish.

10.5 Epifluorescence Microscopy

Embryos were observed and scored using a MZFLIII dissecting microscope

(Leica) with a 370 nm to 420 nm excitation filter and a 455 nm LP emission filter.

10.6 DNA cloning

DNA digestions, Klenow reactions, ligations and dephosphorylations were

performed as described (Koester 1998). Fragments were purified using the QIAgen

Nucleotide Removal Kit or the QIAgen QiaQuick Gel Extraction Kit if fragments were
separated by electrophoresis. PCR products were cloned using the TA cloning kit from
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Invitrogen. Ligations were transformed by electroporation as described (Dower et al.,

1988; Köster et al., 1997). All kits were used according to the manufacturers protocol.

10.6.1 Cloning of #381 SB Reporter Vector

A 1.9 kb cassette containing the cytoskeletal actin promoter of X. borealis, a
humanised version of GFP and a SV40 pA signal was removed from plasmid #294 by

an ApaI/Ecl136II double digest. The fragment was purified and cloned into plasmid

#380, resulting in the SB Reporter vector #381 (5.6 kb) (Henrich, 1999).

10.6.2 Cloning of the Meganuclease Vectors

The paact-GFPI2 (7.9 kb) was generated by introducing two I-SceI recognition

sequences in a plasmid bearing the eGFP cDNA reporter gene driven by a zebrafish a-

actin muscle specific promoter and a BGH pA signal (p-G-BS, gift from Dr S.I.
Higashijima (Higashijima et al., 1997). «Megalinkers» were generated by annealing

complementary oligonucleotides containing the I -SceI  recognition site
(TAGGGATAACAGGGTAAT) flanked by free ends compatible with either of the

EcoRI or KpnI digest products. «!Megalinkers!» were inserted at the EcoRI and KpnI

sites, located at both ends of the a-actin/GFP/SV40polyA cassette in the pBluescript

polylinker, and verified by sequencing. A construct with a single I-SceI linker at the
former KpnI site was digested by I-SceI to generate a linearised control for stable

transgenesis experiments.
Several other constructs were obtained by inserting different linkers at the KpnI

site: paact-GFPI with only one I-SceI recognition site, paact-GFPDI with a shortened

recognition site (GGGTAATATA), and paact-GFPMI containing a mutated

(TAGGGtTAACAGGGTAAT) version of the I-SceI site. The I-SceI meganuclease

binds these latter two sites but does not cleave (Thermes* et al., 2002).
Similarly, the pCSKAGFPS-I vector (7.7 kb) was constructed. An I-SceI

backbone vector was created by insertion of a double strand oligonucleotide containing

two I-SceI sites interrupted by the pBSIISK+ MCS at the BssHII sites of pBSIISK+ and
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verified by sequencing. A reporter cassette containing a GFP reporter gene driven by

the cytoskeletal actin promoter of X. borealis and followed by a SV40 pA signal was
inserted into the I-SceI backbone vector at the Bsp120I site resulting in a 7.7 kb

plasmid.

10.6.3 Cloning of the heat-shock inducible GAL4/VP16 vector (pCG
6.0Sce)

Vector #739 was linearised by ApaI/XbaI digestion and ligated to the cska-
GAL4/VP16-SV40 pA cassette that was isolated from vector #731 with the same

enzymes. A 3’ truncated HSP70 promoter fragment from zebrafish that was isolated by

digestion with XbaI/EcoRI from vector #743 replaced the cska promoter, which was
removed by the same enzymes. Finally, a single I-SceI recognition site was introduced

between the outer edges of the SB IR/DRs. The resulting vector pCG6.0Sce (801)
contains a HSP70 promoter fragment driving GAL4/VP16 to activate transcription of

CFP by binding to the UAS elements.

10.6.4 Cloning of the heat-shock inducible SB vector (pzHSPSBGFPS-I)

The 1.5 kb HSP70 promoter from zebrafish was isolated from plasmid #574 by
a SmaI/ClaI double digest. Vector #362 was linearised with XhoI, filled in and digested

with ClaI. The purified promoter fragment was then ligated to to #362 resulting in the

vector pzHSPSB (743). In this vector SB is driven by the HSP70 promoter and
followed by the globin 3’ UTR of X. laevis. This vector was linearised with Asp718I,

filled in and digested with NotI/ScaI, a 2.9 kb fragment containing the above mentioned
cassette was isolated.

Vector #294 was linearised with KspI, filled in and digested with NotI, the

linearised vector was purified and ligated to the above cassette resulting in the vector
pCGSBHSPGFP. This vector contains the above-mentioned cassette and another

cassette in opposite orientation containing GFP driven by the cska promoter and

followed by a SV40 pA. Both cassettes were isolated by digestion with Bsp120I (4.8
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kb) and ligated to vector #765 that was linearised with Bsp120I resulting in the vector

pzHSPSBGFPS-I (769) containing the above-mentioned cassettes flanked by two
inverted I-SceI recognition sites.

10.7 Isolation of Flanking Genomic Sequences

Genomic regions flanking the insertions were isolated by splinkerette PCR as

described (Devon et al., 1995; Henrich, 1999). In brief, genomic DNA from transgenic

lines was digested with XhoI. Nested PCR was performed (primary PCR: spl/ left-

IR/DR and spl/ right-IR/DR primers, secondary PCR spl-nest/left-IR/DR-nest and spl-

nest/right-IR/DR-nest primers. 1 ml was transferred from primary to secondary PCR)

95 °C 30 sec.; 95 °C 15 sec., 71 °C 1 min –2 °C per cycle, 72 °C 2 min (5 cycles); 95

°C 15 sec., 61 °C 2 min, 72 °C 2 min + 9 sec per cycle (28 cycles)

Spl: cgaatcgtaaccgttcgtacgagaa, spl-nest: tcgtacgagaatcgctgtcctctcc, left-IR/DR:

tttactcggattaaatgtcaggaattg, left-IR/DR-nest: tgagtttaaatgtatttggctaaggtg, right-IR/DR:

agtgtatgtaaacttctgacccactgg, right-IR/DR-nest: cttgtgtcatgcacaaagtagatgtcc.

Accession number of genomic insertion in SV line: AJ404849

10.8 Isolation of Total RNA

The isolation of DNA free total RNA was performed as described

(Chomczynski and Sacchi, 1987; Köster et al., 1997).
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10.9 Transcription of mRNA In Vitro

SB mRNA was generated in vitro using the Ambion mMessage machine (SP6)

according to the manufacturers protocol. The mRNA was subsequently purified using
the RNeasy RNA purification kit from QIAgen according to the manufacturers

protocol.

10.10 Reverse Transcription – PCR

cDNA was generated by reverse transcription using of total RNA using the

Superscript II RNAse H- reverse transcriptase from GibcoBRL. Subsequent PCR was

performed according to the manufacturers recommendation using 10 % of the RT
reaction.

11. Supplementary Information

Two transgenic medaka lines have been analysed in more detail using confocal

microscopy, time-lapse and 3D-reconstruction. QuickTime Movies of these analyses

are provided on the supplementary CD. The folder “634 movies” contains three movies
that show transgenic line 634, generated using the meganuclease approach (see also

figure 9). Movie “634_28_head” shows transgenic line 634. Starting point is a dorsal

view of the head at developmental stage 28. Anterior is to the left (in all of the movies).
3D-rendered structures include single cells of the retinal-pigmented epithelium (RPE),

the lens of the left eye and the developing diencephalon. Posterior, GFP is expressed in
the rhombomeres. Movie “634_31_diencephalon” shows a close-up surface rendering

of the GFP positive region of the diencephalon at developmental stage 31. GFP

domains include the left and right habenulae and the epiphysis that is located between
the habenulae. The third movie “634_31_rhombomeres” is focussed on rhombomeres 1
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and 3. Anterior, the ventral part of the cerebellum is GFP positive (rhombomere 1)

while the second rhombomere does not show any G F P signal, the complete
rhombomere 3 is positive for GFP expression. The folder ‘DE movies” contains five

movies that show the development of GFP positive tissues of transgenic line DE,

generated by transposon injection. Movies “DE_23” to “DE_30” outline the
development of diencephalic tissue at the respective stages 23 to 30. Starting point is

again a dorsal view of the head region, anterior is to the left. In this line the GFP

positive tissue clearly differs from that in line 634, although both lines show GFP in

diencephalic areas. For a detailed description of the structures that are visible in these

movies, please refer to figures 15 and 16. Movie “DE_30_lateral” shows the same
embryo as in “DE_30” but in lateral rotation, starting from a frontal view. In addition,

the folder “Thesis” contains the complete thesis in PDF format.
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Abbreviations

aa Amino acids LINE Long interspersed
element

AAV Adeno-associated
virus

LTR Long terminal repeat

bp Base pairs M Molar
BSA Bovine serum

albumine
MAR Matrix attachment

region
cDNA Coding DNA MBT Mid-blastula

transition
CFP Cyan fluorescent

protein
MCS Multiple cloning site

CNS Central nervous
system

mM Millimolar

DNA Deoxyribonucleic acid mRNA Messenger RNA
dNTP Deoxynucleic

triphosphate
nls Nuclear localisation

signal
ds Double stranded NHEJ Non homologous end

joining
DSB Double strand break pA Polyadenylation
ES Embryonic stem PCR Polymerase chain

reaction
F1 Filial generation 1 REMI Restriction

endonuclease
mediated integration

FACS Fluorescence activated
cell sorting

RNA Ribonucleic acid

G0 Generation 0 RT Reverse transcriptase
GFP Green fluorescent

protein
rt room temperature

hpf Hours post
fertilisation

SAR Scaffold attached
region

HR Homologous
recombination

SB Sleeping Beauty

HSP Heat-shock protein SINE Short interspersed
element

IPTG TcE Tc1 like element
IR Infrared Tn Transposon
IR/DR Inverted/direct repeat UAS Upstream activating

sequence
IS Insertion sequence UV Ultraviolette
ITR Inverted terminal

repeat
YSL Yolk syncytial layer

kb Kilobase


