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Abstract

Die kinematischen Eigenschaften von Minor Merger und ihre beobachtbaren Spuren

In dieser Arbeit wurden sog. Minor Merger untersucht, Verschmelzungen zweier galaktischer

Objekte im Massebereich von 1:20 bis 1:5, motiviert von der Idee und verschiedenen Beobach-

tungen, dass unsere Milchstrasse in ihrer Vergangenheit einen Minor Merger erfuhr. Im Rah-

men einer Reihe von numerischen Simulationen, die die kosmologische Strukturbildung von

dunkler Materie nachbildeten, wurden verschiedene Eigenschaften von Minor Mergern unter-

sucht. Es erwies sich, dass der Pericenterabstand in Einheiten des Virialradius des grösseren

Halos mit der Zeit variiert: Er ist kleiner zu höheren Rotverschiebungen. Ebenso finden sich zu

höheren Rotverschiebungen mehr parabolische Orbits. Der Vergleich mit den Simulationen

und Beobachtungen von Major Mergern ergab, dass der Verschmelzungsparameter in etwa

übereinstimmt mit den Erwartungen von Major Mergern, während die Verschmelzungsrate

abweicht. Der Spinparameter des grösseren Halos ist nach dem Merger grösser. Eine Winke-

labhängigkeit zwischen den Spinachsen konnte nicht gefunden werden. Es fand sich, dass eine

Galaxie wie die Milchstrasse durchschnittlich einen Minor Merger durchmacht pro Hubblezeit,

wobei der wahrscheinlichste Zeitpunkt dafür etwa 7Gyr zurückliegt. Die auf diese Weise

gewonnenen Informationen über die Kinematik von Minor Merger wurden für weitere Simu-

lationen von Kollisionen einer galaktischen Scheibe mit einem Satelliten benutzt. Es ergab

sich, dass es schwierig ist, Reste des Satelliten vor dem Hintergrund des Halos auszumachen.

Die Satellitenpartikel befinden sich auf Orbits, die sich kaum von denen der Halopartikel un-

terscheiden. Die Geschwindigkeitsverteilung der Partikel in Blickrichtung zeigt nur schwache

Spuren des Satelliten selbst, während andere Effekte wie die Aufheizung der stellaren Scheibe

zu einer dicken Scheibe recht gut sichtbar sind.

The Kinematical Parameters of Minor Mergers and their Observational Traces

This work was motivated by observations that galaxies like our Milky Way are undergoing

merger with galactic satellites and leaving behind observational traces. The thick disk of our

Milky Way may be due to a collision with a satellite of substantial mass of the galaxy, i.e.

1:20 to 1:5, what we call a “minor merger”. First, we derived in cosmological simulations

the kinematical properties of dark matter halos that are minor merging and their abundance

in space and time. We found that minor merger were most likely at a time 7Gyrs ago and

happened typically once for a Milky Way sized halo. Their pericenter distances and their

eccentricities varied with time, we found smaller pericenter distances and more parabolic

orbits in the past. The merging rate differed significantly from the simulated and observed

merging rate of major merger while the merging parameter roughly matched expectations

from major merger. There was no dependency of the angles between orbit and spin axes of the

objects found and no dependency of the mass ratios on redshift. We put these informations

into more detailed simulations of a stellar galactic disk that merges with a satellite to see

whether an observer in the disk is able to observe traces from this minor merger. We found

that the satellite particles are hard to distinguish from halo objects, while the LOSVD shows

only few traces of satellite remnants. Effects like heating of the galactic disk were clearly

visible.
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Chapter 1

Introduction

The true delight is in the finding out, rather than in the knowing.

Isaac Asimov

Research in cosmology has made significant progress in the last ten years: COBE mapped

the cosmic background radiation (Smoot et al., 1990) and found quadrupole fluctuations

(Smoot et al., 1992). These fluctuations were the seeds for the cosmological structure and

the base for every galaxy and galaxy cluster. Some years later observations of distant

supernovae of type Ia (Riess et al., 1998; Perlmutter et al., 1997) suggested that there

is some sort of “dark energy” which accelerates the expansion of the universe and ad-

ditionally suggested that our universe has flat geometry Ω = 1 (as predicted, or better:

demanded by the hypothesis of inflation (Guth, 1981)). The rebirth of Einstein’s cosmo-

logical constant Λ had of course influence on theoretical and numerical considerations

regarding the development of cosmological structure. This cosmic structure was mapped

in observations like the 2dF-Survey (Hawkins et al., 2003). Together with the rapid gain of

computing power in numerical simulations it was possible to follow the growth of struc-

ture of especially dark matter in the universe in more and more detail. Still, there are

of course problems, e.g. the "over abundance" of small satellites in galaxies in numeri-

cal simulations compared to observations (Moore et al., 1999; Klypin et al., 1999) or the

“cusp-core” controversy regarding the center of dark matter halos (Navarro et al., 1997;

Ghigna et al., 2000; Burkert, 1995).

Despite of these problems there are commonly believed models and theories in the field.

The “cosmological community” believes that our universe started in a hot, dense phase

called “big bang”. Soon after the big bang (∼ 10−35s), there was a phase called “inflation”

where the distances between two points were increased by a factor of 1043 (!) and the

geometry of the universe was flattened to k = 0 (Euclidean geometry). Several hundred

thousand years later matter decoupled from radiation, the universe became “transparent”

for light (light we can still see as “cosmic microwave background radiation”). Gravitation

leads to clumping of cooled matter and in the end gravitational collapse results in the

formation of stars and planets. Matter in the universe consists mainly of so-called “dark

matter”, some collisionless, weakly interacting particles dominating the clumping pro-

cess and galaxy dynamics. This extremely short story of the universe is today’s standard

picture which of course has some caveats. Especially the nature of dark matter and its

nemesis “dark energy” is unknown and of research interest in the moment. Nevertheless

it is impressive that mankind was able to get a glimpse of the genesis and evolution of



the universe while standing on a lonely planet around an ordinary sun in the outer parts

of a standard galaxy.

This is the point where this work comes in: What can we know about this standard galaxy

called “Milky Way”? What are we able to derive and to reveal about our galaxy by obser-

vation and theoretical considerations?

This work focuses on the possibility that our galaxy underwent collisions with smaller

satellites motivated by different observations mentioned in chapter 2. The likelihood and

the parameters of such a collision are derived within the cosmological context of struc-

ture formation in chapter 5. The application of the results from cosmology to galactic

dynamics is shown in chapter 6. The methods necessary for this derivation and numerical

techniques are described in chapter 4 resp. chapter 3. Results and concluding remarks

as well as an outlook are presented in chapter 7 and chapter 8.
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Chapter 2

Background

Space is big. Really big. You just won’t believe how vastly, hugely, mind-boggling big it is.

The Hitchhiker’s Guide to the Galaxy

In this chapter the physical background underlying this work is explained. The first part

summarizes cosmological physics, the development of fluctuations in an expanding uni-

verse and the implications of the presence of dark matter and dark energy. The second

part describes observations of minor mergers of galaxies in general and for the special

case of our Milky Way.

2.1 Cosmology and cosmological structure formation

2.1.1 Cosmology in short

The simplest metric one can find for a homogenous, isotropic universe (which is covering

the observations quite well and gives substance to the cosmological principle1) is the

Robertson-Walker metric. Its line element is:

ds2 = dt2 − R2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

)
(2.1)

Here r , θ and φ are the three comoving spatial coordinates, R(t) is the scale factor and

k characterizes the curvature (fig.2.12).

All the dynamics of the universe is hidden in the time dependent scale factor R(t) which

is described by the Einstein field equations (Einstein, 1916):

Rµν −
1

2
Rgµν −Λgµnu = 8πGTµν (2.2)

Here Rµν is the Ricci tensor, Tµν the energy-momentum tensor, gµν the metric tensor and

Λ the cosmological constant (Λ ≡ 8πGρV/c
2). If we assume a perfect fluid and neglect

1The cosmological principle states that all positions and directions are equal. We do not have a special

position within the universe of any kind.
2There is a caveat in these visualizations: the surfaces are curved in a higher spatial dimension what

is actually not true within general relativity where curvature is an “inner curvature” without additional

spatial dimensions



2.1 Cosmology and cosmological structure formation

Figure 2.1: Three visualizations of the curvature dependent on k: a) denotes a closed universe

with k = 1, b) a hyperbolic universe with k = −1 and c) a flat universe with k = 0 (Klapdor-

Kleingrothaus & Zuber, 1997)

“smaller” inhomogeneities like galaxies and galaxy clusters the energy-momentum tensor

is:

Tµν = diag(ρ + ρV ,−p,−p,−p) (2.3)

From the time component one yields

Ṙ2

R2
+ k

R2
= 8πG

3
(ρ + ρV ) (2.4)

and from the spatial components

2
R̈

R
+ Ṙ

2

R2
+ k

R2
= −8πGp (2.5)

we get the Einstein-Friedmann-Lemaître equations. From this one gets

R̈

R
= −4πG

3
(ρ − 2ρV + 3p). (2.6)

Since we observe redshift of distant galaxies we need non-static solutions of these equa-

tions. A positive Λ means acceleration of the expansion and is suggested by different

observations (Riess et al., 1998; Perlmutter et al., 1997; Bennett et al., 2003). If addition-

ally k = 0, −1 we have only positive solutions and we get an ever-expanding universe. For

k = 1 we get a critical value:

Λc = 4

(
8πG

c2
M

)−2

(2.7)
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Chapter 2. Background

Recent observations suggest a positive value of Λ with ΩΛ ∼ 0.7 and Ωmatter ∼ 0.3 and

therefore a flat universe with Ωtot = 1 (k = 0) as proposed by inflationary models 3.

Light waves are stretched by the expanding universe. This leads to redshifted light from

distant sources. The redshift z is defined as:

z = λ0

λ1
− 1 = R(t0)

R(t1)
− 1 (2.8)

where the index 0 denotes the time of receipt (usually now) and the index 1 the time of

emission. Additionally one defines the Hubble parameter H as

H = Ṙ(t)

R(t)
(2.9)

and the Hubble constant H0 as a local value measured today

H0 =
Ṙ(t0)

R(t0)
(2.10)

For convenience one introduces the dimensionless parameter h0 with

h0 =
H0

100km s−1 Mpc−1
(2.11)

with h0 = 0.71 as a commonly used value today.

2.1.2 Structure formation: Development of density fluctuations

How can structure evolve in an expanding universe? Let’s start with the definition of a

density contrast (Peebles, 1980, Klapdor-Kleingrothaus & Zuber, 1997)

δ(~x) = δρ(~x)〈ρ〉 = ρ(~x)− 〈ρ〉
〈ρ〉 (2.12)

with 〈ρ〉 the mean density of the background. So regions with a density δ > 1 lead to

gravitational collapse. The subsequent question now is: how does one get a δ=1 from ini-

tial conditions which are quite isotropic and homogenous? As soon as δ = 1 the growth

is non-linear and the development to bound structures goes quickly.

The problem of the gravitational growth of structures was studied first by Jeans in 1902.

Here, a Newtonian approximation is used to describe the growth of small perturbations

and take a static model (Ṙ = 0) of an ideal fluid with density ρ. This gives following basic

equations:
∂ρ

∂t
+∇(ρ~v) = 0 continuity equation (2.13)

∂~v

∂t
+ (~v · ∇)~v + 1

ρ
∇ρ +∇Φ = 0 Euler equation (2.14)

3Ω is defined as Ω = ρ/ρcrit where ρ is the average matter density and ρcrit = 3H2
0

8πG

5



2.1 Cosmology and cosmological structure formation

with the gravitational potential Φ given by the Poisson equation

∇2Φ = 4πGρ (2.15)

If one assumes small perturbations of these quantities (e.g. ρ = ρ0 + ρ1 with ρ1 � ρ0) it

is allowed to use linearized equations, and we get

∂2ρ1

∂t2
− v2

s∇2ρ1 = 4πGρ0ρ1 (2.16)

Here adiabatic perturbations are assumed, i.e. the sound speed vs is

vs =
√
∂p

∂ρ
(2.17)

In a static case we have as solutions plane waves exp(i(~k · ~r)−ωt) with the dispersion

relation

ω2 = v2
s k

2 − 4πGρ0. (2.18)

In the non-static case equation (2.16) can be rewritten, and we find for the density contrast

d2δ

dt2
+ 2

(
Ṙ

R

)
dδ

dt
= δ(4πGρ0 − v2

s k
2). (2.19)

We can derive from this dispersion relation a critical value (ω = 0) called Jeans wave-

length kj

kj =
√

4πGρ0

v2
s

(2.20)

Solutions with k > kj describe sound waves where the inner pressure gradient is big

enough to withstand gravitation. For k < kj (complexω) the solutions describe exponen-

tially increasing or decreasing modes. One can define the so-called Jeans mass Mj as the

mass which is within a sphere with radius λj/2 = π/kj

Mj =
4π

3

(
π

kj

)3

ρ0 =
π5/2

6

v3
s

G2/3ρ
1/2
0

(2.21)

Masses bigger than the Jeans mass are unstable against gravitational collapse. The in-

stability caused by the gravitation of over-dense regions is stronger than the internal

pressure gradient. In contrast to the general solution (2.19) we now look at the special

case of large wavelengths (k < kj) and therefore negligible pressure v2
s k

2) for a universe

with Ω0 = 1.

For Ω0 = 1 we have

4πGρ = 2

3t2
and

Ṙ

R
= 2

3t
(2.22)

Therefore equation (2.19) can be rewritten as

d2δ

dt2
+
(

4

3t

)
dδ

dt
− 2

3t2
δ = 0 (2.23)

6



Chapter 2. Background

We solve this differential equation with a power law ansatz

δ = At2/3 + Bt−1 (2.24)

The second expression represents damped modes and can be neglected nowadays. The

first expression describes growing modes with the following dependencies

δ ∼ t2/3 ∼ R = (1+ z)−1 (2.25)

This means that expansion slows down the growth of perturbations from exponential to

a power law.

We now follow the evolution of a Jeans mass as a function of time (details in Kolb &

Turner, 1990). For simplicity we assume a universe with photons and baryons only, i.e.

ρ = ρB + ργ . In the radiation-dominated phase the pressure is caused by photons, and

we have v2
s = 1/3c2. We write the Jeans mass as:

MJ = 2.8 · 1030z−3ΩBh2M� (2.26)

The Jeans mass increases proportional to R3. A Jeans mass of one solar mass corresponds

roughly to redshift z = 1010 and grows to typical galaxy mass at z = 3 · 106. A dramatic

change occurs at the time of recombination at redshift z = 1200. This is caused by the

sudden decrease of the sound speed after decoupling because the pressure is now only

build up by non-relativistic hydrogen atoms:

v2
s =

5

3

kT

mH
(2.27)

This results in a sudden drop of the Jeans mass at this time from ∼ 1016M� to 106M�
(see fig.2.2). Interestingly, this is the typical mass for a globular cluster which belongs to

the oldest objects in the universe.

This simple model needs at least two extensions to be of sufficiently usefulness:

1. Weakly interacting particles like neutrinos can leave regions of higher density with-

out affecting the matter in these regions. This leads to a “smearing-out” of inho-

mogeneities and is called free streaming. The typical scale for the smearing-out

is:

λfs ' 30(ΩXh2)−1

(
TX

T

)4

Mpc (2.28)

Here X denotes the weak interacting particle. For neutrinos we have Tν/T ≈ 0.71

and

λfs ' 20

(
mν

30eV

)−1

Mpc (2.29)

corresponding to mass scale of

Mfs ' 4 · 1014

(
mν

30eV

)−2

M� (2.30)

Smaller mass scales are washed out and there is no structure formation.

7



2.1 Cosmology and cosmological structure formation

Figure 2.2: The development of the Jeans mass in an expanding universe. The straight line

denotes the Jeans mass in baryons MB−J , the dashed line the Jeans mass within the horizon

MB−HOR and the dashed-dotted line the Silk mass MS . The strong decline occurs at the time of

decoupling because of the strong decline of the sound speed. Assumed here is a baryonic mass

of ΩBh2 = 0.047. (Kolb & Turner, 1990)

2. The second process comes into play at the time of recombination: photons are able

to diffuse out of the denser regions. This is called Silk dampening. In a simple model

with photons and baryons the typical scales are:

λS ' 3.5

(Ω0

ΩB

)1/2

(Ω0) (2.31)

resp. the Silk mass

MS ' 6.2 · 1012

(Ω0

ΩB

)3/2

(Ω0h
2)3/4M� (2.32)

This also washes out small scales because of the frequent interaction between pho-

tons and baryons in the photon-baryon plasma.

8



Chapter 2. Background

2.1.3 Dark Matter

From a cosmological point of view4 the above picture of an universe with photons and

baryons only is not sufficient: as we have today a density contrast of order δ ∼ 1 on cos-

mological scales according to eq.2.25 these perturbations were of order δ ∼ 10−3 at the

time of recombination (z ∼ 1500). This is in conflict with results from measurements of

the cosmic microwave background radiation (i.e. COBE, BOOMERANG, MAXIMA, WMAP)

which states maximum fluctuations of order δ ∼ 10−5. There must be some sort of grav-

itating matter which is able to enhance the density contrast before or after the phase of

recombination: it is called dark matter. Astrophysicists discuss essentially two different

kinds of dark matter5:

1. Hot dark matter (HDM) consists of relativistic particles (e.g. neutrinos with masses

of 10eV ). Their mobility is responsible for washing out any small perturbations

and supports the development of massive structures (see eq.2.30). From these huge

structures smaller structures evolve by fragmentation (Zel’dovich, 1993): the so-

called top-bottom scenario. Unfortunately galaxies form quite late in HDM models

which is inconsistent with observations of quasars and galaxies at z > 4 (Ma &

Bertschinger, 1994; Hut & White, 1984).

2. Cold dark matter (CDM) consists of “heavy” particles (at least at GeV scale, most

prominent is the lightest super-symmetric particle, the Neutralino) and produces

potential wells before recombination where the baryons afterwards can fall in. Here

the Jeans mass is of order of a globular cluster (see eq.2.32). Therefore these objects

are the first ones to evolve in a young universe. Bigger objects are then build up

by smaller ones: the so-called bottom-top or hierarchical clustering models. CDM

models predict a large number of substructure even in small groups like our local

group (Moore et al., 1999). This is not covered by observation yet but it is still

possible that we have “dark satellites” around (Stoehr et al., 2002) and that additional

effects (i.e. re-ionization after recombination were able to pull gas out of these

structures which therefore remain invisible.

There exist assumptions of an intermediate phase of dark matter, the so-called warm

dark matter (WDM) which would correspond to neutrinos of keV. Still, the favorite model

at this time is the CDM model together with a non-vanishing cosmological constant in a

universe which underwent an inflation phase at the beginning (see section 2.1.4), say:

ΩDM +Ωb +Ωγ +ΩΛ ≡ 1 (2.33)

where

• ΩDM is the amount of dark matter in the universe. We used the recently found value

ΩDM = 0.2268 (Bennett et al., 2003).

• Ωb is the amount of baryonic matter in the universe. We used the valueΩb = 0.0432.

4Of course there are more arguments for dark matter: flat rotation curves, nucleosynthesis restricts

baryonic matter, the virial velocity within galaxy clusters etc.
5We refer her to the commonly used picture. Of course there are alternatives to dark matter proposed,

e.g. MOND, where a certain additional acceleration is assumed on galactic scales (Milgrom, 1983).

9



2.1 Cosmology and cosmological structure formation

• Ωγ is the amount of photons in the universe. We used Ωγ = 5.118× 10−5.

• ΩΛ is the amount of dark energy in the universe (2.1.4). We used the valueΩΛ = 0.73.

An additional cosmological constant Λ within a CDM model essentially “stretches” the

time till z = 0 so that structure has more time to evolve.

How does a universe made of dark matter evolve? We remember the density field (2.12):

δ(~x) = δρ(~x)〈ρ〉 = ρ(~x)− 〈ρ〉
〈ρ〉 (2.34)

If we apply a Fourier analysis of the density field within a finite volume L3:

δ(~x) =
∑

~k

δ~ke
i~k~x (2.35)

where the wavenumber k is dependent on the boundary conditions:

~k = ~n2π

L
(2.36)

where ~n is an integer vector. The Fourier components δ~k are:

δ~k =
1

L3

∫

V
δ(~x)e−i~k~xd3x (2.37)

If we assume a Gaussian random field (as proposed by inflation, see section 2.1.4) we get

for the mean and for the variance of the Fourier components:

〈δ~k〉 = 0 (2.38)

〈δ2
~k
〉 = σ2 =

∑

~k

〈|δ~k|2〉 =
1

L3

∑

~k

δ2
~k

(2.39)

Since the volume L3 is finite we have only a finite number of wave numbers ~k. This seems

to be unphysical because the universe is assumed to infinite if it is flat. Recently, there

were claims that within the cosmic microwave background a “cut-off” frequency exists

and therefore a hint on a finite universe with a distinct geometry (Luminet et al., 2003)

have been found6, but this is not confirmed yet.

For the transformation to (quasi)-continuous values we assume L→∞. Therefore we can

write:

σ2 = 1

L3

∑

~k

δ2
~k

-→ 1

2π

∫∞
0
P(k)k2dk (2.40)

This equation defines the so called power spectrum P(k). The statistics of the power

spectrum is defined completely by the Gaussian random field. Coming from observations

with an universe with a broad spectrum without designated scales one could apply a more

general ansatz which is scale-invariant:

P(k) = Akn (2.41)

6Luminet et al., 2003 claimed that the weak wide-angle temperature in the CMBR points to a finite

universe with dodecahedral shape.
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Chapter 2. Background

Figure 2.3: The power spectrum of a cold dark matter model according to eq.2.44. See text for

more information about the maximum

Harrison-Zel’dovich (Zel’dovich, 1993) proposed a special spectrum with the spectral index

n = 1. This spectral index is also proposed by the inflation hypothesis (the cause for

fluctuations are of quantum mechanical nature and therefore not correlated) and was

found quite exact by WMAP (Bennett et al., 2003).

Of course this spectrum was changed due to influences (free streaming, Silk dampening)

as mentioned above. Without these influences the power spectrum would have kept its

power law form. Within a HDM model free streaming would force all scales below a

certain wavelength λmax to be washed out. Within a CDM model it is becoming more

interesting: as seen in fig.2.3 the power spectrum has a maximum at λpeak ∼ 13/(Ωh2).

In fact, this is the extent of the horizon at the recombination era. It means that during

the radiation dominated era perturbations are crossing the horizon into the observable

universe and are the seeds for further structure formation. For small scales λ � λpeak
the power spectrum P(k) behaves asymptotically like kn−4 logk (fig.2.3) with n = 1. This
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2.1 Cosmology and cosmological structure formation

form of the power spectrum is caused by (re-)entry of perturbations into the horizon.

Fluctuations smaller than the horizon at time tpeak are caught by the expanding horizon

during the radiation dominated epoch and do not grow because of the Meszaros effect7.

Fluctuations bigger than the horizon (> λpeak) are not affected since physical effects are

bound to the size of the horizon. All these kinds of effects on the power spectrum are

described by a so-called transfer function T(k):

T(k) = {1+ [ak+ (bk)3/2 + (ck)2]ν}−1/ν (2.42)

with arbitrary values for a, b and c. This function modifies an initial power spectrum at

time t0 and enables us to get a power spectrum at later time t1 after the effects faded

away:

P(k, t1) = T 2(k, t1)

(
D+(t1)
D+(t0)

)
P(k, t0) (2.43)

Here function D+ denotes the linear, scale invariant growth of structures. To get a more

general power spectrum one uses

P(k) = A′kT(k)2 (2.44)

with A′ an arbitrary factor dependent on the time one looks at (fig.2.3). We will encounter

these formulas again in a later chapter (4.1).

2.1.4 Inflation, Quintessence and the Cosmological Constant

Up to now the term inflation was mentioned several times. What does it actually mean?

Within classical cosmology (as seen in section 2.1.1) there is no answer to following ques-

tions8:

1. Why is the universe so flat? From the field equations one yields

Ω− 1 = ρ(t)

ρc(t)
= k

R2(t)H2(t)
(2.45)

with k = −1, 0, 1. We now assume a conservative estimate in concordance with

observations for the density of our universe today:

0.1ρc ≤ ρ0 ≤ 10ρc . (2.46)

Every deviation from ρc(t) is growing with time towards the big bang: in a radi-

ation dominated universe ρ ∼ R−4 and in a matter dominated universe ρ ∼ R−3.

Therefore, to produce a universe with curvature near to flatness the deviation from

flatness 10−36s after the big bang must have been

|ρ(t)− ρc(t)|
ρc(t)

≤ 10−50 (2.47)

Even 1s after the big bang the deviation must have been smaller than 10−14 and

therefore incredible flat. There is no reason for this flatness beyond special (better:

strange) initial conditions.

7The Meszaros effect describes non-relativistic, collisionless particles in a radiation background, i.e. cold

dark matter particles before the phase of decoupling of radiation and baryonic matter. (Meszaros, 1974)
8We left out here the question for monopoles and redirect to the literature for this (e.g. Klapdor-

Kleingrothaus & Zuber, 1997)
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Chapter 2. Background

2. Why is the CMBR so isotropic? The radius of the event horizon in an expanding

universe is given by:

deh(t) = R(t)
∫ t

0

dt′

R(t′)
(2.48)

Two points separated by 2deh from each other are not physically connected and

cannot influence each other (e.g. exchange energy, heat, momentum). For the case

of GUT9 symmetry breaking at temperatures of ∼ 1015GeV, today’s temperature of

the cosmic microwave background and the relation T ∝ R−1 we get that R increased

by a factor of ∼ 1026. The time for the GUT symmetry breaking was 10−35s and

therefore the horizon diameter was 2dev ' 10−27m. This corresponds to a today’s

horizon diameter of ' 1m. But the CMBR is isotropic on scales of 1026m, i.e. we

observe the same temperature in different directions and in regions which are not

causally connected.

We have seen the influence of a cosmological constant resp. vacuum energy on the dynam-

ics of the universe in eq.2.4 and eq.2.5. If the vacuum energy is the dominant factor we

get exponential increasing solutions for the time-dependent behavior of the scale factor

R(t):

R(t) ' R(0)eHt (2.49)

where H =
√

8πGρV/3. Universes where the vacuum energy is responsible for exponen-

tial growth are called inflationary universes. Standard inflation is restricted to the GUT

symmetry breaking phase. A scalar, weak interacting Higgs10 field ΦH is requirement for

a dominating vacuum energy. Via spontaneous symmetry breaking, i.e. the ground state

does not have the full symmetry, the energy expectation value of the vacuum is not zero

but below the value of the “normal” vacuum. This state is called false vacuum and within

this state an exponential expansion is possible (Guth, 1981). The transition to “normal”

expansion is done by tunneling to the “normal” vacuum state. There were different forms

of potentials discussed which are able to let inflation happen, e.g. the Coleman-Weinberg

potential VCW (Φ) = 1/2Bσ4 + BΦ4(ln(Φ2/σ2) − 1/2) (see fig.2.4) or the Linde potential

VL(Φ) = λΦ4 (Klapdor-Kleingrothaus & Zuber, 1997).

In any case of an exponential expansion phase in the early universe the problems men-

tioned above can be solved quite naturally: flatness occurs by stretching out any fluctua-

tions to trans-horizon scales, the isotropy in small regions was transferred to all scales.

More recently (Wetterich, 1995) proposed a new connection between inflation and the

cosmological constant. He claims that the dark energy resp. cosmological constant could

be caused by a scalar field left over from inflation. This field is called quintessence field

and has the energy density and pressure

ρQ =
1

2
Φ̇2 + V(Φ) pQ =

1

2
Φ̇2 − V(Φ) (2.50)

9GUT=Grand Unified Theory: theory which unifies three of the four known forces, electromagnetism,

the weak force and the strong force. Such a theory is not found yet. Earlier versions, so-called SU5 theories,

have been rejected by experiments finding the lifetime of the proton longer than predicted by the theories.
10The Higgs field is part of the standard model of particle physics. The Higgs mechanism assigns the

masses to special elementary particles. The field quantum of the Higgs field, the Higgs particle is the last

one to be found within the standard model
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2.2 Minor Merging Milky Way?

Figure 2.4: The Coleman-Weinberg potential as an example for a potential field (here: tempera-

ture dependent Higgs field) that can induce a inflationary expansion phase of an universe. σ is

the vacuum state to where the field tunnels through the barrier. (Klapdor-Kleingrothaus & Zuber,

1997)

where V(Φ) is similar to the potentials used in inflation theories (see above). It is practical

to define a constant equation of state with

ω = pQ

ρQ
(2.51)

A cosmological constant would have ω = 1 while in quintessential models it differs from

the value 1. Observations constraining the value to 1 ≤ ω ≤ −1/3 (Wang & Steinhardt,

1998) are quite difficult. A time-dependent value ω(t) is more general and even more

difficult to verify. The advantage of quintessence is that it gives an explanation for the

value of the dark energy with only little fine-tuning (Doran et al., 2001). Fig.2.5 shows

the time-dependence of density parameter and clarifies that there is no clear difference

between these models.

Wetterich, 2002 extended the quintessence models and tried to derive a “dark matter

term” out of quintessence. Here he took into account that the scalar field responsible for

the dark energy could have fluctuations on galactic scales which “mimics” dark matter.

This interesting alternative has still to be proven.

2.2 Minor Merging Milky Way?

We are insignificantly creatures on a small rock orbiting a very average star in the outer

suburbs of one of a hundred thousand million galaxies.

Stephen W. Hawking
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Chapter 2. Background

Figure 2.5: A comparison in the evolution of density parameters Ω dependent on cosmological

constant resp. dark energy models. There are only slight differences which are not distinguish-

able in observations yet. (Khochfar, 2003)

2.2.1 Satellites and Tidal Streams

CDM models predict a large number of substructure around galactic halos. This leads

to the quite famous “satellite problem” of CDM which has been stressed by Klypin and

Moore in 1999 (Klypin et al., 1999, Moore et al., 1999). The problem is stated as “the lack

of small satellites in observations of the local group compared to numerical simulations

of local group objects” (see fig.2.6).

One would expect from simulations that there are about ten to hundred times more satel-

lites than what we see in observations. There is an ongoing debate about the satellite

problem, since it is not clear what causes the discrepancy: is it the missing feedback in

CDM simulations which is able to push out gas out of the satellites so that they are present

but dark (a hint to this could be given by the detection of nearly dark objects with high

velocity dispersion of the stars in these objects)? Or is structure formation suppressed

on small scales (as proposed by people who favor some kind of warm dark matter, see

section 2.1.3)? The future has to show us a definite solution to this. We now focus on ex-

isting satellites around galactic halos, especially satellites disrupted while on their orbits

around giant galaxies.

A nice example of a “tidal stream” and a disrupted satellite is the Sagittarius dwarf galaxy.

15



2.2 Minor Merging Milky Way?

Figure 2.6: Cumulative number of cosmic substructure over the circular velocities within the

Milky Way, the Virgo Cluster, and models of comparable masses (Moore et al., 1999) showing the

“satellite problem”. Note that simulations can fit the abundance of halos in the Virgo cluster but

fail miserably for the local group.

Detected in 1994 (Ibata et al., 1994), this galaxy with estimated mass of 107M� is on an

orbit with the orbital plane nearly perpendicular to the galactic plane and is disrupted

by the tidal field of our galaxy. This disruption leads to a so-called tidal stream of stars

which is tracing the orbit of the dwarf galaxy.

Another nice example is Pal5, a globular cluster with estimated mass of 5×104M� and

nice leading and trailing streams. This tidal stream can also be modeled in numerical

simulations to derive the depth and the shape of the Milky Way potential (Dehnen et al.,

2004).

These are examples for small satellites being tidally disturbed/disrupted by the Milky

Way. We also have examples for bigger satellites in the vicinity: the Large and the Small

Magellanic Cloud. The Magellanic Clouds are a close binary of Irregular dwarf galaxies

and are the nearest galactic neighbors to the Milky Way. The Large Magellanic Cloud (LMC)

is at a distance of ≈52kpc from us, the Small Magellanic Cloud (SMC) is at a distance of

≈63kpc. The LMC has a mass of 6 to 20×109M�, the SMC 1 to 6×109M�. Together with

our Milky Way the Magellanic Clouds form a loose triplet sharing a common barycenter

located about 5kpc from the center of our galaxy in the direction of the LMC (van der Marel

et al., 2002, Weinberg, 1995). The LMC and SMC are on an orbit around this barycenter.

This orbit is traced by the well known Magellanic Stream which consists mainly of neutral
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Chapter 2. Background

Figure 2.7: The Magellanic stream as it is seen on the sky. Shown here is the distribution of H1

gas (Mathewson, 1985).

hydrogen (HI) stretching from horizon-to-horizon through the south galactic pole (see

fig.2.7).

The stream is induced by the interaction of the MC’s with the tidal field of our Milky

Way (Mathewson, 1985). It can be reproduced well in numerical simulations (Maddison

et al., 2002, Connors et al., 2004). Recent observational and theoretical analyses state that

the clouds are close to peri-Galacticon (van der Marel et al., 2002, Gardiner et al., 1994,

based on Murai & Fujimoto, 1980): closest approach of the clouds to the galaxy occurred

≈200Myr ago with time for a complete orbit of ≈1.5Gyr. Rough estimates yield that the

LMC will merge with our Milky Way within the next ≈8Gyrs (Lin et al., 1995) which makes

it a perfect candidate for a so-called “minor merger” (i.e. mass ratio between merging

galactic objects of 1:5 to 1:20).

2.2.2 Hints on Minor Merger of the Milky Way

Since there will be some time left until the Milky Way undergoes a minor merger with

the LMC (and before that it will suffer from a major merger with the equally sized M31,

the Andromeda galaxy) we now focus on following question: Did the Milky Way experi-

ence a minor merger in the past?11 Depending on the time that has elapsed since this

11It is clear that the Milky Way did not experience a major merger since it has an intact, flat disk which

would have been destroyed in a major merger (Naab, 1998)
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2.2 Minor Merging Milky Way?

Figure 2.8: The “jump” in the velocity dispersion of old stars designating the “thick disk” -

caused by an minor merger? (Quillen & Garnett, 2000)

minor merger one could observe streams of stars and gas left behind by the smaller com-

panion and the impact of the merging event on the stellar disk (e.g. warping, heating,

bar-inducing). We now give a short overview of possible hints on past minor merger

events in the Milky Way.

A heated Milky Way?

It is a well known fact that the infall of a satellite with a substantial mass fraction of the

stellar disk heats the disk, i.e. increases the vertical scale length and velocity dispersion

of the disk stars (Toth & Ostriker, 1992, Velazquez & White, 1999, Bertschik, 2001). This

can be demonstrated in the following way. The vertical kinetic energy K of a thin disk,

depends on its velocity dispersion σz:

Kdisk, z ∝ Mdiskσ
2
z (2.52)

where MDisk is the mass of the disk. The kinetic energy of a satellite with mass MSat on a

circular orbit with circular velocity vc is:

Ksat, z ∝ Msatv
2
c (2.53)

Equating eq.2.52 with eq.2.53 yields the part f that leads to a certain vertical velocity
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Chapter 2. Background

Figure 2.9: Line-of-sight velocity distributions of stars with b=+33 and b=-45. Upper graph:

stars with V-band magnitude smaller than 18. Lower graph: stars with V-band magnitude higher

than 18. Note that these stars have different velocity distributions than expected from the thin

disk stars (solid line) - they are rotating slower than the thin disk stars (∼100km/s). Note also

the bump in the distribution in the bottom graph at LOSV of ∼300km/s which corresponds to a

counter-rotating population - remnants of a merged satellite? (Gilmore et al., 2002)

dispersion caused by the conversion of the kinetic energy of the satellite:

f ≡ Msat
Mdisk

∼
(
σz
vc

)2

(2.54)

For σz ∼40km/s and vc ∼200km/s we get f ∼0.04. This means that the disk has to

accrete 4% of its mass to gain a velocity dispersion of 40km/s. Of course this estimate is

rough: it ignores that stars escape from the system and do not contribute to the heating

anymore (e.g. in tidal tails). Additionally, the interaction with a dark matter halo is left

out, making the heating more efficient in this estimate. But we have a general result that

we can use for observations: a hint for a minor merger in a stellar disk is a stellar compo-

nent with an on average bigger scale height (meaning higher velocity dispersion). Gas in

the disk is able to cool and dissipate its kinetic energy after the merger. Star formation

from this gas again would be able to form a thin disk.

In fact, our Milky Way comprised such a kind of stellar population: the thick disk. As the

name said, this component has a higher scale height than the much more massive thin

disk and consists of predominantly old stars in contrast to the thin disk with younger stars
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2.2 Minor Merging Milky Way?

Figure 2.10: Results from Monte-Carlo sim-

ulations done by Torres et al., 2001. They

modeled the tangential velocity distributions

of white dwarfs of the galactic disk after the

input of kinetic energy by, for example, a mi-

nor merger. The top left picture shows the

observed distribution, the other pictures show

results from simulations with increasing time

(t in Gyrs) and/or increasing kinematical kick

(factor v). In concordance with observations is

an infalling satellite with ∼4% of the disk mass

(Torres et al., 2001). Note that the “smearing-

out” of the distribution is dependent on time

and magnitude of the kinematical kick.

Figure 2.11: Results from numerical simula-

tions (Bertschik & Burkert, 2003) showing the

impact of a infalling satellite with decreasing

mass ratio, i.e. increasing size of the satel-

lite. In concordance with observations is an

infalling satellite with ∼5% of the disk mass.

Note that the velocities are redistributed to

higher velocities after the merger event. The

magnitude of this redistribution is dependent

on the mass ratio.

(like our sun). As Quillen & Garnett, 2000 found (fig.2.8), the increase of scale height of

these population occurred quite suddenly, making a dynamically fast and efficient event

like an infall of a satellite very likely. On the other hand, the thin disk suggests that there

was no substantial minor merging event in the near past (i.e. lifetime of the thin disk).

Different estimates yield a maximum accreted mass of∼4% within the last 5-6 billion years

(Toth & Ostriker, 1992, Torres et al., 2001, Bertschik & Burkert, 2003). As seen in fig.2.10

and fig.2.11, a concordance value for the mass accreted by the Milky Way within the last

6Gyrs is ∼5% of the disk mass. Nevertheless, this does not exclude a more massive minor

merger event earlier in the past.

Streams of past Minor Mergers?

A satellite in an accretion event or in a minor merger is generally disrupted by the bigger

object and distributes its stars and gas along its orbit. The bigger object works on the

satellite with tidal forces before it enters denser regions of the bigger object and work on

the satellite with gravitational friction when it is within the denser regions. The satellite

is deformed and loosing material which leads to its disruption. This disruption was mod-

eled in numerical simulations as well as in analytical considerations (Dehnen et al., 2004,

Mihos, 2004). We have now another general result that we can use for observations: a
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Figure 2.12: Velocities of old (∼6Gyrs) white dwarfs in galactic velocities U, V and W with respect

to the V-band magnitude. Upper graph: white dwarfs within b=25, middle graph: white dwarfs

towards galactic center, lower graph: white dwarfs towards galactic rotation. The difference

between the left and the right panel is the additional color coding on the right: black color

designates velocities within 1σ of the mean, green means velocities within 2σ and red designates

velocities within 3σ . Note that there is a significant population of white dwarfs in W velocity

exceeding the 3σ -expectation - remnants of a minor merger? (Torres et al., 2002)

hint for a minor merger in a stellar disk is material that moves on significantly different

orbits than the disk material.

In fact, there are observations of certain stellar populations indicating a special origin like

a merging or accreting event. As Gilmore et al., 2002 pointed out they found such a kind

of population that is counter-rotating with respect to the stars of the thin disk. Addition-

ally, they found that the thick disk rotates more slowly than the thin disk, supporting the

idea of an merger origin (fig.2.9 , Gilmore et al., 2002).

Another observation was done by Yanny et al., 2003. They stated that they found a ring-

like structure in the galactic disk plane around our Milky Way. This ring may well be the

remnant of an disrupted satellite (fig.2.13, Martin et al., 2004).

Additionally, there are observations of some old white dwarfs (fig.2.12, Torres et al.,

2002) with velocities quite different from the thin disk stars: There are significantly more

white dwarfs in the high-velocity regime than expected from statistics. Their origin is

unknown yet but they may be disk stars which have been brought out of their original

orbit by a merger as well as the remnants of an disrupted satellite.
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Figure 2.13: Galactic projections of the possible orbits of the stars in the ringlike stream detected

by Yanny et al., 2003

2.3 Conclusion and Discussion

We saw that from a cosmological point of view there are many reasons to expect lots of

substructure around halos of the size of our Milky Way. The concordance model ΛCDM

with cosmological parameters found by WMAP supports hierarchical structure formation

where bigger structures are build up by the merging of smaller structures. This merging

history is not finished yet, we can still see even smaller objects in merging processes

with bigger galaxies (e.g. Schwarzkopf & Dettmar, 2000a, Schwarzkopf & Dettmar, 2000b

Bertschik, 2001). But how often do these “minor merger” occur? What distributions

of mass ratios within a certain mass range can we expect? What are the kinematical

parameters of such a merging event? What are the effects of such minor merger on a

stellar disk? Can they be detected by looking at velocity distributions?

These questions will be addressed in this work.
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Chapter 3

Numerics

A philosopher once said, ’It is necessary for the very existence of science that the same

conditions always produce the same results’. Well, they don’t!

Richard P. Feynman

This chapter presents some information necessary for carrying out numerical simulations.

With increase of computer speed, computational physics has become more and more

important for testing (more or less) simple models in physics. The first part focuses on

the code WINE and its features. The second part of this chapter describes the special

hardware GRAPE used with the code.

3.1 The Code WINE

The theory group at the Max-Planck-Institut für Astronomie developed an own evolution

code for simulations for a wide range of astrophysical problems. Since it is somewhat hard

to find a good acronym for a new project (which is quite common within the astronomical

society) we called this code WINE: What an Interesting name for a New Evolution code1.

WINE simulates collisionless N-body problems as well as gas dynamics using the SPH

formalism and is optimized for different computer architectures (ordinary PCs, special

purpose hardware, parallel computers).

3.1.1 The Gravity Part: the Tree

Wine uses a binary, mutual nearest neighbour tree structure (Press tree) for particle book-

keeping. Thus the tree structure closely follows the geometrical structure of the modeled

system. This tree structure can be used for several subsequent time steps before the tree

has to be rebuilt. The tree has been modified from the original form (Press, 1986):

• The tree is traversed for groups of particles to increase computational efficiency

(Barnes, 1990). This also improves the speed of the special purpose hardware GRAPE

(see chapter 3.2).

1Probably with a final version of the code the name will change to VINE: Very Interesting Name for an

Evolution code
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• The tree traversal is performed with the “depth first” method of Dubinski (Dubinski,

1996). That results in an additional speedup.

• Distant tree nodes must pass a refined opening criterion given by Warren&Salmon

(Warren & Salmon, 1995). The criterion allows to control the maximum absolute

force error due to each node.

3.1.2 The Gravity Part: Force Computation

The gravitational forces can either be calculated on parallel computers (shared memory

systems), general purpose CPUs (e.g. Intel or AMD based) or on the special purpose hard-

ware GRAPE (see chapter 3.2). The tree traversal as well as the actual computation of the

gravitational force is fully parallelized, which makes it very efficient on multiprocessor

systems with attached GRAPE boards. The user is free to choose between two different

integrators: Leap-Frog and Runge-Kutta.

3.1.3 Parallel Computing

WINE is written as a parallel code using the OpenMP directives. All tree operations, the

gravity calculations and the SPH calculations are parallelized. Experience with a 2D ver-

sion has shown a nearly linear speedup to at least 8 processors on systems with 105

particles.

3.1.4 Other Features

The speed of WINE is increased further by using individual time steps for the particles.

This allows the computation of highly active regions without wasting time on computing

less active regions to same accuracy. We use the individual time step scheme of Hern-

quist&Katz (Hernquist & Katz, 1989).

In addition to the usual artificial viscosity, the SPH method uses a Balsara viscosity (Bal-

sara, 1990) and time-dependent viscosity coefficients (Morris & Monaghan, 1997) in order

to reduce unwanted dissipative effects.

For the N-body particles, an adaptive softening method has been implemented in addition

to the usual Plummer softening. This new method improves the resolution in high density

regions.

Furthermore, periodic boundary conditions and cosmological expansion have been added

to the code in order to calculate cosmological problems.

Due to its modular structure, additional features (e.g. SPH ionization, star formation,

feedback, MHD) can be added easily to the code.

3.2 The GRAPE System

The theory group at the MPIA uses several different boards of the so called GRAPE system.

The GRAPE system follows the simplest approach to the N-body problem: it sums up the

forces exerted by each particle to every particle. This offers a large dynamic range in

spatial resolution and is not limited by the choice of a special geometry of the problem.

On the other side it suffers from calculation time that scales with O(N2) while other
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calculations (e.g. time integration) scale with O(N). There are two common solutions to

this problem:

1. One uses the fact that near particles influences the trajectory of a particle more than

far away particles. Tree codes collect together the particles far away and build up

groups which are handled like a single particle (with a quadrupole moment). This

reduces the calculation time to one growing with O(N logN).

2. One hard-wires the calculation algorithm on a chip and parallelizes it to gain calcu-

lation time by brute force calculation power.

Figure 3.1: The structure of the GRAPE5 chip

The second point is the way the GRAPE project followed by Kawai et al., 2000 in the last

decades and they gave it the name: GRAvity PipelinE. In this sense the GRAPE chip is

a RISC (Reduced Instruction Set Chip, compare to CISC: Complex Instruction Set Chip)

chip “to the max”: there is only one instruction followed by the chip. Kawai et al., 2000

specially designed, pipelined and highly parallelized the gravitational force between two

particles:

~Fi = −
∑

j≠i

Gmi(~xi − ~xj)
(|~xi − ~xj|2 + ε2)3/2

(3.1)

Fig.3.3 shows the basic structure of a GRAPE-5-system. The GRAPE board is connected

to a host workstation where an appropriate code is running and handling the I/O. The

host computer sends positions and masses of all particles of a simulation to the GRAPE

system. The GRAPE board (fig.3.2) calculates the gravitational force between the particles

(this calculation is done by the GRAPE chip, see fig.3.1) and sends it back to the host com-

puter. As an additional feature, GRAPE delivers a list of neighbours inside a given radius
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Figure 3.2: The structure of the GRAPE5 board

Figure 3.3: Scheme of the connection and communication of the GRAPE board with a host PC

around a particle. This neighbour list can be used within the SPH2 formalism. All other

calculations are done on the host computer.

The simulations for this work were done on GRAPE-5 boards with a peak performance of

two pairwise force calculations per clock cycle. If assuming 30 operations for one force

2The Smoothed Particle Hydrodynamics (SPH) formalism was invented to describe systems including gas

and/or fluids. SPH handles these phenomena by introducing an artificial viscosity and internal energy.

This assures the dissipative nature of gas and fluids in contrast to dissipationless N-body systems
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calculation, and 8 chips, each running with 80MHz, this results in a peak performance of

38.4Gflops. Fast as it is, a bottleneck is not the calculation power anymore but the trans-

fer of the data forth and back through the interface. A collaboration between the MPIA

and the University of Mannheim resulted in a new PCI-standard interface fast enough to

handle the amount of data.

3.3 GRAPE and WINE

The simulations for this work were done with WINE using the special purpose hardware

GRAPE. The cosmological simulations used the “cosmo module” of WINE meaning the

expansion of space (modified acceleration and velocities of particles) and the periodic

boundary conditions (modified acceleration and positions of particles). WINE is able to

use the “best of both worlds” for optimal speed: the problem is formulated within the

tree algorithm and the forces within the tree are calculated directly on the fast GRAPE

hardware.
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Methods

I have the result, only I do not yet know how to get to it!

C.F. Gauss

This chapter presents the methods used for the setup of simulations and for their analysis.

The first part focuses on the program GRAFIC used for the setup of cosmological initial

conditions. The second part of this chapter describes the friends-of-friends algorithm

and its parameter. The third part explains the setup of a simulation of a galactic disk

undergoing a minor merger. The fourth part presents an algebraic approach to the Kepler

problem. Last but not least we mention the parameters used in the simulations.

4.1 Cosmological Initial Conditions with GRAFIC

The program GRAFIC by Ed Bertschinger (Bertschinger, 2001) calculates a density and a

velocity field for cosmological initial conditions via a Gaussian random field (as the name

GRAFIC says: Gaussian RAndom Field Initial Conditions). To be more exact, GRAFIC

normalizes the power spectrum of matter density fluctuations and generates the initial

conditions for non-linear cosmic structure formation simulations. It produces the den-

sity fluctuation field δ(~x) (that is δρ/ρ) in comoving coordinates as a Gaussian random

field. The power spectrum is calculated via a transfer function where the cosmological

parameter are put in to derive quantities like the critical density. GRAFIC outputs both

the density field and the initial positions and velocities of particles displaced from the

lattice to produce that density field. The former object is useful for initializing cosmolog-

ical gas dynamics solvers, while the latter quantities are needed for cosmological N-body

simulations. They are related to each other using the Zel’dovich approximation:

~x(~q, τ) = ~q +D+(τ) ~d(~q), ~v(~q, τ) = Ḋ+(τ) ~d(~q); ~∇ · ~d = −D−1
+ δ(~q, τ). (4.1)

Here ~q is a Lagrangian coordinate corresponding to the unperturbed comoving position

of a mass element. GRAFIC takes these positions to be on a regular Cartesian grid with pe-

riodic boundary conditions. ~x are the perturbed comoving positions. The perturbations

grow in proportion with the cosmic growth factorD+(τ) which depends on the cosmolog-

ical model. The displacement field ~d(~q) is obtained by calculating the inverse Laplacian

of the linear density field using a fast Fourier transform. The approximation comes in



4.1 Cosmological Initial Conditions with GRAFIC

Figure 4.1: Initial conditions set up with GRAFIC. Shown is the density field at z=42.9 for a box

with 20Mpc length in projection on one side of the box

the third equation of eq.4.1 which neglects terms of the order O(δ2). GRAFIC automati-

cally selects the output redshift high enough so that the maximum density fluctuation has

amplitude 1. The proper peculiar velocity ~v follows straightforwardly. GRAFIC includes

subroutines that compute D+(τ), Ḋ+(τ), R(τ) etc. for general Friedmann-Robertson-

Walker-Lemaître models with matter, vacuum energy and curvature.

Here we used GRAFIC to generate initial conditions for cosmological simulations with fol-

lowing cosmological parameters:
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cosmological parameter used value value found by WMAP

h 0.71 0.71

Ωtot 1.0 1.02

Ωmatter 0.27 0.27

ΩΛ 0.73 0.75

Ωbaryon/Ωmatter 0.16 0.16

n 1.0 0.99

σ8 0.9 0.9

4.2 FOF: friends-of-friends Algorithm

The algorithm FOF (Friends-Of-Friends) searches for gravitationally bound groups of par-

ticles within a simulation box (N-body shop, 2001, Davis et al., 1985). It uses only one

parameter, the so-called linking length l which is defined as:

l = b d

n1/3
(4.2)

where b is an empiric, dimensionless value (see below) and n1/3 the particle density per

unit length d. A particle belongs to a friends-of-friends group if it is within this linking

length of any other particle in the group (see fig.4.2). After all such groups are found,

those with less than a specified minimum number of group members are rejected. FOF

then writes a file with the particle indices and the group number the particle belongs to.

Our version of FOF was modified to read ASCII-files of our dumps. One has to choose

Figure 4.2: An example how the linking-length links a group together. The lines denote the

connection of neighbor particles within the linking length, the dashed line shows the group found

by FOF. (Graphic kindly provided by Helmut Hetznecker)

carefully the linking length to get a reasonable clump with proper mass and radius. This

has to be found empirically: the parameter b. For this one assumes a density which

corresponds to a virial radius r200, virial mass M200 and virial velocity v200. The virial

radius is that radius for which the mean density

〈ρ〉 = 200ρcrit (4.3)
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where ρcrit = 3H2

8πG is the critical density of the Einstein-de Sitter universe (this density

changes slightly in Λ-dominated universes, see below). Therefore, the virial mass is

M200 =
4π

3
〈ρ〉r3

200 (4.4)

and the virial velocity is

v200 =
√
GM200

r200
= r200

√
4

3
π〈ρ〉G. (4.5)

For cosmologies with Λ ≠0 the density contrast ∆c develops different:

∆c = 178

{
Ω0.30, if Λ = 0

Ω0.45, if Ω+Λ = 1
(4.6)

Therefore, the value for b changes to 0.164 for ΛCDM cosmologies (see e.g. Goetz et al.,

1998) and is used in this work.

Of course the minimum number of particles in a FOF halo has to be chosen carefully.

We chose 30 particles per halo as a minimum number which takes into account limited

resolution, time and memory of our systems and still allows to calculate in a reasonable

way values of virial masses, center of masses etc.

4.3 Initial Conditions for a Minor Merging Galaxy

The galactic disk model used in this work was worked out by Hernquist (Hernquist, 1993a)

using observations of the stellar dynamics in our Milky Way. It describes a compound

model of a galactic disk in a state of quasi-equilibrium. Hernquist used the fact that the

lowest order moments of the Boltzmann equation are determined by the density distribu-

tion of the components. One calculates these moments and approximates the distribution

function in velocity space by well known distribution functions (Gauss distribution). This

procedure is an approximation, so the system will not be in equilibrium in the first place.

But it should reach it in quite a short time.

The choice of components is related to the simulations mentioned later on. The model

of a disk galaxy consists a disk (see section 4.3.1) and an alive (i.e. self-gravitating) dark

matter halo (see section 4.3.2). The minor merging satellite is realized by a system with

a Hernquist-density profile which is in agreement with observations of spherical dwarf

galaxies and therefore a reasonable choice for a small companion merging with a galactic

disk.

The units of length, mass and time are introduced as follows: the gravitational constant is

G = 1, the exponential horizontal scale length h = 1 and the disk mass is Md = 1. Scaled

to the sizes of the Milky Way this leads to Md = 5.6 × 1010M� as unit mass, h = 3.5kpc

as unit length, unit time tu = 1.31× 107yr and unit velocity vu = 262km/s.
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4.3.1 The Disk

In agreement with observations in our Milky Way and of other galaxies it is assumed that

the density distribution declines exponentially with the cylindrical radius and that the

system is isothermal (constant velocity dispersion) perpendicular to the galactic plane

(Bahcall & Soneira, 1980):

ρd(R, z) =
Md

4πh2z0
exp(−R/h) sech2

(
z

z0

)
. (4.7)

HereMd is the disk mass, h the radial scale length and z0/2 the vertical scale height which

according to observations is independent from the galactic radius (van der Kruit & Searle,

1981 van ver Kruit & Searle, 1982, fig.4.3)

Figure 4.3: The surface density Σ(R) of the disk versus the cylindrical radius (left) and the linear

density λ(z) perpendicular to the disk plane with z0 = 0.2 (right).

The base for the setup of the velocities are the moments of the collisionless Boltzmann

equation (also called Vlasov equation)

∂f

∂t
+ ~v ∂f

∂~r
−∇Φ∂f

∂~v
= 0 (4.8)

where f is a phase space distribution or distribution function of masses within the 6D

phase space d~r d~v.

With the first and second moments specified, disk velocities are initialized as follows

1. draw vz from a Gaussian distribution with dispersion

√
v2
z where

v2
z = πGΣ(R)z0 (4.9)

with Σ(R) the surface density of the disk.

2. calculate vR by drawing from a Gaussian with dispersion

√
v2
R where

v2
R ∝ e(−

√
R2+2a2

s /h) (4.10)
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with as a arbitrary softening parameter (usually as ∼ h/4) to avoid imaginary num-

bers.

3. compute the random component of the azimuthal velocity vφ by drawing a Gaussian

with dispersion
√
σ2
φ where

σ2
φ = v2

R

κ2

4Ω2
(4.11)

with κ the epicyclic frequency defined by κ2 = 3
R
∂φ
∂R

∂2φ
∂R2 and Ω the angular frequency

computed by the potential.

4. calculate the Cartesian velocities in the plane (i.e. vx and vy ) by adding together

vR, the random azimuthal velocities and vφ

4.3.2 The Halo

For the halo component it is necessary that it can reproduce the observed flat rotation

curves of galaxies. Because the distribution of dark matter (if there is any) and its extent

is not known, one has to choose a phenomenological ansatz for a potential-density pair

that reads:

ρh(r) = Mh
2π3/2

α

rc

exp(−r2/r2
c )

r2 + γ2
, (4.12)

Φh(r) = −GMh(r)
r

+ GMhα√
πrc

Ei

[
−
(
r

rc

)2

− q2

]
(4.13)

with

Mh(r) =
2Mhα√
π

∫ r
rc

0

x2 exp (−x2)

x2 + q2
dx. (4.14)

Ei is a exponential integral:

Ei(z) =
∫∞
−z

exp (−t)
t

dt, (4.15)

The normalization constant is α:

α = {1−√πq exp (q2)[1− erf(q)]}−1
, q = γ

rc
. (4.16)

In order to produce a flat rotation curve the density depends on r as:

ρh ∝ r−2. (4.17)

A core radius γ is introduced to avoid the singularity at the center. In addition, a cut-off

radius reduces the effective extent of the halo which is justified: the outmost parts don’t

account significantly to the potential and their leaving-out reduces calculation time. Fig.

(4.4) shows the halo density in comparison to the density of a modified isothermal sphere

ρ(r) = ρ0

1+ (r2/γ2)
, (4.18)
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which is frequently used for an external potential of a halo. (Quinn et al., 1993; Quinn

& Goodman, 1986). One recognizes the deviation for the cut-off radius at larger radii.

The model with a cut off halo potential was widely used in numerical simulations. (u.a.

Hernquist, 1993b; Hernquist et al., 1993; Walker et al., 1996; Heyl et al., 1996).

To calculate the velocity distribution of the halo particles one focuses on the case of a

Figure 4.4: The solid line shows the density of the halo ρh(r) versus r for two different cutoff

radii. For comparison the dashed line denotes the density of a quasi isothermal sphere (4.18).

spherical, non-rotating system:

v2
θ = v2

φ. (4.19)

For the case of isotropy one gets

v2
r = v2

θ = v2
φ (4.20)

The velocity dispersion is given by the Jeans equation in spherical coordinates:

v2
r =

1

ρh(r)

∫∞
r
ρh(r)

dΦ
dr
dr = 1

ρh(r)

∫∞
r
ρh(r)GM(r)dr . (4.21)

where Φ owns all the gravitational input of all components and M(r) is the cumulative

mass function. If we perform numerical integration we get for the velocity distribution:

F(v, r) = 4π

(
1

2πσ2

)3/2

v2 exp(−v2/2v2
r ) (4.22)

with the normalization ∫∞
0
F(v, r)dv = 1, (4.23)

Empirical tests yield that this configuration is quite stable even with addition of a stellar

disk.
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4.3.3 The Satellite (Hernquist Profile)

For the satellite we need a reasonable model of an extended particle distribution. The

satellite is disrupted when merging with the galaxy and the particles are distributed else-

where.

Spherical galaxies have an observed isophotal shape which can be described by the em-

pirical brightness distribution (de-Vaucouleurs law)

log10

[
I(R)

I(Re)

]
= −3.331

[(
R

Re

)1/4

− 1

]
. (4.24)

Here R is the projected radius, Re the effective radius of the isophote that is keeping the

half of the total brightness, and I is the surface brightness.

Hernquist now describes a density distribution whose projected surface density repro-

duces the de-Vaucouleurs quite well (Hernquist, 1990; Burkert, 1993). The potential-

density pair is:

ρh(r) =
M

2π

a

r

1

(r + a)3
(4.25)

and

Φ(r) = −GM
r + a (4.26)

with the cumulative mass distribution

M(r) = M r2

(r + a)2 . (4.27)

where M is the total mass and a the scale length of the system (see fig. 4.5).

For a non-rotating, spherical system (see section 4.3.2) which is in addition isotropic (i.e.

β(r) = 0) we have v2
r = v2

θ and we get with eq. 4.26 and eq. 4.25:

v2
r = GM

12a

{
12r(r+a)3

a4 ln
(
r+a
r

)
− r
r+a

[
25+ 52 ra + 42

(
r
a

)2
+ 12

(
r
a

)3
]}
, (4.28)

We have now an analytical solution for the radial velocity dispersion. For a spherical

system the kinetic energy is:

T(r) = 6π

∫ r
0
ρv2

r r
2dr. (4.29)

The total kinetic energy for r →∞ is:

Ttot =
GM2

12a
. (4.30)

The total potential energy is:

Ωtot = 2π

∫∞
0
ρ(r)φ(r)r2dr. (4.31)
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Figure 4.5: The upper picture shows the Hernquist density profile with scale length a = 0.2. In

the picture below we have for comparison the Hernquist profile with scale length a = 1.0 (straight

line), the cut profile (4.12) with γ = 1.0 (dotted line) and a modified isothermal sphere (4.18) with

γ = 1.0 (dashed line).

That means for this model:

Ωtot = −
GM2

6a
(4.32)

In concordance with the virial theorem we get for this model in equilibrium 2Ttot+Ωtot =
0. For a spherical, isotropic model f(r,v) is a function of the total specific energy f(E).

The distribution function can be calculated analytically via Abelian transformation. The

coordinates and velocities are chosen such that their energies are covered by this distri-

bution function.

4.4 An Algebraic Approach to the Kepler Problem

There are some cases in classical mechanics where mechanical systems show special sym-

metries which allow a different, an algebraic approach. An interesting example for these
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cases is the well-known Kepler problem: two bodies are falling freely in their gravitational

potential. Within computational physics we use “unusual” coordinates (i.e. Cartesian co-

ordinates instead of more useful spherical or cylindrical coordinates) therefore it would

be useful to describe the problem coordinate-free. We present here an ansatz to handle the

problem independently of the choice of coordinates. Let’s assume that we have already

reduced the motion to that of a reduced mass µ = m1m2

m1+m2
rotating in the corresponding

fixed potential. The Hamiltonian of this restricted problem in Cartesian coordinates is:

H(~x, ~p) = ~p2

2µ
− K

||~x|| , withK = Gm1m2 (4.33)

One immediately sees the rotation symmetry which results of course from the rotation

symmetry of the gravitational potential and is typical for every central force problem. We

know that the Noetherian conservation quantities to this central force problems are the

three components of the angular momentum vector:

~l = ~x × ~p = µ~x × ~v (4.34)

With a little differentiating work one proves that in addition to the angular momentum and

the Hamiltonian the so-called Runge-Lenz vector is conserved, i.e. the Poisson brackets

of its components with the Hamiltonian vanish. The Runge-Lenz vector is:

~A = 1

Kµ

(
~p ×~l− µ~x K

||~x||

)
= ~p × ~l

Kµ
− ~x

||~x|| (4.35)

From this it is easy to derive the trajectory. We multiply the Runge-Lenz vector with ~x:

~x ~A = r || ~A||cosφ =
~l2

Kµ
− r ⇒ r =

~l2

Kµ

1

1+ || ~A||cosφ
(4.36)

Hereφ is the angle between the time-constant Runge-Lenz vector ~A and the spatial vector

~x while r = ||~x||. We can now define

rperi =
~l2

(1+ ε)Kµ , ε = ||
~A|| (4.37)

where rperi is the pericenter distance and ε the eccentricity of trajectory.

It is clear that ~A2 is a conserved quantity as ~A is. But it is not independent from other

conserved quantities because ~l and ~A correspond already to six conservation quantities.

We get through direct calculation

~A2 = 1+ 2E~l2

K2µ
(4.38)

Here E is the total energy of the system which is of course conserved. The “classical”

calculation shows exactly the same result while it requires extensive and complicated

integration.

In (4.36) it is proven that ~A points from the center of the trajectory to the peri-helium of

the trajectory. And we see that for ~l 6= 0 the form of the trajectory is determined by the

sign of the total energy:
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1. E < 0: following (3.2) the eccentricity is 0 ≤ ε < 1 and the trajectory is elliptical with

the special case of a circle for ε = 0.

2. E = 0: following (3.2) the eccentricity is ε = 1 and the trajectory is parabolic.

3. E > 0: following (3.2) the eccentricity is ε > 1 and the trajectory is hyperbolic.

So we got the classical result with a much easier calculation and with usage of the special

symmetry of the problem.

4.5 The Simulation Parameter

We now present the parameters used in the simulations done for this work. Since we

conducted two different kinds of simulations we separate this section into the cosmology

part and the galaxy part.

4.5.1 The Cosmology Part

We used GRAFIC (chap.4.1) to set up 30 cosmological boxes with cube-length of 20Mpc.

Each box contains 803=512000 particles which means a mass resolution of 5×108M� and

force resolution of ε = 5kpc. From this simulations we derived kinematical parameters of

minor merger events used later on in more detailed simulations including a stellar disk.

This enables us to be as self-consistent as technical possible. The method - replacing one

big cosmological simulations with lots of small ones - has one stumble stone: It neglects

long-wave fluctuations which are present in the big box and of course suppressed in the

small boxes (because GRAFIC calculates the random field with periodic boundaries within

the box-length). But these large-scale fluctuations are responsible for structures on large

scales, and we are interested in structures on small scales. So there is no back-draft for

us in using this method.

Angle planeorbit - planedisk rperi Angle ~A - planedisk
0◦ 10kpc 0◦

30◦ 10kpc 0◦

60◦ 10kpc 0◦

90◦ 10kpc 0◦

120◦ 10kpc 0◦

150◦ 10kpc 0◦

180◦ 10kpc 0◦

90◦ 10kpc 45◦

90◦ 10kpc 90◦

Table 4.1: In this table the parameters of the simulation of a minor merging galaxy are listed.

The first column lists the angles between the orbital plane of the satellite and the disk plane,

the second shows the peri-center distance of the orbit, and the third column shows the angle

between the Runge-Lenz vector ~A and the disk plane
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4.5.2 The Galaxy Part

We used the methods mentioned in section 4.3 to set up a galactic disk within a alive

halo together with a satellite of 1/5 of the disk mass on a parabolic orbit around the

galaxy. We put in 9 different orbital parameter (derived from the cosmological simula-

tions) summed up in tab.4.1 to cover a wide range of possibilities and differences. The

galactic disk consists of 100000 particles, the halo of 200000 particles and the satellite

of 20000 particles, leading to a mass resolution of 5.6×105M� for the disk and satellite

and 8.4×105M� for the halo particle and a force resolution of ε =280pc. The mass ratios

between the components was Mhalo:Mdisk:Msat=1:0.333:0.066.

Figure 4.6: Two density plots of clusters which merged and were identified as a minor merger.

Top: the two clumps before the collision. Bottom: the resulting clump of the merger. Note the

feature at the right side, presumably some sort of tidal stream or remnant of the satellite. Time

between the two pictures is 500 million years, length of the box is 100kpc
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4.5.3 The Criteria for Minor Merger

We listed all halos found by FOF and at z = 0 we looked for every halo of the size of

the Milky Way (which we define as 0.5-2×1012M�, corresponding to the estimated Milky

Way mass as ∼1012M�) (Binney & Tremaine, 1987). For these halos we climbed up the

merger tree towards increasing z and checked for every dump if a merger with smaller

halos occurred. That means that FOF detects one halo in a certain dump which consists of

at least two progenitor halos detected in a dump before. From these mergers we picked

out every merger that fulfill our minor merger definition, i.e. a mass ratio
Msmallhalo
Mbig halo

of

1:20=0.05 to 1:5=0.2. Additionally, each progenitor has to add at least 90% of its particles

to the new halo - this prevents that a halo is disrupted by the interaction and contributes

with only a few particles to the new halo (see fig.4.6 for an example). To extract only the

statistics of minor merger that are comparable to big disk galaxies like our Milky Way we

sorted out every halo which suffers from a major merger (i.e. mass ratio of 1:1 to 1:5).

4.6 Conclusion and Discussion

In this chapter we presented the methods and tools applied in this work. We have been as

self-consistent as technically possible by using cosmological simulations to derive kine-

matical parameters of minor merger and putting these parameters into simulations of

a disk galaxy merging with a small companion. Of course we were limited by computer

power (i.e. time) and disk space so that the parameter range of the orbits simulated in

the galaxy case may be not sufficient. But this work gives a good overview over the effects

one can expect from a minor merger event consistent with cosmology and leaves enough

for studies of this topic in the future.
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Chapter 5

Results from cosmological simulations

The universe is full of peculiar coincidences.

Martin Rees

In this chapter the results from cosmological simulations are presented, meaning the

orbital parameter, the abundance and time-dependence of Minor Merger and the spin

parameter λ1 on the mass ratio of the merger.

5.1 Comparison of WINE to other codes and methods

Since our code WINE is completely new, first of all we compared the output of WINE with

another code: the TPM (Tree Particle Mesh) code by (Bode & Ostriker, 2003). Indirectly,

this is also a comparison to the more famous code GADGET by Springel et al., 2001. We

put in standard cosmology structure formation initial conditions (see chap.4) with box

length of 20Mpc and 262144 particles and compared the number of halos of certain mass

in a cumulative mass plot (see fig.5.2). Actually, the differences are insignificant, both

codes essentially produce the same number of halos. To smaller masses the TPM code

produced some more halos than WINE did. According to (Bode & Ostriker, 2003), this

might be a problem of TPM itself since this discrepancy also is found in a comparison of

TPM to GADGET (Bode & Ostriker, 2003). GADGET (Springel et al., 2001) and WINE are

consistent in this feature. WINE apparently produces a reasonable number of halos in

cosmological simulations.

In fig.5.1 we show an example of a cosmological simulation that ranges from z =2 to z =0

in steps of 1.2Gyr. Starting from initial conditions similar to the one seen in fig.4.1, we

see here the increasing density contrast and the hierarchical build-up of structures. An

analogon to this structure formation we see in fig.5.3, the summed up cumulative mass

function for different redshifts. At z =0 the mass function can be fitted with a function

∝ M−a with a = 0.819.

In this figure the hierarchical structure formation is nicely seen:

• there are overall more smaller halos than bigger ones

• at higher redshift there is a lack of halos with higher masses (compared to lower

redshifts) while smaller halos are already present

1Do not mix up this λ with the cosmological constant Λ



5.2 The abundance and frequency of Minor Merger

Figure 5.1: Example of structure formation in a simulation run: box length is 20Mpc, the time

between two pictures is 1.2Gyr, time goes from left to right, from top to bottom. We are looking

at a projection of one side of the box.

• a closer look reveals that at lower redshifts the number of smaller halos declines.

This can be interpreted as a depletion of these halos via merging to bigger halos - as

said in hierarchical clustering models. This is also found in other simulations (e.g.

Jenkins et al., 2001) and in semi-analytical approaches (e.g. Press & Schechter, 1974,

see fig.A.1). The limited resolution in the simulations may contribute little to this

depletion.

All these tests prove the functionality of WINE for cosmological purposes.

5.2 The abundance and frequency of Minor Merger

The first interesting point about minor mergers is their abundance in space and time.

Unfortunately, there does not exist any observational clue for the merger rate in time

and space for minor merger. This is due to the difficulty in observing minor mergers

out to medium or high redshift. Observations of ongoing minor mergers were done to

a distance up to ∼100Mpc, corresponding to a redshift of z ∼0.02 only (Schwarzkopf &

Dettmar, 2000a). So we have no observational data on the merger rate for minor merger

to redshifts up to z = 1 yet. For major merger a merger rate Rmerger ∝ (1 + z)m with

m ∼3 is observed (van Dokkum et al., 1999, Le Fevre et al., 2000) for z ≤1. In fig.5.4 we

plotted the merger rate in dependence of z and found a value for m of 1.419 which is

44



Chapter 5. Results from cosmological simulations

Figure 5.2: Comparison of the code WINE to

Bode’s TPM code. WINE ran in two different

modes: with activated tree and with GRAPE di-

rect summation only. The results converge.

Figure 5.3: Cumulative mass function,

summed up over all simulations. The different

colors denote different redshifts.

quite different from the merger rates for major merger found in observations as well as in

simulations (Khochfar, 2003). This means that the rate of minor mergers decreases more

slowly with decreasing z than the major merger rate.

In fig.5.5 the frequency of minor mergers is shown, normalized to comoving Mpc and Gyr.

The distribution rises during the first 3Gyrs (from t∼3Gyr to t∼6Gyr), peaks at t∼6Gyrs

after the big bang and declines smoothly until present time. Qualitatively, this behaviour

is clear:

• in the beginning the “universe” lacks bigger (i.e. Milky Way sized) halos - which are

the objects we are interested in - therefore the number of minor merger is small

• on the other hand, the number of smaller halos decreases because they merge to-

gether to bigger halos while the material for new halos decreases. This leads to a

decreasing number of smaller haloes and therefore to a decreasing number of minor

merger (since it needs several small halos to build up a bigger halo the increasing

number of bigger halos does not compensate). Note that we are well within the mass

and cluster resolution of our simulations.

• both processes work against each other: the decreasing number of small halos

against the (more slowly) increasing number of bigger halos. That indicates the

existence of a maximum: the peak at t∼6Gyrs after the big bang

We counted 862 Milky Way sized halos which experienced overall 1041 minor merger,

their time dependent distribution is shown in fig.5.5 and in fig.5.4. We can summarize

the results:
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5.3 The orbital parameter of Minor Merger

Figure 5.4: The merger rate of minor merger

with redshift z≤1. It can be fitted via

Rmerger ∝ (1 + z)m with m=1.419. Error bars

denote the Poissonian error.

Figure 5.5: The frequency of Minor Merger in

space and time. See text for further explana-

tion. Error bars denote the Poissonian error.

1. The most likely time for a minor merger was 7Gyrs in the past.

2. It is likely that our Milky Way experienced at least one minor merger, on average and

in one out of five cases a second merger.

3. The merger rate for a minor merger declines more slowly than the major merger

rate - which has to be shown by observations in the future.

5.3 The orbital parameter of Minor Merger

For self-consistent galaxy simulations it is necessary to derive the orbital parameters of

a minor merger from cosmological simulations. We have identified halos that underwent

a minor merger in simulations and calculated the essential orbital parameters out of the

position and velocity information of the halos according to section 4.4. We found 61.7%

of the minor merger having eccentricities in the range of 0.9 to 1.1 and therefore nearly

parabolic and 7.5% having eccentricities greater than 1.

How can there be a merger if the orbit is not bound? During the merger angular momen-

tum can be exchanged and transferred to particles that are leaving the system while the

main parts of the halos merges. For the case of an initially unbound orbit it is possible,

then, that the halos can merge. Fig.5.6 and fig.5.7 show the eccentricity distribution of the

merger orbits where fig.5.7 divides the distribution up into two redshift regimes of equal-

sized numbers of minor merger. In fig.5.10 the dependency of the pericenter distance on

redshift is shown. Note the systematic increase of the pericenter distance towards lower

redshift. It is interesting that for minor merger at smaller redshifts the orbits become less
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Chapter 5. Results from cosmological simulations

Figure 5.6: The eccentricity of all minor merger orbits. Note that most orbits have eccentric-

ities close to 1.

Figure 5.7: The eccentricity divided into two populations with z > 0.54 (left) and z < 0.54

(right). Note that at later times (right ) the merger orbits become more circular: we find more

orbits with eccentricities closer to 0 than in the left picture.

eccentric. This can be explained by the connection between the energy of the orbit and

the angular momentum of the orbit, E ∝ 1/L2. The energy of the orbit increases when the

angular momentum decreases. Halos at earlier times have not exchanged much angular

momentum with other halos and therefore the energy of the orbit is higher and more ec-

centric. It is not very likely to have an circular orbit in the beginning. If this consideration

is correct, orbits at higher redshift should also show lower peri-center distances since it

is less likely to have a circular orbit at high redshift. In fact, this can be seen in fig.5.8 and

fig.5.9: Here we have the log-distribution of the peri-center distance in kpc and in units

of the virial radius of the bigger halo. Again, we divided the minor merger orbits into two
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5.3 The orbital parameter of Minor Merger

Figure 5.8: The peri-center distance of the mi-

nor merger orbits in kpc divided into two red-

shift populations. Note that for the higher red-

shift regime the peri-center distance is smaller.

Figure 5.9: The peri-center distance of the mi-

nor merger orbits in units of the virial radius of

the bigger halo. The small bump at the right is

due to merger on hyperbolic orbits and there-

fore with higher pericenter distances.

Figure 5.10: The peri-center distance in units of the virial radius of the bigger halo as a

function of redshift z. Note that the pericenter distance is systematically increasing towards

lower redshift. The error bars denote the 1σ error
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Chapter 5. Results from cosmological simulations

Figure 5.11: The peri-center distance in kpc. The mean value for the peri-center distance is

1.161=̂14.45kpc.

Figure 5.12: The peri-center distance in units of the virial radius of the bigger halo. The

mean value for the peri-center distance is -1.293=̂0.051rvir

redshift distributions to see if there is a dependency on redshift. As mentioned before,

the peri-center distances are lower for higher redshifts meaning lower orbital angular

momentum for the merging halos. The peri-center distance is proportional to angular

momentum, rperi ∝ L2, and therfore it is clear that earlier merger had lower angular mo-

mentum than merger that occurred more recently. We found that the two distributions

differ in a factor of ∼2.5 in the peri-center distance of the minor merger orbits: at higher

redshift the peri-center distance was roughly 2.5 times smaller than in lower redshifts.

Fig.5.11 and fig.5.12 show the undivided distribution of the peri-center distances. In

fig.5.11 the distribution peaks at 1.161, corresponding to a peri-center distance of 14.45kpc,

in fig.5.12 we have a maximum at -1.293, corresponding to a peri-center distance of 0.051
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5.3 The orbital parameter of Minor Merger

Figure 5.13: The eccentricity in dependence of the peri-center distance. Note that the orbits

are mainly around eccentricity 1 and that for more circular orbits the peri-center distance

increases.

Figure 5.14: Same as fig.5.13, but in units of the virial radius of the bigger halo.

times the virial radius of the bigger halo. These results are similar to results for ma-

jor merger (Khochfar, 2003) with the difference that major merger orbits have in general

slightly higher peri-center distances. While in major merger 76% of the orbits are smaller

than 0.3rvir , in minor merger we find that 87% of the orbits are smaller than 0.3rvir .

This is not surprising if one remembers the hierarchical clustering pictures: big halos

have merged from smaller ones and gained from this substantial angular momentum

with respect to other big halos. When the big halos finally merge, they bring substantial
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Chapter 5. Results from cosmological simulations

Figure 5.15: The angular momentum of the orbit versus the peri-center distance in units of the

virial radius of the bigger halo in a log-log plot. The solid line denotes the fit, the dashed line

shows the expectation which is able to form a boundary to the lower part of the distribution.

angular momentum into the merging process and therefore have orbits with higher peri-

center distances.

We now focus on the connection between eccentricity and peri-center distance. We see in

fig.5.13 and fig.5.14 the combined results of our former considerations: low peri-center

distances force nearly parabolic orbits, while more circular orbits are only found with

higher peri-center distances. The small bump at the right in fig.5.11 designates minor

merger events with hyperbolic orbits and therefore within these considerations high val-

ues for peri-center distances.

We then performed a consistency check if the results so far are reasonable. We know

from section4.4 that the peri-center is connected to the angular momentum of the orbit

via rperi ∝ L2 with a scatter mainly due to the different mass ratios and slightly by dif-

ferent eccentricities (see 4.37). We expect the distribution to be limited at the lower end

by a line with slope a = 0.5: these would be exact circular orbits with ε = 0 with lowest

mass ratio of the merging halos. This is checked in fig.5.15 and shows consistency with

the expectation. The scatter plot could be fitted with a line with the slope of a = 0.655

with a boundary line with slope a = 0.5.

Another interesting parameter that is connected to the orbit of the minor mergers is

51



5.3 The orbital parameter of Minor Merger

Figure 5.16: The merging parameter f . Shown here is the log-distribution which has its maxi-

mum at 1.413.

the merger parameter f which is defined as:

f = L

vvirRvirµ
(5.1)

with vvir and Rvir of the more massive halo (Maller et al., 2002). For major merger with

µ ∼ 0.3 one would expect a value for f ∼ 0.4− 0.7 (Khochfar, 2003). For minor merger µ

decreases to ∼ 0.1 and therefore one would expect f for minor merger to be roughly three

times bigger than for major merger. In fig.5.16 the log-distribution of f is shown with a

maximum at 1.413. This would roughly fit into the expectations from major merger for

minor merger. Another interesting point is the mass ratio of the minor merger and its

dependency on redshift. We plotted the distribution of mass ratios for minor merger per

comoving cosmological volume in fig.5.17 and fitted the distribution to a function∝ x−a.

This should be similar to the mass function of halos in fig.5.3 with a = 0.819. In fact we

see a larger value for a, namely a slope of a = 1.65 which is quite exact twice as large

as the value for the cumulative mass function in fig.5.3. This may be explained by two

cooperating processes: we have small halos according to the mass function which merge

with big halos that are less frequent according to the mass function.

If we again divide up the mass ratios of the minor merger into two redshift populations

we see no clear difference between the two distributions in fig.5.18. We therefore would

not expect different heating of galactic disks at different redshifts.

Finally, we address the question whether there is a dependency of the eccentricities on

52



Chapter 5. Results from cosmological simulations

Figure 5.17: The mass ratio distribution for minor merger per comoving volume in units of

Mpc/h. The dashed line shows the fit ∝ x−a of this distribution with a=1.65.

the mass ratios in a minor merger event. We expect of course more minor merger events

towards lower mass ratios because of the higher abundance of smaller halos. We plotted

the dependency in fig.5.19 in a contour plot to visualize the result in a better way. The plot

confirms the expectation of more minor merger at lower mass ratios, gathering together

at eccentricity ∼1.

5.4 The angles in minor merging events

The next interesting point for the initial conditions of a minor merger is the impact angle

of the satellite onto the galactic disk. Since we do not have any stars in the cosmological

simulations, we assume that the spin of the bigger dark matter halo is correlated to the

spin of a hypothetical stellar disk and therefore the angle with respect to the spin of the

halo corresponds to the angle to the disk plane we simulated later on.

Since isotropy is fundamental in cosmology we do not expect any special angle for the

impact of the satellites or for the spins of the objects. We checked 4 different angles in

the minor merger events:

1. The angle between halo spin and satellite orbital plane. This is used for the simula-

tions of a stellar disk experiencing a minor merger.

2. The angle between halo spin and satellite spin. This checks if there is any interaction
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Figure 5.18: Left: the mass ratios distribution for two different redshift regimes. There

is no clear difference visible. Right: the cumulative distribution including the result from a

Kolmogorov-Smirnov test, showing that the distribution are closely correlated.

Figure 5.19: The correlation between the eccentricities of the orbits and the mass ratio of the

minor merger. The number of minor merger found in the area increases from blue to yellow.
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Figure 5.20: The peri-center distance versus the angle between orbital plane and halo spin. There

is no visible correlation beyond the expected |sin(α)|.

between the halo spin and its satellite.

3. The angle between the satellite spin and its orbital plane. This checks if there is any

coupling of the satellite spin and the orbit of the satellite.

4. The angle between the first and the second minor merger orbital plane. This checks

if there is any preferred direction for two minor merger event in one halo.

We checked if the results are in concordance with the expectation that there is no pre-

ferred angle with a Kolmogorow-Smirnow test of the distribution versus the theoretically

expected distribution of∝ |sin(α)|. The latter one is clear: The probability for a random

vector pointing on a point of a sphere is proportional to the size of the surface of the

sphere which is proportional to sin(α). So if two vectors are not correlated the angle

between them is sine-distributed. This is exactly what we found in our analysis: there is

no correlation between the angles mentioned above. The results are shown in fig.5.21,

fig.5.22, fig.5.23 and fig.5.24: we have K-S probability factors very close to 1, meaning that

the distributions are fitted very well by the sine function. This means that the angles are

randomly distributed. There is no correlation of any kind, no coupling of the spin of the

satellite or of the halo with the orbit the satellite, no relation between the orbit of the first

satellite with the orbit of the second satellite if the halo experienced two minor merger.

This no-correlation may also play a role in estimating the impact of a minor merger on

the spin parameter of dark matter halos - see chap.5.5.

We found another no-correlation in the plot of the angle between orbital plane and halo

spin versus the peri-center distance, see fig.5.20.
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5.4 The angles in minor merging events

Figure 5.21: Left: Angle between the satellite orbit plane and the halo spin axis. Right: Cumula-

tive distribution of angles and the fit to |sin(α)| including the result of a Kolmogorov-Smirnov

analysis

Figure 5.22: Left: Angle between the satellite spin axis and the halo spin axis. Right: Cumula-

tive distribution of angles and the fit to |sin(α)| including the result of a Kolmogorov-Smirnov

analysis
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Figure 5.23: Left: Angle between the satellite spin axis and the satellite orbit plane. Right:

Cumulative distribution of angles and the fit to |sin(α)| including the result of a Kolmogorov-

Smirnov analysis

Figure 5.24: Left: Angle between the first satellite orbit plane and the second satellite orbit plane

for a halo that experienced two minor mergers. Right: Cumulative distribution of angles and the

fit to |sin(α)| including the result of a Kolmogorov-Smirnov analysis
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5.5 Minor merger and the spin parameter of the halo

Figure 5.25: The log-normal distribution of the spin parameter λ′ of the halos that experienced

a minor merger

5.5 Minor merger and the spin parameter of the halo

Hierarchical clustering models predict that galactic disks form as a result of gas infall into

cold dark matter halos. Disk properties like scale length and rotation curves are deter-

mined by the gravitational potential and by the specific angular momentum distribution

which the gas acquired from tidal interactions with the dense regions. From analyti-

cal calculations (e.g. Fall & Efstathiou, 1980) we know that the observed scale lengths

of galactic disks are reproduced if the disk material retained its initial specific angular

momentum when settling into the dark matter halo as galactic plane. But cosmological

N-body/SPH simulations showed that the angular momenta of simulated disks are a fac-

tor of 10 smaller than observed. That means that the gas appears to loose a large fraction

of its initial angular momentum (e.g. Navarro & Steinmetz, 2000). This is stated as the

angular momentum problem of galaxy formation while it is not clear if this discrepancy

poses a problem for CDM or simply results from insufficient understanding of formation

processes. Therefore it is interesting to know the evolution of angular momentum of

halos in an evolving universe. We analyzed the problem from the minor merger point of
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Chapter 5. Results from cosmological simulations

Figure 5.26: The change of the spin parameter log |dλ|/λi as a function of the mass ratio. From

yellow to blue the abundance of minor merger decreases.

view.

The spin parameter λ can be derived (Hetznecker, 2001) by comparing the centripetal

acceleration az = v2
φrm with the gravitational drag g = GM

r2 to the center. We replace vφ

with J ∝ rMvφ and r with E = GM2/r2. From this we get:

az
g
=
v2
φr

2

rGM
∝ J2E/(G2M−5) ≡ λ (5.2)

λ is the dimensionless spin parameter of the system that characterizes the part of rotation

for the stability of the system. For the case of λ ∼ 1 the system is stable due to rotation.

For the case of λ � 1 the system must be stabilized by pressure forces. For example,

elliptical galaxies are supported by inner pressure (given by the velocity dispersion of

the stars) because they have a λ ∼ 0.05, while disk galaxies have λ ∼ 0.5 and are mainly

supported by rotation.

2E is the total energy of the system E = Ekin + Epot and therefore E = GM2/r is valid only in the virial

case E = Epot − 2Epot = −Epot
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Figure 5.27: The distribution function of the value of λ′i/λ
′
f before (initial) and after (final) the

merger.

(Bullock & Kravtsov, 2002) suggested another, more practical definition of the spin pa-

rameter:

λ′ ≡ J√
2MvirvvirRvir

(5.3)

We adopted this definition for our analyses of the spin parameter because it is easier to

apply in simulations. The values for λ′ found in simulations of ΛCDM cosmologies are

typically ∼0.04 (e.g. Bullock & Kravtsov, 2002) with a value for σ = 0.5. These values

include major merger as well as minor merger and accretion events3. We know from

section (5.4) that the satellites come in on random orbits and that it is possible for a

minor merger to reduce the spin parameter if its orbit is counter-rotating to the halo.

From this we would not expect a change of λ′ in a minor merger. In fact, we see an

increase of λ′ in fig.5.25 from at average 0.0308 to 0.041 with σ = 0.309 and σ = 0.398.

The final value for λ′ is close the values for λ′ found in other simulations, while the values

for σ are well below the values found elsewhere. This may be due to a kind of “sorting

effect”: we sorted out halos that experienced a major merger. Therefore we have a smaller

deviation σ .

Another interesting point is the dependency of the spin parameter change on the mass

3The spin of the satellite does not play a significant role since the satellite has only ∼1/10 of the halo

mass
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Figure 5.28: Angular momentum of the halos

before the minor merger as a function of the

virial mass of the halo. It is fairly consistent

with expectations. Shown is a least-square fit

with a = 1.739.

Figure 5.29: Angular momentum of the ha-

los after the minor merger as a function of the

virial mass of the halo. It is fairly consistent

with expectations. Shown is a least-square fit

with a = 1.754.

ratio. Intuitively, one expects the change increasing with the mass ratio. We found in

fig.5.26 that there is no visible connection between the mass ratio and the change of λ′.
Most minor merger have low mass ratio and gather around dλ′/λ′ ∼ −0.2. That means

that most halos experienced a change of their spin parameter of ∼2/3 of the initial value.

There is a concentration at higher mass ratios with dλ′/λ′ ∼ −0.2. This may be connected

to the following point: We found also that most halos gained angular momentum. In

fig.5.27 the distribution function of the ratio λ′i/λ
′
f

4 is shown. We counted 366 minor

merger leading to a smaller λ′ and 675 minor merger causing a larger λ′. Since we have

at average a higher λ′ for the halos after the merger, this amount of halos leading to an

increased λ′ as well as the concentration mentioned above at higher mass ratios could be

the reason, causing the overall-increase of the spin parameter.

Finally, we performed another consistency check. With λ′ ≈ const. we can derive:

λ′ ≈ const. ⇒ J ∝ M5/2

E1/2
∝ M5/2

(M2)1/2 = M3/2
(5.4)

We checked this correlation with a least-square fit in fig.5.28 and fig.5.29. We found

J ∝ M1.739 for the halos before they suffered from a minor merger and J ∝ M1.754 which

is fairly consistent with the expectation and shows a minor increase after the merger. The

deviation is perhaps due to non-spherical halos found by FOF.

4i denotes the initial value of λ′ before the merger, f the value of λ′ after the merger
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5.6 Discussion and Conclusion

In this chapter we learned different things about the abundance and kinematics of minor

mergers in cosmological simulations. First we checked if our new code WINE yielded rea-

sonable results. Comparisons with other codes support the functionality of WINE. Accord-

ing to simulations we did with WINE minor merger occur at least once within a Hubble-time

for a halo of the size of the Milky Way at the most likely time ∼7Gyrs ago. Early minor

mergers have clearly smaller peri-center distances in their orbits and we found their ec-

centricities closer to 1 than for later minor mergers. We argued that this is consistent

because of the gain of angular momentum of the orbits with time due to the interaction

with other objects. The merger parameter f was found to fit the expectations regard-

ing to major merger. The minor merger ratio does not depend on redshift. The angles

we analyzed in the minor merger show no coupling or correlation of any kind, satellites

collide with the bigger halo on randomly distributed orbits. Minor merger increase the

spin parameter λ′ of the orbit by depositing parts of their orbital angular momentum into

the halo. But there was no dependence of the change of the spin parameter on the mass

ratio as one would expect. We derived following parameters for follow-up simulations of

a minor merger of a satellite with a stellar disk embedded in a alive halo:

• Because most of the eccentricities are close to parabolic orbits we chose a parabolic

orbit for our satellite

• The peri-center distances peak at ∼ 14.45kpc or ∼ 0.05rvir . Since we chose a

medium sized galaxy we applied a peri-center distance for our minor mergers of

10kpc

• There is no preferred angle at all. Therefore we chose 7 different angles within

[0◦,180◦] and additional 2 angles of 45◦ and 90◦ between the Runge-Lenz vector ~A

and the disk plane.

Transferring the results from cosmological simulations to detailed simulations of a stellar

disk in a dark matter halo helps to be consistent in our studies of the impact of minor

merger on galaxies like our Milky Way.
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Chapter 6

Results from galaxy simulations

If the Lord Almighty had consulted me before embarking on the Creation, I would have

recommended something simpler.

Alfonso of Castile (ca. AD1250)

We show in this chapter the results from simulations of a minor merger where the pa-

rameters found in the cosmological simulations are used. We focus here on the velocity

distributions of the particles of the galaxy and the merging satellite to make statements

comparable to observations.

6.1 The Analysis

We found in chapter 5 that there is no preferred angle for the impact of the satellite. We

therefore applied different angles to the simulation of an embedded galactic disk to cover

a reasonable range of possibilities and let the simulation run for 4Gyrs. After this time

the satellite is disrupted and has distributed its material in the vicinity of the disk. The

particles of the satellite are now on certain orbits around the center of the galaxy where

we can identify them and compare their velocity distributions with observations of simi-

lar stellar velocities available for the solar neighbourhood. Of course in observations we

are limited to a small region around the sun for the determination of velocities of single

stars. To mimic this effect we chose a small area of the system comparable to the solar

neighbourhood and count the particles we found in this area. We favor this method to a

“ring” over the whole disk to be sensitive to inclined orbits of satellite stars with respect

to the disk plane. Fig.6.1 shows a face-on view of the galaxy where the boxes denote the

area we picked out for he analyses. These areas correspond to the solar neighbourhood:

the mean distance from the center is in simulation units 2.5R, corresponding to 8.75kpc

in reality. The box-length is 1R, corresponding to 3.5kpc in reality, the box is centered at

a distance of 2.5R. This is a larger box than it is possible to survey in observations at the

moment but our resolution in the simulations is much lower than a in a real galaxy. For

a number of particles sufficient for our statistics we have to extend the area of interest a

bit. For better statistics of the LOSVD we extended the area even more towards galactic

rotation: we chose the area to reach 3R towards galactic rotation and allowed the z-value

of the box to be 2R. This is justified since the observations also reached out quite far.

This should in principle not affect our results. In these areas we collected the velocity



6.1 The Analysis

Figure 6.1: Face-on view of the galaxy disk model with the areas of interest marked where we

applied our analyses. The box-length of each interest box is 1R=̂3.5kpc and its center is at a

distance of 2.5R=̂8.75kpc.

information of the particles and translated the velocity information in the case for the

boxes 1-4 to the U,V,W system of galactic velocities. This system relates to the local stan-

dard of rest frame. This is the velocity of an object on a circular orbit around the galactic

center in the disk plane. The U velocity is the velocity radial to the galactic center, it is

positive if the star is moving away from the galactic center, and vice versa. The V velocity

is the velocity in direction of galactic rotation, it is zero if the velocity matches the circular

velocity around the center, positive if the stars revolves faster and negative if the star is

slower. The W velocity is the star’s velocity perpendicular to the galactic plane. If a star is

moving towards the north galactic pole the value of W is positive. The sun, for example,

has velocities (U=-9, V=+12, W=+7) in this system. Our analysis would then result in a

similar picture seen in fig.2.12. We combined the different velocity-coordinates resulting

into three different plots: an UV-plot, a VW-plot, an UW-plot. For the LOSVD we adopt the

type of plot seen in fig.2.9.

We actually chose four “areas of interest” (see fig.6.1) to collect the information of the

different geometries of the simulated minor merger. In fig.6.2 a plot of the initial con-

ditions is shown where the satellite orbital plane enclosed an angle of 30◦ with the disk
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Figure 6.2: Edge-on view of the galaxy disk model with the initial position of the satellite. Plotted

here is the parabolic orbit of the satellite. In this case the orbital plane encloses an angle of 30◦

with the disk plane.

plane. Plotted is also the parabolic orbit of the satellite. The pictures of the results of

our analyses are numbered: first the angle between orbital plane and disk plane is men-

tioned (eg. “030”), then the number of the area (see fig.6.1), separated by an underscore

(“030_1”). For the two cases where we varied the angle between the Runge-Lenz vector ~A1

(which has in any other case an angle of 90◦ between orbital plane and disk plane) and

the disk plane we added the angle, separated by another underscore (“090_1_045”). See

section 4.5 for more information on the simulation parameters. We plotted within the

UVW-plots the disk particles (black points), the halo particles (red crosses) and the satel-

lite particles (filled green circles) for a galactic system that suffered from a minor merger.

We take halo particles into account to see if the satellite stars are distinguishable from

halo stars. The LOSVD plot takes into account the thin disk particles (solid line) taken

from initial conditions of the galactic disk, the particles of a “thick disk” (dashed line), i.e.

a disk which suffered from a minor merger, and particles from the satellite (dash-dotted

line). This assures the possibility to compare the results to observations of Torres et al.,

1The Runge-Lenz vector always points from the center of the orbit to the peri-helium, see section 4.4
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2001 and Gilmore et al., 2002 seen in fig.2.12 and fig.2.9.

In general, we expect to see the disk to be heated an puffed up, which means in the LOSVD

distribution a broader distribution of the “thick disk” velocities. The maximum number

of this distribution should be reduced because less particles of the heated and puffed

up disks are in our areas of interest. Note that in the UVW plots the halo - which is not

rotating with respect to disk - should have a mean V-velocity of ∼-200km/s. The satellite

particles should be distributed randomly since the satellite is destroyed and disrupted in

the merging event, their velocities should then be similar to the velocities of halo parti-

cles. With exception of the orbits close to the disk plane (i.e. angles of of 0◦, 30◦, 150◦,
180◦) we would not expect satellite particles on orbits near to the disk plane. For angles

of 150◦ and 180◦ we would expect a counter-rotating population in our LOSVD. The halo

particles should not be visibly affected by the merger event when looking at the UVW plots

(because they have quite high velocity dispersion and are therefore not heated easily), the

disk particles should show changes in the UVW velocities by the input of kinetic energy

by the satellite.
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Figure 6.3: Simulation no. 000_1. In the UVW plots red crosses denote halo particles, black dots

denote disk particles, green circles denote satellite particles.

Figure 6.4: Simulation no. 000_2
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6.1 The Analysis

Figure 6.5: Simulation no. 000_3

Figure 6.6: Simulation no. 000_4
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Figure 6.7: Simulation no. 030_1

Figure 6.8: Simulation no. 030_2
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Figure 6.9: Simulation no. 030_3

Figure 6.10: Simulation no. 030_4
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Figure 6.11: Simulation no. 060_1

Figure 6.12: Simulation no. 060_2
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Figure 6.13: Simulation no. 060_3

Figure 6.14: Simulation no. 060_4
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Figure 6.15: Simulation no. 090_1

Figure 6.16: Simulation no. 090_2
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Figure 6.17: Simulation no. 090_3

Figure 6.18: Simulation no. 090_4
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Figure 6.19: Simulation no. 120_1

Figure 6.20: Simulation no. 120_2
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Figure 6.21: Simulation no. 120_3

Figure 6.22: Simulation no. 120_4

76



Chapter 6. Results from galaxy simulations

Figure 6.23: Simulation no. 150_1

Figure 6.24: Simulation no. 150_2
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Figure 6.25: Simulation no. 150_3

Figure 6.26: Simulation no. 150_4
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Figure 6.27: Simulation no. 180_1

Figure 6.28: Simulation no. 180_2
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Figure 6.29: Simulation no. 180_3

Figure 6.30: Simulation no. 180_4
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Figure 6.31: Simulation no. 090_1_045

Figure 6.32: Simulation no. 090_2_045
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Figure 6.33: Simulation no. 090_3_045

Figure 6.34: Simulation no. 090_4_045
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Figure 6.35: Simulation no. 090_1_090

Figure 6.36: Simulation no. 090_2_090
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Figure 6.37: Simulation no. 090_3_090

Figure 6.38: Simulation no. 090_4_090
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6.2 Results

First, we can fix some general results: in the LOSVD the covers the expectation that the

thick disk LOSVD is broadened and has a smaller peak value than the thin disk stars; see

simulation no.090_01 for a nice example, where the peak is reduced and the distribution

extends more to higher velocities. We also find that the results in the UVW velocities for

one angle does not differ too much with the next angle for the first seven simulations:

there is a “smooth” evolution visible. Another general result is that we did not have

many satellite particles (relative to the disk particles it differs by factor of ∼15 instead

of the factor of 5 of Ndisk/Nsat ) in our areas of interest which points to the assumption

that the satellite particles are widely distributed (as seen in simulation no.120_x where

we only have a handful of satellite particles). The general velocity structure is of such

that the satellite particles can be easily mixed up with halo particles if there is no special

concentration of satellite particles like, for example, in simulation no.180_02. The W

velocities of the satellite particles commonly scatter narrowly around zero even for the

cases where the satellite came in with a large angle between the disk plane and the velocity

vector (simulations no.090_x_45 and no.090_x_90). This may be due to the effect that

satellite particles with significant W velocities are able to leave the system an a short

timescale (e.g. seen in fig.2.8).

Another general result is that the UVW velocities and LOSVD does not depend on the

choice of the area of interest. Usually the behaviour in one area is similar to the behaviour

in the other areas.

An interesting feature arises in some simulations where we found a bimodal distributions

of the U velocities for the satellite particles meaning that there are particles which are

moving quite fast into the direction of the galactic center and into the opposite direction,

out of the galaxy. Here the satellite seems to be disrupted in a way that in a ringlike

structure (i.e. all four areas) the particles are “collapsing” or “exploding”.

We now pick out some simulations which show deviations from the general results:

• Simulation no.060_x shows high positive V velocity for the satellite particles while

having the common bimodal distribution in U. This means that the particles are

moving fast into the direction of galactic rotation and having a population moving

towards to and away from the galactic center. This may be due to the disruption

of the satellite in two part that are now moving on different trajectories around the

center.

• Simulation no.150_x shows a change of the position of the satellite particles in the

UV plane, the concentration of particles runs counterclockwise from positive UV to

positive V and negative U. This may correspond to an elliptical orbit of the satellite

particles with focal points roughly at x = 3R, y = 3R and x = 0, y = −3R (where

of course this orbit not has to be a really closed one.)

• Simulation no.180_x shows a similar behaviour as simulation no.150_x - which is

not surprising since the merger had similar initial conditions and angles.

• We see in the LOSVD only weak traces for a counter-rotating population of satellite

particles in simulation no.150_x and simulation no.180_x although the satellites

were on orbits counter-rotating to the disk.
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In (Bertschik, 2001) it was already shown that it is possible to create a jump in velocity

dispersions similar to the jump seen in observations: within 1Gyr after the minor merger

the velocity dispersion were increased by ∼50% at solar radius around the galactic center.

We list in tab.6.1 and tab.6.2 the change of velocity dispersion in U, V and W velocities

(named ∆σU , ∆σV and ∆σW ) compared to a quite galactic disk that did not suffer from

a minor merger (σU =35.9km/s, σV =26.4km/s and σW=25.5km/s). The results do not

show a clear dependence on the merging parameter. The V component was heated most,

the U component least. Since σU was highest in the initial cold disk, this is an expected

result. The increase of the U, V and W velocity dispersions is comparable to what is found

by (Quillen & Garnett, 2000) but lacks clear traces of the different orbits of the satellite.

simulation no. ∆σU (km/s) ∆σV (km/s) ∆σW (km/s)

000_x 14.9 17.3 10.3

030_x 10.8 13.6 7.9

060_x 13.2 15.6 8.5

090_x 10.3 13.9 10.2

120_x 10.0 15.8 8.9

150_x 14.3 14.6 8.3

180_x 15.3 15.5 8.4

045_x 12.2 15.5 9.4

090_x 11.5 15.7 9.2

Table 6.1: The absolute changes in UVW velocities after the merger event for different simulation

runs.

simulation no. ∆σU (%) ∆σV (%) ∆σW (%)

000_x 41.5 65.5 40.4

030_x 30.0 51.5 30.1

060_x 36.7 59.1 33.3

090_x 28.7 52.7 40.0

120_x 27.9 59.8 34.9

150_x 39.8 55.3 32.5

180_x 42.6 58.7 32.9

045_x 34.0 58.7 36.9

090_x 32.0 59.4 36.1

Table 6.2: The relative changes in UVW velocities after the merger event for different simulation

runs. Note the increase in the components with low velocity dispersion (V, W) and the heating of

the disk: increased velocity dispersion of the W component.

6.3 Discussion

The simulations did not give a definite hint on the consequences of a minor merger with

different parameters. It is not possible to derive the exact orbit of the minor merger with
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fair accuracy from the velocity structure of its particles, and it is already hard to distin-

guish the satellite remnants of different orbit families of the initial orbit of the satellite.

This is not that surprising, though, since with more and more time the system shows more

and more non-linear or even chaotic behaviour. Besides, our statistics are not very good

even with several 100,000 particles in the system. The LOSVDs show the expected be-

haviour of being flattend and stretched out but lacks a clear signal for a counter-rotating

satellite population when having a minor merger with a counter-rotating orbit. Neverthe-

less, it was possible to detect some features coming from a certain choice of the orbit.

This may help to identify the result of merger in a certain orbit.

One way out may be to perform more detailed simulations with much higher resolution

in the disk and in the satellite, perhaps including gas to see the effects of an dissipational

component. Since our simulations were done making a compromise of saving time and

disk space we see here some improvement to make in the future. Additionally, one could

apply an analysis of the orbits of the involved particles to derive other features from this.
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Chapter 7

Discussion and Conclusions

One of the things that makes the history of science so endlessly fascinating is to follow the

slow education of our species in the sort of beauty to expect in nature.

Steven Weinberg

CDM predicts large amounts of substructure that merges together and forms bigger

clumps. The interest of the community is quite focused on spectacular major mergers,

the collision of two massive halos with embedded stellar disks. Or it deals with accretion

events of satellites, small lumps of dark matter accreted by a giant halo without any sub-

stantial effect on its structure. We paid more attention to the medium regime of minor

merger which may have substantial effects on stellar disks without destroying them.

We performed quite a lot of simulations to address following questions: Did the Milky

Way suffered from a minor merger event with a satellite in the past which is supported

by several hints (Torres et al., 2001, Quillen & Garnett, 2000, Gilmore et al., 2002)? What

is the likelihood of such an event, and what are the parameters of a minor merger if it is

happening? Is there anything left over we could see even if the minor merger happened

Gyrs before?

We addressed the first questions with the analysis of cosmological simulations of struc-

ture formation of dark matter done by our new code WINE. After we checked the funtion-

ality of WINE by comparison to other codes we derived the abundance of minor mergers

of mass ratios from 1:20 to 1:5 in space and time and found that it peaks 6Gyrs after

the big bang. The mass ratio of minor mergers does not depend on redshift, the merging

parameter f fairly fits expectations from simulations and observations of major merger

while the merger rate Rmerger differs from observations and simulations of major merger.

The orbits of minor mergers depend slightly on redshift, early minor merger have more

parabolic orbits with less peri-center distances than later ones (they differ by a factor

of ∼2.5). Comparing this to orbits of major merger we found that minor merger have

in general smaller peri-center distances than major merger. We found this connected to

the gain of angular momentum of the orbits with time due to the interaction with other

objects where the big halos involved in major merger are interacting more than the halos

involved in minor merger.

The angles between the orbits and the spins of the merging halo are found to be as random

as one would expect from isotropy in cosmology. We found that the spin parameter of

the halos which suffered from a minor merger are influenced slightly, the spin parameter

λ′ was increased by the minor merger from 0.0308 to 0.0421.



All our considerations regarding minor merger suffer from the lack of sufficient obser-

vations of minor merger events to which one could compare our results. Since relatively

small objects are involved, minor merger are hard to detect to far or even medium range.

One of the few observations that was done is that of Schwarzkopf & Dettmar, 2000b, and

they reached only a small redshift, not comparable to our statistics. But since our results

seemed to be reasonable (which we found by several consistency checks) we transferred

them to additional simulations of a galactic disk, applying the parameters found in cos-

mological simulations in a consistent way.

We performed a bunch of simulations with having the parameters from cosmological

simulations applied and chose certain regions where we analyzed the velocity structure

of the particles in UVW diagrams and in heliocentric LOSVD distributions. Doing this we

tried to distinguish if a certain geometry of the merger induces different effects in the

velocity structure when seen from different viewpoints. Several features were found that

matches expectations: the LOSVD distribution of the thick disk flattens and broadens

due to the merger, satellite particles were not caught in the areas of interest because they

were distributed elsewhere, satellite particles have low W velocity while they could have

high U and V velocities. We found in general that in UVW velocities the satellite particles

are hard to to distinguish from halo particles with exception of certain geometries (sim-

ulations no.150_x and no.180_x). The latter ones show significant concentrations of UV

velocities relative to the halo particles. The signal of satellite remnants in the LOSVD is

very weak which is probably mainly due to limited resolution of the satellite. The increase

of the U, V and W velocities is comparable to the difference between the observed values

of the thin and the thick disk of our Milky Way, supporting the idea that the thick disk is

due to a minor merger.
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Outlook

The history of cosmology shows us that in every age devout people believe that they have

at last discovered the true nature of the universe.

Edward R. Harrison

Minor mergers happen. They are quite frequent for a galaxy like our Milky Way although

there was obviously no substantial merging event in the last 6Gyrs. More sensitive in-

struments, more detailed observations will reveal more of these small collisions between

galactic objects in other galaxies and may even reach out to higher redshifts to confirm

or reject the results from cosmological simulations. Same for the local galaxy: Further

observations of the thin and the thick disk of our Milky Way (Gilmore et al., 2002), e.g. a

more extended evaluation of the white dwarf population (Torres et al., 2001) and other

old stars which can trace a minor merger that happened in the past via their velocities

with respect to the thin disk. Besides, looking at velocity distributions that could give a

hint to streams and therefore point to remnants of merging companions event would be

important, too.

Of course, from the theorists side on can expect some progress. One could do an analysis

of the orbits of satellite particles after the minor merger which requires high resolution

in the satellite. Besides, one could to perform simulations with higher resolutions, espe-

cially for the galaxy simulations, and include gas dynamics and feedback to see whether

a dissipational component and additional energy input could change the results. With

further increase of computer power and with improved evolution models one could be

able to perform fully self-consistent simulations where realistic disks are evolving within

the cosmological context (where at the moment the simulations (?) fail and produce the

angular momentum problem). With star formation included and feedback taken into ac-

count (what is planned for our code WINE in the near future) we would be able to trace

the full merger history and interaction of a galaxy like our Milky Way in our simulations

and would be able to see all the effects we mentioned in this work directly without relying

on additional simulations with limited parameter space.

And once again we will be astonished by the fact that we are able to understand another

part of an infinite universe, standing on a lonely planet around an ordinary star in the

outer skirts of a standard galaxy.
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Appendix A

Figures

Figure A.1: Results from semi-analytical calculations. The picture shows the cumulative number

of halos given by the Press-Schechter formalism. Note that for z = 0 the number of smaller halos

is smaller than at higher redshifts. (Graphic kindly provided by Sadegh Khochfar)
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