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Zusammenfassung

Bose-Einstein condensation in a robust microtrap —
the combination of wire traps and atom chips

In der hier vorgelegten Arbeit wird die erfolgreiche Erzeugung eines Bose-
Einstein Kondensats von Rubidium Atomen in einer magnetischen Mikrofalle
beschrieben. Die verwendeten Mikrofallen, sogenanne Drahtfallen, werden
durch einfache Driahte und homogene Magnetfelder erzeugt. Diese Draht-
fallen erlauben es Magnetfallen zu erzeugen, die sich besonders gut zur Bose-
Einstein Kondensation eignen. Desweiteren konnen sehr komplexe Fallenge-
ometrien erzeugt werden, die die magnetische manipulation erméglichen. Wir
kombinieren makroskopische mit mikroskopischen Drahtfallen. Die mikro-
skopischen Drahtfallen werden durch den sogenannten Atom-chip realisiert
(vergleichbar mit einer Leiterplatte aus der Elektronik), die makroskopischen
Drahtfallen werden durch eine massive Kupferstruktur erzeugt. Die Leiter-
strukturen auf dem Atom-chip realisieren in Zukunft die eigentlichen Ex-
perimente. Diese Kombination erlaubte es uns, einen Kondensationszyklus
in der makroskopischen Drahtfalle zu entwickeln, der unabhangig von den
Strukturen des Atom Chips ist.

Desweiteren werden erste Experimente mit einem Bose-Einstein Konden-
sat vorgestellt.

Abstract

Bose-Einstein condensation in a robust microtrap —
the combination of wire traps and atom chips

In the presented work, we report about the successful creation of a Rubid-
ium Bose-Einstein condensate. We use so called magnetic wire traps, which
are especially simple, as they consist out of a wire and a homogeneous bias
field. These wire traps are especially suited for Bose-Einstein condensation.
Furthermore complex trapping potentials to manipulate a Bose-Einstein con-
densate can be realized. We combine ’large’ and small scale wire traps. The
‘large’ scale is realized with a massive copper structure, while for the small
wire traps we use the so called atom chip. This combination is promising,
because it allowed us to develop a condensation process in the copper struc-
ture, which is independent of the structures on the atom chip, and thus the
exchange of the 'physics’ area.

First experiments with the Bose-Einstein condensate are presented and
discussed in detail.






Introduction

In the beginning of the last century quantum theory was developed. The
development of the new theory had a massive impact, not only onto the view
of the world in a physical sense, but it also effected the daily life view. Over
a relatively short period, quantum physics was well established, due to the
innumerable examples of experimental verifications.

One major discovery (among others) was made in 1924. In this year the
Indian physicist Satyendra Nath Bose established a new way of ’counting’
photons (the Bose statistics) [I]. Einstein realized, that this statistics could
also be applied to atoms [2], 3]. When he studied the new statistics for low
temperatures, the thermodynamical limit gives a wrong result - it seemed,
that below a certain temperature the density decreased. To overcome this
problem, he had to tread the lowest energy term separately, and with this
approach he got the right result. This actually means, that the ground state
is macroscopically populated!

In these early days, there was no way to investigate this new phenomenon
experimentally. It took over seventy years until this new state of matter could
be experimentally realized. The laser had to be developed and laser cool-
ing, starting from slowing atomic beams to the development of the magneto
optical trap, had to be established [4, [5, 6]. In 1997 Steven Chu, Claude
N. Cohen-Tannoudji and William D. Phillips got the Nobel Prize for their
contribution to this field. Further on magnetic traps, to confine atoms had
to be constructed until it was possible to reach temperatures where this phe-
nomenon became experimentally visible [7]. The development of the evapo-
ration technique [8, 9] was the last step which made it possible to increase
the phase space density over the critical value nA35 &~ 1 (n is the particle
density and Ay4p is the de Broglie wave length of the particles). Above this
critical value Bose-Einstein condensation sets in. The macroscopic popula-
tion of the ground state was first observed in 8"Rb [10], followed by *Na and
"Li [T, 12]. Over the years, experiments succeeded in condensing H, He*, K,
Cs and Yb [13] (14, 15, 16, 17, 18, [19].

The condensation process was studied in detail, and the theoretical un-
derstanding was improved. The Bose-Einstein condensate was subsequently
manipulated with magnetic and optical fields, and experiments showing the
matter wave nature were performed. In 2001 Eric Cornell, Carl Wieman and
Wolfgang Ketterle earned the Nobel Price for their achievements in the field
of Bose-FEinstein condensation.

In 1995 an experiment was performed, which used a wire [20, 21] for
trapping a neutral atoms. Then in 1998/99 groups [22] 23| 24] succeeded in
the development of more complex trapping structures, which were remarkable
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simple. These wire traps used just a single wire and a homogeneous bias field
for realizing a magnetic trap. Soon it became clear, that this approach opened
a new door to manipulate atoms. The first experiments were performed with
thermal atoms. Different trapping potentials were realized in order to guide
atoms (see [25] and references therein). This development was followed by the
first creation of a Bose-Einstein condensates in such a magnetic microtrap [26),
27]. The creation of a Bose-Einstein condensate strengthened the position of
wire traps. Since then, several groups work in this field and developed setups
with this new kind of traps.

In the presented work [28, 29], we developed a setup, which combines
large’ and microscopic scale wire traps. This combination consists of a mas-
sive copper structure and the atom chip, which houses small wire structures.
With such a combination we established a robust condensation procedure
in the copper wire, independent of the atom chip. This has the advantage,
that the change of the atom chip, containing wires to realize more complex
experiments, is easy and fast.

The aim of the presented work was the development and the investigation
of magnetic wire traps to establish a Bose-Einstein condensate as well as to
prove the flexibility of the atom chip concept.
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Chapter 1

Bose-Einstein condensation

In this chapter we will summarize the theoretical fundament of Bose-Einstein
condensation in dilute gases. We will derive several basic properties of the
Bose-Einstein condensate, which show its uniqueness and its difference from
an 'ordinary’ thermal gas. These properties can be related to experimentally
observable, and they allow us to detect the state the atoms are in. The
condensation process itself is described as a quantum statistical phase tran-
sition [I} 2], B], where we find a macroscopic population of the ground state.
This occurs below a certain critical temperature T. That the atoms popu-
late the ground state macroscopically is a result of the bosonic character of
the sample. Fermions in contrast do not show such behavior. In the following
chapter we will mainly follow the derivation given in [30] and [31].

1.1 Basic considerations

Before we are going to derive basic quantities of a Bose-Einstein condensate
and the condensation process itself, we want to consider the case, where we
have already a macroscopic population of the ground state (a Bose-Einstein
condensate).

We start this discussion by assuming that the atoms do not interact and
that the sample is confined in a harmonic trap of the form

V() = (e + w9 + 0.5, (11)

where m is the atomic mass and w;—,, ., are the oscillator frequencies. This
potential is relevant since the confining traps used in the experiment can be
safely approximated as harmonic potentials (at least for low temperatures;
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a detailed discussion of the used trapping potentials can be found in
section [3.2.2)). For noninteracting particles the many-body Hamiltonian can
be written as a sum of single-particle Hamiltonians with the eigenvalues

1 1 1
Engngns = (nm + 5) hw, + <ny + 5) fuwy, + <nz + 5) hw, , (1.2)

where {n,,n,n.} are non-negative integers. To obtain the ground state
¢(ry...rn) for N noninteracting bosons confined in a potential of the form of
equation [1.1|, we consider all atoms to be in the lowest single-particle state
(ny = ny, =n, =0), which is ¢(r1...r5) = [ [, @o(r:), where ¢ is

MWhe \ 3/4 m
wo(r) = ( 7ri:> exp [—%(wmx2+wyy2+wzz2) , Whe = (wmwywz)l/?)(l.?))

where wy,, is the geometric average of the trap frequencies. We can write the
density distribution as n(r) = N|po(r)|?. The average size of the Gaussian
distribution of equation [1.3|is

A 1/2
, = . 1.4
h <mwh0> ( )

This quantity we will note as the harmonic oscillator ground state size. Equa-
tion is independent on N and that it is only valid for noninteracting
particles.

Consider the case of a thermal cloud kgT > hwy, and using the classical
Bolzmann distribution ng o exp(—Ve(r)/kpT), where V. is the confining
potential from equation [I.I] With this thermal cloud we get a Gaussian
width of

R = aho(k:BT/hwho)l/2 s (15)

and we find that R is larger than ay,.

This discussion reveals, that when we have a Bose-Einstein condensate,
the atoms will appear on a length scale of a;,, in contrast, thermal atoms will
be distributed on a length scale R. When we calculate the Fourier transform
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of the ground state wave function we have access to the momentum distri-
bution of the trapped atoms. Here we find that the momentum width of a
thermal cloud is again wider than the width of the Bose-Einstein condensate.

Up to now we considered isotropic traps, but in our experiment (and
in most of the others) the trap is cigar-shaped, with an axial oscillator
frequency of w, and a radial oscillator frequency w,=w,=w,. Rewriting
equation [I.3] we get

)\1/4

1 2 2
< (12 4\ 1.6

where 7, = (2 + 2%)Y/2, A = w,/w, (the aspect ratio) and a, = (h/mw, )"/?
denotes the harmonic oscillator length in the yz plane.

If we take the Fourier transform of equation [I.6], we can determine the
momentum distribution of the atoms for the different directions (radial and
longitudinal). The momentum ratio of the different directions is:

(2) /(1) = VA (1.7)

When we switch off the confining potential, the expansion will be an ellipse.
In contrast to this, the distribution for a thermal cloud (here the atoms
are distributed over many eigenstates of higher energy) would be isotropic,
according to the equipartition principle. Here we would find a aspect ratio
of 1. In other words, a thermal cloud does not 'remember’ its confining trap.

1.2 Bose-Einstein condensation at finite tem-
peratures

In the grand-canonical ensemble, the number of atoms at a given tempera-
ture 1" is the sum

1
Engnyn. — w)]—1’

V= 2wl .

N, Ny ,Nz

where 1 is the chemical potential, 8 = (kgT)~' (kp is the Bolzmann
constant) and the expression is the Bose distribution. The total energy is



4 Bose-Einstein condensation
given by

1
E’.na:nynz - ILL)] - 1 ‘

E= Y T (1.9)

N, Ny ,Mz

We can now separate the lowest eigenvalue eggo from the sum and
introduce Ny as the number of atoms in this state. It is now interesting, that
Ny can become macroscopic, when the chemical potential becomes equal to

€000,

3
€000 = ihw , W= (wp+wy+w,)/3 (1.10)
4 — po = ;hw (1.11)

where @ is the arithmetic average of the trap frequencies. Separating out
[1.10] we get from equation [1.8

1
M= . 1.12
’ n, nZ; #£0 eXp[ﬁh(wmnx + Wy Ny =+ wznz)] —1 ( )

With N — oo the discrete level spacing can be neglected and the sum in
equation [1.12 can be rewritten by an integral

NN — / * dngdn,dn,
0~ o exp[fhi(wyng +wyny, +w.n,)] —1°

(1.13)

Equation [1.13| is valid when N is large and kT > hwp,. Integrating
equation leads to

N — Ny = ((3) (’;5?)3 (1.14)

where ((n) is the Riemann ¢ function. From equation the transition
temperature T can be derived, by putting Ny — 0 at the transition, and
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we get

N\ /3
@> = 0.94%wy,N/3. (1.15)

kpTc = ﬁwho<
For equation [1.15] we use the thermodynamical limes N — oo and wy, — 0
(keeping the product Nwy, constant). If we insert equation into

equation [[.14] we get

% _- (%)3 (1.16)

Equation [1.16| means, that for T' < T the particle number in the ground
state rises with the power to the 3, and for 7' = 0 it is 1.

Another approach to the presented results is, to consider the density of
states instead. The number of states is proportional to the volume between
two surfaces of energy € and € + de. When we calculate the density of states,
the volume is determined by the confining potential V (r), and we find [32]

7w(2m 3/2
ple) = %/ Ve = V(r)dr, (1.17)

Vi(e)

where V' (¢) is the reachable volume with the energy ¢. Integrating this for a
box potential gives

oe) = (Qm)mﬁ. (118)

or \ h2

We can in principle derive the same quantities with the density of states
approach as we did with the grand-canonical ensemble. Note here that equa-
tion varies of the form g(¢) = C,e*™!, where « is the dimension of the
problem, which is the case for many situations.

We start with

N =Ny + /OOO dep(e) fO(e), (1.19)
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where f°(¢) is the occupation number of particles in a specific energy level
. Investigating the transition temperature 7>, we can neglect the fractions
of atoms in Ny and just compute the integral in equation m (it maximizes
for u=0). This leads to

Nl/a
[Cal(@)¢ ()]

kTe = (1.20)

where I'(«) is the gamma function and we used the more general form as
stated above. With equation [1.20] we can now derive the transition temper-
ature for different trapping potentials.

Another useful quantity is the phase-space density (PSD). It is defined
as the number of particles in a volume \35,

(1.21)

orh \ ¥/
mk:T) ’

PSD = n)yy | Mg = (

where \yp is the de Broglie wavelength and n = N/V is the atom density.
If we reduce T', Ay becomes larger and the phase-space density increases
(keeping n constant). Combining equation |1.21| with [1.20] for the case o =
3/2 we get the value for the phase transition to a Bose-Einstein condensate
PSD = ((3/2) ~ 2.612.

1.3 Finite particle number

When discussing the condensation process, we also have to include a finite
particle number, as this is the situation we have in the laboratory. To
calculate the properties of a Bose-Einstein condensate assuming a finite
number of particles, we can carry out the sum for a finite number N [33].
Here it turns out that the condensate fraction No(7")/N is smaller than the
prediction in equation [1.16, The effect of a finite particle number was found
to be significant for N < 10* atoms [33]. Carrying out the sum analytically
in equation for the limit of large N [34], one finds a correction to

equation [I.16]

Ny TN\® 3w (TN i
W = 1— (YTC) — —2whOC(3)2/3 (CZTC) N 1 3' (122)
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No/N
(@]
()}

T/Tc

Figure 1.1: Condensate fraction versus temperature: the red curve shows equa-
tion while the green curve represents equation (both for an ideal gas,
N = 1000). The effect of a finite atom number (green curve) is expressed in a
reduced condensate fraction. However, when the atom number is increased, we
find that the green curve approaches the ideal gas calculations.

We see that the correction decreases with N~1/2 to the lowest order and that
it depends on the ratio of W/wy,. The finite atom number thus causes a shift
of the onset of the macroscopic population of the ground state compared
with the thermodynamical limit (see figure , meaning that it reduces the
condensate fraction and as a result it reduces the transition temperature.
The shift can be estimated by setting the left hand side of equation to
zero . The estimate we get is

olc w¢(2)

T = PonC (325 (1.23)

We see that the trap properties enter through the arithmetic and geometric
averages of the oscillation frequencies of the confining trap.

1.4 Interacting atoms - the Gross-Pitaevskii
equation

So far we treated the problem excluding interactions between the atoms.
For a more realistic treatment we have to include the interactions. The
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many-body Hamiltonian for N interacting particles (bosons) confined in an
external potential V() can be written in second quantization as [30]

H = / drii(r) [—QH—2V2+VM(T) U(r) +

%/d'r’dr'\/fﬁ(r)\/fﬁ(r’)‘/(r — )BT (r) | (1.24)

where \Tl(r) and \TJT(T) are the boson field operators, which annihilate or
create a particle at position r and V(r — r’) is the two-body interatomic
potential (compare with equation . The field operators can be written
as (I\J(r) = >, Yaa,, where U, are the single particle wave functions and a,
are the corresponding annihilation operators. They fulfill the commutation
relations

[aa,ag] =00p » |Qa,ap] =0 [afx,ag] =0. (1.25)

From equation [1.24] we can now again derive the relevant quantities, but
for large numbers of N this can be difficult. Therefore, we use a mean
field approach, which was first formulated by Bogoliubov [35]. The main
idea here is to treat the condensate fraction and small perturbations to it like

U(r,t) = ®(r,t) + V'(rt), (1.26)

~

where ®(r,t) = (VU(r,t)) is the expectation value of the field operator (in
the Heisenberg representation). ®(r,t) is a classical field, which is generally
called the wave function of the Bose-Einstein condensate. Writing the time
evolution of the field operator W(r,t) using the Heisenberg equation and the
Hamilton [1.24] simplifies to

zhalll(r, t) = [V, H]

v -
N {_ 5 T Veat(r) + dr' Ut (s, t)

xV(r'—r)

K=

(r’,t)} T(r,1). (1.27)
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The interaction potential in equation [1.27] in general complicated, can be
replaced with a simple form, under the condition of a dilute, cold gas, where
the energies are low. In this case the s-wave scattering length describes
the system completelyﬂ. Under these conditions the interaction potential
V(r —r') can be replaced by

Amh?
Vir—1r")y=go(r'—r) , g= v

— (1.28)

which have the same scattering length a as the real potential. With such an
interaction potential, the Hamiltonian becomes

2m

0 = / dr {_\Tﬁ(r) - V2T (r) + Vet U1 (r) T (r)

+U T BT} - (1.20)

We can now use this Hamiltonian for equation and using [1.26| (neglect-
ing W'(r,t) corrections)

in L a1y = (—’if Vi) + gl (r, t>|2> By, (L30)

ot

This equation is called the Gross-Pitaevskii equation (GP) [37, 3§].

Equation [1.30]is only valid in the dilute gas approximation, which means
that the average density m is small compared to the number of atoms in
a volume |a|®> (a the scattering length). However the condition m|al® < 1
means, that we have a dilute gas, but this does not necessarily imply a
weakly interacting gas. In the interacting case we have to compare different
energy scales with each other. For this it is convenient to derive the ground
state of the system.

We write for the condensate wave function ®(r,t) = ¢(r)exp(—ut/h),
where 1 is the chemical potential and ¢(r) is real and normalized to the total
number of atoms Ny ([ dr¢? = Ny = N). Inserting this into equation m

Lat the considered temperatures only the s-wave scattering contribute to the interaction
potential [36]
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leads to

(= Valr) + 98200 ) 0) = ) (131

Equation [1.31]is of the form of a non-linear Schrodinger equation, where the
non-linear character comes from the mean field term in the equation, which
is proportional to the density of the atoms n(r) = ¢(r). If we set g = 0, we
obtain the known Schrédinger equation for a single particle. If we assume a
spherical trap with trap frequencies wy, and if we rescale the equation using

ano (length), a;? (density) and fwy, (energy), we obtain

87raN<fg2(m> 3(F) = o) (1.32)

Gho

(—62 +7 4

where tilde denotes the rescaled quantities. In this notation the first term
on the left hand side corresponds to the kinetic energy Ej;,, the third term
to the inter-action energy F;,;. If we compare these energies we find

Ein Na
XX .
Ekin Qho

(1.33)

This ratio can be quite large, meaning a strongly interacting gas, while the
dilute gas condition is still fulfilled 7ija|* < 1. Even though equation [1.33]
is not fulfilled in most of the experiments, the Gross-Pitaevskii equation can
be applied in most cases.

1.4.1 Thomas-Fermi approximation

In section we discussed the different energy scales, and we found that
the interaction energy F;,; can be large compared to the kinetic energy Fyip,.
Neglecting the kinetic energy, having a large number of atoms N and treating
the case for a repulsive interaction (a > 0), we can derive simple equations
for a Bose-Einstein condensate. This approach is called the Thomas-Fermi
approximation.

Neglecting the kinetic energy, we get from equation [I.3I]the atom density

n(r)

7wv:&m:§W—an, (1.34)
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in the region p > V.,:(r) and n = 0 for the rest. Equation is an inverted
parabola and it describes the spatial density distribution of a Bose-Einstein
condensate. Equation [1.34] connects the chemical potential with the atom
number, and by integration we get

hwne [ 15Na\?®
- h(5 “) . (1.35)

2

Aho

Equation maximizes in the center to nrr(0) = u/g, and it vanishes for
i = Veu(R). For a spherical harmonic trap, this means that the chemical
potential is p = mw? R?/2. If we insert equation we find for the
condensate radius R

15N 1/5
R = a,w( > “) , (1.36)

Qho

which can be significantly larger than aj, (note here that this is with
respect to the noninteracting case (equation a significant change).
Equation [1.36] is often noted as the Thomas Fermi radius. For the traps
used in the experiment (cigar shaped traps) we get different radii

2 >
Ry = |-E | R,=,/—". (1.37)
mwy MWy

Comparing the densities ny,(0) for the ideal, non interacting case and
the interaction case, and comparing the relevant widths we find

152/551/2  Ng\ ~3/° R 15Na\?
nTE il (a) , ( “> . (1.38)

Nho 8 Gho Qho Qho

We see, that due to the repulsive interaction (a > 0), the density at the center
of the trap decreases with N (is flattened out), while the size of the Bose-
Einstein condensate increases with IV (it is bigger than in the non interaction
case).

As it will turn out, when we treat collective shape oscillations of the Bose-
Einstein condensate (see section , the Thomas-Fermi approximation is
especially in the regime, where the kinetic energy can not be neglected, not
always valid.
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1.5 Basic properties of a BEC

A Bose-Einstein condensate, as it is a macroscopic quantum state, shows
unique behavior. In this chapter we will discuss how it behaves when we
release it from a trap and let it freely expand. From this expansion we
will deduce the trap frequencies, based on simple scaling factors. Based on
these scaling factors, we can characterize the dynamics of a Bose-Einstein
condensate in time varying potentials. Here we will see, that collective shape
oscillations are most likely to occur. This is of importance, because time
varying potentials play an important role when manipulating a Bose-Einstein
condensate.

1.5.1 Free expansion of a Bose-Einstein condensate

In this section we will discuss the free expansion characteristics of a Bose-
Einstein condensate at rest. First the Bose-Einstein condensate is confined
in a trap, then we open the trap instantaneously and the Bose-Einstein
condensate can freely expand. To describe this, we use a time dependent
potential, which is anisotropic but harmonic:

UGF.t) = % S () (1.39)

where m is the mass and w is the trap frequency. The equation, which
governs the time evolution is the time dependent Gross-Pitaevskii [39](see
equation and the solution to it in the Thomas-Fermi approximation is
(see equation |1.34)),

_ U 1/2 B
ore() = (PP L gler (1.40)

In the discussed case of time varying potentials, the Thomas Fermi approx-
imation (neglecting the kinetic therm of equation can not be applied,
because potential energy could be converted to kinetic energy.

We will now discuss a semi-classical model, which motivates an ansatz we
will present later in this section (see equation [1.47).

The solution of equation is in general very difficult, but in this case
(with some restrictions) it is possible [40]. Consider first a classical gas,
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where each particle experiences the force
F(,t) = =V(U(7, 1) + gecr (7, 1)) (1.41)

where oo, (7,t) is the spatial density distribution at equilibrium.
Releasing the atoms from the trap (¢ > 0), the classical gas will
experience a stretching, and the particles will follow the trajectories

Ri(t) = \(OR;(0) , j=1,2,3, (1.42)

where R;(0) is the initial size at ¢ = 0 (see equation |1.36) and A;(¢) is
a scaling factor. Applying Newton’s law mR(t)=F;[R( R (t),t], using the
ansatz [1.42] we get

1

mA;(t)R;(t) = —arjU[R(t),t]ﬂLm

i = 1,2,3

9,,U[R(0),0]  (1.43)

The second part of equation is obtained, expressing oc (7, t) as

ocr(7t) = )\1<t))\21(t))\3(t) ocrl{ri/Aj}j=123,0], (1.44)

and using the equilibrium condition Vgocr(t = 0) = —VU(t = 0). The
scaling factors satisfy the equation

w?(0)

j 2 ,
R —wi ()N =1,2,3 1.45
J )\j>\1)\2)\3 w]() J ) J ) Sy ( )
with the initial conditions A;(0) = 1 and \;(0)=0. Deriving equation m,
we get an expression for the velocity (in each direction j) of the expanding
sample

(1.46)
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Note here, that the velocity is position dependent. The presented classical
description does not depend on the interaction strength g (especially equation
at all. The spatial density is the only quantity which contains the
interaction strength.

We can now construct an ansatz for equation [I.30, based on this classical
model, of the form [40]

d(Ft) = e PWexp (mZirj/Qh : q)\(t)/A(t))

O[{r/ Me(t) bem1,23. 1]
VA1 A3 '

(1.47)

Ansatz is a unitary transformation, which combines a scaling in 7 (last
part of the equation) and a gauge transformation (first part). This part of
the ansatz contains a position dependent velocity (of the form exp(ik(r)r)).

Inserting [.47] into equation [I.30, we get

%) _E 2| d(F t) =
o 2m r )\?(t) " (7:1)

NN ORE T U0+ N REOFIR( ), (148)

where we use A3(t) = p/M(H)A(t)As(t) and the initial condition
®(7,0) = &(7,0). We can now check how equation behaves,
when we are in the regime, where the Thomas-Fermi approximation can
be applied. The right hand side will be initially very small, the left
hand side, containing the kinetic energy terms, will also be initially very
small, and can be expected to stay small (the additional kinetic energy,
caused by the change of the potential, was accounted for in the unitary
transformation . & (7, t) will therefore not change much in time. This
important point becomes clearer, when we write ®(7,t) = ®(F,0) 4+ 6(7, ),
and insert this into equation and [1.31] From this we get, that 6®(7,¢)
is governed by a nonlinear inhomogeneous equation, with the source therm

3

~ h? 1 1 N
S(F,t) = —%Z (A2<t) - Al(t)AQ(tMg(t)) 07 (F,t). (1.49)

7j=1 J
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For the Thomas-Fermi approximation, the spatial derivatives of ®(7,t) can
be neglected, and subsequently the source term can be neglected. In this
case, 0®(7,t), which is initially zero, stays zero and ®(7,t) stays constant.
From these considerations follows, that we can write

(7, t) ~ ®(F,0) (1.50)

which simply means, that the derived scaling factors in equation [1.45| which
lead to the resulting equation [1.50] contain the complete dynamics of the
macroscopic wave function of the Bose-Einstein condensate.

With this conclusion we obtained a powerful tool, as we can now derive
the trap frequencies from the expansion of a Bose-Einstein condensate.

In a first step, we consider a sudden switch off of the confining potential.
From equation [1.45] we then get the simple expressions

d? 1
— )\ = 1.51
dr2" T 3, (1.51)
d? €
_deAX - e (1.52)

where A\ stands for the radial direction, Ay is the longitudinal direction,
7 = w,t is a dimensionless variable and ¢ = w,(0)/w,(0) < 1. Equation
[1.52] can be solved analytically, and A\, = 1 to the lowest order in €, so that
we get

AL(r) = V1472, (1.53)
and to second order in € we get
Ao(7) = 1+ [rarctan(r) — In V1 + 72] + O(e*) . (1.54)

Equation (1.53| and [1.54] show how the spatial width will change, when
a Bose-Einstein condensate is freely expanding (under the condition of
a sudden switch off). When we now insert these scaling factors into
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Free expansion
10

R coz=27t850 Hz, cox=27r22.4 Hz
_ coz=2n400 Hz, (ox=27t22.4 Hz

aspect ratio

0 0.02 0.04 0.06 0.08 0.1
time [s]

Figure 1.2: Free expansion of a Bose-Einstein condensate: the blue curve shows
how the aspect ratio (see equation evolves in time. The trap frequencies for
the blue curve are: w; = 27850 Hz for the radial and w, = 2722.4 Hz for the
axial direction, and for the red curve:w, = 27400 Hz and w, = 2722.4 Hz.

equation [1.40, we can derive for the axial W, and radial W, widths of the
density distribution the equation

We _ Auld) % | (1.55)

W. AL

Figure shows equation for a trap frequencies w, = 27850 Hz and
wx = 2m22.4 Hz.

1.5.2 Exciting oscillations

The model discussed in can be applied to more complex situations
in such a sense, that we can study the transfer from a starting trap to a
final trap, meaning that the trap frequencies of the confining traps change
over time. The evolution of the shape of the Bose-Einstein condensate in
the trap will be determined by the same scaling factors [1.45] and the Bose-
Einstein condensate will carry out a collective shape oscillation in the final
trap, according to these scaling factors. The energy needed for the oscillation
comes from the potential energy of the starting trap, which is converted into
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Figure 1.3: Trap frequency aspect ratio against shape oscillation frequency: red
curves represent the two solutions of equation m (slow and fast frequencies),
blue and green curves are asymptotic limits for big and small e.

kinetic energy. When we switch off the trap, the dynamics on the trap become
visible and are magnified by the expansion.

First, let us consider the in trap dynamics. For a small change in the
size /shape of the Bose-Einstein condensate, we can linearize equation m,
and we obtain

d2
W&\L(T) = —40A (1) — 0 (T),
2
%5)\)((7') = —2e%6) 1 (1) — 3€%00,(7) | (1.56)

where 0A| and 0\, are the change of width from the equilibrium. Calculat-
ing the eigenmodes of the system leads to [41]

3 1
w2, =2+ 562 F §\/964 — 16€2 + 16 (1.57)

where w,,. is the oscillation frequency of the widths in units of w,. It is now
interesting to look at the behavior of equation for different regimes of
€. Figure a) and b) shows the aspect ratio € against the shape oscillation
frequency.

For the regime of ¢ < 1 (a cigar shaped type trap), we obtain for the
slow wslow = \/5/_sz and for the fast oscillation frequency w/®! = 2w, .

osc osc

For the limit of € > 1 (a disc type trap), we obtain w?% = /10/3w, and

osc
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wlest = \/3w, for the longitudinal and radial shape oscillation frequency. In
our experiment we have a cigar shaped trap, and we are deep in the regime
of e < 1 (e = 0.027). Note here, that the derived equation and its
solutions are only valid for small perturbations.

For large perturbations the non linear character of equation be-
comes important. Equation [1.45] which describes the evolution dynamics
of the Bose-Einstein condensate, describes three classical harmonic oscilla-
tors, which are coupled via a non linear term ~ w?(t)/A; A1 A2A3. This term
establishes the coupling between the different shape oscillation modes, and
when we want to treat large perturbations it is this equation, which we have
to solve [42, 43].

To study the effect of the oscillations in the trap, we expand the Bose-
Einstein condensate at different times, the hold time. Here the dynamics
of the oscillations in the trap dominate the expansion behavior, depending
on the hold time. To illustrate the shape oscillations, we numerically solve
equation m This is done with a MATLAB programﬂ, where a frequency
change from an initial frequency to an end frequency is implemented. The
change between the frequencies is done with a frequency ramp, corresponding
to the experimental situation (see chapter . The trap is kept at the final
frequencies for the adjustable hold time. After the trap is switched off, we
calculate the behavior i.e its aspect ratio.

In figure[L.4h) the trap is still closed and we plot the widths in radial and
longitudinal direction. The shape oscillations for the radial and longitudinal
directions are out of phase. This can be understood with a simple pressure
argument. The term 1/A; A3 (see equations [1.43| and [1.57]), representing
a volume, changes when the sample changes its size. If it expands in one
direction, the pressure is reduced in the other direction, and the size in the
latter direction will be reduced. Figure ) shows the expansion behavior,
which is different from the behavior we get from the steady state (sudden
switch off of the trap).

The expansion behavior for a series of hold times is plotted in figure [L.5h).
Note here, that the dynamics in the trap are magnified in the expansion
behavior. If we open the trap at a turning point of the shape oscillation (see
figure )), we will get a different expansion behavior compared to another
hold time. For a specific expansion time, and for a variable hold time we
will observe a oscillating aspect ratio. Figure ) shows the aspect ratio
oscillation after an expansion time of 19 ms. The period is as predicted. The
peaks of the aspect ratio are pronounced, while the valleys are smoothed out.

Experimentally the (slow) oscillation frequency can be easily measured,

2the code was written by M. Andersson
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N
[$))

width
)
3]
aspect ratio

10 0.5

-0.02 0 0.02 0.04 006 0.08 0.1 0 0.005 0.01 0.015
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Figure 1.4: Oscillating Bose-Einstein condensate: the conditions are: starting
trap, with trap frequencies of w;, = 27827.1 Hz and w, = 2722.5 Hz, then the
frequencies are changed in 25 ms to w; = 27234.7 Hz and w, = 2722.4 Hz. a)
At t = 0 the frequency ramp from the initial frequencies to the final frequencies
is accomplished. Then, for ¢ > 0, the shape oscillations in the longitudinal and
radial direction are plotted (the Bose-Einstein condensate is still in the trap).
At t = 0.09s the trap is switched off and the sample expanse. The expansion
characteristic, shown in b), differs (blue curve) from the expansion we expect
when we switch off the trap instantaneous (red curve represents equation [1.55)).

using the procedure described above. For a given expansion time we monitor
the oscillating aspect ratio (see figure . The fast oscillation frequency is
experimentally not easy to detect, due to the Nyquist-Shannon theorem [44]
45] (sampling rate must at least be greater than 2x oscillation frequency |,
and for our traps w, is in the kHz range). The small amplitude of the fast
oscillation puts another restriction to the measurement.

In is now interesting to look at longer expansion times. Here the inner
dynamics are more magnified. Figure[l.6|was generated exactly the same way
as it was done for figure but now we let the Bose-Einstein condensate
expand for 400 ms. We see, that the moderate behavior, which we observed
for short expansion times, is now completely different. Note here, that the
model assumes still the Thomas Fermi limit (neglecting the kinetic energy
part). At huge aspect ratio changes (the Bose-Einstein condensate is strongly
compressed in one direction), an applicable model must take this kinetic
energy term into account.

0.02
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Figure 1.5: Collective shape oscillation of a Bose-Einstein condensate and free
expansion: a) we excite collective shape oscillations as described in the caption to
figure but now we calculate the expansion behavior every ms for an expansion
time of up to 19 ms. b) shows the aspect ratio after 19 ms of expansion. The valleys
correspond to a low aspect ratio (more round shaped Bose-Einstein condensate,
see figure , the peaks represent a high aspect ratio (axially more elongated
Bose-Einstein condensate). The period is as predicted, but the peaks are more
pronounced due to the non linear coupling of the different modes.
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Figure 1.6: Expansion behavior of a oscillating Bose-Einstein condensate for long
expansion times: the sample is expanded for 400 ms and the aspect ratio for
different hold times (every ms) is plotted. Aspect ratios of up to ~2500 can be
observed. This behavior is due to the non linear nature of the coupling between
the modes.



22

Bose-Einstein condensation



Chapter 2

Laser cooling

Laser cooling is based on the fact that a photon carries momentum [46, [47],
and that this momentum can be transferred to the atom via absorption of
the photon. As a result the atom will change its momentum, and as a
consequence can be cooled [48] [49]. This basic idea made it possible to
trap and cool atoms down to temperatures not reachable with conventional
techniques.

In this chapter we discuss the basics steps, which are involved to cool
atoms with laser light. We start from Doppler cooling and the concept of
atom - light interaction. Then we introduce the more complex polarization
gradient cooling, which allows us to overcome the limits of Doppler cooling.
We will see that these two concepts allow us to reach reasonable low temper-
atures. Both mechanisms work only in momentum space. To trap and cool
the atoms in position space, we employ a magneto-optical trap (MOT)EI.

2.1 Doppler cooling

Doppler cooling relies on the fact, that when an atom absorbs or emits a
photon, its momentum is changed [50, [51].

In general the direction of the emitted photons are randomly distributed
over 4. If we shine a laser beam from one direction onto the atom, the atom
will change its momentum in average by Ap = Ak in the direction of the
laser beam.

Considering the one dimensional case, a two level atom, with a resonant
absorption frequency w,, mass m and a velocity v. We shine a laser beam,
with a frequency wy, and a wavevector k;, = wr/c (c is the speed of light),
onto this atom. Calculating the velocity change of the atom, and the

!One can find a good treatment of the coming section in ?7.
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frequency difference of the re-emitted photon after a resonant absorption
gives us

hk hk?
vp=— , Aw=kv+— |, (2.1)
m 2m

where vg is the recoil velocity (the velocity change an atom experience when
it absorbs a single photon) and kv is the Doppler shift (kv = wyv/c). The
second term in the second equation of is the so called recoil shift, and is
equal to the kinetic energy in frequency units.

In general we can write d=w4-w; where ¢ is the so called detuning of
the laser (it will play an important role for laser cooling). Exciting an atom
resonantly, we have to take the Doppler shift dp,p,, = kv into account. This
leads us to an effective detuning of d.;;=0 — kv. An atom, irradiated with
light with this detuning, will experience an average force F

F =hk

T — (2:2)
L+ 1/ + [ZF7)2
where [ is the intensity of the laser, I is the saturation intensity. Equa-
tion is simply the product of the photon momentum Ak times the scat-
tering rate. The scattering rate is the rate, at which the atom can absorb
and re-emit spontaneously a photon. The force saturates for large intensities
and a laser detuning of § = kv to F' = hkI['/2. Tt is clear from equation ,
that it depends on I', the linewidth of the atomic transition.

Expanding the example to two counter propagating laser beams
(I/1y < 1) we get for the total force on the atoms (still in one dimension):

_ L I/To g el (2.3)

F(v) = hk -
21 4 1/1y + [k 14 /1 + [

Figure [2.1]illustrates this force. For small velocities v and I/l we can derive
an expression:

(21/1)(26/T)v

F(v) = 2hk T (%5)2]2

(2.4)

Equation [2.4]is in a form where the velocity dependence of the force is more
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F [hkT]
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Figure 2.1: Force on an atom: the dotted lines indicate the force of a single laser

beam from the left/right (equation . The solid lines corresponds to the sum of
the two forces (equation .

explicit. The force can be associated with a friction force as it is propor-
tional to the velocity v, and it can be simplified to ' = —aw. This beam
configuration is known as ”optical Molasses”.

An important question to ask is the lowest temperature reachable
with this method. Up to now we looked at the time average, but every
absorption /emission transfers a discrete amount of momentum, leading to
a fluctuating force. This tends to heat the atoms, because the emission
direction is uncorrelated to the absorption. This randomness of the direction
causes the atom to undergo a random walk, with a step size of hk. From
a random walk treatment we get for the mean square momentum after N
emissions (p2) = Nh?k?. The rate of increase of p?, the momentum diffusion
coefficient, is defined as

. r I/
2D,pont = (p) = 2R2k2——— L0
spont = (D) = 2K 57— (26/T)2

(2.5)
To the limit of how deep we can cool, we equate the rate on which the
kinetic energy increases with the rate on which the kinetic energy decreases
due to the damping. This gives us

<Eheat> = % =

— (Ecool> = alv?) | (2.6)

3
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and
D aAl' (T 20
kgl = —=— | —=+ =] . 2.7
L=y T (25 N F) (2.7)
The temperature minimizes for § = —I'/2, and leads us to
R
kBTDopp - 7 (28)

Tpepp 1s the so called Doppler cooling limit. It depends just on I', the
natural linewidth of the atomic transition. In the case of ' Rb, the linewidth
is I' = 276.065 MHz, which gives us a Doppler cooling limit of Ty, =
145.5 pK. To cool below the Doppler limit, one has to employ a different
technique (see section .

Note here that the atoms are slowed down in momentum space, and the
cold atoms are not localized at a specific location in real space.

2.2 Magneto-optical trap

In section we saw, that slowing down the atoms in momentum space is
possible. It is also possible to show, due to the optical Earnshaw theorem,
that it is not possible to form a trap which is just based on absorption and
emission [52, [50].

For trapping atoms in real space we must generate a position dependent
force which confines the atoms at a localized position in space. This can be
done by adding a magnetic field to the atoms. The field is generated by a pair
of coils, where the current runs in opposite directions. The resulting field is
a quadrupole field, where the magnitude is proportional to the distance from
the center and the direction reverses at the trap center. Due to the magnetic
field, the magnetic sub-levels mp experience a Zeeman shift, and thus the
atoms are detuned from the resonance. The used laser beams are circular
polarized, where opposing beams have counter-rotating polarizations. Thus
the atoms scatter more photons from that laser beam, which is counter
propagating to their direction of motion, and thus they are pushed to the
center of the configuration [4, 53, 54]. Figure shows the laser beam setup
and the Zeeman splitting. This configuration is called magneto-optical trap
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Figure 2.2: Magneto optical trap: a) shows the energy splitting due to the Zeeman
effect and the corresponding polarizations. b) gives an schematic overview how
the coils for the quadrupole field look like and how the polarizations should be.

(MOT) or Zeeman assisted radiation pressure trap (ZARPT). The force
depends now not only on the laser detuning 6 and the atom velocity v,
but also on the value of the magnetic field at a certain position. This gives us

hEI’
2

- I/1o ] : (2.9)

1)1

F=Fu+F,- =
1+ 4(%)2

1+ 4(%”3(7"”/5)2

po= pp(geme — ggmyg)

where m, and mgy are the magnetic quantum numbers of the ground state
(g) and excited state (e), and g., g, are the corresponding Lande factors.

2.3 Polarization gradient cooling

We saw in section [2.1], that the temperature is just determined by the atomic
property. However with this method we can reach reasonable temperatures.
To get lower temperatures we have to employ a different mechanism, the
polarization gradient cooling [55].
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Figure 2.3: Polarization gradient cooling: a) we have two counter propagating
laser beams, which circular polarizations are counterrotating, we get a linear po-
larization, which forms a helix with a period of A\/2 () is the wavelength). Such
a polarization arrangement is identical to the arrangement we get for a magneto-
optical trap (see figure[2.2p)). b) shows the situation of the shifted light levels. Due
to the different Clebsh-Gordan coefficients, the |gg) ground state is more shifted
and higher populated.

As an example, we analyze two circular polarized, counter propagating laser
beams. The polarizations are opposite circular polarizedﬂ. With such a
configuration (see figure 2.3h)), we created a polarization, which is linear
(m polarized) and forms a helix with a period of A\/2 (X is the wavelength).
The laser intensity is always the same. The energy levels of a multi level
atom in this laser field will experience an energy shift A, the so called light
shift [51, 56] (also noted as the AC-Stark shift),

02 2 [
Ax— , QP=—"
2 T

5 (2.10)

where ¢ is the laser detuning and € is the Rabi frequency. The populations
in the ground level will depend on the Clebsh-Gordan coefficients. For a
transition J =1 — J = 2 we have the following situation: as a 7 transition
from the ground state |go) to the excited levels is 4/3 stronger than a transi-
tion from |g41) to the excited levels, the light shifts are smaller for the |g41)
ground states (the |gg) state couples stronger to the light field). Furthermore
the transitions |g+1) — |go) is stronger than the transition |go) — |g+1),
which means, that we will accumulate a larger population in |go) (see fig-
ure 2.3p)). Note here, that for the above considerations the atom was at
rest. When an atom moves in Z direction with a velocity v > 0, it will see
a linear polarization, which rotates around the beam axis (the Z axis, and it

Zwe choose this, because such a configuration we get for free’ (see section l
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rotates in the X/Y plane). We can introduce in the atomic rest frame a rotat-
ing frame, where the linear polarization points always in the same direction.
In this moving rotating frame, a fictitious field will appear (Larmor’s theo-
rem), which looks like a magnetic field parallel to the Z axis. If we analyze
the new situation, and compare it to the steady state, which we discussed
above, we find, that we get a motion induced spin orientation in the atomic
ground state, which means that we do not find the steady state population
but we find more atoms in the |g_;) state than in the |g4q) state (for v > 0
and 6 < 0). This unbalance in population will result in an unbalance of the
radiation pressure of the o™ and o~ light, thus the atom will absorb more
counterpropagating ¢~ photons than copropagating o photons. Due to the
unbalanced absorption the atom is slowed down, and as a result the motion
induced orientation of the atoms is reduced (and therefore the unbalanced
population), and thus the damping gets smaller with reduced velocity.
The resulting force can be expressed as

—or

F) oc ko u.
) o B e g

(2.11)

Here again a minimum temperature can be reached. Following the argu-
mentations in section [2.1], we obtain

RO 29 254 I2/4

kpT = — |— 4 22—
P o] 300 T 75 82+ (124

(2.12)

As we see, the temperature now depends on the laser detuning 6 and on
the Rabi frequency Q=I"\/1/21y, and therefore on the intensity of the laser.
Both parameters can be experimentally tuned, which means, that with this
method we are able to cool further than the Doppler cooling limit. This
cooling technique works good for small velocities, meaning that the IV < T,
where I is the mean scattering rate.

For completeness it should be mentioned, that a configuration consisting
of two linear polarized laser beams (the polarizations are perpendicular to
each other) can also be used.

For the polarization gradient cooling exists also a limit, which is the so
called recoil limit (thats the energy a single photon can transfer to the atom).
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Chapter 3
Magnetic trapping

To cool neutral atoms down to ultra low temperatures (~ pK regime) we
have to employ a different technique, than the one presented in chapter [2]
which does not rely on the interaction with light. We found, that this limits
us to the recoil energy. To overcome this, we can use the magnetic moment of
an atom and a magnetic field [7]. This interaction gives rise to a potential, in
which the atoms can be trapped. This alone will of course not cool the atoms,
but it allows us to implement the evaporation technique (see section ,
which is capable to reach temperatures in the sub p/K regime.

We start with a brief discussion on how atoms interact with inhomoge-
neous magnetic fields. This interaction gives rise to the possibility, to trap
atoms in magnetic potentials at well defined locations in space. To generate
this potentials, we use magnetic micro traps. They consist of simple wires
and homogeneous magnetic bias fields. This arrangement, is in compari-
son to commonly used magnetic traps, extremely simple, and allows almost
arbitrarily designed magnetic trapping potentials. We discuss 2 and 3 di-
mensional trapping geometries, as well as finite size effects, as the structures
which generate the trapping potentials are of finite size (mm to pm range).
In the end of this chapter we will consider the role of current noise and its
affect on the atoms.

3.1 Atom - magnetic/electric field interac-
tion

An atom, carrying a total spin F and a magnetic moment i, will experience
a force in an inhomogeneous magnetic field B of the form

31



32 Magnetic trapping

where gr is the Landé factor, ug is the Bohr magneton, F is the total spin
of the atom, and thus /i is the magnetic moment of the atom. The force Fis
proportional to the gradient of the magnetic field component, with respect
to the axis of the magnetic moment of the atom. The potential the atom
experiences in such a magnetic field is

Vmag = —ﬁ' g = gp,uBmFB . (32)

Normally, the motion of an atom in a vector coupled potential is quite
complicated (first part in equation . Assuming that the magnetic
moment of the atom follows the direction of the magnetic field adiabatically,
the motion of the atom becomes simplified. In other words, if the Larmor
frequency wrarmor = ppB/h is faster than the change of the magnetic field,
mp becomes a constant of motion and we can neglect transitions between
different mp states. This can be written

(r(¥))
(r(®)]

oy Sou

d
WLarmor = gF,uBB/h y % < WLarmor (33>

where 7(t) is the position of the atom. The second part of equation will
be noted as the adiabatic criterium. We will find this criterium in different
notations many times throughout this work.

Two cases can be distinguished when we look at the orientation of p with
respect to a static magnetic field.

1) p points in the same direction as the magnetic field: this results in
Vimag < 0 meaning that the atom is attracted to high magnetic fields. This
state is called strong field seeking state. It is the lowest energy state of the
system and potential minima can be found at maxima of the magnetic field.
However, the Earnshaw theorem [57), 58] prohibits magnetic field maxima in
a source free space.

2) p points in the opposite direction to the magnetic field: this results in
Vinag > 0, meaning that the atoms are attracted to low magnetic fields and
repelled by high ones. This state is called low field seeking state. Minima of
the potential are found at minima of the modulus of the magnetic field. This
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is not forbidden by the Earnshaw theorem, and therefore we can generate
such minima easily in free space.

Up to now we just looked at the magnetic interaction. It is also possible
that we use the interaction of an atom, with the electric polarizability «,
with an electric field. Normally this interaction is complicated, as « is in
general a tensor. For simple atoms with only one unpaired electron in the
s-state, a can be replaced by a scalar, and the calculation becomes simpler.
The potential is

Viy(r) = —%aE2(T) , (3.4)

where F is the applied electric field. The potential is attractive, which
means that the atoms can not be trapped with static electric fields, as
the atoms will fall onto the charged structure (in the case of a charged
wire they will fall onto the wire [59, 20, 22]). A possible way to trap
atoms, but still using the electrical interaction, is the combination with
the magnetic interaction [60] (a combination with an optical interaction is
also possible [25]). This combination gives us a trapping potential of the form

1
V(r) = grupmpB — 504E2(7’), (3.5)

where the first part of equation is the known magnetic potential.
In this work the electric interaction can be neglected, because the electric
fields caused by the voltage drop across a wire is too small.

3.2 Magnetic microtraps

In section we saw, that in potential minima, neutral atoms can be
trapped. There are various ways to generate a field geometry, which provides
such minima [[7, 10, T1]. Here we will discuss different trapping arrangements,
where the trapping fields are generated by especially simple geometries, using
the field of current carrying wires and homogeneous magnetic bias fields, gen-
erated by coils [61} [62], 22]. We will see that the scaling laws can be deduced
from simple considerations. In addition, these wires and bias field geometries
allow a complex modelling of the trapping potentials, which would be hard
to realize with common approaches.
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Figure 3.1: A wire with a current I and a homogeneous bias field By: the bias
field By compensates the wire field at a point rg and creates a minimum above
the wire.

3.2.1 A straight wire and a bias field

We start with the simplest trap, the field of a single current carrying wire
superimposed by a homogeneous bias field. The modulus of the magnetic
field of a straight, infinitely long and thin wire is

_ ol

B(r) = 2w r

(3.6)

where 7 is the distance from the wire, o is the permeability constant
and [ is the current through the wire. When we now add a homogeneous
magnetic bias field By, perpendicular to the wire, we see when we look
at the vector nature of the magnetic field, that the bias field By will
compensate at a certain distance ry the magnetic field of the wire (see
figure here the coordinate system is also defined; we will use this
throughout this work). At this point the magnetic field will be zero. When
we move from this point towards the wire, the magnetic potential will rise.
If we move away from 7y the potential will increase to the value of the
bias field. In figure it becomes clear, that the potential looks like a
quadrupole potential along the radial direction (around ry) and the trap
depth is determined by the bias field By. Along the wire the potential is
open. This configuration allows us to trap low field seeking atoms at the
potential minimum. It forms a 2-dimensional 'tube’ and will be referred to as
side guide. Point 7y can be simply calculated from equation [3.6] leading us to

I
B(ro) = By , o= Lio—. (3.7)
Y

To further characterize the trap we calculate the gradient (around rg). For
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this we simply derive the gradient of equation [3.6| and substitute r with ry.
This leads to

dB(r)  po I
dr  2mr?’ (3.8)
dB(r)| _ 2mBy _ By (3.9)
dr o I To

T0

At 7y, the magnetic field vanishes, and the adiabatic criterium is not
fulfilled. Atoms at this point can undergo Majorana spin flips, because the
magnetic moment of the atoms can not follow the direction of the magnetic
field, and spin flips into non trapped states are possible [63] [64]

To avoid Majorana spin flips, we can apply a magnetic field B;p along the
wire (X direction). This "plugs’ the magnetic hole and near the minimum,
the potential change from a linear to a harmonic behavior. This kind of
potential is often called Ioffe-Pritchard trap, and Bjp is the loffe-Pritchard
offset field. The curvature of the potential with the additional bias field is

&B(r)  (2n\® By B} (3.10)
dr? o B[p[2 N ’I“gB[p ' '

We can now approximate the resulting potential with a harmonic oscillator.
This is applicable near the minimum of the trapping potential. Calculating
the curvature of the harmonic potential gives us access to the trap frequencies

w 1 [pugrmp (d*B By | 1 (3.11)
_— = — xX — .
2T 2w m dr? ro \ mBrp’

where m is the mass of the particle. Equation [3.11] reveals the importance
of B;p for the trap frequencies. In the experimental section we will see that
we directly manipulate B;p, to achieve different trapping frequencies.

Equation [3.9| reveals an important fact, that a smaller current causes
higher gradients. Equation (3.8 can be evaluated in the limit »r — R, where
R is the wire radius. This leads us to

dB(r) po I :
= ——— X J

dr 21 R? ’

(3.12)

where 7 is the current density in the wire. This and equation [3.8| indicates,
that with smaller structures, tighter confinements are achievable [65].
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Figure 3.2: The U-wire trap: a single wire is bent into a U shape and a bias field
By is added. In such a way we can generate a three dimensional confinement. The
potential is quadrupole like.

3.2.2 Creating three dimensional traps with wires

The presented potential in section [3.2.1, can trap atoms in two dimensions.
To realize a three dimensional confinement, a different strategy is necessary.
Normally wire traps, which are capable of this, consist out of a single bent
wire, where some parts of the wire provide a field, which closes the trap
in the third dimension. Here we will discuss two configurations for three
dimensional trapping, the U-wire trap and the Z-wire trap. The names are
self explanatory for the wire geometry.

U-wire trap

Bending a wire into a U shape, we get the base for the U-wire trap [23].
It consists of two so-called leads, and a central wire. The bias field By is
perpendicular to the central wire. Figure |3.2] illustrates this configuration.
The central wire together with the By field will form as discussed in
section a minimum along the central wire. This minimum (it’s a
zero!) is sealed off by the contribution of the leads. The field of the leads
(counter propagating currents) will be less in the geometrical center of the
construction (the field here points in Z direction), as it decays with 1/r,
compared with the share closer to the leads. By is parallel to the leads
and can therefore be neglected. The fact, that the field of the leads point
in 7 direction in the center of the geometry, causes a shift of the minimum
in Y direction. This can be understood in such a way, that the fields are
vectorial added. If we add a component in Z direction to the field displayed
in figure 3.1 the minimum would move in Y direction. This shift can be
compensated by simply adding an additional external field By in the Z
direction. We can now compute the resulting potential (wire+By+By),
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Figure 3.3: The U-wire trap: a cut through the Y/Z plane (left) reveal, that the
minima is shifted outwards, and that the axis of the quadrupole field are tilted
(compare with figure . In the X/Y plane (right), the quadrupole nature is
clearly visible.

which gives us a sufficient complex result (see Appendix @, but still we can
deduce the main properties of the geometry.

The main feature of the created potential is, that it is a quadrupole like field
in three dimensions. Figure [3.3]illustrates this. Another important property
for the experiment is the height zy of the minimum above the wire. The
ratio of the two bias fields, By and By for yg = 0 is

Bz _ 20 (3.13)

By /D244

where D is the distance between the leads. Another important property
are the gradients achievable with a U-wire configuration [66]. They can be
written as

dB 2[1,0 IDZO

dy |, 7 (423 + D?)?

dB dB o I

— = —| = -—=—=. 3.14
dz |, de |, 2m 22 (8.14)

This is valid for r = (0,0, 29). Here we have a difference to a quadrupole
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Figure 3.4: The Z-wire trap: a single wire is bent into a Z shape and a bias field
By is added. In such a way we can generate a three dimensional confinement. The
potential is loffe-Pritchard trap with a non zero minimum.

configuration generated by coils (anti Helmholz configuration). In this con-
figuration the ratio between the strong and weak axis is always 2, but here it
depends on the length D, the distance of the leads. The generated field, as it
is a quadrupole field, and can be used to serve a MOT (see section . As
can be seen in figure [3.3] the quadrupole axes are tilted with respect to the
plane of the structure. This, one has to take into account when using such a
field for a MOT, as it means that the laser beams have to be also tilted. Note
here that the shift of the minimum with the help of B; does not change this
behavior, but improves the properties of the quadrupole field as the region
where it is in a good approximation a quadrupole field, is enlarged [67, 68].

Z-wire trap

To produce a magnetic trap in three dimensions with a no zero minimum, we
have to employ different wire geometries. A geometry which fulfills this, is
a wire bent into a Z shape [69]. We have again a center wire and two leads,
but in contrast to the U wire, the current in the leads is co propagating
(see figure [3.4). The wire carries a current I and the bias field By is again
perpendicular to the center wire. The magnetic field of the leads will now
point in the same direction, which is the X direction, providing us with the
necessary plug already discussed in section [3.2.1 With this geometry we
designed a magnetic trap without zero minimum. It is a loffe-Pritchard trap.
The field component at the minimum points essentially in the X direction.
It can be expressed (for X=0, Y=0) as:

2/10 Iz

By —
YT (D242

(3.15)
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where Bx is the field component in X direction generated by the Z-wire
structure. This means that the magnitude of the X component changes with
height, which consequently means, that the tilt of the field By + By changes
with the height as well, as the two components have to be added vectorially.
Bx maximizes for z = D/2 to Bx = ugl/2nD. When we now compare the
position of the minimum, which we would expect from a side guide, with the
position of the minimum we get from the Z-wire trap, we see that the values
differ slightly from each other because of the z dependance of equation [3.15
If we add now externally a field in X direction (E ), the trap will change
slightly its position according to the new field (see chapter [5)).

Figure (right) is a contour plot of the field at the minimum in the
X/Y plane. It reveals another important character of a Z-wire trap. Due
to the contributions of the leads to the field in Z direction (stronger closer
to the leads than in the middle of the structure), the trap is rotated around
the X axis. When we characterize our trap, we approximate the trapping
potential with a harmonic oscillator (valid near the minimum). The trapping
frequencies are then proportional to the second derivative of the potential.
If we derive this, we have to use a tilted coordinate system, to account for
the rotated geometry (see figure right). Using the derivatives along the
geometrical coordinates would give a wrong result.

The problem can be solved, when we search for the eigenvectors and
eigenvalues of the Hesse matrix.

8’°B  9°B  9°B
0z?  Ozdy Oz0z

H= 9’B  9*B  0°B
- Oyox 85/2 8%82
9’B  9*B  9°B

0z0x 020y 022

We have to diagonalize the Hesse matrix at the trap minimum. The trap
frequencies are then simply

i=1,2,3, (3.16)

(z0,Y0,20)

where \; are the eigenvalues of the Hesse matrix, xq, 4o, 2o is the position of
the minimum and ¢ correspond to the different directions in space X,Y, Z.
The eigenvectors T, 3, z are the new coordinate system of the tilted trap.
The trap frequencies, which we get for the y and Zz direction, are almost
equal, as the problem is point symetric. We will note these in future as the
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Figure 3.5: Contour plot of a Z-wire trap: the left figure is a cut through the Y/Z
plane. The right figure is a cut through the minima of the trap. Here the tilt, due
to the contributions of the leads is visible (lines are equipotential curves of 0,5, ...

65 G).

radial direction/trap frequency. In the = direction the trap frequencies are
lower. We will note this as the longitudinal direction/trap frequency. The
analytical expressions for the trap frequencies (derived with MATHEMAT-
ICA, see appendix@[) are complex, and are therefore not displayed here, but
all following calculations of trap frequencies and trap geometries include the
full treatment.

Another important factor, which we have to include in our calculations,
is the effect of gravity. It modifies the gradient and the position of the
potential only in the Z direction as

dB
— +m - 1

with g the gravitational constant and m the mass. Here one has to note the
direction of the Z component (+ in equation [3.17)). If the trap "hangs’ (this
is the case in our experiment), meaning that the Z direction points in the
same direction as gravity, this will weaken the confinement and changes the
position of the minima. Never the less, it is essential that the strong axis is
always on axis with gravity (see figure .
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Figure 3.6: Gravitational effect on the trapping potential: gravitation points to
the right (see arrow). Due to the gravitation the trap depth is reduced. The
gravitational effect can lead to an atom loss, when the atoms have enough energy
to overcome the trapping potential.

3.2.3 Finite size effects of real wires

When we deal with wire traps and when we calculate the magnetic fields we
approximate the used geometries with infinite thin wires. This completely
neglects the fact, that in real life, we have wires with a physical dimension.

The field of a cylindrical wire can be approximated with a infinite thin
wire, but as we will see later, the wires used in this work are square on a
mm to um scale. There exists an analytic solution for the field of a infinitely
thin and long, but broad wire [70} 25]:

I 2 I 2
B(z) = %Zarcco‘c <§> = %5 (g — arccot (f)) ; (3.18)

where b is the wire width, I the current and z is the distance from the
center. When we compare this field (equation , with one from a infinite
wire, we see that it differs. For distances z < b and especially at z = 0
equation [3.18| simplifies to

B(z) ~ %g <g - 2-5) (3.19)
Bz =) =l L (3.20)
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finite size effects
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Figure 3.7: Finite size effect: the figure shows the magnetic field resulting from

different wire geometries (infinitely thin - red, broad wire - green, broad and thick

wire - blue). It is clear that when one approaches distances to the wire, which are
comparable to its width, the gradient differ from the infinitely thin wire.

Equation [3.20] allows to give an upper limit to the trap depth as this is the
maximum field the bias field can have (a larger bias field would move the
trap into the wire). Here it is already clear, that we will get different results
for the position of a trap compared to the ideal case in section (3.2.1, For
the gradient of the real wire (equation (still infinitely thin, but broad)
we get

dB(z) o I
dz 22+ (b/2)? (3:21)

This behavior is different from the 1/2% behavior as we would expect from
a ideal wire. It is of a Lorentzian form (see figure [3.7). When we want to
calculate real traps, even when they are simple, we have to take also the third
dimension into account (up to now we introduced just the second dimension).
There exists an analytical expression for a infinitely long but square wire (it
is broad and wide, see Appendix @[)

When we compare the fields generated by the different wire geometries
(infinitely thin, two dimensions, three dimensions), we find that for distances
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Figure 3.8: Current density distribution of macroscopic wires: we calculate the
current density of a H shaped structure (later we will see, that we use this structure
for generating a Z-wire trap). The current density distribution is different from the
geometrical outline, and thus it reduces the central wire (see figure parameter
D). This we have to take into account, when we calculate the trapping potentials
(scales are in mm).

large compared to the wire size, the different geometries give the same result.
For distances comparable to the wire size, the finite size of the wires can no
longer be neglected (see figure E Most of the experiments presented in
this work were performed at distances large compared to the wire dimension.
We can therefore use the infinitely thin wire approach. Note here, that there
is a second finite size effect, which arises from the fact, that our structures
are bent, and due to this, the current flow will differ from the geometrical
outline of the wire (see coming paragraph).

To address these problems, but still have a program which is reliable,
fast and easy to handle, we choose a different approach. Using a finite size
element program (FEMLAB), we calculate the three dimensional current
density of the used wire structure, and then we modify, with the obtained
current density, a simple infinite thin wire model. We found that this is a
good and reliable way to treat three dimensional and complex wire struc-
tures. Figure 3.8 shows the current density of a structure, which we will
discuss in detail in the experiment section. It is H shaped, and by addressing

!To implement the third dimension, one can think that the wire geometry can be
approximated in such a way, that one uses a bunch of infinitely thin wires and put them
beside each other. This is problematic in two ways. One, it will be difficult to find an
over all criterium on how much wires are necessary for the approximation and second the
numerical effort can be huge.
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Figure 3.9: Current density distribution of a T crossing: a) the current flows
in the horizontal wire, the perpendicular wire is not connected (dead arm). At
the junction the current density is reduced. b) cut through the current density
distribution at the junction (X=0). The current spreads out into the dead arm. If
a side guide is generated, this can cause a potential barrier or a dimple in the side
guide.

different ports it allows us to realize U- and Z-wire traps. Here we calculated
the current density of a Z-wire geometry. The colors indicate the current
density distribution. It is clear from the plot that the current path differs
significantly from the geometrical one. The current density rises around the
curves of the wire. This means that the current path is shorter than the
geometrical path for the central wire. This we have to take into account, as
for example equation depends strongly on the distance D between the
leads. Figure |3.9 shows another current density plot. Here we calculated a
T crossing on a much smaller scale. The current flows just from left to right.
The wire connected perpendicular to it is 'dead’, meaning that there is no ’ex-
ternal’” current flow. We see that the current spreads out into the dead arm.
If we generate a side guide with such a wire (see section , the resulting
trapping potential will have a dimple or a barrier in the potential (depending
on the orientation of the structure with respect to gravity), where the 'dead’
wire is connected to the structure. It can also be, that the adiabatic condition
for this region is not fulfilled, and therefore, if a Bose-Einstein condensate is
guided in such a structure, the condensate can loose atoms or can be excited
by the distortion of the potential [71]. To calculate the magnetic field of the
used wire and bias field arrangements we developed two kind of programs.
One is a program written in MATHEMATICA, which analytically calculates
the field, and second we apply MATLAB, which uses numerical methods.
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Both programs use infinitely thin wires to calculate the trapping potential,
but the geometric outline of the structures account for the current density
distribution obtained by the finite element program. Note that we used the
finite size program to calculate the current density and not the magnetic
field, which would in principle be possible. But we found, that calculating
the trapping potential does not always lead to a converging solution. This
is due to the fact that we deal with quite different length scales. We have
structures on a um to a mm scale, but we want to know the magnetic field on
a much bigger scale. But, as we saw previously in this paragraph, as long as
we investigate traps which are much further away than the wire dimension,
we do not get a significantly different result. This motivates our approach,
that the modification of the geometry, due to the different current density
distribution, which we put into the infinite thin wire model is valid. As we
found out in the experiment, this is to a good approximation fulfilled.

3.2.4 Trap losses and heating

Now, as we can trap atoms in three dimensions, it is interesting to investigate
trap losses and heating of the atoms. There are two major reasons for trap
losses and heating. One is, as already briefly discussed, Majorana spin flips,
secondly the noise on the current will also effect the atoms. In the case of
high densities (for example a Bose-Einstein condensate), three-body losses
will also play an important role.

Majorana spin flips

We mentioned already, that when the adiabaticity condition (equation
is not fulfilled, which means that the magnetic moment of the atoms can
not follow the magnetic field, spin flips into untrapped states can occur. In
the case of a loffe-Pritchard trap, as the Z-wire trap is, we can calculate the
loss rate [63], 64] (for a spin 1 particle)

Ty = dmwe 20/ (3.22)

where w is the largest trap frequency of the treated trapping geometry. Note
here, that w;, depends on Bjyp, the trap bottom. In general B;p will be equal
to equation [3.15] If we add an external bias field By to compress the trap,
this is no longer the case. In figure we displayed the dependance of the
Majorana spin flip rate on the trap frequencies and on the trap floor B;p.
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Figure 3.10: Majorana spin flip rate: the figure displays equation (1/Tpr) for
different trap frequencies and different Byp. The values for Byp are: 1, 5, 10, 20
and 40 mG (blue, red, green, yellow and magenta).

Current noise

As we have to use a current to generate our trapping fields, noise on the
current will effect the atoms. First it can induce spin flips and atoms will
be expelled from the trap, and second it will modify the trap geometry, as
a position shaking will lead to heating. The rate of these processes is given
by Fermi’s golden rule

Limg == > p(DUEN | Hine(L ) ) 2 6(Er + Ej — Er — E;), (3.23)

where |I), |F') are the initial and final states of the environment, |i), |f) are
the initial and final states of the atom. E;_p s, denotes the corresponding
energies, p(I) is the probability of |I) and H;,; = —puB(x) is the interaction
Hamiltonian. Following the derivation in [72] [73], we can calculate the spin
flip rate. In general we can write

2
iy ~0.01s7! [ 25 Sap(r,w) (3.24)
ps) pI?/Hz
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where 7 is the position, p is the magnetic moment, pp is the Bohr magneton
and S,s is the magnetic noise spectrum (a, [ denote magnetic field
components). In equation the Larmor frequency wj appears, as it is
the relevant frequency in the system. Equation gets more "handy’ if we
evaluate S, for a side guide (single wire and a bias field),

2
peel Si(w)
Sp(r,w) = 471(')2112 t;NI , SN; =e-1~0.16nA

1
A Y

(3.25)

where SN; is the shot noise, which comes from the discrete value of the
electron charge e, I is the current in the wire, h is the height and S;(w) is
the noise spectrum of the current (here w is a frequency range). The used
notation, including the units, is motivated by the fact that the units are not
in common use and are important when we want to compare experimental
measurements and results to the theory. Substituting S,z with the quantity
derived in equation [3.25, and replacing w with wy, as it is the relevant
frequency, we get for the spin flip rate

1 (W/uB)? Si(wr) I
(h/um)? SN; A’

Ty~ 1ls (3.26)

where |i) is the initial state of the atom before (trapped) and |f) is the final
state of the atom (untrapped) after the distortion. Equation will be, in
general, significant at small height above a surface.

The current noise S;(w) also distorts the trap in a geometrical way. This
can be understood in such a way, that the DC current (direct current) pro-
duces the trap, and the AC component (alternating current) of the current,
in our treatment the noise, causes the trap to shake. From the equations
already derived, we know that this will result in a change in position of the
minimum and in a change of the trap frequencies.

Consider atoms in the motional ground state |0) of the trap. The
'shaking’ of the potential can induce a transition to the first excited state |1)
of the trap, which means that the atoms are heated. The two contributions
to the heating, trap position change and trap curvature change, can be
written as
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dTp1 hw | w 3 I/A  Sp(w)
— = .35L. )
dt by o (mfamu) (277100kHz> (Bip/G)2 SN
dTy .o hw s 1 w 31 57(2w)
oz 3078t 3.27
dt ks ° (27TIOOI<:HZ> IJA SN, (3:27)

where m is the mass, Byp is the magnetic field at the minimum of the trap,
I the current through the wire and w is the trap frequency. Note that S;(w)
can be easily measured using a spectrum analyzer, which is a standard mea-
surement device in the lab. In the experimental section we will go into details
of how to measure this quantity. The relations also motivate our development
of ultra stable current supplies (for noise spectrums see Appendix [E).

Note here that the noise does not only cause spin flips and heating, it will
also effect the coherence properties of a coherent matter wave. Another effect,
which is not treated here, are thermally excited currents (Johnson-Nyquist
noise) in the metal surface. They will cause a magnetic field, which then
subsequently couples to and influences the atoms. Both effects get significant
at low distances. In this work we never performed measurements at distances
(< 100pm), where these contributions will effect the measurement.

3.3 Evaporative cooling

As already discussed in chapter[2] the temperature of the laser cooled atomic
sample is limited by the recoil momentum. Additionally the achievable den-
sities are limited due to radiation pressure. All this is caused, because the
atoms interact with light. To overcome these limits we have to employ a
different technique. We introduced magnetic traps in section [3.2], which are
capable to trap and hold large numbers of atoms just with magnetic fields.
These kind of traps give rise to a new cooling mechanism, the so called evap-
orative cooling (also named radio frequency cooling). It was first proposed
by Hess [74] for spin polarized hydrogen, but it is applicable to any trapped
atom. The main task of the process is not only to reduce the temperature,
but also to increase the phase space density nA35 (n is the density and Mg
is the de Broglie wave lenght) of the sample.

The physics behind this process relies on the fact, that from a sample
of atoms (with a finite binding energy) the hottest are most likely to leave
the sample. The remaining energy has to redistribute to fulfill the Maxwell-
Bolzmann distribution. After this the average temperature is lower — the
sample is colder.
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Figure 3.11: Evaporative cooling: due to the position dependent Zeeman energy
splitting we can position selectively remove atoms by driving radio frequency tran-
sitions to untrapped states.

Let’s transfer this picture to our situation. We have an atomic sample in
a magnetic trap with a finite depth. The hottest atoms have enough energy
to run up the potential and as a result they can be found at larger distances
from the trap center (consequently colder atoms will be found close at or
near the trap center). The atoms will experience, due to the inhomogeneity
of the magnetic field, different Zeeman energy splitting (E = gpmpupB(r))
depending on the position of the atom. To remove atoms from the trap,
we drive a radio frequency transition between two Zeeman levels. One is a
trapped state, the other one is an untrapped Stateﬂ The energy needed to
drive this transition from one Zeeman level to another is

grpsB = hwgr, (3.28)

where wgp is the radio frequency. As the Zeeman splitting is position depen-
dent (due to the energy of the atom), we can energy selective remove atoms
from the trap (see figure [3.11)f]

When we now remove hot atoms from the trap,means that we cut off
the tail of the Maxwell-Bolzmann distribution. The atoms will collide and

2Tt can also be that more than one RF photon is needed to reach an untrapped state
3Note here that the Zeeman splitting is still in the linear regime and therefor the
splitting between the different hyperfine levels is the same.
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reestablish a Maxwell-Bolzmann distribution, but now the mean temperature
will be lower. Note here that both processes, the removal of hot atoms and
the rethermalization are needed to increase the phase space density [75]. One
process alone will not be enough.

A simple analytic model which describes the evaporation process is
given in [76] [77]. The model treats the evaporation cycle as discrete steps
with a truncation parameter n = E.,/kgT, where T is the temperature
of the sample. For large n, a small fraction of atoms will leave the trap.
The radio frequency cuts in, removes the atoms and then let the atoms
thermalize in the unperturbed potential. The model shows that the best
results (in gain of phase space density) is achieved in a 3 dimensional linear
potential. This can be understood in such a way that the elastic collision rate

1
— =n-04-v , 0g=8md’ (3.29)
Tel

where n is the density, v the velocity, o, is the elastic collision cross—sectionﬁ
and a the scattering length, responsible for the thermalisazion of the atoms,
is highest for a linear potential as the volume scales as V ~ T%™ [32]. Here
T is the temperature of the atoms, d is the dimension and m is the factor
of the used potential U(r) = r™. A Ioffe-Pritchard magnetic trap can be
treated as in two dimensions linear and in one dimension harmonic. Our
traps fulfill this condition.

The time scale on which the evaporation cycle should be performed is
for example also dependent on the collisions with back ground gas atoms.
If the pressure is high, background gas atoms will perturb the cold trapped
atoms, and due to this we have an additional trap loss. In general, if the
loss rate is high, evaporation must be performed fast. To reach the so called
"run-away evaporation”, meaning that the elastic collision rate increases
with evaporation time, we have also to take two and three body losses into
account. The ratio

R = Toss (3.30)

Tel

where 7,5 is the time it takes that an atom is expelled from the trap. 7j,ss
can be written

- = ngn + ngn2 + VggOHGMHG (331)
loss

4In the temperature range of interest we can assume, that we just have s-wave scattering
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where n is the particle density of the trapped atoms, ngyq is the density of
the background gas, Gg, and G, are two and three body loss constants,
vge is the mean velocity of the background gas, ogg is the cross section
of the dominant background gas and ngq is the density of the dominant
background gas. Note here, that the three body loss is dominant for
8Rb [78]. For "run-away evaporation” R has to be

R > Run x -2, (3.32)

Tel

where 7., is the time constant for the evaporation.

In an experiment we continuously remove atoms (we sweep the radio
frequency). For this case the model has to be modified, but the principal
aspects are still valid.
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Chapter 4

Experimental realization

In this chapter we will give a detailed description of the experimental compo-
nents and the procedure to reach a Bose-Einstein condensate. The chapter
is structured in three sections. We start with the very basic components
we need to manipulate atoms. Here the laser system, the laser stabilization
and the vacuum chamber are discussed followed by a discussion of the mir-
ror magneto-optical trap (MOT) and the atom transfer. The second part
is engaged with the measuring and interpreting of the basic atomic proper-
ties of an atomic cloud, such as the number and temperature of the sample.
The third part is completely dedicated to the achievement of a Bose-Einstein
condensate. First measurements concerning the basic properties of a Bose-
Einstein condensate are presented and discussed.

In addition we will report in section [£.1.3]and section [4.1.6] about results
which were obtained in different setups. These setups were built in advance
to the existing chamber to test some some basic concepts.

4.1 Trapping, transferring and pre-cooling
atoms

In this section we discuss the basic components we need for atom manip-
ulation in general, in our case the spring board to achieve a Bose-Einstein
condensate.

First we go into the details concerning the developed laser system. It
must have features like a small linewidth, compared to the natural linewidth
of the atoms (6.07 MHz in the case of 3'Rb ), and sufficient laser power.
Then we will address the vacuum part. For the vacuum system there are in
principle two approaches. One can have one chamber, where the complete
experiment is performed. Here the disadvantage is a short lifetime, due to

23
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background collisions and limited optical access. The ’classical’ approach is,
having two chambers, one at a relatively high pressure (HP) and one in the
ultra high vacuum (UHV), is our choice. This has the advantage of long
lifetimes in the magnetic trap as we will discuss later in this chapter. It has
the disadvantage that we have to transfer the atoms from the HP chamber
to the UHV chamber. The atom transfer is closing the section.

4.1.1 The laser system
General remarks

For the operation of a magneto-optical trap (MOT) for 8Rb, one of the
elementary ingredients is a well controlled laser. The Rb D2 line (55%5; /2 —
5p* Py /2) is the atomic transition, which we use for this experimentﬂ We need
a laser system which fulfils the following conditions:

e small linewidth (< 1 M Hz) compared to the natural linewidth I' =
6.07 M Hz

e stability to an atomic transition
e hight laser power

e robust implementation and easy to handle

Note here, that we distinguish between the laser linewidth, and the sta-
bility to an atomic transition. In general a laser is free running, and due to
environmental effects it will change its frequency. When we want stability
to an atomic transition, we have to employ some feedback loop to keep the
laser at the desired atomic transition.

Nowadays there are three approaches to satisfy the above requirements.
There are Ti:sapphire lasers, tapered amplifier systems and grating stabi-
lized lasers diodes. Out of a financial (Ti:sapphire lasers are expensive) and
a historical reason (tapered amplifier lasers were not well tested when we
started the project) our choice were self made grating stabilized laser diodes
in a Littrow configuration.

In the coming sections we will discuss the different requirements, and
how we solve the problems and how we implement the solutions into the
experiment.

LA complete study of the Rubidium lines can be found in [79].
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Laser diode

A free running laser diode in general has a typical linewidth of ~ 50 M Hz,
which is inadequate for laser cooling. However there are several schemes
which allow to reduce the linewidth. All approaches have in common that
they use a frequency selective feedback element. This can be an external
cavity /etalon [80, BRIl B2] or a grating [83]. In our setup we use a Littrow
configuration (see figure , which uses a grating as frequency selective el-
ement. This ensures the small laser linewidth. The collimated laser beam
shines onto the reflection grating, which is adjusted under the Littrow an-
gle in such a way, that the first diffraction order is reflected back into the
laser diode, forming an ’external cavity’ (back facet of the laser diode and
diffraction grating). The angle fixes the frequency range where the laser is
operated (depending on the gain curve of the laser diode). The zeroth order
is used for the experiment.

To ensure a good mechanical stability of the external cavity over time, a
special laser diode mount was developed following the idea in [84]. We took
special care in the choice of the used materials and components. With this
method we achieved the desired linewidth (< 1 MHz). To tune the laser
in frequency, we simply shorten or lengthen the external cavity (this is done
with a piezo crystal behind the grating). With this method we could achieve
tuning ranges up to several GH z.

In figure the complete electronic setup to control the laser diode is illus-
trated. The laser diode can be controlled via the so called "lock-box’ (LB)H.
When the laser is not stabilized, we tune the frequency continuously (scan
mode), by applying a saw tooth voltage to the piezo crystal, which ampli-
tude and offset can be adjusted by the LB. For the laser diode itself, as their
wavelength changes with temperature and current, we need to temperature
stabilized the setup (to ~ 1 mK). For this we use a temperature controllerﬂ.
A NTC (negative temperature coeflicient resistor) is used to measure the
temperature and a peltier element heats/cools the laser. A PID circuit (pro-
portional (P) plus integral (I) plus derivative (D) circuit) in the temperature
controller allows us to achieve the necessary temperature stability. In addi-
tion the applied current has to be extremely stableﬁ The current controller
allows us in addition to add an external modulation to the current. Later
we will see, that we use this feature for stabilizing the laser to an atomic
transition.

2the LB is self built
3Profile, TED200
4Profile, LDC202
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Figure 4.1: Electric circuit for the laser diode: during scan mode a saw tooth signal,
amplified through the piezo control, is connected to the piezo behind the grating
in the Littrow configuration; when the laser is frequency stabilized, the lock in
amplifier generates the error signal, which is subsequently amplified and acts also
on the pierzo crystal. The lock box allows switching from scan mode (amplitude
and offset of the saw tooth can be adjusted) to lock mode. Here the lock box acts
like a PID controller (Proportional plus Integral plus Derivative controller). The
strength of the different shares can be adjusted in the lock box.

The piezo contro]ﬂ, which drives the piezo crystal has also to be noise
free. A jitter would effect the cavity length and subsequently the output
frequency. Note here that the maximum frequency, on which the piezo can
act was measured to be 25 kHz. Figure shows the complete assembly of
the laser diode housing. For the picture a protective hood was removed.

Laser stabilization and spectroscopy

As we saw in chapter [2] it is important that the laser frequency can be
stabilized to an atomic transition. A free running laser, without stabilization,
will never stay at a specific frequency. Even small environmental effects (like
temperature change or noise), will cause a frequency drift when the laser is
not actively stabilized.

In order to stabilize the laser at a specific frequency, he have to know
the frequency of the laser. The easiest way (in our case), to determine the
frequency is by using atom spectroscopy with an Doppler free saturation

Stype A128, self built; V=0-400V, 100mA
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Figure 4.2: The laser diode housing (left): all the necessary components can be
seen. Note the grating (with the piezo crystal behind it) and the collimation tube,
which houses the laser diode. These two components form the external cavity,
where the grating acts as a frequency selective device. In the front of the picture
anamorphic prisms can be seen. They change the special laser beam profile from
a elliptic to a round shape. Right: technical overview.

spectroscopy method [85] (in our case the D2 line of *"Rb at 780.24 nm)f|

In order to stabilize the laser to a specific frequency, we have to have
some kind of frequency dependent feedback to the laser, a so called error
signal. This error signal can be applied to the laser in three ways, either
to the current of the laser diode (the laser frequency changes with current)
or onto the piezo crystal (a change of the external cavity length changes the
frequency) or on both. There are various ways to produce such a error signal,
but most of the schemes have in common that they use the atomic transition
itself (and this signal we have already, as we used it to determine the laser
frequency), on which the laser should be stabilized, to generate the error
signal.

Figure 4.3| shows the basic setup for a Doppler free saturation spec-
troscopy. We use self built Rubidium vapor cells with good optical quality
windows. In order to improve the spectroscopy signal (recorded with a photo
diode), we subtract the Doppler background (obtained by letting a laser beam
pass only once through the vapor cell). The Doppler background is then elec-
tronically subtracted from the Doppler free saturation spectroscopy signal,
which contains the Lamb dips and cross overs [85]. The obtained signals can
be seen in figure [4.4]

This spectroscopic method allows us to know the absolute laser frequency.
To get the frequency dependent error signal we electronically produce the first

SFor a complete overview of the Rb optical transitions, please see [79)]
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Figure 4.3: Setup to record a Doppler free atomic spectrum of 8"Rb. The thick
glass plate is used to generate two parallel laser beams. The right hand photo
diode, which records the laser beam after it passed only once through the vapor
cell, gives just the Doppler broadened transition. The left photo diode, which
records the beam after it passed through the cell twice, records the Doppler free
absorption signal. To improve the signal quality, we subtract both signals.

derivative of the spectroscopy signal (blue line in figure . This is done
with a simple Lock-In method [86], using a good Lock-In ampliﬁetﬂ

We modulate slightly the laser diode current (through the modulation
input at the current controller), which results in a modulation in the laser
frequency (as mentioned above) [83]. The Lock-In can only see this modu-
lation in frequency, when there is an atomic transition, and therefore gives
out a signal. If there is no atomic transition, the Lock-In can’t detect the
modulation as the photo diode signal is constant, and puts out zero. The
obtained signal is the first derivative of the atomic line spectra. It has a zero
crossing at the maximum of a Lamb dip and is positive/negative on the edge
of the atomic transition.

This error signal is now fed back to the piezo crystal via the LB, us-
ing a proportional-integral-derivative element (PID element). The electronic
feedback effects the length of the external cavity, and so the laser frequency.
When the laser is right on an atomic transition, the error signal is zero and
the cavity length is unchanged. If the laser drifts, the error signal is different
from zero and as a result, the cavity length is changed. When the phase of
the error signal is adjusted correctly, the change of the cavity length brings
the laser back to the desired atomic transition.

As mentioned, the error signal is applied to the laser diode via a PID loop
in the LB. We can switch from the scan mode to lock mode (this is when the
PID is on) continuouslyf]

In principle the error signal can also be fed back to the laser diode current,

“Stanford Research, SR 530
8for the electronic circuit please see Appendix A
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Figure 4.4: Doppler free saturation signal of the D2 transition F=2—F’. The
signal shows clearly the single transitions, which one would expect from the level
diagram The transition marked 1-2, 1-3, 2-3 are cross over signals. The signal
below is the error signal, obtained with the discussed lock-in method.

but in our case, the bandwidth of the error signal is limited by the Lock-In
amplifier, and it would make no sense to apply the error signal to the current.
Never the less, for our purposes a feedback to the piezo is sufficient enough.

An error signal, which can also be applied to the current must have a
larger bandwidth. Acting with the error signal on the current has the effect,
that the laser linewidth can be further reduced (~ 10 kHz range). In a
diploma thesis [87], we developed the electronics for a frequency modulation
feedback lock (FM lock) [88, 89] and a frequency offset lock [90], which
generates a error signal, which is fast enough to be applied to the laser
current. The developed lock scheme will be implemented soon in the existing
laser system, as for future experiments it is required.

Off resonant stabilization

The described locking method allows us to stabilize a laser diode exactly on
an atomic transition. For trapping atoms in a MOT, or for Molasses cooling
it is necessary to be detuned by an amount § (in the case of Molasses cooling
this has even to change over time). Normally this can be done with a double-
pass acousto optical modulator [91], on the cost of light power (one has to
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Figure 4.5: Setup for the Doppler free saturation spectroscopy used for off resonant
stabilization. Note here that in contrast to figure we have the possibility to
apply a homogeneous magnetic field to the spectroscopy cell. This allows us to
'detune’ the atomic transition due to the Zeeman effect. The \/2 wave plate in
conjunction with the polarizing beam splitter controls the intensity in the two exit
ports. The \/4 wave plate improves the spectroscopy signal, because with circular
polarized light we pump the different magnetic sublevels, which are accessible due
to the present magnetic field.

pass two times trough the acousto-optic modulator (AOM), the diffraction
efficiency of an AOM is typically 80%). The approach in our setup maximizes
the available light power for the experiment. It is based on detuning the
atomic transition with the help of the Zeeman shift. This approach does not
require a double pass AOM. In figure the spectroscopy setup is shown. It
is almost identical with the setup seen in figure [£.3] but with the difference
that around the spectroscopy cell a magnetic field coil is wound, and that
the pump beam is circular polarizedﬂ In normal operation (no B-field, coil
current off) we observe the expected Doppler free saturation spectroscopy
(see figure . When we switch on the B-field, the magnetic sublevels of
the atoms experience an energy shift due to the Zeeman effect (E = p|B|),
which results in a frequency shift of the atomic transition. With the Lock-In
method described above, we can now stabilize the laser to a Lamb dip or
cross over, and then detune it changing the current in the coil. The resulting
magnetic field of the coil, and consequently the frequency shift of the levels,
determines the detuning of the laser. The current through the coil and thus
the shift can be controlled externally by the experimental computer control.

When we stabilize the laser to the cross over transition 2 — 3 (see fig-
ure , we can detune the laser from this transition by ~ 40 M H z with the
described method (see figure . In addition we can dynamically change
the detuning on a time scale of ~ 1 ms.

9The setup is almost identical with a polarization spectroscopy setup [85], except that
the analyzer is missing
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Measuring the linewidth of a laser

Now, as we can stabilize the laser to an atomic transition, we can easily
measure the linewidth v of the laser (v is the laser frequency). We have two
identical setups in the experiment (for the repumping and cooling transition),
we can use these laserd™|

By overlapping the beams of the two lasers and focusing them onto a
fast photo diode (bandwidth > 200 M Hz), the two lasers will produce a
signal on the photo diode of the form:

I(t) ~ [En(t)+ En)]
~ [E07L1 sin (27TV1t —f- ¢1 (t)) + E07L2 Sin (27Tl/gt + gbg (t>>]2
~ A + E07L1E0,L2 sin [27T(V1 — 1/2)15 + (¢1(t) - §Z§2(2>)], (41)

where Ejy 1, is the electrical field amplitude of the first laser, Ey 1o the one
of the second laser, ¢ (t) and ¢(t) are the phases of the lasers and v and v
the appropriate laser frequencies. A contains all high frequency terms. The
second term in equation 4.1| will produce a oscillating signal on the photo
diode with a frequency vpeq; = v1 — 15, the so called 'beat note’. This signal,
as it is moderate in frequency, can be measured with a photo diode. We lock
the lasers to a atomic transition in order to have a fixed frequency difference
(if the lasers are not stabilized, the laser frequency would change due to the
environment, and the beat note would also change). As each laser has a
linewidth dv, the beat signal will also show a linewidth dvpe.;. To get the
spectral information, we send the signal to a spectrum analyzer. The output
of the spectrum analyzer can be interpreted as the spectral power density
of the electric field Sg(v) of the laser. The meaning of Sg(v) is, how much
laser power is in the frequency interval of 1 Hz around some frequency v.
The characteristics of Sg(v) are determined by the nature of the frequency
noise [92]. As measured earlier [87], we can assume that we have mostly
flicker frequency noise, which results in a Gaussian proﬁle{ﬂ around 1 and
the linewidth is then given by

4 5
ovyyp = ;VO\/IHQID <wlT ) h_1, (4.2)

10Tt is important to have two completely independent lasers
HWhite noise would cause a Lorenzian shaped spectral density
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Figure 4.6: The beat note: the signal is recorded with a fast photo diode, and
then it is Fourier transformed with an electrical spectrum analyzer. The linewidth
measured is <1MHz.

with v the laser frequency, w; the lower cut-off frequency (because of a finite
measuring time) and 7. the coherence time of the laser.

The linewidth of the beat signal can then be calculated with (assuming
a Gaussian distribution):

(6Upeat)? = (611)2 + (61)? . (4.3)

This holds only true if we can assume that both lasers have the same char-
acteristic, which is fulfilled in our measurement setup. In figure |4.6| we can
see a beat signal. The fit to it is a quadratic function as the scaling is log-
arithmic. In a linear representation it would be a Gauss curve as expected.
We measure a linewidth for each laser of <1 MHz.

Master slave setup

Up to now we discussed grating stabilized lasers with low power. We use
these diodes, because they are easy to control. But for trapping a large
number of atoms, high power is required [53]. To gain more power we use a
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Figure 4.7: The slave laser mounting (right) and the the beam path (left) of the
master slave setup. Some light of the master laser is seeded into the slave laser.
Here the stability of the optical beam path ensures stable seeding of the slave
laser. The right picture shows the slave laser itself. The high power laser diode is
collimated and temperature stabilized.

so called 'maser-slave’ configuration. The master laser (ML) is the discussed
grating stabilized and well controllable laser, the slave laser (SL) is a high
power laser diode, which can not easily be stabilized with a grating. A small
portion of the light of the ML is fed into the SL. Because of the seeding light
from the ML, the inversion for the free running mode of the SL is reduced
and by choosing the right condition, such as current and temperature of the
SL, the free running mode is completely suppressed and the SL runs only
on the injected ML mode [93]. We monitor this behavior with an optical
spectrum analyzer, a Fabry-Perot interferometer. We use < 2 mW of ML
light to seed the SL and measure a capture range (this is the range where
the SL follows the ML) of about 800 M Hz, which is in good agreement
with measurements performed in [94, 95]. To prevent back reflection from
the SL into the external cavity of the ML, we use an optical diode (60 dB
attenuation). As we found, it is not necessary to isolate the slaves from the
experiment. Figure shows the optical path and a picture of the SL. Note
here that we took special care that the beam path from the ML to the SL
is stable. This was awarded with a long term stability (no further optical
adjustment) of ~1 yeaﬂ. The used slave laser diodes give us 50 — 70 mW

2essentially we do not have to adjust the SL at all
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of laser power”|

Experimental implementation

We have now discussed all necessary components for the laser setup. The
remaining part is the experimental implementation. Here we should first
consider which laser frequencies are needed for the experiment (see Ap-
pendix [A| and figure . The above table gives an overview of the needed
light frequencies, to which atomic transition we stabilize the appropriate
lasers to, and how the laser light is subsequently shifted in frequency to get
the needed light.

needed atomic purpose stabilized to frequency shift

transition

F=2—-F=3 cooling cross over 2-3 shifted by
magnetic  field
and AOM
(+80 M H=z)

F=1—-F=2 repumping direct to transition | -

F=2—-F=3 imaging cross over 2-3 shifted by AOM
+133.3 MH=z

F=2— F =2 | optical pumping cross over 2-3 shifted by AOM
—133.3 MHz

The light for the last two points (imaging and optical pumping) are gen-
erated by the same laser. Figure 4.8 shows the beam path used in the ex-
periment. Again special care was taken to ensure maximum stability of the
used components to guarantee the mechanical robustness.

The light for cooling the atoms for the upper and lower MOT comes from
two independent SL, which are seeded from the same ML. The ML is shifted
from the cross-over transition 2 — 3 to the blue (with the method described
in , and this light seeds the SL. As this variable detuning is not enough
(see figure [4.9)), the SL are further shifted by acousto-optical modulators.
The AOMs in addition to the frequency shift are used for fast switching
off of the light (switching times ~ 3 pus). To have sufficient laser light for
repumping the atoms from the F' = 1 state back to the cooling cycle, a single
SL amplifies the light.

13during the development of the experiment, we used different SL diodes.
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Figure 4.8: The complete laser system: it consists of the cooling and repumping
laser for MOT operation. The cooling laser seeds two SL, one for each MOT.
The repump laser seeds just one SL, which is then split in two for the MOTs. In
addition we have a grating stabilized laser, the probe laser, which provides the light
for optical pumping and imaging. The acousto-optical modulator (AOM) shift the
light in frequency and acts as fast optical switches. In order switch off the light
completely (AOM’s have an extinction ratio of ~ 1000), additional mechanical
shutters are installed for each laser beam. Note that for the probe laser just a
simple Doppler free saturation spectroscopy, where the Doppler background is not
subtracted is used.
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Figure 4.9: Coil current versus detuning: the signal is obtained in the same manner
as figure Two lasers (the cooler and the repump laser) are overlapped and
the beat note is recorded with a fast photo diode and analyzed with a spectrum
analyzer. Then the cooler is detuned with the Zeeman shift as described. Due to
this, the beat note changes its frequency.

4.1.2 The double MOT apparatus

The vacuum system, like the laser system, has to fulfill a couple of demands,
like a good pressure (< 107! mbar) and a good optical access to the trapped
atoms. Figure shows the complete setup. In [96, 97] one can find a good
description of the used setup. Therefore we will just summarize the main
aspects.

As already mentioned, our choice is a two vessel vertical chamber with a
transfer chamber in between (see figure[4.10)). The lower part (which harbors
the lower magneto-optical trap) consists of a six way cross of CF40 portﬂ
with anti reflection coated windows. In addition, there are six CF16 ports.
We have three anti reflex coated windows on these ports, two for monitoring
and measuring the magneto-optical trap and one to let the push beam in

14CF denotes an industrial standard for vacuum parts, the number is the inner diameter
of the tube
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Figure 4.10: The double MOT apparatus: the main parts are the lower vacuum
chamber for the lower MOT and the ultra high vacuum chamber, also called science
chamber or upper MOT. Here the experimental cycle which leads to the Bose-
Einstein condensate is performed. Note the good optical access as well as the
compactness.
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(see section . In addition, one port houses the Rubidium oven which
is built from so called ’alkali metal dispensers’ (in our case Rb). By run-
ning a current through these dispensers, Rb vapor is releasedﬁ. An extra
port is used to connect a 20l/s ion-getter pump, which brings us down to a
pressure of < 108 mbar. One more CF16 port connects the lower vessel to
the transfer chamber. The gaskets in this case are not the normal oxygen
free copper rings, but they look like a top-hat. The brim is the gasket and
the rest is a tubﬂ. The reason for the tube is, to ensure good differential
pumping between the chambers. A 300[//s ion-getter pump with an addi-
tional titanium sublimation pump is attached to the transfer chamber. This
assures a pressure < 107'* mbar. On top of the transfer chamber the science
chamber is connected via a CF64 port. This chamber is made according to
our demands. From the top, the atom chip holder with the wire traps can be
inserted (see . Good optical access is achieved by the pan chake shape
of the chamber, and by using special gasketﬂ These gaskets allow the use
of good optical windows. The windows are pressed directly onto the metal of
the gaskets. Due to this they use less space and therefore smaller distances
to the atoms can be realized. These gaskets are used for the two big win-
dows and for the imaging axis. Here this is of special importance, because
the quality of the windows affects the spatial quality of the absorption beam.
One additional window under 45° is also sealed with this method, but for
now it is not of special use. For a technical drawing of the science chamber
please see the Appendix [B]

4.1.3 The atom chip holder

In section we described the vacuum vessel. In this apparatus the atom
chip holder is inserted from above into the science chamber. It is the part
which contains the wires. These wires (in conjunction with external fields)
are used to provide magnetic fields to cool and magnetically trap the atoms.
The considerations in motivate the complex structure of the atom chip
holder.

A wire bent into a U and Z enables to generate quadrupole and Ioffe-
Pritchard type traps. In addition we want to realize more complex struc-
tures for magnetic guiding and manipulating atoms. From the scaling laws
of equation |3.9] we saw that smaller structures enable more extreme trap
configurations, but at the cost of trapping volume. To combine large trap-
ping volumes, in order to trap a lot of atoms, but still have the advantages

15Company SAES
16These gaskets consist of one piece
"Helicoflex gaskets, Garloc
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Figure 4.11: The atom chip holder: Left: the complete setup. The water cooled
steel bridge and the connections to the H structure are visible. Right: the head
of the atom chip holder. The H structure, embedded in the Macor piece, with the
high current connections (on this picture, the atom chip is not mounted). The pins
along the side are the copper Berillium pins. Later the atom chip pads are wire
bonded to these pins. Connecting different ports allows different trap geometries

(see section [4.3.1)).

of miniaturized wire traps, we developed a two layer structure. One layer,
the base, that enables U and Z wires to trap a large fraction of atoms and
another layer, the actual atom chip, with more complex structures for ad-
vanced physics. This assembly is mounted on a copper and (stainless) steel
column. The whole assembly is called the atom chip holder.

Figure (left) gives an overview of the complete atom chip holder.
We realized the base layer with a copper H structure (see Appendix |C| for
a technical drawing ). By addressing different ports, diverse U and Z wire
traps can be realized. In order to attain sufficient trap depths and trap
frequencies (see [3)), we run currents of up to 60 A through this structure. To
avoid heating, and as a result degrading the VacuumEL we kept the contact
resistance as low as possible by bolting the H structure to massive copper
rods of @ =5 mm. Four of the six rods are connected to high current feed

Bdue to evaporation of dirt from the structure
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Figure 4.12: The atom chip bonded to the copper berillium pins. We used 25 pm
aluminum wires to make the bonds. Due to the small size of the wires, it was
possible have more bonds then necessary (the limit would be the maximum current
of the connected wire). In this way we avoid that the wires act like fuses.

throughs (max. 60 A). The two remaining rods are fed through a 35 pin feed
through, using 3 pins per rod (the maximum current is 10 A per pin).

To hold the structure in place it is embedded in a piece of Macorﬂ The
atom chip (see section is glued onto this Macor piece using a UHV
compatible glud®] One of the main difficulties was to contact the fragile wire
structures on the atom chip to the 35 pin feed through. We overcome this
problem by bonding 25 pum aluminum wires from the atom chip to copper
beryllium pins. The pins are held in the Macor piece. Up to 15 bonds
per contact were made to ensure low contact resistance. Figure 4.12f shows
typical bonding connections. The copper beryllium pins are then connected
to copper wires insulated with Kaptorﬂ and these in turn are connected to
the 35 pin feed trough.

This assembly, the atom chip head, is bolted to a copper post. This post
is then attached to a steel bridge, which can be water cooled from the outside.
Current connections are welded in the CF 63 flange.

The water cooling was motivated to have the possibility to cool the atom
chip. As it turned out, it was not necessary. Note here that in principle the
used water cooling would not be of much help, because Macor has a heat
conductivity of only 1.5 W/Knﬂ This should be improved with a next
design of the atom chip holder.

9Macor is an easy to machine, UHV compatible ceramic
20Epotec 920, Polytech Gmbh.

21Kapton is a vacuum compatible polymere

22in comparison, copper has a heat conductivity of 401 W/Km
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Figure 4.13: The old mounting: one can see the atom chip, which is glued to the
head of the mounting, using small copper pieces (compare with figure . Here
silver wires were used to generate quadrupole fields (U-wire) and Ioffe-Pritchard
traps (Z-wires).

The whole configuration is inserted from the top using a CF 63 flange.
First it has to go through a tube of @ = 63 x 249 mm. When it enters the
main body of the science chamber, the available space is @ = 50 x 160 mm.
The small outer dimensions put strong constraints to the construction. The
length measured from the inside of the CF 63 flange to the atom chip surface
is 247.5+0.5 mm. This brings the chip surface into such a position, that the
laser beams for the mirror MOT (see section can shine onto its surface
at a 45° angle.

The described atom chip holder is based on an earlier construction. Fig-
ure shows this setup. From a water cooled steel bridge four free standing
poles held the atom chip head of the double layer structure, in this case the U
and Z wires were independent and out of a silver wire with @ = 1 mm. The
silver wire was pressed into grooves in the Macor. Two opposing U wires and
one 7 wire were realized in this way. The wires were connected to a 35 pin
feed through. In the case of the U wires we found out, that the maximum
current through this construction was 30 A, then the vacuum started to de-
grade, due to evaporating silver. The Z silver wire was connected to copper
rods @ = 3 mm shortly after the Macor. In this assembly the connections
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Figure 4.14: Left: the atom chip structure. It consists of a 700 pum thick silicon
wafer. Different layers are then evaporated onto it and they form the actual atom
chip pattern (silicon nitride 40 nm, titanium 40 nm). The last layer is gold, in our
case 2.2 pm thickness, where the wires are etched into it. Right: a cut through a
chip, where the photo resist, which is needed for the fabrication process, is still on
the surface. In this design 1 um wires are separated by 1 pum trenches.

to the atom chip where glued, using small copper pieces and a conducting
glue. To ensure isolation, a non conducting glue was used in between the
connections. It turned out that this method was not reliable (the connec-
tions broke), and the contact resistance was high. Furthermore, the large
glue drops obstructed the optical access.

In the present setup, before the bonding technique was developed, a
clamping technique was used to make the connections to the atom chip.
For this we first stuck the copper wires through the Macor piece, and then
formed a hook. The wire was pulled down until the hook made contact to
the chip. The problem with this method was, that while baking the vacuum
the wires got loose, and the connections failed.

4.1.4 The atom chip - basic concepts

The atom chip carries more complex wire structures than the copper struc-
ture. It is fabricated at the Weizman Institute of Science, Israel. The current
design on the atom chip was made by R. Folman and P. Kriiger.

The atom chip is a multi layer structure. The different layers are evap-
orated onto a silicon wafer of 25 x 30 mm?2. On top of this a silicon nitride
layer of 40 nm is evaporated. It ensures isolation between the wires and the
silicon wafer. Then a 40 nm titanium adhesion layer is applied. The final
layer is the gold, where the wire structures are imprinted. The used atom
chip has a 2.2 um thick layer. Figure shows a cut through a chip.

The wire sizes vary between 10 pm and 200 pm. The resolution of the
structures is 100 nm, and the distance between two wires is 10 um. The
wires itself can be sculptured arbitrarily, depending on the physics that we
want to study. In the present work only the Z wire in the middle was used
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//:H.

Figure 4.15: Detail of an atom chip: the displayed chip was designed and produced
within the scope of this thesis. It shows Z structures (similar to the structure used
for the chip experiment described in , and guides. Yellow indicates the gold
surface, and the black lines are the trenches, which separate the wires.

(see section . Newer generations of chips reach gold layer thicknesses of
up to 5 um and wire widths down to 1 pum are possible.

Within the scope of this thesis, an atom chip was designed and later on
built (by S. Groth). Figure shows the central part with Z structures of
different sizes. Long guides, up to 10 mm, are also realized in this design.
The chip has not yet been built in.

4.1.5 The mirror MOT

In section [2.2] we discussed the working principle of an ordinary six beam
magneto-optical trap (MOT). Here we characterize a special type of a MOT,
the so called mirror MOT.

Normally a MOT is formed by six laser beams, either independent or
retro-reflected. In the special case of a mirror MOT, only four independent
beams are necessary. Two incoming beams, ot and o~ polarized, are re-
flected under 45° from a mirror surface [23] O8], in our case the atom chip.
Due to the reflection under 45° from a metallic surface, a phase shift of 7
between the polarization components (parallel and orthogonal to the surface)
is picked up. As a result, the circular polarization is changed from ot to o~
and the other way around. Two more laser beams, parallel to the atom chip
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Figure 4.16: The mirror MOT: the laser beam configuration is quite different from
the standard six beam MOT. Two circular polarized beams are reflected from the
atom chip surface, changing the polarization upon reflection. Two more beams,
parallel to the surface and perpendicular to the plane of the paper complete the
laser beam configuration. Note here, that due to symmetryreasons/arguments, the
quadrupole field has to be rotated by 45° to the chip plane.

surface, make the right constellation for a MOT. Considering symmetry of
the laser beams and its polarizations, the necessary quadrupole field must be
tilted by 45°. Figure shows the operation principle of a mirror MOT.
The quadrupole field can be generated in two ways, with external coils
and with a U shaped wire (see section [3.2.2). Here we discuss the used
external coils. This MOT we will call the Q-mirror-MOT. The coils are of
conical shape and they are water cooled. The shape of the coils allows good
optical access to the atoms, as the image axis passes near by (see figure .
The coil itself is mounted on an aluminum tube (& = 80 mm and 60 mm
long), fitted with an end plate. A copper tube of @ = 3 mm is 20 times
wound around the tube. To increase the cooling, the copper tube is spiraling
4 turns on the end plate. The used isolated copper wire for the coil itself, is
@ = 3 mm. The smallest diameter of the cone is )y = 86 mm, the biggest
@y = 190 mm. The coils have 204 and 206 windings respectively. To increase
the thermal conductivity between the cooling tube and the wire, a thermal
conducting epoxy is used@. The distance between the coils is 220 mm. The
coils are operated with a current of 32A. At this current the field gradients
are 14 Gauss/cm on the 45° axis and 7 Gauss/cm on the radial axiﬂ. To

23Stycast 2850 GT with curing agent Catalyst 17, Emmerson & Cuming
24the coils were measured previously in free space



4.1. Trapping, transferring and pre-cooling
atoms 75

ensure good alignment the coils are attached to the diagonal CF40 ports of
the science chamber.

4.1.6 The atom transfer

One of the difficulties to overcome, when using a double chamber system,
is the atom transfer from one chamber/MOT to the other. In our case we
transfer the atoms vertically with a continuous push beam [99] from a MOT
in the lower chamber (lower MOT), to the mirror MOT (see section in
the upper chamber. The atoms are first pre-cooled in the lower MOT. This
standard six beam MOT (with retro reflected beams) is penetrated from
below with a continuous beam, the so called push beam. The push beam
has a power of < 1 mW at the same detuning of the cooling beams. It is
focused onto the lower MOT with a 200 mm lens (spot size of ~ 10um).
It then propagates through the differential pumping stage and ends in the
science chamber (the beam path can be seen in figure[4.10). As it is not retro
reflected (the push beam hits the atom chip surface under an small angle),
the momentum transfer to the atoms is just in vertical direction. With this
method we can extract a cold atom beam from the lower MOT.

To measure the longitudinal velocity distribution we pulse the push beam
using an AOM. We monitor simultaneously with a photo diode the fluores-
cence of the atoms in the lower and the mirror MOT (see section [4.2). The
push beam is switched on for 20 msec, and a bunch of atoms escapes from the
lower MOT. The atoms travel over a distance of D ~ 50 ¢m (distance from
the lower MOT to the mirror MOT), and are recaptured in the mirror MOT.
Figure 4.17 shows the recorded photo diode signal of the mirror MOT. The
time delay T between the push beam pulse and the loading rate response
gives the mean longitudinal velocity © = D /T, and the time width At of the
response gives the longitudinal velocity dispersion dv.

Integration of the assumed Gaussian velocity distribution V(v)

V(v) = Vyexp {_(;5—;2@2} . (4.4)

gives

V(v) = (5v\/§VOErf {%} . (4.5)

Fitting this function to the data points in figure [4.17] allows to estimate T and
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Figure 4.17: Loading behavior of the Mirror-MOT: the push beam is on for
20 msec, and extracts a cold atom beam from the lower MOT. With a photo
diode the fluorescence of the Mirror-MOT is monitored. The sudden rise of the
photo diode signal marks the arrival of the atoms. Fitting equation to the
data points gives us a velocity dispersion dv = 20.7 m/s, and a mean velocity
v =284 m/s.

dv. The best fit gives for §v=20.7 m/s and for 7=28.4 m/s. Estimating the
temperature of the beam (in longitudinal direction) from o, we get ~50 K.

With this velocity, the two limits, gravity (3.1 m/s) and the potential
barrier of the upper quadrupole field (1.1 m/s), can be easily overcome.

In [I00] the atom transfer using this conditions was simulated with a
Monte Carlo simulation. In this simulation the effect of gradients, arising
from the quadrupole field, onto the atomic beam was studied. It was found
that they can be neglected.

The obtained results are not a direct measurement of the actual atom
beam velocity distribution, because we recapture the atoms in the mirror
MOT and therefore the trap properties enter the measurement.

We performed initial tests with a different vacuum setup, in which the
science chamber was replaced by a standard six way cross. In this vessel we
had an ordinary six beam MOT. There the transfer efficiency was extracted
from the loading rate of the lower MOT in comparison with the measured
recapture rate [I0I]. A test on the influence of the detuning of the cooling
laser beams (and respectively the push beam) was carried out. Here we
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found that the maximum loading rate of the upper MOT was obtained with
a detuning § = 18(2) M H z, providing a loading rate of 3.9(9) * 10® atoms/s.
The loading rate of the lower MOT was 2.9(6)*10° atoms/s, giving a transfer
efficiency of 13.4%.

With the present setup we found similar values, but slightly smaller.
This could be the effect of the reduced capture volume of the mirror-MOT
compared to a regular six beam MOT.

4.2 Measuring atom numbers and tempera-
ture

Knowing the atom number and the spatial distribution is essential in our
experiments. All physical properties, like for example the temperature or
the phase space density, can be deduced from these quantities.

One approach to obtain this information, is using resonant or near res-
onant light. The light interacts with the atomic sample, and either the
scattered light (fluorescence light) or the 'missing’ light (absorbed light) can
be measured. In our experiment we used both approaches, the fluorescence
and the absorption method.

4.2.1 The fluorescence method

With the fluorescence method, we can measure the number of atoms, using a
calibrated photo diode (no spatial distribution information), or we can detect
the light with a charge-coupled device camera (CCD camera) [102] (spatial
information). The method is based on the fact that atoms, illuminated with
resonant (or near resonant) light, will spontaneously scatter photons.

The number of atoms can be detected with a photo diode. We collect the
scattered light with a lens, covering a solid angle of /47 = 2.4(5) x 1074,
and image it onto the detector. The photo diode current (Ipp) is given by:

Ipp = QRPN gom , (4.6)

where R is the photo diode efficiency (R = 0.51 A/W for A = 780 nm), P
the emitted power per atom (P = hVogeq, Oscqr 1S the scattering rate) and
Natom is the number of atoms in the cloud. The scattering rate o.q; is given
by,
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Figure 4.18: Loading of the mirror MOT: for the loading, the laser is kept at a
fixed detuning. The photo diode signal rises, as more atoms are trapped in the
MOT. Then, in this case after 40 sec, the detuning is brought to zero (6=0). The
photo diode signal shoots up, as now the scattering rate is maximized. From the
height of the peak, the atom number is calculated with equation 4.6

r S
scat — ~ y 4.7
et = 9T+ s+ (20/T)2 (47)
where ¢ is the laser detuning and s the saturation parameter,
! 2
S=1 I, = 1.66mW/cm*. (4.8)

S

The maximum scattering rate is obtains at 6 = 0 and I > I,. Figure
shows a measurement with the fluorescence method. The atoms are first
trapped in a MOT, then the laser is swept in 2 ms over resonance. From
the peak at 0 = 0 one can calculate the number of atoms with equation [4.6]
In the experiment we do not saturate the atoms (I < 7mW/cm?), and we
therefore underestimate the number.

It is also possible to image the fluorescence light onto a CCD camera@,

25Pulnix, TM-6AS
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and get the spatial distribution of the atoms. Because the sensitivity of the
CCD chips is usually low, the exposure time has to be on the order of ~ pus.
These long exposure times cause a significant momentum transfer to the
atoms, leading to a heating of the cloud [103], and as a result, the measured
distribution is broadened.

4.2.2 The absorption method

With the absorption method, it is possible to image small numbers of atoms.
The used light is resonant with the ¥ = 2 — F = 3 transition, and it
is mode cleaned with a fiber in order to get a good Gaussian beam shape.
In the experiment the beam is expanded to 1 inch. The maximum inten-
sity is 330 W /cm? (~1/10 of the saturation intensity), to avoid saturation
effects [I04]. This beam will be noted as absorption beam.

An atomic sample, with a density distribution n(z,y, z), will cause an
attenuation, resulting in a shadow in the absorption beam (propagating in
the Y direction). The absorption is

I(x,2) = Ip(x, z)e s n@w2)dy (4.9)

with o, the scattering cross section for the absorption of polarized
light [105]:

ao?

1,6)= abs : 4.1
Pars(1,9) 1+ al /Iy + 462/T2 (4.10)

Here o9,, denotes the resonant cross section of a two level atom
(6%, = 3X\?/27 and A the wave length). « is a correction factor,
which accounts for the case of a multi level atom. If the atoms are spin
polarized in respect to the imaging axis (using a homogeneous field for
example), circular polarized light can be used for absorption, and « is one.
In our case the atomic sample is not spin polarized and the atoms are spread
over all Zeeman levels. In this case, we have to average over all possible
transitions using the Clebsch-Gordon coefficients. This results in o = 7/15.
In the following we put for simplicity a to one. Calculating the optical
density then gives

I(z,2)
In(x,2)

D(x,2,1,0) = ous(1,9) /n(m,y,z)dy = —In (4.11)
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Figure 4.19: Absorption imaging: in one experimental cycle three pictures are
taken. (a) is the absorption beam with the atoms (the shadow is clearly visible), (b)
is the profile of the absorption beam (no atoms are present), (c) is the background
image (complete darkness) and finally (d) is the picture after image processing

(equation |4.11]).

In the experiment, this means that we take a picture with the atoms (I(x,z)),
and a picture from the unperturbed absorption beam (Iy(x,z)). To be correct
we take a third picture with no absorption beam (I444(x,2)), and subtract
this picture from the perturbed and unperturbed ones, in order to get rid of
dead pixels and stray light. Figure 4.19) shows these three pictures and the
resulting image.

With the optical density we have direct information of the spatial
distribution of our atoms. The integral

n(x,z) = /n(x,y,z)dy, (4.12)

is the so called column density. When we assume [/I, < 1, and put this

into equation and 4.12] we get for n(z, 2)

Az, ) = — (1+4—52) I L2 (4.13)

a0 12 ) Iy(z, 2)
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To calculate now the number of atoms, we simply have to integrate n(x, z)
and end up with

1 462 I(z,2)
No=— (1422 In %) g0 414
° ogbs( 1) [ [ gy @)

In the experiment we usually have § = 0. When we now correct ¢, with
a = T7/15 we end up with the correct atom number.

4.2.3 Temperature measurement

With equation we have direct information of the spatial distribution
of the atoms. To measure the temperature of atoms in a MOT or in a
magnetic trap, we use the so called time of flight method (TOF) [22]. The
atoms are trapped, then we release them and take a picture after some time
t. According to their velocity distribution V, the atoms will fly apart. From
the speed of the expansion one can calculate (v?), the mean velocity. The
size of the cloud after the time ¢ is determined by its initial velocity V and
spatial distribution X. The spatial distribution after some time ¢ is then the
integral over all atoms of the initial distribution, which evolved during the
time t to the position 7

Xep(7t) = / X (7 — vt,t = 0)V(7)dv . (4.15)

Here we switched off the trap at ¢ = 0, and vt gives the distance the atom
traveled in time t. We can assume the spatial and velocity distribution as
Gaussian [4], and equal in all directions. Under these conditions we can
separate all directions in space in equation 4.15, and we can write

_(@vp)? 02
X 4) / B A (4.16)

where o, and o,, are the Gaussian widths of the spatial and the velocity
distribution in x direction. The result of [4.16l is

22

e 2050 (4.17)

1
Xexp('xa t) = \/%—O-%(t)
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with

0.(t) = \/o2(t = 0) + (0yet)?. (4.18)
We can now define the temperature of a thermal gas as
mo2, = kgT, (4.19)

where kg the Bolzmann constant and 7" the temperature. Putting this into
equation [4.18 we end up with

o mlod(t) — o2(t = 0)] 120

t2kp ’

with ¢ the expansion time. The quantity ¢2(¢) can be measured and (¢ = 0)
can be either measured, or we can get it from a fit.

4.2.4 The imaging system

The method discussed in section[d.2]suggests already that we need an imaging
system, respectively a CCD camera with optics. As we want to image small
samples, we need a high resolution. In addition it should be flexible, meaning
that it should image from large scales ~ 1 mm down to ~ 100 um and below.
For this we developed in a diploma thesis [106] a setup, which fulfills these
conditions. In this section we restrict ourselves to the absorption method.

Figure shows the developed setup. We first mode-clean the absorp-
tion laser beam with a fiber, and then expand it to 1 inch. The beam passes
through a non polarizing beam splitter and through a quarter wave plate.
The non polarizing beam splitter and the quarter wave plate are used to
couple in the optical pump beam and to ensure its right polarization (see
section . This beam is off when we take a picture. The beams enter the
chamber through a CF40 anti reflection coated view port, and subsequently
pass the atomic sample. The beams exit the chamber through a high quality
window sealed with Helicoflex gaskets.

The lens system for the imaging consists of achromate lenses, which are
corrected for chromatic aberration, spherical aberration and coma. The sys-
tem ensures a diffraction limited resolution. The first lens is an achromate
lens with f=100 mm and ¥=30 mm giving an f-number of /0= 3.3.
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Figure 4.20: The imaging system: the flip mirror allows to change from a low
(2:1), to a high magnification (1:3) with no further adjustment. The lenses for the
high magnification give a diffraction limited picture at a resolution of ~ 4 um.

As can be seen from the setup (see figure 4.20)), we are able two switch
between two image paths with a flip mirror. Both paths share the same first
len@. When the flip mirror is in the beam path, we have a low resolution
and magnification. In this case, the second lens is a commercially available
camera lenﬂ giving an image area of 20 mm? (we have a magnification
of 1/2). The used camera is an 8 bit, half frame camera [ (half frame
camera means that two rows are added, and therefor the pixel size is virtually
enlarging to 16.6 um for one side). This view is used for large atomic samples
in the beginning of experimental cycle (see section .

When we want to image small atomic samples, for example a Bose-
Einstein condensate, we flip back the mirror and use the ’direct’ axis for
imaging. With the second lens we can adjust the magnification. For most of
the pictures in this work we used a lens configuration of f=100 mm /f=300 mm
giving a field of view of 4 mm?. With an f-number of 4 we would theoretically
obtain a diffraction limit of 3.8 pum. The system was tested separately and
this value could be verified [106].

In the experiment we take three pictures with these cameras (see fig-
ure [4.19). One with the absorption beam and atoms (I(z, z)), one with just
the absorption beam (Iy(z, z)) and one with no light at all (I444(z, 2)). The
Lyark (2, 2) is subtracted from the other two pictures and according to equa-
tion and the spatial distribution and the number of atoms can be
calculated.

26Melles Griot, 06LAIO11, f=100 mm, @#=30 mm
2"Nikon, f=50 mm
28Pulnix TM6AS, pixel size 8.6 x 8.3 um?, quantum efficiency ~ 10% at 780 nm
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An 8 bit camera in some cases is not sufficient, because of the bad elec-
tronic resolution and the low quantum efficiency,as well as its large noise. We
therefore installed a new camera with 16 bit resolution@ with a pixel size of
20.5 x 20.5 um?. The back illuminated CCD chip is cooled down to a temper-
ature of —50°C' and has a very low noise figure, and a quantum efficiency of
~ 40%. To get to the same resolution as we had, we use a lens configuration
of f=100 mm/f=700 mm (magnification 7). This camera has, beside the bet-
ter quantum efficiency, the possibility of a frame transfer mode. This mode
allows to move parts of the CCD chip electronically. We now cover half of
the CCD chip with a mask, the rest is exposed to the absorption beam and
so takes the actual picture (absorption beam and atoms, I(x, z)). This pic-
ture is moved electronically under the mask, so it can not be exposed again.
Subsequently a second picture is taken (just the absorption beam, Iy(x, 2)).
After this, the whole CCD chip is read out. The image we obtain in this way
contains both pictures. In a separate cycle, a dark picture can be made. The
huge advantage of this frame transfer mode is that the delays between two
pictures can be short (~ 30 ms). On this special feature, a diploma thesis
is currently on its way [107].

4.2.5 Interpretation of the pictures

In section [£.2.3] we found the relation between the temperature T and the
Gaussian width of the spatial distribution after some time t of free expansion.
Figure|d.21|shows an expansion series recorded with the absorption technique.

We release the atoms at time ¢ = 0 ms, and let them expand for
some time. We then switch on the absorption beam for ~ 100 us, and
simultaneously take a picture (I(z, z)). After a certain delay (in the case of
the Pulnix camera, 300 ms, in the case of the Roper Scientific camera 50 ms),
we take the second picture (Ip(x,z)). The dark picture (Izk(x,2)) is taken
afterwards. We can now calculate the optical density with equation [.11]
but now modified with the dark picture

I(x, 2) = Ijgrk(z, 2)

In(x, 2) — Lyari(z,2)° (4.21)

D(QJ,Z,[,(S) = O'abs<175> /n(xvyv Z)dy = —In

The pictures in figure show the result of equation .21} When we now
want to calculate the number of atoms, we take equation and carry out
the integration

2Roper Scientific, TE/CCD-1152-EM/1,UV
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Figure 4.21: Time of flight: with this measurement we can determine the the
temperature of the atoms. The atoms are first trapped in the magnetic trap, then
the trap is switched off and the atoms expand. Column (a) shows the absorption
pictures after 3, 4, 5 and 6 ms. Columns (b) and (c) show a cut through the X
and 7 axis with a Gaussian fit. The fit is done with a MATLAB routine.
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B 1 I($n, Zm) - [dark(xna Zm)
N=—3> %" ) AzAz, (4.22)

O abs " om - Idark(wna zm)

where Az and Az is the width and the height of the picture point (pixel size
times magnification). This calculation is done with a home made software in
MATLAB Then we search for the maximum of the cloud. As the program
allows us to treat the picture like a matrix, we can make a cut in X and Z
direction and sum over 10 rows/columns around the maximum, in order to
get a better signal to noise ratio. Then we fit a Gauss curve to the data. The
program derives all relevant parameters of the Gauss fit. Our main interest
are the Gaussian widths, o, and o,. With this we can derive the temperature
according to equation [£.20] Figure shows a temperature analysis. To
make the fitting easier, we square equation and plot the time squared
against the width squared. Doing this we can make a linear fit to the data
points and obtain from the slope K the temperature T = %, where m is
the mass of the atom.

In the case of a Bose-Einstein condensate the situation is slightly differ-
ent. As we saw in chapter [I] the spatial distribution of a condensate is not
Gaussian, but it is a inverted parabola. For this we simply have to modify
the fit routine, to perform a bimodal fit.

4.3 Creating a Bose-Einstein condensate

The main purpose of the presented work was to create a sizable (atom num-
bers >10°) Bose-Einstein condensate with magnetic wire traps. The con-
densation itself is done in these traps. In this section we report about the
different steps of the experiment.

We start with a description how we implement the magnetic wire traps
and the necessary bias fields in the experiment. The experimental cycle starts
with the Q-mirror MOT (laser detuning § ~ 12 M H z), where we collect and
pre cool the atoms (see section |4.1.5). We then transfer the atoms in the
so called U-mirror MOT, where, for the first time in the experiment, we use
magnetic fields generated by wires (see section . This phase is followed
by an optical cooling step, the Molasses phase (section , then we pump
the atoms into the |F' = 2, mp = 2) state, which is a high field seeking state.
Then we come to the most critical point in the experiment, where we load the
magnetic trap, the so called Z-trap. The number of atoms we can load into

3OMATLAB is a programming language, specially designed for technical /physical use
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Figure 4.22: Temperature calculation: we let the sample expand and take absorp-
tion pictures after some time. From the width of the expanded sample we can
calculate the temperature (see section [4.2.3)). We square equation and from

the slope of the fit the temperature is obtained. In this case the temperatures are:
Tx =14 pK(+0.28uK), Ty = 1.9 uK (£0.28uK).

the magnetic trap determines the success of the experiment. After this we
compress and cool the atoms, using the evaporation technique, which results
in a Bose-Einstein condensate of typically 3 * 10° atoms.

4.3.1 Generating the magnetic fields

In principle we simply need a wire and a homogeneous bias field (see chap-
ter [3)). The wire is realized in our case with a massive copper H-structure,
which is implemented in the atom chip holder (section . Most of the
experiments presented in this work use this structure. The H-shape makes it
extremely flexible, because it allows the combination of different ports and,
as a result, different traps. It can also generate bias fields (see chapter [5)).
Figure [4.11|shows the H structure in the atom chip holder with the two most
commonly used configurations indicated.

The necessary bias fields are generated in our case by coils in a Helmholz
configuration, outside the science chamber. We have three pairs for the
three spatial directions. In addition to these bias fields, static fields in all
directions are needed to compensate residual magnetic fields (for example
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the earth magnetic field). The values for the coils are:

type windings | @ | dim. (HxW [mm]) | res. [Q] | ind. [uH]
X-bias field 32 2.1 120200 0.3 400
Y-bias field 32 2.1 120x170 0.45 200
Z-bias field 18 1 370270 1.2 200
X-compensation 20 0.75 140x 220 2.4 *
Y-compensation 20 0.75 120x170 2.4 *
Z-compensation 150 1.0 500x 330 8.0 *

When we constructed the science chamber we took special care of the
outer dimensions. As a result the Y-bias coils are 65 mm, the X-bias coils
are 45 mm apart. This allows us to have relatively small coils, resistances
and inductances. The small inductance allows to switch off the fields on a us
scald®] The Z-bias coils are 240 mm apart, but in the presented experiments
they are of minor importance.

The compensation coils are of special importance, as their stability en-
sures, that once the magnetic stray fields are compensated, work under de-
fined conditions is possible. To ensure the stability, special noise free power
supplieﬁ and a low pass filters (cut off frequency <10 Hz) are used.

The bias fields are operated dynamically (we ramp the bias fields on a time
scale of < 10 ms) in the experiment. Therefore the used power Supplieﬂ
have to be noise free as well to avoid heating of the atoms (see section [3.2.4)).
A low pass filter is not possible in this case.

One important aspect is the strength of the used fields, as they form the
trap. We measured the strength in two independent ways, one using a Hall
probe, the other one using the atoms in the magnetic trap. As we saw in
section the position of the atoms in a magnetic wire trap is defined
exact. The current through the wire, as well as the position of the atomic
sample can be measured with great accuracy. From this information the
bias field can be calculated. We compared the two results and found a good
agreement (see figure [4.23).

When we switched off the magnetic Z-trap the atoms experience a ho-
mogeneous field, caused by eddy currents in the chamber and the Helicoflex
gaskets. When measuring the atoms in the trap, or slightly after switching
off the trapping fields, we observe lower atom numbers. This is due to the
Zeeman shift of the atomic energy levels. The absorption beam (light at the

3lwe can switch of a coil of ~ 100 uH with 1.5 A/s
32HP 66312A, 0-20 V, 0-2 A
337 wire: Agilent 6551A, X/Y-bias: Agilent 6641A
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Figure 4.23: Calibration of the bias fields: the magnitude of the bias fields deter-
mines the trap parameters. a) the X- and Y-bias fields are measured with a Hall
probe (we find for the X -bias field 3.40 G/A, for the Y-bias field 3.62 G/A). b)
the position of the magnetically trapped atoms, depending on the Y-bias field, is
measured (Iz =49.6 A).

F =2 — F' = 3 transition) is detuned relative to the shifted transition, and
thus the atomic sample absorbs less light (see equation . Figure m
illustrates this phenomenon. To overcome this, we always measured after
3 ms of expansion, to ensure a correct value for the atom number.

4.3.2 The U mirror MOT

After we collected atoms in the Q-mirror MOT (section , we transfer
the atoms to the so called U-mirror MOT. The quadrupole field in this case
is generated with a U shaped wire and a bias field (section . The
advantage to have the atoms in the U-mirror MOT is, that we can switch
off the fields on a ~ us scale and that the atoms are closer to the trapping
region of the magnetic Z-trap.

In our setup the U wire is realized with the copper H structure, which is
integrated in the atom chip holder (see figure . The bias field is provided
by the coils around the science chamber (in Y direction). The transfer from
the Q-mirror MOT is done by ramping up the U current, the Y-bias field
and the Z-bias field in 220 ms to their final value. The Z-bias field causes
the a tilt of the field (this improves the quadrupole field) and in addition it
brings the trap center atop of the structure (this improves the spatial overlap
with the magnetic Z-trap). The external quadrupole field is ramped down

70
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Figure 4.24: Atom number after we switched off the magnetic trap: the atom
number in the magnetic trap is lower, due to a Zeeman shift. This Zeeman shift
depends on Bjrp, and therefore on the trap configuration. After the we switch off
the magnetic trap, the atom number drops even further, and then rises to a value,
and stays constant. This shift can be explained with an eddy current, induced
into the steel chamber and the gaskets. The red line indicates the switch off of the
magnetic trap.

in 150 ms with a 50 ms offset to the U-current (see the control chart in the
Appendix [F]). Figure shows the U current and bias field dependence.
We normally operate the U-mirror MOT with I; = 29 A, a bias field of
By = 6.5 G and B; = 6 G. The cloud is then 6 mm away from the atom
chip. The distance to the atom chip can be varied by changing the bias fields
or the U current (see figure .

Note here that the U-mirror-MOT can not be loaded directly, because the
range where the quadrupole field is suitable for a MOT is too small. This can
be improved, as mentioned, by tilting the bias field [67]. The tilt is achieved
by using the Z-bias field.

Under typical experimental conditions we collect ~ 10° atoms in the Q-
mirror MOT. The transfer to the U-mirror MOT is done with near unity
efficiency. The relatively high gradients in comparison with the Q-mirror
MOT lead to a compression. The loading process of the Q-mirror MOT and
the transfer to the U-mirror MOT can be seen in figure (the fluorescence
light is recorded with a photo diode signal). The amplitude jump is a result
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Figure 4.25: U dependencies: a) the Y-bias field is changed and the position of
the minimum is calculated with our model. b) the change of the gradients in the
Y and X direction. The colors in the different plots correspond to a I;; current of:
29 A (blue), 25 A (green) and 20 A (magenta). Note here that for the Y direction
the minus means that the minima is not above the U-wire (see figure .

that the Q-mirror MOT and the U-mirror MOT are not at the same position.
The fast decay of the trap is due to the poor quadrupole field. This decay
would be normally not acceptable, but the time we keep the atoms in the
U-mirror MOT is just 5 ms, until we switch off the fields to perform the
Molasses phase.

In the previous test setup with the silver U wires we performed exact
measurements of the transfer efficiency from the Q-mirror MOT to the U-
mirror MOT. Figure shows the results we obtained with different ramp-
ing times. We found the best results with ramping times of ~100 ms.

4.3.3 The Molasses phase

After the U-mirror MOT, we switch off the U-current and the bias fields and
start the polarization gradient cooling, the so called Molasses phase (see sec-
tion . As discussed in chapter |2 the limit for Doppler cooling in the case
of 8Rb is Tpopp = 145.5 pK. This temperature depends just on I', the natu-
ral linewidth of the atoms. The additional process, the polarization gradient
cooling, depends on ¢, the laser detuning, and on {2, the Rabi frequency. The
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Figure 4.26: Loading of the Q-mirror MOT: a photo diode monitors the fluo-
rescence of the atoms while they are collected in the Q-mirror MOT. Then the
external quadrupole field is ramped down and simultaneously the current in the U
wire and the bias field is ramped up. The jump in the photo diode signal indicates
the transfer. Note the short lifetime due to the poor U quadrupole field.

Rabi frequency depends on the intensity of the laser beams. As mentioned
in section [4.1.1] the laser detuning & can be easily changed in our setup. We
implement this into the experimental cycle in such a way, that we detune
the laser further to the red in 15 ms, by keeping the intensity constant, and
then the light is switched off. The detuning is done by simply changing the
current through the detuning coil of the spectroscopy cell (see section .
Figure [4.28| shows the temperature versus the detuning of the laser. We get
a minimaum of the temperature of 7' =~ 30 — 80uK with a detuning of
~ 30 M Hz. Figure shows a absorption picture of an atomic cloud after
Molasses cooling.

The temperature is higher than expected. The reason for this could be
that the atomic sample is too dense, and the cooling process breaks down.
Another explanation could be that the necessary polarization is not good
enough, as the atom chip has micro structures, and due to this, the reflection
locally is not perfect. Frequency shifts in 5 ms are also possible and have
the advantage that the cloud does not expand so much in this time. The
Molasses phase is not only practical to reduce the temperature, but also to
zero the magnetic fields. Residual magnetic fields cause an additional force
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Figure 4.27: Transfer to the U-mirror MOT: the atoms are collected in the Q-
mirror MOT. Then we transfer the atoms to the U-mirror MOT by ramping down
the external quadrupole field and simultaneously ramping up the current in the
U wire and the Y-bias field. This ramping time is varied. The graph shows the
normalized atom number. Best transfer efficiencies are obtained at ~100 ms.

due to a Zeeman shift of the magnetic sublevels. As a result, the cooling
forces are not balanced and the atoms are accelerated in some direction. By
applying external compensation fields in the X,Y and Z direction this can be
compensated.

When zeroing the magnetic field with this method, it is essential that the
light intensities are perfectly balanced. Unbalanced intensities would also
accelerate the atoms and as a result the magnetic field would not be zeroed
correctly. We observe in the Molasses phase a shift of the cloud to the atom
chip. This can be explained, by the reflection from the atom chip surface
not being perfect. After the Molasses phase, the cooling light is switched off
and we are left with atoms in all possible magnetic sub states. As we are
only interested in atoms in the |F=2mp=2) state (we want to to get a Bose-
Einstein condensate in this state), only a small fraction (1/5 of the atoms)
would be transferred to the magnetic trap. Therefore we optically pump the
atoms into the desired state. A small guiding field along the Y axis is applied
(by the Y-bias field coils, which we will use later for the Z-magnetic trap)
to have a quantization axis for the atoms. We then shine in a o™ polarized
laser pulse (100 — 200us duration, depending on the laser power), which is
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Figure 4.28: The Molasses phase: in order to cool the atoms, the laser is detuned
(keeping the intensity constant). Green is the temperature in X direction, blue in
Y direction. The graph shows how the temperature drops with detuning and then
rises again. The temperature is not following perfectly the theory. The reason for
this could be that the polarization, necessary for polarization gradient cooling, is
not perfect after a reflection from the atom chip.

tuned to the F' = 2 — F’ = 2 transition. Due to the present magnetic field
and the polarized light, we can pump the atoms from all different magnetic
sublevels into the |F = 2,mp = 2) state (see figure and figure [A.1]).
This state can not interact with the light and is therefore a so called is dark
state. While we do this we keep the repump light on, to ensure that atoms
in the lower hyperfine state are pumped back into the optical pump cycle.
After the optical pump pulse, all light is switched off. With this method
we can increase the number of atoms in the magnetic trap by a factor of
2-4. Figure |4.29| shows the dependence of the polarization. A quarter wave
plate, determining the polarization of the optical pump beam, is rotated and
the atom number in the magnetic Z trap is measured with the absorption
technique.

4.3.4 Loading the magnetic trap

The magnetic Z-trap is realized with the copper H structure, using two op-
posing ports of the device (see figure [4.11)). Here we have two possible sizes
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Figure 4.29: Optical pumping: a A/4 wave plate in the optical pump beam is
turned in order to optimize the optical pumping process. The atom number in
the magnetic trap is monitored. When the polarization is exactly o™, the atom

number rises, due to the fact that most of the atoms are now in the high field
seeking state.

for the center wire of the Z, the large one with 12.75 mm and the small Z
with 7.25 mm. In this work we used the small Z. It will be noted as the Z
wire. The bias fields are generated, as mentioned, by external coils.

In the Molasses phase, we prepared an atomic sample of ~30-80 K. Due
to the relative long detuning time (~ 15 ms), the cloud expands to a size of
~ 5 mm. We start the loading process by ramping up the Y-bias field and,
500 ps later, we ramp up the current in the Z wire in ~ 2 ms. As described in
section [4.3.3], we apply the optical pump pulse in the first ~ 100 ps, when the
Y-bias field rises. After this, all light (the repump was still on for the optical
pumping) is switched off. The initial magnetic Z trap is operated with 50 A
and a Y-bias field of 25 G. The trap frequencies are then wxy = 2715.2 Hz
and wy = 2755 Hz and a trap depth of ~ 500 p K, which is sufficiently deep
for our temperature. Figure 4.30| shows the currents in the Z wire and the
Y-bias field.

The critical parameter during the transfer is the phase-space density
(PSD) nA35 (n is the density and \yp is the deBroglie wave length of the
atoms), which should be conserved. When we transfer a spatially symmetric
cloud (in our case the Molasses cooled atoms) into a harmonic trap, the
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Figure 4.30: Loading of the magnetic Z trap: the current in the Z wire (red) and
the Y-bias field (blue) are ramped up. The complete ramping time is 2 ms. The
Y-bias field is ramped up in advanced. Right after the rise of it, we use the Y-bias
field for providing us the guiding field we need for optical pumping.

PSD is conserved when we have

1 kT
Ur) = 5%;7’2 , K=FKo= 52 : (4.23)
0

where « is the stiffness of the trapping potential, ry is the size of the initial
cloud and T is its temperature [104]. If now k # ko we get for the PSD

PSD  8(f)°
PSD, (T +A)p

(4.24)

If the magnetic trap is now too stiff, the atoms will heat up. If the trap
is too shallow, the atom cloud will expand, and this expansion will not be
adiabatic. In both cases the PSD will be reduced.

When we assume now a fixed temperature of 100 puK, the mode match
criterium is fulfilled in a good approximation along the axial direction of
the wire, but the trap is too small in radial direction. Therefore we observe
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Figure 4.31: Loading of the magnetic trap: the steps to load the magnetic Z trap.
a) the Q-mirror MOT after finishing the loading process with the push beam, b)
shows the U-mirror MOT just after the atoms were transferred from the Q-mirror
MOT. c) shows the atoms after the Molasses phase. The atoms are now cold
(~ 30 — 80 puK), but the cloud is 5 mm. d) the atoms in the magnetic Z trap.
As we saw in section the fraction of trapped atoms can be increased with
optical pumping. All pictures were taken with the absorption technique.

heating when we transfer the atoms into the Z trap. In principle we could
relax the trap, but then the trap is too shallow to hold the atoms against
gravity.

We optimize the loading by improving the spatial overlap. We move
the Molasses by slightly unbalanced light intensities in the laser beams (see
section . The trade off here is, that we buy the position improvement
with a less good Molasses phase and therefore slightly higher temperatures.
The intensities in the counter propagating beam pairs are controlled via a
A/2 wave plate and a polarizing beam splitter. Here a turn of one degree
results in an intensity change of 15% (we tilt the A/2 wave plate on a sub
degree scale). Under normal conditions we are able to load ~ 10® atoms at
a temperature of ~ 200 pK in the initial trap.

Figure shows a series of the complete loading cycle, starting with the
Q-mirror MOT.

4.3.5 Obtaining a Bose-Einstein condensate

The basic condition for obtaining a Bose-Einsten condensate is to have a
phase-space density of nA\3; ~ 2.612 (see section . When this value is
reached condensation sets in. To get to this point with our apparatus, we
have to have a large number of trapped atoms, a long life time and a high
elastic collision rate in order to have good evaporative cooling. As mentioned
above in section |4.3.4, we can trap ~10% atoms in our initial magnetic trap.
A high collision rate for fast rethermalization is obtained by compressing the
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Figure 4.32: Z magnetic trap: time evolution of the trapping potentials. a) shows
the potential in the longitudinal direction, b) in the radial direction. The dotted
line is the starting trap (I = 50 A, By = 25 G) , the dashed line is after the first
compression stage (I =50 A, By = 25 G, Bx = 5.5 G) and the solid line is the
final trap where we condense the atoms (I =50 A, By =58 G, Bx = 5.5 G).

trap. The used setup is especially able, due to the nature of the wire traps,
to provide such high field gradients and as a consequence a high compression.

Life time, heating and adiabatic compression

The initial Z trap has trap frequencies of wy = 2755 Hz and wx = 2715.2 Hz
(Z=50 A, B,=25 G). The trap floor is at B;p=8 G, and the achieved field
gradient is 75 G/cm. The elastic collision rate in the beginning is one per
second. As mentioned, the life time is a important property of a magnetic
trap, because it determines how fast one has to cool and how long a Bose-
Einstein condensate can be held in the trap. The biggest loss rate at densities
lower than 10'3/cm? are collisions with the background gas. The pressure in
the science chamber is < 107 mbar, and therefore long life times can be
expected.

To increase the elastic collision rate we ramp up the gradient by ramping
up the Y-bias field. In conventional traps this is done on a second time scale.
In our case we can not compress the trap, and then start the evaporation,
because the compression moves the cloud, which is initially 1.4 mm away
from the chip surface, closer to the surface (~ 300 — 600um for the final
values of the compression). At these distances, atom losses due to a contact
with the chip surface reduce the atom number in the Z trap. Figure
shows the different trapping potentials used in the experiment.

The final trap, with trap frequencies of wy = 27750 Hz and wx =
2721.8 Hz and a gradient of 430 G/cm shows the problem. The minimum



4.3. Creating a Bose-Einstein condensate 99

Lifetime in magnetic trap

. atom rl1umber '
fit (start at 10s) ||

atom number[106]
oo

0 5 10 15 20 25 30
timel[s]

Figure 4.33: Life time of the magnetic trap: the atoms are loaded into the Z

magnetic trap and the number of atoms is measured at different trap times. The

fast decay in the beginning is due to an atom loss to the surface. This is confirmed

by the fact, that the temperature decreases (the hot atoms are lost to the surface).

The trap properties are: Iy = 43.7 A, By = 43 G. The trap frequencies are
wy = 21162 Hz and wx = 2720 H z, the distance was 600 pm.

is ~ 300 um away from the chip surface and the magnetic barrier is just
~15 G high, which allows hot atoms to overcome the potential wall and hit
the surface. In the experiment we therefore compress the trap linearly over
19 s and simultaneously perform evaporation cooling (see next paragraph).
With this approach we can avoid surface losses and still maintain good trap-
ping conditions. Figure m shows the lifetime of our magnetic trap (no
evaporation is applied).

First the atoms were loaded into the initial Z trap then the trap is com-
pressed. The final trap frequencies are wy = 27162 Hz and wy = 2720 Hz
at a distance to the chip of 600 pum (the current was I, = 43.7 A and the
Y-bias field was B, = 43 (). The temperature in the initial trap was 250 ©K.
In the first ~10 s we observe a strong loss. The temperature after ~10 s was
140 pK. This indicates that we lost the hottest atoms onto the surface of
the atom chip. The decay after ~10 s represents the real life time. When
an exponential decay (e7¥/7) is fitted to these data points, we find 7=55 s,
which is adequate for the experiment.

Further on we determined the heating rate in the magnetic trap. We
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Figure 4.34: Heating in the copper Z trap: we prepare a sample of ultra cold atoms
by evaporation (see section . Then we switch off the radio frequency and
measure the temperature increase at different trap times (blue crosses). The red
curve is a linear fit to the data points. We measure a heating rate of ~ 400 nK/s
(£104nK/s).

prepare a sample of ultra cold atoms in the range of ~1 uK by evaporating
cooling (see section . Then we switch off the radio frequency (when we
leave it on, the radio frequency would cut off the hot atoms and we would
not observe a heating). We measure the temperature at different times in
the magnetic trap. Figure [4.34] shows the temperature at different trapping
times. The red curve is a linear fit to the rising temperatures. We get a
heating rate of ~ 400 nK/s (£104 nK/s). This rate is low enough that we
can cool against it with the evaporation technique. With evaporation we can
achieve a cooling rate of ~ 20 uK/s.

One crucial point is the adiabatic compression. Adiabatic compression
means, that the atom number N and the phase-space density PSD is
conserved. Assuming a power law potential of the form U(r)ocr®? (d is the
dimension and §=3/2 for a 3 D harmonic potential), the volume of a cloud
with a temperature T scales with V' oc 7%, and the elastic collision rate is

§—1/2 2

Fy=nov o« D32 N&32 (4.25)
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with o the collision cross-section and v the velocity. When the trap is
adiabatically compressed by a factor «, the temperature will rise by a factor
of a?/(20+3) and the density rises with a*/(20+3) When the compression is
adiabatic, the phase-space density is conserved, but the elastic collision rate
will rise by a factor of a*/(29+3) (all assuming that o stays constant) [104].
A high elastic collission rate is necessary for good evaporative cooling. To
achieve the adiabatic condition, changes have to be done with

dwt
d;ap Lw t?“ap )

(4.26)
which simply means, that changes have to be sufficiently slow compared to
the slowest trap frequency. This is at its best fulfilled when we ramp up the
Y-bias field in 19 s.

In order to compress the trap even further, an X-bias field is added,
which subtracts the original Ioffe-Pritchard field (see section and fur-
ther compresses the trap (see figure , dashed line). The field is ramped
up in 100 ms, which fulfils the adiabatic condition. The different traps (figure
are all reached under the adiabatic condition.

Evaporative cooling

The cooling technique we use in our Z trap is the evaporative cooling, outlined
in section 3.3l As mentioned, we linearly compress the magnetic Z trap.
Simultaneously we shine in a radio frequency. The frequency generatoﬁ
is programmed with an arbitrary frequency ramp via an GBIP connection.
This allows us to optimize the cut-off parameter n to get optimal cooling.
The radio frequency is ampliﬁedﬁ and then coupled out with an antenna,
which is impedance matched, i.e. its emission profile is flat throughout the
used frequency. In general we start at a frequency of 18 MHz and end at
~500 kHz (depending on the trap floor B;p).

The first indication, that the radio frequency has an effect on the atoms,
is an atom loss. Measuring the temperature confirms then if the evaporation
process really reduces the temperature. Figure shows the evolution of
the atom number and temperature during the 19 s evaporation cycle.

From these two quantities we can derive the atomic density (we know
from the temperature measurements the Gaussian widths) and the phase
space density (nA\35, where n is the density and \jp is the de Broglie wave
length).

34Gtanford Research Systems, DS345
35Minicircuits, ZHL-32A, 0.05-130MHz, gain 25 dB
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Figure 4.35: Time evolution of the atom number and temperature: the radio
frequency starts at 18 MHz and is ramped down in 10 s to 6 MHz and from there

in another 10 s to its final value of 539 kHz. The atom number a) as well as the
temperature b) drops.
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Figure 4.36: The density a) increases during evaporation. Maybe the most impor-
tant quantity, the phase space density b) increases as well. From the theory we
know, that condensation sets in at n)\gB ~ 1.
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Figure 4.37: Trap development over time: a) Current ramps for the magnetic Z
trap: the current in the Z wire (blue) stays constant (except of a drop of 300 mA
due to heating). The current in the Y-bias coil (red) is ramped up over the
experimental cycle. The final values are I;=50 A and Iy _p;qs=16.1 A. Note here
that the Y-bias field is also ramped up for the U-mirror MOT. The switching off
between the U-mirror MOT and the Z magnetic trap can not be seen here. b)
shows the trap frequencies over time.

The evolution of the trap frequencies can be seen in figure [£.37, From
figure [4.35] one can see, that in the first 10 s the phase space density stays
almost constant. The reason for this is that the trap is not stiff enough for
good evaporative cooling. This problem cannot be overcome in this setup,
because a faster compression would lead, as mentioned, to a too big loss of
atoms to the surface. Nevertheless with the used setup it is possible to reach
good cooling rates in the order of ~20uK/s for later times.

Bose-Einstein condensation

To achieve a Bose-Einstein condensate, we further reduce the radio frequency
and compress the trap by ramping up the Y-bias field. Subtracting the Ioffe-
Pritchard field (B;p) with the X-bias field is essential in this phase. In this
case, as the Bjp is reduced, the trap gets sensitive to field fluctuations, as
the trap floor can be overcompensated and a magnetic zero can occur. If
this is the case, we observed atom losses due to Majorana spin flips [63] (see
equation .

A typical current ramp (measured with the current probe in the switches)
is shown in figure With this configuration we obtain the trapping
potentials shown in figure [4.32] .
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We monitor the state, in which the atoms are, by letting the sample
expand, because the high optical density (D~100) would disturb the obtained
pictures. When we let the atomic sample expand, we reduce the optical
density and in addition avoid a Zeeman shift due to the B;p field.

For the switching of the trap the adiabatic condition has to be ful-
filled. This means, we have to switch off the trap faster than the fastest trap
frequency, in our case this would mean that we have to switch faster than
~100 ps, which is fulfilled in our setup.

As mentioned in section [I.5.1] the clear signature of a condensate is its
unique expansion characteristic. The Z magnetic trap is switched off, and
absorption picture are taken after some expansion time. The image laser is
at resonance (0=0, light at the F' = 2 — F’ = 3 transition) and has an
intensity of I/Is ~ 0.1. Figure shows a typical picture series for three
different final radio frequencies.

The first line in figure shows the usual thermal cloud pictures (radio
frequency is at 800 kHz), as we would obtain it by measuring the tempera-
ture. For the second line we lowered the radio frequency to 650 kHz. A sharp
density peak in the middle of a thermal cloud is already visible - condensa-
tion sets in. By further reducing the radio frequency to 630 kHz we obtain
an almost pure condensate. The series shows the unique expansion behavior
of the Bose-Einstein condensate. Not only that the cloud size stays approxi-
mately the same, but the aspect ratio is inverted as expected from theory [40].
This gives us the clear indication that we produced a macroscopic, coherent
matter wave - a Bose-Einstein condensate.

To characterize the main aspects of a Bose-Einstein condensate, we have
to interpret the pictures in the right way. When condensation sets in, there
will be a bimodal structure of the cloud. One part of the atoms is already
condensed, the others will be still thermal. From this thermal cloud around
the condensate we can derive important quantities.

In section we discussed the absorption method. From the spatial
distribution of the optical density (equation , we get the two dimen-
sional column density

D

Uabs(L (5) ’ (427>

n(y,z) =

where D is the optical density (obtained from the pictures , and
oas(1,0) is the scattering cross section. In section we made the
assumption, that for hot atoms we can assume a Gaussian spatial distribu-
tion. For low temperatures we have to use the quantum statistics, which gives
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(a) (b) (c) () ()

Figure 4.38: Expansion series: the atoms are trapped in the magnetic Z trap
for 19 s (with evaporation). Then they are released. The first line shows the
expansion of still thermal atoms (radio frequency is at 800 kHz, T~5 uK). For
the second line the radio frequency was lowered to 650 kHz. Some of the atoms
are already in the condensed state. The third line, the radio frequency is now
at 630 kHz, show a almost pure Bose-Einstein condensate. The trap parameters
were: wy = 2587 Hz, wx = 2w68 Hz. The expansion times were 0, 4, 8, 12 and
16 ms (a), b) ¢), d) e)).
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ey, ) = Mgg/2 (z exp <—y2 Z—z)) , (4.28)

= -
Yo %o

where Z=exp(p/kgT) is the fugacity. For high temperature, gs/»(x) goes as
its argument x, and the distribution is purely Gaussian (as we assumed in
section . For low temperature the behavior is different. The density
near the center will be higher by a factor of gs/»(x)/x. For temperatures
lower than the critical temperature T, z can be set to 1. From the width
of the cloud the temperature can be obtained [104]

m w?
T = — | —X )2t 4.29
o (1 ) o, (4.20)

where wy is the trap frequency and ¢ the expansion time. Note here, that
in this regime we can deduce the temperature from a single picture (this is
quite convenient in comparison to section . With the temperature we
can derive the chemical potential of the atoms (7" > T¢)

p = kT In(z). (4.30)

Up to now we discussed the thermal fraction in the assumption that the
trap is harmonic. When there is a condensed fraction of atoms, the density
distribution of the condensate fraction will be a inverted parabola

ne(y, z) = ne(0) max(1 — R:g(t) - %, 0)3/2, (4.31)

Y

where R is the width of the parabola [40, 108 and t is the expansion
time. From the widths after the expansion, we can calculate the size of the
condensate in the trap. Knowing the trap frequency and the size in the trap
the chemical potential is fixed (the condensed atoms can only fill the trap
up to the chemical potential), being

2 2
mwy 2 m wy 2
_ L B T 4.32



4.3. Creating a Bose-Einstein condensate 107

Thermal and bimodal fit
3.5

o data points 8

—— bimodal fit 3

3[| = Gaussian fit n
2.5F

200 400 600 800 1000 1200 1400 1600 1800
position [u m]

(a) (b)

Figure 4.39: Obtaining data from the absorption picture: a) shows a partially con-
densed cloud (expansion time 16 msec). The trap frequencies were wy = 271610 Hz
and wx = 2721.6 Hz. b) shows a cut in X direction through the sample. The
blue curve is an ordinary Gaussian fit (equation [4.28). This fit does not satisfy
the data points. Only when we employ the combined function np,(y, 2) + ne(y, 2)
(equations and red curve), the result is correct. Note here, that there is
no finite analytical solution for g3/, so we approximate it with a polynome [103]

where again ¢ is the expansion time.

The derived equations allow us now to calculate the chemical potential
for the thermal and condensed fractions. The chemical potential fixes the
atom number and we get the next quantity (see chapter |1

N = 2 o — ) o — T z ) 4.33
(hwho) 15a = mw; “h (Wreoyz) (4.33)

Figure [4.39) shows the picture of a partially condensed cloud and a cut
through it. From the picture one can see clearly the condensed fraction
and the thermal wings around it. The fit shows the bimodal structure of the
sample. Here we see that we have to fit ny,(y, 2) +nc(y, 2) to the distribution
to obtain all possible information from it.
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We can now study the condensation process itself, and determine the the
relevant quantities. Figure shows how the temperature drops when the
radio frequency is lowered relative to the trap bottom B;p. The number in
the Bose-Einstein condensate rises. Figure [4.40| is a more detailed continu-
ation of figure Figure a) shows how the peak density rises when
there are condensed atoms. Figure b) shows the phase transition to the
Bose-Einstein condensate more pronounced .

The pictures from which the data points in figure and were
extracted, were corrected for the fact, that we do not see all atoms, because
we have no guiding field for the absorption image (see equation . We
set o = 7/15 to account for the error. Furthermore, as the Bose-Einstein
condensate falls during the exposure time, the pictures are slightly smeared
out. For this we also have to account.

Tc can now be obtained according to the theory from chapter [I The
obtained data points in this case allow us to give a upper limit for T < 1 pK.
The theory would give for the obtained atom number T = 930 nK, which
is in good agreement to the boundary we were able to give.
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Figure 4.40: Evolution of the atomic sample when the radio frequency is lowered:
when the temperature approaches the critical temperature T¢ a), the number of

atoms in the condensed state rises b). Note that the radio frequency is relative to
the trap floor.
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Figure 4.41: The condensation: the radio frequency is lowered, and the peak
density rises a). In b), the phase transition is most pronounced. The conditions

were: wy = 2w610 Hz and wx = 2721.6 Hz. Note that the radio frequency is
relative to the trap floor.
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Chapter 5

First experiments

In this chapter we describe experiments performed with the Bose-Einstein
condensate and ultra cold thermal clouds. As pointed out in section [1.5.1]
we study the behavior of a freely expanding Bose-Einstein condensate. Fur-
thermore, we excite collective shape oscillations by changing the trap from a
starting trap, where we create the Bose-Einstein condensate, to a final trap
(see section . The collective shape oscillations can be studied by hold-
ing the Bose-Einstein condensate for adjustable times in the final trap, and
then measuring the widths of the expanding sample. When we compute the
aspect ratio (for a certain expansion time), we are able to calculate from the
oscillating aspect ratio the longitudinal trap frequency to a high accuracy
(see solution of equation for the regime of € «1). The study of these
collective shape oscillations is of special importance, because they reveal that
a Bose-Einstein condensate, which is for example guided in a perturbed po-
tential, will be excited to these oscillations. A perturbed potential can be
easily generated, when wires are connected to the guide wire, as we discussed
in section [3.2.3] Due to the nature of our wire traps, we can excite shape
oscillations and center of mass motion in the radial direction simultaneously.
Note here that the shape oscillations depend on the longitudinal trap fre-
quency, while the center of mass motion is carried out in the radial direction.
The collective shape oscillation of the Bose-Einstein condensate and the cen-
ter of mass motion can be monitored at the same time, and thus allows us
to measure both trap frequencies at the same time.

Further on we study the transport of a cold thermal cloud from the used
copper structure to the atom chip (a Z shaped wire on the atom chip is used
for the magnetic trap). Heating rates and atom losses during the transport
are studied, as well as trap lifetime and heating in the final atom chip trap.
The chapter is closed with a demonstration of a coil free magnetic trap.
The Z shaped wire for the trap is on the atom chip, while the bias field is

111
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generated by the copper structure behind it.

5.1 Free expansion and collective shape oscil-
lations

As we saw in section and figure [4.38] the expansion characteristic of a
Bose-Einstein condensate is unique and different from the expansion behavior
of a thermal cloud.

To let a Bose-Einstein condensate freely expand, meaning that we switch
off the magnetic trap, we have to fulfill the adiabaticity condition

d
W« w2 (5.1)

dt trap,mazx ’

which we do with our switching times of < 50 pus. We first generate a
Bose-Einstein condensate in the copper Z trap with the method described
in section [£.3.5] Then it is released from the trap and we take absorption
pictures at different expansion times. A bimodal function is fitted to the
expanding cloud, to account for the thermal and for the condensed fractions
of the sample (see section . Figure shows the aspect ratios of the
widths of the inverted parabola obtained from the fits at different expan-
sion times [I09]. Note here that the theoretical curve is not a fit, we just
used the trap frequencies, which we calculate using the model introduced
in section These trap frequencies are then inserted in equation [I.55]
The widths were corrected with a constant factor, which accounts for the
smearing of the cloud due to the long exposure time of the images (the fitted
widths appear bigger due to the falling cloud while the picture is taken).
The presented theory in sections [1.5.1] and [1.5.2] can also be applied to
time dependent traps, in such a sense, that the confining potential is changed
from an initial trap to a final trap (still being adiabatic). For this experi-
ment we first prepare the Bose-Einstein condensate in a well defined trap,
the initial trap (the red curves in figure . Then we ramp down the X-bias
field in 25 ms, which relaxes the trap (the green curves in figure . This
trap is called the final trap. The relaxation causes a collective shape oscil-
lation of the Bose-Einstein condensate in the final magnetic trap, meaning
that the cloud changes its size with time (later we will see, that in addi-
tion we also excite a center of mass motion in the radial direction). This
oscillation is governed by equation for the regime of ¢ <1 and small
perturbations. The ensemble is kept in the final trap for a variable holding
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Figure 5.1: Free expansion of a Bose-Einstein condensate: the data points are the
aspect ratio of cuts in X and Z direction through the cloud. The estimated error
for the fits is 10 ym. The blue curve is the theoretical prediction for the aspect
ratio for a trap of: wy = 27827.1 Hz and wx = 2722.5 Hz.

time, and then it is released. Figure [5.3|shows the expansion characteristic of
a Bose-Einstein condensate, which is oscillating in contrast to a condensate
at rest (for this we did not ramp down the X-bias field, but switched off
the trap instantaneously). From figure it is already clear, that the Bose-
Einstein condensate, which performs the collective shape oscillation, expands
differently. This different expansion is due to the conversion of potential en-
ergy of the starting trap into kinetic energy. This kinetic energy changes
the momentum distribution, and this change causes the different expansion
behavior.

As we discussed in section [1.5.2] it is possible to deduce the longitudinal
trap frequency from the expansion behavior [I10, 1T1]. We measure this
longitudinal trap frequency by varying the holding time (1 ms steps) and
taking absorption pictures after 19 ms of expansion. We compute from the
bimodal fit, which we apply to the absorption pictures, the width in Y and
X direction and the aspect ratio of the widths. In figure the aspect ratio
as a function of the holding time is shown. The red curve is a fit to the
data points, using a sine function with a phase and a damping factor. As we
found out in section with the numerical model, the aspect ratio is not
clearly a sine function, because of the non linear coupling (see figure .



114 First experiments

20 20
17.5 17.5
15 15
_12.5 _12.5
9 19 <
|95 =
5
2.5
0 200 400 600 800 1000 -2000 -1000 0 1000 2000
Z [pm] X [pm]

(a) (b)

Figure 5.2: Trapping potentials: a) shows the trapping potential in radial and
b) in axial directions. The red curves represent the potential, in which we create
the Bose-Einstein condensate (wy = 27827 Hz and wx = 2722.5 Hz). The
blue curve is the final potential in which the Bose-Einstein condensate oscillates
(wy =27234.7 Hz and wy = 27224 Hz).

The magenta curve in figure [5.4] shows the aspect ratio which we get from
the numerical model (for 19 ms expansion). When comparing the numerical
model curve (magenta, note here that the numerical curve is not a fit to the
data) with the data points, there are indications, that the curve from the
model (which includes a nonlinear coupling term) accounts better for the
obtained data [I12]. However our model does not account for a damping of
the oscillation [113].

The sine function fit gives us an oscillation frequency of W% = 34.6 Hz.

The theoretical prediction (which is the solution of equation [1.57)), is wsle® =
V/5/2wx = 35.5 Hz (for small perturbations). This value is in good agree-
ment to our measured result. In a second run, which was performed in the

same way, we could confirm the good agreement.

Note here that we monitor the shape oscillation over 134 ms. Remarkable
here is not only the good agreement of the shape oscillation frequency with
the theoretical prediction, but also the stability of the condensation process.

One feature of our wire traps is, that when we change the X-bias field,
not only the the trap floor B;p is changed, but also the spatial position of
the minimum is changed with respect to the chip surface (see section .
This change is in the pm range, in our case ~9 pm. Figure[5.5]is a zoom in of
the trapping potentials in Z direction (compare with figure |5.2a). When we
change from the initial trap to the final trap, the small position change will
cause the Bose-Einstein condensate to perform a center of mass motion in 7
direction in the final trap [114]. We can assume that the trap is harmonic
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Figure 5.3: Free expansion of an oscillating Bose-Einstein condensate (upper row)
and a Bose-Einstein condensate at rest (lower row) . The clear difference in the
expansion behavior is visible. After 16 ms (column e)), the sample which oscillates
in the magnetic trap appears round, while the non oscillating reveals the known
characteristic. The trap frequencies were for the initial trap wy = 27827 Hz and
wx = 2m22.5 Hz and for the final trap wy = 27234.7 Hz and wx = 2722.4 Hz.
The ramp down time for the X-bias field was 25 ms. Note here that the aspect
ratio of the lower row (non-oscillating) was used for figure The expansion
times were 0, 4, 8, 12 and 16 ms for a), b), ¢), d), e).

in this region, and therefore the sample will perform a harmonic oscillator
motion. If we open the trap and take an absorption picture after some
expansion time, the position of the expanded sample at the time of the
image will depend on this center of mass motion and on the time we opened
the trap. If the Bose-Einstein condensate is closer to the chip (due to the
center of mass motion), we will detect the cloud at a different position than
we would detect it when the sample is further away from the chip.

To measure this position dependence, we can use the same experimental
data set cycle which we used to study the collective shape oscillations, but
now plotting the position of the Bose-Einstein condensate versus the holding
time (see figure [5.6p)). As sine function was applied to the data, and the
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Figure 5.4: Collective shape oscillations of a Bose-Einstein condensate: the initial
frequencies are wy = 27827 Hz and wyxy = 2722.5 Hz, the final trap frequencies
are wy = 2m234.7 Hz and wx = 2722.4 Hz. The ramp time is 25 ms and we let the
sample expand for 19 ms. We plot the aspect ratio of the widths against the holding
time. The fit (red curve) is a damped sine function. The fit gives us a oscillation
frequency of wgl%” = 34.6 Hz (the theoretical prediction is wsl%® = 35.5 Hz). The
magenta curve is the aspect ratio, which we obtain from our model (initial and
final trap frequencies are the same as for the data, the ramp down time in this
case is 28 ms; note that the curve is not a fit to the data points except a phase

offset).

best fit gave us a frequency of vP°%°n=219 Hz. We also analyzed the data

using a fast Fourier transformation (see figure )), which got a clear peak
at a frequency of vPosition—=925 Hz. The results differ slightly, but still they
are in good agreement. The radial trap frequency of the final trap is wy =
27234.7 Hz (calculated with our Mathematica model), which is in good

agreement to the measured one.

To measure the radial frequency, usually the trap is modulated with an
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Figure 5.5: Trapping potential in radial direction (z direction): the red curve
corresponds to trap frequencies of wy = 27827 Hz and wy = 2722.5 Hz (the
X-bias field is still on), the green curve (scaled with a factor of 0.5) corresponds
to wy = 27234.7 Hz and wy = 2722.4 Hz (X-bias field is switched off). The two
vertical lines indicate the position of the minimum of the potentials. Due to the
switch off of the X-bias field the minima shifts 9 pm.This causes the Bose-Einstein
condensate to perform a center of mass motion in the green potential. Note here,
that the chip surface would be at Z=0.

appropriate frequency, and due to parametric heating (when the modulation
frequency matches the trap frequency) and atom loss can be observed [109].
With our traps, a modulation is not required, and both trap frequencies can
be measured in one experimental cycle from the same data set.

5.2 Basics studies of the transfer to the atom
chip

One crucial point in our setup is the transfer to the atom chip. So far
we used the copper H structure underneath the atom chip. The structure
allows us to trap a large number of atoms, but the magnetic manipulation
possibilities are little. Therefore we developed the atom chip with its more
complex structures. The structures on the atom chip, and thus the magnetic
manipulation possibilities, just depend on the design of the used wires on the
atom chip.

In order to load the atom chip, we use a Z wire structure on the chip,
similar to the copper Z structure, but smaller. The chip we use has a 2.2 ym
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Figure 5.6: Position of the Bose-Einstein condensate: due to the position change
of the trap minimum, when we change the trap frequencies from wy = 27827 Hz
and wx = 2722.5 Hz to wy = 27234.7 Hz and wx = 2722.4 Hz, we excite a
center of mass motion in radial direction of the final trap. a) shows the position of
the expanded sample (19 ms of expansion time), which changes due to the center
of mass motion. b) is the fast Fourier transformation of the data points. A clear
peak appears at a frequency of V22" = 925 Hz, which is in good agreement to
the result, which we get out from our model (wy = 27234.7 Hz).

gold layer, the Z structure has a 2 mm long and 200 pm wide central wire.
This structure we will refer to as the gold Z. The current for the gold Z is
provided by a specially designed power supply. We basically use a battery
and an IGBT to regulate the current. This ensures ultra low noise currents
(for the noise spectra please see Appendix |EJ).

For the transfer we first prepared a cold atom cloud (T~5uK and N~10°)
in the copper Z trap by evaporative cooling (we use a similar procedure, which
leads to the Bose-Einstein condensate, but we halt the radio frequency ramp
at a higher value). After we prepared the desired sample, we switch off the
radio frequency. The X-bias field is ramped down in 100 ms. This we have
to do, because we could overcompensate the B;p during the transfer or in
the gold Z, which would lead to a magnetic hole in the trap and this would
make Majorana spin flips possible (see equation ??). Then we ramp up the
current in the gold Z in two steps, while we ramp down the Y-bias field and
the current in the copper Z (also in two steps). When we do the transfer, we
have to fulfill the adiabaticity condition (see equation [5.1)). This motivates
the transfer time of 750 ms. In figure the current ramps for the trans-
fer are illustrated. We measure the current through the bias field and the
wire structures with Hall probes in the current circuits. From these currents
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Figure 5.7: Transfer to the chip: the current through the Z copper structure (blue),
the Y-bias field (red) and the gold Z (green) are plotted. The vertical lines indicate
times: 15.3, 15.6, 16, 16.3s (red, green, blue, black).

we can compute the behavior of the trapping potentials. In the model we
account for the shift in X direction (~150pum). In figure the trapping
potentials are shown. Here again we incorporate for the complete geometry
including the leads and connections to the copper structure as well as to the
gold structure. Figure [5.9 shows the position change of the trap during the
transfer (figure illustrates the distance to the chip, figure shows
the movement in X direction; here the data are displayed with respect to
the initial trap). The position of the cloud is measured in the trap (expan-
sion time is 0 ms, in order to get the real trap position). Then a Gaussian
fit was applied to the absorption pictures and the maximum of the cloud
in longitudinal direction (X direction), as well as the distance to the atom
chip was determined. In section we mentioned that the atom chip is
glued on top of the copper H structure. When we did this, we accidently
displaced the atom chip by ~150um with respect to the copper structure in
longitudinal direction. This affects the transfer, because the trap can not
be changed without moving the atoms in X direction (horizontal direction).
This displacement will distort the cold cloud.

The calculated position in the longitudinal (X direction) and vertical (Z
direction) direction do not match the data points (see figure [5.9n) and b)).
The calculated curve reflects the general behavior of the data points, but it
does not fit to a high accuracy. The reason for this can be that the chip is
slightly rotated or that the measured current ramps differ from the actual
current (we performed model calculations, where we used currents ~ 10%
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Figure 5.8: Trapping potentials during the transfer: a) shows the longitudinal b)
the radial potentials. The order in time is red (15.3 s), green (15.6 s), blue (16.0 s)
and black (16.3 s). We start (red) from a trap with trap frequencies of wy =
27827 Hz and wx = 2m22.5 Hz, and we end in a trap (black) of wy = 27213.5 Hz
and wx = 2728.6 Hz. The chip surface in plot b) is at position 0. Note here
that in the longitudinal direction a), the trap minimum of the final trap (black) is
150 pm displaced with respect to the starting trap (red).

lower than the measured, and found a better agreement). With this transfer
method, we were able to transfer the atoms to the atom chip conserving both,
the initial temperature (we start with an initial temperature of ~5 pK) and
the number of atoms (start is 10° atoms).

Note here, that before we studied the transfer in detail, we tried suc-
cessfully a transfer of a Bose-Einstein condensate to the atom chip (see fig-
ure . We found, that we loose an order of magnitude in the atom number
(we ended up wit 3 * 10* atoms), and the condensate was excited [71]. The
used ramps were single step ramps, and during the transfer we kept the radio
frequency on (we adjusted the radio frequency according to the trap floor),
in order to shield the Bose-Einstein condensate from the thermal atoms.
However this transfer was not satisfying, because of the atom loss and the
distortion of the condensate.

Another important property, as pointed out already in section and
displayed in figure [4.33] is the lifetime of the atoms in the magnetic trap. It
gives the time scale on which atoms can be further cooled or manipulated.
Figure ) shows the number of atoms for different holding times in the
gold Z after the transfer (the atom number was determined from pictures,
which were taken after 3 ms of expansion; compare to section . We fit
an exponential decay to the data points using the function e~ */7. We find
a lifetime of 7 ~13 s, which is small compared to the lifetime of the copper
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Figure 5.9: Position measurement during the transfer: we ramp up the current
in the gold Z in two steps, and subsequently we ramp down the current for the
copper Z and the bias field (see figure . Blue are the data points and red are
positions calculated with our model using the applied current ramps. a) shows
how the atoms move in X direction due to the displacement of the atom chip
with respect to the copper structure (note here, that the points are calibrated to
the starting position). b) shows how the atoms change their position in radial
direction (distance from the atom chip surface). The vertical lines correspond to
15.3 s (red), 15.6 s (green), 16 s (blue) and 16.3 s (black).

Z (here we find a value of ~55 s). In the case of the gold Z we can exclude
a surface effect, because we do not see a decrease of the temperature, and
we measured the life time with a cold atom cloud (~5 pK). In addition the
distance to the chip is ~450 ym. We can also exclude current noise, because
we developed special car battery driven power supplies to minimize the noise
(see Appendix [E| for the noise spectra of the power supplies). A possible
reason for the short life time can be, that we destroy locally the vacuum.
This can be caused by the current, which we run through the gold Z, which
heats the structure and some residual dirt may evaporate.

We also performed heating measurements, which are illustrated in fig-
ure [5.11p). The data were recorded in one go, together with the lifetime
measurement (see figure [5.11h)[]). The measured heating rate is ~500 nk/s,
which appears large, but it is still in the range where experiments are possi-

ble.

IThe error bars correspond to the standard deviation from the fitted mean value. Note
that this is the total error connected to the atom number, i.e. the error due to experimental
fluctuations and errors during detection and processing.
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atom chip surface

Figure 5.10: Bose-Einstein condensate in the atom chip: we transferred the con-
densate from the copper Z structure to the gold Z with single step ramps (for the
current in the copper Z, gold Z and the Y-bias field). During the transport we lost
an order of magnitude in atom number (N ~ 3% 10%). The picture was taken after
16 ms of expansion.

5.3 Two wire trap

In section [3.2] we discussed how we can generate magnetic micro traps with
wires and bias fields. The bias fields in the experimental realization so far,
were generated by external coils (see section {4.3.1)). But this restriction to
external coils is not necessary. It turns out that for some applications, a single
straight wire is the much better choice. One example would be a wire, which
is not straight, but makes a 90° turn. If one wants to use such a structure for
a side guide, a constant bias field would not be sufficient (see section [3.2.1).
In such a case the bias field must rotate with the bending wire in order to have
a side guide all along the wire. Here we will to discuss a case, where we used
the bias field of a wire to generate a three dimensional magnetic trap on the
atom chip. We used the already discussed Z geometry on the atom chip (see
section for the wire. The bias field is generated by the copper structure
(see section m for the copper structure and figure . In order to get
a magnetic minimum, when using two wires, the current in the central wires
must be counter propagating. The three dimensional confinement is done by
the leads of the gold Z and the leads of the copper Z, since these currents
propagate in the same direction. Figure [5.13| shows an explosion drawing
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Figure 5.11: Lifetime (figure a)) and heating rate (figure b)) in the gold Z: a)
we keep the atoms in the magnetic trap for different times and take absorption
pictures after 3 ms of expansion. The atoms are initially ~5 uK cold. From the
fit (exponential decay e~*/T), we get a life time of 7 ~13 s. b) Heating rate in the
gold Z: we prepare an atomic cloud of ~5 K and monitor how the atoms heat
up with time. No radio frequency is applied to the sample, because it would mask
heating. We measure a heating rate of ~513 nK/s (£170 nK/s). Note here that
the heating rate can only be an upper estimate.

of the atom chip holder. The green and red lines indicate the current path,
the arrows the direction. As one can see, for this experiment the most outer
ports of the copper H structure are connected. These ports are 12.75 mm
apart (see Appendix [C| for the technical drawing). The trapping potentials
generated in this way do not differ strongly from the one which we used so
far. In figure the longitudinal and radial trapping potentials are shown.
The depth of the trapping potential is just 350 pK, which puts a restriction
on the temperature of the atoms in the trap. When we load the two wire
trap, we pre cool the atoms by evaporation in the small copper Z trap, as we
discussed in section 4.3.5. Then we transfer the atoms to the atom chip, as
discussed in section [5.2] Subsequently we ramp up the current in the large
copper Z while the Y-bias field is reduced to zero. The field generated by the
copper wire replaces the Y-Bias field and establishes a magnetic trap with
the gold Z. Note that there is no further bias field used. This is a major
step towards further miniaturization of Bose-Einstein condensation setups,
i.e. for mobile applications. With such a procedure we were able to load
the two wire trap with 10% atoms at a temperature of T=20uK. Figure m
shows an absorption picture after 3 ms of expansion. The structures to the
left of the picture are the bonding wires to the atom chip structures. As
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Figure 5.12: Two wire trap: the figure shows a two wire trap. The trap frequencies
were wy = 27298.1 Hz and wx = 2728.1 Hz (distance to chip Z=359 pum). The
distortions to the left of the picture are shadows of the bonding.

Figure 5.13: The technical drawing shows the atom chip holder and the atom chip
on top (with a symbolic Z structure). The current in the different wires is counter
propagating in order to form a trapping potential (see figure . The distance
of the center of the copper structure to the chip surface is 1.2 mm.
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Figure 5.14: Trapping potentials generated using a wire for the bias field: we run
a current of 8.4 A through the copper structure, and 2 A through the gold Z (see
figure . With this configuration we get trap frequencies of wy = 27298.1 Hz
and wx = 2728.1 Hz at a distance of Z=359 pm.

the cloud shifts due to the displacement in X direction of the atom chip (see
figure [5.9b)), the bonding wires become more visible.
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Chapter 6

Summary and outlook

With the first realization of trapping thermal atoms using magnetic wire
traps, a new and promising field in ultra cold atom physics was opened. The
simple generation of complex trapping potentials is striking, as it was up to
this point not possible to realize such potentials.

The realized potentials opened a new path to manipulate atoms. For
most experiments a coherent matter wave, a Bose-Einstein condensate, is
needed. Therefore the development of magnetic wire traps to generate trap-
ping potentials in which Bose-Einstein condensation is possible was pursued
by several groups.

In the presented work, we developed an experiment, which combines
'macroscopic’ wire structures with microscopic wires. The reason for this
approach is, that in general the trapping volume and the trap depth of mi-
croscopic wire traps is small. This would put restrictions on the atom number
and temperature of the atomic sample.

With the development of a 'macroscopic’ copper structure, we were able to
overcome these restrictions. The copper structure consists of a combination
of differently sized Z- and U-shaped wires. The U wires in conjunction with
a bias field generate quadrupole fields, suitable to operate a magneto optical
trap. The combination of Z wires and bias fields form loffe-Pritchard type
traps, with a non zero magnetic minimum. In such a trap, Bose-Einstein con-
densation was realized. To have the richness in physics that the microscopic
wire structures offer, we mounted the atom chip on top of this 'macroscopic’
copper structure. For the atom chip itself we employed fabrication tech-
niques known from the semiconductor industry. These methods enabled us
to fabricate wire sizes down to the pum region.

In order to get to the point of loading the initial magnetic trap generated
by the copper structure with a large number of atoms (10%) at a reasonable
temperature (7"~ 200uK), we developed an experimental cycle which com-
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bined different techniques. Here we want to mention just the key points of
our setup, which are: a two vacuum chamber setup, a laser system for cooling
and detecting atoms, optics for imaging small atom clouds, computerized ex-
periment control, diagnostic software, electronic components (switches, laser
stabilization, light detection, ...) and low noise current sources.

After we were able to load a sufficiently large number of atoms into the
initial trap (the copper Z), we developed a compression cycle for the mag-
netic trap in combination with a radio frequency ramp for evaporative cooling
which was awarded with the successful creation of a Bose-Einstein conden-
sate.

We studied the condensation process and basic properties of the Bose-
Einstein condensate like the critical temperature T and the atom number.
The used magnetic Z trap enabled us to excite collective shape oscillations of
the Bose-Einstein condensate. This is done by changing the trap geometry
in the radial direction from a relatively stiff trap (the initial trap) to a more
shallow trap (final trap). Potential energy from the initial trap is converted
into kinetic energy, which leads to a dynamic oscillation in the final trap. If
we expand the Bose-Einstein condensate, the oscillation dynamics in the trap
can be seen in the expansion characteristics (the shape of the cloud changes).
Recording this behavior for a given expansion time and a variable time in
the final trap, we can measure the longitudinal oscillation frequency.

Furthermore, due to the change from the initial to the final trap, we
introduce in addition a position shift. This shift causes a center of mass
motion in the radial direction of the final trap. When we open the trap after
a variable time in the final trap, and monitor the position of the fallen cloud
after a fixed expansion time, we can resolve this oscillation. Note here, that
the measurement procedure for the collective shape oscillation and the center
of mass motion is the same. This allows us to deduce both trap frequencies,
the longitudinal and radial frequency, from the same experimental data.

In addition we studied the transfer of an ultra cold atom cloud from the
copper structure to a Z shaped wire on the atom chip (a 200 pm wide and
2.2 pm thick wire, the central bar is 2 mm). Here we found, that due to
a displacement of the atom chip with respect to the copper structure, the
transfer is difficult. Nevertheless, we were able to develop a procedure, which
enabled us to preserve the atom number and temperature.

Once on the atom chip, we were able to realize the so called two wire
trap, which is a trap were no external bias field is needed. The gold Z wire
on the chip provides the wire field, while the copper structure underneath
(also a wire) provides the necessary bias field.

With the developed setup, we set the cornerstone for further atom chip
experiments. The condensation cycle is well established and we were able
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to perform initial experiments, which gave us an insight into condensate dy-
namics. This can be extended, as we investigated just the small perturbation
regime. In principle it should be possible to investigate also large perturba-
tions. In this regime, the presented theory breaks down (the kinetic part
in the Gross-Pitaevskii equation can not be longer ignored), and new phe-
nomena in the extreme nonlinear regime can be expected, including chaotic
behavior.

The first step to future experiments should be the stable transportation or
condensation of a Bose-Einstein condensate in a structure of the atom chip.
The transport of a Bose-Einstein condensate from the copper structure to the
gold Z was demonstrated in this setup, but we found that this transport bares
the needed robustness. To improve this, the atom chip should be replaced,
and when mounting it, the positioning with respect to the copper structure
should be more accurate.

As the developed setup is flexible, the performed experiments just de-
pend on the atom chip one puts into this setup. Experiments investigat-
ing atoms, confined in low dimensional traps, can be performed with little
effort in changing the setup. Interferometric experiments investigating co-
herence/decoherence effects promise to give a better understanding of the
involved physics. This will be necessary, because the use of atom chips in
quantum information processing will depend on these decoherence effects.

The setup can also be combined with optical traps, as we took special care
for good optical access during development. With this combination, another
wide field opens up. For example an optical tweezer can be used to trap the
Bose-Einstein condensate, which was generated in the copper structure, and
by moving the focal point the Bose-Einstein condensate can be transferred
to all locations on the atom chip [I15]. This would further ease the use of
the atom chip, because the entire surface can then be covered with wires
for experiments, as the Bose-Einstein condensate must not be guided to the
interesting wire region (at the moment the atom chip has a central trapping
structure, the gold Z, and to each side experiments can be performed; with
the proposed combination this restriction falls).

"Light’ on the atom chip, in the sense of bringing the light to the chip with
fibers, would also enrich the possibilities. It can be used to detect atoms,
using optical cavities, or to collect light scattered from the atomic sample.
These possibilities are currently investigated for a PhD thesis [69] [116].

As it was recently shown [60] it is also possible to combine magnetic wire
traps with electrical fields. This combination will lead to traps, which depend
on the internal state of the atom. This state depending trapping can be used
for quantum information processing.

One sees from this short list, that the miniaturization of magnetic traps
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leads to new experimental possibilities and thus to new insights into ultra
cold atom physics.



Appendix A

STRDb line data

Atomic number Z 37
isotopic abundance n 27.83%
mass number A 87
Masse m  1.443-107* kg
86.909 u
density at 25° P 1.53 g/cm3
melting point T 39.31°C
boiling point Tg 688°C
vapor point at 25°C Py 4.0-1077 mbar
nuclear spin I 3/2

Table A.1: Physical properties of Rubidium 87
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Figure A.1: The hyper fine energy scheme of the 8’Rb D 2 line. It shows all
optical accessible transition, which are of interest in this work. The cooling and
repumping transition as well as the transition for optical pumping and imaging
are marked.

wavelength of the D2 line (vacuum) A 780.246291 nm
frequency wo 27 - 384.227981877 THz
life - time T 26.24 ns
natural linewidth I'= % 2m - 6.065 MHz
saturation intensity Is = 7k 1.656 mW /cm?
recoil velocity VR = % 5.8845 mm /s
recoil temperature T, = 3/\2}7‘% 361.95 nK
Doppler temperature Tp = % 145.5 pK
s-wave scattering length of 8" Rb, triplet state a +10644 ag

+5.6074+£0.2116 nm

Table A.2: Atom optical properties and most important units of Rubidium 87 for
the Dy-line (525 /5 — 52 Py ) if not othervise mentioned [79]



Appendix B

The vacuum chamber

The vacuum chamber was built at the very beginning of our projects. The
science chamber was built according to our accountsﬂ and combines good op-
tical access with the needs of the atom chip holder and current feed through.
We used Helicoflex gaskets, as they allow us to minimize the distance window
— atomic sample (a small distance is needed for good imaging) and to use
good optical windows.

In addition the science chamber was designed pan cake shaped. Here again
the outline minimizes the distance outer contour — atomic sample. This
ensures also a good optical access and the possibility to use the chamber for
a wider range of experiments. Note here, that we took special care in the
choice of the used non magnetic steel in order to avoid residual magnetic
fields.

IThanks to Toni Schénherr

Figure B.1: The Helicoflex gaskets: the gaskets are pressed directly onto the
chamber and the glass window. To keep it in position, stainless steel rings are
used.
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Figure B.2: The main body of the science chamber: it consists out of stainless
steel and is hand fabricated. The shape and the used Helicoflex gaskets ensure
good optical access and small atom«window distances.

Figure B.3: The science chamber 'naked’: the holding pins for the quadrupole coils
and windows can be seen. The chamber was hand made. In the back ground the
second Titanium sublimation pump is visible.



Appendix C

The H structure

The H structure, which provides the magnetic quadrupole field for the U-
mirror MOT and the magnetic field for the Z-wire trap, was machined out of
one piece of oxygen free copper, using a spark erosion technique. It is fitted
into the Macor piece to a maximum in precession, as the copper H structure
and the used bias fields should be perpendicular to each other.

- A L. 09
5 25 Nx25-=215 |

Figure C.1: The H structure: a) the copper structure is manufactured out of one
piece of oxygen free copper, using a spark erosion technique; it is manufactured
in house. b) the Macor piece: it is made to fit the copper H structure, and so
provide mechanical support to it. Note here that the copper H structure and the
Macor piece are made together, which means, that only two selected pieces belong
to each other. This is necessary to ensure the mechanical support.
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Appendix D

Complex analytical expressions

In general the displayed expressions where derived with Mathematica.
In section |3.2.2] we discussed the U-wire trap. The analytical expression
for the fields is:

—

B(.Z‘o, 0, Zo)l =
2
g 1Lz
" 2mr3/L? + 41
o\ 1/2
I Ly —xg (L* + 413)

+ | By, — +2 D.1

T on(L? +423) ( r3\/L2 + 413 (o1

As we discussed in section [3.2.2] the Z-wire trap is slightly rotated around
the x axis. When we calculate the trap frequencies (proportional to GJZB ) for
this geometry we have to find new eigenvectors for the rotated system. This
can be done by diagonalization of the Hesse matrix (see equation .
The second derivative in the new coordinate system (Z, 7, Z) are:

828 /Lo[
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where

R(D,z) = LY +40L"2? + 688L"22" + 52481025 + 18176L82°
+ 30720L52'0 4 13 2131212 4 216,214 4 916,16

For a wire, which is broad and thick, the analytical solutionﬂ of the field
in x and y direction is:
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For the B(y) component, one has to exchange W and H, x and y and the

—4 becomes j.

Lthe derivation was done by S. Aigner



Appendix E

Power supplies and noise

In figure the signal of a current probe, which measures the Z and
the Y-bias current is shown. This current probe is implemented in exter-
nal switches, and it allows a ground free measurement. With the external
switches we can generally reach switching times of < 20 us.

The used power suppliesE] can be operated in two modes, the current and
the voltage control mode. Figure [E.]I] shows the noise spectra of the two
modes. As can be seen, the current control mode (CC) gives out more noise
than the voltage control mode (CV), therefore the supply is operated in the
CV mode.

Controlling the devices is performed by applying a voltage to the power
supply, and according to this, the supply gives out the appropriate voltage.
The current is then according to the load resistance, in our case the copper
Z structure. When we operate the Z wire for a long time (~20 s), we see
a drop in the current due to a change in the resistivity of the Z wire. This
current drop is ~300 mA, and is acceptable for the performed experiments.

To be noise free means in general, that the electronic circuit has to be slow
in its bandwidth. Therefore, it would respond to the controlling commands
slow. To achieve fast switch on times (in the order of ~2 ms), a trick is
used. The external switch is closed, but the control voltage is set to the
maximum value. This causes the power supply to give out its maximum
voltage, but because the switch is closed, no current can flow. The power
supply is 'preloaded’. Then the switch is opened, and simultaneously the
control value is ramped down to the value that corresponds to the desired
current. With this method we can ramp up the current on the needed scale,
still depending on the inductance of the load, but faster than the supply
specifications (the specification is 20 ms).

17: Agilent 6651A; Y: Agilent 6641A
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Agilent 6651A

—— current nois in CV mode
_gojl — current nois in CC mode
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Figure E.1: Current noise spectra of the different operation modes: the power
supply runs on 50 A. The noise is measured across a 0.01 € resistance (holds
80 W). The used spectrum analyzer (Stanford Research Systems, SR760) has a
span of 780 Hz with a 1.95 Hz resolution. The blue curve is for CV operation.
One sees that the noise peaks (multiples of 50 and 100 Hz) decline faster than the
noise peaks in the CC mode (red curve). The noise floor of the CV mode is also
slightly lower.

For experiments on the atom chip we developed a special power supply.
Here we took car batteries, in order to avoid noise from the line. In figure
the circuit diagram is shown. The main part is a IGBT chip, which regulates
the current. To be able to run the atom chip completely independent of
the environment function generator was developed (also battery operated),
capable to give out arbitrary voltage ramps. It can replace the experimental
computer control system.

Noise spectra of the current source (see printed circuit reveal, that
the developed devices are 30dB better.
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We took

special care in effectively shielding against electric noise background, which could

Figure E.2: Current supply for the atom chip: the developed circuit is supplied
be picked up.

by a car battery. It can be operated only in ’constant current’ mode.
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Figure E.3: Noise spectra of the self build current supplies: the spectra is 30dB
better (less noise) as the spectra displayed in figure



Appendix F

Computer control

The experiment is entirely controlled by a computer based system named
LABVIEW. It was mainly designed by St. Schneider [100] and is described
there in detail. Here we give a short summary.

We have two main output cards for analog (12-Bit, 8 channels) as well
as digital (TTL, 10 channels) signals. They are synchronized by the same
clock, which ensures accurate timing. The time resolution in the experiment
is 1 ms. As mentioned, we use a programmable function generator for our
radio frequency ramp. This function generator is programmed via a GPIB
card, which is synchronized to the two other cards.

Here we have to mention an important point. The Frequency generator
can not be externally triggered. We therefore load via the GPIB connection
the needed frequency ramp into the memory of the function generator, and
when the loading is finished, the function generator gives out a TTL signal,
which subsequently starts the complete experimental cycle. This method,
although complicated, ensures perfect timing between the analog, TTL and
radio frequency signals. In addition we have an analog-in card, which allows
us to read in analog signals. The computer program controls all the cards,
and allows a easy change of the output signals (see figure below).

As we developed the system, we had to realize that we need more chan-
nels to operate the experiment. We therefore introduced gate generators for
selected channels. These channels had to fulfill the requirement, that we
did not need to change the timing between pulses. The camera pulse se-
quence is a good example. We need three pulses for the camera to get three
pictures (atoms and light, just light, no light at all). The pulse delays are
always the same, and therefore we used one LABVIEW pulse to generate
the pulse sequence. With the same LABVIEW pulse we also triggered the
AOM, which provides the light for the absorption imaging. As we had also
some logic components, it was easy to generate in this way five pulses from
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Figure F.1: Timing sequence: the figure shows the beginning of the experimental
cycle, where we load the atoms from the Q-mirror MOT to the U-mirror MOT
and then into the copper Z-trap.

il Linear RF sweep
points ‘milestones of frequency [MHz]
120 00000 [§20.00000 [{20.00000 [f8.00000 [§2.00000 [J2.00000 [J2.00000 §2.00000 [§0.80000 §0.80000 [§0.80000 |

number of milestones [T

B W0 fooo Fiooo fooo fooo [fozs [fooo [f5.00 [to.00 2200 |

time between the milestones [s] [:] time of
the ramp

Figure F.2: Analog Pulse sequence needed to load the atoms from the Q-mirror
MOT to the U-mirror MOT and subsequently to the copper Z trap.

one LABVIEW pulse.

In figure the analog pulse sequence is displayed. As mentioned, the
power supplies are operated with voltage ramps (they give out according
to the input voltage current ramps). The sequence show the analog ramps
needed to transfer the atoms from the Q-mirror MOT to the U-mirror MOT
and subsequently to the copper Z trap. Figure[F.3]show the LABVIEW front
end, in this case for the TTL signals. Figure [F.2] shows the panel we use
to program the function generator. Different radio frequency ramps can be
programmed.

Figure |F.4] shows the mentioned gate generators. Even they are from
"ancient times’, they where reliable and precise (on a ns scale!).
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Figure F.3: TTL computer panel: here the timing of the used TTL pulses can be
adjusted.

Figure F.4: The gate generators: analog rules!
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