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Abstract

In this work we present numerical techniques for the simulation of reactive flows in a chemi-
cal reactor as well as for the identification of the kinetic of the reactions, using measurements
of observable quantities. In this context we introduce methods for the optimal design of
experiments.

We present a model to simulate the detailed interplay between flow variables and those
variables that describe the chemistry. We consider a model for the flow motion in the regime
of low Mach number, where the velocity of the flow is much slower than the sound speed,
to exploit the advantage of this phenomenology.

For the solution of the system of equations we consider the finite elements method for
the discretization in space. The resulting nonlinear system of equations is time dependent
and we are interested in the transitory phase during the reaction. The system has the char-
acteristic of being stiff, this suggests the use of implicit methods for the solution in time.
For the solution of the nonlinearities we use a quasi-Newton method and for the solution
of the linearized equations a multi-grid method with a domain decomposition scheme as
smoother. This method takes advantage of the parallelization of the finite elements code
‘HiFlow’, that has been used for the simulation.

As we deal with real measurements and their uncertainties, we expose a probabilis-
tic setting of the parameter estimation problem. The natural extension of the parameter
identification study, dealing with uncertainties that can be described by a given statistic
distribution, is the optimal experimental design problem. For this purpose we present the
theory in the context of partial differential equations and some numerical experiments.

Central role in this work is played by the simulation of a real experiment and the
results from the comparison between the numerical and the experimental part. Concerning
the obtained results we can state that the numerical methodology presented can be applied
successfully for the study of the kinetic of reactions that take place in a laminar flow reactor
at high temperature.

Zusammenfassung

In dieser Arbeit präsentieren wir numerische Methoden zur Simulation von reaktiven Strömungen
in Strömunsreaktoren sowie Methoden zur Identifizierung der Reaktionskinetik mittels Mes-
sungen von erfassbaren Größen. In diesem Rahmen stellen wir Methoden für die optimale
Versuchsplanung vor.

Wir präsentieren ein Model zur Simulation der detailierten Wechselwirkung zwischen
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Strömung und Chemie. Im Falle niedriger Mach-Zahlen betrachten wir ein speziell auf
diese Situation zugeschnittenes Stömungsmodell.

Für die Lösung der Gleichungen verwenden wir die Methode der Finiten Elemente für
die Ortsdiskretisierung. Die resultierenden nichtlinearen Gleichungen sind zeitabhängig und
unser besonderes Interesse gilt der Übergangsphase während der Reaktion. Die Einbindung
des chemischen Teils führt zu einem steifen System, das implizite Zeitschritt-Verfahren er-
fordert. Zur Lösung der Nichlinearitäten verwenden wir eine Quasi-Newton-Methode und
zur Lösung der linearisierten Gleichungen einen Mehrgitter Löser, kombiniert mit einer
Gebietszerlegungsmethode als Glätter. Diese Methode macht sich die Parallelisierung des
Finite-Elemente-Pakets ‘HiFlow’ zu Nutze, das für die Simulation verwendet wurde.

Da wir mit realen Messungen und deren experimentellen Unsicherheiten zu tun haben,
leiten wir eine wahrscheinlichkeitstheoretische Fassung des Parameteridentifizierungsprob-
lems her. Die natürliche Erweiterung des Parameteridentifizierungsproblems im Falle exper-
imenteller Unsicherheiten, die durch eine bestimmte statistische Verteilung gegeben sind,
ist die optimale Versuchsplanung. Wir präsentieren hierfür die Theorie im Bereich der par-
tiellen Differentialgleichungen und einige numerische Beispiele.

Eine zentrale Rolle in dieser Arbeit spielt die Simulation eines realen Experiments und
der Vergleich zwischen numerischen und experimentellen Ergebnissen. Hinsichtlich der er-
haltenen Ergebnisse konstatieren wir, dass die hier vorgestellte Methode mit Erfolg auf
die Untersuchung der Kinetik von Reaktionen, die in einem Strömungsreaktor bei hohen
Temperaturen stattfinden, angewendet werden kann.
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Introduction

In this work we present numerical techniques for the simulation of reactive flows in a chemi-
cal reactor as well as for the identification of the kinetic of the reactions, using measurements
of observable variables. In this context we introduce methods for the optimal design of ex-
periments.

This work has been supported by the German Research Foundation (DFG) through the
SFB 359 (Project B1) and is part of a co-operation with the group of prof. J. Wolfrum at
the physical-chemistry institute in Heidelberg (PCI). In the framework of this project we
apply the numerical techniques here described to a real case of laminar flow reactor in the
high-temperature regime to determine the reaction rate of the reaction:

O(1D) +H2 → OH +H.

The problem of determining the reaction rate of different reaction processes is an im-
portant issue and finds its application in several areas. The study of the kinetic data is
relevant with respect to the following points:

• from a practical point of view it is crucial for many applications how fast a reaction
reaches a state of equilibrium,

• from a theoretical point of view it is fundamental to know how the different elementary
reactions, that compose a mechanism, affect the whole process.

Complex chemical processes may lead to a huge number of elementary reactions that may
take place simultaneously or sequentially (see Appendix A for the mechanism that describes
the chemical process here considered). The numerical simulation offers a valuable tool for
the understanding of the details of these complex processes.

The reaction studied is of interest because it is part of reactions that occur in the
atmosphere in the process of reduction of ozone. Further it is relevant because it can be
considered as prototype for other reactions that take place in combustion.

For experimental purposes a newly designed chemical flow reactor has been used. Typ-
ically the main part of a flow reactor is a reactive tube, where the species mix together to
reach afterwards a measurements zone. In this case the reaction takes place between gas
phases in a laminar flow. From the point of view of the experimental approach, laminar
flows offer the necessary conditions for the experiment:

• transport of species in the measurement zone,
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• mixing of the different species to create a uniform mixture,

• heat conduction to reach the temperature requested.

At this regime the mixing is mostly due to diffusion and as we will see from the numerical
results the time scale of this phenomenon is small enough to permit a uniform mixture.
Nevertheless the simulation of such processes has some intrinsic difficulties that has to be
considered in a numerical approach: this encompasses the treatment of boundary layers,
expecially in the case of high temperature (T > 500K) in concomitance with high pressure
(p ∼ 1 atm), for which the effect of gravity creates important phenomena or the coupling
between the chemistry and the flow.

In the first chapter we expose the experimental approach to the study of the kinetic of
the given reaction and the related results. Here we describe the flow reactor at the PCI in
Heidelberg and the experimental setup.

For the numerical study we have to solve a complete system of partial differential equa-
tions describing the flow motion in the reactor and the interaction between the flow and
the chemistry.
In the second chapter we derive the mathematical model of the conservation laws, the
Navier-Stokes equations, that describe the fluid motion, i.e. the mass and momentum
equation and the energy equation. We extend the model to the case of multicomponent
flows with transport, diffusion and reaction of different species, adding the mass conserva-
tion equation with regard to each species. Further in this chapter we introduce a low Mach
number model, which is an approximation of the Navier-Stokes equations particularly ade-
quate for the regime of flow at low velocity with respect to the sound of speed. In this case
the compressibility effects are mostly due to the heat exchange. In this regime the velocity
of the fluid is much slower than the pressure waves. This model takes advantage of this
special phenomenology. The system of equations of the model is discretized in space by
means of an adaptive finite element method.

The chapter three deals with the weak formulation of the underlying equations and the
details of the time and space discretization. We expose the techniques that we have used to
solve the nonlinearities of the equations and the multi-grid techniques adopted for solving
the linear systems arising from the linearization of the original systems.

Chapter four presents the parameter identification problem for the estimation of the
reaction rate, based on experimental data given by concentration measurements of the
species. As we deal with experimental data, we introduce a formulation of the problem
under statistical assumption, in order to treat the uncertainties of the data. We can derive
the usual least squares method from the maximum likelihood theory in the probabilistic set
of the problem. In this chapter we show how data uncertainties induce uncertainties also
in the estimated values of the parameters. The way how the former maps into the latter
depends also on the physical system itself, asides from the measurements’ errors introduced
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Figure 1: High temperature reactor at the PCI, Heidelberg

by the measurement chain. As the data are obtained by measurements on the system, the
way how we choose the setup of the experiment is directly related to this issue. This leads
us to introduce the optimal experimental design problem and some applications to models
described by partial differential equations.

Finally the chapter five describes the so called ‘calibration’ of the model, in order to re-
produce numerically the experimental setup. We present here some details of the numerical
results and a comparison between numerical and experimental results.

In the last chapter we delineate the future work in the context of parameter estimation
and optimal experimental design methods applied to systems of partial differential equations
for the simulation of flow reactors.





Chapter 1

Problem formulation and

experimental setup

1.1 Motivation

The experiments have been set up by the physical-chemistry group of prof. J. Wolfrum at
the PCI Heidelberg. In this chapter we treat the chemistry aspects of the work and give
a brief description of the experimental set up, delegating to the reading of the dissertation
of A. Hanf [43] for more details. Aim of the experimental study is the investigation of the
reaction:

O(1D) +H2 → OH +H, (1.1)

in a large range of temperature (300K < T < 1500K). This reaction, as we have mentioned
in the introduction, is important for the study of some atmospheric reactions that take part
to the ozone reduction. Stratospheric ozone absorbs photons with wavelength between 200
and 300 nm:

O3 + hν(λ ≤ 310nm) → O(1D) +O2,

thus it works as a natural filter to the ultraviolet radiation, which is dangerous for its physio-
logical effects. For wavelength greater than 310 nm the photolysis of ozone produces oxygen
atoms in the fundamental state: O(3P ). Oxygen atoms react with hydrogen molecules, but
the reactivity of O(3P ) is seven order of magnitude lower than its first exited state O(1D)
(reaction (1.1)). The uncertainties in the reaction rate of this reaction are one of the most
important sources of error when modeling stratospheric chemistry. This reaction is of rel-
evance also in the combustion chemistry and as a prototype for insertion-type reactions
in which the barrier-less pathway leads to the formation of a H2O complex in the deep
molecular well dominating the potential energy surface (PES). Furthermore an experimen-
tal study of this reaction at a wide range of temperature offers important references for new
calculations using quantum mechanical models.
Reactions which involve electronically exited species such as the reaction of metastable oxy-
gen atoms, O(1D), with H2 can proceed via a non-adiabatic mechanism involving both the
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ground-state PES and one or more electronically excited PESs ([1],[54]). As outlines in
[1], in case of reaction (1.1) five adiabatic surfaces correlate with the O1D +H2 reagents,
two of which can be neglected in the theoretical treatment if the electronic fine structure
of the reagents is not considered. The influence of the three remaining PESs, denoted as
11A′, 21A′ and 11A′′, on the dynamics and thermal kinetics of reaction (1.1) has been in-
vestigated in recent years in a variety of quasi-classical ‘surface hopping’ [12] and quantum
scattering calculations ([1], [28]). These calculations revealed that the contribution state
PES 11A′, which has a deep well corresponding to the electronic ground-state of the wa-
ter molecule, dominates at low collision energies. These calculations further showed that
on the ground-state the reaction (1.1) proceeds via insertion of the oxygen atom into the
H2 bond leading to a highly excited H2O

∗ transient reaction intermediate, which rapidly
(within a few molecular vibrations) decomposes into H + OH products. Because the re-
action on the ground-state proceeds without a barrier the rate coefficient of this reaction
are temperature independent, which is in agreement with the results of thermal kinetics
measurements performed at low temperatures (250K < T < 350K) [26]. Based on the
latter measurement and an extensive evaluation of other experimental data obtained at
low-temperatures a temperature-independent value of 1.1E−10 [cm3molecule−1s−1] is rec-
ommended in the temperature range (200K < T < 350K) for the reaction rate coefficient of
(1.1) [5]. However, reaction dynamics studies of reaction (1.1), in which ‘hot’ O(1D) atoms
with a translational temperature of about 1200K were generated via pulsed laser photol-
ysis, yielded a considerably high rate constant of (2.7 ± 0.6)E − 10 [cm3molecule−1s−1]
[54], indicating a pronounced increase of the reaction rate constant with the temperature.
The latter observation suggests that at higher reagent energies the chemical kinetics of the
reaction is significantly influenced by the participation of at least one (or more) exited-state
reaction pathway. This proposition is supported by results from a measurements of OH as
described in [2], the results of which could only be reproduced if two PESs, the ground-
state PES(11A′) and the electronically exited PES(11A′′), were considered in the respective
quantum scattering calculations [50]. Because the electronically exited PES(11A′′) has a
collinear transition state, the participation of this PES opens an additional abstraction
pathway which exhibits a reaction barrier. This in turn could results in a thermal rate con-
stant, which increases with temperature. In order to provide further experimental evidence
for the proposed mechanism the focus of the present work on the extension of the thermal
rate constant measurements of the reaction towards higher temperatures to bridge the gap
between the available low-temperature thermal rate constant measurements an the ‘hot’
O(1D) atom studies.

There are different experimental methods that aim to study a reaction mechanism. They
have usually in common the principle of measuring quantitatively the concentration of some
components and from these measurements find the reaction rate. For the study of the
reaction (1.1) a newly constructed high temperature flow reactor, depicted in figure 1.1 was
used. The usual principle of flow reactors is the mixing of reactants upstream in a “mixing-
zone”, and the measurement of products of the reaction of interest in a “measurement-zone”,
where the flow condition is almost undisturbed laminar and stationary. This allows a better
control of the thermodynamical and fluid dynamic state at which the reaction takes place
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Figure 1.1: High temperature reactor at the PCI, Heidelberg

and facilitates the numerical study of the entire process.
The mixing process has the two goals:

• to set the temperature of the gases at the wanted “test-temperature” in the “measurement-
zone”

• to mix the reactants uniformly, so that at the “measurement-zone” the concentrations
are controlled by the inflow rate of the reactants at the top of the tube.

1.2 Experimental setup

1.2.1 Flow reactor

The construction and operative details of the reactor are described in the work of A. Hanf
[43]. For our purpose we just give a summary description of the experimental set up and
procedure, in order to introduce the numerical simulations.
A vertical ceramic alumina reaction tube (5cm i.d.) is surrounded and radiatively heated

by six MoSi2 two-shank resistively heated rods inside an insulated water cooled stainless
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steel housing. Four ceramic alumina side arms (1.5cm i.d.), installed perpendicular to the
reaction tube, provide pairwise opposing access for pump and probe laser and the possibil-
ity to monitor the intensity of both. At their end this arms are sealed by MgF2 windows,
which ensure a high transmittance (λ=110nm-7,5mm) for vacuum ultraviolet laser radiation
(λ=5-190nm). A fifth sidearm (2cm i.d.) is installed in 45 to the reaction tube between
two sidearms, whose centerline intersects the crosspoint of the two centerlines of the four
sidearms. To minimize absorption and for cooling a flow of Ar through the side arm is
provided. Above this ceramic tube construction is the oven which consists of a stainless
steel cooling jacket in which 11 insulation rings, made of a fine porous alumina material,
are fixed on top of one another with ceramic adhesive and supports the hearing rods. The
MoSi2 heating rods are hanging free in a space between the ceramic reactor tube and the
insulation. Because of the large mass of cooling jacket, insulation and heating rods this con-
struction is connected over three pulleys to three counter weights, which have approximately
the same mass, what enables easy changes of the oven height relatively to the optical level.
The thermic expansion of the ceramic tubes is compensated by bellows at the sidearms
and a spring supported disc under the reactor tube. Additionally a thermic expansion of
the reaction tube can be compensated by a device connected to the reaction tube at its
top, which enables to change its position vertically. The complete setup is constructed on a
horizontally movable table which allows the optical alignment. The main part of the reactor
consists of the ceramic tube in which is inserted a cooled movable gas inlet, installed at the
top by a crimp connection, so the position can be adjusted to change the residual time in
the hot zone of the gases (N2O and H2) that flow through. Through the outer ring between
the external ceramic wall and the central gas inlet flows a buffer gas (Ar), which is heated
along the ceramic wall, in the heating zone. The temperature is measured by a double
shielded thermocouple, which is installed at the bottom of the reactor and can be moved
vertically along the axis of symmetry of the reaction tube. The reactor was pumped by a
combination of a rotary pump and an oil diffusion pump. The gases have a velocity that en-
sures a complete renewal of the gas mixture in the reaction volume between two laser shots,
whose repetition rate is set to 6 Hz for all experiments. The gases, used in the experiments,
had the following degrees of purity (as specified by the manufacturer): 99.998Vol.% for
N2O, 99.995Vol.% for H2 and 99.998Vol.% for Ar. Mass flow controllers (Tylan FC 260),
calibrated with nitrogen, are used to control the flow rates, from which partial pressures of
the single gaseous components can be derived. In all experiments the H2 partial pressure
was about ten times higher than the partial pressure of N2O, which was typically below
800mTorr. The total pressure in the reactor was measured with an absolute pressure trans-
ducer (MKS Baratron 390HA). For dissociating the N2O precursor molecule and generate
the desired O(1D) atoms an ArF (193nm) excimer laser (Lambda Physik, LPX 205i) is used.
The VUV probe laser beam, used to detect H atoms by laser-induced fluorescence (LIF)
at the corresponding Lyman-α wavelength (λprobe=121.567nm), was generated by resonant
sum-difference frequency mixing ωprobe = 2ω1 −ω2 in a krypton/argon gas cell. The output
of dye laser A (see figure 1.2) operating at a fixed wavelength of 425.1nm was frequency
doubled in a BBO II crystal. Dye laser B is operated at a wavelength of λ2=845.19nm
in order to produce the required radiation for the Lyman-α transition of H atoms. After
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Figure 1.2: Schematic drawing of the experimental setup.

parallelization on a combination mirror as depicted in figure 1.2, both laser beams (λ1, λ2)
are focused in the krypton/argon cell containing a mixture with a total pressure of 250mbar
for the generation of the desired VUV radiation. The dye lasers (A: Lambda Physik FL
2002 E; B: Lambda Physik Scanmate 2E) are simultaneously pumped by a XeCl (308nm)
excimer laser (Lambda Physik LPX 200i). To avoid photochemical perturbations due to the
fundamental UV laser radiation, the VUV laser beams are separated from the fundamental
laser beams (λ1, λ2) by a lense monochromator. The photolysis laser beam, with a typically
intensity of 2mJ/cm2, is aligned perpendicular to the VUV probe laser beam for an optimal
overlap in the reaction zone. The LIF signal, originating from this point is observed by a
channel photomultiplier (CPM, Perkin Elmer C921P solar blind), which is equipped with a
band pass filter (ARC, 122-N-1D, λc=122nm, fwhm=20nm). The VUV probe laser inten-
sity is monitored by another photomultiplier (Hamamatsu R1459 solar blind). The signals
of both photo-multipliers and the signal from the photodiode, which records the photolysis
laser intensity behind the reaction cell, are transmitted into a three-channel boxcar system
(SRS250) and transferred into an analogue to digital converter (SRS235) from which the
data are transfered into a personal computer, where the LIF signal is normalized to the
VUV probe and the photolysis laser intensity. Furthermore the experimental data are vi-
sualized for controlling the experimental progress and saved for evaluation. To improve the
S/N ratio, the H atom signals at a given delay time are averaged over 40 laser shots. To
take account for the component of the LIF signal originating from the scattered light of
the photolysis laser, a shutter is used. The signals monitored at closed shutter at a given
delay time are subtracted from those signals monitored with open shutter, to determine the
corrected signal. A pulse generator (SRS DG 535) controls the delay times between probe
and pump laser. Typically, the delay time has to be varied to cover a time of 100-1000ns
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with respect to the photolysis laser pulse. Delay time settings are checked using a fast
oscilloscope (LeCroy 9350A, 500Mhz).

The control volume

As we have seen in the previous section, the reaction starts as soon as we have in the
gas a mixture of O(1D) atoms and H2 molecules. The O(1D) atoms are generated by an
ArF (193 mm) eximer laser that dissociates N2O in N2 and O(1D). The reaction rate is
measured by means of measurements of H atoms. The measurements are done by laser
induced fluorescence (LIF) technique, where the VUV probe laser beam is perpendicular to
the photolysis beam.

�����
�����
�����
�����

Reactor

VUV probe laser beam

Photolysis laser beam

The control volume for the measurements is thus the intersection of the two laser, that is a
cylinder of 1 mm of diameter and 5-6 mm length.
The result of the measurements is a LIF signal observed by a channel photomultiplier and
normalized to the VUV probe and the photolysis laser intensity. This signal is filtered from
the scattered light of the photolysis laser and is proportional to the number of atoms of
H present in the control volume. The signal is a collection of measurements at different
time delay from the photodissociation that starts the reaction. To improve the statistical
information of the measurements for each time delay the signals are averaged over 40 laser
shots. We describe later in the chapter 5 how it is possible to use this signal to perform a
parameter estimation using the numerical model.

1.2.2 Pseudo first-order reaction approximation

In this section we describe the so called pseudo first-order reaction approximation, that
justify the “experimental” approach to estimate the reaction rate. We consider the reaction
A+ B → C as being of first-order with respect to the reactant A and zero-order w.r.t. B,
the differential equation describing the consumption of A is:

dx

dt
= kA(a0 − x),
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Figure 1.3: Pseudo first-order reaction rate

with a0 the initial concentration of A, kA the first-order rate constant and x the amount of
A that has been consumed per unit volume.
Integration of this with boundary condition x = 0 at t = 0 yields the relation:

x = a0(1 − e−kat).

A semilogarithmic plot of (a0 − x) versus t gives a straight line. From the slope of this we
get the rate of the reaction.
In the case of the reaction

O(1D) +H2 → OH +H,

we perform the experiments with a surplus of H2, so that, in the relation

d[H]

dt
= ka[O(1D)][H2],

we can approximate [H2] with a constant, because the concentration of H2 is much higher
than that of O(1D) and his change in time is negligible. This is the so called pseudo
first-order model:

d[H]

dt
= kps[O(1D)],

where kps = ka[H2]. To calculate ka we need several values of kps at different values of
[H2]. Plotting the value of kps versus [H2] we obtain a straight line, the slope of which is
ka. Some assumptions have been made in order to calculate an expression of kps:
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1. the first is that [H2] is almost constant and this is easy to satisfy, controlling the inflow
of the gases,

2. the secondary and tertiary reactions in the mechanism (see Appendix A) do not modify
essentially the results, this assumption has to be verified. If not satisfied, we must
consider the full mechanism also to get an approximation of the kps,

3. the concentrations of the reactants, in the reaction zone, have to be known. Exper-
imentally the concentrations have been calculated from the values of the calibrated
mass flow controllers, from which it is possible to calculate the flow rates and con-
sequently the partial pressures of the single gaseous components. From the partial
pressures, the total pressure and the temperature, it is possible to calculate the num-
ber of particles (atoms, molecules or ions) for each species. Is is important to ver-
ify, numerically, that the mixing process from the top of the reaction tube to the
“measurement-zone” give an homogeneous mixture of species at the optical level.

1.2.3 Experimental approach to the kinetic estimation

We describe here the empirical method for the estimation of the kinetics, that have been
used in the work of A. Hanf [43]. A simplified reaction system was considered, together
with empirical information regarding some reactions of this system, in order to estimate the
reaction rate, using the pseudo first-order model:

O(1D) +H2

kH2→ OH +H (1.2)

O(1D) +N2O
kN2O→ products (1.3)

O(1D) +Ar
kq→ O(3P ) +Ar (1.4)

H
kD→ diffusion (1.5)

The variation of O(1D) is thus given by:

−dO(1D)

dt
= kH2

[O(1D)][H2] + kN2O[O(1D)][N2O] + kq[O(1D)][Ar] = k′[O(1D)] (1.6)

where
k′ = kH2

[H2] + kN2O[N2O] + kq[Ar].

Here the different reaction rates have been derived as following:

• the rate constant kq for the quenching of O(1D) by collision with Ar was taken from
a study of the deactivation of O(1D) and O(1Σ+

g ) by different rare gases.

• kN2O was obtained from Davidson et al. [26]

• the rate coefficient for the diffusion kD was determined by measuring the H atoms
signal at delay times of several ten microseconds. kD was obtained as a fit parameter
using the relation:

[H]t = A exp(−kDt).
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In the following derivation we use the symbol O• instead of O(1D) to facilitate the reading
of the different passages. By separation of the variables and integration we get:

∫ [O•]t

[O•]0

1

O• dO
• = −k′

∫ t

0
dt

ln
[O•]t
[O•]0

= −k′t

Thus

[O•]t = [O•]0 exp(−k′t) (1.7)

And for the concentration of H atoms, using (1.7), we obtain:

d[H]

dt
= kH2

[O•]0[H2] − kD[H] = kps[O
•]0 exp(−k′t) − kD[H]

d[H]

dt
= kps[O

•]0 exp(−k′t) − kD[H]

This is a differential equation of the form:

dy

dx
= g(x) − f(x)y,

which solution is:

y(x) =
1

M(x)

(

∫

g(x)M(x)dx + C
)

,

with M(X) = exp(
∫

f(x)dx). In our case f(x) = kD, so

∫ x

x0

f(x)dx =

∫ t

0
kDdt = kDt

and M(x) = exp(kDt). We have also g(x) = A exp(−k′t), with A = kps[O
•]0. Thus

[H]t = exp(−kDt)
(

A
1

(kD − k′)
exp(−k′t+ kDt) + C

)

for t = 0 we have [H]t = [H]0 and from

[H]0 = A
1

(kD − k′)
+ C

we determine the constant C.

Finally we obtain:

[H]t = exp(−kDt)
( A

(kD − k′)
exp(−k′t+ kDt) + [H]0 −

A

(kD − k′)

)
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and substituting A we have the formula to be used for the fit with the experimental data:

[H]t =
kps[O

•]0
kD − k′

(

exp(−k′t) − exp(−kDt) + [H]0 exp(−kDt)
)

(1.8)

After fitting [H] with the experimental data using (1.8), a RUNS test was performed to
check for randomness of the scattering of the experimental data.

In the work of A. Hanf [43] is also considered an extension of this system, where the
most important of the so called secondary reactions 1 is taken in account.

1.3 Experimental results

We give in this section the results of four experimental tests for four different reference
temperatures at the “measurement-zone”.
A detailed explanation of the results is given in the work of A. Hanf [43].
The range of temperature tested is between 370 K and 780 K.
The results are summarized in the following table:

T p [Ar][N2O][H2] kmin−max
ps k

[K] [torr] [1015molec/cm3] [106s−1] [10−10molec−1cm3s−1]

300 14 350 8 18-107 1.8-11.2 0.99 ± 0.08

370 15 330 6.5 13-89 1.2-8.7 1.00 ± 0.02

580 50 700 16 33-217 2.9-24.8 1.15 ± 0.06

780 44 450 10 21-137 4.0-22.3 1.53 ± 0.15

Table 1.1: Results from the experimental approach to the determination of the kinetic. In
the first column we have the test-temperature, in the second column we have the pressure
inside the reactor, in the third column we have the empirically calculated concentrations of
the different species, in the fourth column we have the range of values for the kps correspond-
ing to the different values of [H2] concentration at which have been made measurements, in
the last column we have the fitted value of the rate constants with the variance obtained
by the RUNS tests.

As described in the section 1.1 we have expected an increased value of the reaction rate
at higher temperature due to the presence of at least one exited-state reaction pathway. The
value 1.53[10−10molec−1cm3s−1] at 780K shows this trend. Further, these results show that
the reaction considered behaves not following the standard Arrehnius law, but the so called

1The primary reactions are reactions that take place between the species available at time zero. The
secondary reactions are reactions that take place between the species available from the beginning and the
products of the primary reations.
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modified Arrehnius law:

k(T ) = A(
T

T0
)β exp(

−Ea

RT
),

where T is the temperature and T0 = 300K is a reference temperature, A is a constant, Ea

is the activation energy, R is the universal gas constant and β is a constant.
The modified law presents the term T β and for values of β different than zero makes the
value of the reaction rate k to dependent on the temperature in a stronger way as shown
in [43].





Chapter 2

Model derivation

The mathematical model is a model of the fluid motion and of the reaction mechanism. In
the reactor flows a multicomponent fluid, which motion is governed by the Navier-Stokes
equations. We derive in this chapter the conservation laws governing the fluid motion. We
start by the derivation of the Navier-Stokes in the more general case for a Newtonian fluid
in a instationary regime. We extend the system to the case of a reacting multicomponent
fluid, and then we describe the case of low Mach number regime, which is suggested by the
real test conditions. We derive an asymptotic analysis of the flow, that gives the motivation
of the modification to the system that we apply in this case.

2.1 Conservation laws

Given a volume V of fluid, for a generic entity, which dependency on space and time is
described by the function f , the conservation law is the relation between the variation in
the time of this entity in the volume V, the flux Ff through the boundary surface ∂V of
the volume and the source/sink term s. If n is the unity vector normal to the surface ∂V,
we have:

∂

∂t

∫

V
fdV +

∮

∂V
FfndS =

∫

V
sdV. (2.1)

If the function f and his derivatives are continuous we can apply the Gauss theorem to
obtain:

∂

∂t

∫

V
fdV +

∫

V
∇·FfdV =

∫

V
sdV, (2.2)

then write the equations in differential form:

∂f

∂t
+ ∇·F f = s. (2.3)

To describe the fluid motion we use three entities:

1. the density of the fluid ρ,



14 Chapter 2. Model derivation

2. the momentum Q = ρu, where u is the velocity of the fluid,

3. the total energy E of the fluid.

The mass flux is simply given by:
Fρ = Q = ρu,

where u is the velocity of the fluid and is a vector function of space and time.
The mass conservation equation then becomes:

∂ρ

∂t
+ ∇·(ρu) = 0, (2.4)

because the total mass in a closed system has no source/sink term.
The momentum flux, in the case of inviscid fluid, reduces to ρuu plus a second rank isotropic
tensor. Thus we can express it as:

FQinviscid
= ρuu+ p(ρ,E)I,

where I is the unity tensor and the scalar function p is the thermodynamic pressure, depen-
dent on the variables ρ and E. In case of viscous fluid, we have to add a term dependent
on the gradient of the variables ρ, Q and E, that describes the dissipative part. By consid-
erations on the rank of the tensors and on the operations that give a second rank tensor as
result, we can deduce that the only expression allowed for the dissipative momentum flux
is:

FQ = a∇ρ+ b∇E + c∇Q,
where a and b are third rank tensors and c is a fourth rank tensor.
By other considerations on the operations, that give as result a tensor independent of the
coordinate system, we reduce the dissipative momentum flux to the expression:

FQ = c∇Q = c̃∇u,

where the only operations allowed between c̃ and ∇u are to take the trace and the symmetric
or antisymmetric part of the tensor. We obtain:

FQ = −µ′∇·uI − µ[∇u+ (∇u)T − 2

3
∇·u I], (2.5)

where µ is the viscosity coefficient and µ′ is the bulk viscosity coefficient.
Finally the momentum conservation equation is:

∂(ρu)

∂t
+ ∇·(ρuu+ pI + FQ) = ρf, (2.6)

where ρf is the volume force acting on the volume V.
Analogously for the flux of energy we have in the case of inviscid fluid:

FEinviscid
= pIu+ ρEu = pIu+ ρ(e+

u2

2
)u,
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where the total energy is divided in internal energy e and kinetic energy u2

2 .

In case of viscous fluid we add the dissipative part, which is the summation of two terms:

FEviscous
= FQu+ FE ,

and for the same considerations as for the momentum flux, the term FE has the following
tensor form:

FE = d∇ρ+ f∇u+ g∇E,

where d and g are second rank tensors and f is a third rank tensor. Adding the constrain
that the entropy has to be positive for all the values of the variables and gradients of
these, in the previous expression remains only the dependency on the energy, that usually
is expressed in term of temperature:

FE = −k∇T, (2.7)

where k is the heat conduction coefficient. Again for the second principle of the thermody-
namic the three coefficients satisfy the following constraints:

k ≥ 0,

µ ≥ 0,

µ′ ≥ 0.

The conservation of energy equation becomes:

∂

∂t
ρ(e+

u2

2
) + ∇·[ρ(e +

u2

2
)u+ pIu+ FQu− k∇T ] = ρfu, (2.8)

if the only external force is the gravity and we do not have radiation.

We can write now the conservation laws in the conservative formulation: mass, momen-
tum and energy equations.

∂ρ

∂t
+ ∇·(ρu) = 0, (2.9)

∂ρu

∂t
+ ∇·(ρuu+ pI + FQ) = ρf, (2.10)

∂

∂t
(ρe+ ρ

u2

2
) + ∇·(ρeu+ ρ

u2

2
u+ pIu+ uFQ + FE) = ρfu, (2.11)

with:

FQ = −µ′∇·u I − µ[∇u+ (∇u)T − 2

3
∇·u I],

FE = −k∇T.
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2.2 Reactive flows

The next step is the derivation of the conservation laws in case of reactive flows. Reactive
flows are those flows of mixture fluids in which the different components can react with
each-other or with the surface of the container.

2.2.1 Mass and momentum equations

In case of multicomponent fluid, to take into account the detailed composition of the mixture
we have to model the conservation principles for each species. We assume that the species
are mixed and the mixture can be treated as a continuum with locally changing properties,
that depend on the mixing components. We introduce the species mass fractions:

Yk =
ρk

ρ
=
mk

m
, k ∈ S,

where ρk is the mass density of the k species, mk is the molar mass of the k species, m is
the total mass, m =

∑

k∈S mk, and S is the set of species indices S = {1, . . . , n}. The ideal
gas law for a mixture of gases is defined as:

pm̄ = ρRT, (2.12)

where m̄ is the mean molar mass:

m̄ =
∑

k∈S

xkmk (2.13)

and xk = nk/n is the mole fraction, nk the number of moles of the k species and n =
∑

k∈S nk. For n reacting species we need n equations for the mass conservation, each
including a source/sink term describing the production/destruction of the species.
We denote with vk the velocity of the k species:

vk = v + Vk,

where v =
∑

k Ykvk is the mass-weighted average velocity of the fluid mixture and Vk

denote the diffusion velocity of the species k. So we can write the mass conservation for
each species:

∂ρk

∂t
+ ∇·(ρkv) + ∇·(ρkVk) = mkωk, k ∈ S, (2.14)

where mk is the molar mass of the k species, ωk is the molar production rate of the k species,
a detailed description of this term is given by the laws of chemical kinetics and described
later in this chapter.
We can write the conservation equation as:

∂ρYk

∂t
+ ∇·(ρYkv) + ∇·Fk = mkωk, k ∈ S, (2.15)
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where Fk is the species diffusion flux and it is given in an explicit dependence on the
other thermodynamical variables, in order to have an expression that can be used for the
calculations.
The mass fractions satisfy the condition:

∑

k∈S

Yk = 1 (2.16)

and the fluxes and source terms satisfy the mass condition:

∑

k∈S

Fk = 0, (2.17)

∑

k∈S

mkωk = 0. (2.18)

The conservation of momentum has the same form as for the homogeneous fluid but with
the force term given as the sum of the force terms acting on the different species.

∂ρu

∂t
+ ∇·(ρuu+ pI + FQ) =

∑

k

ρkfk. (2.19)

The energy conservation can be written as follows:

∂

∂t
(ρe+ ρ

u2

2
) + ∇·(ρeu+ ρ

u2

2
u+ upI + uFQ + FE) =

∑

k∈S

(ρkv + Fk)fk, (2.20)

where we have some more terms with respect to the equation derived for an homogeneous
fluid. We have the term

∑

k∈S Fkfk, if the specific forces acting on the different species
are different. In the case of gravity, fk = g and, for the constraint on the diffusion flux
∑

k∈S Fk = 0, this term is zero. From now on we assume that the only external force is the
gravity. So the energy equation becomes:

∂

∂t
(ρe+ ρ

u2

2
) + ∇·(ρeu+ ρ

u2

2
u+ upI + uFQ + FE) = ρgv, (2.21)

where the term for the heat flux FE has to be modified to take in account the energy
transfer due to species with different enthalpies and due to gradients of concentration of
the different species.

In the next paragraph we derive the equation for the variable T , temperature of the
fluid, which is used in the following instead of the energy equation.

2.2.2 Temperature equation

From the kinetic theory of gas mixtures we can obtain some thermodynamic relations, that
we need to derive the temperature equation. This is a balance equation for the energy
written in term of the thermodynamic variables temperature and density and not in term
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of internal energy. With this formulation we can describe the boundary conditions for the
energy in term of temperature, which is normally measured in real experiments.
From the energy equation (2.21) we obtain the internal energy equation by subtracting
the momentum equation (2.19) multiplied by the velocity u, which gives the kinetic energy
equation:

∂ρu

∂t
u+ ∇·(ρuu+ pI + FQ)u = ρgu,

∂ρ1
2uu

∂t
+ ∇·(1

2
ρuu+ p)u) + ∇·(FQu) = p∇·u+ FQ : ∇u+ ρgu.

So subtracting this to the total energy equation yields:

∂ρe

∂t
+ ∇·(ρeu+ FE) + p∇·u+ FQ : ∇u = 0.

The enthalpy per unit mass, being an intensive entity, can be expressed as the summation of
the different species enthalpies, so we express the enthalpy density as the specific enthalpy
times the mass density and we obtain:

ρh =
∑

k∈S

ρkhk.

Using the definition of enthalpy:

hk = h0
k +

∫ T

T0

cp,k(T )dT,

with formation enthalpy h0
k, standard temperature T0 and the heat capacity at constant

pressure cp,k, and the relation:
ρe = ρh− p,

we can write the enthalpy equation, substituting the ρe in the equation for the internal
energy:

∂ρh

∂t
− ∂p

∂t
+ ∇·(ρhu+ FE) − u∇p+ FQ : ∇u = 0. (2.22)

Using the continuity and the conservation of species mass we have:

∂ρh

∂t
+ ∇·(ρhu) = ρ

∂h

∂t
+ ρu∇h (2.23)

= ρ
∑

k

{∂(ykhk)

∂t
+ u∇(ykhk)} (2.24)

= ρ
∑

k

{ykcp,k(
∂T

∂t
+ u∇T ) + hk(∂yk + u∇yk)} (2.25)

= ρcp{
∂T

∂t
+ u∇T} +

∑

k

hk(mkωk −∇·Fk), (2.26)
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thus the temperature equation is:

ρcp
∂T

∂t
+ ρcpu∇T − ∂p

∂t
+ ∇·FE − u∇p+ FQ : ∇u−

∑

k∈S

hk∇·Fk =

−
∑

k∈S

hkmkωk.
(2.27)

We can rewrite the temperature equation using the relations:

∇·(
∑

k

hkFk) =
∑

k

hk∇·Fk +
∑

k

Fk∇hk,

and

∇hk = cp,k∇T,
yielding:

ρcp
∂T

∂t
+ ρcpu∇T − ∂p

∂t
+ ∇·(FE −

∑

k

hkFk) +
∑

k

cp,kFk∇T − u∇p+ FQ : ∇u =

−
∑

k∈S

hkmkω.
(2.28)

2.2.3 Transport fluxes

To complete our derivation of the equations that describe the flow we need the formulation
of the two terms: the species mass flux Fk, and the energy flux FE .
These are the description of different effects. The mass flux can be divided in three terms:
the diffusion given by the gradient of concentration of the species, the thermal diffusion
(Soret effect) and the pressure diffusion. The species flux is given by the species density ρk

times the species diffusion velocity, which can be expressed as:

Vi = −
∑

j∈S

Dij(dj − χj∇ log T ), i ∈ S, (2.29)

with:

di = ∇Xi + (Xi − Yi)
∇p
p
, i ∈ S, (2.30)

where D = Dij is the diffusion matrix, di the diffusion driving force of the i species, Xi

is the mole fraction of the i species and χ = χi are the thermal diffusion ratios, a precise
definition of these is given in [32].
Now we can give an explicit formulation of the heat flux including the term corresponding
to the Dufour effect:

FE =
∑

i∈S

hiFi − λ∇T + p
∑

i∈S

χiVi, (2.31)
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with λ the thermal conductivity, hi the enthalpy per unit mass of the ith species and
Vi and χi as previous defined. Detailed modeling of a polyatomic gas mixture requires
the evaluation of the transport coefficients: Dij , di, χi, λ. These are functions of the state
variables {p, T, Yi, . . . , Yn} and are not given explicitly by the kinetic theory, their evaluation
requires the solution of the so called ‘transport linear systems’. These are derived from a
Galerkin approximation of the linearized Boltzmann equations. For the definition and
solution of these systems we refer to the work of A. Ern and V. Giovangigli ([38],[33]).
From the same authors is available the library Eglib [31] that implements the algorithms to
solve the different coefficients with different levels of approximation. Following the work of
A. Ern and V. Giovangigli we treat in the next section the transport linear system associated
with the diffusion coefficients and we define the first order diffusion matrix.

Diffusion matrix

To define the diffusion matrix D we have to define the matrix ∆ ∈ Rn,n, where n is the
number of species in the mixture, by:

∆kk =
∑

l 6=k

xkxl

Dbin
kl

, (2.32)

∆kl = −xkxl

Dbin
kl

, k 6= l, (2.33)

whereDbin
kl is the binary diffusion coefficient for the species pair (k, l), see [38]. The transport

linear systems that define the diffusion coefficients are the n systems indexed by l and given
by:

∆αl = βl, (2.34)

(α, Y ) = 0, (2.35)

where the symbol (·, ·) is the scalar product in Rn. The right hand side β l is defined by:

βl = δkl −
Yk

∑

i Yi
= δkl − Yk. (2.36)

The matrix ∆ has the following properties:

• it is symmetric and positive definite,

• N(∆) = RU ,

• R(∆) = U⊥,

• βl ∈ R(∆),

where R(·) is the range and N(·) is the kernel of the given matrix. The vectors αl are the
column of the diffusion matrix, thus the diffusion coefficients are given by:

Dkl = (αl, βk) = (αk, βl) = αl
k = αk

l . (2.37)
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The matrix D can be written as the solution of the following system:

∆D = I − Y × U , (2.38)

where U is the vector {1, 1, . . . , 1}T ∈ Rn and the symbol ‘×’ is the tensor product between
two vectors, i.e. the matrix Y × U = (YiUj)(i,j=1,...,n).
It is possible to show that the diffusion matrix D is the generalized inverse of ∆, i.e.
D∆D = D and ∆D∆ = ∆, with given range R(D) = Y ⊥ and kernel N(D) = RY and has
the following properties:

• it is symmetric and positive semidefinite,

• it is positive definite over U⊥,

• N(∆) = RY ,

• R(∆) = Y ⊥,

• it is irreducible.

In order to avoid matrix inversions for the calculation of D it is possible to consider an
expansion of D as a convergent series and use iterative techniques to solve the system or
to define analytic approximate coefficients by truncation. Considering standard iterative
methods we use the decomposition of the matrix ∆ = M − Z, whit M not singular. The
induced iteration is:

xi+1 = Txi +M−1β, (2.39)

where T = M−1Z. The scheme converges if β ∈ R(∆) and if the iteration matrix T is
convergent, i.e. exists the limi→∞ T i. In the case where ∆ is regular, the spectral radius
of T is ρ(T ) < 1 so the iterates converges towards limi→∞ xi = ∆−1β = α. When ∆ is
singular ρ(T ) = 1 the limit of (2.39) depends on the initial values x0, in this case it has
to be considered the projected version of the scheme with the projector matrix P over Y ⊥

parallel to RU : P = I − Y × U/(Y,U). The spectral radius of PT is strictly lower then
unity and we have the series expansion [37]:

D =
∞
∑

j=0

(PT )jPM−1P T . (2.40)

Truncating the summation we get different approximate diffusion matrices D [i], i ≥ 0:

D[i] =

i
∑

j=0

(PT )jPM−1P T , (2.41)

each partial sum satisfy all mathematical properties that characterize the diffusion matrix,
in particular they are symmetric, conserve the mass D [i]Y = 0 and satisfy the constraint
of a positive entropy production over U . Usually it is sufficient to use an approximation
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of the diffusion matrix and stop the expansion to the first or second term. The first order
approximation is given by:

D0 = PM−1P T , (2.42)

and this can be shown to yield the Fick’s law of diffusion plus a corrector term to satisfy
the mass constraint. The Fick’s law is an empirical expression for the diffusion used in most
practical applications.

Approximation of the transport fluxes: the Fick’s law

For the evaluation of the transport fluxes, sometimes it is possible to assume some simpli-
fications. The thermal diffusion is important only when the temperature is low, so in high
temperature flows the Soret effect for species and the Dufour effect for the heat transport
are negligible. Further to save computational time we can use a simplification for the species
diffusion velocity, that is given by the Fick’s empirical law:

Fk = ρYkVk = −ρDM
k ∇ck = −ρDM

k

Yk

xk
∇xk = −ρDM

k (∇Yk +
Yk

m̄
∇m̄), (2.43)

where ck is the concentration of the species k and DM
k is a mean diffusion coefficient for the

species k in a mixture of the other species and is given by the following expression:

DM
k =

1 − Yk
∑

l 6=k
Xl

Dbin
kl

. (2.44)

Only the second term couples all the species, thus in the case where the variation of m̄ is
negligible we use a simplified expression of the diffusion coefficients dropping this term and
obtaining a diagonal diffusion matrix. As the Fick’s law doesn’t ensure mass conservation,
we have to add a corrector factor:

F̃k = Fk + YkFcorr, (2.45)

with the corrector term defined by:

Fcorr = −
∑

k∈S

Fk. (2.46)

We have to define now the reactive term of the equations given a mechanism of a reaction.

2.2.4 Reaction Mechanism and elementary reactions

A mechanism is a collection of elementary steps that describes the overall reaction pro-
cess. The fact that a mechanism explains the experimental results is not a proof that the
mechanism is correct. A mechanism is a rationalization of a chemical reaction. An elemen-
tary reaction describes how actually molecules or ions react with each other. We write the
elementary reaction equations as:

∑

k∈S

νf
kiSk 


∑

k∈S

νb
kiSk, i ∈ Nr (2.47)
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where Sk is the chemical symbol of k species, νf
ki and νb

ki are the stoichiometric coefficients
of the k species and Nr the number of reactions. The molar production rates ωk are given
by:

ωk =
∑

i

νkiτi, (2.48)

where

νki = νb
ki − νf

ki, (2.49)

and

τi = kf
i

∏

l

c
ν

f
li

l − kb
i

∏

l

c
νb

li

l , (2.50)

where ck = ρk

qk
is the molar concentration of the k species and kf

i and kb
i are the forward

and backward rate constants respectively. The kf
i and kb

i are functions of the temperature
and their ratio is the equilibrium constant:

ke
i (T ) =

kf
i (T )

kb
i (T )

. (2.51)

For the forward reaction we have:

ωk =
∑

i

(νb
ki − νf

ki)k
f
i

∏

l

c
ν

f
li

l , (2.52)

where the forward rate constant is usually approximated by the Arrhenius empirical law:

kf
i (T ) = AiT

biexp(−Eai

RT
), (2.53)

where Eai is the activation energy of the i reaction. The backward reactions to be consistent
have to be derived by (2.51), using an explicit form for ke, but usually it is possible to
determine the Arrenhius coefficients for the backward reaction by a least-squares fit over a
certain range of temperature, although in this way consistency get lost.

2.3 Low Mach number model

When the velocity of the fluid is much slower then the sound speed, the effect of compress-
ibility are very small. The Mach number, defined as the ratio of the fluid velocity and the
sound speed, is the parameter used to measure this effect. As this parameter becomes small,
the coupling between the velocity and the pressure changes in its physical meaning: the
interaction between flow phenomena and acoustic waves has different scales. An asymptotic
analysis gives the different orders of the terms describing the different scales. To solve the
low Mach number regime we exploit the splitting of these effects to overcome the intrinsic
numerical difficulties.
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2.3.1 Low Mach number asymptotic of the Navier-Stokes equations

The low Mach number regime can be seen as a limit of the Navier-Stokes equations with
Ma → 0 and has been derived in different ways by many authors starting from the com-
pressible formulation. Following the work of Majda [61] and [68], we show the limit starting
from an asymptotic analysis as described in [62].

Non-dimensionalization

We first write the equations that we have derived in a non-dimensional form and then, as-
suming that the low Mach number asymptotic is a regular perturbation problem, we expand
in power series of M all flow variables. We order all the terms according to the power of
M and identify the different orders of the equations. We use reference quantities, marked
with the subscript ”∞”, and a typical length scale L for this flow to write the equations
in a non-dimensional form. The reference quantities have to be chosen such that the non-
dimensional flow quantities remain of order O(1) for any low reference Mach number:

M∞ =
u∞

√

γp∞/ρ∞
,

where γ =
Cp

Cv
is the ratio of specific heats. We may use:

M̃ =
u∞

√

p∞/ρ∞
=

√
γM∞

to avoid the dependency on γ.
To write the non-dimensional equations we use the definition of dimensionless ratios of some
coefficients:

• Re = ρuL
µ

is the Reynolds number and represent the ratio of inertial forces to viscous
forces,

• Fr = u√
gL

is the Froude number, the ratio of kinetic energy to potential energy,

• Pr =
cpµ
κ

is the Prandtl number, the ratio of momentum diffusivity to thermal diffu-
sivity,

• Sc = µ
ρD

is the Schmidt number, ratio of kinetic viscosity to molecular diffusivity D,

• Da = mωL
ρu

is the Damkoehler number, ratio of chemical reaction timescale to trans-
port phenomena.

We can expand each variables in the power of M̃ :

v(x, t, M̃ ) = v0(x, t) + M̃v1(x, t) + M̃v2(x, t) +O(M̃3)

and use this expansion in the system of equations. For the continuity equation we obtain:

[
∂ρ0

∂t
+ ∇·(ρu)0] + [

∂ρ1

∂t
+ ∇·(ρu)1]M̃ + [

∂ρ2

∂t
+ ∇·(ρu)2]M̃2 +O(M̃3) = 0. (2.54)
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The approximation that we do is to stop the expansion at the second order term and to
solve the equation with a rest term of the order O(M̃3). As the coefficients of the powers
of M̃ have to vanish to satisfy this equation, we have:

[
∂ρi

∂t
+ ∇·(ρu)i] = 0, i = 0, 1, 2. (2.55)

The non-dimensional momentum equation becomes:

∂ρu

∂t
+ ∇·(ρuu) +

1

M̃2
∇p =

1

Re∞
∇·FQ +

1

Fr2∞
ρ(−er), (2.56)

(2.57)

where er is the unity vector in the direction of the gravity field. With the assumption that
the Re and the Fr numbers remain constant and only the M number varies we can proceed
and substitute the expansion of the variables and we retain only the zeroth order term, so
we get:

∂ρ0u0

∂t
+ ∇·(ρ0u0u0) + M̃−2∇p0 + M̃−1∇p1 + ∇p2 =

1

Re∞
∇·(FQ)0 +

1

Fr2∞
ρ0(−er).(2.58)

The first order momentum equation is thus:

∂ρ0u0

∂t
+ ∇·(ρ0u0u0) + ∇p2 =

1

Re∞
∇·(FQ)0 +

1

Fr2∞
ρ0(−er), (2.59)

while the two terms of pressure p0 and p1 must satisfy the relations:

∇p0 = 0, (2.60)

∇p1 = 0. (2.61)

From the (2.60, 2.61) we have:

p0 = p0(t), (2.62)

p1 = p1(t). (2.63)

that is, the zeroth and first order terms of the pressure are functions only of the time and
constant in space.
Considering the multicomponent fluid we neglect, for simplicity, the Dufour effect and the
dependency on the gradient of pressure for the diffusion of species and we adopt the Fick’s
law. Introducing the Schmidt number Sc = µ

ρD
, where D is the mean diffusion coefficient in

the Fick’s law, and the Damkoehler number, Da = mωL
ρu

, we obtain the following expression
for the non-dimensional temperature equation:

∂ρcpT

∂t
+ ∇·(ρcpT ) =

γ − 1

γ

∂p

∂t
+

1

RePr
∇·FE − ρ

ReSc

Nsp
∑

i=0

cp,iVi∇T −Dai

Nsp
∑

i=0

hiωi, (2.64)
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where Nsp is the number of species and Vi is the species diffusion velocity as defined in the
previous chapter. In the low Mach number approximation the term due to the dissipative
momentum flux:

M̃2

Re∞
FQ : ∇u (2.65)

is a higher order term and can be neglected. The species mass conservation equation has
now to be derived and also for this equation we neglect the dependency on the temperature
gradient (Soret effect) obtaining:

∂ρYi

∂t
+ ∇·(ρuYi) +

1

ReSc
∇·Fi = Daiwi, (2.66)

where we see that the form of the equation is not modified due to terms with different order
w.r.t. M .
From this asymptotic analysis we can derive an approximation of the system, in the case of
low Mach number regime, by considering only the zeroth order equations.
The approximation is valid only for very small Mach number because the higher order terms
go to zero as M → 0. The system becomes:

∂ρ0

∂t
+ ∇·(ρu)0 = 0,(2.67)

∂ρ0u0

∂t
+ ∇·(ρ0u0u0) + ∇p2 −∇·(FQ)0 − ρ0g = 0,(2.68)

∂ρ0cpT0

∂t
+ ∇·(ρ0ucpT0) −

γ − 1

γ

∂p0

∂t
−∇·((FE)0) +

Nsp
∑

i=0

cp,iFi∇T0 +

Nsp
∑

i=0

himiωi = 0,(2.69)

∂ρ0Yi

∂t
+ ∇·(ρ0u0Yi) + ∇·Fi −miωi = 0,(2.70)

where the pressure is split in two terms p0 and p2. The first order pressure term p1 appear
only in the first order equations and has no relevance in our formulation, if we are not
interested in the acoustic effect. The zeroth order pressure p0 constitutes the coupling
between the momentum and energy equations through the equation of state p0 = ρ0RT0.
It is constant in space while it can vary in time due to mass flux or heat transfer from the
boundary and, as in the case of exothermic reactions, from heat release.
In our case we can calculate the variation in time of the pressure from the variation in
time of temperature and mean molar mass and from the mass flux through the boundary.
To obtain explicitly this dependency we substitute the density from the state equation
(2.12) into the continuity equation (2.67) and, being p0 constant in space, integrate over
the volume. From the state equation we have:

ρ =
p0m̄

RT
,

substituting in the continuity equation we obtain:

∂p0

∂t

m̄

RT
+
∂m̄

∂t

p0

RT
− 1

T 2

∂T

∂t

p0m̄

R
+
p0m̄

RT
∇·u+ u · ∇m̄ p0

RT
− 1

T 2
u · ∇T p0m̄

R
= 0.
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where we have used ∇p0 = 0. We can thus reformulate the continuity equation as:

1

p0

∂p0

∂t
+

1

m̄
(
∂m̄

∂t
+ u · ∇m̄) − 1

T
(
∂T

∂t
+ u · ∇T ) + ∇·u = 0, (2.71)

The thermodynamical pressure is constant in space and his variation in time can be shown
to be determined by an ordinary differential equation. We can distinguish between two
cases:

• flow in a closed vessel: here the variation of pressure is mostly due to heat release.
The equation governing this variation is obtained by integrating over the volume:

∂p0

∂t

∫

Ω
dx = −p0

∫

Ω

( 1

m̄
(
∂m̄

∂t
+ u · ∇m̄) − 1

T
(
∂T

∂t
+ u · ∇T ) + ∇·u

)

dx,

∂p0

∂t
= − p0

|Ω|

∫

Ω

( 1

m̄
(
∂m̄

∂t
+ u · ∇m̄) − 1

T
(
∂T

∂t
+ u · ∇T

)

+

∫

∂Ω
u · nds. (2.72)

Knowing the initial conditions for the mass flow, temperature and mass composition
we can integrate this ODE to calculate the variation of thermodynamic pressure.

• flow in a vessel with an open boundary: in this case the pressure is controlled from
outside and the pressure can be found as the spatial mean value over the outflow
boundary. The pressure is given by the following expression:

p0 =
1

|Γout|

∫

Γout

pout(x, t)ds. (2.73)

In our case we have an open boundary so the thermodynamic pressure is imposed from
outside and constant in space and time. On the other hand the second order term p2 cor-
responds to the pressure in the incompressible flow and can be considered as the constraint
for the divergence of u0. In the case of low Mach number flow, we do not have a divergence
free velocity field, but the constraint on the velocity is given by the equation (2.71).
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Discretization and solver

In this chapter we describe the discretization of the equations presented in the previous one.
We expose also the numerical techniques we have used to solve the discretized problem. The
method is based on conforming finite elements, we refer to [19, 25, 30, 51, 18] for a general
introduction to FEM. First we give a variational formulation of the problem, to be used
for the discretization. Then we describe the Galerkin discretization using stable elements,
to fulfill the inf-sup condition (see [39, 18]), for a space discretization. Further, we present
the overall solution process, describing the implicit fractional−θ method used for the time
discretization, the nonlinear and linear solver. We expose an abstract formulation for a dual
based a posteriori error estimation. Finally we briefly describe the HiFlow package and the
HP XC6000 cluster used for the numerical simulations.

3.1 Finite element discretization

3.1.1 Variational formulation

To find a solution of a system of partial differential equations describing the flow and the
chemical reactions we rewrite the entire problem in the weak formulation, that means we
seek for the solution u in an appropriate space U , of an equivalent boundary value problem.
Let Ω ∈ Rd describe the computational domain, the variational formulation is obtained by
multiplying the equations by the appropriate test-functions ϕ ∈ U and integrating over the
domain Ω. The diffusive terms and the pressure gradient are integrated by parts, decreasing
the needed order of differentiability of the trial functions u and test functions ϕ.

The variables considered are the velocity, the pressure, the temperature and the ns

species: u := {v, p, T, Yi}, i = 1, · · · , ns. In our formulation we add the continuity equation
to the momentum, energy and species mass conservation equations, in this way the system
is over-determined, so for consistency with the total mass conservation we discard a species.
The reduced system contains only ns − 1 species. This is legitimated if a species is present
in excess in the mixture, as in our case for the concentration of Ar. The system in the
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weak-formulation is given by the following equations:

〈∇·v, ϕp〉 + 〈 1

m̄
(
∂m̄

∂t
+ v · ∇m̄), ϕp〉 − 〈 1

T
(
∂T

∂t
+ v · ∇T ), ϕp〉 = 0, ∀ϕp ∈ Up,

∫

Ω

∂v

∂t
ϕv dΩ − 〈ρg, ϕv〉 − 〈µ∇v,∇ϕv〉 −

1

3
〈µ∇·v,∇ϕv〉 + 〈p,∇ϕv〉 − 〈ρv∇v, ϕv〉 = 0, ∀ϕv ∈ Uv,

∫

Ω

ρCp∂T (t)

∂t
ϕT dΩ − 〈ρCpv∇T, ϕT 〉 + 〈

∑

i

Cpi
Fi∇T, ϕT 〉 − 〈k∇T,∇ϕT 〉 +

〈v∇p, ϕT 〉 − 〈
∑

i

(himiωi), ϕT 〉 = 0, ∀ϕT ∈ UT ,

∫

Ω

∂Yi(t)

∂t
ϕy dΩ + 〈ρv∇Yi, ϕy〉 + 〈∇·Fi, ϕy〉 = 〈miωi, ϕy〉 = 0, ∀ϕy ∈ UY ,

where 〈·, ·〉 is the L2 scalar product and Uv, Up, UT , UY are appropriate Hilbert-spaces.
We define thus the semi-linear form A(·, ·) given by:

A(u;ϕ) :=
( 1

m̄
(
∂m̄

∂t
+ v · ∇m̄) − 1

T
(
∂T

∂t
+ v · ∇T ) + ∇·v, ϕp

)

+
(∂v

∂t
− ρg − ρv∇v, ϕv

)

+
(

µ∇v − 1

3
µ∇·v + p,∇ϕv

)

+
(ρCp∂T (t)

∂t
− ρCpv∇T +

∑

i

Cpi
Fi∇T + v∇p−

∑

i

(himiωi), ϕT

)

−
(

k∇T,∇ϕT

)

+
(ρ∂Yi(t)

∂t
+ ρv∇Yi −miωi, ϕy

)

+
(

ρDi∇Yi,∇ϕy

)

,

(3.1)

where to simplify the expression we have used the Fick’s law approximation (2.43) neglecting
the term with ∇m̄. Thus the system can be written:

A(u;ϕ) = 0 ∀ϕ ∈ U. (3.2)

3.1.2 FEM ansatz

Numerically we look for an approximation uh of u in a finite dimensional space Uh char-
acterized by a parameter h, that describes the discretization of Uh defining the dimension
of Uh. In the finite element formulation the functions uh are piecewise polynomials on a
triangulation Th, the considered meshes are supposed to be shape regular and geometrically
conforming (see [25]). These consist of, in general curvilinear, quadrilateral (or hexahedral)
elements {K} covering the domain Ω̂. The considered trial and test spaces Uh ∈ U consist of
continuous, piecewise polynomial vector functions (so-called Qr elements) for all unknowns:

Uh :=
{

{ph, vh, Th, Y
i
h} ∈ C(Ω̂) | ph|K , Y

i
h|K ∈ Q1(K), vh|K , Th|K ∈ Q2(K)

}

(3.3)

where Qr(K) is the space of polynomials of degree r on the element K i.e.:

Qr(K) := span
{

xiyi : 0 ≤ i, j ≤ r
}

. (3.4)
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The discretization for the flow, by using the Taylor-Hood elements with the flow velocity
discretized by Q2 elements and the pressure by Q1 elements, satisfies the inf-sup condition
that guarantees a stable approximation of the pressure and avoid the occurrence of spurious
pressure modes (see [25]). This is important because it allows to resolve the boundary layers
by properly designed anisotropic meshes.
In the work of Heuveline & Schieweck [48] it is shown that the inf-sup holds also for mixed
hp-FEM on meshes with hanging nodes. This is an important issue if we consider local
refinement allowing hanging nodes, as depicted in figure 3.1.
The discretized problem holds:

A(uh, ϕh) = 0 ∀ϕh ∈ Uh, (3.5)

where the form A(·, ·) is defined as in (3.1).

Figure 3.1: Example of a patch with two hanging nodes.

3.1.3 Boundary conditions

The system (3.2) has to be supplemented by appropriate initial and boundary conditions.
The boundary of the domain Ω is decomposed into the following parts, as depicted in figure
3.2:

∂Ω = Γin ∪ Γopt ∪ Γout + Γno−slip. (3.6)

At the inflow boundary, Γin ∪Γopt, Dirichlet conditions are prescribed for all variables with
values to be experimentally determined. At the reactor walls no-slip condition is assumed
for the velocity, while the temperature is fixed by the external heating elements and is
determined as described in the model calibration 5.1.4, while for the species holds the
Neumann condition ∂Yi

∂n
= 0. At the outflow we have the usual ‘free-stream’ condition:

µ ∂v
∂n

+ pn = 0, for the velocity and ∂T
∂n

= 0, ∂Yi

∂n
= 0, for temperature and species.
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Γopt

Γin

Γopt

Γout

Γno−slip

Figure 3.2: Definition of the boundary. The boundary is subdivided in different parts
to permit the differentiation of the boundary conditions for the solution of the system of
equations.

3.2 Overall solution process

The system is a nonlinear system, the nonlinearities arise from different terms, the trans-
port term in the momentum equation and the source terms in the energy equation and mass
conservation of the species. In the system we have a coupling between the flow variables
and the chemical variables through the temperature and the density and between the dif-
ferent species through the diffusion process and the reactive term. We are interested in the
transitory solution during the reaction process, to perform the measurements, so we are not
interested in the stationary solution, but we have to solve the system in time. Due to the
reaction term the system is stiff and a good resolution in time can be better achieved by an
implicit or semi-implicit method. The following is a scheme of the overall solution process:
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Smoother:

Block−ILU
Domain decomposition

Model

Time discretization

Non linear solver: Newton

Linearization

Quasi−Newton

Solver linear system: Multigrid

J̃∆u = r

A′(u) − f ′(u) = J

J∆u = r

un+1
−un

∆T
+ A(un+1) = f(un+1)

∂u
∂t

+ A(u) = f(u)

J̃p = RpJ̃RT
p

um+1
l = MG(l, um

l , rl, ν1, ν2)

J̃p = LU + R

Figure 3.3: Overall solution process.
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3.2.1 Time step

For stability issues an implicit fractional-step-θ scheme, [40, 41], was used for the discretiza-
tion in time of the full system. This method is strongly A-stable and has good smoothing
properties.
We consider the following system of equations:

∂z

∂t
+A(z) +B(p) = f, (3.7)

∇·u = g, (3.8)

where z is the solution vector {u, v, p, T, Yi}, i = 1 . . . ns−1, and the operator A(z) describes
all the diffusion and transport terms in the system, the operator B(p) is the gradient of the
pressure and f is the zero order term corresponding to external forces for the momentum
equation or the reaction term for the energy and species equations.
In the time discretization we consider a time step k = tn+1 − tn, and given the solution at
time tn we look for a solution at time tn+1. In the fractional-step-θ-scheme each time step

is subdivided in three sub-steps. Defining the following parameters θ = 1−
√

2
2 , θ′ = 1− 2θ,

α = 1−2θ
1−θ

and β = 1 − α, the scheme is given by the three steps:

[I + αθkA(zn+θ)]zn+θ + θkB(pn+θ) = [I − βθkA(un)]un + θkfn, (3.9)

∇·un+θ = gn, (3.10)

[I + αθkA(zn+1−θ)]zn+1−θ + θ′kB(pn+1−θ) = [I − αθ′kA(un+θ)]un+θ + θ′kfn+1−θ,(3.11)

∇·un+1−θ = gn+θ, (3.12)

[I + αθkA(zn+1)]zn+1 + θkB(pn+1) = [I − βθkA(un+1−θ)]un+1−θ + θkfn+1−θ,(3.13)

∇·un+1 = gn+1−θ. (3.14)

3.2.2 Nonlinear solver

To solve the nonlinearities we consider a quasi-Newton method. For a Newton update we
need the evaluation of the Jacobi matrix of the system, this is the most time costly step in
the process solution. In the quasi-Newton method we use an approximation of the Jacobi
matrix, in which we simplify some coupling terms between flow and chemistry. The residuals
are computed without simplifications, so the iteration converges towards the fully coupled
system. The efficiency of the nonlinear solver relies on the structure of the approximation
of the Jacobi matrix. In the following we describe the structure of the Jacobi matrix in
2D. The variables are the four flow variables: u, v, p, T and ns − 1 species mass fractions
Y = Yk, in this formulation using the continuity equation we have to discard a species to
guarantee the mass constraint

ns
∑

k=1

Yk = 1,
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the last species is calculated as:

Ylast = 1 −
ns−1
∑

k=1

Yk, k 6= last.

The following structure shows the coupling between all variables. The first two equations are
the two component of the momentum equation, the third is the equation for the pressure, i.e.
the divergence of the velocity in the low Mach approximation with temperature dependency,
the fourth is the energy equation and the last ns − 1 equations are the mass conservation
for the species:

J̃ =













Uu Uv Up UT 0
Vu Vv Vp VT 0
Pu Pv 0 PT 0
Tu Tv Tp TT TY

Yu Yv 0 YT YY













.

The last row is a block (ns − 1) × (ns − 1) + 4.
The first two equations are the two component of the momentum equation. The coupling
with the temperature UT is given by the density variation in the external force term ρg
and in the transport term ρu∇u, the latter has two contributions because is linearized as:
ρū∇u+ ρu∇u. The coupling with the species given by the density variation is neglected in
our formulation, because we neglect the variation of mean molar mass m̄. In the term Uu

we have neglected the term of the bulk viscosity in the momentum flux: µ′∇·u.
The third equation is the divergence equation, that is the equation for the hydrodynamic

part of the pressure obtained by the continuity equation. In this equation we neglect the
coupling with the species due to the variation of the mean molar mass m̄, while the coupling
with the temperature is given by the equation (2.71).

The fourth equation is the energy equation using the temperature as variable. In the low
Mach model we can neglect in the coupling with the velocity Tu the term of the dissipative
momentum flux Fq : ∇u, because it is an higher order term, see expression (2.65). The
term in the temperature equation is given by the transport term due to the flow velocity
and to the diffusion flux, Fk , of the species. In this formulation we have neglected the
dependency of the heat diffusion on the diffusion fluxes of the species, the so called Dufour
effect.
Expanding the matrix structure, we obtain in more details:

J̃ =



























× × × × 0 · · · 0
× × × × 0 · · · 0
× × × 0 0 · · · 0
× × × × × · · · ×
× × 0 × × · · · ×
× × 0 × × · · · ×
· · · · · · · · · · · · · · · · · · · · ·
× × 0 × × · · · ×
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In the first block we can note that the temperature is the variable that couples the complete
system.
In the second block we have the equations of mass conservation for all the species but one
for consistency with the mass constraint. Here we have neglected the dependency of the
species diffusion on the pressure gradient. This block has full structure, apart the pressure
dependency, and the only simplification is given in the sub-block, ns − 1 × ns − 1 of the
coupling within the chemistry part, where we consider the diagonal diffusion matrix given
by the simplified formula:

Fk = ρDM
k ∇Yk,

while the coupling between the species is kept in the source term, miωi, being ωi function
of the concentrations of all the species Yj that are coupled with Yi in all the reactions.
In case the chemical mechanism contains many species, a strategy for saving memory build-
ing the Jacobi matrix, is described in the work of Braack [15]. We do not aim at saving
memory changing the structure of the matrix, because we partition the variables and solve
the system block-wise by means of a Block-ILU pre-conditioner applied to the decomposition
as described later in this section.

3.2.3 Linear solver

The linear subproblems are solved by a GMRES method (see Saad [69]) preconditioned
by a multi-grid iteration (see [78], [79],[72]). The multi-grid methods for the solution of a
linear system Au = b exploit the possibility of splitting the frequency content of the residual
b − Aū in higher and lower parts and the characteristic of some iterative schemes to act
as ‘smoother’, i.e. to reduce the amplitude of the part of residuals with higher frequency.
The amplitude of the part of the lower frequency residuals can be reduced more efficiently
on coarse meshes, where the number of un-knows is much reduced. On coarse meshes the
solution can not be approximated very well if the resolution of the mesh doesn’t catch the
variations of the physical variables, so the algorithm has to be implemented in a recursive
way, here is a scheme of the multi-grid pre-conditioner:
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Multi-grid algorithm: um+1
l = MG(l, um

l , bl, ν1, ν2)

1. Set discretization space: Al : Xhl
→ Xhl

;

2. coarsest grid: if (l=0) um+1
l = A−1

l bl; return;

3. pre-smoothing: ūm
l = Sν1

l (ul
m);

4. coarse grid correction:

• compute defect: d̄m
l = bl −Alū

m
l ;

• restrict the defect in Xhl−1
: d̄m

l−1 = Rld̄
m
l ;

• recursion: ûm
l−1 = MG(l − 1, 0, d̄m

l−1, ν1, ν2);

• interpolate: ûm
l = Plû

m+1
l+1 ;

• update: ũm
l = ūm

l + ûm
l ;

5. post-smoothing: um+1
l = Sν2

l (ũl
m).

Figure 3.4: The mesh is partitioned in twenty subregions. A domain decomposition method
is used for the smoother in the multi-grid scheme.
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h

Figure 3.5: Grid interface.

The algorithm can be parallelized in different manner, we choose to parallelize the smoother
using a domain decomposition method, where in each sub-domain we solve local linear sub-
problems using a block-ILU pre-conditioner. The conceptual scheme for the decomposition
is to divide the domain for the spatial computation in sub-domains. Given a domain Ω ∈ Rn,
n = 2 in our case, we divide the domain in p not overlapping sub-domains Ωi:

Ω̄i :

p
⋃

i=0

Ω̄i = Ω̄, Ωi ∩ Ωj = 0 j 6= i. (3.15)

Each sub-domain is expanded including an additional element of the mesh belonging to the
neighboring domain as illustrated in figure 3.5, the new domain Ω̂i is so defined:

Ω̂i = {x ∈ Ω | dist(x,Ωi) < h}, (3.16)

where h is the transversal dimension of each neighboring element (see figure 3.5). Consid-
ering the discretization of the domain Ω we have now a partition of the discretized entities
like vectors and matrices. These have to be distributed between all processors to solve local
problems and then recollected in a global version of the vectors and matrices. The local
matrices are calculated from the global matrix using a restriction operator Rp, that restricts
the matrix on a processor p, and a prolongation operator Pp = RT

p :

Ap = RpAR
T
p . (3.17)

The meshes are partitioned by means of the METIS graph partitioner [52], the result of the
partition is depicted in the figure 3.4.
An incomplete block-LU decomposition is used to solve approximatively the restriction of
the system on the sub-domains, the matrix J̃p, that has to be inverted is decomposed into
a lower and upper triangular matrix:

J̃ = L̃Ũ +R, (3.18)
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where the two matrix L̃ and Ũ have a given sparse pattern and the rest matrix R is not
computed. The update of the solution restricted to a sub-domain is calculated applying
the ILU pre-conditioner locally, considering only the diagonal blocks, the coupling is then
resolved within the multi-grid step, where the matrix is the full matrix. In the multi-grid
step the matrix vector multiplication is applied to a distributed version of the matrix with
the coupling structure described in the previous section. To avoid numerical problems for
the application of the ILU pre-conditioner the diagonal elements are increased to assure
diagonal dominance, this modification of the matrix can result in a slower convergence rate,
but we do not treat this point here, being outside the frame of this work.

Addressing the problem of approximating the solution with a Galerkin method, we
introduce in the next section the strategy used to create local refined meshes to increase
the precision of the approximation limiting the cost of the computation.

3.3 Error estimation and mesh adaptivity

We present here an abstract formulation for the mesh adaptation, based on the ‘Dual-
Weighted Residual (DWR) method’, derived from Becker and Rannacher [10]. For this
purpose we consider a differentiable semi-linear form A(·; ·) defined on a function space V ,
the derivative of A(·; ·) at a point v in direction δv are denoted by A′(v; ·)(δv), A′′(v; ·)(·, δv),
A′′′(v; ·)(·, ·, δv). We assume that the variational equation:

A(u;ϕ) = 0 ∀ϕ ∈ V

has a unique solution u ∈ V . We introduce a functional J(u) of the solution u with
derivatives J ′(u; δv), J ′′(u; δv, ·), J ′′′(u; δv, ·, ·). We consider the case in which the goal of
the computation is the evaluation of J(u), that means that the quality of the computation
is measured by the numerical precision given by J(uh) − J(u), where uh is the Galerkin
approximation of u on a finite dimensional space Vh, with h a parameter related to the
dimension of this space. We further assume that also the associated discrete problem:

A(uh;ϕh) = 0 ∀ϕh ∈ Vh (3.19)

has a unique solution.
Standard error estimation techniques, based for example on the error ‖uh−u‖ in the energy
norm, may be inadequate for the control of a local refinement of the mesh in this case. In
many applications, using different formulation for the functional J(·), it has been shown
that a goal oriented mesh adaptation based on the DWR method is a successful strategy
for increasing the computational quality limiting the computational costs. The aim is now
to derive an a posteriori estimate for the error J(uh)− J(u). For this purpose we apply the
Euler-Lagrange approach. The problem of computing J(uh) from the solution of (3.19) is
equivalent to the following constrained optimization problem:

J(u) = {min J(v), A(v;ϕ) = 0 ∀v ∈ V }. (3.20)



40 Chapter 3. Discretization and solver

Minima u of (3.20) correspond to stationary points {u, z} of the Lagrangian:

L(u; z) = J(u) −A(u; z), (3.21)

with the adjoint variable z ∈ V . Hence we seek solutions {u, z} ∈ V × V to the Euler-
Langrange system:

A(u;ϕ) = 0 ∀ϕ ∈ V, (3.22)

A′(u;ϕ)(z) = J ′(u;ϕ) ∀ϕ ∈ V. (3.23)

The Galerkin approximation in the subspace Vh ⊂ V reads:

A(uh;ϕh) = 0 ∀ϕh ∈ Vh, (3.24)

A′(uh;ϕh)(zh) = J ′(uh;ϕh) ∀ϕh ∈ Vh, (3.25)

To the approximate solution uh ∈ Vh and zh ∈ Vh we associate the residuals:

ρ(uh; ·) := A(uh; ·), (3.26)

ρ∗(zh; ·) := J ′(uh; ·)(zh), (3.27)

defined on V . For ϕh ∈ Vh we have ρ(uh;ϕh) = ρ∗(zh;ϕh) = 0, by definition. Exploiting
the Galerkin orthogonality we have from Becker and Rannacher [10] the following result:

Proposition 3.1 For the Galerkin approximation (3.24, 3.25) of the saddle-point problem
(3.22, 3.23), we have the a posteriori error representation:

J(u) − J(uh) =
1

2
ρ(uh; z − ψh) +

1

2
ρ∗(zh;u− ϕh) +Rh, (3.28)

for arbitrary elements ϕh, ψh ∈ Vh. The remainder term Rh is given by:

Rh :=
1

2

∫ 1

0
{J ′′′(uh + seh; eh, eh, eh) −A′′′(uh + seh; zh + se∗h)(eh, eh, eh)+

− 3A′′(uh + seh; e∗h)(eh, eh)}s(s− 1)ds,

(3.29)

where eh := u− uh and e∗h := z − zh. The remainder term is of third order in eh if A and
J are three times differentiable.

For the proof see [10].

Remark 3.1 The evaluation of the error representation (3.28) requires the determination
of the primal as well as the dual solution u, z. We can only determine an approximation
ũ, z̃ of the solution yielding an error estimation, that depends on the different techniques
used for the approximation. Some of this techniques are presented below.

The error representation can be expressed also in an other useful way, that can be used for
computational purposes:
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Proposition 3.2 For the Galerkin approximation (3.24, 3.25) of the saddle-point problem
(3.22, 3.23), we have the alternative a posteriori error representation:

J(u) − J(uh) = ρ(uh; z − ψh) + R̃h, (3.30)

with the residual defined as in proposition (3.1) and the remainder term R̃h of second order
in eh := u− uh.

In this case it is sufficient to calculate only the residual of the primal problem.

3.3.1 Practical a posteriori error estimation

A practical application of the defined error representation (3.28) is the approximation of

z−ψh and u−ϕh. In the simplified version we need only an approximation ẑ − ψh of z−ψh:

J(u) − J(uh) ≈ ρ(uh; ẑ − ψh) + R̃h, (3.31)

Using an approximation we do not obtain an error identity, but an estimation of the error,
which quality depends on the approximation technique used. Usual techniques are those
for which an estimate of the dual solution is sought in a richer finite space, than the one
in which the approximation uh is to find. Also, it can be used an approximation of the
interpolation error z − Ihz, using an adequate interpolation operator Ih. We choose to use
an approximation of z in a richer space zh.

• One possibility is to solve the dual problem in a finer discretization T ∗
h , for example

using a global refinement, but this can be expensive and can be in contrast with the
goal of limiting the computational effort of an adaptive technique.

• An other possibility is to solve the dual problem using higher order elements. As we use
for the primal solution {v, p}, for the velocity and pressure, the pair Q2, Q1 (Taylor-
Hood ansatz), we adopt for the dual variables the pair Q4, Q2. This is implemented
patch-wise in 2 × 2 patches as depicted in the figure 3.6.

Figure 3.6: Example of a 2 × 2 patch for the hierarchical solution Q4/Q2 for the velocity.

Equivalent patches are considered also for the other variables using the pair Q2/Q1 for the
pressure and the species and again Q4/Q2 for the temperature.
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The solution is resolved only locally through an iterative defect-correction method using a
fixed number of iterations N :

xk+1 = xk −A−1
k rk, k = 0, · · · , N − 1,

where A is the system matrix and rk is the residual at step k. The product A−1
k rk is

calculated using a Block-preconditioner, where each block is a 2 × 2 patch.
To obtain a local error indicator we can cell-wise integrate by parts and then use the Hölder’s
inequality to obtain:

|J(u) − J(uh)| ≤
∑

K∈Th

ωK(ρK + σK), (3.32)

neglecting the remainder term Rh. Here the so called cell residuals:

ρK := h−1
K ‖A(uh)‖K ,

σK :=
1

2
h
− 1

2

K ‖[∂nuh]‖∂K ,

are expressed in ρK in terms of the cell-wise equation residuals , while in σK the [·] denotes
normal jumps of the discrete solution along inter-element boundaries.
The weights are so defined:

ωK := max{h−1
K ‖ẑ − ψh‖K , h

− 1

2

K
̂‖z − ψh‖∂K}.

In the work of Braack [15] and Braack & Rannacher [16] is exposed in details the appli-
cation of this a posteriori error estimator to reactive flows, with different techniques for
the approximation of the term z − Ihzh. We refer to those works and [23] for a specific
formulation of the error estimator for reactive flows. In the present work have been used a
hierarchy of adaptive meshes obtained using as goal-functional the integral of the H mass
fraction, YH , over the measurement volume Ωmeas:

J(v, p, T, Yi) = |Ωmeas|−1

∫

Ωmeas

YHdx (3.33)

The meshes corresponding to the level 2 and 4 are depicted in the figure 3.7.
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Figure 3.7: Local refinement of the grids: level 2 (left) and 4 (right).

3.4 HiFlow

The finite elements package ‘HiFlow’ [45] have been used for the numerical simulation.
This is a multipurpose package for scientific computing, with many features that can be
exploited for the simulation in realistic contexts. The ‘HiFlow Project’ has been started
by V. Heuveline at the end of the nineties with the scope to create a platform for the
numerical treatment of different problems expecially in the field of the fluid dynamic. The
package consists of a library of finite elements, that can be used for a discretization in
space with different refinement strategies, both a h-strategy and a p-strategy. The former
is implemented by splitting of the elements, while the latter uses a polynomial spaces with
variable for the interpolation of the solution, locally on each element. Special effort has
been given for the development of solvers to treat the nonlinearities of the problem and to
solve with high efficiency the linear systems arising from the linearization of the equations,
using multi-grid techniques and iterative solvers for parallel architectures.
The library is implemented in C++ using the object-oriented features of this programming
language. A parallel version of the library is based on MPI and for the partitioning of the
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meshes is used the METIS graph partitioner [52].

3.5 Parallel HPC

The computations have been done in the Scientific Supercomputing Center (SSC Karlsruhe)
using a HP XC6000 Cluster based on the Intel Itanium2 processor with more than 11
TFlop/s peak performance and 7 TB main memory. The Scientific Supercomputing Center
(SSC Karlsruhe) as part of the Computing Center of University Karlsruhe is embedded
into the infrastructure of the High Performance Computing Competence Center Baden-
Wrttemberg (hkz-bw).
Features of HP XC6000 Cluster:

• 116 2-way nodes and 12 8-way nodes with

– 108 nodes each with 2 Intel Itanium2 processors and 12 GB main memory and
146 GB local disk space,

– 12 nodes each with 8 Intel Itanium2 processors and 64 GB main memory and
about 500 GB local disk space,

– 8 2-way file server nodes based on Xeon processors with attached disks of the
overall size of 10 TB and a

– single rail Quadrics QsNet II Interconnect.

• The HP XC6000 Cluster is a distributed memory parallel computer with 128 nodes
all in all; 108 nodes consist of 2 Intel Itanium2 processors with a frequency of 1.5 GHz
and 12 nodes consist of 8 Intel Itanium2 processors with a frequency of 1.6 GHz and all
nodes own local memory, locale disks and network adapters. Thus the theoretical peak
performance of the system is 1.9 TFLOPS. Additionally special nodes are attached as
file servers to the cluster to support a fast and scalable parallel filesystem. All nodes
are connected to the Quadrics QsNet II interconnect that shows a high bandwidth of
more than 800 MB/s and a low latency.

• The basic operating system on each node is HP XC Linux for High Performance
Computing (HPC), a Linux implementation which is compatible to RedHat AS 3.0.
On top of this operating system a set of open source as well as proprietary software
components constitute the XC software environment enabling the efficient useage of
the parallel computer .

As global filesystem the scalable, parallel filesystem Lustre is used within the XC cluster.
By the usage of several Lustre Object Storage Target (OST) servers and Meta Data Servers
(MDS) both high scalability and redundancy are reached in case of malfunction of single
servers. At present 10 TB disk space is available within the global filesystem. Besides each
node of the XC cluster is equipped with local disks for temporary data.



Chapter 4

Parameter identification and

experimental design

4.1 Optimization methods for PDE

The parameter identification and the optimal experimental design problem are particular
example of optimization problems. Within this work we treat both problems with similar
techniques, because in both cases we deal with finite number of parameters. The optimiza-
tion problem can be formulated in the following manner:

• an objective functional is given to be minimized over a space of (discrete) control
variables of a system governed by partial differential equations.

In the system of partial differential equations, we divide the variables in state variables and
control variables, we call the latter ‘model parameters’. In our case the state is determined
by the variables describing the flow (density, velocity, pressure and temperature), plus the
variables describing the species in the fluid. While the parameters are the reaction rate
coefficients, that are in our model scalar values. The functional is defined in order to give
a ‘distance’ between measured data and values predicted by the model with a given choice
of the parameters.
The functional J(u, q) : V × Q × Z → R, is function of the state u ∈ V , state space,
and the parameters q ∈ Q = Rnp , control space. The measured data C0 are values in
Z = Rnm , observation space. We seek now the set of parameters q that satisfy the following
constrained minimization problem:

Problem 4.1 (Constrained minimization) The minimum of J(u, q) is to seek in the
space of the control Q,

min
q∈Q

J(u, q)
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with the state u that satisfy the following constraint:

∂ρ

∂t
+ ∇·(ρu) = 0 in Ω,

∂ρu

∂t
+ ∇·(ρuu) + ∇p−∇·FQ − ρg = 0 in Ω,

∂ρcpT

∂t
+ ∇·(ρucpT ) −∇·FE +

Nsp
∑

i=0

cp,iFi∇T +

Nsp
∑

i=0

himiωi(q) = 0 in Ω,

∂ρYi

∂t
+ ∇·(ρuYi) + ∇·Fi −miωi(q) = 0 in Ω,

u(x, t) = g on Γin ∪ Γopt, u(x, t) = 0 on Γno−slip,
∂u(x, t)

∂n
= 0 on Γout,

T (x, t) = T̄ on Γ\Γout, Yi(x, t) = Ȳi on Γin ∪ Γopt,
∂Yi(x, t)

∂n
= 0 on Γno−slip,

ρ(x, 0) = ρ0, u(x, 0) = u0, T (x, 0) = T 0, p(x, 0) = p0, Yi(x, 0) = Y 0
i ∈ Ω

pm̄ = ρRT.

The notation is the same as in (2.67-2.70), but here we have dropped all the subscript “0”
and the term p is the term p2, because in our case the thermodynamic pressure is constant.
The mean mass m̄ is defined as in (2.13). The boundary subdivision is depicted in the figure
3.2.
The functional to be minimized in this work is called also ‘cost function’ or ‘objective
function’. It has to be defined in a way so that it can be used in the formulation of
the forward problem. For this reason we have to define a suitable norm. Restricting
our framework to the Hilbert spaces, we use the L2 Norm, this is of course not the only
possible choice, but as we see in the next paragraphs, it is in agreement with the statistical
description of the data we use to define the functional. In this way we can reformulate the
optimization problem in a weak sense and solve it numerically. We define an observation
operator C : V → Z, to map the values of the state to the observation space, and obtain
the objective functional, using a set of measurements C0 ∈ Z:

J(u) :=
1

2
‖C(u) − C0‖2

Z . (4.1)

As shown in the chapter 3 the model for the forward problem is described by the following
variational equation:

A(u, q;ϕ) = 0 ∀ϕ ∈ V, (4.2)

where A(·, ·; ·) is the semi-linear form (3.1). The constraint minimization problem can be
formulated as stated below.

Problem 4.2 (Constraint minimization weak formulation)

minimize J(u)

subject to A(u, q;ϕ) = 0 ∀ϕ ∈ V,
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where the constraint is given by the state equation. We try to minimize the objective
functional J(u) for values u, that satisfy the state equation, i.e. lie in the manifold given by
the solution of (4.2). To solve the optimization problem we define a Lagrangian functional,
that is the objective functional augmented with the form A(u, q; ·) tested with the functions
λ ∈ V :

L(u, q, λ) = J(u) −A(u, q;λ).

Remark 4.1 The functions λ are the Lagrange-multipliers in the notation of the con-
strained optimization. They correspond to the first variation of the objective function to
a small variation of the constraint.

Theorem 4.1 (Lagrangian formulation) If the following problem

inf
u∈V

sup
λ∈V

L(u, q, λ) u ∈ V, λ ∈ V

has a solution, then the solution {ū, λ̄} satisfy the following inequalities:

L(ū, λ) ≤ L(ū, λ̄) ≤ L(u, λ̄) ∀u ∈ V, λ ∈ V

and it is a saddle point of the Lagrangian. It can be shown that the solution {ū, λ̄} is solu-
tion of (4.2).

Proof: See [36, 42].

In the previous definition we do not need the specification of the differentiability of the
functionals and the form A(·, ·; ·). It can be used also for not differentiable functionals. On
the other side it is difficult to give a local characterization of a saddle point of the functional
L, this aspect has different consequences for the numerical treatment of the minimization
problem. For numerical reasons we set the problem following an other way, that allows us
to define an algorithm to find iteratively the solution. We pay this step with a restriction,
i.e. with the assumption of the differentiability of the functional and of the form A(u, q;λ)
at least until the first order derivatives. We can define necessary conditions for the solution
x = {u, q, λ} ∈ X = V ×Q×V to be a solution of the minimization problem (Problem 4.2).

Theorem 4.2 (First order optimality conditions) The gradient of the Lagrangian has
to vanish at a point that is a (local) minimum:

∇xL(x)(y) = 0 ∀y ∈ X. (4.3)

Proof: We refer to [36, 42, 60] for a derivation of the first order necessary conditions
and the definition of sufficient conditions, that imply a second order assumption on the
Lagrangian.

We use the notation A′(·, ·; ·)(v) for the direction derivative of the form in direction v,
which is defined as:

A′(u, q;λ)(v) = lim
ε→0

A(u+ εv, q;λ) −A(u, q;λ)

ε
. (4.4)
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With this notation the optimality conditions are given by the following system of equations:











J ′
u(u)(δu) −A′

u(u, q;λ)(δu) = 0 ∀δu ∈ V,

J ′
q(u)(δq) −A′

q(u, q;λ)(δq) = 0 ∀δq ∈ Q,

A(u, q; δλ) = 0 ∀δλ ∈ V.

(4.5)

We can now apply this theory to the estimation of parameters in a system of partial differ-
ential equations.

4.2 Parameter identification for the PDE system

For the study of the kinetic of the reaction we define the cost function in the form of a sum
of squares, using the available experimental data C0 ∈ Z ∈ Rm, we can see in section 4.3
that this choice is a consequence of some statistical assumptions:

J(u, q) =
1

2
‖C(u) − C0‖2

Z , (4.6)

the observation operator is defined as:

C(u) := |Ωmeas|−1

∫

Ωmeas

YHdx, (4.7)

where Ωmeas is the measurement volume and YH is the mass fraction of the H atoms. The
relation between state and parameters is given by the model:

A(u, q;ϕ) = 0 ∀ϕ ∈ V, (4.8)

as described in section (4.1). The minimization problem is the constrained problem (4.2).
The discrete problem is posed in the finite element spaces Vh ⊂ V and Qh ⊂ Q.

Problem 4.3 (Discrete constraint minimization) Minimize the cost functional:

J(uh) =
1

2
‖C(uh) − C0‖2

Z (4.9)

under the constraint

A(uh, qh;ϕh) = 0 ∀ϕh ∈ Vh (4.10)

The first order optimality conditions (4.5) give a necessary condition for the solution of the
problem. This is a nonlinear system with a saddle point structure. If the form A(·, qh; ·)
is regular for any qh ∈ Qh, for sufficiently good approximations Vh ⊂ V , we can define the
discrete solution operator Sh : Qh → Vh and, setting uh := Sh(qh), we obtain the following
unconstrained optimization problem posed in the space Qh = Rnp.
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Problem 4.4 (Discrete unconstraint minimization) Minimize the reduced cost func-
tional:

jh(qh) =
1

2
‖ch(qh) − C0‖2

Z , (4.11)

where ch(qh) := C(Sh(qh)) is the reduced observation functional.

This problem can be solved by a Newton-like method calculating the derivative of the
functional jh with respect to the parameters qh, we refer to [34] for a detailed description
of numerical techniques for solving the problem (4.4).

The practical difficulty of solving such a problem in the instationary regime is the cal-
culation of the derivatives with respect to the parameters as functions of the time, the dual
solution is equivalent to a flow back in the time. For computing the dual solution, each step
of a Newton method requires the full solution back in time. Special techniques, called check-
pointing, can be used to save computational effort in calculating the dual solution (see [49]).

In the present work we have implemented a derivative free optimization method, based
on the Dekker-Brent method [20], which is the most advanced of the root bracketing al-
gorithms. This is feasible, considering the computational costs, because in the chemical
mechanism we consider as parameter only the reaction rate of the reaction (1.1). This
method combines the robustness of the bisection method with the increased speed of the
regula falsi method. At each iteration, either a bisection or a regula falsi step is taken,
depending on the behavior of the algorithm up to that point. As a result, the Dekker-Brent
method converge as fast as the best case regula falsi method at its best, and as slow as the
bisection method at its worst. A bracketing method in our context is suitable, because we
can estimate experimentally the interval containing the optimal parameter value. As we
have seen in the chapter 1 the sought parameter q in the experimental results varies between
the values [0.99 − 1.53] in the range of temperature considered, we can use this estimation
to compute the number of iterations necessary to converge with a given tolerance. Let’s
consider the bisection method, that has only a linear convergence, with an interval [a, b]
where the solution qopt is known to lie.
If an and bn are the endpoints of the nth iteration and let qn be the nth approximate solu-
tion, then the number of iterations required to obtain an error smaller then ε is found by
noting that:

bn − an =
b− a

2n−1
,

and that qn is defined as:

qn =
1

2
(an − bn).

In order for the error to be smaller than ε,

|qn − q| ≤ 1

2
(an − bn) = 2−n(b− a) < ε.
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Taking the natural logarithm of both sides we obtain:

n >
ln(b− a) − ln ε

ln 2
.

Rounding the results, we get that the worst case is n = 5 for a precision ε = 0.01 and n = 8
for a precision ε = 0.001, with the estimated interval of 0.5.
We conclude with the choice of a derivative free method for this practical parameter esti-
mation, considering that the precision set in the numerical experiment is ε = 0.01 and that
we are interested in only one parameter.

From the mathematical point of view it is important to define whether the optimization
problem is well-posed or not, that means to define the existence, uniqueness of the solution
and the continuous dependence of this on the data, we refer to [35, 60] for a seminal exposure
on these issues. For many of the practical problem involving PDE this issues are not yet
completely solved. In this work we do not address the well-poseness of the problem and
assume that the entities that define the problem mathematically fulfill all the necessary
conditions in the infinite-dimensional setting.

We give now a justification for the use of a weighted least squares functional in the case
where the observation functional uses data that are measurements affected by some random
errors, with specific statistics.

4.3 Parameter identification in the probabilistic setting

We consider models that describe ”measurable” processes, where ”measurable” means that
during these processes it is possible to measure a quantity of interest. We are interested in
processes as a part or as a whole of a system, where experimental data are available. Often
these processes are reproduced as experiments to study the system itself.
The system can be described by a model, where we define parameters, that have to be
identified by comparison with the experimental data. Aim of the parameter identification
problem is the definition of methods that allow to estimate those parameters within the
tolerance given by the information gathered during the experiments. Of course if the ex-
perimental data do not contain enough information for the estimation we cannot solve the
problem or we can solve it only with a bad approximation.
We refer to the books of Tarantola [74], [73] and references therein for detailed derivation
of the probabilistic setting of parameter estimation problem.

4.3.1 Statistical assumptions

The observed values are obtained with uncertainties, so we have to deal with the proba-
bilistic description of the result of the measurements. That means that the result of the
measurements C0 can be represented by a probability density ρZ(C0) defined over the data
space C0 ∈ Z, which is the space of all the system’s responses to an instrumental investi-
gation. In the following we assume that the data have a Gaussian form. This means that
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they may be described using the mean value Ĉ and the covariance operator CD, which is a
linear, symmetric positive operator, mapping Z ∗ (the dual of Z) into Z.

Definition 4.1 (Covariance operator) Let V be a linear space and W be a weighting
operator over V , i.e. a linear, symmetric and positive definite operator mapping V into
its dual V ∗. Given such a weighting operator, the scalar product of two elements of V is
defined via the duality product:

(u, v) = 〈Wu, v〉.
The inverse of a weighting operator, C = W−1 is called a covariance operator.

In the following we consider the usual probabilistic definition of covariance operator, which
has the property described in the Definition 4.1. We refer to [66] for a precise derivation of
the needed assumption. The probability density function in the data space, in the Gaussian
case, is given by:

ρZ(C) = c exp
(

−1

2
‖C(u) − C0‖2

C

)

, (4.12)

where c is a constant and the norm in the data space is defined as follows:

‖C(u) − C0‖2
Z = 〈C−1

D (C(u) − C0), (C(u) −C0)〉, (4.13)

the 〈·, ·〉 is the duality product between Z and its dual Z ∗, and CD is the covariance operator
defined in the data space of the measurements.
We restrict our study to finite dimensional inverse problems, where it is possible to associate
to the operator C a matrix, that is the covariance matrix, and we use the same symbol C.
A typical example of uncertainties are those independent of the output of the measurement
process and additive to the output itself:

C0 = Ctrue + ε, (4.14)

where we assume that the probability density for the error ε is Gaussian with zero mean
(the error is not systematic) and has covariance CD.

We assume furthermore to have an a priori information of the parameters and that
this is also given in Gaussian form. The a priori information can be given by a posteriori
information of a previous parameter identification problem solved with other data set, for
example. We have thus the following elements for setting the parameter identification
problem in a probabilistic point of view:

• the a priori information that the parameters q are described by a Gaussian probability
density function in Q:

ρQ(q) = c exp{−1

2
‖q − q0‖2

Q} (4.15)

where q0 is the a priori expected value and the norm in Q is so defined:

‖q − q0‖2
Q = (q − q0)

TC−1
prior(q − q0)

where Cprior is the a priori covariance matrix.
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• the measurements on the observable parameters C0, which give a data set that can
be described by a Gaussian probability density function in Z with covariance CD:

ρZ(C0) = c exp{−1

2
‖C(u) − C0‖2

Z}, (4.16)

• the model

A(u, q;ϕ) = 0 ∀ϕ ∈ V,

which describes the forward problem, more in detail we consider the case where A is
a partial differential operator. We assume the forward problem being error free, in
the sense that we do not add uncertainties in the relation between model parameters
and observable variables, but it can be shown that, if these can be described using
Gaussian statistics, with covariance matrix Cm, we just have to replace CD with
CD + Cm, see [74].

A further assumption regards the a posteriori probability density for the parameters. We
consider the a posteriori state of information as the conjunction of ρZ and ρQ:

τ(q) = c exp(−S(q)), (4.17)

where the misfit function S(q) is defined as:

S(q) =
1

2
‖C(u) − C0‖2

Z +
1

2
‖q − q0‖2

Q. (4.18)

If the model is linear, the misfit function is quadratic and the posterior probability density
τ(q) is Gaussian.
The parameter identification problem can now be formulated from the probabilistic point
of view.

4.3.2 Probabilistic description of the least squares method

The vector of measurements and the parameters q are viewed as random variables with
known covariance operators CD and CM and unknown means Ctrue and qtrue. Then C0 and
q0 are interpreted as two particular realizations of the random variables. The parameter
identification problem can therefore be formulated as follows:

Problem 4.5 (Parameter identification) Find an estimator q̂ of qtrue that is optimum
in a probabilistic point of view.

An ‘optimum’ estimator is found at the maximum likelihood point:

Problem 4.6 (Maximum likelihood) The problem of finding an estimator for qtrue is
solved by the maximum likelihood point, i.e. the maximum of the posterior probability density
(4.17) over the parameter space:

q̂ = max
q∈Q

τ(q) (4.19)
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This is equivalent to finding the maximum of the logarithm of the probability density due
to the monotonicity of this function, which is equivalent to minimize the misfit function
defined previously (4.1).

As the a priori information and the information over the data set are Gaussian, the misfit
function is a sum of squares. The problem 4.6 is thus equivalent, with the assumptions made,
to the least squares problem.

Problem 4.7 (Least squares problem) The ‘best’ estimator of qtrue is the point that
minimizes the sum of squares defined by the misfit function (4.1):

q̂ = min
q∈Q

S(q)

When both the a priori probability density and the probability density of the measurements
are Gaussian the solution of the problem is the usual least squares estimator. Furthermore
if the problem is linear than the posterior probability density τ(q) is Gaussian.

Remark 4.2 We see that the assumption on the form of the probability density has lead to
a particular formulation of the cost functional. From the statistical point of view the least-
squares functional is not motivated if we don’t assure the Gaussian behaviour, in particular
it is not adequate if there are outliers in the data set. The argument can be generalized
using the so called generalized Gaussian distribution ([74]) leading to a method where the
L2 norm is substituted by an Lp norm for 1 ≤ p ≤ ∞, but in the case p 6= 2 the space Lp

is not an Hilbert space, for this reason we restrict the numerical formulation of the problem
to the case p = 2, in order to use the techniques here described developed for this case.

A Gaussian probability density is defined by the mean value and the covariance matrix. The
least squares problem is the search for the mean value, it remains to calculate the covariance
of the parameters q to define completely the probability density, given the covariance of the
data and the relation between the parameters and the data, defined implicitly by the first
order optimality condition of the least squares problem.

4.4 A derivation of the covariance matrix

As we can deduce from (4.13) the covariance matrix of the parameters is given by the
inverse of the Hessian of the cost functional. To define the covariance matrix we have
to introduce some more notations. We denote G the Jacobian matrix of the observation
operator C(u(q)), defined as follows:

Gij :=
∂Ci

∂qj
(u(q))(wj), i = 1, . . . ,m, j = 1, . . . , nq, (4.20)

where wj is the solution of the sensitivity equation:

a′u(u, q;ϕ)(wj) + a′qj
(u, q;ϕ)(1) = 0. (4.21)
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We introduce also the Hessian of the observation operator as:

∇2Ci(u(q)) :=
∂2Ci(u(q))(wj , wk)

∂qj∂qk
. (4.22)

The inverse of the covariance matrix, using the notation above, can be written as:

C−1 = GTC−1
D G+ C−1

0 +
∑

i

∇2Ci

∑

j

(C−1
D )ij(Cj − C0j). (4.23)

The last term in the expression (4.23) is small if the nonlinearities of the model are small
or the residuals are small. That means that close to the minimum, q̂, we can neglect the
last term and consider the approximation of the covariance matrix:

C =
(

GTC−1
D G+ C−1

M

)−1
. (4.24)

In the case where no a priori information of the parameters is available, we use the limit
C−1

M → 0 and the covariance matrix becomes:

C =
(

GTC−1
D G

)−1
, (4.25)

where G is the Jacobi matrix of the model A(u, q;ϕ) as defined in (4.20). Geometrically the
covariance of the parameters is related to the curvature of the graph of the misfit function.
In the case with one parameter it is easier to illustrate the effect of the curvature of the
misfit function on the precision of the fit. In the figure 4.1 we consider a linear system with
one parameter, the misfit function is then quadratic. The ordinate axis represents the misfit
function values, while the abscissa represents the parameter values. The minimum of the
misfit function is the estimated mean value of the parameter. In the figure we have plotted
two linear models to illustrate the effect of the shape of the misfit function. A variation ∆q1

of the parameter leads to the same misfit value as a bigger variation ∆q2, if we consider a
model for which the misfit function graph has a smaller curvature. The curvature of the
graph of a function is related to the inverse of the second derivative, thus the covariance is
related to the inverse of the Hessian of the function S(q).

4.5 Optimal experimental design

We have seen that uncertainties in the data space infer uncertainties in the model parameters
space, as described by the posterior probability density, defined in the expression (4.17).
The uncertainties on the data are given by the covariance matrix CD, while the uncertainties
on the parameters q are expressed by the covariance C, (4.24), thus the matrix C contains all
the information how the uncertainties in the data infer uncertainties in the model parameters
space. The goal of the optimal experimental design is the minimization of the uncertainties
in the model parameters q. We consider models, A(u, q;ϕ), described by a function that
links the observable variables of the system to some model parameters q. We consider two
sets of parameters: the model parameters q, that can describe some physical properties of
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Figure 4.1: Misfit function: effect of the curvature on the precision of the fit.

the system and in context of parameter identification are the parameters to be determined,
and the design parameters. These are parameters that define the setup of the experiment
or more generally the process we adopt to identify the model parameters. The design
parameters could define, for example, the way how we perform the measurements or the
state of the system during the experiment. The issue of the optimal experimental design is
the minimization of a functional of the covariance matrix of the model parameters q over
a space of design parameters ξ ∈ Π. The goal is to modify the system response in order to
reduce the covariance matrix C, which is a function of the Jacobi matrix of the system and
thus implicitly is function of the observable variables d, see (4.24). We give here a definition
of the optimization of experiments and we refer to [67] and [4] for a seminal introduction
to this theme.

Problem 4.8 (Optimal experimental design) Minimize a functional Φ(C) of the co-
variance matrix over the space of design parameters Π, under the constraint that the ob-
servable variables u are related to the parameters q through the model described by the form
A(u, q;ϕ).

min
ξ∈Π

Φ(C(ξ)),

A(u, q;ϕ) = 0,∀ϕ ∈ V, u ∈ V, q ∈ Q.
(4.26)

Different criteria could be chosen to minimize in some sense the covariance matrix, depend-
ing on the functional Φ(C):
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• D-criterion: Φ(C) = det(C), the determinant of C,

• A-criterion: Φ(C) = tr(C), the trace,

• E-criterion: Φ(C) = max(σ(C)), the maximum eigenvalue of the spectrum of C.

Other functionals have been defined and could be used, see [4] regarding this issue and
[55] regarding this point and also an extension towards the robust design of experiment
(Worst-Case-Design), but we restrict our tests to those here defined.
The covariance matrix has also an other geometrical interpretation. If we consider the
vector

χ2 = (q − q0)
TC−1(q − q0) (4.27)

this is distributed as the χ2 probability density (see [74] for a definition) with m−np degrees
of freedom, where m is the number of measurements and np is the dimension of Q. Gaussian
random vector with mean q0 and covariance C. Different values of χ2 correspond to different
level of uncertainties. Equation (4.27) is the equation of an ellipsoid in the space of the
parameters, the values of q at the ellipsoid surface are level set values for the probability of
q. The determinant of C is proportional to the volume of the ellipsoid, while the eigenvalues
of C are proportional to the principal axes of the ellipsoid. The D-criterion minimize thus
the volume of the ellipsoid that defines the uncertainties on the parameters, the E-criterion
minimizes the maximum principal axis, that means that minimizes the covariances along
the direction of maximum variance, while the A-criterion minimizes the sum of the lengths
of the principal axes.

Remark 4.3 The constraint A(u, q;ϕ) = 0 is not given explicitly because we do not know
the value of the parameters that we want to identify. In the praxis the problem 4.8 cannot
be solved directly, it has to be solved iteratively.

4.5.1 Sequential experimental design

The sequential design of experiments is a procedure to iteratively configure the experiment
setup gathering information on the system at each step and using the ameliorated knowledge
of the system to be able to perform new measurements, that in a probabilistic sense are
more informative. The sequential procedure is depicted in figure 4.2 and in the scheme
underneath.
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Figure 4.2: Design cycle: a sequential procedure for the identification of parameters.

Sequential experimental design

1. Choose an initial value for the model parameters q0,

2. Choose an initial value for the design parameters ξ0,

3. Perform an experiment to obtain the observed values d0,

4. Solve a parameter estimation with the observed values d0 to find

the estimated q̂,

5. Solve an optimal experimental design problem using q̂ to find the

values of the design parameters ξ for the next measurements,

6. stop if maximum number of experiments is reached or goto step 3.
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4.6 Optimal experimental design for PDE

We show in this section the case in which the model A(q) is given by a system of partial dif-
ferential equations, we formulate the optimization problem and we present some numerical
examples. We suppose that the weak formulation of the problem is given by the following
equation:

A(u, q;ϕ) = 0, ∀ϕ ∈ V, (4.28)

where u is the state variable defined in a Hilbert space V , it can be a vector function and
some components of it correspond to the observable variables d of the previous formulation.
The model is described by a finite number of parameters q ∈ Q ⊂ Rn

p . To solve the
parameter estimation problem we have to define an observation operator C(u) as in (4.7)
and solve the least squares problem:







min
q∈Q

J(u(q), q)

A(u, q;ϕ) = 0, ∀ϕ ∈ V,
(4.29)

where the least squares functional is defined as follows:

J(u, q) =
1

2
‖C(u(q)) −C0‖. (4.30)

We have seen in the section 4.1 that this is equivalent to solve the first order optimality
conditions, given by the system (4.5).

Problem 4.9 (Optimal experimental design in the context of PDE) Given a func-
tional Φ of the covariance matrix C 1 of the model parameters q, we seek for the set of design
parameters ξ ∈ Π that minimizes this functional under the constraint that the first order
optimality system is satisfied by the triple {u, q, λ}:



































min
ξ∈Π

Φ(w, q, ξ)

J ′
u(u)(ϕu) −A′

u(u, q;λ)(ϕu) = 0 ∀ϕu ∈ V

J ′
q(u)(ϕq) −A′

q(u, q;λ)(ϕq) = 0 ∀ϕq ∈ Q

A(u, q;ϕ) = 0 ∀ϕ ∈ V

A′
u(u, q;ϕw)(w) +A′

q(u, q;ϕw)(1) = 0 ∀ϕw ∈ V,

(4.31)

where w is the derivative of u with respect to the model parameters q. The functional Φ is
applied to the Jacobi matrix of the system, that means that it is a function of w. For this
reason the sensitivity equations, that determine the derivatives of u, has to be embedded

1Here we use the same symbol C for the covariance matrix and the observation operator C(u), but
should not produce confusion, as we use the operator symbol always with the bracket to explicitly show the
dependency on the state u.
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in the system, as additional constraint. The functional Φ is nonlinear and not convex as
we can see in the examples treated in the following section. The minimization process for
the previous problem is not an easy task and is a problem of global minimization. We refer
to [14, 56, 7, 55] for the definition and application of this theory in the context of system
described by differential algebraic equations. We are of the advise that much effort has to
be involved in future work on this topic in the context of partial differential equations.

4.6.1 Numerical examples: measurements

Scope of the numerical examples is to show how the optimal choice of the experimental
set-up can improve the result of a parameter estimation problem. For this purpose we
choose three different models with different parameters: the first is the convection-diffusion
equation, the second is a Laplace problem with a discontinuous diffusion coefficient in the
domain and the third is the system describing the reaction between two species. All the
examples are 2D stationary problems.
In the first example we find the diffusion coefficient and one of the component of the trans-
port. We have decided to consider a symmetric solution for graphic reasons.
In the second example we find the values of the two diffusion coefficients knowing a-priori
how the domain is divided.
In the third example we look for the diffusion coefficient and the reaction rate for the two
species. The design variables ξ are measurement points at different positions in the domain.
An experiment consists of few measurements where we choose the positions ξ (three mea-
surement points in the first two examples and two measurement points in the last) and we
get the value of the state u as response of a fictive device, that measures u adding an error
due to the measurement chain. We use this first information to achieve an approximation
of the parameters solving a least squares problem (4.29). To improve this approximation
we add one more measurement point in the experiment. The choice of the new point can
be done using the theory of optimal experimental design. In the examples we compare the
numerical identification of the parameters using the three criteria described in the problem
4.8 and a fourth choice taken without following a criterion. As we do not have real measure-
ments, in our examples we have to produce artificial measurements. We do this by solving
the same problem with higher precision and adding to this value an error as depicted in
figure 4.3.
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Figure 4.3: Artificial measurements.
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The assumption for applying the theory of optimal experimental design is that the errors
made during the measurements are described by a given statistic and that they are not
dependent on the measurements. In order to gain statistical information of the procedure,
we should repeat the experiments a number of time sufficient to have a statistic of the
results, and use additive errors with a given statistic, i.e. zero mean and a given variance,
to obtain the artificial measurements value.

As we have decided to use few points as first measurement cycle and to add only one
measurement point, a statistic can not be made, thus we consider a fixed error in order to
compare the results. In this way we can nevertheless show the optimality of the choice. At
the end of the experiments we can compare the results of the parameter identification in
term of mean values as shown in the tables (4.1) - (4.6) and see that the optimality criteria
give better results also in term of mean value. Regarding the variance of the parameters,
as we do not have a statistic, we compare the confidence regions corresponding to the
different cases assuming the same variance CD in the observable variable space, showing
the mean result of the design of experiments, that is the minimization of the dimension of
the confidence regions, see figures (4.5) - (4.10).

4.6.2 Convection-diffusion equation

We consider a convection-diffusion model in 2D:

µ∆u+ β∇u = f in Ω,

where the domain Ω is the unit square [0, 1] × [0, 1].
The parameters are the scalar value of the viscosity coefficient, µ, and the first component
of the velocity, β0, while the second component, β1, is equal to zero. As explained in the
introduction we define a ”true” value for the parameters to which we add a given error. The
”true” value of the parameters is µ = 0.1 and β0 = 1. The force term is constant f = 1. We
consider two cases for the choice of the position of the first three measurements to show that
the entity of the improvement of the parameter estimation in terms of variance depends
on the initial information gathered, i.e. if we have already a good level of information the
gap for improvement is reduced. For the first case, ”1-A”, we choose the initial points for
the measurements at: ξ1 = {0.4, 0.5}, ξ2 = {0.5, 0.5}, ξ3 = {0.6, 0.5}. For the second case,
”1-B”, the initial points are the following: ξ1 = {0.25, 0.5}, ξ2 = {0.5, 0.5}, ξ3 = {0.75, 0.5}.
Because of the symmetries we take the measurements at the middle of the y coordinate.
The error added at each measurement is set to 15% of the max value of the function, in
this case it is 0.1.

The following tables show the results for the two cases, the column are so divided: in
the first is defined the criterion, in the second the position of the measurements, in the
third is given the determinant of C, in the fourth the sum of the eigenvalues of C, in the
fifth the maximum eigenvalue of C, in the sixth the condition number of the covariance
matrix. In the first row under this column we have the maximum and minimum condition
number obtained varying the measurement position to cover the entire domain, in the last
two columns we have the values of the parameters.
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Criterion Meas Det Sum Eig Max Eig Cond q1 q2
Max Cond = 717.92
Min Cond = 84.881

D

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.9, 0.5)

0.00237 0.567 0.563 133.91 0.082 0.807

A

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.95, 0.5)

0.00324 0.558 0.552 93.85 0.076 0.837

E

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.95, 0.5)

0.00324 0.558 0.552 93.85 0.076 0.837

No Criterion

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.1, 0.5)

0.09346 6.144 6.128 401.882 0.12 0.474

Table 4.1: Case 1-A. In the first column is defined the criterion, in the second the position
of the measurements, in the third is given the determinant of C, in the fourth the sum of
the eigenvalues of C, in the fifth the maximum eigenvalue of C, in the sixth the condition
number of the covariance matrix. In the first row under this column we have the maximum
and minimum condition number obtained varying the measurement position to cover the
entire domain, in the last two columns we have the values of the parameters.

Criterion Meas Det Sum Eig Max Eig Cond q1 q2
Max Cond = 387.31
Min Cond = 159.74

D

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.9, 0.5)

0.00282 0.833 0.830 244.46 0.084 0.778

A

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.95, 0.5)

0.00345 0.787 0.783 177.476 0.079 0.821

E

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.95, 0.5)

0.00345 0.787 0.783 177.476 0.079 0.821

No Criterion

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.1, 0.5)

0.01422 1.733 1.725 209.106 0.098 0.632

Table 4.2: Case 1-B. See case 1-A for the description of the table.

Remark 4.4 The condition number is not a good criterion as the other for the design of
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experiments, because it is the ratio between the largest and the shortest diameters in the
ellipsoid of uncertainties in the model parameters space. It tends to reduce the correlation
between the parameters and it is not assured that the uncertainties are also reduced.

Figure 4.4: From top left: solution u, determinant, trace and maximum eigenvalue of the
covariance matrix.
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ordinate to the flow velocity.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0.06  0.07  0.08  0.09  0.1  0.11  0.12  0.13  0.14

pa
ra

m
et

er
 2

parameter 1

Figure 4.6: Confidence regions: case 1-B. The ellipses with dotted line correspond to the
D, A and E criteria. To the criteria A and E corresponds the same optimal position and
are equivalent in this case. The abscissa corresponds to the diffusion coefficient, while the
ordinate to the flow velocity.
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4.6.3 Laplace with discontinuous diffusion coefficient

We consider for the second example the Laplace model defined as follows:

(µ1χ1 + µ2χ2)∆u = f in Ω

where the domain is the unit square, Ω : [0, 1] × [0, 1]. The two parameters are the values
of the diffusion coefficient: µ1 = 0.1, µ2 = 0.5. The force is constant: f = 1.

The domain is divided as follows: χ1 =

{

0. x < 0.5
1. x > 0.5

, χ2 =

{

0. x > 0.5
1. x < 0.5

For the first case, ”2-A”, we choose the initial points for the measurements at: ξ1 =
{0.4, 0.5}, ξ2 = {0.5, 0.5}, ξ3 = {0.6, 0.5}.

For the second case, ”2-B”, the initial points are the following: ξ1 = {0.25, 0.5}, ξ2 =
{0.5, 0.5}, ξ3 = {0.75, 0.5}.

Also here the error added at each measurement is 0.1 ( 25% of the max value of the
function).
The description of the values in the tables is as in the previous example, here are the results:

Criterion Meas Det Sum Eig Max Eig Cond q1 q2
Max Cond = 52.273
Min Cond = 16.757

D

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.75, 0.5)

0.00260 0.372 0.365 51.234 0.084 0.338

A

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.5, 0.5)

0.00614 0.340 0.321 16.762 0.088 0.334

E

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.5, 0.5)

0.00614 0.340 0.321 16.762 0.088 0.334

No Criterion

(0.4, 0.5)
(0.5, 0.5)
(0.6, 0.5)
(0.1, 0.5)

0.00885 0.462 0.442 22.078 0.095 0.310

Table 4.3: Table case 2-A. In the first column is defined the criterion, in the second the
position of the measurements, in the third is given the determinant of C, in the fourth the
sum of the eigenvalues of C, in the fifth the maximum eigenvalue of C, in the sixth the
condition number of the covariance matrix. In the first row under this column we have the
maximum and minimum condition number obtained varying the measurement position to
cover the entire domain, in the last two columns we have the values of the parameters.
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Criterion Meas Det Sum Eig Max Eig Cond q1 q2
Max Cond = 84.434
Min Cond = 26.817

D

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.9, 0.5)

0.00248 0.463 0.458 84.434 0.084 0.323

A

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.95, 0.5)

0.00295 0.292 0.281 26.817 0.084 0.331

E

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.95, 0.5)

0.00295 0.292 0.281 26.8174 0.084 0.331

No Criterion

(0.25, 0.5)
(0.5, 0.5)
(0.75, 0.5)
(0.1, 0.5)

0.00885 0.462 0.442 40.197 0.086 0.306

Table 4.4: Table case 2-B. See above for the description of the table.
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Figure 4.7: Confidence regions: case 2-A. The ellipses with dotted line correspond to the
D, A and E criteria. To the criteria A and E corresponds the same optimal position and
are equivalent in this case. The abscissa corresponds to the diffusion coefficient, while the
ordinate to the flow velocity.
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Figure 4.8: Confidence regions: case 2-B. The ellipses with dotted line correspond to the
D, A and E criteria. To the criteria A and E corresponds the same optimal position and
are equivalent in this case. The abscissa corresponds to the diffusion coefficient, while the
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4.6.4 Reaction between two species

We consider the model of a reaction between two species. The equation of mass conservation
for one species is thus the model:

µ(∇u,∇ϕ) + β(u,∇ϕ) = (Mω,ϕ) in Ω

u = 0 on ∂Ω

where u is the mass fraction of one species, µ is the diffusion coefficient, β is the velocity of
the flow, M is the molecular mass and ω is the molar production rate of the species. The
term ω is given by:

ω = kc

where k is the reaction rate and c is the concentration of the species. k is usually given by
the Arrhenius formula

k = AT b exp(− Ea

RT
),

where A is the pre-exponential factor T is the temperature, Ea is the activation energy and
R the gas constant. The problem is to identify given parameters of the model by means
of concentration measurements of one species in given points in the domain. We assume
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further that the system response to the measurements is affected by some not systematic
errors. The same considerations regarding the measurements made for the previous cases
have been used also here.

The parameters to identify are the rate constant k and the diffusion coefficient µ. In
order to do the parameter identification we perform three point measurements of u in three
positions in the domain. The domain is the unit square.

After the first two measurements, chosen without criteria, we have gathered information
about the system, that can be used to perform additionally measurements. We compare
different criteria for choosing the third measurement point. The first two measurement
points and the added errors are the same for all the cases, so that the prior information
is the same in all cases. The third measurement is chosen using different criteria. We use
the three criteria above defined and in one experiment we choose a position that is not an
optimal design point.

In the following table we have all the starting values. In the first column the definition
of the domain, in the second the value of vector flow velocity β, in the third and fourth
columns the positions of the first two measurements, while in the last column we have the
added error:

Domain β Meas 1 Meas 2 Added Error

(0, 1) × (0, 1) (1.5 , 0.3) (0.4 , 0.3) (0.6 , 0.5) 10%umax = 0.016

Table 4.5: Input parameters. In the first column the definition of the domain, in the second
the value of vector flow velocity β, in the third and fourth columns the positions of the first
two measurements, while in the last column we have the added error.

The results are collected in the next table. In the third row we have the position of
the third measurements, in the fourth and fifth rows we have the values of the identified
parameters, in the sixth row the area of the ellipse (minimized by the D criterion), in the
seventh and eighth the length of the minimum and maximum axes (the latter minimized by
the E-criterion), in the ninth row we have the sum of axes (minimized by the A-criterion):
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no OED D A E True Value

Meas 3 (0.9 , 0.5) (0.12 , 0.27) (0.11 , 0.2 ) (0.11 , 0.2) -

Param 1: µ 0.236819 0.194105 0.184985 0.184985 0.2

Param 2: k 8817.56 11654.1 12215.3 12215.3 15000

Area Ellipse 1.0220e+04 2586.0 2655.6 2655.6 -

Min Axis 0.068075 0.051487 0.054365 0.054365 -

Max Axis 4.7788e+04 1.5988e+04 1.5549e+04 1.5549e+04 -

Sum Axes 4.7788e+04 1.5988e+04 1.5549e+04 1.5549e+04 -

Table 4.6: Results. In the third row we have the position of the third measurements, in
the fourth and fifth rows we have the values of the identified parameters, in the sixth row
the area of the ellipse (minimized by the D criterion), in the seventh and eighth the length
of the minimum and maximum axes (the latter minimized by the E-criterion), in the ninth
row we have the sum of axes (minimized by the A-criterion).

The least squares functional is the distance between the measured values of umeas and
the approximated ones by the finite element model: F = 1

2‖umeas − u‖2. In figures (4.11,
4.12) the least squares functionals corresponding to the case of the D-criterion and the case
where no criterion has been chosen are depicted. The iso-lines represent the confidence
region at different levels, these contours are the confidence regions for the model without
condidering the linearization. It is possible to see that the form of the contour is close to an
ellipse, as it would be in the case of a linear model. It can also be noted that the confidence
region in the case of the D-criterion is smaller than the other, this again is a visualization
of the optimal choice of the measurement points.
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Figure 4.9: Solution with the nominal parameters.
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Figure 4.11: Least squares functional for the case of the D-criterion. The iso-lines represent
the confidence region at different levels. It is possible to see that the form of the contour is
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Figure 4.13: Determinant of the covariance matrix.
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Figure 4.14: Trace of the covariance matrix.
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4.7 A posteriori error estimation for optimal experimental

design problems

In this section we propose an adaptive scheme for optimal experimental design problems.
We proceed following the method described in the section 3.3. We refer also to Vexler [75]
for a derivation of an a posteriori error estimation for parameter estimation problems. The
problem of optimal design of experiments is a natural extension of the parameter estimation
problem and similar techniques can be applied, considering the peculiarity of the former
problem.
In the context of design of experiments we have seen that the problem to solve is a con-
strained minimization, where the constraint is the system of equations corresponding to the
first order optimality conditions, that originate from the parameter estimation problem.
Here below we expose the derivation of the system comprehensive of the primal and the
dual part necessary to define the error estimator as described in the error representation
(3.28), here reported for simplicity:

J(u) − J(uh) =
1

2
ρ(uh; z − ψh) +

1

2
ρ∗(zh;u− ϕh) +Rh,

where the terms are defined as in proposition 3.1.

We begin by considering the following simple model:

q∆u = f in Ω,

u = 0 on ∂Ω

where Ω is a 2D Lipschitz domain, q ∈ Q ⊂ R is a scalar parameter and f is a function
in L2 and u is the state, that we can assume to be a function defined in V = H 1. L2 is
the space of square integrable functions and H 1 is the Hilbert space of square integrable
functions with square integrable first derivative. Aim of the parameter identification is to
find the best choice for q in the set Q by means of a fit using point measurements of the
state u at two distinct points {ξ1, ξ2} in the domain.

After defining the observation functional C(u) as in (4.1):

Ci = C(u|ξi
) = u|ξi

− u0i
,

where

u|ξi
=

1

B(ξi, ε)

∫

B(ξi,ε)
ω(|ξi − ξ|)u(ξ)dξ, (4.32)

we define the cost functional as the sum of squares:

J(u) =
1

2

(

C, C
)

. (4.33)
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The minimization problem is so formulated:







min
q∈Q

J(u)

A(u, q;ϕ) = 0 ∀ϕ ∈ V

we proceed by defining the Lagrangian:

L(u, q, λ) = J(u) −A(u, q;λ),

then we set the system corresponding to the first order optimality conditions:











L′
u(u, q, λ)(δu) =

(

δu|ξ , u|ξ − u0

)

−
(

q∇δu,∇λ
)

= 0 ∀δu ∈ V

L′
q(u, q, λ)(δq) = −

(

δq∇u,∇λ
)

= 0 ∀δq ∈ Q

L′
λ(u, q, λ)(δλ) = −

(

q∇u,∇δλ
)

+
(

f, δλ
)

= 0 ∀δλ ∈ V,

(4.34)

where the operator ·|ξ is defined as in (4.32). Exploiting the solution of the sensitivity
equation, where w is the derivative of u:

(

q∇w,∇ϕ
)

=
(

∇u,∇ϕ
)

,

w = −1

q
u,

we can write the sum of the first two equations in (4.34) as:

(

w|ξi
, u|ξi

− u0i

)

= 0,

or

(

−1

q
u|ξi

, u|ξi
− u0i

)

= 0,

we can rewrite the equation in the form:

(

−u1|ξi
, qu1|ξi

− u0i

)

= 0,

with u1 the solution of the state equation with q = 1

(

∇u1,∇ϕ
)

=
(

f, ϕ
)

.

This says that the two vectors with components {−u1|ξ1 ,−u1|ξ2} and {qu1|ξ1 −u01
, qu1|ξ2 −

u02
} are orthogonal.

From the orthogonality condition we get q:

q =
u1|ξ1u01

+ u1|ξ2u02

(u1|ξ1)2 + (u1|ξ2)2
.
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The variance of the parameter is:

covq =
Σ

(w|ξ , w|ξ)
,

where Σ is the variance of the measurements and in the following we assume Σ = 1 to
simplify the notation.
In this scalar example all the functionals considered are equivalent:

Φ = det(covq) = tr(covq) = maxσ(covq) =
1

(w|ξ , w|ξ)
The formulation of the optimal experimental design problem is:



































min
ξ

Φ
(

w, ξ
)

L′
u(u, q, λ)(δu) = 0 ∀δu

L′
q(u, q, λ)(δq) = 0 ∀δq

L′
λ(u, q, λ)(δλ) = 0 ∀δλ

(

q∇w,∇ϕ
)

=
(

∇u,∇ϕ
)

∀ϕ,
where we have add the last equation, the sensitivity equation, that is the equation for w: the
derivative of u with respect to the parameter q. The peculiarity of the experimental design
problem is that the cost functional is applied to the Jacobi matrix of the system, that means
that it is a function of the derivatives of the state. For this reason we have to consider the
sensitivity equations in the formulation of the minimization problem. The Lagrangian reads:

L(w, u, q, λ, ξ, µ, v, p, y) = Φ(w, ξ) − J ′
u(u)(v) +A(u, q; y)

+A′
u(u, q;λ)(v) +A′

q(u, q;λ)(p)

+A′
u(u, q;µ)(w) +A′

q(u, q;µ)(1)

The first order optimality conditions for the model considered are given by the following
system:































































































L′
w(δw) = − 2

D2
[(δw,w)] + (q ∇δw,∇µ) = 0 ∀δw ∈ V

L′
µ(δµ) =(q ∇w,∇δµ) + (∇u,∇δµ) = 0 ∀δµ ∈ V

L′
u(δu) = − (v|ξ, δu|ξ) + (p ∇δu,∇λ)

+ (q ∇δu,∇y) + (∇δu,∇µ) = 0 ∀δu ∈ V

L′
q(δq) =(δq ∇v,∇λ) + (δq ∇u,∇y) + (δq ∇w,∇µ) = 0 ∀δq ∈ Q

L′
ξ(δξ) = − 2

D2
[(w′

ξ, w)] = 0

L′
λ(δλ) =(q ∇v,∇δλ) + (p ∇u,∇δλ) = 0 ∀δλ ∈ V

L′
v(δv) = − (δv|ξ , u− u0) + (q ∇δv,∇λ) = 0 ∀δv ∈ V

L′
p(δp) =(δp∇u,∇λ) = 0 ∀δp ∈ Q

L′
y(δy) =(q ∇u,∇δy) − (f, δy) = 0 ∀δy ∈ V

(4.35)
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where w′
ξ is the derivative of the function w with respect to the space variable ξ. In the case

of optimization problems it is natural to use as goal functional for the formulation of the a
posteriori error estimation the functional to be minimized. In this case the functional is Φ
and the dual solution to be used for the error representation is then given by the Lagrange
multipliers {y, p, λ, µ} of the system (4.35).
The system (4.35) is a linear system, it encompasses the primal and dual variables. For
the error representation we use the residual of the primal system weighted with the dual
solution, thus we need the solution of the complete system.

Considering the reduced formulation of the minimization problem (problem 4.4) and the
reduced functional:

L̂(q, ξ) = Φ(w, ξ) − J ′
q(u(q), q)(δq),

the first order optimality conditions become:

{

L̂′
q(δq) = Φ′

q(w, ξ)(δq) − J ′′
qq(u(q), q)(δq, p) = 0 ∀δq ∈ Q

L̂′
ξ(δξ) = Φ′

ξ(w, ξ)(δξ) = 0 ∀δξ ∈ Π

and applying the chain rule we obtain:

{

L̂′
q(δq) = Φ′

q(w(q), ξ)(δq) − J ′
u(u(q), ξ)(τ(p)) − J ′′

uu(u(q), ξ)(w(p), w(1)) = 0 ∀δq ∈ Q

L̂′
ξ(δξ) = Φ′

ξ(δξ) = 0 ∀δξ ∈ Π.
(4.36)

where w(p), the derivative of u, is the solution of the following problem under the assumption
of the validity of the implicit theorem:

(

q∇w,∇ϕ
)

=
(

p∇u,∇ϕ
)

∀ϕ ∈ V (4.37)

and τ(p), the derivative of w, is the solution of the problem:

(

q∇τ,∇ϕ
)

=
(

p∇w,∇ϕ
)

∀ϕ ∈ V

which is the application of the implicit theorem to the equation (4.37), considering the
function w as function of the parameter q through the same equation.

For the model considered, the first equation of the system (4.36) is:

− 2

(w|ξ(p), w|ξ(p))2
(τ |ξ(p), w|ξ(p)) = (w|ξ(p), w|ξ) + (τ |ξ(p), u|ξ − u0),

from which we obtain the dual variable p:

p = −2

(

τ |ξ, w|ξ
)

(

w|ξ, w|ξ
)

1
[(

w|ξ , w|ξ
)

+
(

τ |ξ, u|ξ − u0

)]
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From the system (4.35) we consider the equation:

L′
λ(δλ) = A′

u(u, q; δλ)(v) +A′
q(u, q; δλ)(p) = 0 ∀δλ ∈ V,

from which we obtain the variable v:

v = u
p

q
,

and from the equation

L′
u(δu) = 0 ∀δu ∈ V,

we obtain the dual function y.

In the next section we consider a numerical example of optimal design of experiment for
which we have calculated the error representation (3.28). This is only the first step towards
a systematic use of the described technique for local refinement of the mesh, the extension
of this work and further investigations will be material for future work in this context.

4.7.1 Numerical example

For numerical purposes we consider a diffusion-convection model:
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Figure 4.15: Solution of the diffusion-convection model with the given boundary conditions.
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{

−q1∆u+ q2∇u = f in Ω ⊂ R2

u = 0 on ∂Ω,

where the state u is defined in an opportune Hilbert space, the external force is constant
f = 1 and the two parameters considered are the viscosity coefficient and the first component
of the velocity field, assuming the second component equal to zero. The experiment consists
of measuring the state u at two initial positions and to use this information to find the
optimal position for a third measurement using the ”D-criterion”. The procedure for the
optimization is the same as described in section 4.31 and in the relative numerical examples.
The first two measurements are performed at the points: ξ1 = (0.8, 0.3) and ξ2 = (0.2, 0.4).
The true values of the parameters are: q1 = 0.1, q2 = (0.5, 0)
The result of the optimization is the optimal position for the third measurement: ξopt =
(0.42, 0.5).
Below we show the functional to be minimized Φ = Det(Covq), which is shown to be
non-convex. Further we show some components of the solution of the system (4.35): the
solutions of the sensitivity equations w1 and w2 and the three components of the dual
system µ1, µ2 and y.
In the table 4.7 we reproduce three values of the efficiency of the error representation for
different mesh sizes.

N Φ(u) − Φ(uh) Eff
100 0.011 0.99
400 0.0027 1.019
1600 0.00052 1.02

Table 4.7: Efficiency of the error representation. In the first column is reported the number
of degree of freedom of the discretization, in the second column is reported the discretization
error with respect to the goal functional Φ(u), that in this case is the determinant of the
covariance of the two model parameters. In the third column it is reported the efficiency of
the error representation (3.28).

This is the first step towards a systematic technique for the adaptivity of the mesh. In
future work we want to apply the a posteriori error estimation here presented to problem
involving the design of experiment.
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Figure 4.16: From the top left the first picture is the functional Φ = Det(Covq), the second
and third pictures are the dual components µ1, µ2, these are the Lagrange multipliers for
the two sensitivity equations with respect to the two parameters. From the bottom left the
first picture is the dual component y of the system (4.35). The second and third pictures
are the solutions of the sensitivity equations w1 and w2: left with respect to q1 and right
w.r.t. q2. The dual solution corresponds to the weighting in the error representation. These
pictures show that in case of point measurements the weight is posed around those points.
Regarding the solutions µ1 and µ2 we can see that the point measurement at ξ1 is weighted
in a different way and that the weight is related to the solutions w1 and w2 (see the different
high of the spike). This is due to the fact that the goal functional for the error estimation is
a function of the covariance matrix, which is on the other hand is a function of the Jacobi
matrix of the system.



Chapter 5

Numerical results

The first step in preparing for the simulation of the reactive flow in the reactor is the
determination of a complete set of initial and boundary conditions for which the model can
be expected to be well-posed.
The aim of this chapter is the description of the numerical results and all the necessary
preparation work, that we call ‘calibration’ of the model: the model calibration includes
the determination of the inflow velocity for the species N2O and H2 from the central cooled
inlet, the velocity for Ar from the external ring and from the cooling system for the optic,
the determination of the pressure inside the reactor and the outflow condition at the outflow-
boundary, at the inflow the specification of the amount of species, in mass fraction, that is
regulated by the mass controllers. Further it includes the specification of the temperature
profile along the entire boundary. Then it has to be implemented the so called ‘ignition’,
that is the procedure for starting the reaction, and, during the reaction, the numerical
measurement procedure.
The following is the summary of the main items in this chapter:

• Model calibration

– velocity profile

– pressure in the reactor

– inflow mass of species

– calibration of the temperature

• Ignition

• Measurements

• Parameter estimation results

• Visualization of the flow
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5.1 Model calibration

The calibration of the model is the determination of the boundary conditions necessary
to prepare the simulation of a single experiment. For the simulation we get experimental
data from measurements of quantities, that are indirectly related to the values we need, so
the direct relation is given by the so called ‘calibration’. The results of the measurements
are not dependent on the calibration parameters in the same way. We have not done a
complete sensitivity analysis regarding the boundary values, but during the calibration
we have experienced the response of the system with respect to these values. We have
observed that variations in the temperature at the measurement zone and variations in
the concentrations at the ignition time, results in more variations in the results than the
variations of pressure and velocity. This because, regarding the velocity, in the mixing of
the species at this regime, the transport term is less important than the diffusion term.
While the thermodynamic pressure is included only in the state equation and is actually a
scaling factor for the density, because in our case the pressure is constant in all the volume.
Only at very high external pressure (about 1 atm) the density changes are big enough to
change the effect of the gravity on volumes of gases at different temperatures. This is an
effect that can bring the flow in a non-stationary regime, as we can see later in this chapter.

All the needed boundary values are determined by means of measurements with different
devices and some elementary calculations, except for the temperature, for which the cali-
bration is achieved by solving a parameter estimation problem. This is a typical example of
a ‘real life’ simulation, because in our case the temperature measurements are not available
along the boundary, but for technical reasons only along the symmetry axis of the reactor.

We refer to figure 3.2 for the nomenclature of the different parts of the boundary for
imposing different boundary conditions.

5.1.1 Velocity

As is described in the chapter 1 we have to determine the inlet flow of the different species.
Through the central inlet of Γin flows a mixture of N2O and H2 and through the external
ring flows Ar. We assume a parabolic profile of the velocities. The parameter describing
the profile are fixed by the geometry of the inlet and by the mass flow, which is regulated
by some devices. The mass controllers determine the mass flow of the species in unit of
volume [sccm]. As the volume of gases is dependent of the temperature and pressure, the
values are given with respect to a standard condition, so the values read in the devices have
to be converted using the relationship

Qa = Qs(ps/pa)(Ta/Ts),

where the subscript ‘a’ indicate actual values and the subscript ‘s’ standard values. The
total volume flow is equal to the volume of the solid obtained rotating the parabola around
an axis, in the figure 5.1 is depicted a section of the volume and the axis of rotation is the
y axis. The volume in the ring is the subtraction of the two volumes obtained by rotating
the external part of the parabola from R−r

2 to R and by rotating the internal part from r to
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Figure 5.1: Inflow velocity profile.

R−r
2 around the y axis. In the local coordinate system (x, y) the parabola has the equation

y = ax2, the maximum of y is in xM = R−2
2 , thus a =

x2

M

Vmax
and after integrating:

∫ Vmax

0
π
((R− r

2
+ x

)2 −
(R− r

2
+ x

)2)
dy, (5.1)

we obtain

VM = F
3

8

1

π

1

r212
,

where F is the total flux of Ar. In this manner we can determine the profile of the inflow
given a measured flow.

For the inflow at the central cooled inlet and at the lateral cooling system we calculate
the velocity in a similar manner.

For the rest of the boundary we assume no-slip condition:

u = 0 on Γ\
{

Γin ∪ Γout ∪ Γopt

}

.

While at the outlet we impose the Neumann condition

∇v · n = 0,

where n is the unit vector normal to the surface.

5.1.2 Pressure

As described in the chapter 2 the pressure at the boundary is given by equation (2.73):

p =
1

|Γout|

∫

Γout

pout(x, t)ds,
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and in our case, as the pressure is determined by an external device, it remains constant in
the volume inside the reactor except for the small fluctuations due to heat release, expecially
in the reaction zone. In our formulation the pressure was split in a thermodynamic part
and a hydrodynamic part. These fluctuations are accounted for in the latter component of
the pressure, while the thermodynamic part is taken to be constant.

5.1.3 Mass fraction

From the flow regulators we have to define the amount of species that flows in the reactor.
This could be a very important source of error for the simulation of a reaction, because
experimentally we actually measure the production rate of a species (in our case H) and
from this we can derive the constant rate of production if we know all the other parameters in
the formula, that is, if we know the molar concentrations of all the species in this elementary
reaction:

ωk =
∑

i

(νb
ki − νf

ki)k
f
i

∏

l

c
ν

f
li

l ,

see formula (2.52) for the notation. The initial concentration in number of molecules per
cm3 is given by the partial pressure, which depend on the ratio of the flux of a species to
the total flux. In the following table we show the data for the case with T=780K. The
description of the content of the column is enumerated below:

1. Type of flow regulator,

2. Type of gas,

3. Percentage of maximum flux available,

4. Flux converted in [sccm],

5. Partial pressure of the species,

6. Concentration of the species in [molec/cm3].

Flow regulator Gas Φ% Φ [sccm] p[mTorr] c [molec/cm3]

500 sccm-N2 Ar{opt} 106.6 638 17964 2.22E+17

2000 sccm-He Ar{buffer} 28.3 670 18863 2.33E+17

100 sccm-H2S N2O 20 16 451 5.59E+15

660 sccm-He H2 50 235 6620 8.2E+16

Table 5.1: Derivation of the concentrations from the fluxes for the case T=780 [K], p=43.9
[torr].

The partial pressure pi of the ith species is calculated from the relation:

pi =
Φi

Φtot
ptot, (5.2)
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where ptot is the measured pressure in the reactor (in this case p=43.9 [torr]) and Φtot is
the summation of all the fluxes. From the partial pressure we can derive the number of
molecules of gas per cm3 and from this the mass fraction in the following way: the number
of moles of a species ni is given by Ni/NA, where NA is the number of Avogadro, the mole
fraction of the ith species is xi = ni/n and the mass fraction is calculated as:

wi =
Mini

∑

j Mjnj

where Mi is the molar mass of the ith species and n =
∑

nj, j ∈ S, where S is the set of
indexes of all the species.

5.1.4 Temperature profile

For the temperature we need the profile along the entire boundary (see Fig. 5.2).
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Figure 5.2: Temperature’s boundary condition.

Experimentally, due to some constraints in the construction of the reactor, we can measure
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the temperature only along the axis of symmetry of the main duct. Thus to get the bound-
ary values of the temperature for the numerical simulation we must perform a parameter
estimation as calibration of the model with the measured temperature.
The temperature at the boundary is described by a piecewise function as shown in the figure
5.2. The values of the temperature at the positions y2 − y7 are the six parameters that we
have to identify in order to set the appropriated boundary condition.
We define as functional to be minimized the distance of the measured temperatures to the
simulated ones, both along the axis of symmetry:

F =
1

2
‖Tmeas − Tsim‖2 =

1

2

∫

Γsym

|Tmeas − Tsim|2dz. (5.3)

We must calibrate the model for each set of experiments with a given temperature in the
heating zone, because changing the temperature in the oven changes the distribution of the
temperature in the entire reactor. Due to the nonlinearities of the model it is not possible
to determine a map between the boundary values of temperature and the values at the
symmetry axis without perform a new calibration, in other words it is not possible just to
scale the values at the boundary to reproduce the measured ones.
The results of the calibration for the experiments with 580 K in the heating zone are plotted
in the figure 5.3. The points with the ‘+’ symbol are the measured values of temperature
at different z values at the symmetry axis. The red line, piecewise linear, is the result of
the calibration, that means the temperature at the boundary, while the blue one is the
temperature at the symmetry axis from the simulation.
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5.2 Ignition

Experimentally the reaction starts by producing an amount of O(1D) that combines with
H2. The O(1D) is obtained by photodissociation of N2O. In the numerical case the pho-
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Figure 5.4: Photolysis: the photodissociation in the numerical case is simulated by an
ignition mechanism.

todissociation is simulated by an ignition mechanism, we define an area corresponding to
the laser beam, that goes through the diameter of the reactor at the optic zone, and substi-
tutes artificially the amount of molecules of N2O at each degree of freedom, corresponding
to the dissociated quantity, by the same amount of molecules of N2 and of O(1D). This
corresponds to an impulse of the energy of the system. At the experimental conditions the
flow regime for the multicomponent fluid is stationary, while, after starting the reaction, the
coupled system is not more stationary, at least until the quantity of O(1D) produced is com-
pletely consumed. The measurements are taken after the ignition time during the transient
phase of the reaction, circa 400-500 ns. In the next section we describe the experimental
and numerical measurements.

5.3 Measurements

In the chapter 1 we have described the setup of the experiments, here we describe the
numerical approach to the determination of the kinetics of the reaction. Our approach is
analogous to the experimental approach, that means that we describe the reaction by a sim-
ulation of the experiment itself. The experimental approach consists of repeating different
experiments with different initial conditions, changing the ratio of the concentration of the
species at the inflow: H2, N2O and Ar. In all cases the concentration of H2 can be consid-
ered in excess with respect to the others, so that during the reaction it can be regarded as
almost constant for the calculation of the reaction rate. For the determination of the latter,
six configurations are used, obtained by varying the inflow regulator of H2 from 5% to 50%
of the maximum flow admissible. From these six data sets a pseudo-first-order reaction rate
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can be estimated and from this the “true“ reaction rate, for a given temperature. With this
technique the reaction rate has been “experimentally“ determined.

For the numerical estimation of the reaction rate we just need one experimental curve for
one of the values of initial concentration. We show this in the case of T = 300K comparing
the numerical results in two extreme cases: the first with the flow regulator for H2 at 50%
of the maximum value and the second at 5%. Experimentally the reaction starts with the
photodissociation of N2O in N2 and O(1D), produced by an ArF (193 nm) excimer laser.
It is assumed that the dissociated fraction of N2O is about 10 % of the quantity present in
the measurement volume. This introduce an uncertainty in the set-up of the experiment,
but we can make two considerations regarding this point. First, this uncertainty is for
sure small with respect with all the measurement uncertainties in the measurement chain.
Second, as we have seen in the expression for the production of the H atoms, equation
(1.8), the initial concentration of O(1D) acts as a multiplicative constant, that means that
two measurements that differ because of the different initial concentrations on O(1D) give
two signals that differ by a multiplicative constant and this is implicitly included in the
measurement procedure as described below. The detection of H atoms in the experiment
is made by laser-induced fluorescence technique (LIF), the details can be found in the
work of A. Hanf [43]. As described in the chapter 1 the measurements give a number of
points within a time interval, that goes from the ignition time to a time sufficient for the
reaction to end, this signal is proportional to the number of H atoms that are present in
the measurement volume. From the numerical simulation we can obtain a ‘measurement
signal’, that is exactly the number of atoms present in a measurement volume to be defined.
This is done by numerically integrating the concentration of a species over all the elements
contained in the measurement volume. The fit with the experimental data can be made only
if one of the two signals is scaled by multiplying by a constant all the measurement points.
Thus the uncertainty about the initial concentration of O(1D) is included in this constant
and doesn’t affect the result of the fit, but of course the fit procedure has to consider this
additional parameter. So to compare the two signal we have to consider an additional
parameter, that is the unknown scaling factor of the LIF signal. This changes the setting
of the minimization problem because now we have a parameter in the definition of the cost
functional, that has no physical meaning and is not included in our model. To solve this
problem we have adopted an explicit technique decoupling the parameters and solving in
an iterative manner the minimization problem, as following described. The functional to
be minimized is the distance between the experimental data and the simulated data, each
point of the latter multiplied by an unknown constant, that accounts for the ‘LIF scaling’:

F =
1

2

∣

∣ [Hmeas]i − c [Hsim]i
∣

∣

2
. (5.4)

We present here below the scheme that describes the steps of the algorithm of minimization
of this functional. We call ‘model parameters’ the parameters of the original parameter
estimation problem and ‘calibration parameters’ those figuring only in the cost functional.
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Algorithm for the minimization of the cost functional

1. use a suitable start value for the model parameters to

calculate the initial value of the cost functional;

2. use a bisection method for the minimization of the

cost functional with respect only to the ‘calibration’

parameter c;

3. begin loop minimization over the model parameters:

• calculate the search direction and the step for the

model parameters,

• calculate the residual with updated parameters;

4. stop loop if given tolerance achieved;

5. after a number of iterations n, to be defined, stop the

previous loop and re-calibrate the constant c using a

bisection method;

6. calculate the new residual using the new c;

7. repeat steps 3 to 6 until convergence.

In our case it was enough to calibrate twice the constant. Modifying the number of
iteration at the step 5, we have observed slightly different convergence rate, but the algo-
rithm has not shown instabilities. Without the first calibration step is mostly impossible to
converge, because the raw curves are scaled with a constant c of some orders of magnitude
and the steps for the parameters in the point 3 would not have physical meaning.

5.4 Results of the fit

5.4.1 Case T = 300K, 50% H2

For the numerical experiments we have used the mechanism described in the appendix A,
which is composed of 50 reactions and 17 species. Here below is a table with all the species:

N2O O(1D) H2 OH O

NO H2O HNO2 N2 O2

HO2 HNO NO2 N H

NH Ar

Table 5.2: Table of species of the full system.
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Figure 5.5: Comparison simulation vs experiment for the case with T = 300K and 50% of
H2. The result of the fit is the reaction rate: k = 1.0E−10[cm3molec−1s−1]. The other two
curves, k = 0.9E − 10 and k = 1.1E − 10, are plotted to show qualitatively the sensitivity
with respect to the reaction rate.

In the following list are collected the data for the experiment with the temperature at
300 K:

• P = 1866 Pa,

• Inflow mass fractions: wH2 = 0.016, wN2O = 0.0236,

• Inflow velocity: main tube v = 0.86m/s, optic cooling system: v = 0.55m/s.

The result of the fit is plotted in the figure 5.5.

The blue curve, in the middle, corresponds to the k = 1.0E − 10[cm3molec−1s−1] and
is the result of the parameter estimation. The other two curves, k = 0.9E − 10 and
k = 1.1E − 10, are plotted to show qualitatively the sensitivity with respect to the reaction
rate.

5.4.2 Case T = 300K, 5% H2

In the case with less concentration of H2 we have different initial mass fractions, but the
rest of parameters is the same as the previous example:



5.4. Results of the fit 89

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

-400 -200  0  200  400  600  800

LI
F

 S
ig

na
l [

-]

Time [ns]

H Concentration: Simulation vs Experiment, 5% H2, 14 Torr, 300 K

Experiment

k=1.0e-10

Figure 5.6: Comparison simulation vs experiment for the case with T = 300K and 5% of
H2. The result of the fit is the reaction rate: k = 1.0E − 10[cm3molec−1s−1].

• Inflow mass fractions: wH2 = 0.0022, wN2O = 0.0239,

• the rest as the 50 % case.

The results are plotted in the figure 5.6. The same result, k = 1.0E − 10[cm3molec−1s−1],
as the prevous case is found, showing that for the numerical investigation we can choose
just one of the experimental curves available for the fit.

5.4.3 Case T = 780K, 50% H2

In the case with higher temperature the set-up is slightly different, here are the given
parameters:

• P = 5866 Pa,

• Inflow mass fractions: wH2 = 0.02, wN2O = 0.0249,

• Inflow velocity: main tube v = 0.86m/s, optic cooling system: v = 0.55m/s.

The results of the fit are plotted in the figure 5.7. In the case of 780K the fit determines a
reaction rate k = 1.5E − 10[cm3molec−1s−1], which shows an increment with temperature.
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Figure 5.7: Comparison simulation vs experiment for the case with T = 780K. The result
of the fit is the reaction rate: k = 1.5E − 10[cm3molec−1s−1].

5.5 Visualization of the flow

In this section we describe some details of the flow simulation, expecially the temperature
diffusion and the species diffusion. The temperature diffusion is mostly given by the heat
conductivity of Ar. The buffer gas flows from the external ring and transports the heat
from the ceramic wall towards the center of the reaction tube. Its distribution reaches a
stationary condition after 300 ms. In the picture 5.8 are depicted six states at six different
time steps, it is clear that the spacial distribution follows the typical velocity profile of a
flow in a tube. This simulation is made with the parameter setup described in the section
5.4.3. In this case the effect of gravity is negligible, because the pressure is too low for
the volume force deriving from the gravity to overcome the transport term. In the case
with higher pressure on the contrary, the gravity acts on volumes of gases with different
temperatures producing a force that in the boundary layer creates a flow that goes towards
the top of the reaction tube, creating vorticity and starting an instationary mixing process.
The picture 5.9 shows the first phase of this phenomenon. We have not further studied
this case, because we do not have yet experimental data for the case with higher pressure
to compare. From the numerical point of view the instationarity of the phenomenon adds
some difficulties. In the previous cases the flow is stationary until the ignition time, that
means that it is possible to use a larger time step to calculate the flow until that time and
to use the solution one step before ignition time as starting solution for the simulation of
the reaction and for the steps of the optimization. It is also less expensive to improve the
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Figure 5.8: Temperature distribution at six time steps from 50 msec to 300 msec, towards
a stationary solution.

precision by local refinement of the mesh. In the instationary case the spatial discretization
has to be fine enough to catch the flow pattern due to the instationary mixing (see figure
5.9) and the time step has to be decreased making the simulation much expensive.

One of the prerequisites of the flow in the reactor is the uniformity of the mixture at the
measurement zone. As we have seen in the section 5.1.3, we calculate the reaction rate k
from the measured production rate ωk:

ωk =
∑

i

(νb
ki − νf

ki)k
f
i

∏

l

c
ν

f
li

l ,

it is then important to estimate the concentration of the species cl, that participate to this
reaction, at the measurement volume, that is a small cylinder of 1 mm of diameter and 5
mm length, given by the intersection of the two lasers, at the optic zone. With the flow
conditions described in the experimental setup we can assure a uniform distribution of the
species in the measurement zone. The picture 5.10 shows the local distribution of mass
fraction of H2 and N2O at the stationary solution before the ignition time, the lateral flow
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Figure 5.9: Non-stationary behavior with high pressure (1 atm) and high temperature
(780K). The gravity acts on volumes of gases with different temperatures producing a
force that in the boundary layer creates a flow that goes towards the top of the reaction
tube, creating vorticity and starting an instationary mixing process.

of Ar influences the profile of the species distribution, but at the measurement zone the
distribution is uniform.

Figure 5.10: Concentrations of H2 (left) and N2O (right) a step before the ignition.

In the picture 5.11 is depicted the distribution of N2O at ignition time. It is possible to
see the consumption of N2O due to the artificial dissociation. The blue zone is the zone with
zero concentration of N2O. In the central stripe, at the ignition time, starts the reaction.
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Figure 5.11: The ignition mechanism starts the reaction. The concentration of N2O is
depicted at few nanoseconds after the ignition. Whithin the laser beam the molecules of
N2O are dissociated in N2 and O(1D) atoms. The dissociation reduces the concentration
of N2O in that zone.

Figure 5.12: The two components of the velocity: x (left) and y (right).

The picture 5.13 shows a aerie of shots of the mass fraction of H atoms, during the
reaction.
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Figure 5.13: H production during the reaction, the first step is at 10 ns after the ignition,
the other shots are taken at 100 ns of delay from each-other.



Conclusion

In this work we present numerical techniques for the study of the reaction kinetic in laminar
flow reactors. These encompass the model of multicomponent flow of a reactive mixture,
the finite elements method to solve the underlying system of partial differential equations
(PDE) and include techniques for the identification of parameters in this context. Further
we introduce methods for the optimal experimental design in the context of partial differ-
ential equations considering reactive flows.

We present a model to simulate the detailed interplay between flow variables and those
variables that describe the chemistry. We consider model for the flow motion in the regime
of low Mach number, where the velocity of the flow is much slower than the sound speed,
to exploit the advantage of this phenomenology.

The discretization in space of the system of equations is based on the method of finite
elements. The resulting nonlinear system of equations is time dependent and we are inter-
ested in the transitory phase during the reaction. The system has the characteristic of being
stiff, this suggests the use of implicit methods for the solution in time. For the solution of
the nonlinearities we adopt a quasi-Newton method and for the solution of the linearized
equations a multi-grid method with a domain decomposition scheme as smoother. This
method takes advantage of the parallelization of the finite elements code ”HiFlow”, that
has been used for the simulation.

As we deal with real measurements and their uncertainties, we expose a probabilis-
tic setting of the parameter estimation problem. The natural extension of the parameter
identification study, dealing with uncertainties that can be described by a given statistic
distribution, is the optimal experimental design problem. For this purpose we present this
theory and some numerical experiments in the context of partial differential equations.

Central role in this work is played by the simulation of a real experiment and the results
from the comparison between the numerical and the experimental part. The experiment
consists of measuring the concentration of a species within a measurement volume in a lam-
inar flow reactor. Making a fit using these measurements and the results from the numerical
simulation, we study the kinetic of a reaction of the mechanism that describes the overall
chemical system. Aim of the experiment is the study of the reaction rate in a wide range of
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temperature. The results here presented concern the range 300K − 780K. For the experi-
mental approach to the study of the kinetic more measurements at a specific temperature
with different initial conditions for the concentration of some species are necessary. For the
numerical study we show results for the two extreme cases in the above mentioned range of
temperature. For the case at 300K we show the fit with the results from two experiments
using the extreme values of the initial concentration used in the experiments. In both cases
we obtain the same value for the parameter showing that for the numerical approach it
is sufficient to make a fit using the results from one configuration. In the chapter 5 we
present the results of the simulation. Concerning the obtained results we can state that the
numerical methodology presented can be applied successfully for the study of the kinetic
of reactions that take place in a laminar flow reactor at high temperature. In both cases,
300K and 780K, we show the numerical results considering a small variation (around 10%
of the value) of the parameter to test the response of the system. In a future work we would
apply a more detailed sensitivity investigation, that includes the correlation between differ-
ent reaction rates in the system. In fact the experimental approach assumes the knowledge
of the values of the reaction rate for all the elementary reactions in a mechanism. In our
opinion it is of interest to check which of these reactions is mostly correlated to the one that
is studied to consider the effect of the uncertainties of the other reactions on the latter one.

In chapter 4 we expose the theory of optimal experimental design in the context of
partial differential equations. The praxis of this theory, on the knowledge of the author, has
not been yet applied to cases of complex systems of partial differential equations as the real
case of experimentation in flow reactors. The present work is a first step towards this goal.
Much effort has to be done in the future with regard to different aspects of this problem.
The design of experiments is a step further than the parameter identification problem, it
is a ”minimization problem in a minimization problem”. To use the usual techniques for
the optimization, as described in the chapter 4, it is necessary to assume higher order
differentiability of the semi-linear form A(·, ·; ·) that describes the model and of the cost
functional J(·), as we need the second order derivatives to set the minimization problem,
i.e. the necessary conditions for the system (4.31). This and the fact that the functional to
be minimized is not convex leads to additionally difficulties with respect to the parameter
identification problem.

We treat in this work problems where the parameters are scalar values, a natural ex-
tension of this class of problems is the case of parameters as functions, as for example the
distribution of the temperature or other variables at the boundary.

Further areas that we underline for future work are the extension to the 3D case and
the fully instationary treatment of the problems including the experimental design step.
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Appendix A

We refer to the work of A. Hanf [43] for the derivation and all the references for the reactions
of the mechanism. The term A is the pre-factor of the modified Arrehnius law, the term β
is the coefficient of the power of the temperature while the term Ea is the activation energy:

k = A(
T

T0
)β exp(

Ea

RT
).

For the term A in the unit we have n = 1 for the binary reactions and n = 2 for the ternary
reactions.

A β Ea

[ cm3n

(moleculen∗s) ] [kJ/mol]

O(1D) + Ar > O + Ar 5,000E-13 0.0 0.000
O(1D) + H2 > OH + H 1,100E-10 0.0 0.000
O(1D) + N2O > O + N2O 1,000E-12 0.0 0.000
O(1D) + N2O > NO + NO 7,200E-11 0.0 0.000
O(1D) + N2O > N2 + O2 4,400E-11 0.0 0.000
N2O + H2 > H2O + N2 5,730E-12 0.5 0.000
OH + N2O > N2 + HO2 1,400E-11 0.0 41.572
OH + N2O = HNO + NO 1,010E-17 4.3 104.762
OH + H2 > H + H2O 1,550E-12 1.6 13.802
O + N2O = NO + NO 1,100E-10 0.0 111.414
O + N2O > N2 + O2 1,690E-10 0.0 117.234
O + H2 > H + OH 3,440E-13 2.7 26.274
NO + N2O > NO2 + N2 2,870E-13 2.2 193.727
NO + O(1D) > O + NO 4,000E-11 0.0 0.000
NO + O(1D) > N + O2 8,50E-11 0.0 0.000
NO + H2 = HNO + H 1,790E-12 2.3 212.019
H2O + O(1D) > OH + OH 2,190E-10 0.0 0.000
H + N2O > N2 + OH 1,600E-10 0.0 63.190
H + N2O = NH + NO 5,030E-07 -2.2 155.481
OH + OH > H2O +O 5,150E-14 2.4 -8.813
O + OH = H +O2 4,330E-11 -0.5 0.249
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O + O + Ar > O2 +Ar 1,130E-34 0.0 -4.41
NO + OH = HNO2 2,490E-12 -0.1 3.018
NO + OH + Ar = HNO2 +Ar 8,630E-31 2.5 0.283
NO + O = N +O2 8,930E-13 1.0 162.132
NO + O = NO2 8,930E-13 0.3 0.000
NO + O + Ar > NO2 +Ar 6,700E-32 -1.4 0.000
NO + NO > N2 +O2 5,100E-12 0.5 253.591
H2O + OH = H2O +OH 2,310E-13 0.0 -17.460
H2O + O > OH +OH 1,250E-11 1.3 71.504
H + OH > H2O 2,690E-10 0.0 0.624
H + OH + Ar > H2O +Ar 2,590E-31 -2.0 0.000
H + OH > O +H2 6,860E-14 2.8 16.213
H + O > OH 4,360E-32 -1.0 0.000
H + NO = N +OH 3,600E-10 0.0 207.030
H + NO = O +NH 9,30E-10 -0.1 292.030
H + NO = HNO 2,440E-10 -0.4 0.000
H + NO + Ar = HNO +Ar 1,340E-31 -1.3 3.076
H + H2O > OH +H2 6,820E-12 1.6 80.817
H + H + Ar > H2 +Ar 6,040E-33 -1.0 0.000



Bibliography

[1] S.C. Althorpe and D.C. Clary. Quantum scattering calculations on chemical reactions.
Annu. Rev. Phys. Chem., page 493, 2003.
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