Strukturelle Untersuchungen zur Inhibierung und Biogenese des pflanzlichen Golgi-Apparates

Eric Hummel
Strukturelle Untersuchungen zur
Inhibierung und Biogenese des pflanzlichen Golgi-
Apparates

Gutachter: Prof. Dr. David G. Robinson
 Prof. Dr. Thomas Rausch
Danksagung

Zuerst danke ich meiner Freundin Nadja-Christin Walz für die Unterstützung im schriftlichen Entstehungsprozess dieser Arbeit und für die vielfache Ermutigung während des letzten Jahres.

Desweiteren gilt mein Dank allen Kooperationspartnern und mittlerweile Freunden, hier ganz besonders Prof. Jürgen Denecke (Universität Leeds) sowie Dr. Christophe Ritzenthaler (Universität Strasbourg).

Prof. Dr. Rausch danke ich für die Übernahme des Koreferats und die schnelle Korrektur.

Mein weiterer privater Dank gilt Enikö für die Unterstützung während der ersten Jahre und das immer noch freundschaftliche Verhältnis und meinen Eltern, die während meines ganzen Werdeganges an mich geglaubt haben.
Inhalt

1. Zusammenfassung ... 1

2. Einleitung ... 5
 2.1. Der Golgi-Apparat .. 5
 2.1.1. Der Golgi-Apparat in tierischen Zellen .. 7
 2.1.2. Der Golgi-Apparat in höheren pflanzlichen Zellen .. 8
 2.1.3. Der Golgi-Apparat in Algen ... 10
 2.2. Der sekretorische Weg .. 11
 2.2.1. Früher sekretorischer Weg .. 11
 2.2.1.1. Transport vom ER zum Golgi – COP II Vesikel ... 11
 2.2.1.2. Retrograder Transport vom Golgi zum ER – COP I Vesikel 14
 2.2.1.3. Fusion der Vesikel mit der Zielmembran - SNAREs 15
 2.2.2. Später sekretorischer Weg .. 17
 2.2.2.1. Transport vom Transgolginetzwerk zum Prävakuolären Kompartiment (PVC) ... 17
 2.2.2.2. Transport vom Transgolginetzwerk zur Proteinspeichervakuole 18
 2.2.2.3. Transport vom Transgolginetzwerk zur Plasmamembran 18
 2.3. Modelle des Intra-Golgi-Transports in tierischen und pflanzlichen Zellen 19
 2.4. Modelle der Golgimobilität .. 20
 2.5. Wirkung von Hemmstoffen auf die Golgisekretion ... 22
 2.5.1. Wirkung von Brefeldin A ... 22
 2.5.2. Wirkung von Nordihydroguaiaretischer Säure (NDGA) 24
 2.6. Golgientstehung und Golgiteilung .. 25
 2.6.1. Mitose in tierischen Zellen .. 27
 2.6.1.1 Veränderungen der Golgiarchitektur im Rahmen der Zellteilung 27
 2.6.1.2 Molekulare Mechanismen der Golgi Fragmentierung 29
 2.6.2. Mitose in pflanzlichen Zellen ... 30
 2.7. Ziele der Arbeit .. 30

3. Material und Methoden ... 32
 3.1. Kultur Medien .. 32
 3.1.1. Tabak Bright Yellow 2 (BY2) Kulturmedium .. 32
 3.1.2. Chlamydomonas noctigama Kulturmedium – TAP Medium 32
 3.2. Zellkultur .. 33
3.2.1. BY2-Suspensionskulturen .. 33
3.2.2. Chlamydomonas noctigama Suspensionskulturen .. 34
3.3. Synchronisation von Tabak BY2 Zellen .. 34
3.4. Behandlungsmethoden .. 35
 3.4.1. Brefeldin A Behandlung und Regeneration .. 35
 3.4.1.1. Nicotiana tabacum BY2 Suspensionskulturen ... 35
 3.4.2. Chlamydomonas noctigama Kulturen ... 35
3.5. Lichtmikroskopische Methoden .. 36
 3.5.1 Fluoreszenzmikroskopie .. 36
 3.5.1.1. Fluoreszenzfarbstoffe .. 36
 3.5.1.2. Histologische Färbemethoden .. 37
 3.5.2. Konfokale Mikroskopie .. 38
 3.5.2.1. Immunfluoreszenzmarkierungen .. 38
 3.5.2.2. In vivo Untersuchungen von Hemmstoffen .. 38
 3.5.3. Hochsensitive Epifluoreszenzmikroskopie .. 39
 3.5.4. Videomikroskopie ... 39
3.6. Elektronenmikroskopische Methoden ... 40
 3.6.1. Konventionelle elektronenmikroskopische Fixierungen 40
 3.6.1.1. Chemische Fixierung und Einbettung von Tabak BY2 Zellkulturen 40
 3.6.1.2. Fixierung und Einbettung von Chlamydomonas noctigama Kulturen 42
 3.6.2. Hochdruckgefriermethoden und Gefriersubstitution .. 43
 3.6.3. Markierungstechniken .. 44
 3.6.3.1. Antikörper ... 44
 3.6.3.2. Markierung von Kryoschnitten .. 45
 3.6.3.2.1. Lösungen für Fixierung und Einbettung .. 45
 3.6.3.2.2. Fixierung ... 45
 3.6.3.2.3. Einbettung und Saccharoseinfiltration ... 46
 3.6.3.2.4. Kryoschnitte ... 46
 3.6.3.2.5. Lösungen für die Antikörpermarkierung ... 47
 3.6.3.2.6. Durchführung der Markierung ... 47
 3.6.3.3. Markierung von LR-White Schnitten ... 48
 3.6.4. Präparation der Trägernetzchen ... 48
 3.6.5. Ultramikrotomie ... 49
 3.6.6. Nachkontrastierung der Ultradünnschnitte .. 50
 3.6.6.1. Nachkontrastierung von Spurr-Ultradünnschnitten bei chemischen Fixierungen .. 50
3.6.6.2. Nachkontrastierung von LR-White-Ultradünnschnitten .. 51
3.6.6.3. Nachkontrastierung von hochdruckfixierten und kontrastarmen Proben........ 51
3.6.7. Elektronenmikroskopie und Fotografie .. 52

4. Ergebnisse ... 53

4.1. Reaktion pflanzlicher Golgi-Apparate auf BFA-Behandlung .. 53
 4.1.1. Generelle Fragestellung ... 53
 4.1.2. Effekte von Brefeldin A auf Golgi-Apparate und das endoplasmatische Retikulum im BY2-System .. 54
 4.1.3. Effekte von Brefeldin A auf Dictyosomen und ER bei unsynchronen Chlamydomonas noctigama Kulturen .. 58
 4.1.4. BFA Nebeneffekte: Veränderung der Plastiden ... 64
 4.1.4.1. Plastidenveränderung in Tabak BY2 Zellen ... 64
 4.1.4.2. Veränderungen in Chlamydomonas noctigama Zellen 65
 4.1.5. Wirkung von BFA auf Kernteilungsprozesse .. 69

4.2. Weitere potentielle Sekretionshemmstoffe: NDGA ... 80
 4.2.1. Nordihydroguaiaretische Säure .. 80

4.3. Entstehung des pflanzlichen Golgi-Apparates ... 95
 4.3.1. Zeitlicher Verlauf der Dictyosomenentstehung in BY2 Zellen 95
 4.3.2. Beteiligung von COP I und COP II Vesikeln an der Regeneration 103
 4.3.3. Golgientstehung in Chlamydomonas noctigama .. 106

5. Diskussion ... 109

5.1. Wirkungen von Brefeldin A .. 109
 5.1.1. Wirkung von BFA auf die Kern- und Zellteilung .. 109
 5.1.2. BFA und Stärkeakkumulation .. 110
 5.1.3. Vergleich der Wirkungen von Brefeldin A auf Tabak und Chlamydomonas 112

5.2. NDGA ein kontrovers diskutierter Hemmstoff ... 114
 5.2.1. Wirkung von NDGA auf die Golgiapparate ... 114
 5.2.2. Wirkung von NDGA auf das endoplasmatische Retikulum 115
 5.2.3. Wirkung von NDGA auf die Mobilität der Zellorganellen 116

5.3. Golgientstehung in Tabak BY2 Zellen und Chlamydomonas noctigama 117
 5.3.1. Schrittweise Entstehung pflanzlicher Golgi-Apparate ... 117
 5.3.2. Beteiligte Vesikel an der Entstehung pflanzlicher Golgi-Apparate 121
 5.3.3. Gibt es Golgi Teilung? ... 122
 5.3.4. Vergleich der Modellsysteme der Golgi-Regeneration .. 124
Zusammenfassung

1. Zusammenfassung

Der zweite große Themenkomplex widmet sich der Biogenese pflanzlicher Golgi-Apparate in zwei verschiedenen Zellsystemen (Tabak BY2 Zellen und Chlamydomonas noctigama). Eine zweistündige BFA Behandlung führte in Tabakzellen zu einem vollständigen Verschwinden der Golgi-Apparate bei einem Großteil der untersuchten BY2 Zellen (80-90%).

1. Summary

This work consists of two distinct parts: The first part was the analysis of the effect of the inhibitors Brefeldin A and Nordihydroguaiaretic acid (NDGA) on secretion and structure of plant golgi-apparati at different times of the cell cycle. The second part was the analysis of the \textit{de novo} development of plant golgi-apparati. During these investigations the main focus was on clarification of the sequence of events during the development of the golgi-apparatus and the analysis of the role of COPI and COPII transport vesicles during the early phases of regeneration.

Initial analyses dealt with the effects of BFA on different stages of the cell cycle. These experiments showed that addition of Brefeldin A during cell division of BY2 cells not only influences cytokinesis but also inhibits karyokinesis. Mitotic cells can no longer divide completely and the cell plates are not formed properly, consisting of irregularly distributed callose plaques. The nuclei disintegrate and in extreme cases the cell becomes incapable of forming a nuclear envelope. An additional, undocumented effect of Brefeldin A is on the starch contained in plastids. Starch enrichment was observed in both tobacco BY2-cells and \textit{Chlamydomonas noctigama}. In both cases a significant increase in the number of starch granulae in the plastids was seen after several hours of BFA-treatment.

In addition to Brefeldin A, the inhibitor Nordihydroguaiaretic acid (NDGA), which has been the subject of controversy in the literature, was used. It was found that long term treatment with NDGA leads to a gradual change of the dictyosomes but not to their complete disappearance, as in the case of animal cells. In these studies, in addition to electron and laser scanning microscopy, \textit{in vivo} analysis of the effects of inhibitors was performed using video microscopy methods.

The second part of this study addresses the biogenesis of plant golgi-apparati in two different cell systems (tobacco BY2 cells and \textit{Chlamydomonas noctigama}). Treatment of tobacco cells with BFA for two hours led to complete disappearance of the golgi-apparati in the majority of the BY2 cells analyzed (80-90%). Only scattered BFA-compartments were to be found. After having washed-out the inhibitor, a gradual reappearance of the plant golgi-apparati was observed. ‘Minigolgis’, originating from vesicle accumulations, form and gradually mature, developing into complete membrane stacks, which are approx. 600 nm in size. In the early
Zusammenfassung

stages of biogenesis, when greater vesicle accumulation occurs, a test for the presence of COP I and COP II vesicles was performed. This was done using immunogold tags on kryocut BY2 cells targeting different components of COP I and COP II coatmer. It was found that COP II vesicles were present in the vesicle accumulations, but not COP I.

BFA time series and wash-out experiments with *Chlamydomonas* led to similar, but not identical, results. In order to dissolve the membranous structures of the 7-9 golgi-apparati, which are localized near the nucleus, 15 min of BFA treatment was necessary. Unlike the results of the BY2 experiments, it was observed that the remains of the golgi-apparati were often found in vesicle clusters. After washing-out the inhibitor, their reappearance was observed over a period of time. This process occurs in the same stages previously described for BY2 cells though a significantly quicker progression in the development of the membrane stacks occurs close to the nucleus. After 30 min they have already reached their original length (500-600 nm). As well as their gradual development, a further phenomenon is observed in *Chlamydomonas*. In many of the cells analyzed, a division of the golgi-apparati takes place 60 min after washing-out, moving from the cis-side and trans-side to median. Immediately before the start of this division, the golgi reach lengths of over 1,5 µm.
2. Einleitung

2.1. Der Golgi-Apparat

Fig. 1: Diagramm, das die unterschiedlichen Zisternentypen zeigt; a zeigt die zentrale Platte des Dictyosomes; b zisternale Membran; c zisternales Lumen; d fenestrierte Zisterne; e periphere Tubuli; f sekretorische Vesikel; g Vesikelumen; h Vesikelmembran; i proteinummantelte (coated) Vesikel. Aus: Morré, Mollenhauer, Bracker (1971).

Golgi-Apparate weisen stets eine Polarität auf, die cis-Seite des Golgi steht in enger Nachbarschaft zur Kernhülle oder dem endoplasmatischen Retikulum. Der Golgi-Apparat besitzt eine konvexe Seite, die sog. cis-Seite und eine konkaven Seite, der trans-Seite, an der die sekretorischen Produkte entlassen werden (Farquar, 1978). Morphologisch (Zisternen haben einen geringeren Durchmesser) und histochemisch (Zusammensetzung der Proteine) unterscheidet sich die cis-Seite deutlich vom trans-Seite. Der Durchmesser der Zisternen

2.1.1. Der Golgi-Apparat in tierischen Zellen

2.1.2. Der Golgi-Apparat in höheren pflanzlichen Zellen

Die Golgi-Apparate in pflanzlichen Zellen weisen eine sehr starke Polarität auf. Es lassen sich in elektronenmikroskopischen Schnittpräparaten 3 Eigentümlichkeiten dieser Polarität feststellen (Pavelka, Robinson, 2003):
- Die Zisternenbreite nimmt von cis nach trans ab
- Der Abstand der Zisternen ist auf cis Seite kleiner als auf der trans Seite
- Die Kontrastierbarkeit der Membranen ist auf der cis Seite schwächer als auf der trans Seite

Die Schwierigkeiten die ER-export-sites nachzuweisen, führten zu unterschiedlichen Auffassungen wie ein solcher Austausch zwischen ER und Golgi-Apparat abläuft. Eine Ansicht besteht darin, dass sich tubuläre Verbindungen zwischen beiden Organellen temporär ausbilden, über die der Austausch stattfindet. (Brandizzi et al., 2002). Diese Beobachtungen stützen sich allerdings allein auf konfokale Beobachtungen. Elektronenmikroskopische Schnitte zeigen keine Kontinuitäten zwischen ER und Golgi-Apparaten, die für ein
Vorhandensein solcher tubulären Strukturen sprechen (Ritzenthaler et al., 2002). Das Fehlen dieser Strukturen spricht in diesem Fall wohl eher für einen Austausch über Vesikel vermittelten Transport.

2.1.3. Der Golgi-Apparat in Algen

2.2. Der sekretorische Weg

2.2.1. Früher sekretorischer Weg

2.2.1.1. Transport vom ER zum Golgi – COP II Vesikel

Die Proteine die für die Sekretion vorgesehen sind erhalten ihre ersten Modifikationen am ER selbst. Es gibt deutliche Hinweise darauf, dass Proteine die für den Golgi-Apparat bestimmt sind in bestimmten Bereichen des ER von EReigenen Enzymen konzentriert werden (Aridor, Balch, 1996). Das „Budding“ (Knospen) von Transport Vesikeln und die selektive Einlagerung von Proteinen in die sich ausbildenden Vesikel werden beide durch Protein-Coats vermittelt (Kirchhausen, 2000; Bonifacio & Lippincott-Schwartz, 2003). Diese Mantel-Proteine werden aus dem Cytosol für die Ausbildung der Vesikel rekrutiert. Die Bindung dieser speziellen Proteine führt zu einer Veränderung der flachen Membranen und letztendlich zur Sprossung von Vesikeln. Die Coats erfüllen darüber hinaus eine wichtige Aufgabe bei der Erkennung der cytosolischen Signalsequenzen von Cargoproteinen. Einer dieser Coats ist der COPII-Coat, er vermittelt den Transport vom ER zum Golgi-Apparat. Bei Saccharomyces cerevisiae konnten die Bestandteile des Proteinmantels erstmals identifiziert werden. Bestandteile des Coatomers sind die Ras-ähnliche GTPase Sar1p, die Sec23-Sec24 Untereinheit, die direkt an die Memran anschließen sowie die Sec13/Sec31 Untereinheit, die
den proximalen Teil des Mantels ausbildet. Desweiteren sind für die Rekrutierung noch eine Reihe regulatorischer Proteine von Bedeutung, zu nennen Sec16p, ein Faltungsprotein (Espenshade et al., 1995) sowie Sec12, ein Guanin-Nukleotid-Austausch-Faktor für die GTPase Sar1p (Barlowe & Schekman, 1993).

Fig. 3: Modell der Entstehung eines COP II Vesikels (aus: Bonifacino & Glick, 2004).

Der Coat bildet sich schrittweise aus, beginnend mit der Aktivierung von Sar1p GTP. Innerhalb des ER scheinen spezielle Bereiche für die Bildung dieser Vesikel zur Verfügung zu stehen. Auffällend ist, dass die Bereiche, an denen es zur Knospung von Vesikeln kommt stets frei von Ribosomen sind. Bis jetzt ist unklar, welche Proteine für die Ausbildung dieser speziellen ER-Bereiche von Bedeutung sind. Ein potentieller Kandidat ist hierbei das Sec16p-Protein, da es mit den einzelnen Coatamer-Proteinen (Sec23p, Sec24p und Sec31p) interagiert (Supek et al., 2002). Dieses periphere Protein scheint seinerseits mit dem Transmembranprotein Sec12p in Wechselwirkung zu treten, das letztendlich die GDP-Form von Sar1p bindet. (Huang et al., 2002). Somit sind in die Bildung des COP II-coatomers sowohl GTP-abhängige als auch GTP-unabhängige Reaktionen involviert. Sec12p scheint in diesem Zusammenhang als GEF (Guanine nucleotide exchange factor) zu fungieren, GDP wird gegen GTP ausgetauscht. Dieser Austausch führt zu einer strukturellen Veränderung des N-Terminus von Sar1p und damit zur Integration in die ER-Membran (Hanton et al., 2005). Sar1p bildet zusammen mit Sec23p/ Sec24p den sogenannten „Pre-budding-complex“ (Lederekremer et al., 2001; Matsuoka et al., 2001; Watson & Stephens, 2005). Sec23 p steht hierbei in direktem Kontakt mit der GTPase, Sec24 spielt eine Rolle bei der Erkennung von Cargoproteinen (Bi et al., 2002). Der „Pre-budding-complex“ rekrutiert seinerseits den Sec13p/Sec31p Komplex, der aus je zwei Einheiten der entsprechenden Proteine besteht.
Die Sortier-Signale, die vom COP II-Coat erkannt werden, wurden in den cytosolischen Domänen der Transmembranproteine gefunden. Die Sequenzen selbst sind variabel, es finden sich verschiedene Gruppen:

- Doppelsaure Erkennungsbereiche [DE]X[DE]; (D steht für Aspartat, E für Glutamat und X für variable Aminosäuren, Nishimura, Balk, 1997).

Nach Beladung und Ausbildung des Vesikels findet das Abschnüren vom ER statt. Bisher ist nicht klar welche Prozesse und Proteine die Ausbildung des typischen „bottlenecks“ (Flaschenhals) auslösen, der sich zum Zeitpunkt unmittelbar vor Ablösung des Vesikels vom ER bildet. (Bonifacino, Glick, 2004).

Studien an anderen Typen von Coated-Vesikeln ergaben, dass die Vesikelinduktion nach ähnlichen Prinzipien abläuft. Auch bei COPI Vesikeln spielt eine GTPase (Arf1p) eine entscheidende Rolle für die Ausbildung des Proteinmantels. Wie die COP II Vesikel erkennen die Coatomerbestandteile spezielle cytosolische Domänen der Cargoproteine (Cosson, Letourneur, 1994). Auch die komplexer aufgebauten Clathrin-Vesikel folgen diesem Prinzip, hier sind es die Adaptorkomplexe AP-1, AP-2 und AP3, die für die Ausbildung des Coats und für die Rekrutierung der Cargoproteine ins Vesikel Verantwortung tragen (Bonifacino, Traub, 2003; Bonifacino, Lippincott-Schwartz, 2003).

2.2.1.2. Retrograder Transport vom Golgi zum ER– COP I Vesikel

2.2.1.3. Fusion der Vesikel mit der Zielmembran - \textit{SNAREs}

Im nächsten Schritt sind verschiedene Bindefaktoren (tethering factor Proteine) am erfolgreichen Fusionsvorgang involviert. Rab3 und andere dieser Faktoren sorgen dafür die \(v \) und die \(t\)-\textit{SNARES} an den richtigen Stellen zusammenzubringen (Lupashin & Sztul, 2005).

P115, ein Protein das noch eingehender besprochen wird, ist ein überaus wichtiger \textit{Tethering Faktor} des frühen sekretorischen Weges und spielt nach neuesten Untersuchungen auch eine wichtige Rolle bei der Neuentstehung von Golgi-Apparaten in tierischen Zellen nach Abschluss der Mitose (Meyer, 2005).

2.2.2. Später sekretorischer Weg

2.2.2.1. Transport vom Transgolginetzwerk zum Prävakuolären Kompartiment (PVC)

Obwohl die Cargoproteine als endgültiges Ziel die Vakuole haben, spricht einiges für einen Zwischenstopp in einem PVC. Für die Erkennung der Vesikel und deren Fusion am PVC ist
bei Arabidopsis der PEP12p-Rezeptor von Bedeutung. In Pflanzen scheint es nicht nur ein t-SNARE für die Fusion der Vesikel am PVC zu geben, diskutiert werden neben Pep12p auch noch die t-SNAREs PLP (Zheng et al., 1999) und VAM3p (Sato et al., 1997).

2.2.2.2. Transport vom Transgolginetzwerk zur Proteinspeichervakuole

Die Proteinspeichervakuole dient als Reserve für Aminosäuren und als Energiespeicher. Es wird postuliert, dass wenn die Zelle auf diese Reserven zurückgreifen will, es zu einer Fusion der Proteinspeichervakuole mit der lytischen Vakuole kommt. Die Proteine die für die Speichervakuole bestimmt sind, werden über Dense vesicles an ihren Zielort transportiert. (Hohl et al., 1996). Für die Erkennung der Dense vesicles an ihrem Zielort scheint der BP80 Rezeptor eine wichtige Funktion zu erfüllen.

2.2.2.3. Transport vom Transgolginetzwerk zur Plasmamembran

2.3. Modelle des Intra-Golgi-Transports in tierischen und pflanzlichen Zellen

Die Hauptfrage, die sich aus den vorangegangenen Betrachtungen des Aufbaus der Golgi-Apparate stellt ist, wie sie durch die hohe sekretorische Aktivität ihre Struktur beibehalten können. Diese Fragestellung ist bei der Neuentstehung bzw. Neuverteilung der Golgi-Apparate ebenso von Bedeutung und stellt damit eine zentrale Frage dieser Arbeit dar. Für die Entstehung neuer zisternaler Membranen bzw. für deren Polarität innerhalb des Golgi-Apparats werden verschiedene Modelle diskutiert, die im Folgenden kurz beschrieben werden sollen:

Zisternales Reife Modell

Vesikel Shuttle Modell

Percolation tower Modell
Einleitung

Vesikel angenommen werden und es benötigt auch keine Transportrichtungsweiser in Form zisternenspezifischer SNARE-Proteine (Nebenführ, 2003).

Modell der tubulären Verbindungen

2.4. Modelle der Golgimobilität

- **Vacuum cleaner Modell (Staubsaugermodeil).**

- **Stop and go bzw. recruitment (Rekrutierungs-) Modell**
dadurch unterstützt, dass ein aktinvermittelte Transport für den Austausch von Proteinen zwischen ER und Golgi nicht zwingend erforderlich ist (Brandizzi et al., 2002).

- **Modell der mobilen ER export sites**
 Das Rekrutierungsmodell geht von mehr oder weniger stationären ER-Exportstellen aus, die aber eine hohe Mobilität innerhalb des ER aufweisen (Brandizzi et al., 2002)

Fig. 6: Verschiedene Modelle des Austauschs zwischen ER und Golgi (Neumann, 2003)
2.5. Wirkung von Hemmstoffen auf die Golgisekretion

2.5.1. Wirkung von Brefeldin A

Das makrozyklische Lakton Brefeldin A (BFA) ist ein wichtiges Werkzeug für die Untersuchungen innerhalb des sekretorischen Weges in tierischen und pflanzlichen Zellen (Klausner et al., 1992; Satiat-Jeunemaitre, 1996; Sciaky et al., 1997; Nebenführ et al., 2002). Untersuchungen an verschiedenen Zellmodellen zeigen eindeutig, dass BFA einen unmittelbaren Einfluss auf den retrograden Transport ausübt und die Bildung von COPI Vesikeln inhibiert. Als Angriffspunkt der Chemikalie erwies sich der ARF spezifische-Sec7ähnliche Guanidinexchangefactor heraus. Insgesamt sind in der Arabidopsis Gendatenbank acht solcher Arf spezifischer GEFs zu finden, drei gehören zur GNOM/GEA1/2p/GBF1 Gruppe, sie nehmen Einfluss auf die Entwicklung von Pflanzenzellen (Jürgens, 2004), fünf von ihnen gehören in die BIG/Sec7 Gruppe (Jürgens & Geldner, 2002). Die meisten Arf-GEFs sind am Golgi lokalisiert, andere wie beispielsweise GNOM sind Teile des endocytotischen Weges. (Steinmann et al., 1999; Samaj et al., 2005). Einige der Arf GEFs scheinen nicht auf BFA anzusprechen. Diese Resistenz wird durch den Austausch von Aminosäuren an der BFA-Bindungsdomäne bewirkt (Geldner et al., 2003). Dieses Phänomen ist über alle Arf-GEFs gleichermaßen verteilt und nicht nur auf eine bestimmte Gruppe, es scheint sich hier um gelegentlich auftretende Mutationen zu handeln (Cox et al., 2004; Geldner et al., 2004).

![Fig. 7: Wirkung von Brefeldin auf tierische und pflanzliche Zellen (aus: Nebenführ et al., 2002).](image-url)
Durch die Blockade dieses Proteins bleibt die Bildung des COP I-Coatomers in tierischen und pflanzlichen Zellen (Scheel et al., 1999; Jackson & Casanova, 2000; Renault et al., 2003; Ritzenthaler et al., 2002). Ein weitere Wirkung von BFA, der in tierischen und pflanzlichen Zellen gleichermaßen anzutreffen ist, ist die Resorption der Golgi Zisternen und der Golgienzyme im ER (Lippincott-Schwartz et al. 1989; Boevink et al., 1998; Ritzenthaler et al., 2002). Dies kann mit der Umverteilung und Akkumulation von SNARE Molekülen erklärt werden, was eine unspezifische Fusion von ER und Golgimembranen zur Folge hat (Ritzenthaler et al., 2002). Dieser Effekt trifft jedoch nur auf die cis und medianen Zisternen des Golgi zu. Der Transgolgi und das Transgolginetzwerk (TGN) lösen sich, vesikulieren und aggregieren letztendlich mit endosomalen Membranen, das als BFA Kompartiment bezeichnet wird (Lippincott-Schwartz et al., 1989; Wood et al., 1991; Satiat-Jeunemaitre & Hawes, 1992; Boevink et al., 1998).

Der Effekt von Brefeldin A auf höhere Pflanzen und auf tierische Zellen ist in der Literatur vielfach untersucht worden. Im Bereich der Kryptogamen fand bisher keine systematische Untersuchung der BFA Wirkung statt, nur punktuell wurden Effekte von Algenzellen auf die BFA-Behandlung beschrieben, zum einen auf den Golgiapparat (Dairman et al., 1995; Salomon & Meindl, 1996; Noguchi et al., 1998; Domozych, 1999; Noguchi & Watanabe, 1999; Tanaka & Noguchi, 2000), zum anderen sind Wirkungen auf die Funktion der kontraktilen Vakuole untersucht (Becker & Hickisch, 2005) sowie auf die Synthese der Flagellen (Haller & Fabry, 1998).

Die Wirkung von BFA auf Algen ist in vielen Punkten vergleichbar mit den Wirkungen auf höhere eukaryotische Zellsysteme. Beschrieben sind hier vor allem eine Abnahme der Zahl der Golgizisternen sowie ein schrittweiser Zerfall der Golgi-Apparate in vesikuläre Strukturen nach Langzeitbehandlung (Domozych, 1999). Bildlich dokumentiert aber nicht hinreichend beschrieben ist die anfängliche Verlängerung der Golgizisternen während der frühen BFA-
Behandlung. Dieses Phänomen wird später noch eingehend behandelt werden (Dairman et al., 1995; Domozych, 1999).

2.5.2. Wirkung von Nordihydroguaiaretischer Säure (NDGA)

![NDGA Molekül](image)

die anfängliche Akkumulation des Markerproteins ERGIC53 zu Beginn der NDGA Behandlung. Untersuchungen an Markerproteinen des COP I und COP II coatomers wurden im tierischen System bisher nicht durchgeführt.

An pflanzlichen Zellen wurden bisher kaum Untersuchungen zur Wirkungsweise von NDGA durchgeführt. Mérigout et al. (2002) sind die einzigen Autoren die die Wirkungen von NDGA bisher an höheren Pflanzenzellen beschrieben. Ihre Ergebnisse konzentrieren sich hierbei auf drei Bereiche:

- Die Behandlung mit NDGA führt zu einer Beeinflussung des Pflanzenwachstums. Die Morphologie der Zellen verändert sich hierbei nicht; der mitotische Index sinkt jedoch drastisch ab. Die Autoren vermuten eine Wirkung auf die G1 Phase der Mitose.
- NDGA verändert die 3dimensionale Verteilung des ER, nicht aber die der Golgiapparate. ER-Aggregationen werden auch in tierischen Zellen beschrieben (Fujiwara et al., 1998a+b).

2.6. Golgientstehung und Golgiteilung

Einleitung

2.6.1. Mitose in tierischen Zellen

2.6.1.1 Veränderungen der Golgiarchitektur im Rahmen der Zellteilung

Interphase

Prophase

Metaphase/ Anaphase

Strukturen verbleibt in der Nähe der Mitosespindel, ein zweiter Teil wandert in die Zellperipherie und scheint mit astralen Mikrotubuli zu interagieren. Einiges deutet darauf hin, dass diese während der gesamten Mitose vorhandenen Strukturen sich später wieder zu vollständigen Golgi-Apparaten formieren können (Shima et al., 1997).

Telophase

2.6.1.2. Molekulare Mechanismen der Golgi Fragmentierung

Einleitung

2.6.2. Mitose in pflanzlichen Zellen

2.7. Ziele der Arbeit

3. Material und Methoden

3.1. Kultur Medien

3.1.1. Tabak Bright Yellow 2 (BY2) Kulturmedium

4,3 g Murashige-Skoog Pulver (Sigma M5524)
0,2 mg 2,4-D
200 mg KH$_2$PO$_4$
100 mg Myoinositol
1 mg Thiamin
30 g Saccharose

Für BY2 Zellen kommt die Nährlösung nach Murashige und Skoog (1962) zum Einsatz. Das Medium wird auf einen pH Wert von 5,8 mit 3 M KOH-Lösung eingestellt und auf einen Liter mit bidestilliertem H$_2$O aufgefüllt. Je 50 ml Medium werden in Erlenmeyerkolben gefüllt und autoklaviert.

Zur Herstellung von Callusplatten werden je 8g Agar pro Liter hinzugeben. Die Platten wurden nach Autklavieren und Auskühlen auf etwa 60°C frisch in Petrischalen gegossen und im Kühlraum bei 4°C gelagert.

3.1.2. Chlamydomonas noctigama Kulturmedium – TAP Medium

Lösungen:
Beijerinks Lösung: 8 g NH$_4$Cl
1 g CaCl$_2$$\timesH_2$O
2 g MgSO$_4$$\timesH_2$O
Mit dest. Wasser auf 1 l aufgefüllt
Material und Methoden

Spurenelementlösung:
- 22 g ZnSO₄·7H₂O
- 11,4 g H₂BO₃
- 5,06 g MnCl₂·4H₂O
- 4,99 g FeSO₄·7H₂O
- 1,61 g CaCl₂·6H₂O
- 1,57 g CuSO₄·5H₂O
- 1,1 g (NH₄)₆Mo₇O₂⁴·4H₂O

Die frisch angesetzten Spurenelemente wurden in 550 ml Wasser auf 70°C erhitzt. 50 g EDTA wurden in 250 ml H₂O bidest. erwärmt und zur Spurenelementlösung gegeben. Der pH Wert wurde auf 6,5 eingestellt und das Volumen mit H₂O bidest. auf 1 l aufgefüllt (Harris, 1989).

Medium:
- 2,42 g Tris
- 50 ml Beijerinks Lösung
- 1 ml Nährelementlösung
- 1 ml KH₂PO₄

Auffüllen mit H₂O bidest ca. 800 ml

Das Medium wurde mit Essigsäure auf einen pH Wert von 7,2 eingestellt. Nach dem Einstellen wurde mit H₂O bidest. auf einen Liter aufgefüllt. Es wurden je 100 ml Medium in 250 ml Erlenmeyerkolben gefüllt und autoklaviert (Harris, 1989).

3.2. Zellkultur

3.2.1. BY2-Suspensionskulturen

BY2 Zellen wurden im Dunkeln bei einer Schüttelgeschwindigkeit von 150 rpm bei 27°C kultiviert. 7 Tage nach Umsetzen wurden die Zellen in frischem Medium subkultiviert, dabei wird 1 ml der Zellsuspension in 50 ml frischem Medium gegeben (Linsmeier, Skoog, 1965).
Zum Herstellen von Callusplatten wurde mit einer Pipette 100 µl einer sieben Tage alten Zellsuspension abgenommen und auf eine vorbereitete MS-Agarplatte gegeben. Die Platten werden bei 27°C inkubiert und alle 7 Wochen umgesetzt.

3.2.2. *Chlamydomonas noctigama* Suspensionskulturen

Chlamydomonas noctigama wurden bei 25°C bei einem Licht/Dunkelzyklus 12/12 h bei einer Schüttelgeschwindigkeit von 100 rpm kultiviert. Auf CO₂ Begasung wurde hierbei verzichtet. Alle 7 Tage wurden die Algen subkultiviert, 30 ml einer 7 Tage alten Kultur wurden in 100 ml frischem Medium kultiviert (Harris, 1989).

3.3. Synchronisation von Tabak BY2 Zellen

Tabak BY2 Zellkulturen wurden mittels Mitosehemmstoffen synchronisiert. Aphidicolin stoppt die Teilungsvorbereitung am Ende der S-Phase, der zweite Mitosehemmstoff Propyzamid stoppt die Zellen am Ende der Metaphase und blockiert damit die Organisation der Mikrotubuli. Bei unseren Experimenten benutzten wir das Protokoll von Yashura (1993). 20 ml einer 7 Tage alten Zellkultur wurden in 60 ml neuem Medium resuspendiert. Als erster Hemmstoff wurde Aphidicolin (Fluka, Taufkirchen) in einer Konzentration von 3 µg/ml zugegeben. Die Kultur wurde 24 h bei 27°C inkubiert und mit 1 l 4% Zuckerlösung (w/v) gewaschen und in 50 ml frischem Medium resuspendiert.

Nach 6-7 stündiger weiterer Inkubation wurde der Mitoseindex ermittelt. Hierzu wurden die Zellen mit DAPI (4’,6-Diamidinophenyl-6-indolcarbamidindihydrochlorid, Sigma Taufkirchen) angefärbt und unter einem Epifluoreszenzmikroskop (Axiovert, Zeiss Jena) auf das Auftreten erster Metaphasen untersucht (Otto, 1994). Die zweite Chemikalie Propyzamid (3,5 µM) (Sigma Taufkirchen) wurde bei Auftreten der Metaphasen zugegeben. Die Kultur wurde bei 18°C für weitere 16 Stunden inkubiert. Es wurde erneut mit 1 l 4% (w/v) Saccharoselösung gewaschen und die Zellen für weitere 3 Stunden bei 25°C inkubiert (Samuels et al. 1998). Mit Hilfe von DAPIfärbung wurde festgestellt, ob alle Zellen sich in der Interphase befinden. Nach 3 h Stunden befand sich der Großteil der Zellen in der Interphase (Index 90-95%).
3.4. Behandlungsmethoden

3.4.1. Brefeldin A Behandlung und Regeneration

3.4.1. 1. *Nicotiana tabacum* BY2 Suspensionskulturen

Zur Behandlung von BY2 Suspensionskulturen wurden synchronisierte Zellkulturen verwendet. Im Vergleich zu unsynchronisierten 4 bzw. 7 Tage alten Kulturen reagieren diese schneller auf die Verabreichung des Hemmstoffes. Der Hemmstoff wurde in Konzentrationen von 10 µg/ml – 50 µg/ml verwendet. Für BY2 Zellen stellte sich eine Konzentration von 10 µg/ml als die Beste heraus.

Zur Ermittlung des idealen Zeitpunktes nach Gabe von Brefeldin wurde alle 30 Minuten eine Probe entnommen und die Proben elektronenmikroskopisch untersucht. Nach Behandlung der BY2 Zellen wurde mittels eines Nalgenfilterhalters mit 1 1 4 % (w/v) Saccharoselösung gewaschen um das Brefeldin aus der Kultur zu lösen. Im Anschluss daran wurde zweimal mit 50 ml Medium gewaschen, die Zellen in 50 ml frischem Medium resuspendiert und erneut bei 25°C und 150 rpm Schüttelgeschwindigkeit inkubiert. Proben wurden alle 15 min entnommen und für licht- und elektronenmikroskopische Fixierungen vorbereitet.

3.4.2. *Chlamydomonas noctigama* Kulturen

Auch bei *Chlamydomonas noctigama* sollte die Wirkung von BFA und die Neuentstehung der pflanzlichen Golgiapparate untersucht werden. Verschiedene Konzentrationen von BFA (10-50 µg/ml) und Zeitreihen (bis zu 8 h nach Behandlungsbeginn) dienten zur Ermittlung des Zeitpunktes an dem die Golgimembranen vollständig aufgelöst sind.

Im Anschluss an die BFA Behandlung wurden die Kulturen mehrfach mit frischem Medium gewaschen und bei 600 rpm viermal zentrifugiert. Nach 4 Waschgängen wurden die Zellen in frischem Medium resuspendiert. Nach Überführung der gewaschenen Algen in frisches Medium wurde der Zeitpunkt 0 für die Regeneration angenommen. Alle 10 min wurden 10 ml Algensuspension fixiert und für elektronenmikroskopische Untersuchungen vorbereitet.
3.5. Lichtmikroskopische Methoden

3.5.1 Fluoreszenzmikroskopie

3.5.1.1. Fluoreszenzfarbstoffe

DAPI (4´,6-diamidino-2-phenylindol)

Stammlösung: 5 mg/ml DAPI (Sigma, Taufkirchen)

DAPI (Sigma Taufkirchen) wird zur Anwendung auf 1 µg/ml verdünnt (Otto 1994). DAPI dient der Anfärbung von Kernen, der Farbstoff interkaliert mit AT-reichen Regionen der DNA und lässt sich bei 405 nm anregen und emittiert im Blaubereich. Damit der Farbstoff leichter durch die Membranen eindringen kann, wurde er in 0,1 % (v/v) TritonX100 in H2O gelöst (Otto, 1994). DAPI wurde sowohl zur Kontrolle der Synchronisation angewandt, als auch zur Untersuchung der Veränderung der Kernstruktur während der BFA Behandlung.

DIOC₆ (3,3´-dihexyloacarbocyanin)

Stammlösung: 1 mg/ml DIOC₆ (Molecular Probes, Leiden, Niederlanden)

DIOC wurde auch in lebenden Zellen zur Fluoreszenzmarkierung des endoplasmatischen Retikulums verwendet.
TOPRO3

Stammlösung: 1 mg/ml TOPRO3 (Molecular Probes, Leiden, Niederlande)

Anilinblau

Stammlösung: 10 mg Anilinblau (Chroma, Münster) in 100 ml H2O

0,15 Mol K2HPO4

3.5.1.2. Histologische Färbemethoden

Jod-Jod-Kalium-Färbung

3.5.2. Konfokale Mikroskopie

Alle Untersuchungen am konfokalen Mikroskop wurden an einem LSM 510 Zeiss Meta (Carl Zeiss, Jena) durchgeführt.

3.5.2.1. Immunfluoreszenzmarkierungen

BY2 Zellen werden 3-4 Tage nach Umsetzen in 1 % Glutaraldehyde in BY2 Medium 15 min bei Raumtemperatur fixiert, hierbei wurden die Proben auf einem Überkopfrotator befestigt. Nach zweimaligem Waschen mit frischem Medium wurden diese 1 h mit 0,1 % (w/v) Pectolyase Y23 (Kikkomon Corp., Tokyo, Japan) und 1 % (w/v) Cellulase RS (Onozuka, Yakult Honsha Corp., Tokyo, Japan) bei 28°C behandelt. Ziel ist hierbei das teilweise Verdauen der Zellwände um ein besseres Eindringen der Antikörper zu ermöglichen. Nach 3maligem Waschen mit PBS wurden die Zellen in frisch angesetztem 0,1 % (w/v) NaBH₄ über Nacht bei 4°C inkubiert. Diese Behandlung permeabilisiert die Zellen zusätzlich und unterdrückt die Autofluoreszenz des Glutaraldehyds (Lillie & Pizzolato, 1972).

Fixierte Zellen wurden auf Poly-L-Lysin-beschichteten Deckgläsen aufgebracht und nach Binden an die geladene Oberfläche wurde mit einer Lösung bestehend aus PBS, 5 % (w/v) BSA, 5% (v/v) Ziegenserum und 0,1% (v/v) Kaltwasser Fischgelatine (Aurion, Wageningen, Niederlande) 1 Stunde geblockt (Ritzenthaler et al., 2002). Im Anschluss daran erfolgte die Inkubation mit dem Primärantikörper (AtSar1p, AtArf1p) in 1:1000 Verdünnung in 0,1% (v/v) acetyliertem BSA (Aurion, Wageningen, Niederlande) in PBS. Nach 4maligem Waschen mit PBS erfolgte die Inkubation mit dem Sekundärantikörper Alexa-fluor 568 goat-antirabbit-Immunglobulin G (Molecular Probes Europe, Leiden, Niederlande) in einer Verdünnung 1:300 in PBS plus 0,1% (v/v) acetyliertem BSA. Vor der Untersuchung unter dem konfokalen Mikroskop war erneutes viermaliges Waschen in PBS erforderlich.

3.5.2.2. In vivo Untersuchungen von Hemmstoffen

Zur direkten Beobachtung der Wirkung von Nordihydroguaiaretischer Säure NDGA (ICN-Biomedicals Ohio, U.S.A.), wurden 300 µl 4 bzw. 7 Tage alte BY2 in eine Zellkammer mit Poly-L-Lysin-beschichteten Deckgläsern pipettiert. Als Objekte dienten hier die transgenen
BY2 Zelllinien Gonst-YFP (Golgi-Marker) und KDEL-GFP (ER-Marker). Die Zugabe des Hemmstoffs in der entsprechenden Konzentration erfolgt mit der Zugabe von 300 µl Medium/Hemmstofflösung. Am konfokalen Laserscanningmikroskop wurde die Wirkung des Hemmstoffs auf Struktur und Mobilität der Organellen untersucht. Über einen Zeitraum von bis zu 150 min wurde alle 15 sec ein Scan durchgeführt und die Veränderungen ausgewertet.

YFP: Laser: 514 nm
Hauptfarbteiler: 405/ 514 nm
Nebenfarbteiler: NFT 490 nm
Bandpassfilter: 530-600 nm

GFP: Laser: 488 nm
Hauptfarbteiler: 488 nm
Nebenfarbteiler: -
Langpassfilter: 505 nm

3.5.3. Hochsensitive Epifluoreszenzmikroskopie

3.5.4. Videomikroskopie

3.6. Elektronenmikroskopische Methoden

3.6.1. Konventionelle elektronenmikroskopische Fixierungen

3.6.1.1. Chemische Fixierung und Einbettung von Tabak BY2 Zellkulturen

Primärfixativ
1 ml 2% (v/v) Glutaraldehyd (Sigma Taufkirchen)
0,1 ml ges. Pikrinsäure (Merck, Darmstadt)
in 25 mM Cacodylatpuffer (Cacodylsäure Natriumsalz, Sigma Taufkirchen, CaCo) pH 7,2 15 Min. bei Raumtemperatur
über Nacht im Kühlschrank 4°C 16 Std.
Waschen
4x in 25 mM CaCo pH 7,2 alle 10 Minuten
Bei Raumtemperatur

Sekundärfixativ
2% (w/v) Osmiumtetroxid (Polysciences, Eppelheim), 0,5% (w/v) Kaliumferrocyanid (Sigma, Taufkirchen) in 25 mM CaCo pH 7,2 Raumtemperatur 2 Std.

Waschen
2x mit 25 mM CaCo pH 7,2
2x mit H₂O bidest. je 10 min
Blockkontrastierung
2% (w/v) Uranylacetat (Polysciences, Eppelheim) in H₂O bidest.
Raumtemperatur 2 Std.

Die Behandlung mit der Blockkontrastierungslösung nach Hayat (1975) dient der Verstärkung des Kontrasts in den Proben. Im Anschluss an das Auswaschen der Blockkontrastierungslösung erfolgte die schrittweise Entwässerung der Zellen mit

<table>
<thead>
<tr>
<th>Waschen</th>
<th>4x mit H₂O bidest.</th>
<th>je 10 Min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonreihe</td>
<td>30% 50% 70% 90%</td>
<td>10 Min.</td>
</tr>
<tr>
<td>100% (v/v) Aceton</td>
<td>2x</td>
<td>10 Min.</td>
</tr>
</tbody>
</table>

Nach der Entwässerung begann die schrittweise Substitution des Acetons durch das Epoxideinbettungsharz Spurr. Hierzu wurde der Epoxidharzanteil im Aceton-Harzgemisch schrittweise erhöht. Das Harzgemisch hat eine geringe Viskosität und gute Penetrationseigenschaften (Spurr, 1969). Die Einbettungssubstanz setzt sich aus folgenden Substanzen zusammen:

45 g ERL (4221) (3,4-Epoxycyclohexyl-methyl-3,4-epoxycyclohexylcarboxylate)
27 g DER 736
117 g NSA (Nonenylsuccinic anhydride)
1,8 g Dimethylaminoethanol
Substanzen erhältlich bei Polysciences Eppelheim

<table>
<thead>
<tr>
<th>Einbettung</th>
<th>25% Spurr in Aceton</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50% Spurr in Aceton</td>
</tr>
<tr>
<td></td>
<td>75% Spurr in Aceton jeweils</td>
</tr>
<tr>
<td></td>
<td>100% Spurr 2x</td>
</tr>
<tr>
<td></td>
<td>100% Spurr bei Raumtemperatur</td>
</tr>
</tbody>
</table>

Polymerisation

<table>
<thead>
<tr>
<th>Spurr nochmals wechseln</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Stunden stehen lassen</td>
</tr>
<tr>
<td>Einbettung in Beemkapseln (Polaron Equipment Ltd., Watford, England)</td>
</tr>
<tr>
<td>Im Trockenschrank bei 60° auspolymerisieren</td>
</tr>
</tbody>
</table>
3.6.1.2. Fixierung und Einbettung von Chlamydomonas noctigama Kulturen

Bei der Fixierung von Chlamydomonas noctigama wurde eine Simultanfixierung eingesetzt, die sowohl zu einer schnellen Vernetzung der Polypeptidketten führt als auch eine Vernetzung der enthaltenen Lipide ermöglicht (Murata et al., 2002). Die Sekundärfixierung erfolgt durch Inkubation mit Osmiumtetroxid (Palade, 1952). Der weiteren Kontrastverstärkung dient die Inkubation mit Uranylacetat, das sich an Nucleinsäuren und Proteine anlagert. Da die Kontrastierung von Membranen bei Chlamydomonas noctigama teilweise schwach war, wurden verschiedene Protokolle eingesetzt. Die beiden Methoden, die zu einem guten Membrankontrast führten, seien hier kurz angeführt:

Protokoll 1:
Primärfixativ: 1% Glutaraldehyd (v/v) 1% OsO4 (w/v) in 0,1 mol Caco auf Eis 1 Std

<table>
<thead>
<tr>
<th>Waschen</th>
<th>4x mit 0,1 mol Caco bei RT</th>
<th>4x je 15 Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sek.Fixat.</td>
<td>2% OsO4 (w/v) in 0,1 mol Caco RT</td>
<td>1 Std</td>
</tr>
<tr>
<td>Waschen</td>
<td>2 x Caco</td>
<td>je 15 min</td>
</tr>
<tr>
<td></td>
<td>2 x H2O bidest.</td>
<td>je 15 Min</td>
</tr>
</tbody>
</table>

Blockkontrastierung: 2% (w/v) Uranylacetat in H2O bidest. RT 2 Std

<table>
<thead>
<tr>
<th>Waschen</th>
<th>4 x mit H2O bidest</th>
<th>1 Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetonreihe</td>
<td>30% 50% 70% 90%</td>
<td>je 10Min</td>
</tr>
<tr>
<td></td>
<td>100% (v/v)</td>
<td>2x10 Min</td>
</tr>
</tbody>
</table>

Einbettung 25% 50% 75% Spurr je 45 Min

100% im Kühlschrank ü. Nacht

Polymerisation: Spurr nochmal wechseln
4 Std stehen lassen
Material und Methoden

Einbettung in Beemkapseln

Trockenschrank 60°C 24 Std

Protokoll 2:

3.6.2. Hochdruckgefriermethoden und Gefriersubstitution

Für die weitere Fixierung und Kontrastierung der in der HPF eingefrorenen Proben ist die weitere Fragestellung entscheidend:

- Zum einen liefert das Hochdruckgefrieren eine hervorragenden Struktererhalt der Organellen, zur Aufklärung der Golgistruktur während der frühen Zeitpunkte der Auswaschung von BFA wurde zur Erhöhung des Kontrasts Osmiumtetroxid eingesetzt, die Planchets wurde nach Einfrieren in 2 % (w/v) Osmium in Aceton überführt.
Das Hochdruckgefrieren erhält im Vergleich zur chemischen Fixierung die Antigenizität der meisten Proteine, die Zugabe weiterer Fixierungs- und Kontrastlösungen würde die antigenen Eigenschaften der Proteine verändern (Giddings, 2002; Hess, 2003). Für eine Antikörpermarkierung wurden die Proben in 0,1 % (w/v) Uranylacetat in Aceton überführt. Die Zugabe weiterer Schwermetalle und Fixieragentien wurde vermieden.

3.6.3. Markierungstechniken

3.6.3.1. Antikörper

Primärantikörper
- polyklonaler Antikörper aus Kaninchen gegen Arf1p aus Arabidopsis thaliana (AtArf1p), (Pimpl et al., 2000), Verdünnung 1:2500
- polyklonaler Antikörper aus Kaninchen gegen γ-COP aus Arabidopsis thaliana (Atγ-COP), (Movafeghi et al., 1999), Verdünnung 1:2500
- polyklonaler Antikörper aus Kaninchen gegen ε-COP aus Zea mays (Zme-COP), (Pimpl et al., 2000), Verdünnung 1:1000
- polyklonaler Antikörper aus Kaninchen gegen Sar1p aus Arabidopsis thaliana (AtSar1p), (Pimpl et al., 2000), Verdünnung 1:2500
- polyklonaler Antikörper aus Ratte gegen Sec13p aus Arabidopsis thaliana (AtSec13p), (Yang et al., 2005), Verdünnung 1:2000
- polyklonaler Antikörper aus Kaninchen gegen Sec23p aus Arabidopsis thaliana (AtSec23p), (Movafeghi et al., 1999), Verdünnung 1:2500
Sekundärantikörper
- Ziegen IgG gegen Kaninchen IgG, gekoppelt mit 10 nm kolloidalem Gold (British Bio
cell, London, UK) für elektronenmikroskopische Markierungen.
- Ziegen IgG gegen Ratten IgG, gekoppelt mit 10 nm kolloidalem Gold (British Bio cell,
London, UK) für elektronenmikroskopische Markierungen

Alle Sekundärantikörper wurden im Verhältnis 1:50 mit PBS-Waschlösung verdünnt. Der
Sekundärantikörper gegen Ratten IgG wurde gegen Sec13p verwendet.

3.6.3.2. Markierung von Kryoschnitten

3.6.3.2.1. Lösungen für Fixierung und Einbettung

- 0, 1M Na Phosphatpuffer (NaPi) pH 7,4
- 8 % Paraformaldehyd (PFA) in NaPi
 16 g PFA Pulver (Polyscience #00380) mit 90 ml H₂O dest. unter Rühren auf 60-65°C
erwärmen, Zugabe von 0,1 M NaOH bis die Lösung klar wird, auf Eis abkühlen und
sterilfiltrieren, gleiches Volumen 0,2 M NaPi zugeben. Lagerung in 10 ml Aliquots bei
-20°C.
- 8 % EM grade Glutaraldehyd (Polyscience #00216), Lagerung bei 4°C
- 0,02 M Glycin in 0,1 M NaPi
- 1% Gelatine in 0,1 % NaPi
- 10 % Gelatine (Dr. Oetker, Veenendaal, Niederlande) bei 37°C in NaPi gelöst.
- Infiltrationslösung 2,3 M Saccharose in 0,1 M Na Pi, Lagerung bei 4°C
- PBS-Puffer: 10 mM KH₂PO₄ + 150 mM NaCl; Einstellen mit K₂HPO₄ auf pH 7,3

3.6.3.2.2. Fixierung

Zellen wurden mit 5 ml 25°C warmen Zellkulturmedium plus 5 ml doppelt konzentriertem
Fixativ (4% PFA, 04 % GA) in 0,1 M NaPi, 25°C) 30 min bei Raumtemperatur fixiert.
Absaugen des Fixierungsmediums und ohne Waschen 10 ml normal konzentriertes Fixativ
(2% PFA, 0,2 % GA in NaPi) zugeben und 90 min auf Eis inkubieren; 3maliges Waschen mit
NaPi, jeweils nach jedem Schritt bei 600 rpm abzentrifugieren. Zugabe von 1% Gelatine in
1,5 ml Eppendorfgefäss, 3 min Zentrifugation. Zellen mit 0,02 M Glycin in 0,1 M NaPi
waschen, erneut zentrifugieren, nach Absaugen wurden etwa 100 µl über Lösung über dem Zellpellet belassen.

3.6.3.2.3. Einbettung und Saccharoseinfiltration

Nach dem Waschen der Zellen wurde das Pellet in etwa 500 µl 10 % Gelatine (37°C) mit einer angewärmten Pasteurpipette gut resuspendiert (4-5 mal auf und ab pipettiert) und auf etwa 1,5 ml aufgefüllt; Inkubation für 5 min bei 37°C im Wasserbad, bei 800 rpm kurz zentrifugiert. Absaugen der übrigen Gelatine bis auf 300 µl Restvolumen. Zellpellet wurde zum Aushärten 15 min auf Eis inkubiert. Es hat sich gezeigt, dass bei diesem Schritt ein Durchmischen der Zellen mit der Gelatine sich als sinnvoll erweist. Dadurch waren die BY2 Zellen optimal in der Gelatine verteilt, beim späteren Schneiden verhielten sich diese Proben besser (kein Reißen und Brechen der Schnitte). Nach Aushärten wurden kleine Blöckchen aus der Gelatine geschnitten und mit Saccharose infiltriert. Die kleinen Blöckchen wurden über Nacht bei 4°C und unter Rotation auf dem Drehrad mit 2,3 M Saccharose infiltriert.

3.6.3.2.4. Kryoschnitte

Fläche des Diamanten aufgesetzt und gleich wieder angehoben. Der Tropfen wurde nach Auftauen auf ein vorbereitetes mit Folie beschichtetes Nickelgrid aufgesetzt.

3.6.3.2.5. Lösungen für die Antikörpermarkierung

- 2 % Gelatine (Dr. Oetker, Veenendaal, Niederlande) in 0,1 M NaPi als 4°C gekühlte Platten in Petrischalen vorbereitet.
- 2 M Glycin oder 0,2 M in H2O bidest (Lagerung bei -20°C)
- 1 % (w/v) BSA in PBS (frisch ansetzen)
- 0,1 % (w/v) BSA in PBS (frisch ansetzen)
- 1 % Glutaraldehyd (Sigma)
- Uranyl-Oxalat-Lösung pH 7 (aus 4 % Uranylacetat Polyscience) mit 0,5 M Oxalsäure (Sigma) im Verhältnis 1:1 gemischt und den pH mit 25 % Ammoniumhydroxid einstellen.
- 1,8 % (w/v) Methylcellulose (Sigma M-6385) mit 0,4 % Uranylacetat pH 4
- BSA-Fischhaut-Gelatine Lösung (0,1 % (w/v) BSA, 0,5 % (v/v) FSG (Sigma G-7765)

3.6.3.2.6. Durchführung der Markierung

Schnitte wurden auf 4°C kalte Platten aus 2 % (w/v) Gelatine/NaPi gelegt und etwa 15 min auf 37°C erwärmt (bis die Gelatine flüssig ist). Dieser Schritt diente dazu, die zum Einbetten verwendete Gelatine herauszulösen. 3 x 3 min mit 0,02 M Glycin/PBS waschen, diese Waschschritte deaktivieren noch vorhandene Aldehyde (Tropfengröße etwa 100 µl je Grid), Inkubation ebenfalls bei 37°C. Blockieren mit 3 min 1 % (w/v) BSA in PBS bei Raumtemperatur. Nach dem Blockieren erfolgte die Antikörpermarkierung. Hierzu wurden je nach Antikörper verschiedene Konzentrationen verwendet (AtSec23 1:200; AtSar1p 1:200, AtγCOP 1:100, AtArf1p 1:500). Der Ansatz der Antikörper wurde in 0,1 % (w/v) BSA-PBS vorbereitet und jeweils frisch angesetzt. Die Grids wurden 60 min bei Raumtemperatur auf der Antikörperlösung inkubiert.

Vor der Behandlung mit dem Sekundärantikörper wurde 3mal mit 0,1% (w/v) BSA in PBS gewaschen. Kurz vor dem Waschen wurden die Sekundärantikörperverdünnungen angesetzt, die jeweils 1:60 mit 0,1 % (w/v) BSA in PBS verdünnt wurden. Bei den Sekundärantikörpern handelt es sich um IgG Gold 10 bzw. 15 nm -Gold-Konjugate (British Bio cell, London, UK),
Material und Methoden

verwendet wurden Konjugate mit 10 und 15 nm Durchmesser gegen Kaninchen Primärantikörper, inkubiert wird 60 min bei Raumtemperatur. Mehrere Waschschriften: 1x5min mit 0,1 % BSA/PBS; 3x5min mit PBS, Fixierung mit 1 % (v/v) Glutaraldehyd/PBS (Bindungsstellen für weitere ProteinA-Gold-Konjugate wurden blockiert), 2x5 min mit PBS. Als maßgeblicher Kontrastschritt diente die 5 minütige Behandlung auf der Uranyl-Oxalat-Lösung, 2x Waschen mit H2O bidest., Waschen mit 1,8% (w/v) Methylcellulose/0,4 % (w/v) Uranylacetat, die Grids werden bei diesem Schritt zweimal kurz kreisförmig über die Methylcellulose gezogen. Als letzter Kontrastschritt werden die Grids weitere 8 min auf kalter Methylcellulose (4°C) inkubiert. Die Grids werden mit Loops aufgenommen und mit Filterpapier abgesaugt und getrocknet.

3.6.3.3. Markierung von LR-White Schnitten

Die Markierung der LR-White-Schnitte startete mit einer 30 min Blockphase mit 3 % (w/v) BSA in PBS. Im Anschluss erfolgte die Inkubation mit dem Primärantikörper, wobei folgende Antikörper zur Markierung verwendet wurden: AtSar1p, AtArf1p, AtγCOP sowie AtSec23. Je Antikörper wurden verschiedene Konzentrationen verwendet. Der Ansatz der Verdünnungen erfolgte unmittelbar vor der Markierung in 1 % (w/v) BSA in PBS. Die Inkubation erfolgte eine Stunde bei Raumtemperatur. Wichtig war hierbei das Abdecken der Grids mit einer Glasschale. Nach dreimaligem 10 minütigem Waschen in 1 % (w/v) BSA in PBS erfolgte die Behandlung mit dem Sekundärantikörper. Bei den Sekundärantikörpern handelte es sich um IgG-Gold-Konjugate mit 10 nm Goldpartikeln (British Bio cell, London, UK), verwendet wurden Konjugate mit 10 und 15 nm Durchmesser gegen Kaninchen Primärantikörper. Der Sekundärantikörper wurde in einer Verdünnung 1:50 eingesetzt und die Grids eine Stunde darauf inkubiert. Nach Einsatz des Sekundärantikörpers wurden die Schnitte zweimal 5 Minuten in 1 % BSA PBS gewaschen und dreimal 5 Minuten mit H2O bidest. Vor Betrachtung der Schnitte unter dem Elektronenmikroskop ist eine zusätzliche Nachkontrastierung erforderlich (siehe 2.6.6.2).

3.6.4. Präparation der Trägernetzchen

Formvarlösung:
0,5 % (v/v) Polyvinylformaldehyd in wasserfreiem Chloroform

3.6.5. Ultramikrotomie

Material und Methoden

50

Schnitte). Im Allgemeinen wurden Schnittdicken zwischen 60 und 90 nm für die Untersuchungen angefertigt.

3.6.6. Nachkontrastierung der Ultradünnschnitte

3.6.6.1. Nachkontrastierung von Spurr-Ultradünnschnitten bei chemischen Fixierungen

Um eine vollständige Benetzung der stark hydrophoben Spurr-Schnitte mit dem Kontrastmittel zu erreichen wurde in Methanol gelöstes Uranylacetat verwendet (Robinson et al. 1985).

Lösungen:

Kontrastierungslösung 1:
Uranylacetatlösung: 3 % (w/v) Uranylacetat in 70 % (v/v) Methanol p.a. Die fertige Lösung ist im Dunkeln bei 4°C aufzubewahren.

Methanollösung: 50 % (v/v) Methanol in H_2O bidest.

Kontrastierungslösung 2:
Bleicitratlösung: 0,3 % (w/v) Bleicitrat in 0,2 M NaOH. Feste Bestandteile in der Lösung wurden 10 min bei maximaler Umdrehung in einer Eppendorfzentrifuge sedimentiert.

Durchführung:
Die Grids wurden 5 min auf einen Tropfen der Uranylacetatlösung gelegt und gründlich in der Methanollösung und in H_2O bidest. gewaschen. Dazu wurden sie mehrfach hintereinander schnell durch die Flüssigkeitsoberfläche bewegt („dipping“) und zwischendurch mit Filterpapier getrocknet. Im zweiten Nachkontrastierungsschritt wurden die Schnitte 5 min in der Kontrastierungslösung 2 nach Venable & Coggeshall (1965) ebenfalls 10 min kontrastiert. Um das Bleicitrat zu entfernen wurde erneut mit H_2O bidest. gewaschen. Hierbei wurden die Grids noch zusätzlich mit einer Spritzflasche mit destilliertem Wasser abgespritzt und mit einem Filterpapier getrocknet. Nach Trocknen waren die Grids zur elektronenmikroskopischen Untersuchung geeignet.
3.6.6.2. Nachkontrastierung von LR-White-Ultradünnschnitten

Kontrastierungslösung 1:
Uranylacetatlösung 3 % (w/v) Uranylacetat in H₂O bidest. Die fertige Lösung ist im Dunkeln bei 4°C aufzubewahren.

Kontrastierungslösung 2:
Bleicitratlösung 0,3 % (w/v) Bleicitrat in 0,2 M NaOH. Feste Bestandteile in der Lösung werden 10 min bei maximaler Umdrehung in einer Eppendorfzentrifuge sedimentiert.

Die Nachkontrastierung erfolgte ebenfalls in 2 Schritten, einziger Unterschied war hierbei nur, dass das Eintauchen des Grids in 50 % Methanol nach dem ersten Kontrastierungsschritt entfällt. Es wird jeweils 5 min mit der jeweiligen Lösung kontrastiert, wichtig war auch hier das anschließende gründliche Waschen mit H₂O bidest., um Präzipitate der Schwermetalle auf den Trägerfolien und Schnitten maximal zu reduzieren.

3.6.6.3. Nachkontrastierung von hochdruckfixierten und kontrastarmen Proben

Lösungen:
Kaliumpermanganatlösung: KMnO₄ in 0,1 N H₂SO₄

Uranylacetatlösung: 3 % (w/v) Uranylacetat entweder in 70 % (v/v) Methanol oder in bidest je nach Einbettungsharz.

Bleicitratlösung: 0,3 % (w/v) Bleicitrat in 1 M NaOH
Vor dem Kontrastierungsschritt mit Uranylacetat, wurde ein zusätzlicher Kontrastierungsschritt mit Kaliumpermanganat vorgeschaltet. Die Grids wurden 30 bis 60 Sekunden auf einen Tropfen Kaliumpermanganat gesetzt und dann gut gewaschen. Die bisherigen Nachteile der Kaliumpermanganatkontrastierung, wie die Präzipitate auf den Folien konnten durch die Zugabe der schwachen Schwefelsäure weitgehend ausgeschaltet werden (Sawaguchi et al. 2001). Dennoch ist auch zweimaliges gründliches Waschen mit H\textsubscript{2}O bidest. unbedingt erforderlich. Im Anschluss an die Behandlung läuft die Kontrastierung normal ab, es wird je 5 min mit Uranylacetat inkubiert und 5 min mit Bleicitrat mit anschließenden Waschschritten.

3.6.7. Elektronenmikroskopie und Fotografie

4. Ergebnisse

4.1. Reaktion pflanzlicher Golgi-Apparate auf BFA-Behandlung

4.1.1. Generelle Fragestellung

4.1.2. Effekte von Brefeldin A auf Golgi-Apparate und das endoplasmatisches Retikulum im BY2-System

Nach Auswaschung der Chemikalie Propyzamid, die die Bildung der Mikrotubuli hemmt und damit die Kernteilung am Ende der Metaphase stoppt, wurden die Kulturen für weitere drei Stunden bei 25°C inkubiert, um einen nahezu vollständigen Eintritt in die Interphase zu ermöglichen. Mit DAPI Färbung wurde kontrolliert, ob die Kulturen die typischen Interphasenmerkmale der Kerne aufweisen. Hier ist vor allem das Vorhandensein des Nukleolus und des unkondensierten Chromosomenmaterials wichtig. Zwischen 70 und 90% der untersuchten Zellen wiesen nach dieser Behandlung die gleichen Eigenschaften ihrer Kerne auf, ein Teil der Zellen erschien stark deformiert (10%), was auch auf die Auswirkungen der verschiedenen Waschschritte zurückgeführt werden konnte. Bei einem Teil der untersuchten Zellen war eine exakte Zuordnung zu einer Phase des Zellzyklus nicht eindeutig möglich. Insbesondere Prophase und Interphase bereiteten bei der Auszählung Schwierigkeiten.

Die synchronen Wildtypkulturen von BY2 weisen die typischen Reaktionen der BFA-Behandlung (10 µg/ml BFA) unter dem Elektronenmikroskop auf (Ritzenthaler et al., 2002). Schon nach kurzen Behandlungszeiten (10 min) mit BFA treten die ersten ER-Golgi Hybride auf (Tafel 1A). Diese Reaktion schreitet in den einzelnen Zellen fort und erreicht nach etwa einer Stunde ihren Höhepunkt, wenn nahezu alle untersuchten BY2 diese Hybride im Cytoplasma aufweisen. Vergleicht man diese Ergebnisse mit unsynchronen Zellen, so lässt sich feststellen, dass die Reaktion langsamer und uneinheitlicher abläuft. Erste Hybride treten meist erst nach 30 Minuten auf.

a) Der Golgi ist in Form der ER-Golgi-Hybride oder als abgerundete Zisternen weiterhin erkennbar. Bis sieben Stunden nach Behandlung können diese Strukturen nachgewiesen werden (Tafel 1 D).
b) Es bilden sich große Akkumulationen von Vesikeln, deren Größe und Form auf COP-Vesikel hindeuten.
4.1.3. Effekte von Brefeldin A auf Dictyosomen und ER bei unsynchronen Chlamydomonas noctigama Kulturen

Um zu klären, ob BFA die Golgistruktur in Chlamydomonas vollständig auflösen kann, wurden Zeitreihen mit unterschiedlichen Konzentrationen des Hemmstoffs durchgeführt (eingesetzte Konzentrationen 1-100 µg/ml). Als Idealkonzentration stellt sich auch hier eine
Konzentration von 10 µg/ml heraus, höhere Konzentrationen über 20 µg/ml schädigen die Zelle nachhaltig, Konzentrationen über 50 µg/ml wirken auf *Chlamydomonas* tödlich. Dieser Effekt konnte schon von Haller & Fabry (1998) in *Chlamydomonas reinhardtii* nachgewiesen werden.

15 Minuten nach Beginn der Behandlung mit Brefeldin A (10 µg/ml) lassen sich noch keine auffälligen morphologischen Veränderungen am Golgi selbst feststellen, aber es ist eine erhöhte Zahl von Vesikeln zwischen ER und Golgi-Apparat zu erkennen (Durchmesser 50-60 nm; Tafeln 3 A-C). Verglichen mit der Kontrolle (Tafel 2 A) erscheint die Zahl der Vesikelbildungsstellen je Schnitt nicht erhöht (Tafel 3 und Tafel 4). Um zu beweisen, dass es sich bei diesen Strukturen nicht um tubuläre Verbindungen zwischen ER und Golgi handelt, wurden Serienschnitte angefertigt. Es war hier allerdings nur selten möglich einem Vesikel von einem Schnitt zum nächsten zu folgen (vgl. hierzu die Schnittserien Tafel 4 A-C; D-G).

Ergebnisse

Tafel 5: Langzeitwirkung von Brefeldin A (10µg/ml) auf Chlamydomonas nocticama (Maßstab: 200 nm).

4.1.4. BFA Nebeneffekte: Veränderung der Plastiden

4.1.4.1. Plastidenveränderung in Tabak BY2 Zellen

In weiteren Experimenten konnte nachgewiesen werden, dass dieser Prozess reversibel ist. Nach Auswaschung von BFA und mehrstündiger Regeneration sinkt der Stärkegehalt in den Zellen wieder. Damit scheint die Funktionsbeeinträchtigung des Golgi nach Brefeldin A
Behandlung zu einer verminderten Stärkefreisetzung der Plastiden zu führen, als deren Folge eine massive Vergrößerung der Stärkegranula in ihrem Inneren zu beobachten ist (siehe Kapitel 5.1.2).

4.1.4.2. Veränderungen in *Chlamydomonas noctigama* Zellen

Da BY2 Zellen zu ihrem Kulturmedium eine 3 % Saccharoselösung benötigen, war zu klären, ob der Stärkeeffekt ein typischer BFA-Effekt ist, ob er von der Zuckerkonzentration im BY2-Medium abhängig ist oder ob dieser Effekt auch in Zellen auftritt, die zu ihrem Wachstum keinen Zucker zur Verfügung haben. Hierzu wurde auch bei *Chlamydomonas* eine BFA-Zeitreihe (10 µg/ml) durchgeführt. Die Algen wurden bis zu acht Stunden nach Zugabe des Hemmstoffs elektronenmikroskopisch untersucht. Im Versuch wurde BFA während der Lichtperiode der Zellkultur zugegeben, die Zellen waren kontinuierlich photosynthetisch aktiv.

Tafel 7: Stärkeakkumulation in Tabak-BY2 Zellen nach Zugabe von BFA (10µg/ml). (Maßstäbe 500 nm)

A: Kontrollplastiden ohne Zugabe von BFA; B: Stärkegehalt nimmt schon zwei Stunden nach Zugabe deutlich zu. C: 4 h nach Beginn Plastiden mit Stärke weitgehend gefüllt; D: 5 h nach Behandlungsbeginn: Großteil der Plastiden mit Stärke gefüllt; E: 7 stündige Behandlung Stärkemenge noch zunehmend; F: 9 h nach Beginn der Behandlung beginnt der Großteil der Zellen abzusterben.
Tafel 8: Stärkeakkumulation in *Chlamydomonas noctigama* Zellen nach Zugabe von BFA (10 µg/ml).
4.1.5. Wirkung von BFA auf Kernteilungsprozesse

Ergebnisse

Ergebnisse

sich bis sechs Stunden Behandlungsdauer fort, die Kerne scheinen in einzelne Mininuklei zu zerfallen, die teilweise noch in Verbindung zueinander stehen (Tafel 10 C), teilweise vereinzelt sind. Konfokale Laserscanningmikroskopie ermöglichte es dieses Phänomen eingehender zu untersuchen. In der Tat zeigen Z-Stapel den Zellkern als zusehends in einzelne Mininuklei zerfallende Strukturen an (Tafel 11). Teilweise können in der 3 D Rekonstruktion noch Verbindungen beobachtet werden, größtenteils sind diese Kerne aber deutlich voneinander getrennt (Tafel 11 J). Im Fluoreszenzmikroskop erscheint es teilweise als ob die Chromosomen einzeln im Plasma verteilt liegen (Tafel 9 C).
Tafel 9: Wirkung von Brefeldin A (10 µg/ml) auf mitotische Zellen - Zellplatten (Anilinblau) und Kernfärbungen (DAPI). (Maßstab 5 µm)
A: zeigt eine Kontrolle ohne BFA Behandlung, Mitosen sind deutlich zu erkennen, ebenso durchgängige Zellplatten (Pfeil).
B: 2 Stunden nach Behandlungsbeginn bilden sich erste kugelförmige Riesenkerne aus.
Von besonderem Interesse für die elektronenmikroskopischen Untersuchungen sind in diesem Zusammenhang die Zellplatten. Hierbei sollen die Ergebnisse der Fluoreszenzmikroskopie ultrastrukturrell überprüft werden. Bereits nach Behandlungen von 2 h BFA (10 µg/ml), lässt sich erkennen, dass die Ausbildung der Zellplatten atypisch verläuft. Folgende Besonderheiten sind bei der Zellplattenbildung mitotisch aktiver Zellen zu erkennen:

stündige BFA Behandlung) zeigt noch beide von Otegui (2004) beschriebenen Vesikel-Typen, die dunklen kleinen und die hellen großen Vesikel, nach längerer BFA Behandlung lassen sich nur noch die hellen Vesikel nachweisen (Tafel 13 E).

4.2. Weitere potentielle Sekretionshemmstoffe: NDGA

4.2.1. Nordihydroguaiaretische Säure

Die Beobachtungen am konfokalen Laserscannmikroskop zeigen, dass es bereits nach einstündiger Behandlung zu einer Akkumulation von ER kommt (100 µM NDGA) (Tafel 15 B). Die Zellen wurden vor der Beobachtung in 1,5 % Paraformaldehyd fixiert. In der Kontrolle ist die netzförmige Struktur des ERs zu sehen. Das ER durchzieht fädig den gesamten protoplasmatischen Raum, nur in der Nähe des Kerns finden sich größere Mengen an ER (Tafel 15 A). Die Membranen, die in den Kontrollen deutlich fädige Strukturen aufweisen und die ganze Zelle gleichförmig durchziehen, neigen schon nach kurzzeitiger Behandlung (1 Stunde nach Behandlungsbeginn) zur Clusterbildung (Tafel 15 B). Dieser

Unter denselben Bedingungen wurden die Untersuchungen an der Golgi-markierten GONST-YFP Zelllinie durchgeführt. Auch hier erfolgte zuvor eine Fixierung in 1,5 % Paraformaldehyd. Ein bis zwei Stunden nach Behandlungsbeginn lässt sich noch keine Veränderung der Golgiverteilung erkennen, die Golgi-Apparate erscheinen im konfokalen Mikroskop weiterhin als punktförmiges Signal, auch deren Häufigkeit weicht im Wesentlichen nicht von der Kontrolle ab (hierzu Tafel 16 A-C). Erst die Langzeitbehandlung zeigt eine Veränderung. Die Intensität des GONST-signals nimmt zusehends ab, punktförmige Signale sind weiterhin zu erkennen, erscheinen aber in deutlich größerer Zahl als in der Kontrolle, was für einen schrittweisen Zerfall der Golgi-Apparate spricht. Auch der immer stärkere Hintergrund spricht für eine Auflösung der Golgistrukturen (Tafel 16 D-F).

An der Universität Strasbourg konnten wir in Zusammenarbeit mit Christoph Ritzenthaler zusätzlich die Kurzzeiteffekte von NDGA an lebenden sieben Tage alten BY2 Zellen untersucht. Hierzu wurden BY2 Zellen über mehrere Minuten lebend beobachtet, bevor NDGA in einer Konzentration von 100 µM zugegeben wurde. Schon nach wenigen Minuten Behandlungszeit lassen sich sowohl am ER als auch an den Dictyosomen eindeutige Veränderungen erkennen:

- Im Falle der GONST-YFP Zelllinie lässt sich bereits nach 5 min ein völliger Stillstand der Golgibewegung feststellen (Film 1-3 Video-CD). Zeigen die Golgi-Apparate in den Kontrollaufnahmen ein hohes Maß an Bewegung, so kommt diese

- Die GFP-markierte KDEL Zelllinie zeigt bereits relativ früh eine Veränderung der Membranen am endoplasmatischen Retikulum, schon nach 10 Minuten (100 µM NDGA) lassen sich hier stärker leuchtende Akkumulationen beobachten, die bei längerer Behandlungszeit zunehmen. Die im Film 5 und Film 6 gezeigten Strukturen beginnen meist unmittelbar (10 Minuten) nach Zugabe von NDGA aufzutreten und nehmen in ihrer Intensität stark zu. Aufnahmen an einer Reihe von BY2-Zellen zeigen, dass dieser Effekt in allen Zellen auftritt. Dieses Phänomen geht einher mit einer Abnahme der Membranbewegung, wie es auch für die GApps und die anderen Organellen zuvor beschrieben wurde. In der Kontrolle wurde die ER-Bewegung über mehrere Sekunden aufgenommen (Film 4 Video-CD), wobei je ein Bild pro ms aufgenommen wurde. Der Film zeigt eine hohe Strömungsaktivität der ER-Membranen. Nach Zugabe von NDGA nimmt diese Aktivität bereits 10 Minuten nach Zugabe stark ab und kommt bei längeren Beobachtungen fast vollständig zum Erliegen (Film 5, Film 6 Video-CD).

ihrem Aufbau einem Prolamellarkörper von Plastiden ähneln und dicht gepackte Membranpakete aufweisen (Tafel 21 E, F). Längere Behandlungen führen bei einer zunehmenden Zahl der Zellen zum Tod.

- Die Zisternenmembranen erscheinen stark aufgebläht. Eine cis- bzw. trans Zuordnung dieser Zisternen erscheint ist nicht mehr möglich. Hierbei kommt
es aber nicht, wie bei der Behandlung mit Brefeldin A typisch, zur Ausbildung von ER-Golgi-Hybriden (Tafel 20 E).

Auch im Falle der Zwiebelepidermis wurden unterschiedliche Konzentrationen des Hemmstoffs eingesetzt (10 µM und 100 µM). Bei Zugabe von NDGA lässt sich eine deutliche Veränderung erkennen. Wie bereits in BY2-Zellen dokumentiert, kommt es zu einer deutlichen Akkumulation von ER-Zisternen, zu einer Herabsenkung der intrazellulären
Bewegung und zu großen Organellansammlungen in der Nähe dieser ER-Kompartimente. Langzeitbehandlungen führen auch hier zu einer Fragmentierung des ER (Film 7 Video-CD).

Ergebnisse

Bei der Verteilung der COP II spezifischen GTPase Sar1p konnte keine eindeutige Reaktion nachgewiesen werden.
Tafel 19: Veränderung des Golgisignals während der frühen Behandlung mit NDGA- Cool SNAP Kamerasystem Nikkon Eclipse (Maßstab 5 µm) Golgi markiertes YFP-Gonst Konstrukt mit typischer Doughnutform der Golgi-Apparate. In den Abbildungen A-C lässt sich diese Form beobachten. 15 min NDGA Behandlung, das Fluoreszenzsignal wird zusehends schwächer, teilweise sind an den Golgi-Apparaten stromuleartige Anhänge zu identifizieren (D), die typische Doughnutform wird zusehends aufgelöst (E); teilweise kommt es zur Zusammenballung von Golgi-Apparaten(F).
Tafel 22: Die Verteilung der Organellen vor und nach Behandlung mit NDGA (100 µm) –
elektronenmikroskopische Untersuchungen. Abbildung A zeigt eine Kontrolle ohne NDGA Behandlung.
Zwei Stunden nach Behandlung (B) finden sich erste Organellakkumulation, hauptsächlich Mitochondrien und
Plastiden in der Nähe der Kerne. Deren Zahl nimmt im Laufe der weiteren Behandlung deutlich zu (D). Häufig
finden sich im Bereich dieser Akkumulationen elektronendichte Tropfen hierbei könnte es sich um
Lipidtröpfchen handeln (C).
4.3. Entstehung des pflanzlichen Golgi-Apparates

4.3.1. Zeitlicher Verlauf der Dictyosomenentstehung in BY2 Zellen

Bereits 15 Minuten nach der Auswaschung von Brefeldin lassen sich erste frühe Entstehungsstadien pflanzlicher Golgi-Apparate erkennen. In der Nähe des endoplasmatischen Retikulums sind Vesikelanhäufungen (bis zu 20 Vesikel) zu erkennen. Diese Vesikel ordnen sich in der Nähe des ER nebeneinander an und beginnen teilweise zu fusionieren. In einigen Zellen entstehen bereits ca. 100 nm lange Zisternen. Bis zu zwei Zisternen in unmittelbarer Nachbarschaft konnten zu diesem frühen Zeitpunkt der Regeneration beobachtet werden. Die chemische Fixierung mit Glutaraldehyd zeigt in elektronenmikroskopischen Präparaten häufig elektronendichte Bereiche, die zwar auf
Ergebnisse

Golgimembranen hindeuten, in ihrer Struktur aber nicht eindeutig zu erkennen sind. Zur Klärung, ob es sich bei diesen Akkumulationen tatsächlich um Membranen handelt, wurde das Hochdruckgefrieren als zusätzliche elektronenmikroskopische Fixierungsmethode angewandt (Tafel 23).

Kontrollproben nicht oder sehr selten erkennbar, zeigt das ER eine starke Sekretionsaktivität (Tafel 24 A-D). Das Aussehen dieser Vesikel deutet in mehreren Punkten auf COP II Vesikel hin:

- Die am ER knospenden Vesikel zeigen einen eindeutigen Coat (Tafel 24 A-D).
- Die Vesikel erreichen nach ihrer Knospung aus dem ER Größen bis zu 65 nm (Tafel 23 A; Tafel 24 E).

- Die Abspaltung der Strukturen erfolgt am endoplasmatischen Retikulum, in enger Nachbarschaft zu den beschriebenen „Minigolgis“. (Tafel 24 A-E)
- Es lassen sich eindeutig Übergänge vom sich lösenden Vesikel zum abgespaltenen Vesikel identifizieren.
- Die sich vom ER-lösenden Strukturen zeigen eine deutliche Außenskulpturierung ihrer Membranen, was auf einen Proteincoat - wie für COP-Vesikel typisch - hindeutet ist.
- Die Größe der abgespaltenen Strukturen liegt zwischen 60-80 nm, der typischen Größe für COP-Vesikel. (Tafel 23 A; Tafel 24).
Ergebnisse

In allen durchgeführten Experimenten weisen die Proben bis zu einer Stunde nach Auswaschung eine solch starke Vesikelsekretion auf. Die Auswaschung von BFA scheint die Neubildung von Vesikeln am ER auszulösen. Ob es sich bei diesen Strukturen tatsächlich um COP Vesikel handelt, soll mit Kryomethoden nachgewiesen werden.

In den 150 und 180 Minuten regenerierten Proben lässt sich ein deutlicher Unterschied zu unbehandelten Zellen erkennen. Morphologisch haben die Zisternen ihre Durchschnittslänge von 600 nm wieder erreicht, sie weisen aber noch deutliche Abweichungen auf (Tafel 25 C-D):

- Das *Cis-Golgi-Netzwerk* ist reich an Vesikeln, vom ER aus werden an ER-export-sites noch vermehrt Vesikel abgegeben.

In den Langzeitregenerationsproben (120-180 min) lässt sich eine weitere Besonderheit der Golgientstehung beobachten. Auffallend ist, dass der Golgi-Apparat zwar bereits nach 90 min seine durchschnittliche Zisternenlänge wieder erreicht. Dieses Wachstum setzt sich aber bis 180 Minuten nach Auswaschung von BFA fort, wobei die Zisternen hierbei eine Länge erreichen, die deutlich über der von Golgi-Apparaten in den Kontrollproben liegt (Tafel 25).
Tafel 24: Frühe Regeneration bei Tabak BY2 Zellen - HPF Ergebnisse. (Maßstäbe A-D: 100 nm; E-I: 200 nm). Die Abbildungen A-D zeigen das gehäufte Auftreten von ER-budding-sites nach Auswaschen von BFA, der elektronendichte Coat ist klar zu erkennen. Im weiteren Verlauf kommt es zur Vesikelakkumulation (E, Pfeil) und zur Ausbildung kleiner Zisternen (E). Die Vesikel ballen sich eng zusammen (F) und beginnen zu fusionieren (G). Anfangs erscheinen verzweigte Membranstrukturen (G und I) die zunehmend zisternalen Charakter annehmen (H und D).
Ergebnisse

4.3.2. Beteiligung von COP I und COP II Vesikeln an der Regeneration

Von Bedeutung sind hier vor allem die frühen Stadien der Regeneration - und hier in erster Linie die Stadien der Vesikelakkumulation und Fusion. Ebenso von Interesse sind die entstehenden „Minigolgis“, bei denen ebenfalls geklärt werden soll, ob anterograd und retrograder Transport bereits zu diesen frühen Zeitpunkten ablaufen.

Die Zeitpunkte der frühen Golgientstehung in BY2 Zellen erscheinen hier von besonderem Interesse. Mittels Kryoschnittmethoden wurden Präparate angefertigt und Antikörpermarkierungen vorgenommen. Markiert wurde gegen folgende Coatamer Proteine:

- COP II Coatomer: AtSec23, AtSar1p
- COP I Coatomer: AtγCOP, AtArf1p

Ergebnisse

104

Daneben war es nicht möglich, eine klare Abgrenzung von ER-*budding-sites* und den ER-Membranen vorzunehmen. Zu erwähnen ist in diesem Zusammenhang, dass bei der Verwendung des Sar1p Antikörpers auch am ER eine Immunogoldmarkierung nachgewiesen werden konnte.

Die Ansammlungen von Vesikeln, die auch den Kryopräparaten nachgewiesen werden konnten, zeigen ein klares Signal auf die verwendeten Sec23 Antikörper, einem Protein des COP II-Vesikel *Coatomers* (Tafel 26 A-B). Im Bild ist auch die Fusion und die beginnende Ausbildung kleiner Minizisternen zu erkennen. Auch in Proben, in denen sich bereits Minizisternen gebildet haben, ist ein Nachweis der COP II *Coatmer* Proteine deutlich zu erkennen (Tafel 26 E).

Tafel 26: Beteiligung von COP I und COP II Vesikeln zum frühen Zeitpunkt der Regeneration (Maßstäbe 100 nm). A und B: Frühe Regeneration markiert gegen AtSec23 des COPII Coats, C und D Markierung gegen AtArf1; E „Minigolgis“ markiert gegen AtSec23, es lassen sich hier auch Markierungssignale am ER finden, F: Markierung gegen AtGammaCOP an „Minigolgis“ mit bereits ausgebildeten Zisternen.
4.3.3. Golgientstehung in *Chlamydomonas noctigama*

Der Ablauf der Regeneration ist in der Anfangsphase mit dem im BY2 Zellsystem vergleichbar. Beginnend mit einer Akkumulation von Vesikeln in der Nähe des Transitions-ERs, kommt es im weiteren Verlauf zur Fusion dieser Ansammlungen untereinander und damit zur Entstehung winziger Zisternen (Größe der Minizisternen ab 200 nm; Tafel 27 A). Wie es auch im BY2 Teil beschrieben wurde, entstehen in einem ersten Schritt kleine „Minigolgis“ mit 3-4 Zisternen und einer im Vergleich zur Kontrolle deutlich geringeren Zisternenlänge (200-400 nm, Tafel 27 B). Der Prozess der Zisternenverlängerung und der weiteren Vermehrung der Zisternen auf bis zu 14 Zisternen je Golgi läuft parallel ab (Tafel 27...
C). Bereits 60 Minuten nach Beginn der Auswaschung und Ablauf der Regeneration auf Eis sind die ursprünglichen Längen der Zisternen wieder erreicht und übersteigen diese sogar um fast das Doppelte. Sind die Zisternenlängen in den Kontrollzellen in einem Bereich von 600 bis 800 nm anzusiedeln, finden sich in den regenerierten Proben nicht selten Zisternenlängen von bis zu 1,4 µm (Tafel 27 D).

Diese großen Golgizisternen beginnen sich zu teilen. Elektronenmikroskopische Untersuchungen ergaben, dass die Teilung der Golgis in mehreren Teilschritten abläuft

- Bevor es zur Teilung des stark vergrößerten Golgi-Apparates kommt, blähen sich die Zisternen median auf. Dieser Prozess schien sich anhand unserer Beobachtungen von median nach trans und cis fortzusetzen (Tafel 27 D).
- Der dritte Schritt der Teilung ist durch das Auseinanderweichen der Tochterzisternen gekennzeichnet. Anfangs finden sich die neuformierten Membranstapel in enger Nachbarschaft, weichen aber dann immer stärker auseinander. Erneut finden sich Minigolgis (ähnlich der Kurzzeitregenerationsproben von 60 min), die in enger Nachbarschaft zueinander stehen. Im elektronenmikroskopischen Präparat sind diese deutlich voneinander getrennt und zeigen keine Verbindungen mehr zu den Tochtergolgis (Tafel 27 E).
- Eine Stunde nach Beginn der Auswaschung hat ein Großteil der Golgis seine normalen Zisternenlängen von 600-800 nm wieder erreicht (Tafel 27 G).
5. Diskussion

5.1. Wirkungen von Brefeldin A

5.1.1. Wirkung von BFA auf die Kern- und Zellteilung

5.1.2. BFA und Stärkeakkumulation

Ein Hinweis, dass BFA zu einer Akkumulation von Stärke in den Plastiden führt ist bisher in keiner der Veröffentlichungen über die Wirkungen des Toxins auf pflanzliche Zellen zu finden. Es werden lediglich die die Primäreffekte auf den sekretorischen Weg beschrieben, nur eine Veröffentlichung widmet sich den Begleiteffekten, die durch eine Langzeitbehandlung mit BFA auf den Lebenszyklus der Zelle wirken (Yasuhara et al., 1995). Hier wurden die Effekte auf die Ausbildung der Zellplatte in mitotischen Zellen untersucht, es konnte festgestellt werden, dass die Sekretion pflanzlicher Polysaccharide und ihr Transport nicht mehr nach einem geordneten Muster ablaufen können. Da der Golgi-Apparat der Hauptsyntheseort der pflanzlichen Polysaccharide ist, überrascht diese Erkenntnis nicht weiter Daran schließt sich die Frage an, was geschieht mit den Mono- und Disacchariden, die entweder im Medium enthalten sind oder aber auf dem Weg der Photosynthese neu gebildet
werden? Es existiert kein Hinweis darauf, dass Brefeldin auch den Stoffwechsel in Mitochondrien und Plastiden behindert.

5.1.3. Vergleich der Wirkungen von Brefeldin A auf Tabak und *Chlamydomonas*

In diesem Zusammenhang ist die Beobachtung von Interesse, dass es bei zunehmender Verlängerung der Zisternen während der frühen BFA-Behandlung zu einem Abrollen der Zisternen kommt, dieser Prozess ist auch schon bei Untersuchungen an anderen Algen beschrieben (Domzych, 1999; Salomon & Meindl, 1996). Neben diesem schrittweisen Anstieg der Zisternen lassen sich häufig auch Fusionen von benachbarten Dictyosomen erkennen.

Auch im Hinblick auf die BFA-Kompartimente unterscheiden sich die Algen von den Calluszellen: Sind bei BY2 Zellen keine bzw. kaum noch Vesikelakkumulationen zu finden, so ist bei Chlamydomonas häufig ein deutlicher Cluster von vesikulären Strukturen in der Umgebung des Transitions-ERs auszumachen. Konfokale Untersuchungen mit golgimarkierten GONST-YFP Zellen belegen einen Rücktransport des Fluoreszenzsignals in das ER, das Golgi-Signal ist nach zweistündiger Behandlung nur noch im ER zu finden. Auch die typischen ER-Golgi Hybride, die nach einstündiger Behandlung in BY2 Zellen

5.2. NDGA ein kontrovers diskutierter Hemmstoff

5.2.1. Wirkung von NDGA auf die Golgiapparate

Wirkt BFA vergleichsweise schnell und führt in allen untersuchten Zelltypen zu einer Fragmentierung des Dictyosoms, so entfaltet NDGA seine Wirkung deutlich langsamer zu. Dies kann auf die Beeinträchtigung der Lipidzusammensetzung in Vesikeln zurückzuführen sein.

5.2.2. Wirkung von NDGA auf das endoplasmatische Retikulum

Unsere mikroskopischen Untersuchungen an lebenden Zellen ergaben noch eine weitere Auffälligkeit, die bisher noch nicht beschrieben worden ist. Schon nach kurzer Zeit (10
Minuten nach Beginn der Behandlung) tritt eine Veränderung der ER-Membranen auf. Auch auf Fluoreszenzebene wurde Membranstapelung des ER beobachtet. Die weitere Betrachtung der KDEL-GFP markierten BY2 Zelllinie zeigte das Auftreten von Fluoreszenzpunkten die nicht mit dem ER direkt assoziiert waren und freistehend und rundlich erschienen. Bisher ist unklar, ob es sich bei diesen stark fluoreszierenden Strukturen um zerfallende ER-Membranen, um Vesikelaggregate oder um Golgi-Apparate handelt. Im DIC-Videomikroskop konnten unzusammenhängende frei schwimmende Membranfäden beobachtet werden, was für die erste der drei Thesen spricht. Bei einer Wirkung von NDGA auf den retrograd vermittelten COPI Transport scheint aber auch eine Akkumulation des GFP Signals in Vesikeln und Golgiapparaten wahrscheinlich.

5.2.3. Wirkung von NDGA auf die Mobilität der Zellorganellen

Diskussion

Dass Stresssituationen (wie zum Beispiel die Zugabe von Hemmstoffen) zu einem verstärkten Auftreten der Stromules führen (Kwok & Hanson, 2004).

Die Verlangsamung der Organellbewegung und die gleichzeitige Vergrößerung der plastidären Anhänge lässt nun folgende Hypothesen zu:

- Die Stromules sind für die Mobilität von Plastiden von maßgeblicher Bedeutung, eine Veränderung der Organellmobilität durch von außen zugefügten Stress (in diesem Falle die NDGA-Behandlung) führt zu deren Verlängerung, um ein gewisses Maß an Bewegung der Organellen aufrechtzuerhalten. Auch nach dreistündiger Behandlung zeigen Plastiden mit extrem verlängerten Stromules noch Bewegung.

Zusammenfassend lässt sich sagen, dass die Zugabe von NDGA zu einem verstärkten Auftreten von Stromules an verschiedenen Organellen führt. Ob die Stromules die Ursache des Bewegungsstillstands darstellen oder ob sie erst als Folge der Immobilität auftreten bleibt ungeklärt und bedarf weiterer Untersuchungen.

5.3. Golgientstehung in Tabak BY2 Zellen und Chlamydomonas noctigama

5.3.1. Schrittweise Entstehung pfanzlicher Golgi-Apparate

Eine zentrale Frage dieser Arbeit war es, ob Golgi-Apparate de novo ohne vorhandene zisternale Strukturen aus dem ER heraus entstehen können und wie eine solche Neusynthese

Anhand unserer Untersuchungen ergab sich ein in Fig. 10 vereinfacht dargestelltes Modell der Golgientstehung. Ausgehend von vereinzelten Vesikeln bilden sich Akkumulationen, die mittels Antikörpermarkierung als COP II Vesikel identifiziert werden konnten. Diese Vesikel fusionieren im weiteren Verlauf und lassen Minizisternen entstehen, die in ihrer Länge bei etwa einem ¼ der ursprünglichen Zisternenlänge liegen. Diese von uns als Minigolgi bezeichneten Zisternen bilden schon ab der Zahl von drei Zisternen eine deutliche cis-trans Polarität aus. Die kleinen Minigolgis wachsen in einem weiteren Schritt zu Zisternen mit der in der Kontrolle durchschnittlich gemessenen Länge von 600 nm heran.
Fig. 10: Die *de novo* Entstehung des pflanzlichen Golgi-Apparates läuft in verschiedenen Teilschritten. Nach vermehrter Vesikelaggregation kommt es zu einer Fusion dieser Strukturen zu Minizisternen. Dieser Prozess scheint COPII dominiert zu sein. Es entstehen kleine funktionsfähige polare Golgiapparate, die deutlich kleiner sind als die Kontrollen. Die Zisternen reifen *en bloc* zu vollständigen um die 600 nm großen Membranstapeln heran.

5.3.2. Beteiligte Vesikel an der Entstehung pflanzlicher Golgi-Apparate

5.3.3. Gibt es Golgi Teilung?

5.3.4. Vergleich der Modellsysteme der Golgi-Regeneration

Ein weiterer Vorteil der BY2 Zellen ist der relativ langsam ablaufende Regenerationsprozess, der während zwei Stunden läuft der Prozess relativ kontinuierlich abläuft. Dieses Fenster schafft Raum für zeitaufwendige Fixiermethoden, wie beispielsweise das Hochdruckgefrieren, mit dem vor allem die frühen Zeitpunkte der Regeneration und ihrer beteiligten Proteine untersucht werden können. Auch im Falle einer bei 4°C ablaufenden
Regeneration bleiben bei *Chlamydomonas* maximal 15 Minuten, um die frühen Stadien der Regeneration in ausreichender Menge überhaupt sehen zu können. Eine Markierung dieser Strukturen mittels Antikörpern ist bei *Chlamydomonas* deutlich schwieriger durchzuführen als bei BY2-Zellen. Im Falle der Antikörper ist ein weiterer Vorteil der BY2 Zellen zu sehen, da die von uns verwendeten Antikörper ausschließlich von Proteinen höherer Pflanzen stammen und eine Reaktivität mit Tabak eindeutig nachgewiesen ist. Bei *Chlamydomonas* gelang uns dieser Nachweis nur für die drei Proteine Sec13 und Sec23 sowie Arf. Eine Herstellung von Antikörpern für eine stichhaltige Beweisführung wäre hier auf lange Sicht unabdingbar.

Neben den hier bereits besprochenen Systemen *Chlamydomonas noctigama* und Tabak BY2 Zellen sollte noch ein weiteres in die Betrachtung aufgenommen werden, der Pollenschlauch. Untersuchungen, die in den letzten Monaten zusammen mit Prof. W. Herth durchgeführt wurden, zeigten, dass es Hinweise in keimenden Pollenschläuchen sowohl auf eine *de novo* Entstehung pflanzlicher Golgi-Apparate als auch auf eine Teilung gibt. Beide Prozesse laufen hier parallel ab. Der Vorteil der Pollenschläuche liegt in der hohen sekretorischen Aktivität,
innerhalb kürzester Zeit wird ein hocheffizienter sekretorischer Apparat mit einer Vielzahl aller für die Sekretion wichtiger Komponenten gebildet, ausgehend von einer minimalen Grundausstattung. Weiterhin spricht für das Pollenschlauchmodell, das keine Chemikalien zugegeben werden müssen um eine Golgientstehung beobachten zu können.

5.4. Vergleich BFA-Behandlung und Golgientstehung

5.5. Ausblick

6. Literatur

Gillingham, A. K., Tong A. H. Y., Boone, C., Munro. (2004). The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi. JCB

7. Anhang

7.1. Abkürzungsverzeichnis

Abb(n). Abbildung(en)
Arf ADP-Ribosylierungsfaktor
AP Adaptor Komplex
At Arabidopsis thaliana
BFA Brefeldin A
BSA Rinderserumalbumin („bovine serum albumin“)
BY2-Zellen bright yellow 2-Zellen; Suspensionskulturzellen von Nicotiana tabacum
°C Grad Celsius
CCV clathrin coated vesicle
CDK Cylcin dependend kinase
COP coat protein
ER Endoplasmatisches Retikulum
ERES ER exit sites
ERGIC ER-Golgi intermediate compartment
ERK1 Extracellular signal regulated kinase
EtOH Ethanol
FRAP fluorescence recovery after photobleaching
g Gramm
GAP GTPase activating protein
GApp Golgi-Apparat
GDP Guanosindiphosphat
GEF guanine nucleotide exchange factor
GFP green fluorescent protein
Glc Glucose
GM Golgi Matrix (im Text GM130 = Golgi-Matrix Protein)
GONST „Golgi-localized GDP-Mannose Transporter“
GRASP „golgi reassembly stacking protein“
GTP Guanosintriphosphat
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HPF</td>
<td>Hochdruckgefrieren („High pressure Freezing“)</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>kV</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mA</td>
<td>Milliampere</td>
</tr>
<tr>
<td>Man</td>
<td>Mannose</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>MGC</td>
<td>Mitotic Golgi cluster</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MEK1</td>
<td>Mitogen activated protein kinase 1</td>
</tr>
<tr>
<td>NDGA</td>
<td>Nordihydroguaiaretische Säure</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>NSF</td>
<td>N-ethylmaleimide-sensitive factor</td>
</tr>
<tr>
<td>Plk1</td>
<td>Polo like kinase 1</td>
</tr>
<tr>
<td>rcf</td>
<td>relative centrifuge forces</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SNARE</td>
<td>soluble N-ethylmaleimide-sensitive factor attachment protein receptors</td>
</tr>
<tr>
<td>TGN</td>
<td>Trans-Golgi-Netzwerk</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow fluorescent protein</td>
</tr>
<tr>
<td>µl</td>
<td>Mikroliter</td>
</tr>
</tbody>
</table>
7.2. Abbildungsverzeichnis

Fig. 1: Diagramm, das die unterschiedlichen Zisternentypen.................................5
Fig. 2: Modell eines Golgi-Apparates..6
Fig. 3: Modell der Entstehung eines COPII Vesikels..13
Fig. 4: Bildung des COPI-Coats...14
Fig. 5. Der Zyklus der SNARE-Proteine in einer tierischen Zelle..............................15
Fig. 6: Verschiedene Modelle des Austauschs zwischen ER und Golgi.................21
Fig. 7: Wirkung von Brefeldin auf tierische und pflanzliche Zellen......................22
Fig. 8: NDGA Moleküle...24
Fig 9: Modelle der Golgientstehung und Teilung..26
Fig 10: Modell der Golgientstehung ...117
Fig 11: Modell der Golgiteilung...121
Fig. 12: Vergleich der Wirkung von BFA auf den Golgi-Apparat und die Biogenese des Golgi bei Chlamydomonas noctigama...125

Tafeln:
Tafel 1: Wirkung von Brefeldin A auf Tabak BY2 Wildtyp und Man1GFP Zelllinien.
Tafel 2: Chlamydomonas noctigama als Modellorganismus für die Golgisekretion60
Tafel 3: Wirkung von BFA auf Chlamydomonas nocticama Zellen - Frühe Zeitpunkte der BFA-Behandlung (10 µg/ml)...61
Tafel 4: Serienschnitte durch Golgi-Apparate von Chlamydomonas nocticama nach Kurzzeitbehandlung mit BFA (10µg/ml)..62
Tafel 5: Langzeitwirkung von Brefeldin A (10µg/ml) auf Chlamydomonas nocticama.63
Tafel 6: Jod-Jod-Kaliumfärbung - Zunahme des Stärkegehaltes in Tabak BY2 Zellen nach BFA Behandlung (10µg/ml)...66
Tafel 7: Stärkeakkumulation in Tabak-BY2 Zellen nach Zugabe von BFA (10µg/ml)...67
Tafel 8: Stärkeakkumulation in Chlamydomonas nocticama Zellen nach Zugabe von BFA (10 µg/ml)..68
Tafel 9: Wirkung von Brefeldin A (10 µg/ml) auf mitotische Zellen - Zellplatten (Anilinblau) und Kernfärbungen (DAPI)...72
Tafel 10: Langzeitwirkung von Brefeldin A auf mitotische Zellen von BY2 4-6 h Behandlung - Wirkung von BFA auf Zell- und Kernteilung.................................73
Tafel 11: Wirkung von BFA (10 µg/ml) auf die Ausbildung der Zellkerne – konfokale Untersuchungen nach Langzeitbehandlung ..74
7. Anhang

Tafel 12: Verlauf der Zellplattenbildung während der Zellteilung – Behandlung von mitotischen Zellen mit BFA (10 µg/µl)…………………………………………………………77
Tafel 13: Unvollständige Zellplattenbildung und Calloseplaques während der Langzeitbehandlung mit BFA – Behandlung von mitotischen BY2 Zellen mit BFA (10 µg/ml)…………………………………………………………………………………...78
Tafel 14: Veränderungen der Kernhülle und des endoplasmatischen Retikulums während der Langzeitbehandlung (4-6 h) mit BFA (10 µg/µl) zum Zeitpunkt der Mitose………………..79
Tafel 15: Wirkung von NDGA auf ER-markierte KDEL-GFP BY2 Zellen………………..87
Tafel 16: Wirkung von NDGA auf den Golgi-Apparat von YFP markierten GONST BY2 Zellen……………………………………………………………………………………………………….88
Tafel 17: Wirkungen von NDGA auf die Verteilung von Arf1p………………………………89
Tafel 18: Wirkung von NDGA auf Epidermiszellen von Allium cepa – Stromule-Ausbildung…………………………………………………………………………………………………….90
Tafel 19: Veränderung des Golgisignals während der frühen Behandlung mit NDGA- Cool SNAP Kamerasytem Nikkon Eclipse…………………………………………………………………………….91
Tafel 20: Der Golgi-Apparat vor und nach Behandlung mit NDGA – elektronenmikroskopische Untersuchungen der Wirkung von NDGA (100 µm) auf Golgi-Apparate von Tabak BY2 Zellen…………………………………………………………………………………………..92
Tafel 21: Das endoplasmatische Retikulum vor und nach Behandlung mit NDGA – elektronenmikroskopische Untersuchungen……………………………………………………………………………………………93
Tafel 22: Die Verteilung der Organellen vor und nach Behandlung mit NDGA (100 µm) – elektronenmikroskopische Untersuchungen………………………………………………………………………………………94
Tafel 24: Frühe Regeneration bei Tabak BY2 Zellen - HPF Ergebnisse…………………… 101
Tafel 25: Frühe Zeitpunkte der Neuentstehung pflanzlicher Golgi-Apparate nach Auswaschung von Brefeldin A……………………………………………………………………...102
Tafel 26: Beteiligung von COPI und COPII Vesikeln zum frühen Zeitpunkt der Regeneration………………………………………………………………………………………………105
Tafel 27: Golgientstehung in Chlamydomonas noitigama nach 4 stündiger BFA Behandlung (10 µg/ml) und Auswaschung. …………………………………………………………….108