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Abstract. In this short note we prove the existence of a class of transitive,
locally compact, countable state Markov shifts whose automorphism groups split
into a direct sum of two groups; one being the infinite cyclic group generated by the
shift map, the other being a countably infinite, centerless group H, which contains
all automorphisms that act on the orbit-complement of certain finite sets of symbols
like the identity. Such a decomposition is well known from the automorphism groups
of coded systems, in which case one can explicitly construct example subshifts
with Aut(σ) = 〈σ〉 ⊕ H to a variety of abstract groups H. A similar result for
SFTs is yet only established for full p-shifts (p prime), where H equals the set of
inert automorphisms. For general SFTs no direct sum representation is known so
far. Thus our result may help to distinguish between the countable automorphism
groups of SFTs and countable state Markov shifts.
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1. Preliminaries

We give a short introduction to the notions and definitions used in this paper.
For a general overview in symbolic dynamics and some background information
the author favors the monographs by D. Lind and B. Marcus [LM] or by
B. Kitchens [Kit]. A more detailed reference on questions concerning notation
can be found in the first section of [Sch2].
Let AZ denote the product space of all bi-infinite sequences over a countably infinite
alphabet A endowed with the product topology of the discrete topology on A.
AZ is a non-compact, totally disconnected, perfect metric space. The (left-)shift
map σ : AZ → AZ, σ

(
(xi)i∈Z

)
:= (xi+1)i∈Z is a homeomorphism inducing some

dynamics on AZ.
Any shift-invariant subset X of AZ endowed with the induced subspace topology,
which is generated by the countable set of clopen cylinders n[a0 . . . am] :=
{(xi)i∈Z ∈ X | ∀ 0 ≤ i ≤ m : xn+i = ai} (n ∈ Z, m ∈ N0) yields a subshift (X, σ).
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Two subshifts (X1, σ1) and (X2, σ2) are (topologically) conjugate, if there is a
shiftcommuting homeomorphism γ : X1 → X2. We denote by Pres(X) the set of
presentations of the subshift (X, σ), i.e. the set of all subshifts conjugate to (X, σ).
A subshift (X, σ) is called countable state Markov shift, if its set of presentations
contains an edge shift (XG, σ) on some directed graph G = (V,E) with
countably infinite edge set E and σ acting on the set of bi-infinite walks XG :={
(xi)i∈Z ∈ EZ | ∀ i ∈ Z : t(xi) = i(xi+1)

}
along the edges of G.

A subshift (X, σ) is called locally compact, if X is locally compact. For countable
state Markov shifts this is equivalent to the compactness of any (every) cylinder
set and to the local finiteness of G for any (every) graph presentation (XG, σ).
A subshift (X, σ) is called (topologically) transitive, if X is irreducible. An edge
shift (XG, σ) is transitive, iff G is strongly connected.

Let (X, σ) be some subshift. A map ϕ : X → X is called an automorphism,
if ϕ is a shiftcommuting homeomorphism from X onto itself. Obviously the set
of automorphisms forms a group Aut(σ) under composition which is a conjugacy-
invariant reflecting the inner structure and symmetries of the subshift.
The investigation of Aut(σ) for topological countable state Markov shifts has been
initiated in [Sch2] where the algebraic properties and the subgroup structure of
the automorphism group played the dominant role. In particular the similarities
between SFTs and countable state Markov shifts with Aut(σ) countable have
been emphasized and the question how to distinguish between their automorphism
groups has been asked. In this paper we exhibit a subclass of locally compact,
countable state Markov shifts whose countably infinite automorphism groups
decompose into a direct sum.
For SFTs we do not know of any such decomposition except in the case of full-shifts
on an alphabet of prime cardinality p, where the automorphism group splits due
to the dimension group representation δ : Aut(σp) → Aut(sp) ∼= Z into the cyclic
group generated by the shift map being the image of δ and the centerless, normal
subgroup of inert automorphisms being the kernel of δ (see e.g. [Wag] or [KRW]).
Unfortunately even this partial result is rather non-constructive due to the fact that
the set of inert automorphisms is not fully understood for general SFTs. Therefore
further investigations in this direction may give rise to the demanded difference and
thus solve the open problem in [Sch2].

2. Main results

The research carried out and published by D. Fiebig and U.-R. Fiebig in [FF2]
proves that the automorphism groups of coded systems often split into a direct
sum of the cyclic group generated by the shift map and a second group which can
vary – depending on the coded system – in a large set of abstract groups. Moreover
their method is highly constructive.
We will show the same phenomenon for the class of transitive, locally compact,
countable state Markov shifts that can be presented as edge shifts on thinned-out
graphs:

Definition 2.1. A strongly connected, locally finite directed graph G = (V,E) with
|E| = ℵ0 is a thinned-out graph, iff it contains a vertex v ∈ V such that the set
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L := {ln | n ∈ N} of first-return-loops at v satisfies:

∀M ∈ N0 ∃N ∈ N : ∀n ≥ N : |ln+1| − |ln| > M (GC)

Remark: The term ’thinned-out’ has been chosen, since the gaps in the sequence
of lengths of the first-return-loops at v grow unbounded (the farer from v, the
thinner the structure of G). For any given bound M there are at most finitely
many first-return-loops at v with length-difference less or equal to M . In particular
the growth condition (GC) for M = 0 implies the existence of at most finitely many
pairs of first-return-loops at v having a common length.

The following two propositions expose some general properties of thinned-out
graphs. Proposition 2.2 proves v to be already a (one-element) vertex-ROME for G,
whereas proposition 2.3 shows that the thinned-out graphs form a proper subclass
of the (FMDP)-graphs as defined in [Sch2]:

A strongly connected, directed graph has the property (FMDP), iff it contains at
most Finitely Many pairwise edge-disjoint DoublePaths.

Recall that a doublepath in a graph G is a pair of two distinct paths of equal length
connecting a common initial with a common terminal vertex. A set of doublepaths
is pairwise edge-disjoint, if no edge from G is part of more than one doublepath in
this set.
As usual a path/loop is called simple, if it has no proper closed subpath.

Proposition 2.2. Let G = (V,E) be some thinned-out graph. The set of first-
return-loops at a vertex v ∈ V satisfies (GC), iff v is part of any bi-infinite walk
along the edges of G. All the first-return-loops at such a vertex v are simple and v

shows up in every non-simple path in G.
Neither does G contain two vertex-disjoint loops nor two vertex-disjoint, bi-infinite
walks.

Proof: ”=⇒”: Suppose for every vertex v ∈ V there is a loop lv := e1 e2 . . . e|lv|
(ei ∈ E) avoiding v, i.e. t(e|lv|) = i(e1) 6= v and ∀ 1 ≤ i < |lv| : t(ei) = i(ei+1) 6= v.
Since G is strongly connected one can choose a shortest path p from v to i(e1)
and a shortest path q from t(e|lv|) back to v. The subset

{
p lv

i q
∣∣ i ∈ N0

}
of first-

return-loops at v contradicts the growth condition (GC) for M := |lv|. As G is
thinned-out, it contains at least one vertex that is part of every loop.
Now suppose there is a bi-infinite, simple walk w := . . . w−3 w−2 w−1 . w0 w1 w2 . . .

in G (wi ∈ E, t(wi) = i(wi+1) 6= v ∀ i ∈ Z) avoiding v. Let p1 be some shortest
path connecting v to i(w0). Fix a shortest path p2 from v to i(w−|p1|) and choose an
infinite sequence (qi)i∈N of shortest paths connecting t(wni) with ni :=

∑i−1
j=1 |qj |

back to v. All these paths are non-empty and distinct. Once more they yield an
infinite number of pairs p1 w0 . . . wni qi, p2 w−|p1| . . . w0 . . . wni qi (i ∈ N) of first-
return-loops at v, that violate (GC) for M := |p2|. Therefore any vertex that is not
part of every bi-infinite walk in G does not fulfill (GC).

”⇐=”: Let v ∈ V be contained in any bi-infinite walk along the edges of G and
choose w ∈ V such that the first-return-loops at w satisfy (GC). For w = v the
statement is obviously true. Assume w 6= v. Using the previous part of the proof
w shows up in every bi-infinite walk as well. In particular w is part of any loop in
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Figure 1: Graph presentation of a transitive, locally compact, countable state Markov
shift with (FMDP). The vertex t(a) is a ROME; every bi-infinite walk contains at least
one of the edges labeled a or l.

G and the sequence of lengths of first-return-loops at w and at v agree with each
other. Actually there is either only one simple path leading from w to v or only one
simple path leading from v to w. The first-return-loops at v are cyclically permuted
first-return-loops at w and vice versa.

The remaining statements follow immediately. 2

Proposition 2.3. Every thinned-out graph is a (FMDP)-graph.

Proof: Let G = (V,E) be a thinned-out graph. Assume the set L := {ln | n ∈ N}
of first-return-loops at v ∈ V satisfies the growth condition (GC). As pointed out
in the remark following definition 2.1 the sequence (|ln|)n≥N is strictly increasing
after some bound N ∈ N. Obviously the finite subset F := {e ∈ E | i(e) = v} ∪
{e ∈ E | ∃n ≤ N : e ∈ ln} of edges covers all doublepaths in G. According to
proposition 3.1 in [Sch2] this proves G to be a (FMDP)-graph. 2

Figure 1 shows an example of a (FMDP)-graph that is not thinned-out. The
lengths of the first-return-loops at t(a) are 1, 4, 6, 8, 10, . . . , whereas for any other
vertex this sequence comprises all large enough natural numbers.

Obviously definition 2.1 is a priori not invariant under (topological) conjugacy in
the sense that given a transitive, locally compact, countable state Markov shift
(XG, σ) defined on a thinned-out graph G we can – using a finite number of state
splittings – easily construct another graph presentation that contains vertex-disjoint
loops and is therefore no longer thinned-out.
We overcome this technicality by calling a transitive, locally compact, countable
state Markov shift (X, σ) thinned-out, iff its set of presentations Pres(X) contains
an edge shift on some thinned-out graph. Via this little detour we define a conjugacy
invariant subclass of all countable state Markov shifts.

The reason for studying this class is the rigid structure of a thinned-out graph G

forcing each automorphism to map the set of σ-orbits corresponding to bi-infinite,
simple walks along the edges of G onto itself. Usually this need not be the case
even for transitive, countable state Markov shifts with (FMDP). We illustrate
this for the edge shift (X, σ) on the (FMDP)-graph displayed in figure 1. There
is an order 2 automorphism ϕ : X → X that scanning a point x ∈ X replaces
every block a l l c1 . . . cn en with a c1 . . . cn+1 en+1 dn+1 (∀n ∈ N) and vice versa. By
continuity ϕ maps the point y := . . . d3 d2 d1 . a c1 c2 c3 . . . ∈ X that corresponds to
a bi-infinite, simple walk into ϕ(y) = . . . d3 d2 d1 . a l l c1 c2 c3 . . . ∈ X, a point that
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does not correspond to any bi-infinite, simple walk in G.
Automorphisms of topological Markov shifts seem not to distinguish between bi-
infinite walks and bi-infinite, simple walks as long as the minimal differences
between the lengths of first-return-loops remain bounded. Whereas for thinned-
out graphs (unbounded length-differences) they have to respect simple walks, as we
will see below. This property can be used to show that any automorphism acts on all
points avoiding a certain finite set of edges like a power of the shift map. Moreover
this set can always be chosen from the complement of all bi-infinite, simple walks.
Therefore one can factor out the cyclic group generated by σ and represent any
automorphism as a composition of a power of the shift with an automorphism which
is the identity on all points corresponding to bi-infinite, simple walks. This gives the
desired direct sum decomposition of Aut(σ) for edge shifts on thinned-out graphs.
As the existence of such a decomposition is a purely group theoretical property of
the conjugacy invariant automorphism group, the result holds – independently of
the chosen presentation – for all thinned-out Markov shifts.

Theorem 2.4. Let (X, σ) be some thinned-out Markov shift. Any automorphism
acts on the set of σ-orbits corresponding to bi-infinite, simple walks on any graph
presentation on some thinned-out graph like a power of the shift map.
The automorphism group Aut(σ) splits into the direct sum of the cyclic group
generated by σ and another countably infinite, centerless group. Is (X, σ) presented
on a thinned-out graph G = (V,E) one gets:

Aut(σ) ∼= 〈σ〉 ⊕
{
ϕ ∈ Aut(σ)

∣∣ ∃Kϕ ( E finite: Kϕ does not contain any

edge from a bi-infinite, simple walk on G ∧ ϕ|Orb(Kϕ){ = IdOrb(Kϕ){

}
where Orb(Kϕ){ := X \

⋃
n∈Z σn

(⋃
k∈Kϕ

0[k]
)

denotes the orbit-complement of Kϕ.

We postpone the proof of theorem 2.4 to the last section of this paper. Instead to
round off our work we describe some thinned-out graph presentations. Theorem
2.4 can be applied directly to the corresponding subshifts giving examples of
transitive, locally compact, countable state Markov shifts with countably infinite
automorphism groups being a direct sum.
First look at the graph G displayed in figure 1. Let S : N → N be some superlinear
function, i.e. S is monotone and grows eventually faster than any linear function
(like S(n) := n2, S(n) := 2n etc. ). Deleting any edge ei with i /∈ S(N) from G

gives a thinned-out graph.
Figure 2 shows two strongly connected, locally finite, countable graphs. Once more
let S : N → N be a superlinear function. Remove all edges ei, e′j with i /∈ S(2N)
and j /∈ S(2N+1) to get thinned-out graphs with more than one bi-infinite, simple
walk (figure 2, top graph) or even with a canonical boundary (for an exact definition
of this term see [FF1]) consisting of more than one orbit (figure 2, bottom graph).
More complicated thinned-out graphs can be constructed by identifying the vertex-
ROMEs of two or more appropriate thinned-out graphs with each others: For
instance merge two copies G = (V,E) and G′ = (V ′, E′) of the graph from figure
1 by identifying the vertices t(a) ∈ V and t(a′) ∈ V ′ and remove all edges ei ∈ E

with i /∈ S(2N) as well as e′j ∈ E′ with j /∈ S(2N + 1) for S : N → N superlinear.



6 M. Schraudner

r r r r r r r
r r r r r r r
r r r r r r r

- - - - - -

� � � � � �

- - - - - -

? ? ? ? ? ?
6 6 6 6 6 6

6

?

�

. . .

. . .

. . .c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

c′1 c′2 c′3 c′4 c′5 c′6

e1 e2 e3 e4 e5 e6

e′1 e′2 e′3 e′4 e′5 e′6b

a

- - -� � �r r r r r r r
� � � - - -r r r r r r r
? ? ? ? ? ?

6

- �. . .

. . .

. . .

. . .
d′1d′2d′3

c′1c′2c′3

e′1e′2e′3

d1 d2 d3

c1 c2 c3

e1 e2 e3
a

v

Figure 2: Graph presentations of two transitive, locally compact, countable state
Markov shifts. The top graph has two bi-infinite, simple walks whereas the bottom graph
contains four bi-infinite, simple walks and the canonical boundary of its Markov shift
consists of two orbits.

3. Proof of theorem 2.4

This final section is primarily dedicated to the proof of theorem 2.4, even so it
comprises two more propositions (3.2 and 3.3) on the structure of strongly connected
graphs with an one-element vertex-ROME, which may be of general interest.

At first recall that every topological conjugacy γ : X → Y (in particular
every automorphism) between two locally compact, countable state Markov shifts
(X, σX), (Y, σY ) has some kind of local coding-lengths:

∀C ( Y cylinder set ∃ sC ≤ tC ∈ Z :

(xi)i∈Z ∈ γ−1(C) ⇐⇒ sC
[xsC

. . . xtC
] ⊆ γ−1(C) (CL)

In other words γ−1(C) =
⋃

x∈γ−1(C) sC
[xsC

. . . xtC
] and is thus presentable as a

finite union of cylinder sets. The easy argument for this is that C ( Y compact-
open immediately forces γ−1(C) to be compact-open.

We start the proof of theorem 2.4 with a lemma pointing out that any automorphism
not only respects the σ-orbits of bi-infinite, simple walks on a thinned-out graph
but that all corresponding points are just shifted by an uniform amount. This is
due to the unbounded growth of the length differences in the sequence of first-
return-loops at an one-element vertex-ROME. The structure of the graph far away
from this single vertex has thus a large influence on the (non-)existence of certain
automorphisms.

Lemma 3.1. Let (XG, σ) be an edge shift on some thinned-out graph G = (V,E).
Any automorphism ϕ ∈ Aut(σ) induces some permutation on the bi-infinite, simple
walks along the edges of G.
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Moreover ϕ acts on corresponding points like a fixed power of the shift map and so
the permutation induced by ϕ is actually the identity.

Proof: We build up a whole string of arguments based on the local compactness
of XG and the validity of the growth condition (GC) for the set L of first-return-
loops at some vertex v ∈ V . Let F := {e ∈ E | i(e) = v} the finite set of out-going
edges at v, then F constitutes a finite edge-ROME in G.
In the following we do not distinguish between bi-infinite walks on G and σ-orbits
of corresponding points in XG. As ϕ is a shiftcommuting bijection it induces an
injective mapping ϕ̃ : Orb(XG) → Orb(XG), Orb(x) 7→ Orb(ϕ(x)) on the σ-
orbits/walks in the obvious way. To prove the first statement of lemma 3.1 one
has to show that – by choice of F – any automorphism ϕ maps all representatives
x := . . . x−3 x−2 x−1 . x0 x1 x2 . . . ∈ Orb(x) of bi-infinite, simple walks with x0 ∈ F

to representatives of simple walks on G. This is done in the next two claims.
Thereafter surjectivity and thus bijectivity of ϕ̃ restricted to the simple walks
in G immediately follows from the existence of the inverse ϕ̃−1 defined via
ϕ̃−1

(
Orb(x)

)
:= Orb

(
ϕ−1(x)

)
, which itself acts on the bi-infinite, simple walks.

Claim 1. Let K ( E be any finite subset of edges. The distance from an edge in
K to the nearest edge in F is uniformly bounded for all points in XG, i.e. there
exists some bound I ∈ N independent of y ∈

⋃
k∈K 0[k] ( XG such that the block

y[−I,I] does contain an element from F .

Proof: As long as B :=
{
y[−i,i]

∣∣ y ∈
⋃

k∈K 0[k] ∧ i ∈ N ∧ ∀ |j| ≤ i : yj /∈ F
}

is finite (or empty) the statement is trivial. Otherwise at least one Bk :={
y[−i,i]

∣∣ y ∈ 0[k] ∧ i ∈ N ∧ ∀ |j| ≤ i : yj /∈ F
}
⊆ B for some k ∈ K has to be in-

finite. In which case using the local finiteness of G one could inductively choose a se-
quence of admissible blocks

(
b(n)

)
n∈N0

with b(0) := k, b(n+1) := an b(n) cn (an, cn ∈
E) such that

(
Bb(n) :=

{
y[−i,i]

∣∣ y ∈ −n[b(n)] ∧ i > n ∧ ∀ |j| ≤ i : yj /∈ F
})

n∈N0

is a decreasing nested sequence of infinite sets. Since XG is closed this would imply
the existence of a point x ∈ XG with x[−i,i] ∈ Bb(i) ∀ i ∈ N0. x completely avoids
all edges in F and thus contradicts v being a vertex-ROME for G. 2

Since XG is locally compact the finite union of all zero-cylinders 0[f ] with f ∈ F is
compact-open. So for any ϕ ∈ Aut(σ) one can find a finite subset K ( E of edges
(depending on ϕ) with

F ⊆ K and ϕ−1
(⋃

f∈F 0[f ]
)
⊆

⋃
k∈K 0[k] (FP)

Using claim 1 for a set K ( E as assumed in (FP) shows that all representatives
x ∈ XG of simple walks with x0 ∈ F do not contain any edges from K outside the
central block x[−I,I]. So neither the left-infinite ray

(
ϕ(x)

)
(−∞,−I)

nor the right-

infinite ray
(
ϕ(x)

)
(I,∞)

of the image of x under ϕ contains an edge from F .
As a vertex-ROME v shows up particularly in every loop in G. So the simple walks
are characterized by the property of containing precisely one edge starting at v.
Therefore ϕ acts on the representatives of bi-infinite, simple walks in G iff

Claim 2. The central block
(
ϕ(x)

)
[−I,I]

contains exactly one edge from F .
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Proof: According to (CL) the finite block
(
ϕ(x)

)
[−I,I]

has bounded coding-

length, that is there exists J ≥ I such that
(
ϕ(y)

)
[−I,I]

=
(
ϕ(x)

)
[−I,I]

for all
y ∈ −J [x−J . . . xJ ].
Construct a special point y := x(−∞,−1] . x[0,J] ? ? ? x[−J,−1] x[0,∞) ∈ XG where

the central block x[0,J] ? ? ? x[−J,−1] consists of precisely two first-return-loops

lm, ln ∈ L at v chosen by the following procedure:
W.l.o.g. let the elements in L be sorted according to their length, i.e. |li| ≤ |lj |
whenever i ≤ j. The validity of (GC) for L implies the existence of N1 ∈ N such
that |lN1 | > 2J and

∣∣|li| − |lj |
∣∣ > 2I for all i ≥ N1 and j 6= i. Choose lm ∈ L to be

the shortest first-return-loop starting with x[0,|lN1 |). Let N2 ∈ N with |lN2 | > |lm|
and

∣∣|li| − |lj |
∣∣ > |lm| + 2I for all i ≥ N2 and j 6= i. Finally take ln ∈ L minimal

ending in x[−|lN2 |,−1] and set x[0,J] ? ? ? x[−J,−1] := lm ln.

As we have shown above
(
ϕ(x)

)
[−I,I]

has to contain at least one edge from

the set F (v is a vertex-ROME; there is no edge from F in
(
ϕ(x)

)
(−∞,−I)

or(
ϕ(x)

)
(I,∞)

). Therefore define a := max
{
i ∈ Z

∣∣ −I ≤ i ≤ I ∧
(
ϕ(x)

)
i
∈ F

}
and

b := min
{
i ∈ Z

∣∣ −I ≤ i ≤ I ∧
(
ϕ(x)

)
i
∈ F

}
.

Since y(−∞,J] = x(−∞,J], y[|lm ln|−J,∞) = x[−J,∞) and 2J + 1 is a coding-length for(
ϕ(x)

)
[−I,I]

one gets
(
ϕ(y)

)
[−I,I]

=
(
ϕ(y)

)
[|lm ln|−I,|lm ln|+I]

=
(
ϕ(x)

)
[−I,I]

and the

block B :=
(
ϕ(y)

)
[a,|lm ln|+b)

consists of a concatenation of elements from L.
Suppose B = lj ∈ L is a single first-return-loop, to get an immediate contradiction:∣∣|ln| − |lj |

∣∣ =
∣∣|ln| − |lm ln| − b + a

∣∣ =
∣∣|lm|+ b− a

∣∣ ≤ |lm|+ |b− a| ≤ |lm|+ 2I

By choice of ln this estimate would imply lj = ln, but |lm| > 2J ≥ 2I and
−2I ≤ b− a ≤ 0 results in |lj | = |lm|+ |ln|+ b− a > |ln|.
The equivalence yi ∈ F ⇐⇒ i ∈ {0, |lm| , |lm ln|} together with claim 1 yields:

∀ I < i < |lm| − I : yi /∈ K as well as ∀ |lm|+ I < i < |lm ln| − I : yi /∈ K

Consequently the appropriate restrictions on the image point are:

∀ a < i < |lm| − I :
(
ϕ(y)

)
i

/∈ F and ∀ |lm|+ I < i < |lm ln|+ b :
(
ϕ(y)

)
i

/∈ F

Now if B is assumed to start with a loop li ∈ L and end in lj ∈ L the above gives:
|lm| − I − a ≤ |li| ≤ |lm|+ I − a, which can be transformed into

∣∣|lm| − |li|
∣∣ ≤ 2I,

forcing li = lm. In the same manner |lm ln|+b−|lm|−I ≤ |lj | ≤ |lm ln|+b−|lm|+I

can be manipulated into
∣∣|ln| − |lj |

∣∣ ≤ 2I, forcing lj = ln. Finally use b ≤ a to
establish an upper bound on the length of B: |B| = |lm ln| + b− a ≤ |lm| + |ln|.
This shows B = lm ln and a = b. So

(
ϕ(x)

)
[−I,I]

contains precisely one edge from
F and ϕ induces some permutation on the set of bi-infinite, simple walks. 2

We slightly generalize the idea from the proof of claim 2 to show the remaining
statements:

Claim 3. The unique edge from F inside
(
ϕ(x)

)
[−I,I]

is located at a common
coordinate −Mϕ (−I ≤ Mϕ ≤ I) for all representatives x ∈ XG of bi-infinite,
simple walks with x0 ∈ F .

Proof: Let x(1), x(2) ∈ XG be representatives of two distinct bi-infinite, simple
walks on G with x

(1)
0 , x

(2)
0 ∈ F and denote by a1, a2 ∈ {−I, −I + 1, . . . , I} the
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coordinates of the unique edge from F in
(
ϕ(x(1))

)
[−I,I]

,
(
ϕ(x(2))

)
[−I,I]

respectively.
W.l.o.g. let a1 ≥ a2.
As before construct a point y := x

(1)
(−∞,−1] . lm ln x

(2)
[0,∞) ∈ XG with lm, ln ∈ L such

that lm starts with x
(1)
[0,|lN1 |)

and ln ends in x
(2)
[−|lN2 |,−1], where N1, N2 ∈ N are chosen

as in the previous proof (Here J ≥ I is a common coding-length for
(
ϕ(x(1))

)
[−I,I]

and
(
ϕ(x(2))

)
[−I,I]

). Substituting a := a1 and b := a2 the remaining proof carries
over directely from claim 2 and a1 = a2. 2

Since ϕ commutes with the shift map one instantly gets the equivalence xi ∈ F iff(
ϕ(x)

)
i−Mϕ

∈ F for any i ∈ Z and any representative x ∈ XG of some bi-infinite,
simple walk.

Claim 4. ϕ maps any representative x ∈ XG of some bi-infinite, simple walk on
G into Orb(x), i.e. ϕ̃ is the identity.

Proof: Let J ≥ I be a coding-length for
(
ϕ(x)

)
[−I,I]

and define N1 ∈ N as before.

Construct a sequence of points
(
y(k) := x(−∞,−1] l

(k)
m l

(k)
n . l

(k)
m l

(k)
n x[0,∞) ∈ XG

)
k∈N

converging to x: Choose shortest first-return-loops l
(k)
m starting with x[0,|lN1 |+k).

For every k ∈ N fix N
(k)
2 ∈ N such that

∣∣l
N

(k)
2

∣∣ >
∣∣l(k)

m

∣∣ and
∣∣|li| − |lj |

∣∣ >
∣∣l(k)

m

∣∣ + 2I

for all i ≥ N
(k)
2 and j 6= i exactly as above. l

(k)
n be the shortest element in L ending

in x[−|l
N

(k)
2

|,−1]. Since y
(k)
[−|l

N
(k)
2

|,|lN1 |+k] = x[−|l
N

(k)
2

|,|lN1 |+k] and
∣∣l

N
(k)
2

∣∣ >
∣∣lN1

∣∣ + k

this procedure forces the convergence y(k) k→∞−−−→ x.
The image points ϕ(y(k)) satisfy:

∀ k ∈ N :
(
ϕ(y(k))

)
[−I−|l(k)

m l
(k)
n |,I−|l(k)

m l
(k)
n |] =

(
ϕ(y(k))

)
[−I,I]

=

=
(
ϕ(y(k))

)
[−I+|l(k)

m l
(k)
n |,I+|l(k)

m l
(k)
n |] =

(
ϕ(x)

)
[−I,I]

so the blocks
(
ϕ(y(k))

)
[−Mϕ−|l(k)

m l
(k)
n |,−Mϕ)

and
(
ϕ(y(k))

)
[−Mϕ,−Mϕ+|l(k)

m l
(k)
n |) consist

of concatenations of first-return-loops from L. Now prove that these are both equal
to l

(k)
m l

(k)
n as above to establish:(

σ−Mϕ
(
ϕ(y(k))

))
[−|l(k)

m l
(k)
n |,|l(k)

m l
(k)
n |)

=
(
ϕ(y(k))

)
[−Mϕ−|l(k)

m l
(k)
n |,−Mϕ+|l(k)

m l
(k)
n |) =

= l(k)
m l(k)

n l(k)
m l(k)

n =
(
y(k)

)
[−|l(k)

m l
(k)
n |,|l(k)

m l
(k)
n |)

For k increasing
(
σ−Mϕ ◦ ϕ

)
(y(k)) and y(k) coincide on longer and longer blocks

symmetric to the zero-coordinate:
((

σ−Mϕ ◦ ϕ
)
(y(k))

)
[−k,k]

= y
(k)
[−k,k]. As ϕ is

continuous the convergence y(k) k→∞−−−→ x guarantees ϕ(y(k)) k→∞−−−→ ϕ(x) and in the
limit one gets the demanded result:

ϕ(x) = lim
k→∞

((
ϕ ◦ σ−Mϕ

)(
σMϕ(y(k))

))
[−k,k]

= lim
k→∞

(
σMϕ(y(k))

)
[−k,k]

= σMϕ(x)

2

Combining claims 3 and 4 ϕ acts on the set of points corresponding to bi-infinite,
simple walks like the Mϕ-th power of the shift map. 2
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Proposition 3.2. If a strongly connected directed graph G = (V,E) has an one-
element vertex-ROME v ∈ V , then every loop in G contains an edge which does not
show up in any bi-infinite, simple walk.

Proof: Suppose there is a loop l := e1 e2 . . . e|l| (ei ∈ E) incompatible with the
statement. W.l.o.g. l is simple with |l| ≥ 2 and i(e1) = t(e|l|) = v. As e|l| is part of
some bi-infinite, simple walk there is a left-infinite, simple walk x− := . . . x−2 x−1

avoiding v and ending at the earliest possible vertex in l, i.e. t(x−1) = t(em) 6= v

with 1 ≤ m < |l| minimal. In the same way denote by x+ := x1 x2 . . . a right-
infinite, simple walk which never visits v and leaves l at the latest possible vertex
i(x1) = i(en) 6= v with 1 < n ≤ |l| maximal. Such x+ exists, since e1 shows up in
some bi-infinite, simple walk in G.
If m < n, then one would have a bi-infinite walk x− em+1 . . . en−1 x+ completely
avoiding the vertex-ROME v. Therefore assume m ≥ n: By choice of m,n every
bi-infinite walk containing an edge ei (n ≤ i ≤ m) would visit v at least two times
– once before ei, once afterwards. So the edges en, en+1, . . . , em can never show
up in any bi-infinite, simple walk contradicting the assertion on l. 2

Proposition 3.3. Let G = (V,E) be a strongly connected, locally finite directed
graph (with |E| = ℵ0) having an one-element vertex-ROME v ∈ V . Every simple
path p in G which is part of infinitely many first-return-loops at v is already
contained in some bi-infinite, simple walk.

Proof: Denote by L the set of first-return-loops at v and by (XG, σ) the
Markov shift given on G. Inductively construct a representative x ∈ XG of
some bi-infinite, simple walk: For b(0) := p define the infinite set Lb(0) :=
{p t r | ∃ l ∈ L, r, t paths: l = r p t} ∪ {p s | ∃ l ∈ L, r, s, t paths: l = r s t ∧ t r = p}
of all (cyclically permuted) first-return-loops starting with p. Choose an, cn ∈ E

(n ∈ N) such that b(n) := an b(n−1) cn is a valid path in G and the set
Lb(n) :=

{
l ∈ Lb(0)

∣∣ |l| ≥ 2n + |p| ∧ ∃ q path: l = p q ∧ q p q contains b(n)
}

re-
mains infinite. This yields a nested sequence 0[b(0)] ⊇ −1[b(1)] ⊇ −2[b(2)] ⊇ . . .

of non-empty cylinders converging to a point x ∈
⋂

n∈N −n[b(n)].
Since elements in Lb(n) have at least length 2n + |p| and contain exactly one edge
from F := {e ∈ E | i(e) = v}, there are at most two edges from F in q p q separated
by a block of length |l| − 1 ≥ 2n + |p| − 1. Therefore the block b(n) is too short
to comprise more than one edge from F . As F is an edge-ROME, x has precisely
one edge in F and is thus a representative of some bi-infinite, simple walk with
x[0,|p|−1] = p. 2

Lemma 3.4. Let (XG, σ) be an edge shift on some thinned-out graph G = (V,E),
v ∈ V a vertex-ROME and L the set of first-return-loops at v. For any
automorphism ϕ ∈ Aut(σ) there is an integer Mϕ ∈ Z and a finite set Kϕ ( E

of edges lying in the complement of all bi-infinite, simple walks in G such that
ϕ|Orb(Kϕ){ = σMϕ |Orb(Kϕ){ .
Moreover the condition that none of the edges in Kϕ is contained in some bi-infinite,
simple walk is equivalent to Kϕ marking only finitely many elements in L.

Proof: Denote by Mϕ ∈ Z the integer found in lemma 3.1, i.e. ϕ acts like σMϕ on
all representatives of bi-infinite, simple walks in G. To prove the main statement
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one has to construct a finite set Kϕ ( E such that the back-shifted automorphism
ϕ◦σ−Mϕ induces the identity on Orb(Kϕ){ . (The notation Kϕ instead of Kϕ◦σ−Mϕ

is justified, since Orb(Kϕ){ is shiftinvariant and thus Kϕ is instantly valid for all
automorphisms ϕ ◦ σi (i ∈ Z).)
Be F := {e ∈ E | i(e) = v} the set of out-going edges at v and I ∈ N a global bound
for the distance from any edge in K ( E given as in (FP) to the nearest edge from
F . Since

⋃
f∈F 0[f ] is compact-open there is a common coding-length J ≥ I for all

edges in F such that for all representatives x ∈ XG of bi-infinite, simple walks with
x0 ∈ F and y ∈ −J [x−J . . . xJ ] the zero-coordinates of the image points coincide:(
ϕ ◦ σ−Mϕ(y)

)
0

=
(
ϕ ◦ σ−Mϕ(x)

)
0

= x0 ∈ F . Once more the validity of (GC)
allows one to choose N ∈ N such that |lN | > 2J and

∣∣|li| − |lj |
∣∣ > 2I for all i ≥ N

and j 6= i.
As there exist only finitely many paths of length J (J + 1) ending (starting) at
v, almost all elements in L start with some block from B+ :=

{
y[0,J]

∣∣ y ∈⋃
f∈F 0[f ] ∧ y represents some bi-infinite, simple walk

}
and end in a block from

B− :=
{
y[−J,−1]

∣∣ y ∈
⋃

f∈F 0[f ] ∧ y represents some bi-infinite, simple walk
}
. To

show this, define finite sets A+ :=
{
y[0,J]

∣∣ y ∈
⋃

f∈F 0[f ] ∧ y[0,J] a simple path
}

and A− :=
{
y[−J,−1]

∣∣ y ∈
⋃

f∈F 0[f ] ∧ y[−J,−1] a simple path
}
. A+ (A−) comprises

the prefixes (suffixes) of all first-return-loops at v of length greater than J + 2.
According to proposition 3.3 any a ∈ A+ (or a ∈ A−) being part of infinitely many
first-return-loops at v is already an element in B+ (or B−). Thus there is only a
finite set of exceptional elements in L.
Define Lϕ := {li ∈ L | i ≥ N ∧ ∃u ∈ B+, w ∈ B−, b path: li = u b w}. Its comple-
ment L \Lϕ is finite. Using proposition 3.2 one can build up Kϕ taking from every
element in L \ Lϕ a single edge which is not part in any bi-infinite, simple walk.
Obviously every point in Orb(Kϕ){ can be approximated by a convergent sequence
of points being infinite concatenations of elements from Lϕ. For such points
x ∈ Lϕ

∞ the equality ϕ ◦ σ−Mϕ(x) = x can be established using the same
arguments as in the proof of lemma 3.1. Continuity of ϕ ◦ σ−Mϕ then shows
ϕ ◦ σ−Mϕ |Orb(Kϕ){ = IdOrb(Kϕ){ .

Finally it remains to show the demanded equivalence for Kϕ:
”=⇒”: Suppose Kϕ marks infinitely many elements in L then this is already true
for some k ∈ Kϕ and this implies i(k) 6= t(k) (self loops cannot show up in several
first-return-loops). Following from proposition 3.3 the simple path p := k would be
part of some bi-infinite, simple walk.
”⇐=”: Assume k ∈ Kϕ shows up in a representative x := (xi)i∈Z ∈ XG of some
bi-infinite, simple walk with i(x0) = v, i.e. xN = k for some N ∈ Z. For n ≥ N ≥ 0
choose some minimal path p(n) from t(xn) back to v. This gives an infinite subset{
x[0,n] p

(n)
∣∣ n ≥ N

}
⊆ L of first-return-loops containing k. For N < 0 the infinite

subset
{
q(n) x[−n,−1]

∣∣ n ≥ |N |
}
⊆ L with q(n) a shortest path from v to i(x−n)

(n ≥ |N |) forces the same contradiction. 2

After these preparations we can easily finish the proof of theorem 2.4. Most of the
work is already done: The first statement is essentially lemma 3.1; the existence of
Kϕ is shown in lemma 3.4. What remains is the decomposition of Aut(σ):

Proof: It is easy to see that the second part of the direct sum representation
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H :=
{
ϕ ∈ Aut(σ)

∣∣ ∃Kϕ ( E finite, as in lemma 3.4 ∧ ϕ|Orb(Kϕ){ = IdOrb(Kϕ){

}
is actually a subgroup of Aut(σ): Let ϕ, φ ∈ H with corresponding finite sets
Kϕ, Kφ ( E, then Kϕ◦φ := Kϕ ∪Kφ ( E is still finite and does not contain any
edge from bi-infinite, simple walks. Moreover Orb(Kϕ◦φ){ ⊆ Orb(Kϕ){ ∩Orb(Kφ){

such that
(
ϕ ◦ φ

)
|Orb(Kϕ◦φ){ = IdOrb(Kϕ◦φ){ . Of course Id ∈ H (choose KId := ∅)

and ϕ ∈ H implies ϕ−1 ∈ H by means of Kϕ−1 := Kϕ.
The map α : Aut(σ) → 〈σ〉 , ϕ 7→ σMϕ with Mϕ ∈ Z as in lemma 3.1 is a well-
defined additive homomorphism with Mϕ◦φ := Mϕ + Mφ for ϕ, φ ∈ Aut(σ), i.e.
α(ϕ ◦ φ) = σMϕ◦φ = σMϕ+Mφ = σMϕ ◦ σMφ = α(ϕ) ◦α(φ) and Kϕ◦φ = Kϕ ∪Kφ as
above gives

(
ϕ ◦ φ

)
|Orb(Kϕ◦φ){ = σMϕ◦φ |Orb(Kϕ◦φ){ .

The kernel of α is H (see lemma 3.4); so there are two normal subgroups
〈σ〉 , ker(α) � Aut(σ) with 〈σ〉 · ker(α) = {σn ◦ ϕ | n ∈ Z ∧ ϕ ∈ ker(α)} = Aut(σ)
and 〈σ〉 ∩ ker(α) = {Id} and so Aut(σ) decomposes into a direct sum.
Since thinned-out Markov shifts have countable automorphism groups (see propo-
sition 2.3 above and theorem 2.3 in [Sch2]), H is countably infinite. Furthermore
using theorem 5.4 in [Sch2] the center of Aut(σ) has to be isomorphic to Z for
non-trivial Markov shifts. This proves H centerless. 2
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