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Abstract

In meiner Arbeit betrachte ich Anwendungen von Poincaréreihen zur verallge-
meinerten Jacobigruppe.
Im ersten Teil schätze ich Fourierkoeffizienten Siegelscher Spitzenformen ab.
Zunächst betrachte ich den Fall Siegelscher Spitzenformen kleiner Gewichte zur
vollen Siegelschen Modulgruppe Γg; anschließend untersuche ich eine Untergruppe
Γ0,g(N) von Γg.
Im zweiten Teil der Arbeit geht es um Liftungs-Abbildungen von einem Vek-
torraum verallgemeinerter Jacobi Spitzenformen in einen Teilraum elliptischer
Spitzenformen.

In our work we regard applications of Poincaré series for generalized Jacobi
groups. The first part deals with estimates of Fourier coefficients of Siegel cusp
forms. First we consider the case of Siegel modular forms for the full modular
group Γg having small weight. Afterwards the case of a certain subgroup Γ0,g(N)
of Γg is regarded.
In the second part we construct lifting maps from a vector space of generalized
Jacobi cusp forms to a subspace of elliptic modular forms.
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Chapter 1

Introduction

In this thesis we discuss applications of Poincaré series on certain (higher- dimen-
sional) Jacobi groups.
In the first part (Chapter 3) we derive estimates of Fourier coefficients of Siegel
cusp forms. In the second part (Chapter 4) we construct certain lifting maps
from a vector space of Jacobi cusp forms to a certain subspace of elliptic modular
forms. Chapter 2 contains preliminary facts on Siegel and Jacobi modular forms.

Let F be a cusp form of integral weight k with respect to the Siegel modular
group Γg = Spg(Z) ⊂ GL2g(Z) with Fourier coefficients a(T ), where T is a posi-
tive definite symmetric half-integral g×g matrix. Then a conjecture of Resnikoff
and Saldaña (cf. [RS]) says that

a(T )�ε,F (detT )k/2−(g+1)/4+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F . For g = 1 this
conjecture is true (Ramanujan-Petersson conjecture, proved by Deligne for k ≥ 2
[DE], and by Deligne and Serre for k = 1 [DS]). This estimate is the best possible
one, because due to Rankin we have (for f 6= 0)

lim sup
T→∞

∣∣A(T )T (1−k)/2
∣∣ =∞.

([Ra]).
For arbitary g there are known counter examples for the conjecture of Resnikoff
and Saldaña as the following theorem (cf. [K5]) shows

Theorem 1.1 Let g ≡ 1 (mod 4), g ≡ k (mod 2) and F ∈ Sk+g(Γ2g) be a Hecke
eigenform that is the Ikeda lift of a normalized Hecke eigenform f ∈ S2k(Γ1).
Then the conjecture of Resnikoff and Saldaña is not true.

For g ≥ 2 the estimate is at least known on average (cf. [K7]).
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From the classical Hecke argument the following bound

a(T )�F (detT )k/2

follows readily, where the constant implied in �F only depends on F .
For k > g + 1, the at present best estimate is

a(T )�ε,F (detT )k/2−cg+ε (ε > 0), (1.1)

where

cg :=


13
36

if g = 2 ([K1]),
1
4

if g = 3 ([Br]),
1
2g

+ (1− 1
g
)αg if g > 3 ([BK]),

where

α−1
g := 4(g − 1) + 4

[
g − 1

2

]
+

2

g + 2
. (1.2)

Clearly
αg → 0 for g →∞,

i.e., one is far away from the conjecture of Resnikoff and Saldaña. To be more
precise, in [BK] it is proved that

a(T )�ε,F (mg−1(T ))1/2−αg+ε · (detT )(k−1)/2+ε (ε > 0), (1.3)

where
mg−1 := min {T [U ]g−1|U ∈ GLg(Z)} ,

where T [U ] := U tTU (U t = transpose of U) and T [U ]g−1 denotes the (g − 1) ×
(g − 1) minor of T [U ]. From (1.3) the estimate (1.1) follows directly if one uses
the bound mg−1(T )�g (detT )1−1/g, which in turn follows readily from reduction
theory.

The method in [BK] is the following (for details cf. Chapter 2, Section 2 or

[BK]): If we write Z ∈ Hg as Z =

(
τ z
zt τ ′

)
, where τ ∈ H, z ∈ C(1,g−1), and

τ ′ ∈ Hg−1, we see that the function F (Z) ∈ Sk(Γg) has a so-called Fourier-Jacobi
expansion of the kind

F (Z) =
∑
m>0

φm(τ, z)e2πitr (mτ ′) (τ ′ ∈ Hg−1),

where m runs through all positive definite symmetric half-integral (g−1)×(g−1)
matrices, and where the coefficients φm(τ, z) are Jacobi cusp forms (the definition
of a Jacobi cusp form is given in Chapter 2). In [BK] the Fourier coefficients of
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Jacobi cusp forms are estimated by developing a Petersson coefficient formula for
Jacobi cusp forms and by estimating the Fourier coefficients of certain Jacobi-
Poincaré series Pk,m;(n,r) uniformly in detm. The restriction k > g + 1 is needed
for the absolute convergence of Pk,m;(n,r). Then the Petersson norm of a Jacobi
cusp form is estimated for the particular case where the Jacobi cusp form arises
from a Fourier-Jacobi expansion. This can be done by using certain Dirichlet se-
ries of Rankin-Selberg type which have a meromorphic continuation to the whole
complex plane with finitely many poles and satisfy a certain functional equation
(cf. [KS]). Then one can use a version of the Theorem of Sato and Shintani.
The method in [Br] is quite the same, he only uses a different splitting of Z ∈
H3, with τ ∈ H2, z ∈ C(2,1), and τ ′ ∈ H. Breulmann tried to generalize his result
for arbitrary g by using in the general case the splitting τ ∈ H2, z ∈ C(2,g−2), and
τ ′ ∈ Hg−2. Unfortunately for g > 3 his estimate is worse than the one of [BK].
In the case g ≥ 7 it is even worse than the trivial Hecke bound.

In Chapter 3 we prove generalizations of the estimates of [BK] in various di-
rections. More precisely we regard the limiting case k = g + 1, and the case
where Γg is replaced by the subgroup

Γg,0(N) :=

{
M =

(
A B
C D

)
∈ Γg

∣∣∣∣ C ≡ 0 (mod N)

}
of Γg.

In the case k = g + 1 the Poincaré series for Jacobi forms cannot be defined
as before, because one can show that these series are not absolutely convergent
(cf. Lemma 2.27). Therefore we use the so-called Hecke trick and multiply every
summand of the Poincaré series with a factor depending on a complex variable
s such that the new series Pk,m;(n,r),s is again absolutely convergent for σ =Re(s)
sufficiently large. Moreover this factor is chosen such that the new series is again
invariant under the slash operation of the Jacobi group. For g = 2 the use of the
Hecke trick is suggested in [GKZ] but not carried out. Now the method is the
following one: we compute the Fourier expansion of Pk,m;(n,r),s (cf. Theorem 3.4)
and show that it is even absolutely and locally uniformly convergent in a larger
domain of C that contains the point s = 0 if k = g + 1. For this we have to
estimate certain integrals by changing the path of integration in a suitable way
(cf. Corollary 3.7) and we have to estimate generalized Kloosterman sums, using
some formulas for Gauß sums and some knowledge about quadratic forms over
the p-adic numbers Zp (cf. Lemma 3.9). Combining these results, we can show
that the series that is defined through the above Fourier expansion is absolutely
and locally uniformly convergent in s in the larger domain (cf. Lemma 3.10).
Therefore we have a definition for the Poincaré series for k = g + 1. What is
left to show is that these series are Jacobi cusp forms and that the Petersson
coefficient formula is still valid. The first claim follows quite easily from what
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we already know; the second claim is more difficult. The problem is that the
scalar product

〈
φ, Pg+1,m;(n,r)

〉
cannot be computed directly but only via the limit

limσ→0

〈
φ, Pg+1,m;(n,r)σ

〉
. Therefore we have to show that these scalar products

are absolutely convergent (cf. Lemma 3.12), compute it explicitely (cf. Lemma
3.13) and show that we may change limit and integration (cf. Lemma 3.14).
Thus we obtain (cf. Theorem 3.20)

Theorem 1.2 Let g ≥ 2 and suppose that k ≥ g + 1. Then we have

a(T )�ε,F (detT )k/2−1/(2g)−(1−1/g)αg+ε (ε > 0),

where αg is defined in (1.2), and where the constant implied in�ε,F only depends
on ε and F , i.e., the estimate of [BK] is still valid in the border case k = g + 1.

In the second section we generalize the estimates for Fourier coefficients to Siegel
cusp forms on Γg,0(N).
Thus in what follows we let F be a cusp form of integral weight k with respect to
Γg,0(N) with Fourier coefficients a(T ), where T is a positive definite symmetric
half-integral g × g matrix.
For g = 2, 3 we obtain estimates of the same quality as in the case of the full
modular group; for g > 3 we obtain a slightly weaker estimtate. For the proof
we define a vector space of certain Jacobi forms for subgroups using the same
techniques as in [BK]. We estimate the Fourier coefficients of these Jacobi cusp
forms (again using for k = g + 1 the Hecke-trick). The difficulty lies in the
estimates of the Petersson norm of the Fourier-Jacobi coefficients since it is not
obvious how to define similar Dirichlet series of Rankin-Selberg type with a simple
functional equation. Thus we instead use the classical Hecke argument to obtain
a slightly weaker estimate for the Petersson norm which leads to (cf. Theorem
3.74 and Corollary 3.75)

Theorem 1.3 Let g ≥ 2, k ≥ g + 1. Then

a(T )�ε,F (mg−1(T ))1/2 · (detT )(k−1)/2+ε (ε > 0),

where mg−1(T ) := min{T [U ]|g−1|U ∈ GLg(Z)}, where T [U ]g−1 denotes the
(g − 1) × (g − 1) minor of T [U ], and where the constant implied in �ε,F only
depends on ε and F .

Corollary 1.4 Let g ≥ 2, k ≥ g + 1. Then

a(T )�ε,F (detT )k/2−1/(2g)+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .
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We now proceed using a different splitting in the Fourier-Jacobi expansion (in
the case g = 3 this splitting coincides with the splitting used in [Br]). Doing so,
we again can define certain Dirichlet series of Rankin-Selberg type (cf. Definition
3.69) which have a meromorphic continuation to the whole complex plane and
satisfy a certain quite complicated functional equation that sets this Dirichlet
series in connection to other Dirichlet series (cf. Theorem 3.72). Thus we obtain,
again using a modified version of the Theorem of Sato and Shintani (cf. Theo-
rem 3.73) the following improvements for g = 2 and g = 3 (cf. Theorem 3.76,
Corollary 3.77, Theorem 3.78, and Corollary 3.79)

Theorem 1.5 Let g = 2 and k ≥ 3. Then

a(T )�ε,F (min(T ))5/18+ε · (detT )(k−1)/2+ε (ε > 0),

where min(T ) is the least positive integer that is represented by T , and where the
constant implied in �ε,F only depends on ε and F .

Corollary 1.6 Let g = 2 and k ≥ 3. Then

a(T )�ε,F (detT )k/2−13/36+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Theorem 1.7 Let g = 3 and k ≥ 8 an even integer. Then

a(T )�ε,F (min(T ))1−3/13+ε ·m2(T )−1/2 · (detT )k/2−1/4+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Corollary 1.8 Let g = 3 and k ≥ 8 an even integer. Then

a(T )�ε,F (detT )k/2−1/4+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Thus in the cases g = 2 and g = 3 the estimates for the full Siegel modular group
obtained in [K1] and [Br], respectively, are also valid for Γg,0(N). Moreover we
have, similar as in [K8], the following estimate on average for g = 2 (cf. Corollary
3.80)

Corollary 1.9 We have ∑
{T>0,tr(T )=N}

|a(T )|2 �ε,F Nk−1/2+ε.

8



In the second part of our work we generalize (under certain restrictions) the
construction of lifting maps from the vector space of Jacobi cusp forms to a
certain subspace of elliptic modular forms to arbitrary g. The case g = 1 is
treated in [GKZ].
Let n, k, g ∈ N, where g ≡ 1 (mod 8), and k ≥ g+3

2
. Moreover let m be a

positive definite symmetric half-integral g × g matrix (this implies in particular

that 1
2
det(2m) is an integer), r ∈ Z(1,g), D0 := − det 2

(
n0

r0

2
rt
0

2
m

)
< 0 such that

D0 is a square modulo 1
2
det(2m), 1

2
det(2m) is odd, coprime to D0 and D0 is

a fundamental discriminant. Let us put ΓJ
1,g := Γ1 n

(
Z(g,1) × Zg,1

)
and denote

by J cusp
k,m (ΓJ

1,g) the vector space of Jacobi cusp forms with respect to ΓJ
1,g. Let

Sk(
1
2
det(2m))− be the subspace of elliptic cusp forms of weight k with respect

to Γ0(
1
2
det(2m)) that have eigenvalue −1 under the Fricke involution. Then we

can give the following

Definition 1.10 For φ ∈ J cusp

k+ g+1
2

,m
(ΓJ

1,g) we define

SD0,r0(φ)(w) := 21−g ·
∞∑

n=1

∑
d|n

(
D0

d

)
dk−1cφ

(
n2

d2
n0,

n

d
r0

) e2πinw (w ∈ H),

where cφ(n, r) is the (n, r)−th Fourier coefficient of φ.

Definition 1.11 For f ∈ S2k(
1
2
det(2m))− we define for (τ, z) ∈ H× C(g,1)

S∗D0,r0
(f)(τ, z) :=

(
i

det(2m)

)k−1

·
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

rk, 1
2

det(2m),D0D,r0(2m)∗rt,D0
(f)e2πi(nτ+rz),

where D := − det 2

(
n r

2
rt

2
m

)
, and where rk, 1

2
det(2m),D0D,r0(2m)∗rt,D0

(f) is a cer-

tain cycle integral (cf. Definition 4.13).

We prove the following version (cf. Theorem 4.19)

Theorem 1.12 If φ is an element of J cusp

k+ g+1
2

,m
(ΓJ

1,g), then the function SD0,r0(φ)(w)

is an element of S2k(
1
2
det(2m))−.

If f ∈ S2k(
1
2
det(2m))−, then the function S∗D0,r0

(f)(τ, z) is an element of
J cusp

k+ g+1
2

,m
(ΓJ

1,g).

The maps

SD0,r0 : J cusp

k+ g+1
2

,m
→ S2k(

1

2
det(2m))−
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S∗D0,r0
: S2k(

1

2
det(2m))− → J cusp

k+ g+1
2

,m

are adjoint maps with respect to the Petersson scalar products.

For the proof we follow the same method as in [GKZ] and define a function
Ωk,m,D0,r0(w; τ, z) that can easily be shown to be a holomorphic kernel function
for the map S∗D0,r0

. To prove the theorem we have to show that Ωk,m,D0,r0(w; τ, z)
is also a holomorphic kernel function for the map SD0,r0 . Using the Petersson
coefficient formula for Jacobi cusp forms, we have to show that Ωk,m,D0,r0(w; τ, z)
has a Fourier expansion where the Fourier coefficients are certain linear combina-
tions of Jacobi-Poincaré series. Therefore we have to manipulate certain higher
dimensional congruences and compute sums of multi-variable Kloosterman sums.

I wish to thank Prof. Dr. W. Kohnen for suggesting the issue of this work
and for giving helpful advice. Moreover I want to thank my family and all my
friends for having a lot of appreciation. In particular I want to thank my father
for correcting English phrases and Anke for helping with computer problems.
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Chapter 2

Preliminaries

In this chapter we want to fix some notations and recall some basic definitions of
Siegel and Jacobi cusp forms. Furthermore we want to introduce Poincaré series
for the Jacobi group. For details we refer the reader to [EZ], [Fr], [Zi], and [BK].

2.1 Basic facts about Siegel and Jacobi cusp

forms

For an integer g and a commutative ring R let us denote by Symg(R) the set of
symmetric matrices of size g with entries from R.
Moreover, if R is a commutative ring with 1, then GLg(R) denotes the group of
g × g matrices with entries in R that are invertible in R (i.e., the inverse matrix
has also entries in R).
Moreover let

Spg(R) := {M ∈ GLg(R)| Ig[M ] = Ig}

be the real symplectic group of genus g. Here we have used the abbreviations

Ig :=

(
0 Eg

−Eg 0

)
, where Eg ist the identity matrix of size g and A[B] := BtAB

for A ∈ R(n,n), B ∈ R(n,m) (n,m ∈N).
Additionally, we define

Γg := Spg(R) ∩GLg(Z),

the full Siegel modular group of genus g, and

Γg,0(N) :=

{
M =

(
A B
C D

)
∈ Γg

∣∣∣∣ C ≡ 0 (mod N)

}
,

where C ≡ 0 (mod N) means that every entry of C is divisible by N .

11



Remark 2.1 The group Γg is generated by the matrices

(
0 Eg

−Eg 0

)
and(

E S
0 E

)
(S = St).

Remark 2.2 Γg,0(N) is a subgroup of Γg of finite index.

The set of positive definite g× g matrices with entries from R will be denoted by
Pg.

Definition 2.3 A matrix Y ∈ Pg is called Minkowski-reduced if the following
conditions are satisfied:

(i) Y [h] ≥ Y [ek] ∀h = (h1, . . . , hk)
t ∈ Z(g,1) with (hk, . . . , hg) = 1, 1 ≤ k ≤ g,

(ii) et
iY ei+1 ≥ 0, 1 ≤ i < g,

where ei denotes the i-th unit vector.

Lemma 2.4 For all Y ∈ Pg there exists a unimodular matrix U ∈ GLg(Z) such
that Y [U ] is Minkowski-reduced.

Let us denote by

Hg := {Z = X + iY ∈ Symg(C)|Y > 0}

the Siegel upper half space of degree g (g ∈ N), where Y > 0 means that Y ∈Pg.
For H1 we also use the abbreviation H.

Definition 2.5 An element Z ∈ Hg is called Siegel-reduced if the following cond-
tions are satisfied:

1. | det(CZ +D)| ≥ 1 for all matrices M =

(
A B
C D

)
∈ Γg,

2. Y =Im(Z) is Minkowski-reduced,

3. X =Re(Z) is reduced modulo 1.

We will abbreviate the set of all Siegel-reduced matrices by Fg.

Lemma 2.6 For every element Z ∈ Hg there exists a matrix M ∈ Γg such that
M ◦ Z is Siegel-reduced.

Remark 2.7 If g = 1, then the set of all Siegel-reduces matrices is given by{
z ∈ H

∣∣∣∣−1

2
≤ x ≤ 1

2
, x2 + y2 ≥ 1

}
,

that is the classical fundamental domain of the operation for SL2(Z) . In partic-

ular we have y ≥
√

3
2

.
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In the following let us abbreviate

mg−1(T ) := min{T [U ]|g−1|U ∈ GLg(Z)}, (2.1)

where T [U ]g−1 denotes the (g− 1)× (g− 1) minor of T [U ]. Then from reduction
theory follows

Remark 2.8 We have

mg−1(T )�g (detT )1−1/g,

where the constant implied in �g only depends on g.

Remark 2.9 The group Spg(R) acts on Hg in the usual way by

M ◦ Z := (AZ +B)(CZ +D)−1,

where M =

(
A B
C D

)
.

Definition 2.10 Let f : Hg → C. Then we define for k ∈ Z

f |kM = det(CZ +D)−kf(M ◦ Z)

(
∀M =

(
A B
C D

)
∈ Spg(R), Z ∈ Hg

)
.

Let Γ ⊂ Γg be a subgroup of Γg of finite index.
A function f : Hg → C is called a Siegel cusp form of weight k and degree g with
respect to Γ if the following conditions are satisfied:
(i) f is holomorphic,
(ii) f |kM(Z) = f(Z) (∀M ∈ Γ, Z ∈ Hg),
(iii) for all M ∈ Γg, there exists a positive integer l such that the function f |kM
has a Fourier expansion of the form

f |kM(Z) =
∑
T>0

a(T )e
2πi

l
tr (TZ),

where the summation extends over all positive definite symmetric half-integral
g × g-matrices.
Let us denote by Sk(Γ) the vector space of Siegel cusp forms with respect to Γ. If
g = 1 and Γ = Γ0(N), then we also use the abbreviation Sk(N) := Sk(Γ0(N)).

Remark 2.11 (i) In Definition 2.10 it is sufficient to claim condition (iii) for
a set of representatives of Γ\Γg.
(ii) If F is a Siegel cusp form with respect to Γg or Γg,0(N), then F has a Fourier
expansion

F (Z) =
∑
T>0

a(T )e2πi tr(TZ),

13



where the summation extends over all positive definite symmetric half-integral
g × g-matrices.
Morever: if F is a Siegel cusp form with respect to Γg,0(N), then F |kγ (γ ∈ Γg)
has a Fourier expansion

F (Z) =
∑
T>0

a(T )e
2πi

l
tr(TZ),

where the summation extends over all positive definite symmetric half-integral
g × g-matrices.

Remark 2.12 Let f ∈ Sk(Γ) and let U ∈ GLg(Z) with

(
U t 0
0 U−1

)
∈ Γ.

Then
a(T [U ]) = (detU)ka(T ).

Lemma 2.13 If f ∈ Sk(Γ), then the function

h(Z) := |f(Z)|(detY )k/2,

where Y =Im(Z), is invariant under the action of Γ and has a maximum in Hg.
If Z ∈ Fg, then

|h(Z)| �h e
−a

Pg
i=1 yi ,

where yi = Y [ei] (1 ≤ i ≤ g), where a is a constant only depending on h, and
where the constant implied in �h also only depends on h.

Definition 2.14 For f, g ∈ Sk(Γ) we define

< f, g >:=
1

[Γg : Γ]
·
∫

F
f(Z) · g(Z) · (detY )k dVg, (2.2)

where F is a fundamental domain of the action of Γ on Hg, where
dVg = (detY )−(g+1)dXdY is the symplectic volume element, and where we have
written Z as Z = X + iY .

Remark 2.15 1. The fundamental domain of the group Γ has a finite sym-
plectic volume, i.e., ∫

F
dVg <∞.

2. The integral in (2.2) is absolutely convergent and independent of the choice
of the fundamental domain.

3. < ·, · > defines a scalar product on Sk(Γ), the so-called Petersson scalar
product.
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4. One can also form < f, g > for arbitrary complex-valued functions f and g
that are defined on Hg, and that are invariant under the slash operation of
Γ, if the integral is absolutely convergent with respect to one fundamental
domain (and therefore with respect to all fundamental domains).

5. If we want to emphasize with respect to which subgroup Γ of Γg we consider
the scalar product, we also write < ·, · >Γ instead of < ·, · >.

Next we want to give the definition of a Jacobi cusp form. Therefore we recall
what the Jacobi-group is and how it acts.

Definition 2.16 Let l, n ∈ N and let us abbreviate

ΓJ
l,n := Γl n

(
Z(n,l) × Z(n,l)

)
,

ΓJ
l,n,0(N) := Γl,0(N) n

(
Z(n,l) × Z(n,l)

)
.

Then ΓJ
l,n acts on Hl×C(n,l) in the usual way by((
A B
C D

)
, (λ, µ)

)
◦(τ, z) :=

(
(Aτ +B)(Cτ +D)−1, (z + λτ + µ)(Cτ +D)−1

)
.

Let k be an integer, m be a positive definite symmetric half-integral g× g matrix.

Moreover let γ =

((
A B
C D

)
, (λ, µ)

)
∈ ΓJ

l,n, and φ : Hl×C(n,l) → C. Then we

define the following action

φ|k,mγ(τ, z) := det(Cτ +D)−k · e
(
−tr

(
m(Cτ +D)−1Cm[(z + λτ + µ)t]

+mτ [λt] + 2mλzt
))
· φ(γ ◦ (τ, z)),

where
e(x) := e2πix (∀x ∈ R) .

Remark 2.17 Later we will only need the case (l, n) = (1, g − 1) and (l, n) =
(2, 1).

Now we can give the definition of a Jacobi cusp form.

Definition 2.18 Let m be a positive definite symmetric half-integral g×g matrix,
and let Γ be a subgroup of ΓJ

l,n of finite index. A function φ : Hl×C(n,l) → C
is called a Jacobi cusp form of weight k and index m with respect to Γ, if the
following conditions are satisfied:
(i) φ is holomorphic,
(ii) φ|k,mγ(τ, z) = φ(τ, z) (∀ γ ∈ Γ, (τ, z) ∈ Hl × C(n,l)),
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(iii) for all γ ∈ ΓJ
n,l there exists a positive integer M such that the function φ|k,mγ

has a Fourier expansion of the form

φ|k,mγ(τ, z) =
∑

n∈Z(l,l)

r∈Z(l,n)
4n
N

>m−1[rt]

c(n, r)e

(
1

M
tr (nτ) + tr (rz)

)
.

Let us denote by J cusp
k,m (ΓJ

l,n) and J cusp
k,m (ΓJ

l,n,0(N)) the vector spaces of Jacobi cusp

forms with respect to ΓJ
l,n and ΓJ

l,n,0(N), respectively. If there is no room for
confusion we merely write J cusp

k,m and J cusp
k,m (N), respectively.

Remark 2.19 Let T be a real-valued positive definite symmetric g × g matrix.
Then we can write T in the form

T =:

(
n r
rt m

)
=

(
n−m−1[rt] 0

0 m

)[(
1 0

m−1rt Eg−1

)]
=

(
n 0
0 m− n−1[r]

)[(
1 n−1r
0 Eg−1

)]
,

where n ∈ Pl, r ∈ C(l,n−l), and m ∈ Pn−l. This decomposition is called Jacobi
decomposition.
From this decomposition one can directly see that the following conditions are
equivalent:

1. T > 0,

2. n−m−1[rt] > 0, and m > 0,

3. n > 0, and m− n−1[rt] > 0.

One can embed the Jacobi group into the Siegel modular group, i.e., we have the
following

Remark 2.20 For γ =

((
A B
C D

)
, (λ, µ)

)
∈ ΓJ

l,n we define

γ↑ :=


A 0 B µ̃
λ E µ 0

C 0 D −λ̃
0 0 0 E

 ,

where (λ̃t, µ̃t) := (λ, µ)

(
A B
C D

)−1

. Then γ↑ is an element of Γl+n. If addi-

tionally γ ∈ ΓJ
l,n,0(N), then γ↑ ∈ Γl+n(N). Let us denote by (ΓJ

l,n)↑ the set of all

these γ↑.
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Remark 2.21 The map γ 7→ γ↑ is not a group morphism. If one substitutes the
Jacobi group by the Heisenberg group, then one obtains a group morphism, but
this property is not needed in our work.

The following remark shows why Jacobi cusp forms play such an important role
for deriving estimates of Fourier coefficients of Siegel cusp forms.

Remark 2.22 1. Let F ∈ Sk(Γ), Γ ∈ {Γg,Γg,0(N)}, n, l ∈ N with n + l = g.

Let us decompose Z =

(
τ zt

z τ ′

)
∈Hg (τ ∈ Hl, z ∈ C(n,l), and τ ′ ∈ Hn).

Then the Fourier expansion of F can be written in the form

F (Z) =
∑
m>0

φm(τ, z)e2πi tr(mτ ′), (2.3)

were the summation extends over all positive definite symmetric half-integral
n × n matrices. Then the coefficients φm(τ, z) are Jacobi cusp forms with
respect to ΓJ

l,n if Γ = Γg and with respect to ΓJ
l,n,0(N) if Γ = Γg,0(N). The

developement in (2.3) is called Fourier Jacobi developement.

2. If M ∈ Γ↑g, F ∈ Sk(Γg,0(N)), then F |kM has a Fourier expansion

F |kM(Z) =
∑
m>0

φ̃m(τ, z)e2πi tr (mτ ′),

were the summation extends over all positive definite symmetric half-integral
n × n matrices. The coefficients φ̃m(τ, z) have a Fourier expansion of the
form

φ̃m(τ, z) =
∑

n∈Z(l,l)

r∈Z(l,n)
4n
N

>m−1[rt]

c(n, r)e

(
1

N
tr(nτ) + tr(rz)

)
.

Proof. Remark 2.22 follows directly from Remark 2.20 applying the transforma-

tion law of F , and using that F |kM
(
τ zt

z τ ′

)
has period 1 in z and τ ′, and

period N in τ . �

Lemma 2.23 If φ is a Jacobi cusp form with respect to Γ, where Γ is a subgroup
of ΓJ

l,n of finite index, then the funtion

h(τ, z) := |φ(τ, z)| · (det v)k/2 · e−2πtr (mv−1[y]),

where v =Im(τ) and y =Im(z), is invariant under the action of Γ and has a
maximum in Hl ×H(n,l).

17



Definition 2.24 For Jacobi cusp forms φ and ψ with respect to Γ, where Γ is a
subgroup of ΓJ

l,n of finite index, we define

< φ, ψ >:=
1

[ΓJ
l,n : Γ]

∫
F
φ(τ, z)ψ(τ, z) (det v)k exp

(
−4πtr

(
mv−1[y]

))
dV J

n , (2.4)

where dV J
n = (det v)−n−2 dudvdxdy denotes the invariant volume element of the

Jacobi group, where we have written τ = u+ iv, z = x+ iy, and where F denotes
a fundamental domain of the action of Γ on Hl n

(
C(n,l) × C(n,l)

)
.

Remark 2.25 1. As a fundamental domain for the action of Γn
(
Z(n,l) × Z(n,l)

)
on Hl×C(n,l), where Γ is a subgroup of Γl of finite index, we can choose the
set{
(τ, z) ∈ Hl × C(n,l)

∣∣ τ ∈ FΓ, 0 ≤ xν ≤ 1 (1 ≤ ν ≤ g), 0 ≤ (yv−1)νµ ≤ 1

(1 ≤ ν, µ ≤ g)} /{(τ, z) 7→ (τ,−z)},

where we have written τ and z as τ = u + iv and z = x + iy, respectively,
where xν denotes the ν-th component of x, and where (yv−1)νµ denotes the
(ν, µ)-th entry of the matrix yv−1. Moreover FΓ denotes a fundamental
domain of the action of Γ on Hl.

2. The fundamental domain of the group Γ, where Γ is a subgroup of ΓJ
l,n of

finite index, has a finite volume, i.e.,∫
F
dV J

n <∞.

3. The integral in (2.4) is absolutely convergent and independent of the choice
of the fundamental domain.

2.2 Poincaré series

Let us recall the following formal

Definition 2.26 Let n ∈ Z, r ∈ Z(1,g), and let m be a positive definite symmetric
half-integral g × g matrix such that 4n > m−1[rt]. Then we define a Poincaré
series of exponential type by

Pk,m;(n,r)(τ, z) :=
∑

γ∈(ΓJ
1,g)∞\Γ

J
1,g

en,r|k,mγ(τ, z)
(
τ ∈ H, z ∈ C(g,1)

)
,

where

en,r(τ, z) := e(nτ + rz) := e2πi(nτ+rz)
(
τ ∈ H, z ∈ C(g,1)

)
,
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and where

(ΓJ
1,g)∞ :=

{((
1 n
0 1

)
, (0, µ)

)∣∣∣∣ n ∈ Z, µ ∈ Z(g,1)

}
is the stabilizer group of the function en,r.

Then we have the following

Lemma 2.27 The series Pk,m;(n,r)(τ, z) is absolutely and locally uniformly con-
vergent on H× C(g,1) if k > g + 2.
For k ≤ g + 2 the series is not absolutely convergent at the point (i, 0).

Remark 2.28 The first part of Lemma 2.27 is already stated in [BK], but no
proof is given.

Proof. For clarity we subdivide the proof into two steps.
I. In the first step we show that in the case k > g+ 2 the series is absolutely and
locally uniformly convergent on H × C(g,1) if it is absolutely convergent at the
point (i, 0).
Therefore we let K be an arbitrary compact subset of H×C(g,1) and write τ and
z as τ = u + iv and z = x + iy, respectively. We introduce for (τ, z) ∈ K an
auxiliary variable τ ′ = u′ + iv′ ∈ Hg such that

Z(τ,z,τ ′) :=

(
τ zt

z τ ′

)
∈ Hg+1.

From the Jacobi decomposition (cf. Remark 2.19) it follows that we can choose

for example τ ′ = u′+iv′ with v′ = i
(

yyt

v
+ εEg

)
, where ε > 0 is chosen arbitrarily.

Moreover for (τ, z) = (i, 0) we can choose τ ′ ∈ Hg arbitrarily. Now let K ′ ⊂ Hg+1

be a compact set that contains Z(τ,z,τ ′) and Z(i,0,τ ′) for all elements (τ, z) from K
(where we have chosen one τ ′ for every element (τ, z)).

As described in Remark 2.20, if γ =

((
a b
c d

)
, (λ, µ)

)
is an element of ΓJ

1,g,

then the matrix γ↑ :=


a 0 b µ̃
λ E µ 0

c 0 d −λ̃
0 0 0 E

 is an element of Γg+1.

Put T :=

(
n r

2
rt

2
m

)
> 0 and eT (Z) := e2πi tr(TZ) (∀Z ∈ Hg+1).

Then one can easily show that ∀ γ ∈ ΓJ
1,g, (τ, z) ∈ H× C(g,1) we have

(en,r|k,mγ) (τ, z) = e−2πitr (mτ ′) · (eT |kγ↑)(Z(τ,z,τ ′)).
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Thus

|en,r|k,mγ(τ, z)| = |cτ + d|−k · e2πtr (mv′) · e−2πtr (T Im(γ↑◦Z(τ,z,τ ′))).

It is known that there exists a positive constant c1 such that

Im(M ◦ Z̃) ≤ c1 · Im(M ◦ Z) (∀M ∈ Γg+1, ∀Z, Z̃ ∈ K̃)

(cf. [Ch]). Here A ≤ B for real quadratic matrices means that the matrix B−A
is positive semi-definite (in particular we have tr(A) ≤tr(B)). Thus

Im(γ↑ ◦ Z(i,0,τ ′))�K c1 · Im(γ↑ ◦ Z(τ,z,τ ′))
(
∀ γ ∈ ΓJ

1,g, (τ, z) ∈ K
)
,

where the constant implied in �K only depends on K. Clearly we may choose
c1 ∈ N.
Moreover there exists a constant ε > 0 such that

|cτ + d|2 ≥ ε(c2 + d2) ∀ c, d ∈ Z with (c, d) = 1,
∀ τ ∈ H s.t. (τ, z) ∈ K,

where the constant ε only depends on K (cf. [FB] p. 313).
Therefore we get, using that tr(AB) ≥ 0 if A,B ≥ 0,

|en,r|k,mγ(τ, z)| �K (c2 + d2)−k/2 · e−2πc1tr (T Im(γ↑◦Z(i,0,τ ′))) · e2πtr (c1mv′)

= |ec1n,c1r|k,c1mγ(i, 0)| ,

where the constant implied in �K only depends on K.
Thus the claim in I. follows.

II. In the second step we want to show the absolute convergence at the point
(i, 0) in the case k > g + 2. Therefore let us take as a set of representatives of
(ΓJ

1,g)∞\ΓJ
1,g the elements ((

a b
c d

)
, (aλ, bλ)

)
, (2.5)

where c, d ∈ Z with (c, d) = 1, λ ∈ Z(g,1), and where for each pair (c, d) we have
chosen a, b ∈ Z such that ad− bc = 1.
Then the series of the absolute values of terms of the Poincaré series at the point
(i, 0) is given by∑

(c,d)=1

(c2 + d2)−k/2 · e−
2πn

(c2+d2)

∑
λ∈Z(g,1)

e
− 2π

c2+d2 (m[λ]+rλ)
. (2.6)

Completing the square, we get that the value of the inner sum in (2.6) equals

e
π

2(c2+d2)
m−1[rt] ·

∑
λ∈Z(g,1)

e
− 2π

(c2+d2)
m[λ+ 1

2
m−1rt]

. (2.7)
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Since m is a positive definite matrix there exists a positive constant α such that
αEg ≤ m. Thus (2.6) can be estimated against a constant times

∑
(c,d)=1

(
c2 + d2

)−k/2 · e
π(m−1[rt]−4n)

2(c2+d2) ·
g∏

i=1

∑
λi∈Z

e
− 2π

(c2+d2)
α(λi+( 1

2
m−1rt)

i
)
2

, (2.8)

where
(

1
2
m−1rt

)
i
denotes the i−th entry of the vector 1

2
m−1rt.

Next we want to estimate the inner sums in (2.8). Therefore we show that for
l ∈ R+, µ ∈ R we have ∑

λ∈Z

e−l(λ+µ)2 �µ

(
1 + l−1/2

)
, (2.9)

where the constant implied in �µ only depends on µ modulo Z. First the fol-
lowing estimate holds: ∑

λ∈Z

e−l(λ+µ)2 ≤ 1 + 2
∑
λ∈N

e−lλ2

. (2.10)

Indeed: inequality (2.10) is clear for µ ∈ Z, because in this case λ+µ runs through
Z if λ does. If µ /∈ Z, inequality (2.10) follows directly from the estimates

− (λ+ µ)2 ≤

{
− (λ+ [µ] + 1)2 for λ ≤ −[µ]− 1

− (λ+ [µ])2 for λ ≥ −[µ],

where [µ] denotes the Gauß bracket.
Since e−lλ2

> 0 and this function is decreasing it is known from elementary
analysis that we can compare the sum with an integral which leads to the estimate∑

λ∈N

e−lλ2 ≤
∫ ∞

0

e−lx2

dx.

Thus we get the desired estimate if we use∫ ∞

0

e−lx2

dx =
1

2
√
l
·
∫ ∞

−∞
e−x2

dx =
1

2
·
√
π

l
.

Now we can use (2.9) with l = 2πα
c2+d2 and µ =

(
1
2
m−1rt

)
i

in (2.8). Due to
c2 + d2 ≥ 1 we can estimate the sum in (2.8) against a constant times

∑
(c,d)=1

(
c2 + d2

)(g−k)/2 · e
π(m−1[rt]−4n)

2(c2+d2) . (2.11)

In view of 4n−m−1[rt] > 0, (2.11) can be estimated against a constant times∑
(c,d)=1

(c2 + d2)(g−k)/2.
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Therefore the series (2.6) converges if k > g+2 because it is well known that the
series

∑
(c,d)=1(c

2 + d2)−l, where l ∈ R+, is convergent if (and only if) l > 1.

The divergence at the point (i, 0) in the case k ≤ g + 2 can be shown simi-
larly if we use the existence of a constant β such that m ≤ βEg and use that

e−
π
2 (4n−m−1[rt]) ≤ e

− π
2(c2+d2)

(4n−m−1[rt]), since c2 + d2 ≥ 1 and 4n−m−1[rt] > 0. �

From now on to the end of Subsection 2.2 we assume that k > g + 2. We
have the following

Theorem 2.29 The function Pk,m;(n,r) is an element of J cusp
k,m .

It has the Fourier expansion

Pk,m;(n,r)(τ, z) =
∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

g±k,m;(n,r)(n
′, r′)e(n′τ + r′z),

where ± = (±1)k, where

g±k,m;(n,r)(n
′, r′) := gk,m;(n,r)(n

′, r′) + (−1)kgk,m;(n,r)(n
′,−r′),

where

gk,m;(n,r)(n
′, r′) := δm(n, r, n′, r′) + 2πik · (det(2m))−1/2 · (D′/D)k/2−g/4−1/2

×
∑
c≥1

e2c(r
′m−1rt) ·Hm,c(n, r, n

′, r′) · Jk−g/2−1

(
2π
√
D′D

det(2m) · c

)
· c−g/2−1,

and where D := − det 2

(
n r

2
rt

2
m

)
, D′ := − det 2

(
n′ r′

2
r′t

2
m

)
.

Furthermore,

δm(n, r, n′, r′) :=

{
1 if D′ = D, r′ ≡ r (mod Z(1,g) · 2m)
0 otherwise

and
Hm,c(n, r, n

′, r′) :=
∑
x(c)

y(c)∗

ec((m[x] + rx+ n)ȳ + n′y + r′x),

where x and y run over a complete set of representatives for Z(g,1)/cZ(g,1) and
(Z/cZ)∗, respectively, where ȳ denotes an inverse of y (mod c), and where Jk−g/2−1

is the Bessel function of order k − g/2− 1.

Proof. For a proof, cf. [BK]. �

Remark 2.30 We have used a notation slightly different from the one in [BK].
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Moreover we have

Theorem 2.31 (Petersson coefficient formula)
One has 〈

φ, Pk,m;(n,r)

〉
= λk,m,D · cφ(n, r) (∀φ ∈ J cusp

k,m ), (2.12)

where cφ(n, r) denotes the (n, r)-th Fourier coefficient of φ and

λk,m,D := 2(g−1)(k−g/2−1)−g·Γ (k − g/2− 1)·π−k+g/2+1·(detm)k−(g+3)/2·|D|−k+g/2+1.

Proof. For a proof, cf. [BK]. �

From Theorem 2.31 we directly obtain

Corollary 2.32 As a unitary vector space with respect to the Petersson scalar
product, J cusp

k,m is generated by the Poincaré series{
Pk,m;(n,r) | n ∈ Z, r ∈ Z(1,g); 4n > m−1[rt]

}
.
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Chapter 3

Estimates for Fourier coefficients
of Siegel cusp forms

3.1 The full Siegel modular group

Our aim in this chapter is to estimate the Fourier coefficients of Siegel cusp forms
of weight k = g+ 1. For this we construct certain Poincaré series as a generating
system of J cusp

g+2,m. Remember that the case k > g+2 has been treated in Chapter
2.

3.1.1 Poincaré series of small weight

In Lemma 2.27 we have seen that Pk,m;(n,r)(τ, z) is not absolutely convergent at
the point (i, 0) if k ≤ g+2. Thus the Poincaré series of weight k = g+2 has to be
defined in a different way. We use the so-called Hecke trick (cf. [He]) and multiply
en,r|k,mγ(τ, z) in Definition 2.26 with a factor depending on a complex variable s
such that the new series is absolutely convergent for Re(s) sufficiently large (we
will be more precise in Lemma 3.3) and can thus be analytically continued to
s = 0. In his work Hecke uses this trick in order to define Eisenstein series of
weight 1 and 2 in real quadratic fields.
In our case one may think of choosing the factor |cτ + d|−2s. However, later on
we need scalar products of the Poincaré series with Jacobi cusp forms. Therefore
it is better to adapt this factor such that the new series is again invariant under
the slash operation of the Jacobi group. In the following, we write τ = u+ iv.

Definition 3.1 Let n ∈ Z, r ∈ Z(1,g), and m be a positive definite symmetric
half-integral g × g matrix such that 4n > m−1[rt], s ∈ C. Then we define a
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formal Poincaré series of exponential type by

Pk,m;(n,r),s(τ, z) :=
∑

γ∈(ΓJ
1,g)∞\Γ

J
1,g

(
v

|cτ + d|2

)s

·en,r|k,mγ(τ, z)
(
(τ, z) ∈ H× C(g,1)

)
,

where
(
ΓJ

1,g

)
∞ and en,r are given in Definition 2.26.

Remark 3.2 The use of Hecke’s trick for g = 1 is also suggested in [GKZ].

Lemma 3.3 The series Pk,m;(n,r),s(τ, z) is absolutely and locally uniformly con-
vergent on H×C(g,1) if σ := Re(s) > 1

2
(g − k + 2).

In this case it satisfies the transformation law

Pk,m;(n,r),s|k,mγ(τ, z) = Pk,m;(n,r),s(τ, z) (∀ γ ∈ ΓJ
1,g , (τ, z) ∈ H× C(g,1)).

Proof. The proof of the absolute and local uniform convergence goes exactly as
the proof of Lemma 2.27. The transformation law follows directly from the ab-
solute convergence. �

Now our aim is to compute the Fourier expansion of the Poincaré series and
show that the Fourier series is even absolutely and locally uniformly convergent
in s for σ > 1

2
(g/2− k + 2); for these values the series is holomorphic in s and

can be taken as a definition for Pk,m;(n,r),s. In particular the series is holomorphic
at s = 0 for k > g/2 + 2.

Theorem 3.4 Suppose that σ > 1
2
(g − k + 2). Then the Poincaré series has the

Fourier expansion

Pk,m;(n,r),s(τ, z) =
∑
n′∈Z

r′∈Z(1,g)

g±k,m;(n,r);s,v(n
′, r′)e(n′τ + r′z),

where ± = (±1)k, where

g±k,m;(n,r);s,v(n
′, r′) := gk,m;(n,r);s,v(n

′, r′) + (−1)kgk,m;(n,r);s,v(n
′,−r′).

Here

gk,m;(n,r);s,v(n
′, r′) := vs·δm(n, r, n′, r′)+

∑
c≥1

Hm,c(n, r, n
′, r′)·Φk,m,c,v(n

′, r′, s)·c−k−2s,

with D,D′, δm(n, r, n′, r′) and Hm,c(n, r, n
′, r′) defined as in Theorem 2.29. More-

over

Φk,m,c,v(n
′, r′, s) := (det(2m))−1/2 · i−g/2 · vg/2−k−s+1 · e2c(r

′m−1rt)

×
∫ ∞

−∞
(u+i)g/2−k−s ·(u−i)−s ·e

(
(2 det(2m))−1

(
D′v(u+ i) +

D

vc2(u+ i)

))
du.
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Proof. To compute the Fourier expansion of Pk,m;(n,r),s(τ, z) we proceed as in
[BK]. Thus, taking the set of representatives given in (2.5), we obtain

Pk,m;(n,r),s(τ, z) =
∑

(c,d)=1

λ∈Z(g,1)

(cτ + d)−k · |cτ + d|−2s · vs · e
(
−m[z]

c

cτ + d

+m[λ]
aτ + b

cτ + d
+ 2λtmz

1

cτ + d
+ n

aτ + b

cτ + d
+ rz

1

cτ + d
+ rλ

aτ + b

cτ + d

)
.

We now split the sum into the terms with c = 0 and the terms with c 6= 0.
If c = 0, then a = d = ±1. Thus these terms give the contribution

vs
∑

λ∈Z(g,1)

e((m[λ] + rλ+ n)τ)[e((r + 2λtm)z) + (−1)ke((−r − 2λtm)z)]

= vs
∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

(
δm(n, r, n′, r′) · e(n′τ + r′z) + (−1)kδm(n, r, n′,−r′)e(n′τ − r′z)

)
.

The terms for c < 0 are obtained from those with c > 0 by multiplying with
(−1)k and replacing z by −z, thus it sufficies to consider the terms with c > 0.
Using the identities

aτ + b

cτ + d
=
a

c
− 1

c(cτ + d)
,

1

cτ + d
z +

aτ + b

cτ + d
λ =

1

cτ + d

(
z − 1

c
λ

)
+
a

c
λ,

aτ + b

cτ + d
m[λ] +

2

cτ + d
λtmz − c

cτ + d
m[z] = − c

cτ + d
m

[
z − 1

c
λ

]
+
a

c
m[λ],

we get, replacing d by d + αc and λ by λ + βc, with d running (mod c)∗, λ
(mod c), α ∈ Z, β ∈ Z(g,1), that the terms for c > 0 give the contribution∑

c>0

c−k−2s
∑
d(c)∗
λ(c)

ec((m[λ] + rλ+ n)d̄) · Fk,m,c;(n,r),s (τ + d/c, z − λ/c) ,

where

Fk,m,c;(n,r),s(τ, z) := vs ·
∑
α∈Z

β∈Z(g,1)

(τ + α)−k · |τ + α|−2s · e
(
− 1

τ + α
m[z − β]

− n

c2(τ + α)
+

1

c(τ + α)
r(z − β)

)(
τ ∈ H, z ∈ C(g,1)

)
.
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The function Fk,m,c;(n,r),s(τ, z) has period 1 in τ and z. Therefore it has a Fourier
expansion of the form

Fk,m,c;(n,r),s(τ, z) =
∑
n′∈Z

r′∈Z(1,g)

Φk,m,c,v(n
′, r′, s)e(n′u+ r′z),

where

Φk,m,c,v(n
′, r′, s) = vs · e−2πvn′ ·

∫ ∞

−∞
(u+ iv)−k−s · (u− iv)−s · e−2πin′(u+iv)

∫ ic2+∞

ic2−∞
. . .

∫ ic2+∞

ic2−∞
e

(
− 1

u+ iv
m[z]− n

c2(u+ iv)
+

1

c(u+ iv)
rz − r′z

)
dudz

(3.1)

(c2 ∈ R). Here we have used the Poisson summation formula, which can be
applied since for example the following three conditions are satisfied:
(i) Fk,m,c;(n,r),s(τ, z) is holomorphic in z.
(ii) The series∑

α∈Z
β∈Z(g,1)

(τ+α)−k ·|τ+α|−2s ·e
(
− 1

τ + α
m[z − β]− n

c2(τ + α)
+

1

c(τ + α)
r(z − β)

)

is uniformly convergent in u. This is a consequence of the compact convergence
in τ already shown before (cf. Lemma 2.27), because we can choose u between 0
and 1 due to the periodicity 1 as a function of u.
(iii) The Fourier series ∑

n′∈Z
r′∈Z(1,g)

Φk,m,c,v(n
′, r′, s)e(n′u+ r′z)

is absolutely convergent (which will be shown in Theorem 3.10).
Thus we get, using the computations of the inner integral of [BK] for (3.1) and
substituting u 7→ u

v
,

Φk,m,c,v(n
′, r′, s) = (det(2m))−1/2 · i−g/2 · vg/2−k−s+1 · e2c(r

′m−1rt)∫ ∞

−∞
(u+ i)g/2−k−s · (u− i)−s · e

(
(2 det(2m))−1

(
D′v(u+ i) +

D

vc2(u+ i)

))
du,

which shows the Theorem. �

In order to show that the Fourier series is absolutely and locally uniformly con-
vergent for σ > 1

2
(g/2− k + 2), the main difficulty to overcome is to estimate

the integrals Φk,m,c,v(n
′, r′, s). For this we need the following
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Lemma 3.5 Let c1, c2, c3 ∈ R, c3 > 0 . Then the integral

fs(c1, c2, c3) :=

∫ ∞

−∞
(u+ i)−c1−s · (u− i)−s · e

(
−c2u−

c3
u+ i

)
du

is locally uniformly convergent in s for σ > 1
2
(1− c1) and thus defines a holomor-

phic function in s.
Let K be an arbitrary compact set of the domain σ > 1

2
(1 − c1). Then for all

s ∈ K we have the estimates

|fs(c1, c2, c3)| �K,c1


e2πc2v1 if c2 < 0

e−2πc2v1 · e
πc3
A if c2 > 0

1 if c2 = 0
, (3.2)

where the constant implied in �K,c1 only depends on K and c1, and where v1 and
A are positive constants.

Proof. For the proof let us abbreviate the integrand with g(u, s) and consider the
three cases c2 = 0, c2 < 0, and c2 > 0.
Let us start with the simplest case c2 = 0. In view of c3 > 0 we obtain the trivial
estimate

|fs(c1, 0, c3)| ≤
∫ ∞

−∞
(u2 + 1)−(c1/2+σ) · e−

2πc3
(u2+1) du ≤ 2

∫ ∞

0

(u2 + 1)−(c1/2+σ) du.

If s ∈ K, then the integral has a convergent majorant independent of s. Thus
assertion (3.2) follows for c2 = 0.

In the case c2 < 0 we want to consider the following path of integration:

-

6

xγ1

γ2←−

γ3↓γ4←−
γ5↓

↑γ6

γ7←−

B−B A−A

ic1

ic2
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with

γj(t) =



B + it 0 ≤ t≤ v2 B > 0, v2 > 1 for j = 1
(iv2 + t)−1 A ≤ t≤ B 1 < A < B for j = 2
(A+ it)−1 v1 ≤ t≤ v2 0 < v1 < 1 for j = 3
(t+ iv1)

−1 −A ≤ t≤ A for j = 4
−A+ it v1 ≤ t≤ v2 for j = 5
(t+ iv2)

−1 −B ≤ t≤ −A for j = 6
(−B + it)−1 0 ≤ t≤ v2 for j = 7

,

where A,B, v1, and v2 are positive constants with v1 < 1 < v2, A. Applying the
residue theorem we find∫ B

−B

g(u, s)du = −
7∑

j=1

∫
γj

g(u, s) du. (3.3)

First we want to estimate the integrals along the paths γ1 and γ7. Since c2 < 0 <
c3, the values of both integrals are less or equal than∫ v2

0

(B2 + (1 + t)2)−
c1+σ

2 · (B2 + (1− t)2)−
σ
2 · e2πc2t− 2πc3(t+1)

B2+(t+1)2 dt

≤
∫ v2

0

(B2 + (1 + t)2)−
c1+σ

2 · (B2 + (1− t)2)−
σ
2 dt.

If σ > − c1
2
, then this integral tends to 0 if B tends to infinity.

Next we estimate the integrals along the paths γ2 and γ6. They are less or equal
than ∫ B

A

(t2 + (1 + v2)
2)−

c1+σ
2 · (t2 + (1− v2)

2)−
σ
2 · e2πc2v2− 2πc3(1+v2)

t2+(v2+1)2 dt.

Due to c2 < 0 this integral tends to 0 for v2 →∞.
Therefore we obtain from (3.3), letting B and v2 both tend to infinity,∫ ∞

−∞
g(u, s) du =

3∑
i=1

∫
βi

g(u, s) du,

where the paths βj are given as

29



-

6

β3↑

−→
β2

↓β1

A−A

ic1

βj =


(−A+ it)−1 v1 ≤ t<∞ for j = 1
t+ iv1(= γ−1

4 ) −A ≤ t≤ A for j = 2
A+ it v1 ≤ t<∞ for j = 3

.

Now we estimate the integrals along the paths β1 and β3.
Their values are less or equal than∫ ∞

v1

(A2 + (1 + t)2)−
c1+σ

2 · (A2 + (1− t)2)−
σ
2 · e2πc2t− 2πc3(t+1)

A2+(t+1)2 dt.

Making the substitution t 7→ t+ v1 we get, using c2 < 0 < c3, that the values of
the integrals are less or equal than

e2πc2v1 ·
∫ ∞

0

(A2 + (1 + t+ v1)
2)−

c1+σ
2 · (A2 + (1− t− v1)

2)−
σ
2 dt.

If s ∈ K, then the integral has a convergent majorant independent of s.
Finally we estimate the integral along the path β2. In view of 0 < c3, we infer
that the value of this integral is less or equal than∫ A

−A

(t2 + (1 + v1)
2)−

c1+σ
2 · (t2 + (1− v1)

2)−
σ
2 · e2πc2v1− 2πc3(v1+1)

t2+(v1+1)2 dt

≤ e2πc2v1 ·
∫ A

−A

(t2 + (1 + v1)
2)−

c1+σ
2 · (t2 + (1− v1)

2)−
σ
2 dt.

If again s ∈ K, then the integral has a convergent majorant independent of s.
Thus (3.2) follows for c2 < 0.

In the case c2 > 0 we reflect the paths from the case c2 < 0 along the real
line. The notations are kept the same, now taken for the new paths.
The difference we have to observe is that the exponential factor including the
term with c3 now cannot be estimated against 1. This does not influence the
estimates of the integrals along the paths γ1, γ2, γ6, and γ7, because in this case
the exponential factor including the term with c3 tends to 1 if B and v2 both
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tend to infinity.
Due to v1 < 1, the exponential factor including c3 in the integral along the path
β2 is negative, and can thus be estimated against 1.
Therefore we are left with the estimates of the integrals along the paths β1 and
β3. These are both less or equal than∫ ∞

v1

(A2 + (1− t)2)−
c1+σ

2 · (A2 + (1 + t)2)−
σ
2 · e−2πc2t+

2πc3(t−1)

A2+(t−1)2 dt. (3.4)

To estimate the integrand we look for the maximum of the function

g(t) := e
2πc3(t−1)

A2+(t−1)2 in the interval [v1,∞). We have

g′(t) = 2πc3 ·
A2 − (t− 1)2

(A2 + (t− 1)2)2
· e

2πc3(t−1)

A2+(t−1)2 ,

which is 0 if and only if A2 = (t− 1)2. Due to A > 1, therefore the only solution
of g′(t) = 0 in the interval [v1,∞) is at the point t = A+1, which is directly seen

to be a maximum of the function g. In this case g(t) has the value e
2πc3

A .

Thus we obtain, using that limt→∞ e
2πc3(t−1)

A2+(t−1)2 = 1, that the expression in (3.4) is
less or equal than

e
πc3
A ·

∫ ∞

v1

(A2 + (1− t)2)−
c1+σ

2 · (A2 + (1 + t)2)−
σ
2 · e−2πc2t dt.

Therefore, applying the substitution t 7→ t+ v1, and using that c2 > 0, we obtain
that the integrals along the paths β1 and β3 are both less or equal than

e
πc3
A · e−2πc2v1 ·

∫ ∞

0

(A2 + (1− t− v1)
2)−

c1+σ
2 · (A2 + (1 + t+ v1)

2)−
σ
2 dt.

If s ∈ K, then the integral has a convergent majorant independent of s. Thus
assertion (3.2) also follows for c2 > 0.

Therefore the holomorphicity follows in all three cases as a consequence of the
independence of s. �

Remark 3.6 The above described path of integration is suggested from Hecke’s
work. Indeed: he cuts the complex plane starting from i up to infinity and shifts
the path of integration such that the cut is surrounded (cf. [He]).

Corollary 3.7 The coefficients Φk,m,c,v(n
′, r′, s), that are defined in Theorem 3.4,

are holomorphic functions in s with σ > 1
2
(1 + g/2− k).

In particular they are holomorphic at s = 0 if k > g/2 + 1.
If K is a compact subset of the domain σ > 1

2
(1 + g

2
− k) with s ∈ K, then they

satisfy the following estimate

Φk,m,c,v(n
′, r′, s)�K vg/2−k−σ+1 · e

−D
Av · e

−πD′v
det(2m)

(1+sign(D′)v1),
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where v1 and A are positive constants, and where the constant implied in �K

only depends on K.

Proof. The proof follows directly from Theorem 3.4 and Lemma 3.5 with

c1 = k−g/2, c2 = −D′v
2 det(2m)

, and c3 = −D
c2v·2 det(2m)

> 0, using that 1 ≤ e
−πD

2Ac2 det(2m)v =

e
πc3
A ≤ e

−πD
Av . �

The next step is to estimate the Kloosterman sums occuring in the Forier co-
efficients of the Poincaré series (cf. Theorem 3.4). Therefore we require some
well known formulas for Gauß sums.

Lemma 3.8 Let a, b ∈ Z, ν ∈ N0, and let p be a prime number.
Define

G(a, b, pν) :=
∑
x(pν)

epν (ax2 + bx).

Let α := νp(a), where a = pαa′, (a′, p) = 1.

1. For α ≥ ν we have

G(a, b, pν) =

{
pν if b ≡ 0 (mod pν)
0 otherwise

.

2. For 0 ≤ α < ν and b 6≡ 0 (mod pα) we have

G(a, b, pν) = 0.

3. If p 6= 2 and b ≡ 0 (mod pα), 0 ≤ α < ν, we have

G(a, b, pν) = p
α+ν

2 · ε(pν−α) ·
(
a/pν

pν−α

)
· epν+α

(
−b2 4a

pα

)
,

where 4a
pα is an inverse of 4a

pα (mod pν+α), and where ε(x) = 1 or i according

as x ≡ 1 or 3 (mod 4).

4. The sum G(a, b, 2ν) is equal to 2ν if ν − α = 1 and b 6≡ 0 (mod 2), has the
value

2
ν+α

2 · (i+ 1) ·
(
−2ν+α

a/2α

)
· ε(a/2α) · e2ν+α

(
− a

2α

b2

4

)
if ν − α > 1 and b ≡ 0 (mod 2α+1), and is 0 otherwise. Here a/2α is an
inverse of a/2α (mod pν+α+2).
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Proof. The claim of Lemma 3.8 and its proof can be found in [Br]. However
there is a misprint in the case p = 2 and ν − α > 1. In [Br] it is stated that the
formula is only valid if ν−α is an even integer and otherwise the sum G(a, b, 2ν)
has value 0. His misprint is based on a wrong citation of [La]. �

Lemma 3.9 Let Hm,c(n, r, n
′, r′) be defined as in Theorem 2.29. Then we have

|Hm,c(n, r, n
′, r′)| �D,m,ε c

g/2+1+ε, (3.5)

where the constant implied in �D,m,ε only depends on D,m and ε.

Proof. Since both sides of inequality (3.5) are multiplicative in c it is sufficient
to show that for all primes p and all ν ∈ N

|Hm,pν (n, r, n′, r′)| ≤

{
p

g
2
·vp(2 det(2m)D) · (pν)g/2+1 if p is odd

2
g
2 · 2 g

2
·v2(2 det(2m)D) · (2ν)g/2+1 if p = 2.

(3.6)

Counting the number of summands of Hm,pν (n, r, n′, r′) we obtain

|Hm,pν (n, r, n′, r′)| ≤ (pν)1+g.

Therefore (3.6) follows trivially if pν divides D. Thus we may assume pν - D.
Let U ∈ GLg(Z /pνZ). Then

Hm,pν (n, r, n′, r′) =
∑
x(pν )

y(pν )∗

epν ((m[U ][Ūx] + rU · Ūx+ n)ȳ + n′y + r′U · Ūx)

=
∑
x(pν )

y(pν )∗

epν ((m[U ][x] + rUx+ n)ȳ + n′y + r′Ux),

where Ū is an inverse of U (mod c). For the last identity we used that Ūx runs
(mod Z(g,1) ·c) if x does. Thus the left-hand side of (3.6) remains unchanged if we

replace T by T

[(
1 0
0 U

)]
(which is the same as changingm, r, and r′ intom[U ],

rU , and r′U , respectively). Moreover det(2m) is replaced by (detU)2 · det(2m)
and D0 by (detU)2 ·D0. Thus νp(4 det(2m) ·D0) is not changed, because detU
and p are coprime.
Let us now distinguish the two cases p 6= 2 and p = 2.
Since a non-degenerate integral quadratic form over Zp is diagonisable over Zp

if p 6= 2 is a prime (cf. [Ca]) we may assume that m is a diagonal matrix with
diagonal elements m1, . . . ,mg. Let µi := νp(mi) (1 ≤ i ≤ g).
In case µi ≥ ν for at least one mi (1 ≤ i ≤ g) the claim follows trivially since in
this case we have the estimate

|Hm,pν (n, r, n′, r′)| ≤ (pν)g/2+1 · (pµi)g/2 ≤ pg/2·νp(det(2m)) · (pν)g/2+1.
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Thus we may assume µi < ν (1 ≤ i ≤ g).
Using Lemma 3.8 we find

|Hm,pν (n, r, n′, r′)| ≤ pν(g/2+1) ·
(
p

Pg
i=1 µi

)1/2

≤ pν(g/2+1) · p
1
2
νp(det(2m)).

Since in the case p = 2 a non-degenerate integral quadratic form over Z2 is
equivalent to a sum of forms 2lεx2, 2lxy, 2l(x2 + xy + y2), where l ∈ Z, and
ε ∈ {1, 3, 5, 7} (cf. [Ca]) we may assume that the quadratic form corresponding
to m is a sum of forms of the above types. Let the first type occur g1, the second
g2, and the third g3 times, i.e., g = g1 + 2g2 + 2g3. Then clearly

det(2m) = 2g1+
Pg1+g2+g3

i=1 li ·

(
g1∏

i=1

εi

)
· (−1)g2 · 3g3 .

Let
l := max{li| 1 ≤ i ≤ g1 + g2 + g3}.

If l ≥ ν − 1, then we have

|Hm,2ν (n, r, n′, r′)| ≤ (2ν)g+1 ≤ (2ν)g/2+1 · (2l+1)g/2 ≤ 2 · (2ν)g/2+1 · 2
g
2
·ν2(det(2m)),

from which (3.6) follows directly. Therefore we may assume that l < ν − 1.
We now estimate the three types of sums that can occur. Therefore we write
r = (r1, . . . , rg) and r′ = (r′1, . . . , r

′
g).

Using Lemma 3.8 we directly see that the first type of sum∑
x(2ν)

e2ν

(
2liεiȳx

2 + x (riȳ + r′i)
)

(εi ∈ {1, 3, 5, 7})

has an absolute value that is less or equal than 2
v+l
2

+1.
From Lemma 3.8 it furthermore follows that the second type of sum∑

xi+1(2ν)

e2ν

((
ri+1ȳ + r′i+1

)
xi+1

) ∑
xi(2ν)

e2ν

(
xi

(
2lixi+1ȳ + riȳ + r′i

))
has an absolute value that is less or equal than

2ν
∑

xi+1(2ν )

2lixi+1ȳ+(riȳ+r′
i
)≡0(2ν )

|e2ν ((ri+1ȳ + r′i+1)xi+1)| ≤ 2ν+li ,

because the congruence 2lixi+1ȳ+(riȳ+r′i) ≡ 0 (mod 2ν) has at most li solutions
(mod 2ν) since ȳ is coprime to 2.
From Lemma 3.8 it moreover follows that the third type of sum∑
xi+1(2ν)

e2ν

(
2lix2

i+1ȳ +
(
ri+1ȳ + r′i+1

)
xi+1

) ∑
xi(2ν)

e2ν

(
2lix2

i ȳ +
(
2lixi+1ȳ + riȳ + r′i

)
xi

)
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has an absolute value less or equal than

21+
li+ν

2

∣∣∣∣∣∣∣∣∣∣
∑

xi+1(2ν )

xi+1≡−
ri+r′

i
y

2li
(2)

e2ν

(
2li−23ȳx2

i+1 +
xi+1

2

(
2ri+1ȳ + 2r′i+1 − riȳ − r′i

))
∣∣∣∣∣∣∣∣∣∣
,

if riȳ+ri′ ≡ 0 (mod 2li) and is 0 otherwise. Next we replace xi+1 by 2xi+1− ri+r′iy

2li

with the new xi+1 running (mod 2ν−1). Then we obtain, again using Lemma
3.8, that this sum is less or equal than

21+
li+ν

2

∣∣∣∣∣∣
∑

xi+1(2ν−1)

e2ν

(
2li−23ȳ

(
2xi+1 −

ri + r′iy

2li

)2

+

1

2

(
2xi+1 −

ri + r′iy

2li

)
(2ri+1ȳ + 2r′i+1 − riȳ − r′i)

)∣∣∣∣
≤ 2

li+ν

2

∣∣∣∣∣∣
∑

xi+1(2ν)

e2ν

(
2li3ȳx2

i+1 + 2xi+1((ri+1ȳ + r′i+1)− 2(riȳ + r′i)
)∣∣∣∣∣∣ ≤ 2li+ν+1.

Thus we have the estimate

|Hm,2ν (n, r, n′, r′)| ≤ 2
Pg1+g2+g3

i=1 li · (2ν)g/2 · 2g · 2ν ≤ 2g/2 · 2g/2·ν2(2 det(2m)) · (2ν)g/2+1,

which proves the assertion. �

Now we can define the Poincaré series Pk,m;(n,r),s in the larger domain
σ > 1

2
(g/2 + 2− k) by just taking the Fourier expansion as a definition.

Theorem 3.10 Let g±k,m;(n,r);s,v(n
′, r′), Hm,c(n, r, n

′, r′) and Φk,m,c,v(n
′, r′, s) be

defined as in Theorem 2.29 and in Theorem 3.4, respectively, where ± = (±1)k.
Then the Fourier series

Pk,m;(n,r),s(τ, z) :=
∑
n′∈Z

r′∈Z(1,g)

g±k,m;(n,r);s,v(n
′, r′)e(n′τ + r′z)

(
(τ, z) ∈ H× C(g,1)

)
is absolutely and locally uniformly convergent in s and defines a holomorphic
function in s for σ > 1

2
(g/2 + 2 − k). In particular the series Pk,m;(n,r),0(τ, z) is

absolutely convergent if k > g/2 + 2.
Let us define

g(1)(n′, r′) :=
∑

c≥1Hm,c(n, r, n
′, r′) · Φk,m,c,v(n

′, r′, s) · c−k−2s,

g(1)(n′, r′)± := g(1)(n′, r′) + (−1)kg(1)(n′,−r′).
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Let k = g + 2, (τ, z) ∈ F, where F is the standard fundamental domain for the
action of the Jacobi group on H × C(g,1) (cf. Remark 2.25), and suppose that s
varies in a compact set K such that 0 < σ < 1. Then we have the estimate∣∣∣∣∣∣∣

∑
n′∈Z

r′∈Z(1,g)

g(1)(n′, r′)±e(n′τ + r′z)

∣∣∣∣∣∣∣�K v−g/2−1,

where the constant implied in �K is independent of τ and z.

Proof. To show that the series is absolutely and locally uniformly convergent in
s, it is clearly sufficient to estimate the series∑

n′∈Z
r′∈Z(1,g)

g(1)(n′, r′)e(n′τ + r′z).

First we want to estimate g(1)(n′, r′).
Due to Corollary 3.7 and Lemma 3.9, there exist positive constants v1, A such
that

|Hm,c(n, r, n
′, r′) ·Φk,m,c,v(n

′, r′, s)| � e
−πD′v(1+sign(D′)v1)

det(2m) ·vg/2−k−σ+1 ·e
−D
Av · cg/2+1+ε.

Using that
∑

c>0 c
−l converges for l > 1 and taking ε > 0 small enough, we find∣∣∣∣∣∑

c>0

c−k−2s ·Hm,c(n, r, n
′, r′) · Φk,m,c,v(n

′, r′, s)

∣∣∣∣∣
� e

−D
Av ·

∑
c>0

cg/2+1−k−2σ+ε · e
−πD′v(1+sign(D′)v1)

det(2m) · vg/2−k−σ+1

� e
−D
Av · e

−πD′v(1+sign(D′)v1)
det(2m) · vg/2−k−σ+1.

Thus we obtain, using that D′ = 1
2
det(2m) · (−4n′ + m−1[r′t]) (which follows

directly from the Jacobi decomposition, see Remark 2.19),∣∣∣∣∣∣∣
∑
n′∈Z

r′∈Z(1,g)

g(1)(n′, r′)e(n′τ + r′z)

∣∣∣∣∣∣∣
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�K vg/2−k−σ+1 · e
−D
Av ·

∑
n′∈Z

r′∈Z(1,g)

e
−πD′v
det(2m)

(1+sign(D′)v1)−2πn′v−2πr′y

�K vg/2−k−σ+1 · e
−D
Av ·

∑
n′∈Z

r′∈Z(1,g)

e
−πsign(D′)D′v1

det(2m)
v− 1

2
πm−1[r′t]v−2πr′y

�K e
−D
Av · vg/2−k−σ+1 ·

∑
D′∈Z

r′∈Z(1,g)

e−a·sign(D′)D′v− 1
2
πm−1[r′t]v−2πr′y

�K e
−D
Av · vg/2−k−σ+1 ·

 ∑
r′∈Z(1,g)

e−
1
2
πm−1[r′t]v−2πr′y

(1 + 2
∑
D′>0

e−aD′v

)
,

where a is a positive constant independent of D′, r′, s, τ , and z.
Therefore the absolute and local uniform convergence in s follows because the first
sum is a special value of a Jacobi theta series and the second sum is a geometric
sum. This establishes the holomorphicity in the variable s.
If k = g + 2 and (τ, z) ∈ F, then there exists a positive constant b, independent
of (τ, z) such that∑

r′∈Z(1,g)

e−
1
2
πm−1[r′t]v−2πr′y �

(∑
r′∈N0

e−br′2v+2πr′v

)g

�

(∑
r′∈N0

e−br′2v

)g

≤

(∑
r′∈N0

e−br′2
√

3
2

)g

� 1.

Moreover, we have for (τ, z) ∈ F∑
D′>0

e−aD′v ≤
∑
D′>0

e
−aD′

√
3

2 � 1.

Thus we get the desired estimate using that v−σ � 1 for (τ, z) ∈ F, and under

the given conditions on σ, and that e
−D
Av � 1. �

In the remainder of the section we restrict ourselves to the case k = g + 2.

Lemma 3.11 The function Pg+2,m;(n,r)(τ, z) := Pg+2,m;(n,r),0(τ, z) is an element
of J cusp

g+2,m.

Proof. The transformation law is clear since we have for all (τ, z) ∈ H × C(g,1)

and for all γ ∈ ΓJ
1,g

Pg+2,m;(n,r)|g+2,mγ(τ, z) = lim
σ→0+

Pg+2,m;(n,r),σ|g+2,mγ(τ, z)

= lim
σ→0+

Pg+2,m;(n,r),σ(τ, z)

= Pk,m;(n,r)(τ, z).
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The Fourier expansion of Pg+2,m;(n,r) is known per definition (cf. Theorem 3.10).
Thus it is left to show that the Fourier coefficients of Pg+2,m;(n,r),0(τ, z) are con-
stant functions of v = Im(τ). Checking the definitions, it is therefore enough to
show that the integral∫ iv+∞

iv−∞
τ−g/2−2 · e

(
(2 det(2m))−1

(
D′τ +

D

c2τ

))
dτ (3.7)

is independent of v.
For D′ < 0 in (3.7) we make the substitution τ = i

c
· (D/D′)1/2 · s to obtain

α ·
∫ v′+i∞

v′−i∞
s−g/2−2 · exp

(
2π

c · det(2m)
· (DD′)1/2(s− s−1)

)
ds, (3.8)

where α is a constant independent of v, and where v′ depends on v. For
µ > 0,κ > 0 the functions t 7→ (t/κ)(µ−1)/2 · Jµ−1(2

√
κt) (t ≥ 0) and

s 7→ s−µ ·e−κ/s (Re(s) > 0) are inverse to each other w.r.t. the Laplace transform
([AS] 29.3.80). Therefore we see, taking t = κ = 2π

c·det(2m)
· (D′D)1/2 and

µ = g/2 + 2, that the integral in (3.8) has the value

2πi · Jg/2+1

(
2π

det(2m) · c
· (D′D)

1/2

)
,

which is independent of v′ (and so of v).
If D′ = 0, then we can use the same Laplace tranform with t = 0, κ = −D

c2·2 det(2m)
.

Thus we get that the value of (3.7) is zero.

If D′ > 0, then in (3.7) we make the substitution τ = i
c
· (−D/D′)1/2 · s to obtain

β ·
∫ v′+i∞

v′−i∞
s−g/2−2 · exp

(
π

c · det(2m)
· (−DD′)1/2(s+ s−1)

)
ds, (3.9)

where β is a constant independent of v, and where v′ depends on v.
For µ > 0, κ > 0 the functions t 7→ (t/κ)(µ−1)/2Iµ−1(2

√
κt) (t ≥ 0), where

Iµ−1(x) (x ∈ R) denotes the I-Bessel function of order µ − 1, and s 7→ s−µeκ/s

(Re(s) > 0) are inverse to each other w. r. t. the Laplace transform (cf. [AS]
29.3.80). Therefore we get, taking t = κ = π

c·det(2m)
· (−D′D)1/2 and µ = g/2 + 2,

that the integral in (3.9) has the value

2πi · Ig/2+1

(
2π

det(2m) · c
· (−D′D)

1
2

)
,

which is independent of v′ (and so of v).
Thus the integral in (3.7) is independent of v in all three cases, i.e., the holomor-
phicity of Pg+2,m;(n,r)(τ, z) follows.
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The vanishing of the Fourier coefficients for D′ ≥ 0 can be established if we de-
form the path of integration up to infinity. �

Now it is left to show that in case k = g + 2 the Petersson coefficient formula is
still valid. The difficulty is that the scalar product cannot be calculated directly.
It can only be computed by means of the scalar products〈

φ, Pg+2,m;(n,r),σ

〉
,

where σ > 0. Therefore we first have to show that these scalar products are
absolutely convergent (cf. Lemma 3.12); note that Pg+2,m;(n,r),σ is not necessarily
a cusp form (cf. Theorem 3.4). Afterwards we calculate the scalar products (cf.
Lemma 3.13). Both is done by means of the usual unfolding argument.
Next - and this is the main difficulty - we have to show that we are allowed to
interchange limit and integration (cf. Lemma 3.14), i.e.,

lim
σ→0

〈
φ, Pg+2,m;(n,r),σ

〉
=
〈
φ, Pg+2,m;(n,r)

〉
. (3.10)

Then we get the desired value of the scalar product
〈
φ, Pg+2,m;(n,r)

〉
by taking the

limit of the values of the scalar products
〈
φ, Pg+2,m;(n,r),σ

〉
(cf. Theorem 3.15).

Lemma 3.12 Let σ > 0 and φ ∈ J cusp
k,m . Then the scalar product〈

φ, Pg+2,m;(n,r),σ

〉
is absolutely convergent.

Proof. The well-definedness of the scalar product is clear because φ is a Jacobi
cusp form and Pg+2,m;(n,r),σ is invariant under the slash operation of the Jacobi
group (cf. Lemma 3.3). To show the absolute convergence we let V be a fixed
set of representatives of (ΓJ

1,g)∞\ΓJ
1,g. Then, using the usual unfolding argument

and Levi‘s Theorem, we obtain in the sense of formal agreement∫
F

∣∣∣φ(τ, z) · Pg+2,m;(n,r),s(τ, z) · exp(−4πm[y]v−1)
∣∣∣ dudvdxdy

≤
∫

F
|φ(τ, z)| · exp(−4πm[y]v−1) ·

∑
γ∈V

vσ · |cτ + d|−2s · |en,r|k,mγ(τ, z)| dudvdxdy

=

∫
∪γ∈V γF

vσ · exp(−4πm[y]v−1)| · φ(τ, z)| · |en,r(τ, z)| dudvdxdy. (3.11)

Since ∪γ∈V γF is a fundamental domain of the action of (ΓJ
1,g)∞ on H× C(g,1) ,

and since the integrand of the previous integral is invariant under this action,
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we can choose an arbitrary fundamental domain of this action, if the integral
converges with respect to this fundamental domain. For example we may choose

F̃ =
{
(τ, z) ∈ H× C(g,1)| 0 ≤ u ≤ 1; v > 0; 0 ≤ xν ≤ 1 for ν = 1, . . . g, y ∈ R(g,1)

}
.

(3.12)

Here τ = u+iv as before , z = x+iy, and xν are the components of x (1 ≤ ν ≤ g).
Thus∫

F̃

vσ · |φ(τ, z)| · exp(−4πm[y]v−1) · |en,r(τ, z)| dudvdxdy

=

∫ ∞

0

∫
Rg

|φ(τ, z)| · e−2πnv−2πry · vσ · exp(−4πm[y]v−1) dydv. (3.13)

Using the boundness condition of Lemma 2.23, we infer that the integral in (3.13)
is less or equal than∫ ∞

0

vσ−g/2−1 · e−2πnv ·
∫

Rg

e−2πry−2πm[y]v−1

dydv. (3.14)

Completing the square we obtain that the value of the inner integral in (3.14)
equals

2−g/2 · (detm)−1/2 · vg/2 · e
π
2
vm−1[rt].

Thus∫
F̃

vσ · exp(−4πm[y]v−1) · |φ(τ, z)| · |en,r(τ, z)| dudvdxdy

�
∫ ∞

0

v−1+σ · e−
πv
2

(4n−m−1[rt]) dv <∞

since σ > 0, which proves the assertion. �

Lemma 3.13 For σ > 0 and φ ∈ J cusp
g+2,m one has〈

φ, Pg+2,m;(n,r),σ

〉
= λg+2,m,D,σ · cφ(n, r), (3.15)

where cφ(n, r) denotes the (n, r)-th Fourier coefficient of φ and

λg+2,m,D,σ := 2(g−1)(g/2+σ+1)−g · Γ (g/2 + σ + 1) · π−g/2−σ−1 · (detm)g/2+σ+1/2

·|D|−g/2−σ−1.
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Proof. Due to Lemma 3.12 the scalar product on the left-hand side of (3.15) is
well defined and the integral is absolutely convergent. Thus we get, using the
usual unfolding argument,

〈φ , Pg+2,m;(n,r),σ

〉
=

∫
ΓJ

1,g\H×C(g,1)

φ(τ, z) · Pg+2,m;(n,r),σ(τ, z) · exp(−4πm[y]v−1) dudvdxdy

=

∫
(ΓJ

1,g)∞\H×C(g,1)

vσ · φ(τ, z) · en,r(τ, z) exp(−4πm[y]v−1) dudvdxdy.

Using the fundamental domain given in (3.12) and inserting the Fourier expansion
of φ

φ(τ, z) =
∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

c(n′, r′)e(n′τ + r′z),

we obtain〈
φ, Pg+2,m;(n,r),σ

〉
=

∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

c(n′, r′)

∫ ∞

0

e−2π(n+n′)v · vσ

∫
Rg

e−4πm[y]v−1−2πy(r′+r)

∫ 1

0

e2πi(n′−n)u

∫
[0,1]g

e2πi(r′−r)x dvdydudx.

Here we have used the absolute convergence of the Fourier expansion of φ in order
to be allowed to interchange limit and integration.
The integrals over x and u clearly vanish unless r = r′ and n = n′. In this case
both integrals have the value 1. Thus we obtain〈

φ, Pg+2,m;(n,r),σ

〉
= c(n, r) ·

∫ ∞

0

e−4πnv · vσ ·
∫

Rg

e−4πm[y]v−1−4πyr dvdy. (3.16)

Completing the square we get that the inner integral in (3.16) has the value

2−g · (detm)−1/2 · vg/2 · eπvm−1[rt].

Thus we obtain, using −4n+m−1[rt] = 21−g · (detm)−1 ·D,〈
φ, Pg+2,m;(n,r),σ

〉
= c(n, r) · 2−g · (detm)−1/2 ·

∫ ∞

0

vg/2+σ · e−πv(4n−m−1[rt]) dv

= c(n, r) · 2−g · (detm)−1/2 · π−g/2−σ−1 ·
(
4n−m−1[rt]

)−g/2−σ−1 · Γ (g/2 + σ + 1)

= c(n, r) · λk,m,D,σ.

�
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Lemma 3.14 For 0 < σ < 1 and φ ∈ J cusp
g+2,m we have

lim
σ→0

〈
φ, Pg+2,m;(n,r),σ

〉
=
〈
φ, Pg+2,m;(n,r)

〉
. (3.17)

Proof. The existence of the limit on the left-hand side of (3.17) follows directly
from Lemma 3.13. Thus it is left to show that we may interchange limit and
integration. For this we use the fundamental domain given in Remark 2.25.
We use Lebesgue’s Theorem of bounded convergence and construct a majorant
g(τ, z) > 0 on H× C(g,1) such that the following two conditions are satisfied:

(i) |Pg+2,m;(n,r),σ(τ, z)| � g(τ, z) (∀σ > 0, (τ, z) ∈ F) ,

(ii)

∫
F
|φ(τ, z)| · g(τ, z)e−4πm[y]v−1

dudvdxdy <∞.

In the rest of the proof we show that for g(τ, z) we may take the function∑
γ∈(ΓJ

1,g)∞\Γ
J
1,g

v

|cτ + d|2
· |en,r|g+2,mγ(τ, z)|

+ v−g/2−1 + χ{(τ,z)∈F|
√

3
2

<v<1} ·
∑

γ∈(ΓJ
1,g)∞\ΓJ

1,g
c=0

|en,r|g+2,mγ(τ, z)| ,

where χM denotes the characteristic function of a set M ⊂ H× C(g,1), and

c = 0 means that if γ =

((
a b
c d

)
, (λa, λb)

)
∈ ΓJ

1,g, then c = 0. Here we

only have to show the convergence of the third term since the convergence of the
first term is shown in Lemma 3.12 and the convergence of the second term is
trivial. In the following we abbreviate the terms of g(τ, z) by g1(τ, z), g2(τ, z),
and g3(τ, z) in an obvious sense. To show (i) we separate for a fixed but arbitary
σ > 0 the series Pg+2,m;(n,r),σ(τ, z) into two parts according to c = 0 or c 6= 0.
The part with c = 0 is given by

vσ ·
∑

γ∈(ΓJ
1,g)∞\ΓJ

1,g
c=0

en,r|g+2,mγ(τ, z).

For (τ, z) ∈ F this has an absolute value less or equal than

χ{(τ,z)∈F| v≥1} ·
∑

γ∈(ΓJ
1,g)∞\ΓJ

1,g
c=0

v · |en,r|g+2,mγ(τ, z)|

+ χ{(τ,z)∈F|
√

3
2

<v<1} ·
∑

γ∈(ΓJ
1,g)∞\ΓJ

1,g
c=0

|en,r|g+2,mγ(τ, z)|
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≤
∑

γ∈(ΓJ
1,g)∞\Γ

J
1,g

v

|cτ + d|2
· |en,r|g+2,mγ(τ, z)|

+ χ{(τ,z)∈F|
√

3
2

<v<1} ·
∑

γ∈(ΓJ
1,g)∞\ΓJ

1,g
c=0

|en,r|g+2,mγ(τ, z)| ,

which coincides with the first two terms of the function g(τ, z). Here we have
enlarged the first summand that much because we want to use Lemma 3.12 and
Lemma 3.13 with s = 1 to get the absolute convergence of the series and the
value of the integral.
We still have to show the absolute convergence of the series g2(τ, z). Therefore
we calculate it explicitly, using that in this case a = d = ±1. Thus we have for√

3
2
< v < 1:

g2(τ, z) =
∑

λ∈Z(g,1)

∣∣e(m[λ] + rλ+ n)τ) · e(±(r + 2λtm)z)
∣∣

=
∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

|(δm(n, r, n′,±r′) · e(n′τ ± r′z)| = 2
∑ ∗

n′∈Z
r′∈Z(1,g)

e−2πn′v−2πr′y,

where
∑ ∗ is used as an abbreviation for the condition 4n′ > m−1[r′t]. This

sum coincides with the part of the absolute values of Pk,m;(n,r)(τ, z) that belongs
to c = 0 for k arbitrary but sufficiently large, and is therefore convergent. In
particular every subseries of this series is convergent.
Now we estimate the part belonging to c 6= 0. Using Theorem 3.10, this part
can be estimated against v−g/2−1, which is the third term of the function g(τ, z).
Therefore g(τ, z) is a majorant of Pg+2,m;(n,r),σ(τ, z).
The rest of the proof is devoted to the claim (ii), i.e.,∫

F
g(τ, z) · |φ(τ, z)| · exp(−4πm[y]v−1) dudvdxdy <∞.

It is sufficient to prove the claim separately for g1(τ, z), g2(τ, z), and g3(τ, z).
The convergence of∫

F
g1(τ, z) · |φ(τ, z)| · e−4πm[y]v−1

dvdudxdy

has already been shown in Lemma 3.12.
To show the convergence of∫

F
g2(τ, z) · |φ(τ, z)| · exp(−4πm[y]v−1) dudvdxdy,
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it is sufficient to regard the 3g subseries of g2 with sign(r′i)(1 ≤ i ≤ g) fixed. We
define for the components r′i (1 ≤ i ≤ g) of r′

ε(r′i) =

{
1 r′i < 0
0 r′i ≥ 0

,

and regard one fixed but arbitrary of the 3g subseries, which we denote by
∑∗∗

n′,r′ .
Then we have, using Lemma 2.23 and Lemma 2.25,∫

F
|φ(τ, z)| ·

∑ ∗∗

n′,r′

e−2πn′v−2πr′y · e−4πm[y]v−1

dudvdxdy

�
∫ 1

√
3

2

∫
[0,v]g

v−g/2−1 · e−2πm[y]v−1
∑ ∗∗

n′,r′

e−2πn′v−2πr′y dvdy

≤
∑ ∗∗

n′,r′

∫ 1

√
3

2

v−g/2−1 · e−2πn′v

∫
[0,v]g

e−2πm[y]v−1 · e−2πε(r′i)r
′
iv dydv

≤
∑ ∗∗

n′,r′

∫ 1

√
3

2

vg/2−1 · e−2πn′
√

3
2 · e−2πε(r′i)r

′
iv dv

=
∑ ∗∗

n′,r′

e−2πn′
√

3
2
−2πε(r′i)r

′
i

∫ 1

√
3

2

v−g/2−1 dv,

which is clearly finite since the integral is finite and
∑∗∗

n′,r′ e
−2πn′

√
3

2
−2πε(r′i)r

′
i is a

special value of a subseries of the convergent series
∑∗∗

n′,r′ e
2πi(n′τ+r′z).

Finally we have to show the convergence of∫
F
g3(τ, z) · |φ(τ, z)| · exp(−4πm[y]v−1) dudvdxdy.

Again using Lemma 2.23 and Theorem 3.10, we obtain that this integral is less
or equal than ∫ ∞

1

v−g−2

∫
[0,v]g

e−2πm[y]v−1

dydv �
∫ ∞

1

v−2 dv <∞.

The claim then follows directly. �

Thus we have shown, combining Lemmas 3.12, 3.13, and 3.14

Theorem 3.15 For φ ∈ J cusp
g+2,m we have〈

φ, Pg+2,m;(n,r)

〉
= λg+2,m,D · cφ(n, r),

where cφ(n, r) and λg+2,m,D are defined as in Theorem 2.31, i.e., the Petersson
coefficient formula is still valid in the limiting case k = g + 2.
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Corollary 3.16 As a unitary vector space with respect to the Petersson scalar
product, J cusp

g+2,m is generated by the Poincaré series

{Pg+2,m;(n,r)|n ∈ Z, r ∈ Z(1,g); 4n > m−1[rt]}.

3.1.2 The final estimates

We have the following

Theorem 3.17 Suppose that k ≥ g + 2. Let φ ∈ J cusp
k,m with Fourier coefficients

c(n, r). Then we have

c(n, r)�ε,k

(
1 +

|D|g/2+ε

(detm)(g+1)/2

)1/2

· |D|
k/2−g/4−1/2

(detm)k/2−(g+3)/4
· ‖ φ ‖ (ε > 0),

where the constant implied in �ε,k only depends on ε and k .

Proof. The Cauchy-Schwarz inequality and the Petersson coefficient formula (cf.
Theorem 2.31 and Theorem 3.15) we find

|c(n, r)|2 = λ−2
k,m,D ·

∣∣〈φ, Pk,m;(n,r)

〉∣∣2 ≤ λ−2
k,m,D· ‖ φ ‖

2 ·
〈
Pk,m;(n,r), Pk,m;(n,r)

〉
= λ−1

k,m,D · bn,r(Pk,m;(n,r))· ‖ φ ‖2,

where bn,r(Pk,m;(n,r)) denotes the (n, r)-th Fourier coefficient of the Poincaré series
Pk,m;(n,r). In order to prove Theorem 3.17, we therefore only need to estimate the
Fourier coefficients of the Poincaré series. Since these are of the same type as in
the case k > g + 2 we can proceed as in [BK] . �

Corollary 3.18 Suppose that k ≥ g + 2. Let φ ∈ J cusp
k,m with Fourier coefficients

c(n, r). Then we have

c(n, r)�ε,φ |D|(k−1)/2+ε (ε > 0),

where the constant implied in �ε,φ only depends on ε and φ.

Remark 3.19 Of course Corollary 3.18 is not useful for the estimates of Fourier
coefficients of Siegel cusp forms because this estimate is not uniform in m.

Moreover we can prove, and this is the main result of Section 3.1,

Theorem 3.20 Let g ≥ 2 and suppose that k ≥ g + 1. Let F ∈ Sk(Γg) with
Fourier coefficients a(T ). Then we have

a(T )�ε,F (detT )k/2−1/(2g)−(1−1/g)αg+ε (ε > 0),

where α−1
g := 4(g − 1) + 4

[
g−1
2

]
+ 2

g+2
, and where the constant implied in �ε,F

only depends on ε and F .
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Proof. The proof for k > g + 1 is already given in [BK], using certain Dirichlet
series of Rankin-Selberg type, which have a meromorphic continuation to the
whole complex plane with finitely many poles and satisfy a certain functional
equation. Then a version of the Theorem of Sato and Shintani can be used.
The restriction k > g + 1 is only needed for the estimates of c(n, r). �

3.2 The subgroup Γg,0(N)

In this section we want to estimate the Fourier coefficients of Siegel cusp forms
with respect to the subgroup Γg,0(N) of Γg defined in Chapter 2.
In the first two sections we define Poincaré series for Jacobi cusp forms on certain
subgroups and estimate their Fourier coefficients. In the third section we estimate
certain Petersson norms.

3.2.1 Poincaré series for Jacobi cusp forms

i) The case ΓJ
1,g,0(N)

Recall that

ΓJ
1,g,0(N) := Γ0(N) n

(
Z(g,1) × Z(g,1)

)
(cf. Definition 2.16). We proceed as in Section 2.2.

Definition 3.21 Let n, r, and m be given as in Definition 2.26. Then we define
a Poincaré series of exponential type for ΓJ

1,g,0(N) by

PN
k,m;(n,r)(τ, z) :=

∑
γ∈(ΓJ

1,g)∞\Γ
J
1,g,0(N)

en,r|k,mγ(τ, z)
(
τ ∈ H, z ∈ C(g,1)

)
,

where the notations are the same as in Definition 2.26.

Then we have the following

Lemma 3.22 The series PN
k,m;(n,r)(τ, z) is absolutely and locally uniformly con-

vergent on H× C(g,1) if k > g + 2.
If k ≤ g + 2 it is not absolutely convergent at the point (i, 0).
It satisfies the transformation law

PN
k,m;(n,r)|k,mγ(τ, z) = PN

k,m;(n,r)(τ, z)
(
∀ (τ, z) ∈ H× C(g,1), γ ∈ ΓJ

1,g,0(N)
)
.
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Proof. Most of Lemma 3.22 follows directly from Lemma 2.27 because PN
k,m;(n,r)

occurs as a subseries of Pk,m;(n,r). What remains to show is that the series of
absolute values is divergent at the point (i, 0) ∈ H×C(g,1). This can be done
similarly as in the case of the full Jacobi group , using that

∑
(c,d)=1
c≡0(N)

(c2 + d2)−1 is

divergent. �

To show that PN
k,m;(n,r) is an element of J cusp

k,m (N) we need for all matrices γ ∈
ΓJ

1,g,0(N) the Fourier expansion of PN
k,m;(n,r)|k,mγ. First we regard the case γ = Eg.

Theorem 3.23 Let k > g + 2. Then the function PN
k,m;(n,r)(τ, z) has the Fourier

expansion

PN
k,m;(n,r)(τ, z) =

∑
n′∈Z

r′∈Z(1,g)

4n′>m−1[r′t]

g±k,m;(n,r),N(n′, r′)e(n′τ + r′z),

where

g±k,m;(n,r),N(n′, r′) := gk,m;(n,r),N(n′, r′) + (−1)kgk,m;(n,r),N(n′,−r′),

where ± = (±1)k, and where

gk,m;(n,r),N(n′, r′) := δm(n, r, n′, r′) + 2πik · (det(2m))−1/2 · (D′/D)k/2−g/4−1/2

×
∑
c≥1
N|c

e2c(r
′m−1rt) ·Hm,c(n, r, n

′, r′) · Jk−g/2−1

(
2π
√
D′D

det(2m) · c

)
· c−g/2−1,

and where D, D′, δm(n, r, n′, r′), Hm,c(n, r, n
′, r′) and Jk−g/2−1 are defined as in

Theorem 2.29.

Proof. The proof is very similar to the proof of Theorem 2.29, using as a set

of representatives of (ΓJ
1,g)∞\ΓJ

1,g,0(N) the elements

{((
a b
c d

)
, (aλ, bλ)

)}
,

where c, d ∈ Z with (c, d) = 1, c ≡ 0 (mod N), λ ∈ Z(g,1), and where for each
pair (c, d) we have chosen a, b ∈ Z such that ad− bc = 1. �

Next we want to compute PN
k,m;(n,r)|k,mγ(τ, z), where γ = (M, (0, 0)) ∈ ΓJ

1,g, with

M /∈ ΓJ
1,g,0(N), since it is enough to show the cusp condition in Definition 2.18

for a set of representatives of ΓJ
1,g,0(N)\ΓJ

1,g. The following remark restricts the
computation to certain matrices

Remark 3.24 It is sufficient to choose γ = (M, (0, 0)), where M runs through
a set of representatives of Γ0(N)\SL2(Z).
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Lemma 3.25 Let M ∈ SL2(Z),M /∈ Γ0(N). Then one has

Γ0(N)M =
·⋃

c 6=0
d(N|c|)

Γ∞

(
a b
c d

)
Γ0
∞(N), (3.18)

where Γ∞ :=

{(
1 n
0 1

)∣∣∣∣n ∈ Z
}

, Γ0
∞(N) :=

{(
1 nN
0 1

)∣∣∣∣n ∈ Z
}

, and where

in the union we have chosen for each pair (c, d) ∈ Z2 a fixed pair (a, b) such that(
a b
c d

)
∈ Γ0(N)M .

Proof. Let

(
α β
γ δ

)
∈ Γ0(N)M . Since M /∈ Γ0(N) we have γ 6= 0. Write

δ = nNγ + r, with n ∈ Z and r ∈ Z, 0 ≤ r < Nγ. Then(
α β
γ δ

)
=

(
α β −Nnα
γ r

)(
1 Nn
0 1

)
and (

α β −Nnα
γ r

)
=

(
1 −Nn
0 1

)(
α β
γ δ

)
∈ Γ∞Γ0(N)M,

which shows that the left-hand side of (3.18) is contained in the right-hand side.
Next we show that the right-hand side of (3.18) is contained in the left-hand side.
For this it is sufficient to show that for all n ∈ Z

M

(
1 Nn
0 1

)
∈ Γ0(N)M,

or equivalently

M

(
1 Nn
0 1

)
M−1 ∈ Γ0(N). (3.19)

But (3.19) follows directly since

M

(
1 Nn
0 1

)
M−1 ≡ E (mod N).

Finally to show the disjointness of the union in (3.18), let us assume that(
a′ b′

c′ d′

)
∈ Γ∞

(
a b
c d

)
Γ0
∞(N),

i.e, there exist n,m ∈ Z such that(
a′ b′

c′ d′

)
=

(
1 n
0 1

)(
a b
c d

)(
1 Nm
0 1

)
=

(
∗∗ ∗
c d+Nmc

)
.

48



Then we obtain c = c′ and d = d′, since d and d′ run over a set of representatives
of Z/(Nc) Z. This proves the Lemma �

Using Lemma 3.25 we directly obtain

Lemma 3.26 Let M ∈ SL2(Z), M /∈ Γ0(N). Then we can choose as a set of
representatives of (ΓJ

1,g)∞\ΓJ
1,g,0(N)M , the elements{(

a b
c d

)(
1 nN
0 1

)
, (aλ, (b+ nNa)λ)

}
,

where (c, d) runs through the elements in Lemma 3.25.

Now we can prove

Theorem 3.27 Let k > g + 2, M ∈ SL2(Z),M /∈ Γ0(N).
Then PN

k,m;(n,r)|k,m(M, (0, 0)) has the Fourier expansion

PN
k,m;(n,r)|k,m(M, (0, 0))(τ, z) =

∑
n′∈Z

r′∈Z(1,g)

4n′
N

>m−1[r′t]

gk,m;(n,r),N(n′, r′)e(n′/Nτ + r′z),

where

gk,m;(n,r),N(n′, r′) := 2πik · (det(2m))−1/2 ·
(
D̃/D

)k/2−g/4−1/2

·
∑
(c,d)

c−g/2−1

×
∑
λ(|c|)

e|c|(sign(c) (m[λ] + rλ+ n) d̄+ dn′/N + λr′) · e2|c|(sign(c)r′m−1rt)

× Jk−g/2−1

(
2π
√
D̃D

det(2m) · c

)
.

Here (c, d) runs through the same elements as in Lemma 3.25, and

D̃ := − det 2

(
n′

N
r′

2
r′t

2
m

)
. In particular PN

k,m;(n,r) is an element of J cusp
k,m (N).

Proof. We have

PN
k,m;(n,r)|k,m(M, (0, 0))(τ, z) =

∑
γ∈(ΓJ

1,g)∞\Γ
J
1,g,0(N)

en,r|k,mγ|k,m(M, (0, 0))(τ, z)

=
∑

γ∈(ΓJ
1,g)∞\Γ

J
1,g,0(N)(M,(0,0))

en,r|k,mγ(τ, z).
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Thus we get, using Lemma 3.26,

PN
k,m;(n,r)|k,m(M, (0, 0))(τ, z) =

∑
(c,d)

λ∈Z(g,1)

α∈Z

(cτ+d+Nαc)−k·e
(
−m[z]

c

cτ + d+Nαc
+

m[λ]
aτ + b+Nαa

cτ + d+Nαc
+ 2λtmz

1

cτ + d+Nαc
+ n

aτ + b+Nαa

cτ + d+Nαc

+rz
1

cτ + d+Nαc
+ rλ

aτ + b+Nαa

cτ + d+Nαc

)
,

where (c, d) runs over the same set of elements as in Lemma 3.25; in particular
we have c 6= 0. Thus we obtain, using the identities

aτ + b+Nαa

cτ + d+Nαc
=

a

c
− 1

c(cτ + d+Nαc)
,

1

cτ + d+Nαc
z +

aτ + b+Nαa

cτ + d+Nαc
λ =

1

cτ + d+Nαc

(
z − 1

c
λ

)
+
a

c
λ,

aτ + b+Nαa

cτ + d+Nαc
m[λ] +

2

cτ + d+Nαc
λtmz − c

cτ + d+Nαc
m[z]

= − c

cτ + d+Nαc
m

[
z − 1

c
λ

]
+
a

c
m[λ],

and replacing λ by λ+ βc, with the new λ running (mod c) and β ∈ Z(g,1),∑
(c,d)

c−k
∑
λ(|c|)

e|c|(sign(c)(m[λ] + rλ+ n)d̄) · Fk,m,c;(n,r),N (τ + d/c, z − λ/c) ,

where

Fk,m,c;(n,r),N(τ, z) :=
∑
α∈Z

β∈Z(g,1)

(τ +Nα)−k · e
(
− 1

τ +Nα
m[z − β]

− n

c2(τ +Nα)
+

1

c(τ +Nα)
r(z − β)

)
(τ ∈ H, z ∈ C(g,1)).

The function Fk,m,c;(n,r),N(τ, z) has period N in τ and period 1 in z and therefore
a Fourier expansion

Fk,m,c;(n,r),N(τ, z) =
∑
n′∈Z

r′∈Z(g,1)

γN(n′, r′)e(n′/Nτ + r′z),
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where

γN(n′, r′) =
1

N
·
∫

ic1+[0,N ]

∫
ic2+[0,1]g

Fk,m,c;(n,r),N(τ, z) · e(−n′/Nτ − r′z) dτdz

(c1 > 0, c2 ∈ Rg). This integral can be computed exactly as in the proof of
Theorem 2.29 and gives the desired value. �

Theorem 3.28 (Petersson coefficient formula.)
One has〈

φ, PN
k,m;(n,r)

〉
=

1[
ΓJ

1,g : ΓJ
1,g,0(N)

] · λk,m,D · cφ(n, r) (∀φ ∈ J cusp
k,m (N)),

where cφ(n, r) denotes the (n, r)-th Fourier coefficient of φ and λk,m,D is defined
as in Theorem 2.31.

From this we get

Corollary 3.29 As a unitary vector space with respect to the Petersson scalar
product, J cusp

k,m (N) is generated by the Poincaré series

{PN
k,m;(n,r)|n ∈ Z, r ∈ Z(1,g); 4n > m−1[rt]}.

Next, as in the case of the full Jacobi group, we want to construct Poincaré series
for k = g + 2, using Hecke’s trick.

Definition 3.30 For s ∈ C let us define for (τ, z) ∈ H × C(g,1) a formal series
by

PN
k,m;(n,r),s(τ, z) :=

∑
γ∈(ΓJ

1,g)∞\Γ
J
1,g,0(N)

(
v

|cτ + d|2

)s

· en,r|k,mγ(τ, z).

We now need the Fourier expansion of PN
k,m;(n,r),s|k,mγ(τ, z), where γ = (M, (0, 0)) ∈

ΓJ
1,g. Let us start with the case M = Eg.

Theorem 3.31 The series PN
k,m;(n,r),s(τ, z) is absolutely convergent in H×C(g,1)

if σ > 1
2
(g − k + 2). It satisfies the transformation law

PN
k,m;(n,r),s|k,mγ(τ, z) = PN

k,m;(n,r),s(τ, z)
(
∀(τ, z) ∈ H× C(g,1), γ ∈ ΓJ

1,g,0(N)
)
,

and has the Fourier expansion

PN
k,m;(n,r),s(τ, z) =

∑
n′∈Z

r′∈Z(1,g)

g±k,m;(n,r);s,v,N(n′, r′)e(n′τ + r′z),
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where τ = u+ iv, ± = (±1)k, and where

g±k,m;(n,r);s,v,N(n′, r′) := gk,m;(n,r);s,v,N(n′, r′) + (−1)kgk,m;(n,r);s,v,N(n′,−r′).

Moreover

gk,m;(n,r);s,v,N(n′, r′) := vs·δm(n, r, n′, r′)+
∑
c≥1
N|c

Hm,c(n, r, n
′, r′)·Φk,m,c,v(n

′, r′, s)·c−k−2s,

where D,D′, δm(n, r, n′, r′) and Hm,c(n, r, n
′, r′) are defined as in Theorem 2.29

and Φk,m,c,v(n
′, r′, s) as in Theorem 3.4.

Proof. The proof of Theorem 3.31 is very similar to the proof of Theorem 3.4
and can therefore be left to the reader. �

Theorem 3.32 For γ = (M, (0, 0)) ∈ ΓJ
g,1, where M /∈ Γ0(N), and (τ, z) ∈

H×C(g,1) the series PN
k,m;(n,r),s|k,mγ has a Fourier expansion

PN
k,m;(n,r),s|k,mγ(τ, z) =

∑
n′∈Z

r′∈Z(1,g)

gN
k,m;(n,r);s,v(n

′, r′)e(n′/Nτ + r′z),

where τ = u+ iv, and where

gN
k,m;(n,r);s,v(n

′, r′) :=
∑
(c,d)

HN
m,c(n, r, n

′, r′) · ΦN
k,m,c,v(n

′, r′, s) · c−k−2s,

where (c, d) runs through the set of elements of Lemma 3.25, and where

HN
m,c(n, r, n

′, r′) :=
∑
x(|c|)

y(|c|)∗

e|c|(sign(c)(m[x] + rx+ n)ȳ + n′/Ny + r′x),

and

ΦN
k,m,c,v(n

′, r′, s) =
1

N
· (det(2m))−1/2 · i−g/2 · vg/2−k−s+1 · e2|c|(sign(c)r′m−1rt)

×
∫ ∞

−∞
(u+i)g/2−k−s ·(u−i)−s ·e

(
(2 det(2m))−1

(
D̃v(u+ i) +

D

vc2(u+ i)

))
du,

where D is defined as in Theorem 2.29 and D̃ in Theorem 3.27

Proof. The proof is very similar to the proofs of the Theorems 2.29 and 3.4, and
can therefore be omitted. �

Now we have to estimate the integrals Φk,m,c,v(n
′, r′, s) and ΦN

k,m,c,v(n
′, r′, s) and

the Kloosterman sums Hm,c(n, r, n
′, r′) and HN

m,c(n, r, n
′, r′). We have already

estimated Φk,m,c,v(n
′, r′, s) and Hm,c(n, r, n

′, r′) in Corallary 3.7 and Lemma 3.9,
respectively. Thus it is left to consider ΦN

k,m,c,v(n
′, r′, s) and HN

m,c(n, r, n
′, r′).
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Lemma 3.33 The coefficients ΦN
k,m,c,v(n

′, r′, s), defined as in Theorem 3.32, are

holomorphic functions in s with σ > 1
2
(1 + g/2− k). In particular they are

holomorphic at s = 0 if k > g/2 + 1.
If K is a compact set of the domain σ > 1

2
(1 + g/2 − k), with s ∈ K, then they

satisfy the estimate

ΦN
k,m,c,v(n

′, r′, s)�K vg/2−k−σ+1 · e
−D
Av · e

−πD̃v
det(2m)

(1+sign(D̃)v1),

where v1 and A are positive constants with 0 < v1 < 1, and where the constant
implied in �K only depends on the set K.

Proof. The lemma follows directly from Lemma 3.5 with c1 = k − g/2,

c2 = −D̃v
2 det(2m)

, and c3 = −D
c2·v·2 det(2m)

. �

Lemma 3.34 Let HN
m,c(n, r, n

′, r′) be defined as in Theorem 3.32. Then we have

|HN
m,c(n, r, n

′, r′)| �D,m,ε c
g/2+1+ε,

where the constant implied in �D,m,ε only depends on D,m, and ε.

Proof. The proof is very similar to the proof of Lemma 3.9 and will therefore be
omitted. �

Theorem 3.35 Let g±k,m;(n,r);s,v,N(n′, r′), Hm,c(n, r, n
′, r′), Φk,m,c,v(n

′, r′, s),

HN
m,c(n, r, n

′, r′), and ΦN
k,m,c,v(n

′, r′, s) be defined as in the Theorems 2.29, 3.4,

and 3.31, respectively, where ± = (±1)k.
Then the Fourier series

Pk,m;(n,r),s(τ, z) :=
∑
n′∈Z

r′∈Z(1,g)

g±k,m;(n,r);s,v,N(n′, r′)e(n′τ + r′z) ((τ, z) ∈ H× C(g,1))

is absolutely and locally uniformly convergent in s and defines a holomorphic
function in s for σ > 1

2
(g/2 + 2 − k). In particular PN

k,m,(n,r),0(τ, z) is absolutely

convergent if k > g/2 + 2.
Let us define

g±N(n′, r′) := gN(n′, r′) + (−1)kgN(n′,−r′),

gN(n′, r′) :=
∑

c≥1
N|c

Hm,c(n, r, n
′, r′) · Φk,m,c,v(n

′, r′, s) · c−k−2s,

hN,M(n′, r′) :=
∑

(c,d)H
N
m,c(n, r, n

′, r′) · ΦN
k,m,c,v(n

′, r′, s) · c−k−2s,

where (c, d) runs through the elements of Lemma 3.25 and where ± = (±1)k.
Let k = g + 2, (τ, z) ∈ F, where F is the standard fundamental domain for the
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action of the Jacobi group on H × C(g,1), given in Remark 2.25, and let s with
0 < σ < 1 be an element from a compact set K. Then we have the estimates∣∣∣∣∑ n′∈Z

r′∈Z(1,g)
g±N(n′, r′)e(n′τ + r′z)

∣∣∣∣ �K v−g/2−1,∣∣∣∣∑ n′∈Z
r′∈Z(1,g)

hN,M(n′, r′)e(n′τ + r′z)

∣∣∣∣ �K v−g/2−1,

where the constants implied in �K are independent of τ and z.

Proof. The proof is very similar to the proof of Lemma 3.10 and can therefore
be left to the reader. �

Lemma 3.36 The function PN
g+2,m;(n,r)(τ, z) := PN

g+2,m;(n,r),0(τ, z) is an element

of J cusp
g+2,m(N).

Proof. The proofs of the transformation law and the Fourier expansion can be
given as in the proof of Lemma 3.11. Moreover the Fourier expansion in an arbi-
trary cusp follows from Theorem 3.32 by taking the limit. �

It is left to show that the Petersson coefficient formula is still valid. This is
proved in the following three lemmas.

Lemma 3.37 Let σ > 0 and φ ∈ J cusp
k,m (N). Then the scalar product〈

φ, PN
g+2,m;(n,r),σ

〉
is absolutely convergent.

Proof. We proceed as in the case of the full Jacobi group. Thus we let V be a
fixed set of representatives of (ΓJ

1,g)∞\ΓJ
1,g,0(N). Then, using the usual unfolding

argument and Levi‘s Theorem, we have in the sense of formal agreement∫
FN

∣∣∣φ(τ, z) · PN
g+2,m;(n,r),s(τ, z) · exp(−4πm[y]v−1)

∣∣∣ dudvdxdy
≤
∫

FN

|φ(τ, z)| · exp(−4πm[y]v−1)
∑
γ∈V

vσ · |cτ + d|−2s · |en,r|k,mγ(τ, z)| dudvdxdy

=

∫
∪γ∈V γFN

vσ · exp(−4πm[y]v−1) · |φ(τ, z)| · |en,r(τ, z)| dudvdxdy,

where FN is a fundamental domain for the action of ΓJ
1,g,0(N) on H×C(g,1). Since

∪γ∈V γFN is a fundamental domain for the action of (ΓJ
1,g)∞ on H × C(g,1), the

integral can be estimated as in the case of the full Jacobi group (using Lemma
3.12). �
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Lemma 3.38 For σ > 0 and φ ∈ J cusp
g+2,m(N) we have

〈
φ, PN

g+2,m;(n,r),σ

〉
=

1[
ΓJ

1,g : ΓJ
1,g,0(N)

] · λg+2,m,D,σ · cφ(n, r),

where cφ(n, r) denotes the (n, r)-th Fourier coefficient of φ and λg+2,m,D,σ is de-
fined as in Lemma 2.24.

Proof. The proof is similar to the proof of Lemma 3.13 and can therefore be
omitted. �

Lemma 3.39 For 0 < σ < 1 and φ ∈ J cusp
g+2,m(N) we have

lim
σ→0

〈
φ, PN

g+2,m;(n,r),σ

〉
=
〈
φ, PN

g+2,m;(n,r)

〉
. (3.20)

Proof. The existence of the limit on the right-hand side of (3.20) follows directly
from Lemma 3.38. Thus it is left to show that we may interchange limit and
integration.
As a fundamental domain for the action of ΓJ

1,g,0(N) on H×C(g,1) we can choose

∪γi∈V γiF, where F is a fundamental domain for the action of ΓJ
1,g on H×C(g,1),

and where V is a set of representatives of ΓJ
1,g,0(N)\ΓJ

1,g.
Since [ΓJ

1,g : ΓJ
1,g,0(N)] <∞ it is sufficient to show for γi ∈ V

lim
σ→0

∫
γiF
φ(τ, z) · PN

g+2,m;(n,r),σ(τ, z) · exp
(
−4πm[y]v−1

)
dudvdxdy

=

∫
γiF
φ(τ, z) · PN

g+2,m;(n,r)(τ, z) · exp
(
−4πm[y]v−1

)
dudvdxdy,

which is equivalent to

lim
σ→0

∫
F
φ|g+2,mγ

−1
i (τ, z)·PN

g+2,m;(n,r),σ|g+2,mγ
−1
i (τ, z)·exp

(
−4πm[y]v−1

)
dudvdxdy

=

∫
F
φ|g+2,mγ

−1
i (τ, z) · PN

g+2,m;(n,r)|g+2,mγ
−1
i (τ, z) · exp

(
−4πm[y]v−1

)
dudvdxdy.

Now we can proceed as in Lemma 3.14 and construct a Lebesgue majorant using
the estimates in Lemma 2.23 which is possible since φ|g+2,mγ

−1
i (τ, z) is a Jacobi

cusp form on γiΓ
J
1,g,0(N)γ−1

i (which has finite index in ΓJ
1,g). �

Lemma 3.40 As a unitary vector space with respect to the Petersson scalar prod-
uct, J cusp

g+2,m(N) is generated by the Poincaré series{
PN

g+2,m;(n,r) | n ∈ Z, r ∈ Z(1,g); 4n > m−1[rt]
}
.
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Now we want to estimate the Fourier coefficients of Jacobi cusp forms with respect
to ΓJ

1,g,0(N).

Theorem 3.41 Suppose that k ≥ g + 2. Let φ ∈ J cusp
k,m (N) with Fourier coeffi-

cients c(n, r). Then we have

c(n, r)�ε,k

(
1 +

|D|g/2+ε

(detm)(g+1)/2

)1/2

· |D|
k/2−g/4−1/2

(detm)k/2−(g+3)/4
· ‖ φ ‖ (ε > 0),

where the constant implied in �ε,k only depends on ε and k .

Proof. As in the case of the full Jacobi group we get, using the Cauchy-Schwarz
inequality and the Petersson coefficient formula,

|c(n, r)|2 ≤ λ−1
k,m,D · bn,r(P

N
k,m;(n,r))· ‖ φ ‖2,

where bn,r(P
N
k,m;(n,r)) is the (n, r)-th Fourier coefficient of PN

k,m;(n,r). Thus to prove
Theorem 3.41 we only have to estimate the Fourier coefficients of the Poincaré
series PN

k,m;(n,r). Therefore it is sufficient to estimate

∑
c≥1
N|c

∣∣∣∣Hm,c(n, r, n,±r) · Jk−g/2−1

(
−2π ·D

det(2m) · c

)∣∣∣∣ ,
which is trivially less or equal than∑

c≥1

∣∣∣∣Hm,c(n, r, n,±r) · Jk−g/2−1

(
−2π ·D

det(2m) · c

)∣∣∣∣ .
This sum has already been estimated in [BK] . �

Corollary 3.42 Suppose that k ≥ g + 2. Let φ ∈ J cusp
k,m (N) with Fourier coeffi-

cients c(n, r). Then we have

c(n, r)�ε,φ |D|(k−1)/2+ε (ε > 0),

where the constant implied in �ε,φ only depends on ε and φ.

ii) The case ΓJ
2,1,0(N)

Recall that

ΓJ
2,1,0(N) := Γ2,0(N) n

(
Z(1,2) × Z(1,2)

)
(cf. Definition 2.16).
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Definition 3.43 Let n be a positive definite symmetric half-integral 2×2 matrix,
r ∈ C(1,2), and m ∈ N such that n − rrt

4m
> 0. Let us define a Poincaré series of

exponential type for ΓJ
2,1,0(N) by

PN
k,m;(n,r)(τ, z) :=

∑
γ∈(ΓJ

2,1)∞\Γ
J
2,1,0(N)

en,r|k,mγ(τ, z)
(
(τ, z) ∈ H× C(1,2)

)
,

where en,r(τ, z) := e(tr (nτ + rz)), and where

(ΓJ
2,1)∞ :=

{((
E2 S
0 E2

)
, (0, µ)

)
∈ ΓJ

2,1

∣∣∣∣S ∈ Sym2(Z)

}
.

Then we have the following

Lemma 3.44 Let k ≥ 8 be an even integer. Then the series PN
k,m;(n,r)(τ, z) is ab-

solutely and locally uniformly convergent on H2×C(1,2). It defines a holomorphic
function and satisfies the transformation law

PN
k,m;(n,r)|k,mγ(τ, z) = PN

k,m;(n,r)(τ, z)
(
∀(τ, z) ∈ H2 × C(1,2), γ ∈ ΓJ

2,1,0(N)
)
.

Proof. The absolute and local uniform convergence follows from the absolute and
local uniform convergence of the Poincaré series Pk,m;(n,r) for the full Jacobi group
(cf. [Br] p. 8). Here the restriction k ≥ 8 even is needed since e(mτ ′) · Pk,m;(n,r)

is a subseries of another Poincaré series for the Siegel modular group which con-
verges absolutely in the case k ≥ 8 even. Thus also the holomorphicity and the
transformation law are clear. �

In order to compute the Fourier expansion we first need

Lemma 3.45 Let R̃ be a complete set of representatives of (Γ2)∞\Γ2,0(N).
Then

R :=

{((
A B
C D

)
, (λA, λB)

)
∈ ΓJ

2,1

∣∣∣∣ ( A B
C D

)
∈ R̃, λ ∈ Z(1,2)

}
is a complete set of representatives of (ΓJ

2,1)∞\ΓJ
2,1,0(N).

Proof. The proof is an easy and straightforward calculation and can be left to
the reader. �

In the computation of the Fourier series of PN
k,m;(n,r) we proceed as in [Br].

Corollary 3.46 Let R̃ be a complete set of representatives of (Γ2)∞\Γ2,0(N).
Then we have for (τ, z) ∈ H×C(1,2)

PN
k,m;(n,r)(τ, z) =

∑
M=

“
A
C

B
D

”
∈R̃

∑
λ∈Z(1,2)

(det(Cτ +D))−k

× e(−m((Cτ +D)−1C)[zt] + tr (T (Aτ +B)(Cτ +D)−1) + z(Cτ +D)−1r

+ λ(Aτ +B)(Cτ +D)−1r + 2mz(Cτ +D)−1λt +m(Aτ +B)(Cτ +D)−1[λt]).
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Proof. The claim follows directly from Lemma 3.45, the definition of the slash
operator, and the elementary identities

A− (Aτ +B)(Cτ +D)−1C = (Cτ +D)−t,

(Aτ +B)(Cτ +D)−1C(Aτ +B)t = A(Aτ +B)t − (Aτ +B)(Cτ +D)−1.�

To compute the Fourier expansion of the Poincaré series Pk,m;(n,r)(τ, z) we need
the following

Lemma 3.47 Let H be a complete set of representatives of (Γ2)∞\Γ2,0(N)/
(Γ2)∞.
Then we have

1. M =

(
A B
C D

)
∈ H is parametrized by C with C ≡ 0 (mod N) and D

(mod CΛ), where Λ := Sym2(Z).

2. For M ∈ Γ2,0(N) we have

(Γ2)∞M(Γ2)∞ =
·⋃

S∈Λ/Θ(M)

(Γ2)∞M

(
I S
0 I

)
,

where

Θ(M) :=

{
S ∈ Λ

∣∣∣∣M (
I S
0 I

)
M−1 ∈ (Γ2)∞

}
is an additive subgroup of Λ.

Proof. The proof follows in the same way as in the case of the full modular group
(cf. [Ki], p. 158). �

Thus we obtain

Corollary 3.48 For (τ, z) ∈ H2×C(1,2) and H as in Lemma 3.47 we have

PN
k,m;(n,r)(τ, z) =

∑
M=

“
A
C

B
D

”
∈H

∑
S∈Λ/Θ(M)

λ∈Z(1,2)

(det(C(τ + S) +D))−k

× e(−m((C(τ + S) +D)−1C)[zt] + tr (T (A(τ + S) +B)(C(τ + S) +D)−1)

+ z(C(τ + S) +D)−1r + λ(A(τ + S) +B)(C(τ + S) +D)−1r

+ 2mz(C(τ + S) +D)−1λt +m(A(τ + S) +B)(C(τ + S) +D)[λt]).

Proof. The proof follows directly from Lemma 3.47, using the absolute conver-
gence of the Poincaré series. �

We now subdivide the Poincaré series into three parts according as rk(C) = 0, 1,
and 2, respectively and denote these by P 1(τ, z), P 2(τ, z), and P 3(τ, z), respec-
tively.
First we want to compute P 1(τ, z). We have the following
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Lemma 3.49 1. As a set of representatives

{
M =

(
A B
C D

)
∈ H, rk(C) = 0

}
,

we can choose

H(0) :=

{(
U t 0
0 U−1

)∣∣∣∣U ∈ GL2(Z)

}
.

We have for M ∈ H(0):
Θ(M) = Λ.

2. We have for (τ, z) ∈ H2 × C(1,2)

P (1)(τ, z) =
∑

n′∈Λ∗
r′∈Z(1,2)

η′>0

A(n′, r′)e(tr (n′τ + r′z)),

where Λ∗ := {S ∈ Sym2(Q), S half-integral }, and where

A(n′, r′) = ]
{
U ∈ GL2(Z)

∣∣ η[U t] = η′, U−1n′ − r ∈ Z(1,2) · 2m
}
,

where η := n− rrt

4m
, and where η′ := n′ − r′r

′t

4m
.

Proof. The proof can be taken from [Br] since we can take as a set of represen-
tatives the same set as in the case of Γ2. �

Next we want to compute P (2)(τ, z). We have

Lemma 3.50 1. As a set of representatives

{
M =

(
A B
C D

)
∈ H, rk(C) = 1

}
,

we can choose

H(1) :=

{
M =

(
∗ ∗

U−1
(

c1
0

0
0

)
V t U−1

(
d1

0
d2

d4

)
V −1

)
∈ Γ2

∣∣∣∣∣
U ∈

{(
∗ ∗
0 ∗

)
∈ GL2(Z)

}∖
GL2(Z), V ∈ GL2(Z)

/{(
1 ∗
0 1

)
∈ GL2(Z)

}
c1 ∈ N, c1 ≡ 0 (mod N), d4 = ±1, d1, d2 (mod c1), (c1, d1) = 1} .

For M ∈ H(1) we have:

Θ(M) =

{
S ∈ Λ

∣∣∣∣S[V ] =

(
0 0
0 ∗

)}
with V as above.
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2. For (τ, z) ∈ H2×C(1,2) we have

P (1)(τ, z) =
∑

n′∈Λ∗
r′∈Z(1,2)

η′>0

B(n′, r′)e(tr (n′τ + r′z)),

where

B(n′, r′) =
∑

U∈{( ∗0 ∗∗)∈GL2(Z)}\GL2(Z)

V ∈GL2(Z)

ffi„
1
0
∗
1

«
∈GL2(Z

ff

∑
c1∈N

c1≡0(N)
d4=±1

∑
d1(c1)∗
d2(c1)

δ
(2m)

d4r2,r′2
· δF,F ′

× ec1

(
d1n1 − d1d2d4n2 + d1d

2
2n4 − r1r′1/(2m) + d2d4r2r

′
1/(2m) + d1n

′
1

+d2 (n′2 − r′1r′2/(2m))− d4

2F
(n′2 − r1r′2/(2m)) (n2 − r1r′1/(2m))

)
×
∑

λ1(c1)

ec1

(
d1mλ

2
1 + d1r1λ1 − d1d2d4r2λ1 − r′1λ

)
· c−2

1 πi−k · (Fm)−1/2

× (E ′/E)k/2−1 · Jk−2

(
4π

c1F

√
E ′E

)
,

where

δ(n)
x,y :=

{
1 if x ≡ y (mod n)
0 otherwise

,

(
n r/2
rt/2 m

)[(
U t 0
0 1

)]
=

 n1 n2/2 r1/2
n2/2 n4 r2/2
r1/2 r2/2 m

 ,

(
n′ r′/2
r
′t/2 m

)[(
U t 0
0 1

)]
=

 n′1 n′2/2 r′1/2
n′2/2 n′4 r′2/2
r′1/2 r′2/2 m

 ,

where d1 is an inverse of d1 (mod c1), η[U
t] =

(∗
∗
∗
F

)
, η′[V −t] =

(∗
∗
∗
F ′

)
,

E := det η, E ′ := det η′, and Jk−2 denotes the Bessel function of order
k − 2.

Proof. 1. can be obtained by intersecting the set of representatives of (Γ2)∞\Γ2/
(Γ2)∞ chosen in [Ki], p. 159 with Γ2,0(N).

2. For a fixed M =

(
A B
C D

)
∈ H(1) the inner sum in Corollary 3.48 can be

computed as in [Br] (pp. 17-26) to

δ2m
r2,r′2
· δF,F ′ · πi−k · (Fm)−1/2 · c−2 · (E ′/E)k/2−1

× ec (−r1r′1/(2m) + at1 + n′1d) · e
(
n2r

′
1r
′
2

4cFm
+
n′2r1r2
4cFm

− n2n
′
2

2cF
− r1r2r

′
1r
′
2

8cFm2

)
×
∑
λ1(c)

ec

(
amλ2

1 + ar1λ1 − r′1λ1

)
· Jk−2

(
4π

cF

√
E ′E

)
.
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Using 1., we get the claim after an easy straightforward calculation. �

Finally we need the Fourier expansion of P (2)(τ, z).

Lemma 3.51 1. As a set of representatives for

{
M =

(
A B
C D

)
∈ H, rk(C) = 2

}
,

we can take

H(2) :=

{(
∗ ∗
C D

)
∈ Γ2,0(N)

∣∣∣∣ detC 6= 0 , D (mod CΛ)

}
.

We have for M ∈ H(2)

Θ(M) = {0}.

2. We have for (τ, z) ∈ H2 × C(1,2)

P (2)(τ, z) =
∑

n′∈Λ∗
r′∈Z(1,2)

η′>0

C(n′, r′)e(tr (n′τ + r′z)),

where

C(n′, r′) =
1

2m
·
∑

C∈M2(Z)
det C 6=0

e

(
1

2m
ntC−1r

) ∑
D(CΛ)

( ∗C
∗
D )∈Γ2,0(N)

∑
λ∈Z(1,2)/Z(1,2)Ct

× e(tr (n′C−1D − r′λC−t) +mAC−1[λt] + λAC−1r + tr (nAC−1))

× (E ′/E)k/2−1 · (detC)−2 · J̃(Q),

where A is chosen arbitrarily such that

(
A ∗
C D

)
∈ Γ2,0(N), and where

J̃(·) is a certain matrix-argument Bessel function defined for Sym2(R) by

J̃(R) :=

∫
X∈Sym2(R)

(det τ)1/2−k · e(−tr (R(τ + τ−1)))dX

and Q =

√
ε′
[√

ε[C−t]
]
.

Remark 3.52 Of course one has to take a suitable choice of square root in
Lemma 3.49. This can be done as in [Br].

Proof. Lemma 3.51 can be proved exactly as in the case of the full Jacobi group.
The restriction C ≡ 0 (mod N) does not change the calculations (cf. [Br], pp.
28-30). �

Next we want to compute the Fourier expansion of Pk,m;(n,r),N |k,mγ, where
γ = (M, (0, 0)) ∈ ΓJ

2,1. For this we need the following
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Lemma 3.53 Let M ∈ Γ2, M /∈ Γ2,0(N). Then we have

Γ2,0(N)M =
·⋃

rgC>0

( ∗C
∗
D )∈Γ2,0(N)M

NS∈Λ/Θ(M)

(Γ2)∞

(
∗ ∗
C D

)(
I NS
0 I

)
. (3.21)

Proof. That the right-hand side of (3.21) is contained in the left-hand side follows
from

M

(
I NS
0 I

)
M−1 ≡ E (mod N).

That the left-hand side of (3.21) is contained in the right-hand side and the dis-
jointness of the union follows directly from the definition of Θ(M). �

Now we are able to prove the following

Theorem 3.54 Let M ∈ Γ2, M /∈ Γ2,0(N). Then Pk,m;(n,r),N |k,m(M, 0)(τ, z) for
all (τ, z) ∈ H2 × C(1,2) has a Fourier expansion

Pk,m;(n,r),N |k,m(M, 0)(τ, z) =
∑

n′∈Λ∗
r′∈Z(1,2)

4n′
N

> r′r′t
m

A(n′, r′)e(tr (n′τ + r′z)),

where A(n′, r′) ∈ C.

Proof. We only give a sketch of proof, because the computations are similar to
the ones for M = Eg. We have∑

γ∈(ΓJ
2,1)∞\Γ

J
2,1,0(N)

en,r|k,m(M, 0)γ(τ, z) =
∑

γ∈(ΓJ
2,1)J

∞\(M,0)ΓJ
2,1,0(N)

en,r|k,mγ(τ, z)

=
∑

( ∗C
∗
D )∈Γ2,0(N)M

∑
S∈NΓ/Θ(M)

λ∈Z(1,2)

(det(c(τ + S) +D)−k)

× e(−m((C(τ + S) +D)−1C)[zt] + tr (T (A(τ + S) +B)(C(τ + S) +D)−1)

+ z(C(τ + S) +D)−1r + λ(A(τ + S) +B)(C(τ + S) +D)−1r

+ 2mz(C(τ + S) +D)−1λt +m(A(τ + S) +B)(C(τ + S) +D)−1[λt]).

Now we can split the sum into two parts acccording as rk(C) = 1 or 2 (the case
C = 0 can obviously not occur).
In the case rk(C) = 1 one can easily show that one may assume that every

M̃ ∈
(
∗ ∗
C D

)
∈ Γ2,0(N)M has the form

M̃ =

(
U t 0
0 U−1

)( (
a
0

0
1

) (
b
0

0
0

)(
c
0

0
0

) (
d
0

0
1

) )( V t 0
0 V −1

)
,
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where a, b, c, d ∈ Z, c ≥ 1, ad − bc = 1, U, V ∈ GL2(Z). We now fix an M̃ and
develop the inner sum into a Fourier series with respect to τ (using that the sum
has period N in τ). Then we can show that the Fourier coefficients have period
1 in z and therefore have a Fourier expansion in z. Now we can show that the
Fourier coefficients of the Fourier expansion with respect to (τ, z) vanish unless
4n′

N
> r′r′t

m
.

In the case rk(C) = 2 we replace λ by λ+µCt with µ ∈ Z(1,2), and with the new
λ running (mod Z(1,2) · C). Using Θ(M) = {0}, the claim follows easily for this
case. �

Thus we have shown

Theorem 3.55 The series Pk,m;(n,r),N(τ, z) is a Jacobi cusp form with respect to
ΓJ

2,1,0(N).

Lemma 3.56 We have〈
φ,Pk,m;(n,r),N

〉
= λk,m,η · c(n, r) (∀φ ∈ J cusp

k,m (N)),

where

λk,m,η := 26−4k · π9/2−2k · Γ(k − 2) · Γ(k − 5/2) ·m−1 · (det η)2−k,

with η defined as in Lemma 3.51.

Proof. Lemma 3.56 follows in a similar way as in the case of the full Jacobi group.
�

Thus we can estimate the Fourier coefficients of Jacobi cusp forms with respect
to ΓJ

2,1,0(N). We have

Theorem 3.57 Let k ≥ 8 be an even integer and let φ ∈ J cusp
k,m (N) with Fourier

coefficients c(n, r). Then for a Minkowski-reduced matrix

(
m rt

2
r
2

n

)
we have

c(n, r)�ε,k

(
1 +m−1/2+ε · (det η)1+ε +m−1/2+ε · (min(η))−1 · (det η)3/2+ε

)
· ‖ φ ‖,

where η is defined as in Lemma 3.49, where min(η) := min{η[x]|0 6= x ∈ Z(2,1)},
and where the constant implied in �ε,k only depends on ε and k.

Proof. The estimate can be proved similarly as in the case of the full Jacobi
group (cf. [Br] pages 59-78). �
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3.2.2 Estimates of the Petersson norm of Fourier-Jacobi

coefficients

Let F ∈ Sk(Γg,0(N)). As described in Remark 2.22, F has the following two
Fourier-Jacobi expansions

F (Z) =
∑
m̃>0

ψm̃(τ̃ , z̃)e2πitr (m̃τ̃ ′) =
∑
m≥1

φm(τ, z)e2πimτ ′ . (3.22)

Here in the first sum the summation extends over all positive definite symmetric

half-integral (g−1)× (g−1) matrices, and Z ∈ Hg is written as Z =

(
τ̃ z̃
z̃t τ̃ ′

)
,

with τ̃ ∈ H, z̃ ∈ C(1,g−1), and τ̃ ′ ∈ Hg−1.
In the second sum the summation extends over all positive integers, and Z ∈ Hg

is written as Z =

(
τ zt

z τ ′

)
, with τ ∈ Hg−1, z ∈ C(1,g−1), and τ ′ ∈ H.

Moreover ψm̃ and φm are Jacobi cusp forms with respect to ΓJ
1,g−1,0(N) and

ΓJ
g−1,1,0(N), respectively. In this chapter we estimate the Petersson norms of the

coefficients ψm̃(τ̃ , z̃) and φm(τ, z). If g = 2 both cases coincide. Comparing the
estimates gives that the second one is slightly better.

The estimate we obtain in the following Lemma uses the classical Hecke ar-
gument.

Lemma 3.58 We have the estimates

‖ ψm̃ ‖ �F (det m̃)k/2,

‖ φm ‖ �F mk/2,

where the constants implied in �F only depend on F .

Remark 3.59 For N = 1 the proof is given in [KS] for g = 2 and in [Kr] for
φm for arbitrary g.

Proof. We only give the proof for ψm̃, the estimate for ‖ φm ‖ is obtained similarly.
Using the first Fourier-Jacobi expansion in (3.22), we obtain

ψm̃(τ̃ , z̃) =

∫ iC+Eg−1

iC

F (Z)e(−tr (m̃τ̃ ′))dτ̃ ′,

where C > 0 depends on ṽ and ỹ and satisfies the condition Y =

(
ṽ ỹt

ỹ C

)
> 0,

where ṽ :=Im(τ̃) and ỹ :=Im(z̃).
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From the Jacobi decomposition (cf. Remark 2.19) it follows directly that we can
choose

C = m̃−1 +
ỹỹt

ṽ
.

In this case we have
detY = (det m̃)−1ṽ.

Thus we obtain, using that (detY )k/2F (Z) is bounded on Hg (cf. Lemma 2.13),

|ψm̃(τ̃ , z̃)| ≤
∫ iC+Eg−1

iC

|F (Z)| · e2πtr (m̃C) dτ̃

�F (det m̃)k/2 · ṽ−k/2 · e2πtr (m̃[ỹt]ṽ−1).

Therefore we get

‖ ψm̃ ‖2 ≤ 1[
ΓJ

1,g−1 : ΓJ
1,g−1,0(N)

] ∫
F
ṽk · |ψm̃(τ̃ , z̃)|2 · e−4πtr (m̃[ỹt]ṽ−1) dV J

g−1

�F (det m̃)k ·
∫

F
dV J

g−1,

where F is a fundamental domain for the action of ΓJ
1,g−1,0(N) on H × C(g−1,1).

Thus the claim follows if we use that
∫

F dV
J
g−1 <∞ (cf. Remark 2.25). �

Next we want to improve the estimate for the Petersson norm ‖ φm ‖. The
idea is to use the Rankin-Selberg method and prove for a Dirichlet series with es-
sential ‖ φm ‖2 as general coefficient a meromorphic continuation and functional
equation and then estimate ‖ φm ‖2 by using a modified version of the Theorem
of Sato and Shintani. In the following we more generally replace ‖ φm ‖2 by
〈φm, ψm〉, where φm and ψm are the Fourier-Jacobi coefficients of two Siegel cusp
forms with respect to Γg,0(N). We want to prove the following

Theorem 3.60 We have

‖ φm ‖�ε,F mk/2−g/(4g+1)+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

For the proof we need some properties about certain non-holomorphic Eisenstein
series. First we want to show the following technical

Lemma 3.61 Let (c, d) ∈ Z(1,2g) be a primitive vector (i.e., ggT (c, d) = 1) with
c ≡ 0 (mod N).
Then there exists a matrix M ∈ Γg,0(N) with (c, d) as last row.

Remark 3.62 For N = 1 the lemma is well known (cf. for example [Ma]).
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Proof. For clarity the proof is subdivided into seven steps.

I. In the first step we want to prove the claim for c = 0.
In this case d is a primitive vector in Z(1,g). Due to the Lemma of Gauß there
exists a matrix U ∈ GLg(Z) with d as last row. Thus the matrix(

U−t 0
0 U

)
lies in Γg,0(N),

and has (c, d) as last row.

II. We may assume that |cg| 6= 0 is minimal under all entries ci (1 ≤ i ≤ g)
coming from (c, d)M with M ∈ Γg,0(N).
Indeed: Due to I. we may assume that c 6= 0. Let ci ∈ Z\{0} with |ci| minimal
under the cj (1 ≤ j ≤ g) coming from (c, d)M with M ∈ Γg,0(N), and let V be
the following g × g permutation matrix

V :=


et
1
...
et

g
...
et

i

 .

Then (
V 0
0 V −t

)
∈ Γg,0(N).

Thus we obtain, setting (d̃1, . . . , d̃g) := (d1, . . . , dg)V
−t,

(c1, . . . , cg, d1 . . . , dg)

(
V 0
0 V −t

)
= (c1, . . . , cg, ci+1, . . . , ci, d̃1 . . . , d̃g),

i.e., we may assume |cg| 6= 0 is minimal under all entries ci (1 ≤ i ≤ g) coming
from (c, d)M with M ∈ Γg,0(N). For 1 ≤ i < g let us write ci = λicg + ri with
0 ≤ ri < cg and λi ∈ Z. Then clearly

V :=


1

. . .
. . .

−λ1 . . . −λg−1 1

 ∈ SLg(Z),

and (
V 0
0 V −t

)
∈ Γg,0(N).
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Thus, setting (d̃1, . . . , d̃g) := (d1, . . . , dg)V
−t, we find

(c1, . . . , cg, d1 . . . , dg)

(
V 0
0 V −t

)
= (r1, . . . , rg−1, cg, d̃1 . . . , d̃g).

From the minimality of |cg|, it follows that ri = 0 (1 ≤ i ≤ g − 1).

III. Due to II. we may assume (c, d) = (0 . . . , 0, cg, d1, . . . dg), cg ≡ 0 (mod N). If
(d1, . . . , dg−1) = 0, then cg and dg are coprime since c and d are coprime.
In this case we set

C :=

(
0 0
0 cg

)
,

D :=

(
E 0
0 dg

)
.

Then clearly the matrix (C,D) is primitive (i.e., there exists a matrix U ∈
GL2g(Z) with (C,D) as the lower g × (2g) block) and satisfies CDt = DCt.
Thus the pair (C,D) can be completed to a matrix belonging to Γg (cf. [Fr]),
which is then clearly in Γg,0(N) and has (c, d) as last row.
If di 6= 0 for at least one di (1 ≤ i ≤ g−1), we let V be the following (g−1)×(g−1)
permutation matrix

V :=



et
1
...

et
g−1

et
i+1
...
et

i


.

Then

(0, . . . , 0, cg, d1, . . . , dg−1, dg)


V −t

1
V

1


= (0, . . . , 0, cg, d1 . . . , dg−1, di+1, . . . , di, dg).

For the same reasons as in I. we may assume that
(c, d) = (0, . . . , 0, cg, 0, . . . , 0,dg−1, dg), with dg−1 6= 0 and cg ≡ 0 (mod N).

IV. According to [KK], page 116 there exists a λ ∈ Z with (dg−1, dg + λc) = 1.
Let

S :=


0

. . .

0
λ

 .
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Then clearly St = S and therefore(
E S
0 E

)
∈ Γg,0(N).

Thus

(0, . . . , 0, cg, 0, . . . 0, dg−1, dg)

(
E S
0 E

)
= (0, . . . , 0, cg, 0, . . . , dg−1, dg + λcg).

Therefore we may assume that (c, d) = (0, . . . , 0, cg, 0, . . . , 0,dg−1, dg), with cg ≡ 0
(mod N) and (dg−1, dg) = 1.

V. Since Z is euclidean, there exist d1, d2 ∈ Z such that(
d1 d2

dg−1 dg

)
∈ SL2(Z). (3.23)

Let

C :=

 0 0 0
0 c1 c2
0 0 cg

 ,

D :=

 E 0 0
0 d1 d2

0 dg−1 dg

 ,

where c1, c2 ∈ Z. Then clearly the matrix (C,D) is primitive.
We now want to choose c1, c2 such that c1, c2 ≡ 0 (mod N) and CDt = DCt,
because in this case the pair (C,D) can be completed to a matrix in Γg,0(N) (cf.
[Fr]). These conditions are satisfied for

c1 := −cgd2
2,

c2 := cgd2d1.

Indeed: Due to cg ≡ 0 (mod N) we clearly have c1, c2 ≡ 0 (mod N). Thus it is
left to show that the matrix CDt is symmetric. We have

CDt =

 0 0 0
0 c1 c2
0 0 cg

 E 0 0
0 d1 dg−1

0 d2 dg

 =

 0 0 0
0 c1d1 + c2d2 c1dg−1 + c2dg

0 cgd2 cgdg

 .

Thus we have to show
c1dg−1 + c2dg = d2cg.

Inserting the definitions of c1 and c2 and using (3.23) we directly see that this
condition is satisfied. �

We now define non-holomorphic Eisenstein series as in [KS] or [Kr].

68



Definition 3.63 We formally define the following non-holomorphic Eisenstein
series

Es,N(Z) :=
∑

M∈CN\Γg,0(N)

(
det( Im(M<Z>))
det( Im(M<Z>)1)

)s

,

Es(Z) := Es,1(Z),

where CN denotes the subgroup of Γg,0(N) consisting of all those matrices with
(0, . . . 0, 1) as last row, and Im(M < Z >)1 means the upper (g − 1) × (g − 1)
block of the matrix Im(M < Z >).
Moreover let

E∗
s,N(Z) := π−s · Γ(s) · ζN(2s) · Es,N(Z),

where
ζN(s) :=

∑
n∈N

(n,N)=1

n−s.

Then we have the following

Lemma 3.64 The series Es,N(Z) is well-defined, converges absolutely and locally
uniformly for Re(s) > g, and is invariant under Γg,0(N).

Proof. The lemma is well known for N = 1 (cf. [Kr]). For N > 1 it is proved in
exactly the same way. �

Remark 3.65 We have

Es,N(Z) =
∑

(c,d)∈Z(2g,1)

(c,d)=1
c≡0(N)

(
PZ

[(
c
d

)])−s

(∀Z ∈ Hg) ,

where PZ :=

(
Y 0
0 Y −1

)[(
I 0
X I

)]
> 0.

Proof. The proof follows directly if we use Lemma 3.61 and the identity

det( Im(M < Z >))

det( Im(M < Z >)1)
= PZ [λ]−1,

where λt denotes the last row of M . �

Lemma 3.66 The function E∗
s,N(Z) has a meromorphic continuation to the whole

complex s-plane.
If N = 1 it is holomorphic except for two simple poles at s = 0 and at s = g with
residues −1 and 1, respectively.
In this case it satisfies the functional equation

E∗
s (Z) = E∗

g−s(Z).
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If N 6= 1 the only singularity is a simple pole at s = g with residue

N−g ·
∑
l|N

µ(l)l−g,

where µ(l) denotes the Moebius function.
In this case it satisfies the functional equation

E∗
g−s,N(Z) = N2s−2g ·

∑
l1|N

µ

(
N

l1

)
· lg−2s

1 ·
∑
l2|l1

l2s
2 · E∗

s,l2
(Z).

Moreover we have the following identity between the Eisenstein series

E∗
s,N(Z) =

∑
l|N

µ(l) · (Nl)−s · E∗
s

(
N

l
Z

)
.

Proof. Since the case N = 1 is treated in [KS] for g = 2 and in [Kr] for arbitrary
g, we may assume N > 1.

Write λ =

(
c
d

)
. We use Remark 3.65, the directly verified identity

PZ [λ] = Y [c] + Y −1[d+Xc]
(
∀ c, d ∈ Z(g,1)

)
, (3.24)

and the well-known property of the Moebius function∑
l|n

µ(l) =

{
1 if n = 1
0 otherwise

, (3.25)

to deduce

ζN(2s)Es,N(Z) =
∑
n∈N

(N,n)=1

n−2s
∑

(c,d)∈(NZ)(g,1)×Z(g,1)

(c,d)=1

(
Y [c] + Y −1[Xc+ d]

)−s

=
∑
n∈N

(N,n)=1

(c,d)∈Z(g,1)×Z(g,1)

(Nc,d)=1

(
Y [Nnc] + Y −1[NnXc+ dn]

)−s

=
∑

(c,d)∈Z(g,1)×Z(g,1)

(N,d)=1

(
Y [Nc] + Y −1[NXc+ d]

)−s

=
∑′

(c,d)∈Z(g,1)×Z(g,1)

(
Y [Nc] + Y −1[NXc+ d]

)−s
∑

l|(N,d)

µ(l)

=
∑
l|N

µ(l)
∑′

(c,d)∈Z(g,1)×Z(g,1)

(
Y [Nc] + Y −1[NXc+ ld]

)−s
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=
∑
l|N

(Nl)−s · µ(l)
∑′

(c,d)∈Z(g,1)×Z(g,1)

((
N

l
Y

)
[c] +

(
N

l
Y

)−1 [(
N

l
X

)
c+ d

])−s

=
∑
n∈N

∑
l|N

(Nl)−s · µ(l)
∑′

(c,d)∈Z(g,1)×Z(g,1)

(c,d)=1

((
N

l
Y

)
[nc] +

(
N

l
Y

)−1 [(
N

l
X

)
nc+ nd

])−s

= ζ(2s) ·
∑
l|N

µ(l) · (Nl)−s · Es

(
N

l
Z

)
.

Here
∑′ means as usual that the vector 0 is omitted in the summation.

Hence

E∗
s,N(Z) =

∑
l|N

µ(l) · (Nl)−s · E∗
s

(
N

l
Z

)
= N−2s ·

∑
l|N

µ

(
N

l

)
· ls · E∗

s (lZ).(3.26)

Applying the Moebius inversion formula to (3.26), we get

E∗
s (NZ) = N−s ·

∑
l|N

l2s · E∗
s,l(Z). (3.27)

From (3.26), the meromorphicity of E∗
s,N(Z) as a function of s follows from the

well-known meromorphicity of E∗
s (Z). The only possible poles are those of E∗

s (Z),
i.e., s = 0 and s = g and they are at most of first order.

Using elementary rules for calculating residues, the fact N 6= 1, the formulas
(3.25) and (3.26), the fact that E∗

s (Z) has a pole of first order with residue −1
at s = 0, we find

Res
(
E∗

s,N(Z), s = 0
)

= lim
s→0

sE∗
s,N(Z) =

∑
l|N

µ(l)·lim
s→0

sE∗
s

(
N

l
Z

)
= −

∑
l|N

µ(l) = 0.

Thus E∗
s,N(z) is holomorphic at s = 0.

At s = g we can compute the residue with the same arguments as in the case
s = 0. Using the fact that Es(Z)∗ has a pole of first order with residue 1 at s = g,
we derive

Res
(
E∗

s,N(Z), s = g
)

= lim
s→g

(s− g)E∗
s,N(Z)

= N−g ·
∑
l|N

µ(l) · l−g · lim
s→g

(s− g)E∗
s

(
N

l
Z

)
= N−g ·

∑
l|N

l−g · µ(l) 6= 0.

Thus E∗
s,N(z) has a simple pole with the residue N−g ·

∑
l|N l

−g · µ(l) at s = g.
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It is left to show the functional equation for E∗
s,N(Z). Using the functional equa-

tion of E∗
s (Z) and (3.26), we find

E∗
g−s,N(Z) = N2s−2g·

∑
l|N

µ

(
N

l

)
·lg−s·E∗

g−s(lZ) = N2s−2g·
∑
l|N

µ

(
N

l

)
·lg−s·E∗

s (lZ).

Thus we obtain by using (3.27)

E∗
g−s,N(Z) = N2s−2g ·

∑
l|N

µ

(
N

l

)
· lg−2s

∑
l̃|l

l̃2g · E∗
s,l̃

(Z).

�

In order to prove a later claim on the meromorphicity of 〈FEs,N , G〉 as a function
of s, where F,G ∈ Sk(Γg,0(N)), we need knowledge about the growth behaviour
of the Eisenstein series Es,N for tr(Y ) → ∞. More exactly speaking we want to
prove the following

Lemma 3.67 Fix s ∈ C. Then for every Z ∈ Fg, γ ∈ Γg, there exists a real
constant α such that

E∗
s,N(γ ◦ Z)−

∑
l|N

µ(l) · (Nl)−s ·
(

1

s
+

1

g − s

)
�g,N,γ (tr Y )α,

where Fg denotes the standard fundamental domain for the action of Γg on Hg,
and where the constant implied in �g,N,γ only depends on g,N, and γ.

Proof. Due to Lemma 3.66 it is sufficient to prove Lemma 3.67 for Es(l(γ ◦ Z)),
where l is a positive divisor of N . For this we need an integral representation of
the Eisenstein series.

Lemma 3.68 For all s ∈ C, we have the integral representation

E∗
s (Z)−

(
1

s
+

1

g − s

)
=

∫ ∞

1

∑′

λ∈Z(2g,1)

e−πtPZ [λ] · (ts + tg−s)
dt

t
(∀Z ∈ Hg),

where PZ is defined as in Remark 3.65.

Proof. For the proof we need some well known properties of the Epstein zeta-
function (cf. [Te] pp. 58). As in the proof of Lemma 3.66 we need the identity

ζ(2s) · Es(Z) =
∑

λ∈Z(2g,1)

(PZ [λ])−s .
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Now for a positive definite symmetric real-valued (2g)× (2g) matrix A we define
a theta series by

Θ(t, A) :=
∑

λ∈Z(2g,1)

e−πtA[λ]
(
∀ t ∈ R+

)
.

In particular we set

Θt(Z) := Θ(t, PZ) (∀Z ∈ Hg) .

Then it is shown in [Te] that∫ ∞

0

(Θt(Z)− 1) · ts dt
t

= π−s · Γ(s) · ζ(2s) · Es(Z) = E∗
s (Z) (Re(s) > g),

and
Θ1/t(Z) = Θ(t−1, PZ) = (detPZ)−1/2 · tg ·Θ(t, P−1

Z ).

Due to
detPZ = 1,

and

P−1
Z

[(
λ1

λ2

)]
=

(
Y −1 0
0 Y

)[(
I −X
0 I

)][(
λ1

λ2

)]
= Y [λ2] + Y −1[λ1 −Xλ2] = PZ

[(
λ2

−λ1

)]
,

we have
Θ1/t(Z) = tg ·Θt(Z) (∀ t > 0).

Therefore we have for all s with σ > 0 the following integral representation

E∗
s (Z) =

∫ ∞

1

(Θt(Z)− 1) · ts dt
t

+

∫ ∞

1

(tgΘt(Z)− 1) · t−s dt

t

=

∫ ∞

1

(Θt(Z)− 1) (ts + tg−s)
dt

t
−
(

1

s
+

1

g − s

)
.

Thus the lemma follows for all s ∈ C using meromorphic continuation. �

Now we can prove Lemma 3.67, using the integral representation computed in
Lemma 3.68. First we want to estimate

∑′
λ e

−πtPlγ◦Z [λ]. Therefore we show that
for all integers r1 and r2 there exist integers r′1 and r′2 such that∑′

λ∈Z(2g,1)

e−πtlr1Plr2γ◦Z [λ] ≤
∑′

λ∈Z(2g,1)

e
−πtlr

′
1P

l
r′2Z

[λ]
. (3.28)
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Since the matrix γ is an element of Γg, it can be written as a product up to ±E

of matrices of the form

(
E S
0 E

)
, (St = S) and

(
0 E
−E 0

)
. We now want

to prove (3.28) per induction on the minimal number n of matrices of these two
types that are needed. Since in the case n = 0 there is nothing to show we may

assume that n > 0. Then we can write γ = γ1γ2, where γ1 =

(
0 E
−E 0

)
or

γ1 =

(
E S
0 E

)
, and γ2 ∈ Γg.

In the following we need the identity (cf. [Kr])

PM<Z> = PZ [M t] (∀Z ∈ Hg,M ∈ Spg(R)) . (3.29)

Let us first assume γ1 =

(
0 E
−E 0

)
and set Z̃ := γ2 ◦ Z. Then we have

lr2

(
γ1 ◦ Z̃

)
= lr2

(
− 1

Z̃

)
= − 1

l−r2Z̃
= γ1 ◦

(
l−r2Z̃

)
.

Using identity (3.29) we find

Plr2 (γ1◦Z̃) = Pγ1◦(l−r2 Z̃) = Pl−r2 Z̃ [γt
1].

Thus we obtain, using that γt
1λ runs over Z(2g,1) \ {0} if λ does,∑′

λ∈Z(2g,1)

e−πtlr1Plr2γ1γ2◦Z [λ] =
∑′

λ∈Z(2g,1)

e
−πtlr1P

l−r2 (γ2◦Z)
[γt

1λ]
=

∑′

λ∈Z(2g,1)

e
−πtlr1P

l−r2 (γ2◦Z)
[λ]
.

If γ1 =

(
E S
0 E

)
, we have

lr2(γ1 ◦ Z̃) = lr2Z̃ + lr2S =

(
E lr2S
0 E

)
◦ (lr2Z̃).

We now distinguish the cases r2 ≥ 0 and r2 < 0.

If r2 ≥ 0, then

(
E lr2S
0 E

)t

λ runs over Z(2g,1) \ {0} if λ does. Thus we get with

the same arguments as before∑′

λ∈Z(2g,1)

e−πtlr1Plr2 (γ1γ2◦Z)[λ] =
∑′

λ∈Z(2g,1)

e−πtlr1Plr2 (γ2◦Z)[λ].

If r2 < 0, we replace r2 by −r2 with the new r2 > 0. Then we have

Pl−r2 (γ1◦Z̃)

[(
λ1

λ2

)]
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= Pl−r2 Z̃

[(
E 0

l−r2S E

)][(
λ1

λ2

)]

=


(
l−r2Ỹ

)
0

0
(
l−r2Ỹ

)−1

[( E 0

l−r2X̃ E

)(
λ1

λ2 + l−r2Sλ1

)]

=
(
l−r2Ỹ

)
[λ1] +

(
l−r2Ỹ

)−1 [(
l−r2X̃

)
λ1 + λ2 + l−r2Sλ1

]
= l−2r2

((
l−r2Ỹ

)
[lr2λ1] +

(
l−r2Ỹ

)−1 [(
l−r2X̃

)
lr2λ1 + lr2λ2 + Sλ1

])
.

Moreover for a fixed λ1 6= 0 and λ1 = 0, lr2λ2 + Sλ1 runs through a subset
of Z(g,1) \ {0} and Z(g,1), respectively if λ2 runs through Z(g,1) \ {0} and Z(g,1),
respectively. Thus we have∑′

λ∈Z(2g,1)

e−πtlr1Plr2 (γ1γ2◦Z)[λ] ≤
∑′

λ1,λ2∈Z(g,1)

e
−πtlr1−2r2

“
(l−r2 Ỹ )[lr2λ1]+(l−r2 Ỹ )

−1
[(l−r2X̃)lr2λ1+λ2]

”
.

Moreover lr2λ1 runs through a subset of Z(2g,1) and Z(2g,1) \{0} if λ2 runs through
Z(g,1) and Z(g,1) \ {0}, respectively. Thus we have∑′

λ∈Z(2g,1)

e−πtlr1Plr2 (γ1γ2◦Z)[λ] ≤
∑′

λ∈Z(2g,1)

e
−πtlr1−2r2P

l−r2 (γ2◦Z)
[λ]
.

Thus we can use the induction step in both cases and get the claim.
Now we can show as in [Ku] (using that the largest and the smallest eigenvalue
of Y can be estimated against emin ≥ e1 and emax ≤ e2 · tr (Y ), respectively, with
constants e1, e2 only depending on g) that there exists a positive constant α such
that ∑′

λ∈Z(2g,1)

e−πtPlγ◦Z [λ] �g,l,γ (tr Y )α · e−πta.

Using Lemma 3.68 this leads to the estimate

E∗
s (lγ ◦ Z)−

(
1

s
+

1

g − s

)
�g,l,γ (tr Y )α ·

∫ ∞

1

e−πta · (tσ + tg−σ) dt.

As in [Ku] we get, distinguishing the cases a > 1 and a ≤ 1, that the integral is
bounded by a power of tr (Y ). �

Definition 3.69 Let us now formally define the Dirchlet series

DF,G,N(s) := kN

iN
· ζN(2s− 2k + 2g) ·

∑
m≥1 〈φm, ψm〉m−s,

D∗
F,G,N(s) := (4π)−s · Γ(s) · Γ(s− k + g) ·DF,G,N(s),
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where F,G ∈ Sk(Γg,0(N)), φm and ψm are the m-th Fourier-Jacobi coefficients of
F and G, respectively, iN := [Γg : Γg,0(N)], and kN := [Γ1 : Γ0(N)] .
Moreover we define for a positive divisor l of N the Dirichlet series

DF,G,N,l(s) := ζl(2s− 2k + 2g) ·
∑
m≥1

bl(m)m−s,

where

bl(m) :=
1

il
·
∑

j

∫
Fl

φm,γj
(τ, z) · ψm,γj

(τ, z) · (det v)k−(g+1) · e−4πmv−1[y] dudvdxdy,

and
D∗

F,G,N,l(s) := (4π)−s · Γ(s) · Γ(s− k + g) ·DF,G,N,l(s),

where Fl is a fixed fundamental domain of the action of ΓJ
g−1,1(l) on Hg−1×

C(1,g−1). Moreover φm,γj
(τ, z) and ψm,γj

(τ, z) denote the Fourier-Jacobi coefficient
of F |γj and G|γj, respectively, where γj runs through a set of representatives of
Γg,0(N)\Γg,0(l).

Remark 3.70 The proof of Theorem 3.72 will show that the fundamental domain
Fl in Definition 3.69 can be chosen arbitrarily.

Lemma 3.71 The coefficients 〈φm, ψm〉 and b(m, l) of DF,G,N(s) and
DF,G,N,l(s), respectively, satisfy the estimates

〈φm, ψm〉
bl(m)

}
�F,G mk,

where the constants implied in �F,G only depend on F and G.
Thus the series DF,G,N(s) and DF,G,N,l(s) are absolutely and locally uniformly
convergent for Re(s) > k + 1 and therefore holomorphic.

Proof. The proof is very similar to the proof of Lemma 3.58, and therefore can
be left to the reader. �

Theorem 3.72 The functions DF,G,N(s) and DF,G,N,l(s) have meromorphic con-
tinuations to the whole complex plane with only finitely many poles.
The function DF,G,N(s) is entire if 〈F,G〉 = 0, and otherwise at s = k has a
simple pole of residue

(4π)k

(k − 1)!(g − 1!)
· πg−k · 〈F,G〉 ·N−g ·

∑
l|N

µ(l) · l−g.

It satisfies the functional equation

D∗
F,G,N(2k − g − s) = N2s−2k ·

∑
l1|N

µ

(
N

l1

)
· l−2s+2k−g

1

∑
l2|l1

l
2(s−k+g)
2 ·D∗

F,G,N,l2
(s).
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Proof. Since the proof for N = 1 is given in [KS] for g = 2 and in [Kr] for arbitrary
g we may assume N > 1. Let F,G ∈ Sk(Γg,0(N)). Then clearly 〈FEs,N , G〉 is
well-defined. Thus we obtain, using the usual unfolding argument,

〈FEs,N , G〉 = i−1
N ·

∫
Γg,0(N)\Hg

F (Z) · Es,N(Z) ·G(Z) · (detY )k−g−1 dXdY

= i−1
N ·

∫
CN\Hg

F (Z) ·G(Z) · (detY )k−g−1+s · (det v)−s dXdY,

where as before CN denotes the subgroup of Γg,0(N) consisting of all those ma-
trices with (0, . . . 0, 1) as last row. As a fundamental domain for the action of CN
on Hg, we can choose{(

τ zt

z τ ′

)∣∣∣∣ (τ, z) ∈ FN , v
′ > v−1[y], 0 ≤ u′ ≤ 1

}
,

where FN is a fundamental domain for the action of ΓJ
g−1,1(N) on Hg−1×C(1,g−1),

and where we have written τ , z, and τ ′ as τ = u+ iv, z = x+ iy, and τ ′ = u′+ iv′,
respectively.
Inserting the Fourier-Jacobi expansions of F and G

F (Z) =
∑

m≥1 ψm(τ, z)e2πimτ ′ ,

G(Z) =
∑

m≥1 φm(τ, z)e2πimτ ′ ,

we obtain for Re(s) > g + 1, making similar calculations as in [Kr] or [KS],

〈FEs,N , G〉 = (4π)−(s+k−g) · Γ(s+ k − g) · kN

iN
·
∑
m≥1

〈φm, ψm〉m−(s+k−g).

Hence we have the identity

πg−k ·
〈
E∗

s−k+g,NF,G
〉

= D∗
F,G,N(s).

Using that F,G ∈ Sk(Γg,0(N)), Lemma 2.13 and Lemma 3.67, we get that
D∗

F,G,N(s) has a meromorphic continuation to C having at most simple poles
at s = k and s = k − g.
Since the Gamma function is a meromorphic function with no zeros we can con-
clude that DF,G,N(s) has a meromorphic continuation to the whole complex plane
and is holomorphic exept for possible simple poles at s = k and at s = k − g.
Using that E∗

s,N(Z) has a simple pole with residue N−g ·
∑

l|N µ(l) · l−g at s = g
and Lemma 3.66 we find
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Res(DF,G,N(s), s = k) = lim
s→k

(s− k)DF,G,N(s)

= lim
s→k

(s− k)
D∗

F,G,N(s) · (4π)s

Γ(s) · Γ(s− k + g)

=
(4π)k

(k − 1)!(g − 1)!
· πg−k ·

〈
lim
s→k

(s− k)E∗
s−k+g,NF,G

〉
=

(4π)k · πg−k

(k − 1)!(g − 1)!
· 〈F,G〉 ·N−g ·

∑
l|N

µ(l) · l−g.

Since DF,G,N(s) has at most a simple pole at the point s = k − g and since the
Gamma function has a simple pole at zero and no zeros we obtain

Res(DF,G,N(s), s = k − g) = lim
s→k−g

(s− (k − g))DF,G,N(s)

= lim
s→k−g

(s− (k − g))
D∗

F,G,N(s) · (4π)s

Γ(s) · Γ(s− k + g)
= 0,

i.e., DF,G,N(s) is holomorphic at s = k − g.
Now it remains to show the functional equation for DF,G,N(s).
Using Lemma 3.66 (with g − k + s instead of s) we find

D∗
F,G,N(2k − g − s) = πg−k ·

〈
E∗

g−(g−k+s),NF,G
〉

= N2s−2k ·
∑
l1|N

µ

(
N

l1

)
· l−2s+2k−g

1

∑
l2|l1

l
2(s−k+g)
2 · πg−k ·

〈
ι
(
E∗

s−k+g,l2

)
F,G

〉
,

where ι denotes the inclusion map. To prove the functional equation we thus
have to show that

πg−k · 〈ι(Es−k+g,l)F,G〉 = DF,G,N,l(s).

Therefore we have to calculate scalar products of the type

〈ι(Es,l)F,G〉 (l|N),

which are clearly well-defined.
Denoting by ι∗ the adjoint of the map ι we find

〈ι(Es,l)F,G〉Γg,0(N) =
〈
ι(Es,l), F̄G

〉
Γg,0(N)

=
〈
Es,l, ι

∗(F̄G)
〉

Γg,0(l)
.

It is well known that
ι∗(F̄G) =

∑
j

(F̄G)|γj,
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where γj runs through a set of representatives of Γg,0(N)\Γg,0(l). Thus we have

〈ι(Es,l)F,G〉 = i−1
l ·

∑
j

∫
Γg,0(l)/Hg

Es,l(Z) · F |γj(Z) ·G|γj(Z) · (detY )k−(g+1) dXdY.

Using the usual unfolding argument we find

〈ι(Es,l)F,G〉 = i−1
l ·

∑
j

∫
Cl\Hg

F |γj(Z) ·G|γj(Z) · (det v)−s · (detY )k−(g+1)+s dXdY.

As a fundamental domain for the action of Cl on Hg, we may choose{(
τ zt

z τ ′

)∣∣∣∣ (τ, z) ∈ Fl, v
′ > v−1[y], 0 ≤ u′ ≤ 1,

}
,

where Fl is given in Definition 3.69, and where we have written τ = u + iv,
z = x+ iy, and τ ′ = u′ + iv′, respectively. .
Inserting the Fourier-Jacobi expansions of F |γj(z) and G|γj(z)

F |γj(z) =
∑
m≥1

φm,γj
(τ, z)e2πimτ ′ ,

G|γj(z) =
∑
m≥1

ψm,γj
(τ, z)e2πimτ ′ ,

we find

〈ι(Es,l)F,G〉 = i−1
l ·

∫
Fl

∫
v′>v−1[y]

0≤u′≤1

∑
m,n≥1

φm,γj
(τ, z) · ψn,γj

(τ, z)

×e−2π(m+n)v′·e2πi(m−n)u′·(det v)k−(g+1)·
(
det
(
v′ − v−1[y]

))k−(g+1)+s
du′dv′dudvdxdy.

The integrals over v′ and u′ can be evaluated exactly as before and give the value

1

il
·(4π)−(s+k−g) ·Γ(s+k−g) ·

∑
m≥1

(∑
j

∫
Fl

φm,γj
(τ, z) · ψm,γj

(τ, z) · (det v)k−(g+1)

×e−4πmv−1[yt] dudvdxdy
)
m−(s+k−g)

for Re(s) > g + 1 .
Thus we have the identity

D∗
F,G,N,l(s) = πg−k ·

〈
ι(E∗

s−k+g,l)F,G
〉
.

Now one can show with the same arguments as before that D∗
F,G,N,l(s) has a

meromorphic continuation to C with a possible simple pole at s = k. Moreover
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the functional equation follows directly. �

To prove Theorem 3.60 we only need the case F = G. Clearly DF,F (s) and
DF,F,N,l(s) have non-negative coefficients. Thus a classical Theorem of Landau
says that they must have the first real singularity at their abscissa of convergence.
Thus they converge for Re(s) > k.
We now need the following modified version of Landau’s Hauptsatz (cf [SS])

Theorem 3.73 Suppose Z(s) =
∑

n≥1 c(n)n−s and ηi(s) =
∑

n≥1 bi(n)n−s,
1 ≤ i ≤ l (l ∈ N) are Dirichlet series with non-negative coefficients which con-
verge for Re(s) > σ0, have a meromorphic continuation to C with finitely many
poles and satisfy a functional equation

Z∗(δ − s) =
l∑

i=1

±η∗i (s),

where
Z∗(s) = A−s ·

∏J
j=1 Γ(ajs+ bj) · Z(s),

η∗i (s) = A−s
i ·

∏J
j=1 Γ(ajs+ bj) · ηi(s),

where A , Ai > 0, J ∈ N, aj > 0, bj ∈ R. Suppose that

κ := (2σ0 − δ) ·
J∑

j=1

aj −
1

2
> 0.

Then ∑
n≤x

c(n) =
∑

all poles

Res

(
ζ(s)

s
xs

)
+Oη(x

η),

for any η > η0 := (δ + σ0(κ− 1))/(κ+ 1).

Proof. As in [K2] we write the functional equation asymmetrically as

Z(δ − s) = Aδ−s ·
J∏

j=1

Γ(ajs+ bj)/Γ(−ajs+ ajδ + bj)
l∑

i=1

±A−s
i · ηi(s) (∀ s ∈ C) .

If we use that Γ(x) · Γ(1− x) = π · sin(πx)−1, then Theorem 3.73 follows directly
from the version of Sato and Shintani (cf. [SS]). �

Now we want to use Theorem 3.73 with

Z(s) = DF,F,N(s), ηi(s) = DF,F,N,p(i)(s) ·N−2k · (p(i))2k−g · (q(i))−2k+2g,

where (p(i), q(i)) runs through the elements (l1, l2) with l1|N , l2|l1 and µ
(

N
l1

)
6= 0.

Moreover σ0 = k, δ = 2k − g, A = 4π, Ai = 4π(p(i))2(q(i))−2N−2, J = 2, a1 =
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a2 = 1, b1 = 0, b2 = g − k.
Hence κ = 2g − 1

2
> 0, η0 = k − 2g

4g+1
. Thus all conditions of Theorem 3.73 are

satisfied. Therefore we have∑
n≤x

c(n) = cxk +Oη

(
xk− 2g

4g+1
+ε
)

(∀ ε > 0) ,

where c = Ress=k
DF,F (s)

s
.

Therefore we get, taking x = m and x = m− 1 and substracting, that

c(m)�ε,F mk− 2g
4g+1

+ε.

Writing ζN(s)−1 :=
∑

n≥1 µN(n)n−s and using that the coefficients of ζN(s)−1 are
bounded by 1, we find

‖ φm ‖2 =
∑
d2|m

µN(d) · d2k−2g · c
(m
d2

)
�ε,F mk− 2g

4g+1
+ε ·

∑
d≥1

d−2g(1− 2
4g+1

)

�ε,F mk− 2g
4g+1

+ε.

�

3.2.3 Final estimates

In this section we want to collect our results and give the final estimates. There-
fore we let F ∈ Sk(Γg,0(N)) with Fourier coefficients a(T ), where T is a positive
definite symmetric half-integral g × g matrix (g ∈ N, g ≥ 2). First we have

Theorem 3.74 Let g ≥ 2, k ≥ g + 1. Then

a(T )�ε,F (mg−1(T ))1/2 · (detT )(k−1)/2+ε (ε > 0),

where mg−1(T ) is defined as in (2.1), and where the constant implied in �ε,F

only depends on ε and F .

Corollary 3.75 Let g ≥ 2, k ≥ g + 1. Then

a(T )�ε,F (detT )k/2−1/(2g)+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Proof. Let us write T as T =

(
n r

2
rt

2
m

)
. Then clearly a(T ) is the (n, r)-th

Fourier coefficient of the m-th Fourier-Jacobi coefficient of F . Thus we get, using
Theorem 3.41 with g − 1 instead of g, and Lemma 3.58

a(T ) �ε,F

(
1 +

(detT )(g−1)/2+ε

(detm)g/2

)1/2

· (detT )k/2−g/4−1/4

(detm)k/2−g/4−1/2
· (detm)k/2

=
(
(detm)g/2 + (detT )(g−1)/2+ε

)1/2 · (detT )k/2−g/4−1/4 · (detm)1/2.
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Now we may assume that detm = mg−1(T ).
Indeed, otherwise replace T by T [U ], with U ∈ GLg(Z) such that T [U ]|g−1 =
mg−1(T ), which changes neither the left- nor the right-hand side of the estimate
in Theorem 3.74 (here we use that Γg,0(N) contains all matrices of the form(
U 0
0 U−t

)
∀U ∈ GLg(Z), and therefore |a(T [U ])| = |a(T )| due to Lemma

2.12). Therefore we obtain

a(T )�ε,F (detT )k/2−1/2+ε · (mg−1(T ))1/2,

which proves Theorem 3.74. Corollary 3.75 follows directly from Theorem 3.74,
if we use the well known estimate mg−1(T )�g (detT )1−1/g (cf. Remark 2.8). �

For g = 2 and g = 3, we can obtain the following improvements

Theorem 3.76 Let g = 2 and k ≥ 3. Then

a(T )�ε,F (min(T ))5/18+ε · (detT )(k−1)/2+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Corollary 3.77 Let g = 2 and k ≥ 3. Then

a(T )�ε,F (detT )k/2−13/36+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Proof. The proof follows with the same arguments as in the proof of Theorem
3.74, using Theorem 3.41 and Theorem 3.60. �

Theorem 3.78 Let g = 3 and let k ≥ 8 be an even integer. Then

a(T )�ε,F (min(T ))−3/13+ε · (detT )k/2−1/4+ε (ε > 0).

where the constant implied in �ε,F only depends on ε and F .

Corollary 3.79 Let g = 3 and let k ≥ 8 be an even integer. Then

a(T )�ε,F (detT )k/2−1/4+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .

Proof. The proof follows directly from Theorem 3.57 and Theorem 3.60 similar
as in the case of the full Siegel modular group (cf. [Br], pp. 79-85). �

Moreover, for g = 2 we obtain in the same way as in the case of the full Siegel
modular group (cf. [K7]) the following estimate on average

Corollary 3.80 Let g = 2 and let k ≥ 3 be an even integer. Then∑
{T>0,tr (T )=N}

|a(T )|2 �ε,F Nk−1/2+ε (ε > 0),

where the constant implied in �ε,F only depends on ε and F .
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3.3 Subgroups of finites index and open ques-

tions

In this section we want to sketch how the results of the above sections can be
generalized to subgroups Γ of Γg of finite index that contain all matrices of the

form

(
U 0
0 U−t

)
, where U ∈ GLg(Z). This restriction is only needed for the

final estimates in order to be allowed to replace T by T [U ]. One again starts
with estimates of the Fourier coefficients of Jacobi forms, which are again de-
fined in a way such that the Fourier coefficients of Siegel cusp forms belong to
this class of cusp forms. The method is the same as before: One first constructs
Jacobi-Poincaré series, which can be shown to be cusp forms if k > g + 2, and
estimates their Fourier coefficients. The calculations (in particular the estimates
of certain generalized Kloosterman sums) are more complicated than in the case
of Γ1,g,0(N)J but nevertheless straighforward. Afterwards one can regard the case
k = g + 2, again using Hecke’s trick. Proceeding as in Section 3.1 and Section
3.2, one gets an analogous result as in Theorem 3.74, using the same estimate for
the Petersson norm ‖ φm ‖ as in Lemma 3.58 and 3.75.

Open questions

• How is it possible to extend the range of the estimate in Theorem 3.74
regarding the weight k, i.e, enlarge the range of the estimate in Theorem?
3.41.

• How is it possible to obtain an estimate of the coefficients of cusp forms of
the quality of Theorem 3.74 for general g? Probably for this one needs the
general Langland’s theory of Eisenstein series on symplectic groups.
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Chapter 4

Lifting maps

In this chapter we want to construct a lifting map from the vector space J cusp

k+ g+1
2

,m

to a certain subspace of S2k

(
1
2
det(2m)

)
and vice versa under certain conditions

on D0, k, and g such that both mappings are adjoint with respect to the Petersson
scalar products.

4.1 The generalized genus character and geodesic

cycle integrals

First of all we want to recall some basic facts about quadratic forms. For details
we refer the reader to [GKZ]. We have the following

Definition 4.1 For a, b, c ∈ Z let us define the integral binary quadratic form

[a, b, c](x, y) := ax2 + bxy + cy2.

The group SL2(Z) acts on these forms by

[a, b, c] ◦
(
α β
γ δ

)
(x, y) := [a, b, c](αx+ βy, γx+ δy) (x, y ∈ Z).

Let ∆ ∈ Z be a discriminant (i.e., ∆ 6= 0, ∆ ≡ 0, 1 (mod 4)). Let us denote by
D∆ the set of integral binary quadratic forms with discriminant ∆. Then SL2(Z)
acts on D∆. Furthermore let us denote for l ∈ N by Dl,∆ ⊂ D∆ the set of all
quadratic forms with the additional condition that a ≡ 0 (mod l). Moreover let
us define for integers ρ (mod 2l) with ∆ ≡ ρ2 (mod 4l) the set

Dl,∆,ρ := {[a, b, c] ∈ D∆| a ≡ 0 (mod l) , b ≡ ρ (mod 2l)} .
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Remark 4.2 The sets Dl,∆ and Dl,∆,ρ are Γ0(l) invariant.

Remark 4.3 We have the decomposition

Dl,∆ =
⋃
ρ(2l)

∆≡ρ2(4l)

Dl,∆,ρ.

Now we can define a generalized genus character.

Definition 4.4 Let l be a positive integer, D0 be a fundamental discriminant
and ∆ be a discriminant that divides D0 such that both D0 and ∆/D0 are squares
(mod 4l). Then we define for Q = [al, b, c] ∈ Dl,∆ :

χD0(Q) :=

{ (
D0

n

)
if (a, b, c,D) = 1

0 otherwise,

where
(

D0

n

)
denotes the Kronecker symbol. Here n is an integer coprime to D0

represented by the form [al1, b, cl2] for some decomposition l = l1l2 , li > 0 (i =
1, 2).

Remark 4.5 Such an n always exists and the value of
(

D0

n

)
is independent of

the choice of l1, l2, and n.

We have the following

Theorem 4.6 The function χD0 is Γ0(l)−invariant and has the following prop-
erties:

P1 (Multiplicativity):

χD0([al, b, c]) = χD0([a1l, b, ca2])χD0([a2l, b, ca1]) if a = a1a2, (a1, a2) = 1.

P2 (Invariance under the Fricke involution):

χD0([al, b, c]) = χD0([cl,−b, a]).

P3 (Explicit formula):

χD0([al, b, c]) =

(
D1

l1a

)(
D2

l2c

)
for any splitting D0 = D1D2 of D0 into coprime fundamental discriminants and
l = l1l2 of l into positive factors such that (D1, l1a) = (D1, l2c) = 1, χD0([al, b, c]) =
0 if no such splitting exists.
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Definition 4.7 Let l ∈ N, ρ ∈ Z/2lZ, ∆ > 0 be a discriminant satisfying
∆ ≡ ρ2 (mod 4l). Let D0 be a fundamental discriminant dividing ∆ such that
both D0 and ∆/D0 are squares (mod 4l). Let k be an integer > 1.
Then we define

fk,l,∆,ρ,D0(z) :=
∑

Q∈Dl,∆,ρ

χD0(Q)

Q(z, 1)k
(z ∈ H).

Definition 4.8 We define by S2k(l)
− ⊂ S2k(l) the space of cusp forms on Γ0(l)

with eigenvalue −1 under the Fricke involution

f(z) 7→ (−lz2)−kf(−1/(lz)).

We know from [GKZ]

Lemma 4.9 The series fk,l,∆,ρ,D0(z) is absolutely and locally uniformly conver-
gent for k > 1 and is an element of S2k(l)

−.

For the following, we need the Fourier expansion of fk,l,∆,ρ,D0(z).

Lemma 4.10 The Fourier expansion of fk,l,∆,ρ,D0(z) (k ≥ 1) is given by

fk,l,∆,ρ,D0(z) =
∞∑

m=1

c±k,l(m,∆, ρ,D0)e
2πimz,

where

c±k,l(m,∆, ρ,D0) := ck,l(m,∆, ρ,D0) + (−1)k+1ck,l(m,∆,−ρ,D0),

where ± = (±1)k+1, where

ck,l(m,∆, ρ,D0) = ik · (−1)−
1
2 · (2π)k

(k − 1)!
· (m2/∆)

k−1
2 ·
[
|D0|−

1
2 · εl(m,∆, ρ,D0)

+ik+1 · π ·
√

2 ·
(
m2/∆

) 1
4 ·
∑
a≥1

(la)−
1
2 · Sla(m,∆, ρ,D0) · Jk−1/2

(
πm
√

∆

la

)]
.

Here

εl(m,∆, ρ,D0) :=

{ (
D0

m/f

)
if ∆ = D2

0 · f 2 (f > 0), f |m, D0f ≡ ρ (mod 2l)

0 otherwise
,

Sla(m,∆, ρ,D0) =
∑
b(2la)

b≡ρ(2l)

b2≡∆(4la)

χD0

([
al, b,

b2 −∆

4la

])
· e2la(mb),

and Jk−1/2(t) is the Bessel function of order k − 1/2.
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Moreover we need the relation of these functions to cycle integrals of modular
forms:

Definition 4.11 For f ∈ S2k(l) and Q = [a, b, c] ∈ Dl,∆,ρ we set

rk,l,Q(f) :=

∫
γQ

f(z) ·Q(z, 1)k−1 dz,

where γQ is the image in Γ0(l)\H of the semicircle a|z|2 +bx+c = 0 (x = Re(z)),

orientated from −b−
√

∆
2a

to −b+
√

∆
2a

if a 6= 0 or if a = 0 of the vertical line bx+c = 0,
orientated from − c

b
to i∞ if b > 0 and from i∞ to − c

b
if b < 0.

Lemma 4.12 The above given definition of rk,l,Q(f) makes sense, i.e., the inte-
gral is invariant with respect to the subgroup of Γ0(l) perserving Q, and depends
only on the Γ0(l) equivalence class of Q.

Definition 4.13 Define

rk,l,∆,ρ,D0(f) :=
∑

Q∈Dl,∆,ρ/Γ0(l)

χD0(Q) · rk,l,Q(f).

Then the following holds

Theorem 4.14 For f ∈ S2k(l)
− we have

〈f, fk,l,∆,ρ,D0〉 = π ·
(

2k − 2

k − 1

)
· 2−2k+2 ·∆−k+1/2 · rk,l,∆,ρ,D0(f).

4.2 Construction of lifting maps

Let n0 ∈ Z, r0 ∈ Z(1,g), m be a positive definite symmetric half-integral g×g ma-

trix, andD0 := − det 2

(
n0

r0

2
rt
0

2
m

)
< 0. For this section let us make the following

Assumptions:

1. g ≡ 1 (mod 8),

2. k ≥ g+3
2
,

3. D0 is fundamental, 1
2
det(2m) is odd, and (det(2m), D0) = 1,

4. D0 is a square (mod 1
2
det(2m)).

Remark 4.15 1. If g = 1, claim 4. follows automatically. Moreover in this
case instead of condition 3 it suffices to assume that D0 is a fundamental
discriminant.
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2. The integer det(2m) is even, thus 1
2
det(2m) is an integer.

3. We have D0 ≡ 1 (mod 4).

4. The integer D0 is a square (mod 2 det(2m)).

Proof. 1. If g = 1 we have the identity D0 = r2
0 − 4n0m, which is clearly a square

(mod m). Moreover in this case the statements of this chapter are proved in
[GKZ]. Here assumption 4. and the last two claims of assumption 3. are not
needed.
2. The claim follows directly from the Laplace development if we use that g is
odd and m is symmetric and half-integral.
3. From the Laplace development it follows readily that D0 is congruent 0, 1
(mod 4). Thus the claim follows directly from 2., since (D0, det(2m)) = 1.
4. Since (D0, det(2m)) = 1 and 1

2
det(2m) is odd the claim follows from 3. and

assumption 4. �

Let us show that quadratic forms with the above conditions exist. For this we
have to show

Remark 4.16 For every g ≡ 1 (mod 8) a positive definite half-integral g×g ma-
trix m exists, such that 1

2
det(2m) is odd, (D0, det(2m)) = 1, D0 is fundamental

and D0 is a square (mod 1
2
det(2m)).

Proof. We may for example choose

2m := E
⊕ g−1

8
8 ⊕ 2N,

where N is an odd integer, where

E8 :=



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0

0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2


,

and where

A⊕B :=

(
A 0
0 B

)
for square integral matrices.
Then we get, using that detE8 = 1 (cf. [KKo]).

det(2m) = 2N.
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Then clearly 1
2
det(2m) = N is odd per assumption.

Moreover, writing r0 = (r′1, . . . , r
′
g), we obtain from the Jacobi decomposition (cf.

Remark 2.19)

D0 = −2 det(2m) · n0 + (2m)∗[rt
0] ≡ r′2g (mod N),

where (2m)∗ denotes the adjoint of the matrix 2m. Now the claim follows if we
choose r′g such that (r′g, N) = 1. �

Now we want to define the desired maps (see also Definitions 1.10 and 1.11 in the
Introduction). Let us start with the map SD0,r0(φ)(w) (w ∈ H) that is defined for
a Jacobi cusp form φ in terms of a Fourier expansion in e2πiw, where the Fourier
coefficients are certain sums of special values of the Fourier coefficients of φ.

Definition 4.17 For φ ∈ J cusp

k+ g+1
2

,m
we define

SD0,r0(φ)(w) := 21−g·
∞∑

n=1

∑
d|n

(
D0

d

)
· dk−1 · cφ

(
n2

d2
n0,

n

d
r0

) e2πinw (w ∈ H),

where cφ(n, r) is the (n, r)−th Fourier coefficient of φ.

Next we define for f ∈ S2k

(
1
2
det(2m)

)−
the map S∗D0,r0

(f)(τ, z) ((τ, z) ∈H×C(g,1))
as a Fourier expansion in e2πiτ and e2πiz, where the Fourier coefficients are certain
cycle integrals.

Definition 4.18 For f ∈ S2k

(
1
2
det(2m)

)−
we define

S∗D0,r0
(f)(τ, z) :=

(
i

det(2m)

)k−1

·
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

rk, 1
2

det(2m),D0D,r0(2m)∗rt,D0
(f)e2πi(nτ+rz),

where (τ, z) ∈ H× C(g,1), and where D := − det 2

(
n r

2
rt

2
m

)
.

Later on (cf. Lemma 4.20) we show that this definition is allowed. But first we
want to state the main Theorem of this chapter.

Theorem 4.19 If φ ∈ J cusp

k+ g+1
2

,m
, then the function SD0,r0(φ)(w) is an element of

S2k

(
1
2
det(2m)

)−
.
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If f ∈ S2k

(
1
2
det(2m)

)−
, then the function S∗D0,r0

(f)(τ, z) is an element of J cusp

k+ g+1
2

,m
.

The maps

SD0,r0 : J cusp

k+ g+1
2

,m
→ S2k(

1
2
det(2m))−

S∗D0,r0
: S2k(

1
2
det(2m))− → J cusp

k+ g+1
2

,m

are adjoint maps with respect to the Petersson scalar products, i.e., we have for
all f ∈ S2k

(
1
2
det(2m)

)−
and for all φ ∈ J cusp

k+ g+1
2

,m

〈SD0,r0(φ), f〉 =
〈
φ,S∗D0,r0

(f)
〉
.

Before we can prove Theorem 4.19 we have to show

Lemma 4.20 Definition 4.18 is allowed, i.e., DD0 > 0 is a discriminant, D0 is
a fundamental discriminant, D and D0 are both squares (mod 2 det(2m)), and

DD0 ≡
(
r0(2m)∗rt

)2
(mod 2 det(2m)). (4.1)

Proof. Since D0 and D are negative, D0 is a square (mod 2 det(2m)) and a
fundamental discriminant, D ≡ 0, 1 (mod 4) (which follows from the Laplace
development) and (2 det(2m), D0) = 1 it is enough to show congruence (4.1). For
this we need some knowledge about quadratic forms over the p-adic ring Zp.

Lemma 4.21 Let p be an arbitrary prime.

1. If p 6= 2, then there exists a matrix U ∈ GLg(Zp) and there exist m1, . . . ,mg ∈
Zp such that

(2m)[U ] =

 m1

. . .

mg


and

(2m[U ])∗ =


∏g

i=1
i6=1

mi

. . . ∏g
i=1
i6=g

mi

 .

2. If p = 2, then there exists a matrix U ∈ GLg(Z2) and there exist M1, . . . ,Mr ∈{
2νl,

(
2
1

1
2

)
,
(

0
1

1
0

)}
, where ν ∈ N, ν ≥ 1, l ∈ {1, 3, 5, 7} and r ∈ N such that

(2m)[U ] =

 M1

. . .

Mr


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and

(2m[U ])∗ = det(2m)

 N1

. . .

Nr

 .

Here for 1 ≤ i ≤ r we define

Ni :=


1
2l

if Mi = 2l
1
3

(
2
−1

−1
2

)
if Mi =

(
2
1

1
2

)(
0
1

1
0

)
if Mi =

(
0
1

1
0

) .

Proof. Lemma 4.21 follows directly from the theory of quadratic forms over Zp

(see [Ca]). �

Remark 4.22 In Lemma 4.21 1. (
∏g

i=1mi, p) = 1 if p - det(2m) and p|mi for
exactly one mi (1 ≤ i ≤ ν) if p| det(2m).
Moreover in 2., there occurs exactly one block 2νl and ν = 1.

Proof. Let us first assume p 6= 2.
Clearly p -

∏g
i=1mi if p - det(2m), since (detU, p) = 1.

If p| det(2m), then p|
∏g

i=1mi, thus p|mi for at least on mi, without loss of gen-
erality we may assume p|m1.
Setting (

ñ0
r̃0

2
r̃0

t

2
m

)
:=

(
n0

r0

2
rt
0

2
m

)[(
1 0
0 U

)]
,

r̃0 := (r′1, . . . , r
′
g),

we see from the Jacobi decomposition that D̃0 := det 2

(
ñ0

r̃0

2
r̃0

t

2
m

)
equals

g∑
j=1

g∏
i=1
i6=j

mi r
′
j
2 − 4n0

g∏
i=1

mi ≡

(
g∏

i=2

mi

)
r′1

2
(mod p).

Since (D0, det(2m)) = 1 and D̃0 = (detU)2 · D0 with (detU, p) = 1, we have
p - D̃0. Thus p -

∏g
i=2mi as claimed.

For the same reasons we can conclude that exactly one block 2νl occurs if p = 2
and that ν = 1.

Proof of Lemma 4.20. Since 1
2
det(2m) is odd and DD0 ≡ 0 or 1 (mod 4), which

are the only squares (mod 4), we have to show

DD0 ≡
(
r(2m)∗rt

0

)2
(mod pν), (4.2)
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where p is a prime that divides det(2m) of ν−th order. Now our aim is to use
Lemma 4.21 and replace 2m by a diagonal matrix and a block-diagonal matrix if
p 6= 2 and p = 2, respectively.
Let U ∈ GLg (Zp). We set

2m̃ = 2m[U ],

r̃0 = r0U,

r̃ = rU.

Then we have

D̃0 = det 2

(
n0

r0

2
rt
0

2
m

)[(
1 0
0 U

)]
= (detU)2 ·D0,

D̃ = det 2

(
n r

2
rt

2
m

)[(
1 0
0 U

)]
= (detU)2 ·D,

(2m̃)∗ = (detU)2 · U−1(2m)∗U−t,

det(2m̃) = (detU)2 · det(2m).

Therefore we have, using that p and detU are coprime since U ∈ GLg(Zp), that
congruence (4.2) is equivalent to

D̃0 · D̃ = (detU)4 ·D ·D0 ≡ (detU)4 · (rU · U−1(2m)∗U−t · U trt
0)

2

≡ (r̃(2m̃)∗r̃t
0)

2 (mod pν).

In the following we may replace m, r0, and r by m̃, r̃0, and r̃, respectively. In
particular we replace D and D0 by D̃ and D̃0, respectively. This is possible since
in the proof none of the restrictions given on D0 and m at the beginning of section
4.2 is needed. We distinguish the cases p 6= 2 and p = 2.
If p 6= 2, due to Lemma 4.21, we may assume that 2m is a diagonal matrix of the
form

2m =

(
m1 . . .

mg

)
,

where mi ∈ Zp and where p divides exactly one mi (1 ≤ i ≤ g) of ν−th order.
Without loss of generality we may assume that p divides m1. Thus, setting
r0 := (r′1, . . . , r

′
g) and r := (r1, . . . , rg), we obtain from the Jacobi decomposition

(cf. Remark 2.19) that the left-hand side of (4.2) is congruent to
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−2 det(2m) · n+ (r1, . . . , rg)

∏g
i=1
i6=1

mi
. . . ∏g

i=1
i6=g

mi


 r1

...
rg




×

−2 det(2m) · n0 + (r′1, . . . , r
′
g)

∏g
i=1
i6=1

mi
. . . ∏g

i=1
i6=g

mi


 r′1

...
r′g




≡

(
r1r

′
1

g∏
i=2

mi

)2

(mod pν),

whereas the right-hand side of (4.2) is congruent to(r1, . . . , rg)

∏g
i=1
i6=1

mi
. . . ∏g

i=1
i6=g

mi


 r′1

...
r′g




2

≡

(
r1r

′
1

g∏
i=2

mi

)2

(mod pν).

Thus (4.2) is proved for p 6= 2.
If p = 2 we may assume, again using Lemma 4.21, that 2m is a block-diagonal

matrix with blocks from the set
{

2l,
(

2
1

1
2

)
,
(

0
1

1
0

)}
, where l is odd and where

the type 2l occurs exactly once, without loss of generality at the first position.
Thus, using that 1

2
det(2m) and l are odd integers, we obtain that the left-hand

side of (4.2) is congruent to

(r1, . . . , rg)


1

0
. . .

0


 r1

...
rg

 · (r′1, . . . , r′g)


1
0

. . .

0


 r′1

...
r′g


≡ r′1r1 (mod 2),

whereas the right-hand side of (4.2) is congruent to(r1, . . . , rg)


1

0
. . .

0


 r′1

...
r′g




2

≡ r′1r1 (mod 2),

which proves (4.2) for p = 2. �
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Now we want to prove Theorem 4.19. The proof is seperated into several theo-
rems and lemmas. First of all we define a function Ωk,m,D0,r0(w; τ, z) which is a
holomorphic kernel function for the map S∗D0,r0

. That is we give the following

Definition 4.23 Let

Ωk,m,D0,r0(w; τ, z) := ck,m,D0 ·
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

|D|k−1/2 · fk, 1
2

det(2m),D0D,r0(2m)∗rt,D0
(w)

·e2πi(nτ+rz),

where

ck,m,D0 :=
(−2i)k−1 · |D0|k−1/2(

1
2
det(2m)

)k−1 · π ·
(
2k−2
k−1

) .
Then we can prove

Lemma 4.24 The series Ωk,m,D0,r0(w; τ, z) is absolutely convergent. As a func-

tion of w it is an element of S2k

(
1
2
det(2m)

)−
.

Moreover we have the identity

S∗D0,r0
(f)(τ, z) = 〈f,Ωk,m,D0,r0(·;−τ̄ ,−z̄)〉

(
∀ f ∈ Sk

(
1

2
det(2m)

)−)
.

Proof. The absolute convergence of Ωk,m,D0,r0 can easily be shown, using the
Fourier expansion of fk, 1

2
det(2m),D0D,r0(2m)∗rt,D0

(w) given in Lemma 4.10.

Clearly Ωk,m,D0,r0(w; τ, z) is an element of S2k

(
1
2
det(2m)

)−
as a function of w

(due to the absolute convergence and Lemma 4.9).

Moreover we have, using Theorem 4.14 for f ∈ S2k

(
1
2
det(2m)

)−
,

〈f,Ωk,m,D0,r0(·;−τ̄ ,−z̄)〉

= ck,m,D0 ·
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

|D|k−1/2 ·
〈
f, fk, 1

2
det(2m),D0D,r0(2m)∗rt,D0

(w)
〉
e2πi(nτ+rz)

=
(2i)k−1 · |D0|k−1/2(

1
2
det(2m)

)k−1 · π ·
(
2k−2
k−1

) · π · (2k − 2

k − 1

)
· 2−2k+2 · |D0|−k+1/2

×
∑
n∈Z

r∈Z(1,g)

4n>m−1[rt]

rk, 1
2

det(2m),D0D,r0(2m)∗,D0
(f)e2πi(nτ+rz)

= S∗D0,r0
(f)(τ, z).�
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Now our aim is to show that the function Ωk,m,D0,r0 is also a holomorphic kernel
function for the map SD0,r0 , i.e.,

SD0,r0(φ)(ω) = 〈φ,Ωk,m,D0,r0(−ω̄, ·, ·)〉
(
∀φ ∈ J cusp

k+ g+1
2

,m

)
.

Since the Fourier coefficients of SD0,r0 are given by certain linear combinations of
the Fourier coefficients of φ, due to the Petersson coefficient formula it is sufficient
to show that SD0,r0 is a suitable linear combination of Poincaré series in J cusp

k+ g+1
2

,m
.

More precisely, since

Ωk,m,D0,r0(−τ̄ ,−z̄;w) = Ωk,m,D0,r0(τ, z;−w̄)

we have to prove

Theorem 4.25 The identity

Ωk,m,D0,r0(w; τ, z) = ck,m,D0 ·
ik−1 · (2π)k

(k − 1)!

×
∑
l≥1

lk−1

(∑
dd′=l

(
D0

d

)
· d′k · Pk+ g+1

2
,m,(n0d′2,r0d′)(τ, z)

)
e2πilw, (4.3)

holds.

Proof. The definition of the right-hand of equation (4.3) is formally allowed
because

1

2
det(2m) · (−4n0d

′2 +m−1[rt
0d]) = d′2 ·D0 < 0,

since D0 < 0. Moreover it can easily be shown, using the Fourier expansion from
Theorem 2.29 and Theorem 3.10 that the right-hand side of (4.3) is absolutely
convergent.
Now the idea is to expand both sides of (4.3) in double Fourier series and compare
Fourier coefficients. Using the Fourier expansion from Theorem 2.29, Theorem
3.10 and Lemma 4.10, we have to show since g ≡ 1 (mod 8)

ik−1· (2π)k

(k − 1)!
·|D|k−1/2·(l2/D0D)(k−1)/2·

(
|D0|−

1
2 · ε 1

2
det(2m)(l, D0D, r(2m)∗rt

0, D0)

+ik+1 · π ·
√

2 · (l2/(DD0))
1/4 ·

∑
a≥1

(
1

2
det(2m)

)−1/2

· a−1/2

×S 1
2

det(2m)a(l, D0D, r(2m)∗rt
0, D0) · Jk−1/2

(
2π · l

det(2m) · a
·
√
D0D

))
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= ik−1 · (2π)k

(k − 1)!
· lk−1 ·

∑
d|l

(
D0

d

)
· (l/d)k ·

(
δm

((
l

d

)2

n0,
l

d
r0, n, r

)

+2π · (det(2m))−1/2 · ik+ g+1
2 ·
(

D

l2/d2D0

)k/2−1/4

·
∑
c≥1

e2c(rm
−1rt

0l/d)

×Hm,c

(
l2

d2
n0,

(
l

d

)
r0, n, r

)
· Jk−1/2

(
2π · l

det(2m) · c · d
·
√
D0D

)
· c−g/2−1

)
.

This is equivalent to saying that

lk−1 · (D/D0)
k/2 · ε 1

2
det(2m)(l, D0D, r(2m)∗rt

0, D0)+ ik+1 · (D/D0)
k/2−1/4 · lk−1/2 ·π

× 2(det(2m))−1/2 ·
∑
a≥1

a−1/2 · S 1
2

det(2m)a(l, D0D, r(2m)∗rt
0, D0)

· Jk−1/2

(
2π · l

det(2m) · a
·
√
D0D

)
= lk−1 ·

∑
d|l

(
D0

d

)
· (l/d)k · δm

((
l

d

)2

n0,
l

d
r0, n, r

)
+2 · ik+(g+1)/2

×(D/D0)
k/2−1/4 · lk−1/2 · π · (det 2m)−1/2·

∑
d|l

(
D0

d

)
· d−1/2

∑
c≥1

e2c(rm
−1rt

0l/d)

×Hm,c

(
l2

d2
n0,

(
l

d

)
r0, n, r

)
· Jk−1/2

(
2π · l

det(2m) · c · d
·
√
D0D

)
· c−g/2−1. (4.4)

We first want to show that the first terms of (4.4) agree with each other. For this
we to show the following

Lemma 4.26 We have

(D/D0)
k/2 · ε 1

2
det(2m)(l, D0D, r(2m)∗rt

0, D0)

=
∑
d|l

(
D0

d

)
· (l/d)k · δm

((
l

d

)2

n0,
l

d
r0, n, r

)
. (4.5)

Proof. Inserting the definition of ε 1
2

det(2m) from Lemma 4.10 we see that the

left-hand side of (4.5) is zero unless D = D0f
2 for some f ∈ N with f |l and

D0f ≡ r(2m)∗rt
0 (mod det(2m)). (4.6)

Using
D0 = r0(2m)∗rt

0 − 2n0 det(2m)

we see that (4.6) is equivalent to

r0(2m)∗rt
0f ≡ r(2m)∗rt

0 (mod det(2m)).
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In this case the left-hand side of (4.5) is equal to
(

D0

l/f

)
· fk.

Inserting the definition of δm from Theorem 2.29, we see that right-hand side
of (4.5) is zero unless D = D0(l/d)

2 and r ≡ r0l/d (mod Z(1,g) · 2m). Setting

f = l/d we see that in this case it has the value
(

D0

l/f

)
· fk.

Thus we have to show

Lemma 4.27 Under the assumptions on m and D0 given in the beginning of this
section, the following congruences are equivalent:

(r − r0f)(2m)∗rt
0 ≡ 0 (mod det(2m)), (4.7)

r − r0f ≡ 0 (mod Z(1,g) · 2m). (4.8)

Remark 4.28 Lemma 4.27 does not hold for arbitrary m and D0. As an exam-
ple, choose g > 1, m = Eg, r0 = (1, . . . , 1), and f = 1.
Then we see, writing r = (r1, . . . , rg), that (4.7) is equivalent to

g∑
i=1

ri ≡ 1 (mod 2), (4.9)

and (4.8) is equivalent to

ri ≡ 1 (mod 2) ( 1 ≤ i ≤ g). (4.10)

Thus (4.9) has more solutions than (4.10).

The proof of Lemma 4.27 is subdivided into several lemmas.

Lemma 4.29 If r is a solution of (4.8), then r is also a solution of (4.7).

Proof. Let r be a solution of congruence (4.8). Then there exists a λ ∈ Z(1,g)

with
r − r0f = λ · 2m.

Multiplying both sides with (2m)∗rt
0 from the right gives that r is a solution of

the congruence (4.7). �

Lemma 4.30 For r ∈ Z(1,g), the following conditions are equivalent:

(i) r ≡ 0 (mod Z(1,g) · 2m) (4.11)

(ii)The congruence λ · 2m ≡ r (mod Z(1,g) · det(2m)) is solvable. (4.12)
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Proof. Suppose that (i) is satisfied, i.e., r = µ · 2m, with µ ∈ Z(1,g). Then in (ii)
we can take λ = µ.
Conversely, suppose that (ii) holds, i.e., there exists λ, µ ∈ Z(1,g) such that
r − λ · 2m = µ · det(2m). Observing that

µ · det(2m) = µ · det(2m) · (2m)−1 · 2m = µ · (2m)∗ · 2m,

we then see that (i) is satisfied. �

Now we let p be a fixed prime such that p divides det(2m) of order ν. Due
to Lemma 4.30 it is sufficient to consider the congruences:

(r − r0f)(2m)∗rt
0 ≡ 0 (mod pν), (4.13)

λ · 2m ≡ r − r0f (mod Z(1,g) · pν) (4.14)

and show that every solution r of (4.13) gives a solution λ of (4.14). For this let
us consider for U ∈ GLg(Zp) the following system of congruences for r̃ ∈ Z(1,g):

(r̃ − r0Uf)(2m[U ])∗(r0U)t ≡ 0 (mod pν), (4.15)

λ · 2m[U ] ≡ r̃ − r0Uf (mod Z(1,g) · pν) is solvable. (4.16)

The following lemma shows how this system corresponds to the congruences (4.13)
and (4.14).

Lemma 4.31 1. If r is a solution of (4.13), then r̃ := rU is a solution of
(4.15).
Conversely: If r̃ is a solution of (4.15), then r := r̃Ū is a solution of (4.13),
where Ū is an inverse of U in GLg(Zp).

2. If r is a solution of (4.14), then r̃ := rU is a solution of (4.16).
Conversely: If r̃ is a solution of (4.16), then r := r̃Ū is a solution of (4.14),
where Ū is defined in 1..

Proof. 1. Due to (detU, p) = 1 and (2m[U ])∗ = (detU)2·det(2m)·U−1·(2m[U ])−1,
congruence (4.13) can be written as

det(2m) · (rU − r0Uf) · (2m[U ])−1 · U trt
0 ≡ 0 (mod pν).

Thus the claim follows if we multiply both side with (detU)2.
2. Due to U ∈ GLg(Zp), the congruence

λ · 2m ≡ r − r0f (mod pν) (4.17)
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is solvable for r ∈ Z(1,g) if and only if the congruence

λ · Ū t · U t2mU ≡ rU − r0Uf (mod pν)

is solvable. Thus the claim follows directly. �

Lemma 4.32 Let U ∈ GLg(Zp) be given as in Lemma 4.21. If r̃ is a solution of
(4.15), then r̃ is also a solution of (4.16).

Proof. Let us abbreviate

s := (s1, . . . , sg)
t := r̃ − r0Uf,

r0U := (r′1, . . . , r
′
g)

t,

λ = (λ1, . . . , λg)
t.

For the proof we treat the cases p 6= 2 and p = 2 separately.
In the case p 6= 2 we conclude by Lemma 4.21 that (4.15) is equivalent to

g∑
i=1

(∏
j 6=i

mj

)
sir

′
i ≡ 0 (mod pν) (4.18)

and that (4.16) is equivalent to the solvability of the congruences

λi ·mi ≡ si (mod pν) (1 ≤ i ≤ g). (4.19)

Moreover we know that p divides exactly one mi of order ν (1 ≤ i ≤ g). We may
without loss of generality assume that p divides m1. Thus (4.18) has the form

s1r
′
1

g∏
j=2

mj ≡ 0 (mod pν). (4.20)

As shown before
(∏g

j=2mj, p
)

= 1.

Moreover we have that changing T into T [U ] changes D0 into

(detU)2 ·D0 ≡ r′21

g∏
j=2

mj (mod pν).

Thus (r′1, p) = 1 follows from ((detU)2D0, p) = 1.
Therefore (4.20) is equivalent to

s1 ≡ 0 (mod pν).
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It is therefore left to show that the congruences

λ2 ·m2 ≡ s2 (mod pν),
...

λg ·mg ≡ sg (mod pν),

are solvable, which is trivially satisfied, because the numbers m2, . . . ,mg are
coprime to p as shown above.
In the case p = 2 we get with the same abbreviations as in the case p 6= 2, using
Lemma 4.21 (and without loss of generality assuming that the block 2l occurs at
the first position) that (4.15) has the form

s1r
′
1 ≡ 0 (mod 2), (4.21)

and (4.16) is equivalent to the solvability of the congruences

s1 ≡ 0 (mod 2),

λ3 ≡ s2 (mod 2),

λ2 ≡ s3 (mod 2),
...

λg−1 ≡ sg (mod 2).

Clearly the last g−1 congruences are solvable. Moreover we obtain as in the case
p 6= 2, using that 2 - D̃0, that 2 - r′1. Thus (4.21) is equivalent to

s1 ≡ 0 (mod 2).

Therefore we have proved Lemma 4.27 and therefore Lemma 4.26, too. �
Thus the first terms in (4.4) agree. Next we have to show that the second terms
in (4.4) agree. In the second term on the right-hand side of (4.4) we substitute
cd = a to get, using g ≡ 1 (mod 8),

ik+1 ·(D/D0)
k/2−1/4 ·lk−1/2 ·2π ·(det(2m))−1/2 ·

∑
a≥1

∑
d|(a,l)

(
D0

d

)
·d−1/2 ·e2a(rm

−1rt
0)

×H±
m,a/d

(
l2

d2
n0,

l

d
r0, n, r

)
· Jk−1/2

(
2π · l

det(2m) · a
·
√
D0D

)
· (a/d)−g/2−1.

Thus it is sufficient to show

Lemma 4.33 For l ≥ 1, n ≥ 0, r ∈ Z(1,g) we have

S 1
2

det(2m)a(l, DD0, r0(2m)∗rt, D0)

=
∑

d|(a,l)

(
D0

d

)
· (a/d)g/2 · e2a/d(rm

−1rt
0) ·Hm,a/d

(
l2

d2
n0,

l

d
r0, n, r

)
.
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Proof. If we insert the definitions of S 1
2

det(2m)a and Hm,a/d and multiply both

sides with e2a(−r0m−1rt), then we see that we have to show

∑
b(a det(2m))

b≡r0(2m)∗rt(det(2m))

b2≡DD0(2 det(2m)a)

χD0

([
a

2
det(2m), b,

b2 −DD0

2 det(2m)a

])
· ea

(
b− r0(2m)−1r

det(2m)
l

)

=
∑

d|(a,l)

(
D0

d

)
·(a/d)−(g+1)/2·

∑
ρ(a/d)∗
λ(a/d)

ea/d

((
m[λ] +

l

d
r0λ+

l2

d2
n0

)
ρ̄+ nρ+ rλ

)
.

Since both sides are periodic in l with period a, it is sufficient to show that their
Fourier transforms are equal, i.e., we have to show that for every h′ ∈ Z /aZ we
have

1

a
·

∑
b(a det(2m))

b≡r0(2m)∗rt(det 2m)

b2≡DD0(2 det(2m)a)

∑
l(a)

χD0

([
a

2
det(2m), b,

b2 −DD0

2 det(2m)a

])

× ea

((
b− r0(2m)−1rt

det(2m)
− h′

)
l

)

=
1

a
·
∑
l(a)

∑
d|(a,l)

(
D0

d

)
· (a/d)−(g+1)/2 ·

∑
ρ(a/d)∗
λ(a/d)

× ea/d

((
m[λ] +

l

d
r0λ+

l2

d2
n0

)
ρ+ nρ+ rλ− h′ l

d

)
. (4.22)

Setting h = det(2m)h′ + r0(2m)∗rt we see the left-hand side of (4.22) is equal to

1

a
·

∑
b(a det(2m))

b≡r0(2m)∗rt(det(2m))

b2≡DD0(2 det(2m)a)

χD0

([
a

2
det(2m), b,

b2 −DD0

2 det(2m)a

])
·
∑
l(a)

ea

(
l

det(2m)
(b− h)

)

=

{
χD0

([
a1

2
det(2m), h, h2−DD0

2 det(2m)a

])
if h2 ≡ DD0 (mod 2a det(2m))

0 otherwise
.

For the right-hand side of (4.22) we obtain, after replacing l by ld and then (λ, l)
by (ρλ, ρl),

1

a
·
∑
d|a

(
D0

d

)
· (d/a)(g+1)/2 ·

∑
ρ(a/d)∗
λ,l(a/d)

ea/d

(
ρ
(
m[λ] + r0lλ+ n0l

2 + rλ− h′l + n
))
.

Thus it is left to prove the following
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Lemma 4.34 Suppose that b ≡ r(2m)∗rt
0 (mod det(2m)). Let

F (x, y) := m[x] + r0xy + n0y
2 + rx+ sy + n, (x ∈ Z(g,1), y ∈ Z)

where

s = r(2m)−1rt
0 −

b

det(2m)
,

and
Fc(m, r0, n0, r, s, n) := Fc := c−(g+1)/2 ·

∑
λ(c)∗

∑
x,y(c)

ec(λF (x, y)).

Then we have for any a ≥ 1

1

a
·
∑
d|a

(
D0

d

)
· Fa/d =

{
χD0

([
a
2
det(2m), b, b2−DD0

2 det(2m)a

])
if a| b2−DD0

2 det(2m)

0 otherwise
. (4.23)

For the proof we need the well known

Lemma 4.35 Let p 6= 2 be a prime, c be a p-power, A ∈ Z with p|A. Then we
have ∑

λ(c)

(
λ

p

)
· epc(λA) =

{
ε(p) · c√

p
·
(

A/c
p

)
if c|A

0 otherwise
.

Recall that ε(x) = 1 or i according as x ≡ 1 or 3 (mod 4).

Proof of Lemma 4.34. For the proof we set

C :=
b2 −DD0

2 det(2m)
.

Since both sides of (4.23) are multiplicative functions in a we may assume that
a is a prime-power.
Moreover it is sufficient to show that

1

a
·
∑
d|a

(
D0

d

)
· Fa/d =


0 if a - C(

D0

a

)
if a|C and p - D0(

D0/p∗

a

)(
1
2

det(2m)C/a

p

)
if a|C and p|D0.

(4.24)

Indeed, if a|C and p - D0, then we can take as a splitting in Theorem 4.6, P3,

D1 = D0, D2 = 1, l1 = 1, l2 = det(2m)/2.

Then clearly we have a splitting with coprime fundamental discriminants and
with

(D0, a) = (1, det(2m)C/(2a)) = 1,
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and

χD0

([
a det(2m)/2, b,

C

a

])
=

(
D0

a

)
.

If a|C and p|D0, then clearly p - det(2m) because 2| det(2m) (in particular p 6= 2)
and (p,D0/p) = 1 (because D0 is fundamental), i.e., we can take as a splitting

D1 = D0/p
∗, D2 = p∗, l1 = 1, l2 = det(2m)/2,

where

p∗ :=

(
−1

p

)
p ≡ 1 (mod 4).

Then D1 and D2 are fundamental and coprime. We may assume p - (C/a), be-

cause otherwise both
(

D0/p∗

a

)(
1
2

det(2m)·C/a

p

)
and the generalized genus character

vanish.
In this case

(D0/p
∗, a) = (p∗, det(2m) · C/(2a)) = 1,

and we have

χD0

([
a · det(2m)/2, b,

C

a

])
=

(
D0/p

∗

a

)(
p∗

det(2m)C/(2a)

)
.

The Jacobi symbol
(

p∗

det(2m)C/(2a)

)
is obtained by using the quadratic residue law,

distinguishing the cases whether det(2m)C/(2a) is even or odd and using that
the only squares (mod 8) are 0 and 1. The proof can be left out here since it is
a straightforward calculation and can be done exactly as in the case g = 1.
Thus we have proved that is is sufficient to show identity (4.24).

Remark 4.36 If p 6= 2 is a prime that divides det(2m), then
(

D0

p

)
= 1, because

in this case D0 is a square (mod p).

Now let U ∈ GLg(Zp). We want to replace m by m[U ], choosing U as in Lemma
4.21, since in this case the sums Fc are easier to compute (in fact we take the
integers that are congruent this p−adic numbers (mod pν), we just don’t mention
this all the time).
For this let D̃, D̃0, Ñ , r̃, and r̃0 be defined as in the proof of Lemma 4.20. Moreover
let

b̃ := r̃(2m̃)∗r̃t
0 − det(2m̃)s = (detU)2 · b,

C̃ := b̃2−D̃D̃0

2 det(2m̃)
= (detU)2 · C.

We now have to show that by changing D,D0, b, and C into D̃, D̃0, b̃, and C̃,
respectively, we neither change the left- nor the right-hand side of (4.24). Let us
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start with the left-hand side. We have

Fc = c−(g+1)/2
∑
λ(c)∗

ec (λn)
∑
y(c)

ec

(
λ
(
n0y

2 + sy
))∑

x(c)

ec (λ (m[x] + r0xy + rx))

= c−(g+1)/2
∑
λ(c)∗

ec (λn)
∑
y(c)

ec

(
λ
(
n0y

2 + sy
))∑

x(c)

ec(λ(m[U ][Ūx]+r0UŪxy+rUŪx))

= Fc (m̃, r̃0, n0, r̃, s, n) ,

where Ū is an inverse of U in GLg(Zp). For the previous identity we used that
Ūx runs (mod c) if x does since U ∈ GLg( Zp).
Moreover we obtain, using that (detU, d) = 1, that for all positive divisors d of a(

D0

d

)
=

(
D0 · (detU)2

d

)
=

(
D̃0

d

)
.

Thus the left-hand side of (4.24) is equal to

1

a
·
∑
d|a

(
D̃0

d

)
· Fa/d(m̃, r̃0, n0, r̃, s, n).

We now show that the right-hand side of (4.24) remains unchanged.
Due to (a, detU) = 1, we have

a|C ⇔ a|C̃ = (detU)2 · C,
p|D0 ⇔ p|D̃0 = (detU)2 ·D0.

If a|C and p - D0, we have due to (detU, a) = 1(
D̃0

a

)
=

(
(detU)2 ·D0

a

)
=

(
D0

a

)
.

If a|C and p|D0 we have, again using that (detU, a) = 1,(
D̃0/p

∗

a

)(
det(2m̃)C̃/(2a)

p

)
=

(
(detU)2D0/p

∗

a

)(
(detU)4 det(2m)C/(2a)

p

)
=

(
D0/p

∗

a

)(
det(2m)C/(2a)

p

)
.

We now have to be carefull, since the restrictions on D0 and det(2m) given at
the beginning of this section are now changed (e.g. (det(2m̃), D̃0) = (detU)2,
which is not necessarily 1). But for the proof of identity (4.24) we only need that
p must not divide both D̃0 and det(2m̃), which remains since (p, detU) = 1, and
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(det(2m), D0) = 1.
Thus in the following we may replace m, r, and r0 by m̃, r̃, and r̃0, respectively.
Let us abbreviate

r̃ =: (r1, . . . , rg),
r̃0 =: (r′1, . . . , r

′
g).

First we treat the case p 6= 2. Due to Lemma 4.21 we may assume that m has
the form

m =

(
2̄m̃1 . . .

2̄m̃g

)
=:

(
m1 . . .

mg

)
,

where 2̄ denotes an inverse of 2 (mod c). We have (mi, p) = 1 if p - det(2m) and
p divides mi for exactly one mi of ν−th order (1 ≤ i ≤ g) if p| det(2m).
Thus we have

D = det(2m)/2 · (
∑g

i=1 r
2
i /mi − 4n) ,

D0 = det(2m)/2 ·
(∑g

i=1 r
′2
i /mi − 4n0

)
,

b = det(2m)/2 · (
∑g

i=1 rir
′
i/mi − 2s) .

(4.25)

Moreover in this case the sum Fc has the form

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

ec

((
n0y

2 + sy
)
λ
)

×
g∏

i=1

∑
xi(c)

ec

((
mix

2
i + (yr′i + ri)xi

)
λ
)
.

(4.26)

Let us first assume p - det(2m), i.e., (p,mi) = 1 for all mi (1 ≤ i ≤ g) . Applying
Lemma 3.8 (with α = 0) leads to

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

ec

((
n0y

2 + sy
)
λ
)

×
g∏

i=1

√
c · ε(c) ·

(
λmi

c

)
· ec

(
−λ (yr′i + ri)

2
/(4mi)

)
.

Since g ≡ 1 (mod 4) and since c is odd we obtain

ε(c)g = ε(c),∏g
i=1

(
mi

c

)
=

(
2g−1

Qg
i=1 mi

c

)
=
(

1
2

det(2m)

c

)
,(

λ
c

)g
=

(
λ
c

)
.

(4.27)
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Thus we get

Fc = c−1/2 · ε(c) ·
( 1

2
det(2m)

c

)
·
∑
λ(c)∗

(
λ

c

)
· ec

(
λ

(
n−

g∑
i=1

r2
i /(4mi)

))
∑
y(c)

ec

((
λ

(
n0 −

g∑
i=1

r′2i /(4mi)

)
y2 +

(
s−

g∑
i=1

r′iri/(2mi)

)
y

))
.

Due to (c, det(2m)) = 1, we can replace λ by 2 det(2m) · λ and use (4.25), which
leads to

Fc = c−1/2 · ε(c) ·
∑
λ(c)∗

(
λ

c

)
· ec(−λD)

∑
y(c)

ec(−D0λy
2 − 2bλy). (4.28)

We now proceed, treating the cases p - D0 and p|D0, separately. As described
previously, p2 - D0 in both cases.
In the case p - D0 we have, again using Lemma 3.8,

Fc = c−1/2 · ε(c) ·
∑
λ(c)∗

(
λ

c

)
· ec(−λD)c1/2 · ε(c) ·

(
−D0λ

c

)
· ec

(
λb2/D0

)
=

(
D0

c

)
·
∑
λ(c)∗

ec

(
λ(b2 −DD0)/D0

)
.

Due to (c,D0 · 2 det(2m)) = 1 we can replace λ by λ · D0 · 2 det(2m), where
2 det(2m) is an inverse of 2 det(2m) (mod c). This leads to

Fc =

(
D0

c

)
·
∑
λ(c)∗

ec(λC).

Thus we obtain∑
d|a

(
D0

d

)
· Fa/d =

(
D0

a

)∑
λ(a)

ea(λC) =

{ (
D0

a

)
· a if a|C

0 otherwise
.

In the case p|D0 we obtain, using Lemma 3.8 for the sum in (4.28), that Fc

vanishes if p - b and otherwise has the value

Fc = c−1/2 · ε(c) ·
∑
λ(c)∗

(
λ

c

)
· ec(−Dλ) · √pc · ε(c/p) ·

(
−λD0/p

c/p

)
· ec/p

(
(2b/p)2

4D0/p

)
.

Since p|D0 and p - det(2m), the condition p|b is satisfied if and only if p|C. Thus
we get, using

ε(c/p) · ε(c) = ε(p),(
−D0/p

c/p

)
=

(
D0/p∗

c/p

)
,

(4.29)
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that

Fc = p1/2 · ε(p) ·
(
D0/p

∗

c/p

)
·
∑
λ(c)∗

(
λ

p

)
· ec

(
λ
(
b2 −DD0

)
/D0

)
.

Due to (p, 2 det(2m) ·D0/p) = 1 we can replace λ by 2 det(2m) ·D0/p · λ, where
2 det(2m) is an inverse of 2 det(2m) (mod c), which leads to

Fc = p1/2 · ε(p) ·
(
D0/p

∗

c/p

)( 1
2
det(2m)

p

)(
D0/p

p

)∑
λ(c)∗

(
λ

p

)
· ec(λC/p). (4.30)

Thus we obtain in case c|C, using Lemma 4.35,

Fc = c ·
(
D0/p

∗

c

)
·
( 1

2
det(2m)C/c

p

)
. (4.31)

Othervice the sum in (4.24) vanishes. Clearly expression (4.31) is zero if
p|(C/c). Therefore the sum on the left-hand side of (4.24) is reduced to a single
term Fa.

Now let us assume that p| det(2m). As shown in Remark 4.22 p divides ex-
actly one mi (1 ≤ i ≤ g) of order ν = νp(det 2m). Without loss of generality we
may assume p|mg.
We now distinguish the case whether pν |c and pν - c. Let us first assume pν |c.
Then we have, again using Lemma 3.8 for the sum in (4.26),

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

yr′g+rg≡0(pν )

ec((n0y
2 + sy)λ)

×
g−1∏
i=1

√
c · ε(c) ·

(
λmi

c

)
· ec

(
−λ(yr′i + ri)

2/(4mi)
)

×
√
pνc · ε(c/pν) ·

(
λmg/p

ν

c/pν

)
· ec/pν

(
−λ

((yr′g + rg)/p
ν)2

4mg/pν

)
.

Thus since g ≡ 1 (mod 4), we obtain

Fc = c−1/2·pν/2·ε(c/pν)·

(∏g−1
i=1 mi

c

)
·
(
mg/p

ν

c/pν

)
·
∑
λ(c)∗

ec

((
n−

g∑
i=1

r2
i /(4mi)

)
λ

)
(

λ

c/pν

)
·

∑
y(c)

yr′g+rg≡0(pν )

ec

(
λ

(
y2

(
n0 −

g∑
i=1

r
′2
i /(4mi)

)
+ y

(
s−

g∑
i=1

rir
′
i/(2mi)

)))
.
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Due to
(

2 det(2m)
p

, p
)

= 1, we may replace λ by 2 det(2m)
p
·λ. Using (4.25) we obtain

Fc = c−1/2 · pν/2 · ε(c/pν) ·

(∏g−1
i=1 mi

c

)
·
(
mg/p

ν

c/pν

)
·
(

2 det(2m)/pν

c/pν

)
×
∑
λ(c)∗

(
λ

c/pν

)
· ec(−λD/pν)

∑
y(c)

yr′g+rg≡0(pν )

ec

(
λ
(
−y2D0/p

ν − 2b/pνy
))
.

Since p - D0 we can apply the same arguments as before to conclude that (r′g, p) =

1. Thus we can replace y by −rgr′g + pνy, where r′g is an inverse of r′g (mod c)
and where the new y runs (mod c/pν). Using (4.25) we obtain(

g−1∏
i=1

mi

)
D0 ≡

(
g−1∏
i=1

mir
′
g2

g−1
2

)2

(mod pν),

i.e., (∏g−1
i=1 miD0

pν

)
= 1,

i.e., we have, due to Remark 4.36,(∏g−1
i=1 mi

p

)
=

(
D0

p

)
= 1.

Thus we obtain

Fc = c−1/2 · pν/2 · ε(c/pν) ·
∑
λ(c)∗

(
λ

c/pν

)
· ec(−λD/pν)

×
∑

y(c/pν)

ec

(
λ
(
−
(
pνy − rgr′g

)2
D0/p

ν − 2b/pν ·
(
pνy − rgr′g

)))
= c−1/2·pν ·ε(c/p)·

∑
λ(c)∗

(
λ

c/pν

)
·ec

(
λ
(
−D/pν −D0/p

ν ·
(
rgr′g

)2
+ 2b/pν

(
rgr′g

)))
×
∑

y(c/pν)

ec

(
λ
(
−pνy2D0 + 2y

(
D0rgr′g − b

)))
.

Due to (4.25) we have

D0rgr′g − b ≡ 0 (mod pν),
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i.e., we get, using Lemma 3.8 and p - D0,

Fc = c−1/2·pν/2·ε(c/pν)·
∑
λ(c)∗

(
λ

c/pν

)
·ec

(
λ
(
−D/pν −D0/p

ν
(
rgr′g

)2
+ 2b/pν

(
rgr′g

)))

× (c/pν)1/2 · ε(c/pν) ·
(
−D0λ

c/pν

)
· ec/pν

((
(D0rgr′g − b)/pν

)2
D0

)
.

Thus we have, again using Remark 4.36,

Fc =
∑
λ(c)∗

ec

(
λ(b2 −DD0)

pνD0

)
.

Therefore we deduce, changing λ into D0 · 2 det(2m)/pν · λ, where 2 det(2m)/pν

denotes an inverse of 2 det(2m)/pν (mod c),

Fc =
∑
λ(c)∗

ec(Cλ). (4.32)

Now let us assume pν - c. Then we have, again using Lemma 3.8 for the sum in
(4.26),

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ) · c
∑
y(c)

yr′g+rg≡0(c)

ec((n0y
2 + sy)λ)

×
g−1∏
i=1

√
c · ε(c) ·

(
λmi

c

)
· ec

(
−λ(yr′i + ri)

2/(4mi)
)
.

Thus since g ≡ 1 (mod 4), we obtain

Fc =

(∏g−1
i=1 mi

c

)
·
∑
λ(c)∗

ec

((
n−

g−1∑
i=1

r2
i /(4mi)

)
λ

)
·
(

λ

c/pν

)

× ec

(
λ

((
rgr′g

)2
y2

(
n0 −

g−1∑
i=1

r
′2
i /(4mi)

)
+ rgr′gy

(
s−

g−1∑
i=1

rir
′
i/(2mi)

)))
,

where we have again used that p - r′g.
As before we have

(Qg−1
i=1 mi

p

)
= 1. Moreover we have, using that pν |mg and c|pν
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C =
1

2 det(2m)
· (b2 −D ·D0)

=
det(2m)

2
·

( g∑
i=1

rir
′
i

4mi

− s

2

)2

−

(
g∑

i=1

r2
i

4mi

− n

)(
g∑

i=1

r′i
2

4mi

− n0

)
=

det(2m)

2
·

(
rgr

′
g

2mg

(
g−1∑
i=1

rir
′
i

4mi

− s

2

)
−

r2
g

4mg

(
g−1∑
i=1

r′i
2

4mi

− n

)

− rg
2

4mg

(
g−1∑
i=1

r′i
2

4mi

− n0

)
.

)

Thus we obtain, replacing λ by −det(2m)
mg

· 4̄ · λ, where 4̄ denotes an inverse of 4

(mod c),

Fc =
∑
λ(c)∗

ec(Cλ). (4.33)

Combing (4.32) and (4.33) and using
(

D0

d

)
= 1, we infer that

∑
d|a

(
D0

d

)
· Fa/d =

∑
λ(c)

ea(λC) =

{
a if a|C
0 otherwise

.

Thus formula (4.24) is proved in the case p 6= 2.
Now let us assume p = 2.
Using Lemma 4.21 we may, without loss of generality, assume that m has the
form

m =


l

1
1
2

1
2
1

. . .
0
1
2

1
2
0

 .

Let the type
(

1
1
2

1
2
1

)
occur g1 times and the type

(
0
1
2

1
2
0

)
occur g2 times, i.e., g =

1 + 2g1 + 2g2 (we may without loss of generality assume that the blocks occur in
this order, otherwise we change the numeration).
Let us set

I := {2, 4, . . . , 2g1} ⊂ N,
J := {2g1 + 2, 2g1 + 4, . . . , g − 1} ⊂ N.

110



Then we have

D =
1

2
det(2m) ·

(
−4n+

r2
1

l
+

4

3
·
∑
i∈I

(
r2
i − riri+1 + r2

i+1

)
+ 4 ·

∑
i∈J

riri+1

)
,

D0 =
1

2
det(2m) ·

(
−4n0 +

r
′2
1

l
+

4

3
·
∑
i∈I

(
r
′2
i − r′ir′i+1 + r

′2
i+1

)
+ 4 ·

∑
i∈J

r′ir
′
i+1

)
,

b =
1

2
det(2m) ·

(
−2s+

r1r
′
1

l
+

2

3
·
∑
i∈I

(
2rir

′
i + 2ri+1r

′
i+1 − r′iri+1 − r′i+1ri

)

+2 ·
∑
i∈J

(
r′iri+1 + rir

′
i+1

))
(4.34)

and

C =
1

2
det(2m) ·

((
−s+

r1r
′
1

2l
+

1

3
·
∑
i∈I

(
2r′iri − r′iri+1 − r′i+1ri + 2r′i+1ri+1

)
+
∑
i∈J

(
r′iri+1 + r′i+1ri

))2

−

(
−2n+

r2
1

2l
+

2

3
·
∑
i∈I

(r2
i − riri+1 + r2

i+1) + 2 ·
∑
i∈J

riri+1

)

×

(
−2n0 +

r2
1

2l
+

2

3
·
∑
i∈I

(
r′2i − r′ir′i+1 + r′2i+1

)
+ 2 ·

∑
i∈J

r′ir
′
i+1

))
. (4.35)

Moreover we have

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

ec

((
n0y

2 + sy
)
λ
)∑

x1(c)

ec

((
lx2

1 + (yr′1 + r1)x1

)
λ
)

×
∏
i∈I

∑
xi(c)

xi+1(c)

ec

(
λ
(
x2

i + xixi+1 + x2
i+1 + (r′iy + ri)xi +

(
r′i+1y + ri+1

)
xi+1

))
×
∏
i∈J

∑
xi(c)

xi+1(c)

ec

(
λ
(
xixi+1 + (r′iy + ri)xi +

(
r′i+1y + ri+1

)
xi+1

))
. (4.36)

We now want to determine the different types of sums that can appear. For this
let us first assume c 6= 2. If r′1y + r1 ≡ 0 (mod 2) we obtain, using Lemma 3.8
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and (l, 2) = 1,∑
x1(c)

ec

((
lx2

1 + (yr′1 + r1)x1

)
λ
)

= c1/2 ·
(
−c
λl

)
· ε(lλ) · (1 + i) · ec

(
−λ (r′1y + r1)

2
/(4l)

)
.

Otherwise the sum has the value 0. Moreover we have, again using Lemma 3.8,∑
xi+1(c)

ec

(
λ
(
x2

i+1 +
(
r′i+1y + ri+1

)
xi+1

))∑
xi(c)

ec

(
λ
(
x2

i + (xi+1 + r′iy + ri)xi

))
=

∑
xi+1(c)

xi+1+r′
i
y+ri≡0(2)

ec

(
λ
(
x2

i+1 +
(
r′i+1y + ri+1

)
xi+1

))
· c1/2

(
−c
λ

)
· ε(λ) · (1 + i)

× ec

(
−λ(xi+1 + r′iy + ri)

2

4

)
.

Now we can replace xi+1 by −r′iy − ri + 2xi+1 with the new xi+1 running
(mod c/2), which leads to

c1/2 ·
(
−c
λ

)
· ε(λ) · (1 + i)∑

xi+1(c/2)

ec

(
λ
(
(2xi+1 − (ri + r′iy))

2
+
(
r′i+1y + ri+1

)
(2xi+1 − (ri + r′iy))− x2

i+1

))
= c1/2 ·

(
−c
λ

)
· ε(λ) · (1 + i) · ec

(
λ
(
(ri + r′iy)

2 −
(
r′i+1y + ri+1

)
(r′iy + ri)

))
× 1

2
·
∑

xi+1(c)

ec

(
λ
((

3x2
i+1 + xi+1

(
2
(
r′i+1y + ri+1

)
− 4 (r′iy + ri)

))))
= c1/2 ·

(
−c
λ

)
· ε(λ) · (1 + i) · ec

(
λ
(
(ri + r′iy)

2 −
(
r′i+1y + ri+1

)
(r′iy + ri)

))
× 1

2
· c1/2 ·

(
−c
3λ

)
· ε(3λ) · (1 + i) · ec

(
−
λ
(
(2ri − ri+1) +

(
2r′i − r′i+1

)
y
)2

3

)
.

We have ε(λ) · ε(3λ) = i. Thus the last expression equals

c ·
(
−c
3

)
· (−1) · ec

(
3̄λ
(
riri+1 − r2

i − r2
i+1

)
+ y2

(
r′ir

′
i+1 − r′2i − r′2i+1

)
+y
(
r′iri+1 + r′i+1ri − 2r′iri − 2r′i+1ri+1

))
.

Moreover we have, again using Lemma 3.8, that the third type of sum is equal to∑
xi+1(c)

ec

(
λ
(
r′i+1y + ri+1

)
xi+1

)∑
xi(c)

ec (λ (xi+1 + r′iy + ri)xi)

112



= c ·
∑

xi+1(c)

xi+1+r′
i
y+ri≡0(c)

ec

(
λ
((
r′i+1y + ri+1

)
xi+1

))
= c · ec

(
−λ
(
r′i+1y + ri+1

)
(r′iy + ri)

)
.

Thus we get, using that
(−c
−1

)
= −1, that the third type of sum equals

c · (−1) ·
(
−c
−1

)
· ec

(
−λ
(
y2r′ir

′
i+1 + y

(
r′iri+1 + r′i+1ri

)
+ riri+1

))
.

Thus the sum in (4.36) equals

Fc = c−(g+1)/2 ·
∑
λ(c)∗

ec(nλ)
∑
y(c)

r′1y+r1≡0(2)

ec

((
n0y

2 + sy
)
λ
)
· c1/2

(
−c
λl

)
· ε(lλ) · (1+ i)

× ec

(
−λ
(
r
′2
1 y

2/(4l) + r1r
′
1y/(2l) + r2

1/(4l)
))

×
∏
i∈I

(−1) · c
(
−c
3

)
· ec

(
3̄λ
((
riri+1 − r2

i − r2
i+1

)
+(

r′ir
′
i+1 − r

′2
i − r

′2
i+1

)
y2 +

(
r′iri+1 + r′i+1ri − 2r′iri − 2ri+1r

′
i+1

)
y
))

×
∏
i∈J

c · (−1) ·
(
−c
−1

)
· ec

(
−λ
(
y2r′ir

′
i+1 + y

(
r′iri+1 + r′i+1ri

)
+ riri+1

))
= (−1)(g−1)/2 · c1/2

(
−c

1
2
det(2m)

)
· (1 + i) ·

∑
λ(c)∗

(
−c
λ

)
· ε(lλ)

ec

(
λ

(
n− r2

1/(4l) + 3̄
∑
i∈I

(
riri+1 − r2

i − r2
i+1

)
−
∑
i∈J

riri+1

))
∑
y(c)

r′1y+r1≡0(2)

ec

(
λ

(
y2

(
n0 − r

′2
1 /(4l) +

∑
i∈I

(
r′ir

′
i+1 − r

′2
i − r

′2
i+1

)
−
∑
i∈J

r′ir
′
i+1

)

+y

(
s− r1r′1/(2l) + 3̄

∑
i∈I

(
r′iri+1 + r′i+1ri − 2r′iri − 2r′i+1ri+1

)
−
∑
i∈J

(
r′iri+1 + rir

′
i+1

)))
.

Thus we obtain by changing λ into 1
2
det(2m) ·λ and by using that g ≡ 1 (mod 4)

and (4.34),
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Fc = c−1/2 · (1 + i) ·
∑
λ(c)∗

(
−c
λ

)
· ε
(
l
1

2
det(2m)λ

)
· ec (−λD/4)

×
∑
y(c)

r′1y+r1≡0(2)

ec(λ(−D0/4y
2 − b/2y)).

Since D0 is odd, we get with the same arguments as used before that r′1 has to be
odd. Thus we can replace y by 2y−r1r′1, where r′1 is an inverse of r1 (mod c) and
where the new y runs (mod c/2). Thus we get, using that l is odd and g ≡ 1
(mod 4),

l

2
· det(2m) = l2 · 3g1 · (−1)g2 ≡ (−1)

g−1
2 ≡ 1 (mod 4).

Thus

ε

(
l

2
det(2m)λ

)
= ε(λ).

Therefore we have

Fc = c−1/2 · (1 + i) ·
∑
λ(c)∗

(
−c
λ

)
· ε(λ) · ec (−λD/4)

×
∑

y(c/2)

ec

(
λ
(
−D0/4

(
2y − r1r′1

)2 − b/2 (2y − r1r′1)))
= c−1/2 · (1 + i) ·

∑
λ(c)∗

(
−c
λ

)
· ε(λ) · ec

(
λ
(
−D/4−D0/4(r1r̄1)

2 + b/2r1r′1
))

×
∑

y(c/2)

ec

(
λ
(
−D0y

2 +
(
D0r1r′1 − b

)
y
))
.

Moreover we get, using that r′1 and 1
2
det(2m) are odd and (4.34),

D0 · r1 · r′1 ≡ r1 · r′1 · det(2m)/(2l) · r′21 ≡ r1 (mod 2),

and
b ≡ r1 · det(2m)/(2l) · r′1 ≡ r1 (mod 2).

Thus
D0 · r1 · r′1 − b ≡ 0 (mod 2).

Therefore we obtain, using Lemma 3.8,

Fc = c−1/2 · (1 + i) ·
∑
λ(c)∗

(
−c
λ

)
· ε(λ) · ec

(
λ
(
−D/4−D0/4 (r1r̄1)

2 + b/2r1r′1)
))

× 1

2
· (1 + i) · c1/2 ·

(
−c
−λD0

)
· ε(−D0λ) · ec

(
λ
(
D0r1r′1 − b)2/(4D0)

))
.
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Since D0 ≡ 1 (mod 4), we have

ε(λ) · ε(−D0λ) = i,

and (
−c
−D0

)
= −

(
−1

D0

)(
c

D0

)
= −

(
c

D0

)
.

Thus

Fc =

(
c

D0

)
·
∑
λ(c)∗

ec

(
λ
(
b2/(4D0)−D/4

))
=

(
c

D0

)
·
∑
λ(c)∗

ec(λC),

where we have changed λ into det(2m)/2 ·D0 · λ in the previous equality, where
det 2m/2 is an inverse of det 2m/2 (mod c).
Next let us assume that c = 2. Then clearly λ = 1. We again want to compute
the three types of sums in (4.36). We have, using that l and r′1 are odd and
x2 ≡ x (mod 2) for all integers x,∑

x1(2)

e2
((
lx2

1 + (yr′1 + r1)x1

))
=

∑
x1(2)

ec (x1 (1 + y + r1))

=

{
2 if y ≡ 1 + r1 (mod 2)
0 otherwise

.

Furthermore∑
xi+1(2)

e2
(
x2

i+1 +
(
r′i+1y + ri+1

)
xi+1

)∑
xi(2)

e2
(
x2

i + (xi+1 + r′iy + ri)xi

)

=
∑

xi+1(2)

e2
(
xi+1

(
1 + r′i+1y + ri+1

))∑
xi(2)

e2 (xi (1 + xi+1 + r′iy + ri))

= 2 ·
∑

xi+1(2)

xi+1+r′
i
y+ri+1≡0(2)

e2
(
xi+1

(
1 + r′i+1y + ri+1

))
= 2 · e2

(
(1 + r′iy + ri)

(
1 + r′i+1y + ri+1

))
= −2 · e2

(
y
(
r′i+1 + r′i + r′ir

′
i+1 + r′iri+1 + rir

′
i+1

)
+ (ri + ri+1 + riri+1)

)
.

Moreover we have∑
xi+1(2)

e2
((
r′i+1y + ri+1

)
xi+1

)∑
xi(2)

e2 ((xi+1 + r′iy + ri)xi)

= 2 ·
∑

xi+1(2)

xi+1≡r′
i
y+ri(2)

e2
((
r′i+1y + ri+1

)
xi+1

)
= 2 · e2

((
r′iy + ri)(r

′
i+1y + ri+1

))
= 2 · e2(y(r′ir′i+1 + r′iri+1 + rir

′
i+1) + riri+1).
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Inserting this into (4.36) leads to

F2 = e2(n) ·
∑
y(2)

y≡1+r1(2)

e2((n0 + s)y)

×
∏
i∈I

(−1) · e2
(
y
(
r′i+1 + r′i + r′ir

′
i+1 + r′iri+1 + rir

′
i+1

)
+ (ri + ri+1 + riri+1)

)
×
∏
i∈J

e2
(
y
(
r′ir

′
i+1 + r′iri+1 + rir

′
i+1

)
+ riri+1

)
.

As a solution of the congruence y ≡ 1 + r1 (mod 2) we can choose y = 1 + r1.
Thus we get

F2 = e2

(
n+ g1 +

∑
i∈I

(ri + ri+1 + riri+1) +
∑
i∈J

riri+1 + (1 + r1)

(
n0 + s+

∑
i∈I(

r′i + r′i+1 + r′ir
′
i+1 + r′iri+1 + r′i+1ri

)
+
∑
i∈J

(
r′ir

′
i+1 + r′i+1ri + r′iri+1

)))
. (4.37)

Moreover we obtain using (4.35) , that 1
2
det(2m) and r′1 are odd, and that x2 ≡ x

(mod 2) for all integers x

C ≡

(
r1r

′
1

(∑
i∈I∪J

(
r′iri+1 + r′i+1ri

)
+ s

)
+
∑

i∈I∪J

(
r′iri+1 + r′i+1ri

)
+ s

)

+ r2
1

(
n0 +

∑
i∈I

(
r
′2
i + r′ir

′
i+1 + r

′2
i+1

)
+
∑
i∈J

r′ir
′
i+1

)

+ r
′2
1

(
n+

∑
(r2

i + riri+1 + r2
i+1) +

∑
i∈J

riri+1

)

≡

(
r1

(∑
i∈I∪J

(
r′iri+1 + r′i+1ri

)
+ s

)
+
∑

i∈I∪J

(
r′iri+1 + r′i+1ri

)
+ s

)

+ r1

(
n0 +

∑
i∈I

(
r′i + r′ir

′
i+1 + r′i+1

)
+
∑
i∈J

r′ir
′
i+1

)

+

(
n+

∑
i∈I

(ri + riri+1 + ri+1) +
∑
i∈J

riri+1

)
(mod 2). (4.38)

Therefore we have, using (4.37) and (4.38) and that e2(x) = (−1)x (∀x ∈ Z),

F2 = (−1)n0+
P

i∈I(r′i+r′i+1+r′ir
′
i+1)+

P
i∈J r′ir

′
i+1+g1 · e2(C).
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Next we want to show that(
2

D0

)
= (−1)n0+

P
i∈I(r′i+r′i+1+r′ir

′
i+1)+

P
i∈J r′ir

′
i+1+g1 .

We obtain by using D0 ≡ 1 (mod 4),(
2

D0

)
= (−1)1/8(D2

0−1) =

{
1 if D0 ≡ 1 (mod 8)
−1 if D0 ≡ 5 (mod 8)

.

Thus we have to check the values of D0 (mod 8).
From (4.34) we know

D0 = det(2m)/(2l) r′1
2
+ 2 det(2m)

(
1

3

∑
i∈I

(
r2′

i − r′ir′i+1 + r
′2
i+1

)
+
∑
i∈J

r′ir
′
i+1 − n0

)
. (4.39)

We obtain by using that r′1 is odd and g ≡ 1 (mod 4),

det(2m)/(2l) · r′21 ≡ 3g1 · (−1)g2 ≡ 5g1 · (−1)g1+g2 ≡ 5g1 · (−1)
g−1
2

≡ 5g1 ≡
{

1 (mod 8) if g1 is even
5 (mod 8) if g1 is odd

. (4.40)

Moreover

2 det(2m) ·

(
1

3

∑
i∈I

(
r
′2
i − r′ir′i+1 + r

′2
i+1

)
+
∑
i∈J

r′ir
′
i+1 − n0

)

≡ 2 det(2m) ·

(∑
i∈I

(
r′i + r′ir

′
i+1 + r′i+1

)
+
∑
i∈J

r′ir
′
i+1 + n0

)

≡
{

0 (mod 8) if
∑

i∈I

(
r′i + r′ir

′
i+1 + r′i+1

)
+
∑

i∈J r
′
ir
′
i+1 + n0 is even

4 (mod 8) otherwise
.

(4.41)

Inserting (4.40) and (4.41) into (4.39) we obtain

D0 ≡

 1 (mod 8) if g1 +
∑

i∈I

(
r′i + r′ir

′
i+1 + ri+1 + r′i+1

)
+
∑

i∈J r
′
ir
′
i+1 + n0

is even
5 (mod 8) otherwise

.

Thus we have(
2

D0

)
= (−1)

1
8
(D2

0−1) = (−1)g1+n0+
P

i∈I(r′i+rir
′
i+1+ri+1)+

P
i∈J riri+1 ,
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i.e., we have shown for an arbitrary 2-power

Fc =

(
c

D0

)
·
∑
λ(c)∗

ec(λC).

Therefore (4.24) follows very similarly as in the case p 6= 2. �
From this we obtain Theorem 4.19. �

Remark 4.37 We can also weaken the assumptions, made at the beginning of
this section, in a way that in case g = 1 we have the same restrictions as in
[GKZ]. That is we can skip the condition that 1

2
det(2m) is odd and furthermore

replace (det(2m), D0) = 1 by the following conditions: If p divides both, det(2m)
and D0, p

2 must not divide det(2m) if p 6= 2, p3 must not divide det(2m) if p = 2
and D0

4
is odd, and p4 must not divide det(2m) is p = 2 and D0

4
is even. Moreover

if p 6= 2,
∏

i=1
i6=j

mi has to be assumed to be a square (mod p), where the mi are

choosen such that ∃U ∈ GLg(Z/pZ) with (2m)[U ] ≡
(
m1 . . . mg

)
(mod p),

p|mj.

We don’t want to prove the claims of this chapter under the restrictions of the
above Lemma because this would make calculations still more complicated since
more cases have to be distinguished. We just want to mention a few words about
what has to be changed. In order to prove that we are allowed to skip the con-
dition that 1

2
det(2m) is odd we first show that in Lemma 4.21 only one block

of the form 2νl can occur. The proof that the first terms of (4.4) coincide can
be adopted with little modifications. What is more difficult to show is that the
second terms of (4.4) coincide. For this one has to take more cases into account.
In order to show that one can also change the second condition, again the biggest
difficulty lies in showing that the second terms of (4.4) coincide. Here the restric-

tion
∏

i=1
i6=j

mi is a square (mod p) is needed in order to obtain

(Q
i=1
i6=j

mi

p

)
= 1

(which can be deduced in case the p|1
2
det(2m) and p - det(2m)).
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Appendix: List of often used symbols
N, Z ,Q ,R,C set of positive integers, integers, rational, real and complex numbers
tr, det trace and determinant of a matrix
Im, Re imaginary and real part of matrices
Symg(R) set of symmetric matrices of size g with entries from a commutative

ring R
R∗ units of a (commutative) ring R with 1
Mg(R) ring of g × g matrices with entries in R
GLg(R) group of invertible matrices from Mg(R)
Eg identity matrix of size g
Ig p. 11
At transpose of the matrix A
A[B] BtAB
A > B ,A ≥ B A−B is positive (semi-) definite
Pg set of positive definite matrices of size g with entries from R
Spg(R) real symplectic group of genus g
Γg Siegel modular group of genus g
SLg(Z) special linear group of genus g
Γg,0(N) subgroup of Γg p. 11
Γ0(N) Γ1,0(N)
a ≡ b (mod c) c divides a− b
ei i-th unit vector
Hg Siegel upper half space of genus g
H H1

Fg set of Siegel reduced matrices p. 12
mg−1(T ) p. 13
Tg−1 (g − 1)× (g − 1) minor of T
M ◦ Z, N ◦ (τ, z) operation of the symplectic and the Jacobi group p. 13, p.15
|k slash operation of the Siegel modular and the Jacobi group p. 13, 15
Sk(Γ) vector space of Siegel cusp forms with respect to Γ
Sk(N) Sk(Γ0(N))
Sk(N)− p. 86
< ·, · >, < ·, · >Γ Petersson scalar product for Siegel and Jacobi cusp forms p. 14, p. 18

dVg, dV
J
g symplectic volume for the Siegel modular and Jacobi group p. 14, p. 18

ΓJ
l,n,Γ

J
l,n,0(N), Jacobi groups 15

Λ Sym2(Z)
Λ∗ {S ∈ Sym2(Q)|S half-integral}
e(z) exp(2πiz)
ec(z) e( z

c
)

en,r(τ, z) e(nτ + rz)(
ΓJ

1,g

)
∞ stabilizer group of the function en,r p. 19

J cusp
k,m , J cusp

k,m (N) vector spaces of Jacobi cusp forms
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(ΓJ
l,n)↑ embedding of the Jacobi group in the Siegel modular group

Pk,m;(n,r), P
N
k,m;(n,r), Pk,m;(n,r) Poincaré series p. 18, p. 46, p. 57

Pk,m;(n,r),s, P
N
k,m;(n,r),s non-holomorphic Poincaré series p. 24, p. 24

δm p. 22
Hm,c, H

N
m,c generalized Kloosterman sums p. 22, p. 53

Jn Bessel function of order n
In I-Bessel function of order n

J̃ matrix-argument Bessel function p. 61
λk,m,D p. 23
Γ(·) gamma function
Φk,m,c,v, ΦN

k,m,c,v certain integrals p. 25
G(a, b, c) Gauss sums p. 32
νp(·) p-order
ε(·) p. 32
Zp ring of p-adic numbers
χM characteristic function of the set M
αg p. 45
Γ∞ p. 48(
ΓJ

2,1

)
∞ p. 57

Γ0
∞(N) p. 48

Θ(M) p. 58
rk rang of a quadratic matrix

δ
(n)
x,y p. 60
Es,N(Z), Es(Z) non-holomorphic Eisenstein series p. 69
E∗

s,N(Z), E∗
s (Z) p. 69

ζ(s) zeta-function
ζN(s) p. 69
PZ p. 69
µ(·) Moebius function
DF,G,N(s), D∗

F,G,N(s) Dirichlet series p. 75
ι inclusion map
D∆, Dl,∆, Dl,∆ sets of quadratic forms p. 84
χD0(·) generalized genus character p. 85
fk,l,∆,ρ,D0 p.86
εl(m,∆, ρ,D0) p. 86
Sla p. 86
rk,l,Q, rk,l,∆,ρ,D0 cycle integrals p. 87, p. 87
SD0,r0 , S∗D0,r0

lifting maps p. 89, p. 89
M∗ adjoint of a matrix
Ωk,m,D0,r0 p. 94
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