Inaugural - Dissertation

zur
Erlangung der Doktorwürde
der
Naturwissenschaftlich-Mathematischen
Gesamtfakultät
der
Ruprecht-Karls-Universität
Heidelberg

vorgelegt von
Diplom-Mathematiker Michael Metzner
aus Karlsruhe

Tag der mündlichen Prüfung: 25.11.2003
Mehrgitterverfahren für die kompressiblen Euler- und Navier-Stokes-Gleichungen mit besonderer Betrachtung des schwach kompressiblen Falles

Gutachter:
Prof. Dr. Gabriel Wittum
Prof. Dr. Peter Bastian
Quand on est sur le bord de sa tombe
  On regarde en arrière et se dit:
      J’ai aimé
      *Alfred de Musset*

Für Caroline
Vorwort

Die vorliegende Arbeit begann während meiner Tätigkeit als wissenschaftlicher Mit-
arbeiter am Institut für Computeranwendungen der Universität Stuttgart und wurde
am Institut für Informatik der Universität Heidelberg fertiggestellt. Eine wesentliche
Voraussetzung zur Realisierung dieser Arbeit stellte während des gesamten Zeiträu-
mes die Förderung im Rahmen des Schwerpunktprogrammes „ANumE - Analysis
und Numerik von Erhaltungsgleichungen“ der Deutschen Forschungsgemeinschaft
dar.

Meinem Betreuer Prof. Dr. Gabriel Wittum möchte ich sehr herzlich danken für die
Überlassung der Aufgabenstellung. Er gab mir an entscheidenden Stellen wertvolle
Hilfe zum Gelingen dieser Arbeit und gewährte mir gleichwohl großen Freiraum bei
der Durchführung. Nur so konnte der Spagat zwischen der Promotion und meinem
außeruniversitären Engagement als IT-Berater gelingen.

Ein besonderer Dank gilt Prof. Dr. Claus-Dieter Munz, der mit seinem fachlichen
Rat beistand und durch wichtige Gespräche diese Arbeit förderte.

Nicht vergessen möchte ich an dieser Stelle, den Kollegen am IfI in Heidelberg und am
IAG in Stuttgart meinen Dank aus zu sprechen. Besonders hervorheben möchte ich
in diesem Zusammenhang die Kollegen im „Navier-Stokes-Zimmer“ Sandra Nägele
und Achim Gordner. Sie haben mich durch angeregte und humorvolle Diskussionen
immer wieder aufs Neue angetrieben und motiviert.

Ein weiterer Dank gilt meiner Familie für die Geduld und liebevolle Unterstützung,
die ich von ihr erfahren habe.

Zu guter Letzt möchte ich meiner Verlobten Caroline danken, die alle Höhen und
Tiefen dieser Arbeit miterlebt und mitgelebt hat.
Inhaltsverzeichnis

Vorwort i
 SYMBOLVERZEICHNIS vii

Einführung 1

1 Grundlegende Gleichungen 5
  1.1 Euler-Gleichungen 5
  1.2 Navier-Stokes-Gleichungen 7
  1.3 Referenzgrößen 8
  1.4 Dimensionslose Navier-Stokes-Gleichungen 10
  1.5 Inkompressible Navier-Stokes-Gleichungen 12

2 Asymptotik 15
  2.1 Einskalenasymptotik 15
  2.2 Mehrskalenasymptotik 20
  2.3 Akustische Gleichungen 25
  2.4 Ergebnisse der asymptotischen Analyse 27

3 Problemstellung 29
  3.1 Kompressible Gleichungen 29
  3.2 Schwach kompressible Gleichungen 30
  3.3 Randbedingungen 31
4 Numerische Verfahren

4.1 Übersicht ................................................. 33
4.2 Finite Volumen ........................................... 35
  4.2.1 Knotenbasierte Finite Volumen ......................... 41
4.3 Zeitdiskretisierung ....................................... 45
  4.3.1 BDF-Verfahren ......................................... 47
  4.3.2 Runge-Kutta-Verfahren ................................ 48
4.4 Ortsdiskretisierung ....................................... 51
  4.4.1 Upwind-Strategien ..................................... 54
  4.4.2 Stabilisierung ........................................ 62
  4.4.3 Randbedingungen ...................................... 63
4.5 Nichtlineare Iterationsverfahren ......................... 66
  4.5.1 Newton-Iteration ...................................... 66
  4.5.2 Berechnung der Jacobi-Matrix ......................... 67
  4.5.3 Defektberechnung ...................................... 69
4.6 Lineare Iterationsverfahren .............................. 70
  4.6.1 Klassische Iterationsverfahren ......................... 70
  4.6.2 ILU-Verfahren ......................................... 72
  4.6.3 Blockverfahren ........................................ 73
  4.6.4 Mehrgitterverfahren ................................... 75
  4.6.5 Krylovraum-Verfahren ................................. 80

5 Numerische Ergebnisse ...................................... 85

5.1 Kanal mit Beule ........................................... 85
  5.1.1 Inkompressible Strömung ............................... 87
  5.1.2 Subsonische Strömung ................................ 90
  5.1.3 Transsonische Strömung ................................ 96
  5.1.4 Supersonische Strömung ............................... 101
  5.1.5 Schwach kompressible Strömung in drei Raumdimensionen ... 107
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2 Kanal mit Rampe</td>
<td>110</td>
</tr>
<tr>
<td>5.3 Backstep</td>
<td>112</td>
</tr>
<tr>
<td>6 Zusammenfassung und Ausblick</td>
<td>117</td>
</tr>
<tr>
<td>Literaturverzeichnis</td>
<td>119</td>
</tr>
</tbody>
</table>
Symbolverzeichnis

Lateinische Symbole

\begin{itemize}
\item \( c \): Schallgeschwindigkeit \( \sqrt{\frac{p}{\rho}} \)
\item \( d \): Dimension des Raumes
\item \( e \): Nach innen gerichteter Einheitsvektors auf die Erdoberfläche
\item \( g \): Gravitationskonstante
\item \( g_i \): Gravitation in \( x_i \)-Richtung
\item \( m \): Massenfluss
\item \( n_i \): \( i \)-te Komponente des nach außen gerichteten Normalenvektors
\item \( p \): Druck
\item \( r \): Residuum
\item \( u_i \): Geschwindigkeit in \( x_i \)-Richtung
\item \( v \): Geschwindigkeit
\item \( t \): Zeit
\item \( t_i \): \( i \)-te Komponente eines Tangentialvektors
\item \( x_i \): Kartesische Koordinate
\item \( E \): Totalenergie
\item \( G \): Graph
\item \( I \): Indexmenge
\item \( L \): Länge
\item \( T \): Temperatur
\end{itemize}

Griechische Symbole

\begin{itemize}
\item \( \delta_{ij} \): Kronecker-Symbol
\item \( \varepsilon \): Innere Energie
\end{itemize}
\[\gamma\] Adiabatischer Koeffizient
\[\mu\] Dynamische Viskosität
\[\nu\] Kinematische Viskosität
\[\omega\] Relaxationsparameter
\[\varrho\] Dichte
\[\tau_{ij}\] Komponenten des Spannungs-Tensors
\[\Phi\] Skalare Größe
\[\Delta t\] Zeitschrittweite
\[\nabla \Phi\] Gradient einer Größe \(\Phi\)
\[\Delta \Phi\] Laplace-Operator einer Größe \(\Phi\)
\[\Omega\] Gebiet
\[\partial \Omega\] Rand eines Gebietes
\[\int_\Omega dx\] Volumenintegral
\[\int_{\partial \Omega} ds\] Oberflächenintegral

**Dimensionslose Kennzahlen**

\[Fr\] Froudezahl
\[M\] Globale Machzahl
\[Ma\] Lokale Machzahl
\[Pe\] Peletzzahl
\[Pr\] Prandtlzahl
\[Re\] Reynoldszahl

**Abkürzungen**

CV Kontrollvolumen
SCV Teilkontrollvolumen
SCVF Teilkontrollvolumenseite
UDS Upwind Difference Scheme
CDS Central Difference Scheme
LPS Linear Profile Skewed Upwinding
MWS Mass Weighted Skewed Upwinding
REG Reguläres Upwinding
POS Positives Upwinding
PAC Physical Advection Correction

Indizes

\(ip\) Integrationspunkt
\(bip\) Randintegrationspunkt
\(co\) Knotenpunkt
\(up\) Upwindpunkt
\(dn\) Downwindpunkt
0 Wert aus der letzten Iteration
— Wert aus dem letzten Zeitschritt
Einführung

Für eine Vielzahl von technischen Problemen ist die Simulation kompressibler Strömungen kleiner Machzahl von Bedeutung. Typische Beispiele sind Detonationsprozesse und aeroakustische Phänomene.

Im Falle eines Verbrennungsprozesses kann eine anfangs niedrige Strömungsgeschwindigkeit durch eine Detonation so stark beschleunigt werden, dass die Strömung vom schwach kompressiblen ins voll kompressible Regime übergeht. Die Simulation solch eines Vorganges muss daher beiden Effekten Rechnung tragen können. Wichtig ist dabei die Erkenntnis, dass vor allem akustische Druckwellen zur Flammenbeschleunigung beitragen, die mit der Flammenfront interagieren. Man spricht in diesem Zusammenhang auch von akustisch gezündeten Detonationsvorgängen.

Ein besonders gut verständliches Beispiel für aeroakustische Phänomene stellt die Berechnung der Schallemission einer Windturbine dar. Die Umfangsgeschwindigkeit der Blattspitzen beträgt bis zu $65 \text{ m/s}$, es handelt sich also um eine schwach kompressible Strömung mit kleiner Machzahl. Die Schallemission großer Anlagen liegt jedoch im Bereich von $100 \text{ dB}$, was die Akzeptanz solcher Windturbinen stark beeinträchtigt. Es ist deshalb eine Untersuchung der Blattgeometrie unter dem Blickwinkel der Schallabstrahlung vornötig. Dies ist nur mit einem entsprechenden numerischen Werkzeug möglich, das zum einen die schwach kompressiblen Gleichungen löst und gleichzeitig eine direkte Kopplung zur akustischen Feldberechnung zulässt. Methoden, die zuerst die Strömung simulieren und anschließend das Schallfeld berechnen, sind aus dem letztgenannten Grund nicht geeignet. Das numerische Schema muss die Wechselwirkung der physikalischen Phänome gekoppelt auflösen.

Die physikalischen Phänomene bei der Entstehung von Schall in einer Strömung treten auf sehr unterschiedlichen Skalen auf. Für die Strömung sind in der Regel sehr kleinskalige Strukturen dominierend, wie sie etwa bei der Turbulenz entstehen. Dagegen spielen bei der akustischen Schallausbreitung große Distanzen und Wellen-


Die Modelle für die inkompressiblen, schwach kompressiblen und kompressiblen Glei-
chungen sowie für die reibungsbehafteten und reibungsfreien Strömungen haben zwar
grundlegend verschiedene physikalische und numerische Eigenschaften, unterschei-
den sich jedoch nur in wenigen Termen. Aus diesem Grunde wird als Ziel die Ent-
wicklung eines einheitlichen Softwarecodes für alle Gleichungstypen angestrebt. Die
Implementierung erfolgt dabei unter Verwendung des am Institut für Informatik
der Universität Heidelberg entwickelten Softwaretools UG [8]. Der Schwerpunkt von
UG liegt auf der Bereitstellung standardisierter Werkzeuge für numerische Verfahren
basierend auf unstrukturierten Gittern. Ein großer Vorteil ist die Integration
von Simulationen in zwei und drei Raumdimensionen auf einer Abstraktionsebene.
Zudem unterstützt UG die Parallelisierung und die Verwendung von lokal adaptiv
verfeinerten Gittern.

Das aus der Diskretisierung entstehende Gleichungssystem wird mit einem linearen
Mehrgitterverfahren gelöst. Obwohl ein Großteil der Konvergenztheorie nur bei An-
wendung auf elliptische Differentialgleichungen Gültigkeit hat, so erweist sich das
Mehrgitterverfahren in der Praxis für eine weitaus größere Klasse von Problemstel-
lungen als effiziente Methode. In der Literatur findet sich eine Vielzahl von Mehrgit-
tterverfahren für kompressible und inkompressible Strömungen, zu denen an dieser
Stelle ein kurzer Überblick gegeben werden soll.

Die ersten Mehrgitterverfahren zur schnellen Lösung der kompressiblen Euler-
Im Wesentlichen basieren diese Verfahren auf der Verwendung von Standard-
Mehrgitterkomponenten. Spätere Arbeiten von Mulder [64], [65] analysieren die
Problematik der mangelnden Glättungseigenschaft bei hyperbolischen Gleichungen
genauer. Die dabei eingeführte Semicoarsening-Strategie, die später von Oosterlee
[75] zu einem algebraischen Mehrriterverfahren verfeinert wurde, bleibt jedoch auf
struktierte Gitter beschränkt. Die erfolgreiche Anwendung von strömab numerier-
ten unvollständigen Zerlegungen als robuste Glättungsverfahren auf unstrukturierte-
en Gittern demonstriert Haag [34]. Weitere Arbeiten auf unstrukturierten, adaptiv
verfeinerten Gittern in drei Raumdimensionen haben vor allem Mavriplis und seine
Arbeitsgruppe [62], [102] vorgelegt.

Für den inkompressiblen Grenzfall existiert ebenso eine Reihe verschiedener Ansätze.
Zu nennen sind hier etwa die Arbeiten von Raw [85], Oosterlee [74] und Turek
[99]. Grundlegend für die vorliegende Arbeit sind die ausführlichen Untersuchungen
von Rentz-Reichert [88], [90] zur Konstruktion geeigneter Glätter für die inkompressi-


1 Grundlegende Gleichungen


1.1 Euler-Gleichungen

Die Erhaltungssätze für Masse, Impuls und Energie einer kompressiblen reibungsfreien Strömung werden als Euler-Gleichungen der Strömungsmechanik bezeichnet. In Differentialform können sie bei Verwendung der Einsteinschen Summationskonvention

\[ a_j b_j = a_1 b_1 + \ldots + a_d b_d \quad \text{in einem Raum der Dimension } d \]

in folgender Form notiert werden:

Kontinuitätsgleichung

\[ \frac{\partial \rho^*}{\partial t^*} + \frac{\partial \rho^* u_j^*}{\partial x_j^*} = 0 \quad (1.1) \]

Impulsgleichung

\[ \frac{\partial \rho^* u_i^*}{\partial t^*} + \frac{\partial \rho^* u_i^* u_j^*}{\partial x_j^*} + \frac{\partial p^*}{\partial x_i^*} = \rho^* g^* \epsilon_i \quad (1.2) \]
Grundlegende Gleichungen

Dabei ist \( i = 1, 2 \) für zweidimensionale und \( i = 1, 2, 3 \) für dreidimensionale Strömungen.

Energiegleichung

\[
\frac{\partial E^*}{\partial t^*} + \frac{\partial (E^* + p^*)u_j^*}{\partial x_j^*} = \dot{\gamma} g^* \varepsilon^* u_j^* 
\]

Das hochgestellte Sternchen kennzeichnet die dimensionsbehäfteten Größen, das sind die Zeit \( t^* \), die Dichte \( \rho^* \), der Druck \( p^* \) und die Geschwindigkeitskomponenten \( u_j^* \) in den kartesischen Koordinaten \( x_i^* \). Die totale Energie wird mit \( E^* \) bezeichnet. Sie setzt sich zusammen aus der inneren Energie \( \varepsilon^* \), der kinetischen Energie und der potenziellen Energie. Das heißt, es ist

\[
E^* = \rho^* \varepsilon^* + \frac{1}{2} \rho^* u_i^* u_i^* + \rho g^* z. 
\]

Zusätzlich wurde in dem obigen Gleichungssystem die Gravitation berücksichtigt. Die Schwerkraft wirkt in Richtung des nach innen weisenden Normaleneinheitsvektors \( e \) auf die Erdoberfläche. Die Gravitationskonstante nimmt den Wert \( g^* = 9.81 \frac{m}{s^2} \) an. Dabei bezeichne \( z \) die potenzielle Höhe über einem Bezugsniveau. Die hydrostatische Druckänderung ist durch die Zeitableitung der potenziellen Energie gegeben. Diese ist in der Gasdynamik in der Regel unbedeutend, sodass für die Ableitung der totalen Energie

\[
\frac{\partial E^*}{\partial t^*} = \frac{\partial \rho^* \varepsilon^*}{\partial t^*} + \frac{1}{2} \frac{\partial \rho^* u_i^* u_i^*}{\partial t^*} 
\]

gilt. In vielen Fällen kann die Gravitation auch vernachlässigt werden. Es ist in diesem Falle dann \( g^* = 0 \) zu setzen und die rechten Seiten in den Gleichungen (1.2) und (1.3) sowie der letzte Term in der Beziehung (1.4) verschwinden.

Die Euler-Gleichungen bilden ein System von hyperbolischen Gleichungen. Um dieses System zu schließen wird eine Zustandsgleichung benötigt, die die Zusammenhang zwischen den thermodynamischen Größen herstellt. Im Folgenden soll immer von einem kalorisch perfekten Gas ausgegangen werden. Für solch ein Gas gilt die Beziehung

\[
p^* = (\gamma - 1) \rho^* \varepsilon^*. 
\]

Dabei bezeichnet \( \gamma \) den adiabatischen Koeffizienten, der sich aus dem Verhältnis der spezifischen Wärmekapazität \( c_p^* \) bei konstantem Druck und der spezifischen Wärmekapazität \( c_v^* \) bei konstanter Geschwindigkeit

\[
\gamma = \frac{c_p^*}{c_v^*} 
\]
ergibt. Bei allen Rechnungen in dieser Arbeit wird Luft als Medium angenommen
und es ist dann $\gamma = 1.4$.

### 1.2 Navier-Stokes-Gleichungen

Ist die Strömung reibungsbehäftet, so müssen zusätzliche Diffusionsterme berück-
sichtigt werden. Die Erhaltungssätze für Masse, Impuls und Energie einer kompressi-
blen viskosen Strömung sind als Navier-Stokes-Gleichungen der Strömungsmechanik
bekannt.

In vielen Anwendungen bleibt die Temperatur in dem zu simulierende Gebiet kon-
stant. In einer physikalisch gesehen vollständigen Diskussion der Navier-Stokes-
Gleichungen sind jedoch auch Effekte zu berücksichtigen, die sich aus einer Tem-
peraturänderung ergeben. Aus diesem Grunde werden im Weiteren auch Terme für
den Temperaturtransport und für Wärmequellen angegeben.

Unter diesen Voraussetzungen lauten dann die Navier-Stokes-Gleichungen in Diffe-
rentialform wie folgt:

**Kontinuitätsgleichung**

\[
\frac{\partial q^*}{\partial t^*} + \frac{\partial q^* u^*_j}{\partial x^*_j} = 0
\]

**Impulsgleichung**

\[
\frac{\partial q^* u^*_i}{\partial t^*} + \frac{\partial q^* u^*_i u^*_j}{\partial x^*_j} + \frac{\partial p^*}{\partial x^*_i} - \frac{\partial \tau^*_{ij}}{\partial x^*_j} = \rho^* g^* e_i
\]

Der im Vergleich zu (1.2) hinzugekommene Diffusionsterm ist durch den Spannungs-
Tensor

\[\tau^*_{ij} = \mu^* \left( \frac{\partial u^*_i}{\partial x^*_j} + \frac{\partial u^*_j}{\partial x^*_i} \right) - \frac{2}{3} \mu^* \frac{\partial u^*_i}{\partial x^*_k} \delta^*_{ij} \]

einer Newtonschen Flüssigkeit mit der dynamischen Viskosität $\mu^* = \rho^* \nu^*$ gegeben.
Die Viskosität ist von der Temperatur $T^*$ abhängig.

**Energiegleichung**

\[
\frac{\partial E^*}{\partial t^*} + \frac{\partial (E^* + p^*) u^*_j}{\partial x^*_j} - \frac{\partial \tau^*_{ij} u^*_i}{\partial x^*_j} - \frac{\partial \left( \kappa^* \frac{\partial T^*}{\partial x^*_i} \right)}{\partial x^*_j} = \rho^* g^* e_j u^*_j + \rho^* q^*
\]

Die Temperatur ist bei einem kalorisch perfekten Gas mit der Energie durch die Zustandsgleichung

$$\varepsilon^s = c_v^s T^s$$

gekoppelt. Setzt man diese Beziehung in die Zustandsgleichung (1.6) für den Druck ein, so erhält man

$$(1.10) \quad p^s = (\gamma - 1) \rho^s \varepsilon^s = (c_p^s - c_v^s) \rho^s T^s = \rho^s R^s T^s.$$  

Dabei bezeichnet $R^s = c_p^s - c_v^s$ die spezifische Gaskonstante.

Wie man sofort sieht, ergeben sich die Euler-Gleichungen als Spezialfall der Navier-Stokes-Gleichungen durch Vernachlässigung von Reibung und Temperaturänderungen, also für $\mu^s \equiv 0$ und $\kappa^s \equiv 0$. Ein grundlegender Unterschied besteht jedoch darin, dass sich durch Hinzunahme der Diffusionsterme der Charakter der Navier-Stokes-Gleichungen ändert. Bilden die Euler-Gleichungen ein rein hyperbolisches Gleichungssystem, so stellen die Navier-Stokes-Gleichungen ein hyperbolisch-ellipsoidisches System dar. Eine genauere Betrachtung dieser Tatsache kann zum Beispiel in dem grundlegenden Buch von Kreiss und Lorenz [55] über die Navier-Stokes-Gleichungen gefunden werden.

### 1.3 Referenzgrößen

Die in dieser Arbeit zugrunde liegenden Gleichungen werden mit Hilfe geeigneter Referenzgrößen dimensionlos gemacht. Die in der Literatur gängigen dimensionlosen Formulierungen verwenden hierzu Referenzgrößen für die Länge des physikalischen Gebietes, den Druck und die Dichte. Alle anderen Referenzwerte, unter anderem der für die Geschwindigkeit, ergeben sich dann aus der physikalischen Beziehung der dimensionsbehafteten Größen. Bei dieser Wahl haben die Strömungs- und die
Referenzgrößen


Im Folgenden wird somit zwischen der charakteristischen Strömungsgeschwindigkeit $u_\infty$ und der charakteristischen Geschwindigkeit $c_\infty = \sqrt{p_\infty/\varrho_\infty}$ der Schallausbreitung unterschieden. Das Verhältnis der Strömungszur Schallausbreitungsgeschwindigkeit wird als globale Machzahl

$$M = \frac{u_\infty}{c_\infty} = \frac{u_\infty}{\sqrt{p_\infty/\varrho_\infty}}$$

bezeichnet. Diese dient als Maß für die Kompressibilität der Strömung. Für $M \to 0$ ergibt sich das inkompressible Limit, wohingegen $M \approx 1$ den kompressiblen Fall charakterisiert. Die globale Machzahl $M$ ist von der lokalen Machzahl

$$Ma = \frac{u_\infty}{\sqrt{\gamma p_\infty/\varrho_\infty}} = \frac{1}{\sqrt{\gamma}} \cdot M$$

zu unterscheiden. Wenn nicht explizit anders erwähnt, ist im Folgenden immer die globale Machzahl gemeint, wenn von der Machzahl gesprochen wird.

Schließlich wird die Referenzzeit $t_\infty$ als charakteristische Zeit der Strömung definiert und nicht als charakteristische Zeit der akustischen Wellenausbreitung.

Im Einzelnen werden die folgenden Referenzgrößen verwendet:

- $l_\infty$: Referenzlänge
- $p_\infty$: Referenzdruck
- $\varrho_\infty$: Referenzdichte
- $u_\infty$: Referenzgeschwindigkeit

(1.11) $c_\infty = \sqrt{p_\infty/\varrho_\infty}$ Referenzschallgeschwindigkeit

$$t_\infty = \frac{l_\infty}{u_\infty}$$ Referenzzeit

$$T_\infty = \frac{p_\infty}{(\varrho_\infty R^*)}$$ Referenztemperatur

$\mu_\infty$: Referenzviskosität

$\kappa_\infty$: Referenzwärmekoeffizient
1.4 Dimensionslose Navier-Stokes-Gleichungen

Die folgenden Umformungen werden nur anhand der Navier-Stokes-Gleichungen (1.7) - (1.9) aufgezeigt, da die Euler-Gleichungen (1.1) - (1.3) lediglich einen Spezialfall darstellen, der durch Vernachlässigen der Diffusions- und Wärmetransportterm in Impuls- und Energiegleichung entsteht.

Unter Verwendung der Gleichung (1.4) und der Zustandsgleichung (1.6) wird die Energiegleichung (1.9) umformuliert in den primitiven Variablen Dichte, Druck und Geschwindigkeit. Zudem wird, wie schon in Formel (1.5) angegeben, die hydrostatische Druckänderung vernachlässigt. Die Energiegleichung lautet dann:

\[
\frac{1}{\gamma - 1} \frac{\partial p^*}{\partial t^*} + \frac{1}{\gamma - 1} \frac{\partial p^* u_i^* u_i^*}{\partial x^*} + \frac{\partial (\kappa^* \frac{\partial T^*}{\partial x^*})}{\partial x^*_j} - \frac{\partial \tau^*_i}{\partial x^*_i} = \rho^* g^* e_j^* + \rho^* q^*.
\]

Subtrahiert man das \(u_i^*\)-fache der Kontinuitätsgleichung (1.7) von der Impulsgleichung (1.8), so vereinfacht sich die Impulsgleichung zu

\[
\rho^* \frac{\partial u_i^*}{\partial t^*} + \rho^* u_j^* \frac{\partial u_i^*}{\partial x_j^*} + \frac{\partial p^*}{\partial x_i^*} - \frac{\partial \tau^*_i}{\partial x^*_i} = \rho^* g^* e_i^*.
\]

Ebenso vereinfacht sich die Energiegleichung (1.12), wenn man das \(\frac{1}{2}(u_i^*)^2\)-fache der Kontinuitätsgleichung (1.7) und das \(u_i^*\)-fache der Impulsgleichung (1.13) abzieht. Die Energiegleichung lautet dann

\[
\frac{1}{\gamma - 1} \frac{\partial p^*}{\partial t^*} + \frac{\partial p^* u_i^*}{\partial x^*_j} - u_i^* \frac{\partial p^*}{\partial x^*_i} - \tau^*_i \frac{\partial u_i^*}{\partial x^*_i} - \frac{\partial (\kappa^* \frac{\partial T^*}{\partial x^*})}{\partial x^*_j} = \rho^* g^* e_i^*.
\]

Durch Zusammenfassen gleicher Terme erhält man schließlich

\[
\frac{\partial p^*}{\partial t^*} + u_j^* \frac{\partial p^*}{\partial x_j^*} + \gamma p^* \frac{\partial u_i^*}{\partial x_i^*} - (\gamma - 1) \tau^*_i \frac{\partial u_i^*}{\partial x^*_i} - (\gamma - 1) \frac{\partial (\kappa^* \frac{\partial T^*}{\partial x^*})}{\partial x^*_j} = (\gamma - 1) \rho^* g^* e_i^*.
\]

Die Umrechnung der dimensionsbehafteten in die dimensionslosen Größen geschieht.
mit Hilfe der Referenzgrößen (1.11) durch das folgende Schema:

$$
\varrho = \frac{\varrho^*}{\varrho_\infty}, \quad p = \frac{p^*}{p_\infty}, \quad u_i = \frac{u_i^*}{u_\infty}
$$

$$
x_i = \frac{x_i^*}{l_\infty}, \quad t = \frac{t^*}{l_\infty/u_\infty}
$$

(1.15)

$$
E = \frac{E^*}{p_\infty/\varrho_\infty}, \quad T = \frac{T^*}{T_\infty} = \frac{T^*}{p_\infty/(\varrho_\infty R^*)}
$$

$$
\mu = \frac{\mu^*}{\mu_\infty}, \quad \kappa = \frac{\kappa^*}{\kappa_\infty}
$$

Mit Hilfe dieses Schemas (1.15) ist es nun ein Leichtes, die Navier-Stokes-Gleichungen in dimensionsloser Formulierung anzugeben. Sie lauten:

Kontinuitätsgleichung (Dichtegleichung)

(1.16)

$$
\frac{\partial \varrho}{\partial t} + \frac{\partial \varrho u_j}{\partial x_j} = 0
$$

Impulsgleichung (Geschwindigkeitsgleichung)

(1.17)

$$
\frac{\partial u_i}{\partial t} + \varrho u_j \frac{\partial u_i}{\partial x_j} + \frac{1}{M^2} \frac{\partial p}{\partial x_i} - \frac{1}{Re} \frac{\partial \tau_{ij}}{\partial x_j} = \frac{1}{F_r^2} \varrho e_i
$$

Hierbei ist $Re = \frac{a_{\infty} l_{\infty} u_{\infty}}{\mu_{\infty}}$ die Reynoldszahl der Strömung. Der dimensionslose Spannungs-Tensor $\tau_{ij}$ ist durch

$$
\tau_{ij} = \mu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \delta_{ij} \frac{\partial u_k}{\partial x_k}
$$

gegeben. Die Froudezahl $F_r = \frac{u_{\infty}}{\sqrt{g} l_{\infty}}$ charakterisiert das Verhältnis der Strömungsgeschwindigkeit zur Geschwindigkeit der Schwerewellen.

Energiegleichung (Druckgleichung)

(1.18)

$$
\frac{\partial p}{\partial t} + u_j \frac{\partial p}{\partial x_j} + \gamma p \frac{\partial u_j}{\partial x_j} - \frac{M^2}{Re} (\gamma - 1) \tau_{ij} \frac{\partial u_i}{\partial x_j} - \frac{\gamma}{Re Pr} \frac{\partial}{\partial x_j} \left( \kappa \frac{\partial T}{\partial x_j} \right) = (\gamma - 1) \varrho q
$$

Als weitere dimensionslose Kennzahl erscheint die Prandtlzahl $Pr = \frac{\nu_{\infty}}{\kappa_{\infty}}$. Die dimensionslose Wärmequelle ist gegeben durch

$$
q = \frac{l_{\infty} \varrho_{\infty}}{u_{\infty} p_{\infty}} q^*.
$$
Die Kopplung zwischen Druck, Dichte und Temperatur, wie sie durch die Zustands-
gleichung (1.10) beschrieben wird, lautet in dimensionsloser Formulierung
\[(1.19) \quad T = \frac{p}{\rho}.\]

Mit Hilfe von Sutherland’s Gesetz
\[
\begin{align*}
\kappa & = \frac{\mu c_p}{Pr} \\
\mu & = T^\frac{2}{7} \left(1 + \frac{S}{T + S}\right),
\end{align*}
\]
in das die Konstante \(S = \frac{110.5K}{T_\infty}\) eingeht, kann eine Beziehung zwischen der dyna-
mischen Viskosität \(\mu\) und dem Wärmeleitkoeffizienten \(\kappa\) hergestellt werden. Nimmt
man dabei an, dass für die Prandtlzahl \(Pr^* = \frac{c_p \kappa}{\mu} = Pr\) gilt, so erhält man die
Gleichheit
\[
\kappa = \mu.
\]

In den meisten Rechnungen, insbesondere ohne Turbulenz, kann jedoch die dynami-
sche Viskosität und somit auch der Wärmeleitkoeffizient als konstant angenommen
werden. Es ist dann in der dimensionslosen Formulierung \(\kappa = \mu = 1\). In den obigen
Gleichungen vereinfachen sich dann die dissipativen Terme und der Wärmeleitungs-
term, der sich zum Laplace-Operator der Temperatur reduziert.

### 1.5 Inkompressible Navier-Stokes-Gleichungen

Viel diskutiert werden in der Literatur die inkompressiblen Navier-Stokes-
Gleichungen. In technischen Anwendungen werden sie zumeist als vereinfachtes Mo-
dell verwendet, wenn die Machzahl \(Ma \leq 0.3\) ist und auf Wärmetransport verzich-
tet werden kann. Im Spezialfall einer inkompressiblen Strömung können die Navier-
Stokes-Gleichungen so weit vereinfacht werden, dass die Energiegleichung keine neue
Bedingung liefert und sich das Gleichungssystem somit um eine Gleichung reduziert.

Man spricht von inkompressiblen Strömungen, wenn Dichteänderungen eines Strö-
mungspartikels vernachlässigbar sind. Mit dem Begriff Strömungspartikel ist dabei
ein infinitesimal kleiner Teil der Strömung gemeint. Mathematisch korrekt läßt sich
eine inkompressible Strömung somit dadurch beschreiben, dass die totale Ableitung
der Dichte verschwindet:
\[(1.20) \quad \frac{D \rho}{Dt} = \frac{\partial \rho}{\partial t} + u_j \frac{\partial \rho}{\partial x_j} = 0.\]
In diesem Falle vereinfacht sich die Kontinuitätsgleichung (1.16) zur Divergenzbedingung

\[
\rho \frac{\partial u_i}{\partial x_j} = 0.
\]

(1.21)

Zu beachten ist hierbei, dass aus der Bedingung (1.20) an die Dichte nicht zwangsläufig folgt, dass diese konstant im Gebiet ist. Es muss lediglich die Dichte eines jeden Partikels konstant bleiben.

Die inkompressiblen Navier-Stokes-Gleichungen lauten nach Verwendung der Beziehung (1.20) und nach Einsetzen der Divergenzbedingung (1.21) in die Impulsgleichung wie folgt:

Kontinuitätsgleichung

\[
\rho \frac{\partial u_j}{\partial x_j} = 0
\]

(1.22)

Impulsgleichung

\[
\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} + \frac{1}{\rho M^2} \frac{\partial p}{\partial x_i} - \frac{1}{Re} \frac{\partial \tau_{ij}}{\partial x_j} = \frac{1}{Fr^2} \epsilon_i
\]

(1.23)

Der Spannungs-Tensor einer Newtonschen Flüssigkeit mit der kinematischen Viskosität \(\nu\) vereinfacht sich zu

\[
\tau_{ij} = \nu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).
\]

Unter Annahme einer konstanten Temperatur ist bei einem idealen Gas die Energiegleichung automatisch erfüllt, wenn (1.20) gilt.

Bei Berücksichtigung von Temperaturschwankungen kann die Energiegleichung auch in eine Temperaturgleichung umgeformt werden. Man erhält die Transportgleichung

\[
\frac{\partial T}{\partial t} + u_j \frac{\partial T}{\partial x_j} - \frac{\gamma}{\rho Re Pr} \frac{\partial \tau_{ij}}{\partial x_j} = 0.
\]
2 Asymptotik


Sehr grundlegende Arbeiten für diesen Ansatz stammen von Klainerman und Majda [48], [49]. Die Autoren können mit Hilfe einer Einskalenasymptotik zeigen, dass in offenen Gebieten die Lösung der Euler-Gleichung im Limit $M \to 0$ gegen die Lösung der inkompressiblen Euler-Gleichungen strebt. Akustische Störungen werden in dieser Untersuchung ausgeschlossen.


2.1 Einskalenasymptotik

Bei Strömungen, die von der Temperatur getrieben werden oder bei Verbrennungen kleiner Machzahl ist ein asymptotischer Ansatz mit einer Längenskala und einer Zeitskala adäquat. Jede Variable wird dann bezüglich der Machzahl in einer formalen
Entwicklung geschrieben, um den Grenzübergang $M \to 0$ analysieren zu können. Der asymptotische Ansatz lautet dann

\begin{equation}
(2.1) \quad f(x, t, M) = f^{(0)}(x, t) + M f^{(1)}(x, t) + M^2 f^{(2)}(x, t) + O(M^3)
\end{equation}

mit $f = (\rho, u_i, p)$.

Zunächst wird am Beispiel des Impulses $gu_i$ die Vorgehensweise bei den nichtlinearen Termen veranschaulicht. Es ist

$$(gu_i) = \rho \cdot u_i$$

und somit nach Einsetzen des asymptotischen Ansatzes auf beiden Seiten

$$(gu_i)^{(0)} + M(gu_i)^{(1)} + M^2(gu_i)^{(2)} + O(M^3) = (\rho^{(0)} + M\dot{\rho}^{(1)} + M^2\ddot{\rho}^{(2)} + O(M^3)) \cdot (u_i^{(0)} + Mu_i^{(1)} + M^2u_i^{(2)} + O(M^3)).$$

Ein Koeffizientenvergleich der Terme gleicher Ordnung in der Machzahl ergibt dann die folgenden Beziehungen:

\begin{align}
(2.2) \quad (gu_i)^{(0)} &= \rho^{(0)}u_i^{(0)} \\
(2.3) \quad (gu_i)^{(1)} &= \rho^{(0)}u_i^{(1)} + \dot{\rho}^{(1)}u_i^{(0)} \\
(2.4) \quad (gu_i)^{(2)} &= \rho^{(0)}u_i^{(2)} + \dot{\rho}^{(1)}u_i^{(1)} + \ddot{\rho}^{(2)}u_i^{(0)}.
\end{align}

Analog hierzu wird nun der asymptotische Ansatz (2.1) in die Navier-Stokes-Gleichungen (1.16) - (1.18) eingesetzt. Sortiert man die Terme nach Termen gleicher Ordnung in der Machzahl, so lässt sich die Kontinuitätsgleichung schreiben als

$$
\frac{\partial \rho^{(0)}}{\partial t} + \frac{\partial (\rho u_j)^{(0)}}{\partial x_j} + M \left( \frac{\partial \rho^{(1)}}{\partial t} + \frac{\partial (\rho u_j)^{(1)}}{\partial x_j} \right) + O(M^2) = 0.
$$

Diese Gleichung ist nur erfüllt, wenn alle Koeffizienten verschwinden, das heisst wenn

\begin{equation}
(2.5) \quad \frac{\partial \rho^{(l)}}{\partial t} + \frac{\partial (\rho u_j)^{(l)}}{\partial x_j} = 0
\end{equation}

für $l = 0, 1$ gilt. Dies sind die Kontinuitätsgleichungen führender und erster Ordnung.

Unter Verwendung der Beziehung (2.2) lautet die Impulsgleichung

\begin{align*}
&\frac{1}{M^2} \frac{\partial p^{(0)}}{\partial x_i} + \frac{1}{M} \frac{\partial p^{(1)}}{\partial x_i} \\
&+ \rho^{(0)} \frac{\partial u_i^{(0)}}{\partial t} + \rho^{(0)} u_j^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial u_i^{(0)}}{\partial x_i} - \frac{1}{Fr^2} \rho^{(0)} \varepsilon_i \\
&+ O(M) = 0.
\end{align*}
Durch Koeffizientenvergleich erhält man somit die Impulsgleichungen führender, erster und zweiter Ordnung:

\[
\begin{align*}
(2.6) & \quad \frac{\partial p^{(0)}}{\partial x_i} = 0 \\
(2.7) & \quad \frac{\partial p^{(1)}}{\partial x_i} = 0 \\
(2.8) & \quad \rho^{(0)} \frac{\partial u_i^{(0)}}{\partial t} + \rho^{(0)} u_j^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} + \frac{\partial p^{(2)}}{\partial x_i} = \frac{1}{\Re} \frac{\partial r^{(0)}_{ij}}{\partial x_j} = \frac{1}{\Re \rho} \frac{\partial q^{(0)} e_i}{\partial x_i}.
\end{align*}
\]

Dieselbe Argumentation wird schließlich bei der Energiegleichung angewendet. Mit Hilfe des asymptotischen Ansatzes und unter Verwendung der Beziehungen (2.2) sowie (2.3) lautet sie wie folgt:

\[
\begin{align*}
\frac{\partial p^{(0)}}{\partial t} + u_j^{(0)} \frac{\partial p^{(0)}}{\partial x_j} + \gamma p^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} - C^{(0)} & \\
+ M \left( \frac{\partial p^{(1)}}{\partial t} + u_j^{(0)} \frac{\partial p^{(1)}}{\partial x_j} + u_j^{(1)} \frac{\partial p^{(0)}}{\partial x_j} + \gamma p^{(0)} u_j^{(1)} - C^{(1)} \right) & \\
+ O(M^2) & = 0.
\end{align*}
\]

Hierbei ist

\[
C^{(t)} = \gamma \frac{\partial \left( \rho \frac{\partial T}{\partial x_j} \right)^{(t)}}{\partial x_j} + (\gamma - 1) q^{(t)}.
\]

Der Koeffizientenvergleich liefert dann die Bedingungen

\[
\begin{align*}
(2.10) & \quad \frac{\partial p^{(0)}}{\partial t} + u_j^{(0)} \frac{\partial p^{(0)}}{\partial x_j} + \gamma p^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} = C^{(0)} \\
(2.11) & \quad \frac{\partial p^{(1)}}{\partial t} + u_j^{(0)} \frac{\partial p^{(1)}}{\partial x_j} + u_j^{(1)} \frac{\partial p^{(0)}}{\partial x_j} + \gamma p^{(0)} u_j^{(1)} + \gamma p^{(1)} \frac{\partial u_j^{(0)}}{\partial x_j} = C^{(1)}
\end{align*}
\]

für die Energiegleichung führender und erster Ordnung.

Betrachtet man nun die einzelnen Bedingungen genauer, so erkennt man aus der Impulsgleichung führender Ordnung (2.6), dass der Druck führender Ordnung konstant im Raum sein muss. Das bedeutet, es ist

\[
(2.12) \quad p^{(0)} = p^{(0)}(t).
\]
Mit derselben Schlussfolgerung impliziert die Impulsgleichung erster Ordnung (2.7), dass der Druck erster Ordnung ebenso konstant im Raum ist. Es gilt also

\begin{equation}
    p^{(1)} = p^{(1)}(t). \tag{2.13}
\end{equation}

Mit Hilfe der Beziehungen (2.12) und (2.13) vereinfachen sich dann die Energiegleichungen führender (2.10) und erster Ordnung (2.11). Sie lauten somit

\begin{align}
    \frac{\partial p^{(0)}}{\partial t} + \gamma p^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} &= C^{(0)} \tag{2.14} \\
    \frac{\partial p^{(1)}}{\partial t} + \gamma p^{(0)} \frac{\partial u_j^{(1)}}{\partial x_j} + \gamma p^{(1)} \frac{\partial u_j^{(0)}}{\partial x_j} &= C^{(1)} \tag{2.15}.
\end{align}

Multipliziert man die Navier-Stokes-Gleichungen erster Ordnung (2.5), (2.7) und (2.11) mit der Machzahl \( M \) und addiert sie zu den Navier-Stokes-Gleichungen führender Ordnung (2.5), (2.6) und (2.10), so erhält man gerade die Navier-Stokes-Gleichungen führender Ordnung für den asymptotischen Ansatz mit

\[ \tilde{f}^{(0)} = f^{(0)} + M f^{(1)}. \]

Das bedeutet, dass man aus der Entwicklung erster Ordnung \( f^{(1)} \) keine neue Information gewinnt. Es ist also vollkommen ausreichend, von einer Entwicklung der Form

\[ f = f^{(0)} + M^2 f^{(2)} + O(M^3) \]

auszugehen.

Mit Hilfe der asymptotischen Analyse ist es somit möglich, das Limit der Navier-Stokes-Gleichungen für kleine Machzahlen anzugeben. Es sind dies die Gleichungen führender Ordnung, die hier noch einmal zusammengefasst werden sollen

\begin{align}
    \frac{\partial q^{(0)}}{\partial t} + \frac{\partial q^{(0)} u_i^{(0)}}{\partial x_j} &= 0 \tag{2.16} \\
    \frac{\partial u_i^{(0)}}{\partial t} + q^{(0)} u_j^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial \tau_{ij}^{(0)}}{\partial x_j} &= \frac{1}{Fr^2} q^{(0)} e_i \tag{2.17} \\
    \frac{\partial p^{(0)}}{\partial t} + \gamma p^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} - \frac{\gamma}{Re Pr} \frac{\partial}{\partial x_j} \left( \frac{\partial \tau_{ij}^{(0)}}{\partial x_j} \right) &= (\gamma - 1) q^{(0)} \tag{2.18}.
\end{align}

Dieses Gleichungssystem ist in der Literatur unter der Bezeichnung \textit{Gleichungen kleiner Machzahl} zu finden.
Integriert man die Energiegleichung führender Ordnung (2.18) über das Rechengebiet $\Omega$, berücksichtigt die Beziehung (2.12) und wendet das Gauß'sche Theorem an, so erhält man eine gewöhnliche Differentialgleichung für den Druck führender Ordnung $p^{(0)}$:

\[
\frac{\partial p^{(0)}}{\partial t} = -\frac{\gamma p^{(0)}}{\|\|} \int_{\partial \Omega} u^{(0)} n_j ds \\
+ \frac{\gamma}{Re Pr \|} \int_{\partial \Omega} \left( \kappa \frac{\partial T}{\partial x_j} \right)^{(0)} n_j ds + \frac{1}{\|\|} \int_{\Omega} q^{(0)} q dx.
\]

Liegen im Rechengebiet keine Wärmequellen vor, so ist der Druck $p^{(0)}$ lediglich durch die Randbedingungen bestimmt. Dies bedeutet, dass der Druck führender Ordnung nur durch globale Kompressionseffekte beeinflusst wird. Solche Effekte können zum Beispiel durch Kolbenbewegungen, Kompressionseffekte aufgrund von vorgeschriebenen Massenflüssen oder Temperatur Schwankungen durch beheizte Wände entstehen.

Aus der Gleichung (2.18) ergibt sich eine verallgemeinerte Divergenzbedingung an die Geschwindigkeit:

\[
\frac{\partial u^{(0)}_j}{\partial x_j} = -\frac{1}{\gamma p^{(0)}} \frac{\partial p^{(0)}}{\partial t} + \frac{1}{p^{(0)} Re Pr \|} \frac{\partial \left( \kappa \frac{\partial T}{\partial x_j} \right)^{(0)}}{\partial x_j} + \frac{(\gamma - 1)}{\gamma T^{(0)}} q.
\]

Dies bedeutet, dass die Divergenz der Geschwindigkeit durch eine Hintergrundkompression, durch Wärmetransport und durch Wärmequellen beeinflusst wird. Setzt man diese verallgemeinerte Divergenzbedingung in die Kontinuitätsgleichung führender Ordnung (2.16) ein, so erhält man eine Beschreibung der Kompression entlang von Partikelpfaden:

\[
\frac{D q^{(0)}}{Dt} = \frac{q^{(0)}}{\gamma p^{(0)}} \frac{\partial p^{(0)}}{\partial t} - \frac{1}{T^{(0)} Re Pr \|} \frac{\partial \left( \kappa \frac{\partial T}{\partial x_j} \right)^{(0)}}{\partial x_j} - \frac{(\gamma - 1) q^{(0)}}{\gamma T^{(0)}} q.
\]

Unter der Annahme einer konstanten Hintergrundkompression und bei Vernachlässigung von Wärmeinflüssen, das heißt $\frac{\partial p^{(0)}}{\partial t} = 0$ und $C^{(0)} = 0$, erhält man die Bedingung für eine inkompressible Strömung (1.20) und die Divergenzbedingung der inkompressiblen Navier-Stokes-Gleichungen (1.21).

Die Divergenz von $u^{(0)}$ ist in der Regel ungleich Null. Die Bedeutung der Geschwindigkeit führender Ordnung $u^{(0)}$ und des Druckes zweiter Ordnung $p^{(2)}$ ist jedoch analog zu Geschwindigkeit und Druck in einer inkompressiblen Strömung. Setzt man die Dichte $\rho^{(0)}$ und den Druck $p^{(0)}$ als bekannt voraus, so ist die rechte Seite
in (2.20) vollständig bestimmt. Die Geschwindigkeit $u^{(0)}$ lässt sich also alleine aus der Divergenzbedingung berechnen. Nimmt man $u^{(0)}$ und $p^{(0)}$ als glatte Funktionen an, so kann die Impulsgleichung führender Ordnung (2.17) differenziert werden und es ergibt sich eine Poisson-Gleichung für den Druck zweiter Ordnung $p^{(2)}$. An dieser Stelle treten dann die Reibungs- und Gravitationsterme auf. Zudem hat der Druck $p^{(2)}$ in den Gleichungen kleiner Machzahl eine wichtige Gemeinsamkeit mit dem Druck in den inkompressiblen Gleichungen. Er ist entkoppelt von Dichteschwankungen, die in der Zustandsgleichung beschrieben werden. Es ist somit naheliegend, numerische Methoden für die inkompressiblen Gleichungen auch für die Gleichungen kleiner Machzahl zu verwenden.

 Entscheidend für die Entwicklung eines numerischen Codes ist hierbei die Erkenntnis, dass die Divergenzbedingung der inkompressiblen Gleichungen, die ja nur den Spezialfall bei konstanter Hintergrundkompression und vernachlässigter Temperatur darstellen, aus der Energiegleichung hergeleitet wurde und nicht wie bei den inkompressiblen Gleichungen aus der Kontinuitätsgleichung.

### 2.2 Mehrskalenasymptotik


Will man die Effekte einer langwelligen Akustik auf die Strömung untersuchen, wie sie zum Beispiel bei der Wechselwirkung der Akustik mit der Flammausbreitung bei einer Detonation vorkommen, so ist ein anderer Ansatz sinnvoller, der von Klein [50] in Zusammenarbeit mit Munz [52] erforscht wurde. Der grundlegende Gedanke beider Autoren ist die Verwendung einer Zeitskala $t$ und zweier räumlicher Skalen $x$ und $\xi$ für die Strömung und die Schallausbreitung. Auf diesem Ansatz basieren diverse andere Veröffentlichungen und auch die hier vorliegende Arbeit. In der ursprünglichen Arbeit von Klein [50], der Arbeit von Schneider et al. [95] und der


Im Unterschied zur Entwicklung (2.1) lautet der Ansatz nun

\begin{equation}
(2.22) \quad f(x, \xi, t, M) = f^{(0)}(x, \xi, t) + M f^{(1)}(x, \xi, t) + M^2 f^{(2)}(x, \xi, t) + O(M^3).
\end{equation}

Dabei wird die akustische Längenskala \( \xi \) gerade so gewählt, dass

\[ x = M\xi \]

gilt. Da die Längenskalen als unabhängig voneinander betrachtet werden, erhält man mit der Kettenregel die folgende Beziehung für die Raumableitungen

\begin{equation}
(2.23) \quad \nabla f = \nabla_x f^{(0)} + M \nabla_\xi f^{(0)} + M \nabla_x f^{(1)} + M^2 \nabla_\xi f^{(1)} + M^2 \nabla_x f^{(2)} + O(M^3)
\end{equation}

mit den räumlichen Gradienten bezüglich der \( x \)- und \( \xi \)-Skala.

Die formale Entwicklung (2.22) wird in die Navier-Stokes-Gleichungen (1.16) - (1.18) eingesetzt. Unter Verwendung der Beziehung (2.23) über die Raumableitungen erhält man für die Kontinuitätsgleichung

\begin{align}
\frac{\partial \rho^{(0)}}{\partial t} + M \frac{\partial \rho^{(1)}}{\partial t} + \frac{\partial (\rho u_j)^{(0)}}{\partial x_j} + M \frac{\partial (\rho u_j)^{(0)}}{\partial \xi_j} + M \frac{\partial (\rho u_j)^{(1)}}{\partial x_j} + O(M^2) &= 0.
\end{align}
Die Impulsgleichung wird zu

\[
\dot{\varrho}^{(0)} \frac{\partial u_i^{(0)}}{\partial t} + \varrho^{(0)} u_j^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} \\
+ \frac{1}{M^2} \frac{\partial p^{(0)}}{\partial x_i} + \frac{1}{M} \frac{\partial p^{(1)}}{\partial \xi_i} + \frac{1}{M} \frac{\partial p^{(1)}}{\partial x_i} + \frac{\partial p^{(2)}}{\partial x_i} \\
- \frac{1}{Re} \frac{\partial i_{ij}^{(0)}}{\partial x_j} - \frac{1}{F_{r^2}^2} \varrho^{(0)} e_i \\
+ O(M) = 0.
\]

Und schließlich ergibt sich aus der Energiegleichung die Beziehung

\[
\frac{\partial p^{(0)}}{\partial t} + M \frac{\partial p^{(1)}}{\partial t} \\
+ \left( u_j \frac{\partial p}{\partial x_j} \right)^{(0)} + M \left( u_j \frac{\partial p}{\partial \xi_j} \right)^{(0)} + M \left( u_j \frac{\partial p}{\partial x_j} \right)^{(1)} \\
+ \left( \gamma p \frac{\partial u_j}{\partial x_j} \right)^{(0)} + M \left( \gamma p \frac{\partial u_j}{\partial \xi_j} \right)^{(0)} + M \left( \gamma p \frac{\partial u_j}{\partial x_j} \right)^{(1)} \\
- C^{(0)} - MC^{(1)} - M \gamma \frac{\partial \left( \frac{\partial \varphi}{\partial x_j} \right)^{(0)}}{\partial \xi_j} + \frac{\partial \left( \frac{\partial \varphi}{\partial \xi_j} \right)^{(0)}}{\partial x_j} \\
+ O(M^2) = 0
\]

mit \(C^{(1)}\) aus Beziehung (2.9).

Analog zu der Vorgehensweise bei der Einskalen asymptotik werden Terme mit gleicher Ordnung in der Machzahl \(M\) zusammengefasst. Mit denselben Argumenten müssen wiederum die Koeffizienten verschwinden, sodass man die folgenden Navier-Stokes-Gleichungen führender, erster, beziehungsweise zweiter Ordnung erhält:

\[
\text{Kontinuitätsgleichung führender und erster Ordnung}
\]

\[
(2.24) \quad \frac{\partial \varrho^{(0)}}{\partial t} + \frac{\partial (\varrho u_j)^{(0)}}{\partial x_j} = 0
\]

\[
(2.25) \quad \frac{\partial \varrho^{(1)}}{\partial t} + \frac{\partial (\varrho u_j)^{(1)}}{\partial x_j} + \frac{\partial (\varrho u_j)^{(0)}}{\partial \xi_j} = 0
\]
Impulsgleichung führender, erster und zweiter Ordnung

\begin{align}
(2.26) & \quad \frac{\partial p^{(0)}}{\partial x_i} = 0 \\
(2.27) & \quad \frac{\partial p^{(0)}}{\partial \xi_i} + \frac{\partial p^{(1)}}{\partial x_i} = 0 \\
(2.28) & \quad \rho^{(0)} \frac{\partial u_i^{(0)}}{\partial t} + \rho^{(0)} u_j^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} + \frac{\partial p^{(1)}}{\partial \xi_i} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial r_{ij}^{(0)}}{\partial x_j} = \frac{1}{Fr^2} \rho^{(0)} e_i
\end{align}

Energiegleichung führender und erster Ordnung

\begin{align}
(2.29) & \quad \frac{\partial p^{(0)}}{\partial t} + \left( u_j \frac{\partial p^{(0)}}{\partial x_j} \right)^{0} + \left( \gamma_p \frac{\partial u_j^{(0)}}{\partial x_j} \right)^{0} = C^{(0)} \\
(3.30) & \quad \frac{\partial p^{(1)}}{\partial t} + \left( u_j \frac{\partial p^{(1)}}{\partial \xi_j} \right)^{0} + \left( \gamma_p \frac{\partial u_j^{(0)}}{\partial \xi_j} \right)^{0} + \left( \gamma_p \frac{\partial u_j^{(1)}}{\partial x_j} \right)^{0} = C^{(1)}
\end{align}

Hierbei ergibt sich die rechte Seite der Energiegleichung erster Ordnung zu

\[ \tilde{C}^{(1)} = C^{(1)} + \frac{\gamma}{Re Pr} \left( \frac{\partial }{\partial \xi_j} \left( \frac{\partial \sigma^{(0)}}{\partial x_j} \right) + \frac{\partial }{\partial x_j} \left( \frac{\partial \sigma^{(0)}}{\partial \xi_j} \right) \right) \]

Diese Gleichungen sollen nun diskutiert werden. Aus der Impulsgleichung führender Ordnung (2.26) folgt sofort, dass der Druck führender Ordnung \( p^{(0)} \) unabhängig von der Längenskala der Strömung ist. Das bedeutet, es ist

\begin{align}
(2.31) & \quad p^{(0)} = p^{(0)}(\xi, t)
\end{align}

Bei der Betrachtung der Impulsgleichung erster Ordnung (2.27) kann man bekannte Techniken der Mehrskalenanalyse anwenden, insbesondere Mittelungstechniken: Die \( x \)- und \( \xi \)-Variablen sind im Limit \( M \to 0 \) als unabhängig zu betrachten. Man mittelt nun die Gleichung (2.27) bezüglich der lokalen Strömungsstrukturen. Multipliziert man die Gleichung mit einem beliebigen Einheitsvektor \( b \) und integriert über ein Gebiet \( \Omega \) bezüglich \( x \), so erhält man

\[ \int_{\Omega} b_i \frac{\partial p^{(0)}}{\partial \xi_i} \, dx + \int_{\Omega} b_i \frac{\partial p^{(1)}}{\partial x_i} \, dx = 0 \]

Der Integrand im ersten Integral ist aufgrund der Beziehung (2.31) konstant in \( \Omega \) in Bezug auf \( x \). Mit Hilfe dieser Erkenntnis und des Gaußschen Satzes lässt sich die Gleichung vereinfachen zu

\begin{align}
(2.32) & \quad b_i \frac{\partial p^{(0)}}{\partial \xi_i} + \frac{1}{|\Omega|} \int_{\partial \Omega} b_i p^{(1)} n_i ds = 0
\end{align}
Um einen konsistenten asymptotischen Entwicklungsansatz mit \(M p^{(1)} << p^{(0)}\) für beliebige \(x\) und \(\xi\) zu haben, muss \(p^{(1)}\) in \(x\) beschränkt sein oder zumindest schwächer als linear anwachsen. Ein mathematisch rigoroser Beweis dieses Argumentes findet sich in Meister [63]. Die Gleichung (2.32) muss für beliebige Gebiete \(\Omega\) gelten, also insbesondere auch für Gebiete, bei denen \(1/|\Omega| \to 0\) strebt. Somit verschwindet der zweite Term in (2.32) und es muss

\[
\frac{\partial p^{(0)}}{\partial \xi_i} = 0
\]

gelten. Daraus ergibt sich, dass \(p^{(0)}\) auch unabhängig von der Längenskala \(\xi\) der akustischen Wellenausbreitung ist. Aus Gleichung (2.27) erhält man dann sofort, dass der Druck erster Ordnung \(p^{(1)}\) unabhängig von der Längenskala \(x\) der Strömung ist. Zusammengefasst gilt also

\[
\begin{align*}
  p^{(0)} &= p^{(0)}(t) \\
  p^{(1)} &= p^{(1)}(\xi, t).
\end{align*}
\]

Die nächste in den Überlegungen zu betrachtende Gleichung ist die Energiegleichung führender Ordnung (2.29). Mit Hilfe der Beziehung (2.2) lässt sich diese schreiben als

\[
\frac{\partial p^{(0)}}{\partial t} + u_j^{(0)} \frac{\partial p^{(0)}}{\partial x_j} + \gamma p^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} = C^{(0)}.\]

Aufgrund der Gleichung (2.33) ist der zweite Term gleich Null und es ergibt sich

\[
\frac{\partial p^{(0)}}{\partial t} + \gamma p^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} - \frac{\gamma}{Re Pr} \frac{\partial}{\partial x_j} \left( \frac{\kappa \frac{\partial T}{\partial x_j}}{\partial x_j} \right)^{(0)} = (\gamma - 1) p^{(0)} q.\]

Es wird wiederum über ein Gebiet \(\Omega\) gemittelt, sodass die folgende Beziehung entsteht:

\[
\frac{\partial p^{(0)}}{\partial t} = -\frac{\gamma p^{(0)}}{|\Omega|} \int_{\partial \Omega} u_j^{(0)} n_j ds
\]
\[
+ \frac{\gamma}{Re Pr |\Omega|} \int_{\partial \Omega} \left( \frac{\kappa \frac{\partial T}{\partial x_j}}{\partial x_j} \right)^{(0)} n_j ds + \frac{1}{|\Omega|} \int_{\Omega} \frac{p^{(0)}}{q} q ds.
\]

Wie mit einem Blick zu erkennen ist, stimmt Gleichung (2.36) mit der Gleichung (2.19) der Einskalen asymptotik überein. Es ergibt sich somit vollkommen analog eine verallgemeinerte Divergenzbedingung an die Geschwindigkeit:

\[
\frac{\partial u_j^{(0)}}{\partial x_j} = -\frac{1}{\gamma p^{(0)}} \frac{\partial p^{(0)}}{\partial t} + \frac{1}{p^{(0)} Re Pr} \frac{\partial}{\partial x_j} \left( \frac{\kappa \frac{\partial T}{\partial x_j}}{\partial x_j} \right)^{(0)} + (\gamma - 1) \frac{p^{(0)}}{\gamma T^{(0)}} q.\]
Akustische Gleichungen

Bis hierhin unterscheiden sich die Einskalenasyptotik und der Mehrskalenansatz nicht allzu sehr. Die nun folgenden Überlegungen dienen der Behandlung langwelliger akustischer Moden, die mit Hilfe der Einskalenasyptotik nicht erklärt werden können.

2.3 Akustische Gleichungen

Die entscheidende Größe auf der langwelligen Skala $\xi$ ist der Druckterm $p^{(1)}$. Dieser tritt in der Impulsgleichung zweiter Ordnung (2.28) und der Energiegleichung erster Ordnung (2.30) auf. Die Impulsgleichung wird in konservativer Formulierung geschrieben und die Energiegleichung wird unter Verwendung der Beziehungen (2.33) und (2.34) vereinfacht. Sie lauten mit Hilfe dieser Umformungen

\[
\frac{\partial (pu_i)^{(0)}}{\partial t} + \frac{\partial (pu_iu_j)^{(0)}}{\partial x_j} + \frac{\partial p^{(1)}}{\partial x_i} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial^2 u_i^{(0)}}{\partial x_j} = \frac{1}{Fr^2} \tilde{g}^{(0)}e_i
\]

(2.38)

\[
\frac{\partial p^{(1)}}{\partial t} + \gamma p^{(0)} \frac{\partial u_i^{(0)}}{\partial x_i} + \gamma p^{(1)} \frac{\partial u_j^{(0)}}{\partial x_j} + \gamma p^{(0)} \frac{\partial u_j^{(1)}}{\partial x_j} = \tilde{c}^{(1)}.
\]

(2.39)

Aus diesen beiden Gleichungen kann ein System von akustischen Gleichungen mit Hilfe der Mitteilungstechnik hergeleitent werden.

Für die Mitteilung über ein Gebiet auf der $x$-Skala wird die abkürzende Notation

\[
\bar{f} = \frac{1}{|\Omega|} \int_{\Omega} f dx
\]

eingeführt. Wie schon mehrfach verwendet, soll auch hier das sublineare Wachstum von $u^{(0)}$, $u^{(1)}$, $\tilde{g}^{(0)}$ sowie $p^{(2)}$ angenommen werden. Mittelt man nun die obigen beiden Gleichungen bezüglich der $x$-Skala, so erhält man das akustische Gleichungssystem

\[
\frac{\partial (pu_i)^{(0)}}{\partial t} + \frac{\partial (pu_iu_j)^{(0)}}{\partial x_j} + \frac{\partial p^{(1)}}{\partial x_i} = \frac{1}{Fr^2} \tilde{g}^{(0)}e_i
\]

(2.40)

\[
\frac{\partial p^{(1)}}{\partial t} + \gamma p^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} = 0.
\]

(2.41)

Dieses Gleichungssystem beschreibt die Ausbreitung akustischer Wellen mit kleiner Amplitude und großer Wellenlänge. Das Verschwinden der viskosen Terme und der Terme des Temperaturtransportes in diesem System soll an dieser Stelle noch etwas ausführlicher betrachtet werden: Beschränkt man sich auf die Euler-Gleichungen, so sind diese identisch Null, sodass keine weiteren Probleme auftreten. Im Fall der
Navier-Stokes-Gleichungen muss man zusätzlich sublineares Wachstum für die Ableitungen der Größen voraussetzen, insbesondere für \( \frac{\partial u_i}{\partial x_j} \) sowie \( \frac{\partial u_i}{\partial \xi_j} \) und \( \frac{\partial u_i}{\partial \xi_j} \). Unter dieser Annahme verschwinden die Terme mit dem üblichen Argument bei der Mitteilung.

Problematisch ist jedoch, dass das System nicht geschlossen ist. In der ersten Gleichung (2.40) tritt der gemittelte Impuls \( \langle \rho u_i \rangle^{(0)} \) führender Ordnung auf, während in der zweiten Gleichung (2.41) die gemittelte Geschwindigkeit \( \overline{u_j}^{(0)} \) führender Ordnung vorkommt. Um Abhilfe zu schaffen, wird nun die Geschwindigkeit aufgespalten in den gemittelten Anteil, der nur auf der akustischen \( \xi \)-Skala lebt und den Anteil der kleinskaligen Schwankungen, die auf der \( x \)-Skala auftreten:

\[
\bar{u}_i = \overline{u_i}(\xi, t) + \tilde{u}_i(x, \xi, t).
\]

Die Zeitableitung des Impulses in Gleichung (2.40) kann daher umgeformt werden zu

\[
\frac{\partial \langle \rho u_i \rangle^{(0)} }{\partial t} = \rho^{(0)} \frac{\partial \bar{u}_i^{(0)} }{\partial t} + \overline{u_j}^{(0)} \frac{\partial \bar{u}_i^{(0)} }{\partial t} + \frac{\partial \overline{u_i}^{(0)} \bar{u}_j^{(0)} }{\partial t}.
\]

Mittelt man die Kontinuitätsgleichung führender Ordnung (2.24) bezüglich der \( x \)-Skala, so erhält man die Beziehung

\[
\frac{\partial \rho^{(0)} }{\partial t} = 0.
\]

Der zweite Term in (2.42) verschwindet somit.

Der besseren Lesbarkeit halber wird im Folgenden auf den Ordnungsindex der Dichte- und Geschwindigkeitsterme verzichtet, da dieser eindeutig ist. Das akustische Gleichungssystem liest sich somit jetzt wie folgt:

\[
\frac{\partial \bar{p}^{(1)} }{\partial t} + \frac{1}{\bar{\rho}} \frac{\partial \bar{p}^{(1)} }{\partial \xi_i} = \frac{1}{\bar{\rho}} \frac{\partial \bar{u}_i}{\partial t} + \frac{1}{Fr^2} \epsilon_i
\]

(2.43)

\[
\frac{\partial \bar{p}^{(1)} }{\partial \xi_j} + \gamma \rho^{(0)} \frac{\partial \bar{p}^{(1)} }{\partial \xi_j} = 0.
\]

(2.44)

Betrachtet man die rechte Seite in (2.43) als Quellterm, so beschreibt das akustische Gleichungssystem eine Wellengleichung. Dieser inhomogene Quellterm sorgt für die Kopplung der kleinskaligen Strömung mit der überlagerten langwelligen Akustik.

Verschwindet der Quellterm und ist keine Hintergrundkompression vorhanden, so lässt sich das akustische Gleichungssystem in der üblichen Form einer Wellengleichung schreiben

\[
\frac{\partial p^{(1)} }{\partial t^2} - \frac{\partial }{\partial \xi_i} \left( \epsilon_0^2 \frac{\partial p^{(1)} }{\partial \xi_i} \right) = 0.
\]
mit der Wellenausbreitungsgeschwindigkeit

\[ c_0^2 = \frac{\gamma p^{(0)}}{\varrho}. \]

### 2.4 Ergebnisse der asymptotischen Analyse

Mit Hilfe der asymptotischen Analyse wird erkennbar, dass die Drucktermen führender, erster und zweiter Ordnung \( p^{(0)}, p^{(1)} \) sowie \( p^{(2)} \) die Geschwindigkeit \( u^{(0)} \) und die Dichte \( \varrho^{(0)} \) führender Ordnung beeinflussen. Umgekehrt haben jedoch die Terme höherer Ordnung der Geschwindigkeitsexpansion keinen Einfluss auf diese Drucktermen. Man kann also davon ausgehen, dass im Limit \( M \to 0 \) die oben genannten fünf Variablen die einzig relevanten sind. Alle anderen Terme höherer Ordnung werden deshalb vernachlässigt. Das bedeutet aber, dass lediglich eine Druckaufspaltung der Form

\[
p = p^{(0)}(t) + M p^{(1)}(\xi, t) + M^2 p^{(2)}(x, \xi, t)
\]

vomöte ist. Jedem der einzelnen Terme dieser Druckaufspaltung kann eine konkrete physikalische Bedeutung zugeordnet werden.

- Der Druck führender Ordnung \( p^{(0)} \) ist räumlich konstant auf beiden Längenskalen \( x \) und \( \xi \). Er wirkt als thermodynamische Druckvariable, die entweder durch eine Hintergrundkompression über die Berandung des Gebietes oder durch Aufprägen des Druckes \( p^{(0)} \) auf die Berandung geändert werden kann. Auch Temperaturunterschiede am Rande und Wärmequellen können diese Druckvariable beeinflussen.

- Der Druck erster Ordnung \( p^{(1)} \) ist räumlich konstant auf der Längenskala \( x \) der Strömung und variiert auf der akustischen Längenskala \( \xi \). Er wird deshalb auch als akustische Druckvariable bezeichnet. Der Term \( p^{(1)} \) beschreibt dabei eine langwellige akustische Druckwelle, die das Geschwindigkeitsfeld beeinflusst. Diese Variable ist notwendig, um die Interaktionen zwischen der akustischen Skala und der kleinsten Skala zu modellieren.

- Der Druck zweiter Ordnung \( p^{(2)} \) variiert auf beiden Skalen. Da er die Interaktionen zwischen den lokalen Strömungsverhältnissen und dem Druck modelliert, wird er als Schwankungsdruck bezeichnet. Man nennt ihn auch inkompressiblen Druck, da er wie die Druckvariable der inkompressiblen Gleichungen die Einhaltung der Divergenzbedingung garantiert.
Von besonderem Interesse ist das formale Limit $M \to 0$. In diesem Grenzfall verschwindet die akustische Skala $\xi = M \chi$ und die akustischen Gleichungen werden bedeutungslos. Ebenso reduziert sich das Gleichungssystem für die Strömung auf die schwach kompressiblen Gleichungen (2.16), (2.17) und (2.18), die bereits mit Hilfe der Einskalen asymptotik gewonnen werden konnten. Um einen Vergleich mit den inkompressiblen Gleichungen (1.22) und (1.23) anstellen zu können, werden die schwach kompressiblen Gleichungen ohne Wärmeeintrag formuliert. Zudem wird die Energiegleichung durch die verallgemeinerte Divergenzbedingung (2.37) ersetzt. Man erhält somit das folgende inkompressible Gleichungssystem mit variabler Dichte und Kompression vom Rand im Limit verschwindender Machzahl:

\begin{align}
\tag{2.45}
\frac{\partial \rho^{(0)}}{\partial t} + u_j^{(0)} \frac{\partial \rho^{(0)}}{\partial x_j} + \rho^{(0)} \frac{\partial u_j^{(0)}}{\partial x_j} &= 0 \\
\tag{2.46}
\rho^{(0)} \frac{\partial u_j^{(0)}}{\partial t} + \rho^{(0)} u_j^{(0)} \frac{\partial u_i^{(0)}}{\partial x_j} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial \tau_{ij}^{(0)}}{\partial x_j} &= \frac{1}{Fr^2} \rho^{(0)} \epsilon_i \\
\tag{2.47}
\frac{\partial u_j^{(0)}}{\partial x_j} &= -\frac{1}{\gamma p^{(0)}} \frac{\partial p^{(0)}}{\partial t}.
\end{align}

Ist keine Hintergrundkompression vorhanden, so folgt aus Gleichung (2.47) die Divergenzfreiheit der Geschwindigkeit. Der letzte Term in der Kontinuitätsgleichung (2.45) ist Null und die Kontinuitätsgleichung reduziert sich zu einer reinen Transportgleichung für die Dichte.

Im Limit $M \to 0$ entkoppeln die drei Druckterm. Man erkennt aus den obigen Gleichungen, dass jedoch mindestens zwei Druckvariable vonmotten sind, um sowohl die Kompressionseffekte als auch die Strömungsfluktuationen beschreiben zu können. Ersteres geschieht über den Druckterm $p^{(0)}$, der Term $p^{(2)}$ hingegen garantiert die Einhaltung der Divergenzbedingung.
3 Problemstellung


3.1 Kompressible Gleichungen

Für das weitere Vorgehen ist es sinnvoll, auf die dimensionslose Formulierung der Gleichungen (1.7) - (1.9) zurückzugreifen. In dem zu betrachtenden Spezialfall lassen sich die kompressiblen Navier-Stokes-Gleichungen dann wie folgt notieren:

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_j}{\partial x_j} = 0
\]

(3.1)

\[
\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{1}{M^2} \frac{\partial p}{\partial x_i} - \frac{1}{Re} \frac{\partial \tau_{ij}}{\partial x_j} = 0
\]

(3.2)

\[
\frac{1}{\gamma - 1} \frac{\partial p}{\partial t} + \frac{M^2 \partial \rho u_i}{\partial x_i} = \frac{\partial \rho u_i u_j}{\partial x_j} + \frac{M^2 \partial \rho u_i u_j}{\partial x_j} - \frac{M^2 \partial \tau_{ij}}{\partial x_j} = 0.
\]

(3.3)

Die Euler-Gleichungen ergeben sich durch Vernachlässigung der dissipativen Terme, die den Spannungs-Tensor

\[
\tau_{ij} = \mu \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \delta_{ij} \mu \frac{\partial u_k}{\partial x_k}
\]

(3.4)

beinhalten.
3.2 Schwach kompressible Gleichungen

Wie die asymptotische Analyse aufzeigt, ist es im schwach kompressiblen Regime notwendig, den Druck in mehrere Terme in Abhängigkeit der Machzahl aufzuspalten:

\[ p = p^{(0)} + M p^{(1)} + M^2 p^{(2)}. \]

Der räumlich konstante thermodynamische Druck \( p^{(0)} \) ergibt sich aus Mittelung des Gesamtdrucks über das Rechengebiet \( \Omega \). Wird die akustische Druckvariable \( p^{(1)} \) über das akustische Gleichungssystem (2.43) und (2.44) bestimmt, so ergibt sich der Schwankungsdruck \( p^{(2)} \) als skalierte Differenz

\[ p^{(2)} = \frac{1}{M^2} \left( p - p^{(0)} - M p^{(1)} \right). \]

Bei dieser Vorgehensweise kann das kompressible Gleichungssystem (3.1) - (3.3) umgeformt werden in ein Gleichungssystem mit den Unbekannten Dichte \( \rho \), Geschwindigkeit \( u_1, \ldots, u_d \) und Schwankungsdruck \( p^{(2)} \). Die anderen Druckanteile \( p^{(0)} \) und \( p^{(1)} \) treten dann lediglich als Quellterme auf der rechten Seite auf. Bei der Entwicklung eines schnellen Lösers für die schwach kompressiblen Gleichungen ist es somit zunächst entscheidend, das System der schwach kompressiblen Navier-Stokes-Gleichungen

\[ \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_j} = 0 \]

\[ \frac{\partial p^{(2)}}{\partial t} + \frac{\partial p^{(2)} u_j}{\partial x_i} + \frac{\partial p^{(2)} u_i}{\partial x_j} - \frac{1}{Re} \frac{\partial \tau_{ij}}{\partial x_j} = 0 \]

\[ \frac{M^2}{\gamma - 1} \frac{\partial p^{(2)}}{\partial t} + \frac{M^2}{2} \frac{\partial p^{(0)} u_i}{\partial t} + \frac{\gamma}{\gamma - 1} p^{(0)} \frac{\partial u_i}{\partial x} + M^2 \frac{\gamma}{\gamma - 1} \frac{\partial p^{(2)} u_i}{\partial x} + \frac{M^2}{2} \frac{\partial u_i u_j}{\partial x} - \frac{M^2}{Re} \frac{\partial \tau_{ij}}{\partial x} - \frac{1}{\gamma - 1} \frac{\partial p^{(0)}}{\partial t} \]

in den Griff zu bekommen. Bei obigem Ansatz kann der akustische Druckanteil \( p^{(1)} \) vernachlässigt werden, wenn - wie in dieser Arbeit - nur auf der Bewertung des Lösungsverhaltens eines schwach kompressiblen Verfahrens das Hauptsaugenmerk liegt.

Eine Erweiterung mit Berücksichtigung der akustischen Moden, wie sie für aeroakustische Simulationen unablässig ist, geht über den Schwerpunkt dieser Arbeit hinaus.

Diese schwach kompressiblen Gleichungen unterscheiden sich von den kompressiblen Navier-Stokes-Gleichungen (3.1) - (3.3) in den folgenden Punkten:
• Die unbekannte Druckvariable im Gleichungssystem ist $p^{(2)}$ anstatt $p$.

• Alle Druckterm in der Impuls- und der Energiegleichung sind mit dem Faktor $M^2$ skaliert.

• In der Energiegleichung erscheint ein zusätzlicher Quellterm, der die zeitliche Änderung von $p^{(0)}$ beschreibt.

• In der Energiegleichung tritt als zusätzlicher Fluss die Divergenz der Geschwindigkeit auf.

Dieser Vergleich legt nahe, dass es sinnvoll ist, sowohl die schwach kompressiblen als auch die voll kompressiblen Gleichungen in einem Softwarecode zu implementieren. Lässt man die numerischen Schwierigkeiten außer acht, so entsteht im Wesentlichen der Löser für das kompressible System aus dem Löser für das schwach kompressible System durch Wegfall zweier Terme und durch Umkalibrierung der Druckterm.

Die im nächsten Kapitel beschriebenen numerischen Verfahren werden - soweit nicht anders erwähnt - immer für die schwach kompressiblen Navier-Stokes-Gleichungen (3.6) - (3.8) angegeben. Mit dem eben beschriebenen Zusammenhang ergibt sich dann das numerische Verfahren für die kompressiblen Gleichungen.

### 3.3 Randbedingungen

Um das kompressible bezielsweise schwach kompressible Problem auf einem geschlossenen Gebiet $\Omega$ vollständig zu definieren, sind geeignete Bedingungen am Rand $\partial \Omega$ des Gebietes zu erfüllen. Für die Euler-Gleichungen kann man, wie zum Beispiel in der Dissertation von Haag [34] zu finden, eine einfache Theorie der erforderlichen Randbedingungen aufstellen. Durch Betrachtung der Charakteristik des Systems ergeben sich im Wesentlichen fünf zu unterscheidende Bedingungen.

• **Supersonische Einflussrandbedingung**

  Im Fall einer Überschallströmung in das Gebiet hinein sind am Einflussrand Dirichlet-Randbedingungen für alle Größen notwendig, das heißt, dass Dichte, Geschwindigkeit und Druck durch feste Werte vorgegeben werden. Im schwach kompressiblen Fall ergibt sich der benötigte Dirichletwert für den Schallklangsdruk $p^{(2)}$ anhand der Formel (3.5) und dem Dirichletwert für den Gesamtdruck $p$. 
• **Supersonische Ausflussrandbedingung**
  Bei einer Überschallströmung sind am Ausflussrand keine speziellen Randbedingungen nötig.

• **Subsonische Einflussrandbedingung**
  Im Gegensatz zur Überschallströmung müssen bei einer Unterschallströmung lediglich drei (beziehungsweise in drei Raumdimensionen vier) Dirichletwerte vorgegeben werden. Die letzte Unbekannte ist dann bereits bestimmt. Es werden deshalb am Einflussrand die Dichte $\rho$ und die Geschwindigkeiten $u_1, \ldots, u_d$ fixiert.

• **Subsonische Ausflussrandbedingung**
  Passend zu den Bedingungen am Einstromrand ändern sich auch die Bedingungen am subsonischen Ausflussrand. Dort muss nun der Druck $p$ als Dirichletwert vorgegeben werden. Im schwach kompressiblen Regime ergibt sich der Dirichletwert für den Druckterm $p^{(2)}$ wie am supersonischen Einströmrand aus dem Dirichletwert des Gesamtdruckes mit Hilfe der Formel (3.5).

• **Wandränderbedingung (Euler)**
  An einer reibungslosen Wand muss die Geschwindigkeit in Normalenrichtung verschwinden. Es ist also
  \[ u_j n_j = 0 \]
  die charakterisierende Eigenschaft einer Wand im Falle der Euler-Gleichungen.

Nicht ganz so einfach ist die Herleitung physikalischer Randbedingungen im Falle einer reibungsbehaf teten Strömung. Es müssen jedoch im Grenzfall verschwindender Viskosität die Randbedingungen für die Navier-Stokes-Gleichungen mit den Randbedingungen für die Euler-Gleichungen kompatibel sein. Es hat sich in vielen numerischen Untersuchungen herausgestellt, dass am Ein- und Ausflussrand dieselben Randbedingungen wie bei einer reibungsfreien Strömung verwendet werden können. Unterschiedlich ist jedoch die Bedingung für eine Wand:

• **Wandränderbedingung (Navier-Stokes)**
  Im viskosen Fall haftet die Strömung an der Wand. Das ist aber gleichbedeutend damit, dass die Strömungsgeschwindigkeit dort Null ist. Es ist somit
  \[ u_1 = \ldots = u_d = 0 \]
  als Dirichletwert zu setzen.
4 Numerische Verfahren

4.1 Übersicht

In der Literatur finden sich die unterschiedlichsten Ansätze zur numerischen Behandlung der kompressiblen Euler-Gleichungen (1.1) - (1.3) beziehungsweise der kompressiblen Navier-Stokes-Gleichungen (1.7) - (1.9). Gruppiert man die Gleichungen in zeitabhängige Terme und Terme mit einer Ableitung nach einer räumlichen Koordinate, so lassen sich die betrachteten Gleichungssysteme in der folgenden Kurzform notieren

\[
\frac{\partial T(y)}{\partial t} + \mathcal{R}(y) = 0 \quad y = y(x,t)
\]

mit dem zeitlichen Operator \( T \), dem nichtlinearen Operator \( \mathcal{R} \) der Ableitungen nach dem Ort und den Unbekannten \( y \).


In den zuerst genannten Verfahren sind in der Regel die konservativen Variablen Dichte, Impuls und Energie die zu bestimmenden Größen \( y \) in Gleichung (4.1). Bei inkompressiblen Verfahren werden dagegen gerne die primitiven Variablen Dichte, Geschwindigkeit und Druck als Unbekannte \( y \) verwendet, sodass alleine aus diesem Grund die Erweiterung eines inkompressiblen Verfahrens zu einer grundlegend unterschiedlichen Vorgehensweise führt.

In der Arbeitsgruppe von Munz wird ebenfalls die Mehrskalanalyse mit einer Zeit- und zwei Raumskalen verwendet. In den Arbeiten von Munz et al. [70] und Roller et al. [91] wird jedoch die Erweiterung eines SIMPLE-Verfahrens für die inkompressiblen Gleichungen propagiert. Die grundlegende Idee ist hier die Verwendung einer Druckkorrekturmethode in einem Finite Differenzen Verfahren auf einem kartesischen staggered grid. Zudem wird von diesen Autoren der für die Aeroakustik notwendige Druckanteil \( p^{(1)} \) bestimmt, sodass die Überlagerung einer Strömung mit langwelliger Akustik simuliert werden kann.


Neben diesen Verfahren werden in der Literatur auch Verfahren mit Vorkonditionierung des kontinuierlichen Gleichungssystems beschrieben. Einen Überblick über diese Methoden findet der Leser zum Beispiel in den Arbeiten von Van Leer [57] und Koren et al. [54]. Hiermit sind Verfahren gemeint, die das Problem (4.1) wie folgt modifizieren:

\[
\frac{\partial T(y)}{\partial t} + \mathcal{P}\mathcal{R}(y) = 0
\]
mit einer an das schwach kompressible Regime angepassten Vorkonditionierungsma-
trix $\mathcal{P}$. Da diese nur auf den Operator $\mathcal{R}$ angewendet wird, ist das Verfahren somit
nicht mehr zeitgenau. Es kann nur dazu dienen, ähnlich wie ein Verfahren mit lokaler
Zeitschrittsteuerung die stationäre Lösung eines Problems anzunähern.

In der hier vorliegenden Arbeit wird nun ein weiterer Weg beschrieben. Die Grund-
idee ist ein implizites Finite Volumen Verfahren, das die schwach kompressiblen
Gleichungen diskretisiert. Das so entstehende gekoppelte Gleichungssystem wird mit
einem Mehrgitteralgorithmus gelöst.

4.2 Finite Volumen

Sowohl die Euler-Gleichungen als auch die Navier-Stokes-Gleichungen stellen ein
System von Differentialgleichungen der Form

\begin{equation}
\frac{\partial b_i}{\partial t} + \frac{\partial b_{ij}}{\partial x_j} - q_i = 0
\end{equation}

für $i = 1 \ldots d+2$ mit der räumlichen Dimension $d$ dar. Gesucht ist die kontinuierliche
Lösung $b$ des Gleichungssystems.

Aus der Differentialgleichung (4.3) erhält man die schwache Formulierung durch
Multiplikation mit Testvektoren $v$ aus einem Testraum $V$

\begin{equation}
\int_{\Omega} \left( \frac{\partial b_i}{\partial t} + \frac{\partial b_{ij}}{\partial x_j} - q_i \right) \cdot v \, dx = 0 \quad \text{für alle } v \in V.
\end{equation}

Bei hinreichenden Glattheitsvoraussetzungen an die Lösung $b$ kann die Ableitung
nach der Zeit mit der Integration vertauscht werden. Zudem kann das Integral über
den Gradienten mit Hilfe des Gauß'schen Satzes teilweise als Integral über den Rand
$\partial \Omega$ des Gebietes umgeschrieben werden:

\begin{equation}
\int_{\Omega} \left( \frac{\partial b_{ij}}{\partial x_j} \right) \cdot v \, dx = \int_{\Omega} \frac{\partial b_{ij}}{\partial x_j} \cdot v \, dx - \int_{\Omega} b_{ij} \frac{\partial v}{\partial x_j} \, dx \\
= \int_{\partial \Omega} b_{ij} v n_j \, ds - \int_{\Omega} b_{ij} \frac{\partial v}{\partial x_j} \, dx.
\end{equation}

Mit Hilfe dieser Beziehung ergibt sich die schwache Formulierung (4.4) zu

\begin{equation}
\frac{\partial}{\partial t} \int_{\Omega} b v \, dx + \int_{\partial \Omega} b_{ij} v n_j \, ds - \int_{\Omega} b_{ij} \frac{\partial v}{\partial x_j} \, dx - \int_{\Omega} q_i v \, dx = 0
\end{equation}
für alle \( v \in V \) und \( i = 1 \ldots d + 2 \).

Dieses Problem kann daher auch so gestellt werden: Suche eine hinreichend glatte kontinuierliche Funktion \( b \in B \), sodass

\[
a(b, v) = (q, v) \quad \text{für alle } v \in V
\]

mit der Bilinearform \( a(\cdot, \cdot) \) gilt. Über den Funktionenraum \( B \), die Forderungen an \( q \) sowie die Existenz und die Eindeutigkeit einer schwachen Lösung soll hier keine weitere Diskussion geführt werden. Es sollen lediglich die Prinzipien zur Konstruktion einer Diskretisierung dargestellt werden.

Die Diskretisierung des kontinuierlichen Problems (4.6) besteht nun aus der Suche nach einer diskreten Lösung \( b_h \) aus einem Ansatzraum \( B_h \). Die Testfunktionen stammen dann aus einem ebenfalls diskreten Testraum \( V_h \), der nicht notwendigerweise mit dem Ansatzraum für die Lösung übereinstimmt. Gesucht ist somit eine diskrete Lösung \( b_h \in B_h \), sodass

\[
a(b_h, v_h) = (q_h, v_h) \quad \text{für alle } v_h \in V_h
\]

gilt.

Bei der Wahl des Testraumes \( V \) kann man grundsätzlich zwei verschiedene Ansätze unterscheiden. Eine Möglichkeit ist die Verwendung von Funktionen \( v_h \) mit

\[
v_h(x) \equiv 0 \quad \text{für } x \in \partial \Omega.
\]


Eine weitere Möglichkeit zur Wahl des Testraumes \( V_h \) besteht in der Wahl des Raumes der stückweise konstanten Funktionen, die dann zu den sogenannten Finite Volumen Verfahren führt. Zur genauen Definition dieser Verfahren ist es jedoch zunächst notwendig, den Begriff einer zulässigen Triangulierung einzuführen. Zelegt man das Rechengebiet \( \Omega \) mit Hilfe einer Triangulierung, so entsteht dabei ein unstrukturiertes
Gitter $T$ mit $n$ abgeschlossenen, konvexen Polygonen mit $m$ Knoten:

$$T := \{T_k | T_k \text{ ist ein $m$-Polygon für } k = 1, \ldots , n\}.$$  

In zwei Raumdimensionen sind dabei Zerlegungen in Dreiecks- und Viereckselemente und Mischungen aus beiden Formen sinnvoll. In drei Raumdimensionen lässt das zur Implementierung verwendete Programmmpaket $UG$ die Grundelemente Tetraeder, Pyramide, Prisma sowie Hexaeder zu. Sind die beiden Bedingungen

- Die Triangulierung überdeckt das ganze Rechengebiet:
  $$\Omega = \bigcup_{k=1}^{n} T_k.$$  

- Für $T_k \neq T_i$ gilt entweder
  $$T_k \cap T_i = \emptyset$$ oder
  $$T_k \cap T_i = \text{ ein gemeinsamer Knoten von } T_k, T_i$$ oder
  $$T_k \cap T_i = \text{ eine gemeinsame Kante von } T_k, T_i$$ oder
  $$T_k \cap T_i = \text{ eine gemeinsame Seite von } T_k, T_i \text{ (nur in 3D)}.$$  

erfüllt, so spricht man von einer zulässigen oder konformer Triangulierung. Im Kontext von Finite Volumen Verfahren werden die Polygone als sogenannte Kontrollvolumen $CV$ bezeichnet; bei den Ecken des Gitters spricht man von Knoten.

Bei einer zulässigen Triangulierung lässt sich ein Integral über das Rechengebiet $\Omega$ als Summe der Integrale über die Kontrollvolumen $CV_k$ schreiben.

$$\int_{\Omega} dv = \sum_{k=1}^{n} \int_{CV_k} dv.$$  

Die schwache Formulierung (4.4) lautet dann

$$\sum_{k=1}^{n} \int_{CV_k} \left( \frac{\partial b_k}{\partial t} + \frac{\partial b_{ij}}{\partial x_j} - q_i \right) \cdot v dv = 0 \quad \text{für alle } v \in V.$$  

Dies ist erfüllt, wenn für alle $v \in V$ auf jedem Kontrollvolumen $CV_k$ die Beziehung

(4.7) $$\frac{\partial}{\partial t} \int_{CV_k} b_k v dv + \int_{\partial CV_k} b_{ij} v n_j ds - \int_{CV_k} b_{ij} \frac{\partial v}{\partial x_j} dx - \int_{CV_k} q_i v dv = 0$$  

gilt. Hierbei wurde der Gauß'sche Satz lokal auf jedem Kontrollvolumen angewendet.
Die Menge \( \{ \Psi_k \}_{k=1,...,n} \) mit
\[
\Psi_k(x) = \begin{cases} 
1 & \text{für } x \in CV_k \\
0 & \text{sonst}
\end{cases}
\]

ist eine Basis des Testraumes \( V_h \) der stückweise konstanten Funktionen. Bei dieser Wahl des Testraumes verschwindet das dritte Integral in (4.7), da der Gradient der Testfunktion auf jedem Kontrollvolumen \( CV_k \) identisch Null ist.

Unter Ausnutzung dieser Beziehungen wird das Ausgangsproblem in die sogenannte Finite Volumen Formulierung
\[
\frac{\partial}{\partial t} \int_{CV_k} b_i dx + \int_{\partial CV_k} b_{ij} n_j ds - \int_{CV_k} q_i dx = 0 \quad \text{für alle } CV_k
\]

umgewandelt.


Da die im Rahmen dieser Arbeit implementierte Diskretisierung der Navier-Stokes-Gleichungen eine Finite Volumen Methode darstellt, sollen an dieser Stelle noch einmal explizit die schwach kompressiblen Navier-Stokes-Gleichungen (3.6) - (3.8) in Integralform notiert werden. Die Gleichungen lauten dann auf jedem Kontrollvolumen \( CV_k \) für \( k = 1,\ldots,n \):

**Kontinuitätsgleichung**
\[
\frac{\partial}{\partial t} \int_{CV_k} \rho dx + \int_{\partial CV_k} \rho u_j n_j ds = 0
\]

**Impulsgleichung**
\[
\frac{\partial}{\partial t} \int_{CV_k} \rho u_i dx + \int_{\partial CV_k} \rho u_i u_j n_j ds + \int_{\partial CV_k} p^{(2)} n_i ds - \frac{1}{Re} \int_{\partial CV_k} \tau_{ij} n_j ds = 0
\]
Energiegleichung

\[
\frac{1}{\gamma - 1} \frac{\partial}{\partial t} \int_{CV_k} p^{(0)} dx + \frac{M^2}{\gamma - 1} \frac{\partial}{\partial t} \int_{CV_k} p^{(2)} dx + \frac{M^2}{2} \frac{\partial}{\partial t} \int_{CV_k} g u_i u_i dx \\
+ \frac{\gamma}{\gamma - 1} p^{(0)} \int_{\partial CV_k} u_j n_j ds + M^2 \frac{\gamma}{\gamma - 1} \int_{\partial CV_k} p^{(2)} u_j n_j ds \\
+ \frac{M^2}{2} \int_{\partial CV_k} g u_i u_i u_j n_j ds - \frac{M^2}{Re} \int_{\partial CV_k} \tau_j u_i n_j ds = 0
\]  

(4.11)


Abbildung 4.1: Verschiedene Finite Volumen Ansätze
Will man eine stückweise lineare beziehungsweise bilineare Interpolation erhalten, so kann man ein Zell-Knoten Finite Volumen verwenden, bei dem die Unbekannten in den Knoten lokalisiert werden. Nachteil dieser Vorgehensweise ist, dass es keine eindeutige Zuordnung zwischen Kontrollvolumen und Knoten gibt.


\[
\varphi_k(x) = \begin{cases} 
1 & \text{für } x \text{ ist Knoten } k \\
0 & \text{für alle anderen Knoten}
\end{cases}
\]

gebildet. Auf Dreieckselementen sind die Ansatzfunktionen linear auf jedem Element, bei Viereckselementen dagegen bilinear. In drei Raumdimensionen sind die Ansatzfunktionen trilinear.

Der Vorteil dieser Vorgehensweise liegt in der universellen Einsetzbarkeit auf unstrukturierten Gittern und der einfachen Entwicklung von Upwind-Verfahren. Zudem ist die Erweiterbarkeit auf drei Raumdimensionen ohne allzu großen Aufwand gegeben.

Alle bisher besprochenen Methoden haben die Eigenschaft, dass die Unbekannten Dichte, Geschwindigkeit und Druck gemeinsam in einem Knoten lokalisiert sind und für alle Größen dieselben Kontrollvolumen gewählt werden. Andere Finite Volumen Verfahren gehen von unterschiedlichen Kontrollvolumen für die Kontinuitäts-, Impuls- und Energiegleichung aus. In dem von Bijl et al. [13] propagierten Schema dienen zum Beispiel die Zellmittelpunkte des Ausgangsgitters als Träger für die Dichte und den Druck. Die Geschwindigkeit $u_1$ in $x_1$-Richtung ist dagegen in den Mittelpunkten der Zellkanten in $x_2$-Richtung lokalisiert und umgekehrt für die
Geschwindigkeit $u_2$ in $x_2$-Richtung. Diese Konstruktion ist in Abbildung 4.2 veranschaulicht. Ein Nachteil dieses Verfahrens ist die Beschränkung auf Gitter, die sich durch Transformation aus kartesischen Rechtecksgittern ergeben müssen. Eine Beschreibung dieser Vorgehensweise findet sich bei Wesseling [108]. Zudem ist die Erweiterung auf drei Raumdimensionen nicht trivial.


### 4.2.1 Knotenbasierte Finite Volumen

Da insbesondere die Möglichkeit zur einfachen Erweiterung der Diskretisierung auf drei Raumdimensionen eine zentrale Rolle in der Überlegung zur Wahl eines geeig-

Abbildung 4.3: Kontrollvolumen bei knotenbasierten FV

Die zu bestimmenden diskreten Werte der Unbekannten $g, u_i$ und $p^{(2)}$ sind in den Gitterpunkten lokalisiert. Man spricht in diesem Zusammenhang auch von kollo-
kierten Variablen und die Gitterpunkte werden als Knoten (corners) bezeichnet. Die spezielle Konstruktion des dualen Gitters hat zur Folge, dass jeder Knoten von einer Box des dualen Gitters umschlossen wird. Somit kann jedem Knoten genau ein Kontrollvolumen (Control Volume) zugeordnet werden. Eine schematische Darstellung ist der Abbildung 4.3 zu entnehmen.

Die Oberflächenintegrale in den Gleichungen (4.9) - (4.11) geben die Flüsse über die Seiten des Kontrollvolumens wieder. Um die diskreten Flüsse zu bestimmen, wird das Integral über jede einzelne Seite numerisch approximiert. Mit Hilfe von numerischen Integrationsformeln führt dies gerade zu der Bestimmung des numerischen Flusses an den Seitenmittelpunkten. Diese werden deshalb auch Integrationspunkte (integration point) genannt. In Abbildung 4.3 sind sie als kleine Punkte eingezeichnet.

Die Kontrollvolumen CV werden durch die Seiten des Elementgitters in kleine Teile zerlegt: In zwei Raumdimensionen sind dies immer Vierecke, in drei Raumdimensionen Hexaeder. Diese Teile werden als Teilkontrollvolumen (Sub Control Volume) SCV, die zugehörigen Oberflächen als Teilkontrollvolumenseiten (Sub Control Volume Faces) SCVF bezeichnet. Ein Element besitzt somit für jeden seiner Knoten ein Teilkontrollvolumen SCV. Diese Tatsache wird bei der Implementierung verwendet, denn sie ermöglicht die elementweise Assemblierung der Matrix, wie dies auch bei Finite Elemente Verfahren üblich ist. Es werden alle Elemente durchlaufen und die dort lokal bestimmten Flüsse den entsprechenden Kontrollvolumen zugeordnet. Der numerische Fluss, der an einem Integrationspunkt berechnet wurde, wird mit unterschiedlichem Vorzeichen den beiden assoziierten Kontrollvolumen zugeordnet.

Mit Hilfe dieser Begrifflichkeiten ist es nun möglich, die diskrete Formulierung der Navier-Stokes-Gleichungen (4.9) - (4.11) bezüglich der Kontrollvolumen anzugeben. Die Oberflächenintegrale werden als Summe der Integrale der Teilflächen des Kontrollvolumens bestimmt. Die aus den Zeit- und den Quelltermen resultierenden Volumenintegrale werden durch Summation der Volumenintegrale über die Teilkontrollvolumen ermittelt. Es ergibt sich somit auf jedem Kontrollvolumen die folgende diskrete Finite Volumen Formulierung:
Kontinuitätsgleichung

\begin{equation}
\sum_{\text{SCV}} |\text{SCV}| \frac{\partial \rho}{\partial t} \bigg|_{\infty} + \sum_{\text{SCVF}} \rho u_j n_j \big|_{ip} = 0
\end{equation}

Impulsgleichung

\begin{equation}
\sum_{\text{SCV}} |\text{SCV}| \frac{\partial \rho u_i}{\partial t} \bigg|_{\infty} + \sum_{\text{SCVF}} \rho u_i u_j n_j \big|_{ip} + \sum_{\text{SCVF}} p^{(2)} n_i \big|_{ip} - \frac{1}{Re} \sum_{\text{SCVF}} \tau_{ij} n_j \big|_{ip} = 0
\end{equation}

Energiegleichung

\begin{equation}
\frac{M^2}{\gamma - 1} \sum_{\text{SCV}} |\text{SCV}| \frac{\partial p^{(2)}}{\partial t} \bigg|_{\infty} + \frac{M^2}{2} \sum_{\text{SCV}} |\text{SCV}| \frac{\partial \rho u_i u_i}{\partial t} \bigg|_{\infty} \\
+ \frac{\gamma}{\gamma - 1} p^{(0)} \sum_{\text{SCVF}} u_j n_j \big|_{ip} + M^2 \frac{\gamma}{\gamma - 1} \sum_{\text{SCVF}} p^{(2)} u_j n_j \big|_{ip} \\
+ \frac{M^2}{2} \sum_{\text{SCVF}} \rho u_i u_j n_j \big|_{ip} - \frac{M^2}{Re} \sum_{\text{SCVF}} \tau_{ij} u_i n_j \big|_{ip} \\
= -\frac{1}{\gamma - 1} \sum_{\text{SCV}} |\text{SCV}| \frac{\partial p^{(0)}}{\partial t} \bigg|_{\infty}
\end{equation}

Mit |SCV| wird hierbei die Fläche beziehungsweise das Volumen des Teilkontrollvolumens bezeichnet. Der Normalenvektor am Integrationspunkt $n_p$ ist der aus dem Teilkontrollvolumen heraus gerichtete Normalenvektor mit der Länge der Teilkontrollvolumenseite: $|n_p| = |\text{SCVF}|$.

In den folgenden Abschnitten wird die spezielle Diskretisierung der einzelnen Termen aus den Gleichungen (4.13) - (4.15) behandelt. Dabei erfordern die Zeit- und Ortsableitungen aufgrund ihres unterschiedlichen Charakters verschiedene Diskretisierungen.

Die in der Literatur zu findenden Ansätze unterscheiden sich darin, ob zuerst die Zeit- oder die Ortsdiskretisierung durchgeführt wird. In dieser Arbeit wird die erste Variante gewählt: Die in Abschnitt 4.3 beschriebene Zeitdiskretisierung führt auf ein nichtlineares Problem, das anschließend - wie in Abschnitt 4.4 aufgezeigt - im Ort diskretisiert wird.
4.3 Zeitdiskretisierung

Die erste grundlegende Entscheidung bei der Wahl einer Strategie zur Zeitdiskretisierung besteht in der Wahl eines Zeitschrittverfahrens für die zeitabhängigen Terme. Die in diesem Abschnitt verwendete Formulierung der Zeitschrittverfahren für die instationären Navier-Stokes-Gleichungen bezieht sich noch einmal auf das kontinuierliche Problem (4.9) - (4.11), da die Notation einfacher gewählt werden kann. Der Leser möge sich jedoch immer die zugehörige diskrete Formulierung (4.13) - (4.15) der Finite Volumen Approximation vor Augen halten.

Wie auch schon in der Übersicht 4.1 kurz angedeutet, können die Gleichungen in Terme mit einer Ableitung nach der Zeit und Terme mit einer Ableitung nach den räumlichen Koordinaten gruppiert werden. Das Gleichungssystem lässt sich dann in der folgenden Kurzform notieren

\[
\frac{\partial T(y)}{\partial t} + \mathcal{R}(y) = 0 \quad y = y(x, t)
\]

mit dem zeitlichen Operator \( T \), dem nichtlinearen Operator \( \mathcal{R} \) und den an den Knoten \( co = 1, \ldots, K \) sitzenden Unbekannten \( y = (g, u_1, \ldots, u_d, p^{(2)}_{co = 1, \ldots, K}) \). \( T \) wird in diesem Zusammenhang auch als Massenmatrix und \( \mathcal{R} \) als Steifigkeitsmatrix bezeichnet. Dabei gilt in drei Raumdimensionen (und in zwei Raumdimensionen vollkommen analog) für den Operator \( T \):

\[
T(y) = \begin{pmatrix}
\int g dx \\
\int gu_1 dx \\
\int gu_2 dx \\
\int gu_3 dx \\
\frac{M^2}{\gamma-1} \int p^{(2)} dx + \frac{M^2}{2} \int gu_4 dx
\end{pmatrix}.
\]

In \( \mathcal{R} \) sind die restlichen Terme der Navier-Stokes-Gleichungen zusammengefasst:

\[
\mathcal{R}(y) = \begin{pmatrix}
\int gu_{j,n} ds \\
\int gu_{1}u_{j,n} ds + \int p^{(2)} n_1 ds - \frac{1}{\kappa} \int \tau_{1,j} n_j ds \\
\int gu_{2}u_{j,n} ds + \int p^{(2)} n_2 ds - \frac{1}{\kappa} \int \tau_{2,j} n_j ds \\
\int gu_{3}u_{j,n} ds + \int p^{(2)} n_3 ds - \frac{1}{\kappa} \int \tau_{3,j} n_j ds \\
\frac{\rho^{(0)}}{\gamma-1} \int u_j ds + \frac{M^2}{\gamma-1} \int p^{(2)} u_j ds + \frac{M^2}{2} \int gu_{4}u_{j,n} ds - \frac{M^2}{\kappa} \int \tau_{i,j} u_j n_j ds
\end{pmatrix}.
\]

Bei stationären Berechnungen wird explizit \( \frac{\partial T(y)}{\partial t} = 0 \) gefordert, sodass lediglich das nichtlineare Gleichungssystem \( \mathcal{R}(y) = 0 \) stehen bleibt. In diesem Falle kann dieser
Abschnitt übersprungen werden, um mit der im nächsten Abschnitt besprochenen Diskretisierung der Terme in $\mathcal{R}$ fort zu fahren.

Bei der Diskretisierung der zeitlichen Terme stellt sich grundsätzlich die Wahl eines expliziten oder eines impliziten Ansatzes. Ein explizites Verfahren hat den Vorteil, weniger aufwändig zu sein. Dafür ist jedoch die maximale Größe der anwendbaren Zeitschrittweite durch die CFL-Bedingung nach oben beschränkt. Bei den kompressiblen Navier-Stokes-Gleichungen ist sie durch

$$\frac{\Delta t}{\Delta x} \max(c + |v|) \leq 1$$

gegeben. Im schwach kompressiblen Regime wird die Schallgeschwindigkeit $c$ dominant und zwingt ein explizites Verfahren zu sehr kleinen, ineffizienten Zeitschrittweiten. In Munz et al. [70] ist beschrieben, wie mit Hilfe des auch in dieser Arbeit verwendeten Mehrskalenansatzes dieses Problem soweit umgangen werden kann, dass lediglich die CFL-Bedingung

$$\frac{\Delta t}{\Delta x} \max |v| \leq 1$$


Zeitschrittverfahren für das Problem (4.16) werden von numerischen Verfahren für gewöhnliche Differentialgleichungen hergeleitet. Eine gewöhnliche Differentialgleichung wird üblicherweise in der Form

$$(4.19) \quad y'(t) - f(y, t) = 0 \quad y(0) = y_0$$

4.3.1 BDF-Verfahren

Zeitschrittverfahren, die auf der numerischen Differentiation beruhen, werden BDF-Verfahren (backwards difference formulas) genannt. Es sei \( p(t) \) ein Interpolationspolynom der Lösungswerte \( y_{n+1}, \ldots, y_{n-k+1} \) der letzten \( k \) Schritte. Es gilt dann

\[
p(t) = p(t_n + \tau \Delta t) = y_{n+1} + (\tau - 1) \nabla y_{n+1} + \frac{(\tau - 1)\tau}{2!} \nabla^2 y_{n+1} + \ldots + \frac{(\tau - 1) \ldots (\tau + k - 2)}{k!} \nabla^k y_{n+1}.
\]

(4.20)

Als abkürzende Schreibweise dient hierbei \( \nabla^k y_{n+1} \) für die Rückwärtsdifferenzen. Es ist also zum Beispiel

\[
\nabla y_{n+1} = \frac{y_{n+1} - y_n}{\Delta t} \quad \nabla^2 y_{n+1} = \frac{y_{n+1} - 2y_n + y_{n-1}}{(\Delta t)^2}.
\]

Für die impliziten BDF-Verfahren wird nun gefordert, dass

\[
\dot{y}(t_{n+1}) = f(y_{n+1}, t_{n+1})
\]

gilt. Diese Forderung führt mittels Koeffizientenvergleich auf die Formel

\[
\delta_1 \nabla y_{n+1} + \delta_2 \nabla^2 y_{n+1} + \ldots + \delta_k \nabla^k y_{n+1} = \Delta t f(y_{n+1}, t_{n+1})
\]

mit den Koeffizienten

\[
\delta_j = \frac{d}{d\tau} \left. \frac{(\tau - 1) \ldots (\tau + j - 2)}{j!} \right|_{\tau = 1} = \frac{1}{j!} \quad j = 1, \ldots, k.
\]

(4.21)

Ein \( k \)-Schritt BDF-Verfahren ist von der Ordnung \( k \). Anwendung findet das Verfahren vor allem für die Fälle \( k = 1 \) und \( k = 2 \):

Implizites Rückwärts-Euler-Verfahren \( (k = 1) \)

\[
y_{n+1} - y_n = \Delta t \cdot f(y_{n+1}, t_{n+1})
\]

BDF(2)-Verfahren \( (k = 2) \)

\[
y_{n+1} - \frac{4}{3} y_n + \frac{1}{3} y_{n-1} = \frac{2}{3} \Delta t \cdot f(y_{n+1}, t_{n+1})
\]

Übertragen auf die Formulierung (4.1) ergibt sich beim BDF-Verfahren zweiter Ordnung das folgende nichtlineare Gleichungssystem

\[
\mathcal{N}(y_{n+1}) = \frac{4}{3} \mathcal{T}(y_n) - \frac{1}{3} \mathcal{T}(y_{n-1})
\]

(4.23)
mit dem nichtlinearen Operator
\[ N(y) = T(y) + \frac{2}{3} \Delta t R(y). \]
Dieses Gleichungssystem wird mit einer der in Abschnitt 4.5 beschriebenen Methoden iterativ gelöst.

### 4.3.2 Runge-Kutta-Verfahren

Einen anderen Ansatz der zeitlichen Diskretisierung stellt die Klasse der Runge-Kutta-Verfahren dar. Diese beruhen im Gegensatz zu den aus der numerischen Differentiation konstruierten BDF-Verfahren auf numerischen Verfahren zur Integration. Auf die Gleichung
\[ y(t_{n+1}) = y(t_n) + \int_{t_n}^{t_{n+1}} y'(t) \, dt \]
wird eine Quadraturformel mit den Knoten \( c_1, \ldots, c_s \) und den Gewichten \( b_1, \ldots, b_s \) angewendet. Dies ergibt die Formel
\[ y(t_{n+1}) = y(t_n) + \Delta t \sum_{i=1}^{s} b_i y'(t_n + c_i \Delta t). \]

Unter Verwendung der Differentialgleichung (4.19) und den abkürzenden Schreibweisen \( t_{n,i} = t_n + c_i \Delta t \) beziehungsweise \( y_{n,i} = y(t_{n,i}) \) erhält man die Formel
\[ y_{n+1} = y_n + \Delta t \sum_{i=1}^{s} b_i f(y_{n,i}, t_{n,i}). \]
(4.24)

Zur Berechnung der \( y_{n,i} \) wird ebenso eine Quadraturformel auf denselben Knoten verwendet. Es ist dann
\[ y_{n,i} = y_n + \int_{t_n}^{t_{n,i}} y'(t) \, dt = y_n + \Delta t \sum_{j=1}^{s} a_{ij} f(y_{n,j}, t_{n,j}). \]
(4.25)


\[
\begin{pmatrix}
  c_1 & a_{11} & \cdots & a_{1s} \\
  \vdots & \vdots & \ddots & \vdots \\
  c_s & a_{s1} & \cdots & a_{ss} \\
\end{pmatrix}
\begin{pmatrix}
  b_1 \\
  \vdots \\
  b_s 
\end{pmatrix}
\]
(4.26)
Für $s = 1$ und $s = 2$ sind zwei Verfahren hervorzuheben. Die Wahl von

\begin{align*}
\begin{pmatrix} 1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\end{align*}

führt wiederum zum Impliziten Rückwärts-Euler-Verfahren von erster Ordnung

\begin{align*}
y_{n+1} - y_n = \Delta t \cdot f(y_{n+1}, t_{n+1}).
\end{align*}

Das Crank-Nicolson-Verfahren zweiter Ordnung ergibt sich mit Hilfe des Ansatzes

\begin{align*}
\begin{pmatrix} 0 & 0 & 0 \\
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1 \\
\end{pmatrix}
\end{align*}

Die zeitliche Iteration lautet dann

\begin{align*}
y_{n+1} - y_n = \frac{1}{2} \Delta t \cdot f(y_n, t_n) + \frac{1}{2} \Delta t \cdot f(y_{n+1}, t_{n+1}).
\end{align*}

Generell hat man bei einem Runge-Kutta-Verfahren das Problem, wie die $s^2 + 2s$ Koeffizienten gewählt werden sollen. Ziele sind eine Approximation möglichst hoher Ordnung sowie die Stabilität des Verfahrens. Im Allgemeinen stellen die Gleichungen (4.24) und (4.25) zudem ein nichtlineares System dar, das es algebraisch zu lösen gilt.

Eine häufig verwendete Variante ist die Klasse der expliziten Runge-Kutta-Methoden, bei denen gefordert wird, dass $a_{ij} = 0$ ist für $i \leq j$. Dies hat zur Folge, dass die $y_{n,i}$ aus (4.25) sich nur aus den bereits vorher berechneten $y_{n,j}$ ergeben. Der Wert von $y_{n+1}$ kann somit in $s$ Schritten bestimmt werden. Bekannte Vertreter der expliziten Methoden sind die klassischen Methoden zweiter Ordnung von Runge

\begin{align*}
\begin{pmatrix} 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 1 \\
\end{pmatrix}
\end{align*}

und vierter Ordnung von Kutta

\begin{align*}
\begin{pmatrix} 0 & 0 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{2} & 0 \\
1 & 0 & 0 & 1 \\
\end{pmatrix}
\end{align*}
die sich aus der Mittelpunkts- beziehungsweise der Simpsonregel herleiten.

Implizite Runge-Kutta-Verfahren mit einer vollen Matrix (4.26) benötigen das si-
multane Lösen von $s$ nichtlinearen Gleichungssystemen pro Zeitschritt. Dieser gra-
vierende Nachteil führt zumeist zu ineffizienten Zeitlösern. Eine Besserung tritt erst
auf, wenn man sich auf die Klasse der sogenannten semi-impliziten Verfahren be-
schränkt, bei denen die $(a_{ij})$ in (4.26) eine unter Dreiecksmatrix bilden. Bei diesem
Ansatz kann das implizite Runge-Kutta-Schema auf einen Algorithmus in $s$ Stu-
benutzt eine semi-implizite Formel mit der zusätzlichen Einschränkung, dass alle
Diagonaleinträge $(a_{ii})$ gleich sind, sodass in allen $s$ Schritten die gleiche Matrix zu
lösen ist. Das Schema

\[
\begin{array}{cccc}
\alpha & 1 & \alpha & 0 \\
1 - \alpha & \alpha & \alpha & \alpha \\
\end{array}
\]

\[
\alpha = 1 - \frac{1}{2}\sqrt{2}
\]

ist von zweiter Ordnung und stabil.

Solche Methoden nennt man diagonal implizite Runge-Kutta-Verfahren, weshalb das
Verfahren von Alexander in der Literatur auch oft unter der Bezeichnung DIRK(2)
zu finden ist. Zum besseren Verständnis soll dieses Verfahren hier noch einmal in
der Formulierung (4.1) algorithmisch zusammengefasst werden. Es sind die beiden
nichtlinearen Gleichungssysteme

\[
\begin{align*}
\mathcal{N}(y_{n+\alpha}) &= \mathcal{T}(y_n) \\
\mathcal{N}(y_{n+1}) &= \mathcal{T}(y_n) - (1 - \alpha) \Delta t \mathcal{R}(y_{n+\alpha}) = \mathcal{T}(y_{n+\alpha}) - (1 - 2\alpha) \Delta t \mathcal{R}(y_{n+\alpha})
\end{align*}
\]

zu lösen mit dem nichtlinearen Operator

\[
\mathcal{N}(y) = \mathcal{T}(y) + \alpha \Delta t \mathcal{R}(y).
\]

Ein weiteres verbreitetes Verfahren ist das Fractional-Step-Schema, das in dem Buch
von Turek [100] übersichtlich dargestellt ist. Das Schema lautet

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\theta & 1 - 3\theta & 4\theta - 1 & 0 & 0 \\
1 - \theta & 1 - 3\theta & 1 - 2\theta & 4\theta - 1 & 0 \\
1 & 1 - 3\theta & 1 - 2\theta & \theta & 4\theta - 1 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\theta & 1 - 3\theta & 4\theta - 1 & 0 & 0 \\
1 - \theta & 1 - 3\theta & 1 - 2\theta & 4\theta - 1 & 0 \\
1 & 1 - 3\theta & 1 - 2\theta & \theta & 4\theta - 1 \\
\end{array}
\]
mit dem Parameter \( \theta \), der aus dem Intervall \((0, 1)\) gewählt werden kann. Für die Wahl \( \theta = 1 - \frac{\sqrt{3}}{2} \) konnte Müller-Urbanik in seiner Dissertation [69] zeigen, dass das Verfahren angewendet auf die Navier-Stokes-Gleichungen von zweiter Ordnung und stabil ist.

### 4.4 Ortsdiskretisierung

In diesem Abschnitt soll nun die Diskretisierung der einzelnen Terme in der Steifigkeitsmatrix \( \mathbf{R} \) aus (4.16) erörtert werden. Es kann allgemein zwischen den folgenden Termen unterschieden werden:

- **Approximation einer Größe am Integrationspunkt**

  Die Approximation eines Integrals der Form

  \[
  \int_{\partial \Omega} \Phi n_i ds = \sum_{\text{CV}} \Phi n_i |_{ip}
  \]

  erfordert die Bestimmung der Größe \( \Phi \) am Integrationspunkt. Dies kann mit Hilfe der sogenannten zentralen Differenzen geschehen.

  Auf jedem Element sind wie bereits beschrieben die stückweise linearen beziehungsweise bilinearen Ansatzfunktionen \( \varphi(x) \) definiert. Es gilt

  \[
  \varphi_{co}(x) = \begin{cases} 
  1 & \text{falls } x \text{ Knoten } co \\
  0 & \text{falls } x \text{ ein anderer Knoten}
  \end{cases}
  \]

  Mit Hilfe dieser Ansatzfunktionen ist es möglich, die Interpolation

  \[
  (4.36) \quad \Phi |_{ip} = \sum_{co} \varphi_{co}(ip) \cdot \Phi_{co}
  \]

  anzugeben. Die Näherung an die gesuchte Größe \( \Phi \) am Integrationspunkt mittels zentraler Differenzen ist von zweiter Ordnung. Die Summation in (4.36) muss hierbei nur über die Knoten des dar Literaturstruktur der Matrixelemente erfolgen, da außerhalb des Elementes \( N_{co}(ip) = 0 \) gilt. So entsteht bei einem Vierecksnetz in zwei Raumdimensionen ein 9-Punkt-Stern für die Matrixinhalte eines Knotens. Ist das Gitter zudem kartesisch, so verschwindet bei dem oben angegebenen Transportterm der Matrixausdruck für den Knoten selbst. Gerade bei den Euler-Gleichungen treten nur konvektive Terme auf,

Stattdessen wird für konvektionsdominante Strömungen erfolgreich eine alternative Strategie angewendet, die das zuletzt genannte Problem umgeht und zudem die physikalischen Begebenheiten einer Konvektion besser beschreibt. Bei einer Upwind-Strategie wird zur Approximation einer Größe $\Phi$ am Integrationspunkt diese durch die Größe an einem geeignet zu bestimmenden Upwindpunkt ersetzt:

$$\Phi|_{lp} = \Phi_{up}.$$  

Dieses Vorgehen hat den Vorteil einer erhöhten Stabilität in der Matrix; die oben beschriebenen Probleme bei einer stationären Berechnung treten nicht auf. Erkauft wird dieser Vorteil durch eine schlechtere Approximationseigenschaft, die bei diesem Ansatz in der Regel nur eine Näherung erster Ordnung zulässt. Einige Upwind-Strategien werden in Abschnitt 4.4.1 besprochen.

- **Approximation eines Gradienten am Integrationspunkt**
  Bei der Finite Volumen Diskretisierung eines Diffusionstermes

  \[
  \int_{\partial CV} \frac{\partial \Phi}{\partial x_j} n_j ds = \sum_{SCVF} \left. \frac{\partial \Phi}{\partial x_j} n_j \right|_{lp}
  \]

  wie er in der Impuls- und der Energiegleichung vorkommt, wird die Ableitung einer Größe am Integrationspunkt benötigt. Diese wird mit Hilfe der Ableitung der Ansatzfunktionen $\varphi(x)$ wie folgt bestimmt:

  \[
  \left. \frac{\partial \Phi}{\partial x_j} \right|_{lp} = \sum_{co} \frac{\partial \varphi_{co}(ip)}{\partial x_j} \cdot \Phi_{co}.
  \]


- **Approximation eines Gradienten am Knoten**
  Die Ableitung einer Größe am Knoten kann nicht mehr wie am Integrationspunkt durch die Ableitung der Ansatzfunktionen bestimmt werden, da diese
durch die Unstetigkeit über Elementgrenzen hinweg am Knoten nicht eindeutig ist. Stattdessen wird ausgenutzt, dass

\[ \int_{CV_k} \frac{\partial \Phi}{\partial x_j} \, dx = \int_{\partial CV_k} \Phi_{nj} \, ds \]

und somit nach Diskretisierung beider Seiten

\[ \frac{\partial \Phi}{\partial x_j} \bigg|_{\infty} = \frac{1}{|CV_k|} \sum_{ip} \Phi_{ip} n_{j[ip]} \]

gilt.

**Approximation eines Quellterms**

Ein Quellterm wird durch einfache Mittelung bestimmt.

\[ \int_{CV} Q dx = \sum_{SCV} |SCV| \cdot Q \big|_{SCV} \]

Man hat die Wahl, ob der Wert von \( Q \) im Schwerpunkt des Teilkontrollvolumens SCV oder im zugehörigen Knoten ausgewertet wird.

**Harmonische Interpolation**


Man unterscheidet zwischen der gewichteten harmonischen Interpolation

\[ \Phi_{ip}^{HH} = \frac{1}{\sum_{co} N_{co}(ip)} \Phi_{ip} \]

und der absoluten harmonischen Interpolation (AHI). Bei der zweiten Form wird zwischen dem Upwind- und dem Downwindpunkt interpoliert. Dabei wird der betragsmäßig kleinere von beiden Werten stärker gewichtet:

\[ \Phi_{ip}^{AHI} = \frac{1}{2} \cdot \left( \frac{L_1}{L_1+L_2} \Phi_{ip} + \frac{L_2}{L_1+L_2} \Phi_{ip} \right), \]

\( L_1 \) und \( L_2 \) bezeichnen in dieser Formel den Abstand vom Upwind- respektive vom Downwind- zum Integrationspunkt. Eine Herleitung der AHI findet sich
in der Dissertation von Karimian [45]. Eine einfache harmonische Interpolation findet sich auch in der Arbeit von Ogawa et al. [73] zur Interpolation der Viskosität einer reibungsbehafeten Strömung, die aufgrund einer starken Temperaturabhängigkeit großen Schwankungen unterlegen ist.

Beschreibt die Größe $\Phi$ einen Gradienten, so bedeutet die stärkere Gewichtung der kleineren Werte, dass zur Interpolation die Werte aus relativ glatten Regionen bevorzugt werden. In der Nähe von Unstetigkeiten, die gerade durch sehr große Gradienten gekennzeichnet sind, führt diese Vorgehensweise zur Vermeidung eines Überschießens bei der Interpolation. In Regionen mit einer glatten Lösung entspricht die harmonische Interpolation in etwa einer geometrischen Mittelung, so dass auch in solch einem Bereich der Einsatz sinnvoll ist.

### 4.4.1 Upwind-Strategien


Physikalisch betrachtet ist der Grund für dieses schlechte Verhalten naheliegend. Bei Berechnung des Wertes am Integrationspunkt mit Hilfe der bilinearen Ansatzfunktionen erfolgt eine gleichmäßige Gewichtung der Knoten in und entgegen der Strömungsrichtung. Diese Gewichtung widerspricht jedoch dem Transportcharakter eines konvexen Termes $u_j \frac{\partial \Phi}{\partial x_j}$. Eine Methode, die nun die stromaufwärts liegenden Knoten stärker gewichtet, wird als Upwind-Verfahren bezeichnet.

Mathematisch kann man sich eine Vielzahl solcher Verfahren mit Hilfe der Taylor-Entwicklung der Größe $\Phi$ herleiten:

$$
\Phi_{ip} = \Phi_{up} + \Delta x \cdot \left. \frac{\partial \Phi}{\partial x} \right|_{up} + O(\Delta x^2)
$$

(4.40)

Es bezeichne $\Delta x$ den Abstand zwischen Integrations- und Upwindpunkt.
Ortsdiskretisierung

Abbildung 4.4: Upwind-Schema in 1D


Verfahren, die formal von zweiter Ordnung sind, ergeben sich bei Erweiterung von Beziehung (4.37) um einen zusätzlichen Korrekturterm:

(4.41) \[ \Phi_{ip} = \Phi_{up} + \Delta \Phi_{ip}. \]

Wie aus der Taylor-Entwicklung von \( \Phi \) ersichtlich ist, muss der Korrekturterm \( \Delta \Phi_{ip} \) die erste Ableitung von \( \Phi \) mindestens mit der Genauigkeit erster Ordnung annähern. Auch hier gibt es eine Vielzahl von Varianten, die in den folgenden Abschnitten besprochen werden sollen.

Finite Differenzen Upwind-Verfahren

Diese Klasse von Upwind-Verfahren soll anhand des eindimensionalen, äquidistanten Falles kurz erläutert werden, wie er in Abbildung 4.4 skizziert ist.

Das UDS erhält man durch die Wahl

\[ \Phi_{ip} = \Phi_{P} \]

Die Ableitung \( \frac{\partial \Phi}{\partial x} \) kann durch eine Kombination aus einem links- und einem rechtsseitigen Finite Differenzen Schema approximiert werden.

(4.42) \[ \frac{\partial \Phi}{\partial x} \bigg|_{up} = \frac{\partial \Phi_{P}}{\partial x} = a \cdot \frac{\Phi_{P} - \Phi_{W}}{\Delta x} + (1 - a) \cdot \frac{\Phi_{E} - \Phi_{P}}{\Delta x} \]
Für die Wahl von $a = 0$ erhält man

$$\Phi_{ip} = \frac{1}{2} \Phi_P + \frac{1}{2} \Phi_E$$

Dies ist das sogenannte Zentrale Differenzen Schema (CDS). Wie bereits weiter oben besprochen führt die starke Gewichtung der stromabwärts liegenden Größe $\Phi_E$ zu unphysikalischen Ergebnissen und einer Verschlechterung der Konvergenzeigenschaften.

Setzt man in (4.42) $a = 1$, so ergibt sich das Second Order Upwind Schema (SOU)

$$\Phi_{ip} = \frac{3}{2} \Phi_P - \frac{1}{2} \Phi_W.$$  

Die Einflussgrößen sind bei diesem Verfahren im Gegensatz zum CDS richtig lokaliert, jedoch kann der negative Koeffizient bei $\Phi_W$ zu Problemen beim iterativen Lösen des Gleichungssystem führen.

Eine weitere Variante ist das QUICK-Verfahren von Leonard [58], [115] bei dem $a = 0.25$ gewählt wird. Es ist dann

$$\Phi_{ip} = \frac{3}{8} \Phi_E + \frac{3}{4} \Phi_P - \frac{1}{8} \Phi_W.$$  

Hier tritt - allerdings mit kleineren Koeffizienten - die unphysikalische Abhängigkeit zu $\Phi_E$ und der negative Koeffizient bei $\Phi_W$ auf. Es sind also ähnliche Probleme wie bei CDS und SOU, jedoch in abgeschwächter Form zu erwarten.

Ein nicht zu vernachlässigendes Problem bei dem SOU- und QUICK-Schema stellt insbesondere bei unstrukturierten Gittern die Abhängigkeit zu Werten im Nachbargitter (hier $\Phi_W$) dar. Die Implementierung eines Verfahrens zweiter Ordnung, das den Ansatz (4.42) verwendet, ist somit im allgemeinen Fall sehr schwierig.

Schiefes Upwind-Verfahren

Aufgrund der beschriebenen Schwierigkeiten bei den Finite Differenzen Upwind-Verfahren kommen in dieser Arbeit nur sogenannte schiefen (skewed) Upwind-Verfahren zum Einsatz, die den erstgenannten Verfahren in der Regel überlegen sind. Schiefes Upwind-Verfahren wurden in der Literatur zunächst nur im Zusammenhang mit den im nächsten Abschnitt besprochenen Physical Advection Correction Verfahren erwähnt. Sie können jedoch auch als eigenständige Verfahren betrachtet werden. Im Einzelnen sind dies:
• **Skewed Upwinding**
  Die Gerade in Strömungsrichtung wird bis zum Schnittpunkt mit der Elementseite zurückverfolgt. Der Knoten, der am nächsten zu diesem Schnittpunkt liegt, wird als Upwind-Punkt gewählt.

• **Linear Profile Skewed Upwinding (LPS)**
  Analog zum Skewed Upwind wird der Schnittpunkt in Strömungsrichtung mit der Elementseite gesucht. Die umliegenden Knoten der Elementseite werden dann mit Hilfe der Ansatzfunktionen linear gewichtet. Im zweidimensionalen Beispiel aus Abbildung 4.5 ergibt sich die Formel
  \[ \Phi_{up} = \frac{a}{a+b} \Phi_0 + \frac{b}{a+b} \Phi_1. \]
  Bei LPS kann es vorkommen, dass bei ungünstigen Verhältnissen zwischen Strömungsrichtung und Gitter ein Diagonalterm mit negativen Koeffizienten erzeugt wird. In solch einem Fall gehen die durch Upwinding erzielten guten Matrixeigenschaften des konvektiven Terms verloren. Dennoch stellt LPS eine sehr einfache und in vielen Fällen stabile Upwind-Strategie dar.

• **Reguläres Upwinding (REG)**
im Beispiel die Formel

\[ \Phi_{ip} = \frac{a}{a+b} \left( \frac{1}{2} \Phi_0 + \frac{1}{2} \Phi_1 \right) + \frac{b}{a+b} \Phi_{ip0}. \]

Wenn die Gerade zuerst eine Elementseite schneidet, so stimmt REG mit LPS überein. Das Problem der negativen Koeffizienten bleibt also weiterhin bestehen. Aufgrund der möglichen Interpolation mit Hilfe von Integrationspunkten ist lokal auf dem Element ein Gleichungssystem zu lösen, um die korrekten Koeffizienten des Upwindpunktes in Abhängigkeit der Knoten darzustellen. Als sehr aufwändig erweist sich allerdings die Übertragung auf drei Raumdimensionen. Da Vergleichsrechnungen in zwei Raumdimensionen keine allzu gravierenden Verbesserungen im Vergleich zu LPS zeigen, wurde im Rahmen dieser Arbeit auf eine Implementierung in 3D verzichtet.

- **Positives Upwinding (POS)**


\[ m_{SCV} = (u_j n_j)_{SCV} \]

mit der nach außen gerichteten Normalen bestimmt. Bei negativem Vorzeichen liegt eine Einstromung, bei positivem Vorzeichen eine Ausströmung der zu betrachtenden Größe \( \Phi \) vor. Bei Ausströmung an einer Seite des SCV würde beim Vollen Upwinding die zu interpolierende Größe lediglich am zu diesem SCV gehörenden Knoten bestimmt werden:

\[ \Phi_{ip} = \Phi_{SCV}. \]

Beim positiven Upwinding werden jedoch zusätzlich alle Seiten berücksichtigt, an denen eine Einstromung vorliegt:

\[ \Phi_{ip} = (1 - \alpha) \Phi_{SCV} + \alpha \sum_{\substack{SCV \text{ } m_{SCV} < 0}} \omega_{SCV} \Phi_{SCV}. \]
Abbildung 4.6: Positives Upwinding

Zur Berechnung der Gewichte in Gleichung (4.43) wird zunächst die Summe \( m_{\text{out}} \) aller Ausflüsse und der Betrag \( m_{\text{in}} \) aller Einflüsse bestimmt:

\[
m_{\text{out}} = \sum_{m_{\text{SCVF}} > 0} m_{\text{SCVF}} \quad m_{\text{in}} = \sum_{m_{\text{SCVF}} < 0} |m_{\text{SCVF}}|.
\]

Die Werte von \( \alpha \) und \( \omega \) ergeben sich dann mit Hilfe der Formeln

\[
F = \max(m_{\text{in}}, m_{\text{out}})
\]

\[
\omega_{\text{SCVF}} = -\frac{m_{\text{SCVF}}}{F}
\]

\[
\alpha = \frac{m_{\text{in}}}{F}.
\]

In diesem Schema sind alle der folgenden drei Fälle beinhaltet, die physikalisch gesehen auftreten können. Liegt an allen Seiten des SCV eine Ausströmung vor, ist also \( m_{\text{in}} = 0 \), so kann die Größe nur aus Richtung des Knotens transportiert werden. Das ist der Fall, in dem das Positive Upwinding mit dem Vollen
Upwinding übereinstimmt. Gilt dagegen $0 < \frac{m_{in}}{m_{out}} < 1$, so strömt ein Teil über die Seiten des SCV ein und eine restliche Abhängigkeit kommt vom Inneren des Kontrollvolumens, das heisst vom zugehörigen Knoten. Ist schließlich $\frac{m_{in}}{m_{out}} \geq 1$, so erfolgt der Transport der Größe $\Phi$ nur über die Seiten des SCV und es ergibt sich keine Abhängigkeit zum Knoten. Die drei Fälle sind für zwei Raumdimensionen noch einmal in Abbildung 4.6 graphisch dargestellt.


**Physical Advection Correction**

Die sogenannte Physical Advection Correction (PAC) wurde erstmals bei den von Raithby [83] vorgeschlagenen schieben Upwind-Verfahren erwähnt. Ähnlich wie bei der Berechnung des Korrekturtermes $\Delta \Phi_{ip}$ aus (4.41) mit Hilfe von Finite Differenzen Approximationen in Gleichung (4.42) wird bei den PAC-Verfahren versucht, die erste Ableitung von $\Phi$ zu approximieren. Es werden jedoch die lokalen physikalischen Transporthandigkeiten berücksichtigt. Ein Konvektionsterm kann mit Hilfe der Ableitung $\partial / \partial s$ in Strömungsrichtung

$$(4.47) \quad u_j \frac{\partial \Phi}{\partial x_j} = |v| \frac{\partial \Phi}{\partial s}$$

umgeformt werden. Dabei ist $s = \frac{u_j(x)}{|u|}$ und $|v|$ bezeichnet den Betrag der Geschwindigkeit.

Die Änderung von $\Phi$ zwischen dem Upwindpunkt $u_p$ und dem Integrationspunkt $i_p$ wird aus den nicht konvektiven Anteilen der jeweiligen Transportgleichung bestimmt.

So ergibt sich für die Konvektion der Dichte in der Massenerhaltung die Gleichung

$$(4.48) \quad \frac{\partial \rho}{\partial s} \bigg|_{i_p} = -\frac{1}{|v|} \rho \left( \frac{\partial \rho}{\partial t} + \rho \frac{\partial u_j}{\partial x_j} \right) \bigg|_{i_p}$$

und hieraus das PAC-Upwind-Verfahren

$$(4.49) \quad \varrho_{ip} = \varrho_{up} + \Delta \varrho_{ip} = \varrho_{up} - \frac{L}{|v|} \left( \frac{\partial \rho}{\partial t} + \rho \frac{\partial u_j}{\partial x_j} \right) \bigg|_{i_p}$$

\[
\vartheta_{ip} = \vartheta_{up} - \frac{L}{|p_{ip}|} \left( \frac{\vartheta_{ip} - \bar{\vartheta}_{ip}}{\Delta t} + \vartheta_{ip} \cdot \frac{\partial \varrho_{ij}^{(A)HI}}{\partial x_{ij}} \right).
\]

Ebenso ergibt sich analog das PAC-Upwind-Schema für die konvektierte Geschwindigkeit aus der Impulsgleichung:

\[
\left. \frac{\partial u_i}{\partial s} \right|_{ip} = -\frac{1}{\varrho|v|} \left( \frac{\partial u_i}{\partial t} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial \tau_{ij}}{\partial x_j} \right)_{ip}.
\]

Diese Gleichung wird linearisiert, indem die Dichte $\varrho$ durch die Dichte aus der letzten nichtlinearen Iteration $\varrho^0$ ersetzt wird.

**Gewichtete Upwind-Verfahren**

Bei Rechnungen mit Viskosität wird oft ein gewichtetes Schema verwendet. Dieses in Anlehnung an das Upstream Weighted Differencing Scheme (UWDS) von Raitby und Torrance [84] konstruierte Verfahren hat die Form

\[
\Phi_{ip} = \alpha(\Phi_{up} + \Delta \Phi_{ip}) + (1 - \alpha) \sum_{co} N_{co}(ip)\Phi_{co}.
\]

Es wird also zwischen einem reinen Upwind-Verfahren und der Interpolation mit zentralen Differenzen gewichtet. Die Funktion $\alpha$ kann zum Beispiel durch

\[
\alpha = \frac{P_e \varphi^2}{\frac{3}{5} + P_e^2}, \quad P_e = \frac{u_j n_j L}{\nu}
\]

mit der Pecletzahl $P_e$ bestimmt werden. Die verwendeten Parameter sind die lokalen Größen für die Geschwindigkeit, der Normalenvektor, die Länge $L$ der Seite, auf der $ip$ liegt, sowie den Diffusionskoeffizienten $\nu$. Die Pecletzahl dient dabei als Maß für das Verhältnis von Konvektion zur Diffusion.
4.4.2 Stabilisierung


Karimian et al. [46] haben aufgezeigt, dass der Ansatz von Raw et al. in manchen Fällen Oszillationen der Lösung nicht verhindern kann. Um diese Problematik zu umgehen, schlagen die Autoren vor, beim Aufstellen des lokalen Systems für die Ge-
schwindigkeit außer der Impulsleichung zusätzlich noch die Kontinuitätsleichung zu berücksichtigen, die mit der Geschwindigkeit gewichtet subtrahiert wird. Es ergibt sich somit der Ansatz

\[ \frac{\partial u_i}{\partial s}_{ip} = - \frac{1}{\rho |v|} (\varepsilon - u_i \dot{\varepsilon})_{ip} \]

mit dem Fehler \( \varepsilon \) aus der Impulsleichung

\[ \varepsilon = \left( \frac{\partial u_i}{\partial t} + \frac{\partial p^{(2)}}{\partial x_i} - \frac{1}{Re} \frac{\partial t_{ij}}{\partial x_j} \right) \]

und dem Fehler \( \ddot{\varepsilon} \) aus der Kontinuitätsleichung.

\[ \ddot{\varepsilon} = \left( \frac{\partial v}{\partial t} + \frac{\partial u_j}{\partial x_j} + u_j \frac{\partial v}{\partial x_j} \right) \].

### 4.4.3 Randbedingungen

Eine gesonderte Behandlung bei der Diskretisierung müssen Randelemente erfahren. Es gilt, eine numerische Beschreibung der in Abschnitt 3.3 diskutierten kontinuierlichen Randbedingungen zu finden.


Da die Assemblierung der Massenmatrix über die Teilkontrollvolumen erfolgt, müssen für diese keine Änderungen vorgenommen werden. Die Steifigkeitsmatrix hingegen erfordert die Berechnung der Flüsse über die Grenzen der Kontrollvolumen hinweg. Ein Randintegral wird somit wie folgt approximiert:

\[ \int_{\partial CV} \Phi_{ni_i} ds = \sum_{ip} \Phi_{ni_i} |_{ip} + \sum_{bi_p} \Phi_{ni_i} |_{bi_p}. \]

Einflussrandbedingung


Ausflussrandbedingung

Linearisierung wie im Inneren des Gebietes und durch Verwendung der zentralen Differenzen für alle Terme. Dieses Vorgehen ist auch konsistent im Falle eines Upwind-Verfahrens im Inneren, da die zentralen Differenzen am Rande bei Annahme eines parallelten Ausstromes auch als Art Upwinding angesehen werden kann.

**Wandrandbedingung**

An Wänden gilt die charakteristische Eigenschaft, dass die Geschwindigkeit in Normalenrichtung zur Wand Null ist:

\[(4.53) \quad u_jn_j|_{\text{lip}} = 0.\]

Im reibungslosen Fall spricht man von einer Slip-Randbedingung, im reibungsbehaupteten Fall dagegen von einer No-Slip-Wand.

- **Slip Randbedingung**

\[\tau_{ij}t_j = 0\]

gilt.

- **No-Slip Randbedingung**
  Bei einer reibungsbehaupteten Strömung gilt zusätzlich, dass an der Wand die Strömung bezüglich dieser stationär ist. Das heisst, die Geschwindigkeit der Strömung ist identisch zur Geschwindigkeit der Wand. In den meisten Fällen ist diese Null. Es gilt also die Dirichlet-Randbedingung

\[u_j|_{\text{lip}} = u_j|_{\text{wall}} \quad \text{für } j = 1, \ldots, d\]

für die Geschwindigkeit. Somit sind nur noch die Kontinuitäts- und die Energie- gleichung zu behandeln. Alle Flüsse in beiden Gleichungen werden assembliert,
indem die vorgegebenen Geschwindigkeitswerte direkt eingesetzt werden und für die anderen Größen zentrale Differenzen verwendet werden.

4.5 Nichtlineare Iterationsverfahren


Die Nichtlinearität der Navier-Stokes- als auch der Euler-Gleichungen bleibt natürlich nach der zeitlichen Diskretisierung erhalten. Es ergibt sich immer - wie am Beispiel BDF(2) in (4.23) oder DIRK(2) in (4.34) zu sehen - ein nichtlineares Gleichungssystem der Form

\begin{equation}
\mathcal{N}(y) = b
\end{equation}

mit dem nichtlinearen Operator \( \mathcal{N} \), den Unbekannten \( y = (\rho, u_1, \ldots, u_d, p^{(2)})_{\nu = 1, \ldots, K} \) an den \( K \) Knoten des Gitters und der rechten Seite \( b \). Der Operator \( \mathcal{N} \) hat im Allgemeinen die Gestalt

\begin{equation}
\mathcal{N}(y) = s_m \cdot \mathcal{T}(y) + s_a \cdot \mathcal{R}(y)
\end{equation}

mit den diskretisierten Operatoren \( \mathcal{T} \) und \( \mathcal{R} \) aus (4.17) respektive (4.18). Bei stationären Berechnungen lauten die Koeffizienten \( s_m = 0 \) und \( s_a = 1 \). Bei instationären Berechnungen dagegen ist \( s_m = 1 \) und \( s_a \) ergibt sich aus der jeweiligen Formel für die Zeitdiskretisierung.

4.5.1 Newton-Iteration

Das nichtlineare System (4.54) kann mit Hilfe der Newton-Iteration gelöst werden. Das Newton-Verfahren ergibt sich aus der nach dem Term erster Ordnung abgebrochenen Taylor-Entwicklung des nichtlinearen Gleichungssystems:

\[ \mathcal{N}(y) = \mathcal{N}(y^0) + \mathcal{J}(y^0)(y - y^0) + O((y - y^0)^2) = b. \]

Hierbei bezeichnet \( \mathcal{J} \) die sogenannte Jacobi-Matrix, die über die Vorschrift

\[ \mathcal{J}(y) = \frac{\partial \mathcal{N}(y)}{\partial y} \]
gebildet wird. Die Bestimmung der Jacobi-Matrix wird in Abschnitt 4.5.2 besprochen.

Die hieraus abgeleitete Iterationsvorschrift besteht aus zwei Schritten. Im ersten
Schritt wird das lineare Gleichungssystem

\[ \mathcal{J}(y^i) c^{i+1} = -d^i \]

gelöst. Auf der rechten Seite erscheint der Defekt \( d^i = N(y^i) - b \) der Näherung
\( y^i \) aus dem letzten Iterationsschritt. Die Lösung \( c^{i+1} \) des Gleichungssystems (4.56)
will mit Hilfe einer der in Abschnitt 4.6 vorgestellten Methoden zur numerischen
Behandlung linearer Gleichungssysteme berechnet. Sie dient dann in einem zweiten
Schritt als Korrektur der letzten Iterierten:

\[ y^{i+1} = y^i + c^{i+1}. \]

Oft wird zur Stabilisierung des nichtlinearen Lösungsverfahrens nicht die volle Korrektur addiert, sondern nur ein gedämpfter Beitrag

\[ y^{i+1} = y^i + \lambda \cdot c^{i+1}. \]

Der Dämpfungsparameter \( \lambda \) wird dabei typischerweise zwischen 0,5 und 1 gewählt.
Statt der Vorgabe eines festen Wertes für \( \lambda \) kann auch eine sogenannte Liniensuche
benutzt werden, um automatisch einen günstigen Wert für \( \lambda \) zu finden. Liegt
die Fehlerreduktion des Iterationsschrittes über einem gewünschten Wert, so wird \( \lambda \)
halbiert. Für das so neu entstandene \( y^{i+1} = y^i + \frac{1}{2} \cdot c^{i+1} \) wird wiederum die Fehlerreduktion bestimmt. Entweder wird \( \lambda \) ein weiteres Mal halbiert oder aber es wird
bei ausreichender Konvergenz zum nächsten Iterationsschritt übergegangen. Vorteil
der Liniensuche ist eine flexible Anpassung an das Konvergenzverhalten der Iteration.
Von Nachteil ist jedoch, dass bei jedem Schritt der Liniensuche die Matrix neu
assambliert werden muss, sodass die Zahl der Liniensuchschritte möglichst gering
gehalten werden sollte.

### 4.5.2 Berechnung der Jacobi-Matrix

Die Jacobi-Matrix \( \mathcal{J} \) des nichtlinearen Systems (4.54) wird analytisch bestimmt.
Ebenso wie bei der Aufspaltung des nichtlinearen Operators (4.55) berechnet sich
die Jacobi-Matrix aus zwei Anteilen:

\[ \mathcal{J} = s_m \cdot \mathcal{J}_T + s_n \cdot \mathcal{J}_R. \]
Der Anteil $J_T$ stammt aus der Zeitdiskretisierung, der Anteil $J_R$ dagegen aus der Steifigkeitsmatrix.

Somit gilt in drei Raumdimensionen:

\[
J_T(y^0)y = \begin{pmatrix}
\int p dx \\
\hat{\lambda} \int \varrho u_0^0 dx + \int \varrho^0 u_1 dx \\
\hat{\lambda} \int \varrho u_0^2 dx + \int \varrho^0 u_2 dx \\
\hat{\lambda} \int \varrho u_0^3 dx + \int \varrho^0 u_3 dx \\
\frac{M^2}{\gamma - 1} \int p^{(2)} dx + \hat{\lambda} \frac{M^2}{2} \int \varrho u_0^0 u_0^0 dx + (1 - \hat{\lambda}) \frac{M^2}{2} \int \varrho^0 u_0^0 u_0^0 dx
\end{pmatrix}
\]

Hier wurde wie auch schon im Abschnitt über die Zeitschrittverfahren auf die kontinuierliche Notation zurückgegriffen, um die Darstellung übersichtlich zu halten. Zusätzlich wurde in dieser Notation ein weiterer Dämpfungsparameter $\hat{\lambda}$ eingeführt, der zur Stabilisierung der Diagonaldominanz der linearisierten Matrix beitragen kann. Man gelangt zu obiger Jacobi-Matrix mit Hilfe des Ansatzes

\[
\Phi_{\hat{\lambda}} = \hat{\lambda} \Phi + (1 - \hat{\lambda}) \Phi^0.
\]

Die Linearisierung eines nichtlinearen Terms der Form $\Phi_{\hat{\lambda}} \Psi$ lautet dann

\[
\Phi_{\hat{\lambda}} \Psi = \hat{\lambda} \Phi^0 \Psi + \hat{\lambda} \Phi \Psi^0 + (1 - \hat{\lambda}) \Phi^0 \Psi = \Phi^0 \Psi + \hat{\lambda} \Phi \Psi^0.
\]

Dieser Dämpfungsparameter ist von dem Parameter $\lambda$ aus (4.58) zu unterscheiden. Für $\hat{\lambda} = 1$ erhält man das volle Newton-Schema, für $\hat{\lambda} = 0$ dagegen die in der Literatur häufig zu findende Fixpunktkiteration. Diese hat den Vorteil, in einem weit größeren Bereich zu konvergieren. Allerdings ist die Fehlerreduktion wie zu erwarten deutlich geringer.

Aus Gründen der Übersichtlichkeit wird die Bestimmung der Jacobi-Matrix $J_R(y^0)y$ für jeden einzelnen nichtlinearen Term von $R$ einzeln aufgeführt.

Der Massenterm in der Kontinuitätsgleichung lautet linearisiert

\[
(4.60) \quad \int \varrho u_j n_j ds \rightarrow \int \varrho u_j^0 n_j ds + \hat{\lambda} \int \varrho^0 u_j n_j ds.
\]

Der Druckterm und der Diffusionsterm in der Impulsgleichung sind linear, der Konvektionsterm wird folgendermaßen linearisiert:

\[
(4.61) \quad \int \varrho u_i u_j n_j ds \rightarrow \int \varrho^0 u_i u_j^0 n_j ds + \hat{\lambda} \int \varrho u_i^0 u_j^0 n_j + \varrho^0 u_i^0 u_j n_j ds.
\]
In der Energiegleichung sind alle Terme bis auf den Divergenzterm $\int u_j n_j \, ds$ nicht-linear:

\begin{equation}
\int p^{(2)} u_j n_j \, ds \rightarrow \int p^{(2)} u_j^0 n_j \, ds + \lambda \int (p^{(2)})^0 u_j n_j \, ds
\end{equation}

\begin{equation}
\int \rho u_i u_i u_j n_j \, ds \rightarrow (1 + \lambda) \int \rho u_i^0 u_i u_i^0 n_j \, ds + \lambda \int \rho u_i^0 u_i u_i^0 u_j n_j \, ds + \rho u_i^0 u_i u_j n_j \, ds
\end{equation}

\begin{equation}
\int \tau_{ij} u_i n_j \, ds \rightarrow \int \tau_{ij} u_i^0 n_j \, ds + \lambda \int \tau_{ij}^0 u_i n_j \, ds.
\end{equation}


### 4.5.3 Defektberechnung

Zur Berechnung des Defektes

\begin{equation}
d^{i+1} = \mathcal{N}(y^{i+1}) - b
\end{equation}

muss der Operator $\mathcal{N}$ auf die aktuelle Lösung $y^{i+1}$ angewendet werden. Dies kann ebenso wie bei der Berechnung der Jacobi-Matrix durch die Assemblierung einer Matrix geschehen. Aus Implementierungssicht ist es durch einen einfachen Trick möglich, die Defektberechnung mit der Assemblierung der Jacobi-Matrix zu kombinieren. Der Defekt wird dann bestimmt durch die Gleichung

\begin{equation}
d^{i+1} = \mathcal{J}_{\lambda=0}(y^{i+1})y^{i+1} - b
\end{equation}

mit der Jacobi-Matrix der Fixpunkttiteration, das bedeutet für $\lambda = 0$. 
4.6 Lineare Iterationsverfahren

Nach Anwendung der Zeitdiskretisierung und schließlich der räumlichen Diskretisierung der linearisierten Gleichungen stellt sich das Problem, ein lineares Gleichungssystem der Form

\[(4.67) \quad Ay = b\]

to lösen. Es ist \(y = (y, u_1, \ldots, u_d, p^{(2)})_{\alpha=1,\ldots,K}\) der Vektor der Unbekannten, die in den \(K\) Knoten des Gitters lokalisiert sind. Die Matrix \(A\) ist eine reguläre \(N \times N\)-Matrix mit \(N = (d + 2) \cdot K\). Aufgrund der Diskretisierung mit Finiten Volumen ist die Matrix \(A\) nur dünn besetzt, das heißt die Matrix hat nur \(O(N)\) Nichtnulleneinträge. Da die Invertierung der Matrix \(N^2\) Einträge erzeugen würde, ist das direkte Lösen des Gleichungssystems für große \(N\) auf heutigen Rechnern nicht mehr möglich. Stattdessen kommen iterative Lösungsverfahren zum Einsatz, deren Aufwand linear mit der Anzahl \(N\) der Unbekannten wächst. Eine gute Übersicht über die Konstruktion von Iterationsverfahren sowie ihrer Konvergenz und Stabilität findet sich in dem Buch von Hackbusch [36].

4.6.1 Klassische Iterationsverfahren

Die in diesem Abschnitt vorgestellten linearen Iterationsverfahren haben in der Regel nur ein langsames Konvergenzverhalten. Man wird sie deshalb kaum als iterative Löser verwenden. Sie haben jedoch eine wichtige Bedeutung als Glätter im Mehrgitterverfahren oder als Vorkonditionierer.

Viele Iterationsverfahren lassen sich aus einer additiven Zerlegung

\[(4.68) \quad A = W - R\]

der Matrix \(A\) gewinnen. Die reguläre Matrix \(W\) sollte dabei möglichst leicht zu invertieren sein. Das Gleichungssystem (4.67) ist dann äquivalent zu

\[(4.69) \quad W y = R y + b,\]

woraus sich sofort die Iteration

\[(4.70) \quad W y^{i+1} = R y^i + b\]
herleiten lässt. Etwas umgeformt lautet die Iteration

\begin{equation}
    y^{i+1} = y^{i} - \theta \cdot W^{-1}(Ay^{i} - b).
\end{equation}

Zusätzlich wurde der Dämpfungsparameter \( \theta \) eingeführt, der dazu dienen kann, eine Konvergenz zu erzwingen.

Entscheidend ist nun die Bestimmung der Matrix \( W \). Eine mögliche Zerlegung der Matrix \( A \) ist die Aufspaltung in die Diagonalmatrix \( D \), eine strikt untere Dreiecksmatrix \( L \) und eine strikt obere Dreiecksmatrix \( U \):

\begin{equation}
    A = D - L - U.
\end{equation}

Die einfachste Wahl für \( W \) ist die Diagonalmatrix \( D \). Hieraus resultiert das sogenannte Jacobi-Verfahren

\begin{equation}
    y^{i+1} = y^{i} - \theta \cdot D^{-1}(Ay^{i} - b).
\end{equation}

Das Verfahren ist zwar sehr einfach zu implementieren, konvergiert aber in den meisten Fällen nur sehr langsam.

Eine Verbesserung der Konvergenzgeschwindigkeit erzielt man durch die zusätzliche Berücksichtigung des unteren Dreiecksannteils \( L \). Ist also \( W = \frac{1}{\omega}D - L \), so erhält man das SOR-Verfahren

\begin{equation}
    y^{i+1} = y^{i} - \theta \cdot \omega(D - \omega L)^{-1}(Ay^{i} - b).
\end{equation}

Die Wahl von \( \omega = 1 \) stellt einen Spezialfall dar, nämlich das Gauß-Seidel-Verfahren. Bei einer Überrelaxation \( \omega > 1 \) kann man oft eine schnellere Konvergenz erzielen, \( \omega < 1 \) hingegen stabilisiert das Verfahren bei Problemen, die mit dem Gauß-Seidel-Algorithmus nicht konvergieren.

Im SOR-Verfahren ist die Auswahl der unteren Dreiecksmatrix willkürlich. Ein vollkommen analoges Schema ergibt sich bei Wahl von \( W = \frac{1}{\omega}D - U \) mit der oberen Dreiecksmatrix \( U \). Führt man nun zuerst eine Iteration mit der unteren und anschließend eine weitere Iteration mit der oberen Dreiecksmatrix aus, so entsteht das SSOR-Verfahren. Es ist hier

\begin{equation}
    W = \frac{1}{2 - \omega} \left( \frac{1}{\omega}D - L \right) \left( \frac{1}{\omega}D \right)^{-1} \left( \frac{1}{\omega}D - U \right)
\end{equation}

und die Iteration lautet

\begin{equation}
    y^{i+1} = y^{i} - \theta \cdot \omega(2 - \omega)(D - \omega L)^{-1}D(D - \omega L)^{-1}(Ay^{i} - b).
\end{equation}

Für \( \omega = 1 \) ergibt sich das Symmetrische Gauß-Seidel-Verfahren.
4.6.2 ILU-Verfahren

Eine weitere Form der additiven Zerlegung stellt die Durchführung einer Dreieckzerlegung dar. Dann ist

\[ A = L'U'' - R. \]

Für die Iterationsmatrix \( W \) ist ein Ansatz der Form \( W = L'U'' \) möglich, sodass sich die folgende Iteration ergibt:

\[
y^{i+1} = y^i - \theta \cdot U''^{-1} (A y^i - b).
\]

Bei einer vollständigen LU-Zerlegung ist \( R = 0 \). Dies erlaubt man sich jedoch durch den entscheidenden Nachteil, dass beide Dreiecksmatrizen voll besetzt sind. Es müssen die \( N^2 \) Gleichungen

\[
\sum_{j=1}^{N} l_{ij} u_{jk} = a_{ik} \quad \text{für } 1 \leq i, k \leq N
\]

gelöst werden. Eine Zerlegung in wiederum schwach besetzte Dreiecksmatrizen wird bei der sogenannten ILU-Zerlegung (Incomplete Lower Upper) erzwungen, indem nur bestimmte Matrixeinträge in \( L' \) und \( U'' \) gefüllt werden. Zur exakten Definition des Verfahrens müssen zunächst ein paar Begriffe eingeführt werden. Eine Teilmenge \( G \subset I \times I \) aller Indexpaare \((i, j)\) mit \( I = \{1, 2, \ldots, N\} \) heißt Graph. Der Graph \( G(A) \) einer Matrix \( A \) ist dann die Menge aller Indexpaare der Nichtnullelemente:

\[ G(A) = \{(i, j) \in I \times I : a_{ij} \neq 0\}. \]

Für einen vorgegebenen Graphen \( G \) ist die ILU-Zerlegung definiert durch

\[
\sum_{j=1}^{N} l_{ij} u_{jk} = a_{ik} \quad \text{für } (i, k) \in G \\
l_{ik} = u_{ik} = 0 \quad \text{für } (i, k) \notin G.
\]

Gewöhnlicherweise wird die Indexmenge \( G \) so gewählt, dass der Graph der Matrix \( A \) eine Teilmenge von \( G \) ist. Im Spezialfall

\[ G(A) = G \]

spricht man auch von einer ILU-Zerlegung auf Level 0 oder kurz ILU(0).

In der Literatur ist eine Vielzahl an Füllstrategien zu finden. Es gibt Möglichkeiten, den Graphen geometrisch oder numerisch zu erweitern. Im zweiten Fall wird ein
zusätzlicher Matrixeintrag erzeugt, wenn dieser über einer vorgegebenen Schranke (threshold) liegt. Das so modifizierte Verfahren nennt sich THILU. Die Schwierigkeit liegt darin, die Schranke geeignet zu wählen. Auf der einen Seite ist durch die Erweiterung des Graphen eine Konvergenzverbesserung zu erzielen. Auf der anderen Seite muss jedoch die Anzahl der Nichtnullelemente klein gehalten werden, um nicht Gefahr zu laufen, eine deutliche Performanceverschlechterung in Kauf nehmen zu müssen.

Eine andere wichtige Erweiterung ist das von Wittum [112], [110] vorgestellte Modifiziertes ILU-Verfahren. Die Idee dieses Verfahrens ist es, ähnlich wie bei den Relaxationsverfahren die Diagonale der Iterationsmatrix zu beeinflussen. Für die Restmatrix $R$ gilt

\[ r_{ii} = 0, \]

da die Diagonale von $A$ - also alle Indexpaare $(i, i)$ - immer zum Graphen $G$ gehören muss. Beim sogenannten ILU$_\beta$-Verfahren werden dagegen die nicht berücksichtigten Elemente außerhalb des Graphen $G$ geeignet gewichtet auf die Diagonale der Restmatrix $R$ addiert:

\[ r_{ii} = \beta \sum_{i \neq j} |r_{ij}|. \]

Für $\beta = 0$ erhält man das gewöhnliche ILU-Verfahren, eine Verbesserung der Konditionzahl ergibt sich für $\beta = -1$. Viel wichtiger ist jedoch, dass für $\beta > 0$ aufgrund der Dämpfung das Iterationsverfahren bessere Stabilitätseigenschaften aufweisen kann.

Aus Implementierungssicht wird die Darstellung der Iterationsmatrix $W$ oft derart modifiziert, dass

\[ W = (D + L)D^{-1}(D + U) \]

gilt mit der Diagonalmatrix $D$ und den strikt unteren beziehungsweise strikt oberen Dreiecksmatrizen $L$ und $U$. Zu beachten ist, dass diese Formel formal der Vorschrift des SSOR-Verfahrens (4.75) für $\omega = 1$ entspricht. Die Herleitung der Dreiecksmatrizen erfolgt jedoch im einen Fall direkt aus der Matrix $A$ und im anderen Fall mit Hilfe der unvollständigen Zerlegung.

### 4.6.3 Blockverfahren

Das lineare Gleichungssystem (4.67) ist bei Verwendung des kollibrierten Ansatzes wie bereits erwähnt von der Dimension $N = (d + 2) \cdot K$. Es können nun zwei
verschiedene Formen der Blockung unterschieden werden:

- **Punkteblock**
  Die Unbekannten werden in $K$ Blöcke der Größe $d + 2$ aufgeteilt. Dies entspricht der Anordnung $(\varrho, u_1, \ldots, u_d, p^{(2)})_1, \ldots, (\varrho, u_1, \ldots, u_d, p^{(2)})_K$. Die Steifigkeitsmatrix besteht dann aus Punktblöcken der Größe $(d + 2) \times (d + 2)$.

- **Gleichungsblock**
  In diesem Fall werden die Unbekannten in $d + 2$ Blöcke der Größe $K$ aufgeteilt. Dies entspricht einer gleichungsweisen Anordnung $\varrho_1, \ldots, K, u_{11}, \ldots, K, \ldots, u_{d1}, \ldots, K, p^{(2)}_{11}, \ldots, K$ der Unbekannten. Die Steifigkeitsmatrix zerfällt dann in Gleichungsblöcke der Größe $K \times K$.

In Verallgemeinerung der bisher vorgestellten Iterationsverfahren können nun die Blockvarianten eingeführt werden. Die Zerlegung der Matrix erfolgt in Blöcken, es ist dann zum Beispiel

$$A = D - L - U$$

mit der Blockdiagonalmatrix $D$, der strikt unteren Blockdreiecksmatrix $L$ und der strikt oberen Blockdreiecksmatrix $U$. Dabei müssen die einzelnen Blöcke invertiert werden.

Bei der Punktblockung kann die Invertierung der Blöcke exakt erfolgen, da diese nicht zu groß sind. Die meisten Konvergenzaussagen zu den skalaren Verfahren können dann auf die Blockvarianten übertragen werden. Wenn in dieser Arbeit im Kontext der Mehrgitterverfahren von einem der bisher eingeführten Iterationsverfahren gesprochen wird, so ist damit immer die entsprechende Punktblock-Iteration gemeint.

4.6.4 Mehrgitterverfahren


Algorithmus 4.1 Das \((\gamma, \nu_1, \nu_2)\)-Mehrgitterverfahren \(\text{MG}(l, y_h, b_l)\)

\[
\begin{align*}
  \text{if } l = 0 \text{ then} & \quad y_0 = A_0^{-1}b_0 \quad \text{(exakte Lösung auf grösstem Gitter)} \\
  \text{else} & \quad y_l = S^{\nu_1}(y_l, b_l) \quad \text{(Vorglättung)} \\
  & d_l = b_l - A_l y_l \quad \text{(Defektberechnung)} \\
  & d_{l-1} = R_l^{l-1} d_l \quad \text{(Restriktion)} \\
  & c_{l-1} = 0 \\
  \text{for } i = 1, \ldots, \gamma \text{ do} & \quad \text{MG}(l-1, c_{l-1}, d_{l-1}) \quad \text{(Grobgitterlösung)} \\
  \text{end for} & \quad y_l = y_l + P_{l-1}^{l-1} c_{l-1} \quad \text{(Prolongation)} \\
  & y_l = S^{\nu_2}(y_l, b_l) \quad \text{(Nachlättung)} \\
  \text{end if}
\]

Das Parametertripel \((\gamma, \nu_1, \nu_2)\) ist kennzeichnend für das Mehrgitterverfahren: Mit \(\nu_1\) und \(\nu_2\) wird die Anzahl der Vor- beziehungsweise Nachlättungsschritte bezeichnet, der Parameter \(\gamma\) steht für die Anzahl der inneren Iterationsschritte zur Lösung der Grobgitterkorrektur. Typischerweise sind nur der sogenannte V-Zyklus (\(\gamma = 1\)) und der W-Zyklus (\(\gamma = 2\)) von Interesse. Modifikationen dieser klassischen Vertreter sind der auch Full Multigrid genannte F-Zyklus und die geschachtelte Iteration. Letztere ist dadurch gekennzeichnet, dass die Mehrgitterlösung auf Level \(l-1\) als Startwert für eine Mehrgitteriteration auf Level \(l\) dient. Durch diese Vorgehensweise gelangt man zu einer Verbesserung der Startlösung. Die hier vorgestellten Mehrgittervarianten sind in Abbildung 4.8 schematisch aufgelistet.

Im Folgenden sollen nun die einzelnen Elemente des Mehrgitterverfahrens etwas ausführlicher dargestellt werden.

Gitterhierarchie

Um überhaupt von mehreren Gittern sprechen zu können, müssen diese zunächst formal eingeführt werden. Unter einer Gitterhierarchie der Tiefe \(L\) versteht man eine Menge

\[\{T_0, T_1, \ldots, T_L\}\]
von zulässigen Triangulierungen des Gebietes $\Omega$, die ineinander enthalten sind:

$$T_0 \subset T_1 \subset \ldots \subset T_L$$


**Vor- und Nachglättung**

Als Glätter kommen prinzipiell alle in diesem Abschnitt besprochenen Iterationsverfahren in Frage. Die Aufgabe eines Glätters ist dabei nicht in erster Linie die Reduktion des Fehlers, sondern vielmehr die Reduktion der kurzwelligen Fehleranteile. Diese "Glättung" hat zur Folge, dass der Fehler auf dem größeren Gitter gut
darstellbar ist. Formal gesprochen besitzt eine Iteration $S$ die Glättungseigenschaft, wenn die Bedingung

$$ (4.78) \quad \| A_t S^p \| \leq \eta(\nu) \cdot \| A_t \| $$

erfüllt ist für eine vom Gitter $l$ unabhängige Funktion mit

$$ (4.79) \quad \lim_{\nu \to \infty} \eta(\nu) = 0. $$


**Restriktion und Prolongation**

Die Transferoperatoren, die für die Übertragung der Funktionsdarstellungen zwischen den verschiedenen Gittern verantwortlich sind, werden Restriktion und Prolongation genannt. Die Restriktion $R_t^{-1}$ transferiert die Werte des Gitters $l$ auf das größere Gitter $l-1$. Die Prolongation $P_t$ dagegen interpoliert aus den Werten des groben Gitters $l-1$ die Werte des feinen Gitters $l$.

In dieser Arbeit wird die kanonische Prolongation verwendet, die sich allein aus den Koordinaten der Gitterpunkte ergibt. Es bezeichne $J_l$ die Abbildung, die einen Koeffizientenvektor $y_l = (y_{l,1}, \ldots, y_{l,N})$ in eine Linearkombination der Ansatzfunktionen $\varphi_{co}(x)$ überführt:

$$ J_l(y_l) = \sum_{co} \varphi_{co} y_{l,co}. $$

Dann ist die kanonische Prolongation als

$$ (4.80) \quad P_{l-1} = J^{-1}_l J_{l-1} $$

definiert. Die kanonische Restriktion

$$ (4.81) \quad R_t = (P_{l-1})^\dagger $$

ergibt sich schließlich als Adjungierte der kanonischen Prolongation.
Hierarchie der Gleichungssysteme

Durch die Hierarchie der Gitter entsteht ebenso eine Hierarchie der Gleichungssysteme

\[(4.82) \quad A_l y_l = b_l \quad \text{für } 0 \leq l \leq L.\]

Die Matrix \( A_l \) kann dabei auf jedem Level auf zweierlei Weise berechnet werden. Bei Wahl des sogenannten Galerkin-Ansatzes ergibt sich die Matrix durch das Galerkin-Produkt

\[ A_{l-1} = R_{l-1}^{-1} A_l P_{l-1}^l. \]


Konvergenztheorie

An dieser Stelle soll kurz die grundlegende Vorgehensweise für einen Konvergenzbeweis des Mehrgitterverfahrens aufgezeigt werden. Die Iterationsmatrix \( M_l^{ZG} \) einer Zweigitteriteration mit \( \nu_1 = \nu \) Vor- und \( \nu_2 = 0 \) Nachglättungsschritten kann in der Form

\[(4.83) \quad M_l^{ZG} = (A_l^{-1} - PA_l^{-1} R)(A_l S^\nu) \]

notiert werden. Hinreichend für die Konvergenz des Zweigitterverfahrens ist die Beschränkung des Spektralradius der Iterationsmatrix:

\[(4.84) \quad \varrho(M_l^{ZG}) < 1.\]

Beide Faktoren des Produktes in (4.83) können nun getrennt untersucht werden. Die Matrix \( (A_l^{-1} - PA_l^{-1} R) \) des ersten Faktors erfüllt die sogenannte Approximations-eigenschaft, wenn

\[(4.85) \quad \| A_l^{-1} - PA_l^{-1} R \| \leq \frac{C_A}{\| A_l \|}. \]
für eine Konstante $C_A$ unabhängig vom Gitter $l$ gilt.

Erfüllt nun zudem die Iteration $S$ die bereits in (4.78) definierte Glättungseigenschaft, so folgt aus beiden Abschätzungen die Konvergenz des Zweigitterverfahrens. Es bleibt festzuhalten, dass die Approximationseigenschaft (4.85) eine starke Förderung an das zugrundeliegende kontinuierliche Problem darstellt, wohingegen die Glättungseigenschaft (4.78) rein algebraischer Natur ist.

### 4.6.5 Krylovraum-Verfahren

Eine weitere Klasse der iterativen linearen Gleichungssystemlöser stellen die Krylovraum-Verfahren dar, die auf einem gänzlich anderen Konstruktionsprinzip beruhen. Als Grundidee wird die Suche nach einer in geeignetem Sinne optimalen Lösung $y^i$ aus dem Krylovraum $y^{(0)} + \text{span}\{r^{(0)}, Ar^{(0)}, \ldots, A^{i-1}r^{(0)}\}$ verfolgt, die dann als $i$-te Iterierte dient. Einen guten Überblick zu diesem Thema kann das Buch von Barrett et al. [3] geben, das weniger auf Aspekte der theoretischen Herleitung als vielmehr auf Details der Implementierung eingeht.

Das erste und grundlegende Verfahren dieser Klasse ist das $cg$-Verfahren von Hestenes und Stiefel [38]. Auch wenn dieses aufgrund der benötigten Voraussetzungen nicht für die Navier-Stokes-Gleichungen anwendbar ist, soll es hier wegen seiner Einfachheit erläutert werden. Die daraus abgeleiteten Verfahren werden dann in knapper Form besprochen.

Das $cg$-Verfahren ist eine effiziente Methode für symmetrisch positiv definite Gleichungssysteme, bei dem iterativ durch fortgesetzte lokale Minimierung bezüglich gewisser Suchrichtungen eine Näherung an die Lösung bestimmt wird. Im Algorithmus 4.2 wird das verkonditionierte $cg$-Verfahren in Pseudocode-Notation angegeben.

Die Bedeutung der einzelnen Terme in Algorithmus 4.2 ist die folgende: In Suchrichtung $p^{(i)}$ wird die nächste Iterierte $y^{(i)}$ bestimmt. Der Parameter $\alpha_i$ wird dabei so gewählt, dass das Funktional $(y^{(i)} - y)^T A(y^{(i)} - y)$ minimiert wird. Die neue Suchrichtung wird mit Hilfe des Residuums $r^{(i)}$ gebildet. Die spezielle Wahl des Parameters $\beta_i$ sorgt dafür, dass die Suchrichtungen $p^{(i)}$ und damit auch die Residuen $r^{(i)}$ orthogonal zueinander sind. Die Konvergenz des $cg$-Verfahrens ist abhängig von der Konditionszahl der Matrix $A$. Mit Hilfe einer Vorkonditionierung durch eine Näherung $M$ an die Inverse von $A$ kann die Konvergenz des $cg$-Verfahrens beschleunigt werden.
Algorithmus 4.2 Das vorkonditionierte $cg$-Verfahren

$i = 0$

Berechne $r^{(0)} = b - Ay^{(0)}$ für eine Startlösung $y^{(0)}$

repeat

$i = i + 1$

löse $Mz^{(i-1)} = r^{(i-1)}$ (Vorkonditionierung)

$\eta_{i-1} = r^{(i-1)^T} z^{(i-1)}$

if $i = 1$ then

$p^{(i)} = z^{(0)}$

else

$\beta_{i-1} = \eta_{i-1}/\eta_{i-2}$

$p^{(i)} = z^{(i-1)} + \beta_{i-1}p^{(i-1)}$

end if

$q^{(i)} = Ap^{(i)}$

$\alpha_i = \eta_{i-1}/(p^{(i)^T} q^{(i)})$

$y^{(i)} = y^{(i-1)} + \alpha_i p^{(i)}$

$r^{(i)} = r^{(i-1)} - \alpha_i q^{(i)}$

until $r^{(i)}$ erfüllt das Konvergenzkriterium


In die erste Klasse fallen zum Beispiel die BiCG-Methode und das QMR-Verfahren. Die grundlegende Idee der BiCG-Methode ist die Bildung einer zweiten orthogonalen Sequenz

$$ r^{(i)} = r^{(i-1)} - \alpha_i A p^{(i)} \quad \tilde{r}^{(i)} = \tilde{r}^{(i-1)} - \alpha_i A^T \tilde{p}^{(i)} $$

und einer zweiten Sequenz von Suchrichtungen

$$ p^{(i)} = r^{(i-1)} - \beta_{i-1} p^{(i-1)} \quad \tilde{p}^{(i)} = \tilde{r}^{(i-1)} - \beta_{i-1} \tilde{p}^{(i-1)}.$$  

Da das Verfahren keine Minimierungseigenschaft mehr erfüllt, kann es zu einem Abbruch des Verfahrens kommen. Zudem ist oft zu beobachten, dass das Konvergenzverhalten sehr unregelmäßig ist.


Das Zusammenspiel aus Mehrgitterverfahren und BiCG-Stab-Verfahren erweist sich als besonders effektiv. Eine wesentliche Voraussetzung für eine schnelle Konvergenz eines Krylovraum-Verfahrens ist ein geeignetes Vorkonditionierungsverfahren. Das Mehrgitterverfahren als Vorkonditionierung kann an dieser Stelle seine Stärke auspielen. Umgekehrt ist das BiCG-Stab-Verfahren hilfreich, wenn ein reines Mehrgitterverfahren ein schlechtes Konvergenzverhalten aufzeigt: Umso komplexer das zu-
Algorithmus 4.3 Das verkonditionierte BiCG-Stab-Verfahren

\( i = 0 \)

Berechne \( r^{(0)} = b - Ay^{(0)} \) für eine Startlösung \( y^{(0)} \)

Wähle \( \tilde{r} \), z.B. \( \tilde{r} = r^{(0)} \)

\textbf{repeat}

\( i = i + 1 \)

\( \eta_{i-1} = \tilde{r}^T r^{(i-1)} \)

\textbf{if} \( \eta_{i-1} = 0 \) \textbf{then}

Abbruch, da keine Lösung möglich

\textbf{end if}

\textbf{if} \( i = 1 \) \textbf{then}

\( p^{(i)} = r^{(i-1)} \)

\textbf{else}

\( \beta_{i-1} = (\eta_{i-1}/\eta_{i-2})/(\alpha_{i-1}/\omega_{i-1}) \)

\( p^{(i)} = r^{(i-1)} + \beta_{i-1} (p^{(i-1)} - \omega_{i-1} q^{(i-1)}) \)

\textbf{end if}

löse \( M \tilde{p} = p^{(i)} \)

(Verkonditionierung)

\( q^{(i)} = A \tilde{p} \)

\( \alpha_i = \eta_{i-1}/(\tilde{r}^T q^{(i)}) \)

\( s = r^{(i-1)} - \alpha_i q^{(i)} \)

\textbf{if} \( s \) erfüllt das Konvergenzkriterium \textbf{then}

\( y^{(i)} = y^{(i-1)} + \alpha_i \tilde{p} \)

\( r^{(i)} = s \)

beende Iteration

\textbf{end if}

löse \( M \tilde{s} = s \)

(Verkonditionierung)

\( t = A \tilde{s} \)

\( \omega_i = (t^T s)/(t^T t) \)

\( y^{(i)} = y^{(i-1)} + \alpha_i \tilde{p} + \omega_i \tilde{s} \)

\( r^{(i)} = s - \omega_i t \)

\textbf{until} \( r^{(i)} \) erfüllt das Konvergenzkriterium
grundliegende Gleichungssystem ist, umso schwieriger wird es, ein optimales Glättungsverfahren zu finden. Ist die Glättung nicht optimal, so verschlechtert sich die Konvergenz des Mehrgitterverfahrens aufgrund einiger weniger Eigenmoden. Die äußere Iteration mit dem Krylovraum-Verfahren ermöglicht dann, diese ungünstigen Eigenmoden effizient konvergieren zu lassen.

Bei dieser Überlegung drängt sich natürlich die Idee auf, das Zusammenspiel umzudrehen und ein Krylovraum-Verfahren als Glätter für das Mehrgitterverfahren einzusetzen. Diese Vorgehensweise ist jedoch nicht zu empfehlen, da ein Krylovraum-Verfahren in der Regel keine ausgeprägte Glättungseigenschaft aufweist [36].
5 Numerische Ergebnisse


Neben der Frage nach der numerischen Genauigkeit des in dieser Arbeit beschriebenen Verfahrens steht insbesondere ein Vergleich der Eigenschaften unterschiedlicher numerischer Lösungsverfahren für das nichtlineare und das lineare Problem im Mittelpunkt. Als Kennzahl für die Konvergenz des linearen Problems dient die Größe \( \kappa_{10} \), die die mittlere Konvergenz des linearen Lösers innerhalb der ersten zehn iterativen Schritte angibt:

\[
\kappa_{10} = \left( \frac{r_{10}}{r_0} \right)^\frac{1}{10}.
\]

Mit \( r_i \) wird hierbei die \( L^2 \)-Norm des Residuums des linearen Problems nach \( i \) linearen Iterationen bezeichnet. Vollkommen analog hierzu dient die Größe

\[
\chi_{15} = \left( \frac{d_{15}}{d_0} \right)^\frac{1}{15}
\]

mit der \( L^2 \)-Norm \( d_i \) des nichtlinearen Defektes im \( i \)-ten Schritt als Maß für die nichtlineare Konvergenz in den ersten 15 Schritten des nichtlinearen Lösers.

5.1 Kanal mit Beule

Für reibungslose Strömungen beliebiger Machzahl hat sich in den letzten Jahren der sogenannte Kanal mit Beule als Benchmark etabliert. Eine Strömung in einem

Es können nun für verschiedene Machzahlen Vergleichsrechnungen durchgeführt werden. In den Fällen $Ma_{in} = 10^{-9}, 10^{-6}$ und $10^{-3}$ handelt es sich um schwach kompressible Strömungen, die nur mit einem angepassten Lösungsverfahren behandelt werden können. Hier wird deshalb die in dieser Arbeit vorgestellte Druckaufspaltung mit zusätzlicher Stabilisierung zur Anwendung kommen. Eine weitere subsonische Strömung ergibt sich für $Ma_{in} = 0.5$. Daneben ist $Ma_{in} = 0.675$ charakteristisch für eine transsonische und $Ma_{in} = 1.65$ für eine supersonische Strömung. Bei allen im Folgenden betrachteten Fällen stellt sich eine stationäre Lösung ein.

supersonischen Fall sind sie jedoch schlechter als in der Arbeit von Eidelman et al. Dies liegt darin begründet, dass der Schwerpunkt von Bijl’s Arbeit im subsonischen Bereich liegt und für den supersonischen Bereich nur ein einfaches Upwind-Verfahren erster Ordnung implementiert wurde.

Für das Problem Kanal mit Beule wird in dieser Arbeit die stationäre Lösung direk

5.1.1 Inkompressible Strömung

Im Limit $M = 0$ muss sich das Verfahren für die schwach kompressiblen Gleichungen mit den Ergebnissen für eine inkompressible Methode messen lassen. Die inkompressible Methode berechnet die Unbekannten Geschwindigkeit und Druck; die Dichte wird als konstant angenommen.


Im nichtlinearen Lösungsverhalten unterscheiden sich der inkompressible und der kompressible Code kaum. Interessant ist dagegen der Vergleich der Konvergenzgeschwindigkeit des Mehrgitterverfahrens. In Tabelle 5.1 sind die Konvergenzraten aufgelistet, die einen leichten Vorteil des inkompressiblen Verfahrens aufzeigen. Dies ist nicht allzuwirklich, da das inkompressible System pro Knoten eine Unbe-
Abbildung 5.1: Druck am oberen und unteren Rand für $M = 0$ verglichen mit den Ergebnissen eines inkompressiblen Verfahrens

kann weniger aufweisen. Die Daten sind für einen V-Zyklus mit zwei Vor- und zwei Nachglättungsschritten sowie dem ILU$_{\beta}$-Glätter mit $\beta = 0$ angegeben. Die Kontinuitätsgleichung wird mit einem Newtonansatz, die restlichen Gleichungen mit einem Fixpunktansatz linearisiert. Als Upwinding-Strategie kommt das Positive Upwinding zum Einsatz.

<table>
<thead>
<tr>
<th>Level</th>
<th>inkompressibel</th>
<th>kompressibel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026</td>
<td>0.034</td>
</tr>
<tr>
<td>2</td>
<td>0.084</td>
<td>0.140</td>
</tr>
<tr>
<td>3</td>
<td>0.087</td>
<td>0.129</td>
</tr>
<tr>
<td>4</td>
<td>0.102</td>
<td>0.143</td>
</tr>
<tr>
<td>5</td>
<td>0.140</td>
<td>0.181</td>
</tr>
<tr>
<td>6</td>
<td>0.155</td>
<td>0.217</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Lineare Konvergenzrate $\kappa_{10}$ eines $(\gamma, \nu_1, \nu_2)$-Mehrgitterverfahrens gemittelt über 15 nichtlineare Schritte mit einem inkompressiblen und dem kompressiblen Code bei $M = 0$
Abbildung 5.2: Druckisolinen für $M = 0$

Anhand einer weiteren Testrechnung im inkompressiblen Regime kann desweiteren sehr gut demonstriert werden, wie sich die in Abschnitt 4.4.2 besprochene Stabilisierung nach Karimian et al. [46] im Vergleich zur einfachen Stabilisierung nach Raw et al. [94] verhält.

Abbildung 5.3: Druck am oberen und unteren Rand für $M = 0$ bei unterschiedlicher Stabilisierung

In Abbildung 5.3 zeigt sich deutlich, dass die Stabilisierung nach Raw et al. weiterhin ein Oszillieren der Lösung zulässt, wohingegen das Verfahren nach Karimian et

5.1.2 Subsonische Strömung

Bei einer subsonischen Strömung bleibt die Machzahl auf dem ganzen Rechengebiet kleiner als Eins. Es treten dann keine Stöße auf und die Lösung muss somit symmetrisch sein. Aus numerischer Sicht werden bei einer subsonischen Strömung zwei weitere Unterkategorien unterschieden. Im Falle sehr kleiner Machzahlen versagt ein rein kompressibles Verfahren. Die asymptotische Analyse aus Kapitel 2 zeigt auf, dass eine Druckaufspaltung die entstehenden Probleme im Limit verschwindender Machzahl bewältigen kann. Das so modifizierte Gleichungssystem muss dann wie in Abschnitt 4.4.2 beschrieben stabilisiert werden. In diese Kategorie fallen die Beispierechnungen für $Ma_{in} = 10^{-5}$, $Ma_{in} = 10^{-6}$ sowie $Ma_{in} = 10^{-3}$. Bei nicht zu kleinen Machzahlen, wie sie etwa bei $Ma_{in} = 0.5$ gegeben sind, ist hingegen das rein kompressible Verfahren vollkommen ausreichend.

Für die schwach kompressiblen Simulationen wird wie oben erwähnt eine Druckaufspaltung durchgeführt und die Geschwindigkeit im Divergenzterm der Energiegleichung gemäß (4.52) interpoliert, um eine Stabilisierung des Gleichungssystems zu erzielen. Dieses Vorgehen ist zwar ausreichend, um eine Konvergenz des Verfahrens zu erreichen, es ist jedoch im schwach kompressiblen Regime eine weitere Schwierigkeit zu beachten: Bei einer Strömung mit konstanter Dichte am Einströmrand, das heißt dimensionslos $\rho = 1$, ist die Dichte im gesamten Gebiet nahezu konstant. Die Schwankungen in der Dichte sind ähnlich wie im Druck, also in der Größenordnung $O(M^2)$. Die asymptotische Analyse zeigt jedoch, dass im Gegensatz zum Druck nur die Dichte führende Ordnung - also in diesem Falle der konstante Anteil - einen Einfluss auf die anderen Größen des Gleichungssystems hat. Dies kann zur Folge haben, dass ein numerisch stabiles Verfahren zwar die Geschwindigkeit und den Druck genau berechnet, die Dichte aber physikalisch nicht korrekt wiedergibt, da eine konstante Dichte approximiert wird.

Dieses Phänomen wird in Abbildung 5.4 veranschaulicht. Bei Verwendung des Positiven Upwindings und einer Fixpunklinearisierung sind die Mach isolinien nicht zu unterscheiden von den Ergebnissen einer zweiten Simulation mit Positivem Upwin-
Abbildung 5.4: Unphysikalische und physikalische Approximation der Dichte bei $Ma_{in} = 10^{-6}$

Tabelle 5.2: Lineare Konvergenzrate $\kappa_{10}$ für einen $(\gamma, \nu_1, \nu_2)$-Mehrgitterzyklus gemittelt über 15 nichtlineare Schritte bei Regulärem Upwinding und $Ma_{in} = 10^{-3}$.

Diese Probleme werden bei Wahl des Positiven Upwindings umgangen. Wie aus Tabelle 5.3 zu entnehmen, ist die Mehrgitterkonvergenz insbesondere für die Variante

<table>
<thead>
<tr>
<th>Level</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1,1,1)</td>
<td>(1,2,2)</td>
<td>(2,2,2)</td>
<td>(1,3,3)</td>
<td>(1,1,1)</td>
<td>(1,2,2)</td>
</tr>
<tr>
<td>1</td>
<td>0.037</td>
<td>0.035</td>
<td>0.035</td>
<td>0.035</td>
<td>0.010</td>
<td>0.007</td>
</tr>
<tr>
<td>2</td>
<td>0.183</td>
<td>0.140</td>
<td>0.139</td>
<td>0.113</td>
<td>0.100</td>
<td>0.010</td>
</tr>
<tr>
<td>3</td>
<td>0.178</td>
<td>0.129</td>
<td>0.086</td>
<td>0.089</td>
<td>0.045</td>
<td>0.008</td>
</tr>
<tr>
<td>4</td>
<td>0.220</td>
<td>0.143</td>
<td>0.136</td>
<td>0.124</td>
<td>0.083</td>
<td>0.020</td>
</tr>
<tr>
<td>5</td>
<td>0.282</td>
<td>0.181</td>
<td>0.179</td>
<td>0.201</td>
<td>0.115</td>
<td>0.048</td>
</tr>
<tr>
<td>6</td>
<td>0.378</td>
<td>0.217</td>
<td>0.206</td>
<td>0.262</td>
<td>0.211</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Tabelle 5.3: Lineare Konvergenzrate $\kappa_{10}$ für einen $(\gamma, \nu_1, \nu_2)$-Mehrgitterzyklus gemittelt über 15 nichtlineare Schritte bei Positivem Upwinding und $Ma_{in} = 10^{-3}$
V-Zyklus mit zwei Vor- und Nachglättungsschritten sehr gut. Die Verwendung eines W-Zyklus ist nur minimal besser, sodass sich der Mehraufwand nicht lohnt. Das mit Mehrgittern konditionierte BiCG-Stab-Verfahren zeigt noch bessere lineare Konvergenzraten, allerdings ist zu beachten, dass natürlich der Rechenaufwand größer ist. Als Glätter dient weiterhin ILU$\beta$ mit $\beta = 0$. Auf eine Untersuchung des Parameters $\beta$ kann aufgrund der sehr guten linearen Konvergenzraten getrost verzichtet werden. Die letzte Spalte zeigt zum Vergleich das BiCG-Stab-Verfahren mit einer ILU-Vorkonditionierung. Es ist deutlich zu sehen, dass durch die Vorkonditionierung mit dem Mehrgitterverfahren eine erhebliche Konvergenzberechnung im Vergleich zur ILU-Vorkonditionierung zu erzielen ist.

Sowohl die linearen als auch die nichtlinearen Konvergenzraten sind nahezu identisch bei den Testrechnungen für $M_{inf} = 10^{-9}, 10^{-6}, 10^{-3}$ und 0.1. Die Abbildung 5.5 belegt dies eindrucksvoll für die linearen Konvergenzraten $\kappa_{10}$ eines V-Zyklus mit zwei Vor- und Nachglättungsschritten. In der untersten Zeile sind zudem die gemittelten nichtlinearen Konvergenzraten $\chi_{15}$ angegeben, die sich bei allen vier Testrechnungen nur marginal unterscheiden.

Abbildung 5.5: Konvergenzraten für einen (1, 2, 2)-Mehrgitterzyklus bei unterschiedlichen Machzahlen
Der letzte subsonische Testfall beim Kanal mit Beule ergibt sich für die Machzahl \( M_{ain} = 0.5 \) am Einströmrand. Das System ist so weit vom schwach kompressiblen Limit entfernt, dass keine Druckaufspaltung und damit auch keine Stabilisierung mehr notwendig ist. Die wie auch in den anderen subsonischen Testfällen symmetrische Lösung ist anhand der Machisolinen in Abbildung 5.6 dargestellt.

Abbildung 5.6: Machisolinen für \( M_{ain} = 0.5 \)

Eine etwas genauere Betrachtung der Qualität der Lösung erzielt man durch Vergleich der Machzahlen am unteren und am oberen Rand des Kanals mit anderen Benchmarkrechnungen in der Literatur.

Abbildung 5.7: Machzahl am oberen und unteren Rand für \( M_{ain} = 0.5 \)
Es zeigt sich eine gute Übereinstimmung mit den Arbeiten von Eidelman et al.,
Karimian et al. und Darbandi et al., lediglich die Berechnungen von Bijl weisen
eine größere maximale Machzahl am unteren Rand auf. Man könnte eine geringere
numerische Diffusion bei Bijl annehmen. Allerdings wurde die Lösung dort auf einem
uniformen Gitter mit etwa 4000 Knoten gerechnet, die in Abbildung 5.7 dargestellten
Machzahlen jedoch auf einem uniformen Gitter mit knapp 50000 Knoten, sodass man
eigentlich von einer besser auskonvergierten Lösung ausgehen kann.

Interessant ist es festzustellen, dass das Weglassen der Druckaufspaltung und der
Stabilisierung zu einem deutlich unterschiedlichen Lösungsverhalten im Vergleich
to den vorherigen Testrechnungen führt. Konvergierte im schwach kompressiblen
Regime nur die Fixpunktitration, so kann bei einer Machzahl von $Ma_{in} = 0.5$ die
volle Newtonlinearisierung zum Einsatz kommen. Ein weiterer gravierender Unter-
schied ergibt sich bei der Wahl der Upwind-Strategie. Das Positive Upwinding führt
nun zu einem Divergieren des Lösungsprozesses, wohingegen mit LPS und REG gute
Resultate erzielt werden können. Beide Strategien sind nahezu gleichwertig, weshalb
im Folgenden immer nur die Ergebnisse für das Reguläre Upwinding angegeben
werden. Parallelen ergeben sich lediglich bei der Wahl des Glatters im Mehrgitter-
verfahren: Auch hier kann nur mit ILU $\beta$ eine Konvergenz der linearen Iteration
herbeigeführt werden, alle anderen in dieser Arbeit beschriebenen Glätter sind zur
Problemstellung nicht adäquat.

<table>
<thead>
<tr>
<th>Level</th>
<th>(1,1,1)</th>
<th>(1,2,2)</th>
<th>(2,2,2)</th>
<th>(1,3,3)</th>
<th>(1,1,1)</th>
<th>(1,2,2)</th>
<th>(1,3,3)</th>
<th>(\beta = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.054</td>
<td>0.039</td>
<td>0.039</td>
<td>0.035</td>
<td>0.011</td>
<td>0.007</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>2</td>
<td>0.415</td>
<td>0.162</td>
<td>0.162</td>
<td>0.078</td>
<td>0.149</td>
<td>0.020</td>
<td>0.003</td>
<td>0.005</td>
</tr>
<tr>
<td>3</td>
<td>0.578</td>
<td>0.341</td>
<td>0.338</td>
<td>0.196</td>
<td>0.321</td>
<td>0.091</td>
<td>0.028</td>
<td>0.030</td>
</tr>
<tr>
<td>4</td>
<td>0.716</td>
<td>0.562</td>
<td>0.562</td>
<td>0.465</td>
<td>0.608</td>
<td>0.361</td>
<td>0.164</td>
<td>0.199</td>
</tr>
<tr>
<td>5</td>
<td>0.918</td>
<td>0.819</td>
<td>0.822</td>
<td>0.758</td>
<td>0.719</td>
<td>0.605</td>
<td>0.463</td>
<td>0.472</td>
</tr>
<tr>
<td>6</td>
<td>0.923</td>
<td>0.880</td>
<td>0.880</td>
<td>0.880</td>
<td>0.904</td>
<td>0.684</td>
<td>0.671</td>
<td>0.577</td>
</tr>
</tbody>
</table>

Tabelle 5.4: Lineare Konvergenzrate $\kappa_{10}$ für einen \((\gamma, \nu_1, \nu_2)\)-Mehrgitterzyklus ge-
mittelt über 15 nichtlineare Schritte bei Regulärem Upwinding und
$Ma_{in} = 0.5$

Die in Tabelle 5.4 angegebenen linearen Konvergenzraten sind deutlich schlechter als
im schwach kompressiblen Regime und steigen auf den feineren Gittern sprunghaft

Mit Hilfe der BiCG-Stab-Iteration kann dieses Konvergenzverhalten auch nur in geringem Maße verbessert werden. Die besten Ergebnisse werden bei einem V-Zyklus mit drei Vor- und Nachglättungsschritten erzielt. Allerdings ist die Konvergenzrate nur auf den groben Gittern erheblich verringert; auf dem feinsten Gitter nähert sich diese den Werten der anderen Beispielrechnungen an. Eine weitere Verbesserung der Konvergenz kann durch Wahl des Parameters $\beta$ des ILU-$\beta$-Glätters erzielt werden. In der letzten Spalte der Tabelle 5.4 ist die lineare Konvergenzrate eines $(1, 3, 3)$-Mehrgitterzyklus für $\beta = 0.1$ angegeben. Diese ist im Vergleich zu der in der vorletzten Spalte dokumentierten Reduzierung mit $\beta = 0$ um ein Zehntel kleiner. Größere Werte für $\beta$ liefern wieder schlechtere Resultate, ebenso wie die Einführung einer Dämpfung gemäß (4.71).

### 5.1.3 Transsonische Strömung

Obwohl das eigentliche Interesse dieser Arbeit auf den schwach kompressiblen Strömungen liegt, soll die Qualität der Methode auch für voll kompressible Strömungen aufgezeigt werden. Aus diesem Grunde wird die transsonische Strömung für $Ma_{in} = 0.675$ betrachtet. Bei einer transsonischen Strömung sind Teile des Gebietes subsonisch und andere Teile supersonisch. In diesem Beispiel beschleunigt sich die Strömung über der Beule so stark, dass im letzten Drittel ein kleiner Stoß entsteht.

Abbildung 5.10: Machzahl am oberen und unteren Rand des Kanals mit Beule für \( \text{M}_{\text{in}} = 0.675 \) und unterschiedlichen Upwind-Strategien auf Gitter Level 4 und Level 6


In Abbildung 5.11 ist die Verschlechterung der Konvergenz anhand des logarithmisch aufgetragenen nichtlinearen Defektes der Lösung gut zu erkennen. Neben dem Ver-
Abbildung 5.11: Nichtlineare Konvergenz für den Kanal mit Beule bei \( Ma_{in} = 0.675 \) und unterschiedlichen Upwind-Strategien auf Level 6


<table>
<thead>
<tr>
<th>Level</th>
<th>REG</th>
<th>PAC</th>
<th>Level</th>
<th>REG</th>
<th>PAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.60</td>
<td>0.53</td>
<td>4</td>
<td>0.22</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>0.19</td>
<td>0.47</td>
<td>5</td>
<td>0.32</td>
<td>0.54</td>
</tr>
<tr>
<td>3</td>
<td>0.17</td>
<td>0.57</td>
<td>6</td>
<td>0.42</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Tabelle 5.5: Mittlere nichtlineare Konvergenzrate \( \chi_{15} \) für \( Ma_{in} = 0.675 \) bei unterschiedlichen Upwind-Strategien
Tabelle 5.6: Lineare Konvergenzrate $\kappa_{10}$ für einen $(\gamma, \nu_1, \nu_2)$-Mehrgitterzyklus gemittelt über 15 nichtlineare Schritte bei Regulärem Upwinding und $Ma_{in} = 0.675$

Die linearen Konvergenzraten des Mehrgitterverfahrens können der Tabelle 5.6 entnommen werden. Es zeigt sich wie zu erwarten in etwa dasselbe Bild wie bei der subsonischen Strömung mit $Ma_{in} = 0.5$ am Einströmrand. Auf den feinen Gittern wird die Konvergenz immer schwächer, auch mehrmaliges Glätten hilft wenig. Dieser

Abbildung 5.12: Lineare Konvergenz für den Kanal mit Beule bei $Ma_{in} = 0.675$ mit unterschiedlichen Parametern für das Mehrgitterverfahren
Effekt wird in Abbildung 5.12 noch einmal für das Reguläre Upwinding mit unterschiedlichen Einstellungen des Mehrgitterzyklus graphisch veranschaulicht.

Eine deutliche Verbesserung der linearen Konvergenzrate $\kappa_{10}$ lässt sich erst durch die mit Mehrgitter vor konditionierte BICG-Stab-Iteration erzielen. Die entsprechende Graphik kann der Abbildung 5.13 entnommen werden.


5.1.4 Supersonische Strömung

Der Benchmark einer supersonischen Strömung ergibt sich für $Ma_{in} = 1.65$. Ein Schock entsteht am vorderen Ende der Beule und wird an der oberen Wand reflektiert. Am anderen Ende der Beule entsteht ein zweiter Stoß, der sich im Kanal hinter der Beule mit dem reflektierten Schock kreuzt. Für die supersonischen Berechnungen wurde der Kanal um eine Einheit verlängert, damit die reflektierten Stöße zu sehen sind.

Um die Genauigkeit des Verfahrens zu verifizieren, kann der Winkel des ersten Schocks sowie die Machzahl hinter dem Stoß exakt berechnet werden. Die nun folgenden kurzen Ausführungen entstammen dem Buch von Anderson [4].

Die kreisförmige Beule mit einer Höhe von 4% der Kanalhöhe und einer Länge von 1 entspricht einem Hindernis, das im Winkel von $\theta = 9.15^\circ$ angestellt ist. Den physikalischen Zusammenhang zum Winkel $\beta$ des Schocks stellt die Formel

\begin{equation}
\tan \theta = 2 \cot \beta \cdot \frac{Ma_{in}^2 \sin^2 \beta - 1}{Ma_{in}^2 (\gamma + \cos 2\beta) + 2}
\end{equation}

her, in der die Strömung durch die Machzahl $Ma_{in}$ und den adiabatischen Koeffizienten $\gamma$ gegeben ist. Mit Hilfe der Formel (5.1) errechnet sich der Winkel des ersten Schocks zu $47.76^\circ$. Zur Berechnung der Machzahl hinter dem Schock wird die Machzahl normal zum Schock benötigt:

$$\tilde{Ma}_{in} = Ma_{in} \sin \beta.$$
Abb Abbildung 5.13: Lineare Konvergenz für den Kanal mit Beule bei \( Ma_{in} = 0.675 \) mit unterschiedlichen Parametern für das BiCG-Stab-Verfahren.

Abb Abbildung 5.14: Lineare Konvergenz für den Kanal mit Beule bei \( Ma_{in} = 0.675 \) mit unterschiedlichen Upwind-Strategien und Lösern.
Mit der Größe erhält man die Machzahl normal zum Schock hinter dem Stoß:

\[
\widetilde{M}_{\text{out}}^2 = \frac{1 + \frac{\gamma - 1}{2} \cdot \widetilde{M}_{\text{in}}^2}{\gamma \cdot \widetilde{M}_{\text{in}}^2 - \frac{\gamma - 1}{2}^2}.
\]

(5.2)

Die gesuchte Machzahl \( \widetilde{M}_{\text{out}} \) hinter dem ersten Stoß ist dann durch die Formel

\[
\widetilde{M}_{\text{out}} = \frac{1}{\sin(\beta - \theta)} \widetilde{M}_{\text{out}}
\]

gegeben. Mit den in diesem Benchmark vorliegenden Größen ergibt sich somit die Machzahl \( \widetilde{M}_{\text{out}} = 1.33 \). Die Berechnung des zweiten Stoßes kann analog erfolgen.


Die nun diskutierten Rechnungen wurden auf einem sechs mal uniform verfeinerten Gitter mit 66177 Knoten auf einem Prozessor durchgeführt. Zunächst zeigt sich wie im Testfall \( \widetilde{M}_{\text{in}} = 0.675 \) die höhere Genauigkeit des Verfahrens bei Anwendung des PAC-Upwindings (4.50) für die Dichte. In den Abbildungen 5.15 und 5.16 ist die Dichte geplottet mit und ohne Anwendung der PAC-Strategie. Es ist deutlich zu sehen, dass das numerische Verfahren im ersten Fall erheblich weniger Diffusion erzeugt.
Abbildung 5.15: Dichte mit PAC-Upwinding

Abbildung 5.16: Dichte mit Regulärem Upwinding


Eine Betrachtung der nichtlinearen und linearen Konvergenz bringt an dieser Stelle keine neuen Aufschlüsse. Im Wesentlichen gelten dieselben Ergebnisse wie im transsonischen Fall: Das PAC-Upwinding führt zu einer Verschlechterung der nichtlinearen Konvergenz. Die lineare Konvergenz des Mehrgitterverfahrens sollte durch eine Einbettung in die BiCG-Stab-Iteration und durch Verwendung von drei Vor-
Abbildung 5.17: Machzahl am oberen und unteren Rand des Kanals mit Beule für $Ma_{in} = 1.65$ und unterschiedlichen Upwind-Strategien

und Nachglättungsschritten beschleunigt werden. Durch Modifikation des Parameters $\beta$ kann die Glättungseigenschaft des ILU$_{\beta}$-Verfahrens verbessert werden. Es konnte allerdings keine allgemeine Regel für alle Rechnungen gefunden werden. Für die supersonische Strömung stellt die Wahl von $\beta = -0.4$ ein Optimum dar.


Auch für diesen Fall soll die Machzahl am oberen und unteren Rand des Kanals geplottet werden. Es findet sich eine sehr genaue Wiedergabe der Machzahl hinter dem ersten Schock sowie des Winkels. Ebenso ist der zweite Stoß in sich konsistent berechnet: Die Machzahl vor dem Stoß ist 1.94 und hinter dem Stoß 1.613, was in sehr guter Übereinstimmung mit den theoretischen Werten aus Tabelle 5.7 steht.
Abbildung 5.18: Adaptiv verfeinertes Gitter und Machisolinen für $Ma_{in} = 1.65$ bei Verwendung des PAC-Upwinding-Verfahrens

Abbildung 5.19: Machzahl am oberen und unteren Rand des Kanals mit Beule für $Ma_{in} = 1.65$ bei adaptiver Gitterverfeinerung und PAC-Upwinding
5.1.5 Schwach kompressible Strömung in drei Raumdimensionen


Betrachtet man einen vertikalen Schnitt durch das Gebiet, so sollte die dreidimensionale Lösung mit der entsprechenden Lösung einer zweidimensionalen Berechnung vergleichbar sein. Dies wird in Abbildung 5.20 anhand der Machisolinien für einen senkrechten Schnitt in der Mitte des Gebietes dargestellt. Die Machzahl am Einströmrand ist dabei \(Ma_{in} = 0.00845\).

Abbildung 5.20: Machisolinien für \(Ma_{in} = 0.00845\)
Um die Möglichkeiten der in dieser Arbeit vorgestellten Methode aufzuzeigen, sollen nun für eine Machzahl von $M_{\text{in}} = \begin{small}10^{-6}\end{small}$ am Einströmnand die Ergebnisse etwas genauer betrachtet werden. Die Analyse des zweidimensionalen Verfahrens legt nahe, eine Newtonlinearisierung für die Kontinuitätsgleichung und eine Fixpunktlarlinearisierung für die restlichen Gleichungen zu verwenden. Ebenso erweist sich in drei Raumdimensionen das Positive Upwinding als einzig konvergente Strategie. Mit Hilfe der Druckaufspaltung mit Stabilisierung der Energiegleichung kann dann die schwach kompressive Lösung berechnet werden.

Das feinste Gitter auf Level 5 enthält etwa 815.000 Knoten, sodass ein Gleichungssystem mit mehr als vier Millionen Unbekannten zu lösen ist. Zur Berechnung der Lösung wurde deshalb ein PC-Cluster mit 40 Prozessoren herangezogen. Das nur aus Hexaedern bestehende zugehörige Gitter auf Level 2 kann ebenso wie die Lastverteilung auf die Prozessoren der Abbildung 5.21 entnommen werden.

Abbildung 5.21: Gitter auf Level 2 und Lastverteilung auf 40 Prozessoren

Die Aufmerksamkeit soll wiederum hauptsächlich auf die linearen Konvergenzraten des Mehrgitterverfahrens gerichtet sein. In Tabelle 5.8 ist der Wert $\kappa_{10}$ für einen reinen V-Zyklus und eine mit dem entsprechenden Mehrgitterverfahren vor konditionierte BiCG-Stab-Iteration angegeben. Wie in den zweidimensionalen Testrechnungen führt nur die Wahl des ILU$_{\beta}$-Glätters zu einer Konvergenz. Die besten Resultate sind zudem für eine ungedämpfte Iteration mit dem Parameter $\beta = 0$ zu erzielen.

Verständlicherweise sind die Konvergenzraten auf dem feinsten Gitter schlechter als im zweidimensionalen Fall. Aufgrund der höheren Raumdimension wird das Problem steifer und auch die Parallelisierung verändert die Eigenschaften des Iterationsverfahrens. Um trotzdem eine gute Konvergenz zu erzielen sollte die Anzahl der Vor- und Nachglättungsschritte auf $\nu_1 = \nu_2 = 3$ erhöht werden. Desweiteren ist die un-
<table>
<thead>
<tr>
<th>Level</th>
<th>Knoten</th>
<th>(1,2,2)</th>
<th>(1,3,3)</th>
<th>(1,2,2)</th>
<th>(1,3,3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>325</td>
<td>0.011</td>
<td>0.006</td>
<td>0.005</td>
<td>0.001</td>
</tr>
<tr>
<td>2</td>
<td>2025</td>
<td>0.187</td>
<td>0.123</td>
<td>0.043</td>
<td>0.033</td>
</tr>
<tr>
<td>3</td>
<td>14161</td>
<td>0.275</td>
<td>0.179</td>
<td>0.118</td>
<td>0.048</td>
</tr>
<tr>
<td>4</td>
<td>105633</td>
<td>0.433</td>
<td>0.334</td>
<td>0.288</td>
<td>0.177</td>
</tr>
<tr>
<td>5</td>
<td>815425</td>
<td>0.613</td>
<td>0.567</td>
<td>0.522</td>
<td>0.392</td>
</tr>
</tbody>
</table>

terschiedliche Problemgröße zu berücksichtigen: Der gesuchte Lösungsvektor enthält auf dem feinsten Gitter in drei Raumdimensionen etwa die zwanzigfache Anzahl an Unbekannten als dem feinsten Gitter im zweidimensionalen Fall. Nicholsdestotrotz ist anders als erwünscht keine gitterunabhängige Konvergenz zu erkennen.

Abbildung 5.22: Geschwindigkeit in $x$-Richtung und Machisolinien für $Ma_{in} = 10^{-6}$
Abbildung 5.23: Gitter auf Level 1 und Machisolinien beim Kanal mit Rampe für $M_{in} = 2.5$

5.2 Kanal mit Rampe

Ein ähnliches Problem wie der Kanal mit Beule stellt der Kanal mit Rampe dar. Es ist wiederum ein supersonisches Problem bei einer Machzahl von $M_{in} = 2.5$ am Einströmrand. Der Kanal hat eine Länge von 1.3 und eine Höhe von 1.2; die vordere Ecke der schrägen Rampe am unteren Rand ist 0.3 Einheiten vom Einströmrand entfernt. Die Rampe ist im Winkel von 21.57° angestellt. Es ergibt sich eine stationäre Lösung mit einem Stoß, der nach der Formel (5.1) im Winkel von 45° zur Strömung liegt. Die Machzahl hinter dem Stoß beträgt $M_{out} = 1.57$ bei exakter Berechnung gemäß (5.3).


Das verwendete uniforme Gitter ist in Abbildung 5.23 auf Level 1 abgebildet. Zur Berechnung der stationären Lösung wurden beginnend auf dem grössten Gitter bis zum fünf Mal verfeinerten Gitter mit 20769 Knoten jeweils vier Zeitschritte iteriert. Zur Zeitdiskretisierung wurde das Backward Euler Verfahren herangezogen mit einer variablen Zeitschrittsteuerung: Um die Iteration zu stabilisieren, wurde zu Anfang auf den groben Gittern mit einer mittleren Schrittweite von $\Delta t = 0.1$ begonnen, ab Level 2 wurden schließlich alle weiteren Schritte mit $\Delta t = 1.0$ berechnet.
Abbildung 5.24: Machzahl entlang der horizontalen Schnitten durch den Kanal mit Rampe bei \( y = 0.5 \), \( y = 0.75 \) und \( y = 1.0 \) für \( Ma_{in} = 2.5 \)

Die Einführung des zusätzlichen Zeittermes ist mit einer Stärkung der Diagonalen verbunden. Diese wirkt sich umso stärker aus, umso kleiner der Zeitschritt ist. Durch die geänderten Matrixeigenschaften wird das Lösungsverhalten des linearen Mehrgitterzyklus spürbar besser. Für die hier vorgestellte Simulation wurde ein V-Zyklus mit zwei Vor- und Nachglättungsschritten eingesetzt, der wie in den meisten vorherigen Rechnungen als Glätter ILU_β mit \( β = 0 \) verwendet. Um pro nichtlinearem Schritt eine Reduktion des Defektes um 0.1 in jeder Komponente des Gleichungssystems zu erzielen, sind maximal zwei lineare Mehrgitteriterationen ausreichend.

Die Machisolinien der stationären Lösung sind in der Abbildung 5.23 zu entnehmen. Es ist daraus ersichtlich, dass der 45°-Winkel des Stoßes korrekt reproduziert wird. Zur genaueren Verifizierung der Lösung wird in Abbildung 5.24 die Machzahl entlang von drei horizontalen Schnitten bei \( y = 0.5 \), \( y = 0.75 \) und \( y = 1.0 \) aufgetragen. Obwohl die Schnitte den Stoß schräg schneiden, ist dieser fein aufgelöst. Hinter dem Stoß wird die exakte Machzahl, die durch die untere durchgezogene Linie markiert ist, ebenfalls gut wiedergegeben.
5.3 Backstep


Abbildung 5.25: Grobes Gitter des Backward Facing Step


Für die hier vorgestellte schwach kompressible Simulation wird $Re = 500$ gewählt mit einer Machzahl am Einströmrand von $Ma_{in} = 0.000845$. Am vorderen Ende des Kanals wird das Dichteprofil

$$
\rho = \begin{cases} 
1 & \text{für } 0 \leq y < 0.125 \\
2 & \text{für } 0.125 \leq y < 0.375 \\
3 & \text{für } 0.375 \leq y \leq 0.5 
\end{cases}
$$
Abbildung 5.26: Dichteverteilung des Backward Facing Step bei $t = 35.4$ mit verschiedenen Zeitschrittverfahren

vorgegeben. Die angegebenen Reynolds- und Machzahlen am Einströmrand errechnen sich aus den folgenden Referenzgrößen:

$$l_\infty = 1, u_\infty = 1, p_\infty = 1, \rho_\infty = 1000000, \nu = 0.002.$$ 

Die Simulation erfolgt auf einem sechs Mal verfeinerten Gitter mit insgesamt 107.265 Knoten. Zum Auffinden einer guten Startlösung wurde beginnend auf Level 4 mit kleineren Zeitschritten iteriert, um schließlich auf dem feinen Level 6 mit einer festen Zeitschrittweite von $\Delta t = 0.3$ zu operieren. Dies wurde so gewählt, um verschiedene Zeitschrittverfahren miteinander vergleichen zu können. Eine Diskussion für die Simulationsergebnisse mit Backward Euler, DIRK(2) und Fractional Step soll nun im Folgenden durchgeführt werden.

Das mit Abstand schnellste Verfahren ist natürlich Backward Euler, da in jedem Zeitschritt die Systemmatrix nur einmal berechnet werden muss, wohingegen bei DIRK(2) zwei und bei Fractional Step sogar drei Assemblierungen zu berücksichtigen sind. Betrachtet man die Lösung rein qualitativ, so zeigt sich aber sofort, dass Backward Euler wie erwartet aufgrund der niedrigeren Ordnung der Zeitapproximation mehr numerische Diffusion erzeugt als die beiden anderen Verfahren. Aus Abbildung 5.26 ist gut zu entnehmen, dass insbesondere die Dichte in den Rezirkulationszonen verschmärt wird. Die Lösungen mit DIRK(2) und Fractional Step sind dagegen in etwa vergleichbar mit minimalen Vorteilen bei Fractional Step.
<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Zeit</th>
<th>( \kappa )</th>
<th># lin</th>
<th># nlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>8.7</td>
<td>0.108</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>23.4</td>
<td>0.134</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>38.4</td>
<td>0.135</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>DIRK(2)</td>
<td>8.7</td>
<td>0.113</td>
<td>28</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>23.4</td>
<td>0.105</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>38.4</td>
<td>0.119</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>FS</td>
<td>8.7</td>
<td>0.109</td>
<td>43</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>23.4</td>
<td>0.073</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>38.4</td>
<td>0.096</td>
<td>27</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabelle 5.9: Lineare Konvergenzrate \( \kappa \), sowie die Anzahl der linearen und nichtlinearen Schritte in einigen exemplarischen Zeitschritten für unterschiedliche Zeitschrittverfahren bei \( \Delta t = 0.3 \)

In Tabelle 5.9 sind einige Zeitschritte exemplarisch angegeben, die einen Vergleich der Effizienz der verschiedenen Verfahren ermöglichen. Zunächst ist die lineare Konvergenzrate angegeben, wobei in allen Fällen ein mit einem Mehrgitterzyklus verkonditioniertes BiCG-Stab-Verfahren verwendet wurde. Als Glätter dient \( \text{ILU}_\beta \) mit \( \beta = 0 \) in einem V-Zyklus mit zwei Vor- und Nachglättungsschritten. Diese lineare Konvergenzrate ist sehr gut und unterschiedet über alle Iterationen hinweg nur minimal. Besonders interessant ist die Anzahl der benötigten nichtlinearen Schritte, da diese den größten Einfluss auf die Effizienz der Verfahren hat. Fractional Step benötigt zu Anfang der Simulation drei nichtlineare Iterationen pro Teilzeitschritt, zusammen also neun im gesamten Zeitschritt. In dieser Phase ist Fractional Step im Vergleich zu DIRK(2) ineffizient, da bei diesem Verfahren nur jeweils drei, zusammen also sechs nichtlineare Iterationen benötigt werden. Dies hat natürlich direkten Einfluss auf die Anzahl der linearen Iterationen, was sich in der vorletzten Spalte der Tabelle widerspiegelt. Erst zu einem späteren Zeitpunkt der Simulation reduziert sich bei Fractional Step die Anzahl der nichtlinearen Iterationen pro Teilzeitschritt, sodass in Summe die Anzahl mit DIRK(2) übereinstimmt. Beide Verfahren zeigen dann dieselben Effizienzen. Ganz anders dagegen bei Backward Euler: Hier werden nur 3-4 nichtlineare Iterationen pro Zeitschritt benötigt, sodass dieses Verfahren den beiden anderen in diesem Punkt weit überlegen ist. Es darf jedoch nicht vernachlässigt werden, dass wie schon erwähnt die numerische Diffusion die Ergebnisse verfälscht.
Wiegt man diese unterschiedlichen Eigenschaften gegeneinander auf, so zeichnet sich DIRK(2) für dieses Problem als robustes Zeitschrittverfahren aus, das sowohl die Anforderungen der Genauigkeit als auch der Effizienz erfüllt. Backward Euler ist zwar sehr schnell, liefert aber ungenaue Ergebnisse, sodass es wohl nur für erste "quick and dirty" Näherungen dienen kann. Der Einsatz von Fractional Step lohnt sich eher nicht, da die Effizienz schlechter ist. Zudem hat es sich in anderen Testrechnungen als nicht so stabil wie das DIRK(2)-Verfahren gezeigt.

Abbildung 5.27: Geschwindigkeit und Dichte zu den Zeitpunkten \( t = 12.7, t = 15.1, t = 18.1, t = 21.7, t = 30.1, t = 35.4 \) und \( t = 146.7 \)
6 Zusammenfassung und Ausblick

Teile von deinem geistigen Wesen denen,  
die mit dir auf dem Weg sind,  
soviel mit, als du kannst,  
und wimm als etwas Kostbares hin,  
was dir von ihnen zurückkommt.  
Albert Schweitzer

Ziel dieser Arbeit war die Entwicklung eines Mehrgitterverfahrens für die Euler- und Navier-Stokes-Gleichungen auf unstrukturierten Gittern. Das besondere Augenmerk lag dabei auf der Berücksichtigung des schwach kompressiblen Grenzfalles. Für diesen wurde zunächst eine vollständige asymptotische Analyse angegeben, die in der Lage ist, die Interaktion der Strömung mit langwelliger Akustik zu beschreiben. Mit Hilfe der Einführung mehrerer Druckvariablen lässt sich der Grenzübergang $M \to 0$ zu den inkompressiblen Gleichungen bewältigen.


Die vorgestellte Diskretisierung wurde auch an transsonischen und supersonischen kompressiblen reibungsfreien Strömungen getestet, da hier ein guter Vergleich zu Ergebnissen aus der Literatur möglich ist. Es zeigte sich, dass durch Einführung einer speziellen Upwind-Diskretisierung für die Dichte in der Strömung vorhandene Stöße scharf abgebildet werden können. Die Vergleichsrechnungen konnten dabei

Literaturverzeichnis


