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Zusammenfassung 
 

Galectin-1 ist ein β-Galaktosid-spezifisches Lektin der extrazellulären Matrix, 

das an der Regulation verschiedener zellulärer Prozesse wie Zellproliferation, 

Differenzierung und Apoptose beteiligt ist. Das extrazelluläre Auftreten von Galectin-

1 war zunächst eine überraschende Entdeckung, da das Protein kein Signalpeptid 

enthält und somit nicht über ER/Golgi-vermittelten Transport sezerniert werden kann. 

Darüber hinaus ist die Sekretion von Galectin-1 in Gegenwart von Brefeldin A nicht 

gehemmt, so dass ein unkonventioneller Sekretionsweg postuliert wurde. 

 

In der vorliegenden Dissertation wurde ein robustes in vivo Modell zur 

funktionellen Rekonstitution der Galectin-1 Sekretion etabliert. Es wurden mittels 

retroviraler Transduktion stabile Zelllinien generiert, die verschiedene Galectin-1 

Reportermoleküle als GFP Fusionsproteine in Abhängigkeit von der exogenen 

Zugabe von Doxicyclin exprimieren. Da die exportierte Population über β-Galaktosid-

haltige Rezeptoren an Zelloberflächen bindet, konnte die Galectin-1 Sekretionsrate 

über verschiedene Methoden wie Durchflusszytometrie, konfokale Laserscan-

mikroskopie sowie biochemische Zelloberflächenbiotinylierung unter verschiedenen 

experimentellen Bedingungen quantifiziert werden. 

 

Die etablierten Modellsysteme wurden einerseits zur funktionellen Charakteri-

sierung eines in dieser Arbeit identifizierten Galectin-1 Rezeptors genutzt und 

andererseits zur Analyse der molekularen Sortierungsdeterminanten verwendet, die 

Galectin-1 zur entsprechenden Exportmaschinerie dirigieren. Eine systematische 

Mutagenese des offenen Leserasters von Galectin-1 ergab hierbei, dass Mutationen, 

die zu einer Bindungsdefizienz führen, letztlich auch einen Exportdefekt verursachen. 

Komplementär hierzu konnte gezeigt werden, dass Galectin-1 von Zelllinien, die nicht 

zur Expression von β-Galaktosid-haltigen Rezeptoren befähigt sind, nicht exportiert 

wird. Hieraus wurde der Schluss gezogen, dass β-Galaktosid-haltige Zellober-

flächenrezeptoren für den Gesamtprozess der Galectin-1 Sekretion essentiell sind. 

Dieser Befund konnte durch die Expression des mit Galectin-1 entfernt verwandten 



Abstract 
 

6 

Proteins CGL-2 aus dem multizellulären Pilz Coprinopsis cinerea bestätigt werden. 

CGL-2 wird von Säugetierzellen unkonventionell exportiert, wobei dieser Prozess von 

der Bindung an β-Galaktosid-haltige Zelloberflächenrezeptoren abhängt. Die 

beschriebenen Arbeiten haben somit gezeigt, dass das primäre Sortierungssignal für 

die unkonventionelle Sekretion von Galectin-1 durch die β-Galaktosid-Bindungsstelle 

definiert ist und haben weitreichende Implikationen für die weitere Analyse der 

Galectin-1 Exportmaschinerie. 
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Abstract 
 

Galectin-1 is a β-galactoside-specific lectin of the extracellular matrix that has 

been implicated in a number of important cellular processes such as the regulation of 

cell proliferation, differentiation and apoptosis. Even though galectin-1 occurs outside 

cells, it does not contain a signal peptide for ER/Golgi-mediated secretion and, 

therefore, unconventional mechanisms of galectin-1 export have been postulated. 

 

In the current thesis, a robust experimental model system has been established 

that allows for a precise quantitation of galectin-1 export from mammalian cells. 

Based on a retroviral transduction system, stable cell lines have been generated 

expressing various galectin reporter molecules as GFP fusion proteins using a 

doxicycline-dependent transactivator. As read out systems, flow cytometry, confocal 

microscopy and a biochemical cell surface biotinylation assay were used since 

exported galectins bind to cell surfaces via β-galactoside-containing counter 

receptors. 

 

This novel experimental system was used for two main purposes, one being the 

functional characterization of a novel galectin-1 counter receptor, the tumor-specific 

antigen CA125 that was identified in this study. A second aspect of the current thesis 

was to define molecular sorting determinants in galectin-1 that direct the protein to its 

unconventional export machinery. A systematic mutational analysis of the galectin-1 

open reading frame was conducted. Additionally, surface residues as well as amino 

acids in galectin-1 conserved across species were exchanged by targeted mutation. 

A major outcome of these studies was that mutations causing a defect in galectin-1 

binding to β-galactosides resulted in a loss of export competence. Intriguingly, when 

expressing the wild-type form of galectin-1 in mutant cells lacking β-galactoside-

containing counter receptors, the protein also failed to get access to its export 

machinery. These findings were taken to mean that a functional interaction between 

galectin-1 and cell surface counter receptors is an obligatory step in the overall 

process of galectin-1 export. Consistently, despite being unrelated with regard to 
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primary structure, a distant galectin relative from the fungus Coprinopsis cinerea, 

CGL-2, was shown to be exported from mammalian cells depending on its ability to 

bind to β-galactosides. Therefore, the work presented in this thesis demonstrates that 

the β-galactoside binding site represents the primary targeting motif for non-classical 

export of galectins defining a galectin export machinery that makes use of β-galacto-

side-containing surface molecules as export receptors for intracellular galectin-1. 

These results have a number of functional implications such as aspects of galectin 

folding during membrane translocation and with regard to the analysis of the 

subcellular site of membrane translocation that is now being investigated based on 

the results described above. 
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1 Introduction 
 

Protein secretion occurs in prokaryotic and eukaryotic cells and involves the 

delivery of secretory products packaged into membrane-bound vesicles to the cell 

exterior. Cells specialized for neurotransmission, enzyme secretion or hormone 

release utilize a highly regulated secretory process. All eukaryotic cells possess an 

endomembrane system that makes up the secretory pathway and endocytic pathway 

(Lee et al., 2004; Rothman and Wieland, 1996). This network consists of a number of 

independent organelles that function sequentially to effect protein secretion to the 

extracellular environment (Keller and Simons, 1997). Each compartment provides a 

specialized surrounding that facilitates various stages in protein biogenesis, 

modification, sorting and secretion (Palade, 1975). Secretory vesicles are transported 

to plasma membrane, where they dock and fuse to release their contents  

(Bonifacino and Glick, 2004). Membrane fusion and secretion are fundamental 

cellular processes regulating ER-Golgi transport, plasma membrane recycling, cell 

division, acid secretion and the release of enzymes, hormones and neurotransmitters 

(Lee et al., 2004; Sudhof, 2004). Therefore it is not surprising that defects in 

secretion and membrane fusion give rise to a number of diseases like diabetes, 

Alzheimer’s, Parkinson’s and acute gastroduodenal diseases (Amara et al., 1992; 

Nagy, 2005; Orci et al., 1997). 

 

1.1 ER/Golgi-mediated protein secretion 
 

 After synthesis of secretory proteins begins on free ribosomes in the cytosol, a 

16- to 30- residue ER signal sequence in the nascent protein directs the ribosome to 

the ER membrane and initiates translocation of the growing polypeptide across the 

ER membrane (Blobel and Dobberstein, 1975a; Blobel and Dobberstein, 1975b; 

Walter et al., 1984). An ER signal sequence typically is located at the N-terminus of 

the protein (Rapoport et al., 1992; Walter, 1992). For most secretory proteins, the 

signal peptide is cleaved off the protein (Blobel and Dobberstein, 1975a; Blobel and 
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Dobberstein, 1975b; Dalbey and Von Heijne, 1992). Since secretory proteins are 

synthesized in association with the ER membrane, a signal-sequence recognition 

mechanism targets them to the ER membrane (Meyer et al., 1982). The two key 

components of this targeting process are the signal-recognition particle (SRP) and its 

receptor located in the ER membrane. SRP is a cytosolic ribonucleoprotein particle 

that transiently binds simultaneously to the ER signal sequence in a nascent protein, 

to the large ribosomal unit, and to the SRP receptor. The SRP receptor is an integral 

membrane protein made up of two subunits: an α subunit and a smaller β subunit 

(Tajima et al., 1986). Once SRP and its receptor have targeted a ribosome 

synthesizing a secretory protein to the ER membrane, the ribosome and the nascent 

chain are rapidly transferred to the translocon, a protein-lined channel within the 

membrane (Rapoport, 1991). During the translation process, the elongating chain 

passes directly from the large ribosomal subunit into the central pore of the trans-

locon (High et al., 1991; Powers and Walter, 1996; Rapoport, 1991). The 60S 

ribosomal subunit is aligned with the pore of the translocon preventing the growing 

chain from being exposed to the cytoplasm and therefore inhibits folding until it 

reaches the ER lumen. Three proteins collectively termed the Sec61 complex were 

found to form the mammalian translocon: Sec61α, an integral membrane protein with 

10 membrane spanning α helices, and two smaller proteins, Sec61β and Sec61γ 

(High et al., 1993; Rapoport, 1992). As the growing polypeptide chain enters the 

lumen of the ER, the signal sequence is cleaved by a signal peptidase, which is a 

transmembrane protein of the ER associated with the translocon (Dalbey and Von 

Heijne, 1992). After the signal sequence has been cleaved, the growing polypeptide 

translocates through the translocon into the ER lumen.  

Soluble and membrane proteins synthesized at the rough ER and translocated 

into the ER are now ready to follow to their final destination via the secretory 

pathway. A single unifying principle governs all protein trafficking in the secretory 

pathway as transport of membrane and soluble proteins from one membrane-

bounded compartment to another is mediated by transport vesicles. Most of the 

newly synthesized proteins in the ER lumen or membrane are incorporated into 

small, 50 nm-diameter transport vesicles. These vesicles either fuse with the cis-

Golgi or with each other to form the membrane stacks known as the cis-Golgi 
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reticulum (network). From the cis-Golgi some proteins, mainly ER localized proteins, 

are retrieved to the ER via a different set of retrograde transport vesicles (Lee et al., 

2004). Importantly, as transport vesicles bud from one membrane and fuse with the 

next, the membrane topology is maintained. 

Two different models of intra-Golgi transport have been discussed in the 

literature (Mironov et al., 2005; Warren and Malhotra, 1998). In the synthesis of 

collagen by fibroblasts, large aggregates of the procollagen precursor often form in 

the lumen of the cis-Golgi. These aggregates are too large to be incorporated into 

small transport vesicles. Newly synthesized procollagen peptides get folded and form 

aggregates in the cis-Golgi where they could subsequently be seen to move as a 

‘wave’ from the cis- through the medial-Golgi cisternae to the trans-Golgi, followed by 

secretion and incorporation into the extracellular matrix. Procollagen aggregates 

could never be detected in small transport vesicles (Mironov et al., 2005). In this 

process called cisternal migration or cisternal progression, a new cis-Golgi stack 

containing its cargo of luminal proteins physically moves from the cis position 

(nearest the ER) to the trans position, successively becoming first a medial-Golgi 

cisterna and finally a trans-Golgi cisterna (Graham and Emr, 1991; Mellman and 

Simons, 1992; Mironov et al., 2005; Rothman and Orci, 1990). In contrast to this 

cisternal progression model a second model exists proposing that transport within the 

Golgi is mediated by vesicles. According to this vesicular transport model, the Golgi 

is a relatively static structure, with its enzymes held in place, while the molecules in 

transit are moved through the cisternae in sequence, carried by transport vesicles 

(Warren and Malhotra, 1998). 

At the molecular level three kinds of transport vesicles have been functionally 

characterized and can be defined by both membrane origin and coat proteins 

(Kirchhausen, 2000; Robinson, 1987). Clathrin-coated vesicles are formed from both 

the plasma membrane and the trans-Golgi network and mediate vesicular trafficking 

within the endosomal membrane system (Schmid, 1997). COPI-coated vesicles and 

COPII-coated vesicles are transport intermediates of the early secretory pathway 

(Barlowe, 1998; Nickel et al., 2002; Rothman and Wieland, 1996; Schekman and 

Orci, 1996). COPII vesicles emerge from the ER in order to export newly synthesized 

secretory proteins towards the Golgi (Barlowe, 1998; Schekman and Orci, 1996). In 
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contrast, COPI-coated vesicles appear to be involved in both biosynthetic 

(anterograde) and retrograde transport within the Golgi complex (Orci et al., 1997), 

as well as mediating the recycling of proteins from the Golgi to the ER (Cosson and 

Letourneur, 1994; Letourneur et al., 1994; Sonnichsen et al., 1996). All types of 

coated vesicles are formed by polymerization of coat proteins on the cytosolic 

surface of the corresponding donor membrane to form vesicle buds that eventually 

pinch off from the membrane to release a complete vesicle. Shortly after vesicle 

release, the coat is shed exposing proteins required for fusion with the target 

membrane (Lee et al., 2004).  

Small GTP-binding proteins (ARF for COPI and clathrin coated vesicles, 

respectively; SAR1 for COPII-vesicles) belonging to the ras GTPase superfamily 

control polymerization of coat proteins, the initial step in vesicle budding. Both ARF 

and Sar1 are monomeric proteins with an overall structure similar to that of ras (Orci 

et al., 1993; Serafini et al., 1991). After vesicles are released from the donor 

membrane, hydrolysis of GTP-bound to ARF or SAR1 triggers disassembly of the 

vesicle coat (Serafini et al., 1991). The primary mechanism by which the vesicle coat 

selects cargo molecules is by directly binding to specific sequences termed sorting 

signals that typically lie in the cytosolic domain of membrane cargo proteins 

(Goldberg, 2000; Kirchhausen et al., 1997; Lee et al., 2004; Mossessova et al., 

2003). The polymerized coat thus acts as an affinity matrix to cluster selected 

membrane cargo proteins into forming vesicle buds. Soluble proteins within the 

lumen of the parental organelles can in turn be selected by binding to the luminal 

domains of certain membrane cargo proteins (e.g. KDEL signal sequence and KDEL 

receptor) (Lewis and Pelham, 1992a). 

Vesicle budding requires protein coats (Bonifacino and Glick, 2004) and small 

GTPases of the ARF family (Nie et al., 2003), while vesicle targeting and fusion 

depend on SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment 

protein receptor) (Ungar and Hughson, 2003; Weber et al., 1998), small GTPases of 

the Rab family (Pfeffer, 2001b) and a diverse group of tethering factors (Lee et al., 

2004; Lupashin and Sztul, 2005; Pfeffer, 2001a). The Rab proteins regulate docking 

of vesicles with the correct target membrane. Each Rab appears to bind to a specific 



Introduction 
 

13 

Rab effector, typically a long coiled-coil protein associated with the target membrane 

(Goud, 1992; Zerial and Stenmark, 1993).  

The term “tethering factors” describes a group of proteins believed to mediate 

initial, loose ‘tethering’ of vesicles with their targets. This loose interaction is followed 

by a tighter, more stable ‘docking’ interaction involving SNAREs (Pfeffer, 2001a). The 

tethering factors form physical links between the vesicles and the acceptor 

membrane before the engagement of SNAREs. Tethering may provide the initial 

level of recognition that is then amplified by SNARE pairing. Tethering factors can be 

generally divided into a group of coiled-coil proteins and a group of multi-subunits 

complexes (Lupashin and Sztul, 2005; Pfeffer, 2001a).  

Disassembly of the vesicle coat uncovers a vesicle-specific v-SNARE. Likewise, 

each type of target membrane in a cell contains a specific t-SNARE membrane 

protein. After Rab mediated docking of a vesicle on its target membrane, the 

interaction of cognate SNAREs brings the two membranes in close proximity 

resulting in membrane fusion. In this process the v-SNAREs and t-SNAREs on the 

two opposing membranes mediate the short-range docking of the vesicle with the 

target compartment by the formation of the so called trans-SNARE complex (Chen 

and Scheller, 2001; Jahn and Grubmuller, 2002; Jahn and Sudhof, 1999; Rothman, 

2002; Sudhof, 2004). The SNARE motifs are believed to be unstructured before 

complex assembly and become highly organized into a four-helical bundle during 

formation of the trans-SNARE-complex. The trans-SNARE complex directly catalyzes 

the fusion of the two opposing membranes. Therefore, following fusion, the complex 

becomes a cis-SNARE complex in the target compartment (Lee et al., 2004).  

Finally, to be ready for subsequent rounds of transport, the cis-SNARE complex 

needs to be disassembled. This is catalyzed by the combined action of α-SNAP 

(soluble N-ethylmaleimide-sensitive factor attachment protein) and the ATPase NSF 

(N-ethylmaleimide-sensitive factor). Interaction of NSF in a form of a hexamer and 

three α-SNAPs with the cis-SNARE complex leads to the transient formation of a 20 

S complex (Furst et al., 2003; Hohl et al., 1998; Wimmer et al., 2001). ATP hydrolysis 

catalyzed by NSF leads to the disassembly of the 20 S complex as well as the cis-

SNARE complex. The free v-SNARE can then be recycled to the donor compartment 
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by retrograde transport, while the t-SNARE subunits can be re-organized into 

functional t-SNARE for the next round of docking and fusion events. 

 

1.2 Unconventional secretion 
 

As already discussed soluble secretory proteins typically contain N-terminal 

signal peptides that direct them to the translocation apparatus of the endoplasmic 

reticulum (ER) (Rapoport et al., 1996; Walter et al., 1984). Following vesicular 

transport from the ER via the Golgi to the cell surface, luminal proteins are released 

into the extracellular space by fusion of Golgi-derived secretory vesicles with the 

plasma membrane (Mellman and Warren, 2000; Palade, 1975; Rothman and 

Wieland, 1996; Schekman and Orci, 1996). This pathway of protein export from 

eukaryotic cells is known as the classical or ER/Golgi-dependent secretory pathway 

(see 1.1).  

However, about 15 years ago, it was reported that interleukin 1β (IL-1β) and 

Galectin-1 (Gal-1) can be exported from cells in the absence of a functional ER/Golgi 

system (Cooper and Barondes, 1990; Rubartelli et al., 1990). Since then, the list of 

proteins demonstrated to be secreted by unconventional means is steadily growing 

(Nickel, 2003). Fig. 1 gives an overview of cellular, viral proteins and proteins derived 

from parasites that have been shown to be exported by mechanisms independent of 

the classical secretory pathway. Current members of this group of proteins are, for 

example: angiogenic growth factors FGF-1 and -2 (1.2.2) (Florkiewicz et al., 1995; 

Jackson et al., 1992; Mignatti et al., 1992), cytokines such as interleukin 1β and 

thioredoxin (1.2.4) (Rubartelli et al., 1992; Rubartelli et al., 1990; Rubartelli and Sitia, 

1991), lectins of the extracellular matrix such as Gal-1 (1.2.1) (Cho and Cummings, 

1995a; Cho and Cummings, 1995b; Cooper and Barondes, 1990; Mehul and 

Hughes, 1997), viral proteins such as Herpes simplex tegument protein VP22 (Elliott 

and O'Hare, 1997) as well as cell surface proteins such as hydrophilic acylated 

surface protein B (HASPB; 1.2.3) (Denny et al., 2000). 
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The basic observations (Cleves, 1997; Hughes, 1999) that led to the proposal 

of alternative pathways of eukaryotic protein secretion are (i) the lack of conventional 

signal peptides, (ii) the exclusion of these proteins from classical secretory organelles 

such as the ER and the Golgi, (iii) the lack of ER/Golgi-dependent post-translational 

modifications such as N-glycosylation and (iv) resistance of these export processes 

to brefeldin A and monensin, both classical inhibitors of ER/Golgi-dependent protein 

secretion (Lippincott-Schwartz et al., 1989; Misumi et al., 1986; Orci et al., 1991). 

 

 
 
Fig. 1 Cargo proteins and potential export routes of unconventional protein secretion.  

 

Because unconventional secretory proteins are soluble factors synthesized on 

free ribosomes in the cytoplasm, various experimental strategies have been pursued 

in order to exclude unspecific release based on cell death under the experimental 

conditions applied. These experiments included quantitative measurements of the 
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appearance of unrelated cytoplasmic proteins in cellular supernatants (Cleves, 1997; 

Engling et al., 2002; Hughes, 1999) as well as the identification of a CHO mutant cell 

line expressing the unconventional secretory protein HASPB that is deficient in non-

classical export of this protein (Stegmayer et al., 2005).  

Moreover, non-conventional protein secretion of FGF-2 was shown to be 

dependent on both energy (Florkiewicz et al., 1995) and temperature (Schäfer et al., 

2004) and is stimulated or inhibited by various treatments (Cleves, 1997; Hughes, 

1999). Furthermore, Gal-1 secretion was shown to be regulated for example by cell 

differentiation (Cooper and Barondes, 1990; Lutomski et al., 1997). Finally, it was 

described that FGF-2 export is regulated by NF-κB-dependent signaling pathways 

(Wakisaka et al., 2002).  

Based on these observations, it can be concluded that unconventional 

secretory proteins exit eukaryotic cells in a controlled manner mediated by 

proteinaceous machineries. 

 

Four potential mechanisms of unconventional protein export have been 

discussed so far in the literature to mediate translocation of cytosolic factors into the 

extracellular space (Hughes, 1999; Nickel, 2005). Two of these (Fig. 2; mechanism 1 

and 3) involve intracellular vesicles of the endocytic membrane system such as 

secretory lysosomes (Clark and Griffiths, 2003; Stinchcombe et al., 2004) and 

exosomes (Stoorvogel et al., 2002), the latter ones being internal vesicles of 

multivesicular bodies (Stahl and Barbieri, 2002). Under suitable conditions, lysosomal 

contents gain access to the exterior of cells when specialized endocytic structures 

such as secretory lysosomes of T lymphocytes or melanosomes of melanocytes fuse 

with the plasma membrane (Stinchcombe et al., 2004). Similarly, luminal contents of 

endocytic structures can be released into the extracellular space when multivesicular 

bodies fuse with the plasma membrane, a process that results in the release of 

exosomal vesicles along with their cargo molecules (Stoorvogel et al., 2002).  

Two alternative unconventional secretory mechanisms are characterized by a 

direct translocation of cytosolic factors across the plasma membrane using either 

protein conducting channels such as adenosine triphosphate-binding cassette (ABC) 

transporters proposed for FGF-2 secretion (Cleves and Kelly, 1996) (Fig. 2; 
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mechanism 2) or a process called membrane blebbing (Fig. 2; mechanism 4), the 

latter one being characterized by shedding of plasma membrane derived 

microvesicles that are released into the extracellular space (Freyssinet, 2003; Hugel 

et al., 2005; Martinez et al., 2005).  

 

 
 

Fig. 2 Vesicular and non-vesicular pathways potentially involved in unconventional pro-

cesses. 1, export by secretory lysosomes; 2, export mediated by plasma membrane-resident 

transporters; 3, export through the release of exosomes derived from multivesicular bodies; 4, 

export mediated by plasma membrane shedding of microvesicles 

 

1.2.1 Galectins 

 

All 15 members of the galectin protein family are abundant β-galactoside-

specific lectins of the extracellular matrix (Chiariotti et al., 2004; Gray et al., 2004; 

Gray et al., 2005; Perillo et al., 1998). Lectins are defined as carbohydrate-binding 

proteins. They were first discovered more than 100 years ago in plants; they are now 

known to be present throughout nature. For a while after their discovery, animal 

lectins were classified according to the carbohydrate sequence to which they bound 

best. With the advent of molecular cloning a more consistent classification emerged, 

based on amino acid sequence homology and conservation of these lectins. 
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Until the 1990s, all of the animal lectins discovered were found to be naturally 

multivalent, either because of their defined multisubunit structure or by virtue of 

having multiple carbohydrate-binding sites within a single polypeptide (Sharon, 

1993). Indeed, high avidity generated by multivalent binding of low-affinity single sites 

appears to be a common mechanism for optimizing lectin function in nature (Rini, 

1995a), and a traditional definition for a lectin was “a multivalent carbohydrate-

binding protein that is not an antibody”. The first exception to this general rule 

appeared to be the selectins (Crocker and Feizi, 1996; Rosen and Bertozzi, 1994), 

which have only a single CRD site within their extracellular polypeptide domains. The 

same situation applies to the Siglecs (for sialic acid/immunoglobulin superfamily/lec-

tins) (Crocker, 2002). However, evidence is emerging that these molecules become 

functionally multimeric by clustering on cell surfaces (Crocker, 2002; Varki, 1992). 

The galectins are β-galactoside-specific lectins and have been implicated in 

many cellular processes such as regulation of cell growth, cell proliferation, different-

iation and apoptosis (see 1.4). Galectins can act either extracellularly or intra-

cellularly to exert effects on cell growth and apoptosis (Pace et al., 1999; Perillo et 

al., 1998; Perillo et al., 1995; Rabinovich et al., 2002a). The best-characterized 

members of this family are Gal-1 and Gal-3 which are expressed in a wide range of 

vertebrate cell lines and tissues (Cerra et al., 1984; Cho and Cummings, 1995b; 

Cooper and Barondes, 1990; Lutomski et al., 1997; Mehul and Hughes, 1997; Sato 

et al., 1993b; Seelenmeyer et al., 2003).  

 

1.2.1.1 Structure and classification 

 

Members of the galectin family are composed of one or two carbohydrate-

recognition domains (CRD) of approximately 130 amino acids. So far 15 members 

could be identified (Gal-1 to Gal-15). The structures of galectins can be generally 

classified into three categories: 
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1) The prototype galectin (Gal-1, -2, -5, -7, -10, -11, -13, -14, -15), which may 

exist as monomers or homodimers consisting of one carbohydrate 

recognition domain (CRD) per subunit 

2) The chimera type (Gal-3), which contains a non-lectin N-terminal short 

sequence segment followed by 8-12 collagen-like repeats of 9 amino acids 

connected to the C-terminal CRD domain 

3) The tandem-repeat type (galectin-4, -6, -8, -9, -12), composed of two CRD 

domains in a single polypeptide chain connected by a linker peptide 

(Ahmed et al., 1996; Yang et al., 2001). 

 

Gal-1 is a homodimer of two 14-kDa polypeptides. Each subunit consists almost 

exclusively of a carbohydrate recognition domain (CRD) (Barondes et al., 1994). The 

crystal structure of Gal-1 was the first to be determined among galectins (Fig. 3). The 

overall folding of human Gal-1 involves a β-sandwich consisting of two antiparallel β-

sheets of five (F1-F5) and six (S1-S6a/b) strands (Lobsanov et al., 1993), 

respectively. The N- and C-termini of each monomer are positioned at the dimer 

interface and the CRDs are located at the far ends of the same face of the surface, 

which presents a long negatively charged cleft in the cavity. The presence of this cleft 

deserves attention as a site for ionic interactions. The distance between the two 

CRDs is approximately 44 Å (Lopez-Lucendo et al., 2004). 

 

 
 
Fig. 3 Crystal structure of human Gal-1 (Lopez-Lucendo et al., 2004). 
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Similar to interleukin 1β, FGF-1, FGF-2 and HASPB, galectins apparently do not 

contain signal peptides in their primary structure suitable for ER/Golgi-mediated 

secretion (Couraud et al., 1989). Consistently, galectins are synthesized on free 

ribosomes in the cytoplasm (Wilson et al., 1994) and galectin secretion has been 

shown not to be blocked by inhibitors of the ER/Golgi-dependent pathway such as 

brefeldin A and monensin (Hughes, 1999; Lindstedt et al., 1993; Sato et al., 1993b). 

Unlike interkeukin 1β, Gal-1 and Gal-3 do not appear to be packaged into 

intracellular vesicles prior to export (Cooper and Barondes, 1990; Hughes, 1999; 

Mehul and Hughes, 1997; Sato et al., 1993a). Rather, Gal-1 and Gal-3 have been 

shown to accumulate directly underneath the plasma membrane, followed by an 

export mechanism that appears to involve so far the formation of membrane bound 

vesicles that pinch off before being released into the extracellular space (Cooper and 

Barondes, 1990; Hughes, 1999; Mehul and Hughes, 1997; Sato et al., 1993a). This 

potential mechanism also distinguishes galectin export from FGF-1 and FGF-2 

export, as there is no evidence that these proteins are packaged into membrane-

bound vesicles.    

Extracellular galectins are found either bound to the extracellular surface of the 

plasma membrane or as abundant components of the extracellular matrix (Cerra et 

al., 1984; Cho and Cummings, 1995b; Cooper and Barondes, 1990; Lutomski et al., 

1997; Mehul and Hughes, 1997; Sato et al., 1993a; Seelenmeyer et al., 2003). Cell 

surface association of galectins is mediated by both N- and O-linked oligosaccharide 

side chains of glycoproteins bearing terminal β-galactosides (Hughes, 1999; Perillo et 

al., 1998) as well as by β-galactoside-containing glycolipids such as GM1 (Kopitz et 

al., 1998; Perillo et al., 1998). As Gal-1 and Gal-3 can form homodimers (Cho and 

Cummings, 1995b; Giudicelli et al., 1997; Hughes, 1999), it has been proposed that 

extracellular galectins affect their glycosylated cell surface counter receptors by 

inducing conformational changes of their extracellular domains and/or by clustering 

galectin counter receptors based on non-covalent crosslinking of oligosaccharide 

moieties (Perillo et al., 1998). In this way, secreted galectins are thought to affect 

processes such as cell differentiation by cell surface counter receptor-mediated 

signaling (Perillo et al., 1998; Sacchettini et al., 2001). While classical counter 

receptors of, e.g., Gal-1 include laminin (Zhou and Cummings, 1990), fibronectin 
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(Ozeki et al., 1995) and cell-type specific receptors such as T-cell CD43 and CD45 

(Pace et al., 1999), it has been shown that tumor-specific cell surface antigen CA125 

also represents a galectin counter receptor that preferentially binds Gal-1 

(Seelenmeyer et al., 2003). This latter example is of particular interest as it provides 

a potential molecular mechanism for how tumor cells can differentially interact with 

the extracellular matrix, a process crucial for tumor progression (Liu and Rabinovich, 

2005). 

 

1.2.1.2 Gal-1-mediated signaling and biosynthesis of Gal-1 counter 

receptors  

 

Galectins represent a group of proteins that bind β-galactosyl-containing glyco-

conjugates. Galectins are widely distributed throughout the animal kingdom. Certain 

members of the galectin family promote cell-cell adhesion such as Gal-1 (Perillo et 

al., 1998; van den Brule et al., 1995), whereas some have potent biological activities, 

such as the ability to induce apoptosis (Lanteri et al., 2003; Perillo et al., 1995), and 

to induce metabolic changes, such as cellular activation and mitosis (Liu et al., 2002). 

Galectins are soluble proteins that are secreted by a nonclassical pathway and 

require reducing conditions to maintain activity in the absence of ligands (de Waard 

et al., 1976). To fulfill their extracellular function, galectins need d 

To bind to β-galactoside-containing counter receptors. Functional counter 

receptors with regard to galactosylation are obligatory components in order to 

promote cell-cell adhesion, cell-matrix adhesion and to effect cell growth and viability.  

Asparagine-linked glycosylation (N-glycosylation) begins with the assembly of 

the complete dolichol-linked oligosaccharide donor (initial composition Glc3Man9Glc-

NAc2) (Hebert et al., 2005). This process begins on the cytosplasmic face of the ER 

and is finished within the lumen, where the glycan chain is transferred en bloc by 

oligosaccharyltransferase to an Asn residue in the consensus sequence Asn-X-

Ser/Thr. Following translocation into the ER lumen and glycosylation, proteins 

encounter chaperones that facilitate the maturation process (Hebert et al., 2005). The 

initial branched carbohydrate structure is modified and trimmed in the ER, but 5 of 
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the 14 residues are maintained in the structure of all N-linked oligosaccharides on 

secretory and membrane proteins (Kornfeld and Kornfeld, 1985). Further 

modifications and additions of sugar residues occur in the Golgi apparatus, 

depending on the protein (Farquhar, 1981). For example, UDP-galactose is 

specifically transferred by Golgi-resident galactosyltransferases to N-linked 

glycoproteins, which are potential counter receptors for Gal-1. 

The first glycosylation enzyme to be biochemically localized to Golgi 

membranes is galactosyltransferase (GalNAcT) (Fleischer et al., 1969; Morre et al., 

1969). Nearly all eukaryotic GalNAcT (Hennet, 2002) have been shown to be 

membrane-bound proteins (type II transmembrane proteins) with their active sites 

being exposed to the lumen of the Golgi (Carey and Hirschberg, 1981; Creek and 

Morre, 1981; Fleischer, 1981; Schachter et al., 1970). These terminal glycosyltrans-

ferases are biochemically localized to regions of the Golgi distinct from early oligo-

saccharides trimming enzymes (Deutscher et al., 1983; Dunphy et al., 1981; 

Goldberg and Toole, 1983). 

 

The modification of serine or threonine residues on proteins by addition of a 

GalNAc residue results in an O-linked oligosaccharide or O-glycan. O-glycan 

biosynthesis is simpler than oligosaccharide transfer to asparagines in that a lipid-

linked oligosaccharide precursor used to transfer sugars to target proteins is not 

required (Hebert et al., 2005). The initiating event is the addition of the 

monosaccharide GalNAc (from UDP-GalNAc) to serine and threonine residues 

catalyzed by a polypeptide GalNAc transferase (GalNAcT) (Hirschberg and Snider, 

1987).  

Galactose can be activated to UDP-Gal in several ways (Holton, 1996). The first 

is by direct phosphorylation at the C1-position (Gal-1-P), which can react with UTP to 

form UDP-Gal (Gahl, 1997; Holton, 1996). Alternatively, Gal-1-P can be converted to 

UDP-Gal via the uridyl transferase-catalyzed exchange reaction with UDP-Glc. 

Finally, UDP-Gal can be formed from UDP-Glc by the NAD-dependent reaction 

catalyzed by UDP-Gal-4-epimerase (Gahl, 1997). Cytosolic UDP-galactose is trans-

located into the lumen of the Golgi apparatus by a specific UDP-galactose 

transporter localized in the Golgi membrane (Deutscher and Hirschberg, 1986). 
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In contrast to N-glycosylation, a consensus sequence for GalNAc addition to 

polypeptides has not been identified (Hebert et al., 2005; Hennet, 2002). Many O-

glycans are extended into long chains with variable termini that may be similar to the 

termini of N-glycans. However, O-glycans are less branched than most N-glycans 

and are commonly biantennary structures. O-glycosylation can result in the formation 

of mucin-type molecules. Mucins are defined as soluble or membrane-bound glyco-

proteins with a large number of clustered O-glycans. The clustering of O-glycans on 

mucins is in part due to the presence of a large number of serine and threonine 

residues in an uncharged and often proline-rich peptide context. 

 

1.2.2 Pro-angiogenic Growth Factors: FGF-1 and FGF-2 

 

Fibroblast growth factors 1 and 2 (FGF-1 and FGF-2) belong to a large family of 

heparin-binding growth factors that, apart from their mitogenic activity (Burgess and 

Maciag, 1989; Schweigerer et al., 1987), are key activators of tumor-induced 

angiogenesis. In vertebrates, the 22 members of the FGF family range in molecular 

mass from 17 to 34 kDa and are highly conserved in both gene structure and amino 

acid sequence (Ornitz and Itoh, 2001). Most of the different FGF family members 

share 28 highly conserved and six identical amino acid residues. Structural studies 

on FGF-1 and FGF-2 identified 12 antiparallel β-strands in the conserved core region 

of the protein. Two β-strands include several basic amino acid residues that form the 

primary heparin-binding site of FGF-2, which is responsible for the affinity for 

heparan sulfate proteoglycans (Raman et al., 2003).  

Most FGFs (FGF 3-8, 10, 15, 17-19, and 21-23) have amino-terminal signal 

peptides and are secreted from cells by a classical mechanism. A second group, 

mainly FGF 11-14 lack a signal sequence and are thought to remain intracellularly 

(Ornitz and Itoh, 2001). Their function is presently unknown. 

The other growth factors lack a classical sequence, but are nevertheless 

secreted. FGF-9 and FGF-16, which share 73% homology, contain a new N-terminal, 

non-cleaved signal peptide. As FGF-9 and FGF-16 are glycosylated, it is consistent 

that they are secreted via the classical vesicular pathway (Revest et al., 2000). 
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The remaining FGFs (FGF-1, the 18 kDa isoform of FGF-2, and FGF-20), which 

lack a known signal sequence, are exported in an unconventional manner. As FGF-

20 was discovered only recently, its function and secretion mechanism is largely 

unknown (Hajihosseini and Heath, 2002; Jeffers et al., 2001; Kirikoshi et al., 2000).  

 

As illustrated in Fig. 2 it has been proposed for FGF-2 that membrane 

translocation is mediated by plasma membrane-resident transporters. While it was 

first assumed that angiogenic growth factors might be released from mechanically 

injured tissue to promote wound healing (McNeil et al., 1989), a process that requires 

angiogenesis, various lines of evidence suggest that FGF-1 and FGF-2 are exported 

from cultured cells in the absence of appreciable amounts of cell death (Engling et 

al., 2002; Florkiewicz et al., 1995; Jackson et al., 1992; Mignatti et al., 1992; Trudel 

et al., 2000). Like IL-1β (Rubartelli et al., 1990), FGF-1 is increasingly secreted under 

stress conditions such as heat shock treatment (Jackson et al., 1992; Shin et al., 

1996). In contrast, FGF-2 export is not affected under these conditions (Mignatti and 

Rifkin, 1991). While serum starvation has been reported to inhibit export of FGF-2 

(Mignatti et al., 1992), it was found to induce secretion of FGF-1 (Shin et al., 1996).  

Recently it was shown that direct translocation of FGF-2 across the plasma 

membrane does not require protein unfolding (Backhaus et al., 2004). In case of 

classical secretory transport, quality control occurs at the level of the ER in that 

secretory proteins not being folded properly do not have access to transport vesicle-

mediated exit from this compartment but rather are targeted for degradation (Sayeed 

and Ng, 2005; Sitia and Braakman, 2003; Trombetta and Parodi, 2003). Thus, it 

appears quite reasonable that translocation of FGF-2 is in some way coupled to a 

mechanism that ensures secretion only of functional, properly folded FGF-2 

(Backhaus et al., 2004). These considerations imply that FGF-2 might not be 

released in an unfolded state but rather is exported from cells in a functional form 

that has passed quality control measures (Nickel, 2005). 
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1.2.3 Leishmania hydrophilic acylated surface protein B (HASPB) 

 

Another quite remarkable example of nonclassical protein export from 

eukaryotic cells is the mechanism of cell surface expression of Leishmania HASPB 

which is found associated with the outer leaflet of the plasma membrane only in 

infectious stages of the parasite lifecycle (Alce et al., 1999; Flinn et al., 1994; 

McKean et al., 2001; Pimenta et al., 1994). The protein is synthesized on free 

ribosomes in the cytoplasm. HASPB biogenesis starts with cotranslational 

myristoylation of its N-terminus. A second acylation step involves palmitoylation at 

cysteine 5 of the SH4 domain of HASPB (Denny et al., 2000). The HASPB primary 

structure differs from all other unconventional secretory proteins known to date, as it 

contains an N-terminal SH4 domain commonly found in src kinases that is a 

substrate for N-terminal protein acylation (Resh, 2004).  

Mutational analysis revealed that a HASPB construct lacking its 18 N-terminal 

amino acids is localized to the cytoplasm (Denny et al., 2000). The same is true for a 

mutant that retains the N-terminus but lacks the myristoylation site (Denny et al., 

2000). Interestingly, a mutant that lacks the palmitoylation site (C5A), but continues 

to be myristoylated, has been found associated with the cytoplasmic surface of the 

Golgi apparatus (Denny et al., 2000) suggesting that the putative palmitoylacyltrans-

ferase is a resident enzyme of the Golgi apparatus (Denny et al., 2000; Stegmayer et 

al., 2005). Dual acylation of the SH4 domain of HASPB mediates stable membrane 

association of the molecule. Following transient association with the Golgi, HASPB is 

transported to the inner leaflet of the plasma membrane. Based on these 

observations, there are in principle three options how this transport step is mediated: 

(i) HASPB might be transported to the plasma membrane associated with the cyto-

plasmic leaflet of secretory vesicles, (ii) HASPB might be targeted first to endosomal 

structures followed by translocation to the plasma membrane or (iii) HASPB transport 

from the Golgi to the plasma membrane might not rely on transport vesicles. 

Intriguingly, heterologous expression of various HASPB fusion proteins in 

mammalian cells revealed the existence of a machinery that is capable of trans-

locating the protein across the plasma membrane (Denny et al., 2000), demonstra-
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ting a conserved pathway among lower and higher eukaryotes. No endogenous 

mammalian cargo proteins that make use of this type of export system have been 

identified so far. In any case, palmitoylation of HASPB is strictly required for plasma 

membrane targeting as palmitoylation deficient mutants of HASPB are efficiently 

retained at the level of the Golgi (Denny et al., 2000; Stegmayer et al., 2005). The 

final localization of HASPB is characterized by its stable association with the outer 

leaflet of the plasma membrane with the protein moiety being exposed to the 

extracellular space. Therefore, HASPB must translocate across at least one 

membrane during its biogenesis pathway. Recently, it was shown that the HASPB 

membrane translocation is likely to be mediated by a plasma membrane-resident 

transporter (Stegmayer et al., 2005). 

 

1.2.4 Cytokines: Interleukin-1β , Thioredoxin and Macrophage 

Migration Inhibitory Factor 

 

A classical example of an unconventional secretory protein whose export 

mechanism involves intracellular vesicles is IL-1β (Rubartelli et al., 1990). In 1987, 

Dinarello and colleague demonstrated that interleukin 1, a cytokine (Dinarello, 1991; 

Dinarello, 1997) lacking a classical signal peptide for ER/Golgi-mediated protein 

secretion, is exported from activated human monocytes (Auron et al., 1984). Two 

isoforms of interleukin 1 termed 1α and 1β have been described which represent 

proteolytically processed forms derived from two related but distinct precursors 

(Dinarello, 1997). The processing of IL-1α involves myristoylation and, following 

insertion into the plasma membrane, calpain-dependent cleavage that is thought to 

cause release of the mature form of IL-1α into the extracellular space (Kobayashi et 

al., 1990; Watanabe and Kobayashi, 1994). In the case of IL-1β, interleukin 

converting enzyme produces mature IL-1β (Black et al., 1988; Wilson et al., 1994), 

which is then exported (Dinarello, 1991). When homogenates of activated monocytes 

were analyzed by gradient centrifugation and protease protection experiments, an IL-

1β subpopulation could be detected in the lumen of intracellular vesicles (Andrei et 

al., 1999). On the basis of immunolocalization studies employing electron 
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microscopy, these subcellular vesicles have been identified as an endolysosomal 

subcompartment because IL-1β-positive vesicles display the typical morphology of 

endocytic organelles and are positive for cathepsin D and Lamp-1, classical markers 

of late endosomes and lysosomes. However, only a fraction of the total population of 

cathepsin D- and Lamp-1-positive vesicles was also labeled by anti-IL-1β antibodies 

suggesting that this population represent a specialized subspecies of endolysosomes 

(Andrei et al., 1999). Following appropriate stimulation during the onset of 

inflammatory processes, IL-1β-containing vesicles undergo fusion with the plasma 

membrane resulting in the release of IL-1β into the extracellular space (Andrei et al., 

1999; Andrei et al., 2004). Uptake of IL-1β into secretory lysosomes might be 

mediated by a protein-conducting ABC transporter as the overall process of IL-1β 

secretion is sensitive to glyburide, a drug targeted against the ABC1 family of 

membrane transporters (Hamon et al., 1997; Zhou et al., 2002). Other 

unconventional secretory protein such as high mobility group 1 protein (HMGB1) and 

possibly MIF (migration inhibiting factor), an inflammatory cytokine mediating a 

number of immune and inflammatory diseases, e.g. bacterial septic shock, are 

released by secretory lysosomes as well (Bonaldi et al., 2003; Gardella et al., 2002) 

and glyburide also appears to inhibit nonclassical secretion of MIF (Flieger et al., 

2003).  

Another example for unconventionally secreted proteins are thioredoxins, 

ubiquitous intracellular enzymes that catalyze thiol disulfide exchange reactions 

(Holmgren, 1989). Additionally, extracellular populations of thioredoxin have been 

detected that, similar to IL-1β and MIF, follow an ER/Golgi-independent route of 

secretion (Rubartelli et al., 1992; Rubartelli et al., 1995; Rubartelli and Sitia, 1991; 

Sahaf and Rosen, 2000). This observation is consistent with additional physiological 

roles of thioredoxin such as its function as a mitogenic cytokine that requires 

extracellular localization (Pekkari et al., 2001; Pekkari et al., 2000). Secretion of 

thioredoxin appears to be mediated by a pathway distinct from IL-1β as it could 

neither be detected in intracellular vesicles, nor was the secretion process reported 

to be inhibited by reagents that interfere with the function of ABC transporters. 

However, as with IL-1β (Rubartelli et al., 1990), secretion of thioredoxin is inhibited 

my methylamine and stimulated by brefeldin A (Rubartelli et al., 1992).  
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1.3 Gal-1 receptors in different cell types 
 

As already described galectins are a family of animal lectins defined by two pro-

perties: shared amino acid sequences in their carbohydrate recognition domain, and 

affinity to β-galactosides. A wide variety of biological phenomena are related to 

galectins, i.e. development, differentiation, morphogenesis, tumor metastasis, 

apoptosis, RNA splicing, and immunoregulatory functions. Several Gal-1 receptors 

are discussed such as CD45, CD7, CD43, CD2, CD3, CD4, CD107, CEA, extracel-

lular matrix proteins such as laminin and fibronectin, glycosaminoglycans, integrins, a 

β-lactosamine glycolipid, GM1 ganglioside, Polypeptide HBGp82, glycoprotein 90 K/ 

Mac-2BP and pre-B-cell receptor.  

 

1.3.1 Biological functions of Gal-1 in different cell types 

 

A wide variety of biological phenomena have been shown to be related to Gal-

1, i.e. cell adhesion, proliferation, apoptosis, T-cell receptor counter-stimulation, 

immunomodulatory effects, cell cycle arrest, pre-B cell signaling, RNA splicing and 

promotion of H-Ras membrane anchorage (Kuwabara et al., 2003; Liu et al., 2002) 

(Rabinovich et al., 2002a; Rabinovich et al., 2002b). Gal-1 is involved in cell-cell and 

cell-matrix adhesion, in processes such as tumor invasion and metastasis, 

inflammation, and organ development. Gal-1 binds to poly-N-acetyl-lactosamine 

chains from extracellular cell matrix proteins such as laminin and fibronectin, thereby 

modulating cell adhesion both positively and negatively (Moiseeva et al., 2000; Ozeki 

et al., 1995; van den Brule et al., 1995; Zhou and Cummings, 1990; Zhou and 

Cummings, 1993). Gal-1 also affects the interaction of tumor cells with endothelia 

cells, which is critical in invasion and metastasis. Accumulation of Gal-1 is observed 

at the contact sites between breast tumor cells and the endothelium: Gal-1 localizes 

on tumor cells and Gal-3 preferentially localizes on endothelial cells, suggesting 

different roles of these lectins in adhesion. Increased Gal-1 expression has been 

reported in many types of human cancer such as those arising from the thyroid, 
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endometrium, head and neck, thymus, bladder, pancreas, and colon, and in 

cholangiocarcinoma, and glioma (Danguy et al., 2002; Lahm et al., 2004). 

In the immune system, Gal-1 is expressed in the thymus, spleen, lymph nodes, 

bone marrow, liver, and immune-privileged sites (Perillo et al., 1998). Gal-1 from 

human thymic epithelial cells binds to core 2-O-glycans on immature cortical 

thymocytes and induces cell apoptosis during thymocyte maturation. Immature 

cortical thymocytes bind more Gal-1 than mature medullar thymocytes do (Perillo et 

al., 1997). The apoptotic effect is dose dependent, carbohydrate-specific, and Fas-, 

steroid- and CD3- independent. In addition, Gal-1 expressed on endothelial cells can 

trigger apoptosis of adherent T cells in a carbohydrate-dependent manner (Nguyen 

et al., 2001; Perillo et al., 1995).  

In inflammation, activated macrophages, antigen-stimulated T cells, activated B 

cells, and alloreactive T cells produce high levels of Gal-1 to kill effector T cells after 

immune response. Immune privileged tissues such as the retina, placenta, testis, and 

the ovary overexpress Gal-1, which might ensure the rapid elimination of 

inflammatory T cells by the Gal-1 apoptotic pathway to protect the integrity and 

function of these vulnerable tissues (Rabinovich et al., 2002a; Rabinovich et al., 

2002b). 

Gal-1 also modulates proliferation of normal and malignant cells, depending on 

the cell type: growth inhibition may be observed at high Gal-1 concentrations 

whereas lower concentrations enhance cell proliferation (Adams et al., 1996). In 

human ovary carcinoma cells, low concentration of Gal-1 do not show any effect, but 

higher concentration decreases cell proliferation (van den Brule et al., 2003). Gal-1 

increases serum-induced DNA synthesis in human SMC cultured cells (Moiseeva et 

al., 2000). In rat pulmonary arterial endothelial cells, Gal-1 also promotes proliferation 

(Sanford and Harris-Hooker, 1990). 
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1.3.2 Galectin-1 receptors 

 

1.3.2.1 Extracellular matrix receptors 

 

Laminin, fibronectin, thrombospondin, vitronectin, and glycoaminoglycans Gal-1 

can modulate cell-ECM interactions in different biological systems. Laminin and fibro-

nectin are two ECM receptors proposed as the main receptors for Gal-1 (van den 

Brule et al., 1995; Zhou and Cummings, 1993). 

 

Laminin is a large glycoprotein and a major component of the basement 

membrane in all types of tissues. Many biological phenomena such as cellular 

adhesion, spreading, proliferation, and differentiation involve interaction between 

cells and laminin. It is composed by three chains, the A chain (400 kDa), B1 chain 

(210 kDa), and B2 chain (200 kDa). It shows ASN-linked oligosaccharides containing 

the repeating disaccharide or poly-N-acetyl-lactosamine sequence (Zhou and 

Cummings, 1990). Gal-1 also modulates human melanoma cell adhesion to laminin. 

Local increases or decreases of Gal-1 expression may play a critical role during 

attachment and detachment of cancer cells throughout the cancer progression 

process (van den Brule et al., 1995). 

Tissue fibronectin has also been proposed as an endogenous receptor for Gal-

1 (Ozeki et al., 1995). Fibronectin, laminin, and Gal-1 colocalize in the extracellular 

matrix of placental tissue. 

Other ECM proteins such as thrombospondin and vitronectin, and, to a lower 

extent, osteopontin can also bind to Gal-1 (Moiseeva et al., 2000). It binds to several 

ECM in a dose-dependent and β-galactoside dependent manner; moreover, Gal-1 

interacts with GAG chains from ECM. For example, heparan sulfate and chondroitin 

sulfate reduce the binding of Gal-1 to ECM proteins (Moiseeva et al., 2003). 

Interactions between Gal-1 and chondroitin sulfate proteoglycans have also been 

described (Seelenmeyer et al., 2003). Chondroitin sulfate B contains galactose-like 

residues and shows significant β-galactoside-dependent binding to Gal-1 in the solid 
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phase, compared to chondroitin sulfate A and C and heparan sulfate, which do not 

bind to Gal-1. 

Interaction between Gal-1 and vitronectin seem to depend on the vitronectin 

conformation. Vitronectin exist either as folded inactive monomer or as an unfolded 

multimer able to interact with ECM components. It shows a significant binding to Gal-

1 in the presence of lactose, probably because lactose induces unfolding of 

vitronectin. Moreover, Gal-1 bound to the ECM reduces the incorporation of 

vitronectin and chondroitin sulfate B to the ECM in a β-galactoside dependent 

manner. Thus, ECM bound Gal-1 can decrease incorporation of its receptors into the 

ECM, which suggests a role for Gal-1 in ECM assembly and tissue matrix remodeling 

(Moiseeva et al., 2003).  

 

1.3.2.2 Cell surface receptors 

 

1.3.2.2.1 Integrins 

 

The α7β1 integrin is the predominant laminin-binding integrin on differentiating 

skeletal muscle cells (Song et al., 1993). The expression of the α7 is developmentally 

regulated during skeletal muscle differentiation and has been used to identify cells at 

distinct stages of the myogenic lineage. The addition of purified recombinant Gal-1 to 

myogenic cells plated on laminin inhibits myoblast spreading and fusion suggesting 

that Gal-1 regulates muscle cell interactions with the extracellular matrix (Cooper et 

al., 1991). 
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1.3.2.2.2 CD45  

 

CD45 is a family of integral membrane tyrosine phosphatases expressed on 

cells of hemopoietic origin. Human CD45 molecules described vary in molecular 

weight from 180 to 220 kDa, accounted for by alternative splicing of a single 

precursor mRNA (Streuli et al., 1987). Additional heterogeneity is accounted for by 

differences in glycosylation of the protein backbone (Sato et al., 1993b).  

The role of CD45 in T cell apoptosis mediated by Gal-1 is controversial (Fajka-

Boja et al., 2002), because CD45 expression is not absolutely required for Gal-1 

induced T cell death. Gal-1-induced T cell apoptosis is regulated by expression of 

specific glycosyltransferase enzymes such as core 2 β-1,6-N-acetylglucoseaminyl-

transferase, which creates a core 2 branch on O-glycans allowing the addition of 

lactosamine sequences (Hernandez and Baum, 2002).  

 

1.3.2.2.3 CD43 

 

CD43 has also been identified as a Gal-1 ligand in T cells. Confocal microscopy 

studies have demonstrated that Gal-1 treatment promotes CD45 segregation, 

virtually excluding CD43. To verify apoptosis of cells undergoing receptor redistri-

bution, annexin V binding was evaluated. Annexin V only localized in large patches of 

CD45 on the surface of apoptotic cells treated with Gal-1. Indeed, before galectin 

induction, CD7 colocalized with CD43, and after addition of Gal-1, CD43 and CD7 

were still associated and moved into larger aggregation. These observations indicate 

that CD43 and CD7 may act as a complex during delivery of Gal-1 apoptotic signals 

(Pace et al., 1999; Perillo et al., 1995).  

Altered glycosylation of CD43 and CD45 has been observed in HIV-1-infected 

of T cells: decreased sialylation and increased expression of core 2 O-glycans have 

been demonstrated. Therefore, HIV-1 infection results in accumulation of exposed 

lactosamine residues, oligosaccharides recognized by Gal-1 on CD43 and CD45, 
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promoting Gal-1 binding, receptor cross linking, and segregation, critical steps in 

triggering apoptosis (Lanteri et al., 2003). 

1.3.2.2.4 CD7 

 

CD7 appears to have immunomodulatory activity, although ligands for CD7 

have been difficult to find (Lanteri et al., 2003). To determine whether CD7 is 

necessary for Gal-1-induced T cell apoptosis, human CD7 has been expressed in a 

CD7- HUT78 T cell line, which is not susceptible to Gal-1-induced apoptosis. CD7 

expression renders HUT78 cells susceptible to Gal-1. Indeed, CD7 is necessary for 

Gal-1-induced T cell apoptosis via a Ca2+-independent pathway. CD7 is present on 

human immature thymocytes and is up-regulated on activated T cells. Therefore, 

CD7+ T cells may bind Gal-1 expressed by stromal or dendritic cells in tissues where 

T cells die, such as the thymus during T cell development or peripheral lymphoid 

organs following an immune response (Pace et al., 2000). 

 

1.3.2.2.5 GM1 Ganglioside 

 

Gal-1 is a major receptor for the carbohydrate portion of ganglioside GM1 

exposed on the surface of cultured human SK-N-MC neuroblastomas cells. When 

cells were exposed to a ganglioside sialidase inhibitor, which prevents the generation 

of GM1 ganglioside, a significant decrease of Gal-1 binding was detected (Kopitz et 

al., 1998). The pentasaccharide of GM1 presents two building blocks, the 

disaccharide Galβ1-3GalNAC and the central trisaccharide Neu5Acα2-3Galβ1-4Glc: 

these two galactose moieties in central and terminal position are potential binding 

sites for Gal-1. Laser photo-chemically-induced dynamic polarization shows that 

GM1 binding to Gal-1 involves interaction between Trp69 and a galactose residue 

(Siebert et al., 2003). 
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1.4 Galectins and apoptosis 
 

Programmed cell death or apoptosis is indispensable for proper development of 

multicellular organisms. Cell death shapes the proliferating mass of cells into tissues 

and shapes tissues into organs (Meyer and Rustin, 2000). In the mature organism, 

cell death plays a critical role in regulating tissue homeostasis. Dysregulation of cell 

death can cause diseases; excess cell death is associated with immunodeficiency 

and neurodegenerative disorder; and diminished cell death is associated with 

autoimmunity and cancer (Thompson, 1995). To maintain the critical balance 

between cell proliferation and cell death, distinct families of proteins that regulate cell 

death have evolved. These include death-inducing ligands, death receptors, and 

intracellular regulators of death pathways. To date, only two families of proteins have 

been described as death-inducing ligands: the tumor necrosis factor (TNF) family and 

the galectin family (Rabinovich et al., 2002a; Zimmermann et al., 2001). TNF ligands 

bind to cognate TNF receptor polypeptides to initiate cell death. 

 

The intracellular machinery responsible for apoptosis seems to be similar in all 

animal cells. This machinery depends on a family of proteases that have a cysteine 

at their active site and cleave their target proteins at specific aspartic acids, therefore 

called caspases, which are synthesized as inactive precursors. Procaspase 

activation can be triggered from outside the cell by the activation of death receptors 

on the cell surface. Lymphocytes can induce apoptosis by producing Fas ligand, 

which binds the receptor Fas on the surface of the target cells. The Bcl-2 family of 

intracellular proteins regulates the activation of procaspases.  

In contrast, pro-apoptotic galectins bind to specific saccharide ligands on cell 

surface glycoprotein to initiate cell death. Similar to the Bcl family, galectins also 

function intracellularly to promote cell survival or cell death (Kuwabara et al., 2003; 

Yang et al., 1996). Galectins are unique among molecules regulating cell viability 

because they act both outside the cell to initiate death signal and inside the cell to 

regulate susceptibility to death. 
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Thymocyte maturation in the thymus is accompanied by changes in the 

sialylation of cells (i.e. immature cells are less sialylated than mature cells). These 

observations led to studies regarding the possibility that maturing thymocytes interact 

with endogenous thymic lectins. Gal-1 can bind to both activated and resting 

thymocytes and that its binding to activated T cells and T cell leukemic cell lines 

induces apoptosis (Baum et al., 1995a) that is controlled by specific surface 

receptors capable of oligomerization an intracellular caspase cascade. Resting T 

cells also bind Gal-1, but do not undergo apoptosis. The mechanism of Gal-1 

induced apoptosis appears to be distinct from that triggered by Fas (Baum et al., 

1995a). The thymocytes receptors for Gal-1 appear to be CD45 and CD43, both of 

which are highly glycosylated membrane glycoproteins. CD45, CD43 and CD7 are 

the three major glycoproteins on the T cell surface that bind galectin (Walzel et al., 

1999), and Gal-1 regulates CD45-induced signaling in burkitt lymohoma B cells. 

Although initial experiments identified CD7 (Pace et al., 2000) and CD45 (Baum et 

al., 1995b; Nguyen et al., 2001) as the major mediator of Gal-1-induced apoptosis in 

T cells, recent work showed that CD45-deficient Jurkat cells exhibits susceptibility to 

Gal-1 (Fajka-Boja et al., 2002). There is also one report showing the involvement of 

the transcription factor AP-1 and Bcl-2 in Gal-1 induced apoptosis (Rabinovich et al., 

2000). When mature T cells were cultured in the presence of Gal-1, AP-1 was 

activated. Treatment of cells before Gal-1 exposure with curcumin, an inhibitor of AP-

1 activation, suppresses apoptosis, suggesting that AP-1 activation is required for 

Gal-1-induced apoptosis. Gal-1 also inhibits the induction of Bcl-2 by the plant lectin 

concanavalin A (Con A).  
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1.5 Aim of this work 
 

Aim of this work was to elucidate the molecular machinery mediating the export 

of Gal-1. Therefore, a novel experimental system was planned to be established in 

order to facilitate studies on the molecular machinery of Gal-1 secretion. A key 

aspect was to reconstitute Gal-1 secretion in living cells based on a read-out method 

that provides a precise and quantitative analysis of this process. A Gal-1-GFP-based 

system was designed to measure total protein expression (GFP-derived fluores-

cence) and secreted Gal-1-GFP (APC-derived cell surface staining) can be 

measured simultaneously. 

Employing a biochemical approach, a search for Gal-1-interacting proteins 

potentially involved in the unconventional secretion process of Gal-1 was conducted. 

Therefore, a GST-Gal-1 affinity matrix was used to identify human proteins that 

interact with Gal-1. A major aim of this thesis was to characterize such factors in 

terms of function and impact on Gal-1 secretion employing the system described 

above. 

In the third part of this thesis the issue of how Gal-1 is recognized by its transport 

machinery was studied. A targeting motif, directing the protein to its translocation 

apparatus has so far not been described. Therefore, a major aim was to generate a 

large collection of Gal-1 mutants carrying single amino acid substitutions. Using the 

experimental systems to be established in the first part of this thesis, it was planned 

to elucidate the molecular determinants directing Gal-1 to its unconventional export 

machinery. 
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2 Material and Methods 

2.1 Material 

2.1.1 Chemicals 

 

Chemicals Manufacturer 

Agar   Becton Dickinson, Le Pont de 

Claix, France 

Agarose electrophoresis grade Invitrogen Ltd., Paisley, UK 

αMEM Biochrom AG, Berlin 

Ammonium chloride Carl Roth GmbH, Karlsruhe 

Ampicillin sodium salt Gerbu Biotechnik GmbH, Gaiberg 

APS (Ammonium peroxo disulfate) Carl Roth GmbH, Karlsruhe 

β-Mercaptoethanol  Merck, Darmstadt 

EZ-Link Sulfo-NHS-SS-Biotin Pierce, Perbio Sciences, Bonn 

Bromphenol Blue Na-salt Serva Electrophoresis GmbH, 

Heidelberg 

BSA (Bovine serum albumine,  

Albumin fraction V) 

Carl Roth GmbH, Karlsruhe 

Calcium chloride dihydrate Applichem, Darmstadt 

Cell dissociation buffer (CDB) Invitrogen, Paisley, UK 

Chloroquine Sigma-Aldrich Chemie GmbH, 

Steinheim 

CL-4B Sepharose (Beads) Amersham Biosciences Pharmacia, 

Uppsala, Sweden 

Clear Nail Protector Wet’n Wild USA, North Arlington, 

USA 

Complete Mini (Protease Inhibitor 

Cocktail Tablets) 

Roche Diagnostics, Mannheim 
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Deoxycholic acid sodium salt Sigma-Aldrich Chemie GmbH, 

Steinheim 

DMEM Biochrom AG, Berlin 

DMSO (Dimethyl sulfoxide) J.T. Baker, Deventer, USA 

DNA ladder (1 kb and 100 bp) New England Biolabs, Frankfurt 

dNTP-Mix Peqlab, Erlangen 

Doxicycline Clontech, Palo Alto, USA 

ECL Western Blotting Detection 

 Reagent  

Amersham Biosciences Pharmacia, 

Uppsala, Sweden 

EDTA (Ethylene diamine tetraacetic 

acid) 

Merck, Darmstadt 

Ethanol pro analysi Riedel-de Haën, Seelze 

FCS (Fetal Calf Serum) PAA Laboratories GmbH, Linz, 

Austria 

Fluoromount G Southern Biotechnologies Association 

Inc., Birmingham, USA 

Glycerol Carl Roth GmbH, Karlsruhe 

Glycine  Applichem, Darmstadt 

Hepes Carl Roth GmbH, Karlsruhe 

Isopropanol Merck, Darmstadt 

Kanamycin sulfate Gerbu Biotechnik GmbH, Gaiberg 

L-Glutamine Biochrom AG, Berlin 

Magnesium chloride hexahydrate Applichem, Darmstadt 

Methanol pro analysi Merck, Darmstadt 

Milk Powder Carl Roth GmbH, Karlsruhe 

Nonidet P40 (NP-40) Roche, Mannheim 

Paraformaldehyde Electron Microscope Sciences, 

Hatfield, UK 

Penicillin/Streptomycin for cell culture Biochrom AG, Berlin 

Ponceau S Serva Electrophoresis GmbH, 

Heidelberg 

Potassium dihydrogen carbonate Carl Roth GmbH, Karlsruhe 
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Potassium hydroxide J.T.Baker, Deventer, USA 

Protein A-Sepharose (Beads) Amersham Biosciences Pharmacia, 

Uppsala, Sweden 

PVDF Membrane Immobilon P Millipore Corporation, Bedford 

PVDF Membrane Immobilon FL Millipore Corporation, Bedford 

QuikChange®Site-Directed Muta- 

genesis Kit 

Stratagene, La Jolla, USA 

Rotiphorese Gel 30 (37.5:1) Carl Roth GmbH, Karlsruhe 

Sodium chloride J.T. Baker, Deventer, USA 

Sodium dodecyl sulfate  Serva Electrophoreis GmbH, 

Heidelberg 

Sodium hydrogen carbonate J.T. Baker, Deventer, USA 

Sodium hydroxide  J.T. Baker, Deventer, USA 

TEMED (N,N,N',N'-tetramethyl- 

ethylenediamine) 

Bio-Rad, München 

Trichloroacetic acid Carl Roth GmbH, Karlsruhe 

Tris Carl Roth GmbH, Karlsruhe 

Trition X-100 Roche, Mannheim 

Trypsin / EDTA for cell culture Biochrom AG, Berlin 

Trypsin Sigma-Aldrich Chemie GmbH, 

Steinheim 

Tryptone Becton Dickinson, Le Pont de 

Claix, France 

Tween 20 (Polyoxyethylene- 

sorbitan monolaurate) 

Carl Roth GmbH, Karlsruhe 

UltraLink immobilized streptavidin (Beads) Pierce, Perbio Sciences, Bonn 

Whatman MM  Whatman AG, Würzburg 

Xylencyanol FF Serva Electrophoresis GmbH, 

Heidelberg 

Yeast Extract Beckton Dickinson, Le Pont de 

Claix, France 
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2.1.2 Technical devices 

 

Technical devices Manufacturer 

Anthos 2001 Microplate Photometer Anthos, Hombrechtikon, 

Switzerland 

Bacterial Incubator Infors HT ITE Infors AG, Einsbach 

Bacterial Shaker Centromat R Braun, Melsungen 

Centrifuge 5415 R Eppendorf, Hamburg 

Centrifuge 5417 R Eppendorf, Hamburg 

Centrifuge Avanti J-25 Beckman Coulter, Krefeld 

Centrifuge Megafuge 1.0 R Kendro, Langenselbold 

Centrifuge Optima TLX Ultracentrifuge Beckman Coulter, Krefeld 

Centrifuge Rotor Sorvall SS-34 Kendro, Langenselbold 

Centrifuge Sorvall Evolution RC Kendro, Langenselbold 

Centrifuge Sorvall RC 6 Kendro, Langenselbold 

Ultracentrifuge Rotor TLA-45 Beckman Coulter, Krefeld 

EmulsiFlex-C5 Avestin Europe GmbH   

Mannheim, Germany 

FACSAria Becton Dickinson, Heidelberg 

FACSVantage Becton Dickinson, Heidelberg 

FACSCalibur Becton Dickinson, Heidelberg 

Gel Doc 2000 Bio-Rad, München 

Incubator Heraeus CO2-Auto-Zero Kendro, Langenselbold 

LKB Ultraspec III Amersham Biosciences, Freiburg 

Microscope Axiovert 40 C Zeiss, Göttingen 

Microscope LSM 510 Meta Confocal Zeiss, Göttingen 

Mini Trans-Blot Cell Bio-Rad, München 

Mini-PROTEAN 3 Electrophoresis 

System 

Bio-Rad, München 

Nanodrop ND-1000 Spectrophotometer Peqlab, Erlangen 

Odyssey Infrared Imaging System LI-COR Biosciences, Bad Homburg 
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PCR Primus Advanced 25 and 96 Peqlab, Erlangen 

pH-Meter 766 Calimatic Knick, Egelsbach 

Power Pack 200 and 300 Bio-Rad, München 

Roto-Shake Genie Scientific Industries, Bohemia, 

USA 

Sonifier Cell Disruptor B 30 Heinemann, Schwäbisch Gmünd 

Sonorex Super RK 103 h Bandelin, Berlin 

SpectraMax Gemini XPS Microplate 

Spectrofluorometer 

Molecular Devices Corporation, 

Orleans,  U.S 

Thermomixer compact and comfort Eppendorf, Hamburg 

Tricorn 5/150 Column Amersham Biosciences, Freiburg 

 

2.1.3 Plasmids  

 

Name Origin 

peGFP-C1 Clontech, Mountain View, USA 

pET-15b-eGFP AG Nickel, BZH, Heidelberg 

pGEX-2T-Gal-1 AG Nickel, BZH, Heidelberg 

pGEX-2T-Gal-3 AG Nickel, BZH, Heidelberg 

pFB-CA125-C-TERM AG Nickel, BZH, Heidelberg 

pIVEX 2.4b Nde CA125-C-TERM AG Nickel, BZH, Heidelberg 

pGEM-T Promega, Madison, USA 

pGEM-T-Gal-1 AG Nickel, BZH, Heidelberg 

pSilencer™ 1.0-U6  Ambion 

pLNCD4 AG Schwappach, ZMBH, Heidelberg 

pRevTRE2 Clontech, Mountain View, USA 

pRevTRE2-GFP AG Nickel, BZH, Heidelberg 

pFB-hrGFP Stratagene, La Jolla, USA 

pVPack-Eco Stratagene, La Jolla, USA 

pVPack-GP Stratagene, La Jolla, USA 
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2.1.4 DNA modifying enzymes 

 

Enzyme Manufacturer 

AmpliTaq Polymerase Perkin Elmer (Roche), Branchburg, USA 

PfuTurbo Polymerase Stratagene, La Jolla, USA 

Age I New England Biolabs, Frankfurt 

Apa I New England Biolabs, Frankfurt 

BamH I New England Biolabs, Frankfurt 

Dpn I New England Biolabs, Frankfurt 

EcoR I New England Biolabs, Frankfurt 

Nde I New England Biolabs, Frankfurt 

Not I New England Biolabs, Frankfurt 

Sma I New England Biolabs, Frankfurt 

Calf Intestinal Phosphatase (CIP) New England Biolabs, Frankfurt 

 

2.1.5 Primers and oligonucleotides 

 

Primers and oligonucleotides were purchased from Thermo Electron Company. 

 

PCR primers for Gal-1, Gal-3 and eGFP: 

 

5'-primer for His6-eGFP (pET-15b/eGFP), NdeI-restriction-site:  
5‘ - CGTTCATATGGTGAGCAAGGGCGAGGAG - 3‘ 

3'-primer for His6-eGFP (pET-15b/eGFP), BamHI-restriction-site: 

5‘ - CGGGATCCTTACTTGTACAGCTCGTCCAT - 3‘ 

 

5'-primer for GST-Gal-3(pGEX-2T-Gal-3), BamHI-restriction-site: 
5‘ - GGAATTCAGCTCTTAGCAGACATTGG - 3‘ 

3'-primer for GST-Gal-3 (pGEX-2T-Gal-3), EcoRI-restriction-site: 
5‘ - GGAATTCTTATATCATGGTATATGAAGC - 3‘ 
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5'-primer for GST-Gal-1 (pGEX-2T-Gal-1), BamHI-restriction-site: 

5‘ - CGGGATCCATGGCTTGTGGTCTGGTCGCC - 3‘ 

3'-primer for GST-Gal-1 (pGEX-2T-Gal-1), SmaI-restriction-site: 
5‘ - TCCCCCGGGTCAGTCAAAGGCCACACATTTG - 3‘ 

 

PCR primers for pFB/CA125-C-TERM: 

 

5'-primer for CA125-C-TERM, BamHI-restriction-site: 
5’-CGGGATCCCGCCACCATGGGGCTGGACATACAGCAGCTT-3’ 

3'-primer for CA125-C-TERM, NotI-restriction-site: 
5’-GACCTGGAGGATCTGCAATGAGCGGCCGCTTTTTTCCTT-3’ 

 

PCR primers for CA125 in vitro translation pIVEX 2.4b Nde CA125-C-TERM 

 

5’-primer for CA125-C-TERM, NotI-restriction-site: 
5’-AAGGAAAAAAGCGGCCGCATGGGGCTGGACATACAGCAGCTT-3’ 

3’-primer for CA125-C-TERM, BamHI-restriction-site: 

5’-CGGGATCCTCATTGCAGATCCTCCAGGTC-3’ 

 

siRNA oligonucleotides directed against CA125-cytoplasmic tail: 

 

Sense:  

5’-GAAGGAAGGAGAATACAACTTCAAGAGAGTTGTATTCTCCTTCCTTCTTTTTT-

3’ 

 

Antisense:  

5’-AATTAAAAAAGAAGGAAGGAGAATACAACTCTCTTGAAGTTGTATTCTC-

CTTCCTTCGGCC-3’ 

 

 

 

 



Material and Methods 
 

44 

Site-directed mutagenesis primers: 

 

Primer Sequence  Tm 
Gal-1-GFP   

C3A 5’-TGGCGACCAGACCAGCAGCCATGGTGGCG-3’ 

5’-CGCCACCATGGCTGCTGGTCTGGTCGCCA-3’ 

79.3°C 

V6A 5’-GCTTGTGGTCTGGCCGCCAGCAACC-3’ 

5’-GGTTGCTGGCGGCCAGACCACAAGC-3’ 

71.4°C 

A7I 5’-TGGCTTGTGGTCTGGTCATCAGCAACCTGAATCTCAAAC-3’ 

5’-GTTTGAGATTCAGGTTGCTGATGACCAGACCACAAGCCA-3’ 

75.7°C 

N9A 5’-GTCTGGTCGCCAGCGCCCTGAATCTCAAACCTG-3’ 

5’-CAGGTTTGAGATTCAGGGCGCTGGCGACCAGAC-3’ 

76.4°C 

K13A 5’-CCAGCAACCTGAATCTCGCGCCTGGAGAGTGCCTT-3’ 

5’-AAGGCACTCTCCAGGCGCGAGATTCAGGTTGCTGG-3’ 

78.1°C 

P14A 5’-CAACCTGAATCTCAAAGCTGGAGAGTGCCTTCG-3’ 

5’-CGAAGGCACTCTCCAGCTTTGAGATTCAGGTTG-3’ 

70.6°C 

E16A 5’-TCTCAAACCTGGAGCGTGCCTTCGAGTGC-3’ 

5’-GCACTCGAAGGCACGCTCCAGGTTTGAGA-3’ 

71.6°C 

V20A 5’-GTGCCTTCGAGCGCGAGGCGAGG-3’ 

5’-CCTCGCCTCGCGCTCGAAGGCAC-3’ 

71.1°C 

R21A 5’-AGTGCCTTCGAGTGGCAGGCGAGGTGGCT-3’ 

5’-AGCCACCTCGCCTGCCACTCGAAGGCACT-3’ 

74.8°C 

V32A 5’-GCTAAGAGCTTCGCGCTGAACCTGGGC-3’ 

5’-GCCCAGGTTCAGCGCGAAGCTCTTAGC-3’ 

69.7°C 

V32G 5’-GCTAAGAGCTTCGGGCTGAACCTGGGC-3’ 

5’-GCCCAGGTTCAGCCCGAAGCTCTTAGC-3’ 

68.9°C 

V32E 5’-ACGCTAAGAGCTTCGAGCTGAACCTGGGC-3’ 

5’-GCCCAGGTTCAGCTCGAAGCTCTTAGCGT-3’ 

69.3°C 

V32S 5’-TGACGCTAAGAGCTTCTCGCTGAACCTGGGCAAAG-3’ 

5’-CTTTGCCCAGGTTCAGCGAGAAGCTCTTAGCGTCA-3’ 

74.4°C 

V32W 5’-TGACGCTAAGAGCTTCTGGCTGAACCTGGGCAAAG-3’ 

5’-CTTTGCCCAGGTTCAGCCAGAAGCTCTTAGCGTCA-3’ 

74.3°C 

N34A 5’-AGAGCTTCGTGCTGGCCCTGGGCAAAGACAG-3’ 

5’-CTGTCTTTGCCCAGGGCCAGCACGAAGCTCT-3’ 

74.6°C 

L35A 5’-AGCTTCGTGCTGAACGCGGGCAAAGACAGCAAC-3’ 

5’-GTTGCTGTCTTTGCCCGCGTTCAGCACGAAGCT-3’ 

76.6°C 

K37A 5’-GCTGAACCTGGGCGCAGACAGCAACAACCTG-3’ 

5’-CAGGTTGTTGCTGTCTGCGCCCAGGTTCAGC-3’ 

75.0°C 

K37E 5’-GCTGAACCTGGGCGAAGACAGCAACAACC-3’ 

5’-GGTTGTTGCTGTCTTCGCCCAGGTTCAGC-3’ 

70.9°C 

D38E 5’- GTGCTGAACCTGGGCAAAGAGAGCAACAACCTGTGCCTG-3’ 

5’-CAGGCACAGGTTGTTGCTCTCTTTGCCCAGGTTCAGCAC-3’ 

78.4°C 

D38K 5’-GTGCTGAACCTGGGCAAAAAAAGCAACAACCTGTGCCTG-3’ 

5’-CAGGCACAGGTTGTTGCTTTTTTTGCCCAGGTTCAGCAC-3’ 

78.0°C 

N40A 5’-CTGGGCAAAGACAGCGCCAACCTGTGCCTGCAC-3’ 

5’-GTGCAGGCACAGGTTGGCGCTGTCTTTGCCCAG-3’ 

78.9°C 
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N41A 5’-GGCAAAGACAGCAACGCCCTGTGCCTGCACT-3’ 

5’-AGTGCAGGCACAGGGCGTTGCTGTCTTTGCC-3’ 

75.9°C 

L44A 5’-CAGCAACAACCTGTGCGCGCACTTCAACCCTCGC-3’ 

5’-GCGAGGGTTGAAGTGCGCGCACAGGTTGTTGCTG-3’ 

79.8°C 

L44D 5’-GACAGCAACAACCTGTGCGATCACTTCAACCCTCGCTTC-3’ 

5’-GAAGCGAGGGTTGAAGTGATCGCACAGGTTGTTGCTGTC-3’ 

77.6°C 

L44F 5’-CAGCAACAACCTGTGCTTCCACTTCAACCCTCGCT-3’ 

5’-AGCGAGGGTTGAAGTGGAAGCACAGGTTGTTGCTG-3’ 

75.1°C 

L44S 5’-GACAGCAACAACCTGTGCAGTCACTTCAACCCTCGCTTC-3’ 

5’-GAAGCGAGGGTTGAAGTGACTGCACAGGTTGTTGCTGTC-3’ 

76.7°C 

H45A 5’-CAACAACCTGTGCCTGGCCTTCAACCCTCGCTTCAAC-3’ 

5’-GTTGAAGCGAGGGTTGAAGGCCAGGCACAGGTTGTTG-3’ 

78.2°C 

F46A 5’-CAACCTGTGCCTGCACGCAAACCCTCGCTTCAACG-3’ 

5’-CGTTGAAGCGAGGGTTTGCGTGCAGGCACAGGTTG-3’ 

79.9°C 

R49A 5’-CCTGCACTTCAACCCTGCATTCAACGCCCACGGCG-3’ 

5’-CGCCGTGGGCGTTGAATGCAGGGTTGAAGTGCAGG-3’ 

81.9°C 

N51A 5’-CAACCCTCGCTTCGCCGCCCACGGCGA-3’ 

5’-TCGCCGTGGGCGGCGAAGCGAGGGTTG-3’ 

80.4°C 

A52I 5’-CAACCCTCGCTTCAACATCCACGGCGACGCC-3’ 

5’-GGCGTCGCCGTGGATGTTGAAGCGAGGGTTG-3’ 

78.0°C 

H53A 5’-CGCTTCAACGCCGCCGGCGACGCCAAC-3’ 

5’-CGCTTCAACGCCGGCGGCGACGCCAAC-3’ 

80.5°C 

H53E 5’-TCGCTTCAACGCCGAGGGCGACGCCAACA-3’ 

5’-TGTTGGCGTCGCCCTCGGCGTTGAAGCGA-3’ 

79.7°C 

H53G 5’-CGCTTCAACGCCGGCGGCGACGCCAAC-3’ 

5’-GTTGGCGTCGCCGCCGGCGTTGAAGCG-3’ 

80.5°C 

G54A 5’-TCAACGCCCACGCCGACGCCAACAC-3’ 

5’-GTGTTGGCGTCGGCGTGGGCGTTGA-3’ 

74.8°C 

D55A 5’-CGCCCACGGCGCCGCCAACACCA-3’ 

5’-TGGTGTTGGCGGCGCCGTGGGCG-3’ 

78.2°C 

N57A 5’-CACGGCGACGCCGCCACCATCGTGTGCAA-3’ 

5’-TTGCACACGATGGTGGCGGCGTCGCCGTG-3’ 

81.7°C 

V60A 5’-CGCCAACACCATCGCGTGCAACAGCAAGG-3’ 

5’-CCTTGCTGTTGCACGCGATGGTGTTGGCG-3’ 

76.4°C 

C61A 5’-CGCCAACACCATCGTGGCTAACAGCAAGGACGGCG-3’ 

5’-CGCCGTCCTTGCTGTTAGCCACGATGGTGTTGGCG-3’ 

80.7°C 

D65A 5’-CAACAGCAAGGCCGGCGGGGCCT-3’ 

5’-AGGCCCCGCCGGCCTTGCTGTTG-3’ 

73.3°C 

D65K 5’-TGTGCAACAGCAAGAAGGGCGGGGCCTGG-3’ 

5’-CCAGGCCCCGCCCTTCTTGCTGTTGCACA-3’ 

77.3°C 

G66A  5’-GCTTGTGGTCTGGCCGCCAGCAACC-3’ 

5’-CCCAGGCCCCGGCGTCCTTGCTG-3’ 

73.8°C 

G67A 5’-CAAGGACGGCGCGGCCTGGGGGA-3’ 

5’-TCCCCCAGGCCGCGCCGTCCTTG-3’ 

75.8°C 

A68I 5’-AGCAAGGACGGCGGGATTTGGGGGACCGAGCAG-3’ 

5’-CTGCTCGGTCCCCCAAATCCCGCCGTCCTTGCT-3’ 

80.7°C 

W69G 5’-CGGCGGGGCCGGGGGGACCGAGC-3’ 

5’-GCTCGGTCCCCCCGGCCCCGCCG-3’ 

80.2°C 
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G70A 5’-CGGGGCCTGGGCGACCGAGCAGC-3’ 

5’-GCTGCTCGGTCGCCCAGGCCCCG-3’ 

75.7°C 

E72A 5’-CTGGGGGACCGCGCAGCGGGAGG-3’ 

5’-CCTCCCGCTGCGCGGTCCCCCAG-3’ 

75.6°C 

R74A 5’-GGGACCGAGCAGGCGGAGGCTGTCTTTCC-3’ 

5’-GGAAAGACAGCCTCCGCCTGCTCGGTCCC-3’ 

75.2°C 

E75A 5’-CGGGACCGAGCAGCGGGCCGCTGTCTTTCCCTTC-3’ 

5’-GAAGGGAAAGACAGCGGCCCGCTGCTCGGTCCCG-3’ 

82.6°C 

F80A 5’-GGGAGGCTGTCTTTCCCGCCCAGCCTGGAAGTGTTGCAG-3’ 

5’-CTGCAACACTTCCAGGCTGGGCGGGAAAGACAGCCTCCC-3’ 

82.4°C 

F80K 5’-GGGAGGCTGTCTTTCCCAAGCAGCCTGGAAGTGTTGC-3’ 

5’-GCAACACTTCCAGGCTGCTTGGGAAAGACAGCCTCCC-3’ 

78.3°C 

F80S 5’-GAGGCTGTCTTTCCCAGCCAGCCTGGAAGTGTT-3’ 

5’-AACACTTCCAGGCTGGCTGGGAAAGACAGCCTC-3’ 

73.6°C 

P82A 5’-GTCTTTCCCTTCCAGGCTGGAAGTGTTGCAGAG-3’ 

5’-CTCTGCAACACTTCCAGCCTGGAAGGGAAAGAC-3’ 

71.3°C 

S84A 5’-CCTTCCAGCCTGGAGCTGTTGCAGAGGTGTG-3’ 

5’-ACACATTTGATCTTGAAGGCACCGTCAGCTGCC-3’ 

73.2°C 

E87A 5’-CTGGAAGTGTTGCAGCGGTGTGCATCACCTT-3’ 

5’-AAGGTGATGCACACCGCTGCAACACTTCCAG-3’ 

72.5°C 

I90A 5’-AAGTGTTGCAGAGGTGTGCGCCACCTTCGACCAGGCC-3’ 

5’-GGCCTGGTCGAAGGTGGCGCACACCTCTGCAACACTT-3’ 

81.0°C 

F92A 5’-GGTGTGCATCACCGCCGACCAGGCCAACC-3’ 

5’-GGTTGGCCTGGTCGGCGGTGATGCACACC-3’ 

77.9°C 

A95I  5’-CATCACCTTCGACCAGATCAACCTGACCGTCAAGC-3’ 

5’-GCTTGACGGTCAGGTTGATCTGGTCGAAGGTGATG-3’ 

74.3°C 

D103A 5’-CCGTCAAGCTGCCAGCTGGATACGAATTCAAGT-3’ 

5’-ACTTGAATTCGTATCCAGCTGGCAGCTTGACGG-3’ 

71.9°C 

G104A 5’-CTGACCGTCAAGCTGCCAGATGCCTACGAATTCAAGTTCC-3’ 

5’-GGAACTTGAATTCGTAGGCATCTGGCAGCTTGACGGTCAG-3’ 

77.0°C 

E106A 5’-CTGCCAGATGGATACGCATTCAAGTTCCCCAAC-3’ 

5’-GTTGGGGAACTTGAATGCGTATCCATCTGGCAG-3’ 

71.9°C 

F109A 5’-ATGGATACGAATTCAAGGCCCCCAACCGCCTCAAC-3’ 

5’-GTTGAGGCGGTTGGGGGCCTTGAATTCGTATCCAT-3’ 

76.3°C 

R112A 5’-ATTCAAGTTCCCCAACGCCCTCAACCTGGAGGCCATC-3’ 

5’-GATGGCCTCCAGGTTGAGGGCGTTGGGGAACTTGAAT-3’ 

79.0°C 

R112H 5’-CAAGTTCCCCAACCACCTCAACCTGGAGG-3’ 

5’-CCTCCAGGTTGAGGTGGTTGGGGAACTTG-3’ 

69.9°C 

N114A 5’-CCCAACCGCCTCGCCCTGGAGGCCATC-3’ 

5’-GATGGCCTCCAGGGCGAGGCGGTTGGG-3’ 

77.3°C 

E116A 5’-CGCCTCAACCTGGCGGCCATCAACTACAT-3’ 

5’-ATGTAGTTGATGGCCGCCAGGTTGAGGCG-3’ 

66.7°C 

A117I 5’-CAACCTGGAGATAATCAACTACATGGCAGCTGAC-3’ 

5’-GTCAGCTGCCATGTAGTTGATTATCTCCAGGTTG-3’ 

67.4°C 

I118A 5’-CAACCTGGAGGCCGCCAACTACATGGCAGCT-3’ 

5’-AGCTGCCATGTAGTTGGCGGCCTCCAGGTTG-3’ 

74.8°C 

N119E 5’-CCTGGAGGCCATCGAGTACATGGCAGCTGAC-3’ 

5’-GTCAGCTGCCATGTACTCGATGGCCTCCAGG-3’ 

72.9°C 
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N119K 5’-CCTGGAGGCCATCAAGTACATGGCAGCTG-3’ 

5’-CAGCTGCCATGTACTTGATGGCCTCCAGG-3’ 

70.0°C 

N119W 5’-CAACCTGGAGGCCATCTGGTACATGGCAGCTGACG-3’ 

5’-CGTCAGCTGCCATGTACCAGATGGCCTCCAGGTTG-3’ 

77.1°C 

Y120A 5’-CCTGGAGGCCATCAACGCAATGGCAGCTGACGGTG-3’ 

5’-CACCGTCAGCTGCCATTGCGTTGATGGCCTCCAGG-3’ 

81.2°C 

Y120D 5’-CTGGAGGCCATCAACGATATGGCAGCTGACGGT-3’ 

5’-ACCGTCAGCTGCCATATCGTTGATGGCCTCCAG-3’ 

75.2°C 

M121A 5’-GAGGCCATCAACTACGCGGCAGCTGACGGTG-3’ 

5’-CACCGTCAGCTGCCGCGTAGTTGATGGCCTC-3’ 

76.1°C 

A122I 5’-GAGGCCATCAACTACATGATAGCTGACGGTGACTTCAAG-3’ 

5’-CTTGAAGTCACCGTCAGCTATCATGTAGTTGATGGCCTC-3’ 

72.2°C 

D126A 5’-GGCAGCTGACGGTGCCTTCAAGATCAAATGTGT-3’ 

5’-ACACATTTGATCTTGAAGGCACCGTCAGCTGCC-3’ 

72.8°C 

F127A 5’-GCAGCTGACGGTGACGCCAAGATCAAATGTGTGGC-3’ 

5’-GCCACACATTTGATCTTGGCGTCACCGTCAGCTGC-3’ 

77.9°C 

F127D 5’-GCAGCTGACGGTGACGACAAGATCAAATGTGTGGC-3’ 

5’-GCCACACATTTGATCTTGTCGTCACCGTCAGCTGC-3’ 

75.6°C 

I129R 5’-GCTGACGGTGACTTCAAGAGGAAATGTGTGGCCTTTGAC-3’ 

5’-GTCAAAGGCCACACATTTCCTCTTGAAGTCACCGTCAGC-3’ 

74.6°C 

K130A 5’-ACGGTGACTTCAAGATCGCATGTGTGGCCTTTGACTG-3’ 

5’-CAGTCAAAGGCCACACATGCGATCTTGAAGTCACCGT-3’ 

76.0°C 

V132A 5’-CTTCAAGATCAAATGTGCGGCCTTTGACTCACCG-3’ 

5’-CGGTGAGTCAAAGGCCGCACATTTGATCTTGAAG-3’ 

73.3°C 

V132E 5’-ACTTCAAGATCAAATGTGAGGCCTTTGACTCACCG-3’ 

5’-CGGTGAGTCAAAGGCCTCACATTTGATCTTGAAGT-3’ 

70.5°C 

V132R 5’-GTGACTTCAAGATCAAATGTAGGGCCTTTGACTCACCGG-3’ 

5’-CCGGTGAGTCAAAGGCCCTACATTTGATCTTGAAGTCAC-3’ 

73.7°C 

F134E 5’-AGATCAAATGTGTGGCCGAGGACTCACCGGTCGGC-3’ 

5’-GCCGACCGGTGAGTCCTCGGCCACACATTTGATCT-3’ 

78.6°C 

F134R 5’-GATCAAATGTGTGGCCCGTGACTCACCGGTCGG-3’ 

5’-CCGACCGGTGAGTCACGGGCCACACATTTGATC-3’ 

77.5°C 

GFP-CGL-2   

W72G 5’-GACGGCGGGGCCGGTGGGACCGAGCAGC-3’ 

5’-GCTGCTCGGTCCCACCGGCCCCGCCGTC-3’ 

80.2°C 

Control Primers   

primer Gal-1 forw. 5’-CGGGATCCCGCCACCATGGCTTGTGGTCTGGTCGCC-3’ 84.9°C 

primer Gal-1 revers. 5’-GCCGACCGGTGAGTCAAAGGCCACACATTTGATCTTG-3’ 77.6°C 

 
Table 1 Site-directed mutagenesis primers 
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Truncations primer: 

 

Primer Sequence 
Gal-1-GFP  

∆N5 5’-CGGGATCCCGCCACCATGGTCGCCAGCAACCTGAATCTCAAA-3’ 

∆N10 5’-CGGGATCCCGCCACCATGGAGAATCTCAAACCTGGAGAGTGCCTTCG-3’ 

∆N20 5’-CGGGATCCCGCCACCATGGGACGAGGCGAGGTGGCTCCTGACG-3’ 

∆C4 5’-TTTTCCTTTTGCGGCCGCCTAACATTTGATCTTGAAGTCACCGTCAG-3 

∆C9 5’-TTTTCCTTTTGCGGCCGCCTAGTCACCGTCAGCTGCCATGTAGT-3 

∆C20 5’-TTTTCCTTTTGCGGCCGCCTACAGGTTGAGGCGGTTGGGGAAC-3 

∆C30 5’-TTTTCCTTTTGCGGCCGCCTAGTATCCATCTGGCAGCTTGACGG-3 

∆C40 5’-TTTTCCTTTTGCGGCCGCCTAGGCCTGGTCGAAGGTGATGCAC-3 

∆C50 5’-TTTTCCTTTTGCGGCCGCCTAAACACTTCCAGGCTGGAAGGGAAAG-3 

Reverse primer for ∆N truncations 5’-GCCGACCGGTGAGTCAAAGGCCACACATTTGATCTTG-3’ 
Forward primer for ∆C truncations 5’-GACTGGTGTACAAGATGGCTTGTGGTCTGGTCGCCAG-3 

 
Table 2 Truncation primers 

 

2.1.6 Bacteria and bacterial media 

 

For transformation and plasmid amplification competent DH5α cells (Invitrogen) 

or XL1-Blue supercompetent cells (Stratagene) were used. For transformation and 

protein expression BL21 pLysS (DE3) cells were used. They were grown in LB 

medium (Luria Bertani medium) or on LB agar plates supplied with ampicillin or kana-

mycin in a final concentration of 100 µg/ml to select for successfully transformed cells 

carrying plasmids containing a resistance gene. 

 

Bacteria:  subcloning efficiency DH5α competent cells, Genotype:  

  F- φ80dlacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk
-, 

 mk
+) phoA supE44 λ- thi-1 gyrA96 relA1 

 

   XL1-Blue supercompetent cells, Genotype:  

 recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB 

 lacIqZΔM15 Tn10 (Tetr)]. 
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 BL21 pLysS (DE3) competent cells, Genotype: 

 F- ompT hsdSB(rB
-mB

-) gal dcm (DE3) 

 

LB medium:  0.5% (v/w) NaCl 

    1% (w/v)  Tryptone 

    0.5% (w/v) Yeast extract 

    

LB agar plates:  0.5% (w/v) NaCl 

    1% (w/v)  Tryptone 

    0.5% (w/v) Yeast extract 

    1.6% (w/v) Agar 

 

SOC-Medium:   10 mM   NaCl  

 2% (w/v)   Tryptone 

 0.5% (w/v)  Yeast extract 

 2.5 mM   KCl 

 10 mM   MgCl2 

 20 mM   MgSO4 

 20 mM   Glucose 

 

2.1.7 Eukaryotic cell lines 

 

The cell line HEK 293T (Human Embryonic Kidney cells) was used as a host to 

produce retroviral particles carrying the various reporter constructs.  

S-HeLa cells were used as a source for human proteins applied to interaction studies 

with human Gal-1. 

HeLa and CHO cells (Chinese Hamster Ovary cells) were target cell lines for 

retroviral transduction. They were stably transduced with cDNA constructs and used 

for the expression of reporter molecules to function as a eukaryotic in vivo system to 

investigate proteins in a living cell environment.  
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Eukaryotic cell lines:  HEK 293Tcells (ATCC CRL-11268) 

     S-HeLa cells (ATCC CCL-2.2) 

     HeLa cells (ATCC CCL-2.1) 

     CHO cells (ECACC 85050302) 

2.1.8 Eukaryotic cell culture media 

 

α Modification of the Minimal Essential Medium (αMEM) 

 

The α-modification of the Minimal Essential Medium (Biochrom AG) was used 

to cultivate CHO cells. Dry medium was dissolved in 5 l ddH2O, and 10 g of sodium 

hydrogencarbonate were added to adjust the pH to 7.4, which was checked 

continuously. The prepared medium was sterile filtered into autoclaved bottles and 

stored at 4°C. Before addition to cells the medium was supplemented with 10% (v/v) 

fetal calf serum (FCS), 100 µg/ml Streptomycin/Penicillin and, if stored longer than 6 

weeks, 2 mM L-Glutamine. 

 

Dulbecco’s Modified Eagle Medium (DMEM) 

 

Dulbecco’s Modified Eagle Medium (Biochrom AG) was used to cultivate HEK 

293T and HeLa cells. Dry medium was dissolved in 5 l ddH2O and 10 g of sodium 

hydrogencarbonate were added to adjust the pH to 7.4. The prepared medium was 

sterile filtered into autoclaved bottles and stored at 4°C. Before addition to cells 10% 

(v/v) FCS, 100 µg/ml Streptomycin/Penicillin and, if stored longer than 6 weeks, 2 

mM L-Glutamine were supplemented. 
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2.1.9 Primary antibodies 

 

Anti-GFP or anti-Gal-1 antibodies were affinity-purified by incubation of the cor-

responding serum with His6-eGFP or GST-Gal-1 coupled Epoxy-Sepharose beads 

(Amershan).  

Anti-Gal-1 antibodies and anti-GFP antibodies were eluted from the corre-

sponding affinity matrix under acidic and basic conditions according to standard 

procedures. 

To detect endogenous Gal-1 affintiy-purified anti-Gal-1 antibodies (Pineda Anti-

bodies, acidic elution) were used. They were applied in a 1:100 dilution for Western 

blot and FACS analysis and in a 1:50 dilution for confocal microscopy. 

To detect GFP-containing reporter constructs affinity-purified anti-GFP 

antibodies (Pineda Antibodies, acidic elution) were used (Engling et al., 2002). They 

were applied in a 1:200 dilution for Western blot and FACS analysis and in a 1:50 

dilution for confocal microscopy. 

When performing immunoprecipitation experiments 20 µl of affinity-purified anti-

GFP antibodies (Pineda Antibodies, basic elution, (Engling et al., 2002)) were 

coupled to 20 µl Protein A sepharose: CL4B beads pro reaction. 

The mAb anti-CA125 antibody OC125 was purchased from Zymed and was 

applied in a 1:200 dilution for Western blot analysis (Lloyd and Yin, 2001). 

The polyclonal anti-CA125-C-TERM1-356 antiserum was applied in a 1:200 

dilution for Western blot analysis (Seelenmeyer et al., 2003). 

 

2.1.10 Secondary antibodies 

 

Secondary antibodies for Western blot analysis were goat anti-rabbit IgG HRP-

coupled antibodies (Bio-Rad; 1:5,000), goat anti-mouse IgG HRP-coupled antibodies 

(Bio-Rad; 1:5,000), monoclonal mouse anti-rabbit IgG clone RG-16 HRP-coupled 

(Sigma-Aldrich; 1:3,000), goat anti-rabbit IgG Alexa 680-coupled antibodies 

(Molecular Probes; 1:10,000) and goat anti-mouse IgG Alexa 680-coupled antibodies 

(Molecular Probes; 1:10,000). 
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Secondary antibodies for FACS analysis were goat anti-rabbit IgG and goat 

anti-mouse IgG antibodies, both conjugated with Allophycocyanin (APC) (Molecular 

Probes). They were used in a 1:750 dilution. 

Secondary antibodies for confocal microscopy were goat anti-rabbit or goat 

anti-mouse IgG Alexa 546-coupled antibodies (Molecular Probes). They were applied 

in a 1:750 dilution. 

 

2.2 Molecular biological methods 
 

2.2.1 Bacterial transformation 

 

To transform DH5α cells, 1 µl of plasmid DNA (1-10 ng DNA) or 3 µl of a 

ligation reaction were added to 30 µl bacteria suspension and incubated on ice for 30 

min followed by a heat shock of 20 s at 37°C and an additional incubation period of 2 

min on ice. After that 1 ml LB medium without ampicillin was added followed by 

incubation at 37°C for 1 h under constant shaking (300 rpm).  

To transform XL1-Blue cells, 1 µl of plasmid DNA (1-10 ng DNA) or 5 µl of a 

ligation reaction were added to 50 µl bacteria suspension and incubated on ice for 30 

min followed by a heat shock of 45 s at 42°C and an additional incubation period of 2 

min on ice. After that 1 ml LB medium without ampicillin was added followed by 

incubation at 37°C for 1 h under constant shaking (300 rpm).  

To transform BL21 pLysS (DE3) cells 1 µl of plasmid DNA (1-10 ng) was added 

to 20 µl bacteria suspension and incubated on ice for 5 min followed by heat shock of 

30 s at 42°C and an additional incubation period of 2 min on ice. After that 80 µl SOC 

medium without antibiotics were added followed by incubation at 37°C for 1 h under 

constant shaking (300 rpm).  

After transformation bacteria were spread on LB plates supplemented with 100 

µg/ml ampicillin or kanamycin and incubated at 37°C for 12 to 16 h or used to 

inoculate liquid cultures of LB medium supplemented with the respective antibiotics, 

which were grown at 37°C under constant shaking (180 rpm) for 12 to 16 h. 
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2.2.2 Selection and amplification of plasmids 

 

If bacteria were grown on agar plates in correct density they form colonies each 

originating from a single bacterium. To obtain genetically identical plasmids, bacteria 

from one colony were transferred to 5-10 ml LB medium culture using a 20 µl pipet 

tip. The liquid cultures containing the respective antibiotic to select for bacteria 

carrying plasmids containing a resistance gene were incubated at 37°C overnight 

under constant shaking (180 rpm). 

 

2.2.3 Plasmid preparation 

 

Plasmids were prepared from overnight LB medium cultures of transformed 

bacteria by the application of Qiagen or Macherey Nagel DNA purification kits. The 

kit used was dependent on the volume of the overnight culture. 

 

Volume of bacterial culture Qiagen Kit Macherey Nagel Kit 

5 - 10 ml QIAprep Spin Miniprep Kit Nucleospin Plasmid 

20 – 150 ml QIAGEN Plasmid Midi Kit Nucleobond-PC 100 

More than 150 ml QIAGEN Plasmid Maxi Kit Nucleobond-PC 500 

 

Purification was performed following the manufacturer’s manual employing 

alkaline lysis and binding of DNA to silica membranes or anion-exchange resins, 

respectively. Elution of the DNA was performed using appropriate volumes of ddH2O. 
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2.2.4 Determination of DNA concentration 

 

The concentration of a DNA solution was determined photometrically by 

measuring the absorption at 260 nm wavelength. The measurement was either 

performed in a photometer with a diluted DNA solution using a quarz cuvette with a 

thickness of 10 mm or by directly measuring 1 µl of the DNA solution in a Nanodrop 

photometer. The concentration of double stranded DNA was calculated based on the 

fact that an optical density (OD) of 1 corresponds to a concentration of 50 µg/ml. 

 To determine contamination the OD at 280 nm was measured additionally. The 

ratio OD260/OD280 represents the grade of purity since pure DNA shows a value 

between 1.8 and 2.0. Values above 2.0 show contaminations with RNA, values below 

1.8 contaminations with protein. 

 

2.2.5 Agarose gel electrophoresis 

 

 To separate mixtures of DNA molecules by size agarose gel electrophoresis 

was used. Separation is achieved by loading the negatively charged DNA molecules 

on a gel matrix with a defined pore size and subjecting them to an electric field where 

they migrate to the anode. The migration speed depends on the size of the DNA 

molecules and is limited by the pore size of the gel, which is defined by the amount of 

agarose used. 

 Agarose gels were prepared by heating 1% agarose (w/v) in TAE buffer. After 

the agarose was dissolved ethidiumbromide in a final concentration of 0.5 µg/ml was 

added. The gel was poured into an agarose gel-casting chamber and a plastic comb 

was inserted which forms the loading wells. After hardening the gel can be stored at 

4°C until use. 

 To perform electrophoresis the gel was transferred into an agarose gel running 

chamber and TAE was added until the gel was completely covered with liquid. 

Samples containing DNA sample buffer in a 1:5 dilution were loaded on the gel and 

electrophoresis was performed at 100 V until sufficient separation was reached 



Material and Methods 
 

55 

visualized by the migration behaviour of the blue bromphenol marker front. Agarose 

gels were documented using the Gel Doc 2000 imaging system (Bio-Rad). 

 

TAE buffer (50x):   242 g  Tris 

      57.1 ml  Glacial acidic acid 

      100 ml  0.5 M EDTA, pH 8 

      ad 1 l   ddH2O 

 

DNA sample buffer (5x):  0.25% (w/v) Bromphenol Blue  

      0.25% (w/v) Xylencyanol FF  

      30% (w/v)  Glycerol 

 

2.2.6 DNA marker 

 

 As a size standard two premixed DNA ladders were used, the 1 kb DNA ladder 

and the 100 bp DNA ladder (New England Biolabs). They contain DNA fragments of 

defined sizes ranging from 100 to 1,500 bp (100 bp ladder) to analyze smaller DNA 

fragments or from 500 to 10,000 bp (1 kb ladder) to analyze large inserts and 

vectors. The markers were applied by loading 10 µl of a stock solution containing 

0.05 µg/µl DNA in DNA sample buffer. Since each band of the marker contains a 

defined amount of DNA, the marker can be used to approximate the mass of DNA of 

an unknown sample by comparing band intensities visually.  
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2.2.7 Site-directed mutagenesis 

 

 The QuikChange site-directed mutagenesis kit (stratagene) was used to insert 

point mutations, switch amino acids, and delete or insert single or multiple amino 

acids. The site-directed mutagenesis method was performed using PfuTurbo DNA 

polymerase and a temperature cycler. PfuTurbo DNA polymerase replicates both 

plasmid strands with high fidelity and without displacing the mutant oligonucleotide 

primers. The basic procedure utilizes a supercoiled double-stranded DNA (dsDNA) 

vector with the insert of interest (pGEM-T/Gal-1 or CGL-2; 3500 bp) and two 

synthetic oligonucleotide primers (see Table 1) containing the desired mutation. 

Stratagene has developed a web-based software program to design optimal 

mutagenic primers for use with the QuikChange site directed mutagenesis kit:  

 
http://labtools.stratagene.com/QC 

 

 The control and sample reaction was prepared as indicated below. The 

oligonucleotide primers were extended during temperature cycling (see below) by 

PfuTurbo DNA polymerase. Following temperature cycling, the product was treated 

with 1 µl Dpn I (10 U/µl) for 1 h at 37°C. The Dpn I endonuclease (target sequence: 

5’-Gm6ATC-3’) is specific for methylated DNA and was used to digest the parental 

DNA template derived from methylase positive E.coli strainds and to select for 

mutation containing newly synthesized DNA. The vector DNA containing the desired 

mutations was then transformed into DH5α or XL1-Blue competent cells according to 

standard procedure (2.2.1). The isolated DNA was sequenced and the correctly 

mutagenized insert was digested with BamH I and Age I, purified and ligated with a 

retroviral Vector (pRevTRE2/GFP). 
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Control reaction: 

 

5 µl of 10x reaction buffer 

2 µl (10 ng) dsDNA template pGEM-T/gal-1 or CGL-2 

1 µl (125 ng) oligonucleotide primer Gal-1 forw. 

1 µl (125 ng) oligonucleotide primer Gal-1 revers. 

1 µl dNTP mix 

40 µl ddH2O 

1 µl PfuTurbo DNA Polymerase (2.5 U/µl) 

 

Sample reaction: 

 

5 µl 10x reaction buffer 

2 µl (10 ng) dsDNA template pGEM-T/gal-1 or CGL-2 

1 µl (125 ng) oligonucleotide primer # 1 (sense) 

1 µl (125 ng) oligonucleotide primer # 2 (antisense) 

1 µl dNTP mix 

40 µl ddH2O 

1 µl PfuTurbo DNA Polymerase (2.5 U/µl) 

 

Cycling parameters: 

 

Denaturation  30 s, 95°C    

 

Amplification  30 sec, 95°C   Denaturation 

(16 cycles)  1 min, 55°C   Hybridization    

    4 min, 68°C   Elongation 
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2.2.8 Polymerase chain reaction 

 

 To amplify a gene or DNA fragment the polymerase chain reaction (PCR) was 

used (Lawyer et al., 1989; Saiki et al., 1988). During PCR a DNA template defined by 

a forward and reverse primer is amplified in high amounts and can be used for further 

cloning to generate desired reporter constructs. PCRs were performed with the 

enzyme AmpliTaq polymerase (Perkin Elmer) which generate adenosine overhangs 

at the 3’ ends. This was important regarding the use of the pGEM-T vector system for 

further cloning since this vector contains thymidine overhangs at its 3’ ends for 

simplified ligation of PCR products. The following reaction mix was used for PCRs. 

 

Sample reaction: 

 

10 µl 10x reaction buffer 

2 µl (10 ng) dsDNA template 

1 µl (25 pmol) oligonucleotide forward primer  

1 µl (25 pmol) oligonucleotide reverse primer   

10 µl (10 mM) dNTP mix 

5.9 µl (25 mM) MgCl2 

69.1 µl ddH2O 

1 µl of AmpliTaq DNA Polymerase (2.5 U/µl) 
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 The reaction was performed employing a Primus Advance Thermocycler 

(PeqLab). The following program was used to amplify DNA. 

 

Cycling parameters: 

 

Denaturation  2 min, 95°C    

 

Amplification  45 sec, 94°C    Denaturation 

(30 cycles)  1 min, T<Tm of primers  Hybridization   

    1 min, 72°C    Elongation 

 

Elongation  10 min, 72°C    

 

Store   ∞, 4°C 

 

 The annealing temperature was chosen depending on the melting temperatures 

(Tm) of the used primers after subtracting 5°C from the lower one (T = Tm – 5°C). The 

melting temperature for each individual primer was calculated according to the 

following equation. 

 

  

! 

Tm = 81.5 +16.6" log Na+[ ] + 41"% GC#
675

N
 

 

  

! 

Na
+[ ] = 0.05 M 

  

! 

% GC = GC content of annealing sequence 

  

! 

N = number of annealing bases 

 

 When problematic primers were used which resulted in very low yields or no 

amplification, up to 10% DMSO (dimethyl sulfoxide) were added to the reaction mix. 

DMSO reduces secondary structures like loops or hairpins and the primers can 

anneal more easily at the template. A disadvantage of DMSO is that mutations and 

mispairing of bases occur more frequently. When using DMSO it was of great 
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importance to verify obtained PCR products by sequencing before using them for 

further cloning. 

 

2.2.9 PCR purification 

 

 To purify PCR products and remove primers and reaction mix components PCR 

samples were processed using a PCR purification kit (QiaQuick PCR purification kit, 

Qiagen). The DNA was bound to a silica membrane under high salt conditions and 

eluted after washing with an appropriate volume of ddH2O. 

 

2.2.10 Gel extraction of DNA fragments 

 

 To purify desired DNA fragments from a restriction digest the reaction mix was 

separated on a 1% agarose gel. The bands were transiently visualized with a UV 

lamp (366 nm) and cut out of the gel with a sharp blade. To purify the DNA from the 

agarose gel the samples were processed using a gel extraction kit (Qiagen). The 

agarose was melted in a specific buffer and DNA was bound to a silica membrane 

under high salt conditions. Elution was performed after a washing step in an 

appropriate volume of ddH2O. 

 

2.2.11 Restriction digests 

 

 Restriction enzymes were purchased from New England Biolab. Restriction 

digests were performed according to the manufacturer’s manual. An optimized buffer 

system consisting of buffer 1 to 4 from which one is optimal for a specific enzyme 

was used. Additionally unique buffers for certain enzymes are available. In the case 

of a double digest a buffer was chosen which provides the highest cleavage 

efficiency for both enzymes or the digest was performed sequentially with a DNA 

purification step in between (2.2.9). Depending on the enzyme and the quality of the 

DNA 1 to 5 U/µg DNA were used in a restriction digest incubated 2 to 4 h at 37°C. 
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2.2.12 DNA dephosphorylation 

 

 To dephosphorylate linearized vectors at the 5’-end after restriction digests in 

order to prevent self-ligation, Calf Intestinal Phosphatase (CIP, New England 

Biolabs) was added to the reaction mix in a concentration of 1 U/µg DNA for 30 min 

at 37°C. The enzyme was heat inactivated by incubation at 70°C for 10 min. 

 

2.2.13 Ligation of DNA fragments 

 

 In order to ligate PCR products or other DNA fragments to each other or into 

linearized vectors a ligation kit was used (Takara Bio Inc.). The ligation partners were 

digested with the same restriction enzymes to provide compatible ends. Following 

the manual, 50 ng of vector (or the longer DNA fragment) were used. The amount of 

insert (or the shorter DNA fragment) was calculated according to the following 

equation. 

 

  

! 

amount vector ng[ ] "number of basepairs insert bp[ ]
number of basepairs vector bp[ ]

= amount insert ng[ ]
 

 The DNA solutions and 5 µl of Takara Solution 1, which contains the T4 DNA 

ligase and an optimized buffer in a 2-fold concentration, were mixed and ddH2O was 

added to a total volume of 10 µl. The reaction was incubated for 3 h at 37°C or for at 

least 16 h at 4°C. After the incubation period the enzyme was heat inactivated by 

incubation at 70°C for 10 min. 
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2.2.14 DNA sequencing 

 

 Cloned inserts or cDNA constructs in different plasmids were sequenced in 

order to rule out mutations and to verify the correct sequence. Therefore, plasmid 

samples and primers were sent to commercial sequencing companies (Seqlab, 

Göttingen or GATC, Konstanz). Obtained sequences were analyzed using the 

Lasergene software suite (Lasergene, DNAStar) or the ‘align 2 sequences’ function 

of the BLAST project: 

  

http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi 

 

2.2.15 Short interfering RNAs in mammalian cells 

 

 Most eukaryotes possess a cellular defense system protecting their genomes 

against invading foreign genetic elements. Dicer RNase III rapidly processes dsRNA 

to small dsRNA fragments of distinct size and structure, the small interfering RNAs, 

which direct the sequence-specific degradation of the single-stranded mRNAs of the 

invading genes. In several organisms, introduction of double-stranded RNA has been 

proven to be a powerful tool to suppress gene expression. 

 For silencing genes specifically, siRNA target sites are typically chosen by 

scanning the mRNA sequence of interest for AA dinucleotides, recording the 19 

nucleotides downstream of the AA, and then comparing the potential siRNA target 

sequences with an appropriate genome database to eliminate any sequences with 

significant homology to other genes. To facilitate this procedure a “siRNA Target 

Finder and Design Tool” provided by Ambion was used: 

 

http://www.ambion.com/techlib/misc/siRNA_finder.html 
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 Subsequently two complementary DNA oligonucleotides corresponding to the 

selected target sequence were synthesized (Thermo Electron).  

 The two oligonucleotides were mixed, heated at 90°C for 3 min and annealed at 

37°C for 1 h. The annealed siRNA insert was used directly in a ligation reaction with 

a vector called pSilencer™ 1.0-U6 (Ambion) linearized with EcoR I and Apa I. 

pSilencer™ 1.0-U6 Expression Vector was designed for plasmid-based siRNA 

experiments. 

 To enable retroviral transduction the generated vector was digested with BamHI 

and the resulting insert was ligated into the retroviral vector pLNCD4 digested with 

the same enzyme. HeLamt cells were transduced with this contruct as described in 

2.3.4 by retroviral transduction of the generated retroviral vector. The vector pLNCD4 

alone was used as a control. Successfully transduced target cells were sorted using 

cell surface localized CD4 as a marker.  

 

Annealing buffer: 100 mM  Potassium acetate 

    30 mM  HEPES-KOH pH 7.4 

    2 mM   Magnesium acetate 

 

2.3 Eukaryotic cell culture techniques 
 

2.3.1 Maintaining cell lines 

 

 Adherent cell lines were grown on culture dishes in their respective culture 

medium at 37°C with 5% CO2. The cells were splitted dependent on confluency every 

3 to 5 days by washing with PBS and addition of 0.125% (w/v) Trypsin/EDTA in PBS. 

After 1 min incubation the trypsin solution was removed and the cells were 

resuspended in the appropriate volume of medium used for the culture dish. The 

cells were then seeded in the desired dilution on new culture dishes prepared with 

fresh medium. 
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PBS (Phosphate buffer saline):  140 mM    NaCl 

       2.7 mM   KCl 

       10 mM    Na2HPO4 

       1.8 mM    KH2PO4 

 

Trypsin/EDTA:     0.5 mM    EDTA  

       0.125% (w/v)  Trypsin  

           PBS 

 

2.3.2 Freezing of eukaryotic cells 

 

 To prepare frozen stocks for long-term storage cells grown to about 100% 

confluency were washed once with PBS and trypsinized. Then the cells were 

resuspended in normal growth medium, transferred to a 15 ml tube and collected by 

centrifugation (200 gav, 5 min, 4°C). The pellet was carefully resuspended in 2 ml 

freeze medium and transferred to 1.8 ml cryo-vials (Greiner). An alternative 

procedure is to resuspend the cells directly in freeze medium after trypsinization. The 

cryo-vials were frozen at -80°C in special cryo-boxes which ensure a temperature 

decrease of 1°C per minute. For long-term storage the frozen cryo-vials were 

transferred to liquid nitrogen cell storage tanks. 

 

Freeze Medium: 20% (v/v)  FCS  

    10% (v/v)   DMSO  

    100 µg/ml  Streptomycin/Penicillin 

       αMEM or DMEM 
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2.3.3 Thawing of eukaryotic cells 

 

 To unfreeze cells the cryo-vial was removed from liquid nitrogen and immedi-

ately thawed in a water bath at 37°C. The content was transferred to 20 ml fresh, pre-

warmed culture medium in a 50 ml tube and the cells were sedimented by 

centrifugation (200 gav, 5 min, 4°C). To remove DMSO the medium was discarded 

and the cell pellet was resupended in fresh culture medium. The cells were then 

seeded on culture dishes of the same size they were taken from to prepare the 

frozen stocks and incubated at 37°C with 5% CO2. 

 

2.3.4 Viral transduction 

 

 To stably integrate reporter genes into the genome of target cells and finally 

generate genetically modified reporter cell lines, a MBS Mammalian Transfection Kit 

(Stratagene) was used according to the instructions of the manufacturer’s manual. 

The procedure takes 5 days and consists of preparation of plasmids coding for virus 

components and the reporter gene, production of retroviral particles using HEK 293T 

as host cells, harvesting of the retroviral particles and infection of target cells. 

 The target cell lines were CHOMCAT-TAM2 (Engling et al., 2002) and HeLaMCAT-

TAM2 (Seelenmeyer et al., 2003) expressing the murine cationic transporter MCAT-1 

(Albritton et al., 1989; Davey et al., 1997) on the cell surface which is recognized by 

the virus and mediates docking and uptake. Additionally, the doxicycline-sensitive 

transactivator rtTA2-M2 (Urlinger et al., 2000) is constitutively expressed and allows 

production of reporter proteins in a doxicycline-dependent manner. 

 The reporter construct cDNAs were cloned either into the pRevTRE2, pLNCD4 

or the pFB vector (2.2.13). pRevTRE2 is a expression vector which allows 

doxicycline-dependent protein synthesis due to a doxicycline transactivator 

responsive element mediating mRNA formation. The pLNCD4 and pFB vectors 

promote constitutive expression of the reporter construct. As a control GFP in the 

pFB vector was used which was constitutively expressed after successful 

transduction. The plasmid containing the reporter construct was mixed with two other 
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plasmids, pVPack-GP and pVPack-Eco, encoding the viral gag-pol elements (GP) 

and the viral envelope protein (Eco). 

 

 On Day 1 the corresponding DNA mixture was precipitated using 1 ml 100% 

(v/v) ethanol and 0.1 x volume 3 M sodium acetate. After incubation at -80°C for 30 

minutes, the DNA pellet was collected by centrifugation at 12,000 gav for 10 minutes. 

After discarding the supernatant 1 ml 70% (v/v) ethanol was added. After centri-

fugation (12,000 gav, 4°C, 5 min) the supernatant was discarded and the wet pellet 

was stored at 4°C overnight. The virus producing HEK 293T cells were seeded on 

freshly prepared culture dishes to be used for transfection the next day. On day 2 

HEK 293T cells were transfected with the three plasmids prepared the day before 

according to the manual of the MBS mammalian transfection kit and incubated for 72 

h at 37°C to produce retroviral particles. On day 4 the CHOMCAT-TAM2 or HeLaMCAT-TAM2 

cells were seeded on culture dishes in the desired dilution to be used for transduction 

24 h later. On day 5 the virus particle containing medium was harvested from trans-

fected HEK 293T cells and passed through a sterile filter. Subsequently, this medium 

was transferred to the target cells and transduction occurred by virus mediated gene 

transfer leading to stable integration of the reporter construct cDNA into genome of 

the target cell. Normal growth medium was added and the cells were incubated for 

two days with the retroviral particles. The cells were further analyzed using flow 

cytometry and transduction efficiency was measured by counting GFP positive cells 

transduced with pFB-hrGFP. 

 

Vectors:  pVPack-GP  (Stratagene) 

 pVPack-Eco   (Stratagene) 

   pFB-hrGFP  (Clontech) derived from Moloney Murine  

       Leukemia Virus (MMLV) 

   pRevTRE2  (Clontech) derived from MMLV, contains tet-

       response element (TRE) 
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2.3.5 Addition of doxicycline 

 

 Doxicycline (Clontech) was added to the culture medium of different reporter 

cell lines, to induce protein expression by the tetracycline/doxicycline-responsive 

element for 48 h. A stock solution of 1 mg/ml in PBS was diluted 1:1,000 directly into 

the culture medium to reach a final concentration of 1 µg/ml.  

 

2.4 Biochemical methods 
 

2.4.1 Recombinant proteins 

 

 GST-Gal-1, GST-Gal-3 fusion constructs was cloned using the vector pGEX-2T 

(Amershan) and His6-eGFP were cloned using pET-15b (Novagen). Appropriate PCR 

products were generated using the IMAGE clones 2666528 and 2419761 as a 

source for the ORFs of human Gal-1 and Gal-3. The plasmids were transformed into 

BL21 (DE3) cells (Invitrogen) (2.2.1) and the corresponding proteins were expressed 

in an ITPG inducible manner. Therefore a small amount of LB medium containing 

ampicillin was inoculated with transformed bacteria (Pre-culture; overnight; 37°C; 

constant shaking 300 rpm). The expression of the corresponding protein was induced 

by adding IPTG  (0.5 mM) to the main-culture for 3 h at 37°C (  

! 

OD
600

"  0.6). Protein 

purification was achieved by affinity chromatography using GSH sepharose 

(Amershan) and Ni-NTA-agarose according to standard procedure.  

 A N-terminal fragment of CA125-C-TERM (defined by the NCBI clone 

AK024365) that corresponds to amino acids 1-356 (CA125-C-Term1-356) was cloned 

into pIVEX 2.4b Nde (Roche) in order to express a His6-tagged protein in vitro 

employing the Rapid Translation System RTS 100 (Rapid Translation System RTS 

100 E.coli HY kit Cat. No. 3 186 148, Roche) according to manufacturer’s manual.  

 Homogenous preparations of GST-Gal-1, His6-eGFP and His6-CA125-C-

TERM1-356, respectively, were used to generate polyclonal antisera in rabbits. Anti-

Gal-1 antibodies were affinity-purified from the corresponding rabbit serum in two 
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steps: the serum was first incubated with GST-coupled beads to remove anti-GST-

antibodies, followed by affinity purification of anti-Gal-1 antibodies on GST-Gal-1 

coupled beads. 

 

2.4.2 Preparation of cell lysates 

 

 Both wild-type and mutant forms of Gal-1-GFP and CGL-2-GFP fusion proteins 

were expressed in CHO cells by cultivating the cells in the presence of doxicycline (1 

µg/ml) for 48 h at 37°C. Following detachment of cells from the culture dishes using 

PBS, 0.5 mM EDTA pH 8.0 (10 min, 37°C), cells were sedimented (200 gav, 4°C, 5 

min) and solubilized in PBS/TX-100 (1% (w/v)). Membranes were removed in two 

steps by centrifugation at 13,000 gav (10 min, 4°C) and 100,000 gav (1 h, 4°C). The 

supernatant was analyzed for the amounts of GFP fusion proteins based on GFP 

fluorescence as measured with a fluorescence plate reader (Molecular Devices 

SpectraMax Gemini XS). 

 

2.4.3 Preparation of cell-free supernatants 

 

 CHO cells expressing GFP fusion proteins in a doxicycline-dependent manner 

were incubated in the presence of the antibiotic for 48 h at 37°C. The expressing 

cells were washed with PBS and detached by adding PBS, 0.5 mM EDTA. After 

incubation for 10 min at 37°C cells were harvested (200 gav, 4°C, 5 min) and 

resuspended in PBS. Cell-free supernatants were prepared by homogenization com-

bining freeze-thaw-cycles with sonication. Membranes were removed in two steps by 

centrifugation at 13,000 gav (10 min, 4°C) and 100,000 gav (1 h, 4°C). The resulting 

supernatant was analyzed for the amounts of GFP fusion proteins based on GFP 

fluorescence as measured with a fluorescence plate reader (Molecular Devices 

SpectraMax Gemini XS). 
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2.4.4 Determination of protein concentration based on GFP fluo-

rescence 

 

 The concentration of a GFP fusion protein was determined employing a 

fluorescence plate reader (Molecular Devices SpectraMax Gemini XS). 

 30 µl of an unknown protein sample were transferred to a 96-well plate. The 

GFP fluorescence was determined by measuring fluorescence at 530 nm after 

excitation at 485 nm wavelength. Recombinant eGFP protein with a known protein 

concentration was used to calculate the protein amount in the unknown sample. 

 

2.4.5 Sample preparation for SDS polyacrylamide gel electro-

phoresis 

 

 Samples were mixed with SDS sample buffer in a ratio of 3:1 followed by an 

incubation at 95°C for 5 min. Before loading the samples onto the gel a centrifugation 

step was performed (5,000 gav, 4°C, 1 min) to collect all liquid at the bottom of the 

reaction tube or in case of cell lysates directly prepared in SDS sample buffer to 

sediment insoluble DNA aggregates (16,000 gav, 4°C, 10 min). In the latter case only 

the supernatant was used. 

 

SDS sample buffer (4x): 200 mM  Tris-HCl, pH 6.8 

     25% (w/v)  Glycerol  

     2% (w/v)  SDS  

     0.2% (w/v) Bromphenol Blue  

     0.7 M  β-Mercaptoethanol 

 



Material and Methods 
 

70 

2.4.6 SDS polyacrylamide gel electrophoresis 

 

 To separate SDS denatured proteins according to their size SDS 

polyacrylamide gel electrophoresis was performed as described (Laemmli et al., 

1970) using the Mini PROTEAN III Electrophoresis System (Bio-Rad). 

 Gels with dimensions of 80 x 73 mm and a thickness of 0.75 mm were casted 

between to glass plates of the respective size by first pouring the freshly prepared 

separating gel solution containing 13% acrylamide into the gel cassette fixed in a 

casting frame. Unpolymerized separating gel solution was overlayed with isopropanol 

to achieve an even surface. After polymerization the isopropanol was poured off and 

remains were removed with whatman filter paper. Then unpolymerized stacking gel 

solution was poured into the gel cassette and a plastic comb was inserted from the 

top, which forms the loading wells in the stacking gel. After polymerization the gels 

were stored at 4°C for up to 3 weeks or used directly. 

 To perform electrophoresis the gel was placed into the electrode assembly 

inside a clamping frame in the tank of the PROTEAN III system. Electrophoresis 

running buffer was added to the inner and outer chamber of the tank and the comb 

was carefully removed from the stacking gel. Samples were loaded by carefully 

pipetting into the wells of the stacking gel using extra-long loading pipet tips. 

Electrophoretic separation was performed at 200 V until the Bromphenol Blue front of 

the SDS sample buffer reached the end of the separating gel. 

 

Separating Gel Solution:  13% Gel 

      1.68 ml  ddH2O 

      1.25 ml  1.5 M Tris-HCl, pH 8.8 

      50 µl   10% (w/v) SDS  

      2 ml   30% (w/v) Acrylamide/Bis  

      25 µl   10% (w/v) APS  

      2.5 µl  TEMED 
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Stacking Gel Solution:  4.8% Gel 

      1.53 ml  ddH2O 

      0.625 ml  0.5 M Tris-HCl, pH 6.8 

      25 µl   10% (w/v) SDS  

      335 µl  30% (w/v) Acrylamide/Bis  

      12.5 µl  10 % (w/v) APS  

      2.5 µl  TEMED 

 

Electrophoresis running buffer: 25 mM  Tris-HCl, pH 8.3 

      192 mM  Glycine 

      0.1%   SDS  

 

 Alternatively Novex NuPAGE 10% Bis-Tris-HCl polyacrylamide-gels (pH 6.4) 

were employed using standard procedure. To separate proteins under reducing 

conditions 0.5 ml Antioxidant was added to the MES running buffer into the inner 

chamber of the XCEll II™ mini-cell apparatus. The run was performed at a 200 V for 

approximately 35 min.  

 

MES running buffer:   1 M    MES  

(20 x)      1 M    Tris Base 

      69.3 mM   SDS 

      20.5 mM   EDTA 

  

2.4.7 SDS-PAGE protein molecular weight standards 

 

 As protein molecular weight standards either peqGOLD Protein-Marker I 

(Peqlab) or Odyssey Protein Molecular Weight Marker (LICOR) were used. The 

peqGold marker, ranging from 14 to 116 kDa, was used when analyzing the gel by 

Western blot using the ECL detection method. The Odyssey marker, ranging from 10 

to 250 kDa, was applied when performing the analysis in an Odyssey infrared 

imaging system since the marker proteins were prestained with Coomassie and can 



Material and Methods 
 

72 

therefore be visualized by this system. Markers were applied by loading 1 to 5 µl of 

the premixed solutions onto the SDS-Gel. 

 

2.4.8 Western blot analysis 

 

 To transfer proteins separated by SDS-PAGE to a polyvinylidene fluoride 

(PVDF) membrane for further analysis (Towbin et al., 1979), a wet blot transfer 

device was used (Mini Trans-Blot Cell, Bio-Rad). A PVDF membrane and two pieces 

of filter paper (Whatman 3MM, Whatman AG) were cut to the size of the separating 

gel. The PVDF membrane was activated by incubation in 100% methanol for 1 min. 

The membrane, filter paper, two sponges and a sandwich-blotting cassette were 

equilibrated in blotting buffer. The parts were assembled as depicted in the following 

figure avoiding air bubbles between the layers. 

 

anode (+) 

 

Sponge 

Filter paper 

PVDF membrane 

SDS-Gel 

Filter paper 

Sponge 

 

cathode (-) 

 
Fig. 4 Schematic overview: Assembly of a Western blot sandwich cassette. 

 

 The assembled blotting cassette was inserted into the transfer tank, an ice 

block for cooling was added and the tank was filled with blotting buffer. Protein 

transfer was performed at 100 V for 1 h under constant stirring. 
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Blotting buffer:  192 mM   Glycine 

    25 mM   Tris, pH 8.4 

    20% (v/v)  MetOH  

 

2.4.9 Immunochemical protein detection using the ECL system 

 

 Western blotting was performed as described above using Immobilon-P PVDF 

membrane (Millipore Corporation). The membrane was incubated in blocking buffer 

for 1 h at room temperature or at 4°C overnight on a shaker. Following blocking the 

membrane was rinsed with PBS-T and incubated with primary antibodies directed 

against the protein of interest in the desired dilution for 1 h at room temperature on a 

shaker. Three washing steps for 5 min with PBS-T were applied and the membrane 

was incubated with secondary goat anti-rabbit IgG or goat anti-mouse IgG antibodies 

coupled to HRP in a 1:5,000 dilution. If samples derived from an immunoprecipitation 

experiment were analyzed monoclonal anti-rabbit IgG clone RG-16 HRP-coupled 

antibodies in a 1:3,000 dilution were used to detect only native antibodies excluding 

those derived from the IP procedure. After three times washing for 5 min with PBS-T 

on a shaker, visualization was performed using the enhanced chemiluminescence 

system (ECL, Amersham Pharmacia). The membrane was incubated with the ECL 

solution for 1 min at room temperature and chemiluminescence was detected using 

medical x-ray films (Super RX Medical X ray film, Fuji). 

 

Blocking buffer:    5% (w/v)  Milk powder  

         PBS-T 

 

Primary antibody buffer:  3% (w/v)  BSA  

      0.02% (w/v) Sodium azide    

         PBS-T 

 

Secondary antibody buffer: 3% (w/v)  Milk powder  

         PBS-T 
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2.4.10 Immunochemical protein detection using the LICOR system 

 

 Western blotting was performed as described above using Immobilon-FL PVDF 

membrane (Millipore Corporation) optimized for fluorescence detection. The mem-

brane was incubated in blocking buffer for 1 h at room temperature on a shaker. 

Following blocking the membrane was rinsed two times for 5 min with PBS-T and 

incubated with primary antibodies directed against the protein of interest in the 

desired dilution for 1 h at room temperature on a shaker. Four washing steps for 5 

min with PBS-T were applied followed by incubation with secondary goat anti-rabbit 

IgG or goat anti-mouse IgG antibodies coupled to the fluorophor Alexa 680 diluted 

1:10,000 for 30 min at room temperature under constant shaking in the dark. Finally 

the membrane was washed four times for 5 min with PBS-T on a shaker and once 

with PBS without Tween 20. Visualization was performed using the Odyssey infrared 

imaging system. 

 

Blocking buffer:    5% (w/v)   Milk powder  

          PBS 

 

Primary antibody buffer:  3% (w/v)   BSA  

      0.02% (w/v)  Sodium azide  

      0.1% (w/v)  Tween 20  

          PBS 

 

Secondary antibody buffer: 3% (w/v)   Milk powder  

      0.01%(w/v)  SDS  

      0.1% (w/v)  Tween 20  

          PBS 
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2.4.11 Gal-1 affinity matrix and binding experiments employing 

subcellular fractions of S-HeLa cells 

 

 To perform affinity purification of Gal-1-interacting proteins, GST-Gal-1 and 

GST-Gal-3 fusion proteins, as well as GST as a control, were expressed in E.coli 

BL21 (DE3)) cells. Cells were resuspended in homogenization buffer, followed by cell 

breakage using an EmulsiFlex 5 (Avestin) cell disruptor. A 100,000 gav supernatant 

was prepared and incubated with an appropriate amount of glutathione beads for 2 

hours at 4°C on a rotating wheel. Following extensive washing using homogenization 

buffer, 250 µl of beads were used per binding experiment. 

 S-HeLa cells were cultured in spinner flasks according to standard procedure. 

Typically, cultures were grown to a density of about 6-7x105 cells per ml. Cells were 

collected by centrifugation (200 gav, 4°C, 10 min) and resuspended in HeLa-

homogenization buffer at 1 g cells per ml. 

 

 Following cell breakage using a Balch homogenizer, the homogenate was 

sequentially centrifuged twice at 1,000 gav and twice at 3,500 gav. The resulting 

supernatant was subjected to centrifugation at 100,000 gav. Following separation of 

supernatant and sediment, the soluble fraction was diluted with PBS to achieve a 

final protein concentration of about 0.25 mg/ml. Typically, when starting with 5 g 

cells, the soluble fraction was adjusted to a final volume of 50 ml. The corresponding 

sediment was resuspended in 50 ml Resuspension buffer (membrane). Per 

experimental condition, 25 ml of the soluble or the membrane fraction were incubated 

with 250 µl of GSH beads coupled to GST-Gal-1, GST-Gal-3 or GST. Bound proteins 

were eluted sequentially with 100 mM lactose and 25 mM glutathione diluted in the 

corresponding buffers. 
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Homogenization buffer:   1 mM   DTT 

       0.1% (w/v)  Triton X-100 

       10% (w/v)  Glycerol 

       5 mM   Pprotease inhibitor tabs 

          PBS  

 

HeLa-homogenization buffer:  25mM   Tris pH 7.5 

       130 mM   KCl 

       5 mM   Protease inhibitor tabs 

 

Resuspension buffer (membrane): 1 mM   DTT 

       1% (w/v)  NP-40 

       5 mM   Protease inhibitor tabs 

          PBS 

 

2.4.12 Protein identification employing MALDI-Tof mass spectro-

metry 

 

 In order to identify proteins eluted from the Gal-1 affinity matrix, the eluates 

were separated on 10% Novex Bis-Tris gels (Invitrogen) followed by protein staining 

using the SilverQuest system (Invitrogen). After excision of gel pieces containing the 

individual proteins, in-gel trypsin digestion allowed extraction of tryptic peptides. 

Proteins were identified based on the masses of the peptides obtained in this way by 

employing MALDI-Tof mass spectrometry (Seelenmeyer et al., 2003). 
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2.4.13 Biotinylation of cell surface proteins 

 

 To analyze exported, cell surface bound material a biotinylation assay was 

performed as described (Seelenmeyer et al., 2005). A membrane impermeable 

biotinylation reagent that binds covalently to all free ε-amino groups of lysines 

present in surface associated proteins was added to the cells. Following lysis the 

biotinylated proteins were separated by incubation with streptavidin beads and the 

amounts of biotinylated and non-biotinylated proteins could be compared resembling 

the ratio of exported to non-exported reporter protein. 

 Galectin-GFP-fusion protein were expressed in the corresponding CHO cell 

lines by cultivation in the presence of doxicycline (1 µg/ml) for 48 h at 37°C (6-well 

plate; 70% confluency). The medium was removed and the cells were washed once 

with PBS. Medium and PBS wash were combined and subjected to 

immunoprecipitation using affinity-purified anti-GFP antibodies coupled to Protein A 

Sepharose (2.4.14). 

 After washing with cold PBS Ca2+/Mg2+ cells were treated with a membrane-

impermeable biotinylation reagent (EZ-Link Sulfo-NHS-SS-Biotin; Pierce; 0.5 mg/ml 

Biotin/Incubation buffer; 4°C, 30 min). To quench unbound biotinylation reagent cells 

were washed once with quenching buffer followed by an incubation with 500 µl 

quenching buffer for 20 min at 4°C. Then cells were washed two times with PBS and 

200 µl lysis buffer were added per well. The cells were incubated 10 min at 37°C with 

lysis buffer and subsequently scraped off the cell culture plates using a rubber 

policeman. The cell solution was homogenized by pipetting and transfrerred to an 

eppendorf tube on ice. To complete lysis the samples were subjected to sonication in 

a water bath for 3 min and incubated for 15 min at room temperature being vortexed 

every 5 min. To remove insoluble material a centrifugation step (18,000 gav, 10 min, 

4°C) was performed and 10 µl of the supernatant were saved to function as an input 

sample for later analysis. The remaining lysate was added to 40 µl packed 

streptavidin beads equilibrated with lysis buffer and incubated for 1 h at room 

temperature under constant rotation to allow binding of biotinylated proteins to the 

streptavidin moiety. After the incubation the beads were washed two times with 
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washing buffer 1 and two times with washing buffer 2. Sedimentation of the beads 

was performed by centrifugation (3,000 gav, 4°C, 1 min). After the last washing step 

the supernatant was carefully discarded and bound material was eluted by incubation 

with SDS sample buffer for 5 min at 95°C. Subsequently the samples were analyzed 

by SDS-PAGE and Western blotting. 

 

PBS Ca2+/Mg2+:   1 mM  MgCl2 

     0.1 mM  CaCl2 

        PBS 

 

Incubation buffer:  150 mM   MgCl2 

     10 mM  Triethanolamine, pH 9 

     2 mM  CaCl2 

 

Quenching buffer :  100 mM  Glycine 

        PBS Ca2+/Mg2+ 

 

Lysis buffer:   62.5 mM  EDTA 

     50 mM  Tris-HCl, pH 7.5 

     0.4% (w/v) Deoxycholate  

        Protease Inhibitor tablet (1/10 ml) 

 

Washing buffer 1:  62.5 mM  EDTA 

     50 mM  Tris-HCl, pH 7.5 

     0.4% (w/v) Deoxycholate  

     1% (w/v)  NP-40 

     0.5 M  NaCl 

 



Material and Methods 
 

79 

Washing buffer 2:  62.5 mM  EDTA 

     50 mM  Tris-HCl, pH 7.5 

     0.4% (w/v) Deoxycholate 

     0.1% (w/v) NP-40 

     0.5 M  NaCl 

 

2.4.14 Immunoprecipitation of proteins 

 

 To immunoprecipitate GFP containing reporter molecules a mixture of Protein 

A-Sepahrose beads, CL-4B beads (Amersham Pharmacia) and 20% ethanol (1:1:2) 

was prepared and 40 µl slurry, corresponding to 20 µl pure beads, per sample were 

used. The beads were washed three times with IP-Buffer 1. Sedimentation was 

performed at 800 gav, 3 min, 4°C. To couple affinity-purified anti-GFP antibodies to 

the beads, they were incubated with 20 µl anti-GFP antibodies (basic elution) in 180 

µl Buffer 1 overnight at 4°C on a rotation wheel. Following the coupling procedure the 

beads were washed three times using IP-buffer 1. After sedimentation and removal 

of the buffer the sample consisting of 1 ml culture medium obtained from the 

respective reporter cell line grown on 6-well plates and 500 µl PBS obtained from 

washing the cells (see 2.4.13) were added to the beads followed by an 2 to 4 h 

incubation at 4°C. After the incubation with the medium sample the beads were 

washed three times with IP-buffer 1 and once with IP-buffer 2. Bound material was 

eluted by addition of SDS sample buffer and incubation at 95°C for 5 min. 

 

IP-buffer 1:  25 mM   Tris-HCl, pH 7,4 

    150 mM  NaCl 

    1 mM   EDTA 

    0.5% (w/v) NP-40 

 

IP-buffer 2:  25 mM   Tris-HCl, pH 7,4 

    150 mM  NaCl 

    1 mM   EDTA 
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2.4.15 Galectin binding to lactose-coupled beads 

 

 Detergent lysates of galectin-GFP expressing CHO cells were generated (2.4.2) 

and a sample was saved to function as input fraction. Following equilibration of 

lactose-coupled beads with PBS/TX-100 (1% (w/v) normalized amounts (50 GFP 

units corresponding to about 0.5 µg GFP) were incubated with 40 µl lactose-coupled 

beads (Sigma) for 1 h at 4°C to allow binding. After centrifugation (3000 gav, 1 min, 

4°C) a sample of the flow-through was saved for further analysis. After washing with 

PBS/TX-100 (1% (w/v)) bound proteins were eluted by adding SDS sample buffer. 

Comparable amounts of input (5%), flow-through (5%) and bound fraction (5%) were 

analyzed by Western blotting using affinity-purified anti-GFP antibodies (2.4.8). 

 

2.4.16 Galectin binding to the cell surface of CHO cells 

 

 Cell-free supernatants of galectin-GFP expressing CHO cells (2.4.3) were ana-

lyzed for the amounts of GFP fusion protein (2.4.4). CHO cells not expressing the 

GFP reporter molecule were detached from cell culture dishes. Following washing 

with 250 mM lactose/PBS normalized amounts (150 GFP units corresponding to 

about 1.5 µg GFP) of the cell-free supernatants were incubated with CHO cells to 

allow binding to the cell surface (1 h, 4°C). Following treatment with affinity-purified 

anti-GFP antibodies and APC-conjugated secondary antibodies, cell surface binding 

was quantified by flow cytometry. 
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2.4.17 Stability analysis of Galectin-GFP fusion proteins in con-

ditioned media derived from CHO cells 

 

 Cell-free supernatant of both wild–type and mutant forms of Gal-1-GFP and 

CGL-2-GFP fusion proteins, as well as GFP as a control, were prepared (2.4.3). 

Normalized amounts (50 GFP units corresponding to about 0.5 µg GFP, Molecular 

Devices SpectraMax Gemini XS) were diluted 1:10 in conditioned medium derived 

from CHO cells. Samples were then either directly subjected to immunoprecipitation 

employing anti-GFP antibodies, incubated for 48 h at 4°C followed by 

immunoprecipitation (2.4.14) or incubated for 48 h at 37°C followed by immuno-

precipitation (2.4.14). In each case, bound material was eluted with SDS sample 

buffer. The samples were then analyzed by SDS Page and Western blotting using 

affinity-purified anti-GFP antibodies and anti-rabbit secondary antibodies (clone RG-

16, see above) coupled to HRP (ECL detection). 

 

2.5 Flow cytometry 
 

2.5.1 Sample preparation for FACS analysis  

 

 To analyze GFP fluorescence and exported reporter proteins by specific anti-

body cell surface staining, cells were processed according to the following protocol 

and analyzed via FACS. 

 Cells were grown on 6-well plates to a confluency of about 70% in the absence 

or presence of doxicycline (1 µg/ml) to obtain samples from cells expressing reporter 

constructs and negative controls for direct comparison. After removal of the growth 

medium the cells were washed with 500 µl PBS and 500 µl Cell Dissociation Buffer 

(CDB, Invitrogen) or PBS/EDTA were added. The cells were incubated for 10 min at 

37°C and detached by resuspension. After transfer to an Eppendorf tube on ice a 

centrifugation step was applied (200 gav, 4°C, 5 min) and the supernatant was 
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discarded. The pellet was carefully resuspended in 300 µl αMEM containing the 

primary antibody in the desired dilution. After an incubation period of 1 h at 4°C under 

constant rotation, the cells were sedimented again and the pellet was washed once 

with αMEM without antibody. Then secondary antibodies coupled to the fluorophor 

Allophycocyanin were added in a 1:750 dilution in αMEM and cells were incubated 

for 30 min as described above. To remove secondary antibodies cells were washed 

once with αMEM and the pellet was resuspended in 500 µl sorting medium con-

taining propidium iodide in a final concentration of 1 µg/ml to stain dead cells. The 

samples were subsequently measured using a FACSCalibur flow cytometer. 

 

PBS/EDTA:   0.5 mM  EDTA 

        PBS 

 

Primary antibodies:  αMEM/FCS (10% (v/v)) 

 

Affinity-purified anti-GFP anibodies (acidic elution) 1:200 

Affinity-purified anti-Gal-1 antibodies (acidic elution) 1:200 

Polyclonal anti-CA125 antibodies (1:50) 

Monoclonal anti-CA125 (OC125) antibodies (1:200) 

 

Secondary antibodies: αMEM/FCS (10% (v/v)) 

 

goat anti-rabbit IgG APC-coupled antibodies 1:750 

goat anti-mouse IgG APC-coupled antibodies 1:750 

 

Sorting Medium:  5% (v/v)  CDB 

     0.2% (v/v)  FCS 

        αMEM without FCS 
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2.5.2 Plate labelling technique 

 

 To prepare cells for FACS analysis using the plate labelling technique the cells 

were grown on 6-well plates to a confluency of about 70% in the absence or 

presence of doxicycline (1 µg/ml). Following washing with 500 µl PBS primary 

antibodies in the desired dilution were added in 600 µl αMEM and the plates were 

incubated for 1 h at 4°C under constant shaking. Cells were subsequently washed 

three times with 500 µl PBS and secondary antibodies were added in the desired 

dilution in 600 µl αMEM. The samples were incubated for 30 min at 4°C under 

constant shaking followed by three times washing with 500 µl PBS. The cells were 

detached by addition of 200 µl PBS/EDTA followed by an incubation period of 10 min 

at 37°C. The samples were resuspended and transferred to an Eppendorf tube 

containing 500 µl αMEM without FCS and propidium iodide in a dilution that results in 

final concentration of 1 µg/ml after addition of 200 µl cell suspension. GFP-derived 

and APC-derived fluorescence were measured simultaneously on a FACSCalibur 

two-laser system without the need of channel compensation.  

 

Primary antibodies:   αMEM/FCS (10% (v/v)) 

 

Affinity-purified rabbit anti-GFP anibodies (acidic elution) 

1:200 

Affinity-purified anti-Gal-1 antibodies (acidic elution) 1:200 

Polyclonal anti CA125 antibodies (1:50) 

Monoclonal anti-CA125 (OC125) antibodies (1:200) 

 

Secondary antibodies: αMEM/FCS (10% (v/v)) 

 

Goat anti-rabbit IgG Allophycocyanin-coupled antibodies 

(1:750) 

Goat anti-mouse IgG Allophycocyanin-coupled antibodies 

(1:750) 
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Sorting Medium:  5% (v/v)  CDB  

     0.2% (v/v)  FCS 

        αMEM without FCS 

 

2.5.3 FACS sorting 

 

 FACS based sorting was performed in collaboration with Dr. Blanche 

Schwappach from the Center of Molecular Biology Heidelberg (ZMBH). Cells induced 

by addition of doxicycline for 48 h or grown after a sort in the absence of doxicycline 

for 7 days were detached from culture dishes using sterile CDB (Invitrogen) after 

washing once with PBS. The resulting suspension was added to 5 ml cell culture 

medium. After sedimention at 200 gav, 4°C, 5 min the supernatant was removed and 

the pellet was carefully resuspended in sorting medium. The cells were filtered using 

cell strainer caps (Becton Dickinson) into 5 ml round bottom FACS tubes (Becton 

Dickinson) and propidium iodide in a final concentration of 1 µg/ml was added. 

Subsequently, cells were sorted using a FACSVantage or FACSAria sorting device 

for pools of 50.000 or 100.000 cells in 6-well plates or as single cells to generate 

clonal cell lines in 96-well plates. 
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2.6 Confocal microscopy 
 

2.6.1 Sample preparation for confocal microscopy 

 

 For confocal microscopy cells were grown on glass coverslips to about 70% 

confluency in 24-well plates. Following two times washing with PBS on ice 200 µl 

PFA in PBS per well were added (3% (w/v)) and the cells were fixed without 

permeabilization for 20 min at 4°C. After removal of PFA the cells were washed four 

times with PBS. The coverslips were mounted on microscopic slides using 

Fluoromount G (Southern Biotechnology Associates). After hardening overnight at 

room temperature in the dark the specimens were sealed at the edge of the cover 

slip employing clear nail polish and analyzed using a Zeiss LSM 510 Meta confocal 

microscope. 

 

PFA in PBS:  3% (w/v) PFA  

 

 For life cell imaging cells were grown to about 70% confluency in the presence 

of doxicycline in appropriate cell culture dishes and analyzed using a Zeiss LSM 510 

Meta confocal microscope. 

 

2.6.2 Immunostaining of cell surface proteins for confocal micros-

copy 

 

 Samples were prepared as described in 2.6.1. After fixation with PFA and two 

times washing with PBS, the samples were quenched by incubation with 250 µl 

quenching buffer for 10 min at 4°C followed by incubation with 250 µl blocking buffer 

(10 min, room temperature) to saturate unspecific antibody binding sites. Primary 

antibodies were added in the desired dilution in 250 µl blocking buffer per well for 1 h 

at room temperature. Following three times washing with PBS unspecific binding 
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sites were blocked again by incubation in 250 µl blocking buffer per well for 10 min at 

room temperature. Secondary antibodies were added in 250 µl blocking buffer per 

well and the specimens were incubated for 30 min at room temperature. After four 

times washing the samples were mounted as described in 2.6.1 and analyzed in a 

Zeiss LSM 510 Meta confocal microscope. 

 

Quenching buffer:  50 mM   NH4Cl 

        PBS 

 

Blocking buffer:   1% (w/v)  BSA  

        PBS 

 

Primary antibodies: Blocking buffer: 

 

Affinity-purified anti-GFP antibodies (acidic elution) 1:50 

Affinity-purified anti gal-1 antibodies (acidic elution) 1:50 

 

Secondary antibodies: Blocking buffer: 

 

Goat anti-rabbit or goat anti-mouse IgG antibodies Alexa 

546-coupled 1:750 
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3 Results 
 

 Some lectin-encoding genes are expressed constitutively (Stahl, 1992), 

whereas others are induced by gene activation under specific biological conditions 

(McEver, 1995; McEver et al., 1995). All membrane-bound and many soluble lectins 

are synthesized on ER-bound ribosomes and are delivered to their final destinations 

via the ER-Golgi pathway. Thus, the lectins themselves are often glycoproteins 

(Kjellen and Lindahl, 1991). However, a significant subset of soluble lectins such as 

galectins (Ahmed et al., 1996), heparin-binding growth factors and some cytokines 

are synthesized on free ribosomes and are delivered directly to the exterior of the cell 

by as yet poorly understood mechanisms involving translocation through the plasma 

membrane. By circumventing the conventional pathway of secretion, these molecules 

can avoid unwanted premature interactions with potential ligands that are 

synthesized within the same cell. In addition, some of these lectins, such as galectins 

(Barondes et al., 1994), are sensitive to the redox state of the environment and can 

remain active only in the reducing environment of the cytosol (Cho and Cummings, 

1995a). Upon entering the oxidizing environment of the extracellular space, they 

must therefore immediately bind to ligands. 

 

3.1 Identification of Gal-1 interacting proteins potentially 

involved in the export process of human Gal-1 
 

 Several crystal structures of animal lectins with their cognate ligands have been 

elucidated (Rini, 1995a; Rini, 1995b), allowing an understanding of these interactions 

at the level of atomic resolution. The principles that have emerged from these studies 

are as follows: First, the binding sites are of relatively low affinity and are found in 

shallow indentations on the surface of the proteins. Second, selectivity is mostly 

achieved via a combination of hydrogen bonds involving the hydroxyl groups of the 

sugars and by ‘van der Waals’ packing of the hydrophobic face of monosaccharide 

rings against aromatic amino acids side chains. Third, further selectivity can be 
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achieved by additional contacts between the saccharide and the protein, sometimes 

involving bridging water molecules or divalent cations. Finally, the actual region of 

contact between the saccharide and the polypeptide typically involves only one to 

three monosaccharide residues. As a consequence of all of the above, these lectins-

binding sites tend to be of relatively low affinity, but of high specifity. The ability of 

such low-affinity sites to mediate biologically relevant interactions in the intact system 

thus appears to require multivalency (Weis and Drickamer, 1996). 

 The natural ligands for most lectins are typically complex glycoconjungates that 

carry clustered arrays of the cognate carbohydrate, thus cooperating with clustered 

lectins-binding sites to generate high-avidity binding (Drickamer and Taylor, 1993; 

Varki, 1994), which is further enhanced by mass transport effects (high local 

concentrations of ligands) (Sharon, 1993). In some instances (e.g. selectins) the 

nature of this clustering is not easily defined (Rosen and Bertozzi, 1994), and 

cooperation with other aspects of the underlying polypeptide may be necessary to 

generate optimal binding. However, it should be emphasized that unless it is correctly 

glycosylated and/or otherwise modified, the polypeptide is not itself the ligand. 

Typically, these polypeptides are simply carriers of the true ligands for lectins, which 

are made up of combinations of glycan units (Kjellen and Lindahl, 1991). In addition, 

recombinant lectins that are often used to identify potential biological ligands are 

usually multimeric in structure and/or are presented in multivalent clustered arrays in 

soluble complexes or on solid supports (Weis and Drickamer, 1996). Thus, although 

a variety of molecules may be found to bind to a given recombinant lectin in a 

glycosylation-dependent manner, only a few of these “ligands” may be actually 

involved in mediating biologically significant interactions (Varki, 1997). The challenge 

then is to tell the difference between what can bind to a recombinant lectin in an in 

vitro experiment, and what actually does bind in vivo to the native lectin in a 

biologically relevant manner. Indeed, the term ligand should probably be reserved for 

the latter type of biologically relevant structures. 
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3.1.1 Identification of CA125 as a Gal-1 counter receptor 

 

 To search for ligands of human Gal-1, a recombinant GST-Gal-1 fusion protein 

was attached to glutathione sepharose beads. As a source for proteinaceous Gal-1-

binding partners S-HeLa cells were fractionated into a soluble and a membrane 

fraction. These fractions were incubated with the Gal-1 affinity matrix. Proteins bound 

to Gal-1 were eluted sequentially using lactose (Fig. 5, lanes 1-4) and glutathione 

(Fig. 5, lanes 5-8). This procedure allowed collecting proteins that interact with the 

Gal-1-matrix in a galactose-dependent manner, followed by elution of proteins bound 

to the matrix by a sugar-independent mechanism. As shown in Fig. 5, specifically 

bound proteins could be identified in lanes 2 (GST-Gal-1 matrix; soluble S-HeLa-

fraction; eluted by lactose), lane 4 (GST-Gal-1 matrix, S-HeLa membrane fraction; 

eluted by lactose), lane 6 (GST-Gal-1 matrix, soluble S-HeLa fraction, eluted with 

glutathione) and lane 8 (GST-Gal-1 matrix, S-HeLa membrane fraction, eluted by 

glutathione) in comparison with the corresponding GST control matrices (lane 1, 3, 5 

and 7).  
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Fig. 5 Identification of CA125 as a counter receptor of Gal-1. Affinity purification of Gal-1-

interacting proteins. Both soluble (lanes 1, 2, 5, 6) and membrane (lanes 3, 4, 7, 8) fractions 

of S-HeLa cells were incubated with either GST-Gal-1 beads (lanes 2, 4, 6, 8) or GST beads 

as a control (lanes 1, 3, 5, 7). Bound proteins were eluted sequentially with lactose (lanes 1-4) 

and glutathione (lanes 5-8), followed by separation on Novex NuPage 10% Bis-Tris gels. 

Protein bands were visualized using SilverQuest (Invitrogen).  

 

 Following mass spectrometry analyses, protein band # 2 was identified as a 

chondroitin sulfate proteoglycan, band # 3 was identified as the cell adhesion 

molecule L1-CAM, and band # 4 and  # 5 were identified as Gal-1. Recombinant Gal-

1 and S-HeLa-derived Gal-1 formed apparently a dimer that disassembled in the 

presence of lactose. Beside these known interactions, 16 tryptic peptides could be 

recovered from protein band # 1 whose masses were consistent with corresponding 

tryptic fragments of a potential ORF defined by cDNA clone AK024365 (NCBI 

database; Fig. 6, boxed sequences indicate peptides identified by mass spectro-

metry) 
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Fig. 6 Amino acid sequence of CA125-C-TERM. Boxed sequences indicate tryptic peptides 

derived from band 1 (Fig. 5 A, lane 2) as identified by mass spectrometry 

 

 In order to verify whether band # 1 is the gene product AK024365, a polyclonal 

antiserum against a recombinant protein corresponding to the N-terminal part (AA 1-

356; Mr: ~ 39 kDa) of AK024365 was generated. As shown in Fig. 7, immunoreactive 

material with a broad high-molecular-weight migration behavior was detected in lane 

2, 4, 6 and 8, which correspond to the various eluates of GST-Gal-1 matrix. No signal 

could be detected under control conditions. Binding of immunoreactive material to 

Gal-1 appeared to be mediated by a galactose-lectin interaction as more than 90% 

eluted upon treatment of the affinity matrix with lactose. About 80% of the total 

immunoreactive material was recovered from the soluble fraction, with the remaining 

population derived from the membrane fraction. 
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Fig. 7 Immunoblot analysis of the proteins eluted from the GST-Gal-1 and GST matrices, 

respectively. The fractions were loaded in the same order as shown in Fig. 5. The polyclonal 

antiserum against the N-terminal part of AK024365 was used as primary antibody followed by 

detection by ECL. 

 

 The AK024365 gene product was, found to represent a C-terminal fragment of 

1148 amino acids in length of a giant mucin-like glycoprotein (O'Brien et al., 2001), 

(Yin and Lloyd, 2001). This mucin is identical to the ovarian cancer antigen CA125, 

an integral membrane protein present on the cell surface of tumor cells that has 

originally been defined by the mAb OC125 (Bast et al., 1981). Therefore, the eluates 

from the Gal-1 affinity matrix were analyzed for immunoreactivity based on OC125. 

As shown in Fig. 8, the pattern of immunoreactive bands detected with OC125 is 

strikingly similar to the pattern detected with the polyclonal anti-AK024365 antiserum. 

Since CA125 was reported to represent an integral membrane protein with a single 

transmembrane span that is cleaved in the extracellular domain in order to release 

soluble fragments, we conclude that the pattern of immunoreactive bands eluted from 

the galectin affinity matrix represents both soluble and membrane anchored 

fragments of CA125 (from now on, the 1148 amino acids, C-terminal fragment of 

CA125, defined by cDNA clone AK024365, will be termed CA125-C-TERM). 
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Fig. 8 Immunoblot analysis as shown in Fig. 7 employing the anti-CA125 antibody OC125 for the 

detection of CA125-derived fragments. 

 

3.1.2 Specificity of CA125-mediated Galectin binding 

 

 All members of the galectin family tested so far bind to simple β-galactosides, 

but the affinity is relatively low, i.e. in the millimolar range. Surprisingly, the detailed 

glycan specificities for most galectins are not clear and each galectin may differ in its 

overall specificity (Lobsanov et al., 1993). All galectins appear to bind terminal β-

galactosides, but some galectins differ significantly in their recognition of galactosyl 

residues within oligosaccharides (Zhou and Cummings, 1990). For example, both 

Gal-1 and Gal-3 bind simple lactosaminyl units as well as polylactosamine. However, 

Gal-3 binding to oligosaccharides is enhanced if the penultimate galactosyl residues 

are substituted with Galα1-3, GalNAcα1-3, or Fucα1-2 residues (Leffler and 

Barondes, 1986). In contrast, such substitution dramatically decreases binding by 

Gal-1. Several studies on Gal-1 have revealed that it displays much higher affinity for 

larger glycans containing repeating galactosyl residues. Interestingly, at least for Gal-

1, its interaction with polylactosamine is not dependent on terminal galactose 

residues, but it does require at least two linear repeating disaccharide units. It is 

possible, that the interaction of Gal-1 with polylactosamine and other extended 



Results 
 

94 

glycans may be due to contributions of secondary binding sites on the protein. The 

potential endogenous glycoconjungate ligands have been investigated for only a few 

members of the galectin family. Potential ligands for Gal-1 and Gal-3 include 

basement membrane proteins, such as laminin and fibronectin, membrane receptors, 

such as integrinα7β1, CD43, and CD45, lysosome-associated membrane proteins 

(LAMPs) and even certain gangliosides. However, the precise carbohydrate 

structures on these macromolecules that are recognized by galectins are not well 

defined. It is possible that each galectin differs somewhat in both oligosaccharide 

binding specificity and affinity for macromolecular ligands. The fact that Gal-1, for 

example, binds to a limited set of glycoconjungates suggests that the mere presence 

of galactose residues on glycoconjungates is not sufficient to promote their high-

affinity binding to this lectin. 

 To analyze whether CA125 preferentially binds to certain β-galactoside specific 

lectins, we compared CA125 binding efficiency for Gal-1 with the efficiency for Gal-3, 

also a very well characterized member of the galectin family (Barondes et al., 1994; 

Hughes, 1999; Perillo et al., 1998; Rabinovich et al., 2002a). As shown in Fig. 9, S-

HeLa-derived fragments of CA125 bind to Gal-1 twice as efficiently compared with 

Gal-3 (Fig. 9 A, B; compare lanes 1 and 2 as well as lane 3 and 4). This difference is 

significant because comparable amounts of Gal-1 and Gal-3 fusion proteins were 

used (Fig. 9 A, compare lane 9 and 10). In addition the total pattern (Fig. 9 C) of 

sugar-dependent interactions partners reveal proteins that specifically bind to Gal-1 

and Gal-3, as well as proteins that bind equally efficient to Gal-1 and Gal-3, 

respectively. This shows that differential binding efficiency can be detected under the 

experimental conditions applied. 
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Fig. 9 CA125 displays differential binding efficiency towards Gal-1 when compared to Gal-3. 

A, Soluble (lanes 1 to 4) and membrane fractions (lanes 5 to 8) were prepared from S-HeLa 

cells followed by the incubation with either GST-Gal-1 (lanes 1, 3, 5 and 7) or GST-Gal-3 

(lanes 2, 4, 6 and 8) beads. The amounts of GST-Gal-1 and GST-Gal-3 fusion proteins, 

respectively, used for affinity purification of CA125-derived fragments were shown to be 

comparable by western blotting employing affinity-purified anti-GST antibodies (lanes 9 and 

10). Following extensive washing bound proteins were eluted sequentially with lactose (lanes 

1, 2, 5 and 6) and glutathione (lanes 3, 4, 7 and 8). Eluted proteins were separated on 10% 

Novex NuPage Bis-Tris gels and transferred to a blotting membrane. ECL detection of 

CA125-derived fragments was performed employing the monoclonal antibody OC125. B, 

Quantitative analysis of CA125-derived fragments in the fractions shown in panel A employing 

Bio-Rad® QuantityOne® Software. C, Total protein pattern of lactose-eluted proteins derived 

from the Gal-1 matrix (lane 1) and the Gal-3 matrix (lane 2). Eluted proteins were separated 

on NuPage Bis-Tris gels (Invitrogen) followed by silver staining according to standard 

procedures. Lables indicate examples for proteins that preferentially bind to Gal-1 (●), Gal-3 

(▲) or proteins that equally bind Gal-1 and Gal-3 (■). 

 

 To analyze further the binding efficiency of CA125 to galectins, CA125-C-TERM 

was expressed in adherent HeLa and CHO by retroviral transduction (3.2.1). A more 

defined protein band was observed (Fig. 10). CA125-C-TERM still has the ability of 
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full-length CA125 to bind to Gal-1. This observation is consistent with the fact that the 

CA125-C-TERM contains both the stalk domain of CA125 and almost three CA125 

repeats structures that are O-glycosylated (O'Brien et al., 2001). CA125-C-TERM 

expressed in HeLa cells shows the same characteristics as endogenous full-length 

CA125 with regard to Gal-1 interactions as it binds Gal-1 about twice as efficient as 

Gal-3 (Fig. 10). 

 

 
 
Fig. 10 An 1148 amino acids C-terminal fragment of CA125, CA125-C-TERM, retains the ability 

of CA125 to specifically bind Gal-1. CHO and HeLa cells were induced to express CA125-

C-TERM by retroviral transduction. For comparison, CHO and HeLa cells were included that 

were treated with retroviral control particles. A detergent lysate of the cells was prepared and 

incubated with either GST-Gal-1-, GST-Gal-3 or GST beads. Following extensive washing the 

beads were treated with lactose. Eluted proteins were separated on 10% Novex NuPage Bis-

Tris gels followed by transfer to a blotting membrane. CA125-C-TERM was then detected by 

OC125 staining employing ECL (panel A). For comparison, the pattern of CA125-derived 

fragments isolated from S-HeLa cells is shown in the leftmost lane (control). In panel B, the 

intensity of CA125-C-TERM-derived bands was quantified using Bio-Rad® QuantityOne® 

software. 
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 By contrast, CA125-C-TERM expressed in CHO cells binds Gal-1 more than 

seven times as efficient as Gal-3 (Fig. 10). This demonstrates that, besides N- and/or 

O-linked sugar moieties of CA125, the proteinaceous core structure of CA125 

contributes to the specificity of galectin recruitment. Moreover, a cell-type dependent 

galectin binding characteristics of CA125 was established.  

 

 In order to provide evidence for a direct interaction between CA125-C-TERM 

and Gal-1, crosslinking experiments were performed (Fig. 11). CA125-C-TERM 

bound to GST-Gal-1 beads was treated with the crosslinking reagent disuccinimidyl 

glutarate (DSG, Pierce). Crosslinking products with an apparent molecular mass of 

about 160-180 kDa can be detected using anti-Gal-1 antibody and anti-CA125 

antibody. This size corresponds to the approximate molecular weight of CA125-C-

TERM and Gal-1 in a 1:1 complex. The products have a smear-like appearance as 

expected for a glycoprotein-containing crosslinking product. This product is only 

observed in the presence of crosslinking reagent. Larger crosslinking products (> 180 

kDa), which could indicate an indirect interaction of CA125 with Gal-1, cannot be 

detected. 
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Fig. 11 A crosslinking experiment is shown employing disuccinimidyl glutarate (DSG; Pierce). 

CA125-C-TERM-expressing CHO cells were lysed with detergent followed by incubation of 

the cell-free supernatant with GST-Gal-1 beads. After extensive washing DSG was added at a 

final concentration of 0.5 mM. Crosslinking products were eluted with SDS sample buffer and 

analysed by SDS-PAGE and western blotting employing affinity-purified anti-Gal-1 and 

monoclonal anti-CA125 antibodies. The square bracket indicates crosslinking products with 

an apparent molecular mass of about 160 to 180 kDa positive for Gal-1 and CA125. In the 

range of 120 to 130 kDa other Gal-1-containing crosslinking products are observed. 

 

3.1.3 CA125-C-TERM binding to Gal-1 depends on O-linked β-ga-

lactose-terminated oligosaccharide chains 

 

 To characterize further the molecular mechanism of Gal-1 binding to CA125, 

interaction studies were performed using cell lysates derived from CA125-C-TERM-

expressing CHO cells grown in the presence of tunicamycin (Fig. 12). Under control 

conditions (Fig. 12 A, lanes 1-3), approximately 40% of CA125-C-Term could bind to 

GST-Gal-1 beads as calculated based on the input amount shown in lane 1 of Fig. 

11. This value was set to 100% (Fig. 12 B) and the ratio of Gal-1 binding efficiency of 

CA125-C-TERM derived from tunicamycin-treated cells was calculated (Fig. 12 A, 

lanes 4-6). As shown in Fig. 12 B binding efficiency was reduced to 65% in 

comparison to control conditions. When CA125-C-TERM was expressed in 

CHOclone13 cells that are incapable of translocating UDP-galactose into the lumen of 
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the Golgi and, therefore, neither form galactosylated glycoprotein nor glycolipids 

(Deutscher and Hirschberg, 1986), the binding capacity of CA125-C-TERM to GST-

Gal-1 was almost completely abolished (Fig. 12 A, lanes 14-16). Under all 

experimental conditions, CA125-C-TERM binding to Gal-1 was specific (Fig. 12 B).  

 

 
 
Fig. 12 Gal-1 binding to CA125-C-TERM largely depends on O-linked β-galactose-terminated 

oligosaccharide chains. CHOMCAT-TAM2 (wild-type background with regard to galactosylation 

of both proteins and lipids) and CHOclone13 cells (deficient with regard to galactosylation of both 

proteins and lipids; (Deutscher and Hirschberg, 1986)) stably expressing CA125-C-TERM 

were used to prepare cell-free detergent lysates followed by incubation with GST- and GST-

Gal-1 beads, respectively. Where indicated CHOMCAT-TAM2 were treated with 10 µg/ml 

tunicamycin for 18 hours at 37°C prior to cell lysis. In each experiment the CA125-C-TERM 

signal derived from 0.2% of the input was compared to 4% of the material bound to either 

GST- or GST-Gal-1 beads. Protein samples were separated on NuPage Bis-Tris gels (Novex) 

followed by CA125-C-TERM immunoblotting employing the monoclonal antibody OC125. A, 

Lysates derived from CA125-C-TERM-expressing CHOMCAT-TAM2 cells (lanes 1-3), CA125-C-

TERM-expressing CHOMCAT-TAM2 cells treated with tunicamycin (lanes 4-6), CA125-C-TERM-

deficient CHOMCAT-TAM2 cells (lanes 7-9), CA125-C-TERM-deficient CHOMCAT-TAM2 cells treated 

with tunicamycin (lanes 10-12), CA125-C-TERM-expressing CHOclone13 cells (lanes 14-16) 

and CA125-C-TERM-deficient CHOclone13 cells (lanes 17-19). In lane 13, HeLa-derived CA125 

eluted from GST-Gal-1 beads is shown as a control. B, Quantitation of the results shown in 

panel A. Based on the input signal (0.2% of starting material; panel A, lane 1) about 40% of 

CA125-C-TERM present in the cell lysate is recovered on GST-Gal-1 beads under the 

conditions used (panel A, lane 3, 4% of eluate) as based on quantitation employing Bio-Rad® 

QuantityOne® software. This value was set to 100% binding efficiency and compared to 

CA125-C-TERM-Gal-1 binding efficiencies measured with lysates either derived from 

tunicamycin-treated CHOMCAT-TAM2 cells or from CHOclone13 cells. The results shown represent 

mean values of two independent experiments. 
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 In order to investigate whether CA125-C-TERM binding to Gal-1 depends on O-

linked galactose-terminated oligosaccharides chains in vivo, binding studies of 

exogenously added GST-Gal-1 to untreated CHO, tunicamycin treated CHO and 

CHOclone13 cells were performed. As expected, untreated CHO cells show a high Gal-

1 surface staining employing flow cytometry (Fig. 13, dark-blue curve). The binding 

activity was not saturated under these conditions. This binding activity was 

significantly reduced when cells were pre-treated with tunicamycin (Fig. 13, red 

curve). GST-Gal-1 binding to the cell surface was almost abolished in CHOclone13 

cells (Fig. 13, dark green curve), which allowed determining whether expression of 

CA125-C-TERM under these conditions is capable of binding Gal-1. As shown in Fig. 

13, CA125-C-TERM cells surface expression does not alter cell-surface binding 

capacity for Gal-1 (Fig. 13 compare dark green and light green curves), demonstrat-

ing that Gal-1 binding to CA125-C-TERM requires its galactosylation. The combined 

data shown in Fig. 11, Fig. 12 and Fig. 13 suggest that the interaction between 

CA125-C-TERM and Gal-1 is direct. 
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Fig. 13 CA125-C-TERM cell surface expression in CHOclone13 cells does not result in increased 

binding capacity for exogenously added Gal-1. CA125-C-TERM-expressing- and CA125-

C-TERM-deficient CHOMCAT-TAM2- and CHOclone13 cells were grown to 70% confluency. Where 

indicated, cells were treated with 10 µg/ml tunicamycin for 18 hours at 37°C. Cells were then 

dissociated from the culture plates followed by incubation with 40 µg/ml recombinant GST-

Gal-1 for 30 min at room temperature. Following labeling with affinity-purified anti-Gal-1 

antibodies under native conditions, the various samples were analyzed for cell surface-bound 

recombinant Gal-1 employing FACS. Autofluorescence (filled light-blue curve: CHOMCAT-TAM2; 

filled grey curve:  CHOclone13) was determined based on cells not treated with antibodies). 

Untreated CHOMCAT-TAM2 cells are shown in dark blue. Tunicamycin-treated CHOMCAT-TAM2 cells 

are shown in red. CHOclone13 cells are shown in dark-green (CA125-C-TERM-expressing) and 

light-green (CA125-C-TERM-deficient), respectively. 

 

3.1.4 Despite lacking a N-terminal signal peptide, CA125-C-TERM 
is transported to the cell surface of CHO and HeLa cells 

 

 Endogenous CA125 is expressed on the cell surfaces of tumor cells (Bast et al., 

1981). Based on structural analyses (O'Brien et al., 2001; Yin and Lloyd, 2001) no 

obvious N-terminal or internal signal peptide is present in the full-length CA125 and 

of the CA125-C-TERM. Like the N-terminal ER signal sequences, the internal signal 

sequence is recognized by an SRP, which brings the ribosome to the ER membrane 

and serve as a start-transfer signal for single-pass transmembrane protein that 
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initiates the translocation of the protein. In order to know more about the molecular 

mechanism of CA125 cell surface expression CA125-C-TERM transport to the cell 

surface was investigated. CA125-C-TERM was expressed in CHO and HeLa cells 

using retroviral transduction (Engling et al., 2002). Cell surface expression was 

analyzed by flow cytometry using the monoclonal anti-CA125 antibody OC125 (Fig. 

14). 

 

 
 
Fig. 14 CA125-C-TERM is transported to the cell surface of both CHO- and HeLa cells as 

determined by FACS. CHOMCAT-TAM2 (panel A) and HeLaMCAT-TAM2 (panel B) cells, 

respectively, were transduced with retroviral particles encoding CA125-C-TERM. Following 3 

days of incubation at 37°C cells were dissociated from the culture plates using a protease-free 

buffer and processed with anti-CA125 antibodies (OC125). Primary antibodies were detected 

with anti-mouse antibodies coupled to Alexa488. CA125 cell surface localization was 

analyzed by FACS. Autofluorescence was determined with trypsin-treated cells (red curves). 

Non-transduced cells prepared in the absence of trypsin are indicated by green curves. 

CA125-C-TERM-transduced cells prepared in the absence of trypsin are indicated by blue 

curves. 

 

 Autofluorescence of CHO (Fig. 14 A) and HeLa (Fig. 14 B) was determined 

using trypsin-treated cells (red curves). Whereas CHO cells treated with retroviral 

control particles did not present endogenous CA125 on their cells surface. (Fig. 14 A, 

green curve), HeLa cells treated under identical conditions did contain small but 

significant amounts of endogenous CA125 on their surface (Fig. 14 B, green curve). 

After retroviral transduction of CA125-C-TERM, cell surface staining strongly 

increased for CHO and HeLa cells (Fig. 14 A, B; blue curves). The vast majority of 
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this signal disappeared when cells were treated with trypsin following flow cytometry 

analyses. Therefore, despite lacking a conventional signal peptide at the N-terminus, 

CA125-C-TERM is transported to the cell surface.  

 

3.1.5 CA125-C-TERM is transported to the cell surface via the 

ER/Golgi-dependent secretory pathway 

 

 To analyze if CA125-C-TERM enters the classical secretory pathway or if it 

makes use of some kind of nonclassical mechanism of transport way the subcellular 

distribution in permeabilized and non-permeabilized CHO and HeLa cells was 

investigated employing confocal microscopy. In non-permeabilized cells (Fig. 15 A-D, 

CA125-C-TERM was detected on the cell surface of CHO and HeLa. CA125-C-

TERM cell-surface staining was found not to be homogenous but rather appeared in 

subdomains with significant parts of the plasma membrane not stained at all. 

 

 Permeabilization of HeLa cells prior to anti-CA125 antibody treatment revealed 

that CA125-C-TERM expression results in its incorporation into membranes of the 

classical secretory pathway (Fig. 15 E-H), where it was colocalized with the Golgi 

marker p27 (Fullekrug et al., 1999; Jenne et al., 2002). This signal was specific, as it 

could not be observed when cells were treated with retroviral control particles (Fig. 

15 E).  
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Fig. 15 CA125-C-TERM is transported to the cell surface of both CHO- and HeLa cells as 

determined by confocal microscopy. CHOMCAT-TAM2 and HeLaMCAT-TAM2 cells, 

respectively, were grown on glass cover slips followed by transduction with retroviral particles 

encoding CA125-C-TERM or with retroviral control particles that lack a cDNA insert in the viral 

genome. After 3 days of incubation at 37°C the cells were fixed with paraformaldehyde. 

Specimens shown in panels A-D represent CHOMCAT-TAM2 cells that were not permeabi-

lized to visualize exclusively cell surface-localized CA125-C-TERM. Specimens shown in 

panels E-H represent TX-100-permeabilized HeLaMCAT-TAM2 cells in order to detect 

intracellular CA125-C-TERM. CA125-C-TERM was visualized with the monoclonal antibody 

OC125 (panels A, B, E-H). The Golgi marker p27 was detected with a polyclonal rabbit 

antiserum directed against a synthetic peptide that corresponds to the cytoplasmic tail of p27 

(panels C and D) (Jenne et al., 2002). Double staining was performed using secondary 

antibodies coupled to Alexa488 and Alexa546, respectively. Specimens were analyzed with a 

Zeiss LSM510 confocal microscope. 
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 Additionally, high-resolution confocal microscopy revealed CA125-C-TERM-

positive staining of the nuclear envelope (Fig. 16 B, D), which is indicative for ER 

localization. This was confirmed by double labeling experiments using antibodies 

directed against the ER marker calreticulin (Fig. 16 A) (Sonnichsen et al., 1994). 

Whereas most of the calreticulin staining was found to be ER associated, only low 

amounts of CA125-C-TERM were found in the ER compared with the high amounts 

in the Golgi (Fig. 16, compare A and B). These results indicate that, after insertion 

into the ER membrane, CA125-C-TERM is efficiently transported in an anterograde 

direction from the ER to the Golgi. In order to investigate whether CA125-C-TERM-

positive perinuclear structures represent endosomal compartments localized at the 

microtubal organizing center, CA125-C-TERM-expressing HeLa cells were treated 

with brefeldin A to disrupt the Golgi apparatus (Lippincott-Schwartz et al., 1989; Orci 

et al., 1991). As shown in Fig. 16 F, the compact perinuclear staining of CA125-C-

TERM (Fig. 16 D) disappears after brefeldin A treatment. The resulting staining 

pattern matches brefeldin A-induced distribution of an established marker protein of 

the cis-Golgi, the KDEL receptor (Fig. 16 C, E) (Lewis and Pelham, 1990; Lewis and 

Pelham, 1992a; Lewis and Pelham, 1992b) (Fullekrug et al., 1997). These data 

established that CA125-C-TERM travels through the ER and the Golgi apparatus on 

its way to the cell surface. 
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Fig. 16 Intracellular CA125-C-TERM is localized to organelles of the classical ER/Golgi-

dependent secretory pathway. HeLa cells stably expressing CA125-C-TERM were grown 

on glass cover slips. At about 70% confluency cells were treated with brefeldin A (5 µg/ml) for 

60 min or left untreated as a control. Following fixation with paraform aldehyde cells were 

treated with TX-100 to allow intracellular staining of antigens using antibodies directed against 

calreticulin, the KDEL receptor and CA125. Double staining was performed using secondary 

antibodies coupled to Alexa488 and Alexa546, respectively. Specimens were analyzed with a 

Zeiss LSM510 confocal microscope. A, anti-calreticulin, not treated with brefeldin A; B, anti-

CA125, not treated with brefeldin A; C, anti-KDEL receptor, not treated with brefeldin A; D, 

anti-CA125, not treated with brefeldin A; E, anti-KDEL receptor, treated with brefeldin A; F, 

anti-CA125, treated with brefeldin A. 
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 In order to functionally characterize the intracellular transport of CA125-C-

TERM, an in vivo cell-surface expression experiment based on flow cytometry was 

performed in the presence and the absence of brefeldin A (Fig. 17). CA125-C-TERM-

expressing HeLa cells were grown to about 70% confluency, followed by incubation 

for 90 minutes in the presence of brefeldin A. The cells were then trypsinized to 

remove pre-existing cell-surface CA125-C-TERM, spread onto new culture plates at 

the same cell density and were further incubated in the presence or absence of 

brefeldin A for 4 hours at 37°C, respectively. As a control, cells were applied to the 

same protocol without adding brefeldin A at any time point of the experiment. The 

amount of CA125-C-TERM transported to the cells surface within 4 hours in the 

absence of brefeldin A was set to 100% (Fig. 17 A, light green curve, Fig. 17 B, lane 

2). Comparing the level of cell surface CA125-C-TERM under steady state conditions 

(Fig. 17 A, red curve; Fig. 17 B, lane 1), approximately 50% of the cell surface 

population recovers after trypsinization within 4 hours of incubation (Fig. 17 B, lane 

2). When cells were treated with brefeldin A before trypsinization, followed by 

incubation for 4 hours in the absence of brefeldin A, the level of cell surface CA125-

C-TERM was reduced by about 60% (Fig. 17 A, dark green curve, Fig. 17 B, lane 3). 

When cells were treated with brefeldin A at all time, cell surface transport of CA125-

C-TERM was reduced up to 90% (Fig. 17 A, blue curve; Fig. 16 B, lane 4). These 

data combined with the confocal analysis of the subcellular distribution shown in Fig. 

16 establish that CA125-C-TERM is transported to the cell surface via conventional 

secretory transport involving the ER and the Golgi apparatus. 
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Fig. 17 CA125-C-TERM is transported to the cell surface via the classical ER/Golgi-dependent 

secretory pathway. HeLa cells stably expressing CA125-C-TERM were grown to 70% 

confluency. Where indicated brefeldin A was added to the medium at 5 µg/ml. Following 

incubation for 90 min at 37°C, cells were trypsinized to remove cell surface CA125-C-TERM 

and spreaded onto new culture plates at 70% confluency. The culture was then continued for 

4 hours at 37°C in the presence or absence of brefeldin A as indicated. CA125-C-TERM 

transported to the cell surface within this time period was quantified by FACS employing the 

monoclonal antibody OC125. A, FACS histograms. Autofluorescence was determined by 

analyzing cells that were not treated with antibodies (light blue curve, filled). The red curve 

represents cells under steady-state-conditions. The light green curve represents cells that 

were not treated with brefeldin A. Cells that were grown for 90 min in the presence of brefeldin 

A followed by incubation for 4 hours in its absence are shown in dark green. Cells that were 

incubated with brefeldin A over the whole course of the experiment are shown in dark blue. B, 

Statistical analysis of 4 independent experiments. The colours of the bars correspond to the 

conditions detailed above. 

 

3.1.6 Correlation of endogenous CA125 expression with increased 

cell surface expression of endogenous Gal-1 in CHO and 
HeLa cells 

 

 Our observation that CHO cells do not express detectable amounts of 

endogenous CA125 as opposed to HeLa cells (Fig. 14) is consistent with the fact that 

CHO cells are not derived from a tumor, whereas HeLa cells were isolated from 

cervix carcinoma (Gey et al., 1952). Therefore CA125-deficient CHO cells were com-

pared with CA125-expressing HeLa cells for various parameters with regard to Gal-1. 
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 Employing flow cytometry to analyze CHO and HeLa cells for the amount of cell 

surface expression of Gal-1, HeLa cells contain more than ten times as much Gal-1 

on their surface compared with CHO cells (Fig. 18). For this purpose auto-

fluorescence of CHO and HeLa cells was determined with trypsin treated cells and 

adjusted to the same value for both cell lines (Fig. 18 A, B; red curves). Using affinity-

purified anti-Gal-1 antibodies, a relatively small but significant population of 

endogenous Gal-1 (A; green curve) could be detected on the surface of CHO cells 

when the cells were not treated with trypsin prior to the FACS analysis. This 

observation is consistent with various studies that demonstrate cells surface 

expression of endogenous Gal-1 (Cho and Cummings, 1995a; Cho and Cummings, 

1995b; Lutomski et al., 1997). However, HeLa cells that express CA125 contain more 

than ten times the amount of endogenous Gal-1 on their cells surface (B; blue curve) 

compared with CA125-deficient CHO cells.  
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Fig. 18 Correlation of endogenous CA125 expression with cell surface expression of endoge-

nous Gal-1 in CHO- and HeLa cells. CHO (panel A) and HeLa cells (panel B) were 

dissociated from culture plates employing a protease-free buffer. Native cells were labeled 

with affinity-purified anti-Gal-1 antibodies derived from a polyclonal rabbit antiserum. Cell 

surface staining was analyzed by FACS using anti-rabbit secondary antibodies coupled to 

allophycocyanine to detect primary antibodies. Autofluorescence levels (red curves in panel A 

and B) were determined with cells treated with trypsin prior to the FACS analysis. Gal-1 cell 

surface levels are indicated in green (CHO, panel A) and blue (HeLa, panel B), respectively. 

Total Gal-1 expression levels in CHO and HeLa cells, respectively, were analyzed by 

quantifying Gal-1 in total SDS cell lysates based on a western blot analysis (panel C). Lanes 1 

and 4 represent the material of 20,000 cells, lanes 2 and 5 represent the material of 50,000 

cells and lanes 3 and 6 represent the material of 150.000 cells. The results from CHO cells 

are shown in lanes 1 to 3, the results from HeLa cells are shown in lanes 4 to 6. Gal-1 was 

detected with an affinity-purified rabbit antiserum directed against recombinant full-length Gal-

1. 
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 We then investigate whether this effect is due to i) different total Gal-1 

expression levels, ii) different cell surface binding capacities for Gal-1 or iii) different 

regulation of Gal-1 export in CHO and HeLa cells. As shown by Western blot analysis 

using affinity-purified anti-Gal-1 antibodies (Fig. 18 C), similar signals for Gal-1 were 

obtained from CHO and HeLa cells when the amount of SDS-lysed cells was titrated 

(20,000, 50,000 and 150,000 cells). Thus, CHO and HeLa cell do not differ to a 

significant extent in the total amount of Gal-1 expression.  

 Cell-surface binding capacity for Gal-1 was analyzed using FACS by titrating 

increasing amounts of a recombinant GST-Gal-1 fusion protein into cultures of CHO 

and HeLa cells, respectively. The total binding capacity for Gal-1 was found to 

exceed the amount of endogenous Gal-1 present on the cell surface of CHO and 

HeLa cells by a factor of more than 50-fold, with CHO cells being the cell type with an 

even higher Gal-1-binding capacity compare with HeLa cells. Therefore, the strikingly 

different amounts of endogenous cell-surface Gal-1 on CHO versus HeLa cells (Fig. 

18 A, B) cannot be due to a lower Gal-1 binding capacity of CHO cells. 

 On the basis of these experiments one possible explanation of these results 

would be that CA125-expressing HeLa cells possess a more active Gal-1 export 

pathway than CA125-deficient CHO cells. 
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3.1.7 CA125 expression does not stimulate Gal-1 export 

 

 Nowadays, RNA interference has become as a common technique to study the 

functional consequence of reducing the expression of specific genes in mammalian 

cells (Tuschl, 2001; Tuschl and Borkhardt, 2002). RNAi is induced by transfecting 

cells with small interfering RNAs, comprising hairpin-forming 45-50mer RNA 

molecules (Caplen et al., 2001) that are complementary to the gene of interest 

resulting in mRNA degradation. 

 To further investigate the relation between Gal-1 export and binding to CA125 

specific siRNAs directed against endogenous CA125 were generated to 

downregulate the expression of CA125 in adherent HeLa cells (termed HeLa RNAi 

CA125) (for sequence see material und method). A construct was generated in the 

retroviral expression vector pLNCD4 that upon transcription produces a siRNA 

directed against CA125 in HeLa cells (Brummelkamp et al., 2002; Sui et al., 2002). 

From this vector CD4 is constitutively expressed functioning as a cell surface marker. 

The vector pLNCD4 not containing an RNAi was introduced into HeLa cells as a 

control (termed HeLa RNAi CD4). A corresponding pool of CD4-positive HeLa cells 

was isolated by FACS sorting (3.2.1) using monoclonal anti-CD4 OC4 primary 

antibodies and APC-conjugated secondary antibodies. 

 

 The long-term goal of this RNAi approach was to analyze Gal-1 export from 

HeLa cells treated with RNAi against CA125 in comparison to HeLa cells expressing 

CA125 employing flow cytometry. To investigate downregulation of CA125 in trans-

duced HeLa cells, recombinant GST-Gal-1 fusion protein was attached to 

glutathione-coupled sepharose beads. Detergent lysates of HeLa wild-type, HeLa 

RNAi CD4, HeLa RNAi CA125 and S-HeLa as a positive control for binding of CA125 

to Gal-1 were generated and incubated with the GST-Gal-1-affinity matrix. 

Comparable amounts of proteins were incubated with the Gal-1 affinity matrix. 

Proteins bound to Gal-1 were eluted sequentially using lactose (Fig. 19, lane 1-4) 

and glutathione (Fig. 19, lane 5-8). Bound material was separated by SDS PAGE and 
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Western blot analysis using monoclonal anti-CA125 antibody and anti-mouse POD-

conjugated secondary antibodies. 

 

 
 
Fig. 19 Adherent HeLa cells do not express CA125 on their cell surface to a significant extent. 

Detergent lysates of HeLa cells (lane 1 and 5), HeLa transfected with a control RNAi (lane 2 

and 6), HeLa cells stably transfected with RNAi directed against CA125 (lane 3 and 7) and S-

HeLa (lane 4 and 8) were prepared and incubated with GST-Gal-1 beads (o/n, 4°C). 

Following extensive washing the beads were sequentially treated with lactose (lanes 1 to 4) 

and glutathione (lanes 5 to 8). Eluted proteins were separated on SDS-gels followed by trans-

fer to a blotting membrane. CA125 was detected by OC125 staining (Zymed) employing ECL. 

As positive control CA125-derived fragments isolated in former experiments from S-HeLa 

cells were used (lane 9) (see 3.1).  

 

 The positive control for binding of CA125 to Gal-1 generated from S-HeLa cells 

showed the typical pattern for CA125 (Fig. 19, compare lane 4 and lane 9). CA125 

bound to Gal-1 could not be detected in HeLa (Fig. 19, lane 1), HeLa RNAi CD4 (Fig. 

19, lane 2) and HeLa RNAi CA125 (Fig. 19, lane 3) cells indicating that adherent 

HeLa cells do not express significant amounts of CA125 on their cell surface. As 

CA125 is not detectable in the control cell lines, these data suggest that the higher 

export efficiency observed for human Gal-1 in HeLa cells as shown in Fig. 18 is not 

related to CA125 expression. 
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3.2 Establishment of experimental systems to study un-

conventional secretion of Gal-1 
 

 Although galectins are secreted from cells, no galectin shows any evidence for 

a typical signal peptide, implying a non-classical export signal (Hirabayashi and 

Kasai, 1993; Hirabayashi et al., 1992; Marschal et al., 1992; Pfeifer et al., 1993). 

Non-classical secretion of Gal-1 has been first studied in skeletal muscle, where the 

protein moves from a diffuse intracellular to an extracellular location during in vivo 

development (Barondes et al., 1981; Cooper and Barondes, 1990; Harrison, 1991). 

In cultured myoblasts, Gal-1 remains in the cytosol until it is externalized during 

differentiation (Cooper and Barondes, 1990; Harrison and Wilson, 1992). There is 

also evidence for secretion of other galectins. A 14-kDa chicken galectin has been 

found in intestinal epithelial cells and directly shown to be secreted into the intestinal 

lumen (Beyer and Barondes, 1982). The reason why galectins are secreted by non-

classical pathways is not known. One explanation is to segregate them from 

complementary glycoconjungate ligands that are externalized by the classical 

pathway to prevent interaction before externalization. Another possibility is that, in 

contrast to the unique classical secretion pathway, there may be multiple non-

classical secretory mechanisms allowing selective secretion of different galectins in 

response to specific signals. 

 In order to investigate the mechanism of unconventional secretion in 

mammalian cells a novel assay was established that reconstitute secretion of 

unconventionally secreted protein such as Gal-1. By using stable cell lines and flow 

cytometry, Gal-1-GFP (termed Gal-1-GFP), GFP-Gal-1 (termed GFP-Gal-1) and 

GFP-CGL-2 can be determined on a quantitative basis. CGL-2 was identified as 

fungal galectin also unconventionally secreted by Coprinopsis cinerea. It is an 

orthologue to Gal-1 with 20% homologies. The homology to Gal-1 lies in the typical 

galectin fold of a CGL-2 monomer. The oligomeric state of this lectin is tetrameric 

and not dimeric like Gal-1. So far it was not known whether the mammalian export 

machinery recognizes this galectin as an export substrate (Walser et al., 2004; 

Walser et al., 2005).  
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3.2.1 Generation of cell lines 

 

 To generate CHO model cell lines expressing defined GFP fusion proteins in a 

doxicycline-dependent manner the following steps were performed. First, the murine 

orthologue of the cationic amino acid transporter MCAT-1 (Albritton et al., 1989; 

Davey et al., 1997) was stably transfected into CHOwild-type cells. Cell surface 

expression of MCAT-1 renders CHO cells permissive for retroviral transduction 

based on the ecotropic envelope protein of murine leukemia virus (Albritton et al., 

1989; Davey et al., 1997). In a second step, CHOMCAT-1 cells were transduced with an 

ecotropic retrovirus carrying a bicistronic construct encoding the doxicycline-sensitive 

transactivator rtTA2-M2 (Urlinger et al., 2000) and a truncated version of CD2 (Liu et 

al., 2000) that was used as a cell surface marker. A pool of CD2-positive cells was 

isolated by FACS sorting (from now on termed CHOmt) and subjected to another 

round of retroviral transduction (Fig. 20). 

 

 
 
Fig. 20 Schematic overview: retroviral transduction to generate reporter cell lines 

 

 To analyze the export efficiency of human Gal-1 mutants stable CHO cell lines 

were generated. Due to the use of the viral vector pRevTRE2, a stable integration of 

the constructs into the genome of target cells (CHOmt) was possible. Furthermore, a 

doxicycline/transactivator-responsive element in the vector pRevTRE2 allows 

doxicycline-dependent protein expression of Gal-1 and CGL-2 as GFP fusion 

proteins. A schematic overview of the GFP fusion proteins expressed in the 

corresponding CHO cell line is shown in Fig. 21. The calculated size of these GFP 

fusion proteins is about 40 kDa. 
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Fig. 21 Schematic overview: cDNA constructs 

 

 Retroviral particles carrying the reporter constructs (Fig. 21) were produced by 

HEK 293T cells and used for gene transfer. After viral transduction, reporter molecule 

expression was induced by adding doxicycline to the cell culture medium (standard 

condition: 1 µg/ml doxicycline, 48 h). The virally transduced cells were subjected to a 

FACS-based sorting procedure to generate clonal CHOmt cell lines. Three days after 

retroviral transduction doxicycline was added to the cell culture medium for 24 h. 

Following this incubation period cells were detached from cell culture dishes using a 

protease-free buffer system and processed for FACS analysis. Dead cells were 

identified by staining with propidium iodide that intercalates into DNA of damaged 

and dead cells. 50,000 cells from each cell line were isolated by FACS sorting based 

on GFP fluorescence using a FACSVantage sorting device (Becton Dickinson, 

Heidelberg). 

 The obtained pools of cells were incubated for 7 days in the absence of doxi-

cycline followed by the isolation of 50,000 cells from each population that did not 

display any GFP fluorescence. 

 Each of these cell pools was cultured for another period of 7 days including 24 

h in the presence of doxicycline (1 µg/ml) at the end of the incubation. 50,000 cells 

were obtained by FACS sorting based on GFP fluorescence. Exemplarily, the results 

of the sorting procedure for all generated mutant cell lines of human Gal-1 are 

displayed for the cell line Gal-1-GFP, GFP-Gal-1, GFP-CGL-2 and GFP in Fig. 22 

(panel A, Gal-1-GFP; panel B, GFP-Gal-1; panel C, GFP-CGL-2, panel D, GFP).  
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Fig. 22 FACS sorting based on GFP fluorescence to isolate reporter cell lines. Cells were 

detached from cell culture dishes using a protease-free buffer system and processed for 

FACS analysis to measure GFP fluorescence. Sort 1 displays cells 3 days after viral 

transduction incubated in the presence of 1 µg/ml doxicycline for 24 h. FL1-H represents the 

green channel measuring GFP fluorescence, FL3-H shows the red channel displaying 

propidium iodide staining (dead cells). 50,000 cells were sorted within the sorting window. 

Sort 2 shows cells grown for 7 days in the absence of doxicycline after sort 1. Again, 50,000 

cells were sorted within the sorting window. Sort 3 shows cells 7 days after sort 2 incubated in 

the presence of 1µg/ml doxicycline for 24 h. In panel A the sorting procedure for Gal-1-GFP is 

shown, in panel B for GFP-Gal-1, in panel C for GFP-CGL-2 and in panel D for GFP. 
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3.2.2 Quantitative analysis of export of reporter constructs as ana-

lyzed by flow cytometry 

 

 The clonal CHO cell lines described above (see 3.2.1) were cultivated in the 

presence of doxicycline (1 µg/ml, 48 h) and prepared for FACS analysis using the 

plate labeling procedure described in material and methods. To detect the reporter 

molecules on the cell surface, exported material was labeled using affinity-purified 

anti-GFP primary antibodies and allophycocyanin-coupled secondary antibodies. 

Analysis was performed using a BD FACSCalibur system. 

All cell lines expressed the corresponding GFP reporter construct in a doxicycline-

dependent manner as shown by an increase of GFP fluorescence compared to CHO 

cells not transduced with the reporter construct (Fig. 23; GFP expression level, panel 

A, B, C, D, E,).  

 Concerning cell surface staining all galectin constructs showed a significant 

signal (Fig. 23; cell surface; panel B, C, D). However, the signal for the GFP-Gal-1 

construct was lowered (Fig. 23, panel C) compared to the cell surface staining 

observed for Gal-1-GFP (Fig. 23, panel B).  

 The secretion of GFP-CGL-2 was analyzed in order to investigate whether the 

fungal galectin orthologue CGL-2 is a substrate for the Gal-1 export pathway in 

mammalian cells, although homologies between Gal-1 and CGL-2 are weak at the 

level of both the primary and the quaternary structure. Strikingly, GFP-CGL-2 fusion 

protein (Fig. 23, cell surface, panel D) was found to be exported with a similar 

efficiency as compared to Gal-1-GFP (Fig. 23, panel D). 

 As expected, probing for cell surface staining showed no signals for the control 

cell line CHOGFP (Fig. 23, cell surface, panel E). 
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Fig. 23 Galectins are transported to the cell surface of CHO cells as determined by FACS. 

Following incubation with doxicycline (1 µg/ml) for 48 h, CHO cells expressed the corres-

ponding fusion protein (Gal-1-GFP (panel B), GFP-Gal-1 (panel C), GFP-CGL-2 (panel D) and 

GFP (panel E). Cells were processed with affinity-purified anti-GFP antibodies. Primary 

antibodies were detected with APC-conjugated secondary antibodies. Cells were dissociated 

from cell culture plates using a protease-free buffer. GFP fusion protein localization was 

analyzed by FACS. Autofluorescence was determined employing CHO cells (panel A). 
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 As shown in Fig. 23, employing flow cytometry, it was possible to quantitatively 

access unconventional secretion of Gal-1-GF, GFP-Gal-1 and GFP-CGL-2 fusion 

proteins in vivo. 

 

3.2.3 Export of reporter constructs as analyzed by a cell surface 

biotinylation assay 

 

 To confirm the cell surface localization of the reporter molecules using an 

independent method, a biotinylation assay was used (Stegmayer et al., 2005). 

Therefore the CHO Gal-1-GFP, GFP-Gal-1, GFP-CGL-2 and GFP were cultivated in 

the presence of doxicycline for 48 h. Additionally, the cell culture medium of the cells 

was subjected to immunoprecipitation using affinity-purified anti-GFP antibodies 

coupled to protein A sepharose beads (Amershan). The cell surface biotinylation 

assay was combined with immunoprecipitation of the cell culture medium in order to 

detect galectin GFP fusion proteins bound to the cell surface as well as non-bound 

material present in the medium of cells. 

 The cells were incubated with a membrane-impermeable biotinylation reagent 

(EZ-link sulfo-NHS-SS-biotin, Pierce). The biotinylation reagent binds covalently to 

cell surface proteins via the ε-amino group of all accessible lysine residues. After 

detergent mediated cell lysis biotinylated and non-biotinylated proteins were 

separated using streptavidin-coupled beads. The biotinylated fraction (Fig. 24, lane 

1), the non-biotinylated fraction (Fig. 24, lane 2), representing exported and not 

exported material, respectively, and the medium fraction (Fig. 24, lane 3) were 

analyzed by SDS-PAGE and Western blot analysis using affinity-purified anti-GFP 

antibodies and monoclonal anti-rabbit clone RG16 secondary antibodies. 
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Fig. 24 Biochemical analysis of export of various galectin-GFP fusion proteins from CHO cells 

employing cell surface biotinylation and immunoprecipitation from cell culture super-

natants. The fusion proteins indicated were expressed in CHO cells for 48 h at 37°C (6-well 

plates; 70% confluency; 1 µg/ml doxicycline) The medium was removed and subjected to 

immunoprecipitation using affinity-purified anti-GFP antibodies. Cells were treated with a 

membrane-impermeable biotinylation reagent. Following detergent-mediated cell lysis 

biotinylated and non-biotinylated proteins were separated employing streptavidin beads. 

Aliquots from the input material (lane 1; 1%), the biotinylated fraction (lane 2; 10%) and the 

immunoprecipitate from the cell culture medium fraction (lane 3; 50%) were analyzed by SDS 

PAGE and Western blotting using affinity-purified anti-GFP antibodies. 

 

 As shown in Fig. 24 all four reporter constructs were expressed at similar levels 

(Fig. 24, lane 1; 1%). The CHO cell lines expressing Gal-1-GFP, GFP-Gal-1 and 

GFP-CGL-2 secrete the corresponding reporter constructs efficiently as shown by the 

signals for biotinylated proteins in the eluate fractions and for non-bound proteins 

precipitated from the cell culture medium. Most of the extracellular Gal-1-GFP, GFP-

Gal-1 and GFP-CGL-2 population was found to be associated with the cell surface of 

CHO cells (Fig. 24, lane 2, 10%) with only a minor portion being found in the medium 

(Fig. 24; lane 3, 50%). As expected and consistent with the flow cytometry data (Fig. 

23, GFP, cell surface staining) GFP could not be detected on the cell surface (Fig. 

24, lane 2). A small amount of GFP is detectable in the cell culture medium 

employing immunoprecipitation of the medium. This signal is likely to be derived from 

damaged cells. 
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 The data obtained from the cell surface biotinylation assay are consistent with 

the observations made in the flow cytometry analysis (Fig. 23). Both assays are func-

tional as exported protein is detectable on the cell surface.  

 

3.2.4 Quantitative analysis of Galectin binding to cell surfaces 

using flow cytometry 

 

 Galectins are β-galactoside-specific lectins being associated with components 

of the extracellular matrix and counter receptors on the cell surface of mammalian 

cells (Barondes, 1984). One aim of this work was to identify the targeting motif 

mediating unconventional secretion of Gal-1. Therefore single amino acids were 

mutated. These mutations may influence the ability of Gal-1 to bind to natural 

ligands. In order to probe the binding ability of Gal-1 wild-type and mutant forms an in 

vivo binding assay was established.   

 Gal-1-GFP, GFP-Gal-1, GFP-CGL-2 and GFP proteins were expressed in CHO 

cells by incubating the corresponding cell lines in the presence of doxicycline (1 

µg/ml) for 48 h at 37°C. Cell-free supernatants were prepared by homogenization 

combining freeze-thaw cycles with sonication. Membranes were removed in two 

steps by centrifugations at 13,000 gav (10 min at 4°C) and 100,000 gav (1 h at 4°C). 

The resulting supernatants were analyzed for the amounts of fusion protein based on 

GFP fluorescence as measured with a fluorescence plate reader (Molecular Devices 

SpectraMax Gemini XS). Normalized amounts of cell-free supernatants (150 GFP 

units corresponding to about 1.5 µg GFP) were incubated with CHO cells not 

expressing the various GFP fusion proteins for 1 h at 4°C to allow cell surface 

binding. Following treatment with affinity-purified anti-GFP antibodies and APC-

conjugated secondary antibodies, cell surface binding was quantified by flow 

cytometry (Engling et al., 2002; Seelenmeyer et al., 2003). 
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Fig. 25 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to CHO cells. The various fusion proteins indicated were expressed in 

CHO cells. Cell-free supernatants were prepared and normalized by GFP fluorescence. The 

various supernatants were then incubated with CHO cells for 1 h at 4°C to allow cell surface 

binding. Following treatment with affinity-purified anti-GFP antibodies and APC-conjugated 

secondary antibodies, cell surface binding was quantified by flow cytometry. 

 

 The reporter molecules Gal-1-GFP and GFP-CGL-2 showed a strong cell 

surface signal demonstrating a highly efficient binding to CHO cells (Fig. 25, panel B 

and panel D). GFP-CGL-2 even bound with a higher efficiency to the outer leaflet of 

CHO cells than Gal-1-GFP, whereas GFP-Gal-1 exhibited a strongly reduced but 

significant cell surface signal (Fig. 25, compare panel A, B and C). As expected the 

signal observed for GFP was only slightly over background indicating that no cell 

surface binding occurred (Fig. 25, compare panel A and panel E). 
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 Employing this experimental approach it is possible to determine the binding 

efficiencies of different galectin reporter constructs to β-galactoside-containg 

receptors in vivo.  

 

3.2.5 Biochemical analysis of Galectin binding to counter recep-
tors using lactose-coupled beads 

 

 To further analyze the β-galactoside binding ability of the reporter molecules 

with an independent biochemical method, an in vitro binding assay was established. 

Galectin GFP fusion proteins were expressed in CHO cells by incubation in the 

presence of doxicycline (1 µg/ml) for 48 h at 37°C. Following detachment of cells 

from the cell culture dishes using PBS/EDTA, cells were sedimented and lysed using 

PBS/TX-100. Insoluble material was removed by sequential centrifugation at 13,000 

gav (10 min at 4°C) and at 100,000 gav (1 h at 4°C). The resulting supernatant was 

analyzed for the amounts of fusion proteins based on GFP fluorescence as 

measured with a fluorescence plate reader (Molecular Device SpectraMax Gemini 

XS). Normalized amounts of detergent lysates (50 GFP units corresponding to about 

0.5 µg GFP) were then incubated with lactose-coupled beads (Sigma) for 1 h at 4°C. 

Following extensive washing in TX100-containing buffer bound material was eluted 

using SDS sample buffer. Input and flow-through fractions as well as the SDS 

eluates were analyzed by SDS PAGE and Western blotting using affinity-purified 

anti-GFP antibodies and POD-conjugated secondary antibodies. 
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Fig. 26 Analysis of β-galactoside binding efficiency of various galectins expressed as GFP 

fusion proteins based on binding to lactose-coupled beads. Detergent lysates normalized 

by GFP fluorescence were incubated with lactose beads for 1 h at 4°C. The non-bound 

fraction was separated and, following extensive washing, bound material was eluted with SDS 

sample buffer. Input (lane 1, 5%), non-bound material (lane 2; 5%) and bound material (lane 

3; 5%) were analyzed by SDS PAGE and Western blotting using affinity-purified anti-GFP 

antibodies. 

 

 When analyzing the binding efficiency of the fusion proteins Gal-1-GFP, GFP-

Gal-1, GFP-CGL-2 and GFP in the in vitro binding assay, the data were consistent 

with the observations made in the in vivo analysis. Western blot analysis revealed 

that comparable amounts of all four reporter constructs were used for incubation with 

lactose-coupled beads (Fig. 26, lane 1, 5%). The reporter molecule Gal-1-GFP 

bound to the lactose affinity matrix indicated by a distinct band (Fig. 26, Gal-1-GFP, 

lane 3, 5%). Consistently with the observation made in the in vivo binding assay, 

binding efficiency of GFP-Gal-1 was reduced about 4-fold (Fig. 26, GFP-Gal-1, lane 

3, 5%). The fungal galectin GFP-CGL-2 bound with a higher efficiency to the lactose 

affinity matrix since there was no detectable protein in the flow-through fraction and 

the intensity of the eluate was comparable with the signal obtained for Gal-1-GFP as 

the input signal is decreased. As expected GFP as a negative control for binding to 

lactose-coupled beads showed no signal in the bound fraction (Fig. 26; GFP, lane 3). 
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 Taken together, both the in vivo and the in vitro binding assay are robust 

methods to investigate binding efficiencies of galectin fusion proteins to β-

galactosides. 

 

3.3 Mutational analysis of the export-targeting motif in 

human Gal-1 
 

 The canonical carbohydrate recognition domain (CRD) of galectins consists of 

approximately 130 amino acids, although only a small number of these residues 

directly contact carbohydrate ligands. A comparison of the sequences of approxi-

mately 30 galectins from many different organisms reveals that eight residues, which 

have been shown to be involved in the carbohydrate binding by X-ray crystallo-

graphic analysis, are invariant (in Gal-1: His 45, Asn 47, Arg 49, Val 60, Asn 62, Trp 

69, Glu 72 and Arg 74 (Barondes et al., 1994). Although all galectins share a high 

degree of homology in their CRDs, two general subgroups of galectins can be 

distinguished, based on sequence homologies: the Gal-1 subfamily, which includes 

Gal-1 and -2, and the Gal-3 subfamily, which includes all others. Human Gal-1 and 

the fungal galectin CGL-2 from Coprinopsis cinerea show an overall identity about 

20%. 

 

3.3.1 Random mutagenesis of Gal-1  

 

 In order to investigate the export-targeting motif of Gal-1 a random mutagenesis 

of the human Gal-1 ORF employing low fidelity PCR was performed. As PCR 

template human Gal-1 ligated into the vector pGEM-T was used. The random 

mutations were generated using a concentration of 100 µM MnCl2 in the PCR 

reaction mix. Under these conditions, during temperature cycling by AmpliTaq DNA 

polymerase, which has no proofreading activity like PfuTurbo polymerase, 8-12 

mutations per 400 basepairs were inserted into the Gal-1 ORF (408 bp). Following 

digestion with BamHI and AgeI, the various mutated Gal-1 inserts were cloned into 
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the retroviral vector pRevTRE2/GFP. Employing this method 100 single retroviral 

DNA plasmids were generated having multiple distinct mutations. Following retroviral 

transduction of CHO cells (3.2.1), the export behavior of these Gal-1 mutants was 

analyzed by flow cytometry (3.2.2). Additionally, the β-galactoside binding ability of 

Gal-1 mutants was determined using the in vivo (3.2.4) and in vitro binding assay 

(3.2.5). Based on these experiments 14 export-deficient Gal-1 mutants were 

identified. The sequences of the corresponding DNA plasmids were determined and 

based on the observed mutations human Gal-1 was mutated by site-directed 

mutagenesis resulting in Gal-1-GFP mutants carrying individual mutations (3.3.2). In 

Table 3 the mutations identified in the random mutagenesis are shown.  

 

Plasmid number (internal nomenclature) Mutation 

11 C3Y, N34S, D55G, N57Y, D135A 

17 H45R, F51S, N57H, D103V 

19 F46L, F80L, E87V, M121V 

22 V60M, A95P, I118V, D126G 

27 H53P, F92L, K118Q 

64 N9F, H45N, E116D, K130T, D135Y 

71 A52T, S84R, I90F 

72 N34D, E75G, E106G 

80 C3G, F109L, Y120C 

82 N41I, G66S, M121L 

86 E16K, N40D, Q84L, CV131W 

89 A7T, V60M, A122S 

92 N9G, C61S, F127I 

97 E16K 

 
Table 3 Mutated amino acids resulting in an export defect identified in the random muta-

genesis screen employing low fidelity PCR 

 

3.3.2 Site-directed mutagenesis  

 

 Site-directed mutagenesis was used to introduce point mutations, to switch 

amino acids and to delete multiple amino acids. The site-directed mutagenesis 

method was performed using PfuTurbo DNA polymerase, which has a 6-fold higher 
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fidelity in DNA synthesis than Taq DNA polymerase (Cline et al., 1996). The basic 

procedure utilizes a double-stranded DNA vector (pGEM-T) with the insert of interest 

(human Gal-1 and fungal CGL-2) and two synthetic oligonucleotide primers 

containing the desired mutation (see material and methods). The oligonucleotide 

primers, each complementary to opposite strands of the vector, were extented during 

temperature cycling by PfuTurbo DNA polymerase. Incorporation of the oligo-

nucleotide primers generated mutated plasmids containing staggered nicks. 

Following temperature cycling, the product was treated with the endonuclease DpnI. 

DpnI is specific for methylated DNA and was used to digest the parental DNA 

template to select for newly synthesized DNA containing the desired mutation. This is 

possible since DNA isolated from almost all E. coli strands is methylated and 

therefore susceptible to DpnI digestion. The nicked vector DNA containing the 

desired mutation in Gal-1 was introduced into DH5α (Invitrogen) competent cells or 

XL-1 blue (2.2.1). Following digestion of isolated DNA with BamHI and AgeI the 

various mutated inserts were ligated into the retroviral vector pRevTRE2/GFP. 

 

3.3.3 Characterization of Gal-1 mutants regarding export and 
binding to β-galactosides 

  

 In order to elucidate the export targeting motif 97 individual CHO cell lines 

expressing single mutants of Gal-1, 10 truncated versions of human Gal-1 and 3 

truncated forms of CGL-2 were generated by stable integration of the corresponding 

DNA constructs using retroviral transduction (3.2.1) (Table 4). As control cell lines 

CHOGal-1-GFP, CHOGFP-Gal-1, CHOGFP-CGL-2 and CHOGFP were used. The individual 

mutants were selected in three different ways: i) targeted mutagenesis based on the 

results obtained from the random mutagenesis approach ii) targeted mutagenesis of 

surface residues based on the crystal structure of Gal-1 iii) targeted mutagenesis of 

residues conserved between human Gal-1 and CGL-2 from Coprinopsis cinerea 

(3.3.2) 
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 In Table 4 the individual Gal-1 mutants expressed in CHO cells as GFP fusion 

proteins in a doxicycline-dependent manner are listed. In addition to single amino 

acid mutations, N- and C-terminally truncated versions of human Gal-1 expressed as 

GFP fusion proteins were generated (Table 5). 

 

Mutation (Gal-1-GFP) Selection procedure 
Gal-1-GFP  

C3A Random mutagenesis 

V6A Conserved between Gal-1 and CGL-2 

A7I Random mutagenesis 

N9A Random mutagenesis 

K13A Conserved between Gal-1 and CGL-2 

P14A Conserved between Gal-1 and CGL-2 

E16A Random mutagenesis 

V20A Random mutagenesis 

R21A Conserved between Gal-1 and CGL-2 

V32A Conserved between Gal-1 and CGL-2 

V32G Conserved between Gal-1 and CGL-2 

V32E Conserved between Gal-1 and CGL-2 

V32S Conserved between Gal-1 and CGL-2 

V32W Conserved between Gal-1 and CGL-2 

N34A Random mutagenesis / conserved between Gal-1 and CGL-2 

L35A Random mutagenesis 

K37E Surface exposure 

D38E Surface exposure 

D38K Surface exposure 

N40A Random mutagenesis 

N41A Random mutagenesis / conserved between Gal-1 and CGL-2 

L44A Conserved between Gal-1 and CGL-2 

L44D Conserved between Gal-1 and CGL-2 

L44F Conserved between Gal-1 and CGL-2 

L44S Conserved between Gal-1 and CGL-2 

H45A Random mutagenesis / conserved between Gal-1 and CGL-2; Scott and 

Zhang, 2002 

F46A Random mutagenesis 

R49A Conserved between Gal-1 and CGL-2; Scott and Zhang, 2002; Ford et al., 

2003 

N51A Random mutagenesis / 

A52I Random mutagenesis 

H53A Surface exposure / random mutagenesis / conserved between Gal-1 and 

CGL-2; López-Lucendo et al., 2004 
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H53E Surface exposure / random mutagenesis / conserved between Gal-1 and 

CGL-2; López-Lucendo et al., 2004 

H53G Surface exposure / random mutagenesis / conserved between Gal-1 and 

CGL-2; López-Lucendo et al., 2004 

G54A Random mutagenesis and conserved between Gal-1 and CGL-2 

D55A Random mutagenesis 

N57A Random mutagenesis 

V60A Random mutagenesis 

C61A Random mutagenesis 

D65A Surface exposure 

D65K Surface exposure 

G66A  Random mutagenesis 

G67A Conserved between Gal-1 and CGL-2 

A68I Conserved between Gal-1 and CGL-2 

W69G Conserved between Gal-1 and CGL-2; Hirabayashi et al., 1991 

G70A Conserved between Gal-1 and CGL-2 

E72A Conserved between Gal-1 and CGL-2; Hirabayashi et al., 1991 

R74A Conserved between Gal-1 and CGL-2 

E75A Random mutagenesis 

F80A Random mutagenesis and conserved between Gal-1 and CGL-2 

F80K Random mutagenesis and conserved between Gal-1 and CGL-2 

F80S Random mutagenesis and conserved between Gal-1 and CGL-2 

P82A Conserved between Gal-1 and CGL-2 

S84A Random mutagenesis 

E87A Random mutagenesis 

I90A Random mutagenesis and conserved between Gal-1 and CGL-2 

F92A Random mutagenesis 

A95I  Random mutagenesis 

D103A Random mutagenesis 

G104A Conserved between Gal-1 and CGL-2 

E106A Random mutagenesis 

F109A Random mutagenesis 

R112A Conserved between Gal-1 and CGL-2;  

R112H Conserved between Gal-1 and CGL-2; lopez-Lucendo 2004 

N114A Conserved between Gal-1 and CGL-2 

E116A Random mutagenesis 

A117I Conserved between Gal-1 and CGL-2 

I118A Random mutagenesis and conserved between Gal-1 and CGL-2 

N119E Surface exposure 

N119K Surface exposure 

N119W Surface exposure 

Y120A Random mutagenesis and conserved between Gal-1 and CGL-2 
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Y120D Random mutagenesis and conserved between Gal-1 and CGL-2 

M121A Random mutagenesis 

A122I Random mutagenesis and conserved between Gal-1 and CGL-2 

D126A Random mutagenesis 

F127A Random mutagenesis and conserved between Gal-1 and CGL-2 

F127D Random mutagenesis and conserved between Gal-1 and CGL-2 

I129R Surface exposure 

K130A Random mutagenesis 

V132A Surface exposure 

V132E Surface exposure 

V132R Surface exposure 

F134E Surface exposure 

F134R Surface exposure 

GFP-CGL-2  

W72G Conserved between Gal-1 and CGL-2 

 
Table 4 Single amino acids changes in human Gal-1 and fungal CGL-2 based on the 

procedure and/or references shown in the right column. 

 

Truncations 

Gal-1-GFP 

Gal-1-GFP ∆N5 

Gal-1-GFP ∆N10 

Gal-1-GFP ∆N20 

Gal-1-GFP ∆N10-C129 

GFP-Gal-1 

GFP-Gal-1 ∆C4 

GFP-Gal-1 ∆C9 

GFP-Gal-1 ∆C20 

GFP-Gal-1 ∆C30 

GFP-Gal-1 ∆C40 

GFP-Gal-1 ∆C50 

GFP-CGL-2 

GFP-CGL-2 ∆C11 

GFP-CGL-2 ∆C111/S134E 

GFP-CGL-2 ∆C16 

 
Table 5 Truncated forms of human Gal-1 and fungal CGL-2 
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 Using CHO cells expressing either the wild-type form of Gal-1, or the wild-type 

form of CGL-2 as positive controls as well as GFP as a negative control, the 

generated Gal-1 mutant cell lines were analyzed regarding export efficiency 

employing the FACS-based secretion assay and the biotinylation assay. Moreover, 

all mutant Gal-1 proteins were analyzed for their capability to interact with counter 

receptors based on binding to both CHO cells (Fig. 29; Fig. 33; Fig. 41) and lactose-

coupled to beads (Fig. 30; Fig. 34; Fig. 42). These studies allowed to investigate 

whether a reduced surface signal of individual mutants results from a reduced 

binding efficiency to β-galactoside-containing glycolipids and glycoproteins on the cell 

surface. Based on these assays it was possible to identify 26 mutants, which showed 

the same phenotype as wild-type Gal-1 regarding export and binding ability (Table 6). 

43 mutants were identified as being deficient in binding to β-galactoside-containing 

counter receptors by both the in vivo and the in vitro assay (Table 7). Some of these 

have been reported previously to be impaired in terms of binding to β-galactosides. 

15 mutant forms of Gal-1 were characterized by controversial results regarding 

export and binding to their counter receptors (3.3.3.3) (Hirabayashi and Kasai, 1991). 

The phenotypes of truncated forms of Gal-1 are shown separately (3.3.3.4).  

 

3.3.3.1 Gal-1 mutants without phenotype regarding export and 
binding to β-galactosides 

 

 To study the export of Gal-1 mutants the wild-type and the mutant forms of Gal-

1 were expressed in a doxicycline-dependent manner and three independent experi-

ments employing flow cytometry were performed. In order to be able to compare cell 

surface signals obtained from mutant cell lines expressing the reporter molecules at 

different levels, the expression of the wild-type form of Gal-1 was induced at different 

concentrations of doxicycline (1 µg/ml (1:1,000); 0.2 µg/ml (1:5,000); 0.1 µg/ml 

(1:10,000); 0.02 µg/ml (1:50,000); 0.01 µg/ml (1:100,000) doxicycline). The 

expression level and the cell surface staining of wild-type Gal-1-GFP under standard 

conditions (1 µg/ml doxicycline, 48 h, 37°C) were set to 100%. GFP-CGL-2 was used 
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as an additional positive control for unconventional secretion of galectins in CHO 

cells. 

 As shown in Fig. 27 (blue bar) the expression levels of the GFP fusion proteins 

varied for the various Gal-1 mutants. The single amino acid changes K13A, P14A, 

V32A, V32S, K37E, N40A, D65A, D65K, S84A and N118E of Gal-1-GFP showed 

approximately the same expression level under standard conditions (1 µg/ml 

doxicycline; 48 h, 37°C) as compared to the wild-type form of Gal-1-GFP. The 

mutations C3A, A7I, E16A, R21A, A52I, G66A, E75A, P82A, D103A, G104A, E106A, 

N114A, E116A, A117I, I118A and M121A in Gal-1-GFP resulted in a lower 

expression level indicated by decreased GFP fluorescence under standard 

conditions (1 µg/ml doxicycline, 48 h, 37°C). GFP used as a negative control for 

export from CHO cells and cell surface staining, showed an expression level 

comparable to Gal-1-GFP. 

 Related to different expression levels, all GFP fusion proteins of the mutated 

Gal-1 (Fig. 27; red bar) were detectable on the cell surface indicating that neither the 

export process nor the binding ability of these mutants are influenced by the 

individual single amino acid changes of each mutant form of Gal-1. The mutants 

P14A and M121A showed a reduced cell surface staining employing flow cytometry 

compared to the wild-type form of Gal-1. However, both mutants showed a significant 

signal for exported protein being associated with the plasma membrane as the signal 

is increased compared to the GFP negative control (Fig. 27). 
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Fig. 27 Quantitative analysis of export of various galectin-GFP fusion proteins from CHO cells 

employing flow cytometry. CHO cells were grown on 6-well plates and induced with 

doxicycline for 48 h at 37°C to express the fusion proteins indicated. Following removal of 

medium, cells were labeled with affinity-purified anti-GFP antibodies followed by detachment 

of the cells using PBS/EDTA. GFP (expression level; blue) and APC-derived fluorescence 

(cell surface; red) were quantified by flow cytometry using Becton Dickinson FACSCalibur 

system (n=4) 

 

 In order to quantitatively study the export of Gal-1 mutants using an 

independent method, the cell surface biotinylation assay (Stegmayer et al., 2005) 

was combined with immunoprecipitation of Gal-1-GFP fusion proteins from the 

medium of expressing cells employing affinity-purified anti-GFP antibodies (3.2.3). 

Consistent with the data acquired by flow cytometry, the biochemical approach (Fig. 

28) revealed that the wild-type and the mutant forms of Gal-1-GFP were expressed in 

a doxicycline-dependent manner. The input fraction (Fig. 28; lane 1; 1%) indicates 

the expression level of each fusion protein. The expression levels of the mutant A7I, 

E16A, K37E, E106A and V32S were low compared to the wild-type form of Gal-1-

GFP. Western blot analysis revealed comparable amounts of all other mutants 

expressed in the corresponding CHO cell line. Most of the extracellular Gal-1-GFP 

wild-type population was associated with the cell surface of CHO cells (Fig. 28; lane 



Results 
 

135 

2; 10 %) with only a minor portion being found soluble in the medium (Fig. 28; lane 3; 

50%). Strikingly, all mutant forms of Gal-1-GFP (Fig. 28; lane 2 and lane 3) identified 

in the FACS-based assay as being exported from CHO cell and detectable on the 

cell surface could also be detected bound to the cell surface of CHO cells employing 

the biotinylation assay. Although the signals for cell surface localized material of Gal-

1 mutants A7I, E16A, K37E, E106A and M121A were weak (Fig. 28; lane 2), these 

mutant forms were not export deficient since the overall expression levels are 

reduced. These observations were consistent with the flow cytometry data. For all 

reporter molecules only a small fraction was found soluble in the medium of 

expressing cells as detected by immunoprecipitation employing affinity-purified anti-

GFP antibodies.  

 CHO cells expressing Gal-1-GFPS84A (Fig. 28; Gal-1-GFPS84A, lane 2 and 3) 

seemed to export the mutated GFP fusion protein to a higher extent compared to the 

wild-type form of Gal-1 (Fig. 28; Gal-1-GFP wt, lane 2 and 3) which is consistent with 

the observation made by flow cytometry (Fig. 27).   
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Fig. 28 Biochemical analysis of export of various galectin-GFP fusion proteins from CHO cells 

employing cell surface biotinylation and immunoprecipitation from cell culture super-

natants. The fusion proteins indicated were expressed in CHO cells for 48 h at 37°C (6-well 

plates; 70% confluency; 1 µg/ml doxicycline) The medium was removed and subjected to 

immunoprecipitation using affinity-purified anti-GFP antibodies. Cells were treated with a 

membrane-impermeable biotinylation reagent. Following detergent-mediated cell lysis 

biotinylated and non-biotinylated proteins were separated employing streptavidin beads. 

Aliquots from the input material (lane 1; 1%), the biotinylated fraction (lane 2; 10%) and the 

immunoprecipitate from the cell culture medium fraction (lane 3; 50%) were analyzed by SDS 

PAGE and Western blotting using affinity-purified anti-GFP antibodies. 
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 All mutant Gal-1 proteins were now analyzed for their capability to interact with 

counter receptors based on binding to both CHO cells (Fig. 29) and lactose-coupled 

beads (Fig. 30). 

 For the in vivo assay (Fig. 29) after detachment from cell culture plate CHO 

cells not expressing the GFP reporter molecule were incubated with cell-free super-

natants prepared from CHO cells expressing the various Gal-1-GFP fusion proteins 

(3.2.4). Following treatment with affinity-purified anti-GFP antibodies and APC-

conjugated secondary antibodies, binding of exogenously added GFP reporter 

molecules to the cell surface was analyzed by flow cytometry. The wild-type forms of 

Gal-1 and CGL-2 were used as positive controls for binding to the cell surface and 

the Gal-1 binding capacity was set to 100%, GFP served as a negative control. Some 

mutants such as A7I, V32A, V32S K37E, N40A, P82A, A117I, M121A and the wild-

type form of CGL-2 bound even better to the cell surface of CHO cells (Fig. 29) when 

compared to Gal-1-GFP. The mutations C3A, P14A, A52I, E75A, D103A, G104A 

N114A and E116A showed approximately the same binding ability to the cell surface 

as Gal-1 wild-type. Amino acid changes K13A, E16A, R21A, D65A, D65K, G66A, 

I118A and N119E resulted in a reduced binding ability to β-galactosides on the cell 

surface.  

 The cell surface staining of mutant proteins S84A and E106A was reduced 

(S84A; 30%; E106A, 21%), but the signals differ significantly from the GFP negative 

control. These observations are consistent with the flow cytometry data. All mutants 

exported from CHO cells are also capable of binding to cell surface counter receptors 

in vivo.  
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Fig. 29 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to CHO cells. The various fusion proteins indicated were expressed in 

CHO cells. Cell-free supernatants were prepared and normalized by GFP fluorescence. The 

various supernatants were then incubated with CHO cells for 1 h at 4°C to allow cell surface 

binding. Following treatment with affinity-purified anti-GFP antibodies and APC-conjugated 

secondary antibodies, cell surface binding was quantified by flow cytometry. 

 

 To verify the data obtained by the in vivo assay the biochemical binding assay 

was performed. For this purpose detergent lysates of the various Gal-1 constructs 

were incubated with lactose-coupled beads (3.2.3). Input, flow-through and bound 

fractions were analyzed by SDS PAGE and Western blotting using affinity-purified 

anti-GFP antibodies.   

 As shown in Fig. 30 the amounts incubated with the lactose-coupled beads 

(Fig. 30, lane 1) varied between the various GFP fusion proteins although the input 

was normalized by measuring the GFP fluorescence of the fusion proteins employing 

a fluorescence plate reader. The input of Gal-1-GFP C3A, R21A, K37E, D65A, 

G104A and N119E was very low, but sufficient to detect bound material (Fig. 30; lane 

3) on lactose-coupled beads. The only exception was R21A where no bound material 

is detectable. (Fig. 30, R21A, lane 3). The same observation could be made 
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regarding the mutants N40A and P82A, which seem to be impaired in binding to 

lactose-coupled beads. These observations are not consistent with the in vivo 

binding studies and with the secretion assays. In all three assays it was shown that 

these mutants were able to bind to their counter receptors. 

 All remaining mutants clearly bind to lactose-coupled beads as the various 

signals for bound materials were increased compared to the GFP negative control  

(Fig. 30; GFP, lane 3). Additionally they showed a similar binding ability compared to 

the positive controls Gal-1-GFP and GFP-CGL-2 (Fig. 30, Gal-1-GFP wt and GFP-

CGL-2; lane 3). Consistently with the in vivo binding assay the mutants A7I and V32A 

and the wild-type form of CGL-2-GFP had an even higher β-galactoside binding effi-

ciency in vitro (compare Fig. 29 and Fig. 30). 
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Fig. 30 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to lactose-coupled beads. Detergent lysates normalized by GFP fluores-

cence were incubated with lactose beads for 1 h at 4°C. The non-bound fraction was removed 

and, following extensive washing, bound material was eluted with SDS sample buffer. Input 

(lane 1, 5%), non-bound material (lane 2; 5%) and bound material (lane 3; 5%) were analyzed 

by SDS PAGE and Western blotting using affinity-purified anti-GFP antibodies. 
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 Taken together, all Gal-1 mutants listed in Table 6 result in a similar phenotype 

as the wild-type form of human Gal-1 concerning secretion and binding to β-galacto-

sides.  

 

Mutation Phenotype 
Gal-1-GFP  

C3A Lower expression level in the FACS-based and biotinylation assay; cell surface signal, binding ability 

comparable to wild-type in both binding assays 

A7I Lower expression level in the FACS-based assay, highly reduced in the biotinylation assay; cell surface 

signal in both assays; binding capacity higher than wild-type in both binding assays 

K13A Approximately the same expression level and cell surface signal in both secretion assays than the wild-

type; no binding defect  

P14A Approximately the same expression level and cell surface signal in both secretion assay than the wild-

type; no binding defect 

E16A Lower expression level in the FACS-based and biotinylation assay; cell surface signal; binding capacity 

comparable to wild-type in both binding assays 

R21A Lower expression level in the FACS-based and biotinylation assay; cell surface signal in both assays; 

binding capacity comparable to wild-type in the in-vivo assay; reduced signal in the in-vitro binding assay 

V32A Approximately the same expression level and cell surface signal in both secretion assay than the wild-

type; no binding defect 

V32S Approximately the same expression level and cell surface signal in both secretion assay than the wild-

type; no binding defect 

K37E Approximately the same expression level and cell surface signal in the FACS-based assay than the wild-

type; in the biotinylation assay reduced cell surface signal, increased signal in the cell culture medium; no 

binding defect 

N40A Approximately the same expression level and cell surface signal in the FACS-based assay and 

biotinylation assay than the wild-type; no binding defect 

A52I Approximately the same expression level and cell surface signal in the FACS-based secretion assay than 

the wild-type; reduced cells surface in the biotinylation assay; higher binding capacity in the in-vivo assay; 

reduced binding in the in vitro assay 

D65A Approximately the same expression level and cell surface signal in the FACS-based assay and 

biotinylation assay than the wild-type; no binding defect 

D65K Approximately the same expression level and cell surface signal in the FACS-based assay and 

biotinylation assay than the wild-type; no binding defect 

G66A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

staining; no binding defect 

E75A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

P82A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

S84A Approximately the same expression level and cell surface signal in the FACS-based and biotinylation 

assay than the wild-type, even higher; no binding defect 

D103A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 
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G104A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

E106A Reduced expression in the FACS-based assay and in the biotinylation assay; cell surface signal; no 

binding defect 

N114A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

E116A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

A117I Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

I118A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

N119E Approximately the same expression level and higher cell surface signal in the FACS-based assay than 

the wild-type, even higher; Expression and cell surface signal in the biotinylation assay comparable to the 

wild-type; no binding defect in vivo, reduced binding in vitro 

M121A Reduced expression in the FACS-based assay; good expression in the biotinylation assay; cell surface 

signal; no binding defect 

 
Table 6 Summary of various human Gal-1 mutants without phenotype compared to the wild-

type form of Gal-1-GFP 

   

3.3.3.2 Identification of Gal-1 mutants deficient in binding to β-

galactosides in glycoproteins and glycolipids 

 

 Based on findings that the glycolipid/glycoprotein composition of the cell surface 

may influence the export behavior of human Gal-1 (3.1.7) it was hypothesized that 

binding to counter receptors plays a role in non-classical export of human Gal-1. With 

this hypothesis in mind, mutants were analyzed whether they were defective in 

binding to β-galactosides in both assays (in vivo 3.2.4 and in vitro binding assay 

3.2.5). Following FACS and biotinylation analysis the identified Gal-1 mutants defi-

cient in cell surface localization in both secretion assays were carefully studied 

regarding the influence of the corresponding single amino acid mutations on ligand 

binding. 

 Using the wild-type forms of Gal-1-GFP and GFP-CGL-2 as positive controls for 

the unconventional secretion of galectins and GFP as a negative control, 43 Gal-1 

mutants were identified not to be present on the outer leaflet of the plasma 

membrane employing flow cytometry (Fig. 31). As already described above the wild-
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type and the mutant forms of Gal-1-GFP and GFP-CGL-2 fusion proteins were 

expressed in corresponding CHO cell lines by incubating the cells in the presence of 

doxicycline for 48 h at 37°C under standard conditions (3.2.2). The expression of the 

wild-type form of Gal-1 was induced at different concentrations of doxicycline (1 

µg/ml (1:1,000); 0.2 µg/ml (1:5,000); 0.1 µg/ml (1:10,000); 0.02 µg/ml (1:5,0000); 

0.01 µg/ml (1:100,000) doxicycline) in order to be able to compare cell surface 

signals obtained from mutant cell lines expressing the reporter molecules at different 

levels. The expression level and the cell surface staining of wild-type Gal-1-GFP 

under standard condition (1 µg/ml doxicycline, 48 h, 37°C) were set to 100%. Three 

independent experiments were performed to analyze export of the wild-type and the 

mutant forms of Gal-1-GFP.  

 As shown in Fig. 31 (blue bar) the expression level of the various GFP fusion 

proteins varied between the different generated CHO cell lines. Compared to Gal-1-

GFP the mutant cell lines V6A, V20, D38E, L44F, H45A, R49A, H53A, H53E, H53G, 

W69A, E72A, R74A, F80A, F80S, R112A, N119K, N119W, Y120A, A122I, F127A 

V132A, F134E, F134R, the wild-type form of GFP-CGL-2 and GFP as a negative 

control for export showed approximately the same expression level as Gal-1-GFP. 

The GFP fusion proteins of Gal-1 mutants N34A, D38K, N41A, L44A, L44D, L44S, 

F46A, D55A, N57A, V60A, G67A, F80K, F109A, Y120D, F127D, I129R, V132E, 

V132R and the CGL-2 mutant W72G expressed the GFP reporter molecule to a 

lower extent (1 µg/ml doxicycline, 48 h, 37°C). The mutants N9A and G54A were 

expressed at very low levels. Strikingly, related to different expression levels almost 

all mutants showed clearly no cell surface staining as they did not differ from the GFP 

negative control to a significant extent. The mutations V20A, L44F, H53A, G67A, 

F109A, N119K, N119W, F127A, V132A, F134E and F134R showed a weak cell 

surface staining indicating that the fusion proteins were partially exported and bound 

to the cell surface (for further characterization see cell surface biotinylation assay; 

Fig. 32). The expression level and the cell surface staining of the mutant N9A, L44D, 

L44S and G54A were largely reduced. Independently of the low protein expression, 

reduced cell surface signals indicated that there was no exported GFP fusion protein 

bound to the cell surface (compare (1:100,000) doxicycline of the wild-type form of 

Gal-1). 
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Fig. 31 Quantitative analysis of export of various galectin-GFP fusion proteins from CHO cells 

employing flow cytometry. CHO cells were grown on 6-well plates and induced with 

doxicycline for 48 h at 37°C to express the fusion protein indicated. Following removal of 

medium, cells were labeled with affinity-purified anti-GFP antibodies followed by detachment 

of the cells using PBS/EDTA. GFP (expression level; blue) and APC-derived fluorescence 

(cell surface; red) were quantified by flow cytometry using Becton Dickinson FACSCalibur 

system (n=4) 

 

 However, using the flow cytometry assay, only exported protein that is able to 

bind to the cell surface can be detected. Negative signals for cell surface staining can 

be explained by one of the following scenarios: i) because of the mutation the various 

proteins of Gal-1-GFP are not recognized any more as export substrates by the 

export machinery in CHO cells. ii) Export still occurs but the exported mutant proteins 

are not able to bind to counter receptors on the cell surface. Secreted GFP reporter 

molecules should then be detectable in the medium of expressing CHO cells. iii) The 

mutant forms showing the indicated phenotype in Fig. 31 are not secreted and are 

also not able to bind to β-galactosides so that the reporter molecules are neither 

detectable on the cell surface nor in the medium of expressing cells. 

 To distinguish between these three possibilities the following experiment was 

performed: conditioned medium from CHO cells expressing the various GFP reporter 
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molecules was removed and subjected to immunoprecipitation to detect soluble, 

secreted GFP fusion proteins. The cells were treated with a membrane-impermeable 

biotinylation reagent. After detergent-mediated cell lysis the biotinylated and the non-

biotinylated fraction were separated employing streptavidin beads. The input (Fig. 32, 

lane 1, 1%) indicates the expression level of the various GFP fusion proteins. As 

shown in Fig. 32, most of the extracellular Gal-1-GFP was found to be associated 

with the cell surface of CHO cell (Fig. 32, Gal-1-GFP wt, lane 2; 10%). Only a minor 

portion could be precipitated from the medium (Fig. 32, Gal-1-GFP wt, lane 3; 50%). 

Regarding GFP-CGL-2 as a positive control, most of the secreted population was 

bound to the cell surface (Fig. 32, GFP-CGL-2 wt, lane 2; 10%) and only a minor 

portion was found soluble in the cell culture medium (Fig. 32, GFP-CGL-2 wt, lane 3; 

50%). As expected GFP as a negative control was not associated with the cell 

surface (Fig. 32, GFP, lane 2, 10%). A weak signal could be detected in the medium 

of GFP-expressing CHO cells and, therefore, which is likely to be derived from 

damaged cells, was considered as background.  

 As depicted in Fig. 32 none of the mutants showed a significant signal of 

exported protein neither bound the cell surface nor soluble in the medium compared 

to the GFP negative control (Fig. 32, lane 2 and lane 3). Some mutants (N41A, L44D, 

R49A, H53E, G54A, R74A, F80K, F80S, R112A, Y120D, F127D, V132R and GFP-

CGL-2 W72G) showed a weak population bound to the cell surface (Fig. 32, lane 2; 

10%). This exported surface-bound fraction might be caused by unspecific release 

and was considered as background. 

 The mutants N34A, D38K, L44S, H45A, F46A, H53A, H53G, N57A, V60A, 

W69G, E72A and V132E were clearly defective in both export and binding as they 

neither show GFP reporter molecules bound to the cell surface nor exported protein 

soluble in the cell culture medium. One possible explanation might be that 

degradation of mutated Gal-1-GFP fusion protein causes the absence of such signals 

on the cell surface and the medium. As mutated proteins were expressed the specific 

mutation may cause a stability problem. Therefore mutants, which are not able any 

more to bind to ligands, needed to be investigated for stability (3.3.3.2.1).  
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Fig. 32 Biochemical analysis of export of various galectins as GFP fusion proteins from CHO 

cells employing cell surface biotinylation and immunoprecipitation from cell culture 

supernatants. The fusion proteins indicated were expressed in CHO cells for 48 h at 37°C (6-

well plates; 70% confluency; 1 µg/ml doxicycline) The medium was removed and subjected to 

immunoprecipitation using affinity-purified anti-GFP antibodies. Cells were treated with a 

membrane-impermeable biotinylation reagent. Following detergent-mediated cell lysis biotiny-

lated and non-biotinylated proteins were separated employing streptavidin beads. Aliquots 

from the input material (lane 1; 1%), the biotinylated fraction (lane 2; 10%) and the immuno-

precipitate from the cell culture medium fraction (lane 3; 50%) were analyzed by SDS PAGE 

and Western blotting using affinity-purified anti-GFP antibodies. 
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 Some of the mutant forms of Gal-1 shown in Fig. 32 (H45A, R49A (Scott and 

Zhang, 2002); H53A/E/G, (Lopez-Lucendo et al., 2004); W69G, E72A, R74A 

(Hirabayashi and Kasai, 1991) have been reported previously to be impaired in terms 

of binding to β-galactoside-containing counter receptors (Table 3). Therefore all 

mutants were analyzed regarding their binding ability to β-galactosides employing 

CHO cells and lactose-coupled beads. 

 

 As already shown before the wild-type form of Gal-1-GFP and GFP-CGL-2 bind 

to β-galactosides (Fig. 33) and were detectable on the cell surface of CHO employing 

flow cytometry (3.2.4) The cell surface signal of bound Gal-1-GFP was set to 100%. 

Almost all mutants were clearly defective in binding to β-galactosides on CHO cells 

as the cell surface signal of bound protein is comparable to the GFP negative control.  

 

 
 

Fig. 33 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to CHO cells. The various fusion proteins indicated were expressed in 

CHO cells. Cell-free supernatants were prepared and normalized by GFP fluorescence. The 

various supernatants were then incubated with CHO cells for 1 h at 4°C to allow cell surface 

binding. Following treatment with affinity-purified anti-GFP antibodies and APC-conjugated 

secondary antibodies, cell surface binding was quantified by flow cytometry.  
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 Additionally, the identified mutants deficient in binding to CHO cell surface were 

analyzed using the in vitro binding assay employing lactose-coupled beads (3.2.5). 

Input (Fig. 34, lane 1, 5%), flow-through (Fig. 34, lane 2, 5%) and bound material 

(Fig. 34, lane 3, 5%) were analyzed by SDS PAGE and Western blotting using 

affinity-purified anti-GFP antibodies.   

 As shown in Fig. 34, the Western blot analysis revealed that similar amounts of 

Gal-1-GFP, GFP-CGL-2 as positive controls (Fig. 34, lane 1) and of the mutants 

N34A, D38K, N41A, L44A, L44D, L44S, H45A, R49A, H53A, H53E, H53G, G54A, 

N57A, V60A, W69G, E72A, R74A, F80a, F80S, R112A, Y120D, F127D, I129R, 

V132E, V132R and CGL-2-GFP W72G were applied to lactose-coupled beads, 

whereas the amount of Gal-1-GFP F46A was much lower. As shown in Fig. 34, the 

wild-type form of Gal-1-GFP and CGL-2-GFP clearly bound to the lactose-coupled 

beads, as there was a reduced signal for the non-bound fraction (Fig. 34; lane 2, 5%) 

and a clear signal for lactose-bound material (Fig. 34; lane 3, 5%). All mutants were 

clearly defective in binding to lactose, since they did not differ from the GFP negative 

control (Fig. 34, lane 3). These data are consistent with the observation made in the 

corresponding in vivo binding studies (Fig. 33). 
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Fig. 34 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to lactose-coupled beads. Detergent lysates normalized by GFP fluores-

cence were incubated with lactose beads for 1 h at 4°C. The non-bound fraction was sepa-

rated and, following extensive washing, bound material was eluted with SDS sample buffer. 

Input (lane 1, 5%), non-bound material (lane 2; 5%) and bound material (lane 3; 5%) were 

analyzed by SDS PAGE and Western blotting using affinity-purified anti-GFP antibodies 
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 Taken together, all mutants listed in Table 7 were found to be deficient both in 

β-galactoside binding and export as they were neither detectable on the cell surface 

nor in the medium of the corresponding cell lines. These observations indicate that 

the interaction of Gal-1 with β-galactoside-containing cell surface receptors is a 

prerequisite for its unconventional secretion. 

 However, an alternative explanation for the absence of mutant forms of Gal-1-

GFP from the medium would be that the GFP reporter molecule is degraded under 

non-reducing conditions present outside cells. To investigate the stability of a 

mutated protein a degradation assay was established (3.3.3.2.1).  

 

Mutation Phenotype 
Gal-1-GFP  

V6A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

N9A Very low expression level comparable with the wild-type in the FACS-based assay; low expression level 

in the biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding 

defect in both assays 

V20A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

N34A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

D38E Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; reduced signal of exported protein employing flow cytometry and biotinylation assay; 

binding defect in both assays 

D38K Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

N41A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

L44A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

L44D Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

L44F Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; reduced signal of exported protein employing flow cytometry and biotinylation assay; 

binding defect in both assays 
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L44S Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

H45A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

F46A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

R49A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

H53A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

H53E Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

H53G Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

G54A Very low expression level comparable with the wild-type in the FACS-based assay; good expression 

employing the biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; 

binding defect in both assays 

D55A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

N57A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

V60A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

G67A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

W69G Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

E72A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

R74A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

F80A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 
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F80K Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

F80S Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

F109A Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

R112A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

N119K Expression level comparable with the wild-type in the FACS-based assay; low expression level in the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

N119W Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

Y120A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

Y120D Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

A122I Expression level comparable with the wild-type in the FACS-based assay; low expression level in the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

F127A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; reduced signal of exported protein employing flow cytometry and biotinylation assay; 

binding defect in both assays 

F127D Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

I129R Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

V132A Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

V132E Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

V132R Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

F134E Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 
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F134R Expression level comparable with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

GFP-CGL-2  

GFP-CGL-2 

W72G 

Lower expression level than with the wild-type in the FACS-based assay; good expression employing the 

biotinylation assay; no exported protein employing flow cytometry and biotinylation assay; binding defect 

in both assays 

 
Table 7 Summary of various human Gal-1 mutants being deficient in both binding to β-

galactosides and export from CHO cells. 

 

3.3.3.2.1 Gal-1 mutants deficient for binding to β-galactosides are 

not degraded in conditioned medium derived from CHO 
cells 

 

 In the case of galectins binding to β-galactoside is of great importance. 

Galectins are highly sensitive to the redox state of the environment and can remain 

active only in the reducing environment of the cytosol. Following export galectins 

must immediately bind to their counter receptors on the cell surface in order to fulfill 

their function.  

 Based on the known secretion (Fig. 31 and Fig. 32) and binding assays (Fig. 33 

and Fig. 34) 43 mutants were identified to be deficient regarding export from CHO 

cells and binding to β-galactosides. Stable mutant proteins, which lost their ability to 

bind to the cell surface, should be detectable in the cell culture medium of expressing 

CHO cells if export occurs. An alternative explanation for the absence of mutated 

proteins from the cell culture medium is that these proteins are subjected to degrada-

tion since they cannot bind to their counter receptors.  

 Therefore these Gal-1 mutants deficient in β-galactoside binding were analyzed 

with regard to their stability in conditioned medium derived from CHO cells in order to 

test whether protein degradation causes their absence from the supernatants of 

expressing cells. Cell-free supernatants of the various proteins deficient in binding to 

β-galactosides were prepared (Table 7). Normalized amounts (150 GFP units corres-

ponding to about 1.5 µg GFP) measured with a fluorescence plate reader were 
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added to conditioned medium. The corresponding Gal-1-GFP mutant protein diluted 

in conditioned medium was either subjected immediately to immunoprecipitation 

using affinity-purified anti-GFP antibodies or incubated for 48 h at 37°C (the 

experimental condition of a secretion assay employing the cell surface biotinylation 

assay and the FACS-based secretion assay) followed by immunoprecipitation. 

Following SDS PAGE degradation of the various Gal-1-GFP mutants were analyzed 

by Western blotting using affinity-purified anti-GFP antibodies. 

 

 As shown in Fig. 35, the wild-type forms of Gal-1-GFP, GFP-CGL-2 and GFP 

were used as negative controls for degradation. 33 mutant forms of Gal-1 and one 

mutant of CGL-2 deficient in binding were analyzed for degradation. The wild-type 

form of Gal-1 and CGL-2, GFP and the β-galactoside-binding mutants were not 

degraded when incubated with condition CHO medium at 37°C for 48 hours (Fig. 35, 

compare lane 1, 10%, and lane 2, 10%) since Western blot analysis revealed the 

same amounts for non-incubated and incubated fractions. Human Gal-1 and fungal 

CGL-2 are highly stable under the experimental conditions applied. Additionally, 

mutations of single amino acid in Gal-1 and CGL-2 causing in a defect in binding to 

counter receptors did not result in their degradation. Regarding the mutants N41A, 

L44A and V60A there was a slightly reduced signal indicating that these proteins are 

partially degraded (Fig. 35, lane 1 and 2). 
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Fig. 35 Stability of galectin-GFP fusion proteins in conditioned media derived from CHO cells. 

The fusion protein indicated were expressed in CHO cells for 48 h at 37°C (6-well paltes; 70% 

confluency). From each cell line, a cell-free supernatant was prepared. Normalized amounts 

(GFP fluorescence) were incubated in conditioned medium derived from CHO cells for the 

times indicated followed by immunoprecipitation (lanes 1 and 2) using affinity-purified anti-

GFP antibodies. The samples were analyzed by SDS PAGE and Western blotting using 

antibodies directed against GFP. Lane 1: no incubation (IP, 10%); lane 2: incubation for 48 h 

at 37°C (IP, 10%). 
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3.3.3.2.2 Wild-type forms of both Gal-1 and CGL-2 fail to be ex-

ported from CHO cells lacking functional counter recep-

tors for Galectins 

 

 To address the question whether counter receptors play a direct role in the 

export mechanism of galectins, another experimental approach was taken. For this 

purpose, cell lines expressing various forms of Gal-1 (Gal-1-GFP, Gal-1-GFPW69G, 

Gal-1-GFPE72A) and CGL-2 (GFP-CGL-2, GFP-CGL-2W72G) as GFP fusion proteins 

were generated based on a CHO mutant cell line termed clone 13 (3.1.3; Fig. 12). In 

this mutant cell line, the Golgi-resident transporter for UDP-galactose is defective 

and, therefore, these cells cannot produce galectin counter receptors since 

galactosyltransferases in the Golgi lumen do not receive activated galactose residues 

as substrates (Deutscher and Hirschberg, 1986). As a result, both glycoproteins and 

glycolipids derived from clone 13 cells do not contain β-galactosides in their sugar 

moieties and, therefore, do not bind galectins on their cell surface (Fig. 13). If β-

galactosides localized to the cell surface are necessary for Gal-1 export into the 

extracellular space, the wild-type form of Gal-1 and CGL-2 expressed as GFP fusion 

proteins should not be secreted from CHOclone13 cells.  

 Following retroviral transduction of CHOclone13 cells all proteins were stably ex-

pressed as GFP fusion proteins using the doxicycline-dependent transactivator 

system (3.2.1). CHO cells expressing the corresponding reporter molecules were 

used as positive controls. 

 The cell surface biotinylation assay combined with immunoprecipitation of the 

various GFP fusion proteins from the medium of expressing CHO and CHOclone13 

cells was performed under standard conditions (1 µg/ml doxicycline, 48 h, 37°C).  

 As shown in the cell surface biotinylation experiments (Fig. 36) both Gal-1-GFP 

(panel A; lanes 2 and 3) and CGL-2-GFP (panel D; lanes 11 and 12) were efficiently 

exported from CHOwild-type cells as inducated the combined signals for cell surface 

and medium fractions. 
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Fig. 36 Comparative analysis of export of galectin-GFP fusion proteins from CHOwild-type and 

CHOclone 13 cells employing cell surface biotinylation and immunoprecipitation from cell 

culture supernatants. The fusion proteins indicated were expressed in both CHOwild-type 

(panels A-F) and CHOclone 13 cells (panels G-L9) for 48 h at 37°C (6-well plates; 70% 

confluency; 1 µg/ml doxicycline). The medium was removed and subjected to immuno-

precipitation using affinity-purified anti-GFP antibodies. Cell surfaces were treated with a 

membrane-impermeable biotinylation reagent. Following detergent-mediated cell lysis, 

biotinylated and non-biotinylated proteins were separated employing streptavidin beads. 

Aliquots from the input material (lane 1; 0.25%), the biotinylated fraction (lane 2; 25%) and the 

immunoprecipitate from the cell culture medium fraction (lane 3; 25%) were analyzed by SDS 

PAGE and Western blotting using affinity-purified anti GFP antibodies. 

 

 By contrast, when expressed in CHOclone13 cells, the wild-type forms of Gal-1 

and CGL-2 GFP fusion proteins failed to get access to the extracellular space as the 

combined signals for cell surface and medium fractions (Fig. 36, panels G; lanes 2 

and 3; and J; lanes 11 and 12) did not differ significantly from the GFP negative 

control (Fig. 36; panel F and L; lanes 17 and 18) and were largely reduced as 



Results 
 

158 

compared to those observed in CHOwild-type cells (panels A and D). As expected, 

export of β-galactoside binding deficient mutants (Fig. 36; Gal-1-GFPW69G, Gal-1-

GFPE72A and CGL-2-GFPW72G) were not only blocked in CHOwild-type cells (Fig. 36, 

panels B, C and E; Fig. 36, panels B, C and E) but also in CHOclone13 cells (Fig. 36, 

panels H, I and K).  

 

 In Fig. 37 export from both CHOwild-type and CHOclone13 cells of the various 

Galectin-GFP fusion proteins (calculating the signals resulting from cells surface 

biotinylation and immunoprecipitation from the cell culture supernatants) was 

quantified using fluorescent secondary antibodies employing a LI-COR Odyssey 

imaging system. For each fusion protein, the combined signals derived from cell 

surface biotinylation and material from the cell culture supernatant were expressed 

as percentage of the overall expression level of a given fusion protein. To compare 

export of the various fusion proteins, secretion of Gal-1-GFP from CHOwild-type cells 

was set to 100%. The wild-type forms of both Gal-1-GFP and CGL-2-GFP are 

secreted from CHOwild-type cells; however, export is largely reduced when Gal-1-GFP 

and CGL-2-GFP are expressed in CHOclone13 cells. The various mutant forms of Gal-

1 and CGL-2 are neither exported from CHOwild-type nor from CHOclone13 cells to a 

significant extent. 
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Fig. 37 Quantification of export of galectin-GFP fusion proteins from CHOwild-type and CHOclone13 

cells employing cell surface biotinylation and immunoprecipitation from cell culture 

supernatants. The fusion proteins indicated were expressed in both CHOwild-type and 

CHOclone13 cells for 48 h at 37°C (6-well plates; 70% confluency). The medium was removed 

and subjected to immunoprecipitation using affinity-purified anti-GFP antibodies. Cell surfaces 

were treated with a membrane-impermeable biotinylation reagent. Following detergent-

mediated cell lysis, biotinylated and non-biotinylated proteins were separated employing 

streptavidin beads. Aliquots from the input material (0.25%), the biotinylated fraction (25%) 

and the immunoprecipitate from the cell culture medium fraction (25%) were analyzed by SDS 

PAGE and Western blotting using affinity purified anti-GFP antibodies. Primary antibodies 

were detected with alexa 680-coupled anti-rabbit secondary antibodies. Signal for Gal-1-GFP 

fusion proteins and GFP were quantified using a Li-COR Odyssey imaging system. The 

combined signals for the cell medium and the material associate with the cell surface were 

calculated as a percentage of total amounts of galectin-GFP fusion protein expressed in each 

case. These data were corrected for unspecific release as monitored by GFP present in the 

medium of the cells. The extracellular population of Gal-1-GFP secreted from CHOwild-type cells 

was set to 100%. 
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3.3.3.2.3 Subcellular distribution of Gal-1-GFP and CGL-2-GFP re-

porter molecules in CHOwild-type and CHOclone13 cells 

 

 Galectins are synthesized on free ribosomes in the cytosol and delivered to the 

outer leaflet of the plasma membrane. Mutations of single amino acids in human Gal-

1 and fungal CGL-2 may result in a change of cytosolic distribution leading to an 

export defect. To compare the subcellular distribution of Gal-1 and CGL-2 mutant 

forms with the corresponding wild-type proteins, the cell lines described above 

(3.3.3.2.2) were analyzed by confocal microscopy (Fig. 38).  

 In Fig. 38 a typical subset of Gal-1- and CGL-2-GFP reporter molecules 

deficient in export and binding to β-galactosides was analyzed employing confocal 

microscopy. CHO cells and CHOclone13 cells were grown on glass cover slips for 48 h 

at 37°C in the presence of doxicycline. In contrast to the live-imaging cells, fixed 

CHO cells and CHOclone13 cells were incubated with affinity-purified anti-GFP 

antibodies and anti-rabbit alexa 546 antibodies to detect GFP fusion protein bound to 

the cell surface. 
 When living CHOwild-type cells were visualized, all reporters were found in the 

cytoplasm as well as to some extent to the nucleus (Fig. 38, first column). In general, 

a similar picture was observed following fixation both for CHOwild-type and CHOclone13 

cells (Fig. 38, second and fourth column); however, in some cases aggregates or 

particulate structures were observed that apparently represent fixation artifacts. 

Consistent with the FACS experiments shown in Fig. 27, cell surface staining of all 

cell lines employing affinity-purified anti-GFP antibodies revealed an extracellular 

population in CHOwild-type cells only for the wild-type forms of Gal-1-GFP and CGL-2-

GFP (Fig. 38, third column). In CHOclone13 cells, cell surface staining could not be 

detected for any of the reporter molecules including the wild-type forms of Gal-1 and 

CGL-2 (Fig. 38, fifth column). 
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Fig. 38 Subcellular distribution of Gal-1-GFP and CGL-2-GFP reporter molecule in CHOwild-type 

and CHOclone13 as revealed by confocal microscopy. 1st row, Gal-1-GFP; 2nd row, Gal-1-

GFPW69G; 3rd row, Gal-1-GFPE72A; 4th row, CGL-2-GFP; 5th row, CGL-2-GFPW72G; 6th row, GFP. 

1st column, GFP live imaging; 2nd column, GFP imaging of fixed CHOwild-type cells; 3rd column, 

cell surface staining of fixed CHOwild-type cells employing affinity-purified anti-GFP antibodies; 

4th column, GFP imaging of fixed CHOclone13 cells; 5th column, cell surface staining of fixed 

CHOclone13 cells employing affinity-purified anti-GFP antibodies. 
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3.3.3.3 Characterization of Gal-1 mutants showing inconsistent 

phenotypes regarding export and binding to β-galactosides 

 

 Data obtained for some Gal-1 mutants were not consistent employing the 

known assays (3.2.2, 3.2.3, 3.2.4, 3.2.5) and therefore it was not possible to classify 

the various mutants. They do not have the same characteristics as the wild-type form 

of Gal-1 regarding export and binding ability employing the secretion and binding 

assays. However, they do also not behave like the identified mutants deficient in 

binding and export.  

 

 Fig. 39 shows the average of three independent experiments of the FACS-

based secretion assay. The expression level and the cell surface staining of wild-type 

Gal-1-GFP as positive control for secretion (standard condition: 1 µg/ml doxicycline, 

48 h), detected by affinity-purified anti-GFP antibodies followed by treatment with 

APC-conjugated secondary antibodies, was set to 100%. Several doxicycline con-

centrations ranging from 1 µg/ml to 0.02 µg/ml were applied to be able to compare 

cell surface signals obtained from mutant cell lines expressing the reporter molecules 

at different levels. GFP was used as a negative control for secretion (3.2.2). 

 To confirm independently the export behavior of the various mutant proteins the 

cell surface biotinylation assay in combination with immunoprecipitation from the cell 

culture medium was performed (Fig. 40). It is of great importance to combine these 

secretion assays with the analysis of β-galactoside binding ability to characterize 

each mutant. Therefore the binding ability was investigated using the CHO cell-based 

in vivo assay (Fig. 41) and the in vitro assay employing lactose-coupled beads (Fig. 

42). 
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Fig. 39 Quantitative analysis of export of various galectin-GFP fusion proteins from CHO cells 

employing flow cytometry. CHO cells were grown on 6-well plates and induced with 

doxicycline for 48 h at 37°C to express the fusion protein indicated. Following removal of 

medium, cells were labeled with affinity-purified anti-GFP antibodies followed by detachment 

of the cells using PBS/EDTA. GFP (expression level; blue) and APC-derived fluorescence 

(cell surface; red) were quantified by flow cytometry using Becton Dickinson FACSCalibur 

system (n=4) 

 

 The cell lines CHO Gal-1-GFPN51A, CHO Gal-1-GFPC61A, CHO Gal-1-GFPG70A, 

CHO Gal-1-GFPE87A and CHO Gal-1-GFPA95I showed inconsistent results concerning 

export and binding to β-galactoside-containing counter receptors. This is probably 

due to a reduced stability of the mutated proteins as indicated by low expression 

levels determined by the GFP fluorescence measured in the FACS-based assay. 

 

 Regarding the results of the secretion assays (Fig. 39 and Fig. 40) the mutants 

I90A, F92A, D126A and K130A were expressed and exported at levels comparable 

to the wild-type form of Gal-1. These observations are not consistent with the fact 

that these mutants were deficient in binding to β-galactosides employing lactose-

coupled beads (Fig. 42). Employing the in vivo binding assay all mutant showed a 
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reduced binging ability to β-galactoside-containing counter receptors on the cell 

surface of CHO cells (Fig. 41).  

 

Gal-1-GFPV32E: 

 

 The expression of the mutant protein V32E was slightly reduced (Fig. 39). 

However, the amount of expressed protein was sufficient to investigate the secretion 

from CHO cells employing flow cytometry and the cell surface biotinylation assay. 

The cell surface staining employing both secretion assays was reduced (Fig. 39, 10% 

cell surface staining; Fig. 40, lane 2 and 3). This mutant was able to bind to counter 

receptors analyzed by binding to CHO cells (Fig. 41, 52%) and to lactose-coupled 

beads (Fig. 42, lane 3). According to the ability to bind to its counter receptors, the 

mutation seems to cause a partial export defect independent of the ability to bind to 

β-galactosides.  

 

Gal-1-GFPV32W: 

 

 Changing the amino acid valin on position 32 into tryptophane (V32W) did not 

result in a reduced binding capacity to counter receptors (Fig. 41, 67%; Fig. 42, lane 

3). However, the cell surface signal employing flow cytometry (Fig. 39, 36%) and the 

biotinylation assay (Fig. 40, lane 2 and 3) was slightly reduced indicating that this 

mutant is also partially defective in export mutant without being impaired in binding to 

β-galactosides.  
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Gal-1-GFPL35A: 

 

 The FACS-based secretion assay (Fig. 39) and the cell surface biotinylation 

assay (Fig. 40) of the Gal-1 mutant L35A indicated no export and binding defect. In 

both assays there was protein bound to the cell surface comparable to the wild-type 

form of Gal-1. Investigating the binding properties of this mutant the binding ability 

was highly reduced (Fig. 41, 26%). Strikingly, no binding to lactose-coupled beads 

was detectable (Fig. 42, lane 3). According to both assays (Fig. 41 and Fig. 42) no 

exported protein should be able to bind to the cell surface. The cell surface signal 

may result from unspecific binding of this mutated protein. However, regarding the 

secretion assays this mutant seems to be exported. 

 

 
 

Fig. 40 Biochemical analysis of export of various galectin-GPF fusion proteins from CHO cells 

employing cell surface biotinylation and immunoprecipitation from cell culture super-

natants. The fusion proteins indicated were expressed in CHO cells for 48 h at 37°C (6-well 

plates; 70% confluency; 1 µg/ml doxicycline) The medium was removed and subjected to 

immunoprecipitation using affinity-purified anti-GFP antibodies. Cells were treated with a 

membrane-impermeable biotinylation reagent. Following detergent-mediated cell lysis 

biotinylated and non-biotinylated proteins were separated employing streptavidin beads. 

Aliquots from the input material (lane 1; 1%), the biotinylated fraction (lane 2; 10%) and the 

immunoprecipitate from the cell culture medium fraction (lane 3; 50%) were analyzed by SDS 

PAGE and Western blotting using affinity-purified anti-GFP antibodies. 
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Gal-1-GFPK37E: 

 

 The data obtained for the mutant Gal-1 K37E were highly inconsistent. Employ-

ing flow cytometry (Fig. 39) the expression level was comparable to the wild-type 

form of Gal-1. The cell surface staining detecting exported protein bound to the cell 

surface was reduced indicating that there is reduced export efficiency (Fig. 39, 26%). 

These results were confirmed by the cell surface biotinylation assay in combination 

with immunoprecipitation from cell culture medium (Fig. 40, lane 2, cell surface and 

lane 3, immunoprecipitation of the medium of expressing cell). Employing the in vivo 

binding assay the mutant was able to bind to the cell surface even better than the 

wild-type indicating that this mutation results in an export defect. Regarding the in 

vitro binding assay, which was not consistent with the in vivo assay, the binding 

ability was reduced, indicating that this mutant is impaired in binding and export. 

Taken together this mutant protein seems to be exported to a lower extent compared 

to the wild-type form of Gal-1.  
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Fig. 41 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to CHO cells. The various fusion proteins indicated were expressed in 

CHO cells. Cell-free supernatant were prepared and normalized by GFP fluorescence. The 

various supernatants were then incubated with CHO cells for 1 h at 4°C to allow cell surface 

binding. Following treatment with affinity-purified anti-GFP antibodies and APC-conjugated 

secondary antibodies, cell surface binding was quantified by flow cytometry. 

 

Gal-1-GFPA68I: 

 

 The mutant A68I seemed to be impaired in binding and export. Both secretion 

assays (Fig. 39 and Fig. 40) indicated a reduced cell surface signal, which is 

consistent with hypothesis that binding to β-galactosides is required for Gal-1 export. 

The binding efficiency in the in vivo assay was reduced (Fig. 41, 20%), however, as 

analyzed by the in vitro assay, the ability to bind to lactose-coupled beads is 

comparable to the wild-type form of Gal-1.  
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Fig. 42 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to lactose-coupled beads. Detergent lysates normalized by GFP fluores-

cence were incubated with lactose beads for 1 h at 4°C. The non-bound fraction was sepa-

rated and, following extensive washing, bound material was eluted with SDS sample buffer. 

Input (lane 1, 5%), non-bound material (lane 2, 5%) and bound material (lane 3, 5%) were 

analyzed by SDS PAGE and Western blotting using affinity-purified anti-GFP antibodies. 

 

Gal-1-GFPR112H: 

 

 The expression level of the mutant R112H based on the GFP fluorescence 

measured by the FACS was comparable to the wild-type form of Gal-1-GFP (Fig. 39, 

95%), whereas the exported fraction indicated by cell surface staining is largely 

reduced (Fig. 40, 27.5%). This is consistent with the data obtained from the cell 

surface biotinylation assay. There was an exported population bound to the cell 

surface, but the signal was clearly reduced compared to the wild-type form of Gal-1-

GFP. It is known from literature that this mutant does not result in a binding defect to 

β-galactosides (Lopez-Lucendo et al., 2004). Analyzing the binding ability employing 

the in vivo assay this observation could be confirmed (Fig. 41, 105%). However, the 

results obtained from the in vitro binding assay (Fig. 42) are not consistent with these 
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data. These observations suggest that mutant R112H is export-deficient without 

losing the ability to bind to its counter receptors. 
 

Mutation Phenotype 
Gal-1-GFP  

V32E Reduced expression in both secretion assays; reduced cell surface staining in both assays; no binding 

defect 

V32W Comparable expression in both secretion assays; reduced cell surface staining in both assays; no binding 

defect 

L35A No export and binding defect indicated by both secretion assays; binding ability is reduced in both binding 

assays 

K37E Employing flow cytometry, no binding and no export defect; employing biotinylation assay reduced cell 

surface staining; no binding defect in the in-vivo binding assay; reduced binding ability employing the in-

vitro binding assay 

N51A Very low expression level in both secretion assays; no cell surface staining; reduced binding ability in both 

binding assays 

C61A Low expression level in the FACS-based assay and biotinylation assay; binding defect 

A68I Impaired in binding and export employing flow cytometry, biotinylation assays and the in vivo binding 

assay; inconsistent data employing the in-vitro binding assay 

G70A Cell surface staining in both secretion assay; impaired in binding to β-galactosides in both binding assays 

E87A Cell surface staining employing the biotinylation assay; no cell surface staining employing flow cytometry; 

impaired in binding to β-galactosides in both binding assays 

I90A Cell surface staining in both secretion assay; impaired in binding to β-galactosides in both binding assays 

F92A Cell surface staining in both secretion assay; impaired in binding to β-galactosides in both binding assays 

A95I No detectable population on the cell surface employing flow cytometry; cell surface staining in the 

biotinylation assay; impaired in binding to β-galactosides in both binding assays 

R112H Reduced cell surface staining in both secretion assays; no binding defect employing both binding assays. 

D126A Cell surface staining in both secretion assay; impaired in binding to β-galactosides in both binding assays 

K130A Cell surface staining in both secretion assay; impaired in binding to β-galactosides in both binding assays 

 
Table 8 Summary of various human Gal-1 mutants 
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3.3.3.4 Characterization of truncated human Gal-1 

 

 The molecular structure of human Gal-1 involves a β-sandwich consisting of two 

antiparallel β-sheets of five (Fi-F5) and six (S1-S6a/b) strands, respectively. The N- 

and C-terminus of each monomer are positioned at the dimer interface and the 

carbohydrate recognition domains are located at the far ends of the same face of the 

surface, which presents a long negatively charged cleft in the cavity (Fig. 3). Dimer 

formation of galectins is important for their biological roles, based on bivalency, Gal-1 

has cross-linking properties. So far it is not known if Gal-1 is secreted as monomer or 

as homodimer. In order to investigate the influence of the dimer formation on the 

unconventional secretion of Gal-1, CHO cells expressing truncated versions of 

human Gal-1 as GFP fusion proteins were generated by retroviral transduction. 

Therefore either the N-terminus (Gal-1-GFP ∆N5, ∆N10 and ∆N20) or the C-terminus 

of Gal-1 (GFP-Gal-1 ∆C4, ∆C9, ∆C20, ∆C30, ∆C40, ∆C50) was deleted. Additionally, 

a clonal CHO cell line was generated expressing Gal-1 truncated at the N-terminus 

and the C-terminus (Gal-1-GFP ∆N10-C129). The orthologue CGL-2 was again used 

as additional positive control. Accordingly, CHO cells were generated to express 

truncated forms of CGL-2. The truncated galectins were investigated regarding 

export from CHO cells and β-galactoside binding ability employing the secretion and 

binding assays described in the previous sections. 

 

Fig. 43 shows the FACS-based secretion assay of the truncated Gal-1 fusion 

proteins. The expression level and the cell surface staining of Gal-1-GFP were set to 

100%.  
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Fig. 43 Quantitative analysis of export of various galectin-GFP fusion proteins from CHO cells 

employing flow cytometry. CHO cells were grown on 6-well plates and induced with 

doxicycline for 48 h at 37°C to express the fusion protein indicated. Following removal of 

medium, cells were labeled with affinity-purified anti-GFP antibodies followed by detachment 

of the cells using PBS/EDTA. GFP (expression level; blue) and APC-derived fluorescence 

(cell surface; red) were quantified by flow cytometry using Becton Dickinson FACSCalibur 

system (n=4). 

 

 The CHO cell lines Gal-1-GFP∆N10, CHO Gal-1-GFP∆N10-C129, CHO Gal-1-

GFP∆C4, CHO Gal-1-GFP∆C9, CHO Gal-1-GFP∆C20, CHO Gal-1-GFP∆C30, CHO Gal-1-

GFP∆C40, CHO Gal-1-GFP∆C50, CHO CGL-2-GFP∆C11, CHO CGL-2-GFP∆C11/S134E and 

CHO CGL-2-GFP∆C16 express the various GFP fusion protein at very low levels 

measured by the GFP fluorescence employing flow cytometry. This is most likely 

caused by reduced stability of these truncated proteins. Due to the low expression 

level it was difficult to analyze these mutants for their export behavior in CHO cells 

(Fig. 43).  
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Fig. 44 Biochemical analysis of export of various galectin-GPF fusion proteins from CHO cells 

employing cell surface biotinylation and immunoprecipitation from cell culture super-

natants. The fusion proteins indicated were expressed in CHO cells for 48 h at 37°C (6-well 

plates; 70% confluence; 1 µg/ml doxicycline) The medium was removed and subjected to 

immunoprecipitation using affinity-purified anti GFP antibodies. Cells were treated with a 

membrane-impermeable biotinylation reagent. Following detergent-mediated cell lysis biotiny-

lated and non-biotinylated proteins were separated employing streptavidin beads. Aliquots 

from the input material (lane 1; 1%), the biotinylated fraction (lane 2; 10%) and the immuno-

precipitate from the cell culture medium fraction (lane 3; 50%) were analyzed by SDS PAGE 

and Western blotting using affinity-purified anti-GFP antibodies. 

 

 To confirm the observations made by the FACS-based secretion assay, CHO 

cells expressing the truncated Gal-1 and CGL-2 GFP fusion proteins in a doxicycline-

dependent manner, were subjected to cell surface biotinylation assay in combination 

with immunoprecipitation of the cell culture medium to detect soluble exported 

protein. Since there was no cell surface signal and no precipitated material observed, 

it can be concluded that all these mutated proteins failed to get externalized by the 

mammalian export machinery (Fig. 44, lane 2). 
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Fig. 45 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to CHO cells. The various fusion proteins indicated were expressed in 

CHO cells. Cell-free supernatant were prepared and normalized by GFP fluorescence. The 

various supernatants were then incubated with CHO cells for 1 h at 4°C to allow cell surface 

binding. Following treatment with affinity-purified anti-GFP antibodies and APC-conjugated 

secondary antibodies, cell surface binding was quantified by flow cytometry. 

 

Investigating the binding ability of these mutant proteins to β-galactoside-containing 

counter receptors, cell-free supernatant of the various GFP reporter molecules was 

incubated with CHO cells in order to allow binding of the truncated GFP fusion 

proteins to the cell surface. Following incubation with affinity-purified anti-GFP 

antibodies and secondary APC-conjugated antibodies, binding to cell surface was 

measured by flow cytometry (Fig. 45). Binding of Gal-1-GFP to CHO cell was set to 

100% and GFP was used as negative control. For the in vitro assay detergent lysates 

of the various GFP fusion proteins were incubated with lactose-coupled beads. The 

binding ability was analyzed by SDS-PAGE and Western blotting using affinity-

purified anti-GFP antibodies. None of the GFP fusion protein was able to bind to its 

ligand employing the in vivo and the in vitro binding assay (Fig. 45 and Fig. 46). 
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Fig. 46 Analysis of β-galactoside binding efficiency of various galectin-GFP fusion proteins 

based on binding to lactose-coupled beads. Detergent lysates normalized by GFP fluores-

cence were incubated with lactose beads for 1 h at 4°C. The non-bound fraction was sepa-

rated and, following extensive washing, bound material was eluted with SDS sample buffer. 

Input (lane 1, 5%), non-bound material (lane 2, 5%) and bound material (lane 3, 5%) were 

analyzed by SDS PAGE and Western blotting using affinity purified anti-GFP antibodies. 

 

 As shown in Fig. 43 the expression of the N-terminal truncations ∆N5 and ∆N20 

was induced in the presence of doxicycline. The cell surface signal of Gal-1-GFP∆N5 

was slightly reduced as compared to Gal-1-GFP. The export efficiency of Gal-1-

GFP∆N20 was similar to the wild-type form of Gal-1-GFP as indicated by the cell 

surface signal employing flow cytometry. The data obtained in the biotinylation assay 

were consistent with the observations made in the FACS-based secretion assay (Fig. 

44). Investigating binding to the cell surface and to lactose-coupled beads Gal-1-

GFP∆N5 was able to interact with β-galactosides in both assays (Fig. 45 and Fig. 46). 

The truncation ∆N20 resulted in a loss of binding ability to counter receptors in the in 

vivo and in the in vitro assay. However, these observations are not consistent with 

the fact that ∆N20 was detectable bound to the cell surface employing both secretion 

assays (Fig. 45 and Fig. 46). Further studies are needed to clarify this contradiction. 
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 Taken these observations together it is difficult to conclude whether dimer 

formation is required for export. However, if the deletion of the N- or C-termini results 

in a defect in binding to counter receptors on the cell surface, an export defect was 

observed, consistent with the hypothesis that binding to β-galactosides is required for 

the unconventional secretion of Gal-1. 
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4 Discussion 
 

 The majority of extracellular proteins is exported from mammalian cells by the 

ER/Golgi-dependent secretory pathway, which is well characterized at the molecular 

level. All eukaryotic cells from yeast to man are characterized by this secretory 

machinery that recognizes signal peptide-containing proteins resulting in their trans-

location across the membrane of the endoplasmic reticulum (ER) (Schatz and 

Dobberstein, 1996). Once localized to the lumen of the ER, secretory proteins are 

packaged into transport vesicles provided they pass ER quality control measures, a 

process that results in cargo delivery to the Golgi apparatus (Lee et al., 2004). Upon 

fusion of post-Golgi transport carriers with the plasma membrane, classical secretory 

proteins get released into the extracellular space (Keller and Simons, 1997; Palade, 

1975).  

 In addition to signal peptide-containing secretory proteins, a heterogeneous 

group of extracellular proteins has been discovered that does not make use of signal 

peptide-dependent secretory transport. Both the release mechanisms and the 

molecular identity of the secretory machineries involved have remained elusive while 

these secretory proteins have defined extracellular functions, they do not contain 

functional signal peptides and, consistently, are rejected by the ER membrane 

translocation machinery (Cleves, 1997; Hughes, 1999; Nickel, 2003; Nickel, 2005; 

Prudovsky et al., 2003). Furthermore, the extracellular appearance of such molecules 

is not compromised in the presence of brefeldin A (BFA), a drug that blocks 

ER/Golgi-dependent secretory transport. These observations led to the postulation of 

alternative secretory mechanisms in eukaryotic cells that are fully functional in the 

absence of an intact ER/Golgi system. Interestingly, unconventional secretory 

proteins comprise a group of molecules of high biomedical relevance such as the 

proangiogenic growth factor FGF-2. FGF-2 is a tumor-produced, direct-acting 

stimulator of angiogenesis, a process that is essential for tumor growth and 

metastasis (Nugent and Iozzo, 2000). Other examples include inflammatory 

cytokines such as interleukin 1β (Braddock and Quinn, 2004) and migration inhibitory 

factor (MIF) (Lue et al., 2002) as well as a family of stage-regulated surface 
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molecules from Leishmania parasites termed hydrophilic acylated surface proteins 

(HASP) implicated in host cell infection (Denny et al., 2000; Stegmayer et al., 2005).  

 

 Gal-1 is another remarkable member of unconventionally secreted proteins. 

This lectin of the extracellular matrix is involved in many cellular processes like 

differentiation, proliferation, cell adhesion and tumor-mediated immune suppression 

(Perillo et al., 1995) and binds to β-galactosides on glycoproteins and glycolipids of 

the plasma membrane. By elucidating the molecular machinery, it would be possible 

to develop or to find inhibitors, which specifically block secretion of Gal-1. Therefore 

one aim of the present thesis was to establish an experimental system based on 

genetically modified CHO cell lines to investigate the export of Gal-1 in vivo. 

Additionally, interacting proteins with Gal-1 were isolated and analyzed for a potential 

function in the molecular export mechanism of Gal-1 employing the established cell 

system. Furthermore, based on this system single amino acid mutants of Gal-1 were 

generated to identify the export targeting motif by investigating their export behavior 

and their binding ability to β-galactosides.  

 

4.1 Identification and characterization of CA125 as a Gal-1 

counter receptor  
 

 Protein-protein and protein-carbohydrate interaction studies were performed in 

order to affinity-purify proteins that interact with human Gal-1. Employing mass 

spectrometry one of the obtained Gal-1 interacting partners was identified as CA125. 

This conclusion was drawn from the fact that 16 tryptic peptides could be identified 

as parts of the translation product of the cDNA clone AK024365 (NCBI) that, based 

on sequence information reported by laboratories of Lloyd and O’Brien, encodes the 

1148 C-terminal amino acids of CA125 (CA125-C-TERM) (O'Brien et al., 2001; Yin 

and Lloyd, 2001). These results were confirmed by immunological identification of 

CA125-derived antigens by both the original anti-CA125 antibody OC125 (Bast et al., 

1981) and a rabbit antiserum directed against the N-terminal 356 amino acids of 

CA125-C-TERM. Since the majority of the material bound to the Gal-1 affinity matrix 
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was eluted with lactose, it was concluded that the interaction is galactose dependent. 

These data were confirmed by experiments demonstrating that the interaction 

between CA125-C-TERM and Gal-1 both in vitro and in vivo is almost completely 

abolished when CA125-C-TERM is expressed in a CHO mutant that is deficient for 

galactosylation of glycoproteins and glycolipids (Deutscher and Hirschberg, 1986). 

Interestingly, CA125-C-TERM binding to Gal-1 is only partially inhibited when cells 

were grown in the presence of tunicamycin, a drug that inhibits N-glycosylation. 

These data demonstrated that the interaction of CA125-C-TERM with Gal-1 largely 

depends on O-linked β-galactose-terminated oligosaccharide chains.  

 

 CA125 was originally discovered by Bast and colleagues using the ovarian cell 

line OVCA433 as an immunogen for the generation of monoclonal antibodies (Bast et 

al., 1981). However, ever since, the molecular identity and biological function of the 

CA125 cancer antigen has remained elusive. From immunological studies, CA125 is 

known to be present on the cell surface of ovarian cancer cells; however, it has also 

been found in other carcinomas and, to a limited extent, in normal secretory tissues 

(Hardardottir et al., 1990; O'Brien et al., 2001; Zurawski et al., 1988). The results may 

provide the first insight into a potential biological function of CA125, as there exists a 

link to a family of β-galactoside-specific lectins of the ECM, the galectins (Barondes 

et al., 1994; Hughes, 1999; Perillo et al., 1998; Rabinovich et al., 2002a). This 

observation might be of significant biomedical importance, since galectins 

themselves are tumor markers involved in the regulation of cell proliferation and 

tumor progression (Perillo et al., 1998). In this context, CA125 cell surface 

expression by tumor tissues might effect cell attachment to the ECM in a Gal-1-

dependent manner (Seelenmeyer et al., 2003). 

 Two research groups independently succeeded in cloning the gene that 

encodes CA125 (O'Brien et al., 2001; Yin and Lloyd, 2001), showing that CA125 is a 

giant mucin-like glycoprotein that consists of more than 11,000 amino acids. Full-

length CA125 has been suggested to represent a type I transmembrane protein with 

a single membrane-spanning domain close to the C-terminus. The extracellular 

domain contains repeat structures that are likely to be heavily O-glycosylated 

(O'Brien et al., 2001). Besides its nature as an integral membrane protein, soluble 
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fragments of CA125 have been observed (Fendrick et al., 1997; Lloyd and Yin, 

2001). Apparently, phosphorylation of the cytoplasmic domain causes extracellular 

cleavage of the N-terminal domain, which results in the release of soluble fragments 

into the extracellular space (Fendrick et al., 1997; Lloyd and Yin, 2001). 

 

4.2 Specificity of CA125 binding to Galectins 
  

 Gal-1 is the primary ligand for CA125 in comparison to Gal-3 (Seelenmeyer et 

al., 2003), the second most-abundant member of the galectin family. The observed 

interaction does not appear to represent a simple carbohydrate-lectin-interaction but 

rather depends on additional aspects of specificity based on the proteinaceous 

environment. Moreover, as CA125-C-TERM expressed in CHO cells showed an even 

higher preference towards binding to Gal-1, it seems that the cellular background in 

which CA125 is expressed also has a significant influence on its binding efficiency for 

members of the galectin family. Therefore, on the basis of these experiments, CA125 

represents a specific galectin counter receptor with Gal-1 as the primary ligand. 

Since CA125 expression appears to be largely restricted to tumor cells, it seems 

likely that tumor cell attachment to the ECM can be modulated in a Gal-1 dependent 

manner (Seelenmeyer et al., 2003). 

 CA125-C-TERM encodes about three O-glycosylated repeat structures and the 

N-and O-glycosylated stalk structure of the extracellular domain, the transmembrane 

span and the cytoplasmic domain of full-length CA125. These structural features are 

consistent with the finding that CA125-C-TERM retains binding activity towards Gal-

1. Intriguingly, expression of this construct in both CHO and HeLa cells results in 

CA125-C-TERM cell surface expression. In spite of the lack of an N-terminal signal 

peptide in both full-length CA125 and CA125-C-TERM, CA125-C-TERM cell-surface 

localization is mediated by ER/Golgi dependent secretory transport. Thus, CA125 

represents a classical secretory cargo protein whose molecular mechanism of 

insertion into the membrane of the ER might be interesting to investigate. As signal-

peptide-independent mechanisms of protein insertion into the ER have been 

described (Kutay et al., 1995), it will also be of interest to analyze how CA125 ER 
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insertion compares with these known processes. In the case of CA125 its signal 

sequence might to be internal. An internal signal sequence leads the ribosome to the 

ER membrane. Like the N-terminal ER signal sequence, the internal signal sequence 

is recognized by an SRP, which brings the ribosome to the ER membrane and 

serves as a start-transfer signal that initiates the translocation of the protein. After 

release from the translocator, the internal start transfer sequence remains in the lipid 

bilayer as a single membrane-spanning α-helix. Internal start-transfer sequences can 

bind to the translocation apparatus in two orientations. The orientation of the inserted 

start-transfer sequence determines, which protein segment is moved across the 

membrane into the ER lumen. In one case, the resulting membrane protein has its C-

terminus on the luminal side, while in other, it has its N-terminus on the luminal side. 

The orientation of the start-transfer sequence depends on the distribution of nearby 

charged amino acids. Moreover, given its huge size of more than 11.000 amino acids 

additionally the mucin-like levels of glycosylation, questions arise about the mode of 

intracellular transport on its way to the cell surface.  

 In order to investigate the relevance of the reported interaction regarding the 

origin of the cell lines used, non-tumor derived CHO cells (Puck et al., 1958) and the 

Cervix carcinoma cell line S-HeLa (Gey et al., 1952; Scherer et al., 1953) were 

compared for CA125 expression. While fragments of endogenous CA125 from the S-

HeLa cell line could be isolated, no CA125 fragments bound to the Gal-1 affinity 

matrix could be detected when CHO cells were used as source for Gal-1 interacting 

proteins. This observation is consistent with the detection of endogenous cell surface 

CA125 in HeLa cells and the lack of surface localized CA125 in CHO cells based on 

flow cytometry. Moreover, these data are consistent with studies that suggest that 

CA125 is expressed primarily in tumor tissues. Employing the FACS based in vivo 

assay, developed in this thesis, HeLa cells were characterized by more than tenfold 

higher levels of cell-surface Gal-1 when compared with CHO cells. It was shown that 

CHO and HeLa cells do not differ with regard to total expression levels of Gal-1 as 

well as cell surface binding capacity for Gal-1. Therefore, HeLa cells seem to be 

significantly more efficient in the unconventional secretion of Gal-1 compared to CHO 

cells (Seelenmeyer et al., 2003).  
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4.3 CA125 expression does not stimulate Gal-1 export 
 

 On the basis of the experimental observations mentioned above, it was 

postulated that CA125-expressing HeLa cells possess a more efficient export 

pathway for Gal-1 than CA125-deficient CHO cells. However, CA125 expression 

does not stimulate Gal-1 export as HeLa cells express CA125 on their cell surface 

only in small amounts. The reason for the more efficient Gal-1 export from HeLa cells 

compared to CHO cells is likely to be the altered glycosylation pattern on the cell 

surface of tumor-derived cells rather than a single counter receptor present on the 

cell surface. Changes in glycan composition are a universal feature of cancer cells 

(Hakomori, 1986; Wickus and Robbins, 1973), and certain types of glycan structures 

are well-known markers for tumor progression (Feizi, 1985; Hakomori, 1986). Like 

normal cells during embryogenesis, tumor cells undergo activation and rapid growth, 

adhere to a variety of other cell types and cell matrices, and invade tissues. 

Embryonic development and cellular activation in vertebrates are typically 

accompanied by changes in cellular glycosylation profiles. Thus, it is not surprising 

that glycosylation changes are also a universal feature of malignant transformation 

and tumor progression (Bhaumik et al., 1998; Kang et al., 1996).  

 The classic reports of increased size of tumor cell glycopeptides have been 

convincingly explained (Yoshimura et al., 1995) by an increase in β1-6 branching of 

N-glycans, which results from an enhanced expression of GlcNAc transferase V 

(Demetriou et al., 1995; Hakomori, 1986). GlcNAc transferase V plays a very im-

portant role in cancer biology (Demetriou et al., 1995). The increased expression of 

GlcNAc transferase V may cause an increase of polylactosamine chains, which are 

recognized by galectins. The higher amount of Gal-1 counter receptors seems to be 

responsible for the more efficient export of Gal-1.  
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4.4 Analysis of Gal-1 and CGL-2 regarding export to the 

cell surface and binding to β-galactosides 

 

 The phenomenon of non-classical protein secretion has been known for more 

than 15 years (Cooper and Barondes, 1990; Rubartelli et al., 1990); however, the 

molecular machinery mediating this process remains elusive. It is even unclear 

whether the various proteins known to be secreted by non-conventional means make 

use of a common molecular mechanism (Hughes, 1999). In fact, distinct machineries 

seem to mediate different export processes. For example, the mechanism of IL-1β 

secretion seems to involve intracellular vesicles (Andrei et al., 1999) whereas Gal-1 

is likely to be externalized by plasma membrane blebbing (Mehul and Hughes, 1997). 

Another example are the distinct characteristics of FGF-1 versus FGF-2 secretion 

since FGF-1 export is sensitive to heat shock (Jackson et al., 1992), whereas FGF-2 

export is not (Mignatti et al., 1992). The relatively poor knowledge about the 

molecular components involved in these processes emphasizes the need for 

establishing novel experimental systems in order to reveal the molecular 

mechanisms of unconventional secretory processes. 

 A key aspect of this study was to reconstitute Gal-1 secretion in living cells 

based on read-out methods that provide a precise and quantitative analysis of its 

export process. Therefore, genetically modified CHO cell lines stably expressing N- 

and C-terminally GFP-tagged Gal-1 in a doxicycline-dependent manner were 

generated as follows: CHO cells were transfected with the mouse orthologue of the 

cationic amino acid transporter (MCAT-1), thereby making them permissive to 

ecotropic retroviruses (Albritton et al., 1989; Davey et al., 1997). After virus-mediated 

introduction of a doxicycline-sensitive transactivator (Urlinger et al., 2000) the various 

galectin-GFP cDNA constructs were integrated into the genomic DNA of the host 

cells by retroviral transduction (Engling et al., 2002). Following several rounds of 

FACS sorting cell pools were isolated and functionally characterized with regard to 

non-conventional secretion of the galectin reporter molecules. Two independent 

approaches were established to analyze the export of Gal-1-GFP fusion proteins.  
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i) FACS-based secretion assays. Based on this assay, it was possible to 

quantitatively assess the amount of Gal-1 released to the extracellular 

space in living cells. Following its unconventional secretion Gal-1-GFP 

binds to β-galactosides of glycolipids and glycoproteins on the outer leaflet 

of the plasma membrane. This allows specific detection of secreted Gal-1-

GFP with affinity-purified anti-GFP antibodies under native conditions. 

Following antibody processing the cells could be analyzed with regard to 

GFP fluorescence and cell surface signal by flow cytometry. GFP-derived 

fluorescence was used to normalize the overall expression of the reporter 

molecule under various experimental conditions. 

 

ii) Biochemical secretion assay employing cell surface biotinylation. In order 

to demonstrate an external population of Gal-1-GFP fusion proteins 

associated with cell surface using an independent approach, a biochemical 

method was established employing a membrane-impermeable biotinylation 

reagent. After detergent-mediated cell lysis exported biotinylated proteins 

bound to the plasma membrane were isolated by streptavidin-coupled 

beads. This assay was combined with immunoprecipitation analysis of the 

cell culture medium using affinity-purified anti-GFP antibodies. Based on 

this approach, it was possible to investigate exported Gal-1 bound to 

counter receptors on the cell surface (Stegmayer et al., 2005) as well as 

soluble material potentially present in the cell culture supernatant 

(Seelenmeyer et al., 2005).   

 

 One aim of this thesis was to identify an export targeting motif in Gal-1 which 

directs the protein to its export machinery. Therefore single site mutations were 

generated in Gal-1. Since mutations in Gal-1 potentially result in an altered binding 

ability to β-galactosides, binding properties of N- and C-terminal GFP-tagged Gal-1 to 

β-galactosides were investigated as well. Therefore, two independent assays were 

established. 
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iii) In vivo binding of Gal-1-GFP to β-galactoside-containing counter receptors 

on the cell surface of CHO cells. For the in vivo binding assay cell-free 

supernatants of CHO cells expressing the various Gal-1 reporter molecules 

were incubated with CHO cells not expressing the GFP fusion protein to 

allow binding to the cell surface. This assay allows analyzing Gal-1 binding 

under native conditions employing flow cytometry using affinity-purified 

anti-GFP antibodies. 

 

iv) In vitro binding of Gal-1 to lactose. This in vitro assay was developed to 

assess the lactose binding capacity of Gal-1. For this purpose detergent 

lysates of CHO cells expressing various Gal-1-GFP reporter molecules 

were generated. After incubation with lactose-coupled beads, binding was 

analyzed by Western blotting using affinity-purified anti-GFP antibodies. 

However, binding to lactose-coupled beads does not reflect the conditions 

present in the extracellular space in vivo, as the proteinaceous environ-

ment can also influence binding of Gal-1 to its natural ligands 

(Seelenmeyer et al., 2003). 

 

 These four mentioned assays were used to characterize Gal-1 mutants 

obtained by random mutagenesis, site-directed mutagenesis and N-and C-terminal 

truncations.  
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4.5 Mutational analysis of the export targeting motif of 

Gal-1 and CGL-2 
 

 In order to identify a putative export targeting motif in Gal-1, the experimental 

systems described above were used to systematically analyze Gal-1 mutant proteins. 

97 individual CHO cell lines expressing single mutants and truncated versions of Gal-

1-GFP and CGL-2-GFP fusion proteins were generated by stable integration of the 

corresponding DNA constructs into the genome of CHO cells using retroviral 

transduction. As control cell lines CHOGal-1-GFP, CHOGFP-Gal-1, CHOGFP-CGL-2 and 

CHOGFP were used.  

 

 The individual mutants were selected in three different ways:  

 

i) Targeted mutagenesis based on results obtained from a random muta-

genesis approach. A low fidelity PCR was performed in the presence of 

100 µM MnCl2 using the ORF of Gal-1 as template, thereby multiple 

mutants were randomly inserted into Gal-1. After retroviral transduction of 

CHO cells with the corresponding plasmids Gal-1-GFP mutants character-

ized by an altered secretion and binding efficiency as compared to Gal-1-

GFP were identified. All amino acid changes were individually introduced 

into Gal-1 by site-directed mutagenesis in order to investigate the effect of 

every single amino acid exchange regarding export and binding of mutated 

Gal-1-GFP proteins. 

 

ii) Targeted mutagenesis of surface residues based on the crystal structure of 

Gal-1 (Liao et al., 1994). The crystal structure of human Gal-1 was ana-

lyzed for amino acids exposed on the protein surface as potential sites for 

interactions with other proteins responsible for the translocation process. 
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iii) Targeted mutagenesis of residues conserved between human Gal-1 and 

CGL-2 from Coprinopsis cinerea. The primary structures of human Gal-1 

and the fungal galectin CGL-2 were analyzed for conserved amino acids 

although the homology between these two lectins is very weak at the level 

of both the primary and the quaternary structure (Lobsanov et al., 1993) 

(Walser et al., 2004). However, the tertiary structure of CGL-2 shows the 

typical galectin fold and, additionally, CGL-2 specifically binds to β-galacto-

sides.  

 

iv) Dimerization. It has been shown for FGF-1 to be released as a homodimer 

in an unconventional manner in response to temperature stress (Tarantini 

et al., 1995). One feature of Gal-1 that has particular biological relevance is 

the quaternary structure that is important with regard to ligand cross-linking 

and Gal-1-mediated signal transduction (Lopez-Lucendo et al., 2004). 

Kinetic studies of wild-type and mutant CGL-2 proteins demonstrate that 
the tetrameric organization is essential for functionality (Walser et al., 

2004). Therefore the N-terminus and the C-terminus, which form the dimer 

interface in Gal-1, were truncated in order to investigate whether dimer 

formation influences the translocation process. 

 

 Generally, the original amino acids were replaced by alanine residues, which 

represents a small, uncharged hydrophobic amino acid that is considered as neutral. 

The various mutations were generated by site-directed mutagenesis and the corres-

ponding constructs were stably integrated into the genome of CHO cells by retroviral 

transduction. Cell pools expressing the corresponding mutated Gal-1-GFP fusion 

protein in the presence of doxicycline were generated by FACS sorting (Fig. 22). 

These pools were characterized regarding unconventional secretion and binding 

efficiency to β-galactoside-containing counter receptors. About 31% of the analyzed 

CHO mutants showed the same phenotype as the wild-type form of Gal-1-GFP. 51% 

of the mutants were found to be impaired in export and binding to β-galactosides. 6% 

of the generated mutant cell lines resulted in low expression levels as measured by 

the GFP fluorescence indicating that the mutation causes overall protein instability. 
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The analysis of about 12% of the generated mutant proteins did not provide 

consistent results regarding quantitation of unconventional secretion and binding to 

β-galactosides.  

 

4.5.1 Galectin mutants deficient in binding to β -galactosides are 

also deficient in export from CHO cells  

 

 Various mutated Gal-1-GFP reporter molecules were stably integrated into the 

genome of CHO cells (4.4). After FACS sorting based on GFP fluorescence the 

generated cell pools expressed the corresponding GFP reporter molecules in a 

doxicycline-dependent manner. With these inducible cell lines it was possible to 

investigate the binding and export behavior of mutated Gal-1-GFP fusion proteins. As 

already mentioned it was suggested that counter receptors might influence the export 

efficiency of unconventionally secreted proteins (Seelenmeyer et al., 2003). 

Therefore, a focus of the mutational analysis was to identify Gal-1 mutants that are 

deficient in binding to β-galactosides. Employing the described binding assays (4.4) 

43 single site mutations in Gal-1 were identified which result in a binding defect to β-

galactoside-containing ligands. To analyze whether these binding mutants are also 

defective in export, secretion of the mutated Gal-1-GFP fusion proteins was analyzed 

employing flow cytometry and the biotinylation assay. Since only proteins bound to 

the cell surface are detectable by these methods, no signals were observed when 

analyzing β-galactoside binding deficient mutants. To investigate whether exported 

Gal-1-GFP mutant proteins can be found in the cell culture medium of expressing 

cells, immunoprecipitation was performed using affinity-purified anti-GFP antibodies. 

Strikingly, not a single Gal-1 mutant deficient in binding to β-galactosides could be 

detected in the extracellular space (3.3.3.2). A similar observation was made 

concerning the unconventionally secreted protein FGF-2, which binds to heparan 

sulfate proteoglycans (HSPG) on the cell surface of CHO cells (Schäfer et al., 2004). 

To analyze the influence of HSPGs on the export process sodium chlorate was 

added to CHO cells. This substance competes with sulfate ions for binding to the 

ATP-sulfyrulase and inhibits thereby the generation of heparan sulfates (Klaassen 
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and Boles, 1997; Safaiyan et al., 1999). Subsequently, plasma membrane derived 

inside-out vesicles were generated from these cells and applied to an in vitro 

secretion assay that allows to analyze the translocation process of exogenously 

added FGF-2 by protease protection experiments (Schäfer et al., 2004). Interestingly, 

FGF-2 failed to traverse the membrane of inside-out vesicles derived from sodium 

chlorate treated CHO cells (Tobias Schäfer, personal communication). In addition, it 

was shown that CHOpgsA-745 cells, a CHO mutant cell line which lack glycosyl-

aminoglycans on their cell surface, do not secrete FGF-2 employing flow cytometry 

and the cell surface biotinylation assay (Christoph Zehe, personal communication). 

 

 It was shown previously that single site mutations can influence the stability of 

Gal-1 (Cho and Cummings, 1995a; Hirabayashi and Kasai, 1991; Lopez-Lucendo et 

al., 2004) and galectins are generally sensitive to the redox state of the environment. 

Upon entering the oxidizing milieu of the extracellular space, stabilization of galectins 

is achieved through binding to their ligands (Cho and Cummings, 1995a). Therefore, 

when a mutation results in a binding defect to β-galactosides, it is of great importance 

to investigate whether the absence of Gal-1 reporter molecules in the medium is due 

to an export defect or a result of protein degradation. Therefore, cell-free 

supernatants of the various Gal-1-GFP fusion proteins were diluted in conditioned 

medium derived from CHO cells. The proteins were either immediately subjected to 

immunoprecitation using affinity-purified anti-GFP antibodies or first incubated under 

the experimental conditions applied in the secretion assays, as they were found to be 

stable up to 48 hours of incubation at 37°C. 

 Employing this assay it was possible to exclude that the absence of Gal-1-GFP 

in the cell culture medium of expressing cells results from degradation of the various 

mutated proteins. 

 

 To further verify that a functional interaction between Gal-1 and its counter 

receptors is essential for its translocation process, secretion was analyzed in a 

somatic CHO mutant cell line (CHOclone13) defective in a Golgi-resident transporter 

that is required for translocation of activated galactose from the cytoplasm into the 

lumen of the Golgi, a process essential for the generation of β-galactoside-containing 
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glycolipids and glycoproteins (Deutscher and Hirschberg, 1986). Intriguingly, wild-

type Gal-1 fails to get exported from this mutant cell line demonstrating that indeed 

secretion of Gal-1 from mammalian cells strictly depends on a functional interaction 

between Gal-1 and its counter receptors. Interestingly, Gal-1 from CHOclone13 cells 

export can be reconstituted when the cells co-cultivated with CHOwild-type cells that do 

not express the fusion protein (Julia Ritzerfeld, personal communication). In this case 

CHOwild-type cells provide the β-galactoside-containing counter receptors on the cell 

surface required for the unconventional secretion of Gal-1-GFP. 

 Additionally, these data are supported by findings on CGL-2, a distant relative 

of Gal-1 from the multicellular fungus Coprinopsis cinerea. Even though similarities 

between CGL-2 and Gal-1 are very weak at the level of the primary structure 

(Lobsanov et al., 1993; Walser et al., 2004), CGL-2 is recognized by mammalian 

cells as an export substrate. Strikingly, a single-site mutation (W72G) that is known 

to cause CGL-2 binding deficiency to β-galactosides (Walser et al., 2004) results in a 

block of export of CGL-2 from CHO cells, consistent with our findings that functional 

interactions with counter receptors are essential for the overall export process. 

 

4.5.2 Characterization of N- and C-terminal truncated forms of  

Gal-1 

 

 As already mentioned Gal-1 is able to form homodimers consisting of 14 kDa 

subunits each containing a single carbohydrate-binding site. The lectin is synthesized 

in the cytosol of mammalian cells where it accumulates in a monomeric form and is 

actively, but slowly secreted (
  

! 

t
1 2
"  20 h). The exported form requires glycoconjugate 

ligands to fold properly and acquire stability. The functional lectin exists in a 

monomer-dimer equilibrium with a Kd of ~ 7 µM and a slow equilibrium rate 

(
  

! 

t
1 2
"  10 h) (Cho and Cummings, 1995b). To explore functional differences between 

monomeric and dimeric forms regarding the unconventional secretion of human Gal-

1, mutants truncated at the extreme N- and C-terminus, which are involved in subunit 

interactions, were generated. After retroviral transduction of the truncated reporter 

molecules, the corresponding CHO cells expressed the GFP fusion proteins in a 
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doxicycline-dependent manner. These CHO cells were characterized with regard to 

secretion and binding efficiency to β-galactosides employing the four read-out 

systems described above (4.4). All truncated versions of Gal-1-GFP resulted in 

decreased protein stability as indicated by lowered protein amounts per cell except 

Gal-1-GFP∆N5 and Gal-1-GFP∆N20, which were characterized by normal expression 

levels and export efficiency as compared to the wild-type form of Gal-1-GFP. 

Additionally, all of these truncated forms of Gal-1-GFP including Gal-1-GFP∆N20 were 

impaired in binding to their counter receptors, whereas Gal-1-GFP∆N5 showed wild-

type characteristics. Based on the stability problems of these truncated versions it 

was difficult to analyze their export behavior.  

 Hydrophobic interactions between amino acid side chains seem to occur mainly 

between amino acids on the first β-strands (residues 5-8) at the N-terminus and 

amino acids on the last β-strand (residues 127-133) at the C-terminus. Precisely, 

dimer formation appears to result mainly from interactions between Val 6 of monomer 

A and Ala 7 on monomer B, Ile 129 on monomer A and Phe 134 of monomer B, and 

Phe 134 on monomer A and Ile 129 of monomer B. Mutating these amino acid 

residues to hydrophilic amino acids results in impaired dimer formation (Cho and 

Cummings, 1996). Therefore, in addition to the N- and C-terminal truncations 

described above, the mutant cell lines CHO Gal-1-GFPV6A, CHO Gal-1-GFPI129R, 

CHO and CHO Gal-1-GFPF134E were generated and analyzed regarding export and 

binding to β-galactosides.  

 Cho and colleagues investigated the mutant Gal-1V6D for binding to lactosyl-

sepharose and observed that this mutation drastically affects carbohydrate-binding 

activity (Liao et al., 1994). Results of native gel electrophoresis, density gradient 

sedimentation, and size-exclusion HPLC demonstrate that Gal-1V6D exists as 

monomeric species. It was reasoned that the apparent reduced affinity of Gal-1V6D to 

lactosyl-sepaharose could result from its inability to dimerize. Further experiments 

are needed to analyze the influence of dimer formation on the unconventional 

secretion of Gal-1-GFP and on the binding ability. Analysis of GFPV6A, Gal-1-

GFPI129R, Gal-1-GFPF134E and Gal-1-GFPF134E by native gel electrophoresis, density 

gradient sedimentation and size-exclusion HPLC of Gal-1- may give new insights in 

the translocating process of Gal-1 in mammalian cells. 
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4.6 Detailed analysis of Gal-1-GFPR112H  
 

 Reflecting the strict conservation of a set of crucial amino acid residues as 

galectin sequence signature, the general architecture of the carbohydrate-binding 

site in human Gal-1 is very similar to that observed in other members of the galectin 

family, encompassing the antiparallel β-strands S4-S6a/S6b on the concave face of 

one β-sheet. The highly conserved amino acid residues involved in interactions with 

the bound disaccharide lactose are His 45, Asn 47, Arg 49, Val 60, Asn 62, Trp 69, 

Glu 72 and Arg 74 and they are invariably found in these β-strands (Lopez-Lucendo 

et al., 2004). In particular, Trp 69 participates in stacking interactions with carbons 

C3, C4 and C5 on the b-face of the galactose ring. This moiety is crucial to 

distinguish galactose from glucose through its preference for the axial hydroxyl-group 

on C4. With respect to the R112H mutant the substitution introduced accounts for a 

notable alteration of the architecture of the carbohydrate-binding site. As a 

consequence of this mutation the highly conserved amino acids His 53 and Trp 69 

are shifted from their original position. This shift did not result in loosing the ability to 

bind to β-galactosides as demonstrated by thermodynamic binding studies (Lopez-

Lucendo et al., 2004). Although this observation was confirmed by the in vivo binding 

assay (Fig. 41) the recognition of β-galactosides may be influenced as binding to 

lactose-coupled beads did not longer occur (Fig. 42). This observation provides 

evidence that beside sugar moieties a carbohydrate-lectin interaction depends on 

additional aspects of specificity based on the proteinaceous environment 

(Seelenmeyer et al., 2003). Similar results regarding export and binding to β-

galactosides were obtained for Gal-1-GFPV32E. 

 A possible explanation for the potential export deficiency of Gal-1-GFPR112H and 

Gal-1-GFPV32E is that a specific transporter exists, which is not able to recognize 

these mutated proteins independent of sugar binding ability. An alternative 

explanation might be that the described mutants are impaired in dimer formation. 

Further studies are required to characterize the decreased export efficiency.  

 



Discussion 
 

192 

4.7 Potential models for the unconventional secretion of 

Gal-1 
 

 Regarding the molecular mechanism of Gal-1 export from mammalian cells, 

there are three possible scenarios that would be consistent with the presented data. 

On the one hand, galectin counter receptors on the cell surface might be part of a 

molecular trap through which secreted Gal-1 molecules would be removed from 

equilibrium between an intracellular and an extracellular pool of Gal-1 (Fig. 47 panel 

A). In principle, the extracellular galectin trap could be necessary for sustained Gal-1 

export of the cytoplasmic pool. However, in the absence of functional interactions 

between Gal-1 and its counter receptors, secretion is apparently fully blocked. 

Therefore, the trapping mechanism does not satisfactorily explain our observation, as 

Gal-1 transport should be observed at least to a certain extent until equilibrium 

between intra- and extracellular pools is reached.  

 In a second model, β-galactoside-containing cell surface molecules might be 

tightly coupled to the translocation machinery (Fig. 47 panel B) and function by 

exerting a pulling force at the extracellular side of a putative translocation pore 

required for directional transport of Gal-1 across the plasma membrane.  
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Fig. 47 Schematic overview of potential mechanisms mediating Gal-1 membrane translocation. 

A. Gal-1 is removed from an equilibrium (sink mechanism). B. Counter receptors exert a 

pulling force on Gal-1. C. Counter receptors act as export receptors. For details see text. 

 

 An alternative explanation of the presented results would be that β-galactoside-

containing counter receptors act as export receptors for Gal-1 (Fig. 47, panel C). It 

might be speculated that Gal-1 interactions with counter receptors are not restricted 

to the extracellular space but rather already occur on the cytoplasmic side of the 

plasma membrane. This assumption is not consistent with the established view that 

for instant glycolipids are exclusively localized to the extracellular leaflet of the 

plasma membrane with glycan moieties being exposed to the extracellular space. 

However, it appears possible that a subpopulation of β-galactoside-containing glyco-

lipids which probably would not be detectable under steady-state conditions gets 
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translocated to the inner leaflet of the plasma membrane. This translocation might be 

catalyzed by a plasma membrane resident flippase. In this model, re-translocation of 

counter receptors occupied by Gal-1 would mediate export to the extracellular space. 

 

 All described models (Fig. 47) indicate a direct translocation of Gal-1 across the 

plasma membrane. Mehul and colleagues reported that Gal-3 is transported directly 

to the plasma membrane prior to secretion and released into the extracellular space 

by vesicular budding from cos-7 and J774.2 cells because they were able to isolate 

extracellular vesicles containing Gal-3 by isopycnic centrifugation (Mehul and 

Hughes, 1997). Additionally, vesicular structures budding of cos-7 cell surface were 

detected employing confocal microscopy using polyclonal anti-Gal-3 antibodies. 

Membrane blebbing is a common feature at the periphery of many cell types, 

including fibroblasts (Lee et al., 1993), neutrophils (Stein and Luzio, 1991) and 

chondrocytes (Hale and Wuthier, 1987), that is regulated by intracellular calcium in 

some cases (Shukla et al., 1978). Although the results of pulse-chase analyses 

suggest an intermediate role of extracellular vesicles in the export of Gal-3 from 

macrophage J774.2 cells, the possibility that at least a part of the lectin may be 

translocated directly from plasma membrane domains into the extracellular space 

could not be excluded since a small but significant amount of the lectin was detected 

in the soluble fraction of conditioned medium obtained from cos-7 and J774.2 cells. 

As the isolated vesicles were not analyzed for apoptotic markers like Annexin V it 

might be that they result from apoptotic cells (Miller, 2004). 

 Independently, Cooper et al. demonstrated that Gal-1 expressed in myoblasts is 

externalized upon differentiation, whereas creatine kinase and lactate dehydro-

genase - markers for unspecific release - remain intracellularly (Cooper and 

Barondes, 1990). Therefore, extracellular Gal-1 cannot be due to cell death or 

transient membrane disruption of a small fraction of the cultured cell population. As 

myoblasts differentiate, Gal-1 also appears to be concentrated directly underneath 

the plasma membrane as visualized by confocal microscopy. Concentrated patches 

of ectoplasmic Gal-1 are then evaginated from the plasma membrane and form 

extracellular vesicles enriched in the lectin. The final step in externalization of Gal-1 

is presumed to occur when evaginated vesicles are disrupted (Cooper and Barondes, 
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1990). However, employing confocal microscopy of CHO cells expressing Gal-1-GFP 

in a doxicycline dependent manner, no membrane blebs were detectable neither in 

living nor in fixed cells indicating that Gal-1 is externalized by a mechanism 

independent of vesicular structures (Seelenmeyer et al., 2005). 

 

 While the proposed export models are certainly speculative at this point, they 

are consistent with several observations that have been made previously. First, 

galectin membrane translocation has been reported to occur at the level of the 

plasma membrane (Cooper and Barondes, 1990; Hughes, 1999; Mehul and Hughes, 

1997; Nickel, 2003; Schäfer et al., 2004). Second, Huet and colleagues recently 

reported pharmacological evidence that Gal-4 secretion is impaired in epithelial cells 

following treatment with 1-benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside, an 

inhibitor of glycosylation (Delacour et al., 2005). Third, evidence has been reported 

that membrane translocation of both FGF-2 and Gal-1 occurs in a folded state 

(Backhaus et al., 2004).  

 In the context of the current study, this finding is of particular interest since the 

models described above can only be true if the β-galactoside binding site of Gal-1 

remains functional during membrane translocation. In this regard, the putative trans-

location machinery might be functionally related to the bacterial twin arginine trans-

location system mediating protein secretion in a fully folded state (Oates et al., 2005; 

Robinson and Bolhuis, 2004). 

 

 The findings presented in this work also provide a potential explanation for the 

apparent non-existence of a linear targeting motif in Gal-1. The presented data 

conclusively point to a direct role of counter receptors as export adaptors and the β-

galactoside binding motif of Gal-1 as the primary targeting element. In this context, it 

is interesting to note that secretion from Saccharomyces cerevisiae of both rat Gal-1 

and Coprinospsis cinerea CGL-2 has been reported (Cleves et al., 1996) (Boulianne 

et al., 2000). This organism does not contain endogenous galectins and the exis-

tence of glycolipids and glycoproteins containing β-galactosides has not yet been 

clarified. Therefore, it remains to be investigated whether secretion of galectins from 
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Saccharomyces cerevisiae occurs by a molecular mechanism similar to that of 

mammalian cells.  

 Finally, it is of note that the secretory mechanism being postulated in this thesis 

provides a functional basis for quality control in the overall process of Gal-1 se-

cretion. As the β-galactosides binding motif of Gal-1 is shown to be the primary 

targeting element for secretion, quality control is in place since only properly folded 

Gal-1 will be recognized by the export machinery (Nickel, 2005). 

 

4.8 Future perspectives 
 

 The established Gal-1 secretion assays employing flow cytometry and cell 

surface biotinylation analysis were shown to be robust methods to investigate non-

classical export processes in molecular detail. To clarify if β-galactoside-containing 

glycoproteins or glycolipids are involved in the export mechanism, the mutagenized 

subclone GM95 of the murine melanoma cell line B16 (Ito and Komori, 1996; Komori 

et al., 1999; Smith et al., 2003) will be analyzed for secretion of Gal-1-GFP 

expressed in a doxicycline-dependent manner. This cell line lacks the ceramide-

glucosyl transferase gene and does not present glycolipids on the cell surface. MEB4 

cells represent the parental cell line of GM95 cells containing a functional ceramide-

glucosyl transferase gene (Spilsberg et al., 2003) and, unlike GM95, produce 

functional glycolipids and glycoproteins. Based on these cell lines it will be possible 

to distinguish between the postulated models (Fig. 47). If the export machinery in 

GM95 cells is functional and exported Gal-1-GFP is detectable on the cell surface 

bound to β-galactoside-containing glycoproteins, it can be excluded that the trans-

location of Gal-1-GFP is mediated by a membrane-resident flippase. 

 The FACS based Gal-1 secretion assay will form the basis for a number of 

future applications such as the systematic screening for specific inhibitors from 

complex compound libraries. Additionally, systematic screening using RNAi libraries 

will be conducted in future experiments. For example, both an RNAi library directed 

against all ABC transporters known in the human genome and a complex library 

covering all genes (≈ 22.000 genes) in the human genome will be tested regarding 
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export efficiency of Gal-1-GFP under knock-down conditions in HeLa cells. Based on 

this it might be possible to isolate a single counter receptor for Gal-1, which mediates 

specifically the translocation process across the plasma membrane.  
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