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ZUSAMMENFASSUNG 
 
Diese Arbeit wurde durchgeführt, um Gene, die axonale Wegfindung im Nervensystem 
von Caenorhabditis elegans steuern, zu identifizieren. C. elegans stellt aufgrund seiner 
einzigartigen physiologischen Eigenschaften ein gutes Modellsystem für das Studium 
einer Vielzahl biologischer Prozesse dar. Das Nervensystem von C. elegans ist einfach 
strukturiert und umfasst 302 Neuronen. Diese Neuronen bilden stereotype Netzwerke 
mit ihren anterior-posterior und dorsal-ventral verlaufenden axonalen Fortsätzen aus. In 
dieser Arbeit nutzen wir die kürzlich beschriebene Methode der RNA Interferenz (RNAi) 
im Wurm zur Identifikation von neuen Genen der axonalen Wegfindung. Allerdings ist 
das Nervensystem von C. elegans resistent gegen systemische RNAi und Transport von 
doppelsträngigen RNA Molekülen in benachbarte nicht-neuronale Zellen veranlasst 
keine neuronale RNAi. Aus diesem Grund begannen wir mit der Identifizierung von C. 
elegans Mutanten, die eine erhöhte Empfindlichkeit für RNAi im Nervensystem 
aufweisen. Eine chemische Mutagenese wurde durchgeführt, gefolgt von einem Screen 
nach Mutanten mit effizienter RNAi im Nervensystem. Eine der Mutanten (nre-1, für 
neuronal RNAi efficient) zeigte starke Suppression der Genexpression im Nervensystem 
nach RNAi durch Füttern. Wir nutzten die nre-1 supersensitive Mutante für einen revers 
genetischen Screen zur Idenfizierung von Genen der axonalen Wegfindung in C. elegans. 
Um die Fortsätze der Nervenzellen sichtbar zu machen, wurde ein transgener Stamm im 
nre-1 Hintergrund erzeugt, in dem ein Teil der Inter- und Motoneurone durch gelb 
fluoreszierendes Protein (YFP) markiert ist. Dieser Stamm wurde für einen Screen von 
2416 Genen auf Chromosom I verwendet. Dazu wurde eine library von Bakterienklonen, 
die einem bestimmten Gen entsprechende dsRNA exprimieren, an C. elegans verfüttert. 
Der Screen führte zur Identifizierung von 57 Kandidatengenen, die penetrante axonale 
Wegfindungsdefekte in Motoneuron-Kommissuren und Axonen des Ventralstrangs in C. 
elegans zur Folge haben. Die identifizierten Gene sind involviert in eine Vielzahl von 
biologischen Prozessen wie DNA-Metabolismus, Translation, Transkription und 
Signaltransduktion. Einige kodieren für Zelloberflächenmoleküle und 
Zytoskelettkomponenten. Zusätzlich zu neuen Genen konnten im Screen Gene 
identifiziert werden, die in andere biologische Prozesse involviert sind, aber bis jetzt nicht 
mit axonaler Wegfindung in Verbindung gebracht wurden. Beispielsweise führt Verlust 
von pry-1, einem Axin Homolog in C. elegans, zu axonalen Defekten. Axin ist ein 
assoziierter Faktor des ß-Catenin Komplexes und damit ein negativer Regulator in Wnt 
vermittelter Signaltransduktion. Weitere Studien an anderen, in diesem Screen 
identifizierten Kandidatengenen wie z.B. neuen Rezeptoren, Signalmolekülen, Kinasen 
und Transkriptionsfaktoren können uns in Zukunft einen weiteren Einblick in die 
molekularen Mechanismen der axonalen Wegfindung geben.  
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SUMMARY 
 
This study was undertaken to identify genes involved in axon guidance in the nervous 
system of Caenorabditis elegans. Due to its unique physiological properties, the nematode 
worm C. elegans is a powerful genetic model system to study a variety of biological 
processes. The nervous system of C. elegans is a simple organ comprising 302 neurons. 
These neurons create stereotypic neuronal networks formed by their anterior-posterior 
and dorsal-ventral running axons. Here, we took advantage of the recently discovered 
phenomenon of RNA interference in the worm to identify axon guidance genes. 
However, the nervous system of C. elegans is refractory to the systemic RNA interference, 
and delivery of dsRNA molecules to the neighboring non-neuronal cells does not initiate 
RNAi in the neurons of the worm. Therefore, we started with the identification of 
mutants of C. elegans that are efficient for RNAi in the nervous system. A standard 
chemical mutagenesis screen was performed to identify mutants of the worm that showed 
enhanced RNAi efficiency in the nervous system. One of the mutants (nre-1, for neuronal 
RNAi efficient) showed marked suppression of gene expression in the nervous system by 
feeding RNAi approach. We used the nre-1 supersensitive strain as a tool in a reverse 
genetic screen to identify genes required for axon guidance in C. elegans. A transgenic 
strain was constructed in the nre-1 background, wherein a subset of interneurons and 
motor neurons were labeled with the yellow fluorescent protein to visualize axons of the 
neurons. We used this strain to screen 2416 gene of the worm located on chromosome I 
by feeding a library of bacterial clones expressing dsRNA fragments specific to the genes. 
This screen has identified 57 candidate genes that give rise to penetrant axon guidance 
defects in the commissural and ventral nerve cord axons in C. elegans. The genes 
identified include genes involved in various cellular processes such as DNA metabolism, 
translation, transcription, cell-surface molecules, signaling pathways and cytoskeletal 
molecules. In addition to novel genes, the screen has also identified genes that have been 
previously implicated in other cell biological processes, but their roles in axon guidance 
were not known. For example, this screen has identified a C. elegans axin homolog pry-1, 
a signaling molecule involved in a Wnt signaling pathway. Axin is an associated factor of 
the β-catenin complex and is a negative regulator of Wnt signals. Besides, further studies 
on other candidate genes, e.g. novel receptors, signaling molecules, kinases and 
transcription factors identified in this screen should provide us with more information on 
the molecular mechanisms employed by neurons to steer their axons.  
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1 INTRODUCTION 

 

1.1 Introduction to the axon guidance problem 

The function of the nervous system depends on the ability of neurons to connect with 

each other and their target cells. In a nervous system, the neurons form neuronal circuits 

or networks that are made by specialized neurites of the neurons called the axons and the 

dendrites. Axons transfer neural signals from the cell body or soma of the neuron to their 

targets, while dendrites are the processes that receive signals from the targets and send 

them to the soma of the neuron. Axons constitute a larger portion of the nervous system 

and their development is fundamentally important for the functioning of the nervous 

system. However, the study of axon development in mammals has been difficult due to 

the complexity of the mammalian nervous system (Kandel et al., 2000). 

During embryonic development, axons have to travel considerable distances to reach 

their final targets. The navigation of axons takes place in a highly complex environment 

with remarkable order and stereotypic manner. The growth cone at the tip of the growing 

axon is the site of all the dynamic activity that leads to navigation of the axon to their 

targets (Figure 1-1). The growth cone guides the axon towards its targets by sensing the 

molecular cues present in the environment and changing the direction of the growing 

axon. The cues involved in the process of axon guidance are of two types, attractive and 

repulsive (Tessier-Lavigne and Goodman, 1996). For example, the long-range attractive 

cues pull the axons towards their targets, while long-range repulsive cues push the axons 

from behind or side and prevent them from entering certain territories. The other two 

types of local contact-dependent attractive and repulsive cues finetune the movement of 

axons locally at the level of target selection and/or guidance of follower axons. The effect 

of attractive cues on axons is the growth of the axon towards their targets and 

stabilization of the interaction with the targets. On the other hand, repulsive cues cause 

diversion of axons from the area of presence of the cues or cause collapse and inhibition 

of the growth cone and synapse formation. 

The repertoire of axon guidance molecules is classified on the basis of their structural and 

functional features (Kaprielian et al., 2000). The first type includes the secreted molecules 

or ligands that are produced by the target cells. They diffuse and form a gradient that 

leads to either the attraction or repulsion of growing axons. The second type of molecules 

includes the receptors for the secreted ligands. The receptor molecules are mainly 
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Figure 1-1: The anatomical features of a chick retinal ganglion neuron labeled with anti-
NCAM antibody (courtesy of G. E. Pollerberg). 
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localized on axons and growth cones. In the presence of ligands receptor molecules 

activate intracellular signaling pathways and subsequently execute changes in growth or 

target selection by the axons. The third type includes the intracellular molecules that 

form the components of intracellular signaling networks responsive to the cell surface 

receptors. The signaling networks formed by the intracellular molecules are complex and 

poorly understood due to the involvement of these molecules in multiple signaling 

pathways. Besides the above types, many extracellular matrix molecules are also 

involved in the process of axon guidance. These extracellular matrix molecules are 

secreted and are integrated into the complex matrix surrounding the cells. However, the 

mechanisms involved in these processes are also poorly understood.  

 

1.2 Why study axon guidance mechanisms?  

The nervous system is a unique organ that not only contains a collection of neurons, but 

each of the neuron is connected to a variety of neuronal and non-neuronal targets by 

their neurites. These neuronal circuits form the basis of the nervous system. Defects in 

the information processing, connectivity and/or functioning of the nervous system cause 

many life threatening diseases and disorders in human. Recently, it has been shown that 

a variety of genetic neuropathies are manifestations of defective axon guidance 

mechanisms. For example, mutations in a human Robo gene lead to the disruption of 

hindbrain axon pathway crossing and defects in morphogenesis leading to a genetic 

disease called horizontal gaze palsy with progressive scoliosis (Jen et al., 2004). While in 

the case of multigenic Charcot-Marie-Tooth disease that causes motor axonal 

neuropathy, mutations in a heat shock protein involved in axon guidance has been 

shown to be responsible for the final manifestation of the disease (Evgrafov et al., 2004). 

In yet another case, a Kallman syndrome gene homolog has been shown to be required 

for axon branching (Bulow et al., 2002; Rugarli et al., 2002). Therefore, to study these 

biomedically important aspects of brain development, the elucidation of axon guidance 

mechanisms is fundamentally necessary. Secondly, studying the nature of mechanisms 

involved in axon guidance is also important for the understanding of the functioning of 

neuronal circuits and ultimately the way the nervous system works. It is also important 

for studies on medical conditions such as spinal cord injury, regenerative neuronal 

medicine and neuronal cell therapy (Clarke et al., 2000).  
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To date, several studies on axon guidance mechanisms have been done in different model 

organisms. Due to simplicity of genetics, biochemical and anatomical advantages, 

invertebrate model organisms have been widely used for axon guidance research and 

they have provided valuable information on different biological processes required for the 

development of the nervous system. The invertebrate model organisms extensively 

studied are Caenorabditis elegans and Drosophila melanogaster (Dickson, 2002). These model 

organisms have provided much of our current knowledge of the molecular mechanisms 

of axon guidance and development of the nervous system. Many of the genes identified 

in these invertebrate organisms have direct homologs in vertebrates. These homologs also 

show functional homology as many of them interact with other molecules that are also 

conserved. From the experiments in invertebrates and vertebrates a set of common 

principles on dynamic regulation of axon guidance have emerged (Yu and Bargmann, 

2001). However, still many gaps in these schemes remain and not all the mechanisms 

involved in axon guidance of different types of neurons are known. Therefore, as a first 

step to address the phenomenon of axon guidance at the molecular level the 

identification of new genes required for the mechanisms of axon guidance is needed.  

 

1.3 Developmental events and the signaling pathways 

The embryonic development is one the most complex processes in animals. After 

fertilization of the oocyte rapid cell division processes take place leading to the 

establishment of embryonic patterning. This is followed by the developmental events of 

gastrulation, neurulation and morphogenesis. The development of the nervous system 

starts in the neurulation stage of the embryonic development. All biological processes 

involved in the formation of an organ are driven by the internal genetic programs of the 

embryonic cells as well as the different cell-cell interactions taking place during the 

process of development. At the molecular level different signaling pathways play their 

roles generating complex networks of interactions. Over the last few decades, various 

studies on the signaling pathways have yielded surprising information on these pathways 

(reviewed by Pires-daSilva and Sommer, 2003). The studies on different model organisms 

have shown that a few classes of signaling pathways are sufficient to pattern a wide 

variety of cells, tissues and morphologies. How this complexity in the biological system is 

achieved by a few signaling mechanisms is the topic of intense research. Axon guidance 

is such a developmental event in which complex interactions of different signaling 
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molecules and pathways take place. Many molecules involved in the process of axon 

guidance have been identified and their mechanisms of action elucidated (Araujo and 

Tear, 2003; Guan and Rao, 2003). However, recent availability of complete genome 

sequences of different model organisms have greatly increased the repertoire of genes to 

be examined for their roles in axon guidance based on their structural features and/or 

information available through comparative genomics approaches (Hutter, 2000; 

Teichmann and Chothia, 2000). 

 

1.4 Molecular mechanisms of axon guidance 

As in all developmental biological phenomena, the guidance of axons to their targets is 

the result of the interplay of molecular factors inside and outside of the neurons. After 

differentiation of the cell into a neuron, it starts to grow its axons in the milieu of a 

complex tissue environment. The extracellular factors affecting axon guidance either are 

secreted molecules acting as ligands for specific receptors on the growing axons or are 

extracellular matrix components that interact with cell surface molecules on the axons. 

The following sections review the current information on axon guidance ligands, their 

receptors and mode of action. Table 1-1 briefly summarizes the known axon guidance 

molecules and their guidance functions identified in different model organisms with their 

mechanisms of action in the guidance of different types of axons. Figure 1-2 shows the 

domain structures of some axon guidance ligands and their receptors. Most of the axon 

guidance molecules are made of a small number of conserved peptide domains and these 

domains play important roles in the protein-protein interaction properties of these 

molecules (Dickson, 2002). 

 

1.4.1 Netrin signaling 

Netrins were the first group of axon guidance molecules to be found in both invertebrate 

and vertebrate nervous systems (Hedgecock et al., 1990; Ishii et al., 1992; Kennedy et al., 

1994; Serafini et al., 1994). Netrins are secreted proteins and they act as attractive or 

repellent guidance cues depending on the type of receptor complexes they bind that are 

present on the growth cones of axons. In C. elegans UNC-6, the prototypical netrin, was 

identified in genetic screens for uncoordinated mutants that showed defective body 

movement and later also in screens performed for axon guidance molecules (Brenner,
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Figure 1-2: Domain structure of some conserved guidance molecules (A) and their 
receptors (B) (adapted form Dickson, 2001). 
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Table 1-1: A brief description of axon guidance molecules.a 
Molecule C. elegans Drosophila Vertebrate 

 
Molecular 
Function 

Guidance 
Function 

Netrin UNC-6 Netrin A/B Netrin 1-4 
β-netrin 

Attractant, 
repellent 

VNC axons (Ce, 
Dm, vertebrates) 

Receptors UNC-5 Dunc-5 Unc5h1-4 Attraction - 
 UNC-40 Frazzled DCC, 

neogenin 
Repulsion - 

Slit SLT-1 Slit Slit1-3 Repellent Longitudinal 
axons  (Ce) 

Receptors SAX-3 Robo1-3 Robo1-4 - Retinal axons 
(zebrafish) 

Sema-
phorins 

SMP-1-3b Sema 1-2 Sema3-7, viral 
semaphorin 

Attractant, 
repellent 

Motor axons 
(Dm) 

Receptors PLX-1-2b Plexin A-B PlexinA1-4, 
B1-3, C, D 

- - 

Ephrins EFN-1-4 Ephrin EphrinA1-6, 
B1-3 

Forms 
morphogen 
Gradient  

Retinotectal 
projections 
(mouse)  

Eph VAB-1 Eph EphA1-8, B1-6 Ephrins 
Receptors 

- 

Wnts n.r.c Wnt5 Wnt4 Attractant Midline crossing 
(mouse) 

Receptors n.r.  Derailed Frizzled - - 
TGFβ UNC-129 n.r. BMP Repellent Motor axons  

(Ce) 
Receptors n.r. n.r. BMPR - - 
Insulin n.r. n.r. n.r. - - 
Receptors n.r. DInR n.r. - Photo-receptor 

axons (Dm) 
Intra-
cellular 
Proteins 

UNC-73 Trio Triob Rho-GEF, 
signaling 

Motor, 
longitudinal 
axons(Ce), 
photo-receptor 
axons (Dm) 

 UNC-34 Enabled Ena Actin binding Signaling 
 UNC-115 n.r. n.r. Actin binding Signaling 
 UNC-44 n.r. Ankyrinb Binds actin 

receptors 
Signaling 

 MAX-1 n.r. n.r. Adaptor 
protein 

Netrin repellent 
signaling (Ce) 

Extra-
cellular 
Matrix 
Proteins 
 

CLE-1 n.r. Collagen 
XV/XVIII 

Cell-matrix 
interaction 

Motor axons 
(Ce) 

 NID-1 n.r. Nidogenb Cell-matrix 
interaction 

Longitudinal 
axons (Ce) 
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Adhesion 
 

PAT-3 n.r. β-Integrin Cell-cell 
interaction 

Commissural 
axons (Ce) 

 HMR-1 Hammer-
head-1 

N-cadb Cell-cell 
interaction 

Longitudinal 
axons (Ce) 

IgCAM SYG-1 IrreC DM-GRASP Cell-cell 
interaction 

Synapse 
formation (Ce) 
RGC axons 
(chick) 

 SYG-2 n.r. n.r. Cell-cell 
interaction 

Receptor for 
SYG-1 (Ce) 

 n.r. n.r. Axonin-1 Cell-cell 
interaction 

Retinal axons 
(chick, mouse) 

 LAD-1?  n.r. NrCAM Receptor for  
Axonin-1 

- 

aSignaling pathways and the genes having homologs in all three model organisms, 
namely C. elegans (Ce), Drosophila (Dm) and vertebrates are listed.  
bHomologs present, but no function in axon guidance reported.  
cn.r.; Homologs present, not yet functionally characterized.  
 

1974; Hedgecock et al., 1990). UNC-6 is involved in controlling the direction of both 

ventrally and dorsally projecting axons. In vertebrate, netrins were biochemically 

identified as molecules promoting axon outgrowth in chick spinal cord (Kennedy et al., 

1994). The identification of netrins in invertebrates and vertebrates has established the 

paradigm of conservation of guidance cues during the evolution of multicellular 

organisms (Culotti and Merz, 1998). Netrins act through two types of transmembrane 

receptors, namely UNC-40 and UNC-5 in C. elegans and their respective homologs in 

mammals (Table 1-1). In the worm, genetic studies have shown that the UNC-40 

receptor is mainly required for ventral projections, while the UNC-5 receptor is required 

for dorsal projection (Hedgecock et al., 1990). However, in a different type of guidance 

mechanism UNC-40 and UNC-5 alone can repel the distal tip cells in the gonads of C. 

elegans (Su et al., 2000). It is also shown in mammals that an UNC-40/UNC-5 complex 

can mediate growth cone repulsion. This combinatorial association of different netrin 

receptors, receptor complexes and their cognate ligands give rise to diverse physiological 

responses. The signaling pathways downstream of the netrin receptors lead to the 

modulation of actin polymerization. In C. elegans genetic studies have shown that UNC-

34 (Enabled homolog), UNC-115 (actin binding protein), CED-10 (Rac homolog) and 

MAX-1 (adaptor protein) act downstream of netrin receptors (Colavita and Culotti, 1998; 

Huang et al., 2002; Struckhoff and Lundquist, 2003). These molecules either are 

associated with actin filaments or are intracellular components of signaling pathways 
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(Table 1-1). Besides, a netrin and its receptor have been implicated in the etiology of a 

tumor and the control of colorectal tumors by regulating apoptosis (Mazelin, 2004). 

 

1.4.2 Slit/Robo signaling 

The Slit gene was discovered in a genetic screen for genes involved in the embryonic 

patterning in Drosophila (Wieschaus et al., 1984). Slits are secreted molecules and are 

members of the epidermal growth factor (EGF) repeats protein family (Figure 1-2). It was 

thought that they are required for the development of central nervous system and 

differentiation of glial cells (Rothberg, 1988). However, later they have been implicated 

in repulsion of commissural axons away from the midline in the fly and vertebrates 

(Brose et al., 1999; Kidd et al., 1999; Wang et al., 1999). They are also involved in 

neuronal cell migration (Zhu, 1999). Slit molecules are ligands for Roundabout (Robo) 

class of cell surface receptors present on the growth cones of growing axons. They are 

involved in multiple pathways of axon guidance in retinal and commissural axons and 

neuronal migration (Table 1-1). Genetic studies in Drosophila and C. elegans have shown 

that Robo signaling is transduced by Abl tyrosine kinase to Enabled (Ena) and to 

Capulet, a homolog of adenylyl cyclase-associated protein (Guan and Rao, 2003). Some 

receptor tyrosine phosphatases are also shown to be involved in Slit/Robo signaling. 

However, the fine detail on different molecules required and mechanisms they control 

are not fully understood. In C. elegans a Slit homologue, SLT-1, was identified by a 

homology search and a deletion allele of the gene has been implicated in axon guidance 

at the midline and in dorsal-ventral and anterior-posterior directions (Hao, 2001). C. 

elegans also has a single Robo homolog called SAX-3, and SLT-1 acts through SAX-3 

mediated signaling. However, it is unclear if Slit is the only ligand for the Robo or there 

are yet other unknown ligand(s). However, several aspects of the Robo pathway in flies 

show no direct conservation in the worm. The C. elegans genome does not encode any 

protein that is similar to Commissureless (Comm), which is involved in dynamic 

regulation of Robo levels in flies (Keleman et al., 2002). But a second Comm protein 

exists in flies and has been implicated in functions at the midline, yet this protein has a 

low degree of similarity to the original Comm protein. 
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1.4.3 Semaphorin signaling 

The semaphorins are a family of secreted and membrane associated proteins. The SemaI, 

the prototypic invertebrate semaphorin, was first discovered in Drosophila as Fascisclin 

IV, a protein implicated in axon fasciculation (Kolodkin, 1992). In vertebrates 

semaphorins were identified as factors required for growth cone collapse activity 

(Kapfhammer and Raper, 1987). Sema3A/collapsin-1 was the first member of this group 

(Luo et al., 1993). Later it became clear that semaphorins are a family of conserved 

proteins involved in axon repulsion and growth cone inhibition or collapse in various 

regions. They are also present in several tissues and are implicated in cell migration and 

immune response (Pasterkamp and Kolodkin, 2003). The semaphorins bind to cell 

surface receptors called plexins (Figure 1-2). In vertebrates semaphorins also bind to the 

neuropilin receptors, which alone or in combination with plexins form receptor 

complexes. However, neuropilins do have small intracellular signaling domains of 

unknown functions. Plexins have a large conserved intracellular domain, which is 

essential for signal transduction (Pasterkamp and Kolodkin, 2003). Downstream of 

plexins are the Rac family of GTPases (Dalpe et al., 2004). Rho activation is also shown 

to be downstream of plexin-B in vertebrates (Driessens et al., 2001). In C. elegans three 

genes encoding proteins with a semaphorin domain in extracellular parts and two genes 

with plexin-like domains are known (Hutter, 2000). Recently, C. elegans plexin-1 (plx-1) 

and semaphorin-1 (smp-1) have been implicated in the conversion of cell movement 

responses from attraction to repulsion in cell migration during male tail ray positioning 

(Dalpe et al., 2004; Ikegami et al., 2004). The fact that the C. elegans genome contains only 

five genes for semaphorin signaling makes it a simple model system to study the 

interaction between different semaphorins and plexins to understand roles of these 

molecules in biological processes like axon guidance. 

 

1.4.4 Ephrin signaling 

Ephrins are membrane associated guidance molecules and have been divided into two 

classes based on their mechanism of membrane association (Kullander and Klein, 2002). 

A-class ephrins are tethered to the membrane by a GPI anchor; whereas B-class ephrins 

are type I transmembrane molecules with intracellular domains. The receptors for the 

ephrins are the Eph transmembrane proteins with an intracellular tyrosine kinase domain 

(Figure 1-2). Eph were originally defined as receptors for the ephrins A and B (Table 1-1). 
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However, the signaling mechanisms are complex and Eph can also act as ligands for the 

ephrins. The first ephrin was found in mammalian system by biochemical approaches 

(Cheng and Flanagan, 1994). It was later discovered that the ephrin is ligand for a 

receptor tyrosine kinase and the interaction between the ephrin and the receptor is 

important for the guidance of retinal axons during formation of retinotectal maps in 

vertebrates (Drescher et al., 1995). In the developing nervous system ephrins cause 

collapse and repulsion of growth cones, while in the adult nervous system they have been 

implicated in synaptic plasticity (reviewed by Murai and Pasquale, 2004). The signal 

transduction pathways used by the Eph receptors share some commonality with the 

growth-factor receptors, but also have some unique features. Upon ligand binding the 

Eph receptors dimerise causing self-phosphorylation as well as phosphorylation of the 

downstream molecules initiating different signaling cascades. Various intracellular 

soluble signaling molecules have been shown to interact with the Eph receptors. 

However, it is likely that the Ephrin and Eph signaling system leads to changes in actin 

cytoskeletal organization (Yu et al., 2001). One of the most striking features of the ephrin-

Eph signaling is the reverse signaling mediated by intracellular domains of B-class 

ephrins. The A-class GPI anchored ephrins also mediate reverse signaling through the 

recruitment of integrins (Bruckner et al., 1997; Holland et al., 1996). These mechanisms 

have been implicated in axon or cell attraction and/or adhesion processes. In C. elegans 

four genes encode ephrin homologs, while one gene encodes for Eph receptor protein 

(Hutter, 2000). However, the ephrin-Eph system of the worm has been involved in 

epidermal morphogenesis and other developmental events, and its role in axon guidance 

is not clearly understood (Chin-Sang et al., 2002; Miller et al., 2003). 

 

1.4.5 TGFβ  signaling 

Transforming growth factor (TGFβ) super family members are also implicated in axon 

guidance in vertebrates and invertebrates (Hogan, 1996). BMPs (bone morphogenic 

proteins) are members of this family, and they have been involved in the determination of 

dorsal-ventral patterning of the commissural axons (Augsburger et al., 1999; Bagri et al., 

2003). BMPs are secreted from the roof plate of the vertebrate neural tube, and form a 

gradient that is important for the determination of the fate of dorsal commissural 

neurons. They have been shown to repel commissural axons, suggesting that they might 

initiate the ventral projection of commissural axons. The UNC-129 protein is a TGFβ 
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family member, and is required for guidance of motor axons along dorsal-ventral axis in 

C. elegans (Colavita et al., 1998). Its role in repulsion of these axons is similar to that of 

UNC-6/netrin. However, the receptor for UNC-129 is not known in C. elegans and it is 

likely that the signaling pathway that mediates UNC-129 output uses a non-canonical 

mechanism, since mutants of the only canonical TGFβ receptor in C. elegans, DAF-4, 

have no axon guidance defects (Estevez et al., 1993). 

 

1.4.6 Wnt signaling 

Wnts are members of a secreted glycoprotein family and are best characterized for their 

roles in embryonic patterning (Moon et al., 2002). The Wnt pathways are used multiple 

times and at different places to influence very diverse types of cell fates. There are 

multiple homologs of Wnt molecules and their receptors in different model organisms. 

For example, the C. elegans genome contains five Wnt molecules, Drosophila four and the 

human genome has at least 17 molecules (Ruvkun and Hobert, 1998). The Wnt signal is 

transduced by a cytoplasmic multiprotein complex consisting of Dishevelled (Dsh), 

glycogen synthase kinase 3 (GSK-3), a scaffolding protein APC, axin and β-catenin 

(Korswagen, 2002). In the absence of Wnt signaling the complex targets β-catenin for 

proteasomal degradation, whereas in the presence of Wnt signaling β-catenin is stabilized 

and enters the nucleus where it binds to transcription factors leading to gene expression. 

Genetic studies in model systems have shown that Wnt signaling acts in a variety of 

biological processes from embryonic development to the development of the nervous 

system. They have been shown to control the anterior-posterior patterning during 

embryogenesis in mouse and other organisms (Lyuksyutova et al., 2003). Recently, 

studies in Drosophila and mouse have also shown that Wnt signaling is necessary for 

guidance of commissural axons along the anterior-posterior axis (Table 1-1) 

(Lyuksyutova et al., 2003; Yoshikawa et al., 2003). In C. elegans the Wnt pathway has 

been extensively studied with respect to embryonic development and migrations of a 

group of neurons in postembryonic development. However, the role of Wnt signaling 

pathway in axon guidance in C. elegans has not yet been explored.  

 

1.5 Extracellular matrix molecules 

The extracellular matrix (ECM) or basement membranes form the immediate external 

environment of the neurons and their growing axons. The extracellular matrix in C. 
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elegans is mainly made up of proteoglycans, laminins, collagens and associated proteins 

and their sequences have been highly conserved in mammalian ECM molecules 

(Kramer, 1997). These proteins make complex yet dynamic sheets and are shown to be 

necessary for many developmental events. In C. elegans, ECM proteins like laminin 

family member UNC-6/netrin (Serafini et al., 1994), collagen family member CLE-

1/collagen XVIII (Ackley et al., 2001), NID-1/nidogen (Kim and Wadsworth, 2000), and 

KAL-1/Kallmann syndrome protein (Bulow et al., 2002; Rugarli et al., 2002) have been 

identified as axon guidance molecules. However, except for UNC-6, the molecular 

mechanisms of action of other ECM proteins are not known as their receptors or 

interaction partners have not been identified. Besides many extracellular matrix factors 

are important in the embryonic development of the organism and mutations in these 

proteins are lethal at the early stages of development limiting the characterization of 

developmental contribution of these molecules in the nervous system.  

On the other hand, receptors for extracellular matrix components that have been 

implicated in axon guidance are the integrins. Integrins couple assembly of various 

extracellular matrix and cytoskeletal polymers (Howe et al., 1998). In C. elegans, there are 

two α-chain and two β-chain integrins, of these INA-1/α-integrin and PAT-3/β-integrin 

interact with each other and are shown to be involved in axon migrations (Baum and 

Garriga, 1997; Poinat et al., 2002). In the case of PAT-3 the intracellular interaction 

pattern has also been identified (Poinat et al., 2002). Several other extracellular matrix 

molecules of C. elegans are also conserved in other organisms; however, it is not known if 

some of them are involved in axon guidance mechanisms. For example, several members 

of metalloproteases families like adamalysin, astacin, matrixin and neprilysin are 

implicated in ECM interactions or neuropeptide processing. Recently, a C. elegans 

homolog of a disintegrin and metalloprotease (ADAM) protein, UNC-71, has been 

implicated in regulation of motor axon guidance (Huang et al., 2003). It will be important 

to find out  if these molecules are involved in axon guidance in C. elegans. 

 

1.6 Cell adhesion molecules 

Cell adhesion molecules (CAMs) play important roles during various developmental 

processes such as cell adhesion, cell migration, differentiation and axon guidance. They 

are classified based on their amino-terminal extracellular domains into different super 

families. Of all the CAMs, the immunoglobulin-like (Ig) domain superfamily forms an 
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important class and many IgCAMs are involved in axon guidance in different organisms. 

In C. elegans IgCAMs form a superfamily of ~26 predicted genes encoding 

transmembrane or GPI-anchored proteins with extracellular Ig modules (Hutter, 2000). 

Besides Ig domains a few IgCAMs also have one or more fibronectin, thrombosponsdin 

or epidermal growth factor-like domains. Some IgCAMs are secreted molecules and the 

C. elegans genome has at least six genes encoding for secreted IgCAMs. The intracellular 

domains of transmembrane IgCAMs have characteristic enzymatic and binding functions 

and some of the IgCAMs have intracellular protein tyrosine kinase or phosphatase 

domains. The IgCAMs are principal mediators of cell recognition and adhesion in the 

developing nervous system and other tissues (Walsh and Doherty, 1997). They act 

combinatorially among themselves and with receptors from other cell surface molecule 

families to pattern cell movements and attachments. Many of these CAMs act as 

receptors in signaling pathways and some of them have been described previously (Table 

1-1). 

In C. elegans many members of IgCAM family are involved in axon guidance, prominent 

among them are transmembrane factors like SAX-3/Robo (Zallen et al., 1998), UNC-

40/DCC (Chan et al., 1996), UNC-5 (Leung-Hagesteijn et al., 1992), CLR-1 (Chang et al., 

2004), and LAD-1/SAX-7/L1CAM (Zallen et al., 1999), SYG-1/irreC (Shen and 

Bargmann, 2003) and its ligand SYG-2/nephrin (Shen et al., 2004, Table 1-1). Some of 

these molecules have provided paradigms for molecular mechanisms of axon guidance, 

for example, SAX-3, UNC-40 and UNC-5 receptors (Figure 1-2). These important 

functions of IgCAMs point towards the need for the identification of the involvement of 

other IgCAM molecules in the process of axon guidance that might shed more light on 

the development of the nervous system.  

LrrCAMs form the second super family of CAMs that are distinguished from others 

adhesion molecules by the presence of LR-repeat domains in their structures (Hutter, 

2000). One member of this family, SLT-1/Slit, has been implicated in axon guidance and 

it is a ligand for SAX-3/Robo receptor (Figure 1-2; Hao et al., 2001). Cadherins are also 

members of the CAMs group and one of them, HMR-1, is shown to have a function in 

axon fasciculation in C. elegans (Broadbent and Pettitt, 2002). Apart from these molecules 

many other cell adhesion molecules have interesting structures with multiple protein-

protein interaction domains (Cox et al., 2004). However, their functions in developmental 

events like axon guidance are not known.  
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The functional importance of CAMs to the development of the nervous system and axon 

guidance is well studied in vertebrate models due to the ease of experimental 

manipulation of these systems in vitro. In vertebrates CAMs have more homologs and 

due to the complexity of vertebrate nervous system they are involved in different aspects 

of development. With regard to axon guidance mechanisms vertebrates like mouse, 

zebrafish and chick systems have been used extensively. Several axon guidance 

molecules, identified in C. elegans and Drosophila, have been studied in vertebrate models 

either by gene knockouts (mouse), identification of mutants (zebrafish) or in vivo and in 

vitro biochemical studies (mouse, chick). In mouse system, neural CAMs like L1CAM, 

axonin-1, NCAM, Robos and FGFRs, have been widely studied to define their roles in 

axon guidance mechanisms in the spinal cord and retinotectal axon targeting (reviewed 

by Kenwrick and Doherty, 1998). Vertebrates have proved to be excellent systems for 

identification of downstream effectors of the signaling pathways and their links to 

cytoskeletal machinery that takes part in axonal growth cone movements (reviewed by 

Kiryushko, 2004). However, mutational approaches in higher organisms are laborious 

and technically challenging due to the limitations of current techniques to identify point 

mutations related to an observed phenotype. Here, the invertebrate models like C. elegans 

provide many advantages due to simplicity of genetics and the reduced number of 

homologs in the genome leading to ease in epistatic studies of the genes.  

 

1.7 Intracellular signaling pathways and axon guidance  

Research in the past decades has yielded important advances in identification of the 

molecules that are involved in an array of signaling pathways. However, unexpectedly 

genetic and biochemical studies have revealed that only a few classes of signaling 

pathways are sufficient to control a wide variety of biological processes. In the case of 

neuronal responses to guidance cues, many molecular components of signaling pathways 

have been identified and their specific role are defined (reviewed by Guan and Rao, 

2003). It is increasingly understood that the interplay of different signaling pathways and 

biological reactions are necessary for the complex developmental events like axon 

guidance. For example, recent work by Yu et al. has shown the involvement of the UNC-

40/DCC receptor in the SAX-3/Robo pathway leading to identification of a crosstalk 

between these molecules in C. elegans (Yu et al., 2001). They have demonstrated that 

SAX-3 signaling involves UNC-34 and UNC-40. Here the role of UNC-40 is UNC-
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6/netrin independent and it acts as a repulsive receptor in SAX-3 pathway. This study 

gives information on the combinatorial logic of axon guidance mechanisms wherein 

different components of two pathways interact with each other generating very different 

responses to the same cues. In yet another example, a receptor tyrosine phosphatase 

CLR-1, which is a negative regulator of FGF signaling in C. elegans (Kokel et al., 1998), is 

shown to be involved in inhibition of UNC-6/netrin mediated axon attraction in some 

neurons (Chang et al., 2004). These examples underline the need to find roles of already 

known genes in guidance mechanisms as well as identification of new molecules 

involved in the interplay of different signaling pathways. In C. elegans major signaling 

pathways involved in different biological processes have been identified (Bargmann, 

1998; Ruvkun and Hobert, 1998) and many of the genes involved in these pathways have 

mutants available. This should facilitate identification of novel factors involved in 

processes like axon guidance provided that some prior information is available to test a 

large number of genes identified by genome sequencing projects. In the case of interplay 

of signaling pathway in axon guidance, C. elegans provides a powerful genetic system due 

to the availability of the genome sequence and mutations in a variety of genes.  

However, in addition to the previously mentioned cell surface molecules and their 

ligands, the process of axon guidance is also dependent on a large number of intracellular 

signaling molecules and their crosstalk in different signaling pathways (Guan and Rao, 

2003). The intracellular signaling molecules act differently in diverse cellular processes 

and their functionality changes depending on cell or tissue type in which they are 

expressed. They also take part in diverse reactions; for example, some molecules are 

components of different axon guidance signaling pathways, while others are components 

of cellular cytoskeletal machinery. Still other molecules regulate the expression and 

transportation of axon guidance molecules. Some of the well-studied intracellular 

molecules involved in axon guidance in C. elegans are UNC-73 (Steven et al., 1998), 

UNC-34 (Yu et al., 2001), UNC-44 (Otsuka et al., 1995), UNC-115 (Gitai et al., 2003) and 

MAX-1 (Huang et al., 2002) (for details see Table 1-1).  

The unc-73 gene encodes two differentially spliced multidomain proteins. These proteins 

contain a single Dbl homology domain and are involved in axon guidance. Dbl domains 

have guanine nucleotide exchange activity and like other Rho family members may have 

a role in regulation of the actin cytoskeleton (Steven et al., 1998). The other domains of 

UNC-73 proteins may help in formation of protein complexes capable of reorganizing 
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the actin cytoskeleton on receiving extracellular signals. The other intracellular proteins 

like UNC-34, UNC-44 and UNC-115 have actin binding domains and they may form a 

part of actin organization mechanisms. The max-1 gene encodes a novel adaptor protein 

(MAX-1) required in UNC-6/netrin mediated axon repulsion function (Huang et al., 

2002). Although a few more intracellular guidance molecules are known, our 

understanding of intracellular mechanisms remains fragmented. One obvious reason for 

this is the involvement of intracellular factors in multiple pathways and mutations in 

these molecules lead to severe phenotypes or lethality. Nevertheless, identification of 

roles of intracellular factors is necessary to define the functioning and regulation of 

signaling pathways. 

The vertebrate model systems and cell culture experiments have provided a detailed 

insight into the complex events of intracellular signaling pathways and crosstalk among 

different signaling pathways (reviewed by Huber et al., 2003), especially the cytoskeletal 

dynamics that are regulated during the process of axon guidance in the growth cone 

(reviewed by Dent et al., 2003).  From these studies common themes on the guidance 

cues, their receptors, intracellular signaling intermediates and their link to cytoskeletal 

dynamics and subsequent alterations in neuronal growth cone behavior have emerged 

and they have supplemented the genetic approaches used in models like C. elegans and 

Drosophila. However, cell cultures and vertebrate models are not suitable for large-scale 

genetic screens due to the complexity or experimental limitations of those systems. 

Therefore, in this work we have tried to address the problem of identification of genes 

required for axon guidance in a genetically tractable model organism C. elegans. The 

nematode C. elegans due to its biological and experimental advantages over other models 

is very attractive system for genetically addressing a biological problem like axon 

guidance towards their targets in a complex tissue environment in vivo. 

 

1.8 The model organism Caenorhabditis elegans 

C. elegans is a small free-living soil nematode worm and can be grown either in Petri 

plates on lawns of bacteria or in liquid cultures if large amounts are required. The life 

cycle of worm has four postembryonic larval stages, namely L1-L4. It has a four and half-

day generation time at 20°C and the strains can be stored as frozen stocks (Riddle et al., 

1997). C. elegans is a self-fertilizing hermaphrodite, which produces both sperm and 

oocytes. Males are produced at a low frequency and can be mated with hermaphrodites 



Introduction 

 

 18 

 

 

 

 

 

 

 

 
Figure 1-3: The anatomical features of the C. elegans adult hermaphrodite (top) and the 
male animal (bottom) (adapted from Wood, 1997). 
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to produce cross progeny (Figure 1-3). A single hermaphrodite can produce up to 300 

progeny. The worm embryo develops through a series of invariant cell divisions that 

occur during the first 8 h of embryonic development at 20°C after the fertilization of 

oocyte. After 18 h of development in the egg, the larva hatches from the eggshell. The 

animal then passes through four larval stages (L1-L4) that are separated by molting, 

during which the animal sheds its old cuticle. In food limiting conditions L2 larva can 

adapt an alternative developmental program called dauer stage. In dauer stage the animal 

can survive for months under unfavorable conditions and can develop into L4 stage 

when favorable conditions are restored. The hermaphrodite nature of the worm is very 

useful while performing large-scale genetic screens as self-fertilization omits requirement 

of males and simplifies the cloning of animals. It is also helpful while maintaining the 

mutant strains that are compromised for sexual mating. However, the presence of males 

allows crossing between mutant strains and is useful for mapping of the mutations. The 

genetics of C. elegans is well established and the complete genome is sequenced, greatly 

facilitating the genetic characterization of biological processes in this simple organism. 

The genome of C. elegans is 97 Mb in size and contains ~19000 genes and some 50% 

genes of the worm have homologs in mammals (C. elegans Sequencing Consortium, 

1998). One other important feature of C. elegans biology is its invariant cell lineage, which 

is of tremendous help while analyzing the biological processes at the resolution of single 

cells (Sulston and Horvitz, 1977; Sulston et al., 1983). These advantages make C. elegans 

an excellent system in which to investigate the genetics of basic biological processes such 

as the development of the nervous system. 

 

1.8.1 General anatomy 

All nematodes are built on the same basic body plan, which is made of two concentric 

tubes separated by a fluid-filled space called pseudocoelom. The outer tube is covered by 

the collagenous, extracellular cuticle, which is secreted by the underlying hypodermis. C. 

elegans moves on surfaces by contraction of the two subventral muscle strips with 

relaxation of the subdorsal strips, and vice versa, which generates sinusoidal movement 

in the dorsal-ventral plane. On the agar plate, animals move forward or backward on 

either lateral side and are confined to the surface by the surface tension of water in the 

medium. The nervous system, gonad, coelomocytes, and excretory system are the other 

components of the outer tube. The inner tube is composed of the muscular pharynx with 
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Figure 1-4: Structure of the nervous system of C. elegans L1 larva (adapted from Antebi, 
1997). 
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its own autonomous nervous system and the intestine. The conserved nematode anatomy 

is generated by conserved developmental patterns. The early blastomeres, called founder 

cells, are generated by a series of asymmetric, asynchronous cleavages in which the 

germline precursor cell sequentially gives rise to the four founder cells of somatic lineages 

and one cell of germline lineage (reviewed by Schnabel and Priess, 1997). The embryonic 

lineages generate 671 cells, but 113 of these undergo apoptosis (Sulston and Horvitz, 

1977). By the time larva hatches from the egg it has 558 cells. Some 10% of these cells are 

somatic blast cells that divide further to generate additional somatic tissues in the adult 

animal.  

The complete anatomy of the worm is known at electron microscopic resolution (White 

et al., 1986). In addition to the complete wiring diagram of the nervous system, 

knowledge of neurophysiological function has been gained from neurotransmitter 

analysis and electrophysiological studies on the nervous system of the worm (Strange, 

2003). Besides a large body of data on the genetic mapping, cloning, mutants and the 

sequence of entire genome provide easy and powerful tools to characterize new genes in 

this organism (WormBase, www.wormbase.org). The transparency of the worm has 

greatly increased the suitability of this model system for analysis of biological processes 

in live animals. This has also facilitated the expression of different fluorescent proteins 

and their variants for easy labeling of various cells and tissues in the intact animal 

(Chalfie et al., 1994, Hutter, 2004). For example, the dynamic biological processes like 

axonal growth cone migration through the complex tissue environment can be studied 

easily due to the transparent nature of C. elegans (Knobel et al., 1999). 

 

1.8.2 Anatomy of the nervous system 

The nervous system of C. elegans is one of the simplest and elaborately described nervous 

systems of all the metazoans. The C. elegans nervous system consists of 302 neurons that 

are each uniquely recognizable in different individuals. All the neurons and the circuits 

they form have been reconstructed from serial section electron microscopy (White et al., 

1986). These electron microscopic studies have defined the morphology of each neuron, 

its chemical synapses, and its gap junctions. The basic positions and morphologies of 

some of the neurons are shown in Figure 1-4. In C. elegans there are 118 classes of 

neurons with 1 to 13 members in each class. Sensory and interneurons are mostly 

bilaterally symmetric pairs, with homologs on the left and the right side of the animal. 
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About half of the neurons, including most sensory neurons, are found in the head 

surrounding the posterior part of the pharynx forming the brain of the worm. The nerve 

ring, a part of the brain, is formed of a bundle of axons of sensory neurons and 

interneurons. The somas of most interneurons are located in the head or tail ganglia. 

Some interneurons have long axons that project from the head to the tail of the animal. 

The motor neurons are located along the ventral midline of the body. The pharyngeal 

nervous system contains 20 neurons and is connected to the somatic nervous system with 

a single pair of interneurons. The entire nervous system has a total of 5000 chemical 

synapses, 700 gap junctions, and 2000 neuromuscular junctions (Durbin, 1987). Each 

neuron only synapses onto about 15% of the neurons it contacts, and it can have as few 

as 1 to as many as 30 synapses with other neurons (Durbin, 1987). Two thirds of the 

neurons of C. elegans (198 out of 302) are present as bilaterally symmetrical pairs of 

neurons (Hobert et al., 2002). Most of the remaining neurons including 75 ventral nerve 

cord motor neurons that are located on or very close to the ventral midline, and have no 

contralateral analogue. The connectivity of the nervous system of C. elegans is over 75% 

reproducible between different animals (Durbin, 1987). The other major advantage of the 

C. elegans nervous system is simple anatomy of the neurons as they have only 1 to 5 

neurites with distinct morphologies (White et al., 1986).  

The neurons of C. elegans have been classified in different types based on various criteria 

like the function of the neuron (namely sensory, motor or interneuron), the location in 

the body or the nature of neurotransmitter used (White et al., 1986). However, 

morphological features are standard norms for identification of neurons in C. elegans. For 

example, sensory neurons have special endings associated with openings at the cuticle of 

nose of the animal, while motor neurons have characterized neuromuscular junctions. In 

addition to the above criteria, neurons have been defined by direct analysis of their 

function with cell-killing experiments (Bargmann and Avery, 1995). A single neuron in 

the transparent animal can be killed with a laser micro-beam focused through the 

objective of a microscope, and the operated animal can subsequently be tested for 

behavioral or developmental phenotypes caused by the removal of the neuron and hence 

defining the type of the neuron (Bargmann and Horvitz, 1991). For example, the AVG 

neuron is classified as a pioneer neuron for axon guidance of some of the VNC neurons 

due to the fact that its ablation leads to defective axon guidance in the neurons that 

develop after the AVG axon outgrowth (Durbin, 1987; Hutter, 2003). 
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1.8.3 Structure of the ventral nerve cord 

Most of the C. elegans nervous system is situated in the head and is organized around a 

large pharynx. The head is rich for sensory neurons sending their sensory processes to the 

tip of the nose (Figure 1-4). The sensory neurons are of different types and their axons 

have receptors for mechano-, chemo-, osmo- and thermo-sensations. The soma of the 

sensory neurons, together with the soma of interneurons and some motor neurons are 

located between the two bulbs of the pharynx forming the brain of the worm. These cells 

send out processes that run circumferentially round the pharynx as a fiber bundle forming 

the nerve ring, which is the major region of the nervous system in the worm (White et al., 

1986). A large proportion of the processes in the ring enters and leaves on the ventral side 

forming the ventral nerve cord (VNC) of the animal (White et al., 1976; White et al., 

1983; Chalfie and White, 1988). The VNC is formed of the major longitudinal axon 

tracts and it contains the axons of the neurons situated in the brain, in the lateral and tail 

ganglia, some neurons located in lateral sides of the animal. The VNC also contains 

axons of 75 motor neurons located very close to the ventral midline becoming a major 

part of the cord. These neurons innervate the body wall muscles on both the ventral and 

dorsal sides. All the motor neurons send their axons longitudinally as well as 

circumferentially (Figure 1-4). The circumferential axons are also known as 

commissures.  

The C. elegans VNC is similar to the ventral or spinal nerve cord of vertebrate or insect 

systems, which consists of two axon bundles separated by a ventral midline structure 

called hypodermal ridge. The motor neuron somas are located very close to the ventral 

midline. The left and right fascicles of the VNC are asymmetric and most of the axons 

derived from the head or tail neurons are located on the right side of the VNC (Figure 1-

5). The right axon tract is the major part of the VNC and some 50 axons passing through 

the VNC are bundled in this tract. On the other hand, the left VNC tract contains axons 

of only four neurons and is many times thinner than the right tract. The axons running 

through these tracts do not cross the tracts and are always fasciculate with each other in 

their own tracts, except at the beginning and end of the VNC where some axons cross the 

tracts and fasciculate in the opposite tract with respect to their soma positions. The VNC 

of C. elegans forms the major longitudinal nerve circuit along anterior-posterior axis of the 

animal (White et al., 1976).  
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Figure 1-5: The Structure of the ventral nerve cord (VNC) of C. elegans. The right side of 
the VNC contains most of the axon. The left side contains four axons. All the axons in 
both tracts are tightly fasciculated and they do not cross the tracts (adapted from Hobert, 
2002). 
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The motor neurons situated in the VNC are classified into six types based on their 

functions. The motor neurons VA, VB and VD innervate the ventral body muscles, while 

DA, DB and DD innervate the dorsal body muscles. The D-type (DD/VD) motor 

neurons are GABAergic inhibitory neurons, while all others are cholinergic excitatory 

neurons. Of the six types, DD, VD, DA and DB send their axons to dorsal cord and have 

commissures that run around the animals to reach dorsal nerve cord (Chalfie and White, 

1988). All commissures of DD/VD motor neurons reach the dorsal cord from the right 

side of animal, while the commissures of DA/DB reach the dorsal side alternatively from 

left and right side of the animal forming the circumferential nerve circuits in the worm 

(Figure 1-4). Upon reaching the dorsal midline these axons form a tight fascicle of the 

dorsal nerve cord (Figure 1-4). Taken together, the neuronal circuits of C. elegans are 

stereotypic, simple and reproducible in different animals. This simplicity of the nervous 

system of C. elegans makes it a very good system to study the genetics of axon guidance 

mechanisms.  

 

1.9 Solving the axon guidance problem  

Typically the genetic analysis of biological processes in model organisms, for example in 

C. elegans, has been performed by forward genetic approaches (Herman, 1988; Jorgensen 

and Mango, 2002). The advantage of this is that the mutants are identified in a biological 

process by their interesting phenotypes (Chalfie and Jorgensen, 1998). Then the mutants 

are further studied to identify the underlying genes responsible for the observed 

phenotypes. The nematode C. elegans was chosen for forward genetic studies due to the 

fact that its biological traits are very well suited for the phenotype to genotype based 

genetic approach. C. elegans was introduced by Sydney Brenner primarily to study the 

embryogenesis and development of the nervous system. Brenner carried out his early 

chemical mutagenesis screens in C. elegans in 1967 and identified ~100 genes with 

interesting visible behavioral and morphological phenotypes such as Unc (uncoordinated 

movement), Dpy (dumpy body shape), Rol (roller movement), etc (Brenner, 1974). Of all 

the mutations identified by Brenner, the mutant class Unc proved to be very important to 

identify the genes involved in the nervous system development as many unc genes 

function in the neurons. Later several chemical mutagenesis screens were performed to 

identify genes giving phenotypes in different parts of the nervous system of C. elegans 

(Hedgecock et al., 1990; McIntire et al., 1992; Forrester and Garriga, 1997; reviewed by 
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Antebi et al., 1997). Those screens were based on visible phenotypes like Unc movement 

or in some cases drugs affecting the nervous system functions were used to identify the 

drug resistant mutants (Brenner, 1974; Lewis et al., 1980). On availability of green 

fluorescent protein (GFP) to tag the proteins present in different tissues in C. elegans 

(Chalfie et al., 1994), GFP transgenic worms have been widely used to identify defects in 

axon guidance of a variety of different neurons in C. elegans (Zallen et al., 1999, Wacker et 

al., 2003). To date ~30 genes with an axon guidance phenotype have been characterized 

in C. elegans by the forward genetic approaches (Table 1-1). Many of these genes have 

been conserved across phyla and they have provided much insight into the axon 

guidance mechanisms in C. elegans as well as in other organisms. However, assigning the 

mutations isolated by forward genetics to the genes that give rise to phenotypes is 

cumbersome and lengthy process, which makes the large-scale genetic analysis of a 

biological process by this approach impractical. Secondly, forward genetic screens have 

repetitively identified mutations in already known genes. 

Recently, upon availability of the complete sequence of the C. elegans genome large-scale 

reserve genetic approaches have been employed to identify genes involved in different 

biological processes (Jorgensen and Mango, 2002). In reverse genetic screens, the 

putative or known genes are studied for their roles in a biological process of interest by 

knocking out the function of the genes. The advantages of this strategy are that the nature 

of gene is known and by removing the activity of the gene product the possible function 

of the gene in a biological process can be deduced. They are also faster than the forward 

genetic screens and one also gets a choice of selecting a group of genes to identify their 

involvement in a biological process. After availability of the genome sequence of C. 

elegans a gene knockout approach based on chemical mutagenesis and identification of 

deletions in genes was developed for large-scale applications, but genome-wide 

application of this strategy is also limited (Jansen et al., 1997). However, the genetic 

analysis of C. elegans and many other model organisms have been dramatically changed 

after discovery of the double strand RNA-mediated interference (RNAi) of gene 

expression in C. elegans (Fire et al., 1998). 

 

1.10 RNA interference and reverse genetic screens  

The RNA interference is a biological phenomenon in which a cell-autonomous 

mechanism is activated in the presence of exogenously introduced or endogenously 
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produced dsRNA in the cell leading to degradation of the cognate mRNA (Figure 1-6). 

The exogenous dsRNA induces homology-dependent degradation of cognate mRNA 

leading to knockdown of the gene product by a conserved mechanism (reviewed by 

Hannon, 2002). The RNAi phenomenon was first discovered in C. elegans (Fire et al., 

1998) and subsequently shown to be present in many other organisms (Hannon, 2002). 

RNAi works by processing of dsRNA introduced in the cell by a complex of proteins 

called RNA induced silencing complex (RISC). The RISC complex consists of a dsRNA-

specific RNase (DICER) along with other factors that cut the dsRNA into ~21 

nucleotide dsRNA fragments called small interfering RNA (siRNA) molecules. These 

siRNA molecules are then primed to the cognate mRNA leading to degradation of 

mRNA by RISC. The RNAi technology has been adapted for different biological systems 

and has profoundly affected the way genetic screens are performed in post-genomic large-

scale screens (Montgomery, 2004). In C. elegans RNAi is a particularly important 

technology due to the fact that it is very efficient in the worms and the delivery of dsRNA 

for knocking down of a gene function is easy compared to the other biological systems. 

In C. elegans RNAi is performed by different methods, for example, by injecting dsRNA 

(Fire, 1998) or by expressing dsRNA from a transgene in the worm (Tavernarakis et al., 

2000) or by feeding worms with bacteria expressing dsRNA (Timmons et al., 2001). The 

later technique of feeding RNAi in C. elegans is particularly interesting due to the fact that 

it is simple, easily repeatable and scaleable for large-scale reverse genetic studies (Fraser 

et al., 2000). However, RNAi shows variability and it depends on the nature of the genes 

under consideration. It also shows tissue specific variation, for example, the nervous 

system of C. elegans is refractory to the feeding RNAi technique (Tavernarakis et al., 2000; 

Kennedy et al., 2004). Nonetheless, RNAi is a very attractive method for reverse genetic 

screens in model organisms as well as in organisms in which genetic studies are difficult 

to perform. In C. elegans biology RNAi has become a standard reserve genetic approach 

for identification of genes in various biological events. To date several reverse genetic 

RNAi screens have been performed to identify genes involved in embryonic development 

(Zipperlen et al., 2001), fat regulation (Ashrafi et al., 2003), aging and longevity (Lee et al., 

2003) and more recently to understand cell division (Sonnichsen et al., 2005) in C. 

elegans. 
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Figure 1-6: The mechanism of gene silencing by RNA interference in C. elegans. In the 
first step, RNase dcr-1 acts upon the dsRNAs either introduced or produced in the cell by 
cleaving them into siRNAs. In next steps, siRNAs along with associated factors form the 
RISC complex that targets cognate mRNA for degradation by endonuclease(s) (green 
arrow). The RISC complex can also incorporate some of the degraded product of mRNA 
for a new round of RNAi cycle (blue arrows). The specificity of RISC complex is 
provided by the siRNAs that prime the cognate mRNA. siRNAs can also work as RNA-
primers for RdRP-mediated dsRNAs generation from cognate mRNA, which are then 
subjected to a new amplifying around of RNAi cycle (red arrows). 
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1.11 Purpose of this work 

Although several genes are known in C. elegans that are involved in axon guidance in 

various neurons (Table 1-1), they do not describe the complexity of neuronal networks 

observed in the nervous system of the worm. The goal of this work was to find out the 

missing and new components of the molecular machinery of axon guidance in a simple 

model organism. To this end, an RNAi-mediated reserve genetic screen was initiated to 

identify genes involved in axon guidance required in a subset of motor and interneurons 

of C. elegans. However, it has been previously reported that the neurons of C. elegans are 

refractory to the feeding or systemic RNAi technique (Tavernarakis et al., 2000; 

Timmons et al., 2001; Kennedy et al., 2004). Therefore, we first had to solve the problem 

of inefficiency of systemic RNAi in the nervous system of C. elegans by a forward genetic 

screen to identify mutants of C. elegans that are efficient for RNAi in the nervous system. 

One of the RNAi efficient mutants was then used as a screening strain in a transgenic 

background for RNAi-mediated screening of genes located on chromosome I of the 

worm for novel axon guidance genes. 
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2 RESULTS 

 

2.1 Overview of the work 

In this study, we have performed a reserve genetic screen to identify genes involved in 

axon guidance mechanisms in C. elegans. Recently, the RNA interference (RNAi) 

phenomenon has been used in several genome-wide screens in C. elegans to identify genes 

involved in various biological processes like embryonic development (Zipperlen et al., 

2001), fat regulation (Ashrafi et al., 2003) and aging and longevity (Lee et al., 2003). All 

these screens have used the feeding method of dsRNA delivery to the cells of living 

animals to study the effect of down regulation of the targeted gene product on the 

development and behavior of the animals. However, the nervous system of C. elegans has 

not been subject to any feeding RNAi-mediated genetic screen, as the neurons of the 

worm are refractory to the uptake of the systemically delivered dsRNA molecules 

(Tavernarakis et al., 2000; Timmons et al., 2001; Kamath et al., 2003).  

To overcome the problem of lack of efficiency of the feeding RNAi in the nervous 

system, and to use the RNAi mechanism for genetic screening in C. elegans, we have 

performed this work in two stages. In the first stage, we have taken advantage of the 

simple genetics in C. elegans to do a chemical mutagenesis screen to isolate mutants of C. 

elegans that showed robust suppression of gene expression in the nervous system of the 

worm, when dsRNA molecules were delivered by the feeding method. The mutants we 

have isolated for feeding RNAi-mediated gene knockdown in the nervous system of C. 

elegans define a class of genes that are recently identified as RNAi supersensitive genes, as 

some of the phenotypes shown by our mutants are similar to the previously identified 

RNAi hypersensitive mutants (Simmer et al., 2003; Kennedy et al., 2004). These 

supersensitive mutants are useful tools for the identification of genes involved in a 

biological process in organs like the nervous system, which are less sensitive to the 

feeding RNAi-mediated gene knockdown process. 

In the second stage of this work, we have used one of the mutants of C. elegans that 

showed marked increase in the efficiency of RNAi in the nervous system as a 

supersensitive screening strain for searching the genes located on chromosome I for axon 

guidance phenotypes. We used the supersensitive mutant in combination with a 

fluorescent transgene that labels the major neuronal circuits formed by interneurons and 

motor neurons of C. elegans by expressing a fluorescent protein in the axons. The major 
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aim of this work was to take advantage of the efficiency of RNAi-mediated rapid genetic 

screens in combination with the supersensitive mutant that allows feeding RNA 

interference in the nervous system of C. elegans, to identify genes involved in axon 

guidance.  

 

2.2 Feeding RNAi in the nervous system of C. elegans 

To access the efficiency of RNAi in the nervous system we performed feeding RNAi 

experiments for the loss of GFP fluorescence in neuronal and non-neuronal cells in C. 

elegans. We started with comparative experiments where the feeding RNAi efficiency in 

the nervous system was compared to that of the muscle cells. It has been reported that the 

non-neuronal cells of C. elegans like the muscle cells are more sensitive to the feeding 

RNAi–mediated gene knockdown compared to the neurons of the worm (Winston et al., 

2002). Moreover, different feeding RNAi protocols have given varying results for RNAi 

in the nervous system due to the sensitivity of RNAi to experimental conditions like the 

temperature and induction time used for feeding bacteria to produce dsRNAs prior to 

feeding RNAi in the worm (Kamath et al., 2000).  

To test the feeding RNAi efficiency in the nervous system in our feeding RNAi 

experimental setup (for details see Materials and Methods), we compared the feeding 

RNAi efficiency in muscle cells and neurons of C. elegans. To this end, we used two 

worm strains: VH288 (him-4::gfp) expresses GFP under the control of the him-4 promoter 

only in the body wall muscle cells but not in the neurons (Vogel and Hedgecock, 2001), 

and VH41 (unc-119::gfp) expresses GFP under the control of the unc-119 promoter in all 

the neurons as well as some head muscle cells in C. elegans (Maduro and Pilgrim, 1995; 

Table 2-1). It has been previously reported that the muscle cells of C. elegans are strongly 

sensitive to the RNAi-mediated gene knockdown compared to the neurons (Timmons et 

al., 2001). When VH288 animals were fed bacteria expressing GFP dsRNA, more than 

95% of the treated animals showed loss of GFP in all the labeled muscle cells within 24 h 

of treatment compared to the control animals fed on normal bacterial food (Table 2-1). 

However, in the case of VH41 animals the same treatment only eliminated the expression 

of GFP in the head muscle cells without any effect on the expression of GFP in the 

neurons or their axons that are also refractory to the treatment (Figure 2-1, Table 2-1). 

The suppression of GFP expression in the muscle cells was rapid and reversible. Treating 

the VH41 worms for longer period of time did not show any change in the expression 
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Figure 2-1: Inefficient RNAi in the nervous system of C. elegans. A) VH41 animals fed with 
the control bacteria do not show any reduction in GFP fluorescence in head muscle cells 
(asterisks) or neurons and the nerve ring (ne). B) After feeding VH41 animals with the 
bacteria producing GFP dsRNA show marked reduction of GFP fluorescence only in head 
muscle cells (asterisks) but not in neurons and the nerve ring (ne). Scale bar, 20 µM. 
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Table 2-1: Effect of RNAi on GFP fluorescence in muscle cells and neurons of  
C. elegans (n > 100). 
 

% Animals 
without GFP in Strain Genotype 

GFP expressing 
cells 

Feeding vector 
Muscle cells Neurons 

VH288 him-4::gfp Body wall muscle cells Controla 0 - 
VH288 him-4::gfp ″ GFP dsRNA >95b - 

VH41 unc-119::gfp All neurons and 
head muscle cells 

Control 0 0 

VH41 unc-119::gfp ″ GFP dsRNA 95 0 

VH624 
nre-1, 
unc-119::gfp 

″ Control 0 0 

VH624 
nre-1, 
unc-119::gfp 

″ GFP dsRNA 95 ~90 
 

a  Control feeding bacteria contained the empty feeding RNAi vector L4440. 
b  About 5% animals showed incomplete RNAi as observed by fluorescence in a few    
   muscle cells in the treated animals.  

 
 

level of GFP in the nervous system. These experiments showed that RNAi is restricted to 

the non-neuronal cells in C. elegans and is prevented in neurons by unknown mechanisms. 

Based on these and previously reported observations (Tavernarakis et al., 2000), we 

concluded that the nervous system of C. elegans must have some genetic factors that 

prevent the RNAi in the neurons when dsRNA is delivered by the feeding RNAi 

protocol. We reasoned that this deficiency could be overcome by a forward genetic 

approach by the identification of mutants that show RNAi-mediated gene expression 

down regulation in the nervous system of C. elegans. 

 

2.3  Isolation of neuronal RNAi efficient mutants of C. elegans 

To address the inefficiency of the nervous system of C. elegans to the feeding RNAi 

method, we performed a forward genetic screen to isolate mutants that are efficient for 

feeding RNAi in the nervous system of the worm. We started with the worm strain VH41 

(unc-119::gfp) as a parental strain for a chemical mutagenesis screen. The integrated unc-

119::gfp transgene shows strong expression of GFP in all parts of the nervous system 

including the nerve ring, the ventral and dorsal nerve cords and axons of laterally located 

neurons in C. elegans (for details see Figures 2-1A, 2-3A-B; Maduro and Pilgrim, 1995). It 

is also expressed in non-neuronal cells like head muscle cells located to the anterior of 

pharynx (Figure 2-1A, asterisks).  
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Figure 2-2: Scheme of genetic screen to isolate neuronal RNAi efficient (nre) mutants of 
C. elegans. The VH41 (unc-119::gfp) hermaphrodites were mutagenized with EMS and 
mutants that showed loss of GFP in the nervous system upon feeding the bacteria 
expressing GFP dsRNA were isolated as nre mutants. 
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We used the VH41 strain in an ethyl-methane-sulfonate (EMS) mutagenesis screen to 

identify mutants that show marked loss of GFP expression on feeding RNAi in the 

nervous system. Figure 2-2 shows the scheme used for the identification of mutants that 

are efficient for feeding RNAi-mediated gene knockdown in the nervous system of C. 

elegans (for details see Materials and Methods). In brief, about 1000 young adult 

hermaphrodites of the VH41 strain were treated with 50 mM of EMS in M9 buffer for 4 h 

and allowed to recover for another 4 h on NGM plates with normal bacteria food. 

Subsequently 5-7 healthy looking and normally scrawling animals per plate were 

transferred onto 10 NGM plates with the bacteria expressing GFP dsRNA. They were 

allowed to produce self-progeny for two generations leading to the generation of ~20000 

mutagenized genomes in total. In the next step, F2 progeny of the mutagenized animals 

were screened in the presence of sufficient GFP dsRNA bacteria food for the mutants that 

showed no GFP fluorescence in the nervous system. We reasoned that growing the 

animals immediately after mutagenesis on the GFP dsRNA plates would lead to isolation 

of mutants that rapidly show the RNAi-mediated suppression of neuronal genes like the 

GFP transgene (unc-119::gfp) used in the parental screening strain.  

Two independent mutants (hd20, hd21) were isolated that showed strong suppression of GFP 

fluorescence in the nervous system upon RNAi by the feeding method. These mutants were 

tested several times alternatively on normal and GFP dsRNA bacteria food to confirm 

that the loss of GFP in the nervous system is a result of the presence of GFP dsRNA in 

the bateria food. We selected the mutant hd20 for further studies as it gave consistent and 

strongest Nre (for neuronal RNAi efficient) phenotype, and the gene defined by hd20 was 

named nre-1. The nre-1 mutant was backcrossed three times to the wild-type animals to 

remove background mutations, however, the original pan-neuronal GFP marker (unc-

119::gfp) was maintained in the new strain for ease of identification of the Nre phenotype. 

The new strain was called VH624 (nre-1(hd20); unc-119::gfp) and was used for further 

experimentation. This strain does not show any change in the expression of unc-119::gfp 

marker compared to the VH41 strain indicating no effect of the nre-1 mutation on the 

expression of neuronal genes. 

 

2.4 Primary characterization of the nre-1 mutant 

To facilitate further use of the nre-1 mutant in genetic experiments, we performed primary 

studies on this mutant with respect to its Nre and temperature sensitive sterile 
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Table 2-2: The nre-1 mutants have a reduced brood size at 
25°C. 

Genotype Average brood size 

 20°C 25°C 

Wild-type (N2) 270 ± 18a 169 ± 10a 

VH41 (unc-119::gfp) 241 ± 18a 147 ± 20a 

VH624 (nre-1; unc-119::gfp) 159 ± 18a 7 ± 2b 

an = 4, bn = 10 

 

phenotypes. The temperature sensitive sterility of the nre-1 mutant was observed during 

the experiments performed at 25°C as described below. The nre-1 animals grew normally 

at 15° and 20°C and did not show any morphological or behavioral defects at these 

temperatures. The fecundity of hermaphrodites was also normal when compared to wild-

type animals. However, when the number of eggs laid per animal (brood size) at 20°C 

was counted, the nre-1 animals showed a decrease of about 41% in the brood size 

compared to wild-type animals (Table 2-2). At 20°C wild-type animals had an average 

brood size of 270 eggs, while the nre-1 animals had an average brood size of 159 eggs. 

This decrease in the brood size pointed out that the nre-1 mutation may have a role in 

germline development in C. elegans as previous mutations isolated in screens for RNAi 

supersensitive genes also have roles in germline development that affect the brood size of 

the mutant worms (Simmer et al., 2003; Kennedy et al., 2004).  

To test if the elevated temperature enhanced the germline phenotype of nre-1 animals, we 

examined the brood size of nre-1 mutants at 25°C. When the nre-1 L4 larvae were grown 

at 25°C for more than 48 h no obvious behavioral defects were observed. However, the 

brood size of the mutant worms was drastically reduced to about 7 eggs compared to 

wild-type animals (Table 2-2). In many cases, the nre-1 worms due to their temperature 

sensitive sterile phenotype produced no progeny at all. The nre-1 embryos that were able 

to hatch, however, later arrested at different developmental stages with no further growth 

even when they were shifted to the normal growth temperatures. These results confirmed 

that the nre-1 mutation caused unknown defects in the germline development in C. 

elegans. These results are also similar to the observations made for other RNAi 

supersensitive strains of C. elegans (Simmer et al., 2003; Kennedy et al., 2004), showing 
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that the genes involved in RNAi in the worm are involved in biological events in the 

germline and larval development, besides being required for RNAi in the nervous system.  

 

2.5 Inhibition of GFP expression in the nervous system of nre-1 mutant  

To demonstrate that the nre-1 mutant shows specific suppression of GFP expression in 

the nervous system by the feeding RNAi method, we fed VH624 animals either with 

control bacteria food or GFP dsRNA bacteria food and allowed them to growth for 3 d at 

20°C. The control bacteria contained the original empty feeding RNAi plasmid vector 

(L4440) used to create the RNAi library without any dsRNA transcribing element in its 

multicloning site (Timmons and Fire, 1998). The F1 progeny of treated animals were 

scored for the loss of GFP fluorescence in the nervous system by fluorescence 

microscopy. Control bacteria food had no effect on the expression level of GFP in the 

nervous system of VH624 animals (Figure 2-3A-B). The GFP expression level in these 

animals was comparable to that of the wild-type VH41 animals (Figures 2-1A and 2-3A). 

However, the nre-1 mutant fed on GFP dsRNA bacteria showed marked suppression of 

GFP expression in the nervous system (Figure 2-3C-D). More than 90% nre-1 animals 

showed no GFP in the nervous system at all (Table 2-1, shaded rows). However, a few 

animals had incomplete RNAi in the nervous system and they expressed low levels of 

GFP in some of the neurons (Figure 2-3C-D). The RNAi effect was reversible and 

returning the nre-1 animals grown on GFP dsRNA bacteria food to control bacteria food 

released the suppression of GFP expression in the nervous system and restored the 

fluorescence level to the normal after 24 h. The nre-1 animals grown on GFP dsRNA 

producing bacteria for several days did not show any other obvious phenotype. The 

incomplete suppression of GFP expression in a few neurons of some nre-1 animals was 

used in further experiment as an indicator of the working of RNAi in the nervous system 

as the animals that are affected by the feeding of GFP dsRNA can be easily identified by 

the presence of GFP fluorescence in those few neurons of their nervous systems. This is 

particularly helpful when a fluorescent transgene is present as a hemizymous copy. These 

experiments showed that the nre-1 mutation defines a gene in C. elegans that is part of the 

RNAi machinery in the nervous system. In this study we used the nre-1 mutant as a tool 

to identify genes involved in axon guidance of a subset of neurons of C. elegans. 
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Figure 2-3: Phenotype of the nre-1 mutant. A-B) The nre-1 animals when fed with control 
bacteria did not show any change in the expression level of GFP in the nervous system. 
The GFP was robustly expressed in the head (A) and tail (B) neurons and their axons 
forming the ventral and dorsal nerve cords. C-D) After feeding the nre-1 animals with the 
bacteria expressing dsRNA for GFP, the expression of GFP in the nervous system was 
robustly suppressed in all but a few head (C) and tail (D) neurons. The nervous system was 
visualized by the unc-119::gfp marker that is expressed in all neurons of the worm. Scale bar, 
20 µM. 
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2.6 Mapping of the nre-1 mutation 

To identify the genomic position of the nre-1 locus we used two-factor analysis to 

establish the linkage group of the mutation. At first, we used standard C. elegans mapping 

strains with mutations in dpy genes. In C. elegans dpy genes are required for the cuticle and 

epidermis formation, and lesions in these genes lead to small and thick or dumpy worms 

(Brenner, 1974). The dpy genes have been extensively used as chromosome and map 

position markers in genetic mapping experiments in the worm as they are very easy to 

distinguish and to score based on their unique Dpy phenotypes. To map the 

chromosomal location of the nre-1 mutation, VH624 hermaphrodites were crossed to 

wild-type males to obtain heterozygous males of the genotype (nre-1/+; gfp/+). These 

heterozygous males were then crossed to hermaphrodites of various Dpy homozygous 

(dpy/dpy) mutant strains representing linkage groups (LG) I to V and were allowed to 

grow on control bacteria food plates. 

In the next step, the GFP positive F1 hermaphrodites of genotypes (nre-1/+, dpy/+, 

gfp/+) or (+/+, dpy/+, gfp/+) were selected and fed with bacteria expressing GFP 

dsRNA. For further analysis we selected only those animals some of whose F2 progeny 

showed the loss of GFP expression in the nervous system on the plates for feeding GFP 

RNAi, that is, we selected the animals of genotype (nre-1/+, dpy/+, gfp/+). Next, in the 

F2 generation Dpy progeny were scored for the loss of GFP fluorescence in the nervous 

system to identify animals with genotypes of (dpy/dpy; gfp/gfp; nre-1/nre-1) and (dpy/dpy; 

gfp/gfp; nre-1/+). The animals homozygous for the nre-1 mutation, that is, the animals 

with the genotype (dpy/dpy; gfp/gfp; nre-1/nre-1) showed marked reduction in GFP 

fluorescence in the nervous system (Table 2-3, shaded column). In this case, if the nre-1 

mutation is in the same linkage group as anyone of the five dpy genes, then F2 worms 

with that dpy gene should not have the nre-1 mutation and hence will not show any 

reduction in GFP fluorescence in the nervous system after feeding RNAi treatment. We 

observed that the LGI-V did not represent the linkage group of the nre-1 mutation, as all 

homozygous dpy mutants also had the nre-1 mutation causing RNAi-mediated GFP loss 

in the nervous system. This data pointed to the absence of the nre-1 locus onto 

chromosomes I to V, indicated its linkage to the X chromosome. Table 2-3 summarizes 

the two-factor analysis data for the five linkage groups representing chromosomes I to V 

of C. elegans. 
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Table 2-3: Two factor analysis of the nre-1 mutant. 

Chromosome 
(Gene) 
 

F2  
dpy, green 
animals 

Reduction  
in neuronal 
GFPa 

No- Reduction  
in neuronal  
GFPb 

I   (dpy-5)   11 8 3 

II  (dpy-10) 19 12 7 

III (dpy-17) 16 9 7 

IV (dpy-13) 8 8 0 

V  (dpy-11) 15 9 6 
aIndicative of the presence of the nre-1 mutation. 
bIndicative of the absence of the nre-1 mutation. 

 

In C. elegans, male animals have one copy of the X chromosome, while hermaphrodites 

possess two copies. Hence, the male cross progeny of a male and hermaphrodite mating 

event always get their one copy of X chromosome from their hermaphrodite parent 

worm. This asymmetric distribution of X chromosome comes as an advantage for 

identification of the X-linked mutations, because they appear in all F1 male progeny of 

any mating event between a wild-type male and X-linked homozygous mutant 

hermaphrodite. During mating experiments we observed that the number of males 

expected from the crosses between wild-type males and nre-1 hermaphrodites was 

unexpectedly low compared to normal situation when 50% of the cross progeny of any 

male-hermaphrodite mating is male progeny. To verify the presence of nre-1 on the X 

chromosome, we carried out a two-factor experiment in which a X-chromosomally 

integrated GFP transgene (oxIs12) was used. The males heterozygous for oxIs12 were 

crossed to nre-1 hermaphrodites and the GFP positive F1 hermaphrodites of the genotype 

(nre-1/+, gfp/+) were allowed to grow at 25°C. As the nre-1 mutation is temperature 

sensitive sterile, at 25°C homozygous animals do not produce any progeny (see Section 

2.4). We used GFP-labeled X chromosome to trace the green heterozygous animals that 

would appear as F2 progeny of the animals with the genotype (nre-1/+, gfp/+). At 25°C 

all the F2 animals (hemizygous for both nre-1 and oxIs12) were GFP positive confirming 

the location of the nre-1 mutation on X chromosome. In similar experiments using GFP-

labeled chromosome III and IV, we showed that the nre-1 locus is not linked to these 

chromosomes (Table 2-4). These data confirmed the location of the nre-1 mutation on X 

chromosome of C. elegans. 
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Table 2-4: Two factor analysis of the nre-1 mutant. 

Chromosome  
(integrated  
GFP transgene) 

F1  
animals 

F2 animals all 
green 

F2 animals  
green + non-green 

X (oxIs12) 9 9 0 

IV (hdIs14) 10 3 7 

III (rhIs4) 11 3 8 
 

2.7 RNAi in the nervous system of nre-1 mutant 

The nre-1 mutant is efficient for RNAi in the nervous system, as shown by significant 

reduction of GFP fluorescence in the nervous system after feeding the mutant with 

bacteria expressing GFP dsRNA (see Section 2.5). However, to determine the efficacy of 

nre-1 mutant to phenocopy the neuronal phenotypes of know genes that are cell-

autonomously required for neuronal development and/or axon guidance in C. elegans, we 

tested a set of neuronal genes by the feeding RNAi method. To this end, we created a 

fluorescent transgenic strain VH715 that contained the nre-1 mutation and a 

chromosomally integrated transgenic array hdIs17. The hdIs17 array consists of three 

yellow fluorescent protein (YFP) fusion genes, which are under the control of promoters 

for three different neuronal genes, namely glr-1, unc-47 and unc-129, labeling axons of 

major interneurons and motor neurons of C. elegans that run along the anterior-posterior 

and dorsal-ventral axes of the animal (detailed in Section 2.8).  

To test the nre-1 mutant in feeding RNAi assays we selected five neuronally expressed 

genes as listed in Table 2-5. Many genetic mutations are available in these genes, they 

function cell-autonomously and they define many aspects of conserved genetic pathways 

involved in the development of the nervous system in C. elegans (see Table 1-1). 

Mutations of the unc-13 gene result in severe uncoordinated movement due to defective 

neurotransmission. It is a novel conserved protein involved in vesicle priming events at 

the synapses and is expressed in many types of neurons (Richmond et al., 1999). The unc-

14 gene encodes a novel protein expressed in the cell bodies and axons of almost all the 

neurons. It is proposed that unc-14 is a regulator of the unc-51 protein kinase and acts in 

axon elongation and guidance (Ogura et al., 1997). unc-40 is a netrin receptor and is 

expressed in many neurons including all motor neurons that send their commissures 

circumferentially towards the dorsal side in C. elegans (Chan et al., 1996). The unc-73 gene 

encodes a guanine nucleotide exchange factor similar to the Trio protein 
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Table 2-5: Characterization of the nre-1mutant.a  
 

RNAi inc 

Gene Description Mutantb 

wt nre-1 
unc-13 C1 domain 40 0 30 
unc-14 Novel 30 0 30 
unc-40 Netrin receptor >90 0 >80 
unc-73 GTPase >90 0 >80 
lin-11 Transcription Factor 50 0 55 
aAxons were visualized with the hdIs17 marker. The % nervous system 
defects were scored (n >100).  
bAlleles used were: unc-13(e450); unc-14(e57); unc-40(e271); unc-73(e936); and 
lin-11(n566). 
cEach gene was subjected to at least three independent RNAi experiments. 

 

in the nervous system, and is required for outgrowth of commissures of D type motor 

neurons and axons of amphid neurons (Steven et al., 1998). While lin-11 is a LIM 

homeodomain transcription factor that affects neuronal development and fate 

specification of many neurons in C. elegans (Sarafi-Reinach et al., 2001).  

To test whether the nre-1 mutant shows RNAi phenotypes that are similar to the 

phenotypes observed in genetic mutants of the abovementioned genes, VH715 animals 

were fed with bacteria expressing dsRNA for the genes described in Table 2-5. They were 

allowed to grow at 20°C for 5-7 days and their F1/F2 progeny were examined for 

phenotypes in the nervous system by fluorescence microscopy. We scored for gross 

defects in axon guidance and nervous system morphology and found that feeding RNAi 

caused moderate to severe defects in the treated nre-1 animals for the genes tested (Table 

2-5). The RNAi experiments were repeated at least three times for each of the genes. The 

penetrance of RNAi phenotypes was between 30% to >80% compared to wild-type 

experiments and were similar to the same defects present in the genetic mutations of the 

five genes tested. The genetic mutations that were used as positive controls are null 

alleles of the genes and showed the strongest phenotype among their other alleles. These 

experiments demonstrated that the nre-1 mutation we isolated is capable of RNAi-

mediated gene knockdown in the nervous system and is able to phenocopy the loss-of-

function phenotypes of known genes that function in the nervous system of C. elegans.  

 

2.8 Visualization of axons in C. elegans  

In C. elegans the complete set of GABA neurons, DA/DB excitatory motor neurons, and 

a number of interneurons can be labeled with fluorescent proteins expressed under the 
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Table 2-6. Genes and their neuronal expression patterns 

Gene Major neurons Number of 
labeled neurons  

Location of axons  

unc-47  DD1-6, VD1-13  19 VNC, commissures 

unc-129 DA1-7, DB1-7  14 VNC, commissures 

glr-1 AVA, AVB, AVD, 
AVE, AVJ 

5 VNC, nerve ring 

 

control of the promoters of unc-47 (GABA transporter; McIntire et al., 1997), unc-129, 

(TGFβ ligand; Colavita et al., 1998), and glr-1 (glutamate receptor subunit; Hart et al., 

1995) genes, respectively. Previously, the promoters of these genes have been used to 

express fluorescent proteins to perform genetic screens to identify mutants that caused 

phenotypes in the nervous system of C. elegans (for example, Zallen et al., 1999; Hutter, 

2003). Here we selected the promoters of unc-47, unc-129 and glr-1 genes to drive the 

expression of the YFP in a subset of neurons because: (i) they label the neurons that send 

their axons along the anterior-posterior and dorsal-ventral axes of the animal; (ii) the 

majority of axons that are labeled by these promoters are long compared to the axons of 

other neurons providing an advantage in identification of subtle defects in axon 

guidance; and (iii) these promoters are strongly expressed and their expression do not 

overlap leading to a consistent lighting up of major parts of the nervous system of C. 

elegans (Figure 2-4).  

We created a transgenic strain VH477 that contained the chromosomally integrated 

transgenic array hdIs17 (unc-47::yfp, unc-129::yfp, glr-1::yfp, rol-6(su1006)) having the 

promoters of unc-47, unc-129 and glr-1 genes fused to the YFP coding sequence in three 

independent fusion genes (for details see Materials and Methods). The semi-dominant 

rol-6(su1006) allele was included in the array as it causes rolling movement in transgenic 

animals providing the convenience of access to the different sides of the animal to 

observe the anatomy of the nervous system. The marker hdIs17 is robustly expressed in 

the nervous system of C. elegans labeling the major tract of the VNC (Figure 2-4A), the 

dorsal nerve cord (Figure 2-4B) and commissures of motor neurons that form the 

circumferential axonal circuits in C. elegans (Figure 2-4C-D). In total the hdIs17 marker 

prominently labels about 38 neurons that send long axons. Table 2-6 summarizes the 

types of neurons in which the three genes, unc-47, unc-129 and glr-1, are expressed as well 
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Figure 2-4: Expression pattern of the hdIs17 marker in the nervous system of C. elegans (in 
the strain VH477). A) Ventral view showing the ventral nerve cord (arrowheads), the axons 
of interneurons and motor neurons are labeled. B) Dorsal view, commissures of motor 
neurons come together to form the dorsal nerve cord (arrowheads). C) Ventral close-up 
view showing a part of the VNC, somas of motor neurons are roughly placed equidistance 
with unbranched axons traveling towards the dorsal side. D) Side close-up view showing 
unbranched commissures of C. elegans. E) A representative diagram depicting the 
trajectories formed by axons of interneurons and motor neurons labeled by hdIs17. In all 
images, anterior is to the left. Scale bars, 20 µM. 
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as the location of their axons in the body of the worm. The expression of YFP was 

restricted to the nervous system and no non-neuronal cell was observed with YFP 

fluorescence. Figure 2-4E shows the sketch of the patterns formed by the axons of some 

of the interneurons and motor neurons that are labeled the hdIs17 marker transgene. For 

the RNAi mediated screen we created a new worm strain, VH715, that combined the nre-

1 mutation and the hdIs17 maker together giving a strain sensitive for neuronal RNAi 

with part of its nervous system labeled with YFPs. The expression pattern of the hdIs17 

marker in VH715 did not show any change compared to VH477 showing no effect of the 

nre-1 mutation on the expression of the YFP transgenes. 

 
2.9 Strategy for a feeding RNAi axon guidance screen 

To perform rapid screening of the genes on chromosome I to identify genes involved in 

axon guidance in the worm we employed the nre-1 strain as a tool in a feeding-RNAi-

mediated genetic screen. Since the nre-1 strain is supersensitive to RNAi-mediated gene 

knockdown in the nervous system (Section 2.7), we reasoned that it should be possible to 

identify genes that affect the nervous system function like axon guidance in this strain, 

when it is used as a background strain in the screening procedure that uses feeding as a 

method of dsRNA delivery in C. elegans. To this end, a screening strategy was developed 

in which the nre-1 mutation was used as a supersensitive background in a transgenic 

worm strain that expressed the YFP fusion genes in a subset of interneurons and motor 

neurons under the control of the promoters of three neuronal genes. A new worm strain 

VH715 was created for the purpose this screen (Section 2.8).  

As schematically depicted in Figure 2-5, we fed VH715 animals with the library of 

bacteria expressing dsRNA for ~86% of the genes on chromosome I. The individual 

bacterial clones from the library were grown in 96-well bacterial culture plates and were 

seeded onto 3.5-cm diameter NMG plates containing IPTG for the induction of dsRNA 

production in the bacteria. Then about 5 L3-L4 stage animals of strain VH715 were 

transferred to each plate and were allowed to grow for 5-7 days at 20°C. The progeny of 

the treated animals were washed off from the plates, mounted on the object slides with 

agar pads, and were examined for visible defects in their fluorescently labeled axons by 

fluorescence microscopy (for details see Materials and Methods). We screened 2425 

clones representing 2416 genes located on chromosome I of C. elegans. Using a criterion 

of >30-50% gross defects in the axons of labeled neurons we identified a number of 

candidate genes for axon guidance phenotypes. These genes were rigorously retested in 
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Figure 2-5: Schematic representation of the strategy used for feeding RNAi-mediated 
genetic screen for axon guidance genes in C. elegans. 
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further RNAi experiments to confirm their roles in axon guidance mechanisms (see 

Section 2.10).  

In this screening protocol we selectively labeled axons of some interneurons and all the 

motor neurons located in the VNC of C. elegans as the circuitry made of these axons 

forms the major neuronal network and their stereotypic patterns provide ease in the 

identification of axon guidance defects in the network. The screening strategy used here 

is of general utility to any RNAi-mediated genetic screens in the nervous system of C. 

elegans. Besides the approach is high-throughput and repeatable for several times in 

different experimental settings; for example, the fluorescent protein can be expressed in 

different classes of neurons to identify genes involved in the development of those 

neurons. 

 

2.10 Identification of genes involved in axon guidance on chromosome I 

To identify genes on chromosome I that are involved for axon guidance in C. elegans, we 

started with the feeding-RNAi bacterial library available for chromosome I genes created 

by Fraser et al (2000). Chromosome I of C. elegans contains a total of 2856 genes spread 

along the length of the chromosome with higher density at the central region (C. elegans 

Sequencing Consortium, 1998; www.wormbase.org). The chromosome I RNAi library 

contains bacterial clones expressing dsRNA targeted for 2416 genes (Fraser et al., 2000). 

We fed the transgenic strain VH715 with each clone separately for at least one-generation 

time. In the first round, we identified ~150 candidate clones that showed overall axonal 

morphology defects in 30-50% of about 50 animals observed. These clones were isolated 

and were retested for their ability to consistently give the observed axon morphology 

defects in repeat feeding RNAi experiments to identify the clones that show true RNAi-

mediated axon guidance or outgrowth defects. Of the 2416 genes tested we identified 63 

candidate genes that showed a variety of defects in the axonal morphology as represented 

in Figure 2-6. To confirm the identity of the clones that gave the RNAi phenotypes we 

sequenced the feeding RNAi plasmid vectors. These sequences were matched against the 

genomic sequence of C. elegans to confirm the identity and correctness of the genes that 

are targeted by the RNAi vectors. Out of 63 clones isolated, upon sequencing 57 clones 

showed homology with the corresponding genes in the C. elegans genome sequence 

database (www.wormbase.org, release WS133). Three clones contained wrong inserts, 

while the nas-5 gene was represented by four RNAi clones (see Materials and Methods).
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Table 2-7:  Genes on chromosome I identified in feeding RNAi screen for axon guidance 
genes. 

% Axon defects (n >50) Gene Description Extra 
phenotype Comm.  VNC  DNC 

Wild-type (hdIs17) - - 19 7 6 
Signaling (8 genes)     

unc-73b GTPase Gro, Unc, Egl  80 45 27 

Y95B8A.10 Phosphodiesterase - 47 47 - 

F26E4.5 S/T kinase - 42 35 - 

smd-1 SAM decarboxylase - 50 56 14 

ZC581.9 S/T kinase - 44 83 21 

F10G8.4 Tyrosine phosphatase  Gro 68 52 44 
ced-1 TM protein EGF domain - 40 47 10 

F47B3.1 Tyrosine phosphatase  - 58 39 27 

pry-1 Axin homolog Gro, Unc 50 45 12 
Receptor (4 genes)     

unc-40b Netrin receptor Gro, Egl, Unc 80 50 25 

B0041.5 Receptor? - 52 41 30 

C24G7.1 Sodium channel homolog - 44 42 45 

T23B3.4 7TM receptor - 39 40 23 

C09D4.1 Receptor  Unc? 38 33 12 
Cytoskeletal (3 genes)     
nmy-2 Non-muscle myosin Gro 47 55 13 

unc-95 LIM domain Unc, Egl 68 72 43 

lem-3 Ankyrin repeats domain - 53 50 27 
Transcription/translation (10 genes)     

sur-2 Cofactor for Sp1 - 50 59 38 

hmg-3 a HMG group homolog Gro, Unc 81 60 25 

lin-59 Trithorax homolog Gro, Egl 73 72 42 
rnp-6  RNA binding domain Gro, Unc, Egl 66 60 33 

rpl-17 Ribosomal L17 protein Gro, Unc 58 46 20 

T05E8.3 Helicase Gro, Unc 35 50 36 

Y105E8A.23 Polymease Gro 37 55 33 

C41D11.2 Initiation factor - 47 28 7 

ZC328.2 Zinc finger domain - 35 37 - 

Y95B8A.7 Zinc finger domain - 50 44 38 
Metabolism (4 genes)     

lpd-3 Lipid metabolism - 56 45 33 

lbp-5 Lipocalin  - 45 40 - 

F43G9.3 Mitochondrial protein  43 56 - 
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Gene Description Extra 
phenotype 

% Axonal defects 

W03D8.8a Peroxisomal acyl-CoA 
thioesterase  

- 29 39 11 

Other (6 genes)     

unc-13b C1 domain Gro 30 12 0 

Y105E8B.9a Isomerase  Gro 58 69 44 
unc-101 AP2 homolog - 39 39 9 

E03H4.1 Transposase - 44 47 18 

pqn-20 Prion-like  - 26 33 12 
nas-5 Astacin metalloprotease - 67 66 33 

Y65B4BR.4 Ubiquitin  ligase  Unc  47 38 36 
Novel, conserved (9 genes)     

F25D7.1 Novel  - 42 89 0 

T21G5.5 Novel Unc, Egl 47 63 43 

Y63D3A.9a Novel (F-box doamin) - 53 52 40 

Y106G6H.8 Novel Gro 78 61 27 

Y47G6A.29 Novel - 55 50 44 

C55B7.9 Novel Gro, Unc 50 45 12 

F26B1.1 Novel - 46 67 33 

F46F11.9 Novel Gro, Unc, Egl 52 42 64 

D2030.9 Novel (WD-40 domain) - 33 9 8 
Novel (13 genes)     

unc-14b Novel Gro 30 7 0 

Y18D10A.21 Novel - 14 56 11 

Y37H9A.1 Novel - 41 32 9 

T15D6.9 Novel - 40 47 38 

Y34D9A.3a Novel Unc 79 62 45 

Y48G1C.8 Novel Gro, Unc 31 69 50 

Y106G6A.2 Novel - 33 69 - 

Y106G6A.4 Novel - 47 47 16 

Y106G6A.5 Novel - 48 56 - 

T24D1.3 Novel - 53 46 30 

F29D11.2 Novel Unc, Dpy 58 50 46 

ZK973.8 Novel - 37 61 9 

F48C1.4 Novel Dpy, Lvr 52 38 15 

C17F3.1 Novel - 70 48 36 
aThese genes showed cell misplacement phenotypes. 
bThese genes were used to test the RNAi efficiecy of the nre-1 mutant strain and were also 
isolated in the feeding RNAi screen in this work. Dpy, dumpy; Egl, egg laying defective; 
Lvr, larval lethal; Gro, slow growth; Unc, uncoordinated. 
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The RNAi phenotypes of some of the genes identified are detailed in Section 2.11. Table 

2-7 summarizes types of genes identified with percent penetrant defects they cause in 

axon guidance in different parts of the nervous system of C. elegans. 

 

2.11 Types of axon guidance RNAi phenotypes observed 

This screen was planned to isolate genes that cause defects in the axons of a subset of 

interneurons and motor neurons as listed in Table 2-6. Based on the type of RNAi-

mediated axon guidance phenotypes caused by each of the 57 genes, we classified the 

defects in three types; commissural defects, defects in the fasciculation of VNC axons and 

defects in the dorsal nerve cord (Table 2-7). The majority of RNAi targets showed defects 

in the dorsal-ventral guidance and outgrowth of the axons, because these defects are 

relatively easy to identify due to the stereotypic patterns of the labeled axons (Figure 2-

4C-D). The second most frequently observed types of defects were in the fasciculation of 

VNC and DNC axons. Figure 2-6 shows representative examples of the types of defects 

caused by RNAi of the indicated genes. The most common defects were in commissural 

guidance and ectopic branching of axons (Figure 2-6A-C, E, G, I). The commissures in 

C. elegans have to travel from the ventral side of the animal, where somas are located, to 

the dorsal side running around the lateral sides of the animal. Most of the commissures 

are positioned during embryonic development except in the case of commissures of 

VA/VB and VD motor neurons that grow post-embryonically. All the commissures are 

unbranched and reach the dorsal side running perpendicular to the anterior-posterior axis 

of the animal. We frequently observed defective guidance in commissures in several 

RNAi targets (Table 2-5). These defects were either in the commissural growth wherein 

commissures did not reach the dorsal side of the worm but turned halfway in lateral 

directions traveling parallel to the DNC (Figure 2-6A). While in some cases commissures 

also traveled long distances laterally (Figure 2-6C, G) without reaching the VNC. In 

some cases, they were branched into two or more protrusions that travel in opposite 

directions (Figure 2-6B, I) or formed a tangle of branches (Figure 2-6C, E).  

The defects observed in the VNC axons were largely of defasciculation of the major tract 

of the cord causing axons from the right tract to crossover and run through the left tract 

(Figure 2-6F). In the case of unc-101 RNAi, gaps in the VNC were observed probably due 

to the axon outgrowth defects leading to shortening of axons (Figure 2-6D). Besides axon 

guidance defects described above the cell misplacement defects were also detected on 
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Figure 2-6: Representative RNAi-mediated axon guidance phenotypes caused by 
knockdown of the indicated genes. A) Y105E8B.9(RNAi), commissural dorsal-ventral 
outgrowth defects. B) T23H4.3(RNAi), commissural branching defects. C) pry-1(RNAi), 
commissural defects. D) unc-101(RNAi), gaps in the VNC. E) F29D11.2(RNAi), excessive 
commissural branching and F) F29D11.2(RNAi), defasciculation in the VNC. G) 
F10G8.4(RNAi), commissural branching defects. H) Y63D3A.9(RNAi), cell misplacement 
and axon guidance defects. I) Y106GH.8(RNAi), commissural branching defects. A-C, E-G, 
H: side view. D, F: ventral view. I: dorsal view. In all images anterior is to the left and 
arrowheads indicate the defects. Scale bars, 20 µM. 
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RNAi of a few genes, wherein neurons located in the nerve ring or VNC were misplaced 

to the lateral sides of the animal (Figure 2-6H). The axons sent by these misplaced cells 

were randomly targeted to the nerve ring or VNC. Defects in the DNC were limited to 

the defasciculation; however, this phenomenon was linked to the defects observed in the 

commissures (Table 2-7) as defective commissures frequently caused defects in 

fasciculation of the DNC axons.  

 

2.12 Bioinformatic analysis and classification of identified genes  

To classify the identified genes as listed in Table 2-7 we performed bioinformatic analysis 

on the protein sequences of the 57 genes that gave penetrant RNAi phenotypes. At first, 

to confirm the identity and correctness of the RNAi clones, we sequenced the isolated 

feeding vectors by bidirectional DNA sequencing using primers specific to the feeding 

vector (see Materials and Methods). The RNAi clones representing the 57 genes listed in 

Table 2-7 had correct sequences corresponding to their cognate gene sequences as 

deposited in the C. elegans database. In some cases sequences of the feeding RNAi clones 

did not identify any open reading frame sequence representing a C elegans gene while a 

few other contained wrong inserts (see Materials and Methods), however, these clones 

were not considered for further analysis.  

Next, we performed homology analysis of all the genes listed in the Table 2-7 by the 

protein-protein BLAST algorithm (www.ncbi.nlm.nih.gov/BLAST) against the C. 

elegans, Drosophila, human and mouse protein sequences. The sequences for the 57 C. 

elegans genes were recovered from the WormBase database (www.wormbase.org, release 

WS133). The selected protein sequences were then compared with human, mouse or 

Drosophila sequences available in the GenBank database. The protein sequence 

comparisons that gave a p-value of >10-10, for a sequence length of >30% between the C. 

elegans genes and that of either Drosophila or mammals were identified as potential 

homologs of the worm genes. However, genes having weak similarities may escape these 

comparisons. After this analysis, out of 57 genes we have identified homologs for 44 

genes either in human, mouse or Drosophila, while 13 genes have no detectable homolog 

outside the nematode family. Based on their homology to the genes in other organisms 

and previously known genes we classified the 57 genes into 8 functional classes as list in 

Table 2-7. Figure 2-7 shows a pie diagram of the distribution of 57 genes into different 

functional classes. Of the 57 genes identified, 29 genes (51%) were from the previously 
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Figure 2-7: Pie chart of the 57 genes classified in functional classes based on bioinformatic 
analysis with well-characterized or annotated genes in the databases. 
 

251

450

107 109

0

50

100

150

200

250

300

350

400

450

500

emb/ste/gro 251 450

other 107 109

N2 nre-1

 
 

Figure 2-8: The nre-1 strain is supersensitive to RNAi. In the nre-1 background twice as 
many genes showed RNAi phenotypes compared to the wild-type background.  
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annotated classes and comprised 4 receptors, 8 signaling molecules, 10 transcription and 

translation factors, 3 cytoskeleton associated proteins and 4 metabolic genes. Out of 

remaining 22 (38%) genes, 9 conserved genes have homologs present either in mammals 

or Drosophila; however, they are not functionally annotated in any of the functional 

classes, as they are novel genes with unknown domain structures. The 13 novel genes 

have weak or no similarity to the genes present in databases beyond nematodes; 

however, they show specific and highly penetrant axon guidance defects in C. elegans. It 

will be interesting to see whether these genes have distal homologs in other animals or 

whether they are specific to the nematode species. The 6 genes classified as other novel 

genes include conserved genes that are involved in a variety of intracellular processes. 

 

2.13 Supersensitivity of the nre-1 strain  

The nre-1 strain is not only efficient for RNAi in the nervous system, but it is also 

supersensitive for non-neuronal genes. During screening for genes on chromosome I for 

RNAi-mediated axon guidance phenotype; we observed that in the nre-1 background 

many RNAi targets caused phenotypes that were not found in the previous chromosome 

I RNAi screen done on wild-type animals for the same genes (Fraser et al., 2000). Figure 

2-8 compares the total number of RNAi phenotypes we observed in the nre-1 background 

to that of the same found in the screen performed by Fraser et al. In wild-type background 

the previous screen has identified 251 genes that cause embryonic lethality (Emb), 

sterility (Ste) or slow growth (Gro) phenotypes. In the nre-1 background we have 

identified 450 genes that give rise to Emb, Ste, or Gro phenotypes. The 251 genes 

identified by Fraser et al. are mostly the genes that are required for basic cell maintenance 

and metabolism processes. On the other hand, from about 200 genes most that gave an 

extra phenotype in our screen have not been previously reported to have any other 

phenotypes. Therefore, it will be interesting to study these genes for their possible roles in 

the embryonic and postembryonic developmental events in C. elegans. The other visible 

phenotypes like Dpy, Unc, etc., observed in the nre-1 background are similar to that of 

the same phenotypes observed in wild-type animals, i.e. 107 in WT vs. 109 in the nre-1 

mutant (Figure 2-8,). As listed in Table 2-7 several genes that cause axon guidance 

phenotypes also give other extra phenotypes like Dpy, Egl, Gro, and/or Unc. Therefore, 

further studies on these genes should shed more light on the development of the nervous 

system in C. elegans.  
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2.14 Proof of principle 

To validate the ability of our RNAi screening approach to correctly identify genes that 

are involved in axon guidance mechanisms in C. elegans, we took advantage of genetic 

mutations available in some of the genes identified in this screen (Table 2-7). Out of the 

57 genes identified that showed axon guidance defects upon RNAi, we selected 6 genes 

(ced-1, lin-59, pry-1, nmy-2, sur-2 and unc-101) that have genetic mutations available and 

have been implicated in a variety of signaling pathways. Of these 6 genes, we were able 

to cross GFP/YFP transgenes into the mutants of 4 genes, namely ced-1, lin-59, pry-1 and 

unc-101. Two genes cause severe defects in the worm; nmy-2 is embryonic lethal (Guo and 

Kemphues, 1996) and sur-2 gives 100% vulvaless phenotype limiting mating experiments 

in the mutant animals (Howard and Sundaram, 2002). Of the four genes in which axons 

were labeled with the fluorescent proteins, lin-59(sa489) did not show any detectable axon 

guidance phenotype in the marked neurons. In the case of ced-1(e1735), pry-1(mu38) and 

unc-101(m1) mutants distinct axon guidance phenotypes were observed (Figure 2-9) that 

were comparable to the RNAi phenotypes observed for these genes (Table 2-7).  

The pry-1 gene encodes the axin homolog of C. elegans, which is involved in a Wnt 

pathway as a component of the β-catenin complex (Korswagen et al., 2002). It is a 

negative regulator of Wnt signaling and inhibits the stabilization of β-catenin preventing 

its translocation into the nucleus to act as a transcriptional regulator. In C. elegans, the 

RNAi knockdown and genetic mutants of the pry-1 gene gave consist phenotypes of 

severe defects in the commissural axon branching and the defasciculation of the VNC 

axons. These defects were strong and about 90% of pry-1(mu38) animals showed the 

defects. In C. elegans the roles of Wnt signaling molecules are not yet established with 

regard to nervous system development. Hence, it will be interesting to study the role of 

pry-1 in axon guidance in C. elegans to further investigate the Wnt signaling pathways. 

The second gene whose genetic mutations gave phenotypes similar to that observed in 

the RNAi experiments is ced-1. This gene was previously identified in a screen for cell 

death genes and it is a receptor tyrosine kinase (Zhou et al., 2001). In ced-1 mutants 

engulfment of dead cells after apoptosis is inhibited by unknown mechanisms as 

signaling molecules upstream and downstream of the gene are not identified. However, 

ced-1 is strongly expressed in the nervous system of C. elegans, especially the VNC and the 

motor neurons. Its significance is not yet known in any of the axon guidance mechanism 

and our identification of this gene as an axon guidance molecule should provide more 
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Figure 2-9: Axon guidance phenotypes observed in genetic mutants. A-C) pry-1(mu38), 
defects were observed in commissural axon branching (A) and VNC defasciculation (B-C); 
axons were labeled with the hdIs17 marker. D-E) ced-1(e1735), commissural axon defects; 
axons were labeled with the hdEx191 marker. F-G) unc-101(m1), commissural axon defects 
(F) and gaps in the ventral and dorsal nerve cord tracts (G); axons were labeled with the 
oxIs12 marker. In all images anterior is to the left and arrowheads indicate the defects. Scale 
bars, 20 µM. 
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information on its biological function in the nervous system. The third gene, unc-101, is a 

component of clathrin-associated protein complex and is required for many aspects of C. 

elegans development and behavior (Lee et al., 1994). The involvement of this gene in axon 

guidance could be due to its role in the intracellular vesicle trafficking that is obligatory 

for the transport of proteins to the growing growth cones of axons.  

Here, our identification of abovementioned genes has validated the strategy developed in 

this work to rapidly screen for axon guidance genes in C. elegans. This study demonstrates 

that the feeding RNAi can be used for the identification of genes involved in axon 

guidance pathways in C. elegans, provided that the refractive neurons are made 

susceptible to feeding RNAi by taking advantage of the mutants that are efficient for 

RNAi in the nervous system. The approach used here is rapid and gives information on a 

large number of genes that are potentially involved in axon guidance in the worm. 

Moreover, future screens covering other chromosomes of the worm should give us more 

information and candidate genes to understand the complex mechanisms of axon 

guidance. 
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3 DISCUSSION 

 

3.1 Background to the RNA interference phenomenon in C. elegans  

RNA interference (RNAi) is the process wherein double-stranded RNA (dsRNA) induces 

the homology dependent degradation of cognate mRNA in the cell. RNAi was first 

discovered in C. elegans (Fire et al., 1998), however, similar phenomena called post-

transcriptional gene silencing in plants and quelling in fungi have been known for several 

years (reviewed by Hannon, 2002 and Montgomery, 2004). Recently, the molecular 

mechanism of RNAi has been elucidated and a few genes involved in this phenomenon 

have been discovered and their homologs identified across species. In C. elegans 

exogenously introduced or endogenously produced dsRNA is acted upon by different 

components of RNAi machinery (Figure 1-6), at first dsRNA is cleaved into small-

interfering RNA molecules (siRNAs) of ~21 nucleotides by an RNaseIII-like 

endonuclease dcr-1 (Drosophila Dicer homolog in C. elegans) in the cell. Then the siRNAs, 

along with a helicase and other factors, are assembled in a protein–siRNA complex 

called RNA-induced silencing complex (RISC). The RISC complex provides the 

specificity to siRNAs to target their cognate mRNA molecules. Upon priming by siRNAs 

cognate mRNA is either degraded by cellular endonucleases or is converted into new 

dsRNAs by the action of RNA-dependent RNA polymerases (RdRPs) and fed into a new 

RNAi cycle thereby amplifying the effect, and in the process silencing the expression of 

cognate mRNA (Figure 1-6). The polymerases and endonucleases that are components of 

the RISC complex are of special interest, because of their ability to control the efficiency 

of RNAi in different tissues of the animal. The RNAi phenomenon has a variety of 

functions in C. elegans as it controls the expression of many genes at post-translational 

level (Lippman and Martienssen, 2004). It is active in all the tissues of the animal and 

can uniquely spread from one cell to another by systemic mechanisms (Winston et al., 

2002). However, the nervous system of C. elegans is largely refractory to the systemic 

spread of RNAi upon feeding of dsRNAs to the animals (Tavernarakis et al. 2000; 

Kennedy et al., 2004). The mechanisms behind this refractory nature the C. elegans 

neurons to systemic RNAi are poorly understood. This has also hampered the use of 

RNAi as a technique to study the genes involved in the development of the nervous 

system of C. elegans.  
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3.2 RNAi-mediated genetic screens in C. elegans 

On the discovery and recognition of importance of RNAi in C. elegans several RNAi 

experiments were performed by injecting dsRNA molecules into the gonads or intestine 

of worms to study the effect of down regulation of cognate gene expression on the 

phenotype of treated animals (Fire et al., 1998). Subsequently, a chromosome-wide 

injection RNAi screen was performed to identify genes required for early embryonic 

development in C. elegans (Gonczy et al. 2000). Though rapid this approach was laborious 

for large-scale screens and it required injecting several animals to get a sufficient number 

of progeny. However, after the discovery that the ingestion of bacterially expressed 

dsRNA can produce specific and potent genetic interference, feeding RNAi became a 

standard RNAi method in C. elegans genetics (Timmons and Fire 1998; Kamath et al., 

2000; Timmons et al., 2001).  

Recently, a genome-wide library of bacteria producing dsRNA for ~86% of the genes of 

C. elegans has been created as a permanent reagent (Kamath et al., 2003). Using this 

library several genome-wide screens have been performed to define genes involved in a 

variety of biological processes (Fraser et al., 2000; Kamath et al., 2003; Ashrafi et al., 

2003). The advantage of this strategy is that the whole genome of C. elegans can be 

screened for genes required in a particular biological process in a relatively short time. 

The first paradigm large-scale feeding RNAi screen was performed to define genes 

involved in early embryonic development in C. elegans (Fraser et al., 2000). This screen 

identified a phenotype for ~14% of the genes on chromosome I showing the high-

throughput nature of the screening method. This first feeding RNAi screen has also set a 

paradigm for the future feeding RNAi screens in which novel molecular biology and 

genetics approaches may be used to identify genes involved in specific biological 

processes. In this study, we took advantage of the availability of the chromosome I 

feeding-RNAi library to identify genes involved in axon guidance in C. elegans. 

 

3.3 Efficiency of RNAi in the nervous system of C. elegans 

It has been reported that “feeding RNAi” approach in C. elegans is greatly influenced by 

the extrinsic factors like the growth temperature at the time of RNAi, the extent of 

induction of feeding bacteria to produce dsRNAs, etc (Kamath et al., 2000; Timmons et 

al., 2001). To check if “feeding RNAi” works in our conditions in the nervous system of 

the worm, we performed feeding RNAi experiments on a transgenic C. elegans strain. The 



Discussion 
 

 60 

worm strain VH41 contains a chromosomally integrated GFP marker transgene (unc-

119::gfp) that is expressed in all neurons and some head muscle cells of C. elegans (Figure 

2-1). We treated the VH41 animals with an optimized feeding RNAi protocol (see 

Materials and Methods). Then the loss of GFP expression in the nervous system and 

muscle cells was examined 24 and 48 h after the RNAi treatment of the animals. In the 

case of muscle cells of C. elegans the expression of GFP was completely suppressed with 

in 24 h, however, the neuronal GFP levels were not affected by this treatment (Figure 2-

1; Table 2-1, see data for VH41). Longer than 48 h treatment did not make any difference 

in the expression level of GFP in the neurons. This data of ours is in line with the similar 

results obtained by others on the ineffectiveness of RNAi in the nervous system of the 

worm (Tavernarakis et al., 2000; Timmons et al., 2001; Kamath et al., 2003). In addition, 

manipulation of conditions like the growth temperature or the amount of dsRNA 

producing bacteria food on the feeding plates did not change the efficiency of RNAi in 

the nervous system.  

The muscle cells of C. elegans have been shown to be sensitive to RNAi (Kamath et al., 

2001), our experiments with transgenic strains VH41 and VH288 (in which GFP is only 

expressed in the muscle cells) validated the previous studies on the high efficiency of 

RNAi in this tissue. Moreover, RNAi experiments on muscle cells demonstrated that our 

experimental conditions used for feeding RNAi are sufficient to induce RNAi in the cells 

of C. elegans, except the nervous system. Based on this data we reasoned that the 

refractory nature of the nervous system of C. elegans to systemic RNAi could be attributed 

to genetic factors and a mutational approach to isolate mutants of C. elegans that are 

efficient for RNAi in the nervous system should be explored. And further these mutants 

can be used in large-scale feeding RNAi screens to isolated genes involved in axon 

guidance in C. elegans. The main reasoning behind such an approach was to identify the 

genes by RNAi that function cell-autonomously in the neurons affecting the mechanisms 

of axon guidance.  

 

3.4 Isolation of neuronal RNAi efficient (nre) mutants 

C. elegans is a powerful model system for genetics and molecular biology studies due to its 

many advantages over other model systems. One of the major advantages of C. elegans is 

the ease of isolation of mutants with unique phenotypes in complex experimental 

conditions. In order to isolate mutants of C. elegans that are efficient for RNAi in the 
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nervous system, we performed a chemical mutagenesis screen on a transgenic strain that 

expresses GFP in the nervous system of the worm (Figure 2-2). The worm strain VH41 

was used for the screen as it expresses GFP in all the neurons of the animal at a moderate 

level and any change in the GFP expression pattern should be readily identified in the 

mutants with effective RNAi in the neurons. After ethyl-methane-sulfonate (EMS) 

mutagenesis and screening of about 20000 genomes of F2 progeny, we identified two 

independent mutants (hd20, hd21) that showed feeding RNAi-mediated suppression of 

GFP expression in the nervous system. The mutant hd20 showed a robust and consistent 

RNAi effect in the neurons (Figure 2-3; Table 2-1, see data for VH624). It was named nre-

1 (for neuronal RNAi efficient) mutation and further characterized with regard to its 

chromosomal location and biological characters. Recently, with a similar approach an 

RNAi efficient mutant of C. elegans was isolated that showed enhanced RNAi in a subset 

of neurons (Simmer et al., 2002; Kennedy et al., 2004). Here our identification of nre 

mutants is important for further studies on understanding the mechanisms of RNAi in 

the nervous system. Secondly, molecular characterization of these mutants may provide 

more information on the types of molecules that take part in the RNAi phenomenon in 

different organs of the worm.  

 

3.5 Characteristics of the nre-1 mutant 

The nre-1 mutant we identified shows robust down regulation of GFP expression in the 

nervous system of C. elegans upon the delivery of dsRNA molecules by the feeding RNAi 

method (Figure 2-3; Table 2-1). This phenotype of the nre-1 mutant was specific and 

reversible as shifting the treated animals to control bacteria food from the GFP RNAi 

bacteria food caused reappearance of the GFP fluorescence in the nervous system within 

a few hours after the shift. We further characterized the nre-1 mutant with regard to its 

ability to phenocopy the mutant phenotypes of well-known neuronal genes that have 

been associated in different biological processes in the worm. To this end, we selected 5 

neuronal genes: unc-13, unc-14, unc-40, unc-73 and lin-11, which are required cell-

autonomously for the development of the nervous system of C. elegans (see Section 2.6). 

RNAi of these genes in the nre-1 mutants significantly affected the function of the genes 

leading to 30-80% defects in the progeny of treated animals (Table 2-5). The ability of the 

nre-1 mutant to phenocopy the phenotypes of genetic null mutantions of neuronal genes 

showed that the nre-1 mutant animals are significantly more efficient in RNAi-mediated 
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gene knockdown in the nervous system. Besides the RNAi-mediated phenotypes 

observed in the nre-1 mutant background are comparable to that of the same phenotypes 

found in the genetic mutants of the 5 genes (Table 2-5) proving the efficiency of the nre-1 

mutation to RNAi in the neurons.  

The nre-1 mutation we isolated not only affects RNAi in the nervous system, but is also 

supersensitive to RNAi in the non-neuronal tissues of C. elegans. This fact is 

demonstrated by our finding of significantly more non-neuronal RNAi phenotypes in the 

nre-1 background compared to wild-type animals when the large-scale RNAi screen was 

performed for the chromosome I genes. When RNAi of 2416 genes located on 

chromosome I was performed to identify genes involved in axon guidance (Figure 2-8; 

Section 2.13), we isolated about 450 genes that give rise to different embryonic 

phenotypes, for example, Emb, Ste or Gro phenotypes. The number of extra phenotypes 

we identified is about two times more than that of the same phenotypes observed in the 

wild-type background (Fraser et al., 2000).  This recovery of extra phenotypes that were 

not previously reported in wild-type animals demonstrated the usefulness of the nre-1 

mutant to find a function for previously unknown genes. Besides the nre-1 mutation also 

shows temperature sensitive sterile phenotype at an elevated growth temperature of 25°C, 

similar phenomenon has also been reported in previously isolated RNAi supersensitive 

genes rrf-3 and eri-1 (Simmer et al., 2002; Kennedy et al., 2004), pointing out the possible 

roles for these genes in the germline development in C. elegans.  The rrf-3 mutation was 

isolated during studies on the role of RNA-amplification in dsRNA-triggered gene 

silencing processes (Sijen et al., 2001). Later the rrf-3 mutant animals were shown to be 

hypersensitive to RNAi (Simmer et al., 2002). The rrf-3 gene encodes an RNA-directed 

RNA polymerase, but the exact mechanism of its function in the RNAi phenomenon and 

enhancement of RNAi in some tissue is not clear. It is assumed that RRF-3 competes 

with other components of the RISC complex during the amplification step of RNAi 

(Simmer et al., 2002).  On the other hand, the eri-1 gene encodes an siRNA-degrading 

RNase that negatively regulates RNAi in specific tissues like the nervous system 

(Kennedy et al., 2004). These two genes and nre-1 have some common phenotypes as 

described above and this could be due to their involvement in the regulation of RNAi in 

different tissues of the animal. Further molecular characterization of nre-1 should provide 

more information on these mechanisms. However, in this study we have used the nre-1 
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mutant as a tool for large-scale feeding RNAi-mediated genetic screens to isolate genes 

involved in axon guidance.  

 

3.6 Feeding RNAi-mediated genetic screen for axon guidance genes 

In C. elegans many genetic screens have been performed to identify genes required for 

axon guidance of different types of neurons, however, these forward genetic screens are 

laborious and in many screens the same genes were repetitively identified. We decided to 

take advantage of the RNAi technology to identify genes that cause axon guidance 

defects upon down regulation of their expression in the nervous system of C. elegans.  The 

nre-1 mutant we isolated is useful tool for such RNAi-mediated genetic screens as it 

provides a way to knockdown genes in the nervous system. Using the nre-1 mutation we 

created a screening strain VH715 for large-scale feeding RNAi-mediated screens in the 

worm to identify genes involved in the development of the nervous system. The VH715 

strain contains a transgenic array (hdIs17) of three YFP fusion genes under the control of 

promoters of unc-47, unc-129 and glr-1 genes. These genes are specifically expressed in the 

nervous system of C. elegans and they label a subset of interneurons and motor neurons 

that send their axons along the anterior-posterior and dorsal-ventral axes of the animal 

(Figure 2-5; Table 2-6). The pattern of neurons labeled by the hdIs17 marker is simple and 

stereotypic in different animals providing an advantage while looking for defects in the 

axons of labeled neurons.  

Next, using an RNAi-mediated screening strategy we screened the feeding RNAi library 

available for 2416 genes located on chromosome I of C. elegans (Figure 2-4). During the 

screening procedure we selected the clones that consistently gave >30-50% defects in the 

labeled axons of the treated animals. These genes were retested several times by RNAi to 

identify the genes that caused specific axon guidance phenotypes. Of the 2416 genes 

tested, 57 genes gave highly penetrant RNAi phenotypes in the nervous system leading to 

axon guidance defects in the neurons that were labeled by the YFP transgenes.  Most of 

these are novel genes and their identification, as being involved in the mechanisms of 

axon guidance, should provide more information on the development of the nervous 

system. Furthermore this screen also assigns a function for about 200 previously 

unknown genes, significantly increasing the number of genes on chromosome I of C. 

elegans with a function in the development of the animal.  
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3.7 Limitations of RNAi-mediated genetic screens 

Although RNAi is used as a very quick method for determining loss-of-function 

phenotypes of genes for which no genetic mutations are available, it has a few limitations 

with respect to its efficacy in knocking down genes in different conditions and in different 

tissues in C. elegans (Sugimoto, 2004). RNAi phenomenon is affected by several factors 

like, the timing and method of dsRNA treatment, sensitivity of the gene under 

investigation for reduced expression levels, and the temperature at which the RNAi 

experiments were performed (Sugimoto, 2004). Therefore, it is necessary to confirm the 

observed effect of RNAi for a gene with alternative methods. In addition, there is 

significant experimental variability in different RNAi results, which may be due to the 

differences in experimental setups, such as the developmental stage at which the animals 

are treated or the concentration of dsRNA supplied to the worms during RNAi 

experiments (Simmer et al., 2003). Here it is important to take careful note of the 

penetrance and variability of the RNAi effects during interpretation of the RNAi results. 

In this screen we have identified genes that give RNAi-mediated axon guidance 

phenotypes in the nervous system of C. elegans. The nervous system of the worm is 

refractory to RNAi by feeding method (Travernarakis et al., 2000). However, we took 

advantage the nre-1 mutant strain for identification of the genes involved in the nervous 

system of the worm. It is possible that our screen has missed several genes that cause 

subtle defects in axon guidance or are sensitive to the factors that cause a variability in 

RNAi process itself. To identify axon guidance genes that give consistent and penetrant 

defects, we subjected about 150 candidates genes identified in the first round of the 

screening to two more rounds of feeding RNAi experiments to isolate genes that showed 

axon guidance phenotypes in all experiments. After final round of RNAi experiments, 

we identified 63 clones representing 57 genes as axon guidance genes. This data showed 

that experimental variability existed in our RNAi results and we may have missed several 

genes in this screen that may show axon guidance phenotypes. Indeed, we were unable 

to identify the clone for the lin-11 gene, which is also involved in the process of axon 

guidance and the development of the nervous system (Hutter, 2003). In addition, upon 

sequencing we observed that a few RNAi clones showing axon guidance phenotypes did 

not contain or represent the reported genes. The limitations listed above are difficult to 

control in large-scale screens and hence the absence of a phenotype for a gene in RNAi 

experiments does not rule out a role for that gene in the said phenomoneon. 
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3.8 Types of axon guidance genes identified on chromosome I 

The C. elegans chromosome I has a total of 2856 genes as identified by the genome 

sequencing project (C. elegans Sequencing Consortium, 1998). The feeding RNAi library 

of chromosome I created by Fraser et al. contains 2425 RNAi clones representing about 

2416 genes of the worm. This library has been previously used for feeding RNAi-

mediated genetic screens to identify genes involved in variously biological processes 

(Fraser et al., 2000; Kamath et al., 2003; Ashrafi et al., 2003). By using this library in the 

nre-1 supersensitive background, we were able to identify 57 genes (Table 2-7) that gave 

significant defects in axon guidance of a subset of interneurons and motor neurons of C. 

elegans. The genes identified are of different types ranging from metabolic genes to 

transcription factor and signaling molecules (Figure 2-7). Based on the BLAST protein 

sequence analyses with genes in the databases, we found conserved homologs for 29 of 

the 57 identified genes. The 35 conserved genes have well-characterized or annotated 

homologs in other organisms, while the remaining 22 genes are novel with some having 

homologs to genes in other model organisms like Drosophila and mammals (Table 2-5), 

but their functions are unknown. Of the 35 conserved, ten genes are transcription or 

translation factors and remaining genes encode signaling molecules (eight genes) and 

transmembrane receptor (four genes), respectively. Another three conserved genes 

represent components of the cytoskeleton and are likely to be regulated by the signaling 

molecules during the process of axon guidance. While six genes of other genes group are 

conserved genes involved in various intracellular processes (see Table 2-7). Of the 

remaining genes, we have identified 22 genes that are novel with no previously described 

annotated homologs, 9 of them are conserved in higher organisms while 13 genes are 

apparently nematode specific. Table 2-7 also lists the four genes, i.e. unc-13, unc-14, unc-40 

and unc-73, which are previously known to be involved in the nervous system of C. 

elegans. These were used to test the neuronal RNAi efficiency of the nre-1 mutant strain 

(Table 2-5) and they serve as positive controls in the screening approach used.  

 

3.8.1 Transcription factors 

Out of the 57 genes identified, four genes (Table 2-7) represent transcription factors. In 

different model organisms, a number of transcription factors have been implicated from 

the selection of neuronal precursors to the specification of neuronal subtypes during the 

development of the nervous system (reviewed by Shirasaki and Pfaff, 2002). Of the 
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different families of transcription factors, the LIM-homeodomain transcription factors 

have been extensively studied in the development of motor neuron subtypes, where they 

work in a combinatorial fashion to control the gene expression networks (Jacob et al., 

2001; Shirasaki and Pfaff, 2002). However, these transcription factors are expressed only 

in a few subsets of neurons and are unlikely to define the neuronal complexity of the 

nervous system. This points out the need of identification of other transcriptions factors 

that are involved in the development of the nervous system.  

In the case of axon guidance mechanisms in C. elegans, only a few transcription factors 

are studied to demonstrate the link between the activity of the transcription factors and 

the types of axon guidance molecules they may control. In the nematode, a nuclear 

hormone receptor gene, fax-1, has been shown to be required for guidance of axons in the 

nerve ring, the VNC, and for normal expression of a few neurotransmitters in the AVK 

interneurons (Much et al., 2000). Here fax-1 coordinately regulates the transcription of 

genes that function in the selection of axon pathways, neurotransmitter expression and, 

perhaps, other aspects of the specification of neuron identity. The second example of 

transcription factor regulating axon guidance in C. elegans is the gene unc-3, a member of 

the O/E (Olf-1/EBF) family of transcription factors. unc-3 is expressed in certain 

chemosensory neurons throughout their development and is also expressed transiently in 

developing motor neurons when these cells undergo axonal outgrowth controlling 

guidance of the axons of the motor neurons (Prasad et al., 1998). In addition, recently a 

zinc finger transcription factor, zag-1, has been shown to be required for control of 

neuronal differentiation and axon outgrowth in the worm (Wacker et al., 2003). In this 

study we have identified two new zinc-finger domain transcription factors (ZC328.2 and 

Y95B8A.7) along with two known transcription factors (hmg-3 and lin-59) as regulators of 

axon guidance mechanisms. It will be important to study the expression pattern and the 

types of genes these zinc-finger domain genes regulate in the nervous system to get 

insight into their roles in the developing nervous system of the worm. In the case of hmg-3 

(HMG group homolog, www.wormbase.org) and lin-59 (trithorax homolog, Chamberlin 

and Thomas, 2000), they have been implicated in various biological processes in C. 

elegans, however, their roles in axon guidance are not known.  
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3.8.2 Signaling molecules and receptors 

Several of the genes identified in this study are receptors and intracellular signaling 

molecules. Among intracellular signaling genes our identification of a Wnt signaling 

molecule pry-1 (axin homolog in C. elegans) as involved in axon guidance is important as 

the Wnt signaling pathway has been implicated in various developmental events in 

model organisms. In C. elegans it plays important roles in the development of embryo, cell 

fate specification and the determination of cellular polarity and migration (Korswagen, 

2002). Concerning the roles of Wnt signaling in axon guidance, some Wnt ligands have 

been implicated in the mechanisms of axon guidance in Drosophila and mouse (reviewed 

by Zou, 2004). However, the roles of intracellular molecules that specifically control 

these mechanisms in not clearly understood. In C. elegans, several Wnt signaling molecule 

mutants are available and our identification of pry-1 as an axon guidance gene should 

provide a starting point to future studies on how the Wnt signaling factors interact to 

perform a complex process like axon guidance in a simple animal like the nematode 

worm C. elegans. Secondly, mutants of several Wnt pathway genes that grow to 

adulthood can be tested for their roles in the development of the nervous system in the 

worm in general as currently no information is available on these genes with respect to 

their potential roles in axon guidance mechanisms in C. elegans. 

Further genes that have been studied previously for different biological processes and 

isolated here as causing RNAi-mediated axon guidance defects include ced-1 (a receptor 

protein kinase; Zhou et al., 2001), nmy-2 (non-muscle myosin homolog; Guo and 

Kemphues, 1996), sur-2 (a novel gene; Howard and Sundaram, 2002) and unc-101 (a 

clathrin coat component; Lee et al., 1994). These genes have many mutants available in 

C. elegans. However, they have not yet been implicated in any of the mechanisms of axon 

guidance. The ced-1 gene was first identified as a gene that when mutated prevents the 

engulfment of corpses of the cells that undergo apoptosis (Zhou et al., 2001). It is a novel 

receptor protein kinase that is expressed strongly in the nervous system of the worm, 

however, the molecules upstream and downstream of it are unknown (Zhou et al., 2001). 

Our identification of ced-1 as an axon guidance gene provides new information on the 

potential extra roles of this gene in C. elegans, besides being involved in the scavenging of 

dead cells. The second gene, unc-101, is a component of intracellular membrane 

trafficking machinery, and axon guidance phenotype caused by this gene could be a 

secondary effect of its role in the transport of molecules among different compartments of 
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the cell. The other two genes, nmy-2 and sur-2, are not studied with respect to their roles 

in the nervous system. However, nmy-2 is a non-muscle myosin and mutations in this 

genes are embryonic lethal precluding its use to study its roles in the nervous system of C. 

elegans (Guo and Kemphues, 1996). sur-2 is a novel gene with no appreciable homology 

outside the nematode species, however, mutations in this gene cause very penetrant 

vulvaless phenotype and it is associated with the Wnt signaling pathway in C. elegans 

(Howard and Sundaram, 2002).  

We have also identified several genes that include protein kinases, phosphotases and 

membrane receptors (Table 2-7). The soluble or membrane associated protein kinases 

and phosphotases are the molecular effectors of the signaling pathways (Pires-daSilva 

and Sommer, 2003). They play important roles in the transduction and regulation of 

signaling events in the cell. Defects in these genes cause many diseases, cancers and 

developmental defects in organisms. In C. elegans several protein kinases and 

phosphotases have been identified in various genetic screens and have been implicated in 

a variety of biological processes from the embryonic development to axon guidance 

mechanisms. Our identification of five genes with a kinase or phosphotase domain 

(F26E4.5, ZC581.9, F10G8.4, ced-1 and F47B3.1) as new axon guidance genes further 

advances the number of genes known to be involved in axon guidance mechanisms. 

Further characterization of these genes should provide more insight into the developing 

nervous system of C. elegans. It will be also interesting to test the possible roles of these 

protein kinases and phosphatases in the pathways of well-characterized signaling 

molecules like UNC-5, UNC-40 and SAX-3 (see Table 1-1). These genes were identified 

in different forward genetic screens for axon guidance molecules, however, the signaling 

cascades of these molecules are unknown in C. elegans. Besides protein kinases and 

phosphotases we have also identified four genes (B0041.5, C24G7.1, T23B3.4 and 

C09D4.1) that are potential receptor molecules, however, their biological functions are 

yet unknown. Characterizing these genes will be important for future studies as they may 

act as important regulators of signaling processes. 

 

3.8.3 Other conserved genes 

The other genes that are listed in the Table 2-7 have a variety of  biological functions, like 

several of them are involved in basic metabolic processes and cytoskeleton organization 

in the cell. The RNAi phenotypes observed in these genes is likely to be due to the 
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disruption of metabolic processes or cytoskeleton in the cell leading to developmental 

defects including axon guidance defects.  However, notable among these genes is the 

gene nas-5, which is a member of astacin family of metalloproteases (Mohrlen et al., 

2003). Astacins are extracellular enzymes postulated to be involved in modulation of 

extracellular matrix components and/or processing of extracellular proteins that acts as 

ligands for signaling pathways in a variety of biological processes and in different 

organisms (Basbaum and Werb, 1996). In C. elegans a few genes having metalloprotase 

domains have been identified as mediators of developmental and signaling pathways, for 

example, hch-1, a gene required for normal hatching and normal migration of a 

neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1 family of 

metalloproteases (Hishida et al., 1996). 

Other genes like Y65B4BR.4 (a ubiquitin ligase), Y95B8A.10 (a phosphodiesterase) and 

novel genes like Y63D3A.9 and D2030.9 are interesting candidate genes to characterize 

in axon guidance mechanisms as several orthologs of these genes have been involved in 

important developmental and signaling processes. However, they have not been 

implicated in any of the mechanisms involved in the development of nervous system and 

axon guidance.  

 

3.9 Validation of the screening approach 

The screening strategy used here is novel and rapid, however, to validate that it is able to 

identify genes that are specifically involved in axon guidance in the nervous system of C. 

elegans, it was necessary to show that the genes identified in this screen are indeed 

required for axon guidance by alternative methods. To this end, we took advantage of 

genetic mutations available in three previously characterized genes ced-1, pry-1 and unc-

101 and that we identified in this study as axon guidance genes. The mutants of these 

genes were crossed to GFP/YFP marker strains that labeled the axons of a subset of 

motor neurons and interneurons. Then the resultant transgenic mutants were examined 

for axon guidance defects in their nervous systems (Figure 2-9). The null mutants of these 

genes indeed gave axon guidance defects in axons of the fluorescently labeled neurons, 

which were comparable to the defects observed in the RNAi treated animals of the same 

genes (Figure 2-6). These results demonstrated the effectiveness of the RNAi screening 

strategy used for identification of axon guidance genes. 
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In addition, we were also able to isolate the four genes, namely unc-13, unc-14, unc-40 and 

unc-73 of the five genes located on chromosome I (Table 2-5) that were used to test the 

neuronal RNAi effectiveness of the nre-1 strain. These genes have been previously shown 

to be required for different developmental and axon guidance mechanisms in the nervous 

system of C. elegans . They have been extensively studied with respect to their roles in 

axon guidance mechanisms and the nervous system development. They provide positive 

controls to the screening strategy of this study establishing its workability in the neurons 

of C. elegans. However, we could not identify the fifth gene lin-11, which is also involved 

in axon guidance in the ventral cord of C. elegans (Hutter, 2003), probably due to lack of 

RNAi clone corresponding to this gene in the feeding RNAi library or variability 

observed in feeding RNAi protocols (see Section 3.7). 

 

3.10 Conclusions and perspective 

A goal of this study was to identify genes that caused axon guidance phenotypes in 

nervous system of C. elegans by a large-scale RNAi-based approach. RNAi is a very 

effective technology for rapid and specific down regulation of genes and has been used in 

several genetic screens to identify genes required for a variety of biological functions in C. 

elegans. However, the feeding RNAi strategy did not work in the nervous system of C. 

elegans, and to overcome this problem we started with a genetic screen to isolate mutants 

of the worm that are efficient for RNAi in the nervous system. We isolated and 

characterized one such mutant nre-1, which shows efficient RNAi of neuronally 

expressed genes. Using this supersensitive mutant we screened the entire chromosome I 

feeding RNAi library representing 2416 genes to isolate 57 new genes that showed 

significance defects in the guidance of axons of a subset of interneurons and motor 

neurons in C. elegans. Further studies on these genes should provide us with more 

information on the biological reactions behind the phenomenon of axon guidance. They 

may also provide information on the missing components of currently known signaling 

pathways as in the case of several axon guidance genes in C. elegans the upstream and/or 

downstream molecules are not known. However, many of the genes we identified in this 

screen have no genetic mutants available and isolation of mutants by genetic screens or 

deletion by PCR-based strategy will be required. 

The screening strategy developed here is also applicable to the study of genes involved in 

different biological processes in the nervous system, which are otherwise not accessible to 
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RNAi-mediated knockdown procedure in the wild-type animals. For example, our 

screening strategy can be used for identification of genes required for processes like 

chemotaxis and thermotaxis in the worm. The nre mutants are valuable tools for these 

types of screens and molecular characterization of these mutants may also provide new 

insight into the RNAi mechanisms involved in the nervous system. Especially, the 

molecular identity of the nre-1 mutant should be helpful to better understand the 

mechanism of RNAi in the nervous system of C. elegans. On the other hand, this study 

has exclusively dealt with the genes present on chromosome I of C. elegans. However, 

extension of the screening strategy to the complete genome of the worm is desirable as 

this will lead to identification and assignment of several genes that are potentially 

involved in the development of the nervous system. Secondly, it should also facilitate 

rapid characterization of interesting genes that have important structural features, for 

example, transmembrane segments, kinase or phosphatase domains.  



Materials and Methods 

 

 72 

4 MATERIALS AND METHODS 

 

4.1 C. elegans strains and culture conditions 

The wild-type strain was C. elegans variety Bristol strain N2. The Hawaii polymorphic 

wild-type strain of the worm was CB4856. All strains were maintained at 20°C unless 

otherwise mentioned using standard methods (Brenner, 1974). They were maintained on 

the nematode growth media (NMG) plates containing antibiotics as indicated. Strains 

were kept free of contaminates like bacteria and fungi by periodic clean-up procedures 

that included use of antifungal and/or antibiotic agents. The synchronous cultures of 

worms were obtained from starving populations of daure larvae. Several of the strains 

listed below were obtained from Caenorhabditis Genetics Center.  

The mutations and integrated or extrachromosomal array transgenic strains used in this 

study were: CB61, dpy-5(e61) I; CB128, dpy-10(e128) II; CB224, dpy-11(e224) V; CB184, 

dpy-13(e184) IV; CB164, dpy-17(e164) IV; CB450, unc-13(e450) I; CB57, unc-14(e57) I; 

CB271, unc-40(e271) I; CB936, unc-73(e936) I; EG1306, oxIs12[unc-47::gfpntx, lin-15(+)] X; 

MT1196, lin-11(n566) I; VH15, rhIs4[glr-1::gfp, dpy-20(+)] III; VH41, rhIs13[unc-119::gfp, 

dpy-20(+)] V; VH288, hdIs8 [him-4::gfp, rol-6(su1006)]; VH414, hdIs14[odr-2::cfp, unc-129::yfp, 

glr-1::dsred, hsp-16::rol-6(su1006)] IV; VH455 (in CB4856 background), hdEx194[glr-1::yfp, 

unc-129::yfp, unc-47::yfp, rol-6(su1006)]. VH477 (in CB4856 background), hdIs17[glr-1::yfp, 

unc-47::yfp, unc-129::yfp, rol-6(su1006)] I; VH525, nre-1(hd20) X, hdIs10[glr-1::yfp, unc-

47::dsred, unc-129::cfp, hsp-16::rol-6(su1006)] V; VH545 (VH477 three times outcrossed to 

N2), hdIs17[glr-1::yfp, unc-47::yfp, unc-129::yfp, rol-6(su1006)] I; VH624, nre-1(hd20) X, 

rhIs13[unc-119::gfp; dpy-20(+)] V; VH715, nre-1(hd20) X, hdIs17[glr-1::yfp, unc-47::yfp, unc-

129::yfp, rol-6(su1006)] I, hdIs10[glr-1::yfp, unc-47::dsred, unc-129::cfp, hsp-16::rol-6(su1006)] V; 

VH972, pry-1(mn38) I, hdIs17[glr-1::yfp, unc-47::yfp, unc-129::yfp, rol-6(su1006)] I; VH982, 

unc-101(m1) I, oxIs12[unc-47::gfpntx, lin-15(+)] X and VH1101, ced-1(e1735) I, hdEx191[glr-

1::yfp, unc-129::yfp, unc-47::yfp, rol-6(su1006)]. The strain VH715 for the feeding RNAi 

experiments was created from crossings of the strains VH545 and VH525 and selecting 

for the presence of both the nre-1 mutation and the hdIs17 array in the F2 progeny. 

However, VH715 also contains the hdIs10 array of VH525 origin. All the strains that 

contained the hdIs17 array are partially Hawaii for chromosome I due to the original 

transgenic strain VH477, which was created in CB4856 background. This strain also 
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contains the dominant rol-6(su1006) allele that causes a rolling (Rol) phenotype in the 

transgenic worms. 

 

4.2 Plasmid construction and germline transformation  

To make the glr-1::yfp construct, the Pst1-BamHI fragment upstream of the glr-1 gene of 

C. elegans from the plasmid pVH14.01 was cloned into the multicloning site of plasmid 

pVH20.01 (this plasmid is a derivative of Andy Fire’s pPD95.75 that contains the 

promoterless yellow fluorescent protein (YFP) coding region for creating transcriptional 

gene fusions) in front of the YFP coding sequence to created the plasmid pVH10.13. To 

make the unc-129::yfp construct, the XbaI-BamHI fragment upstream of the unc-129 gene 

from the plasmid pVH14.03 was cloned into pVH20.01 to created the plasmid pVH10.14. 

Similarly, to create the unc-47::yfp fusion, the Kpn1-SpeI fragment upstream of the unc-47 

gene from the plasmid pVH10.18 was cloned into pVH20.01 in front of the YFP coding 

sequence to created plasmid pVH10.34. The plasmids pVH10.13, pVH10.14, pVH10.18 

and pVH10.34 have been made by Suse Zobeley.  

The triple YFP transgenic worm strains were produced by co-injecting plasmids 

pVH10.13, pVH10.14, pVH10.34 and pRF4[rol-6(su1006)] at a concentration of 25-35 

ng/µl each into the gonads of young adult worms as described (Mello et al., 1991). For 

example, the polymorphic Hawaii strain CB4856 was used to create the triple YFP 

transgenic worm strain VH455 containing the stably propagating extrachromosomal 

array hdEx194 with the three YFP fusions genes. Then the hdEx194 array was integrated 

into the genome by UV mutagenesis to create the integrated transgene hdIs17 line in the 

Hawaii background. In brief, ∼300 young adult animals with the hdEx194 array were 

places on a 10-cm NMG plate and exposed to 200x100 µJoule of UV radiation in a UV-

wave oven. The treated animals were allowed to recover and then healthy transgenic 

animals were cloned on several 5-cm NMG plates. F1 progeny of the treated animals 

were cloned further and animals showing 100% propagation of the transgene were 

isolated. One stable isolate was outcrossed several times to CB4856 animals to remove 

background mutations and named VH477. The dominant transformation marker pRF4 

encodes an abnormal cuticle collagen ROL-6 that when incorporated into the cuticle 

creates rolling movement in the transformed worms (Mello et al., 1991). 
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4.3 Isolation of nre mutants 

The nre mutants were isolated after EMS mutagenesis of the worm strain VH41 (rhIs13 V 

[unc-119::gfp, dpy-20(+)]). VH41 contains the transgene (rhIs13) that expresses the GFP in 

the entire nervous system of the worm under the control of promoter of the unc-119 gene 

(Maduro and Pilgrim, 1995). We decided to use this transgenic strain with the reasoning 

that the expression level of GFP in the nervous system is moderate and any subtle change 

should be readily detectable after treatment with RNAi for the GFP in the nervous 

system of the animals. As depicted in Figure 2-2, ∼1000 healthy L4 hermaphrodites of 

VH41 strain grown on the OP50 bacteria food were treated with 50 mM EMS for 4 h in 

M9 buffer (6 g Na2HPO4, 3 g KH2PO4, 5 g NaCl, 0.25 g MgSO4•7H2O per liter) and 

allowed to recover on an NGM plate for further 4 h. Then 5-7 healthy looking and 

normally crawling animals were allowed to lay eggs onto 10 NGM plates with GFP 

RNAi bacteria as food. The GFP RNAi bacteria food was induced with IPTG on the 

NGM plates for about 48 h at room temperature. The treated animals were allowed to 

grow for two generations leading to ∼20000 mutagenized genomes. Care was taken 

during the growth of worms so that the progeny worms did not starve and had sufficient 

amount of GFP RNAi bacteria food on the feeding plates. Occasionally, animals were 

transferred to new plates so as to prevent the starvation of growing population. All 

worms were grown at 20°C, however, they were occasionally stored at 15°C for no more 

than a day in order to reduce their growth rate for the convenience during screening 

protocol. After 5 days the F2 progeny were screened for the mutants with loss of GFP in 

the nervous system in the presence of sufficient amount GFP RNAi bacteria. Mutants 

that showed reversible loss of  GFP in the nervous system were isolated and retested more 

that three times. Then were backcrossed to the wild-type or parental (i.e. VH41) strain for 

three times. In this screen we isolated two nre mutants, namely hd20 and hd21. The hd20 

mutation was named nre-1(hd20) and as it showed robust neuronal RNAi efficiency it was 

used for further experimentations.  

 

4.4 Mapping of the nre-1 mutation 

To facilitate the use of nre-1(hd20) mutation in genetic experiments we mapped the 

genomic position of the nre-1(hd20) by two-factor analysis. We used mapping strains with 

mutations in dpy genes and chromosomally integrated GFP marker transgenes linked to 

different chromosomes. The nre-1(hd20) mutant animals carrying the pan-neuronal GFP 
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transgene rhIs13 were three times outcrossed with wild-type or parental (i.e. rhIs13 

containing strain VH41) animals and maintained in the rhIs13 background for easy 

detection of Nre phenotype. The outcrossed strain VH624 (nre-1(hd20), rhIs13 V [unc-

119::gfp; dpy-20(+)]) was used for all subsequent mapping experiments. In the first round 

of two factor mapping experiments, VH624 hermaphrodites were crossed to wild-type 

males to obtain nre-1(hd20)/+; rhIs13/+ males. These males were then crossed to 

hermaphrodites of various Dpy mutants representing linkage groups (LG) I-V (see Table 

2-3) on normal bacteria food. From the F1 progeny non-Dpy, GFP positive 

hermaphrodites were selected and further grown on GFP RNAi plates. Next, the Dpy, 

GFP positive F2 animals were scored for loss of GFP in the nervous system due to the 

presence of nre-1(hd20) mutation. Here the advantage of a few neurons that did not show 

RNAi effect was taken to score for animals with rhIs13 transgene. From this analysis the 

location of nre-1(hd20) mutation was not expected to be present on LGI-V (Table 4.1). nre-

1(hd20) also did not show any relation to LGV due to the fact that the transgene rhIs13 is 

located on chromosome V and they were easily separable form each other. These 

experiments pointed to the presence of nre-1(hd20) mutation on chromosome X. 

Secondly, during crossing experiments we observed that the number of males expected 

from crosses between wild-type males and nre-1(hd20) hermaphrodites was unexpectedly 

low and in some cases no cross progeny males were observed. These experiments led us 

to reason that nre-1(hd20) must be located on chromosome X. To test the presence of nre-

1(hd20) on chromosome X, a X-chromosomally integrated GFP transgene (oxIs12 X) was 

used in mapping experiments. nre-1(hd20) animals are temperature sensitive sterile and 

produce almost no progeny at 25°C and hemizygous nre-1(hd20) males are also not viable 

at 25°C. However, the hemizygous males grow normally at 20°C. Therefore, males 

heterozygous for oxIs12 were crossed to nre-1(hd20) hermaphrodites and GFP positive F1 

animals were allowed to grow at 25°C. In the case of F2 progeny if nre-1(hd20) is linked to 

chromosome X and is recessive then all the progeny should be GFP positive as the nre-

1(hd20) homozygous animals do not develop and heterozygous animals are all GFP 

positive. As depicted in Table 2-4, of 9 F1 GFP/+; nre-1(hd20) /+ animals all gave rise to 

GFP positive F2 progeny. This confirmed that the GFP positive chromosome X 

complements the temperature sensitive sterility of the nre-1(hd20) mutation and therefore 

they are on the same chromosome. Similar tests were carried out for chromosome III and 

IV carrying GFP positive integrated transgenes. In the case of chromosome III, out of 11 



Materials and Methods 

 

 76 

F1 animals (rhIs4/+, hd20/+), 3 gave all GFP positive and 8 gave mix GFP/no-GFP F2 

progeny. While in the case of chromosome IV, out of 10 F1 animals (hdIs14/+, hd20/+) 

3 gave all GFP positive and 7 gave mix GFP/no-GFP F2 progeny indicating that the nre-

1(hd20) is not associated with either of the chromosomes. These data confirmed the 

location of nre-1(hd20) on chromosome X of C. elegans.  

 

4.5 Feeding RNAi experiments 

The bacteria used for feeding RNAi experiments contained an inducible plasmid vector 

(also called feeding vector, L4440) carrying a fragment corresponding to a gene for 

production of dsRNAs between two T7 promoters in inverted orientation (Timmons and 

Fire, 1998). This feeding vector was then transformed into E. coli strain (HT115(DE3)) 

lacking the RNasesIII gene and carrying a transgenic element integrated in the genome 

for IPTC (iso-propyl-β-D-thio-galactoside) inducible expression of a T7 RNA polymerase 

fusion gene. The T7 RNA polymerase is highly processive T7-bacteriophage enzyme that 

initiates transcription at T7 promoter sites. Upon induction by IPTG the T7 RNA 

polymerase produced in bacterial cells rapidly synthesizes complementary ssRNAs 

corresponding to the fragment between two T7 promoters. These ssRNAs anneal to form 

dsRNAs in vivo in bacteria. When these bacteria are fed to worms, the dsRNAs 

systemically spread to different cells of the worm through gut cells, initiating the RNAi-

mediated destruction of the cognate mRNAs.  

The chromosome I feeding-RNAi clone library was created by Fraser et al. (2000) and 

was obtained from MRC gene service in 384-well plate format. We transferred the RNAi 

clones from the 384-well plate format to the 96-well plate format by a 96-pin replicator. 

Bacterial cultures were grown from the 96-well plate clones incubated overnight in 96-

deep well bacteria culture plates containing LB medium with 100 µg/ml amphicilin. The 

feeding RNAi experiments in C. elegans were performed with these overnight grown 

bacteria cultures as described previously (Timmons and Fire, 1998; Fraser et al., 2000). 

About 300 µl of each culture was seeded onto 3.5-cm NGM plates containing 1 mM 

IPTG and 25 µg/ml carbenicilin and incubated for about 24 h at room temperature. Care 

was taken that the bacterial cultures on the plates are completely dry before placing 

animals for feeding experiments. To screen for the genes on chromosome I by feeding 

RNAi method, each clone from the chromosome I RNAi library was fed to the 

transgenic strain VH715 by placing about 5 L3-L4 stage hermaphrodite worms onto the 



Materials and Methods 

 

 77 

incubated plates that had expressed dsRNA in bacteria for each gene. The worms were 

allowed to feed on the RNAi bacteria for 5-7 days to at least one generation. The 

phenotypes of adults and progeny of about 50 worms were scored under a fluorescence 

microscope by washing the worms in M9 buffer and amounting it on glass slides with 

agar pads. The feeding RNAi clones that showed axon guidance defects in about 50% of 

the fed animals were isolated and retested for their ability to cause axon guidance defects 

in the nre-1(hd20) strain.  

 

4.6 Microscopy and imaging techniques  

Animals were washed from growing populations and were incubated with 10 mM 

levamisol or 100 mM NaN3 in M9 buffer for 1 h to immobilize them and mounted onto 

3% agar pads on object slides. For large-scale screening immobilized animals were placed 

onto agar pads and observed under a conventional fluorescence microscope (Axioscope or 

Axiovert135, Zeiss) with 20X, 40X and/or 100X objective lenses using suitable 

fluorescence color filters for fluorescence experiments or Normaski filter for differential 

interference phase contrast examinations. Stacks of confocal images were taken on a Leica 

TCS SP2 microscope at about 0.2 mm vertical pitch distance. Images were stored and 

maximum intensity projections of all images from a given animal were generated by 

ImageJ software available at http://rsb.info.nih.gov/ij. The images were edited using 

routine imaging softwares, for example, Adobe PhotoshopCS 8.0. Under the conditions of 

microscopic examinations described above the mounted specimens remained intact for 

more than two hours with no detectable change in their morphology or fluorescence 

properties. 

 

4.7 DNA Sequencing  

The RNAi clones that showed axon guidance phenotypes were isolated from the host 

bacteria for DNA sequencing using standard plasmid preparation kits (Qiagen) to confirm 

the correctness of the inserted RNAi gene fragments and also to remove false positive 

clones that did correspond to the reported genes in the feeding RNAi library, but had 

wrong or no inserts in the plasmids. The RNAi clones were sequenced bidirectionally on 

an automated DNA sequencer (ABI 3100 DNA Sequencer) by using the feeding vector 

(plasmid L4440) specific primers HH_sepr_13 (3`-accgtattaccgcctttgagtgag-5`) and 

HH_sepr_14 (3`-ccagctggcgaaagggggatgtgctgc-5`), which are located upstream and 
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downstream of the polycloning site of the feeding vector L4440, respectively. For 

amplifying PCR experiments, the BigDye cycle sequencing kit (Perkin Elmer) was used 

as per manufacturer’s protocol. The sequences were matched to the corresponding genes 

in the worm genome database to confirm the identities of the positive clones. Out of the 

63 clones, 57 clones contained the correct sequences corresponding to the cognate genes 

they represent. However, the three clones representing the genes M01G2.4, Y106G6E.6 

and ZK973.6 contained the worm sequences that did not correspond to any part of the 

curated genes. The remaining three clones contained sequences corresponding to the nas-

5 (T23H4.3) gene and not for the reported genes showing possible contamination of 

stocks of the bacteria clones. 

 

4.8 Bioinformatic analysis and classification of genes  

The bioinformatic analysis of the protein sequences of the 57 RNAi clones that 

represented correctly the cognate genes was performed to identify their homologs in other 

organisms. The protein sequences of the 57 genes were collected from the C. elegans 

database (www.wormbase.org, release WS133) and used to perform protein-protein 

BLAST comparisons with human, mouse and Drosophila protein sequences available at 

the GenBank database (www.ncbi.nlm.nih.gov/Genbank). Each individual gene 

sequence was tested against human, mouse or Drosophila sequences with a p-value of  

>10-10 for a sequence length of >30% between the C. elegans gene sequence and that of the 

other organisms. The C. elegans genes were categorized based on their homology with the 

characterized or annotated genes from GenBank for the purpose of their putative 

functions. In the case of genes that did not show any homology with the GenBank 

protein sequences were labeled novel genes. However, these genes may have some 

similarity to the genes of other organisms, as the parameters used above to perform 

sequence comparisons do not consider low similarities between the sequences. Genes 

that have homologs in the organisms, but their functions are unknown were labeled as 

conserved novel genes. Annotated genes were classified based on their categorization 

reported in the databases or literature.  
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