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Zusammenfassung 
 
In dieser Arbeit wird die Kohärenzgatter-Wellenfrontabtastung (CGWS), eine neue Methode 
um Wellenfronten in stark streuenden Proben zu messen, vorgestellt. Diese Methode 
kombiniert Shack-Hartmann Wellenfrontabtastung und Phasen-Verschiebungs-
Interferometrie (PSI). Sie bedient sich virtueller Linsen um die Funktion eines 
konventionellen Shack-Hartmann Sensors zu imitieren. Die Benutzung eines modalen 
Rekonstruktionsalgorithmus erlaubt die Approximation der gemessenen Wellenfront in einer 
Linearkombination von Zernike Polynomen bis zum fünften radialen Grad. 
Das Prinzip von CGWS wird an Messungen von zwei Wellenfrontaberrationen, Defokus und 
Astigmatismus, für eine Spiegelprobe und für eine stark streuende Probe getestet. Die 
Ergebnisse werden mit theoretischen Modellen verglichen. Der Hauptvorteil von CGWS ist 
die Unterdrückung von Licht welches nicht aus der Fokusregion zurückgestreut wird. Ein 
weiterer Vorteil ist die Erhöhung der effektiven Detektionssensitivität. Die Fähigkeiten von 
CGWS werden anhand von Wellenfrontmessungen in streuenden Proben mit einem 
Streuhintergrund, welcher das nutzbare Signal um etwa drei Größenordnungen übertrifft, 
demonstriert. 

Für verschiedene Mikroskopieanwendungen könnte die Fähigkeit, die Wellenfront aufgrund 
von CGWS Meßdaten vorzukorrigieren, zu einer Verbesserung des optischen Fokus und 
damit zu einer erheblichen Steigerung der Auflösung und Tiefeneindringung in Gewebe 
führen. 

 

Abstract 

 
In this thesis coherence-gated wave-front sensing (CGWS), a new approach for measuring 
wave-fronts in strongly scattering samples, is presented. This method combines Shack-
Hartmann wave-front sensing and phase shifting interferometry (PSI). It employs virtual 
lenses to mimic the function of a conventional Shack-Hartmann sensor. The use of a modal 
estimation algorithm allows an approximation of the measured wave-front with a linear 
combination of Zernike polynomials up to the fifth radial degree. 
The principle of CGWS is tested by measuring two wave-front aberrations, defocus and 
astigmatism, for a mirror as a sample and a strongly scattering sample. The results are 
compared to theoretical models. The main advantage of CGWS is the discrimination against 
light backscattered from outside the focal region. A further advantage is the increase in the 
effective detection sensitivity. The capabilities of CGWS are demonstrated with wave-front 
measurements in scattering samples in the presence of background light that is dominant by 
about three orders of magnitude. 
In various microscopy applications, the ability to pre-emptively correct the wave-front, 
employing CGWS measurement data, may allow improvements of the optical focus and thus 
enhance the resolution and depth penetration in tissue considerably. 
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Acronyms 
 

Acronym Expression 

  

AWF aberrated wave-front 

BFP back focal plane 

CG coherence gate 

CGWS coherence-gated wave-front 
sensing 

FUL fraction of useful light 

FWHM full width at half maximum 

GVD group velocity dispersion 

MFP mean free path length 

OA optical axis 

PSD position-sensitive detector 

QPS quasi point source 

SHS Shack-Hartmann wave-front 
sensor 

TPE two-photon excitation 

TPM two-photon microscopy 

TRA transverse ray aberration 

VLC virtual lenslet compartment 

  

 



1 Introduction and Motivation 

For many biomedical questions the detailed study of cellular processes in intact tissue 
is increasingly necessary. Light is refracted but barely absorbed in most biological 
tissues [Svoboda and Block 1994]. This is the result of a combination of two facts: 
First, the index of refraction varies locally due to the non-uniformly distribution of the 
cellular constituents within a cell. Second, within the visible and the near-infrared 
range of the electromagnetic spectrum the density of light absorbing molecules in 
most tissues is relatively low. Therefore light can penetrate into tissue but the effects 
of scattering often make it impossible to achieve diffraction-limited resolution. Yet 
for the examination of sub-cellular processes a resolution in the sub-micrometer range 
is often crucial. For example the chemical dynamics of intracellular second 
messengers in single dendritic spines [Denk et al. 1995], [Denk et al. 1996], [Yuste et 
al. 1999], [Oertner et al. 2002] play a major role in memory building modifications of 
synaptic connections in the brain. 

Confocal microscopy [Minsky 1961], [Minsky 1988] eliminates scattered and out-of-
focus light. But thereby it produces especially in scattering tissues considerable high 
photo-damage. This was reduced with the development of multi photon laser scanning 
microscopy (MPLSM) [Denk et al. 1990], [Denk and Svoboda 1997], which can use 
scattered fluorescence light without loss of resolution [Denk et al. 1994], [Centonze 
and White 1998]. Nevertheless here too scattering and wave-front aberrations of the 
excitation light limit the tissue penetration depth [Svoboda et al. 1997]. 

The efficiency of multi-quantum excitation increases nonlinearly with the local light 
intensity (to the nth power) [Göppert-Mayer 1931], [Kaiser and Garrett 1961] 
depending, therefore, strongly on the quality of the optical focus. This is the reason 
why resolution and excitation efficiency of MPLSM are affected strongly by wave-
front aberrations. Therefore pre-emptive corrections of the wave-front are expected to 
improve optical resolution and excitation efficiency considerably. As a result, tissue 
depth penetration would be increased significantly. 

In astronomy a problem similar to the distortion of the laser focus by refractive index 
inhomogeneities is the distortion caused by propagation of light from stars through the 
(turbulent) atmosphere. Astronomers have been alleviating this problem by means of 
adaptive optics [Merkle et al. 1989]. The first of two steps is the measurement of the 
distortion, for example, by using light from a bright star [Merkle et al. 1989] or from 
an artificial reference. These “laser guide-stars” were suggested by Linnik [Linnik 
1993] and Foy and Labeyrie [Foy and Labeyrie 1985] and realized by Humphreys et 
al. [Humphreys et al. 1991]. The second step, first proposed by Babcock [Babcock 
1953], is to adapt the shape of a reflecting element so that the distortions of the optical 
wave-front are cancelled upon reflection. 
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In microscopy, where the same or similar optical corrector elements as in astronomy 
can be used [Albert et al. 2000], the determination of the wave-front aberration often 
requires a very different approach since neither natural nor artificial “guide stars” are 
available. The only situation where wave-front measuring techniques from astronomy 
can be directly applied is when the reflected light comes primarily from the focal 
plane. This is the case in the eye, where a single tissue layer (the retina) reflects or 
backscatters most of the light, which can then be used to determine the distortion 
caused by the intervening lens and cornea [Bille et al. 1989], [Liang et al. 1997]. In 
less favourable biological specimens one can take advantage of the fact that one has 
considerable control of and information about the light source, usually a scanned 
laser. For example, a possible approach is iterative wave-front optimization using a 
search-algorithm based on trial distortions of the incident wave-front [Neil et al. 
2000], [Marsh et al. 2003], [Sherman et al. 2002]. This approach uses the fact that the 
amount of fluorescence generated by multi-photon absorption (or the fluorescence 
detected through a near optimal pinhole) strongly depends on the quality of the focus. 
This trial-and-error approach can be used in thick, scattering samples such as brain 
tissue, but, first, it requires the presence of a sufficiently bright fluorescence signal 
and, second, it is only feasible if the search space is sufficiently low dimensional, 
which limits the order to which distortions can be corrected. 

Using all the reflected light indiscriminately for wave-front sensing is not feasible for 
imaging in scattering samples because most backscattered light comes from 
superficial layers and consequently does not carry information about the wave-front 
distortions caused by the tissue. Multi-photon imaging is routinely done to a depth of 
3 mean free path lengths (MFPs) and is possible to 5 MFPs [Theer et al. 2003]. With 
the focus at such depths, the ballistic (unscattered) light from near the focus, which is 
all that can be used to determine the wave-front distortion, is a miniscule fraction of 
the total backscatter, which mostly originates from within the first 1.5 MFPs. Light 
from the focus can, however, be distinguished from multiply-scattered and out-of-
focus light by arrival time [Duguay and Mattick 1971], and can be selected, for 
example, by using non-linear optical gates based e.g. on the Kerr effect [Duguay and 
Mattick 1971], or a coherent time gate, as in optical coherence tomography [Huang et 
al. 1991]. For multi-photon microscopy ultra-short-pulse lasers are typically used, 
which, conveniently, possess the short coherence length needed for coherence gating. 

 

This dissertation describes a new approach to measure the wave-front in strongly 
scattering samples. It makes use of a short coherence length and does not depend on 
fluorescence. The wave-front is determined by the use of coherence-gated 
backscattered light from the focal region (coherence-gated wave-front sensing, 
CGWS [Feierabend et al. 2004]). CGWS is applicable to samples that are only weakly 
or sparsely fluorescent, or to specimens that are photosensitive or easily bleached. 
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This dissertation is structured as follows: 

1. Chapter 1 contains the introduction. 

2. Chapter 2 is divided into three parts. Part one gives a short overview of the 
future main application area of CGWS, namely two-photon microscopy. Part 
two describes the fundamental principles that form the basis for CGWS, phase 
measurement and depth discrimination with the help of phase shifting 
interferometry. Part three describes the combination of these two main 
elements to CGWS. The corresponding setup is illustrated and described in 
detail. 

3. In Chapter 3, the theoretical expectations are derived and compared to the 
actual measurements. Possible deviations are discussed. 

4. Finally, Chapter 4 summarizes the contents of the dissertation, and prospects 
on the future continuation of this project are given. 

 



2 Methods 

This chapter includes four sections. The first section deals with the main envisioned 
application area of CGWS, two-photon microscopy (TPM). In heterogeneous samples 
where the index of refraction is spatially inhomogeneous, the optical focus can 
become severely distorted. Since the efficiency of TPM depends on the squared local 
light intensity and therefore on the quality of this focus, it is desirable to correct for 
the arising focus distortions (cf. chapter 1). To perform this correction directly it is 
necessary to obtain knowledge about these distortions. In order to acquire this 
knowledge a wave-front measurement in a certain depth of the observed biological 
sample (cf. chapter 1) has to be done. The tools required for such a task are wave-
front sensing and depth discrimination, the main topics of section two in this chapter. 
In order to be able to test the feasibility of CGWS in scattering media, it is necessary 
to start with corresponding scattering phantoms for which the result of the CGWS 
process is predictable. This requires the knowledge of the corresponding scattering 
properties of such phantoms. To determine these properties the scattering theory of 
Mie was used. The main features of this theory are outlined in section three of this 
chapter. Finally, in section four, the combination of the tools described in section two 
is described. 

2.1 Two-Photon Microscopy 

It has long been recognized that highly intense light has a potential for triggering 
nonlinear optical processes. As early as in 1931, Maria Göppert-Mayer predicted the 
existence of multiphoton excitation processes when working on the theory of two-
photon quantum transitions in atoms [Göppert-Mayer 1931]. However, it took thirty 
years – and required the invention of the laser - until her theory was finally verified. 
Kaiser and Garret published the first report on two-photon excitation (TPE) of 
CaF2:Eu2+ fluorescence in 1961 [Kaiser and Garrett 1961]. In 1990 Denk et al. 
demonstrated the application of TPE of fluorescence to laser scanning microscopy 
[Denk et al. 1990]. TPE can in general be thought of as the simultaneous absorption 
of two photons that combine their energies to cause a molecular excitation that would 
otherwise need a single photon of higher energy. In this context, both photons carry 
approximately half of the energy that is needed for the single-photon absorption-
induced transition (Figure 2.1). The excited molecule is typically a fluorophore. The 
rate na at which such a fluorophore at the center of the focus absorbs photon-pairs can 
be approximated, following a result from Denk et al. [Denk et al. 1990]: 
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where p0 is the average incident laser power, δ the two-photon cross-section, τp the 
pulse duration, fp the pulse repetition rate, A the numerical aperture (NA) of the beam 
focusing lens, c0 the speed of light in vacuum, h Planck’s constant and λ the center 
wavelength used. 

 

hνexcitation

hνexcitation

hνemission

S0

S*

 

Figure 2.1: Schematic of the TPE principle. By simultaneous absorption of two low energy photons a 
molecule in its ground state (S0) is excited to its first excited state (S*; here to a 
vibrational level a little above S*). Through radiationless transitions it relaxes to S*. Via 
emission of a single high-energy fluorescence photon (hνemission ≤  2hνexcitation) the 
molecule usually returns to a vibrational state above S0. 

 

From Eq. (2.1) it is apparent that the generated fluorescence signal depends on the 
square of the instantaneous excitation light intensity. To achieve reasonable excitation 
levels, intensities in the range of GW/cm2 are required. Clearly, a biological sample 
cannot sustain such high laser-powers over a long period of time. However, for the 
same average incident power, the instantaneous intensity is higher the shorter the laser 
pulse. Thus, using short pulses has a big advantage as it increases the average two-
photon absorption probability. The combination with low repetition-rates, which 
again increase the two-photon absorption probability, results in high peak-power 
while the average power is kept low. This permits image acquisition in a reasonable 
time while using “biologically tolerable” power levels [Denk et al. 1995]. The actual 
tolerable power level depends on several parameters (for example the tissue and the 
wavelength) and is the subject of an ongoing debate [König et al. 1999],[Koester et al. 
1999],[Hopt and Neher 2001]. 

The main advantage of TPM over single-photon microscopy techniques is its ability 
to provide images from deep within scattering tissues. This ability is due to two 
properties. First, the two excitation photons that act together are low-energy photons, 
and hence the illumination wavelength used for excitation is relatively long, typically 
between 800 and 1000 nm. Since scattering for long wavelength light (NIR) is less 
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than for visible light, which is used in single-photon excitation, deeper penetration 
into biological tissue is feasible. Confocal microscopy [Minsky 1961] has been 
demonstrated to a depth of 250 micrometer in the rat brain in vivo [Dirnagl et al. 
1991]. For TPM, in comparison, Theer et al. [Theer et al. 2003] showed that the depth 
penetration can reach 1000 µm. It is the further penetration that TPM affords that is 
crucial for neuroscientists [Denk and Svoboda 1997]. The second property that 
enables TPM to provide images from deep within scattering tissues is the fact that a 
signal is only generated in the vicinity of the focus due to the nonlinear dependence 
on the illumination intensity. This results in intrinsic optical sectioning. In single-
photon techniques fluorescence is generated throughout the sample. To obtain three-
dimensional information, a confocal pinhole is required to select only fluorescence 
generated in the focus. In addition, photo-bleaching and photo-damage occur 
throughout the sample. In the two-photon case all photons are signal because they 
were generated in the focus. Out-of focus effects are reduced or completely 
eliminated with TPM (for review see [Helmchen and Denk 2002]) and photo-
bleaching and photo-damage are confined to the focal plane. 

Another advantage is that UV fluorophores become more accessible with TPE. In 
one-photon confocal microscopy the excitation of these fluorophores is problematic 
due to low transmissivity of lenses, lens aberrations and other material problems 
occuring in that regime of the electromagnetic spectrum. 

However, despite the many advantages associated with the three-dimensionally tight 
localized excitation it should also be kept in mind that the accessible imaging depth 
strongly depends on the structure of the tissue. Examples include surface blood 
vessels or cell-body layers that deform the wave-front and hence distort the focus (for 
review see [Helmchen and Denk 2002]). Difficulties with, or even the impossibility of 
imaging in the presence of such deformations is the direct consequence. 

Due to its advantages TPM is used in many fields. Some examples: 

• TPM allows the measurement of dendritic signals induced by light stimuli in 
the retina. It was recently shown by Euler et al. [Euler et al. 2002] that 
starburst amacrine cell dendrites possess direction-selective calcium signals 
and thus are the likely location of motion direction detection in the retina. 

• Christie et al. [Christie et al. 2001] demonstrated the possibility of applying 
TPM to study brain pathologies by monitoring the size of senile plaques in a 
transgenic mouse model of Alzheimer’s disease. Repeatedly such plaques 
were imaged through a thinned-skull preparation over periods of up to five 
months. 

• Brown et al. [Brown et al. 2001] introduced multi-photon microscopy for in 
vivo tumor characterization. Internal regions of tumors, which were previously 
inaccessible, could be investigated. 

• A paper by Kuhn et al. [Kuhn et al. 2004] reveals the option to use voltage 
sensitive dyes with TPM. This method helps to visualize voltage changes in 
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cell membranes and thus signal transmission without the invasive use of 
electrodes. 

2.2 Wave-front Sensing 

Distortions of the optical focus will lead to a decrease in the TPE efficiency. Often the 
origin to such distortions is the inhomogeneity of the samples under observation. 
Their permanently varying index of refraction leads to wave-front aberrations that 
prevent the formation of a clean focus. Pre-emptive corrections of the wave-front can 
restore the formation of a clean focus, with the knowledge of the shape of the wave-
front and its distortions being the basis for such pre-emptive corrections. Wave-front 
sensing techniques offer means to obtain this knowledge. 

The underlying phenomenon of wave-fronts are three-dimensional waves. For such 
waves the surfaces joining all points of equal phase at any given time are known as 
wave-fronts [Hecht 1990]. Hence, wave-fronts represent phase information. But phase 
is not a measurable parameter since detectors respond to light intensity rather than 
differences in optical path length. Mostly, this response to intensity is related to some 
kind of length measurement by means of wave-front sensors [Geary 1995]. This 
length measurement is given by: 

(1) The optical path difference W(x,y) between measured wave-front and a 
reference wave-front; 

(2) The differential phase dW(x,y) between adjacent sampling points in the pupil; 

(3) The transverse ray aberration TRA. 

Figure 2.2 depicts schematically these three parameters. Depending on the parameters 
being measured, the measurement is categorized into direct wave-front sensing (if 
W(x,y) is measured) and indirect wave-front measurement (if either dW(x,y) or TRA 
are measured) [Geary 1995]. 

An approximate relation between optical path difference W(x,y) and TRA is (cf. 
[Rayces 1964]) 

 

 
( )

d
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. (2.2) 

 

Eq. (2.2) describes the local wave-front slope. Thus, by measuring the TRA, the local 
slope can be determined so that the original optical path difference W(x,y) can be 
obtained by integration. If a planar wave-front is taken as the reference wave-front, as 
is the case in this work, W(x,y) corresponds to the actual wave form. 
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Figure 2.2: Measurable physical parameters of wave-fronts. The rays (e.g. ray1) of a spherical 
reference wave-front (RS) centered on the optical axis (OA) with radius d would hit a 
plane perpendicular to the OA at distance d in one point, the paraxial focus. Different 
from that, the rays (e.g. ray2) of an aberrated wave-front (AWF) would hit the same 
plane all at different locations. Since every point of the RS corresponds to a point of the 
AWF every ray of the RS corresponds also to a certain ray of the AWF. Ray1 and ray2 
serve as an example. The distance between the points where they hit the plane 
perpendicular to the OA at distance d is the TRA. The path length difference W(x,y) 
describes the perpendicular distance from the RS to the AWF. And dW(x,y) denotes the 
differential path difference between two adjacent sampling points of the AWF with 
respect to the RS. 

The following subsection describes the wave-front sensing technique used for 
measuring the TRAs, and how from these the original shape of the wave-front can be 
determined by comparing W(x,y) to a planar wave-front. 

 

2.2.1 Shack-Hartmann Wave-Front Sensing 

In indirect wave-front sensing there is a sensor that is based on the classical Hartmann 
test [Hartmann 1900], [Hartmann 1904], called Shack-Hartmann wave-front sensor 
(SHS) [Shack and Platt 1971]. This sensor is now the most widely used wave-front 
sensor for adaptive optics systems [Hardy 1998], [Tyson 1997]. The array of holes 
used in the classical Hartmann test is in this type of sensor replaced by an array of 
small lenslets. 

 

From Hartmann test to SHS 

An aperture plate with a tiny circular hole is placed in front of a ‘perfect’ lens (cf. 
Figure 2.3 a and b). The plate can be moved around so that the hole can be positioned 
anywhere in the entrance pupil. If a measurement is taken every time the hole is 
moved a distance equal to its own diameter the data sampling looks like Figure 2.3 c. 
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aperture plate
(front)

tiny hole

aperture plate

perfect
lens

(a) (b) (c)  

Figure 2.3: The front of an aperture plate with a tiny circular hole (a) that is positioned in front of a 
‘perfect lens’ (b); the plate is moved so that the hole is positioned anywhere in the 
entrance pupil. The pupil sampling looks then like (c). 

 

If a perfectly planar wave-front is incident on the plate, the hole passes a ray that will 
cross the OA at the paraxial focal point (Figure 2.4 a). The TRA is then measured 
with a position-sensitive detector (PSD), e.g. a CCD camera. Since the incoming 
wave-front is planar, all hole positions will result in a TRA that equals zero. If an 
AWF is incident, the hole passes a ray, which strikes the focal plane off axis (Figure 
2.4 b), which indicates that the TRA is non-zero. Instead of moving one single hole 
around, an array of sub-apertures can be used to sample the entire wave-front 
simultaneously. To avoid massive overlap of data a lenslet is embedded in each sub-
aperture and a PSD is associated with each sublens. If the sub-apertures are 
additionally contiguous the resulting system is called a Shack-Hartmann wave-front 
sensor (cf. Figure 2.5). 

 

 
Hartmann plate focal plane

TRA

(a) (b)

PWF AWF

Hartmann plate focal plane

 

Figure 2.4: The TRA for a planar wave-front (PWF) (a); the TRA for an AWF (b). 
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Figure 2.5: The principle of a SHS. 

 

The amount of TRA corresponds to the averaged slope of the wave-front across the 
lenslet sub-aperture. Since W(x,y) is a function of two variables, two TRAs are 
present (TRAx and TRAy, respectively). The relation between these values and the 
local derivative of the wave-front for a focal distance f is (cf. Figure 2.6) 

 

 

In reality the quantum nature of light needs to be taken into account. It is not possible 
to determine the TRA by simply measuring the distance from the lens center to the 
exact position where the ray hits the PSD because there is no such exact position. In 
reality light is not focused on a single point but on an extended diffraction spot. It can 
be shown [Yura and Tavis 1985] that the average wave-front slope over the sub-
aperture of a lenslet is proportional to the displacement (∆x and ∆y) of the centroid of 
the corresponding diffraction spot. The displacements ∆x and ∆y are the transverse 
ray aberrations TRAx and TRAy. 
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In consequence Eqs. (2.3) have to be replaced by 
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where A is the area of the lenslet. 

 

φ
TRAx

φ

∆x

∆z

x

yz

AWF

f

PSD  

Figure 2.6: Average slope across an individual lens of the lenslet array. The two angles denoted by 
φ  are the same, so that tan φ =∆z/∆x = TRAx /f. Since ∆z equals ∆W(x,y), it follows that 
dW(x,y)/dx = TRAx /f. 

 

Reconstructing the wave-front 

To complete the wave-front sensing process, the original shape of the incident wave-
front needs to be recovered. The measured wave-front is usually compared to a 
reference wave-front, commonly a planar wave-front. Then, for the reconstruction 
process, it is only necessary to find the optical path length difference W(x,y) since in 
this case W(x,y) is equivalent to the incident wave-front. In principle the 
reconstruction of the measured wave-front can be done in two ways, zonal or modal. 
The zonal approach divides the aperture into an array of independent sub-apertures or 
zones. For each of these sub-apertures the wave-front is characterized in terms of its 
optical path length, its local gradient or its local curvature. Most wave-front sensors 
used in adaptive optics, including the SHS, work on a zonal basis [Hardy 1998]. The 
modal approach treats the wave-front distortion W(x,y) as a sum of base functions of 
increasing complexity. A distorted wave-front can be described completely by using 
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either the zonal or the modal wave-front representation [Hardy 1998], which are 
interchangeable [Tyson 1997]. However there are substantial practical differences 
between these two approaches. For example zonal systems can easily be expanded to 
arbitrarily high spatial resolution by increasing the number of sub-apertures while 
higher order polynomial terms become increasingly difficult to measure. On the other 
hand, low-order aberrations such as small amounts of defocus, can be described more 
easily using whole-aperture modes. Since in this work the system was tested with 
low-order aberrations modal representation was preferred. 

As mentioned above, in the modal approach the wave-front is described as a sum of 
functions with increasing complexity. The Zernike polynomials [Zernike 1934] are a 
convenient set for this purpose. They are defined on the unit circle and are orthogonal. 
In this dissertation the widely used Noll normalization [Noll 1976] of these functions 
is employed: 
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The variables n and m are integers satisfying nm ≤  and evenmn =− . The index j is 

a mode ordering number and can be expressed in terms of n and m as 
( ) 121 +++= mnnj . The number of modes (nmds) for a given radial degree n is 
( )( ) 221 ++= nnnmds . The modal orthogonality can be expressed as 
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where δij is the Kronecker delta and 
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In Table 2.1 the Zernike polynomials up to the 5th radial degree are listed, and in 
Figure 2.7 some of them are visualized. 

 

Table 2.1: Zernike polynomials up to the 5th radial degree. For a given radial degree (n) modes with a 
lower value of azimuthal frequency (m) are ordered first. 
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Figure 2.7: Examples of Zernike polynomials representing the primary wave aberrations (Z2 tilt, Z4 
defocus, Z6 astigmatism, Z7 coma, Z11 spherical aberration) and a 5 th-order term (Z20). 
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With the Zernike polynomials the wave-front distortion, i.e. the optical path length 
difference W described above, can be expanded like: 
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Most PSDs measure shifts in the x and y directions rather than ρ and θ directions. 
Therefore it is common to use the monomial representation, i.e. powers of x and y, of 
the Zernike polynomials. It must be kept in mind that due to the limitation to the unit 
circle x and y only take values between –1 and 1. A description of how the 
corresponding conversion can be performed is given in [Malacara 1992]. In monomial 
representation Eq. (2.9) becomes 
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The corresponding Zernike coefficients ki can be determined via a modal estimation 
algorithm [Cubalchini 1979] using the measured average slope values, i.e. the 
gradients of the wave-front across the sub-apertures. 

Assuming that the wave-front sensor measures the x-directional derivative, i.e. the 
slope of the phase denoted A, and the y-directional derivative, the slope of the phase 
denoted B, that is 
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where (x,y)s are the measured coordinates for the sth sub-aperture, then the measured 
values can be combined into the vector M

r
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In reality the elements of M
r

 are averages of the directional derivatives across the 
sub-apertures (cf. the TRAs Eqs.(2.4)). Starting from M

r
, the estimation process will 

give a set of constants represented by the vector K̂  
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with an estimated wave-front 
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The term ( )yxZk ,ˆ
11 ⋅  corresponds to piston, a constant shift of the wave-front, and 

therefore usually is omitted. The criterion for finding K̂  was, in the case of this 
dissertation, to minimize the squared error between the measurement and the estimate. 
Since the elements of M

r
 are the values of the wave-front gradients at the different 

locations of the sub-apertures, we can write 
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In matrix notation 

 

 KDM
rr

= . (2.16) 

 

 

where M
r

 is the vector of measurements, K
r

 the vector of mode coefficients and D is 
a matrix containing the derivatives of the basis functions: 
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If D is a square matrix of full rank the solution to Eq. (2.16) is given simply by 
multiplying M

r
 with the inverse of D: 

 

 MDK
r

1ˆ −= . (2.18) 

 

In this case, K̂  is an exact solution to Eq. (2.16). Usually, however, the number of 
Zernike modes taken into account is smaller than the number of measurement points, 
and the linear system of equations corresponding to Eq. (2.16) is over-determined. 
The criterion for finding K̂  to minimize the squared error between the measurement 
and the estimate then leads to the normal equation (cf. [Bronstein et al. 1995]): 

 

 ( ) MDKDD TT
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The solution K̂  to this equation minimizes the Euclidian norm 
2

MKD
rr

−  in the 

least-squares sense and is given by 
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==
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(The matrix D has full rank and thus DTD is regular and invertible). The matrix A+ in 
Eq. (2.20) is referred to as pseudo-inverse of D [Golub and Van Loan 1983]. In 
general it can be calculated via singular value decomposition (SVD) [Golub and Van 
Loan 1983]. If K̂  has been determined, the reconstruction process is completed. The 
estimation of the original wave-front ( )yxW ,ˆ  is subsequently expressed with Eq. 
(2.14). 

According to Southwell [Southwell 1980], the accompanying mean-square wave-front 
reconstruction error 2

Ŵ
σ  for the solution Eq. (2.14) is given by 
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where σg
2 is the mean-square error of the slope measurements of the measurement 

vector M
r

. The mean-square error in such slope measurements can be assumed to be 
the same for all elements [Dai 1996]. In Eq. (2.21) tr{ } denotes the trace of a matrix. 

2.2.2 Phase Shifting Interferometry 

As mentioned in chapter 1 the resolution and efficiency of multi-quantum-
fluorescence microscopy are to a great extent affected by wave-front aberrations. In 
order to counteract those aberrations by pre-emptive distortion of the incoming wave-
front it is necessary to know the correction to apply. To obtain this knowledge the 
fraction of light that comes from the focal region needs to be selected exclusively. 
Conventional microscopy lacks the ability to discriminate light that comes from the 
focal region against out-of-focus light. Different from this, interferometry can 
distinguish between out-of-focus light and light that does come from the focal region 
(cf. section 2.4). The interferometric detection technique that is used in this 
dissertation, phase shifting interferometry (PSI) [Carré 1966], [Crane 1969], is 
described in this subsection. 

The basic concept of PSI is to introduce a varying phase shift between the reference 
wave-front and the wave-front to be measured. At each measurement point in the 
interferogram a signal results, which varies depending on this phase shift and contains 
the information about the relative phase between the two wave-fronts. Using 
monochromatic light, the electrical fields for the reference wave-front and AWF can 
be expressed as 
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with amplitudes Aref(x,y,t) and Aaberr(x,y,t), the wave-front phases φref(x,y) and 
φaberr(x,y) and the imposed additional phase shift δ. The phase shift δ can be 
introduced, for example, by varying the length of either of the interferometer’s arms. 
The interferometrical intensity pattern measured at the detector is given by the square 
of the sum of the fields in Eqs. (2.22) 
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This can be rewritten as the fundamental equation for PSI [Malacara 1992]: 

 

 ( ) ( ) ( ) ( )[ ]δφ +⋅+= yxyxIyxItyxI terfinampl ,cos,,,, .. , (2.24) 

 

where ( ) ( ) ( )dttyxAtyxAyxI aberrrefampl ∫ +∝ ,,,,, 22
.  is the average intensity, 

( ) ( ) ( )∫ ⋅⋅∝ dttyxAtyxAyxI aberrrefnterf. ,,,,2,i  is the intensity modulation and 

φ(x,y)=φaberr(x,y)-φref(x,y) is the wave-front phase difference. At each point the 
intensity varies as a sinusoidal function of the introduced phase shift δ with an offset 
given by the unknown wave-front phase (Figure 2.8). 

 

S=2π-φ(x,y)

I(x,y)

Iampl.(x,y)

Iinterf.(x,y)

2π
δ

 

Figure 2.8: The intensity variation in an interferogram as function of the phase shift δ(t) in one of the 
interferometer arms. 

 

The three unknown variables of Eq. (2.24) are illustrated in Figure 2.8, where 
Iampl.(x,y) is the intensity bias, Iinterf.(x,y) is half the peak-to-valley intensity modulation 
and φ(x,y) is the unknown relative phase to be measured. From the shift S of the 
sinusoidal variation the unknown relative wave-front phase can be computed. Using 
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an interferogram as depicted in Figure 2.8 for all positions (x,y) the entire relative 
wave-front phase φ(x,y) can be measured and reconstructed. 

One method to implement PSI is the four-step algorithm [Malacara 1992]. Four 
separate interferograms, each with δ increasing in steps of π/2 
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are recorded and digitized. Substituting each of the values in Eq. (2.25) into Eq. (2.24) 
results in four equations describing the expected intensity patterns: 
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Using the trigonometric identities cos(x+π/2) = -sin(x), cos(x+π) = -cos(x) and 
cos(x+3π/2) = sin(x), we find 
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We then eliminate the intensity bias term Iampl.(x,y) and get: 
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In principle, Eqs. (2.28) allow the direct calculation of the AWF’s phase. One 
possible way to obtain the actual wave-front is to use the notoriously unstable and 
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noise-sensitive process of phase unwrapping. A different method is used in this 
dissertation (described in subsection 2.4.3). 

In addition to providing phase information that can be used in various ways to 
reconstruct the wave-front, PSI allows coherence gating if illumination light of 
sufficiently short coherence length is used since any light that does not cause an 
intensity variation with δ will be rejected by applying Eqs. (2.28). If continuous 
waves are used, no depth-discrimination is possible, because all the light is coherent, 
and interference can be observed at all points in time. In order to obtain sufficient 
temporal discrimination femtosecond light pulses need to be used. Then, in Eqs. 
(2.23) to (2.28) an additional factor in front of Iinterf.(x,y), the complex degree of 
coherence, has to be added [Goodman 2000], which is equal to 1 as long as 
continuous waves are used. The actual value of the complex degree of coherence 
depends on the spectral properties of the light source used and can be, if the power 
spectral density of the source has a Gaussian shape, described as ([Goodman 2000]) 
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In this equation ∆ν is the FWHM of the power spectral density. The transit time 
difference between the two interferometer arms due to their path length difference 
∆s(x,y) is ∆τ =∆s/c (c is the speed of light). As can be seen, the value of the envelope 
in Eq. (2.29) depends on the arm length mismatch in the interferometer. Thus, when 
using femtosecond light pulses the rejection of incoherent light is of significance, 
because if Eqs. (2.28) are applied a signal results only if the arm length mismatch is 
less than or equal to the coherence length of the light source. To make this clearer the 
phase in Eqs. (2.28) as well as ∆τ in Eq. (2.29) are expressed as a function of the 
interferometer’s arm length mismatch ∆s(x,y). The discrete phase shifts of δ become 
spatial shifts of λ/4, 2λ/4 and 3λ/4, respectively. Accordingly the proportionalities in Eqs. 
(2.28) can be expressed as follows 
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Here, a is equal to 1/(2σ2) with σ being the width of the Gaussian function. We now 
make the assumption that the exponential function varies only little over one 
wavelength. This is known as the slowly varying envelope approximation. In this 
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case, the phase steps used to implement the PSI algorithm do not change the 
exponential function in Eqs. (2.30) significantly. Eqs. (2.30) can then, using again the 
trigonometric identities cos(x+π/2) = -sin(x), cos(x+π) = -cos(x) and cos(x+3π/2) = 
sin(x) be combined to 
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The sum of the square of each of the Eqs. (2.31) will be a Gaussian: 
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Since the parameter a is proportional to ∆ν (cf. Eqs. (2.29) and (2.30)) and the 
coherence length lcoh is proportional to 1/ ∆ν [Hecht 1990] the algorithm depicted in 
Eq. (2.32) results in a reasonable signal only if ∆s(x,y) is less than or equal to the 
coherence length lcoh (the maximum signal results at ∆s(x,y)=0). If ∆s(x,y) becomes 
larger than lcoh, the signal rapidly falls off and light with the wrong path length is 
rejected accordingly. This results in depth resolution on the order of the coherence 
length. 

2.3 Mie Theory 

The aim of this work is to demonstrate the feasibility of measuring wave-fronts from 
light that stems from within scattering samples. For testing CGWS such samples were 
produced by embedding polystyrene beads in agarose (cf. subsection 3.2.1). The 
properties of these samples were determined using Mie’s theory, which is briefly 
summarized in the following. 

2.3.1 Scattering Properties in Detail 

It was in 1908 when Gustav Mie obtained, on the basis of electromagnetic theory, a 
rigorous solution for the diffraction of a plane monochromatic wave by a sphere of 
arbitrary diameter and composition but of a homogeneous refractive index embedded 
in a homogeneous medium [Mie 1908]. A derivation of Mie’s formulae is given in 
[Born and Wolf 1999]. In general the intensity and polarization of the scattered light 
can be described as (see [Born and Wolf 1999]) 
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Here, λ(I) is the wavelength in the medium surrounding the sphere. The incoming 
beam, the scattering particle and the position of observation determine a plane called 
the scattering plane. Eqs. (2.33) represent the parallel and perpendicular components 
of the scattered light with respect to this plane (cf. Figure 2.9). The curvilinear 
coordinates used are the spherical polar coordinates, r, θ  and φ 
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The polynomials in cos θ in Eqs. (2.33) without a superscript are Legendre 
polynomials, those with a superscript are the Legendre functions of the first kind: 
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The complex coefficients eBl and mBl in Eqs. (2.33) are represented by 
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where the prime indicates the differentiation of the function with respect to its 
argument, n̂ is the complex index of refraction and q is the dimensionless parameter 
bound with the radius a of the scattering sphere. 

 

 



24 2  Methods 

The parameters n̂  and a are given by 
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Here, the superscripts (I) and (II) denote the parameter in the medium surrounding the 
sphere (I) and the parameter in the sphere (II). 
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Figure 2.9: The geometry for the description of Mie scattering. 

 

 

For the first term of Eqs. (2.37) it was assumed that the medium and the sphere are 
non-absorbing. Ψ  and ζ  in Eqs. (2.36) use the Bessel functions Jl+1/2 and the Hankel 
functions, which are given by a combination of Bessel and Neumann (Nl+1/2) 
functions (for further details see [Born and Wolf 1999]): 
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It is of practical interest to find the total amount of light that is absorbed or scattered 
by the sphere, i.e. the sum of the absorbed and the scattered energy. This can be done 
by using the optical cross-section theorem [Born and Wolf 1999]. For a non-
absorbing sphere the sum of absorbed and scattered energy is equal to the extinction 
cross-section (cf. [Born and Wolf 1999]): 
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That means that the MFP for a medium consisting of non-absorbing spheres can be 
calculated applying Eq. (2.39). Taking into account that the MFP is given by the 
inverse of the product of concentration of scattering particles n and scattering cross-
section, we can write 

 

 nQ
MFP

1
= . (2.40) 

 

Another feature of the scattering process that is important for CGWS is the 
anisotropy, g, which is a measure of the amount of conserved forward direction after a 
single scattering event. If the trajectory of light scattered by a particle is deflected by 
an angle θ, then the component of the new trajectory that is in the forward direction, 
is proportional to the cosine of θ (cf. Figure 2.10). The anisotropy g is defined as the 
average cosine of the deflection angle θ 
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with p(θ) being the probability of light scattering into a unit solid angle oriented at an 
angle θ. This probability has also been called scattering phase function. To simplify 
matters the special case of azimuthally symmetric scattering is assumed. If the 
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incident light is unpolarized, the total amount of scattered light intensity for a 
scattering angle θ can be expressed as [Bohren and Huffman 1998] 
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and the anisotropy can be calculated as follows: 
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Thus, Eqs. (2.33), Eq. (2.40) and Eq. (2.43) allow the determination of the main 
scattering properties of a scattering sample. 
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Figure 2.10: A scattering event causes a deflection θ of the original light ray. The azimuthal scattering 
angle φ, which is also present is of no importance for the conserved forward direction of 
the light, which is solely governed by cos θ. 

 



2.4 Coherence-Gated Wave-Front Sensing 

As mentioned in preceding chapters, it is desirable to be able to correct the focus by 
pre-emptive distortions of the incident wave-front. The knowledge of their required 
form is a necessary condition to achieve these distortions. For a certain point at a 
certain depth in a scattering sample this means that the shape of the wave-front, which 
is formed by light that is backscattered from exactly this point needs to be known, 
because this light encounters the same sample inhomogeneities as the incoming light 
on its way to the focus. In the previous section the underlying principles that can be 
used to obtain this information were described. 

In this section their combination to CGWS [Feierabend et al. 2004] is described. 
Subsection 2.4.1 deals with the light source - a femtosecond mode-locked laser - that 
provides one of the necessary parts for coherence-gating, namely low-coherent light. 
Subsection 2.4.2 describes the main features of the CCD camera that is used to record 
the interferograms. The setup used to demonstrate CGWS is the topic of subsection 
2.4.3. The implementation of the PSI algorithm is described in detail in subsection 
2.4.4. Finally an optimization process to compensate the group velocity dispersion 
(GVD), which is used to minimize the size of the coherence gate (CG) for a given 
coherence length is explained in subsection 2.4.5. 

2.4.1 The Light Source 

Since low-coherence light is required for the coherence-gating process the light 
source was chosen to be a Titanium Sapphire Oscillator (Coherent Model Mira 900-
F). This laser provides low-coherent light in the form of femtosecond mode-locked 
laser pulses. The population inversion in the gain medium is achieved by using a 
frequency doubled Neodymium Vanadate (Nd:YVO4) laser (Coherent Model VerdiTM 
V-5) as a pump source. It provides single-frequency continuous-wave (green, 532nm) 
light output of 5 Watts. In order to obtain the short light pulses the Mira is Kerr lens 
mode-locked [Spence et al. 1991]. The optical cavity design leads to a higher round 
trip gain in the mode-locked versus continuous wave operation mode. This is because 
the spatial profile of the beam changes as a consequence of self-focusing due to the 
optical Kerr effect in the gain medium. As a result, the overlap between the pumped 
gain profile and the circulating cavity mode increases. To enhance this effect, an 
aperture is placed at a corresponding position within the cavity, which results in lower 
round trip loss in the mode-locked operation mode. Table 2.2 summarizes the Mira 
specifications. 

The pulse length is about 100 femtoseconds (fs). Assuming a flat phase profile of the 
pulse, its temporal width can be calculated from a measured spectrum (e.g. Figure 
2.11) via the time bandwidth product τ ∆ν = 0.44 [Siegman 1986]. The outcome is 
referred to as Fourier limited pulse width [Siegman 1986]. From a value for the pulse 
width of about 100 fs the corresponding coherence length will be 30 µm. The CG 
depends only on this length (cf. subsection 2.2.2). 
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Table 2.2: Specifications of the used laser setup 

Used Mira 900 configuration specifications 

Pump laser Verdi V5 

Pump power 5 Watts 

Tuning range (XW optics set) 730 – 980 nm 

Center Wavelength 915 nm 

Average power 375 mW 

Pulse width ≈ 100 fs 

Repetition rate 76 MHz 

Theoretical peak power 
≈ 50 kW (calculated from measured average power, 

repetition rate and minimal pulse width) 
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Figure 2.11: Example for the measured spectrum emerging from the Mira. The measurements are 
presented in black. The gray line represents a Gaussian fit, which gives a slightly higher 
squared regression coefficient (R2) than a sech2-fit. The measure for determining the 
pulse length is the width of this curve. The full width at half maximum (FWHM) is, in this 
case, 11.5 nm corresponding to a Fourier limited pulse of 107 fs assuming a Gaussian 
pulse shape. 

 

2.4.2 The CCD Camera 

A crucial part of CGWS is the detection of the light. As described in subsection 2.4.3 
a PSI algorithm was used to detect the wave-front. While use of interferometric 
detection relaxes the requirement for low dark noise, linearity and quantum efficiency 
of the detector are still important. A monochrome CCD camera was therefore used 
(Sony Corporation, USA), controlled by a Hamamatsu (Hamamatsu, USA) C2400-60 



2.4  Coherence-Gated Wave-Front Sensing 29 

control unit. Via a Matrox (Matrox Germany Electronic Systems GmbH) Meteor II 
frame grabber card the video signal of the camera was digitized for further processing 
on a personal computer. 

Some of the properties of the camera used were carefully determined independently of 
the manufacturers specifications. 

In order to automate the phase-stepping of the PSI algorithm used (cf. subsection 
2.4.3), changing the reference arm path length needed to be synchronized with the 
frameclock of the camera. Therefore, the operation of the camera used was examined 
first. The Sony XC-77 CCD camera module produces video signal output that 
corresponds to the RS-170 (EIA standard) signal system. The RS-170 standard is an 
interlaced-working standard. That means, that in the case of classical video cameras 
after 63.56 µs the scanning process of the first odd row is finished and starts at the 
next odd row. This scanning and starting in the next row is repeated until all odd rows 
are scanned and the odd half-frame is completed. After 16.68 ms this is accomplished 
and a vertical-sync signal can initiate the next half-frame, the one for the even rows. 
Taking this operation principle into account, the half-frames are scanned with a 
frequency of 60 Hz. Obviously, in CCD camera devices there is no beam scanning, as 
the readout process replaces this function. However the frequency at which the half-
frames are delivered remains 60 Hz. The organization of the Sony XC-77 follows an 
interline-transfer scheme (Figure 2.12). Light variations are sensed by the photo 
sensors, which generate electronic charges proportional to the incident light intensity. 
The generated charges are fed into the vertical shift registers simultaneously. Then 
they are transferred from the vertical shift registers to the horizontal shift registers 
successively and, finally they reach the output amplifier to be read out sequentially. 

During the readout process light still falls onto the photo sensors. This light will be 
integrated. The corresponding time course can be summarized as: 

1. Light falls onto both, the even and the odd lines. 

2. The generated charges of the odd lines are read out while the light, which is 
still falling onto the even lines is further summed up. 

3. As soon as the charges of the odd lines are transferred to the vertical shift 
registers, the integration of incoming light on them starts again, e.g. if line 
three is read out, the integration process for line one has already started again 
and so on. 

4. Then the charges generated on the even lines will be read out. During this 
process the light falling onto the odd lines is integrated. 

As soon as the charges of the even lines are transferred to the vertical shift registers, 
the summing up of incoming light on the even lines starts again. This means, that the 
integration time for one half-frame is equal to the inverse frequency at which the 
frames are delivered, 33.36 ms. Consequentially, in a complete frame there is the time 
information of three half-frames (Figure 2.13). 
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Figure 2.12: Interline transfer organization of the XC-77 CCD camera module. 
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Figure 2.13: Schematic operation principle of the Sony CCD camera module. The full frame of interest 
consists of first and second half-frames. The integration process for each half-frame 
starts immediately after the start of the corresponding readout process, which runs quasi 
in parallel. The result is a time contents of three half-frames in a full frame. 
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Figure 2.14: The time information contents of a full frame in practice. If a cardboard pointer rotating 
at a constant speed (a) is recorded with a CCD camera, the full frame clearly visualizes 
the three integration time phases (b). The rotation of the pointer leads to an image of a 
half circle, the ‘pointer half circle’. First the lines of the first half-frame, the odd lines, 
are integrated. Evidently in (b) in the left part of the ‘pointer half circle’ only every other 
line contains light information. However there is a time period where the light falling on 
both odd and even lines is integrated. Correspondingly the middle sixth of the ‘pointer 
half circle’ in (b) shows no alternating behavior. Every line contains light information. 
Finally, only lines of the second half-frame are integrated. Unmistakably the right part of 
the ‘pointer half circle’ reveals again the alternating behavior. Thus a full frame 
contains time information of three half-frames. 
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To illustrate this, an experiment with a cardboard pointer, rotating at a constant speed, 
was performed. The rotation velocity was approximately half a rotation per camera 
frame. If the movement of the pointer was recorded with the CCD camera, a half 
circle became visible (Figure 2.14). 

To be able to calculate the absolute intensity of the measured signals it is necessary to 
know how the number of photons incident on the photo-sensors of the CCD chip are 
converted into a value of analogue digital units (ADUs) or ‘gray values’, respectively. 
The camera system (consisting of controller, camera and frame grabber) does this 
conversion with a dynamic range of 8 bits. The underlying conversion factor was 
determined as follows below. When the arrival of photons can be regarded as the 
independent occurrences of a sequence of random events at a rate equal to the photon 
flux, photons will obey the Poisson statistics [Saleh and Teich 1991]. Then the 
corresponding variance, σ2, and standard deviation, σ, of their number N is given by 
[Taylor 1997] 
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To show that the conversion factor is a constant, images at 18 different incident light 
power levels were taken. For each power level fifty images (with a size of 640×480 
pixels) were averaged and the integral of gray values was plotted versus the 
corresponding power level (Figure 2.15). If the conversion factor is really a constant, 
the integral of gray values should increase linearly with incident light power. The 
straight line in Figure 2.15 is a fit to the measured data points, which has an R2-value 
of 0.99. Under the assumption that the gray value ‘M’ is proportional to the number of 
incident photons N the conversion factor α can be calculated starting from 

 

 NM α= . (2.45) 

 

An equivalent transformation under inclusion of Eq. (2.44) gives 

 

 

( ) ( ) ( )
( )( ) ( )

( )
.

2

2222

222

222

M

MM

M
M

N

NNNN

NNNNMM

−
=⇒

====

−=−=

−=−=−

α

α
α

αασα

αα

αααα

 (2.46) 



32 2  Methods 

 
 

100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

incident power [nW]

in
te

gr
al

of
gr

ey
va

lu
es

[1
07

]

 

Figure 2.15: Measured response of the CCD chip to increasing power levels. As expected, the integral 
of gray values changes linearly with the incident power. 

 

This shows that if the variance of gray values ( )2
MM −  is depicted as a function 

of the mean gray value M , then according to Eq. (2.46) the slope is α. For a light 

emitting diode as the light source the photons obey Poisson statistics. The CCD chip 
was illuminated under a small angle with such a diode in order to provide a gradient 
of different gray values in each image. The mean and variance for each ADU were 
determined on the basis of 100 images. Subsequently the illumination strength of the 
diode was changed and another 100 images were taken to calculate again mean value 
and variance. This procedure was repeated fifteen times. The data points were 
background corrected which allows the comparison of the ordinate intersection with 
the otherwise measured dark noise. Each data pair (variance, mean gray value) was 
plotted, and a linear weighted fit was achieved (Figure 2.16). This linear fit yields a 
conversion factor of 0.00336, which means that the camera system translates ≈ 297 
incident photons into one ADU. 

To determine the black level and the dark noise of the camera, 10 times 100 images 
were taken while no light was falling onto the CCD chip. Each set of these 100 
images was averaged and the produced ten mean values were again averaged. From 
the image generated in this way the black level was determined to 20.1626 ADUs and 
the dark noise to 0.7347 ADUs. While comparing the latter with the ordinate 
intersection (Figure 2.16), which should be its square value, a deviation of roughly 
5% was found. That the black level is not equal to zero is due to the fact that the RS-
170 standard introduces a small step on the blanking level [Inoué and Spring 1997]. 

In order to obtain an estimation of how efficiently the camera converts incident light, 
the power directly in front of the CCD chip was measured and compared to the 
number of photons that was calculated with the help of the conversion factor. An 
average of fifty images was taken, background corrected, and the integral of gray 
values was calculated. The energy per photon was ≈ 2.17·10-19 Joule (915 nm 
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wavelength). Hence, the measured power of 206·10-9 W corresponds to ≈ 9.5·1011 
photons per second. The integral of gray values was ≈ 4.5·106. Since one ADU 
corresponds to 297 photons, this makes ≈ 1.34·109 photons per frame, i.e. per 33.36 
ms, or ≈ 4·1010 photons per second. This means that the camera efficiency is roughly 
4%. 
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Figure 2.16: Variance plotted versus mean gray value. The slope of the linear fit line corresponds to 
the conversion factor, which was calculated to be 297 photons per ADU. 

 

A specification for the fill factor of the XC-77 is not available. Typically for an 
interline-transfer CCD it lies between 25% and 70% 
(http://www.roperscientific.de/tinterline.html). This means that, if a fill factor of 70% 
is assumed, the quantum efficiency has to be 5.7%. On the other hand, if a fill factor 
of 30% is assumed, the quantum efficiency has to be 13.3%. Since the quantum 
efficiency for standard CCD video cameras at this wavelength is clearly under 10% 
(www.hamamatsu.de) it is more likely that the fill factor of the Sony XC-77 is in the 
vicinity of 70%. 

As pointed out in section 2.2 the average slope of a wave-front across a sublens 
corresponds to the position of the diffraction spot in the focal plane of this sublens. To 
determine this position as accurately as possible, the size of a single pixel needs to be 
known. Therefore, the camera module was mounted on top of a linear stage and a 
standard Helium-Neon laser (Spindler & Hoyer HeNe-Laser 30) was aligned to shine 
its light orthogonally onto the CCD chip. To avoid that the camera got saturated, the 
beam was attenuated. Subsequently the camera was moved in small steps of 100 µm 
along a horizontal line perpendicular to the HeNe-laser beam. For every position of 
the camera the spot location of the laser on the CCD chip was determined by finding 
the spot centroid. Thus, the beam position on the camera was measured as a function 
of the distance covered by the camera. 
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Figure 2.17: Distance covered by the camera as a function of laser beam spot position. For the long 
axis in (a), for the short axis in (b). The corresponding slopes are (12.85±0.07) µm per 
pixel and (13.25±0.22) µm per pixel, respectively. 

 

 

If this is plotted as distance covered versus spot position in pixels (Figure 2.17) it 
becomes clear that 

1. the data points should follow a straight line and 

2. the slope of this line equals the pixel dimension along the horizontal 
orientation axis at the moment of measurement. 

Similarly, the dimension for the perpendicular orientation was determined by rotating 
the camera by 90° (Figure 2.17). Short and long axis refers to the fact that the camera 
chip has a rectangular design. The images contain 640 pixels along the long axis and 
480 pixels along the short axis. The individual pixel size was determined to be: 

• Long side: (12.85±0.07) µm, 

• Short side: (13.25±0.22) µm. 

These results show that a single pixel is not square but rectangular – a fact that is 
important for the analysis of the diffraction spot shifts when measuring wave-fronts 
(cf. subsection 2.4.3). 

 

2.4.3 Implementation of CGWS – The Setup 

The basic idea of CGWS is to select exclusively the backscattered light from a small 
region within the sample and measure the accompanying wave-front. How this can be 
accomplished in practice is described in this subsection. 
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Figure 2.18: Schematic of the setup. A Neodymium Vanadate laser (Pump) pumps a Titanium Sapphire 
laser (Ti:Sa). This laser is tuned to produce modelocked laser pulses at a wavelength of 
915 nm. The pulsed light is passed via a combination of several mirrors (Mcomb, all 
LINOS Photonics) through a beam expander (L1 and L2; LINOS Photonics NIR doublets, 
f=40 mm and f=80 mm). A 50/50 beam splitter cube BSC1 (Coherent) splits the light into 
the reference and sample arms. In the sample arm the light is focused by an IR water 
immersion objective OBJ (Zeiss IR Achroplan 63x/0.9W) into the sample. A telescope 
consisting of lenses L3 and L4 (LINOS Photonics NIR doublets, f=140 mm) images the 
back focal plane (BFP) of the objective onto a CCD chip. The reference light is reflected 
from a mirror M1 (LINOS Photonics flat mirror, silver coated), which is mounted on a 
piezo ceramic (LINOS Photonics PCL100-40 controlled by LINOS Photonics Torque-
Drive TD3-200). From there the light further propagates through dispersion matching 
prisms DP (LINOS Photonics BK7 prisms). The reference light is recombined with the 
backscattered light via a right-angle prism RP (LINOS Photonics), a mirror M2 (LINOS 
Photonics flat mirror, silver coated) and the beamsplitter cube BSC2 (LINOS Photonics). 

 

Wave-front sensing is realized by the use of a PSI algorithm and virtual lenslets that 
mimic a SHS. This makes it possible to employ a modal estimation algorithm 
[Cubalchini 1979] for reconstructing the wave-front. The exclusive selection of 
backscattered light that comes from a certain depth within a sample is realized by 
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means of a CG (cf. subsection 2.2.2). The phase shifts required for this algorithm are 
introduced by the controlled movement of a piezo ceramic translator (LINOS 
Photonics PCL 100-40). As mentioned in subsection 2.4.2 the light intensities are 
recorded via a monochrome CCD camera module and a frame grabber card for 
processing on a personal computer. The processing of the digitized data is performed 
by means of MATLAB (The MathWorks Inc.) routines. 

As mentioned in subsection 2.2.2, PSI is achieved by using an interferometer setup. 
The setup is shown in Figure 2.18 and consists of two arms, i.e. the sample and the 
reference arm. Since the light source produces low-coherence light (cf. subsection 
2.4.1), this interferometer can be used for depth discrimination as explained earlier 
(cf. subsection 2.2.2). The optical path length difference of the interferometer arms is 
adjusted by shifting the right-angle prism (RP, Figure 2.18). For small and deliberate 
changes the piezo ceramic can be used. Considering the statements of subsection 
2.2.2, the interference signal on the CCD chip can be expressed as 
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For a given phase difference of the interferometer arms 
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four small shifts of a quarter wavelength (915/4 nm) at a time make it possible to 
write Eqs. (2.26) as 
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These four small shifts are produced by a corresponding movement of the piezo 
ceramic (cf. subsection 2.4.4). The movement of the piezo results in a decrease of the 
arm length of the reference arm and thus the intensities at the CCD chip for the four 
different positions are equal to 
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Using the trigonometric identities cos(φ-90°)=sin(φ), cos(φ-180°)=-cos(φ) and cos(φ-
270°)=-sin(φ) yields 
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Thus, we can write Eqs. (2.49) as 
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Since ∆t in the exponent of the exponential functions in Eqs. (2.52) equals the optical 
path length difference of the two interferometer arms divided by the speed of light 
(∆x/c0), the sum of the squares of each of the equations in Eqs. (2.52) can be written 
as 
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Therefore, changing ∆x by moving the right-angle prism allows determining the 
position in which both arms have the same optical path length. For this particular 
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position of the right-angle prism where ∆x=0, the result of Eq. (2.53) becomes 
maximal. In practice, this length adjustment was achieved using a mirror in the focal 
plane of the objective. In scattering samples this length adjustment ensures that only 
light from the focal region contributes to the signal. The size of this region is 
governed by the coherence length of the light source used (cf. subsection 2.2.2). The 
middle position of this region is referred to as CG position. All incoherent light is 
rejected by making use of Eqs. (2.49). After the length adjustment procedure 
described, moving the scattering sample parallel to the OA determines the depth 
position in the sample from where backscattered light is detected. 

Apart from its ability to adjust the arm lengths to the same optical path length, the 
algorithm in Eq. (2.53) also offers the option to check whether the setup is working 
correctly. From measurements of the FWHM of the power spectral density of the light 
source (cf. subsection 2.4.1), we can calculate a theoretical estimate for the FWHM of 
the envelope of Eq. (2.53) (FWHMenv). This can be compared to a real measurement. 
For this measurement a quartz plate that mimics a mirror was used as a sample. The 
reference arm length was changed in steps of ≈ 2 µm by moving the linear stage, on 
which the right-angle prism was mounted, in ≈ 1 µm steps. The error for the 
corresponding optical arm length change was assumed to be ±0.5 µm. This error was 
due to the inaccuracy in determining the division of the scale of the micrometer-screw 
that drives the linear stage. By moving the stage over a broad range and recording the 
signal at the CCD chip, the envelope of Eq. (2.53) is measured. Clearly, the dispersion 
present in both arms plays a significant role for the width of the resulting envelope. 
Therefore, dispersion matching prisms were introduced into the reference arm to 
adjust this dispersion (cf. subsection 2.4.5). If the FWHM of the frequency spectrum 
of the light source is known, and if the dispersion in both arms is identical, the 
exponential function term in Eq. (2.47) can be written as [Goodman 2000] 
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Thus, the FWHM of the envelope ( )2
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That means, that the frequency FWHM of the spectrum can be used to calculate the 
FWHMenv. In view of the fact that the spectrometer used measures the spectrum of a 
light source in the nanometer range, the required frequency FWHM is not directly 
available but can easily be calculated. In this wavelength range, it is possible to obtain 
a good approximation of the frequency FWHM by simply taking the difference 
between the frequency equivalents of the two wavelengths that mark the wavelength 
FWHM in the wavelength range. The resulting deviation from the actual value is only 
minor as will be seen later. In order to take the difference of the frequency 
equivalents, the abscissa is converted into corresponding frequency values via the 
relationship ν=c0 /λ. Obviously the numerical distance of two adjacent frequencies 
becomes smaller and smaller the larger the wavelength. On the left hand side of this 
“new” x-axis the higher frequencies are situated whereas the lower ones are 
positioned on the right. In order to determine the FWHM for this new abscissa, i.e. for 
the spectrum expressed as a function of the frequency, it is necessary to draw the x-
axis with the frequencies at equidistant spacing. Only this plot allows for a correct 
determination of the frequency FWHM. As a result of this redraw, an expansion effect 
at the lower frequency edge is produced, i.e. the gradient of the spectrum is smaller at 
lower frequencies compared to the higher frequency edge. The frequency FWHM 
determined in this plot of the spectrum is different from the frequency FWHM 
calculated by the corresponding frequency equivalents of the wavelength FWHM. In 
general, this becomes less important for higher wavelengths where the distance 
alteration between corresponding adjacent frequencies becomes negligible. In the case 
at hand, where wavelengths between 907 nm and 922 nm are observed (the measured 
wavelength FWHM was ≈ 14 nm, center wavelength 915 nm) the relative deviation 
between the two frequency FWHMs determined from the nanometer spectrum and 
from the frequency spectrum is only 3%. For the Mira spectrum, with a center 
frequency of 3.279 1014 Hz, the corresponding frequency FWHM was assumed to be 
5.017 1012 Hz (derived from the nanometer spectrum). Applying Eq. (2.55) gives an 
expected FWHMenv of 37.3 µm. In practice the FWHMenv was determined with the 
help of a nonlinear least-squares fit. The MATLAB routine nlinfit, which uses the 
Gauss-Newton method, was applied for this purpose. A typical result, in this case for 
a wavelength FWHM of 14 nm, is shown in Figure 2.19, where the FWHMenv was 
36.8 µm. 

The FWHMenv corresponds to the achievable depth resolution since mainly the light 
from within a region of this size around the focus is detected (cf. subsection 2.2.2). 
For a coherence length of 30 µm the volume of this region amounts to roughly 6 
picoliters. Of course, the objective is to keep this region as small as possible. The 
optimum is reached through compensation of second order dispersion (GVD) present 
in the sample arm. How this is done is described in detail in subsection 2.4.5. 

Wave-front sensing is implemented by using PSI and virtual lenslets. These virtual 
lenslets are obtained by dividing the sensing area of the CCD chip into small 
compartments (from now on called virtual lenslet compartments, VLC) with a size of 
15×15 pixels each. 
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Figure 2.19: Envelope of Eq. (2.53) for a pulse with a wavelength spectrum FWHM of 14 nm. The solid 
line gives the best fit through the data points. The FWHMenv is (36.8±0.2) µm. The error 
represents the standard deviation. 

 

One advantage of the virtual lenslets is that there is no limitation to their size. The 
larger their size, the smaller the width of the diffraction pattern peak in their focal 
plane. The accuracy of the wave-front reconstruction depends on the accuracy with 
which the position of this peak can be determined. That means a smaller width of the 
diffraction peak results in higher accuracy. However, the shape of the wave-front 
becomes increasingly complicated with higher orders. In order to measure these 
complicated shapes the number of sampling points and thus the number of VLCs must 
be increased. An increase in the number of VLCs results in a reduction of the size of 
each VLC which in turn leads to a loss of reconstruction accuracy. Thus depending on 
the order of the wave-front aberrations to be measured a trade-off between size and 
number of VLCs has to be made. Several trials with a number of different VLC sizes 
have shown, that the 15×15 pixels size seems to be adequate for the aberrations with 
which CGWS was tested. An even greater advantage than variety in size is that due to 
the rather uniform light intensity in the sensor plane when employing VLCs, pixel 
saturation is not a problem. Earlier experiments with an actual lenslet array (Adaptive 
Optics Associates) showed that saturation is a common problem for real lenslets, 
because the intensity distribution in the sensor plane is very inhomogeneous. Besides 
that, all the other optical limitations associated with real lenses, such as lens errors, 
are eliminated if their virtual counterparts are used. The division into VLCs with a 
size of 15×15 pixels was achieved by covering the recorded image of the BFP of the 
objective on the CCD chip with a grid with a spacing of 15×15 pixels starting from 
the center of the objective BFP image. Each nodal point corresponds to the center of 
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an individual VLC. In order to save computing time only those VLCs are taken into 
account whose radial distance to the center of the BFP image is less than or equal to 
180 pixels. The resulting circle covers the complete image of the BFP. By combining 
the two parts of Eqs. (2.52), the electric field across the camera can be written in its 
usual complex form: 
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This electric field has the same wave-front as the sample arm, if, as is the case in this 
dissertation, the electric field in the reference arm has a planar wave-front. The light 
intensity distribution in the BFP of a lens is given by [Saleh and Teich 1991] 
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where λ is the wavelength, f the focal length and ( )f
y

f
xF λλ ,  is the Fourier transform 

of the electrical field distribution at the location of the lens, in the case at hand 
( )yx,E

~
resultant . The position of the diffraction spots can thus be obtained by taking the 

square of the Fourier transform of the complex amplitude ( )yx,E
~

resultant  across each 

VLC, multiply it by the factor 1/(λ·f)2 and do a nonlinear position fit to the resulting 
data. This transform was implemented via the FFT algorithm supplied by MATLAB. 
The area to be Fourier transformed was padded with zeros until it reached the size of 
65×65 pixels. This was done for a more precise sampling of the diffraction spot and to 
take the finite size of an individual VLC into account. The more precise sampling 
increases the position accuracy when the diffraction spot position is determined with 
the nonlinear fit. This fit uses again MATLAB’s routine nlinfit. It turned out that in 
practice the individual diffraction images of the VLCs show high side peaks when 
CGWS is performed in scattering samples (cf. Figure 2.20). Therefore, the fit to find 
the diffraction spot position was restricted exclusively to the peak area, which was a 
5×5 pixel area around the maximum value in the corresponding diffraction image.  
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Figure 2.20: The theoretical intensity distribution of a diffraction pattern for a square lens with the 
parameters used in this thesis: an edge length of 195 µm and a focal length of 10120 µm 
(a). Typical diffraction pattern in the virtual focal plane of the virtual lenslets, calculated 
from the measured intensity across the VLCs via Fourier transform, in case of a 
scattering sample (b). x- and y-coordinates correspond to the coordinates in the focal 
plane of the lens. If the central peak of such a diffraction pattern is approximated by 
fitting a Gaussian the accompanying width parameter σ of the Gaussian is ≈ 5.44 µm in 
the theoretical case and only slightly different (6.12±0.16) µm in the case of the 
scattering sample, respectively. The small elevations at the ends of the parallel to the x-
axis through the center peak in (b) are due to the interlaced operation of the camera 
resulting in an alternating intensity pattern in the recorded images. 

 

Once the inverse coordinates of the diffraction spot positions in Fourier space are 
obtained, they are calculated backwards into real space coordinates by using 

 

 
yy

xx

fy
f

y

fx
f

x

κλ
λ

κ

κλ
λ

κ

=⇔=

=⇔=
 (2.58) 

 

with the spatial frequency coordinates κx and κy, and the real space coordinates x and 
y. With the conversion of the Fourier space coordinates into real space coordinates the 
wave-front sensing process is complete. 

The reconstruction of the wave-front follows the scheme of a modal estimation 
algorithm [Cubalchini 1979] as already explained in section 2.2. For the real space 
coordinates obtained from Eqs. (2.58) the distance to the corresponding VLC center is 
determined. This corresponds to the TRAs ∆x and ∆y of subsection 2.2.1 and hence 
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Here, f and A represent the focal length and the area of the corresponding VLC. As 
mentioned earlier all VLCs are square with a side length of 15 pixels. Since the size 
of a pixel is roughly 13×13 µm2 (cf. subsection 2.4.2) the side length of a VLC is 195 
µm. Therefore s in the integral limits in Eqs. (2.59) has to be chosen half this side 
length, 97.5 µm. The variables x0 and y0 are the center coordinates of the related VLC 
and W(x,y) in Eqs. (2.59) represents the optical path length difference between the 
AWF and the plane reference wave-front. To expand W(x,y) in Zernike polynomials it 
must be mapped onto the unit circle. Thus 
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where ux and uy are the dimensionless x- and y-coordinates on the unit circle and s.f. is 
the scale factor that ensures that ux and uy take only values between –1 and 1. This 
scale factor is equal to the distance between the outermost VLC and the center of the 
image of the BFP of the objective, i.e. 180·13 µm=2340 µm. Inserting the new 
variables in Eqs. (2.59), we can write 
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The next step is to replace W(ux,uy) by its Zernike expansion (cf. section 2.2) 
( )∑ yxii uuZk , . The terms ∆x/f and ∆y/f in Eqs. (2.61) are combined for all VLCs to 

yield a vector that corresponds to the measurement vector M
r

in section 2.2 Eq. (2.12). 
The integrals on the right hand side of Eqs.(2.61) are combined for all VLCs to form 
the matrix D (section 2.2 Eq. (2.17)), which contains the derivatives of the Zernike 
modes used (number two to number twenty-one). As explained in section 2.2 the least 
squares estimate for the ki in the Zernike expansion of the wave-front is obtained by 
multiplying the measurement vector M

r
 with the pseudo-inverse of D, which is 
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calculated applying MATLAB’s pinv routine. The multiplication with the pseudo-
inverse completes the reconstruction process, and the reconstructed wave-front can 
then be represented by (cf. section 2.2) 
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2.4.4 Piezo Control 

The depth discrimination in CGWS is achieved by using a phase shifting 
interferometry (PSI) algorithm as described above. Small changes in the optical path 
difference between the two interferometer arms were introduced by a movement of a 
piezo ceramic (cf. subsection 2.4.3). The resulting interference intensities can be used 
to eliminate the incoherent light by applying Eqs. (2.52). It is important that the piezo 
steps induce an interferometer arm length difference change of λ/8±10%, otherwise 
the PSI algorithm does not work correctly. 
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Figure 2.21: Arrangement of the piezo movements in order to implement a four-step PSI algorithm. 
The stair symbolizes eight actual positions of the piezo. Every position is kept for half the 
integration time of one half-frame of the camera module (a or b). In this manner four full 
frames (color coded red, blue, green and black) are recorded for eight piezo positions. If 
the positions of the piezo each induce a reference arm length reduction of λ/8 applying 
the difference (full frame 4 – full frame 2) as well as (full frame 3 – full frame 1) 
establishes the desired PSI algorithm. 
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This could be achieved with four steps of length λ/4 each. But taking the operation 
principle of the CCD camera (cf. subsection 2.4.2) into account, this would follow a 
scheme that unnecessarily needs more time than actually required for this task. A 
more appropriate way is to use the scheme depicted in Figure 2.21. 

To be able to implement this scheme, the piezo and the camera must be synchronized. 
To ensure this, an appropriate electrical control circuit, depicted in Figure 2.22, was 
assembled. The core element of this circuit is a synchronous 4-bit binary counter 
(74LS161AN). Every time a vertical-sync (Vsync) signal from the camera arrives at the 
input pin of this counter, its count increases by one. The output pins follow the truth 
table shown in Table 2.3. If all the possible counting states of the 74LS161AN were 
used directly, fifteen piezo steps would result. In order to accomplish the scheme as 
illustrated in Figure 2.21 the highest bit (output pin number 11, QD in Figure 2.22, 
respectively) is neglected. As a consequence, the counting states number one through 
eight are indistinguishable from states number nine through sixteen. The outcome is 
eight piezo states instead of sixteen. As mentioned above, these states each need to 
induce the same path length difference of the interferometer arms. To achieve this, the 
resistors of the control circuit depicted in Figure 2.22 must be chosen appropriately. 
The control circuit can be depicted by the equivalent circuit diagram Figure 2.23 if RA 
is chosen to be equal to 4RC and RB is chosen to be equal to 2RC. 

 

 

 

Table 2.3: Pin assignment table in used circuit for output pins of the synchronous counter 74LS161AN. 

 Count 

output pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

14 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

13 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

12 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
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Figure 2.22: The electrical synchronization control circuit. Vsync is the input signal from the camera. As 
can be seen the output voltage is controlled via a potentiometer P. 
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Figure 2.23: Equivalent circuit diagram for the wiring diagram depicted in Figure 2.22. 
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Applying Kirchhoff’s laws to the circuit depicted in Figure 2.23 leads to 
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This can be rewritten to 

 

 ( ) ( )PCBAPP RkUUURU ⋅++⋅= 42 . (2.64) 

 

 

Figure 2.24: The synchronization and stepping process as seen on an oscilloscope. Trace number 3 
(green) shows the measured readout signal of the CCD camera. The half-frames are 
clearly distinguishable. Trace number 2 (black) shows the Vsync-signals coming from the 
CCD camera. They represent the input for the circuit depicted in Figure 2.22. Trace 
number 1 (light blue) illustrates the measured stair structure output of this circuit. 

 

Since the 74LS161AN component is a binary counter, the output pins can be either 
high or low. If a pin is low, no output voltage is generated for this pin. If a pin is high, 
an output voltage for this pin is generated with an amplitude that is the same for all 
pins that are high. Thus the mirror mounted on the piezo ceramic (cf. Figure 2.18) 
runs through eight individual equidistant positions (cf. Eq. (2.64)). In practice this 
synchronization and stepping process looks as depicted in Figure 2.24. 
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The resistance of the potentiometer RP can be used for adjusting the step size so that it 
is equal to a length difference of λ/8. These adjustments can be checked by means of 
the interferograms. In a first step, the interferometer is aligned in such a way that 
interference fringes become visible. The easiest way to achieve this is to use a planar 
reflecting surface as a sample, e.g. a plane-parallel BK7 plate. In a second step, the 
reference arm is scanned by adjusting the 90° right-angle prism until fringes appear. 
Then RP is gradually increased, while the result of passing quadruplets of frames 
through the algorithm described in Eq. (2.53) is observed on the camera. The correct 
value of RP is found if the resulting image is free of interference fringes (Figure 2.25). 

 

 

Figure 2.25: If the value for the potentiometer resistance RP is either too low or too high, fringes are 
still visible after the algorithm Eq. (2.53) has been applied, (a) and (c). However, if the 
right value for RP is selected these fringes vanish (b). 

 

2.4.5 Dispersion Compensation 

The depth discrimination ability of CGWS and in particular the depth resolution is 
determined by the coherence length of the light source (cf. subsection 2.2.2). 
Ultrashort laser pulses are, therefore, particularly suitable for CGWS. Such a pulse is 
spread in time due to GVD. This effect is due to the fact that the light in ultrashort 
pulses consists of quite a range of optical frequencies. The depth resolution of the 
CGWS method, that is the thickness of the layer from where light is detected, depends 
on the difference of GVD present in both interferometer arms. It is possible to 
minimize the layer thickness by minimizing the difference of GVD. This was done by 
adding the proper amount of glass in the reference arm with the BK7 prisms (cf. 
Figure 2.18). If the amount of GVD in both arms is the same, the envelope of the 
cross-correlation of the light pulses in both arms will be minimal. Mathematically this 
can be expressed as follows: 

If we assume a Gaussian pulse form, an analytic treatment is possible. Such a pulse 
can be described in the time-domain as [Siegman 1986] 
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and in the frequency domain as 
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The extra phase, which is acquired while the pulse propagates through a dispersive 
medium can be described by including the term ( )[ ]zi ωβ−exp . Here the “free space” 
propagation constant β is given by [Siegman 1986] 
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If only narrowband signals having frequency components near some center frequency 
ω0 are of concern, the propagation constant of a dispersive medium can be expanded 
at ω0 to 
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Thus, if the input into such a dispersive medium is given by Eq. (2.66), the output 
pulse spectrum ( )ω,~ zE  is 
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This is the general form of a chirped Gaussian pulse with the initial complex Gaussian 
parameter Γ0 = a0 – ib0. Clearly the output pulse in time from this system will be the 
inverse Fourier transform of Eq. (2.69). After some mathematical effort [Siegman 
1986] this looks like 
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where ( ) ziz ''
0 2/1/1 β+Γ≡Γ . The Gaussian pulse parameter Γ(z) has changed but the 

pulse profile is still Gaussian. Using the mathematical identity 
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yields 
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As can be seen from the first exponent in Eq. (2.72) the phase of the carrier frequency 
ω0 is delayed by a midband phase shift β(ω0)z after propagating a distance z. This 
means that the sinusoidal waves within the pulse envelope appear to move forward 
with midband phase velocity 
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The second exponent in Eq. (2.72) indicates that the pulse envelope itself is delayed 
by the group delay time β’z and appears to move forward with group velocity 
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The change of the new Gaussian pulse parameter Γ(z) is determined by β’’ as follows 
from Eq. (2.70). This parameter β’’ is called the group velocity dispersion (GVD) 
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The group velocity as a function of a frequency deviation of a signal can be expanded. 
Using Eq. (2.75) will reveal that the group velocity itself is a frequency dependent 
quantity 
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Physically this can be interpreted if we do not think of one pulse, but of a number of 
sub-pulses, each with a slightly different carrier frequency and correspondingly a 
slightly different group velocity. Then in a simple way it can be said, that each 
frequency component of the pulse travels at a slightly different group velocity. This 
influences the overall shape of the pulse. Mathematically this becomes apparent by 
the change in Γ(z) 
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A pulse like Eq. (2.66) in the frequency domain is related to a pulse in the time 
domain by 
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The interference term in the cross-correlation of two such pulses is proportional to 
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Since the pulses have the same spectral width, α1 must be equal to α2. With a 
quadratic completion the integral becomes tractable, and Eq. (2.79) then becomes 
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The first term in the second line of Eq. (2.80) gives the envelope of the interference 
term and the second term corresponds to the oscillation term. For the width of the 
interference term only the first term has to be taken into account. The width of the 
square of the envelope is then proportional to 

 
1

Re
−

















+
⋅

BA
BA

. 

 

After some mathematical manipulation the result can be written as 
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Using Eqs. (2.69) and (2.78) we find 
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It is clear from Eq. (2.81) that the width of the cross-correlation is minimal if the same 
amount of second order dispersion is present in both interferometer arms. If this 
condition is met the depth resolution of the PSI algorithm is at its optimum for the 
spectrum of the light source used. 

As mentioned above the prisms in the reference arm (cf. Figure 2.18) were used to 
balance the GVD of the optical elements of the sample arm. The FWHM of the cross-
correlation envelope was measured for various amounts of glass in the optical path of 
the reference arm (Figure 2.26). The minimum FWHM that could be achieved was 
(33.5±0.25) µm for 5 cm of BK7 glass (Figure 2.27), which is in good agreement with 
the expected value (32.7 µm), calculated from Eq. (2.55). 
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Figure 2.26: Data for envelopes of Eq. (2.53) as a function of optical reference arm length shift for 
several thicknesses of BK7 glass in the reference arm (the amount of glass is always 
given at the upper right of each subimage). The solid lines are nonlinear fits to the data. 
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Figure 2.27: The FWHM for the envelopes resulting from the application of Eq. (2.53) to the cross-
correlation of the interferometer as a function of the amount of BK7 glass in the 
reference arm. This illustration shows that the GVD induced in the sample arm is 
balanced when the BK7 in the reference arm has a thickness of 5 cm.



3 Results and Discussion 

In the previous chapter the realization of CGWS was illustrated. This new approach of 
measuring wave-fronts was validated by studying the effects of two different wave-front 
aberrations, defocus and astigmatism, on two types of samples. The description of the 
resulting four tests and the discussion of the results is the topic of this chapter. 

The first test sample was a mirror perpendicular to the OA and the first aberration tested was 
defocus. A glass cover slip was then added between mirror and objective with the surface 
normal tilted slightly away from the OA to induce aberrations of higher order than defocus, 
for example astigmatism. Both, defocus and astigmatism were subsequently tested using a 
scattering sample instead of a mirror. 

3.1 Experiments with a Quasi Point Source 

Inserting a mirror or a reflecting surface perpendicular to the OA results in the objective 
registering a spherical wave emitted by a quasi point source of light (QPS) on the OA. Only a 
section of this spherical wave, the detection cone, reaches the objective (Figure 3.1). 
Changing the position of the QPS along the OA induces defocus. 

 

reflecting
surface

objective

quasi point
source

incoming and
outgoing wave-front

 

Figure 3.1: The objective converts a plane wave into a spherical wave (solid circle sections) converging onto the 
focus. If a reflecting surface is positioned beneath the objective (in the depicted case in the focus) 
the spherical wave-front will be reflected. For the objective this looks like a point source of light 
sitting in the focus. Defocus is induced by changing the position of this QPS along the OA. 

 

3.1.1 Defocus with a Mirror Sample 

The first step of the test measurement was to bring the reflecting surface into the focal plane 
of the objective. This was achieved by looking at the interference fringes on the CCD camera 
while the distance between reflecting surface and objective was changed. The curvature of the 
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fringes will change with distance alteration. If the curvature is absent, the reflecting surface is 
in the focal plane and the QPS in the focus of the objective. Aligning the interferometer arms 
subsequently to equal optical path length, as explained in subsection 2.4.3, maximizes the 
contrast. The scattering sample does not allow this alignment. Therefore, the same procedure 
had to be performed prior to using scattering samples in order to ensure that the focal plane of 
the objective lies in the CG. 

Defocus was induced by moving the reflecting surface in steps of 1 µm starting from 5 µm 
above the original objective focus to 5 µm below the original objective focus. This 
corresponds to a range of positions of the QPS from 10 µm above the original objective focus 
to 10 µm below the original objective focus in steps of 2 µm (Figure 3.2). The PSI algorithm 
was applied to extract the complex amplitude as pointed out in subsection 2.4.3. Then the 
propagation of this complex amplitude through the virtual lenses was calculated via Fourier 
transforms for each VLC (cf. subsection 2.4.3).  
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shift∆s
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shift
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Figure 3.2: A mirror shift (∆s) results in a position change of the quasi point source (QPS shift) that is twice as 
large. If the mirror (M) is shifted towards the objective (OBJ), the distance OBJ-QPS becomes 
smaller than the focal length (fOBJ) and the wave-front diverges after transmission through the 
objective (a). In analogy to this a mirror shift away from the objective leads to a converging wave-
front after transmission through the objective (b). 

 

Virtual diffraction patterns are the consequence. Phase-slope extraction was done by fitting 
the peak positions of these virtual diffraction patterns in the focal plane of the virtual lenslets 
and comparing these positions to the lenslet centers (cf. subsection 2.4.3). Fitting the twenty 
Zernike polynomials (Z2 to Z21, Z1 represents piston and is neglected) to the wave-front 
gradient data allows the reconstruction of the wave-front (Figure 3.3). 
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Figure 3.3: CGWS scheme for a mirror sample. Real part (a) of the complex amplitude for a QPS position 10 
µm beneath the original focus. Numerical propagation through the virtual lenslets via Fourier 
transformation leads to virtual diffraction spots. A zoom is depicted in (b). Gradient information is 
extracted by fitting the diffraction spot positions and comparing these positions to the lenslet 
centers (c). Finally a sum of Zernike polynomials is fitted to these gradient data in order to 
reconstruct the wave-front (d). 

 

A typical result for the Zernike coefficients obtained for a single QPS position experiment of 
this kind contains a dominant Zernike defocus coefficient (ZC4) (Figure 3.4). All coefficients 
for higher order polynomials ( >  11) were small. In addition to defocus, in this experiment the 
Zernike coefficient amplitudes for tilt about the y-axis (ZC3), astigmatism (ZC6) and spherical 
aberration (ZC11) departed significantly from a zero value (Figure 3.4). Since tilt is no real 
wave-front aberration but misalignment problem, it is neglected. Piston cannot be measured in 
a SHS and is, therefore, also neglected. The Zernike coefficients of these three polynomials 
(ZC1-ZC3) will not be taken into account in the future considerations of this work (although 
ZC2 and ZC3 need to be included in the modal estimation algorithm). One potential source of 
spherical aberration (ZC11) are the two beam splitter cubes in the sample arm, since they 
represent plane-parallel glass plates and hence can cause spherical aberration and, if tilted to 
the OA, astigmatism (cf. subsection 3.1.2). The value of the astigmatism coefficient depends 
mainly on the tilt angle and thickness of an inserted glass plate, in this case on the tilt angle of 
the beam splitter cubes and their thickness. Shifting the QPS position should have no effect on 
ZC6. Nevertheless it can be observed that ZC6 changes systematically with the QPS shift 
(Figure 3.5). 
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Figure 3.4: Fitted Zernike coefficients for a QPS position 10 µm below the original focus of the objective for a 
mirror as a sample. Dominant is the Zernike defocus coefficient (ZC4). All higher order 
coefficients (coefficient number > 11) are negligible. 
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Figure 3.5: Zernike coefficient amplitude for defocus (ZC4) and astigmatism (ZC6) as functions of QPS position. 
Positive values of the QPS position are below the original focus. The numerical values for the 
shifts of the virtual diffraction spot positions from their lenslet centers were calculated with the 
dimensions for a camera pixel found in subsection 2.4.2, 13.25 µm for the short axis and 12.85 µm 
for the long axis. The fact that ZC4 has an amplitude of -0.06 µm for the QPS in the focus is due to 
a positioning inaccuracy of the micrometer-screw that drives the mirror sample. 

 

The systematic change did not vary when the camera was rotated about the OA and the QPS 
was shifted again. This indicates that the systematic change is a problem due to the camera 
pixel size asymmetry and may indicate that the pixel dimensions determined in subsection 
2.4.2 were not precise enough. 

Defocus is a rotationally symmetric aberration and if astigmatism is due to a disturbance of 
any of the elements of the setup, this symmetry is broken. If actual astigmatism is present in 
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the wave-front, rotating the camera must, therefore, change the astigmatism coefficient 
because the orientation of the wave-front with respect to the camera is changed. 

Since the dimensions of a camera pixel were used to calculate the shifts of the virtual focal 
spots of the VLCs they do influence the result of the wave-front reconstruction directly. And 
if the pixel dimensions used in the wave-front analysis calculations are different from the 
actual dimensions, spurious astigmatism that is fixed now in the camera frame of reference 
occurs. Rotating the camera would then change nothing. In addition, for defocus the shifts of 
the virtual focal spots increase linearly with QPS shifts away from the focus, which would 
lead to a linear change of ZC6 with these QPS shifts if the pixel dimensions differ from the 
actual values. 

Since no change of ZC6 behavior for rotating the camera and a linear change of ZC6 with QPS 
shift were observed, the dimensions for a single pixel used for the wave-front analysis found 
in subsection 2.4.2 have to be adjusted. This is done by adjusting their x- and y-values so that 
ZC6 became independent of the QPS position. The new dimensions of a pixel were 13.15 µm 
for the short, (y-)axis and to 13 µm for the long, (x-)axis (these values for the pixel 
dimensions differ not significantly from their earlier found counterparts in subsection 2.4.2, 
which were (13.25±0.22) µm for the short axis and (12.85±0.07) µm for the long axis, 
respectively). Using the new pixel dimensions the astigmatism coefficient ZC6 stays constant 
during changes of the QPS position (Figure 3.6). 
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Figure 3.6: Zernike coefficient amplitude for defocus (ZC4) and astigmatism (ZC6) as functions of QPS position. 
Positive values of the QPS position correspond to positions below the original focus whereas 
negative values correspond to positions between objective and original focus. The numerical 
values for the shifts of the virtual diffraction peaks away from the lenslet centers were calculated 
in this case with camera pixel dimensions of 13.15 µm for the short axis and 13 µm for the long 
axis. 
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Deriving a theoretical estimate for the defocus coefficient 

The defocus measurement was compared to a theoretical estimate that was derived by 
comparing transit times for different light paths that all start from different points on the OA 
and all end in points on the BFP of the objective, the plane which is imaged onto the virtual 
SHS (cf. subsection 2.4.3). Since defocus is a rotationally symmetric aberration it is sufficient 
to describe the situation in two dimensions (Figure 3.7). 
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Figure 3.7: Comparing transit times for light starting from a point source (for example point 3) to transit times 
for light starting in the focus (point 1) leads to the theoretical estimate for the Zernike defocus 
coefficient behavior. According to Juškaitis [Juškaitis 2003] the principal surface of the objective 
corresponds to a circle segment of radius nf. 

 

A spherical wave-front starting from a point source in the focus corresponds to a planar wave-
front in the BFP. Thus all the light paths starting from the focus have the same transit time to 
reach the BFP of the objective (the planar wave-front will as always in this dissertation serve 
as reference wave-front). Light starting from points above or beneath the focus result in 
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AWFs in the BFP. It is the optical path length difference W(r) between those AWFs and the 
planar reference wave-front that is measured (cf. section 2.2). Starting at the focus (point 1 in 
Figure 3.7) there is exactly one angle ϕ that corresponds to a point (point 2) in the BFP of the 
objective. All light paths starting in the focus (point 1) will have the same transit time t0 to get 
to the BFP. Examples for equal transit time are ray 1, ray 2 and ray 3. However, the transit 
time is different for ray 4. Its angle with the OA is the same as for ray 1 and therefore it hits 
the BFP at the same point as ray 1, namely point 2 in Figure 3.7. According to their different 
optical path lengths the transit time 23→t  for light propagating from a QPS in point 3 to point 

2 will be smaller than for light propagating from point 1 to point 2. According to Fermat’s 
Principle, all rays of a planar wave-front that are transmitted through the objective have the 
same optical path length when they reach their common focusing point in the BFP. Thus, the 
difference between t0 and 23→t  is 
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The constant n in Eq. (3.83) is the index of refraction of the immersion medium, c0 is the 
speed of light in vacuum and ∆z is the distance between QPS and focus. The same argument 
for light propagating from point 3 to point 4 parallel to ray 2 yields the transit time difference 
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Thus the transit time difference ∆ttransit between rays propagating from point 3 to point 2 and 
those propagating from point 3 to point 4 is 
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As can be seen from the above derivation, for points on the OA above the focus ∆ttransit has to 
be positive. For light starting from a point on the OA beneath the focus an analogous 
derivation leads to the same equation (Eq. (3.85)), but then with the opposite sign. Thus Eq. 
(3.85) can be used for starting points above or below the focus, when assigning a negative ∆z 
for points above and a positive ∆z for those below. Eq. (3.85) is then 
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Here, ϕ is expressed as arcsin(r/[n·f]) (cf. Figure 3.7). Figure 3.7 shows also that d1 is the 
optical path length difference belonging to a certain r and certain ϕ. But the calculated time 
difference for W(r) is actually described by d2. For small focus shifts ∆z, the angle α in Figure 
3.7 is small and, therefore, the deviation from d2 to d1 is small. Expressing d1 in terms of ∆z 
and r yields 
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Thus, a relative deviation of d2 to d1 of only one per cent is present for the maximum 
occurring radius in the actual experiment rmax=2340 µm (cf. subsection 2.4.3) and a ∆z of 
roughly 880 µm (above or below the focus). Therefore d1 and d2 can be treated as equal for all 
shifts ∆z that occur in this dissertation, where ∆z is always smaller than 80 µm. 

The next step in deriving the theoretical estimate for the Zernike defocus coefficient is to 
expand the optical path length difference c0·∆ttransit(r) in terms of Zernike polynomials. In 
order to do so, the time difference must be mapped onto the unit circle, i.e. expressed as a 
function of radius 

maxr
r=ρ  and the azimuthal angle θ. The optical path length difference 

W(ρ,θ) then is 
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Expansion into Zernike polynomials and exploiting their orthonormal properties (cf. 
subsection 2.2.1) gives 
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where δ is the Kronecker delta. Integrating the left hand side of Eq. (3.91) after inserting the 
numerical value of W(ρ,θ,∆z)= c0·∆ttransit yields directly the value of ZC4 expected for a 
particular position shift ∆z of the QPS. The coefficient ZC4 should change linearly as a 
function of QPS position with a slope (dZC4/dz) that can be obtained by integrating the left 
hand side Eq. (3.91) without inserting a numerical value for W(ρ,θ,∆z) 

 

 40998921.0 ZCz =∆⋅− . (3.92) 

 

Comparison of the theoretical estimate and the measurement 

The theoretical estimate for (dZC4/dz) Eq. (3.92) can be compared to the fit to the actual 
experimental data, which provides a slope value dZC4/dz = –0.0968±0.0029 (Figure 3.8). The 
fit value and its error were obtained following a weighted fit procedure [Taylor 1997]. For 
calculating the error the positioning inaccuracy of the mirror sample was taken into account 
(Figure 3.5). Real measurement and theoretical estimate are in good agreement (deviation 
3%). 
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Figure 3.8: Measurement of the Zernike defocus coefficient ZC4 as function of QPS position. Positive values of 
the QPS position are below the original focus. The dashed line depicts the theoretical estimate 
(slope: –0.0999). The solid line corresponds to a weighted fit to the data (slope: –0.0968±0.0029). 
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3.1.2 Astigmatism with a Mirror Sample 

To induce an aberration that is of higher order than defocus, for example astigmatism, a 
standard glass cover slip (BK7, 180 µm thick) was inserted between the reflecting sample and 
the objective lens with its surface normal tilted away from the OA (angle ≈ 15°). A glass 
cover slip is a plane-parallel plate. Thus a light ray incident on such a plate will only be 
shifted laterally but keep its direction after transmission. The amount of lateral shift depends 
on plate thickness T, the angle of incidence α, and on the ratio of the refractive indices n1 and 
n2 (Figure 3.9). Using basic trigonometry and Snell’s law yields the amount of parallel shift s 
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Figure 3.9: The parallel shift of a light ray incident on a plane-parallel glass plate. 

 

If the glass plate is perpendicular to the OA only spherical aberration results. All light rays 
converging with the same angle from the OA experience the same shifts. The plate thus shifts 
the focus away from the objective down the OA (Figure 3.11 b), but it does so differently 
depending on the angles of the rays from the OA. For each angle from the OA there is a 
different focus position, but all these shifted foci are located on the OA. This changes if the 
plate, i.e. its surface normal, is tilted away from the OA. For an incident light cone the shifts 
for rays of equal angular aperture will be different from each other and an additional shift 
perpendicular to the OA is the result. 
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If a cross-section along intersection line 1 is regarded (Figure 3.10), an additional lateral shift 
of the focus position away from the OA becomes visible (Figure 3.11 a). This lateral shift is 
different for the foci of rays 1 and 2 and rays 3 and 4, respectively. This difference in foci 
shifts is coma. In a cross-section along intersection line 2 (Figure 3.10), there is only a shift 
down the OA (Figure 3.11 b). Again the shift is different for the foci of rays 3 and 4 and rays 
1 and 2, respectively. This difference in foci shifts is astigmatism. 
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Figure 3.10: A cone of light incident on a tilted plane-parallel glass plate. 
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Figure 3.11: Schematic for the different foci locations of rays of equal angular aperture as depicted in Figure 
3.10. (a) illustrates that, in addition to the focus shift down the OA an additional lateral shift of the 
focus occurs. (b) shows that in the cross-section perpendicular to (a) there is only a shift down the 
OA. The focus for rays 3 and 4 experiences a different shift laterally and a different shift down the 
OA than the focus of rays 1 and 2. These differences are coma and astigmatism, respectively. The 
symmetry with regard to the OA in case of a double pass (a mirror as a sample) is conserved 
whereas it breaks for a single pass through the glass plate (a scattering sample). 
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Deriving a theoretical estimate for the astigmatism coefficient 

A theoretical estimate in this case was derived starting once again from a point on the OA, the 
focus. The lenslet array is situated in the BFP of the objective as in subsection 3.1.1, since this 
is the plane conjugate to the CCD sensor plane (cf. subsection 2.4.3). Different from 
subsection 3.1.1 now 3 spatial dimensions are considered. 
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Figure 3.12: Schematic of the basic geometry for the derivation of the theoretical expectation for astigmatism 
induced by a plane-parallel glass plate. (Details see text). 

 

The polar angle θ and the distance 22 yxrlens +=  to the OA of each lenslet unambiguously 

describe the lenslet in the BFP of the objective. It is assumed that each lenslet is hit by exactly 
one ray, if the ray starts in the focus. Each of these rays is then unambiguous. For a certain 
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lens, for example lens L0 in Figure 3.12, this unambiguous ray (ray 1) is oriented along the 
unit vector v

r
. The components of v

r
 are given by 

 

 
















−⋅
⋅
⋅

⋅
=

222
1

1

sin
cos

1
v

lens

lens

lens

rfn
r
r

fn
θ
θ

r
. (3.94) 

 

Here, the parameter n1 is the index of refraction of the immersion medium. For a QPS situated 
on the OA above the original focus, ray 2, which is parallel to ray 1, will hit lens L0. If in 
addition a plane-parallel glass plate is inserted between point source and objective with its 
surface normal n

r
 slightly tilted away from the OA, i.e. with an angle θx, ray 2 will be parallel 

shifted by an amount s. This shift takes place in the plane that is spread out by vectors v
r

 and 
n
r

, the plane-of-incidence. The amount of the parallel shift in that plane can be calculated 
applying Eq. (3.93) (the angle of incidence α is obtained via the scalar product of v

r
 and n

r
). 

To obtain the projection of the parallel shift s onto the xy-plane, at first the corresponding unit 
vector q

r
 is determined: 

This vector has to be a linear combination of the vectors v
r

 and n
r

 and its z-component has to 
be zero. Thus 
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Since q
r

 is a unit vector the parameter a is the normalizing constant. Taking the orientation of 
q
r

 due to the term in brackets in Eq. (3.96) into account, it becomes clear that the normalizing 
constant a has to have a negative sign (cf. Figure 3.12). 

With q
r

 (Eq. (3.96)) the orientation of the projection of the parallel shift of ray 2 in the xy-
plane is known. The absolute value d of this projection can be determined using 
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Thus ray 2 is shifted parallel in the plane-of-incidence and parallel to the xy-plane along a 
shifting vector given by d· q

r
. That means that the QPS is virtually shifted to position 1, which 

has the coordinates 
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From the point of view of lens L0, ray 2 appears to come from position 1. A shift ∆s1 of the 
diffraction spot in the focal plane of lens L0 away from the lenslet center is the result (Figure 
3.12). This shift is larger than the shift caused by ray 2 without the glass plate. The value of 
∆s1 is, considering the magnification of the optical system, equal to -∆s2, the projection of 
position 1 on the focal plane. The projection ∆s2 can be determined by calculating the 
coordinates of position 2 (cf. Figure 3.13): 
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Figure 3.13: Calculating the coordinates of position 2 of Figure 3.12. 

The result is given by 
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For a QPS position the above calculations can be performed for each lenslet in the BFP, 
thereby determining all local wave-front slopes at the positions of the lenslets. Hence, the 
wave-front can be reconstructed following the same procedure as described in subsection 
3.1.1. 

 

Comparison of the theoretical estimate and the measurement 

In case of a mirror sample rays that are symmetrical to the OA upon incidence keep this 
symmetry upon reflection (Figure 3.11). This is the reason that in case of a mirror no coma 
coefficient (ZC7) is present (Figure 3.14). The quantity for the Zernike astigmatism 
coefficient (ZC6) depends on the differences of foci shifts down the OA for different rays. For 
a mirror as a sample the parallel shifts are experienced twice. Thus the Zernike astigmatism 
coefficient (ZC6) obtained with the above described calculation for a QPS has to be doubled. 
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Figure 3.14: Typical example of Zernike coefficients number 4-11 for a tilted glass plate with a mirror as a 
sample positioned 20 µm below the original focus. Defocus, astigmatism and spherical aberration 
occur. 

 

If the glass plate position is changed, but its tilt angle is kept constant, the parallel shifts of all 
rays are unchanged. ZC6 should thus not change as a function of QPS position (Figure 3.15 b). 
To test whether this is really the case, a series of measurements for different QPS positions z 
(starting with the mirror from 20 µm below the original focus to 37.5 µm below the original 
focus in steps of 5 µm) was performed. The coefficient ZC6 does, as expected, not change 
with QPS position. The mean measured value was (–0.4645±0.0013) µm, compared to the 
theoretical estimate ZC6=–0.4651 µm. The deviation is smaller than 1%. Different from this 
the defocus coefficient should change as a function of QPS position. The measurement of the 
slope (dZC4/dz) was (–0.096±0.001) (Figure 3.15 a) whereas the expected value was –0.0998. 
This is a deviation of less than 4%. The error for the measured slope was, in case of defocus, 
calculated using the standard procedure for fitting a straight line to data [Taylor 1997]. In case 
of ZC6 the error is the standard deviation of the measurements. 
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Figure 3.15: Zernike defocus coefficient ZC4 as a function of QPS position (a). The solid line is a fit to the 
measured data points. The dashed line corresponds to the theoretical slope expectation. The 
astigmatism coefficient ZC6 does not vary with QPS position (b). Again the solid line is a fit to the 
measured data and the dashed line is the theoretical estimate. 

 

3.2 Experiments with Scattering Samples 

3.2.1 Scattering Samples 

The idea of CGWS is to measure wave-fronts using only light that was backscattered from the 
focal region within a scattering sample. To test the performance of the setup it was, therefore, 
necessary to produce phantoms of known scattering properties. This was achieved by using 
scattering beads (polystyrene beads from Polysciences Inc.) embedded in agarose (2%, high 
melting, Sigma A3768). Their scattering characteristics were determined using Mie’s theory 
[Mie 1908] (cf. section 2.3). 

First tests were made with 992 nm diameter beads. Their scattering behavior leads to a very 
inhomogeneous illumination of the BFP of the objective, which appears to be due to 
polarization effects. As explained in subsection 2.3.1, there is the possibility that the incident 
and the scattered light form a scattering plane which is parallel, perpendicular or a sum of 
both with respect to the original polarization direction of the incident light (Figure 3.16). For 
any given scattering plane the resulting light intensity of the scattered light can be split into 
components with perpendicular and parallel orientation (cf. subsection 2.3.1). The objective 
used has a NA of 0.9, corresponding to a maximum aperture angle of ≈ 42.6°, which results in 
a maximum scattering angle of about 85°. Taking the ratio of the intensities for different 
polarizations into account (in the case of the 992 nm diameter beads Figure 3.17 a), it 
becomes clear that the intensities are very different for the range of angles gathered by the 
objective and result in a inhomogeneity of backscattered light in the BFP. Different from that 
the corresponding intensities for 112 nm diameter beads diverge less from each other over the 
majority of the detectable angular range (Figure 3.17 b). Thus their scattering behavior is less 
critical and the illumination intensity is more regular. Due to this fact mainly, beads with a 
diameter of 112 nm were used in the scattering samples. 
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Figure 3.16: Polarization considerations for the intensity of light of parallel and perpendicular orientation with 
respect to the scattering plane. The direction of the bold arrows in the BFP of the objective 
corresponds to the original polarization of the incident light. Bold black arrows depict incoming, 
gray ones scattered light. The light intensity of the scattered light resulting for any scattering 
plane can be expressed in terms of a sum of two fractions with perpendicular and parallel 
orientation with respect to the plane. An example is illustrated for scattered light of a scattering 
plane, which is oriented between perpendicular and parallel direction. It can be seen that the 
fraction of light with perpendicular polarization orientation must be stronger weighted than the 
fraction with parallel polarization orientation. Since the amplitude for the orientations is 
dependent on the bead size according to Mie theory, the intensity in the BFP can look very 
different for different bead diameters. 

 

To check the scattering length of the samples produced, two methods were used. The first was 
to measure the transmission of thin sample slices with a Cary 500 Scan spectrometer (Varian, 
Inc.). From the result the MFP can be determined using the Lambert-Beer law. The second 
method needed the addition of fluorescent markers to the sample because they allow for the 
measurement of the scattering length, i.e. the MFP, with two-photon induced fluorescence 
microscopy. Since the fluorescence is proportional to the square of the average excitation 
laser power 2

min ationilluP  (cf. Eq. (2.1)) the corresponding signal falls off with depth z following 

Lambert-Beer’s law for the two-photon case 

 

 ( )MFPzPPceFluorescen /2exp2
0

2
onilluminati −∝∝ . (3.102) 

 

This equation can be solved for MFP, which gives the halved MFP for the one photon case. 
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Figure 3.17: The two different intensities (cf. subsection 2.3.1) for light scattered by a sphere (in this case with a 
diameter of 992 nm, (a), and a diameter of 112 nm, (b)). For forward scattering the angle is zero. 
In depiction (b) the difference for the both, the parallel and the perpendicular intensity, is much 
smaller over the angular region that can be detected by the objective used. The intensity of the 
BFP due to backscattered light is more uniform than for 992 nm diameter beads. 

 

Finally a scattering sample consisting mainly of 112 nm beads at a concentration of ≈ 9.8·1013 
beads/ml was used. Yellow-green fluorescent marker beads (2.5 µm, Molecular Probes Inc.) 
were added at a concentration of ≈ 2.1·107 beads/ml. According to Mie theory their scattering 
cross-section is ≈ 2.1·107 nm2 compared to ≈ 21 nm2 for the 112 nm beads. This has to be 
taken into account for the calculation of the anisotropy factor g. 

The thin slices for the measurement with the Cary 500 were prepared by filling a small 
portion of the sample in liquid state between two microscope slides separated by a cover slip. 
A series of measurements to find out the cover slip thickness resulted in a value of 
(185.7±2.7) µm. The measured transmission value for this slice thickness at a wavelength of 
915 nm was (66±3)%. The corresponding MFP is (447±49) µm. A practical difficulty with the 
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measurements of such thin slices is that they dry up very fast. This was the motivation to 
measure the scattering length with fluorescent marker beads. While the illuminating laser 
power was kept constant two-photon absorption induced fluorescence of the marker beads 
was recorded at different depth positions in the sample. The fluorescence intensity was then 
plotted as a function of sample depth (Figure 3.18) and a Lambert-Beer function 

( )photonMFPzII −−⋅= 20 /exp  was fitted to the resulting data. Here again the MATLAB 

functions nlinfit and nlparci were used to calculate the fit and the error. The MFP found was 
(404±18) µm. 
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Figure 3.18: Fluorescence intensities of single fluorescence beads in various depths in the scattering sample. 

 

A theoretical estimate can be obtained using Mie’s theory Eq. (2.40) 
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The result was 399 µm. Thus, the MFP used in all further calculations involving the scattering 
samples was assumed to be 400 µm. 

Since spherical particles were used as scatterers, the asymmetry parameter g is independent of 
polarization [Bohren and Huffman 1998] and Eq. (2.43) can be used to determine the 
anisotropy. 
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Taking the different influence of the two different bead types on the MFP into account the 
anisotropy for the sample can be calculated as follows 

 

 nmnm ggg 2500112 22.078.0 ⋅+⋅=  (3.104) 

 

resulting in a g of 0.24. 

Concerning the overall index of refraction of the scattering sample it is of importance that the 
index of refraction for agarose is only slightly different from that of water (1.334 instead of 
1.33). The concentration of 112 nm polystyrene beads corresponds to a volume fraction in the 
scattering sample of approximately 7.2 %. For the 2.5 µm beads the volume fraction is 2·10-5 
and hence was neglected. At that volume fraction the index of refraction of the 112 nm beads 
(n=1.56) causes a change of less than 1.5% for the index of refraction of the scattering 
sample. 

3.2.2 Defocus with a Scattering Sample 

Again the first aberration tried was defocus. Different from the mirror (cf. subsection 3.1.1) 
moving the sample does not actually induce defocus. The reason is, that the scattering sample 
is homogeneous. Moving the sample up and down does, therefore, not change the average 
backscattered wave-front. 

 

 

Figure 3.19: The real part of the complex amplitude of the electric field across the CCD chip for the scattering 
sample (a). Speckle, that are clearly visible result in inhomogeneous diffraction patterns after 
numerical propagation through individual lenslets by means of a FFT (b), (c) and (d). Such 
diffraction patterns makes a centroid finding algorithm as method to locate the diffraction peak 
positions unsuitable. The small elevations at the ends of the parallel to the x-axis through the 
center peaks are due to the interlaced operation of the camera resulting in an alternating intensity 
pattern in the recorded images. 
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To induce defocus in this case the CG was shifted by changes of the reference arm length. 
Increasing the optical path length in the reference arm results in a position change of the CG 
away from the objective while a reduction of the reference arm path length moves the CG 
closer to the objective. For the defocus experiment the CG position was shifted from 10 µm 
above to 10 µm below the original objective focus in steps of 1 µm and the focal plane of the 
objective was located one MFP below the scattering sample surface. For each CG position 
600 image quadruplets for the PSI algorithm were taken at 24 different sample positions 
(shifts of 0.1 µm) to reduce speckle noise. 

The speckle noise and its effect on the shape of the diffraction peaks of the virtual lenslets 
(Figure 3.19) are the main reason that a centroid finding algorithm, which would otherwise be 
easier and faster to execute, rarely produces sensible results (as was confirmed by practical 
tests) and therefore was not used. 

 

 

Figure 3.20: CGWS scheme for a scattering sample (cf.Figure 3.3). Real part (a) of the complex amplitude for a 
CG position 10 µm beneath the original focus, which was one MFP below the sample surface. 
Numerical propagation through the virtual lenslets via Fourier transformation leads to virtual 
diffraction spots. A zoom is depicted in (b). This was done for 24 different sample positions to 
reduce speckle noise. Gradient information was extracted for each position by fitting the 
diffraction spot positions and comparing them to the lenslet centers. Their average is depicted in 
(c). For all 24 sample positions Zernike coefficients were determined. To reconstruct the wave-
front (d) the mean for each Zernike coefficient was calculated. 

 

For each of the 24 slightly different sample positions the diffraction pattern peak shifts were 
determined by comparing the peak positions to the lenslet centers. In order to obtain the 20 
Zernike coefficients used, a fit using the pseudo-inverse (cf. subsection 2.2.1) was performed 
each time. The resulting 24 different values for each Zernike coefficient were averaged for 
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each coefficient separately to obtain the final set to be used for wave-front reconstruction. The 
measurement error for each coefficient was calculated as standard deviation of its 24 
measurements (Figure 3.20). The effect of averaging can be studied in Figure 3.21. 
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Figure 3.21: Peak shifts in a scattering sample (400 µm MFP, focus position one MFP beneath sample surface) 
for a CG position 10 µm below the original focus. Single instance (a). Average of 24 different 
measurements with slightly different sample positions to allow averaging out speckle (b). 

 

Deriving a theoretical estimate for the defocus coefficient 

A theoretical estimate was obtained by performing a simulation that was implemented in 
MATLAB. Random numbers were generated to simulate coordinates of scattering beads at 
positions within the geometrical volume of the illumination cone. It was assumed that each 
one of those beads acts like a point scatterer and that for each bead and each lenslet of the 
virtual lenslet array there exists an unambiguous ray that starts at the bead and hits the lenslet 
at its center (Figure 3.22). Since defocus is a symmetrical aberration only lenslets on the x-
axis need to be considered. Nevertheless the entire 3-dimensional cone volume has to be taken 
into account and 3D bead coordinates have to be used. The distance ∆s1 in Figure 3.22 from 
the lenslet center to the position where such a ray hits the focal plane of a lenslet at position 
L1 is proportional to the local slope of the wave-front. The shift ∆s1 is equal to the negative 
projection (-∆s2) of the bead position (b1) on the focal plane times the magnification of the 
optical system. In the simulation these projections of the bead positions onto the focal plane 
were determined first before they were converted to the shifts in the focal plane of the 
lenslets. Since there are many beads present, each “produces” its own shift ∆s1

* for each 
lenslet and its own projection ∆s2

* on the focal plane of the objective. An average projection 
∆s2 was determined as weighted average for each lenslet. This weighted average was used to 
determine an average ∆s1, which is proportional to the local wave-front slope from which the 
wave-front can be reconstructed. The quantity for each weight in the weighted average 
calculation was determined according to the distance of each bead to the CG position, the 
light intensity at the position of each bead and the depth of each bead in the sample. 

Due to the depth of a bead in the sample, the light travels a certain distance within the 
scattering sample on its way from the bead to the lenslet. On this way it will be attenuated 
according to Lambert-Beer’s law. The weight that takes this into account is given by 



3.2  Experiments with Scattering Samples 77 

 

 

( )
( )( )













 ⋅
−= ⋅

400

33.1
exp

arctancos fn
lensd

iz

LBwgt , (3.105) 

where z(i) is the depth of the ith bead in the sample, dlens is the lenslet distance from the z-axis 
and n·f is the focal length of the objective in the sample (with n, the refractive index of the 
sample) (Figure 3.22). The assumed scattering length was 400 µm. The principal surface of 
the objective was assumed to be planar (paraxial approximation). 
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Figure 3.22: Simulation geometry to obtain a theoretical estimate for the Zernike defocus coefficient in the case 
of a scattering sample. 
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A bead closer to the focus scatters more light back than a bead far away from the focus where 
the light intensity is considerable lower. This is corrected by the intensity weight. The 
intensity in an illumination cone can be expressed as [Saleh and Teich 1991] 
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Here, z0 is the focus position (400 µm), λ is the wavelength, ρ2=x2+y2 is the distance of the 
bead from the z-axis and x, y ,z are the bead coordinates. 

The last weight takes the distance of each bead to the CG position into account. The coherent 
signal falls off exponentially with interferometer arm length mismatch (cf. subsection 2.4.3). 
That means the higher the absolute value of the transit time difference between light that is 
backscattered from a bead and light that is backscattered from the CG, the lower the weight 
for the backscattered light from the bead. To determine the transit time difference for light 
backscattered from each bead the individual transit times are calculated. For a bead in the 
focus the light needs a time t01 to get there. To get out to a certain lenslet at position L0 it 
needs a further time t02 (cf. Figure 3.22). In sum, a time t0=t01+t02. For a bead b1 the time for 
the light focused to reach the bead (inward time) is t01-R·n/c (with R the distance of the bead 
to the focus and c the speed of light in vacuum). The transit time for the backscattered light 
from there to L0 (outward time) is ϕcos02 c

nRt − , hence altogether c
nR

c
nRttt ϕcos

02011
⋅⋅⋅ −−+= . 

For a lenslet at position L1 the light for a bead in the focus needs the inward time t’
01 and the 

outward time t02. For a bead b1 this becomes t’
01-R·n/c for inward time and ( )

c
nRt ϕθ −⋅⋅− cos

02  for 

the outward time (cf. Figure 3.22). In general the time difference with respect to the focus is 
given by 
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For z-z0<0 δt has to be smaller than zero and for z-z0>0 δt has to be larger than zero. Since 
only a lenslet row along the x-axis is considered with all y-coordinates equal to zero, the time 
difference Eq. (3.107) becomes 
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This transit time difference is compared to the transit time difference of the CG position δ tCG 
and the weight, therefore, is 

 

 ( ) ( ) 









−⋅

⋅
−=

−

2
21510100

2ln4
exp CGbCG ttwgt δδ  (3.109) 

 

The mean projection ∆s2 for each lenslet is then calculated by 
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Here i is the index of the beads. After computing the mean projections ∆s2, the resulting 
wave-front slopes over each lenslet can be calculated using ∆s1. With a nonlinear fit 
(MATLAB’s nlinfit) of the derivative of the Zernike defocus polynomial to these data the 
defocus coefficient value was determined. In order to obtain an error estimate the simulation 
was repeated several times and the resulting shift positions were averaged. A somewhat 
surprising result of this simulation is that for different lenslets different volumina in the 
sample contribute to the signal (Figure 3.23). This should not pose a problem when an 
iterative wave-front correction algorithm is used, because the measured values for the defocus 
coefficient (ZC4) deviate not that much from the values obtained from this simulation. 

Comparison of the theoretical estimate and the measurement 

If the ZC4-amplitude is plotted as a function of the CG position z the slope (dZC4/dz) for the 
simulation described above is equal to (–0.0998±0.0065). If a QPS is assumed only on the OA 
the simulation provides a slope (dZC4/dz) of –0.0872. For reasons of comparability the 
simulation in subsection 3.1.2 was recoded to simulate the paraxial case. The curved principal 
surface of the objective (cf. Figure 3.12), therefore, was assumed to be planar. The modified 
simulation provided the same value –0.0872 as the simulation above. A third method, using 
the Newtonian form of the lens equation was used to verify this value. It will be described 
later. The actual measurement (CG position shifted from 10 µm above the original focus to 10 
µm below the original focus in steps of 1 µm) showed a slope value of (-0.083±0.002) (Figure 
3.24). A control experiment with distances of 0.5 µm instead of 0.1 µm for the 24 different 
sample positions for speckle averaging provided (–0.084±0.002). The probable reason for the 
discrepancy between measurement and the theoretical estimate is that the fitting algorithm 
used to determine the peak positions of the virtual SHS weighs backscattered light from 
regions closer to the focus more strongly (Figure 3.25). 
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Figure 3.23: Projections of the bead volumina that, according to the simulation, contribute to the signal for 
individual lenslets. The left column corresponds to the projection onto the xz-plane whereas the 
right corresponds to the projection onto the yz-plane. The focus and the CG were situated in a 
sample depth of 400 µm. The first row (a) and (b) correspond to the lenslet, which is located on 
the OA. The second row (c) and (d) represents bead volumina for the lenslet with the x-coordinate 
2340 µm and the last row (e) and (f) illustrates the same for the lenslet with x-coordinate -2340 
µm. 
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Figure 3.24: Zernike coefficients (ZC4-ZC11) as a function of CG position. Negative positions are for the CG 
between focus and objective. The solid line shows the theoretical expectation due to the described 
simulation. The deviation of the fit to the data compared to this expectation was 17%. 
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Figure 3.25: The probable reason for the deviation between the expected slope (dZC4/dz) and the actual 
measurement is the manner how the fitting algorithm used finds the diffraction peaks. As 
mentioned in subsection 2.4.3 the fit was restricted to a small area around the focus. This was 
done because a larger region leads to problems in peak finding. The diffraction peak on the focal 
plane (fp) of a lenslet off the OA due to a bead in the focus (bead 1 in (a)) has a small width and 
large amplitude (solid Gaussian in (b)). The diffraction peak due to a bead further away from the 
focus (bead 2 in (a)) is wider and smaller in amplitude (dashed Gaussian in (b)). The resulting 
diffraction pattern in the sub region of the lenslet corresponds to the envelope of both (gray solid 
line in (b)), which is still narrow around its peak. If the region for peak finding is small the 
nonlinear fit to the data will be influenced only little by the data caused by bead 2. Thus the 
smaller the chosen region for peak finding the more position information of bead 2 gets lost. This 
is a problem to which attention has to be paid in future work. 
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Using the Newtonian form of the lens equation to derive a theoretical estimate for the 
defocus coefficient 

Using the Newtonian form of the lens equation [Hecht 1990] confirms the paraxial result for 
the defocus coefficient behavior of the two simulations described earlier: 

The optical setup can be considered in a simplification as an assembly of three lenses and a 
lenslet array (cf. Figure 3.26). The objective LOBJ, the imaging lenses L1 and L2 that make the 
BFP of the objective and the lenslet array conjugates and a virtual lenslet array that mimics a 
SHS. A QPS is assumed to be located on the OA a distance ε away from the original objective 
focus. In this case the Newtonian form of the lens equation for the individual lenses becomes 

 

 

.:

:

:

2
1

2
0

2
2

2

2
2

3
2

2322

2
0

2
1

1

2
1

2
2

1211

2
0

1
2

01

C

OBJ

R
f

fnff
fL

fn
ff

fL

fn
fnL

≡
⋅

=
∆

=∆⇒=∆∆

=
∆

=∆⇒=∆∆

=∆⇒=∆

ε

ε

ε
ε

 (3.111) 

 

Here, the parameter n is the refractive index of the immersion medium. As can be seen in 
Figure 3.26, ∆3 is equal to the radius of curvature RC of the wave-front at the position of the 
virtual SHS due to a QPS position shift ε. The AWF in this case is a spherical wave and can 
be approximated with the help of Pythagoras’ theorem with the parameter dk (Figure 3.27) 
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Figure 3.26: The crucial elements of the setup for calculating the expectation for the Zernike defocus coefficient. 
Using the Newtonian form of the lens equation yields the relation between ∆3, the measured value 
of the radius of curvature at the virtual SHS and the focus shift ε. 
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Figure 3.27: Using Pythagoras’s theorem to describe the wave-front of a spherical wave resulting from defocus 
by means of the optical path length difference dk to a planar wave-front. 

 

The following consideration explains why in Eq. (3.112) the negative result is the one to use: 

• If rk equals zero it is obvious that dk has to be equal to zero as well. 

• If rk equals the radius of curvature RC, then dk has to be equal to RC as well. 

Thus Ck Rd ≤  and hence 
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kCCk rRRd −−= . (3.113) 

 

If the spatially extent of the SHS is small, i.e. the occurring rk’s are small in comparison to RC 
then Eq. (3.113) can be Taylor expanded 
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This expression corresponds to the Zernike defocus polynomial. As explained in section 2.2 
the SHS measures the average slope, i.e. the gradient of the wave-front. Thus the derivatives 
of Eq. (3.114) and the derivative of the Zernike defocus polynomial can be compared in order 
to find the Zernike defocus coefficient ZC4. To accomplish that dk has to be mapped onto the 
unit circle 
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Here, rmax means the maximum radius of the lenslet array, measured from the lenslet array 
center to the last lenslet that is illuminated. Coefficient comparison yields 
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If this is combined with the result of Eqs. (3.111) and the fact that in the setup used, the focal 
lengths f1 and f2 are the same, then ZC4 becomes 
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Insertion of the parameters of the optical elements used yields a slope of the Zernike defocus 
coefficient (dZC4/dε= -0.0872) that is in agreement with the two simulations described above. 

3.2.3 Astigmatism with a Scattering Sample 

The high-order aberration that was used to test CGWS for a scattering sample was 
astigmatism. To induce astigmatism a glass cover slip (BK7, 180 µm thick) was inserted 
between objective lens and sample with the surface normal tilted away from the OA (≈ 15°). 
The focal plane of the objective was positioned 400 µm, i.e. 1 MFP, below the scattering 
sample surface. The measurement procedure was analogous to subsection 3.2.2. In the 
Zernike fit strong astigmatism ZC6=(-0.264±0.026) µm, coma ZC7=(0.327±0.027) µm and 
spherical aberration ZC11=(0.2±0.01) µm were found. Unlike uniform curvature (ZC4), which 
leads to a change of focus position but not shape, these aberrations do lead to a distortion of 
the focus and need to be corrected for optimal imaging. Again, the effect of changing the CG 
position (from 14 µm to 24 µm below the original objective focus position in steps of 1 µm; 
averaging was done as above but with sample position shifts of 0.5 µm) was tested. 
Qualitatively the measurement confirmed that only ZC4 changed systematically (slope: –
0.073±0.003) (Figure 3.28). A theoretical estimate (-0.0998) was obtained with the simulation 
for a QPS (subsection 3.1.2). For astigmatism a constant value of ZC6=–0.233 µm and for 
coma a constant value of ZC7=0.409 µm is expected. Spherical aberration showed a 
systematical change (slope: -0.0042) in the simulation that could not be confirmed by the 
actual measurement. It must be stressed, that the theoretical estimates for this experiment 
were obtained with a simulation for a single point source (cf. subsection 3.1.2). Future work 
will have to include the derivation of a more appropriate simulation for this kind of 
experiment. The most probable reason for the deviation of the measured slope (dZC4/dz) to 
the simulation of subsection 3.2.2 is the problem of the algorithm used to determine the 
diffraction peak positions (cf. Figure 3.25). 
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Figure 3.28: Zernike coefficients (ZC4-ZC11) as a function of CG position. As expected coma appears in the 
Zernike fit. Also expected is that only the coefficient for defocus (ZC4) changes systematically with 
CG position. 

3.2.4 Sensitivity and Accuracy 

Lambert-Beer’s law can be used to obtain a rough estimate of the fraction of light that passes 
the CG when experiments as described in subsections 3.2.2 and 3.2.3 are performed. The CG 
was assumed to be positioned 400 µm below the sample surface. Thus, essentially all light 
that comes from a sample depth between 385 µm and 415 µm can contribute to the signal. 
The portion of light, that is still unscattered after traveling a distance of 385 µm through the 
sample is given by P0·exp(-385/400). The part that is unscattered after a distance of 415 µm is 
P0·exp(-415/400). The difference between these two parts is the amount of light that is 
scattered once between 385 and 415 µm, and can in principle contribute to the signal. On its 
way back to the sample surface this amount of light is attenuated once more by a factor of 
approximately 1/e. To obtain an order-of-magnitude estimate of the fraction of light that is 
scattered back into the objective, it was assumed that scattering in the sample is isotropic, i.e. 
the fraction of light that is scattered into an infinitesimal solid angle element dΩ is )4(1 π . 
The solid angle subtended by the objective is given by 

 

 ( )απ cos12 −=Ω . (3.118) 

 

Here α is the angle governed by the numerical aperture of the objective (Figure 3.29). 



86 3  Results and Discussion 

objective

Ω

objective
lens

 

Figure 3.29: The solid angle of the objective. 

 

Thus the amount of light gathered by the objective is given by the multiplication of the solid 
angle subtended by the objective and the fraction of light that is scattered into dΩ and thus the 
fraction of useful light (FUL) is given by 
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The result for this estimate is 1.3·10-3. To determine the fraction of light that passes the CG 
experimentally the square of the complex amplitude (cf. Eq. (2.56)) was used. For equal 
interferometer arm lengths this square is, if reference and sample arms are completely 
coherent, given by 
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Thus the coherent part of the sample arm light, which corresponds to the light that passes the 
CG, can be estimated from Eq. (3.120): 
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Since the images taken in scattering samples suffer from speckle, the quadruplet used for 
CGWS does too (Figure 3.30). Applying Eq. (3.120) does not change this fact (Figure 3.30). 
It would be wrong, therefore, to simply sum up the entire pixel values of the squared complex 
amplitude image and divide this sum by the sum obtained in equal manner from the 
background corrected sample arm image to get the FUL. According to Lauterborn 
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[Lauterborn et al. 1993] the mean intensity of a speckle field is equal to its standard deviation 
and hence a mean and from that an overall intensity can be calculated. With the CG at one 
MFP below the surface of the scattering sample described in subsection 3.2.1 and under the 
assumption that reference and sample arm are completely coherent† the FUL was measured 
with a value of 

 

 ( ) 31008.055.0 −⋅±=measuredFUL , (3.122) 

 

which is lower than the ‘Lambert-Beer’ value possibly due to polarization effects induced in 
the scattering sample. The FULmeasured corresponds (according to subsection 2.4.2) to (2±0.3) 
photons per pixel and frame. This is considerably below the dark noise of the camera (cf. 
subsection 2.4.2), which is equivalent to ≈ 218 photons but still detectable due to the 
interferometric detection. 

 

 

Figure 3.30: Background corrected image of the sample arm (a). Square of the complex amplitude calculated 
from a quadruplet of images. Clearly visible, both images suffer from speckles. 

 

The standard deviation of the diffraction peak position found experimentally for FULmeasured 
(cf. Eq.(3.122)) was σP=11.91 µm. From this standard deviation the mean-square wave-front 
reconstruction error 2

Ŵ
σ  can be calculated according to Eq. (2.21) of subsection 2.2.1: 
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† Experimentally it was found, using a mirror as a sample, that in the denominator of Eq. (3.120) a value of about 

8 rather than 16 has to be used possibly due to incomplete polarization overlap. This is a subject of future 
work. 
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The mean-square error in each slope measurement, σg
2, is calculated via (σP/flenslet)2, with the 

focal length of the lenslets flenlet=10120 µm. Using the measured value of σP=11.91 µm yields 
a root mean-square wave-front reconstruction error of 

 

 145.0ˆ ≈
W

σ µm. (3.124) 

 

This is equivalent to ≈ λ/6. 



4 Summary and Future Prospects 

In the dissertation at hand a new approach for measuring wave-fronts in strongly 
scattering samples, CGWS, was presented. 

CGWS is mainly based on two techniques, Shack-Hartmann wave-front sensing and 
phase-shifting interferometry (PSI). These techniques were combined in an 
experimental setup that at its core contains a low-coherence interferometer with the 
microscope objective, the sample and a CCD camera in one arm, and the path length-
varying element, a piezo-mounted mirror in the other, the reference arm. Coherence 
gating was achieved by applying a four-step PSI algorithm, which both rejects wrong 
path length light and extracts phase and thus wave-front information. In order to 
establish this algorithm by means of steps of the piezo an adequate electronic control 
circuitry was assembled. The extracted phase was used to calculate the complex field 
amplitude in the CCD sensor plane of the camera. Dividing the CCD chip virtually 
into small, square shaped compartments makes it possible to mimic the function of a 
Shack-Hartmann wave-front sensor (SHS) by numerically propagating the complex 
field amplitude through these compartments via Fourier transforms. The 
compartments thereby act as virtual lenses. A substantial advantage of such a virtual 
SHS, compared to a real one, is that a much larger effective dynamic range can be 
accessed because light intensity at the sensor plane is relatively uniform, avoiding 
pixel saturation, which is an issue in real SHS. Phase-slope extraction was performed 
by fitting the peak positions in the focal plane of the virtual lenses and comparing 
them to the lens centers. Since the phase slope is the directional derivative of the 
phase, a modal estimation algorithm for wave-front reconstruction can be applied and 
was implemented in MATLAB. The result of this algorithm was a set of the Zernike 
polynomial coefficients up to the fifth radial degree. They allow the approximation of 
the wave-front by a linear combination of 20 Zernike polynomials. 

For the reconstruction as well as for the building of the piezo control circuitry it was 
indispensable to have detailed knowledge about some of the essential properties of the 
camera used. How these in general can be determined has been demonstrated. 

In order to validate CGWS two different kinds of tests were carried out: First with a 
mirror and then with a strongly scattering phantom as a sample (400 µm scattering 
length, the focus 1 MFP below the sample surface). For both of these samples the 
performance of the CGWS was checked for defocus and astigmatism. In the case of 
the mirror as a sample defocus was induced by shifting the mirror parallel to the OA. 
For the scattering phantom defocus was induced by shifting the CG. Astigmatism was 
induced for both samples by inserting a glass cover slip between the samples and the 
objective with its surface normal tilted away from the OA. Unlike uniform curvature 
(defocus), which leads to a change of focus position but not shape, the aberrations 
caused by a tilted glass plate do lead to a distortion of the focus and need to be 
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corrected for optimal imaging. Four different models for obtaining corresponding 
theoretical estimates were derived and partly implemented in MATLAB. 

In the case of defocus, the expectation is that the Zernike defocus coefficient ZC4 is 
dominant and varies linearly with changes (∆z) of the mirror or the CG, respectively. 
Both facts were confirmed by actual measurements. The value (dZC4/dz) measured in 
the case of the mirror (-0.0968±0.0029) was in agreement with the theoretical 
estimate (-0.0999). For the scattering sample the measurement provides a slope 
(dZC4/dz) of (–0.083±0.002), which is slightly smaller than expected (–0.0998). This 
small discrepancy is possibly due to the fact that the fitting algorithm used to 
determine the peak positions of the virtual SHS weighs backscattered light from 
regions closer to the focus more strongly. In both cases, the mirror and the scattering 
sample, all higher Zernike coefficients were small. The induced astigmatism should 
not change with the position of the mirror or the position of the CG. This was 
confirmed by measurements with a tilted glass cover slip between sample and 
objective. As qualitatively expected, only ZC4 changed systematically in the real 
measurements with a slope (dZC4/dz) of (–0.0960±0.0003) in the mirror measurement 
and (–0.073±0.003) in the scattering sample measurement. The theoretical estimates 
were –0.0999 for the mirror and –0.0998 for the scattering sample. For the mirror, the 
expectation for the astigmatism coefficient ZC6 was –0.4651 µm, in comparison to the 
actual measurement (–0.4646±0.0013) µm. For the sample, ZC6 was expected to have 
a value of –0.233 µm in comparison to the measurement (–0.264±0.026) µm. 
Different from the mirror sample, coma (ZC7) is, as expected, present in case of the 
scattering sample. The measured value was ZC7=(0.327±0.027) µm (expected value: 
ZC7=0.409 µm). The discrepancies between theoretical estimates and measurements 
are probably, again, due to increased weighing of light from closer to the focus by the 
algorithm that fits the diffraction peak positions. 

The fraction of light that passes the CG and thus can be used to measure the wave-
front was theoretically estimated and compared with a real measurement. The 
interference signal falls off rapidly with arm length mismatch, which leads to a 
selection volume of about 6 picoliters and a depth discrimination of about 30 µm, 
given by the coherence length of the light source used. Using Lambert-Beer’s law it 
was estimated that the fraction of backscattered light that is used by the CGWS is 
about 1.3·10-3. An actual measurement of this fraction yielded a value of 
(0.55±0.08)·10-3 under the assumption of completely coherent interferometer arms 
with the discrepancy between estimate and measurement probably due to polarization 
effects induced by the scattering phantom. The measured fraction corresponds to 
(2±0.3) photons per camera pixel and frame. Finally, for this fraction of useful light 
the root mean-square wave-front reconstruction error was determined (result: λ/6). 

 

In conclusion, CGWS allows the measurement of wave-front distortion in scattering 
samples in the presence of background light that is dominant by about three orders of 
magnitude. The coherence gating technique has the additional advantage of increasing 
the effective detection sensitivity, with potentially shot noise limited performance 
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even for low-photon fluxes and detectors with large dark noise. This will allow the 
use of CMOS detector chips, which could contain additional procession circuitry to 
perform the PSI and even the wave-front calculations on the chip. The usability of 
such devices will be the topic of future work. To additionally improve CGWS it is 
necessary to optimize the algorithm for finding the diffraction peak positions. Future 
work also has to focus on the development of a simulation for astigmatism for 
samples consisting not only of one but of many QPSs. Additionally, considerations on 
how to further reduce the influence of speckle noise have to be made. However, the 
major aim of the near future will be the extension of CGWS to a fully working closed-
loop adaptive correction system. Once accomplished, this will allow applying pre-
emptive corrections to the wave-front, resulting in the improvement of the quality of 
the optical focus. This will considerably restore the loss of resolution induced by 
sample inhomogeneities and, thereby, significantly increase the tissue depth 
penetration. 
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