INAUGURAL-DISSERTATION

zur
Erlangung der Doktorwürde
Der Naturwissenschaftlich-Mathematischen Gesamtfakultät
der
Ruprecht-Karls-Universität
Heidelberg

vorgelegt von
Diplom-Chemiker Andreas Schmohl
aus
Esslingen (Neckar)

Tag der mündlichen Prüfung: 30. Juli 2004
Charakterisierung
silylterminierter Siliziumdioxidoberflächen
mit
thermischer Desorptionsspektroskopie
und
oberflächensensitiven Analysenmethoden

Gutachter: Prof. Dr. Peter Hess
Prof. Dr. Bernhard Schramm
Charakterisierung silylterminierter Siliziumdioxidoberflächen mit thermischer Desorptionsspektroskopie und oberflächensensitiven Analysenmethoden

Charakterization of silylated silicon dioxide surfaces by thermal desorption spectroscopy and surface sensitive analysis

In the context of this work silicon dioxide surfaces were functionalized. The thermal as well as the mechanical and chemical stability of the termination with various alkyl silanes was examined. By means of a condensation reaction, monochlorosilanes were covalently bonded to surface silanol groups. Wet chemically oxidized silicon wafers were used as the substrate. The preparation was performed in solution and at room temperature. Within a few minutes the reactions were completed. The degradation of the terminated surfaces in water due to ultrasonic treatment was studied by ATR-FTIR-spectroscopy. With the same technique the addition of alcohols to the isocyanato group of the isocyanatopropyltrimethylsilyl group was monitored. Methylated silyl groups were detected by means of secondary ion mass spectrometry (SIMS). Fluorinated silanes were identified by photoelectron spectroscopy (PES). Thermal desorption spectroscopy was applied to determine the thermal stability. A desorption pathway was proposed for four different kinds of terminations. The trimethylsilyl-terminated surface is very stable. The wetting behavior of the different terminated surfaces was compared using contact angle measurements.
1 EINLEITUNG .. 3

2 MESSMETHODEN .. 7
 2.1 KONTAKTWINKEL UND OBERFLÄCHENERGIE ... 7
 2.2 SCHWINGUNGSPEKTROSKOPIE ... 11
 2.3 PHOTOELEKTRONEN-SPEKTROSKOPIE ... 15
 2.4 MASSESPEKTROMETRIE ... 17
 2.4.1 Probenzufuhr und Ionisierungsmethoden ... 18
 2.4.2 Fragmentierung .. 21
 2.4.3 Massenanalytiker und Detektor .. 23
 2.5 THERMISCHE DESORPTIONS SPEKTROSKOPIE (TDS) .. 26

3 CHEMIE AN DER SILIZIUMOBERFLÄCHE ... 28
 3.1 DIE SILIZIUMDIOXIDOBERFLÄCHE .. 28
 3.2 DIE H-TERMINIERTE SILIZIUMOBERFLÄCHE .. 29
 3.3 ORGANISCH TERMINIERTE SILIZIUMOBERFLÄCHEN ... 31
 3.3.1 Silaneterminierung der Siliziumdioxidoberfläche ... 31
 3.3.2 Modifizierung funktioneller Gruppen an der Oberfläche 34
 3.3.3 Details zu einigen Präparationen .. 34
 3.3.4 Organische Terminierung an Siliziumoberflächen ... 37

4 EXPERIMENTELLER TEIL ... 39
 4.1 WAHL DER PROBE UND DEREN VORBEHANDLUNG .. 39
 4.2 PRÄPARATION DER SILYLTERMINIERTEN OBERFLÄCHEN 39
 4.3 KONTAKTWINKELMESSUNGEN .. 42
 4.4 ATR-FTIR-SPEKTROSKOPIE ... 43
 4.5 RÖNTGEN-PHOTOELEKTRONEN-SPEKTROSKOPIE (XPS) ... 46
 4.6 STATISCHE TOF-SIMS ... 46
 4.7 THERMISCHE DESORPTIONS SPEKTROSKOPIE (TDS) ... 47
 4.7.1 Messaufbau ... 47
 4.7.2 Datenauswertung .. 49
 4.7.3 Temperaturkalibrierung ... 51
 4.7.4 Versuchsdurchführung ... 56

5 DISKUSSION DER ERGEBNISSE .. 58
 5.1 KONTAKTWINKELMESSUNGEN .. 58
 5.2 ATR-FTIR-SPEKTROSKOPIE ... 63
 5.2.1 Methylierte Siliziumdioxidoberflächen ... 63
 5.2.2 Von der Isocyanatgruppe zum Urethanderivat .. 64
 5.2.3 Vergleich der Integrale der CH-Bande ... 67
 5.2.4 Die OH-Bande: Nachweis der Silanolgruppen ... 69
 5.2.5 Die Dimethylsilyl-Terminierung – Vergleich mit der Si(100):H-Oberfläche 74
 5.2.6 Chemomechanische Stabilität der Silyl-Terminierungen 76
 5.3 RÖNTGEN-PHOTOELEKTRONEN-SPEKTROSKOPIE (XPS) ... 79
 5.4 STATISCHE TOF-SIMS ... 83
 5.5 THERMISCHE DESORPTIONS SPEKTROSKOPIE (TDS) ... 88
 5.5.1 Desorptionsspektren ausgewählter Massen im Vergleich 89
 5.5.2 Desorptionsspektren der einzelnen Terminierungen .. 95
 5.5.2.1 Die Trimethylsilyl-Terminierung .. 95
 5.5.2.2 Die Pentamethyldisilyl-Terminierung .. 99
 5.5.2.3 Die N-(Benzyloxycarbonyl)-3-aminopropylmethyldisilyl-Terminierung 102
 5.5.2.4 Die hydrolysierte 3-Isocyanopropylmethyldisilyl-Terminierung 105

6 ZUSAMMENFASSUNG .. 111

7 AUSBLICK .. 118

8 ANHANG: STRUKTURFORMELN ... 119
1 Einleitung

In der Umkehrphasen-Hochdruckflüssigkeitschromatographie (RP-HPLC) wird mit Alkylsilanen terminiertes Kieselgel als hydrophobe stationäre Phase¹ eingesetzt um wässrige Medien, wie z.B. Blutserum und Abwasser, direkt einsetzen zu können. Wegen ihrer Kompressibilität sind Polymere für die RP-HPLC ungeeignet, so dass auf Kieselgel als Trägersubstanz nicht verzichtet werden kann.

Auch in der Gaschromatographie (GC) spielen Silane eine wichtige Rolle. Da dieses Trennverfahren am besten funktioniert, wenn die Schichtdicke der stationären Phase einerseits möglichst dünn und andererseits genau definiert ist, werden sehr oft mit Silanen behandelte Quarzkapillaren, bzw. bei gepackten Säulen wieder mit Alkylsilanen terminiertes Kieselgel, eingesetzt. Da zur Trennung komplexer Stoffgemische meist ein

¹ [Bro94][Rou78]

Wichtig für den Einsatz als RP-HPLC- oder GC-Phase ist, dass die polaren Hydroxylgruppen des Kieselgels möglichst vollständig zu unpolaren Alkylsilylgruppen umgesetzt werden bzw. die ersteren zumindest effektiv durch die letzteren abgeschirmt werden.

Sehr groß ist auch das Anwendungspotential biopolymerfunktionalisierter Mikrochips, die zumeist aus Glas oder einem Kunststoff bestehen. Auch hier werden in der Regel Silanderivate zur Modifizierung eingesetzt.

In der Proteinanalytik kann das ELISA-Verfahren ebenfalls angewendet werden. In den letzten drei Jahren wurde aber auch eine alternative Methode entwickelt. Bei dieser werden Proteine mehr oder weniger spezifisch an eine Oberfläche gebunden, anschließend werden sie mit einem Laser desorbiert, ionisiert und dann Flugzeit-Massenspektrometrie (engl.: Time of Flight; ToF-MS) aufgetrennt und detektiert. Die Abkürzung für dieses neue Verfahren ist SELDI (Surface Enhanced Laser Desorption/Ionization) ².

² [Cap03][Gar04][Iss03]
Das Problem bei der Anwendung des ELISA-Verfahrens ist, dass man darauf angewiesen ist, dass der entsprechende Antikörper auch zur Verfügung steht. Außerdem wechselwirken diese auch mit anderen Molekülen, weil die Antigenspezifität nicht zu hundert Prozent gegeben ist, so dass nicht selten falsch positive Analysenresultate entstehen. Daher müssen positive Analysenergebnisse stets mit einem anderen Verfahren überprüft werden.

Das SELDI-Verfahren hingegen ist als massenspektrometrisches Verfahren beweissicher. Ein weiterer Vorteil ist, dass bei der Messung ein Enzymmuster detektiert werden kann, welches unter Umständen charakteristisch für Krankheiten sein kann. So wurde z.B. ein charakteristisches Muster für Alkoholismus gefunden [Nom04].

Das Besondere an der SELDI-Protein-Chip-Technologie ist, dass sie im Gegensatz zum DNA-Mikroarray und zum ELISA-Verfahren einerseits universell einsetzbar ist, wenn unspezifische Oberflächen eingesetzt werden, andererseits aber auch die Möglichkeit besteht, z.B. durch Fixierung von Metallionen oder Antikörpern Proteine spezifisch, und damit selektiv, an die Oberfläche zu binden.

Im Bereich der silanterminierten Siliziumdioxidoberflächen sind die zwei am häufigsten untersuchten Systeme einerseits die Selbst-Assoziierten Monolagen (SAMs) auf oxidierten Siliziumwafern und andererseits alkylsilylterminiertes Kieselgel.

Im Rahmen dieser Arbeit sollte nun getestet werden, ob Ergebnisse von Messungen, die an porösem Material durchgeführt wurden, auch auf ebene Siliziumoberflächen übertragbar sind und ob die Empfindlichkeit der Analysenmethoden für diese Substrate ausreichend ist. Des Weiteren sollte überprüft werden, welche Fragestellung am besten durch welche Methode beantwortet werden kann.

Da insbesondere die thermische Stabilität sowie der Reaktionsweg beim thermischen Zerfall von Interesse war, musste zunächst die Messapparatur, mit der die thermische Desorptionsspektroskopie durchgeführt wurde, sowie die Datenauswertung weiterentwickelt und für die Anwendung für die verwendeten silylterminierten Siliziumwafer optimiert werden.

Da noch keine Vergleichsdaten vorlagen, musste bei der Auswahl der Terminierungen darauf geachtet werden, dass die Massenspektren der vermutlich desorbierenden Moleküle charakteristische Fragmente enthalten, also solche, die möglichst nicht im Hintergrundspektrum vorkommen.

3 [All95] [Klu97] [Liu04] [Ohm00] [Sil91] [Ull96] [Was89]
4 [Bro94] [Gao95] [Gun95] [Hau94] [Rou78] [Sev92] [Tri93] [Tri95]
5 [Anw00] [Mor02] [Zha97] [Zha98]
6 [Sev92] [Kum01]
2 Messmethoden

Von den eingangs erwähnten Messmethoden wurden zur Charakterisierung der silylterminierten Siliziumdioxidoberflächen die ATR-FTIR-Spektroskopie, die statische ToF-SIMS, die Röntgen-Photoelektronenspektroskopie, die thermische Desorptionspektroskopie, sowie Kontaktwinkelmessungen eingesetzt. Im folgenden werden nun die Grundlagen zu den einzelnen Methoden beschrieben.

2.1 Kontaktwinkel und Oberflächenenergie

In diesem 3-Phasen-System gibt es drei Phasengrenzen: Die zwischen Festkörper und Gas \((sg)\), die zwischen Flüssigkeit und Gas \((lg)\) und die zwischen dem Festkörper und der Flüssigkeit \((sl)\). Der Kontaktwinkel \(\Theta\) steht mit den Oberflächenenergien \(\sigma_{ij}\) der drei Phasengrenzen an der Grenzlinie des Tropfens wie folgt in Beziehung:

\[
\sigma_{wg} = \sigma_{sl} + \sigma_{lg} \cos \Theta \quad \text{Young-Gleichung} \quad (2.1.1)
\]

Hintergrund dieser Gleichung ist, dass sich an der Grenzlinie des liegenden Tropfens ein Kräftegleichgewicht ausbildet.

Die Oberflächenenergie \(\sigma_{ij}\) ist eine thermodynamische Größe:

\[
\sigma_{ij} = \left(\frac{\partial G}{\partial A_{ij}} \right)_{p,T,Gl.} \quad (2.1.2)
\]

Hierbei ist \(G\) die Freie Gibbs-Energie und \(A_{ij}\) die Fläche der Phasengrenze. Die Indizes \(T, p\) und \(Gl.\) zeigen an, dass die Oberflächenenergie von der Temperatur und vom Druck abhängig ist und dass sich das System im Gleichgewicht befinden muss, damit die Gleichung gültig ist.

Kontaktwinkelmessungen an Thiol-SAMs auf ebenen Goldoberflächen zeigen, dass die chemischen Eigenschaften der Endgruppe einen großen Einfluss auf den Kontaktwinkel haben. Während Methylgruppen \((\text{CH}_3)\) zu einem Wasser-Kontaktwinkel von etwa 110° führen, verringert er sich bei Hydroxymethylengruppen \((\text{CH}_2\text{OH})\) als Endgruppe auf 0°. Andererseits kann der Kontaktwinkel auch allein durch Änderung der Morphologie stark beeinflusst werden, wie Messungen an fraktalen Oberflächen zeigen [Ond96]. Während auf der ebenen Polymeroberfläche ein Wasser-Kontaktwinkel von 109° gemessen wurde, konnte auf der fraktalen Oberfläche des selben Polymers (fraktale Dimension: 2,29) ein Kontaktwinkel von 174° beobachtet werden.

Lewis-Base) möglich sind. Vereinfacht kann man sagen, dass besonders kleine Wasser-
Kontaktwinkel (< 45°) durch besonders intensive chemische Wechselwirkung zustande
kommen und besonders große Kontaktwinkel (> 135°) physikalische Ursachen haben.

Soll der Einfluss der chemischen Gruppen an der Phasengrenze untersucht werden, so
muss die Morphologie konstant gehalten werden und umgekehrt. Für den Vergleich
organisch terminierter Oberflächen kann dann die Polarisität einer Stammverbindung zur
Abschätzung herangezogen werden, in welcher Reihenfolge die Benetzarkeit der
terminierten Oberfläche zunimmt.

Lösungs- und Quellprozesse sowie chemische Reaktionen zwischen Oberfläche und
Flüssigkeit sind Phänomene, die bei der Bestimmung der Benetzarkeit ausgeschlossen
werden müssen. Strenggenommen dürften daher Untersuchungen zur Benetzarkeit von
Oberflächen, die saure (SiOH, COOH) oder basische (NH₂) Oberflächengruppen
aufweisen, mit Wasser als Testflüssigkeit nicht durchgeführt werden, da die
Übertragung eines Protons bereits eine chemische Reaktion darstellt. Dennoch wird
auch für diese Oberflächen meist Wasser als Testflüssigkeit verwendet.

Oberflächenenergie nach Owens-Wendt-Rabel & Kaelble

Es gibt zahlreiche Theorien, um die Oberflächenenergie aus Kontaktwinkelmessungen
abzuleiten. Eine dieser Theorien ist die von Owens-Wendt-Rabel & Kaelble. Ihr liegt
die Annahme zugrunde, dass sich die Grenzflächenenergie entsprechend der
unterschiedlichen Wechselwirkungen zwischen den Teilchen auseinander lässt. Sie
unterscheidet dabei zwischen polaren und dispersen Wechselwirkungen. Unter polaren
Wechselwirkungen werden die Coulombwechselwirkungen zwischen permanenten
Dipolen und die zwischen permanenten und induzierten Dipolen zusammengefasst. Die
WW aufgrund von zeitlichen Fluktuationen in der Ladungsverteilung innerhalb der
Moleküle bzw. der Oberfläche wird als disperse Wechselwirkungen bezeichnet.

Nach der Theorie von Owens-Wendt-Rabel & Kaelble setzt sich die Oberflächenenergie
eines Mediums \(\sigma \) additiv aus dem polaren \(\sigma_{pol} \) und dem dispersen \(\sigma_{disp} \) Anteil zusammen.

\[
\sigma = \sigma_{pol} + \sigma_{disp}
\]
(2.1.3)
Aus dem Anteil der Flüssigkeit σ_l und des Festkörpers σ_s lässt sich dann die Grenzflächenenergie σ_{ls} in Form des geometrischen Mittels wie folgt berechnen:

$$\sigma_{ls} = \sigma_s + \sigma_l - 2\sqrt{\sigma_l^{\text{disp}}\sigma_s^{\text{disp}}} - 2\sqrt{\sigma_l^{\text{pol}}\sigma_s^{\text{pol}}} \quad (2.1.4)$$

Aus Gl. 2.1.1 und 2.1.4 erhält man nach Umformen Gl. 2.1.5:

$$\frac{\sigma_l (\cos \Theta + 1)}{2\sqrt{\sigma_l^{\text{disp}}}} = \sqrt{\sigma_s^{\text{pol}}} \sqrt{\sigma_l^{\text{pol}}} + \sqrt{\sigma_l^{\text{disp}}} \quad (2.1.5)$$

Diese Gleichung stellt eine Geradengleichung der Form $y = mx + b$ dar, wobei für y und x alle Werte bekannt sind (der Kontaktwinkel Θ aus der Messung). Die gesuchten Werte für den polaren und den dispersen Anteil der Oberflächenenergie des Festkörpers sind in der Steigung m und dem y-Achsenabschnitt b enthalten.

$$y = \frac{\sigma_l (\cos \Theta + 1)}{2\sqrt{\sigma_l^{\text{disp}}}} \quad x = \sqrt{\sigma_l^{\text{pol}}} \sqrt{\sigma_l^{\text{disp}}}$$

$$m = \sqrt{\sigma_s^{\text{pol}}} \quad b = \sqrt{\sigma_l^{\text{disp}}}$$

Trägt man nun die y-Werte gegen die x-Werte auf und fittet eine Ausgleichsgerade durch die Punkte, so kann der polare Anteil der Oberflächenenergie durch quadrieren der Steigung und der disperse Anteil durch quadrieren des y-Achsenabschnittes erhalten werden.

2.2 Schwingungsspektroskopie

Der IR-Spektroskopie liegt die Absorption von Photonen eines bestimmten Energiebereichs (400 cm\(^{-1}\) bis 4000 cm\(^{-1}\)) zur Anregung von Molekülschwingungen zugrunde. Dabei wird im Prinzip immer das gesamte Molekül zum Schwingen gebracht, es hat sich jedoch als praktikabel herausgestellt, diese Gesamtenschwingungen durch Schwingungen einzelner Gruppen zu charakterisieren. Einer bestimmten Gruppe von Atomen kann so ein charakteristischer Frequenzbereich zugeordnet werden. In Tab. 1 sind die für diese Arbeit wichtige Schwingungsbanden aufgeführt.

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Wellenzahl-bereich [cm(^{-1})]</th>
<th>O-H</th>
<th>CH(_{\text{sym}})</th>
<th>CH(_3)</th>
<th>CH(_2)</th>
<th>N=C=O</th>
<th>Si-H</th>
<th>C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3700 bis 2700</td>
<td>3100</td>
<td>3000 bis 2850</td>
<td>3000</td>
<td>3000</td>
<td>2275</td>
<td>bis</td>
<td>2270</td>
</tr>
<tr>
<td></td>
<td>3000 bis 2850</td>
<td>2850</td>
<td>2850</td>
<td>2270</td>
<td>2250</td>
<td>bis</td>
<td>bis</td>
<td>2070</td>
</tr>
<tr>
<td></td>
<td>2850 bis 1520</td>
<td>2270</td>
<td>2250 bis 1520</td>
<td>2250</td>
<td>2070</td>
<td>1520</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die Art und Weise, wie Atomgruppen schwingen können ist sehr vielseitig. Es wird zwischen symmetrischer und asymmetrischer Streckschwingung, Schaukelschwingung (rocking), Kippschwingung (wagging) und Torsionsschwingung (twisting) unterschieden. Oberhalb von 1500 cm\(^{-1}\) sind, neben schwachen Signalen von Kombinationsschwingungen, im Wesentlichen nur Streckschwingungen von Bedeutung, darunter treten die Deformationsschwingungen in den Vordergrund.

Ein FTIR-Spektrometer besteht im Wesentlichen aus einem thermischen Strahler, einem Michelson-Interferometer, einer Halterung für die Küvette bzw. Probe und einem Detektor.

Der einfachste IR-Detektor ist der DTGS-Detektor (deuteriertes Triglycinsulfat). Er wird für viele Anwendungen eingesetzt weil er keine Kühlung mit flüssigem Stickstoff erfordert, aber er ist um Größenordnungen weniger empfindlich als stickstoffgekühlte Quecksilber-Cadmium-Tellurid (MCT)- und Indium-Antimonit (InSb)-Detektoren. Der
letztgenannte ist der empfindlichste, er hat aber den Nachteil, dass unterhalb von 1850 cm\(^{-1}\) nicht gemessen werden kann.

Sowohl Strahler als auch Detektor besitzen ein charakteristisches Spektrum. Durch die Kombination von Strahler und Detektor kann das System für einen bestimmten Wellenzahlbereich optimiert werden. Liegen die interessierenden Banden unterhalb von 1850 cm\(^{-1}\), so ist die Kombination von Globar mit einem MCT-Detektor einzusetzen. Die Kombination von Halogenstrahler mit einem InSb-Detektor ist am besten geeignet für den Wellenzahlbereich oberhalb von 2500 cm\(^{-1}\). Im Bereich dazwischen ist die Kombination von Globar mit dem InSb-Detektor optimal. In Abb. 1 sind die Einkanalspektren für die Kombination Halogenstrahler + InSb-Detektor und die Kombination Globar + MCT-Detektor gezeigt.

Abb. 1 Einkanalspektren in Abhängigkeit von Strahlungsquelle und Detektor.
Ein **Transmissionsspektrum** erhält man, indem man das Einkanalspektrum ohne den Analyten (Referenz) und mit dem Analyten aufnimmt und anschließend das letztere durch das erstere teilt. Das Transmissionsspektrum wird anschließend in das Absorptionsspektrum konvertiert. Im Absorptionsspektrum zeigen dann die Absorptionsbanden des Analyten nach oben. Falls Absorptionsbanden nach unten auftreten bedeutet dies, dass die entsprechende Gruppe auf der Referenz häufiger vorkam als auf der Analysenprobe.

Es ist zu beachten, dass mit der IR-Spektroskopie keine absoluten Aussagen gemacht werden können, solange die Referenz nicht ausreichend bekannt ist. Wenn im Absorptionsspektrum kein Signal eines bestimmten Moleküls auftaucht, so kann es sein, dass auf/in der zu analysierenden Probe dieses Molekül dennoch vorhanden ist, aber weil es in gleicher Konzentration auf/in der Referenz vorhanden war, sich das Signal herausrechnet.

Abb. 2 Aufgrund der mehrfachen Reflexion des IR-Strahls an der Oberfläche des ATR-Kristalls wird die Qualität der Spektren deutlich erhöht.

Durch die mehrfachen Reflexionen an der Oberfläche wird die Qualität der Spektren deutlich erhöht.

Ein Problem dieser Form der ATR-Technik stellt die schlechte Reproduzierbarkeit der Spektren infolge des nicht optimalen Kontaktes zwischen Prisma und Probe dar. Während sich dieses Problem bei weichen Proben, wie z.B. Polymerfolien, durch einen entsprechend hohen Anpressdruck lösen lässt, sind harte, spröde Materialien wie Glas und Silizium auf diese Weise nicht vernünftig messbar.

Da Silizium selbst einen hohen Brechungsindex besitzt, liegt es nahe, für die Messung organisch terminierter Siliziumdioxidoberflächen ein Prisma aus Silizium zu verwenden und dieses selbst als Probe zu verwenden. In diesem Fall reicht das bei der Reflexion austretende Licht zwangsläufig weit genug aus dem Prisma heraus, um sämtliche Terminierungsgruppen zu erfassen. Daher sind die Spektren, die mit dieser Technik aufgenommen werden, extrem gut reproduzierbar.

Ein Nachteil der Verwendung von Silizium als Prismamaterial ist allerdings, dass die Messung von C-F- und C-O-Banden aufgrund der Absorption der IR-Strahlung durch das Silizium unterhalb von 1500 cm\(^{-1}\) nicht möglich ist. Abhilfe könnte ein mit Siliziumdioxid beschichteter Germaniumkristall schaffen, ein solcher stand aber nicht zur Verfügung.

2.3 Photoelektronenspektroskopie

Bei der Photoelektronenspektroskopie (PES; auch ESCA genannt) wird die Probe höherenergetischer monochromatischer elektromagnetischer Strahlung, meist Röntgenstrahlung, ausgesetzt (XPS). Eine Alternative ist die Verwendung von UV-Strahlung (UPS). Infolge des Photoeffektes werden im Material Elektronen emittiert, deren kinetische Energie gemessen wird.

Da Elektronen, die aus tiefergelegenen Atomen emittiert werden, mit einer gewissen Wahrscheinlichkeit ihre Energie an das darüberliegende Material abgeben bevor sie dieses verlassen, ist die Methode relativ oberflächenempfindlich. Als Informationstiefe werden 0,4 bis maximal 10 nm angegeben. Die mittlere freie Weglänge (oft auch „mittlere Austrittstiefe“ genannt) ist stark von der Energie der Elektronen abhängig. Sie zeigt ein Minimum bei Elektronenergien zwischen 60 und 100 eV. In Bezug auf die Informationstiefe ist zu beachten, dass auch eine eventuell vorhandene Adsorbatschicht mitdetektiert wird und bei der Informationstiefe mit einzubeziehen ist.

Da die Elektronen je nach Oxidationszustand eines Elements unterschiedlich stark gebunden sind (je positiver die Ladung, desto größer die Bindungsenergie), können auch Aussagen über den Bindungszustand getroffen werden. Dies ist insbesondere bei C und Si der Fall, während bei O und F aufgrund ihrer hohen Elektronegativität die Bindungspartner nur einen geringfügigen Einfluss auf die Lage der Peaks haben. Die Verschiebung des Peakmaximums kann bei C 10 eV betragen, während sich die Linienbreiten meist im Bereich von 1 bis 2 eV bewegen.
Ein Röntgen-Photoelektronen-Spektrometer besteht aus einer Röntgenstrahlungsquelle, der Probenkammer, dem energiedispersierenden System zur Erzeugung monochromatischer Röntgenstrahlung und dem Analysator- sowie dem Detektorsystem. Werden Magnesium oder Aluminium als Anodenmaterial der Röntgenstrahlungsquelle verwendet, so kann auch ohne Monochromator gemessen werden, da die Kα-Strahlen Halbwertsbreiten von etwa 0,7 bis 0,8 eV aufweisen. Mit Monochromator kann die Linienbreite auf wenige Zehntel Elektronenvolt reduziert werden, so dass hier auch die Feinstruktur der Linien aufgelöst werden kann.

Photoelektronenspektren werden hauptsächlich für qualitative Aussagen eingesetzt. Die Konzentration eines zu identifizierenden Elementes muss dabei größer als 0,1% sein. Für Quantitative Aussagen wird die PES kaum herangezogen.

In Bezug auf SAMs kann die PES Hinweise auf die Orientierung von teilweise fluorierten Kohlenwasserstoffketten geben [Ohn00]. Im Fall von 1,1,2,2-Tetrahydroperfluordecylsiloxan-SAMs werden die Methylengruppen durch die CF₂-Gruppen umso stärker abgeschirmt, je senkrechter die Ketten auf der Oberfläche ausgerichtet sind.
2.4 Massenspektrometrie

Unter den massenspektrometrischen (MS) Analysenmethoden werden alle Methoden zusammengefasst, bei denen Ionen aufgrund ihres Masse-Ladungs-Verhältnisses aufgetrennt werden. Die bei diesem Verfahren ablaufenden Prozesse können prinzipiell in folgende Schritte zerlegt werden:

1. Probenzuführung:
 Zunächst muss der Analyt an die Stelle gelangen, an der die Ionisierung erfolgt.

2. Ionisierung:
 Dann muss eine Ionisierung des Analyten erfolgen.

3. Fragmentierung:
 Der ionisierte Analyt zerfällt in charakteristischer Weise in Ionen und Radikale.

4. Massentrennung:
 Die Ionen werden im Analysator aufgrund ihres Masse-Ladungs-Verhältnisses aufgetrennt.

5. Detektion:
 Die aufgetrennten Ionen werden detektiert.

Schließlich wird die Signalintensität gegen das Masse-Ladungs-Verhältnis aufgetragen.

Voraussetzung für alle MS-Verfahren ist, dass die Massentrennung im Hochvakuum erfolgt. Die Ionisierung kann dagegen auch bei Normaldruck bzw. auf dem Weg ins Vakuum erfolgen. Im Folgenden sollen nun die wichtigsten Aspekte bzw. Verfahren erläutert werden.
2.4.1 Probenzuführung und Ionisierungsmethoden

Die Probenzuführung ist abhängig von der Ionisierungsmethode und umgekehrt. Der Analyt kann entweder als Gas, in einer Lösung, als Feststoff in einer Matrix oder als Feststoff auf einem Träger der Ionisierung zugeführt werden. Im folgenden ist zu jeder Art der Probenzuführung eine Ionisierungsmethode aufgeführt.

a) Elektronenstoß-Ionisation (EI)

Die am häufigsten angewendete Ionisierungsmethode ist die Elektronenstoß-Ionisation. Bei dieser Methode muss der Analyt gasförmig vorliegen. Die Ionisation erfolgt im Hochvakuum.

In der Ionisierungskammer (IK) wird mittels einer Glühkathode und einer Anode ein Elektronenfluss (< 1 mA) durch das zu ionisierende Gas geleitet. Wenn ein Elektron im Gasraum auf ein Molekül trifft, so kann dieses ionisiert werden, wenn die Energie des Elektrons dafür ausreicht.

Die Energie, die bei den meisten Molekülen zur Ionisierung benötigt wird, liegt im Bereich zwischen 7 und 15 eV (bzw. etwa 700 bis 1500 kJ/mol). Dementsprechend muss an die Glühkathode mindestens ein Potential von 15 eV angelegt werden, wenn alle vorhandenen Moleküle ionisiert werden sollen. Aus wissenschaftlicher Sicht ist es interessant, die Ionisierungsenergie zwischen 7 und 15 eV durchzufahren, denn auf diesem Wege lassen sich Ionisierungsenergien experimentell bestimmen. Da die Ionisierungswahrscheinlichkeit aber stark vom angelegten Potential abhängt, solange sich dieses in der Nähe der Ionisierungsenergie befindet, ist dieser Potentialbereich für die Analyse nicht bekannter Substanzen nicht praktikabel, da hier die Signalintensität schlecht reproduzierbar ist.

Des Weiteren zerfällt durch überschüssig deponierte Energie das zunächst gebildete Ion, das sogenannte Mutterion (engl.: parent ion), in charakteristischer Weise in Fragmentionen und Radikale (s. Kap 2.4.2). Dieses Muster der Fragmentionen (oder einfach Fragmente genannt) wird zur Identifizierung des Ausgangsmoleküls verwendet. Durch ein höheres Ionisierungspotential erhält man also mehr Informationen über das detektierte Molekül.
Andererseits gibt es auch Probleme, wenn das Ionisierungspotential zu hoch gewählt wird. Hier wird zu viel Energie in das Molekül deponiert, die Folge ist, dass es so stark in Fragmente zerfällt, dass Rückschlüsse auf das Mutterion kaum mehr möglich sind. Man hat sich daher auf ein Ionisierungspotential von 70 eV geeinigt. Bei dieser Ionisierungenergie haben die MS der meisten Moleküle den größten Informationsgehalt.

Neben der großen Anzahl von Datenbank-Spektren, die für diese Ionisierungsmethode schon vorhanden sind, ist ein weiterer – oft entscheidender – Vorteil der Elektronenstoß-Ionisation die gute Reproduzierbarkeit der Massenspektren. Ein großes Problem der neueren Ionisierungsverfahren ist nämlich, dass Spektren, die an unterschiedlichen Massenspektrometern aufgenommen wurden, sich unter Umständen deutlich unterscheiden können, da die Rahmenbedingungen für die Ionisierung viel schwieriger zu kontrollieren sind.

Die EI wird oft in Verbindung mit der Gaschromatographie eingesetzt, da hier die Moleküle schon gasförmig vorliegen. Auch für die thermische Desorptionsspektroskopie ist diese Methode gut geeignet.

b) Elektrospray-Ionisation (ESI) und Atmosphärendruck-Ionisation (API)
Mit dem stark zunehmenden Einsatz der HPLC in der instrumentellen Analytik wuchs auch das Interesse, Analyten in gelöster Form massenspektrometrisch untersuchen zu können. Das Problem ist, dass das Einbringen schon kleiner Flüssigkeitsmengen in das Hochvakuumsystem zu einem starken Druckanstieg führt. Die Lösung dieses Problems ist das Prinzip der Elektrospray-Ionisation.

c) Matrix-Assisted Laser Desorption Ionization (MALDI)

d) Sekundärionen-Massenspektrometrie (SIMS)
Die Sekundärionenmassenspektrometrie wird meist verwendet, um die Zusammensetzung von Metalllegierungen und keramischen Materialien zu untersuchen. Generell eignet sich diese Methode für schwer verdampfbare Substanzen, zu denen man im Prinzip auch die chemisch an die Oberfläche gebundenen Silylgruppen zählen kann, da hier die Ionisierung direkt an der Oberfläche erfolgt. Dazu wird eine Festkörperoberfläche mit einem fokussierten Strahl von positiv geladenen Primärionen (Cs⁺, O₂⁺, Ga⁺) mit Energien bis zu 22 keV beschossen. Dadurch wird das Material direkt auf der Oberfläche ionisiert und, je nach Intensität des Primärionenstrahls, abgetragen.

Von der Oberfläche desorbieren sowohl Neutralteilchen (größter Anteil) als auch positive und negative Ionen (Sekundärionen). Je nach Messmodus werden entweder die negativen oder die positiven Ionen durch die Extraktionselektrode in den Massenanalysator hineinbeschleunigt.

Man unterscheidet bei der SIMS eine statische und eine dynamische Arbeitsweise. Die dynamische SIMS dient der Untersuchung von Tiefenprofilen und von Volumenelementen (3D-SIMS). Bei Sputtraten von 1 µm/h wird die Oberfläche systematisch abgetragen und es können auf diese Weise schichtweise Analysen ausgeführt werden. Bei der statischen SIMS wird nahezu zerstörungsfrei gemessen, da die Abtragung von Atomen von der Oberfläche nur ca. 0,1 nm/h beträgt. Da das Auflösungsvermögen hierbei bei 1 bis 5 Atomlagen liegt, lassen sich mit der statischen SIMS echte Oberflächenanalysen ausführen.
2.4.2 Fragmentierung

Für die Interpretation eines MS ist es zwingend notwendig, die Ionisierungsmethode und die Ionisierungsparameter zu kennen. Ein Vergleich zweier MS ist nur dann sinnvoll, wenn sowohl die Methode als auch die Parameter identisch sind. Selbst bei sanften Ionisierungsmethoden ist diese Information nötig, da je nach Methode ein Peak bei der Masse des Molekülions \([M^+]\) oder bei höheren Massen, z.B. \([M+H^+]\) oder \([M+N\text{H}_4^+]\), auftritt.

Der SIMS liegt eine sehr harte Ionisierung zugrunde, daher tritt hier eine sehr weitgehende Fragmentierung ein, so dass das MS ohne Vergleichsspektren nur schwer interpretierbar ist. Bei dieser Methode treten einerseits sehr große Ionen im MS auf, da die Energie ausreicht, um auch große Bruchstücke aus dem Material herauszuschlagen, andererseits sind auch sehr kleine Ionen (z.B. \([\text{Si}^+]\)) stark vertreten. Letztere haben ihren Ursprung auch in Austauschreaktionen zwischen Primärionen und Oberflächenatomen.

Im Fall der EI sind die Fragmentierungsreaktionen am besten untersucht. Wie schon erwähnt, wird in der Regel ein Ionisierungspotential von 70 eV verwendet. Die Fragmentierungsreaktionen sind unter diesen Umständen sehr gut reproduzierbar, so dass charakteristische Fragmentmuster auftreten, die oft eine zweifelsfreie Identifizierung des Moleküls möglich machen.

Da eine ausführliche Darstellung der großen Anzahl an Fragmentierungsreaktionen den Rahmen dieser Arbeit sprengen würde, soll hier nur auf einige wenige Aspekte eingegangen werden. Dazu wird am Beispiel des tert-Butanols die Entstehung des Fragmentmusters erläutert. Der anschließende Vergleich mit dem MS von Trimethylsilanol soll zeigen, dass die Ionisierung und die anschließende Fragmentierung festen Regeln unterworfen sind, deren Kenntnis Rückschlüsse vom MS auf das detektierte Molekül zulassen. Die Massenspektren stammen aus der NIST-Datenbank (National Institute of Standards and Technology) [NIST].

Die Intensität wird bei einem Massenspektrum immer gegen das Masse-Ladungs-Verhältnis \(m/z\) aufgetragen. Um den Text übersichtlicher zu machen wird dafür im Folgenden vereinfacht der Begriff „Masse“ verwendet.
Die Ionisierung eines tert-Butanol-Moleküls erfolgt bevorzugt an einem freien Elektronenpaar am Sauerstoff, indem ein Elektron herausgeschlagen wird. Dadurch entsteht ein energiereiches Radikalkation. Durch Abspaltung eines Methylradikals entsteht das durch die Delokalisierung der Ladung stabilisierte Kation \([\text{Me}_2\text{C}=\text{OH}^+]\), das demzufolge als Hauptfragment im MS zu finden ist (Abb. 3a). Beim Trimethylsilanol wird quasi das gleiche Fragmentmuster gefunden (Abb. 3b), der Unterschied ist nur, dass alle Massen um 16 Einheiten größer sind (Massendifferenz zwischen Silizium und Kohlenstoff).

Abb. 3 Die Massenspektren von a) tert-Butanol und b) Trimethylsilanol im Vergleich.

Die Ionisierung von Toluol erfolgt in erster Linie aus dem \(\pi\)-System des Benzolrings. Das gebildete Radikalkation \([\text{C}_7\text{H}_8^+]\) stabilisiert sich durch Abspaltung eines H-Atoms. Dadurch entsteht ein mesomeriestabilisiertes Kation \([\text{C}_7\text{H}_7^+]\) das aufgrund seiner Stabilität im MS als Hauptfragment zu finden ist (Abb. 4).
2.4.3 Massenanalyser und Detektor

Im Massenanalyser erfolgt die Auftrennung der Ionen aufgrund ihrer Masse. Die Auftrennung kann in einem magnetischen Feld, in einem statischen elektrischen Feld, in einem elektrischen Wechselfeld oder aufgrund unterschiedlicher Flugzeiten stattfinden. Bevor die Ionen jedoch getrennt werden, müssen sie in einem elektrischen Feld beschleunigt werden. Dabei wird ihre potentielle Energie in kinetische Energie umgewandelt. Für den Zusammenhang zwischen der Beschleunigungsspannung \(U \) und der Geschwindigkeit \(v \) der Ionen gilt:

\[
eU = \frac{1}{2} mv^2
\]

(2.4.3.1)

mit \(e = 1,6 \times 10^{-19} \) C und \(m = \text{Masse des Ions} \)

Dadurch ist gewährleistet, dass am Ende der Beschleunigungsstrecke alle Ionen dieselbe Energie besitzen. Anschließend werden die Ionen fokussiert, erst danach durchlaufen sie den Massenfilter.

Abb. 4 Massenspektrum von Toluol. Aufgrund der Stabilität des Tropyliumions \([C_7H_7]^+\) ist das Fragment bei \(m/z = 91 \) u/e das dominierende Fragment.
Das klassische Massenspektrometer ist ein Magnetfeld-Sektorfeld-Gerät. Die Ionen werden hier mit Hilfe eines Magneten auf einen bestimmten Ablenkwinkel gebracht. Das Auflösungsvermögen dieser Geräte ist jedoch eingeschränkt, so dass leistungsfähigere Massenfilter entwickelt werden mussten.

Bei einem doppelt fokussierenden Massenspektrometer wird zur Trennung zunächst ein statisches elektrisches Feld (elektrostatischer Sektor) und nachfolgend ein magnetisches Feld (magnetischer Sektor) eingesetzt. Diese Geräte werden in der Regel für hochauflösende Massenspektren verwendet. Es können damit Massenzahlen bis zur fünften Stelle hinter dem Komma aufgelöst werden. Sie sind jedoch kompliziert und sehr teuer, daher sind sie nicht sehr verbreitet.

Die kompakten Quadrupol-Massenspektrometer sind preiswert, robust und erlauben eine schnelle Registrierung. Daher werden sie heutzutage am häufigsten eingesetzt.

Bei den Flugzeitmassenspektrometern wird die Geschwindigkeitsabhängigkeit der Ionen von ihrer Masse ausgenutzt. Nach dem Passieren der Beschleunigungsstrecke haben alle Ionen die gleiche kinetische Energie. In der nachfolgenden Driftstrecke (Flugrohr des Massenspektrometers) ergeben sich damit unterschiedliche Flugzeiten in Abhängigkeit von der Masse, wobei schwere Teilchen den Detektor später erreichen als leichte. Um den Startzeitpunkt für die Flugzeitbestimmung festlegen zu können, ist entweder eine gepulste Probenzuführung oder eine gepulste Ionisierung notwendig.
Der wesentliche Vorteil der ToF-MS ist der unbegrenzte Massenbereich, weshalb sich dieses Verfahren vor allem für Untersuchungen an biologischen Makromolekülen durchgesetzt hat.

In neuester Zeit werden immer häufiger auch die Ionenfallen oder Fourier-Transform-Geräte eingesetzt. FT-MS-Geräte arbeiten auf der Grundlage des Ionenzyklotron-Resonanzphänomens. Da Frequenzen sehr genau gemessen werden können und die Möglichkeit besteht, die Ionen in der Ionenfalle zu sammeln, besitzen diese Geräte ein sehr hohes Auflösungsvermögen und eine sehr hohe Empfindlichkeit.

2.5 Thermische Desorptions Spektroskopie (TDS)

Die thermische Desorptions Spektroskopie (TDS) wird klassisch für Adsorptionsuntersuchungen eingesetzt, wobei meist Systeme untersucht werden, bei denen nur relativ schwache Wechselwirkungen zwischen Oberfläche und Adsorbatmolekül auftreten. Als Beispiele seien die Systeme Kohlenstoffmonoxid auf Nickeloberflächen und Methanol auf Platinoberflächen genannt. Bei diesen Untersuchungen wird die zuvor durch langes Glühen gereinigte Oberfläche in einer Vakuumkammer für eine bestimmte Zeit einer Gasatmosphäre ausgesetzt. Die Zeit, in der die kalte Oberfläche dem Gas ausgesetzt wird, nennt man Kaltzeit. Anschließend wird die Probe wieder geheizt und die desorbierenden Moleküle werden detektiert. Diese Messungen verfolgen das Ziel, die momentan vorhandene Adsorbatmenge, die maximal aufnehmbare Adsorbatmenge und deren Abhängigkeit von der Temperatur, den Kondensations- und/oder den Haftkoeffizienten, die Bindungs- und die Desorptionsenergie sowie den präexponentiellen Faktor τ_0 der Frenkelgleichung (Gl. 2.5.1) zu bestimmen. Die Frenkel-Gleichung beschreibt die Abhängigkeit der Verweilzeit τ eines Adsorbatteilchens auf der Oberfläche von der Temperatur T und der benötigten Desorptionsenergie E_{des}.

$$\tau = \tau_0 \exp \left(\frac{E_{\text{des}}}{kT} \right)$$

(2.5.1)

mit $k = \text{Boltzmannfaktor}$

Bei der TDS wird die Probe nach einem gewählten Temperatur-Zeit-Programm langsam erwärmt (daher auch TPD, Temperatur Programmierte Desorption) und die Desorptionsrate wird gemessen. Mit wachsender Temperatur steigt die Desorptionsrate entsprechend der Polanyi-Wigner-Gleichung (Gl. 2.5.2) an.

$$R_{\text{des}} = -\frac{dN_{\text{ads}}}{dt} = \nu_i N_{\text{ads}}^i \exp \left(\frac{-E_{\text{des}}}{kT} \right)$$

(2.5.2)

mit $R_{\text{des}} = \text{Desorptionsrate}$
$N_{\text{ads}}^i = \text{Zahl der Adsorbatteilchen}$
$t = \text{Zeit}$
$\nu = \text{präexponentieller Faktor}$
$i = \text{Reaktionsordnung}$
Infolge der durch die wachsende Desorption ständig abnehmenden Adsorbatteilchendichte durchläuft die Desorptionsrate bei einer bestimmten Temperatur ein Maximum, dessen Lage für die Desorptionsenergie der adsorbierten Teilchen charakteristisch ist.

Im folgenden sollen die Beziehungen zwischen der Temperatur T_p, bei der das Maximum der Desorptionsrate auftritt, und der Desorptionsenergie hergeleitet werden, wobei der Einfachheit halber ein linearer Temperaturanstieg angenommen wird. Prinzipiell kann man entsprechende Rechnungen auch für andere Temperatur-Zeit-Programme durchführen.

Man nimmt also zunächst an, dass die Temperatur T von einem Anfangswert T_0 beginnend proportional mit der Zeit t ansteigt:

$$T = T_0 + \beta t$$ \hspace{1cm} (2.5.3)

mit $\beta =$ Heizrate in K/s

Setzt man diese Gleichung in die Formel für die Desorptionsrate ein, so erhält man für die Desorption 1. Ordnung folgende Beziehung:

$$R_{\text{des}} = -\frac{dN_{\text{ads}}}{dt} = \nu N_{\text{ads}} \exp \left\{-\frac{E_{\text{des}}}{k(T_0 + \beta t)}\right\}$$ \hspace{1cm} (2.5.4)

Das Maximum der Desorptionsrate liegt bei der „Peaktemperatur“ T_p, bei der die zeitliche Ableitung der Desorptionsrate Null wird:

$$\frac{d}{dt} \left(-\frac{dN_{\text{ads}}}{dt} \right)_{t=T_p} = 0$$ \hspace{1cm} (2.5.5)

Die Ableitung liefert als Ergebnis für eine Desorption erster Ordnung:

$$E_{\text{des}} = kT_p \left[\ln \frac{\nu T_p}{\beta} - \ln \frac{E_{\text{des}}}{kT_p} \right]$$ \hspace{1cm} (2.5.6)
3 Chemie an der Siliziumoberfläche

3.1 Die Siliziumdioxidoberfläche

Wichtig für die Oberflächenchemie des Oxids ist, dass es im Wesentlichen drei Oberflächengruppierungen gibt (Abb. 5). Die Zusammensetzung der Gesamtoberfläche aus diesen Gruppierungen ist für die physikalischen Eigenschaften genauso bedeutend wie für die chemischen Eigenschaften. Je nach Vorbehandlung und Entstehungsart des Oxids können sehr große Unterschiede in der Zusammensetzung vorkommen.

Abb. 5 Oberflächengruppen auf Siliziumdioxidoberflächen.

![Diagramm der Oberflächengruppen](image)

Eine Besonderheit der Si-O-Si-Brücke ist die große Variabilität des Si-O-Si-Bindungswinkels, da die Potentialkurve zwischen 140° und 180° nahezu ein Plateau aufweist. Der Bindungswinkel in Hexamethyldisiloxan Me₃Si-O-SiMe₃ beträgt z.B. 148°. Daraus ergibt sich die große Elastizität von Silikon und die Neigung von Siliziumdioxid, zu Gläsern zu erstarren anstatt auszukristallisieren. Es erklärt aber auch, warum ein sperriges Trialkylsilan überhaupt mit den Hydroxylgruppen der Oberfläche reagieren kann und die resultierende Terminierung trotz der erwarteten Winkeldeformation stabil ist.

Da Siliziumdioxid „altert“, ändern sich auch die Oberflächeneigenschaften mit der Zeit. Unter „altern“ ist die langsame Kondensation von Silanolgruppen zu Siloxanbrücken, sowie eine Änderung der Bindungswinkel und Bindungsabstände zu verstehen. Dieser Prozess muss berücksichtigt werden, wenn Untersuchungen an Kieselgel oder Xerogel, in geringerem Maße aber auch an anderen Siliziumdioxidoberflächen, durchgeführt werden. Die Konzentration an Silanolgruppen auf frischem Kieselgel ist bei [All95] mit 5 pro nm² angegeben.

3.2 Die H-terminierte Siliziumoberfläche

Bindung ist praktisch völlig unpolar und passiviert demzufolge das Siliziumatom gegen einen weiteren nukleophilen Angriff. Ein weiteres Ätzen findet dadurch statt, dass die Si-H-Bindung oxidiert. Dabei reagiert schematisch das Hydrid aus der Si-H-Bindung mit einem Proton aus der Lösung zu Wasserstoff (1).

\[
\text{Si-H + H-O-H} \rightarrow \text{Si-O-H + H-H} \quad \text{(1)}
\]

Diese Reaktion ist aber sehr langsam, solange nur Wasser bzw. Protonen als Oxidans zur Verfügung stehen. Bei Anwesenheit von Oxidationsmitteln wie Wasserstoffperoxid erfolgt die Reaktion sehr schnell (2).

\[
\text{Si-H + H-O-O-H} \rightarrow \text{Si-O-H + H-O-H} \quad \text{(2)}
\]

Auf den ersten Blick erscheint es vielleicht rätselhaft, warum nicht die thermodynamisch stabilere fluorierte Oberfläche entsteht, man darf aber dabei nicht vergessen, dass letztendlich keines der beiden Systeme thermodynamisch stabil ist. Aus thermodynamischer Sicht müsste sich der ganze Siliziumkristall mit Wasser vollständig zu Siliziumdioxid und Wasserstoff umsetzen (und dies tut er auch, wenn man ihm die Zeit dazu gibt). Die H-terminierte Oberfläche stellt lediglich eine metastabile Zwischenstufe dar, daher spielt hier die Kinetik die größere Rolle.

Aus den aufgeführten Überlegungen lässt sich ableiten, dass neben dem verwendeten Nukleophil (meist Fluorid, aber auch Hydroxid ist möglich) auch der Protonendonator (Wasser, Ammoniumion, HF, HNO\textsubscript{3}) einen Einfluss auf das Ätzverhalten hat. Der pH-Wert der Ätzmischung beeinflusst sowohl das Nukleophil als auch den Protonendonator. Außerdem hat auch die Temperatur einen großen Einfluss auf den Ätzprozess.

Der Ätzprozess auf kristallinen Siliziumoberflächen ist bei Verwendung von wässrigen Ammoniumfluoridlösungen bei 20°C anisotrop zu Gunsten der Si(111)-Orientierung. Auf Si(111)-Oberflächen können daher größere, atomar ebene Si(111)-Terrassen erzeugt werden. Bei Kristalloberflächen mit (100)-Orientierung führt das anisotrope Ätzen dagegen mit der Zeit zum Aufrauhen der Oberfläche, wobei kleine Si(111)-Facetten ausgebildet werden.
H-terminierte Siliziumoberflächen zeigen, abhängig von der Orientierung der Facetten, im IR-Spektrum oberhalb von 2000 cm\(^{-1}\) charakteristische SiH-Schwingungsbanden. Diese sind in Tabelle 2 aufgeführt.

Tabelle 2 SiH-Streckschwingungen auf kristallinem Silizium bei 300 K.

<table>
<thead>
<tr>
<th>Art der Streckschwingung</th>
<th>Orientierung der Facette</th>
<th>Wellenzahl [cm(^{-1})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Si-Si-H außer Phase</td>
<td>(110)</td>
<td>2071</td>
</tr>
<tr>
<td>Si-H</td>
<td>(111)</td>
<td>2083</td>
</tr>
<tr>
<td>H-Si-Si-H symmetrisch</td>
<td>(100)</td>
<td>2087</td>
</tr>
<tr>
<td>H-Si-Si-H in Phase</td>
<td>(110)</td>
<td>2089</td>
</tr>
<tr>
<td>H-Si-Si-H asymmetrisch</td>
<td>(100)</td>
<td>2090</td>
</tr>
<tr>
<td>SiH(_2) symmetrisch</td>
<td>(100)</td>
<td>2105</td>
</tr>
<tr>
<td>SiH(_2) asymmetrisch</td>
<td>(100)</td>
<td>2115</td>
</tr>
<tr>
<td>SiH(_3)</td>
<td>(100)</td>
<td>2130</td>
</tr>
</tbody>
</table>

Im Rahmen dieser Arbeit wurde die H-terminierte Siliziumoberfläche als Referenz für die IR-Spektroskopie und zur Abschätzung der Bedeckung verwendet.

3.3 Organisch terminierte Siliziumoberflächen

3.3.1 Silanterminierung der Siliziumdioxidoberfläche

Es gibt mehrere Möglichkeiten um silylierte Oberflächen zu erhalten. Je nach Funktionalität des Silanderivats werden dabei unterschiedliche Reaktionsbedingungen benötigt.

unteneinander notwendig ist. Die Wasserkonzentration ist somit ein kritischer Parameter bei der Herstellung von SAMs mittels trifunktionaler Silane.

Für die Silylierung eines Siliziumwafers geht man von der oxidierten Oberfläche aus. Da sich auf Silizium an Luft immer eine Oxidschicht ausbildet, ist somit im Prinzip keine weitere Bearbeitung der Oberfläche nötig. Als Vorbereitung zur Silylierung genügt somit eine einfache Reinigung der Oberfläche. Da die oxidative Reinigung die effektivste Form ist und man für die Silylierung sowieso vom Oxid ausgeht, bietet sich diese an.

Die Reaktion eines Silans mit einer Oberflächen-Silanolgruppe ist eine Kondensationsreaktion:

\[
\text{O}_3\text{Si-O-H} + \text{Y-SiR}_3 \rightarrow \text{O}_3\text{Si-O-SiR}_3 + \text{H-Y}
\]

Für gewöhnlich stehen folgende Abgangsgruppen (= Y in der Reaktionsgleichung) zur Verfügung:

- Cl Chlor
- O-CH\(_3\) Methoxy
- O-C\(_2\)H\(_5\) Ethoxy
- N(CH\(_3\))\(_2\) Dimethylamin
- NH-SiR\(_3\) als symmetrisches Disilazan
- O-SiR\(_3\) als symmetrisches Disiloxan

Laut Literatur wird Dimethylaminotrimethylsilan verwendet, um Glasoberflächen wasserabweisend zu machen [Dey82]. Dieses Silanderivat reagiert sehr schnell mit Silanolgruppen.

Abgesehen vom Disiloxan sind Silane mit den oben genannten Abgangsgruppen reaktiv genug, um direkt mit Oberflächen-Silanolgruppen zu reagieren. Bei den Alkoxyderivaten sind für die Reaktion Temperaturen um 100°C nötig. Sowohl bei den Disiloxanen als auch bei den Alkoxyderivaten kann die Reaktion säurekatalysiert werden.
3.3.2 Modifizierung funktioneller Gruppen an der Oberfläche

Kommerziell steht nur eine begrenzte Auswahl von Dimethylchlorsilanderivaten zur Verfügung. Aus wissenschaftlicher Sicht ist es jedoch erstrebenswert, die Terminierung gezielt zu modifizieren, um bestimmte Fragestellungen untersuchen zu können. Silane, die eine funktionelle Gruppe enthalten, machen dies möglich. Leider stehen nur wenige Dimethylchlorsilanderivate mit funktionellen Gruppen zur Verfügung. (Bei Trichlorsilanderivaten ist die Auswahl bedeutend größer.)

Im Rahmen dieser Arbeit wurde für die Terminierung der Oberfläche mit einer funktionellen Gruppe die Isocyanatgruppe gewählt. Als Reaktionspartner können Alkohole und Amine dienen. Wenn Alkohole an das Isocyanat addieren, entsteht ein Urethanderivat, wenn Amine addieren ein Harnstoffderivat.

\[
\text{R'}-\text{N} = \text{C} = \text{O} + \text{H-O-R} \rightarrow \text{R'}-\text{NH-CO-O-R} \quad \text{Urethanderivat} \\
\text{R'}-\text{N} = \text{C} = \text{O} + \text{H}_2\text{N-R} \rightarrow \text{R'}-\text{NH-CO-NH-R} \quad \text{Harnstoffderivat}
\]

Für die thermische Desorption erschien das Urethanderivat besonders interessant, da hier vermutet werden konnte, dass beim Erhitzen die Eliminierung von CO\(_2\) erfolgt.

3.3.3 Details zu einigen Präparationen

Mit Ausnahme der Darstellung der DMS-Terminierung, bei der das Silanderivat pur aufgetragen wurde, wurden alle Präparationen in Lösung durchgeführt. Das verwendete Lösungsmittel wurde jeweils auf das eingesetzte Silanderivat abgestimmt, wobei dessen Flüchtigkeit, dessen Hydrolyseanfälligkeit und dessen Reaktivität gegenüber den Oberflächen-Silanolgruppen zu berücksichtigen war.
Bei der Präparation der Isocyanopropylmethyldimethylsilyl- (ICP) und der DMS-Oberfläche stand im Vordergrund, dass bei der Präparation die Isocyanatgruppe bzw. die Si-H-Bindung erhalten bleibt. Bei den restlichen Präparationen wurden diese dahingehend optimiert, dass sie bei Raumtemperatur schnell, nicht feuchtigkeitsempfindlich und einfach durchzuführen ist. Schnell bedeutet dabei, dass die Reaktion innerhalb weniger Minuten beendet sein muss.

Es soll an dieser Stelle darauf hingewiesen werden, dass es im Vergleich zu den unten aufgeführten Präparationsvorschriften durchaus Vorschriften gibt, die möglicherweise zu einer höheren Bedeckung führen. Als Beispiel sei hier die Reaktion mit Trimethylchlorsilan-Dampf bei 200°C genannt.

Da im Rahmen dieser Arbeit die Analytik im Vordergrund stand, wurden für eine Terminierung nicht verschiedene Präparationsmethoden ausführlich verglichen. Das Ziel war, für jede Terminierung eine Methode zu entwickeln, bei der die oben genannten Bedingungen erfüllt sind. Das Kriterium, ob eine Präparationsvorschrift im oben genannten Sinn geeignet sein könnte war zunächst, dass die hydrophile Siliziumdioxyd-Oberfläche nach spätestens einer Minute deutlich hydrophob sein musste.

a) **Trimethylsilyl-Terminierung (TMS)**

In der Literatur findet man, neben der schon genannten direkten Reaktion von Trimethylchlorsilan (TMCS) mit \(\text{SiO}_2 \)-Oberflächen bei hohen Temperaturen, in der Regel Präparationsvorschriften, bei denen eine Base (z.B. Triethylamin) eingesetzt wird, um einerseits die Silanolgruppen zu aktivieren und andererseits den bei der Reaktion freigesetzten Chlorwasserstoff (HCl) zu binden, da TMCS allein nicht reaktiv genug ist.

Der Nachteil von basischen Reaktionsbedingungen ist aber, dass bei Kontakt mit Luftfeuchtigkeit folgende Reaktion eintritt:

\[
2 \text{Me}_3\text{Si-Cl} + \text{H}_2\text{O} + 2 \text{NR}_3 \rightarrow \text{Me}_3\text{Si-O-SiMe}_3 + 2 \text{R}_3\text{NH}^+\text{Cl}^-
\]
Das entstehende Hexamethyldisiloxan (HMDSO) ist unter neutralen und basischen Bedingungen nicht mehr zur Reaktion mit Oberflächensilanolgruppen fähig, daher sind solche Mischungen empfindlich gegen Wasserkontamination. Die Si-O-Si-Brücke im Disiloxanmolekül ist jedoch, ebenso wie die Siloxanbrücke an SiO₂-Oberflächen (s. Kap. 3.1), unter sauren Bedingungen spaltbar. Diese Überlegungen führten zu der Idee, die Reaktion unter sauren Bedingungen durchzuführen. Durch Protonen wird sowohl die Spaltung als auch die Bildung von Siloxanbrücken katalysiert. Da sich die Siloxanbrücken im HMDSO-Molekül und die zwischen TMS und Siliziumdioxidoberfläche chemisch praktisch gleich verhalten, führt eine starke Säure zu einer Gleichgewichtseinstellung zwischen Siloxanbrücken und Silanolgruppen sowohl in der Lösung als auch an der Oberfläche.

Um die Hypothese zu überprüfen, ob eine TMS-Präparation unter sauren Bedingungen auch auf der Basis von HMDSO durchgeführt werden kann, wurde eine Reaktionsmischung aus HMDSO, Trifluorethanol und Schwefelsäure entwickelt. Diese Reaktionsmischung kann auf die SiO₂-Oberfläche aufgestrichen werden, bei der Reaktion mit den Oberflächensilanolgruppen entsteht dann eine TMS-terminierte Oberfläche, die aufgrund ihres hydrophoben Charakters nicht mehr von der polaren Reaktionslösung benetzt werden kann. Die Folge ist, dass die Reaktionslösung abfließt und eine TMS-terminierte Oberfläche zurückbleibt. Durch FTIR-ATR-Messungen konnte bestätigt werden, dass die so préparierte Oberfläche identisch ist mit der Oberfläche, die durch die Reaktion mit Trimethylchlorosilan erhalten wird. Da bei der Präparation mit HMDSO und Schwefelsäure jedoch Spuren von Schwefelsäure auf der Oberfläche zurückbleiben und diese Rückstände insbesondere bei den TDS-Experimenten stören, wurde diese Präparationsmethode nicht für die folgenden Experimente eingesetzt.

b) Isocyanopropyldimethylsilyl-Terminierung (ICP)

Die Präparation der ICP-terminierten Oberfläche misslang bei Verwendung von Toluol und Heptan als Lösungsmittel, in wasserfreiem Pyridin erfolgte die Reaktion jedoch rasch und in der gewünschten Weise. Es ist zu beachten, dass bei zu langen Reaktionszeiten unter Umgebungsbedingungen (> 40 min) bereits merkliche Hydrolyse der Isocyanatgruppe stattfindet.
c) 1,1,2,2-Tetrahydroperfluorocetyltrimethylsilyl-Terminierung (PFO)

Für die PFO-Präparation wurde Dodecan als Lösungsmittel gewählt, da dieses unpolar ist und einen geringen Dampfdruck besitzt. Dadurch wird erreicht, dass die Oberfläche so lange von der Präparationslösung benetzt bleibt, bis die Bedeckung der Oberfläche mit fluorierten Alkylketten einen Grenzwert erreicht, bei dem die Oberfläche so niederenergetisch ist, dass sie auch von dem unpolaren Dodecan nicht mehr benetzt wird.

d) Pentamethyldisilyl-Terminierung (PMDS)

Bei Pentamethylchlorodisilan muss beachtet werden, dass die Si-Si-Bindung in Folge eines nukleophilen Angriffs gespalten werden kann. Insbesondere Dimethylaminopentamethyldisilan neigt zur Polymerisation. Daher wurde die Reaktion in Heptan durchgeführt.

An dieser Stelle soll noch erwähnt werden, dass eine Präparation mit tert-Butyldimethylchlorosilan \([\text{Me}_3\text{C-SiMe}_2-\text{Cl}]\) (in Pyridin) und Dimethylaminotriisopropylsilan \([((\text{Me}_2\text{HC})_3\text{Si-NMe}_2]\) bei Raumtemperatur nicht gelang. Die Silane konnten nach dem Kontakt (10 min) mit der Siliziumdioxidoberfläche von dieser mit VE-Wasser einfach abgespült werden und man erhielt eine vollständig benetzende Oberfläche! Interessant ist, dass das Pentamethylchlorodisilan sehr schnell und effektiv mit der Siliziumdioxidoberfläche reagiert, obwohl es strukturell dem tert-Butyldimethylchlorosilan entspricht. Der Grund ist vermutlich der längere Bindungsabstand der Si-Si-Bindung gegenüber der Si-C-Bindung.

3.3.4 Organische Terminierung an Siliziumoberflächen

Stewart et al. [Ste02] beschreiben und vergleichen verschiedene Verfahren, um poröses Silizium zu alkylieren, darunter auch photochemische und elektrochemische Methoden. Besonders hervorzuheben ist die elektrochemische Reduktion von Alkyliodiden an der Kathode aus porösem Silizium, bei der innerhalb von zwei Minuten eine alkylterminierte Siliziumoberfläche entsteht.

Schmeltzer et al. [Sch02] schlagen die Verwendung des Triphenylcarbeniumions als Hydridakzeptor vor. Mit Hilfe dieses „Initiators“ gelang die Addition von Alkenen und Alkinen an eine poröse Siliziumoberfläche.

Alkylierte Siliziumoberflächen können auch für biologische Anwendungen, wie zum Beispiel ELISA-Tests, eingesetzt werden [Dah03]. Zur Funktionalisierung der Oberfläche mit einem Peptid wurde ein 4-Pentensäurederivat als Ankergruppe eingesetzt. Die Addition des Alkens an die Si-H-Bindung wurde thermisch durchgeführt (mehrfre Stunden bei 50°C).
4 Experimenteller Teil

4.1 Wahl der Probe und deren Vorbehandlung

Im Rahmen dieser Arbeit wurden ausschließlich Siliziumeinkristalle als Probe eingesetzt. Diese wurden stets nach dem gleichen Verfahren nasschemisch oxidiert. Somit konnte davon ausgegangen werden, dass sowohl in Bezug auf die Oberflächenmorphologie (wichtig bei den Kontaktwinkelmessungen) als auch in Bezug auf die Silanol-Oberflächendichte (wichtig für FTIR-Messungen und TDS-Experimente) reproduzierbare Bedingungen vorlagen.

4.2 Präparation der silylterminierten Oberflächen

a) Die Trimethylsilyl-Terminierung

b) **Die Pentamethyldisilyl-Terminierung**

Eine 3%ige Lösung von Pentamethylchlordisilan in Heptan wurde für die PMDS-Präparation eingesetzt. Die Lösung wurde auf den frisch oxidierten Siliziumkristall aufgestrichen, dann wurde gewartet, bis das Lösungsmittel verdampft war. Diese Prozedur wurde fünf mal wiederholt, um reproduzierbare Ergebnisse zu erzielen.

c) **Die Dimethylsilyl-Terminierung**

Tetramethyldisilazan wurde direkt auf den frisch oxidierten Siliziumkristall aufgestrichen. Nach 30 s wurde das überschüssige Reagenz mit Heptan abgespült.

d) **Die 1,1,2,2-Tetrahydroperfluorocetyltrimethylsilyl-Terminierung**

Für die PFO-Präparation wurde eine 3%ige Lösung von 1,1,2,2-Tetrahydroperfluorocetyltrimethylchloranil in Dodecan verwendet. Die Lösung wurde auf den frisch oxidierten Siliziumkristall aufgestrichen. Nach wenigen Sekunden wurde die Oberfläche so hydrophob, dass sie nicht mehr von der Lösung benetzt wurde. Der sich bildende Tropfen wurde mit einem Tuch abgesaugt.

e) **Die Isocyanopropyldimethylsilyl-Terminierung**

Die ICP-Präparation wurde in einer 4%igen Lösung von 3-Isocyanopropyldimethylchloranil in wasserfreiem Pyridin durchgeführt. Der frisch oxidierte Siliziumkristall wurde für 20 min in die Präparationslösung getaucht, dann wurde der Kristall langsam aus der Lösung herausgezogen. Auch in diesem Fall wurde die terminierte Oberfläche nicht mehr von der Präparationslösung benetzt.

Der préparierte Kristall kann, ohne Beeinträchtigung der Isocyanatgruppen, in Aceton gereinigt und gelagert werden. Wenn die Umsetzung der Isocyanatgruppe mit einem Alkohol vorgenommen werden sollte, wurde der Kristall direkt aus der ICP-Präparationslösung weiterverwertet.
f) Urethanderivate

Der ICP-terminierte Kristall wurde bei 85°C (bzw. bei der Siedetemperatur des Alkohols, wenn sein Siedepunkt darunter liegt) im entsprechenden Alkohol erhitzt. Die Reaktionszeit betrug eine Stunde. Als Alkohol wurde Benzylalkohol (Benz), Tetraethylenglycol (TEG), 2,2,2-Trifluorethanol (TFE), 2,2,3,3,4,4,4-Heptafluorbutanol (HFB) und 2,2,3,3,4,4,5,5-Octafluorpentanol (OFP) eingesetzt.

g) Das hydrolysierte Isocyanat (hICP)

Um die Isocyanatgruppe zu hydrolysieren, wurde der gereinigte ICP-terminierte Kristall 15 Minuten in VE-Wasser gelagert.

h) Die Triethylsilyl-Terminierung (TES)

Für die TES-Präparation wurde eine 6%ige Lösung von Triethylchlorsilan in wasserfreiem Pyridin verwendet. Der frisch oxidierte Kristall wurde für 20 Minuten in die Präparationslösung getaucht.

i) Die H-terminierte Siliziumoberfläche

Im Rahmen dieser Arbeit wurde für die Präparation des H-terminierten Si(100)-ATR-Kristalls dieser für 60 s in eine mit Fluss säure auf pH 5,5 gepufferte Ammoniumfluoridlösung getaucht. Vor dem Ätzen wurden sowohl die Gefäße als auch der Kristall 10 min in NH₄OH/H₂O₂/H₂O (1:1:4) bei 80°C gereinigt.
4.3 Kontaktwinkelmessungen

<table>
<thead>
<tr>
<th>verwendete Flüssigkeit</th>
<th>Oberflächenspannung [mJ/m²]</th>
<th>disperser Anteil [mJ/m²]</th>
<th>polarer Anteil [mJ/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasser</td>
<td>72,3</td>
<td>18,5</td>
<td>53,8</td>
</tr>
<tr>
<td>Glycerin</td>
<td>42,5</td>
<td>20,8</td>
<td>41,7</td>
</tr>
<tr>
<td>Ethylenglycol</td>
<td>47,6</td>
<td>21,2</td>
<td>26,4</td>
</tr>
<tr>
<td>Diiodmethan</td>
<td>50,7</td>
<td>43,8</td>
<td>6,9</td>
</tr>
<tr>
<td>α-Bromnaphthalin</td>
<td>44,9</td>
<td>44,9</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Als Proben für die Kontaktwinkelmessungen wurden nasschemisch oxidierte Siliziumwafer eingesetzt. Es wurden die TMS-, die PMDS- und die PFO-terminierte sowie verschiedene urethanterminierte Siliziumdioxidoberflächen gemessen.
4.4 ATR-FTIR-Spektroskopie

Für die Aufnahme der Schwingungsspektren wurde ein FTIR-Spektrometer von Bruker verwendet (IFS 66v). Zur Datenverarbeitung und zur Auswertung der Spektren wurde OPUS® 3.1 als Software benutzt.

Als Lichtquelle stand wahlweise ein Globar oder eine Halogenlampe zur Verfügung. Zur Detektion der transmittierten Strahlung wurde entweder ein InSb-Detektor oder ein MCT-Detektor eingesetzt, die beide mit flüssigem Stickstoff gekühlt wurden.

Der ATR-Kristall bestand aus Silizium, seine Maße waren 53 mm × 20 mm × 2 mm (Crystech GmbH). Die Oberfläche des Prismas hatte eine (100)-Orientierung.

Da es sich bei der IR-Spektroskopie um eine indirekte Methode handelt, bei der lediglich die Abnahme des Lichts, und nicht die absorbierte Lichtenergie selbst, detektiert wird, muss grundsätzlich immer eine Referenzmessung durchgeführt werden. Für die Messung der CH-, SiH- und NCO-Banden wurde die Oxidoberfläche als Referenz eingesetzt. Für die Untersuchung der OH-Bande wurde die H-terminierte Oberfläche verwendet.

Da die H-terminierte Oberfläche keine Silanolgruppen aufweist und zudem hydrophob ist, eignet sie sich hervorragend als Referenz für die Messung der OH-Bande auf der TMS-terminierten Oberfläche. Aber es ist zu beachten, dass im ATR-Kristall der IR-Strahl mehrfach an der inneren Oberfläche reflektiert wird und die Reflexionseigenschaften eine Funktion der Wellenlänge der Strahlung sind. Dies hat zur Folge, dass Änderungen der Grenzschicht eine Auswirkung auf die Basislinie haben. Um diese Effekte zu minimieren, muss das Oxid möglichst dünn sein und es dürfen keine größeren morphologischen Veränderung der Oberfläche erfolgen.
Für die Experimente zur Detektion der OH-Bande wurde daher folgender Kreisprozess verwendet:

2. Der H-terminierte Kristall wurde dann in NH₄OH/H₂O₂/H₂O (1:1:4) bei Raumtemperatur für 1 min oxidiert. Dabei wird nur die oberste Monolage oxidiert, da der Oxidationsprozess selbstlimitierend ist. Von dieser Oberfläche wurde ebenfalls ein Einkanalspektrum aufgenommen.

3. Der oxidierte Kristall wurde anschließend in TMCS/IPA (1:1) 1 min bei Raumtemperatur silyliert. Auch von dieser Oberfläche wurde ein Einkanalspektrum aufgenommen.

Wenn Submonolagen von Kohlenwasserstoffen detektiert werden sollen, muss man immer Bedenken, dass die IR-Strahlung von zahlreichen Spiegeln reflektiert wird, durch die Probe geleitet wird und zu guter letzt durch das Fenster des mit flüssigem Stickstoff gekühlten Dewars auf das Detektorelement fällt. Während die Probe durch Ultraschallbehandlung effektiv gereinigt und die Messung notfalls wiederholt werden kann, stellen schon kleinste Veränderungen der Kontamination auf den Spiegeln oder auf dem Detektorfenster ein großes Problem dar. Da keine Möglichkeit bestand, das gesamte Spektrometer mit trockenem Stickstoff zu spülen, mussten die Messungen im Vakuum durchgeführt werden. Trotz Adsorptionsfallen konnte eine Kontamination durch die Öldämpfe nicht völlig unterbunden werden.

Verunreinigungen und Rückstände auf dem ATR-Kristall durch die Präparation wurden durch mindestens dreiminütige Ultraschallbehandlung in Aceton oder Tetrahydrofuran entfernt. Indem man das Lösungsmittel vom Kristall ablaufen lässt, erreicht man, dass eventuell noch gelöste Verunreinigungen an den Rand des Kristalls verlagert werden, so
dass sie bei der Messung nicht stören. Dieses Verfahren wurde an der oxidierten Oberfläche getestet, wobei die so behandelten Oberflächen teilweise weniger Verunreinigungen aufwiesen als die mit Stickstoff trockengeblasenen. Ein weiterer Effekt der Ultraschallbehandlung in Aceton ist, dass physisorbiertes Wasser von der Oberfläche entfernt wird. Inwiefern sich beim Transport zum FTIR-Gerät wieder ein ultradünner Wasserfilm bildet ist nicht bekannt.

Um möglichst wenig am Messsystem zu ändern, blieb die Probenkammer zwischen den Messungen belüftet und wurde nur für die Messung evakuiert. Das restliche Spektrometer blieb die ganze Zeit über evakuiert. Der gereinigte und getrocknete Kristall wurde so schnell wie möglich in die Halterung eingespannt und in die Messkammer überführt, die dann evakuiert wurde. Da sich herausstellte, dass die Kristalloberfläche im Vakuum relativ schnell mit Kohlenwasserstoffen kontaminiert wird, wurde die Messung gestartet, sobald die Trennfenster zwischen Probenkammer und restlichem Spektrometer geöffnet wurden und der Druck in der Kammer auf 500 Pa abgesunken war. Um die Zeit im Vakuum möglichst kurz zu halten, wurde nur über 500 Scans integriert.

Nachdem die Datenaufnahme abgeschlossen war, wurde sofort belüftet und der Kristall in Aceton geschwenkt, um die Verunreinigungen wieder abzuwaschen. Testmessungen ergaben, dass diese Reinigungsprozedur ausreicht.

Als das größte Problem stellten sich verändernde Verunreinigungen des FTIR-Gerätes durch langkettige Kohlenwasserstoffe (vermutlich Pumpenöl) dar. Diese zeigten sich in einer stetigen Zunahme der CH\textsubscript{2}-Banden bei 2915 cm-1 und 2845 cm-1 während der Experimente, wobei die Peaklage nicht ganz konstant blieb, so dass in manchen Spektren Überschwinger auftraten. Daher wurde in möglichst engem zeitlichen Zusammenhang zu jeder Messung eine neue Referenzmessung durchgeführt.
4.5 Röntgen-Photoelektronenspektroskopie (XPS)

Die XPS-Messungen wurden sowohl am Institut für Oberflächen und Schichtanalytik GmbH (IFOS) der Technischen Universität Kaiserslautern als auch am Wollforschungsinstitut der Technischen Universität Aachen durchgeführt. In beiden Fällen wurde zur Anregung Aluminium K$_\alpha$-Strahlung (1486,6 eV) verwendet, der Druck der Vakuumkammer lag bei 10^{-6} Pa.

Die Messungen in Kaiserslautern wurden bei einem Austrittswinkel von 30° zur Oberfläche durchgeführt. Vor dem Einschleusen wurden die Proben in Aceton und anschließend in VE-Wasser im Ultraschallbad gereinigt. Die Abmessungen der Proben waren 10 mm × 10 mm × 0,375 mm. Gemessen wurde die TMS-, die PMDS- und die PFO-terminierte Oberfläche sowie eine gereinigte Siliziumdioxydoberfläche als Referenz.

In Aachen fand die Detektion der Photoelektronen senkrecht zur Oberfläche statt. Die Probengröße war hier 10 mm × 5 mm × 0,375 mm. Gemessen wurde die PMDS-, die Benz-, die OFP- und die PFO-terminierte Oberfläche.

Vor der Terminierung der Proben wurden diese fünf Stunden bei 900°C an Luft geglüht, um eine dicke thermische Oxidschicht (> 100 nm) zu erhalten.

4.6 Statische ToF-SIMS

Die statische ToF-SIMS wurde am Institut für Oberflächen und Schichtanalytik GmbH (IFOS) an der Technischen Universität Kaiserslautern durchgeführt. Die Ionisierung erfolgte mit 69Ga$^+$-Ionen, die bei einer Repetitionsrate von 10 kHz mit 22 keV auf die Oberfläche beschleunigt wurden. Die Pulsdauer betrug 10 ns, die bestrahlte Fläche war 180 µm × 180 µm groß.

Für die ToF-SIMS-Messungen wurden Proben verwendet, die parallel zu denen für die XPS-Messungen präpariert wurden. Gemessen wurde die TMS- und die PMDS-terminierte Oberfläche sowie die gereinigte Siliziumdioxydoberfläche als Referenz.
4.7 Thermische Desorptions Spektroskopie (TDS)

4.7.1 Messaufbau

Abb. 6 Messaufbau für die TDS-Experimente. (Details siehe Abb. 11)

Die Einkopplung der Heizstrahlung in die Probe stellte ein Problem dar, da Silizium für IR-Strahlung weitgehend transparent ist. Versuche mit einem amorph Siliziumfilm auf einem Titanblech und mit metallbeschichteten Siliziumwafern waren nicht erfolgreich, da die Metalloberflächen (Ti, Cu, Au) zu störenden Desorptionssignalen führten. Daher musste eine Möglichkeit gefunden werden, die Heizenergie über einen thermischen Kontakt auf die Probe zu übertragen.

Der Doppelwafer war in ein quadratisches Loch (23 mm × 23 mm) in der Mitte eines Probenhalters aus Kupfer eingelassen. Zum Einschleusen der Probe wurde der Probenhalter mit dem Doppelwafer aus der Hauptkammer in die Vorkammer transferiert.

Für die TDS wurde am Massenspektrometer eine Massendurchlaufgeschwindigkeit von einer Masseneinheit pro Millisekunde eingestellt. Am QMS konnte zwischen dem maximalen Massenbereich 1 – 100 u/e und 3 – 300 u/e gewählt werden. Im Fall der Benz-Terminierung wurde die letztere Einstellung gewählt, da im Modus bis 100 u/e die Massen 91 u/e und 92 u/e aufgrund der starken Massendiskriminierung nicht detektiert werden konnten. Da das Gerät im Modus bis 100 u/e aber stabiler lief, wurden die Messungen der anderen Terminierungen in diesem Modus durchgeführt.

Das am SEV entstehende Stromsignal wurde von einem Verstärker (Electrometer Amplifier QME 311) in ein Spannungssignal umgewandelt und um den Faktor 10^9 verstärkt. Ein im Verstärker integrierter Filter unterdrückte hochfrequentes Rauschen (Filterkonstante: 0,01 ms). Das verstärkte Spannungssignal wurde von einem Digital-Oszilloskop (Tektronix 2440) digitalisiert und visualisiert, indem die Signalintensität gegen die Zeit aufgetragen wurde, wobei der Massendurchlauf als Trigger eingesetzt wurde. In x-Richtung standen 1024 Datenpunkte zur Verfügung, in y-Richtung 128 Datenpunkte. Um kurzfristige Signalfluktuationen auszugleichen, wurden vom Oszilloskop acht Spektren fließend gemittelt.

4.7.2 Datenauswertung

Zur Speicherung der Daten wurden die Zahlena\-vektoren hintereinander aufgereiht. Ein übliches Desorptionsspektrum bestand aus 80 Messpunkten (entspricht 10 min) und somit aus 80.000 Einzelwerten. Das Problem war nun, aus dieser großen Datenmenge die gesuchte Information herauszufiltern. Dazu wurde ein Auswertungsprogramm (Origin® 6.0) verwendet. Für die Auswertung war eine dreidimensionale Darstellung nötig mit Temperatur (T), Masse-Ladungs-Verhältnis (m/z) und Signalintensität (I) als Dimensionen. Da die Spektren in regelmäßigen Abständen aus dem Oszilloskop ausgelesen wurden und die Heizrate konstant war, nahm mit jedem Auslesevorgang (Messpunkt) die Temperatur linear zu. Das bedeutet, dass die Nummer des Messpunktes (MP) proportional zur Temperatur war. Durch Kalibration der Beziehung zwischen Messpunkt und Temperatur konnten die Messpunkte als Temperaturskala eingesetzt werden.

Im ersten Schritt der Auswertung wurden die (80.000) Einzelwerte durchnummeriert, anschließend wurden die Nummern durch 1.000 dividiert. So wurde erreicht, dass in der Zahl vor dem Komma (MP) die Information über die Temperatur und in der Zahl nach dem Komma (x-Werte) die Information über die Massenskala enthalten ist:

45,234 → MP = 45 und x = 234

Da pro Massenspektrum 1000 x-Werte zur Verfügung standen und ein Massenspektrum etwa 100 Masseneinheiten umfasste, war die Massenauflösung etwa 0,1 Masseneinheiten.

Durch Streichung der Nachkommastellen wurde ein Zahlena\-vektor erzeugt, der nach erfolgter Kalibration die Temperaturskala ergab. Dazu wurden die mit dem Thermoelement gemessenen Temperaturwerte T_T gegen die Messpunkte MP aufgetragen, anschließend wurde eine Regressionsgerade angefittet.

$$T_T = a \cdot MP + b \quad (4.7.1.1)$$

Die Massenskala konnte aus dem Zahlena\-vektor, der durch Streichung der Vorkommastellen erzeugt wurde, erhalten werden. Für die Kalibration der Massenskala wurden die x-Werte von etwa 15 im Massenspektrum möglichst gleichmäßig verteilten Peaks ihrer Masse m/z zugeordnet. Die Massen wurden gegen die x-Werte aufgetragen, anschließend wurde eine Regressionsgerade angefittet.
\[(m/z) = cx + d\] \hspace{1cm} (4.7.1.2)

Die m/z-Werte, die aus der Kalibrierfunktion (Gl. 4.7.1.2) erhalten wurden, wurden auf die erste Nachkommastelle gerundet.

Somit standen die Werte für alle drei benötigten Dimensionen (T, m/z, I) zur Verfügung. Jetzt musste eine Darstellung gefunden werden, mit der ohne zeitaufwändige Datenextraktion (für jede einzelne Masse) schnell im TDS auftretende Massenpeaks erkannt werden konnten. Dafür wurden die normierten Intensitätswerte (maximaler Wert 100) durch 1000 dividiert (maximaler Wert jetzt 0,1 und somit kleiner oder gleich dem Abstand zwischen zwei m/z-Werten) und dann zum entsprechenden m/z-Wert addiert:

\[y = (m/z) + I/1000\] \hspace{1cm} (4.7.1.3)

Die so erhaltenen y-Werte wurden gegen die Temperatur \(T_T\) aufgetragen, dadurch wurde eine quasi-dreidimensionale Darstellung des thermischen Desorptionsspektrums erreicht. Nun konnte zu jeder Masse – mit einer Auflösung von 0,1 Masseneinheiten – das Desorptionsspektrum betrachtet werden.

4.7.3 Temperaturkalibrierung

Wie in Kap. 4.7.1 schon erläutert, wurde für die thermischen Desorptionsspektren ein spezieller Aufbau entwickelt, mit dem Oberflächentemperaturen bis über 700°C erreicht wurden, ohne dass das Hintergrundsignal bei Kohlenwasserstofffragmenten zu stark anstieg. Zunächst stand aber als Temperaturangabe nur die Thermoelementtemperatur zur Verfügung. Um die Beziehung zwischen der Oberflächentemperatur \(T_0\) und der Thermoelementtemperatur \(T_T\) zu bestimmen musste ein Weg gefunden werden, die Oberflächentemperatur während des Heizprozesses zu messen.

Als Messgerät zur Bestimmung der tatsächlichen Oberflächentemperatur bot sich die Verwendung eines Pyrometers an (IS 120, Impac GmbH). Während das Massenspektrometer eingeschaltet war konnte dieses aber nicht verwendet werden, da die Strahlung der Glühkathode der Ionisierungsquelle zu scheinbar erhöhten Temperaturwerten führte. Daher musste der Zusammenhang zwischen
Oberflächentemperatur und Thermoelementtemperatur in einer getrennten Messung bei ausgeschaltetem Ionisierungsstrom erfolgen. Zudem ist der Messbereich des Pyrometers auf 400°C bis 800°C beschränkt, weshalb der Temperaturverlauf unterhalb von 400°C nicht verfolgt werden konnte und für die Kalibrierung nur ein relativ kleines Temperaturfenster zu Verfügung stand.

Um die Annahme einer linearen Beziehung zwischen Oberflächentemperatur und Thermoelementtemperatur zu überprüfen, wurde der Heiztisch zunächst auf 950°C Thermoelementtemperatur aufgeheizt. Um eventuell störende Strahlungsquellen auszuschließen, wurde der Heizstrom ausgeschaltet. Dann wurde der Temperaturverlauf am Thermoelement visuell und am Pyrometer mit dem Computer ausgelesen (Abb. 7).

Abb. 7 Temperaturverlauf am Thermoelement und auf der Probenoberfläche (Pyrometer) beim Abkühlprozess ohne Heizquelle.
Wie in Abb. 8 zu sehen ist, ergab die anschließende Auftragung der Pyrometertemperatur gegen die Thermoelementtemperatur tatsächlich eine Gerade der Form

\[T_{OF} = f(T_{TE} - T_U) + T_U \]

(4.7.3.1)

mit

- \(T_{OF} \) = Oberflächentemperatur = Pyrometertemperatur
- \(T_{TE} \) = Thermoelementtemperatur
- \(T_U \) = scheinbare Umgebungstemperatur
- \(f \) = Faktor

Abb. 8 Auftragung der Pyrometertemperatur gegen die Thermoelementtemperatur beim Abkühlprozess.

Die bei dem Abkühlungsprozess erhaltene Gerade konnte aber nicht als Kalibrationsgerade für das TPD Experiment verwendet werden, da sich die Randbedingungen unterschieden. Es war zu erwarten, dass die entsprechende Kalibrationsgerade für die aufsteigende Temperaturrampe eine niedrigere scheinbare Umgebungstemperatur \(T_U \) besitzt, da in diesem Fall die Kammer und der Heiztisch zu Beginn kalt sind, und einen größeren Faktor \(f \) aufweist, da durch die hohe Heizleistung das System stärker gestört wird. Diese Vermutung wurde bestätigt, wie in Abb. 9 zu sehen ist.
Abb. 9 Auftragung der Pyrometertemperatur gegen die Thermoelementtemperatur bei der ersten Heizrampe.

Es ist aber auch deutlich zu erkennen, dass bei Oberflächentemperaturen unterhalb von 450°C die Abweichungen sehr groß sein können. Dabei war es schwierig zu unterscheiden, ob die Oberflächentemperatur bei kleinerer Thermoelementtemperatur wirklich größer war oder ob das Pyrometer hier durch die Siliziumwafer „hindurchsieht“ und dadurch die höhere Temperatur des Heizelements mitmisst.

Es gab aber noch einen weiteren Effekt der zu berücksichtigen war. Der thermische Kontakt zwischen dem Doppelwafer und dem aufgelegten Wafer war beim ersten Hochheizen nie optimal. Dadurch stimmte die Temperatur des präparierten Wafers nicht mit der Temperatur des Doppelwafers überein. Es wurde beobachtet, dass durch wiederholtes Aufheizen und Abkühlen die Wafer miteinander verbacken, so dass sie schließlich nur noch mit großer Mühe voneinander getrennt werden konnten. Daher wurde untersucht, ob sich das mit dem Pyrometer gemessene Temperaturverhalten bei wiederholtem Aufheizen verändert. Dies konnte in mehreren Messungen bestätigt werden (Abb. 10). Durch den besseren Kontakt zwischen Doppelwafer und (ehemalig) präpariertem Wafer war der Verlauf nun schon ab mindestens 400°C
Oberflächentemperatur vollkommen linear. Die Abweichungen von der Linearität dürften also den nicht optimalen thermischen Kontakt als Ursache haben, denn an den optischen Eigenschaften (Transparenz für die IR-Strahlung) hatte sich im Vergleich zur ersten Rampe nichts geändert.

Abb. 10 Vergleich des Temperaturverhaltens zwischen der ersten und der zweiten Heizrampe.

Die untersuchten Silyl-Terminierungen sind thermisch außerordentlich stabil, so dass im Wesentlichen der Temperaturbereich oberhalb von 450°C interessierte. In diesem Bereich war die Temperaturrampe an der Oberfläche ausreichend linear. Bei einer Heizrate von 1,5 K/s am Thermoelement ergab sich damit für die Heizrate an der Oberfläche ein Wert von 1,1 K/s.

Als Kalibrierfunktion für die Oberflächentemperatur wurde Gl. 4.7.3.1 verwendet.

\[
T_{OF} = 0,73 \, (T_{TE} - 30^\circ C) + 30^\circ C
\]
(4.7.3.1)
4.7.4 Versuchsdurchführung

Um Störsignale von desorbierenden Verunreinigungen zu minimieren, wurde vor der Messung eines Desorptionsspektrums immer eine Reinigungsprozedur durchgeführt.

Abb. 11 Terminierter Siliziumwafer und Doppelwafer in der Messanordnung.

Nun wurde am Temperaturregler die Temperaturrampe gestartet (Startwert 90°C) und die Thermoelementtemperatur wurde in regelmäßigen Abständen (immer nach 5 Messpunkten) visuell ausgelesen. Ab 200°C und bis 900°C war die Rampe in Bezug auf die Thermoelementtemperatur praktisch vollkommen linear.
5 Diskussion der Ergebnisse

5.1 Kontaktwinkelmessungen

Mit den Kontaktwinkelmessungen wurde untersucht, inwiefern die Benetzbarkeit einer Siliziumdioxidoberfläche durch Terminierung mit unterschiedlichen Silylgruppen beeinflusst werden kann [Ara95] [Ext04]. Des Weiteren war von Interesse, welchen Einfluß die Alkoxygruppe der Urethanderivate auf den polaren und den dispersen Anteil der Oberflächenenergie hat.

Abb. 12 Kontaktwinkel auf verschiedenen urethantermierten Oberflächen.

Auch die Kettenlänge der fluorierten Alkoxygruppe des Urethanderivats hat einen Einfluss auf Benetzbarkeit und Oberflächenenergie. Der Effekt ist zwar nur schwach ausgeprägt, dennoch ist er signifikant. Je länger die CF$_2$-Kette ist, desto kleiner ist sowohl der polare als auch der disperse Anteil an der Oberflächenenergie.

Außer den urethantermiinierten Oberflächen und der TMS-terminierten Oberfläche wurde auch die PMDS-, die PFO und die TES-terminierte Oberfläche gemessen. Die PFO-Oberfläche wurde untersucht, um zu testen, wie stark die Oberflächenenergie durch Terminierung mit monofunktionalen Dimethylsilanderivaten reduziert werden kann [Nis99]. Die Messung der TES-Oberfläche sollte zeigen, ob auch mit der Triethylsilylgruppe eine gute Abschirmung der Silanolgruppen erreicht werden kann.

Abb. 14 *Kontaktwinkel auf alkylierten Oberflächen.*

In Abb. 14 und 15 sind die Wasser-Kontaktwinkel und die α-Bromnaphthalin-Kontaktwinkel sowie die Oberflächenenergien der TMS-, der PMDS-, der PFO und der TES-terminierten Oberfläche dargestellt. Der Wasserkontaktwinkel nimmt in der Reihenfolge TES < TMS < PMDS < PFO stetig zu, beim α-Bromnaphthalin-Kontaktwinkel wird der Trend durch die PMDS-Oberfläche unterbrochen (Abb. 14). Die Gesamtoberflächenenergie nimmt in der oben aufgeführten Reihenfolge stetig ab,

Abb. 15 Polarer und disperser Anteil der Oberflächenenergie für verschiedene alkylierte Oberflächen.

Während der disperse Anteil der Oberflächenenergie der TES- Oberfläche mit dem der TMS- und der PMDS-Oberfläche annähernd übereinstimmt, ist der polare Anteil deutlich erhöht. Dies deutet auf eine geringere Abschirmung der Silanolgruppen und somit auf eine schlechtere Bedeckung mit Silygruppen hin.

Der Wasser-Kontaktwinkel ist auf der PFO-terminierten Oberfläche des Siliziumwafers mit 85° deutlich kleiner als der Wert, den Ohnishi et al. auf einem Langmuir-Blodget-Film erhielten [Ohn00]. Sie behandeln ein Glassubstrat mit Heptadecafluoro-1,1,2,2-tetrahydrodecyltriethoxysilan. Bei diesem Derivat ist die CF₂-Kette um 2 Einheiten bzw. 33% länger als bei der PFO-Terminiierung. Um eine glatte Oberfläche zu garantieren, wurde die Glasoberfläche aufgeschmolzen bevor die Abscheidung des Langmuir-Blodget-Films durchgeführt wurde. Auf dieser Oberfläche wurde für den idealsten Film (genau eine Monolage) ein Wasserkontaktwinkel von 123° gemessen. Ohnishi et al. setzten die Cassie-Gleichung (Gl. 5.1) erfolgreich zum Vergleich von Filmen mit unterschiedlicher Bedeckung ein.

\[
\cos \theta = x_A \cos \theta_A + x_B \cos \theta_B \quad (5.1.1)
\]

mit

- \(x_A\) = Anteil der Gruppe A (hier: fluorierte Kohlenwasserstoffkette)
- \(x_B\) = Anteil der Gruppe B (hier: Siliziumdioxydoberfläche)
- \(\theta\) = Kontaktwinkel auf der gemischten Oberfläche
- \(\theta_A\) = Kontaktwinkel auf reiner Oberfläche A
- \(\theta_B\) = Kontaktwinkel auf reiner Oberfläche B

Sie verwendeten für \(\theta_A\) 126° und für \(\theta_B\) 0°. Durch Einsetzen von 85° für den Kontaktwinkel \(\theta\) erhält man für \(x_A\) den Wert 0,57. Das heißt, dass immerhin 57% der Siliziumdioxydoberfläche durch die fluorierten Ketten der PFO-Terminiierung abgeschirmt werden.

Der kleinste Wasserkontaktwinkel auf silylterminierten Oberflächen wurde auf der TEG-Oberfläche gemessen. Mit 42° war er aber größer als erwartet und nur geringfügig kleiner als der Wert auf der TES-Probe (45°).
5.2 ATR-FTIR-Spektroskopie

Mit der ATR-FTIR-Spektroskopie wurden 8 verschiedene silyltermierte Oberflächen charakterisiert. Darunter waren drei Terminierungen, die ausschließlich Methylgruppen aufwiesen (TMS, PMDS und DMS). Des Weiteren wurden zwei Urethanterminierungen (Benz und TEG) und die ICP-Terminierung gemessen. Die FTIR-Spektren aller genannten Terminierungen zeigen einen scharfen Peak um 2960 cm\(^{-1}\).

5.2.1 Methylierte Siliziumdioxidoberflächen

In Abb. 16 sind die CH-Banden der drei methylierten Oberflächen gezeigt. Alle Spektren weisen zwei Maxima auf. Der scharfe Peak bei 2964 cm\(^{-1}\) (DMS), 2963 cm\(^{-1}\) (TMS) bzw. 2955 cm\(^{-1}\) (PMDS) entspricht der asymmetrischen CH\(_3\)-Streckschwingung. Der zweite, weniger intensive bei 2912 cm\(^{-1}\) (DMS), 2904 cm\(^{-1}\) (TMS) bzw. 2898 cm\(^{-1}\) (PMDS) entspricht der symmetrischen CH\(_3\)-Streckschwingung.

Abb. 16 Die CH-Banden der methylierten Oberflächen. a) TMS b) PMDS c) DMS.
Die Spektren der TMS- und der PMDS-terminierten Oberflächen wurden mit FTIR-Spektren der analogen Disiloxanderivate verglichen:

- **TMS** mit **HMDSO**
 - \([O-SiMe_3]\) mit \([Me_3Si-O-SiMe_3]\)

- **PMDS** mit **Di(pentamethyldisilyl)ether (PMDSE)**
 - \([O-SiMe_2-SiMe_3]\) mit \([Me_3Si-Me_2Si-O-SiMe_2-SiMe_3]\)

Das für den Vergleich verwendete FTIR-Spektrum von PMDSE stammt aus der Literatur [Ure65]. PMDSE wurde als dünner Film gemessen. Für HMDSO stand ein Gasspektrum und ein Spektrum in Lösung (10%ig in CCl₄) zur Verfügung. Beide Spektren stammen aus der NIST-Datenbank [NIST]. Die Bandenform stimmt bei beiden Terminierungen sehr gut mit der des entsprechenden Disiloxanderivats überein.

Die CH₃-Absorptionsfrequenzen von PMDSE sind 2955 cm⁻¹ und 2892 cm⁻¹. Die Frequenz der asymmetrischen Streckschwingung stimmt mit der von der PMDS-Terminierung überein. Der Peak der symmetrischen Streckschwingung ist bei der Oberflächengruppe um 6 cm⁻¹ blauverschoben. Im Fall der TMS-Terminierung liegen die Werte für die Absorptionsfrequenzen (2963 cm⁻¹ bzw. 2904 cm⁻¹) zwischen denen des Gasspektrums (2966 cm⁻¹ bzw. 2908 cm⁻¹) und denen des Flüssigkeitsspektrums (2956 cm⁻¹ bzw. 2901 cm⁻¹).

5.2.2 Von der Isocyanatgruppe zum Urethanderivat

Die Isocyanatbande eignet sich aufgrund der großen Intensität sehr gut für die Reaktionskontrolle. Sowohl die Reaktionen mit Benzylalkohol bzw. mit Tetraethylenglykol als auch die Hydrolyse des Isocyanats wurden IR-spektroskopisch verfolgt. Nach 40 min in Benzylalkohol bei 80°C sind mindestens 97% der
Isocyanatgruppen abreagiert. In Tetraethylenglycol erfolgt die Reaktion nur unwesentlich langsamer. In Wasser sind dagegen bei 20°C nach 10 min schon alle Isocyanatgruppen zum Amin bzw. zum Harnstoffderivat abreagiert (s. w. u.).

Abb. 17 Vergleich des ICP-Spektrums (a) mit einem Datenbankspektrum von Butanisocyanat (b).

In Abb. 18 ist die CH-Bande der ICP-Terminierung der CH-Bande der Benz- und der TEG-Terminierung gegenübergestellt. Die Absorptionsfrequenz der asymmetrischen CH$_3$-Streckschwingung der Methylgruppe liegt hier bei 2961 cm$^{-1}$ (Abb. 18 a). Bei der Benz-Terminierung (Abb. 18 b) ist das Absorptionsmaximum um 2 cm$^{-1}$, bei der TEG-Terminierung (Abb. 18 c) um 4 cm$^{-1}$ zu kleineren Werten verschoben. Im Benz-Spektrum sind deutlich die Signale der aromatischen C-H-Bindungen bei 3037 cm$^{-1}$ und 3070 cm$^{-1}$ zu erkennen. Auch bei der TEG-Terminierung tritt ein charakteristisches Maximum auf, dieses liegt bei 2877 cm$^{-1}$. In beiden Fällen tritt im Vergleich zum entsprechenden Spektrum des jeweiligen Alkohols keine signifikante Verschiebung auf. Beim Benzylalkohol liegen die entsprechenden Peaks bei 3040 cm$^{-1}$ und 3075 cm$^{-1}$, beim Tetraethylenglycol bei 2878 cm$^{-1}$.
Wie schon erwähnt, wurde auch die Hydrolyse der Isocyanatgruppe IR-spektroskopisch untersucht (Abb. 19). Dabei wurde neben der Abnahme der Isocyanatbande auch die Zunahme einer Carbonylbande beobachtet. Abb. 20 zeigt ein Absorptionsspektrum der hydrolysierten ICP-terminierten Oberfläche (10 min in Wasser). Als Referenz wurde in diesem Fall die ICP-terminierte Oberfläche vor der Hydrolyse verwendet. Man sieht deutlich die Abnahme der Isocyanatbande (Peak nach unten) und die Zunahme einer breiten Bande mit einem Maximum bei 1646 cm⁻¹. Die Absorptionsfrequenz der Harnstoff-Carbonylgruppe wird bei etwa 1660 cm⁻¹ erwartet. Dies deutet darauf hin, dass zumindest ein Teil der bei der Hydrolyse gebildeten Aminogruppen mit benachbarten Isocyanatgruppen zum Harnstoffderivat weiterreagiert:

\[
\begin{align*}
R\text{-NCO} + H_2O & \rightarrow R\text{-NH\text{-CO\text{-O}}\text{-H}} \rightarrow R\text{-NH}_2 + CO_2 \\
R\text{-NCO} + R\text{-NH}_2 & \rightarrow R\text{-NH\text{-CO-NH}}\text{-R}
\end{align*}
\]
Abb. 19
Die Abnahme der Isocyanatbande durch Hydrolyse.

![Diagramm 19](image1.png)

Abb. 20
Änderung des Absorptionsspektrums durch Hydrolyse der Isocyanatgruppe.

![Diagramm 20](image2.png)
5.2.3 Vergleich der Integrale der CH-Bande

Um die Oberflächenbedeckung der verschiedenen Terminierungen miteinander vergleichen zu können, wurde in einem Bereich von 2750 cm\(^{-1}\) bis 3010 cm\(^{-1}\) über die (aliphatische) CH-Bande integriert. Die Integrale sind in Tabelle 4 aufgeführt.

Tabelle 4 Integral über die aliphatische CH-Bande für verschiedene Terminierungen. Integriert wurde von 2750 cm\(^{-1}\) bis 3010 cm\(^{-1}\).

<table>
<thead>
<tr>
<th>Terminierung</th>
<th>Integral [10(^{-3}) cm(^{-1})]</th>
<th>Anzahl C-H pro Terminierungsgruppe</th>
<th>Integral pro C-H [10(^{-3}) cm(^{-1})]</th>
<th>normiert auf 4,0×10(^{-3}) cm(^{-1}) [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMS</td>
<td>28-32</td>
<td>9</td>
<td>3,2-4,0</td>
<td>80-100</td>
</tr>
<tr>
<td>PMDS</td>
<td>48-60</td>
<td>15</td>
<td>3,2-4,0</td>
<td>80-100</td>
</tr>
<tr>
<td>DMS</td>
<td>35</td>
<td>15</td>
<td>5,8</td>
<td>146</td>
</tr>
<tr>
<td>ICP</td>
<td>45</td>
<td>12</td>
<td>3,7</td>
<td>93</td>
</tr>
<tr>
<td>Benz</td>
<td>53</td>
<td>14</td>
<td>3,8</td>
<td>95</td>
</tr>
<tr>
<td>TES</td>
<td>57</td>
<td>15</td>
<td>3,8</td>
<td>94</td>
</tr>
</tbody>
</table>

Die Integrale sind zunächst sehr unterschiedlich, normiert man sie jedoch mit der Anzahl der C-H-Bindungen pro Terminierungs molekül, so erhält man in 5 der 6 Terminierungen ein annähernd gleiches Ergebnis. Lediglich die Bedeckung der Oberfläche mit DMS ist signifikant größer (etwa um 50%). Es muss beachtet werden, dass nur bei den methylierten Oberflächen (DMS, TMS und PMDS) ein zuverlässiger Vergleich möglich ist. Diese drei Terminierungen sind sich chemisch so ähnlich, dass hier davon ausgegangen werden kann, dass die Oszillatorenstärke der C-H-Bindung nahezu identisch ist. Von der TMS-Terminierung und der PMDS-Terminierung wurden jeweils vier Spektren ausgewertet um die Reproduzierbarkeit der Präparation und auch der Integration zu überprüfen. Es zeigte sich, dass bei beiden Terminierungen der Mittelwert der normierten Integrale 3,6×10\(^{-3}\) cm\(^{-1}\) betrug und die Abweichung der einzelnen Werte nicht größer als 13% war.

Leider konnten nicht alle gemessenen Spektren für die Integration eingesetzt werden. Es wurden nur diejenigen verwendet, bei denen die Basislinie klar zu definieren war und keine Kontaminationspeaks vorhanden waren.
5.2.4 Die OH-Bande: Nachweis der Silanolgruppen

TMS-terminierte Oberflächen haben ausgesprochen hydrophobe Eigenschaften. Dennoch ist zu erwarten, dass aufgrund der sterischen Bedingungen nicht alle Silanolgruppen auf der Oberfläche abreagieren und somit einige von ihnen auf der terminierten Oberfläche verbleiben. In den in Abb. 21 gezeigten Spektren kann man neben den scharfen CH-Banden noch eine weitere, sehr gut reproduzierbare Bande bei 3730 cm\(^{-1}\) erkennen. Diese Bande wird der isolierten Silanolgruppe zugeordnet. Es war daher zu vermuten, dass auch die H-verbrückten Silanolgruppen das Spektrum beeinflussen.

Abb. 21 *Die OH-Bande der isolierten Silanolgruppe bei 3730 cm\(^{-1}\). Die Lage und die Form des Silanolpeaks ist unabhängig von der Terminierung.*

Bei den Absorptionsspektren fiel eine Struktur auf, die zwar in ihrer konkreten Form wenig reproduzierbar war, aber in sämtlichen Spektren auftrat, bei denen eine silylterminierte gegen eine oxidierte Oberfläche gemessen wurde. Bei Spektren, bei denen zwei verschiedene Oxid-Proben gegeneinander verrechnet wurden, verlief die Basislinie dagegen über den gesamten Bereich von 5000 cm\(^{-1}\) bis 2200 cm\(^{-1}\) annähernd linear. Die Vermutung lag nahe, dass es sich bei der beobachteten Struktur um eine OH-
Bande handelt. Da jedoch sowohl auf der oxidierten als auch auf der silylterierten Oberfläche Silanolgruppen vorhanden sind, ist die oxidierte Oberfläche als Referenz ungeeignet. Statt dessen wurde hierfür die H-terminierte Siliziumoberfläche eingesetzt (s. Kap. 4.4).

Abb. 22 Absorptionsspektren ohne Basislinienkorrektur. a) Oxid gegen H-Terminierung b) TMS-Terminierung gegen Oxid c) H-Terminierung gegen TMS-Terminierung.

![Absorptionsspektren](image)

Es wurden zunächst von der H-terminierten Siliziumoberfläche, der Siliziumdioxidoberfläche und von der TMS-terminierten Siliziumoxidoberfläche Einkanalspektren aufgenommen (in dieser Reihenfolge). Dann wurde das Oxid gegen die H-Terminierung, das Oxid gegen die TMS-Terminierung und die TMS-Terminierung gegen die H-Terminierung verrechnet (die OH-Banden zeigen dann nach oben). Die erhaltenen Absorptionsspektren sind in Abb. 22 gezeigt. Man erkennt auch ohne Basislinienkorrektur deutlich die breite OH-Bande von 3750 cm⁻¹ bis unter 3000 cm⁻¹. Außerdem ist zu sehen, dass nur unter Verwendung der H-terminierten Oberfläche als Referenz eine schöne OH-Bande erhalten werden kann. Während sich die obere Grenze der Absorptionsbande scharf abgrenzen lässt, ist die untere Grenze nicht zuverlässig festzulegen.
Im Spektrum b) der Abb. 22 tritt bei 3730 cm⁻¹ eine scharfe Bande auf, die auch zuvor in allen Spektren, bei denen die Silyl-Terminierung gegen das Oxid verrechnet wurde, beobachtet wurde. Dieser Peak wurde den isolierten Silanolgruppen zugeordnet. Die Absorptionsfrequenz dieser relativ scharfen Silanolbande (3730 cm⁻¹) liegt sehr nahe an der des gasförmigen Triphenylsilanols (3718 cm⁻¹). Spektrum a) macht deutlich, dass es auf der Oxidoberfläche einen kontinuierlichen Übergang zwischen den isolierten und den H-verbrückten Silanolgruppen bzw. Wasser gibt, denn der scharfe Peak ist mit der breiten OH-Bande verwachsen. In Spektrum c) ist zu erkennen, dass auf der silylterminierten Oberfläche keine isolierten Silanolgruppen vorhanden sind. Der Grund ist, dass diese besonders effektiv mit Chlorsilanen reagieren.

In Abb. 23 sind die OH-Banden nach der Basislinienkorrektur zu sehen. Für alle drei Absorptionsbanden wurde das Integral von 3800 cm⁻¹ bis 2700 cm⁻¹ bestimmt. Das Integral Iᵢ setzt sich dabei für die verschiedenen Absorptionsspektren wie folgt zusammen:

- Oxid gegen H-Term.: \(I₁ = \text{OH}_{ges} \)
- TMS gegen H-Term.: \(I₂ = \text{OH}_{ges} - \text{OH}_{TMS} + \text{CH}_{TMS} \)
- Oxid gegen TMS: \(I₃ = \text{OH}_{ges} - (\text{OH}_{ges} - \text{OH}_{TMS} + \text{CH}_{TMS}) = \text{OH}_{TMS} - \text{CH}_{TMS} \)
OH_{ges} ist das Integral über alle Silanolgruppen, die auf der Siliziumdioxidoberfläche erfasst wurden. Nach der Terminierung ist ein Teil dieser Silanolgruppen verschwunden, da sie sich mit TMCS zu TMS-Gruppen umgesetzt haben. Der Beitrag dieser Silanolgruppen zum Gesamtintegral ist OH_{TMS}. Da die OH-Bande mit der CH-Bande überlappt, muss das Integral über die CH-Bande der TMS-Terminierung CH_{TMS} berücksichtigt werden.

Abb. 23 *Die OH-Bande der H-verbrückten Silanolgruppen.*

Für I_1 wurde ein Wert von $1,20 \text{ cm}^{-1}$ erhalten, für I_2 ein Wert von $0,98 \text{ cm}^{-1}$. Das Integral der CH-Bande (CH_{TMS}) war $0,027 \text{ cm}^{-1}$. Somit erhält man für $\text{OH}_{\text{ges}} = 1,20 \text{ cm}^{-1}$ und für $\text{OH}_{\text{TMS}} = 0,25 \text{ cm}^{-1}$. Das Verhältnis $\text{OH}_{\text{TMS}} : \text{OH}_{\text{ges}}$ ist somit $0,25 / 1,20 = 0,21$. Das bedeutet, dass 21% der Silanolgruppen zu TMS-Gruppen konvertiert wurden. Dieses Ergebnis bestätigt die Annahme, dass auf der Oberfläche bei der Reaktion mit Trimethylchlor silan aus sterischen Gründen nicht abgefragte Silanolgruppen zurückbleiben. Bei einer vermuteten Silanolgruppendichte von 5 nm^{-2} (s. Kap. 3.1) entspricht 21% einer TMS-Bedeckung von $1,1 \text{ nm}^{-2}$.
Auch das Integral über die Absorptionsbande der isolierten Silanolgruppen wurde bestimmt. Der Wert war 0,020 cm\(^{-1}\), das bedeutet, dass auf der verwendeten Siliziumdioxidoberfläche nur 1,7\% der Silanolgruppen isoliert vorlagen.

Der Vergleich des Integrals OH\(_{\text{TMS}}\) (0,25 cm\(^{-1}\)) mit dem Integral pro CH-Oszillator (0,003 cm\(^{-1}\)) ergibt ein Verhältnis für die Oszillatorenränder in der Größenordnung von 83:1. Der Wert liegt nahe an dem, der aus einem NIST-Spektrum von flüssigem Ethyldimethylsilanol erhalten wurde (50:1). Auch die Form der Silanolbande ist vergleichbar (Abb. 24).

Abb. 24 Ethyldimethylsilanol-Spektrum zum Vergleich der Silanolbande.
5.2.5 Die Dimethylsilyl-Terminierung – Vergleich mit der Si(100):H-Oberfläche

Eine weitere Möglichkeit, die Bedeckung mit Silylgruppen abzuschätzen stellt der Vergleich der Integrale der SiH-Bande zwischen einer H-terminierten Siliziumoberfläche und einer DMS-terminierten Oxidoberfläche dar (Abb. 25).

Abb. 25 Absorptionsspektrum der DMS-Terminierung.

In Abb. 26 sind die SiH-Banden einer DMS-terminierten Siliziumdioxidoberfläche und einer H-terminierten Siliziumoberfläche dargestellt. Die Bande der H-terminierten Siliziumoberfläche weist ein deutliches Maximum bei 2084 cm\(^{-1}\) auf. Das bedeutet, dass auf der Oberfläche des ATR-Kristalls hauptsächlich Si(111)-Facetten vorhanden sind. Es ist daher davon auszugehen, dass die Si(100)-Oberfläche des Kristalls sehr stark aufgeraut war. Der SiH-Peak der DMS-terminierten Siliziumdioxidoberfläche ist im Vergleich mit dem der H-terminierten Siliziumoberfläche deutlich blauverschoben. Das Maximum liegt bei 2146 cm\(^{-1}\).

Das Integral der SiH-Bande betrug bei der H-terminierten Siliziumoberfläche im günstigsten Fall 0,193 cm\(^{-1}\). Die Integration über die SiH-Bande der DMS-terminierten Oberfläche ergab 0,144 cm\(^{-1}\). Unter Annahme einer vergleichbaren Oszillatorenstärke der Si-H-Bindung für die beiden Oberflächen würde dies bedeuten, dass auf der H-terminierten Siliziumoberfläche lediglich 33\% mehr Si-H-Bindungen vorhanden wären. Da dieser Wert nicht realistisch erschien, wurde überprüft, wie sich die SiH-Bande verändert, wenn die Rückbindungen oxidiert werden (Abb. 27). Mit diesem Experiment sollte abgeschätzt werden, wie stark die Oszillatorenstärke von den Bindungspartnern am Silizium beeinflusst wird. Die Oxidation der Rückbindungen wurde im Ultraschall in Wasser durchgeführt. Die Banden wurden von 2000 cm\(^{-1}\) bis 2300 cm\(^{-1}\) integriert. Für das Integral der frischen H-terminierten Siliziumoberfläche wurden 0,193 cm\(^{-1}\) erhalten. Nach 5 min Ultraschallbehandlung betrug das Integral 0,189 cm\(^{-1}\) und auch nach 30 min Ultraschallbehandlung nahm es kaum ab (0,178 cm\(^{-1}\)). Daraus kann geschlossen werden, dass die Oszillatorenstärke sich zumindest nicht sehr stark ändert, wenn am Silizium außer dem Wasserstoff Sauerstoff gebunden ist, anstelle von Silizium. Dass eine Abnahme der SiH-Bedeckung durch eine zunehmende Oszillatorenstärke gerade kompensiert wird, ist sehr unwahrscheinlich.
Abb. 27 Verschiebung des Absorptionsmaximums durch Oxidation der Rückbindungen. Dargestellt ist das Spektrum der frisch H-terminierten Siliziumoberfläche, das nach 5 min Ultraschallbehandlung (US) und das nach 30 min Ultraschallbehandlung.

5.2.6 Chemomechanische Stabilität der Silyl-Terminierungen

Neben der thermischen Stabilität, die in Kapitel 5.5 behandelt wird, ist natürlich auch die Stabilität der Terminierungen gegen organische Lösungsmittel und Wasser in Kombination mit mechanischer Beanspruchung von Interesse. Dazu wurde der ATR-Kristall in Aceton bzw. in Wasser für 10 min im Ultraschallbad behandelt. Die Spektren wurden vor und nach der Prozedur verglichen.

In Wasser dagegen ergeben sich in Abhängigkeit von der Terminierung unterschiedliche Stabilitäten. Während sich die TMS- und die Benz-Terminierung als stabil erwiesen, degradierte die PMDS-Terminierung langsam (Abb. 28), die DMS-Terminierung dagegen relativ schnell (Abb. 29). Bei der PMDS-Terminierung ist der Angriffspunkt die Si-Si-Bindung, bei der DMS-Terminierung die Si-H-Bindung. In Anbetracht dessen, dass auch die analogen flüssigen Verbindungen Hexamethyldisilan und Tetramethyldisiloxan von Wasser langsam zersetzt werden, ist dieses Ergebnis nicht weiter verwunderlich.

Abb. 28 Degradierung der PMDS-Terminierung durch 10 minütige Ultraschallbehandlung in Wasser.

Im Fall der PMDS-Terminierung nahm nach 10 min die CH-Bande um 12% ab, dafür nahm bei 3720 cm\(^{-1}\) das Silanol-Signal zu. Die Si-Si-Bindung ist zwar durch die Methylgruppen relativ gut abgeschirmt, unter extremen Bedingungen – wie der Behandlung im Ultraschall – kommt die Hydrolyseanfälligkeit von Disilanderivaten dennoch zum Tragen.
Nach 5 min Ultraschallbehandlung in Wasser ist das Integral der SiH-Bande bereits um 30% zurückgegangen, nach 15 min um 50%. Die Abnahme der CH-Bande erfolgte verzögert. Bis 5 min Ultraschallbehandlung bleibt das Signal fast konstant, nach 15 min ist das Signal erst um 30% zurückgegangen. Dies lässt sich dahingehend interpretieren, dass zunächst der Angriff benachbarter Silanolgruppen unter Bildung von Dimethylsilylengruppen erfolgt. Als langsamere Reaktion folgt dann der Angriff durch Wasser auf noch vorhandene Dimethylsilylgruppen unter Abspaltung der Gruppe.
5.3 Röntgen-Photoelektronenspektroskopie (XPS)

Mit der Photoelektronenspektroskopie kann die Elementzusammensetzung einer wenige Nanometer dicken Oberflächenschicht bestimmt werden. Insbesondere bei der Messung der methylterminierten Oberflächen wird daher vor allem das Siliziumdioxid detektiert. Bis zu 90% der erfassten Atome sind bei diesen Proben dem Siliziumdioxid zuzuordnen. Bei nicht fluorierter Terminierung scheint der Einfluss des Messwinkels gering zu sein, bei den fluorierten wird der Unterschied jedoch deutlich. Bei der Messung der PFO-Probe senkrecht zur Oberfläche (Aachen) sind dem Siliziumdioxid 75% der erfassten Atome zuzuordnen, im Winkel von 30° zur Oberfläche (Kaiserslautern) sind es nur noch 55%.

Abb. 30 Korrelation zwischen den Elementgehalten auf den verschieden terminierten Oberflächen (Kaiserslautern).

In Abb. 30 sind die Atomprozente von Kohlenstoff und Fluor für die in Kaiserslautern in Auftrag gegebenen Proben dargestellt. Gemessen wurde die TMS-, die PMDS-, die PFO-terminierte Oberfläche, sowie eine oxidativ gereinigte Siliziumdioxidoberfläche als Referenz. Fluor wurde nur auf der PFO-Probe detektiert. Kohlenstoff ist auf allen vier Proben – also auch auf der nicht terminierten – nachweisbar. Der Kohlenstoffgehalt

Abb. 31 C1s-Detail spektren der PFO-, PMDS- und TMS-terminierten Oberfläche. Als Referenz wurde auch eine gereinigte Siliziumdioxidoberfläche gemessen.

In Abb. 31 sind die C1s-Detail spektren der XPS-Messungen dargestellt, die in Kaiserslautern durchgeführt wurden. Es ist üblich, die aufladungsbedingte Verschiebung der Energie der Photoelektronen durch Verschieben der Energieachse auf eine einheitliche C1s Position zu kompensieren. Da aber gerade die Position des Kohlenstoffsignals von Interesse war und weil bei allen Messungen ein intensives Sauerstoffsignal vom Siliziumdioxid zur Verfügung stand, wurde statt dessen die O1s Position (533,0 eV) als Fixpunkt gewählt. Bei allen Proben war daraufhin auch die Si2p Position einheitlich (103,5 eV; Si$^{4+}$-Signal vom SiO$_2$). Der Si$^+$-Peak der
Silylterminierung (um 100,7 eV erwartet) konnte nicht zuverlässig angefittet werden, da er im Vergleich zum benachbarten Si$^+$-Signal zu schwach war. Das Fluorsignal der PFO-Probe hatte ein Maximum bei 689,2 eV.

Das C1s-Detailspektrum der TMS-Oberfläche weist ein Signalmaximum bei 284,5 eV auf, bei der PMDS-Oberfläche liegt es bei 284,9 eV. Im PFO-Spektrum ist neben den Maxima bei 291,8 eV (CF$_2$) und 294,1 eV (CF$_3$) noch ein Maximum bei 285,0 eV enthalten. Die Kontamination auf der Siliziumdioxydeoiberfläche führt zu einem Peak bei 285,2 eV, daher kann durch XPS-Messungen nicht geklärt werden, ob sich auch auf den terminierten Proben eine Kontaminationsschicht befindet. Für den eindeutigen Nachweis einer Silylterminierung, die ausschließlich Alkylketten aufweist, ist die Photoelektronenspektroskopie somit nicht geeignet. Im Fall der PFO-Terminierung lag das Verhältnis der Atomprozente von Fluor zu Kohlenstoff bei 1,37. Der Wert ist damit sogar größer, als nach der Summenformel der PFO-Gruppe (SiC$_{10}$H$_{10}$F$_{13}$) zu erwarten ist. Aus diesem Grund ist zumindest bei dieser Probe eine zusätzliche Kontamination ausgeschlossen.

Abb. 32 Korrelation zwischen den Elementgehalten auf den verschieden terminierten Oberflächen (Aachen).
5.4 Statische ToF-SIMS

Wie in Kapitel 5.3 gezeigt wurde, ist ein eindeutiger Nachweis der TMS- oder der PMDS-Terminierung mit der Photoelektronenspektroskopie nicht möglich. Für diese Oberflächen bot sich die Analyse mittels statischer ToF-SIMS an, da diese Methode sehr empfindlich ist und im Massenspektrum reine Kohlenwasserstofffragmente von Methylsilanfragmenten deutlich unterschieden werden können.

Die Frage war, ob trotz der hohen Ionisierungsspannung eine Unterscheidung zwischen den sehr ähnlichen Terminierungen TMS und PMDS möglich ist. Daher wurden SIMS-Messungen der TMS- und der PMDS-terminierten Oberflächen in Auftrag gegeben. Da die Hoffnung bestand, mit dieser Analysenmethode auch die auf den terminierten Siliziumdioxidoberflächen vermuteten Silanolgruppen nachweisbar zu machen, wurde zum Vergleich auch die nicht-terminierte Oberfläche gemessen. Um die Ergebnisse aus den SIMS-Messungen direkt mit denen aus den XPS-Messungen vergleichen zu können, wurden für beide Methoden Proben verwendet, die jeweils parallel präpariert und gelagert wurden und somit als identisch angesehen werden können.

In Abb. 33 sind die Massenspektren der nicht-terminierten Siliziumdioxidoberfläche (Oxid), der TMS-Oberfläche und der PMDS-Oberfläche sowie ein Datenbankspektrum einer Polydimethylsiloxan-Oberfläche (PDMS; „Silikon“) gezeigt, wobei zur besseren Übersichtlichkeit nur Fragmente dargestellt sind, deren Intensität mehr als 5% der Intensität des Hauptpeaks beträgt.

Eine weitere Gemeinsamkeit der drei gemessenen Spektren ist das Fragment bei Masse 45. Hinter dieser Masse verbirgt sich das Ion \([\text{SiOH}^+]\), das Fragment ist somit ein Anzeichen dafür, dass sich auf allen drei Oberflächen Silanolgruppen befinden. Ein Peak bei Masse 18 lässt auf Wasserspuren auf der Oberfläche schließen. Er tritt jedoch

Abb. 34 Monomer und Oligomer des Dimethylsiloxans.

![Monomer und Oligomer des Dimethylsiloxans.](image)

Ein Vergleich der Spektren der TMS- und der PMDS-Oberfläche in Abb. 33 zeigt, dass eine Unterscheidung der beiden Oberflächen hier nicht zuverlässig möglich ist, da lediglich die relativen Peakintensitäten geringfügig voneinander abweichen. Erst wenn man die höheren Massen mit einbezieht, deren Intensitäten allerdings sehr gering sind, kann eine signifikante Abweichung im PMDS-Spektrum gefunden werden. Bei der Analyse der Spektren stellte sich heraus, dass sie sehr ähnlich sind und dem PDMS-Spektrum entsprechen. (Bei der Oxid-Oberfläche wurden hingegen keine Massen oberhalb von Masse 130 detektiert.)

Um die Ähnlichkeit der Spektren zu zeigen, wurden sie so normiert, dass die Intensität des Peaks bei Masse 147 jeweils hundert Prozent ergibt (Abb. 35). Die absolute Intensität des Peaks bei Masse 147 war bei der TMS-Oberfläche um den Faktor 48, bei der PMDS-Oberfläche um den Faktor 18 kleiner als bei der PDMS-Oberfläche. Man sieht, dass nur beim PMDS-Spektrum eine Abweichung auftritt: Die Intensität bei Masse 131 ist deutlich erhöht. Diese Masse entspricht dem Fragmention \([\text{Me}_3\text{SiSiMe}_2]^+\). Das Fragmention bei Masse 133 ist vermutlich \([\text{Me}_3\text{SiSiMeOH}]^+\).

Die Ähnlichkeit der Spektren wirft die Frage nach der Ursache auf. Im Fall der TMS-Oberfläche ist die überzeugendste Interpretation, dass das zur Präparation eingesetzte Trimethylchlorsilan mit Dimethyldichlorsilan verunreinigt war und sich bei der Präparation vereinzelt Dimethylsiloxan-Oligomere auf der Oberfläche bildeten. Wie in Kapitel 3.3.3 erwähnt, neigt Pentamethylchlorodisilan zur Hydrolyse mit anschließender Polymerisation. Es wäre denkbar, dass dies die Ursache für das Auftreten von Dimethylsiloxan-Oligomeren auf der PMDS-Oberfläche ist.
Eine Unterscheidung zwischen der PMDS- und der TMS-Oberfläche ist durch die Signalintensität der Masse 131 möglich.
5.5 *Thermische Desorptions Spektroskopie (TDS)*

Die Darstellung der Fülle an Informationen, die man bei einem thermischen Desorptionsspektrum erhält, ist nicht einfach, denn man erhält drei Dimensionen: die Temperatur T, die Massenzahl m/z und die Signalintensität I. Daher werden die Spektren in zwei Schritten dargestellt und interpretiert.

Anschließend werden zu jeder Terminierung diejenigen Fragmente verglichen, die für sie charakteristisch sind. Bei dieser Darstellung wird ersichtlich, welche Fragmente gleichzeitig zu- und abnehmen und somit entweder direkt demselben Molekül oder zumindest einem simultanen Reaktionsschritt entstammen. Insbesondere bei der Benz-Terminierung war die Abfolge der Desorptionsreaktionen von Interesse.

Um der Vielzahl von Fragmentionen am Ende konkrete Moleküle zuordnen zu können, wurden die bei spezifischen Temperaturen erhaltenen Massenspektren mit Spektren aus einer Datenbank verglichen.
5.5.1 Desorptionsspektren ausgewählter Massen im Vergleich

Während manche Massen im Hintergrundpektrum nicht vorkommen, sind andere darin intensiv vertreten. In Tabelle 5 sind die Hintergrundmassen aufgeführt, die auch in Abb. 36 zu erkennen sind. Die Abbildung zeigt das Massenspektrum bei 690°C Oberflächentemperatur eines Experimentes, bei dem ein oxidativ gereinigter Wafer als Probe verwendet wurde. Das Spektrum wurde mit großem Verstärkungsfaktor aufgenommen, daher sind die Massen 18 und 28 bei dieser Messung in der Sättigung.

Abb. 36 Hintergrundspektrum bei 690°C Oberflächentemperatur.

Im folgenden Abschnitt werden nun die Temperatur-Spektren einiger Massen, die im Hintergrundspektrum auftreten, vorgestellt. Dabei werden vier Silyl-Terminierungen (TMS, PMDS, Benz und hICP) mit dem reinen Oxid verglichen. Die ausgewählten Massen sind: Masse 16 [CH$_4^+$], Masse 27 stellvertretend für C$_2^+$-Fragmente, Masse 41 stellvertretend für C$_3^+$-Fragmente, Masse 55 stellvertretend für C$_4^+$-Fragmente, Masse 43 [C$_3$H$_7^+$] und Masse 44 [CO$_2^+$].

Abb. 37 Signalverlauf von Masse 16 für die gemessenen Terminierungen.

In Abb. 38 ist das Spektrum für Masse 27 dargestellt. Hier tritt nur bei der hICP- und der Benz-Terminierung eine deutliche Desorption auf. Bei der PMDS-Terminierung ist die Desorption nur schwach ausgeprägt und bei der TMS-Terminierung ist der Unterschied zum Hintergrund vernachlässigbar.

Die Abbildungen 40 und 41 zeigen, dass die Signale der Massen 43 und 55 voll dem Hintergrund zugerechnet werden können bzw. dass die Desorption von der terminierten Oberfläche hier vernachlässigst werden kann.

In Abb. 42 fällt auf, dass neben einem schwachen Signal von der hICP-terminierten Oberfläche nur die Benz-terminierte Oberfläche ein deutliches Signal bei Masse 44 ergibt. Des Weiteren ist hier die erheblich verminderte Desorptionstemperatur beachtenswert.
Abb. 38 Signalverlauf von Masse 27 für die gemessenen Terminierungen.

Abb. 39 Signalverlauf von Masse 41 für die gemessenen Terminierungen.
Abb. 40 Signalverlauf von Masse 43 für die gemessenen Terminierungen.

Abb. 41 Signalverlauf von Masse 55 für die gemessenen Terminierungen.
Abb. 42 Signalverlauf von Masse 44 für die gemessenen Terminierungen.
5.5.2 Desorptionsspektren der einzelnen Terminierungen

Im vorangegangenen Abschnitt wurden die verschiedenen Terminierungen Masse für Masse verglichen, um beurteilen zu können, ob wirklich eine Desorption von der Probe das Signal erzeugt hat.

Im Folgenden werden nun die Desorptionsspektren der einzelnen Terminierungen nacheinander behandelt. Bei der Beurteilung der Spektren ist dabei immer zu beachten, ob es sich um Massen handelt, die im Hintergrundspektrum vorkommen oder ob es charakteristische Massen sind. Bei kleiner Desorptionsrate ist nur die Desorption der letzteren klar zu erkennen.

5.5.2.1 Die Trimethylsilyl-Terminierung

Wie schon in Kap. 5.5.1 angedeutet, ist die Desorption von dieser Oberfläche sehr gering. Bei Aufnahmen mit gleichem Verstärkungsfaktor ist die Desorption gegenüber der hICP-Terminierung etwa um den Faktor 10 kleiner. Da bei diesem Spektrum der Beitrag des Hintergrunds bedeutend war, wurde bei den nicht charakteristischen Massen eine Korrektur durchgeführt. Dazu wurde vom TMS-Signal das Oxid-Signal subtrahiert.

In Abb. 43 ist ein Teil des Desorptionsspektrums der TMS-Probe gezeigt. Die Terminierung ist bis 350°C vollkommen stabil. Oberhalb dieser Temperatur wurde ein Anstieg der Massen 15 und 16 detektiert. Der Verlauf der Masse 16 korreliert sehr gut mit dem der Masse 15. Die kleine Abweichung bei Masse 16 zwischen 400°C und 500°C hat seine Ursache in der Subtraktion des Hintergrundsignals. Die Desorption von Wasser, das auf der Siliziumdioxidoberfläche adsorbiert war, erzeugte bei der Oxid-Probe bei Masse 16 einen kleinen Peak um 450°C. Bei der TMS-Probe war zwar auch ein Anstieg der Wassersignale (Masse 16, 17 und 18) zu beobachten, es trat jedoch kein Peak auf.

Das Desorptionsspektrum weist sowohl für Masse 15 als auch für Masse 16 drei Desorptionsmaxima auf. Das erste Maximum tritt bei 550°C auf, das zweite bei 630°C und das dritte bei 730°C. Das Signal der Masse 16 ist dabei immer etwas größer als das

Abb. 43 *Desorptionsspektrum der TMS-terminierten Oberfläche.*

Abb. 44 Charakteristische Massen im Desorptionsspektrum der TMS-Terminierung.

Es bleibt festzuhalten, dass sowohl die Desorption von Trimethylsilanol als auch die Desorption von Methan voraussetzt, dass in der Nähe der TMS-Gruppe eine Silanolgruppe vorliegt. Bei der Desorption von Trimethylsilanol entsteht auf der Oberfläche eine Siloxan-Brücke (Reaktionspfad a in Abb. 45). Die Desorption von Methan erfolgt unter Ausbildung einer Dimethylsilylen-Brücke (Reaktionspfad b in
Abb. 45). Während Reaktionspfad a zur vollständigen Entfernung der TMS-Gruppe führt, bleiben nach erfolgter Reaktion b noch Methylgruppen auf der Oberfläche zurück.

Abb. 45 *Desorption von Trimethylsilanol (a) und Methan (b) von der TMS-Oberfläche.*

Es ist zu beachten, dass der beschriebene Reaktionsablauf drei benachbarte Silanolgruppen erfordert. Sind nicht genügend Silanolgruppen vorhanden, bleiben Methylgruppen auf der Oberfläche zurück. Eine Desorption von Methylradikalen konnte in allen Desorptionsspektren ausgeschlossen werden. Weiterhin muss die insgesamt geringe Desorption berücksichtigt werden. Es ist somit davon auszugehen, dass Kohlenstoff in irgendeiner Form auf der Oberfläche zurückbleibt. In Übereinstimmung mit diesen Überlegungen wurde die Beobachtung gemacht, dass trotz mehrminütiger thermischer Behandlung im Vakuum bei 730°C die Oberfläche
hydrophob blieb (Wasserkontaktwinkel: 50°!). Nicht einmal nach mehrwöchiger Lagerung in Wasser werden die thermisch behandelten Oberflächen vollständig benetzend. Im Gegensatz dazu konnte die Referenz-Probe (Siliziumdioxydoberfläche) nach dem Experiment sofort mit Wasser benetzt werden.

5.5.2.2 Die Pentamethyldisilyl-Terminierung

Die Pentamethyldisilyl-Terminierung enthält eine Si-Si-Bindung. Diese Bindung ist theoretisch eine „Sollbruchstelle“, da diese Bindung wesentlich schwächer als die anderen Bindungen (C-H, Si-C und Si-O) ist. Sie sollte somit den Zerfalls- weg bestimmen und die thermische Stabilität herabsetzen. Überraschenderweise ist die PMDS-Terminierung jedoch ähnlich stabil wie die TMS-Terminierung.

ist dessen Abspaltung bevorzugt. Daher ist im Trimethylsilan-MS die Masse 59 der Hauptpeak.

Abb. 46 *Charakteristische Massen im Desorptionsspektrum der PMDS-Terminierung.*

Es soll an dieser Stelle noch darauf hingewiesen werden, dass sich die Desorptionsspektren der TMS-terminierten und der PMDS-terminierten Oberfläche durch die charakteristischen Massen sehr gut unterscheiden lassen. Während bei der TMS-Oberfläche Peaks bei den Massen 75 und 47, nicht jedoch bei den Massen 73 und 59 detektiert werden, ist es bei der PMDS-Terminierung genau umgekehrt. Das Desorptionsspektrum der PMDS-Probe stimmt jedoch in einem Detail mit dem der TMS-Probe überein. Während das Signal der Masse 59 wieder fast auf den Ausgangswert zurückgeht, steigt das Signal der Masse 73 bei 560°C erneut an und
bleibt auf einem Plateau. Dies lässt sich dahingehend interpretieren, dass auch hier wieder bei hohen Temperaturen die direkte Abspaltung eines Trimethylsilylradikals erfolgt.

Abb. 47 Desorption von Trimethylsilan von der PMDS-Oberfläche.

Die thermisch behandelte Probe wurde nach dem Ausschleusen aus dem Vakuum ebenfalls auf die Benetzbarkeit mit Wasser getestet. Es stellte sich heraus, dass die Oberfläche selbst nach mehreren Tagen Lagerung in Wasser nur stellenweise von Wasser benetzt wurde.
5.5.2.3 Die N-(Benzyloxycarbonyl)-3-aminopropyl(dimethyl)silyl-Terminierung

Auch der weitere Zerfallsprozess erfolgt nicht simultan, sondern stufenweise. Der zweite Desorptionspeak wird bei 460°C bei den Massen 91 und 92 detektiert. Dem entspricht die Desorption von Toluol ($C_6H_5-CH_3$). Abb. 50 zeigt die Eliminierung des Kohlenstoffdioxids in der ersten Stufe der Reaktion und die darauffolgende Eliminierung des Toluols.

Abb. 50 Abfolge der Zerfallsreaktionen auf der Benz-terminierten Oberfläche.
Die Hauptfragmente von Benzylamin (C₆H₅-CH₂-NH₂ ; Masse 106 und 79) und Phenylmethanamin (C₆H₅-CH=NH ; Masse 104 und 77) konnten nicht nachgewiesen werden. Dies bedeutet, dass das entstandene sekundäre Amin nicht zwischen Stickstoff und dem Propylrest, sondern ausschließlich zwischen Stickstoff und dem Benzylrest gespalten wird. Eine Desorption von Toluol bedingt, dass bei dessen Eliminierung ein Wasserstoff aus dem Terminierungsmolekül entfernt worden ist. Auf der Oberfläche bleibt also ein ungesättigter Rest zurück. Der Toluol-Desorption folgt eine intensive Detektion von C₃-, C₂- und C₁-Fragmenten. Das Maximum liegt im Fall der C₃- und C₁-Fragmente bei 510°C. Die Desorption der C₂-Fragmente hat ein Maximum bei 570°C.

Abb. 51 zeigt, dass die Massen 41, 15 und 16 simultan ansteigen und abfallen. Diese Fragmente sind demzufolge dem gleichen Reaktionsschritt oder sogar dem gleichen desorbierenden Molekül zuzuordnen.

Nach dem Desorptionsexperiment wurde die ehemalig Benz-terminierte Oberfläche erst nach einer zwölfstündigen Lagerung in Wasser benetzend.
5.5.2.4 Die hydrolysierte 3-Isocyanopropyl(dimethyl)silyl-Terminierung

Wie im vorherigen Kapitel schon zu erkennen war, ist die Desorption von der hICP-terminierten Oberfläche am intensivsten. In Abb. 52 sind die Temperatur spektren von vier Massen zusammengefasst. Es ist deutlich zu erkennen, dass der Verlauf bei Masse 15 und bei Masse 42 praktisch identisch ist, während bei Masse 27 der Peak wesentlich verbreitert und zu höheren Temperaturen verschoben ist.

Abb. 52 *Desorptionsspektrum der hICP-Terminierung.*

Der Verlauf bei Masse 44 weicht ebenfalls ab, hier liegt das Maximum bei einer niedrigeren Temperatur. Da bei den anderen C\textsubscript{3}-Massen kein simultaner Signalanstieg zu verzeichnen ist, muss davon ausgegangen werden, dass es sich hierbei um CO\textsubscript{2}-Desorption handelt.

Des Weiteren ist erkennbar, dass sich die Signale der Massen 13 bis 16 und 25 bis 27 auch aus Fragmenten anderer Vorläufermoleküle zusammensetzen müssen, da die detektierten Peaks immer größer sind als beim Propen zu erwarten wäre. Das Restspektrum bei Masse 13 bis 16 entspricht im Wesentlichen einem Methanspektrum. Die Fragmentionen bei Masse 25 bis 27 könnten aus Ethen oder aus Blausäure entstanden sein. Die Intensitäten sind hier aber viel kleiner, außerdem ist der abweichende Temperaturverlauf (s.o.) zu berücksichtigen, der entweder auf einen zweistufigen Reaktionsverlauf oder aber auf eine Nebenreaktion hindeutet.

Eine Desorption von Alkylisocyanaten kann ausgeschlossen werden, da diese unter Bildung des Ions \(\text{CH}_2=\text{N}^+=\text{C}=\text{O} \) (Masse 56) fragmentieren, welches sehr stabil ist und daher im Massenspektrum einen sehr intensiven Peak ergeben würde. Dieser konnte jedoch nicht detektiert werden. Primäre Amine würden sich durch einen intensiven Peak bei Masse 30 (\(\text{CH}_2=\text{NH}_2^+ \)) verraten, 2-Propen-1-amin hätte zudem noch einen Peak bei Masse 56 (\(\text{CH}_2=\text{CH}=\text{CH}=\text{NH}_2^+ \)).

Wenn sich die gemessenen Signale im Wesentlichen durch die Desorption von Propen und Methan erklären lassen, so stellt sich nun die Frage, was mit dem Stickstoff der Aminogruppe geschehen ist. Falls eine Desorption von Ammoniak stattgefunden hat [Nak98], ist es nicht ausreichend, die Masse 17 zu betrachten, da hier auch ein Wassermolekül [\(\text{OH}^- \)] vorliegen könnte. Um Fehlschlüsse auszuschließen, wurde das Verhältnis aus Masse 17 und Masse 18 betrachtet. Bei 520°C ist sowohl bei der Masse 17 als auch beim Verhältnis (Abb. 56) ein Peak zu sehen, allerdings ist die Intensität nur sehr gering.
Abb. 54 Vergleich des Massenspektrums des Desorptionspeaks der hICP-Terminierung mit einem Datenbank-Massenspektrum [NIST]. Das TDS wurde mit geringer SEV-Spannung aufgenommen.

Abb. 55 Vergleich des Massenspektrums des Desorptionspeaks der hICP-Terminierung mit einem Datenbank-Massenspektrum [NIST]. Das TDS wurde mit hoher SEV-Spannung aufgenommen.

Die sehr gute Übereinstimmung bei den C₃-Fragmenten und nicht zuletzt das Auftreten der Peaks bei den Massen 19 und 20 sind aber bedeutende Hinweise dahingehend, dass es sich wirklich um eine Desorption von Propen handelt.

Dass die Desorptionssignale bei der hICP-Terminierung wesentlich schärfer sind, lässt sich damit erklären, dass der Ausgangszustand hier definiert ist als nach der Desorption von CO₂ und Toluol auf der Benz-Terminierung.
6 Zusammenfassung

Im Mittelpunkt der vorliegenden Arbeit stand die Charakterisierung von organisch terminierten Silizium(dioxid)oberflächen mit oberflächensensitiven Analysenmethoden. Dazu wurde die Photoelektronenspektroskopie (PES), die Flugzeit-Sekundärionenmassenspektrometrie (ToF-SIMS), die Fourier-Transform-Infrarotspektroskopie (FTIR) und die thermische Desorptionsspektroskopie (TDS) eingesetzt. Außerdem wurden Kontaktwinkelmessungen (CA) durchgeführt. Welche Untersuchungsmethode für welche Fragestellung geeignet ist, wurde im Kapitel 5 ausführlich diskutiert.

Als Proben dienten nasschemisch oxidierte Siliziumwafer. Für die Terminierung wurden nur monofunktionale Silanderivate verwendet – also solche die nur eine Abgangsgruppe besitzen – um sicherzustellen, dass keine Polymerisation stattfindet.

Für die Präparation der Trimethylsilyl-Oberfläche (TMS), der Pentamethyldisilyl-Oberfläche (PMDS) und der 1,1,2,2-Tetrahydroperfluorocyclodimethylsilyl-Oberfläche (PFO) wurde jeweils eine Präparationsvorschrift entwickelt die dahingehend optimiert wurde, dass die Reaktion auch bei Raumtemperatur innerhalb von Sekunden abläuft und die Reaktionslösung dabei wenig empfindlich gegen Luftfeuchtigkeit ist.

Als Terminierung mit einer funktionellen Gruppe wurde die 3-Isocyanopropyl-dimethylsilyl-Terminierung (ICP) gewählt. Ausgehend von der ICP-terminierten Oberfläche wurden durch Reaktion der Isocyanatgruppe mit verschiedenen Alkoholen urethanterminierte Oberflächen erzeugt. Als Alkohol wurde Benzylalkohol, Tetraethylenglycol, 2,2,2-Trifluorethanol, 2,2,3,3,4,4,4-Heptafluorbutanol und 2,2,3,3,4,4,5,5-Octafluorpentanol eingesetzt.

Mit Ausnahme der ICP-Terminierung wurden auf allen genannten Oberflächen Kontaktwinkelmessungen mit fünf verschiedenen Flüssigkeiten durchgeführt. Um zu testen, ob die Benetzungseigenschaften der triethylsilylterminierten Oberfläche (TES) vergleichbar mit denen der TMS-terminierten Oberfläche sind, wurden auch auf dieser Messungen durchgeführt. Der kleinste Wasserkontaktwinkel (42°) wurde auf der TEG-

Der Nachweis der nicht fluorierten Terminierungen erfolgte in erster Linie IR-spektroskopisch. Um die Kohlenwasserstuff-Submonolagen detektieren zu können war die Verwendung der ATR-Technik (abgeschwächte Totalreflexion) nötig. Die Messungen wurden mit einem ATR-Kristall aus Silizium durchgeführt, dessen oxidierte Oberfläche direkt terminiert wurde. Als Referenz wurde entweder die oxidierte Oberfläche oder die H-terminierte Siliziumoberfläche verwendet.

Außer für den Nachweis der Terminierung wurde die FTIR-Spektroskopie auch zur Kontrolle der Reaktion der Isocyanatgruppe an der Oberfläche mit Benzylalkohol, Tetraethylenglycol und Wasser eingesetzt. Nach 40 min in Benzylalkohol bei 80°C sind mindestens 97% der Isocyanatgruppen abreagiert. In Tetraethylenglycol erfolgt die Reaktion etwas langsamer. In Wasser sind bei 20°C nach 10 min schon alle Isocyanatgruppen zum Amin bzw. zum Harnstoffderivat abreagiert.

spektroskopischen Vergleich einer DMS-Oberfläche mit einer H-terminierten Siliziumoberfläche wurde die Oxidoberfläche direkt mit Tetramethyldisilazan (TMDSA) behandelt.

Im Fall der PMDS-Terminierung nahm nach 10 minütiger Ultraschallbehandlung in Wasser die CH-Bande um 12% ab, dafür nahm bei 3720 cm⁻¹ das Silanol-Signal zu. Die Si-Si-Bindung ist zwar durch die Methylgruppen relativ gut abgeschirmt, unter extremen Bedingungen, wie die Behandlung im Ultraschall, kommt die Hydrolyseanfälligkeit von Disilanderivaten dennoch zum Tragen.

Die DMS-Terminierung stellte sich wie erwartet als die empfindlichste Terminierung heraus. Nach 5 min Ultraschallbehandlung in Wasser ist das Integral der SiH-Bande bereits um 30% zurückgegangen, nach 15 min um 50%. Die Abnahme der CH-Bande erfolgte verzögert. Bis 5 min Ultraschallbehandlung bleibt das Signal fast konstant, nach 10 min ist das Signal erst um 30% zurückgegangen. Dies lässt sich dahingehend interpretieren, dass zunächst der Angriff benachbarter Silanolgruppen unter Bildung von Dimethylsilylengruppen erfolgt. Als langsamere Reaktion folgt dann der Angriff durch Wasser auf noch vorhandene Dimethylsilylgruppen unter Abspaltung der Gruppe.

Durch Integration der aliphatischen CH-Banden konnte gezeigt werden, dass mit Ausnahme der DMS-Terminierung alle Terminierungen einen vergleichbaren Bedeckungsgrad besitzen. Durch die geringere Raumbeanspruchung des Wasserstoffs ist die Bedeckung bei der DMS-Terminierung um etwa 50% größer. Die Reproduzierbarkeit der TMS- und PMDS-Präparation war sehr gut, die Variation des CH-Integrals lag in beiden Fällen unter 13%.

Im FTIR-Spektrum konnte die Abnahme der Konzentration an Oberflächensilanolgruppen durch die Reaktion mit Monochlorsilanmolekülen beobachtet werden. Die OH-Bande der isolierten Silanolgruppe wurde im Bereich von 3720 cm⁻¹ bis 3747 cm⁻¹ detektiert. Die OH-Bande der H-verbrückten Silanolgruppen ist sehr breit, daher hob sie sich nur schwach von der Basislinie ab, wenn als Referenz die Oxidoberfläche verwendet wurde. Für weitergehende Untersuchungen der OH-Banden wurde die TMS-Oberfläche und die Oxid-Oberfläche gegen die H-terminierte Siliziumoberfläche gemessen, da diese silanolfrei ist. Wie zu erwarten ist das OH-
Signal auf der TMS-Oberfläche kleiner als auf der Oxid-Oberfläche, aber auch auf der TMS-Oberfläche ist das Signal im Bereich der H-verbrückten Silanolgruppen noch sehr groß. Isolierte Silanolgruppen können dagegen nur auf der Oxid-Oberfläche detektiert werden.

Die Auswertung der Integrale kommt für eine TMS-Oberfläche zu folgendem Bild: 20% der Silanolgruppen haben mit dem Trimethylchlorsilan reagiert, davon waren 2% isolierte Silanolgruppen. Es war also nur jede fünfte Silanolgruppe silylterminiert. Dieses Ergebnis bestätigt die Annahme, dass auf der Oberfläche bei der Reaktion mit Trimethylchlorsilan aus sterischen Gründen nicht abreagierte Silanolgruppen zurückbleiben.

Der Vergleich des OH-Integrals für die abreagierten Silanolgruppen (0,25 cm\(^{-1}\)) mit dem CH-Integral pro CH-Oszillator (0,003 cm\(^{-1}\)) ergibt ein Verhältnis für die Oszillatorenstärken in der Größenordnung von 83:1. Dieser Wert liegt etwas höher als der, der aus einem NIST-Spektrum von Ethyldimethylsilanol (5%-ige Lösung in Tetrachlorkohlenstoff) erhalten wurde (50:1).

Ein großer Vorteil der FTIR-Spektroskopie im Vergleich zu den massenspektrometrischen Methoden ist, dass die Probe durch die Messung nicht zerstört wird. ATR-FTIR-Spektren haben außerdem einen hohen Informationsgehalt. Zur Kontrolle eines Reaktionsverlaufs ist diese Methode daher am besten geeignet.

Signale für [SiMe^+] und [SiMe_3^+] auf den terminierten Proben zeigen an, dass es sich bei beiden um Methylsilanderivate handelt. Eine Unterscheidung zwischen den beiden Terminierungen war nur schwer möglich. Der einzige Hinweis auf PMDS ist das im Vergleich zum TMS erhöhte Signal bei m/z = 131 u/e [Si_2Me_5^+], das absolut gesehen allerdings sehr schwach ist. Die Spektren der Terminierungen sind dem PDMS-Spektrum sehr ähnlich. In allen drei Spektren treten dieselben Peaks auf, die Intensität bei den höheren Massen ist jedoch bei den terminierten Oberflächen deutlich kleiner.

Die Empfindlichkeit von ToF-SIMS ist für die Detektion von Submonolagen mehr als ausreichend. Im Prinzip ist es die empfindlichste der verwendeten Methoden, deren Nachteil aber ist, dass durch die hohen Ionisierungsentnergien chemische Information verloren geht. Des Weiteren sind quantitative Aussagen kaum möglich.

Die PES-Messungen der TMS- und der PMDS-Oberfläche wurden an Proben durchgeführt, die parallel zu denen für die ToF-SIMS präpariert und gelagert wurden. Die Oberflächen können somit als identisch angesehen werden. Des Weiteren wurden stickstoffhaltige und fluorierte Terminierungen in Auftrag gegeben, um die Korrelation
zwischen dem Kohlenstoffsignal und den Signalen anderer in der Terminierung enthaltener Elemente zu überprüfen.

Das Siliziumsignal der terminierten Proben hob sich nicht vom Signal des Siliziumdioxides ab. Da auch nur ein Stickstoffatom in der Urethan-Terminierung enthalten war, war das Stickstoffsignal ebenfalls sehr schwach. Bei den Kohlenstoff-Signalen ist die zweifelsfreie Unterscheidung zwischen Kontamination und Terminierung kaum möglich, jedoch korreliert die C1s-Signalintensität mit der Anzahl der Kohlenstoffatome in der Terminierungsgruppe. Ebenfalls korreliert sie mit der F1s- und der N1s-Signalintensität, wenn diese Elemente in der Terminierungsgruppe enthalten sind.

Ein Schwerpunkt der Arbeit war die Entwicklung des TDS-Verfahrens für die Anwendung bei den verwendeten Terminierungen. Um möglichst viele Informationen aus den Desorptionsspektren herausziehen zu können, musste die Datenaufnahme und die Datenaufarbeitung dahingehend modifiziert werden, dass das ganze Spektrum verwertet werden konnte. Für die Auswertung war eine quasi-dreidimensionale Darstellung nötig mit Temperatur (T), Masse-Ladungs-Verhältnis (m/z) und Signalintensität (I) als Dimensionen.

Das TDS-Verfahren wurde auf die Untersuchung von silylterminierten Siliziumwafern angepasst. Die verwendete Probenheizung wurde dahingehend optimiert, dass hohe Oberflächentemperaturen erreicht werden können, ohne dabei die Hintergrundsignale wesentlich zu erhöhen. Dadurch konnten auch Kohlenwasserstoff-Desorptionssignale ausgewertet werden. Um die Informationen aus dem gesamten Spektrum verwerten zu können, wurde eine Methode zur Datenauswertung entwickelt, die es ermöglichte, auch kleine Desorptionspeaks zu erkennen.
Um aussagekräftige Spektren zu erhalten (ohne Artefakte von anderen Oberflächen), mussten Siliziumwafer als Proben eingesetzt werden. Da Silizium für Wärmestrahlung weitgehend transparent ist, musste zunächst ein Heiztisch entwickelt werden, der es erlaubte, die Oberflächentemperatur im Bereich von 400°C bis 730°C linear durchzufahren.

Mit der thermischen Desorptionsspektroskopie wurde die TMS-, die PMDS- und die Benz-Terminierung (Benz = N-(Benzyloxycarbonyl)-3-Aminopropyltrimethoxysilyl) untersucht. Zum Vergleich mit der Benz-Terminierung wurde auch eine Terminierung gemessen, die durch Hydrolyse der Isocyanatgruppe der ICP-terminierten Oberfläche (ICP = 3-Isocyanopropyldimethylsilyl) erhalten wurde.

7 Ausblick

In der vorliegenden Arbeit wurden organische Submonolagen auf Siliziumdioxydoberflächen mit verschiedenen Analysenmethoden untersucht. Es wurden relativ einfache Terminierungen gewählt, weil zunächst geklärt werden musste, welche Aussagen mit welcher Methode möglich sind. Aufbauend auf den in dieser Arbeit präsentierten Ergebnissen können nun auch komplexere Terminierungen mit den beschriebenen Methoden charakterisiert werden.

8 Anhang: Strukturformeln

Trimethylsilyl (TMS)

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{Si} \\
\text{O} \\
\end{array}
\]

Pentamethyldisilyl (PMDS)

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{Si} \\
\text{Si} \\
\text{O} \\
\end{array}
\]

Dimethylsilyl (DMS)

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{Si} \\
\text{H} \\
\end{array}
\]

Isocyanopropylmethysilyl (ICP)

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{Si} \\
\text{N} \\
\text{O} \\
\end{array}
\]

N-(Benzyloxycarbonyl)-3-aminopropylmethysilyl (Benz)

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{Si} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{N} \\
\text{O} \\
\text{H} \\
\end{array}
\]

N-[2-[2-[(2-Hydroxyethoxy)ethoxy]ethoxy]ethoxycarbonyl]-3-aminopropyl-
dimethylsilyl (TEG)

\[
\begin{array}{c}
\text{O} \\
\text{Si} \\
\text{Si} \\
\text{N} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{O} \\
\text{H} \\
\end{array}
\]
N-(2,2,2-Trifluorethoxycarbonyl)-3-aminopropyltrimethylsilyl (TFE)

N-(2,2,3,3,4,4,4-Heptafluorobutoxycarbonyl)-3-aminopropyltrimethylsilyl (HFB)

N-(2,2,3,3,4,4,5,5-Octafluorpentoxycarbonyl)-3-aminopropyltrimethylsilyl (OFP)

1,1,2,2-Tetrahydroperfluorooctyltrimethylsilyl (PFO)

Triethylsilyl (TES)
Literaturverzeichnis

Gun95 Temperature-programmed desorption mass spectrometry of butyloxysilyl groups on silica surfaces.

Hau94 The Reaction of Hexamethyldisilazane and Subsequent Oxidation of Trimethylsilyl Groups on Silica Studied by Solid-State NMR and FTIR.

Iss03 SELDI-TOF MS for Diagnostic Proteomics.

Joy02 Surface Functionalization of H-Terminated Silicon Surfaces with Alcohols Using Iodoform as an In Situ Iodinating Agent.

Klu97 Thermal Behavior of Alkylsiloxane Self-Assembled Monolayers on the Oxidized Si(100) Surface.

Kum01 Thermal stability of xerogel films.

Liu04 Structure and Reactivity of Mixed w-Carboxyalkyl/Alkyl Monolayers on Silicon: ATR-FTIR Spectroscopy and Contact Angle Titration.

Moh03 Silylation of Wood for Potential Protection against Biodegradation. An ATR-FTIR, ESCA and Contact Angle Study.

Mor02 Preparation of a Water-Resistant Siliceous MCM-41 Sample, through Improvement of Crystallinity, and Its Prominent Adsorption Features.

Nak98 Silicon Nitride and Oxide Powder Surface Charakterisation by TPD.
Nis99 Poly(vinyl alcohol) with low surface free energy by fluorination.

Nis03 Green mussel *Perna viridis* L.: attachment behavior and preparation of antifouling surfaces.

Nom04 Identification of novel and downregulated biomarkers for alcoholism by surface enhanced laser desorption/ionization-mass spectrometry.

Ohn00 Characterization of Fluorocarbon Monolayer Surfaces for Direct Force Measurements.

Ond96 Super-Water-Repellent Fractal Surfaces.

Rou78 Structure and properties of n-alkyldimethylsilyl bonded silica reversed-phase packings.

Sch02 Hydride Abstraction Initiated Hydrosilylation of Terminal Alkenes and Alkynes on Porous Silicon.

Sev92 Thermal Stability and Degradation Mechanism of Trialkylsilyl Surface Modifications on Silica Powder.

Sil91 Silanization of Silica Surfaces. A New Method of Constructing Pure or Mixed Monolayers.
Ste02 New Approaches Toward the Formation of Silicon-Carbon Bonds on Porous Silicon.

Tri93 Effect of Fluoralkyl Substituents on the Reaction of Alkylchlorosilanes with Silica Surfaces.

Tri95 Reaction of Methylsilanols with Hydrated Silica Surfaces: The Hydrolysis of Trichloro-, Dichloro, and Monochloromethylsilanes and the Effects of Curing.

Ull96 Formation and Structure of Self-Assembled Monolayers.

Ure65 Infrared and Raman spectra of Some Pentamethyldisilanyl Compounds.

Voo96 Silylation of the silica surface. A review

Was89 Structure and Reactivity of Alkylsiloxane Monolayers Formed by Reaction of Alkyltrichlorosilanes on Silicon Substrates.

Zha97 Comprehensive Study of Surface Chemistry of MCM-41 Using 29Si CP/MAS NMR, FTIR, Pyridine TPD, and TGA.

Zha98 Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study.