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Abstract

In meiner Arbeit betrachte ich Anwendungen von Poincaréreihen zur verallge-
meinerten Jacobigruppe.

Im ersten Teil schatze ich Fourierkoeffizienten Siegelscher Spitzenformen ab.
Zunéachst betrachte ich den Fall Siegelscher Spitzenformen kleiner Gewichte zur
vollen Siegelschen Modulgruppe I'y; anschlieend untersuche ich eine Untergruppe
Logy(N) von I'y.

Im zweiten Teil der Arbeit geht es um Liftungs-Abbildungen von einem Vek-
torraum verallgemeinerter Jacobi Spitzenformen in einen Teilraum elliptischer
Spitzenformen.

In our work we regard applications of Poincaré series for generalized Jacobi
groups. The first part deals with estimates of Fourier coefficients of Siegel cusp
forms. First we consider the case of Siegel modular forms for the full modular
group I'; having small weight. Afterwards the case of a certain subgroup Lo 4(V)
of I'y is regarded.

In the second part we construct lifting maps from a vector space of generalized
Jacobi cusp forms to a subspace of elliptic modular forms.



Chapter 1

Introduction

In this thesis we discuss applications of Poincaré series on certain (higher- dimen-
sional) Jacobi groups.

In the first part (Chapter 3) we derive estimates of Fourier coefficients of Siegel
cusp forms. In the second part (Chapter 4) we construct certain lifting maps
from a vector space of Jacobi cusp forms to a certain subspace of elliptic modular
forms. Chapter 2 contains preliminary facts on Siegel and Jacobi modular forms.

Let F be a cusp form of integral weight k& with respect to the Siegel modular
group I'y = Spy(Z) C GLyy(Z) with Fourier coefficients a(T), where T is a posi-
tive definite symmetric half-integral g x ¢ matrix. Then a conjecture of Resnikoff
and Saldana (cf. [RS]) says that

a(T) < (det T)F/2 (gt /4t (e >0),

where the constant implied in < only depends on € and F'. For g = 1 this
conjecture is true (Ramanujan-Petersson conjecture, proved by Deligne for k > 2
[DE], and by Deligne and Serre for k£ = 1 [DS]). This estimate is the best possible
one, because due to Rankin we have (for f # 0)

lim sup ‘A(T)T(lfk)m‘ = 00.

T—o00

([Ra]).

For arbitary g there are known counter examples for the conjecture of Resnikoff
and Saldana as the following theorem (cf. [K5]) shows

Theorem 1.1 Let g =1 (mod 4), g =k (mod 2) and F' € Sj44(I'sy) be a Hecke
eigenform that is the Ikeda lift of a normalized Hecke eigenform f € Sor(T'1).
Then the conjecture of Resnikoff and Saldana is not true.

For g > 2 the estimate is at least known on average (cf. [K7]).



From the classical Hecke argument the following bound
a(T) <p (det T)F/?

follows readily, where the constant implied in <z only depends on F'.
For k > g 4 1, the at present best estimate is

oT) Sor (@t T)20 (e0), D
where 13 .
R itg=3 (Br)),
5+ (1—=1a, ifg>3 ([BK]),
where
1 p
g1y aa Y ‘ 1.2
o, =4lg—1+ { TS 2
Clearly
ay; — 0 for g — oo,

i.e., one is far away from the conjecture of Resnikoff and Saldana. To be more
precise, in [BK] it is proved that

a(T) e p (Mg (T))2707 < (det T)FD2H (6> 0), (1.3)
where
mg_1 = min{T[U],_1|U € GL4(Z)},

where T[U] := U'TU (U" = transpose of U) and T[U],-1 denotes the (¢ — 1) x
(9 — 1) minor of T[U]. From (1.3) the estimate (1.1) follows directly if one uses
the bound m, 1 (T') <, (det T)*~1/9, which in turn follows readily from reduction
theory.

The method in [BK] is the following (for details cf. Chapter 2, Section 2 or

[BK]): If we write Z € H, as Z = §

t
2
7' € H,_1, we see that the function F'(Z) € Si(I'y) has a so-called Fourier-Jacobi
expansion of the kind

F(Z) _ Z ¢m<7—7 z)eQWitr (m7") (7_/ c Hg,1>,

m>0

f, ), where 7 € H, z € C19~1, and

where m runs through all positive definite symmetric half-integral (g—1) x (¢—1)
matrices, and where the coefficients ¢,, (7, z) are Jacobi cusp forms (the definition
of a Jacobi cusp form is given in Chapter 2). In [BK] the Fourier coefficients of
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Jacobi cusp forms are estimated by developing a Petersson coefficient formula for
Jacobi cusp forms and by estimating the Fourier coefficients of certain Jacobi-
Poincaré series P, (n, uniformly in det m. The restriction k > g + 1 is needed
for the absolute convergence of Py ,:(n,). Then the Petersson norm of a Jacobi
cusp form is estimated for the particular case where the Jacobi cusp form arises
from a Fourier-Jacobi expansion. This can be done by using certain Dirichlet se-
ries of Rankin-Selberg type which have a meromorphic continuation to the whole
complex plane with finitely many poles and satisfy a certain functional equation
(cf. [KS]). Then one can use a version of the Theorem of Sato and Shintani.
The method in [Br] is quite the same, he only uses a different splitting of Z €
Hs, with 7 € H,, z € C?Y, and 7' € H. Breulmann tried to generalize his result
for arbitrary g by using in the general case the splitting 7 € H,, 2 € C2972) and
7' € H,_5. Unfortunately for g > 3 his estimate is worse than the one of [BK].
In the case g > 7 it is even worse than the trivial Hecke bound.

In Chapter 3 we prove generalizations of the estimates of [BK] in various di-
rections. More precisely we regard the limiting case £ = g + 1, and the case
where Iy is replaced by the subgroup

T, o(N) ::{M: (é g>erg

C=0 (mod N)}
of I'y.

In the case & = g + 1 the Poincaré series for Jacobi forms cannot be defined
as before, because one can show that these series are not absolutely convergent
(cf. Lemma 2.27). Therefore we use the so-called Hecke trick and multiply every
summand of the Poincaré series with a factor depending on a complex variable
s such that the new series Py . (n,m,s is again absolutely convergent for o =Re(s)
sufficiently large. Moreover this factor is chosen such that the new series is again
invariant under the slash operation of the Jacobi group. For g = 2 the use of the
Hecke trick is suggested in [GKZ] but not carried out. Now the method is the
following one: we compute the Fourier expansion of Py .(n.r),s (cf. Theorem 3.4)
and show that it is even absolutely and locally uniformly convergent in a larger
domain of C that contains the point s = 0 if K = g + 1. For this we have to
estimate certain integrals by changing the path of integration in a suitable way
(cf. Corollary 3.7) and we have to estimate generalized Kloosterman sums, using
some formulas for Gaufl sums and some knowledge about quadratic forms over
the p-adic numbers Z, (cf. Lemma 3.9). Combining these results, we can show
that the series that is defined through the above Fourier expansion is absolutely
and locally uniformly convergent in s in the larger domain (cf. Lemma 3.10).
Therefore we have a definition for the Poincaré series for £ = g + 1. What is
left to show is that these series are Jacobi cusp forms and that the Petersson
coefficient formula is still valid. The first claim follows quite easily from what



we already know; the second claim is more difficult. The problem is that the
scalar product <q§, Pg+17m;(n7r)> cannot be computed directly but only via the limit
lim,_ <¢, Pg+17m;(n7r)g>. Therefore we have to show that these scalar products
are absolutely convergent (cf. Lemma 3.12), compute it explicitely (cf. Lemma
3.13) and show that we may change limit and integration (cf. Lemma 3.14).
Thus we obtain (cf. Theorem 3.20)

Theorem 1.2 Let g > 2 and suppose that k > g+ 1. Then we have
a(T) < p (det T)F/2~1/29)—(1=1/g)ag+e (e > 0),

where o is defined in (1.2), and where the constant implied in <. p only depends
on € and F, i.e., the estimate of [BK] is still valid in the border case k = g+ 1.

In the second section we generalize the estimates for Fourier coefficients to Siegel
cusp forms on I'y o(INV).

Thus in what follows we let F' be a cusp form of integral weight k with respect to
Lyo(N) with Fourier coefficients a(T'), where T is a positive definite symmetric
half-integral g x g matriz.

For g = 2,3 we obtain estimates of the same quality as in the case of the full
modular group; for g > 3 we obtain a slightly weaker estimtate. For the proof
we define a vector space of certain Jacobi forms for subgroups using the same
techniques as in [BK]. We estimate the Fourier coefficients of these Jacobi cusp
forms (again using for £k = g + 1 the Hecke-trick). The difficulty lies in the
estimates of the Petersson norm of the Fourier-Jacobi coefficients since it is not
obvious how to define similar Dirichlet series of Rankin-Selberg type with a simple
functional equation. Thus we instead use the classical Hecke argument to obtain
a slightly weaker estimate for the Petersson norm which leads to (cf. Theorem
3.74 and Corollary 3.75)

Theorem 1.3 Let g > 2, k> g+ 1. Then
a(T) e (my_1(T))V? - (det T)F=D/2Fe (¢ > 0),

where my_1(T") = min{T[U]|,-1|U € GL4(Z)}, where T[U],—1 denotes the
(9 — 1) x (g — 1) minor of T|U], and where the constant implied in <. p only
depends on € and F.

Corollary 1.4 Let g > 2, k> g+ 1. Then
a(T) < p (det T)F/2-1/(29)+e (e >0),

where the constant implied in <. p only depends on € and F'.
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We now proceed using a different splitting in the Fourier-Jacobi expansion (in
the case g = 3 this splitting coincides with the splitting used in [Br]). Doing so,
we again can define certain Dirichlet series of Rankin-Selberg type (cf. Definition
3.69) which have a meromorphic continuation to the whole complex plane and
satisfy a certain quite complicated functional equation that sets this Dirichlet
series in connection to other Dirichlet series (cf. Theorem 3.72). Thus we obtain,
again using a modified version of the Theorem of Sato and Shintani (cf. Theo-
rem 3.73) the following improvements for ¢ = 2 and g = 3 (cf. Theorem 3.76,
Corollary 3.77, Theorem 3.78, and Corollary 3.79)

Theorem 1.5 Let g =2 and k > 3. Then
a(T) e p (min(T))>/ 18+ . (det T)F-D/2+e (e >0),

where min(T) is the least positive integer that is represented by T, and where the
constant implied in <. p only depends on € and F'.

Corollary 1.6 Let g =2 and k > 3. Then
a(T) <cp (det T)H/2-13/36%< (e > 0),
where the constant implied in <. p only depends on € and F'.
Theorem 1.7 Let g =3 and k > 8 an even integer. Then
a(T) <ep (min(T)) 7313 oy (T) 12 - (det T)H/2-1/4+ (e >0),
where the constant implied in <. g only depends on € and F'.
Corollary 1.8 Let g =3 and k > 8 an even integer. Then
a(T) L p (det T)F/2-V4e (¢ > 0),
where the constant implied in <. p only depends on € and F'.

Thus in the cases g = 2 and g = 3 the estimates for the full Siegel modular group
obtained in [K1] and [Br], respectively, are also valid for I'j o(N). Moreover we
have, similar as in [K8], the following estimate on average for g = 2 (cf. Corollary

3.80)

Corollary 1.9 We have

> Ja(D)P <op N
{T>0,tr(T)=N}



In the second part of our work we generalize (under certain restrictions) the
construction of lifting maps from the vector space of Jacobi cusp forms to a
certain subspace of elliptic modular forms to arbitrary g. The case ¢ = 1 is
treated in [GKZ].

Let n,k,g € N, where ¢ = 1 (mod 8), and k& > %. Moreover let m be a

positive definite symmetric half-integral g x g matrix (this implies in particular
o

n
that 1 det(2m) is an integer), r € Z(9), Dy := — det 2 ( r{? 2 ) < 0 such that
m

2
Dy is a square modulo 3 det(2m), 3 det(2m) is odd, coprime to Dy and Dy is
a fundamental discriminant. Let us put I'{ ; := T’y x (Z(@Y x Z#!) and denote
by Jem (T'{,) the vector space of Jacobi cusp forms with respect to I'{ ;. Let
Sk(5 det(2m))~ be the subspace of elliptic cusp forms of weight k with respect
to Io(5 det(2m)) that have eigenvalue —1 under the Fricke involution. Then we
can give the following

Definition 1.10 For ¢ € J;f%m(f‘ig) we define

- D 2 .
Soun(@)w)i= 2703 | 3 (5 e (oo ) | e w e

n=1 dln
where cg(n,r) is the (n,r)—th Fourier coefficient of ¢.

Definition 1.11 For f € So(4 det(2m))~ we define for (1,z) € H x ClV

. k—1
* G Ti(nT+rz
SDO,TO (f> (T7 Z) = < )) ’ E : Tk,% det(2m),DoD,ro(2m)*rt, Do (f)62 (prt )7

det(2m
nez
Tez(l,g)
dn>m—1[rt]
n =
o 2 -

where D := — det 2 ( S ), and where Ty, 1 qet(2m), Do D ro(2m)*rt o (f) 15 @ cer-

p

tain cycle integral (cf. Definition 4.13).
We prove the following version (cf. Theorem 4.19)

Theorem 1.12 If ¢ is an element of J."%),, (T ), then the function Sp, ,(¢)(w)

k—i—gT'H,m
is an element of Sa(5 det(2m))~.
If f € Sai(3 det(2m)) ™, then the function Sj,
qusp (1’\(1]79)'

1
k—f—%,m

The maps

oo (F)(7,2) is an element of

1
Sporo : T — Sgk(§ det(2m))~

k+%,m

9



* 1 - cus
SDOJ”O : Sgk(§ det(2m)) — Jk P

1
+om

are adjoint maps with respect to the Petersson scalar products.

For the proof we follow the same method as in [GKZ]| and define a function
Qpm.Do.ro (W3 T, 2) that can easily be shown to be a holomorphic kernel function
for the map Sp, - To prove the theorem we have to show that Q. pyr (w; T, 2)
is also a holomorphic kernel function for the map Sp,,,. Using the Petersson
coeflicient formula for Jacobi cusp forms, we have to show that ., py.r (w; T, 2)
has a Fourier expansion where the Fourier coefficients are certain linear combina-
tions of Jacobi-Poincaré series. Therefore we have to manipulate certain higher
dimensional congruences and compute sums of multi-variable Kloosterman sums.

I wish to thank Prof. Dr. W. Kohnen for suggesting the issue of this work
and for giving helpful advice. Moreover I want to thank my family and all my
friends for having a lot of appreciation. In particular I want to thank my father
for correcting English phrases and Anke for helping with computer problems.
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Chapter 2

Preliminaries

In this chapter we want to fix some notations and recall some basic definitions of
Siegel and Jacobi cusp forms. Furthermore we want to introduce Poincaré series
for the Jacobi group. For details we refer the reader to [EZ], [Fr], [Zi], and [BK].

2.1 Basic facts about Siegel and Jacobi cusp

forms

For an integer ¢ and a commutative ring R let us denote by Symg(R) the set of
symmetric matrices of size g with entries from R.
Moreover, if R is a commutative ring with 1, then GL,(R) denotes the group of
g X g matrices with entries in R that are invertible in R (i.e., the inverse matrix
has also entries in R).
Moreover let
Spy(R) := {M € GLy(R)| [,[M] = I}

be the real symplectic group of genus g. Here we have used the abbreviations
I, = ( % %’ ), where E,, ist the identity matrix of size g and A[B] := B'AB

g
for Ae R™ B e R™™ (n,m €N).
Additionally, we define

T, = Sp,(R) N GL,(Z),

the full Siegel modular group of genus g, and

L, o(N) ::{M: (é, g)erg

where C'=0 (mod N) means that every entry of C' is divisible by N.

C=0 (mod N)},

11



Remark 2.1 The group I'y is generated by the matrices ( % %g ) and
g

(]g g) (S = 5.

Remark 2.2 ') ((N) is a subgroup of Iy of finite index.

The set of positive definite g x g matrices with entries from R will be denoted by
P

g
Definition 2.3 A matriz Y € P, is called Minkowski-reduced if the following
conditions are satisfied:

(i) Y[h] >Yl[er] Vh=(hi,...,h)t € Z9Y with (hy,...,hy) =1,1<k<g,
(1) efYei1 20, 1<i<yg,

where e; denotes the i-th unit vector.

Lemma 2.4 For allY € P, there exists a unimodular matriz U € GLy(Z) such
that Y[U] is Minkowski-reduced.

Let us denote by
H, :={Z =X +1iY € Sym,(C)|Y > 0}

the Siegel upper half space of degree g (¢ € N), where Y > 0 means that Y €P,.
For H; we also use the abbreviation H.

Definition 2.5 An element Z € H,, is called Siegel-reduced if the following cond-
tions are satisfied:

1. |det(CZ + D)| > 1 for all matrices M = ( é g ) ely,

2. Y =Im(Z) is Minkowski-reduced,
3. X =Re(Z) is reduced modulo 1.

We will abbreviate the set of all Siegel-reduced matrices by .

Lemma 2.6 For every element Z € H, there exists a matriz M € I'y such that
M o Z is Siegel-reduced.

Remark 2.7 If g =1, then the set of all Siegel-reduces matrices is given by
1 J 9
ze H —nggé,x +y°>17,

that is the classical fundamental domain of the operation for SLy(Z) . In partic-
ular we have y > ‘/75

12



In the following let us abbreviate
mg_1(T) = min{T[U]|;-1|U € GL,(Z)}, (2.1)

where T'[U],—1 denotes the (g — 1) x (¢ — 1) minor of T[U]. Then from reduction
theory follows

Remark 2.8 We have
my1(T) <, (det T)'=75,
where the constant implied in <, only depends on g.

Remark 2.9 The group Sp,(R) acts on H,, in the usual way by

MoZ :=(AZ+ B)(CZ+ D)™,

A B
whereM:<C D)'

Definition 2.10 Let f: Hy — C. Then we define for k € Z

flxM = det(CZ + D) ™" f(Mo Z) (VM = ( é g ) € Spy(R), Z € Hg) .
Let I C T’y be a subgroup of I'y of finite index.

A function f: Hy — C is called a Siegel cusp form of weight k and degree g with
respect to I if the following conditions are satisfied:

(i) f is holomorphic,

(i) fLM(Z) = [(Z) (VM €T, Z € H,),

(iii) for all M € T, there exists a positive integer | such that the function f|,M
has a Fourier expansion of the form

fleM(Z) = a(T)e T 02,

7>0

where the summation extends over all positive definite symmetric half-integral
g X g-matrices.

Let us denote by Si(I") the vector space of Siegel cusp forms with respect to I'. If
g=1and ' =T((N), then we also use the abbreviation Sk(N) := Sp(T'o(N)).

Remark 2.11 (i) In Definition 2.10 it is sufficient to claim condition (iii) for
a set of representatives of '\I'.

(11) If F'is a Siegel cusp form with respect to I'y or 'y o(N), then F' has a Fourier
eTpansion

F(Z) _ Z a(T)eQm tr(TZ)’

T>0

13



where the summation extends over all positive definite symmetric half-integral

g X g-matrices.
Morever: if F is a Siegel cusp form with respect to I'yo(N), then Fliyy (v € T'y)
has a Fourier expansion

F(Z) = Za(T)e¥ tr(r2),
>0

where the summation extends over all positive definite symmetric half-integral
g X g-matrices.

t
Remark 2.12 Let f € Si(I') and let U € GL,(Z) with ( [(]) Uo,l ) el.
Then
a(T[U]) = (det U)*a(T).
Lemma 2.13 If f € Sp(I), then the function
WZ) = [f(Z)|(det Y)*/2,

where Y =Im(Z), is invariant under the action of I' and has a mazimum in H,.
If Z € Fy, then
h(Z)| <p e 2=,

where y; = Ye;] (1 < i < g), where a is a constant only depending on h, and
where the constant implied in < also only depends on h.

Definition 2.14 For f,g € Si(I') we define

1 — k
< 9>= g [ 12)-602) - e vy a, (2.2

where I is a fundamental domain of the action of I' on Hy, where
dV, = (det Y)~WtDdXdY is the symplectic volume element, and where we have
written Z as Z = X +1iY.

Remark 2.15 1. The fundamental domain of the group I' has a finite sym-

plectic volume, 1i.e.,
/dVg < 0.
F

2. The integral in (2.2) is absolutely convergent and independent of the choice
of the fundamental domain.

3. < -+ > defines a scalar product on Si(I'), the so-called Petersson scalar
product.

14



4. One can also form < f,g > for arbitrary complex-valued functions f and g
that are defined on Hy, and that are invariant under the slash operation of
I, if the integral is absolutely convergent with respect to one fundamental
domain (and therefore with respect to all fundamental domains).

5. If we want to emphasize with respect to which subgroup I' of 'y we consider
the scalar product, we also write < -,- >p instead of < -, >.

Next we want to give the definition of a Jacobi cusp form. Therefore we recall
what the Jacobi-group is and how it acts.

Definition 2.16 Let l,n € N and let us abbreviate

Fi{n = Fl X (Z(nl) % Z(n,l)) :
Fi],n,0<N> = Flp(N) X (Z(TL,Z) X Z(n,l)) .

Then T'{,, acts on H;xC"™Y) in the usual way by

(( é g ) (A, u)) o(r,2) == (AT + B)(CT+ D)™, (z + At + pu)(CT + D))

Let k be an integer, m be a positive definite symmetric half-integral g X g matriz.

Moreover let v = (( é, lB; ) ,(A,u)) € Fin, and ¢ : HyxC™) — C. Then we

define the following action

e (r2) = de(Cr DI (tr (O + D) o+ 3+
+m7[X] + 2mAz")) - ¢(vy o (7, 2)),

where
e(z) = e*™* (Vz € R).

Remark 2.17 Later we will only need the case (I,n) = (1,9 — 1) and (I,n) =
(2,1).

Now we can give the definition of a Jacobi cusp form.

Definition 2.18 Let m be a positive definite symmetric half-integral g x g matriz,
and let T' be a subgroup of F;{n of finite index. A function ¢ : HyxC™) — C
1s called a Jacobi cusp form of weight k and index m with respect to I, if the
following conditions are satisfied:

(i) ¢ is holomorphic,

(11) Olemy(T,2) = (T, 2) (Vy €T, (r,2) € Hy x CW),

15



(iii) for all y € I}, there exists a positive integer M such that the function ¢|ymy
has a Fourier expansion of the form

emi(r )= Y cln,r)e (%tr (n7) + tr (7’2)) |

nezh)
TGZ(lvn)
B >m—1[rt]

Let us denote by Ji'w ' (T7,) and Ji (T, o(N)) the vector spaces of Jacobi cusp
forms with respect to F;{n and F;{mO(N), respectively. If there is no room for

confusion we merely write Ji " and J.'wF (N), respectively.

Remark 2.19 Let T be a real-valued positive definite symmetric g X g matriz.
Then we can write T' in the form

G- ) )
= (6 mowy ) (0 5]

where n € Py, v € CE" 0 and m € P,_;. This decomposition is called Jacobi
decomposition.

From this decomposition one can directly see that the following conditions are
equivalent:

1. T >0,
2. n—m7rt] >0, andm >0,
3. n>0, andm—n"'[r']>0.

One can embed the Jacobi group into the Siegel modular group, i.e., we have the
following

Remark 2.20 For v = (< é IB; > ,()\,u)) eIy we define
A0 B f
o A E pu 0 .
' cC 0 D —X |’
0O 0 0 FE

—1
where (N, i) := (X, p) ( é f) ) . Then ~' is an element of U'jy,. If addi-

tionally v € T, o(N), then v' € T (N). Let us denote by (T7,)! the set of all
these 1.

16



Remark 2.21 The map v — ~' is not a group morphism. If one substitutes the
Jacobi group by the Heisenberg group, then one obtains a group morphism, but
this property is not needed in our work.

The following remark shows why Jacobi cusp forms play such an important role
for deriving estimates of Fourier coefficients of Siegel cusp forms.

Remark 2.22 1. Let F € Si(I'), I' e {T',,['yo(N)}, n,l € N withn+1=g.

t
Let us decompose 7 = Z 72_, €H, (r € Hy, 2 € C™Y, and 7 € H,).

Then the Fourier expansion of F' can be written in the form

F(Z) _ Z ¢m(7_7 Z)627ri tr(mT’)7 (23)

m>0

were the summation extends over all positive definite symmetric half-integral
n X n matrices. Then the coefficients ¢, (T, z) are Jacobi cusp forms with
respect to T}, if T = Ty and with respect to T'}, ((N) if T = Tyo(N). The
developement in (2.3) is called Fourier Jacobi developement.

2. If M €T, F e Si(Tyo(N)), then F|,M has a Fourier expansion

FM(Z) =) dm(r, 2)em 7T,

m>0

were the summation extends over all positive definite symmetric half-integral
n x n matrices. The coefficients ¢, (T, z) have a Fourier expansion of the
form

b2y = 3 e (% tr(n) + tr(rz)).

nGZ(l’Z)
rezln)
40 > m =1t

Proof. Remark 2.22 follows directly from Remark 2.20 applying the transforma-
t

tion law of F', and using that F]kM< 72- 7Z_, ) has period 1 in z and 7/, and

period NNV in 7.

Lemma 2.23 If ¢ is a Jacobi cusp form with respect to I', where I is a subgroup
of I‘f,n of finite index, then the funtion

h(T, Z) = ‘¢(7" Z)’ . (det ’U)k/2 . e*2ﬂ't7‘(mv71[y])7
where v =Im(7) and y =Im(z), is invariant under the action of T and has a

mazimum in H; x H®D,
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Definition 2.24 For Jacobi cusp forms ¢ and v with respect to I', where I" is a
subgroup of Fi],n of finite index, we define

1

< P, >= [Fz’n—F] /F o(1,2) ¥(7, 2) (detv)* exp (—4rtr (mv~'[y])) aV;/, (2.4)

where dV,;) = (det v) ™" dudvdxdy denotes the invariant volume element of the
Jacobi group, where we have written T = u+1v, z = x + iy, and where F denotes
a fundamental domain of the action of I' on H; X (C("’l) X (C(”’l)).

Remark 2.25 1. As a fundamental domain for the action of I'x (Z(”’l) X Z(”’l))

on HyxC™ | where T is a subgroup of I'; of finite index, we can choose the
set

{(r,2) € H; x cmb |7' €EFr,0<z,<1(1<v<g),0< (yo ), <1
(1 S v, S g>}/{<7-72) = (7—7 _Z)}v
where we have written 7 and z as T = u + v and z = x + 1y, respectively,

where x,, denotes the v-th component of x, and where (yv='),, denotes the

(v, u)-th entry of the matriz yv='. Moreover Fr denotes a fundamental

domain of the action of I' on Hi.

2. The fundamental domain of the group I', where I is a subgroup of Fz{n of
finite index, has a finite volume, i.e.,

/an" < o0.
F

3. The integral in (2.4) is absolutely convergent and independent of the choice
of the fundamental domain.

2.2 Poincaré series

Let us recall the following formal

Definition 2.26 Letn € Z,r € Z("9 | and let m be a positive definite symmetric
half-integral g X g matriz such that 4n > m=[r']. Then we define a Poincaré
series of exponential type by

Pominn)(1:2) = Y @ lem(7,2) (r € H, z € C¥Y),
7€(Ty) N\
where
€™ (1, 2) 1= e(nT + r2) = 27T (r € H,z € ClY),
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and where

ol ={((5 ) ) 0m)

1s the stabilizer group of the function e™".

nel, e Z(g’l)}

Then we have the following

Lemma 2.27 The series Py pyn (T, 2) is absolutely and locally uniformly con-
vergent on H x C9Y if k> g+ 2.
For k < g+ 2 the series is not absolutely convergent at the point (1,0).

Remark 2.28 The first part of Lemma 2.27 is already stated in [BK], but no
proof is given.

Proof. For clarity we subdivide the proof into two steps.

I. In the first step we show that in the case k > g+ 2 the series is absolutely and
locally uniformly convergent on H x C@1 if it is absolutely convergent at the
point (z,0).

Therefore we let K be an arbitrary compact subset of H x C@Y and write 7 and
zas T = u+iv and z = x + 1y, respectively. We introduce for (7,z) € K an
auxiliary variable 7/ = ' + v’ € H,, such that

T 2t
Z(T’Zﬂ_/) = ( 5 7_/ ) € Hg+1.

From the Jacobi decomposition (cf. Remark 2.19) it follows that we can choose
for example 7" = u'4iv’ with v’ =i <y7yt + eEg), where € > 0 is chosen arbitrarily.

Moreover for (7, z) = (i,0) we can choose 7" € Hl, arbitrarily. Now let K" C H,
be a compact set that contains Z, . ) and Z; o for all elements (7, z) from K
(where we have chosen one 7’ for every element (7, 2)).

As described in Remark 2.20, if v = (( LCZ b ) ,(A,u)) is an element of I'/

d Ly’
a 0 b [
: ANE u 0 .
then the matrix 7! := c 0 4 —i |Bsan element of I'gy;.
0 0 0 FE
Put T := ( ff 7751 ) > 0 and e7(2) := ™19 (V7 € Hypy).
2

Then one can easily show that Vv € I'{ . (7,2) € H x C@! we have

(€ lem) (7, 2) = €727 ) (T iy ) (Zir ).
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Thus

|en,r (7_7 Z)| _ |CT + dl—k . 627rtr (mo') e—27rtr (TIm(’yTOZ(T’ZJ_/))).

Em”Y
It is known that there exists a positive constant ¢; such that
Im(MoZ)<e¢ -Im(MoZ) (YMeT,,VZ, ZcK)

(cf. [Ch]). Here A < B for real quadratic matrices means that the matrix B — A
is positive semi-definite (in particular we have tr(A) <tr(B)). Thus

Im(y' o Zior) < er-Im(y' 0 Zrze)  (Vy €T, (1,2) € K),

where the constant implied in <k only depends on K. Clearly we may choose
c € N.
Moreover there exists a constant € > 0 such that

ler +d|* > e(c®* + d*) Ve, d € Z with (¢,d) =1,
VreHst. (1,2) € K,

where the constant € only depends on K (cf. [FB] p. 313).
Therefore we get, using that tr(AB) > 0if A, B > 0,

|€n’r|k,m/7(7—7 Z>| <k (02 + d2)—k/2 . 6*27T01tr (TIm(’yToZ(i’O’T/))) . 6271't:1"((:1ww’)

k,clmf}/(i’ 0)| )

__ | ,c1n,er
= [e™ ]

where the constant implied in <x only depends on K.

Thus the claim in I. follows.

II. In the second step we want to show the absolute convergence at the point
(7,0) in the case k > g + 2. Therefore let us take as a set of representatives of

(T{ )oc\I'{ , the elements
a b
((&0) @), 25

where ¢,d € Z with (c,d) = 1, A € Z¥Y and where for each pair (c,d) we have
chosen a,b € Z such that ad — bc = 1.

Then the series of the absolute values of terms of the Poincaré series at the point
(4,0) is given by

S (PP @ Y e, (2.6)
(c,d)=1 AeZ(9:1)
Completing the square, we get that the value of the inner sum in (2.6) equals

T —1f,.t 27 1, —1,.t
e AN S (2.7)

xez(g9:1)
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Since m is a positive definite matrix there exists a positive constant a such that
all; <m. Thus (2.6) can be estimated against a constant times

77(m71 [rt]—4n)

Z (02 + dQ)_k/2 e 2Atd?) . ﬁ Z e_%a(’\ﬁ_(%milrt)i)i (28)

(c,d)=1 i=1 \EZ

where (3m~'r")  denotes the i—th entry of the vector m~'r'.

Next we want to estimate the inner sums in (2.8). Therefore we show that for
[ € R, p € R we have

Zefl()\+”)2 <<# (1 4 171/2) ’ (29)
NEZ

where the constant implied in <, only depends on p modulo Z. First the fol-
lowing estimate holds:

S et <142y eV (2.10)
AEZ AeN

Indeed: inequality (2.10) is clear for u € Z, because in this case A+ p runs through
Z if X does. If p ¢ 7Z, inequality (2.10) follows directly from the estimates

_()\—l-,u)2<{_()‘+[ﬂ]+1)2 for A < —[u] — 1
BRIk for A > — [y,

where [¢] denotes the GauBl bracket.
Since e > 0 and this function is decreasing it is known from elementary
analysis that we can compare the sum with an integral which leads to the estimate

2 > 2
E e~ g/ e dr.
AEN 0

Thus we get the desired estimate if we use

& 2 1 o 2 1
/ e_lzdx:—~/ e_zdx:—~\/z.
0 2\/7 —0o0 2

Now we can use (2.9) with [ = 7% and pu = (3m '), in (2.8). Due to

c? + d? > 1 we can estimate the sum in (2.8) against a constant times

ﬂ(m_l['rt]74n)

Z (02+d2)(g*k)/2_ew_ (2.11)
(e,d)=1

In view of 4n — m~![r!] > 0, (2.11) can be estimated against a constant times

Z (02+d2)(gfk)/2.

(e,d)=1
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Therefore the series (2.6) converges if k > g+ 2 because it is well known that the
series 3. g1 (¢ + d?)~!, where [ € R*, is convergent if (and only if) [ > 1.

The divergence at the point (7,0) in the case k < g + 2 can be shown simi-
larly if we use the existence of a constant 3 such that m < BE, and use that

¢ 5 (n=m ) < @_2<c21d2>(4"_m71[rt}), since ¢ +d* > 1 and 4n —m~'rf] > 0. O

From now on to the end of Subsection 2.2 we assume that £ > g + 2. We
have the following

Theorem 2.29 The function Py mi(nr) is an element of J.P.
It has the Fourier expansion

Pk,m;(n,r) (7-7 Z) = Z g,::m;(nm) (TL/, T‘,)B(TLIT —+ 7"/2)7
T/g;(eEQ)
4n’>m*1['r’t]

where & = (£1)*, where

gl:ct,m;(n,r) (TL/, Tl) = gk:,m;(n,r) (n/a T,) + (_]-)kgk,m;(n,r) (n/a _T,)a

where

i) (0, 77) = O (n, 0 7") + ok . (det(?m))_l/2 . (D'/D)k/2_g/4_1/2

( 27V DD ) .

X Z 626(7"’m_lrt) . Hmp(n, r, n', T/) . Jk—g/Z—l W

c>1

S

r ror
andwhereD::—detQ( g 2 ),D’ ::—det2< :I//t 2 )
2 M z M

Furthermore,
1 if D'=D,r"=r (modZ19 .2m)
0 otherwise

Om(nyrymn/ v’ = {

and
Hppo(nyron' r') = Z e.((mlx] + rz +n)y+n'y +r'z),

z(c)
y(e)*

where x and y Tun over a complete set of representatives for Z9Y /cZ9Y) and
(Z/cZ)*, respectively, where i denotes an inverse of y (mod c), and where Jy,_q/2—1
is the Bessel function of order k — g/2 — 1.

Proof. For a proof, cf. [BK]. O
Remark 2.30 We have used a notation slightly different from the one in [BK].
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Moreover we have

Theorem 2.31 (Petersson coefficient formula)
One has

<¢7 Pk,m;(n,r)> = )\k,m,D : Cd)(n, T') (VQb S JE?:?), (212)
where cg(n,r) denotes the (n,r)-th Fourier coefficient of ¢ and

Akym,D = 29~ Dk=g/2=1)=g. (k—g/2— 1)-7r*k+9/2+1.(det m)k*(9+3)/2.|D’fk+g/2+1.

Proof. For a proof, cf. [BK]. O

From Theorem 2.31 we directly obtain

Corollary 2.32 As a unitary vector space with respect to the Petersson scalar

product, J,'F is generated by the Poincaré series

{Pk,m;(n,r) | n e Z, r e Z(l’g); 4n > m_l[rt]} ]
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Chapter 3

Estimates for Fourier coefficients
of Siegel cusp forms

3.1 The full Siegel modular group

Our aim in this chapter is to estimate the Fourier coefficients of Siegel cusp forms
of weight kK = g+ 1. For this we construct certain Poincaré series as a generating
system of /7Y’ . Remember that the case & > g+ 2 has been treated in Chapter
2.

3.1.1 Poincaré series of small weight

In Lemma 2.27 we have seen that P .(n) (1, z) is not absolutely convergent at
the point (7,0) if £ < g+ 2. Thus the Poincaré series of weight k = g+ 2 has to be
defined in a different way. We use the so-called Hecke trick (cf. [He]) and multiply
€™ k.m7 (7, 2) in Definition 2.26 with a factor depending on a complex variable s
such that the new series is absolutely convergent for Re(s) sufficiently large (we
will be more precise in Lemma 3.3) and can thus be analytically continued to
s = 0. In his work Hecke uses this trick in order to define Eisenstein series of
weight 1 and 2 in real quadratic fields.

In our case one may think of choosing the factor |cr + d|~2*. However, later on
we need scalar products of the Poincaré series with Jacobi cusp forms. Therefore
it is better to adapt this factor such that the new series is again invariant under
the slash operation of the Jacobi group. In the following, we write 7 = u + v.

Definition 3.1 Let n € Z,r € Z19), and m be a positive definite symmetric
half-integral g x g matriz such that 4n > m~[r], s € C. Then we define a
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formal Poincaré series of exponential type by

v S
Proming) (T, 2) = Z (—) " emy(T,2)  ((1,2) € H x C@Y),

cr +dJ?
reteiparg, T
where (PlJ,g)oo and e™" are given in Definition 2.26.
Remark 3.2 The use of Hecke’s trick for g =1 is also suggested in [GKZ].

Lemma 3.3 The series Py nr),s(T, 2) ts absolutely and locally uniformly con-
vergent on HxCWV if o := Re(s) > (g — k + 2).
In this case it satisfies the transformation law

Pk,m;(n,r)7s|k,m7<7-v Z) = Pk’,m;(n,r),s(7—7 Z) (VV € F{,g ) (Ta Z) € H x C(%l))-

Proof. The proof of the absolute and local uniform convergence goes exactly as
the proof of Lemma 2.27. The transformation law follows directly from the ab-
solute convergence. ]

Now our aim is to compute the Fourier expansion of the Poincaré series and
show that the Fourier series is even absolutely and locally uniformly convergent
in s for 0 > 3 (g/2 — k + 2); for these values the series is holomorphic in s and
can be taken as a definition for Py :(nr),s- In particular the series is holomorphic
at s =0 for k > g/2 + 2.

Theorem 3.4 Suppose that o > %(g — k+2). Then the Poincaré series has the
Fourier expansion

Pk’m;(n’r)’s (T7 Z) - Z gl::,m;(n,r);s,v(nla 7'/>6(an + 7"’2’)7

n' €z
T/eZ(l,g)

where £ = (£1)*, where

g]?;t,m;(nyr);&v (nlv T/) = gk’,m;(n,r);s,v (TL/, ’f’/) + (_1>kgk,m;(n,r);s,v(n,7 _T/>'
Here
gk,m;(n,r);s,v(n,> Tl) = Us'am(na r, nla r/)+z Hm,c(na r, n/7 r/)'(pk,m,c,v (77//, rla 8)'07’67285

c>1

with D, D', §,,(n,r,n',r") and Hy, o(n,r,n',7") defined as in Theorem 2.29. More-
over

Bpemcn(n, 77, 8) i= (det(2m)) 12 . i79/2 . y9/27k=st1 o) (¢/m~1rh)

x/oo (uti)927 5 (u—i)~*-e ((2 det(2m))~! <D’v(u +14) + L))) du.

- ve2(u+1i
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Proof. To compute the Fourier expansion of P .(n.,s(7,2) We proceed as in
[BK]. Thus, taking the set of representatives given in (2.5), we obtain

c
Py s(T:2) = D> (er+d) ™ - |er+d 7 0" e (—m[Z]
S ct +d
rez(9:1)
art +b at +b 1 at +b
A 2\ A )
m[]cr+d+ mzCT+d+nCT+d TZCT—i-d—i_r c7'+d)

We now split the sum into the terms with ¢ = 0 and the terms with ¢ # 0.
If c =0, then a = d = +1. Thus these terms give the contribution

v° Z e((m[N 47X 4+ n)7)[e((r + 2X'm)2) + (—=1)*e((—r — 2X\'m)2)]

AEZ(9:1)
=¢° Z (6 (n,ryn’,r') - e(n'T +1'2) + (= 1)* 0 (n,r,n/, —1")e(n'T — 1'2)) .
T/;l;(elzyg)

an/>m—1[r/t]

The terms for ¢ < 0 are obtained from those with ¢ > 0 by multiplying with
(—1)* and replacing z by —z, thus it sufficies to consider the terms with ¢ > 0.

Using the identities
ar+b a 1

cr+d ¢ cler+d)

L z+aT+b)\: ! 2—1)\ +g)\,
cT +d cT+d cT+d c c

at +b 2 c B c
et + dm[)\] * mlz] = R {

we get, replacing d by d + ac and A by A + (¢, with d running (mod ¢)*, A
(mod ¢), a € Z, B € Z9Y, that the terms for ¢ > 0 give the contribution

Z_k 28260 +T>\+n)_) fkmcnr 5<T+d/62—)\/0)

c>0 d(c)*

A
ct +d m cT +d

A(e)
where
Frme(una(T,2) = 0" Z (T+a) ™ r+al ™ ¢ <_T %1— am[z — 0
oz
psez(g:1)
_02<T”+ a) + e i a)r(Z - ﬁ)) (7 €H,zeClY).
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The function Fi . c;(nr),s(7, 2) has period 1 in 7 and z. Therefore it has a Fourier
expansion of the form

«/Tk,m,c;(n,r),s (7-7 Z) = Z qu:,m,c,v (TL/, ,,,,/’ S)@(TLIU + ,,,,/Z)’

n! €z
T/gz(l,g)

where

00
(I)k,m,c,v(nlar/7 S) — . 6—27rvn’ . / (U + iU)_k_S . (U _ iU)_s . e—27rin’(u+iv)
—00

ico+00 ico+00 1 n 1
/ / el — —m|z] — — + —rz—1'2 | dudz
oS \r ™ B T )
(3.1)

(co € R). Here we have used the Poisson summation formula, which can be
applied since for example the following three conditions are satisfied:

(1) Feym,c;(n,r),s(T, 2) is holomorphic in z.

(ii) The series

S (rra) vl e (—omle = - o e 0)

c— T+« AT+a) or+a
sez(g:1)

is uniformly convergent in u. This is a consequence of the compact convergence
in 7 already shown before (cf. Lemma 2.27), because we can choose u between 0
and 1 due to the periodicity 1 as a function of u.

(iii) The Fourier series

Z Ppmcn(n, 7', s)e(n'u+1'2)
n'ez
' ez(1,9)
is absolutely convergent (which will be shown in Theorem 3.10).
Thus we get, using the computations of the inner integral of [BK] for (3.1) and

substituting u +— %,
v

Bpmcn(n, 7, 5) = (det(2m)) V2 479/ 927 k=41 o) (P'mpt)

/_oo ()92 (= i) e ((2 det(2m))~! (D’v(u +1i) + %)) du,

[e.9]

which shows the Theorem. [l

In order to show that the Fourier series is absolutely and locally uniformly con-
vergent for o > 1 (9/2 — k + 2), the main difficulty to overcome is to estimate

the integrals @ ,.c0(n, ', s). For this we need the following
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Lemma 3.5 Let ¢y,co,c3 € R, c3 >0 . Then the integral

filer, ea,¢3) = / (u4+1) - (u—1i)° e (—62u _ ) du

oo U+

[e.e]

18 locally uniformly convergent in s for o > %(1 —¢1) and thus defines a holomor-
phic function in s.

Let K be an arbitrary compact set of the domain o > %(1 —c¢1). Then for all
s € K we have the estimates

g2reavt if co <0
|fs<61, Co, Cg)| <<K,Cl 6_27T02U1 . 6% Zf Co > 0 , (32)
1 Zf Cy = 0

where the constant implied in <k ., only depends on K and ci, and where vy and
A are positive constants.

Proof. For the proof let us abbreviate the integrand with g(u, s) and consider the
three cases co =0, ¢ < 0, and ¢y > 0.
Let us start with the simplest case co = 0. In view of ¢3 > 0 we obtain the trivial
estimate
oo 2mce o0
| fs(c1,0,¢3)] < / (02 +1)"(@/240) . 7RI gy < 2/ (u? + 1)~ (@/2+9) gy,
—00 0
If s € K, then the integral has a convergent majorant independent of s. Thus
assertion (3.2) follows for ¢, = 0.

In the case co < 0 we want to consider the following path of integration:

Y7 V2

1Co

T Vi Y3l
(_
Vsl o Tm

28



with

( B+ it 0<t<wvy, B>0,v3>1 forj=1
(ivg 4+ t)~1 A<t<B 1<A<B forj=2
(A+at)™! v <t<wv, 0O0<v <1 for j =3

vi(t) =4 (t+iv)t —A<t<A forj=4 |
—A+it v <t < vy for =5
(t+ivy)™t —B<t<-A for j =6
| (—B+it)™! 0<t<w for j =7

where A, B, vy, and vy are positive constants with v; < 1 < vy, A. Applying the
residue theorem we find

/_B glu, s)du = — 2: /%_ g(u, s) du. (3.3)

B

First we want to estimate the integrals along the paths v; and ;. Since ¢; < 0 <
c3, the values of both integrals are less or equal than

2meg (t+1)

vz c1ro a TCeot—
/ (B2 (1+6)%) "2 - (B4 (1 — )2 F - " 500i? d
0

7cl+o'

< /UQ(B2 402 (B (1= 1)) % dt.

If 0 > —%, then this integral tends to 0 if B tends to infinity.
Next we estimate the integrals along the paths v and 4. They are less or equal
than

’ a7 foid _ 2mc3(1+4wvg)
/ (t2 =+ (1 + ’l}2)2)— 1;_ . (t2 + (1 . U2>2)_§ . 6271’02’02 t2+?’u2+1§2 dt
A

Due to ¢y < 0 this integral tends to 0 for vy — oc.
Therefore we obtain from (3.3), letting B and v, both tend to infinity,

/_Zgw,s)du:i/igw,s)du,

where the paths 3; are given as
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1B 1 BT

ic1

2

(—A+it)™1 v <t<oo forj=1
Bi=< ttiv(=v;") —A<t<A forj=2
A+t v <t<oo forj=3

Now we estimate the integrals along the paths 3; and fs.
Their values are less or equal than

o0 c1do - et 2Tea(t+1)
/ (A2 4+ (14 )2)" 727 (A2 4 (1= 4)2)~F . ™ a5 g,

U1

Making the substitution ¢ — ¢ + vy we get, using cs < 0 < c¢3, that the values of
the integrals are less or equal than

cl1to

[e.e]
62“2“1-/ (A2 + (1 +t+v)%) 2
0

(A2 + (1 —t—vy)?)" 2 dt.

If s € K, then the integral has a convergent majorant independent of s.
Finally we estimate the integral along the path (3. In view of 0 < c3, we infer
that the value of this integral is less or equal than

{ + I z 27 —M
] v 12 . 2 v 2\ — X C2V1 t22 :Z) 11 1)1
( ( 1) ) ( ( ) ) 2 e +(v1+1)2

A
< gmevn / 2+ (L+v)2)~ " (24 (1—v)?) 5 dt.
—A

If again s € K, then the integral has a convergent majorant independent of s.
Thus (3.2) follows for ¢, < 0.

In the case ¢ > 0 we reflect the paths from the case ¢ < 0 along the real
line. The notations are kept the same, now taken for the new paths.

The difference we have to observe is that the exponential factor including the
term with c3 now cannot be estimated against 1. This does not influence the
estimates of the integrals along the paths v, 72,76, and 77, because in this case
the exponential factor including the term with c3 tends to 1 if B and vy both
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tend to infinity.

Due to v; < 1, the exponential factor including c3 in the integral along the path
(2 is negative, and can thus be estimated against 1.

Therefore we are left with the estimates of the integrals along the paths 3; and
(3. These are both less or equal than

0o o to o —Omeotd 2Teat=1)
J e e Y

v1

To estimate the integrand we look for the maximum of the function
2meg(t—1)

g(t) := e4*+t=1? in the interval vy, 00). We have
Gl Uik VO =
(A2 1 (t—1)2)2 ¢ ’

which is 0 if and only if A*> = (¢ — 1)%. Due to A > 1, therefore the only solution
of ¢’(t) = 0 in the interval [vy, 00) is at the point ¢ = A+ 1, which is directly seen

g'(t) = 2mcs -

2mcy

to be a maximum of the function g. In this case g(t) has the value e a".
2meg (t—1)

Thus we obtain, using that lim, .., e4*+¢-D? = 1, that the expression in (3.4) is
less or equal than

6733 / (A2 + (1 . t)Q),Clgr" . (AQ + (1 +t)2)—% .6727r02t dt.

U1

Therefore, applying the substitution ¢ — ¢+ vy, and using that ¢, > 0, we obtain
that the integrals along the paths (3, and (35 are both less or equal than

e e / (A4 (1=t —0)?) " (A + (Lt +0)) Fdt.

0
If s € K, then the integral has a convergent majorant independent of s. Thus
assertion (3.2) also follows for c; > 0.

Therefore the holomorphicity follows in all three cases as a consequence of the
independence of s. ]

Remark 3.6 The above described path of integration is suggested from Hecke’s
work. Indeed: he cuts the complex plane starting from i up to infinity and shifts
the path of integration such that the cut is surrounded (cf. [He]).

Corollary 3.7 The coefficients @y, .o(n', 7', 5), that are defined in Theorem 3.4,
are holomorphic functions in s with o > 5 (14 g/2 — k).

In particular they are holomorphic at s =0 if k > g/2+ 1.

If K is a compact subset of the domain o > %(1 + 9 — k) with s € K, then they
satisfy the following estimate

/
! 2-k—o+1 |, Z2 . detizny (1+sign(D")v
(I)k,m,c,v(n , T ,S) <LK Ug/ o+l oav . €d5t(2m)( gn(D") 1)7
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where v1 and A are positive constants, and where the constant implied in <y
only depends on K.

Proof. The proof follows directly from Theorem 3.4 and Lemma 3.5 with
/ —nD
c=k—g/2,c= ﬁi;m), and c3 = m > 0, using that 1 < e24c?det@m)v =

mc3 —nD
ea <eav. O

The next step is to estimate the Kloosterman sums occuring in the Forier co-
efficients of the Poincaré series (cf. Theorem 3.4). Therefore we require some
well known formulas for Gaufl sums.

Lemma 3.8 Let a,b e Z, v € Ny, and let p be a prime number.
Define
G(a,b,p") :== Z ey (ax® + br).
z(p¥)

Let a := v,(a), where a = p*d/, (a/,p) = 1.

1. For a > v we have

Y ifb=0 (mod p¥)

otherwise

G(a,b,p") = { g
2. For0<a<vandb#0 (mod p*) we have
G(a,b,p") = 0.

3. Ifp#2 and b=0 (mod p*), 0 < a < v, we have

a+v v 4_

pllfa

where 1% is an inverse of % (mod p

y+a)
p(l
asx =1 or3 (mod 4).

, and where €(x) = 1 ori according

4. The sum G(a,b,2") is equal to 2" if v —a =1 and b # 0 (mod 2), has the
value ot 2
vt+a —yTa T
2 * ) 1 ' S * 20é * vt+aoa -
> - (i41) ( /2 ) e(a/2%) - equ+ ( 5a 4)

ifv—a>1andb=0 (mod 2°™), and is 0 otherwise. Here a/2% is an
inverse of a/2* (mod p”Tot?).
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Proof. The claim of Lemma 3.8 and its proof can be found in [Br|. However
there is a misprint in the case p =2 and v — a > 1. In [Br] it is stated that the
formula is only valid if ¥ — « is an even integer and otherwise the sum G(a, b, 2")
has value 0. His misprint is based on a wrong citation of [Lal. O

Lemma 3.9 Let H,, .(n,r,n',r") be defined as in Theorem 2.29. Then we have
| Hpp (1) K pamie /2T (3.5)
where the constant implied in <Kp ;. only depends on D, m and e.

Proof. Since both sides of inequality (3.5) are multiplicative in c¢ it is sufficient
to show that for all primes p and all v € N

piup(2det@mD)  (pryg/2+1 if p is odd

Y / / < .
‘Hﬂ%p (TL,T’, n,r )’ = { 25 . 2%.U2(2det(2m)D) . (21/)9/2-1—1 ifp —9 (3 6>

Counting the number of summands of H,, ,»(n,r,n’,7") we obtain
| Hop e (/")) < (7)1

Therefore (3.6) follows trivially if p” divides D. Thus we may assume p” t D.
Let U € GLy(Z /p"Z). Then

Hpppr(nyr,n/ 1"y = Zep UllUx) +rU - Uz +n)j+n'y+r'U-Ux)
Sy
= Zep z] +rUz +n)y+n'y +1r'Ux),
sy

where U is an inverse of U (mod c). For the last identity we used that Uz runs
(mod Z9Y - ¢) if x does. Thus the left-hand side of (3.6) remains unchanged if we
replace T by T' {( (1) (0] )} (which is the same as changing m, r, and ' into m[U],
rU, and r'U, respectively). Moreover det(2m) is replaced by (det U)? - det(2m)
and Dy by (det U)? - Dy. Thus v,(4det(2m) - Dy) is not changed, because det U
and p are coprime.

Let us now distinguish the two cases p # 2 and p = 2.

Since a non-degenerate integral quadratic form over Z, is diagonisable over Z,
if p # 2 is a prime (cf. [Ca]) we may assume that m is a diagonal matrix with
diagonal elements my, ..., m,. Let p; == v,(m;) (1 <i < yg).

In case p; > v for at least one m; (1 < i < g) the claim follows trivially since in
this case we have the estimate

’Hmpl’ (n,'r, n’,r’)| < (pu)g/Q-‘rl . (pm)g/2 < pg/Q-Vp(det(Qm)) . <p1/)g/2+1.
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Thus we may assume u; < v (1 <i < g).
Using Lemma 3.8 we find

1/2 < pu(g/2+1) . péup(det(Zm)).

| Hyp v (12, 1, n',r’)| < pz/(g/2+1) . <p2§’:1ui>

Since in the case p = 2 a non-degenerate integral quadratic form over Z, is
equivalent to a sum of forms 2'ex?, 2lzy, 2!(2? + 2y + y?), where | € Z, and
e € {1,3,5,7} (cf. [Ca]) we may assume that the quadratic form corresponding
to m is a sum of forms of the above types. Let the first type occur g, the second
g2, and the third g3 times, i.e., g = g1 + 292 + 2g3. Then clearly

g1

i=1
Let
l:=maz{l;|1 <i< g1+ g2+ g3}
If ] > v—1, then we have

Y

|Hm,2u(n, r n',r')| § (2y)g+1 S (21/)9/2—1—1 . (2[+1)g/2 S 9. (2u)g/2+1 . 2%~y2(det(2m))

from which (3.6) follows directly. Therefore we may assume that [ < v — 1.
We now estimate the three types of sums that can occur. Therefore we write
r=(ri,...,ry) and 1’ = (r’l,...,r;).
Using Lemma 3.8 we directly see that the first type of sum
Z ex (25eya® + x (riy + 1)) (e, €{1,3,5,7})
z(2v)
has an absolute value that is less or equal than 24+,
From Lemma 3.8 it furthermore follows that the second type of sum

Z eg ((ris1¥ + riy1) Tis1) Z e (w7 (2" @ia§ + 1y +17))
zit1(2Y) zi(2Y)
has an absolute value that is less or equal than
2 > leav ((ripay + i) Tign)| < 2740,

zi41(2Y)
2li zi+1'g+(ri'y+7‘£)50(2”)

because the congruence 2"z, 14+ (r;g+7}) = 0 (mod 2") has at most I; solutions
(mod 2") since g is coprime to 2.
From Lemma 3.8 it moreover follows that the third type of sum

Z eo (2527, 15+ (risal + 7iyy) Tis1) Z e (25277 + (2521 y + 1y + rh) @)
zit1(2Y) zi(2Y)
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has an absolute value less or equal than

l+v €T
14— l;i—2q-,.2 i+1 — / — /
21T 2 E Eov (2 3yxi, . + 5 (2ri+1y +2r; — 1Y — rl)> )
z;4.1(2Y)
ri+7"’.y

Ii+1E*T;(2)

if r;+ri’ =0 (mod 2%) and is 0 otherwise. Next we replace z;,1 by 27,41 — ”;:gy

with the new z;;; running (mod 2"7'). Then we obtain, again using Lemma
3.8, that this sum is less or equal than

14ltv l:—26— r; + T;y ?
2 2 Z Cov Qli ?)y 2[)%‘.;,.1 — 211' +
)

xip1(2v 71

1 ) 4
3 (29Uz‘+1 T ) (2ripay) + 2riyy — iy — 7“2)) ‘

li+v

<25

D en (243927 + 2 ((ro + 1l4y) — 2(rg + 1)) | < 26

zi+1(2Y)
Thus we have the estimate

291 +92+93 1.
i=1 T,

|Hm72u (TL, r n/’ 7”,)| <2 (21/)9/2 29.9" < 29/2 . 29/2-u2(2det(2m)) . (2u)g/2—|-17

which proves the assertion. 0]

Now we can define the Poincaré series Py .(nr),s in the larger domain
o> %(g/ 2 4+ 2 — k) by just taking the Fourier expansion as a definition.

Theorem 3.10 Let g,fm,(n 7,).L(),v(n’,r’), Hyc(nyr,n' 1) and @p (' 17, s) be
defined as in Theorem 2.29 and in Theorem 3.4, respectively, where = = (£1)*.
Then the Fourier series

Pt = 3 G elalr 4772) (7)€ Hx C5)

n’' €
Tlez(l,g)

is absolutely and locally uniformly convergent in s and defines a holomorphic
function in s for o > +(g/2+ 2 — k). In particular the series Py m(nr)0(T, 2) is
absolutely convergent if k > g/2 + 2.

Let us define

g(l) (n/a T/) = Zch Hm,c(na r, nla TJ) : q)k,m,c,v(n/7 Tl) S) : CikiQs?

9O = g, )+ (—1)g O, ),
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Let k = g+ 2, (1,2) € F, where F is the standard fundamental domain for the
action of the Jacobi group on H x C9Y (cf. Remark 2.25), and suppose that s
varies i a compact set K such that 0 < o < 1. Then we have the estimate

Z g P! ) Fe(n't +1'2)| <x v,
n! €z
r'ez(1,9)

where the constant implied in <k 1s independent of T and z.

Proof. To show that the series is absolutely and locally uniformly convergent in
s, it is clearly sufficient to estimate the series

Z gD’ e(n't +1'2).
n/ €z
r ez(1,9)

First we want to estimate g(!)(n/,r").
Due to Corollary 3.7 and Lemma 3.9, there exist positive constants v;, A such
that

; , , , 77TD’U(1+sign(D/)v1) g/27k70'+1 —D g/2+1+€
| He(n,ryn' 1) - @pmen(n, 1, 5)| < e det(2m) v ceAv - C )

Using that ) ., ¢! converges for [ > 1 and taking € > 0 small enough, we find

Z C—k—2s . Hm,c(na r, TLI, T/) : (I)k,m,cm(n/? T/7 S)

c>0

77rD/v(l+sign(D/)v1)

< 6% . E Cg/2+1—k:—20+e e det(2m) . ,Ug/Q—k—a—‘rl
c>0
D —71-D’v(1+sign(D')v1)
< eAv -e det(2m) L p9/2—k—otl

Thus we obtain, using that D' = Idet(2m) - (—4n’ + m™'[r""]) (which follows
directly from the Jacobi decomposition, see Remark 2.19),

Z g(l)(n’, Me(n't +1'z)

n! €z
r’eZ(LQ)
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/
<K /Ug/2—k—g'+1 . 6% . z : e#gmv)(1+sign(D/)v1)727Tn/v727rr/y

n/ €z
rez(1,9)

— D’ D _
G WO (LY TR e b o 2ery

n' €z
T’ez(l,g)

<K 6% . vg/2—k—a+1 . E e—a'sign(D’)D’v—%ﬂ'm’l[r’t]v—Qﬂ'r’y

D’ez
T’ez(l,g)

< e% cp9/2mk—otl Z 6—%7rm*1[r’t]v—27rr’y (1 ) Z e—aD’v) :

r'€Z(1:9) D'>0

where a is a positive constant independent of D', v/, s, 7, and z.

Therefore the absolute and local uniform convergence in s follows because the first
sum is a special value of a Jacobi theta series and the second sum is a geometric
sum. This establishes the holomorphicity in the variable s.

If k=g¢g+2and (7,2) € F, then there exists a positive constant b, independent
of (7,z) such that

g g
Z e—%wm_l[r't]v—%rr’y < (Z e—br’2v+27r'r'v> < (Z e—br’2v>

T’EZ(LQ) r’€Ng r’'€Np
g
_prr2 3
< ( g et 2) < 1.
r’€Ng

Moreover, we have for (7,2) € F
’ —aD'\/3
S e Y
D'>0 D'>0
Thus we get the desired estimate using that v=7 < 1 for (7,2) € F, and under
the given conditions on o, and that eiv < 1. O

In the remainder of the section we restrict ourselves to the case k = g + 2.

Lemma 3.11 The function Pyiomn) (T, 2) = Pyromimr,o(T, 2) is an element
of Jgi2m-

Proof. The transformation law is clear since we have for all (7,z) € H x C¥Y

and for all v € I'{ |

Porommmlgramy(1,2) = Uhj(r)ﬁr Pyi2mimm),olgram(T, 2)
- Jli)%g_ Pg—i—?,m;(n,r),a (7—7 Z)

= Pk,m;(n,r) (T, Z)'
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The Fourier expansion of Py () is known per definition (cf. Theorem 3.10).
Thus it is left to show that the Fourier coefficients of P2 m.(nr)0(T, 2) are con-
stant functions of v = Im(7). Checking the definitions, it is therefore enough to
show that the integral

[ o TP ((2 det(2m)) " <D'T + 2)) dr (3.7)

2
V—00 Cc°T

is independent of v.
For D’ < 0 in (3.7) we make the substitution 7= £ - (D/D")? . s to obtain

v +ico or
: —9/2-2 — . (DD"*(s—s57Y))d :
o /v/m s exp <c ~det(@m) (DD")*(s — s )) s, (3.8)

where « is a constant independent of v, and where v’ depends on v. For
@ > 0,5 > 0 the functions ¢ +— (t/k)#=V/2. ], 1(2/kt) (¢t >0) and
s+ s7H.e "% (Re(s) > 0) are inverse to each other w.r.t. the Laplace transform

([AS] 29.3.80). Therefore we see, taking t = k = c~d62t?2m) - (D'D)/? and

= g/2+ 2, that the integral in (3.8) has the value

. 2
2711 - Jg/2+1 (W . (D/D)l/Q) ’

which is independent of v’ (and so of v).
If D" =0, then we can use the same Laplace tranform with ¢t = 0, k =

Thus we get that the value of (3.7) is zero.
If D" > 0, then in (3.7) we make the substitution 7 =

=D
c2-2det(2m) "

.. (=D/D")""*. 5 to obtain

:
c

v/ +ioco

i —g/2-2 | I 0% o VAY V2 -1
g s s exp (c-det(Qm) (=DD")*(s+s )) ds, (3.9)

where (3 is a constant independent of v, and where v" depends on v.

For > 0,k > 0 the functions t — (t/k)*"Y/2[, 1(2v/kt) (¢t > 0), where
I,1(z) (z € R) denotes the I-Bessel function of order y — 1, and s > s~#e"/*
(Re(s) > 0) are inverse to each other w. r. t. the Laplace transform (cf. [AS]
29.3.80). Therefore we get, taking t = k = —-— - (—=D'D)"? and pu = g/2 + 2,

c-det(2m)
that the integral in (3.9) has the value

2m 1
i I T (—D'D)?
e lg/2 (det(Qm) e ( ) ) ’

which is independent of v (and so of v).
Thus the integral in (3.7) is independent of v in all three cases, i.e., the holomor-
phicity of Pyio min.n (T, 2) follows.
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The vanishing of the Fourier coefficients for D’ > 0 can be established if we de-
form the path of integration up to infinity. O

Now it is left to show that in case k = g + 2 the Petersson coefficient formula is
still valid. The difficulty is that the scalar product cannot be calculated directly.
It can only be computed by means of the scalar products

<¢a Pg+2,m;(nﬂ“)70> ’

where ¢ > 0. Therefore we first have to show that these scalar products are
absolutely convergent (cf. Lemma 3.12); note that Py s m;(nr, is Dot necessarily
a cusp form (cf. Theorem 3.4). Afterwards we calculate the scalar products (cf.
Lemma 3.13). Both is done by means of the usual unfolding argument.

Next - and this is the main difficulty - we have to show that we are allowed to
interchange limit and integration (cf. Lemma 3.14), i.e.,

}Tii)% <¢7 Pg+2,m;(n,7"),a> - <¢7 Pg+2,m;(n,7‘)> . (310)

Then we get the desired value of the scalar product <¢, Pg+2,m;(nﬂ1)> by taking the
limit of the values of the scalar products (¢, Pyy2m;(n.r).0) (cf. Theorem 3.15).

Lemma 3.12 Let 0 > 0 and ¢ € J;.,)". Then the scalar product

<¢7 Pg+2,m;(n,7‘),a>

15 absolutely convergent.

Proof. The well-definedness of the scalar product is clear because ¢ is a Jacobi
cusp form and Py m;(n,)0 is invariant under the slash operation of the Jacobi
group (cf. Lemma 3.3). To show the absolute convergence we let V' be a fixed
set of representatives of (I'/ )sc\I'{ ;. Then, using the usual unfolding argument
and Levi‘s Theorem, we obtain in the sense of formal agreement

/ ’gb(T, 2)  Pyioming),s (T, 2) - exp(—47rm[y]v_1) dudvdzdy
F

< / |6(7, 2)| - exp(—dmm[ylo~!) - Z v7 - et 4+ d| 7% €™ gy (T, 2)| dudvdxdy
F

yeV

= / v - exp(—4mmlylvY)| - o(7, 2)| - |€"" (7, 2)| dudvdady. (3.11)
UyevF

Since Uyey7F is a fundamental domain of the action of (I'{ )s on H x Cl:H) |
and since the integrand of the previous integral is invariant under this action,
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we can choose an arbitrary fundamental domain of this action, if the integral
converges with respect to this fundamental domain. For example we may choose

F:{(T,z)GHXC(9’1)|O§u§1;v>0;ng,,g1f0r1/:1,...g,yER(9’1)}.

(3.12)

Here 7 = u+iv as before , z = x+iy, and x, are the components of z (1 < v < g).
Thus

[UU - |p(7, 2)| - exp(—dmm[ylv™t) - [ (7, 2)| dudvdxdy
P
— / ‘¢(T, Z)’ . 6*271'711172#7"9 . ,UU . eXp(_47Tm[y],Ufl) dyd'l) (313>
0 Jre

Using the boundness condition of Lemma 2.23, we infer that the integral in (3.13)
is less or equal than

/OO Uo'—g/271 X 672va . / 6727rry727rm[y]’u_1 dyd'U (314)
0 R

Completing the square we obtain that the value of the inner integral in (3.14)
equals
2_9/2 . (det m)_1/2 . rUg/2 . egvmil[rt].

Thus

/ v - exp(—4mmylvt) - |o(T, 2)| - |€™" (1, 2)| dudvdzdy

F
o0
<</ v L e T U= D) gy < oo
0

since o > 0, which proves the assertion. 0

Lemma 3.13 For o >0 and ¢ € J;\'5,, one has

<¢, Pg+27m;(n77’,)70—> = )‘g+2,m,D,a ' C¢<n7 T)’ (3'15)
where cy(n,r) denotes the (n,r)-th Fourier coefficient of ¢ and

Ngrompo = 297DOPTTENZT (/2 4 g 4 1) - 7927771 (det m)o/2 o2
.‘D|*g/2fofl'
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Proof. Due to Lemma 3.12 the scalar product on the left-hand side of (3.15) is
well defined and the integral is absolutely convergent. Thus we get, using the
usual unfolding argument,

<¢ 5 Pg+2,m;(n,r),a>

= /J S (T, 2) - Pg+27m;(n7r),a(7', z) - exp(—47rm[y]v_1) dudvdzdy
Fl,g HxC(g:1

N /( /) AEXCED v - (7, 2) - en (7, z) exp(—Armlylv~") dudvdzdy.
Fl,g oo \HxC{9>

Using the fundamental domain given in (3.12) and inserting the Fourier expansion
of ¢
(T, 2) = Z c(n',re(n'T +1'2),

n! €7
T/eZ(l,g)
an'>m—1[r/t
we obtain
0o
_ o —2m(n+n')v o
(6 Porominmo) = D C(nﬂ‘)/ e 2rlmtn)e .y
0

n’ €z
r/ez(l,g)
an/ >m—1[r/t]

1
/ e47rm[y]v_127ry(7"+7")/ eQm’(n’n)u/ ezm'(?ﬂlfr)x dvdydudx
R9 0 [071]5]

Here we have used the absolute convergence of the Fourier expansion of ¢ in order
to be allowed to interchange limit and integration.

The integrals over x and u clearly vanish unless » = " and n = n’. In this case
both integrals have the value 1. Thus we obtain

(¢, Pyromitna)o) = c(n,r) - / e ALy / eyl ATy gy - (3.16)
0 RY
Completing the square we get that the inner integral in (3.16) has the value
279 . (det m)—1/2 . U9/2 . em}mfl[rt]‘

Thus we obtain, using —4n +m~![r!] = 279 . (det m)~! - D,
<¢7 Pg+2,m;(n,r),a> = c(n,r)-279 - (det m)~/?- / p9/2t0 L gmmoldn=m =) g,
0
=c(n,r) 279 (detm) /% 7792071 (4 — m’l[rt])_gﬂ_a_l T(g/2+0+1)

=c(n,7) - Mem,D.o-

O

41



Lemma 3.14 For 0 <o <1 and ¢ € J\7, we have
(17i£>% <¢7 Pg+2,m;(n,r),a> = <¢7 Pg+2,m;(n,r)> . (317>

Proof. The existence of the limit on the left-hand side of (3.17) follows directly
from Lemma 3.13. Thus it is left to show that we may interchange limit and
integration. For this we use the fundamental domain given in Remark 2.25.
We use Lebesgue’s Theorem of bounded convergence and construct a majorant
g(1,2) > 0 on H x CY such that the following two conditions are satisfied:

(1) [Pyyom; m),a(T 2)| < g(T, 2) (Vo >0, (r,2) eF),
(17) /|gz5 T, 2) 7, 2)e T qudvdady < oo.

In the rest of the proof we show that for g(7, z) we may take the function

v
Y e (7, 2)]

ler + d|?

7€(T0) Y g

+ U_g/2_1 T X{(T,Z)EF‘§<’U<1} ’ Z |en,r|g+27m/y(7-7 Z>| ’

rJ ) rJ
WE( 1,9 Oo\ 1,9
c=0

where y; denotes the characteristic function of a set M C H x CY, and

¢ = 0 means that if v = @ b , (Aa, Ab)) € I'/ . then ¢ = 0. Here we

1,90

d
only have to show the convergence of the third term since the convergence of the
first term is shown in Lemma 3.12 and the convergence of the second term is
trivial. In the following we abbreviate the terms of g(7,z) by ¢1(7, 2), g2(7, 2),
and g3(7, z) in an obvious sense. To show (i) we separate for a fixed but arbitary
o > 0 the series Pyio m:(n,r),0(T, 2) into two parts according to ¢ = 0 or ¢ # 0.
The part with ¢ = 0 is given by

v - Z e | gr2mY (T, 2).

For (7, z) € F this has an absolute value less or equal than

Xeaesizy - ) vl lppamy(72)]
we(l‘{’g i,
c=0
+ X{(r,2)eF| V3 cu<l) Z ‘enm’g+2,m’7(7', 2)|

rd ) rd
76( 1,0) 0o \M',g
c=0
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v A
S Y g ()

He(rd,)

T X{(r2)ep| Bave) Z le"" | gromY (T, 2)]

which coincides with the first two terms of the function ¢(r,z). Here we have
enlarged the first summand that much because we want to use Lemma 3.12 and
Lemma 3.13 with s = 1 to get the absolute convergence of the series and the
value of the integral.

We still have to show the absolute convergence of the series go(7, 2). Therefore
we calculate it explicitly, using that in this case a = d = +1. Thus we have for
*/75 <v <l

ga(rz) = Y le(m +rA+n)r) - e(E(r+2X'm)z)|
AEZ(9:D)
- Z |<5m(n7 T, TL,, :|:7’/> : 6(”’7’ + ’r’/z)l =2 Z - 6—27m/v—2m~/y7
n! €z ez
reets  ez(1,9)

4an/>m—1[r/t]

where Y is used as an abbreviation for the condition 4n’ > m~![r"!]. This
sum coincides with the part of the absolute values of Py ;;(nr) (1, z) that belongs
to ¢ = 0 for k arbitrary but sufficiently large, and is therefore convergent. In
particular every subseries of this series is convergent.

Now we estimate the part belonging to ¢ # 0. Using Theorem 3.10, this part
can be estimated against v=9/2~!, which is the third term of the function g(, z).
Therefore g(7,2) is a majorant of Pyio i), (T, 2).

The rest of the proof is devoted to the claim (ii), i.e.,

/g(T, 2) - (7, 2)| - exp(—4mmlylv™) dudvdrdy < oo.
F

It is sufficient to prove the claim separately for ¢;(7, 2), g2(7, 2), and g3(7, 2).
The convergence of

/ 91(1,2) - |o(r, 2)| - e dududady

F

has already been shown in Lemma 3.12.
To show the convergence of

/92(7, 2) - (7, 2)| - exp(—dmm[ylv™") dudvdzdy,
F
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it is sufficient to regard the 39 subseries of g with sign(r})(1 <i < g) fixed. We
define for the components r, (1 < i < g) of

n_ |1 <0
G(Ti>_{ 0 rgzo )
and regard one fixed but arbitrary of the 39 subseries, which we denote by Z:,:T,.
Then we have, using Lemma 2.23 and Lemma 2.25,

/ jo(r,2)| - 3 T e By ™ qududdy
F n !

1 kk / /7
< p9/271 L gzl e 2mVTITTY dd
/\/5 /[;),v]g Z !

n'r!

2
kk 1
Z / v—g/2—1 . e—27m’v/ e—27rm[y]v*1 . e—27re(r§)r§v dydv
n’ ! § [0,0]9

1
kk _ _ ,@ _ .
§ : / Ug/2 1 e 27mn’ %5 e 2me(r)riv dv
V3
n’ 2
1

ok
_ E 6—27rn’§—27re(7“;)r§ v—g/2—1 dU,
V3

n'r! 2

IN

IN

. . . . . . . — IV3_ AV
which is clearly finite since the integral is finite and Y 7 , 2™ %5 ~2meriri jg g

. . . . / /
special value of a subseries of the convergent series Y 7 , e2™i(n'm+r2),

Finally we have to show the convergence of

/Fgg(T, 2) - (7, 2)| - exp(—4mm[ylv™") dudvdaxdy.

Again using Lemma 2.23 and Theorem 3.10, we obtain that this integral is less
or equal than

/ U—g—Q/ el dydy < / v dv < oo,
1 [0,0]9 !

The claim then follows directly. 0

Thus we have shown, combining Lemmas 3.12, 3.13, and 3.14

Theorem 3.15 For ¢ € J\Y, we have

<¢> Pg+2,m;(n,r)> = )\g+2,m,D : C(b(na 7“),
where cg(n,r) and Agrom p are defined as in Theorem 2.31, i.e., the Petersson

coefficient formula is still valid in the limiting case k = g + 2.
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Corollary 3.16 As a unitary vector space with respect to the Petersson scalar

product, Ji\3,, is generated by the Poincaré series

{Pyrommmy|n €Z, 1 € 719 4n > m’l[rt]}.

3.1.2 The final estimates

We have the following

Theorem 3.17 Suppose that k > g + 2. Let ¢ € Ji P with Fourier coefficients
c(n,r). Then we have

D|9/2+e 1/2 DIk/2—g/4-1/2
L o0

el ) e (1 T detm@ ) @ermypraro 191
where the constant implied in <.y only depends on € and k .

Proof. The Cauchy-Schwarz inequality and the Petersson coefficient formula (cf.
Theorem 2.31 and Theorem 3.15) we find

_ 2 _
|C(TL, 7’)‘2 = )\kimD . ‘<¢7 Pk,m;(n,r)>| < )\kfmp' ” ¢ H2 : <Pk,m;(n,7')> Pk,m;(n,r)>
= N bor(Pemnsom)- || 6 11,

where by, ( Py m;(n,r)) denotes the (n, r)-th Fourier coefficient of the Poincaré series
Py ymiy(n,r)- In order to prove Theorem 3.17, we therefore only need to estimate the
Fourier coefficients of the Poincaré series. Since these are of the same type as in
the case k > g + 2 we can proceed as in [BK] . O

Corollary 3.18 Suppose that k > g +2. Let ¢ € Ji\7 with Fourier coefficients
c(n,r). Then we have

c(n,r) Legp |D| kD24 (e > 0),
where the constant implied in <. 4 only depends on € and ¢.

Remark 3.19 Of course Corollary 3.18 is not useful for the estimates of Fourier
coefficients of Siegel cusp forms because this estimate is not uniform in m.

Moreover we can prove, and this is the main result of Section 3.1,

Theorem 3.20 Let g > 2 and suppose that k > g+ 1. Let F € Si(T'y) with
Fourier coefficients a(T). Then we have

a(T) <cp (det T)k/2—1/(2g)—(1—1/9)ag+e (e > 0),

where a;l =4(g—1)+4 [%] + ﬁ, and where the constant implied in <. p
only depends on € and F.
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Proof. The proof for k > g + 1 is already given in [BK], using certain Dirichlet
series of Rankin-Selberg type, which have a meromorphic continuation to the
whole complex plane with finitely many poles and satisfy a certain functional
equation. Then a version of the Theorem of Sato and Shintani can be used.

The restriction k£ > g + 1 is only needed for the estimates of ¢(n, ). O

3.2 The subgroup I';,(N)

In this section we want to estimate the Fourier coefficients of Siegel cusp forms
with respect to the subgroup I';o(/V) of I'y defined in Chapter 2.

In the first two sections we define Poincaré series for Jacobi cusp forms on certain
subgroups and estimate their Fourier coefficients. In the third section we estimate
certain Petersson norms.

3.2.1 Poincaré series for Jacobi cusp forms
i) The case I'{ ,;(N)
Recall that
I{,0(N) :==To(N) x (2@ x Z¥Y)
(cf. Definition 2.16). We proceed as in Section 2.2.

Definition 3.21 Let n,r, and m be given as in Definition 2.26. Then we define
a Poincaré series of exponential type for F{’%O(N) by

Bl = > lumn(nz)  (reHzeCoD),

v€(T{4) Y g0 (V)
where the notations are the same as in Definition 2.26.

Then we have the following

Lemma 3.22 The series P,fm;(n’r)
vergent on H x C9Y if k> g+ 2.
If k < g+ 2 it is not absolutely convergent at the point (i,0).

It satisfies the transformation law

(1, 2) is absolutely and locally uniformly con-

P i km (7, 2) = Py (75 2) (V(r,2) eHx COY v eT{ ((N)).
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Proof. Most of Lemma 3.22 follows directly from Lemma 2.27 because P

k7m;(n7r)
occurs as a subseries of Py n:(n,). What remains to show is that the series of

absolute values is divergent at the point (7,0) € HxCY. This can be done

similarly as in the case of the full Jacobi group , using that > o1 (¢ +d?)7! is
c=0(N)
divergent. 0

To show that PN

om:(nr) 15 an element of JP(N) we need for all matrices v €

'Y, o(N) the Fourier expansion of P, . |xm7. First we regard the case y = Ej.

Theorem 3.23 Let k > g+ 2. Then the function PY (1,2) has the Fourier

k7m;(n7r)

erpansion
N _ + o / /
Pk’m;(n’r) (1,2) = Z gk,m;(n7r)7N(n ;1 e(n't +1'z2),
n! €z
r’GZ(lvg)
4n/>m71[7"t]
where

g]:glim;(n,r)7]\[(n,7 T,) = gk,m;(n,r),N(nla T,) + (_1)kgk,m;(n,r),N(n/7 —7”,),
where & = (£1)*, and where

Gy N (0 1") = S (nyryn ') + 2 - (det(2m))~V2 . (D' D)*/?~9/4=1/2

( QW\/W ) .0_9/2_17

X Z 620(7“/m_17“t) . Hmc(n, T, n’, 7",) . kag/Qfl W

c>1
Nlc

and where D, D', 0y, (n, 7,0, 1"), Hyo(n,r,n',7") and Jy_g/o-1 are defined as in
Theorem 2.29.

Proof. The proof is very similar to the proof of Theorem 2.29, using as a set

of representatives of (I'/ )sc\I'/ , o(N) the elements {(( CCL 2 ) ,(a)\,bA)) },

where ¢,d € Z with (¢,d) =1, ¢ = 0 (mod N), A € Z¥Y and where for each
pair (¢, d) we have chosen a,b € Z such that ad — bc = 1. O

Next we want to compute P,ivm.(n lem (7, 2), where v = (M, (0,0)) € ry{,, with
M ¢ T, ((N), since it is enough to show the cusp condition in Definition 2.18
for a set of representatives of T'{ , ;(N)\I'{ ;. The following remark restricts the

computation to certain matrices

Remark 3.24 It is sufficient to choose v = (M, (0,0)), where M runs through
a set of representatives of I'o(N)\SLa(Z).
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Lemma 3.25 Let M € SLy(Z), M ¢ T'y(N). Then one has
o A a b 0
ropr= J o (¢ ) e 315)

c#0
1 n
where T's '_{(O 1)

d(Nlel)
in the union we have chosen for each pair (¢,d) € Z* a fized pair (a,b) such that

nez},rgo(N)::Ké ”{V)
(‘CL Z) € Ty(N)M.

n e Z}, and where

o
d=nNvy+r, withneZandreZ,0<r < Nv. Then

(5 0)-( )

(203 (3 A (3 2) e

which shows that the left-hand side of (3.18) is contained in the right-hand side.
Next we show that the right-hand side of (3.18) is contained in the left-hand side.
For this it is sufficient to show that for all n € Z

m( LAY ey vym
( )0(),

Proof. Let < f); b ) € I'o(N)M. Since M ¢ T'o(N) we have v # 0. Write

0 1

or equivalently

M ( (1) ]\;" ) M~! € Ty(N). (3.19)

But (3.19) follows directly since

M((l) ]\i")M—le (mod NV).

Finally to show the disjointness of the union in (3.18), let us assume that

a v a b
(c’ d’)eroo(c d)FgO(N)’

i.e, there exist n,m € Z such that

ad b\ (1n a b 1 Nm '\ [ *x *
d d ) 01 c d 0 1 o ¢ d+ Nme |-
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Then we obtain ¢ = ¢ and d = d’, since d and d’ run over a set of representatives
of Z/(N¢) Z. This proves the Lemma O

Using Lemma 3.25 we directly obtain

Lemma 3.26 Let M € SLy(Z), M ¢ I'o(N). Then we can choose as a set of
representatives of ('Y )oo\I'{ , o(N)M, the elements

{(‘CL Z)(é ”fv),(ax,(bmjva)x)},

where (c,d) runs through the elements in Lemma 3.25.
Now we can prove

Theorem 3.27 Let k> g+2, M € SLy(Z), M ¢ T'y(N).
Then P,i\fm;(n’r)|k7m(M, (0,0)) has the Fourier expansion

Pli\,[m;(n,r)‘k,m(Ma (07 0))(7-7 Z) = Z gk,m;(nﬂ"),N<n,7 7nl)e(n//‘NT + rlz)a

n! €z
q«/ez(lvg)
!
741"\} >m—1[r/t]

where

. k/2—g/4—1/2
Gemimryn (0, 77) 1= 27+ (det(2m))~V/2 (D/D) 3o
(e,d)

X €|C|(3ign<c) (m[A] +rX+n) d+ dn'/N + \r') - 62\c|(8ign(c)r’m*1rt)
)

A(le]
" oV DD
bg/21 det(2m)-c |

Here (c,d) runs through the same elements as in Lemma 3.25, and

is an element of J."'V(N).

D = —det?2 ( ﬁ 2 ) . In particular PN
o5 m

k7m; (n7r)

Proof. We have

Pk]\,[m;(n,r)|k,m<M7 (07 0))<T7 Z) - Z en’T|k,m’y|k1m(M7 (07 0))(7_7 Z)
’YE(F{,g)m\F{,g,o(N)

= Z e km (T, 2).

vE(TY 4) L\ 4,0 (N)(M,(0,0))
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Thus we get, using Lemma 3.26,

P’gm;(mr)lkvm(Mv (O’ O))(T7 Z) - ; (CT+d+NO‘c)_k'6 <_m[z]m+
,\egégz’l)
m ]aT+b—|—Noza+ b s 1 +na7’+b—|—No¢a
ct+d+ Nac ct+d+ Nac ct+d+ Nac
1 at +b+ Naa
+rzc7'+d—|—Nozc+T c7’+d—|—Nac)

where (¢, d) runs over the same set of elements as in Lemma 3.25; in particular
we have ¢ # 0. Thus we obtain, using the identities

ar +b+ Naa  a 1
cr+d+Nac ¢ cletr+d+ Nac)’
1 at + b+ Naa 1 1 a
A= ———[(z2—=A -
CT+d+NOzCZ+CT+d+NOzC ct+d+ Nac (Z c )+c ’
at +b+ Naa 2 c
— Nt —Nmr - —————
c7‘+d—|—Nacm[ ]+CT—|—d+N0zc e c7‘+d+N0¢cm[Z]
c 1 a
= — =Ml +-m[A
CT+d+N@Cm[Z c }—i_cm[ )

and replacing A by A + fc, with the new A running (mod ¢) and 3 € Z@V,

Z C_k Z e|c‘(sign(0) (m[)\] +rX+ n) ) : fk,m,c;(n,r),N (T + d/C, 2 >‘/C> ;
(e,d) A(lel)

where

Fometmn(m2) = 3 <T+Na>—'f-e(— L l—g

m
— 7+ Na
B€Z<g’1)

. - ! — (9:1)
A(t+ Na) +C(T+N04)T<Z 6)) (reH, 2 e CY).

The function Fy y, ¢;(n,),n (7, 2) has period N in 7 and period 1 in z and therefore
a Fourier expansion

Framei(na) N (T, 2) = Z v (n' " e(n' /N1 +1'2),

n' €z
! Ez(g,l)
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where
1
(') = — - / / Fromesn)N(T, 2) - e(—n'/NT —1'z) drdz
N Jici+0.8] Jicat10,1)9

(¢cp > 0, co € RY9). This integral can be computed exactly as in the proof of
Theorem 2.29 and gives the desired value. U

Theorem 3.28 (Petersson coefficient formula.)
One has

<¢7 Pk]:\,[m;(n,r) ] ’ )\k,m,D ’ C¢<n7 T) (\V/Qb S (]]‘;?:ZP(N)),

> B 1
[P{,g : F{,g,O(N)

where cy(n,r) denotes the (n,r)-th Fourier coefficient of ¢ and Ay, m.p is defined
as in Theorem 2.51.

From this we get

Corollary 3.29 As a unitary vector space with respect to the Petersson scalar
product, J," F(N) is generated by the Poincaré series

{P,fm;(mﬂ n€Z,reZ; d4n >m !}

Next, as in the case of the full Jacobi group, we want to construct Poincaré series
for k = g + 2, using Hecke’s trick.

Definition 3.30 For s € C let us define for (1,z) € H x C9Y a formal series
by

N R v ’ n,r
Pk,m;(n,r),s(Tv Z) T Z (m) € |k,m7(7-a Z)‘

e (Fi],g)oo\ri]»g,O(N)

We now need the Fourier expansion of P,Qfm;(m)ys\k,m'y(r, z), where v = (M, (0,0)) €
'/ ,. Let us start with the case M = E,;.

Theorem 3.31 The series P,évm,(n " ,(1,2) is absolutely convergent in HxC9:)
if o > %(g — k +2). It satisfies the transformation law

k,m’Y(Tv Z) - Pk]:\,[m;(n,r),s(Tv Z) (V(Tu Z) € H x C(g’l)v v e Flj,g,O(N)) )

N
k7m;(n7r)7s

and has the Fourier expansion

Pk]:\,[m;(n,r),s<7—7 Z) - Z gtm;(nm);&u]v(n/, 7’,)€<an + T’/Z),
7-/::%(612@
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where T = u + iv, £ = (£1)*, and where

gl:ft,m;(n,r);s,v,N(n,7 Tl) = gk,m;(n,r);s,v,N (nl’ T’,) + (_1)kgk:,m;(n,r);s,v,N(n,7 _T/>'

Moreover

gk,m;(n,r);s,v,N(n/; 7“/) = US'(Sm (n> r, n/a TI>+Z Hm,c(n7 T, n/a 7nl)'(I)k,m,c,v (n/, ’I“/, 5>'Cik72s7

c>1
Nlc

where D, D', 6, (n,r,n',7") and Hp, (n,r,n',7") are defined as in Theorem 2.29
and P m.cn (77, 5) as in Theorem 3.4.

Proof. The proof of Theorem 3.31 is very similar to the proof of Theorem 3.4
and can therefore be left to the reader. OJ

Theorem 3.32 For v = (M,(0,0)) € I'),, where M ¢ To(N), and (7,2) €

HxC@Y the series PN lk.m?Y has a Fourier expansion

k,m;(n,r),s
N / 1
Pkmnr ‘km’}/TZ E gkmnr svnr) (n/NT+TZ)7
n/ €z
r’eZ(l»g)
where T = u + v, and where
N . o —k—2s
gk,m;(n,r);s,v : E n T, TL T’) q)kmcv(nﬂn?‘s) - C )

where (c,d) Tuns through the set of elements of Lemma 3.25, and where

Hpy (n,ron! 1) =) e (sign(e)(mlz] + re +n)g+n' /Ny + r'z),
z(|c|)

y(leD)*
and
1
Vi1, 5) = N (det(2m)) /2 .79/ 9/ 2kms e (sign(c)r'm ™)
h = D
Ng/2—k—s (. \—s. . » D
x/_oo(quz) (u—i)~%-e ((2 det(2m)) (Dv(u i)+ T @))> du,

where D is defined as in Theorem 2.29 and D in Theorem 3.27

Proof. The proof is very similar to the proofs of the Theorems 2.29 and 3.4, and
can therefore be omitted. 0

Now we have to estimate the integrals ®p mco(n’,7’,5) and ®F, . (0,77, s) and
the Kloosterman sums H,, .(n,r,n’,7’) and Hﬁc(n,r,n , 7). We have already
estimated @y, (0,77, s) and H,, (n,r,n',r") in Corallary 3.7 and Lemma 3.9,
respectively. Thus it is left to consider ®f . (n',7’,s) and H} .(n,r,n’,7").
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Lemma 3.33 The coefficients @ﬁm’cvv(n’,r’, s), defined as in Theorem 3.32, are
holomorphic functions in s with o > 5 (1+g/2—k). In particular they are
holomorphic at s =0 if k > g/2 + 1.

If K is a compact set of the domain o > (1 + g/2 — k), with s € K, then they

satisfy the estimate

N 9—k—otl =D =mDv (146D
(I)k:,m,c,v (n/’ r/a 3) <LK 'Ug/ ol € Av - edet@m)( sign( )vl):
where v1 and A are positive constants with 0 < vy < 1, and where the constant

implied in < only depends on the set K.

Proof. The lemma follows directly from Lemma 3.5 with ¢; =k — g /2,

—Dv__and 3 = 52— U

€2 =3 det(2m)’ c2-v-2det(2m) *

Lemma 3.34 Let HY .(n,r,n/,r") be defined as in Theorem 3.32. Then we have
|H'r]7\z[,c<n7 r, nlu 7",)| <<D,m,e Cg/2+1+67

where the constant implied in <p . only depends on D, m, and €.

Proof. The proof is very similar to the proof of Lemma 3.9 and will therefore be
omitted. U

Theorem 3.35 Let g,fm,(n T),SUN(n’,'r”), Hoo(nyr,n/r"), @pamen(n/ 1, s),
HY (n,r,n',1"), and ®F,, . (0',7",5) be defined as in the Theorems 2.29, 3.4,

and 3.31, respectively, where £ = (£1)*.
Then the Fourier series

Pomsnn)s(T:2) = 3 G mupn (77T +1'2) ((r,2) € H x o)

n! €z
r'ez(1,9)
1s absolutely and locally uniformly convergent in s and defines a holomorphic
function in s for o > %(9/2 +2—k). In particular Pgm7(nm),0(’/', z) 1is absolutely
convergent if k > g/2 + 2.
Let us define

gv(' 1) = g () + (=) rgn (!, =),
gn(n/,r’) = Z%l Hyolnyr, 0/ 1) - @ (0!, 77 8) - c7F728)
hv (') = X HY (n,r,n/ ) - ®F (1 s) - e

where (c,d) runs through the elements of Lemma 8.25 and where + = (£1)*.
Let k = g+ 2,(1,2) € F, where F is the standard fundamental domain for the
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action of the Jacobi group on H x C9Y | given in Remark 2.25, and let s with
0 <o <1 be an element from a compact set K. Then we have the estimates

Y e el )| < v,
r'eztl9
r'ezt9

where the constants implied in <y are independent of T and z.

Proof. The proof is very similar to the proof of Lemma 3.10 and can therefore
be left to the reader. O

Lemma 3.36 The function ng\i27m;
of Jgi2m(NV).

g

(n,r)(7_7 ’Z) = PN

2mi(nr)0(T> 2) s an element

Proof. The proofs of the transformation law and the Fourier expansion can be
given as in the proof of Lemma 3.11. Moreover the Fourier expansion in an arbi-
trary cusp follows from Theorem 3.32 by taking the limit. O

It is left to show that the Petersson coefficient formula is still valid. This is
proved in the following three lemmas.

Lemma 3.37 Let 0 >0 and ¢ € J.,)P(N). Then the scalar product

(@ Prrammnn o)

18 absolutely convergent.

Proof. We proceed as in the case of the full Jacobi group. Thus we let V' be a
fixed set of representatives of (I'{ ))oc\I'{ , o(IV). Then, using the usual unfolding
argument and Levi‘s Theorem, we have in the sense of formal agreement

/ )¢(7’, 2) -P;Y%m;(n,r)’s(ﬂ 2) - exp(—drmylv)| dudvdxdy

Fy

< / |p(7, 2)| - exp(—4mmlylv™) Zv" et +d| 7% - e |km (T, 2)| dudvdzdy
Fn yeV

= [ e dmmlylo ) ol )] (7, )] dudedody
UyeviFn

where Fyy is a fundamental domain for the action of I'Y , ,(N) on HxC¥Y). Since

U,evYFn is a fundamental domain for the action of (F{7g)oo on H x C@b the
integral can be estimated as in the case of the full Jacobi group (using Lemma

3.12). O
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Lemma 3.38 For o >0 and ¢ € J.\3,,(N) we have

1
Fig : F{g’O(N

<¢7 Pg]Y|-2,m;(n,r),a> = [ )] ’ )‘g+2,m,D,a : C(b(”? 7"),

where cy(n, 1) denotes the (n,r)-th Fourier coefficient of ¢ and Ayrom.po is de-
fined as in Lemma 2.24.

Proof. The proof is similar to the proof of Lemma 3.13 and can therefore be
omitted. 0

Lemma 3.39 For 0 <o <1 and ¢ € J\%,,(N) we have
(17i£>% <¢7 Pg]\Jer,m;(n,r),a> = <¢7 Pgﬁ2,m;(n,r)> : (32())

Proof. The existence of the limit on the right-hand side of (3.20) follows directly
from Lemma 3.38. Thus it is left to show that we may interchange limit and
integration.

As a fundamental domain for the action of Fi],g,o(N ) on HxC®Y we can choose
Uy,evilf, where F is a fundamental domain for the action of F‘{’g on HxC@b,
and where V' is a set of representatives of T'{ , ,(N)\I'{ ..

Since [I'{ , : T , o(N)] < o0 it is sufficient to show for ; € V

o—0

lim/ o(t,2) - Pg]fq mi(nr) (7, 2) - exp (—4mm[ylv™") dudvdzdy
7iF e

= / P(7, 2) - P;lem;(m) (1,2) - exp (—4mm[ylv™") dudvdzdy,
viF

which is equivalent to

lim / Blgr2,m Vi (T2 2) Py iy olor2m¥i (7, 2)-exp (—dmmlylo™") dudvdwdy
ag— F

F

Now we can proceed as in Lemma 3.14 and construct a Lebesgue majorant using
the estimates in Lemma 2.23 which is possible since @|,42.,7; ' (7, 2) is a Jacobi
cusp form on ;I , ((N)7; " (which has finite index in T ). O

Lemma 3.40 As a unitary vector space with respect to the Petersson scalar prod-

uct, Jg\5,,(N) is generated by the Poincaré series

{Pg]\j&,m;(n,r) lneZ, rez®; an > m_l[rt]} .
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Now we want to estimate the Fourier coefficients of Jacobi cusp forms with respect
to F{’%O(N).

Theorem 3.41 Suppose that k > g +2. Let ¢ € J. ¥ (N) with Fourier coeffi-
cients c(n,r). Then we have

’D|9/2+6 )1/2 ’D‘k/2—9/4—1/2 : )
. € > 0),
)/2 (

) o (14 o) e 161

where the constant implied in <. only depends on € and k .

Proof. As in the case of the full Jacobi group we get, using the Cauchy-Schwarz
inequality and the Petersson coefficient formula,

|C(n7T)|2 S )\I;nln,D ’ bm"“(PéYm;(n,r))' ” ¢ ||27

where bn,r(PéYm;(n,r)) is the (n,r)-th Fourier coefficient of P,fm;(n’r). Thus to prove
Theorem 3.41 we only have to estimate the Fourier coefficients of the Poincaré

series PN )- Therefore it is sufficient to estimate

k,m;(n,r

c>1
Nle

Y

—2m-D
Hmc s 1y 7:|: “Jy—gj2- EPZ A
e(n,rm, £7r) - Jigjaa (det(Zm)-c)

which is trivially less or equal than

2

c>1

—2m-D
et ) o )|

This sum has already been estimated in [BK] . O

Corollary 3.42 Suppose that k > g+ 2. Let ¢ € J F(N) with Fourier coeffi-
cients c(n,r). Then we have

c(n, ) L g |D|FD/2He (e > 0),
where the constant implied in <4 only depends on € and ¢.
ii) The case I'y, ,(N)

Recall that
[ 1o(N) = Dao(N) x (20 x 2012

(cf. Definition 2.16).
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Definition 3.43 Let n be a positive definite symmetric half-integral 2 x 2 matriz,
re C™, and m € N such that n — % > 0. Let us define a Poincaré series of
exponential type for FiLO(N) by

Prmin) (T2 2) = Z " [kmy(T,2) ((r,2) e H x C*?) |
ve(Td1) \d10(V)
where €™ (T, z) 1= e(tr (nT 4+ rz)), and where

ow={((F 5 ) 0m) eTh|s e sy},

Then we have the following

Lemma 3.44 Let k > 8 be an even integer. Then the series P,i\fm;(n’r) (1, 2) is ab-
solutely and locally uniformly convergent on Hy x C2) . It defines a holomorphic
function and satisfies the transformation law

Pt eam V(7. 2) = Py (1:2) - (V(7,2) € Ha x CM, 5 € Ty 4(N)) .

Proof. The absolute and local uniform convergence follows from the absolute and
local uniform convergence of the Poincaré series Py, p,.(n ) for the full Jacobi group
(cf. [Br] p. 8). Here the restriction k > 8 even is needed since e(m7”’) - P m;(n,r)
is a subseries of another Poincaré series for the Siegel modular group which con-
verges absolutely in the case k > 8 even. Thus also the holomorphicity and the
transformation law are clear. 0J

In order to compute the Fourier expansion we first need

Lemma 3.45 Let R be a complete set of representatives of (T'g)se\T'2,0(N).

Then
A B ~
(1,2)
(C D)eR,AeZ }

. { (( 4 ),(AA,AB)) ey,

is a complete set of representatives of (I'3 1) \I'9 1 o(N).

Proof. The proof is an easy and straightforward calculation and can be left to
the reader. 0

In the computation of the Fourier series of P,ivm,(n - We proceed as in [Br].

Corollary 3.46 Let R be a complete set of representatives of (I's)ee\I'2,0(N).
Then we have for (1,z) € HxC1?)

Prmsnny(T:2) = Y > (det(CT+ D))"
m=(AB)er  rezt®
x e(—m((C1 + D) *C)["] + tr (T(A7 + B)(CT + D)™ ') + 2(CT + D)™ 'r
+ MAT + B)(CT + D) 'r + 2mz(C1 + D) '\ + m(Ar + B)(Ct + D)~ '[\1).
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Proof. The claim follows directly from Lemma 3.45, the definition of the slash
operator, and the elementary identities
A— (AT +B)(Cr+D)'C = (Cr+ D)™,
(AT + B)(Ct+ D) 'C(At+ B)! = A(AT+B)'— (Ar+B)(Cr+D)'.00

To compute the Fourier expansion of the Poincaré series Py (n,r) (7, 2) We need
the following

Lemma 3.47 Let H be a complete set of representatives of (I's)oo\I'2.0(N)/

(T2) oo-
Then we have
A B : : :
1. M = cp )€ H is parametrized by C' with C = 0 (mod N) and D

(mod CA), where A := Syms(Z).
2. For M € I'yo(N) we have

et = U @ (g 7).

SeA/O(M)
where
I S 1
OM):=¢5eAN|M 0 7 M7 e (I')w
is an additive subgroup of A.

Proof. The proof follows in the same way as in the case of the full modular group
(cf. [Ki], p. 158). O

Thus we obtain

Corollary 3.48 For (1,z) € HyxC%2) and H as in Lemma 3.47 we have

Py (T:2) = > > (det(C(r+8)+ D))"
u=(8B)et "o
x e(—m((C(r + 8) + D) 'CO)[2"] + tr (T(A(r + S) + B)(C(t+ S) + D))
+2(C(r+9)+ D) 'r + MA(T + S) + B)(C(r + S) + D) 'r
+2mz(C(1 + 8) + D) N + m(A(r + S) + B)(C(t + S) + D)[\']).
Proof. The proof follows directly from Lemma 3.47, using the absolute conver-
gence of the Poincaré series. 0

We now subdivide the Poincaré series into three parts according as rk(C) = 0, 1,
and 2, respectively and denote these by P!(r,z), P?(t,z), and P3(t,z2), respec-
tively.

First we want to compute P!(7, z). We have the following
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Lemma 3.49 1. As a set of representatives {M = ( é ZB) ) € H,rk(C) = ()};

we can choose
t
HO — { ( o )'U € GLQ(Z)}.

We have for M € HO:
O(M) = A.

2. We have for (7,z) € Hy x CH?

P(l)(T, z) = E A(n',me(tr (n'T +1'2)),
n! €A*
' ez(1,2)
n’>0

where A* := {S € Syms(Q), S half-integral }, and where

Al',r') = #{U € GLy(Z) |77[Ut] =, U —rez?. 2m},

/
Pyt
am

t
where 7 :=n — 7, and where n' :=n' —

Proof. The proof can be taken from [Br| since we can take as a set of represen-
tatives the same set as in the case of I's. O

Next we want to compute P (7, z). We have

Lemma 3.50 1. As a set of representatives {M = ( é IB; ) € Hrk(C) = 1};

we can choose

* *
e {M (U*(%S)W U*(%Zi)v—l)erz

U e { ( - ) GGLQ(Z)}\GLQ(Z),VE GLQ(Z)/{< (1] ' ) EGLQ(Z)}

C1 EN, CIEO (mod N),d4::|:1,d1,d2 (HlOd Cl),<01,d1):1}.

For M € HY we have:

@(M):{SGA‘S[V]:(S 2)}

with V' as above.
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2. For (1,z) € HyxCM? we have

PO(r,z)= > B re(tr (n't+1'2)),
n!/ €A*
r’eZ(LZ)
n’>0

where

B(n/,r") = Z Z Z §em ,Onp

dqra,r

UE{( 0 i)eGL2<Z>}\GL2(Z) 016515(17\7) ddl?(&ll);

V€GL2<Z)/{((1) T) GGLQ(Z} dg==+1
X € (d_m1 — didadyny + didzng — i /(2m) + dadarar’ /(2m) + din

o 1113/ (2m) = £ (0, = rur/(2m) (0 = a2 )

X Z €er (d_lm/\% + diri Ay — didadyrody — 7“/1)\) ceptmith (Fm)_l/2
Ai(er)

4
x (E'JE)*>L . gy (—W\/E’E> ,
CIF
where
5 { 1 ifrx=y (modn)

Yy - 0 otherwise ’

(n (Y )] - (e i ).

/2 r/2 m

! / /
CRAICHINEES
r't/2 m 0 1 N 2 4 2 ’
/2 rh/2 m
where dy is an inverse of di (mod ¢1), n[U'] = (1), v[V7] = (0 5),

* F *
E := detn, E' := detn/, and Jy_5 denotes the Bessel function of order
k—2.

Proof. 1. can be obtained by intersecting the set of representatives of (I'y)s \I'2/
(I'y) oo chosen in [Ki], p. 159 with I'y o(V).

2. For a fixed M =

é g ) € HD the inner sum in Corollary 3.48 can be

computed as in [Br] (pp. 17-26) to

r_r, 5F,F’ . 7”'*16 . (Fm)fl/Z o2 (E//E>k/2fl

NoT\Ty  MoT1Ty  NoNhy  TiTeT T
X e, (—riry/(2m) + aty +nid) - e
(=riry/(2m) 1 1) (40Fm 4cFm  2cF 8cF'm?

41
X )\Z() e (amx\% + ariA; — T/l)\l) T <¥\/ E’E) i
1(c
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Using 1., we get the claim after an easy straightforward calculation. 0

Finally we need the Fourier expansion of P®)(r, z).

A B

Lemma 3.51 1. Asa set of representatives for {M = ( c D ) € Hrk(C)= 2},

we can take
(2) L * B S
HY = c D €lyo(N)|detC #0,D (mod CA) .

We have for M € H®
O(M) = {0}.

2. We have for (t,z) € Hy x CH?
PA(r,2) = Z C(n',re(tr (n'T +r'z2)),

n! €A*
74162(1,2)
n’>0
where
1 1 _
Cn',r')y=—- E e —n'Cr E E
2m 2m
CeMy(Z) D(CA) AEZ(172)/Z(1’2>Ct
det C#£0

(é' B)EFQ,O(N)
x e(tr (n'C7'D —r'AC™") + mACT N + NAC™r + tr (nAC™1))
X (B'/B)** - (det O) - J(Q),

C D
J(+) is a certain matriz-argument Bessel function defined for Syma(R) by

where A is chosen arbitrarily such that < A > € I'yo(N), and where

J(R) = /Xes (R)(det V2R e(—tr (R(r +7171)))dX

and Q = /¢ [ e[c—t]]

Remark 3.52 Of course one has to take a suitable choice of square root in
Lemma 3.49. This can be done as in [Br].

Proof. Lemma 3.51 can be proved exactly as in the case of the full Jacobi group.
The restriction C' = 0 (mod N) does not change the calculations (cf. [Br|, pp.
28-30). O

Next we want to compute the Fourier expansion of Py n:(n,r), N |k,m7Y, Where
v =(M,(0,0)) € T'J,. For this we need the following
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Lemma 3.53 Let M € 'y, M ¢ T'50(N). Then we have

Tyo(N)M = U (T'2) o0 ( 2 1*) ) ( é ]\;S ) . (3.21)

rgC>0
( 6 E)GFQ’O(N)]\/I
NSeA/O(M)

Proof. That the right-hand side of (3.21) is contained in the left-hand side follows
from

M([ NS)M_IEE (mod N).

0 I
That the left-hand side of (3.21) is contained in the right-hand side and the dis-
jointness of the union follows directly from the definition of ©(M). U

Now we are able to prove the following

Theorem 3.54 Let M € T'y, M ¢ Tyo(N). Then Prminr),N|km(M,0)(T,2) for
all (1,z) € Hy x C*? has a Fourier expansion

Promi ()N em (M, 0) (7, 2) = Z A(n',re(tr (n'T +1'2)),

n! EA*
' ez(1,2)
An' ,rl,,./t
N Tmo

where A(n',r") € C.

Proof. We only give a sketch of proof, because the computations are similar to
the ones for M = E,;. We have

> " m (M, 0)y(7,2) = > " [kmy(T, 2)
ve(T41)_\d16(N) YE(TY )INM0)TY | o(N)

= > > (det(c(r+S)+ D))

- SeNT/O(M
(C D)GFZ*O(N)M AeZ(/L?() :

x e(—m((C(r + S) + D)'O)[2"] + tr (T(A(r + S) + B)(C(r + 5) + D))
+2(C(r+8)+ D) 'r + MA(r+ S) + B)(C(t+ S) + D) 'r
+2mz(C(1 4+ 8) + D)X+ m(A(r + S) + B)(C(r + S) + D) [\]).
Now we can split the sum into two parts acccording as rk(C) = 1 or 2 (the case

C' = 0 can obviously not occur).
In the case rk(C') = 1 one can easily show that one may assume that every

~ * %
M e ( c D ) € I'y (V)M has the form

v (5 ) (8 ) (0 48 ),



where a,b,¢,d € Z, ¢ > 1, ad —bc = 1, UV € GLy(Z). We now fix an M and
develop the inner sum into a Fourier series with respect to 7 (using that the sum
has period N in 7). Then we can show that the Fourier coefficients have period
1 in z and therefore have a Fourier expansion in z. Now we can show that the
Fourier coefficients of the Fourier expansion with respect to (7, z) vanish unless
4n’ rir/t

I]I\lf the case rk(C) = 2 we replace A by A+ pCt with g € Z1?) | and with the new
A running  (mod Z(1?) . ©). Using ©(M) = {0}, the claim follows easily for this
case. 0]

Thus we have shown

Theorem 3.55 The series P ), N (T, 2) is a Jacobi cusp form with respect to
31 0(N).

Lemma 3.56 We have

(8, Prmi(nr)N) = Mo €(n,m) (V¢ € Tl (N)),
where
Moy = 2874 79272 Dk —2) - T(k —5/2) -m™" - (detn)* ",
with 1 defined as in Lemma 3.51.

Proof. Lemma 3.56 follows in a similar way as in the case of the full Jacobi group.
O

Thus we can estimate the Fourier coefficients of Jacobi cusp forms with respect
to 'y, o(N). We have

Theorem 3.57 Let k > 8 be an even integer and let ¢ € J"F(N) with Fourier

rt

coefficients c(n,r). Then for a Minkowski-reduced matriz ( T,’:L g ) we have

2
c(n,r) Lego (LHm 20 (detn) e +m 2 (min(n)) ™" - (detn)**) - || ¢ |,

where 0 is defined as in Lemma 3.49, where min(n) := min{n[z]|0 # z € Z>V},
and where the constant implied in <.y only depends on € and k.

Proof. The estimate can be proved similarly as in the case of the full Jacobi
group (cf. [Br| pages 59-78). O
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3.2.2 Estimates of the Petersson norm of Fourier-Jacobi

coefficients

Let F' € Si(Iyo(N)). As described in Remark 2.22, F has the following two
Fourier-Jacobi expansions

F(Z) — Z wm(%’ §)€2ﬂitr (m7") _ Z ¢m(7—7 Z)e2m'm7-’. (322)

m>0 m2>1

Here in the first sum the summation extends over all positive definite symmetric

half-integral (g —1) x (¢ — 1) matrices, and Z € H,, is written as Z = ( ; ;, ),

with 7 € H, 2 € C19~Y and 7 € H,_;.

In the second sum the summation extends over all positive integers, and Z € H,
t

is written as Z = ( Z i, ), with 7 € H, 1,2 € C19Y and 7/ € H.

Moreover ¢; and ¢, are Jacobi cusp forms with respect to I'{ _; o(N) and

') 10(N), respectively. In this chapter we estimate the Petersson norms of the

coefficients 17(7, 2) and ¢y, (7, 2). If ¢ = 2 both cases coincide. Comparing the

estimates gives that the second one is slightly better.

The estimate we obtain in the following Lemma uses the classical Hecke ar-
gument.

Lemma 3.58 We have the estimates

| b || <rp  (detm)k/?,

” gbm || <F mk/2>

where the constants implied in <p only depend on F.

Remark 3.59 For N =1 the proof is given in [KS] for g = 2 and in [Kr] for
Om for arbitrary g.

Proof. We only give the proof for 1, the estimate for || ¢,, || is obtained similarly.
Using the first Fourier-Jacobi expansion in (3.22), we obtain

wnlr. D)= [ @)l ()7

iC

~t
where C' > 0 depends on v and y and satisfies the condition ¥ = ( yC’ ) > 0,

Sy <

where ¢ :=Im(7) and g :=Im(2).
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From the Jacobi decomposition (cf. Remark 2.19) it follows directly that we can

choose .
'

(Y

C=m"'+

In this case we have
detY = (det m) 10,
Thus we obtain, using that (det Y')*2F(Z) is bounded on H, (cf. Lemma 2.13),
iC+ By

n(7 2 < / [F(Z)] - & 7O gz
iC

<r (det m)k/Q . 17%/2 . p2mtr (m[gf]ﬁ—l)'
Therefore we get

1
J .TJ
[FLg—l : Fl,g—LO

<p (detm)’“./dvg"l,
F

H . ”2 < (N)} /F@k . W}m(%’ 2)‘2 .o Amtr (m[gt]o—1) d‘/;;{l

where I is a fundamental domain for the action of Fi],g—Lo(N) on H x Cl=1),
Thus the claim follows if we use that [ dV;”, < co (cf. Remark 2.25). O

Next we want to improve the estimate for the Petersson norm || ¢,, ||. The
idea is to use the Rankin-Selberg method and prove for a Dirichlet series with es-
sential || ¢y, ||? as general coefficient a meromorphic continuation and functional
equation and then estimate || ¢,, ||* by using a modified version of the Theorem
of Sato and Shintani. In the following we more generally replace || ¢,, ||* by
(P, Ym ), where ¢, and 1, are the Fourier-Jacobi coefficients of two Siegel cusp
forms with respect to I'; o(/V). We want to prove the following

Theorem 3.60 We have
| $m || e P20/ 0T (e > ),
where the constant implied in <. p only depends on € and F'.

For the proof we need some properties about certain non-holomorphic Eisenstein
series. First we want to show the following technical

Lemma 3.61 Let (c,d) € Z1?9) be a primitive vector (i.e., ggT(c,d) = 1) with
¢=0 (mod N).
Then there ezists a matriz M € I'yo(N) with (c,d) as last row.

Remark 3.62 For N =1 the lemma is well known (cf. for example [Ma]).

65



Proof. For clarity the proof is subdivided into seven steps.

I. In the first step we want to prove the claim for ¢ = 0.
In this case d is a primitive vector in Z(*9). Due to the Lemma of Gauf there
exists a matrix U € GL,(Z) with d as last row. Thus the matrix

—t
( UO 8. ) lies in I'y o(N),

and has (¢, d) as last row.

II. We may assume that |c,| # 0 is minimal under all entries ¢; (1 < i < g)
coming from (¢, d)M with M € T'y (V).
Indeed: Due to I. we may assume that ¢ # 0. Let ¢; € Z\{0} with |¢;| minimal
under the ¢; (1 < j < g) coming from (¢, d)M with M € T';o(N), and let V' be
the following g X g permutation matrix

Then
V 0
( 0 Vﬁt ) E ng)(N)
Thus we obtain, setting (czl, . ,Jg) = (dy,...,dy))V 7,

Vo0 5
(617...,Cg,d1...,dg)( 0 V_t ) :(Cl,.‘.,Cg,CH_l,...,Ci,dl...,dg),

i.e., we may assume |c,| # 0 is minimal under all entries ¢; (1 < i < g) coming
from (¢,d)M with M € I';o(N). For 1 <i < g let us write ¢; = \i¢c, + r; with
0 <7 <cgand A\; € Z. Then clearly
1
Vo= o € SL,(7Z),

S VIR |

( g o ) €T, o(N).
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Thus, setting (d, . . . ,(jg) = (dy,...,dy)V" we find

Vo0 5 5
(Cl,...,Cg,dl...,dg)( 0 Vﬁt ) = (7’1,...,Tg,l,cg,dl...,dg).

From the minimality of |c,], it follows that r; =0 (1 <i < g —1).

III. Due to II. we may assume (c¢,d) = (0...,0,¢4,d1,...d,), ¢, =0 (mod N). If
(dy,...,ds—1) =0, then ¢, and d, are coprime since ¢ and d are coprime.

In this case we set
0 O
¢ = ( 0 ¢ ) ’

E 0
- (34)

Then clearly the matrix (C, D) is primitive (i.e., there exists a matrix U €
GLyy(Z) with (C, D) as the lower g x (2g) block) and satisfies CD' = DC".
Thus the pair (C, D) can be completed to a matrix belonging to I'y (cf. [Fr]),
which is then clearly in I'y (V) and has (¢, d) as last row.

If d; # 0 for at least one d; (1 < i < g—1), we let V be the following (¢g—1)x (g—1)
permutation matrix

€1
;

e
V.= g-1
€it1
!

Then
Vft
1

(O,...70,Cg,d1,...,dg_1,dg) vV

1
:(0,...,O,Cg,d1...,dgfl,di+1,...,di,dg).

For the same reasons as in I. we may assume that

(e,d) =(0,...,0,¢4,0,...,0,dy_1,d,), with d;_; # 0 and ¢, =0 (mod N).

IV. According to [KK], page 116 there exists a A € Z with (dy_1,d, + Ac) = 1.
Let
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Then clearly S* = S and therefore

< b ) ET,0(N).

Thus

E S
(0,...,0,09,0,...0,6191,dg)< 0 E)z(O,...,O,cg,O,...,dg1,dg+)\cg).

Therefore we may assume that (c,d) = (0,...,0,¢,4,0,...,0,dy_1,d,), with ¢, =0
(mod N) and (d,—1,d,) = 1.

V. Since Z is euclidean, there exist dy, ds € Z such that

dy  do
€ SLy(7Z). 3.23
<d9—1 dg) 2( ) ( )
Let
0O 0 O
c = 0 C1 Co s
0 0 ¢
E 0 0
D = 0 d dy |,
0 dyy d

where ¢1, ¢y € Z. Then clearly the matrix (C, D) is primitive.

We now want to choose ¢y, ¢y such that ¢;,co = 0 (mod N) and CD' = DC",
because in this case the pair (C, D) can be completed to a matrix in I'y o(NV) (cf.
[Fr]). These conditions are satisfied for

R 2
1 = —cyds,
Cy = nggdl.

Indeed: Due to ¢, =0 (mod N) we clearly have ¢;,co =0 (mod N). Thus it is
left to show that the matrix C'D? is symmetric. We have

0 0 O E 0 0 0 0 0
CDt = 0 C1 Co 0 d1 dg,1 = 0 Cldl + ngg Cldgfl + Cng
0 0 ¢ 0 dy d, 0 cydy ¢yd,

Thus we have to show
Cldgfl + C2dg = d2Cg.

Inserting the definitions of ¢; and ¢y and using (3.23) we directly see that this
condition is satisfied. 0

We now define non-holomorphic Eisenstein series as in [KS] or [Kr].
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Definition 3.63 We formally define the following non-holomorphic Fisenstein

series
E 7 L det( Im(M<Z>)) 5
st( ) T ZMGCN\Fg,o(N) det(Im(M<Z>)1) ) °
Ey(Z) = E,1(2),

where Cy denotes the subgroup of I'yo(N) consisting of all those matrices with
(0,...0,1) as last row, and Im(M < Z >), means the upper (g —1) x (g — 1)
block of the matriz Im(M < Z >).

Moreover let

Ein(Z) =77 T(s) - (n(28) - Ean(2),

(n(s) = Z n-.

neN
(n,N)=1

where

Then we have the following

Lemma 3.64 The series Es n(Z) is well-defined, converges absolutely and locally
uniformly for Re(s) > g, and is invariant under I'yo(N).

Proof. The lemma is well known for N =1 (cf. [Kr]). For N > 1 it is proved in
exactly the same way. 0

Remark 3.65 We have

En(Z)= Y (PZK;H)_S (VZ € H,),

(c,d)ez(2951)
(c,d)=1
c=0(N)

wherePZ::<)(; Y01>[()[( ?)]>0.

Proof. The proof follows directly if we use Lemma 3.61 and the identity

det(Im(M < Z >))
det(Im(M < Z >),)

= Py[\ !,

where \! denotes the last row of M. O

Lemma 3.66 The function E7 y(Z) has a meromorphic continuation to the whole
complex s-plane.

If N =1 it is holomorphic except for two simple poles at s =0 and at s = g with
restdues —1 and 1, respectively.

In this case it satisfies the functional equation

E(Z2) = E; (Z).
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If N # 1 the only singularity is a simple pole at s = g with residue

NS b,

IIN

where p(l) denotes the Moebius function.
In this case it satisfies the functional equation

* s— N —2s s *
B (@) =8 o (P) B, (2)
LN ! laly
Moreover we have the following identity between the Eisenstein series
* —s * N
B (2) =3 u)- (N B (7).
IIN

Proof. Since the case N =1 is treated in [KS| for ¢ = 2 and in [Kr] for arbitrary
g, we may assume N > 1.

Write A = ( ccl ) We use Remark 3.65, the directly verified identity
Pz N =Y+ Y 'd+ X(] (Ve,dezZoV), (3.24)

and the well-known property of the Moebius function

S ={ 5 tiense (3.25)

1 otherwise
to deduce
WE)En(Z) = 3 w7y (Yd+Y T Xetd)
(Nom)=1 (C’d)E(J\E?g;ll)XZ(g'l)
— > (Y[Nnd + Y ' [NnXc+dn])”"
neN
(N,n)=1
(c,d)eZ(gal)xZ(gvl)
(Ne,d)=1

s

— > (Y[Nc]+ Y ' [NXc+d])

(e,d)ez(9:1) x7(9)1)
(N,d)=1

- S (YING+YONXe+d) S ul)

(e,d)eZ(9:V) x Z(9:1) II(N,d)

= S Y (YING+Y T NXe+1d)

UN (c,d)E€Z(9:D) x Z,(a:1)
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. %(Nl)—s @y Y ((%/) ] + (#Y) h K?X) ¢+ dD

(¢,d)eZ(9:1) x Z.(9:1)

- %%(m)—s u(l) Z' ((?Y) [nc] + (?Y) h K?X) nc+ndD

(c,d)ez(9:1) xz(g:1)
(c,d)=1

= <z w8 ().

IIN

Here >’ means as usual that the vector 0 is omitted in the summation.
Hence

Bin(2) = S u)- vz (G 2) = > (7)1 E:02)320

IIN

Applying the Moebius inversion formula to (3.26), we get

E;{(NZ)=N"*.> I*-EI, (3.27)
N

From (3.26), the meromorphicity of £} y(Z) as a function of s follows from the
well-known meromorphicity of £*(Z). The only possible poles are those of E*(Z),
i.,e., s =0 and s = g and they are at most of first order.

Using elementary rules for calculating residues, the fact N # 1, the formulas
(3.25) and (3.26), the fact that E¥(Z) has a pole of first order with residue —1
at s =0, we find

Res (E y(Z),s = 0) = limsE; y(2) = > u(l) hmsE*( ) —> 1)

s—0 s—0
lIN IIN

Thus E} y(z) is holomorphic at s = 0.

At s = g we can compute the residue with the same arguments as in the case
s = 0. Using the fact that Es(Z)* has a pole of first order with residue 1 at s = g,
we derive

Res (E;N(Z), s = g) = lim(s — g)E; y(Z)

s—g

:N—g.zu(l).l—g,lii%(s_ )E*(N > NS

IIN IIN

Thus E7 y(z) has a simple pole with the residue N79- 37, v 79 - u(l) at s = g.
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It is left to show the functional equation for £ \(Z). Using the functional equa-
tion of F¥(Z) and (3.26), we find

* S N =S, ¥ 5— N Nt
E; n(Z) = N*7%93 (7> 1By (1) = N*729.% " (7) 19 EX(12).
N N
Thus we obtain by using (3.27)
E;—S,N( — N252 Z m ( ) 19~ 2s Z ZQg . E:,Z(Z)‘
N i

O

In order to prove a later claim on the meromorphicity of (F'E, v, G) as a function
of s, where F,G € Si(I';0(N)), we need knowledge about the growth behaviour
of the Eisenstein series Fy y for tr(Y) — co. More exactly speaking we want to
prove the following

Lemma 3.67 Fiz s € C. Then for every Z € Fy, v € T'y, there exists a real
constant o such that

1 1
Nv(yoZ) ZM (g + E) L Ny (trY)?,
IIN

where F, denotes the standard fundamental domain for the action of 'y on H,,
and where the constant implied in <4 N~ only depends on g, N, and 7.

Proof. Due to Lemma 3.66 it is sufficient to prove Lemma 3.67 for E(I(y o Z)),
where [ is a positive divisor of N. For this we need an integral representation of
the Eisenstein series.

Lemma 3.68 For all s € C, we have the integral representation

> / Z _thZ[A ts+t9 5)% (‘V’Z € Hg)7
1

\cZ(29,1)

B2~ 5+

where Py is defined as in Remark 3.65.

Proof. For the proof we need some well known properties of the Epstein zeta-
function (cf. [Te] pp. 58). As in the proof of Lemma 3.66 we need the identity

((25) Ei(Z)= ) (PzA)"

\eZ(29,)1)
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Now for a positive definite symmetric real-valued (2g) x (2¢g) matrix A we define
a theta series by

Ot A):= Y ™M (VieR").

AEZ(29:1)

In particular we set
0.(Z) == 0O(t, Py) (VZ eH,y).

Then it is shown in [Te] that

| ©@)-n e a0 () B2 = Ei2) (Rel9)> ),
e O14(2) = (1™, Py) = (det Py) 19 O(t, ;).
Due to det Py — 1.
and
()] = O )G 7))
= Y] +Y N — X\o] =Py [( _Af\l )} ,
we have

O1(Z) =19-0,Z)  (Vt>0).

Therefore we have for all s with o > 0 the following integral representation

B2 = [ e -0 [Twewz -t

:/100(@75<Z)—1)(t5+t9—5)%_(1+ 1 )

s g—s

Thus the lemma follows for all s € C using meromorphic continuation. O

Now we can prove Lemma 3.67, using the integral representation computed in
Lemma 3.68. First we want to estimate Y, e ™oz, Therefore we show that
for all integers r; and ry there exist integers ] and r5 such that

Z/ e_ﬂ—tlrlpl’FQ"/oZ[)‘}S Z/ efﬂ—tlﬁPlr/zZ[A}. (3.28)

AEZ(29:1) A€Z(29:1)
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Since the matrix 7 is an element of I'y, it can be written as a product up to +£

. E S 0 FE
of matrices of the form ( 0 B ), (St = S) and < 5 0 ) We now want

to prove (3.28) per induction on the minimal number n of matrices of these two
types that are needed. Since in the case n = 0 there is nothing to show we may

assume that n > 0. Then we can write 7 = 7,7, where v; = ( 0 B ) or

—-E 0

_(E S
n=\ 9 g
In the following we need the identity (cf. [Kr])

), and v, € I'y.

Prezs = PZ[Mt] (VZ € Hy, M € Spg(R)) . (3'29)

- 0

i (% 0 Z) L (—%) = _1—322 =710 (l""22> -

Using identity (3.29) we find

Let us first assume v; = < 0 E ) and set Z := v, 0 Z. Then we have

Prayiozy = Prro1m22) = Brraz 1]

Thus we obtain, using that ¢\ runs over Z299 \ {0} if A does,

!/ " / _ r t / _ T
g e_ﬂtl VPray 00z Al — E e mtl 1P17T2(W2OZ)[71>\] = E e mtl IPFTQ(WOZ)[M'

\cz(29,1) \cz(29,1) \cZ(29,1)

E S
If%—(O E),wehave
E ™S

ro 7\ _ T2 77 roQ _ ro 77
"(y102)=1"7Z+1 S—(O 5 )o(l 7).

We now distinguish the cases ro > 0 and ry < 0.
E 125\’
0 FE

the same arguments as before

/ r ! T
S e e = § e B e

AeZ(29,1) \eZ(2g,1)

If r, > 0, then A runs over Z(291\ {0} if X does. Thus we get with

If ro < 0, we replace ro by —ry with the new r, > 0. Then we have

A1
-
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RIS
|

(l*”’}}) 0 E 0 A
B 0 (lmy)l ( X FE ) ( Ao+ 1725\ )}

_ (z*m?) I\ + (zrsz)_l [(rmf() AL+ de + l’“S)\l]
— <<zy) 12 0] + (17'237)_1 [(1*”25() A+ 172Xy + S)\lD .

Moreover for a fixed Ay # 0 and Ay = 0, I">Xy + S)\; runs through a subset
of Z@Y \ {0} and Z@Y respectively if A, runs through Z@Y \ {0} and Z@Y,
respectively. Thus we have

Z’ o (o N < Z’ e—wtm—% ((Z—W?)[17‘2)\1}+(l_’”2}7)_1[(l—T2X)lT2A1+A2])‘

A€Z(29:1) A1, \2€Z(9:1)

Moreover [2)\; runs through a subset of Z(291) and Z29Y\ {0} if A, runs through
799 and Z9Y \ {0}, respectively. Thus we have

/ r / _ r1—27
> e oM < 3 ¢ TR P oy P
\cz(29,1) A€Z(29,1)

Thus we can use the induction step in both cases and get the claim.

Now we can show as in [Ku] (using that the largest and the smallest eigenvalue
of Y can be estimated against €,,;, > €1 and €,,4, < es-tr (Y), respectively, with
constants ej, es only depending on g) that there exists a positive constant « such
that

/
E e ez« (tr V) e
2cZ(29,1)

Using Lemma 3.68 this leads to the estimate

1 1 o
E:(l’}/ (@) Z) — <g + B) <<g’l7fy (tr Y)a . / 6_7rta . (tU + tg_a) dt
1

As in [Ku| we get, distinguishing the cases a > 1 and a < 1, that the integral is
bounded by a power of tr (V). O

Definition 3.69 Let us now formally define the Dirchlet series

Dpan(s) = (25 =2k +29) - X1 (b, Ym) m™,
Dipon(s) = (4n)7*-T(s)-T'(s —k+g)- Dran(s),
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where F,G € Si(Ly0(N)), ¢ and 1y, are the m-th Fourier-Jacobi coefficients of
F and G, respectively, iy == [I'y : Tgo(N)], and ky := [I'1 : To(N)] .
Moreover we define for a positive divisor | of N the Dirichlet series

DF,G,N,I(3> = Q(ZS — 2k + 29) : Z bl (m)m_s,

m>1

where

1 _— —1
bi(m) =+ 2 /F By (T3 2) + Py (7, 2) - (det )00 em4mme ™ qudvdady,
j !

and
Dy ()= (4m)~" - T(s) - I'(s =k +g) - Drani(s),
where F; is a fived fundamental domain of the action of F;_Ll(l) on Hy_1x

CU9=Y . Moreover ¢y, , (T, z) and y, -, (7, z) denote the Fourier-Jacobi coefficient

of Flv; and G|, respectively, where ~y; runs through a set of representatives of

Ly o(N)\Tgo(l).

Remark 3.70 The proof of Theorem 3.72 will show that the fundamental domain
F; in Definition 3.69 can be chosen arbitrarily.

Lemma 3.71 The coefficients (¢m,¥m) and b(m,l) of Dpan(s) and
Dpani(s), respectively, satisfy the estimates

(P> Vm)
bi(m) } <ram,

where the constants implied in < only depend on F' and G.
Thus the series Dpgn(s) and Drgni(s) are absolutely and locally uniformly
convergent for Re(s) >k + 1 and therefore holomorphic.

Proof. The proof is very similar to the proof of Lemma 3.58, and therefore can
be left to the reader. O

Theorem 3.72 The functions Dp n(s) and Dp g ni(s) have meromorphic con-
tinuations to the whole complex plane with only finitely many poles.

The function Dpgn(s) is entire if (F,G) = 0, and otherwise at s = k has a
simple pole of residue

(4m)*
(k= D)i(g — 1)

7IE(F,G) NIy (1)1

IIN

It satisfies the functional equation

* S— N —z8 - S— *
DF,G,N<2k —g— 3) = N>72. ZM <E) “ly 2oty Z lg( ko). DF,G,N,12(5>‘

l1|N l2|l1
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Proof. Since the proof for N = 1is given in [KS] for ¢ = 2 and in [Kr]| for arbitrary
g we may assume N > 1. Let F.G € S,(I';0(N)). Then clearly (FE, y,G) is
well-defined. Thus we obtain, using the usual unfolding argument,

(FE,N,G) =iy - / F(Z) - En(Z)-G(Z) - (detY)F 97t dXay
Fg,O(N)\Hg

=iy - / F(Z)-G(Z) - (det Y)* 971" . (det v) "* dXdY,
Cn\Hg

where as before Cy denotes the subgroup of I'y o(/V) consisting of all those ma-
trices with (0,...0, 1) as last row. As a fundamental domain for the action of Cy
on H,, we can choose

T 2

z T
where Fy is a fundamental domain for the action of T')_, | (N) on Hy_; X Cho—1),
and where we have written 7, z, and 7/ as 7 = u+iv, 2 = r+iy, and 7’ = u' 4+,

respectively.
Inserting the Fourier-Jacobi expansions of F' and G

F(Z) = Zle ¢m<7_v Z)GQﬁimTl’
G(Z) = Zmzl ¢m(7_a z)€2mm7l7

we obtain for Re(s) > ¢ + 1, making similar calculations as in [Kr| or [KS],

(1,2) € Fn, v >0y, 0 </ < 1},

<FE37N, G> = (47r)—(8+k—9) . F(S +k— g) . k_N . Z <¢m’ wm> m—(5tk—9)
IN

m>1

Hence we have the identity

w7k <E:—k+g,NFa G> = Dy n(s).

Using that F,G € Si(I'yo(N)), Lemma 2.13 and Lemma 3.67, we get that
D7 q.n(8) has a meromorphic continuation to C having at most simple poles
at s=kand s =k —g.

Since the Gamma function is a meromorphic function with no zeros we can con-
clude that Dp ¢ n(s) has a meromorphic continuation to the whole complex plane
and is holomorphic exept for possible simple poles at s = k and at s = k — g.
Using that £ y(Z) has a simple pole with residue N79- 37, v pu(l) - 179 at s =g
and Lemma 3.66 we find
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Res(Dran(s),s =k) = lim(s —k)Dran(s)

_ S._) Dy n(s) - (4m)°
= IR T~k g)
A7)k - : *
(k — i)!(?q ST . <l1i%(3 —R)E g nF, G>
(4m)k . go=k -9 -9
- T (F,G)-N .Zu(l).z :

IIN

Since Dp ¢ n(s) has at most a simple pole at the point s = k — g and since the
Gamma function has a simple pole at zero and no zeros we obtain

Res(Dpan(s),s =k—g) = lim (s—(k—g))Dpan(s)

s—k—g
X D}ka ,N(S) - (4m)*
= SEEQ(S — (k- g))r(s)c.:I‘(s —k+g)

=0,

i.e., Dpg n(s) is holomorphic at s = k — g.
Now it remains to show the functional equation for Dg g n(s).
Using Lemma 3.66 (with g — k + s instead of s) we find

D?,G,N(Qk —g—5)= I <E;—(g—k+s),NFa G>

_ N25—2k . Z L (%) . 11—25+2k—g Z lg(skarg) . 71—9—]‘C . <L (E:—k:—i—g,lz) F’7 G> s

lh|N la|l1

where ¢ denotes the inclusion map. To prove the functional equation we thus
have to show that

7Tg7k . <L(E57k+g’l)F, G> = DF,G,N,I(S)-
Therefore we have to calculate scalar products of the type
((E)EG)  (N),

which are clearly well-defined.
Denoting by ¢* the adjoint of the map ¢ we find

(WEDF, G)r, vy = (UE), FG)p oy = (Baa, (FG))p -

It is well known that B B
C(FG) =) (FG)|y,

J
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where 7, runs through a set of representatives of I'j o(N)\I'y ¢({). Thus we have

WEDEG) =it 3 / )+ Fls(2) - Gy (Z) - (det YY) dxay.
Iy, /Hg

Using the usual unfolding argument we find

EFG) =it 5 [ Fu(2) G - (et ) - (et Y- axay.
C[\Hg

As a fundamental domain for the action of C; on H,, we may choose

T 2t . . /
L )| e >0 Yl 0Su <Ly,

where F; is given in Definition 3.69, and where we have written 7 = u + v,
z=x+ 1y, and 7/ = u' + V', respectively. .
Inserting the Fourier-Jacobi expansions of F'|vy;(z) and G|v;(2)

Flv,(z Zgbm 3 (T 2) 27Tlm7—

m>1

G‘”yj Zwm% T, Z 27|'Zm7-

m>1

we find

WEDRG =it [ [ b))

0<u/<1 myn>1

X6727r(m+n)vf.eQﬂ-i(mfn)u"(det U) k—(g+1), (det (UI . Uﬁl[y])) —(g+1)+s du’dv’dudvdxdy.
The integrals over v’ and u’ can be evaluated exactly as before and give the value

l-(47?)_(8”“_9)-F(s—i—k g) (Z/ Gr; (T2 2) * Vs (T, 2) - (det v)F 0T

1
! m>1

NCRa dudvdmdy) ~(s+k—g)

for Re(s) >g+1.
Thus we have the identity

D},G,N,l(8> =" <L(E:—k+g,l>F7 G> .

Now one can show with the same arguments as before that D} . y,(s) has a
meromorphic continuation to C with a possible simple pole at s = k. Moreover
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the functional equation follows directly. OJ

To prove Theorem 3.60 we only need the case F' = G. Clearly Dpr(s) and
Dr pni(s) have non-negative coefficients. Thus a classical Theorem of Landau
says that they must have the first real singularity at their abscissa of convergence.
Thus they converge for Re(s) > k.

We now need the following modified version of Landau’s Hauptsatz (cf [SS])

Theorem 3.73 Suppose Z(s) =, -, c(n)n™ and n;i(s) = >, bi(n)n™?,

1 <i <1 (I € N) are Dirichlet series with non-negative coefficients which con-
verge for Re(s) > og, have a meromorphic continuation to C with finitely many
poles and satisfy a functional equation

l
76 —s)=> +ni(s),
i=1
where ;
Z(s) = A7 Hj:l I'(a;s +b;) - Z(s),

mi(s) = A7 TIZ Tlags +b;) - mi(s),
where A, A; >0, J €N, a; >0, b; € R. Suppose that

J

/{::(200—5)-2%—%>0
Then
Zc(n) = Z Res ((Ts)xs) + O, (z"),

nlx all poles
for any 1 > 10 = (5 + ool — 1)) /(s + 1).
Proof. As in [K2] we write the functional equation asymmetrically as

J l
Z(6 —s) = A J[TD(ajs + b)) /T(—ajs + a;6 + b)Y +£A7 -mi(s)  (Vs€C).

j=1 i=1

If we use that I'(z) - T'(1 — ) = 7 - sin(7z) !, then Theorem 3.73 follows directly
from the version of Sato and Shintani (cf. [SS]). O

Now we want to use Theorem 3.73 with
Z(s) = Dprn(s), ni(s) = Dppnpe(s) - N72F o (p(2)*F79 - (q(d)) 2+,

where (p(i), q(7)) runs through the elements (11, ly) with | N, ls|l; and p (%) # 0.
Moreover og = k, § = 2k — g, A = 4n, A; = 4w (p(i))*(q(1)) 2N"2, J =2, a1 =
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o9 = 1 bl O bg =g — k.
Hence kK = 29 — 5 > 0,0 =k — 4g +1 Thus all conditions of Theorem 3.73 are
satisfied. Therefore we have

S e(n) = ea* + 0, (x’“**ﬁ) (Ve>0),

n<x

where ¢ = Res,— kDF—F().
Therefore we get, taklng xr =m and x = m — 1 and substracting, that

c(m) < p mb-aite,

Writing (n(s)~" 1= 3,51 uv(n)n~° and using that the coefficients of ((s)™" are
bounded by 1, we find

H ¢m H2 = Z,UN< d% 29 - C <d2) <<eF mk 494-1"'E Zd 29(1 4g+1)
d2|m d>1

__29
L. p mFTETe

3.2.3 Final estimates

In this section we want to collect our results and give the final estimates. There-
fore we let F' € S(I'y0(IN)) with Fourier coefficients a(7"), where T is a positive
definite symmetric half-integral ¢ x g matrix (g € N, g > 2). First we have

Theorem 3.74 Let g > 2, k> g+ 1. Then
a(T) <cr (my_1(T)? - (det T)FD/2He (e > 0),

where my_1(T) is defined as in (2.1), and where the constant implied in <. p
only depends on € and F.

Corollary 3.75 Let g > 2, k> g+ 1. Then
a(T) < p (det T)F/?271/g)+e (e > 0),

where the constant implied in <. p only depends on € and F'.

Proof. Let us write 7" as T' = ( " 7751 ) Then clearly a(7) is the (n,r)-th

r

2
Fourier coefficient of the m-th Fourier-Jacobi coefficient of F'. Thus we get, using
Theorem 3.41 with g — 1 instead of g, and Lemma 3.58

(det T)@=0/20e\ Y2 (det T)k/2-0/1-1/4
(det m)9/2 ) " (det m)k/2-9/4-1/2
= ((detm)?’2 + (det T)(0=D/2+e) /2 (det T)e/2-0/1=1/0 . (det m)1/2,

a(T) <cr <1+ - (det m)k/?
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Now we may assume that detm = m,_; (7).

Indeed, otherwise replace T' by T'[U], with U € GL,(Z) such that T[U]|,—1 =
mg—1(T"), which changes neither the left- nor the right-hand side of the estimate
in Theorem 3.74 (here we use that I';jo(/N) contains all matrices of the form

[é UO_t VU € GLy(Z), and therefore |a(T[U])| = |a(T)| due to Lemma
2.12). Therefore we obtain
a(T) Kep (det T)M2712Te L (my i (T))2,

which proves Theorem 3.74. Corollary 3.75 follows directly from Theorem 3.74,
if we use the well known estimate m, 1(7) <, (det T)!~1/9 (cf. Remark 2.8). OJ

For g = 2 and g = 3, we can obtain the following improvements
Theorem 3.76 Let g =2 and k > 3. Then
a(T) < p (min(T))>/ 8 . (det T)F-1/2+ (e > 0),
where the constant implied in <. p only depends on € and F'.
Corollary 3.77 Let g =2 and k > 3. Then
a(T) K p (det T)F/213/36+¢ (e >0),
where the constant implied in <. p only depends on € and F'.

Proof. The proof follows with the same arguments as in the proof of Theorem
3.74, using Theorem 3.41 and Theorem 3.60. U

Theorem 3.78 Let g =3 and let k > 8 be an even integer. Then
a(T) e p (min(T))~3/13% . (det T)k/2-1/4+¢ (€ > 0).
where the constant implied in <. p only depends on € and F'.
Corollary 3.79 Let g = 3 and let k > 8 be an even integer. Then
a(T) e p (det T)F/2-V4e (¢ > 0),
where the constant implied in <. p only depends on € and F'.

Proof. The proof follows directly from Theorem 3.57 and Theorem 3.60 similar
as in the case of the full Siegel modular group (cf. [Br], pp. 79-85). O

Moreover, for ¢ = 2 we obtain in the same way as in the case of the full Siegel
modular group (cf. [K7]) the following estimate on average

Corollary 3.80 Let g =2 and let k > 3 be an even integer. Then
S M) <or NSV (e 0),
{T>0,tr (T)=N}

where the constant implied in <. p only depends on € and F'.
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3.3 Subgroups of finites index and open ques-

tions

In this section we want to sketch how the results of the above sections can be
generalized to subgroups I' of I', of finite index that contain all matrices of the
form ( [é UO—t >, where U € GLy(Z). This restriction is only needed for the
final estimates in order to be allowed to replace 7" by T[U]. One again starts
with estimates of the Fourier coefficients of Jacobi forms, which are again de-
fined in a way such that the Fourier coefficients of Siegel cusp forms belong to
this class of cusp forms. The method is the same as before: One first constructs
Jacobi-Poincaré series, which can be shown to be cusp forms if k£ > g + 2, and
estimates their Fourier coefficients. The calculations (in particular the estimates
of certain generalized Kloosterman sums) are more complicated than in the case
of I'1 3 0(N)” but nevertheless straighforward. Afterwards one can regard the case
k = g+ 2, again using Hecke’s trick. Proceeding as in Section 3.1 and Section
3.2, one gets an analogous result as in Theorem 3.74, using the same estimate for
the Petersson norm || ¢,, || as in Lemma 3.58 and 3.75.

Open questions

e How is it possible to extend the range of the estimate in Theorem 3.74
regarding the weight k, i.e, enlarge the range of the estimate in Theorem?
3.41.

e How is it possible to obtain an estimate of the coefficients of cusp forms of
the quality of Theorem 3.74 for general g7 Probably for this one needs the
general Langland’s theory of Eisenstein series on symplectic groups.
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Chapter 4
Lifting maps

qusp
k—&—g%rl,m

to a certain subspace of Sy (% det(2m)) and vice versa under certain conditions
on Dy, k, and ¢ such that both mappings are adjoint with respect to the Petersson
scalar products.

In this chapter we want to construct a lifting map from the vector space

4.1 The generalized genus character and geodesic

cycle integrals

First of all we want to recall some basic facts about quadratic forms. For details
we refer the reader to [GKZ]. We have the following

Definition 4.1 For a,b,c € 7Z let us define the integral binary quadratic form
[a, b, c](x,y) := ax® + by + cy’.

The group SLs(Z) acts on these forms by

[a,b,c]o((;é ?)(m,y) = [a, b, c|(ax + By, yx + 0y) (z,y € Z).

Let A € Z be a discriminant (i.e., A # 0, A = 0,1 (mod 4)). Let us denote by
Da the set of integral binary quadratic forms with discriminant A. Then SLy(Z)
acts on Da. Furthermore let us denote for [ € N by D; o C Da the set of all
quadratic forms with the additional condition that a = 0 (mod /). Moreover let
us define for integers p (mod 21) with A = p? (mod 4l) the set

Diap:={la,b,c] € Dala=0 (modl),b=p (mod2])}.
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Remark 4.2 The sets D a and Dy, are I'o(l) invariant.

Remark 4.3 We have the decomposition

Din = U Diap-

p(210)
A=p2(4l)

Now we can define a generalized genus character.

Definition 4.4 Let | be a positive integer, Dy be a fundamental discriminant
and A be a discriminant that divides Do such that both Dy and A/ Dy are squares
(mod 4l). Then we define for Q = [al,b,c] € Dia :

XD, (Q) = { (£2)  if (a,b,¢,D) =1

0 otherwise,
where (%) denotes the Kronecker symbol. Here n is an integer coprime to Dy
represented by the form laly,b, cly] for some decomposition | = lils , l; > 0 (i =

1,2).

Remark 4.5 Such an n always exists and the value of (%) 18 independent of
the choice of ly,ls, and n.

We have the following

Theorem 4.6 The function xp, is I'o(l)—invariant and has the following prop-
erties:

P1 (Multiplicativity):
X, ([al, b, c]) = xp,([a1l, b, cas))x p, ([azl, b, car]) if a = aqas, (a1,aq) = 1.
P2 (Invariance under the Fricke involution):

XD0<[a’l7 b, C]) - XDO([CZ7 —b, CL])

Xp,([al, b, c]) = (1%) (i_i)

for any splitting Doy = D1 Dy of Dy into coprime fundamental discriminants and
I = lily of l into positive factors such that (Dy,lia) = (D1,lsc) = 1, xp,([al, b, c]) =
0 if no such splitting exists.

P3 (Ezplicit formula):
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Definition 4.7 Letl € N, p € Z/2lZ, A > 0 be a discriminant satisfying

A = p? (mod 4l). Let Dy be a fundamental discriminant dividing A such that
both Dy and A/Dy are squares (mod 4l). Let k be an integer > 1.

Then we define

XDO

fr1.a.0.00(2 (z € H).

QeDy A

Definition 4.8 We define by Sor(l)~ C Sar(l) the space of cusp forms on I'o(l)
with eigenvalue —1 under the Fricke involution

f(z) = (=12%) 7" f(=1/(12)).
We know from [GKZ]

Lemma 4.9 The series fi.a,p0,(%) is absolutely and locally uniformly conver-
gent for k > 1 and is an element of Sor(1)~.

For the following, we need the Fourier expansion of f; A , p,(2).
Lemma 4.10 The Fourier expansion of fria pp,(2) (k> 1) is given by

[eS)
:I: 27rzmz
T80 (% chl m, A, p, Dy)e

m=1

where
Cki,l(mv A7 Ps DU) = C/fJ(m’ A? Ps DO) + (_1)k+lck7l(mv Aa —-pP DO)»

where £ = (£1)*1 where

k —
Ck,l(maAapa DO) = Zk ’ <_1)7§ ' (k — 1)| ’ (mZ/A)inl : |:’D0’_% : El(vaapa DO)

Wm\/z>

+ik+1 s T \/5 : (m2/A)% : Z(la)_% ' Sla(m,A,p, Do) : Jk_l/g (

la
a>1
Here
Do ; _ 2. f2 _
el(m, A, p, Do) := <m/f> if A=Dg- f*(f>0), flm, Dof =p (mod 2I) 7
0 otherwise

b2 — A
Sla<m7A7;07 DO) = Z X Do (|:Cll,b, Ala 1) : e2la(mb)7

b(2la)
b=p(21)
b2=A(4la)

and Jy_1/2(t) is the Bessel function of order k —1/2.
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Moreover we need the relation of these functions to cycle integrals of modular
forms:

Definition 4.11 For f € Sy(l) and Q = [a,b,c] € Dy, we set
)= [ 1) Q1)
7Q

where vq is the image in To(I)\H of the semicircle a|z|* +bx+c =0 (x = Re(z)),

. —b—VA 4 —b+VA o ~ ' —
orientated from —5X= to "22 ifa # 0 orifa =0 of the vertical line bxr+c = 0,

orientated from —37 to ioo if b > 0 and from ico to —F if b < 0.

Lemma 4.12 The above given definition of r;.o(f) makes sense, i.e., the inte-
gral is invariant with respect to the subgroup of T'y(l) perserving Q, and depends
only on the T'o(l) equivalence class of Q.

Definition 4.13 Define

rhiapne(f) = Y X0o(@) - Trig(f):

QGDI,A,p/FO(l)
Then the following holds
Theorem 4.14 For f € Sor(l)~ we have

2k —2 _ -
(f, frpnppe) =T - (k B 1) L92k42 | A—RFL/2 Tet.A,0.00 (f)-

4.2 Construction of lifting maps

Let ng € Z, ro € Z19 m be a positive definite symmetric half-integral g x g ma-

. o %0
trix, and Dy := —det2 |

-5 m

> < 0. For this section let us make the following
2

Assumptions:
1. g =1 (mod 8),
3
2. k> L2
3. Dy is fundamental, 3 det(2m) is odd, and (det(2m), Do) = 1,
4. Dy is a square (mod 3 det(2m)).

Remark 4.15 1. If g = 1, claim 4. follows automatically. Moreover in this
case instead of condition 3 it suffices to assume that Dy is a fundamental
discriminant.
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2. The integer det(2m) is even, thus 3 det(2m) is an integer.
3. We have Dy =1 (mod 4).

4. The integer Dy is a square (mod 2det(2m)).

Proof. 1. If g = 1 we have the identity Dy = rZ — 4ngm, which is clearly a square
(mod m). Moreover in this case the statements of this chapter are proved in
[GKZ]. Here assumption 4. and the last two claims of assumption 3. are not
needed.

2. The claim follows directly from the Laplace development if we use that ¢ is
odd and m is symmetric and half-integral.

3. From the Laplace development it follows readily that Dy is congruent 0,1
(mod 4). Thus the claim follows directly from 2., since (Dy, det(2m)) = 1.

4. Since (Do, det(2m)) = 1 and 1 det(2m) is odd the claim follows from 3. and
assumption 4. N

Let us show that quadratic forms with the above conditions exist. For this we
have to show

Remark 4.16 For every g =1 (mod 8) a positive definite half-integral g x g ma-
triz m exists, such that 1 det(2m) is odd, (Do, det(2m)) =1, Dy is fundamental
and Dy is a square (mod 3 det(2m)).

Proof. We may for example choose

g—1
@ 8

2m = LBy @ 2N,

where NV is an odd integer, where

2 0 -1 0 0 0 0 0
0 2 0 -1 0 0 0 0
-1 0 2 -1 0 0 0 0
B 0 -1 -1 2 -1 0 0 0
8 0o 0 0 -1 2 -1 0 0|’
0 0 0 0 -1 2 -1 0
0O 0 0 0 0 -1 2 -1
0O 0 0 0 0 0 -1 2

and where

A 0
wene(40)
for square integral matrices.

Then we get, using that det Eg = 1 (cf. [KKo]).

det(2m) = 2N.
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Then clearly 3 det(2m) = N is odd per assumption.

Moreover, writing ro = (], ...,7,), we obtain from the Jacobi decomposition (cf.

Ty
Remark 2.19)

Dy = —2det(2m) - ng + (2m)*[rf] = T;Q (mod N),

where (2m)* denotes the adjoint of the matrix 2m. Now the claim follows if we
choose 73, such that (r, N) = 1. O

Now we want to define the desired maps (see also Definitions 1.10 and 1.11 in the
Introduction). Let us start with the map Sp, ,,(¢)(w) (w € H) that is defined for
a Jacobi cusp form ¢ in terms of a Fourier expansion in >, where the Fourier
coefficients are certain sums of special values of the Fourier coefficients of ¢.

Definition 4.17 For ¢ € J ")\, we define

+1
k"rg?)

- D n? n .
SDD,TD(¢)<w) — 21—9,2 Z (70> . dk—l . C¢ <ﬁn0? 37,0> e?mnw (U] c H),

n=1 dn

where cy(n, ) is the (n,r)—th Fourier coefficient of ¢.

Next we define for f € Sy, (% det(2m))_ the map S, . (f)(7,2) ((1,2) € Hx Clo-D)
as a Fourier expansion in 2™ and €™, where the Fourier coefficients are certain
cycle integrals.

Definition 4.18 For f € Sy, (3 det(2m)) we define

. k—1
* t Ti(nT+rz
Sbunn ()T 2) = <det(2m)) © D Thdderm).DoDromyrt, Dy ()ET T,

nez
reZ(laQ)
An>m—1[rt]

where (7,2) € H x C9Y | and where D := — det 2 ( Q 31 )
2

Later on (cf. Lemma 4.20) we show that this definition is allowed. But first we
want to state the main Theorem of this chapter.

Theorem 4.19 If ¢ € J;'°J, . then the function Spyr,(¢)(w) is an element of
2 M
Sop (5 det(2m)) .
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If f € Soi (3 det(2m)) ~, then the function Sy, . (f)(7,z) is an element of J "%

b+
The maps
SDO,TO : J,:fé m SQk(% det(2m))_
2 bl
Shoro Sgk(% det(2m))” — Jquf&m
2 I’

are adjoint maps with respect to the Petersson scalar products, i.e., we have for
all f € Sy, (3 det(2m)) and for all ¢ € o

+%,m
<SD0,7"0 (Qb), f> = <¢7 SBO,ro(f)> .

Before we can prove Theorem 4.19 we have to show

Lemma 4.20 Definition 4.18 is allowed, i.e., DDy > 0 is a discriminant, Dq is
a fundamental discriminant, D and Dqy are both squares (mod 2det(2m)), and

DDy = (TO(Qm)*rt)2 (mod 2det(2m)). (4.1)

Proof. Since Dy and D are negative, Dy is a square (mod 2det(2m)) and a
fundamental discriminant, D = 0,1 (mod 4) (which follows from the Laplace
development) and (2 det(2m), Dy) = 1 it is enough to show congruence (4.1). For
this we need some knowledge about quadratic forms over the p-adic ring 7Z,.

Lemma 4.21 Let p be an arbitrary prime.

1. Ifp # 2, then there exists a matric U € GLy(Z,) and there exist my, ..., m, €
Z,, such that
my

and

ngl m;

i#g

2. Ifp = 2, then there exists a matrizc U € GLy(Zs) and there exist My, ..., M, €
{2”[, (f;) , ([1)(1))} , wherev € N, v >1,1€{1,3,5,7} and r € N such that

M,
(2m)[U] =
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and

Ny
(2m[U])* = det(2m)
N,
Here for 1 <1 < r we define
= ; if M; = 21
=0 B =
(10) ifMi:(m)

Proof. Lemma 4.21 follows directly from the theory of quadratic forms over Z,
(see [Cal). O

Remark 4.22 In Lemma 4.21 1. (T[]_, mi,p) = 1 if p t det(2m) and p|m; for
exactly one m; (1 <i <v) if p|det(2m).
Moreover in 2., there occurs exactly one block 21 and v = 1.

Proof. Let us first assume p # 2.

Clearly p { []_, m; if pf det(2m), since (det U,p) = 1.

If p|det(2m), then p|[]_, m;, thus p|m; for at least on m,;, without loss of gen-
erality we may assume p|m;.

Setting

= 32
-~ O

) equals

3 oS

we see from the Jacobi decomposition that Dy := det 2 (

iﬁmi 7“3-2 —4n0ﬁmi = (ﬁmz) % (mod p).
i=1

j=1 =1 1=2
i#]

Since (Dy,det(2m)) = 1 and Dy = (det U)? - Dy with (detU,p) = 1, we have
pt Dy. Thus p 1 [[7_, m; as claimed.

For the same reasons we can conclude that exactly one block 2”1 occurs if p = 2
and that v = 1.

Proof of Lemma 4.20. Since %det(Zm) is odd and DDy =0 or 1 (mod 4), which
are the only squares (mod 4), we have to show

DDy = (r(2m)*7’6)2 (mod p"), (4.2)
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where p is a prime that divides det(2m) of v—th order. Now our aim is to use
Lemma 4.21 and replace 2m by a diagonal matrix and a block-diagonal matrix if
p # 2 and p = 2, respectively.

Let U € GL, (Z,). We set

2m = 2mlU],
ro = moU,
r = rU.
Then we have
Dy = det2( )} = (det U)? - Dy,

SRRV R
N3 S “’lg
N

| — |

7~ N

D = detQ(

(2m)* = (detU)* - U *(2m)*U,
det(2m) = (detU)?*-det(2m).

Therefore we have, using that p and det U are coprime since U € GL,(Z,), that
congruence (4.2) is equivalent to

Dy-D = (detU)*-D-Dy=(detU)*- (rU-UL2m)*U"- Ut?”(t))z
= (F(2m)*rE)*  (mod p¥).

In the following we may replace m, ro, and r by m, 79, and 7, respectively. In
particular we replace D and Dy by D and Dy, respectively. This is possible since
in the proof none of the restrictions given on Dy and m at the beginning of section
4.2 is needed. We distinguish the cases p # 2 and p = 2.

If p # 2, due to Lemma 4.21, we may assume that 2m is a diagonal matrix of the

form
om=| """ . ,
ey

where m; € Z, and where p divides exactly one m; (1 < i < g) of v—th order.
Without loss of generality we may assume that p divides m;. Thus, setting
ro := (r],...,7ry) and 1 := (r1,...,74), we obtain from the Jacobi decomposition
(cf. Remark 2.19) that the left-hand side of (4.2) is congruent to
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9 1
i= m
—2det(2m) -n+ (ry,...,1y) Hi;& ' :
9
o "y
,,,,/
9, m; !
x | =2det(2m) - ng + (r}, ..., 7)) - :
. H‘z:l m’L ’r‘/
i#£g g
g 2
= <r17"’1 Hml> (mod p¥),
i=2

whereas the right-hand side of (4.2) is congruent to

2

—_~

r
g
i=1 1Yy

2
g
(r1,...,7g) I : = (rlri H mz> (mod p”).
I m r i=2
i#g
Thus (4.2) is proved for p # 2.
If p = 2 we may assume, again using Lemma 4.21, that 2m is a block-diagonal
matrix with blocks from the set {2l, (% %) , <(1) (1)> }, where [ is odd and where
the type 2l occurs exactly once, without loss of generality at the first position.

Thus, using that 3 det(2m) and [ are odd integers, we obtain that the left-hand
side of (4.2) is congruent to

Q@ ~

1 . 1 o
0 ' , , 0 !
(7”1,...,7’9) .. '(7’1,...77”9) )
0/ \' o) \ "
=rir1  (mod 2),
whereas the right-hand side of (4.2) is congruent to
2
L .
(Tl, © Tg)
0 ) \ "
=rirm (mod 2),
which proves (4.2) for p = 2. O
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Now we want to prove Theorem 4.19. The proof is seperated into several theo-
rems and lemmas. First of all we define a function Q. ., p,.r, (w; 7, 2) which is a

holomorphic kernel function for the map Sp, . That is we give the following

Definition 4.23 Let

Qk,m,Do,ro (U), T, Z) ‘= Ck,m,Dq * Z ’D‘kil/z : fk,%det(2m),D0D,7‘o(2m)*rt,Do (U))
re’%‘%ﬁg)
an>m—1[rt]
'627ri(n7'+rz)’
where
(_Qi)k—l . |D0|k—1/2
Chom,Do = 71 det(2m))* " 2%—2\
(3 det(2m))™ -7 - ()

Then we can prove

Lemma 4.24 The series Qy m py.r (W; T, 2) is absolutely convergent. As a func-
tion of w it is an element of Sy, (5 det(2m)) .
Moreover we have the identity

Shore ()T, 2) = (fs Qem, Do (5 =T, —2)) (Vf € Sk (% det(Zm)> _> .

Proof. The absolute convergence of €., p,r, can easily be shown, using the
Fourier expansion of fy. 1 e (2m), 0o Do (2m)rt. Do (w) given in Lemma 4.10.

Clearly Qm,poro(w; 7, 2) is an element of Sy (3 det(2m))” as a function of w
(due to the absolute convergence and Lemma 4.9).
Moreover we have, using Theorem 4.14 for f € Sy (5 det(2m)) ",

<f7 Qk,m,Do,T()('; -7, _2)>

_— k—1/2 2mi
= Ckm,Dy Z ’D| /2. <f7 fk,%det(2m),D0D,T0(2m)*rt,D0 (U))>€ minrre)

nez
Tez(l,g)
an>m—1[rt]

(20)F1 - | Dy|F—1/2 . <2k — 2) L9 22| P kL2
1 - _
(3 det(2m))" -7 (527) b1

2mi(nT+rz)
X E "'k, 3 det(2m), Do D,ro(2m)*, Do (fe

nez
Tez(l,g)
an>m—1 [rt]

= Sp(N(r2)0
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Now our aim is to show that the function 4 ,,, p, ., is also a holomorphic kernel
function for the map Sp, ,,, i-€.,

SDO,To(qs)(w) = <¢7 Qk,mﬂoﬂ“o(_@’ i )> (ng € J;is%m) .

Since the Fourier coefficients of Sp, ,, are given by certain linear combinations of
the Fourier coefficients of ¢, due to the Petersson coefficient formula it is sufficient
to show that Sp, ,, is a suitable linear combination of Poincaré series in J]:f& .

2
More precisely, since

Qk,m,Do,To(_Tv -z w) = ka%DOJo (Tv 2 —111)
we have to prove

Theorem 4.25 The identity

Z'kfl 3 (27T)k
kava()v"'O <w7 T, Z) = Ck,m,Do * W
k—1 DO k 2milw
>< Zl (Z (7) . d . Pk+gTH,m,(nOdl277’Od/)<7—7 Z)) e 9 (43)
>1 dd' =l

holds.

Proof. The definition of the right-hand of equation (4.3) is formally allowed
because

1
5 det(2m) - (—4nod? + m™*[rid])) = d* - Dy < 0,

since Dy < 0. Moreover it can easily be shown, using the Fourier expansion from
Theorem 2.29 and Theorem 3.10 that the right-hand side of (4.3) is absolutely
convergent.

Now the idea is to expand both sides of (4.3) in double Fourier series and compare
Fourier coefficients. Using the Fourier expansion from Theorem 2.29, Theorem
3.10 and Lemma 4.10, we have to show since ¢ =1 (mod 8)

a1 (2m)F _ _ 1 .
Zk lﬁ|D’k 1/2(l2/DOD>(k 1)/2<|D0| 2 '€%det(2m)<l7D0D7r(2m> réuDO)

] ~1/2
H VR /(DD Y (5 det@m)) ot

a>1

21 -1
S, aamall: DoD.r 15, 00) - Sy g VDD ) )
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:ik—l-%-lk—l-;(%) (1/d)" - (5m ((é)2no,éro,n,r>

D )k/2—1/4

Z2/d—21)0 Zegc(rm Tgl/d)

c>1

I l 21 -1
z . == . Lom9/2-1
X Hp, ¢ (dQnO’ <d> ro, M, 7’) Ji—1/2 (det(2m) o d \/DOD) c ) .

This is equivalent to saying that

21 - (det(2m)) V2 R (

171 (D/ Do) - €1 qog(amy (I, DoD, 7(2m) "1, Do)+ - (D Do)* /274 1F42 .
x 2(det(2m))~1/2. Z a 12 S1 det(zmyalls DoD, r(2m)*r, Do)

a>1

2m -1
T —— . \/DyD
Je-1/2 (det(Qm) -a 0 )
D AN,
=1, E < do) (1/d)* - <(3) no,aro,n,r> 42 . ka2

d|l
_ _ _ Do\ -
X (D/Do)F2714 IF12 s (det 2m) T2 (7) A7V " eau(rm gl d)
d|l c>1
2 l 2 - |
N O R R Oy ) R

We first want to show that the first terms of (4.4) agree with each other. For this
we to show the following

Lemma 4.26 We have

(D/Dy)*? - €1 det(zm) (s Do D, 7(2m)"rg, Do)

_%;<Do) (1/d)" <(é)2no,éro,n,r>. (4.5)

Proof. Inserting the definition of €1 dot(2m) from Lemma 4.10 we see that the
left-hand side of (4.5) is zero unless D = Dgf? for some f € N with f|l and

Dof = r(2m)*rl  (mod det(2m)). (4.6)

Using
Dy = 10(2m)*rl — 2ng det(2m)

we see that (4.6) is equivalent to

ro(2m)*ri f = r(2m)*rf (mod det(2m)).
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In this case the left-hand side of (4.5) is equal to (5—;) -

Inserting the definition of 9,, from Theorem 2.29, we see that right-hand side
of (4.5) is zero unless D = Dy(l/d)? and r = rol/d (mod Z19) - 2m). Setting

f =1/d we see that in this case it has the value <ﬁ—;> - fF

Thus we have to show

Lemma 4.27 Under the assumptions on m and Dqy given in the beginning of this
section, the following congruences are equivalent:

(r —rof)(2m)*ri =0 (mod det(2m)), (4.7)

r—rof =0 (mod Z19 . 2m). (4.8)

Remark 4.28 Lemma 4.27 does not hold for arbitrary m and Dy. As an exam-
ple, choose g > 1, m=E,, ro=(1,...,1), and f = 1.
Then we see, writing r = (r1,...,1,), that (4.7) is equivalent to

g

Zri =1 (mod 2), (4.9)

i=1
and (4.8) is equivalent to
r;=1 (mod 2) (1<i<yg). (4.10)
Thus (4.9) has more solutions than (4.10).

The proof of Lemma 4.27 is subdivided into several lemmas.

Lemma 4.29 If r is a solution of (4.8), then r is also a solution of (4.7).

Proof. Let r be a solution of congruence (4.8). Then there exists a A € Z(19)
with
r—rof = \-2m.

Multiplying both sides with (2m)*r{ from the right gives that r is a solution of
the congruence (4.7). O

Lemma 4.30 Forr € Z19) | the following conditions are equivalent:

(i)r=0 (mod Z1M9 . 2m) (4.11)

(i1) The congruence X -2m =r (mod ZM9 . det(2m)) is solvable.  (4.12)
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Proof. Suppose that (i) is satisfied, i.e., 7 = p - 2m, with p € Z(19). Then in (ii)
we can take A = p.

Conversely, suppose that (ii) holds, i.e., there exists A, u € Z(*9) such that
r—A-2m = u - det(2m). Observing that

- det(2m) = p - det(2m) - (2m)~-2m = p - (2m)* - 2m,

we then see that (i) is satisfied. O

Now we let p be a fixed prime such that p divides det(2m) of order v. Due
to Lemma 4.30 it is sufficient to consider the congruences:

(r—rof)(2m)*ri =0 (mod p"), (4.13)

A-2m=r—ryf (modZ19 . p") (4.14)

and show that every solution 7 of (4.13) gives a solution X of (4.14). For this let
us consider for U € GLy(Z,) the following system of congruences for 7 € 719

(7 — roU f)(2m[U])*(roU) =0 (mod p*), (4.15)

A-2m[U] =7 —roUf (mod Z19 . p¥) is solvable. (4.16)

The following lemma shows how this system corresponds to the congruences (4.13)
and (4.14).

Lemma 4.31 1. If r is a solution of (4.13), then 7 := rU is a solution of

(4.15).
Conversely: If 7 is a solution of (4.15), thenr := 7U is a solution of (4.13),

where U is an inverse of U in GL4(Z,).

2. If r is a solution of (4.14), then 7 :=rU is a solution of (4.16).
Conversely: If 7 is a solution of (4.16), then r := 7U is a solution of (4.14),
where U is defined in 1..

Proof. 1. Due to (det U, p) = 1 and (2m[U])* = (det U)?-det(2m)-U~-(2m[U]) ",
congruence (4.13) can be written as

det(2m) - (rU — roU f) - (2m[U])™* - U'ri =0 (mod p*).

Thus the claim follows if we multiply both side with (det U)?.
2. Due to U € GL,(Z,), the congruence

A-2m=r—rof (modp”) (4.17)
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is solvable for r € Z(19) if and only if the congruence
AU U2mU =rU —roUf (mod p)

is solvable. Thus the claim follows directly. O

Lemma 4.32 Let U € GLy(Z,) be given as in Lemma 4.21. If T is a solution of
(4.15), then T is also a solution of (4.16).

Proof. Let us abbreviate

s = (81,...,8,) =7 —roUf,

roU = (ri,...,75)",

A= (.0

For the proof we treat the cases p # 2 and p = 2 separately.
In the case p # 2 we conclude by Lemma 4.21 that (4.15) is equivalent to

g
Z (H mj> sirt =0 (mod p”) (4.18)
=1 \ji
and that (4.16) is equivalent to the solvability of the congruences

Ai-m;=s; (mod p”) (1<i<y). (4.19)

Moreover we know that p divides exactly one m; of order v (1 <i < g). We may

without loss of generality assume that p divides m;. Thus (4.18) has the form

g
$17) Hmj =0 (mod p"). (4.20)

As shown before ( =2 mj,p) =1.

Moreover we have that changing 7" into T'[U] changes Dy into
(det U)? =7 Hmj (mod p").

Thus (7}, p) = 1 follows from ((det U)?Dy, p) = 1.
Therefore (4.20) is equivalent to

s =0 (mod p”).
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It is therefore left to show that the congruences

Ao my = s (mod p”),
Ag-my = 5, (modp”),
are solvable, which is trivially satisfied, because the numbers ms,...,m, are

coprime to p as shown above.

In the case p = 2 we get with the same abbreviations as in the case p # 2, using
Lemma 4.21 (and without loss of generality assuming that the block 2[ occurs at
the first position) that (4.15) has the form

s177 =0 (mod 2), (4.21)
and (4.16) is equivalent to the solvability of the congruences

s1 = 0 (mod 2),
A3 = sy (mod 2),
)\2 = 83 (mod 2),

Ag-1 = 54 (mod 2).

Clearly the last g —1 congruences are solvable. Moreover we obtain as in the case
p # 2, using that 2 1 Dy, that 2 ¢ 7]. Thus (4.21) is equivalent to

s1 =0 (mod 2).

Therefore we have proved Lemma 4.27 and therefore Lemma 4.26, too. U
Thus the first terms in (4.4) agree. Next we have to show that the second terms
in (4.4) agree. In the second term on the right-hand side of (4.4) we substitute
cd = a to get, using ¢ =1 (mod 8),

D
LD/ Do)F VAR 2 07 (det(2m)) V2 Ty (70) d 2 eqq(rm” )

a>1 d|(a,l)
x H* ﬁn ir n,r |- J el V/DoD ) - (a)d)~9/*7}
m,a/d 2 05 d 0y 7ty k—1/2 det(?m) a 0 .

Thus it is sufficient to show

Lemma 4.33 Forl>1,n>0,r € Z39 we have

S% det(2m)a(l7 DD0> r0(2m)*rt, DO)

Do g/2 —1,.t ZQ l
=> — ) @/ )" - ezqpalrmrg) - Hinaa { Z5mo, 7o, )
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Proof. If we insert the definitions of S 1 get(2m)a AN Hpa/q and multiply both
sides with eg,(—rgm~1r?), then we see that we have to show
a b> — DD, b—ro(2m)~tr
—det(2m), b, ——————| | - €a l
b(aém)) Do ([2 et(2m); ’2det(2m)a]) ‘ ( det(2m)

b=rq(2m)*rt(det(2m))
b2=DD( (2 det(2m)a)

=Y <d>(/d) /2. 3 ea/d(< [A]+Cllr0>\+fl—22n0)ﬁ+np+r>\)_

d|(a,l pla/d)*
[(a,l) N

Since both sides are periodic in [ with period a, it is sufficient to show that their

Fourier transforms are equal, i.e., we have to show that for every b/ € Z /aZ we
have

3 ZXDO ([ det(2m), b, %D

b(a det(2m))
b—ro(2m) Wt
a —h)
e (( det(2m)

b=rq(2m)*rt(det 2m)
Dy
:_ZZ( ) (a/d)~l9+V)/ Z

SHES

b2=DD((2 det(2m)a)
(a/d)*
l(a) d|(a)l) p)\(a/d)

) [? l
X €q/d (< [A] + dro)\ + ﬁno) p+np+ri— h’g) . (4.22)

Setting h = det(2m)h’ + ro(2m)*r* we see the left-hand side of (4.22) is equal to

1 a b?> — DD, {
- E —det(2 hy — — E — (b—h
a e XDo ([2 et(2m), b, 2det(2m)a}) m Ca (det(Qm)< ))

b=rg(2m)*rt(det(2m)) )
b2=DDg (2 det(2m)a)

_J o ([addet(@m), b, 252220 ]) i 2 = DDy (mod 2adet(2m))
0 otherwise

For the right-hand side of (4.22) we obtain, after replacing [ by Id and then (A, 1)
by (pA, pl),

il Z(Do) (d/a) (g+1 Z e“/d(p(m[)\]+r0l>‘+n0l2—|‘7“)\—h,l—|-n)).

p(a/d)*
Mi(a/d)

Thus it is left to prove the following

101



Lemma 4.34 Suppose that b = r(2m)*rf (mod det(2m)). Let
F(z,y) == mlx] + rozy + noy® + re + sy + n, (x € Z(g’l), yEZ)

where

and
E.(m,r9,n0,7,5,n) = F, := ¢~ @+D/ ZZeCAF:cy

Ale)* z,y(c)

Then we have for any a > 1

a —
1 Z <D0> _ { ())(Do <[§ det(2m), b, 2bdet(D27Dn())ai|> Zfa|2detD2LTL0 - (4.23)

d otherwise
la

For the proof we need the well known

Lemma 4.35 Let p # 2 be a prime, ¢ be a p-power, A € Z with p|A. Then we

have
3 <é) (M) = { ()5 (4) el

o p 0 otherwise

Recall that €(x) = 1 ori according as x =1 or 3 (mod 4).
Proof of Lemma 4.34. For the proof we set

b> — DD,

¢= 2det(2m)

Since both sides of (4.23) are multiplicative functions in a we may assume that
a is a prime-power.
Moreover it is sufficient to show that

0 ifatC
Ly (%> Fya=14 (%) Sl mdpt Do (w2
a y (Do/p*> (%det(?m)c/a> if a|C and p|Dy.

a p

Indeed, if a|C' and p { Dy, then we can take as a splitting in Theorem 4.6, P3,
D1 = .D()7 D2 = ]_, ll = 1, lg = det(2m)/2

Then clearly we have a splitting with coprime fundamental discriminants and
with
(Do, ) = (1, det(2m)C}/ (20)) = 1,
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and

XDy ({adet@m)/zjb’ %D _ (%) |

If a|C and p|Dy, then clearly p 1 det(2m) because 2| det(2m) (in particular p # 2)
and (p, Do/p) = 1 (because Dy is fundamental), i.e., we can take as a splitting

D1 = Do/p*, DQ = p*, ll = ]_, lg = det(?m)/Z,

where

= (T )p=1 o),

p
Then D; and D, are fundamental and coprime. We may assume p 1 (C'/a), be-
* 1 m)- a .
cause otherwise both (DO({ P ) (2 det(?p )6/ > and the generalized genus character

vanish.
In this case

(Do/p*,a) = (p*,det(2m) - C/(2a)) = 1,

and we have

XDy ([a-det(2m)/27ba %D = (DOC{p*) (det(%f)*C/(?a)) '

The Jacobi symbol (WM) is obtained by using the quadratic residue law,

distinguishing the cases whether det(2m)C/(2a) is even or odd and using that
the only squares (mod 8) are 0 and 1. The proof can be left out here since it is
a straightforward calculation and can be done exactly as in the case g = 1.
Thus we have proved that is is sufficient to show identity (4.24).

P

Remark 4.36 If p # 2 is a prime that divides det(2m), then (D°> =1, because

in this case Dy is a square (mod p).

Now let U € GL4(Z,). We want to replace m by m[U], choosing U as in Lemma
4.21, since in this case the sums F, are easier to compute (in fact we take the
integers that are congruent this p—adic numbers (mod p”), we just don’t mention
this all the time).

For this let D, Dy, N, 7, and 7 be defined as in the proof of Lemma 4.20. Moreover
let

b = 7(2m)*F — det(2m)s = (det U)? - b,
- T
C = Japy = (detU)?-C.

We now have to show that by changing D, Dy, b, and C' into D, Dy, 5, and C,
respectively, we neither change the left- nor the right-hand side of (4.24). Let us
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start with the left-hand side. We have

F, = ¢ (o+D/2 Z e (M) Y ee (A (noy? +sy)) Y el x|+ rory + 1))
Ac)* y(c) z(c)
=c WY e, (An) Y ee (M (noy® + ) Y e Am[U][Uz)+roUUzy+rUU))
y(e) z(c)

= Fc (maf();nOa":?San)?

where U is an inverse of U in GLy(Z,). For the previous identity we used that
Uz runs (mod c¢) if = does since U € GLy( Z,).
Moreover we obtain, using that (det U, d) = 1, that for all positive divisors d of a

D() o D() : (det U>2 . DO

d) d \d )
Thus the left-hand side of (4.24) is equal to
- Z zz/d m TO,TLO,T‘ S n)

dla

We now show that the right-hand side of (4.24) remains unchanged.
Due to (a,det U) = 1, we have

aC & a\Cj = (detU)?- C,
p|D() ~ p|D0 = (det U)2 - Dy.

If a|C and p t Dy, we have due to (detU,a) =1

(2)- (serr-m - (2)

If a|C and p|Dy we have, again using that (det U, a) = 1,

(Do/p*> (det(2m)é/(2a)> _ ((detU)2DO/p*> <(detU)4det(2m)O/(2a)>

a p a p

Do/p*\ (det(2m)C/(2a)
a p '
We now have to be carefull, since the restrictions on Dy and det(2m) given at
the beginning of this section are now changed (e.g. (det(2m), D) = (det U)?,

which is not necessarily 1). But for the proof of identity (4.24) we only need that
p must not divide both Dy and det(2m), which remains since (p,det U) = 1, and

104



(det(2m), Dy) = 1.
Thus in the following we may replace m,r, and ro by m, 7, and 7, respectively.
Let us abbreviate

=0 TR
|
S
=
=
<
Q
S~—

0 = (r’l,...,r;).

First we treat the case p # 2. Due to Lemma 4.21 we may assume that m has

the form B
() )
m = _— = . ,
" 2my, " my

where 2 denotes an inverse of 2 (mod c¢). We have (m;,p) = 1 if p{ det(2m) and
p divides m; for exactly one m; of v—th order (1 <i < g) if p| det(2m).
Thus we have

D = det(2m)/2- (37 r?/m; —4n),
Dy = det(2m)/2- (39, r%/m; — 4no) , (4.25)
b = det(2m)/2- (3%, rirl/m; — 2s).

Moreover in this case the sum F, has the form

F.= ¢ oth/2. Z ec(n) Z ec ((noy® + sy) A)
A(e)* y(c)
g

X H Z ec ((maxd + (yr) + 1) ;) A) .

i=1 i(c)

(4.26)

Let us first assume p 1 det(2m), i.e., (p,m;) =1 for all m; (1 <i < g) . Applying
Lemma 3.8 (with a = 0) leads to

F. = ¢ otz Z ec(nA) Z ec ((noy® + sy) A)

Ale)* y(c)

<TI0 (22) o (A famg)

Since g =1 (mod 4) and since ¢ is odd we obtain
€(c)! = (o),
521 (%) _ <2971 1‘5_7:1 mL) _ <%det(2m)> ’ (427)

D ] |

o>
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Thus we get

L (52 £ )
6.:(( < 2/ 477%)?! +( zg:ﬁﬁ/@mz')> y))
e i=1 i=1

Due to (¢,det(2m)) = 1, we can replace A by 2det(2m) - A and use (4.25), which
leads to

Mm:

E, =c 2. ¢lc)- Z (%) ~e.(—AD) Zec(—Do)\y2 — 2b\y). (4.28)

Ale)* y(c)

We now proceed, treating the cases p 1 Dy and p|Dy, separately. As described
previously, p? 1 Dy in both cases.
In the case pt Dy we have, again using Lemma 3.8,

Fo= o X (2) elanie ) (00 ) e (v 0)

c
Ale)*

- (%) ) e (Ab* = DDq) /D) .

Ale)*

Due to (¢, Dy - 2det(2m)) = 1 we can replace A by A - Dy - 2det(2m), where
2det(2m) is an inverse of 2det(2m) (mod c¢). This leads to

Dy
F.=—)- )
) ( ; ) Y e(AC)
Ale)*
Thus we obtain
Dy Dy (o) -a ifalC
; (7) Faja = ( ) Ze“ (AC) { otherwise

In the case p|Dy we obtain, using Lemma 3.8 for the sum in (4.28), that F.
vanishes if p 1 b and otherwise has the value

Fom e Y (3) o0 v el (22 ey (220

Ae)*

Since p|Dy and p 1 det(2m), the condition p|b is satisfied if and only if p|C. Thus
we get, using

e(c/p)-e(c) = e(p),
<#p/p> _ (DS/,f*), (4.29)
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that

F.=p'% e(p) - (Do/p*) D (A) vec (A (b = DDy) /Do) -

/v ) {S\p

Due to (p,2det(2m) - Do/p) = 1 we can replace A by 2det(2m) - Do/p - A, where
2det(2m) is an inverse of 2det(2m) (mod c¢), which leads to

Fo— ' (p). (Do/p*> <%det(2m)> (Do/p) A%): (é) - eo(AC/p). (4.30)

c/p p P p

Thus we obtain in case ¢|C, using Lemma 4.35,

Fome (P, (M) . (431)

c p

Othervice the sum in (4.24) vanishes. Clearly expression (4.31) is zero if
p|(C/c). Therefore the sum on the left-hand side of (4.24) is reduced to a single
term F,.

Now let us assume that p|det(2m). As shown in Remark 4.22 p divides ex-
actly one m; (1 <i < g) of order v = v,(det 2m). Without loss of generality we
may assume p|m,.

We now distinguish the case whether p”|c and p” t ¢. Let us first assume p”|c.
Then we have, again using Lemma 3.8 for the sum in (4.26),

Fo=c @23 end) Y el(noy® + sy)A)

A(e)* v(e)
yrly+rg=0(p¥)

y H\f - (22 e (-Awrl o (4m)

e () o ()

Thus since g =1 (mod 4), we obtain

F. = c‘l/Q.p”/2.e<C/py)- (ng_ll ml) . mg/ZZV . €c ((n — g T?/(4mi)> A)
( c/p ) Ao P
) T Ll o)l Srem)))
y(e) i=1 i=1

yrg+rg=0(p¥)
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Due to (M%}Qm) p> = 1, we may replace A by M A. Using (4.25) we obtain

Fo=cV2p 2 ele/p") (Hg 1 ml) | (mg/py> | (Mewm)/py)

c c/p” c/p”

<X () ) X el (Do - )

A(e)* v(e)
yr’g+rg =0(pY¥)

Since p f Dy we can apply the same arguments as before to conclude that (75, p) =
1. Thus we can replace y by —rgr_; + p”y, where 7“_; is an inverse of 7 (mod c)
and where the new y runs (mod ¢/p”). Using (4.25) we obtain

g—1 g—1 2
g—1
(H mz-) D, = (H mir’g22> (mod p"),
i=1 i=1

ie.,

i.e., we have, due to Remark 4.36,

[ m (D) »
p p '
Thus we obtain

Fo=c'2opeefp’) - ) (

) —AD/p")

Ko \e/r
X €c <)\ < (P'y = rqr)” Dofp” = 20/p" - (0'y — ng)»
y(e/p¥)
_ c1/2~p”-e(c/P)'A(c)* (C/);W) Ce <)‘ <_D/PV — Do/p" - (rgr})” +20/p" (r«"ﬁ)»

<Y e (D0 + 29 (D, 1))

Due to (4.25) we have
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i.e., we get, using Lemma 3.8 and p { Dy,

Fom e ale) 3 (7 oo (0 (200 = ot ()" 201 )

Ae)*

v\1/2 v — Do ((Dorgr_; - b)/py)z
X(C/p)/-G(C/p)-< V>~ec/pu< D )

¢/p
Thus we have, again using Remark 4.36,
A(B? — DDO))
F.= e | ——————= | .

Therefore we deduce, changing A into Dy - 2det(2m)/p” - A, where 2det(2m)/p”
denotes an inverse of 2det(2m)/p” (mod c),

F.=)  elCN). (4.32)

Now let us assume p” 1 ¢. Then we have, again using Lemma 3.8 for the sum in

(4.26),

F,=c @23 "emd)-c Y eol(noy® + sy)A)

Ale)* . fr(c)z o0
X H Ve e(c) - R (=A(yr} +1:)%/(4my)) .
i=1

Thus since g =1 (mod 4), we obtain
F.= ( =1 ml) Zec <<n—irf/(4mz)> )\> : (c/l”)
X €, ()\ ((7’9 2 Y (no —Zr (4m; > +rgrly (5—27’%/(27@)))) :

where we have again used that p {r}.

1 )
As before we have (@) = 1. Moreover we have, using that p*|m, and c|p”
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1

- . ®*-D-D
¢ 2 det(2m) ( 0)
2
det(2m) I rat s I\ g2 I 2
== (Zm‘§> ‘<§4m;” > "

det(2m) TgT; 91 rirl s 7“3 § 7“22
pr— . _— —_— E— n
2 2mg \ ~—~4m,; 2 4dmy — 4m;

Thus we obtain, replacing A by —% -4 - )\, where 4 denotes an inverse of 4
(mod ¢),
F.=)  elCN). (4.33)
Ae)
Combing (4.32) and (4.33) and using (£2) = 1, we infer that
Do _ _f oa ifalC
; <7) Haja = %ea()\C') N { 0 otherwise

Thus formula (4.24) is proved in the case p # 2.
Now let us assume p = 2.
Using Lemma 4.21 we may, without loss of generality, assume that m has the

form
l

N[ =
==

o=

0
1
2
Let the type (i %) occur g; times and the type (8 %) occur go times, i.e., g =
2 2

14 2g; + 2go (we may without loss of generality assume that the blocks occur in
this order, otherwise we change the numeration).
Let us set

I = {2,4,...,291}CN,

J = {2¢1+2,2¢1 +4,...,9— 1} CN.
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Then we have

1 2
D = Edet(2m)- - 71 Z 7P =i i) 4 ZrmH),

el ied

1 o 4 /
Dy = Jaen: (s 4§30 (-t ) 4 ).

el ieJ

1 /
b = 5 det(2m) - | —2s + — 4+ = - Z (27“¢7“§ + 2ri iy — T — T§+1T¢)
el

+2 - Z (T;Tlurl + Tﬂ”ngl)) (434)

icJ

riry 1

1
C= 5 det(2m) - ((—s + =R + 3 Z (2rir; — Pirig — T+ 200 4 Ti)

el
2
§ / /

icJ

2 2
—( 2n +ﬂ+§ Z(T?—TiTi+1+T’Z~2+1>+2'ZTiTi+1>

el e

2 2
( 2n0+a+§ Z(T'Q Pl i) 2 ZT‘ZTZ_H)). (4.35)

el ied

Moreover we have

F. = ¢ oth/2. Z ec(n) Z ec ((noy® + sy) A) ec ((la] + (yry + 1) x1) A)

A(e)* y(c) z1(c)
X H Z €e ()‘ (‘7"12 + ZiTip1 + $12+1 + (riy + i) @ ( iy + 7“i+1) $¢+1))
X H Z €c ()\ ([Eil‘i_H + (r;y + 7”1') T; + (rQHy + 7“7;+1) Ii+1)) . (436)
i€ zi(c)
zi41(c)

We now want to determine the different types of sums that can appear. For this
let us first assume ¢ # 2. If iy + 7 = 0 (mod 2) we obtain, using Lemma 3.8
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and (1,2) =

Z ec (I3 + (yry + 1) 21) A)

z1(c)
=2, (;;) €(IN) - (1+1) - e (—/\ (riy+m)? /(4[)) .

Otherwise the sum has the value 0. Moreover we have, again using Lemma 3.8,

Z ec (A (2 + (Fqy + 1ig1) Tis1)) Z ee (A (27 + (@i + 1y + 1) 2;))
zit1(c) z;(c)
—c

_ Z Ee ()\ (x?H + (rgﬂy +7’z’+1) l’i+1)) M2 (7) (V) - (141)

X e (—)\(‘”iﬂ +r§y+n~)2) .

z;11(c)
i1 +7‘£y+7‘i =0(2)

4

Now we can replace x;41 by —riy — r; + 2x;,; with the new z;,; running

(mod ¢/2), which leads to

2. (‘70) ce(\) - (1 +1)

Z €e ()\ <(2xi+1 — (ri + 7“2?/))2 + (Fiy + ris) (2o — (i +1jy)) — x?ﬂ))

ziy1(c/2)

Y e (3 () G ) e )

) (1+1)-e </\ ((n + rgy)2 _ (rgﬂy + n-+1) (rly + T'z)))

e P S

We have €(A) - €(3X) = i. Thus the last expression equals

% Y e (M(Bat 2 (2 My +rin) — 40y +1)))))
zit+1(c)

€ (;) (=1) - ec (BA (riris — 1 = i) + 7 (rivi — i = 1)
ty (ririsn + 1lgri — 2rir — 20 i)

Moreover we have, again using Lemma 3.8, that the third type of sum is equal to

Z ee (A (riay + 7i1) Tita) Z ee (A (wipy + 1y +15) )

zit1(c) z;(c)
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= ¢- Z ee (A ((rigay + riva) @)

zj41(e)
i +T'7/:y+7'i20(c)

= C-é€ (—)\ (7"£+1y + 7“z'+1) (riy + 7’2)) .

Thus we get, using that (:—f) = —1, that the third type of sum equals

c-(—1)- (:—(1:) cee (A (VP y (Piree + i) i)

Thus the sum in (4.36) equals

F, = ¢ o+/2. Z e.(nA) Z e. ((noy® + sy) A) -cl/? (;—;) “€(IN) - (1414)

Ae)* v(©)
riy+r1=0(2)

X €, < <7’1 y?/(4l) + ririy/(20) + 7"1/(4[)))
XH ( ) cee (BN ((ririns —rf — i) +
<Tgr;+1 —r?— ;il> y* 4 (riries Friam = 20— 2ria i) y))

X HC ’ (_1) ’ (:_i) c€c ( A (yzr;d—}-l +vy (7" Tit1 + 7nz—i—lrz) + 7azerrl))

_ (—1)D2 . 2 (éd%ém)) NETIDY (—;) e(IN)

Ae)*
€c ( (n —ri/(4l) + 32 Titip1 — 77 — i) ZW%H))
i€l ieJ
Z Ec <)\ <y2 ("0 - 7’1 2/(41) + Z ( i — z'2 TZH) - ZT;;T;H)
y(e) i€l ieJ

r’1y+7‘1§0(2)
+y (s —rry/(20) + 3 Z (riripr 4 rhq e — 20 — 20y ri)
icl
_ Z (r;ri+1 + 7"ﬂ";+1)> ) .
icJ

Thus we obtain by changing A into % det(2m)- A and by using that g =1 (mod 4)
and (4.34),
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E,=c?. (1414)- A%: (_TC) € (z% det(2m))\) e, (—=AD/4)
x> e AM(=Do/4y* —b/2y)).

y(c)
ry+r1=0(2)

Since Dy is odd, we get with the same arguments as used before that 7} has to be
odd. Thus we can replace y by 2y — 7“17"_’1, where r_’l is an inverse of r; (mod ¢) and
where the new y runs (mod ¢/2). Thus we get, using that [ is odd and g = 1
(mod 4),

!
3 det(2m) =1*-3" - (-1)2 =(-1)2 =1 (mod 4).
Thus

N——
I
Puly
X!

[
€ <§ det(2m)A

Therefore we have

F,=c 2. (144)- Z (_TC) ~€(A) - e.(—=AD/4)
Ale)*
X Z €e </\ (—D0/4 (2y — 7’17“_’1)2 —b/2(2y — 7“17’_’1)>>
y(c/2)

=0 3 (5 e (3 (-D/A = Do/l + b/207)

Ae)*
X Z ec (A (—D0y2 + (Dorlr_’l —b)y)).
y(c/2)
Moreover we get, using that r{ and 1 det(2m) are odd and (4.34),
Do -7y -7 =717 -det(2m)/(20) -2 =r;  (mod 2),
and
b=ry-det(2m)/(2l)-ri =7 (mod 2).

Thus o
Dy-ri-ri—b=0 (mod 2).
Therefore we obtain, using Lemma 3.8,
F.=c 2. (1+4)- Z (;) ~€(N) - ec (A (=D/4 — Do/4 (ri71) + b/2r177)))

Ae)*

x = (1414)-c/?- ( — ) - e(—DoA) - e (A (Dorir — b)*/(4Dy))) -

—ADy

DO | —
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Since Dy =1 (mod 4), we have

e(\) - e(—Do)) = i,
(o) (a) (5) ()

P () Ee00/apy - /) = (£) - 3 i)

Ale)* Ale)*

and

Thus

where we have changed \ into det(2m)/2 - Dy - A in the previous equality, where
det 2m/2 is an inverse of det 2m/2 (mod c).

Next let us assume that ¢ = 2. Then clearly A = 1. We again want to compute
the three types of sums in (4.36). We have, using that [ and 7} are odd and

2?2 =z (mod 2) for all integers ,

Z €9 ((ll‘% + (?ﬂ”’l + Tl) Il)) = Z I ($1 (1 + Y + 7,1))
CC1(2) 331(2)
— {2 ify=1+r (mod 2)

0 otherwise

Furthermore
Z €2 (%2“ + (T§+1y + T’H—l) $¢+1) Z €2 (%2 + (T + iy + 1) xz)
zi4+1(2) z;(2)

= Z €2 ($i+1 (1 + iy + 7“z‘+1)) Z ea (i (14 i1 + 13y +714))

zi4+1(2) zi(2)

/
= 2 E ey (i1 (L4 7y +7i1))
z;41(2)
$i+1+7";-y+7"i+150(2)

= 2 e ((T+ry+r) (L+ry+rin))
= —2-e (y (T£+1 i i i+ 7”2‘7’§+1) + (ri + 7ig + 7“z‘7“z‘+1)) :
Moreover we have

Z €2 ((%Hy + 7’i+1) SUz'+1) Z ea ((xip1 + réy + 1) ;)

zi+1(2) zi(2)

= 2. Z €2((7’£+1y+7’i+1) xi+1) :2'62((r;y—l—m)('rgﬂy—i—n“))
z; Hzgrrgl;i)ri(z)

= 2-eo(y(ririyy +ririgy + i) F i),
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Inserting this into (4.36) leads to

Fy =ey(n) - Z ea((no + 5)y)

y(2)
y=1+r1(2)

X H(_l) wey (y (rigr + 7+ i T Friri) + (7 i Fririg))
icl

X H ea (y (rirlyy + ririe + i) + riviv) -

As a solution of the congruence y = 1+ r; (mod 2) we can choose y = 1+ 7.
Thus we get

Fy = ey (n +g1+ Z(n +rign i) + Zrmﬂ +(14+mr) (no + 5+ Z

icl icJ icl
/ / /) / / !/ / /
(ri + i i T Tiﬂn-) + g (7"1-7"#rl + 7T+ T‘ﬂ“i+1)>> . (4.37)
icJ

Moreover we obtain using (4.35) , that 1 det(2m) and | are odd, and that 2? =
(mod 2) for all integers x

C= (rlr’l ( Z (ririen +7rs) + s) + Z (ririsn + rir) + s)

i€elUJ i€luJ

+7r? (no + Z (7‘22 + i+ r;2+1> + Z rgrngl)

el ieJ

+ T’12 <TL —+ Z(T’? —+ TiTivr1 + TZ»2+1) + Z TZ‘TH_I)

icJ

= (Tl < Z (Firigr + riar) + s) + Z (ririps + rir) + s)

elUJ i€IUJ

+ 7 (no + Z (rf 7y + i) + Z 7'%+1>

i€l icJ

+ (” + Z (ri +7ririg1 + 7riga) + Z T¢T¢+1> (mod 2). (4.38)

i€l ieJ
Therefore we have, using (4.37) and (4.38) and that es(z) = (—1)* (Vx € Z),

Fy = (—1)n0+2i61(T§+T§+1+"§"§+1)+EieJTérﬂﬁgl ~ea(C).
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Next we want to show that

(i — (_1)”0+Ziel(7’§+7"2+1+7"27"2+1>+ZieJTgr;-&-l"'gl.
Dy

We obtain by using Dy = 1 (mod 4),

i _ (_1)1/8(D8—1) _ 1 lf DO = 1 (mOd 8)
Dy —1 ifDy=5 (mod8) "

Thus we have to check the values of Dy (mod 8).
From (4.34) we know

]_ / ’
Dy = det(2m)/(21) 7> + 2 det(2m) (5 Z <7’Z2 — ririg riil>

el
+> il no). (4.39)

ieJ
We obtain by using that ] is odd and g = 1 (mod 4),

g

det(2m)/(21) - 2 =39 - (—=1)% =59 . (—1)9 1% = 59 . (_1)%1

1 (mod 8) if ¢y is even
= R91 =
=" = { 5 (mod 8) if g is odd ° (4.40)

Moreover
1 /
2det(2m) - <§ Z (7“ il + 7“1+1> Z i = )
el ieJ
= 2det(2m) - <Z (ri + iy + i) + Z ririp + ”0)
i€l ieJ

0 (mod &) if Y., (ri+ririy + 1) + D sey Tiriis + no is even
4 (mod 8) otherwise '

(4.41)
Inserting (4.40) and (4.41) into (4.39) we obtain
1 (mod 8) if g1 4>, (7’ + i i+ Tz+1) + D i TiTie1 Mo
Dy = is even

5 (mod 8) otherwise

Thus we have

(i) — (_1)é(D3_1) — (—1)gl+n0+ziel(r£+rinL+1+Ti+1)+zieJTiTH'l
Dy ’
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i.e., we have shown for an arbitrary 2-power

F.— (Di> 3 e(A0).

07 Xor

Therefore (4.24) follows very similarly as in the case p # 2. O
From this we obtain Theorem 4.19. U

Remark 4.37 We can also weaken the assumptions, made at the beginning of
this section, in a way that in case g = 1 we have the same restrictions as in
[GKZ]. That is we can skip the condition that i det(2m) is odd and furthermore
replace (det(2m), Dy) = 1 by the following conditions: If p divides both, det(2m)
and Dy, p* must not divide det(2m) if p # 2, p> must not divide det(2m) if p = 2
and % is odd, and p* must not divide det(2m) is p = 2 and % 15 even. Moreover
if p# 2, Hii; m; has to be assumed to be a square (mod p), where the m; are

choosen such that 3U € GLy(Z/pZ) with (2m)[U] = (ml . ) (mod p),

Mg
plm;.

We don’t want to prove the claims of this chapter under the restrictions of the
above Lemma because this would make calculations still more complicated since
more cases have to be distinguished. We just want to mention a few words about
what has to be changed. In order to prove that we are allowed to skip the con-
dition that %det(?m) is odd we first show that in Lemma 4.21 only one block
of the form 2”] can occur. The proof that the first terms of (4.4) coincide can
be adopted with little modifications. What is more difficult to show is that the
second terms of (4.4) coincide. For this one has to take more cases into account.
In order to show that one can also change the second condition, again the biggest
difficulty lies in showing that the second terms of (4.4) coincide. Here the restric-

[Ti=1 m
tion [Ji=1 m; is a square (mod p) is needed in order to obtain ’éTJ) =1
i#j

(which can be deduced in case the p|3 det(2m) and p t det(2m)).
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Appendix: List of often used symbols

N, Z,Q,R,C set of positive integers, integers, rational, real and complex numbers

tr, det trace and determinant of a matrix

Im, Re imaginary and real part of matrices

Symgy(R) set of symmetric matrices of size g with entries from a commutative
ring R

R* units of a (commutative) ring R with 1

M,(R) ring of g X ¢ matrices with entries in R

GL4(R) group of invertible matrices from M (R)

E, identity matrix of size g

I, p. 11

Al transpose of the matrix A

A[B| B'AB

A>B,A>B A-— B is positive (semi-) definite

P, set of positive definite matrices of size g with entries from R

Spg(R) real symplectic group of genus g

Ly, Siegel modular group of genus g

SLy(Z) special linear group of genus g

Lyo(N) subgroup of I'y p. 11

Co(N) [y 0(V)

a=b (modc) cdividesa—b

e; i-th unit vector

H, Siegel upper half space of genus g

H H,

F, set of Siegel reduced matrices p. 12

my—1(T) p. 13

Ty (9—1) x (g — 1) minor of T

Mo Z, No(r,z) operation of the symplectic and the Jacobi group p.13, p.15

|k slash operation of the Siegel modular and the Jacobi group p. 13, 15

Sk(T) vector space of Siegel cusp forms with respect to I

Sk(N) Sk(Lo(N))

<+ ->, <-->p Petersson scalar product for Siegel and Jacobi cusp forms p. 14, p. 18

avy, dV;]J symplectic volume for the Siegel modular and Jacobi group p. 14, p. 18

Ly T (N, Jacobi groups 15

A Syms (Z)

A* {S € Sym(Q)| S half-integral}

e(z) exp(2miz)

eo(2) (2)

e (T, z) e(nt +rz)

(F{,g)m stabilizer group of the function ™" p. 19

Ccusp Cusp .
Jem s e () vector spaces of Jacobi cusp forms
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(I,)!

N
Pk:,m;(n,r)) Pk,m;(n,r)7 Pk,m;(n,r)

Pk,m;(n,r),sa Pli\,[m;(n,r),s
Om

Hm,ca Hr]nv,c

In

I

J

>\k,m,D

I'()
q)ks,m,c,va q)ﬁm,c,v
G(a,b,c)

Vp(')

e(*)

Ly

XM

Qg

'

(T51)

Fgo(N

O(M)

rk

5(”)

.,y
ES,N(Z)7 ES(Z)
E;N(Z), EX(Z)

¢(s)

(v (s)

Py

()

Dran(s), Dy n(s)
)

Dp, Dia

XDO(')

Jr1.A.0.D0

e(m, A, p, Dy)

Sla

Tk1L,Q)> Tk,l,A,p,Dg
‘SD(),To’ S;)o,ro

M

m, Do,

embedding of the Jacobi group in the Siegel modular group
Poincaré series p. 18, p. 46, p. 57
non-holomorphic Poincaré series p. 24, p.24
p. 22

generalized Kloosterman sums p. 22, p. 53
Bessel function of order n

[-Bessel function of order n
matrix-argument Bessel function p.61
p.23

gamma function

certain integrals p. 25

Gauss sums p. 32

p-order

p. 32

ring of p-adic numbers

characteristic function of the set M

p. 45

p. 48

p. 57

p. 48

p. 58

rang of a quadratic matrix

p. 60

non-holomorphic Eisenstein series p.69
p. 69

zeta-function

p. 69

p. 69

Moebius function

Dirichlet series p.75

inclusion map

sets of quadratic forms p. 84
generalized genus character p.85
.86

p. 86

p. 86

cycle integrals p. 87, p. 87

lifting maps p. 89, p. 89

adjoint of a matrix

p. 94
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