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ABSTRACT
Gravitational lensing originates from the deflection of light by masses, irrespective of their physical state or

composition. Since it appears inescapable that most of the matter in the universe is dark, gravitational lensing has
developed into one of the primary tools to learn about the amount, composition and distribution of masses in the
universe.

The review will summarise the theory of gravitational lensing, starting from Fermat’s principle. This will first be
applied to isolated lenses like compact objects, galaxies, and galaxy clusters. Cosmologically relevant applications
will be described, such as searches for compact dark-matter objects in galactic halos, measurements of the Hubble
constant in galaxy lenses, and methods for mapping the dark matter in galaxy clusters. Next, the theory of cosmo-
logical lensing will be introduced. The concepts of lensing by large-scale structures and its measurement will be
discussed, concluding with an overview of results which have so far been obtained, and an outlook at what can be
expected in the near future.

1 INTRODUCTION

1.1 The dark Universe

It seems that we have to accept that most matter in the Universe
is dark, and that the majority of the cosmic energy density is
not contributed by matter. These conclusions appear as the most
straightforward interpretation of numerous cosmological mea-
surements within the class of Friedmann-Lemaı̂tre cosmological
models.

Those models are derived from Einstein’s general theory of
relativity using the two symmetry assumptions that the Universe
is isotropic around us, and that our position in the Universe is by
no means preferred to others. Together, these two assumptions
imply that the Universe is isotropic around any of its points, and
thus homogeneous.

The assumption that the Universe is isotropic around us seems
dubious at first sight, but is very well satisfied if the observable
Universe is averaged over sufficiently large scales which are still
small compared to its overall size. Assuming our cosmic posi-
tion not to be preferred compared to any other is a generalisation
of the Copernican principle, which said that the Earth is not at
the centre of the Solar System.

Given these two symmetry assumptions, Einstein’s generally
very complicated field equations reduce to two simple, ordinary
differential equations for the scale factor of the Universe, the so-
called Friedmann equations. They admit families of solutions
characterised by a set of parameters like the densities of various
energy contributions, the so-called cosmological constant, the
current expansion rate of the Universe or Hubble constant, and
so forth. Determining the global properties of the Universe is
then reduced to measuring these parameters, which used to be
the formidable paramount task of modern cosmology.

The past few years have seen a breakthrough. Mainly three
types of cosmological measurement have allowed virtually all
relevant cosmological parameters to be precisely constrained.
Among the most interesting and puzzling of their findings are
that the total density of all forms of energy together sums up to
a critical value which makes space flat. Radiation contributes
negligibly today to this critical density, matter has just about 30
per cent, and the rest is some different, mysterious form of en-
ergy. Of the matter, only about 15 per cent is of the “ordinary”,
baryonic form that we know from Earth, which consists of pro-

tons, neutrons and electrons. The remainder of the matter cannot
interact with light and is thus called dark matter .

We are thus put into the embarrassing situation of now know-
ing quite precisely how much energy per volume there is in the
Universe, but having no precise idea what the vast majority of
this energy may be composed of. Einstein’s theory of special rel-
ativity has taught us that matter and energy are equivalent. Yet,
is does make sense to distinguish dark matter from dark energy
: Dark matter can clump and form structures, while dark energy
cannot and is thus smoothly distributed.

A possible form of the dark energy could be the cosmologi-
cal constant which Einstein introduced into his equations when
Friedmann found that generally-relativistic cosmological mod-
els are unstable and either expand or contract. At that time to-
wards the end of the 1920s, Einstein believed the Universe to
be static, which he could achieve only if he included a repul-
sive term into his equations, which could prevent the Universe
from collapsing under its own gravity. This term, which is pro-
portional to the cosmological constant, was soon considered ob-
solete when Slipher and Hubble found that the Universe is not
static but expanding (Hubble 1929; Hubble & Humason 1931).
However, evidence is mounting that the cosmological constant,
or something behaving similarly, is in fact required.

In this situation, which the recent advances of observational
cosmology have made quite inescapable, two of the most press-
ing cosmological questions are, “What is the dark matter com-
posed of, and how is it distributed?”, and “What is the dark en-
ergy, and how does it evolve in time?” With both those dominant
constituents of the Universe not interacting with light, the inves-
tigation of these two questions requires methods which reveal
structures even if they do not emit or absorb electromagnetic ra-
diation.

1.2 The role of gravitational lensing

Another effect following from Einstein’s theory of general rel-
ativity comes to assist. Masses bend light paths such that they
appear curved towards those, very much like light rays passing
through convex glass lenses. This effect immediately follows
from the equivalence principle , which says that gravitational
forces cannot be distinguished from inertial forces experienced
in an accelerating frame of reference. This was the heuristic
guiding principle for Einstein’s construction of general relativ-

1



ity, and it thus became clear very early during the development
of the theory that gravitational light deflection would be one of
its consequences. It was a triumph for Einstein when the light
deflection by the Sun was discovered in 1919 (Eddington 1919).

For deflecting light, matter (or energy) needs to be inhomoge-
neously distributed. Perfectly homogeneous matter is thus invis-
ible even for gravitational lensing . However, lensing can also
be employed for studying the dark energy, even though it is (or
can be) defined as a perfectly smooth background of energy.

If the dark energy is well described as a cosmological con-
stant, it does not evolve in time. However, the cosmological
constant is unsatisfactory from the point of view of theoretical
physics because its density deviates by 120 orders of magnitude
from expectations derived from particle physics. Other mod-
els for the dark energy typically predict it to change with time.
Thus, it is in fact a question of fundamental physical importance
how the dark energy is evolving as the Universe expands. This
becomes measurable because the dark energy changes the ex-
pansion behaviour of the Universe and thereby the growth of
structures in it. Depending on the time evolution of the dark en-
ergy, cosmic structures form earlier or later in cosmic history.
Thus, using gravitational lensing for investigating matter inho-
mogeneities in dependence of their cosmic age gives indirect
clues as to the nature of the dark energy, even though it does not
form structures.

2 BASIC PRINCIPLES OF GRAVITATIONAL LENSING

This section briefly summarises the foundation of gravitational
lensing theory. Readers not interested in the mathematics can
immediately skip to subsection 2.4 where the basic physical
properties of lensing will be summarised.

2.1 Fermat’s principle and the deflection angle

The theory of gravitational lensing is most easily built up start-
ing from Fermat’s principle , which is well known from geo-
metrical optics. It holds that between a fixed source and a fixed
observer, light will choose a path along which its travel time is
extremal. Wave optics is typically unimportant for gravitational
lensing because the wave length of light is incommensurably
smaller than any structures in a gravitational lens.1

The light travel time is calculated in geometrical optics using
the index of refraction n, which quantifies by how much the light
speed is lower in a medium compared to vacuum. In general
relativity, the light speed is reduced in presence of a gravitational
field.

For by far the most astrophysical applications of gravitational
lensing, the gravitational field can be described by a small New-
tonian gravitational potential Φ � c2 which moves with veloc-
ities small compared to the speed of light. Under these condi-
tions, the index of refraction is

n = 1− 2Φ

c2 , (1)

from which Fermat’s principle yields the deflection angle

~̂α =
2
c2

∫
dl~∇⊥Φ , (2)

where ~∇⊥ is the gradient perpendicular to the light ray along
which the integral is to be carried out. However, typical deflec-
tion angles being very small, is is permissible to evaluate the

1Wave optics can be relevant, however, for gravitational lensing of gravita-
tional waves.

integral along the unperturbed, straight light path. This corre-
sponds to Born’s approximation familiar from scattering theory.

A point mass M has the gravitational potential

Φ =−GM
r

, (3)

where G is the gravitational constant and r is the distance from
the mass. Arranging the coordinate system such that the unper-
turbed light path propagates into the positive z direction, we find

~̂α =
4GM

c2

~b
b2 , (4)

where ~b is the vector connecting the point mass and the light
ray in the x-y plane perpendicular to the light ray containing the
mass. This plane is called the lens plane . Lensing by an isolated
lens is reduced to a sharp kink in the lens plane of the otherwise
straight light path.

The deflection angle is directed towards the lens and propor-
tional to the mass and the inverse separation b between lens and
light ray. Since 2GM/c2 is the Schwarzschild radius Rs of the
point mass, we can write

α̂ =
2Rs

b
. (5)

The linear dependence of the deflection angle on the lens mass
allows it to be easily generalised for extended mass distributions.
Projecting the lensing mass distribution into the lens plane gives
the surface mass density

Σ(~b) =
∫

dzρ(~b,z) (6)

from the three-dimensional mass density ρ . The projected lens
is then decomposed into infinitesimal mass elements Σ(~b′)d2b′
which can individually be considered as point masses. The to-
tal deflection angle at a point ~b is then the sum of point-mass
deflection angles,

~̂α(~b) =
4G
c2

∫
d2b′

Σ(~b′)(~b−~b′)

|~b−~b′|2
. (7)

It is convenient to use angular coordinates θ1,2 on the lens
plane instead of the physical coordinates~b. Introducing the dis-
tance Dl of the lens from the observer,~b = Dl~θ and

~̂α(~θ) =
4G
c2 Dl

∫
d2

θ
′ Σ(Dl~θ

′)(~θ −~θ ′)

|~θ −~θ ′|2
. (8)

2.2 Lens equation and lensing potential

We now introduce a source plane parallel to the lens plane at dis-
tance Ds from the observer, and cover it with angular coordinates
β1,2. If the coordinate origin is suitably chosen, coordinates ~β

and ~θ are related by

Ds
~β = Ds~θ −Dls~̂α(~θ) , (9)

where Dls is the distance between lens and source. Introducing
the reduced deflection angle

~α(~θ) :=
Dls

Ds
~̂α(~θ) =

4G
c2

DlDls

Ds

∫
d2

θ
′ Σ(Dl~θ

′)(~θ −~θ ′)

|~θ −~θ ′|2
, (10)
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the lens equation simply becomes

~β = ~θ −~α(~θ) . (11)

It is the non-linearity of this apparently simple equation due to
the dependence of ~α on ~θ which makes it physically interesting.
Among other things, it implies that gravitational lenses can pro-
duce multiple images of single sources when the inversion of the
lens equation, i.e. the determination of image positions ~θ from
source positions ~β , is no longer unique.

FIG. 1.—Sketch illustrating the geometry of imaging by an isolated
lens

Following (4), the reduced deflection angle of a point mass is

α(θ) =
4GM
c2θ

Dls

DlDs
. (12)

A source exactly behind the lens, i.e. at ~β = 0, is imaged accord-
ing to (11) as a ring with radius

θE =
[

4GM
c2

Dls

DlDs

]1/2

=
[

2RsDls

DlDs

]1/2

, (13)

which is called the Einstein radius . It sets a typical scale for the
separation of multiple images. Assuming 2Dls ' Ds in typical
situations, (13) shows that the Einstein radius is typically given
by the square root of the ratio between the Schwarzschild radius
of the lens and its distance to the observer, (Rs/Dl)1/2. The
Schwarzschild radius of a star is of order 105 cm. If it is within
our Galaxy, Dl ' 3× 1022 cm, thus θE ' 2× 10−9 radians, or
4 ' 10−4 arc seconds. For a galaxy at cosmological distances,
RS ' 1016 cm and Dl ' 1027 cm, thus θE ' 3× 10−6 radians or
' 0.6 arc seconds. Galaxy clusters at cosmological distances
have Einstein radii of order 50 larger than that of galaxies, or
' 30 arc seconds.

The surface-mass density Σ becomes dimension-less when di-
vided by the critical surface mass density

Σcr :=
c2

4πG
Ds

DlDls
. (14)

Introducing the convergence κ(~θ) as the ratio Σ(Dl~θ)/Σcr, the
reduced deflection angle reads

~α(~θ) =
1
π

∫
d2

θ
′ κ(~θ ′)(~θ −~θ ′)

|~θ −~θ ′|2
, (15)

Poisson’s equation relates the three-dimensional density ρ to
the gravitational potential,

~∇2
Φ = 4πGρ . (16)

The projection (6) implies the Poisson equation for the conver-
gence κ ,

Σ(~θ)
Σcr

= κ(~θ) =
1
2
~∇2

ψ(~θ) (17)

with the lensing potential

ψ(~θ) =
2
c2

Dls

DlDs

∫
dzΦ(Dl~θ ,z) (18)

Using the Green’s function of the two-dimensional Laplacian
operator, Eq. (17) can be immediately be solved for ψ(~θ),

ψ(~θ) =
1
π

∫
d2

θ
′
κ(~θ ′) ln |~θ −~θ ′| . (19)

A comparison with (15) shows that the (reduced) deflection an-
gle is the gradient of the (reduced) lensing potential,

~α(~θ) = ~∇ψ(~θ) . (20)

As in geometrical optics, light deflection is described as a con-
sequence of reduced light speed, either in a medium like glass or
in a gravitational field. The index of refraction introduced above
quantifies the actual light speed c′ in terms of the light speed c
in vacuum, c′ = c/n. The reduced speed leads to an enhanced
travel time (Shapiro delay) in a gravitational field,

t ′ =
∫ dz

c′
=

1
c

∫
dzn =

1
c

∫
dz

(
1− 2Φ

c2

)
= t− 2

c3

∫
dzΦ ,

(21)
where t is the travel time in vacuum.

Due to the light deflection, the light path in presence of a grav-
itational field is also geometrically longer. Thus, gravitational
lenses cause a two-fold time delay which is composed of a grav-
itational and a geometrical contribution. Travel times from the
source to the observer along different paths belonging to multi-
ple images are thus typically different. This time delay becomes
observable with variable sources. Features in their light curves
such as sudden rises or drops appear first in the image with the
shortest travel time, and then repeat with a certain delay in the
other images.

These relations were obtained assuming an isolated lens, i.e. a
lensing mass distribution which is small compared to the cosmo-
logical distances which typically separate sources, lenses and the
observer. When lensing by mass distributions on cosmological
scales needs to be taken into account, the mathematical descrip-
tion complicates considerably. However, the end result is that an
effective lensing potential

ψ(~θ) =
2
c2

∫ w

0
dw′

D(w−w′)
D(w)D(w′)

Φ[D(w′)~θ ,w′] (22)

can be introduced such that the total deflection angle experi-
enced by a light ray is again ~∇ψ , and an effective convergence
is given by Poisson’s equation (16). In (22), w and D(w) are the
comoving coordinate and angular diameter distances in the pos-
sibly curved background Universe. If space is flat, w = D(w).
The sources are assumed at distance w, and the integration in-
cludes all lenses at lower distances w′. The similarity to (18) is
evident.

These are not merely formal developments. The fact that the
lensing deflection angle is the gradient of a scalar potential has
profound implications for the astrophysical applications of grav-
itational lensing, as we shall see shortly.
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FIG. 2.—Illustration of lensing by large-scale structures

2.3 Local imaging properties

Typical sources are small compared to the lenses. Imaging by
gravitational lensing can then be described by the linearised lens
equation. Let the centre of the source be at ~β0 and its image
at ~θ0, where the deflection angle be ~α0 := ~α(~θ0). Then, the
deflection angle at a neighbouring image point ~θ = ~θ0 + δ~θ is,
to first approximation,

~α = ~α0 +
∂~α

∂~θ

∣∣∣∣
~θ0

δ~θ , (23)

and the lens equation simplifies to

δ~β = ~β −~β0 = δ~θ − ∂~α

∂~θ

∣∣∣∣
~θ0

δ~θ = A δ~θ , (24)

where A is the Jacobian matrix of the lens equation with com-
ponents

Ai j =
∂βi

∂θ j
= δi j−

∂αi

∂θ j
= δi j−

∂ 2ψ

∂θi∂θ j
, (25)

where we have used that ~α is the gradient of ψ .
The matrix A is evidently symmetric. Its trace is related to

the convergence κ by

trA = A11 +A22 = 2(1−κ) . (26)

Accordingly, the matrix A can be decomposed as

A =
(

1−κ− γ1 −γ2
−γ2 1−κ + γ1

)
, (27)

with the shear components

γ1 :=
1
2

(
∂ 2ψ

∂θ 2
1
− ∂ 2ψ

∂θ 2
2

)
, γ2 :=

∂ 2ψ

∂θ1∂θ2
, (28)

which form the trace-free, symmetric shear matrix.
If there is no shear, γ1,2 = 0, the matrix A becomes propor-

tional to the unit matrix. Then, lensed sources appear isotropi-
cally stretched or shrunk, but undistorted. Conversely, the shear
(γ1,γ2) is responsible for image distortions.

Typically, the images will cover a different solid angle than
the source. This is quantified by the determinant of A , whose
inverse is the magnification factor,

µ =
1

detA
=

1
(1−κ)2− γ2

1 − γ2
2

. (29)

The magnification will become very large where detA → 0.
Points ~θc in the lens plane where detA = 0 are called critical
points. They form closed, so-called critical curves. Their im-
ages in the source plane,

~βc = ~θc−~α(~θc) , (30)

are called caustic curves, or caustics. A source close to a caustic
has highly magnified images next to a critical curve.

Apart from identifying regions of highest magnification in the
source or lens planes, critical curves and caustics also separate
areas of different image multiplicity. Far away from a lens, a sin-
gle source must have a single image. When the source crosses a
caustic on its way towards the (projected) lens centre, its image
number increases by two. These additional images appear next
to the critical curve belonging to the caustic. As a corollary, this
implies that odd numbers of images are expected from gravita-
tional lenses. The fact that even image numbers are typically
observed allows interesting conclusions on the lensing mass dis-
tributions.

2.4 Basic properties of gravitational lensing

Summarising the preceding subsections, we see that gravita-
tional lensing leads to a variety of phenomena which can qualita-
tively be understood in an intuitive way. First, the reduced light
speed in a gravitational field causes light to be deflected much
as in ordinary geometrical optics. This gravitational light de-
flection is differential, which means that neighbouring light rays
experience slightly different deflections. Consequently, images
typically appear enlarged or shrunk and distorted compared to
the sources. These imaging properties are described by the con-
vergence κ , which is proportional to the surface mass density of
the lens and responsible for isotropic stretching or shrinking of
images, and the two-component shear γ1,2, which is responsible
for image distortions. Together, convergence and shear cause
the image magnification, i.e. the change of the total solid angle
covered by an image compared to source.

Due to their deflection, light rays from a single source can
reach the observer along multiple paths, leading to multiple im-
ages. Gravitational time delay and the geometrically longer de-
flected light paths cause a net time delay which is generally dif-
ferent for each of the images, leading to time delays between
multiple images of a single source.

All properties of gravitational lensing can be summarised by
a scalar potential ψ whose gradient is the deflection angle. This
statement holds true for individual, localised lenses which are
small compared to the distance from the source to the observer
such as stars, galaxies or galaxy clusters, but also for extended
lenses of cosmological scale such as the large-scale structure of
the Universe.

2.5 Simple lens models

Important mass distributions often used for understanding basic
lensing properties of astrophysical objects, or for modelling im-
age configurations of observed lenses, are the point mass, the
isothermal sphere, and the (generalised) Navarro-Frenk-White
(NFW) profile. They are intrinsically axially symmetric, but can
easily be distorted to mimic asymmetric mass distributions.
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The point mass was already introduced. Its lensing potential
is

ψ(θ) =
4GM

c2
Dds

DdDs
ln |θ | . (31)

Point masses are an essential tool especially for microlensing
studies.

The isothermal sphere has a three-dimensional density pro-
file falling as r−2. It may be singular or have a core with finite
density within a core radius rc. Its lensing potential is

ψ(θ) =
4πσ2

c2
Dds

Ds

√
θ 2

1 +θ 2
2 +θ 2

c , (32)

where the angular core radius θc = rc/Dl may vanish. Since
circular velocities in isothermal spheres do not depend on radius,
they naturally reproduce flat rotation curves, which is why they
are often used for modelling galaxy lenses.
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FIG. 3.—Radial dependence of three different lensing potentials: the
NFW profile (solid line), the point mass (dashed curve), and the non-
singular isothermal sphere (dotted curve). All curves are arbitrarily
normalised such as to pass through zero at a dimension-less radius of
unity.

Numerical simulations showed that dark-matter halos consis-
tently have density singular profiles which are shallow inside
and steep outside a scale radius rs. Generally,

ρ(r) =
ρs

xα(1+ x)3−α
(33)

with x := r/rs. In its original form (suggested by Navarro et al.
1996, 1997), α = 1. Other simulations found steeper central
slopes, α ' 1.5. More recent simulations show that α does not
converge to a fixed value down to the smallest resolved scales,
but rather gently approaches unity towards the halo centres. The
lensing potential of the NFW profile (α = 1) reads

ψ(θ) = 4κs

[
1
2

ln2 x
2
−2arctanh2

√
1− x
1+ x

]
, (34)

with κs := ρsrs Σ−1
cr (Meneghetti et al. 2003b).

Deviations from axial symmetry are generally necessary to
explain observed image configurations. The simplest approach
is to replace the radius θ by

θ
′ :=

[
(1− ε)θ 2

1 +
θ 2

2
1− ε

]1/2

(35)

in the lensing potential. This elliptically deformed lensing
potential has the disadvantage that its Laplacian is dumbbell-
shaped and not non-negative for moderate and large ellipticities
ε , which implies an unphysical surface-mass density. Similar
elliptical deformations of the convergence κ are thus preferred,
albeit much more difficult to study.

It is often necessary to embed lenses into an environment
which supplies constant shear, and possibly also constant con-
vergence. Examples are stars in galaxies, or galaxies in galaxy
clusters. In both cases, the lenses are small compared to the scale
on which the properties of their surroundings change. Constant
convergence κ0 and constant shear components γ01,2 can be de-
scribed by the effective lensing potential

ψ0(θ) = (κ0 + γ01)θ 2
1 +(κ0− γ01)θ 2

2 + γ02θ1θ2 , (36)

which may be added to the lensing potential of an individual lens
if needed.

3 STRUCTURE AND CONTENTS OF GALAXIES

3.1 The Galaxy

We do not know what the dark matter consists of. We know that
it must not interact electromagnetically, because otherwise the
cosmic microwave background would show temperature fluctu-
ations on the level of 10−3 K rather than 10−5 K. We also know
that the dark matter must be cold in the sense that the veloc-
ity of its constituents must be small compared to the speed of
light, because otherwise the large-scale distribution of the galax-
ies would be different. It is likely that this cold dark matter
is composed of weakly-interacting elementary particles, but it
could equally well consist of compact objects like, e.g. low-mass
black holes.

Gravitational lensing provides one way to test this possibility.
Our galaxy, the Milky Way, is expected to be embedded into a
halo which predominantly consists of dark matter. If that dark
matter was composed of compact objects rather than elementary
particles, lines-of-sight out of the Galaxy would occasionally
pass nearby one of those. They would act as point-mass lenses
on sources in their background. Although their image splitting
would be substantially below the detection threshold, they would
cause a well-measurable magnification (Paczyński 1986).

Quite independent on the mass spectrum of these hypothetical
compact objects (called MACHOs2), the probability of any one
of them causing a microlensing event at any instant in time is of
order (v/c)2, where v ' 220kms−1 Mpc−1 is a typical velocity
for the stars in the Galaxy. Consequently, this microlensing op-
tical depth is of order 10−6. Finding its magnification signature
thus requires of order 106 light curves to be monitored.

Originally perceived more like science fiction, projects were
carried out which observed sufficient numbers of stars in the
Large and Small Magellanic Clouds (LMC and SMC, respec-
tively) with sufficient accuracy and time sampling for detecting
some microlensing events among the overwhelming signal from
variable stars.

2acronym for massive compact halo objects
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Analysing data taken from 11.9 million stars over 5.7 years,
the MACHO project (Alcock et al. 2000) found 13-17 events,
while between 2 and 4 were expected from known stellar popu-
lations in the Milky Way and the LMC. The microlensing optical
depth deduced from lensing events lasting between 2 and 400
days is τ = 1.2+0.4

−0.3× 10−7. This implies that between 8% and
50% of the Milky Way’s halo can be composed of MACHOs
(at 95% confidence), whose most likely mass ranges between
0.15 and 0.9M� (cf. Fig. 4). Consistently, the EROS project
(Lasserre et al. 2000) found, based on observations of LMC and
SMC, that MACHOs cannot dominate the Galactic halo if their
masses are . 1M�. They find that the halo mass fraction in
MACHOs is < 20% for MACHO masses between 10−7 M� and
0.1M� (at 95% confidence).

FIG. 4.—Example of likelihood contours obtained from the MACHO
experiment for one specific model for the Milky Way halo. The abscissa
is the fraction of the halo mass contained in MACHOs, the ordinate is
the MACHO mass. The contours show the 60%, 90%, 95%, and 99%
confidence levels. (adapted from Alcock et al. 2000)

Thus, although MACHOs have been detected between us and
the Magellanic Clouds, they are insufficient for explaining all
of the Milky Way’s dark mass. These MACHOs can in prin-
ciple be anywhere between the source stars and the observer,
i.e. in the dark halos of the Milky Way or of the Magellanic
Clouds (Gould 1993; Sahu 1994; Wu 1994b; Gould 1995; Evans
& Kerins 2000). It had been speculated that self-lensing within
the LMC might suffice for explaining the observed optical depth
(Aubourg et al. 1999), but later studies showed that certainly not
all of the LMC lensing events can be explained as being due to
stars in the LMC. Rather, the LMC needs to be embedded into
an extended halo (Gyuk et al. 2000; Jetzer et al. 2002; Mancini
et al. 2004). Microlensing experiments have thus confirmed that
the Galaxy and the Magellanic Clouds must have extended dark
halos, only a fraction of which can be composed of compact ob-
jects of stellar and sub-stellar mass.

Microlensing monitoring programs are now targeting the An-
dromeda galaxy M 31. Few early detections of microlensing
candidates (Paulin-Henriksson et al. 2003; Riffeser et al. 2003)
proved the feasibility of such surveys, and data are now accu-
mulating beginning to allow constraining the halo fraction of
MACHOs in M 31 (de Jong et al. 2004; Uglesich et al. 2004),
supporting results consistent with those found in our Galaxy.

3.2 Galaxies

3.2.1 Density profiles

Well over 70 cases of strong lensing by galaxies are now known.
Most of them have two or four images, but a few have higher
image numbers. Image splittings, typically of order an arc sec-
ond, allow the projected lens mass to be constrained which is
enclosed by the images. However, it turns out to be surprisingly
difficult to constrain the mass profile. Essentially, multiple im-
ages constrain the average surface-mass density in an annulus
bounded by the images.

Using many lens systems, and assuming their mass profiles
to be self-similar, it becomes possible to trace the average sur-
face mass density at different radii, and thus to map out the den-
sity profile. Analysing 22 galaxy lenses, and adapting a mass
model composed of a concentrated component representing the
light and a power-law component representing the dark matter,
Rusin et al. (2003) found that the slope of the density profile
is very nearly isothermal, with a double-logarithmic slope of
n = 2.07±0.13 (isothermal has n = 2; cf. Sect. 2.5); cf. Fig. 5.
Models in which the mass traces the light and is therefore more
centrally concentrated fail at the 99% confidence level. If the
dark matter follows the NFW density profile, (22±10)% of the
matter inside two effective radii has to be dark. They also find
a weak trend of the mass-to-light ratio, M/L ∝ L0.14+0.16

−0.12 , con-
sistent with the fundamental plane of elliptical galaxies. Treu
& Koopmans (2004) agree that the density profiles are nearly
isothermal, but find a somewhat larger scatter. They confirm
that lensing galaxies in which light traces mass are ruled out,
and find a dark-matter fraction of between 15% and 65% within
the effective radius.

FIG. 5.—Likelihood contours in the plane spanned by the dark mass
fraction in lensing galaxies (abscissa) and the slope of their density pro-
file (ordinate). The solid and dotted contours show the 68% and 95%
confidence levels for two and one free parameter, respectively. (adapted
from Rusin et al. 2003)

We have seen in the introduction that gravitational lenses are
expected to produce an odd number of images. In contrast, all
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but very few observed galaxy-lens systems have an even image
number, most of them either two or four. The missing images
are expected to be faint if the central density profile of the lens-
ing galaxies is steep enough, thus their absence can be used for
constraining the central concentration of the lensing mass dis-
tributions. Based on this argument, Rusin & Ma (2001) find
that inner mass distributions of lensing galaxies cannot be much
shallower than isothermal. Conversely, Winn et al. (2004) use
a lens system in which a faint, central image has been found to
constrain the mass of the central black hole in the lensing galaxy
to be < 2×108 h−1 M�. From the general absence of faint, cen-
tral images, Keeton (2001) concludes that the central mass pro-
files of lensing galaxies must be more concentrated than CDM
alone predicts. Central black holes may reconcile CDM density
profiles with even image numbers only if they are about an or-
der of magnitude more massive than expected from the relation
between black-hole and bulge masses.

3.2.2 Time delays and the Hubble constant

Time-delay measurements in multiple-image systems promise
constraints on the Hubble constant, provided a sufficiently accu-
rate mass model for the lens is known. Conversely, considering
the Hubble constant as known, time-delay measurements can be
used as further constraints on the lensing density profile. Val-
ues for the Hubble constant derived this way tended to be lower
than those, e.g. obtained from the HST Key Project (e.g. Fass-
nacht et al. 2002), but lens models constructed upon a large num-
ber of constraints yield values which are very well in agreement
with other determinations. For instance, Koopmans et al. (2003)
find H0 = 75+7

−6 kms−1 Mpc−1 from time delays measured in the
quadruply lensed quasar B 1608+656.

An interesting problem with interpreting time delays in
galaxy-lens systems is pointed out by Kochanek (2003). It
turns out that the time delays between multiple images is essen-
tially determined by the mean surface-mass density in an annu-
lus around the lens centre bounded by the images. An estimate
for that mass density can also be obtained converting the visible
light to mass, assuming typical values for the fraction fb of mat-
ter that condenses into stars. Adopting fb ' 0.02 in accordance
with local observations works well with near-isothermal mass
models, but yields substantially too low values for the Hubble
constant, H0 = (48± 5)kms−1 Mpc−1. Conversely, values for
the Hubble constant agreeing with the HST Key Project result,
H0 = (72±8)kms−1 Mpc−1, are compatible with the measured
time delays only if lens models with constant mass-to-light ra-
tios are adopted, which are otherwise ruled out. There seems to
be an as yet unexplained discrepancy between measurements of
H0 and the measured time delays within the CDM framework.

3.2.3 Substructure in lensing galaxies

Interestingly, the number of observed lenses with four images
(quadruples) are about as abundant as such with two images
(doubles), while they should only contribute 25% to 30% of
the galaxy lenses. The fraction of quadruples can be enhanced
by satellite galaxies orbiting the main lens galaxies (Cohn &
Kochanek 2004) or by matter in their larger-scale environments
(Keeton & Zabludoff 2004), although the latter explanation is
potentially problematic because it also tends to lower inferred
values of the Hubble constant.

Axially-symmetric lens models are insufficient for modelling
observed multiple-image systems. At least elliptical lens mod-
els are necessary. Embedding the lenses into additional external
shear fields helps fitting observed image configurations, but typ-
ically more shear is required (10%-15%) than the average large-

scale structure can provide (1%-3%, Keeton et al. 1997). This
hints at the presence of angular structure in the lensing galaxies.

FIG. 6.—MERLIN radio image of the multiply-imaged quasar
B 1422+231 (courtesy of the JVAS/CLASS team). If image by a sin-
gle, unperturbed lens, the two outer of the three bright images should
together be as bright as the one between them.

It is an interesting problem which caused much recent discus-
sion that lens models are typically very successful in reproduc-
ing image positions, but fail in a large fraction of lens systems
to explain the flux ratios between different images. A particu-
larly obstinate and well-known case is B 1422+231 (Kormann
et al. 1994; Hogg & Blandford 1994). This is most striking in
situations where the source falls just inside a cusp, in which case
the sum of the signed magnifications of the three related images
should vanish exactly. This expectation is frequently violated in
real lens systems.

Mao & Schneider (1998) first suggested that substructure in
the lensing galaxy could account for these anomalous flux ratios.
While microlensing by the stars in the lens would less affect ra-
dio than optical fluxes because of their larger size, lensing by
larger-scale substructures would equally change radio and op-
tical flux ratios. Alternatively, CDM galaxy halos should con-
tain sub-halos which may also account for anomalous flux ratios.
Bradač et al. (2002) found similar modelling problems for im-
ages produced by a simulated lensing galaxy as for B 1422+231.
Chiba (2002) discussed that the sub-halo population of CDM
halos produces perturbations of the magnitude required for ex-
plaining anomalous flux ratios. Metcalf & Zhao (2002) esti-
mated that & 5% of the lensing halo mass must be contained in
substructures and argued that elliptically deformed power-law
models embedded into external shear are insufficient for most
lenses. Similarly, Dalal & Kochanek (2002) concluded that sub-
structure comprising 0.6% to 7% of the lens mass, with a median
at 2%, was necessary for reproducing the observed anomalous
flux ratios, in excellent agreement with CDM halo simulations.
They also estimated that the sub-halos should have masses in the
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range (106 . . .109)h−1 M�. Metcalf (2002) found that halo sub-
structures with masses within (105 . . .107)h−1 M� may explain
the curved radio jet in B 1152+199.

In contrast to these arguments, Evans & Witt (2003) explicitly
constructed smoothly deformed lens models which could well
reproduce image configurations and flux ratios for most lens sys-
tems and argued that substructure in the lensing galaxies and
smoothly deformed lenses are both viable explanations for the
anomalous flux ratios. Along the same line, Möller et al. (2003)
and Quadri et al. (2003) showed that disks in lens galaxies can
alter image magnification ratios considerably, while Chen et al.
(2003) pointed out that halos projected onto the main lens galaxy
may also cause the observed magnification perturbations.

From a somewhat different perspective, Schechter & Wamb-
sganss (2002) discussed that decomposing lensing galaxies into
microlenses has the most prominent effect when part of the lens-
ing mass remains smooth. Specifically, they showed that so-
called saddle-point images can be substantially demagnified in
presence of microlenses. Schechter et al. (2004) added that the
magnification distribution of the macro-images depends on the
mass spectrum of the microlenses, in contrast to earlier expecta-
tions.

Kochanek & Dalal (2004) investigated various alternative ex-
planations for the anomalous flux ratios, such as absorption,
scattering, scintillation, uncertainties in the macro-model, and
stellar microlensing, and arrived again at the conclusion that
halo substructures remain as the most likely reason. Bradač et al.
(2004) verified that numerically simulated galaxies can produce
anomalous flux ratios as observed and emphasised the impor-
tance of the demagnification of saddle-point images. However,
the statistics remains unclear. Although it appears doubtless
that CDM halos contain sufficient substructure for sufficiently
perturbing image flux ratios, such sub-halos must also appear
projected onto at least one of the images. The probability for
that is low. Mao et al. (2004) find in numerical simulations that
the probability of finding suitably massive sub-halos in front of
macro-images is only . 0.5%, which is probably too low for ex-
plaining the anomalous flux ratios. The situation thus remains
interestingly confused.

3.2.4 Lens statistics

The abundance of galaxy lenses has often been used for con-
straining the cosmological constant Λ. While early studies typi-
cally found upper limits of Λ . 0.7 (e.g. Kochanek 1996; Falco
et al. 1998), more recent investigations find values which are bet-
ter compatible with other determinations, (e.g. Chiba & Yoshii
1999; Chae et al. 2002), finding spatially-flat model universes
with low matter density (Ω0 ' 0.3) preferred. The reason for this
change is that gradually more realistic galaxy luminosity func-
tions were used for estimating the expected number of lenses,
rather than error-prone extrapolations of local galaxy number
densities towards high redshift (Keeton 2002).

Halos are expected to have a continuous mass spectrum in
universes dominated by cold dark matter, which is described
by mass functions such as those derived by Press & Schechter
(1974), Sheth & Tormen (2002) and Jenkins et al. (2001).
Thus, one would expect a continuous distribution of splitting
angles between fractions of an arc second to several ten arc
seconds. Narayan & White (1988) investigated whether the
observed image-splitting distribution was consistent with ex-
pectations from CDM. They found observation and theory by
and large agreed if selection effects were taken into account.
Kochanek (1995) found that the splitting-angle distribution in
CDM grossly incompatible with microwave-background con-
straints in a model universe with high matter density and van-

ishing cosmological constant, but that both could be comfortably
reconciled in a spatially-flat, low-density CDM model.

Occasionally, therefore, lens systems should be detected with
splitting angles of ten or more arc seconds. Phillips et al.
(2001) interpreted the absence of wide-separation lenses in the
CLASS survey as a being due to low central mass concentra-
tions in group- and cluster-sized halos. It was perceived as
a further confirmation of the CDM paradigm when a quadru-
ply imaged quasar was detected in the Sloan Digital Sky Sur-
vey with a splitting angle of 14.62 arc seconds (Inada et al.
2003), for which Williams & Saha (2004) derived a lens mass of
(5±1)×1013 h−1 M� within a radius of 100h−1 kpc based on a
non-parametric lens model. Oguri & Keeton (2004) noted that
the triaxiality of CDM halos must be taken into account in prob-
ability and mass estimates for the formation of wide-separation
lens systems, a theme which is familiar from studies of strong
lensing in galaxy clusters.

3.2.5 Galaxy-galaxy lensing

Less distant galaxies can act as weak gravitational lenses on
more distant galaxies. Their shear imprints a feeble tangen-
tial distortion pattern on the images of background galaxies
which appear projected close to them. This weak signal is su-
perposed on the intrinsic ellipticities and irregularities of the
background-galaxy images and thus requires statistical tech-
niques for its extraction. Brainerd et al. (1996) first discussed
the principal features of this effect and searched for it in a sam-
ple of galaxies, in which they separated background from fore-
ground galaxies according to their apparent brightness. They
could already infer that the shear profile of brighter galaxies
was compatible with an isothermal mass profile with a circu-
lar velocity of vc = (220±80)kms−1. They also placed a lower
limit r∗ & 100h−1 kpc on the halo size of the lensing galaxies.
dell’Antonio & Tyson (1996) searched for galaxy-galaxy lens-
ing in the Hubble Deep Field (North) and found a mean velocity
dispersion for the lensing halos of σv = 185+30

−35 kms−1, and a
weak lower limit on the halo radius.

Schneider & Rix (1997) devised a maximum-likelihood tech-
nique for efficient analysis of galaxy-galaxy lensing data which
specifically took the redshift distributions of foreground and
background galaxies into account. They applied this technique
to numerically simulated data and calibrated its performance.
Natarajan & Kneib (1997) and Geiger & Schneider (1998) de-
veloped methods for detecting the weak-lensing signal of galax-
ies embedded in galaxy clusters. Applying their technique to
the cluster Cl 0939+4713, Geiger & Schneider (1999) detected
the shear signal of individual massive cluster galaxies. More re-
cently, Natarajan et al. (2002a) compared the weak-lensing sig-
nal of early-type, L∗ galaxies in clusters and in the field and
found evidence for the cluster galaxies to be truncated, with a
truncation radius shrinking with the density of the environment.
Hoekstra et al. (2004) combined weak-lensing data on galaxy
halos to show that they are flattened.

Recent wide-field surveys also triggered an exciting devel-
opment of galaxy-galaxy lensing. Fischer et al. (2000) used
the Commissioning Data of the SDSS to infer that the tangen-
tial shear profile is compatible with a power law with exponent
between 0.7 and 1.1, i.e. close to isothermal. They found a
best-fitting circular velocity of vc = (150 . . .190)kms−1 and a
lower limit to the physical halo radius of 260h−1 kpc. From the
Las Campanas Redshift Survey, Smith et al. (2001) deduced an
isothermal tangential shear profile within 200h−1 kpc and a cir-
cular velocity of vc = (164± 20)kms−1 for L∗ field galaxies.
They found a virial mass for the dark halo of a typical L∗ galaxy
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of (2.7± 0.6)× 1011 h−1 M�. Wilson et al. (2001) used data
taken with the UH8K camera at the Canada-France-Hawaii tele-
scope to measure galaxy-galaxy lensing. They also found tan-
gential shear profiles compatible with an isothermal slope and
a rotation velocity of vc = 238+27

−30 kms−1 for L∗ galaxies. They
concluded that the mass-to-light ratio of L∗ galaxies in the B
band is M/L' (121±28)hL�/M�.

Combining the galaxy-galaxy weak-lensing signal obtained
from SDSS data with the Tully-Fisher and fundamental-plane
relations for late- and early-type galaxies, respectively, Seljak
(2002) found that the galaxy velocity profile must drop substan-
tially towards the virial radius, which indicates a steep dark-
matter profile. Guzik & Seljak (2002) compared theoretically
motivated CDM halo models with SDSS data and constrained
the halo properties of galaxies with luminosities & L∗. They
constrained the virial mass of an early-type L∗ halo to M200 =
(5 . . .10)×1011 h−1 M�, and somewhat less for late-type galax-
ies, depending on the colour. They found a gentle increase of the
mass-to-light ratio with luminosity, with M/L' 17hM�/L� for
late-type and M/L' 45hM�/L� for early-type L∗ galaxies.

Sheldon et al. (2004) studied the cross-correlation between
galaxies and mass from the galaxy-galaxy lensing signal de-
tected in SDSS data. The wide area covered by the survey
allowed constraining the correlation function out 10h−1 Mpc.
They find a power law with a correlation length of r0 ' (5.4±
0.7)h−1 Mpc and an exponent of 1.79± 0.05. The bias param-
eter turns out to be approximately scale-independent (see also
Hoekstra et al. 2001), while Hoekstra et al. (2002b) find the bias
parameters to be gently increasing from Mpc to larger scales.
Comparisons with theoretical expectations for the galaxy distri-
bution relative to the dark matter find overall good agreement
(Weinberg et al. 2004), except that the simulated mass-to-light
ratio is somewhat too high (Yang et al. 2003). Satellite galaxies
orbiting the lensing galaxies could be physically aligned with
their hosts and thus mimic a weak galaxy-galaxy lensing signal.
Hirata et al. (2004) estimated this possible contamination and
constrained it to less than 15% at the relevant scales.

4 GALAXY CLUSTERS

4.1 Strong lensing

4.1.1 Qualitative conclusions

Strong lensing in galaxy clusters was first detected by Soucail
et al. (1987) and Lynds & Petrosian (1989). They found ex-
tended, arc-like images in the galaxy clusters A 370 and Cl 2244.
Several explanations were proposed for these objects, among
them gravitational lensing of background galaxies (Paczyński
1987), which was confirmed when the redshift of the arc in
A 370 was measured and found to be substantially higher than
the cluster’s (Soucail et al. 1988).

It was quickly recognised that gravitational arcs provided im-
portant information on the structure of galaxy clusters. It was
unclear at the time how the dark matter was distributed and
whether the X-ray surface-brightness profiles, which typically
show a flat core of ' 200h−1 kpc radius, were representative for
the dark-matter profiles. Arcs were soon found to reveal the fol-
lowing about clusters: (1) Cluster mass distributions cannot typ-
ically be axially symmetric, because large counter-arcs would
otherwise be expected (Grossman & Narayan 1988; Kovner
1989). (2) The substantial amounts of dark matter in galaxy
clusters cannot be attached to the galaxies because arcs would
then have much smaller curvature radii (Hammer et al. 1989;
Bergmann et al. 1990). Particularly striking were the detections
of “straight arcs” in two clusters (Pelló et al. 1991; Mathez et al.

FIG. 7.—HST image of the cluster Abell 2390 (courtesy Jean-Paul
Kneib). The “straight arc” near the centre directly demonstrates the
presence of substantial amounts of dark matter in this cluster.

1992; Pierre et al. 1996) because they visually demonstrated
the need for substantial concentrations of dark matter with very
high mass-to-light ratio (Kassiola et al. 1992). (3) Clusters need
to have steep density profiles, because arcs would be substan-
tially thicker otherwise (Hammer & Rigaut 1989). For clusters
to be strong lenses, their central convergence κ has to be close
to unity, but for arcs to be thin, the convergence at their loca-
tions has to be around 0.5. From cluster centres to the arc radii
of typically 10′′ . . .30′′, the κ profile must thus fall by approx-
imately a factor of two. Cluster core radii, if they exist, must
thus be substantially smaller than the X-ray core radii, which
was also confirmed by the detection of “radial arcs” (Fort et al.
1992; Miralda-Escudé 1993; Mellier et al. 1993).

4.1.2 Cluster masses

Arcs allow cluster masses to be easily estimated. It was soon
discovered that the masses obtained this way are very close to
mass estimates derived from the X-ray temperature and surface-
brightness profile. This is not obvious because gravitational
lensing is sensitive to the mass in whatever form and physical
state it may be, while the interpretation of X-ray data requires as-
sumptions on symmetry and hydrostatic equilibrium of the gas
with the gravitational potential well, if not on isothermality of
the intracluster gas. This being reassuring, a systematic discrep-
ancy was soon revealed in the sense that masses derived from
strong lensing were typically higher by factors of ' 2 . . .3 than
X-ray masses (Wu 1994a; Miralda-Escudé & Babul 1995; Wu
& Fang 1996); more recent examples are, e.g. Chen et al. (2003)
and Ota et al. (2004).

Bartelmann & Steinmetz (1996) used numerical simulations
to show that X-ray mass estimates can be systematically lower in
merging clusters because their X-ray gas is still cooler than ex-
pected from their total mass, which is already seen by the lens-
ing effect. This seems to explain the mass discrepancy at least
in some clusters (e.g. Smail et al. 1995; Ota et al. 1998). Asym-
metries and cluster substructures also play an important role.
Due to their relatively larger shear, asymmetric and substruc-
tured clusters are more efficient lenses at a given mass. Mass
estimates based on axially symmetric models are thus systemat-
ically too high (Bartelmann 1995a; Hattori et al. 1998).

Allen (1998) distinguished clusters with and without cool-
ing flows and found an appreciable mass discrepancy in clusters
without, but good agreement of X-ray and lensing mass esti-
mates in clusters with cooling-flow. This supports the concept
that well-relaxed clusters which had sufficient unperturbed time
to develop a cooling flow are well-described by simple, axially-
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symmetric models for lensing and the X-ray emission, while dy-
namically more active clusters tend to give discrepant mass es-
timates; this was confirmed by Wu (2000). Makino & Asano
(1999) noted that the mass discrepancy is reduced if cluster den-
sity profiles are steeper than inferred from the X-ray emission.

4.1.3 Cluster mass profiles

Assuming mass profiles with cores, tangential arcs require small
core radii as described above, but radial arcs require the cores to
be finite (Le Fevre et al. 1994; Luppino et al. 1999). Numerical
simulations of CDM halos, however, show that density profiles
flatten towards the core, but do not develop flat cores (Navarro
et al. 1996, 1997). Bartelmann (1996) showed that radial arcs
can also be formed by halos with such “cuspy” density profiles,
provided the central cusp is not too steep.

In principle, the relative abundances and positions of radial
compared to tangential arcs in clusters provide important con-
straints on the central density profile in clusters (Miralda-Escudé
1995; Molikawa & Hattori 2001; Oguri et al. 2001). Radial arcs
are still too rare for successfully exploiting this method. Be-
ing much closer to the cluster cores than tangential arcs, they
are also more likely to be confused with or hidden by the light
of the cluster galaxies. Following Miralda-Escudé (1995), Sand
et al. (2004) compiled a sample of clusters containing radial and
tangential arcs and added constraints on the central mass pro-
file from velocity-dispersion measurements in the central cluster
galaxies. They demonstrated that, assuming axially-symmetric
mass distributions, central density profiles have to be substan-
tially flatter than those found in CDM simulations. However,
Bartelmann & Meneghetti (2004) showed that even small devi-
ations from axial symmetry can invalidate this conclusion and
establish agreement between these observations and CDM den-
sity profiles.

Attempts at modelling arcs with isothermal mass distributions
are typically remarkably successful (see Kneib et al. (1996) for
an impressive example). This is all the more surprising as nu-
merical simulations consistently find density profiles which are
flatter than isothermal within the scale radius and steeper out-
side. In a very detailed analysis, Gavazzi et al. (2003) find
that an isothermal core profile for the cluster MS 2137 is pre-
ferred compared to the flatter NFW profile. Smith et al. (2001)
constrain the core density profile in A 383 using X-ray, weak-,
and strong-lensing data and find it more peaked than the NFW
profile, but argue that this may be due to the density profile of
the cD galaxy. Conversely, Kneib et al. (2003) find in a com-
bined weak- and strong-lensing analysis of Cl 0024+1654 that
an isothermal mass profile can be rejected, while the NFW pro-
file fits the data well. The most likely explanation is that the in-
nermost cluster density profiles can be significantly influenced
and steepened by baryonic physics.

4.1.4 Arc abundance and statistics

The mean density profile of galaxy clusters can also be con-
strained statistically because the probability for a cluster to be-
come a strong lens depends sensitively on the mass concentra-
tion in its core (Wu & Hammer 1993). Miralda-Escudé (1993)
suggested that the core densities of strong-lensing clusters could
be enhanced by projection of elongated clusters along the line-
of-sight. Bartelmann & Weiss (1994) used a numerically sim-
ulated galaxy cluster to show that asymmetric, substructured
cluster models are significantly more efficient strong lenses than
axially-symmetric mass distributions because of their substan-
tially larger shear field. Averaging over a sample of simulated
clusters, Bartelmann et al. (1995) quantified that the cross sec-
tions for arc formation could be up to two orders higher for

asymmetric than for axially symmetric cluster models of the
same mass.

Hattori et al. (1997) confirmed that structured lenses help un-
derstanding the observational results of Le Fevre et al. (1994),
who detected six arcs in a sample of 16 clusters selected for
their high X-ray luminosity as measured by the EMSS satel-
lite, but argued that even more concentrated mass profiles than
those used by Bartelmann et al. (1995) are necessary for ex-
plaining them quantitatively. Bartelmann et al. (1998) used sam-
ples of numerically simulated clusters to estimate the total arc-
formation probability in different cosmological models. Com-
paring their results with the data from Le Fevre et al. (1994),
they concluded that only their cluster sample taken from a sim-
ulation with low matter density (Ω0 = 0.3) and no cosmological
constant could well reproduce the measured high arc abundance,
but the other three models failed badly. In particular, a flat cos-
mological model with Ω0 = 0.3 and ΩΛ = 0.7 produced an order
of magnitude less arcs than observed.

This so-called arc-statistics problem was disputed based on
calculations using analytic models for cluster lenses (Cooray
1999; Kaufmann & Straumann 2000), which failed to reproduce
the strong dependence on the cosmological constant claimed
by Bartelmann et al. (1998). The possible influence of cluster
galaxies on the arc-formation efficiency of cluster lenses was in-
vestigated by Flores et al. (2000) and Meneghetti et al. (2000),
but found to be negligible. Molikawa et al. (1999) confirmed
that axially-symmetric mass models adapted to the X-ray emis-
sion do not produce a sufficient number of arcs. They found that
using NFW profiles for the dark-matter profile helped, but the
profiles required too high masses, and proposed that substruc-
tured mass distributions could be the solution. Meneghetti et al.
(2003b) adapted elliptically distorted lenses with NFW mass
profile (see also Golse & Kneib 2002) to numerically simulated
clusters and found the analytic models inadequate for quantita-
tive arc statistics despite the asymmetry, demonstrating the im-
portance of substructures.

Oguri et al. (2003) studied the strong-lensing properties of
triaxial (rather than ellipsoidal) halos and found that they may
well explain the high arc abundance (Le Fevre et al. 1994; Lup-
pino et al. 1999), provided their central density slopes are steep
enough, with a double-logarithmic slope near −1.5. Wambs-
ganss et al. (2004) simulated the magnification probability for
light rays propagating through a section of the Universe and
found that the abundance of high-magnification events depends
strongly on the source redshift. They attributed this to the expo-
nential mass function of massive halos, which leads to a steep
increase with source redshift in the number of halos suitable for
strong lensing. Identifying the probability for highly magnified
light bundles on random patches of the sky with the probability
for finding arcs in massive galaxy clusters, they suggested this
result as the resolution for the arc statistics problem. Dalal et al.
(2004) used numerical cluster simulations to estimate arc cross
sections and found reasonable agreement with the earlier results
of Bartelmann et al. (1998), but arrived at a higher expected arc
abundance because they inserted a higher normalisation for the
number density of both X-ray clusters and background sources.

Williams et al. (1999) noted that the arc radii in clusters de-
pend only weakly on clusters mass and suggested that massive
cD galaxies may be the reason. However, Meneghetti et al.
(2003a) studied the effect of cD galaxies on the overall arc abun-
dance and found it insufficient to remove the arc statistics prob-
lem. If the cosmological constant is replaced by some form of
dynamical dark energy, structures tend to form earlier during
cosmic history. Since cluster core densities reflect the mean cos-
mic density at their formation time, clusters thus tend to be more
concentrated in dark-energy compared to cosmological-constant
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models. Bartelmann et al. (2003) estimated the effect of higher
cluster concentrations on arc statistics by analytic means. They
found that dark energy may in fact increase arc abundances no-
ticeably, but again not sufficiently for solving the arc statistics
problem.

The problem has experienced an interesting recent twist.
Galaxy clusters at high redshifts are found to be remarkably ef-
ficient lenses (Gladders et al. 2003; Zaritsky & Gonzalez 2003)
even though they should be by far not massive enough for pro-
ducing large arcs. A particularly impressive example is the clus-
ter RX J105343+5735 at z = 1.263 which contains a large arc
from a source at z = 2.577 (Thompson et al. 2001). In this re-
spect, it is interesting that the strong-lensing efficiency of clus-
ters can be increased substantially and on a short timescale dur-
ing a major merger (Torri et al. 2004). As a subcluster ap-
proaches a cluster, the tidal field is increased, leading to a first
maximum of the cross section approximately when the two virial
regions touch. The cross section then slightly decreases and ap-
proaches a second maximum when the separation of cluster and
subcluster is minimal. A third peak corresponding to the first is
formed when the subcluster leaves the virial region again after
the merger. During that process, the arc cross section can change
by an order of magnitude or more on a time scale of' 0.1Gyr. It
thus appears that strong lensing can be a transient phenomenon
at least in some clusters which would otherwise be not massive
or concentrated enough. The dependence of the main merger
epoch on cosmic history would then establish an interesting link
between high-redshift, strong cluster lenses and the cosmologi-
cal framework model.

4.2 Other applications of strong cluster lensing

If a cluster produces arcs from multiple sources at different red-
shifts, the lensing mass distribution remains the same, but the
geometrical lensing efficiency is different for the arcs. Since this
depends on cosmological parameters, these can thus be purely
geometrically constrained from multiple-arc systems (Link &
Pierce 1998; Gautret et al. 2000). Soucail et al. (2004) applied
this technique to multiple arcs in the cluster A 2218 and found
that a universe with critical matter density and no cosmological
constant is excluded at > 4σ confidence from this single cluster.

For alleviating potential problems e.g. with the abundance of
satellite galaxies, it was proposed that the dark-matter particles
might interact with each other in another way than through grav-
ity. Such a self-interaction would act as a source of isotropic
pressure and thus symmetrise and smooth mass distributions
(Miralda-Escudé 2002). Strong gravitational lensing, being very
sensitive to cluster asymmetries, places a tight limit on the inter-
action cross section. Using numerical simulations, Meneghetti
et al. (2001) showed that the strong-lensing efficiency of galaxy
clusters would abruptly disappear if the specific self-interaction
cross section was & 0.1cm2 g−1.

Finally, lensing clusters are frequently being used as cosmic
telescopes, magnifying distant sources above the limits for pho-
tometry or spectroscopy. To give a few examples, Casoli et al.
(1996) used the magnification by A 370 to detect CO lines in arc
sources; Frye & Broadhurst (1998) and Pelló et al. (1999) iden-
tified sources at z = 4.04 lensed by A 2390, Kneib et al. (2004)
found an object with z ' 7 lensed by A 2218, and Pelló et al.
(2004) claim to have detected an object with z = 10.0 magnified
by A 1835.

4.3 Weak cluster lensing

4.3.1 Cluster inversion

Apart from the occasional spectacular strong-lensing effects,
clusters imprint a coherent weak distortion pattern onto the
many faint and distant galaxies in their background. Those
galaxies reach number densities of ' 40 per square arc minute
in typical images taken with large ground-based telescopes. The
virial region of a typical galaxy cluster thus covers of order 103

galaxies. Due to their intrinsically irregular shapes, lensing-
induced distortions cannot be inferred from individual galaxies.
Averaging over a few galaxies, however, the intrinsic elliptici-
ties should average to zero, leaving the ellipticity caused by the
gravitational shear as the average signal.

As shown in the introduction, shear and convergence are both
related through the scalar lensing potential. Knowing the shear
thus allows the scaled surface-mass density to be reconstructed.
Kaiser & Squires (1993) were the first to show that cluster
convergence maps could be obtained by convolving the mea-
sured shear signal with a simple kernel, opening the way to sys-
tematic, parameter-free, two-dimensional cluster studies. Their
technique was immediately applied to the cluster MS 1224, for
which Fahlman et al. (1994) found a surprisingly high mass-to-
light ratio of' 800hM�/L� in solar units, about a factor of four
times the typical cluster value.

Weaknesses in the convolution algorithm by Kaiser & Squires
(1993), such as its limitation to formally infinite data fields
and weak shear, were discussed and removed by, e.g. Seitz &
Schneider (1995, 1996). Another technique for recovering clus-
ter mass maps based on a maximum-likelihood approach was
proposed by Bartelmann et al. (1996), and later augmented with
maximum-entropy regularisation (Seitz et al. 1998) and further
developed by Marshall et al. (2002). An algorithm for measur-
ing the weak shear signal from data fields was described and
implemented by Kaiser et al. (1995).

4.3.2 Distributions of mass and light

These inversion techniques for cluster lenses have by now been
applied to numerous clusters. For most of them, the mass-to-
light ratios turned out to be quite normal, i.e. M/L' 250 . . .300
in blue and M/L' 150 . . .200 in red colour bands, respectively.
Some examples are Clowe et al. (1998); Hoekstra et al. (2002a)
and Gavazzi et al. (2004). The high mass-to-light ratio found
by Fahlman et al. (1994), however, was qualitatively confirmed
by Fischer (1999). Thus, mass and light generally appear well
correlated in weak-lensing clusters, although some interesting
deviations have been observed. For instance, while mass follows
light well in two of the three clusters in the A 901/902 super-
cluster field, the third cluster shows a significant offset between
the mass and the light (Gray et al. 2002; see Fig. 8).

Similar phenomena appear in comparisons between the X-ray
surface-brightness and the weak-lensing mass contours. While
the X-ray emission follows the mass in many clusters (see Gioia
et al. (1999); Clowe et al. (2000); Clowe & Schneider (2002);
Hoekstra et al. (2000) for examples), interesting deviations have
recently been discovered. Machacek et al. (2002) find good
agreement between surface-density and X-ray contours in the
outer parts of A 2218, but deviations near the cluster centre,
which they interpret as a sign of dynamical activity in the clus-
ter. Several recent studies find the X-ray gas lagging behind the
dark matter in merging clusters (Clowe et al. 2004; Markevitch
et al. 2004; Jee et al. 2005), as expected for hot gas embedded
into collision-less dark-matter halos.

If the dark-matter particles interacted with each other, such
a separation between gas and dark matter would be suppressed.
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FIG. 8.—The supercluster field around A 901/902. The contours
indicate the reconstructed convergence κ , the grey scale shows the
smoothed distribution of the luminosity of early-type galaxies. (adapted
from Gray et al. 2002)

Thus, from gas lagging behind the dark matter in merging clus-
ters, and from small dark-matter core radii, limits could be ob-
tained for the self-interaction cross section of the dark-matter
particles, typically finding values . (0.1 . . .1)cm2 g−1 (Arabad-
jis et al. 2002; Natarajan et al. 2002b; Markevitch et al. 2004),
comparable to what Meneghetti et al. (2001) concluded from
strong cluster lensing. Although different mass estimates agree
well in some clusters (e.g. Clowe & Schneider 2002; Irgens
et al. 2002; Jia et al. 2004; Jee et al. 2005; Margoniner et al.
2005), significant discrepancies between cluster masses derived
from weak lensing and X-ray observations are frequently found
(Lewis et al. 1999; Athreya et al. 2002; Holden et al. 2002) and
interpreted as signalling dynamical processes in unrelaxed clus-
ter cores. Of the 38 clusters in the X-ray selected sample studied
by Dahle et al. (2002), ' 30% show signs of dynamical activity,
and more than 50% are strong lenses. Based on a sample of 24
clusters between redshifts 0.05 and 0.31, Cypriano et al. (2004)
claim that clusters with temperatures . 8keV show good agree-
ment between different mass estimates, while hotter clusters do
not.

4.3.3 Cluster mass profiles

Projected cluster mass profiles obtained from weak lensing are
often well fit by the isothermal profile (Sheldon et al. 2001) or
by both the isothermal and the NFW mass profiles (Clowe et al.
2000; Clowe & Schneider 2001; Athreya et al. 2002), while
some clusters prefer NFW fits (Clowe & Schneider 2001). NFW
concentration parameters tend to be somewhat lower than the-
oretically expected (Clowe & Schneider 2002; Hoekstra et al.
2002a; Jee et al. 2005), which may be due to intrinsically triaxial
cluster halos (Clowe & Schneider 2002). However, there is an
increasing number of clusters for which NFW profiles with rea-
sonably high concentration parameters are deduced (e.g. Clowe
& Schneider 2001; Arabadjis et al. 2002). Clowe et al. (2000)
find the more massive of six high-redshift clusters less concen-

trated than the less massive ones, which is also expected from
theory. Dahle et al. (2003) fit the generalised NFW profile to six
massive clusters at z' 0.3, finding a central double-logarithmic
slope α =−0.9 . . .−1.6 at 68% confidence. Assuming α =−1,
the concentration parameters are well in the expected range,
i.e. 5 . . .10 depending on cluster mass.

Large-scale structure in front of and behind galaxy clusters
is projected onto them and can affect weak-lensing mass de-
terminations. Using large-scale structure simulations, Metzler
et al. (1999) estimate that weak-lensing mass estimates exceed
real cluster masses by several tens of per-cents due to the added
large-scale structure. Hoekstra (2003) estimated that projected
large-scale structure approximately doubles the error budget for
weak-lensing cluster mass estimates. However, cluster mass
profiles are affected by cluster substructures and asymmetries
only at the per-cent level (King et al. 2001; Clowe et al. 2004).

We have seen in the discussion of strong cluster lensing that
clusters at moderate and high redshifts, z & 0.8, are already re-
markably efficient strong lenses. The first weak-lensing mass
map of a cluster at such high redshift (MS 1054−03 at z = 0.83)
was produced by Luppino & Kaiser (1997). The weak-lensing
signal of many similarly distant clusters was measured since,
typically confirming the presence of well-developed, massive
and compact clusters at that epoch (Clowe et al. 1998; Gioia
et al. 1999; Margoniner et al. 2005), but also frequently indicat-
ing violent dynamical activity in cluster cores (Hoekstra et al.
2000; Holden et al. 2002; Jee et al. 2005).

4.3.4 Dark clusters?

Occasional detections of clusters with very high mass-to-light
ratios (e.g. Fahlman et al. (1994); Fischer (1999); Gray et al.
(2002) as discussed above) raise the question whether cluster-
sized dark-matter halos may exist which are so inefficient in
producing stellar or X-ray emission that they are invisible for
anything but gravitational lensing. Erben et al. (2000) detected a
peak in the weak-lensing signal 7 arc minutes south of the clus-
ter A 1942 where no optical or infrared emission could be found
(Gray et al. 2001). A similarly dark weak-lensing signal peak
was discovered next to the high-redshift cluster Cl 1604+4304
by Umetsu & Futamase (2000). Another tangential shear align-
ment potentially revealing a dark halo (Miralles et al. 2002) was
meanwhile found to be spurious (Erben et al. 2003).

Schneider (1996) introduced the aperture-mass statistic
specifically for detecting dark-matter halos through their weak-
lensing signal. The aperture mass is a weighted integral within a
circular aperture over the shear component tangentially oriented
with respect to the aperture centre. When applied to numerical
simulations, the aperture-mass statistic turned out to be highly
efficient in finding group- and cluster-sized halos, although the
completeness of the resulting halo catalogues has to be bal-
anced against the frequency of spurious detections by carefully
choosing the signal-to-noise threshold (Reblinsky & Bartelmann
1999; White et al. 2002). Wittman et al. (2001) report the first
detection of a galaxy cluster through weak lensing, which was
confirmed later through its optical signal. Conversely, Schirmer
et al. (2004) use the aperture-mass technique for confirming the
weak-lensing signal of clusters found optically in the ESO Imag-
ing Survey.

Bartelmann et al. (2001) showed that the detection efficiency
of the aperture-mass technique varies strongly with the density
profile of the dark-matter halos, allowing a statistical discrim-
ination between isothermal and NFW profiles. Miyazaki et al.
(2002) found 4.9±2.3 dark-matter halos in a field of 2.1 square
degrees taken with the Subaru telescope, which is consistent
with expectations based on CDM models and NFW density pro-
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files (Kruse & Schneider 1999).
As mentioned before, cosmological models with dynamical

dark energy cause dark-matter halos to be more concentrated
compared to models with cosmological constant. While this
should in principle lead to a higher number of weak-lensing halo
detections in dark-energy cosmologies and thereby provide a
way for discriminating cosmological-constant from dark-energy
models, the expected sensitivity is very weak due to compet-
ing effects (Bartelmann et al. 2002; Weinberg & Kamionkowski
2003). Weinberg & Kamionkowski (2002) argue that clusters in
formation, which are not virialised yet and thus under-luminous,
may be detected through weak lensing. They suggest this as an
explanation for the potential dark clusters found by Erben et al.
(2000) and Umetsu & Futamase (2000) and argue that cosmo-
logical constraints could be placed by comparing the numbers
of visible and dark clusters.

5 LARGE-SCALE STRUCTURES

Weak gravitational lensing by large-scale structures is covered
by several dedicated reviews, highlighting different aspects of
this rich and quickly developing subject (Mellier 1999; Bartel-
mann & Schneider 2001; Hoekstra et al. 2002c; Mellier & van
Waerbeke 2002; Refregier 2003). We can only summarise the
most important aspects here and refer the interested reader to
those reviews for further detail.

5.1 Expectations and measurements

Being inhomogeneously distributed in the Universe, matter on
scales even larger than galaxy clusters must also gravitationally
lens background sources. Early studies (Blandford et al. 1991;
Miralda-Escudé 1991; Kaiser 1992) calculated the ellipticities
and ellipticity correlations expected to be imprinted on the im-
ages of background galaxies, and found them to be of order a
few per cent on arc-minute angular scales. In a first attempt at
measuring this weak cosmological lensing signal, Mould et al.
(1994) could place an upper limit in agreement with theoretical
expectations.

Since weak cosmological lensing is highly sensitive to the
non-linear evolution of the large-scale structures (Jain & Seljak
1997), numerical simulations had to be carried out for precisely
estimating the amplitude of the signal and the shape of the ellip-
ticity correlation function (e.g. Bartelmann & Schneider 1992;
Jain et al. 2000; Hamana & Mellier 2001; Vale & White 2003).
The cosmological potential of large weak-lensing surveys was
quickly pointed out (Bernardeau et al. 1997; Kaiser 1998; van
Waerbeke et al. 1999), emphasising the possibility of measuring
in particular the matter density parameter Ω0 and the amplitude
σ8 of the dark-matter power spectrum.

Schneider et al. (1998) announced the detection of a coherent
shear signal in the field of the radio galaxy PKS 1508−05 which
they interpreted as being caused by large-scale structure lensing.
The breakthrough came soon thereafter, when several different
groups almost simultaneously reported the measurement of the
cosmic-shear correlation function (Bacon et al. 2000; Van Waer-
beke et al. 2000; Wittman et al. 2000; Maoli et al. 2001). Given
the difficulty of the measurement and the different telescopes,
cameras, and analysis techniques used, the agreement between
these results and their compatibility with theoretical expecta-
tions was exciting and encouraging.

Cosmological parameters were soon derived from these first
cosmic-shear measurements (Van Waerbeke et al. 2001b), find-
ing σ8 & 0.7 and Ω0 . 0.4 for spatially-flat cosmological mod-
els. Two-point statistics of the cosmic shear are approximately
proportional to the product σ8Ω2

0, i.e. they are degenerate in

these two parameters. This degeneracy can be lifted using
third-order statistics such as the skewness (Van Waerbeke et al.
2001a), which arises because the non-linear evolution of cos-
mic structures leads to non-Gaussianity in the weak-lensing sig-
nal. Non-Gaussianities were first detected by Bernardeau et al.
(2002) in the Virmos-Descart weak-lensing survey.

Much effort was devoted to calibrating weak-lensing mea-
surements, to designing optimal cosmic-shear estimators and
studying their noise properties. Erben et al. (2001) used numer-
ical simulations to show that relative accuracies of 10% . . .15%
can be reached by cosmic-shear measurements. A method
for estimating the weak-lensing power spectrum inspired by
the CMB data analysis was proposed by Hu & White (2001).
Cooray & Hu (2001) investigated how non-Gaussianity can af-
fect parameter estimates from the cosmic-shear power spectrum.
Different estimators for the two-point statistics of cosmic shear
and their correlation matrices were dicussed by Schneider et al.
(2002a).

Numerous weak-lensing surveys have meanwhile been con-
ducted. A non-exhaustive selection of the results obtained on
σ8 for fixed Ω0 = 0.3 is given in Tab. 1. Although most values
of σ8 agree within the error bars, the scatter is still substantial.
This is at least partially due to remaining systematics in the data
analysis, as will now be discussed.

TABLE 1.—Non-exhaustive selection of results for σ8 extracted
from weak-lensing surveys. Ω0 = 0.3 is adopted throughout.

σ8 reference
1.04 ±0.05 Maoli et al. (2001)
0.81 +0.14

−0.19 Hoekstra et al. (2002d)
0.97 ±0.13 Bacon et al. (2003)
0.72 ±0.09 Brown et al. (2003)
0.97 ±0.35 Hamana et al. (2003)
0.71 +0.12

−0.16 Jarvis et al. (2003)
1.02 ±0.16 Rhodes et al. (2004)
0.83 ±0.07 Van Waerbeke et al. (2005)

5.2 Potential systematics

As the effects of weak lensing can be summarised by a scalar po-
tential, only such distortion patterns can be caused by weak lens-
ing which can be described by derivatives of a scalar potential.
Possible patterns in the data resembling the derivatives of a vec-
tor potential thus signal the presence of distortions of other than
lensing origin. Alluding to electrodynamics, where the electric
field ~E is the gradient of a scalar potential and the magnetic field
~B is the curl of a vector potential, measured distortion patterns
are decomposed into so-called E and B modes, of which only
the E modes can be caused by gravitational lensing. Significant
B modes in the data are interpreted as remainders of undetected
or incompletely removed systematics.

More or less significant B modes have been found in almost
all weak-lensing surveys. Until recently, their origin was un-
clear. Schneider et al. (2002b) showed that source clustering
could cause a B-mode contribution to the distortion, but not
of sufficient strength on arc-minute scales to fully account for
the observations. Hoekstra (2004) showed that incomplete cor-
rection for the anisotropies in the point-spread function of the
imaging system could give rise to a substantial B mode. Ap-
plication of an improved model for the point-spread function to
the Virmos-Descart weak-lensing survey caused the B mode to
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disappear (Van Waerbeke et al. 2005; see also Fig. 9). It thus ap-
pears that the B-mode problem, which was discussed at length
in the literature, was due to insufficient correction for the distor-
tions imprinted by the imaging system.

FIG. 9.—Likelihood contours (at 68%, 95%, and 99.9% confidence)
obtained from analyses of the cosmological weak shear in the plane
spanned by the matter density parameter Ωm and the normalisation pa-
rameter σ8. The solid lines indicate the value of σ8 corresponding to
Ωm = 0.3. (adapted from Van Waerbeke et al. 2005)

Analyses of cosmic-shear measurements assume that intrin-
sic galaxy ellipticities are uncorrelated such that they average
to zero when several images are combined. However, galaxies
being physically close to each other are also expected to have
their shapes aligned, e.g. by the tidal field of the large-scale
matter distribution into which they are embedded. The poten-
tial effect of intrinsic rather than lensing-induced galaxy align-
ments depends obviously on the depth of the survey. Deep sur-
veys project galaxy images along light paths which are substan-
tially longer than any large-scale structure correlation scale and
thus suppress any spurious signal due to intrinsinc alignments of
physically neighbouring galaxies. In shallow surveys, however,
intrinsic source alignments may substantially contaminate any
weak-shear signal (Croft & Metzler 2000; Heavens et al. 2000;
Catelan et al. 2001; Crittenden et al. 2001). Measurements of
intrinsic alignments were found to agree well with these predic-
tions (Lee & Pen 2002; Brown et al. 2002). Recent numerical
(Jing 2002) and analytic studies (Lee 2004) claim strong intrin-
sic alignments of galaxy halos.

Possibilities for removing the signal contamination due to in-
trinsic alignments were discussed extensively. They advocate
using photometric redshifts to remove physically close pairs
of source galaxies from the analysis (King & Schneider 2002;
Heymans & Heavens 2003). An application of this technique
to the multi-colour Combo-17 survey (Heymans et al. 2004)
showed intrinsic alignments near the lower end of the theoret-
ical predictions and slightly lowered the value of σ8 previously
derived from these data (Brown et al. 2003) to 0.67± 0.1 for
Ω0 = 0.3. Hirata & Seljak (2004) point out that foreground
galaxies are aligned with the large-scale structures lensing back-
ground galaxies, thus giving rise to a higher-order alignment be-
tween galaxies at different redshifts.

5.3 Perspectives

For several years now, cosmological parameters are obtained
with high accuracy mainly from combined analyses of CMB
data, large-scale galaxy surveys and the dimming of type-Ia
supernovae with redshift. What is the role of weak gravita-
tional lensing in this context? It should be emphasised that
parameter constraints from the CMB alone suffer from degen-
eracies which can only be broken using additional information.
Measuring directly the dark-matter density and the normalisa-
tion of its fluctuations, gravitational lensing adds constraints
which substantially narrow the parameter ranges allowed by the
CMB, as Hu & Tegmark (1999) pointed out. Contaldi et al.
(2003) combined weak-lensing data from the Red-sequence
Cluster Survey with CMB data from the WMAP satellite to find
σ8 = 0.89± 0.05, Ω0 = 0.30± 0.03 and a Hubble constant of
H0 = (70±3)kms−1 Mpc−1. Tereno et al. (2005) predicted the
accuracy of joint cosmological parameter estimates using CMB
data in combination with the weak-lensing constraints from the
CFHT Legacy Survey.

The exploitation of higher than second-order statistics will
become increasingly important for breaking degeneracies in
the weak-lensing parameter estimates and the investigation of
non-Gaussianity developing due to non-linear structure growth
(Zhang et al. 2003; Takada & Jain 2003; Dolney et al. 2004).
Much valuable information must also be contained in the mor-
phology of the two-dimensional weak-lensing pattern.

Among the most exciting perspectives of weak lensing is
its potential to study the three-dimensional distribution of dark
structures. Although lensing observables measure the two-
dimensional, projected density distribution, selecting sources at
different distances allows structures along the line-of-sight to be
resolved. Sufficiently accurate information on the distance to
the source galaxies is provided by photometric redshifts. Simon
et al. (2004) show that the accuracy of cosmic-shear parameter
estimates can be improved by a factor of 5 . . .10 by splitting the
source galaxies into only four redshift bins. Heavens (2003) de-
veloped an elegant formalism for extracting three-dimensional
information from weak-lensing data (see also Pen 2004a), and
Taylor et al. (2004) recovered the three-dimensional matter dis-
tribution in the field of the Combo-17 survey, using photometric
redshifts as distance indicator for the source galaxies.

The possibility to extract three-dimensional information from
weak-lensing data opens a way for studying the growth of cos-
mic structures along the line-of-sight from the distant and past
Universe. This, in turn, is sensitive to the change of the dark-
energy density with time. Thus, sufficiently accurate and wide-
field weak-lensing surveys will allow the dark energy to be con-
strained (Huterer 2002). The sensitivity of such experiments is
very promising (Munshi & Wang 2003; Benabed & van Waer-
beke 2004), in particular if higher-order statistics are considered.
This is one of the strongest motivations for a weak-lensing sur-
vey from space (Massey et al. 2004; Refregier et al. 2004).

Planned wide-area surveys of the sky in radio wavebands are
expected to yield information on both cosmology and the dis-
tribution of neutral hydrogen during reionisation (Pen 2004b).
Weak lensing in the data of the FIRST radio survey undertaken
at 20 cm wavelength was recently detected by (Chang et al.
2004).

5.4 Cosmic magnification

5.4.1 Magnification bias

Besides distorting the images of distant galaxies, large-scale
structures also magnify background sources. To linear order, the
power spectrum of cosmic magnification is simply four times the
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power spectrum of the cosmic shear, i.e. both contain the same
amount of cosmological information. Cosmic shear, however,
is much more easily measurable than cosmic magnification be-
cause it can reasonably be assumed that the ellipticities of distant
galaxies average to zero. The intrinsic flux of any given source
being unknown, cosmic magnification is much harder to iden-
tify.

Currently the most promising (and perhaps the only) method
for detecting cosmic magnification is the magnification bias. If
a population of distant sources, e.g. quasars, is observed within
a solid angle δΩ on the sky where the magnification is µ , fainter
sources become visible there, but their number density is re-
duced because the solid angle is stretched by the magnification.
The net effect depends on how many more sources the magni-
fication lifts above the flux threshold of the observation. If the
number-count function of the sources is sufficiently steep, the di-
lution is outweighed and the magnification causes more sources
to be visible, while sources with flat number counts are diluted
and appear less numerous than without the magnification.

The spatial galaxy distribution follows the dark-matter struc-
tures which act as lenses on background sources. Bright quasars,
for example, have a steep number-count function and thus ap-
pear more numerous behind magnifying dark-matter overden-
sities. The correlation of foreground galaxies with the lens-
ing matter then leads to a positive cross-correlation on angular
scales of arc minutes and larger between distant QSOs and fore-
ground galaxies which are physically separated by cosmological
distances.

The cross-correlation function between background sources
and foreground galaxies was derived in linear approximation by
Bartelmann (1995b) and Dolag & Bartelmann (1997); see also
Guimarães et al. (2001). However, magnification is non-linear
in shear and convergence. Computing the theoretical expec-
tation of the cosmic magnification accurately is thus consider-
ably more complicated than for the cosmic shear. Ménard et al.
(2003b) derived second-order corrections to the linear cosmic-
magnification statistics and found that the linear approximation
was systematically low by 20% . . .30%, which was confirmed
by Takada & Hamana (2003) in a fully non-linear treatment
based on the halo model of the dark-matter distribution. The
accuracy of analytic calculations can be calibrated using numer-
ical simulations of light propagation through large-scale struc-
tures (e.g. Barber & Taylor 2003; Ménard et al. 2003b). Suffi-
ciently accurate analytic and numerical calculations of cosmic
magnification yield typical magnifications of . 10% for point
sources at redhifts zs ' 1. While most emphasis was put on
cross-correlations between QSOs and galaxies, cosmic magni-
fication may also induce detectable cross-correlations between
background and foreground galaxies (Moessner & Jain 1998;
Moessner et al. 1998). Jain (2002) discussed survey strategies
for detecting cosmic magnification.

5.4.2 Observations

Bartelmann & Schneider (1993a) confirmed that the QSO-
galaxy correlations detected by Seldner & Peebles (1979)
and Fugmann (1990) can indeed be explained in terms of
gravitational lensing by large-scale structures. Subsequent
more detailed correlation studies confirmed that the correla-
tions showed the significance variations expected from the
lensing hypothesis (Bartelmann & Schneider 1993b), and re-
vealed cross-correlations of distant QSOs with infrared (Bartel-
mann & Schneider 1994; Bartsch et al. 1997) and X-ray emis-
sion (Bartelmann et al. 1994). While the existence of QSO-
galaxy cross-correlations was thus firmly established, their am-
plitude and angular scale was typically found to be substantially

too high (Williams & Irwin 1998; Norman & Williams 2000;
Benı́tez et al. 2001; Gaztañaga 2003), although some analyses
obtained the theoretically expected results (Rodrigues-Williams
& Hogan 1994; Norman & Impey 2001). The observational sit-
uation was thus utterly confused. Fort et al. (1996) found ev-
idence for cosmic shear in the vicinity of five distant QSOs.
Dust absorption in foreground galaxies may be responsible for
similar anti-correlations as expected from weak lensing of faint
background QSOs (e.g. Croom 2001), and selection effects may
cause correlations as well as anti-correlations (e.g. Ferreras et al.
1997). The detailed relation between dark-matter halos and their
galaxy content adds further uncertainty (Jain et al. 2003).

Due to the weakness of the signal and the possibility of con-
fusing it with other effects, large multi-colour surveys such as
the SDSS were expected to be necessary for an unambiguous
detection of cosmic magnification and its exploitation in terms
of cosmological parameters (Benı́tez & Sanz 1999; Ménard &
Bartelmann 2002). The degeneracy between the density and bias
parameters Ω0 and b can be broken determining the three-point
cross-correlation between QSOs and galaxy pairs (Ménard et al.
2003a). Clear and unambiguous evidence for cosmic magnifi-
cation was finally detected by Scranton et al. (2005) who mea-
sured the cross-correlation between a colour-selected sample of
' 200,000 distant QSOs and foreground galaxies in ' 3,800
square degrees of the SDSS data and found a signal significant
at the 8-σ level and in complete agreement with theoretical ex-
pectations.

A potentially very promising manifestation of cosmic mag-
nification was recently discussed by Ménard & Péroux (2003).
Distant QSOs magnified by intervening matter are more likely
to show absorption features in their spectra due to the gas asso-
ciated with the lensing structures. Using the QSO sample from
the 2dF survey, Ménard & Péroux (2003) demonstrated evidence
for lensing by MgII and FeII absorbers along the lines-of-sight
to the QSOs.

6 SUMMARY

Many are the applications of gravitational lensing to cosmology,
and the results are numerous, as the preceding discussion has
shown. A review like this must be based on a subjective selec-
tion which is necessarily biased to some degree. Within these
limitations, I summarise the results as follows:

• Microlensing experiments in the Galaxy have shown that,
although massive compact objects exist in its halo, they in-
sufficient to make up all the dark matter in the Galactic
halo. These studies are now being extended towards the
Andromeda galaxy, M 31 (Sect. 3.1).

• Central density profiles of lensing galaxies are approxi-
mately isothermal and thus more concentrated than CDM
predicts. This indicates that galaxy density profiles have
been steepened by baryonic physics (Sect. 3.2.1).

• The isothermal density profiles and the characteristic veloc-
ity dispersions of galaxies are confirmed by weak galaxy-
galaxy lensing, which finds very large halo sizes with radii
of & 200h−1 kpc. Halos of cluster galaxies seem to be
smaller, as expected (Sect. 3.2.5).

• The biasing of galaxies relative to the dark-matter distribu-
tion is found by galaxy-galaxy lensing to be almost scale-
independent, or gently increasing with scale (Sect. 3.2.5).

• Galaxies have to be structured in order to explain multiple-
image geometries and the high fraction of quadruple com-
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pared to double images. Anomalous flux ratios of quadru-
ple images seem to be best explained by lensing, but it is
yet unclear whether they are caused by the galactic subha-
los expected in CDM (Sect. 3.2.3).

• Measured time delays between multiple images lead to an
interesting and as yet unresolved conflict between the lens-
ing mass distribution and the Hubble constant: Isothermal
profiles yield Hubble constants which are substantially too
low, and lens models giving compatible Hubble constants
have too steep mass profiles (Sect. 3.2.2).

• The statistics of distant sources multiply imaged by galax-
ies is sensitive to the cosmological parameters. Recent ap-
plications of this method showed agreement with a low-
density universe with cosmological constant (Sect. 3.2.4).

• Galaxy clusters have to be asymmetric, and they must
be dominated by dark matter which is more broadly dis-
tributed than the cluster light. Cores in the dark-matter dis-
tribution must be small or absent (Sect. 4.1.1, 4.1.3).

• Frequent and substantial discrepancies between lensing and
X-ray mass determinations are most likely signalling vio-
lent dynamical activity in clusters (Sect. 4.1.2, 4.3.2).

• It remains unclear whether galaxy clusters in the “concor-
dance”, low-density spatially-flat cosmological models can
explain the observed abundance of gravitational arcs. Clus-
ters need to be highly substructured and asymmetric, and
their dynamics may temporarily boost their strong-lensing
efficiency (Sect. 4.1.4).

• Although cluster density profiles inferred from strong and
weak lensing do typically not contradict expectations from
CDM, isothermal density profiles are not ruled out. Claims
of flat central profiles are not supported by reasonably
asymmetric models (Sect. 4.1.3, 4.3.3).

• Typical mass-to-light ratios derived from weak cluster lens-
ing range around ' 200 in solar units, but very high values
have been found. While this may indicate a separation of
gas from dark matter in cluster mergers, the possible exis-
tence of dark clusters is intriguing (Sect. 4.3.2, 4.3.4).

• Surprisingly massive and compact clusters which are sig-
nificant weak and powerful strong lenses exist at redshifts
z' 0.8 and above (Sect. 4.1.4, 4.3.3).

• Cosmic shear, i.e. the distortion of background-galaxy
images due to weak gravitational lensing by large-scale
structures, has been detected and found to be in remark-
able agreement with theoretical expectations. It has al-
lowed constraints to be placed on the matter-density pa-
rameter and the amplitude of the dark-matter fluctuations
(Sect. 5.1).

• Systematic effects such as possible intrinsic alignments of
source galaxies and the so-called B mode which is evi-
dently not of lensing origin now seem to be well under con-
trol (Sect. 5.2).

• Joint analyses of weak lensing and CMB data allow pa-
rameter degeneracies in both types of experiment to be
lifted. When combined with photometric redshifts of
source galaxies, three-dimensional reconstructions of the
large-scale matter distribution become possible. This will
also allow the dark energy to be constrained (Sect. 5.3).

• Cosmic magnification, which is more complicated to mea-
sure than cosmic shear, can be quantified by the magni-
fication bias. It has been detected, and most recent mea-
surements are also in excellent agreement with theoretical
expectations (Sect. 5.4).
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Miralda-Escudé, J. 2002, ApJ, 564, 60
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