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1  Summary 

 

The Saccharomyces cerevisiae type I myosins Myo3p and Myo5p are involved in endocytosis 

and in the polarization of the actin cytoskeleton. In vitro, p21-activated kinases (PAKs) can 

phosphorylate a single serine in the myosin-I head domain, referred to as TEDS site, thereby 

activating the myosin-I ATPase.  

This work demonstrates that phosphorylation of the Myo5p TEDS site is required for two 

myosin-I in vivo functions in yeast, endocytosis and actin cytoskeleton polarization. However, 

the yeast PAKs Ste20p, Cla4p and Skm1p and their activator Cdc42p, while important for 

actin cytoskeleton polarity, are not required for the uptake step of endocytosis. An in vitro 

screen identified several other kinases as possible TEDS site kinases including the sphingoid 

base-activated kinase Pkh2p. Preliminary results support a model in which Pkh2p and its 

paralogue Pkh1p are part of a signalling cascade that leads to TEDS site phosphorylation and 

thus myosin-I activation for endocytosis. 

A second important feature of fungal myosins-I is their ability to induce actin polymerization 

through the Arp2/3 complex. Within this work, Myo5p serine 1205, located N-terminal to the 

sequence that interacts with and activates the Arp2/3 complex, was identified as a 

phosphorylation site for casein kinase II (CKII). This phosphorylation event appears to 

negatively regulate myosin-I-induced actin polymerization. The fact that mutation of one 

catalytically active subunit of CKII increases the α-factor internalization rate, points to a 

inhibitory role of this kinase in endocytosis, which might be a direct consequence of the 

inhibitory effect of myosin-I tail phosphorylation on Arp2/3 dependent actin polymerization. 
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2  Abbreviations 

 

1NM-PP1 4-amino-1-tert-butyl-3-(1-naphtylmethyl) pyrazolo [3,4-d] 

pyrimidine 

aa amino acid 

ADP adenosine 5’-diphosphate 

Ampr ampicillin resistance gene 

as    analogue-sensitive 

ATP    adenosine 5’-triphosphate 

bp    base pairs 

Ci    Curie 

DMSO    dimethyl sulfoxide 

DNA    deoxyribonucleic acid 

ER    endoplasmic reticulum 

g    gravity 

GDP    guanosine 5’-diphosphate 

GTP    guanosine 5’-triphosphate 

HEPES   N-[2-Hydroxyethyl]piperazine-N’-[2-ethanesulfonic acid] 

IgG    immunoglobulin G 

kDa    kilodalton 

KPi    potassium phosphate 

MOPS    (3-[N-Morpholino]propanesulfonic acid) 

OD600    optical density at 600nm 

ORF    open reading frame 

PCR    polymerase chain reaction 

ProtA    protein A of Staphylococcus aureus 

RT    room temperature 

SDC    synthetic dextrose complete medium 

TRIS    tris-(hydroxymethyl)-aminomethane 

ts    temperature-sensitive 

U    unit 

WT    wild-type 

YPD    yeast peptone dextrose medium 
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3 Introduction 
 

The microtubules, the actin filaments and the intermediate filaments compose the cellular 

cytoskeleton. The cytoskeleton establishes cell shape, resists mechanical deformation and 

serves as tracks along which motor proteins can deliver cargo or transmit forces. Actin 

filaments and microtubules are responsible for most biological movements (for review see 

Pollard and Borisy, 2003; Wodarz, 2002; Pollard and Earnshaw, 2002). Both microtubules and 

actin filaments are dynamic structures, which allow rapid changes in the cell shape just by 

filament assembly and disassembly. In addition, both serve as tracks for molecular motors that 

are able to convert the chemical energy stored in ATP into mechanical force. Dynein and 

kinesin are the microtubule-based motors, while myosins are the molecular motor proteins that 

use actin cables as tracks (for review see Pollard and Borisy, 2003; Pollard and Earnshaw, 

2002).  

All myosins share a common structural organization (for review see Hasson and Mooseker, 

1995; Sellers, 2000). Most myosins bear N-terminally the actin-activated ATPase. C-terminal 

to the ATPase is the neck region, which binds a variable number of light chains and is thought 

to function as a lever arm, which amplifies small conformational changes in the ATPase that 

occur during ATP hydrolysis. The ATPase plus the neck constitute the N-terminal motor head. 

C-terminal to the motor head is the class-specific tail domain.  

To date, myosins are divided into 18 families. Since the type II myosins, which form the 

myosin filaments in muscle, were the first to be discovered, this group is called the 

“conventional” myosins. All others are called the “unconventional” myosins. Myosins are 

divided into the diverse classes based on sequence comparison of the evolutionarily conserved 

actin-activated ATPase (Yamashita et al., 2000; Sellers et al., 1996; Sellers and Goodson, 

1995). Interestingly, the members of each myosin subtype share a common structural 

organization of the more divergent tail domains, suggesting that this domain specifies the 

cellular function of each particular myosin group (Korn, 2000; Sellers and Goodson, 1995; 

Sellers et al., 1996). Members of some specific myosin subclasses, e.g. type I myosins, are 

present in most eukaryotic cell types, suggesting that they fulfill evolutionarily conserved and 

essential functions (Hasson and Mooseker, 1995; 1996; Sellers, 2000). So far, all examined 

myosins, except type VI myosins, have been found to move towards the so-called barbed, or 

(+), end of the polar actin filaments (for review see Sellers, 2000).  
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The next chapters will give a general overview of type I myosins, which are the focus of this 

work, followed by a more detailed discussion of the role and function of these myosins in 

Saccharomyces cerevisiae. 

3.1 Type I myosins 

For many years, scientist believed that actin and myosin-II filaments were essential for all 

motility processes. In 1973, Pollard and Korn were the first to purify a monomeric protein with 

biochemical properties resembling myosins-II from the amoeba Acanthamoeba castellanii 

(Pollard and Korn, 1973). Although single-headed and non-filamentous, this protein was able 

to translocate along actin filaments. Therefore, it was subsequently termed type I myosin 

(myosin-I).  

Type I myosins constitute a well-characterized and ubiquitous group of unconventional 

myosins, which bear a small, globular C-terminal tail domain (for review see Korn and 

Hammer, 1990; Coluccio, 1997; Sellers, 2000). The tail domains of the type I myosins contain 

a basic tail homology 1 (TH1) domain, which can bind acidic phospholipids and NaOH-

treated, i.e. protein-stripped membranes (for review see Hasson and Mooseker, 1995; 

Mooseker and Cheney, 1995). The TH1 domain is therefore believed to mediate membrane-

binding in vivo. The tail of the most “classical” type I myosins (most amoeboid and fungal type 

I myosins) can be further subdivided into a glycine, proline and alanine-rich tail homology 2 

(GPA or TH2) domain and an Src homology 3 (SH3) domain (figure 3.1; for review see 

Barylko et al., 2000; Mooseker and Cheney, 1995). The TH2 domain is thought to contain a 

second ATP-independent actin binding site, since the TH2 domain of protozoal type I myosins 

was found to bind to actin filaments in vitro (Brzeska et al., 1988; Doberstein and Pollard, 

1992; Jung and Hammer, 1994; Rosenfeld and Rener, 1994).  

 

 

 

 

 

 

Figure 3.1: Scheme of a classical type I myosin 
The drawing indicates the catalytic head (green), neck region (yellow) and the tail consisting of the membrane-
binding TH1 domain (gold), the TH2 (orange) and the SH3 (red) domains of a classical type I myosin.  
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The presence of two actin-binding sites is thought to be responsible for the observed cross-

linking of actin filaments in the presence of type I myosins (Fujisaki et al., 1985). SH3 

domains have been found in a great variety of proteins and are implicated in protein-protein 

interactions through binding to proline-rich stretches (Mayer, 2001; Musacchio et al., 1994; 

Kuriyan et al., 1997). Fungal type I myosins contain an additional C-terminal acidic extension, 

which resembles the acidic domains found in members of the WASp/Scar family of proteins 

and which has been shown to induce actin polymerization by the Arp2/3 complex (Evangelista 

et al., 2000; Geli et al., 2000; Idrissi et al., 2002).  

Other forms of the type I myosins, the “non-classical” or “short” myosins-I, lack the TH2 and 

SH3 domains in their tails (for review see Barylko et al., 2000; Coluccio, 1997). Higher 

eukaryotes contain two more myosin-I subclasses, which differ from the classical and short 

forms in their tail domains (for review see Coluccio, 1997). 

Generally, most type I myosins are localized to cellular regions that undergo dynamic actin 

rearrangements, e.g. lamellipodia and filopodia in vertebrate and protozoal cells and actin 

patches in budding yeast, and they have been implicated in membrane dynamics that require 

actin reorganization, e.g. endocytic processes, vacuole contraction, cell locomotion and 

polarized cell growth (for review see Mermall et al., 1998; Mooseker and Cheney, 1995), as 

illustrated by the following examples. 

The classical Dictyostelium discoideum type I myosins myoB, C and D are involved in actin 

organization (Jung and Hammer, 1990; Temesvari et al., 1996; Wessels et al., 1991) and in 

processes that require actin remodelling, such as motility, streaming and phagocytosis (Jung 

and Hammer, 1990; Jung et al., 1996; Titus et al., 1993; Wessels et al., 1996; Novak et al., 

1995; Temesvari et al., 1996).  

MyoA, the only Aspergillus nidulans type I myosin, is required for polarized growth and 

secretion (McGoldrick et al., 1995). A role of type I myosins in actin cytoskeleton polarization 

has also been demonstrated for the Saccharomyces cerevisiae myosins-I (Myo3p and Myo5p) 

(Goodson et al., 1996).  

Myosin IC of the amoeba Acanthamoeba castellanii is essential for contractile vacuole 

function (Doberstein et al., 1993). 

The type I myosins of Saccharomyces, Acanthamoeba, Dictyostelium and Aspergillus are 

required for endocytosis (Geli and Riezman, 1996; Baines et al., 1995; Novak et al., 1995; 

Ostap et al., 2003; Yamashita and May, 1998). An implication for brush border myosin-I 

(BBMI), which belongs to the group of short, non-classical myosins-I, in endocytosis in higher 

eukaryotes has also been found (Durrbach et al., 1996; Raposo et al., 1999; Durrbach et al., 
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2000). BBMI had originally been identified as cross-linker of actin filaments to the plasma 

membrane in microvilli (Coluccio, 1991; Matsudaira and Burgess, 1979; Mooseker and Tilney, 

1975; Mukherjee and Staehelin, 1971). In epithelial cells, BBMI has also been localized to the 

cytoplasmic site of Golgi-derived secretory vesicles, implying a role of type I myosins in 

movement of these vesicles (Fath and Burgess, 1993; Fath et al., 1994).  

A role for classical type I myosins in organelle movement has also been assumed for 

Acanthamoeba myosins, since they co-fractionate with vesicles and since inhibition of myosin 

function by antibodies inhibited organelle movement in vitro (Adams and Pollard, 1986). 

3.1.1 The myosin-I ATPase activity  

As mentioned before, the myosin head domains contain the actin-activated ATPase, which can 

use the chemical energy of ATP to produce mechanical force. The ATP hydrolysis cycle of 

some myosin subclasses has been the focus of intense research. Even though not all details 

concerning the conformational changes that occur during ATP hydrolysis are well understood, 

force generation by most myosins seems to follow a common scheme: In the absence of ATP, 

the myosin head is tightly bound to actin. This state is called the rigor state, since tight binding 

of the muscular type II myosins to actin when ATP is depleted causes rigor mortis after death. 

When ATP is bound to its specific binding pocket in the head domain, myosin dissociates from 

the actin filament and the enzyme catalyzes the hydrolysis of ATP into ADP+Pi. This causes a 

conformational change of the myosin head, enabling it to rebind to actin. Release of the 

inorganic phosphate (Pi) allows a second conformational change, which restores the original 

conformation of the myosin head and thereby moves the actin filaments relative to the myosin, 

a process termed the power stroke. Pi release is the rate-limiting step during ATP hydrolysis by 

the myosin motor head. When F-actin is present, Pi dissociation is around 200 times faster than 

in the absence of actin. This effect is called the “actin activation of the myosin ATPase”.  The 

advantage of this mechanism is that the motor head activity is essentially turned off when the 

myosin is not bound to F-actin, thus preventing unnecessary ATP consumption. After 

phosphate release, ADP leaves the binding pocket rapidly and the myosin head is again tightly 

bound to the actin filament until an ATP molecule binds to it (figure 3.2).  
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Figure 3.2: A proposed model for the myosin ATPase cycle 

ATP-binding releases the myosin head from the actin filament (1). During hydrolysis of the ATP, the myosin 
head undergoes a conformational change that allows it to bind to the actin filament (2). Phosphate release causes a 
second conformational change, restoring the original, nucleotide-free, conformation (3). This conformational 
change moves the actin relative to the myosin (power stroke), in such a way that the myosin moves towards the 
barbed, (+) end of the actin filament (3). (The only known exception from this, so far, are type VI myosins, which 
move towards the pointed, (-) end of actin filaments.) The ADP leaves the binding pocket and the myosin stays 
bound to actin (4) until an ATP molecule binds again. 
 

During the myosin ATP cycle, the motor head is tightly bound to actin only during 10-20 % of 

the time. As a consequence, a single myosin motor domain could not walk along an actin 

filament because it would quickly diffuse away from the actin filament. Thus, single headed 

myosins (e. g. type I myosins) or double headed myosins whose motor heads do not 

alternatively contact the actin filament (e. g. type II myosins) are non-processive molecular 

motors. Type II myosins achieve processivity by oligomerizing into thick filaments. Under 

these circumstances, the probability that an actin filament is bound to at least one myosin 

motor head approaches one and therefore, the actin filament will not diffuse away from that 

myosin filament. Type I myosins cannot build such long filaments, since they do not bear a 

long coiled-coil tail domain, which is necessary for this interaction (for review see Coluccio, 

1997; Sellers, 2000). For this reason, it was suggested that processivity of myosins-I might be 

achieved by increasing their local concentrations, e.g. by clustering these motors at membranes 

(Ostap and Pollard, 1996).  

3.1.1.1 Regulation of the myosin-I ATPase activity by TEDS site phosphorylation 

The ATPase of a subset of type I myosins is known to be activated in vitro by phosphorylation 

of a conserved position (TEDS site) in the motor head domain (for review see Redowicz, 2001; 

Brzeska and Korn, 1996). This site is characterized by, and derives its name from, the presence 

of any one of the four amino acids threonine (T), glutamate (E), aspartate (D) or serine (S), 

which are found in almost any member of the myosin superfamily at this position (Bement and 
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ADPADP+ 
Pi

- - + - + - +

Pi

+ 
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Mooseker, 1995). Only myosins-I from amoeba (Acanthamoeba castellanii and Dictyostelium 

discoideum), fungi and yeasts (Aspergillus nidulans, Saccharomyces cerevisiae and 

Schizosaccharomyces pombe) and myosins-VI from vertebrates and Drosophila melanogaster 

carry a serine or threonine at this position (for review see Bement and Mooseker, 1995; 

Brzeska and Korn, 1996). In vitro, the ATPase of the Acanthamoeba and Dictyostelium type I 

myosins is activated approximately 20-50 fold by phosphorylation of this serine or threonine 

(Albanesi et al., 1983; Brzeska et al., 1989; Cote et al., 1985; Tan et al., 1992; Maruta and 

Korn, 1977; Pollard and Korn, 1973). The fact that most of the type I myosins carry a 

glutamate or aspartate at this position suggests that a negative charge is required for myosin-I 

activity (Bement and Mooseker, 1995), which makes it likely that a serine or threonine at the 

TEDS site will be phosphorylated for myosin function.  

The TEDS site is situated in a surface loop located between the ATP binding pocket and the 

actin binding surface of the motor domains. Recently, it has been proposed for Acanthamoeba 

myosin IC that TEDS site phosphorylation changes the conformation of this loop and, thus, 

greatly enhances the phosphate release from the ATP-binding site, following the same 

principle that increases the ATPase activity by actin binding (Ostap et al., 2002).  

3.1.1.2 In vivo significance of TEDS site phosphorylation 

As mentioned before, the fact that most myosins carry a negatively charged amino acid at the 

TEDS site suggests that this negative charge, and therefore, in the case of some myosins-I and 

the myosins-VI, phosphorylation of the serine or threonine at this position, may be required for 

in vivo function. Several findings support this notion.  

Immunoblot and immunoelectron microscopy analysis of the Acanthamoeba castellanii type I 

myosins IA and IB using a phospho-specific antibody revealed that 70-100 % or 10-20 %, 

respectively, of these proteins were phosphorylated in vivo (Baines et al., 1995). Moreover, the 

electron micrographs showed that phospho-myosin IA is enriched in the actin-rich cortex, 

especially around phagocytic cups, and that phospho-myosin IB is found to be enriched in 

pseudopods, filopods and pinocytic invaginations (Baines et al., 1995). These studies thus 

suggest that TEDS site phosphorylation of these myosins is required for their function(s) in 

phagocytosis, pinocytosis and actin reorganization at the cell cortex. The phosphorylated 

isoform of the third type I myosins, myosin IC, was found to be localized at the vacuolar 

membrane (Baines et al., 1995). Most interestingly, an approximately 20-fold enrichment of 

the phosphorylated form of this myosin was observed at the contracting vacuole, compared to 

the filling vacuole (Baines et al., 1995). This finding strongly suggests that myosin IC is 
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phosphorylated at the moment the vacuole contracts and that TEDS site phosphorylation of 

myosin IC is required for the contraction of the vacuole.  

Further evidence supporting the physiological relevance of myosin-I TEDS site 

phosphorylation comes from genetic studies.  Deletion of both Dictyostelium discoideum type I 

myosins, myoA and myoB, has been shown to impair growth, pinocytosis and actin 

organization (Novak et al., 1995). These effects are reversed by expression of wild-type myoB 

but not of a myoB mutant, in which the TEDS site has been mutated into an 

unphosphorylatable alanine (Novak and Titus, 1998). 

Similarly, expression of a mutant Myo3p in Saccharomyces cerevisiae, in which the TEDS site 

serine has been mutated into alanine, did not rescue the lethality of a strain depleted of type I 

myosins (Wu et al., 1997), whereas a serine to aspartate mutant allele did, implying that the 

negative charge at this site, and therefore probably phosphorylation, is required for the 

essential function(s).   

In contrast though, an unphosphorylatable (S371A) mutant of the only type I myosin in 

Aspergillus nidulans, MYOA, restored polarized hyphal growth and secretion in a MYOA 

deleted strain (Yamashita and May, 1998). However, TEDS site phosphorylation of MYOA 

also seems to influence its function in vivo to a certain extent, since expression of a mutant that 

mimics phosphorylation at this site (S371E) led to accumulation of membranes in growing 

hyphae, possibly due to an increase in endocytosis (Yamashita and May, 1998). 

3.1.1.3 p21-activated kinases (PAKs) are TEDS site kinases 

When the first Acanthamoeba castellanii type I myosin was purified, a co-purifying myosin I 

heavy chain kinase (MIHCK) activity was identified (Maruta and Korn, 1977; Pollard and 

Korn, 1973). Subsequently, these kinases were purified from Acanthamoeba and Dictyostelium 

discoideum (Hammer et al., 1983; Lee and Cote, 1995) and identified as members of the PAK 

(p21-activated kinase)/Ste20p family (Brzeska et al., 1997; Brzeska et al., 1999; Lee et al., 

1996; Wu et al., 1996). PAKs constitute a family of serine/threonine kinases that are activated 

by the Rho-like GTPases Cdc42 and Rac, small proteins of ca. 21 kDa, which gave these 

kinases their name (Hall, 1994; Lim et al., 1996).  

GTP-bound forms of Rac and Cdc42 stimulate the activity of PAKs by binding to a specific N-

terminal p21-binding domain (PBD), which contains the highly conserved CRIB (Cdc42/Rac 

interactive binding) motif (Chung and Firtel, 1999; Lamson et al., 2002; Manser et al., 1994; 

Peter et al., 1996; Sells et al., 1997; for review see Aspenstrom, 1999a; Bagrodia and Cerione, 

1999). Binding of the small GTPases to this site relieves the influence of an adjacent kinase 

autoinhibitory domain (figure 3.3; Zenke et al., 1999; Zhao et al., 1998; Tu and Wigler, 1999; 
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for review see Bagrodia and Cerione, 1999). Subsequently, these kinases are 

autophosphorylated at multiple sites, a requirement for function (Brzeska et al., 1999; Lee et 

al., 1998; Martin et al., 1995).  

 

 

 

 

 

 

 

Figure 3.3: Proposed model of PAK activation  

In the inactive state, the catalytic/kinase domain of p21-activated kinases is in contact with the regulatory (p21-
binding and autoinhibitory) domains. Binding of Cdc42p or Rac in their GTP-bound forms leads to the release of 
the catalytic from the regulatory domains. 
 

PAKs have also been shown to bind to, and be activated by, lipids, e.g. phosphatidylinositol-

4,5-bisphosphate, phosphatidic acid and sphingosine (Brzeska et al., 1990a; Lim et al., 1996; 

Lee et al., 1998; Bokoch et al., 1998; Brzeska et al., 1999). It was suggested that binding of 

these lipids to the PAKs might also lead to a disruption of the autoinhibitory interactions 

(Bagrodia and Cerione, 1999). 

The minimal consensus sequence for phosphorylation by the MIHCK was identified using 

synthetic peptides as (K,R)X1-3(S,T)XY, where X is a variable residue (Brzeska et al., 1990b). 

Tertiary folding might compensate for the strict requirements of the synthetic peptides since 

smooth muscle myosin regulatory light chain, which does not contain the essential tyrosine, is 

a good substrate for the Acanthamoeba MIHCK (Brzeska and Korn, 1996). Moreover, Buss 

and co-workers suggested that PAKs phosphorylate a vertebrate type VI myosin, the only other 

myosin class that carries a phosphorylatable TEDS site, in a sequence that also does not 

completely resemble the minimal consensus sequence (Buss et al., 1998).  

3.1.2 Some type I myosins activate the Arp2/3 complex 

Actin exists in two forms, as a globular monomer, called G-actin, or polymerized in filaments, 

called F-actin. The filaments are double helical polymers of globular subunits arranged head-

to-tail, which grow by addition of subunits at the filament ends (for review see Pollard and 

Borisy, 2003). The actin filament is greatly stabilized by lateral interactions between the actin 
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inactive PAK active PAK 

p21-binding domain

autoinhibitory domain

catalytic domain



Introduction 

 11

subunits of the two helical filaments, but the head to tail contacts between subunits are rather 

weak. Thus, actin dimers, and most likely also trimers, are highly unstable. Spontaneous de 

novo assembly of actin into filaments is therefore thermodynamically unfavourable (Pollard, 

1986), allowing the cell to tightly control actin assembly at selected sites by controlling the 

stability of the actin dimers and trimers (the actin nucleus). Two major “nucleation bodies” that 

overcome the instability of actin dimers are the Arp2/3 complex and the formins. Formins 

trigger the formation of actin filaments that are organized in long, unbranched bundles 

(Evangelista et al., 2002; Sagot et al., 2002; for review see Pruyne et al., 2002) resembling the 

actin structure required for the formation of filopodia, microvilli and the yeast actin cables 

(DeRosier and Tilney, 2000). The Arp2/3 complex appears to bind to existing actin filaments 

and nucleates polymerization of actin filament branches at a 70° angle (Machesky et al., 1994; 

Mullins et al., 1998a; Mullins et al., 1998b). The resulting meshworks resembles those 

observed in the leading edges of migrating cells or the actin “comet tails”, which some 

parasites use to propel themselves inside cells (Loisel et al., 1999; Marchand et al., 1995). 

Purified formins or Arp2/3 complex show only moderate actin nucleating activity but their 

activity can be increased by interaction with different activators.  

The ubiquitously found Arp2/3 complex consists of seven subunits, of which two, Arp2 and 

Arp3, are actin-related proteins (for review see Higgs and Pollard, 2001). Arp2 and Arp3 are 

thought to form a stable dimer within this complex, initiating actin assembly (Kelleher et al., 

1995). As previously mentioned, purified Arp2/3 complex displays only moderate nucleating 

activity (Mullins et al., 1998a; Welch and Mitchison, 1998; Welch et al., 1998). A number of 

cellular factors seem to locally activate this complex. The best characterized are the members 

of the WASp/Scar protein family (figure 3.4A; Machesky et al., 1999; Rohatgi et al., 1999; 

Winter et al., 1999; Yarar et al., 1999; Egile et al., 1999). These activators bear a C-terminal 

acidic domain, which binds the Arp2/3 complex (figure 3.4B; Higgs et al., 1999; Evangelista 

et al., 2000), and one or two WH2 (WASp homology 2) domains, which bind actin monomers 

(Higgs et al., 1999). Activation of the Arp2/3 complex requires both, the WH2 domain and the 

acidic domain (Higgs et al., 1999). Recent data indicate that additionally a poly-proline 

containing domain is required for efficient activation of the Arp2/3 complex (Castellano et al., 

2001; Idrissi et al., 2002).  

Members of the WASP family are themselves modulated, among other factors, by Cdc42p and 

PIP2  (figure 3.4; for review see Higgs and Pollard, 2001; Caron, 2002) as well as by SH3 

domain-containing proteins such as WIP (WASP interacting protein (figure 3.4A; for review 

see Caron, 2002). 
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Figure 3.4: Factors that activate Arp2/3-dependent actin polymerization 

(A) The evolutionarily conserved Arp2/3 complex nucleates actin polymerization. By itself, it displays only 
moderate nucleating activity. Factors, such as members of the WASp/Scar family of proteins can activate this 
complex. These activators themselves are regulated by Cdc42, PIP2 and SH3 domain containing proteins, e.g. 
WIP (WASP interacting protein). Recent data indicate that fungal type I myosins are also able to activate the 
Arp2/3 complex. (B) Alignment of the C-terminal acidic domains of the type I myosins of Saccharomyces 
cerevisiae, Schizosaccharomyces pombe and Aspergillus nidulans, Myo3p, Myo5p, Myo1p and MYOA, 
respectively, human WASP and the yeast WASP orthologue Las17p (according to Evangelista et al., 2000; Lee et 
al., 2000; Higgs and Pollard, 2001). 
 

Recent data indicate that fungal type I myosins can induce Arp2/3-dependent actin 

polymerization. The Saccharomyces cerevisiae, Candida albicans, Schizosaccharomyces 

pombe and Aspergillus nidulans type I myosins bear acidic domains at their C-termini, which 

resemble the acidic domains of WASp/Scar family members (figure 3.4B; Evangelista et al., 

2000; Jung et al., 2001; Lechler et al., 2000; Lee et al., 2000; Higgs and Pollard, 2001). 

Genetic data from the yeasts Saccharomyces and Schizosaccharomyces indicate that the acidic 

domains of the fungal WASP family members and the type I myosins are functionally 

redundant (Evangelista et al., 2000; Soulard et al., 2002; Lee et al., 2000). The C-terminal 

domains of these myosins have indeed been shown to interact with the Arp2/3 complex 

(Evangelista et al., 2000; Lee et al., 2000; Lechler et al., 2000; Geli et al., 2000) and to 

activate Arp2/3-dependent actin polymerization  (Geli et al., 2000; Lee et al., 2000; Lechler et 

al., 2001; Idrissi et al., 2002). 

Binding and activation of the actin nucleating machinery by myosins has important functional 

implications since polymerization of actin in the vicinity of the myosin motor head might 

efficiently activate the myosin ATPase and motor activity (see above).  

Direct binding of the Arp2/3 complex to myosins seems to be an exception, since the acidic 

extensions are only found in fungi. However, the conservation of the myosin-I SH3 domain 

throughout evolution offers the possibility that adaptors that specifically bind to the myosin-I 

SH3 domains recruit these motors to the Arp2/3 complex. Indeed, recent data from 
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Dictyostelium discoideum indicate that a protein called p116 or CARMIL binds type I myosins 

and the Arp2/3 complex (Jung et al., 2001), and thus links these myosins, which lack a bona 

fide Arp2/3 binding motif, to the actin nucleation machinery. CARMIL is the homologue of 

the Acanthamoeba protein Acan125 (Zot et al., 2000; Xu et al., 1995; Xu et al., 1997) and 

Jung and co-workers identified homologues of these proteins in Caenorhabditis elegans, 

Drosophila melanogaster, mouse and humans (Jung et al., 2001), suggesting evolutionary 

conservation.  

3.2 Saccharomyces cerevisiae type I myosins 

Budding yeast contains two type I myosins, Myo3p and Myo5p, which share 86 % identity in 

their motor domains and 62 % identity in their tail domains (Brown, 1997). While deletion of 

either gene does not result in any obvious phenotype, a double knockout of the MYO3 and 

MYO5 genes was shown to be lethal (Geli and Riezman, 1996) or very sick (Goodson et al., 

1996), depending on the strain background. It is not known which difference in the genetic 

background causes the observed differences.  

Both yeast myosins-I belong to the group of the “classical” type I myosins. Therefore their tail 

domains contain TH2 and SH3 domains, C-terminal to the positively-charged TH1 domain 

(figure 3.5). Additionally, these myosins contain the C-terminal acidic extension that has been 

shown to activate Arp2/3-dependent actin polymerization (figure 3.5; Evangelista et al., 2000; 

Geli et al., 2000; Idrissi et al., 2002; Lechler et al., 2000).  

 

 

 

 

 

 

Figure 3.5: Domain structure of the yeast type I myosins. 

Like type I myosins from other organisms, the yeast myosins-I contain an N-terminal motor head domain that 
carries the actin-dependent ATPase, followed by a neck region that binds the light chains (calmodulin) and a C-
terminal tail domain. The tail consists of TH1, TH2, SH3 and acidic (A) domains. The TH1 domain is thought to 
mediate membrane binding. The SH3 domain divides the TH2 domain into an N-terminal and a C-terminal part. A 
fragment consisting of TH2, SH3 and acidic domains has been found to activate Arp2/3-dependent actin 
polymerization. 
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Despite the apparent functional redundancy of Myo3p and Myo5p (Geli and Riezman, 1996; 

Goodson et al., 1996), Myo5p appears to be the more important type I myosin in yeast. First, a 

myo5∆ strains is defective in endocytosis at 37°C, whereas a myo3∆ strain is not (Geli and 

Riezman, 1996). Second, deletion of MYO5, but not MYO3, is synthetically lethal with 

mutations in genes that cooperate with myosins-I in vivo, e.g. VRP1, ARP3 (Geli et al., 2000). 

The yeast type I myosins are implicated in the uptake step of endocytosis, i.e. the formation or 

the primary endocytic vesicle at the plasma membrane, and in the polarization of the actin 

cytoskeleton (Geli and Riezman, 1996; Goodson et al., 1996). 

Endocytosis is the process whereby cells internalize extracellular media as well as parts of 

their plasma membrane. Among other functions, endocytosis in yeast is used to down-regulate 

cell surface receptors and nutrient transporters (for review see Di Fiore and De Camilli, 2001; 

Geli and Riezman, 1998; Mellman, 1996; Munn, 2001). 

An important finding from the studies of endocytosis in budding yeast is that this process 

requires actin (Kubler and Riezman, 1993). Putative roles for actin in endocytosis are (1) to 

provide a diffusion barrier for the endocytic machinery, (2) to help invaginating the plasma 

membrane in order to form a vesicle, (3) to participate in pinching the vesicle off the plasma 

membrane or (4) to sequester receptors into preformed endocytic sites (for review see Buss et 

al., 2001b; Geli and Riezman, 1998; Munn, 2001). The models that postulate a direct role of 

actin in the formation of the endocytic vesicle ((2) and (3)) imply that the actin cytoskeleton 

might be used to apply mechanical force on membranes, and, therefore, that an actin-dependent 

molecular motor might be involved in the process. Consistent with this view, it was found that 

the yeast type I myosins, Myo3p and Myo5p, are required for endocytosis. A temperature-

sensitive myo3∆ myo5-ts mutant displays a strong defect in the uptake of α-factor at non-

permissive temperature (Geli and Riezman, 1996). Moreover, deletion of these motor proteins 

in a strain background, in which this double deletion is not lethal, led to a defect in fluid phase 

uptake (Goodson et al., 1996). 

Saccharomyces cerevisiae cells multiply by budding, which requires polarized growth. During 

the G1 phase of the cell cycle a bud site, where the daughter cell will be generated, is selected. 

In the subsequent S phase and the beginning of G2, the bud (daughter cell) starts being formed 

and growth occurs apically. At the end of G2, the growth pattern of the bud changes and it 

starts to expand isotropically until cytokineses occurs during mitosis (for review see 

Casamayor and Snyder, 2002).  

The actin cytokeleton is essential for the polarized growth of a yeast cell, because it polarizes 

secretion and organelle inheritance (for review see Bretscher, 2003; Casamayor and Snyder, 
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2002; Pruyne and Bretscher, 2000a). Fluorescent F-actin staining in budding yeast shows two 

major structures, long cables and cortical actin patches (Adams and Pringle, 1991). Actin 

cables are bundles of F-actin filaments. Actin patches are motile plasma membrane 

invaginations that are coated with F-actin (Mulholland et al., 1994). During budding, actin 

cables align parallel to the growth axis and actin patches polarize to the growing bud (figure 

3.6; for review see Pruyne and Bretscher, 2000a). 

 

 

 

  

 

Figure 3.6: Cell polarity in budding yeast is established by the actin cytoskeleton 

In a non-dividing yeast cell, actin cables and patches are randomly distributed (cell cycle phase G1). During bud 
emergence, actin cables align parallel to the polarity axis and actin patches are polarized to the growing bud. The 
actin cables guide secretory vesicles to the growing bud, thus polarizing growth (cell cycle phases S through M). 
During isotropic growth (G2 and M), actin patches are more randomly distributed and, especially in M phase, 
actin cables form a meshwork. In cytokinesis, patches accumulate at the cytokinetic ring and cables are oriented 
to this ring. 
 

In a type I myosin double deletion mutant, myo3∆ myo5∆, the actin patches are depolarized, 

distributed throughout the mother cell and the bud (Goodson et al., 1996), suggesting that 

myosins-I might be involved in actin cytoskeleton polarization in yeast. 

Actin patch components, such as Cof1p, the Arp2/3 complex and the type I myosins are 

involved in endocytosis (Goode and Rodal, 2001; Idrissi et al., 2002; Geli and Riezman, 1996; 

Goodson et al., 1996). For this reason, actin patches themselves are thought to be the sites 

where endocytosis occurs, although this is still under discussion (Casamayor and Snyder, 

2002; Pruyne and Bretscher, 2000a and b).  

Since many mutants that are defective in endocytosis are also unable to polarize the actin 

cytoskeleton (for review see Jeng and Welch, 2001; Munn, 2001), it was suggested that actin 

polarization might be a prerequisite for functional endocytosis in yeast (Casamayor and 

Snyder, 2002; Goodson et al., 1996). However, not all mutants defective in actin cytoskeleton 

polarization are defective in endocytosis (for review see Munn, 2001), implying that 

endocytosis might not depend on a polarized actin cytoskeleton, but this has not yet been 

directly demonstrated. 
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3.2.1 TEDS site phosphorylation of the yeast type I myosins might be 
required for actin cytoskeleton polarization 

Several observations suggest that Cdc42p-mediated type I myosin phosphorylation by p21-

activated kinases (PAKs) might be required to regulate actin dynamics in the budding yeast 

Saccharomyces cerevisiae (figure 3.7).  

Cdc42p and at least two of the three yeast members of the PAK family (Cla4p and Ste20p) 

seem to be required to polarize the actin cytoskeleton to the growing bud. Temperature-

sensitive cdc42 and some cla4-ts ste20∆ mutant strains display a depolarized actin 

cytoskeleton at restrictive temperature (37°C) (Benton et al., 1997; Cvrckova et al., 1995; Eby 

et al., 1998; Holly and Blumer, 1999; Peter et al., 1996; Lamson et al., 2002; for review see 

Pruyne and Bretscher, 2000b; Pringle et al., 1995) similar to the phenotype caused by deletion 

of the type I myosins Myo3p and Myo5p (Goodson et al., 1996). Further, Ste20p and Cla4p 

can phosphorylate the TEDS site of Myo3p in vitro (Wu et al., 1997).  

In agreement with a role of Ste20p and Myo3p as downstream effectors of Cdc42p, 

overexpression of Ste20p overcomes the requirement for Cdc42p in actin polarization (Eby et 

al., 1998), as expression of a Myo3-S357Dp mutant mimicking the TEDS phosphorylated 

isoform does in a cdc42-1 mutant strain (Lechler et al., 2001). Moreover, in semi-

permeabilized cells, the cdc42-1 defect in polarized actin polymerization (Lechler et al., 2000) 

can also be overcome by overexpression of Ste20p or by expression of Myo3-S357Dp (Eby et 

al., 1998; Lechler et al., 2000).  

 

Figure 3.7: Putative signalling pathway for the activation 

of type I myosins for their function in actin polarization 

Cdc42p, the yeast PAKs (Ste20p, Cla4p) and the type I 
myosins (Myo3p, Myo5p) are required for actin cytoskeleton 
polarization. The role of Skm1p is still unclear. PAKs 
phosphorylate the yeast type I myosins at the TEDS site in 
vitro. Overexpression of Ste20p and expression of Myo3-
S357Dp, which mimics TEDS site phosphorylation through 
the charge, suppress the requirement for Cdc42p in actin 
polarization in vivo and for polarized actin polymerization in 
vitro, implying that they are downstream effectors of 
Cdc42p. However, in vivo evidence that the PAKs 
phosphorylate the myosins-I is missing and the involvement 
of PAKs in actin polarization is debated (see main text). A 
role of Cdc42p and PAKs in endocytosis has not yet been 
investigated. 
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Even though most results seem to point to the signalling pathway outlined in Fig. 3.7, a few 

results are inconsistent with the model. Intriguingly, even though overexpression of Ste20p or 

expression of Myo3-S357Dp suppresses the actin polarization defect of a cdc42 mutant strain, 

Myo3-S357Dp was not able to suppress the lethality of a ste20∆ cla4∆ double knockout (Wu 

et al., 1997). Moreover, results concerning the involvement of PAKs in the actin cytoskeleton 

polarization are still conflicting (Eby et al., 1998; Holly and Blumer, 1999). In fact, recent data 

suggested that the observed polarization defects in temperature-sensitive ste20∆ cla4-ts double 

mutant strains might be a consequence of the 37°C heat shock applied to inactivate the mutant 

Cla4p protein. Weiss and co-workers have shown that inactivation of a chemical-sensitive 

ste20∆ cla4-as3 double mutant caused actin depolarization at 37°C but not at 25°C, giving rise 

to the possibility that, in contrast to the type I myosins, PAKs might only be required for actin 

polarization at higher temperatures (Weiss et al., 2000).  

In addition to the debate on whether PAKs phosphorylate the type I myosins for their function 

in actin polarization, it has not yet been examined whether the yeast PAKs and Cdc42p are 

necessary for the second function that requires type I myosin activity in yeast, the uptake step 

of endocytosis. Direct evidence is also missing whether myosin-I TEDS site phosphorylation is 

required for actin cytoskeleton polarization and endocytosis. 

3.2.2 The tail of the yeast type I myosins induces Arp2/3-dependent actin 
polymerization 

Data from our laboratory indicated that the myosin-I SH3 domain is required for the binding of 

actin to the myosin-I tail, which was originally solely attributed to the TH2 domain (Geli et al., 

2000). The fact that SH3 domains mediate interactions with proteins bearing poly-proline 

stretches, which are not present in actin, implied that the binding of the myosin-I tail to actin 

might occur through adaptor proteins. Interestingly, it was found that both, Las17p (Bee1p) 

and Vrp1p, the yeast homologues of WASP and WIP (Ramesh et al., 1997; Vaduva et al., 

1999; Winter et al., 1999), which activate the Arp2/3 complex in order to induce actin 

polymerization (Winter et al., 1999; Madania et al., 1999; Soulard et al., 2002), bind to the 

SH3 domain of the type I myosins (Evangelista et al., 2000; Anderson et al., 1998; Geli et al., 

2000). Consistent with the idea that actin binds through adaptors to the type I myosin tail 

domain, it was found that the interaction of the Myo5p tail with actin was abolished in a vrp1∆ 

strain (Geli et al., 2000).  

In addition to Las17p and Vrp1p, Arc19p and Arc40p, two subunits of the yeast Arp2/3 

complex, were found to interact with the SH3 and acidic domains of Myo3p and Myo5p 
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(Evangelista et al., 2000). In agreement with the idea that the acidic domain of the yeast type I 

myosins initiates actin polymerization, our laboratory demonstrated that a GST fusion protein 

containing the TH2, SH3 and acidic domains of Myo5p (GST-Myo5-Cp) bound to glutathione 

Sepharose beads can induce actin polymerization on these beads (figure 3.8; Geli et al., 2000). 

 

 

 

 

 

 

 

 

Figure 3.8: Myo5p-induced actin polymerization 

(A) Schematic drawing of the structure of GST-Myo5-Cp. TH2, SH3 and A indicate the Myo5p TH2, SH3 and 
acidic domains, respectively. (B) The GST-Myo5-Cp protein bound to glutathione Sepharose beads is incubated 
with yeast extract and rhodamine-labelled actin (as indicated) in order to perform in vitro actin polymerization 
experiments. (C) Fluorescence micrographs of actin foci formed on glutathione Sepharose beads coated with the 
GST-Myo5-Cp protein. The beads were incubated with an extract from a wild-type yeast strain (SCMIG19) and 
1µM rhodamine-labelled actin. 
 

Further analysis of this process showed that distinct actin-containing foci appeared at the 

surface of these GST-Myo5-Cp-coated beads, which grew over time (Idrissi et al., 2002). The 

Arp2/3 complex and the myosin-actin adaptor Vrp1p are required for this polymerization 

reaction (Geli et al., 2000; Idrissi et al., 2002). 

As mentioned in section 3.1.2, the yeast type I myosins bear an acidic domain, similar to those 

in the Arp2/3 activator WASP and its yeast orthologue Las17p. Genetic data suggest a 

redundant role of type I myosins with Las17p in actin polymerization, since deletion of the 

Las17p or the myosins-I acidic domain did not show any phenotype in vivo, whereas double 

deletion of their acidic domains led to severe growth defects (Evangelista et al., 2000). 

Although this domain binds to and activates the Arp2/3 complex, full activation of this 

complex requires both, a WH2 and an acidic domain (see section 3.1.2). Las17p and Vrp1p, 

like their mammalian counterparts WASP and WIP, carry these domains (Winter et al., 1999; 

Lechler et al., 2001; Naqvi et al., 1998). Since Myo3p and Myo5p interact with these proteins 

through their SH3 domains, it seems likely that Vrp1p or Las17p provide the missing WH2 

TH2 SH3 A GST 

 

GSTSH3
GSTSH3

GSTSH3

GSTSH3
GSTSH3

GSTSH3

GSTSH3

GSTSH3

GSTSH3

GSTSH3
GSTSH3GSTSH3

cell extract

GSTSH3
GST-Myo5-Cp

rhodamin-labelled actin

B 

A 
C

R
ho

d-
ac

tin
 



Introduction 

 19

domain for full activation of the Arp2/3 complex by the myosin-I acidic domains. Consistent 

with this, Lechler and co-workers found that the WH2 domain of either Las17p or Vrp1p fused 

to the acidic domain of Myo3p efficiently activated the Arp2/3 complex in vitro (Lechler et al., 

2001).  

WASp/Scar family members are activated by Cdc42, which binds to the GTPase-binding 

domains (GBD) of these proteins (for review see Higgs and Pollard, 2001; Caron, 2002). In 

contrast, the yeast WASP orthologue Las17p does not contain a recognizable GBD domain. 

Nevertheless, recent data indicate that Las17p recruitment and possibly activation are mediated 

by activated Cdc42p (Lechler et al., 2001). Therefore, other proteins might transmit the signal 

from Cdc42p to Las17p. Soulard and co-workers found that Bzz1p, a SH3 domain-containing 

protein with strong similarity to the human CIP4 (Cdc42-interacting protein 4), binds to 

Las17p (Soulard et al., 2002), providing a possible mediator of Cdc42p-signalling to Las17p. 

Human CIP4 binds to activated Cdc42 in vitro and in vivo (Aspenstrom, 1997) and, 

additionally, appears to interact with the human WASP (Tian et al., 2000). Most interestingly, 

Bzz1p also binds to the C-terminal part of one of the yeast type I myosins, Myo5p and both 

seem to play a redundant role in actin re-polarization after salt stress (Soulard et al., 2002). 

Additionally, the finding that a myo5∆ bzz1∆ strain displayed salt-sensitive growth defects, 

while a myo3∆ bzz1∆ strain did not (Soulard et al., 2002), emphasizes the fact that Myo5p is 

the more important myosin-I in yeast (see above). 

Some data indicate that Las17p, Vrp1p and the yeast type I myosins are found in a protein 

complex. Las17p, the type I myosins and Vrp1p at least partially co-localize to cortical actin 

patches (Anderson et al., 1998; Evangelista et al., 2000; Goodson et al., 1996; Lechler et al., 

2001). Moreover, these proteins can be co-purified from enriched yeast extracts (Lechler et al., 

2000; Soulard et al., 2002). However, in cell fractionation experiments, the type I myosins 

have not been found to be associated with a stable Las17p/Vrp1p complex, which was 

interpreted as an effect of dilution in this experiment (Lechler et al., 2001). 

3.2.3 Functions of Las17p- and myosin-I-induced actin polymerization 

Several findings indicate that both actin polarization and endocytosis require Arp2/3 complex-

mediated actin polymerization. As mentioned before, the Rho-type GTPase Cdc42p is strictly 

required for the establishment of a polarized actin cytoskeleton in yeast (for review see Pruyne 

and Bretscher, 2000b). Vrp1p, Las17p and the yeast type I myosins are also required for actin 

cytoskeleton polarization (Vaduva et al., 1997; Zoladek et al., 1995; Donelly et al., 1993; 

Munn et al., 1995; Goodson et al., 1996; Roumanie et al., 2002). The polarized localization of 
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the Vrp1p/Las17p complex was dependent on activated Cdc42p and occurred in the absence of 

polarized F-actin (Lechler et al., 2001). After recruitment of the Vrp1p/Las17p complex, 

polarized F-actin-containing structures appeared, which co-localized with Las17p. These 

results might indicate that polarized Las17p-induced actin polymerization is required for actin 

polarization in yeast (Lechler et al., 2001). However, this complex does not seem to be 

sufficient for the establishment of actin polarization in yeast, since cdc42-1 cells displayed a 

depolarized actin cytoskeleton, although Vrp1p/Las17p were correctly localized (Lechler et al., 

2001). Experiments with semi-permeabilized cells indicated that not only Las17p, but also the 

yeast type I myosins are needed for the assembly of polarized cortical actin-containing 

structures (Li, 1997; Lechler et al., 2000). The fact that expression of a Myo3-S357Dp mutant 

suppressed the requirement for Cdc42p in actin polarization might indicate that the myosins-I, 

rather than the Vrp1p/Las17p complex, are predominantly required for Cdc42p-mediated actin 

polarization in yeast (Lechler et al., 2001). An intriguing link is provided by the finding that 

Myo3p and Myo5p interacted with Bni1p, one of the yeast formins (Evangelista et al., 2000), 

which seem to be required for the assembly of the actin cables (Evangelista et al., 2002; Sagot 

et al., 2002). 

Regarding a possible function for actin assembly in endocytosis, it has been shown that 

temperature-sensitive arp2 mutant strains (Idrissi et al., 2002; Moreau et al., 1996; Moreau et 

al., 1997) and mutants of the Arp2/3 activators Las17p and type I myosins, as well as Vrp1p, 

are defective for internalization (Geli and Riezman, 1996; Goodson et al., 1996; Naqvi et al., 

1998).  
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4  Aim of this Work 

 

The type I myosins of Saccharomyces cerevisiae exhibit two important biochemical activities. 

First, the ATPase activity of the motor head domain is able to use the chemical energy stored 

in ATP to generate mechanical force on actin. Second, the tail domain of these molecular 

motors is able to induce Arp2/3-dependent actin polymerization. Both activities seem to be 

essential for the role of type I myosins in the uptake step of endocytosis and in the actin 

cytoskeleton polarization. The aim of this work was to investigate the regulation of those two 

different myosin-I activities by phosphorylation.  

It had already been known that phosphorylation at the conserved TEDS site in the yeast 

myosin-I motor head domain by p21-activated kinases (PAKs) activates the ATPase activity in 

vitro. However, in vivo evidence for the importance of this regulation for the myosin-I function 

in yeast was missing. Therefore, the first aim of this work was to investigate the in vivo 

significance of this phosphorylation for two particular functions of the yeast type I myosins, 

the uptake step of endocytosis and the polarization of the yeast actin cytoskeleton, and to 

characterize the signalling cascades that lead to activation of the myosin-I ATPase for each 

function.  

Additionally, work from our laboratory had indicated that myosin-I-induced actin 

polymerization might be tightly regulated. Although every myosin tail is able to bind to and 

induce actin polymerization through the Arp2/3 complex, only a small fraction could 

polymerize actin in an in vitro assay. Therefore, the second aim of this work was to investigate 

whether this putative regulation is mediated by a phosphorylation/dephosporylation event and, 

if so, to further characterize this event. 
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5 Results 

5.1 Analysis of Myo5p motor head phosphorylation 

5.1.1 Kinases other than p21-activated kinases (PAKs) are able to 
phosphorylate the Myo5p TEDS site 

Myo3p and Myo5p are the two highly homologous type I myosins of yeast, which share 82% 

similarity. Deletion of either gene does not result in any obvious phenotype for growth 

whereas, depending on the strain background, a double knockout is lethal or creates a very sick 

strain, suggesting functional redundancy (Geli and Riezman, 1996; Goodson et al., 1996). Wu 

and co-workers showed that a myo3 mutant allele carrying a serine to alanine mutation in the 

TEDS site (MYO3-S357A) was unable to suppress the lethality of a myo5∆ myo3∆ double-

mutation, whereas a protein bearing an aspartate at this position (MYO3-S357D) was restoring 

wild-type growth of the myo5∆ myo3∆ strain (Wu et al., 1997). This suggested that a negative 

charge at this position might be required for in vivo function and that, under physiological 

conditions, this charge might be provided by phosphorylation of the TEDS site serine of the 

wild-type protein. However, in these experiments it could not be determined if Myo3-S357Ap 

was expressed and if it was correctly localized.  

Despite the apparent functional redundancy, Myo5p seems to play a more important role in the 

cell than Myo3p. At 37°C, a myo5∆ deletion strain is already defective in α-factor uptake, 

whereas a myo3∆ strain is not (Geli and Riezman, 1996). Moreover, deletion of MYO5, but not 

MYO3, causes synthetic growth defects when combined with mutations in genes that closely 

cooperate with the yeast type I myosins in vivo (Geli et al., 2000; Soulard et al., 2002; see 

Introduction for more detail).   

Because of the functional predominance of Myo5p over Myo3p, it was possible that a 

substitution of serine to alanine at the Myo5p TEDS site could at least partially restore growth 

of the myo5∆ myo3∆ mutant. In this study, therefore, it was examined whether TEDS site 

phosphorylation plays a significant role for the in vivo function of Myo5p.  
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5.1.1.1 A negative charge at the TEDS site is required for myosin-I function 

5.1.1.1.1 A TEDS site serine to alanine myo5 mutant strain is defective in endocytosis and 

actin cytoskeleton polarization 

To examine the importance of the Myo5p TEDS site for in vivo function, the TEDS site serine 

was mutated into the non-phosphorylatable alanine and the mutant allele was integrated into 

the MYO5 locus in a myo3∆ deletion strain (see Materials and Methods). In contrast to the 

findings for the myo3-S357A myo5∆ mutant and consistent with Myo5p playing a more 

important role in vivo, the myo5-S357A myo3∆ mutant was viable, although it displayed a 

slow-growth (3 hrs doubling time in contrast to 2 hrs for a wild-type yeast at 23°C) and 

temperature-sensitive lethal phenotype (figure 5.1).  

 

        

 

 

 

Figure 5.1: A myo5-S357A myo3∆ strain is viable, but temperature-sensitive for growth 

Growth of wild-type (SCMIG50; WT), MYO5 myo3∆ (SCMIG567; MYO5), myo5-S357A myo3∆ (SCMIG568; 
myo5-S357A) and myo5-S357E myo3∆ (SCMIG569; myo5-S357E) strains was assayed at the indicated 
temperatures. A saturated culture was diluted to approximately 2.5 x 107 cells/ml and a 1 to 10 dilution series 
were made for each strain. 5µl of each dilution were spotted on solid rich media and the cells were grown for 2 
days. 
 

In order to mimic the active, phosphorylated state, the TEDS site serine was mutated into 

glutamate. This amino acid was chosen as the source for the negative charge instead of 

aspartate because it was found that only glutamate biochemically resembles the phosphorylated 

state of the Acanthamoeba castellanii type I myosin IC (Wang et al., 1998). 

In contrast to the myo5-S357A myo3∆ mutant, the integrated myo5-S357E myo3∆ strain did not 

display a temperature-sensitive growth phenotype (figure 5.1), already indicating that a 

negative charge at the Myo5p TEDS site might be required for in vivo function. To further 

study this issue, two type I myosin cellular functions were examined: the uptake step of 

endocytosis and the actin cytoskeleton polarization (Geli and Riezman, 1996; Goodson et al., 

1996). Endocytosis can be monitored by measuring α-factor internalization (see Materials and 

Methods). This assay quantitatively measures the first step of endocytosis, the endocytic 

uptake at the plasma membrane (Dulic et al., 1991). As shown in figure 5.2, a myo5-S357A 
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MYO5

myo5-S357E 
myo5-S357A 

23°C 30°C 37°C 



Results 

 24

myo3∆ strain was not able to internalize α-factor, whereas myo5-S357E myo3∆ cells displayed 

an endocytic rate similar to wild-type myosin within the first minutes (figure 5.2A and B).  

Interestingly though, the myo5-S357E myo3∆ mutant only internalized up to 80% of the cell-

bound α-factor (figure 5.2A). The reason for the earlier plateau in this mutant compared to the 

wild-type strain is unclear (see Discussion). 

Analysis of the protein expression levels of the two mutant myosins indicated that the 

differences in the uptake rates were not caused by different expression levels since the amounts 

of Myo5-S357Ap and Myo5-S357Ep were similar (figure 5.2C). 

 

 

 

 

 

  

 

 

 

  

 

Figure 5.2: The myo5-S357A myo3∆ strain is unable to internalize α-factor 

(A) Uptake kinetics of 35S-labelled α-factor pheromone of wild-type (SCMIG50; WT), MYO5 myo3∆ 
(SCMIG567; MYO5), myo5-S357A myo3∆ (SCMIG568; myo5-S357A) and myo5-S357E myo3∆ (SCMIG569; 
myo5-S357E) strains. Cells were pulsed with 35S-labelled α-factor pheromone for 45 minutes at 0°C and chased 
for the indicated times at 23°C. The graphs show the percentage of cell-associated counts that have been 
internalized at the indicated time points. (B) The uptake rate (% of counts internalized/minute) of the wild-type 
strain (SCMIG50; WT) was arbitrarily defined as 100 %, the rates of the MYO5 myo3∆ (SCMIG567; MYO5), 
myo5-S357A myo3∆ (SCMIG568; myo5-S357A) and myo5-S357E myo3∆ (SCMIG569; myo5-S357E) strains are 
calculated according to these 100 %. A mean of three different experiments is shown. (C) Equal amounts of 
protein from myo5∆ (SCMIG51; ∆), wild-type (SCMIG50; WT), MYO5 myo3∆ (SCMIG567; M5), myo5-S357A 
myo3∆ (SCMIG568; SA) and myo5-S357E myo3∆ (SCMIG569; SE) extracts were separated by SDS-PAGE and 
analysed by immunoblot using a Myo5p-tail-specific antibody (α-Myo5p). 
 

Type I myosins have also been shown to be required for the polarization of actin patches to the 

growing bud (Goodson et al., 1996). As shown in figure 5.3, the phalloidin-F-actin staining of 
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the myo5-S357E myo3∆ mutant cells revealed a nearly wild-type-like polarized pattern, where 

the patches are mostly restricted to the growing bud. However, this pattern did not completely 

resemble the wild-type distribution, showing a slight depolarization (figure 5.3). In the non-

phosphorylatable myo5-S357A myo3∆ mutant the actin cytoskeleton was completely 

depolarized, with cortical patches distributed throughout the mother cell and bud (figure 5.3).  

Cells with a depolarized actin cytoskeleton exhibit a larger size and a rounder morphology 

compared to wild-type yeasts, which is caused by the failure to define a polarized bud site and 

the resulting isotropic growth. Most of the myo5-S357A myo3∆ mutant cells and also some of 

the myo5-S357E myo3∆ cells displayed a big and roundish morphology (figure 5.3, 

morphology “myo5-S357A” and “myo5-S357E”). This observation thus corroborates the 

presence of a significant polarization defect in the myo5-S357A myo3∆ mutant and a slight 

polarization defect in the myo5-S357E myo3∆ mutant.  

 

  

Figure 5.3: The actin cytoskeleton is depolarized in the myo5-S357A myo3∆ mutant 

Fluorescence (actin) and phase contrast (morphology) micrographs showing wild-type (SCMIG50; WT), MYO5 
myo3∆ (SCMIG567; MYO5), myo5-S357A myo3∆ (SCMIG568; myo5-S357A) and myo5-S357E myo3∆ 
(SCMIG569; myo5-S357E) cells stained with TRITC-phalloidin. Red arrows point to polarized actin patches, 
green arrows point to depolarized actin patches. 
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5.1.1.1.2 TEDS site phosphorylation does not seem to influence targeting of Myo5p to the 

plasma membrane 

Based on the stability of the mutant Myo5p proteins, it seemed unlikely that the observed actin 

polarization and endocytic defects were caused by misfolding of the mutants (figure 5.1 and 

5.2C), suggesting that phosphorylation of Myo5p was required for its function. However, it 

was still possible that mutation of the Myo5p TEDS site serine to alanine led to a 

mislocalization of the protein and that the observed defects were a consequence of the inability 

of the mutant protein to reach the plasma membrane. In order to test this hypothesis, 

immunofluorescence experiments using C-terminally Haemaglutinine (HA)-tagged proteins 

were performed. This tag did not disturb the myosin function in endocytosis and mutant 

proteins were expressed to similar levels (data not shown). In wild-type cells, Myo5p is 

localized in punctuate, cortical structures, which are polarized to the bud (Anderson et al., 

1998 and figure 5.4 “MYO5”). The Myo5-S357Ep mutant displayed a wild-type-like Myo5p 

staining with most Myo5p-containing structures in the growing bud (figure 5.4). Myo5-

S357Ap also seemed to be localized to the plasma membrane. Moreover, it still assembled into 

patch-like structures, although it showed a more depolarized distribution with evenly 

distributed patches in the mother cell and the bud (figure 5.4).  
 

 

Figure 5.4: Myo5-S357Ap patches are depolarized, but seem to be at the plasma membrane 

Fluorescence (Myo5p) and phase contrast (morphology) micrographs of wild-type (SCMIG50; WT), pMYO5HA3 
myo3∆ (SCMIG582; MYO5), pmyo5-S357AHA3 myo3∆ (SCMIG583; myo5-S357A) and pmyo5-S357EHA3 myo3∆ 
(SCMIG584; myo5-S357E) strains, fixed and decorated with rat α-HA antibodies and CY3-conjugated α-rat IgG 
antibodies. 
 

It is likely that the Myo5-S357Ap pattern is secondary to the defect in actin polarization in 

these cells (compare figure 5.4 to figure 5.3), since Myo5p localization has been demonstrated 

to depend on actin. Anderson and co-workers demonstrated by using immunofluorescence that 

depolymerization of filamentous actin by Latrunculin A treatment and depolarization of actin 
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patches by heat shock results in depolarization of the Myo5p-containing patches (Anderson et 

al., 1998). Nevertheless, our experiments cannot rule out that TEDS site phosphorylation is 

required for correct targeting of Myo5p to certain membrane subdomains. 

To independently confirm the recruitment of the Myo5p phosphorylation mutants to the 

plasma membrane, the hSos plasma membrane recruitment system was used (Aronheim and 

Karin, 2000). Human Sos (a guanyl nucleotide exchange factor (GEF) for Ras) can 

complement a temperature-sensitive mutation of its yeast homologue Cdc25p, only when hSos 

is correctly localized to the plasma membrane (Aronheim and Karin, 2000 and figure 5.5A). N-

terminal truncation abolishes targeting of hSos to the plasma membrane preventing these cells 

from growing at 37°C. Fusion of this truncated hSos to a protein that is directed to the plasma 

membrane should rescue the growth defect (figure 5.5A).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: The Myo5p TEDS site mutant proteins recruit a truncated SOS to the plasma membrane  

(A) Human SOS (hSOS), a guanylnucleotide exchange factor (GEF) for Ras, can substitute the function of its 
yeast homologue Cdc25p (cdc25-2) at restrictive temperature (37°C; 1 and 2). N-terminal truncation of hSOS 
(5’SOS) removes the membrane targeting signal, so that 5’SOS is no longer recruited to the plasma membrane 
(3), causing cells death at 37°C. Fusion to a protein that is recruited to the plasma membrane, e.g. Myo5p, should 
bring the 5’SOS to the site of function to activate Ras (4) and confer viability to the cells at restrictive 
temperature. (B) SCMIG271 (cdc25-2) was transformed with pYX5’SOS (5’SOS + MYO5), pYX5’SOS-MYO5 
(5’SOS-MYO5), pYX5’SOS-myo5-S357A (5’SOS-myo5-S357A) or pYX5’SOS-myo5-S357E (5’SOS-myo5-
S357E), cells were streaked on minimal media and allowed to grow at the indicated temperatures for 4 days. 
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As shown in figure 5.5B, a fusion of the N-terminally truncated hSos to wild-type Myo5p 

partially restored growth at 37°C, consistent with Myo5p plasma membrane localization. 

Fusions of either Myo5-S357Ap or Myo5-S357Ep to the N-terminal truncated hSos were just 

as efficient as wild-type Myo5p in restoring cell growth indicating that the mutant Myo5p 

proteins were able to recruit the fusion proteins to the plasma membrane (figure 5.5B).  

The results from the SOS recruitment system are thus consistent with the immunofluorescence 

data, both indicating that recruitment of Myo5p to the plasma membrane does not depend on 

TEDS site phosphorylation. 

5.1.1.1.3 Other membrane traffic events are not affected in myosin-I TEDS site mutants 

Since both myosin-I mutants were constitutive, it could not be excluded that the observed 

defects in the myo5-S357A myo3∆ mutant were secondarily caused by the strain sickness. To 

rule out this possibility, the biosynthetic traffic of carboxypeptidase Y (CPY) from the ER to 

the vacuole was examined as an example for a myosin-I-independent process (Geli and 

Riezman, 1996). Wild-type kinetics of CPY maturation requires intact protein synthesis and 

translocation into the ER, proper membrane traffic through the Golgi, where the CPY is 

glycosylated, and transport across the endosomal compartments into the vacuole, where CPY 

is proteolytically cleaved (Stevens et al., 1982). These trafficking steps create the CPY protein 

forms p1 in the ER, p2 in the Golgi, and the mature (m) form in the vacuole. As shown in 

figure 5.6, maturation and transport of CPY did not display a defect in any of the type I myosin 

mutants, suggesting that the defects observed in endocytosis and actin cytoskeleton 

polarization were specific.  

 

 

Figure 5.6: CPY maturation is unaffected by 

mutation of the Myo5p TEDS site 

Wild-type (SCMIG50; WT), MYO5 myo3∆ 
(SCMIG567; MYO5), myo5-S357A myo3∆ 
(SCMIG568; myo5-S357A) and myo5-S357E myo3∆ 
(SCMIG569; myo5-S357E) cells were pulsed with 
35S-methionine and 35S-cysteine for 5 minutes and 
chased for the indicated times. CPY was 
immunoprecipitated and analysed by 
autoradiography; p1, endoplasmic reticulum form; p2, 
Golgi form; m, mature vacuolar form. 
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Taken together, these results indicate that a negative charge at the TEDS site position of the 

yeast Myo5p, and thus presumably phosphorylation of the TEDS site serine, is important for 

Myo5p function in vivo. 

5.1.1.2 The yeast p21-activated kinases (PAKs) and Cdc42p are not required for the 

uptake step of endocytosis 

5.1.1.2.1 A temperature-sensitive PAK mutant strain displays normal endocytic uptake 

kinetics  

Several findings indicate that Cdc42p-activated PAKs are able to phosphorylate the yeast type 

I myosin TEDS site and therefore activate these molecular motors for their function in actin 

cytoskeleton polarization (figure 5.7; for more details see Introduction). 
 

 

Figure 5.7: A proposed signalling pathway leading to actin 

cytoskeleton polarization in yeast 

Cdc42p, the p21-activated (PAK) kinases Ste20p and Cla4p and the 
type I myosins Myo3p and Myo5p are required for actin cytoskeleton 
polarization. The function of Skm1p is not yet clear. Overexpression 
of Ste20p and an activated Myo3p TEDS site mutant (myo3-S357D) 
were able to overcome the need for a functional Cdc42p in actin 
polarization. Moreover, PAKs have been shown to phosphorylate the 
type I myosin TEDS site in vitro. These data thus suggest a pathway 
as schematically shown here. 
 

 

Since the data presented in the last sections indicated that TEDS site phosphorylation is 

required for both type I myosin functions, actin cytoskeleton polarization and endocytosis, it 

was examined whether PAKs are required for endocytosis.  

Cells deleted for CLA4 or STE20 are viable (Cvrckova et al., 1995; Leberer et al., 1992), but 

deletion of both genes causes synthetic lethality suggesting functional redundancy (Cvrckova 

et al., 1995). In order to create a conditional triple PAK mutant strain to test the putative role 

of these kinases in endocytosis, a temperature-sensitive ste20∆ skm1∆ cla4-ts mutant was 

created. For this reason, histidine 685 in CLA4 was substituted by tyrosin (H685Y) in a ste20∆ 

skm1∆ knockout background (see Materials and Methods). An analogous mutation in the yeast 

casein kinase I YCK2 has been shown to cause temperature-sensitive lethality (Robinson et al., 

1993).  

As expected, the ste20∆ skm1∆ cla4-H685Y strain was temperature-sensitive for growth 

(figure 5.8A). At permissive temperature, some of the mutant cells displayed elongated buds 
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similar to those described in the ste20∆ cla4-75 mutant (figure 5.8B; Cvrckova et al., 1995). 

Upon shift to 37°C, the ste20∆ skm1∆ cla4-H685Y cells adopted a round morphology (figure 

5.8B). As described above, this phenotype is a consequence of a failure to define a polarized 

bud site and the resulting isotropic growth. The fact that a similar phenotype has been 

described in other ste20∆  cla4 mutants at this temperature (Holly and Blumer, 1999; Weiss et 

al., 2000) combined with the growth defect thus provide strong evidence for a significant loss 

of activity of the Cla4-H685Yp kinase at 37°C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Temperature-sensitivity and morphology of the ste20∆ skm1∆ cla4-H685Y mutant 

(A) Growth of the wild-type (SCMIG50; WT) or the ste20∆ skm1∆ cla4-H685Y mutant (SCMIG574; ste20∆ 
skm1∆ cla4-H685Y) strain at the indicated temperatures. A saturated culture was diluted to approximately 2.5 x 
107 cells/ml and a 1 to 10 dilution series was made for each strain. 5 µl of each dilution was spotted on solid rich 
media and the cells were grown for 2 days. (B) Phase contrast micrographs of the wild-type (SCMIG50; WT) or 
the ste20∆ skm1∆ cla4-H685Y mutant (SCMIG574; ste20∆ skm1∆ cla4-H685Y ) strains after incubation for 30 
minutes at the indicated temperatures.  
 

To investigate whether PAKs are required for the uptake step of endocytosis, the α-factor 

internalization kinetics of ste20∆ skm1∆ cla4-H685Y mutant cells were investigated upon shift 

to the restrictive temperature (37°C). Surprisingly, inactivation of PAK function by pre-

incubation of the temperature-sensitive mutant at 37°C for 5, 15 or even 30 minutes did not 

lead to any defect in α-factor internalization (figure 5.9).  
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Figure 5.9: α-factor uptake kinetics are not affected in the ste20∆ skm1∆ cla4-H685Y temperature-sensitive 

mutant 

Uptake kinetics of 35S-labelled α-factor pheromone of a wild-type (SCMIG50; WT) and the ste20∆ skm1∆ cla4-
H685Y mutant (SCMIG574; ste20∆ skm1∆ cla4-H685Y) strain. Cells were preincubated at 37°C for 5 (A), 15 (B) 
or 30 minutes (C), 35S-labelled α-factor pheromone was added and internalization was allowed for the indicated 
times at 37°C. The graphs show the percentage of cell-associated counts that have been internalized at the 
indicated time points. 
 

5.1.1.2.2 Chemical inactivation of the yeast PAKs does not affect endocytosis 

The above-described experiments could not rule out that a residual PAK activity in the ste20∆ 

skm1∆ cla4-H685Y mutant was sufficient to sustain myosin-I function in vivo. To address this 

question it was necessary to demonstrate that under the exact conditions used to assay 

endocytosis in a PAK mutant, the actin cytoskeleton polarization was affected, indicating that 

the PAK signalling has completely been interrupted. Unfortunately, the temperature shift that 

is required to inactivate the temperature sensitive PAK mutant causes a rapid, transient and 

RHO1-dependent depolarization of the actin cytoskeleton even in wild-type cells (Delley and 

Hall, 1999). This fact did not allow to monitor the effect of PAK inactivation on actin 

polarization in the temperature-sensitive mutant under the conditions used to investigate 

endocytosis. To overcome this problem, a chemical-sensitive CLA4 allele was used: cla4-as3 

(Weiss et al., 2000). 
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Shokat and co-workers were the first to engineer an adenosine-related [3,4-d]pyrimidine 

analogue that specifically binds to a kinase with a mutationally enlarged ATP binding pocket 

(for review see Bishop et al., 2001). Weiss and co-workers constructed a Cla4p mutant, Cla4-

as3p, which can be inhibited specifically and efficiently by the membrane-permeable 

pyrimidine analog 1NM-PP1 (4-amino-1-tert-butyl-3-(1-naphtylmethyl) pyrazolo [3,4-d] 

pyrimidine; Weiss et al., 2000). This kind of conditional mutant allowed to monitor the effect 

of PAK inactivation on the actin cytoskeleton polarization and endocytosis under identical 

restrictive conditions without the interference of the heat shock. 

It was previously shown that the in vivo activity of Cla4-as3p is inhibited by incubation for 1 

hour with 25 µM 1NM-PP1 (Weiss et al., 2000). Under these conditions, endocytosis was not 

affected in a ste20∆ skm1∆ cla4-as3 mutant strain (data not shown). Increasing the amount of 

inhibitor to 100 µM 1NM-PP1 did also not alter the internalization kinetics (figure 5.10A). 

Under the same conditions, the actin cytoskeleton displayed a completely depolarized actin 

cytoskeleton as evidenced by phalloidin-F-actin staining in the ste20∆ skm1∆ cla4-as3 mutant 

strain (figure 5.10B), indicating that Cla4p activity, and, therefore, PAK activity, was indeed 

abrogated in this mutant strain. 

These data provide the first evidence that PAKs are required for actin polarization under non-

heat shock conditions. As mentioned in the introduction, it was previously shown that Myo3-

S357Dp was unable to restore growth of a ste20∆ cla4∆ double mutant indicating that 

myosins-I were not the essential PAK targets. Consistent with this result, Myo5-S357Ep did 

not suppress the actin polarization defect of the triple PAK mutant under restrictive conditions 

(figure 5.10C). 

These data thus confirmed our findings with the temperature-sensitive mutant and supported 

the view that PAKs are indeed not required for endocytic internalization in yeast. Additionally, 

the presented data clearly demonstrated that the uptake step of endocytosis did not depend on 

the polarization of the actin cytoskeleton (compare figure 5.10A and B). 
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Figure 5.10: Endocytosis is unaffected in a chemical-sensitive PAK mutant strain, which displays a 

completely depolarized actin cytoskeleton under the same conditions  
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(A) Uptake kinetics of 35S-labelled α-factor pheromone of wild-type (SCMIG50; WT), ste20∆ skm1∆ CLA4 
(SCMIG588; CLA4) or ste20∆ skm1∆ cla4as3 (SCMIG586; cla4as3) strains. Cells were preincubated with 100 
µM Cla4-as3p inhibitor 1NM-PP1 (1NM-PP1) or the adequate amount of solvent (DMSO) for 1 hour, 35S-labelled 
α-factor pheromone was added and the internalization was allowed for the indicated times at 23°C. The graphs 
show the percentage of cell-associated counts that have been internalized at the indicated time points. (B) 
Fluorescence (actin) and phase contrast (morphology) micrographs showing wild-type (SCMIG50; WT), ste20∆ 
skm1∆ CLA4 (SCMIG588; CLA4) or ste20∆ skm1∆ cla4as3 (SCMIG586; cla4as3) cells stained with TRITC-
phalloidin. Cells were preincubated with 100 µM Cla4-as3p inhibitor 1NM-PP1 (1NM-PP1) or the adequate 
amount of solvent (DMSO) for 1 hour. (C) Fluorescence (actin) and phase contrast (morphology) micrographs 
showing ste20∆ skm1∆ cla4as3 (SCMIG586) cells, which are transformed with pmyo5-S357E, stained with 
TRITC-phalloidin. Cells were preincubated with 100 µM Cla4-as3p inhibitor 1NM-PP1 for 1 hour. 
 

5.1.1.2.3 Cdc42p mutant strains are able to internalize α-factor with wild-type kinetics 

The previous results strongly suggested that PAK activity is not required for endocytosis. In 

order to confirm these data, it was tested whether the PAK upstream factor Cdc42p is also 

dispensable for this process. For this purpose, temperature-sensitive cdc42 mutant alleles, 

which were previously shown to specifically disrupt PAK signalling, were tested for their 

ability to internalize α-factor.  

 

 

 

 

 

 

  

 

 

 

 

 

Figure 5.11: Cdc42p does not seem to be required for endocytosis 

(A) Allele-specific interaction of cdc42 temperature-sensitive mutants and PAKs (Kozminski et al., 2000). (B) 
Uptake kinetics of 35S-labelled α-factor pheromone of wild-type (SCMIG618; CDC42), cdc42-1 (SCMIG619; 
cdc42-1), cdc42-118 (SCMIG625; cdc42-118), cdc42-123 (SCMIG623; cdc42-123) and cdc42-129 (SCMIG624; 
cdc42-129) strains. Cells were preincubated at 37°C for 30 minutes, 35S-labelled α-factor pheromone was added 
and the internalization was allowed for the indicated times at 37°C. The graphs show the percentage of cell-
associated counts that have been internalized at the indicated time points.  
 

0 

20 

40 

60 

80 

100 

0 10 20 30 40 

CDC42

cdc42-1

cdc42-123

cdc42-129

cdc42-118

time (min)

up
ta

ke
 (%

) 

B

Cla4p/Skm1pcdc42-129

Ste20pcdc42-123

Ste20pcdc42-118

Ste20pcdc42-1

growth phenotype 
suppressed by 

mutant allele A



Results 

 35

The temperature sensitive growth of cdc42-1, cdc42-118 and cdc42-123 was specifically 

suppressed by overexpression of Ste20p, whereas that of the cdc42-129 mutant could be 

rescued by overexpression of Skm1p or Cla4p (figure 5.11A; Kozminski et al., 2000).  

Consistent with the results using the PAK mutants, the cdc42-1, cdc42-118, cdc42-123 and 

cdc42-129 cells displayed nearly wild-type α-factor uptake kinetics after 5 min, 15 min and 

even after 30 min preincubation at restrictive temperature (figure 5.11B and data not shown). 

5.1.1.3 Only a small fraction of the Myo5p TEDS site seems to be phosphorylated in vivo 

Since the data presented in the previous sections indicated that the yeast type I myosin TEDS 

site is phosphorylated by kinases other than PAKs, inactivation of these kinases should not 

lead to a complete loss of Myo5p phosphorylation in vivo. To investigate this matter, an in vivo 

phosphorylation assay was developed. Cells deleted for MYO5 (myo5∆) carrying either MYO5-

HA3 or myo5-S357A-HA3 were radiolabelled, lysed and Myo5p or Myo5-S357Ap were 

immunoprecipitated by a Myo5-tail-specific antibody (for more detail see Materials and 

Methods). As described before, the HA tag did not disturb the functionality of Myo5p (data not 

shown). 

Surprisingly, Myo5-S357Ap was labelled to the same extent as the wild-type Myo5p (figure 

5.12B, lower panel), indicating that additional phosphorylation sites exist in the Myo5p 

protein. Interestingly, the lack of a significant decrease in phosphorylation signal in the mutant 

protein suggested that only a small fraction of Myo5p is phosphorylated at the TEDS site in 

vivo (figure 5.12B, lower panel). Additionally, no phosphorylation signal could be detected on 

a Myo5p truncation bearing only the head domain (figure 5.12C). This result might either 

reinforce that only a small fraction of Myo5p is phosphorylated at the TEDS site or it might 

indicate that recruitment of Myo5p to the plasma membrane is required for TEDS site 

phosphorylation, since the Myo5p head domain is not sufficient to target the protein to the 

plasma membrane (H. Groetsch, personal communication). 
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Figure 5.12: A little fraction of Myo5p seems to be phosphorylated at the TEDS site in vivo 

(A) Cells deleted for MYO5 carrying either an empty plasmid (YCplac33; C) or the same plasmid carrying the 
MYO5HA3 (p33MYO5HA3; M5) or the myo5-S357AHA3 (p33myo5-S357A HA3; SA) genes, were radiolabelled in 
vivo with 32PO4

3- for 30 minutes. Subsequently, cells were lysed and 1/10th of the totals were separated by SDS-
PAGE and analysed by autoradiography (upper panel) and immunoblot (lower panel) using a rat α-HA antibody 
(α−HA). (B) Cells deleted for MYO5 carrying either an empty plasmid (YCplac33; C) or the same plasmid 
carrying the MYO5HA3 (p33MYO5HA3; M5) or the myo5-S357AHA3 (p33myo5-S357A HA3; SA) genes, were 
radiolabelled in vivo with 32PO4

3- for 30 minutes, lysed and protA-Sepharose beads were added either alone (-) or 
together with a Myo5p tail specific antibody (+) (see (A)). Half of the immunoprecipitated proteins were 
separated by SDS-PAGE and analysed by immunoblot (upper panel) using a rat anti-HA antibody (α−HA) or by 
autoradiography (lower panel). (C) Cells deleted for MYO5 carrying the plasmid-based full-length 
ProtAMYO5HA3 (pProtAMYO5-HA3, M5), MYO5HA3 (p33MYO5HA3, C) or the ProtA-Myo5p head domain 
fusions ProtAMYO5 (aa2-700) (p33ProtA-myo5-H-HA3, H) or ProtAmyo5-S357A (aa2-700) (p33ProtA-myo5-
S357A-H-HA3, HSA), were radiolabelled in vivo with 32PO4

3- for 30 minutes, lysed and IgG beads were added. 
Half of the immunoprecipitated proteins were separated by SDS-PAGE and analysed by immunoblot (upper 
panel) using a rat anti-HA antibody (α−HA) or by autoradiography (lower panel). 
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5.1.1.4 The yeast kinases Pkh1p and Pkh2p may be myosin-I upstream factors 

5.1.1.4.1 An in vitro phosphorylation screen identified kinases other than PAKs that are 

able to phosphorylate the Myo5p TEDS site  

The results shown above strongly suggested that TEDS site phosphorylation is required for 

Myo5p function in endocytosis whereas the yeast PAKs are not necessary for this process. 

Thus, kinases other than Ste20p, Cla4p and Skm1p are likely to phosphorylate the TEDS site 

of the yeast type I myosins in order to activate them for their function in endocytosis. To 

identify this (these) kinase(s), an in vitro phosphorylation screen was performed in co-

laboration with the laboratory of Dr. Michael Snyder (Zhu et al., 2000). For this purpose, a 

glutathione-S-transferase (GST) fusion protein carrying amino acids 322 to 391 of the Myo5p 

head domain, which contains the TEDS phosphorylation site (amino acid 357), was expressed 

and purified from Escherichia coli (figure 5.13A and B). Purified proteins (GST-Myo5-TEDSp 

and GST as control) were crosslinked to multi-well plates and independently incubated in the 

presence of 119 protein kinases purified from yeast and γ33P-ATP (Zhu et al., 2000). Analysis 

of two independent experiments showed that 16 out of the 119 purified yeast kinases exhibited 

a significantly higher phosphorylation signal in the GST-myo5-TEDS chip compared to the 

GST control (figure 5.13C).  

Strikingly, the PAKs Ste20p, Cla4p and Skm1p were not able to phosphorylate the Myo5p 

TEDS site in this biochemical screen (figure 5.13C). This might be explained by the absence of 

Cdc42p in the assay, which is required to activate these kinases (Peter et al., 1996; Benton et 

al., 1997; Cvrckova et al., 1995; Leberer et al., 1992).  

Some of the identified kinases are localized in the nucleus and/or have been found to be 

involved in nuclear processes (Kin1p, Ksp1p, Sch9p, Ptk2p, Ssn3p, Pho85p), are required for 

cell cycle regulation (Tpk1p, Swe1p), conjugation during cellular fusion (Prr1p, Cmk2p) or 

unfolded protein response (Ire1p, Cmk2p), making all of them unlikely activators of type I 

myosins for their function in endocytosis. In contrast, Mkk1p and Mkk2p were found to be 

required for actin cytoskeleton organization and cortical actin patch assembly (Harrison et al., 

2001; Loewith et al., 2002). However, an mkk1∆ mkk2∆ double mutant was not defective in α-

factor uptake (data not shown). Likewise, Ypl141Cp, a protein kinase with unknown function, 

was also not required for endocytosis (data not shown).  
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Figure 5.13: In vitro screen for Myo5p TEDS site kinases 

(A) Schematic drawing of the GST-Myo5-TEDSp fusion protein. Amino acids 322-391 of the Myo5p protein, 
containing the TEDS site serine at position 357, were cloned in frame behind the GST. (B) Cell extracts of E.coli 
BL21 carrying plasmid pGST-myo5-TEDS before (1) and after induction (2) with IPTG. Lane 3 shows the 
amount of purified protein (see Materials and Methods) from approximately 6.7 ml of E.coli culture. (C) 119 
yeast kinases were tested for their ability to phosphorylate GST-Myo5-TEDSp in vitro. The bars indicate the 
average radioactive signal (phosphoimager arbitrary units) associated to GST-myo5-TEDSp or GST incubated 
with the indicated yeast kinases, which were able to significantly phosphorylate the TEDS site fragment in vitro.  

A 
GST-Myo5-TEDSp

9766
45
31

21

GST MYO5 
322 391

S357 

aa 

B

GST

GST-Myo5-TEDSp 

Sat4p 

Kin1p 

Ire1p 

Ksp9p 

Sch9p 

Tpk1p 

Swe1p 

Ptk2p 

Prr1p 

Cmk2p 

Pkh2p 

Mkk1p 

Pho85p 

Ssn3p 

Mkk2p 

Ypl141Cp 

0 1 2 3 4 5 6C 

1 2 3

phosphoimager signal intensity
(arbitrary units) 



Results 

 39

Interestingly though, one of the identified kinases, Pkh2p and its homologue Pkh1p were 

recently found to be involved in the uptake step of endocytosis (deHart et al., 2002; Friant et 

al., 2001). A double pkh1-ts pkh2∆ mutant exhibits an α-factor uptake defect similar to that 

observed in the myo5-S357A myo3∆ mutant (deHart et al., 2002; Friant et al., 2001; figure 

5.2), making them interesting candidates to be type I myosin upstream factors. 

5.1.1.4.2 Pkh1p and Pkh2p specifically interact with Myo5p in vivo 

To further investigate the possible physiological relevance of the finding that Pkh2p is able to 

phosphorylate the GST-Myo5-TEDSp protein in vitro, the ability of Pkh2p and its homologue 

Pkh1p to interact with the Myo5p head in vivo was tested using a yeast two-hybrid assay. 

Consistent with the in vitro phosphorylation data, the LexA DNA binding domain fused to the 

complete motor head of Myo5p (LexA-Myo5-Hp) was able to specifically induce β-

galactosidase transcription when co-expressed with the B42 transcriptional activator fused to 

either Pkh1p or Pkh2p (figure 5.14A). This interaction seemed to be highly specific because no 

significant transcriptional activation could be detected when the LexA-Myo5-Hp was co-

expressed with B42 fusions bearing any of six other kinases that were previously reported to 

play a role in the endocytic uptake (Ypk1p, Ark1p, Prk1p, Yck1p or Pkc1p) (figure 5.14A; 

deHart et al., 2002; Friant et al., 2000; Watson et al., 2001). Ypk2p (Ykr2p) was additionally 

tested, since it is a homologue to Ypk1p (Casamayor et al., 1999). Surprisingly, no interaction 

of the Myo5p head with Cla4p, one of the yeast PAKs, was detected (figure 5.14A). Likewise, 

Ire1p, the kinase that gave the strongest signal in the chip assay, did not interact with Myo5p 

(compare figure 5.13C to 5.14A). Ire1p is an endoplasmic reticulum resident protein and 

therefore it is not likely to be involved in myosin-I dependent processes (Cox et al., 1993).  

As described in the beginning of this chapter, deletion of MYO5 causes synthetic growth 

defects when combined with mutations in genes encoding proteins that closely cooperate with 

the myosins-I in vivo (Geli et al., 2000; Soulard et al., 2002). As shown in figure 5.14B, 

deletion of MYO5 in a temperature-sensitive pkh1 pkh2 mutant (pkh1-ts pkh2∆, Friant et al., 

2001) strongly exacerbated the growth defect of this strain, demonstrating a genetic interaction 

of these genes. 

The two-hybrid and the genetic data thus validated the results obtained in the biochemical 

screen suggesting that a signalling pathway alternative to the Cdc42p-PAKs is involved in the 

activation of Myo5p for its endocytic function, which might involve the kinases Pkh1p and 

Pkh2p.  
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Figure 5.14: Myo5p and the yeast kinases Pkh1p and Pkh2p interact in vivo 

(A) To test two-hybrid interactions, EGY48 cells bearing the β-galactosidase reporter on plasmid pSH18-34 and 
expressing the Myo5p head fused to the LexA binding domain (pEG202myo5-H; M5) or a control (pRFM-1; C) 
together with the genes encoding the indicated kinases fused to the B42 transcriptional activator (pJG4-5PKH1, 
Pkh1p; pJG4-5PKH2, Pkh2p; pJG4-5YPK1, Ypk1p; pJG4-5YPK2, Ypk2p; pJG4-5ARK1, Ark1p; pJG4-5PRK1, 
Prk2p; pJG4-5YCK1, Yck1p; pJG4-5PKC1, Pkc1p; pJG4-5CLA4, Cla4p; pJG4-5IRE1, Ire1p) or the B42 alone 
(pJG4-5; control) were spotted on X-Gal containing plates. Yeast cells were grown at 30°C for 2 days. An 
interaction was scored as positive when cells developed a blue (black) colour clearly before the corresponding 
controls. (B) The pkh1-ts pkh2∆ myo5∆ mutant (SCMIG605; pkh1-ts pkh2∆ myo5∆ ) was either transformed with 
the empty plasmid (YCplac33) or the same plasmid carrying the MYO5 gene (p33MYO5). Saturated cultures of 
the strains were diluted to 2.5 x 107 cells/ml and 1 to 10 dilution series were made for each strain. 5µl of each 
dilution was spotted on minimal media and the cells were grown for 2 days at the indicated temperatures.  
 

Pkh1p and Pkh2p are activated by sphingoid bases in vitro (Friant et al., 2001). Moreover, 

overexpression of Pkh1p and Pkh2p suppresses the uptake defect of a lcb1-100 mutant (Friant 

et al., 2001). LCB1 encodes a serine palmitoyltransferase, which catalyzes the first step in 

sphingoid base synthesis (Zanolari et al., 2000). These data indicated that a signal transduction 

pathway, which includes the sphingoid base-activated Pkh1p and Pkh2p kinases, regulates 

endocytic internalization in yeast. If Myo5p would be the only or more relevant target of the 

Pkh1p and Pkh2p kinases, expression of Myo5-S357Ep should be able to rescue the endocytic 

defects of the pkh1-ts pkh2∆ and the lcb1-100 mutants. As shown in figure 5.15 though, Myo5-

S357Ep was not able to suppress their endocytic defects, possibly indicating that the yeast type 

I myosins are not the only Pkh1p and Pkh2p targets. 
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Figure 5.15: Myo5-S357Ep does not suppress the requirement for sphingoid base and the kinases 

Pkh1p/Pkh2p in endocytosis 

(A) Uptake kinetics of 35S-labelled α-factor pheromone of a wild-type (SCMIG603) and the pkh1-ts pkh2∆ strain 
(SCMIG604) either carrying an empty plasmid (YCplac33; pkh1-ts pkh2∆) or the same plasmid carrying the 
myo5-S357E gene (p33myo5-S357E; pkh1-ts pkh2∆ pSE). Cells were preincubated at 30°C for 15 minutes, 35S-
labelled α-factor pheromone was added and the internalization was allowed for the indicated times at 30°C. The 
graphs show the percentage of cell-associated counts that have been internalized at the indicated time points. (B) 
Uptake kinetics of 35S-labelled α-factor pheromone of a wild-type (SCMIG19) and the lcb1-100 strain 
(SCMIG69) carrying either an empty plasmid (YCplac33; lcb1-100) or the same plasmid bearing the myo5-S357E 
gene (p33myo5-S357E; lcb1-100 pSE). Cells were preincubated at 37°C for 15 minutes, 35S-labelled α-factor 
pheromone was added and the internalization was allowed for the indicated times at 37°C. The graphs show the 
percentage of cell-associated counts that have been internalized at the indicated time points.  
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5.2 Analysis of the regulation of myosin-I-induced actin 
polymerization by phosphorylation 

5.2.1 Yeast casein kinase II (CKII) phosphorylates serine 1205 in the 
Myo5p tail domain 

5.2.1.1 Myosin-I-induced actin polymerization is regulated by phosphorylation 

Recent data indicated that the fungal and protozoal type I myosins are able to induce Arp2/3-

dependent actin polymerization (Evangelista et al., 2000; Geli et al., 2000; Jung et al., 2001; 

Lechler et al., 2000; Lee et al., 2000; for more detail see Introduction). Our laboratory 

developed an in vitro assay, which demonstrates that a C-terminal fragment of Myo5p 

including the TH2, SH3 and acidic domains (Myo5-Cp) is able to induce Arp2/3-dependent 

actin polymerization in the presence of ATP and yeast cytosol. Briefly, glutathione Sepharose 

beads coated with a GST-Myo5-Cp recombinant fusion protein are incubated in the presence 

of a yeast extract, ATP and rhodamine-labelled actin. Actin polymerization can be visualized 

by fluorescence microscopy (Geli et al., 2000; Idrissi et al., 2002; for more detail see 

Introduction).  

Interestingly, the optical analysis of this process revealed that, although the beads are 

homogeneously covered by GST-Myo5-Cp, the rhodamine-actin signals appeared as discrete 

patch-like structures (figure 5.16). Further, even though neither the Arp2/3 complex nor actin 

are limiting in the assay, dilution of the yeast extract resulted in decrease of the number of 

actin patches per bead surface (Idrissi et al., 2002). These results indicate that initiation of the 

process might be regulated by cytosolic components. 
 

 

Figure 5.16: Myo5-Cp induces actin polymerization in discrete patches 

Fluorescence micrographs of GST-Myo5-Cp-coated glutathione Sepharose beads either decorated with an α-
Myo5p antibody and a FITC-conjugated secondary antibody (α-Myo5) or incubated with an extract from a wild-
type yeast strain (SCMIG19) and 1µM rhodamine-labelled actin (Rhod-actin). These data are taken from Idrissi et 
al. (2002). 
 

α-Myo5p Rhod-actin
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Interestingly, pharmacological analysis of the process revealed that the presence of 

phosphatase inhibitors in the polymerization assay significantly inhibited the process whereas 

the presence of kinase inhibitors slightly activated it (figure 5.17A). These results suggested 

that a kinase may negatively control one or more of the proteins involved in the process and 

dephosphorylation of this or these component/s might be required to initiate the assembly of 

the actin patches. The finding that Myo5p is not only phosphorylated at the TEDS site in the 

head domain (figure 5.12) opened the question whether Myo5p itself gets phosphorylated in 

the tail domain in order to regulate its function in actin polymerization (figure 5.17B). 

 

 

 

 

 

 

 

Figure 5.17: Myosin-I induced actin polymerization seems to be negatively regulated by phosphorylation 

(A) Fluorescence micrographs of actin foci formed on beads coated with the GST-Myo5-Cp protein. The beads 
were incubated with an extract from a wild-type yeast strain (SCMIG19) and 1µM rhodamine-labelled actin either 
in the absence (WT) or in the presence of kinase inhibitors (WT+KI) or phosphatase inhibitors (WT+ PPI). (B) 
Schematic drawing of the working hypothesis that Myo5p itself might be phosphorylated at its tail domain, 
thereby being unable to induce Arp2/3-dependent actin polymerization. 
 

 

5.2.1.2 Myo5p is phosphorylated at serine 1205 

5.2.1.2.1 Serine 1205 of Myo5p is phosphorylated in vitro 

To investigate whether the C-terminal domain of Myo5p is phosphorylated in the in vitro actin 

polymerization assay, the GST-Myo5-Cp-coated glutathione Sepharose beads were incubated 

with yeast extract and radiolabelled ATP. As shown in figure 5.18, the GST-Myo5-Cp protein 

is indeed phosphorylated in vitro (figure 5.18B, lower panel, “4”). Myo5p tail truncations 

mapped the phosphorylation site to the very C-terminus, since a small fragment carrying only 

the C-terminal part of the TH2 domain and the acidic domain (aa 1142-1219) was still 

phosphorylated in this assay (figure 5.18B, lower panel, “2”). 
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Figure 5.18: The Myo5p tail domain is 

phosphorylated in vitro 

(A) Schematic drawings of the GST-fusion 
proteins examined in (B). (B) Either GST 
alone (1), GST-(TH2c)p (2), GST-
(SH3,TH2c)p (3) or GST-Myo5-Cp (4) 
were bound to glutathione Sepharose beads 
and incubated with extract from a wild-type 
yeast strain (SCMIG19) and γ-32P-ATP for 
30 minutes at 26°C. Proteins were 
subjected to SDS-PAGE electrophoresis 
(Coomassie) and analysed by 
autoradiography. 

 

 

 

 

To identify the exact phosphorylation site, the C-terminal sequence of Myo5p was scanned for 

phosphorylation motifs for known kinases. This search identified serine 1205 as a possible 

target of the yeast casein kinase II (figure 5.19).  

The consensus motif for the yeast casein kinase II (CKII) consists of a serine or threonine 

surrounded by acidic amino acids that may extent from positions –2 to +5 (Meggio et al., 

1994). An acidic residue at +3 was shown to be most important but not crucial in an otherwise 

acidic context (Meggio et al., 1994). In the case of Myo5p, serine 1205 is located in an acidic 

stretch that extends from amino acid –1 to +4, giving an excellent putative CKII 

phosphorylation site (figure 5.19A). If this serine were the site of phosphorylation in the bead 

assay, exchanging the residue to a non-phosphorylatable amino acid should abolish 

phosphorylation. Indeed, exchanging serine 1205 into alanine or glutamate abolished the 

phosphorylation of GST-Myo5-Cp (figure 5.19B). This result thus suggests that serine 1205 of 

Myo5p is phosphorylated in vitro. 
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Figure 5.19: Serine 1205 of Myo5p is phosphorylated in vitro 

(A) The C-terminal sequence of Myo5p from amino acids 1190 to the STOP codon. Serine 1205 is shown in red. 
(B) GST-Myo5-Cp (WT), GST-myo5-S1205A-Cp (SA) or GST-myo5-S1205E-Cp (SE) were bound to 
glutathione Sepharose beads and incubated with an extract from a wild-type yeast strain (SCMIG19) and γ-32P-
ATP for 30 minutes at 26°C. Proteins were subjected to SDS-PAGE electrophoresis (Coomassie) and analysed by 
autoradiography. 
 

5.2.1.2.2 In vivo evidence for serine 1205 phosphorylation 

In order to determine whether serine 1205 of Myo5p is phosphorylated in vivo, cells expressing 

wild-type Myo5p or Myo5-S1205Ap were incubated in the presence of radiolabelled PO4
3-. 

Cells were subsequently lysed, Myo5p or Myo5-S1205Ap was immunoprecipitated and the 

incorporation of radioactivity was determined by autoradiography. Interestingly, even though 

the radioactive signal associated to equivalent fractions of wild-type and mutant precipitates 

did not seem to drop in the Myo5-S1205Ap sample (figure 5.20), immunoblot analyses 

revealed that at least 10-fold more Myo5-S1205Ap had been immunoprecipitated compared to 

wild-type Myo5p sample (figure 5.20). This result indicated that the level of phosphorylation 

relative to the total immunoprecipitated myosin was indeed significantly reduced in the Myo5-

S1205Ap mutant compared to the wild-type. Further, the experiment suggested that Myo5-

S1205Ap is either more stable or better expressed than the wild-type Myo5p or the mutant 

protein is more efficiently immunoprecipitated (see Discussion). 
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Figure 5.20: In vivo phosphorylation of wild-type Myo5p compared to Myo5-S1205Ap 

Cells deleted for Myo5p carrying plasmid YCplac33 containing either the MYO5HA3 (p33MYO5HA3; M5) or the 
myo5-S1205AHA3 (p33myo5-S1205A HA3; SA) gene, were radiolabelled in vivo with 32PO4

3- for 30 minutes. Cells 
were subsequently lysed and immunoprecipitated with a Myo5p-tail-specific antibody bound to ProtA-Sepharose 
beads. Half of the Immunoprecipitates were separated by SDS-PAGE and analysed by immunoblot (upper panel) 
using a rat α-HA antibody (α−HA) or by autoradiography (lower panel). 
 

5.2.1.3 Casein kinase II (CKII) interacts with Myo5p 

5.2.1.3.1 CKII phosphorylates the Myo5p tail in vitro  

If CKII phosphorylates the Myo5p tail domain at serine 1205, a yeast extract lacking CKII 

activity should no longer be able to phosphorylate the Myo5p tail. The yeast CKII is a 

heterotetramer composed of two catalytical subunits, encoded by CKA1 and CKA2, and two 

regulatory subunits, encoded by CKB1 and CKB2 (Glover, 1998). Deletion of either one of the 

catalytic subunits, CKA1 or CKA2, does not cause an obvious phenotype under standard 

growth conditions, but deletion of both genes is lethal (Padmanabha et al., 1990). In order to 

investigate whether the cytosolic kinase activity that phosphorylates the Myo5p serine 1205 

(figure 5.19) is CKII, the GST-Myo5-Cp-containing beads were incubated with an extract from 

a temperature-sensitive CKII mutant (cka1∆ cka2-ts, kindly provided by Dr. C.V.C.Glover; 

Glover, 1998). As shown in figure 5.21A, the GST-Myo5-Cp tail fragment was no longer 

phosphorylated under these conditions. Moreover, incubation of the GST-Myo5-Cp with wild-

type yeast extract in the presence of heparin, an inhibitor of CKII (Rigobello et al., 1982), 

significantly reduced phosphorylation of Myo5p (figure 5.21B).  

In order to further proof that CKII phosphorylates serine 1205 of Myo5p, beads carrying the 

Myo5p tail fragment were incubated with purified CKII. As shown in figure 5.21C, purified 

kinase efficiently phosphorylated the tail of Myo5p, but mutation of serine 1205 into alanine 

completely abolished this phosphorylation. 
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Figure 5.21: CKII phosphorylates serine 1205 of the Myo5p tail in vitro 

(A) GST-Myo5-Cp was bound to glutathione Sepharose beads and incubated with an extract from either a wild-
type (SCMIG19, WT) or from a cka1∆ cka2∆ pcka2-ts (SCMIG629; cka1∆ cka2-ts) strain and γ-32P-ATP for 30 
minutes at 30°C. Proteins were subjected to SDS-PAGE electrophoresis (Coomassie) and analysed by 
autoradiography. (The reported wild-type is not the isogenic wild-type for the cka mutant strain) (B) GST-Myo5-
Cp was bound to glutathione Sepharose beads and incubated with an extract from a wild-type yeast strain 
(SCMIG19) either alone (WT) or in the presence of 0.25 µg/ml heparin (Hep) and γ-32P-ATP for 30 minutes at 
30°C. Proteins were subjected to SDS-PAGE (Coomassie) and analysed by autoradiography. (C) GST-Myo5-Cp 
(WT) or GST-Myo5-S1205A-Cp (SA) were bound to glutathione Sepharose beads and incubated with 50 U of 
recombinant human CKII and γ-32P-ATP for 30 minutes at 30°C. Proteins were subjected to SDS-PAGE 
(Coomassie) and analysed by autoradiography. 
 

5.2.1.3.2 CKII binds to Myo5p in a two-hybrid approach 

The previous data strongly indicated that CKII is the kinase that phosphorylates serine 1205 in 

the Myo5p tail domain in vitro. To further investigate whether CKII and Myo5p interact in 

vivo, the two-hybrid assay was used. Consistent with our previous data, the LexA DNA 

binding domain fused to the whole tail of Myo5p was able to induce the transcription of a β-

galactosidase reporter gene when it was co-expressed with the B42 transcriptional activator 

fused to the regulatory subunits of CKII, CKB1 and CKB2 (figure 5.22).  

 

    Figure 5.22: CKII and Myo5p interact in a two-hybrid assay in vivo 

 EGY48 cells bearing the inducible β-galactosidase reporter on plasmid 
pSH18-34 and expressing the Myo5p tail fused to the LexA binding domain 
(pEG202myo5-T; M5 tail) or a control (pRFM-1; C) together with the genes 
encoding the indicated kinases fused to the B42 transcriptional activator 
(pJG4-5CKA1, Cka1p; pJG4-5CKA2, Cka2p; pJG4-5CKB1, Ckb1p; pJG4-
5CKB2, Ckb2p) or the B42 alone (pJG4-5; control) were spotted on X-Gal 
containing plates. Yeast cells were grown at 30°C for 2 days. An interaction 
was scored as positive when cells developed a blue (black) colour clearly 
before the corresponding control.  
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5.2.2 Phosphorylation of Myo5p serine 1205 by casein kinase II might 
negatively regulate actin polymerization and endocytosis  

5.2.2.1 A negative charge at position 1205 of Myo5p decreases the number of myosin-I 

induced actin patches in vitro 

Since myosin-I induced actin polymerization appears to be negatively regulated by 

phosphorylation (figure 5.17) and the Myo5p tail is phosphorylated at serine 1205 in vitro by 

CKII (figure 5.21), the question arose whether this phosphorylation event might negatively 

regulate myosin-I-induced actin polymerization. To investigate this matter, serine 1205 of 

Myo5p was mutated into alanine or glutamate in the GST-Myo5-Cp protein. Wild-type and 

mutant proteins were bound to glutathione Sepharose beads and analysed for their ability to 

induce actin polymerization. As shown in figure 5.23, mutation of serine into glutamate led to 

a decrease of actin foci on the bead surface (figure 5.23A and B).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.23: Mutation of serine 1205 of Myo5p into glutamate seems to inhibit myosin-I-induced actin 

assembly 

(A) GST-Myo5-Cp (WT), GST-Myo5-S1205A-Cp (SA) or GST-Myo5-S1205E-Cp (SE) proteins were bound to 
glutathione Sepharose beads and incubated with an extract from a wild-type yeast strain (SCMIG19) and 1µM 
rhodamine-labelled actin for 15 minutes at 26°C. Arrows indicate bigger actin foci, smaller foci are indicated by 
arrow heads. (B) GST-Myo5-Cp (WT), GST-Myo5-S1205A-Cp (SA) or GST-Myo5-S1205E-Cp (SE) proteins 
were bound to glutathione Sepharose beads and incubated with an extract from a wild-type yeast strain 
(SCMIG19) and 1µM rhodamine-labelled actin. The assays were performed for 15 minutes at 24°C or 26°C. Two 
areas of 6 x 6 µm were defined per bead and actin foci within these areas were counted. For each experiment at 
least 6 beads were counted. The number of the wild-type was set to 100%, the numbers of the mutants were 
calculated accordingly. The graphs show the average of 6 independent experiments.  
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In contrast, mutation of the same residue into alanine did not significantly influence the 

number of these actin foci per bead surface in the assay (figure 5.23B). However, both 

mutations (MYO5-S1205A and MYO5-S1205E) increased the frequency of small actin foci, 

suggesting that both, phosphorylation and dephosphorylation, might be required for growth of 

the actin-containing structures (figure 5.23A).  

5.2.2.2 Depletion of CKA2 accelerates the endocytic uptake 

As reported in the last chapters, the Myo5p serine 1205 appears to be phosphorylated by casein 

kinase II (CKII). Consistent with a possible role of this event as a negative regulator of 

Myo5p-induced actin polymerization, it was shown that mutation of serine 1205 into glutamate 

led to a significant decrease in myosin-I-induced actin polymerization in vitro. Work from our 

laboratory indicated that the ability of the yeast type I myosins to induce actin polymerization 

is required for their role in endocytosis (Geli et al., 2000; Idrissi et al., 2002). Therefore, it 

seemed likely that phosphorylation of the Myo5p tail by CKII might negatively regulate 

endocytosis.  

Consistent with this hypothesis, deletion of one of the catalytic subunits of CKII, CKA2, led to 

a significant increase in the initial α-factor uptake rate and caused rather sigmoid kinetics 

(figure 5.24A). This effect seemed to be specific for CKA2 since deletion of CKA1 did not 

seem to significantly alter the uptake kinetics (figure 5.24A).  

If CKII would negatively regulate endocytosis, mutation of this kinase might not only lead to 

an increase in ligand-induced but also constitutive internalization of the receptor. As a 

consequence, the steady state distribution of the α-factor receptor might change with less 

receptor being available at the plasma membrane (figure 5.24B, lower panel). Consistent with 

this hypothesis, significantly less α-factor bound to cka2∆ cells compared to cka1∆ cells 

(figure 5.24C). 

Taken together, the reported data support a role of at least one of the catalytic subunits of 

CKII, Cka2p, as a negative regulator of endocytosis in yeast. 
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Figure 5.24: Deletion of one of the catytical subunits of CKII, CKA2, increases the α-factor internalization 

rate 

(A) Uptake kinetics of 35S-labelled α-factor pheromone of wild-type (SCMIG50; WT), cka1∆ cka2∆ pCKA1 
(SCMIG553; cka2∆) and cka1∆ cka2∆ pCKA2 (SCMIG549; cka1∆) strains. Cells were preincubated at 37°C for 
15 minutes, 35S-labelled α-factor pheromone was added and the internalization was allowed for the indicated 
times at 37°C. The graphs show the percentage of cell-associated counts that have been internalized at the 
indicated time points. (The reported wild-type is not the isogenic wild-type for the cka mutant strains) (B) 
Schematic drawing of the wild-type Ste2p localization (upper panel) and the effect of increased endocytosis 
(green arrow) on the steady state distribution (lower panel) of the α-factor receptor Ste2p (red square). (C) 
Radioactive counts (dpm) for pH6 washes, which indicate the total cell-bound α-factor, for time point 3 min are 
given for the cka1∆ cka2∆ pCKA1 (SCMIG553; cka2∆) and cka1∆ cka2∆ pCKA2 (SCMIG549; cka1∆) strains. 
 

5.2.2.3 Endocytosis and actin cytoskeleton polarization are not affected by mutation of 

Myo5p serine 1205  

In order to investigate whether phosphorylation of serine 1205 in the full-length Myo5p might 

mediate the inhibitory effect of CKII in the endocytic uptake, this amino acid was mutated into 

alanine (S1205A) or glutamate (S1205E) in order to mimic the unphosphorylated or the 

phosphorylated states, respectively. Myosin-I double deletion strains bearing the wild-type or 

mutant MYO5 genes on centromeric plasmids (for details see Materials and Methods) exhibited 

a wild-type-like growth-rate and were able to grow at all temperatures (data not shown) and all 
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mutants were expressed similar to wild-type levels (figure 5.25A). Neither the myo5-S1205A 

myo3∆ nor the myo5-S1205E myo3∆ mutant displayed a defect in the uptake step of 

endocytosis (figure 5.25B). Likewise, the second type I myosin function, polarization of the 

actin cytoskeleton, was unaffected (figure 5.25C), possibly indicating that type I myosins are 

not the only CKII targets for their function in actin assembly and/or endocytosis. 

 

 

 

 

 

 

 

Figure 5.25: Myo5p tail phosphorylation itself does not seem to affect endocytosis and actin cytoskeleton 

polarization 

(A) Equal amounts of protein extracts from myo5∆ (SCMIG51; ∆), wild-type (SCMIG19; WT), pMYO5 myo3∆ 
(SCMIG590; MYO5), pmyo5-S1205A myo3∆ (SCMIG591; SA) and pmyo5-S1205E myo3∆ (SCMIG592; SE) 
strains were loaded and proteins were probed with a Myo5p-tail-specific antibody (α-Myo5p). (B) Uptake 
kinetics of 35S-labelled α-factor pheromone of wild-type (SCMIG19; WT), pMYO5 myo3∆ (SCMIG590; MYO5), 
pmyo5-S1205A myo3∆ (SCMIG591; myo5-S1205A) and pmyo5-S1205E myo3∆ (SCMIG592; myo5-S1205E) 
strains. Cells were pulsed with 35S-labelled α-factor pheromone for 45 minutes at 0°C and chased for the indicated 
times at 23°C. The graphs show the percentage of cell-associated counts that have been internalized at the 
indicated time points. (C) Fluorescence micrographs showing wild-type (SCMIG19; WT), pMYO5 myo3∆ 
(SCMIG590; MYO5), pmyo5-S1205A myo3∆ (SCMIG591; myo5-S357A) and pmyo5-S1205E myo3∆ 
(SCMIG592; myo5-S357E) cells stained with TRITC-phalloidin. 
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6 Discussion 

6.1 p21-activated kinases (PAKs) are not the only TEDS site kinases 

The data presented in the first part of this study indicated that Myo5p TEDS site 

phosphorylation is required for two in vivo processes that require type I myosin activity, 

endocytosis and actin cytoskeleton polarization. However, this study shows that the kinases 

that had previously been found to phosphorylate type I myosins in vitro, the p21-activated 

kinases (PAKs), are only required for actin cytoskeleton polarization, but not for the uptake 

step of endocytosis. The PAK upstream factor Cdc42p is also dispensable for internalization, 

emphasizing that PAKs do not play a role in this process. These data thus indicate that uptake 

at the plasma membrane might require activation of myosins-I by other kinases. Consistently, 

an in vitro screen revealed that 16 additional kinases can phosphorylate a fragment of the 

Myo5p head that contains the TEDS site. One of these kinases, Pkh2p, and its homologue 

Pkh1p are required for endocytosis and both physically and genetically interact with Myo5p.  

6.1.1 TEDS site phosphorylation and dephosphorylation are probably 
required for myosin-I function in endocytosis and in the actin 
cytoskeleton polarization 

The finding that mutation of the TEDS site serine into alanine in the yeast type I myosin 

Myo3p does not rescue lethality of the myo3∆ myo5∆ double mutant, while mutation into 

aspartate does, already indicated that TEDS site phosphorylation might play a role in type I 

myosin function in budding yeast (Wu et al., 1997). However, Wu and co-workers could not 

exclude the possibility that myo3-S357A mis-functioning was due to a low or absent expression 

of the mutant protein or due to its inability to reach the plasma membrane. Here, data were 

presented that support the hypothesis that phosphorylation of the type I myosin Myo5p TEDS 

site is required for its functions in vivo.  

A non-phosphorylatable myosin-I double mutant strain, myo5-S357A myo3∆, was unable to 

internalize α-factor and did not polarize the actin cytoskeleton either (figures 5.2 and 5.3), two 

phenotypes also installed in yeast cells depleted of type I myosin activity (Geli and Riezman, 

1996; Goodson et al., 1996). As indicated by the amount of Myo5-S357Ap present in the cell, 

these effects were most likely not caused by misfolding of the mutant protein and its 

subsequent degradation (figure 5.2). Consistent with the view that the serine to alanine 

mutation in the TEDS site of the myosins-I does not cause major unfolding of the protein, it 
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was found that the analogous mutant in the Acanthamoeba castellanii myosin IC strongly 

resembled the unphosphorylated myosin isoform at the biochemical level (Wang et al., 1998). 

The myosin mutant could be purified following the same protocol as for the wild-type protein 

and it was still able to hydrolyze ATP with an ATPase activity similar to the unphosphorylated 

myosin IC (0.98 s-1 compared to 1.37 s-1). Likewise, the fact that Myo5-S357Ap could reach 

the plasma membrane supports the view that at least the domains required for membrane 

targeting were properly folded. Finally, we could also rule out the possibility that the slow 

growth and temperature-sensitive phenotype of the myo5-S357A myo3∆ strain might be caused 

by general sickness of the mutant cells since another myosin-I-independent trafficking event, 

transport of carboxypeptidase Y from the ER to the vacuole, was completely unaffected by this 

mutation (figure 5.6).  

In order to mimic the phospho-serine state by charge, the Myo5p TEDS site serine was 

substituted by glutamate. Wang and co-workers had shown that a mutant Acanthamoeba 

myosin IC with glutamate at the corresponding position exhibited an ATPase activity       

(20.29 s-1) and in vitro motility (0.098 µm/s) that strongly resembled the behaviours of the 

phosphorylated myosin (19.85 s-1 and 0.11 µm/s, respectively) (Wang et al., 1998). In contrast 

to the serine to alanine mutation, the myo5-S357E myo3∆ mutant exhibited nearly wild-type-

like endocytic kinetics and was able to polarize the actin cytoskeleton (figures 5.2 and 5.3), 

implying that a negative charge at the TEDS site is sufficient to sustain at least some myosin 

functions. 

All these data therefore strongly indicate that TEDS site phosphorylation, and thus activation 

of the ATPase, are required for the redundant functions of the two yeast type I myosins in 

endocytosis and actin cytoskeleton polarization (Geli and Riezman, 1996; Goodson et al., 

1996).  

The finding that Myo5p TEDS site phosphorylation is required for in vivo function is 

consistent with data from the Dictyostelium discoideum type I myosins. Novak and Titus have 

shown that substitution of the myoB TEDS site serine into alanine produced a protein that was 

unable to complement the defects of the myoA-/myoB- double mutant in pinocytosis and F-

actin rearrangements (Novak and Titus, 1998), strongly resembling the data presented in this 

work.  

In contrast to our findings and the results from Dictyostelium, TEDS site phosphorylation of 

the Aspergillus nidulans MyoA protein was not necessary to sustain the essential in vivo 

functions (Liu et al., 2001; Yamashita and May, 1998), as Aspergillus expressing MYOA 

bearing a serine to alanine mutation at the TEDS site was able to complement growth to wild-
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type levels. Thus, phosphorylation of the TEDS site might not be required for all myosin-I 

functions. Interestingly, even though the myo5-S357A myo3∆ displayed a slow growth and 

temperature-sensitive phenotype, cells were still able to grow suggesting that the essential 

myosin-I function could be at least partially complemented by these mutant alleles (Wu et al., 

1997).  

On the other hand, it should be noted that the mutant allele that mimics phosphorylation, myo5-

S357E myo3∆, allowed only incomplete α-factor internalization and actin cytoskeleton 

polarization (figures 5.2 and 5.3). Similarly, Liu and co-workers have shown that hyphal 

branching and growth in liquid culture of Aspergillus cells were not only delayed in a non-

phosphorylatable TEDS site mutant strain (MYOA-S371A), but also in a MYOA-S371E 

mutant strain (Liu et al., 2001). It is possible that the Myo5-S357Ep mutant did not completely 

imitate the phosphorylated wild-type Myo5p isoform and that, therefore, uptake kinetics and 

actin polarization are not completely restored. However, this possibility seems unlikely 

because, as previously mentioned, the Acanthamoeba myosin IC TEDS site serine to glutamate 

mutant strongly resembled the phosphorylated isoform (Wang et al., 1998). Thus, these data 

rather imply that dephosphorylation of the TEDS site serine is also required for proper myosin-

I function in yeast. It is tempting to speculate that the observed lower plateau in the α-factor 

internalization kinetics in the myo5-S357E myo3∆ cells compared to MYO5 myo3∆ cells might 

be due to a defect in the recycling of the endocytic machinery, which recognizes Ste2p, to the 

plasma membrane (Wiederkehr et al., 2000). The finding that a TEDS site serine to glutamate 

mutation of the Aspergillus type I myosin MyoAp led to accumulation of intracellular 

membranes was interpreted as a constitutive activation of endocytosis (Yamashita and May, 

1998). However, it is also possible that the accumulation of membranes was the result of a 

failure to recycle the endocytic machinery back to the plasma membrane. Consistent with this, 

type I myosins in Dictyostelium have been found to be involved in the recycling of 

endocytosed material back to the cell surface (Neuhaus and Soldati, 2000). If 

dephosphorylation of Myo5p is required for efficient recycling in yeast, the uptake machinery 

that recognizes the Ste2p cytosolic tail might be exhausted upon ligand induced internalization 

in the myo5-S357E myo3∆ cells, which would then explain the inability of the mutant cells to 

internalize to totality the cell surface bound α-factor.  

Taken together, data from this study indicate that TEDS site phosphorylation of the yeast type 

I myosins is required for their function in endocytosis and actin cytoskeleton polarization. 

Moreover, the data also suggest that dephosphorylation might be necessary for proper myosin-I 

function.  
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6.1.2 TEDS site phosphorylation appears to occur subsequent to plasma 
membrane recruitment 

The presented data show that the Myo5-S357Ap mutant protein still seems to be localized to 

the plasma membrane, implying that TEDS site phosphorylation is not required for plasma 

membrane recruitment (figures 5.4 and 5.5). This finding is consistent with data from Novak 

and Titus, who demonstrated that TEDS site mutation did not lead to a mislocalization of the 

Dictyostelium discoideum type I myosin myoB (Novak and Titus, 1998). The depolarized 

distribution of the Myo5-S357Ap patches at the plasma membrane (figure 5.4) might indicate 

that TEDS site phosphorylation is required for correct Myo5p localization to certain plasma 

membrane subdomains. However, since proper localization of the yeast type I myosins 

requires actin (Anderson et al., 1998), it is more likely that the observed Myo5-S357Ap 

distribution just follows the depolarized actin patches in this mutant (figure 5.3).  

The Acanthamoeba castellanii phospho-myosin IC is approximately 20-fold enriched at the 

contracting vacuole, compared to the filling vacuole (Baines et al., 1995), suggesting that 

myosin IC is phosphorylated at the moment the vacuole contracts. In addition, the myosin IB 

of this organism appeared greatly enriched at highly dynamic regions at the plasma membrane 

such as filopodia or phagocytic cups. This observation that the phosphorylated isoforms are 

enriched at the sites where myosins-I exert their functions, although TEDS site 

phosphorylation might not be required for proper protein localization, suggests that 

phosphorylation of the myosin-I TEDS site occurs locally. Type I myosins might thus be 

activated specifically where the myosin-I ATPase activity is required and dephosphorylation 

might occur shortly after the respective function has been carried out. Consistent with the idea 

of a local and transient phosphorylation, the Myo5p head domain, which is not recruited to its 

site of function, i.e, the plasma membrane (H.Groetsch, personal communication), is not 

phosphorylated in vivo (figure 5.12). Also consistent with this view, no obvious drop in the in 

vivo phosphorylation signal was observed when the Myo5-S357Ap mutant protein was 

compared to the wild-type protein in in vivo phosphorylation experiments (figure 5.12).  

Further support for the idea that phosphorylation happens at the sites of myosins-I function 

comes from the localization of the putative TEDS site kinases at the plasma membrane. PAKs, 

which can phosphorylate the myosin-I TEDS site in vitro and might activate the myosins-I for 

their function in actin polarization in vivo, are localized to the plasma membrane and are 

activated by binding to membrane-bound and polarized Cdc42p-GTP (Peter et al., 1996; Holly 

and Blumer, 1999). Likewise, Pkh1p and Pkh2p, the putative activators of the myosins-I for 
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their endocytic function, have been localized to patch-like structures at the plasma membrane 

that might be the sites of endocytosis (Roelants et al., 2002).  

Finally, evidence supporting the view that TEDS site phosphorylation and activation of the 

myosin ATPase might happen locally comes from the type VI myosins, the only other myosin 

class that is known to carry a phosphorylatable residue at the TEDS site, (for review see Buss 

et al., 2001b). Buss and co-workers have shown that the phosphorylation of the mammalian 

isoform increases with ongoing recruitment into membrane ruffles, which possibly indicates a 

recruitment-dependent phosphorylation event (Buss et al., 1998a). This phosphorylation is 

likely to be PAK-mediated phosphorylation of the TEDS site, since immunoprecipitated 

myosin VI was phosphorylated at the corresponding serine by a GST-PAK3 protein in vitro 

(Buss et al., 1998a).  

6.1.3 PAKs and Cdc42p are dispensable for receptor-mediated 
endocytosis in yeast 

6.1.3.1 PAKs and Cdc42p are required for actin cytoskeleton polarization 

Previous data indicated the presence of a signal transduction pathway leading from the yeast 

Cdc42p to the PAKs, which would then phosphorylate the TEDS site of type I myosins, thus 

activating the ATPase of these molecular motors for their function in actin polarization (see 

Introduction for more detail). However, some results were inconsistent with the proposed 

hypothesis. In particular, ste20 cla4 double mutant strains exhibited polarization defects only 

at high temperatures but not at physiologic temperature, implicating the yeast PAKs Ste20p 

and Cla4p only under heat shock conditions in actin cytoskeleton polarization (Holly and 

Blumer, 1999; Eby et al., 1998; Crvckova et al., 1995; Weiss et al., 2000) (see Introduction).  

This study now shows that PAK mutants indeed have a striking defect in the actin cytoskeleton 

polarization even under standard growth conditions. After treatment with 100 µM of the 

Cla4as3p inhibitor 1NM-PP1, the ste20∆ skm1∆ cla4-as3 mutant showed a depolarized actin 

cytoskeleton with enlarged and round cells at 23°C (figure 5.10). This phenotype is very 

similar to that observed in cells depleted of myosin-I or Cdc42p activity. A small percentage 

(approximately 1%) of the cells displayed a long-budded morphology, but the actin 

cytoskeleton of these cells had also been depolarized after treatment with the chemical (data 

not shown). In contrast to this observation, Weiss and co-workers had observed that an 

inactivated ste20∆ cla4-as3 mutant exhibited a depolarized actin cytoskeleton only after heat 

shock (Weiss et al., 2000). The observed differences might be due to a tighter inactivation of 

the PAK activity by applying the four-fold amount of 1NM-PP1 as compared to Weiss and co-
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workers. These authors already offered the possibility that the amount of inhibitor that they had 

applied might have left some residual PAK activity that was enough to establish actin 

polarization at permissive temperature but not enough to establish polarity under stress 

conditions. Another possibility is that Skm1p, which is not present in the studies done within 

this work, might have been sufficient to sustain polarization of the actin cytoskeleton at 25°C 

in the ste20∆ cla4as3 strain used by Weiss and co-workers (Weiss et al., 2000). 

Although this result supports the existence of a possible signal transduction pathway from 

Cdc42p to the PAKs and the type I myosins, this work could not definitely prove this 

hypothesis since Myo5-S357Ep did not suppress the requirement of PAKs for actin 

cytoskeleton polarization (figure 5.10). This might indicate that type I myosins are not the only 

PAK targets in yeast and suppression might require generation of PAK mutants that 

specifically affect myosin-I function. 

6.1.3.2 The yeast PAKs and Cdc42p are not required for endocytosis 

Evidence from mammalian cells indicates that Cdc42 and PAKs are involved in endocytosis. 

Cdc42 is required for endocytosis at the basolaterial surface of mammalian epithelial cells 

(Kroschewski et al., 1999), for phagocytosis (Lee et al., 2000) and for clathrin-dependent and -

independent internalization pathways in different cell lines (Sabharanjak et al., 2002; McGavin 

et al., 2001; Sakr et al., 2001).  

The evidence for a putative involvement of PAKs in endocytosis comes from the mammalian 

PAK1. It partially localizes to pinocytic structures and might be involved in the process of 

Rac-mediated and growth factor stimulated macropinocytosis (Dharmawardhane et al., 1999; 

Dharmawardhane et al., 1997; Dharmawardhane et al., 2000). Interestingly, Dharmawardhane 

and co-workers have also shown that expression of a kinase-inactive mutant (K299R) did not 

lead to a significant defect in macropinocytosis. Therefore the exact role of PAKs in this 

process remains to be clarified (Dharmawardhane et al., 2000).  

Strikingly, the data from this thesis clearly indicate that in yeast, neither PAKs nor Cdc42p are 

required for the uptake step of endocytosis (figures 5.8-5.11). Although this seems to be in 

contrast to the findings in vertebrate cells, it is possible that Cdc42p and/or PAKs in yeast are 

required for later steps in endocytosis, e.g. transport steps between the endocytic 

compartments. Interestingly, one of the cdc42 temperature-sensitive mutant strains, cdc42-129, 

exhibited a lower internalization kinetics plateau (figure 5.11), as has been observed for the 

myo5-S357E myo3∆ mutant (figure 5.2). As described above for the latter mutant, this lower 

plateau might indicate an involvement of Cdc42p in recycling.  
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Since type I myosin TEDS site phosphorylation was found to be required for functional uptake 

at the plasma membrane (figure 5.2), this result also implies that other kinases might activate 

the myosins for their function in endocytosis. This notion is consistent with the results that 

suggest that myosins-I are locally activated at the sites where they exert their function (see 

above). The signals that control actin polarization and endocytosis, and the cellular sites and 

the times at which these cellular processes might be turned on and off, are most likely 

different. Thus, different kinases and signalling cascades might be involved in the activation of 

the myosin-I for their different functions. Consistent with this hypothesis, it was found that 16 

yeast kinases could phosphorylate a GST fusion protein carrying a fragment of the Myo5p 

head domain containing the TEDS site (figure 5.13). The fact that neither Cla4p nor Ste20p 

were found in this screen might be explained by the lack of GTP-Cdc42p or acidic 

phospholipids for activation of these kinases (Benton et al., 1997; Eby et al., 1998; Lamson et 

al., 2002; Peter et al., 1996).  

6.1.3.3 Which TEDS site kinase activates the type I myosins for their function in 

endocytosis? 

Based on the phenotypes described for the different kinase mutants, their described targets 

and/or intracellular localization, most of the kinases found to be capable of phosphorylating the 

Myo5p TEDS site in the in vitro screen are unlikely candidates to activate the type I myosins 

for their function in endocytosis (described in more detail in 5.1.1.4). The only exception to 

this is the sphingoid base-activated kinase Pkh2p (figure 5.13, red). First, a double mutant of 

Pkh2p and its homologue Pkh1p was shown to cause a defect in the uptake step of endocytosis 

(deHart et al., 2002; Friant et al., 2001), similar to the defect observed in the myo5-S357A 

myo3∆ mutant (figure 5.2). Second, these two kinases specifically interacted with the Myo5p 

motor head domain in a two-hybrid assay (figure 5.14). Finally, deletion of MYO5 in a pkh1-ts 

pkh2∆ (Friant et al., 2001) yeast strain exacerbated the growth defect of this strain (see figure 

5.14). Although deletion of MYO5 alone does not cause any obvious phenotype for growth, it 

causes synthetic growth defects when combined with mutations in genes encoding proteins that 

closely cooperate with the myosins-I in vivo (Geli et al., 2000; Soulard et al., 2002). The slow-

growth phenotype of the myo5∆ pkh2∆ pkh1-ts triple mutant therefore strongly suggests that 

Myo5p and the yeast kinases Pkh1p and Pkh2p cooperate in vivo.  

Friant and co-workers have shown that Pkh1p and Pkh2p are activated by sphingoid bases and 

that overexpression of Pkh1p and Pkh2p suppresses the sphingoid base requirement in 

endocytosis (Friant et al., 2001). The fact that no sphingoid bases had been added to the in 
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vitro phosphorylation screen might also explain why the GST-Myo5-TEDSp was 

phosphorylated to only a low extent by Pkh2p (figure 5.13). Together with the data from 

deHart et al. (2002) and Friant et al. (2001), the findings from this study might therefore 

indicate that type I myosins are downstream targets of sphingoid base signalling through the 

kinases Pkh1p and Pkh2p. However, expression of Myo5-S357Ep was not able to overcome 

the requirement for these kinases in endocytosis and actin cytoskeleton polarization (figure 

5.15). One possible explanation is that the myosins-I are not the only Pkh1p and Pkh2p targets 

for endocytosis, just like the myosins-I are probably not the only PAK targets for actin 

polarization. Indeed two other downstream targets of Pkh1p and Pkh2p, Pkc1p and Ypk1p, 

have been shown to be required for endocytosis (Friant et al., 2000; deHart et al., 2002). 

Moreover, Pkc1p was able to partially suppress the defect of missing sphingoid bases in this 

process ( Friant et al., 2000).  

Pkh1p and Pkh2p are homologues of the mammalian 3-phosphoinositide-dependent kinase 

PDK1 (Casamayor et al., 1999). This protein kinase is known to activate a number of 

downstream kinases that bear the consensus motif Thr-Phe-Cys-Gly-Thr-X-Glu-Tyr, where 

the first Thr is the phosphorylatable residue and X is any amino acid. These kinases include 

members of the protein kinase C (PKC), protein kinase A (PKA) and the serum and 

glucocorticoid-inducible kinase (SGK) families (Dutil et al., 1998; Egawa et al., 2002; Moore 

et al., 2002; Perrotti et al., 2001). In vitro, Pkh1p and Pkh2p are able to phosphorylate the 

yeast PKC and SGK homologues (Pkc1p and Ypk1p, Ypk2p, respectively) (Casamayor et al., 

1999; deHart et al., 2002; Friant et al., 2001). Myo3p and Myo5p do not bear the PDK1 

consensus motif and therefore, these molecular motors are unlikely to be direct targets of 

Pkh1p or Pkh2p. Instead, another kinase or kinases that co-purify with Pkh2p in the chip 

analysis might perform this function. This would also explain the low level of phosphorylation 

that could be observed in the in vitro screen (figure 5.13). It is important to note that the yeast 

kinases used in the biochemical screen are expressed and extracted from yeast under non-

denaturing conditions and that they are only partially purified (Zhu et al., 2000). Possible 

candidates as intermediates in the sphingoid-base signalling pathway to the myosins-I are 

Pkc1p and Ypk1p because both are phosphorylated by Pkh1p and Pkh2p and both have been 

implicated in the endocytic uptake (deHart et al., 2002; Friant et al., 2001). However, Pkc1p or 

Ypk1p were not found in the biochemical screen and they did not seem to interact with the 

Myo5p head in the two-hybrid assay (figure 5.14). Further, attempts to phosphorylate the 

Myo5p TEDS sites using purified Pkc1p or Ypk1p have not succeeded so far (data not shown).  
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Another interesting possibility is that the yeast homologue of PKA might be involved in the 

process. Three genes encode catalytic subunits homologous to PKA in yeast, Tpk1p, Tpk2p 

and Tpk3p, and one gene encodes a regulatory subunit, Bcy1p (for review see Thevelein and 

de Winde, 1999). One of the catalytic subunits, Tpk1p, was indeed found to efficiently 

phosphorylate the GST-Myo5-TEDSp fusion protein in the chip assay (figure 5.13). Moreover, 

the sequence around the Myo5p TEDS site (Lys-Arg-Gly-Ser-Val) matches both of two 

alternative published requirements of PKA substrates, a lysine at position –3 and at least two 

N-terminal basic residues (Denis et al., 1991). Consistent with the idea that the yeast PKA 

might be a downstream effector of Pkh1p and Pkh2p, Tpk3p was found in complex with Pkh1p 

(Ho et al., 2002).  

 

 

 

 

 

 

 

Figure 6.1: A new putative pathway for TEDS site phosphorylation and activation of myosins-I in 

endocytosis 

PAKs and Cdc42p are required for actin cytoskeleton polarization, but not for endocytosis, while TEDS site 
phosphorylation was found to be necessary for both processes. Thus, Cdc42p and PAKs might be upstream 
factors for the type I myosins in their common function to polarize the actin cytoskeleton, but not in their function 
in endocytosis. The findings that Myo5p interacts in vivo and in vitro with the kinases Pkh1p and Pkh2p indicates 
that those might be the upstream factors for the myosin-I function in endocytosis. However, since the sequence 
around the Myo5p TEDS site does not match the phosphorylation consensus defined for the Pkh1p and Pkh2p 
human homologue PDK1, it seems unlikely that these kinases phosphorylate Myo5p directly. Rather, data 
indicate that the yeast PKA, which consists of the catalytic subunits Tpk1p, Tpk2p and Tpk3p and of the 
regulatory subunit Bcy1p, might fulfil this function. Consistently, Tpk1p was found to efficiently phosphorylate a 
GST-Myo5-TEDSp protein in the in vitro kinase screen.  
 

If the yeast PKA activates the type I myosins for their function in endocytosis, PKA itself 

should be required for this process. So far, a role in endocytosis of the catalytic or regulatory 

subunits has not been published. However, some evidence supports a role of cAMP signalling 

in internalization, since the protein Srv2p, which binds to the adenylate cyclase and is required 

for cAMP signalling (Freeman et al., 1996; Yu et al., 1999), has been found to be involved in 
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endocytosis (Wesp et al., 1997). Most interestingly, Srv2p has also been implicated in the 

regulation of actin polymerization (Freeman et al., 1996). 

Taken together, the data from this study suggest a new hypothesis outlined in figure 6.1. As 

discussed above, it is possible that PAKs phosphorylate the type I myosins for their function in 

actin cytoskeleton polarization. However, the activation of type I myosins for their function in 

endocytosis might be mediated by a second pathway, in which sphingoid bases activate the 

yeast kinases Pkh1p and Pkh2p to phosphorylate the yeast PKA homologue (Tpk1p, Tpk2p, 

Tpk3p, Bcy1p), which in turn would activate type I myosins (figure 6.1). 

Further analysis of this hypothesis will now require to determine whether the yeast PKA is 

required for endocytosis and if this kinase indeed phosphorylates the type I myosins at their 

TEDS site. 

6.1.4 Endocytosis is not dependent on actin cytoskeleton polarization 

The fact that mutants defective in endocytosis display a depolarized actin cytoskeleton led 

scientist to suggest that functional uptake requires a polarized actin cytoskeleton (for review 

see Munn, 2001; Pruyne and Bretscher, 2000b). For this reason, Goodson and co-workers 

argued that the defect in endocytosis in a type I myosin double mutant is secondary to the 

defect in actin cytoskeleton polarization (Goodson et al., 1996). However, recent data already 

indicated that this were not the case. Mutants that are defective in actin cytoskeleton 

polarization, such as mutants of the actin-monomer-binding protein profilin and the type V 

myosin Myo2p, did not display a defect in the uptake step of endocytosis (for review see 

Munn, 2001). Moreover, wild-type yeast cells display a depolarized actin cytoskeleton after 

shift to 37°C, while endocytosis is not affected at this temperature (figures 5.9 and 5.11).  

Data from this study now provide clear evidence that actin cytoskeleton polarization is not 

necessary for functional uptake at the plasma membrane in yeast. PAK (ste20∆ skm1∆ cla4-

as3) mutant cells displayed a completely depolarized actin cytoskeleton after treatment with 

the Cla4-as3p kinase inhibitor 1NM-PP1, but did not display any defect in endocytosis under 

the same conditions (figure 5.10).  

6.2 Casein kinase II (CKII) phosphorylates Myo5p at serine 1205 and 
possibly regulates actin assembly and endocytosis 

The data presented in the second part of this study provide evidence that Myo5p is 

phosphorylated by the yeast casein kinase II (CKII) at serine 1205, which is located directly N-

terminal to the acidic domain in the myosin tail, which binds to and activates the actin 
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nucleating Arp2/3 complex. Indeed, in vitro experiments revealed that phosphorylation of this 

residue might negatively regulate actin assembly. As described in the Introduction, actin 

cytoskeleton polarization and endocytosis seem to require Arp2/3 complex-mediated actin 

assembly. Consistent with a possible role of CKII in myosin-I-induced actin assembly, in vivo 

data indicate that CKII is required for proper maintenance of actin cytoskeleton polarity 

(Rethinaswamy et al., 1998) and preliminary data indicate that endocytosis is negatively 

regulated by one of the catalytic subunits of CKII in vivo. However, Myo5p tail 

phosphorylation at serine 1205 did not influence endocytosis. It is possible that other proteins 

that are involved in endocytosis are redundant CKII targets. Alternatively, myosin tail 

phosphorylation might regulate processes other than endocytosis and actin cytoskeleton 

polarization. In this case, the relevant CKII target(s) for its function in endocytosis would not 

be the myosins-I. 

6.2.1 At least three serine residues of Myo5p are phosphorylated 

The finding that the Myo5-S357Ap mutant was phosphorylated to a similar extent as wild-type 

Myo5p, indicated that there were phosphorylation sites other than the TEDS site in Myo5p 

(figure 5.12). Together with data that myosin-I-induced actin polymerization is regulated by 

phosphorylation/dephosphorylation (figures 5.16 and 5.17), this finding led to the 

identification of serine 1205 as a phosphorylation site for the yeast casein kinase II (CKII) 

(figure 6.2). 

In vivo phosphorylation experiments with a Myo5-S357Ap truncation carrying the head, neck 

and TH1 domain additionally revealed that another phosphorylation site is located within these 

domains (data not shown). Consistent with this, Ficarro and co-workers identified Myo5p 

serine 777 as a phosphorylation site using mass spectrometry (Ficarro et al., 2002). This 

residue is located at the C-terminal end of the neck domain (figure 6.2), and might thus be 

responsible for the in vivo phosphorylation signal observed in the mentioned experiment within 

this study. 

The fact that only this residue was identified in the mass spectrometry approach probably 

indicates that less Myo5p is phosphorylated at the other two phosphorylation sites at steady 

state, as has already been discussed for the TEDS site serine (see above).  
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Figure 6.2: Myo5p phosphorylation sites  

The TEDS site serine 357 of the yeast type I myosins was known to be a phosphorylation site. In this study, serine 
1205 could be identified as an additional phosphorylation site in the Myo5p protein. Moreover, phosphopeptide 
mass spectrometry data have shown that serine 777 is phosphorylated as well. 
 

6.2.2 CKII phosphorylates Myo5p serine 1205 in vitro and in vivo 

This work provides robust in vitro evidence that yeast CKII phosphorylates serine 1205 in the 

Myo5p protein. Incubation of a GST-Myo5-Cp, which includes the TH2, SH3 and acidic 

domain of Myo5p fused in frame to GST, with wild-type yeast extract in the presence of 

heparin, an inhibitor of CKII, led to a significant reduction of phosphorylation (figure 5.21). 

Moreover, incubation with an extract from a temperature-sensitive CKII mutant strain (cka1∆ 

cka2-ts) led to the disappearance of the phosphorylation signal, while purified human CKII 

phosphorylated the GST-Myo5-Cp protein with high efficiency (figure 5.21). Mutation of 

serine 1205 into alanine or glutamate, respectively, abolished the in vitro phosphorylation of 

the Myo5p tail (figure 5.19). In vivo radiolabelling followed by immunoprecipitation and 

autoradiography gave additional support for the in vivo occurrence of this phosphorylation 

event (figure 5.20). Finally, two-hybrid analysis indicated that the regulatory subunits of CKII, 

Ckb1p and Ckb2p, are able to bind to the tail domain of Myo5p, suggesting the CKII and the 

type I myosin Myo5p might interact in the cells (figure 5.22). 

6.2.3 Possible functions of Myo5p tail phosphorylation 

6.2.3.1 In vitro actin polymerization is impaired in a myo5-S1205E mutant 

In vitro data indicated that myosin-I induced actin polymerization was regulated by 

phosphorylation (figure 5.17). Moreover, these data implied that a kinase negatively influenced 

this process since incubation of GST-Myo5-Cp with wild-type yeast extract and phosphatase 

inhibitors led to a significant reduction in actin assembly (figure 5.17).  

Since Myo5p serine 1205 was found to be phosphorylated in vitro, the possibility arose that it 

was this phosphorylation event that negatively affected actin polymerization, particularly since 
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serine 1205 is located in the acidic amino acid stretch that activates actin polymerization 

through the Arp2/3 complex (Evangelista et al., 2000; Geli et al., 2000; Lechler et al., 2000; 

see Introduction for more detail). Intriguingly, mutation of serine 1205 into glutamate, which 

mimics phosphorylation through the charge, significantly decreased the number of actin foci 

that appeared at the surface of GST-Myo5-S1205E-Cp-coated glutathione Sepharose beads 

(figure 5.23). Interestingly, incubation of glutathione Sepharose beads carrying the GST-

Myo5-S1205E-Cp protein with a cell extract from a myo5-S1205E myo3∆ strain led to a 

further decrease in number of actin foci on the surface of the beads (data not shown). This 

result might indicate that not only the Myo5p tail fraction bound to the beads participates in the 

Arp2/3-dependent actin assembly, but that the cytosolic Myo5p is also recruited to the beads 

and that it might contribute to the process. 

6.2.3.2 CKII might negatively regulate endocytosis by inhibiting actin polymerization 

Preliminary experiments indicated that deletion of CKA2, but not CKA1, causes a significant 

increase in endocytosis, implying that Cka2p negatively regulates this process (figure 5.24). 

Interestingly, it has been shown that despite their apparent functional redundancy 

(Padmanabha et al., 1990), CKA1 and CKA2 mutants affect different functions. Glover 

suggests that Cka1p is involved in cell cycle regulation, while Cka2p appears to participate in 

the regulation of actin polarization (Glover, 1998). These findings indicate that the latter 

catalytic subunit might indeed be able to regulate processes such as endocytosis, which require 

actin rearrangements. 

Taking the data from the second part of this thesis together, it seems that the yeast CKII, and in 

particular the Cka2p catalytic subunit, phosphorylates the type I myosin Myo5p at serine 1205 

in its tail domain. Since the second type I myosin, Myo3p, also contains a putative CKII 

phosphorylation site in its C-terminal end of the tail domain (serine 1256), it appears likely that 

CKII also phosphorylates this site. Analysis of the Myo5-S1205Ep mutant protein using the in 

vitro actin polymerization assay, suggests that CKII–mediated phosphorylation of the type I 

myosins negatively regulates myosin-I-induced actin polymerization. It, therefore, seems 

reasonable to hypothesize that the effect of the CKII mutant on endocytosis might be caused by 

a constitutive de-inhibition of the myosin-I-induced actin polymerization (figure 6.3). 

However, neither endocytosis nor actin cytoskeleton polarization were affected by mutations 

of the Myo5p serine 1205, neither to alanine (putative constitutively dephosphorylated, i.e. 

active state) nor to glutamate (putative constitutively phosphorylated, i.e. inactive state)  

(figure 5.25). As described in the Results, mutation of serine 1205 to alanine did not 



Discussion 

 65

significantly affect the in vitro polymerization assay either (figure 5.23). It is likely that full 

activation of actin polymerization and endocytosis requires simultaneous dephosphorylation of 

different CKII targets involved in endocytosis.  Consistent with this, CKII sites are also found 

in other proteins that are required for endocytosis, e.g. Pan1p, the yeast Eps15 homologue 

(Wendland and Emr, 1998) and Las17p, the yeast WASP homologue (Winter et al., 1999) 

(figure 6.3). Although Las17p does not contain a perfect CKII phosphorylation site, it does 

display the most important requirement for CKII, i.e. an acidic residue at position +3 (Pinna, 

1990). 

 

 

 

 

 

 

 

Figure 6.3: A putative pathway that leads to negative regulation of endocytosis in yeast 

CKII phosphorylates the type I myosin Myo5p at serine 1205 in its tail domain. The second myosin-I, Myo3p, 
carries a putative CKII phosphorylation site at a similar position (serine 1256). Myosin-I-induced actin 
polymerization was inhibited in a Myo5p serine 1205 to glutamate mutant, indicating that CKII phosphorylation 
of the myosins-I might negatively regulate myosin-I-induced actin assembly, which has been shown to be 
required for endocytosis. Consistent with these findings and an inhibitory role of CKII in endocytosis, mutation of 
one catalytic CKII subunit seems to lead to faster internalization kinetics. However, mutation of the Myo5p serine 
into alanine (constitutive dephosphorylated state) did not lead to an obvious acceleration of endocytosis and 
mutation to glutamate (constitutive phosphorylated state) did not inhibit the process. It seems likely that other 
factors, e.g. Las17p, can compensate for the loss of activity of the myo5-S1205E mutant in actin assembly, and 
dephosphorylation of other CKII targets might be required for full activation of the process in vivo (see main text).  
 

 

The finding that the acidic domains of the type I myosins and Las17p function redundantly 

(Evangelista et al., 2000) might explain why mutation of the myosin serine 1205 to glutamate 

in the acidic domain did not lead to any obvious phenotypic defect in vivo. In this context, it is 

important to mention that most in vitro assays are in general quite sensitive to lack of function 

mutations that might be compensated in vivo by more active redundant pathways. Further 

studies using site-directed mutagenesis of the CKII sites of the proteins involved in 

endocytosis might help to elucidate the precise function of these phosphorylation events and 

might yield additional data about the targets of CKII.  
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Finally, another possible explanation for the absence of obvious phenotypes in the Myo5p 

serine 1205 mutant strains is that tail phosphorylation regulates functions of the yeast type I 

myosins, which were not examined within this study. The relevant CKII target in endocytosis 

might then be different from the type I myosins. Recently, it has been demonstrated that 

Myo3p and Myo5p might be required for vacuolar membrane fusion (Eitzen et al., 2002). 

Moreover, evidence from mammalian cells indicates that type I myosins can function in the 

regulation of transcription (Dragovich et al., 2000), another function that is regulated by CKII 

(Hockman and Schultz, 1996). It might thus be these, or other, as yet unidentified functions of 

myosins-I that are regulated through Myo5p tail phosphorylation by CKII. 

6.2.3.3 Myo5p tail phosphorylation: Regulation of the ATPase and/or oligomerization? 

Myosin minifilaments have been observed for Acanthamoeba castellanii myosins-II (figure 

6.4; Sinard and Pollard, 1989; Sinard et al., 1989), whose assembly seems to be regulated by 

tail phosphorylation (Baines and Korn, 1990; Collins et al., 1982; Ganguly et al., 1992). 

Additionally, data from Dictyostelium discoideum indicate that myosin-II tail phosphorylation 

inhibits filament formation by stabilizing a polymerization-incompetent bent dimer (Egelhoff 

et al., 1993; Pasternack and Racusen, 1989), which resembles the effect of light chain 

phosphorylation on vertebrate myosin-II (for review see Sellers and Goodson, 1995).  

 

 

 

 

 

 

Figure 6.4: Myosin-II minifilaments 

Data from type II myosins from Acanthamoeba and Dictyostelium indicate that tail phosphorylation (the location 
of the phosphorylation site is indicated in red) influences the assembly of these myosins into short filaments. 
Moreover, this phosphorylation appears to inhibit the motor ATPase activity. 
 

An interesting, but speculative possibility of the function of the serine 1205 phosphorylation 

site arose from the finding that much more Myo5-S1205Ap than Myo5p was 

immunoprecipitated when taking the same amount of cells for the yeast extract and the same 

amount of antibody (figure 5.24). Besides the possibility that the S1205A mutation somehow 

motor head 

long, coiled-coil tail domain



Discussion 

 67

affected epitope accessibility, it is tempting to speculate that phosphorylation at serine 1205 

regulates polymerization of Myo5p.  

This has to happen in a different way from that of Acanthamoeba myosin-II, since type I 

myosins do not contain a long coiled-coil tail domain. Oligomerization could possibly be 

mediated by local induction of actin polymerization and the following ongoing binding of 

myosins-I via their tails or even their head domains to the actin filaments. 

Myosin catalytic activity and its regulation have been attributed solely to the head domains (for 

review see Sellers, 2000), but other data suggest that tail domains can be involved in regulating 

myosin activity. Phosphorylation of serine residues in the tails of Dictyostelium and 

Acanthamoeba type II myosins down-regulates their actin-dependent ATPase activity (Truong 

et al., 1992; Baines and Korn, 1990; Collins et al., 1982; Ganguly et al., 1992). The question 

arises how a phosphorylation event so far away from the head motor can influence its activity. 

Again, the answer might come from the formation of minifilaments, where the tail 

phosphorylation site comes close to the neck region of the neighboring myosin-II (figure 6.4). 

Data indicate that this tail phosphorylation influences the activity of the head by altering the 

conformation of the hinge region of the adjacent myosin molecule (for review see Brzeska and 

Korn, 1996; Kuznicki et al., 1983). This cooperative regulation is supported by the finding that 

phosphorylation does not affect the actomyosin activity of monomers, but only the activity of 

copolymers (Atkinson et al., 1989; Ganguly et al., 1992; Kuznicki et al., 1983).  

It is possible that yeast type I myosin tail phosphorylation might also regulate the ATPase of 

these motors. One possibility is that the local increase in F-actin concentration, mediated by 

Arp2/3 activation through the myosin tail domains, could in turn directly activate the motor 

head actin-dependent myosin ATPase activity (figure 6.3).  

6.3 Outlook 

Data in this study indicated that the TEDS site of the type I myosin Myo5p head domain is 

phosphorylated not only by p21-activated kinases (PAKs). Other kinases seem to activate the 

myosins for their function in endocytosis. The yeast type I myosins have been found to interact 

genetically and physically, in vitro and in vivo, with the kinases Pkh1p and Pkh2p, which are 

putative PKA upstream factors. The yeast PKAs, encoded by TPK1, TPK2, TPK3 and BCY1 

are likely candidates for myosin-I kinases, since the Myo5p TEDS site is a good PKA 

recognition site and Tpk1p was found to phosphorylate Myo5p in an in vitro screen.  Further 

testing this hypothesis will now require the analysis of endocytosis in tpk mutant cells. If any 

mutant strain exhibits a defect in internalization that can be suppressed by expression of Myo5-
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S357Ep, this would constitute strong in vivo evidence for a role of PKA as the TEDS site 

kinase that activates type I myosins for their endocytic function. To further investigate the 

signalling cascade proposed to control Myo5p function in endocytosis, it has to be 

biochemically characterized whether sphingoid base-activated Pkh1p and/or Pkh2p activate the 

yeast PKA. Finally, since results suggest that activation of myosin-I occurs locally, the cellular 

localization of the myosins-I with the putative TEDS site kinases and the upstream activators 

has to be investigated in detail. If the hypothesis is correct, co-localization of myosin-I with 

their activators might serve to define the sites of endocytosis and might help to understand the 

role of the myosins-I both in endocytosis and in the polarization of the actin cytoskeleton 

Another important finding in this study was that the TEDS site is not the only phosphorylation 

site in Myo5p. Rather, at least two more phosphorylation sites can be found. One of them, 

serine 1205 in the Myo5p tail domain, appears to be phosphorylated by the yeast casein kinase 

II (CKII). Our data suggest that CKII-mediated phosphorylation of myosin-I might inhibit 

Arp2/3-dependent actin polymerization and thereby inhibit endocytosis. The next goal is to 

further characterize the role of CKII as a negative regulator of actin polymerization in vitro, i.e. 

to investigate whether CKII mutant cytosols sustain the formation of a greater number of actin 

patches on the Myo5p coated bead and whether addition of purified CKII to the assay inhibits 

the process. Further, in vitro phosphorylation assays with wild-type and CKII mutant cytosols 

might help to identify other putative CKII targets required for the formation of actin patches 

and endocytosis. The identification of other putative targets of CKII involved in endocytosis 

might help to elucidate the in vivo role of CKII in modulating the endocytic uptake. 

Additionally, it will be interesting to define the phosphatase that counteracts CKII 

phosphorylation. 
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7 Materials and Methods 

7.1 Yeast strains and genetic techniques 

Unless otherwise mentioned, strains were grown in complete yeast peptone dextrose media 

(YPD) or, if selection was required, in appropriate synthetic dextrose minimal media (SDC) 

(Sherman, 1991). Complete media contained 1 % yeast extract (Difco, Heidelberg), 2 % 

peptone (Difco, Heidelberg) and 2 % glucose (Fluka, Steinheim). Synthetic minimal media 

consisted of 2 % glucose (Fluka, Steinheim), 0.67 % yeast nitrogen base (Difco, Heidelberg) 

and 0.075 % of CSM (complete synthetic mix; Qbiogene, Heidelberg), which contains all 

required amino acids, purine- and pyrimidine-bases except for those required for selection of 

auxotrophic markers. SDC-Ura media, for instance, contained all described components except 

for uracil. The concentrations of all amino acids, purin- and pyrimidin-bases used in CSM 

were: 10 mg/l adenine, 50 mg/l L-arginine, 80 mg/l L-aspartate, 20 mg/l L-histidine-HCl, 50 

mg/l L-leucin, 50 mg/l L-lysine, 20 mg/l L-methionine, 50 mg/l L-phenylalanine, 100 mg/l L-

threonine, 50 mg/l tryptophane, 50 mg/l L-tyrosine, 20 mg/l uracil and 140 mg/l valine. Solid 

media additionally contained 2 % agar (Fluka, Steinheim). 

Sporulation, tetrad dissection and scoring of genetic markers were performed as described 

(Sherman et al., 1974). Briefly, in order to obtain diploid yeast cells, haploid cells of opposite 

mating types, Mata and Matα, were mixed on YPD plates and incubated for approximately 12 

hours. Subsequently, diploid cells were selected on appropriate minimal media (SDC lacking 

all amino acids, purine- or pyrimidine-bases that could be synthesized by the diploid but not by 

the haploid yeast cells). For sporulation, diploid cells were grown for 1 day on complete solid 

media and subsequently transferred to sporulation media (0.022% raffinose, 3g/l potassium 

acetate). The spores were separated (dissected) under a tetrad microscope (Singer Instruments, 

Somerset, England) and allowed to germinate and grow on complete media. 

The mating type of haploid cells was tested by plating the corresponding yeast either with 

Mata or Matα tester strains bearing a his1 mutation (not present in any other laboratory strain) 

on minimal media  lacking all amino acids, purine- or pyrimidine-bases. Only yeast of mating 

type opposite to the testers were able to produce diploids that grew on minimal media. In order 

to obtain spontaneous ura3 mutant cells, cells were selected on minimal media containing 5’-

FOA (5’-Fluoroorotic acid). The enzyme encoded by the wild type URA3 gene, orotidine-5’-

phosphate-decarboxylase, produces 5’-fluoro-uracil in the presence of 5’-FOA. This product is 
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toxic for yeast cells (Boeke et al., 1987). Therefore, cells that survive on 5’-FOA containing 

plates do not synthesize this enzyme, implicating that the encoding gene is mutated. 

For gene disruption by homologous recombination, either PCR fragments were synthesized, 

which contained a vegetative yeast marker and flanked by DNA sequences homologous to the 

gene of interest (about 40 nucleotides upstream and downstream of the region to be disrupted) 

or integration cassettes were used. For integration of point mutations at the corresponding 

locus, integration plasmids were used. These plasmids do not carry autonomous replication 

sequences (ARS/CEN or 2µ). 

The knockout of BAR1, a secreted protease that cleaves the α-factor and interferes with the α-

factor uptake (see below), was tested by a plate assay. A lawn of a yeast strain hyper-sensitive 

to α-factor (Mata ssa1 ssa2) was plated on YPD. A line of a Matα strain was then streaked in 

the middle of this plate. Upon 1 day incubation at 30°C, secretion of α-factor by the Matα 

strain arrested growth of the Mata ssa1 ssa2 cells therefore producing an halo in the middle of 

the plate. To identify bar1 mutant yeast, the strains to be tested were streaked perpendicular to 

the line of the Matα strain. Wild type BAR1 yeasts secrete the protease and degraded the α-

factor, thus allowing the lawn of the α-factor hyper-sensitive strain to grow closer to the Matα 

strain middle line. If BAR1 was knocked out, the secreted pheromone was not cleaved and the 

Mata ssa1 ssa2 strain was not able to grow closer to the Matα strain.  

Transformation of yeast was accomplished by the lithium acetate method (Ito et al., 1983).  

7.1.1 Yeast strains 

The yeast strains used in this study are listed in Table I. Not previously published strains were 

generated as follows. 

SCMIG567, 568 and 569 

In order to obtain yeast cells that express similar amounts of wild type or mutant Myo5p, the 

corresponding genes were integrated in the yeast genome. For this purpose, plasmids 

pINMYO5, pINmyo5-S357A and pINmyo5-S357E were digested with SnaBI, which cuts once 

in the promotor region. These linearized plasmids were transformed into SCMIG51 (myo5∆) 

and selected on SDC-Ura-Trp, allowing integration of the genes in the MYO5 locus by 

homologous recombination (figure 7.1). Transformants were then tested for wild-type-like 

expression of MYO5 or myo5 mutants by Western blot and good candidates were finally 

crossed to SCMIG52 (myo3∆) and selected on SDC-Ura-Trp-His. The diploids were 

sporulated, tetrads dissected and spores scored for the appropriate markers indicating co-

segregation of the integrated MYO5 (SCMIG567), myo5-S357A (SCMIG568) or myo5-S357E 
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(SCMIG569) with a myo3 deletion (myo3∆) (figure 7.1). Co-segregation of the URA3 marker 

with the TRP1 marker indicated that MYO5 or the myo5 mutants were integrated in the MYO5 

locus. 

SCMIG582, 583 and 584 

SCMIG51 (myo5∆) was transformed with plasmids p33MYO5-HA3, p33myo5-S357A-HA3 and 

p33myo5-S357E-HA3, respectively, and selected on SDC-Ura. Transformants were crossed to 

SCMIG52 (myo3∆) and selected on SDC-Ura-Trp-His, diploids were sporulated and spores 

examined for the appropriate markers indicating the presence of either p33MYO5-HA3 

(SCMIG582), p33myo5-S357A-HA3 (SCMIG583) or p33myo5-S357E-HA3 (SCMIG584) in a 

myo3∆ myo5∆ background. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Construction of wild-type MYO5 or myo5 mutants in a myo3∆ background 

pINMYO5, pINmyo5-S357A and pINmyo5-S357E were cut with SnaBI and transformed into a myo5∆ strain. The 
region of homology (green) with a part of the endogenous MYO5 promoter allowed integration at the MYO5 locus 
(1). Crossing the resulting strains to a myo3∆ strain (2) resulted in strains SCMIG567 (MYO5 myo3∆), 
SCMIG568 (myo5-S357A myo3∆) and SCMIG569 (myo5-S357E myo3∆). 
 

Table I. Yeast strains  

Strain  Genotype Reference 

SCMIG19 Mata his3 leu2 trp1 ura3 bar1 Idrissi et al., 2002 

myo5∆::TRP1

 

myo5-X

SnaBI

myo5-X: MYO5 

              myo5-S357E 

              myo5-S357A 

myo3∆::HIS3 

myo5-X myo5∆::TRP1

URA3

URA3

myo5-X myo5∆::TRP1URA3

1 

2 
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(RH2881) 

SCMIG21 

SCMIG50 

(RH3975) 

SCMIG51 

(RH3976) 

SCMIG52 

(RH3977) 

SCMIG69 

(RH2607) 

SCMIG217 

SCMIG276 

SCMIG567 

 

SCMIG568 

 

SCMIG569 

 

SCMIG582 

 

SCMIG583 

 

SCMIG584 

 

SCMIG271 

 

RH1987 

SCMIG574 

 

SCMIG618 

SCMIG619 

SCMIG623 

SCMIG624 

SCMIG625 

MS883 

 

SCMIG586 

 

SCMIG588 

 

Matα his3 leu2 trp1 ura3 bar1 

Mata ade2 his3 leu2 trp1 ura3 bar1 

 

Mata ade2 his3 leu2 trp1 ura3 bar1 myo5∆::TRP1 

 

Matα his3 leu2 trp1 ura3 bar1 myo3∆::HIS3 

 

Mata lcb1-100 (ts; end8-1) leu2 ura3 his4 bar1 

 

Matα cla4∆::LEU2 ade2 his3 leu2 trp1 ura3 

Matα ade2 his3 leu2 lys2 trp1  ura3 bar1 myo5∆::TRP1 

Mata his3 leu2 trp1 ura3 bar1 myo5∆::TRP1 myo3∆::HIS3 

MYO5::URA3  

Mata ade2 his3 leu2 trp1 ura3 bar1 myo5∆::TRP1 myo3∆::HIS3 

myo5-S357A::URA3  

Mata ade2 his3 leu2 trp1 ura3 bar1 myo5∆::TRP1 myo3∆::HIS3 

myo5-S357E::URA3  

Matα ura3 his3 trp1 leu2 bar1 ade2 myo5∆::TRP1 myo3∆::HIS3 

pMYO5HA3 (CEN URA3) 

Matα ura3 his3 trp1 leu2 bar1 ade2 myo5∆::TRP1 myo3∆::HIS3 

pmyo5-S357AHA3 (CEN URA3) 

Mata ura3 his3 trp1 leu2 bar1 ade2 myo5∆::TRP1 myo3∆::HIS3 

pmyo5-S357EHA3 (CEN URA3) 

Matα ura3 lys2 trp1 his3 leu2 ade2 cdc25-2  

 

Mata ura3 trp1 ade2 his3 leu2 bar1 can1 ste20∆::URA3 

Mata ura3 trp1 ade2 his3 leu2 bar1 can1 ste20∆ skm1∆::TRP1 cla4-

H685Y::HIS3 (ts) 

Mata CDC42::LEU2 ura3 leu2 his3 lys2 bar1∆ ::URA3 

Mata cdc42-1(ts)  ura3 his3 lys2 bar1∆::URA3 

Mata cdc42-123(ts)::LEU2 ura3 leu2 his3 lys2 bar1∆ ::URA3 

Mata cdc42-129(ts,cs)::LEU2 ura3 leu2 his3 lys2 bar1∆ ::URA3 

Mata cdc42-118 (ts)::LEU2 ura3 leu2 his3 lys2 bar1∆ ::URA3 

Matα ade2 leu2 his3 trp1 ura3 ste20∆::kanMX cla4∆::LEU2 

skm1∆::HIS3 pcla4-as3 (CEN TRP1) 

Mata ade2 leu2 his3 trp1 ura3 bar1∆ ste20∆::kanMX cla4∆::LEU2 

skm1∆::HIS3 pcla4-as3 (CEN TRP1) 

Mata ade2 leu2 his3 trp1 ura3 bar1∆ ste20∆::kanMX cla4∆::LEU2 

 

Dr. M.I.Geli 

Geli et al., 1998 

 

Geli et al., 1998 

 

Geli et al., 1998 

 

Munn and Riezman, 

1994 

Dr. M.I.Geli 

Dr. M.I.Geli 

 

this study 

 

this study 

 

this study 

 

this study 

 

this study 

 

this study 

Aronheim and Karin, 

2000 

Dr. H.Riezman 

 

this study 

this study 

this study 

this study 

this study 

this study 

 

Dr. M. Peter 

 

this study 
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SCMIG603 

SCMIG604 

SCMIG605 

EGY48 

SCMIG590 

 

SCMIG591 

 

SCMIG592 

 

SCMIG629 

 

SCMIG549 

 

SCMIG553 

skm1∆::HIS3 pCLA4 (CEN TRP1) 

Mata leu2 ura3 his2 ade1 trp1 bar1 

Mata ade1 his2 trp1 leu2 ura3 bar1 pkh2∆::LEU2 pkh1-ts 

Mata ade1 trp1 leu2 ura3 bar1 myo5∆::TRP1 pkh2∆::LEU2 pkh1-ts 

Matα  ura3 leu2 his3 trp1 

Mata his3 leu2 trp1 ura3 bar1 myo3∆::HIS3 myo5∆::TRP1 pMYO5 

(CEN URA3) 

Mata his3 leu2 trp1 ura3 bar1 myo3∆::HIS3 myo5∆::TRP1 pmyo5-

S1205A (CEN URA3) 

Mata his3 leu2 trp1 ura3 bar1 myo3∆::HIS3 myo5∆::TRP1 pmyo5-

S1205E (CEN URA3) 

Mata  lys2 his3 leu2 ura3 cka1∆::HIS3 cka2∆:: TRP1 pcka2-13 

(LEU2, CEN) 

Mata ade2 lys2 his3 leu2 ura3 cka1D::HIS3 cka2∆:: TRP1 pCKA2 

(LEU2, CEN) bar1::URA3 

Mata ade2 lys2 his3 leu2 ura3 ura3 cka1∆::HIS3 cka2∆:: TRP1 

pCKA1 (LEU2, CEN) bar1∆::URA3 

this study 

this study 

this study 

this study 

Gyuris et al., 1993  

 

this study 

 

this study 

 

this study 

 

this study 

 

this study 

 

this study 
 

SCMIG574  

A PCR-generated SKM1 knockout cassette containing a yeast marker (TRP1) and additional 

flanking sequences of about 40 nucleotides corresponding to the upstream and downstream 

sequences of the fragment to be deleted, was generated using the primers ko-skm1-F and ko-

skm1-R and plasmid pskm1∆::TRP1 as template. This PCR fragment was transformed into 

RH1987 (kindly provided by Dr. H. Riezman). Transformants were selected on SDC-Trp to 

recover yeast cells were the chromosomal copy of SKM1 was substituted by the TRP1 marker 

by homologous recombination. The knockout was confirmed by PCR (primers 20LU1 and 

PAKD1) using the genomic DNA of the strain as a template. Subsequently, a PCR fragment 

containing the 3’ end of CLA4 including a His685Tyr (H685Y) mutation together with a wild 

type HIS3 gene was created. The 3’ end of cla4-H685Y, encoding the amino acids 522 until the 

STOP, was amplified from pcla4-H685Y using the primers Cla4.1619.D and Cla4.2529.U. The 

HIS3 gene flanked by 40 nucleotides immediately upstream and downstream of the stop codon 

of CLA4 was amplified from plasmid YDp-H with the primers Cla4.2509.YDp.D and 

Cla4.2579.YDp.U. The two resulting PCR fragments were used as templates for a subsequent 

PCR reaction with the Cla4.1619.D and Cla4.2579.YDp.U primers. This reaction yielded a 

hybrid DNA fragment encoding amino acids 540 to 843 of the Cla4-H685Yp mutant, the HIS3 

marker and 40 nucleotides downstream of the CLA4 stop codon (figure 7.2). This DNA was 
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transformed into the ste20∆ skm1∆ strain, cells were selected on SDC-His-Trp-Ura in order to 

select the triple temperature-sensitive PAK mutant (figure 7.2). Proper insertion of the cla4-

H685Y mutant in the CLA4 locus was tested by crossing the transformants to SCMIG217 

(cla4∆::LEU2) and scoring for complete segregation of the LEU2 and HIS3 markers. All 

putative triple PAK mutant exhibited a strong temperature-sensitivity phenotype (inability to 

grow at 37°C). 

 

 

 

 

 

  

 

  

 

 

 

 

 

Figure 7.2: Construction of the temperature-sensitive PAK kinase mutant 

The chromosomal copy of SKM1 was substituted by the TRP1 marker in a ste20∆::URA3 strain. A DNA fragment 
that carried the 3’ end of cla4-H685Y containing the histidine to tyrosine codon substitution, and the HIS3 gene 
after the CLA4 stop codon, was amplified by a double PCR strategy (1). The triple PAK mutant was obtained by 
transformation of this DNA into the skm1∆ ste20∆ double mutant (2) and subsequent homologous recombination 
with the endogenous CLA4 locus, thereby substituting the wild-type 3’ end of CLA4 with the mutant allele (3).  
 

SCMIG618, 619, 623, 624 and 625  

The chromosomal copy of the protease BAR1, which cleaves the α-factor and therefore 

interferes with the α-factor uptake assay, was substituted by the URA3 gene using a 

bar1∆::URA3 knockout cassette, which contains the URA3 marker flanked by 600 bp of the 

region downstream and 700 bp of the region upstream of the BAR1 Open Reading Frame 

(ORF), in strains DDY1300, DDY1302, DDY1326, DDY1336 and DDY1344 (kindly 

cla4 3’ 

CLA4

ste20∆::URA3 

H685Y 

HIS3 

PCR 

50 nucleotides of  
CLA4 3’ untranslated region 

HIS3 cla4-H685Y 3’ 

skm1∆::TRP1 

HIS3cla4-H685Y 3’ 

ste20∆::URA3 

skm1∆::TRP1 

HIS3 cla4-H685Y

transformation into ste20∆ skm1∆ cells

1 

2 

3 
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provided by K.Kozminski and D.Drubin; Kozminski et al., 2000). For this purpose, plasmid 

pLH309 was digested with EcoRI and transformed into the DDY strains. Transformants were 

selected on SDC-Ura and the disruption of BAR1 was tested by using a plate assay as described 

before.  

SCMIG586  

In order to obtain a yeast strain of the mating type a, MS883 (kindly provided by M.Peter) was 

transformed with plasmid B1377 carrying the HO endonuclease under the GAL1 promoter. 

This endonuclease mediates the mating-type switch, from α to a or reverse, in wild-type yeast 

and it has been inactivated in most laboratory strains. Production of this enzyme was induced 

by addition of galactose to a final concentration of 2 %. After 2, 4 and 6 hours samples were 

taken and plated on complete media. Colonies were then replica plated on minimal media 

containing 5’-FOA for contra-selection of the HO-URA3-plasmid. The mating type of colonies 

growing on 5’-FOA –containing media was checked and the BAR1 gene of a resulting Mata 

strain was then substituted by the URA3 gene as described before. To select ura3 cells again, 

the strain was grown in complete media to saturation and plated on 5’-FOA. Colonies were 

finally checked for all markers and for their sensitivity to the Cla4-as3p inhibitor 1NM-PP1 

(Weiss et al., 2000).  

SCMIG588 

Plasmid pcla4-as3::URA3 was transformed into strain SCMIG586. To facilitate loss of the 

original pcla4-as3 (TRP1), transformants were grown to saturation in SDC-Ura liquid media, 

plated on SDC-Ura and individual colonies finally checked for their inability to grow on SDC-

Trp. A URA3 trp1 strain was then transformed with pCLA4, which contains the wild-type 

CLA4 (TRP1) and selected on 5’-FOA-containing plates in order to contra-select pcla4-

as3::URA3. Finally, the resulting strain was tested for its insensitivity to the Cla4-as3p 

inhibitor 1NM-PP1 (Weiss et al., 2000). 

SCMIG603, 604 and 605 

Strains SCMIG603 and SCMIG604 were constructed by selecting for ura3 mutants of RH5411 

and RH5412 (kindly provided by H. Riezman; Friant et al., 2001), respectively, on 5’-FOA-

containing plates. SCMIG605 was generated by crossing SCMIG604 with SCMIG276. 

Diploids were selected on SDC-Leu-Trp, sporulated, tetrads were dissected and segregants 

were examined for the presence of the LEU2 and TRP1 markers and for their temperature-

sensitivity to identify the triple mutant, pkh1-ts pkh2∆::LEU2 myo5∆::TRP1. 
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SCMIG590, 591 and 592 

SCMIG51 (myo5∆) was transformed with plasmids p33MYO5, p33myo5-S1205A or p33myo5-

S1205E and cells were selected on SDC-Ura. Resulting transformants were crossed to 

SCMIG52 (myo3∆), diploids were selected on SDC-His-Ura-Trp. Subsequently, tetrads were 

dissected and URA3 TRP1 HIS3 markers were analysed to identify the myo5∆  

myo3∆ segregants bearing p33MYO5 (SCMIG590), p33myo5-S1205A (SCMIG591) or 

p33myo5-S1205E (SCMIG592). 

SCMIG629 

Since in vitro phosphorylations could only be performed with extracts of ADE2 strains, 

YDH13 (kindly provided by C.V.C.Glover; Glover, 1998) was transformed with the ADE2 

gene and selected on SDC-Ade (to obtain ADE2: plasmid pASZ12 digested with EcoRI and 

BstBI). The use of red ade2 strains extracts led to degradation of the GST-Myo5-Cp fusion 

protein in the in vitro polymerization assay (see below). 

SCMIG551 and 553 

The chromosomal copy of the protease BAR1 was substituted by the URA3 gene (as described 

before) in strains YAR13 and YAR108, respectively (kindly provided by C.V.C. Glover; 

Rethinaswamy et al., 1998).  

7.2 DNA techniques and plasmid construction  

Plasmids used in this study and their relevant features are listed in table II, primers in table III.  

7.2.1. Plasmids 

Table II. Plasmids 

Plasmid∗ Yeast marker# Insert+ Reference 

YDp-H 

YDp-W 

YDp-U 

pASZ12 

pFA6A-3HA-HIS3MX6 

YCplac33 

p33MYO5 

p33myo5-S357A 

p33myo5-S357E 

pINMYO5 

pINmyo5-S357A 

pINmyo5-S357E 

HIS3 

TRP1 

URA3 

ADE2 

HIS3 

URA3 

URA3 

URA3 

URA3 

URA3 

URA3 

URA3 

- 

- 

- 

- 

- 

- 

MYO5 

myo5-S357A 

myo5-S357E 

MYO5 

myo5-S357A 

myo5-S357E 

Berben et al., 1991 

Berben et al., 1991 

Berben et al., 1991 

Stotz and Linder, 1990 

Longtine et al., 1998 

Gietz and Sugino, 1988 

Geli and Riezman, 1996 

Dr. M.I.Geli 

Dr. M.I.Geli 

Dr. M.I.Geli 

Dr. M.I.Geli 

Dr. M.I.Geli 
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p33MYO5-HA3 

p33myo5-S357A-HA3 

p33myo5-S357E-HA3 

pYES-5'SOS 

pYX5’SOS 

pYX5’SOS-MYO5 

pYX5’SOS-myo5-S357A 

pYX5’SOS-myo5-S357E 

pskm1∆::TRP1 

pcla4-H685Y 

B1377 

pLH309 

pcla4-as3 

pcla4-as3::URA3 

pCLA4 

pGEX-5X-3 

pGST-myo5-TEDS 

pEG202 

pEG202 myo5-H 

pRFM-1 

pJG4-5 

pJG4-5PKH1 

pJG4-5PKH2 

pJG4-5YPK1 

pJG4-5YPK2 

pJG4-5ARK1 

pJG4-5PRK1 

pJG4-5YCK1 

pJG4-5YCK2 

pJG4-5PKC1 

pJG4-5CLA4 

pJG4-5IRE1 

p33ProtA-MYO5  

p33ProtA-MYO5-HA3  

p33ProtA-myo5-S357A-HA3 

p33ProtA-myo5-S357A-H-HA3 

 

p33ProtA-MYO5-H-HA3 

 

URA3 

URA3 

URA3 

URA3 

LEU2 

LEU2 

LEU2 

LEU2 

TRP1 

HIS3 

URA3 

- 

TRP1 

URA3 

TRP1  

- 

- 

HIS3 

HIS3 

HIS3 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

TRP1 

URA3 

URA3 

URA3 

URA3 

URA3 

MYO5 + 3HA  

myo5-S357A+ 3HA  

myo5-S357E+ 3HA  

5’SOS 

5’SOS 

5’SOS-MYO5 

5’SOS-myo5-S357A 

5’SOS-myo5-S357E 

skm1∆::TRP1 

cla4-H685Y (aa 521-1090) 

HO 

bar1∆::URA3 (BAR1 k.o.) 

cla4-as3 

cla4-as3 

CLA4 

GST 

GST-MYO5 (aa  322-391) 

LexA 

LexA-MYO5 (aa 1-773) 

LexA-Bicoid 

B42 

B42-PKH1 

B42-PKH2 

B42-YPK1 

B42-YPK2 

B42-ARK1 

B42-PRK1 

B42-YCK1 

B42-YCK2 

B42-PKC1 

B42-CLA4 

B42-IRE1 

MYO5  

ProtA-MYO5+ 3HA 

ProtA-myo5-S357A+ 3HA 

ProtA-myo5-S357A (aa 2-

700)+ 3HA 

ProtA-MYO5 (aa 2-700) + 

3HA 

Idrissi et al., 2002 

this study 

this study 

Aronheim and Karin, 2000 

this study 

this study 

this study 

this study 

Dr. M.I.Geli 

Dr. M.I.Geli 

Dr. H.-U. Moesch 

Dr. L. Hicke 

Weiss et al., 2000 

this study 

this study 

Pharmacia 

this study 

Gyuris et al., 1993 

this study 

Gyuris et al., 1993 

Gyuris et al., 1993 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

this study 

Dr. F.Idrissi 

this study 

this study 

 

this study 

 

this study 
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pGSTMYO5-C 

pGST-(SH3,TH2c) 

pGST-(TH2c) 

pGST myo5-S1205A-C 

pGST myo5-S1205E-C 

p33myo5-S1205A 

p33myo5-S1205E 

pEG202MYO5-T 

pJG4-5CKA1 

pJG4-5CKA2 

pJG4-5CKB1 

pJG4-5CKB2 

- 

- 

- 

- 

- 

URA3 

URA3 

HIS3 

TRP1 

TRP1 

TRP1 

TRP1 

GST-MYO5 (aa 982-1219) 

GST- MYO5 (aa 1085-1219) 

GST- MYO5 (aa 1142-1219) 

myo5-S1205A (aa 982-1219) 

myo5-S1205E (aa 982-1219) 

myo5-S1205A 

myo5-S1205E 

LexA-MYO5 (aa 757-1219) 

B42-CKA1 

B42-CKA2 

B42-CKB1 

B42-CKB2 

Idrissi et al., 2002 

Geli et al., 2000 

Geli et al., 2000 

this study 

this study 

this study 

this study 

Geli et al., 2000 

this study 

this study 

this study 

this study 
∗All plasmids listed in this table carry a bacterial ori and an AmpR resistance gene.   
#Plasmids of the pEG202 and pJG4-5 series are 2µ (multi-copy) plasmids. All other plasmids, which contain a 
yeast marker, except the pIN series, are CEN (low-copy) plasmids. 
 
Not previously published plasmids were generated as follows. 

pINMYO5, pINmyo5-S357A and pINmyo5-S357E (constructed by Dr. M.I. Geli) are 

integration plasmids. They do not harbour replication sequences, and contain the genes MYO5, 

myo5-S357A and myo5-S357E, respectively. These plasmids were constructed from the 

Ycplac33 based plasmids p33MYO5, p33myo5-S357A and p33myo5-S357E bearing the wild 

type and mutant MYO5, by deleting the ARS and CEN sequences of YCplac33 contained in an 

NsiI/SpeI fragment. p33myo5-S357A and p33myo5-S357E were constructed by introducing the 

corresponding mutation on p33MYO5 using a double PCR strategy (constructed by Dr. M.I. 

Geli). 

p33myo5-S357A-HA3  and p33myo5-S357E-HA3, respectively, were obtained by replacing an 

SphI/BstEII fragment of plasmids p33myo5-S357A  or p33myo5-S357E containing part of the 

3’ end of the mutants, with an SphI/BstEII fragment from plasmid p33MYO5-HA3, which was 

constructed by Dr. M.I. Geli. This latter fragment contains the analogous 3’ part of MYO5 

followed by 3 HA epitopes.  

pYX5’SOS-MYO5, pYX5’SOS-myo5-S357A and pYX5’SOS-myo5-S357E were obtained by 

inserting MYO5, myo5-S357A or myo5-S357E, respectively, in frame downstream of 5’SOS 

into pYX5’SOS. MYO5 or myo5 mutants were amplified from plasmids p33MYO5, p33myo5-

S357A and p33myo5-S357E using primers Myo5.1.ApaI.D and Myo5.3634.MluI.U. 

pYX5’SOS and PCR fragments were digested with ApaI and MluI and the PCR fragments 

subsequently ligated into pYX5’SOS. Plasmids pYX5’SOS and p5’SOS-MYO5 were 

constructed by H. Groetsch. 
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pcla4-as3 was recovered from the yeast strain MS883 (kindly provided by Dr. M. Peter) (see 

below).  

pCLA4 was obtained by homologous recombination in yeast. For that purpose, pcla4as3 was 

digested with NsiI to remove the DNA encoding amino acids 363 to 865, which contains the 

two mutations in cla4-as3. A DNA fragment encoding amino acids 344 to 890 of wild type 

Cla4p was amplified from wild-type genomic DNA by PCR using the primers Cla4-1031-D 

and Cla4-2669-U.. The NsiI digested plasmid and the PCR fragment were co-transformed into 

SCMIG50 and colonies were selected on SDC-Trp. The overlapping sequences of both 

fragments allowed homologous recombination (figure 7.3) This yielded a functional plasmid, 

inserting the wild-type DNA into the digested plasmid (figure 7.3). Plasmids from colonies 

grown on SDC-Trp were recovered and pCLA4 was identified by restriction analysis and 

sequencing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3: Construction of plasmid pCLA4 

Plasmid pcla4-as3 was cut with NsiI, thereby removing the two as3 mutations (M659A, T701A; indicated with 
red arrows). A wild-type CLA4 DNA fragment was amplified by PCR from chromosomal DNA, which has 
overlapping sequences to the cut plasmid. This fragment and the linearized plasmid were transformed into yeast, 
to allow homologous recombination and to generate pCLA4. 
 
pcla4-as3::URA3 was constructed by substituting TRP1 from pcla4-as3 by URA3 by 

homologous recombination in yeast. For this purpose, a DNA fragment containing URA3 and 

40 nucleotides upstream of the ATG and downstream of the STOP of TRP1 was amplified by 

PCR using the primers TRP1D.D and TRP1D.U and plasmid YDp-H as template. The DNA 

fragment was co-transformed with pcla4-as3 into yeast and cells were selected on SDC-Ura, 

allowing replacement of the TRP1 marker by URA3. Plasmids were recovered from yeast and 

pcla4-as3::URA3 was identified by restriction analysis. 

cla4-as3 

pcla4-as3 

restriction with NsiI

bp  1031 2669

transformation into yeast, 
allowing homologous recombination

CLA4

PCR fragment

pCLA4 

CLA4

pcla4-as3

CLA4 5‘ CLA4 3‘ 

bp

pcla4-as3

CLA4 5‘ CLA4 3‘

CLA4

1087 2593 
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pGST-myo5-TEDS was obtained by PCR amplification of a MYO5 DNA fragment encoding 

amino acids 322 to 391 using primers Myo5.966.BamHI.D and Myo5.1157.XhoI.U and 

pINMYO5 as template. The PCR fragment was digested with BamHI and XhoI and cloned into 

a BamHI/XhoI cut pGEX-5X-3 (Pharmacia), inserting the MYO5 sequence in frame 

downstream of the glutathione-S-transferase. 

To generate pEG202myo5-H, a DNA fragment encoding the head and neck domain of MYO5 

(aa 1 to 773) was amplified by PCR using primers MYO5.1D.EcoRI and XEIQ23U and 

p33MYO5 as template. Subsequently, the PCR fragment was digested with EcoRI and XhoI 

and ligated into an EcoRI/XhoI cut pEG202 (kindly provided by Dr. R.Brent). 

The pJG4-5 series of plasmids containing different kinase genes was made by amplification 

of the corresponding kinase-encoding genes with the listed primers and wild-type genomic 

DNA as template. The PCR fragments were digested with the listed restriction enzymes and 

cloned into pJG4-5 (kindly provided by Dr. R.Brent), which was cut with the same enzymes 

before, except for cloning using SmaI. In those cases, pJG4-5 was digested with EcoRI and the 

5’ overhangs were filled in by using the Klenow DNA polymerase fragment, yielding a blunt-

ended DNA. Subsequently, the linearized plasmid was digested with XhoI and the SmaI/XhoI 

digested PCR fragments were ligated into it. 

plasmid primers restriction enzyme 
pJG4-5PKH1 PKH1.1D.EcoRI, PKH1.2301U.XhoI EcoRI/XhoI 

pJG4-5PKH2 PKH2.1D.EcoRI, PKH2.3243U.XhoI EcoRI/XhoI 

pJG4-5YPK1 YPK1.1D.SmaI, YPK1.2043U.XhoI SmaI/XhoI 

pJG4-5YPK2 YPK2.1D.EcoRI, YPK2.2034U.XhoI EcoRI/XhoI 

pJG4-5ARK1 ARK1.1D.SmaI, ARK1.1917U.XhoI SmaI/XhoI 

pJG4-5PRK1 PRK1.1D.EcoRI, PRK1.1914U.SalI EcoRI/SalI 

pJG4-5YCK1 YCK1.1D.EcoRI, YCK1.1617U.XhoI EcoRI/XhoI 

pJG4-5YCK2 YCK2.1D.EcoRI, YCK2.1641U.XhoI EcoRI/XhoI 

pJG4-5PKC1 PKC1.1D.SmaI, PKC1.3456U.XhoI SmaI/XhoI 

pJG4-5CLA4 CLA4.1D.EcoRI, CLA4.2520U.SalI EcoRI/SalI 

pJG4-5IRE1 IRE1.1698D.EcoRI*, IRE1.3345U.XhoI EcoRI/XhoI 

pJG4-5CKA1 CKA1.ID.EcoRI, CKA1.1119U.XhoI EcoRI/XhoI 

pJG4-5CKA2 CKA2.1D.EcoRI, CKA2.1020U.XhoI EcoRI/XhoI 

pJG4-5CKB1 CKB1.1D.EcoRI, CKB1.837U.XhoI EcoRI/XhoI 

pJG4-5CKB2 CKB2.1D.EcoRI, CKB2.777U.XhoI EcoRI/XhoI 
* without transmembrane domains 
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p33ProtA-myo5-S357A was generated by site-directed mutagenesis on p33ProtA-MYO5 

(constructed by Dr. F. Idrissi) using primers S357.DS and S357A. The mutation was confirmed 

by sequencing. 

p33ProtA-myo5-S357A-H-HA3 and p33ProtA-MYO5-H-HA3  were constructed by 

homologous recombination in yeast, substituting the C-terminal part of MYO5 or myo5-S357A 

after the head domain (aa 701-STOP) with 3 HA epitopes and the HIS3 marker. For this 

purpose, a DNA fragment containing 40 nucleotides upstream of the Myo5p tail, followed by 

the 3 HA epitopes and a STOP codon, the HIS3 marker and 40 nucleotides downstream of the 

MYO5 STOP codon was amplified by PCR using primers MYO5.2061D.F2 and 

MYO5.3710U.R1 and pFA6A-3HA-HIS3MX6 as template. This DNA fragment was co-

transformed with plasmids p33ProtA-MYO5 or p33ProtA-myo5-S357A into yeast and cells 

were selected on SDC-Ura-His. The plasmids were recovered and p33ProtA-MYO5-H-HA3  or 

p33ProtA-myo5-S357A-H-HA3 were identified by restriction analyses. 

pGSTMYO5-S1205A-C and pGSTMYO5-S1205E-C were constructed according to plasmid 

pGSTMYO5-C (Geli et al., 2000). DNA fragments containing the TH2, SH3 and acidic domain 

(aa 984-STOP) of myo5 mutants bearing either the S1205A or the S1205E mutation were 

amplified by PCR using primers M5.GST.2937.D and MYO5T and p33myo5-S1205A or 

p33myo5-S1205E as templates. These fragments were digested with BamHI and XhoI and 

ligated into the BamHI/XhoI digested plasmid pGEX-5X-3. 

p33myo5-S1205A and p33myo5-S1205E were obtained by site-directed mutagenesis using 

p33MYO5 as template and either primers Myo5.3593.S1205A.D and Myo5.3634.S1205A.U to 

generate the S1205A mutation, or primers Myo5.3593.S1205E.D and Myo5.3634.S1205E.U to 

generate the S1205E mutation. The mutations were confirmed by sequencing. 

7.2.2 Primers 

Table III. Primers 

Name Sequence∗ Remarks∗ Direction# 

ko-skm1-F 

ko-skm1-R 

 

PAKD1 

20LU1 

Cla4.1619.D 

Cla4.2529.U 

Cla4.2509.YDp.D 

CTTGCAGTGCAACATTGG 

CTCCTAAATAAAAAAAAGCTAAATTTCAATGCCACTTT

AAGGATACTTTGCTATTTCTTAGCATTTTTGA 

TTTTCTCAATGGATCAGACG 

TTTTTGATCTGTTGCCCG 

ATGCGGATCCATCTCAATGC 

TCATTCCTTCCACTCCAACAG 

CTGTTGGAGTGGAAGGAATGAGAATTCCCGGGGATCCG

 

 

 

 

 

 

 

 

5’ 

 

3’ 

5’ 

3’ 

5’ 

3’ 
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Cla4.2579.YDp.U 

 

Myo5.1.ApaI.D 

Myo5.3634.MluI.U 

TRP1D.D 

 

TRP1D.U 

 

Cla4.1031.D 

Cla4.2669.U 

Myo5.966.BamHI.D 

Myo5.1157.XhoI.U 

MYO5.1D.EcoRI 

 

XEIQ23U 

 

PKH1.1D.EcoRI 

PKH1.2301U.XhoI 

PKH2.1D.EcoRI 

PKH2.3243U.XhoI 

YPK1.1D.SmaI 

 

YPK1.2043U.XhoI 

YPK2.1D.EcoRI 

YPK2.2034U.XhoI 

ARK1.1D.SmaI 

ARK1.1917U.XhoI 

PRK1.1D.EcoRI 

 

PRK1.1914U.SalI 

YCK1.1D.EcoRI 

YCK1.1617U.XhoI 

YCK2.1D.EcoRI 

YCK2.1641U.XhoI 

PKC1.1D.SmaI 

PKC1.3456U.XhoI 

CLA4.1D.EcoRI 

CLA4.2520U.SalI 

G 

TACATAAGATTGTAGTATGTATGATATGCTTATAGAAAT

AGTTGTGTGCTAGCTAGCTTGGCTGCAGG 

GCCGGGGGCCCATGGCTATCTTAAAAAGAGGAGC 

CAACCACGCGTTTACCAATCATCTTCCTCTTCATCTTC 

GTATACGTGATTAAGCACACAAAGGCAGCTTGGAGT 

GAATTCCCGGGGATCCGGTGATG 

ACAAACAATACTTAAATAAATACTACTCAGTAATAAC 

CTTGCAGGTCGACGGATCCGGTGATTG 

ATGTTCCCAACCAACAATATCC 

TTGATTATTGTATCGTTGCAGG 

GGAAGGAAGGATCCCAGTAACCGATTTTGTTGC 

AAGGAAGGAACTCGAGTAACCCTACTCACAATCC 

AACCAACCGAATTCATGGCTATCTTAAAAAGAGGAGCT

AG 

ACTGACTGGAATTCCTCGAGTCTTTCTTTTCTTCCACCCA

AAAC 

AACCAAGAATTCATGGGAAATAGGTCTTTGACAG 

AACCAACTCGAGTCATTTTTCATCTGTCCGTG 

AACCAAGAATTCATGTATTTTGATAAGGATAATTCCATG 

AACCAACTCGAGTTACGACCTCTTCGATTTTGC 

AACCAACCCGGGAATGTATTCTTGGAAGTCAAAGTTTA

AG 

AAGGAACTCGAGCTATCTAATGCTTCTACCTTGCACC 

AACCAAGAATTCATGCATTCCTGGCGAATATC 

AACCAACTCGAGCTAACTAATGCTTCTCCCCTGC 

AACCAACCCGGGCATGAATCAACCTCAAATTGGC 

AACCAACTCGAGTCACTTATCCAAGGATAACTTTCG 

AACCAAGAATTCATGAATACTCCACAGATTAGTCTGTAT

G 

AACCAAGTCGACTTAAACTTTGCTGGGAAACC 

AACCAAGAATTCATGTCCATGCCCATAGCAAG 

AACCAACTCGAGTTAGCAACAACCTAATTTTTGGAA 

AACCAAGAATTCATGTCTCAAGTGCAAAGTCCTT 

AACCAACTCGAGCTAACAGCATCCTAGCTTACTGAA 

AAGGAACCCGGGAATGAGTTTTTCACAATTGGAGC 

AAGGAACTCGAGTCATAAATCCAAATCATCTGGC 

AACCAAGAATTCATGTCTCTTTCAGCTGCAGC 

AACCAAGCTGACTCATTCCTTCCACTCCAACAG 

 

 

 

ApaI 

MluI 

 

 

 

 

 

 

BamHI 

XhoI 

 

EcoRI 

EcoRI/ 

XhoI 

EcoRI 

XhoI 

EcoRI 

XhoI 

 

SmaI 

XhoI 

EcoRI 

XhoI 

SmaI 

XhoI 

 

EcoRI 

SalI 

EcoRI 

XhoI 

EcoRI 

XhoI 

SmaI 

XhoI 

EcoRI 

SalI 

5’ 

 

3’ 

5’ 

3’ 

 

5’ 

 

3’ 

5’ 

3’ 

5’ 

3’ 

 

5’ 

 

3’ 

5’ 

3’ 

5’ 

3’ 

 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 
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IRE1.1698D.EcoRI 

IRE1.3345U.XhoI 

 

CKA1.ID.EcoRI 

CKA1.1119U.XhoI 

CKA2.1D.EcoRI 

CKA2.1020U.XhoI 

CKB1.1D.EcoRI 

CKB1.837U.XhoI 

CKB2.1D.EcoRI 

CKB2.777U.XhoI 

S357.DS 

S357A 

MYO5. 2061D.F2 

 

MYO5.3710U.R1 

 

M5.GST.2937.D 

MY05T 

Myo5.3593.S1205A.D 

 

Myo5.3634.S1205A.U 

 

Myo5.3593.S1205E.D 

 

Myo5.3634.S1205E.U 

AACCAAGAATTCGTATTATTATCCAAAATTGGATTTATG 

AACCAACTCGAGTTATGAATACAAAAATTCACGTAAAA

T 

AACCAACCGAATTCATGAAATGCAGGGTATGGTCAG 

AACCAACCTCGAGTTATTTTTCAATTTGTTCCCTTATTG 

AACCAACCGAATTCATGCCATTACCTCCGTCAAC 

AACCAACCCTCGAGTTATTCAAACTTCGTTTTGAAAAAC 

AACCAACCGAATTCATGTCGCAAGAGTTTGTGGAAG 

AACCAACCCTCGAGTTAAACCGCCGGTGTCTCG 

AACCAACCGAATTCATGGGCAGTAGATCGGAGAATG 

AACCAACCCTCGAGTTAGGTTTTAAAACCACCACTTTTC 

GTATGAAAAGAGGGGCAGTGTATCATGTTC 

GAACATGATACACTGCCCCTCTTTTCATAC 
CCCACAGCAGGAGTACCAATTGGGTGTCACAAGTGTTTT

CCGGATCCCCGGGTTAATTAA 

TTTGCTCGTATAGAGTATATACTCGCTAAATACATTTTGA  

GAATTCGAGCTCGTTTAAAC 

ACACACACACGGATCCCCAGTTCCTCGCAAGCAAC 

AAGGAAGGAACTCGAGACCATGATTACGCCAAGCTTGC 

CCAATAAAATGAGATTAGAGGCTGATGACGAGGAGGCT

AACG 

CGTTAGCCTCCTCGTCATCAGCCTCTAATCTCATTTTATT

GG 

CCAATAAAATGAGATTAGAGGAGGATGACGAGGAGGC

TAACG 

CGTTAGCCTCCTCGTCATCCTCCTCTAATCTCATTTTATT

GG 

EcoRI 

 

XhoI 

EcoRI 

XhoI 

EcoRI 

XhoI 

EcoRI 

XhoI 

EcoRI 

XhoI 

S357A 

S357A 

 

 

 

 

BamHI 

XhoI 

 

S1205A 

 

S1205A 

 

S1205E 

 

S1205E 

5’ 

 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

5’ 

3’ 

 

5’ 

 

3’ 

5’ 

3’ 

 

5’ 

 

3’ 

 

5’ 

 

3’ 
∗ Either a restriction site (underlined) or an introduced  mutation (bold) are given. 
# Primer amplifying the coding strand are named 5’ primer, primer amplifying the complementary strand are 3’ 
primers. 

7.3 Protein analyses 

7.3.1 SDS-PAGE, immunoblots and antibodies 

SDS-PAGE was performed as described (Laemmli, 1970) using a Minigel system (BioRad 

Laboratories, München). High and low range SDS-PAGE molecular weight standards (BioRad 

Laboratories, München) were used for determination of apparent molecular weights. 

Coomassie Brilliant blue staining was used for detection of total protein on acrylamide gels.  
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The protein concentration was determined with a BioRad Protein assay (BioRad Laboratories, 

München). To examine the expression of proteins, 15 µg or 30 µg (depending on the pocket 

size) of total protein were loaded on SDS-PAGE gels.  

Immunoblots were performed as described (Geli et al., 1998). The Myo5p-specific tail 

antibody was described in Geli et al. (1998). The 3F10 and C4 monoclonal antibodies 

(Chemicon, Hofheim) were used for detection of the HA epitopes, and actin, respectively. 

Nitrocellulose membranes were stained with Ponceau Red for detection of total protein. 

Fluorescent and peroxidase-conjugated secondary antibodies were purchased from Sigma 

(Deisenhofen). 

7.3.2 Quick yeast protein extract 

Yeast cells were grown to an OD600 of about 0.4 (early exponential phase, around 107 cells/ 

ml). Approximately 20 x 107 cells were harvested, resuspended in 1 ml of sterile water and 

transferred to a 1.5 ml Eppendorf tube. Harvested cells were frozen and incubated at –20°C for 

at least 4 hrs. Subsequently, the pellet was dissolved in 30 µl of ice-cold IP buffer (50 mM Tris 

pH 7.5, 150 mM NaCl, 5 mM EDTA) containing protease inhibitors (0.5 mM PMSF, 1 µg/ml 

aprotinin, 1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 µg/ml antipain) and glass bead lysed (5 x 1 

min) on ice. Unbroken cells and debris were eliminated by centrifugation at 960 g for 5 min at 

4°C.  

7.3.3 LSP (low speed pelleted) yeast protein extract 

These extracts were prepared according to Geli et al. (2000).  

Yeast cells were grown to a density of approx. 4 x 107 cells/ml. Cells were harvested and washed 

twice with XB (100 mM KCl, 2 mM MgCl2, 0.1 mM CaCl2, 5 mM EGTA, 1 mM DTT, 1 mM 

ATP, 10 mM Hepes pH 7.7) 50 mM sucrose. 1/10 pellet volume of XB 50 mM sucrose was 

added and the cells glass bead-lysed (10 x 1 min) on ice in the presence of protease inhibitors (0.5 

mM PMSF, 1 µg/ml aprotinin, 1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 µg/ml antipain). 

Unbroken cells and debris were eliminated by centrifugation at 2500 g at 4°C. The extracts 

were supplemented with sucrose (to 200 mM), the protein concentration was adjusted to 20 

mg/ml, and finally, extracts were aliquoted, frozen in liquid N2 and stored at –80°C until use.  

Experiments in the presence of phosphatase inhibitors were performed with 10 mM sodium 

pyrophosphate, 10 mM NaN3, 10 mM NaF, 0.4 mM EDTA, 0.4 mM NaVO3, 0.4 mM Na3VO4, 

2 µM cyclosporin A and 0.5 µM okadaic acid in LSP yeast extracts. Experiments in the 

presence of kinase inhibitors were performed with final 4 µM K252A and 1mM A3. 
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7.3.4 Purification of recombinant GST fusion proteins  

GST-fusion proteins were purified from BL21 E.coli strains (Novagen, Bad Soden) according 

to Geli et al. (2000).  

1/ 100 of an overnight E.coli culture was inoculated into minimal media (MM; Sambrook et 

al., 1989) containing 50 mg/l ampicillin. The culture was grown at 37°C to an OD600 of 0.4.  

Cells were shifted to 24°C and induced at an OD600 of 0.7-0.8 with 0.1 mM isopropyl-β-D-

thiogalactopyranoside (IPTG) for 2 hrs. Cells were harvested and frozen at –20°C. For protein 

purification, a GST Amersham-Pharmacia (Freiburg) purification kit was used. Briefly, cells 

were thawed in PBS, 0.5 % Tween (for 1 l of cells 25 ml buffer) and lysed by sonication (10 x 

30 sec). Cell debris was pelleted by centrifugation.  

For the visual actin polymerization assay: 20 µl of 50 % glutathione Sepharose beads were 

added to the protein extracts obtained from 2 l of BL21 pGSTmyo5-S1205A-C, pGSTmyo5-

S1205E-C or pGSTMYO5-C cultures, and were incubated for 2 hrs shaking at 4°C. Beads were 

recovered by using econocolumns (BioRad Laboratories, München), washed several times and 

equilibrated in XB (100 mM KCl, 2 mM MgCl2, 0.1 mM CaCl2 5 mM EGTA 1 mM DTT, 1 mM 

ATP, 10 mM Hepes pH 7.7) 200 mM sucrose and finally adjusted to 50 %. 

In vitro phosphorylations: 100 µl of 50 % glutathione sepharose beads were added to the protein 

extracts obtained from 2 l of BL21 pGSTMYO5-C, pGSTmyo5-S1205A-C or pGSTmyo5-

S1205E-C, respectively, 1.4 l of BL21-(SH3,TH2c), 1.2 l of BL21 pGST-(TH2c) or 1 l of 

BL21 pGST (pGEX-5X-3) cultures and incubated for 2 hrs shaking at 4°C. Beads were 

recovered by using econocolumns, washed several times and equilibrated in the appropriate 

buffers and finally adjusted to 50 %. 

In vitro phosphorylation screen: 100 µl of 50 % glutathione Sepharose beads were added to the 

protein extracts of 2 l of BL21 pGST-myo5-TEDS or 1 l of BL21 pGST (pGEX-5X-3) cultures 

and incubated for 2 hrs shaking at 4°C. Beads were recovered by using econocolumns and 

washed several times.  

7.4 The α-factor internalization assay 
Saccharomyces cerevisiae cells exist in two haploid cells types, a or α, which can mate to form 

diploids (a/α). This conjugation pathway is initiated by binding of secreted mating a- and α-

factor pheromones, secreted by Mata and Matα cells, respectively, to surface receptors of yeast 

cells of the opposite mating type. The α-factor receptor is Ste2p and the a-factor is Ste3p, 

which are exclusively expressed by Mata and Matα cells, respectively. Binding of the ligands 

to the receptors lead to activation of signal transduction cascades that arrest cell division and 
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induce morphological changes, which are required for cell-cell fusion during mating. As part 

of the mechanism that allows pheromone desensitization and exit from cell cycle arrest after 

mating, mating factor binding induces internalization and degradation of the receptors 

(Chvatchko et al., 1986; Jenness and Spatrick, 1986; for review see Bardwell et al., 1994).  

Receptor-mediated endocytosis in yeast can be measured by internalization of radiolabelled α-

factor bound to its receptor, Ste2p (figure 7.4). This assay quantitatively measures the first step 

in endocytosis, the formation of the endocytic vesicle at the plasma membrane. 

The principle of this assay is that α-factor can be released from uninternalized receptors, i.e. 

receptors at the cell surface, by washing with a low pH buffer (pH1). In contrast, washing with 

a pH6 buffer does not release the α-factor from its receptor. At the moment when the primary 

endocytic vesicle is pinched off from the cell surface, the α-factor can no longer be wash out 

from the cells by incubation with the pH1 buffer. The internalization kinetics of radiolabelled 

α-factor can be measured by monitoring the internalized cell-associated radioactive counts 

after pH1 buffer washing normalized versus the total (internalized plus surface bound) cell-

associated counts after pH6 buffer washing per minute (figure 7.4; Dulic et al., 1991).  

 

 

 

 

 

 

Figure 7.4: The assay for measuring α-factor internalization 

The radiolabelled yeast pheromone α-factor binds to its receptor Ste2p at the cell surface and is subsequently 
internalized via endocytosis. The surface-bound but not the internalized α-factor can be removed by washing with 
a pH1 buffer. The 35S-labelled α-factor internalization kinetics can be measured by monitoring the pH1 resistant 
counts (internalized) versus the pH6 resistant counts (total bound) per minute.  
 

7.4.1 The uptake assay 

 [35S] α-factor uptake assays were performed as described (Dulic et al., 1991).  

For constitutive mutants, a pulse and chase protocol was used. Briefly, cells were grown to 0.5 

- 1 x 107 cells/ml (early logarithmic phase), harvested and resuspended to 5 x 108 cells/ml in 

ice-cold YPD containing 100,000 dpm /ml of purified 35S-α-factor and incubated for 45 min. 

pH1 sensitive

pH1 resistent

Ste2p 
α-factor 

extracellular space 

cytosol 

PM
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(For 6 time points, 60 x 107 cells were resuspended in 1.2 ml of ice-cold YPD.) Cells were 

pelleted again and the uptake was started by resuspension in 23°C YPD.  

For temperature-sensitive (ts) and analogue (1NM-PP1; see below)-sensitive strains a 

continuous-presence protocol was used. Cells were grown to 0.5 - 1 x 107 cells/ml, harvested 

and resuspended to 5 x 108 cells/ml in prewarmed (23°C for the 1NM-PP1-sensitive strain and 

37oC for temperature sensitive strains) YPD. In the case of the analogue-sensitive strain, 1NM-

PP1 (4-amino-1-tert-butyl-3-(1-naphtylmethyl) pyrazolo [3,4-d] pyrimidine; kindly provided 

by E.Weiss and D.Drubin; Weiss et al., 2000) was added prior to the resuspension of the cells 

to the final concentrations of 25 µM or 100 µM (1.2 µl or 4.8 µl of a 25 mM 1NM-PP1 stock 

solution in DMSO, respectively), and cells were preincubated for 1 h before addition of 

100,000 dpm/ml of purified 35S-α-factor. For mock treatment, 1.2 µl or 4.8 µl DMSO were 

added. Temperature-sensitive strains were pre-incubated for 5, 15 or 30 min at restrictive 

temperature before addition of the α-factor.  

2 x 100 µl of culture were taken at the indicated time points and the uptake was terminated by 

dilution (1/100) into ice-cold pH 1 (50 mM sodium citrate) or pH 6 (50 mM potassium 

phosphate) buffers, respectively. Cells were incubated for 20 min on ice to allow the 

dissociation of the α-factor from its receptor at pH1. Subsequently, cells were recovered by 

filtration onto GF/C filters (Whatman, Gerbershausen) and cell-associated counts were 

measured in a β-counter (Beckman LS 6000 TA). Internalized counts were calculated by 

dividing pH1-resistant (internalized) by pH6-resistant (total cell-bound) counts per time point.  

The uptake rates correspond to the slope (internalized counts per minute) of the graphs at the 

linear, i.e. early, phase (typically within the first 10 min). The uptake rates of the wild-type 

strains in the individual experiments were arbitrarily set to 100 % and the uptake rates of the 

mutant strains were normalized to these 100 %. Uptake assays were performed at least three 

times and the mean and standard deviations calculated per time point. In all cases, the standard 

deviations were less than 10 % of the value.  

7.5 Pulse and chase labelling of carboxypeptidase Y (CPY) 

The experiment was done according to Stevens et al. (1982).  

Yeast cells were grown at 23°C in SDYE media (0.67 % yeast nitrogen base, 0.2 % Bacto 

yeast extract, 2 % glucose, required amino acids) to approximately 107 cells/ml (early log 

phase). 13 x 107 cells (2.5 x 107 per time point + 0.5 x 107 cells) in 5.2 ml SD (0.67 % yeast 

nitrogen base, 2 % glucose, required amino acids) were pulsed for 5 min with 100 µCi of  35S-

labeling mix (35S-methionine and 35S-cysteine; Trans35S-Label, ICN Biomedicals, Irvine, 
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USA), incubated for 5 min and chased by addition of cold 0.3 % methionine, 0.3 % cysteine, 

300 mM (NH4)2SO4. Samples were taken after 0, 5, 10, 15 and 30 min. For each time point, 1 

ml of cells was added to 100 µl 10 x Stop solution (0.2M NaN3, 0.2M NaF) on ice. Cells were 

subsequently pelleted and glass-bead lysed in 200 µl TEPI buffer (50 mM Tris pH 7.5, 5 mM 

EDTA, 5 µg/ml of each protease inhibitor chymostatin, leupeptine, antipain and pepstatin). 

SDS was added to 0.5 % and the samples were incubated at 95°C for 5 min, 800 µl TNET 

were added (30 mM Tris, pH 7,5, 120 mM NaCl, 5 mM EDTA, 1 % triton X-100), samples 

were mixed and cell debries were pelleted. 3 µl Antibody (α-CPY) and 35 µl (30% w/v) 

Protein A Sepharose (Sigma) were added to the supernatants and the immunoprecipitation was 

done for 2 hrs at RT. Pelleted immunocomplexes were washed with TNET + 0.1 % SDS, 

followed by TNET + 2 M urea and finally resuspended in 60 µl SDS-PAGE sample buffer. 20 

µl were subjected to SDS gel electrophoresis and analyzed by autoradiography.  

7.6 Fluorescence microscopy 

7.6.1 F-actin staining with TRITC-phalloidin 

TRITC-phalloidin staining was performed as described (Benedetti et al., 1994).  

Cells were grown to approximately 1-2 x 107 cells/ml (early log. phase). 900 µl of this culture 

were prefixed for 30 min at room temperature (RT) by incubation with formaldehyde and 

Triton X-100 at final concentrations of 3.7 % and 0.04 %, respectively. Cells were then 

pelleted and resuspended in 1 ml of fixing buffer (35 mM KPi, 4 % formaldehyde, 0.5 mM 

MgCl2) and fixed for 2 hrs at RT. Subsequently, cells were washed with PBS and stained with 

300 nM TRITC-phalloidin (Sigma) in PBS for 90 min at RT. Cells were washed with PBS, 

directly mounted on slides and visualized.  

For experiments with the analogue-sensitive mutant, 3.6 µl of 25 mM 1NM-PP1 (final 

concentration: 100 µM; kindly provided by E.Weiss and D. Drubin (Weiss et al., 2000)) or 3.6 

µl of DMSO (mock) were added previous to fixation. 

7.6.2 Immunofluorescence 

Immunofluorescence was performed based on Hicke et al. (1997).  

Yeast cells were grown to 0.5-1 x 107 cells/ml (early log. phase). 20 ml of cells were fixed with 

a final concentration of 3.7 % formaldehyde in 100 mM KPi, pH 6.5. After 2 hrs at RT, cells 

were harvested and spheroplasted with 52 U/ml of zymolyase in SP buffer (1.2 M sorbitol, 100 

mM KPi pH 6.5) for approximately 30 min at 30°C. Cells were attached to poly-L-lysine 
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coated slides and washed several times with PBT (PBS, 1 % BSA, 0.1 % Triton X-100). Cells 

were then incubated for 1 h with a 1:50 dilution of the primary antibody (rat α-HA, Chemicon, 

Hofheim) in PBT. Subsequently, cells were washed with PBT and incubated for 30 min with a 

1:100 dilution of the CY3-conjugated secondary antibody (α-rat, Dianova, Hamburg) in PBT. 

Cells were washed with PBT and PBS, mounted in Mowiol (Calbiochem, San Diego, USA) 

and visualized using a fluorescence microscope. 

7.6.3 Visual actin polymerization assay 

The actin polymerization assay was performed according to Geli et al. (2000) and Idrissi et al. 

(2002). 

Briefly, 7 µl of LSP yeast extracts (see above) were mixed with 1 µl of ARS (ATP 

regenerating system; 10 mg/ml creatine kinase, 10 mM ATP, 10 mM MgCl2, 400 mM creatine 

phosphate) and 1 µl of 10 µM rhodamine-actin (APHR-C, Cytoskeleton, Inc). The 

polymerization reaction was initiated by addition of 1 µl 50 % of either GST-Myo5-Cp-

Sepharose, GST-Myo5-S1205A-Cp-Sepharose or GST-Myo5-S1205E-Cp-Sepharose beads.  

Samples were incubated at RT (26°C) unless otherwise mentioned. Samples were visualized 

after 15 – 30 min using a fluorescence microscope.  

7.7 Phosphorylation experiments 

7.7.1 In vivo phosphorylation assay 

7.7.1.1 Media and buffers 

SDC low phosphate: 

2 % glucose, 1 g/l KCl, 0.1 g/l NaCl, 1 g/l (NH4)2SO4, 0.5 g/l MgCl2 x 6 H2O, 0.1 g/l CaCl2 x 2 

H2O, 10 nM H3BO3, 10 nM CuCl2, 100 nM KI, 50nM FeCl3, 70 nM ZnCl2, 2 µg/l biotin, 0.4 

mg/l calcium pantothenate, 2 mg/l inositol, 0.4 mg/l niacin, 0.2 mg/l p-aminobenzoic acid, 0.4 

mg/l pyridoxin, 0.4 mg/l thiamin, 0.2 mg/l riboflavin, 50 mg/l tryptophane, 20 mg/l adenine, 20 

mg/l histidine, 50 mg/l leucin, 50 µM KH2PO4; 

when growing wild-type strains, the media was supplemented with 20 mg/l uracil. 

SDC no phosphate: 

2 % glucose, 1 g/l KCl, 0.1 g/l NaCl, 1 g/l (NH4)2SO4, 0.5 g/l MgCl2 x 6 H2O, 0.1 g/l CaCl2 x 2 

H2O, 10 nM H3BO3, 10 nM CuCl2, 100 nM KI, 50nM FeCl3, 70 nM ZnCl2, 2 µg/l biotin, 0.4 

mg/l calcium pantothenate, 2 mg/l inositol, 0.4 mg/l niacin, 0.2 mg/l p-aminobenzoic acid, 0.4 
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mg/l pyridoxin, 0.4 mg/l thiamin, 0.2 mg/l riboflavin, 50 mg/l tryptophane, 20 mg/l adenine, 20 

mg/l histidine, 50 mg/l leucin;  

when growing wild-type strains, the media was supplemented with 20 mg/l of uracil. 

IP buffer 

50 mM Tris-Cl, pH 7.5 

150 mM NaCl 

5 mM EDTA 

phosphatase inhibitors:  

10 mM sodium pyrophosphate 

10 mM NaN3 

10 mM NaF 

0.4 mM EDTA 

0.4 mM NaVO3 

0.4 mM Na3VO4 

2 µM cyclosporin A 

0.5 µM okadaic acid 

7.7.1.2 Phosphorylation assay 

Yeast cells were grown to 0.5-1 x 107 cells/ml (early log. phase). 108 cells were harvested 

(2400 g, 5 min) and washed once with water. The pellet was resuspended in 20 ml of SDC low 

phosphate media and incubated at 23°C for 5 hrs. Cells were then repelleted (2400 g, 5 min), 

washed once with SDC no phosphate media, transferred to a 2 ml Eppendorf tube and finally 

resuspended in 1 ml of SDC no phosphate. 1 mCi of radioactive PO4
3- (ICN Biomedicals, 

Irvine, USA) was added and cells were allowed to internalize the radioactive phosphate for 30 

min at RT (26°C). Subsequently, cells were harvested and washed twice with IP buffer. The 

pellet was then frozen at –20°C.  

After thawing, cells were broken in 100 µl of IP buffer containing protease inhibitors (0.5 mM 

PMSF, 1 µg/ml aprotinin, 1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 µg/ml antipain), phosphatase 

inhibitors and approximately 200 mg of glass beads by vortexing 10 times for 1 min, with 1 

min incubation on ice intervals. Triton-X 100 was added to 1 %, cell debris was pelleted and 

the supernatant transferred to a new tube. 20 µl of a Myo5p-specific antibody (Geli et al., 

1998) pre-bound to 40 µl of 50% protein A sepharose (Amersham-Pharmacia, Freiburg) were 

added and the immunoprecipitation was performed for 2 hrs on ice. In case of Protein A fusion 
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proteins, 40 µl of 50 % IgG Sepharose (Amersham-Pharmacia, Freiburg) were used for the 

immunoprecipitations. 

The beads were pelleted and washed several times with IP buffer with and subsequently 

without Triton-X 100. The beads were finally boiled in 20 µl SDS-PAGE buffer and half of the 

eluate was loaded on either a 7.5 % or a 10 % SDS-PAGE gel. 

7.7.2 In vitro phosphorylation assays 

7.7.2.1 In vitro phosphorylation with protein extracts 

Required GST fusion proteins were purified as described in section 7.3.4. For each 

phosphorylation reaction, 10 µl of GST-fusion protein containing beads were mixed with 10 µl 

empty glutathione beads (to increase the amount of visible beads). 28 µl LSP protein extract 

and 20 µCi γ-32P-ATP (Amersham-Pharmacia, Freiburg) were added and the reaction was 

allowed to proceed for 30 min at 23°C. The beads were washed 3 times with PBS containing 

protease inhibitors (0.5 mM PMSF, 1 µg/ml aprotinin, 1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 

µg/ml antipain) and finally boiled in 30 µl SDS-PAGE sample buffer. 15 µl were loaded on a 

15 % SDS-PAGE gel. 

7.7.2.2 In vitro phosphorylation by casein kinase II (CKII) 

GST fusion proteins were purified as described in section 7.3.4. The phosphorylation was 

performed according to the manufacturers instructions (Calbiochem, San Diego, USA). 

Briefly, for one phosphorylation reaction, 10 µl of GST-fusion protein coated beads were 

mixed with 10 µl empty glutathione beads (to increase the amount of visible beads). 7.5 µl 

phosphorylation buffer (20 mM Tris pH 7.5, 50 mM KCl, 10 mM MgCl2), 1.98 µl of 1 mM 

ATP, 0.1 µl of recombinant human CKII (Calbiochem, San Diego, USA) and 0.4 µCi  [γ-32P]-

ATP (Amersham-Pharmacia, Freiburg) (0.4 µl) were added and incubated for 30 min at 30°C. 

The beads were pelleted, washed 3 times with PBS, and subsequently boiled in 30 µl SDS-

PAGE sample buffer. Half of the eluate was loaded on a 15 % SDS-PAGE gel. 

7.8 In vitro phosphorylation screen (chip assay)  

For the in vitro phosphorylation screen the GST and GST-myo5-TEDSp proteins were purified 

as described in section 7.3.4 and subsequently eluted with 20 mM glutathione, 100 mM 

HEPES pH7.7, 1 % Triton-X100 (100 µl of 50 % beads were eluted with 300 µl buffer) and 

dialysed over night against 20 mM HEPES pH 7.7. Proteins were lyophilized for sending to 

Dr. H. Zhu by using an Alpha1-2 lyophilisator (Christ, Osterode). The in vitro phosphorylation 
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screen was performed as described in Zhu et al. (2000). Briefly, substrates were crosslinked to 

a silicone elastomer, polydimethylsiloxilane (PDMS) multiple well (1.4 mm in diameter) 

plates, using 3-glicidoxyprolyltrimethoxysilane (GPTS) as crosslinker. Samples were blocked 

with 1 % BSA and subsequently incubated for 30 min at 30°C in the presence of [γ-33P]-ATP 

and 119 different GST-kinase fusion proteins purified from yeast (3 out of the 122 kinases 

identified in the yeast genome could not be purified using the standard protocol). After 

extensive washing, phosphorylation signals were quantified by phosphoimager and normalized 

against the media for each kinase. 

7.9 Two-hybrid techniques 

The Interaction Trap two-hybrid system was used (Gyuris et al., 1993). Plasmids pEG202, pJG4-

5, pRFHM-1 and pSH18-34 and the strain EGY48 were obtained from Dr. R. Brent (MGM, 

Boston). To measure β-galactosidase activity, EGY48 bearing the lexAop-lacZ reporter plasmid 

pSH18-34, was co-transformed with the appropriate pEG202 and pJG4-5 derived plasmids and 

streaked out on X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside)-containing plates 

(0.67 % yeast nitrogen base (Difco, Heidelberg), 7 g/l Na2HPO4, 3 g/l NaH2PO4, 2 % galactose, 1 

% raffinose, 40 mg/ml leucine, 80 mg/l X-Gal (Sigma, Deisenhofen), 2 % agar, pH 7). Pictures 

were taken after 2-3 days of growth at 30°C.  

7.10 Plasmid recovery from yeast  

5 ml of the yeast culture were grown to stationary phase in the appropriate minimal media. Cells 

were pelleted and resuspended in 0.4 ml of lysis buffer (0.5 M NaCl, 0.2 M Tris pH 7.5, 10 mM 

EDTA, 1 % SDS). 150  µl of glass beads and 300 µl of phenol:chloroform:isoamyl alcohol were 

added and the mixture was vortexed for 2 min. After centrifugation, the aqueous phase was 

recovered and mixed with phenol:chloroform:isoamyl alcohol and separated again by 

centrifugation. Finally, the plasmid-DNA was precipitated from the aqueous phase with 2.5 

volumes of ethanol. The DNA was resuspended in 50 µl of water and 3 µl were electroporated 

into E.coli. 

7.11 Miscellaneous 

Chemicals were obtained from Roth (Karlsruhe), Sigma (Deisenhofen), Fluka (Steinheim), 

Merck (Darmstadt) or Molecular Probes (Leiden, Netherlands). Radiochemicals were from 

ICN Biomedicals (Irvine, USA) and Amersham-Pharmacia (Freiburg or Little Chalfont, 
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England). Enzymes for molecular biology were obtained from New England Biolabs 

(Frankfurt a.M.) or Roche (Mannheim). 

Culturing of E. coli and S. cerevisiae were performed as described (Guthrie and Fink, 1991; 

Sambrook et al., 1989; Sambrook and Russel, 2001). 

Standard DNA manipulations (gel electrophoresis, enzymatic digestion, ligation, 

transformation, plasmid preparation and polymerase chain reaction) were performed as 

described (Sambrook et al., 1989; Sambrook and Russel, 2001).  

Plasmids were purified with a Nucleobond plasmid purification kit from Macherey-Nagel 

(Dueren; Midi- or Maxiprep-set). DNA in agarose gels was purified using the gel extraction kit 

from Qiagen (Hilden).  

Electroporation of E. coli cells was performed as described (Dower et al., 1988).  

PCRs were performed using a DNA polymerase with proof-reading activity (Vent polymerase 

or Pfu polymerase; New England Biolabs, Frankfurt a.M.) on a TRIO-thermoblock (Biometra 

GmbH, Göttingen). Oligonucleotides were synthesized by Interactiva/Thermo Hybaid 

(Freiburg).  

DNA sequencing was performed by TopLab (München). Site directed mutagenesis was 

performed using the QuickChange kit from Stratagene (LaJolla, USA). 

For fluorescence and phase contrast microscopy an Axiovert 35 fluorescence microscope (Carl 

Zeiss, Jena) was used.   
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