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Abstract

A theoretical framework is presented within which we can systematically develop a posteriori
error estimators for any variational statement of the form

F (Λx) + G(x) −→ min .

We merely have to require, that the linear operator Λ be coercive and that the functional F

be uniformly convex. As the convex functional G may be arbitrary, the theory can also cover
constrained variational formulations. Two applications are discussed in detail: the Dirichlet
Problem and the Obstacle Problem. A number of technical issues is considered as well, which
pertain to the evaluation of the proposed error bounds using finite element methods: Inter
alia a novel non-conforming discretisation scheme for the dual formulation is analysed. The
resulting algebraic problem may be solved by a new preconditioned relaxation method, for
which a proof of convergence is supplied.

Zusammenfassung

Ein allgemeiner theoretischer Rahmen wird entworfen, der die systematische Entwicklung
von a posteriori Fehlerschätzern für Variationsprobleme der Form

F (Λx) + G(x) −→ min

ermöglicht. Vorausgesetzt wird neben der Koerzivität des linearen Operators Λ lediglich die
uniforme Konvexität des Funktionals F . Das Funktional G wird als konvex angenommen,
so daß auch restringierte Variationsprobleme betrachtet werden können. Anwendungen der
Theorie werden in Gestalt des Dirichlet- bzw. des Hindernis-Problems diskutiert. Praktische
Fragen werden erörtert, die mit der Auswertung der Fehlerschätzer im Rahmen einer FEM-
Simulation zusammenhängen: u. a. wird eine nicht-konforme Diskretisierungsmethode für
die duale Formulierung vorgestellt und ein Konvergenzbeweis für ein neues präkonditioniertes
Relaxationsverfahren angegeben, mit dessen Hilfe sich das diskretisierte Problem lösen läßt.
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Introduction

The computation of an a posteriori estimate for the approximation error we have incurred in the
numerical solution of some variational problem requires a mechanism inherent to the problem
which relates the distance between our numerical and the true solution to those quantities, we
can immediately derive from the information available to us, namely the data of the problem and
the numerical solution itself. Let us assume, that X and Y are two reflexive Banach spaces and
that Λ :X −→ Y is some continuous operator. The variational problem, whose solution we want
to find, shall be written in the form

J(x,Λx) −→
x∈X

min (1)

whereby J :X × Y −→ R denotes some function. In general, we can neither assert, that there is
a minimiser to the above problem, nor that its solution - if it exists - is unique. If the function
J is convex, we can at least confirm the existence of a unique minimiser x0 ∈ X. However, this
much structure is still insufficient to warrant the existence of an a posteriori estimate for any
numerical approximation xh ∈ X to the true solution. What we need is an estimate of the form

φ( ‖x− x0 ‖X ) ≤ J(x,Λx) − J(x0,Λx0)

with φ :R+
0 −→ R

+
0 denoting a monotonously increasing function. The existence of such a forcing

function φ can be viewed as the defining quality of an uniformly convex functional. We may
surmise, therefore, that the uniform convexity of the functional J is an indispensable prerequisite
for any type of a posteriori error estimate. If J∗ ∈ R denotes an arbitrary lower bound to the
quantity J(x0,Λx0) such an error estimate would read:

‖x− x0 ‖X ≤ φ−1
(

J(x,Λx) − J∗
)

.

For the sake of conciseness, we will henceforth call an inequality of the above description a
hypercycle estimate. Though this terminology is perhaps not perfectly adequate (see [118] and
sections 4.1.6-8 in [135]), it may be derived from the special case of quadratic forms by an easy
generalisation. It is not obvious, how such an estimate should be related to those a posteriori error
estimates, that can be found most commonly discussed in the contemporary literature. Before
we outline the research that has been conducted in this field, let us work out an example and
demonstrate which links exist between a conventional residual based a posteriori error estimator
for the Laplace problem and hypercycle estimates for the Dirichlet integral.

Residual based, explicit error estimators

Bluntly put, all a posteriori error estimators, which rely on the computation of certain residual
expressions, implicitly assume two requirements to be met by the variational formulation and by
the numerical approximation xh: There must exist an a priori estimate, with the help of which
the approximation error can be bounded by some residual expression. To achieve the highest
accuracy possible this expression has to be evaluated in a dual norm, however. And secondly,
the numerical approximation xh must feature a best approximation property, which allows for
an estimate of that very norm. While the first condition is met qua definitionem by all elliptic
linear operators, widely known under the denomination Cea’s lemma, the best approximation
property is usually referred to as Galerkin orthogonality. It can only be satisfied in a finite
element context, if we assume that all integrals involved are evaluated exactly. To illustrate
our point, let us consider some square integrable function f ∈ L2(Ω) defined on some bounded
domain Ω ⊂ R

2. Our aim is to find a square integrable function with square integrable first
derivatives x0 ∈ H1

0 (Ω), which solves the Dirichlet problem

− ∆x = f (2)

with homogeneous boundary conditions in a weak sense. (For a rigorous definition of our notation
for the various function spaces and those inner products, we are going to employ, we refer to
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section 2.1.1). Let us suppose, that Xh denotes a finite dimensional subspace of H1
0 (Ω) and that

xh ∈ Xh represents the solution of the following variational problem:

〈 ∇xh,∇ψh 〉Ω = ( f, ψh )
Ω

; ψh ∈ Xh . (3)

Due to the special form of the norm | · |
Ω,1

, which the space H1
0 (Ω) is equipped with, the elliptic

regularity of the variational formulation leads to an almost trivial a priori estimate:

|x0 − xh |Ω,1 ≤ sup
ψ∈H1

0 (Ω)

( f, ψ )
Ω
− 〈∇xh,∇ψ 〉

Ω

|ψ |
Ω,1

= : R(xh) .

Since the numerical approximation xh meets the optimality condition (3), we are able to bound
the residual R(xh) by exploiting a result on the approximation properties of the canonical finite
element interpolation operator Π :H1

0 (Ω) −→ Xh:

CM > 0 : ‖ ψ − Πψ ‖
M

≤ CM hM |ψ |
M,1

; ψ ∈ H1
0 (Ω) .

Hereby, the symbol M shall denote a simplicial patch, as it is defined by a decomposition Mh of
the computational domain Ω, and hM its diameter. We may envisage Mh as the mesh, which we
have obtained from our finite element software or which we have calculated with the help of some
dedicated software tool. For simplicity, let us assume the domain Ω to be polyhedral, such that
we do not need to discuss contributions to the error estimator, which stem from an inadequate
resolution of the boundary ∂Ω. Analytical techniques similar to those discussed in [59] may be
employed to obtain bounds on various other functions of the defect. For instance:

ĈM > 0 : ‖ ψ − Πψ ‖
∂E

≤ ĈM
√

hE |ψ |
M,1

; ψ ∈ H1
0 (Ω)

with E ⊂ ∂M denoting some subset of the element’s boundary and hE designating the length of
that curve. If an interior edge E belongs to two elements M1 and M2, we may define the jump
[σh] across E of any vector field σh, which is sufficiently regular both in M1 and in M2, with the
help of the outward pointing normal vectors n1 ∈ R

2 and n2 = −n1 perpendicular to E:

[σh](ξ) := n1 · σh
∣

∣

M1

(ξ) + n2 · σh
∣

∣

M2

(ξ) ; ξ ∈ E .

Let us abbreviate the set of all interior edges by Eh. We may choose ψh = Πψ as a test function
in (3) and perform a partial integration on each patch M ∈ Mh of the computational domain. By
invoking the above approximation results for the interpolation operator Π and applying Hölder’s
inequality we can thereupon assert the existence of a stability constant C > 0, such that:

R(xh) = sup
ψ∈H1

0 (Ω)

1

|ψ |Ω,1
∑

M∈Mh

{

∫

M

(f + ∆xh)(ψ − ψh) − 1

2

∮

∂M

(ψ − ψh)
[∂xh
∂n

] }

≤ C
{

∑

M∈Mh

h2
M

∥

∥ f + ∆xh
∥

∥

2

M
+

∑

E∈Eh

hE

∥

∥

∥

[∂xh
∂n

]
∥

∥

∥

2

E

}1/2

= : P (xh) .

The quantity P (xh) we have thus derived can be viewed as an a posteriori error estimator for the
solution xh of the variational problem (3). Any other choice of the function x′h ∈ Xh will result
in an estimate P (x′h) that is unreliable.

Hypercycle estimates

A somewhat different type of energy error estimate can be derived from the observation that we
may cast the Dirichlet problem (2) into the following abstract setting: Let us assume, the Hilbert
space H has been decomposed into the orthogonal sum of two subspaces U and V . If any two
elements u0, v0 ∈ H have been fixed, determine the very function s ∈ H that is contained in the
intersection of the affine spaces U0 := U + {u0} and V0 := V + {v0}. We note, that is common
element s ∈ U0 ∩ V0 simultaneously solves two distinct minimisation problems:

‖u− v0 ‖2
H

−→
u∈U0

min ; ‖ v − u0 ‖2
H

−→
v∈V0

min . (4)
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Since s− u ∈ U and s− v ∈ V are orthogonal for any choice of u ∈ U0 and v ∈ V0, we find:

1

4

∥

∥ s − u
∥

∥

2

H
+

1

4

∥

∥ s − v
∥

∥

2

H
=

∥

∥

∥
s − u+ v

2

∥

∥

∥

2

H

=
1

4

∥

∥ u − v
∥

∥

2

H
. (5)

The right hand side of the equation (5) can be understood as an a posteriori error estimator
for both the numerical solutions u and v of the above minimisation problems. According to (5)
the true solution s is located someplace on a sphere around the mean value of these solutions
with a radius proportional to ‖u− v ‖

H
. Hence, the result is usually referred to as a hypercycle

estimate. In the case of the Dirichlet problem (2) the Hilbert space H can be identified as the
space L2(Ω,R2) of all square integrable vector fields. The mutually orthogonal subspaces U and
V are obtained by a so called Helmholtz decomposition of L2(Ω,R2):

U : =
{

σ ∈ L2(Ω,R2)
∣

∣ v ∈ H1
0 (Ω) : σ = ∇v

}

,

V : =
{

σ ∈ L2(Ω,R2)
∣

∣ 〈σ,∇v 〉
Ω

= 0 ; v ∈ H1
0 (Ω)

}

.

That means, the subspace U consists of all such vector fields, which can be exhibited as the flow
of some potential, while the subspace V contains all the solenoidal vector fields. We must fix the
elements u0 and v0 in such a way, that the common vector field s ∈ L2(Ω,R2) represents the flow
of the solution x ∈ H1

0 (Ω) to problem (2):

s ∈ U : − ∇ · s = f .

Accordingly, we must impose the conditions u0 = 0 and ∇· v0 = −f . While the first condition
can be met immediately, fulfilling the second requirement poses a major difficulty, we have to
overcome before we can bound the approximation error. Let us assume, we have found a suitable
field v0 and succeeded in constructing a finite dimensional subspace Vh ⊂ V . By minimising the
norm of σh ∈ Vh + {v0} we may find an approximation to the gradient ∇x, such that

|x0 − xh |2Ω,1 ≤ ‖∇xh − σh ‖2
Ω

= : 2 M(xh, σh) (6)

yields an error estimate, that is as sharp as our choice of the ansatz Vh will permit it.

Error bounds derived from complementary energy functionals

The limitations of conventional hypercycle estimates are obvious: They can only be applied to
linear problems posed in a Hilbert space setting and, perhaps more importantly, they require
an a priori knowledge of certain elements, with the help of which the orthogonal subspaces
are constructed. Against our extending the hypercycle concept to the more general class of
minimisation tasks involving uniformly convex functionals let us exhibit the variational problems
(4) as dual to one another. The solution of (2) is the minimiser of the functional

J(x) :=
1

2
〈∇x,∇x 〉

Ω
− ( f, x )

Ω
; x ∈ H1

0 (Ω) .

To introduce a saddle point formulation let us rewrite this functional in the following form:

J(x) = sup
σ∈L2(Ω,R2)

{

〈∇x, σ 〉
Ω

− 1

2
〈σ, σ 〉

Ω

}

− ( f, x )
Ω

for any x ∈ H1
0 (Ω). Hence, the complementary functional J∗ : L2(Ω,R2) −→ R is defined by:

J∗(σ) := inf
x∈H1

0 (Ω)

{

〈∇x, σ 〉
Ω
− ( f, x )

Ω

}

− 1

2
〈σ, σ 〉

Ω
= − χ

V0
(σ) − 1

2
〈σ, σ 〉

Ω

with χ
V0

: L2(Ω,R2) −→ R denoting the indicator function of the affine space V0. By definition
of the space U0 = U we can reformulate the first minimisation problem in the following manner:

1

2
‖∇ξ − v0 ‖2

Ω
= J(ξ) +

1

2
〈 v0, v0 〉Ω −→

ξ∈H1
0 (Ω)

min .
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If we ignore the constant offset, the task of approximating the gradient ∇x is therefore equivalent
to minimising the functional J . The second statement in (4) is obviously but a paraphrase for
maximising the functional J∗. Our findings suggests, that we may express the error majorant
M(xh, σ), we have introduced in (6), in terms of the complementary energy functionals J and
J∗. In fact, a simple computation demonstrates:

1

2
|x0 − xh |2Ω,1 ≤ M(xh, σ) = J(xh) − J∗(σ) ; σ ∈ V0 .

By defining the forcing function φ(t) = 0.5 t2 we can thus return to the abstract setting which
has served as a starting point for our deliberations. The lower bound J∗ to the infimum of the
energy functional is thereby provided by the complementary energy functional J ∗, since we may
state for any admissible vector field σ ∈ V0 and any approximation x ∈ H1

0 (Ω):

−∞ < J∗(σ) ≤ J(x0) ≤ J(x) .

Relaxing the admissibility constraints

Though the concept of duality based error majorants is very general it suffers from the same
drawback conventional hypercycle estimates are fraught with: They will not always attain a
finite value, but require certain admissibility constraints to be met by the dual variable σ. In the
above example, the error estimates have been formulated under the assumption, that ∇· σ = −f
be fulfilled. Whether explicitly or implicitly, the dual variable itself is usually constructed as an
element of some finite dimensional function space. Hence, meeting the admissibility constraints
in full will be impossible in most cases.

One possible solution to this difficulty consists in changing the data of problem, such that
the resulting admissibility constraint can be met exactly. The consistency error, we introduce
thereby, must be controlled by an a priori error estimate. To illustrate the approach let us
consider the Dirichlet problem. If we replace the right hand side f ∈ L2(Ω) by its L2-projection
P0 f onto the space of all piecewise constant functions, defined on some simplicial decomposition
Mh of the computational domain Ω, we can use for instance Raviart-Thomas elements [122] of
lowest order to construct a vector field ςh ∈ R0(Mh) satisfying ∇· ςh = −P0 f . Let us denote the
analytical solution of the Dirichlet problem −∆x = P0 f by x̃ ∈ H1

0 (Ω). Cea’s lemma asserts:

∣

∣x0 − x̃
∣

∣

Ω,1
≤ C sup

ψ∈H1
0 (Ω)

( f − P0 f, ψ )
Ω

|ψ |
Ω,1

= C sup
ψ∈H1

0 (Ω)

( f + ∇· ςh, ψ − P0 ψ )
Ω

|ψ |
Ω,1

.

We may control the right hand side of this equation by invoking an interpolation result for the
L2-projection and applying Hölder’s inequality afterwards. Bounding the approximation error
|xh− x̃ |Ω,1 with a conventional hypercycle estimate we thus obtain the following error estimator:

∣

∣x0 − xh
∣

∣

Ω,1
≤

∥

∥∇xh − σh
∥

∥

Ω
+ C̃

{

∑

M∈Mh

h2
M

∥

∥ f + ∇· σh
∥

∥

2

M

}1/2

, (7)

which is valid for any vector field σh from the affine space V ∩R0(Mh)+{ςh}. As this parameter
must be admissible, the computation of a field σh, which yields a preferably sharp error estimate,
can require substantial effort. One possibility to obtain an acceptable field consists in solving the
Dirichlet problem (2) with the help of a dual mixed discretisation scheme:

〈 τh, σh 〉Ω + (uh,∇· τh )Ω = 0 ; τh ∈ R0(Mh) ,

( yh,∇· σh )
Ω

= − (f, yh)Ω
; yh ∈ P 0(Mh) .

In this context, the piecewise constant function uh ∈ P 0(Mh) serves as a Lagrange multiplier for
the admissibility constraint ∇· σh = −P0 f . For details we refer to [122].

On the equilibrated residual method

In the previous paragraph a dual mixed discretisation scheme has been proposed to find a vector
field which meets a modified admissibility constraint. From a practical point of view, however, the
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necessity of performing computations of a higher numerical complexity than those, the original
variational problem has required, ”merely” to assess the quality of the numerical approximation
is detrimental to an error estimator. Hence, hypercycle estimates are usually not applied in the
very way we have outlined above. In fact, we can determine a vector field ςh ∈ Rk(Mh) with
the property ∇· ςh = −Pk f by local calculations only. For any interior edge E ∈ Eh of the
triangulation let us specify a function gE :E −→ R we suppose to approximate the normal flux of
the true solution x0 to problem (2) across the interface E. Furthermore, let us introduce a unit
vector nE ∈ R

2 perpendicular to the interface. For any element M ∈ Mh of the mesh we may
now introduce a local minimisation problem:

‖ σ
M

− ∇xh ‖2
M

−→
σh∈QM

min (8)

with the set QM of admissible vector fields being defined by:

QM : =
{

σ
M

∈ Rk(Mh)
∣

∣ ∇· σ
M

= −Pk f ∧ n
E
· σ

M

∣

∣

E
= Pk gE ; E ⊂ ∂M

}

.

It is easily seen, that a vector field σ is admissible, if its restriction σ|T to any element M ∈ Mh

is contained in the set QM . The difficulty lies elsewhere: We must warrant that none of the
sets QM is empty. Furthermore, we must ensure that the resulting field ςh, which we define in
an element by element fashion ςh|M := σM , does yield a sharp estimate. To achieve both goals
simultaneously we must construct the flux functions gE with care. Usually, the process of finding
these functions is referred to as equilibration. Let vh ∈ Pl denote a polynomial test function of
Lagrange type with a degree l less or equal to k, the order of the Raviart-Thomas ansatz for the
dual variable. Performing a partial integration on the element M we find:

∫

M

vh f d ξ =

∫

M

∇vh∇x0 d ξ −
∮

∂M

vh
∂x0

∂n
d s .

Since the dual variable σ
M

is intended to approximate the vector field ∇x0 we can use the above
equation to specify the equilibrated fluxes across the element edges. To this end we replace the
unknown gradient by its numerical approximation:

∫

M

{

∇vh∇xh − vh f
}

d ξ = :
∑

E⊂∂M

n(M)

E · nE
∫

E

vh gE d s . (9)

Hereby, n(M)

E ∈ R
2 denotes the outward directed normal vector of the element M perpendicular

to its edge E. As vh ∈ Pl can be a constant function, this definition of the numerical fluxes gE
ensures, that the data of the local Neumann problem is consistent. However, the flux functions
are not uniquely defined by (9). Let us suppose, that E ∈ Eh is an interior edge and that M1

and M2 are its two adjoining elements. We introduce a mean value for the numerical flux by:

〈∂xh
∂n

〉

E
: =

1

2

{ ∂xh
∂n

∣

∣

∣

M1

− ∂xh
∂n

∣

∣

∣

M2

}

n(M1)

E · n
E

.

The scalar product n(M1)

E · n
E

causes the mean value to be invariant under our changing the roles
of M1 and M2. An ansatz for the flux functions must provide enough flexibility to warrant the
solvability of (9) for any choice of the test function vh ∈ Pl. For the simplest case l = 0 the
following ansatz has been proposed [98]:

gE : =
〈∂xh
∂n

〉

E
+ λ

E

with λE :E −→ R denoting a linear function to be determined with a view to (9). Alternatively,
a method known as flux splitting may be applied [4], which relies on the ansatz:

gE : =
〈∂xh
∂n

〉

E
+ α

E

[∂xh
∂n

]

E
.

Hereby, the function αE : E −→ R is again assumed to be linear. Let the index i denote some
interior vertex of the mesh and ψi ∈ P 1(Mh) a continuous function which vanishes at all vertices
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except for the vertex i where it attains the value 1. We introduce the set Mi of all those elements,
which are contained in the support of ψi, and define basis functions LiE : E −→ R, which are
orthonormal to the traces ψi |F if integrated along some edge F . The corresponding linear factors
λiE ∈ R which determine the functions λE can be obtained from the following linear systems:

∑

E⊂∂M

n(M)

E · n
E
λiE = 〈∇ψi,∇xh 〉M − (ψi, f )

M
−

∑

E⊂∂M

n(M)

E · n
E

∫

E

ψi

〈∂xh
∂n

〉

d s ; M ∈ Mi .

If the flux splitting scheme is employed, similar equations can be derived which determine the
functions αE. The solvability of the above equilibration conditions is discussed for instance in [4].
The resulting a posteriori error estimate is basically (7) with the field σh replaced by the field ςh
which we have found by solving the local minimisation problems (8).

Penalising the admissibility constraints

Changing the data of the variational formulation may help to obtain a reliable error bound with
the help of a conventional hypercycle estimate. In consequence, the approach is limited to linear
problems. Moreover, it suffers from the necessity either to solve a globally defined dual problem
or to introduce further approximation errors by specifying numerical fluxes across the element
interfaces. If the first approach is used, the computational complexity of evaluating the error
estimator is at least comparable to minimising the primal energy functional. If flux conditions
are imposed to decouple to the dual formulation into locally defined minimisation problems, the
impact of the equilibration procedure on the accuracy of the error estimate must be accounted
for. To avoid such drawbacks a different treatment of the admissibility constraints is necessary.
In the following we will outline a penalisation of the dual formulation which leads to a duality
based a posterior error estimator, that is well defined for any choice of the dual variable. We will
assume, that our energy functional has the form

J(x,Λx) := F (Λx) + G(x) ; x ∈ X (10)

whereby G :X −→ R is a convex and F : Y −→ R is an uniformly convex functional. The dual
formulation of the problem (1) is specified in terms of the conjugate energy functional

J∗(y∗,Λ∗y∗) := −G∗(−Λ∗y∗) − F ∗(y∗) ; y∗ ∈ Y ∗

which is itself defined in terms of the conjugate functionals G∗ :X∗ −→ R and F ∗ : Y ∗ −→ R in
the sense of Fenchel [67]. These functionals are themselves convex. Moreover, the functional F ∗

features a certain amount of smoothness which we will exploit. Since the conjugate functional
J∗ provides a lower bound for the energy, the abstract error estimate has the following form:

φ( ‖x− x0 ‖X ) ≤ MF (Λx, y∗) + MG(x,−Λ∗y∗) ; y∗ ∈ Y ∗ . (11)

Hereby, the majorant has been split into two contributions which can be attributed to either of
the constitutive functionals F and G. The first contribution reads for example:

MF (Λx, y∗) = F (Λx) + F ∗(y∗) − 〈Λx, y∗ 〉
Y

.

The second contribution features an analogous structure. We conclude, that the optimal error
bound can be expressed with the help of certain subdifferentials. (For a short introduction into
this subject matter we refer to section 1.1.5.) The first order optimality conditions read:

y∗ ∈ ∂F (Λx) ∧ −Λ∗y∗ ∈ ∂G(x) .

Hence, the admissibility constraint may be expressed as: −Λ∗y∗ ∈ domG∗. Hereby, the symbol
domG∗ denotes the effective domain of the conjugate functional G∗, which is basically the very
region where G∗ attains finite values. Modifying the functional G∗ is an option which has been
considered briefly in the previous paragraph. Modifying the functional F is a second option, we
will explore in the chapter 1. Since we cannot present a detailed account of the procedure in this
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introduction, let us merely hint a the underlying idea: The uniform convexity of F implies the
existence of an expansion for the Fenchel conjugate, which admits an estimate of the form

F ∗(z∗) ≤ F ∗(y∗) + 〈 dF ∗(y∗), z∗ − y∗ 〉
Y

+ r∗( ‖ z∗ − y∗ ‖
Y ∗ ) ; z∗ ∈ Y ∗ .

The function r : R
+
0 −→ [0,+∞] is lower-semicontinuous and convex. Its effective domain is not

empty and r(t) = 0 implies t = 0. A nonnegative functional R : Y −→ R with the property
R(0) = 0 is introduced. With the help of R a second auxiliary functional

KR(s) := inf
y∈Y

{

R∗∗(Λs− y) + r( ‖y‖
Y
)

}

; s ∈ X

may be defined. Any functional K :X −→ R that provides a lower bound on KR can be used to
formulate a computable upper bound on the approximation error. Under moderately restrictive
assumption on the properties of the linear operator Λ this error bound will stay finite for any
admissible approximation x ∈ domG and any choice of the dual variable y∗ ∈ Y ∗:

φ( ‖x− x0 ‖X ) ≤ MF (Λx, y∗) + R( Λx− dF ∗(y∗) ) + inf
x∗∈∂G(x)

K∗(Λ∗y∗ + x∗) . (12)

An application to quadratic forms

The a posteriori error majorant (12) features two contributions, which correspond to the necessary
and sufficient optimality conditions for the estimate (11). If the functional F :H −→ R defines
a positive definite quadratic form on some Hilbert space H, we may choose for instance R = κF
with κ > 0 denoting a relaxation parameter. In this special case the energy norm of the residuals
both in the first and in the second duality relation is recovered. In fact, the Gâteaux-derivative
dF ∗(y∗) of the conjugate functional F ∗ at some point y∗ ∈ H can be identified with the image
of y∗ under the action of some self-adjoint isomorphism Γ∗ :H −→ H. We note:

F ∗(y∗) =
1

2
〈 Γ∗ y∗, y∗ 〉

H
; y∗ ∈ H .

The growth of F ∗ may be controlled with the help of the function r(t) = 0.5 t2, if we define a
new norm on H by ‖ y∗‖2 := 2F ∗(y∗). Consequently, the auxiliary functional KR reads:

KR(s) = inf
y∈H

{

κF (Λs− y) + F (y)
}

=
κ

1 + κ
F (Λs) ; s ∈ X .

If the above functional can be used to define a norm on the space X thanks to an inequality of
Poincaré-Friedrich type, we may view the second contribution to the error majorant (12) as a
residual, which is measured in a dual energy norm defined by:

| s∗ |
∗

: = sup
s∈X

〈 s, s∗ 〉
X

√

2F (Λs)
; s∗ ∈ X∗ . (13)

Under the assumption that (13) acts as a norm, we may choose K = KR and thus obtain:

K∗(s∗) = sup
λ≥0

{

λ | s∗|
∗
− κλ2

2 (1 + κ)

}

=
κ+ 1

2κ
| s∗ |2

∗
; s∗ ∈ X∗ .

A simple computation shows that the first contribution MF (Λx, y∗) to the error majorant (12)
can be expressed in terms of the functional F and the operator Γ∗. The forcing function is given
by φ(t) = 1/2 t2. Hence, the final a posteriori error estimate reads for any y∗ ∈ H:

F ( Λ(x− x0) ) ≤ (1 + κ) F ( Λx − Γ∗ y∗ ) +
κ+ 1

2κ
inf

x∗∈∂G(x)
|Λ∗y∗ + x∗ |2

∗
.
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On the relationship between the various error estimators

To illustrate the above result let us apply the calculus to the Dirichlet problem (2). In this
case the operator Λ represents the gradient mapping ∇ : H1

0 (Ω) −→ L2(Ω,R2). Thanks to the
homogeneous boundary conditions the dual norm (13) is well defined and coincides with the
usual norm of the dual space H−1(Ω), as the functional F is defined by 2F (y) = ‖y‖2

Ω
. The

operator Γ∗ :L2(Ω,R2) −→ L2(Ω,R2) is simply the identity mapping. The subdifferential ∂G(x)
contains but the element −f for any function x ∈ H1

0 (Ω). After trivial scaling we therefore find
the following a posteriori estimate valid for any choice of the field σ ∈ L2(Ω,R2):

|xh − x0 |2Ω,1 ≤ (1 + κ) ‖∇xh − σ ‖2
Ω

+ (1 + κ−1) |∇· σ + f |2
Ω,−1

= : H(κ)(xh, σ) .

If we fix the vector field σ = ∇xh, the first part of the error bound vanishes. We can consider
the limit κ → ∞ and thus recover the a priori estimate, which the residual based a posteriori
estimate P (xh) is based on. Taking the square root we infer:

|xh − x0 |Ω,1 ≤ lim
κ→∞

√

H(κ)(xh,∇xh) = R(xh) .

As a matter of course, the generalised hypercycle estimate H(κ) is not computable. We need to
employ the same devices we must bring to bear on conventional explicit error estimators in order
to obtain an upper bound we can actually evaluate. Nevertheless, the example indicates, that
residual based error estimators may generally be subsumed in our more general framework.

It is natural to look for such vector fields, which turn the quantity H(κ)(xh, σ) into a readily
computable error bound. If we discovered a vector field ς ∈ Hdiv(Ω) with the property ∇· ς = −f ,
we could for instance construct an affine space V0 by requiring:

V0 : = { ς } +
{

τh ∈ Rk(Mh)
∣

∣ ∇· τh = 0
}

.

Minimising the generalised hypercycle estimate with respect to σh ∈ V0 we would be able to
suppress the second contribution to H(κ)(xh, σh) and fix the equilibration parameter κ = 0. The
resulting error bound would correspond to the conventional hypercycle estimate (6):

|xh − x0 |2Ω,1 ≤ inf
σh∈V0

H(0)(xh, σh) = inf
σh∈V0

‖∇xh − σh ‖2
Ω

.

Unfortunately, the pivotal field ς is usually not available to us. Hence, the above estimate is
rather academic. Relaxing the admissibility constraint we obtain the error bound (7), which
consists of an hypercycle estimate and an additional consistency error. Let us define:

Vh : =
{

τh ∈ Rk(Mh)
∣

∣ ∇· τh = −Pk f
}

,

that is, the set of all admissible vector fields. By exploiting the so called Galerkin orthogonality
of the function f − Pk f and the space P 0(Mh) we obtain the following upper bound:

H(κ)(xh, σh) ≤ (1 + κ) ‖∇xh − σh ‖2
Ω

+ (1 + κ−1) C2 h2 ‖ f − Pk f ‖2
Ω
,

which is valid for all σh ∈ Vh. Minimising the right hand side of the above inequality with respect
to the equilibration parameter κ yields a result analogous to (7):

|xh − x0 |Ω,1 ≤ inf
κ>0

√

H(κ)(xh, σh) ≤ ‖∇xh − σh ‖Ω
+ C h ‖ f − Pk f ‖

Ω
.

Hereby, σh ∈ Vh is an arbitrary field and C > 0 denotes an interpolation constant. Consequently,
we may claim our approach to also encompass any conventional hypercycle estimate. Since the
equilibrated residual method can be considered a device of obtaining suitable vector fields for an
hypercycle estimate pertaining to a variational statement with relaxed admissibility constraints,
this particular technique is subsumable as well.
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General remarks on a posteriori error computations

To give a complete account of all the results, that have been obtained throughout, roughly
speaking, the last 30 years in the field of a posteriori error estimation, is nowadays nigh impossible.
Querying for instance the database of the European Mathematical Society for publications, which
carry the catchphrase posteriori in their title, will return more than 700 relevant entries. A survey
of the most important techniques and their underlying mathematics can be found in [5, 61, 138].

Broadly speaking, the existing a posteriori error estimators belong to one of three categories:
They either attempt to bound the residual of the finite element approximation in some dual
norm or they rely on an extrapolation principle. The third category of error estimators employs
a complementary formulation of the original problem to find upper and lower bounds on the
approximation error. The classical explicit error estimators, which have been introduced by I.
Babuška and W. Rheinboldt [14, 15], can be counted in the first category, while the so called
patch recovery method suggested by O. Zienkiewicz and J. Zhu [142] belongs to the second. It is
remarkable, that methods from the third category may claim progeniture: some were discussed
as early as 1964 in the papers of S. Mikhlin [109] and B. Fraeijs de Veubeke [71].

The mathematical foundations of those error estimators, which fall into the first respectively
third category, have been outlined above. In the following we will not consider any methods
from the second category for basically two reasons: these error estimators aim at constructing
an approximation to the gradient of the analytical solution, which is more accurate than the
gradient of the numerical solution. Hence, we may consider them as hypercycle estimates with
the consistency error suppressed as a perturbation of higher order. Secondly, these estimators
rely heavily on super-approximation properties to be exhibited by the discretisation procedure.
(Concise surveys of the research pertaining to such phenomena can be found in [95, 96].) For
all practical purposes, however, the requirements are oftentimes difficult if not even impossible
to meet. Therefore, the analysis of the consistency error is most likely to fail and the reliability
of the error estimates stays dubious. Gradient recovery schemes, which work on unstructured
meshes have been investigated but recently [19,44,83].

Those methods used to obtain a posteriori estimates for the energy error in terms of certain
residual expressions can also be employed to compute bounds on various other quantities. The
methodology advocated in the papers of Rannacher et al. (see [21] for an overview) is based on a
technical device attributed to Aubin [10] and Nitsche [113]: The best approximation property of
the numerical solution is applied to both arguments of a bilinear form, which has been introduced
via a suitably defined adjoint problem. The resulting a posteriori estimates contain weights,
which may be assessed either by processing the numerical solution to the adjoint problem or by
invoking apposite stability results. The latter approach was developed by Babuška and Miller
[11–13] and has been taken up among others by Eriksson and Johnson [62, 63]. An alternative
approach to the computation of bounds on functional outputs has been promulgated by Patera
et al. [104, 115, 116]. Their technique is based on the formulation of a suitably defined saddle
point problem and may therefore be counted into the third category of a posteriori estimators.

A posteriori energy error estimates for nonlinear problems have been considered by a number
of authors. To give but a few references we note, that [117, 136] contains the analysis of explicit
residual estimators, while in [47] an implicit estimator for the energy error is discussed. In [7]
a posteriori bounds on the approximation error of a dual mixed Galerkin scheme are derived.
The main analytical tool in these papers is essentially the linearisation of the problem combined
with appropriate assumptions on the Fréchet derivative of the functional to be minimised. The
use of duality techniques from the calculus of variations has been discussed in a paper [126] by
S. Repin and Xanthis with a view to plastomechanical problems. The first of these authors has
ever since [123–125] elaborated a more general theory for a posteriori error computations based
on the relaxation of the dual formulation. Still, his results seem geared towards the special case,
that the functional G :X −→ R in the context of (10) is linear, and are based on a number of ad
hoc assumptions, which seem to limit their applicability even further.

A posteriori estimates for variational problems involving constraints can be classified in the
same manner as those estimators for unconstrained problems. Although the literature on such
problems is considerable less extensive, we can still find examples for each type of approach: In [93]
an estimator based on extrapolation principles is proposed, while an implicit estimator is derived
in [6], which relies on the hybridisation of a primal discretisation scheme and may be counted
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into the third category. Explicit estimators for the obstacle problem have been investigated in
papers [45, 73, 86, 103] authored or coauthored by Johnson, Nochetto and Liu. The former two
authors consider a penalty formulation of the state constraints and can thus exploit the best
approximation property of the numerical solution. The latter introduces a special projection
scheme, by which an admissible approximation is found to the analytical solution of the variational
inequality. The resulting error bound consists of two parts: One looks like a conventional a
posteriori estimator for the unconstrained problem, while the other accounts for an interpolation
error incurred in the first stage of the projection scheme. This second contribution is allegedly
a higher order perturbation and hence dropped. In [23] the constraints are practically ignored
and a conventional weighted error estimator is defined outside the contact set of the numerical
solution. The extrapolation approach suffers from the limited regularity of the analytical solution
near the boundary of the contact set (see e. g. [89,101]). The implicit estimator is dependent on
the proper statement of the local subproblems, while the other approaches are critically affected
either by the penalisation or the proper resolution of the contact set. Duality techniques from the
calculus of variations have already been considered by Hlaváček et al. [82], who applied them to
unilateral boundary value problems. A posteriori error estimates for the obstacle problem have
been derived in [41, 42] by introducing the state constraint into the saddle point formulation of
the primal problem with the help of an additional Lagrange multiplier.

On the contents of this Dissertation

Along the lines of our above exposition we shall develop a more general approach to a posteriori
error computations for the numerical solutions of certain variational problems. Our deliberations
form the fairer part of chapter 1 and are intended to lead in easy stages to an abstract bound on
the approximation error, which is measured in the energy norm. We conclude the first chapter
with a discussion of our possibilities to extend our theoretical framework to the computation of
bounds on functional outputs, which depend on the solution of the variational problem.

In chapter 2 two generic applications will be considered: the Laplace and the so called Obstacle
problem. The latter serves as a simple example for a variational inequality. In both cases, we
consider the impact of penalising the admissibility constraint and discuss the accuracy of the
resulting hypercycle estimates. In the case of the obstacle problem we compare our findings
to those results we have obtained by the alternative approach mentioned above. Using duality
techniques we are able to exhibit the generalised hypercycle estimates as complementary energy
functionals, which are associated with a differential operator of Helmholtz type. Thus the very
nature of the penalisation procedure becomes apparent.

The next chapter deals with those issues, which arise out of the necessity to find the dual
parameters present in the hypercycle estimates in some finite dimensional trial space. The bulk
of the chapter is dedicated to the discussion of a novel hybridisation procedure for dual mixed
discretisations of elliptic boundary value problems. We complement our deliberation in chapter
4 with a closer look at the technical requirements, a finite element software should meet to
fully exploit the potential of generalised hypercycle estimates. The use of multilevel solvers for
constrained variational problems in a dual mixed formulation is discussed in section 4.3. In this
context, we provide a proof of convergence for a new iteration scheme, that we may be employed
either as a smoother or as a solver, for it admits a preconditioner. The description of numerical
experiments in chapter 5 concludes this text.



Chapter 1

A general Framework for A posteriori Error Estimators

based on Duality Techniques

Throughout the last thirty years, roughly speaking, a substantial number of numerical schemes
has been developed which aim at supplying estimates for the error we necessarily incur when
we employ computing machinery to find approximations to the solution of partial differential
equations. Any attempt at assessing their respective amenities or disadvantages we deem futile.
Hence, we have not arranged the following paragraphs with the intention of pitching a number of
widely known and well approved numerical techniques against some new procedures of our own
invention in order to show that our approach will yield more precise a posteriori error estimates
than the established methods do. Let us instead inquire into the minimal requirements we have
to impose on a variational problem such that we are still able to recover reliable information
about the approximation error from the data of the problem and from its numerical solution.

We shall try and reach our goal in a somewhat implicit manner by attempting to exploit
only the generic properties of the variational problem, when we derive our a posteriori estimates.
Consequently, our treatment of the subject matter will be rather abstract: examples shall be
supplied in the succeeding chapter. We want to stress, we are not going to sacrifice the usefulness
of our results for the sake of the most general treatment possible. In fact our scope will be limited
to the minimisation of such convex functionals, as they have already been studied by Fenchel
[67, 68] in the middle of the last century - namely to problems of the form:

F (Λx) + G(x) −→
x∈X

inf

with F and G denoting convex functionals and Λ a continuous, linear operator. We have already
endeavoured to justify in our introduction, why the uniform convexity of the functional F is a
requirement we cannot dispense with, if we want to extract any information on the approximation
error from the numerical solution. Therefore, we will not enter into these deliberations again.
Our setting is sufficiently comprehensive to cover a substantial number of relevant problems.

The tool we will mainly employ in analysing a posteriori estimates for convex variational
problems is a calculus commonly known as Fenchel transform. The first section of this chapter
contains a compilation of assorted facts, chiefly about convex functions and the properties of the
Fenchel transform. It is intended as a short primer and for referencing purposes. In the following
section we present a detailed development of those generalised hypercycle estimates, we have
briefly mentioned in the introduction. The last section offers an outlook how the mathematical
technology discussed in section 1.2 can be extended to comprise computable a posteriori estimates
for the output of linear functionals, which are applied to the numerical solution of the variational
problem in order to gauge particular features of that approximation.

1.1 Preliminaries

In order to develop our theoretical framework for generalised hypercycle estimates in a possibly
self-contained manner we will recapitulate a number of basic definitions and results from the field
of convex analysis. As it is impossible to give a complete survey of the mathematics involved in
the development of such estimates, a familiarity with the elementary concepts of topology and
functional analysis is hereby assumed on the part of the reader.

1.1.1 Convex sets and paired spaces

We recall that a subset C ⊂ X of some real linear space X is called convex, if for any two elements
x1 ∈ C and x2 ∈ C and for any real parameter λ ∈ [0, 1] the so called convex combination
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xλ := λx1 +(1−λ)x2 is again contained in C. For any subset C ⊂ X the convex hull abbreviated
by co C is defined as the smallest convex subset of X still containing C.

A pairing between two real linear spaces X and Y is a bilinear form 〈·, ·〉 :X × Y −→ R. Any
locally convex topology on X is termed compatible with this pairing, if the functional

〈 ·, y 〉 : X −→ R

is continuous for any y ∈ Y and if every continuous linear functional on X can be represented
in this way for some y ∈ Y . A compatible topology on Y can be defined mutatis mutandis. The
spaces X and Y are said to be paired, once a particular pairing has been singled out and both
X and Y have been equipped with compatible topologies with respect to that pairing.

Let X and X ′ denote two paired spaces. For any x′ ∈ X ′ \ {0} and any α ∈ R the half-space

Hx′, α : =
{

x ∈ X
∣

∣ 〈x, x′ 〉 ≤ α
}

may be introduced. We recall that any closed, convex subset of X can be represented as an
intersection of such half-spaces. To be more specific let C ⊂ X denote an arbitrary set and define
C ′ := { (x′, α) ∈ X ′ × R | C ⊂ Hx′, α }. The following identity is known [60] to hold:

cl ( co C ) =
⋂

(x′,α)∈C′

Hx′, α .

1.1.2 Convex and uniformly convex functions

A function f :X −→ [−∞,+∞] shall be called convex, if its epigraph epi f which is defined by

epi f : =
{

(x, σ) ∈ X × (−∞,+∞)
∣

∣ f(x) ≤ σ
}

is a convex subset of X × R in the sense specified above. If the function f is merely defined on
some subset C ⊂ X, the above definition will be applied to the extension f̃ :X −→ [−∞,∞] of
the original function f , which is specified by:

f̃(x) :=

{

f(x) ; x ∈ C

+∞ ; else .

In the following, we will tacitly identify the function f with its extension f̃ . We note, that

dom f : =
{

x ∈ X
∣

∣ f(x) < +∞
}

referred to as the effective domain of the function f is a convex subset of X, if f is convex. We
shall term a function f proper, if its effective domain is not empty and f(x) > −∞ holds for all
x ∈ X. We remark that a proper function f :X −→ (−∞,+∞] is convex if and only if dom f is
a convex set and f is a convex function relative to dom f in the classical sense:

f(λx1 + (1 − λ)x2 ) ≤ λ f(x1) + (1 − λ) f(x2) ; λ ∈ (0, 1) (1.1)

with arbitrary x1, x2 ∈ dom f . Should the left hand side of (1.1) be strictly smaller than the right
hand side, the function f is called strictly convex relative to dom f .

The convex hull of some function f :X −→ (−∞,+∞] will be denoted by co f . It is defined
as the largest convex function, which is less or equal f in a pointwise sense. Geometrically, the
epigraph of co f can be obtained from the convex hull of epi f :

epi (co f) =
{

(x, σ) ∈ X × R
∣

∣ (x, ρ) ∈ co (epi f) ; ρ > σ
}

.

A proper, convex function f :X −→ (−∞,+∞] shall be called uniformly convex at some point
y ∈ dom f if there is a nondecreasing function δ : R

+
0 −→ R

+
0 with the following properties:

f
(x+ y

2

)

≤ 1

2
f(x) +

1

2
f(y) − δ( ‖x− y‖ ) ; x ∈ dom f
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and δ(t) > 0 for any argument t > 0. If the above inequality holds for any y ∈ dom f and if
δ can be specified irrespectively of the point y, the function f is termed uniformly convex. The
indicator function χU :X −→ {0,+∞} of some subset U ⊂ X is defined by:

χU (x) :=

{

0 ; x ∈ U

+∞ ; else .

We say, that f is uniformly convex on U ⊂ X, if the function f + χU is uniformly convex.

1.1.3 Lower-semicontinuous functions

A function f :X −→ [−∞,+∞] is called lower-semicontinuous if its epigraph epi f ⊂ X × R is
closed. This concept allows for two constructions by which new functions can be derived from
f . The lower-semicontinuous hull of f designated by lsc f may be introduced as the largest
lower-semicontinuous function, which is smaller or equal f in a pointwise sense. Hence, we note:
epi (lsc f) = cl (epi f). Equivalently, we may define:

(lsc f)(x) := lim inf
y→x

f(y) ; x ∈ X .

The closure of some function f , which will be denoted by cl f , differs but slightly from the
lower-semicontinuous hull of f . It is defined as:

cl f : =

{

lsc f ; f > −∞
−∞ ; else .

A function f shall be called closed, if f = cl f holds. Assume that f is convex. In this case also
lsc f and cl f are convex functions. Furthermore, if lsc f has a finite value at some point, then f
and lsc f are proper and cl f = lsc f holds. Otherwise, lsc f is of the form:

lsc f : =

{

−∞ ; x ∈ cl (dom f)

+∞ ; else .

1.1.4 The Fenchel transform

Let X and Y denote two paired spaces which are related by the bilinear form 〈·, ·〉 :X×Y −→ R.
With any function f :X −→ [−∞,+∞] a conjugate function f ∗ : Y −→ [−∞,+∞] defined as

f∗(y) := sup
x∈X

{

〈x, y〉 − f(x)
}

; y ∈ Y (1.2)

may be associated. The function f∗ is convex and closed by construction. In the same pattern a
conjugate function g∗ :X −→ [−∞,∞] can be specified for any function g : Y −→ [−∞,∞]:

g∗(x) := sup
y∈Y

{

〈x, y〉 − g(y)
}

; x ∈ X .

The mapping f −→ f∗ is called the Fenchel transform. We note, that f ∗∗ = cl (co f) holds for
any function f on X respectively Y . Hence, the Fenchel transform induces a one-to-one mapping
between the closed convex functions on X and the closed convex functions on Y . The proof is
simple and can be found e. g. in [128].

A function f is called concave if the extension of −f is convex. Using this approach most
of the concepts, that have been reviewed so far, can be translated easily to the case of concave
functions. The definition introduced in the convex case is thereby applied to the function −f ,
then the result is reconverted by multiplying with −1. Thus upper-semicontinuous functions,
upper-semicontinuous hulls and (upper) closures of concave functions can be specified. The
exception to this rule is the Fenchel transform: Instead of considering −(−f)∗ as the conjugate
of some concave function f we introduce a Fenchel transform f −→ f∗ in the concave sense:

f∗(y) := inf
x∈X

{

〈x, y〉 − f(x)
}

; y ∈ Y .
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Analogous results hold for convex and concave functions. Especially, we find f∗∗ = cl f for any
concave function f on X respectively Y . Therefore, the operation f −→ f∗ induces a one-to-one
mapping between the closed concave functions on X and the closed concave functions on Y . The
conjugates of some function f on X in the convex and in the concave sense are related by:

− f∗(y) = (−f)∗(−y) ; y ∈ Y .

1.1.5 Subdifferentials

Let X and Y denote two linear spaces, that have been paired by means of the bilinear form
〈·, ·〉 :X × Y −→ R. The subdifferential ∂f(x) ⊂ Y of an arbitrary function f :X −→ [−∞,+∞]
at some point x ∈ X is defined as the set

∂f(x) :=
{

y ∈ Y
∣

∣ f(x) + f∗(y) = 〈x, y〉
}

.

With a view to the definition (1.2) of the Fenchel transform f∗ we may state, that y ∈ ∂f(x)
holds if and only if f(x) has a finite value and additionally:

f(x′) ≥ f(x) + 〈 y, x′ − x 〉 ; x′ ∈ X .

Hence, we can identify each subgradient y ∈ ∂f(x) with a continuous affine mapping, that is
nowhere greater than the function f but coincides with it at the very point x ∈ dom f . We recall
(see e. g. [60]) that a proper function f , which is convex and continuous over the interior of
its effective domain, has a nonempty subdifferential ∂f(x) 6= ∅ for any x ∈ dom f . In case this
function f is also Gâteaux-differentiable at the point x0 ∈ X, that is:

y ∈ Y : lim
µ↓0

f(x0 + µx) − f(x0)

µ
= 〈y, x〉 ; x ∈ X .

Its subdifferential is known to consist of only one element: ∂f(x0) = {y}. Conversely, if the
convex function is continuous at the point x ∈ dom f and there is only one subgradient y ∈ ∂f(x)
then f is Gâteaux-differentiable with df(x) = y.

1.1.6 Properties of uniformly convex functions

A uniformly convex function can be characterised in different ways, that are equivalent to the
definition presented in section 1.2.2. One such definition reads: A proper, lower-semicontinuous
and convex function f : X 7−→ (−∞,+∞] is uniformly convex at x ∈ dom f , if there exists a
nondecreasing function δ : R

+
0 −→ [0,+∞] with the property δ(t) > 0 for all t > 0, such that

f(λx+ (1 − λ)y) ≤ λ f(x) + (1 − λ) f(y) − λ(1 − λ) δ(‖y − x‖) ; y ∈ dom f

holds for any value of λ ∈ (0, 1). Another possible characterisation of the uniform convexity of f
at the point x ∈ dom f reads: For any ε > 0 there is some δ > 0, such that

f
(y + x

2

)

≤ 1

2
f(y) +

1

2
f(x) − δ (1.3)

holds for any y ∈ dom f with the property: ‖x − y‖ ≥ ε. Evidently, this latter definition is
equivalent to the one presented in section 1.2.2. The former definition can be obtained from the
latter in the following manner: We fix ε > 0 and λ ∈ (0, 0.5). If y ∈ dom f satisfies ‖x− y‖ ≥ ε,
the convexity of f and the estimate (1.3) warrant:

f(λx+ (1 − λ)y) = f
(

2λ
(x+ y

2

)

+ (1 − 2λ)y
)

≤ 2λ f
(x+ y

2

)

+ (1 − 2λ) f(y)

≤ λ f(x) + λ f(y) − 2λ δ + (1 − 2λ)f(y)

< λf(x) + (1 − λ) f(y) − 2λ (1 − λ) δ .
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The very same estimate can be obtained for λ ∈ (0.5, 1) by reversing the roles of x and y and
replacing λ with 1 − λ. We assume that X is a reflexive Banach space and f :X −→ (−∞,+∞]
a proper, lower semi-continuous function, such that the interior of dom f is not empty. We will
say, that a function δ :R+

0 −→ [0,+∞] belongs to the set D, if it has the following properties: δ is
lower-semicontinuous and convex, the interior of dom δ is not empty and δ(t) = 0 implies t = 0.
We define: ∂f := { (x, x∗) ∈ X ×X∗ |x∗ ∈ ∂f(x) }. If f is uniformly convex at x ∈ dom f , such
that ∂f(x) 6= ∅ holds, and x∗ ∈ ∂f(x) is an arbitrary element, we may assert:

i) δ ∈ D : f(y) ≥ f(x) + 〈y − x, x∗〉 + δ(‖y − x‖) ; y ∈ X

ii) δ ∈ D : f∗(y∗) ≤ f∗(x∗) + 〈x, y∗ − x∗〉 + δ∗(‖y∗ − x∗‖) ; y∗ ∈ X∗

iii) δ ∈ D : δ(‖x− y‖) ≤ 〈y − x, y∗ − x∗〉 ; (y, y∗) ∈ ∂f

iv) f∗ is Fréchet differentiable at x∗ ∈ ∂f(x).

v) There is a nondecreasing function φ : R
+
0 −→ [0,+∞], such that:

lim
t↓0

φ(t) = 0 ∧ ‖y − x‖ ≤ φ(‖y∗ − x∗‖) ; (y, y∗) ∈ ∂f .

A proof of the above statements can be found in [141]. Stronger results can been obtained, if the
function f is uniformly convex. We will say, that a function δ ∈ D is contained in the subspace
D0, if the quotient δ(t)/t2 is bounded away from 0 in the limit t→ ∞. We contend:

vi) δ0 ∈ D0 : f(y) ≥ f(x) + 〈y − x, x∗〉 + δ0(‖y − x‖) ; (x, x∗) ∈ ∂f, y ∈ dom f

vii) δ0 ∈ D0 : f∗(y∗) ≤ f∗(x∗) + 〈x, y∗ − x∗〉 + δ∗0(‖y∗ − x∗‖) ; (x, x∗)∈∂f, y∗∈dom f∗

viii) δ0 ∈ D0 : δ0(‖x− y‖) ≤ 〈y − x, y∗ − x∗〉 ; (x, x∗) , (y, y∗) ∈ ∂f

ix) f∗ is Fréchet equidifferentiable in the interior of dom f .

x) There is a nondecreasing function φ0 : R
+
0 −→ [0,+∞], such that:

lim
t↓0

φ0(t) = 0 ∧ ‖y − x‖ ≤ φ0(‖y∗ − x∗‖) ; (x, x∗) , (y, y∗) ∈ ∂f .

Again, for all of these assertions proofs are supplied in [141]. As a corollary of the assertion vi)
we may claim, that every uniformly convex functional f :X −→ (−∞,+∞] is coercive.

1.2 Error Estimates in the Energy Norm

The following paragraphs constitute the core of chapter 1 and summarise the major part of our
research efforts, if we take only the theoretical results into account. Under the sole assumption,
that the numerical solution of our variational problem is an admissible function, we derive reliable
bounds on the approximation error which is measured in the so called energy norm. In the first
section we specify the variational setting we are going to consider and define our notation. In
the following section we introduce a dual formulation with the help of the Fenchel transform.
Combining the primal with the dual statement we thus obtain an abstract error bound, which
serves as a starting point for all further manipulations. Since the abstract error estimate relies
on the dual statement of the variational problem an additional admissibility constraint has been
introduced. This dual admissibility constraint is taken into account by a suitable penalisation,
which we derive in section 1.2.3 from certain generic properties of uniformly convex functionals,
respectively from those of their Fenchel conjugates. The emerging error bounds may be viewed as
consisting of two residual expressions, which correspond to the necessary optimality conditions
of the primal formulation, and a mixed term, which contains information on both residuals.
In section 1.2.4 we show, how these contributions can be decoupled. In the following section
an alternative approach is discussed, which ultimately leads to a sharper if more involved error
bound. In section 1.2.6 a number of properties are compiled, the generalised hypercycle estimates
feature. These results are summarised in the final section 1.2.7.
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1.2.1 Statement of the variational formulation

Let X and Y denote reflexive Banach spaces and Λ :X −→ Y a continuous linear operator. The
spaces X∗ and Y ∗ are paired with X respectively Y . The corresponding pairings are denominated
〈·, ·〉

X
:X×X∗ −→ R and 〈·, ·〉

Y
:Y ×Y ∗ −→ R. We assume, that Λ has a continuous transposed

Λ∗ : Y ∗ −→ X∗, which is characterised by:

〈

x , Λ∗y∗
〉

X
: =

〈

Λx , y∗
〉

Y
; y∗ ∈ Y ∗ .

Let F : Y −→ R and G :X −→ (−∞,+∞] denote two convex functionals. Let us assume, that
the first functional is uniformly convex, while the latter is merely proper and continuous over its
effective domain. We require, that the operator Λ be coercive:

λ0 > 0 : ‖x ‖
Λ

: = ‖Λx ‖
Y

≥ λ0 ‖x ‖
X

; x ∈ X . (1.4)

Hence, another norm is defined on the space X by the left hand side of the above inequality,
which below we will refer to as the energy norm. We will consider the minimisation problem

J(x,Λx) := F (Λx) + G(x) −→
x∈X

inf . (1.5)

The existence of an unique solution x0 ∈ X to this primal formulation is a well known fact (see
e. g. [60]), for the functional F and therewith also J is coercive. With a view to section 1.1.6 we
can state furthermore, that there is a forcing function φ ∈ D0, such that

2 F
(

y1+y2
2

)

≤ F (y1) + F (y2) − φ( ‖y1 − y2‖Y ) (1.6)

holds for any two elements y1, y2 ∈ Y .

1.2.2 An abstract a posteriori error estimate

Our assumptions on the functional J ensure there is an unique minimiser x0 ∈ X. Let us suppose
that we have obtained an approximation x ∈ X to this element by some numerical procedure.
We may bound the approximation error by:

2 φ( ‖x− x0‖Λ
) ≤ J(x,Λx) − J(x0,Λx0) .

To substantiate our claim let us recapitulate the results presented in section 1.1.6. We select an
arbitrary parameter η ∈ (0, 1) and introduce the abbreviation y := η x0 + (1 − η)x. Thanks to
(1.6) and the convexity of G the following inequality holds:

2 η (1 − η) φ( ‖x− x0‖Λ
) ≤ η F (Λx0) + (1 − η)F (Λx) − F (Λy)

≤ η J(x0,Λx0) + (1 − η) J(x,Λx) − J(y,Λy)

≤ (1 − η) ( J(x,Λx) − J(x0,Λx0) ) .

Dividing the above equation by (1 − η) and proceeding to the limit η → 1 finishes the proof. As
both F and G are convex and closed, we can represent the functional J :X × Y −→ R with the
help of its conjugate J∗ :X∗×Y ∗ −→ R. Thereby, the pairing for the product spaces X ×Y and
X∗ × Y ∗ may simply be defined as a sum: 〈x, x∗〉

X
+ 〈y, y∗〉

Y
. Accordingly, we find:

inf
x∈X

J(x,Λx) = inf
x∈X

{

sup
x∗∈X∗

sup
y∗∈Y ∗

{

〈x, x∗〉 + 〈Λx, y∗〉 − J∗(x∗, y∗)
}

}

≥ sup
x∗∈X∗

sup
y∗∈Y ∗

{

inf
x∈X

{

〈x, x∗ + Λ∗y∗ 〉 − J∗(x∗, y∗)
}

}

= sup
y∗∈Y ∗

{

−J∗(−Λ∗y∗, y∗)
}

≥ −J∗(−Λ∗z∗, z∗)

(1.7)

for any element z∗ ∈ Y ∗. The conjugate functional J∗ can be decomposed in the following way:

J∗(x∗, y∗) = sup
x∈X

sup
y∈Y

{

〈x, x∗〉 + 〈y, y∗〉 − F (y) −G(x)
}

= F ∗(y∗) + G∗(x∗)
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with x∗ ∈ X∗ and y∗ ∈ Y ∗. By combining these results an abstract bound on the approximation
error is obtained, that consists of two distinct contributions, both of them being positive:

2 φ( ‖x− x0‖Λ ) ≤ MF (Λx, y∗) + MG(x,−Λ∗y∗) ; y∗ ∈ Y ∗ . (1.8)

Said contributions feature the same mathematical structure. Actually, they read:

MF (y, y∗) := F (y) + F ∗(y∗) − 〈y, y∗〉
Y

; y ∈ Y, y∗ ∈ Y ∗ ,

MG(x, x∗) := G(x) + G∗(x∗) − 〈x, x∗〉
X

; x ∈ X, x∗ ∈ X∗ .

1.2.3 Towards a computable error majorant

While the first part of the abstract error estimate (1.8) is always finite, the second part of the
estimate need not necessarily be so. Even if the requirement x ∈ domG is met, MG(x,Λ∗y∗) can
still be infinite depending on our choice of the parameter y∗ ∈ Y ∗. Hence, we may be reduced to
considering a constrained minimisation problem of the form

MF (Λx,−z∗) + MG(x,Λ∗z∗) −→
z∗∈Z∗

inf (1.9)

with the convex set Z being defined by: Z∗ := (Λ∗)−1(domG∗) merely to obtain a meaningful
bound on the approximation error. As problem (1.9) will be more difficult to treat in most
applications than the primary minimisation task, we conclude, that the formula (1.8) needs to be
revised in order to become a widely applicable error estimator. With a view to paragraph 1.1.6
we may state, that the conjugate functional F ∗ is Fréchet-differentiable. Furthermore, we may
determine a convex function h0 ∈ D0, such that:

MF (Λx,−z∗) = F (Λx) + F ∗(−z∗) − 〈Λx, z∗〉
Y

= F (Λx) + F ∗(y∗) − 〈Λx, y∗〉
Y

+ 〈Λx, y∗ + z∗〉
Y

+ F ∗(−z∗) − F ∗(y∗)

= MF (Λx, y∗) + 〈Λx− dF ∗(y∗) , y∗ + z∗ 〉
Y

+

+ F ∗(−z∗) − F ∗(y∗) − 〈 dF ∗(y∗) , −z∗ − y∗ 〉
Y

(1.10)

≤ MF (Λx, y∗) + 〈Λx− dF ∗(y∗) , y∗ + z∗ 〉
Y

+ h∗0( ‖ y∗+ z∗‖
Y ∗ )

holds for any two elements y∗, z∗ ∈ Y ∗. A simple calculation shows, that h∗0 is nonnegative and
that h∗0(0) = 0 holds. Let us define the auxiliary function h : Y −→ R

+
0 :

h(y) := sup
t≥0

{

t ‖y‖
Y

− h∗0(t)
}

; y ∈ Y . (1.11)

Since this function is the supremum of a family of convex and closed functions, it is convex and
closed itself. We note: h∗(y∗) = h∗0(‖y∗‖Y ∗) for any element y∗ ∈ Y ∗.

Invoking (1.10) we may bound the first part of the error majorant in (1.9) using an arbitrary
element y∗ ∈ Y ∗ instead of −z ∈ Z∗. Since we will eventually minimise the error majorant with
respect both to z∗ and y∗ we have not given anything away as yet. The next step in our analysis
is more momentous. With a view to the optimality conditions of problem (1.9), namely:

− z∗ ∈ ∂F (Λx) ∧ Λ∗z∗ ∈ ∂G(x) (1.12)

it seems most reasonable to consider those contributions to the error majorant, that may be
conceived as residual terms with respect to the first of the above duality relations, separately
from those contributions that correspond to the second one. While MF (Λx, y∗) is associated
with the first duality relation and MG(x,Λ∗z∗)+h∗(y∗ + z∗) with the second one, the role of the
expression 〈Λx− dF ∗(y∗), y∗ + z∗〉

Y
is ambiguous. Employing an estimate of the form:

〈Λx− dF ∗(y∗) , y∗ + z∗ 〉
Y

≤ 1

2
‖Λx− dF ∗(y∗) ‖2

Y
+

1

2
‖ y∗ + z∗ ‖2

Y ∗ (1.13)
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we may preserve the dichotomy present in the abstract error bound (1.8) but we loose some of its
precision at the same time. If we aim at a sharp estimate, we will have to treat the left hand side
of (1.13) along with MG(x,Λ∗z∗) + h∗(y∗ + z∗). In that latter case the resulting error majorant
will no longer consist of two distinct parts that can be easily matched against the duality relations
(1.12). Consequently, it may be much harder to evaluate.

1.2.4 Separating primal and dual variables

The approach we will discuss below was proposed in [125] in dealing with the special case that
G is a continuous linear functional. It is evident, however, that its main idea is also applicable
in the more general case we have specified in section 1.2.1. Let us introduce a proper function
H :Y −→ R. Our choice of this function is arbitrary, but should depend on the actual properties
of the functionals F and G. By definition H and its conjugate H∗ satisfy the inequality:

〈y, y∗〉
Y

≤ H(y) + H∗(y∗) ; y ∈ Y , y∗ ∈ Y ∗ . (1.14)

Using this inequality to bound the second expression on the right hand side of (1.10) we arrive
at a new error majorant by combining (1.8) with (1.10):

2 φ( ‖x− x0‖Λ ) ≤ M̂F (Λx, y∗) + M̂G(x, y∗) ; y∗ ∈ Y ∗ . (1.15)

The revised contributions M̂F and M̂G to this error estimate are defined by

M̂F (Λx, y∗) := MF (Λx, y∗) + H( Λx− dF ∗(y∗) ) ,

M̂G(x, y∗) := inf
z∗∈Y ∗

{

MG(x,Λ∗z∗) + H∗(y∗ + z∗) + h∗(y∗ + z∗)
}

for any parameter y∗ ∈ Y ∗. In order to evaluate M̂G let us introduce the following Lagrangian:

L(z∗; y, z, s) := G(x) −G(s) − 〈Λ(x− s), z∗〉
Y

+ 〈y + z, y∗ + z∗〉
Y
−H∗∗(z) − h(y)

with z∗ ∈ Y ∗ and y, z ∈ Y respectively s ∈ X. Obviously, this function is convex and continuous
in its first argument, as it is actually an affine mapping. Accordingly, we find:

y, z ∈ Y , s ∈ X : lim
‖z∗‖

Y ∗ →∞
L(z∗; y, z, s) = ∞ .

With respect to y, z ∈ Y and s ∈ X the Lagrangian can be identified as a sum of a continuous
linear mapping and a concave, upper-semicontinuous function. As such L(z∗; ·, ·, ·) is concave and
upper-semicontinuous itself for any z∗ ∈ Y ∗. Though for theses reasons L need not necessarily
have a saddle-point (see e. g. [60] proposition 2.3 in chapter VI), we still may state:

inf
z∗∈Y ∗

{

sup
y,z∈Y

sup
s∈X

L(z∗; y, z, s)
}

= sup
y,z∈Y

sup
s∈X

{

inf
z∗∈Y ∗

L(z∗; y, z, s)
}

. (1.16)

By construction of L we can recover the left hand side of (1.16) in the following manner:

M̂G(x, y∗) = inf
z∗∈Y ∗

{

G(x) +G∗(Λ∗z∗) − 〈Λx, z∗〉
Y

+H∗(y∗ + z∗) + h∗(y∗ + z∗)
}

= inf
z∗∈Y ∗

{

G(x) + sup
s∈X

{

〈s,Λ∗z∗〉
X
−G(s)

}

− 〈Λx, z∗〉
Y

+

+ sup
y,z∈Y

{

〈 y + z, y∗ + z∗〉
Y
− H∗∗(z) − h(y)

}

}

= inf
z∗∈Y ∗

{

sup
y,z∈Y

sup
s∈X

L(z∗; y, z, s)
}

. (1.17)

Since the Lagrangian L is affine in its first argument, its infimum with respect to z∗ will only be
finite, if the dependency on z∗ can be dropped altogether. Hence, we may define the set:

Yy,s : =
{

z ∈ Y
∣

∣ Λ(x− s) = y + z
}

; y ∈ Y, s ∈ X .
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Using this definition the infimum of L with respect to z∗ ∈ Y ∗ can be written as:

inf
z∗∈Y ∗

L(z∗; y, z, s) =







G(x) −G(s) + 〈y + z, y∗〉
Y
−H∗∗(z) − h(y) ; z ∈ Yy,s

−∞ ; else .

To simplify the notation we introduce another function L̂ : Y ×X −→ R :

L̂(y, s) := sup
z∈Y

{

inf
z∗∈Y ∗

L(z∗; y, z, s)
}

= sup
z∈Yy,s

{

inf
z∗∈Y ∗

L(z∗; y, z, s)
}

= G(x) −G(s) + 〈Λ(x− s), y∗〉
Y
−H∗∗(Λ(x− s) − y) − h(y) .

If x ∈ domG holds, we find ∂G(x) 6= ∅ by construction of G. In this case we may bound L̂ by:

L̂(y, s) ≤ 〈x− s,Λ∗y∗ + x∗〉
X
−H∗∗(Λ(x− s) − y) − h(y) ; x∗ ∈ ∂G(x) (1.18)

for arbitrary arguments y ∈ Y and s ∈ X. We continue our analysis of M̂G(x, y∗) and define:

K(s) := inf
y∈Y

{

H∗∗(Λs− y) + h(y)
}

; s ∈ X . (1.19)

For any subgradient x∗ ∈ ∂G(x) we can now estimate the supremum of L̂ with respect to y ∈ Y :

sup
y∈Y

L̂(y, s) ≤ 〈x− s,Λ∗y∗ + x∗〉
X

− K(x− s) ; s ∈ X . (1.20)

Combining (1.16) and (1.17) with the estimates (1.18) and (1.20) we conclude eventually:

M̂G(x, y∗) = sup
s∈X

{

sup
y∈Y

L̂(y, s)
}

≤ sup
s∈X

{

〈x− s,Λ∗y∗ + x∗〉
X
− K(x− s)

}

.

Therewith, the following bound for the approximation error ‖x− x0‖Λ
has been derived:

2 φ( ‖x− x0‖Λ
) ≤ M̂F (Λx, y∗) + inf

x∗∈∂G(x)
K∗(Λ∗y∗ + x∗) ; y∗ ∈ Y ∗ . (1.21)

As far as that will be possible for as abstract an estimate as (1.21) we will discuss the properties
of the above error majorant in a dedicated section below.

1.2.5 The second duality relation revisited

Starting from the error estimate (1.10) we will give an improved error bound compared to (1.21).
We have already hinted at the necessity to consider primal and dual variables and their respective
contributions to the error majorant simultaneously. Accordingly, we define a Lagrangian

Ly(z
∗, z, s) := G(x) −G(s) + 〈Λs+ z − y, z∗〉

Y
+ 〈Λx+ z − y, y∗〉

Y
− h(z)

with z∗ ∈ Y ∗, z ∈ Y and s ∈ X. The element y ∈ Y is but an arbitrary parameter. Invoking the
very same arguments we have employed in the previous section we can verify:

inf
z∗∈Y ∗

{

sup
z∈Y

sup
s∈X

Ly(z
∗; z, s)

}

= sup
z∈Y

sup
s∈X

{

inf
z∗∈Y ∗

Ly(z
∗; z, s)

}

(1.22)

for any y ∈ Y . We proceed by identifying the right side of the above equation:

M̂G(y;x, y∗) := inf
z∗∈Y ∗

{

MG(x,Λ∗z∗) + 〈Λx− y, y∗ + z∗〉
Y

+ h∗(y∗ + z∗)
}

= inf
z∗∈Y ∗

{

G(x) +G∗(Λ∗z∗) + 〈Λx− y, y∗〉
Y
− 〈y, z∗〉

Y
+ h∗(y∗ + z∗)

}

= inf
z∗∈Y ∗

{

G(x) + sup
s∈X

{

〈s,Λ∗z∗〉
X
− G(s)

}

− 〈y, z∗〉
Y

+ 〈Λx− y, y∗〉
Y

+ sup
z∈Y

{

〈 z, y∗ + z∗〉
Y
− h(z)

}

}

= inf
z∗∈Y ∗

{

sup
z∈Y

sup
s∈X

Ly(z
∗; z, s)

}

.
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To evaluate the right hand side of (1.22) we compute the infimum of Ly with respect to z∗ ∈ Y ∗:

inf
z∗∈Y ∗

Ly(z
∗; z, s) =







G(x) −G(s) + 〈Λx+ z − y, y∗〉
Y
− h(z) ; −z ∈ Yy,x+s

−∞ ; else .

In analogy to the procedure we have applied previously we introduce a function L̂y :X −→ R:

L̂y(s) := sup
z∈Y

{

inf
z∗∈Y ∗

Ly(z
∗; z, s)

}

= G(x) −G(s) + 〈x− s,Λ∗y∗〉
Y
− h(y − Λs) .

Under the assumption x ∈ domG we can bound this auxiliary function by:

L̂y(s) ≤ 〈x− s,Λ∗y∗ + x∗〉
X

− h(y − Λs) ; x∗ ∈ ∂G(x) . (1.23)

Hereby, s ∈ X and y ∈ Y are arbitrary elements. We define for any y ∈ Y :

Ky(s) := h( y + Λs ) ; s ∈ X .

Employing this new function Ky and combining the results (1.22) and (1.23) we find:

M̂G(y;x, y∗) = sup
s∈X

L̂y(s) ≤ sup
s∈X

{

〈x− s,Λ∗y∗ + x∗〉
X
− Ky−Λx(x− s)

}

= K∗
y−Λx(Λ

∗y∗ + x∗) ; x∗ ∈ ∂G(x) .

An a posteriori estimate for the error ‖x− x0‖Λ can now be obtained by choosing y = dF ∗(y∗):

2 φ( ‖x− x0‖Λ
) ≤ MF (Λx, y∗) + inf

x∗∈∂G(x)
K∗
dF∗(y∗)−Λx(Λ

∗y∗ + x∗) (1.24)

with y∗ ∈ Y ∗ being arbitrary. Since both majorants (1.21) and (1.24) have been derived by the
very same device, namely by bounding the difference G(x) −G(s) in accordance with

G(x) − G(s) ≤ 〈 x− s , x∗ 〉
X

; x∗ ∈ ∂G(x) ,

the result (1.24) will provide a sharper estimate for the approximation error than the one we
have obtained in the previous section, if we use the same parameter y∗ ∈ Y ∗ in both cases.

1.2.6 General features of the error majorants

Below we will discuss those features of the a posteriori error estimates (1.21) and (1.24) that
can be inferred immediately from our assumptions on the minimisation problem (1.5). For our
convenience let us introduce the following abbreviations:

M̂K(x, y∗) := M̂F (Λx, y∗) + inf
x∗∈∂G(x)

K∗(Λ∗y∗ + x∗) , (1.25)

MK(x, y∗) := MF (Λx, y∗) + inf
x∗∈∂G(x)

K∗
dF∗(y∗)−Λx(Λ

∗y∗ + x∗) (1.26)

with x ∈ domG and y∗ ∈ Y ∗. Since the definition (1.19) of the function K as well as that of Ky

involves the operator Λ :X −→ Y , both of the above error majorants may still not be amenable
to a numerical evaluation, though they are finite for any choice of y∗ ∈ Y ∗. In such a case, a
suitable minorant K̃ : X̃ −→ R for K respectively Ky may be introduced. As X can be a true

subset of X̃, it is necessary to impose some restrictions on the dual variable y∗ in order to ensure
{Λ∗y∗} + ∂G(x) ⊂ X̃∗. Fixing a suitable subset Ỹ ∗ ⊂ Y ∗ let us define:

M̃K(x, y∗) := M̂F (Λx, y∗) + inf
x∗∈∂G(x)

K̃∗(Λ∗y∗ + x∗) ; y∗ ∈ Ỹ ∗ . (1.27)

The minimal requirement we have to impose on any sensible error estimator is its ability to
indicate, if we have found the true solution. Hence, we must verify:

inf
y∗∈Y ∗

{

M̂K(x0, y
∗)

}

= inf
y∗∈Y ∗

{

MK(x0, y
∗)

}

= 0 . (1.28)
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In the case of the error majorants (1.25) and (1.26) it is comparatively easy to see that the
requirement (1.28) is indeed met. Though the haven’t made any use of the fact at the time, we
introduced the first a posteriori error estimate in section 1.2.2, there is a maximisation problem
related to the minimisation problem (1.5) in terms of the conjugate functional J∗:

− J∗(Λ∗y∗,−y∗) = − F ∗(−y∗) − G∗(Λ∗y∗) −→
y∗∈Y ∗

sup .

Our assumption on the functionals F and G ensure, that this so called dual problem with respect
to (1.5) features at least one solution y∗0 ∈ Y ∗, such that the last estimate in (1.7) is in fact an
equality (see e. g. §4 chapter III in [60]). Such a dual solution y∗0 is characterised by:

−Λ∗y∗0 ∈ ∂G(x0) ∧ y∗0 ∈ ∂F (Λx0) .

Setting y∗ = y∗0 and exploiting the fact that x∗ := −Λ∗y∗0 is contained in ∂G(x0) we find:

M̂K(x0, y
∗
0) ≤ MF (Λx0, y

∗
0) + H(Λx0 − dF ∗(y∗0)) + K∗(0) = H(0) + K∗(0) . (1.29)

Hereby, we recall that y∗0 ∈ ∂F (Λx0) implies Λx0 ∈ ∂F ∗(y∗0) by definition of the subdifferential.
For the same reasons we can bound the other error majorant MK by:

MK(x0, y
∗
0) ≤ inf

x∗∈∂G(x)
K∗

0 (Λ∗y∗0 + x∗) ≤ (h ◦ Λ)∗(0) = h∗(0) . (1.30)

Since h∗(0) = 0 holds by construction, this proves (1.28) in the case of the error majorant MK .
To find a bound for the right hand side of (1.29) we will derive a majorant for the function K∗.
With a view to (1.4) we find for any y∗ ∈ Y ∗ and any x∗ ∈ X∗:

K∗(Λ∗y∗ + x∗) = sup
s∈X

{

〈s,Λ∗y∗ + x∗〉
X
− inf

y∈Y

{

H∗∗(Λs− y) + h(y)
}

}

≤ sup
s∈X

sup
y∈Y

{

〈Λs, y∗〉
Y

+ ‖s‖
X
‖x∗‖

X∗ − H∗∗(Λs− y) − h(y)
}

≤ sup
s∈X

sup
y∈Y

{

〈Λs, y∗〉
Y

+ λ−1
0 ‖Λs‖

Y
‖x∗‖

X∗ − H∗∗(Λs− y) − h(y)
}

≤ sup
z∈Y

sup
y∈Y

{

〈z + y, y∗〉
Y

+ λ−1
0 ‖ z + y ‖

Y
‖x∗‖

X∗ − H∗∗(z) − h(y)
}

≤ sup
y∈Y

{

〈y, y∗〉
Y

+ λ−1
0 ‖ y ‖

Y
‖x∗‖

X∗ − h(y)
}

(1.31)

+ sup
z∈Y

{

〈z, y∗〉
Y

+ λ−1
0 ‖ z ‖

Y
‖x∗‖

X∗ − H∗∗(z)
}

= : K∗
1 + K∗

2 .

Setting x∗ = 0 and y∗ = 0 we infer from in the above inequality and from (1.29):

M̂K(x0, y
∗
0) ≤ H(0) + H∗(0) . (1.32)

The result qualifies our choice of the function H to be used in the estimate (1.14). In order to
meet (1.28) we must require the right hand side of (1.32) to vanish. For all practical purposes,
however, the assumption H(0) +H∗(0) = 0 is not too restrictive. It is equivalent to:

H(0) = −H∗(0) = − sup
z∈Y

{−H(z) } = inf
z∈Y

H(z) .

Let us assume in the following, that H and H∗ are locally Lipschitz continuous functions. Let
us suppose furthermore that the effective domain of H∗ is the whole of Y ∗. We conclude:

J(c) := sup
‖y∗‖≤c

H∗(y∗) = sup
y∈Y

sup
‖y∗‖≤c

{

〈y, y∗〉
Y
−H∗∗(y)

}

= sup
y∈Y

{

c ‖y‖
Y
−H∗∗(y)

}

< +∞
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for any c > 0. In order to bound the first expression on the right hand side of (1.31) we recall
that the mapping h can be expressed as a function of the norm of its argument:

K∗
1 = sup

y∈Y

{

〈y, y∗〉
Y

+ λ−1
0 ‖ y ‖

Y
‖x∗‖

X∗ − sup
t≥0

{

t ‖y‖
Y
− h∗0(t)

}

}

≤ inf
t≥0

sup
r≥0

{

r sup
‖y‖=1

〈y, y∗〉
Y

+ λ−1
0 r ‖x∗‖

X∗ − t r + h∗0(t)
}

}

= inf
t≥0

sup
r≥0

{

r
(

‖y∗‖
Y ∗ + λ−1

0 ‖x∗‖
X∗ − t

)

+ h∗0(t)
}

.

The second expression on the right hand side of (1.31) may be controlled by:

K∗
2 ≤ sup

z∈Y

{

‖z‖
Y

(

‖y∗‖
Y ∗ + λ−1

0 ‖x∗‖
X∗

)

− H∗∗(z)
}

= J( ‖y∗‖
Y ∗ + λ−1

0 ‖x∗‖
X∗ ) .

Combining the above results we find the function K∗ to be bounded by:

K∗(Λ∗y∗ + x∗) ≤ h∗0
(

‖y∗‖
Y ∗ + λ−1

0 ‖x∗‖
X∗

)

+ J
(

‖y∗‖
Y ∗ + λ−1

0 ‖x∗‖
X∗

)

whereby x∗ ∈ X∗ and y∗ ∈ Y ∗ are arbitrary. Furthermore, we note that K∗ is a convex function
by construction. We fix the parameter λ ∈ (0, 1) and two elements y∗1 , y

∗
2 ∈ Y ∗. As the set ∂G(x)

is convex for any element x ∈ domG, we may state:

inf
x∗∈∂G(x)

K∗( Λ∗(λy∗1 + (1 − λ)y∗2 ) + x∗ )

= inf
x∗
1∈∂G(x)

inf
x∗
2∈∂G(x)

K∗( Λ∗(λy∗1 + (1 − λ)y∗2) + (λx∗1 + (1 − λ)x∗2) )

≤ inf
x∗
1∈∂G(x)

inf
x∗
2∈∂G(x)

{

λ K∗( Λ∗y∗1 + x∗1 ) + (1 − λ)K∗( Λ∗y∗2 + x∗2 )
}

= λ inf
x∗
1∈∂G(x)

K∗( Λ∗y∗1 + x∗1 ) + (1 − λ) inf
x∗
2∈∂G(x)

K∗( Λ∗y∗2 + x∗2 ) .

Since convex functions, which can be bounded from above on some open set, are locally Lipschitz
continuous in the interior of their effective domain (see e. g. [60] corollary 2.4 in chapter I), we
conclude that the error majorant M̂K(x, · ) itself is a locally Lipschitz continuous function. We
are going to demonstrate, that M̂K(x, · ) is also coercive, provided the following conditions are
met: the functional G is continuous in a neighbourhood around the point x ∈ domG and F ∗ is
coercive on the set Y ∗

0 := { y∗ ∈ Y ∗ | Λ∗y∗ = 0 }. We note:

K∗(Λ∗y∗ + x∗) = sup
s∈X

{

〈s,Λ∗y∗ + x∗〉
X
− inf

y∈Y

{

H∗∗(Λs− y) + h(y)
}

}

≥ sup
s∈X

sup
x∈X

{

〈 (s− x) + x , Λ∗y∗ + x∗ 〉
X
− H∗∗(Λs− Λx) − h(Λx)

}

≥ −H∗∗(0) + sup
x∈X

{

〈x,Λ∗y∗ + x∗〉
X
− h(Λx)

}

≥ −H(0) + sup
r≥0

sup
‖x‖=1

{

r 〈x,Λ∗y∗ + x∗〉
X
− h∗∗0 ( r ‖Λx‖

Y
)

}

.

The function h∗∗0 coincides with h0 ∈ D0 on the interval [0,+∞). Accordingly, we may exploit
the continuity of the operator Λ and decrease the lower bound for K∗ by substituting an upper
bound for ‖Λx‖

X
. We may postulate a number Λ0 > 0 with the property:

K∗(Λ∗y∗ + x∗) ≥ −H(0) + sup
r≥0

sup
‖x‖=1

{

r 〈x,Λ∗y∗ + x∗〉
X
− h0( rΛ0‖x‖X )

}

= −H(0) + sup
r≥0

{

r ‖Λ∗y∗ + x∗‖
X∗ − h0( rΛ0 )

}

= −H(0) + h∗0( Λ−1
0 ‖Λ∗y∗ + x∗‖

X∗ ) . (1.33)
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A closer inspection of the proofs in [141] shows, that the function h∗0 is monotonously increasing.
Furthermore, it is known (see e. g. theorem 4.4 in [22]) that the subdifferential ∂G(x) is contained
within some ball of finite diameter centered at 0 ∈ X∗, if and only if G is locally Lipschitz
continuous around x ∈ domG. In this case we infer from (1.33):

inf
x∗∈∂G(x)

K∗(Λ∗y∗ + x∗) −→ + ∞ ; ‖y∗‖
Y ∗/ Y ∗

o
→ +∞ .

Since MF (Λx, · ) is bounded from below by H(0), we conclude that the error majorant M̂K(x, · )
is coercive on the quotient space Y ∗/Y ∗

0 . We assume, {y∗j + ŷ∗j }j∈N is a minimising sequence,
such that y∗j ∈ Y ∗/Y ∗

0 and ŷ∗j ∈ Y ∗
0 hold for any index j ∈ N. With a view to the above result

the sequence {y∗i }j∈N must be bounded. Invoking the property vii listed in section 1.1.6 we find,
that {F ∗(−y∗j )}j∈N is bounded from above by some constant F ∗

∞. We may state:

2 F ∗( ŷ∗j / 2 ) − F ∗
∞ ≤ 2 F ∗( ŷ∗j / 2 ) − F ∗(− y∗j ) ≤ F ∗( y∗j + ŷ∗j )

since the functional F ∗ is convex. Consequently, we can control the first part of M̂K by:

M̂F (Λx, y∗j + ŷ∗j ) ≥ H(0) + F (Λx) + F ∗(y∗j + ŷ∗j ) − 〈Λx, y∗j + ŷ∗j 〉Y

≥ H(0) + F (Λx) − 〈Λx, y∗j 〉Y − F ∗
∞ + 2 F ∗( ŷ∗j / 2 ) .

We conclude, that each minimising sequence of the error majorant M̂K(x, · ) is bounded and
features a weakly convergent subsequence. The limit of this subsequence is the minimiser of
the error majorant due to the lower semicontinuity of M̂K in the weak topology. However, the
minimiser need not necessarily be unique, unless perchance M̂K be strictly convex.

1.2.7 A review of our findings

We have derived not exactly two bounds on the energy error, we incur when we approximate
the solution x0 ∈ X of the minimisation problem (1.5) by some function x ∈ domG, but rather
two families of error estimates that depend on a parameter y∗ ∈ Y ∗. Hence, finding a good - in
some cases perhaps even finding a meaningful - estimate of the error may require the solution
of a minimisation problem similar to (1.9) in terms of this parameter. In the introduction we
have endeavoured to show that a number of established a posteriori error estimates for elliptic
problems can be obtained from a complementary variational formulation, if we make special
choices for the dual variables. Since we have rid ourselves from any admissibility constraints to
be met by the dual variables, we can use the very same methods to construct the parameter y∗.
In consequence, we may hope the generalised hypercycle estimates MK(x, · ) and M̂K(x, · ) will
fail only in those cases, in which the more conventional techniques will be found wanting as well.

We have seen in section 1.2.6, that our estimates can detect, whether we have found the
analytical solution of the minimisation problem (1.5): in this sense the penalisation we have
introduced in the preceding sections is at least consistent. How much the accuracy of the estimates
suffers from the introduction of the expansion (1.10) and the subsequent separation of the dual
and primal variables is difficult to assess. Under moderately restrictive assumptions on the
algebraic manipulations we have introduced in section 1.2.4 the larger error bound M̂K(x, · )
has been discovered to be locally Lipschitz continuous. Further conditions on the data of the
problem (1.5) warrant, that the majorant is moreover coercive. Both features certainly aid us in
minimising M̂K with respect to its second argument. In the special case, that F is a quadratic
form, the generalised hypercycle estimate M̂K is indeed uniformly convex. Unfortunately, the
smaller error majorant MK seems much less amenable to our analysis, even if we assume F to be
quadratic. While we can assert at least in this latter case, that a minimiser exists for the larger
majorant M̂K , we have failed to obtain an existence result for MK altogether. Let us summarise
our findings in the following proposition:

Proposition 1.1 Let X and Y denote two reflexive Banach spaces and Λ:X −→ Y a continuous
linear operator. The spaces X∗ and Y ∗ are paired with X respectively Y . The dual pairings are
designated 〈·, ·〉

X
:X ×X∗ −→ R and 〈·, ·〉

Y
:Y ×Y ∗ −→ R. The operator Λ is assumed coercive.
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Let F : Y −→ R designate an uniformly convex functional, while G :X −→ (−∞,+∞] be proper
and convex. The unique solution of the minimisation problem

F (Λx) + G(x) −→
x∈X

inf

be denoted by x0 ∈ X. There is a forcing function φ ∈ D0, a set whose definition can be found
in section 1.1.6, such that for any two elements y, ŷ ∈ Y

φ( ‖ y − ŷ ‖
Y
) ≤ F (y) + F (ŷ) − 2 F

(

y+ŷ
2

)

is met. Furthermore, a second function f0 ∈ D0 can be found, such that for any two elements
y, ŷ ∈ domF and any functional y∗ ∈ ∂F (y) the following inequality holds:

F (ŷ) ≥ F (y) + 〈 ŷ − y, y∗ 〉
Y

+ f0( ‖ ŷ − y ‖
Y
) .

Let H : Y −→ R denote a proper function and xh ∈ domG an arbitrary element understood to
approximate the minimiser x0. A family of functionals Ky :X −→ R

+
0 is defined by:

Ky(s) := sup
r≥0

{

r ‖ y + Λs ‖
Y

− f∗0 (r)
}

; s ∈ X

for any element y ∈ Y . From these functionals another functional K :X −→ R is derived:

K(s) := inf
y∈Y

{

H∗∗(−y) + Ky(s)
}

; s ∈ X .

The distance between the minimiser x0 and its approximation xh can be measured in terms of
the so called energy norm by the following abstract a posteriori estimate:

2 φ( ‖Λx0 − Λxh ‖Y ) ≤ MF (Λx, y∗) + MG(x,−Λ∗y∗) ; y∗ ∈ Y ∗ .

The nonnegative contributions MF and MG to the error bound are thereby defined as:

MF (y, y∗) := F (y) + F ∗(y∗) − 〈 y, y∗ 〉
Y
,

MG(x, x∗) := G(x) + G∗(x∗) − 〈x, x∗ 〉
Y
.

While the first contribution MF is finite for any choice of the arguments y ∈ Y and y∗ ∈ Y ∗, the
second contribution MG may attain the value +∞ for certain x ∈ X and x∗ ∈ X∗. To avoid the
dual admissibility constraint −Λ∗y∗ ∈ domG∗, the following error bounds are specified:

MK(x, y∗) := MF (Λx, y∗) + inf
x∗∈∂G(x)

K∗
dF∗(y∗)−Λx(Λ

∗y∗ + x∗) ,

M̂K(x, y∗) := MF (Λx, y∗) + H( Λx− dF ∗(y∗) ) + inf
x∗∈∂G(x)

K∗(Λ∗y∗ + x∗) .

These bounds on the approximation error are reliable for any choice of the dual variable y∗ ∈ Y ∗:

2 φ( ‖Λx0 − Λxh ‖Y ) ≤ MK(xh, y
∗) ≤ M̂K(xh, y

∗) .

If the functional H : Y −→ R has the property H(0) ≤ H the above error bounds are sharp:

inf
y∗∈Y ∗

MK(x0, y
∗) = inf

y∗∈Y ∗
M̂K(x0, y

∗) = 0 .

If the functionals H and H∗ are locally Lipschitz continuous, so is M̂K(x, · ). If moreover G is
continuous in a neighbourhood around the point x ∈ domG and if the functional F ∗ is coercive
on the set Y ∗

0 := { y∗ ∈ Y ∗ |Λ∗y∗ = 0 }, the generalised hypercycle estimate M̂K(x, · ) is coercive
on Y ∗. In the special case, that F is a quadratic form, the error majorant M̂K(x, · ) is uniformly
convex, if the functional H is convex.
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Proof Proof for all of the above statements has already been presented in section 1.2.6. �

In many an application both MK and M̂K can be impossible to evaluate immediately: in
our introductory remarks we have mentioned the Dirichlet problem as an example. Since the
generalised hypercycle estimate H(κ) contains an expression defined but in a weak sense, we must
find a bound on the dual norm using those techniques employed in the analysis of conventional a
posteriori error estimators, which rely on the computation of residual expressions. Alternatively,
we must assume, the dual variable exceeds its natural regularity requirements. In such a case we
are able to bound the dual norm by invoking Friedrich’s inequality:

|∇· σ + f |
Ω,−1

= sup
v∈H1

0 (Ω)

( v, f + ∇· σ )
Ω

| v |
Ω,1

≤ 1

λ0
‖∇· σ + f ‖

Ω
; σ ∈ Hdiv(Ω) .

Conceptually, the above manipulation is the result our replacing the function K :X −→ R with
a minorant K̃ : X̃ −→ R, which is defined on a space larger than X. The associated dual space
X̃∗ is smaller than X∗, whence we must ensure our choice of the dual parameter y∗ ∈ Y ∗ does
not violate the requirement {Λ∗y∗}+ ∂G(x) ⊂ X̃∗. In our introductory example this difficulty is
reflected by the regularity condition σ ∈ Hdiv(Ω). As a corollary of proposition 1.1 we state:

Proposition 1.2 Let X̃ ⊃ X denote a reflexive Banach space and K̃ : X̃ −→ R a minorant for
the functional K :X −→ R as defined by (1.19). It is assumed, that G can be extended to the
space X̃ and that there is a subspace Ỹ ∗ ⊂ Y ∗ with the property Λ∗(Ỹ ∗) ⊂ X̃∗, which contains
the solution y∗0 of the dual formulation. Furthermore, the functionals H and H∗ are supposed to
be continuous with H(0) ≤ H. The quantity

M̃K(x, y∗) := MF (Λx, y∗) + H( Λx− dF ∗(y∗) ) + inf
x∗∈∂G(x)

K̃∗(Λ∗y∗ + x∗)

defines an upper bound on the abstract a posteriori estimate MF (Λx, y∗) + MG(x,−Λ∗y∗) as
specified by (1.8) for any choice of the dual parameter y∗ ∈ Ỹ ∗. The majorant M̃K is continuous
over the interior of its effective domain and coercive, if M̂K(x, · ) is coercive. Let x0 ∈ X denote
the solution of the problem (1.5). If H(0) ≤ K̃ holds, the error majorant M̃K satisfies:

inf
y∗∈Ỹ ∗

M̃K(x0, y
∗) = 0 .

Proof Since ∂G(x) is a convex set, the infimum of K̃∗(Λ∗y∗ + x∗) with respect to x∗ ∈ ∂G(x)
is a convex function in y∗ ∈ Ỹ ∗. As such it is continuous over the interior of its effective domain
(see e. g. corollary 2.5 in [60]). As the remaining constituents are continuous functions either by
assumption or by virtue of the uniform convexity of F , the majorant M̃K is continuous over its
effective domain. As K∗ provides a lower bound on K̃∗, the majorant M̃K is coercive, whenever
M̂K is coercive. By assumption there is an element y∗0 ∈ Ỹ ∗ with the property:

−Λ∗y∗0 ∈ ∂G(x0) ∧ y∗0 ∈ ∂F (Λx0) .

In consequence, the infimum can be from above bounded by H(0) + K̃∗(0). We conclude:

inf
y∗∈Ỹ ∗

M̃K(x0, y
∗) ≤ H(0) + sup

s∈X̃

{−K̃(s) } ≤ H(0) − H(0) .

�

Remark 1.1 The condition that the solution y∗0 of the dual formulation be contained in the
subspace Ỹ ∗ may be viewed as a regularity requirement for the solution of the primal formulation
(1.5) and hence as a condition to be met by the data of the problem. Let us revisit the Dirichlet
problem and the estimate H(κ): the solution y∗0 of the dual formulation reads ∇x0, while Hdiv(Ω)
takes the role of Ỹ ∗ and L2(Ω) that of X̃. We note, the requirement Λ∗(Ỹ ∗) ⊂ X̃∗ is satisfied.
The second condition y∗0 ∈ Ỹ ∗ translates into ∆x0 ∈ L2(Ω). Therefore, the right hand side must
be contained at least in L2(Ω). We conclude: ∂G(x) = {−f} ⊂ X̃∗ for any x ∈ X̃.



1.3. Bounds on functional outputs 29

Remark 1.2 Both generalised hypercycle estimates MK and M̂K consist of two contributions,
one of which is in a sense well behaved and one that is not. As we have already mentioned
in the introductory remarks to this section, the sharper error majorant MK seems almost im-
possible to analyse within our abstract framework. Its well behaved part MF (Λx, · ) is convex
and continuously differentiable with respect to its second argument. Apart from the fact, that
stays bounded on bounded sets, we know next to nothing about its second part, however. The
larger error estimate M̂K is much simpler to analyse. The unproblematic part is convex, locally
Lipschitz continuous and even coercive under reasonable assumptions on the functionals H and
F ∗. The other part is merely locally Lipschitz continuous, if the functional H is sufficiently
regular. While the existence of a minimiser for the first part of the error majorant alone can be
inferred from standard arguments, the continuous perturbation which is introduced by the term
H(Λx−dF ∗(y∗)) prevents us from finding the graph of M̂K weakly closed. It seems, that in [105]
a result has been obtained, which warrants the existence of a minimiser for M̂K nevertheless, if
the generalised gradient of M̂K in the sense of [51] meets certain conditions.

1.3 Using duality techniques to obtain bounds on functional outputs

In many applications from the physical sciences variational problems arise from the so called
Hamilton’s principle, that is a minimisation principle for the action integral. If finite element
technology is used to approximate the solution of such variational problems, it seems therefore
reasonable to use a posteriori error estimators of the kind discussed in section 1.2 in order to
obtain adapted and possibly sparse computational meshes.

However, quite a number of situations may be imagined, in which the solution of some dif-
ferential equation or inclusion is not the primary concern but rather a means of computing the
relevant data. For instance, the solution of a flow problem around an airfoil may only serve to
find the drag and the lift of said airfoil, whereas the exact calculation of the flow field is merely
circumstantial. To give another example, let us consider a contact problem for an elastic work-
piece. While it is necessary to solve the Lamé equations before the contact can be located, the
deformation of the elastic body may be an irrelevant piece of information in itself. With a view
to speeding up the calculations it may be desirable therefore to work with coarse grids and a low
accuracy. But if the contour of the contact must be known accurately, how do we maintain the
required resolution while thinning out the computational grids?

Obviously, this latter question is not easily addressed by any mathematical calculus that is
derived from the duality arguments used in the previous section. In the following we will concern
ourselves with a much more simple task: Provided there is a numerical approximation x ∈ X to
the solution x0 ∈ X of the variational problem

F (Λx) + G(x) −→
x∈X

inf

we will compute upper respectively lower bounds M+(ψ, x) and M−(ψ, x) to the output of some
functional ψ :X −→ R, which is applied to the solution x0. We have to ask ourselves, for which
kind of functionals ψ we will be able to find estimates of the form

M−(ψ, x) ≤ ψ(x0) ≤ M+(ψ, x) .

As it will turn out, the calculation of a meaningful upper bound M+(ψ, x) will be impossible
without the assumption that the functional ψ has a real valued concave hull. In estimating
the lower bound M−(ψ, x) it will be necessary, however, to suppose, that coψ is real valued.
Therefore, we can only expect satisfactory error estimates for a functional ψ, that is linear or
behaves asymptotically almost like a linear functional.

1.3.1 Treatment of the linear case

Let us start our investigation by considering a very simple model problem. Thus we will gain the
necessary insight into the matter at hand to proceed with our studies of the general case. We will
assume, that X and Y are Hilbert spaces, such that we can identify X and X∗ respectively Y
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and Y ∗ with the help of the inner products (·, ·)
X

and (·, ·)
Y
. Let x0 ∈ X denote the minimiser

of the following quadratic functional:

J(x) =
1

2
( Λx,Λx )

X
− (x, f )

X
; x ∈ X

with some operator Λ :X −→ Y as specified in subsection 1.2.1 and some function f ∈ X. Said
minimiser x0 ∈ X may be exhibited as the solution of the following variational formulation:

( Λ ξ,Λx0 )
Y

= ( ξ, f )
X

; ξ ∈ X .

Let us suppose furthermore, we want to obtain bounds on the output of the linear functional

ψ(x) := (x, ψ )
X

; x ∈ X

for some arbitrary element ψ ∈ X. We may conceive the following saddle point problem:

ψ(x0) = sup
x∈X

inf
ξ∈X

L(x, ξ) := sup
x∈X

inf
ξ∈X

{

(x, ψ )
X
− ( Λξ,Λx )

Y
+ ( ξ, f )

X

}

.

Its formulation is in fact trivial as a finite infimum of the Lagrangian L(x, ξ) with respect to the
second argument ξ ∈ X can only be attained if x = x0 holds:

inf
ξ∈X

L(x, ξ) =

{

(x, ψ )
X

; x = x0

−∞ ; else .
(1.34)

An upper bound for the functional output ψ(x0) may be found by invoking the dual formulation:

M̌+(ψ, ξ) := sup
x∈X

L(x, ξ) =

{

( ξ, f )
X

; ξ = ξ0

+∞ ; else .

Hereby, the element ξ0 ∈ X designates the solution of the so called dual problem

( Λ ξ0,Λx )
Y

= (x, ψ )
X

; x ∈ X ,

if we use the terminology introduced in [20]. We conclude:

ψ(x0) ≤ inf
ξ∈X

M̌+(ψ, ξ) = ( ξ0, f )
X

. (1.35)

Since we will be unable in general to determine the solution ξ0 of the dual problem exactly, the
a posteriori error estimate (1.35) is useless from a mathematical point of view. Any numerical
approximation ξ ∈ X to this solution will cause the error bound M+(ψ, ξ) to become infinite
due to the linear dependency of the Lagrangian L on its first argument. Of course, we may still
evaluate the expression (ξ, f)

X
. We cannot warrant, however, that the result is an upper bound

on ψ(x0). We may lift this difficulty by augmenting the Lagrangian L with a quadratic term,
which disappears at the very point x0. Thus we obtain:

L̃(x, ξ) := L(x, ξ) − ( Λx,Λx )
Y

+ (x, f )
X

; x, ξ ∈ X .

Obviously, we can still recover the output of the functional ψ by first taking the infimum of the
augmented Lagrangian L̃ with respect to its second argument ξ ∈ X. But now we find:

M̃+(ψ, ξ) := sup
x∈X

L̃(x, ξ) = ( ξ, f )
X

+ sup
x∈X

{

(x, f + ψ)
X
− ( Λ (x+ ξ),Λx )

Y

}

< +∞

independently of our choice of the dual variable ξ ∈ X. For all practical purposes, we cannot
evaluate the above error estimate, since its computation would entail the analytical treatment
of a maximisation task, that is as difficult to solve as the original minimisation problem for the
functional J . We would like to remark, that the a posteriori error estimator proposed in [116]
suffers from this very same drawback. (The formula 35 on page 206 contains two errors, whence
the problem is not immediately apparent.)
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In [116] the difficulty of finding the exact solution of some suitably constructed auxiliary
problem is resolved by avoiding the continuous formulation altogether. Instead of estimating the
expression ψ(x0) two finite dimensional trial spaces XH ⊂ Xh are used to bound the quantity
ψ(xh) with xh ∈ X ∩Xh being an approximation of the true solution x0. To keep the numerical
complexity of the algorithm low, hybridisation is employed for the XH discretisation, such that
the auxiliary problem derived from the Xh discretisation decouples into independent, locally
defined subproblems. In [20, 119–121] a device known as Galerkin orthogonality is exploited
instead. Assuming Xh ⊂ X we infer from (1.35):

ψ(x0 − xh) ≤ ( ξ0, f )
X

− ( Λ ξ0,Λxh )
Y

= ( ξ0 − ξh, f − Λ∗Λxh )
X

with xh ∈ Xh designating the numerical solution of the original variational problem and ξh ∈ Xh

an arbitrary test function. Choosing ξh judiciously we can exploit the interpolation properties
of the trial space Xh and afterwards invoke a priori estimates for the dual problem in order
to bound the higher order derivatives of ξ0. Clearly, the procedure suffers from the fact, that
neither interpolation nor stability constants are readily available. Furthermore, its applicability
is limited to the linear and unconstrained case.

We will address the difficulties inherent to the evaluation of M̃+(ψ, ξ) with the help of a
duality argument. Though we will not be able to apply the results of section 1.2 directly to the
resulting estimate we will still find the analytical technology very useful, that has been developed
in that section. We note, that the abstract error estimate, we have derived in subsection 1.2.2,
may serve the very same purpose of augmenting the Lagrangian L as the quadratic expression
the have employed above. Indeed, both expressions are closely related:

( Λx,Λx )
Y

− (x, f )
X

+ G∗(−Λ∗Λx) = MF (Λx,Λx) + MG(x,−Λ∗Λx) ,

if we introduce the following notation: F (y) := 1/2 (y, y)
Y

and G(x) := (−x, f)
X

for all elements
y ∈ Y and x ∈ X. At the very point x0 the last term on the left hand side vanishes:

G∗(x) =

{

0 ; x = −f
+∞ ; else ,

for Λ∗Λx0 = f is the necessary optimality condition of our model problem. Let us define:

L(x, y, ξ) := L(x, ξ) − F (Λx) − F ∗(y) − G(x) − G∗(−Λ∗y) ; x, ξ ∈ X, y ∈ Y .

With a view to (1.8) and (1.34) it is obvious, that this new Lagrangian has the property:

ψ(x0) = sup
y∈Y

{

(x0, ψ )
X
− MF (Λx0, y) − MG(x0,−Λ∗y)

}

= sup
x∈X

sup
y∈Y

inf
ξ∈X

L(x, y, ξ) .

Hence, we can introduce the following upper bound on the functional output ψ(x0):

M̂+(ψ, ξ) := ( ξ, f )
X
− inf
x∈X

inf
y∈Y

{

F (Λx) + F ∗(y) +G∗(−Λ∗y) + (Λ ξ,Λx )
Y
− (x, f + ψ )

X

}

for any ξ ∈ X. We will now consider the dual formulation in order to obtain an upper bound of
this last expression. In preparation of this step let us define the following affine space:

Qξ :=
{

u ∈ Y
∣

∣ ( Λx, u )
Y

+ (Λx,Λ ξ )
Y

= (x, f + ψ )
X

; x ∈ X
}

, (1.36)

for we are going to face the very same predicament we have encountered in dealing with a
posteriori error estimates for the energy norm: the dual estimates need not necessarily be finite,
unless certain constraints on the dual variables have been met. We note:

M̂+(ψ, ξ) = ( ξ, f )
X

− inf
x∈X

inf
y∈Y

{

sup
u∈Y

{

( Λx, u )
Y
− F ∗(u)

}

+ sup
v∈Y

{

( v, y )
Y
− F (v)

}

+ sup
s∈X

{

( s,−Λ∗y )
Y
− G(s)

}

+ (Λ ξ,Λx )
Y
− (x, f + ψ )

X

}

≤ ( ξ, f )
X

− sup
u∈Y

sup
v∈Y

sup
s∈X

{

inf
x∈X

inf
y∈Y

{

( Λx, u )
Y

+ ( v, y )
Y
− ( s,Λ∗y )

X
+
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+ (Λ ξ,Λx )
Y
− (x, f + ψ )

X

}

− F ∗(u) − F (v) −G(s)
}

= ( ξ, f )
X

+ inf
s∈X

inf
u∈Qξ

{

F (Λs) + G(s) + F ∗(u)
}

. (1.37)

The error bounds M̃+(ψ, ξ) and M̂+(ψ, ξ) differ in fact but very little. While the evaluation of
M̃+(ψ, ξ) necessitates our solving a maximisation problem in terms of the primal variable x ∈ X,
the computation of (1.37) requires us to determine the set Qξ, whose elements are defined as
solutions of a related variational formulation. The expression F ∗(u) can be viewed as a penalty
term, which effectually removes from the minimiser u0 ∈ Y all those components, that would
otherwise be contained in the kernel of Λ∗. Consequently, the solution x̃ ∈ X of the maximisation
task associated with the evaluation of M̃+(ψ, ξ) is in some sense recovered: u0 = Λx̃.

Though our exposition may seem somewhat circumlocutory, it has lead to an error estimate
we can easily put into a more general form than the one we have derived previously. Moreover, is
now apparent, how we have to apply the analytical technology developed in section 1.2. As the
estimate (1.37) becomes meaningless, if the condition u ∈ Qξ is violated, we have to relax this
requirement. Exploiting the properties of uniformly convex functions as they have been outlined
in paragraph 1.1.6 we may postulate a convex function h0 ∈ D0 such that:

F ∗(u) ≤ F ∗(y) + 〈 dF ∗(y), u− y 〉
Y

+ h∗0(‖u− y‖
Y
) ; y ∈ domF .

In the present instance we may turn this estimate into an equality, when we define the function
h0 by stipulating h∗0(t) := 1/2 t2 for any t ≥ 0. Employing the above result we find:

F (Λs) + G(s) + F ∗(u) ≤ F (Λs) + F ∗(y) + 〈 dF ∗(y), u− y 〉
Y

+ h∗0( ‖u− y‖
Y
)

+ G(s) − 〈Λs, y 〉
Y

+ 〈Λs, u 〉
Y

− 〈Λs, u− y 〉
Y

≤ MF (Λs, y) + 〈 dF ∗(y) − Λs, u− y 〉
Y

+ G(s)

+ h∗0( ‖y − u‖
Y
) + 〈Λs, u 〉

Y
; y ∈ Y .

Again, we may use the device (1.14) in order to separate those contributions that correspond to
the necessary optimality condition for the functional J from those contributions that are related
to the relaxation of the constraint u ∈ Qξ. Invoking the definition (1.11) we thus obtain:

F (Λs) + G(s) + F ∗(u) ≤ MF (Λs, y) + H( Λs− dF ∗(y) ) + H∗(y − u)

+ G(s) + h∗(y − u) + 〈Λs, u 〉
Y

; y ∈ Y .

We may now proceed exactly as we have done in section 1.2.4 and rid ourselves of the admissibility
constraint u ∈ Qξ by the introduction of a saddle point problem:

inf
u∈Qξ

{

H∗(u− y) + G(s) + h∗(u− y) + 〈Λs, u 〉
Y

}

=

= inf
u∈Y

{

sup
t∈X

{

( Λ t, u )
Y

+ (Λ t,Λ ξ )
Y
− ( t, f + ψ )

X

}

+ 〈Λs, u 〉
Y

+ G(s)

+ sup
w∈Y

{

(w, y − u )
Y
− H∗∗(w)

}

+ sup
z∈Y

{

( z, y − u )
Y
− h(z)

}

}

= sup
w∈Y

sup
z∈Y

sup
t∈X

{

inf
u∈Y

{

( Λ t, u )
Y
− (w + z, u )

Y
+ (Λs, u )

Y

}

+ G(s)

+ (Λ t,Λ ξ )
Y
− ( t, f + ψ )

X
+ (w + z, y )

Y
− H∗∗(w) − h(z)

}

= sup
t∈X

{

( Λ t,Λ ξ )
Y
− ( t, f + ψ )

X
+ (Λ(t+ s), y )

Y
+ G(s) − K(t+ s)

}

= ( s, ψ − Λ∗Λ ξ )
X

+ K∗( Λ∗Λ ξ + Λ∗y − f − ψ ) .
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Hereby, we have used the very same function K we have introduced in (1.19). The existence of
a saddle point, which in the present context is a well known fact, is not necessary to ensure that
the above equation is also valid in a more general setting: We refer to proposition 2.3 in chapter
VI of [60] for a proof. By combining our findings we now obtain:

M̂+(ψ, ξ) ≤ inf
s∈X

inf
y∈Y

{

MF (Λs, y) + H( Λs− dF ∗(y) ) + ( ξ, f )
X

(1.38)

+ ( s, ψ − Λ∗Λ ξ )
X

+ K∗( Λ∗Λ ξ + Λ∗y − f − ψ )
}

.

The a posteriori estimate (1.38) yields a computable upper bound on the functional output ψ(x0),
if we assume that the function H meets those requirements imposed in section 1.2.6. In this case
we can assert, that the right hand side stays finite for any choice of the parameters s, ξ ∈ X and
y ∈ Y . A lower bound on the output of ψ can be derived immediately by applying the above
analysis to the functional −ψ. Thus we may conclude:

−M+(−ψ, ξ, s, y) ≤ ψ(x0) ≤ M+(ψ, ξ, s, y) ,

whereby M+(ψ, ξ, s, y) is defined by the right hand side of (1.38).

1.3.2 On possible extensions

In the treatment of a posteriori estimates for the bounds on functional outputs we have assumed,
that both the objective functional and the necessary optimality condition, which determines the
argument of that functional, be linear. Thus we have caused the functional output to depend on
the data of the problem in a linear fashion. Consequently, the representation theorem of Riesz
has warranted the existence of some function ξ0 ∈ X with the property: ψ(x0) = ( ξ0, f )

X
. We

have demonstrated, that the function ξ0 is related to the objective functional ψ by: Λ∗Λξ0 = ψ.
Hence, we may view the a posteriori estimate of the functional output defined by

M+(ψ, ξ, s, y) := ( ξ, f )
X

+ MF (Λs, y) + H( Λs− dF ∗(y) )

+ ( s, ψ − Λ∗Λ ξ )
X

+ K∗( Λ∗Λ ξ + Λ∗y − f − ψ )

for any ψ, ξ, s ∈ X and y ∈ Y as an embodiment of the mapping f → ψ(x0). Thereby, residual
terms have been added to account for the function ξ0 can not being computed exactly. We note:

ψ(x0) = M+(ψ, (Λ∗Λ)−1ψ, x0,Λx0) ; ψ ∈ X .

Unfortunately, we will face a number of difficulties if we try and extend the theory of a posteriori
estimates for functional outputs as it has been developed in the previous section to the more
general case of uniformly convex variational problems. For one thing, additional complexities
will arise from the necessity to consider two necessary optimality conditions of the form (1.12)
instead of merely one such condition. Let us assume, that ψ : Y 7−→ R is some functional, not
necessarily linear, and x0 ∈ X the solution of the variational problem introduced in paragraph
1.2.1. Any solution y∗0 ∈ Y ∗ of the associated dual formulation

F ∗(−y∗) + G∗(Λ∗y∗) −→
y∗∈Y ∗

inf

can be characterised in the following fashion:

−Λ∗y∗0 ∈ ∂G(x0) ∧ y∗0 ∈ ∂F (Λx0) .

With a view to the previous section these optimality conditions may prompt us to consider an
augmented Lagrangian L :X ×X∗ × Y ∗ × Y ∗ ×X 7−→ R, which is defined by:

L(x, x∗, y∗, λ∗, µ) := ψ(x) − 〈 dF ∗(y∗) − Λx , λ∗ 〉
Y

− 〈 µ , Λ∗y∗ + x∗ 〉
X

− F (Λx) − G(x) − F ∗(y∗) − G∗(−Λ∗y∗) . (1.39)
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Hereby, we need to assume that the element x∗ ∈ X∗ be contained in the subdifferential ∂G(x)
in order to account for the first of the above optimality conditions. An application of a duality
argument would then result in an upper bound on ψ(x0) of the following form:

K(µ, λ∗) := − inf
x∈domG

inf
x∗∈∂G(x)

inf
y∗∈Y ∗

{

− L(x, x∗, y∗, λ∗, µ)
}

with µ ∈ X and λ∗ ∈ Y ∗. To find a reliable estimate of this last expression within the framework
of conjugate duality we would have to apply the Fenchel transform to two families of functions:

gµ(x) := inf
x∗∈∂G(x)

〈µ, x∗ 〉
X

; x ∈ domG

fλ∗(y∗) := 〈 dF ∗(y∗), λ∗ 〉
Y

; y∗ ∈ Y ∗

for any µ ∈ X and λ∗ ∈ Y ∗. However, by fixing these parameters we need not necessarily obtain
convex functions. In fact, both gµ and fλ∗ will be neither convex nor concave in general, as we
can easily see, if we study for example real valued functionals of the form

F (u) :=
1

p

∫ 1

0

|u(x)|p dx ; u ∈ Lp([0, 1])

for some p > 2. Defining the dual exponent q ∈ (1, 2) in the usual manner by p−1+ q−1 = 1 we
can compute the function fλ∗ for any given Lagrange multiplier λ∗ ∈ Lq([0, 1]) by:

fλ∗(y∗) =

∫ 1

0

y∗(x)λ∗(x)

|y∗(x)|2−q dx ; y∗ ∈ Lq([0, 1]) .

This function is neither convex nor concave, if λ∗ 6= 0 holds. In that case its Fenchel transform in
the convex sense attains the value +∞ for any argument y ∈ Lp([0, 1]), whence the biconjugate
f∗∗λ∗ supplies but a trivial lower bound on fλ∗ . We infer, that we need to ensure the convexity of
the directional derivative fλ∗ in order to obtain a meaningful bound on K(µ, λ∗).

The above example challenges our mode of approach to finding a reliable estimate for the
functional output ψ(x0). Hence, if we want to retain the saddle point formulation (1.39) we must
obviate the difficulties that arise out of the lacking convexity of fλ∗ and mutatis mutandis gµ. A
conceivable attempt at solving this problem consists in replacing the functional F :Y −→ R with
a quadratic approximation QF : Y −→ R, such that QF (y) ≈ F (y) holds in some neighbourhood
around the point Λx. Similarly, the functional G : X −→ (−∞,+∞] is to be replaced by some
other quadratic model, which approximates G in a neighbourhood of the numerical solution x.
Subsequently, the results detailed in section 1.3.1 me be applied.

The difficulties we encounter when we embrace such an approach are obvious: We have to
produce quadratic forms QF and QG, that approximate in some sense to be specified the given
convex functionals F and G. Since we cannot know the solution x0 of the variational problem
(1.5) exactly, the construction of these forms must necessarily proceed in a haphazard manner.
Assuming that the numerical approximation x is close to the solution x0 and that both F and
G are sufficiently smooth, we may try and expand these functionals into power series around the
point x. Truncating these series behind the quadratic term is equivalent to a linearisation of the
necessary optimality conditions around the numerical solution of the variational problem. As we
abolish the original formulation we can no longer warrant, that our estimates of the functional
output are reliable. Moreover, we won’t even be able to assert, whether our results pertain to
the original statement of the problem at all.



Chapter 2

Applications of error majorants derived from duality

arguments

In the previous chapter we have detailed a theoretical framework for the computation of reliable
bounds on the approximation error we incur in the numerical solution of convex variational
problems. We have been able to adapt out analytical techniques in order to calculate reliable
bounds on the output of a linear functional which is applied to the approximate minimiser of a
quadratic form. In the following we will elaborate a number of important applications.

2.1 The Laplace Problem

The most generic example by which elliptic differential operators may be studied is certainly
the Laplace problem. Therefore, we will start this chapter with an examination of duality error
estimates for the approximation errors of numerical solutions which are measured in the Dirichlet
norm. To underscore the importance of those modifications by which we have obtained reliable
error bounds from the abstract duality estimates discussed in section 1.2.2 we commence our
study with a comparison of the Laplace and of the Helmholtz problem. In the case of the latter
problem we are able to evaluate the right hand side of (1.8) explicitly, while in the case of the
seemingly simpler Laplace problem the more careful analysis we have rendered in the sections
1.2.4 and 1.2.5 is inevitable.

In the first section we introduce the function spaces we must employ to define the variational
setting of the Laplace problem along with the appropriate notation. In the section 2.1.2 we
apply the abstract results we have developed throughout chapter 1 to the Helmholtz problem. In
the following section the Laplace problem is considered. Two families of a posteriori estimates
are derived, whose properties are studied in the section 2.1.4. In the section 2.1.5 we discuss the
relationship between these error bounds and the hypercycle estimates for the Helmholtz problem.
Our findings are summarised in the section 2.1.6.

2.1.1 Some remarks on the notation

Let us suppose that Ω ⊂ R
n with n ∈ {2, 3} is a bounded domain with a smooth boundary. For

any Ω′ ⊆ Ω the space of all p-summable functions with p-summable generalised derivatives up
to order m and values in R

n shall be denoted Wm,p(Ω′,Rn). We can turn Wm,p(Ω′,Rn) into a
Banach space (see e. g. §5.4 in [97]) if we introduce the norm

‖ v ‖ p
p,Ω′,m

: =

∫

Ω′

n
∑

i=1

∑

|α|≤m

∣

∣

∣

∂αvi
∂xα

∣

∣

∣

p

dx ; v ∈ Wm,p(Ω′,Rn) . (2.1)

The corresponding Banach space of scalar functions is abbreviated by Wm,p(Ω′). By taking the
closure of C∞

0 (Ω′,Rn) in the above norm the subspace Wm,p
0 (Ω′,Rn) ⊂Wm,p(Ω′,Rn) is obtained,

whose elements have no trace on the boundary ∂Ω′. For m = 0 both of these spaces coincide with
the space Lp(Ω′,Rn) of all p-summable functions. In this case the first subscript of the norm
(2.1) will be dropped. The associated seminorm is defined by:

| v | p
p,Ω′,m

: =

∫

Ω′

n
∑

i=1

∑

|α|=m

∣

∣

∣

∂αvi
∂xα

∣

∣

∣

p

dx ; v ∈ Wm,p(Ω′,Rn) .

For any index p ≥ 2 let us define the dual index q ∈ (1, 2) by the formula p−1 + q−1 = 1. We
may now introduce the space W−m,q(Ω′,Rn) of all those vector valued distributions, such that

〈 v, v∗ 〉
Ω′ : =

∫

Ω′

n
∑

i=1

vi v
∗
i dx (2.2)
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constitutes a continuous bilinear form for any v ∈ Wm,p(Ω′,Rn) and any v∗ ∈ W−m,q(Ω′,Rn).
In the scalar case we will again drop the reference to that space, in which both functions and
distributions attain their respective point values. For full particulars on the proper construction
of dual linear spaces to Sobolev spaces of the type Wm,p(Ω′,Rn) we refer to [97]. A norm that
is compatible with the dual pairing we have introduced by (2.2) may be defined by:

|u∗|
q,Ω,−m

: = sup
u∈Wm,p

0 (Ω′,Rn)

〈u, u∗ 〉
Ω′

|u |
p,Ω,m

; u∗ ∈W−m,q(Ω′,Rn) .

Finally, we will need the Banach space W p,m
div (Ω′) of p-summable vector fields, whose divergence

is also p-summable. This space can be obtained by taking the closure of C∞(Ω′,Rn) in the norm

|d τ c|p
p,Ω′,m

: = ‖ τ ‖p
p,Ω′,m

+ ‖∇ · τ ‖p
p,Ω′,m

; τ ∈ Wm,p
div (Ω′) .

To simplify the notation we will suppress the first index, whenever p = 2 holds. To place emphasis
on the Hilbert space setting we will replace the symbol W by the symbol H. In the following we
will therefore write Hm

div(Ω
′) instead of Wm,2

div (Ω′) and Hm(Ω′,Rn) in place of Wm,2(Ω′,Rn).

2.1.2 A duality estimate for the Helmholtz problem

Sticking to the notation we have used throughout the previous chapter let us introduce the
following functionals with f ∈ L2(Ω) and λ representing some positive parameter:

F (y) :=
1

2

∫

Ω

n
∑

i=1

yi(ξ)
2 d ξ ; y ∈ L2(Ω,Rn)

G(x) :=
1

2

∫

Ω

{

λ2x(ξ)2 − 2 f(ξ)x(ξ)
}

d ξ ; x ∈ L2(Ω) .

The operator Λ:X −→ Y shall be defined as the gradient mapping ∇:H1(Ω) −→ L2(Ω,Rn). With
these abbreviations we can rewrite the well known Helmholtz problem with homogeneous Dirichlet
boundary conditions in the form (1.5), if we choose X = H1

0 (Ω). The conjugate functionals F ∗

and G∗ are now obtained by invoking Lebesgue’s theorem on dominated convergence. To give an
example of this procedure let us elaborate the computation of G∗ : L2(Ω) −→ R :

G∗(x∗) = sup
x∈L2(Ω)

{

〈x, x∗〉
Ω
− G(x)

}

= sup
x∈L2(Ω)

∫

Ω

{

xx∗ − λ2x2

2
+ f x

}

d ξ

=

∫

Ω

sup
t∈R

{

t x∗(ξ) − λ2 t2

2
+ f(ξ) t

}

d ξ =
1

2λ2
‖x∗ + f ‖2

Ω
(2.3)

for any x∗ ∈ L2(Ω). Similarly, we find F ∗(σ) = 1/2 ‖σ‖2
Ω

for any vector field σ ∈ L2(Ω,Rn). We
must be aware, however, that our results will depend on the domain of definition we assign to
the functional G. If the data of the problem were less regular, that is f ∈ H−1(Ω), we would
have to define the functional G on the set H1(Ω). Consequently, we would have to determine
a conjugate G∗, that could act on any distribution x∗ ∈ H−1(Ω). We would no longer be able
to derive a closed analytical expression for such a functional. By virtue of (1.8) we may restrict
ourselves to an arbitrary subset of L2(Ω,Rn) in order to derive a bound on the approximation
error. Hence, we may choose σ ∈ Hdiv(Ω) to ensure we can evaluate the right hand side of (1.8)
even if the conjugate functional G∗ is used as it has been derived in (2.3). In the present instance
the forcing function φ ∈ D0 may be defined by φ(t) = 1/4 t2. Hence, we infer from (1.8):

1/2 |x− x0 |2Ω,1 ≤ F (∇x) + F ∗(σ) + G(x) + G∗(∇· σ) ; σ ∈ Hdiv(Ω) ,

whereby the function x ∈ H1
0 (Ω) is supposed to approximate the analytical solution x0 ∈ H1

0 (Ω)
of the Helmholtz problem. Combining the above formula with (2.3) we find:

|x− x0 |2Ω,1 ≤ ‖∇x ‖2
Ω

+ ‖σ ‖2
Ω

+ λ2 ‖x ‖2
Ω

− 2 〈x, f 〉
Ω

+
1

λ2
‖∇· σ + f ‖2

Ω
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= ‖∇x− σ ‖2
Ω

− 2 〈x, f + ∇· σ 〉
Ω

+ λ2 ‖x ‖2
Ω

+
1

λ2
‖∇· σ + f ‖2

Ω

= ‖∇x − σ ‖2
Ω

+
∥

∥

∥

∇· σ + f

λ
− λx

∥

∥

∥

2

Ω

(2.4)

for any vector field σ ∈ Hdiv(Ω). Depending on our choice of this vector field different types of
a posteriori estimates for the approximation error will result. We will revert to the question of
how to construct a suitable field σ in a separate section below.

2.1.3 Error bounds for the Laplace problem

Before we apply the results summarised in section 1.2.7 to the Laplace problem with homogeneous
Dirichlet boundary conditions, let us first fix our notation:

F (y) :=
1

2

∫

Ω

n
∑

i=1

yi(ξ)
2 d ξ ; y ∈ L2(Ω,Rn)

G(x) := −
∫

Ω

f(ξ)x(ξ) d ξ ; x ∈ L2(Ω) ,

whereby f ∈ L2(Ω) is an arbitrary function. Again, the symbol Λ :X −→ Y denotes the gradient
mapping ∇ :H1

0 (Ω) −→ L2(Ω,Rn). The conjugate functional G∗ : L2(Ω) −→ R reads:

G∗(x∗) =

{

0 ; x∗ + f = 0

+∞ ; else .

As in the previous subsection we may employ the forcing function φ(t) = 1/4 t2. Hence, for any
vector field σ ∈ Hdiv(Ω) the duality error estimate (1.8) has the following form:

1

2
|x− x0 |2Ω,1 ≤ 1

2
‖∇x ‖2

Ω
+

1

2
‖σ ‖2

Ω
− 〈x, f 〉

Ω
+ G∗(∇· σ)

=
1

2
‖∇x − σ ‖2

Ω
+ G∗(∇· σ) . (2.5)

Obviously, the above estimate is meaningless unless we can satisfy the admissibility condition

σ ∈ Z∗ :=
{

τ ∈ Hdiv(Ω)
∣

∣ ∇· τ + f = 0
}

. (2.6)

For all practical purposes it is therewith impossible to evaluate the duality majorant in such a
way, that the right hand side of (2.5) stays finite. With a view to section 1.2.4 let us define:

κ H(y) := h(y) := F (y) ; y ∈ L2(Ω,Rn)

with κ > 0 being some fixed parameter. A simple calculation demonstrates, that the function
h : L2(Ω,Rn) −→ R does meet the requirements set up by (1.10) and (1.11). In accordance with
definition (1.19) we may therefore define the mapping K :H1

0 (Ω) −→ R by:

K(s) := inf
y∈L2(Ω,Rn)

{ 1

κ
F (∇s− y) + F (y)

}

=
1

2 (κ+ 1)
‖∇s ‖2

Ω
; s ∈ H1

0 (Ω) .

The conjugate mapping K∗ :H−1(Ω) −→ R may be obtained in the following fashion:

K∗(s∗) = sup
s∈H1

0 (Ω)

{

〈s, s∗〉Ω − ‖∇s ‖2
Ω

2 (κ+ 1)

}

= sup
t≥0

{

sup
|s|

Ω,1
= 1

t 〈s, s∗〉Ω − t2

2 (κ+ 1)

}

= sup
t≥0

{

t | s∗|
Ω,−1

− t2

2 (κ+ 1)

}

=
κ+ 1

2
| s∗|2

Ω,−1
; s∗ ∈ H−1(Ω) .
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We conclude, that in the present context the final energy error estimate (1.21) is equivalent to:

|x− x0 |2Ω,1 ≤ κ+ 1

κ
‖∇x − σ ‖2

Ω
+ (κ+ 1) | ∇· σ + f |2

Ω,−1
; σ ∈ L2(Ω,Rn) . (2.7)

Since the dual norm of the residual expression ∇· σ + f is not readily available, the above a
posteriori estimate cannot be evaluated directly. Still, we can find a computable upper bound
to the quantity |∇· σ + f |

Ω,−1
with the help of those analytical techniques which are usually

employed in the computation of residual based error estimators (see e. g. [5, 138]). Moreover, we
may altogether avoid estimating the residual in the dual norm if we replace K :H1

0 (Ω) −→ R by
a suitable lower bound K̃ : L2(Ω) −→ R. Invoking Friedrich’s inequality (1.4) we find:

K̃(s) :=
λ2

0

2 (κ+ 1)
‖ s ‖2

Ω
≤ K(s) ; s ∈ H1

0 (Ω) .

Hence, if we bound K∗ by the function K̃∗ we obtain the following computable error bound:

|x− x0 |2Ω,1 ≤ κ+ 1

κ
‖∇x − σ ‖2

Ω
+

κ+ 1

λ2
0

‖ ∇· σ + f ‖2
Ω

; σ ∈ Hdiv(Ω) . (2.8)

2.1.4 On the Efficiency of the Error Estimates

Both the error bound (2.4) and the estimate (2.7) respectively (2.8) consist of two parts, which
correspond to the two necessary and sufficient optimality conditions (1.12). In the case of the
Helmholtz problem this correspondence is an immediate result of the method, by which it has
been derived in section 1.2.2. That the formula (1.21) should provide an error estimate for the
Laplace problem, which splits nicely into a residual in terms of the first optimality condition
Λx ∈ ∂F ∗(y∗) and another residual in terms of the second optimality condition −Λ∗y∗ ∈ ∂G(x)
is not that obvious, however. We have not exploited the opportunity to choose a function H in
(1.14) with a view to improving the error estimator to the fullest extent possible. Hence, the
above expressions represent but one possible option in the design of computable a posteriori error
estimates for the Laplace problem. Their structural simplicity may come at the cost of reduced
effectiveness, since there is only the parameter κ > 0 in the definition of the function H to weigh
the two parts of the error estimates.

Let us first look at the sharpest error bounds we might hope to obtain if the whole of the
L2(Ω,Rn) respectively Hdiv(Ω) were at our disposal. In the case of the Helmholtz problem we can
recover the exact approximation error, if we choose σ = ∇x0. Our choice is feasible, as the data
warrants x0 ∈ H2(Ω) thanks to the elliptic regularity of the problem. If we followed the same
strategy in the case of the Laplace problem, the resulting error estimate need not necessarily be
optimal, however. We note that we can represent any vector field σ ∈ L2(Ω,Rn) as a sum of two
fields, the first of which is a potential flow while the second is solenoidal. That means, we can
find a function u ∈ H1

0 (Ω) and some vector field σ
D
∈ L2(Ω) such that

σ = ∇u + σ
D

∧ ∇ · σ
D

= 0

holds. Using the above representation, also known as the Helmholtz decomposition of the vector
field σ, we can rewrite the error bound (2.8) in terms of the potential u ∈ H1

0 (Ω). We note:

‖∇x − σ ‖2
Ω

= ‖∇x − ∇u ‖2
Ω

+ ‖σ
D
‖2

Ω
.

Hence, a stationary point of the right hand side of (2.8) is characterised by: σ
D

= 0. As the field
σ is required to feature a square integrable divergence, we must assume that ∆u ∈ L2(Ω) holds.
Due to the elliptic regularity of the Laplace problem our assumption implies: u ∈ H1

0 (Ω)∩H2(Ω).
Consequently, we may pose the following variational principle

κ+ 1

κ
〈∇u−∇x,∇v 〉

Ω
+

κ+ 1

λ2
0

〈∆u+ f,∆v 〉
Ω

= 0 ; v ∈ H1
0 (Ω) ∩H2(Ω)

to define the potential u and thence the stationary point σ0 := ∇u of the error majorant (2.8).
After performing a partial integration in the first of the above expressions we can exploit the fact
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that the Laplace operator ∆ : H1
0 (Ω) ∩ H2(Ω) −→ L2(Ω) is surjective. Thus we find, that the

potential u satisfies the following differential equation in a strong sense:

− ∆ u +
λ2

0

κ
u = f +

λ2
0

κ
x .

We conclude, that the right hand side of (2.8) may be seen as the dual formulation of the above
Helmholtz problem, if we ignore certain scaling factors and additive constants. Inserting the
vector field ∇u in (2.8) we obtain the following bound on the approximation error:

|x− x0 |2Ω,1 ≤ 2 M̃K(x, σ0) =
κ+ 1

κ
〈 ∇u−∇x , ∇x0 −∇x 〉

Ω
.

However, in the course of the very same computations we also find:

|x − u |2
Ω,1

≤ 2κ

κ+ 1
M̃K(x, σ0) = ‖∇x − ∇u ‖2

Ω
+

λ2
0

κ
‖ x − u ‖2

Ω
.

Therefore, we may combine these inequalities and thus derive an upper bound on the generalised
hypercycle estimate M̃K in terms of the approximation error |x− x0 |Ω,1 :

2 M̃K(x, σ0) ≤ κ+ 1

κ
| x − x0 |2Ω,1 .

We note, that we would have obtained exactly the same estimate for the efficiency of the error
estimator (2.8), if we had chosen the vector field σ = ∇x0 on the right hand side of (2.8). However,
the above analysis has demonstrated that we may view the quantity κ−1 > 0 as a perturbation
parameter, whereby the linear functional G : L2(Ω) −→ R as it has been introduced in the very
beginning of section 2.1.3 is replaced by:

Gκ(u) := G(u) +
λ2

0

2κ

∫

Ω

u(ξ)
(

u(ξ) − 2 x(ξ)
)

d ξ ; u ∈ L2(Ω) .

In the limit κ → +∞ the original variational formulation can be recovered. At the same time
the efficiency index of the error bound (2.8) drops to 1, if the optimal choice σ0 ∈ Hdiv(Ω) is
used for the dual vector field. In [16] a similar approach is developed to avoid any admissibility
constraints to be imposed on the dual variable.

On the face of it, the estimate (2.7) seems to suffer from a loss of efficiency in the very same
way its computable counterpart (2.8) does. However, there are some differences: The parameter
κ > 0 acts as a penalty parameter for the admissibility constraint ∇· σ + f = 0 rather than
a perturbation parameter, that affects the variational statement. Furthermore, the efficiency of
the estimate is actually independent of our choice of that parameter. Since −∆x0 = f holds in
a strong sense due to our assumptions on the data of the Laplace problem, we find indeed:

| f + ∇· σ |Ω,−1 = sup
v∈H1

0 (Ω)

〈∇v,∇x0 − σ 〉
Ω

| v |
Ω,1

= ‖ ∇x0 − σ ‖Ω .

Hence, the sharpest bound is obtained from (2.7) if the following variational principle is met:

κ+ 1

κ
〈σ −∇x, τ 〉

Ω
+ (κ+ 1) 〈σ −∇x0, τ 〉Ω = 0 ; τ ∈ L2(Ω,Rn) .

From the above equation we conclude, that the right hand side of (2.7) attains the smallest value
possible at the point σ0 ∈ L2(Ω,Rn) which is defined by:

σ0 : =
κ

1 + κ

{

∇x0 +
1

κ
∇x

}

.

Evaluating the error majorant (2.7) at this point we find after a few algebraic manipulations:

{ κ+ 1

κ
‖∇x − σ ‖2

Ω
+ (κ+ 1) | ∇· σ + f |2

Ω,−1

}

∣

∣

∣

∣

σ=σ0

= | x − x0 |2Ω,1 .
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As the error majorant (1.25) provides an upper bound for the alternative estimate (1.26), we
conclude that the latter majorant can also be used to recover the approximation error |x−x0|Ω,1
exactly. In fact, on closer examination of the more accurate error estimate we perceive in the
present instance, that the quantity MK(x, σ) is independent of the dual variable σ ∈ L2(Ω,Rn).
Against the proof of our claim let us introduce the following space:

H0(Ω) :=
{

ρ ∈ Hdiv(Ω)
∣

∣ ∇· ρ = 0
}

which contains all square-integrable, solenoidal vector fields. Subsequently, we may introduce the
self-adjoint projection operator Q : L2(Ω,Rn) −→ H0(Ω)⊥ by requiring:

〈 Qτ , ∇v 〉Ω = 〈 τ , ∇v 〉Ω ; v ∈ H1
0 (Ω)

with τ ∈ L2(Ω,Rn) being an arbitrary vector field. We note, that we can find for any element
τ ∈ H0(Ω)⊥ an unique potential wτ ∈ H1

0 (Ω), such that τ = ∇wτ holds. We may define a second
projection P : L2(Ω,Rn) −→ H0(Ω) by requiring: P τ := τ −Qτ for any τ ∈ L2(Ω,Rn). Let us
now consider some distribution x∗ ∈ H−1(Ω). The variational problem

〈 ∇wx,∇v 〉Ω = x∗(v) ; v ∈ H1
0 (Ω)

is known to possess an unique solution wx ∈ H1
0 (Ω). Hence, there is a vector field ξ ∈ H0(Ω)⊥,

namely ∇wx, such that −∇· ξ = x∗ holds in a distributional sense. We state:

K∗
τ (x

∗) = sup
x∈H1

0 (Ω)

{

〈x, x∗ 〉
Ω
− 1

2
‖ τ + ∇x ‖2

Ω

}

= sup
x∈H1

0 (Ω)

{

〈∇x, ξ 〉
Ω
− 1

2
‖ τ + ∇x ‖2

Ω

}

= sup
ρ∈L2(Ω,Rn)

{

〈 ρ, ξ 〉
Ω

− 1

2
‖ τ +Qρ ‖2

Ω

}

; τ ∈ L2(Ω,Rn) .

The last expression on the right hand side of the above equation features a stationary point
ρ0 ∈ L2(Ω,Rn), which the functional value K∗

τ (x
∗) is attained at. By a simple computation we

find that this point is defined by the following necessary optimality condition:

ξ = Q∗ ( τ + Qρ0 ) = Qτ + Qρ0 .

To evaluate K∗
τ (x

∗) we exploit, that Qξ = ξ holds. Thus we may infer from the above condition:

K∗
τ (x

∗) = 〈Qρ0 , ξ 〉Ω − 1

2
‖ P τ + ξ ‖2

Ω
=

1

2
‖ ξ ‖2

Ω
− 〈 τ, ξ 〉

Ω
− 1

2
‖P τ ‖2

Ω
.

Combining this result with the definition (1.27) of the improved error bound MK(x, σ) we note:

MK(x, σ) =
1

2
‖σ − ∇x ‖2

Ω
+

1

2
‖ ξ ‖2

Ω
− 〈σ −∇x, ξ 〉

Ω
− 1

2
‖ P (σ − ∇x ) ‖2

Ω

=
1

2
‖ σ − ∇x − ξ ‖2

Ω
− 1

2
‖ P σ ‖2

Ω
=

1

2
‖Qσ − ∇x − ξ ‖2

Ω
,

whereby the vector field ξ ∈ H0(Ω)⊥ is defined by the requirement ∇· ξ = ∇· σ + f to be met in
a distributional sense. In order to eliminate the potential ξ from the right hand side of the above
identity let us rewrite the norm of the vector field:

‖Qσ −∇x− ξ ‖
Ω

= sup
η∈L2(Ω,Rn)

〈Qη , Qσ −∇x− ξ 〉Ω
√

‖Qη ‖2
Ω

+ ‖P η ‖2
Ω

= sup
v∈H1

0 (Ω)

〈 ∇v , Qσ −∇x− ξ 〉Ω
| v |Ω,1

= | ∇· σ + f + ∆x − ∇·Qσ |
Ω,−1

= | f + ∆x |
Ω,−1

.

Herewith, the proof of our claim has been finished.
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2.1.5 The relationship with the Helmholtz problem

The computable error majorant (2.8) is closely related to the hypercycle estimate (2.4). If we
replace the forcing function f ∈ L2(Ω), which appears in the statement of the Helmholtz problem,
with the shifted function f + λ2 x, the resulting error bound has the very form of the estimate
(2.8). We note, that the Laplace and the Helmholtz problem share the same numerical solution,
albeit their analytical solutions are different. Hence, we must combine the hypercycle estimate
(2.4) with an a priori estimate for the Helmholtz equation, if we want to derive an a posteriori
error estimator for the Laplace problem. Let x̃0 ∈ H1

0 (Ω) denote the analytical solution of the
Helmholtz problem. Since x0 ∈ H1

0 (Ω) solves the equation

−∆x + λ2 x = f + λ2 x0

we may state the following result on the distance between x0 and x̃0:

|x0 − x̃0 |2Ω,1 ≤ |x0 − x̃0 |2Ω,1 + λ2 ‖x0 − x̃0 ‖2
Ω

≤ λ2 |x− x0 |Ω,−1
|x0 − x̃0 |Ω,1 .

Therefore, the a posteriori estimate for the approximation error reads:

| x− x0 |Ω,1 ≤ λ2 |x− x0 |Ω,−1 +
√

‖∇x− σ ‖2
Ω

+ λ−2 ‖∇· σ + f ‖2
Ω

(2.9)

with σ ∈ Hdiv(Ω) being an arbitrary vector field. Thanks to Friedrich’s inequality we can bound
the dual norm of the approximation error in terms of its energy norm:

|x− x0 |Ω,−1
= sup

u∈H1
0 (Ω)

(x− x0, u )
Ω

|u |
Ω,1

≤ λ−1
0 ‖x− x0 ‖Ω

≤ λ−2
0 |x− x0 |Ω,1 .

Hence, we may hope to absorb the dual norm of the approximation error into the left hand side
of the estimate (2.9), if the perturbation parameter λ is but small enough. Accordingly, let us
introduce a penalty parameter κ > 0 by requiring:

κ : =
λ2

0

λ2
− 1 .

We note, that the above definition does not impose any undue restrictions on our choice of the
perturbation parameter λ, since we must ensure λ > λ0 in any case to retain a positive factor in
front of the energy norm. By a simple computation we eventually find:

| x− x0 |2Ω,1 ≤ (κ+ 1)2

κ2
‖∇x− σ ‖2

Ω
+

(κ+ 1)3

κ2 λ2
0

‖∇· σ + f ‖2
Ω

. (2.10)

We infer from (2.10) that the estimate for the approximation error we can obtain from a perturbed
variational formulation is less accurate than the generalised hypercycle estimate (2.8) we have
derived by a penalisation of the admissibility constraints as outlined in section 1.2.4. Using the
variational statement of the Helmholtz problem instead of the Dirichlet integral is a device, which
has already been exploited in [16]. The discussion found in [5] is similar to our analysis and can
be subsumed under our approach when we suppose, x ∈ H1

0 (Ω) designates the numerical solution
of a Galerkin scheme. In this special case, the interpolation properties of the finite element ansatz
warrant the following bound on the dual norm:

|x− x0 |Ω,−1
≤ C h λ−1

0 |x− x0 |Ω,1 .

Hereby, h > 0 denotes the diameter of the largest finite element and C designates a constant
which depends on certain geometrical properties of the mesh only. The meaning of interpolation
estimates such as the above will be explained more fully in section 3.1.2.

2.1.6 Summary Statement of our Results

In the previous sections we have considered four different error bounds: One for the Helmholtz
and three for the Laplace problem. We have seen, that the Helmholtz problem allows for an
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computable error majorant, that can be obtained immediately from the data of the variational
statement, since there are no admissibility constraints involved in the statement of the dual
formulation. The three hypercycle estimates we have derived for the Laplace problem suffer
from the necessity of accounting for the admissibility constraint ∇ ·σ + f = 0 which the dual
variable σ ∈ L2(Ω,Rn) must meet in a weak sense. Applying the theoretical results we have
developed throughout section 1.2 we have relaxed the admissibility constraint. Despite that, the
error majorants MK and M̂K have proved sharp in the following sense:

|x− x0 |2Ω,1 = 2 MK(x, σ) = inf
τ∈L2(Ω,Rn)

2 M̂K(x, τ) ; σ ∈ L2(Ω,Rn) .

However, the above result is but of little practical value, since there is no closed analytical
expression for the error majorant MK . The second majorant M̂K involves some residual in the
second duality relation, which is measured in the norm of the appropriate dual space. Hence, we
need to bound the majorant with the help of those analytical techniques, usually employed in
the treatment of conventional residual based error estimators (see e. g. [5, 138]).

We conclude, that we can compute bounds on the majorant M̂K only under those assumptions
we must impose when we want to evaluate a conventional a posteriori error estimator based on
element residuals: namely, the best approximation property of the numerical solution and the
absence of any cubature errors. The only a posteriori bound on the approximation error which
is readily computable is (2.8). We have seen, that this bound can in turn be limited by the
approximation error. At least in principle, the efficiency index of the error majorant reads 1+κ−1,
whereby κ > 0 may be interpreted as a perturbation parameter for a Helmholtz problem, whose
solution defines the optimal dual parameter σ. In the limit κ→ ∞ the original Dirichlet problem
emerges. At the same time, the admissibility constraint ∇· σ + f = 0 is reintroduced due to the
penalisation and the conventional hypercycle estimate is recovered.

Unfortunately, the exact solution of the auxiliary problem is not available, whence the optimal
parameter must be approximated itself by a vector field from some finite dimensional trial space.
The analysis of practical choices for the parameter σ is beyond the scope of this paragraph and
shall be deferred to section 3.3.1. The possibility of using complementary energy principles for the
Helmholtz problem in order to obtain error bounds for the Dirichlet problem has been discussed
e. g. in [5, 16]. The resulting error bounds have been found inferior to the estimate (2.8), unless
we assume, that the numerical solution x has the best approximation property.

2.2 The Obstacle Problem

Though in a sense the obstacle problem may be as generic an example for a constrained variational
formulation as the Laplace problem is a generic example for an unconstrained formulation, the
obstacle problem or variants thereof have nevertheless quite a number of important applications
from such diverse realms as engineering sciences or financial mathematics. To name but a few of
these applications we may mention contact problems in elastomechanics, saturation problems in
porous media, the treatment of cavitation phenomena and the pricing of financial derivatives.

In the first section we will briefly discuss two mathematical concepts, which are requisite in
order to properly pose the obstacle problem. We define capacities of sets and order relations
between functions from the spaces W 1,p(Ω). In the following section the variational formulation
is presented and the appertaining notation fixed. In section 2.2.3 we digress slightly to discuss
the meaning of the subdifferential ∂G and to introduce further notation. Our abstract framework
is brought to bear on the obstacle problem in section 2.2.5. An alternative approach which has
been detailed in a technical report [41, 42] is presented though briefly in the next section. Some
remarks on the efficiency of the emergent a posteriori estimates for the approximation error are
collected in section 2.2.6: they are intended to prepare the reader against our analysis of these
estimates in the section 2.2.7. Our findings are reviewed in section 2.2.8.

2.2.1 Capacity and order relations on Sobolev spaces

It is a well known fact, that the point values of Lebesgue functions are not uniquely defined. That
means, two Lebesgue function f, f ′ ∈ Lp(Ω) are deemed identical, if they differ but on a set of
Lebesgue measure 0. Due to the ambiguity, which is inherent in their definition, the concept of
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some function f ∈ W 1,p(Ω) being larger than some other function f ′ ∈ W 1,p(Ω) on a set E ⊂ Ω
needs to be elaborated before we can properly state the obstacle problem. We will assume, that
set E ⊂ Ω is closed. However, we do not even require the set E to have a positive measure. (If
the measure of E vanishes, the ”obstacle” is usually referred to as thin.) To understand why an
obstacle function ψ ∈ C1(Ω) can affect the solution of the variational problem

x0 ∈ Vψ : 〈∇x0,∇x−∇x0 〉Ω ≥ 〈 f, x− x0 〉Ω ; x ∈ Vψ

when the cone Vψ ⊂ H1
0 (Ω) is defined in terms to be presently resolved by

Vψ : =
{

v ∈ H1
0 (Ω)

∣

∣ v ≥ ψ on E in the sense of H1(Ω)
}

(2.11)

even if E is a set of measure zero, we need to introduce the concept of capacity. With the help
of this very concept we will be able to formalise our notion of an order relation in the Banach
space W 1,p(Ω). For any set A ⊂ Ω let us specify the following set of functions:

Vp(A) :=
{

v ∈W 1,p(Ω)
∣

∣ v |U ≥ 1 on some neighbourhood U ⊃ A
}

.

We note, that in the above definition the requirement v ≥ ψ is to be understood in the usual
sense, that is, v ≥ ψ is supposed to hold almost everywhere in the neighbourhood U of the set
A. We can proceed and define the p-capacity of A in accordance with [57] by:

capp(A) := inf
v∈Vp(A)

∫

Ω

n
∑

i=1

∣

∣

∣

∣

∂ v

∂ξi
(ξ)

∣

∣

∣

∣

p

d ξ .

We will call a function f : Ω −→ R quasi-continuous on Ω, if we can find for any ε > 0 a subset
Eε ⊂ Ω with the property capp(Eε) < ε, such that f is continuous on Ω \ Eε.

It is a well known fact, that each function f ∈W 1,p(Ω) has a quasi-continuous representative
(see e. g. [64, 108]). Hence, the point values of f ∈ W 1,p(Ω) are uniquely defined up to some set
of capacity zero. We infer, that it is not sufficient to consider a function f ∈ W 1,p(Ω) positive
on the set E, if f |E ≥ 0 holds almost everywhere. In fact, we have to insist that f be positive
everywhere on E except for a set of capacity zero. Accordingly, we shall call f ∈W 1,p(Ω) greater
or equal f ′ ∈ W 1,p(Ω) on E ⊂ Ω in the sense of W 1,p(Ω), if f − f ′ ≥ 0 holds everywhere on E
except for some subset of capacity zero.

An equivalent definition of the cone Vψ introduced in (2.11) can be given in terms of sequences
of continuous functions. Indeed, we may call a function f ∈ H1(Ω) greater or equal than ψ ∈
H1(Ω) on the set E ⊂ Ω in the sense of H1(Ω), if there is sequence {un}n ⊂ C1(Ω) such that:

un
∣

∣

E
≥ 0 ; n ∈ N ∧ lim

n→∞
‖ f − ψ − un ‖Ω,1

= 0 .

Let us remark, that the order relation we have introduced for the Sobolev spaces W 1,p(Ω) ensures,
the convex cone Vψ as defined by (2.11) is closed, if E is a closed subset of the domain Ω.

2.2.2 Statement of the variational formulation

To formalise the obstacle problem we can adopt practically all of the notation we have introduced
in the sections 2.1.1 and 2.1.2. Let us aim, however, at a slightly more general approach to
constrained variational problems. We introduce a matrix valued mapping A ∈ W 1,∞(Ω,Rn×nsym )
which satisfies the following ellipticity condition:

A0 > 0 :

n
∑

i=1

n
∑

j=1

Aij(ξ) vi vj ≥ A0 ‖v‖2 ; v ∈ R
n , ξ ∈ Ω .

Furthermore, we assume that the functions ψ ∈ H2(Ω) constitutes the ”obstacle” and defines
the cone Vψ ⊂ H1

0 (Ω) of admissible functions in accordance with (2.11). Until further notice, let
us suppose, that set E and the domain Ω coincide. The boundary conditions are determined by
our choice of the function space X = H1

0 (Ω). Hence, we have to impose some restrictions on ψ
in order to prevent the contingency Vψ = ∅. We require: ψ|∂Ω < 0 everywhere on the boundary



44 Chapter 2. Applications

of the domain Ω. The point values of ψ are well defined, since H2(Ω) ↪→ C(Ω) holds by the
imbedding theorem of Sobolev (see e. g. [2]). Setting Y = L2(Ω,Rn) let us define:

F (y) :=
1

2

∫

Ω

{

n
∑

i=1

n
∑

j=1

Aij(ξ) yi(ξ) yj(ξ)
}

d ξ ; y ∈ L2(Ω,Rn) .

Clearly, the functional F is uniformly convex. A suitable forcing function φ : R
+
0 −→ R

+
0 , which

may be employed in (1.6), is given by: φ(t) := A0/4t
2. To represent the condition u0 ∈ Vψ within

the framework we have outlined in paragraph 1.2.1 let us complement the functional G with the
indicator function of the cone Vψ:

G(x) := χ
Vψ

(x) −
∫

Ω

f(ξ)x(ξ) d ξ ; x ∈ H1
0 (Ω) .

We shall assume, that f ∈ L2(Ω) holds. As in the previous section the operator Λ :X −→ Y will
designate the gradient mapping. Thus, we can identify the variational inequality

x0 ∈ Vψ : 〈A∇x0,∇x−∇x0 〉Ω ≥ 〈 f, x− x0 〉Ω ; x ∈ Vψ

as the necessary and sufficient optimality condition for the following minimisation task:

F (Λx) + G(x) −→
x∈Vψ

inf . (2.12)

We remark, that the indicator function of the cone Vψ is convex and lower-semicontinuous, as
the set Vψ ⊂ H1

0 (Ω) is convex and closed. Therefore, the theory we have developed throughout
the first chapter is applicable indeed.

2.2.3 A Description of the Subdifferential ∂G(x)

Let x ∈ Vψ denote an arbitrary function. In the following we want to discuss which conditions a
distribution x∗ ∈ H−1(Ω) must meet in order to be contained in the set ∂G(x). With a view to
paragraph 1.1.5 we may state right away, that any x∗ ∈ ∂G(x) must satisfy the inequality

G(x′) ≥
∫

Ω

{

x∗(ξ) {x′(ξ) − x(ξ) } − f(ξ)x(ξ)
}

d ξ ; x′ ∈ H1
0 (Ω) .

Since the left hand side is only finite, if x′ ∈ Vψ holds, we may replace the above inequality by:

0 ≥
∫

Ω

(

x′(ξ) − x(ξ)
) (

f(ξ) + x∗(ξ)
)

d ξ ; x′ ∈ Vψ . (2.13)

If some function x′ ∈ H1
0 (Ω) is greater or equal than x ∈ Vψ in the sense of H1(Ω), it is contained

in the cone Vψ by construction. Therefore, we may infer from (2.13) that −f − x∗ constitutes a
positive measure. Let us assume, that we can find a point ξ0 ∈ Ω and a number r > 0, such that
there is a function u0 ∈ C1(Ω), whose support is contained in the ball B2r(ξ0) and which satisfies
u0 > 0 on Br(ξ0) along with the requirement x ≥ ψ + u0 in the sense of H1(Ω). We shall say,
that x > ψ holds at the point ξ0 in the sense of H1(Ω).

Let ϑ ∈ C1
0 (Br(ξ0)) denote an arbitrary function. By definition we can find a scaling factor

ϑ0 > 0 such that |ϑ0 ϑ | ≤ u0 holds on Br(ξ0). Hence, both x+ ϑ0 ϑ and x− ϑ0 ϑ belong to the
cone Vψ. With a view to (2.13) we conclude using a density argument:

0 =

∫

Br(ξ0)

ϑ(ξ)
(

f(ξ) + x∗(ξ)
)

d ξ ; ϑ ∈ H1
0 (Br(ξ0)) .

Thanks the above result we may reason, that the support of the measure −f − x∗ is contained
within the set of those points, where the obstacle ψ and the function x have come into ”contact”.
To formalise the notion of the coincidence set let us define:

Ωx : = Ω \
{

ξ ∈ Ω
∣

∣ x > ψ at ξ in the sense of H1(Ω)
}

.
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In the case Ω \ E 6= ∅ we may apply a similar reasoning to any point ξ ∈ Ω that has a positive
distance to the set E. Thus we find, that any distribution x∗ ∈ ∂G(x) can be represented with
the help of some positive measure µ, whose support is confined to the set Ωx ∩ E:

〈 s, x∗ 〉
Ω

= − 〈 s, f 〉
Ω

−
∫

Ωx∩E

s d µ ; s ∈ H1
0 (Ω) . (2.14)

Conversely, let us assume, that µ is a positive measure, whose support is contained in Ωx ∩ E.
Obviously, the right hand side of (2.14) defines a distribution x∗ ∈ H−1(Ω). We are going to
demonstrate, that x∗ ∈ ∂G(x) holds. For any function x′ 6∈ Vψ there is nothing to prove. Hence,
let us suppose x′ ∈ Vψ. We note:

G(x) + 〈x′ − x, x∗ 〉
X

= G(x′) −
∫

Ωx∩E

(

x′ − ψ
)

dµ ≤ G(x′) .

From the above inequality we infer, that x∗ is in fact a subgradient of G at the point x ∈ Vψ.
Henceforth, we shall say the distribution z∗ ∈ H−1(Ω) belongs to the set Mx if there is a positive
measure ζ, such that the action of z∗ can be described by:

〈 s, z∗ 〉Ω : =

∫

E ∩Ωx

s d ζ ; s ∈ H1
0 (Ω) .

2.2.4 Error estimates for the Energy Norm

Thanks to the ellipticity condition imposed on the function A ∈W 1,∞(Ω,Rn×nsym ) we can warrant
the existence of another function A−1 ∈W 1,∞(Ω,Rn×nsym ) such that AA−1 ≡ I ∈ R

n×n holds. We
note that this ”inverse” function is also coercive, as we find at any point ξ ∈ Ω:

‖A−1(ξ) v ‖2 = sup
u∈Rn

uTA−1(ξ) v

‖u‖
2

≥ sup
u∈Rn

uT v

‖A(ξ)‖
2
‖u‖

2

≥ ‖v‖
2

n ‖A(ξ)‖
∞

; v ∈ R
n .

With the help of the matrix valued mapping A−1 we can exhibit the Fenchel conjugate of the
functional F , as it has been defined in subsection 2.2.2:

F ∗(y∗) :=
1

2

∫

Ω

{

n
∑

i=1

n
∑

j=1

A−1
ij (ξ) y∗i (ξ) y

∗
j (ξ)

}

d ξ ; y∗ ∈ L2(Ω,Rn) .

With a view to paragraph 2.1.3 let us introduce a parameter κ > 0 and let us define the auxiliary
functions h : L2(Ω,Rn) −→ R and H : L2(Ω,Rn) −→ R by:

κ H(y) := h(y) := F (y) ; y ∈ L2(Ω,Rn) .

We can verify easily, that the function h meets the requirements imposed by (1.10) and (1.11).
With a view to definition (1.19) we proceed and introduce the mapping K :H1

0 (Ω) −→ R by:

K(s) := inf
y∈L2(Ω,Rn)

{ 1

κ
F (∇s− y) + F (y)

}

=
〈∇s,A∇s 〉

Ω

2 (κ+ 1)
; s ∈ H1

0 (Ω) .

A bound on its Fenchel conjugate K∗ :H−1(Ω) −→ R may be obtained in the following manner:

K∗(s∗) = sup
t≥ 0

sup
|s|

Ω,1
= 1

{

t 〈s, s∗〉
Ω

− t2
〈∇s,A∇s 〉

Ω

2 (κ+ 1)

}

= sup
|s|

Ω,1
= 1

{

(κ+ 1) 〈s, s∗〉2
Ω

2 〈∇s,A∇s 〉
Ω

}

≤ sup
|s|

Ω,1
= 1

{

κ+ 1

2A0

〈s, s∗〉2
Ω

‖∇s‖2
Ω

}

=
κ+ 1

2A0
| s∗|2

Ω,−1
; s∗ ∈ H−1(Ω) .
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Combining our findings from paragraph 2.2.3 with the above result we can derive from (1.21) an
estimate of the energy error we encounter in approximating the solution x0 ∈ Vψ of the variational
problem (2.12) with some function x ∈ Vψ:

|x− x0 |2Ω,1 ≤ 2

A0

1 + κ

κ
F (∇x−A−1σ ) +

κ+ 1

A2
0

inf
µ∈Mx

|µ+ f + ∇· σ |2
Ω,−1

(2.15)

which is reliable for any choice of the vector field σ ∈ L2(Ω,Rn). To obtain an error bound that
is more amenable to numerical computation we must find a suitable lower bound K̃ :L2(Ω) −→ R

for the functional K. Exploiting the ellipticity condition stated in paragraph 2.2.2 we find by
invoking Friedrich’s inequality (1.4):

K̃(s) :=
A0 λ

2
0

2 (κ+ 1)
‖ s ‖2

Ω
≤ K(s) ; s ∈ H1

0 (Ω) .

In analogy to (2.8) we arrive at the following computable error estimate for σ ∈ Hdiv(Ω):

|x− x0 |2Ω,1 ≤ 2

A0

1 + κ

κ
F (∇x−A−1σ ) +

κ+ 1

A2
0 λ

2
0

inf
µ∈L2(Ω)∩Mx

‖µ+ f + ∇· σ ‖2
Ω

(2.16)

≤ 2

A0

1 + κ

κ
F (∇x−A−1σ ) +

κ+ 1

A2
0 λ

2
0

{

‖ f + ∇· σ ‖2
Ω
− ‖ 0 ∧ (∇· σ + f) ‖2

Ωx∩E

}

.

Hereby, the symbol u∧v denotes the common greatest lower bound of two functions u, v ∈ L2(Ω).

2.2.5 An alternative approach to the obstacle problem

In a joint work with S. Repin [42] a somewhat different method has been developed to obtain
computable a posteriori error estimates for the obstacle problem. The mathematical technology
necessary to compute such estimates has been discussed in great detail in a technical note [41].
Hence, we will give only a very brief survey of our results. The starting point of our investigation
is the Lagrangian L :H1

0 (Ω) × L2(Ω,Rn) × Mψ −→ R defined by:

L(v, τ, µ∗) :=

∫

Ω

{

τ ∇v − 1

2
τTA−1τ − f v

}

d ξ − 〈 v − ψ, µ∗ 〉
E
.

While the energy functional J :H1
0 (Ω) −→ R associated with the primal formulation (2.12) can

be recovered by computing the supremum of L with respect to the second and third argument

J(v) = sup
τ∈L2(Ω,R)

sup
µ∗∈Mψ

L(v, τ, µ∗) =

{

1
2 〈∇v,A∇v 〉Ω − 〈 v, f 〉Ω ; v ∈ Vψ

+ ∞ ; else ,

the dual functional J∗ : L2(Ω,Rn) × Mψ −→ R is obtained by finding the minimum of the
Lagrangian L with respect to its first argument:

J∗(τ, µ∗) = inf
v∈H1

0 (Ω)
L(v, τ, µ∗) =











− 1

2

∫

Ω

τTA−1τ d ξ + 〈ψ, µ∗ 〉
E

; τ ∈ Q∗
µ∗

− ∞ ; else .

Hereby, the set Q∗
µ∗ of admissible vector fields is defined for any measure µ∗ ∈ Mψ by:

Q∗
µ∗ : =

{

τ ∈ L2(Ω,Rn)
∣

∣

∣

∫

Ω

{

τ ∇v − f v
}

d ξ = 〈 v, µ∗ 〉
E

; v ∈ H1
0 (Ω)

}

. (2.17)

Combining both results the following bound on the approximation error is inferred from (1.8):

A0

2
|x− x0 |2Ω,1 ≤ F (∇x−A−1σ ) + F ∗(σ − τ) + 〈σ − τ,∇x−A−1σ 〉

Ω
+ 〈x− ψ, µ∗ 〉

E
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with σ ∈ L2(Ω,Rn) and τ ∈ Q∗
µ∗ being arbitrary vector fields. Again the device (1.14) may be

employed to rid ourselves of the dual pairing. We introduce a parameter κ > 0 and find:

A0

2
|x− x0 |2Ω,1 ≤ 1 + κ

κ
F (∇x−A−1σ ) + (1 + κ) F ∗(σ − τ) + 〈x− ψ, µ∗ 〉

E
.

In order to control the right hand side of the above inequality we have to find an upper bound
on the expression F ∗(σ− τ). We will do this by the very same method we have employed in [41].
That is, we introduce the auxiliary function Q : L2(Ω,Rn) ×H1

0 (Ω) −→ R:

Q(ς, w) :=

∫

Ω

{

ς∇w − 1

2
∇wTA∇w

}

d ξ . (2.18)

We exploit the fact, that we can decompose any vector field σ ∈ L2(Ω,Rn) into a solenoidal
component σ0 ∈ H0(Ω) and a second component, which we can compute from a scalar ”potential”
s ∈ H1

0 (Ω). In the case A ≡ I ∈ R
n×n such a decomposition is generally known as Helmholtz

splitting . Let us assume, we have found such a decomposition:

σ = A∇s + σ0 .

Thanks to the definition of the auxiliary function Q we now find:

sup
w∈H1

0 (Ω)

{

inf
τ∈H0(Ω)

Q(σ − τ, w)
}

= sup
w∈H1

0 (Ω)

∫

Ω

{

∇sTA∇w − 1

2
∇wTA∇w

}

d ξ

≥ 1

2
〈∇s,A∇s 〉

Ω
≥ inf

τ∈H0(Ω)
F ∗(σ − τ) .

An upper bound on the right hand side of the above estimate may be obtained by:

sup
w∈H1

0 (Ω)

{

inf
τ∈H0(Ω)

Q(σ − τ, w)
}

≤ inf
τ∈H0(Ω)

{

sup
ς∈L2(Ω,Rn)

∫

Ω

{

∇sTAς − 1

2
ςTAς

}

d ξ

}

=
1

2
〈∇s,A∇s 〉

Ω
= F ∗(σ − σ0) .

On closer inspection of the definition (2.17) we note, that the set Q∗
µ∗ of admissible vector fields is

an affine space, which may be generated by translating each point in the space H0(Ω) of solenoidal
vector fields by a fixed element τ̂ ∈ Q∗

µ∗ . Substituting σ by σ − σ0 − τ̂ we conclude:

inf
τ∈Q∗

µ∗

F ∗(σ − τ) ≤ sup
w∈H1

0 (Ω)

{

inf
τ∈Q∗

µ

Q(σ − τ, w)
}

≤ F ∗(σ − τ̂) ; τ̂ ∈ Q∗
µ .

As the left hand side of the inequality is independent of τ̂ ∈ Q∗
µ we may take the infimum with

respect to this vector field. Combining the definitions (2.17) and (2.18) we now see:

inf
τ∈Q∗

µ∗

F ∗(σ − τ) = sup
w∈H1

0 (Ω)

{
∫

Ω

{

σ∇w − 1

2
∇wTA∇w − f w

}

d ξ − 〈w, µ∗ 〉
E

}

.

In order to control the right and side of the above equation we have to introduce two assumptions
on the regularity of the data involved: The first assumption σ ∈ Hdiv(Ω) is not unduely restrictive,
if the data of the variational statement (2.12) warrants a sufficiently regular solution x0 ∈ Vψ. In
the present case our requirements on the data as stated in section 2.2.2 guarantee x0 ∈ H2(Ω).
The second assumption may be more problematic, especially if we allow for thin obstacles E 6= Ω.
Henceforth, let us suppose, that µ∗ ∈ Mψ ∩ L2(Ω) holds. We remark, that the set Mψ ∩ L2(Ω)
contains at least the zero function, whence our second condition will not be void, even if E is a
set of Lebesgue measure zero. It seems, that no regularity results have been published for elliptic
variational inequalities with general thin obstacles. The so called interior thin obstacle problem,
which may be seen as a transmission problem across an interface separating two subdomains, has
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been more intensively researched (see e. g. chapter 11 in [74] and the references cited therein).
If the thin obstacle constitutes one part of the boundary ∂Ω, the variational formulation (2.12)
is also known as Signorini problem. In the scalar case the C1-regularity of its solution has first
been analysed in [72]. In the vector valued case, which corresponds to the contact problem in
elastomechanics, regularity results were first obtained in [69,88]. Hölder continuity of the solution
and its first derivatives was proved in a three-dimensional setting quite lately [131]. Since little
is known of the properties of thin obstacle problems, if E ⊂ Ω is an arbitrary compact subset,
any attempt at studying such problems in the most general setting is clearly beyond the scope
of this work. Hence, let us abide by our incipient requirement, that the set E and the domain Ω
coincide - or at least let us assume that E has a non-empty interior. We note:

inf
τ∈Q∗

µ∗

F ∗(σ − τ) = sup
w∈H1

0 (Ω)

∫

Ω

{

−w
(

µ∗ + f + ∇· σ
)

− 1

2
∇wTA∇w

}

d ξ

≤ sup
w∈H1

0 (Ω)

{

‖w‖
Ω
‖µ∗ + f + ∇· σ‖

Ω
− A0 λ

2
0

2
‖w‖2

Ω

}

=
‖µ∗ + f + ∇· σ ‖2

Ω

2 A0 λ2
0

.

Combining this new result with the error estimate we have obtained previously we find:

A0

2
|x− x0 |2Ω,1 ≤ 1 + κ

κ
F (∇x−A−1σ ) +

∫

Ω

{ 1 + κ

2A0λ2
0

(µ∗ + f + ∇· σ )2 + µ∗(x− ψ)
}

d ξ

with µ∗ ≥ 0 being an arbitrary square integrable function, whose support is contained within
the set E. Since the integrand is simply some function in the space L1(Ω), whatever Lagrange
multiplier µ∗ ∈ L2(Ω) ∩ Mψ we choose, we can calculate the infimum of the right hand side in
the above estimate with respect to µ∗ by constructing the infimum of the integrand in a point
by point fashion. Thus we arrive at the following error a posteriori bound:

|x− x0 |2Ω,1 ≤ 2

A0

1 + κ

κ
F (∇x−A−1σ ) +

1 + κ

A2
0λ

2
0

‖∇· σ + f ‖2
Ω

(2.19)

− 1 + κ

A2
0λ

2
0

∥

∥

∥
0 ∧

(

A0 λ
2
0

x− ψ

1 + κ
+ ∇· σ + f

)
∥

∥

∥

2

E

.

Again, the symbol u∧v denotes the common greatest lower bound of two functions u, v ∈ L2(Ω).

2.2.6 Preliminary Remarks on the Efficiency

In the two preceding paragraphs, we have developed two a posteriori estimates for the energy
error, that are applicable to the obstacle problem as a generic example for variational formulations
posed on convex subsets instead of whole linear spaces. While the mathematical technology we
have presented in chapter 1 yields a posteriori estimates, that are asymptotically exact for the
Laplace problem, this need not necessarily be the case any longer, if we impose constraints on the
minimiser. Hence, it will be necessary to examine the estimates (2.15), (2.16) and (2.19) more
closely in order to gauge the efficiency of the estimates and evaluate the impact of the constraint
on the quality of the error bounds. Let us commence our investigation by observing, that we
may not hope to recover the true discretisation error as a matter of principle: As we start our
analysis with the abstract error estimate

2 φ( ‖x− x0‖Λ
) ≤ J(x,Λx) − J(x0,Λx0)

the lowest bound on the approximation error we are eventually able to obtain is a function of the
right hand side in the above inequality rather than a function of the approximation error itself.
The Laplace problem we have studied in the section 2.1 is special in so far, as the approximation
error can be expressed in terms of the energy functional:

2 φ( ‖x− x0‖Λ ) =
1

2
‖∇x‖2

Ω
+

1

2
‖∇x0‖2

Ω
− 〈∇x,∇x0 〉Ω

= J(x) − J(x0) +
{

〈x− x0, f 〉Ω − 〈∇(x− x0),∇x0 〉Ω
}

= J(x) − J(x0) .
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The expression within the pair of braces is the very optimality condition, the stationary point
x0 ∈ H1

0 (Ω) has to meet. In the case of the obstacle problem the corresponding condition reads:

x0 ∈ Vψ : 〈∇(x− x0),∇x0 〉Ω ≥ 〈x− x0, f 〉Ω ; x ∈ Vψ

with the cone Vψ ⊂ H1
0 (Ω) being defined by (2.11). Depending on our choice of the numerical

approximation x ∈ Vψ the contribution of the first order optimality condition to the above error
representation may therefore be positive.

2.2.7 An Analysis of the Error Estimates

In order to understand the impact of our various calculations on the quality of the emerging
hypercycle estimates (2.15), (2.16) and (2.19) let us again employ mathematical techniques from
the calculus of conjugate duality. They will also enable us to exhibit the very point σ0 ∈ L2(Ω,Rn)
which the possibly sharpest error bound is attained at. We note:

1

2
|x∗ |2

Ω,−1
= sup

w∈H1
0 (Ω)

{

〈w, x∗ 〉
Ω
− 1

2
‖∇w‖2

Ω

}

; x∗ ∈ H−1(Ω) .

Exploiting the above identity we can recast the error estimate (2.15) into the following form:

M1 : = inf
σ∈L2(Ω,Rn)

{

2

A0

1 + κ

κ
F (∇x−A−1σ ) +

κ+ 1

A2
0

inf
µ∈Mx

|µ+ f + ∇· σ |2
Ω,−1

}

= inf
σ∈L2(Ω,Rn)

{

2

A0

1 + κ

κ
sup

τ∈L2(Ω,Rn)

{

〈∇x−A−1σ, τ 〉
Ω
− F ∗(τ)

}

+

+ 2
1 + κ

A2
0

inf
µ∈Mx

(

sup
w∈H1

0 (Ω)

{

〈w, µ+ f + ∇· σ 〉
Ω
− 1

2
‖∇w‖2

Ω

} )

}

= sup
τ∈L2(Ω,Rn)

sup
w∈M∗

x

{

inf
σ∈L2(Ω,Rn)

{ 2

A2
0

1 + κ

κ

〈

−A0 A
−1 τ − κ∇w, σ

〉

Ω

}

−

− 2

A0

1 + κ

κ
F ∗(τ) +

2

A0

1 + κ

κ
〈∇x, τ 〉

Ω
− 1 + κ

A2
0

‖∇w‖2
Ω

+ 2
1 + κ

A2
0

〈w, f 〉
Ω

}

.

Hereby, we have tacitly introduced the polar cone M∗
x ⊂ H1

0 (Ω) associated with the set Mx as
it has been specified at the end of section 2.2.3. The polar cone M∗

x contains all those functions,
which yield positive results for any functional from the set Mx:

M
∗
x : =

{

v ∈ H1
0 (Ω)

∣

∣ 〈 v, x∗ 〉
Ω

≥ 0 ; x∗ ∈ Mx

}

.

Since the error bound M1 is defined in terms of a Lagrangian, so to speak, which depends on the
variable σ ∈ L2(Ω,Rn) in a linear fashion, a finite value of M1 can only be attained if

τ = − κ

A0
A ∇w (2.20)

holds. With a view to the definition of the conjugate functional F ∗ we therefore conclude:

A0

2
M1 =

1 + κ

κ
sup
w∈M∗

x

{

〈w, f 〉
Ω
− F (∇w) − 〈∇x,A∇w 〉

Ω
− A0

κ

1

2
|w |2

Ω,1

}

.

Let us first consider the special case A ≡ A0 I ∈ R
n×n which corresponds to the Laplace problem,

if we ignore the constraint x0 ∈ Vψ. Under this very assumption we may eliminate the functional
F in favour of the norm. Thus we find:

A0

2
M1 =

1 + κ

κ
sup
w∈M∗

x

{

〈w, f 〉
Ω
− A0 〈∇x,∇w 〉

Ω
− A0

2

1 + κ

κ
|w |2

Ω,1

}

.
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Since the set M∗
x is invariant under scaling with an arbitrary positive parameter we can absorb

the factor 1 + κ−1 into the function w ∈ M∗
x. The resulting equation reads:

A0

2
M1 = sup

w∈M∗
x

{

〈w, f 〉
Ω
−A0 〈∇x,∇w 〉

Ω
− A0

2
|w |2

Ω,−1

}

= J(x) − inf
w∈M∗

x

J(w + x)

with the energy functional J :H1
0 (Ω) −→ R being defined as in subsection 2.2.5. Thanks to the

definition of the set M∗
x we can warrant the cone

V ′
ψ : =

{

v ∈ H1
0 (Ω)

∣

∣ v ≥ ψ on E ∩ Ωx in the sense of H1(Ω)
}

(2.21)

to be a dense subset of M∗
x+{x}. Because the obstacle ψ and the approximation x ∈ Vψ coincide

on the domain Ωx we conclude, that we can bound the error estimator (2.15) by:

A0

2
M1 = J(x) − inf

w∈V ′
ψ

J(w) . (2.22)

Depending on the actual shape of the coincidence set Ωx the error bound (2.15) may therefore
be the very best, we can possibly obtain in the light of section 2.2.6. The worst result we can
encounter corresponds to the unconstrained case V ′

ψ = H1
0 (Ω) which is implied by Ωx = ∅.

Let us proceed with an investigation of the error estimate (2.16). We will dispense with our
requirement that the matrix valued function A be constant and isotropic, since there are no
advantages to accrue from such an assumption. We recall, that we have supposed the domain
E ⊂ Ω to feature a non-empty interior. Therefore, the polar cone of the set L2(Ω) ∩ Mx may
be specified as the set of all those square integrable functions which are nonnegative almost
everywhere on E. As we will presently see, employing functions of a somewhat higher regularity
turns out to be more convenient. Since H1

0 (Ω) is dense in L2(Ω) we may state:

inf
µ∈L2(Ω)∩Mx

‖µ+ f + ∇· σ ‖2
Ω

= inf
µ∈L2(Ω)∩Mx

{

sup
w∈H1

0 (Ω)

{

〈 2w, µ+ f + ∇· σ 〉Ω − ‖w‖2
Ω

} }

= sup
w∈M∗

x

{

〈 2w, f 〉
Ω
− 〈 2∇w, σ 〉

Ω
− ‖w‖2

Ω

}

.

With the help of the above result let us reformulate the estimate (2.16) in the following manner:

M2 : = inf
σ∈Hdiv(Ω)

{

2

A0

1 + κ

κ
F (∇x−A−1σ ) +

κ+ 1

A2
0 λ

2
0

inf
µ∈L2(Ω)∩Mx

‖µ+ f + ∇· σ ‖2
Ω

}

= inf
σ∈Hdiv(Ω)

{

2

A0

1 + κ

κ
sup

τ∈L2(Ω,Rn)

{

〈∇x−A−1σ, τ 〉
Ω
− F ∗(τ)

}

+

+ 2
1 + κ

A2
0 λ

2
0

sup
w∈M∗

x

{

〈w, f 〉Ω − 〈∇w, σ 〉Ω − 1

2
‖w‖2

Ω

}

}

=
2

A0

1 + κ

κ
sup
w∈M∗

x

{

〈w, f 〉Ω − 〈∇x,A∇w 〉Ω − F (∇w) − 1

2

A0λ
2
0

κ
‖w‖2

Ω

}

.

With a view to the above equation it seems convenient to introduce a new energy functional
Ĵx : H1

0 (Ω) −→ R, so we can eventually exhibit the error bound M2 in terms of a variational
statement similar to (2.22). After some elementary computations we find:

Ĵx(v) := F (∇v) +
A0λ

2
0

2κ
‖v‖2

Ω
− A0λ

2
0

κ
〈 v, x 〉Ω − 〈 v, f 〉Ω ; v ∈ H1

0 (Ω) . (2.23)

Using this modified energy functional Ĵx the error estimate M2 may be represented by:

A0

2
M2 =

1 + κ

κ

{

Ĵx(x) − inf
w∈V ′

ψ

Ĵx(w)
}

. (2.24)
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Next, there is the estimate (2.19) to discuss. Our line of approach will be same we have followed
above. We must find the conjugate functional φ∗

w : L2(Ω) −→ R associated with the mapping

φw(v) := α ‖v‖2
Ω

− α ‖ 0 ∧ (α−1w + v ) ‖2
E

; v ∈ L2(Ω) .

Hereby, the function w ∈ L2(Ω) is supposed to be nonnegative and α > 0 denotes a parameter.
In order to demonstrate that φw is convex, let us introduce the mapping Θ : R × R

+
0 −→ R:

Θ(ξ, η) :=

{ −2 η ξ − α−1 η2 ; ξ ≤ −α−1η

α ξ2 ; else .

For any choice of the parameter η ≥ 0 the mapping Θ(·, η) is a closed and convex function in its
first argument. Since we can reformulate the functional φw in the following form

φw(v) = α ‖v‖2
Ω\E

+

∫

E

Θ(v(ξ), w(ξ)) dξ ; v ∈ L2(Ω)

we infer that φw is convex and closed. Furthermore, we note that we may compute the Fenchel
conjugate φ∗

w : L2(Ω) −→ R according to the formula:

φ∗w(v) =
1

4α
‖v‖2

Ω\E
+

∫

E

Θ∗(v(ξ), w(ξ)) dξ ; v ∈ L2(Ω)

with the conjugate mapping Θ∗ : R × R
+
0 −→ R being defined by:

Θ∗(ξ∗, η) := sup
ξ∈R

{

ξ ξ∗ − Θ(ξ, η)
}

=

{

(4α)−1 |ξ∗|2 ; ξ∗ ≥ −2η

+ ∞ ; else .

We may define the parameter α by requiring 2A0λ
2
0 α = 1 + κ and the function w by specifying

2w = x−ψ. Using these settings we can exhibit the optimal error bound to be derived from the
a posteriori estimate (2.19) in the following manner:

M3 : = inf
σ∈Hdiv(Ω)

{

2

A0

1 + κ

κ
F (∇x−A−1σ ) +

2

A0
φw(∇· σ + f )

}

= inf
σ∈Hdiv(Ω)

{

2

A0

1 + κ

κ
sup

τ∈L2(Ω,Rn)

{

〈∇x−A−1σ, τ 〉
Ω
− F ∗(τ)

}

+

+
2

A0
sup

v∈H1
0 (Ω)

{

〈 v, f 〉
Ω
− 〈∇v, σ 〉

Ω
− φ∗w(v)

}

}

=
2

A0
sup

v∈Vψ−x

{

〈 v, f 〉
Ω
− 〈∇x,A∇v 〉

Ω
− κ

1 + κ
F (∇v) − A0λ

2
0

2 (1 + κ)
‖v‖2

Ω

}

.

By scaling the function v with the reciprocal of 1 + κ−1 we find:

A0

2
M3 =

1 + κ

κ
sup
v∈Vψ′

{

〈 v, f 〉
Ω
− F (∇v) − 〈∇x,A∇v 〉

Ω
− A0λ

2
0

2κ
‖ v ‖2

Ω

}

.

Hereby, the new cone Vψ′ ⊂ H1
0 (Ω) is defined in analogy to (2.11) in terms of the scaled function

ψ′ := (ψ − x)/(1 + κ−1). With a view to the definition of the functional Ĵx we conclude:

A0

2
M3 =

1 + κ

κ

{

Ĵx(x) − inf
w∈V κψ

Ĵx(v)
}

. (2.25)

The cone V κψ can be obtained from Vψ′ by a simple translation:

V κψ : =
{

v ∈ H1
0 (Ω)

∣

∣

∣
v ≥ κψ + x

κ+ 1
on E in the sense of H1(Ω)

}

.
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Finally, let us now abandon our assumption, that the matrix valued function be constant and
isotropic. The error bounds M1 and M2 feature basically the same structure. Hence, we may
introduce a modified energy functional J̃x :H1

0 (Ω) −→ R similar to the one Ĵx used in the analysis
of the majorant M2 and thus bound the approximation error by:

A0

2
M1 =

1 + κ

κ

{

J̃x(x) − inf
w∈V ′

ψ

J̃x(w)
}

. (2.26)

We remark, the cone of admissible functions as defined by (2.21) is the same in both cases. The
modified energy functional must account for the L2-norm being replaced by the H1-seminorm.
Accordingly, the new functional J̃ reads:

J̃x(v) := F (∇v) +
A0

2κ
| v |2

Ω,1
− A0

κ
〈∇v,∇x 〉

Ω
− 〈 v, f 〉

Ω
; v ∈ H1

0 (Ω) .

2.2.8 A Comparison of the Error Estimates

In the preceding section we have demonstrated, that the error bounds (2.15), (2.16) and (2.19)
can be understood as the dual formulation of minimisation problems involving perturbed energy
functionals and modified cones of admissible functions. With a view to their respective definitions
we can state for any parameter κ > 0:

V κψ ⊆ Vψ ⊆ V ′
ψ .

Since the estimate (2.16) and (2.19) involve the same energy functional Ĵ we conclude, that the
latter error bound is always sharper than the former one. Comparing (2.15) with (2.19) seems
to be very difficult. If the matrix valued function A is constant and isotropic, the formula (2.22)
shows, that the majorant (2.15) can become as sharp as technically possible. Let us define:

M0 : =
2

A0

{

J(x) − inf
w∈Vψ

J(w)
}

. (2.27)

The above quantity is the best bound on the approximation error we can hope to obtain from
any a posteriori error estimator for the variational problem (2.12). We have introduced the set
Ωx of all those points, at which the obstacle function ψ and the numerical solution x of the
obstacle problem have come into contact. Let us denote the coincidence set of the obstacle and
the analytical solution by Ω0. We contend, that the hypercycle estimate (2.15) will be optimal, if
Ω0 ⊆ Ωx holds. To prove our claim let us remark, that we may replace in (2.11) the set E by Ω0

without changing the analytical solution x0 of the variational problem (2.12). In consequence,
we may assume that Ω0 ⊆ Ωx implies E ⊆ Ωx and thence infer Vψ = V ′

ψ. We conclude:

M0 = M1 ≤ M3 ≤ M2

if we postulate, that the coincidence set associated with the numerical solution x contains Ω0.
When we consider general matrix valued functions A ∈ W 1,∞(Ω,Rn×nsym ), it is no longer obvious
how the bounds M1 and M3 should be related to one another. We can merely assert:

M0 ≤ max{M1,M3 } ≤ M2 .

In the limit κ→ ∞ both auxiliary functionals Ĵx and J̃x converge in a point by point manner to
the Dirichlet integral J . Furthermore, the cone V κψ grows with growing κ and exhausts the set
Vψ in the limit κ→ ∞. To formalise this notion we may state:

⋃

κ>0

V κψ = Vψ .

We collect, that the original variational statement of the obstacle problem is recovered in the
limit κ → ∞. To corroborate our notion let us remark, that for any κ > 0 the functional Ĵx
attains its minimum in the cone V κψ at the very point x0, when we choose x = x0. We contend:
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Proposition 2.1 For any value of the perturbation parameter κ > 0 the solution x0 ∈ Vψ of
the primal variational problem (2.12) as it has been detailed in section 2.2.2 coincides with the
solution uκ,x ∈ V κψ of the perturbed minimisation problem

Ĵx(v) −→
v∈V κψ

min (2.28)

with the energy functional Ĵx :H1
0 (Ω) −→ R being defined by (2.23). There is a constant CA > 0,

such that for any two admissible functions x, x′ ∈ Vψ the following a priori estimate holds:

∣

∣ uκ,x − uκ,x′

∣

∣

Ω,1
≤ 1

1 + κ

{

CA |x− x′ |
Ω,1

+ λ2
0 |x− x′ |

Ω,−1

}

.

Proof By introducing the new variable ṽ := (1 + κ−1) v − κ−1x and dropping all constant
expressions, that result from this translation, we derive from the definition (2.23) a new energy
functional. After scaling with the factor (1 + κ−1)2 this functional reads:

Ĵκ,x(ṽ) := F (∇ṽ) +
A0λ

2
0

2κ
‖ṽ‖2

Ω
− A0λ

2
0

κ
〈 ṽ, x 〉Ω − 1 + κ

κ
〈 ṽ, f 〉Ω +

1

κ
〈∇ṽ, A∇x 〉Ω

with ṽ ∈ Vψ. By definition ṽ ∈ Vψ implies v ∈ V κψ and vice versa. Let us denote the solution of
the auxiliary minimisation problem

Ĵκ,x(ṽ) −→
ṽ∈Vψ

min

by ũκ,x ∈ Vψ. Since the quadratic part of the energy functional Ĵκ,x is coercive on H1
0 (Ω) with

some constant, which is bounded from below by A0 for any choice of the parameter κ, we can
easily adapt the classical stability result of Stampacchia and Lions [102]:

√

A0

∣

∣ ũκ,x − ũκ,x′

∣

∣

Ω,1
≤ 1

κ

{

√

A∞

∣

∣x− x′
∣

∣

Ω,1
+

√

A0 λ
2
0

∣

∣x− x′
∣

∣

Ω,−1

}

.

Hereby, the constant A∞ denotes an upper bound on the supremum norm of the matrix valued
function A defined in section 2.2.2. The final estimate is now obtained by taking into account
the affine transformation we have applied initially:

∣

∣ uκ,x − uκ,x′

∣

∣

Ω,1
≤ κ

1 + κ

∣

∣ ũκ,x − ũκ,x′

∣

∣

Ω,1
+

1

1 + κ

∣

∣x− x′
∣

∣

Ω,1
.

To complete the proof we have to show, that the minimiser of the functional Ĵx0
in the cone V κψ

is always x0. To this end we note, we can decompose the functional into two parts:

Ĵx0
(v) = : J(v) + J0(v) ; v ∈ H1

0 (Ω) .

By definition of the analytical solution the Dirichlet integral J will attain its minimum in the
cone Vψ at the point x0 ∈ V κψ . The second functional J0 :H1

0 (Ω) −→ R is defined by:

J0(v) =
A0λ

2
0

2κ
‖ v ‖2

Ω
− A0λ

2
0

κ
〈 v, x0 〉Ω ; v ∈ H1

0 (Ω) .

This part of the energy functional Ĵx0
will attain its minimum over the whole space H1

0 (Ω) at
the very same point. Consequently, the analytical solution x0 ∈ V κψ of problem (2.12) is also the
minimiser of the perturbed problem (2.28), if we assume x = x0. �

The above result implies |x0−uκ,x |Ω,1 = O(κ−1) for any x ∈ Vψ. To complement our findings
let us formulate another proposition which asserts a bound on the efficiency of the estimator M3:

Proposition 2.2 If we denote the right hand side of the error estimate (2.19) by M3 and define
M0 as the smallest possible error majorant we can derive with the help of duality techniques
according to formula (2.27) we following efficiency estimate holds for any value of the perturbation
parameter κ > 0 and any choice of an admissible approximation x ∈ Vψ:

M3 ≤ 1 + κ

κ
M0 .
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Proof Using the same notation we have employed in the proof of the previous proposition we
infer from (2.25), that we can write the error estimate M3 as:

M3 =
2 (1 + κ)

κ A0

{

J(x) − J(uκ,x)
}

− λ2
0 (1 + κ)

κ2

∥

∥ x − uκ,x
∥

∥

2

Ω

≤ 2 (1 + κ)

κ A0

{

J(x) − inf
v∈Vψ

J(v)
}

=
1 + κ

κ
M0 .

�

A closer inspection of the arguments we have used to proof proposition 2.1 and 2.2 shows, that
we can derive analogous results for the error majorants M1 and M2 as long as we can suppose
Ω0 ⊆ Ωx. Unfortunately, there is no reason why such an assumption should be valid. If the
coincidence set of numerical solution x ∈ Vψ is smaller than the proper coincidence set Ω0 a
systematical error is introduced both into M1 and M2, such that an upper bound for these error
majorants in terms of M0 is not even available.



Chapter 3

Discretisation Procedures for Duality Error Majorants in

a Finite Element context

In the preceding chapter we have studied a number of applications which may be fit into the
theoretical framework for a posteriori error estimates as it has been developed in the first chapter.
Yet, we have not elaborated how these estimates may be obtained within the context of some
numerical procedure, specifically a finite element computation. Below we will address some of the
numerical issues we have to be aware of if we use trial spaces of finite dimension to approximate
the solution of the primal problem and to seek a minimiser for the error majorant in.

Occasionally, we will need to refer to a number of general concepts underlying all finite element
schemes which rely on meshes to set up the basis functions for the trial spaces they employ. For
our convenience, we therefore devote the first section to outlining those basic principles. To
keep our exposition fully self-contained it would be necessary to complement this section with
a discussion how to construct trial spaces Xh of finite dimension which are contained in the
very Banach space X, the domain which the operator Λ has been defined on. As the resulting
variational formulation

F (Λxh) + G(xh) −→
xh∈Xh

inf .

involves only a finite number of unknown parameters, the so called degrees of freedom of the
discrete problem, it is amenable to a numerical treatment. Even though the technology behind
finite element computations is interesting in itself, we will not present such a discussion, however:
primarily because the literature on finite element computations has grown so vast. While the
numerical treatment of the primal formulation can hardly cover new ground, the discretisation
of the dual problem may still deserve our deliberation.

In the second section of this chapter we will present a recently discovered [40] and somewhat
unusual method to represent the dual variable y∗ ∈ Y ∗ whose judicious choice determines the
significance of the resulting duality error majorant. Albeit we have imposed constraints on the
regularity of that variable to ensure, we can actually compute the error bounds, we need not
necessarily restrict our attention to conforming discretisation schemes which warrant the proper
regularity of the finite element representation y∗h. The discretisation method for the dual variable
we shall discuss belongs to the class of nonconforming schemes. As such it may be of limited
usefulness if we are only interested in constructing error estimates, that we can evaluate easily.
However, if we accept the necessity to introduce bounds on certain expressions we may employ
less regular trial functions y∗h ∈ Y and thus recover some of the more conventional a posteriori
error estimates based on element residuals. More detailed information on the interdependencies
between various known error estimators and certain choices for the dual variable y ∈ Y will be
presented in the third section.

3.1 General Remarks on Finite Element Methods

Ever since the invention of the finite element method, which may be dated back to the year
1943 and a paper of R. Courant [53] on continuous, piecewise linear ansatz functions with small
support, a large number of different finite element schemes have been proposed for the numerical
solution of variational problems. Any attempt to give a comprehensive survey of all the finite
elements, which are in use nowadays, would be far beyond the scope of this thesis. If only to
introduce our notation, it will prove helpful, nevertheless, to recall those constitutive features,
practically all finite elements share. In the first paragraph of this section we will attempt to give
an abstract description of the finite element method and supply a classification of the various
methods in employ. Along the way we will identify a number of requirements, that are constitutive
for finite element schemes. Subsequently, we will show how these requirements can be met by
parametral techniques and introduce the concept of parametric elements. For such elements, we
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will recall a number of well known approximation results. In the third paragraph we will address
some of the technical issues, which are related to the evaluation of integrals with the help of
quadrature formulae.

3.1.1 An abstract description of finite element schemes

Let us suppose, we want to approximate the solution of some variational problem we may describe
in terms of certain integrals over the bounded domain Ω ⊂ R

n:
∫

Ω

F (v,∇v, . . .∇kv) d ξ −→
v∈V

min (3.1)

whereby V ⊂W k,p(Ω,Rm) denotes the set of admissible functions which we have singled out for
example by imposing suitable boundary conditions.

The main idea behind all finite element methods is not to consider said variational formulation
on the whole of the domain Ω but rather to define a number J <∞ of compact domains Ωj ⊂ R

n

covering Ω and to numerically solve variational problems of the form
∫

Ωj

F (vj ,∇vj , . . .∇kvj) d ξ −→
vj∈Vj

min

such that Vj ⊂ W k,p(Ωj ,R
m) is a finite dimensional function space. The collection of patches

covering the domain Ω we will henceforth refer to as the subdivision MJ of the computational
domain Ω0 := Ω1 ∪ . . . ∪ ΩJ , or alternatively as the mesh. We would like to remark, that these
patches must not overlap one another but on some sets of measure 0. The computational domain
Ω0 may actually differ from Ω along the boundary. For each patch Ωj a set Σj ⊂ W−k,p(Ωj)
of continuous linear functionals is specified, which are linearly independent, if we consider them
as defined on the space Vj only. We will call these functionals the degrees of freedom associated
with the element Ωj . Said functionals must be Vj-unisolvent in the following sense:

σ(v) = σ(u) ; σ ∈ Σj =⇒ u = v

for any two functions u, v ∈ Vj . Thus, we ensure the existence of a dual basis {vj1, . . . vjij} ⊂ Vj
of local shape functions which are related to the degrees of freedom associated with Ωj by:

σij( v
j
l ) = δ il ; i, l ∈ {1, . . . ij} .

The number ij denotes the dimension of Vj respectively the cardinality of Σj =: {σ1
j , . . . σ

ij
j }.

In general, we will be unable to extend the local shape functions, such that their extensions are
contained in W k,p(Ω0,R

m). Let us therefore introduce the fragmented space VJ :

VJ : =
{

v ∈ Lp(Ω0,R
m)

∣

∣ v |Ωj ∈ Vj ; 1 ≤ j ≤ J
}

.

A basis SJ of its dual space V ∗
J can be defined in terms of the local degrees of freedom

SJ : =

J
⋃

j=1

Σj ,

if we extend each linear functional σij ∈ Σj for any element v ∈ VJ with the appointment:

supp(v) ∩ int(Ωj) = ∅ =⇒ σij(v) = 0 .

Due to the regularity requirements to be imposed on the analytical solution of the variational
formulation (3.1) we must complement the discrete variational problem

J
∑

j=1

∫

Ωj

F (vj ,∇vj , . . .∇kvj) d ξ −→
v ∈VJ

min (3.2)
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with a finite number LJ > 0 of algebraic constraints, which are of the form:

J
∑

j=1

ij
∑

i=1

B j
li σ

i
j( v

j ) = 0 ; 1 ≤ l ≤ LJ . (3.3)

In this way, we effectually discriminate a subspace VJ ⊂ VJ of ansatz functions, which meet
certain regularity requirements. Boundary conditions can be taken into account by formulating a
second set of (possibly nonlinear) equations. For simplicity, let us assume homogeneous boundary
conditions either of Dirichlet or of Neumann type, such that we an subsume them under (3.3).

When we restrict our search for the minimiser of the discrete problem to the space VJ , we
no longer need all the functionals from the set SJ . By SJ ⊂ span SJ let us denote a basis of
the dual V∗

J ; this set defines the global degrees of freedom associated with the ansatz VJ . The
dual basis with respect to SJ specifies the global shape functions. Let u ∈ VJ denote any such
shape function. To control the numerical complexity of the algorithm we use to solve the discrete
variational problem we have to stipulate that u have a small support:

#
{

Ωj ∈ MJ

∣

∣ supp u ∩ int(Ωj) 6= ∅
}

< C . (3.4)

Hereby C > 0 designates a constant which may depend on the mesh MJ but not on our actual
choice of u. If the global shape functions are sufficiently regular, such that VJ ⊂ W k,p(Ω,Rm)
holds, the discretisation scheme is termed conforming. If the algebraic constraints (3.3) prove
insufficient to ensure we can evaluate the energy functional of the analytical problem on VJ the
discretisation is called nonconforming.

An alternative approach to solving the discrete variational formulation consists in drawing
up a saddle point problem, in which the algebraic constraints (3.3) can be found combined with
a set of Lagrange multipliers λ ∈ R

LJ . We may extend each local shape function vji outside its
respective domain Ωj by 0, such that we can represent any element v ∈ VJ by

v =
J

∑

j=1

ij
∑

i=1

xij v
j
i =

J
∑

j=1

ij
∑

i=1

σij(v) v
j
i (3.5)

using the appropriate linear factors xij ∈ R. If NJ denotes the number of local degrees of freedom,

we can define a Lagrangian L : R
NJ × R

LJ −→ R, which has the following structure:

L(x, λ) :=

J
∑

j=1

Qj(x
1
j , x

2
j , . . . x

ij
j ) −

LJ
∑

l=1

J
∑

j=1

ij
∑

i=1

λl Bjli x
i
j .

The nonlinear functionals Qj :R
ij −→ R depend but on a very small number of variables, whence

it is comparatively simple to find the minimiser of L with respect to its first argument, once
the Lagrange multipliers λ ∈ R

LJ have been fixed. In consequence, an algorithm of Uzawa type
suggests itself to locate the saddle point. To the best of our knowledge such an algorithm has
not been analysed as yet. However, it should be straightforward to adapt the results found in
[27, 46] for quadratic forms Qj to more general situations. A finite element scheme which is
geared towards computing the Lagrange multipliers λ ∈ R

LJ is termed a hybrid method.

3.1.2 A note on parametric finite elements

In the previous subsection we have outlined the general concept of finite element methods.
Though we have not mentioned it at the time, our exposition has been biased towards those
finite element schemes, which rely on the proper construction of the mesh for the accuracy of
the numerical solution. Such schemes are usually referred to as h-methods, while schemes which
enrich the local trial spaces Vj to improve the quality of the approximation, are generally termed
p-methods. The rationale behind this nomenclature will become apparent below, when we discuss
practical ways how to define finite elements that warrant certain approximation properties.

Let us assume, that all patches Ωj ∈ MJ in our mesh have more or less the same shape. We
will give a precise meaning to this condition in definition 3.1. Let us furthermore suppose, that
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each local ansatz Vj contains a full polynomial space of order q. We note, that the right hand side
of (3.5) defines a projection Π :W k,p(Ω0,R

n) −→ VJ . Hence, the operator Π maps all piecewise
polynomial functions from the space VJ with a degree less or equal to q onto themselves. Due
to our assumptions we can infer from well known theoretical results (see e. g. [49, 50, 59]) on
interpolation operators in Sobolev spaces, that the local interpolation error on some patch Ωj is
uniformly bounded by its volume |Ωj |. For any q′ ≤ q < k we find:

| v − Π v |
p,Ωj ,q

′ ≤ C n
√

|Ωj |
1+q−q′ ‖∇v ‖

p,Ωj ,q
; v ∈W k,p(Ω0,R

m) .

A convenient method of constructing meshes, which warrant a local error estimate of the above
form, relies on applying various maps Tj : R

n −→ R
n to a fixed reference element Ωref ⊂ R

n,
such that the resulting images Ωj = Tj(Ωref) seamlessly fit together. To be more specific let us
formalise the concept of parametric elements:

Definition 3.1 Let {α1, . . . αK} ⊂ R
n denote a set of points and Ωα the interior of their convex

hull. We suppose there are K functions {ϑ1, . . . ϑK} ⊂W k,∞(Ω̂), such that

ϑi(αj) = δij ; i, j ∈ {1, . . . K}

is satisfied. By {a1, . . . aK} ⊂ R
n we denote a second set of points. The interior of its convex

hull we abbreviate Ωca. To describe the geometry of Ωca we introduce two quantities: The radius
ρ of the largest sphere, that can be inscribed into Ωca, and the diameter h of this patch:

ρ := sup
{

r ≥ 0
∣

∣ x ∈ Ωca : Br(x) ⊂ Ωca
}

h := max
1≤i,j≤K

‖ ai − aj ‖2
.

(3.6)

Employing this second set of points we may now define a mapping Ta ∈W k,∞(Ωα,R
n) by:

Ta(ξ) :=

K
∑

κ=1

ϑκ(ξ) aκ ; ξ ∈ Ωα . (3.7)

The image of Ωα under the action of Ta can be invested with an ansatz space and appropriate
degrees of freedom to form a finite element {Ωa,Σ, Va}. This object we will call a parametric
finite element of degree q, if the following conditions are met:

1.) The mapping Ta : Ωα −→ Ωa has a globally defined inverse map Tα ∈W k,∞(Ωa,R
n).

2.) There exists a constant C > 0, which is independent of our particular choice of the set
{a1, . . . aK}, such that the following estimates hold:

|Ta |∞,Ωα,l
≤ C h l ; l ∈ {1, . . . q}

|Tα |∞,Ωa,l
≤ C ρ−1 ; l ∈ {1, . . . q} .

3.) We find Va = {u ◦ Tα |u ∈ Vα }, where Vα ⊂W k,p(Ωα,R
m) is a finite dimensional function

space, that contains all polynomials of degree less or equal to q.

Remark 3.1 The definition 3.1 comprises the concepts of isoparametric and subparametric finite
elements, as such elements are characterised by the additional requirement: {ϑ1, . . . ϑK} ⊆ Vα.
Whether we are actually able to cover any given domain with parametric elements, will depend on
our choice of the set {α1, . . . αK} as well as of the functions {ϑ1, . . . ϑK}. One way to guarantee,
that neighbouring parametric elements fit together, consists in using polynomials of small degree
to define the maps (3.7) and placing a sufficiently large number of the sampling points {α1, . . . αK}
on each part of the boundary ∂Ωα.

For a parametric element of degree q in the sense of definition 3.1 the local interpolation error
of the canonical finite element interpolation operator Π reads (see e. g. [48]):

| v − Π v |
p,Ωa,q′

≤ C(Ωα)
h q+1

ρ q′
‖∇v ‖ p,Ωa,q
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for any function v ∈W k,p(Ω0,R
n). Hereby, h and ρ denote the geometry parameters of the patch

Ωa as they are specified in (3.6). We conclude, a global estimate of the interpolation error in
terms of the maximal element diameter will only be available, if the quotient h/ρ stays uniformly
bounded from above. In effect, we must ensure the elements cannot become too flat:

Definition 3.2 A mesh MJ which is composed of parametric elements in the sense of definition
3.1 is called (shape) regular, if there is a constant CJ > 0, such that the parameters ρj and hj
as specified in (3.6) meet the condition:

hj
ρj

≤ CJ ; Ωj ∈ MJ .

If some shape regular mesh MJ is given, that consists of parametric elements of degree q, the
global approximation properties of the interpolation operator Π can indeed be described in terms
of the largest diameter h, that is found among all patches Ωj ∈ MJ :

h : = max
Ωj∈MJ

hj . (3.8)

In general this mesh parameter h is used as in index instead of J , that is the number of patches,
to qualify the mesh. Since the image space of the interpolation operator Π need not necessarily
be contained in W k,p(Ω,Rn) we obtain the following global error estimate:

(

J
∑

j=1

‖ vj − Π vj ‖ p
p,Ωj ,q

′

)1/p

≤ C(Ωα) Cq
′

J h1+q−q′ ‖∇v ‖p,Ω0,q (3.9)

provided the function v is sufficiently regular. The above bound need not involve the full norm of
the gradient, if the parameterisations is based on polynomial mappings {ϑ1, . . . , ϑK} ⊆ Pnl ⊆ Vα
with a degree l not larger than that of the element itself. In that case we find:

(

J
∑

j=1

‖ vj − Π vj ‖ p
p,Ωj ,q

′

)1/p

≤ C(Ωα) Cq
′

J h1+q−q′ ‖∇q−l+2 v ‖
p,Ω0,l−1

.

Remark 3.2 We have seen, the local approximation properties of the canonical finite element
interpolation Π:W p,k(Ω0,R

n) −→ VJ depend on the geometry of the patch Ωj and on the degree
q of the polynomial space P nq contained in the local ansatz Vj . Since the accuracy of the numerical
solution to the problem (3.1) is limited by the accuracy of the finite element interpolation of the
analytic solution, the quality of the numerical solution may be improved either by local mesh
refinement or by augmenting the local ansatz spaces. The mesh parameter defined by (3.8) is
usually denoted by h, whence the first type of approach is termed h-method. The latter type of
approach to controlling the approximation error is termed p-method to indicate, the degree p (in
our notation q) of the local ansatz is adapted to the required accuracy.

3.1.3 On the Ramifications of the Numerical Cubature

Throughout this text we generally ignore the question, how to compute the various integrals that
form a constitutive part of the duality error majorants we have developed in chapter 2. From
a theoretical point of view such unconcern for the actual implementation of a numerical scheme
may seem tolerable, from a practical point of view redressing any technical difficulties can prove
critical for the success of the scheme.

Unless the function F introduced in (3.1) is a rather simple polynomial it is inevitable to
employ a numerical cubature to approximate those integrals, which are the building blocks of the
discrete variational formulation. Depending on our discretisation scheme we may furthermore
want to evaluate certain integrals in order to assemble the tensor B, which is used in (3.3) to
describe admissibility constraints on the local shape functions. Hence, the use of a numerical
cubature does not only affect the computation of a posteriori error estimates for the numerical
solution of the problem (3.1) but also the very method, by which we hope to obtain this solution.
In the following we will not discuss in depth how the numerical solution is affected by the cubature:



60 Chapter 3. Discretisation Procedures

for more detailed information on that topic we refer to [70, 79, 80]. We will, however, address
some of the additional requirements on the finite element discretisation which result from the use
of quadrature formulae.

Parametric finite elements as they have been described in the previous subsection are well
suited for numerical integration schemes, since their definition allows for the generic construction
of quadrature rules Ej : C0(Ωj) −→ R for each patch Ωj ∈ MJ . The underlying idea behind the
design of such quadrature formulae is to define a cubature on the reference element and to lift it
onto the patch Ωj with the help of the mapping Ta : Ωα −→ Ωa:

Ej(v) :=

L
∑

l=1

Θl det(∇Ta)(xl) v(Ta(xl) ) ; v ∈ C0(Ωj) .

Hereby, the set {x1, . . . xL} ⊂ Ωα denotes the collocation points of the cubature rule within the
reference element while {Θ1, . . .ΘL} ⊂ R designates the corresponding set of weights. Obviously,
for such a numerical integration scheme to be well defined we must warrant that the Jacobian of
each mapping Ta : Ωα −→ Ωa is a continuous function. Moreover, each local ansatz Vj must be
contained at least in Cm(Ωj ,R

n) to allow for an evaluation of the locally defined functionals in
(3.2). The fully discretised variational formulation reads:

HJ (v) :=

J
∑

j=1

Ej
(

F (vj ,∇vj , . . .∇kvj)
)

−→
v∈VJ

min .

For simplicity let us suppose, that the variational formulation (3.1) be uniformly convex. Our
assumption will ensure the problem is well posed. Clearly, the discrete problem (3.2) is also well
defined provided the finite element scheme is conforming. If the discretisation is nonconforming
we must ensure by suitable constraints on the degrees of freedom that a unique minimiser can
be found in the trial space VJ . However, the situation is much more involved, when we replace
the integrals by a numerical cubature rule. Central at least to the study of a posteriori error
estimates in the spirit of chapter 1 is the question what happens to the so called exact modulus
of convexity, which may be defined by:

µJ(t) := inf
u∈St(v)

inf
0<α<1

αHJ(u) + (1 − α)HJ (v) − HJ (αu+ (1 − α) v )

α (1 − α)
; t ≥ 0

if we denote by St(v) ⊂ VJ the sphere of radius t around the centre point v ∈ VJ . The left hand
side of (3.9) may thereby provide an appropriate norm for the ansatz VJ . As far as the original
statement (3.1) of the variational problem is concerned we can employ the modulus of convexity
µ as a forcing function and bound the approximation error as we have done in section 1.2.2 with
2φ being replaced by µ. This very function µ is known [139] to obey the following inequality for
any point t ≥ 0 within its effective domain:

µ(c t) ≥ c 2 µ(t) ; c ≥ 1 . (3.10)

Furthermore, we find µ(t) > 0 for any t > 0. Unfortunately, the function µJ as it has been defined
above need not necessarily inherit these properties. Only by a judicious choice of the quadrature
formulae Ej we can ensure the uniform convexity of the discrete functional HJ . Since µJ may
depend on the geometry of the mesh, we must furthermore warrant, that there is an uniform lower
bound µ∞ on the modulus of convexity which satisfies both (3.10) and µ∞(t) > 0 for any t > 0.
Such a bound shall also be termed modulus of convexity. No general principle is known to us by
which we could tailor cubature schemes to the specific requirements of the variational problem
under consideration. However, in the special case that (3.1) represents basically a bilinear form
on the extended domain Ω0 the following result is available (see e. g. section 4.4 in [48]):

Proposition 3.1 Let Mh denote a shape regular decomposition of the domain Ω0 with the mesh
parameter h defined by (3.8). The mesh consists of parametric elements in the sense of definition
3.1 defined with the help of the reference patch Ωα ⊂ R

n and a finite dimensional function space
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with the property Pml′ ⊆ Vα ⊆ Pml . Let Eα :C0(Ω̂) −→ R denote a cubature rule for the reference
patch, which is exact on the polynomial space P2l−2 and satisfies:

m
∑

i=1

∑

|α|=k

Eα

( ∂αvi
∂xα

∂αvi
∂xα

)

≥ C | v |2
Ωα,k

; v ∈ Vα . (3.11)

For each patch Ωj ∈ Mh a numerical integration scheme Ej : C0(Ωj) −→ R is assigned by:

Ej(v) := Eα
(

det(∇Tj) v ◦ Tj
)

; v ∈ C0(Ωj)

with the mapping Tj : Ωα −→ Ωj being specified as in definition 3.1. The bilinear form

QJ (v, u) :=
∑

|α|=|β|=k

m
∑

i,h=1

J
∑

j=1

Ej

(

M ij
αβ

∂αvi
∂xα

∂βuj
∂xβ

)

; v, u ∈ Ck(Ω0,R
m)

which is defined with the help of the positive definite tensor M ij
αβ ∈ C0(Ω0) is uniformly convex

on the space VJ , provided either of the these conditions is met: a) The elliptic operator which
corresponds to the bilinear form QJ is of second order, that means: k = 1. b) All the mappings
Tj : Ωα −→ Ωj are affine. In both of these cases a modulus of convexity can be specified, that is
independent of the mesh parameter h.

Remark 3.3 To the best of our knowledge quadrature formulae for parametric elements have
not been studied as yet under the assumption, the elliptic operator which corresponds to the
bilinear form QJ is of higher than second order. Since the mapping of higher order derivatives to
and fro the reference patch involves certain lower order contributions scaled by higher derivatives
of the maps Ta : Ωα −→ Ωa, the uniform convexity of the quadratic form QJ(v, v) for v ∈ VJ is
in this case no longer an immediate consequence of (3.11). If the coercivity of the quadratic form
can be established at all, we must expect our result to be of an asymptotical nature with h→ 0
and therefore valid only on a sufficiently fine mesh.

Remark 3.4 Conventional a posteriori error estimators (see e. g. [5,137] for an overview) which
rely on the evaluation of local residuals are derived under the assumption that the numerical
solution is in some sense the best possible approximation to the analytical solution among all
functions within the trial space. This very feature of the finite element solution, usually termed
Galerkin orthogonality, is violated if we utilise inexact cubature schemes. We conclude, that the
mathematical foundations of residual based error estimators are undermined, whenever numerical
quadrature formulae are employed. The difficulties which stem from the numerical cubature lie
elsewhere in the case of duality based a posteriori error estimates: Since these estimates can be
obtained without any special assumptions on the nature of the primal approximation x except
for its admissibility x ∈ domG, only the very evaluation of the error majorants is impinged upon.
Hence, we may wave the effects of a numerical cubature as a higher order perturbation if the
data has enough regularity to allow for appropriately accurate integration schemes.

3.2 Discretisation Methods for the Dual Formulation

Under the assumption that A is a positive definite and uniformly bounded matrix function an
elliptic boundary value problem of the form

∇·
(

A−1 ∇u
)

= f s. t. : u | ∂Ω = u0 (3.12)

defined on some domain Ω ⊂ R
n can be solved by minimising its associated energy integral

J :H1(Ω) −→ R defined by:

J(v) :=

∫

Ω

{ 1

2
(∇v)TA−1 ∇v + f v

}

dx ; v ∈ H1(Ω) .
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Alternatively, a complementary energy principle may be invoked. Formally, such a procedure can
be described by the definition of an auxiliary variable σ := A−1∇u, such that (3.12) is replaced
by a system of equations both of which are of first order:

∇ · σ = f , Aσ = ∇u . (3.13)

Solving the above system is equivalent to minimising the complementary energy functional

J∗(σ) :=
1

2

∫

Ω

σTAσ dx −
∮

∂Ω

u0 σn ds ; σ ∈ Hdiv(Ω)

in the affine space Q∗ := { τ ∈ Hdiv(Ω) |∇·τ = f } of admissible vector fields. The energy integral
J :H1(Ω) −→ R and its complementary energy J∗ :Hdiv(Ω) −→ R are related by:

− inf
τ∈Q∗

J∗(τ) ≤ J(u+ u0) ; u ∈ H1
0 (Ω) . (3.14)

Hence, dual mixed discretisation schemes for the system (3.13) provide, at least in principle, a
mechanism to estimate the approximation error by monitoring the complementary gap. However,
conventional mixed finite element methods for (3.13) yield an approximation uh ∈ L2(Ω) which is
not, speaking in mechanical terms, kinematically admissible. Moreover, the requirement σh ∈ Q∗

will be met only approximately in all but exceptional cases.
Unfortunately, the numerical technology which is suitable for treating the primal formulation

differs significantly from the technology that is appropriate for a dual or dual mixed formulation.
Differences pertain to many algorithmic features of the finite element engine: grid handling in
general, particularly local grid refinement procedures, setup routines for shape functions and
support for data interpolation procedures to name but a few of such features. It seems natural
to investigate, whether it is possible to solve an elliptic boundary value problem stated in its
dual formulation by means of a finite element package geared towards dealing with the primal
formulation. As a tool to facilitate such an ”abuse” hybrid mixed discretisation schemes will be
considered below. To the best of our knowledge the hybridisation of a mixed ansatz was first
proposed by Fraeijs de Veubeke [71] with a view to lifting the saddle point character of (3.13). By
enforcing continuity constraints on the dual variables only in a weak sense he found it possible
to transform (3.13) into a positive definite system for the Lagrange multipliers of these very
constraints (see also subsection 3.1.1). Though the new variables are defined only on the skeleton
of the grid, in some cases [9, 107] his procedure was discovered to be equivalent to solving the
primal problem with the help of certain nonconforming finite element trial spaces. Ever since
various authors (e. g. [8, 31]) have researched and exploited this equivalence.

In the following we will present another approach to the definition of Lagrange multipliers for
the continuity constraint σh ∈ Hdiv(Ω), which we believe to be novel. Employing a conventional
conforming trial space we introduce these multipliers as traces of certain shape functions. The
resulting discretisation for the dual variable will not yield a conforming approximation σh. The
Lagrange multipliers, however, naturally extend to the whole of the computational domain, where
they provide conforming approximations to the primal variables. We may argue, that our scheme
complements the established equivalence between conforming dual and nonconforming primal
methods. We will show, that an optimal asymptotic rate of convergence can be achieved for both
primal and dual variables. Our exposition will be organised in the following way: The variational
problem in its dual mixed formulation is presented in the first subsection. In the next paragraph
the trial spaces are specified, that are employed in defining the algebraic problem. Existence and
uniqueness results for its solution are obtained. Paragraph 3.2.3 contains the main result of this
section: a proof of convergence. The subsection 3.2.4 is devoted to post processing techniques for
the Lagrange multipliers of the continuity constraints that improve on the rates of convergence
established in Section 3.2.3. Numerical experiments will be reported in a dedicated section in
chapter 5.

3.2.1 Statement of the Variational Problem

In the following let us assume, that Ω ⊂ R
n is a bounded, convex polytope with n ∈ {2, 3}.

By Mh we denote a simplicial decomposition of the domain Ω, such that the intersection of two
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elements Ωi and Ωi′ is again a simplex of lower dimension. (This includes the case that Ωi ∩ Ωi′
contains only a vertex.) The mesh parameter h > 0 is assigned in the usual way to bound the
diameter of these simplices (see e. g. §3.1 in [48] or subsection 3.1.2). Since we want to apply a
hybrid discretisation scheme to the dual formulation of the problem (3.12) we must account for
test functions which satisfy no global regularity constraints. Accordingly, let us introduce the
broken spaces Hm

div(Mh):

Hm
div(Mh) :=

{

τ ∈ L2(Ω,Rn)
∣

∣ τ |Ωi ∈ H m
div(Ωi) ; Ωi ∈ Mh

}

.

In an analogous way these spaces are equipped with the norms |d·c|
m

, ‖·‖
m

and the corresponding
seminorms d·cm , | · |m . The norm |d·c|m for instance is defined by:

|dσ c|2
m

: =
∑

Ωi∈Mh

|dσ c|2
Ωi,m

; σ ∈ Hm
div(Mh) .

Three bilinear forms a, b and c are necessary to specify the hybrid, dual mixed formulation:

a(τ, σ) :=
∑

Ωi∈Mh

(

τ , A · σ
)

Ωi
; σ , τ ∈ Hdiv(Mh) ,

b(u, σ) :=
∑

Ωi∈Mh

(

u , ∇ · σ
)

Ωi
; σ ∈ Hdiv(Mh) , u ∈ L2(Ω) .

The tensor A ∈W 1,∞(Ω,Rn×n) need not necessarily be symmetric. However, we will impose the
usual ellipticity condition:

A0 > 0 :

n
∑

i=1

n
∑

j=1

Aij(x) ξi ξj ≥ A0 ‖ξ‖2 ; ξ ∈ R
n , x ∈ Ω . (3.15)

The bilinear form c : H1
0 (Ω) × Hdiv(Mh) −→ R serves as a means to enforce constraints on the

global regularity of the vector fields from the space Hdiv(Mh). For any vector field τ ∈ Hdiv(Mh)
the following equivalence is stipulated:

sup
z∈H1

0 (Ω)

c(z, τ) = 0 ⇔ τ ∈ Hdiv(Ω) . (3.16)

In abstract terms the hybrid, dual mixed variational problem now reads:

Problem H Given some continuous linear functional φ : Hdiv(Mh) −→ R and some function
f ∈ L2(Ω), find a triple {σ, u, w} ∈ Hdiv(Ω) × L2(Ω) × H1

0 (Ω), such that for any set of test
functions {τ, y, z} ∈ Hdiv(Mh) × L2(Ω) ×H1

0 (Ω):

a(τ, σ) + b(u, τ) − c(w, τ) = φ(τ)

b(y, σ) = (f, y )
Ω

c(z, σ) = 0 .

One possible choice for the form c is presented below. The proof that this choice does meet the
requirement (3.16) will be supplied in proposition 3.2:

c(z, τ) :=
∑

T∈Mh

{

(

z,∇· τ
)

T
+

(

∇z, τ
)

T

}

; z ∈ H1
0 (Ω) , τ ∈ Hdiv(Mh) . (3.17)

Proposition 3.2 With the bilinear form c specified by (3.17) problem H is well posed.

Proof For v ∈ L2(Ω) let ω ∈ H1
0 (Ω) denote the solution of the equation ∆ω = v. The vector

field τ := ∇ω is contained in Hdiv(Ω). Thanks to the elliptic regularity of the auxiliary problem
the following estimate holds:

|d τ c|2 = |d τ c|2
Ω

= ‖∇ω ‖2
Ω

+ ‖ v ‖2
Ω

≤ ( 1 + C ) ‖ v ‖2
Ω
.
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Due to b(v, τ) = ‖v‖2
Ω

this estimate demonstrates, that b satisfies a compatibility condition,
widely known as Ladyzhenskaya-Babuška-Brezzi condition:

β0 > 0 : sup
τ∈Hdiv(Mh)

b(y, τ)

|d τ c| ≥ β0 ‖ y ‖
Ω

; y ∈ L2(Ω) . (3.18)

Thanks to (3.15) the first bilinear form a is coercive in the following sense:

a(σ, σ) ≥ A0 |dσ c|2 ; σ ∈ B

with the set B ⊂ Hdiv(Mh) of solenoidal vector fields being defined by:

B : =
{

τ ∈ Hdiv(Mh)
∣

∣ b(y, τ) = 0 ; y ∈ L2(Ω)
}

. (3.19)

Hence, by general results on saddle point problems (see e. g. §2 in [35]) problem H features a
unique solution {σ, u} ∈ Hdiv(Mh) × L2(Ω). Requirement (3.16) remains to be verified. For any
τ ∈ Hdiv(Ω) and any v ∈ H1

0 (Ω) Green’s formula asserts:

c(v, τ) =
(

∇· τ , v
)

Ω
+

(

τ , ∇v
)

Ω
= 0 .

The set of simplicial interfaces in the interior of the domain Ω may be denoted by:

Eh : =
{

E ⊂ Ω
∣

∣ Ωi,Ωi′ ∈ Mh : E = Ωi ∩ Ωi′ ∧ Ωi 6= Ωi′
}

. (3.20)

For τ ∈ Hdiv(Mh) a function wτ shall be defined by: wτ |Ωi := ∇· τ |Ωi ∀Ωi ∈ Mh. Since Eh ⊂ Ω
is a set of measure 0, we conclude: wτ ∈ L2(Ω). Under the assumption c(v, τ) = 0 ∀ v ∈ H1

0 (Ω)
the weak divergence of τ acting on some test function v ∈ C∞

0 (Ω) can be reformulated as:

−
(

τ , ∇v
)

Ω
= −

∑

T∈Th

(

τ , ∇v
)

T
=

∑

T∈Th

(

∇· τ , v
)

T
=

(

wτ , v
)

Ω
.

Consequently, the weak divergence of τ can be identified with the square integrable function wτ .
This proves τ ∈ Hdiv(Ω). �

Remark 3.5 When we solve the problem H we are generally unable to determine the Lagrange
multiplier w ∈ H1

0 (Ω) uniquely, as the bilinear form c will not satisfy a compatibility condition in
the spirit of (3.18). Let us give an example: If we employ the bilinear form (3.17), we can change
a solution w ∈ H1

0 (Ω) by any function w̃ ∈ C∞
0 (Ω) whose support is confined to the interior of

some element Ωi ∈ Mh.

3.2.2 The Discretisation Procedure

After a regular family M = {Mh}h>0 of decompositions has been constructed (see e. g. §3.1 in
[48]), various trial spaces must be supplied for each decomposition Mh ∈ M of the domain Ω.
Below the set of polynomials of degree less or equal k will be denoted by Pk. These are used to
define shape functions of Raviart-Thomas type:

P k(Mh) :=
{

u ∈ L2(Ω)
∣

∣ u|Ωi ∈ Pk ; Ωi ∈ Mh

}

,

Bk(Mh) :=
{

τ ∈ L2(Ω,Rn)
∣

∣ τ |Ωi ∈ (Pk)
n ; Ωi ∈ Mh

}

,

Rk(Mh) :=
{

τ + ϑx
∣

∣ τ ∈ Bk(Mh) , ϑ ∈ P k(Mh)
}

.

(3.21)

The degrees of freedom that are associated with these spaces of test functions are well known
and need not be recalled here (see e. g. [34, 122] and §2.2 in [48] for details). The canonical
interpolation operators are denoted by Πk :Hdiv(Mh) −→ Rk(Mh) respectively Π̂k :Hdiv(Mh) −→
Bk(Mh). For the first of these operators the following approximation result is known:

|d τ − Πk τ c| ≤ C hk+1 d τ c
k+1

; τ ∈ Hdiv(Mh) . (3.22)
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Hereby, as in the rest of this paper, the symbol C denotes a generic positive constant, that is
independent of the triangulation Mh. For the second operator Π̂k slightly different approximation
results have been established:

‖ τ − Π̂k τ ‖ ≤ C hk+1 | τ |
k+1

; τ ∈ Hdiv(Mh) ,

|d τ − Π̂k τ c| ≤ C hk d τ c
k+1

; τ ∈ Hdiv(Mh) .

Let Pk : L2(Ω) −→ P k(Mh) denote the orthogonal projection defined by:

(

Pk v − v , yh
)

Ω
= 0 ; yh ∈ P k(Mh) (3.23)

for any function v ∈ L2(Ω). The interpolation operator Πk and the projection operator Pk feature
the following commutativity property:

Pk (∇· τ) = ∇· (Πk τ ) ; τ ∈ Hdiv(Ω) . (3.24)

The analogous result for the interpolation operator Π̂k reads:

Pk−1 (∇· τ) = ∇· ( Π̂k τ ) ; τ ∈ Hdiv(Ω) . (3.25)

The conventional treatment of the problem H leads to a discrete formulation HH, such that the
dual variable σh is looked for either in Rk(Mh) or Bk(Mh). In such a case the approximate
solution uh is contained either in P k(Mh) or P k−1(Mh) and the Lagrange multiplier wh for the
continuity constraints is found in the space P k(Eh) (see (3.20) for a definition of the set Eh).
Thus a conforming solution {σh, uh} of the discrete formulation HH is obtained: σh ∈ Hdiv(Ω).
Processing of the Lagrange multiplier wh ∈ P k(Eh) an extension u∗h 6∈ H1(Ω) can be supplied [9],
that provides a more accurate approximation to the actual solution u than uh does.

Subsequently, the requirement σh ∈ Hdiv(Ω) will be dispensed with. The finite dimensional
trial space Sh ⊂ Hdiv(Mh), in which the dual variable σh is to be found, will be either Rk(Mh) or
Bk(Mh). The corresponding trial space Uh ⊂ L2(Ω) for the primal variable uh will read P k(Mh)
respectively P k−1(Mh). The Lagrange multiplier wh for the continuity constraints, however, will
be sought in the trial space

Wh : = P k+1(Mh) ∩ H1
0 (Ω) . (3.26)

The degrees of freedom associated with this space are thereby supposed to be of Lagrange type.
Thus the following discrete formulation HH is arrived at:

Problem HH Given some continuous linear functional φ : Hdiv(Mh) −→ R and some function
f ∈ L2(Ω), find a triple {σh, uh, wh} ∈ Sh×Uh×Wh, such that for any {τh, yh, zh} ∈ Sh×Uh×Wh

the following equations hold:

a(τh, σh) + b(uh, τh) − c(wh, τh) = φ(τh)

b(yh, σh) = (f, yh )
Ω

c(zh, σh) = 0 .

Before the proof of convergence can be carried out, it is necessary to assert, that the problem
HH is well defined for either choice of Sh respectively Uh:

Proposition 3.3 Assuming the trial spaces Wh = P k+1(Mh) ∩ H1
0 (Ω), Uh = P k(Mh) and

Sh = Rk(Mh) respectively Uh = P k−1(Mh) and Sh = Bk(Mh) are employed to discretise problem
H, its discrete counterpart HH features an unique solution {σh, uh} ∈ Sh × Uh.

Proof An unique solution {σh, uh} ∈ Sh × Uh of problem HH is known to exist if

Bh : =
{

τh ∈ Sh
∣

∣ b(yh, τh) = 0 ; yh ∈ Uh
}

⊂ B ,

B∗
h : =

{

vh ∈ Uh
∣

∣ b(vh, τh) = 0 ; τh ∈ Sh
}

= {0}
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holds (again see §2 in [35]) with the set B defined by (3.19). The above condition requires the
kernel of the discrete divergence operator to consists only of solenoidal vector fields. In addition,
the discrete operator as a map from Sh into Uh must be surjective. If we suppose that τh ∈ Bh
is contained in the set Rk(Mh), the divergence ∇· τh is an element of the space P k(Mh). Let
us choose only such test functions vh ∈ P k(Mh), whose support is some premeditated simplex
Ωi ∈ Mh. The definition of the set Bh implies:

(

q , ∇ · τh
)

Ωi
= 0 ; q ∈ Pk ⇒ ∇ · τh

∣

∣

Ωi
= 0 .

Therefore, ∇· τh vanishes on the whole of Ω, so τh ∈ B is established. In case the discretisation
Sh = Bk(Mh) is used, ∇· τh ∈ P k−1(Mh) holds. Hence, the very same argument applies with
q ∈ Pk replaced by q ∈ Pk−1. Since Pk∇· and Pk−1∇· are surjective maps from Hdiv(Ω) into Uh,
(3.24) respectively (3.25) warrants B∗

h = {0}. �

Remark 3.6 Again we are unable to determine the Lagrange multiplier wh ∈ Wh uniquely,
unless a compatibility condition can be imposed on the form c :

γ0 > 0 : sup
τh∈Sh

c(zh, τh)

|d τh c|
≥ γ0 ‖ zh ‖Ω,1 ; zh ∈Wh . (3.27)

While establishing such a compatibility condition is impossible in the case of the continuous
problem H, the above condition may be met in certain cases, if the trial spaces involved in the
statement of problem HH are of low order k ∈ {0, 1, 2}.

3.2.3 Proof of Convergence

The aim of this section is to supply estimates of the rate of convergence for the finite element
discretisation specified in the previous section. The proof of convergence is split into four propo-
sitions in order not to overburden its exposition. First a best approximation result is derived,
that is abstract in the sense, that it depends only on the general structure of the variational
problem and not on the actual choice of the trial spaces used in its formulation. Based on this
result a bound on the rate of convergence for the dual variable σh ∈ Sh is established. The third
proposition states the convergence properties of the multiplier uh ∈ Uh. Finally, it is shown that
the assumptions, under which the previous two results have been derived, can be met indeed, if
the data of problem H has a certain regularity.

Proposition 3.4 Let {σ, u, w} ∈ Hdiv(Ω) × L2(Ω) ×H1
0 (Ω) denote a solution of the problem H

and {σh, uh, wh} ∈ Sh × Uh ×Wh one of problem HH. There are two constants α1, α2 > 0, such
that for any {σ̃h, ũh, w̃h} ∈ Sh × Uh ×Wh:

α1 ‖σh − σ ‖2
Ω

≤ α2 ‖σ − σ̃h ‖2
Ω

+ c(w̃h − wh, σ̃h) + c(w̃h − w, σh − σ̃h)

+ b(u− ũh, σh − σ̃h) + b(ũh − uh, σ − σ̃h) .

Proof Due to the regularity of the tensor A there is some constant A∞, such that:

A∞ > 0 : sup
x∈Ω

‖A(x) ξ ‖ ≤ A∞ ‖ ξ ‖ ; ξ ∈ R
n .

Hence, the following estimate can be derived with a view to the requirement (3.15):

A0 ‖σh − σ ‖2
Ω

≤ a(σ̃h − σ, σh − σ) + a(σh − σ̃h, σh − σ)

≤ a(σ̃h − σ, σh − σ) + c(wh − w, σh − σ̃h)

− b(uh − u, σh − σ̃h)

≤ A∞ ‖ σ̃h − σ ‖
Ω

‖σh − σ ‖
Ω

+ c(wh − w̃h, σh − σ̃h) + c(w̃h − w, σh − σ̃h)

+ b(u− ũh, σh − σ̃h) + b(ũh − uh, σh − σ̃h)

≤ A0/2 ‖σh − σ ‖2
Ω

+ A2
∞ A−1

0 ‖ σ̃h − σ ‖2
Ω

+ c(w̃h − wh, σ̃h) + c(w̃h − w, σh − σ̃h)

+ b(u− ũh, σh − σ̃h) + b(ũh − uh, σ − σ̃h) .
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To finish the proof the first term on the right hand side must be absorbed into the left hand side
of the last inequality. �

Let Qk :H1
0 (Ω) −→Wh denote the orthogonal projection defined by

(

v − Qk v , zh
)

Ω
= 0 ; zh ∈ Wh .

The degrees of freedom associated with the trial space Wh are supposed to be of Lagrange
type. Therefore, the following approximation result can be established for any sufficiently regular
function v ∈ Hk+1(Ω):

‖ v − Qk v ‖Ω,l
≤ C hk−l+1 | v |

Ω,k+1
. (3.28)

Hereby, l ∈ {0, 1, . . . k} denotes an arbitrary integer (see e. g. §3.2 in [48]). A similar result holds
for the projection operator Pk : L2(Ω) −→ Uh defined by (3.23):

‖ v − Pk v ‖Ω,l
≤ C hk−l+1 | v |

Ω,k+1

for any v ∈ Hk+1(Ω). With all the prerequisites in place the rate of convergence for the dual
variable σh can now be inferred from proposition 3.4:

Proposition 3.5 Under the assumptions σ ∈ Hk+1(Ω,Rn) and w ∈ Hk+2
0 (Ω) the finite element

scheme described by (3.21) and (3.26) yields an approximate solution σh of problem H either in
Rk(Mh) or Bk(Mh), such that:

‖ σ − σh ‖Ω
≤ C hk+1

{

|σ |
Ω,k+1

+ |w |
Ω,k+2

}

.

Proof Due to (3.23) and (3.24) the choice σ̃h := Πk σ, ũh := Pk u and w̃h := Qk+1 w turns the
abstract error bound stated in proposition 3.4 into the following estimate:

α1 ‖σh − σ ‖2
Ω

≤ c(Qk+1w − wh , Πk σ ) + c(Qk+1w − w, σh − Πk σ )

+ α2 ‖σ − Πk σ ‖2
Ω

. (3.29)

If the space Bk(Mh) is used instead of Rk(Mh) the same holds true for the choice σ̃h := Π̂k σ
and ũh := Pk−1 u, as ∇· σ̃h is contained in P k−1(Mh) for any σ̃h ∈ Bk(Mh). Since σ is contained
in Hdiv(Ω) by assumption, so are Πk σ and Π̂k σ. Furthermore, Qk+1 w − wh ∈ H1

0 (Ω) holds by
construction, so the first expression on the right hand side of (3.29) can be dropped by virtue of
(3.16). The second expression on the right hand side of (3.29) can be bounded by:

c(Qk+1w − w, σh − Πk σ ) =
∑

Ωi∈Mh

∫

Ωi

(Qk+1w − w )∇· (σh − Πkσ ) dx

+
∑

Ωi∈Mh

∫

Ωi

∇(Qk+1w − w ) (σh − Πkσ ) dx

≤
∑

Ωi∈Mh

∫

Ωi

Pk(Qk+1w − w)∇· (σh − Πkσ) dx

+
∑

Ωi∈Mh

|Qk+1w − w |Ωi,1 ‖σh − Πk σ ‖Ωi

≤
∑

Ωi∈Mh

∫

Ωi

Pk(Qk+1w − w)∇· (σh − σ) dx

+
1

α1
|Qk+1w − w |2

Ω,1
+

α1

4
‖σh − Πk σ ‖2 .

Since b(zh, σh − σ) = 0 holds for any zh ∈ P k(Mh) the last integral expression vanishes. A
similar argument can be used, if the trial space Bk(Mh) is employed instead of Rk(Mh). In this
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case the projector Pk is to be replaced by Pk−1. From the inequality above, from (3.22) and from
(3.29) the following estimate can be inferred:

α1

2
‖σh − σ ‖2

Ω
≤ 1

α1
|Qk+1 w − w |2

Ω,1
+ C2

(

α2 +
α1

2

)

|σ |2
Ω,k+1

h2k+2 .

Due to the presupposed regularity of the Lagrange multiplier w the approximation result (3.28)
can be invoked to finish the proof. �

Since the bilinear form c as specified by (3.17) does not satisfy any compatibility condition in
the spirit of (3.18) the Lagrange multiplier w ∈ H1

0 (Ω) is not uniquely determined. Hence, the
regularity requirements stated in proposition 3.5 have to be understood in the sense, that there
has to be at least one solution w that is sufficiently regular. The compatibility condition (3.27)
for the finite dimensional trial spaces Sh and Wh may be met in a number of cases. However,
there is no general rule how to obtain an unique wh straight from the formulation of problem
HH. Unfortunately, this difficulty has an impact on the proof of convergence for the quantity
uh, since the conventional approach based on exploiting the compatibility condition (3.18) fails
to decouple the Lagrange multipliers uh and wh. By resorting to a duality argument patterned
after [58] a proof can be supplied nevertheless.

Proposition 3.6 If we assume an analytical solution {σ, u} of problem H to be contained in the
space Hk+1

div
(Mh) ×Hk+2

0 (Ω), we find that the numerical solution {σh, uh} ∈ Rk(Mh) × P k(Mh)
respectively {σ̂h, ûh} ∈ Bk(Mh) × P k−1(Mh) satisfies the estimate:

‖Pk u − uh ‖Ω ≤ C hk+2
{

|w |
Ω,k+2

+ dσ c
Ω,k+1

}

,

‖Pk−1 u − ûh ‖Ω
≤ C hk+2−δ1,k

{

|w |
Ω,k+2

+ |dσ c|
Ω,k+1

}

.

Proof Due to (3.15) the differential equation ∇· (A−T∇z) = Pk−1u − ûh is well defined. Its
solution z ∈ H1

0 (Ω) is contained in H2(Ω) as the domain Ω is convex by assumption and the right
hand side is a square integrable function. Hence, there is some constant C > 0, such that:

‖ z ‖
Ω,2

≤ C ‖Pk−1 u − ûh ‖Ω
. (3.30)

Using the abbreviation ξ := A−T∇z ∈ Hdiv(Ω) the following transformations may be carried out
with a view to (3.16) and (3.25):

‖Pk−1 u − ûh ‖2
Ω

= (Pk−1 u − ûh , ∇· ξ )
Ω

= (Pk−1 u − ûh , ∇· Π̂k ξ )
Ω

= (u − ûh , ∇· Π̂k ξ )Ω = b(u− ûh , Π̂k ξ )

= c(w − ŵh , Π̂k ξ ) − a( Π̂k ξ , σ − σ̂h )

= a( ξ − Π̂kξ , σ − σ̂h ) − a( ξ , σ − σ̂h ) .

As the requirements of proposition 3.5 are met, the first expression in the equation above can be
estimated in the following manner:

a( ξ − Π̂k ξ, σ − σ̂h ) ≤ C ‖ ξ − Π̂k ξ ‖Ω
‖σ − σ̂h ‖Ω

≤ C ′ | z |
Ω,2

hk+2 .

By definition of the dual problem the second expression can be rewritten as:

a( ξ, σ − σ̂h ) = c( z , σ − σ̂h ) − b( z , σ − σ̂h )

= c( z −Qk+1 z , σ − σ̂h ) − b( z − Pk−1z , σ − σ̂h )

=
(

∇(z −Qk+1z) , σ − σ̂h
)

Ω
− b(Qk+1z − Pk−1z , σ − σ̂h ) .

While the first term on the right hand side of this equation can be bounded by invoking (3.28)
and proposition 3.5, the second term requires a small detour:

‖ ∇· σ − ∇· σ̂h ‖2
Ω

= b(∇· (σ − σ̂h) , σ − σ̂h )

= b(∇· (σ − σ̂h) − Pk−1 ∇· (σ − σ̂h) , σ − σ̂h )

≤ C hk |∇· σ |
Ω,k

‖∇· σ −∇· σ̂h ‖Ω .
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By combining the above results the following estimate is obtained:

‖Pk−1 u − ûh ‖2
Ω

≤ C hk+2 | z |
Ω,2

+ C ′ hk ‖Qk+1z − Pk−1z ‖Ω
.

In the special case k = 1 the norm on the right hand side is bounded by:

‖Qk+1 z − Pk−1 z ‖Ω
≤ C h2 | z |

Ω,2
+ C ′ h | z |

Ω,1
.

If trial spaces of higher order are used this estimate can be improved and reads:

‖Qk+1 z − Pk−1 z ‖Ω ≤ C h2 | z |Ω,2 .

Using these estimates along with (3.30) and tracing the dependence of the various constants on
the derivatives of σ and w the second part of the proposition 3.6 is obtained. To demonstrate the
first part, the projector Pk−1 is to be replaced by Pk. The body of the proof carries over with
only slight modifications. �

Remark 3.7 Proposition 3.6 does not warrant, that the quantities uh and ûh approximate the
analytical solution u ∈ L2(Ω) of problem (3.12) with the rate of convergence O(hk+2). To ensure
that the discretisation scheme described in the previous section is indeed convergent with the
highest rate of convergence possible, one further condition must be imposed on the regularity of
the solution: u ∈ Hk+1(Ω) if its approximation is sought in Rk(Mh) × P k(Mh) and u ∈ Hk(Ω)
otherwise. If this requirement is met, the convergence of the finite element method is a corollary
of the above proposition by virtue of the triangle inequality:

‖ ûh − u ‖
Ω

≤ ‖ ûh − Pk−1 u ‖Ω
+ ‖Pk−1 u − u ‖

Ω
= O(hk) .

An upper bound for the error ‖uh − u ‖
Ω,2

may be obtained in an analogous fashion.

Proposition 3.7 Under the assumption A ∈W k+1,∞(Ω,Rn×n) a solution of problem H can be
found in Hk+1(Ω,Rn)×Hk+1(Ω)×Hk+2

0 (Ω), if f ∈ Hk(Ω) holds and if there is some vector field
ψ ∈ Hk+1

div
(Ω) with the property:

φ(τ) =
∑

Ωi∈Mh

{

(

ψ , τ
)

Ωi
+

(

∇· ψ , ∇· τ
)

Ωi

}

; τ ∈ Hdiv(Ω) .

Proof Let ω ∈ H1
0 (Ω) denote the solution of the equation ∇· (A−1∇ω) = f . Since the domain

Ω is convex and f ∈ Hk(Ω) holds by assumption, the elliptic regularity of this boundary value
problem ensures: ω ∈ Hk+2(Ω). As there is an element η ∈ Hk+2(Ω)∩H1

0 (Ω) with the property
∇· (A−1∇η) = ∇· (A−1ψ), a vector field ψ0 ∈ Hk+1(Ω,Rn) can be determined, such that:

ψ = A ψ0 + ∇η and: ∇· ψ0 = 0 .

We will demonstrate, that the vector field σ := ψ0 + A−1∇ω ∈ Hk+1(Ω,Rn) and the functions
u := ω − η + ∇· ψ ∈ Hk+1(Ω) and w := ω − η ∈ Hk+2

0 (Ω) constitute a solution of problem H.
By construction the second and the third equation hold true for any test function y ∈ L2(Ω) and
any z ∈ H1

0 (Ω). Let τ ∈ Hdiv(Ω) designate a test field. The first equation reads:

∑

Ωi∈Mh

{

(

τ , A · σ
)

Ωi
+

(

u− w , ∇· τ
)

Ωi
−

(

∇w , τ
)

Ωi

}

=
∑

Ωi∈Mh

{

(

τ , A · ψ0 + ∇ω
)

Ωi
+

(

∇· ψ , ∇· τ
)

Ωi
−

(

∇ω −∇η , τ
)

Ωi

}

=
∑

Ωi∈Mh

{

(

τ , A · ψ0 + ∇η
)

Ωi
+

(

∇· ψ , ∇· τ
)

Ωi

}

= φ(τ) . �
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3.2.4 Processing the Numerical Solution

The Helmholtz splitting on which the proof of proposition 3.7 is based can also be used to
demonstrate, that the solution {σ, u} of problem H is under certain conditions on the linear
functional φ related the solution of the elliptic boundary value problem (3.12). A conventional
analysis of the dual formulation leads to the choice

φ(τ) :=

∮

∂Ω

u0 τn ds ; τ ∈ Hdiv(Ω) , (3.31)

whereby u0 ∈ H1(Ω) describes the inhomogeneous Dirichlet boundary data. Such an analysis is
based on the assumption, that all the vector fields involved in the calculus are at least contained
in Hdiv(Ω). However, this assumption can no longer be maintained if the nonconforming discreti-
sation scheme is employed we have introduced in subsection 3.2.2. Hence, it is not possible to
keep (3.31) and simply consider the extension φ∗ : Hdiv(Mh) −→ R, that is defined by the same
boundary integral. If

φ∗(τ) :=
∑

Ωi∈Mh

{

(

u0 , ∇· τ
)

Ωi
+

(

∇u0 , τ
)

Ωi

}

; τ ∈ Hdiv(Mh) (3.32)

is used instead of (3.31) in the right hand side of problem H, the proper solution of (3.12) is
obtained, as the proof of proposition 3.7 demonstrates. This proof also shows, that there is a
special solution {σ, u, w} with the property: u = w + u0. Consequently, it seems reasonable
to expect, that an improved approximation to the solution u of problem H may be obtained
from a solution {σh, uh, wh} of problem HH by post-processing the Lagrange multiplier wh. Let
πk :H1

0 (Ω) −→ P k(Eh) denote the orthogonal projection defined for any v ∈ H1
0 (Ω) by:

∑

E∈Eh

∫

E

(πkv − v ) zh ds = 0 ; zh ∈ P k(Eh) .

Proposition 3.8 Let {σh, uh, wh} ∈ Rk(Mh) × P k(Mh) ×Wh designate a solution of problem
HH (respectively {σ̂h, ûh, ŵh} ∈ Bk(Mh) × P k−1(Mh) ×Wh) and {σ, u, w} one of problem H.
Defining Σ :=

⋃

E∈Eh
E the following estimates hold:

C
√
h ‖ πk (w − wh ) ‖

Σ
≤ h ‖ σ − σh ‖Ω

+ ‖ Pk u − uh ‖Ω
,

C
√
h ‖ πk (w − ŵh ) ‖

Σ
≤ h ‖ σ − σ̂h ‖Ω

+ ‖ Pk−1 u − ûh ‖Ω
.

Proof Let E ∈ Eh designate an arbitrary interface and choose an element Ωi ∈ Mh with the
property E ⊂ Ωi. If the support of some field τh ∈ Sh is limited to the patch Ωi, the equation

(

τh , A · (σ − σh)
)

Ωi
+

(

u− uh , ∇· τh
)

Ωi
=

∮

∂Ωi

(w − wh) (τh)n ds (3.33)

is obtained by subtracting the first equation in the statement of problem HH from the first
equation in the statement of problem H. By definition of the trial space Rk(Mh) the vector field
τh may be chosen in such a way, that

∮

E′

q(s) (τh)n ds = δE,E′

∮

E

πk(w − wh) q(s) ds

holds for any polynomial q ∈ Pk and any edge E′ ∈ Eh. Further degrees of freedom the vector
field τh may possess are supposed to be zero. Under this assumption we may exploit the fact, that
all norms on a finite dimensional space are equivalent, and thence infer by a scaling argument:

‖ τh ‖Ωi
≤ C

√
h ‖ (τh)n ‖E = C

√
h ‖πk (w − wh) ‖E .
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As ∇·τh ∈ P k(Mh) holds, an inverse inequality can be used to bound the divergence. In addition,
the solution u can be replaced by Pku. Hence, equation (3.33) implies:

‖πk(w − wh) ‖2
E

≤ C ‖σ − σh‖T ‖ τh ‖Ωi
+ ‖Pk u − uh‖T ‖∇· τh ‖Ωi

≤ C
√
h

{

‖σ − σh‖Ωi
+ h−1 ‖Pk u − uh‖Ωi

}

‖ (τh)n ‖E .

After summation of this inequality with respect to E ∈ Eh the proof is finished, for no element
Ωi ∈ Mh can appear more than two times on the right hand side of the resulting inequality. If
we consider approximation {σ̂h, ûh, ŵh} instead of {σh, uh, wh} we must replace Pk by Pk−1, for
∇· τh ∈ P k−1(Mh) holds in this case. No further changes to the proof are necessary. �

Apart from those degrees of freedom located, so to speak, on its interfaces, a Lagrange element
of order k > n features degrees of freedom ”inside” the cell, that correspond to shape functions
whose support is confined within the element. Using barycentric coordinates {λ0, . . . λd} any
linear combination qk+1 ∈ Pk+1 of these shape functions can be written as: qk+1 = λ0 . . . λd qk−n
with some qk−n ∈ Pk−n. As the product λ0 . . . λd is strictly positive inside the cell, Pk−n qk+1 = 0
implies qk+1 = 0. Hence, it is possible to uniquely define the conforming approximation u∗

h ∈Wh

of the solution u of (3.12) by requiring Pk−n u
∗
h = Pk−n uh along with:

u∗h
∣

∣

E
= ( wh + Ik+1 u0 )

∣

∣

E
; E ∈ Eh . (3.34)

Hereby, Ik+1 :H1(Ω) −→Wh denotes the canonical finite element interpolation. In the case k < n
the first condition is void. A linear map Q̂k+1 :H1

0 (Ω) −→ P k+1(Mh) ∩H1
0 (Ω) is specified by:

Pk−n
(

v − Q̂k+1 v
)

= 0 and: Q̂k+1v
∣

∣

E
= πk+1 v

∣

∣

E
; E ∈ Eh

for any v ∈ H1
0 (Ω). This mapping is continuous and leaves elements from the space Wh invariant.

From (3.28) the following approximation property can be inferred:

‖u− Q̂k+1u ‖Ω
= ‖u−Qk+1 u− Q̂k+1(u−Qk+1 u) ‖Ω

≤ C hk+2 |u |
Ω,k+2

.

Under the assumption that a polynomial q ∈ Pk+1 attains the value 0 along at least one edge of
the interface E, the condition πk q = 0 implies q |E = 0. Starting with those elements adjoining
the boundary ∂Ω it can therefore be demonstrated inductively, that the seminorm

‖| vh ‖|2k : = h
∑

E∈Eh

‖πk vh ‖2
E

+ ‖Pk−n vh ‖2
Ω

; vh ∈Wh

is actually a norm on the space Wh. In the case k < n the second expression on the right side
is to be dropped. Since Wh is a space of finite dimension this new norm must be equivalent to
the L2-norm. Hence, there is a constant Kh := K(Mh), possibly dependent on the simplicial
decomposition Mh ∈ M, such that:

‖ vh ‖Ω
≤ Kh ‖| vh ‖|k ; vh ∈ Wh . (3.35)

Proposition 3.9 If the conditions stated in proposition 3.7 are met, if u0 ∈ Hk+2(Ω) holds and
if the constant Kh in (3.35) is uniformly bounded, the approximations u∗h ∈Wh and û∗h ∈Wh as
defined by Pk−n u

∗
h = Pk−n uh and (3.34) satisfy:

C ‖u − u∗h ‖Ω
≤ hk+2

{

|u |
Ω,k+2

+ |u0 |Ω,k+2
+ dσ c

Ω,k+1

}

,

C ‖u − û∗h ‖Ω
≤ hk+2−δk,1

{

|u |
Ω,k+2

+ |u0 |Ω,k+2
+ |dσ c|

Ω,k+1

}

.

Proof Since the map Q̂k+1 leaves elements from the space Wh invariant, a scaling argument in
the spirit of [49] warrants the existence of a constant C, such that

h
∑

E∈Ei

‖πk+1 vh ‖2
E

+ ‖Pk−n vh ‖2
Ωi

≤ C ‖ vh ‖2
Ωi

; vh ∈ P k+1(Mh)
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holds uniformly in Ωi ∈ Mh. Thereby, the abbreviation Ei := {E ∈ Eh |E ⊂ ∂Ωi } has been
used. A global estimate is derived by taking the sum with respect to Ωi ∈ Mh:

h
∑

E∈Eh

‖πk+1 vh ‖2
E

≤ C ‖ vh ‖2
Ω

; vh ∈ P k+1(Mh) . (3.36)

Employing the map Q̂k+1 and exploiting (3.35) the following bound can be found:

‖u − u∗h ‖Ω
≤ ‖u − Q̂k+1 u ‖Ω

+ ‖ Q̂k+1 u − u∗h ‖Ω

≤ C hk+2 |u |
Ω,k+2

+ Kh ‖| Q̂k+1 u − u∗h |‖k .

With a view to the definition of Q̂k+1 and due to Pk−n u
∗
h = Pk−n uh the second part of the mesh

dependent norm ‖| Q̂k+1 u− u∗h ‖|k can be estimated by:

‖Pk−n ( Q̂k+1 u − u∗h ) ‖
Ω

= ‖Pk−n (u − uh ) ‖
Ω

≤ ‖Pk u − uh ‖Ω

thanks to Pk−n u = Pk−nPk u. In the case k < n this estimate is to be ignored. To bound the
other part of the norm proposition 3.8 must be involved. As we have remarked previously, there
is a solution {σ, u, w} of problem H with the property: u = w+ u0. Using this very solution the
following inequality results from (3.34) for any E ∈ Eh:

‖πk ( Q̂k+1 u − u∗h ) ‖2
E

= ‖πk (πk+1 u− wh − Ik+1 u0 ) ‖2
E

≤ 2
{

‖πk (w − wh ) ‖2
E

+ ‖πk+1 u0 − Ik+1 u0 ‖2
E

}

.

Due to (3.36) summation of the above inequality with respect to E ∈ Eh yields:

C ‖| Q̂k+1 u− u∗h ‖|k ≤ ‖ Q̂k+1 u0 − Ik+1 u0 ‖Ω
+ ‖Pk u− uh ‖Ω

+ h ‖σ − σh‖Ω
.

Thanks to proposition 3.5 and 3.6 the proof is finished herewith. If the approximation û∗h ∈ Wh

is constructed from the solution {σ̂h, ûh, ŵh} ∈ Bk(Mh) × P k−1(Mh) ×Wh the reasoning does
not change. Merely Pk u has to be replaced by Pk−1 u. �

The proposition 3.9 asserts, that an approximation to the solution of the primal problem
(3.12) may be found by post processing the Lagrange multipliers for the continuity constraints,
that exhibits a higher asymptotic rate of convergence than the Lagrange multipliers for the
admissibility constraints do themselves. However, as a prerequisite for such a manipulation of
the numerical data to be successful the stability constant in (3.35) must be ascertained to be
uniformly bounded in Mh ∈ M.

Proposition 3.10 If n = 2 holds and k ∈ N0 is an even integer, the stability constant Kh in
estimate (3.35) is uniformly bounded in Mh ∈ M.

Proof Let Ωi ∈ Mh denote an arbitrary element. The set of its interfaces may be abbreviated
by Ei := {E ∈ Eh |E ⊂ ∂Ωi }. Assuming q ∈ Pk+1 has the property:

Ni(q)
2 : = h

∑

E∈Ei

‖πk q ‖2
E

+ ‖Pk−n q ‖2
Ωi

= 0

it shall be demonstrated that q = 0 holds. The condition πk q = 0 implies, that q is a multiple
of the Legendre polynomial Pk+1(s), if considered as a function of the arc length s along some
interface E ∈ Eh. As such q must attain opposite values at the endpoints of each interface (see
e. g. §22 in [1]). Since this is not possible for an odd number of interfaces, q can have no trace
on ∂Ωi. In the case k < n this would imply q = 0. If k ≥ n holds, the requirement Pk−n q = 0
enforces q = 0. Hence, the functional Ni is definite and can be used as a norm for the space
Pk+1. A scaling argument in conjunction with the regularity of Mh asserts that Ni(q) ≤ C ‖ q ‖

Ωi

holds for any q ∈ Pk+1. Summation over Ωi ∈ Mh now proves the stability result (3.35) for any
vh ∈ P k+1(Mh) with Kh ≤ C. �
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Remark 3.8 Though the proof of proposition 3.10 can neither be applied in the case n = 3 nor
in the case of k odd, the approximations u∗h ∈Wh and û∗h ∈Wh are not meaningless. If k is odd
and n = 2 for instance, an estimate of the form

sup
x∈Ω

| (I − Pk−d) vh(x) | ≤ C

h3

∑

E∈Fh

‖πk vh ‖2
E

; vh ∈Wh

can be invoked to demonstrate, that the constant Kh is bounded on reasonable meshes by C h−1

at the worst. Thereby Fh ⊂ Eh denotes the set of those edges, that form the shortest path from
the boundary ∂Ω to the very simplex, within which the supremum of (I − Pk−n) vh is attained.
In consequence, the function û∗h is still a valid approximation of the solution u to problem (3.12).
Furthermore, the asymptotic rate of convergence will still read O(hk+1) and hence will be better
than that of ûh.

Remark 3.9 The case n = 3 has not been closely examined by the author. The very simplest
discretisation scheme, that can be imagined within the framework of this paper, is based on
continuous, piecewise linear shape functions to span the trial space Wh. However, for such linear
shape functions the barycentres of the element interfaces are well known to form an unisolvent set
(see e. g. [54]). By a scaling argument similar to the one used above Kh ≤ C follows immediately.

Remark 3.10 The lowest order case k = 0 is special in so far, as an equivalence between
the nonconforming hybrid discretisation scheme introduced in section 3.2.2 and a conventional
conforming discretisation method for the Dirichlet problem (3.12) can be established under certain
assumptions on the tensor A. If A ∈ L∞(Ω,Rn×n) is constant on each simplex Ωi ∈ Mh the field
τh := A−T∇zh is an admissible test field for any zh ∈ Wh = P 1(Mh) ∩W 1

0 (Ω). With a view to
(3.17) and (3.32) the following equation can be inferred from the statement of problem HH:

∑

Ωi∈Mh

(

A−T∇zh , A σh
)

Ωi
=

∑

Ωi∈Mh

(

∇u0 + ∇wh , A−T∇zh
)

Ωi
; zh ∈Wh .

Due to c(zh, σh) = 0 and ∇· σh ∈ P 0(Mh) its left hand side can be rewritten as:

(

∇zh , σh
)

Ω
= −

∑

Ωi∈Mh

(

zh , P0 ∇· σh
)

Ωi
= − b(P0 zh, σh ) = −

(

f, P0 zh
)

Ω
.

By combining these two results a conforming finite element scheme for the primal formulation of
the inhomogeneous Dirichlet problem is eventually discovered:

wh ∈Wh :
(

∇zh, A−1∇(u0 + wh)
)

Ω
= −

(

P0 f, zh
)

Ω
; zh ∈Wh .

3.3 Hypercycle Estimates in a Finite Element Context

The analysis of the two applications we have presented in chapter 2 aimed at establishing efficiency
results for duality based a posteriori error majorants, that were of a somewhat academic nature:
how close could we possibly get to the true approximation error and what would the minimiser
of the error majorant look like. For all practical purposes, however, finding the minimiser of an
error majorant is at least as difficult as solving the primal formulation. Hence, we have to accept
the deteriorating impact of numerical approximations on the efficiency of our error estimates. In
the following paragraphs we will present a number of readily computable estimates, which can
be identified as special instances of the abstract theory we have developed throughout chapter 1.

3.3.1 A posteriori estimates for the Laplace Problem

Using the same notation we have employed throughout section 2.1.3 let us consider the Dirichlet
problem with homogeneous boundary conditions. For simplicity, we will assume, that Ω ⊂ R

n

is a convex domain with a polygonal boundary. Furthermore, we will suppose, that a simplicial
decomposition Mh of the domain Ω has been constructed, with the help of which a finite element
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approximation xh ∈ H1
0 (Ω) to the exact solution x0 ∈ H1

0 (Ω) has been produced. Below we need
to refer to a number of function spaces, whose definition let us recall for our convenience:

P k(Mh) :=
{

u ∈ L2(Ω)
∣

∣ u|Ωi ∈ Pk ; Ωi ∈ Mh

}

,

Bk(Mh) :=
{

τ ∈ L2(Ω,Rn)
∣

∣ τ |Ωi ∈ (Pk)
n ; Ωi ∈ Mh

}

,

Rk(Mh) :=
{

τ + ϑx
∣

∣ τ ∈ Bk(Mh) , ϑ ∈ P k(Mh)
}

.

Hereby, the symbol Pk shall denote the set of all polynomials in n variables with a degree less or
equal k ∈ N0. We extend the above notation, which we have used throughout section 3.2.2, by
introducing subspaces of functions respectively vector fields with a somewhat higher regularity:

P kc (Mh) := P k(Mh) ∩ H1(Ω) ; Bkc (Mh) := Bk(Mh) ∩ Hdiv(Ω) .

The Raviart-Thomas space Rkc (Mh) is defined in an analogous fashion. The degrees of freedom
associated with these spaces are well known and need not be discussed. (Detailed information
can be found e. g. in [34,122] or in §2.2 of [48].) In the following let us assume, that the numerical
approximation xh be contained in the space P k0 (Mh) := P k(Mh) ∩ H1

0 (Ω) for some k ≥ 1 and
has been obtained by solving the finite dimensional variational formulation:

〈∇xh,∇vh 〉Ω = ( f, vh )Ω ; vh ∈ P k0 (Mh) . (3.37)

If the data of the Dirichlet problem is sufficiently smooth to warrant its analytical solution being
contained in the space Hk+1(Ω)∩H1

0 (Ω), we can obtain from the Lax-Milgram theorem [99] the
following a priori bound for the approximation error:

|xh − x0 |Ω,1 ≤ C(Ω) hk |x0 |Ω,k+1
≤ C ′(Ω) hk | f |

Ω,k−1
. (3.38)

Against this estimate we have to compare the performance of any a posteriori error estimator,
which we can derive either from (2.7) or from (2.8) by choosing a suitable vector field σh from
one of the finite dimensional spaces just introduced.

A conventional a posteriori error estimate

Though the numerical solution xh is supposed to be conforming, its gradient ∇xh ∈ P k−1(Mh) is
most likely not a continuous vector field. Hence, we may not assume ∆xh to be square integrable.
Choosing the field σh := ∇xh is possible nevertheless, if we want to evaluate the sharper of the
two error bounds (2.7) and (2.8). In taking the limit κ → 0 we recover the well known a priori
estimate for the approximation error:

| xh − x0 |2Ω,1 ≤ | ∆xh + f |2
Ω,−1

. (3.39)

We are unable to evaluate the above error bound, unless we require the numerical approximation
to possess the best approximation property implied by (3.37). If that condition is met and the
function f is at least square integrable, we may invoke standard results (see e. g. §3.2 in [48]) on
the approximation properties of the canonical finite element interpolation Ik :C(Ω) −→ P kc (Ω) in
order to bound the dual norm of the residual. Let E denote an interior edge which is shared by
the elements M1 and M2. We define the jump [σ] across E of a sufficiently regular vector field σ
with the help of the outward pointing normal vectors n1 ∈ R

2 and n2 = −n1 perpendicular to E:

[σ](ξ) := n1 · σ
∣

∣

M1

(ξ) + n2 · σ
∣

∣

M2

(ξ) ; ξ ∈ E .

Let us suppose, that the mesh Mh is regular in the sense of definition 3.2. We abbreviate by Eh
the set of all edges, which are interior to the mesh Mh. By choosing vh = Ik v as a test function
in (3.37) and performing a partial integration on each patch M ∈ Mh we find:

|xh − x0 |Ω,1 ≤ sup
v∈H1

0 (Ω)

1

| v |
Ω,1

∑

M∈Mh

{

∫

M

(f + ∆xh)(v − vh) − 1

2

∮

∂M

(v − vh)
[∂xh
∂n

] }
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≤ sup
v∈H1

0 (Ω)

1

| v |Ω,1

{

∑

M∈Mh

CM hM | v |
M,1

‖ f + ∆xh ‖M +

+
∑

E∈Eh

ĈM
√

hE | v |
M,1

∥

∥

∥

[∂xh
∂n

]∥

∥

∥

E

}

≤ C
{

∑

M∈Mh

h2
M

∥

∥ f + ∆xh
∥

∥

2

M
+

∑

E∈Eh

hE

∥

∥

∥

[∂xh
∂n

]
∥

∥

∥

2

E

}1/2

.

The above inequality renders just the usual explicit energy error estimator, which is based on the
evaluation of element residuals and jump terms for the numerical fluxes (see e. g. [5, 138]).

Smoothing the primal approximation

Since the computation of the edge contributions may require substantial technical effort, it seems
reasonable to employ vector fields σh of a somewhat higher regularity. If the divergence of such
fields is square integrable, the residual contributions to the error majorant (2.8) can be evaluated
immediately: in such a case we can employ the same numerical technology for providing error
bounds as for assembling the finite element matrices. Our simplest choice for the dual parameter
is a product ansatz of the form σh ∈ (P kc (Ω))n, as it does not force us to manage different types
of shape functions on the same mesh. A projection Π : L2(Ω,Rn) −→ (P kc (M))n may be defined
in several ways. Each degree of freedom, the space P kc (M) is equipped with, can be identified
with some point ξj ∈ Ω. The associated shape function let us denote by ψj ∈ P kc (M). We may
specify an interpolation operator in the spirit of Clément [52]:

Π σ :=
∑

M∈Mh

|M |
∑

ξj∈ cloM

σ|
M

(ξj)

| suppψj |
ψj ,

provided the vector field σ is continuous on each element. Since the vector field ∇xh meets this
requirement, Π(∇xh) is a viable choice for the dual parameter in (2.8). The main advantage of
such a procedure lies in the fact, that the action of the interpolation operator Π can be computed
easily by a single sweep across the mesh. The disadvantage of such a choice lies in the problem
of asserting upper bounds in terms of the mesh parameter h for the two residual contributions,
which constitute the error majorant (2.8). In [94] a similar averaging method is discussed for
piecewise linear shape functions on highly structured meshes: The resulting field is found to
approximate the gradient of an analytical solution x0 ∈ H3(Ω) with the order O(h2). Since the
averaging methods differ near the boundary of the computational domain, a closer look at the
proofs in [94] indicate, that the operator Π as defined above will generate a sort of boundary layer.
Results pertaining also to unstructured meshes have been published in [83]: However, these fail
to answer the important question, how the second part K̃∗ of the error estimate (2.8) is affected
by the averaging procedure. Perhaps even less amenable to an analysis is the construction of a
smoothed approximation σ̂h ∈ Hdiv(Ω) to the gradient ∇xh with the help of a L2-projection:

σ̂h ∈ (P kc (M))n : 〈 σ̂h −∇xh, τh 〉Ω = 0 ; τh ∈ (P kc (M))n .

As the condition number of the mass matrix is independent of the mesh parameter h, the above
system can be solved with optimal numerical complexity using a CGS iteration [133] for instance.
Assuming the analytical solution x0 to be contained at least in the space Hk+2(Ω) the first part
M̂F (xh, σ̂h) of the hypercycle estimate (2.8) can be bounded by:

‖∇xh − σ̂h ‖Ω
≤ |xh − x0 |Ω,1 + ‖∇x0 − Ik∇x0 ‖Ω

= |xh − x0 |Ω,1 + O(hk+1) .

The second part K̃∗ of the error bound (2.8) proves to be the difficult one. At present, we can
not offer any satisfactory analysis of the residual ‖∇· σ̂h+ f‖

Ω
in terms of the mesh parameter h.

In any event, we must not presume this expression to be a higher order perturbation to the first
part of the error majorant. Once the field σh is fixed, we can determine the optimal equilibration
parameter κ∗ by minimising the right hand side of (2.8) with respect to κ > 0. We find:

κ∗ : = λ0
‖∇xh − σh ‖Ω

‖∇· σh + f ‖
Ω

.
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Consequently, we may improve the estimate (2.8) using κ = κ∗ and taking the square root:

|xh − x0 |Ω,1 ≤ M0(σh) := ‖∇xh − σh ‖Ω + λ−1
0 ‖ ∇· σh + f ‖Ω .

The error bound M0 thus defined is valid for any vector field σh ∈ Hdiv(Ω). However, neither of
the two choices Π(∇xh) and σ̂h just considered can yield an asymptotically exact error estimator,
since the residual expression ‖∇·σh+f‖

Ω
cannot be controlled properly. Moreover, the efficiency

index of the estimator M0 is most probably not even uniformly bounded. We may surmise, that
the lacking efficiency of the estimator M0 is caused by limitations of the ansatz, with the help
of which we aim to approximate the optimal dual parameter. To show, that this is not the case,
let us introduce a new vector field σ̃h ∈ (P kc (Mh))

n by applying the canonical finite element
interpolation Ik : C(Ω) −→ P kc (Ω) to each coordinate of the field ∇x0 in turn:

σ̃h : =

n
∑

i=1

Ik

( ∂x0

∂ξi

)

ei ,

assuming as before, that the analytical solution x0 is contained at least in Hk+2(Ω). We conclude:

M0(σ̃h) ≤ |xh − x0 |Ω,1 + C ‖ σ̃h −∇x0 ‖Ω,1
≤ |xh − x0 |Ω,1 + O(hk) .

Solving the dual formulation

Clearly, any post-processing procedure which takes the gradient of the numerical approximation
and generates a sufficiently smooth vector field σh ∈ Hdiv(Ω) will suffer from the same drawback:
Since the numerical approximation xh need not be particularly accurate, no useful bound for
the residual in the second duality relation can be guaranteed. To overcome this problem, an
approximation to the optimal parameter σ0, we have discussed in section 2.1.4, must be found
directly. The simplest approach relies on a discretisation of the dual mixed formulation based on
elements of Raviart-Thomas type. Let us seek a pair of functions {σh, uh} ∈ Rkc (Mh)×P k(Mh),
such that any set of test functions {τh, yh} ∈ Rkc (Mh) × P k(Mh) satisfies:

〈 τh, σh 〉Ω + (uh,∇· τh )Ω = 0

( yh,∇· σh )
Ω

= (−f, yh )
Ω

.
(3.40)

By exploiting the approximation properties (3.22) of the canonical finite element interpolation
operator Π : Hdiv(Ω) −→ Rkc (Mh) and by using basically the same analytical methods as those
described in section 3.2.3 we can obtain the following a priori bounds:

‖ ∇x0 − σh ‖Ω ≤ C hk+1 |x0 |Ω,k+2

‖ ∆x0 − ∇· σh ‖Ω
≤ C ′ hk+1 |∆x0 |Ω,k+1

(3.41)

provided the data of the Dirichlet problem is sufficiently smooth: f ∈ Hk+1(Ω) for some k ≥ 0.
We note, that the residual expression ∇· σh + f is orthogonal to all piecewise constant functions.
Therefore, we can easily obtain a bound on this quantity in the dual norm:

|∇· σh + f |
Ω,−1

= sup
v∈H1

0 (Ω)

(∇· σh + f, v − P0 v )
Ω

| v |
Ω,1

≤ C h ‖∇· σh + f ‖
Ω
.

Consequently, we may not only evaluate the hypercycle estimate (2.8) but also the sharper error
bound (2.7), if we presume the numerical solution {σh, uh} of the dual formulation to be exact.
We infer from (2.7) and (3.41), that we can consider the residual in the second duality relation
as a higher order perturbation to the residual in the first duality relation. For by minimising the
hypercycle estimate (2.7) with respect to the equilibration parameter κ we find:

|xh − x0 |Ω,1 ≤ M−1(σh) := ‖∇xh − σh ‖Ω + | ∇· σh + f |Ω,−1 .

The efficiency index of the above estimate is uniformly bounded from above. Still the estimator
M−1(σh) is not asymptotically exact, unless we employ a Raviart-Thomas ansatz of higher order
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k > 0 to approximate the solution of the dual formulation. The simplest ansatz for the dual
variable σh which warrants the efficiency index to be asymptotically optimal, that means

lim
h→0

M−1(σh)

|x0 − xh |Ω,1
= 1 ,

is based on the so called BDM element of lowest order k = 1 (for its properties and the etymology
of its name we refer to [34]). The solution {σ̂h, ûh} of the dual mixed formulation (3.40) and
the test functions are both contained in the space Bk

c (Mh)×P k−1(Mh). The numerical solution
satisfies the following a priori bounds:

‖ ∇x0 − σ̂h ‖Ω
≤ C hk+1 |x0 |Ω,k+2

‖ ∆x0 − ∇· σ̂h ‖Ω ≤ C ′ hk |∆x0 |Ω,k+1
.

Remark 3.11 The shape functions of Brezzi-Douglas-Marini elements contain full polynomial
spaces in each component of the vector field. Still, a hypercycle estimate, which is based on
some smoothed approximation σh ∈ (P k(Mh))

n to the gradient ∇xh, differs significantly from
M0(σ̂h). Clearly, the dual solution is geared towards meeting the static admissibility constraint
∇· σ̂h + f = 0, while the averaged gradient aims at minimising the the residual in the first
duality relation σ = ∇x. Apart from this obvious dissimilarity, there is an important difference
on the technical level: while the recovered gradient is continuous and therefore conforming,
the requirement σ̂h ∈ Hdiv(Ω) merely implies, that the normal components of the fluxes must
be continuous across element interfaces. Since the tangential components may differ, the trial
spaces Bk(Mh) have many more degrees of freedom than their counterparts (P k(Mh))

n.

Remark 3.12 To obtain a possibly small error bound (2.8), we should equilibrate the residual
in the first and the residual in the second duality relation. Accordingly, it seems but reasonable
to compute a conforming vector field σh, which is close to ∇xh, and meets the requirement
∇· σh + Pkf = 0 for some index k ≥ 0 at the same time. To determine such a field let us
introduce a Lagrange multiplier µh ∈ P k(Mh) and define:

L(σ, µh) :=
1

2

∥

∥σh −∇xh
∥

∥

2

Ω
−

(

µh,∇· σh + f
)

; σ ∈ Hdiv(Ω) .

Whether an unique solution exists for the associated saddle point problem, depends on our choice
of the ansatz for the dual variable. If we assume for instance σ̂h ∈ Bk+1

c (Ω), the saddle point will
be described by the following linear system, valid for any {τh, yh} ∈ Bk+1

c (Ω) × P k(Mh):

〈 τh, σ̂h −∇xh 〉Ω + ( µ̂h,∇· τh )Ω = 0

( yh,∇· σh )
Ω

= (−f, yh )
Ω

.

We note, that the above system takes the very form of (3.40), if we perform a partial integration
to remove the gradient from the numerical solution xh ∈ H1

0 (Ω) and define uh := µ̂h + Pk xh.
Hence, our idea of finding the dual parameter σh by a least squares approach has simply led us
back to solving the dual formulation of the Laplace problem.

Remark 3.13 Though trial spaces of Raviart-Thomas type are well established as a means of
obtaining a discrete formulation of the Laplace problem, we are not bound to use them. The ideas
put forward in the previous remark may prompt us to employ Lagrange elements for the dual
parameter σh instead of discontinuous shape functions. However, unless we dismiss the static
admissibility constraint ∇· σh + Pkf = 0 completely, we must ensure, that the compatibility
condition for our trial spaces is met. While we can ignore the Lagrange multiplier µh for our
purposes, we must warrant the consistency of the saddle point problem. The setting is quite
similar to the statement of the Stokes problem except for the fact, that the incompressibility
constraint is per se consistent. A very general theory for the numerical treatment of saddle
point formulations is presented in [112]. A thorough exposition of the topic is given in §2 of [35]
along with a number of examples in §6, how to construct pairs of compatible trial spaces for
the vector field σh and the Lagrange multiplier µh. Unfortunately, nonconforming elements of
Crouzeix-Raviart type [54] cannot be used to approximate the components of the dual parameter
σh ∈ Hdiv(Ω), since the divergence of the resulting fields is not square integrable.
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3.3.2 A posteriori estimates for the Obstacle Problem

In the following we will use the notation we have introduced in section 2.2. To simplify our
exposition, let us assume, that the tensor A ∈ W 1,∞(Ω,Rn×n) is the identity matrix I ∈ R

n×n

and that the set E, which describes the compass of the obstacle is identical to the computational
domain Ω, a convex set with a polygonal boundary. The shape of the obstacle shall be determined
by some function ψ ∈ W 2,p(Ω), which has the property ∆ψ ∈ Lp(Ω) for some exponent p > n
and is negative along ∂Ω. If the load function satisfies f ∈ Lp(Ω), the solution of the obstacle
problem stated in section 2.2.2 is known (see e. g. [33,101]) to be continuously differentiable with
the Hölder exponent α = 1 − n/p. To be more specific, we find: x0 ∈W 2,p(Ω).

Even if we suppose the function f ∈ W 1,1(Ω) ∩ L∞(Ω) to be slightly more regular and the
obstacle ψ ∈ C3(Ω) to be smooth, the regularity of the solution x0 will in general not exceed
x0 ∈ W s,p(Ω) with s < 2 + 1/p being an arbitrary parameter [32]. Since this lack of smooth
solutions is an intrinsic feature of the obstacle problem, we can not hope to evade its impact by
transforming the variational formulation. In consequence, we are unable to turn the computable
hypercycle estimates (2.16) and (2.19) into asymptotically exact error bounds simply by raising
the polynomial degree of the shape functions with which we construct the parameter σ ∈ Hdiv(Ω).
If we choose to ignore this difficulty, our options of constructing suitable dual parameters are the
same as in the case of the Laplace problem: We may smooth the gradient ∇xh of the primal
approximation or solve the dual formulation of the obstacle problem numerically. Furthermore,
we may attempt to minimise the hypercycle estimate with respect to the dual parameter. This
latter approach we can of course also combine with one of the other methods to provide a good
initial guess for the optimisation algorithm.

Solving the dual formulation

In section 4.3 we will examine those multilevel methods we employ to solve the algebraic problems
which arise out of a finite element discretisation of the obstacle problem in its dual formulation.
We are going to demonstrate in section 4.3.2 how to derive that formulation. Hence, let us merely
state in the present context, that we must seek a vector field σh ∈ Rkc (Mh), which is admissible

σh ∈ Sh(f) :=
{

τh ∈ Rkc (Mh)
∣

∣ ∇· τh + f ≤ 0 a. e. on Ω
}

and which satisfies the following variational inequality:

〈σh, τh − σh 〉Ω + 〈ψ,∇· τh −∇· σh 〉Ω ≥ 0 ; τh ∈ Sh(f) .

If we use an Raviart-Thomas ansatz of low order k ∈ {0, 1} or alternatively base our discretisation
on the BDM element of low order (shifting the index k down by 1 for that purpose) we may enforce
the admissibility constraint σh ∈ Sh(f) by testing with the nonnegative shape functions ψi of the
trial space P k(Mh). To facilitate such a device we must replace the forcing function f ∈ L2(Ω) by
its image under the projection operator Pk : L2(Ω) −→ P k(Mh) defined by (3.23). If Ik denotes
the set of all degrees of freedom featured by the space P k(Mh), we may state:

(ψi,∇· σh + f )
Ω

≤ 0 ; i ∈ Ik ⇐⇒ σh ∈ Sh(Pkf) .

We remark, that the above would no longer hold, if we employed trial spaces of higher order.
However, due to the limited regularity of the analytic solution σ0 ∈ W 1+r,2(Ω,Rn) with r < 0.5
such a choice would be questionable in any case. The resulting algebraic formulation exhibits the
structure of a saddle point problem and features in addition a linear complementary condition
for the Lagrange multiplier uh ∈ P k(Mh) associated with the admissibility constraint:

uh ≥ 0 ∧ ∇· σh + Pkf ≤ 0 ∧ (uh,∇· σh + f )
Ω

= 0 . (3.42)

We are not aware of any published theoretical results, which assert, that the Lagrange multiplier
uh approximates the distance x0−Pkψ between the analytical solution of the primal formulation
and the obstacle, or rather its projection into the trial space P k(Mh) in a quasi optimal sense:

‖uh + ψ − x0 ‖∞,Ω ≤ C hk+1 (log h)2 |x0 |Ω,2 ,
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though similar approximation results [114] have been obtained for the primal formulation of the
penalised obstacle problem. Under certain assumptions on the properties of the solution x0 near
the boundary of the coincidence set Ω0 (see again [114] and the references cited therein) we can
derive from such estimates bounds on the measure of the symmetric difference

Ω0 ÷ Ωxh : = Ω0 \ Ωxh ∪ Ωxh \ Ω0

between the coincidence set of the analytical solution x0 and the coincidence set Ωxh of its primal
approximation. If we denote by Ωuh the coincidence set associated with the Lagrange multiplier
uh, we may therefore surmise for k ∈ {0, 1} an estimate of the form:

| Ωxh ÷ Ωuh | ≤ C
√
hk+1 | log h | . (3.43)

In the following let us suppose, that (3.43) holds. The computable hypercycle estimate (2.15)
may now be bounded by exploiting the linear complementary condition (3.42). Let us assume,
the forcing function is sufficiently smooth to warrant an analytical solution x0 ∈ W 2,∞(Ω). We
select the parameter κ∗ > 0 in the very same way, we have done in the previous section for the
unconstrained problem, take the square root and thus arrive at the estimate:

|xh − x0 |Ω,1 ≤ ‖∇xh − σh ‖Ω
+ | f − Pkf |Ω,−1

+ λ−1
0 inf
µ∈L2(Ω)∩Mx

‖µ+ Pkf + ∇· σh ‖Ω
.

On the complement Ω \ Ωu0 of the ”dual” coincidence set the residual expression Pkf + ∇· σh
vanishes, whereas any negative contribution by said function can be compensated on the ”primal”
coincidence set Ωx0 by the positive measure µ. In consequence, the integrand can be negative only
on the set Ω− := (Ω \ Ωx0) ∩ Ωu0 . Since the residual is uniformly bounded, we conclude:

inf
µ∈L2(Ω)∩Mx

‖µ+ Pkf + ∇· σh ‖Ω ≤ ‖ Pkf + ∇· σh ‖∞,Ω− | Ωxh ÷ Ωuh | .

Unfortunately, the residual expression Pkf +∇· σh is not continuous across element boundaries.
Hence, we are unable to control the supremum norm over the set Ω− by some power of the mesh
parameter h, even though the residual vanishes on certain of the adjoining elements.

Remark 3.14 Previously, we have considered an hypercycle estimate, which has involved the
evaluation of some dual norm. Strictly speaking, such an estimate is not computable. However,
we have found the contribution of the residual in the second duality relation to be a higher order
perturbation, if that quantity is but measured in the dual norm. Consequently, we may justify
our deliberations by the realisation, that we can simply ignore the second part of the hypercycle
estimate and still get a reasonable if not thoroughly reliable error bound. The same observation
holds true, if we compute the error estimate (2.8) using a trial space of higher accuracy for the
dual parameter than for the primal approximation. For example, if we have obtained a numerical
solution xh ∈ P 1

c (Mh), we may solve the dual formulation with the ansatz R1
c(Mh). As far as the

obstacle problem is concerned, the situation is different: The residual contribution in the second
duality relation forms a substantial part of the error majorant, which we must not neglect, even
if we have employed higher order trial spaces to represent the dual parameter σh. Moreover, with
a view to (3.43) we cannot warrant a mesh independent bound on the efficiency index of our
hypercycle estimate. Hence, it seems paramount to match the boundary of the coincidence set
Ω0 as closely as possible. Since the primal approximation xh ∈ P 1

c (Mh) satisfies an estimate of
the form (3.43) with k = 1 and Ωuh replaced by Ω0, the efficiency index will behave under uniform
mesh refinement like C | log h| provided our assumptions on the approximation properties of the
dual approximation uh ∈ P k(Mh) are correct and either k = 1 holds true or the dual parameter is
computed on a different mesh M′

h, which we have locally refined in some neighbourhood around
the boundary of the coincidence set. If the local mesh width h′ satisfies the requirement h′ < h2,
we may hope to recover an almost efficient error bound.

Remark 3.15 The above remark suggests a procedure how to locally adapt meshes in order
to improve both the accuracy of the primal approximation and the efficiency of the a posteriori
error estimate. As long as the residual in the second duality relation can be considered a higher
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order perturbation, we may obviously employ the residual in the first duality relation as a local
error indicator. Since that latter residual is a simple integral, we can decompose it directly into
element contributions and thus localise the a posteriori error estimate:

2 MF (∇xh, σh) =

∫

Ω

(∇xh − σh )2 d ξ =
∑

M∈Mh

‖∇xh − σh ‖2
M

= :
∑

M∈Mh

η2
M .

The mesh Mh on which we calculate the primal approximation may now be refined in such a way,
that the local error indicators ηM become equilibrated. The second mesh M′

h which supplies the
dual parameter σh, must take into account possible breakdowns in the regularity of the analytical
solution, which cause the second residual contribution ‖∇· σh + f‖

Ω
to deteriorate. Hence, it

seems but reasonable to refine the mesh M′
h, wherever the local indicators ζ

M
> 0, defined by

∥

∥ ∇· σh + f
∥

∥

2

Ω
−

∥

∥ 0 ∧
(

∇· σh + f
) ∥

∥

2

Ωx
= :

∑

M∈M′
h

ζ2
M ,

are large. In actual computations, the mesh M′
h for the dual parameter can be adapted along with

the mesh, on which the approximation of the primal formulation is obtained. The elements to be
refined are selected based on the information provided by the local indicators η

M
and ζ

M
. After

the mesh refinement has been carried out and a new primal approximation has been computed,
a third mesh M′′

h may be constructed, which contains all the edges and all the vertices, which
are present either in Mh or in M′

h. On this new mesh the hypercycle estimate can be evaluated
without incurring any interpolation errors, that may bias the refinement procedure.

On the properties of the alternative error estimate

Analysing the alternative hypercycle estimate (2.19) which we have developed in section 2.2.5 is
rendered even more difficult by the fact, that we can not eliminate the dependence of the error
bound on the equilibration parameter κ as we have been able to do in the previous paragraphs.
In the following we will therefore merely collect some remarks we have already presented in a
similar form in [41]. Let us begin our exposition with a technical lemma:

Lemma 3.1 The function Θ : R × R −→ R , defined by

Θ(r, s) =

{

s2 ; r + s ≥ 0

s2 − ( r + s )2 ; else ,

is continuously differentiable, concave with respect to its first and convex with respect to its
second argument. Furthermore, the following monotonicity property holds:

0 ≤ r ⇒ 0 ≤ r
∂Θ

∂r
(r, s) ≤ Θ(r, s) ; s ∈ R . (3.44)

Proof The above results can be obtained by elementary calculus. �

We note, that we can express the hypercycle estimate (2.19) as an integral involving the very
function Θ, we have introduced in the above lemma, as a kernel. Let us define:

M (κ)

Θ (x, σ) :=
1 + κ

λ2
0

∫

Ω

Θ
(

λ2
0

x− ψ

1 + κ
, f + ∇· σ

)

d ξ ; x ∈ Vψ .

Using the same notation as in section 1.2.7 we may now state for any vector field σ ∈ Hdiv(Ω):

M̃K(x, σ) =
κ+ 1

κ
MF (∇x, σ) +

1

2
M (κ)

Θ (x, σ) . (3.45)

From the above lemma and from (3.45) we infer, the generalised hypercycle estimate (2.19) can
never become negative, as long as x ≥ ψ holds. In addition we find the convexity of M (κ)

Θ ( · , x)
and the concavity of M (κ)

Θ (σ, · ) resulting from the properties of the kernel Θ. We claim:
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Proposition 3.11 The residual part M (κ)

Θ : Vψ ×Hdiv(Ω) −→ R
+
0 of the generalised hypercycle

estimate (2.19) is a continuous functional, that is convex with respect to its first and concave
with respect to its second argument. It is differentiable and monotonously increasing in κ ≥ 0.

Proof For simplicity, let us identify the expression λ−2
0 (1 + κ) with the parameter κ. When

we combine the lemma 3.1 with the our integral representation of M (κ)

Θ and apply first Hölder’s
and then Minkowsky’s inequality, we obtain for arbitrary functions x, x̂ ∈ Vψ and arbitrary fields
σ, σ̂ ∈ Hdiv(Ω) the following estimate:

∣

∣M (κ)

Θ (x, σ) − M (κ)

Θ (x̂, σ̂)
∣

∣ ≤ 2
(

κ ‖∇· σ + f ‖
Ω

+ κ ‖∇· σ̂ + f ‖
Ω

+ ‖x− ψ ‖
Ω

+

+ ‖ x̂− ψ ‖
Ω

) (

‖∇· σ −∇· σ̂ ‖
Ω

+ ‖κ(x− x̂) ‖
Ω

)

.

Hence, M (κ)

Θ is continuous in the norm |d · c|
Ω
. Let us fix b ∈ L2(Ω) and g ∈ L2(Ω,R+

0 ). Since the
kernel Θ is continuously differentiable, we can compute the partial derivative of Θ(κ−1g, b) with
respect to κ ≥ λ−2

0 > 0 almost everywhere on Ω. From the inequality (3.44) we infer:
∣

∣

∣

∣

∂Θ

∂κ

(

κ−1g, b
)

∣

∣

∣

∣

=
∂Θ

∂ r

(

κ−1g, b
) g

κ2
≤ 1

κ
Θ

(

κ−1g, b
)

∈ L1(Ω) .

Lebesgue’s theorem of dominated convergence implies, that the partial derivative of the integral
in the definition of M (κ)

Θ with respect to κ exists. Therefore, we can employ the inequality (3.44)
again to find a lower bound on this quantity for any x ∈ Vψ and any σ ∈ Hdiv(Ω):

λ2
0

∂

∂κ
M (κ)

Θ (x, σ) = − κ

∫

Ω

∂Θ

∂ r

(

κ−1(x− ψ) , f + ∇· σ
) x− ψ

κ2
d ξ

+

∫

Ω

Θ
(

κ−1(x− ψ) , f + ∇· σ
)

d ξ ≥ 0 .

The algebraic properties of M (κ)

Θ stem from those of the kernel Θ, we have defined in lemma 3.1,
and can be verified by elementary algebraic manipulations. �

The above results can be used to provide an upper bound for the hypercycle estimate M̃K ,
when the dual parameter σ is but contained in a finite dimensional subspace of Hdiv(Ω). Before
we proceed, let us introduce for any subset Q ⊂ Hdiv(Ω) the sharpest possible estimate, we can
obtain by minimising the a posteriori error bound (2.19) with respect to σ ∈ Q. We define:

H(κ)(x,Q) := inf
σ∈Q

{ κ+ 1

κ
‖∇x− σ ‖2

Ω
+ M (κ)

Θ (x, σ)
}

.

Considering the case Q = Hdiv(Ω), we find by proposition 2.1, that the minimiser σκ ∈ Q of the
right hand side is related to the gradient of an arbitrary function x ∈ H1

0 (Ω) by the estimate:

‖ ∇x − σκ ‖Ω
≤ 4 + κ

1 + κ
| x − x0 |Ω,1 .

For reasons, that will become apparent below, let us fix a constant α ∈ (0, 1) and introduce a
new equilibration parameter κ̂, larger than κ, which shall be defined by the formula:

κ̂ : =
κ + α

1 − α
.

Let σ ∈ Q denote an arbitrary field. We may now control the error bound H(κ)(x,Q) by:

H(κ)(x,Q) ≤ 1 + κ

κ

{

(1 + κ̂) ‖σ − σκ̂ ‖2
Ω

+
1 + κ̂

κ̂
‖∇x− σκ̂ ‖2

Ω

}

+ M (κ)

Θ (x, σ)

≤ (1 + κ)2

κ (1 − α)
‖σ − σκ̂ ‖2

Ω
+

(4 − 3α+ κ)2

κ (1 + κ)(α+ κ)
|x− x0 |2Ω,1 + M (κ)

Θ (x, σ)

+
{ 1 + κ̂

κ̂
‖∇x− σκ̂ ‖2

Ω
+ M (κ̂)

Θ (x, σκ̂)
}

− M (κ̂)

Θ (x, σκ̂) . (3.46)
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Thanks to the proposition 2.2 we can bound the expression in brackets in terms of the sharpest
estimate (2.27) for the energy error which is available to us. The remaining expressions either
depend on the approximation error or can be controlled in terms of the distance |dσ − σκ̂ c|Ω as
we are now going to show. For any two fields σ, σ̂ ∈ Hdiv(Ω) and any x ∈ Vψ we find:

M (κ)

Θ (σ, x) =
1 + κ

λ2
0

∫

Ω

Θ
(

λ2
0

x− ψ

1 + κ
, f + ∇· σ

)

dx

=
1 + κ

λ2
0

∫

Ω

Θ
(

λ2
0

x− ψ

1 + κ
, (1 − α)

f + ∇· σ
1 − α

+ α
∇· σ −∇· σ̂

α

)

d ξ

≤ (1 − α) (1 + κ)

λ2
0

∫

Ω

Θ
(

λ2
0

(1 − α) (x − ψ )

(1 + κ) (1 − α)
,
f + ∇· σ̂

1 − α

)

d ξ +

+
α (1 + κ)

λ2
0

∫

Ω

Θ
(

λ2
0

α (x − ψ )

(1 + κ) α
,
∇· σ −∇· σ̂

α

)

d ξ

=
1

λ2
0

1 + κ

1 − α

∫

Ω

Θ
(

λ2
0

(1 − α) (x − ψ )

1 + κ
, f + ∇· σ̂

)

d ξ +

+
1 + κ

α λ2
0

∫

Ω

Θ
(

λ2
0

α (x − ψ )

1 + κ
, ∇· σ −∇· σ̂

)

d ξ

≤ M (κ̂)

Θ (x, σ̂) +
1 + κ

α λ2
0

‖∇· σ̂ − ∇· σ ‖2

Ω
.

To simplify the notation let us introduce the following abbreviations:

C0(α, κ, σ, σ̂) :=
1 + κ

κ (1 − α)
‖ σ − σ̂ ‖2

Ω
+

1

αλ2
0

‖∇· σ − ∇· σ̂ ‖2
Ω

,

C1(α, κ) :=
( 4 − 3α + κ )2

( 1 + κ ) (κ+ α )
.

Both of these expressions stay bounded in the limit κ → ∞, whereas at least C0 is divergent in
the case κ → 0. The behaviour of C1(α, κ) depends on our choice of the constant α ∈ (0, 1). In
the limit α = 1 we find C1(1, κ) ≡ 1, which would result in the tightest bound for the efficiency
index of the error estimate H(κ)(x,Q), that is available to us after our treatment of that quantity
in (3.46). Unfortunately, Ch is not defined for α = 1, whence it will be necessary to balance the
size of C0 against that of C1. Combining the above results we infer:

H(κ)(x,Q) ≤ 2
1 + κ

α+ κ

{

J(x) − inf
v∈Vψ

J(v)
}

+
C1(α, κ)

κ
|x− x0 |2Ω,1 + (1 + κ) inf

τ∈Q
C0(α, κ, σκ̂, τ) .

The solution of the perturbed obstacle problem, we have discussed in section 2.2.8, is but of
reduced regularity just as the solution of the original problem (2.12). In consequence, we find
σκ̂ ∈ Hs(Ω,Rn) with s < 1.5 and therefore our options in minimising the quantity C0 are limited.
The best approximation results possible are already obtained, if we employ a product ansatz of
the form Q = (P 1

c (Mh))
n or alternative use BDM-elements of lowest order: Q = B1

c (Mh). In
both cases there will be constants C,C ′ > 0 which will only depend on the data of the obstacle
problem and not on κ̂, such that the following estimate holds:

inf
τ∈Q

C0(α, κ, σκ̂, τ) ≤ h2s−2
{ 1 + κ

κ (1 − α)
C h2 +

1

α
C ′

}

. (3.47)

More accurate results can only be obtained with the help of local mesh refinements concentrated
in a neighbourhood around the boundary of the coincidence set. We may infer from (3.47), that
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we can choose the parameter α as large as 1 − a h2 for some fixed scaling factor a > 0 without
our impairing the asymptotic order of the resulting upper bound. We conclude:

Proposition 3.12 If Ω ⊂ R
n is a domain with a sufficiently smooth boundary or alternatively

convex, f ∈W 1,1(Ω)∩L∞(Ω) and ψ ∈ H3(Ω), such that the solution x0 of the obstacle problem is
contained in W 2,∞(Ω), a finite element approximation scheme based on BDM-elements of lowest
order or alternatively a product ansatz of the form Q = (P 1

c (Mh))
n yields for every admissible,

bounded and sufficiently regular function x ∈ Vψ ∩W 1,1(Ω) ∩ L∞(Ω) a generalised hypercycle
estimate H(κ)(x,Q), that can be controlled for any ε ∈ (0, 1) and any κ ≥ κo > 0 by:

H(κ)(x,Q) ≤ (2 + O(h2)) (J(x) − J(x0)) +
1 + O(h2)

κ
|x− x0 |2Ω,1 + (1 + κ)C h1−ε .

The constant C > 0 depends on the data of the obstacle problem, on the approximate solution
x ∈ Vψ and on the choice of ε and κo, but not on the parameter κ itself.

Proof The proof has been developed in the course of this subsection. �

We find the above approach slightly unsatisfactory in dealing with Raviart-Thomas elements
of lowest order, since the approximation result (3.47) does not apply to them. When we construct
a dual parameter σ contained in the trial space Q := R0

c(Mh), we must replace it by:

inf
τ∈Q

C0(α, κ, σκ̂, τ) ≤
{ 1 + κ

κ (1 − α)
C h2 +

1

α
C ′ h2s−2

}

. (3.48)

Consequently, we can merely choose the parameter α as large as 1−a h without our affecting the
asymptotic behaviour of the expression C0. The resulting upper bound on the hypercycle estimate
H(κ)(x,Q) is of the same form as the one presented in proposition 3.12. However, the asymptotic
order of the first two perturbation terms is dropped by one. As these terms can no longer be
ignored when compared against the last contribution, which stems from the approximation of
the divergence ∇· σκ̂ ∈ Hs−1(Ω), the proposition 3.12 would suggest a global refinement of the
mesh, on which the parameter σ is computed, in order to raise the efficiency of the error bound.
A slightly different result can be obtained, if we replace (3.46) by the following estimate:

H(κ)(x,Q) ≤ 1 + κ

κ

{

(1 + κ) ‖σ − σκ̂ ‖2
Ω

+
1 + κ

κ
‖∇x− σκ̂ ‖2

Ω

}

+ M (κ)

Θ (x, σ)

≤ (1 + κ)2

κ
‖σ − σκ̂ ‖2

Ω
+

( 4 − 3α+ κ )2

( 1 + κ )2

( (1 + κ)2

κ2
− 1

)

|x− x0 |2Ω,1

+ 2
1 + κ

α+ κ

(

J(x) − inf
w∈Vψ

J(w)
)

+
1 + κ

α λ2
0

‖∇· σκ̂ − ∇· σ ‖2

Ω
.

In the limit α→ 1 all the constants involved in the above estimate stay bounded. Moreover, we
find σκ̂ → ∇x0, while κ̂ tends to ∞. Therefore, an approximation result similar to (3.48) holds
except for the fact, that the scaling factors are now independent of the parameter α. We claim:

Proposition 3.13 We assume, the data of obstacle problem satisfies the regularity assumptions
formulated in proposition 3.12. If we choose Q := R0

c(Mh), we can bound the hypercycle estimate
H(κ)(x,Q) for any ε ∈ (0, 1) and any equilibration parameter κ ≥ κo > 0 by:

H(κ)(x,Q) ≤ 2
( 1 + κ )2

κ2

(

J(x) − J(x0)
)

+ (1 + κ) C h1−ε .

The generic constant C > 0 depends on the data of obstacle problem, on the function x ∈ Vψ
and on the choice of ε and κo, but not on the parameter κ itself.

Proof The above result is an easy consequence of the proposition 2.2 in the limit α→ 1. �



Chapter 4

On the Evaluation of Duality Error Majorants and

related Computational Issues

The previous chapters have served to establish a theory for a posteriori error computions which
may be applied to a wide class of uniformly convex variational problems. The theory has been
applied to some generic test problems and various issues which are connected to the discretisation
both of the primal and of the dual formulation have been addressed. However, the success of a
numerical technique is more often secured by slight technical advantages than by the most solid
or profound theoretical foundation. Hence, we deem it necessary to supply some information
on how we have implemented our numerical technology. Clearly, we cannot produce a manual
for the finite element package we have developed as a prerequisite for our research: Due to the
complexity of the software any ambition to furnish a technical reference must be futile. To effect a
compromise we have written an appendix in which we describe the grammar of the finite element
compiler. Anyone with a modicum of programming experience should be able to understand the
library’s interface and write finite element scripts once he has consulted the library’s source code
and said appendix. We may relate, however, how we have solved certain technical problems which
may be seen pivotal to the succes of the numerical technology as a whole. As a matter of course,
we do not represent that our solutions are the very best human ingenuity can possibly devise:
We simply hope to demonstrate by our expositions that the numerical technology necessary to
use a posteriori error estimators based on duality arguments is managable indeed.

4.1 General Remarks on Mesh Handling

The computation of a posteriori error estimates for the numerical solution of a partial differential
equation is a sensible undertaking only if we can exploit our information about the approximation
error either to increase the accuracy of our numerical results or to reduce the numerical complexity
of the discrete problem. If we were limited to carrying out our calculations on regular grids, we
could use a priori estimates to determine the optimal mesh width in advance. Hence, the empirical
study of a posteriori estimates basically requires a finite element technology, that is capable of
managing unstructured, locally refined meshes and of changing the mesh topology in accordance
with the data of the a posteriori error estimator. The handling of locally refined meshes poses
a number of difficulties, that are alien to finite element implementations that work only on
structured or block structured meshes. In the following we will address some of the technical
issues we have been forced to resolve in order to facilitate dynamic mesh adaption: We will
review the data structures we have implemented and discuss algorithms for mesh refinement as
well as coarsening. Since our approach to local mesh adaption relies on the concept of hierarchical
meshes we must provide either special refinement or special discretisation schemes to interface
such domains of the mesh which feature a higher level of refinement with those domains which do
not. In the last paragraph of this section we will touch on possible solutions, including auxiliary
refinement patterns. A detailed account of the algorithm we have employed in our finite element
package to control auxiliary mesh refinements shall be deferred to section 4.2.4.

4.1.1 Technical Prerequisites for Adaptive Mesh Refinement

As we have seen in paragraph 3.1.2 we can exert some control over the accuracy of the finite
element solution to some variational problem by changing the vertex density of our mesh. There
are a number of tools which can generate meshes in such a fashion, that a prescribed density is met.
Hence, a viable approach to a posteriori error estimation and adaptive grid generation consists in
employing a suitable tool to generate some mesh, producing a numerical solution on that mesh,
computing an improved vertex density with the aid of an a posteriori error estimator and in finally
generating a new mesh. The above cycle may be repeated several times, until a satisfactory result
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is found. However, since the meshes can be completely unrelated apart from the possibility that
newer meshes may contain all the vertices already present in the older ones, the above approach
has some serious drawbacks: The numerical data from the most recent computation has to be
inserted into the new mesh, before it can provide e. g. starting values for a fixed point iteration.
More sophisticated algorithms for the solution of the discretised variational problems, as they
will be discussed in section 4.3, require hierarchies of meshes. As such hierarchies are usually
not available, if an external tool has been employed for the mesh generation, they have to be
created in an artificial manner, for instance by successive agglomeration of neighbouring elements
(see e. g. [87] for details on such a procedure). Neither of these drawbacks is unsurmountable:
However, the technical effort necessary to overcome them may become prohibitively expensive.

One possible alternative to the usage of density driven meshing procedures consists in the
utilisation of hierarchical meshes. Such meshes sacrifice some flexibility in the layout of their
topology but allow for a much improved handling of dynamically adapted mesh refinements.
The basic idea behind hierarchical meshes consists in effecting the local grid refinement by the
subdivision of single elements in a premeditated pattern, such that the resulting sequence of
elements can be represented in a tree structure. Any ”visible” element within the mesh belongs
either to the primary grid, as it has been generated by some external tool, or has emerged in
the process of grid refinement from exactly one other element, which has become ”invisible” in
the procedure. Speaking in terms of trees, we may assign to an element a root and a number of
leaves: The root designates the very element, whence our current element has originated, while
the leaves correspond to those elements which have emerged from our element by a subdivision.
To help us fix our ideas we may envisage the mesh as a pile of bricks, such that the refined
elements or bricks are buried beneath layers of smaller bricks which have emerged in the process
of mesh refinement (as illustrated in the figure 4.1). With each element in the mesh we may
associate a refinement level which designates its distance to the bottom of the pile respectively
the number of edges we must traverse to reach the head of the tree.

Figure 4.1: Hierarchical mesh refinement

Layer 1

Layer 3

Layer 2

Bottom Layer

Level Gap

Not all of the elements within the pile will be visited when we assemble the discrete variational
problems: Only those visible from atop the pile will be accessed. Still we may not discard the
invisible elements if the want to maintain the option of employing multilevel schemes to solve
the discrete variational formulation. One possibility of supplying the hierarchy of meshes such
schemes need consists in assembling the discrete problems on all those elements, which have
become visible, after we have abraded a certain number of refinement levels from the top of the
pile. By removing complete layers from the pile of elements one at a time we can construct the
required hierarchy of discrete problems in one pass. The figure 4.2 indicates which elements are
involved in such a procedure: to facilitate the assembly we obviously need to traverse the mesh
in a horizontal fashion. In principle, we can implement a function that loops through all these
elements using only the information from the tree structure and two auxiliary arrays, one of
which contains pointers to all the head elements in the bottom layer, while the others serves as
a stack. However, it is much simpler to store element handles in dedicated arrays level by level
or to sort the elements in one large array as shown in figure 4.3.

Using such an approach we arrange the mesh data simultaneously in a vertical and a horizontal
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Figure 4.2: Assembly of finite element matrices
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fashion. For technical reasons that will become apparent in the following two subsections, we
need to furnish the mesh with yet another data structure: Let us equip each finite element with
an array, which holds pointers to any neighbouring elements sharing the same refinement level. In
case, certain such elements are nonexistent, a NULL pointer may be used instead. In consequence,
the topology of each layer of the mesh is mapped onto a graph whose nodes are the finite elements
and whose edges are represented by said pointers. In fact, each graph can be identified with the
so called Voronoi diagram of its associated refinement level.

Figure 4.3: Storage layout for a hierarchical mesh
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Since we are unable to warrant, that all finite elements in a mesh have the same number
of neighbours, the same number of vertices and the same number of leaves, once they have
been subjected to some refinement procedure, the above mentioned data structures need to be
allocated dynamically. However, the allocation of storage on the heap requires a certain amount
of additional space to be used by the operating system for accounting purposes. If large meshes
must be manipulated, it therefore can prove more efficient in terms of memory consumption to
implement a system of larger buffers which hold the usually short arrays of handles the elements
are equipped with. Such a system will feature custom functions to handle the garbage collection.

Besides the topological data we have already described we need to store some additional
information in each element: We will have to discriminate finite elements according to their type
and to their location within the mesh. The former requirement is necessary to allocate dynamic
memory appropriately. The latter requirement is necessary for example to distinguish various
boundary conditions. In figure 4.4 the additional information has been moved into a base class
termed ”ElementParameter”. Apart from a pointer to some data structure, which holds all the
information, elements of the same type can share, said class must contain at least one material
parameter, which can be assigned at will, an index, which the position of the element within the
hierarchy of layers is referenced by (see figure 4.3), and a bit field to reflect the internal state of
the element. With a view to reducing the memory footprint of the finite element software, the
inclusion of an index is arguable. However, an index facilitates the easy removal of stale element
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Figure 4.4: Possible definition of the class ”FemElement”
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handles from the level hierarchy. The expenditure of a bit field per element will be explained
more fully in the sections 4.2.2 and 4.2.4.

4.1.2 On an algorithm for dynamic mesh refinement

The hierarchical refinement of some finite element can proceed in quite a number of ways. Since
we need to control certain geometric properties of the emerging elements in order to ensure, that
the approximation properties of the finite element interpolation do not deteriorate (see section
3.1.2), the most convenient refinement strategy consists in splitting the elements to be refined
into a number of self-similar shapes. In this process we have to create a certain number of new
vertices, while others may be available due to neighbouring elements, which have already been
split. If the vertices are contained in the interior of the root element the assignment of vertex
data and topological information is trivial and may be defined for example in a configuration file,
as only such elements are involved, which are created in the same instance. Those vertices which
are located on the interfaces of the root element are more difficult to deal with.

Figure 4.5: Regular refinement of an isoparametric P2-element

New vertices

External nodes

Old vertices

External interfaces

Internal interfaces

Refinement

If one of the neighbouring element has been split previously, the vertices on all of the common
interface must be identified and pointers to these vertices registered with the newly formed leaf
elements. If there are no adjacent elements on the same refinement level, new vertices have to
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be allocated. The topological information has to be updated accordingly. However, for technical
reasons we will address in section 4.1.3 we cannot view the process of mesh refinement as a
purely local manipulation: Adjacent elements must never have refinement levels that differ by
more than one level. In figure 4.1 a violation of the above condition is depicted, termed ”level
gap”. Consequently, the splitting of a single element may be preceded by an avalanche of element
refinements taking place on lower layers.

Figure 4.6: Outline of refinement algorithm
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The figure 4.6 is meant to summarise the ideas we have presented so far. Though the notation
bears a slight resemblance with the programming language C, the figure is not intended to provide
actual code. Implicitly, we have introduced a number of data structures, which have not yet been
commented on. However, it should be obvious by our nomenclature what purposes these data
structures serve. They contain basically a number of index tables, that encode all the necessary
topological information. The tables are initialised prior to the manipulation of any grids with
the help of a parser, whose grammar is detailed in the appendix A.

Remark 4.1 In principle it is possible to deploy the refinement algorithm we have outlined in
figure 4.6 every time a local mesh adaption has been found expedient. As the refinement can
affect larger areas of the mesh we must eventually discard some part of the algebraic data already
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assembled on the unrefined mesh and recompute the missing data on the newly created elements,
whenever the refinement routine has been called. Such a procedure requires a close interaction
between the application specific code to be supplied by a user and the mesh handling routines
as they are collected in the finite element library. Hence, its implementation would conflict
with a clean design of the libraries high-level interface. A further complication lies in the fact,
that the refinement procedure is usually controlled by assessing the numerical solution on an
element by element basis. Therefore, the numerical solution should be updated, any time the
discretisation changes. However, the computational effort necessary for such continuous updates
may be substantial or even prohibitive, depending on the underlying variational problem. In
consequence, it seems most apposite to only mark those elements which need to be refined and
defer the actual mesh update until all elements have been inspected. The elements may either
be tagged, using their internal bit field for that purpose, or stored in a dedicated list.

4.1.3 On the removal of elements from a mesh

While we can split any visible element in a mesh regardless of its adjoining elements, we may
not simply remove a cluster of elements who happen to be leaves of the same element and put
that common root in their place. With a view to avoiding level gaps we have to make sure, the
replaced elements are surrounded by elements of at most the same refinement level only.

Figure 4.7: Cascaded removal of leaf elements
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Though the removal of leaf elements is a purely local procedure, the necessity of monitoring
the neighbourhood for possible level gaps prevents us from treating all the elements to be removed
independently of each other. Specifically, we must account for the contingency, that elements
of a higher refinement level prevent the coarsening of the mesh, which are themselves scheduled
for removal. A simple possibility of avoiding unnecessary obstructions consists in queuing those
elements, whose leaves have been marked for deletion, and updating the mesh subsequently in
one pass. Thereby, we start with those elements, whose refinement level is the highest, and
proceed to elements with lower refinement levels in a layer by layer fashion. In this cascaded
procedure we have two options how we want to deal with clusters of marked elements: After we
have successfully removed the leaf elements we can tag their root to indicate, that it is eligible
for removal as well, once the next lower mesh layer will be processed. Alternatively, we may
desist from propagating the tag. Employing the first strategy we can ensure, that extensive
areas of the mesh containing elements with various levels of refinement can be subjected to the
mesh coarsening at once. There is a serious drawback however: If we tag the top layer of the
mesh, merely the bottom layer will remain after a mesh update. Since such a behaviour is in
stark contrast to the performance of the refinement algorithm as outlined in figure 4.6, which
can never add more than one refinement level to the mesh at a time, we prefer the second, more
conservative strategy. By disabling the propagation of the tag we ensure, that no more than one
refinement level can be removed at once. We can no longer warrant, on the other hand, that the
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majority of the elements we have marked for deletion will be actually removed in a mesh update.
The situation is illustrated in figure 4.7.

Figure 4.8: Outline of mesh coarsening algorithm
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To schedule elements for removal the following procedure may be adopted: For each layer of
the mesh a separate list of element handles is maintained. One bit of each element’s internal bit
field is assigned to indicating, if the element or one of its leaves is going to be deleted from the
mesh. Every time a top layer element is marked for removal, this tag is set. If the root element
hasn’t been tagged before, it is also marked for removal. In addition, a pointer to the root
element is appended to the proper list as indicated by the level index of the root element. Thus,
the storage of duplicate handles is prevented. Eventually, the mesh update is invoked and all
elements marked for refinement are split. Thereafter, the lists of element pointers are traversed
in turn starting with the top layer. For each element in these lists the algorithm described in
figure 4.8 is deployed. Their tags and those of their leaves are cleared, as far as they have been
accessory to the mesh adaption.

4.1.4 On the use of auxiliary refinement schemes

The generation of locally adapted meshes with the help of hierarchical refinement techniques has
been discussed in some depth in the two preceding subsections. We have outlined an algorithm,
by which we can introduce new elements of smaller size into a given mesh, and have discussed a
method to agglomerate a cluster of elements and to replace them with their common root. Our
deliberations have been confined, however, on the geometrical aspects of the adaption procedures.
Once the mesh has been generated, the degrees of freedom must be identified, by which the
numerical solution of our variational problem will be described. In 3.1.1 we have outlined the
general principles which the representation of the numerical solution revolves around: In order to
supply globally defined ansatz spaces the local degrees of freedom are to be coupled by algebraic
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constraints of the form (3.3). If we employ a conforming discretisation scheme of Lagrange type on
a regular mesh, these algebraic constraints are usually of a very simple form with Bj

li ∈ {−1, 0, 1}.
Consequently, one portion of the linear factors can be eliminated in favour of the remaining faction
in a transparent fashion. We may argue, that we compute a Schur complement in assembling the
algebraic formulation of our variational problem, even though the supernumerary local degrees
of freedom are suppressed entirely.

The situation is changed fundamentally, when we introduce local mesh adjustments. Since the
mesh width can now change from one element to an adjoining element, the algebraic constraints
(3.3) are no longer that simplistic as they may present themselves in the case of uniformly refined
meshes. Basically, we have three options how to treat those regions which interface elements of a
different refinement level: We can compute a Schur complement just as we would have done for a
uniformly refined mesh. While such a computation would require merely a proper assignment of
indices to the local degrees of freedom in the case of an uniformly refined mesh, we must actually
carry out a static condensation to eliminate certain linear factors from the algebraic problem,
if the mesh refinement is nonuniform. The set of algebraic constraints is thereby enriched by
additional conditions either to ensure a certain regularity of the global shape functions or to
warrant certain approximation properties of these shape functions on the element faces. The
second option consists in employing a hybrid discretisation scheme: for we can match elements of
different refinement level without deteriorating the global approximation properties of the ansatz,
if we choose the Lagrange multipliers on the elements interfaces judiciously. Depending on our
choice of these multipliers the hybrid method may be equivalent to the first approach. As a
third option we may avoid interfacing elements of different refinement level altogether. We can
achieve this goal with the help of auxiliary refinement patterns, which we deploy in addition to
the regular mesh refinement in compliance with the geometrical properties of the mesh.

Figure 4.9: P2 Macro-elements versus auxiliary refinements
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Macro element

Auxiliary refinement

Hanging nodes

Regular degrees of freedom

Pursuing the first option we are faced in almost all cases with the necessity of eliminating
superfluous degrees of freedom related to those element interfaces which join elements of different
refinement level. As the most popular finite elements of Lagrange type allow to identify their
degrees of freedom with the vertices of the mesh, these supernumerary degrees of freedom are
usually referred to as hanging nodes . The transparent treatment of elements that feature hanging
nodes is not entirely trivial. One possibility consists in the implementation of a filter, that enforces
the algebraic constraints (3.3) after every matrix vector multiplication. Once such a filter is in
effect, we can assemble local problems for each element of the mesh without regard for of any
hanging nodes. The simplicity of the approach is counterbalanced by a severe drawback, however:
Since the assembly of a global problem is impossible, sophisticated numerical techniques cannot
be applied to solve the algebraic formulation. Alternatively, we may introduce special macro
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elements as indicated in figure 4.9. These elements have a variable number of degrees of freedom
and feature special shape functions to account for any requirements to be imposed on the global
ansatz. Cubature formulae may be obtained by applying an ordinary cubature scheme to each
of the constitutive leaf elements.

Figure 4.10: Auxiliary refinement patterns for the Q1 element

As long as we employ parametric elements only, the construction of suitable macro elements
can be done on the reference patch. The bulk of the data involved in the element setup can be
calculated beforehand and retrieved from tables when necessary. Thus, we can ensure that the
computational overhead of creating element macros stays within reasonable limits. A number of
important finite element discretisations, for instance, those based on elements of Raviart-Thomas
type (see [122] for a description), do not lend themselves to such a treatment, however. A minor
drawback of using macro-elements lies in the necessity of querying both the degrees of freedom
and the number of cubature nodes, before a local problem can be assembled: due to the ever
changing nature of the elements and their properties no preconcerted shortcuts can be exploited
safely to accelerate the assemblage of the discrete variational formulation.

Hence, the only possibility of providing a finite element library with a consistent and safe
application interface consists in implementing auxiliary refinement patterns, that ”catch” the
hanging nodes. Such refinements are applied after the regular mesh transformations have been
carried out, as they have been discussed in the previous paragraphs. Conversely, before the
regular mesh adaption can take place, the special refinement patterns must be removed. Both
the installation and the removal of the auxiliary refinements can be done basically in the same
manner we have described in the figures 4.6 and 4.8.

However, depending on the nature of the hierarchical refinement it can be difficult to supply
suitable refinement patterns for all geometrical configurations possible. In such situations the
incriminated element may be split in a conventional way. Alternatively, elements of a different
type may be employed, which fit into the configuration. For instance, Courant triangles may be
used in auxiliary refinement patterns for the rectangular finite element with continuous, piecewise
bilinear shape functions, usually referred to as Q1 element. When missing auxiliary patterns are
replaced by standard refinements, the mesh width may shrink in an area, that is somewhat larger
than intended. Since the standard refinement is permanent, this could pose a problem in some
situations. One possibility of avoiding avalanche effects consists in the use of more complex
hierarchical refinement schemes, which can cover a broader range of geometrical configurations.
In figure 4.10 some examples are sketched.
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4.2 Merging and matching of meshes

In the previous paragraphs we have focused on the technical prerequisites for dynamic mesh
adaption. In the following we shall enlarge on an application of locally refined meshes, which is
not as obvious as the control of some approximation error by judicious mesh transformations:
we will discuss a method of merging two meshes, such that the resulting mesh can be used to
construct an ansatz, which contains both of the original trial spaces. By merging two meshes we
will understand the construction of a mesh, whose geometrical complexity is minimal, while it
still contains all the vertices and all the edges, that are present in both of the original meshes.
A merging algorithm of that description is useful, whenever data that has been obtained on one
mesh needs to be transferred onto another mesh. Since we may also employ shape functions
of different make on the original meshes, their joint ”super-mesh” can further be deployed to
calculate expressions, that involve numerical approximations obtained by distinct finite element
schemes. Especially, we can exploit the technology to evaluate those duality based a posteriori
error estimates, we have discussed in section 3.3.

In the first paragraph of this section we will digress on a technical device that proves useful,
whenever certain entities of one or more meshes must be correlated: the definition of artificial
order relations which enable us to solve the matching problem by a standard sorting procedure.
The next paragraph will also cover a somewhat subsidiary problem: how to keep track of auxiliary
refinement patterns that have been removed in the process of subsequent mesh refinements. Both
of these problems must be addressed in order to keep the numerical complexity of the grid merge
within acceptable limits. In the third paragraph we will present the merging algorithm, we have
actually implemented in our finite element library. The selection of proper refinement patterns,
which concludes the construction of the compounded mesh, will be outlined in section 4.2.4.

4.2.1 Identifying mesh entities by Sorting

The basic idea underlying the merging algorithm, we will examine in the next but one section,
consists in establishing a one to one correspondence between those elements, which constitute
the bottom layer of the one mesh, and those elements, which form the bottom layer of the other
mesh. Once such a mutual relationship has been established, each element in either of the meshes
can be uniquely identified by the path, along which we must traverse the level hierarchy in order
to reach the bottom layer, and the very element within the bottom layer, that is the endpoint
of said path. The matching of two elements which belong to distinct meshes may now proceed
in the following fashion: Starting from one element a path reaching towards the bottom layer of
the mesh is constructed. On each refinement level, the index of the recently visited leaf element
is pushed on a stack, such that the path can be retraced. When the bottom layer is reached, the
corresponding elements in the respective meshes exchange their roles and the path is backtracked.

The above procedure can only work, if both meshes are obtained by hierarchical refinement
and if their respective bottom layers share the same geometry. However, as these meshes must
resolve the same computational domain, neither of the above assumptions is unduly restrictive.
To substantiate our notions, let us suppose that both the mesh for the primal formulation of some
variational problem and the mesh for its dual formulation have been derived from the very same
topological data provided by some external mesh generator. Unfortunately, we may not infer from
this plausible premise, that our two meshes will store the element information for the bottom
layer in exactly the same layout. Hence, we need to rearrange the data of each bottom layer in an
unique way, which is based on the geometrical properties of their respective elements alone. The
naive approach to establishing the correspondence between the elements of both layers consists
in comparing each element in one layer against each element in the other layer. The numerical
complexity of such a procedure is given by N 2, if N denotes the number of elements in each
bottom layer. Since the bottom layers may already contain a substantial number of elements, we
clearly need to find more sophisticated algorithms to organise the data.

One approach to rearranging the elements according to certain geometrical criteria relies on
the definition of an order relation on the set of all elements which constitute the mesh. Obviously,
such an order relation must be total. Preliminary to the construction of the order relation let us
introduce a relation, which compares vectors from the space R

n:

{x, xn−1} ≺ {y, yn−1} :⇐⇒ x < y ∨ ( x = y ∧ xn−1 ≺ yn−1 ) . (4.1)
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In the case n = 1 the second condition is void. When neither x ≺ y nor y ≺ x hold for two
vectors x, y ∈ R

m, we find that x equals y. If we want to compare two parametric elements
A,B ∈ Mh, the above relation may be applied for instance to their centres of gravity. With a
view to definition 3.1 we can describe the geometry of these elements by specifying the set of
points {a1, . . . aK} ⊂ R

n respectively {b1, . . . bK} ⊂ R
n which define the transformation (3.7).

Hence, one possible order relation can be introduced by:

A ≺ B :⇐⇒
K

∑

k=1

ak ≺
K

∑

k=1

bk . (4.2)

The advantage of using the order relation (4.2) lies in its definition being independent of the
particular sequence, in which the nodes {a1, . . . aK} and {b1, . . . bK} are arranged. There is
a drawback with the above solution, however. The centre of gravity need not necessarily be
contained within the element, if we allow for elements of lower dimension to represent interfaces.
In applications which contain curved element boundaries the above order relation may therefore
cause ambiguities we would have to detect and resolve in a post-process.

Alternatively, we may collect the components of the vertices {a1, . . . aK} and {b1, . . . bK} in
two larger vectors a, b ∈ R

K×n and eventually compare these. Since such vectors depend on
the enumeration of the vertices as well as on their coordinates, let us introduce a permutation
π : {1, . . . K} 7−→ {1, . . . K} with the property aπ(i) ≺ aπ(i+1) and define:

a : =
{

a(1)

π(1), . . . a
(n)

π(1), a
(1)

π(2), . . . a
(n)

π(2), . . . a
(1)

π(K), . . . a
(n)

π(K)

}

.

The vector b is constructed in an analogous fashion. Since there are no elements with collapsed
nodes in a regular mesh, the permutation π is well defined. The vectors a and b uniquely describe
their respective elements: the identity a = b implies that A and B are spanned by the very same
vertices. We infer, that we may replace the relation (4.2) by:

A ≺ B :⇐⇒ a ≺ b . (4.3)

With a view to the geometrical properties of the mesh we have to decide which of the order
relations (4.2) or (4.3) we want to use. If the element mappings (3.7) are affine, the former relation
should clearly be preferred, as it is much simpler to implement and faster to evaluate. The latter
relation may be the superior choice, if we must handle complex geometries and distorted elements.
However, if the meshes feature strong local refinements a straightforward implementation of (4.1)
may fail to properly identify corresponding elements regardless which of the discussed relations
we employ. Such a failure would be due to rounding errors, which have caused a slight shift of
the vertex coordinates. A solution consists in the following modification to (4.1):

{x, xn−1} ≺
ε

{y, yn−1} :⇐⇒ x < y − ε ∨ ( x < y + ε ∧ xn−1 ≺
ε
yn−1 )

whereby ε > 0 denotes a sufficiently small parameter. In effect, cubes with a volume of about εn

are substituted for the points we have considered above. If neither x ≺
ε
y nor y ≺

ε
x holds, we

can therefore no longer conclude x = y. Instead, we infer from the above definition ‖x−y‖
∞
< 2 ε.

Naturally, our choice of the parameter ε must depend on the local mesh size and may vary from
one region of the computational domain to another.

Remark 4.2 Once a suitable order relation on the set of those mesh entities has been defined,
which we want to correlate with their counterparts from a second mesh, we can apply basically any
sorting algorithm to both data sets. Afterwards, corresponding mesh entities can be identified by
traversing both sets simultaneously. Clearly, the numerical complexity of the sorting algorithm
should be as low as possible: however, the performance of such algorithms is usually determined
under certain assumptions on the distribution of the keys we want to sort. For instance, we
may not use the famous Quick Sort algorithm [84,90] despite its average numerical complexity of
O(N), as the complexity deteriorates to O(N 2) on ordered sets. If the data must be rearranged
in situ, the Heap Sort algorithm [90, 130] is a good choice, since its average and its worst case
complexity are the same: O(N logN). If a link field is available or must be allocated in any
case to prevent excessive data movement, the Merge Sort algorithm [90] is even superior, as
it requires significantly less comparisons than the heap sort procedure. A particularly elegant
implementation of this latter algorithm can be found in [38].
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Remark 4.3 The above deliberations have focused on the identification of elements by sorting
them in accordance with geometrical criteria to be met by their vertices. However, the concepts
we have presented may also be employed in identifying the global degrees of freedom which are
associated with an ansatz V. To this end we must define an order relation on the set S of local
degrees of freedom. If the finite elements are of Lagrange type, each functional σ ∈ S corresponds
to an unique point x ∈ Ω of the computational domain. Hence, we can easily define the required
order relation defining by comparing the corresponding points:

σ ≺ σ̂ :⇐⇒ x ≺
ε
x̂ .

If the finite elements are of a different kind, we are usually still able to associate some geometrical
data with a functional σ ∈ S if we supplement this information with a key. To give an example:
We associate the first moment of the normal flux, which serves as a local degree of freedom for
the Raviart-Thomas element [122], with the middle point of the edge, across which we want to
approximate the flux. In addition, we assign the key ”0” to this degree of freedom. Any moments
of higher order we associate with the very same coordinates. However, these moments receive
keys consecutively numbered. The key may be treated like an additional coordinate axis such
that the recursive definition 4.1 can be applied.

4.2.2 Management of auxiliary Refinement Patterns

In the following we will assume, that we have generated with the help of some hierarchical
refinement procedure two meshes M

(1)

h′ and M
(2)

h′′ that share the same bottom layer. Our aim is
the construction of a new mesh Mh containing all the edges and all the vertices that are present
either in M

(1)

h′ or M
(2)

h′′ . Since both of our meshes may be locally refined, we must account hereby
not only for the regular refinement patterns, but for the auxiliary patterns as well.

Figure 4.11: Refinement patterns for triangular elements

Red Refinement

State 0

(Default)

Green 1

State 1

Green 2

State 2

Green 3

State 3

Brown 2

State 5

Brown 1

State 4

Brown 3

State 6

Yellow 2

State 8

Yellow 1

State 7

Black Refinement

State 10

Yellow 3

State 9

The treatment of any conventionally refined elements is simple, since all regular subdivisions
are of a permanent nature: as far as only they are concerned, the topology of the joint mesh Mh

can be recovered directly from the tree structure of both M
(1)

h′ and M
(2)

h′′ . In figure 4.14 we outline
our implementation of a depth first strategy to augment the bulk of a mesh, which consists of
regularly refined elements, with those elements constituting the bulk of a second mesh. The
resulting mesh contains all the vertices and all the edges, that would be present in either of both
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meshes, if we ignored special refinement patterns. Let us suppose, the method PrepareMerge

is called for the mesh M
(1)

h′ while M
(2)

h′′ is the first argument of the parameter list. The second
argument is a handle for some sort of hash table, which encodes the correlation between the
elements in the bottom layer of M

(1)

h′ and those elements in the bottom layer of M
(2)

h′′ . We compile
this table externally, since it will also be used in the merging algorithm itself. We note, that any
auxiliary refinement patterns, which may be present on the surface, so to speak, of the mesh M

(1)

h′

are removed, before any new elements are created. In the process, additional edges and perhaps
even vertices may be lost, that must be restored when the special refinement patterns are placed
on the ”surface” of the joint mesh Mh.

Figure 4.12: Propagation of Refinement States
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We conclude, that we must preserve the information about the auxiliary refinement patterns,
even though these patterns themselves are cleared away. The simplest possibility of storing the
information consists in assigning to each element a certain state, if an auxiliary refinement pattern
on top of it has been removed. To hold said state the bit field is employed, with which we have
equipped each element (see section 4.1.1). Subsequently, more and more elements are added
to the mesh M

(1)

h′ , until its bulk is a superset of those elements, which constitute the bulk of
M

(2)

h′′ . Whenever elements are refined in a regular fashion, whose state engine signals the former
presence of additional edges, the information must be distributed among the newly created leaf
elements. Depending on the auxiliary refinement pattern, which has been removed, the leaves
will be affected in different ways. Hence, we may not simply propagate the internal state of the
root element to its children. In figure 4.11 all the refinement pattern are depicted, which we
must employ in the construction of the new mesh Mh. To simplify the referencing, we have given
names to these patterns: The denominations ”red” and ”green” are widely known and need not
be explained. The ”brown” patterns may be used, whenever an element with a nonzero state
has to be split in order to avoid hanging nodes on one of its interfaces. If several meshes must
be merged, we have to account for brown patterns as well as for green ones. In situations like
that, the ”yellow” patterns and the ”black” one can be employed to recover any edges and nodes,
which stem from brown refinements discarded in the very first step of the method PrepareMerge.

In figure 4.12 we give two examples, how the refinement state of an element is propagated to
its leaves when the element is split in a regular fashion. Between themselves, the three green,
the three brown and the three yellow refinement patterns do not really differ from a geometrical
point of view. We have introduced them nevertheless to encode not only the general form of
the refinement but also its alignment with respect to the edges of the root element. Thus, the
orientation of any special refinement pattern to be arranged on the surface of Mh can be inferred
immediately from the state engine of the corresponding root element.

Figure 4.13 illustrates how state transitions are specified in our finite element description
language. As the grammar of this language is detailed in the appendix A let us give but a
few remarks on the information provided in the two examples. Assuming some finite element is
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Figure 4.13: Extracts from element description files
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about to be split according to the refinement scheme ”red”, four leaf elements will be generated.
Their state will depend on the present state of their future root element. Each line of the two
tables in figure 4.13 corresponds to a possible state of the future root element. The number
in brackets refers to the state of the mesh and allows the implementation of several refinement
strategies which we switch between by changing the mesh state. In our two examples only the
default state is used. Following a field separator there is the colon separated list of states which
the leaves must assume. Each list is terminated by another field separator and a last number.
This number designates the very state, the root element must assume, once its leaves have been
removed again. As the green refinement has an auxiliary character, the leaf elements are cleared
away before the regular mesh refinement is carried out. Hence, the leaf elements themselves are
never refined. Accordingly, the state data for leaves, which is critical in the case of the regular
”red” scheme as depicted on the left, is irrelevant for the auxiliary ”green” scheme described on
the right hand side of figure 4.13. In our example, these states have been set to their default
value. When a regular refinement is reversed, the state of the former root element is not affected.
When an auxiliary refinement pattern is removed, however, the last number in each row provides
the very mechanism to keep track of those additional nodes and edges, that are destroyed when
the method FemGrid::RemoveAuxiliaryRefinement is invoked.

4.2.3 The Description of a Merging Algorithm

In the previous section we have discussed how auxiliary refinement patterns, that have been
removed prior to mesh refinements, can be recovered with the help of finite automata. Loosely
speaking, we can define suitable state transitions and thus invest each element in our mesh with a
memory for those edges and nodes we have removed along with the auxiliary refinement patterns.
Unfortunately, our device is not powerful enough to facilitate the merging of two locally refined
meshes: While one mesh M

(1)

h′ may feature a strong local mesh refinement around some point
x1 ∈ Ω of the computational domain, the other mesh M

(2)

h′′ may be locally refined around some
distant point x2 ∈ Ω. Let us assume, the second mesh is practically unrefined around x1 while
M

(1)

h′ is unrefined around the point x2. If we invoke the method outlined in figure 4.14 for the mesh
M

(1)

h′ and use the other mesh as the first argument in the parameter list, we will not encounter
significant difficulties in the immediate neighbourhood of the point x2. The information about
the auxiliary refinement we have removed from the top layer of M

(1)

h′ is correctly propagated to
the top layer of the joint mesh, as M

(2)

h′′ has a deeper hierarchy of levels around that point than
M

(1)

h′ . In a neighbourhood of the point x1 the roles of both meshes should be reversed. As that is
not possible, the state engines of all those elements which belong to the joint mesh and lie close
to the point x1, are not updated at all.
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Figure 4.14: Depth first construction of the mesh bulk
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We conclude, that we must still propagate any information about auxiliary refinements of
the mesh M

(2)

h′′ to the top layer of the joint mesh Mh even though we have already invoked the
routine presented in figure 4.14. The algorithm which updates the state engines must proceed
through four stages: i) Any auxiliary refinement pattern on the surface of the mesh M

(2)

h′′ must
be identified. ii) Once such a pattern has been detected, the counterpart of its supporting root
element in the joint mesh must be found. How this can be done, has already been described,
though briefly, in the beginning of section 4.2.1. iii) The proper refinement state of the newly
found ”root” in the joint mesh is determined. iv) Using a depth first strategy the state engines
of all the elements on top of this pivot are updated. Figure 4.15 describes the basic layout of our
implementation of the above procedure. To save space the second stage of the algorithm has been
subsumed under the denomination ”Section A”, while its third stage has been abbreviated by
”Section B”. The depth first strategy for updating the element states is summarised as ”Section
C”. In the following let us discuss these functional blocks separately.

Only those elements can form a part of a special refinement pattern, which are located on the
surface of the hierarchy of mesh layers as it is illustrated in figure 4.2. If we assume, the mesh
data is organised as depicted in figure 4.3 this implies, we only need to scan the visible elements of
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Figure 4.15: General outline of the mesh merging procedure
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the mesh G0, which are stored consecutively at the beginning of the element array. The bottom
layer cannot contain hanging nodes by construction, whence we may skip the very first elements
belonging to it. Within the loop over all the relevant elements the state of the associated root is
inquired into. If the presence of any special refinement pattern is detected by calling the method
FemElement::TestAuxiliaryRefinement, the corresponding element in the joint mesh has to
be found, a task delegated to section A. The refinement scheme of the root element is cached,
as it is required in section B to compute the proper state of the corresponding element in the
joint mesh as referenced by the handle EL. As the root is visited several times depending on the
number of its leaves, there is a certain amount of redundancy, which could be avoided, if the root
element were tagged on the successful completion of section C and elements thus marked were
skipped. For simplicity, such a test has not been implemented. However, checking whether the
state of the element EL is going to change at all serves the same purpose almost as efficiently.

In figure 4.16 both the implementation of section A and of section B are presented. Section A
consists of two parts: First a path from the element referenced by the handle ER to the bottom
layer of the mesh is established. Hereby, the handle EL serves as a cursor and keeps track of
our current location within the hierarchy of meshes, while the handle ER indicates, which of the
leaves we have previously visited. The leaf index is determined in the innermost loop and stored
in the array termed IndexStack. The variable n is used as a stack pointer. The second part of
section A is shown against a backdrop: Using the index stack that has been created in the first
part of the section, the path from the element ER towards the bottom layer is retraced. As the
starting point has been switched using the externally supplied reference table TransferTable we
can thus reach the very element, from which we must start updating the state engines. On the
completion of section A this pivot is referenced by the handle EL.

The implementation of the stage engine is straightforward. For each refinement scheme there
is a matrix of unsigned integers, which represent the states of the newly formed leaf elements.
Each row corresponds to a state, the element may have assumed, while each column corresponds
to one of the leaves. The current state of the element is matched against a vector StateKeyArray
of all those states, that lead to some state transition when the element is refined. In principle,
section B imitates the refinement of the pivot element using the refinement method indicated by
RootScheme. When the refinement pattern is removed, a state transition must be accounted for.
Thereby, a new key is read from a second array, termed RootStateOnRemoval. If no transition
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Figure 4.16: Preparing the update of the element states
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is defined, the old element state is propagated to the leaves. Should the key of the pivot remain
unchanged, section C is skipped. In this way, redundant state updates are prevented.

The modified state of the pivot is stored in the variable NewState. It is needed to compute
the key n employed in singling out the proper row in the state matrix, that is associated with
the refinement scheme of the element EL. The procedure has already been detailed, when section
B was discussed. A pointer to the selected row is cached in the variable LeafState. If no fitting
row can be found, the pointer keeps its default value NULL. In the following the leaves of the
element EL are enumerated. To each leaf, referenced by the handle ER, a new refinement state
is assigned. If the old and the new state coincide the rest of the loop is skipped and the next
leaf is considered. The same happens, if the element ER is unrefined and thence no further state
updates need to be propagated to higher level elements. In any other case both the current leaf
index and the pointer LeafState are pushed on stacks. The index and the pointer are set to their
respective defaults, while the cursor EL is updated, such that the algorithm can be restarted with
the element EL being replaced by its leaf ER. Once the number of leaves lmax is exhausted, the
old leaf index and the old vector of refinement states are recovered from their respective stacks.
The number of leaves and the state of the root are restored to the variables lmax respectively
OldState. Once the handle EL has been replaced by EL->Root, the iteration is resumed with the
leaf number l. If the stacks are empty, all elements on top of the pivot requiring an update of
their refinement state have been visited. The flow of control leaves section C.

4.2.4 On the Insertion of auxiliary Refinement Patterns

In the previous section we have discussed a technique to generate a mesh which will eventually
contain all the edges and nodes that are present in either of two given meshes. We have shown
how the bulk of the emerging joint mesh can be formed and how information about auxiliary
refinement patterns on the surface of one of these meshes can be propagated through the bulk of
the joint mesh. The final step in the generation of the joint mesh consists in placing new special
refinement patterns onto the surface of the joint mesh to ensure, that the resulting discretisation
is consistent. The main difficulty with this procedure lies in the fact, that we must not assume to
find a fitting refinement pattern for all of the geometrical constellation we may encounter. In the
following let us therefore assume, that we can always remedy the lack of a suitable refinement
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Figure 4.17: The last stage of the mesh merging procedure
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scheme by splitting the problematic elements in a conventional fashion, thus simplifying the
topology of the mesh. Basically all refinement strategies commonly used meet our requirement.

If we split those elements for which we cannot supply a special refinement pattern, our changes
to the topology of the mesh will affect all adjoining elements on the same refinement level but
one. Furthermore, additional elements may be created on lower mesh layers due to the recursive
nature of the splitting algorithm outlined in figure 4.6. All of these elements have to be visited
again, whenever an element has been split in a regular way. Hence, the allocation of any special
refinement patterns must proceed in several passes. However, we should not place any special
patterns onto the surface of the mesh against the possibility, that these patterns may be removed
in a subsequent pass. To alleviate the above difficulty we can process the visible elements of the
joint mesh layer by layer starting with the highest refinement level: by the above reasoning any
changes to the mesh due to lacking refinement patterns will impact elements on at most the same
layer only. Still, we have to account for additional elements being inserted on the current mesh
layer, while the special refinement patterns are being assigned.

We conclude, that we have two technical problems to address: We have to assign special
refinement patterns to those elements, which currently form the surface of the mesh, without
actually inserting any auxiliary elements. If we fail to find a fitting refinement pattern, the topol-
ogy of the mesh has to be changed by applying regular refinements. The second task consists in
monitoring the mesh topology and repeating the assignment procedure in an economical fashion,
until no more changes occur. The first problem has a very simple solution, since each element is
equipped with a state engine and a bit field, in which its current refinement pattern is encoded.
This latter device can be used to hold the allocated refinement pattern, until the assignment
procedure terminates. The second problem is more involved. We employ a special flag termed
RedRefinement to indicate, whether the current mesh layer has to be swept anew. Every time
an element has been split in a regular fashion this flag is set; against any new sweep of the
current mesh layer it is cleared. To avoid redundancies we maintain a list of all visible elements
within the current layer. The list is initialised before the very first sweep is performed. Each
element in the list is visited in turn with a view to finding its proper refinement pattern based on
geometrical considerations only. If a fitting pattern is found, its identifer is stored as the current
refinement scheme in the designated bit field. The element is kept in the list. If the element
need not be equipped with any auxiliary refinement pattern, it is removed from the list. If such
a pattern cannot be provided, the element is split in a regular way. Its adjoining elements are
appended to the list, since they are the only elements on the current layer, that might have been
affected by the mesh update. To prevent these elements from appearing in the list several times,
an additional flag from the bit field is abused. The flag is checked before an element is appended
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to the list and cleared, when it has been removed. Without such a mechanism we cannot warrant
the algorithm to terminate, as the list of elements to be processed can grow longer and longer
due to circular chaining.

As soon as the topology of the mesh has become sufficiently simple, such that we can provide
matching refinement patterns for all elements in the current layer, we must account for their
respective refinement states. In principle, the necessary steps constitute section B of the method
FemGrid::MergeMeshes as it has been described in figure 4.16: we emulate a refinement using
the very scheme we have encoded in the elements’s bit field and update the refinement state in
accordance with the appropriate entry in the array RootStateOnRemoval. All elements we need
to consider are contained in the list we have maintained in the previous stage of our algorithm.
Hence, we may simply traverse this list and clear it afterwards against another iteration involving
the next lower mesh layer.

Once all visible elements of the mesh have been processed, the proper refinement patterns
can be inserted with a view to the refinement states alone. Since we have made sure, that all
these patterns will fit, the insertion need not proceed recursively and can therefore be performed
by a simplified version of the algorithm outlined in figure 4.6. The simplest approach consists in
creating a copy of the first part of the array FemGrid::ElementArray, which contains handles
for all visible elements (see figure 4.3). Each element handle in this copy is de-referenced in turn;
the proper refined pattern is determined from the element’s refinement state and encoded into
the element’s bit field, as this still contains the intermediate value, we have assigned according to
topological information alone. When the proper refinement pattern has been found by comparing
the assigned state against all possible refinement states, the method FemGrid::AssignedSplit

is invoked, which takes the index of the refinement pattern as its only argument. In case the
refinement state reads zero, no refinement is necessary and the element can be skipped.

Figure 4.18: The complete merging algorithm
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Unfortunately, the method FemGrid::PerformTopLayerRefinement, whose functionality we
have outlined in the above paragraph, is too complex to present its implementation in this section
conveniently. Hence, our implementation is rendered in the appendix B along with a more detailed
discussion of some pertinent technical issues.

4.3 Multilevel techniques for constrained variational problems

In 1961 the Russian mathematician Fedorenko published a paper [66] in which he proposed an
iterative solver for positive definite linear systems which later would become popular under the
denomination multigrid respectively multilevel solver. It took almost twenty years and the efforts
of Brandt [28,29] to establish the fame of a method, that previously was completely overlooked.
We can only speculate on the reasons for this seemingly strange neglect: Fedorenko provided a
proof of convergence and found the numerical complexity of his method to depend linearly on the
size of the algebraic problem. It has been alleged that his estimates have been too pessimistic
to encourage the implementation of a multilevel solver. We tend to think, however, that at the
time of its inception the technical prerequisites were missing that could have turned the multigrid
method an instant success. The method can be easily described and implemented in a recursive
fashion. It requires a fairly large amount of core memory, since the algorithm accesses the data in
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roving patterns. Contemporary compilers, if available at all, did not support nested function calls.
Hence, the algorithm had to be reformulated as a purely iterative process - a rather cumbersome
undertaking. The mainframe technology, on which alone larger problems could be tackled, was
designed with a view to out of core operations and optimised for manipulating data streams.
Such a design avoided the necessity of installing larger amounts of fast and incredibly expensive
core memory. Accordingly, algorithms with highly local data access patterns as for instance
Multifront solvers [75] showed a superior performance - and were much simpler to implement.

Variational inequalities require per se iterative solution techniques. Hence, with a substantial
part of the competition out of the field we should expect multilevel methods to fare much better.
Nevertheless, the application of such methods to constrained problems has received comparatively
little attention. Without claiming to be exhaustive, we refer to [30,78,85,91,92,106]. One possible
reason for this neglect may consist in the difficult analysis of numerical algorithms for even the
most generic variational inequality, the so called obstacle problem. An a priori error bound for
the finite element solution of such type of problem was obtained as late as 1974 [65]. A proof
of convergence for the projected Gauß-Seidel iteration, which by that time had been established
as the standard solver for the associated algebraic formulation, had been found only three years
before [55]. The fact is worth mentioning, as the iteration scheme had been in use [56, 81] as
early as 1957. Even today, no satisfactory convergence result for multigrid schemes is known
in the constrained case, that is comparable to those proofs [18, 24, 26] which have been devised
for unconstrained problems. The analysis in for instance [106] merely asserts, that the proposed
algorithm behaves like a conventional multigrid algorithm with an uniform contraction rate, once
the set of active constraints has been fixed on the finest mesh.

4.3.1 Introductory remarks on multilevel schemes

While there exists a vast amount of literature on multilevel techniques in general, comparatively
few articles have been written with a view to constrained variational problems. Moreover, all
of them consider the special case of box constraints only. A generic example for the type of
constrained variational setting, multilevel algorithms have been proposed for, is the obstacle
problem we have considered in section 2.2: Given two functions ψ ∈ H2(Ω) and f ∈ L2(Ω) that
are defined on a bounded domain Ω ⊂ R

n find the minimiser of the functional

J(v) :=

∫

Ω

{ 1

2
|∇v |2 − f v

}

dx ; v ∈ H1
0 (Ω) (4.4)

under the additional assumption: v ≥ ψ almost everywhere on Ω. A conforming finite element
scheme which employs linear shape functions to approximate the minimiser was analysed in 1974
by Falk [65]. Today this method can still be regarded as the standard discretisation for the primal
formulation. The use of quadratic shape functions in a conforming finite element framework was
discussed in 1977 by Brezzi, Hager and Raviart [36]. One year later these authors proposed
a mixed finite element method for the obstacle problem [37], that relied on the following dual
formulation: Minimise the functional

J∗(σ) :=

∫

Ω

{ 1

2
σ2 + ψ ∇· σ

}

dx ; σ ∈ Hdiv(Ω) (4.5)

under the condition: ∇ · σ + f ≤ 0 almost everywhere on Ω. We have seen in section 3.3.2
that the solution of the dual mixed formulation (4.5) can be very helpful in the computation of
sharp hypercycle estimates for the obstacle problem. Hence, the development of a fast multilevel
solvers for the problem (4.5) is definitely not a purely academic pastime.

It seems, only one paper [111] has been published which describe an actual implementation of
a dual mixed discretisation scheme. The multilevel methods that have been developed to solve the
primal formulation (4.4) either use suitably adapted algorithmic components of a conventional
linear multigrid solver [30,106] or carry out combinatorial procedures employing linear multilevel
iterations to update the set of active constraints (see for example [78,85]). The algorithm proposed
in [111] falls into the latter category. However, its multigrid component is merely a device to
evaluate a Schur complement resulting from a transformation [9] of the dual problem back into
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a primal setting: the active set is actually updated by a simple conjugate gradient iteration. As
to the efficiency of this approach no conclusive numerical experiments are reported.

Replacing the dual mixed discretisation of an elliptic differential equation by a nonconforming
discretisation of its primal formulation is an artifice to be found also elsewhere (for example
[31]). In the design of multilevel iterations for unconstrained problems such a substitution is
appropriate, as it permits the use of established multigrid technologies. In a constrained setting,
however, returning to a primal formulation only leads to a convoluted algorithm without breaking
the saddle point structure of the algebraic problem. The introduction of penalty terms is fraught
with difficulties even in the unconstrained case [43] and fails likewise in lifting the saddle point
character of the problem. Hence, it seems reasonable to treat the dual mixed discretisation in
the most immediate manner possible. While a direct approach is easily pursued with the help
of Vanka-type smoothers [134] in the case of the Stokes problem, the construction of analogous
smoothing iterations for the dual formulation (4.5) is inherently difficult. Elimination of the dual
variables and solving the resulting complementary problem for the Lagrange multipliers of the
admissibility constraints is a possible resort: but conventional projected point relaxation methods
no longer qualify as smoothers, as the Schur complement matrix is dense.

Below, we will consider two technologies, which address the aforementioned difficulties. We
will introduce a defect correction scheme for the Schur complement problem, that is derived
from the projected SOR iteration and provides the opportunity to apply a preconditioner to the
Schur complement. The new scheme may either be used as an iterative solver or as a smoother
in a multilevel context. In section 4.3.4 we supply a proof of convergence to cover the first
scenario. If the iteration is employed as a smoother, its performance depends on the choice of
the preconditioner and on the speed, the defect can be computed with. After the vector valued
shape functions have been scaled properly, a simple CG iteration is sufficient to evaluate the
Schur complement with optimal complexity. To obtain an preconditioner we may lump the mass
matrix and calculate the resulting matrix product explicitly. Alternatively, we may rely on a
hybrid dual mixed discretisation as a means to construct the preconditioner.

The second numerical technology relies on hybridisation to define a nonlinear equation for
the Lagrange multipliers that are associated with the continuity constraints on the normal fluxes.
In this way, the global linear complementary condition is replaced by very small, independent
complementary problems, each of them defined on one of the elements compounding the grid.
Thus the computation of the defect becomes as inexpensive as a matrix vector multiplication. A
defect correction scheme is devised that is accelerated by a multilevel method operating in the
so called full approximation storage (FAS) mode. Due to the sparsity patterns of the operators
involved any established point relaxation method can be employed to improve the smoothing.

4.3.2 Statement of the dual formulation

In the following let us use the notation we have introduced in the sections 2.1.1 and 3.2.2.
Basically, we shall consider the obstacle problem in the description we have given in section
2.2.2. For the sake of simplicity we will make a number of additional assumption, however: We
suppose, that the sets Ω ⊂ R

n and Ω0 ⊆ Ω are both polygonal and that Ω is bounded and convex.
The obstacle function ψ ∈ H1(Ω) we assume to be piecewise linear, that is: ψ ∈ P 1(Mh). Hereby
Mh may denote a simplicial decomposition of the domain Ω, such that complementary subsets of
its elements form meshes for the domains Ω0 and Ω \ Ω0 as well. The primal formulation reads:

Problem P: The equilibration position of an elastic ”membrane”, represented by the domain Ω,
is described by a function u∗ ∈ H1(Ω), which denotes its distortion in normal direction under the
action of some load f ∈ W 1,1(Ω). It is assumed, the membrane is obstructed by an ”obstacle”
ψ ∈ P 1(Mh) and has been clamped along ∂Ω to adopt the values of some function u0 ∈W 2,∞(Ω)
with the property: u0 > ψ on ∂Ω. The material law is described by the components Aij ∈ L∞(Ω)
of a symmetric tensor, that satisfies the ellipticity condition

A0 > 0 :

n
∑

i=1

n
∑

j=1

Aij(x) ξi ξj ≥ A0 ‖ξ‖2 ; ξ ∈ R
n , x ∈ Ω . (4.6)
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The cone Vψ ⊂ H1(Ω) of possible equilibria is defined by:

Vψ : =
{

u ∈ H1(Ω)
∣

∣ v ∈ H1
0 (Ω) : u = v + u0 ≥ ψ on Ω0

}

.

If the elastic energy J :H1(Ω) −→ R of the membrane is modelled by the functional

J(v) :=
1

2

∫

Ω

{

(∇v)TA∇v − 2 f v
}

d x ; v ∈ H1(Ω)

the equilibrium position u∗ ∈ Vψ must obey Hamilton’s principle in the form:
∫

Ω

(∇u∗)TA (∇v −∇u∗ ) d ξ ≥
∫

Ω

f ( v − u∗) d ξ ; v ∈ Vψ .

�

Due to condition (4.6) the inverse of the matrix A(x) exists for every x ∈ Ω. Let Mψ denote
the set of all positive measures, whose support is confined to the set Ω0. (The notation has been
introduced in section 2.2.3). Furthermore, define L :H1(Ω) × L2(Ω,Rn) × Mψ −→ R by:

L(v, τ, µ∗) :=

∫

Ω

{

τ ∇v − 1

2
τTA−1τ − f v

}

d ξ − 〈 v − ψ, µ∗ 〉
Ω0

.

In section 2.2.5 it has been demonstrated, that the elastic energy J(v) of the membrane can be
recovered by computing the supremum of the Lagrangian L with respect to its second and third
argument. The complementary energy functional J∗ :Hdiv(Ω) −→ R may be obtained by finding
the infimum of the Lagrangian L with respect to its first argument. We define:

J∗(τ, µ∗) :=











∫

Ω

{

τ ∇u0 − 1

2
τTA−1τ

}

d ξ + 〈ψ − u0, µ
∗ 〉

Ω0
; τ ∈ Q∗

µ∗

− ∞ ; else

with the set of admissible vector fields Q∗
µ∗ ⊂ L2(Ω,Rn) being specified by (2.17). Due to the

regularity inherent in the primal formulation we may restrict our attention to vector fields from
the space Hdiv(Ω). Carrying out a partial integration we attain for any τ ∈ Q∗

µ∗ ∩Hdiv(Ω):

J∗(τ, µ∗) =

∮

∂Ω

u0 τn d s −
∫

Ω

{

ψ∇· τ +
1

2
τTA−1τ

}

d ξ −
∫

Ω

f (ψ − u0) d ξ .

Hereby, the subscript n denotes the normal component of the vector field τ with respect to the
hypersurface ∂Ω. Since ∇· τ is a square integrable function by assumption, this quantity is well
defined as a distribution acting on certain traces (see e. g. theorem 2.5 in [76]). Dropping any
constant expressions we may now identify the complementary energy as:

J∗(τ) =

∫

Ω

{

ψ∇· τ +
1

2
τTA−1τ

}

d ξ −
∮

∂Ω

u0 τn d s ; τ ∈ Hdiv(Ω) .

The dual formulation of problem P demands the minimisation of J ∗(τ) under the assumption,
that the admissibility constraint −f −∇· τ ∈ Mψ be met. The solution σ∗ of the dual problem
is related to the equilibrium position u∗ of the membrane by the duality mapping:

σ∗ = A∇u∗ .

Problem D: The regularity requirements stated in the formulation of problem P be met and
the set of admissible stresses be defined by:

S : =
{

τ ∈ Hdiv(Ω)
∣

∣ −∇· τ − f ∈ Mψ

}

.

The equilibrium distribution σ∗ of the stress inside the membrane is the solution of the following
constrained variational problem: Find σ∗ ∈ S, such that:

∫

Ω

(A−1σ∗)T ( τ − σ∗ ) d ξ +

∫

Ω

ψ (∇· τ −∇· σ∗ ) d ξ ≥
∮

∂Ω

u0 ( τn − σ∗
n ) d s ; τ ∈ S .

�
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4.3.3 Discretisation of the dual formulation

Once the mesh Mh has been supplied, various trial spaces can be constructed, in which we will
look for the numerical solution of problem D. These spaces have already been introduced in
section 3.2.2. However, we have not yet dealt with the more intricate aspects of assembling the
finite element matrices. To specify the degrees of freedom associated with our trial spaces test
functions must be considered that live on the interfaces between adjacent simplices. We define:

Ih : =
{

E ⊂ Ω
∣

∣ T, T ′ ∈ Mh : E = T ∩ T ′ ∧ T 6= T ′
}

,

Bh : =
{

E ⊂ ∂Ω
∣

∣ T ∈ Mh : E = T ∩ ∂Ω
}

.

The symbol Ih denotes the set of all interior interfaces between adjacent simplices, while Bh

designates the set of all those faces, which constitute the boundary ∂Ω of the computational
domain. The spaces P k(Mh) and P k(Ih ∪ Bh) are of Lagrange type: their degrees of freedom
consist of function evaluations at certain collocation points x̂(k)

T,j ∈ Ω (see [48] §2.2 for details).
By u(k)

T,j ∈ P k(Mh) we shall denote the corresponding shape functions. For any element T ∈ Mh

and any of its faces E ⊂ ∂T we can now define a set of linear functionals:

ρ(k)

T,E,j
(τ) :=

∫

E

u(k)

T,j
τn d s ; τ ∈ Hdiv(Ω) . (4.7)

Let el ∈ R
n represent the l-th basis vector of a Cartesian coordinate system. Against the case

k > 0 we introduce a second set of functionals:

ρ(k)

T,j,l
(τ) := |T |−1/d

∫

T

u(k−1)

T,j
el · τ d ξ ; τ ∈ Hdiv(Ω) . (4.8)

Both sets together constitute the degrees of freedom associated with the ansatz Rk(Mh). The
functionals (4.7) are shared by the spaces Bk(Mh). In the case k > 1 the other degrees of freedom
differ. Let {σ(k)

T,i }T,i denote a basis of the function space Bk
0 (Mh) := {τ ∈ Bk(Mh) |∇·τ = 0} such

that ‖σ(k)
T,i ‖∞ = 1 holds for each basis function. Instead of (4.8) the missing degrees of freedom

for the trial space Bk(Mh) now read:

ρ(k)

T,j
(τ) :=

∫

T

∇u(k)

T,j
· τ d ξ ; τ ∈ Hdiv(Ω) ,

ρ̂(k)

T,i
(τ) := |T |−1/d

∫

T

σ(k)

T,i
· τ d ξ ; τ ∈ Hdiv(Ω) .

Neither Bk(Mh) nor Rk(Mh) are subspaces of Hdiv(Ω): Yet a vector field σ(k) from either of these
spaces is contained in Hdiv(Ω), if and only if the normal fluxes of σ(k) are continuous across the
element interfaces inside the domain Ω. Hence, there are two possibilities to obtain a conforming
numerical approximation to the solution of problem D. Since our choice of the ansatz does not
materially alter the technical procedure, we will discuss these possibilities by the example of the
space Rk(Mh) only. Let {σ(k)

T,E,j, σ
(k)

T,j,l, . . .} ⊂ Rk(Mh) denote the dual basis of (4.7) and (4.8).
Our first option is to construct a basis {σ(k)

E,j, σ
(k)

T,j,l, . . .} for the conforming trial space

Rkc (Mh) := Rk(Mh) ∩ Hdiv(Ω) .

To this end we may specify a weight function ω : Mh × (Ih ∪ Bh) −→ {−1, 0, 1}, such that

σ(k)

E,j
: =

∑

T∈Mh

ω(T,E) σ(k)

T,E,j
∈ Hdiv(Ω) (4.9)

holds. The case ω(T,E) = 0 is implied by E 6⊂ ∂T . Let M0
h ⊂ Mh denote the very part of

the mesh, which corresponds to the contact area Ω0. To account for the admissibility constraint
σ ∈ S, a cone of test functions is defined by:

Λk : = P k(Mh) ∩ L2(Ω0,R
+
0 ) . (4.10)
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Furthermore, a Lagrangian Lkc :Rk(Mh) × Λk −→ R is introduced:

Lkc (σ, v) :=
∑

T∈Mh

∫

T

{ 1

2
σTA−1σ + ψ∇· σ + v (∇· σ + f )

}

d ξ −
∑

E∈B

∫

E

u0 σn d s .

The solution of problem D can be identified with the unique saddle point {σk, vk} ∈ Rkc (Mh)×Λk
of the above Lagrangian. Our second option consists in using additional Lagrange multipliers to
enforce the continuity of the normal fluxes of σk ∈ Rk(Mh) across the element interfaces. The
augmented Lagrangian Lk :Rk(Mh) × Λk × P k(Ih) −→ R reads:

Lk(σ, v, w) := Lkc (σ, v) −
∑

E∈Ih

∑

T∈Mh

|ω(T,E) |
∫

E

w σn d s . (4.11)

If we denote the set of linear factors for vector field σk by s ∈ R
m1 , that for the displacement v

by µ ∈ R
m2 and that for the Lagrange multiplier w ∈ P k(Ih) by λ ∈ R

m3 , we may write the first
order optimality condition for the saddle point {s, µ, λ} of the Lagrangian (4.11) as:

M s + DT µ − FT λ = t

D s + I0 r = d

F s = 0 .

(4.12)

If we employ the conforming discretisation scheme, the field σk must be represented by a different
set sc ∈ R

m4 of linear factors. The first order optimality condition for the saddle point {sc, µ} of
the Lagrangian Lkc (σ, v) reads:

Mc sc + DT
c µ = tc

Dc sc + I0 r = d .
(4.13)

Hereby, the symbol I0 denotes the finite element matrix associated with the injection operator
I : P k(M0

h) −→ P k(Mh) which extends all test functions outside the domain Ω0 by 0. We note,
that in the case k ∈ {0, 1} the requirement v ∈ Λk gives rise to a very simple linear complementary
condition for the vectors r ∈ R

m5 and µ:

IT0 µ , r ≥ 0 ∧ µT (I0 r)
!
= 0 .

Remark 4.4 In the case k ≥ 2 the requirement v ∈ Λk no longer translates into the simple
algebraic condition IT0 µ ≥ 0. Hence, additional inequality constraints appear to account for
(4.10). Moreover, testing with v ∈ Λk no longer warrants σk ∈ S, even if some load f ∈ P k(Mh)
is chosen: a consistency error is thus introduced.

4.3.4 Description of the multilevel algorithm

In the case k ∈ {0, 1} the condition IT0 µ ≥ 0 is equivalent to enforcing µi ≥ 0 for a certain subset
0 < i1 < . . . im ≤ m2 of indices. Let us denote this subset by I0. To simplify the treatment of
the admissibility condition σk ∈ S, we may now introduce box constraints µ ≥ ψ with a suitable
obstacle ψ ∈ R

m2 . Picking a sufficiently small value µ0 � 0 we may define:

ψi : =

{

0 ; i ∈ I0

µ0 ; else .

If we now eliminate those linear factors from either (4.12) or (4.13), which are associated with
the vector field σk, a linear complementary problem for the Lagrange multiplier v ∈ Λk of the
admissibility constraint −∇· σk − f ∈ Mψ eventually emerges:

W µ : = C µ + BA−1BT µ ≥ g

∧ µ ≥ ψ ∧ (µ− ψ )T (W µ − g ) = 0 .
(4.14)
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If a hybrid discretisation scheme is used, the matrices A, B and C correspond to:

A := −FM−1FT , B := DM−1FT , C := DM−1DT .

If a conforming discretisation is employed instead, these matrices are defined by:

A := Mc , B := Dc , C := 0 .

As the trial spaces Rk(Mh)×P k(Mh) and Bk(Mh)×P k−1(Mh) meet the LBB-condition (see
[34,54]), the matrix W is positive definite both in the hybrid and in the conforming case. Hence,
the problem (4.14) features an unique solution (see e. g. [129]). By pSOR(W,ψ, g, µ, ω) we shall
designate the result of one sweep of the projected SOR-scheme as it is described in [55]. Hereby,
W denotes the matrix under consideration, ψ the obstacle, g the right hand side, µ the initial
guess and ω ∈ (0, 2) the relaxation parameter. By

µ(j+1) : = pSOR(W, ψ, g, µ(j), ω ) ; j ∈ N (4.15)

a smoothing iteration may be defined. However, the matrix W is dense in both the hybrid
and the conforming case, even though A, B and C themselves are very sparse. Therefore, the
iteration (4.15) is too expensive. However, if the constraint µ(n) ≥ ψ did never become active,
the smoother (4.15) would be equivalent to the following iteration:

µ(j+1) := µ(j) + pSOR(W, ψ − µ(j), g −Wµ(j), 0, ω ) ; j ∈ N .

This latter rule can be understood as defining a defect correction scheme with the matrixW acting
as a preconditioner. Consequently, it seems reasonable to replace W by a sparse approximation
Ŵ . To ensure that the resulting fixed point iteration is still convergent, damping parameters
Θ > 0 and Θ̂ ∈ (0, 1] must be introduced:

µ(j+1) := µ(j) + Θ̂ pSOR( Ŵ , ψ − µ(j),Θ(g −Wµ(j)), 0, ω ) ; j ∈ N . (4.16)

As we will show in subsection 4.3.5, the above iteration yields a solver for the complementary
problem (4.14), if the preconditioner Ŵ is positive definite and the product ΘΘ̂ sufficiently small.
The matrix A is essentially a mass matrix both in the conforming and in the hybrid case. Hence,
its condition number κ(A) is uniformly bounded in h, the grid parameter. In consequence, the
residual g −Wµ(j) can be evaluated with the help of a simple CG iteration and the numerical
complexity of this procedure is still optimal.

In default of a canonical approach to approximate A by a diagonal matrix Â the preconditioner
Ŵ may be supplied either by lumping A or by dropping all its entries off the diagonal. In the
hybrid case the resulting matrix need not necessarily be positive definite, however. Hence, it is
convenient to introduce a third damping parameter Θ̃ > 0 and define the preconditioner by:

Ŵ : = C + Θ̃ BÂ−1BT .

This matrix can be computed and stored with optimal complexity O(m2), as the number of
entries per row can be bounded by a power of k, the order of the trial space, times n+ 1.

We will assume, a regular family {Mhl}l>0 of meshes has been generated in such a way, that
the trial spaces for the Lagrange multiplier µ are nested: P k(Mh1

) ⊆ P k(Mh2
) ⊆ . . . P k(Mh).

For each refinement level l an imbedding operator ιl :P
k(Mhl) −→ P k(Mhl+1

) is introduced. The
matrix Il associated with the imbedding ιl consists of the following entries:

I(l)

Ti,Uj
: = u(k)

U,j
(x̂(k)

T,i
) ; U ∈ Mhl , T ∈ Mhl+1

. (4.17)

To each map ιl corresponds a restriction operator %l :P
k(Mhl+1

) −→ P k(Mhl) we must define in
such a way, that the coarse grid correction step of our multilevel algorithm warrants an admissible
approximation. We find we have to insist on:

(ιl ◦ %l)2 (v) = (ιl ◦ %l) (v) ≥ v ; v ∈ P k(Mhl+1
) .
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No linear operator %l can be discovered which meets this requirement. However, in the special
case Il ≥ 0 a suitable map can be found easily: let {µ(l+1)

Ti }Ti denote the set of linear factors of
some function v(l+1) ∈ P k(Mhl+1

) - the factors of the image %l(v
(l+1)) may be computed by:

µ(l)

Uj
:= max

T,i

{

µ(l+1)

Ti

∣

∣ I(l)

Ti,Uj
> 0

}

. (4.18)

Depending on the desired level of accuracy we fix a mesh MhL , on which the solution of
problem D is to be approximated. On each of the meshes Mh1

, . . .MhL several matrices must
be assembled that define the complementary problem: these will be denoted by {Al, Bl, Cl}Ll=1.
The amount of smoothing to be applied to the data may differ depending on the level l. A set
of counters {Nl}Ll=1 specifies how many times in succession relaxations be carried out. On the
mesh MhL with the highest refinement level the algebraic accuracy is monitored, the fixed point
of the iteration (4.16) has been approximated with. Since this quantity cannot be measured by
any norm of the residual, a viable alternative [30] is to control the distance between subsequent
iterates by means of a parameter ε. If the test for convergence fails, another multigrid cycle must
be initiated. An overview of the entire algorithm is presented in figure 4.19.

Figure 4.19: Outline of the Multigrid Algorithm (pMG)

Supplied: {Al, Bl, Cl, Sl,Θl, Θ̂l, ωl,Ml, }Ll=0 , {Il}L−1
l=0 , ε > 0

Definition: pMG( µ, f, ψ, l ) {

1) Set: µold := µ .

2) Loop m ∈ {1 . . .Ml} : {

2a) Apply CG to solve: Al v = BTl µ .

2b) Set: r := Θl ( f − Cl µ − Bl v ).

2c) Loop i : {

η̂i :=
1

Sii

(

ri −
∑

j<i
Sij ηj

)

.

ηi := max
{

ψi − µi, ωl η̂i
}

.

}

2d) Set: µ := µ + Θ̂l η .
}

3) If l = 0 return.

4) Apply CG to solve: Al v = BTl µ .

5) Set: f̃ := ITl−1 ( f − Cl µ − Bl v ) .

6) Compute ψ̃ from ψ − µ e. g. by (4.18).

7) Set: µ̃ := 0 .

8) Call: pMG( µ̃, f̃, ψ̃, l − 1 ).

9) Set: µ := µ + Il−1 µ̃ .

10) Repeat step 2.

11) If l < L or ‖µold − µ ‖
∞
< ε return.

12) Goto step 1.

}

4.3.5 A proof of convergence

As the title indicates, we are going to present a proof, that the iteration defined by (4.16) is
convergent to the solution of the linear complementary problem (4.14) for any positive definite
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preconditioner and any relaxation parameter ω ∈ (0, 2), if only the product ΘΘ̂ of the damping
parameters is small enough. Since we will need not invoke any results from previous sections, let
us adopt the following, more conventional notation: A ∈ R

m×m and S ∈ R
m×m may denote two

positive definite matrices. Furthermore, let ψ ∈ R
m and f ∈ R

m designate two arbitrary vectors.
We recall, that the solution of the linear complementary problem

Ax ≥ f ∧ x ≥ ψ ∧ (x− ψ )T (Ax − f ) = 0 . (4.19)

is uniquely defined. Henceforth, we will refer to this solution as x∗ ∈ R
m. The defect correction

scheme specified by (4.16) is detailed in figure 4.19. Let us write the iteration as

x(j+1) : = x(j) + Θ̂ TΘ(x(j)) ; j ∈ N . (4.20)

Hereby, the symbol TΘ represents a nonlinear map TΘ : Rm 7−→ R
m, which may be described by:

1) Set: r : = Θ ( f − Ax ).

2) Loop i : {

ŷi : = ri −
∑

j<i

Sij yj .

yi := max
{

ψi − xi,
ω

Sii
ŷi

}

.

}

3) Set: TΘ(x) := y .

(4.21)

Proposition 4.1 For any damping parameter Θ > 0 and any relaxation parameter ω > 0 we
find TΘ(x) = 0, if and only if x = x∗ holds.

Proof Let us assume TΘ(x) = 0 holds for some vector x ∈ R
m. We are going to demonstrate,

that this very vector is the solution of problem (4.19). With a view to (4.21) we conclude:

0 = max
{

ψi − xi,
ω

Sii
ri

}

; i ∈ {1, . . .m} .

From the above set of equations we immediately infer, that x ≥ ψ and r ≤ 0 hold. We now have
to show, that the complementary condition (x − ψ)T r = 0 is also met. Let us suppose, there is
an index j and some number ε > 0, such that rj < −ε and xj − ψj > ε both hold. We find:

0 = max
{

ψj − xj ,
ω

Sjj
rj

}

≤ max
{

−ε, − ω

Sjj
ε

}

= − ε min
{

1 ,
ω

Sjj

}

.

The above contradiction proves x = x∗. We are now going to show TΘ(x∗) = 0. To this end we
recall, that x∗ satisfies the complementary condition (x∗ − ψ)T (Ax∗ − f) = 0. Hence, we note
x∗i = ψi whenever ri < 0 holds. We will carry out a proof by induction: r1 = 0 implies ŷ1 = 0
and thence y1 = 0. If we assume r1 < 0, we conclude ŷ1 < 0 and ψ1 − x∗1 = 0. Therefore, we
also find y1 = 0. Let us suppose, we have discovered y1 = . . . yi−1 = 0 for some index i > 1. As
ŷi = ri holds by assumption, there are again two possibilities: both lead to yi = 0 for the very
same reasons we have stated in the case i = 1. �

As a corollary of the above proposition we may claim, that the iteration (4.20) can have but
one fixed point, namely x∗. We proceed by demonstrating that the sequence {x(j)}j∈N generated
from some vector x(0) ≥ ψ by (4.20) minimises a quadratic form G : R

m 7−→ R. As the level set

G : =
{

x ∈ R
m

∣

∣ G(x) ≤ G(x(0))
}

is compact, we can thus conclude, there must be at least one cluster point x̂ ∈ G, such that:

lim inf
j→∞

G(x(j)) = G(x̂) = : G∞ .

As it will turn out, there can be only one cluster point, which must also be a fixed point of
the iteration (4.20). As a consequence of proposition 4.1 the sequence {x(j)}j∈N must therefore
converge to x̂ = x∗. Let us commence our proof with the following technical proposition:
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Proposition 4.2 Let {xj}j∈N denote the sequence of vectors generated by the iteration (4.20).
We assume, the iteration has been started at a feasible point x0 ∈ K with the cone of admissible
vectors being defined by: K := {x ∈ R

m |x ≥ ψ}. If we introduce a functional G : R
m 7−→ R by:

G(x) := xTAx − 2 fTx

and assume Θ̂ ∈ (0, 1], we find that each iteration step decreases the ”energy” G(x(j+1)) of the
approximate solution x(j+1) ∈ K in accordance with the estimate:

G(x(j+1)) − G(x(j)) ≤ − Θ̂2 TΘ(x(j))T UΘΘ̂ TΘ(x(j)) . (4.22)

If D(S) denotes the diagonal part of the matrix S, the matrix Uϑ ∈ R
m×m is hereby defined by:

Uϑ : =
1

ϑ
S +

1

ϑ

( 2

ω
− 1

)

D(S) − A ; ϑ > 0 .

Proof In the following we will use the notation we have introduced in (4.21). We note:

G(x(j+1)) − G(x(j)) = Θ̂2 yTAy + 2 Θ̂ yT (Axj − f) = Θ̂2 yTAy − 2 Θ̂ Θ−1 yT r .

To evaluate the vector product yT r let us introduce another quadratic form Ĝ : R
m 7−→ R:

Ĝ(z) := zTS z − 2 rT z .

The computation of the offset y = TΘ(x(j)) proceeds through m stages starting with the initial
vector y(0) = 0 until the final offset y(m) = y is attained. If ei ∈ R

m denotes the i-th Cartesian
unit vector, we can state: y(i) − y(i−1) = yi ei for any i ∈ {1, . . .m}. Accordingly, we find:

Ĝ(y(i)) − Ĝ(y(i−1)) = Sii y
2
i + 2 yi

(

∑

j<i

Sij yj − ri

)

= Sii y
2
i − 2 yi ŷi .

We may now introduce a set of parameters ω1, . . . ωm, such that

yi = :
ωi
Sii

ŷi ; i ∈ {1, . . .m}

holds. With a view to the definition (4.21) we find, there are two possibilities: If yi is equal to
ψi − x(j)

i , this quantity must be negative, since x(j) is admissible by assumption. We conclude:

0 ≥ yi =
ωi
Sii

ŷi ≥ ω

Sii
ŷi =⇒ 0 ≤ ωi ≤ ω .

The other possibility implies ωi = ω immediately. In the case ωi = 0 the component yi vanishes.
Since this component does not contribute to the energy functional Ĝ, it may be ignored. Let us
henceforth suppose, that ωi ∈ (0, ω] holds for every i ∈ {1, . . .m}. We note:

yTS y − 2rT y = Ĝ(y) − Ĝ(0) =
m

∑

i=1

{

Ĝ(y(i)) − Ĝ(y(i−1))
}

=

m
∑

i=1

{

Sii y
2
i − 2

Sii
ωi

y2
i

}

≤
(

1 − 2

ω

)

yTD(S) y .

Combining the above result with the very first equation presented in this proof we now obtain:

G(x(j+1)) − G(x(j)) = Θ̂2 yTAy − Θ̂ Θ−1
{

yTS y +
( 2

ω
− 1

)

yTD(S) y
}

.

To finish our proof we have to show, that the iterate x(j+1) is again admissible. Since Θ̂ ≤ 1 and
x(j) ≥ ψ hold by assumption, we conclude:

x(j+1) ≥ x(j) + Θ̂ (ψ − x(j) ) ≥ ψ .
�
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The quadratic form G we have introduced in the proof of proposition 4.2 is bounded from
below. Hence, there are only two possibilities: If x(j) happens to coincide with the solution x∗ of
problem (4.19) for some index j0 ∈ N, the offset TΘ(x(j0)) vanishes. We find x(l) = x∗ for each
index l > j0, so the sequence {x(j)}j∈N is convergent. If no such coincidence occurs, we observe
T (x(j)) 6= 0 for any index j ∈ N. Let us suppose, that the product of the two damping factors is
small enough to ensure, the matrix UΘΘ̂ is positive definite. In this case the sequence {x(j)}j∈N

minimises the functional G due to (4.22). We assume, that x̂ ∈ G is a cluster point, and we
denote the smallest eigenvalue of the matrix UΘΘ̂ by u0 > 0. We note:

G(x(j)) − G∞ ≥ Θ̂2 u0

∑

l>j

‖TΘ(x(l)) ‖2 ≥ Θ̂2 u0 lim sup
l>j

‖TΘ(x(l)) ‖2 .

From the above inequality we may infer:

0 = lim
j→∞

G(x(j)) − G∞ ≥ Θ̂2 u0 ‖TΘ(x̂) ‖2 ≥ 0 .

Applying proposition 4.1 we conclude, that x̂ is actually the solution x∗ of problem (4.19). Since
the sequence {x(j)}j∈N features exactly one cluster point, it is convergent.

Remark 4.5 The above proof relies on the fact, that the iteration (4.20) generates a sequence
of admissible vectors, if the starting point is admissible itself. The projected SOR-scheme [55]
produces a feasible point in its very first iteration, even if the starting vector has been infeasible.
Our preconditioned defect correction scheme, however, will not necessarily yield an admissible
vector x(i+1), if the preceding iterate x(i) has been infeasible. There are basically three ways to
remedy this seeming drawback of our method: we can precede the iteration with a projection
into the cone of admissible vectors and start with a feasible approximation; we can fix Θ̂ = 1 or
we can modify the projection to account for the damping:

yi : = max
{ ψi − xi

Θ̂
,
ω

Sii
ŷi

}

.

Both the proof of proposition 4.1 and of proposition 4.2 carry over with only minor modifications.
The scaling of the shifted obstacle ensures x+ TΘ(x) ∈ K for any choice x ∈ R

m.

4.3.6 Avoiding the global complementary condition

Eliminating λ from (4.12) has the advantage, that the resulting complementary problem for µ
involves simple box constraints and allows for a discretisation, that facilitates the use of nested
trial spaces and the straightforward implementation of a multilevel solver. The drawback of this
procedure is the necessity to solve a global linear problem in each smoothing step. However, for
any fixed λ ∈ R

m3 the Lagrange multiplier for the admissibility constraint can be identified as
the solution of the following linear complementary problem:

DM−1DT µ ≥ DM−1( t + FTλ ) − d = : d(λ)

∧ µ ≥ ψ ∧ (µ− ψ )T
(

DM−1DT µ − d(λ)
)

= 0 .
(4.23)

As the matrix DM−1DT is a block-diagonal, formula (4.23) actually describes numerous small,
independent complementary problems, which correspond to the individual elements compounding
the mesh Mh. Let us denote by Λ : R

m3 −→ R
m2 the very map, which assigns to each vector

λ ∈ R
m3 the corresponding solution of problem (4.23). From (4.12) a nonlinear equation for the

Lagrange multiplier λ is obtained:

T (λ) := FM−1FT λ − FM−1DT Λ(λ) = − FM−1 t . (4.24)

In order to solve this equation by a FAS variant [28] of the multigrid method, it is necessary
to specify a smoothing iteration and suitable transfer mechanisms, that map the defect and the
approximate solution from a coarser grid Ihl to the next finer one Ihl+1

and back. Unfortunately,
the trial spaces P k(Ih0

), P k(Ih1
), . . . are not nested and canonical injection or restriction operators
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are not available. However, the Lagrange multipliers of the normal fluxes approximate the values
of the displacement on the element interfaces [9]. Hence, the injection and restriction operators
can be defined by treating the components of the vector λ as associated with a Crouzeix-Raviart
ansatz [54] for the displacement variable. Consequently, the level transfer techniques described
in [25] may be used. A simpler alternative is suggested in [31]. In either case the choice of proper
damping parameters is critical to the success of the resulting multilevel scheme. Numerical
experiments indicate that a relaxation of the fine grid contribution to the right hand side on the
coarser grid may be the most successful strategy:

fl−1 := Tl−1(Rl−1(λ
(j)
l ) ) + ϑ ITl−1( fl − Tl(λ

(j)
l ) ) .

Hereby, the effect of smoothing has been ignored for the sake of simplicity. The injections
I0, . . . IL−1 are defined by (4.17), while the restrictions R0, . . . RL−1 have proved most effective,
if they are constructed in the spirit of (4.18). The relaxation parameter is denoted by ϑ > 0.
Its impact on the coarse grid problem can be compensated, when the coarse grid correction is
injected into the finer grid:

λ
(j+1)
l : = λ

(j)
l + ϑ−1 Il−1( λ

(j+1)
l−1 − Rl−1(λ

(j)
l ) ) .

Again, the effect of smoothing has been ignored. If the obstacle ψ were sufficiently far removed
from the solution u∗ of the problem P, the Lagrange multiplier µ would stay strictly positive and
the complementary problem (4.23) would be reduced to an equation. Consequently, (4.24) would
turn into a linear system involving the matrix

T : = FM−1FT − FM−1DT (DM−1DT )−1DM−1FT .

This matrix has no more than n+ 1 blocks per row, whose size only depends on the order of the
ansatz for the Lagrange multiplier λ. As T can be computed and stored with optimal numerical
complexity, a fixed point iteration of the form

λ(j+1) := λ(j) − T̂−1FM−1
(

t+ FTλ(j) −DTΛ(λ(j))
)

may be utilised as a smoother, whereby the preconditioner T̂ can be based on a regular splitting
of T : among the possible smoothing iterations are the damped Gauß-Seidel or the SOR scheme.
Due to the special structure of the auxiliary problem (4.23) the overall numerical complexity of
one smoothing step will not exceed O(m3).
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Numerical Experiments

Below we are going to assess the usefulness of those hypercycle estimates, we have discussed in
chapter 2. We will look at a number of generic test cases, instances of the Laplace and the obstacle
problem, in order to compare various methods how to construct the constitutive parameter
σh ∈ L2(Ω,Rn). We have seen in the sections 2.1.4 and 2.2.7 respectively, that said vector field
should be an approximation to the solution of a perturbed variational problem posed in its dual
formulation. Several approaches to finding a good hypercycle estimate may be inferred from this
fact: 1.) either the dual formulation of the original variational problem or the dual formulation
of the perturbed problem is solved numerically using an adequate discretisation scheme, 2.) the
numerical solution of the primal formulation or its perturbed counterpart is post-processed to
obtain a sufficiently regular approximation of the dual variable, 3.) a minimisation algorithm is
employed to improve the error bound with respect to the dual parameter σh ∈ L2(Ω,Rn).

To fix some sort of standard against which we can compare our findings a conventional a
posteriori error estimator has been implemented for the Laplace problem. The estimator is based
on the computation of residual expressions on an element by element basis and therefore must
rely on the best approximation property to be met by the numerical solution. Since an equivalent
estimator is not available for the obstacle problem, we have followed the ideas presented in [86]
and written a direct a posteriori estimator for the following variational statement:

〈∇xε,∇v 〉Ω + ( ε−1 min{0, xε − ψ}, v )
Ω

= ( f, v )
Ω

; v ∈ H1
0 (Ω)

with xε ∈ H1
0 (Ω) denoting the solution of the relaxed obstacle problem and ε ∈ L∞(Ω) a suitable

penalisation of the feasibility constraint x0 ∈ Vψ. Reliable energy error bounds for the obstacle
problem are obtained from a more or less conventional a posteriori error estimator for the above
statement and an a priori estimate for the consistency error we incur due to the regularisation.
Controlling this latter contribution may be achieved by means of the function ε.

5.1 General remarks on the simulation code

The concept of an useful a posteriori error estimator is perhaps not as clearly defined as it
may seem at first. The computation of an error bound for some approximate solution to a
variational problem is a sensible undertaking only in so far, as we are able and willing to improve
our numerical results in accordance with the information provided by the error estimator. The
knowledge of a reliable bound on the error may certainly be helpful when we have to decide
whether we can accept the numerical solution at hand. However, if we proceed to globally refine
our mesh, as we have found the accuracy of the current approximation to be insufficient, we
practically waste the computational effort, we have spent on the error estimate. If a global mesh
refinement is our most appropriate response, we should have estimated the proper mesh width
prior to any computations with the help of an a priori estimate.

Accepting such a premise, we come to the conclusion, that an useful error estimator should
provide us with some sort of profile, we can assess in order to determine regions of the mesh,
we need to refine locally. The involved algorithms must be able to handle the emerging meshes:
unstructured and locally refined formations that may contain various types of finite elements or
even agglomerates of elements, which have been formed to avoid the so called hanging nodes. If
we employ finite dimensional trial spaces to represent the dual parameters which are necessary
to evaluate generalised hypercycle estimates, we can carry this notion one step further. We may
adapt not only our meshes with the help of which we seek a possibly accurate numerical solution
of the primal formulation, we may also want to adapt the meshes on which we construct our dual
parameters respectively solve the dual problem. Hence, our finite element machinery should not
only indicate, which elements to refine in the ”primal” mesh, but in the ”dual” one as well.
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The technical difficulties we must address to facilitate this much flexibility are substantial.
Arguably, the most challenging part consists in generating a mesh, such that we can construct
two trial spaces into the first of which we can inject the dual parameter, while the second one
accommodates the numerical solution of the primal formulation. After such a joint mesh has
been formed in some kind of merging procedure, the hypercycle estimate can be evaluated by
visiting each element in turn and assembling the element contributions for all relevant types of
shape functions. In section 4.2 we have endeavoured to detail some of our technical solutions:
rather than dealing with several types of shape functions on the same mesh, we create one mesh
for each type of finite element we need in our computations. After sorting the elements according
to certain geometrical properties we can assess the error estimates by sweeping the meshes’ top
layers synchronously. In consequence, a fully adaptive finite element code for e. g. the Laplace
problem will involve up to five different meshes: one mesh for the numerical solution of the primal
formulation, two meshes for the computation of the dual formulation and two corresponding
meshes, into which we inject both the primal approximation and the dual parameter.

Figure 5.1: Outline of the code’s structure
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The relevant numerical quantities having been computed by sweeping those meshes we can
compare the results against the true energy error and its profile. If an analytic solution is not
available to us, we need one further mesh on which we can compute the reference solution.
For simplicity, we also use this very mesh to output the data in an external format suitable
for further processing e. g. as an unstructured cell data file. Accordingly, we have to transfer
data from various meshes to the finest one - converting the information, if necessary, into vertex
oriented data. The profiles predicted by the computable hypercycle estimates (2.8) and (2.16)
respectively (2.19) are the very quantities, the elements contribute to the a posteriori error
bound. As integrals over single elements these quantities are per se cell oriented. To transform
the information into vertex oriented data, we compute weighted averages using continuous shape
functions ψj ∈ P 1

c (Mh) of Lagrange type, which correspond to the vertices ξj ∈ Ω of the mesh
Mh. Thereby, the interpolation operator Π1 : L2(Ω) −→ P 1

c (Mh) is defined by:

Π1 u :=
∑

M∈Mh

∑

ξj∈ cloM

ψj
| suppψj |

∫

M

u d ξ .

The data transfer of vertex oriented information from one of the coarser meshes to the finest
one is comparatively simple, as the trial spaces for both the primal and the dual formulation are
nested. For instance, the numerical solution xh ∈ P kc (Mh) is mapped into the trial space P k(M̃h)
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first. The image Ikxh is then injected into the trial space P k(M̃′
h). The class FemGrid contains a

method, which applies the interpolation operator Π1 to the resulting function. The information
pertaining to the dual formulation need not be compared against the reference solution. Hence,
it is not necessary to increase the amount of data to be exported by mapping e. g. the dual
parameter into the trial space P k(M̃h). Instead, the Clément interpolation Π1 is applied to each
component of the field σh ∈ Rk(M̃′

h) directly and the results are stored in a separate file.

5.2 Energy Error Estimates for the Laplace Problem

In the following paragraphs we present a number of numerical experiments which are designed to
explore those features of the hypercycle estimates we have failed to analyse properly in the section
3.3. We will numerically solve the Dirichlet problem using the simplest possible conforming ansatz
of Lagrange type to construct our approximate solution. The approximation error is bound in
the energy norm with the help of a conventional a posteriori estimator based on the evaluation
of local residuals. Thus we can provide a baseline, against which the subsequent results may be
compared. In the second section we compute hypercycle estimates by smoothing the gradient of
our numerical solution, such that the resulting fields are contained in the space Hdiv(Ω). Section
5.2.3 will deal with error majorants, that are obtained by solving the dual formulation of the
Dirichlet problem. In the last section we will investigate the possibility of improving the error
bounds by minimising the hypercycle estimates in terms of the dual parameter σh.

5.2.1 A description of the experiments

Three model problems shall be considered, whose analytical solutions feature different degrees of
smoothness. We will solve all three problems on a circular disc of radius 1 imposing homogeneous
Dirichlet boundary conditions. The forcing functions will be defined in polar coordinates:

Example A:

f1(r) :=

{

f0 ; 0 ≤ r ≤ r0

0 ; else .

Our actual choices for the two parameters in the above definition read: f0 = −4 and r0 = 0.25.
Due to the radial symmetry of the load f1, the analytical solution x ∈ H2(Ω) of the Dirichlet
problem can be computed by considering the following two boundary value problems:

− 1

r

∂

∂r

(

r
∂

∂r
u

)

=

{

f0 ; on (0, r0)

0 ; on (r0, 1) .

There are four boundary conditions we have to meet. If we denote the solution of the first
differential equation on the interval [0, r0] by u0 and the solution of the other equation by u1,
we can obtain immediately: u1(1) = 0 and u′0(0) = 0, since the analytical solution x0 must be
continuous and therefore bounded. The continuity of x implies moreover: u0(r0) = u1(r0). The
fourth requirement stems from the fact, that the solution x is indeed continuously differentiable
as well. Hence, we must impose: u′0(r0) = u′1(r0). Using the two latter constraints we can fix the
remaining parameters in the ansatz below:

x(r, φ) =

{

ζ0 − f0/4 r
2 ; 0 ≤ r ≤ r0

ζ1 ln(r) ; else .

By simple algebraic manipulations we find eventually:

ζ0 =
f0
4
r20

(

1 − ln
(

r20
)

)

; ζ1 = − f0
2
r20 .

Since the load function f1 is discontinuous but polynomial within both intervals [0, r0) and (r0, 1],
in cannot be contained in H1(Ω). Consequently, the analytical solution x of the Dirichlet problem
is an element of the space H2(Ω), but is not contained in H3(Ω).
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Example B:

f2(r) :=























f0 ; 0 ≤ r ≤ r1

f0
r − r2
r1 − r2

; r1 ≤ r ≤ r2

0 ; else .

We can apply the very same methodology we have just outlined to find the analytical solution of
the Dirichlet problem, which corresponds to the above load function. Our ansatz u ∈ C1,1([0, 1])
for the radial dependency of the solution contains 4 parameters, which we cannot fix a priori with
a view to the boundary conditions u′0(0) = 0 and u2(1) = 0. We find:

x(r, φ) =















ζ0 − f0/4 r
2 ; 0 ≤ r ≤ r1

ζ1 + ζ2 ln(r) − ( ζ3 + ζ4 r ) r2 ; r1 ≤ r ≤ r2

ζ5 ln(r) ; else .

At the points r1 and r2 the following interface conditions must be met to warrant the required
regularity of the analytical solution: ui−1(ri) = ui(ri), u

′
i−1(ri) = u′i(ri) with i ∈ {1, 2}. Hereby,

as in the previous example, the symbol u0 designates the restriction of the ansatz u onto the
first interval (0, r1), the symbol u1 designates the restriction of u into the interval (r1, r2) and u2

denotes the restriction of u onto the third interval (r2, 1). The remaining parameters read:

ζ3 : =
f0 r2

4 (r2 − r1)
; ζ4 : =

f0
9 (r1 − r2)

.

The algebraic manipulations necessary to compute ζ0 through ζ2 and ζ5 are cumbersome but
straightforward. Therefore, they shall not be detailed here. We note, that the analytical solution
x is contained but in H3(Ω), since the load f2 is not smooth enough: f 6∈ H2(Ω).

Example C:

f3(r) := e−
α
r

{ (

1 − 1

r

) α2

r4
+

3α

r4
− α+ 1

r3

}

; r ≥ 0 .

The last example is intended to provide a smooth solution, which can nevertheless prove difficult
to approximate by a finite elements scheme due to its steep gradients and a peculiar behaviour
in some neighbourhood around the centre of the computational domain. The load f3 has been
obtained simply by applying the Laplace operator to the targeted solution:

x(r, φ) = e−
α
r

(

1 − 1

r

)

; r ≥ 0 .

The parameter α > 0 controls the character of the function x. In the limit α→ 0, the analytical
solution features a pole. Therefore, the finite dimensional problem will have an ”almost singular”
solution, if α is but small enough. The numerical experiments are carried out with α = 3/4.

5.2.2 On the choice of certain constants

Unfortunately, both the evaluation of hypercycle estimates and the computation of conventional a
posteriori error estimators based on element residuals require our knowledge of quantities, which
we can but estimate in most situations. In the first case, we have to determine a positive lower
bound for the constant λ0 which we have introduced in (1.4) to describe the coercivity of the
operator Λ. In the latter case we must find two numbers: a stability constant L0 > 0, which is
related to the continuity of the operator L := (Λ∗Λ)−1:

‖ Lx∗ ‖
X

≤ L0 ‖x∗‖
X∗ ; x ∈ X ,

and an interpolation constant C > 0 describing the accuracy of the finite element interpolation
operator Ih : H1(Ω) −→ P kc (Mh). Let hM denote the diameter of some element M ∈ Mh. We
may define the sharpest possible interpolation constant on that particular element by:

CM : = sup
v∈H1

0 (Ω)

‖ v − Ihv ‖M
hm | v |

M,1

resp.: C̃M : = sup
v∈H1

0 (Ω)

‖ v − Ihv ‖∂M√
hm | v |

M,1

.
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If these number were known for each element in the mesh Mh, the global interpolation constant
C would be computable in accordance with section 3.3.1 as:

C : = sup
v∈H1

0 (Ω)

1

| v |
Ω,1

{

∑

M∈Mh

(

C2
M + C̃2

M

)

| v |2
M,1

}1/2

≤ max
M∈Mh

√

C2
M + C̃2

M .

To all practical purposes, the above expression is impossible to determine exactly. Moreover, any
modification to the mesh Mh will affect the interpolation constant. Hence, it would be necessary
to reassess the approximation properties of the finite element space several times during the
course of any finite element computation, which relies on local mesh refinements to reduce the
approximation error. Since the residual based error estimator is known to be asymptotically
exact, we may hope, to provide sharp estimates for C simply by evaluating the a posteriori error
bounds and tuning the constants accordingly. However, such an approach may require us to solve
our variational problem (or alternatively any other problem, whose stability constant is known
to us) on increasingly finer meshes to a higher accuracy than may really be necessary. For if
we do not carry this refinement procedure far enough, we can never rule out the possibility of
underestimating the interpolation constant.

The Poincaré constant, respectively its inverse λ0, as defined by (1.4), may be difficult to
compute for arbitrary domains Ω ⊂ R

n. In the case of a circular disc with radius 1 the calculations
are extremely simple, however. Using polar coordinates we can express the Euclidean norm of
the gradient ∇v of some smooth function v ∈ C∞

0 (Ω) by:

∥

∥∇v
∥

∥

2

R2 =

∣

∣

∣

∣

∂v

∂r

∣

∣

∣

∣

2

+
1

r2

∣

∣

∣

∣

∂v

∂φ

∣

∣

∣

∣

2

≥
∣

∣

∣

∣

∂v

∂r

∣

∣

∣

∣

2

.

We infer, that it is sufficient to introduce the radial derivative into the integral, which represents
the L2-norm of v. In fact, we may exploit the identity:

v(r, φ) = −
1

∫

r

∂v

∂r
(ρ, φ) d ρ ; r ∈ [0, 1]

and bound the square of the norm ‖ v ‖Ω with the help of Hölder’s inequality:

2π
∫

0

1
∫

0

r
∣

∣

∣

1
∫

r

∂v

∂r
d ρ

∣

∣

∣

2

d r d φ ≤
2π
∫

0

1
∫

0

{

r

1
∫

r

ρ
∣

∣

∣

∂v

∂r

∣

∣

∣

2

d ρ

1
∫

r

d ρ

ρ

}

d r d φ

≤
{

2π
∫

0

1
∫

0

ρ
∣

∣

∣

∂v

∂r

∣

∣

∣

2

d ρ dφ

} {

1
∫

0

r

1
∫

r

d ρ

ρ
d r

}

≤ − | v |2
Ω,1

1
∫

0

r ln(r) d r =
1

4
| v |2

Ω,1
.

By density we can extend the above result to any function v ∈ H1
0 (Ω). We conclude, that we

may bound the parameter λ0 from below by 2.

Remark 5.1 In the present context the stability constant L0 reads exactly 1. The interpolation
constant C will depend on the mesh depicted in figure 5.2. Since the mesh is refined but uniformly
with each triangle being split into four self-similar elements, the mesh adaption will not affect
this latter quantity. We have chosen C = 1.0, though the example 3 in [49] demonstrates, the
local interpolation constants CM alone can become as large as 1.5. Our choice is prompted by
the possibility, that the estimate in [49] may be overly pessimistic for a substantial number of
elements, and the consideration, that many people will start their finite element computations in
default of more accurate data with just this value to scale the element residuals.
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5.2.3 Error estimates on uniformly refined meshes

Having introduced those problem, which shall constitute our test bed for the hypercycle estimates
we have derived in chapter 1, let us proceed by comparing the performance of various a posteriori
estimates for the approximation error under uniform mesh refinement. The finite element scheme
is implemented on meshes, which have been obtained from the very mesh depicted in figure 5.2 by
successive one on four refinement of all elements in the top layer as illustrated in figure 4.5. The
coarsest mesh has been created with an external tool, called Triangle [132], which creates quality
conforming Delauney triangulation for basically any domain, whose boundary may be described
by a planar straight line graph. Our results have been collected in appendix C. Throughout that
section we use the following notation: xh ∈ P 1

c (Mh) denotes an approximation to the analytical
solution x0 ∈ H1

0 (Ω) of the primal formulation. The vector fields ρ0 ∈ R0
c(Mh), ρ1 ∈ R1

c(Mh) and
σ1 ∈ B1

c (Mh) designate numerical solutions of the corresponding dual formulation. Additionally,
the vector fields ρ̂0 ∈ R0

c(Mh), ρ̂1 ∈ R1
c(Mh) and σ̂1 ∈ B1

c (Mh) are obtained from:

τ̂h ∈ Yh : 〈 τ̂h, τh 〉Ω = − (xh,∇· τh )
Ω

; τh ∈ Yh (5.1)

with Yh denoting one of the three vector valued trial spaces mentioned above. The quantity
H∗(xh, τ) designates a generalised hypercycle estimate for the numerical approximation xh, which
is evaluated at the point τ ∈ Hdiv(Ω). The asterisk indicates, that this estimate is optimal with
respect to the equilibration parameter κ. If the vector field τ ∈ (P 1

c (Mh))
2 has been obtained

from the gradient ∇xh of the numerical solution with the help of the averaging operator Π
introduced in section 3.3.1, we abbreviate the generalised hypercycle estimate by H∗(xh). Again,
the equilibration parameter κ is chosen in such a way, that the resulting error bound is minimal.
Each of the hypercycle estimates consists of the following two components:

M (κ)

D (xh, τ) :=
1 + κ

κ
‖∇xh − τ ‖2

Ω
; M (κ)

R (xh, τ) :=
1 + κ

λ2
0

‖∇· τ + f ‖2
Ω
.

Figure 5.2: The coarsest mesh

2.
0

Number of Vertices:  553
Number of Edges:  1536
Number of Elements:  984

The asterisk indicates, whether the optimal equilibration parameter κ∗ has been selected. This
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quantity can be computed for any initial choice of the parameter κ > 0 by the formula:

κ∗ : =

√

κM (κ)

D (xh, τ)

M (κ)

R (xh, τ)
. (5.2)

By Rh(xh) we denote the conventional a posteriori error estimator discussed in section 3.3.1,
which is based on element residuals. The ratio between some estimate of the approximation error
and its true value is usually termed the efficiency index of the error estimator. Provided the error
bound is reliable, this quantity is larger or equal 1:

Ieff : =

√

H(κ)(xh, τ)

|xh − x0 |Ω,1
.

In the following we will not trace the dependence of Ieff either on the character of the error
estimate employed or on our choice of the dual parameter τ .

Figure 5.3: Efficiency Indices Ieff for various Error Estimates
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Our findings are summarised in figure 5.3. The numerical results corroborate the deliberations,
we have put forth in section 3.3.1, that the efficiency index of the hypercycle estimate (2.8) cannot
be bounded uniformly in the mesh parameter h, unless the data of the problem has some surplus
smoothness. The degradation of the error bound is caused by the introduction of Friederich’s
inequality in order to control the residual in the first duality relation. Consequently, the second
contribution M (κ)

R (xh, ·) to the hypercycle estimate H(κ)(xh, ·) is lacking two powers of the mesh
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parameters h if compared to the first contribution M (κ)

D (xh, ·). To some extent, this imbalance is
compensated for by the equilibration mechanism implemented through (5.2).

Projecting the gradient of the primal approximation into a conforming trial space appropriate
for the numerical solution of the dual formulation, fails to produce satisfactory error estimates,
even if the analytical solution is sufficiently smooth. To a somewhat lesser extent this also holds
true for the simple gradient recovery scheme we have discussed in section 3.3.1. A closer look at
the tables in appendix C reveals, that the disappointing results are again caused by the lacking
convergence of the residual expression associated with the first duality relation. Interestingly, the
use of trial spaces with more degrees of freedom to satisfy the admissibility condition ∇·σ+f = 0
does not improve the resulting hypercycle estimates. On the contrary, projecting the gradient
∇xh of the primal approximation into Raviart-Thomas spaces of higher order proves futile!

Provided the data is smooth enough and the dual parameter has been obtained by solving
the dual formulation of the Laplace problem numerically, the efficiency indices of the various
hypercycle estimates stay uniformly bounded. Moreover, if a Raviart-Thomas space of higher
order is employed and if the load function is contained at least inH2(Ω), the resulting error bound
even seems to be asymptotically exact. Our results for the example B may be too optimistic, as
in this particular case the load function is contained in the image of the ansatz R1

c(Mh) under
the action of the divergence operator but for two concentric annuli, whose joint area shrinks in
proportion to the mesh parameter h.

5.2.4 Minimising the generalised hypercycle estimates

The unsatisfactory results of exploiting the mapping, which connects the solution of the primal
formulation with that of its dual counterpart, prompt us to look for other inexpensive methods of
computing sharp hypercycle estimates. On such method may consist in applying an optimisation
algorithm to improve an existing error bound. Since the hypercycle estimate H(κ)(xh, ·) is a
convex functional, we may for instance use a line search procedure to relax each degree of freedom
in turn, associated with the dual parameter σh. Actually, our numerical tests rely on a line
search algorithm, which is based on the successive employment of quadratic interpolation and
the minimisation of the interpolant. The algorithm is known under the denomination Bracketing.
An exhaustive description of its functionality can be found e. g. in [140].

As the evaluation of the error bound H(κ)(xh, ·) requires a complete sweep across the top
layer of the mesh Mh, the computational effort would be prohibitive, if we implemented the
line search procedure in a straightforward fashion. However, we may decompose the hypercycle
estimate into sums of local contributions, such that the line searches will affect only one of these
contributions at a time. Let ψi ∈ P 1

c (Mh) denote the shape function associated with the vertex
ξi ∈ Ω respectively the degree of freedom indexed i. By Ωi ⊂ Ω let us designate the support of
said shape function. We introduce the quantities:

H
(κ)

i (xh, τ) :=
κ+ 1

κ

∫

Ωi

{

(∇xh − τ )2 +
κ

λ2
0

(∇· τ + f )2
}

d ξ ; τ ∈ Hdiv(Ω)

for any degree of freedom, that is featured by the ansatz P 1
c (Mh). Let us suppose, that the dual

parameter τh be contained in the trial space (P 1
c (Mh))

2. We may compute the update of the
objective function H(κ)(xh, ·) along some vector τ ψi ∈ R

2 by the formula:

H(κ)(xh, τh + τ ψi) = H(κ)(xh, τh) + H
(κ)

i (xh, τh + τ ψi) − H
(κ)

i (xh, τh) .

Consequently, a full sweep of the mesh is necessary but once to provide an initial value for the
objective function H(κ). Each line search can then be performed by calculating only the offsets
H

(κ)

i . If the dual parameter τh is sought in some Raviart-Thomas space, the procedure can stay
basically unchanged: only the patches Ωi differ.

One step of the optimisation procedure consists in a successive relaxation of all the degrees
of freedom, which define the dual parameter. The outer iteration may be terminated as soon
as a significant improvement of the error estimate H(κ)(xh, ·) can no longer be achieved. In our
numerical experiments we have simply performed a fixed number of relaxation sweeps without
monitoring the progress of the optimisation. The number of sweeps is indicated by a superscript to
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the name of the dual variable. The notation is essentially the same as in the previous section: σ̂(n)

1

for instance denotes the result of n optimisation loops applied to the vector field σ̂1 ∈ R1
c(Mh),

the solution of the variational statement (5.1), while τ (n) ∈ (P 1
c (Mh))

2 designates the outcome
of n optimisation steps applied to the smoothed gradient Π(∇xh) of the primal approximation.

Figure 5.4: The impact of Optimisation on the Efficiency Indices Ieff
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Comparing the entries in the tables 5.3 and 5.4 we note, that the efficiency indices of those
hypercycle estimates, which are based on the solution of the dual formulation, are hardly affected
by a subsequent optimisation of the error bound. Those estimates, however, which have been
computed with the help of a projection respectively a smoothing of the gradient ∇xh, benefit
significantly from the post-processing. On coarser meshes the resulting error bounds are even
comparable to those results obtained from approximating the dual solution. On finer meshes a
fixed number of optimisation steps is insufficient to guarantee uniform bounds on the efficiency
indices, let alone asymptotically exact estimates. In particular, the lack of convergence becomes
apparent, when Raviart-Thomas elements of higher order are employed. As we should be able
to obtain superior results, if we continued the optimisation procedure but long enough, it might
be worthwhile to look for improved optimisation algorithms. Our relaxation method has been
implemented with a view to simplicity and universal applicability: it has no other merit.

If we combine it with several optimisation steps, the gradient recovery scheme defined by (5.1)
yields results, that are only slightly inferior to those hypercycle estimates based on lowest order
elements of Raviart-Thomas type. Considering the fact, that at least the trial space B1

c (Mh)
features much more degrees of freedom than the ansatz (P 1

c (Mh))
2, the quality of the error

bounds H∗(xh, τ
(10)

h ) is quite remarkable. We may surmise, that our regularity assumptions on
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the data of the Laplace problem, which cause the analytical solution of the dual formulation to be
contained in the space H1(Ω,R2), can be held responsible for the lacking edge of discontinuous
trial fields.

5.2.5 Alternative Approaches

The numerical results we have compiled in the tables C.5, C.6 and C.7 indicate, that the residual
MR(xh, ·) in the second of the two duality relations (1.12) is not properly accounted for, when
the dual parameter is computed by smoothing the gradient ∇xh of the numerical solution with
the help of the projection (5.1). The effect is particularly pronounced when higher order elements
are employed to represent the dual parameter. We may try and reduce the incriminated residual
by modifying the projection in accordance with the following rationale: The analytical solution
σ ∈ Hdiv(Ω) of the dual formulation meets the condition

(∇· τ,∇· σ )Ω = − ( f,∇· τ )Ω ; τ ∈ Hdiv(Ω) .

Hence, it seems reasonable to combine the above equation with (5.1) and replace the L2-projection
with some sort of Hdiv-projection. To warrant an uniform bound on the numerical complexity of
the smoothing algorithm, we must ensure, however, that the condition number of the projection
matrix stays bounded. One possibility consists in scaling a part of the matrix with the square of
the mesh parameter h to suppress the impact of the first derivatives:

〈 τh, σ̃h 〉Ω + α0 h
2 (∇· τh,∇· σ̃h )Ω = − ( α0 h

2f + xh,∇· τh )Ω ; τh ∈ Yh .

Hereby, Yh ⊂ Hdiv(Ω) denotes a suitable trial space. In our experiments the parameter α0 > 0
was defined by the requirement α0h

2 = 0.02 to be met on the coarsest level of the triangulation.
The notation, we use in the tables C.11 through C.13 and in the summary, figure 5.5, is basically
the same as in the other tables: A tilde indicates, that the vector field has been obtained by the
Hdiv-projection we have just specified. Fields without a tilde have been obtained by solving the
dual formulation numerically. As in section 5.2.3 the greek letters and the subscripts signify our
choice of the ansatz respectively the polynomial order of the trial fields.

The hypercycle estimate (2.8) has been introduced with a view to avoiding the dual norm
which is present in the more accurate error bound (2.7). Generally speaking, we are unable to
assess said norm, whence the latter estimate is not practicable. However, we may control the dual
norm by the same device we employ in the computation of conventional error estimates, which are
based on element residuals. Assuming the field σh ∈ Hdiv(Ω) satisfies the admissibility constraint
∇· σh + Pkf = 0 exactly, we can exploit the best approximation property of the L2-projection:

|∇· σh + f |Ω,−1 = sup
v∈H1

0 (Ω)

( f − Pkf, v − P0v )
Ω

‖∇v ‖
Ω

≤
{

∑

M∈Mh

C2
M h2

M ‖ f − Pkf ‖2
M

}1/2

.

A priori, the values of the local interpolation constants CM > 0 are unknown. While the choice
of safe upper bounds for these quantities can seriously deteriorate the accuracy of a residual
based error estimator, the generalised hypercycle estimate (2.7) is not affected by too pessimistic
estimates: the above bound on the dual norm is but a higher order perturbation, so the choice
of the interpolation constants becomes inconsequential on finer meshes. Let us define:

M (κ)

−1 (xh, τ) :=
(

1 + κ
)

{

∑

M∈Mh

h2
M ‖ f + ∇· τ ‖2

M

}

(5.3)

for any vector field τ ∈ Hdiv(Ω). With a view to [49] we can assert, that all the interpolation
constants CM are smaller than 1. Hence, the above quantity constitutes an upper bound on the
second part of the hypercycle estimate (2.7) - if only under the condition, that the field τ meet
the requirement ∇· τ + P0f = 0. The most straightforward method of obtaining such a field
consists in solving the dual formulation

J∗(τ) = F ∗(τ) + G∗(∇· τ) −→ min
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Figure 5.5: Alternative Methods of Computing Hypercycle Estimates

���������	�
��� ������	����� ����������� ����������� ����������� ����������� �����������
 "!#%$'&)(+*-,�.�/10 2 ��3 45� ��3 6�4 �53 ��7 �53 �5� �53 �5�
 8!#9$ &:(+*-,�;=<�0 2 ��3 �5� ��3 ��4 �53��>7 �53���� �53����
 8!#9$ &:(+*-,�;=<�0 2 ��3 ��� ��3��>4 �53��5� �53 �57 �53 ��4
 8!5&:(?*-,%@.9/10 2 A 3 �56 �>��3 ��� �>B�3 ��� �>B%3 7�B � A 3 ��B
 8!5&:(?*-,%@.DC $)EGF/ 0 2 A 3 �
� �>��3 �
7 �>��3 7�B �>B%3 756 � A 3 ���
 ! &:(+*-,�@;=<�0 2 4%3 B�6 B%3 B5B �>��3 4�� �>B%3 6 A ��4%3 B�6
 "!�&:(+*-,5@;�C $)EHF< 0 2 4%3 B�6 B%3 B57 �>��3 6
B �>B%3 6�6 ��4%3 B��
 8!5&:(?*-,%@.D<I0 2 ��3 4 A 4%3 6
� 7�3 45B �1�93 � A � A 3 ���
 ! &:( * ,%@.DC $)EGF< 0 2 ��3 454 4%3 65� 7�3 4�� �1�93 �
4 �>4%3 A 6
 "!#%$'&)(+*-,�.�/10 J ��3 ��6 ��3 �5� �53 � A �53 � A �53 ��6
 8!#9$ &:(+*-,�;=<�0 J ��3��5� ��3 ��6 �53 �5� �53 ��� �53 �%�
 "!#%$ &)(+*-,�.-<I0 J ��3 ��� ��3 �5� �53 �5� �53 �5� �53 ���
 ! &:(?*-,%@.9/10 J �%3 ��� �%3 ��6 ��3���� ��3 �5� ��3 6
4
 8!5&:(?*-,%@.DC $)EGF/ 0 J �%3 �5� �93 B57 �%3 B57 ��3 ��� ��3 �56
 ! &:( * ,�@; < 0 J �93 A 4 �93 A 7 �%3 7�� �%3 B�6 ��3��>�
 "!�&:(+*-,5@;�C $)EHF< 0 J �93 A 6 �93 A � �%3 A � �%3 A � �%3 A�A
 8!5&:(?*-,%@.D<I0 J ��3 �54 ��3 6
� �53 B�� �%3 6 A ��3 7��
 8!5&:(?*-,%@.DC $)EGF< 0 J ��3 ��7 ��3 ��7 �53 ��� �53 4�� �53 756
 ! #%$'&)(+*-,�.�/10 K ��3 656 ��3 �5� �53 �54 �53 ��� �53 ���
 8!#9$'&:(+*-,�;=<�0 K ��3 ��7 ��3��>4 �53 �57 �53 ��� �53 �5�
 "!#%$'&)(+*-,�.-<I0 K ��3 �5B ��3 ��� �53 ��� �53 �5� �53 ���
 8!5&:(?*-,%@.9/10 K 4%3 ��� A 3��16 A 3 �
� A 3 ��7 A 3 ���
 8!5&:(?*-,%@.DC $)EGF/ 0 K 4%3 ��� A 3��1� A 3��>B A 3 ��� A 3 �9�
 8!�&:(+*-,�@;=<�0 K 4%3��>4 4%3 7�6 4�3 B5� 4�3 B54 A 3 ���
 ! &:(+*-,5@;�C $)EHF< 0 K 4%3��>4 4%3 7�� 4�3 B5� 4�3 B�� 4�3 B5�
 8!5&:(?*-,%@.D<I0 K �93 A 7 �93��1� �%3��1� �%3 4�� ��3 7%�
 8!5&:(?*-,%@.DC $)EGF< 0 K �93 A 4 ��3 B5B �53 A 4 �53 A 6 �53 7%�

of the Dirichlet problem with an ansatz of Raviart-Thomas type. Once the solution of the dual
mixed discretisation has been computed, further processing of the hypercycle estimate

H(κ)

−1 (xh, τ) := M (κ)

D (xh, τ) + M (κ)

−1 (xh, τ) (5.4)

is very difficult, however: any optimisation algorithm designed to improve the hypercycle estimate
H

(κ)
−1 is required to observe the admissibility constraint ∇· τ +P0f = 0, which introduces a global

coupling between all the degrees of freedom associated with the dual parameter τ . In consequence,
fast line search procedures as the one described in section 5.2.4 can no longer be employed. The
optimal equilibration parameter κ∗ is determined by the formula (5.2).

5.3 Energy Error Estimates for the Obstacle Problem

The analysis of the alternative hypercycle estimate originally introduced in the technical report
[41] has proved difficult and the results, we have obtained in section 3.3.2, remain somewhat
unsatisfactory. Our efforts have been hampered by the fact, that the analytical solution is but
of limited smoothness, even if the data of the obstacle problem is analytic. With a view to the
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deliberations, we have offered in paragraph 2.2.8, we may expect the alternative error bound
(2.19) to perform better than the generalised hypercycle estimate (2.16). However, we have been
unable to quantify the discrepancies between both error estimators. In the following paragraphs
we shall try and indicate the differences by a number of very simple numerical experiments, which
involve the same meshes we have already employed in section 5.2. We will moreover indicate a
procedure, by which an upper bound for the more precise hypercycle estimate (2.15) can be
obtained from the solution of a suitably modified dual problem.

5.3.1 Obtaining the Analytical Solution

Obtaining the analytical solution of an obstacle problem is practically impossible, unless the data
of the problem admits a trivial solution or the contact set is actually void. However, in certain
cases, essentially one-dimensional in nature, we may construct the analytical solution in such
a way, that the function depends but on a single parameter, which we can determine with a
simple fixed point iteration. Let us suppose, that the domain Ω ⊂ R

n is a circle with radius 1
centered around the origin. Let us further suppose, that the obstacle be flat and that the forcing
function be constant f ≡ 4. If the obstacle function ψ ≡ ψ0 were smaller than −1, the solution
u ∈ H1

0 (Ω) of the variational problem (2.12) would be a simple parabola. Let us therefore assume
ψ0 ∈ (−1, 0). Employing radial coordinates we may stipulate an ansatz of the form:

u(r) :=

{

ψ0 ; 0 ≤ r ≤ r0

1 − r2 + ζ0 ln(r) ; else .

We note, the above function meets the homogeneous Dirichlet boundary conditions. Moreover,
the Laplace equation for radially symmetric functions is met on an annulus defined by r0:

− 1

r

∂

∂r

(

r
∂

∂r
u

)

= f ; r ∈ (r0, 1) .

In accordance with the regularity theory for variational inequalities we can expect our solution
to be Hölder continuous: u ∈ C1,1([0, 1]). Hence, we must ensure that both our ansatz and it’s
first derivative are continuous at the boundary of the coincidence set as specified by the a priori
unknown parameter r0. We conclude:

ψ0 = 1 − r20 + ζ0 ln(r0) ∧ 0 = − 2r0 + ζ0 r
−1
0 .

Eliminating the parameter ζ0 we find a nonlinear equation for the radius of the coincidence set:

1 − ψ0 = r20 − r20 ln(r20) .

It’s solution can be easily obtained up to machine-precision with the help of the following iterative
scheme, which we may start e. g. with the initial choice ρ(0) = 10 and terminate, once the distance
between two succeeding iterates has become smaller than some prescribed threshold:

ρ(n+1) : = Φ(ρ(n)) :=
1 + ln(ρ(n))

1 − ψ0
.

We note, that 0 < Φ′(ρ) < 1 holds for any argument ρ > 1. Moreover, Φ(1) is larger than 1. In
consequence, the above iteration schemes admits an unique fixed point ρ∗ > 1. Once this point
has been found, we can recover the parameters r0 and ζ0 by:

r0 =
1√
ρ∗

; ζ0 =
2

ρ∗
.

5.3.2 Residual based Error Estimates

The conventional approach to estimating the residual in some dual norm cannot be applied to
the obstacle problem for basically two reasons: the very residual does not provide any sensible
information on the accuracy of our numerical solution and secondly we are unable to assess the
norm, since that function lacks the best approximation property. To employ a conventional direct
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error estimator nevertheless, it is necessary to replace the constrained minimisation task with an
unconstrained penalty formulation of the obstacle problem. Let us assume, that ε : Ω −→ R

+ is
a ”small” positive function and that uε ∈ H1

0 (Ω) solves the following nonlinear problem:
∫

Ω

{

(∇v)T ∇xε +
v

ε
min{0, xε− ψ}

}

d ξ = 0 ; v ∈ H1
0 (Ω) .

As with all direct a posteriori error estimators we must suppose, that the numerical approximation
xh ∈ H1

0 (Ω) ∩ P 1
c (Mh) solves the finite dimensional counterpart of the above statement exactly:

〈∇xh,∇vh 〉Ω + ( ε−1 min{0, xh − ψ}, vh )Ω = ( f, vh )Ω (5.5)

with vh ∈ H1
0 (Ω)∩P 1

c (Mh) denoting an arbitrary test function. Exploiting the so called Galerkin
orthogonality of the numerical solution xh described by (5.5) along with the usual approximation
results for the trial space P 1

c (Mh), we can indeed find a computable upper bound on the energy
error in terms of a nonlinear residual. Let g− := min{0, g} ∈ H1(Ω) denote the negative part of
the function g ∈ H1(Ω). (The regularity of g− is proved e. g. in [101]). We contend:

|xε − xh |2Ω,1 = ( f, xε − xh )
Ω
− 〈∇xh,∇(xε − xh) 〉Ω − ( ε−1(xh − ψ)−, xε − xh )

Ω

−
(

ε−1(xh − ψ)− − ε−1(xε − ψ)−, (xh − ψ) − (xε − ψ)
)

Ω

≤
∑

M∈Mh

∫

M

(

f − ε−1(xh − ψ)−
)(

xε − xh
)

d ξ +

∮

∂M

∂xh
∂n

(

xε − xh
)

ds

≤
∑

M∈Mh

CM

{

h
M

∥

∥

∥
f − (xh − ψ)−

ε

∥

∥

∥

M

+
√

h
M

∥

∥

∥

[∂xh
∂n

]∥

∥

∥

∂M

}

∣

∣xε − xh
∣

∣

M,1
.

Hence, as far as the penalty formulation is concerned, the final a posteriori error estimate reads:

Rh,ε(xh) :=

{

∑

M∈Mh

C2
M

{

h2
M

∥

∥

∥
f − (xh − ψ)−

ε

∥

∥

∥

2

M

+ h
M

∥

∥

∥

[∂xh
∂n

]∥

∥

∥

2

∂M

}

}1/2

.

However, there is also a consistency error to be taken into account. With a view to the necessary
optimality condition for the solution x0 ∈ Vψ of the obstacle problem (2.12) we may state:

|xε − x0 |2Ω,1 = ( f, xε − x0 )
Ω
− 〈∇x0,∇(xε − x0) 〉Ω − ( ε−1(xε − ψ)−, xε − x0 )

Ω

≤ ( f, (xε − ψ)− )Ω − 〈∇x0,∇(xε − ψ)− 〉Ω − ( ε−1(xε − ψ)−, xε − x0 )Ω

= 〈∇(xε − x0),∇(xε − ψ)− 〉
Ω

+ ( ε−1(xε − ψ)−, x0 − ψ )
Ω

≤ |xε − x0 |Ω,1 | (xε − ψ)− |
Ω,1

. (5.6)

In the course of the above computations we have used the fact twice, that we can decompose the
function xε into two contributions, one of which is an admissible test function for the obstacle
problem: xε = (xε − ψ)− + (ψ + (xε − ψ)+). We have used furthermore, that (xε − ψ)− and
(xε − ψ)+ are mutually orthogonal. Due to the latter fact we find:

| (xε − ψ)− |2
Ω,1

+ ‖ ε−1/2 (xε − ψ)− ‖2
Ω

= ( f + ∆ψ, (xε − ψ)− )
Ω

,

for (xε − ψ)− ∈ H1
0 (Ω) is an admissible test function and ψ ∈ H2(Ω) holds by assumption. The

above result implies both a bound on the norm an on the seminorm in terms of the data:

‖ ε−1/2 (xε − ψ)− ‖2
Ω

≤ ‖ ε1/2 (f + ∆ψ) ‖
Ω

‖ ε−1/2 (xε − ψ)− ‖
Ω

≤ ‖ ε1/2 (f + ∆ψ) ‖2
Ω
.

Combining this latter estimate with (5.6) we conclude:

|xε − x0 |Ω,1 ≤ Sε(f, ψ) := ‖ ε1/2 (f + ∆ψ) ‖Ω . (5.7)
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With a view to (5.7) we must ensure, that the function ε is coupled to the local mesh width in
accordance to ε ' h2 in order to ensure, that the consistency error has the asymptotic behaviour
under mesh refinement as the error bound Rh,ε for the penalty formulation (5.5). The final a
posteriori error estimate for the obstacle problem consists of both contributions:

|xh − x0 |Ω,1 ≤ Sε(f, ψ) + Rh,ε(xh) . (5.8)

5.3.3 Miscellaneous Remarks on the Experiments

Both the generalised hypercycle estimate for the Laplace and for the obstacle problem depend
on the equilibration parameter κ in a very simple fashion: once the dual variable τ has been
determined, the optimal value κ∗ can be obtained a posteriori with the help of formula (5.2).
Unfortunately, the dependency of the alternative error estimate (2.19) on the parameter κ is much
more involved, as we have learned in the sections 2.2.7 and 2.2.8. The sharpest error bound can
certainly be obtained by minimising the hypercycle estimate

H(κ)(xh, τ) :=
1 + κ

κ
‖∇x− τ ‖2

Ω
+

1 + κ

λ2
0

‖∇· τ + f ‖2
Ω

− 1 + κ

λ2
0

∥

∥

∥
0 ∧

(

λ2
0

x− ψ

1 + κ
+ ∇· τ + f

) ∥

∥

∥

2

Ω

with respect to both the vector field τ and the parameter κ. From a practical point of view a
simultaneous minimisation algorithm is difficult to implement, however. A more conventional
minimisation algorithm similar to the one described in section 5.2.4 will allow chiefly for local
couplings between the degrees of freedom associated with the field τ , while changes in κ will affect
all these quantities in an equal measure. Adjusting the equilibration parameter κ while sweeping
the mesh may therefore severely obstruct the minimisation process. An alternating procedure,
which combines relaxation sweeps to improve τ with a fixed point iteration to determine κ∗ may
possibly be the best solution.

Figure 5.6: Finding the Optimal Equilibration Parameter

Supplied: κ > 0, ε > 0, τ ∗h ∈ Hdiv(Ω), xh ∈ Vψ

Loop: {

1) Set: κold := κ .

2) Compute the hypercycle estimate:

M (κ)

R (xh, τ
∗
h) :=

1 + κ

λ2
0

‖∇· τ∗h + f ‖2
Ω

− 1 + κ

λ2
0

∥

∥

∥
0 ∧

(

λ2
0

x− ψ

1 + κ
+ ∇· τ∗h + f

) ∥

∥

∥

2

Ω

M (κ)

D (xh, τ
∗
h) :=

1 + κ

κ
‖∇xh − τ∗h ‖2

Ω
.

3) Determine the new equilibration parameter:

κ : =

√

κ M (κ)

D (xh, τ∗h)

M (κ)

R (xh, τ∗h)
.

4) If |κ− κold | < ε holds, terminate the iteration.

}
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In all the experiments, which involve the alternative error estimate introduced in section 2.2.5,
we have employed a far simpler procedure to find an adequate equilibration parameter κ∗: We
compute a vector field τh ∈ Hdiv(Ω) either by solving the dual formulation of the obstacle problem
(see section 4.3.2) or by projecting the gradient of the primal approximation into a suitable trial
space. After some optional post-processing the resulting vector field τ ∗h is frozen. If the initial
vector field is modified by a minimisation procedure, the algorithm is executed with κ being kept
fixed. Once the vector field τ ∗h has been determined, the iteration scheme depicted in figure 5.6
is used to compute a suitable equilibration parameter.

Exploiting the Galerkin Orthogonality

The hypercycle estimates for both the Laplace (2.7) and the obstacle problem (2.15) are not
computable per se, for they involve dual norms of certain residual expressions. By invoking the
inequality (1.4) of Poincaré-Friederich type we can turn them into computable error bounds in
accordance with proposition 1.2. With respect to the Laplace problem an alternative approach
has been outlined in section 5.2.5. If we assume, that the vector field τ ∗h ∈ Hdiv(Ω) solves the
dual formulation exactly, the second part of the estimate (2.7) can be controlled thanks to the
best approximation property of the divergence: ∇· τ ∗h + P0f = 0.

A similar strategy may be applied to the obstacle problem. To find a computable bound for
the second part of the hypercycle estimate (2.15) we must ensure, the dual parameter τ ∗h meets
the condition ∇· τ∗h + P0f = 0 on some domain Ωh ⊂ Ω with the property: Ωx ⊃ Ω \ Ωh. To
obtain a sharp hypercycle estimate, the domain Ωh should be possibly small. We define:

M0
h : =

{

M ∈ Mh

∣

∣ M ∩ Ωx 6= M
}

.

The set M0
h contains all but those elements, which are completely contained within the coincidence

set Ωx of the primal approximation xh. (Regarding the definition of Ωx we refer to section 2.2.3.)
We introduce a new obstacle by reducing the support of the obstacle function ψ:

E : = cl
(

Ω \
⋃

M∈M0
h

cl (M)
)

.

Since E is a simplicial domain, the admissibility constraint ∇· σh + P0f = 0, so to speak, can
be satisfied exactly on its complement, if we but employ a trial space of Raviart-Thomas type to
compute the numerical solution σh of the following variational problem:

1

2
‖σh ‖2 −→ min s. t.: ∇· σh + f

∣

∣

∣

E
≤ 0 .

The resulting hypercycle estimate is basically the same as (5.4). However, with a view to the
original error bound (2.15) the residual contribution (5.3) must be replaced with:

M (κ)

−1 (xh, τ) :=
(

1 + κ
)

{

∑

M∈M0
h

h2
M ‖ f + ∇· τ ‖2

M

}

; τ ∈ Hdiv(Ω) .

The optimal equilibration parameter κ∗ can be determined a posteriori by the formula (5.2).

Solving the Penalty Formulation

If we wish to employ a residual based error estimator for the obstacle problem, we must replace
the constrained minimisation problem with a suitable penalty formulation. One such variational
statement we have analysed in section 5.3.2. Since the problem (5.5) is nonlinear, we cannot use
a conventional multilevel method to compute its solution xh ∈ P 1

c (Mh). One possibility consists
in operating the multilevel algorithm in the so called FAS mode [28]. Another possibility consists
in implementing a fixed point iteration with the help of an appropriate preconditioner for the
stiffness matrix. We have seen in section 5.3.2, that the penalty function ε : Ω −→ R

+ must be
coupled to the mesh width in order to control the consistency error. To ensure the error estimate
is not dominated by the consistency error Sε(f, ψ) this function should be smaller than ε0 h

2
M on

any element M ∈ Mh within the top layer of the mesh.
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Our attempts of using a FAS multilevel scheme on unstructured meshes have failed repeatedly,
when the penalty function ε has been computed be averaging the local mesh parameters hM on
the finest mesh. If the mesh had been obtained through successive global mesh refinements and ε
was calculated on the coarsest mesh, we have been able to run the multilevel iteration successfully.
However, in that latter case the scaling parameter ε0 > 0 must account for the mesh refinement.
Since decreasing ε0 has led to severe performance degradations, we have settled on the alternative
approach to solving the penalty formulation (5.5).

Let m ∈ N designate the degrees of freedom associated with the trial space P 1
c (Mh)∩H1

0 (Ω).
The shape functions of this space shall be denoted by {φi}mi=1. The degrees of freedom can be
identified with the set of those vertices {xi}mi=1, which constitute the interior to the mesh Mh. The
enumeration of these points corresponds to a local enumeration scheme on an element by element
basis, which we will refer to by a double index. In the same way, we shall describe the collocation
points {x̂

M,l
}Ll=1 ⊂ cl (M) and the associated weights {Θ

M,l
}Ll=1 of the numerical cubature scheme,

we employ on some element M ∈ Mh. Let us specify a penalty function ε ∈ P 1
c (Mh) by:

ε(xi) :=
∑

∂M3xi

ε0 h
2
M

; i ∈ {1, . . .m} .

In all of our experiments we have used the value ε0 = 0.2. With a view to the variational problem
(5.5) we define the following nonlinear mapping f : R

m −→ R
m component by component:

fk(ξ) :=
∑

M∈Mh

L
∑

l=1

Θ
M,l

φk(x̂M,l)

{

f(x̂
M,j

) −
{

3
∑

j=1

ε(x
M,j

)φ
M,j

(x̂
M,l

)
}−1

×

max
{

0 ,
3

∑

j=1

(ξ
M,j

− ψ(x
M,j

))φ
M,j

(x̂
M,l

)
}

}

; k ∈ {1, . . .m} .

The stiffness matrix shall be designated S ∈ R
m×m. We have implemented the following iterative

scheme to compute the solution of the problem (5.5):

ξ(n+1) : = ( 1 − ωh ) ξ(n) + ωh S
−1 f(ξ(n)) ; n ∈ N0

starting the iteration with the vector ξ(0) = 0 and using a mesh dependent damping parameter
ωh ∈ [5.2e-4, 7e-2]. Despite the fact, that the action of the matrix S−1 is computed up to machine
precision with the help of a multilevel solver, the performance of the above fixed point scheme has
been disappointing. Below, the map MS : R

m × R
m −→ R

m may designate the action MS(ξ, f)
of just one multilevel V-cycle designed for computing S−1f on the initial vector ξ. We define:

ξ(n+1) : = ( 1 − ωh ) ξ(n) + ωhMS( ξ(n), f(ξ(n)) ) ; n ∈ N0

again starting the iteration with ξ(0) = 0. Using mesh dependent damping parameters ωh this
latter fixed point scheme has been superior in terms of computational effort both to the former
scheme and the FAS multilevel solver. Unfortunately, even by aggressive tuning of the relaxation
parameters ωh we fail to make the method competitive with a conventional multilevel scheme
(see e. g. [106]) for the constrained variational formulation. In figure 5.7 we give an indication of
the numerical complexity.

Figure 5.7: Solving the Obstacle Problem by Penalisation

���������	� ����������
 ���������� �	�������	� �	���������

� ����� 
������ ������� ��
������ 
����������

��� � � ����� ��� ����� � � ������! � � ������� � � ������!��

"$#&% ��')( %+*-,�.0/ ����� ����! 
������ !������ ����
����



130 Chapter 5. Numerical Experiments

5.3.4 A few Remarks on the Numerical Results

In the figure 5.8 we summarise our findings, as far as the computable hypercycle estimates (2.16)
and (2.19) are concerned. We have employed three different trial spaces to produce the dual
parameter, which we have determined either by a projection of the gradient ∇xh into the space
Hdiv(Ω) or by solving the dual formulation of the obstacle problem. Moreover, the line search
procedure described in section 5.2.4 has been adapted to the obstacle problem in order to improve
the error bounds by post-processing the dual parameter. The notation we use in figure 5.8 follows
the very conventions, we have established in the previous sections.

Figure 5.8: Hypercycle Estimates for the Obstacle Problem
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The figure 5.8 shows, that the alternative hypercycle estimate, we have discussed in section
2.2.5, can be much more accurate than our analysis in section 3.3.2 warrants. We must keep
in mind, however, that we are studying an example which is rather contrived: The boundary
of the contact set is a manifold of lower dimension (a simple ring), whence the impact of the
lacking regularity, which the analytic solution of the obstacle problem exibits but here, may be
felt not that severely. Away from the free boundary either the obstacle function is contained in
the primal ansatz, or the admissibility constraint can be satisfied exactly even in the lowest order
case. Though the minimiser of the alternative hypercycle estimate H(κ) has been identified as
the gradient of the solution to the perturbed obstacle problem specified in proposition 2.1, the
numerical solution of the original problem in its dual formulation yields a very good error bound,
that can hardly be improved by subsequent minimisation steps. On the contrary, the results can
even be worse, if we carry out a minimisation procedure without properly fixing the equilibration
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parameter. The generic procedure described in proposition 1.1 delivers somewhat disappointing
hypercycle estimates H∗(xh, ·), which is in keeping with our deliberations in section 2.2.8. Only
after the solution of the dual formulation has been modified by a minimisation procedure, the error
bounds become comparable to the alternative hypercycle estimates. Speaking but in qualitative
terms, the generic estimates derived from the numerical solution of the dual formulation are
similar to those estimates of either type, which rely on the recovery of the gradient by means
of an orthogonal projection. These latter estimates exhibit the asymptotic behaviour we would
expect with a view to the limited regularity of the analytical solution. Indeed, a closer look at
the tables C.2 and C.3 in the appendix C reveals, that the smoothed gradient fails to properly
reduce the residual in the admissibility constraint. With respect ot the alternative hypercycle
estimates H(κ)(xh, ·) we note, that a fixed number of minimisation sweeps is insufficient to remedy
the shortcomings of the smoothed gradient. The generic error estimates, however, respond much
better to such a post-processing scheme.

Figure 5.9: Alternative Estimates for the Obstacle Problem
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Though Raviart-Thomas elements of higher order should, at least in principle, provide us
with error estimates, that are superior to those obtained from lower order discretisations of the
dual parameter, our experiments indicate the contrary. Our findings are difficult to explain:
The minimiser of the hypercycle estimate H(κ) is not identical with the solution of the obstacle
problem in its dual formulation. This discrepancy may be felt the more acutely, the more accurate
our ansatz is. However, the generic estimates H∗(xh, ·) suffer from the use of higher order trial
spaces as well. Consulting the appendix C we see, that the poor performance of the estimates
is caused by the residuals M (κ)

R and M∗
R in the second duality relation. It almost seems, as if

the greater latitude, the higher order elements give as in dealing with these residuals, was the
cause for the difficulties we encounter. Probably, we can improve our results by adapting the
projection scheme, we have described in section 5.2.5, in basically the same way we have modified
the computation of an upper bound for the hypercycle estimate (2.15). Unfortunately, pertinent
experimental data is currently not available to test such a hypothesis.

The second figure 5.9 presents no overwhelming surprises. When we employ the product ansatz
(P 1
c (Mh))

2 to construct the dual parameter we sacrifice some flexibility while using practically
the same shape functions the Brezzi-Douglas-Marini element offers. Therefore, we may expect
such an ansatz to yield error estimates slightly worse than those obtained from Brezzi-Douglas-
Marini elements and slightly better than those derived from Raviart-Thomas elements of lowest
order. In fact, by projecting the gradient ∇xh into the product space we obtain the best results
for the alternative hypercycle estimate (2.19) without actually solving the dual formulation of
the obstacle problem. The performance of the gradient thus smoothed is superior to the other
recovery schemes in the generic case (2.16) as well. However, the continuous vector field seems
to require more minimisation sweeps than any of the other two choices does. The sharpest error
bounds are derived from the estimate (2.15) by the procedure outlined in section 5.3.3. Consulting
table C.1 we find the output of the residual based error estimator somewhat disappointing, even
if we ignore the seizable consistency error Sε and its impact on the efficiency index. With a view
to figure 5.7 decreasing ε hardly seems to be a viable option in any case.
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5.4 Error Estimates on Locally Refined Meshes

The numerical experiments, we have reported in the previous sections, indicate, that generalised
hypercycle estimates can deliver very sharp bounds on the so called energy error |xh − x0 |Ω,1 .
Such high an accuracy comes at a price, however: The computational resources necessary to
define, for instance, the dual parameter ρ1 ∈ R1

c(Mh) exceed by far those, we must dedicate to
the calculation of the primal approximation xh ∈ P 1

c (Mh). In table 5.10 we have compiled the
dimensions of various vector spaces involved in the numerical experiments. Hereby, the function
µi ∈ P i(Mh) designates the Lagrange multiplier for the kinematic admissibility constraint.

Figure 5.10: Numerical Complexity of various Hypercycle Estimates
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It seems evident, that a mesh adaption procedure should provide the very means to improve
hypercycle estimates without overly increasing their computational costs. Below we will present
a few numerical results, which have been obtained by refining the mesh M′

h used to resolve the
dual parameter (see figure 5.1 for an explanation of the notation). In one set of tests the mesh
Mh has been refined globally in each stage of the experiment. Thus the efficiency indices of the
resulting hypercycle estimates can be compared directly against those we have presented in the
previous sections. In a second set of tests the mesh Mh has stayed unchanged. In that way the
impact of the local mesh refinement on the efficiency of the error bounds becomes more apparent.

5.4.1 Error Estimates for the Laplace Problem

To guide the local mesh refinement we use the following simple heuristics: For each element
M ∈ M′

h within the mesh let us compute its contribution to the second partM (κ)

R of the hypercycle
estimate defined by (2.8). Hereby, we must choose the value of the equilibration parameter κ > 0
as we see fit, for its optimal value κ∗ can only be determined a posteriori by (5.2):

M (κ)

R (τ,M) :=
1 + κ

λ2
0

‖∇· τ + f ‖2
M

; τ ∈ Hdiv(Ω) .

We proceed by sorting the elements in descending order with respect to this local indicator.
Having fixed a certain quota α ∈ (0, 1) beforehand we may now schedule the first bαNc elements
of the mesh for refinement, if the total number of elements within the mesh amounts to N . By
the above procedure, also known as fixed fraction strategy we may hope to reduce the impact of
the second component M (κ)

R on the final hypercycle estimate H∗ and to obtain an approximation
of the gradient ∇x0, that is more suitable for the data of the problem.

In all of our experiments we have used the setting κ = 0.5 to determine those elements, we
want to refine. Thereby, the dual parameter τ ′h ∈ R0

c(M
′
h) has been computed as the numerical

solution of the dual formulation (3.40). The general structure of the simulation code is outlined
in section 5.1. The results of the mesh adaption procedure are illustrated in figure 5.16 for the
example C. In this very case, the refinement parameter reads α = 0.1.

Both tables 5.11 and 5.12 demonstrate, that the use of mesh refinement can be beneficial to
the resulting hypercycle estimates. In the case of the latter figure, the advantages of the mesh
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Figure 5.11: Efficiency Indices for Locally Refined Meshes
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adaption are not that apparent. We must not forget, though, that the efficiency index of the
energy error estimate should be multiplied roughly by a factor of two for each refinement level,
we leave the mesh M′

h completely unchanged. There is a trade-off between the accuracy of the
hypercycle estimate and the ratio of those resources we must spend on the solution of the primal
and the dual formulation. If we can accept a deterioration of the error bounds in the course of
successive refinements of the primal mesh Mh, a moderate refinement of the mesh M′

h can lead
to acceptable results, which stay extremely cheap. To give an example: The efficiency index of
the hypercycle estimate H∗(x(C)

h , τ ′h) on refinement level 4 reads 12.66 for a refinement parameter
α = 0.3 and is not even twice as large as the estimate we find in figure 5.3. However, the latter
estimate requires the solution of linear system involving 378816 degrees of freedom for the dual
parameter ρ0 alone, while the former involves but 29010 unknowns to define τ ′h.

If we are primarily interested a tool to guide the refinement of the mesh Mh, computing dual
parameters on coarser meshes is obviously a viable option. If we need accurate error bounds
at all costs, we clearly have to calculate our a posteriori estimates with excess refinement of
the mesh M′

h. Figure 5.11 illustrates, that but little additional refinement may be sufficient to
significantly improve the efficiency of the resulting hypercycle estimate. The impact of the excess
refinement is most pronounced in the example A, where the discontinuity of the forcing function
f must be resolved. Though the mesh M′

h supports but 5475 degrees of freedom on level 4, if we
set α = 0.05, the efficiency index of the corresponding hypercycle estimate is more than halved
compared to the initial result, which requires 1536 degrees of freedom. We beg to note, that the
lacking regularity of the analytical solution x(A)

0 impairs the efficiency of the error bounds, even
when the mesh M′

h is refined globally. The best result we can hope for reads:

Ieff = 1 + O(
√
h′ ) .

Hereby, h′ denotes the local mesh parameter of M′
h in a neighbourhood around the discontinuity
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Figure 5.12: Deterioration of Ieff due to Incomplete Refinement
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of the function f as it has been described in section 5.2.1.

5.4.2 Error Estimates for the Obstacle Problem

Again, let us employ a fixed fraction strategy to adapt the mesh M′
h to the data of the obstacle

problem, we have specified in section 5.2.1. As a local indicator we introduce the quantity:

M (κ)

R (xh, τ,M) :=
1 + κ

λ2
0

{

∥

∥∇· τ + f
∥

∥

2

M
−

∥

∥

∥
0 ∧

(

λ2
0

xh − ψ

1 + κ
+ ∇· τ + f

) ∥

∥

∥

2

M

}

which we define on any element M ∈ M′
h for any vector field τ ∈ Hdiv(Ω). In the case of Laplace

problem, the dependence of the local indicators M (κ)

R (·,M) on the equilibration parameter does
not raise any difficulties. Since all the local indicators are merely scaled by the same amount,
the sort sequence of the elements is not affected by our choice of κ. In the case of the obstacle
problem the situation is clearly different, as the local weights M (κ)

R depend on the equilibration
parameter κ in a nonlinear fashion. The best results could possibly be obtained by running the
algorithm described in figure 5.6 to determine the optimal equilibration parameter κ∗. Once
this quantity would be known, the weights M ∗

R(xh, ·,M) should be computed and the elements
sorted in ascending order with respect to the local indicator. The first bαNc elements were to
be refined, if N designates the total number of elements in the mesh M′

h.
For simplicity, we have fixed κ = 10 in all the experiments reported below. The parameter

τ ′h ∈ R0
c(M

′
h) is determined with the help of the mixed discretisation scheme, we have introduced

in section 4.3.2. The algorithm we use to solve the linear complementary problem (4.13) has
been detailed in section 4.3.4. Again, figure 5.16 may be consulted to learn the general structure
of the simulation code. The computation of the final hypercycle estimate is described in section
5.3.3, while the post-processing of the parameter τ ′h is performed with the help of the relaxation
procedure we have discussed in section 5.2.4. The performance of the resulting mesh adaption
procedure is illustrated in figure 5.17. The refinement parameter reads α = 0.1.

In figure 5.13 the results of two sets of experiments have been collected. In the first set of
tests the local weights M (κ)

R (·, ·,M) have been used. The mesh adaption strategy thus defined
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Figure 5.13: Efficiency Indices for Locally Refined Meshes
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aims at improving the alternative hypercycle estimate derived in [41]. To indicate this fact
the corresponding rows in the table have been tagged with the label H(κ). The second set of
experiments covers the hypercycle estimate we have derived in section 2.2.4. Accordingly, those
rows of the table, which pertain to the estimate (2.16), are labelled by H∗. All the experiments
have been conducted in the same manner except for the definition of the local indicators, which
determine the sort sequence and thence the subset of elements to be refined. In the latter set of
experiments the following indicators have been employed:

M∗
R(τ,M) := ‖∇· τ + f ‖2

M
− ‖ 0 ∧ (∇· τ + f) ‖2

M∩Ωx
; τ ∈ Hdiv(Ω) .

Hereby, Ωx ⊂ Ω denotes the coincidence set of the numerical solution xh.

Figure 5.14: Deterioration of Ieff due to Incomplete Refinement
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Figure 5.14 indicates, that the impact of successive refinements of the mesh Mh, on which
we compute the primal approximation xh, can be compensated for to a reasonable extent by a
local refinement strategy for the ”dual” mesh M′

h. Those remarks we have made with a view
to the table 5.12 clearly apply also here: The trade-off between the computational resources, we
must spent on the calculation of the hypercycle estimate, and the resulting accuracy seems to be
balanced more in the favour of a local mesh adaption, however. The reason for this is probably
the presence of the coincidence set, on which with the numerical solution xh coincides with the
flat obstacle ψ. Since xh can be resolved exactly with trial functions from the ansatz P 1

c (Mh)
even on the coarsest mesh, the mesh adaption should take place mainly outside the coincidence
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set. In consequence, the number of elements affected by a refinement procedure is significantly
reduced and even moderate refinement quota are rendered effective.

Figure 5.15: Numerical Complexity and Local Mesh Refinement

� ����������	 �
�������� ����������� �
�������
� ���������
�

	�� 	�� ������� ������� ������� ��	���� �������

	�����	 ������� ������� ������� ������� �������

�� ! 	������ ������� ������� �"����� ������� ��	������

	�� ��	 ������� ������� ������� ����	�� �������"�

	�� ��	 ������� �����#� ������� ��������� �����#���

	�� 	�� ����� �#����� ������� ��	�	�� �������

	�����	 ����� ������� ������� �"����� �$�����

%  ! 	������ ����� ������	 ������� ������� �������

	�� ��	 ����� ������� �����#� �"����	 ��	������

	�� ��	 ����� ������� �����$� �����"�#� ����	"���

The lacking regularity of the analytical solutions to those constrained variational problems,
which define the minimisers of the hypercycle estimates H(κ) and H∗, impairs the accuracy of
those error bounds, we can actually obtain from dual parameters in some finite dimensional trial
space. The results put forth in the propositions 3.12 and 3.13 are clearly very pessimistic. Their
proof (as well as the material in the section 2.2.7) indicates, that the hypercycle estimates can
benefit substantially from a local mesh refinement around the boundary of the coincidence set.
The mesh parameter prominent in both propositions is actually but a local one related to those
elements of the mesh, in which the regularity of the primal solution breaks down.

Our numerical experiments corroborate this notation, as the figure 5.17 illustrates. The
table 5.13 contains a somewhat puzzling summary of our results: The hypercycle estimate H(κ)

discussed in section 2.2.5 exhibits exactly the behaviour we should expect with a view to our
deliberations in section 3.3.2. The generic a posteriori estimate H∗ however suffers from the
refinement of the mesh M′

h. Since the effect is not felt immediately, we must presume, that the
solution of the obstacle problem in its dual formulation on the adapted mesh M′

h no longer yields
a good approximation for the minimiser of the hypercycle estimate. Moreover, a fixed number of
relaxation sweeps (4 in this case) seems the less appropriate to remedy this problem, the more
degrees of freedom are involved. Our findings are collected in the tables C.20 and C.21. Though
it has not been documented in these tables, we would like to add, that the alternative error bound
H(κ) has proved much less reliant on the post-processing than its generic counterpart.
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Figure 5.16: Local Mesh Refinement for the Model Problem C

Figure 5.17: Local Mesh Refinement for the Obstacle Problem



Conclusion

In the introduction to this text we have outlined the principal mechanisms, which practically all
a posteriori error estimators currently in use rely on. Hence, we shall not repeat here the implicit
assumptions on the data of the problem, which are necessary for their successful application, or
their inherent limitations. By employing analytical techniques from the calculus of variations we
have developed in chapter 1 a more general approach to the computation of a posteriori error
estimates, which covers a wide range of applications: We have focused on those problems

F (Λx) + G(x) −→
x∈X

min

involving a uniformly convex functional F : Y −→ R and a coercive linear operator Λ :X −→ Y ,
a setting first explored probably by Rockafellar [127]. The key to the successful calculation of
bounds on the approximation error ‖Λxh − Λx0 ‖Y is the formulation of a dual problem, which
supplies lower bounds on the minimal ”energy” that we may associate with the solution x0 ∈ X
of the primal formulation. We have focused on this point of view exclusively, though there are a
number of fields (mechanics for instance), in which the dual statement

− F ∗(y∗) − G∗(−Λ∗y∗) −→
y∗∈Y ∗

max

may be the more natural choice to consider. However, the analytical framework we present in
chapter 1 proves to be symmetric with respect to the primal and the dual formulation. Hence, our
methodology enables us to simultaneously devise a posteriori error estimates both for a primal
discretisation scheme and its dual counterpart. In fact, the a posteriori estimators we propose
can be identified in certain generic cases as dual formulations of the original problems, augmented
though by some lower order perturbation terms: The dual formulation of a certain Helmholtz
problem for instance delivers an error bound for the Dirichlet problem and the error estimator for
the obstacle problem proves related to a constrained variational formulation of Helmholtz type.
The introduction of lower order perturbations has already been discussed in the pioneering work
of Babuška and Rheinboldt [16]. While their approach seems ad hoc, our analysis succeeds in
putting their ostensibly technical device into a broader perspective.

In section 1.3 we have employed an augmented Lagrangian to extend our analytical framework
and derive bounds on functional outputs. Though our deliberations have been limited to the study
of quadratic forms, our findings can still be regarded as a significant progress, if we compare them
against known results [116, 121]. Our analysis is easily adapted to the case of either convex or
concave functionals, if we care but for one-sided bounds on their output. In addition, we do not
require any of the quantities involved in the computation of the bounds to satisfy certain auxiliary
problems exactly. Therefore, these bounds are reliable despite the fact, that we usually employ
numerical cubature schemes to assemble the data of the variational formulation and that we do
not solve the discrete problems up to machine precision. A window of inaccuracy, so to speak, is
introduced merely by the numerical procedure, which we evaluate the bound with. Under those
assumptions, which are prerequisite for the more established analytical methods to be applicable,
we find the numerical expense comparable, which we must invest into the computation of our
estimates: An auxiliary problem must be solved to find the preimage of the output under the
action of the elliptic operator, we may associate with the quadratic form F . Subsequently, some
recovery procedure is necessary to determine a dual parameter related to the preimage.

The analysis of two applications in chapter 2 has exemplified, how the energy error estimates,
we have obtained with the help of duality techniques from the calculus of variations, bear on both
residual based error estimators and conventional hypercycle estimates. We have seen, that the
key to the efficiency of those error bounds, we have termed ”generalised hypercycle estimates”,
lies in the proper choice of certain dual parameters. If we were to create them at will, the
generalised hypercycle estimates would be exact. For all practical purposes, however, we must
construct them in suitable trial spaces. Our numerical experiments have explored basically three
approaches, how to find the dual parameters: By exploiting the duality mapping, by solving
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the dual formulation of the original problem and by minimising the hypercycle estimates with
respect to the dual parameters. We can infer from our numerical data, that the second method,
possibly combined with the third, delivers the most satisfactory results. With a view to the close
ties between the a posteriori error estimator and the dual formulation this could be expected.
Surprisingly, though, we have also found recovery schemes to perform worst, which project the
image of the numerical solution under the action of the duality mapping into a conforming ansatz.

The latter result is unfortunate, since recovery schemes can be implemented easily and require
little computational resources. Speedily computing the solution of the dual formulation, may be
difficult however. To illustrate our point let us but remark, that only two papers [39, 111],
the latter of which has been written by the author, seem to have appeared so far, which deal
with multilevel solvers for the obstacle problem in a dual setting. Several multilevel methods
(e. g. [31]) have been proposed for the unconstrained problem, which exploit the fact, that the
dual mixed discretisation is equivalent to a nonconforming discretisation scheme for the primal
formulation [8, 9]. In [39] we have discussed three different possibilities, how to compute the
solution of saddle point problems with constraints on the Lagrange multipliers. Meanwhile, we
have found a proof of convergence for a smoothing scheme first presented in said paper. The
proof along with some other material on the design of fast multilevel methods has been rendered
in section 4.3. The FAS scheme presented in section 4.3.6 has been found to perform best, if
Raviart-Thomas elements of lowest order are used to set up the dual mixed discretisation (see
[39]). The FAS scheme presupposes, that the continuity of the normal fluxes associated with the
solution of the dual formulation is enforced in a weak sense with the help of Lagrange multipliers.
Since these multipliers may be extended into the whole of the computational domain with the
help of Crouzeix-Raviart elements, the method can be understood as a generalisation of those
multigrid methods, which deal with the nonconforming discretisation of the primal formulation
and transform the results back into the dual setting.

It seems intriguing to employ hybrid discretisation schemes in order to compute the solution
of the primal and the dual formulation simultaneously. The generalised hypercycle estimates do
not really require a conforming dual parameter. However, the evaluation of upper bounds on
certain dual norms can only be avoided, if we assume some additional degree of regularity. The
primal approximation must be admissible in any case, as else there would be no a priori bound on
the approximation error in terms of the functional F ◦Λ+G. This puts us in a difficult position: If
we relied on conventional hybrid finite elements, the numerical solution of the primal formulation
would be nonconforming and the hypercycle estimate pointless. In chapter 3 we have discussed
the ramifications of using generalised hypercycle estimates in a finite element context. Section 3.2
is devoted to the analysis of an alternative hybridisation procedure, which delivers conforming
primal approximations. Numerical experiments, which illustrate the performance of this novel
approach, have been published in [40]. Unfortunately, the dual solution is nonconforming, which
we obtain thanks to the new discretisation technique. To obtain computable a posteriori error
estimates the resort outlined in section 5.2.5 must be employed.

A different approach to reducing the computational overhead connected with the evaluation
of generalised hypercycle estimates consists in the use of locally refined meshes, on which the dual
parameters are computed. The bulk of chapter 4 has been dedicated to technical issues: Among
other topics we have discussed the management of locally refined meshes, the insertion of special
refinement patterns and the construction of suitable mesh transfer operators. Thereby, we have
used the code of our finite element libraries to exemplify our concepts. The numerical techniques
we have implemented do not only apply to the computation of a posteriori error estimators: they
can also be profitably employed, whenever data obtained on one locally refined mesh must be
transferred onto another one.

Whether to implement hypercycle estimates as a means of guiding the local mesh refinement
or a means to asses the accuracy with which certain quantities have been computed, is an awkward
question to raise. The answer must depend on the capabilities of the software tools employed
as well as the requirements of the application. If the reliability of the error estimate and its
accuracy are of paramount importance, duality techniques can hardly be avoided. If the error
estimator is primarily used to control a mesh refinement procedure, the quality of the estimates
must be balanced against the computational resources spent on finding them. In such a scenario
recovery schemes may perform best, even if their theoretical foundation is violated. The technical
effort necessary to compute generalised hypercycle estimates in a time efficient manner can be
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substantial. If the numerical tools support trial spaces of Raviart-Thomas type and support
hybrid discretisation schemes, only little additional programming may be mandatory. If this is
not the case, the implementation of the technical framework can prove prohibitively expensive.
Below, we give a summary statement of the advantages and of the drawbacks, we feel connected
with the use of generalised hypercycle estimates:

a) Generalised hypercycle estimates are applicable to a wide range of variational problems
under minimal assumptions on the data. Constrained and unconstrained problems can
be analysed within the same framework.

b) The underlying mathematical theory does not require the numerical solution to satisfy
any best approximation property. Therefore, the following situations can be dealt with
rigorously: i) The data of the problem necessitates the use of some inexact numerical
cubature scheme. ii) The algebraic problem has not been solved exactly, as the iterative
process, designed to obtain the solution, had to be terminated prematurely. iii) The
numerical solution has not been computed with some finite element method at all.

c) Generalised hypercycle estimates do not rely on the existence of any stability estimates,
which relate the approximation error to the data of the problem.

d) The generalised hypercycle estimates consist of two contributions: While one is directly
related to the energy error, the other may be seen as a penalty term on the consistency
of the data. The first and more relevant contribution involves no unknown interpolation
constants. The efficiency of the hypercycle estimate is therefore but little affected by
modifications of the mesh and the ”calibration” of the error estimator is unnecessary.

e) Depending on the choice of certain parameters, generalised hypercycle estimates can
prove extremely sharp. There are no inherent limitations to their accuracy but for the
computational resources, which must be spent finding said parameters.

f) The information provided by the hypercycle estimates is easily turned into a criterion
which a local mesh adaption strategy can be based on.

g) Using suitably defined hybrid discretisation schemes the numerical solution of the primal
formulation and the generalised hypercycle estimate can be computed simultaneously.

h) As long as the numerical solution of the primal problem is admissible, the generalised
hypercycle estimate is always reliable.

The above list of advantages is balanced to some extent by the following disadvantages:

a) Simple procedures to determine those ”dual” parameters, which affect the accuracy of
the hypercycle estimates, usually result in comparatively poor error bounds.

b) To realise their full potential generalised hypercycle estimates must rely on the solution
of some suitable defined dual formulation. Efficient numerical procedures for that task
may not be available or at least may not be that well understood.

c) The treatment of the dual formulation usually leads to additional technical requirements,
which must be met by the finite element software employed for the solution of the primal
problem. The programming is rather involved, especially for locally adapted meshes.

Unresolved Problems and Future Challenges

Perhaps, no disquisition of any import can ever aspire to be exhaustive. While this thesis has
managed to discover a new principle on the strength of which a posteriori error estimators for
a certain class of variational problems can be derived in a generic manner, it has also raised
a number of interesting questions, which unfortunately have been left unanswered. The most
prominent among these questions, is certainly a problem connected with the material presented
in section 4.3: To the best of our knowledge there is still no proof, why multigrid methods
for constrained variational problems deliver contraction rates uniformly bounded in the mesh



Conclusion 141

parameter h. Another important problem, we have failed to address, is the design of multilevel
methods for hybrid, mixed discretisation schemes, if the index k of the Raviart-Thomas space
Rk(Mh) is odd. This is the reason, why we have used the more general, but definitely slower,
approach for our own numerical experiments of working with the Schur complement and solving
for the Lagrange multipliers of the admissibility constraints.

In section 3.2 we have developed a new discretisation scheme for the dual mixed formulation
of elliptic differential equations. The Lagrange multipliers for the continuity constraints of the
normal fluxes can be used to compute a conforming approximation to the solution of the primal
formulation. Unfortunately, we have not been able to assert, whether this approximation is of
optimal order, when the index of the Raviart-Thomas space Rk(Mh) is odd. The problem is
related to the design of multilevel methods for hybrid discretisation schemes: it seems impossible
to properly extend these Lagrange multipliers into the interior of the finite elements. Our analysis
of the approximation properties has been carried out in the natural norms. It would be helpful
to know, whether similar results could also be obtained in the L∞-norm. The event would justify
our using the quantity MD(xh, ·) as a local error indicator.

Our deliberations in section 3.2 pertain but to the unconstrained variational problem. We
have not attempted to extend our analysis to the case of variational inequalities. As yet, such
an analysis, carried out in the natural norms, seems only available for dual mixed discretisation
schemes based on the standard Raviart-Thomas elements [37]. Hence, there are two questions still
open: i) What are the approximation properties of Raviart-Thomas elements, if we measure them
in the L∞-norm? ii) Can we eventually translate our findings from conventional discretisation
schemes to those nonconforming methods we have discussed in section 3.2?

In section 1.3 we have discussed ways, how to apply our analytical techniques to the definition
of reliable bounds on functional outputs. Our results have been limited to minimisation problems
involving quadratic forms. It is fairly obvious, that our methodology can also be used to derive
either upper or lower bounds on functional outputs, if the functionals are convex respectively
concave. The generalisation to convex variational problems has failed, however. We may look
for possible extensions of our theoretical framework in two directions: i) Using suitable defined
Lagrangians we may hope to develop reliable a posteriori error estimators for functional outputs,
that are valid for a wider class of variational problems. ii) The theory may also be applicable to
variational problems involving uniform quasi-convex functionals F : Y −→ R.
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A reference for the grammar of the FEM language

The language, whose grammar we are going to present, has been employed as an integral part
of our implementation of the finite element method not only to define some general features
of certain finite elements, but also to prescribe the behaviour of these elements under mesh
transformations. We have designed a parser that can attain 482 different states and is aware of
56 terminal and 85 nonterminal symbols. These are related in accordance with 184 rules. It is
therefore very tempting to simplify the presentation by leaving out some syntactical elements of
minor importance. However, we see fit to take the opportunity and turn the following sections
into a concise reference. Consequently, we will have to refer to some grammatical features, that
seem but poorly accounted for with a view to our reasonings in the sections 4.2.2 and 4.2.3.
If necessary, we will give a short explanation why certain key words or certain rules have been
introduced into the language.

A.1 A note on the Backus-Naur Form

In the following we will repeatedly have to describe syntactical elements of a language, that can
suitably characterise all relevant properties of a finite element scheme. To simplify this task we
adopt a formalism, widely known as BNF notation. The acronym translates into Backus Naur
Form and refers to a formal notation, introduced by J. Backus [17] in 1959 and finalised by P.
Naur [110] a year later. This formalism comprises three meta-symbols and two types of symbols:
The first type denotes grammatical rules, while the second one denotes grammatical primitives,
that can be found verbatim in any text sample of the language under consideration. Symbols
of the first type are usually called nonterminal, since they can be resolved into smaller syntactic
groupings, whereas those of the second type are referred to as terminal symbols. The meta-
symbols are used to designate definitions and logical disjunctions. The third meta-symbol serves
to distinguish between terminal and nonterminal symbols. All grammars, that can be described
in the BNF notation, are context free. However, not all context free grammars are easy to
parse: The established tools for generating parsers are optimised for only a special subset, called
LALR(1) grammars. Languages, that have such a grammar, can be parsed by deterministic
bottom up techniques utilising a somewhat restricted look ahead of one symbol in order to
collapse the state tables of the parser. (For background information on parsing technology we
refer to: [77, 100].) Below we will use a slightly extended variant of the original Backus Naur
formalism, which employs two additional meta-symbols to denote optional syntactic elements
and to describe recurrences:

::= denotes a definition by the right hand side

| denotes an exclusive logical disjunction (”or”)

< . . . > surround category identifiers (”nonterminals”)

[ . . . ] embrace optional expressions

{ . . . } are used to abbreviate recursive rule definitions

" " distinguish between single characters and meta-symbols

Remark A.1 The introduction of the additional meta-symbols [...] and {...} does not pose
any difficulties, since any grammar, which we can describe with their help, can be easily expressed
without using these meta-symbols at all. We may define optional expressions using additional
disjunctions. Repetitive symbols we can incorporate into the grammar by introducing recursively
defined rules. To give an example, let us consider the rule

<Text> ::= <Letter> { <Letter> | <Mark> } .
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We can resolve this definition recursively in the following manner:

<Text> ::= <Letter>

| <Text> <Letter>

| <Text> <Mark> .

In a similar fashion the simple disjunction

<Name> ::= <FirstName> <LastName>

| <FirstName> <Patronymic> <LastName>

is nothing but the translation of the more compact notation

<Name> ::= <FirstName> [ <Patronymic> ] <LastName> .

Remark A.2 The grammatical primitives of a language must be identified by pattern matching
for the parser to decide which reductions to apply next. The process of finding these terminal
symbols is called lexical analysis. Computer programs, which perform the necessary pattern
recognition, are usually referred to as scanners. There are a number of tools available to generate
scanners automatically. Hence, we will not follow up on this topic below. It is worth mentioning,
however, that the scanner itself utilises a state table and can therefore be abused to process and
modify the input stream, before tokens are generated and transmitted to the parser. Among the
tasks, a scanner can perform independently of the parser, there are the removal of comments or
whitespace from the input, the handling of nested input streams or the management of symbol
tables. (See e. g. [3, 100] for references.)

A.2 The Description of the Grammar

We have already mentioned in remark A.2, that the process of parsing a text sample of some
given language is intertwined with a process of pattern matching, usually termed scanning or
lexical analysis. Hence, the shift or reduce operations, performed by the state engine within the
parser, are not directly controlled by the data of the input stream, but by a sequence of tokens,
usually but bare numbers fed to the parser by the scanner. These tokens may simply designate
certain terminal symbols, such as reserved words for instance. They may also indicate however,
that data of some kind has been retrieved from the input stream. The identification of such data
and its subsequent retrieval are handled by the scanner in a transparent fashion. In our rule
definitions we will have to use both types of tokens. While we will render all reserved words of
our ”FEM language” verbatim, there are a number of terminal symbols, we can not describe as
easily. Such tokens we indicate by using uppercase letters only. Below we give a summary of
these tokens and explain their meaning:

EOL This token represents the newline ASCII character (’\n’).

FLOAT This token indicates, that a floating point number has been read and stored.

NUMBER An unsigned integer has been encountered and stored.

SIGNED A signed integer value has been found.

STRING A string has been detected and a handle deposited to be used by the parser.

Since the scanning of a stream of data for certain terminal symbols can be viewed as parsing
a language with a regular grammar, the scanner is able to cope with a number of syntactic
constructions on its own. The most common application is the removal of comment from the
input. Another task, that can be handled transparently by the scanner, is the management of
nested input files. Switching between different sources of data is facilitated by the ”Include”
statement. Its syntax reads:

Include : NameOfFile EOL
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Comments can be placed anywhere in the input stream except immediately after the ”Include”
keyword. These comments may span several lines, if they are delimited in a C-style fashion:

/* Text of comment... */ .

In addition, short comments, which extend to the end of the current line only, can be commenced
by either of the following two expressions:

// Text of comment... EOL

# Text of comment... EOL .

The topology of a finite element mesh is stored most conveniently along with all the information
necessary to reconstruct the sequence of mesh transformations, which have been carried out to
obtain the final mesh. Hence, the external representation of a mesh comprises four parts in total:
A header, containing a description of all the finite elements, that constitute the mesh, a section,
in which all the vertices of the mesh are defined, a section, in which these vertices are associated
to finite elements, and eventually a section, in which the tree structure of the refinement hierarchy
is determined. Hence, the top level rule reads:

<GridFile> ::= <ElementDescriptions> <VertexSection>

<ElementSection> <TopologySection> .

We proceed and resolve the nonterminals in this rule:

<ElementDescriptions> ::= BeginSection Descriptors EOL (A.1)

<DescriptorList>

EndSection EOL ,

<VertexSection> ::= BeginSection Nodes EOL

<VertexEntry> { <VertexEntry> }

EndSection EOL ,

<ElementSection> ::= BeginSection Elements EOL

<ElementEntry> { <ElementEntry> }

EndSection EOL ,

<TopologySection> ::= BeginSection Topology EOL

<TopologyEntry> { <TopologyEntry> }

EndSection EOL .

Strictly speaking, it would be far from necessary to introduce another nonterminal symbol in
rule (A.1). The structure of this definition could be same as that of the following three ones.
However, an additional definition of the form

<DescriptorList> ::= <Descriptor> { <Descriptor> } (A.2)

is very convenient as an alternative top level rule, if only element properties are to be specified
and the mesh data is imported from an external source. Below we will discuss the nonterminal
symbols, we encounter in the rules (A.1) up to (A.2). We will begin our examination with the
symbol most easily resolved and work our way to the more difficult cases:

<VertexEntry> ::= NUMBER ":" FLOAT { FLOAT } EOL .
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The number in front of the separator serves to identify the vertex in the subsequent section of the
grid file, in which the elements are to be defined. In a strict sense, the separator is unnecessary:
By its presence the readability of a grid specification can nevertheless be enhanced, if such a
specification has to be drawn up by hand for testing purposes. The following list of floating point
numbers specifies the cartesian coordinates of the vertex. The length of each list must be the
same, otherwise the parser stops and signals an error condition. The length of the list is used to
determine the dimension of the domain under consideration:

<ElementEntry> ::= NUMBER ":" STRING ":" <ElementKey> ":"

<ListOfNodes> EOL

| NUMBER ":" STRING ":" <ElementKey> ":"

NUMBER ":" NUMBER ":" <ListOfNodes> EOL .

The leading number is used in the topology section of the grid file to furnish a reference for the
element, while the following string is employed to uniquely assign a finite element descriptor from
among the list of descriptors, specified in the first section of the input. For reasons explained below
the element index must be positive. The key of the element, a signed integer quantity, is at
our disposal to identify certain parts of the mesh, e. g. to distinguish between various boundary
conditions on certain parts of the boundary. If further numbers follow, the first of them denotes
the type of refinement, the element has been subjected to, while the second one denotes the status
of a finite automaton, which is employed in the generation of surface grids. If these numbers are
missing, both the refinement type and the state of the automaton are switched to unrefined.
Finally, all vertices of the element are listed by their vertex numbers:

<ListOfNodes> ::= NUMBER { NUMBER } .

The length of this list must conform to the element specification as it has been designated by
the string. The order, in which the different vertices are enumerated, is used to determine the
spatial orientation of the patch. The first number corresponds to the first vertex of the reference
patch, the second number to the second vertex and so forth. On the purpose of the element key
we have already commented:

<ElementKey> ::= NUMBER | SIGNED .

An entry in the topology section of the input is slightly more involved, as a number of different
situations can be encountered: The element may be contained in the bottom layer of the mesh, it
may be contained in the surface layer or it can be found somewhere in-between. In the latter case
we have to specify the root as well as the leaf elements to reconstruct the refinement hierarchy.
In one of the other two cases we can drop at least one piece of information:

<TopologyEntry> ::= NUMBER ":" <ListOfNeighbours>

[ ":" NUMBER ] EOL

| NUMBER ":" <ListOfNeighbours> ":"

[ NUMBER ] ":" <ListOfLeaves> EOL .

The leading number refers to the current element. The following list denotes the adjoining
elements, that can be found on the same level within the refinement hierarchy. If a neighbour is
missing, this is indicated by using the fictitious element index "0". In the element section, it is
therefore not allowed to assign this index to an actual finite element! Unless the bottom layer has
been reached, the optional number in-between separators denotes the index of the root element,
while the second list specifies, if present, the indices of the leaf elements to be found on the next
higher refinement level:

<ListOfLeaves> ::= NUMBER { NUMBER }

<ListOfNeighbours> ::= NUMBER { NUMBER } .
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These two rules more or less conclude the specification of the FEM grammar, as far as the external
representation of hierarchically refined meshes is concerned. However, the header of any mesh
description must contain detailed information, which kind of finite elements are to be fitted into
the prescribed geometry, and how these elements are supposed to interact with each other in case
of further mesh transformations. Hence, the bulk of our task still lies ahead of us. As a means
of structuring an element description, all the necessary information is distributed among several
dedicated subsections. Accordingly, we resolve the nonterminal Descriptor as:

<Descriptor> ::= BeginElement: STRING EOL

[ SetupProcedure: STRING EOL ]

UCD Code: STRING EOL

<ListOfSubSections> EndElement EOL .

(A.3)

The first string of characters is used for referencing purposes within the third part of the input
stream, that is the <ElementSection>, as well as in the header itself. The optional second
string can be used to override the internal finite element setup mechanism of the finite element
package, since this has been designed to handle isoparametric Lagrange elements only. However,
if specialised setup algorithms are required, a SetupProcedure handle can be passed to the FEM
library as a drop in. To determine the proper replacement, the optional string is matched against
the return value of the member function SetupProcedure::IdentifyYourself() for all handles, that
are registered with the library. If the optional part of the rule is missing completely, the element
is treated as a Lagrange element. The third string of characters is employed by various filters,
that process output for external finite element tools. If data is generated in the widely recognised
Unstructured Cell Data format, this string for example is used verbatim to designate the cell
type. The list of subsections is defined recursively:

<ListOfSubSections> ::= <SubSection>

| <ListOfSubSections> <SubSection> .

This list of subsections must comprise a segment, which the quadrature rule to be employed on
the reference patch Ω̂ is specified in, a segment describing the geometry of this very domain, and
according to definition 3.1 a segment, in which a number of maps {ϑ1, . . . ϑK} ⊂ W k,∞(Ω̂) is
defined, with the help of which the reference patch is mapped onto the computational domain:

<SubSection> ::= BeginSubSection: GaussPoints EOL

<Point> { <Point> } EndOfSubSection EOL

| BeginSubSection: Weights EOL

<Weight> { <Weight> } EndOfSubSection EOL

| BeginSubSection: Vertices

<Point> { <Point> } EndOfSubSection EOL

| BeginSubSection: DoFPoints EOL

<DoFPoint> { <DoFPoint> } EndOfSubSection EOL

| BeginSubSection: UCD Map EOL

<Point> { <Point> } EndOfSubSection EOL

| BeginSubSection: Boundaries EOL

<FaceEntry> { <FaceEntry> }

EndOfSubSection EOL

(A.4)
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| BeginSubSection: FormFunctions EOL

<FunctionString> { <FunctionString> }

EndOfSubSection EOL

| BeginSubSection: MapFunctions EOL

<FunctionString> { <FunctionString> }

EndOfSubSection EOL

| BeginSubSection: Refinement EOL

<RefinementScheme> { <RefinementScheme> }

[ <TableOfRefinementSchemes> ]

EndOfSubSection EOL .

We proceed and discuss the various segments of an element description in more detail: The first
subsection specifies the location of the cubature nodes within the reference patch with the help
of cartesian coordinates. By definition the reference patch is convex, so natural coordinates are
a viable alternative. However, there are no significant advantages in using natural coordinates
instead of cartesian ones. The nonterminal Point is resolved in the following manner:

<Point> ::= NUMBER ":" FLOAT { ":" FLOAT } EOL .

The first number is nothing but a counter for the number of quadrature points specified. As such
is it present more or less for aesthetical reasons: The correspondence between cubature nodes
and weights is established according to their sequence and not to their index. The following list
of floating point numbers records the exact location of the cubature point within the reference
patch. In a similar fashion the nonterminal Weight is resolved:

<Weight> ::= NUMBER ":" FLOAT EOL .

The subsection Vertices serves to determine the reference patch, which is assumed to be the
convex hull of all the points specified in this segment. While the indices of the cubature nodes are
not meaningful by themselves, the enumeration of all vertices is requisite for referencing purposes
in the Boundaries subsection. With a view to definition 3.1 there must exist exactly one vertex
for each function ϑi : Ω̂ −→ R specified in the MapFunctions subsection.

<DoFPoint> ::= NUMBER [ ":" <DoFKey> ]

":" FLOAT { ":" FLOAT } EOL .

According to remark 4.3 each degree of freedom should be associated with a set of coordinates,
even if this degree of freedom cannot be computed by a point evaluation. Establishing the
correspondence between the various degrees of freedom and their respective coordinates is the
purpose of the subsection DoFPoints. Each entry in this segment is constructed in a fashion
similar to the nonterminal Point. However, to distinguish between distinct degrees of freedom,
which share the same coordinates, we can assign a special key to them:

<DoFKey> ::= NUMBER | STRING .

The use of strings as qualifiers is discouraged, as at present only a limited set of abbreviations
is recognised by the parser! The matched strings are translated into numerical keys anyhow, as
internally the finite element library works with numerical qualifiers only. For each entry in the
subsection DoFPoints there must be either a corresponding entry in the segment FormFunctions
or a fitting SetupProcedure handle registered with the library. Again, the enumeration of the
entries is important for referencing the various degrees of freedom.

The UCD Map segment facilitates the generation of output for external data processing tools. Since
the degrees of freedom S of some trial space V need not necessarily correspond to actual function
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values attained at certain points within the computational domain Ω, it may become necessary
to interpolate functions from the space V with a set of suitably chosen polynomials. Using the
coordinates {û1, . . . ûK} ⊂ Ω̂, that are listed in this segment, a basis {λ1, . . . λK} ⊆ Pl of such
polynomials is constructed for each element in the top layer of the mesh. Several output filters
employ these polynomials to carry out a Lagrange interpolation in one or more spatial dimensions
prior to exporting the data. Hence, the polynomials satisfy the relation:

λi(ûj) = δij ; i, j ∈ {1, . . . K} .

The subsection Boundaries serves to define the interfaces between finite elements: Each face of
the finite element under consideration is identified with another finite element of lower spatial
dimension. Thereby, the interface element is designated by the very label which has been assigned
in rule (A.3). The geometry of the interface is specified by listing those of the vertices defined in
the subsection Vertices, that span the hypersurface:

<FaceEntry> ::= NUMBER [ ":" STRING ] ":" <ListOfVertices> EOL .

As it is not reasonable to view the endpoints of a line segment as finite elements in their own right,
the definition of interfaces can be suppressed by omitting the label. However, if line segments are
used to compute boundary integrals in a two-dimensional setting, these one-dimensional finite
elements form a regular part of the mesh and therefore share interfaces with elements which
belong to the interior of the domain: the interface of the line segment and the finite element itself
coincide. Hence, in default of sensible alternatives this special scenario is assumed by the parser,
whenever the label is missing. Consequently, the list of vertices must always be present:

<ListOfVertices> ::= NUMBER { NUMBER } .

The next subsection is optional and must be absent from the finite element descriptor, if the finite
element library has been provided with the appropriate SetupDescriptor handle. If a finite element
of Lagrange type is to be specified, this segment serves to define the proper shape functions. The
function definitions themselves are written down as strings terminated by the token ";":

<FunctionString> ::= <FunctionName> "=" <Expression> ";" .

The name of the shape function is in itself meaningless. Nevertheless, the left hand side of the
nonterminal FunctionString is necessary to identify the arguments in the body of the shape
function. This very part of the function definition is resolved as:

<FunctionName> ::= STRING "(" STRING { "," STRING } ")" .

The right hand side of the function definition is repeatedly evaluated by an interpreter in order to
prepare certain tables, which are needed in the default setup procedure for isoparametric Lagrange
elements. As such elements usually have only polynomial shape functions, the interpreter has
but limited means at its disposal. To increase its speed, a symbol table has been dispensed
with. Therefore, in fact no other but polynomial expressions can be computed by the current
implementation. The grammar for the body of the shape function can be described by:

<Expression> ::= <Expression> "+" <Expression>

| <Expression> "-" <Expression>

| <Expression> "*" <Expression>

| <Expression> "/" <Expression>

| "-" <Expression>

| "(" <Expression> ")"

| FLOAT | STRING .

The last rule is necessary to identify those arguments of the shape function, which have been
defined while resolving the nonterminal FunctionName. The second but last rule matches any
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floating point numbers, which are used explicitly in the body of the shape function. For the
mandatory segment MapFunctions the same remarks apply.

The segment Refinement implements one or more strategies how a finite element is to behave
under hierarchical mesh refinement. If only one refinement method has been specified, no internal
state table is needed to control the generation of suitable surface meshes. In such a case, it is
unnecessary to fix any set of rules to govern the element’s state engine and we may suppress the
dedicated part of the segment. We resolve the nonterminal TableOfRefinementSchemes as:

<TableOfRefinementSchemes> ::= <TableEntry> { <TableEntry> } .

Each entry in the table consists of a leading string, which designates the refinement method to be
applied, and a list of interfaces, the element must share with other, already refined elements, to
be eligible for the type of refinement under consideration. The indices used to refer to particular
interfaces correspond to those numbers specified in the Boundaries subsection. Additionally,
a condition can be imposed on the state of the element itself. Manipulating the internal state
of the element thus becomes a means of switching between different refinement strategies. The
information when to apply a certain type of refinement we collect in the statement:

<RefinementKey> ::= NUMBER { "," NUMBER } [ State NUMBER ]

| "-" { "-" } State NUMBER .

The selection of the refinement method actually applied to a given finite element is based on
finding the closest possible match from among the list of all refinement methods available. Hence,
it can be reasonable to define a refinement procedure in default of any more appropriate method,
that does not rely on any interface requirements. In a case like that the list of interfaces can be
suppressed by inserting at least one "-" token. The specification of the refinement state becomes
mandatory, as the default state unrefined is assumed, if no refinement state is specified for the
element at all. To implement different policies for the generation of hierarchically refined grids,
the formulation of alternative regular refinement procedures is an additional possibility. Following
the State token the status of the finite element and optionally the status of the grid have to be
specified. These conditions are to be matched exactly, before any alternative refinement method
is applied. If the status of the grid is missing, a default state is substituted by the parser. The
corresponding part of the grammar reads:

<RegularRefinement> ::= State NUMBER [ "(" NUMBER ")" ] .

Since different geometrical constellations can necessitate the same auxiliary refinement procedure,
the nonterminal TableEntry must actually involve lists of refinement criteria. It is also possible,
that different states of the grid require the same strategy for regular grid refinement. Hence, in
can also be important to assign several conditions for regular refinement to a certain refinement
scheme. For technical reasons, however, such a scheme can never be of an auxiliary and of a
regular character at the same time. To conclude our remarks, let us state that the nonterminal
TableEntry is resolved in the following way:

<TableEntry> ::= STRING ":" <RegularRefinement>

{ ":" <RegularRefinement> } EOL

| STRING ":" <RefinementKey>

{ ":" <RefinementKey> } EOL .

We proceed to discuss the specification of the various refinement procedures, we want to employ.
Each of our schemes is identified by the very designation used in the table of refinement criteria
as described by the above rule. Optionally, a number can be assigned to the refinement scheme,
which reflects the internal state of the finite element requisite for the particular refinement method
to be applied. If no number and hence no constraint on the element state is specified, the choice
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of the refinement scheme is exclusively based on geometrical considerations:

<RefinementScheme> ::= BeginRefinementScheme: STRING EOL

[ AssignedRefinementState: NUMBER ]

<RefinementSection> { <RefinementSection> }

EndRefinementScheme EOL

The body of the refinement descriptor consists of a list of sections, in one of which the assignment
of the various degrees of freedom to the different interfaces of the finite element is detailed.
The other sections describe the topology of the refinement pattern, respectively the geometrical
properties of the newly created leaf elements:

<RefinementSection> ::= BeginSubsection: DoFScheme EOL

<DoFData> { <DoFData> }

EndSubsection EOL

| BeginSubsection: NodeScheme EOL

<NodeData> { <NodeData> }

EndSubsection EOL

| BeginSubsection: Topology EOL

<TopologyData> { <TopologyData> }

EndSubsection EOL

| BeginSubsection: StateTable EOL

<StateEntry> { <StateEntry> }

EndSubsection EOL .

(A.5)

Neither of these three sections must be absent. A fourth optional segment can be used to equip
the element with a finite automaton and to define the switching patterns of the state engine.
Though an input stream is syntactically correct, if one of the mandatory sections is missing, the
input will be not pass a consistency check by the parser and the FEM library will terminate. In
case the fourth subsection has not been supplied, the library will assume, that the state of the
each element scheduled for regular refinement is to be propagated through the refinement tree.

<DoFData> ::= BeginLeaf NUMBER EOL

<DoFDataItem> { <DoFDataItem> }

EndLeaf EOL .

(A.6)

The information contained within each segment of the rule (A.5) except for the fourth one is
spread across several subsegments, which correspond to the various leaf elements generated by
the refinement procedure to be defined. Each of the leaves is identified by the number, that
marks the position of this leaf in the NodeScheme segment. The bulk of the nonterminal DoFData
contains specifications, how to deal with the degrees of freedom, that will come into existence
when the element is split. In that process, we are repeatedly faced with one of four possible
scenarios: i) The degree of freedom under consideration is identical with a degree of freedom,
that belongs to the refined element. ii) The degree of freedom does not yet exist and has to be
allocated. iii) The degree of freedom can be identified with another degree of freedom previously
created while processing leaves with a lower index. iv) The degree of freedom belongs to one of
the interfaces, the refined element shares with other elements in the mesh. All four possibilities
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are covered by the following syntactical constructions:

<DoFDataItem> ::= NUMBER ":" NUMBER EOL

| NUMBER ":" NUMBER ":" NUMBER EOL

| NUMBER ":" New EOL

| NUMBER ":" <ExportKey> EOL .

The leading number references the degree of freedom under consideration and matches the index,
that has been assigned in the DoFPoints segment of rule (A.4). If the first pattern is identified,
the following number is used to designate the corresponding degree of freedom, that has been
inherited from the root element. If the keyword New is encountered, a new degree of freedom is
allocated and assigned to the leaf element. If two numbers follow, the first one identifies the leaf
and the second one the actual degree of freedom, that is identical to the degree of freedom under
consideration. This mechanism can only be applied, if the leaf has already been processed, such
that the designated degree of freedom is guaranteed to exist. The fourth alternative is used to
identify those degrees of freedom, that are located on one of the various interfaces. To cover this
case, the nonterminal ExportKey is resolved as:

<ExportKey> ::= Export: NUMBER "(" NUMBER ")"

{ "," NUMBER "(" NUMBER ")" } .

The first number following the keyword Export designates the interface and matches one of
those indices, that have been introduced in the Boundaries subsection. As the interface is a
finite element itself, there exists an enumeration of all its degrees of freedom as specified in the
DoFPoints segment of the rule (A.4). It may be used to establish the correct alignment of the
element and the interface: accordingly, the second number in parenthesis denotes the index of
the degree of freedom viewed as belonging solely to the interface. If the degree of freedom is
associated with several interfaces, a situation that will only occur in three or more dimensions,
additional interface specifications can be appended.

<NodeData> ::= BeginLeaf NUMBER ":" STRING [ State: NUMBER ] EOL

<NodeDataItem> { <NodeDataItem> }

EndLeaf EOL .

Basically everything, that has been explained with a view to (A.6), also holds for the nonterminal
NodeData. A minor modification consists of the fact, that the enumeration of all vertices within
a given interface is now defined in the Vertices subsegment instead of the Boundaries segment.
The string following the leaf index is employed to identify the correct finite element description
of this very leaf. In such a manner refinement procedures can be defined, where the leaves are of
a different type than their root element. Optionally, the default state of the newly created leaf
may be specified. If that statement is missing, the state engine of the leaf will be initialised with
the current state of the refined element. In either case the final state of the leaf is determined
in accordance with the rules set forth in the StateTable segment of (A.5). Since the location of
newly created vertices cannot be inferred from the geometry of the refined element, it is necessary
to specify the coordinates of each new vertex with respect to the reference patch. Consequently,
the nonterminal NodeDataItem is resolved as:

<NodeDataItem> ::= NUMBER ":" NUMBER EOL

| NUMBER ":" NUMBER ":" NUMBER EOL

| NUMBER ":" FLOAT { FLOAT } EOL

| NUMBER ":" FLOAT { FLOAT } <ExportKey> EOL .

The information collected in the segment Topology of the rule (A.5) is used to determine, which
elements actually adjoin. Since an interface between two elements can be viewed as an element
itself, we may consider the external interfaces of a leaf element as the leaves of interfaces, which
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belong to its root. However, only such elements are presumed to have a common interface, that
feature the same refinement level: auxiliary refinement patterns may therefore cause some leaf
elements to actually be without adjoining elements on some of their faces.

<TopologyData> ::= BeginLeaf NUMBER EOL

<TopDataItem> { <TopDataItem> }

EndLeaf EOL

Accordingly, the nonterminal TopDataItem must account for three possibilities: i) The adjoining
element at the specified interface is a previously created leaf of the same root, the element
under consideration has been derived from. ii) The interface is of an external nature and can be
identified with a certain leaf of an interface element as it has been specified in the Boundaries

segment of rule (A.4). iii) There is no adjoining element on the same mesh level, as the leaf
belongs to an auxiliary refinement pattern.

<TopDataItem> ::= NUMBER ":" NUMBER EOL

| NUMBER ":" <ExportKey> EOL

| NUMBER ":" NoExport EOL .

Though the syntax has not changed, the semantics of the nonterminal ExportKey is somewhat
different in the present context: Following the keyword Export exactly one pair of numbers is
expected. The first index designates the interface of the refined element, as it has been specified
in the Boundaries segment of rule (A.4). The second index defines which of the hypothetical
leaf elements of said interface corresponds to the external interface of the leaf element under
consideration. The keyword NoExport signals, that the interface specified by the preceding index
does not have a matching neighbour of the same refinement level as the leaf element.

The only nonterminal, which we have not yet resolved, is the symbol StateEntry, which is used
to define those finite automata whose impact on the mesh refinement we have discussed in the
section 4.2. In figure 4.13 we have already presented two examples, how these automata may be
specified. Each line in the state table starts with the keyword State followed by an index which
designates the very state the element must be in for the rule to be applicable. The second index
enclosed in parentheses defines as a further prerequisite the state of the mesh, which must be
matched as well. Hence, by switching the state of the mesh we can disable or enable sets of rules
simultaneously. For each leaf created by executing the refinement scheme a state is defined that
the leaf’s state engine is initialised with. Following another field separator the switching rule is
finalised by specifying the state the element is to assume, once the refinement pattern on top of
it has been removed. We may summarise:

<StateEntry> ::= State: NUMBER "(" NUMBER ")" ":"

NUMBER { "," NUMBER } ":" NUMBER EOL .
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An Algorithm for Performing Top Layer Refinements

To fully comprehend the source code of the method FemGrid::PerformTopLayerRefinement we
render in figure B.2 some knowledge of the data structures is requisite which are internally used
by our finite element library. The following paragraphs are intended as a primer and should by
no means be considered as a technical reference.

General information

Each element in a mesh can be classified according to its geometrical properties and the shape
functions it supports. Most of the manipulations involving a finite elements are so generic,
that their execution depends only of the element’s type and the coordinates of the element’s
vertices. Replicating the pertinent data which is necessary to carry out these manipulations
in each element is therefore unnecessary and, moreover, too costly in terms of core memory
consumption. Instead a pointer to an instance of a data structure termed ElementDescriptor

has been added to the base class ElementParameters. Among other things said data structures
each contain an array of unsigned integers termed StateTable, another array of unsigned integers
called RefinementMethod and an array of data structures of the type SplitDescriptor.

Each entry in the array StateTable consists of unsigned integer, with the help of which the
proper refinement method is identified. The structure of these keys will be discussed in a dedicated
section. The second array RefinementMethod holds an index for the corresponding refinement
scheme. The index is used to encode the current refinement pattern and to access the proper set
of auxiliary data through the method FemElement::GrabSplitDescriptor. When a refinement
pattern is removed, the refinement state of the former root element is switched. The new state
depends on the refinement patters as well as the current state of the element. To account for
the latter an array termed StateKeyArray forms a part of the data structure SplitDescriptor.
The current refinement state is matched against the entries in this array. If two refinement
keys match, the new state of the root element can be obtained from the corresponding entry in
the array SplitDescriptor::RootStateOnRemoval. Each state of an element corresponds to a
certain refinement pattern. To find this pattern the key SplitDescriptor::RefinementState

must be compared against the supplied state identifier.

The composition of a refinement key

The refinement key has been implemented as an unsigned integer consisting of four bytes. The
eight least significant bits of this number hold the element state, as it has been obtained through
the method FemElement::GetSpliteState. The remaining bits encode the topology of the
mesh: If the adjoining element with the index i has been refined the bit with the number i + 8
is set; if the adjoining element is unrefined, said corresponding is cleared. Due to this key
layout our finite element library is limited to those elements with no more than 24 interfaces.
Furthermore, we may not account for more than 256 states in the element’s state engine. While
the first restriction is not unduly severe, the latter may cause our implementation to fail in a
tree-dimensional setting, since each refinement pattern is associated with an unique state. The
refinement keys are stored in the array ElementDescriptor::StateTable in ascending order.
Thereby, the very first keys in the table do not correspond to special refinement patterns. They
are reserved for alternative regular refinement schemes. The first auxiliary scheme is indexed by
the variable ElementDescriptor::ExtraRefinement, while the total number of keys stored in
the table is indicated by the variable ElementDescriptor::SizeOfStateTable. Since the key
table is sorted, the layout of the keys imposes a block structure: each group of keys corresponds
to a certain geometrical constellation, while subsequent keys within one block correspond to
the various internal states the root element can assume. Those refinement schemes, which are
prompted by the element’s state alone, are encoded by keys whose most significant bits are all
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cleared. As such keys constitute the first block, they can be screened by setting the value of the
variable ElementDescriptor::ExtraRefinement appropriately. Hence, the design of our keys is
consistent with the layout of the key table.

The composition of a state key

As already mentioned, each refinement scheme can be identified by a unique state, which is stored
in the variable SplitDescriptor::RefinementState. This state is encoded by an unsigned
integer and consists of two parts. The eight least significant bits encode the refinement state,
as it can obtained by calling the method FemElement::GetSplitState. The following bits 8
through 15 render the termination state of the mesh, which may be queried with the method
FemGrid::ReadTerminationState. Since the termination state is a property of the mesh, while
the refinement state is a property of each element, it is possible to maintain several coexisting
refinement strategies for the same mesh. For instance, we may define a one on two refinement
strategy as depicted in figure 4.10 and a one on three strategy simultaneously. Having refined
the mesh several times with one of these strategies we can then modify the state of the mesh and
thus switch to the other strategy. As the state engines of the individual elements are not affected
by this change, the mesh refinement can proceed without further adjustments on the application
level. At present, only two termination states have been specified, which carry the hexadecimal
codes 0x00 and 0x01 respectively. If the least significant bit is set, auxiliary refinement patterns
are employed. If the bit has been cleared, the finite element library employs static condensation to
avoid the explicit treatment of hanging nodes (for a short discussion of the underlying principles
we refer to the sections 3.1.1 and 4.1.4). The most significant bits of each state key are unused.

Figure B.1: Composition of state and refinement keys
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void  FemGrid::PerformTopLayerRefinement( void  )
{
  unsigned  TerminationState( ReadTerminationState() << 8 ) ;
  List<FemElement> TodoList ;
  unsigned  n( HighestActiveLevel ) ;          // If the grid consists of
  if ( n == 0 )  return ;                     // only the bottom layer no
  while ( n > 0 )                             // auxiliar refinement is
  {                                           // necessary at all
    TodoList.Clear() ;
    unsigned  k( 0 ) ;
    unsigned  kmax = LevelData[ −− n ] −> EndOfLevel ;
    if ( n > 0 )  k = LevelData[ n − 1 ] −> EndOfLevel ;
    for ( ; k < kmax ; k++ )
    {
      ElementArray[k] −> FlagSetupMode() ;        // BEWARE: Setup mode
      TodoList.Append( ElementArray[k] ) ;        // flag is abused!
    }
    int  RedRefinement = 1 ;
    while ( RedRefinement )
    {
      RedRefinement = 0 ;
      FemElement *E0 = TodoList.GotoStart() ;
      while ( E0 != NULL )
      {
        ElementDescriptor *D0 = E0 −> Descriptor ;
        unsigned  *StateTable = D0 −> StateTable ;
        unsigned  BitCode = 0 ;
        k = D0 −> NumberOfNeighbours ;
        while ( k > 0 )
        {
          BitCode <<= 1 ;
          Element *EN = E0 −> Neighbour[ −− k ] ;
          if ( EN == NULL || EN −> Leaf == NULL )  continue ;
          BitCode |= 0x1 ;
        }
        BitCode <<= 8 ;                         // Merge the current
        BitCode |= E0 −> GetSplitState() ;      // element status
        if ( BitCode )
        {                                         // Do refinement!
          kmax = D0 −> SizeOfStateTable ;
          k = D0 −> ExtraRefinement ;
          for ( ; k < kmax && StateTable[k] <= BitCode ; k++ ) ;
          if ( k > D0 −> ExtraRefinement )
          {
            unsigned  RefCode = StateTable[ −− k ] ;
            RefCode ^= BitCode ;
            if ( ! ( RefCode & ~0xFF ) )
            {                                  // Test whether irre−
              k = D0 −> RefinementMethod[k] ;  // gular refinement
              E0 −> SetSplitScheme( k ) ;      // is feasible to
              E0 = TodoList.GetNext() ;        // eliminate hanging
              goto NextElement ;               // nodes
            }
          }
          if ( BitCode & ~0xFF )     // Refinement necessary at all?
          {
            RedRefinement = 1 ;                 // Carry out regular
            E0 −> Split( ) ;                    // refinement
            kmax = D0 −> NumberOfNeighbours ;
            for ( k = 0 ; k < kmax ; k++ )
            {
              FemElement *EN = E0 −> Neighbour[k] ;
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              if ( EN == NULL || EN −> TestSetupMode() )  continue ;
              if ( EN −> Leaf == NULL )
              {
                EN −> FlagSetupMode() ;      // Inspect all recently
                TodoList.Append( EN ) ;      // generated elements
              }
            }
          }
        }
        E0 −> ClearSetupMode() ;         // Remove all elements that
        TodoList.DeleteEntry() ;         // have been refined or do
        E0 = TodoList.GetEntry() ;       // not need any refinement
        NextElement: ;                   // at all
      }
    }
    FemElement *E0 = TodoList.GotoStart() ;        // Determine true
    for ( ; E0 != NULL ; E0 = TodoList.GetNext() ) // refinement
    {                                              // state of all
      unsigned  l( TerminationState ) ;             // top layer ele−
      l |= E0 −> GetSplitState() ;                 // ments
      unsigned  k = E0 −> GetSplitScheme() ;
      SplitDescriptor &SD = E0 −> Descriptor −> RefineData[k] ;
      for ( k = 0 ; k < SD.SizeOfStateArrays ; k++ )
      {
        if ( l == SD.StateKeyArray[k] )
        {
          E0 −> SetSplitState( SD.RootStateOnRemoval[k] ) ;
          break ;
        }                                // Update refinement state of
      }                                  // all top layer elements
    }
  }
  unsigned  ArrayLength( NumberOfActiveElements ) ;
  FemElement **Array = CopyArray( ArrayLength, ElementArray ) ;
  for ( unsigned  n = 0 ; n < ArrayLength ; n++ )
  {
    FemElement *E0 = Array[ n ] ;                          // Account for
    unsigned  AssignedState = E0 −> GetSplitState() ;       // all methods
    if ( AssignedState )                                   // being only
    {                                                      // auxiliary!
      AssignedState |= TerminationState ;
      for ( k = 0 ; k < kmax ; k++ )
      {
        SplitDescriptor &SD = E0 −> GrabSplitDescriptor( k ) ;
        if ( SD.RefinementState == AssignedState )
        {                                                  // Matching
          E0 −> SetSplitScheme( k ) ;                      // scheme
          E0 −> AssignedSplit( k ) ;                       // detected!
          break ;
        }
      }
    }
  }
  DeleteArray( Array ) ;
}
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Appendix C

A Compilation of our Numerical Results

Figure C.1: Hypercycle estimates for the obstacle problem
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Figure C.2: Hypercycle estimates based on Raviart-Thomas elements of lowest order
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Figure C.3: Hypercycle estimates based on Brezzi-Douglas-Marini elements
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Figure C.4: Hypercycle estimates based on Raviart-Thomas elements of higher order
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Figure C.5: Error estimates on uniformly refined meshes, Example A
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Figure C.6: Error estimates on uniformly refined meshes, Example B
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Figure C.7: Error estimates on uniformly refined meshes, Example C
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Figure C.8: Minimising the hypercycle estimates, Example A
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Figure C.9: Minimising the hypercycle estimates, Example B
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Figure C.10: Minimising the hypercycle estimates, Example C
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Figure C.11: Alternative for computing hypercycle estimates, Example A
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Figure C.12: Alternative for computing hypercycle estimates, Example B
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Figure C.13: Alternative for computing hypercycle estimates, Example C
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Figure C.14: On the Impact of Local Mesh Refinement, Example A
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Figure C.15: On the Impact of Local Mesh Refinement, Example B

: ;�<3=(<�>
? ;�<�=�<�>�@ ;�<�=�<�>�A ;�<�=�<�>�B
C�D�E�F�G�H"IJLK6M%NJ(O P%Q ?�R P&S�T P%Q ?�U T A&A P%Q ? T @'A(V P%Q ?�B&B S @
W DX E�F�G�H"IJLK6M NJ O P%Q P�T ? Q V'@ ?�<3Y P @ ? Q B T'P <3Y P @ ? Q A�@&@+<3Y P @ ? Q @ T'P <3Y P @
W DZ E�F G5H IJ K�M NJ O ? Q R�@ ?�<3Y P @ ? Q @ S B&<3Y P @ R Q R&R�@+<3Y P A S%Q B"V"?�<3Y P A
C D E�F�G�H"IJLK6M NJ O P%Q ?7V+A S ? P%Q ? T @+B�U P%Q ?�A&R&U T P%Q ?-@'U&U'B
W DX E�F�G�H"IJ K6M NJ O P%Q ? P ? Q T A&U'<3Y P @ ? Q A�@+B&<3Y P @ ? Q @ P ?�<3Y P @ ? Q P V+U'<3Y P @
W9DZ E�F�G5H IJ[K�M%NJ O ? Q B S�T <3Y P @ ? Q P&P ?�<3Y P @ V Q B�R�@+<3Y P A T Q @ S @+<3Y P A
C�D�E�F�G�H"IJLK6M%NJ O P%Q ?�U�@&@'A P%Q ?�B(@'U&A P%Q ?-@ T U'B P%Q ?&? T U�@
W DX E�F�G�H"IJLK6M NJ O P%Q ? T ? Q B(@ P <3Y P @ ? Q @'A P <3Y P @ ? Q P U T <3Y P @ R Q V"?�R'<3Y P A
W DZ E�F G5H IJ K�M NJ O ? Q @ ?-@+<3Y P @ S%Q P B"V7<3Y P A T Q ?�A&A'<3Y P A A Q U T'P <3Y P A
C D E�F�G�H"IJLK6M NJ O P%Q ? T B"V P P%Q ?�A&A'B(@ P%Q ?&?7V+A(V P%Q ? P R%?�R
W DX E�F G�H"IJ K6M NJ O P%Q @ P ? Q A'B S <3Y P @ ? Q ?�A&R'<3Y P @ R Q S&S&S <3Y P A R Q P&S&S <3Y P A
W DZ E�F�G5H IJ[K�M NJ O ? Q P B T <3Y P @ U Q B P R'<3Y P A A Q S&S V7<3Y P A @ Q S A&U'<3Y P A
C D E�F�G�H"IJ K6M NJ O P%Q ? T ? S B P%Q ?-@ T ?�R P%Q ?&?&? P A P%Q ? P&P B(@
W DX E�F�G�H"IJLK6M NJ O P%Q A P ? Q A%?�A'<3Y P @ ? Q P U%?�<3Y P @ R Q @ T ?�<3Y P A S%Q @ T R'<3Y P A
W9DZ E�F�G5H IJ[K�M%NJ O R Q R�@ ?�<3Y P A T Q P U P <3Y P A A Q P V&V7<3Y P A ? Q S @'U'<3Y P A
C D E�F�G�H"IJ K6M NJ O P%Q ?�B�A S V P%Q ? P V&V7B P%Q P R P B�U P%Q P&S @ P @
W9DX E�F�G�H"IJLK6M%NJ O ? Q P&P ? Q ?�A&A'<3Y P @ S%Q P&S A'<3Y P A U Q U&R&R'<3Y P A U Q P�T B&<3Y P A
W DZ E�F�G5H IJ[K�M NJ O R Q A(V"?�<3Y P A A Q T @'U'<3Y P A ? Q B S A'<3Y P A U Q V+A'B&<3Y P B



170 Appendix C. A Compilation of our Numerical Results

Figure C.16: On the Impact of Local Mesh Refinement, Example C
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Figure C.17: Deterioration of Ieff due to Incomplete Refinement, Example A
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Figure C.18: Deterioration of Ieff due to Incomplete Refinement, Example B

� ���������
	 ���������� ����������� �����������
��������������� �"!$#��% &$' 	�(�) & 	 &$' 	*�,+�)-) &$' 	-	 &�. ( &$' & +-+-(��
/0�1 ����������� �"!$#��% &$' & ) 	 ' & ( & ��2 & � ( ' ( .-. ��2 & � ) ' �-)-�3��2 & � � ' ��+-4,��2 & �
/0�5 �3�� �6�7�� �8!$#� % 	 ' (-(-�,��2 & � 	 ' & 	-	���2 & � .�' & 	�(,��2 & � ) ' ���-)3��2 & �
��������������� �"!$#� % &$' 	�� .3&�. &$' 	-	-	�+,� &$' & +-�$	 & &$' & 4 & )3�
/0�1 ����������� �"!$#� % &$' 	 & + ' & (-+,��2 & � ) ' ),+-(,��2 & � � ' 	*�,4,��2 & � � ' � .-. ��2 & �
/0�5 �3���6�7�� �8!$#��% 	 ' �-),(,��2 & � ( ' +-�-�,��2 & � � ' )3�9	���2 & � � ' 	-	 & ��2 & �
��������������� �"!$#��% &$' 	���) & � &$' 	 & 	���� &$' & 4$	�4-+ &$' & (-+�)7	
/0�1 ����������� �"!$#��% &$' 	*) 4 ' 	*),+,��2 & � � ' 4-+-+,��2 & � � ' )-� & ��2 & � � ' 4$	�4,��2 & �
/0�5 �3�� �6�7�� �8!$#� % 	 ' &-& 4,��2 & � ) ' �-( . ��2 & � � ' 	�4 . ��2 & � � ' & 	��-��2 & �
�������� ������ �"!$#� % &$' 	*� . �-+ &$' & +,�-��� &$' &�. ) & 	 &$' & (-��)-)
/0�1 ����������� �"!$#� % &$' � & .�' (��7	���2 & � � ' ��)7	���2 & � � ' 	�4�)3��2 & � � ' ��+�)3��2 & �
/0�5 �3���6�7�� �8!$#��% 4 ' ( & (,��2 & � � ' ��(�)3��2 & � � ' �-�9	���2 & � 	 ' )3�-�-��2 & �
��������������� �"!$#��% &$' 	*�3��� . &$' & 4-($	�� &$' & ( . 4�� &$' & )3��+-�
/0�1 ����������� �"!$#��% &$' � & .�' ��� & ��2 & � � ' +-(,�-��2 & � � '6. 4-+,��2 & � � ' & �7	���2 & �
/0�5 �3�� �6�7�� �8!$#� % 4 ' 	*�-�3��2 & � � ' ��)3�-��2 & � 	 ' 4$	-	���2 & � + ' +-(��3��2 & �

Figure C.19: Deterioration of Ieff due to Incomplete Refinement, Example C
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Figure C.20: The Impact of Local Mesh Refinement on the Obstacle Problem
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Figure C.21: Deterioration of Ieff due to Incomplete Refinement
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[111] Tilman Neunhöffer, Multigrid Methods for Mixed Finite Element Discretizations of Variational Inequalities,
Multigrid Methods IV (P. W. Hemker, ed.), Birkhäuser, ISNM 116, Basel, 1994, pp. 257–268.
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[138] Rüdiger. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques,
Advances in Numerical Mathematics, Wiley & Teubner, Stuttgart, 1996.

[139] A. A. Vladimirov, Yu. E. Nesterov and Yu. N. Chekanov, On uniformly convex functionals, Mosc. Univ.
Comput. Math. Cybern. 3 (1979), 10–21.

[140] M. A. Wolfe, Numerical Methods for Unconstrained Optimization. An Introduction, Van Nostrand Reinhold
Company VIII, New York, 1978.

[141] C. Zalinescu, On uniformly convex functions, J. Math. Anal. Appl. 95 (1983), 344–374.

[142] O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering
analysis, Int. J. Numer. Meth. Engrg. 24 (1987), 337–357.



List of Figures

4.1 Hierarchical mesh refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Assembly of finite element matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Storage layout for a hierarchical mesh . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Possible definition of the class ”FemElement” . . . . . . . . . . . . . . . . . . . . . 87
4.5 Regular refinement of an isoparametric P2-element . . . . . . . . . . . . . . . . . . 87
4.6 Outline of refinement algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Cascaded removal of leaf elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.8 Outline of mesh coarsening algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.9 P2 Macro-elements versus auxiliary refinements . . . . . . . . . . . . . . . . . . . . 91
4.10 Auxiliary refinement patterns for the Q1 element . . . . . . . . . . . . . . . . . . . 92
4.11 Refinement patterns for triangular elements . . . . . . . . . . . . . . . . . . . . . . 95
4.12 Propagation of Refinement States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.13 Extracts from element description files . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.14 Depth first construction of the mesh bulk . . . . . . . . . . . . . . . . . . . . . . . 98
4.15 General outline of the mesh merging procedure . . . . . . . . . . . . . . . . . . . . 99
4.16 Preparing the update of the element states . . . . . . . . . . . . . . . . . . . . . . 100
4.17 The last stage of the mesh merging procedure . . . . . . . . . . . . . . . . . . . . . 101
4.18 The complete merging algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.19 Outline of the Multigrid Algorithm (pMG) . . . . . . . . . . . . . . . . . . . . . . 109

5.1 Outline of the code’s structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 The coarsest mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3 Efficiency Indices Ieff for various Error Estimates . . . . . . . . . . . . . . . . . . . 120
5.4 The impact of Optimisation on the Efficiency Indices Ieff . . . . . . . . . . . . . . 122
5.5 Alternative Methods of Computing Hypercycle Estimates . . . . . . . . . . . . . . 124
5.6 Finding the Optimal Equilibration Parameter . . . . . . . . . . . . . . . . . . . . . 127
5.7 Solving the Obstacle Problem by Penalisation . . . . . . . . . . . . . . . . . . . . . 129
5.8 Hypercycle Estimates for the Obstacle Problem . . . . . . . . . . . . . . . . . . . . 130
5.9 Alternative Estimates for the Obstacle Problem . . . . . . . . . . . . . . . . . . . . 131
5.10 Numerical Complexity of various Hypercycle Estimates . . . . . . . . . . . . . . . 132
5.11 Efficiency Indices for Locally Refined Meshes . . . . . . . . . . . . . . . . . . . . . 133
5.12 Deterioration of Ieff due to Incomplete Refinement . . . . . . . . . . . . . . . . . . 134
5.13 Efficiency Indices for Locally Refined Meshes . . . . . . . . . . . . . . . . . . . . . 135
5.14 Deterioration of Ieff due to Incomplete Refinement . . . . . . . . . . . . . . . . . . 135
5.15 Numerical Complexity and Local Mesh Refinement . . . . . . . . . . . . . . . . . . 136
5.16 Local Mesh Refinement for the Model Problem C . . . . . . . . . . . . . . . . . . . 137
5.17 Local Mesh Refinement for the Obstacle Problem . . . . . . . . . . . . . . . . . . . 137

B.1 Composition of state and refinement keys . . . . . . . . . . . . . . . . . . . . . . . 154
B.2 An algorithm for performing top layer refinements . . . . . . . . . . . . . . . . . . 155

C.1 Hypercycle estimates for the obstacle problem . . . . . . . . . . . . . . . . . . . . . 156
C.2 Hypercycle estimates based on Raviart-Thomas elements of lowest order . . . . . . 157
C.3 Hypercycle estimates based on Brezzi-Douglas-Marini elements . . . . . . . . . . . 158
C.4 Hypercycle estimates based on Raviart-Thomas elements of higher order . . . . . . 159
C.5 Error estimates on uniformly refined meshes, Example A . . . . . . . . . . . . . . . 160
C.6 Error estimates on uniformly refined meshes, Example B . . . . . . . . . . . . . . . 161
C.7 Error estimates on uniformly refined meshes, Example C . . . . . . . . . . . . . . . 162
C.8 Minimising the hypercycle estimates, Example A . . . . . . . . . . . . . . . . . . . 163
C.9 Minimising the hypercycle estimates, Example B . . . . . . . . . . . . . . . . . . . 164
C.10 Minimising the hypercycle estimates, Example C . . . . . . . . . . . . . . . . . . . 165
C.11 Alternative for computing hypercycle estimates, Example A . . . . . . . . . . . . . 166



180 LIST OF FIGURES

C.12 Alternative for computing hypercycle estimates, Example B . . . . . . . . . . . . . 167
C.13 Alternative for computing hypercycle estimates, Example C . . . . . . . . . . . . . 168
C.14 On the Impact of Local Mesh Refinement, Example A . . . . . . . . . . . . . . . . 169
C.15 On the Impact of Local Mesh Refinement, Example B . . . . . . . . . . . . . . . . 169
C.16 On the Impact of Local Mesh Refinement, Example C . . . . . . . . . . . . . . . . 170
C.17 Deterioration of Ieff due to Incomplete Refinement, Example A . . . . . . . . . . . 170
C.18 Deterioration of Ieff due to Incomplete Refinement, Example B . . . . . . . . . . . 171
C.19 Deterioration of Ieff due to Incomplete Refinement, Example C . . . . . . . . . . . 171
C.20 The Impact of Local Mesh Refinement on the Obstacle Problem . . . . . . . . . . 172
C.21 Deterioration of Ieff due to Incomplete Refinement . . . . . . . . . . . . . . . . . . 173


	Introduction
	A general Framework
	Preliminaries
	Convex sets and paired spaces
	Convex and uniformly convex functions
	Lower-semicontinuous functions
	The Fenchel transform
	Subdifferentials
	Properties of uniformly convex functions

	Error Estimates in the Energy Norm
	Statement of the variational formulation
	An abstract a posteriori error estimate
	Towards a computable error majorant
	Separating primal and dual variables
	The second duality relation revisited
	General features of the error majorants
	A review of our findings

	Bounds on functional outputs
	Treatment of the linear case
	On possible extensions


	Applications
	The Laplace Problem
	Some remarks on the notation
	A duality estimate for the Helmholtz problem
	Error bounds for the Laplace problem
	On the Efficiency of the Error Estimates
	The relationship with the Helmholtz problem
	Summary Statement of our Results

	The Obstacle Problem
	Capacity and order relations on Sobolev spaces
	Statement of the variational formulation
	A Description of the Subdifferential - G(x)
	Error estimates for the Energy Norm
	An alternative approach to the obstacle problem
	Preliminary Remarks on the Efficiency
	An Analysis of the Error Estimates
	A Comparison of the Error Estimates


	Discretisation Procedures
	General Remarks on Finite Element Methods
	An abstract description of finite element schemes
	A note on parametric finite elements
	On the Ramifications of the Numerical Cubature

	Discretisation Methods for the Dual Formulation
	Statement of the Variational Problem
	The Discretisation Procedure
	Proof of Convergence
	Processing the Numerical Solution

	Hypercycle Estimates in a Finite Element Context
	A posteriori estimates for the Laplace Problem
	A posteriori estimates for the Obstacle Problem


	Computational issues
	General Remarks on Mesh Handling
	Technical Prerequisites for Adaptive Mesh Refinement
	On an algorithm for dynamic mesh refinement
	On the removal of elements from a mesh
	On the use of auxiliary refinement schemes

	Merging and matching of meshes
	Identifying mesh entities by Sorting
	Management of auxiliary Refinement Patterns
	The Description of a Merging Algorithm
	On the Insertion of auxiliary Refinement Patterns

	Multilevel techniques for constrained variational problems
	Introductory remarks on multilevel schemes
	Statement of the dual formulation
	Discretisation of the dual formulation
	Description of the multilevel algorithm
	A proof of convergence
	Avoiding the global complementary condition


	Numerical Experiments
	General remarks on the simulation code
	Energy Error Estimates for the Laplace Problem
	A description of the experiments
	On the choice of certain constants
	Error estimates on uniformly refined meshes
	Minimising the generalised hypercycle estimates
	Alternative Approaches

	Energy Error Estimates for the Obstacle Problem
	Obtaining the Analytical Solution
	Residual based Error Estimates
	Miscellaneous Remarks on the Experiments
	A few Remarks on the Numerical Results

	Error Estimates on Locally Refined Meshes
	Error Estimates for the Laplace Problem
	Error Estimates for the Obstacle Problem


	Conclusion
	A reference for the grammar of the FEM language
	A note on the Backus-Naur Form
	The Description of the Grammar

	An Algorithm for Performing Top Layer Refinements
	A Compilation of our Numerical Results
	Bibliography

