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Neue biophysikalische Methoden zur Charakterisierung der Signalübertragung in
Nervenzellen

Viele Nervenzellen besitzen ausgedehnte Dendritenbäume, und die somatische
Spannungsklemme dendritischer Synapsen führt daher zu Verzerrungen und Abschwächungen
der gemessenen synaptischen Ströme. Eine neue Methode wird vorgestellt, die die genaue
Bestimmung der Abfallszeitkonstante der synaptischen Leitfähigkeit, unabhängig von der
Geometrie der Zelle und dem elektrotonischen Ort der Synapse, erlaubt. In allen getesteten
Geometrien wurde der Zeitverlauf der synaptischen Leitfähigkeit auch bei hohen
Serienwiderständen, geringen Membranwiderständen und distalen, verteilten Synapsen mit hoher
Genauigkeit rekonstruiert. Die Methode liefert auch den Zeitverlauf der Spannungsantwort am Ort
der Synapse auf einen somatischen Spannungssprung, und ist daher nützlich bei der Konstruktion
von Kompartimentmodellen von Nervenzellen und zur Abschätzung des relativen elektrotonischen
Abstands von Synapsen.
Die Ausbreitung dendritischer Aktionspotentiale verbindet die Informationsverarbeitung in
verschiedenen Regionen des Dendritenbaums. Trotz identischer Vorschriften für die Platzierung
von spannungsgesteuerten Kanälen verursachten verschiedene dendritische Verzweigungsmuster
in Kompartimentmodellen von Nervenzellen eine Verteilung verschieden starker
Aktionspotentialausbreitung, wie sie auch experimentell beobachtet wird. Das
Verzweigungsmuster bestimmt auch, zu welchem Grad die Modulation von Kanaldichten die
Aktionspotentialausbreitung verändern kann. Die Vorwärtsausbreitung dendritisch initiierter
Aktionspotentiale wird von der Geometrie auf ähnliche Weise beeinflusst. Indem sie das räumliche
Muster der Aktionspotentialausbreitung bestimmt, trägt die dendritische Geometrie maßgeblich
dazu bei, die Größe und Wechselwirkung zwischen funktionellen Kompartimenten in einer
Nervenzelle zu bestimmen.

New biophysical methods for the characterization of signal transfer in neurons

Many neurons have extensive dendritic trees, and therefore somatic voltage clamp of dendritic
synapses is often associated with substantial distortion and attenuation of the synaptic currents. A
new method is presented which permits faithful extraction of the decay time constant of the
synaptic conductance independent of dendritic geometry and the electrotonic location of the
synapse. The decay time course of the synaptic conductance was recovered with high accuracy in
all the tested geometries, even with high series resistances, low membrane resistances, and
electrotonically remote, distributed synapses. The method also provides the time course of the
voltage change at the synapse in response to a somatic voltage clamp step, and thus will be useful
for constraining compartmental models and estimating the relative electrotonic distance of
synapses.
Action potential propagation in dendrites links information processing in different regions of the
dendritic tree. In simulations using compartmental models with identical complements of voltage-
gated channels, different dendritic branching patterns caused a range of backpropagation
efficacies, similar to that observed experimentally. Dendritic geometry also determines the extent
to which modulation of channel densities can affect propagation. Forward propagation of
dendritically initiated action potentials is influenced by geometry in a similar manner. By
determining the spatial pattern of action potential signalling, dendritic geometry thus helps to define
the size and interdependence of functional compartments in the neuron.
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1 Introduction

Progress in science depends on new techniques, new discoveries, and new ideas,
probably in that order. – Sydney Brenner

Typical neurons in the brain consist of a cell body or "soma" containing the nucleus,
and two types of tree-like processes emerging from it: the dendrites and an axon. In
the classical view of signal processing in the brain, the dendrites receive information
from other neurons, while the axon transmits information on to other neurons (Ramón
y Cajal, 1904). The dendrites of different neuronal types have characteristic
branching patterns (Fig. 1.1), as do the axons. Neurons are connected to each other
via synapses, where an electrical action potential in the presynaptic (sending) axon
causes the release of vesicles containing neurotransmitter molecules from the
presynaptic element of the synapse, which subsequently diffuse in the synaptic cleft
between the pre- and postsynaptic elements and bind to ligand-gated ion channels in
the postsynaptic membrane. Ligand binding leads to opening of these channels,
resulting in an additional electrical conductance in the postsynaptic membrane, which
causes a current to flow at the location of the synapse.

If we look more closely the picture becomes much more complicated since
chemical synaptic transmission involves a long cascade of signalling mechanisms. In
addition, there is electrical transmission, caused by gap junctions which mediate
direct electrical connections between neurons, and retrograde chemical transmission
whereby messenger substances released from the postsynaptic neuron act on
presynaptic receptor molecules. Retrograde signalling of this type can cause long-
term changes in the characteristics of synaptic transmission.

Here I focus on what happens in the postsynaptic neuron once a synaptic
conductance has been activated, a process called synaptic integration. In its simplest
form, the neuron is described as a single, isopotential compartment, with a single
state variable, the membrane potential. Synaptic currents change the membrane
potential by charging or discharging the membrane capacitance, and any resulting
perturbations away from the resting potential of the cell decay exponentially due to a
constant membrane resistance in parallel to the membrane capacitance, with a time
constant equal to the product of the membrane capacitance and the membrane
resistance. When the membrane potential reaches a certain threshold value, the
neuron instantaneously fires a spike and resets the membrane potential. This
abstraction of neuronal function is generally referred to as the integrate-and-fire
neuron (Lapicque, 1907).



Chapter 1: Introduction

2

When synapses are located on extended dendritic trees, however, a single-
compartment integrate-and-fire model of synaptic integration is too simple, even in
the "passive" case when no nonlinearities due to voltage-dependent conductances
are involved. Rall (1964) was the first to point out that spatially extended dendritic
cables endow a neuron with mechanisms to distinguish different spatiotemporal
patterns of synaptic input (Fig. 1.2).

The lowest threshold site for action potential initiation in neurons of the
mammalian central nervous system is located in the axon, but action potentials back-
propagate into the dendrites (Fig. 1.3; Stuart & Sakmann, 1994), providing a
retrograde signal to the dendritic synapses that the axon has fired. Action potential
backpropagation is possible because dendrites contain "active", voltage-dependent
conductances (albeit at a lower density than the axon). These channels also enable

Fig. 1.1. Dendritic branching patterns of different types of neurons. Top row, left to right: alpha
motoneuron in cat spinal cord (2.6 mm); spiking interneuron in mesothoracic ganglion of locust
(540 µm); granule cell from mouse olfactory bulb (260 µm); spiny projection neuron in rat striatum
(370 µm). Middle row, left to right: retinal ganglion cell in postnatal cat (390 µm); amacrine cell in
the retina of larval tiger salamander (160 µm); neuron in the Nucleus of Burdach in human fetus.
Bottom row, left to right: layer 5 pyramidal neuron in rat neocortex (1030 µm); Purkinje cell in
human cerebellum; Relay neuron in rat ventrobasal thalamus (350 µm); Purkinje cell in mormyrid
fish (420 µm). Adapted from Mel, 1994.
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dendrites to initiate their own spikes (Fig. 1.4; Helmchen et al., 1999). In contrast to
linear (or subthreshold) synaptic integration, spikes are characterized by a voltage
threshold beyond which excursions of the membrane potential become self-
amplifying due to the recruitment of additional voltage-dependent conductances
(Jack et al., 1983). Backpropagating action potentials can lower the threshold for
initiation of dendritic spikes, thus providing nonlinear coupling mechanisms between
several spike initiation zones in a neuron (Larkum et al., 1999b; Schaefer et al.,

Fig. 1.2. The first compartmental model of a neuron. Top, structure of the compartmental model.
In each of the instances the somatic compartment is shown on the left, and nine dendritic
compartments to the right. Bottom, the amplitude and time course of the somatic membrane
potential Vm (plotted in units of the synaptic driving force, i.e. the difference between the reversal
potential of the synaptic conductance Eε and the resting potential Er of the neuron) depend on the
temporal sequence in which synaptic conductances (denoted by ε) at different locations on the
dendrite are activated. Synaptic activation in the order A→B→C→D, i.e. proximal synapses first
and distal synapses last, results in a small but sustained somatic depolarization. The peak
amplitude reached is not significantly higher than that in response to synaptic activation in
configuration A alone. In contrast, activation in the order D→C→B→A, i.e. distal synapses first
and proximal synapses last, results in a larger but delayed somatic depolarization. Synaptic
potentials activated in this order summate more synchronously and thus more effectively at the
soma, because the delays in activation partly compensate the delays in the spread of the
depolarization from the synaptic locations to the soma. The dotted line shows the effect of a
synaptic conductance ε/4 activated in each of eight compartments (2 through 9) for the period
0 <= t <= τ. See also section 1.2. Adapted from Rall, 1964.
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2003b). The conditions for initation of spikes in the dendrites are not the subject of
this thesis, however.

Neurons are not identical particles. There is considerable diversity in the types
of synapses between neurons, with different characteristics of transmission –
different transmitters, different receptors, different amplitude and kinetics of the
synaptic conductance, different degrees of variability and reliability, and different
rules of short- and long-term synaptic plasticity. The exact purpose of this diversity is
unclear, but since many parameters of synaptic transmission are actively regulated

by feedback loops over various time scales (Turrigiano & Nelson, 2004), and since
small perturbations in the characteristics of synaptic transmission often have drastic
effects (as can be observed in genetically modified animals – in many cases they
suffer from epilepsy) it is likely that the diversity is required for normal brain function.
Different types of neurons also exhibit different dendritic branching patterns (Fig.
1.1). Clearly, the different projection patterns of axons and dendrites determine which
neurons can talk to which other neurons because they define the regions where
axons and dendrites overlap and where synapses can be formed (Lübke et al.,
2003). But beyond that, one might hypothesize that this diversity is not simply an
epiphenomenon due to the need to wire up the cortex in a particular way, but that the
consequences of the different branching patterns for the intrinsic properties of

Fig. 1.3. Somatic action potentials back-propagate into the dendrites of layer 5 neocortical
pyramidal neurons. a, simultaneous whole-cell recordings from the soma and apical dendrite
(525 µm from the soma) of a layer 5 pyramidal neuron in vitro. Action potentials were evoked by
somatic (top, 150 pA) or dendritic (bottom, 300 pA) current injection. b, simultaneous filling of the
same layer 5 pyramidal neuron from the dendrite and the soma with different fluorescent dyes:
Cascade blue at the soma and Lucifer yellow in the dendrite (dendritic recording 190 µm from the
soma). c, action potentials initiated by distal synaptic stimulation in layer 1 (arrow); same cell and
dendritic recording as in a. d, plot of the latency difference of the peak of somatic and dendritic
action potentials at different distances from the soma. Action potentials were initiated by either
somatic current pulses (filled symbols; n = 32) or distal synaptic stimulation (open symbols; n = 5).
The linear fit has an inverse slope of 0.15 m s–1. Adapted from Stuart & Sakmann, 1994.



Chapter 1: Introduction

5

different types of neurons, as well as variability among individual neurons of the
same type are also important for the operation of the brain and, ultimately, the
behaviour of the animal.

So what do neurons do? Can we look at any of the neurons in Fig. 1.1 and say
what it does, or might do? In chapter 3 of this thesis I argue that the answer to this
question is a cautious "yes". We can predict some aspects of dendritic function
already from the dendritic branching pattern. Two complementary aspects which are
relevant to information processing in neurons are highlighted by the following two
questions: Firstly, how do neurons transform synaptic inputs to their dendrites into
action potential output to their axon? And secondly, what are the functional
compartments in dendritic trees?

With time the answers to both questions have become more complicated.
Starting from the integrate-and-fire neuron, many variants of single-compartment
models have been developed, which make increasingly precise predictions of output
spike trains given a time series of synaptic inputs. On the other end of the spectrum
very detailed compartmental models of neurons have been constructed, with
thousands of compartments, thousands of state variables and even more free
parameters, which are tuned to reproduce a large range of experimental data (e.g.
De Schutter & Bower, 1994). Models of this type are usually very complex, and it is
often difficult to understand why a particular set of model parameters resulted in a
good agreement between the predictions of the model and the experimental data,
while a slightly different set of parameters specified a model that failed to do so.

Fig. 1.4. All-or-none events triggered in the apical dendrite of layer 5 pyramidal neurons in vivo. a,
experimental configuration for simultaneous somatic whole-cell recording and two-photon laser
scanning microscopy. b, side projections of two apical tufts. The left layer 5 pyramidal neuron was
recovered histologically, and a collage of the neurobiotin reconstruction (lower part) and the
fluorescence image (upper part) is shown. The arrow indicates the location of the line-scans
shown in c. c, single or multiple somatic sodium action potentials (Vsoma) did not evoke detectable
[Ca2+] transients (∆F/F) near the main bifurcation of the right cell in b (left and middle). However, a
spontaneous burst of somatic sodium action potentials superimposed on a slow depolarizing
potential was accompanied by a large [Ca2+] transient at the same location (right) indicating that a
dendritic calcium spike was initiated. Adapted from Helmchen et al., 1999.
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Accordingly, it is difficult to reduce these complex models to a simpler, more tractable
description that will predict for all possible spatiotemporal patterns of input how the
output will look like (but see Poirazi et al., 2003). Models of intermediate complexity,
such as conductance-based single-compartment models, two-compartment models
(Pinsky & Rinzel, 1994), three-compartment models (Larkum et al., 2001) and
equivalent cables (Fleshman et al., 1988; Clements & Redman, 1989; Ohme &
Schierwagen, 1998; chapter 3), are therefore active areas of research.

Integrate-and-fire neurons are still the default devices in typical network
models of the brain. Maybe this is indeed the appropriate abstraction of the function
of a single neuron in the network 99% of the time. Maybe not. Perhaps it is justified to
work with integrate-and-fire neurons at the network level as long as we do not have
better working models of single neuron function which are not too complicated, not
too inaccurate, and which have been validated by comparison with experiments in
vitro and in vivo and with very detailed compartmental models.

To avoid this conceptual uncertainty in current network models, the present
thesis follows the "bottom-up" approach. It assumes that we need to understand the
signalling mechanisms at the molecular and cellular level if we really want to
understand how behaviour at the next level emerges. The basic problem of the
bottom-up approach towards the understanding of the brain is our current lack of
knowledge about many (actually, most) of the details required for a reasonably
accurate quantitative description even of a small part of the system, such as a single
neuron. This is somewhat ironic, exactly because the firm conviction underlying the
bottom-up approach is that details do matter, and also because a large amount of
data is already described in the literature – but experience shows that whenever the
value of a particular quantity is needed in order to construct a quantitative model of a
certain aspect of neuronal function, chances are that no useful information is
available on it. Typically, there are several reasons for this. Either there are no data
available at all on this particular quantity, or the measurements were too indirect, not
sufficiently accurate, not done under the right conditions, or the results are not
presented in a useful format.

A quantitative description of the input-output relationship of a neuron depends
on parameters such as the amplitude and kinetics of the synaptic conductance, the
passive membrane parameters, and also on the effects of active conductances.
Many of the underlying parameters are difficult to measure experimentally in cortical
neurons due to the electrical cable structure of their spatially distributed, highly
branched, thin dendrites. New methods are needed to obtain more accurate
measurements of these parameters, and the strategy for the present thesis is to
develop closely integrated, combined experimental and modelling methods to
address or circumvent the experimental difficulties.
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This introduction continues with two sections describing the theoretical
background of the new methods, cable theory (in section 1.1), and the tools used to
apply and to test the new techniques: compartmental models (in section 1.2).
Chapter 2 presents a method for unbiased measurements of the kinetics of synaptic
conductances located in the dendrites of a neuron, remote from the recording site at
the cell body. Chapter 3 shows how compartmental models of neurons including
active, voltage-dependent conductances can be used to examine the link between
form and function of neurons, focusing on the backpropagation and forward
propagation of action potentials in the dendrites. The thesis concludes with a
comprehensive discussion.

1.1 The cable equation

1.1.1 Main assumptions

The dendrites and axons of neurons are cable-like structures, consisting of a
conducting core and a surface membrane which can be represented as a
capacitance and a resistance in parallel (Jack et al., 1983). The core conductor – the
intracellular medium of the neuron – is an electrolyte solution whose electrical
conductivity is determined by the concentration of mobile intracellular ions such as
K+ and Cl– and by the excluded volume taken up by intracellular organelles such as
mitochondria. Typical values for the specific resistivity Ri of the intracellular medium
in neurons of the mammalian central nervous system range from 70 to 150 Ω cm (for
discussion see Roth & Häusser, 2001). The capacitance per unit area of the cell
membrane, Cm, is determined by the effective thickness and the effective dielectric
constant of the lipid bilayer, both of which are not exactly known since the protein
content of the membrane is variable. However, direct measurements of Cm in
neurons typically yield values around 1 µF cm–2 (Gentet et al., 2000). Among the
proteins embedded in the lipid bilayer are varous types of ion channels whose
density and conductance – which can be voltage-dependent, as described in section
1.2.2 below – determine the membrane resistance. Typical values of the specific
membrane resistance Rm near the resting membrane potential Vrest (about –70 mV;
measured as intracellular potential minus extracellular potential) depend mostly on
the density of voltage-independent (leak) ion channels in the neuron and range from
10 to 100 kΩ cm2. As long as Rm is not voltage-dependent, we speak of a "passive"
cable; if there is a significant voltage dependence of the specific membrane
resistance (see section 1.2.2), the cable is called "active".
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Locally, between branch points, the geometry of the cable can be
approximated by a cylinder. This cylinder is sufficiently long and thin, and the
membrane resistance is large compared to the intracellular resistivity such that the
dominant fraction of the current inside the dendrite flows parallel to its longitudinal
axis. Thus, we do not need to solve for voltage in three dimensions: the problem can
be reduced to a description of voltage along a single spatial dimension x. We also
assume that the intracellular resistivity is Ohmic since any capacitive effects inside
the cytoplasm can be ignored on the millisecond time scale, and inductive effects can
be completely neglected (Jack et al., 1983). This leaves one major approximation
which we can safely make for our purposes here, but which may not always be
appropriate when studying the intact brain in vivo: we assume that the extracellular
medium has a negligible resistivity and is virtually isopotential.

1.1.2 The linear cable equation

To derive the cable equation it is convenient to reexpress Ri, Cm and Rm as
quantities per unit length of the cable, i.e.

€ 

ra =
4Ri
πd2

(1.1)

is the axial resistance in units of Ω cm–1,

€ 

rm =
Rm
πd

(1.2)

Fig. 1.5. Cross-section of dendritic processes
meeting at a branch point. ia, axial current;
im, membrane current (see section 1.1.2).
The net current entering a given region must
be zero according to Kirchhoff’s law of
current conservation.



Chapter 1: Introduction

9

is the membrane resistance in units of Ω cm and

€ 

cm =Cm ⋅ πd (1.3)

is the membrane capacitance in units of µF cm–1, where d is the diameter of the
cable. According to Ohm’s law, the spatial gradient of the membrane potential is
proportional to both the axial resistance per unit length and the axial current,

    

€ 

∂V (x,t )
∂x

= −ra ⋅ ia(x,t ) . (1.4)

On the other hand, Kirchhoff’s law of current conservation states that any local
change in the axial current is only possible if there is a nonzero membrane current
per unit length,

      

€ 

im(x,t ) = −
∂ia(x,t )
∂x

, (1.5)

and inserting the spatial derivative of Eq. 1.4 into Eq. 1.5 yields

    

€ 

im(x,t ) =
1
ra
∂2V (x,t )
∂x2

. (1.6)

We have arrived at a second-order ordinary differential equation relating the profile of
the membrane voltage and the membrane current, assuming an Ohmic intracellular
cytoplasm. Now we need to specify the different contributions to the membrane
current – an ohmic contribution due to the membrane resistance, a capacitive current
due to the membrane capacitance, and possible external currents,

€ 

im(x,t ) =
V (x,t )−Vrest

rm
+ cm

∂V (x,t )
∂t

− ipip(x,t ), (1.7)

where ipip is a current injected into the cable, in parallel to the membrane current im,
via an electrode with access to the intracellular medium, for example a patch pipette
in the whole-cell recording configuration. By combining Eq. 1.6 and Eq. 1.7 and
multiplying with rm we obtain
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€ 

λ2
∂2V (x,t )
∂x2

= (V (x,t )−Vrest)+ τm
∂V (x,t )
∂t

− rmipip(x,t ), (1.8)

where 

€ 

λ =
rm
ra

 is the steady-state space constant and 

€ 

τm = rmcm is the membrane

time constant. Eq. 1.8 is the linear cable equation, a partial differential equation of the
parabolic type, similar to the diffusion equation.

1.1.3 Steady-state solution in an infinite cable

Analytical solutions of the linear cable equation have been obtained for a
number of situations (Jack et al., 1983; Major et al., 1993). Here we give only the
solution for an infinite cable in the steady-state, where the cable equation simplifies
to

€ 

λ2
∂2V (x,t )
∂x2

= (V (x,t )−Vrest)− rmipip(x ). (1.9)

For a current injection at x = 0, represented by 

€ 

ipip(x ) = I ⋅ δ(x ) where 

€ 

δ(x ) is the Dirac
delta distribution, Eq. 1.9 has the solution

€ 

V (x) =Vrest +V0e−|x |/ λ (1.10)

where 

€ 

V0 =
I ⋅ rm
2λ

 (or 

€ 

V0 =
I ⋅ rm
λ

 for a semi-infinite cable). Thus the input resistance of

the semi-infinite cable is 

€ 

Rin =
V0
I

=
rm
λ

= rarm = RiRm ⋅
2

πd3/ 2
, a result which we

will revisit in chapter 3.

1.2 Compartmental models

1.2.1 Introduction

Analytical solutions become more complicated when the diameter of the cable
changes or when multiple cables are connected at branch points, as is the case in
real dendritic trees. The level of difficulty jumps especially when the cables become
active and rm depends on voltage (Jack et al., 1983). In these cases it is convenient
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to solve Eq. 1.8 numerically. Spatial discretization (Fig. 1.6) gives rise to a family of
ordinary differential equations of the form

€ 

c j
dV j
dt

+ Iionj =
Vk −V j
r jkk

∑ (1.11)

which again represent Kirchhoff’s law of current conservation: the membrane current
leaving compartment j must be equal to the sum of axial currents entering this
compartment from all connected compartments k. Compartmental models of neurons
were first used by Rall (1964; see Fig. 1.2).

1.2.2 The Hodgkin–Huxley model

The classical description of excitability in neurons is the model of Hodgkin &
Huxley (1952). It is a phenomenological model in which the ionic transmembrane
current 

€ 

Iion in Eq. 1.11 consists of a component mediated by voltage-dependent Na+

channels, 

€ 

INa, a component mediated by voltage-dependent K+ channels, 

€ 

IK , and a
leak current mediated by a voltage-independent leak conductance (see also Fig. 1.7)

€ 

Iion = INa + IK + Ileak. (1.12)

Fig. 1.6. A, schematic representation of an
unbranched section of a dendrite. Computer-
aided light-microscopic reconstruction of
neurons provides lists of local coordinates
(crosses) and diameters (circles) of neurites. B,
as a first step towards the construction of a
compartmental  model based on a
morphological reconstruction of a dendrite,
each adjacent pair of diameter measurements
(circles) forms the parallel faces of a truncated
cone. C, bends are straightened out since any
bend angles are ignored when constructing the
one-dimensional cable equation. D, electrical
equivalent circuit with two compartments. Ri
refers to the axial resistors and M to the
membrane areas associated with the left and
right compartment. x is a relative spatial
coordinate with values ranging from 0 (left end
of section) to 1 (right end of section). Adapted
from Hines & Carnevale, 1997.
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Each of these currents is the product of a maximal conductance, a gating variable
(which is effectively constant in the case of the leak) and the driving force (the

membrane potential minus the reversal potential given by the Nernst equation). The
K+ current is given by

   

€ 

IK = g Kn4(V −EK), (1.13)

where 

€ 

g K is the maximal potassium conductance, n is the gating variable (

€ 

n4

implying four independent gates per channel) and 

€ 

V −EK  is the driving force for
potassium ions. Similarly, the Na+ current is given by

€ 

INa = g Nam3h(V −ENa), (1.14)

where m and h are two gating variables for the activation and inactivation of the
sodium channels, respectively. The voltage- and time-dependence of these gating
variables is governed by the following differential equations

€ 

dn
dt

= αn(V )(1−n)−βn(V )n

€ 

dm
dt

= αm(V )(1−m)−βm(V )m (1.15)

€ 

dh
dt

= αh(V )(1−h)−βh(V )h ,

where the rate constants 

€ 

α and 

€ 

β have the following voltage dependence in the
original model of Hodgkin & Huxley (1952)

Fig. 1.7. Equivalent circuit for the Hodgkin-
Huxley model in a single compartment. The
outside and inside of the cell membrane are
connected by a capacitor representing the
membrane capacitance, two voltage-
dependent resistors and batteries representing
the reversal potential for the sodium and
potassium conductances, respectively, and a
constant resistor and battery representing the
leak conductance and its reversal potential.
From Hodgkin & Huxley, 1952.
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€ 

αn(V ) =
10  mV −V

100  mV ⋅ms (e(10  mV−V ) /(10  mV) −1)

€ 

βn(V ) = 0.125  ms−1  e−V /(80  mV)

€ 

αm(V ) =
25  mV −V

10  mV ⋅ms (e(25  mV−V ) /(10  mV) −1)
(1.16)

€ 

βm(V ) = 4  ms−1  e−V /(18  mV)

€ 

αh(V ) = 0.07  ms−1  e−V /(20  mV)

€ 

βh(V ) =
1 ms−1

e(30  mV−V ) /(10  mV) + 1
.

These parameters describe the voltage-dependence and kinetics of the Na+

and K+ currents in the squid giant axon, which was the model system studied by
Hodgkin & Huxley. The voltage-gated ion channels found in neurons of the
mammalian central nervous system are related to those in the squid, but do differ in
their detailed properties, not least because of the different body temperature and the
different ionic composition of the extracellular medium compared to sea water. Thus,
chapter 3 of this thesis uses a Hodgkin–Huxley-type model of neuronal excitability
with the same structure as the original Hodgkin & Huxley (1952) model but slightly
different parameters describing action potential initiation and propagation in
neocortical neurons (Mainen et al., 1995; Mainen & Sejnowski, 1996).

1.2.3 The NEURON simulation environment

NEURON, a free software package written by Michael Hines (Hines &
Carnevale, 1997), has become the standard tool for simulations of compartmental
models of neurons. NEURON uses an efficient numbering scheme for the n
compartments representing a branched cable such that the connectivity matrix can
be inverted in O(n) steps. Thus, implicit methods for the solution of the discretized
cable equation can be applied in an efficient manner. The default method is the
backward Euler method, which is stable for large time steps and robust in practice.
NEURON also provides facilities for the construction of compartmental models based
on detailed morphological reconstructions of neurons (Fig. 1.8).
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Different parts of the neuronal morphology may be endowed with different
membrane properties in NEURON. For example, Na+ and K+ channels are often
placed at high density in the nodes of Ranvier and the axon hillock (see also Fig.
3.2), and low membrane capacitance is used in the myelinated internodes.

Fig. 1.8. Top, morphological reconstruction
of a neuron with a cell body (Soma),
dendrites (D), axon hillock (AH), and an axon
consisting of myelinated internodes (I) and
nodes of Ranvier (N). Bottom, conceptual
representation of the same cell in NEURON
as a set of sections connected at branch
points. Each section can be subdivided into
several compartments (called segments) as
shown in Fig. 1.6.



2 Estimating the time course of the synaptic
conductance under conditions of inadequate space
clamp

2.1 Introduction

Knowledge of the time course of the synaptic conductance is of fundamental
importance to our understanding of synaptic transmission. The kinetics of the
synaptic conductance influences neuronal function in a variety of ways, from shaping
the resulting synaptic potential and influencing the time window for synaptic
integration, to determining the charge associated with the synaptic current
(particularly relevant when a significant fraction of the current is carried by ions with
second-messenger effects, such as Ca2+). Furthermore, comparing the synaptic
conductance time course to receptor channel kinetics can provide valuable
information about the signal cascade underlying synaptic transmission.

Synaptic conductance is conventionally measured by recording the synaptic
current with somatic voltage clamp. In cells where all synapses are electrotonically
close to or at the soma, such as cerebellar granule cells (Silver et al., 1992, 1995),
neuroendocrine cells (Schneggenburger & Konnerth, 1992; Borst et al., 1994),
unipolar brush cells (Rossi et al., 1995) or neurons in the auditory pathway (Forsythe
& Barnes-Davies, 1993; Zhang & Trussell, 1994; Borst et al., 1995), this method can
give a reliable estimate of the conductance time course. Alternatively, one can select
for somatic synapses on the basis of cable model predictions (Finkel & Redman,
1983; Nelson et al., 1986). However, in most neurons the large majority of synapses
are located at a considerable electrotonic distance from the soma, and therefore
somatic voltage clamp of these synapses is associated with substantial attenuation
and distortion of the synaptic current (Rall, 1967; Johnston & Brown, 1983; Rall &
Segev, 1985; Major, 1993; Spruston et al., 1993; Roth & Häusser, 2001). This
problem has proved to be rather intractable, and although several solutions have
been proposed before (see section 2.4.1), none are completely satisfactory.

Pearce (1993) introduced an experimental technique which uses somatic
voltage jumps at various times during the synaptic conductance to determine how
long after the onset of the synaptic current the synaptic conductance is still active.
The principle of the technique is that a voltage jump which increases the synaptic
driving force will only recover additional synaptic charge if the jump is made while the
conductance is still active. The technique was used to show that the GABAergic
synaptic conductance generated by activation of distal synapses in hippocampal CA1
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neurons has a prominent slow component; however, a quantitative determination of
the time course of the conductance was not made. The same technique was
subsequently applied to excitatory synapses in various neuronal types, also to
demonstrate that the synaptic conductance at these synapses has a prolonged
component (Barbour et al., 1994; Mennerick & Zorumski, 1995; Rossi et al., 1995;
Kirson & Yaari, 1996).

Here I show using simulations in a variety of reconstructed model neurons that
by measuring the time course of recovered charge this experimental technique can
be used to determine the decay time course of the synaptic conductance with a high
degree of accuracy. A simple analytical function providing a quantitative description
of the results is presented, and limitations and potential applications of the method
are explored.
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2.2 Methods

All simulations were carried out using NEURON (Hines & Carnevale, 1997)
running on SUN Sparcstations (Sun Microsystems, Mountain View, CA, USA). The
integration time step was 10 µs. The synaptic conductance consisted of a sum of two
or three exponentials, one for the rise (always 0.2 ms, unless otherwise indicated),
and one or two for the decay. A "brief pulse" synaptic conductance was simulated
using a 1 nS conductance with duration of 0.1 ms. Except for the equivalent cylinder
simulations and the simulations shown in Fig. 2.10, synaptic contacts were placed at
the head of explicitly modeled spines. The series resistance of the recording pipette
was always 0.5 MΩ (except for the simulation in Fig. 2.9A–C), which is achievable in
experiments using the neuronal types shown here (e.g. 5 MΩ compensated by 90%).
Unless otherwise indicated, the decay time constant of synaptic currents recorded at
the soma was fitted using a single exponential function, starting at the time point
where the current had decayed to about 90% of the peak amplitude.

2.2.1 Equivalent cylinder model

The geometry used in the equivalent cylinder simulation was as follows (see
Fig. 2.1): soma 10 µm long, 10 µm diameter, 10 segments; dendrite 500 µm long,
1.2 µm diameter, 100 segments. Electrical parameters were: Ri = 150 Ω cm,
Rm = 50 kΩ cm2, Cm = 1.0 µF cm–2, giving an electrotonic length of the dendrite of
L = 0.5. The passive reversal potential was –65 mV.

2.2.2 CA3 pyramidal cell model

The CA3 pyramidal cell model was based on cell CA3_15 in Major et al.
(1994), which is from a 19-day-old rat. The morphology was converted from the

Fig. 2.1. Equivalent cylinder model (soma not to scale), with electrotonic length L = 0.5. The
locations of three synapses on the cable (electrotonic location X = 0, 0.15 and 0.5) are indicated
by arrows.
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native format to that of NEURON using a program written in Mathematica (Wolfram
Research, Champaign, IL, USA). The electrotonic length of each segment was
< 0.01. The electrical parameters were Ri = 250 Ω cm, R m = 180 kΩ cm2,
Cm = 0.66 µF cm–2 (Major et al., 1994), with a passive reversal potential of –65 mV.
Spine corrections were carried out as described by Major et al. (1994), and the axon
was not included in the simulations. The spine at the excitatory synaptic contact had
a neck length of 0.66 µm, a neck diameter of 0.2 µm, a head length of 0.5 µm, and a
head diameter of 0.45 µm.

2.2.3 Neocortical pyramidal cell model

The morphology of the layer 5 pyramidal cell was taken from Markram et al.
(1997) and comes from a postnatal day 14 rat (same neuron as shown in red in
Figure 13 of that paper). The electrotonic length of each segment was < 0.02. The
values for passive cable properties were Ri  = 150 Ω cm, R m  = 30 kΩ cm2,

Cm = 0.75 µF cm–2, and the passive reversal potential was set to –70 mV (Mainen &
Sejnowski, 1996). The measured dendritic membrane area was doubled to account
for spines. The axon was included, but axon collaterals were omitted. The neck
length of the explicitly modeled spines was 1.0 µm, neck diameter was 0.35 µm, and
head length and diameter were both 0.7 µm (Peters & Kaiserman-Abramof, 1970).

Active conductances were added to the model as described in Mainen &
Sejnowski (1996), based on the parameters in their original NEURON files (available
at http://www.cnl.salk.edu/CNL/simulations.html). Two changes were
made with respect to the original files of Mainen & Sejnowski: 1) the reversal
potential for Ca2+ was not constant at +140 mV, but updated according to the Nernst
equation assuming [Ca2+]o = 2 mM; 2) the time step was 10 µs instead of 25 µs.
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2.3 Results

2.3.1 Attenuation and filtering of synaptic currents under poor
space-clamp conditions

The nature of the problem faced when attempting to voltage clamp dendritic
synaptic currents via a somatic electrode is illustrated in Fig. 2.2 using the simple
equivalent cylinder model shown in Fig. 2.1. There are two closely related
components of inadequate space clamp that must be considered: attenuation of the
signal along the cable, and the reduction in driving force at the synapse caused by
local depolarization or hyperpolarization (also known as "voltage escape"). The
outcome of these two effects is that the current recorded at the soma from synapses

located on the dendrites is a substantially filtered version of the synaptic current
expected under perfect clamp conditions, with the risetime, peak and decay being
subject to considerable distortion, dependent on the electrotonic distance of the

Fig. 2.2. Space-clamp errors affecting the measurement of dendritic synaptic conductances. All
traces from the same equivalent cylinder shown schematically in Fig. 2.1. The peak synaptic
conductance was 1 nS in each case, consisting of the sum of a rising (τ = 0.2 ms) and a decaying
(τ = either 1, 3 or 10 ms) exponential. For each panel the voltage at the synaptic location is shown
as the top trace. The lower traces show the current recorded at the soma (thick line), the current
actually flowing at the synapse (thin line), and the synaptic current expected under perfect voltage
clamp conditions (dashed line). The figures at the right of each panel show the relative magnitude
of the peak ("pk"), the decay time constant ("τ") and the charge ("Q") of the somatic current versus
the perfectly clamped synaptic current. The scale bar at the bottom right of the figure applies to all
panels.
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synapse from the soma and the kinetics of the conductance. These features have
been previously described in detail (Johnston & Brown, 1983; Rall & Segev, 1985;
Major, 1993; Major et al., 1993; Spruston et al., 1993), but there are several aspects
of particular relevance to the method which deserve special emphasis. First, the
current flowing at the synapse during somatic voltage clamp is not identical to the
current which would be flowing during perfect clamp of the synapse. This difference
is attributable to the voltage escape at the synapse, which reduces the driving force
of the synaptic current and distorts its shape. Second, for a given location and peak
conductance the voltage escape, and thus the distortion of the synaptic current, is
greatest for the synaptic conductances with the slowest kinetics, since they continue
to charge the membrane capacitance for a longer period of time. The magnitude of
this effect on the current recorded at the soma will be mitigated by the fact that slow
conductances suffer less attenuation by the cable, since attenuation is frequency-
dependent in a passive system (Rall, 1967; Jack et al., 1983; Spruston et al., 1994).
Third, while the kinetics and the peak of the synaptic current suffer the most
distortion, the attenuation of synaptic charge is much less severe. Furthermore, the
attenuation of charge at a given location is relatively independent of the kinetics of
the current: in these simulations, there was <10% difference in the recovered charge
for conductances with different kinetics even for the most distal synapses. This
residual difference is attributable to the greater voltage escape caused by slower
conductances: when the voltage escape converges towards zero, the attenuation of
synaptic charge becomes independent of the kinetics of the synaptic conductance
(Rall & Segev, 1985; Major et al., 1993).

The voltage jump method described in this chapter circumvents the filtering of
the synaptic current by the cable and provides a reliable estimate of the synaptic
conductance time course for even the most electrotonically distal synapses. The
method is particularly concerned with (and is most effective for) fast synaptic
conductances, which suffer the most severe distortions under conditions of
inadequate space clamp.

2.3.2 Measuring charge recovery

The experimental procedure for recovering synaptic charge, following the
method introduced by Pearce (1993), is demonstrated using a simple equivalent
cylinder simulation in Fig. 2.3. According to this procedure the somatic voltage is held
at the apparent synaptic reversal potential and a hyperpolarizing voltage jump is
made, providing a driving force to generate synaptic current. The voltage jump is
repeated in the presence and absence of synaptic activation and the resulting
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somatic currents are subtracted, thus eliminating the capacitive transient which
accompanies the voltage jump. This procedure gives a residual synaptic current with
a time course and amplitude which depends on the relative time of the jump and the
onset of the synaptic conductance (see Fig. 2.4A). If the jump occurs sufficiently long
before the onset of the conductance, then the residual current will approach identity

with the synaptic current recorded at that potential under steady-state conditions. On
the other hand, if the jump occurs a sufficiently long time after the onset of the
synaptic conductance then it will eventually recover no current at all, since the
synaptic conductance will have terminated. The current resulting from each jump
therefore results from an interaction between the time course of the increase in
driving force at the synapse and the kinetics of the conductance itself.

The synaptic charge associated with each residual current is plotted against
the time of the respective jump in Fig. 2.4B. The resulting "charge recovery curve"
has a sigmoidal shape consisting of an exponential "onset" and "offset" with a
transition around 0 ms, i.e. at the beginning of the synaptic conductance. This is
made more clear when the charge recovery curve is differentiated with respect to the
time of the somatic voltage jump (Fig. 2.4C), revealing a sharp peak near 0 ms, with

Fig. 2.3. Experimental protocol for
measuring charge recovery. Same
equivalent cylinder as in Fig. 2.2; synapse
at X = 0.15, peak conductance 1 nS, rise
and decay time constants 0.2 and 3.0 ms
respectively. Top panel, –20 mV voltage
jump applied at the soma via the somatic
electrode. The somatic holding potential is
set to 4.10 mV, making the voltage at the
synapse equal to the reversal potential
(0 mV). The somatic voltage clamp
command is shown in the top trace, the
voltage at the synapse is shown in the
second trace, and the (truncated) somatic
clamp current is shown in the lower trace.
Second panel, the synaptic conductance is
activated 1 ms before the same voltage
jump. The time course of the synaptic
conductance is shown by the dashed line,
with the amplitude equal to that of the
perfectly clamped synaptic current. The
somatic clamp current in the presence
(solid line) and absence (dotted line) of the
synaptic conductance is shown. Bottom
panel, residual synaptic current (thick
trace) following subtraction of somatic
clamp current under the two conditions.
The synaptic current expected under
perfect voltage clamp at a constant holding
potential of –20 mV is superimposed as a
dashed line.
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an exponential rolloff on either side. The determinants of the two components of the
curve will be examined in the following section.

2.3.3 Charge recovery after the onset of the synaptic conductance
is determined by the conductance time course

Figure 2.5 shows several charge recovery curves from a synapse at the same
location as in Figs. 2.3 and 2.4 with a range of kinetics for the synaptic conductance.
It is clear from the Figure that the portion of the charge recovery curve which follows
the onset of the synaptic conductance is determined by the decay time constant of
the synaptic conductance: when the decay of the conductance is effectively
instantaneous, as with the brief (0.1 ms) pulse, then the charge recovered after
t = 0 ms is effectively zero. For the more realistic synaptic conductances in Fig.
2.5B–D, the decay of the charge recovery closely matches the actual decay time

Fig. 2.4. Charge recovery depends on the time of the voltage jump. Same conditions as in Fig.
2.3. A, 20 superimposed sweeps of somatic voltage jumps (Vcom, top traces) at different times
relative to the onset of the synaptic conductance. The interval between jump traces is 1 ms; the
earliest jump is 7 ms before the onset of the synaptic conductance, and the latest is 12 ms after
onset of the conductance. Also shown are the voltage at the synapse (Vsyn), the time course of
the synaptic conductance (gsyn), and the "recovered" somatic currents (Isoma) obtained by
subtracting the somatic clamp current in the presence and absence of the synaptic current for
each jump. B, plot of the charge associated with the "recovered" somatic synaptic currents (Isoma)
versus time of the somatic voltage jump; 0.5 ms jump intervals. C, differentiation (with respect to
time of jump) of the charge recovery curve shown in B. A cubic spline interpolation was performed
before the differentiation.
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course of the synaptic conductance. This finding holds for the condition τrise <<
τdecay of the conductance, as is true for most synaptic conductances found to date.
Note that the interval chosen to fit the recovery curve in order to extract the synaptic

decay time constant can be optimized by examining the differentiated charge
recovery (Fig. 2.4C), which helps to separate the curve into its two components.
Generally, it was found that for a monoexponentially-decaying synaptic conductance
the later the start time of the fit, the better the correspondence between the fit decay
and actual decay, since starting the fit at later times helps to avoid potential
distortions due to voltage escape (see section 2.3.7). Of course, when the synaptic

Fig. 2.5. Charge recovery after the onset of the synaptic conductance is determined by the
synaptic decay. A–D, charge recovery plots for synaptic conductances with different kinetics: a
brief pulse (A), or a double-exponential function with the same rising exponential (0.2 ms) and
different decay time constants (1, 3 and 10 ms in B, C and D, respectively). Peak conductance 1
nS in each case; all synapses located at X = 0.15 using the same equivalent cylinder as in Fig.
2.1. A single-exponential decay has been fit to the decay of the charge recovery in B–D; note the
close correspondence with the decay time constant of the original synaptic conductance in each
case. E, each charge recovery curve has been normalized by its value at the onset of the synaptic
conductance and superimposed. The individual points of each curve have been joined by a line for
clarity.
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conductance time course is unknown it may be an oversimplification to assume that it
has a single exponential decay (e.g. Pearce, 1993).
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2.3.4 Charge recovery before the onset of the synaptic conductance
is determined by the electrotonic distance of the synapse

Figure 2.6 demonstrates that the early component of the charge recovery,
before the onset of the synaptic conductance, reflects the time course of the voltage
change at the synapse produced by the somatic voltage command. This was shown
by placing a brief pulse synaptic conductance at various distances from the recording
site, thereby eliminating the influence of synaptic kinetics on the charge recovery.
Under these conditions, the charge recovery curve for a synapse located at the soma
was essentially a step function, while the curve for more distal synapses became
progressively more rounded (Fig. 2.6, right panels). The same was true for the
voltage responses to a somatic voltage jump measured at the corresponding
locations (Fig. 2.6, left panels). The symmetry between the time courses of the two
families of curves is demonstrated by overlaying the scaled voltage response on top
of the charge recovery, as shown in the bottom panel of Fig. 2.6.

2.3.5 A simple analytical function describes the charge recovery
curve

In a linear system, the voltage response at the synapse to a somatic voltage
step can always be described by a sum of exponentials (Rall, 1969; Major et al.,
1993; we follow the convention of Major et al. in setting resting membrane potential
and the reversal potential of the synaptic conductance to zero). This sum is often
dominated by a single exponential, with time constant τv (see Fig. 2.4A),

€ 

Vsyn(s,t ) = αVcomΘ(t −s) 1−e−(t −s ) / τv( ) (2.1)

← Fig. 2.6. Charge recovery before the onset of the synaptic conductance reflects the voltage
change at the synapse caused by the somatic voltage command. All simulations from the same
equivalent cylinder as in Fig. 2.1. The left-hand panels show the synaptic voltage in response to a
somatic voltage clamp step (of arbitrary amplitude) at three different locations. The right-hand
panels show the charge recovery curves for a synaptic delta pulse (1 nS peak conductance) at the
same three locations. The bottom panel shows a superposition of the synaptic voltage responses
on the respective charge recoveries; both the charge recoveries and the voltage responses have
been normalized by their respective maxima, and the time axis of the voltage response has been
inverted. Note the exact correspondence of the voltage time course and the charge recovery in
each case.
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where α is the steady-state attenuation factor of the voltage command Vcom at the

soma, Θ is the Heaviside step function, 

€ 

Θ(x ) =
1 (x ≥ 0)
0 (x < 0)
 
 
 

, and s is the time of the

voltage step with respect to the onset (t = 0) of the synaptic conductance, g(t).
For simplicity, we first choose a "delta function" synaptic conductance

€ 

g(t ) = g0δ(t ). (2.2)

The resulting current flowing at the synapse

€ 

Isyn(s,t ) =Vsyn(s,t )g(t ) (2.3)

can be integrated over time to give the synaptic charge

  

€ 

Qsyn(s) = Isyn(s,t )dt−∞

∞∫ = αVcomg0Θ(−s) 1−es / τv( ), (2.4)

which of course depends on the time of jump, s (see Fig. 2.4B). As long as voltage
escape at the synapse can be neglected, the charge recovered at the somatic
voltage clamp electrode

  

€ 

Qsoma(s) = α2Vcomg0Θ(−s) 1−es / τv( ) (2.5)

is a constant fraction α of the total synaptic charge (Redman, 1973; Rinzel & Rall,
1974; Carnevale & Johnston, 1982; Jack et al., 1983; Rall and Segev, 1985; Major et
al., 1993).

The assumption of a "delta function" synaptic conductance is unrealistic, and
therefore we repeat the calculation in Eq. 2.4 with a synaptic conductance that rises
instantaneously to a peak at t = 0 and then decays exponentially with time constant
τdec,

    

€ 

g(t ) = g Θ(t )e−t / τdec (2.6)

which yields a recovered charge
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€ 

Qsoma(s) =

α2Vcomg τdec τdec + τv 1−es / τv( )( )
τdec + τv

(s ≤ 0)

α2Vcomg τdec
2 e−s / τdec

τdec + τv
(s > 0)

 

 

 
 
 

 

 
 
 

(2.7)

that changes exponentially with a single time constant equal to τv for voltage jumps
occurring before the onset of the synaptic conductance, and a single time constant
equal to τdec afterwards (compare Figs. 2.6 and 2.5). The ratio of the amplitudes of
the onset and offset phases of the charge recovery is equal to τv / τdec. As
integration is a linear operation, the integral in Eq. 2.4 can still be evaluated if both
the voltage response at the synapse and the synaptic conductance are described by
sums of exponentials.  The time constants of the charge recovery for s ≤ 0 are given
by the time constants of the voltage response, and the time constants of the charge
recovery for s > 0 are given by the time constants of the synaptic conductance. We
illustrate this for the case that the voltage response at the synapse is a sum of 2
exponentials

        

€ 

Vsyn(s,t ) = αVcomΘ(t −s) av1 +av2 −av1e
−(t −s ) / τv1 −av2e

−(t −s ) / τv2 
 
  

 
 (2.8)

and the synaptic conductance is represented by 3 exponentials (1 for the rise and 2
for the decay)

     

€ 

g(t ) = Θ(t ) − g 1+ g 2( )e−t / τrise + g 1e
−t / τdec1 + g 2e−t / τdec2 

 
  

 
 . (2.9)

In this case the recovered charge is

     

€ 

Qsoma(s ≤ 0) = α2Vcom av1 + av2( ) − g 1+ g 2( )τrise + g 1τdec1 + g 2τdec2( ) +(
av1τv1e

s / τv1 g 1+ g 2( )τrise
τrise + τv1

−
g 1τdec1

τdec1 + τv1

−
g 2τdec2
τdec2 + τv1

 

 
  

 

 
  +

av2 τv2es / τv2 g 1+ g 2( )τrise
τrise + τv2

−
g 1τdec1

τdec1 + τv2

−
g 2τdec2

τdec2 + τv2

 

 
  

 

 
  

 

 
 
 

(2.10)
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€ 

Qsoma(s > 0) = α2Vcom av1 + av2( ) − g 1+ g 2( )τrisee−s / τrise +((
g 1τdec1e

−s / τdec1 + g 2τdec2e−s / τdec2  
 
 +

av1τv1
g 1+ g 2( )τrisee−s / τrise

τrise + τv1

−
g 1τdec1e

−s / τdec1

τdec1 + τv1

−
g 2τdec2e−s / τdec2

τdec2 + τv1

 

 

 
 

 

 

 
 

+

av2 τv2
g 1+ g 2( )τrisee−s / τrise

τrise + τv2

−
g 1τdec1e

−s / τdec1

τdec1 + τv2

−
g 2τdec2e−s / τdec2

τdec2 + τv2

 

 

 
 

 

 

 
 

 

 

 
 

In order to allow well-conditioned fits of charge recovery data, the amplitudes 

€ 

av1  and

€ 

av2  in Eq. 2.10 were normalized according to 

€ 

av1 +av2 = 1. The factors α2, Vcom, g 1
and g 2  were combined in two overall amplitudes of the fit function, 

€ 

g1
∗ = α2Vcomg 1

and 

€ 

g2
∗ = α2Vcomg 2 , which were free parameters of the fit. Constant offsets in s and

Qsoma(s) can also be introduced to allow latency variations and jumps from other
potentials than the apparent reversal potential of the synaptic conductance.

In practice it may not always be necessary (or possible) to fit the entire
analytical function. As demonstrated above, the charge recovery can be separated
into two components, with the second determined by the kinetics of the conductance
(see Fig. 2.5 and Eqs. 2.7 and 2.10). This can be exploited experimentally in
situations where the time of recording is limited, or where only the decay of the
synaptic conductance is of interest. By making a series of jumps at different times
following the onset of the synaptic conductance and then fitting the decay of the
recovered charge with an exponential function, an estimate can be made of the
decay of the conductance (assuming that τrise << τdecay). It is also possible to fit
multiple exponential functions to the decay; in this case, the time constants will be
extracted faithfully, but the relative amplitudes of the faster components will be
underestimated; accuracy can be improved by fitting the differentiated charge
recovery.

This "shortcut" also allows the voltage jump method to be applied to
spontaneous synaptic currents, by triggering voltage jumps (using a software or
hardware trigger) with a variable delay after the synaptic current crosses a threshold
amplitude. Some jitter will be introduced in the time of the jump if the spontaneous
currents have widely different amplitudes and/or risetimes; this can be corrected for
by later normalizing the time of each jump to a reference point on the rise. As with
evoked synaptic conductances, the mean decay time course of the underlying
conductances can then be estimated from the charge recovery curve.
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2.3.6 The voltage jump method also works in current-clamp mode

In principle, a change in driving force at the synapse can be generated either
with a voltage command under voltage clamp, or by injecting a fixed amount of
current to generate a reproducible voltage change in current-clamp mode. Since the
analytical solutions for both the time integral of synaptic potentials and the synaptic
charge in voltage clamp depend only on the charge flowing at the synapse (Major et
al., 1993), one can fit the curve of the time integral of the synaptic potentials obtained
following a series of identical square current pulses with Eqs. 2.7 or 2.10. In this
case, the measured τv will be determined by the membrane time constant τm, since
τm determines the dendritic voltage response to a square current step (neglecting the
faster equalization time constants, which generally have much smaller amplitudes for
a long current step). Although the kinetics of the synaptic conductance can be
extracted reliably as described above, since τm >> τdecay for most neurons and
synaptic conductances the amplitude of the time integral curve will be dominated by
the component attributable to τm (the "onset"). Therefore, for determining the time
course of the synaptic conductance it is always preferable to use voltage clamp
rather than current clamp, since τv for voltage clamp will always be smaller than τm
(except in the limiting case, where they are identical; Major et al., 1993) and thus
provide better signal-to-noise for extracting τrise and τdecay. Voltage clamp will also
reduce the voltage excursion at the synapse (although only slightly for some
synapses; see Roth & Häusser, 2001) and thus also distortion in the synaptic current.
For these reasons all subsequent simulations were done in voltage clamp mode.

2.3.7 Effect of voltage escape at the synapse

The analytical function derived in section 2.3.5 assumes that the voltage
escape associated with the synaptic current at the synaptic site is negligible. Since
some voltage escape will inevitably be associated with somatic voltage clamp of
dendritic synapses, it is therefore necessary to test how voltage escape affects the
accuracy of the method. This was done using the equivalent cylinder model by
progressively increasing the magnitude of the peak synaptic conductance at a given
location. The results of such simulations are shown in Fig. 2.7. As the synaptic
conductance is increased, the voltage escape at the synapse progressively
approaches the synaptic reversal potential  (Fig. 2.7A), causing substantial
distortions both in the current flowing at the synapse (Fig. 2.7B) as well as in the
current recorded at the soma (Fig. 2.7C). The charge recovery curves obtained from
the same synapses (Fig. 2.7D–E) show a progressive distortion and slowing after
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t = 0 (made clearer by differentiation in Fig. 2.7F). When comparing the decay time
constant fit to the charge recovery curve with the actual time course of decay of the
conductance (Fig. 2.7G), serious errors (>10%) were found only for the largest
conductances (≥ 20 nS). These errors could be further reduced by changing the fit
range: fits with a later onset produced greater accuracy (although, as pointed out in
section 2.3.3, this is not feasible for conductances which may contain a slow
component). By contrast, the time constants fit to the decay of the current measured
at the soma were seriously in error for all conductance values chosen; delaying the
onset of the fit produced little improvement in accuracy.

These findings suggest that the voltage jump method can reliably extract the
decay time course of the synaptic conductance over a wide range of magnitudes of
the conductance, but that the substantial voltage escape associated with very large,
highly localized synaptic conductances may reduce its accuracy. The amplitude of
the voltage escape will depend not only on the magnitude of the conductance, but
also on the geometry of the cell as well as its electrical properties. To rigorously test
the method it is therefore of great importance to carry out simulations in
compartmental models of reconstructed neurons, with realistic values for the
membrane parameters and the synaptic conductance.

2.3.8 Application to realistic neuronal geometries: CA3 pyramidal
cell

Figure 4.8 shows a test of the voltage jump method in a detailed
compartmental model of a CA3 pyramidal cell (Major et al., 1994). As shown
previously (Major et al., 1994), a synaptic input placed on the distal apical dendrites
(Fig. 2.8A) is substantially filtered and attenuated by space-clamp errors (Fig. 2.8B).
The voltage jump protocol was carried out at a holding potential of –65 mV. Since the
analytical function assumes that the system is passive, it should not matter from
which holding potential the jumps are made, nor which voltage is jumped to, as long
as there is a change in synaptic driving force; the charge recovery curve is simply

←  Fig. 2.7. Effects of local depolarization ("voltage escape") on the reliability of the charge
recovery method. A–C, simulations from the same equivalent cylinder as in Fig. 2.1, with the
synapse at a constant location (X = 0.15), and with a range of peak synaptic conductances as
indicated (rising and decaying time constant 0.2 and 3.0 ms respectively). A shows the voltage at
the synapse, B the current flowing at the synapse, and C the current recorded at the soma. The
charge recovery plots from the various conductances are shown unscaled in D, scaled by the peak
charge in E, and scaled and differentiated in F. The bottom panel compares the decay time
constant obtained by fitting either the somatic current or the charge recovery plot with the actual
decay of the synaptic conductance (fit beginning 7 ms after onset of the conductance in each
case). Note that the time constant estimated by the charge recovery is relatively faithful to the input
time constant except at very high values of peak conductance.
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shifted downwards on the y-axis by the difference in synaptic charge at the two
holding potentials. By fitting the charge recovery with Eq. 2.10 it was possible to

extract the decay of the synaptic conductance with high accuracy (< 5% error; see
legend to Fig. 2.8 for details). To determine the effect of high membrane
conductance on the accuracy of the method, Rm was decreased from 180 kΩ cm2 to
20 kΩ cm2  (resulting in a reduction of the somatic input resistance from 305 MΩ to
43.4 MΩ). Under these conditions, as might be expected to occur in vivo due to tonic

Fig. 2.8. The voltage jump method is successful in a CA3 pyramidal cell model even under
conditions of high membrane conductance. A shows the morphology of the CA3 pyramidal cell
with which the simulations were carried out. A synaptic conductance (peak 0.5 nS) consisting of a
double-exponential function (τrise = 0.2 ms; τdec = 2.5 ms) was placed on a spine head with the
location indicated by the filled circle. The parameters for B–D and E–G were identical except that
Rm was decreased from 180 kΩ cm2 in B to 20 kΩ cm2 in E; this reduced the input resistance
from 305 MΩ to 43.4 MΩ. In B and E, the somatic clamp current resulting from activation of the
synaptic conductance is shown (thick trace), as well as the synaptic current expected under
conditions of perfect space clamp. Note the slightly greater peak attenuation under the low-Rm
condition. The 20-80% risetimes of the currents were 1.00 ms in B and 0.94 ms in E. The decay
time course of the somatic clamp current could be fit with a single exponential function with τ =
6.44 ms in B and 4.92 ms in E. In C and F the currents recovered by a series of –20 mV voltage
jumps from –65 mV are shown (1 ms interval between jumps). In D and G the charge recovery
curves measured from the traces in C and F are shown together with the best fit of the analytical
function. Note the different onset of the two curves. For the high-Rm condition the best fit was with
the following parameters: τv1 = 1.58 ms (40%), τv2 = 8.53 ms (60%), τ rise = 0.22 ms;
τdec = 2.55 ms. For the low-Rm condition the best fit was with: τv1 = 1.43 ms (48%), τv2 = 5.42 ms
(52%), τrise = 0.23 ms; τdec = 2.55 ms. A single-exponential fit to the decay of the charge recovery
curve gave τdec = 2.55 and 2.53 ms respectively.
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synaptic background activity, the method extracted the decay time course of the
conductance to within 2% error (Fig. 2.8E–G). The method also maintained high

accuracy under conditions of high uncompensated series resistance (20 MΩ;
Fig. 2.9A–C). Note that in these simulations, the time course of the initial phase of
the charge recovery (and the τv values extracted by fitting the analytical function)

Fig. 2.9. The method can be used with high series resistance and to extract slow risetimes.
Simulations carried out using the CA3 pyramidal cell model with the same synaptic location as in
Fig. 2.8. In A–C, a fast double-exponential synaptic conductance (peak 0.5 nS, τrise = 0.2 ms,
τdec = 2.5 ms; same as in Fig. 2.8) was simulated with the series resistance of the somatic pipette
being 20 MΩ. In D–E a NMDA receptor-mediated synaptic conductance was simulated (peak
0.1 nS, τrise = 5.0 ms, τdec = 40 ms), with a 0.5 MΩ series resistance, assuming zero external
Mg2+. A and D compare the perfectly clamped synaptic current with the measured somatic current.
The 20-80% risetimes of the currents were 1.71 ms in A and 7.17 ms in D. The decay of the
somatic current in A could be fit with a single exponential with τ = 12.90 ms. The somatic NMDA
current in D was fit with a double-exponential function, with τrise = 9.6 ms and τdec = 39.8 ms.
The currents recovered by voltage jumps from –65 to –85 mV are shown in B and E; for clarity,
only every second jump is shown in B. The respective charge recovery curves are shown in C and
F. In C the values of the best fit of the analytical function were τv1 = 2.15 ms (5%), τv2 = 12.75 ms
(95%), τrise = 0.19 ms; τdec = 2.56 ms, while in F the values were τv1 = 1.45 ms (41%), τv2 = 8.58
ms (59%), τrise = 5.15 ms; τdec = 40.4 ms. A single-exponential fit to the decay of the charge
recovery curves in C and F gave τdec = 2.53 and 41.2 ms respectively.
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were much slower than with low series resistance, consistent with the greater
effective electrotonic distance of the synapse in the high series resistance condition.

To test whether it is also possible to extract accurately the risetime of a slow
synaptic conductance, an NMDA receptor-mediated EPSC (Kirson & Yaari, 1996)

was simulated at the same synaptic location indicated in Fig. 2.8A. Although the
decay of this synaptic current was not significantly distorted due to its slow time
course, the risetime was slowed substantially (from τrise = 5.0 to 9.6 ms; Fig. 2.9D).
From the charge recovery (Fig. 2.9E–F), the analytical function was able to extract

Fig. 2.10. Simulation of a distributed inhibitory conductance in a CA3 pyramidal cell. A unitary
connection made by a presynaptic "bitufted" inhibitory neuron is modeled, based on Figure 2 of
Miles et al. (1996). The locations of the 8 individual contacts on apical and basal dendritic shafts
are shown using dots in A. Each synaptic contact had an identical synaptic conductance, with a
peak conductance of 1 nS. The rising time constant was 0.2 ms in all cases, and the decay time
constant was either a single exponential of 5 ms (B–D) or a double exponential of 5 ms (80%) and
30 ms (20%). B and E compare the somatic clamp current with the perfectly clamped EPSC. The
20-80% risetimes of the currents were 1.66 ms in A and 1.89 ms in B. The decay of the somatic
clamp current could be fit by a single exponential with τ = 9.5 ms and 22.2 ms respectively. C and
F show the recovered currents from successive voltage jumps from –65 mV. D and G show the
charge recovery curves, which have been fit with the analytical function. For the
monoexponentially decaying conductance, the best fit of the analytical function was with the
following parameters: τv1 = 3.24 ms (57%), τv2 = 10.93 ms (43%), τrise = 0.66 ms; τdec = 5.22 ms;
fitting the decay of the charge recovery curve with a single exponential gave τdec = 5.16 ms. For
the conductance with a biexponential decay the best fit was with the following parameters: τv1 =
3.26 ms (59%), τv2 = 11.11 ms (41%), τrise = 0.48 ms; τdec1 = 5.17 ms (77%); τdec2 = 30.54 ms
(23%). A double-exponential fit to the decay of the charge recovery gave τdec1 = 5.02 ms (66%);
τdec2 = 30.48 ms (34%).
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the risetime (as well as the decay) to within 3% of its original value, indicating that the
method may also be useful for this purpose.

To examine the effectiveness of the method for distributed conductances in
the CA3 pyramidal cell an inhibitory connection was simulated (Fig. 2.10), with the
location of the contacts based on a reconstructed connection between an interneuron
and a simultaneously recorded CA3 pyramidal cell (Fig. 2 in Miles et al., 1996). Either
single- or double-exponentially decaying conductances were simulated at each
contact (Pearce, 1993). When the decay of the synaptic conductance was double-
exponential the fast component of the decay was filtered more heavily than the slow
component, such that the synaptic current measured at the soma could be fit with a
single exponential with a time constant intermediate to the two time constants of the
conductance decay. Since the synapses in this simulation were at widely distributed
electrotonic locations, when applying a somatic voltage jump each synapse
experienced voltage transients with a different time course. This caused slight
distortions of the risetime extracted with the analytical function. The decay appeared
to be relatively little affected by this non-uniformity, as with both the single- and
double-exponentially decaying conductances it was possible to extract the time
constants and their relative amplitudes to a high degree of accuracy (< 5% error). To
test the effect of the synaptic conductance kinetics on the accuracy of the method, I
also performed simulations under the same conditions with a conductance decay
time constant of 1 ms. The decay time constant extracted by the method was
1.01 ms (data not shown), confirming that high accuracy could be maintained even
with rapid input kinetics.

2.3.9 Application to realistic neuronal geometries: Neocortical
pyramidal cell

Simulations were also done using a detailed compartmental model of a layer 5
pyramidal cell (Markram et al., 1997), a cell type which has one of the most extensive
dendritic trees of any neuron in the brain. A morphologically reconstructed unitary
input made by an adjacent, simultaneously recorded layer 5 pyramidal cell was
simulated, which made 8 contacts at widely dispersed electrotonic locations (mean
X = 0.71, range 0.063–1.4, for the passive parameters chosen here). Of particular
interest was the possibility to test the voltage jump method using an active
membrane model of neocortical layer 5 pyramidal cells, which contains a variety of
voltage-gated conductances and reproduces the firing pattern of these neurons
(Mainen & Sejnowski, 1996). When activating the distributed input under passive
conditions, the analytical function extracted the decay time constant of the synaptic
conductance to within 5% error, despite substantial filtering of the synaptic current
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waveform (Fig. 2.11B–D). When active conductances were included in the model,
simulations with 1 nS peak conductance per contact produced results which were
very similar to those found with the passive model, consistent with the lack of
distortion in the synaptic current (Fig. 2.11E, inset). When the peak synaptic
conductance was increased to 4 nS per contact, however, an obvious "boosting"
component could be observed in the decay of the synaptic current (Fig. 2.11H, inset).
The "boosting" current arose almost exclusively via activation of sodium and calcium
conductances in the apical tuft branches (not shown); virtually no boosting was
observed at the peak of the synaptic current, primarily because the measured peak is
dominated by current from basal inputs, which are better clamped.

The extra charge contributed by the active conductances caused clear
distortions in the charge recovery curve, with an extra component emerging in the
onset of the charge recovery, representing jumps made just before the beginning of
the synaptic conductance. The shape of this extra component results from a highly
non-linear process involving the increase in the driving force caused by the
hyperpolarization, which is still weak enough at "late" times to permit activation of
voltage-gated channels. Despite this distortion, the charge recovery after t = 0 ms
remained dominated by the decay of the synaptic conductance: when a single
exponential was fit to this component, the decay was estimated to within 10%. In this
model, therefore, the errors caused by active conductances depend on various
factors, particularly the size of the synaptic conductance (Fig. 2.11E,H) and the
holding potential. These findings demonstrate that care must be taken to choose the
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appropriate voltage range over which to carry out the voltage jumps, and that tests
must be done to evaluate the possible contribution of voltage-gated conductances.

2.3.10 Estimating synaptic conductance time course with a train of
brief voltage jumps

One potential drawback of the voltage jump method described so far is that
many trials are necessary to build up a charge recovery curve. This can be time-
consuming, and also does not allow measurement of fluctuations in the decay of the
synaptic conductance from trial to trial. To overcome this problem an alternative
method was developed to allow measurement of the time course of the conductance
each time it was activated. This method relies on the fact that the peak amplitude of
the current recovered by a voltage jump made during the decay of the conductance
is proportional to the additional charge associated with the jump (assuming a
monoexponential decay of the conductance). In other words, the decrease in the
peak of the recovered current with successive jumps will be determined by the decay
of the underlying conductance (see Fig. 2.4A): under perfect clamp conditions, the
recovered current will rise instantaneously to merge with the synaptic current decay.
The same relationship should also hold for the peak current in response to a brief
voltage pulse, which is limited by the risetime of the recovered current during the

← Fig. 2.11. Simulation of a distributed synaptic connection in an active layer 5 pyramidal cell
model. A reconstructed synaptic connection made by a single presynaptic layer 5 pyramidal
neuron is simulated, with 8 contacts (marked by dots in A) distributed on apical and basal dendritic
spines (Markram et al., 1997). All synaptic conductances are identical (τrise = 0.20 ms; τdec = 2
ms). The model was either passive (B–D) or contained active conductances (E–J) as described in
section 2.2.3. The peak synaptic conductance at each contact was either 1 nS or 4 nS; the kinetics
of the currents and charge recoveries obtained from the 1 nS and 4 nS passive simulations were
nearly identical, and therefore only the results from the 1 nS simulation are shown. B, E and H
compare the somatic clamp current at a holding potential of –65 mV with the perfectly clamped
EPSC for the passive and active model. The insets in E and H compare the clamp current in the
active model with that of the corresponding simulation in the passive model (same time period as
in the main panels; scale bars apply to the larger traces). Note that in the simulations with 1 nS
peak conductance, the active and passive models produce a virtually identical EPSC, while in the
4 nS simulation the EPSC in the active model clearly shows an additional current component in the
tail of the EPSC. The 20-80% risetimes of the somatic EPSCs were 0.36 ms in each case. The
decay of the somatic EPSCs could be fit by a single exponential with τ = 3.3 ms in the passive
simulations as well as in the active 1 nS simulation, and with τ = 3.7 ms in the 4 nS active
simulation. C,F, and I show the recovered currents from successive –20 mV hyperpolarizing
voltage jumps from a holding potential of –65 mV. The respective charge recovery curves
measured from the recovered currents are shown in D, G and J. In D and G, the curves have been
fit with the analytical function. The best fit in the passive model gave τv1 = 0.36 ms (69%),
τv2 = 11.3 ms (31%), τrise = 0.22 ms; τdec = 2.02 ms, whereas in the active model the values were
τv1 = 0.23 ms (69%), τv2 = 11.6 ms (31%), τrise = 0.34 ms; τdec = 1.90 ms. A single-exponential fit
to the decay of the charge recovery gave τdec = 2.00 ms in both cases. Due to the distortion of the
charge recovery in the 4 nS active simulation, a fit of the analytical function was not possible.
However, the decay phase of the charge recovery was fit with a single exponential of 1.90 ms.
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voltage pulse. A train of identical brief voltage pulses should therefore be able map
the time course of the conductance (cf. Smith et al., 1967). For brief synaptic
conductances the accuracy of the method can be improved by increasing the

frequency of the voltage pulses.
This procedure was tested (Fig. 2.12) in the CA3 pyramidal cell model, with

the same excitatory synapse as in Fig. 2.8. A series of voltage pulses of 2 ms
duration was applied via the somatic clamp electrode, once in the presence and once

Fig. 2.12. Estimating the decay time
course of the synaptic conductance with
a train of brief voltage steps. The
simulations were carried out using the
CA3 pyramidal cell model with the same
synaptic location as shown in Fig. 2.8.
The synaptic conductance consisted of a
sum of exponentials (peak 1.0 nS, τrise =
0.2 ms, τdec = 5.0 ms). A , the EPSC
recorded by the somatic voltage clamp at
a holding potential of –85 mV. The decay
time course of the current could be fit
with a single exponential with τdec =
10.0 ms. B, the voltage clamp command
applied via the somatic pipette,
consisting of a series of 2 ms jumps from
–65 mV to –105 mV, with 50% duty
cycle. The resulting voltage at the
synapse is also shown (jagged trace). C
and D, the somatic clamp currents in the
absence (C) and during (D) activation of
the synaptic conductance (the difference
between the two currents is undetectable
at this scale). E, the difference current
recovered by subtracting trace D from
trace C (same scale bar as in A). The
inset overlaps trace A  and trace E
(dotted line) at a higher magnification to
demonstrate more clearly the distortion
present in trace E due to the somatic
voltage jumps. F , subtraction of the
EPSC recorded at –85 mV (trace A) from
trace E. The maxima and minima of the
curve have been calculated and are
shown as dots superimposed on the
curve (up to 35 ms from the conductance
onset). A single-exponential fit to both
the maxima and the minima is also
shown, starting at the second maximum
and the first minimum, and giving τdec of
5.24 ms and 4.96 ms respectively. More
accurate fits could be achieved by
starting the fit at later times; e.g. by
starting at the 4th maximum, τdec was
constrained to 5.00 ms.
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in the absence of the synaptic conductance. The two somatic clamp currents
resulting from this procedure were subtracted to obtain the difference current. This
difference current contains a component which results from the increase in driving
force caused by the voltage transients, superimposed on top of the synaptic current
waveform. To isolate the transients, the synaptic current measured at a voltage
intermediate to the two jump potentials (in this case, at –85 mV) was subtracted from
the difference current, giving the waveform shown in Fig. 2.12F. By fitting the maxima
of this waveform (or the minima, or a combination of the two), it is theoretically
possible to estimate the decay time course of the synaptic conductance. It should be
pointed out, however, that this method suffers from very serious signal-to-noise
problems, due to strong attenuation of the brief voltage transients in the dendritic tree
(cf. Rall, 1967; Smith et al., 1967). In order to make a reliable estimate of the decay
time course of the synaptic conductance at distal synapses using this method it may
therefore be necessary to average many sweeps, which defeats its purpose. For this
reason, the "train-of-brief-jumps" variant of the voltage jump method was not pursued
further.

2.3.11 Estimating the attenuation of synaptic charge

Although the voltage jump method provides the kinetics of the synaptic
conductance under conditions of inadequate space-clamp, it offers no direct
information about its magnitude, which is also difficult to measure experimentally.
The peak amplitude of the conductance can be calculated, however, if the total
synaptic charge is known in addition to the kinetics of the conductance. Determining
the total synaptic charge from the somatically recorded current is possible given the
attenuation of synaptic charge, α  (introduced in Eqs. 2.1 and 2.5). Analytical
solutions demonstrate that in a linear system the attenuation of synaptic charge from
the synapse to the soma is equivalent to the attenuation of steady-state voltage from
the soma to the synapse (Redman, 1973; Rinzel & Rall, 1974; Carnevale &
Johnston, 1982; Jack et al., 1983; Rall & Segev, 1985; Major et al., 1993). If the
reversal potential of the synaptic conductance is known, it is possible in principle to
estimate the attenuation of steady-state voltage between the soma and the synapse
in any arbitrary geometry by comparing the apparent synaptic reversal potential
measured at the soma with the expected value (Carnevale & Johnston, 1982; Jack et
al., 1983; Rall & Segev, 1985). Here I demonstrate how to estimate the attenuation
factor α using the layer 5 pyramidal cell model, and provide quantitative predictions
of the magnitude of errors in α resulting from the voltage escape caused by having a
finite synaptic conductance.
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Figure 2.13 shows the attenuation of the synaptic current, the voltage escape
at the synapse, and the resulting distortion of the current flowing at the synapse for
five identical synapses at different locations (indicated by horizontal arrows in Fig.
2.13A) in the layer 5 pyramidal cell model. Synaptic charge under perfect clamp will
differ from the charge measured by somatic voltage clamp for the following reasons:

a) the attenuation of synaptic charge between synapse and soma, α; b) the reduction
in synaptic driving force caused by voltage escape, and c) the difference in driving
force at the synapse and the soma when the neuron is not isopotential in the steady-
state. At the resting potential (Fig. 2.13B–D), the neuron is isopotential (assuming the
passive reversal potential is uniform), and thus only a) and b) will have an effect.

Fig. 2.13. Attenuation of synaptic currents in layer 5 pyramidal cells. The location of the 5
synapses used in the simulation is shown using arrowheads in A. All synapses had identical
conductances (peak gsyn = 1.0 nS; τrise = 0.20 ms; τdec = 2 ms), and each synapse was activated
individually. The somatic holding potential in B–D was at the resting potential (–70 mV), and in
E–F it was at 20 mV hyperpolarized to the apparent reversal potential. B and E show the voltage
escape at the synapse. Note the difference in steady-state synaptic voltage in E ; as a
consequence, the voltage escape is no longer a monotonic function of synaptic distance. C and F
show the synaptic current flowing at the synapse. Note that the reduction in driving force as a
consequence of the voltage escape causes a corresponding reduction in the amplitude of the
synaptic current. In F, there is an additional reduction in the current at the synapse caused by the
difference in steady-state driving force at the different synapses. D and G show the synaptic
current measured at the soma following activation of synapses at different locations. Note the
striking distortion and reduction in peak amplitude of the currents originating at progressively more
distal locations. The 20-80% risetimes of the synaptic currents measured at the soma were: soma
synapse, 0.18 ms; 30 µm, 0.25 ms; 100 µm, 0.37 ms; 300 µm, 0.78 ms; 1000 µm, 3.12 ms. The
decay time constant for somatic currents originating at the different locations was: soma synapse,
2.00 ms; 30 µm, 2.24 ms; 100 µm, 2.62 ms; 300 µm, 4.14 ms; 1000 µm, 12.6 ms.
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Whenever the neuron is held away from the resting potential (Fig. 2.13E–G), all three
effects will contribute to deviations from the expected synaptic charge.

The attenuation of voltage in the dendritic tree during a somatic voltage step at
five synaptic locations is shown in Fig. 2.14A. This attenuation causes a

corresponding shift in the apparent reversal potential of the synaptic current, shown
in Fig. 2.14B. The steady-state attenuation factor α, representing the attenuation of
voltage from soma to synapse, can then be calculated according to the following
equation (cf. Carnevale & Johnston, 1982; Rall & Segev, 1985)

Fig. 2.14. Estimating the attenuation of synaptic charge. A, attenuation of voltage in response to a
somatic voltage step at different locations in the synaptic tree. Same conditions and synapse
locations as in Fig. 2.13. B, shift of apparent synaptic reversal potential with increasing distance of
the synapse from the somatic recording site. The resting membrane potential of the neuron was
–70 mV, and the reversal potential of the synapse was set to 0 mV. C compares the attenuation of
synaptic charge predicted from reversal potential shifts with the actual attenuation of the synaptic
charge. The attenuation was predicted according to Eq. 2.11, and the actual charge attenuation
was calculated by dividing the integral of current recorded at the soma by the integral of the
current flowing at the synapse. Note that for synapses at all distances the predicted and actual
values fall along the unity line. D, comparing predicted charge with charge associated with the
perfectly-clamped EPSC. Each point represents the actual charge divided by the synaptic charge
expected with perfect clamp for synapses at different locations, and for three different synaptic
conductance amplitudes (0.1, 1.0, and 4.0 nS) The neuron was either held at the resting
membrane potential, such that all synapses were isopotential (●, solid lines), or the neuron was
held 20 mV hyperpolarized to the apparent reversal potential for each synapse (O, dotted lines).
The attenuation of steady-state voltage at the different synaptic locations is also shown (thick solid
line).
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€ 

α =
Vrest +Erev

Vrest +Erev + ΔErev
 (2.11)

where Erev  is the reversal potential of the synaptic conductance, ∆Erev is the shift in
reversal potential from the expected value, and Vrest is the resting potential of the
cell. Confirmation that the value of α is identical to the attenuation of the charge
associated with the synaptic current as it spreads from the synapse to the soma is
provided in Fig. 2.14C, where at each synaptic location the attenuation predicted
from the reversal potential shift is indistinguishable from the actual attenuation of the
charge flowing at the synapse, as expected from cable theory.

As pointed out above, the synaptic charge predicted from reversal potential
shifts will not be identical to the charge expected under perfect voltage clamp
conditions because the voltage escape distorts the current flowing at the synapse by
reducing its driving force (Fig. 2.13B,E). The magnitude of this error will depend on
the size of the synaptic conductance and the electrotonic location of the synapse.
This is shown in Fig. 2.14D, which compares the synaptic charge predicted from
Eq. 2.11 with the synaptic charge expected under perfect voltage clamp, with
synapses at different distances and with different peak conductances. If the synaptic
current is recorded at the resting potential of the cell (see top traces), where the
neuron is isopotential, then the predicted charge generally corresponds closely to the
actual synaptic charge (≤ 10% error for the most distal 1 nS synapses). As expected,
the error depends on the magnitude of the synaptic conductance: as the
conductance becomes smaller, the error converges towards zero. By contrast, when
the neuron is not isopotential, then errors in the predicted charge can be
considerable (see lower traces). This is because the voltage at the synapse deviates
from the somatic voltage by a factor corresponding to α (see thick trace for the
expected voltage attenuation). Therefore, if the synaptic currents are recorded at
voltages different from the holding potential, then the holding potential must also be
corrected for α. Note that remaining deviations from the voltage attenuation are
attributable solely to the voltage escape.

The procedure described here, based on Eq. 2.11, provides a relatively
accurate measure of synaptic charge in any neuronal geometry. Several
assumptions must be met: 1) the neuron behaves passively; 2) the reversal potential
of the synaptic current is known; 3) the resting potential is known; 4) the voltage
escape must be relatively small. If these conditions hold, and the time course of the
conductance is determined using the voltage jump method, then it is possible to
provide an estimate of the peak amplitude of the conductance.
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2.4 Discussion

Measuring the recovery of synaptic charge with a series of voltage jumps can
provide several important pieces of information: charge recovered by jumps made
before the onset of the synaptic conductance reveals the voltage change at the
synapse in response to the voltage step, and charge recovered by jumps made after
the onset of the synaptic conductance reveals the kinetics of the conductance. A
simple analytical function is described which makes it possible to extract these
features directly from experimental data, independent of the neuronal geometry and
without the need to construct a compartmental model of the cell. This approach
therefore circumvents the serious distortions in the kinetics of the synaptic current
caused by space-clamp errors, and provides an index of the electrotonic location of
the synapse. By combining the method with an estimate of charge attenuation it is
possible in principle to reconstruct all aspects of the synaptic conductance waveform.

2.4.1 Comparison with previous approaches

Smith et al. (1967) used phase changes in a carrier sine wave applied at the
soma to detect membrane impedance changes during EPSPs and IPSPs in
motoneurons. Although this technique resolved the time course of conductance
changes at proximal synapses, it was incapable of detecting distal conductance
changes (as predicted theoretically by Rall, 1967). This is because the frequency of
the carrier signal must be high to achieve sufficient time resolution, and consequently
it rapidly attenuates as it spreads into the dendrites. An analogous method using a
train of brief voltage jumps (see section 2.3.10) suffers from similar problems. In
contrast, the present method uses a voltage transient with predominantly low-
frequency components (the voltage step response) as a "windowing function" which
is shifted in small steps over the synaptic conductance, conserving both high
sensitivity to distal conductance changes and arbitrarily high time resolution. As a
consequence of the need for multiple sweeps, the method cannot measure sweep-to-
sweep fluctuations in conductance kinetics (see section 2.3.10), but instead reports
the mean conductance time course of the active synapses.

Another approach (Johnston & Brown, 1983; Jonas et al., 1993; Spruston et
al., 1993; Ulrich & Lüscher, 1993; Soltesz et al., 1995; see also Hestrin et al., 1990),
is to estimate the filtering of synaptic currents using compartmental models of
neurons. Given such estimates, it is possible in principle to determine the synaptic
conductance time course by "working backwards" from the measured current with a
compartmental model of the same neuron. Aside from the considerable time and
effort which must be invested to construct such models, even the most carefully
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conditioned models still suffer from problems of non-uniqueness in the model
parameters (Major et al., 1994; Roth & Häusser, 2001). Furthermore, the location of
the active synapses is usually unknown and is difficult to determine. Consequently
the range of error estimates is relatively broad, even for synaptic connections where
good estimates exist for the location of active synapses (Jonas et al., 1993). By
contrast, the present method is independent of neuronal geometry, and thus requires
no knowledge of the electrotonic structure of the neuron being recorded from (as long
as care is taken to rule out major sources of error). However, combining the voltage
jump approach with compartmental modelling may be very powerful, as discussed
below.

Several groups have used the response to single voltage jumps at the soma,
either alone (Llano et al., 1991) or interacting with a synaptic conductance (Hestrin et
al., 1990; Isaacson & Walmsley, 1995; Sah & Bekkers, 1996) to estimate the filtering
of synaptic currents (see also Silver et al., 1995). Llano et al. (1991) proposed that
decay time constants of synaptic currents which were slower than the characteristic
charging time constant of the distal compartment of juvenile Purkinje cells could be
considered to be well clamped. Their two-compartment model is not, however, useful
for synaptic conductances with decay kinetics similarly rapid to or faster than the
charging time constant, and although it may be adequate for describing Purkinje cells
at a particular developmental stage (see Roth & Häusser, 2001), it is unlikely to be
applicable to other cell types. Somatic voltage jumps have also been used to either
eliminate the driving force at the synapse (Isaacson & Walmsley, 1995; Sah &
Bekkers, 1996) or activate Mg2+ block of NMDA receptors (Hestrin et al., 1990). The
rate of the resulting relaxation in the somatic synaptic current ("switchoff") provides a
measure of the electrotonic location of the synapse. However, to make quantitative
predictions about the filtering of the synaptic current based on the switchoff, a
compartmental model of the same cell is required (Sah & Bekkers, 1996).

Finally, it is possible to circumvent space-clamp problems using a direct
approach: dendritic recording of synaptic currents (Häusser, 1994). As the clamp
remains at a point, however, only synapses close to the dendritic recording site will
be well-clamped. It is therefore necessary to activate synapses close to the recording
electrode, or to select events based on their electrotonic proximity (Häusser, 1994).
In principle one could combine dendritic voltage clamp recording with the voltage
jump method to improve resolution of the most distal synaptic conductances.

2.4.2 Sources of error

The voltage jump method assumes that the synaptic conductance is identical
from one jump to the next. Real synapses, however, display trial-to-trial variability in
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amplitude and time course. This variability, along with other sources of experimental
noise, introduces noise into the charge recovery curve. The cortical synapses studied
here show considerable variability (Markram et al., 1997) and therefore averages of
many individual sweeps are necessary to construct charge recovery curves with
acceptable noise levels. A tradeoff is expected between noise in the charge recovery
and problems associated with voltage escape: the larger the synaptic signal, the
better the resolution of the method, but also the greater the risk that voltage escape
may distort the synaptic current. If noise is a problem, then increasing the number of
active synapses is not always the best solution; collecting more sweeps or increasing
voltage jump amplitude are preferable.

When fitting charge recovery curves contaminated by noise several issues
must be considered. First, deciding the number of exponential components required
may be a problem, since separation of closely-spaced exponentials can be difficult
even if the data are free of noise (Provencher, 1976). Changing the number of
exponential components for one part of the curve can affect the relative amplitudes of
other exponential components (cf. Eq. 2.10). Also, by assuming a monoexponential
decay of the synaptic conductance when it is in fact biexponential, the "effective"
single τdec (see Major, 1993) may be overestimated. Second, estimates of τrise may
be associated with considerable uncertainty, especially if it is fast, since information
about the risetime is contained in only a few points of the charge recovery curve. If
the risetime is an important unknown parameter, then greater time resolution is
needed around t = 0 ms (i.e. more closely spaced jumps).

Even under the noise-free conditions of the simulations, the voltage jump
method does not extract the time course of the synaptic conductance with perfect
accuracy. The reason for this discrepancy is that the method measures the kinetics
not of the synaptic current expected under perfect voltage clamp conditions, but
rather of the actual current flowing at the synapse, which will be distorted due to
voltage escape. The extent of voltage escape will therefore determine how well the
kinetic parameters extracted by the method reflect those of the actual synaptic
conductance. In simulations using models of neurons with realistic synaptic
conductances, errors caused by voltage escape were relatively small (<10%).
Nevertheless, voltage escape may represent a greater problem under certain
conditions (see Fig. 2.7), for example when activating a large number of closely-
spaced synapses. This can be assessed by applying a non-saturating dose of a non-
competitive antagonist (or a competitive antagonist with slow dissociation kinetics) to
reduce the size of the synaptic conductance. If the shape of the measured synaptic
current does not differ after this treatment, then the effects of voltage escape can be
safely neglected.
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Active membrane conductances may also cause distortions in the charge
recovery. The contribution of active conductances will depend primarily on their I-V
relation; also if their activation kinetics are slow relative to the synaptic conductance
kinetics, or if the channels are located distant from the synapses (e.g. in the axon),
then their contribution will be less important. Interestingly, despite the distortions in
the charge recovery observed in the neocortical pyramidal cell model, the synaptic
conductance decay was relatively faithfully reported, indicating that under these
conditions the decay of the synaptic conductance predominates. Nevertheless, to
reliably fit Eq. 2.10 both the jumps and the synaptic current should demonstrate
passive behavior. Non-linearities can be prevented or reduced either by inactivation,
"washout" (e.g. of calcium conductances) or by applying intracellular blockers via the
recording pipette; alternatively, non-saturating concentrations of antagonist can be
used to reduce the size of the conductance (and thereby also the voltage escape).

2.4.3 Application to neocortical pyramidal cells

The voltage jump method was used to determine experimentally the time
course of excitatory synaptic conductances in layer 5 neocortical pyramidal cells
(Häusser & Roth, 1997). This was the first application of the method, and may serve
as an example to show which experimental steps are involved. Whole-cell patch-
clamp recordings were made from the soma of visually identified thick tufted layer 5
pyramidal cells in slices of rat neocortex as previously described (Stuart et al., 1993;
Markram et al., 1997). Excitatory synaptic currents were evoked by a stimulation
pipette filled with extracellular solution located 100 – 300 µm from the soma of the
neuron being recorded from, usually near its primary apical dendrite. Care was taken
to select inputs without detectable polysynaptic contributions and with minimal "jitter"
in the timing of individual currents. The evoked EPSCs resulted from the activation of
only one or a few presynaptic fibres (peak amplitude, 546 ± 50 pA at –70 mV; mean
± S.E.M.; n = 25). EPSCs had an average 20–80% rise time of 0.89 ± 0.03 ms
(range, 0.55 – 1.20 ms) at –70 mV, and their decay could be fit well using a single
exponential function with a time constant of 3.83 ± 0.24 ms (range, 2.1 – 6.3 ms).
The linearity of the membrane between –70 and –90 mV was examined by recording
the membrane currents in response to a series of depolarizing and hyperpolarizing
voltage jumps of different amplitude starting from a holding potential of –80 mV (Fig.
2.15A). When scaled by the jump amplitude, these currents superimposed well for
jumps of different amplitude (Fig. 2.15B). To check for distortions in the EPSC
caused by activation of voltage-gated conductances, the time course of the EPSC
was compared at –70 mV and –90 mV. At –90 mV, the 20–80% rise time was 0.86 ±
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0.04 ms (P = 0.07, paired t-test) and the decay time constant was 3.74 ± 0.22 ms (P
= 0.06; see Fig. 2.15C–D). To confirm that activation of voltage-gated conductances
did not affect the synaptic current, and to assess possible distortions caused by
voltage escape, the synaptic conductance was reduced by application of a

submaximal concentration (40 µM) of the noncompetitive AMPA receptor antagonist
GYKI 52466 (Paternain et al., 1995). While the peak amplitude of the EPSC at –70
mV was reduced to 24 ± 3 % (n = 3) compared to control, the 20–80% rise time and
decay time constant of the EPSC were 106 ± 2 % (P = 0.08) and 108 ± 9 % (P = 0.4)

Fig. 2.15. Determining the time course of excitatory synaptic conductances in neocortical
pyramidal neurons using the voltage jump method. All traces taken from a somatic whole-cell
recording of a layer 5 neocortical pyramidal neuron at 35 °C; the internal solution contained 1 mM
QX-314 and 0.5 mM ZD 7288. NMDA and GABAA receptors were blocked by bath application of
30 µM D-APV, 50 µM picrotoxin and 50 µM bicuculline methiodide, and CaCl2 and MgCl2 were
increased to 3 mM to reduce polysynaptic activity. In A, the neuron was held at –80 mV and a
series of voltage jumps (from –95 mV to –65 mV in steps of 5 mV) was given to test for membrane
linearity, bracketing the voltage range used for determining the charge recovery. The resulting
currents are shown below the voltage commands (average of 5 traces each; the series resistance
of 6.0 MΩ was compensated by 90%). In B the currents were scaled by the command voltage and
superimposed to demonstrate linearity. An EPSC was evoked by stimulation of afferent fibres near
the apical dendrite and is shown at two different holding potentials in C (averages of 25 traces
each). In D the traces in C have been scaled by their peak amplitudes and superimposed. The
20–80% rise times of the currents were 1.15 ms and 1.13 ms at –70 mV and –90 mV respectively,
and the decay time constants were 6.2 and 6.1 ms respectively. The charge recovery curve
obtained for this EPSC with jumps from –70 mV to –90 mV is shown in E. Each point represents
the average of 21 – 26 separate trials. The values of the best fit using the analytical function (thick
line) were τv = 3.36 ms, τrise = 0.54 ms and τdec = 1.47 ms. Fitting the decay of the charge
recovery with a single exponential function gave τdec = 1.59 ms.
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of the control values, respectively. These findings indicate that the EPSCs were not
substantially distorted by voltage escape or by the activation of voltage-gated
conductances.

The voltage jump protocol was applied using jumps between –70 mV and
–90 mV. Jumps at different times relative to synaptic stimulation were interleaved,
and a large number of individual sweeps were averaged for each jump time to reduce
the contribution of noise associated with synaptic variability. The resulting charge
recovery curves were fit with Eq. 2.10, as shown in Fig. 2.15E. Single-exponential
functions provided a good fit to both the onset and the offset of the curve. Therefore,
a single decay time constant of the synaptic conductance, τdec = τdec1 = τdec2 was
fitted, and it was usually necessary to constrain τrise to 0.1 – 0.6 ms. The time
constant of the voltage at the synapse was τv = 2.93 ± 0.44 ms, and the decay time
constant of the synaptic conductance was τdec = 1.74 ± 0.18 ms (n = 8). The S.E.M.
predicted by Monte Carlo error analysis (Press et al., 1992; Gaussian noise was
added to the charge recovery with mean experimental parameters and the resulting
simulated charge recovery curves were fit by the same procedure as the
experimental charge recovery curves) was 0.24 ms for τv and 0.28 ms for τdec.

The relatively rapid decay time course of the excitatory synaptic conductance
in neocortical pyramidal cells estimated using the voltage jump method is consistent
with recordings of selected spontaneous EPSCs (Stuart and Sakmann, 1995),
assuming residual space clamp error in the latter measurements, as well as with the
deactivation kinetics of AMPA-type glutamate receptor channels in these neurons
(Hestrin, 1993; Jonas et al., 1994), correcting for temperature using a Q10 of ~2
(Silver et al., 1996).

This result has important physiological implications. The decay of the EPSC
largely determines the decay of the EPSP at its site of generation (Rall, 1967; Jack et
al., 1983; Softky, 1994). The rapid decay of the conductance ensures that the time
window for local synaptic integration in the dendritic tree remains brief, consistent
with the proposed role of cortical pyramidal cells as coincidence detectors of synaptic
input (Abeles, 1982; Softky, 1994; König et al., 1996; Brecht et al., 2003). It is also an
important factor setting the level of background synaptic conductance in vivo.
Neglecting the rising phase of the synaptic conductance, which is usually short
compared to the decay phase, this is given by the number of synaptic contacts made
onto a cell * mean firing frequency of presynaptic axons * mean release probability at
a single synaptic contact * decay time constant of the synaptic conductance * peak
synaptic conductance at a single contact. Assuming typical values for a layer 2/3
pyramidal neuron, this would be 20000 * 1 Hz * 0.3 * 1.7 ms * 1 nS = 10.2 nS for
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presynaptic axons firing at an average rate of 1 Hz, or 1.02 nS for a presynaptic firing
rate of 0.1 Hz.

2.4.4 Application to Bergmann glia cells

An important aim of synaptic physiology is to characterize the spatiotemporal
profile of neurotransmitter concentration in and outside the synaptic cleft and its
action on synaptic and extrasynaptic receptors. Dzubay & Jahr (1999) used AMPA
receptors on Bergmann glia cells as sensors to measure the concentration of
glutamate outside the synaptic cleft of the climbing fibre-Purkinje cell synapse. The
stem fibre processes of Bergmann glia cells span the entire molecular layer of the
cerebellum, giving rise to a large number of leaflike extensions which fill the space
between neuronal dendrites and axons, and encapsulate synapses (Grosche et al.,
2002). Thus, when using somatic recording to measure currents flowing through
AMPA receptors located on a leaflike extension, close to a synapse but far from the
soma of the Bergmann glia cell, one is faced with the same kind of space clamp
problem as in neurons (see section 2.3.1). Dzubay & Jahr (1999) solved this problem
by using the voltage jump method. In their experiments, the average decay time
constant of the AMPA receptor-mediated current in Bergmann glia cells calculated by
fitting the charge recovery curve with Eq. 2.10 was τdec = 5.9 ± 1.6 ms (mean ± S.D.;
n = 7). As expected, this was not significantly different from single exponential fits to
the charge recovery curves starting 4 ms after the synaptic stimulation (5.8 ± 1.4 ms;
P = 0.657, paired t-test; n = 7). However, it was significantly faster than the decay
time constant of the current recorded at the soma of the Bergmann glia cells (8.4 ±
1.0 ms; P = 0.004; n = 7), demonstrating that there is substantial filtering (42%
slowing of the decay) as the current passes from the thin Bergmann glia processes to
the soma. The time constant of the voltage response at the location of the activated
AMPA receptors to a voltage clamp step at the soma was τv = 4.4 ± 1.9 ms. Dzubay
and Jahr then used the information obtained using the voltage jump method (i.e. the
value of τv, and the slowing of the decay of the current by 42%) to constrain a
compartmental model of their Bergmann glial cells (see section 2.4.3), and corrected
the space clamp error in their measured AMPA receptor responses using this
compartmental model. They concluded that the extrasynaptic transmitter
concentration seen by the glial processes reaches 160–190 µM. Wadiche & Jahr
(2001), in a study that also used the voltage jump method, estimated that the
concentration of transmitter within the synaptic cleft of the same synapse peaks at
9.2 – 11.3 mM.
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2.4.5 Application to hippocampal interneurons

Inhibitory interneurons of the CA3 stratum lucidum in the hippocampus receive
excitatory synaptic input from two major sources: feedforward excitation from mossy
fibres and feedback excitation from CA3 pyramidal cell axon collaterals. These two
types of synapses are located across the entire dendritic tree of stratum lucidum
interneurons, being only weakly segregated along the somatodendritic axis of the
postsynaptic cells. Thus, it is not possible to distinguish them exclusively based on
the rise time of the EPSC recorded at the soma. To characterize the kinetics of these
two types of synaptic conductances, Walker et al. (2002) used the voltage jump
method.  First, they tested whether the voltage jump method was sensitive to
changes in the kinetics of synaptic conductances in these cells by pharmacologically
slowing the glutamate receptor-mediated synaptic conductance by aniracetam (5
mM). Indeed the decay time constant of the synaptic conductance extracted by fitting
Eq. 2.10 to charge recovery curves collected before and after application of
aniracetam increased by 336% (τdec = 2.8 ± 0.3 ms (mean ± S.E.M.; n = 12) before
versus τdec = 12.2 ± 1.5 ms (n = 11) after application of the drug; P < 0.0001,
unpaired t-test). This experiment directly shows that the voltage jump method as
applied in these cells was able to extract differences in the synaptic conductance
time courses.

Next, Walker et al. (2002) measured the decay time course of the synaptic
conductance at mossy fibre and CA3 pramidal cell collateral synapses by stimulating
them separately and fitting each charge recovery curve with Eq. 2.10. The average
synaptic conductance time courses were τdec = 1.57 ± 0.18 ms (n = 9) and τdec =
2.72 ± 0.13 ms (n = 16; P < 0.0001, unpaired t-test), respectively. On the other hand,
when proximal and distal CA3 pyramidal cell collateral synapses were evoked in
alternation on the same neuron, the time constant of the voltage response at the
location of the activated synapses was τv = 0.6 ms for proximal synapses and 3.5 ms
for the distal input, while the decay time constants of the synaptic conductances were
similar (τdec = 2.6 ms for proximal and 3.0 ms for distal synapses). Walker et al.
(2002) concluded that these two types of afferent inputs to the same postsynaptic
neuron show an overlap in the electrotonic location of the synaptic contacts they
make, and that spatial segregation of synapses to different dendritic domains is not
required for synapse-specific differential targeting of glutamate receptor subunits (for
review see also Bischofberger & Jonas, 2002).
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2.4.6 Application in cerebellar granule cells

In some happy dispositions the full analysis of the charge recovery curve is
not even necessary. In small neurons such as cerebellar granule cells it is usually
sufficient to plot the EPSC for different times of the somatic voltage jump with respect
to the time of synaptic stimulation. If the (shifted) onset of the EPSC waveform after
the voltage jump is much faster than the decay of the EPSC waveform, then the
decay kinetics of the EPSC can be considered to be faithfully recorded, as is the
case in granule cells (DiGregorio et al., 2002).

2.4.7 Future applications of the voltage jump method

The voltage jump method should be useful for determining the time course of
synaptic conductances lacking appreciable voltage-dependence in any neuron where
space-clamp is not guaranteed. The relative insensitivity of the method to membrane
conductance and series resistance means that it could be used to measure the time
course of synaptic conductances in vivo, where membrane conductance is higher
(due to tonic synaptic activity) and where good space-clamp conditions are especially
difficult to achieve. The method should also be useful for monitoring changes in
synaptic conductance time course when space-clamp conditions are not constant,
such as during development (cf. Kirson & Yaari, 1996) or during experiments on
synaptic plasticity, where the series resistance usually increases over the course of
the experiment. The method allows a direct test of the proposal that distal synaptic
currents may have slower kinetics than proximal ones (Pearce, 1993), a mechanism
which may compensate for electrotonic attenuation of distal inputs (Jack et al., 1981;
Stricker et al., 1996).

The method is not restricted to examining synaptic conductances. The kinetics
of any conductance which lacks appreciable voltage dependence, such as certain
sodium-activated (Koh et al., 1994) or calcium-activated (Sah & Bekkers, 1996)
potassium conductances, can also be determined. If the kinetics of the conductance
are slightly voltage-dependent, then the measured values will be a blend of the time
constants at the holding and jump voltages.

The ability of the method to estimate the time course of the voltage change at
the conductance location in response to a somatic voltage step should be particularly
useful, since it offers an index of the electrotonic distance of the conductance. This
allows one to compare the relative electrotonic distance of different synapses (cf.
Sah & Bekkers, 1996). Furthermore, since the time course of the voltage change at
the synapse is known, one can estimate the physical distance of the synapses from
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the recording site with a compartmental model of the same cell. Another possibility is
to use arbitrary conductance changes to map the electrotonic structure of the
dendritic tree. For example, focal application of neurotransmitter (to generate a
conductance) could be combined with the voltage jump protocol to map the
electrotonic geometry of the neuron in regions which may be inaccessible to direct
recording, providing important constraints for compartmental models of such
neurons. Finally, the method could also be used with arbitrary voltage command
waveforms (as long as the response can be described by sums of exponentials). This
may allow experimental measurements of the filtering experienced by physiologically
relevant signals, such as action potentials and synaptic potentials, as they propagate
in the dendritic tree.



3 Propagation of action potentials in dendrites
depends on dendritic geometry

3.1 Introduction

The propagation of action potentials in the dendritic tree has been the subject
of great interest for over a century, beginning with the speculations of Cajal (1904) on
the directional flow of signals in neurites. Over the past few decades, evidence has
accumulated to suggest that under most conditions, the sodium action potential (AP),
the output signal of the neuron, is initiated in the axon and retrogradely invades the
dendritic tree, a process known as backpropagation (reviewed by Stuart et al.,
1997b). Backpropagation of APs has been demonstrated in a variety of different cell
types in vitro, and evidence for backpropagation in vivo has been provided by
recordings in both anaesthetized (Svoboda et al., 1997; Helmchen et al., 1999;
Svoboda et al., 1999; Waters et al., 2003) and awake animals (Buzsaki & Kandel,
1998). APs can also be initiated in the dendrites under conditions of intense synaptic
stimulation (Turner et al., 1991; Chen et al., 1997; Stuart et al., 1997a; Golding &
Spruston, 1998; Kamondi et al., 1998; Martina et al., 2000; Larkum et al., 2001;
Golding et al., 2002), and the spread of these dendritic APs towards the soma is
known as forward propagation. Understanding the factors that determine the efficacy
of AP propagation in dendrites is important since AP propagation has key
consequences for the integration of synaptic input and the induction of synaptic
plasticity (Johnston et al., 1996; Linden, 1999; Sjöström & Nelson, 2002). In
particular, backpropagation of the AP provides a mechanism whereby information
about neuronal output is signalled backwards to active synapses to trigger changes
in synaptic strength (Markram et al., 1997b; Stuart et al., 1997b; Sjöström & Nelson,
2002).

A striking finding that has emerged from recent studies is that, under similar
experimental conditions, systematic differences in backpropagation exist between
neuronal types (reviewed by Stuart et al., 1997b; Fig. 3.1). The somatic AP
propagates non-decrementally into the dendrites of dopamine neurons (Häusser et
al., 1995) and the primary dendrites of mitral cells (Bischofberger & Jonas, 1997;
Chen et al., 1997). On the other hand, many neuronal types show decremental
conduction, with the most extreme example being cerebellar Purkinje cells, where the
AP is reduced to a few millivolts in amplitude at 100 µm from the soma (Llinas &
Sugimori, 1980; Stuart & Häusser, 1994). A comparable diversity has also been
observed for the efficacy of forward propagation of dendritically initiated APs towards
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the soma (Llinas & Sugimori, 1980; Chen et al., 1997; Stuart et al., 1997a; Golding &
Spruston, 1998; Kamondi et al., 1998; Martina et al., 2000; Larkum et al., 2001;
Golding et al., 2002).

Fig. 3.1. Backpropagation of APs in dendrites depends on cell type. Dendritic action potential
amplitude, normalized to the amplitude of action potentials at the soma, is plotted against the
distance from the soma for neocortical layer 5 and hippocampal CA1 pyramidal neurons, cerebellar
Purkinje cells and substantia nigra dopamine neurons. The best fit by a single exponential function
to the experimental data in the different neuronal types is shown. Adapted from Stuart et al., 1997b.

Explanations for these systematic differences in the efficacy of propagation
have concentrated on differences in the densities of dendritic voltage-gated channels
(Stuart et al., 1997b; Magee et al., 1998). Theoretical work on AP propagation in
axons has demonstrated that propagation is dependent on axonal geometry
(Goldstein & Rall, 1974; Ramon et al., 1975; Parnas & Segev, 1979; Joyner et al.,
1980; Lüscher & Shiner, 1990; Manor et al., 1991). The wide variety of dendritic
arborizations among different neuronal types suggests that differences in dendritic
geometry contribute to determining the extent of backpropagation and forward
propagation of APs in dendrites. This is a difficult issue to address quantitatively, as
cable theory does not provide an analytical solution describing action potential
propagation in arbitrarily branched cable structures, and systematic experimental
manipulations of dendritic geometry are not yet possible. Therefore I examined this
question with simulations of AP propagation in a wide range of realistic dendritic
geometries. By inserting the same set of passive and active, voltage-dependent
conductances into compartmental models based on morphological reconstructions of
each cell type, I isolated the effect of differences in dendritic geometry alone (Mainen
& Sejnowski, 1996). I show that dendritic geometry is a key determinant of the
efficacy of both forward and backpropagation of APs. These results have important
implications for modulation of backpropagation and for the role of the dendritic AP as
an associative signal in different neurons.
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3.2 Methods

3.2.1 Dendritic geometries

Detailed three-dimensional reconstructions of 42 neurons were used. Two rat
Purkinje cells, two rat neocortical layer 5 pyramidal neurons, and four rat substantia
nigra dopamine neurons were filled with biocytin and digitally reconstructed using a
100X oil immersion objective (1.4 NA) on a Zeiss Axioplan (Zeiss, Oberkochen,
Germany) in conjunction with Neurolucida software (MicroBrightField, Colchester,
VT, USA). Three rat layer 5 pyramidal neurons were from G. Stuart and N. Spruston,
and one from D. Smetters; three guinea pig Purkinje cells were from M. Rapp and I.
Segev; rat CA1/CA3 pyramidal cells, and DG interneurons and granule cells were
obtained from the Duke-Southampton Neuronal Morphology Archive
(www.neuro.soton.ac.uk). Reconstructions were inspected carefully, and only those
without apparent errors in connectivity or dendritic diameters were used. All dendrites
were divided into compartments with a maximum length of 7 µm. Spines were
incorporated where appropriate by scaling membrane capacitance and conductances
(Shelton, 1985; Holmes, 1989).

3.2.2 Compartmental models

Simulations were performed using the NEURON simulation environment
(Hines & Carnevale, 1997) on a Silicon Graphics Origin 2000 server. The time step
for the simulations was 25 µs. The structure of the model of active conductances was
based on recent modelling studies (Mainen et al., 1995; Mainen & Sejnowski, 1996;
Rapp et al., 1996). Two Hodgkin–Huxley-type conductances (gNa and gK) were
inserted into the soma, dendrites and spines at uniform densities. For simplicity, the
consequences of using spines with different excitability from dendritic shafts (see
Baer & Rinzel, 1991) were not explored. The model was tuned by attaching a
synthetic axon (Fig. 3.2; Mainen et al., 1995) to five neocortical pyramidal cell
geometries, in which backpropagating APs were initiated by somatic current injection.
Active and passive membrane parameters were then optimized to reproduce
experimental data on AP backpropagation from these neurons in slices taken from
rats aged P26–30 (Stuart et al., 1997a). The uniform passive parameters of the
model were Ri = 150 Ω cm, Cm = 1 µF cm–2, Rm = 12 kΩ cm2, which reproduced
experimental values for membrane time constant and input resistance to within 10%
(Stuart et al., 1997a; Stuart & Spruston, 1998). The standard values for gNa and gK

were 35 and 30 pS µm–2, respectively, and the channel models were identical to
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those used by Mainen & Sejnowski (1996; avai lable from
www.cnl.salk.edu/CNL/simulations.html). Channel kinetics and densities were
adjusted for a nominal temperature of 37°C using a Q10 of 2.3. All results shown in
the figures and tables were obtained using this standard model. In some cases the
standard gNa and gK were replaced by corresponding channel models from a
different study (Paré et al., 1997).  Simulations using a non-uniform distribution of the
A-type K+ channel were based on previous studies (Hoffman et al., 1997; Migliore et
al., 1999). The A-type K+ channel replaced the K+ channel used in the standard
model, and its density was scaled to increase linearly 5-fold from the soma to the
most distal dendrites of each neuron, with the initial density being 480 pS µm–2

(Hoffman et al., 1997; Migliore et al., 1999).

The geometry of the soma and proximal dendrites may itself affect the
invasion of the soma by the axonally initiated AP. Therefore, a somatic AP waveform
(amplitude, 96 mV; half-width, 0.6 ms) obtained from one of the pyramidal neuron
reconstructions with the standard model was used as a voltage clamp command at
the soma of all other neurons to simulate backpropagation. This ensured a fair
comparison across all neurons, so that backpropagation in the dendrites starts from
the same initial conditions in the soma in each reconstruction (simulations with a
synthetic axon attached to all morphological reconstructions, allowing each to
generate its own AP, produced very similar results). The dendritically initiated AP
was generated using a biexponential synaptic conductance (τrise = 0.2 ms, τdec =
1.7 ms, gmax = 50 nS) near the apical nexus of a neocortical pyramidal cell (622 µm
from the soma; see Fig. 3.8). This waveform was used as a voltage clamp command
to examine propagation of a dendritic AP, again in order to ensure that propagation
begins from the same initial conditions. In this way, AP propagation was isolated from

Fig. 3.2. Standard densities of voltage-gated
conductances used in the simulations of AP
propagation. A synthetic axon (Mainen et al.,
1995) with high densities of voltage-gated
channels ensuring axonal initiation of APs
was attached to the soma in some initial
simulations (see section 3.2.2). However, the
axon was removed in subsequent
simulations (Figs. 3.3–3.10) in which a
somatic or dendritic AP waveform was
imposed on the cell by voltage clamp, to
ensure equal initial conditions for action
potential propagation in each cell.
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AP initiation, conditions for which also depend on dendritic geometry (Segev & Rall,
1998). Similar results were obtained using a somatic AP waveform, or a
backpropagating dendritic AP waveform.

3.2.3 Measurements

The rate of increase of membrane area as a function of distance from the
soma (dA/dx) was approximated by ∆A/∆x, where ∆A is the spine-adjusted total
membrane area at a distance interval [x, x + ∆x) from the soma. The discretization ∆x
was 1 µm (∆x = 0.25 µm for Purkinje cells). All distances were measured along the
dendrites. The somatodendritic Na+ channel density threshold for full AP propagation
into all dendritic branches, gNa,thresh, was determined using the bisection algorithm
(Press et al., 1992). The radius of equivalent cables was calculated according to the
following equation,
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(3.1)

where the sum is over all dendritic segments j located at a given electrotonic distance
X from the soma (Fleshman et al., 1988; Clements & Redman, 1989; Ohme &
Schierwagen, 1998), with discretization ∆X = 0.004. Impedance mismatch at a given
point in a reconstructed neuron was calculated by splitting the reconstruction into two
subtrees at that point and measuring the input impedances (at a frequency of 200
Hz) of the two individual subtrees. Input impedances were calculated using the
standard values of the passive parameters and gNa and gK. The impedance
mismatch was then calculated as the ratio of the input impedance of the subtree
where the AP originated over the input impedance of the subtree that the AP is
propagating into. Correlations were assessed using the Pearson correlation
coefficient r; correlations mentioned in the text and shown in the figures are highly
significant (P < 0.001). Values are given as mean ± S.E.M.
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3.3 Results

3.3.1 Action potential backpropagation depends on dendritic
geometry

A simple model of active conductances was designed to reproduce
experimental data on AP backpropagation in a single cell type, in order to be then
applied to a range of morphological reconstructions of different cell types. A model of
neocortical pyramidal cells was chosen since extensive experimental data on
backpropagation is available for this cell type. Furthermore, these neurons fall in the
middle of the range of backpropagation efficacies (Stuart et al., 1997b; Fig. 3.1). The
model was based on previous studies (Mainen et al., 1995; Mainen & Sejnowski,
1996; Rapp et al., 1996), and incorporated a uniform density of Na+ and K+ channels
in the soma and dendrites, with a high density of Na+ channels in the axon (Fig. 3.2)
to ensure axonal initiation of the AP. This simple model is able to reproduce the
experimental data in neocortical pyramidal cells remarkably well (cf. Fig. 1B and Fig.
2A of Stuart et al., 1997a).
To isolate the effect of dendritic geometry, the same model of active conductances
was then inserted into morphological reconstructions of different cell types, and
backpropagation of a somatic AP waveform was simulated. With identical channel
types and densities, the different dendritic geometries produced very different
patterns of backpropagation (Fig. 3.3), which reproduced the experimentally
observed results in these neurons (Llinas & Sugimori, 1980; Stuart & Häusser, 1994;
Stuart & Sakmann, 1994; Häusser et al., 1995; Stuart et al., 1997a). Thus, the AP
spread effectively into all dendritic branches of substantia nigra dopamine neurons,
while propagating decrementally in the apical dendrite of neocortical pyramidal cells,
and failing to effectively invade the dendritic tree of Purkinje cells. Interestingly, even
within the same neuron a wide range of AP amplitudes could be observed at the
same geometric distances from the soma (Fig. 3.3B). As the density of Na+ and K+

channels is uniform in this model, the diversity of propagation into different dendritic
branches must be a consequence of the dendritic geometry. Taken together, these
findings indicate that dendritic geometry determines the functional relationship
between Na+ channel density and AP backpropagation.

Fig. 3.3 → Backpropagation of APs in different dendritic geometries with identical channel types
and distributions. A-C, Two-dimensional projections of three-dimensional morphological
reconstructions of a substantia nigra dopamine neuron (A), a neocortical layer 5 pyramidal cell (B),
and a cerebellar Purkinje cell (C). The local amplitude of a backpropagating AP elicited by voltage-
clamping the soma with a standard somatic AP waveform is coded by color. D-F, Scatter plots of
dendritic AP amplitude vs. distance from the soma for the cells shown in A-C. Each point
represents the peak AP amplitude in each dendritic compartment.
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3.3.2 Sensitivity of backpropagation to modulation of channel
densities in different dendritic geometries

To investigate the relationship between backpropagation and voltage-gated
channel density in different dendritic geometries, backpropagation was simulated for
a wide range of Na+ and K+ channel densities (from 0 to 200 pS µm–2). These
simulations were carried out in a large sample of morphological reconstructions of
different neuronal types, including the neurons studied in section 3.3.1 above, as well
as hippocampal CA1 and CA3 pyramidal neurons, dentate gyrus (DG) granule cells,
and hippocampal interneurons. First, the Na+ channel density was varied while the

Fig. 3.4. Sensitivity of backpropagation to
voltage-gated channel density in different cell
types. A, Effect of varying Na+ channel density
on backpropagation. The results of simulations
in eight representative neurons from different
cell types are shown, with cell type coded by
color (legend below). The average dendritic AP
amplitude at 200 µm from the soma
(normalized by the somatic AP amplitude) is
plotted versus somatodendritic Na+ channel
density. Somatodendritic K+ channel density
was kept fixed at 30 pS µm–2. The arrowhead
indicates the Na+ channel density used in the
standard model (see section 3.2.2). B, Effect of
varying K+ channel density. Simulations as in
A, except somatodendritic K+ channel density
was varied while keeping Na+ channel density
constant at 35 pS µm–2. The arrowhead
indicates the K+ channel density used in the
standard model. C , Effect of varying the
relative density of Na+ and K+ channels.
Simulations as in A , except the ratio of
somatodendritic K+ and Na+ channel density
was varied, while keeping the sum of the
channel densities constant at 65 pS µm–2. The
arrowhead indicates the channel density ratio
used in the standard model.
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K+ channel density was kept constant. Each neuronal type had a characteristic
relation between dendritic Na+ channel density and backpropagation (quantified by
measuring the AP amplitude 200 µm from the soma; Fig. 3.4A). With no dendritic
Na+ channels, the attenuation of the AP waveform was very different in different
neuronal types (see Table 3.1). This indicates that the different dendritic trees filter
the AP waveform to different extents even when backpropagation is passive. When
Na+ channel density was increased, an approximately sigmoid relationship was
observed between density and propagation efficacy in most cell types. The half-
maximum of these curves was typically around 20 – 40 pS µm–2 (see Table 3.1),
within the physiological range of dendritic Na+ channel densities (Johnston et al.,
1996). In striking contrast, backpropagation in Purkinje cells was essentially
insensitive to increases in Na+ channel density over a wide range, with a sharp
threshold leading to full backpropagation being reached only at very high densities
(mean half-maximum 92.8 ± 23.3 pS µm–2).

Table 3.1. Dependence of AP backpropagation on voltage-gated channel density in different
neuronal types

Cell type n Passive AP
backpropagation
ratioa

Half-maximal
gNa (pS µm–2)b

Half-maximal
gNa/gK ratioc

Purkinje cell 5 0.06 ± 0.01 92.8 ± 23.3 2.15 ± 0.41

CA1 pyramidal cell 4 0.14 ± 0.01 37.7 ± 2.6 1.30 ± 0.18

CA3 pyramidal cell 5 0.16 ± 0.01 31.6 ± 1.8 0.97 ± 0.04

DG granule cell 6 0.14 ± 0.02 33.5 ± 2.1 1.11 ± 0.15

Cortical pyramidal cell 5 0.21 ± 0.01 21.4 ± 2.6 0.68 ± 0.05

DG interneuron 6 0.25 ± 0.03 22.4 ± 1.5 0.72 ± 0.06

CA3 interneuron 5 0.30 ± 0.03 20.9 ± 3.1 0.74 ± 0.10

Dopamine neuron 4 0.27 ± 0.04 19.2 ± 1.2 0.64 ± 0.03

a Amplitude of dendritic AP 200 µm from the soma, normalized by somatic AP amplitude, with zero
gNa (conditions as in Fig. 3.4A).
b Density of somatodendritic Na+ channels at which half-maximal AP backpropagation occurs
(conditions as in Fig. 3.4A).
c Ratio gNa/gK at which half-maximal AP backpropagation occurs (conditions as in Fig. 3.4C).

Next, the density of dendritic K+ channels was varied while maintaining a
constant Na+ channel density. As expected, when K+ channel density was increased,
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backpropagation became less effective. Although backpropagation was less sensitive
to changes in dendritic K+ channel density than changes in Na+ channel density,
there was a characteristic relationship between K+ channel density and
backpropagation in each neuronal type (Fig. 3.4B). Over the range studied (from 0 to
200 pS µm–2) backpropagation in Purkinje cells and dopamine neurons showed little
sensitivity to changes in K+ channel density, while backpropagation in pyramidal
neurons and dentate gyrus granule cells was clearly affected (Fig. 3.4B).

In the same set of neurons, I also examined the sensitivity of backpropagation
to changes in the relative densities of dendritic Na+ and K+ channels. This was done
by systematically varying the ratio of densities over a wide range (0.1 to 10), while
keeping the total voltage-gated channel density fixed. As shown in Fig. 3.4C, most
neurons showed a sigmoid relationship with backpropagation efficacy as the density
of Na+ channels relative to K+ channels was increased. However, the half-maximum
of the curve depended strongly on dendritic geometry, and spanned a wide range
(Table 3.1). Again, Purkinje cells were particularly insensitive to changes in dendritic
channel densities. These findings demonstrate that, as expected, backpropagation
depends on the relative density of dendritic voltage-gated Na+ and K+ channels.
However, the same ratio of channel densities produces very different degrees of
backpropagation in different dendritic geometries. Furthermore, the effect of
changing the relative density depends critically on the dendritic geometry.

Fig. 3.5. Cell type-specific dependence of
backpropagation on Na+ channel density. Bar
chart of the minimum somatodendritic Na+

channel density required for full AP
backpropagation (membrane potential
> 0 mV) into all dendritic branches in different
neuronal types. Each cell type is represented
by at least 4 morphological reconstructions.
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On the basis of these simulations, which single variable could serve as an
index of the efficacy of backpropagation in the different dendritic geometries? As
backpropagation is most sensitive to the Na+ channel density (Fig. 3.4A), the
minimum Na+ channel density required for full backpropagation of the AP (peak
membrane potential > 0 mV) into all dendritic branches appeared to be a good
candidate. Indeed this threshold Na+ channel density (gNa,thresh) varied widely
across cell types (Fig. 3.5). Purkinje cells required nearly five times higher Na+

channel density than dopamine neurons to sustain full backpropagation into all
dendrites. Thus, in the following simulations gNa,thresh is used as a measure of the
efficacy of propagation in a given neuron.

3.3.3 Morphological determinants of backpropagation

Which morphological features are most important for determining the efficacy
of backpropagation? Unfortunately, no analytical theory exists to predict whether
propagation will be successful given a dendritic geometry and a set of realistic
channel densities and kinetics (Jack et al., 1983). Attempts to formulate such a
theory have so far succeeded only for simple geometries, using highly simplified
models of excitability (Pastushenko et al., 1969; Pauwelussen, 1982). However,
correlations between individual geometric parameters and our functional index of
backpropagation, gNa,thresh, or the amplitude of the AP 200 µm from the soma
(AP200) – using the standard parameters of the model – can be examined. The
simplest morphological features, such as mean dendritic diameter, total geometric or
electrotonic length of the dendrites, dendritic taper or flare, and total dendritic
membrane area only correlated relatively weakly with gNa,thresh or AP200 (|r| ≤ 0.6).
The number of dendritic branchpoints, however, showed a strong relationship with
the functional parameters across the population (Fig. 3.6A; r = 0.81 and –0.73 for
gNa,thresh and AP200 respectively). The range of branching densities was reflected in
striking differences in the distribution of dendritic membrane area with distance x
from the soma (dA/dx, Fig. 3.6B). Both gNa,thresh and AP200 were strongly correlated
with the maximum slope of dA/dx across the different morphological reconstructions
(Fig. 3.6C). Combining features of the dA/dx distribution with another geometric
parameter (e.g. the maximum slope normalized to the number of branchpoints or
mean dendritic diameter) further strengthened correlations with gNa,thresh and AP200,
such that correlation coefficients of |r| > 0.9 were obtained.

The robustness of these correlations was tested in several ways. First, each of
the passive parameters was changed over a wide range (Ri, 70 – 200 Ω cm; Cm, 0.7
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– 1.5 µF cm–2; R m, 5 – 50 kΩ cm2). Second, different models for the
Hodgkin–Huxley-type gNa and gK conductances (taken from Paré et al., 1998) were
incorporated. The qualitative behaviour of the models remained robust under these

different conditions, as did the ranking of correlations between dendritic geometry
and backpropagation; values of individual correlations varied by less than 20%.
Finally, as a non-uniform distribution of A-type K+ channels has recently been shown
to be involved in regulating backpropagation in hippocampal pyramidal neurons
(Hoffman et al., 1997) and mitral cells (Schoppa & Westbrook, 1999; Christie &
Westbrook, 2003), a non-uniform distribution of an A-type K+ channel model (Migliore
et al., 1999) was incorporated into the simulations based on experimental and

Fig. 3.6. Morphological determinants of
backpropagation. A, Relationship between the
number of dendritic branchpoints and
gNa,thresh. Each point represents one neuron (n
= 42 neurons). B , Rate of increase in
membrane area with distance from the soma
(dA/dx) in a nigral dopamine neuron (red), a
neocortical pyramidal cell (green), and a
Purkinje cell (blue); same cells as in Figs. 3.3
and 3.4. The inset shows the data for the
pyramidal cell and the dopamine cell on an
expanded axis. C, Relationship between the
maximum slope of the smoothed dA / dx
distribution and gNa,thresh.
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modelling studies (Hoffman et al., 1997; Migliore et al., 1999). Even with this non-
uniform channel distribution, strong correlations were observed between dendritic
geometry and backpropagation (e.g. r = 0.91 for gNa,thresh and the maximum slope of
dA/dx). Taken together, these findings suggest that geometric parameters alone can
be used to estimate the relative efficacy of backpropagation in a given dendritic tree.

Which measure provides the best functional link between the details of
dendritic geometry and backpropagation efficacy? Simulations of AP propagation in
axons (Goldstein & Rall, 1974; Lüscher & Shiner, 1990; Manor et al., 1991) have
shown that propagation across a branchpoint depends on the ratio of the input
impedances of the parent and daughter branches – the impedance mismatch
(Goldstein & Rall, 1974). If this ratio equals one, there is no change in propagation of

Fig. 3.7. A reduced model of dendritic
geometry predicts the eff icacy of
backpropagation.  A, Profiles of equivalent
cables constructed from the cells shown in Fig.
3.3. The vertical axis corresponds to the radius
of the equivalent cable, and the horizontal axis
to the electrotonic distance (λ , electrotonic
space constant).  B, Impedance mismatch as a
function of electrotonic distance from the soma
for the equivalent cables shown in A. The
cumulative impedance mismatch is defined by
the area shown for the Purkinje cell in the inset
(integral bounded by X = 0.05 on the left to
exclude the soma, and an impedance
mismatch of 1.0 at the bottom). C, Relationship
between the cumulative impedance mismatch
in the equivalent cable (scaled exponentially)
and gNa,thresh in the respective original
dendritic geometry.
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the AP as it approaches the branchpoint. However, if it is greater than one, i.e. if the
combined input impedance of the daughter branches is lower than the input
impedance of the parent branch, AP propagation may fail. For branches of uniform
diameter and semi-infinite length, the impedance mismatch is given by Rall's
geometric ratio (GR),

€ 

GR = rd
3/ 2

d
∑ / rp3/ 2 , (3.2)

where rd are the radii of the daughter branches and rp is the radius of the parent
branch. As the mean GR for all dendritic branchpoints in all 42 morphological
reconstructions studied was 2.4 ± 0.08, this may explain the relatively strong
correlation of gNa,thresh with the number of branchpoints (Fig. 3.6A).

However, dendritic branches in realistic dendritic trees are finite in length, and
the branchpoints are not the only sites contributing to the impedance mismatch along
a dendrite. Usually, a succession of several branchpoints, connected by sections with
taper or flare, lies within the spatial extent of a dendritic AP. Thus, it is difficult to
predict the relative importance of various local maxima in the impedance mismatch in
determining the fate of the AP except by explicit simulation of AP propagation (Figs.
3.3–3.5; Lüscher & Shiner, 1990; Manor et al., 1991). To obtain a better predictor of
AP propagation, the analysis of impedance mismatches was simplified by
constructing reduced models of the dendritic architecture (Segev, 1992),
transforming each morphological reconstruction into a single unbranched equivalent
cable (Fig. 3.7A; Fleshman et al., 1988; Clements & Redman, 1989; Ohme &
Schierwagen, 1998). The impedance mismatch calculated in this cable approximates
the mean impedance mismatch seen by an AP wavefront propagating in the original
dendritic geometry. The shape of the impedance mismatch distribution (Fig. 3.7B)
proved to be closely related to the efficacy of backpropagation. In particular, the
cumulative impedance mismatch (Fig. 3.7B, inset) is a remarkably good predictor of
both gNa,thresh (r = 0.94; Fig. 3.7C) and AP200 (r = –0.89).

Fig. 3.8 → Forward propagation of dendritically initiated APs. A-C, A dendritic AP was initiated in
the neocortical pyramidal cell (B) using a synapse located at the arrowhead. The propagation of
this AP in a nigral dopamine neuron  (A) and a cerebellar Purkinje cell  (C) was examined by
applying it as a voltage clamp command at the location indicated by the arrowhead. The local
amplitude of the propagating dendritic AP is coded by color. Propagation into the distal dendrites
differs from that shown in Fig. 3.3 because the waveform of the dendritically initiated AP at its site
of generation differs from the waveform of the backpropagating AP at the same site. (D-F) Scatter
plots of dendritic AP amplitude vs. distance from the soma for the cells shown in A-C.
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3.3.4 Forward propagation of dendritic APs depends on dendritic
geometry

Under some circumstances it is possible to initiate Na+ APs in dendrites.
These dendritic APs propagate with variable efficacy to the soma in different cell
types (Chen et al., 1997; Stuart et al., 1997a; Golding & Spruston, 1998; Kamondi et
al., 1998; Schwindt & Crill, 1998; Martina et al., 2000; Larkum et al., 2001; Golding et
al., 2002). The influence of dendritic geometry on the extent of forward propagation
was investigated by comparing propagation of a dendritic AP in our set of neurons.
The same dendritic AP waveform propagated to very different extents in different
neurons with an identical distribution of voltage-gated channels (Fig. 3.8). In
dopamine neurons and pyramidal neurons, propagation of the dendritic AP was very
effective, while in Purkinje cells the dendritic AP was rapidly attenuated.

The spread of a dendritic AP is likely to depend on its site of origin in the
dendritic tree, as previously shown for the spread of signals in passive dendrites
(Rall, 1964; Zador et al., 1995; Roth & Häusser, 2001). The spread of the dendritic
AP was therefore examined systematically from all locations in each dendritic tree, by
simulating AP propagation starting successively from all compartments. To quantify
the extent of forward propagation, the distance was measured at which the dendritic
AP was reduced to half its original amplitude when travelling towards the soma. This
"half-decay distance" depended strongly on the site of origin of the dendritic AP, and
on the cell type (Fig. 3.9). The dendritic AP could propagate for hundreds of microns
towards the soma from many dendritic locations in both dopamine and neocortical
pyramidal neurons. In contrast, for nearly all locations in the cerebellar Purkinje cell,
propagation was limited to < 50 µm, being restricted to the branchlets close to the
initiation site. As shown in Table 3.2, the mean half-decay distance of the dendritic
AP calculated over all sites of origin depended strongly on cell type. These findings
indicate that both the local geometry, as well as the overall structure of the dendritic
tree, are important determinants of forward propagation of dendritic APs.

Fig. 3.9 → Forward propagation depends on dendritic geometry. A-C, Forward propagation of a
dendritic AP was simulated successively at all dendritic locations in a nigral dopamine neuron (A),
a layer 5 pyramidal cell (B), and a cerebellar Purkinje neuron (C). For each dendritic location, the
distance at which the amplitude of the forward propagating dendritic AP was reduced to half of its
amplitude was measured. This "half-decay distance" is coded by colour at the site of origin. For
some input regions (i.e. those at or close to the soma), the AP never decays to half of its amplitude
before reaching the soma. These regions are indicated in grey. The same data are plotted in D-F
as a scatter plot, showing the half-decay distance of the dendritic AP initiated at a given location vs.
distance of that location from the soma.
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Table 3.2. Extent of forward propagation of a dendritically initiated AP in different neurons

a Same cells as in Table 3.1.
b Mean distance at which the dendritic AP is reduced to half its original amplitude during
propagation to the soma for all sites of origin in the morphological reconstruction (conditions as in
Fig. 3.9). Input regions from which the dendritic AP did not decay to half of its amplitude were
excluded from the average.
c  As in b , except the maximal distance measured is given.

To examine the relationship between dendritic Na+ channel density and
forward propagation, gNa,thresh (this time defined as the threshold gNa for full
propagation to the soma) was determined for forward propagating APs. As for

Cell typea Mean  ha l f -
decay distance
(µm)b

Maximal half-
decay distance
(µm)c

Purkinje cell 29 ± 3 113 ± 12

CA1 pyramidal cell 85 ± 5 323 ± 58

CA3 pyramidal cell 138 ± 12 709 ± 116

DG granule cell 128 ± 10 296 ± 22

Cortical pyramidal cell 80 ± 6 447 ± 75

DG interneuron 99 ± 10 268 ± 22

CA3 interneuron 130 ± 12 377 ± 29

Dopamine neuron 143 ± 16 514 ± 83

Fig. 3.10. Morphological determinants of
forward propagation. A , Bar chart of the
minimum somatodendritic Na+ channel
density required for full AP propagation to the
soma in different neuronal types. The origin
of the dendritic AP was 200 µm from the
soma, on the longest dendritic path. Same
dendritic geometries as in Fig. 3.5. B ,
Correlation between the cumulative
impedance mismatch (scaled exponentially
a n d  measured as in Fig. 3.7B ) in the
equivalent cable constructed from the point
of origin of the dendritic AP, and gNa,thresh for
forward propagation in the respective original
dendritic geometry (n = 42 morphological
reconstructions).
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backpropagation, gNa,thresh depended on cell type (Fig. 3.10A), with Purkinje cells
again requiring the highest density of Na+ channels to ensure full propagation. The
sequence of propagation efficacies was slightly different from that observed for
backpropagation, consistent with the asymmetry of the dendritic architecture. To
determine whether the underlying principles established for backpropagation also
hold for propagation in the forward direction, equivalent cables were constructed from
the point of view of the origin of the dendritic AP. Again, the cumulative impedance
mismatch in the equivalent cable was an accurate predictor of propagation efficacy
(Fig. 3.10B). Thus, as for backpropagation, a reduced model of dendritic geometry
(Segev, 1992) is able to provide a functional link between the structure of a dendritic
tree and the efficacy of forward propagation.
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3.4 Discussion

Simulations in detailed compartmental models of a range of neurons show that
dendritic geometry is an important factor determining both forward propagation and
backpropagation of APs in dendrites. Recent work has highlighted the importance of
dendritic voltage-gated channels in regulating the efficacy of AP propagation. The
simulations described here complement this work and demonstrate that
morphological features act in concert with dendritic voltage-gated channels to
generate the observed diversity of AP propagation in dendritic trees of different
neuronal types. Although there are clear differences in channel densities and
properties between neurons (Llinas, 1988; Johnston et al., 1996), the simulations
show that dendritic geometry determines how significant these differences are for
neuronal function. These findings have important consequences for our
understanding of how different neurons use dendritic APs as signalling mechanisms.

3.4.1 The link between dendritic geometry and propagation

Some dendritic geometries are remarkably resistant to AP propagation.
Purkinje cells, for example, do not show effective propagation even with relatively
high densities of voltage-gated Na+ channels. This indicates that, as predicted by
Rall (1964), the poor AP backpropagation observed experimentally in Purkinje cells is
primarily due to their distinctive morphology, in conjunction with the relatively low
channel densities (Stuart & Häusser, 1994) and narrow AP widths (Stuart et al.,
1997b) found in these neurons. On the other hand, the simulations also identified
dendritic geometries – such as those of dopamine neurons – which are very
favourable for propagation, requiring only very low Na+ channel densities for effective
propagation into the distal dendrites. These findings suggest that the diversity in
backpropagation efficacy observed experimentally (Stuart et al., 1997b) may be a
consequence of the diversity in dendritic geometries in different neurons. Since
forward propagation is also influenced by dendritic geometry in a similar manner, it is
conceivable that the experimentally observed differences in forward propagation may
also result in part from differences in dendritic structure. Although the present
simulations have focused on APs mediated by Na+ channels, it is likely that
propagation of dendritic calcium spikes (Llinas & Sugimori, 1980; Amitai et al., 1993;
Kim & Connors, 1993; Yuste et al., 1994; Schiller et al., 1997; Seamans et al., 1997;
Schwindt & Crill, 1998; Helmchen et al., 1999; Larkum et al., 1999a,b; Larkum et al.,
2001) is also regulated by dendritic geometry over a wide range.
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Correlations of morphological features and the efficacy of AP propagation
show that the number of dendritic branchpoints is a critical variable for determining
propagation efficacy. An even more accurate predictor of propagation efficacy is the
rate of increase in dendritic membrane area, which is determined by the number of
branchpoints and the relationship between the diameter of parent and daughter
dendrites at branchpoints. Based on this strong correlation, the present simulations
make predictions about the relative efficacy of propagation for several cell types in
which propagation has not been measured directly (e.g. granule cells and
interneurons in the dentate gyrus). This measure should also permit similar
predictions to be made for any dendritic geometry.

The link between the distribution of membrane area and propagation can be
understood by noting that the functions describing the rate of increase in membrane
area and the radius of the equivalent cable are closely related. For real dendrites this
leads to distributions of similar shape (compare Figs. 3.6B and Fig. 3.7A). The profile
of the equivalent cable, in turn, directly determines its impedance mismatch profile
(Fig. 3.7B), which approximates the mean impedance mismatch at the same
electrotonic location in the original morphological reconstruction (the impedance
mismatch profile would be preserved exactly for branches of semi-infinite length:
compare Eq. 3.2 and Eq. 3.1; Fleshman et al., 1988; Clements & Redman, 1989).
Interestingly, the cumulative impedance mismatch in the equivalent cable provided
the best predictor of backpropagation and forward propagation efficacy in 42
morphological reconstructions. This demonstrates that the equivalent cable
transformation is a useful tool for predicting propagation of suprathreshold signals in
active dendritic trees, which is remarkable given the fact that it involves numerous
approximations (Fleshman et al., 1988; Clements & Redman, 1989). This result also
suggests that the fate of a dendritic AP is usually not decided at a single branchpoint,
but rather depends on the accumulation of unfavourable impedance mismatches
over many branchpoints (Manor et al., 1991).

The finding that dendritic geometry has a significant impact on the propagation
of APs in dendrites is in agreement with recent experimental evidence. Kim &
Connors (1993) have shown that the efficacy of AP backpropagation in layer 5
pyramidal neurons is correlated with the number of apical oblique branches and the
diameter of the apical trunk. In CA1 pyramidal neurons, a combination of calcium
imaging and electrophysiological recordings has demonstrated that frequency-
dependent attenuation of backpropagating APs is particularly effective in distal
dendritic regions with extensive branching (Callaway & Ross, 1995; Spruston et al.,
1995). Finally, backpropagation in thalamocortical relay neurons appears to be less
effective in dendrites which exhibit branching (Williams & Stuart, 2000), again
consistent with a key role for dendritic branching in determining propagation.
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3.4.2 Modulation of AP propagation in dendrites

The densities of functional voltage-gated channels are subject to modulation
by neurotransmitters, which can in turn affect backpropagation (Johnston et al.,
1999). The simulations demonstrate that dendritic geometry places limits on the
ability of backpropagation to be modulated in different neurons. As shown in Fig. 3.4,
altering the density of dendritic Na+ and K+ channels over the same range can have
strikingly diverse consequences on backpropagation in different dendritic geometries.
Propagation of APs in different neurons, and in subregions of individual dendritic
trees, will have different sensitivities to modulation of voltage-gated channels as a
consequence of variations in dendritic geometry. In particular, neurons with an
intermediate degree of dendritic branching, and dendritic regions exhibiting rapid
increases in branching such as the apical tuft, should display the greatest sensitivity
to modulation. This prediction is testable experimentally, as the functional density of
different channel types can be varied pharmacologically to determine which dendritic
geometries are most sensitive to modulation. The consequences of use-dependent
activation and inactivation of voltage-gated channels should also depend on dendritic
geometry. Consistent with this idea, frequency-dependent attenuation of APs in
dendrites (Callaway & Ross, 1995; Spruston et al., 1995), which depends in part on a
reduction in the effective Na+ channel density (Colbert et al., 1997; Jung et al., 1997),
is more pronounced in CA1 pyramidal neurons than in cortical pyramidal neurons
(Stuart et al., 1997a), which exhibit less branching.

Dendritic geometry is not static, but can change dramatically both during
development and in adulthood (Purves & Hadley, 1985; Bailey & Kandel, 1993). In
particular, a substantial increase in dendritic branching has been shown to be
associated with neuronal maturation (Altman, 1972; Berry & Bradley, 1976; Kasper et
al., 1994; Wu et al., 1999), and with activation of messenger pathways known to be
involved in synaptic plasticity (Nedivi et al., 1998; Wu & Cline, 1998; Yacoubian & Lo,
2000). The simulations suggest that this increase in dendritic complexity will reduce
backpropagation unless compensated by increases in voltage-gated channel
densities. Indeed there is substantial experimental evidence demonstrating that
channel densities increase during development (MacDermott & Westbrook, 1986;
Huguenard et al., 1988; O'Dowd et al., 1988; Zhu, 2000), in parallel with the changes
in morphological complexity.

Finally, dendritic spine density could be involved in regulating AP propagation
in dendrites (Baer & Rinzel, 1991; Jaslove, 1992). As spines can contribute over 50%
of the dendritic membrane area, the relationship between membrane area and
propagation efficacy (Fig. 3.6) indicates that the changes in spine density that can
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occur during development (Gould et al., 1990; Harris et al., 1992) and synaptic
plasticity (Engert & Bonhoeffer, 1999; Maletic-Savatic et al., 1999) will also modulate
the extent of propagation. This effect should be particularly pronounced in neurons
which also exhibit a high degree of dendritic branching. It is therefore interesting to
note that neurons with minimal branching, such as dopamine neurons and
interneurons, tend to be aspiny, while Purkinje cells, which exhibit a high degree of
branching, have a very high spine density.

3.4.3 Implications for dendritic computation

Recent work has demonstrated that the backpropagating AP acts as a
retrograde signal to dendritic synapses indicating that the axon has fired. This
provides a coincidence detection mechanism which links postsynaptic APs and
presynaptic activity to trigger synaptic plasticity (Markram et al., 1997; Stuart et al.,
1997b; Linden, 1999). The present results show that since dendritic geometry limits
the extent of propagation of dendritic APs, it defines the spatial range over which
associations between synaptic inputs and APs can take place. In particular, the
simulations demonstrate that highly branching dendritic geometries do not permit
strong coupling between axonal output and distal synapses, and thus in these
neurons the backpropagating AP cannot act as a global associative signal (Stuart et
al., 1997b; Linden, 1999; Sjöström & Nelson, 2002). Since such geometries are also
poor substrates for forward propagation of APs (Figs. 3.8–3.10), synaptic integration
in these neurons is far more dependent on local associations between inputs.
Indeed, such dendritic trees may be adapted to keep associations between inputs
more localized in order to increase the number of independent sites of integration
(Mel, 1993; Poirazi & Mel, 2001). On the other hand, dendritic geometries that favour
propagation and are sensitive to modulation of propagation allow the associativity
between output and input to be tuned over a wide range.

Dendritic geometry will also influence the interaction between backpropagating
APs and dendritically initiated APs. The initiation of dendritic APs requires strong and
temporally synchronous synaptic input (Schiller et al., 1997; Stuart et al., 1997a;
Golding & Spruston, 1998), properties consistent with their role as coincidence
detectors. However, in cortical pyramidal neurons pairing backpropagating APs with
distal synaptic input can substantially lower the threshold for initiation of dendritic
APs, which can in turn lead to burst firing in the axon (Helmchen et al., 1999; Larkum
et al., 1999a,b; Larkum et al., 2001; Schaefer et al., 2003b). By limiting the spatial
spread of backpropagating and forward propagating APs, dendritic geometry should
therefore play an important role in determining the sensitivity of individual neurons to
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coincident synaptic input, as well as in defining the relationship between dendritic
APs and neuronal output via the axon. Taken together, these considerations indicate
that the large diversity in dendritic geometry may have direct consequences for the
computational strategies used by different neurons.



4 Comprehensive discussion

A new scientific method should not ultimately be a goal in and of itself. Its
significance will depend on what has been (and will be) found out by applying it to
open problems, how difficult or easy it is to use, and how reliable and accurate the
results are. Therefore I would like to conclude this thesis with a perspective on
present and future applications of the new experimental and simulation methods
described in the preceding chapters.

4.1 Applications of the voltage jump method

The voltage jump method addresses a long-standing problem in cellular
neuroscience. In most types of neurons it is not possible to voltage-clamp a dendritic
synapse using an electrode at the soma (see section 2.3.1). Before the development
of the voltage jump method, experimentalists had a choice among three options:
First, they could ignore the problem. Arguably, this was the most popular choice and
resulted in many erroneous results being published before papers by Spruston et al.
(1993) and Major (1993) illustrated the problem in graphic detail, making it more
difficult to publish such studies in respectable journals. Second, they could choose
not to do the experiment they originally intended to do. It is often difficult to decide
whether the second option is worse than the first. Finally, they could laboriously build
a compartmental model of the cell recorded from and "work backwards" from the
measured somatic clamp current waveform to the actual conductance waveform at
the synapse (e.g. Jonas et al., 1993). This has rarely been done because of the
amount of work involved.

It is clear from the third option that this is an attempt to solve a typical "inverse
problem". That is, given the parameters of the synaptic conductance waveform (i.e.
its amplitude and kinetics), the location of the synapse and the cable properties of the
neuron, it is straightforward to compute the clamp current measured via the somatic
recording pipette (see section 1.2). But it is very difficult, given the clamp current at
the soma, to come up with a unique solution for the synaptic conductance waveform
that gave rise to it, since knowledge of the location of the synapse(s) and in particular
the cable properties of the neuron is often rather incomplete.

The voltage jump method was therefore developed to bypass this inverse
problem. It is a combination of a specific experimental protocol and a new technique
of data analysis. Unlike the method developed by Schaefer et al. (2003a) to recover
the densities and kinetics of voltage gated conductances in non-space clamped
structures, it is essentially model-free. No errors associated with a model influence its
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results, and no model assumptions are made, except that the cell is passive in the
voltage range in which it is tested, an assumption that can be verified experimentally
(Fig. 2.15A–D).

A key ingredient of the voltage jump method is the use of causality: additional
synaptic current elicited by an increase in the synaptic driving force can only flow
after the increase in driving force happens. Thus, by varying the relative timing of the
synaptic stimulation and the increase in synaptic driving force, a sliding window is
moved step by step across the synaptic conductance, whose time course is then
reconstructed by analyzing the synaptic charge as a function of this relative timing. In
principle this works for every synapse in every neuron. A typical problem in the
practical application of the voltage jump method, especially if the synapses are small
and unreliable, is the low signal-to-noise ratio and thus the need to sample many
sweeps (Fig. 2.15E). To collect the hundreds of sweeps that are sometimes
necessary, sufficiently stable recordings are required. But this is achievable in
practice in many cell types, as shown by the examples summarized in sections
2.4.3 – 2.4.6.

The sources of error in the voltage jump method and in compartmental models
of neurons are thus complementary: the accuracy of the voltage jump method is
limited by statistical errors, not systematic errors. Estimates of the time constant of
decay of the synaptic conductance obtained via the voltage jump method are largely
unbiased, and their accuracy can be increased simply by averaging more sweeps. In
contrast, compartmental models suffer mostly from systematic errors, not statistical
errors (Roth & Häusser, 2001). It is therefore tempting to combine the voltage jump
method and the construction of a compartmental model of the cell recorded from to
offset the two kinds of errors. Indeed, as shown by the example described in section
2.4.4 the voltage jump method can be used to calibrate a compartmental model of
the same cell. In the future more studies are expected to combine the voltage jump
method and compartmental models to validate estimates of the amplitude and time
course of synaptic conductances in dendrites.

The most interesting future applications of the voltage jump method that can
be suggested today can probably be found in the mapping of (subthreshold)
receptive fields in vivo. The goal here is to take the mapping one step further from
the soma (e.g. Brecht et al., 2003) to the synapses. Where on the dendritic tree of
the cell recorded from are the synapses located which are activated in response to a
sensory stimulus? What is the compound kinetics and the amplitude of the
compound synaptic conductance? Little is known about the answers, and
experiments of this type are feasible today, largely due to the advent of in vivo whole-
cell recordings. They could be combined with two-photon uncaging of glutamate to
mimic synaptic conductances in defined locations on the dendritic tree, to map both
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the distribution of synaptic conductances as a function of distance from the soma as
well as the electrotonic structure of the neuron recorded from.

4.2 Validation of compartmental models

To construct a passive compartmental model based on measurements of
impulse responses at multiple locations in a neuron, as well as a morphological
reconstruction of the same cell, also satisfies the characteristics of an inverse
problem. But if the model itself is the goal, there is no free lunch and the only option
available is to solve this inverse problem (Roth & Häusser, 2001). Only such a
detailed and accurate compartmental model allows quantitative predictions (see
section 4.3), and later, abstractions (see section 4.4) of the rules by which a neuron
transforms synaptic input into spike output.

Construction of the compartmental models was accompanied by an extensive
error analysis, which yielded quantitative estimates of the influence of various
sources of error on the best-fit parameters and the predictions of the models (Roth &
Häusser, 2001). One of the most surprising new results of the error analysis was the
relatively small effect of statistical errors, i.e. the trial-to-trial variablilty of the impulse
responses, which caused relative errors in the best-fit parameters of only a few
percent. In contrast, systematic errors, mostly due to uncertainty in the reconstructed
dendritic diameters, were responsible for large (up to 50%) relative errors in the "raw"
model parameters such as Cm and Rm. However, the error analysis also showed that
predictions of the models, such as the attenuation of EPSCs or EPSPs from their
dendritic origin to the soma, may be more robust than suggested by the uncertainties
in individual electrical and morphological parameters, which trade off against each
other.

Future improvements of passive compartmental models are likely to depend
on voltage-sensitive dye imaging using new, more sensitive dyes, allowing
measurements of the membrane potential simultaneously at many points in the
neuron. This should allow the unique identification of possible spatial
inhomogeneities in the passive (and active) membrane parameters due to an even
larger number of constraints for the compartmental models. Another important
improvement will be provided by the automated reconstruction of neuronal
morphology using novel image processing algorithms. Objective measurements of
dendritic diameters will be particularly useful since they are expected to reduce the
effect of a major source of error.
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4.3 Functional compartments in dendritic trees

To understand how neurons transform synaptic inputs into action potential
output we need to find out, firstly, what the functional compartments in dendritic trees
are, and secondly, how they interact (see chapter 1). The focus of this thesis is on
electrical, not chemical compartments. It is also necessary to distinguish between the
spread of subthreshold synaptic potentials and the propagation of suprathreshold
regenerative events. Conditions for the initiation of these events, and the subsequent
propagation of spikes in the dendritic tree, but also the spread of subthreshold
synaptic potentials depend both on the density and kinetics of voltage-gated
conductances, as well as the dendritic branching pattern.

Only in models such as those employed in this thesis the influence of the
dendritic branching pattern can be separated from the influence of the voltage-gated
conductances, and only models allow for a clean separation of the initiation of
regenerative events from their propagation in the dendritic tree once they have been
initiated.

Simulations of the spread of subthreshold EPSPs show that Purkinje cells are
"democratic", i.e. synapses of equal conductance evoke very similar somatic EPSP
amplitudes regardless of their location on the dendritic tree. In the subthreshold
regime, the dendritic tree of Purkinje cells could therefore be represented by a single
compartment. In contrast, synapses on the apical tuft of neocortical pyramidal cells
evoke much smaller somatic EPSPs than synapses near the soma. The simulations
show that this difference is predictable already from the differences in the dendritic
branching pattern of these cell types. It is mostly due to the absence of a long
primary dendrite in Purkinje cells.

Simulations of the forward and backpropagation of action potentials in
dendrites show that the structure of the Purkinje cell dendritic tree limits action
potential propagation in both directions. Conditions for backpropagation are
particularly poor, and even an upregulation of dendritic Na+ channels to the highest
levels found in the dendrites of other cell types would not overcome the very large
impedance mismatch within the primary dendrite. In contrast, action potentials in
neocortical pyramidal cells propagate in both directions over distances of several
hundreds of micrometers, and propagation is easily regulated by modulation of the
density of dendritic voltage-gated conductances and by changes in the branching
pattern of the apical tree (Schaefer et al., 2003b). Thus, action potentials propagating
in the dendrites of pyramidal cells provide a variable coupling of the somatic and
dendritic spike initiation zones in these cells, which directly influences their input-
output relation (Larkum et al., 1999a,b; Larkum et al., 2001; Schaefer et al., 2003b).
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The pronounced differences between the subthreshold and suprathreshold
simulation results in Purkinje cells (compare Roth & Häusser (2001) and chapter 3)
may seem paradox at first glance, but they illustrate that the size, number and
degree of interaction between functional compartments are strongly frequency-
dependent. For high frequencies (> 100 Hz) the impedance mismatch at a given
point in a dendritic tree is dominated by the local membrane capacitance
(proportional to the membrane area) "seen" from this point. The arrangement of
functional compartments in the dendritic tree will therefore depend on the type of
signals described, as well as on the background synaptic activity in vivo, which could
transform the rules for synaptic integration on a millisecond time scale.

4.4 Simple versus complex models

Everything should be made as simple as possible, but not simpler. – Albert Einstein

Most of this thesis is concerned with an exploration of complex models of single
neurons. To understand experiments on real neurons, and to represent their results it
is necessary to work with these complicated models. However, to understand the
principles of neural computation it is necessary to come up with reduced models
(Segev, 1992) that capture as much as possible of the essential behaviour of the
complex models. In this thesis, reduced models are used mostly as tools to
understand structure-function relations in the complex models (equivalent cylinder in
chapter 2, equivalent cable in chapter 3). Reduced models can also serve as a
compact representation of our current knowledge of neurons, and to state
hypotheses about their function, such as their input-output relations. Exactly which
details of the complex models need to be preserved in the reduced models obviously
depends on the question addressed. Equivalent cables that were built starting at the
soma were well suited to represent action potential backpropagation in the original
models, for example. Forward propagation of spikes initiated in the dendrites,
however, was represented well only in equivalent cables that were constructed from
the point of view of the spike initiation site in the dendrites. This suggests that
perhaps the complexity is irreducible, and we need full morphological reconstructions
and detailed models of voltage-dependent conductances in the dendrites in order to
represent all relevant aspects of neuronal function. In any case it will be necessary to
identify those mechanisms – found in experiments on brain slices or in models – that
are really relevant for the behaviour of the animal. This will require the development
of new experimental techniques, such as two-photon microscopy in awake, behaving
animals (Helmchen et al., 2001) to test whether e.g. local spikes initiated in the
dendrites are a common occurrence during certain behavioural tasks. The results of
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experiments of this kind will serve as a guide to construct reduced models of neurons
that describe the relevant principles of their operation. Ultimately, these reduced
models will be used in network models to show how dendritic mechanisms contribute
to information processing in the brain.
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6 Abbreviations

AMPA L-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AP Action potential
APV D-2-amino-5-phosphonovaleric acid, an antagonist of NMDA-type

glutamate receptors
ATP Adenosine triphosphate
BAPTA 1,2,-bis-(2-aminophenoxy)ethane-N,N,N´,N´-tetraacetic acid, a fast

buffer of Ca2+ ions
Cm Specific membrane capacitance (in µF cm–2)
CNQX 6-cyano-7-nitroquinoxaline-2,3-dione, an antagonist of AMPA-type

glutamate receptors
EGTA Ethylene glycol-bis(b-aminoethyl-ether)-N,N,N´,N´-tetraacetic acid, a

slow buffer of Ca2+ ions
EM Electron microscope
EPSC Excitatory postsynaptic current (in pA)
EPSP Excitatory postsynaptic potential (in mV)
gK K+ channel density (in pS µm–2)
gNa Na+ channel density (in pS µm–2)
gNa,thresh Minimum Na+ channel density required for full backpropagation of the

AP (peak membrane potential > 0 mV) into all dendritic branches
GABA γ-aminobutyric acid, an inhibitory neurotransmitter in the central

nervous system
Hepes 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
Ih Hyperpolarization-activated cation current
IPSC Inhibitory postsynaptic current
IPSP Inhibitory postsynaptic potential
LM Light microscope
NA Numerical aperture
NMDA N-methyl-D-aspartate
P Postnatal day
PBS Phosphate-buffered saline
QX-314 Lidocaine N-ethyl bromide, a blocker of various types of voltage-gated

channels
Ri Specific resistivity of the intracellular medium (in Ω cm)
Rm Specific membrane resistance (in Ω cm2)
S.E.M. Standard error of the mean



Chapter 6: Abbreviations

108

S.D. Standard deviation
τm = Rm * Cm, membrane time constant
TEA Tetraethylammonium, a blocker of voltage-gated K+ channels
TTX Tetrodotoxin, used to block voltage-gated Na+ channels
ZD 7288 4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinum chloride, a

blocker of the hyperpolarization-activated current Ih




