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Abstract. The focus of interest here is a quasilinear form of the conservative continuity equation
d
dt µ + Dx ·

(
f(µ, ·) µ

)
= 0 (in RN× ]0, T [)

together with its measure–valued distributional solutions µ(·) : [0, T [ −→ M(RN ). On the basis of
Ambrosio’s results about the nonautonomous linear equation d

dt µ + Dx · (b µ) = 0 (see [1, 2]), the
existence and uniqueness are investigated for
1. vector fields in W 1,∞

loc (RN ,RN ) ∩ L∞ and positive Radon measures on RN with compact support,
2. bounded vector fields having bounded (spatial) variation and LN absolutely continuous divergence

in combination with positive measures absolutely continuous with respect to Lebesgue measure LN.
The step towards the nonlinear problem here relies on a further generalization of Aubin’s mutational
equations that is extending the notions of distribution–like solutions and “weak compactness” to a set
supplied with a countable family of (possibly non–symmetric) distance functions (so–called ostensible
metrics).
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1 Introduction

The homogeneous conservative continuity equation d
dt µ + Dx · (̃b µ) = 0 (in RN × [0, T [) is the

classical analytical tool for describing the conservation of some real–valued quantity µ = µ(t, x) while
“flowing” (or, rather, evolving) along a given vector field b̃ : RN × [0, T ] −→ RN . Thus, it is playing
a key role in many applications of modelling like fluid dynamics and, it has been investigated under
completely different types of assumptions about b̃(·, ·).

Seizing the results of Ambrosio [1, 2] later, the values of all solutions considered here are positive finite
Radon measures on RN and, we are interested in (structurally) weak assumptions on these measures or
the vector fields for proving existence of a distributional solution of the quasilinear continuity equation

d
dt µ(t) + Dx ·

(
f(µ(t), t) µ(t)

)
= 0 (in RN× ]0, T [)

with given f(·, ·) : M(RN )× [0, T ] −→ L∞(RN ,RN ). Basically two cases are investigated more closely :

Firstly (i.e. in section 3), all vector fields are supposed to be uniformly bounded and locally Lipschitz
continuous with respect to space, i.e. f(µ, t) ∈ W 1,∞

loc (RN ,RN ) with ‖f‖∞ ≤ C < ∞. Due to this
regularity assumption, the measure–valued solution of the continuity equation d

dt µ + Dx · (b µ) = 0
(with such a vector field b) can be easily represented by the method of characteristics : µt := Xb(t, ·)] µ0

with Xb(·, x0) : [0, T ] −→ RN denoting the absolutely continuous solution of the Cauchy problem

∧

{
d
dt x(t) = b(x(t)) a.e. in [0, T ],
x(0) = x0

and the index ] abbreviating the push–forward of a measure (quoted in Proposition 3.5). In return
for this (quite popular, but restrictive) Lipschitz continuity of vector fields, admissible Radon measures
only have to be positive and to satisfy the condition of compact support. Their set is abbreviated as
M+

c (RN ). So in particular, Hausdorff measures Hδ of arbitrary dimension δ ∈ [0, N ] – restricted to a
compact Hδ–rectifiable subset of RN – can be considered.
For specifying the continuity properties of “velocity” function f : M+

c (RN )×[0, T ] −→W 1,∞
loc (RN ,RN ),

generalized distance functions for finite Radon measures on RN are required. We use the pseudo–metrics
pε(µ, ν) :=

∣∣(ϕε · (µ− ν)) (RN )
∣∣ (ε ∈ J ). Here (ϕε)ε∈J is an arbitrary countable family of smooth

Schwartz functions RN −→ ]0,∞[ satisfying |∇ϕε| ≤ λε · ϕε with a constant λε > 0 and two density
conditions (formulated in Lemma 3.1). Then the first main result is a consequence of Proposition 3.11 :

Proposition 1.1 Suppose for f : M+
c (RN )× [0, T ] −→W 1,∞

loc (RN ,RN ) :

1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ ≤ C for all (µ, t) ∈M+
c (RN )× [0, T ],

2. (”weak*” continuity of f) ‖f(µ, t)− f(µn, tn)‖∞ −→ 0 if µn
∗
⇀ µ (w.r.t. C0(RN )), tn → t.

Then for every initial µ0 ∈ M+
c (RN ), there exists a distributional solution µ(·) : [0, T [−→ M+

c (RN )
of the continuity equation d

dt µ(t) + Dx · (f(µ(t), t) µ(t)) = 0 in RN × [0, T [ with µ(0) = µ0.

Secondly (i.e. in section 4), the regularity condition on vector fields is weakened. We dispense with
their local Lipschitz continuity and follow the track of Ambrosio [1, 2]. So now we use vector fields in

BV∞,div
loc (RN ) :=

{
b ∈ BVloc(RN ,RN ) ∩ L∞(RN ,RN )

∣∣D · b = div b LN � LN , div b ∈ L∞(RN )
}

and positive measures on RN that are bounded and absolutely continuous w.r.t. Lebesgue measure, i.e.

L∞∩ 1(RN ) :=
{
ρ LN

∣∣ ρ ∈ L1(RN ) ∩ L∞(RN ), ρ ≥ 0
}
.
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The gap between BV∞,div
loc (RN ) and W 1,∞

loc (RN ,RN )∩L∞ is bridged by Ambrosio’s proof of his super-
position principle ([1], Theorem 12). Indeed, for every function b̃ ∈ L1

(
[0, T ], BV∞,div

loc (RN )
)

with
supt

(
‖b̃(t, ·)‖∞ + ‖divx b̃(t, ·)‖∞

)
< ∞, each distributional solution µ(·) of d

dt µ + Dx · (̃b µ) = 0
can be approximated narrowly by the unique solution µδ(t) := µ(t) ∗ ρδ of d

dt µδ + Dx · (̃bδ µδ) = 0

with b̃δ(t, ·) := (eb(t,·) µ(t)) ∗ ρδ

µδ(t) being in L1
(
[0, T ], W 1,∞

loc (RN ,RN )
)

and ρδ(·) denoting a smooth
Gaussian kernel. So the approximation (with respect to narrow convergence) is the key tool for extending
many estimates concerning vector fields in W 1,∞

loc (RN ,RN ) ∩ L∞ to vector fields in BV∞,div
loc (RN ).

Our main results about this type of continuity equation are consequences of Propositions 4.10, 4.11
using now the countable family of pseudo–metrics qε(µ, ν) :=

∣∣ϕε · (µ− ν)
∣∣(RN ) (ε ∈ J ) :

Proposition 1.2 Suppose for f : L∞∩ 1(RN )× [0, T ] −→ BV∞,div
loc (RN ) :

1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ +
∥∥div f(µ, t)

∥∥
∞ ≤ C for all (µ, t) ∈ L∞∩ 1(RN )× [0, T ],

2. ‖f(µ, t)− f(µn, tn)‖L1(RN ) −→ 0 if µn
∗
⇀ µ (w.r.t. C0(RN )), tn ↘ t.

Then for every µ0 ∈ L∞∩ 1(RN ), there exists a distributional solution µ(·) : [0, T [−→ L∞∩ 1(RN ) of
the continuity equation d

dt µ(t) + Dx · (f(µ(t), t) µ(t)) = 0 in RN × [0, T [ with µ(0) = µ0.

Proposition 1.3 Suppose for f : L∞∩ 1(RN )× [0, T ] −→ BV∞,div
loc (RN ) :

1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ +
∥∥div f(µ, t)

∥∥
∞ ≤ C for all (µ, t) ∈ L∞∩ 1(RN )× [0, T ],

2. ∀ ε ∈ J ∃ Lε ∈ [0,∞[, modulus of continuity ωε(·) ≥ 0 :∥∥ϕε |f(µ, s)− f(ν, t)|
∥∥
L1(RN )

≤ Lε · qε(µ, ν) + ωε (|s− t|) for all (µ, s), (ν, t)∈L∞∩ 1(RN )×[0, T ].

Then for every initial measure µ0 ∈ L∞∩ 1(RN ), the distributional solution µ(·) : [0, T [−→ L∞∩ 1(RN )
of d

dt µ(t) + Dx ·(f(µ(t), t) µ(t)) = 0 in RN× ]0, T [ that is continuous with respect to each qε (ε ∈ J )
is unique.

In particular, the continuity conditions on f(·, ·) are (slightly) weaker in Proposition 1.2 than in
Proposition 1.1 because the L1 norm is used instead of the L∞ norm. Moreover, separating the time
dependence from spatial measures opens the door to taking (spatially) nonlocal effects into consideration
— to some extent.

Restricting our considerations to measures in L∞∩ 1(RN ) has two analytical advantages in addition :
The first one is the uniqueness of distributional solutions of the nonautonomous continuity equation.
To be more precise, Ambrosio extends the DiPerna–Lions theory [9] to the case of (spatially) BV vector
fields. Any distributional solution w ∈ L∞loc

(
RN× ]0, T [

)
of d

dt w + Dx · (̃b w) = c̃ is shown to be
“renormalized” (in the sense of DiPerna and Lions) if c̃ ∈ L1

loc

(
RN× ]0, T [

)
and whenever the vector field

b̃ ∈ L1
loc

(
[0, T ], BVloc(RN ,RN )

)
has the distributional divergence Dx · b̃(t, ·) = divx b̃(t, · ) LN � LN

for L1–almost every t ∈ [0, T ] ([1], Theorem 34). Then additional integral conditions on b̃ and divx b̃
imply the comparison principle for the continuity equation d

dt w + Dx · (̃b w) = 0 in the
class

{
w ∈ L∞

(
[0, T ];L1(RN )

)
∩ L∞

(
[0, T ];L∞(RN )

)
∩ C0

(
[0, T ];w∗−L∞(RN )

)}
([1], Theorem 26).

This result is used here for specifying sufficient conditions on f : L∞∩ 1(RN )× [0, T ] −→ BV∞,div
loc (RN )

for the uniqueness of distributional solutions in Proposition 1.3.
The second advantage is provided by the area formula since it leads to an exponential growth condition
of the total variation

∣∣µ(t)
∣∣(RN ) and of

∥∥µ(t)
LN ‖∞ for a solution µ(·) : [0, T [ −→ L∞∩ 1(RN ) of

d
dt µ + Dx · (̃b µ) = 0 (i.e. for the solution induced by the Lagrangian flow specified in Proposition 4.1
and proven in [1, 2]). Such a priori estimates lay the basis for applying the compactness criterion of de
la Vallée Poussin.
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So all in all, the aim of this paper to extend Ambrosio’s results of [1] to the quasilinear continuity
equation d

dt µ(t) + Dx ·
(
f(µ(t), t) µ(t)

)
= 0 (in RN× ]0, T [).

For such a step from a linear to a nonlinear equation, we rely on a tool here that is hardly known in
the PDE community, but we regard it as very useful indeed : generalized mutational equations.
Mutational equations introduced by Aubin [7, 8] are to extend ordinary differential equations to a
metric space (E, d). For dispensing with any vector space structure, the key idea is to introduce “maps
of elementary deformation” ϑ : [0, 1]×E −→ E. Such a so–called transition specifies the point ϑ(t, x) ∈ E
to which an initial point x ∈ E has been moved after time t ∈ [0, 1]. It can be interpreted as a generalized
derivative of a curve ξ : [0, T [−→ E at time t ∈ [0, T [ if it provides a first–order approximation in the
sense of lim sup

h ↓ 0

1
h · d

(
ξ(t+ h), ϑ(h, ξ(t))

)
= 0

The theory of mutational equations has already been applied to different types of evolution problems
in metric spaces (see [5, 6, 10, 12, 19], for example). So–called morphological equations are a very
popular geometric example and use compact reachable sets of differential inclusions (supplied with the
Pompeiu–Hausdorff distance) as transitions.
Aubin’s continuity conditions on transitions, however, seem to be quite restrictive. So there have been
several approaches of weakening them [13, 14, 15]. The main aspects of generalizing so far have been

1. introduce a separate real component of time, i.e. consider Ẽ := R×E instead of the given set E,

2. dispense with the symmetry of the metric d, i.e. we use a countable family (q̃ε)ε∈J of (timed)
ostensible metrics satisfying only the reflexivity condition and the (timed) triangle inequality,

3. extend the notion of distributional solutions to so–called timed forward solutions in such a way
that a (fixed) structural estimate is preserved while comparing shortly with the evolutions of all
“test elements” x̃ ∈ D̃,

4. implement the notion of Petrov–Galerkin, i.e. “test elements” need not belong to the same set Ẽ
as the values of generalized solutions (see [15], in particular),

5. permit many parameters of transitions to depend on the “test element” and the index ε of (timed)
ostensible metric (in a word, for increasing “degrees of freedom” while extending Euler algorithm).

Up to now, first–order geometric evolutions have been our main motivation for generalizing mutational
equations, i.e. compact subsets of RN are to evolve according to nonlocal properties of both the set and
their (limiting) normal cones at the boundary (see [14, 15], in particular). Now the continuity equation
motivates two further aspects of generalization :
Firstly, we modify the continuity conditions on transitions so that some of their continuity parameters
might have linear growth (with respect to the “initial element”). This feature can be particularly useful
whenever the theory is applied to vector spaces – like the semilinear evolution equations in reflexive
Banach spaces (mentioned in [14]) or the positive Radon measures in §§ 3, 4.
Secondly, the form of sequential compactness is weakened for proving existence of “right–hand sleek
solutions”. We assume each ostensible metric q̃ε to be the supremum of (at most) countably many
generalized distance functions q̃ε,κ (κ ∈ I). In this analytical environment, “weak sequential compact-
ness” is to realize the notion that every “bounded” sequence has a subsequence converging with respect
to each q̃ε,κ. In fact, this concept generalizes the definition of weak compactness in a (separable) real
Banach space (X, ‖ · ‖X) since ‖z‖X = sup

{
y∗(z)

∣∣ y∗ : X −→ R linear, continuous, ‖y∗‖X∗ ≤ 1
}
.

With regard to generalized mutational equations, we introduce the more general term “weakly timed
transitionally compact” in Definition 2.20. A more detailed presentation of this theory is given in § 2.

Then, in § 3, it is applied to positive Radon measures on RN with compact support that are
“evolving” along vector fields of W 1,∞

loc (RN ,RN ) ∩ L∞ – according to the continuity equation. Finally
in § 4, we consider vector fields of BV∞,div

loc (RN ) and positive measures of L∞∩ 1(RN ) instead.
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Notations

C0
c (RN ) denotes the space of continuous functions RN −→ R with compact support and C0(RN ) its

closure with respect to the sup norm, respectively. C0
c (RN ,R

+
0 ) abbreviates the subset of functions

ϕ ∈ C0
c (RN ) with ϕ ≥ 0 and correspondingly, C0(RN ,R+

0 ) its closure.
Furthermore, M(RN ) consists of all finite real–valued Radon measures on RN . As a consequence of
Riesz theorem, it is the dual space of C0(RN ) (see e.g. [4], Remark 1.57). Similarly M+(RN ) denotes
the set of all positive Radon measures on RN , i.e. M+(RN ) := {µ ∈M(RN ) | µ(·) ≥ 0}.
Finally, Mc(RN ) := {µ ∈M(RN )|∃ compact K⊂RN: |µ|(RN \K) = 0}, M+

c (RN ) := Mc(RN )∩M+.

2 Generalizing evolution equations to ostensible metric spaces :

Mutational equations

In this section, the definitions and main results are presented although the measure–valued examples
ensuing here do not require this concept in its most general form. There are basically two reasons for
the complete presentation. Firstly, we want to present two additional steps of generalization motivated
by both the measure–valued flow along vector fields (in §§ 3, 4) and the semilinear evolution equations
in reflexive Banach spaces (mentioned in [14]): allowing a form of “linear growth” for some parameters
of transitions and assuming a “weak(er)” form of sequential compactness for proving existence.
Secondly, all previous versions prove to be special cases of the subsequent modification. So in particular,
the examples of [7], [14, 15] and the ensuing sections can be combined in systems arbitrarily. From our
point of view, this property of generalized mutational equations is an essential advantage in comparison
with viscosity solutions (and other concepts based on the maximum or inclusion principle).

General assumptions for § 2.

1. Let E and D denote nonempty sets (not necessarily D ⊂ E),
Ẽ

Def.= R× E, D̃ Def.= R×D, π1 : (D̃ ∪ Ẽ) −→ R, (t, x) 7−→ t.

2. J ⊂ [0, 1]K abbreviates a countable index set with K ∈ N, 0 ∈ J .
3. q̃ε : (D̃ ∪ Ẽ)× (D̃ ∪ Ẽ) −→ [0,∞[ satisfies the timed triangle inequality (for each ε ∈ J ),

i.e. q̃ε
(
(r, x), (t, z)

)
≤ q̃ε

(
(r, x), (s, y)

)
+ q̃ε

(
(s, y), (t, z)

)
for all (r, x), (s, y), (t, z) ∈ D̃ ∪ Ẽ with r ≤ s ≤ t.

4. Fix b·cε : D̃ ∪ Ẽ −→ [0,∞[ for each ε ∈ J .
5. i eD : D̃ −→ Ẽ fulfills q̃ε(z̃, i eD z̃) = 0, π1 z̃ = π1 i eD z̃, bz̃cε ≥ bi eD z̃cε

for every z̃ ∈ D̃, ε ∈ J .

Assumption (4.) lays the foundation for the first new aspect in comparison with earlier definitions.
For allowing a form of “linear growth” for some parameters of transitions, we need a counterpart of
norms. Roughly speaking, it is to measure the absolute magnitude of any element x̃ ∈ D̃ ∪ Ẽ whereas
each q̃ε rather “compares” two elements with each other. Dispensing with any vector space structure,
however, this counterpart is supposed to be just a nonnegative function that might even depend on
ε ∈ J , namely b·cε : D̃ ∪ Ẽ −→ [0,∞[.
Generalizing mutational equations, the key idea is now to preserve the following structural estimate for
comparing transitions ϑ̃, τ̃ : [0, 1]× (D̃ ∪ Ẽ) −→ (D̃ ∪ Ẽ)

q̃ε
(
ϑ̃(t1+h, z̃), τ̃(t2+h, ỹ)

)
≤ q̃ε

(
ϑ̃(t1, z̃), τ̃(t2, ỹ)

)
· eαε(eτ,ez) h +

h ·
(
Q̃ε(ϑ̃, τ̃ ; z̃) ·

(
1 + bỹcε eζε(eτ)·(t2+h) + ζε(τ̃) · (t2 + h)

)
+ γε(τ̃)

) )
· eαε(eτ,ez) h.
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for all z̃ ∈ D̃, ỹ ∈ Ẽ, ε ∈ J and 0 ≤ t1 ≤ t2 < 1, h ≥ 0 with π1 z̃ ≤ π1 ỹ and t1 + h sufficiently
small (depending only on ϑ̃, z̃). In comparison with the last modification (in [15]), the new feature is
the factor

(
1 + bỹcε eζε(eτ) (t2+h) + ζε(τ̃) (t2+h)

)
≤ 1+bỹcε eζε(eτ) +ζε(τ̃) allowing the second summand

on the right–hand side to share the “linear growth” of the compared element ỹ (with respect to b·cε).
A corresponding dependence on bz̃cε can be regarded as part of Q̃ε(ϑ̃, τ̃ ; z̃).

For the subsequent definition of solution, this modification will be hardly relevant. Indeed, a tran-
sition ϑ̃ again induces a “first–order approximation” of a curve x̃ : [0, T [ −→ Ẽ at time t ∈ [0, T [
according to the following (still vague) idea : Comparing x̃(t + · ) with ϑ̃(·, z̃) shortly (for any test
element z̃ ∈ D̃, π1 z̃ ≤ π1 x̃(t)), the same structural estimate ought to hold as if the factor Q̃ε(·, · ; z̃)
was 0 (see Definitions 2.10, 2.12 for details).

2.1 Transitions as “elementary deformations”

Now we specify the new definition of “timed sleek transition” for the tuple that has an additional
component in comparison with earlier versions (see [15] in particular) :

(
Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J

)
.

Definition 2.1 A map ϑ̃ : [0, 1] × (D̃ ∪ Ẽ) −→ (D̃ ∪ Ẽ) is called timed sleek transition on
(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ) if it fulfills for each ε ∈ J
1. ϑ̃(0, ·) = Id eD∪ eE ,
2. ∃ γε(ϑ̃) ≥ 0 : lim sup

ε−→ 0
εp · γε(ϑ̃) = 0 and

lim sup
h ↓ 0

1
h · q̃ε

(
ϑ̃(h, ϑ̃(t, x̃)), ϑ̃(t+ h, x̃)

)
≤ γε(ϑ̃) ∀ x̃ ∈ D̃ ∪ Ẽ, t ∈ [0, 1[,

lim sup
h ↓ 0

1
h · q̃ε

(
ϑ̃(t+ h, x̃), ϑ̃(h, ϑ̃(t, x̃))

)
≤ γε(ϑ̃) ∀ x̃ ∈ D̃ ∪ Ẽ, t ∈ [0, 1[,

3. ∀ z̃ ∈ D̃ ∃ αε(ϑ̃, z̃) ∈ [0,∞[, Tε = Tε(ϑ̃, z̃) ∈ ]0, 1] :

lim sup
h ↓ 0

( eqε

(eϑ(t+h, ez), eϑ(h, ey)) − eqε(eϑ(t,ez), ey)− γε(eϑ) h

h
( eqε(eϑ(t,ez), ey) + γε(eϑ) h

) )+

≤ αε(ϑ̃, z̃) ∀ 0 ≤ t < Tε, ỹ ∈ Ẽ
(t+ π1 z̃ ≤ π1 ỹ),

4. ∃ βε(ϑ̃) : ]0, 1] −→ [0,∞[ modulus of continuity :
q̃ε

(
ϑ̃(s, ỹ), ϑ̃(t, ỹ)

)
≤ βε(ϑ̃)(t− s) · (1 + bỹcε) ∀ s < t ≤ 1, ỹ ∈ Ẽ,

5. ∃ ζε(ϑ̃) ≥ 0 : bϑ̃(t, x̃)cε ≤ bx̃cε · eζε(eϑ) t + ζε(ϑ̃) t ∀ x̃ ∈ D̃ ∪ Ẽ, t ∈ [0, 1],

6. ∀ z̃ ∈ D̃ : ϑ̃(t, z̃) ∈ D̃ ∀ t ∈ [0, Tε(ϑ̃, z̃)],

7. lim sup
h ↓ 0

q̃ε
(
ϑ̃(t− h, z̃), ỹ

)
≥ q̃ε

(
ϑ̃(t, z̃), ỹ

)
∀ z̃ ∈ D̃, ỹ ∈ Ẽ, t ≤ Tε

(t+ π1 z̃ ≤ π1 ỹ),

8. ϑ̃
(
h, (t, y)

)
∈ {t+ h} × E ⊂ Ẽ ∀ (t, y) ∈ Ẽ, h ∈ [0, 1],

π1 ϑ̃(h, (t, z)) = t+ const(Ẽ, D̃) · h ≤ t+ h ∀ (t, z) ∈ D̃, h ∈ [0, 1].

9. lim sup
h ↓ 0

1
h · q̃ε

(
ϑ̃(h, ϑ̃(t, i eD z̃)), ϑ̃(h, ϑ̃(t, z̃))

)
≤ γε(ϑ̃) ∀ z̃ ∈ D̃, t < Tε(ϑ̃, z̃),

lim sup
h ↓ 0

1
h · q̃ε

(
ϑ̃(t+ h, i eD z̃), ϑ̃(t+ h, z̃)

)
≤ γε(ϑ̃) ∀ z̃ ∈ D̃, t < Tε(ϑ̃, z̃).

Remark 2.2 Conditions (4.) and (5.) provide the only new features in comparison with earlier
concepts [13, 14, 15]. Roughly speaking, property (5.) bounds the “absolute magnitude” of ϑ̃(·, x̃) to
uniform exponential growth for each initial element x̃ ∈ D̃ ∪ Ẽ. As its main advantage, we can always
restrict our considerations to bounded subsets of Ẽ (with respect to b·cε), so for example, the Euler
approximations for proving existence.
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Condition (4.) now allows ϑ(·, ỹ) that the modulus of time continuity has linear growth with respect to
the initial element ỹ ∈ Ẽ.

The other conditions have already been explained in earlier concepts. For the purpose of a self–
contained presentation here, we briefly motivate their key points :
Condition (2.) can be regarded as a weakened form of the semigroup property. It consists of two de-
mands as q̃ε need not be symmetric. Condition (3.) specifies the continuity property of ϑ̃ with respect
to the initial point. In particular, the first argument of q̃ε is restricted to elements z̃ of the “test set”
D̃ and, αε(ϑ̃) may be chosen larger than necessary. Thus, it is easier to define αε(·) < ∞ uniformly
in some applications.
Condition (6.) guarantees that every z̃ ∈ D̃ stays in the “test set” D̃ for short times at least. This
assumption is required because estimates using the parameter αε(·) can be ensured only within this
period. Further conditions on Tε(ϑ̃, ·) > 0 are avoidable for proving existence of solutions, but they
are used for uniqueness (as in [13] and Propositions 2.14, 2.24).
Condition (7.) forms the basis for applying Gronwall’s Lemma that has been extended to semicontinuous
functions in [13] (see Lemma 2.6). Indeed, every function ỹ : [0, 1] −→ Ẽ with q̃ε(ỹ(t−h), ỹ(t)) −→ 0
(for h ↓ 0 and each t) satisfies

q̃ε

(
ϑ̃(t, z̃), ỹ(t)

)
≤ lim sup

h ↓ 0
q̃ε

(
ϑ̃(t− h, z̃), ỹ(t− h)

)
.

for all elements z̃ ∈ D̃ with π1 ϑ̃(·, z̃) ≤ π1 ỹ(·) and times t ∈ ] 0, TΘ(ϑ̃, z̃)].
Condition (8.) describes the real “time” component of ϑ̃(·, ỹ). For initial elements ỹ ∈ Ẽ, the time
component has to be additive whereas for “test elements” z̃ ∈ D̃, the time component of ϑ̃(·, z̃) might
increase more slowly.
Finally, condition (9.) provides a counterpart of the general assumption q̃ε(z̃, i eD z̃) = 0 for each z̃ ∈ D̃.
As q̃ε need not be symmetric, it is required for estimating the distance between a timed forward transi-
tion ϑ̃(·, z̃) and a timed right–hand forward solution (see proofs of Proposition 2.22 and Lemma 2.19).

Definition 2.3
Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ) denotes a set of timed sleek transitions on (Ẽ, D̃, (q̃ε), (b·cε)) assuming

Q̃ε(ϑ̃, τ̃ ; z̃) := sup
t < Tε( eϑ,ez), ey ∈ eE

t+π1 ez ≤ π1 ey
lim sup
h ↓ 0

( eqε

(eϑ(t+h,ez), eτ(h,ey)) − eqε

(eϑ(t,ez), ey) · eαε(eτ,ez)·h

h (1 + beycε)

)+

to be finite for all ϑ̃, τ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε)ε∈J (b·cε)ε∈J ), z̃ ∈ D̃, ε ∈ J .

Remark 2.4 Due to the dependence on the initial “test element” of D̃, the triangle inequality
for Q̃ε(·, ·; z̃) cannot be expected to hold in general. The factor (1 + bỹcε) in the denominator
is a new feature in comparison with earlier concepts and again takes the (possible) linear growth into
consideration. Its consequences for the structural estimate are specified in Proposition 2.5.

Proposition 2.5 Let ϑ̃, τ̃ : [0, 1]×(D̃∪Ẽ) −→ (D̃∪Ẽ) be timed sleek transitions on (Ẽ, D̃, (q̃ε), (b·cε)).
Suppose ε ∈ J , z̃ ∈ D̃, ỹ ∈ Ẽ and 0 ≤ t1 ≤ t2 ≤ 1, h ≥ 0 with π1 z̃ ≤ π1 ỹ, t1 + h < Tε(ϑ̃, z̃),
t2 + h ≤ 1. Then,

q̃ε
(
ϑ̃(t1+h, z̃), τ̃(t2+h, ỹ)

)
≤ q̃ε

(
ϑ̃(t1, z̃), τ̃(t2, ỹ)

)
· eαε(eτ,ez) h +

h ·
(
Q̃ε(ϑ̃, τ̃ ; z̃) ·

(
1 + bỹcε eζε(eτ)·(t2+h) + ζε(τ̃) · (t2 + h)

)
+ γε(τ̃)

) )
· eαε(eτ,ez) h.
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Proof is based on the subsequent version of Gronwall’s Lemma for semicontinuous functions. The
auxiliary function ϕε : h 7−→ q̃ε(ϑ̃(t1 + h, z̃), τ̃(t2 + h, ỹ)) satisfies ϕε(h) ≤ lim supk ↓ 0 ϕε(h − k)
due to property (7.) of Definition 2.1.
Moreover it fulfills for any h ∈ [0, 1[ with t1 + h < Tε(ϑ̃, z̃)
lim sup
k ↓ 0

ϕε(h+k)− ϕε(h)
k ≤ αε(τ̃ , z̃)·ϕε(h) + Q̃ε(ϑ̃, τ̃ ; z̃)·

(
1+bỹcε eζε(eτ)(t2+h)+ζε(τ̃)(t2+h)

)
+ γε(τ̃).

Indeed, for all k > 0 sufficiently small, the timed triangle inequality leads to

ϕε(h+ k) ≤ q̃ε
(
ϑ̃(t1+h+ k, z̃), τ̃(k, τ̃(t2+h, ỹ))

)
+ q̃ε

(
τ̃(k, τ̃(t2+h, ỹ)), τ̃(t2+h+ k, ỹ)

)
≤ Q̃ε(ϑ̃, τ̃ ; z̃)

(
1 + bτ̃(t2+h, ỹ)cε

)
· k+ϕε(h) eαε(eτ,ez) k + γε(τ̃) k + o(k)

≤ Q̃ε(ϑ̃, τ̃ ; z̃)
(
1 + bỹcε eζε(eτ)·(t2+h) + ζε(τ̃) (t2+h)

)
k+ϕε(h) eαε(eτ,ez) k + γε(τ̃) k + o(k).

2

Lemma 2.6 (Lemma of Gronwall for semicontinuous functions [13])
Let ψ : [a, b] −→ R, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

ψ(t) ≤ lim sup
h ↓ 0

ψ(t− h), ∀ t ∈ ]a, b],

ψ(t) ≥ lim sup
h ↓ 0

ψ(t+ h), ∀ t ∈ [a, b[,

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ f(t) · lim sup

h ↓ 0
ψ(t− h) + g(t) ∀ t ∈ ]a, b[.

Then, for every t ∈ [a, b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eµ(t) +
∫ t

a

eµ(t)−µ(s) g(s) ds with µ(t) :=
∫ t

a

f(s) ds. 2

Lemma 2.7 For all ϑ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ), z̃ ∈ D̃, ε ∈ J , Q̃ε satisfies

Q̃ε(ϑ̃, ϑ̃; z̃) ≤ 2 γε(ϑ̃).

Proof follows exactly the same track as in Proposition 2.5. Fix ε ∈ J , z̃ ∈ D̃, ỹ ∈ Ẽ and
t ∈ [0,Tε(ϑ̃, z̃)[ with t+ π1 z̃ ≤ π1 ỹ arbitrarily. Considering now

ϕε : [0, Tε(ϑ̃, z̃)−t[ −→ [0,∞[, h 7−→ q̃ε
(
ϑ̃(t+ h, z̃), ϑ̃(h, ỹ)

)
,

the semicontinuity ϕε(h) ≤ lim supk ↓ 0 ϕε(h− k) again results from property (7.) of Definition 2.1.
Moreover we obtain for all h ∈ [0, Tε(ϑ̃, z̃)−t[ and small k > 0

ϕε(h+ k) ≤ q̃ε
(
ϑ̃(t+h+ k, z̃), ϑ̃(k, ϑ̃(h, ỹ))

)
+ q̃ε

(
ϑ̃(k, ϑ̃(h, ỹ)), ϑ̃(h+ k, ỹ)

)
≤ (αε(ϑ̃, z̃)+o(1)) · k ·

(
ϕε(h) + γε(ϑ̃) k

)
+ ϕε(h) + γε(ϑ̃) k

+ (γε(ϑ̃) +o(1)) · k

and thus, lim sup
k ↓ 0

ϕε(h+k)− ϕε(h)
k ≤ αε(ϑ̃, z̃) · ϕε(h) + 2 γε(ϑ̃).

Gronwall’s Lemma 2.6 guarantees ϕε(h) ≤ ϕε(0) · eαε(eϑ,ez)·h + h · 2 γε(ϑ̃) · eαε(eϑ,ez)·h
and finally, lim sup

h ↓ 0

ϕε(h)− ϕε(0) · eαε( eϑ,ez)·h

h (1 + beycε) ≤ 2 γε(ϑ̃). 2

Here we briefly mention two more transparent characterizations of Q̃ε(·, ·; ·) for the case αε(·, ·) = const.
The first one clarifies the link with Aubin’s original definition of the distance between two transitions ϑ, τ
on a metric space (M,d), i.e. supy∈M lim suph ↓ 0

1
h · d (ϑ(h, y), τ(h, y)) (see [7], Definition 1.1.2).

In particular, the first upper bound of Q̃ε(ϑ̃, τ̃ ; z̃) does not depend on z̃ ∈ D̃.
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Such a dependence on the “test element” is preserved in the second estimate stated in Lemma 2.9. It
is based on comparing only the evolutions of “test elements” ϑ̃(t, z̃) ∈ D̃ for t ∈ [0,Tε(ϑ̃, z̃)[ and will
be useful for the examples of measure–valued flows in §§ 3, 4. This time however, we dispense with all
additional advantages of bounded growth that b·cε might provide.

Lemma 2.8 If αε(·, ·) = Mε = const, then

Q̃ε(ϑ̃, τ̃ ; z̃) ≤ supey ∈ eE lim sup
h ↓ 0

( eqε

(eϑ(h,ey), eτ(h,ey))
h (1 + beycε)

)+

+ 2 γε(ϑ̃) + γε(τ̃)

for all ϑ̃, τ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ), z̃ ∈ D̃, ε ∈ J .

Proof. It is not restrictive to assume additionally that the right–hand side is finite. For an upper
bound of Q̃ε(ϑ̃, τ̃ ; ·) on the basis of Def. 2.3, we choose ỹ ∈ Ẽ, z̃ ∈ D̃, t ∈ [0,Tε(ϑ̃, z̃)[ with t+π1z̃ ≤ π1ỹ

arbitrarily and consider now the auxiliary function ϕε : h 7−→ q̃ε(ϑ̃(t+h, z̃), τ̃(h, ỹ)). Property (7.) of
Definition 2.1 again implies ϕε(h) ≤ lim supk ↓ 0 ϕε(h − k) and thus enables us to apply Gronwall’s

Lemma 2.6 later. As an abbreviation, set here ∆̃ε(ϑ̃, τ̃) := supey ∈ eE lim sup
h ↓ 0

( eqε

(eϑ(h,ey), eτ(h,ey))
h (1 + beycε)

)+

< ∞ .

Choosing any h ∈ [0, Tε(ϑ̃, z̃) − t[ and any small δ > 0, the timed triangle inequality ensures for all
k > 0 sufficiently small (depending on t, h, δ)

ϕε(h+ k) = q̃ε

(
ϑ̃(t+h + k, z̃), τ̃(h+ k, ỹ)

)
≤ q̃ε

(
ϑ̃(t+h + k, z̃), ϑ̃(k, ϑ̃(t+h, z̃))

)
+ q̃ε

(
ϑ̃(k, ϑ̃(t+h, z̃)), ϑ̃(k, τ̃(h, ỹ))

)
+ q̃ε

(
ϑ̃(k, τ̃(h, ỹ)), τ̃(k, τ̃(h, ỹ))

)
+ q̃ε

(
τ̃(k, τ̃(h, ỹ)), τ̃(h+ k, ỹ)

)
≤ (γε(ϑ̃) + δ) · k

+ (Mε + δ) · k (ϕε(h) + γε(ϑ̃) · k) + ϕε(h) + γε(ϑ̃) · k
+ (∆̃ε(ϑ̃, τ̃) + δ) · k (1 + bτ̃(h, ỹ)cε)
+ (γε(τ̃) + δ) · k

and thus,
lim sup
k ↓ 0

ϕε(h+k)− ϕε(h)
k ≤ (Mε + δ) · ϕε(h) + (∆̃ε(ϑ̃, τ̃) + δ) (1 + bỹcε · eζε(eτ) ·h + ζε(τ̃) h)

+ 2 γε(ϑ̃) + γε(τ̃) + 2 δ.
So Gronwall’s Lemma 2.6 and δ ↓ 0 imply

ϕε(h) ≤ ϕε(0) · eMε·h + h · eMε ·h
(
∆̃ε(ϑ̃, τ̃) (1 + bỹcε · eζε(eτ) ·h + ζε(τ̃) h) + 2 γε(ϑ̃) + γε(τ̃)

)
.

Finally we conclude from Definition 2.3

Q̃ε(ϑ̃, τ̃ ; z̃) ≤ lim sup
h ↓ 0

ϕε(h)− ϕε(0) · eMε·h

h (1 + beycε) ≤ ∆̃ε(ϑ̃, τ̃) + 2 γε(ϑ̃) + γε(τ̃) 2

Lemma 2.9 If αε(·, ·) = Mε = const, then

Q̃ε(ϑ̃, τ̃ ; z̃) ≤ sup
0≤ t < Tε(eϑ,ez) lim sup

h ↓ 0

( eqε

(eϑ(h, eϑ(t,ez)), eτ(h, eϑ(t,ez)))
h

)+

+ γε(ϑ̃) + 2 γε(τ̃)

for all ϑ̃, τ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ), z̃ ∈ D̃, ε ∈ J .

Proof follows essentially the same track as for Lemma 2.8. Again ỹ ∈ Ẽ, z̃ ∈ D̃, t ∈ [0,Tε(ϑ̃, z̃)[ with
t+ π1z̃ ≤ π1ỹ are chosen arbitrarily, but now the auxiliary function ϕε : h 7−→ q̃ε(ϑ̃(t+h, z̃), τ̃(h, ỹ))
is estimated in a slightly different way :
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From now on, let ∆̃ε(ϑ̃, τ̃ ; z̃) denote the supremum on the right–hand side of the claim. Fixing any
h ∈ [0, Tε(ϑ̃, z̃)− t[ and any small δ > 0, we obtain for all k > 0 sufficiently small (depending on t, h, δ)

ϕε(h+ k) ≤ q̃ε

(
ϑ̃(t+h + k, z̃), ϑ̃(k, ϑ̃(t+h, z̃))

)
+ q̃ε

(
ϑ̃(k, ϑ̃(t+h, z̃)), τ̃(k, ϑ̃(t+h, z̃))

)
+ q̃ε

(
τ̃(k, ϑ̃(t+h, z̃)) τ̃(k, τ̃(h, ỹ))

)
+ q̃ε

(
τ̃(k, τ̃(h, ỹ)), τ̃(h+ k, ỹ)

)
≤ (γε(ϑ̃) + δ) · k

+ (∆̃ε(ϑ̃, τ̃ ; z̃)+ δ) · k
+ (Mε + δ) · k (ϕε(h) + γε(τ̃) · k) + ϕε(h) + γε(τ̃) · k
+ (γε(τ̃) + δ) · k

and thus, lim sup
k ↓ 0

ϕε(h+k)− ϕε(h)
k ≤ (Mε + δ) · ϕε(h) + ∆̃ε(ϑ̃, τ̃ ; z̃) + γε(ϑ̃) + 2 γε(τ̃) + 3 δ.

Again Gronwall’s Lemma 2.6 and δ ↓ 0 lead to

ϕε(h) ≤ ϕε(0) · eMε·h + h · eMε ·h
(
∆̃ε(ϑ̃, τ̃ ; z̃) + γε(ϑ̃) + 2 γε(τ̃)

)
and, the claim results from Definition 2.3 due to b·cε ≥ 0. 2

2.2 Defining timed right–hand sleek solutions

Now timed sleek transitions are used for specifying “first–order approximations” of a curve x̃(·) :
[0, T [ −→ Ẽ. Proposition 2.5 has just provided the structural estimate that we want to preserve. So
replacing τ̃(t2 + ·, ỹ) formally by x̃(t + ·), a sleek transition ϑ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ) can
be interpreted as “first–order approximation” of x̃(·) at time t ∈ [0, T [ if for all test elements z̃ ∈ D̃
(π1 z̃ ≤ π1 x̃(t)), infinitesimal h > 0 satisfy the corresponding estimate with the “distance term”
Q̃ε(ϑ̃, τ̃ ; z̃) equal to 0. This notion motivates the following definition :

Definition 2.10 The curve x̃(·) : [0, T [−→ (Ẽ, (q̃ε)ε∈J ) is called timed right–hand sleek primitive

of a map ϑ̃(·) : [0, T [−→ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ), abbreviated to
◦
x̃(·) 3 ϑ̃(·), if for each ε ∈ J ,

1. ∀ t ∈ [0, T [ ∀ z̃ ∈ D̃ with π1 z̃ ≤ π1 x̃(t) :

∃ α̂ε(t, z̃) ≥ αε(ϑ̃(t), z̃) ∃ γ̂ε(t, z̃) ≥ γε(ϑ̃(t)) :

lim sup
h ↓ 0

1
h

(
q̃ε

(
ϑ̃(t)

(
s+h, z̃

)
, x̃(t+h)

)
− q̃ε

(
ϑ̃(t) (s, z̃), x̃(t)

)
· ebαε(t,ez)·h )

≤ γ̂ε(t, z̃)

for every s ∈
[
0, Tε(ϑ̃(t), z̃)

[
with s+ π1 z̃ ≤ π1 x̃(t),

2. x̃(·) is uniformly continuous in time direction with respect to q̃ε,

i.e. there is ωε(x̃, ·) : ]0, T [−→ [0,∞[ such that lim sup
h ↓ 0

ωε(x̃, h) = 0,

q̃ε
(
x̃(s), x̃(t)

)
≤ ωε(x̃, t− s) for 0 ≤ s < t < T.

3. π1 x̃(t) = t + π1 x̃(0) for all t ∈ [0, T [.

Remark 2.11 Considering ϑ̃(·, ỹ) : [0, 1[−→ Ẽ for any ϑ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε), (b·cε)) and ỹ ∈ Ẽ fixed,
timed sleek transitions induce their own sleek primitives — as a direct consequence of Definition 2.1,
Proposition 2.5 and Lemma 2.7. Correspondingly, each piecewise constant function ϑ̃ : [0, T [ −→
Θ̃(Ẽ, D̃, (q̃ε)) has a timed right–hand sleek primitive that is defined piecewise as well.

Definition 2.12 For f̃ : Ẽ × [0, T [ −→ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ) given, a map x̃ : [0, T [ −→ Ẽ

is a timed right–hand sleek solution of the generalized mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·) if x̃(·) is

timed right–hand forward primitive of f̃(x̃(·), · ) in [0, T [.
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2.3 Existence of solutions due to timed transitional compactness

In particular, the new aspect of the additional term (1 + b·cε) does not have any consequence for
verifying the solution property if we suppose the parameter ζε(f̃(x̃, t)) to be uniformly bounded for all
x̃ ∈ Ẽ, t ∈ [0, T [. Briefly, all Euler approximations satisfy an obvious a priori estimate with respect to
b·cε (for each given initial element in Ẽ) as stated in Lemma 2.16. So the proofs of [15] lead directly
to the following Proposition 2.14 about existence :

Definition 2.13 Let Θ̃ denote a nonempty set of maps [0, 1]× Ẽ −→ Ẽ.(
Ẽ, (q̃ε)ε∈J , (b·cε)ε∈J , Θ̃

)
is called timed transitionally compact if it fulfills :

Let (x̃n)n∈N, (hj)j ∈N be any sequences in Ẽ, ]0, 1[, respectively and ṽ ∈ Ẽ with supn |π1 x̃n| <∞,

supn bx̃ncε <∞, supn q̃ε(ṽ, x̃n) <∞ for each ε ∈ J , hj −→ 0. Moreover suppose ϑ̃n : [0, 1] −→ Θ̃ to
be piecewise constant (for each index n ∈ N) and satisfy the following property : for every ε ∈ J , there
exists βε : [0, 1] −→ [0,∞[ with lim sups→0 βε(s) = 0 such that each curve ϑ̃n(t)(·, x̃) : [0, 1] −→ Ẽ

(with n ∈ N, t ∈ [0, 1], x̃ ∈ Ẽ) has the modulus of continuity (1 + bx̃cε) βε(·).
Each ϑ̃n induces a function ỹn(·) : [0, 1] −→ Ẽ with ỹn(0) = x̃n in the same (piecewise) way as timed
sleek transitions induce their own primitives according to Remark 2.11 (i.e. using ϑ̃n(tm) (·, ỹn(tm))
in each interval ]tm, tm+1] in which ϑ̃n(·) is constant).
Then there exist a sequence nk ↗∞ and x̃ ∈ Ẽ satisfying for each ε ∈ J ,

lim
k→∞

π1 x̃nk
= π1 x̃,

lim sup
k−→∞

bx̃nk
cε ≥ bx̃cε,

lim sup
k−→∞

q̃ε(x̃nk
, x̃) = 0,

lim sup
j−→∞

sup
k ≥ j

q̃ε(x̃, ỹnk
(hj)) = 0.

A nonempty subset F̃ ⊂ Ẽ is called timed transitionally compact in (Ẽ, (q̃ε), (b·cε), Θ̃) if the same
property holds for any sequence (x̃n)n∈N in F̃ (but x̃ ∈ F̃ is not required).

Proposition 2.14 (Existence of timed right–hand sleek solutions)

Assume that (Ẽ, (q̃ε)ε∈J , (b·cε)ε∈J , Θ̃(Ẽ, D̃, (q̃ε), (b·cε))) is timed transitionally compact. Let
f̃ : Ẽ × [0, T ] −→ Θ̃(Ẽ, D̃, (q̃ε), (b·cε)) fulfill for every ε ∈ J , z̃ ∈ D̃

1. Mε(z̃) := sup
t1,t2,ey1,ey2 {αε

(
f̃(ỹ1, t1), f̃(ỹ2, t2)(h, z̃)

)
| 0 ≤ h < Tε(f̃(ỹ2, t2), z̃)} < ∞,

2. cε(h) := sup
t,ey βε(f̃(ỹ, t))(h) < ∞, cε(h)

h↓0−→ 0

3. ∃ Rε : sup
t,ey γε(f̃(ỹ, t)) ≤ Rε <∞,

4. gε := sup
t,ey ζε(f̃(ỹ, t)) < ∞,

5. ∃ ω̂ε(·) : Q̃ε

(
f̃(ỹ1, t1), f̃(ỹ2, t2); z̃

)
≤ Rε + ω̂ε

(
q̃ε(ỹ1, ỹ2) + t2 − t1

)
for all 0 ≤ t1 ≤ t2 ≤ T and ỹ1, ỹ2 ∈ Ẽ (π1 ỹ1 ≤ π1 ỹ2),
ω̂ε(·) ≥ 0 nondecreasing, lim sup

s ↓ 0
ω̂ε(s) = 0.

Then for every x̃0 ∈ Ẽ, there is a timed right–hand sleek solution x̃ : [0, T [−→ Ẽ of the generalized

mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·) with x̃(0) = x̃0.
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Remark 2.15 The basic notion of its proof is easy to sketch. Indeed, we again start with Euler
approximations x̃n(·) : [0, T [−→ Ẽ (n ∈ N),

hn := T
2n , tjn := j hn for j = 0 . . . 2n,

x̃n(0) := x̃0, x̃0(·) := x̃0,

x̃n(t) := f̃(x̃n(tjn), t
j
n)

(
t− tjn, x̃n(t

j
n)

)
for t ∈ ]tjn, t

j+1
n ], j ≤ 2n.

Assumption (4.) and subsequent Lemma 2.16 imply the uniform estimate

bx̃n(t)cε ≤ (bx̃0cε + 2 gε T ) egε T for n ∈ N, t ∈ [0, T [.

As a key point, it lays the basis for applying earlier conclusions to the “bounded” subset {b·cε ≤
(bx̃0cε + 2 gε T ) egε T } ⊂ Ẽ (see [15] and references there). Roughly speaking, moduli of continuity
and the distances like Q̃ε( · , · ; z̃) occurring now just have to be multiplied by (bx̃0cε + 2 gε T ) egε T

(depending on the initial element) before applying former results. This is a basic idea for verifying most
of the subsequent propositions in § 2. It has already been mentioned just briefly in the example of
semilinear evolution equations in a reflexive Banach space, see [14].
With respect to the existence in Proposition 2.14, we proceed with the Euler approximations : As J
is assumed to be countable, Cantor diagonal construction in combination with timed transitional com-
pactness leads to a function x̃(·) : [0, T [ −→ Ẽ satisfying : For each ε ∈ J and j ∈ N, there exist
Kj ∈ N (depending on ε, j) and Nj ∈ N (depending on ε, j,Kj) such that Nj > Kj > Nj−1 and

∧


q̃ε

(
x̃Nj

(s− 2hKj
), x̃(s)

)
≤ 1

j

q̃ε
(
x̃(t), x̃Nj

(t+ 2hKj
)
)

≤ 1
j

bx̃(s)cε ≤ (bx̃0cε + 2 gε T ) egε T

for every s, t ∈ [0, T [. Due to [15], Convergence Theorem 3.10 for x̃Nj ( · + 2hNj + 2hKj ), the limit
function x̃(·) is a timed right–hand sleek solution. (For further details, see the proof of Prop. 36 in [13]
or the detailed proof of subsequent Proposition 2.17 postponed to the end of this subsection 2.3.)

Lemma 2.16 Under the assumptions of Proposition 2.14, the Euler approximations x̃n(·), n ∈ N,
defined in Remark 2.15 satisfy at each time t ∈ [0, T+hn]

bx̃n(t)cε ≤ bx̃0cε egε t + gε · (t+ hn) · egε t.

Proof results from condition (5.) of Definition 2.1. Indeed, for every j ∈ {0 ... 2n} and t ∈ ]tjn, t
j+1
n ],

bx̃n(t)cε ≤ bx̃n(tjn)cε · egε·(t−tjn) + gε · (t− tjn)
≤ bx̃n(tjn)cε · egε hn + gε · hn.

By means of induction with respect to j, we obtain (for each t ∈ ]tjn, t
j+1
n ] again)

bx̃n(t)cε ≤ bx̃0cε egε t +
j∑

k=0

gε hn egε·(j−k) hn

≤ bx̃0cε egε t + gε (t+hn) egε t. 2

The example of § 3, however, shows that the continuity assumption of Proposition 2.14 might be
difficult to verify – particularly if Q̃ε

(
f̃(ỹ1, t1), f̃(ỹ2, t2); z̃

)
can be estimated just independently of z̃, ε.

So we present an alternative hypothesis motivated by the notion to exploit information about distances
with respect to all ε ∈ J simultaneously.
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Proposition 2.17 Assume that (Ẽ, (q̃ε)ε∈J , (b·cε)ε∈J , Θ̃(Ẽ, D̃, (q̃ε), (b·cε))) is timed transi-
tionally compact. Let f̃ : Ẽ × [0, T ] −→ Θ̃(Ẽ, D̃, (q̃ε), (b·cε)) fulfill for every ε ∈ J , z̃ ∈ D̃

1. Mε(z̃) := sup
t1,t2,ey1,ey2 {αε

(
f̃(ỹ1, t1), f̃(ỹ2, t2)(h, z̃)

)
| 0 ≤ h < Tε(f̃(ỹ2, t2), z̃)} < ∞,

2. cε(h) := sup
t,ey βε(f̃(ỹ, t))(h) < ∞, cε(h)

h↓0−→ 0

3. ∃ Rε : sup
t,ey γε(f̃(ỹ, t)) ≤ Rε <∞,

4. gε := sup
t,ey ζε(f̃(ỹ, t)) < ∞,

5. lim sup
j−→∞

Q̃ε

(
f̃(ỹ1, t1), f̃(ỹj2, t

j
2); z̃

)
≤ Rε

for any t1 ∈ [0, T ], ỹ1 ∈ Ẽ and sequences (tj2)j ∈N in [0, T ], (ỹj2)j ∈N in Ẽ satisfying

t1 ≤ tj2, π1 ỹ1 ≤ π1 ỹ
j
2 ∀ j ∈ N, |t1 − tj2|

j→∞−→ 0, q̃ε′(ỹ1, ỹ
j
2)

j→∞−→ 0 ∀ ε′ ∈ J .

Then for every x̃0 ∈ Ẽ, there is a timed right–hand sleek solution x̃ : [0, T [−→ Ẽ of the generalized

mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·) with x̃(0) = x̃0.

For the purpose of a self–contained presentation here, we postpone a detailed proof of Proposition 2.17
till the end of this subsection 2.3. Using the same Euler approximations as in Remark 2.15, the key tool
now is to guarantee that the “limit function” x̃(·) : [0, T [−→ Ẽ is a (timed right–hand sleek) solution

of
◦
x̃(·) 3 f̃(x̃(·), ·). So we need a new convergence theorem with an adapted continuity assumption :

Proposition 2.18 (Convergence Theorem) For each ε ∈ J and z̃ ∈ D̃, assume the following
properties of f̃m, f̃ : Ẽ × [0, T [ −→ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)) (m ∈ N)

x̃m, x̃ : [0, T [ −→ Ẽ :

1. Mε(z̃) := sup
m,t,ey {αε

(
f̃m(ỹ, t), f̃(x̃(t), t)(h, z̃)

)
| 0 ≤ h < Tε(f̃(x̃(t), t), z̃)} < ∞,

Rε ≥ sup
m,t,ey,ez,h { γ̂ε(t, f̃m(x̃m, ·), f̃(x̃(t), t)(h, z̃)), γε(f̃m(ỹ, t)), γε(f̃(ỹ, t)) },

gε ≥ sup
m,t,ey

{
ζε(f̃m(ỹ, t))

}
2.

◦
x̃m (·) 3 f̃m(x̃m(·), ·) in [0, T [ , (in the sense of Definition 2.12)

3. ω̂ε(h) := sup
m

ωε(x̃m, h) < ∞ (moduli of continuity w.r.t. q̃ε), lim sup
h ↓ 0

ω̂ε(h) = 0,

4. ∀ 0 ≤ t1 < t2 < T ∃ (mj)j∈N, (δ′j)j∈N, (δj)j∈N with mj ↗∞, δj , δ
′
j ↘ 0

(i) lim sup
j−→∞

Q̃ε
(
f̃(x̃(t1), t1), f̃mj

(ỹj , sj); z̃
)
≤ Rε,

for any sequences sj ↓ t1 and (ỹj)j ∈N in Ẽ with π1 ỹj ↘ x̃(t1), q̃ε′(x̃(t1), ỹj)
j→∞−→ 0 ∀ ε′

(ii) q̃ε′
(
x̃(t1), x̃mj (t1+δ′j)

)
−→ 0 ∀ ε′ ∈ J , π1 x̃mj (t1+δ′j) ↘ π1 x̃(t1),

(iii) q̃ε
(
x̃mj

(t2−δj), x̃(t2)
)
−→ 0, π1 x̃mj

(t2−δj) ↗ π1 x̃(t2).

Then, x̃(·) is a timed right–hand sleek solution of
◦
x̃(·) 3 f̃(x̃(·), ·) in [0, T [.
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Proof of Proposition 2.18. The uniform continuity of x̃(·) results from assumption (3.) :
Each x̃m(·) satisfies q̃ε

(
x̃m(t1), x̃m(t2)

)
≤ ω̂ε(t2 − t1) for t1 < t2 < T .

Let ε ∈ J , 0 ≤ t1 < t2 < T be arbitrary and choose (δ′j)j∈N, (δj)j∈N, for t1, t2 (according to condi-
tion (5.ii), (5.iii)). For all j ∈ N large enough, we obtain t1 + δ′j < t2 − δj and so,
q̃ε

(
x̃(t1), x̃(t2)

)
≤ q̃ε

(
x̃(t1), x̃mj (t1+δ′j)

)
+ q̃ε

(
x̃mj (t1+δ′j), x̃mj (t2−δj)

)
+ q̃ε

(
x̃mj (t2−δj), x̃(t2)

)
≤ o(1) + ω̂ε(t2 − t1) + o(1) for j −→∞.

Now let ε ∈ J , z̃ ∈ D̃ and t ∈ [0, T [, 0 ≤ s < s+ h < Tε(f̃(x̃(t), t), z̃) be chosen arbitrarily with
s+ π1 z̃ ≤ π1 x̃(t). Condition (7.) of Definition 2.1 guarantees for all k ∈ ]0, h[ sufficiently small

q̃ε
(
f̃(x̃(t), t) (s+h, z̃), x̃(t+ h)

)
≤ q̃ε

(
f̃(x̃(t), t) (s+h−k, z̃), x̃(t+ h)

)
+ h2.

According to assumptions (4.ii) – (4.iii), there exist sequences (mj)j∈N, (δj)j∈N, (δ′j)j∈N satisfying
mj ↗∞, δj ↓ 0, δ′j ↓ 0, δj+δ′j < k and{

q̃ε
(
x̃mj

(t+h−δj), x̃(t+h)
)

−→ 0, π1 x̃mj
(t+h−δj) ↗ π1 x̃(t+h),

q̃ε′
(
x̃(t), x̃mj

(t+δ′j)
)

−→ 0 ∀ ε′ ∈ J , π1 x̃mj
(t+δ′j) ↘ π1 x̃(t).

Now subsequent Lemma 2.19 implies for all large j ∈ N (depending on ε, z̃, t, h, k),

q̃ε
(
f̃(x̃(t), t) (s+h, z̃), x̃(t+ h)

)
≤ q̃ε

(
f̃(x̃(t), t) (s+h−k, z̃), x̃mj (t+δ

′
j + h−k)

)
+ q̃ε

(
x̃mj (t+δ

′
j + h−k), x̃mj (t+h− δj)

)
+ q̃ε

(
x̃mj (t+h− δj), x̃(t+h)

)
+ h2

≤ q̃ε
(
f̃(x̃(t), t) (s, z̃), x̃mj

(t+δ′j)
)
· eMε(ez)·(h−k) +

+
∫ h−k

0

eMε(ez)·(h−k−σ)
(
Q̃ε

(
f̃(x̃(t), t), f̃mj

(x̃mj
, ·)

∣∣
t+δ′j+σ

; z̃
)
· (1+bz̃cε egε h+gε h) + 3Rε

)
dσ

+ ω̂ε(k − δj − δ′j)
+ q̃ε

(
x̃mj (t+h− δj), x̃(t+h)

)
+ h2

≤
(
q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) + q̃ε

(
x̃(t), x̃mj

(t+δ′j)
))

· eMε(ez)·(h−k) +

+
∫ h

0

eMε(ez)·(h−σ) Q̃ε
(
f̃(x̃(t), t), f̃mj (x̃mj , ·)

∣∣
t+δ′j+σ

; z̃
)
dσ · (1+bz̃cε egε h+gε h)

+ ω̂ε(k) + 2 h2 + const(ε, z̃) · h Rε

≤ q̃ε
(
f̃(x̃(t), t) (s, z̃), x̃(t)

)
· eMε(ez) h + ω̂ε(k) + 3 h2 + const(ε, z̃) · h Rε

+ h eMε(ez)·h sup
0 ≤σ≤h

Q̃ε
(
f̃(x̃(t), t), f̃mj (x̃mj , ·)

∣∣
t+δ′j+σ

; z̃
)
· (1+bz̃cε egε h+gε h)

First j −→∞ and then k −→ 0 provide the estimate

q̃ε
(
f̃(x̃(t), t) (s+h, z̃), x̃(t+ h)

)
≤ q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) · eMε(ez) h + 0 + const(ε, z̃) · h (Rε + h)

+ h eMε(ez) h · lim sup
j−→∞

sup
0≤σ≤h

Q̃ε
(
f̃(x̃(t), t), f̃mj (x̃mj , ·)

∣∣
t+δ′j+σ

; z̃
)
· (1+bz̃cε egε h+gε h).

Finally, due to an indirect conclusion, assumptions (4.i),(4.ii) and the equi–continuity of (x̃m) ensure

lim sup
h ↓ 0

lim sup
j−→∞

sup
0≤σ≤h

Q̃ε
(
f̃(x̃(t), t), f̃mj (x̃mj , ·)

∣∣
t+δ′j+σ

; z̃
)

≤ Rε

and thus,

lim sup
h ↓ 0

1
h

(
q̃ε

(
f̃(x̃(t), t)

(
s+h, z̃

)
, x̃(t+h)

)
− q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) · eMε(ez) h) ≤ const(ε, z̃) ·Rε.

2
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This lemma extends the structural estimate of Proposition 2.5 to the comparison between a test element
z̃ ∈ D̃ (evolving along a fixed transition ψ̃) and a timed sleek primitive x̃(·) :

Lemma 2.19 Suppose ψ̃ ∈ Θ̃(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ), t1 ∈ [0, 1[, t2 ∈ [0, T [, z̃ ∈ D̃.
Let x̃(·) : [0, T [−→ Ẽ be a timed sleek primitive of ϑ̃(·) : [0, T [−→ Θ̃(Ẽ, D̃, (q̃ε), (b·cε)) such that for
each ε ∈ J , t ∈ [0, T [, their parameters fulfill

∧


sup

0≤ s≤min{t,Tε( eψ,ez)} α̂ε(t, ψ̃(s, z̃)) ≤ Mε(t),

sup
0≤ s≤min{t,Tε( eψ,ez)} γ̂ε(t, ψ̃(s, z̃)) ≤ Rε(t),

Q̃ε(ψ̃, ϑ̃(t); z̃) ≤ cε(t)

with upper semicontinuous Mε, Rε, cε : [0, T [−→ [0,∞[. Set µε(h) :=
∫ t2+h

t2

Mε(s) ds.

Then, for every ε ∈ J and h ∈ ]0, T [ with t1 + h < Tε(ψ̃, z̃), t2 + h < T, t1 + π1 z̃ ≤ π1 x̃(t2)

q̃ε
(
ψ̃(t1+h, z̃), x̃(t2+h)

)
≤ q̃ε

(
ψ̃(t1, z̃), x̃(t2)

)
· eµε(h) +

∫ h

0

eµε(h)−µε(s)
(
cε(t2+s) · (1 + bz̃cε eζε( eψ)·(t1+s) + ζε(ψ̃) · (t1+s))

+ 3Rε(t2+s)
)
ds.

Proof. We follow the same track as in the proof of Proposition 2.5 and consider the function ϕε :
h 7−→ q̃ε(ψ̃(t1+h, z̃), x̃(t2+h)). Firstly, ϕε(h) ≤ lim supk ↓ 0 ϕε(h − k) results from condition (7.) on
timed sleek transitions (Definition 2.1) and the continuity of x̃(·).
Moreover we show for any h ∈ [0, T [ with t1 + h < Tε(ψ̃, z̃),

lim sup
k ↓ 0

ϕε(h+k)−ϕε(h)
k ≤ Mε(t2+h) · ϕε(h) + cε(t2+h) · (1+bψ̃(t1+h, z̃)cε) + 3Rε(t2+h).

In particular, it implies ϕε(h) ≥ lim supk ↓ 0 ϕε(h + k) since its right–hand side is finite. Thus,
the claim results from Gronwall’s Lemma 2.6 – after approximating Mε(·), Rε(·), cε(·) by continuous
functions from above.

For small k > 0, the timed triangle inequality and Proposition 2.5 guarantee

ϕε(h+k) ≤ q̃ε
(
ψ̃(t1+h+ k, z̃), ϑ̃(t2+h)

(
k, i eD ψ̃(t1+h, z̃)

))
+ q̃ε

(
ϑ̃(t2+ h)

(
k, i eD ψ̃(t1+h, z̃)

)
, ϑ̃(t2+h)

(
k, ψ̃(t1+h, z̃)

))
+ q̃ε

(
ϑ̃(t2+ h)

(
k, ψ̃(t1+h, z̃)

)
, x̃(t2 + h+ k)

)
≤

{
Q̃ε(ψ̃, ϑ̃(t2+h); z̃)

(
1+bψ̃(t1+h, z̃)cε · eζε(eϑ(t2+h)) k + ζε(ϑ̃(t2+h)) k

)
+ γ̂ε(t2+h, z̃)

}
eMε(t2+h)·k k

+ γε(ϑ̃(t2+h)) · k + o(k)

+ ϕε(h) ebαε(t2+h, eψ(t1+h, ez)) · k + γ̂ε(t2+h, ψ̃(t1+h, z̃)) · k + o(k)

≤ ϕε(h) eMε(t2+h) · k +
∣∣cε(t) · (1+bψ̃(t1+h, z̃)cε) + 3 Rε(t)

∣∣
t= t2+h

· k + o(k)

since t1 + h+ k < Tε(ψ̃, z̃) ≤ 1 implies ψ̃(t1+h, z̃), ψ̃(t1+h+k, z̃) ∈ D̃. 2

Proof of Proposition 2.17 is again based on Euler method for an approximating sequence (x̃n(·))
and Cantor diagonal construction for its limit x̃(·). For n∈N (2n>T ) set

hn := T
2n , tjn := j hn for j = 0 . . . 2n,

x̃n(0) := x̃0, x̃0(·) := x̃0,

x̃n(t) := f̃(x̃n(tjn), t
j
n)

(
t− tjn, x̃n(t

j
n)

)
for t ∈ ]tjn, t

j+1
n ], j ≤ 2n.

The modulus of continuity cε(·) can be replaced by a nondecreasing convex function [0, T+1] −→ [0,∞[
such that all x̃n(·) satisfy q̃ε

(
x̃n(s), x̃n(t)

)
≤ cε(t− s) for any 0 ≤ s < t < T + hn and ε ∈ J .
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Since J is countable there is a sequence (jk)k∈N with {j1, j2 . . . } = J ⊂ [0, 1]K . Now for every
t ∈ ]0, T [, choose a decreasing sequence (δk(t))k∈N in Q · T satisfying

0 < δk(t) < hk

2 , t+ δk(t) < T, cεj
(δk(t)) < hk for any j ∈ {j1 . . . jk}.

Then, q̃εj

(
x̃n(t), x̃n(t+ δk(t))

)
≤ hk for any j ∈ {j1 . . . jk}, k, n ∈ N

and so q̃ε
(
x̃n(t), x̃n(t+ δk(t))

)
−→ 0 (k −→∞) for every ε ∈ J , uniformly in n.

For each t ∈]0, T [ and any fixed ε ∈ J , the timed transitional compactness provides sequences mk ↗∞,

nk ↗∞ (mk ≤ nk) of indices and an element x̃(t) ∈ Ẽ (independent of ε) satisfying for every k ∈ N

∧


sup
l≥ k

q̃ε
(
x̃nl

(t), x̃(t)
)

≤ 1
k ,

sup
l≥ k

q̃ε
(
x̃(t), x̃nl

(t+ δmk
(t))

)
≤ 1

k .

(In particular, each mk, nk may be replaced by larger indices preserving the properties.) For arbitrary
κ ∈ N, these sequences mk, nk ↗∞ can even be chosen in such a way that the estimates are fulfilled
for the finite set of parameters t ∈ Qκ := ]0, T [ ∩ N · hκ and ε ∈ Jκ := {εj1 , εj2 . . . εjκ} ⊂ J
simultaneously.

Now the Cantor diagonal construction (with respect to the index κ) provides subsequences (again
denoted by) mk, nk ↗∞ such that mk ≤ nk,

∧


sup
l≥ k

q̃ε
(
x̃nl

(t), x̃(t)
)

≤ 1
k

sup
l≥ k

q̃ε
(
x̃(s), x̃nl

(s+ δmk
(s))

)
≤ 1

k

for every κ ∈ N and all ε ∈ Jκ, s, t ∈ Qκ, k ≥ κ.

In particular, q̃ε(x̃(s), x̃(t)) ≤ cε(t− s) for any s, t ∈ QN :=
⋃
κ Qκ with s < t and every ε ∈ J .

Moreover, the sequence (x̃nk
(·))k∈N fulfills for every κ ∈ N and all t ∈ Qκ, ε ∈ Jκ, k, l ≥ κ

q̃ε
(
x̃nk

(t), x̃nl
(t+ δml

(t))
)
≤ 1

k + 1
l .

For extending x̃(·) to t ∈ ]0, T [\QN, we apply the timed transitional compactness to ((x̃nk
(t))k∈N

and obtain a subsequence nlj ↗∞ of indices (depending on t) and some x̃(t)∈ Ẽ satisfying ∀ ε ∈ J

∧

 q̃ε
(
x̃nlj

(t), x̃(t)
)

−→ 0,

sup
i≥ j

q̃ε
(
x̃(t), x̃nli

(t+ δmj (t))
)

−→ 0 for j −→∞.

This implies the following convergence even uniformly in t (but not necessarily in ε ∈ J )

∧


lim sup
κ−→∞

sup
k>κ

q̃ε
(
x̃nk

(t− 2hκ), x̃(t)
)

= 0,

lim sup
κ−→∞

sup
k>κ

q̃ε
(
x̃(t), x̃nk

(t+ 2hκ)
)

= 0.
(∗)

Indeed, for κ ∈ N fixed arbitrarily and any t ∈ ]0, T [, there exists s = s(t, κ) ∈ Qκ with

t− 2hκ < s ≤ t− hκ and q̃ε
(
x̃nk

(s), x̃nl
(s+ δml

(s))
)
≤ 1

k + 1
l for all k, l ≥ κ.

So for any k, lj ≥ κ, we conclude from δmlj
(·) < 1

2 hmlj
≤ 1

2 hlj ≤
1
2 hκ

q̃ε
(
x̃nk

(t− 2hκ), x̃(t)
)

≤ q̃ε
(
x̃nk

(t− 2hκ), x̃nk
(s)

)
+ q̃ε

(
x̃nk

(s), x̃nlj
(s+ δmlj

(s))
)

+ q̃ε
(
x̃nlj

(s+ δmlj
(s)), x̃nlj

(t)
)

+ q̃ε
(
x̃nlj

(t), x̃(t)
)

≤ cε(hκ) + 1
k + 1

lj
+ cε(2hκ) + q̃ε

(
x̃nlj

(t), x̃(t)
)

and j−→∞ leads to the estimate q̃ε
(
x̃nk

(t− 2hκ), x̃(t)
)
≤ 2 cε(2hκ) + 2

κ .

The proof of lim sup
κ−→∞

sup
k>κ

q̃ε
(
x̃(t), x̃nk

(t+2hκ)
)

= 0 is analogous.
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We reformulate the convergence property (∗) in the following notation: For each ε ∈ J and j ∈ N,
there exists some Kε,j ∈ N satisfying Kε,j > Kε, j−1 and for all s, t ∈ [0, T [, k ≥ κ ≥ Kε,j ,

∧

 q̃ε
(
x̃nk

(s− 2hκ), x̃(s)
)

≤ 1
j

q̃ε
(
x̃(t), x̃nk

(t+ 2hκ)
)

≤ 1
j .

Now Cantor diagonal construction provides a sequence Ki ↗ ∞ with the corresponding property
independent of ε ∈ J (in addition), i.e. for each i ∈ N, the index Ki ∈ N has to satisfy for all
s, t ∈ [0, T [, ε ∈ Ji

Def.= {εj1 . . . εji} ⊂ J , k ≥ κ ≥ Ki

∧

 q̃ε
(
x̃nk

(s− 2hκ), x̃(s)
)

≤ 1
j

q̃ε
(
x̃(t), x̃nk

(t+ 2hκ)
)

≤ 1
j .

Convergence Theorem 2.18 states that x̃(·) is a timed right–hand forward solution of the generalized

mutational equation
◦
x̃(·) 3 f̃(x̃, ·).

Indeed, set Nj := nKj as an abbreviation. Define g̃j : (ỹ, t) 7−→ f̃
(
x̃Nj (t

a+2
Nj

+2 hKj ), t
a+2
Nj

+2 hKj

)
for

taNj
≤ t<ta+1

Nj
and consider the sequence t 7−→ x̃Nj

(t+ 2hNj
+ 2hKj

) of solutions.

Obviously conditions (1.), (2.), (3.) of Proposition 2.18 result from the hypotheses here. For verifying
its assumption (4.), we benefit from the convergence properties of the subsequence (x̃Nj )j ∈N mentioned
before. It ensures that for any ỹ ∈ Ẽ, z̃ ∈ D̃ and s, t ∈ [0, T [ (with taNj

≤ t < ta+1
Nj

),

Q̃ε
(
f̃(x̃(s), s), g̃j(ỹ, t); z̃

)
= Q̃ε

(
f̃ (x̃(s), s) , f̃

(
x̃Nj

(ta+2
Nj

+2hKj
), ta+2

Nj
+2hKj

)
; z̃

)
and, q̃ε′

(
x̃(s), x̃Nj

(ta+2
Nj

+2hKj
)
)
≤ q̃ε′

(
x̃(s), x̃Nj

(s+ 2hKj
)
)

+ cε′(t− s+ 2hNj
) −→ 0 ∀ ε′ ∈ J∣∣s − (ta+2

Nj
+2hKj )

∣∣ ≤ |s− t| + 2hNj + 2hKj −→ 0

for t ↓ s, j −→ ∞. So the last (missing) assumption (4.i) of Convergence Theorem 2.18 results
directly from hypothesis (5.) and, the proof of Proposition 2.17 is finished. 2

2.4 Introducing “weak” transitional compactness

Now the examples of § 3 and § 4 demonstrate the key role of sequential compactness. In fact, it might
be very difficult (or even impossible) to take the convergence with respect to each q̃ε into consideration
simultaneously. Thus, we weaken previous definitions of “timed transitionally compact” – following an
idea that has already been initiated in [15], Definition 3.16.
Usually the concepts of “weak” convergence and “weak” compactness are closely related to linear forms
in a topological vector space. But linear forms do not provide an adequate starting point for extending
these concepts to ostensible metric spaces. Thus, we suggest another well–known relation of linear func-
tional analysis as motivation : In every Banach space (X, ‖ · ‖X), the norm of any element z satisfies

‖z‖X = sup
{
y∗(z)

∣∣ y∗ : X −→ R linear, continuous, ‖y∗‖X∗ ≤ 1
}
.

So the key notion we seize here is to represent the each ostensible metric as supremum of (countably
many) generalized distance functions, i.e. q̃ε = supκ∈I q̃ε,κ. Considering the convergence with
respect to each q̃ε,κ (instead of q̃ε) lays the basis of “weak compactness”.
In return for weaker conditions on convergence, more “structural” assumptions about each q̃ε and a
“retraction” i eE : Ẽ −→ D̃ are used for proving existence of solutions.
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Definition 2.20 Let Θ̃ denote a nonempty set of maps [0, 1]× Ẽ −→ Ẽ. Suppose q̃ε = supκ∈I q̃ε,κ
with (at most) countably many q̃ε,κ : (D̃ ∪ Ẽ)× (D̃ ∪ Ẽ) −→ [0,∞[ (ε ∈ J , κ ∈ I).(
Ẽ, (q̃ε)ε∈J , (q̃ε,κ) ε∈J

κ∈I
, (b·cε)ε∈J , Θ̃

)
is called weakly timed transitionally compact if it fulfills :

Let (x̃n)n∈N, (hj)j ∈N and ϑ̃n : [0, 1] −→ Θ̃, ỹn(·) : [0, 1] −→ Ẽ (for each n ∈ N) satisfy the
assumptions of Definition 2.13. Then there exist a sequence nk ↗∞ and x̃ ∈ Ẽ such that for each
ε ∈ J , κ ∈ I, lim

k→∞
π1 x̃nk

= π1 x̃,

lim sup
k−→∞

bx̃nk
cε ≥ bx̃cε,

lim sup
k−→∞

q̃ε,κ(x̃nk
, x̃) = 0,

lim sup
j−→∞

sup
k ≥ j

q̃ε,κ(x̃, ỹnk
(hj)) = 0.

A nonempty subset F̃ ⊂ Ẽ is called weakly timed transitionally compact in (Ẽ, (q̃ε), (q̃ε,κ), (b·cε), Θ̃)
if the same property holds for any sequence (x̃n)n∈N in F̃ (but x̃ ∈ F̃ is not required).

Proposition 2.21 (Existence due to weak transitional compactness)

Assume q̃ε = supκ∈I q̃ε,κ with (at most) countably many q̃ε,κ : (D̃∪Ẽ)2 −→ [0,∞[ (ε ∈ J , κ ∈ I)
such that each κ ∈ I has counterparts κ1, κ2 ∈ I fulfilling for all ỹ1, ỹ2, ỹ3 ∈ D̃ ∪ Ẽ (π1 ỹj ≤ π1 ỹj+1)

q̃ε,κ(ỹ1, ỹ3) ≤ q̃ε,κ1(ỹ1, ỹ2) + q̃ε,κ2(ỹ2, ỹ3).

Moreover let i eE : Ẽ −→ D̃ be a “retraction” in the sense that for all ỹ, ỹ′ ∈ Ẽ, ε ∈ J, κ ∈ I
i eD i eE ỹ = ỹ, q̃ε,κ

(
i eE ỹ, i eE ỹ′) ≤ const(ε, κ) · q̃ε,κ

(
ỹ, ỹ′

)
, bi eE ỹcε ≤ bỹcε, Tε(·, i eE ỹ) ≥ T̂ε ∈ ]0, 1[.

Suppose
(
Ẽ, (q̃ε)ε∈J , (q̃ε,κ) ε∈J

κ∈I
, (b·cε)ε∈J , Θ̃(Ẽ, D̃, (q̃ε), (b·cε))

)
to be weakly timed transitionally

compact. Let f̃ : Ẽ × [0, T ] −→ Θ̃(Ẽ, D̃, (q̃ε), (b·cε)) fulfill for every ε ∈ J , κ ∈ I, z̃ ∈ D̃

1. Mε := sup
t1,t2,ey1,ey2,ez αε

(
f̃(ỹ1, t1), z̃

)
< ∞,

∃ Mε,κ : sup
t,ey q̃ε,κ

(
f̃(ỹ, t) (h, z̃1), f̃(ỹ, t) (h, z̃2)

)
≤ q̃ε,κ(z̃1, z̃2) · eMε,κ h ∀ z̃1, z̃2 ∈ D̃, h ≤ T̂ε

2. cε(h) := sup
t,ey βε(f̃(ỹ, t))(h) < ∞, cε(h)

h↓0−→ 0

3. ∃ Rε : sup
t,ey γε(f̃(ỹ, t)) ≤ Rε <∞,

4. gε := sup
t,ey ζε(f̃(ỹ, t)) < ∞,

5. lim sup
j−→∞

Q̃ε

(
f̃(ỹ, t), f̃(ỹj , tj); i eE ṽj

)
≤ Rε for any tj ↘ t and ỹ, ỹj , ṽj ∈ Ẽ (j ∈ N)

with q̃ε′,κ′(ỹ, ỹj) −→ 0, q̃ε′,κ′(ỹ, ṽj) −→ 0 ∀ ε′ ∈ J , κ′ ∈ I, π1 ỹj , π1 ṽj ↘ π1 ỹ,

Then for every x̃0 ∈ Ẽ, there is a timed right–hand sleek solution x̃ : [0, T [−→ Ẽ of the generalized

mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·) with x̃(0) = x̃0.

The proof is based on the same Euler approximations x̃n(·) : [0, T [ −→ Ẽ (n ∈ N) as in Remark 2.15
– again in combination with Cantor diagonal construction (see the proof of Proposition 2.17). Due to
the “weak” form of compactness (i.e. with respect to every q̃ε,κ instead of q̃ε), we only have to modify
the conclusion that the limiting function x̃(·) : [0, T [−→ Ẽ is a timed right–hand sleek solution.
So an adapted convergence theorem is required. Its proof would like to follow the same track as for
Proposition 2.18 – just implementing the index κ ∈ I (and its dependence on other indices) in addition.
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The obstacle, however, is that the structural estimate (as in Proposition 2.5 or Lemma 2.19) is only
available with respect to q̃ε, Q̃ε and, roughly speaking, there is no obvious way “back” to some q̃ε,κ for
which the convergence of sequences is assumed. Thus, the “retraction” i eE : Ẽ −→ D̃ is introduced.

Proposition 2.22 (“Weak” Convergence Theorem)
In addition to the general assumptions at the beginning of § 2, suppose q̃ε = supκ∈I q̃ε,κ with (at
most) countably many q̃ε,κ : (D̃ ∪ Ẽ)2 −→ [0,∞[ (ε ∈ J , κ ∈ I) such that each κ ∈ I has counterparts
κ1, κ2 ∈ I fulfilling for all ỹ1, ỹ2, ỹ3 ∈ D̃ ∪ Ẽ (π1 ỹj ≤ π1 ỹj+1)

q̃ε,κ(ỹ1, ỹ3) ≤ q̃ε,κ1(ỹ1, ỹ2) + q̃ε,κ2(ỹ2, ỹ3).

Moreover let i eE : Ẽ −→ D̃ be a “retraction” in the sense that for all ỹ, ỹ′ ∈ Ẽ, ε ∈ J, κ ∈ I
i eD i eE ỹ = ỹ, q̃ε,κ

(
i eE ỹ, i eE ỹ′) ≤ const(ε, κ) · q̃ε,κ

(
ỹ, ỹ′

)
, bi eE ỹcε ≤ bỹcε, Tε(·, i eE ỹ) ≥ T̂ε ∈ ]0, 1[.

For each ε ∈ J, κ ∈ I, assume the following properties of

f̃m, f̃ : Ẽ × [0, T [ −→ Θ̃
(
Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J

)
(m ∈ N)

x̃m, x̃ : [0, T [ −→ Ẽ :

1. Mε := sup
m,t,ey,ez

{
αε

(
f̃m(ỹ, t), z̃

)}
< ∞,

Rε ≥ sup
m,t,ey,ez,h

{
γ̂ε(t, f̃m(x̃m, ·), z̃), γε(f̃m(ỹ, t)), γε(f̃(ỹ, t))

}
,

gε ≥ sup
m,t,ey

{
ζε(f̃m(ỹ, t))

}
∃ Mε,κ : sup

t,ey q̃ε,κ
(
f̃(ỹ, t) (h, z̃1), f̃(ỹ, t) (h, z̃2)

)
≤ q̃ε,κ(z̃1, z̃2) · eMε,κ h ∀ z̃1, z̃2 ∈ D̃, h ≤ T̂ε

2.
◦
x̃m (·) 3 f̃m(x̃m(·), ·) in [0, T [ , (in the sense of Definition 2.12)

3. ω̂ε(h) := sup
m

ωε(x̃m, h) < ∞ (moduli of continuity w.r.t. q̃ε), lim sup
h ↓ 0

ω̂ε(h) = 0,

nε := sup
m,t

bx̃m(t)cε < ∞,

4. ∀ 0 ≤ t1 < t2 < T ∃ (mj)j∈N, (δ′j)j∈N, (δj)j∈N with mj ↗∞, δj , δ
′
j ↘ 0

(i) lim sup
j−→∞

Q̃ε
(
f̃(x̃(t1), t1), f̃mj

(ỹj , sj); i eE x̃mj
(t1+δ′j)

)
≤ Rε,

for any sequences sj ↓ t1, (ỹj) in Ẽ s.t. π1 ỹj ↘ π1 x̃(t1), q̃ε′,κ′(x̃(t1), ỹj)
j→∞−→ 0 ∀ ε′, κ′

(ii) q̃ε′,κ′
(
x̃(t1), x̃mj (t1+δ′j)

)
−→ 0 ∀ ε′ ∈ J , κ′ ∈ I, π1 x̃mj (t1+δ′j) ↘ π1 x̃(t1),

(iii) q̃ε,κ
(
x̃mj

(t2−δj), x̃(t2)
)
−→ 0, π1 x̃mj

(t2−δj) ↗ π1 x̃(t2).

Then, x̃(·) is a timed right–hand sleek solution of
◦
x̃(·) 3 f̃(x̃(·), ·) in [0, T [.

Remark 2.23 “Continuity” assumption (5.) of existence theorem 2.21 can be slightly weakened
– as a consequence of both condition (4.i) of this adapted convergence theorem and the Euler approxi-
mations (presented in the proof of Proposition 2.17). Indeed, for any initial element x̃0 ∈ Ẽ given, it
suffices to consider only sequences (vj)j∈N in Ẽ satisfying bṽjcε ≤ bx̃0cε egε 2T + gε 2T for each j, ε
(in addition to q̃ε′,κ′(ỹ, ṽj) −→ 0 for all ε′ ∈ J , κ′ ∈ I, π1 ṽj ↘ π1 ỹ).
This modification will be useful in § 4 because in the particular example of Proposition 4.10, continuity
assumptions are formulated for an upper bound of Q̃ε

(
f̃(ỹ, t), f̃(ỹj , tj); i eE ṽj) independent of ṽj , ε.



2.4 Introducing “weak” transitional compactness 19

Proof of Proposition 2.22 The uniform continuity of x̃(·) w.r.t. each q̃ε results from assumption (3.):
Each x̃m(·) satisfies q̃ε

(
x̃m(t1), x̃m(t2)

)
≤ ω̂ε(t2 − t1) for 0 ≤ t1 < t2 < T .

Let ε ∈ J, κ ∈ I, 0 ≤ t1 < t2 < T be arbitrary. Choose κ1, κ2, κ3 ∈ I as counterparts of κ ∈ I due
to applying the timed triangle inequality twice. Furthermore t1, t2 induce sequences (δ′j)j∈N, (δj)j∈N,

according to condition (4.ii), (4.iii). For all j ∈ N large enough, we obtain t1 + δ′j < t2 − δj and so,
q̃ε,κ

(
x̃(t1), x̃(t2)

)
≤ q̃ε,κ1

(
x̃(t1), x̃mj (t1+δ′j)

)
+ q̃ε,κ2

(
x̃mj (t1+δ′j), x̃mj (t2−δj)

)
+ q̃ε,κ3

(
x̃mj (t2−δj), x̃(t2)

)
≤ o(1) + ω̂ε(t2 − t1) + o(1) for j −→∞.

First we focus on the “test element” i eE x̃(t) ∈ D̃ for any t ∈ [0, T [ and choose ε ∈ J , 0 ≤ h < T̂ε
arbitrarily. Condition (7.) of Definition 2.1 ensures for all k ∈ ]0, h[ sufficiently small

q̃ε
(
f̃(x̃(t), t) (h, i eE x̃(t)), x̃(t+ h)

)
≤ q̃ε

(
f̃(x̃(t), t) (h−k, i eE x̃(t)), x̃(t+ h)

)
+ 1

2 h
2

Now fix κ ∈ I (depending on ε, t, h, k) such that

q̃ε
(
f̃(x̃(t), t) (h, i eE x̃(t)), x̃(t+ h)

)
≤ q̃ε,κ

(
f̃(x̃(t), t) (h−k, i eE x̃(t)), x̃(t+ h)

)
+ h2

and, κ1, κ2, κ3, κ4∈I denote its counterparts due to applying the timed triangle inequality three times.
According to assumptions (4.i) – (4.iii), there exist sequences (mj)j∈N, (δj)j∈N, (δ′j)j∈N satisfying
mj ↗∞, δj ↓ 0, δ′j ↓ 0, δj+δ′j < k and{

q̃ε,κ4

(
x̃mj (t+h−δj), x̃(t+h)

)
−→ 0, π1 x̃mj (t+h−δj) ↗ π1 x̃(t+h),

q̃ε′,κ′
(
x̃(t), x̃mj

(t+δ′j)
)
−→ 0 ∀ ε′ ∈ J , κ′ ∈ I, π1 x̃mj

(t+δ′j) ↘ π1 x̃(t).

Thus, Proposition 2.5 and Lemma 2.19 imply for all large j ∈ N (depending on ε, κ, t, h, k),

q̃ε
(
f̃(x̃(t), t) (h, i eE x̃(t)), x̃(t+ h)

)
≤ q̃ε,κ

(
f̃(x̃(t), t) (h−k, i eE x̃(t)), x̃(t+ h)

)
+ h2

≤ q̃ε,κ1

(
f̃(x̃(t), t) (h−k, i eE x̃(t)), f̃(x̃(t), t) (h−k, i eE x̃mj

(t+δ′j))
)

+ q̃ε,κ2

(
f̃(x̃(t), t) (h−k, i eE x̃mj (t+δ

′
j)), x̃mj (t+δ

′
j + h−k)

)
+ q̃ε,κ3

(
x̃mj (t+δ

′
j + h−k), x̃mj (t+h− δj)

)
+ q̃ε,κ4

(
x̃mj (t+h− δj), x̃(t+h)

)
+ h2

≤ q̃ε,κ1

(
i eE x̃(t), i eE x̃mj

(t+ δ′j)
)
· eMε,κ1 ·(h−k)

+ q̃ε
(
f̃(x̃(t), t) (h−k, i eE x̃mj

(t+δ′j)), x̃mj
(t+δ′j + h−k)

)
+ ω̂ε(k − δj − δ′j) + q̃ε,κ4

(
x̃mj

(t+h− δj), x̃(t+h)
)

+ h2

≤ const(ε, κ1) · q̃ε,κ1

(
x̃(t), x̃mj (t+ δ′j)

)
· eMε,κ1h

+
∫ h−k

0

eMε·(h−k−s)
{
Q̃ε

(
f̃(x̃(t), t), f̃mj

(x̃mj
, ·)

∣∣
t+δ′j+s

; i eE x̃mj
(t+δ′j)

)
·(

1 + bi eE x̃mj (t+δ
′
j)cε egε·(h−k) + gε · (h−k)

)
+ 3Rε

}
ds

+ ω̂ε(k − δj − δ′j) + q̃ε,κ4

(
x̃mj

(t+h− δj), x̃(t+h)
)

+ h2

Now j −→∞ (with ε, t, h, k still fixed) leads to an estimate not depending on κ any longer

q̃ε
(
f̃(x̃(t), t) (h, i eE x̃(t)), x̃(t+ h)

)
≤ ω̂ε(k) + h2 +

+ h eMε h · lim sup
j−→∞

sup
s≤h

Q̃ε

(
f̃(x̃(t), t), f̃mj

(x̃mj
, ·)

∣∣
t+δ′j+s

; i eE x̃mj
(t+δ′j)

) (
1 + nε e

gε h + gε h
)

and, convergence assumption (4.i) implies (indirectly)

lim sup
h ↓ 0

lim sup
j−→∞

sup
0≤ s≤h

Q̃ε

(
f̃(x̃(t), t), f̃mj (x̃mj , ·)

∣∣
t+δ′j+s

; i eE x̃mj (t+δ
′
j)

)
≤ Rε.

So after k −→ 0, we obtain lim sup
h ↓ 0

1
h · q̃ε

(
f̃(x̃(t), t) (h, i eE x̃(t)), x̃(t+ h)

)
≤ Rε · (1 + nε).
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For verifying the solution property of x̃(·) at time t, let z̃ ∈ D̃ and s ∈
[
0,Tε(f̃(x̃(t), t), z̃)

[
be

arbitrary with s + π1 z̃ ≤ π1 x̃(t). Then, Proposition 2.5, Lemma 2.7 and conditions (2.), (9.) of
Definition 2.1 (applied to i eD i eE x̃(t) = x̃(t)) imply

lim sup
h ↓ 0

1
h ·

(
q̃ε

(
f̃(x̃(t), t) (s+h, z̃), x̃(t+ h)

)
− q̃ε

(
f̃(x̃(t), t) (s, z̃), x̃(t)

)
· eMε h

)
≤ lim sup

h ↓ 0

1
h ·

(
q̃ε

(
f̃(x̃(t), t) (s+h, z̃), f̃(x̃(t), t) (h, x̃(t))

)
− q̃ε

(
f̃(x̃(t), t) (s, z̃), x̃(t)

)
· eMε h

+ q̃ε
(
f̃(x̃(t), t) (h, x̃(t)), f̃(x̃(t), t) (h, i eE x̃(t))) +

+ q̃ε
(
f̃(x̃(t), t) (h, i eE x̃(t)), x̃(t+ h)

) )
≤ Q̃ε

(
f̃(x̃(t), t), f̃(x̃(t), t); z̃

)
· (1 + bx̃(t)cε) + 3 γε

(
f̃(x̃(t), t)

)
+ Rε · (1 + nε)

≤ Rε · 6 (1 + nε + bx̃(t)cε) 2

2.5 Estimates comparing solutions

Finally, we are interested in bounds of the distance between solutions. However, estimating the distance
between points of timed sleek transitions is available only for “test elements” of D̃ in the first argument
of q̃ε (as in Proposition 2.5 and Lemma 2.19). So we are using an auxiliary function instead of the
distance. In the examples of the next sections, the following estimate implies uniqueness of solutions.
Here assumptions about the time parameter Tε(·, ·) > 0 come into play for the first time.

Proposition 2.24 (Estimate between timed right–hand sleek solutions)
Assume for f̃ : (D̃ ∪ Ẽ)× [0, T ] −→ Θ̃(Ẽ, D̃, (q̃ε), (b·cε)), x̃, ỹ : [0, T [−→ Ẽ and some ε ∈ J , ρ ≥ 0

1.
◦
x̃(·) 3 f̃(x̃(·), · ),

◦
ỹ (·) 3 f̃(ỹ(·), · ) in [0, T [ (in the sense of Def. 2.12), π1 x̃(0) = π1 ỹ(0) = 0,

2. Mε ≥ supev∈ eD∪ eE, t<T, ez∈ eD
{
αε(f̃(ṽ, t), z̃), α̂ε(t, x̃(·), z̃), α̂ε(t, ỹ(·), z̃)

}
,

3. Rε ≥ supev∈ eD∪ eE, t<T, ez∈ eD
{
γε(f̃(ṽ, t)), γ̂ε(t, x̃(·), z̃), γ̂ε(t, ỹ(·), z̃)

}
4. gε ≥ supev∈ eD∪ eE, t<T

{
ζε(f̃(ṽ, t))

}
5. ∃ ω̂ε(·) = o(1), Lε : Q̃ε

(
f̃(z̃, s), f̃(ṽ, t); z̃

)
≤ Rε + Lε · q̃ε(z̃, ṽ) + ω̂ε(t− s)

for all 0 ≤ s ≤ t ≤ T and ṽ ∈ Ẽ, z̃ ∈ D̃ with π1 z̃1 ≤ π1 ṽ,

6. ∀ t ∈ [0, T [ : the infimum ϕε(t) := infez∈ eD: π1 ez≤ t,

bezcε ≤ ρ · exp(gε t)+gε t

(
q̃ε(z̃, x̃(t)) + q̃ε(z̃, ỹ(t))

)
<∞

can be approximated by a minimizing sequence (z̃j)j ∈N in D̃ with

π1z̃j ≤ π1z̃j+1 ≤ t, bz̃jcε ≤ ρ egε·t + gε t,
supk > j eqε(ezj ,ezk)

Tε( ef(ezj ,t), ezj)

j→∞−→ 0.

Then, ϕε(t) ≤
(
ϕε(0) + 8Rε (1+ρ) · t

)
· e(Lε (1+ρ) +Mε) · t.

Proof is based on a further subdifferential version of Gronwall’s Lemma quoted in Lemma 2.25.
ϕε(·) satisfies ϕε(t) ≤ lim inf

h ↓ 0
ϕε(t− h) for every t ∈ ]0, T [ due to the timed triangle inequality and

the continuity of x̃(·), ỹ(·) (in time direction).
For showing lim inf

h ↓ 0

ϕε(t+h)− ϕε(t)
h ≤ (Lε (1+ρ) + Mε) · ϕε(t) + 8Rε (1+ρ) .

let (z̃j)j ∈N denote a minimizing sequence in D̃ such that

∧


π1 z̃j ≤ π1 z̃k ≤ t, bz̃jcε ≤ ρ egε t + gε t

q̃ε(z̃j , z̃k) ≤ 1
2 j · Tε(f̃(z̃j , t), z̃j)

for all j < k,

q̃ε(z̃j , x̃(t)) + q̃ε(z̃j , ỹ(t)) −→ ϕε(t) (j −→∞).
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For all h < Tε(f̃(z̃j , t), z̃j), j < k, Lemma 2.19 and assumption (5.) imply

q̃ε

(
f̃(z̃j , t) (h, z̃j), x̃(t+h)

)
− q̃ε

(
z̃j , x̃(t)

)
· eMε h

≤
∫ h

0

eMε · (h−s)
{(
Rε + Lε · q̃ε (z̃j , x̃(t+s)) + ω̂ε(s)

)
·

(
1 + bz̃jcε egε s + gε s

)
+ 3Rε

}
ds

≤
∫ h

0

eMε · (h−s)
(
4Rε + Lε · q̃ε (z̃j , x̃(t+s)) + ω̂ε(s)

)
·

(
1 + ρ egε h + gε h

)
ds.

Setting the abbreviations hj := min{ 1
2 Tε(f̃(z̃j , t), z̃j), 1

j } > 0 and δj := 1+ρegε hj +gε hj
j→∞−→ 1+ρ,

the approximating properties of (z̃j)j ∈N and the timed triangle inequality guarantee for any index k > j

q̃ε

(
f̃(z̃j , t) (hj , z̃j), x̃(t+hj)

)
≤ q̃ε

(
z̃k, x̃(t)

)
· eMε hj + eMε hj − 1

Mε

(
Lε · q̃ε(z̃k, x̃(t)) + Lε · 1

j hj + 4Rε
)
δj

+ 1
j hj · eMε hj +

∫ hj

0

eMε · (hj−s)
(
Lε · ωε(x̃, s) + ω̂ε(s)

)
ds δj .

The same estimate for q̃ε

(
f̃(z̃j , t) (hj , z̃j), ỹ(t+hj)

)
and k −→∞, j −→∞ lead to

lim inf
h ↓ 0

ϕε(t+h)− ϕε(t)
h ≤ (Lε (1+ρ) + Mε) · ϕε(t) + 8Rε (1+ρ) . 2

Lemma 2.25 (Lemma of Gronwall for semicontinuous functions II [13])
Let ψ : [a, b] −→ R, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

ψ(t) ≤ lim inf
h ↓ 0

ψ(t− h), ∀ t ∈ ]a, b],

ψ(t) ≥ lim inf
h ↓ 0

ψ(t+ h), ∀ t ∈ [a, b[,

lim inf
h ↓ 0

ψ(t+h)−ψ(t)
h ≤ f(t) · lim inf

h ↓ 0
ψ(t− h) + g(t) ∀ t ∈ ]a, b[.

Then, for every t ∈ [a, b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eµ(t) +
∫ t

a

eµ(t)−µ(s) g(s) ds with µ(t) :=
∫ t

a

f(s) ds. 2

Remark 2.26 All these results are easy to apply to sets without separate “time” component, i.e.
consider just nonempty E, D (instead of Ẽ, D̃). Indeed, every ostensible metric qε : E ×E −→ [0,∞[
induces a timed ostensible metric q̃ε : Ẽ × Ẽ −→ [0,∞[ according to

q̃ε ((s, x), (t, y)) := |s− t|+ qε(x, y) for all (s, x), (t, y) ∈ Ẽ.
Then every map ϑ : [0, 1] × (D ∪ E) −→ (D ∪ E) satisfying the conditions (1.)–(7.), (9.) for the tu-
ple (E,D, (qε)ε∈J , (b·cε)ε∈J ) induces a timed sleek transition ϑ̃ : [0, 1] × (D̃ ∪ Ẽ) −→ (D̃ ∪ Ẽ) on
(Ẽ, D̃, (q̃ε)ε∈J , (b·cε)ε∈J ) by ϑ̃ (h, (t, x)) := (t+ h, ϑ(h, x)) for all (t, x) ∈ D̃ ∪ Ẽ, h ∈ [0, 1].
So skipping the separate “time” component consistently, all conclusions of this section can also be drawn
for sleek transitions on a given tuple (E,D, (qε), (b·cε)) (as used in the next section). These counter-
parts are usually denoted without tilde.
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3 Bounded vector fields in W 1,∞
loc (RN , RN)

Now the results of § 2 are applied to measure–valued solutions µ : [0, T [−→M(RN ) of the continuity
equation d

dt µt + Dx · (b µt) = 0 (in the distributional sense)
with a given vector field b. We suggest a family of pseudo–metrics (pε)ε∈J on M(RN ) motivated by
vague convergence and a corresponding family (b·cε)ε∈J . Assuming b ∈ W 1,∞

loc (RN ,RN ) ∩ L∞ for
the moment, measure–valued solutions of the continuity equation induce sleek transitions on the tuple
(M(RN ), M(RN ), (pε)ε∈J , (b·cε)ε∈J ) with γε(·) ≡ 0 and all their parameters of continuity are spec-
ified in Proposition 3.7.
Restricting ourselves to the set M+

c (RN ) of positive Radon measures with compact support, the existence
result of Proposition 2.17 provides right–hand sleek solutions of the quasilinear continuity equation

d
dt µt + Dx · (f(µt, t) µt) = 0 (in the mutational sense)

for every initial datum µ0 ∈M+
c (RN ) if the vector field f : M+

c (RN )× [0, T [−→W 1,∞
loc (RN ,RN )∩L∞

holds assumptions specified later in Proposition 3.11. Such a measure–valued function µ proves to be
solution in the distributional sense. Finally, Corollary 3.13 gives sufficient (Lipschitz) conditions on f

for the uniqueness of right–hand sleek solutions.

Lemma 3.1 There is a countable family (ϕε)ε∈J of smooth Schwartz functions RN −→ [0,∞[
such that (ϕε)ε∈J is dense in

(
C0(RN , [0,∞[), ‖ · ‖∞

)
,

C∞c (RN , [0,∞[) is contained in the closure of (ϕε)ε∈J with respect to the C1 norm and
it satisfies |∇ϕε(·)| ≤ λε · ϕε(·) in RN with a constant λε > 0 for each ε ∈ J ⊂ [0, 1].

Proof. Such a ϕε ∈ C∞(RN , [0,∞[) can be generated by means of convolution.
Indeed, C∞0 (RN, [0,∞[) is known to be separable with respect to ‖ · ‖∞. Now consider a countable
dense subset (fk)k∈N of C∞0 (RN, [0,∞[) together with eδ : x 7−→ cδ,N · exp(− δ |x|2

1+|x| ) (for arbitrarily
large δ > 0 and the constant cδ,N > 0 such that ‖eδ‖L1(RN ) = 1).
Then, each fk ∗ eδ is smooth, nonnegative and satisfies |∇(fk ∗ eδ)| = |fk ∗ (∇eδ)| ≤ δ fk ∗ eδ
since the auxiliary function êδ : [0,∞[ −→ ]0, 1], r 7−→ cδ,N · exp(− δ r2

1+r ) is smooth with
d
dr êδ(r) = − δ r (r+2)

(r+1)2 êδ(r) ∈ [−δ, 0] · êδ(r) and thus d
dr êδ(r) = O(r) for r −→ 0+.

Furthermore, fk ∗eδ is a Schwartz function because so is eδ and fk is assumed to have compact support.
(fk ∗ eδ)k,δ ∈N is dense in

(
C0(RN , [0,∞[), ‖ · ‖∞

)
since so is (fk)k∈N and (eδ)δ ∈N is a Dirac sequence.

Finally it satisfies the second required property because for any g ∈ C∞c (RN , [0,∞[) and subsequence

(fkj )j∈N with ‖g − fkj‖∞
j→∞−→ 0, we obtain ∇(fkj

∗ eδ) = fkj
∗ (∇eδ)

j→∞−→ g ∗ (∇eδ) = (∇g) ∗ eδ
(uniformly) and the last convolution converges uniformly to ∇g for δ −→∞. 2

Definition 3.2 Let (ϕε)ε∈J be a countable family of Schwartz functions as described in Lemma 3.1.
For each ε ∈ J , define the pseudo–metric pε : M(RN )×M(RN ) −→ [0,∞[,

pε(µ, ν) :=
∣∣ϕε · (µ− ν) (RN )

∣∣ =
∣∣∣ ∫

RN

ϕε d(µ− ν)
∣∣∣

Remark 3.3 Obviously, Gronwall’s Lemma implies ϕε > 0 in RN unless ϕε ≡ 0.
So assuming ϕε 6≡ 0 for all ε ∈ J from now on, each pseudo–metric pε takes all points of RN into
consideration – in a weighted form.
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Considering measure–valued solutions µ : [0, T [−→M(RN ) of the continuity equation
d
dt µt + Dx · (̃b µt) = 0 (in the distributional sense),

vector fields b̃ ∈ L1
(
[0, T ], W 1,∞

loc (RN ,RN )
)

are known to be advantageous because the solutions are
closely related to the corresponding ordinary differential equation.

Definition 3.4 For any b̃ ∈ L1
(
[0, T ], W 1,∞

loc (RN ,RN )
)
, the function Xeb : [0, T ] × RN −→ RN is

induced by the flow along b̃, i.e. Xeb(·, x0) : [0, T ] −→ RN is the absolutely continuous solution of the
Cauchy problem

∧

{
d
dt x(t) = b̃(x(t), t) a.e. in [0, T ],
x(0) = x0.

Proposition 3.5 ([1], Proposition 4 & Remark 7)

Assume for b̃ ∈ L1
(
[0, T ], W 1,∞

loc (RN ,RN )
)

that |eb|
1+|x| ∈ L

1
(
[0, T ], L∞(RN )

)
.

For any initial datum µ0 ∈ M(RN ), the unique solution µ : [0, T ] −→ M(RN ), t 7−→ µt of the
continuity equation d

dt µt + Dx · (̃b µt) = 0 (in the distributional sense)
is given by the push–forward µt := Xeb(t, ·)] µ0 at each time t ∈ ]0, T ], i.e.∫

RN

ϕ(x) dµt(x) =
∫

RN

ϕ(Xeb(t, x)) dµ0(x) for all ϕ ∈ C0
c (RN ). 2

This simple representation formula lays the foundations for investigating whether the continuity
equation with autonomous vector fields can induce sleek transitions.

Lemma 3.6 For each vector field b ∈ W 1,∞
loc (RN ,RN ) ∩ L∞, the measure–valued solutions of the

continuity equation d
dt µt + Dx · (b µt) = 0 (in the distributional sense)

induce a map ϑb : [0, 1]×M(RN ) −→M(RN ) satisfying the following conditions

1. ϑb(0, ·) = IdM(RN ),

2. ϑb(h, ϑb(t, µ0)) = ϑb(t+ h, µ0),
pε (ϑb(h, ϑb(t, µ0)), ϑb(t+ h, µ0)) = 0 = pε (ϑb(t+ h, µ0), ϑb(h, ϑb(t, µ0)))
for any initial datum µ0 ∈M(RN ) and t, h ∈ [0, 1] with t+ h ≤ 1.

3. sup
µ0,ν0 ∈M(RN )

lim sup
h ↓ 0

pε(ϑb(h,µ0), ϑb(h,ν0)) − pε(µ0,ν0)
h pε(µ0,ν0)

≤ λε ‖b‖∞,

4.
∣∣(ϕε ϑb(t, µ0)

)
(RN )

∣∣ ≤ ∣∣(ϕε µ0

)
(RN )

∣∣ · eλε ‖b‖∞ · t for all µ0 ∈M(RN ), t ∈ [0, 1],

5. pε (ϑb(s, µ0), ϑb(t, µ0)) ≤ |t− s| · λε ‖b‖∞ eλε ‖b‖∞
∣∣(ϕε µ0

)
(RN )

∣∣ for all s, t ∈ [0, 1], µ0 ∈M(RN ),

6. lim sup
h ↓ 0

pε(ϑb1 (h,µ0), ϑb2 (h,µ0))
h ≤ λε

∣∣(ϕε |b1 − b2| µ0

)
(RN )

∣∣
for all bounded vector fields b1, b2 ∈W 1,∞

loc (RN ,RN ) and µ0 ∈M(RN ).

Proof. As a direct consequence of Proposition 3.5, the measure–valued flow ϑb : [0, 1]×M(RN ) −→
M(RN ) satisfies the semigroup property and thus statements (1.), (2.).
Furthermore, for any µ0, ν0 ∈M(RN ), we conclude from the definition of push–forward

pε
(
ϑb(h, µ0), ϑb(h, ν0)

)
=

∣∣ϕε · (Xb(h, ·)] µ0 − Xb(h, ·)] ν0
)
(RN )

∣∣
=

∣∣∣ ∫
RN

ϕε(Xb(h, ·)) d(µ0 − ν0)
∣∣∣

≤
∣∣∣ ∫

RN

(
ϕε(Xb(h, ·))− ϕε

)
d(µ0 − ν0)

∣∣∣ +
∣∣(ϕε · (µ0 − ν0)

)
(RN )

∣∣.
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So the choice of ϕε (in Lemma 3.1) implies

lim sup
h ↓ 0

pε(ϑb(h,µ0), ϑb(h,ν0)) − pε(µ0,ν0)
h ≤ lim sup

h ↓ 0

1
h ·

∣∣∣ ∫
RN

(
ϕε(Xb(h, ·))− ϕε

)
d(µ0 − ν0)

∣∣∣
≤

∣∣∣ ∫
RN

∇ϕε(x) · b(x) d(µ0 − ν0)
∣∣∣

≤ ‖b‖∞
∣∣∣ ∫

RN

λε ϕε d(µ0 − ν0)
∣∣∣

≤ ‖b‖∞ λε · pε(µ0, ν0).

Applying this estimate to ν0 ≡ 0 and ϑb(t, µ0) (instead of µ0), we conclude property (4.) from Gron-
wall’s Lemma 2.6 because the continuous auxiliary function

δε : [0, 1] −→ R, t 7−→
∣∣(ϕε ϑb(t, µ0)

)
(RN )

∣∣ =
∣∣(ϕε(Xb(t, ·)) µ0

)
(RN )

∣∣
is one–sided differentiable and satisfies d+

dt+ δε(·) ≤ λε ‖b‖∞ · δε(·).
In basically the same way, we obtain statement (5.) considering the auxiliary function

δ̂ε : [s, 1] −→ R, t 7−→
∣∣ϕε (

ϑb(t, µ0)−ϑb(s, µ0)
)
(RN )

∣∣ =
∣∣((ϕε(Xb(t−s, ·))−ϕε) ϑb(s, µ0)

)
(RN )

∣∣
with s ∈ [0, 1[ fixed and d+

dt+ δ̂ε(t) ≤ λε ‖b‖∞
∣∣(ϕεϑb(t, µ0)

)
(RN )

∣∣ ≤ λε ‖b‖∞ eλε ‖b‖∞
∣∣(ϕεµ0

)
(RN )

∣∣.
Finally choose any b1, b2∈W 1,∞

loc (RN ,RN )∩L∞ and initial datum µ0∈M(RN ). Then, for every h ∈ [0, 1],

1
h · pε (ϑb1(h, µ0), ϑb2(h, µ0)) = 1

h ·
∣∣∣ ∫

RN

(
ϕε(Xb1(h, ·)) − ϕε(Xb2(h, ·))

)
dµ0

∣∣∣
lim sup
h ↓ 0

pε(ϑb1 (h,µ0), ϑb2 (h,µ0))
h ≤

∣∣∣ ∫
RN

λε ϕε |b1 − b2| dµ0

∣∣∣. 2

So Lemma 3.6 reveals how ϑb : [0, 1]×M(RN ) 7−→M(RN ) can be regarded as a sleek transition :
Set E := D := M(RN ), iD := IdM(RN ), Tε(·, ·) := 1.
Statement (2.) implies condition (2.) of Definition 2.1 with γε(ϑb) := 0. Statement (3.) motivates us
to choose αε(ϑb, µ) := λε ‖b‖∞ uniformly for all µ∈M(RN ). Now statement (5.) suggests a candidate
for b·cε, namely bµcε :=

∣∣(ϕε µ)
(RN )

∣∣ < ∞ for all µ ∈M(RN ), ε ∈ J .
Statement (4.) ensures growth condition (5.) on bϑb(·, µ0)cε of Definition 2.1 with ζε(ϑb) := λε ‖b‖∞.
Finally condition (7.) on sleek transitions, i.e.

lim sup
h ↓ 0

pε
(
ϑb(t− h, µ), ν

)
≥ pε

(
ϑb(t, µ), ν

)
∀ µ, ν ∈M(RN ), t ∈ [0, 1]

is an obvious consequence of the symmetry of pε(·, ·) together with statement (5.). Thus, ϑb(·, ·) induces
a sleek transition and, Lemma 2.9 provides an upper bound of the “distance” between these transitions
(in the sense of Definition 2.3)

Pε(ϑb, ϑc;µ) Def.= sup
0≤ t < 1

ν ∈M(RN )

lim sup
h ↓ 0

(
pε

(
ϑb(t+h,µ), ϑc(h,ν)

)
− pε

(
ϑb(t,µ), ν

)
· eαε(ϑc,µ)·h

h (1 + bνcε)

)+

.

Proposition 3.7 Choose the parameter C ∈ [0,∞[ arbitrarily.
For each b ∈W 1,∞

loc (RN ,RN ) with ‖b‖∞ ≤ C, the measure–valued solutions of the continuity equation
d
dt µt + Dx · (b µt) = 0 (in the distributional sense)

induce a sleek transition ϑb on (M(RN ), M(RN ), (pε), (b·cε)) with

αε(ϑb, µ) Def.= λε C, βε(ϑb)(t)
Def.= t · λε C eλε C ,

γε(ϑb)
Def.= 0, ζε(ϑb)

Def.= λε C,

Tε(ϑb, µ) Def.= 1, bµcε
Def.=

∣∣(ϕε µ)
(RN )

∣∣,
Pε(ϑb, ϑc;µ) ≤ sup

0≤ s< 1
λε

∣∣(ϕε |b− c| ϑb(s, µ)
)
(RN )

∣∣
for all b, c ∈W 1,∞

loc (RN ,RN ) with ‖b‖∞, ‖c‖∞ ≤ C and µ ∈M(RN ), ε ∈ J , t ∈ [0, 1]. 2
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For applying the existence theorem of generalized mutational equations, we now focus on the aspect
of sequential compactness.
The classical compactness criterion of de la Vallée Poussin (for finite Radon measures) implies that for
any bound C > 0, the set {µ ∈ M(RN ) : |µ|(RN ) ≤ C} is weakly* sequentially compact (see e.g.
[4], Theorem 1.59). Although this condition on measures seems to be quite weak, it is not clear how to
verify it in connection with the preceding sleek transitions on (M(RN ), M(RN ), (pε), (b·cε)). Indeed,
an upper bound of |ϑb(t, µ)|(RN ) is difficult to be found without further assumptions about µ.

So we have decided to consider only positive Radon measures with compact support from now on, i.e.
µ ∈ M(RN ) satisfying µ(·) ≥ 0, |µ|(RN \K) = 0 for some compact set K ⊂ RN . Indeed, we are now
able to draw “global” conclusions from bounds on b·cε (for each ε ∈ J ), i.e. for every µ ∈M+

c (RN ),
there is some ε ∈ J satisfying ϕε|supp µ ≥ 1 and thus, |µ|(RN ) = µ(RN ) ≤ (ϕε µ)(RN ) ≤ bµcε.
Moreover, we regard M+

c (RN ) as a rather weak restriction (in comparison with some absolute continuity,
for example). Furthermore, the separate time component is to shorten the description of transitionally
compact subsets in Lemma 3.10.

Definition 3.8 Set M̃(RN ) := R×M(RN ), p̃ε
(
(s, µ), (t, ν)

)
:= |t− s|+ pε(µ, ν) for each ε ∈ J ,

M+
c (RN ) :=

{
µ ∈M(RN )

∣∣µ(·) ≥ 0, ∃ compact K ⊂ RN : |µ|(RN\K) = 0
}
, M̃+

c (RN ) := R×M+
c (RN ),

ϑ̃b : [0, 1]×M̃(RN ) −→ M̃(RN ), (h, (t, µ)) 7−→ (t+ h, ϑb(h, µ)) with ϑb(·, ·) mentioned in Prop. 3.7.

Corollary 3.9 Fixing the parameter C ∈ [0,∞[ arbitrarily, the map ϑ̃b(·, ·) specified in Definition 3.8
is a timed sleek transition on (M̃(RN ), M̃(RN ), (p̃ε), (b·cε)) for each vector field b ∈W 1,∞

loc (RN ,RN )
with ‖b‖∞ ≤ C and, it satisfies for all ε ∈ J , h ∈ [0, 1], µ̃, ν̃ ∈ M̃(RN )

αε(ϑ̃b, µ̃) Def.= λε C, βε(ϑ̃b)(t)
Def.= t (1 + λε C eλε C),

γε(ϑ̃b)
Def.= 0, ζε(ϑ̃b)

Def.= λε C,

Tε(ϑ̃b, µ̃) Def.= 1, b(t, µ)cε
Def.=

∣∣(ϕε µ)
(RN )

∣∣. 2

From now on, the set of all these maps ϑ̃b(·, ·) for any vector field b ∈W 1,∞
loc (RN ,RN ) with ‖b‖∞ ≤ C

is abbreviated as T̃C,Lip(RN ).

Lemma 3.10 For any constant C ≥ 0 and nonempty compact set K ⊂ RN , define

M̃+
K(RN ) :=

{
(t, µ) ∈ R×M+

c (RN )
∣∣∣ t ≥ 0, |µ|

(
RN \ BC t(K)

)
= 0

}
.

Then, (a) M̃+
K(RN ) is invariant for all sleek transitions ϑ̃b ∈ T̃C,Lip(RN ).

(b)
(
M̃+

K(RN ), (p̃ε), (b·cε), T̃C,Lip(RN )
)

is timed transitionally compact.

Proof. (a) results from Proposition 3.5 because its representation formula (by means of push–
forward) implies supp ϑb(t, µ0) ⊂ Bt ‖b‖∞(supp µ0) ⊂ BC t(supp µ0) for all µ0 ∈Mc(RN ).

(b) is a consequence of the compactness criterion of de la Vallée Poussin. Indeed, for every sequence
((tn, µn))n∈N in M̃K(RN ) with supn |tn| < ∞, supn b(tn, µn)cε < ∞, supn q̃ε((0, 0), (tn, µn)) < ∞
for each ε ∈ J , we conclude that the support of each µn is contained in the interior of the compact set
L := K + C (1 + supn |tn|) · B ⊂ RN . According to the choice of (ϕε)ε∈J in Lemma 3.1, there is an
index εo ∈ J with ϕεo

|L ≥ 1 and thus, supn |µn|(RN ) = supn µn(L) ≤ supn b(tn, µn)cεo
<∞.

Due to this uniform bound and the compact superset L of all supports, there exist a subsequence (again
denoted by) ((tn, µn))n∈N and (t, µ) ∈ M̃(RN ) satisfying
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 tn −→ t ≥ 0,
∫

RN

ϕ dµn −→
∫

RN

ϕ dµ (n −→∞) for all ϕ ∈ C0(RN ),

supp µ ⊂ Limn→∞ supp µn ⊂ K + C · lim
n→∞

tn = BC t(K).

So (t, µ) ∈ M̃K(RN ) and p̃ε ((tn, µn), (t, µ)) −→ 0, lim inf
n→∞

b(tn, µn)cε ≥ b(t, µ)cε for all ε ∈ J .
In regard to timed transitional compactness, the rest results now from the symmetry of each p̃ε,κ and
the estimates of Lemma 3.6. 2

Proposition 3.11 Suppose for f : M+
c (RN )× [0, T ] −→W 1,∞

loc (RN ,RN ) :

1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ ≤ C for all (µ, t) ∈M+
c (RN )× [0, T ],

2. (”weak*” continuity of f) ‖f(µ, t)− f(µn, tn)‖∞ −→ 0 if µn
∗
⇀ µ (w.r.t. C0(RN )), tn → t.

Then for every initial µ0 ∈M+
c (RN ), there exists a right–hand sleek solution µ(·) : [0, T [−→M+

c (RN )

of the generalized mutational equation
◦
µ(·) 3 ϑf(µ(·), ·) with µ(0) = µ0. Moreover, µ(·) is distri-

butional solution of the continuity equation d
dt µ(t) + Dx · (f(µ(t), t) µ(t)) = 0 in RN × [0, T [.

Proof. For applying the compactness results of Lemma 3.10, we take a separate real component of
time into consideration. Define f̃ : M̃+

c (RN )× [0, T ] −→W 1,∞
loc (RN ,RN )∩L∞, ((s, µ), t) 7−→ f(µ, t)

and let ϑ̃ ef(eµ,t) : [0, 1] × M̃(RN ) −→ M̃(RN ) denote the corresponding timed sleek transition on

(M̃(RN ), M̃(RN ), (p̃ε), (b·cε)) according to Corollary 3.9. Due to Lemma 3.10 with K := supp µ0, all
Euler approximations (used for proving existence in § 2.3) have their values in the timed transitionally
compact subset M̃+

K(RN ).
Moreover, Proposition 3.7 implies for all µ̃1, µ̃2 ∈ M̃+

c (RN ), ν̃ ∈ M̃(RN ), t1, t2 ∈ [0, T [

P̃ε(ϑ̃ ef(eµ1, t1)
, ϑ̃ ef(eµ2, t2)

; ν̃) ≤
∥∥f̃(µ̃1, t1)− f̃(µ̃2, t2)

∥∥
∞ · sup

0≤ s< 1
λε

∣∣∣ ∫
RN

ϕε dϑf(µ1,t1)(s, ν)
∣∣∣

≤
∥∥f̃(µ̃1, t1)− f̃(µ̃2, t2)

∥∥
∞ · λε

∣∣∣ ∫
RN

ϕε dν
∣∣∣ · eλε C .

So Proposition 2.17 ensures the existence of a timed right–hand sleek solution µ̃(·) : [0, T [−→ M̃+
c (RN )

of the generalized mutational equation
◦
µ̃(·) 3 ϑ̃ ef(eµ(·), ·) with µ̃(0) = (0, µ0).

As the (real) time component has no explicit influence, the second (measure–valued) component of µ̃(·),
abbreviated as µ(·) : [0, T [ −→ M+

c (RN ), is right–hand sleek solution of the generalized mutational

equation
◦
µ (·) 3 ϑf(µ(·), ·) with µ(0) = µ0, i.e. µ(·) is uniformly continuous with respect to each pε

(ε ∈ J ) and satisfies for all ν ∈M(RN ), t ∈ [0, T [, ε ∈ J

lim sup
h ↓ 0

1
h

(
pε

(
ϑf(µ(t), t)

(
h, ν

)
, µ(t+ h)

)
− pε(ν, µ(t)) · eλε C·h

)
≤ 0.

Finally µ(·) has to be verified as a distributional solution of the continuity equation.
Using Euler method for constructing µ̃(·) (according to § 2.3) implies that µ(·) shares the common
modulus of continuity of all ϑ̃b(·, ν̃) : [0, 1] −→ M̃(RN ) (with ϑ̃b ∈ T̃C,Lip(RN ), ν̃ ∈ M̃(RN )),

i.e. pε(µ(s), µ(t)) ≤ p̃ε(µ̃(s), µ̃(t)) ≤ |t− s| ·
(
eλε C T · λε C + 1

)
for all s, t ∈ [0, T [, ε ∈ J .

So for each ε ∈ J , the function [0, T [ −→ [0,∞[, t 7−→
∫

RN

ϕε dµ(t) is Lipschitz continuous and

satisfies at every time t of differentiability

d
dt

∫
RN

ϕε dµ(t) = lim sup
h ↓ 0

1
h ·

∫
RN

(
ϕε(Xf(µ(t), t)(h, x)) − ϕε(x)

)
dµ(t) (x)

=
∫

RN

∇ϕε(x) · f(µ(t), t)(x) dµ(t) (x).
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Now every ϕ ∈ C∞c (RN , [0,∞[) can be approximated by (ϕε)ε∈J with respect to the C1 norm (due to

Lemma 3.1). Thus, [0, T [−→ [0,∞[, t 7−→
∫

RN

ϕ dµ(t) is also absolutely continuous and satisfies

d
dt

∫
RN

ϕ dµ(t) =
∫

RN

∇ϕ(x) · f(µ(t), t)(x) dµ(t) (x) for almost every t ∈ [0, T [.

Moreover the condition ϕ ≥ 0 is not required, i.e. the same features are guaranteed for any ϕ ∈ C∞c (RN ).
Indeed, choosing any auxiliary function ξ ∈ C∞0 (RN , [0,∞[) with ξ ≡ ‖ϕ‖∞ + 1 in B1(supp ϕ), we
apply the previous results (about absolute continuity and its derivative) to ϕ(·) + ξ(·) ≥ 0, ξ(·) ≥ 0.
In regard to a solution in the distributional sense, let ψ ∈ C∞0 (RN × [0, T [) be any test function. Then,
the subsequent Lemma 3.12 implies

−
∫

RN

ψ(·, 0) dµ0 =
∫ T

0

d
dt

(∫
RN

ψ(·, t) dµ(t)
)
dt

=
∫ T

0

( ∫
RN

∂t ψ(·, t) dµ(t) + ∂
∂s

∫
RN

ψ(·, t) dµ(s)
∣∣∣
s=t

)
dt

=
∫ T

0

( ∫
RN

∂t ψ(·, t) dµ(t) +
∫

RN

∇xψ(x, t) · f(µ(t), t)(x) dµ(t) (x)
)
dt.

2

Lemma 3.12 Suppose h : R2 −→ Rn to be locally absolutely continuous in each component and

∧

 lim sup
k−→ 0

∥∥ ∂1 h( · , k + · ) − ∂1 h( · , · )
∥∥
L1([0,T ])

= 0,

lim sup
k−→ 0

∥∥ ∂2 h( · , k + · ) − ∂2 h( · , · )
∥∥
L1([0,T ])

= 0.

Then [0, T ] −→ Rn, t 7−→ h(t, t) is absolutely continuous and
d
d t h(t, t) =

(
∂
∂ t1

h(t1, t2) + ∂
∂ t2

h(t1, t2)
)∣∣∣
t=t1=t2

.

Proof is given in [16], Lemma 2.5, for example.

Corollary 3.13 Suppose for f : M+
c (RN )× [0, T ] −→W 1,∞

loc (RN ,RN ) :
1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ ≤ C for all (µ, t) ∈M+

c (RN )× [0, T ],
2. ∀ ε ∈ J ∃ Lε ∈ [0,∞[, ωε(·) = o(1) : ‖f(µ, s)− f(ν, t)‖∞ ≤ Lε · pε(µ, ν) + ωε (|s− t|)

for all (µ, s), (ν, t) ∈M+
c (RN )× [0, T ].

Then for every µ0 ∈M+
c (RN ), the right–hand sleek solution µ(·) : [0, T [−→M+

c (RN ) of the general-

ized mutational equation
◦
µ(·) 3 ϑf(µ(·), ·) with µ(0) = µ0 is unique.

Proof results from Proposition 2.24 : Indeed for right–hand sleek solutions µ1, µ2 : [0, T [−→M+
c (RN )

with the same initial datum µ1(0) = µ2(0) = µ0 ∈ M+
c (RN ) and for sufficiently large ρ > 0, define

the auxiliary function

δε(t) := inf
{
pε(ν, µ1(t)) + pε(ν, µ2(t))

∣∣∣ ν ∈M(RN ), bνcε ≤ (bµ0cε + ρ) · eλε C t + λε C t
}
.

The symmetry and triangle inequality of pε(·, ·) imply δε(t) = pε(µ1(t), µ2(t)) and, Proposition 2.24
(with Rε = 0, δε(0) = 0) ensures δε(·) ≡ 0 for every ε ∈ J . Thus, µ1 ≡ µ2. 2
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4 Bounded vector fields of bounded variation

The main goal now is to weaken the regularity conditions on the vector fields inducing sleek transitions.
Indeed, all globally supposed bounds mentioned in the preceding section are referring to the L∞ norm of
the vector fields whereas their (local) Lipschitz continuity is just to guarantee uniqueness of the solution
of the corresponding ODE.
Recent results of Ambrosio [1, 2] make a suggestion how to specify a flow X : [0, T ] × RN −→ RN

along certain vector fields of bounded (spatial) variation in a unique way. This uniqueness is based on
an additional condition of regularity, i.e. the absolute continuity with respect to Lebesgue measure LN

is preserved uniformly : For any nonnegative function ρ ∈ L1(RN )∩L∞(RN ), the measure µ0 := ρLN

satisfies X(t, ·)] µ0 ≤ C LN for all t ∈ [0, T ] with a constant C independent of t.
After summarizing some features of this so–called Lagrangian flow in Proposition 4.1, we exploit the
corresponding vector fields of bounded variation for inducing sleek transitions on measures. In contrast
to § 3, however, the tools of Ambrosio require the restriction to finite positive measures being absolutely
continuous with respect to LN . Although limiting the class of admitted Radon measures, this assump-
tion has the advantage in Proposition 4.10 that applying existence results to the continuity equation
does not require the continuity of the right–hand side with respect to L∞ as in Proposition 3.11 (but L1).

Proposition 4.1 Assume b̃ : [0, T ]× RN −→ RN to be in L1
(
[0, T ], BVloc(RN ,RN )

)
satisfying

1. |eb|
1+|x| ∈ L1

(
[0, T ], L1(RN )

)
+ L1

(
[0, T ], L∞(RN )

)
,

2. Dx · b̃(t, ·) = divx b̃(t, · ) LN � LN for L1–almost every t ∈ [0, T ],
3. [divx b̃]− ∈ L1

(
[0, T ], L∞(RN )

)
.

Then there exists a so–called Lagrangian flow X : [0, T ]× RN −→ RN such that
(a) X(·, x) : [0, T ] −→ RN is absolutely continuous for LN–almost every x ∈ RN with

X(t, x) = x+
∫ t

0

b̃
(
s, X(s, x)

)
ds for all t ∈ [0, T ],

(b) there is a constant C > 0 with X(t, ·)] (ρ LN ) ≤ C ‖ρ‖∞ LN ∀ ρ ∈ L1(RN ) ∩ L∞(RN ), t.

Furthermore, X(t, ·) : RN −→ RN is unique up to LN–negligible sets for every time t ∈ [0, T ]
and, µ(t) := X(t, ·)] µ0 is the unique distributional solution of the continuity equation

d
dt µ + Dx · (̃b µ) = 0 in ]0, T [×RN

for every initial datum µ0 := ρ LN with ρ ∈ L1(RN ) ∩ L∞(RN ), ρ ≥ 0.

Mollifying each µ(t) with a common Gaussian kernel ρ ∈ C1(RN , ]0,∞[), the measures µδ(t) := µ(t)∗ρδ
solve the continuity equation d

dt µδ + Dx · (̃bδ µδ) = 0 (in the distributional sense)

with b̃δ(t, ·) := (eb(t,·) µ(t)) ∗ ρδ

µδ(t) being in L1
(
[0, T ], W 1,∞

loc (RN ,RN )
)

and, µδ(t)
δ↓0−→ µ(t) narrowly

(i.e. with respect to the duality of bounded continuous functions) for every t ∈ [0, T ].

Proof is presented in [1] (and in [2]). Indeed, extending [1], Theorem 30 to vector fields of bounded
spatial variation (as stated in the end of [1], § 5), there exists a Lagrangian flow X : [0, T ]×RN −→ RN

with the claimed properties (a),(b) and, it is unique (up to LN–negligible sets).
The proof of [1], Theorem 19 bridges the gap between the Lagrangian flow and the measure–valued
solution of the continuity equation (by means of push–forward). The uniqueness of µ(·) results from
the comparison principle of the continuity equation (due to the assumptions about b̃) according to
[1], Theorem 26. Finally proving [1], Theorem 12 implies the narrow sequential compactness of
ηδ :=

(
x,Xebδ

(·, x)
)
]
µδ(0) (using Prokhorov compactness theorem). So equation (9) there implies the

narrow convergence of µδ(t) to its unique limit point µ(t). 2
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Lemma 4.2 For any b̃ ∈ L1
(
[0, T ], W 1,∞

loc (RN ,RN )
)

with divx b̃ ∈ L1
(
[0, T ], L∞(RN ,RN )

)
, the

flow Xb : [0, T ]×RN −→ RN specified in Definition 3.4 satisfies for all t ∈ [0, T ] and LN–a.e. x ∈ RN

exp
(
−

∫ t

0

∥∥ [divx b̃(t, ·)]−
∥∥
∞ dt

)
≤ det DxXb(t, x) ≤ exp

(∫ t

0

∥∥ [divx b̃(t, ·)]+
∥∥
∞ dt

)
.

Moreover, for all µ = ρ LN with ρ ∈ L1(RN ) ∩ L∞, the total variation of Xb(t, ·)] µ fulfills∣∣Xb(t, ·)] µ
∣∣(RN ) ≤ |µ|(RN ) · exp

(
2

∫ t

0

‖divx b̃(t, ·)‖∞ dt
)

Proof of the first part is mentioned in [2], Remark 6.3, for example. The second part results from the
area formula and the transformation of Lebesgue integrals. Indeed, for µ = ρLN with ρ ∈ L1(RN )∩L∞,∣∣Xb(t, ·)] µ

∣∣(RN ) =
∫

RN

∣∣∣ ρ

|det DxXb(t, ·)|
◦X(t, ·)−1

∣∣∣ dLN
≤

∫
RN

∣∣ρ ◦ (
X(t, ·)−1

)∣∣ dLN · exp
( ∫ t

0

∥∥ [divx b̃(t, ·)]−
∥∥
∞ dt

)
≤

∫
RN

|ρ| dLN ·
∥∥det DxXb(t, ·)

∥∥
∞ · exp

( ∫ t

0

∥∥ [divx b̃(t, ·)]−
∥∥
∞ dt

)
. 2

These (mostly quoted) results motivate the following choice of vector fields and finite Radon measures.
Using the notation 4.3, [1] guarantees X(t, ·)] L∞∩ 1(RN ) ⊂ L∞∩ 1(RN ) for each Lagrangian flow X.

Definition 4.3 BV∞,div
loc (RN ) denotes the set of all functions b ∈ BVloc(RN ,RN ) ∩ L∞(RN ,RN )

satisfying D · b = div b LN � LN and div b ∈ L∞(RN ).
Furthermore, set L∞∩ 1(RN ) :=

{
ρ LN

∣∣ ρ ∈ L1(RN ) ∩ L∞(RN ), ρ ≥ 0
}
⊂ M+(RN ) and,

for each b ∈ BV∞,div
loc (RN ), define ϑb : [0, 1] × L∞∩ 1(RN ) −→ L∞∩ 1(RN ), (h, µ0) 7−→ X(h, ·)] µ0

with X(·, ·) denoting its Lagrangian flow according to Proposition 4.1.

Moreover, the proof of Lemma 4.2 indicates an adequate modification of the “distance” between two
measures of L∞∩ 1(RN ). In § 3, pε(µ, ν) was defined as absolute value of the weighted difference, i.e.

pε(µ, ν) :=
∣∣ϕε · (µ− ν) (RN )

∣∣ =
∣∣∣ ∫

RN

ϕε d(µ− ν)
∣∣∣

Restricting now to measures µ, ν � LN , we can use the total variation of the weighted difference instead
– and the key estimates of Lemma 3.6 hold essentially.

Definition 4.4 Let (ϕε)ε∈J be a countable family of Schwartz functions as described in Lemma 3.1.
For each ε ∈ J , define qε : M(RN )×M(RN ) −→ [0,∞[,

qε(µ, ν) :=
∣∣ϕε · (µ− ν)

∣∣(RN )
Def.= sup

{ ∞∑
k=0

∣∣ ∫
Ek

ϕε d(µ− ν)
∣∣ ∣∣∣ (Ek)k∈N pairwise disjoint Borel sets, RN =

⋃
k

Ek

}
.

Lemma 4.5 For each b ∈W 1,∞
loc (RN ,RN ) ∩ L∞, ϑb : [0, 1]× L∞∩ 1(RN ) −→ L∞∩ 1(RN ) satisfies

1. ϑb(0, ·) = IdL∞∩ 1(RN ),

2. qε (ϑb(h, ϑb(t, µ0)), ϑb(t+ h, µ0)) = 0 = qε (ϑb(t+ h, µ0), ϑb(h, ϑb(t, µ0)))
for any initial datum µ0 ∈ L∞∩ 1(RN ) and t, h ∈ [0, 1] with t+ h ≤ 1.



30 § 4 BOUNDED VECTOR FIELDS OF BOUNDED VARIATION

3. lim sup
h ↓ 0

qε(ϑb(h,µ0), ϑb(h,ν0)) − qε(µ0,ν0)
h qε(µ0,ν0)

≤ λε ‖b‖∞ for µ0, ν0 ∈ L∞∩ 1(RN ),

4.
∣∣ϕε ϑb(t, µ0)

)∣∣ (RN ) ≤
∣∣ϕε µ0

∣∣ (RN ) · eλε ‖b‖∞ · t for µ0 ∈ L∞∩ 1(RN ), t ∈ [0, 1],

5. qε (ϑb(s, µ0), ϑb(t, µ0)) ≤ |t− s| · λε ‖b‖∞ eλε ‖b‖∞
∣∣ϕε µ0

∣∣ (RN ) for s, t ∈ [0, 1], µ0 ∈ L∞∩ 1(RN ),

6. lim sup
h ↓ 0

qε(ϑb1 (h,µ0), ϑb2 (h,µ0))
h ≤ λε

∣∣ϕε |b1 − b2| µ0

∣∣ (RN ) ≤ λε ‖ϕε‖∞ ‖ρ‖∞ · ‖b1 − b2‖L1(RN )

for all bounded vector fields b1, b2 ∈W 1,∞
loc (RN ,RN ) and µ0 = ρLN ∈ L∞∩ 1(RN ).

Proof. The measure–valued flow ϑb : [0, 1]×L∞∩ 1(RN ) −→ L∞∩ 1(RN ) still satisfies the semigroup
property and thus statements (1.), (2.).
For any µ0 = ρLN , ν0 = σLN ∈L∞∩ 1(RN ), the definitions of total variation and push–forward imply

qε
(
ϑb(h, µ0), ϑb(h, ν0)

)
=

∣∣ϕε · (Xb(h, ·)] µ0 − Xb(h, ·)] ν0
)∣∣ (RN )

≤
∫

RN

ϕε(Xb(h, ·)) |ρ− σ| dLN

≤
∫

RN

∣∣ϕε(Xb(h, ·))− ϕε
∣∣ |ρ− σ| dLN +

∣∣ϕε · (µ0 − ν0)
∣∣ (RN ).

So the choice of ϕε (in Lemma 3.1) has the consequence

lim sup
h ↓ 0

qε(ϑb(h,µ0), ϑb(h,ν0)) − qε(µ0,ν0)
h ≤ lim sup

h ↓ 0

1
h ·

∫
RN

∣∣ϕε(Xb(h, ·))− ϕε
∣∣ |ρ− σ| dLN

≤
∫

RN

|∇ϕε(x) · b(x)| |ρ− σ| dLN

≤ ‖b‖∞
∫

RN

λε ϕε |ρ− σ| dLN

≤ ‖b‖∞ λε · qε(µ0, ν0).

Applying this estimate to ν0 ≡ 0 and ϑb(t, µ0) (instead of µ0), we conclude property (4.) from Gron-
wall’s Lemma 2.6 because the lower semicontinuous auxiliary function

δε : [0, 1] −→ R, t 7−→
∣∣ϕε ϑb(t, µ0)

∣∣ (RN ) =
∣∣ϕε(Xb(t, ·)) µ0

∣∣ (RN )

is one–sided differentiable and satisfies d+

dt+ δε(·) ≤ λε ‖b‖∞ · δε(·).
In basically the same way, we obtain statement (5.) considering the auxiliary function

δ̂ε : [s, 1] −→ R, t 7−→
∣∣ϕε (

ϑb(t, µ0)− ϑb(s, µ0)
)∣∣ (RN ) =

∣∣(ϕε(Xb(t−s, ·))− ϕε) ϑb(s, µ0)
∣∣ (RN )

with s ∈ [0, 1[ fixed and d+

dt+ δ̂ε(t) ≤ λε ‖b‖∞
∣∣ϕε ϑb(t, µ0)

∣∣ (RN ) ≤ λε ‖b‖∞ eλε ‖b‖∞
∣∣ϕε µ0

∣∣ (RN ).

Last, but not least, choose any b1, b2∈W 1,∞
loc (RN ,RN )∩L∞ and initial datum µ0 = ρLN ∈ L∞∩ 1(RN ).

Then, for every h ∈ [0, 1],

1
h · qε (ϑb1(h, µ0), ϑb2(h, µ0)) ≤ 1

h ·
∫

RN

∣∣ϕε(Xb1(h, ·)) − ϕε(Xb2(h, ·))
∣∣ |ρ| dLN

lim sup
h ↓ 0

qε(ϑb1 (h,µ0), ϑb2 (h,µ0))
h ≤

∫
RN

λε ϕε |b1 − b2| |ρ| dLN

≤ λε ‖ϕε‖∞ ‖ρ‖∞ · ‖b1 − b2‖L1(RN ). 2

In regard to the choice of b·cε, there are even two candidates now. The first is the weighted total
variation (as mentioned in Lemma 4.5 (4.)). Lemma 4.2, however, provides an alternative whose growth
is also bounded in the required way : the total variation – not weighted by ϕε and thus, independent of
ε ∈ J . For applying the compactness criterion of de la Vallée Poussin later, we prefer the total variation
| · |(RN ) and then rely on the results using “weakly transitionally compact” (presented in § 2.4).
In particular, subsequent Lemma 4.7 lays the basis for taking also the L∞ norm into consideration and
thus, we define (independently of ε ∈ J )

bµc := |µ| (RN ) +
∥∥ µ
LN

∥∥
∞ = ‖σ‖L1(RN ) + ‖σ‖∞ for every µ = σLN ∈ L∞∩ 1(RN ).
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Lemma 4.6 For every µ ∈M(RN ) and open set A ⊂ RN , the total variation satisfies

|µ|(A) = sup
{∫

RN

ψ dµ
∣∣ ψ ∈ C0

c (A), ‖ψ‖∞ ≤ 1
}

and thus, qε(µ, ν) = supκ∈I pε,κ(µ, ν) for all µ, ν ∈M(RN )
with I ⊂ J denoting the set of all indices κ ∈ J satisfying ‖ϕκ‖∞ ≤ 1 and

pε,κ(µ, ν) :=
∣∣∣ ∫

RN

ϕε ϕκ d (µ− ν)
∣∣∣ for each ε ∈ J, κ ∈ I, µ, ν ∈M(RN ).

Proof of the first equality is given in [4], Proposition 1.47, for example. 2

Lemma 4.7 For every vector field b ∈ BV∞,div
loc (RN ) and initial measure µ = σ LN ∈ L∞∩ 1(RN ),

the Radon–Nikodym derivative σt
Def.= ϑb(t,µ)

LN of ϑb(t, µ) with respect to Lebesgue measure LN satisfies

‖σt‖∞ ≤ ‖σ‖∞ e‖div b‖∞ t ,∣∣ϑb(t, µ)
∣∣(RN ) = ‖σt‖L1 ≤ ‖σ‖L1 e2 ‖div b‖∞ t .

Proof. The second statement results directly from Lemma 4.2 (applied to mollified vector fields bδ)
and the narrow convergence for δ ↓ 0 because the total variation is lower semicontinuous with respect
to weak* convergence (see [4], Theorem 1.59, for example).
For proving the first statement, we exploit first the duality relation between L1 and L∞ and then use
the area formula again

‖σt‖∞ = sup
{ ∫

ψ σt dLN
∣∣∣ ψ ∈ C∞0 (RN ), ‖ψ‖L1 ≤ 1

}
= sup

{
lim sup
δ↓0

∫
ψ dϑbδ

(t, µ)
∣∣∣ ψ ∈ C∞0 (RN ), ‖ψ‖L1 ≤ 1

}
= sup

{
lim sup
δ↓0

∫
ψ

(
σ

det Dx Xbδ
(t,·)

)∣∣∣
Xbδ

(t,·)−1
dLN

∣∣∣ ψ ∈ C∞0 (RN ), ‖ψ‖L1 ≤ 1
}

≤ sup
{

lim sup
δ↓0

∫
ψ ‖σ‖∞ e‖div bδ‖∞ t dLN

∣∣∣ ψ ∈ C∞0 (RN ), ‖ψ‖L1 ≤ 1
}

≤ ‖σ‖∞ e‖div b‖∞ t . 2

Proposition 4.8 For any C ∈ [0,∞[ fixed, each b ∈ BV∞,div
loc (RN ) with ‖b‖∞ +

∥∥div b
∥∥
∞ ≤ C

induces the sleek transition ϑb on
(
L∞∩ 1(RN ), L∞∩ 1(RN ), (qε)ε∈J , (b·c)ε∈J

)
with

αε(ϑb, µ) Def.= λε C, βε(ϑb)(t)
Def.= λε ‖ϕε‖∞ C · t,

γε(ϑb)
Def.= 0, ζε(ϑb)

Def.= 2 C,
Tε(ϑb, µ) Def.= 1, iD

Def.= IdL∞∩ 1(RN ) ,

Qε(ϑb, ϑc;µ) ≤ λε e
2C

(
1 + |µ|(RN ) · e2C)

∥∥ µ
LN

∥∥
∞

∥∥ϕε |b− c|
∥∥
L1(RN )

pε,κ
(
ϑb(h, µ), ϑb(h, ν)

)
≤ pε,κ(µ, ν) · e(λε+λκ) C h

for all b, c ∈ BV∞,div
loc (RN ) with ‖b‖∞ +

∥∥div b
∥∥
∞ ≤ C, ‖c‖∞ +

∥∥div c
∥∥
∞ ≤ C and µ ∈ L∞∩ 1(RN ),

ε ∈ J , t ∈ [0, 1]. The set of all these sleek transitions ϑb is abbreviated as TC,BV(RN ).

Proof is based on the tools of approximation provided by Proposition 4.1 :
Indeed, choose a Gaussian kernel ρ ∈ C1(RN , ]0,∞[) and set ρδ(x) := δ−N ρ(xδ ) for δ > 0. Fixing
µ ∈ L∞∩ 1(RN ) arbitrarily, each vector field bδ := (b µ) ∗ ρδ

µ∗ρδ
belongs to W 1,∞

loc (RN ,RN ) and satisfies

‖bδ‖∞ ≤ ‖b‖∞ ≤ C. So Lemma 4.5 motivates the choice of αε(ϑbδ
, µ) Def.= λε C, γε(ϑbδ

) Def.= 0 and,
as in the general framework of § 2.1, we conclude (from Proposition 2.5 and Lemmas 2.7)

qε
(
ϑbδ

(h, µ), ϑbδ
(h, ν)

)
≤ qε(µ, ν) · eC λε h

for all µ, ν ∈ L∞∩ 1(RN ), h ∈ [0, 1], δ > 0, ε ∈ J . Similarly, for any κ ∈ I (additionally),
pε,κ

(
ϑbδ

(h, µ), ϑbδ
(h, ν)

)
≤ pε,κ(µ, ν) · eC (λε+λκ) h

is proved as in Lemma 3.6 (for pε) – just using now |∇ (ϕε ϕκ)| ≤ (λε + λκ) ϕε ϕκ.
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Considering now δ ↓ 0, the narrow convergence (mentioned in Proposition 4.1) and the lower semicon-
tinuity of total variation (with respect to weak* convergence) provide the same estimates with b instead
of bδ for all ν ∈ L∞∩ 1(RN ) and, we obtain C λε as an admissible choice of the parameter αε(ϑb, µ).
Thus, the first three conditions on sleek transitions (stated in Definition 2.1) are obviously fulfilled.

Moreover, Lemma 4.2 states
∣∣ϑbδ

(t, µ)
∣∣(RN ) ≤ |µ|(RN ) · e2C t for all µ ∈ L∞∩ 1(RN ), t ∈ [0, 1],

δ > 0 and so, the lower semicontinuity of total variation again implies∣∣ϑb(t, µ)
∣∣(RN ) ≤ |µ|(RN ) · e2C t,

i.e. condition (5) of Definition 2.1 is satisfied with ζε(ϑb)
Def.= 2 C (independent of ε ∈ J ).

Considering the continuity w.r.t. time, we obtain for every s, t ∈ [0, 1], µ = σ LN ∈ L∞∩ 1(RN ), ε ∈ J
qε

(
ϑb(s, µ), ϑb(t, µ)

)
≤ lim sup

δ ↓ 0
qε

(
ϑbδ

(s, µ), ϑbδ
(t, µ)

)
≤ lim sup

δ ↓ 0

∫
RN

∣∣ϕε(Xbδ
(s, x)

)
− ϕε

(
Xbδ

(t, x)
)∣∣ |σ(x)| dLN x

≤ lim sup
δ ↓ 0

‖∇ϕε‖∞ ‖bδ‖∞ |t− s| ‖σ‖L1(RN )

≤ λε ‖ϕε‖∞ C |t− s| |µ|(RN ),

i.e. βε(ϑb)(t)
Def.= λε ‖ϕε‖∞ C · t is a modulus of continuity as required in condition (4.) (of Def. 2.1).

The rest of these conditions is trivial.

Finally we specify an upper bound of

Qε(ϑb, ϑc;µ) Def.= sup
0≤ t < 1

ν ∈ L∞∩ 1(RN )

lim sup
h ↓ 0

(
qε

(
ϑb(t+h,µ), ϑc(h,ν)

)
− qε

(
ϑb(t,µ), ν

)
· eλε C h

h (1 + |ν|(RN ))

)+

with b, c ∈ BV∞,div
loc (RN ) satisfying ‖b‖∞+

∥∥div b
∥∥
∞, ‖c‖∞+

∥∥div c
∥∥
∞ ≤ C and µ = σLN ∈ L∞∩ 1(RN ).

Mollifying b, c in the way described above, we again obtain vector fields bδ, cδ ∈W 1,∞
loc (RN ,RN ) with

‖bδ‖∞, ‖cδ‖∞ ≤ C. and, Lemma 4.5 (6) states for all ν ∈ L∞∩ 1(RN )

lim sup
h ↓ 0

qε(ϑbδ
(h,ν), ϑcδ

(h,ν))
h ≤ λε

∣∣ϕε |bδ − cδ| ν
∣∣ (RN ).

So Lemma 2.9, the area formula and Lemma 4.2 imply

Qε(ϑbδ
, ϑcδ

;µ) ≤ sup
0≤ t< 1

λε
∣∣ϕε |bδ − cδ| ϑbδ

(t, µ)
∣∣ (RN )

= sup
0≤ t< 1

λε

∫
RN

ϕε |bδ − cδ|
∣∣∣ σ
det Dx Xbδ

(t,·) ◦Xbδ
(t, ·)−1

∣∣∣ dLN x

≤ sup
0≤ t< 1

λε
∥∥ϕε |bδ − cδ|

∥∥
L1(RN )

‖σ‖∞
‖ det Dx Xbδ

(t,·)‖∞

≤ λε
∥∥ϕε |bδ − cδ|

∥∥
L1(RN )

‖σ‖∞ eC .

Now Proposition 2.5 and the narrow convergence of ϑbδ
(t, µ), ϑcδ

(t, µ) for δ ↓ 0 (as stated in
Proposition 4.1) bridge the gap to Qε(ϑb, ϑc;µ). Indeed, for all h ∈ ]0, 1],

qε
(
ϑb(h, µ), ϑc(h, µ)

)
≤ lim sup

δ↓0
qε

(
ϑbδ

(h, µ), ϑcδ
(h, µ)

)
≤ lim sup

δ↓0
h · Qε(ϑbδ

, ϑcδ
;µ)

(
1 + |µ|(RN ) e2 C h + 2C h

)
eλε C h

≤ lim sup
δ↓0

h · λε ‖σ‖∞ eC
∥∥ϕε |bδ − cδ|

∥∥
L1(RN )

(
1 + |µ|(RN )) (1 +O(h))

≤ h · λε ‖σ‖∞ eC
∥∥ϕε |b− c|

∥∥
L1(RN )

(
1 + |µ|(RN )) (1 +O(h)).

due to the construction of bδ, cδ. Thus, we conclude from Lemmas 2.9 and 4.7

Qε(ϑb, ϑc;µ) ≤ sup
0≤ t < 1

lim sup
h ↓ 0

1
h · qε

(
ϑb(h, ϑb(t, µ)), ϑc(h, ϑb(t, µ))

)
≤ sup

0≤ t < 1
λε

∥∥∥ϑb(t,µ)
LN

∥∥∥
∞
eC

∥∥ϕε |b− c|
∥∥
L1(RN )

(
1 + |ϑb(t, µ)|(RN ))

≤ λε ‖σ‖∞ eC eC
∥∥ϕε |b− c|

∥∥
L1(RN )

(
1 + |µ|(RN ) · e2C) 2
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Using the total variation | · |(RN ) for the measures in L∞∩ 1(RN ) proves to be particularly helpful in
regard to “weak” compactness. Indeed, the classical criterion of de la Vallée Poussin has the following
immediate consequence (and thus, we need not restrict ourselves to measures of compact support) :

Lemma 4.9 The tuple
(
L∞∩ 1(RN ), (qε)ε∈J , (pε,κ) ε∈J

κ∈I
, (b·c)ε∈J , TC,BV(RN )

)
is weakly tran-

sitionally compact. 2

Proposition 4.10 Suppose for f : L∞∩ 1(RN )× [0, T ] −→ BV∞,div
loc (RN ) :

1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ +
∥∥div f(µ, t)

∥∥
∞ ≤ C for all (µ, t) ∈ L∞∩ 1(RN )× [0, T ],

2. ‖f(µ, t)− f(µn, tn)‖L1(RN ) −→ 0 if µn
∗
⇀ µ (w.r.t. C0(RN )), tn ↘ t.

Then for every initial measure µ0 ∈ L∞∩ 1(RN ), there exists a sleek solution µ(·) : [0, T [−→ L∞∩ 1(RN )

of the generalized mutational equation
◦
µ(·) 3 ϑf(µ(·), ·) with µ(0) = µ0. Moreover, µ(·) is distribu-

tional solution of the continuity equation d
dt µ(t) + Dx · (f(µ(t), t) µ(t)) = 0 in RN × [0, T [.

Proof. The existence of a right–hand sleek solution µ(·) results from Proposition 2.21 and
Remark 2.23 applied to

(
L∞∩ 1(RN ), L∞∩ 1(RN ), (qε)ε∈J , (pε,κ) ε∈J

κ∈I
, (| · |(RN ))ε∈J , TC,BV(RN )

)
due to the characterization of sleek transitions in Proposition 4.8.
Verifying the claimed distributional property of t 7→ µ(t) = σ(t, ·)LN follows essentially the same track
as in the proof of Proposition 3.11. Indeed, the Lagrangian flow Xf(µ(t),t) : [0, 1]×RN −→ RN of each
f(µ(t), t) ∈ BV∞,div

loc (RN ) satisfies for all h ∈ [0, 1] and LN– almost every x ∈ RN

X(h, x) = x+
∫ h

0

f(µ(t), t)
(
X(s, x)

)
ds.

according to Proposition 4.1. As µ(·) is constructed by Euler approximations being equi–Lipschitz
continuous w.r.t. each qε (ε ∈ J ), it is also Lipschitz continuous w.r.t. to each qε and, we obtain at
every time t of differentiability

d
dt

∫
RN

ϕε dµ(t) = lim sup
h ↓ 0

1
h ·

∫
RN

(
ϕε(Xf(µ(t), t)(h, x)) − ϕε(x)

)
σ(t, x) dLNx

=
∫

RN

∇ϕε(x) · f(µ(t), t)(x) σ(t, x) dLNx.

Now the same steps as in the proof of Proposition 3.11 guarantee for every ψ ∈ C∞0 (RN × [0, T [)

−
∫

RN

ψ(·, 0) dµ0 =
∫ T

0

( ∫
RN

∂t ψ(·, t) dµ(t) +
∫

RN

∇xψ(·, t) · f(µ(t), t)(·) dµ(t)
)
dt. 2

Restricting our considerations to measures in L∞∩ 1(RN ) has now the additional advantage of a closer
relationship between distributional solutions (of the continuity equation) and right–hand sleek solutions
(of the corresponding mutational equation). The key tool here is the maximum principle for distribu-
tional solutions quoted in Lemma 4.12.

Proposition 4.11 Suppose for f : L∞∩ 1(RN )× [0, T ] −→ BV∞,div
loc (RN ) :

1. ∃ C ∈ [0,∞[ : ‖f(µ, t)‖∞ +
∥∥div f(µ, t)

∥∥
∞ ≤ C for all (µ, t) ∈ L∞∩ 1(RN )× [0, T ],

2. ∀ ε ∈ J ∃ Lε ∈ [0,∞[, modulus of continuity ωε(·) ≥ 0 :∥∥ϕε |f(µ, s)− f(ν, t)|
∥∥
L1(RN )

≤ Lε · qε(µ, ν) + ωε (|s− t|) for all (µ, s), (ν, t)∈L∞∩ 1(RN )×[0, T ].
Then for every initial measure µ0 ∈ L∞∩ 1(RN ), the right–hand sleek solution µ(·) : [0, T [−→ L∞∩ 1(RN )

of the generalized mutational equation
◦
µ(·) 3 ϑf(µ(·), ·) with µ(0) = µ0 is unique.

So every distributional solution µ(·) : [0, T [−→ L∞∩ 1(RN ) of d
dt µ(t) + Dx · (f(µ(t), t) µ(t)) = 0

in RN× ]0, T [ that is continuous with respect to each qε (ε ∈ J ) is unique.
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Proof. The uniqueness of right–hand sleek solutions results from Proposition 2.24 for the same rea-
sons as Corollary 3.13. Now suppose µ(·) : [0, T [−→ L∞∩ 1(RN ) to be distributional solution of
d
dt µ(t) + Dx · (f(µ(t), t) µ(t)) = 0 in RN× ]0, T [ that is continuous with respect to each qε (ε ∈ J ).
Then for each t̂ ∈ ]0, T [, the restriction µ(·)|[0,bt ] is uniformly continuous with respect to each qε and

thus, f(µ(·), ·) : [0, t̂ ] −→ BV∞,div
loc (RN ) satisfies the assumption of Proposition 4.10. So there exists

the unique right–hand sleek primitive ν(·) : [0, t̂ ] −→ L∞∩ 1(RN ) of f(µ(·), ·) with ν(0) = µ0 and,
ν(·) is also distributional solution of d

dt ν(t) + Dx ·(f(µ(t), t) ν(t)) = 0 in RN×]0, t̂ [. The comparison

principle of Lemma 4.12 implies ν(·) ≡ µ(·). So µ(·) is right–hand sleek solution of
◦
µ (·) 3 ϑf(µ(·), ·).

2

Lemma 4.12 Let b̃ : [0, T ]× RN −→ RN satisfy the assumptions of Proposition 4.1.
Then the comparison principle for distributional solutions of the continuity equation

d
dt µ + Dx · (̃b µ) = 0 in ]0, T [×RN

holds in the class
{
w̃ LN

∣∣ w̃ ∈ L∞
(
[0, T ];L1(RN )

)
∩ L∞

(
[0, T ];L∞(RN )

)
∩ C0

(
[0, T ];w∗−L∞(RN )

)}
.

In particular, distributional solutions are unique in this class.

Proof results from [1], Theorem 26 and 34. 2
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