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Chapter 1

Introduction

This thesis is devoted to the development of an efficient algorithm to solve
multi dimensional radiative transfer problems for models including scatter-
ing. Aside from the necessity to save computation time, the amount of
memory needed to store operators and data is a severe obstacle on existing
computers. We therefore review the whole process from discretization over
solution algorithms to implementation techniques to provide a means to solve
astrophysical problems with reasonable resources of time and storage. Our
main direction of improvement are the generation of more suitable grids and

the implementation on supercomputers.

We investigate the radiative transfer equation in the form

Vo — (k+o)u=0c / P(qg, W), 19) A + kB, T(2)),
$?
where k, o, P and B are positive functions described in detail in Chapter 2.
The circum stellar dust cloud of Figure 1.1 on the following page serves as a
model problem for the development of our algorithm. A star is centered in a
cloud of scattering and absorbing material. Around the star there is a hole
where the dust has evaporated. The diameters of the star, the hole and the
cloud behave typically Tike 1:10:100. Matter density is usually high at the
inner edge of the cloud and diminishes to the outer parts. This figure shows
the main features of astrophysical radiative transfer problems: huge differ-
ences in length scales and rapidly changing parameters. A solution method

for these problems must be able to handle these difficulties automatically by
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o

Figure 1.1: Dust enshrouded star

resolving the inhomogeneous parts to a sufficient accuracy without spending

too much work in regions of smooth data and solution.

Opposed to the common idea of discretizing the derivative operator on the
space domain 8 C R? and the integral operator in the ordinate domain, the
unit sphere S?, independently, we show a possibility to combine these into
one Petrov Galerkin approximation on £ x S§%. Clearly, this is a crucial step
towards a posteriori error control in the sense of Johnson et al. (cf. [12]).
Additionally, it leads to a mixed finite element method enabling more general
meshes than the standard tensor product splitting into L2(Q)® L2(5?). This
scheme includes the opportunity of using efficient parallelization techniques
and obtaining highly accurate solutions. Furthermore, we replace the finite
difference and quadrature schemes used by Auer, Wehrse and many others

(cf. e. g. [2,3,35,36,38]) on Q and S? by state of the art methods.

Instead of the widely used finite difference or finite element upwind schemes,
which are of first order only, we apply the streamline diffusion finite element
method to the spatial discretization. This is a stabilization of the standard
finite element method developed specially for convection dominated equa-
tions by Hughes et al. in [22 24]. Thus it is best suited for the case of low

scattering and shows convergence of second order on all our meshes and with
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standard linear trial functions. To cover the scattering dominated case, we
use a weighted form of this method. Since the streamline diffusion finite ele-
ment method is a Petrov (alerkin scheme, it provides the base for systematic

a posteriori error analysis.

Subdividing the unit sphere of R?, we replace the usual longitude latitude
mesh by a more regular triangulation derived from regular polyhedra. This
eliminates artifacts in the discrete solution due to the polar singularities of
planar charts of S2%, so called ray effects. Since it is more similar to an
equidistribution, it reduces the number of required ordinates considerably.
We show that application of the discrete Galerkin method with piecewise
constant trial functions does not introduce more complexity due to multiple

integral evaluations in computing finite element matrices.

Due to the high dimension of the computational domain the common ap-
proach of equidistant grids or tensor products of one dimensional meshes
leads to systems of untreatable size. Therefore, based on a posteriori error
estimates, we derive an adaptive grid generation technique to avoid the main
obstacle in solving radiative transfer problems, namely the huge amount of
data due to high dimension of the computational domain and localized sharp
edges in the resulting intensity distribution. Here adaptivity should be seen
from two points of view: first, it provides reliability by limiting the actual
error from above using error estimates. Compared to standard a priori con-
vergence analysis, we can guarantee the solution value to be in a computed
interval. We apply a new technique, that not only allows estimation in the
energy norm like that proposed by Verfiirth in [41], but is suitable for any er-
ror functional. The estimate is derived by analyzing a dual problem adapted
to the specific error norm. As far as we know, this is the first time this
technique is applied to radiative transfer and it shows that reliable solutions
are actually computable even for such complex models. Second, it saves
computing power by determining where and how far to enlarge the finite
element space and where accuracy may be reduced. This may be achieved
by increasing the polynomial degree of shape functions or subdividing grid
cells. Since the analysis of the radiative transfer equation does not guarantee
higher regularity of solutions, we choose the latter way. If the computation
of the global behavior of the solution is required, grid refinement is controlled
by a criterion, which combines similarity to the error estimate with minimal

computational overhead. This method can generate well adapted grids in
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Figure 1.2: Adaptive mesh for configuration of Figure 1.1.

reasonable time. To compute single values extracted from the solution, we
apply a new technique involving the solution to a dual problem. This method
provides us with a mathematically strict and sharp error estimate suitable to
control mesh refinement. We use local refinement to generate the adaptive
grids. This allows us to avoid storing the matrices due to a convenient scaling
property. As an important feature, this grid generation technique ensures the
streamline diffusion method to be of optimal order even on extremely locally
refined meshes. A typical mesh generated for the dust cloud configuration is

displayed in Figure 1.2.

We determine the solution of the discrete linear algebraic system by a com-
bination of non symmetric Krylov space methods with adaptive multi grid
schemes. Krylov algorithms provide a nearly optimal inversion of the scat-
tering operator in two steps. The discrete transport operator “pollutes” the
eigenvalues of the scattering matrix, resulting in a convergence rate rapidly
deteriorating on grid refinement. Our multi grid preconditioning technique
counters the pollution leading to convergence independent of refinement. To-
gether with an efficient local smoothing iteration, this yields a solution tech-

nique of optimal complexity.

Since radiative transfer on a three dimensional domain is at least a five
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dimensional problem, the amount of storage required is enormous even for
adaptive methods with optimal grids. Therefore we implemented a parallel
version of our solution algorithm to exploit the extra resources provided by
modern multi computers. Since well resolved problems take some hours of
computing time on a workstation and the monochromatic equation has to
be solved several hundreds of times for one model, parallelization provides
a way of reducing this time to a reasonable amount. The structure of the
radiative transfer equation at a first glance offers several ways for paralleliza-
tion, but it will be shown that they are of different value. For the well suited
ordinate parallelization we will show satisfactory efficiency results on parallel

computers.

Approaches to programming now in use in numerical mathematics are not
suited for the development of scientific computing software. The problems
and solution methods for “real world” simulation are much too complex and
need the application of software engineering techniques. We develop a new
approach to finite element codes using object oriented programming. Tt offers
a means of verifying programs and producing reliable software on the level of
simple functions as well as on the application level. This way, the handling
of the usual hard tasks like adaptive grids and parallelization takes place in a
well defined formalized environment, making prediction of correctness more

reliable.

We begin this thesis by presenting the physical problem to be solved in
Chapter 2. Then we give an overview over analytical results for the radiative
transfer equation. The following chapter is devoted to variant discretization
methods of the integral and differential operators and compares methods
previously used with our discretization. In Chapter 4 we derive error es-
timates for Galerkin discretizations of the radiative transfer equation and
propose various adaptive refinement strategies. The numerical solution of
the discrete system is discussed in Chapter 5. We proceed with the presen-
tation of parallelization methods for these solution algorithms. The Seventh
Chapter is devoted to the software development techniques applied to imple-
ment the proposed algorithms. We conclude with two real applications from

astrophysics and show the enhancements achieved by our methods.



Chapter 2

Physical Problem and
Mathematical Model

We consider physical settings of a class with the following properties: In a
domain  there is a thin gas, with negligible interaction between particles
of this gas. Instead of this interaction, there are collisions of the particles
with the atoms of a fixed matter distribution. The dynamics of this gas is
described by Boltzmann’s equation. Since the gas reacts with external matter
only, the  generally quadratic  collision term of the equation reduces to a
linear functional. The resulting equation for the gas density g in phase space

) x R? has the form

v-Vo(x,v)+ oo(z,v) = /R(?), v")o(x, 0" ) dv' + f (2.1)
R2

Remark 2.1 The approximation made here is opposite to that leading to
Navier Stokes equations. There the quadratic interaction term forces all
particles in a small space region to move into the same direction, resulting

in a relation v = v(x).

While for usual gases, the approximation leading to equation (2.1) is valid
only for uninterestingly small densities, there are some kinds of particles,
for which it is suitable even for moderate densities: neutrons, neutrinos and
photons. While in the first case it is a good approximation even for neutron
densities occurring in nuclear reactors, it is of very high accuracy for photons.

This fact is due to the principle of wave superposition resulting from the

14
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linearity of Maxwell’s equations. The only exception is electro magnetic
radiation of very high energy, where photon photon scattering occurs due
to quantum effects. These can be neglected, since we are only interested in

optical and infrared simulation.

Remark 2.2 Since we are particularly interested in electro-magnetic radia-
tion, we will only discuss the photon transport problem further. Most results

can be adapted easily to the neutron transport case.

2.1 Radiative Transfer

Obviously, using the velocity » makes no sense for photons, since they al-
ways travel with light speed ¢ ~ 3 -10°2. Tt is replaced by the photon
momentum 27h /A h denoting Planck’s constant and A the wave length

thus splitting the momentum space into directions in ¥ € S? and ahsolute
values represented by A. After scaling (A =1 and ¢ = 1) and application of

Kirchhoff’s law, (2.1) may be written as radiative transfer equation
- Vau(z, 9, ) — (/{(.7/:7 0, A) + o(x, 9, )\))7/,(.7/:7 ¥, A)
= / /]%’(5\7 9,0\, W), W, 5\) A dX + k(z, 0, \)BX, T'(x))

R+ 2 (2'2)

Here the variables are chosen according to the macroscopic quantities de-
scribed e. g. in [39]. k and o are the absorption and scattering coefficients
respectively. Finally, B is Planck’s radiation function for black bodies defined
by

dreh 1
)\5 e?ﬂ’cﬁ/AT o ‘l

BO\T) = (2.3)

We scale all lengths by a typical length for the model, e. g. the diameter of
the whole domain. Then, all coefficients are pure numbers and we can define

u and B dimensionless too (cf. e. g. [29]).

Often, the frequency coupling in the redistribution function is negligible.

This leads to the monochromatic radiative transfer equation

-Vou— (k+o)ju=oc / P(qg, W), 19) A + kB, T (x))
52 (2.4)
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It is this form, we are mostly concerned with in our work. Apart from its
own physical relevance for visual light it serves as example and as solution

step for more complex models.

The physical meaning of the coefficient functions introduces the following

properties:

k=0 (2.5)
o> 2.6)
B>0 2.7)
The integral kernel P fulfills

// P(qg, ) dd dv =1 (2.8)

52
P(3,0) = P(—, —1) (2.9)
P(ﬁ,qg) = P(i%ﬁ). (2.10)

Remark 2.3 While condition (2.8) can be fulfilled by an appropriate choice

of o, (2.9) and (2.10) are in many important cases ensured by

P@,9) = f(a) with o= <(9,19),

fla) M(Lz) isotropic scattering
o) = :
. %(] + cos® (%) Thomson and Rayleigh scattering.

2.1.1 Energy Transfer by Radiation

The evaluation of observer data from accretion discs and circum stellar
clouds requires a more complex radiative transfer model. Here, the heat-

ing of absorbing matter by the radiation field is taken into account, leading
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to the following system of equations:
- Vau(a,d,0) =
— (/4/(.7/:7 0, A) + oz, 0, )\))7/,(.7/:7 ¥, A)
+ / /R(S\,qg7 )\719)7/,(.7:7197 5\) A d)

S (2.11)
+ k(x, DN, TYB(A, T (2))
/ﬁ(m,ﬁ,)\)B()\,T(m))d)\ - / //{(m,197)\)7/,(r1:719,)\)d19 d\
R+ B+ S (2.12)

V(z,9,)0) € Qx S?xR*.

This model is a consistent description of the energy distribution in a radiation
heated stationary gas or dust cloud. One of its applications is the modeling
of infrared radiation from those clouds. The occurrence of this radiation is

essentially due to the energy balance equation (2.12).

The solvability of system (2.11 2.12) is ensured by analytical results in [20].
For the intended operator splitting approach, each iteration step will need the
solution of several equations of type (2.4). Therefore, the efficient solution

of (2.4) is a crucial step.

If a consistent radiation hydrodynamic model is desired, (2.11 2.12) has to
be completed by the equation of balance of momentum coupling the first

moments of the Boltzmann equations for photons and matter.

2.2 Analytical Results

In the following we concentrate only on the monochromatic radiative trans-
fer equation (2.4). First, we want to introduce some operators to simplify

notation. let
Ty =0V, T=RTy
3

Yo=o0 / P(qg,ﬁ)qug Y = ®279.
i 9
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With these abbreviations, (2.4) reads

Tu+ yu—Yu=«xf (2.13)

The equation given in the interior of the domain, , we have to prescribe
boundary conditions before we can attempt to solve the radiative transfer
equation. With np(2) the outer normal to the boundary ? of Q at 2, we

define two classes of boundary conditions: the inflow condition
(e, ) = g(a, ) on ?7_, (2.14)

where

7o ={(w.0) | ne(a) -0 < 0} (2.15)

and reflecting boundary conditions

u(x, ) = / Pr(qg7 W), 19) A Vouor(z) -0 <0.
a(2)-350 (2.16)

[inear combinations of these conditions are possible to model translucent

boundaries.

2.2.1 Investigation of Coefficients

The behavior of solutions to (2.13) depends on the parameters & and strongly
on o. The numerical solution should be able to reflect these different solution

properties and we shortly discuss the influence of the coefficients.

Considering the astrophysical problems we are primarily interested in, these
coefficients vary over the space domain hetween (0 and 10*. The simplest case
clearly is K > 1 and £ > o: Here (2.13) converges to a singularly perturbed
version of u = f. In the following analysis we therefore assume & & (), having

in mind, that taking larger £ always simplifies the solution.

We examine the two extremes o = 0 and o — oo. In the first case, the radia-
tive transfer equation decouples, leaving a set of pure convection equations

to be solved independently.

For large values of o, there exists an analysis done by Borysiewicz et al.
in [8,9]. We give a short summary of their results, which they obtain by

using a least squares formulation of (2.4).
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Lemma 2.1 Letl assumptions (2.5) to (2.10) be fulfilled and let k > 0. Then

equation (2.13) has a unique solution u with

lu|| < e (2.17)
<
U= Z ;uy (2.18)
0

where ¢ is independent of o and u, solves

<];Vu0, ch> + </</u07 <p> =0 (2-]9)
<EU17<P> = </</.f799> — a(uo, )
<Euy+17<p> = —a(u,, o) v=12 ...

with
a(u,v) = <(>( — ) "-V,u, 19-Vm7)> + <>(u7 7)>.

This result shows, that for large values of o the solution of radiative transfer
problems becomes independent of the ordinate variable and is well approxi-

mated by solutions to Helmholtz’s equation.

2.2.2 Regularity

In the case of zero scattering, we have only regularity of the corresponding
convection equations. That means that we gain one order of derivative in
the transport direction, but the solution is only as regular as the data in

crosswind direction.

It has been shown (cf. e. g. Fiihrer and Rannacher in [17]) that the intensity

u integrated over S? solves the weakly singular Fredholm integral equation

V-0 =7

ly—=|
(E?))(m) = / exp ( / x(x + té:';' dt) v(y)o(y) dy (2.20)

_ 2
J ) ly — |

Pitkaranta investigated the regularity of solutions to equations like (2.20)

in [31,32]. His main result is the following:
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Lemma 2.2 Let v be solution to equation (2.20). Then v & H**(Q) regard-
less of the reqularity of the data.

This result is due to inconsistencies of the model near the boundary. In the
scattering dominated case, we may use the expansion of lemma 2.1 to obtain

higher regularity in the interior of ).



Chapter 3

Discretization

Boltzmann equations in theoretical physics are often solved by Monte Carlo

methods. These schemes converge fast in the case of long mean free path
lengths (o small), but they have two disadvantages. Their convergenceis very
slow for optically thick (¢ > 1) media and error control is only asymptotic
with unknown constants. Therefore we apply a discretization method to

cover a wider range of applications.

Due to the complex structure of the radiative transfer equation, there are
numerous possibilities for its discretization. They can be divided into two

main classes:

1. separate discretizations for the integral and differential operator and

2. complete discretizations for the whole equation.

The first class uses well known techniques for each part of the equation. The
obvious advantage is the re-usability of well proved methods by combining
them into a tensor product discretization. We present some methods used
in our work. On the other hand, convergence must be proved via a semi

discretization analysis (cf. [26]).

For the integral as well as the differential part of the radiative transfer equa-
tion we distinguish between Galerkin and non Galerkin discretization me-

thods. While the latter are widely used in physics and engineering, they do

21
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not allow optimal error estimates obtained for Galerkin methods by exploit-

ing additional information on the error, so called Galerkin orthogonality.

For the discretization of the integral part we show equivalence between a
standard collocation and a discontinuous finite element scheme. This enables
the application of superconvergence results to the collocation method as well

as easy implementation of the finite element method.

In the literature many methods have been proposed to discretize the spatial
transport operator (for a review cf. Fithrer [14,15]). First, there is the method
of short characteristics proposed by Olson et al. [30]. Standard Galerkin
methods for convection problems are proven to be stable only in L? and
show oscillating behavior for discontinuous solutions. Therefore,the so called
finite element upwind scheme was used by Turek et al. in [36 38]. Since
standard upwind schemes are only of first order accuracy, we decided to
apply the streamline diffusion method, which is of order 3/2 to 2 depending
on the mesh structure (cf. [44]).

The approach of directly discretizing the whole radiative transfer equation
offers the possibility of a theoretical justification and has to be considered for
any approach with error control. Tts implementationis  for special cases

equivalent to a semi discretization and thus does not require extra effort in
evaluating integrals. Additionally, theoretical analysis avoids semi discrete

problems and symmetry conditions for the angular discretization as required

by Asadzadeh (cf. [1]).

3.1 Basic Finite Element Results

Before we cite the most important convergence results for the finite element
method, we give a short overview over our notation. Given a domain 2 € R”,
let 7 be a subdivision of € consisting of cells K € 7. These triangulations
are regular in the sense of Ciarlet [10] with the exception, that we allow one
hanging node on the edge of a cell. The mesh parameter h is a piecewise
constant function on € given by the diameter of the cell around each point.
For globally refined grids, A may also denote the maximum diameter of all

cells.
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The cells are defined by the mapping of a reference cell Ky into the domain

Q. in particular

e linear mapping of the unit simplex S¢ in R? and R?,

bilinear mapping of the unit square Q2 onto a quadrangle,

trilinear mapping of the unit cube Q3 onto a hexahedron with possibly

curved surfaces and

e bilinear mapping of the unit prism S2 x [~1, 1] onto an arbitrary prism

in R,

On such a grid we define spaces of piecewise polynomial finite element func-
tions ¢, continuous at the cell edges. These functions are images of linear,
bilinear and trilinear polynomials on the reference cell Ky under a transfor-

mation of the same type. In the following we will call them to be in e. g.
Q1(K).
Convergence of the finite element method is usually proved in two steps.

First, we show, that the error can be bounded in terms of approximation

properties of the finite element space Vj,.

Lemma 3.1 Let a(u,v) be a continuous elliptic bilinear form on the function

space V with

la(u,v)| < L|u|[]]o| and a(u,u) = v||ul?

for all u,v € V. Let u and uy, be solutions of the equations

a(u,v) = <f, 7)> VoeV
a(up,v) = <f, 7)> YoéeV.

Then the discretization error of the finite element method is limited by

4.
| — wupl| < " “1]2‘1;}1 |l — wl]].

For a proof see [10], pp. 104 f.

The second step is to state the approximation properties of finite element
spaces. Having in mind the usual piecewise polynomials on 7, the following

lemma is the crucial step:
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Lemma 3.2 (Bramble-Hilbert) et Q be a Lipschitz bounded domain.
For some k € Ny and p € [0,00] let [ be a continuous linear form on

HE+ P() with

f(x)=20 Ve PL(Q).

Then there is a constant C' = C(Q) such that

[F) < Ol it [olgesns Yo € HMH,

A proof of this lemma may be found in [10] p. 192.

The usefulness of this rather abstract lemma is given by

Corollary 3.3 Lemma 3.2 applied to projections on polynomial spaces of
degree k — 1 and Q = K € T allows to estimate the interpolation error for
u € H" by

e — Thu|re < Chk|7l,|];[k
Furthermore, there are additional estimates for weaker norms

v — M|l < CR* 7 ||ullge for —k<v <0< pu<k

3.2 The Integral Operator

This section is devoted to the discretization of Fredholm integral equations
of second kind (an overview of the numerical treatment of these problems

may be found in [21]). The prototype of the equations considered is
Yu—Yu=f inG (3.1)

with
(Eu) (N =0c / P(1§719)7/,(1§)d1§.
G
Due to the physical assumptions of the second chapter, v > ¢ and conditions

(2.8) to (2.10) apply to P.
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3.2.1 Nystrom’s Method

A classical method for discretizing integral operators is the application of nu-
meric quadrature, called Nystrom’s method. Any Newton Coates or Gaufl

formula may be used. For our two dimensional computations i. e. one
ordinate dimension we use the iterated midpoint rule on the unit circle

with m equidistributed points:

797j =
(3.2)

w; =

T=3|%

This formula allows an efficient implementation and is of high accuracy:

Lemma 3.4 Let u € H*(S") be a solution to (3.1) with G = S' and right
hand side f € H*(S"). The solution to the equation discretized by formula
3.2 shall be denoted by wuy,. Then the error admits

le— || < CthUHHk.

Proof: Applying the Euler MaclLaurin summation formula we know: The
order of the interpolation error for equidistributed points and periodic func-
tions is only dependent on the regularity of the integrand. By Lemma 3.1,

the error estimate follows.

For integration over S? the first question arising is the construction of (nearly)
equidistributed quadrature points to avoid discretization artifacts. It is well
known, that there are only five regular polyhedra. State of the art before
our investigation was using the parameterization of S* over [—7, 7 [x[0, x[.
Regular subdivision of the parameter space results in two distinctive direc-
tions at the poles. This causes a non physical symmetry axis in the solution
and deteriorates convergence, since the cells near the poles have degenerate

angles.

Our approach uses the triangles of 5% obtained by successive subdivision of
an icosahedron (see Figure 3.1 on the next page). Quadrature points are the
cell centers projected on S? and spherical cell volumes serve as weights. Since
S5? lacks the periodicity of S', we cannot apply the interpolation estimate of

LLemma 3.4. As will be shown later in Theorem 3.7, this discretization is of
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1
\

Figure 3.1: Refined icosahedron (80 and 320 cells)

second order. If we consider the number of cells lying on a great circle to be a
measure for the quality of such a subdivision, we can compare our triangula-
tion with the longitude latitude mesh. Using for instance 40 cells on a great
circle, we need a total number of 320 cells, whereas the parameterization

approach needs 800.

3.2.2 Galerkin Discretization

Having in mind the development of more refined error estimates, it is ad-
visable to look at Galerkin discretizations for the integral operator. The

integral equation (3.1) will then be used in its weak formulation: Search

u e X = L* () such that

/Xu(ﬁ)cp(ﬁ)dﬁ — //(rP(qg,19)u(1§)<p(19)d1§ di = /f(ﬁ)cp(ﬂ)dﬁ Ve X.

Replacing X by some finite element space X, the computation of matrix
elements requires evaluation of a double integral over each cell. For arbitrary
trial functions, this integration might result in enormous computational ef-
fort. Applying discontinuous Galerkin method with piecewise constant poly-

nomials (DG(0) method) avoids this problem for radiative transfer due to:
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Lemma 3.5 For f(x,9) independent of ¥ and smooth in x, the integration

of operator V-V, may be replaced by

[0, (dn = (/ ﬁ-VT,(m) flx) Vaeq.

T

Proof: By decomposing the derivative in direction ¥ into its components

and applying, that d;f is constant considering the integration variable.

This property leads to the choice of our finite element space
X, = {7) ‘ vl = e, VK € 'T}, (3.4)

where T is a subdivision of S?. We obtain 7 by projecting polyhedra as
in Figure 3.1 onto the unit sphere. Independent of the mesh width h, the

interior angles « in these triangulations are limited by
54° < o < T72°

and areas of the triangles differ at most by a factor of two. So this tri-
angulation is nearly uniform and does not produce artitfacts known for the

longitude latitude meshes.

We are now ready to prove convergence of our discretization.

Theorem 3.6 The physical assumptions of Chapter 2 given, the DG(0) dis-

cretization of (3.1) is of first order and the error is limited by
o — wunllre < Cohlful o
K
with C; the interpolation constant of Bramble Hilbert lemma.

Proof: To apply Cea’s lemma we show that the operator y/d— ¥ is bounded
and elliptic. Considering the simplified integral equation (3.1) derived from
the radiative transfer equation (2.13) by neglecting transport, conditions

(2.5), (2.6) and (2.8) imply

R
=

VAN

~
=
_|_
q
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We may apply now Cea’s lemma to obtain

K+ o

[t — TThul]

Ju— uall <

Using Bramble Hilbert lemma for piecewise constant functions, we conclude
the proof. [ |

Since this result is not sufficient compared to numerical results, we continue

with a refined convergence analysis.

3.2.3 Superconvergence

If we are only interested in the error at the centers of mass of the triangles,
e. g. to prove convergence of the midpoint rule, we may apply the following

superconvergence result:

Theorem 3.7 Assume the solution u of (3.1) to be in H>>((). Then the

error al the centers of mass & is limited by

w(&) —up(&) < Ch2||u||H2,00
Proof: From

<(X - E)“’v 7)h,> = <.f7 ”h> <(X - E)Uh,, 7)h,> = <.f7 7)h,>

for all v, € X}, we deduce

X<u — Uy, 7)h> <E (u — up) 7)h> Yo, € X,
X<ﬂhu — Uy, 7)> <ﬂh2 (u — up) > Yoe X
1

() — up(9)

—(ﬂhE(u — 7/h)) (7)) a.e. in G,
X

where IT;, is the L2 orthogonal projection from X on Xj,. This leads to the

error representation

1
w—up =u—Hpu+ TThu —up = {u — ﬂhu} + {—ﬂhE(u — uh)}.
X

We conclude the proof by the following lemmas, where we show quadratic

convergence of both parts of the sum.
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Lemma 3.8 [let w and uy, be solutions of the continuous and discrete integral

equation (3.1), respectively. Then the error ¢ = u — uy, admils the estimate

lellm— < CB[Jull

Proof: Using the self adjointness of ¥, we introduce the solution z of the

dual problem
Yz — Yz =w (3.5)

for w € H'. We get for all w € H', using Galerkin orthogonality and the
stability of the dual problem

<e, w> = <e, Yz — Ez> = <Xe — Ye, Z>
:<Xﬂfzazfnm><nﬂpHXmeumpmzfnmmg

< el lIx = Ellngzzy bz llan
< X Ciblfellpeelln

Note that we used stability of the dual problem from H' to H' which we
get by differentiating the whole dual problem (3.5) and applying .? stability
to each derivative. We conclude the proof by applying the definition of the

H=" norm and the .7 estimate of lemma 3.6:

€, 2
llellr—1 = max < 7 > < (K) Cith? ||| 7 -
K

weH ||U)||];]1 =

Lemma 3.9 et u and uy, be solutions of the continuous and discrete integral

equation (3.1), respectively. Then the error admits the estimate

1
||;ﬂh2(u —up)||ree < Ch?|[u]|

Proof: For sufficiently smooth phase function P the scattering operator X
describes a continuous mapping of H~' to L™ (cf. [21] pp. 129 fT.). We apply
the previous lemma and use the obvious relation |[TT,u]|s < |1~ to prove

the lemma.
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Lemma 3.10 et 11, be the L*-projection on the space of piecewise constant
finite elements, u € H*>>((). Then, the error al the center of mass of each

grid cell obeys

w(®.) — (TMpu)(9,) < Ch2||u||yz,oo.

Proof: Taylor expansion around . and the vanishing of 11, f — f(i}.) for

linear functions f yield the result.

3.3 Discretization of Transport Problems

In this section we will discuss discretization methods for the transport prob-

lem

V-Vou+ yu=f in (3.6)

u=gq on 77

This equation models the differential part of the radiative transfer equation.
It has also significance in regions with zero scattering (o = 0), where each

specific intensity satisfies (3.6).

3.3.1 Upwind Techniques

Several finite difference and finite element methods for the discretization
of the transport operators have been proposed. First, there is the short
characteristic scheme (see Figure 3.2 on the facing page) proposed by Olson
et al. in [30]. Tt is applied in astrophysics by explicitly inverting the transport
operators for each ordinate cell by cell. All coefficients and the right hand side
are assumed to be piecewise constant, so the transport is solvable analytically
along the line 4. In astrophysical methods, one usually applies the analytical
solution on each cell, which is an exponential function. Since the start value
at Ps is interpolated usually linearly from its neighbors, this exact
inversion is too expensive and should be replaced by an finite difference

discretization. Equation 3.6 is discretized by

U(P3) - U(Ps)

vl P) = f(P)
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Py Py

P Ps Py

@ 1—a

Figure 3.2: The method of short characteristics

which may be resolved to the update formula

1

s = 5 o (h.fg + (1 — a)us + ()/71,2) (3.7)

where h is the length of ~.

This leads to a very sparse matrix with three entries per line for two
dimensional problems (five in 3D). The solution of the discrete system starts
at the inflow boundary, where the function values at P, and P, are known
for each cell and proceeds from layer to layer through the domain. This
corresponds to the inversion of a triangular matrix if we suppose downwind

ordering of mesh points.

Another possibility for transport equations is the imitation of backward dif-
ferences by using sophisticated integration formula to compute stiffness ma-
trices, the finite element upwind methods. These schemes usually correspond
to a finite volume discretization. They share the disadvantage of insufficient
error control and the finite element version often induces a rather complex

matrix generation.

3.3.2 The Streamline Diffusion Method

Both transport discretization methods in the previous subsection have signi-

ficant drawbacks: They are usually of first order accuracy only and they do
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not possess Galerkin orthogonality to prove higher accuracy. On the other
hand, standard Galerkin discretizations of higher order show oscillations for
discontinuous solutions. This behavior corresponds to the fact that standard

Galerkin is stable only in 2.

The streamline diffusion finite element method is a Petrov Galerkin scheme
for (3.6), where test functions ¢ are replaced by ¢ 4+ 69V, with a suitably
chosen small parameter 6. This corresponds to adding small diffusion in
transport (streamline) direction only. Since this is done in a consistent way,

there is no loss of accuracy.

The weak formulation of (3.6) looks then like

<19-Vmu + yu,p + 519-Vmcp> = <f, Y+ 519-Vmcp> (3.8)

6 has to be chosen according to the size of y and is proportional to the local

mesh width to obtain the optimal balance between accuracy and stability.

We apply the streamline diffusion method to bilinear trial functions, i. e. u

and ¢ are from the space
Vi = {0 € C°) | vl € Qi(K), YK € T} (3.9)
as defined in the first section of this chapter.

Remark 3.1 The streamline diffusion method adds a weighted form of the

least. squares discretization

<19-Vmu + yu, —9-V,o + ch> = <f, —- V0 + ch> (3.10)

to the standard scheme. The differential operator in equation (3.10) is of
second order in the direction . Therefore, the physical boundary condition
of (3.6) has to be modified carefully to preserve the physical meaning. By
lemma 3.12 below follows that the streamline diffusion scheme does not have
this drawback. A solution method for the radiative transfer equation with a

least squares discretization is proposed by Ressel in [33]
In the following paragraphs we list some results which led to our choice to
use streamline diffusion method.

The approximation order of the streamline diffusion method for linear finite

elements has been proved to be ; on general grids, but there is evidence
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for second order convergence on nearly all computationally interesting grids.
Unfortunately, a mathematical proof for second order is available only on
Cartesian grids. In [44] the construction of grids with lesser convergence rate
is discussed. Those grids are constructed purposely to show optimality of
the theoretical results and do not occur in real calculations due to our grid

generation techniques.
Instead of the L2 norm we define the stronger problem adapted norm
el = (1V&0- Vo3 + |V/ru |5 + [|u|? (3.11)

where

1
ullp = ol = 5 [ () ve) -9 da
T

and show the stability estimate

Lemma 3.11 Let L(u,v) be the bilinear operator defined in (3.8) with a
function x € CJ(Q). Then the estimate

Lu,u) = Cllulls
holds.

Proof: Evaluation of the bilinear form and partial integration yields
L(u,u) = ||\/519-Vmu||2 + ||\/Eu||2 + <519-Vmu, u> + </§U, 519-Vmu>

1
> V80Vl + |[VEu|)? + ullr + ||Veu|lr — §<5q9.vw,u>
= ||\/519-Vmu||2 + <(/< — WTT”) 7/,77/,> + ||e|r

If we choose
2K

o<
-V .k

(3.12)

the lemma is fulfilled with a constant ' = ming(3,1 — 579'22”) [ |

Since boundedness of the operator is obvious, the previous lemma ensures
convergence of the method. The weighted second order term in direction
¥ suffices to suppress oscillations in upwind direction occurring with the

standard Galerkin scheme.

The following lemma has heen developed in [25]:
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Figure 3.3: Domain of dependency

Lemma 3.12 Let uy, solution of (3.6). For an arbitrary sub-domain &y C Q
as in Figure 3.3 choose Qq with Oy C Qy C Q such that

o for all x € Qy, there holdsy =2 —5-19 € Qy for s >0 andy € Q, 1. e.

all upstream points of x belong to Q.

o For arbitrary points x € 0y and y € Q—Qy we split the difference vector
r =y —a in parts v~ and vl orthogonal and parallel to ¥ respectively.

These parts are to fulfill rll > ch]og% and | r~ |> Vb log ]17—

With these assumptions, the estimate

e = unllrzg@ny < CR2 ([l + 1 Fllree))

holds.

Rannacher and Zhou proved a similar estimate for the maximum norm in [45].
It follows that influence of errors at point y on the solution at point = with
|x —y| = d decays exponentially with V/d in crosswind and with d in upwind
direction. This result corresponds to the observation, that information is

transported only in streamline direction mimicking the physical model. Due
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Level Upwind SD
2 2.23 .865
3 .829 365
4 395 7.02-10°2
5 201 1.42-1072
6 103 3.34-107°
71521-107% 8.3510°*
8 12.64-107% 2.15-107*

2

Table 3.1: Upwind versus Streamline Diffusion (L? errors for the radiative

transfer equation with constant coefficients)

to this, we can assume the same inflow and outflow boundary conditions as

in the original equation (3.6).

Asymptotic results are only of questionable value for scientific calculations,
since the constants are known only with uncertainty. We therefore compare
the accuracy of finite difference upwind and streamline diffusion finite element
method in Table 3.1. The results are obtained for the radiative transfer
equation with constant coefficients on regularly refined grids of mesh size
271evel = Although streamline diffusion shows a slightly irregular convergence
behavior on coarse grids, it is clearly better than upwind even on coarse

meshes.

The main advantage of the streamline diffusion finite element method is its
being a Petrov Galerkin discretization. This implies Galerkin orthogonality
for the approximate solution. We can therefore apply the a posteriori error

control techniques to be developed in Chapter 4.

3.4 Full Galerkin Discretization

Based on the discretizations developed in the two preceding sections, we
construct a discretization for the full radiative transfer equation. We obtain

trial functions on Q x S? by tensor products of the spaces in (3.4) and (3.9).

Base functions are easily obtained: if {i;}; is a basis of V}, and {=;}; a basis



36 CHAPTER 3. DISCRETIZATION

of X3, then {¢;;};; with

pij(r, ) = bi(a)m;(4)
is a basis of the tensor product space

W, C W = L} x §?).

According to the norm for transport problems (3.11) we define the norm

ullf, = IV80-Vaulduse + [VEulltese + ullfxs
(3.13)

for radiative transfer equation discretized with streamline diffusion, where

1
||“’||12“><S2 ) // u® nr(z) -9 dr dv (3.14)

ST

The full discretization with streamline diffusion stabilization of the transport

operator reads (where we abbreviate <.7 > = <., >Q q?)
X

<19-Vmu + xyu — Yu,p + 519-Vmcp> = <f, © + 519-Vmcp> Ve W,.
(3.15)

Lemma 3.13 Assuming x € Cy(Q), discretization (3.15) is stable in the
norm ||.||w, defined in (3.13).

Proof: like in the pure transport case, the proof relies on a partial integra-

tion of first order terms.

(9N + Xt — S+ §9-V )
= (0 Vo, 89V ) + (v, ) + (xue, 80V ) + (0¥, )
— (Suu) — (Su,69-V,u)
= Jlullw, — (89-Voru,u) — (Ve ull + Voo ullryse)
> [Voull + lyx — o = 2555 ul| + VT = 6o ufres

> Cllullw,.
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provided that

C(2Azx ) ]

Next we propose a decomposition of the radiative transfer equation into a
differential and an integral part. To give more insight into its structure, we
assume the phase function P to be constant. Then, the scattering operator

¥ may be seen as a projection operator from W onto V = L?(Q)

(Eu) (r) = (rﬁ/ u(a, ) di

52

We introduce the auxiliary function v = Yu and modify our equation yielding

the mixed formulation

((0-Vo+ X)) = (v.0) =(f.¢)
<72“”¢>Q T <7)7¢>Q:0
V peW, pev
Ellipticity with respect to ||u]|lw, of this system is obtained from the same

property of the original equation by using the fact that v = Yu strongly. v

may therefore be eliminated leaving exactly the situation of lemma 3.13.

We now build a tensor product discretization for the domains Q and S? by

choosing

V,cV
wW'=V,oX,cWw

with V, and X, € L?(5?) defined in (3.9) and (3.4) respectively.

The full Petrov Galerkin formulation reads: find (wuy,v,) € WhT x V,, with

<(19-Vm + X)uhjcph> — <7)h7<ph> :<.f7 9917,>
<—Euh7 @/}h>Q + <7)h7 ;/)h>9:0

Yo, € W, eV,
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This discretization shares the advantages and disadvantages of all tensor
product grids: local refinement is possible, but it is always a whole factor
grid that is refined. We therefore construct a more sophisticated method of

local refinement.

We observe that for transport dominated problems, the regions where the
intensity jumps differ for the ordinates. It is therefore desirable to have a

special grid for each direction, that is

Wi =V x V2 x .

This makes a special handling of the global coupling of all directions by ¥
necessary. The solution is using the mixed formulation with different finite
element spaces for different equations. The weak formulation reads now: find
(up,vp) € Wy x Vi with

<(19-Vm + X)uh?cph> — <7)H7<ph> :<.f7 9917,>
<*E7lfh,7 77Z)H>Q + <7)H7 ¢H>Q:0

Von € Wy, g € Vi,

If we ensure
Vi VgV (3.17)

then we have the strong condition vy = MgYu,, where 1Ty is the usual 12

projection on Vi. For sake of simplicity, we investigate ellipticity in L? by

(-9 ) (T
<E7/h,ﬂyzuh> (TS, Ty S, )

(-9 )

<(19 V.4 x) uh,uh> <Euh7ﬂm/h>

(-9 ) (S )+ (S M)

1Ty PEuh,uh>

which proves
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Lemma 3.14 et a discretization of the radiative transfer equation of the
form (3.17) fulfill condition (3.17). Then the ellipticity estimate

<(19-Vm + X )un, uh> — <ﬂg2uh7 uh>
> 0T 4 ol — (Sl — Tl (318)

holds.

Remark 3.2 It is clear that using the methods of lemma 3.13, we can prove

stability in the stronger norm ||.||w, .

Remark 3.3 This discretization technique is especially useful in the trans-
port dominated and moderately scattering case. In highly scattering regions,
the intensities for different ordinates tend to be the same, thus making the

tensor product method adequate.

Remark 3.4 The stability estimate (3.18) only involves computed quanti-
ties, so the choice of the common mesh function H may be adaptively based

on this inequality.



Chapter 4

Adaptivity

Numerical computation of solutions to partial differential equations often
requires a huge amount of memory and computation time. For economic
reasons considering radiative transfer problems even for the ability to
compute at reasonable accuracy it is inevitable to reduce the size of the
discrete system to be solved. A well known method to reach this goal is the
exploitation of symmetry to reduce the dimension of a problem, but many
problems need computation of the full three dimensional model. Here, adap-
tive methods provide a flexible means to reduce computation costs and

combined with a posteriori error estimates  produce reliable and accurate
solutions. This way, even radiative transfer problems can be solved on a
workstation (at least in the two dimensional case). Three dimensional ra-
diative transfer needs sophisticated grid adaption even on supercomputers to

make problems computable.

The aim of simulation is solving the physical equation, such that there is a
guaranteed error estimate for the quantity of interest denoted by the func-

tional E(u). Tt may be written in the abstract form
‘5(7/, — uh)‘ < TOI. (4.1)

Since the error u — wuy, is not known it has to be replaced by an estimate

ne(hyuy).

The solution should be obtained with as few as possible resources, i. e. on

a nearly optimal grid in the finite element context. Using the function h(z)

40
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denoting the local mesh width, this task reads as the following optimization

pProcess:

h(z)=max Vel

4.9
ne(h,up) < TOL. (4.2)

The iteration process applied to determine the optimal mesh function A must
converge rapidly, since each step requires the solution of the differential equa-
tion. In the first section, we present some optimization strategies for this

problem.

A real mesh can only approximate this optimal grid function h, since the
mesh generation process establishes additional constraints to the function h.
So, optimality of a mesh has to be seen with respect to the grids obtainable
in the algorithm. In the second section, we present different mesh generation

processes and refinement criteria based on error estimates.

In the third section of this chapter we discuss estimates for different norms

and their theoretical derivation.

4.1 Adaptive Algorithms

The iterative process for solving a partial differential equation essentially
reads like the algorithm in Figure 4.1. In the first step, we solve the problem
Au = f on a starting grid (lines 9 11). Then, in each adaptive step, we
adapt the grid according to the approximate solution u (5 7) and transfer u
to the new mesh (8) to be used as start value of the iterative solution (11). If
the estimate e is lower than a given tolerance (12 13) we stop the loop and

do the postprocessing.

There are two criteria for the efficiency of this adaptive algorithm:

1. optimality of the final grid and

2. speed of convergence.

If the multi grid method is used to solve the discrete linear system in each

adaptive step, the weight is put very much on the first criterion. Indeed,
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1 Triangulation tr:= start_triangulation
> Vector u:=0);

o for step :=0 to maxsteps

" if (step # 0)

5 adapt(tr, u);

6 tr.coarse();

7 tr.refine();

8 tr.interpolate(u);

5 Vector b := tr.rhs(f);

10 Matrix A := tr.matrix();

1 u:=A" b

12 double e := tr.estimate(u);
12 if (e < TOL) break;

14 tr. postprocess( u) ;

Figure 4.1: Adaptive Iteration

Becker has shown in [4], that a tightly coupled adaptive multi grid method

is much faster than solving to a given tolerance and refining alternatingly.

As we are restricted to use iterative methods based on orthogonal sequences
of vectors, it is just the other way round. Fach refinement step means a
restart of the iteration, since only the start vector may be interpolated from
the previous grid. Due to the change in the operator, the orthogonality of

other vectors is lost.

So we have to look for an refinement criterion, which is a good compromise

between grid optimality and convergence rate, putting stress on the latter.

Given a local error indicator nx approximating the error contribution of cell

K, the following criteria seem possible:

1. Refine if ni - A > 4yTOL with A = #K the overall number of cells
and v a constant slightly below unity.

2. Refine if ng > amaxg nrx with o €]0,1].

3. (numerus clausus) Sort cells on nx and refine the first v ones.
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Figure 4.2: Comparison of refinement strategies

Criterion 1 compares each local error estimate with the global tolerance. The
weights are chosen such that local refinement stops automatically if the global
criterion is reached. Indeed, we can replace the check of the global error by
this local criterion. This is true, if the parameter Mg is updated each time a
cell is refined. Optimality of the resulting grids is shown in a joint work with
Becker and Suttmeier (cf. [6]).The parameter v ensures, that convergence
is not asymptotically to TOT., but that the estimate reaches TOI. in a few
steps.

Refinement criteria 2 and 3 try to equidistribute the error over the domain.
Since both methods are monotonous and we have a priori bounds for the
estimator, the global estimate converges until lower than TOIL. Here the

global error has to be checked independently.

Criteria 1 and 2 may be easily generalized to obtain double refinement for
cells with especially large local error indicators and coarsening of cells with

a small indicator, which is important for time dependent problems.

Method 3 is especially valuable, if a computation “as accurate as possible”
is desired. Then, the parameter v has to be determined by the remaining

memory resources.
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Figure 4.3: Parameter dependence of the second strategy

We compare these refinement strategies applied to the dust cloud example
in Chapter 8. Parameter values are v = 0.8 and v = 1/3#K. The results
are shown in Figures 4.2 and 4.3. The choice of the parameter o in Criterion
2 is important as may be seen in Figure 4.3. While e. g. Verfiirth in [41]
proposes a & (.5 for Poisson’s equation, a sufficient refinement rate is not
achieved even for a € {0.1,0.2}. Parameter values of o € {0.01,0.02} in our
case yield the necessary convergence speed. We observe in Figure 4.2, that

all three methods generate grids of nearly the same efficiency.

The convergence of the second strategy depends strongly on the parameter
a and the structure of the problem. The dust cloud model problem has
very localized features and the error contributions are limited to a very small
portion of the domain. The result are very small refinement regions, often
just one cell if & > 0.1. The necessarily fine tuning of @ makes this algorithm
inadequate in the if we want to cover a wide range of applications. With the
last strategy, we can easily control the growth rate of meshes and therefore

the memory consumption and convergence speed by varying the parameter
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v. Since the action of v is obvious, this allows experimenting with different
convergence rates, especially, it memory is insufficient to reach the desired
accuracy. In this case, we can approximate the best possible value with the
second strategy. Provided computing resources are sufficient and an optimal
error estimate exists, the first strategy is obviously the best to reach the
prescribed tolerance, since it is very fast and it does not need parameter

tuning.

4.2 Grid Generation

An important topic in designing adaptive algorithms is the generation of
computational meshes. We can interpret the output of an error estimator
as a mesh function h : @ — R, describing the desired local mesh width.

According to this notion, different grid generators have been developed:

1. Execute the following three steps to compute a new mesh:

(a) Randomly distribute points in the domain  with local density
he(z).

(b) Connect these points using a Delaunay algorithm to get a simpli-

cial triangulation.

(¢) Apply a smoothing method to avoid degenerate simplices.

2. The “advancing front” generator begins with a triangulation of the
boundary. It consecutively constructs layers of cells protruding to the
interior and thus filling the whole domain. This method is known to
cause severe topological problems, if the domain is not convex or the

boundary surface has rapidly changing curvature.

3. The mesh generator we use constructs the final grid by successive local
refinement of a very coarse starting triangulation. Curved boundaries
are approximated by pulling division points of those boundary edges
(faces in 3D) on the desired curve (surface). This generator is the only
one, which generates the structures needed by multi level methods. Tt

is this last property, which made us decide for successive refinement.
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distributed points advancing front local refinement

Grid regularity

good, depends on the | good if topologic prob- | perfect  for  straight

smoothing algorithm | lems of overlapping cells | boundaries, tends to de-
and is therefore a trade- | are solved generate cells in critical
off to the approximation boundary regions

of h(z)

Approximation of mesh function h(x)

best approximation good approximation mediocre approxima-
tion, since the mesh
width can only jump by
factors of two hetween

adjacent cells.

Multi-grid

grid  hierarchies have | same as left entry grids are constructed as
to be constructed hierarchy, so multi-grid
a posteriori is inherent

Transfer between adaptive grids

Needs point search al- | same as left entry uses multi-grid prolonga-
gorithms and interpola- tion and restriction oper-
tion in cells. This often ators, therefore is highly
causes loss of accuracy. accurate

Table 4.1: Comparison of grid generation methods

The generation of non uniform grids by using tensor products of arbitrary
one dimensional meshes is a strategy widely used. We do not consider its
application, since the grids obtained are restricted too much to approximate
the mesh function h. Additionally, these method often produces cells with an
aspect ration of more than 10*. The approximation properties of those cells

are rather bad, such that they deteriorate convergence of the whole grid.
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4.3 FError Estimates

In this section we develop a posteriori error estimates for the Galerkin dis-
cretizations described in Chapter 3. The technique presented follows es-
sentially the method proposed by Johnson et al. in [12] and applies the
enhancements proposed by Becker/Rannacher in [7]. Consider a solution u
to the radiative transfer equation and u;, to its discretization. Tet e = v —wuy,
be the error function. In computing a physically relevant problem, usually a

desired accuracy is prescribed in the form
[£(e)| < TOL. (4.3)

Here £(.) is the functional describing the value to be computed by the simu-
lation, e. g. the L2-norm, the value at just one point or a boundary integral
as in the example of Figure 8.1 on page 84. According to this functional we

choose rg such that

E(e) = (e.re). (4.4)

Examples for re are

E(e) = [lel[r» re =e (4.5)
€)= iy [, re = x(M) (4.6)
E(e) = e(xo) re = Oy (4.7)

Here (M) denotes the characteristic function of the set M defined as a
distribution by

O/X(M)@ dr = mzwu(m) Ve C7(0)

and 6., = x({z0}) the Dirac functional (g denotes a suitably chosen measure

on M).

Introducing the dual £* of the radiative transfer operator and the solution z

of the dual problem

L2 =re. (4.8)
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we replace the error norm in (4.3) in terms 7 and the residual R(wu,) by
(erre) = (Le.2)
(Le,z—2) (4.9)
(f— Lup,z— 2)
- <R(uh), - Zh,>, (4.10)

In equation (4.9), we used a characteristic feature of finite element methods,

the Galerkin orthogonality
<£u — Luy, wh> = Yy, € V. (4.11)

We now apply the formalism developed so far to the radiative transfer equa-

tion and state

Lemma 4.1 Lel u be solution to the radiative transfer equation (2.13) and
up, to a Galerkin discretization. Then, the error E(u — uy) admits the repre-

sentation
E(u—up) = <Tuh + xup — Yup — kf,z — Zh> (4.12)
where z is solution to the dual problem

~Tz4+xyz— Yz =r¢ i (4.13)
z=0 on 7. (4.14)

Proof: Since (4.12) is just application of (4.10) to radiative transfer equation
we have to prove the correctness of the dual problem:

Clearly, the operator y/Id is self adjoint. The action of T on a function
u e C(Q x S?) results from the sum of operators Ty with

Tou(z, qg) = 5(1§ — ) V- V,u(x, 19)

By partial integration we obtain Ty = —T by
// 5(1§ — ) 9 V,u(x, 19) v(x, 19) dax di)

= — /7/,(r1:,19)19-vm7)(r1:719)
QO
= — // 5(1§ — ) u(x, qg) -V, 19) dax di)

52
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The self adjointness of the scattering operator ¥ follows directly from sym-

metry condition (2.10) by applying Fubini’s theorem to

//(r / P(ﬂ,qg)u(mﬂg)v(%ﬁ) A dv dx

05 S
Remark 4.1 In the proof of lemma 4.1 we assumed zero inflow boundary
conditions. In the case of non trivial boundary conditions, we save the dual-
ity relations of operators by prescribing these values in the weak form. This
corresponds to adding a term [ (u — g)v dx to the weak formulation of the

radiative transfer equation.

4.3.1 Mean Quadratic Error

In this subsection we analyze the mean quadratic error in the space variable.
We consider u to be the solution of a semi discrete radiative transfer equation

with a fixed number of ordinates.

The appropriate error functional for L? error estimates is rs = e. Clearly, we
cannot solve the dual problem with right hand side e, since ¢ is the unknown
quantity. We therefore use a stability estimate of the form (denoting by the

space [2(L?) functions on S? with values in L?(Q)).
121y < Cllellrzr2)- (4.15)

Remark 4.2 This estimate involves stability of the continuous dual problem

and does not use properties of the discretization space.

Remark 4.3 Since stability estimate (4.15) is used to limit the interpolation
z — zp, in (4.10), the norm ||.||y should be as strong as possible to obtain an

estimate of the form
Iz = 2nllr2(rzy < B7lz]ly
with o > 0.
The error is observed to decay of order h? and the residual decays of first

order. To obtain optimal bounds, we would like to have an error estimate of

the form

lell < CsCHlAR(un) | (4.16)
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with the interpolation constant C; depending only on the trial functions.

This estimate requires the space Y to be L*(H'), but it holds

Remark 4.4 The operator on the left hand side of (4.13) allows control only
of ||z|laxsz and ||-V,z|laxs2, but not of the gradient Vz.

We therefore apply a well known remedy from numerics of hyperbolic equa-
tions, the method of artificial diffusion (see e. g. [12,16,27]). Equation (2.4)

is augmented by a small diffusion term, yielding
eAu. + Tu. + xyu. — Yu. = B (4.17)

where & & h?|R(uy)|. The error ||u — uy| is the sum of the error ||u — u.||
between the artificial diffusion equation and the radiative transfer equation
and the discretization error ||u. —wuy||. Since the error due to artificial diffusion
is of order h?, it may be neglected and the overall error is dominated by the

discretization error.

Theorem 4.2 The modified problem (4.17) admits the error estimate

o = uall < €, {llmind1, £3R () + 1D ()
(4.18)

with a stability constant Cg depending only on the domain and the coefficients

of the continuous dual problem. The approzimate second derivative D3 (uy)

is defined by
o\ 1/2
) (4.19)

Proof: The dual problem corresponding to (4.17) is

32 Ju; — du,

I n

197 (un) | = (Z

5AZ—TZ—5T22+XZ—2226

with right hand side ¢ = u. — uy,. Applying the techniques described above

we obtain

lell = (Ve V=) 4 {(T 4 x — D, =)

R ~Ch? 4
= (R(m),2) < [==R(u)|[IV*2]
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where 7%() is the residual of the modified radiative transfer equation. The
weighting factor in front of the residual is taken from Lemma 4.3 below.
Obviously, the dual problem is stable in L? and we obtain the additional

estimate
(R(un), z) < ol R(un) | 1272 (4.21)

Since the error admits both estimates, the statement of the theorem is true

with C, = rnax((},,,7 ég) [ |
Lemma 4.3 The solution to the equation
—eAz —Tz—6T*24yz—YNz=c¢ (4.22)

admits the stability estimate

C

9

1217202y < —llellrara)- (4.23)

Proof: Equation (4.22) obviously admits the estimates

C

1217272y < Cllellr2r2y [2l72(ry < ;||€||r/2(r/2)-

We can absorb the lower order terms to the right hand side, since y — X is

positive semi definite on L?(L?), yielding
—eAz —6T%2 = ¢

The differential operator on the left hand side has no coupling over the or-
dinate space. Therefore, we can apply standard H? estimates for elliptic
problems like Theorems 8.8 and 8.10 in Gilbarg / Trudinger [18]. Integrating

over S? results in estimate (4.23).

In the proofs of Theorem 4.2 and of Lemma 4.3 we have assumed zero bound-
ary conditions. They can be easily extended to inflow boundary conditions

using the techniques described in [12].

Numerical tests have shown, that the error estimate of Theorem 4.2 is far
from being optimal, since the stability of the dual problem is too weak. In the
next subsection we follow a new approach avoiding stability by computing
an approximation for the solution to the dual problem with right hand side

independent of e.
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4.3.2 Boundary Integral Error

Now we consider a situation like in Figure 8.1 on page 84. The value desired

from the computation is given by the functional

Eu) = FK(u) = / w(w, Vons) N - Pons d (4.24)

T4 (Fons)

The appropriate right hand side of the dual problem reads

rir = 06(1" — Jons) X(7T+(Pons)) (4.25)

Now we can continue at (4.10) to get an efficient a posteriori estimate (see

also [7]) for this special value:

<e, rp,> < CSeC<R(“’h)7 2" — Z’?>
= Cse Y (R(m), ="~ 02")
K

< CsecCi Y NIR(un) || 5 V22" e,

K

with the solution z of the dual problem not depending on wuy. In practical
calculations, it is hard or even impossible to calculate z¥ and we replace it
by the approximate dual solution zP and add a security constant Cge. to
account for the error of 2. This constant results from an L™ estimate for
217 and should be in the range of 1 1/4 (Cge. = 1/4 means that we allow
over refining once due to the lack of accuracy of zJ’). We use the second

derivative of z! defined in equation (4.19). These considerations result in

Lemma 4.4 The discretization error (v — uy,) is limited by

Be)l <nm =Y nn(K), (4.26)
KeT

where np(K) denotes the local error indicator

n(K) = CsnClIR(un) s D22 . (4.27)



Chapter 5

Numerical Solution

This chapter will discuss methods to solve the linear system of equations
resulting from the discretization methods of Chapter 3. A suitable solution
algorithm has to show good convergence properties for transport dominated,
scattering dominated and mixed problems, since astrophysical applications
usually show both kinds of behavior in different parts of the domain. Before
we look at iterative methods in section 5.2, we investigate the structure and

eigenvalue distribution of the discrete system.

After shortly discussing the drawbacks of stationary iterations like the A

iteration common in astrophysics, we follow the way of Turek [36] and present
two fast Krylov space schemes for our equation in subsection 5.2.1. A very
important role plays the preconditioning method. In subsection 5.2.2 we
will compare three different preconditioners for the streamline diffusion finite
element method based on the upwind discretization of Chapter 3, standard

GauB Seidel and multi level splitting.

Finally, we devote a section to the discussion of implementation questions.
Due to the exorbitant memory requirements of radiative transfer computa-
tions this must be an important issue in this thesis. We show, that a problem
adapted matrix representation may considerably reduce memory consump-

tion.
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5.1 The Discrete System

We give a short description of the matrices resulting from the various dis-

cretizations introduced in Chapter 3.
The discrete system has the form

Ar=1b (5.1)
where 2.6 € X =R"®@R” and A: X — X.

From the operator form (2.13) of the radiative transfer equation, we derive

the representation

with a suitable discretization My(x) = x/Id, of the multiplication with a

function y () depending on the space variable.

For our tensor product discretizations, these operators may be split up fur-
ther:

Ty, = diag(%y, ..., %)
Mi(x) = diag(9M (x), - - -, M (x))
wnM(o) - wM(o)
Sy = : : : (5.3)
Wit My (o) - WM (0)

The finite difference upwind scheme leads to matrices €; defined by (3.7) and
M, (o) the diagonal matrix with m,; = o(x;).

With the finite element streamline diffusion tensor product discretization,

the entries of these matrices are defined by

T = (pj + 60 Vop T (5.4)
M (v) = (05 + 005 Vs Xon) (5.5)
M (o) = (o) + 60:- Vo), 001). (5.6)

Due to the equivalence result of Chapter 3, this structure is valid for the full

Galerkin discretization too.

We now investigate the condition number and eigenvalue structure of these

martrices.
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Lemma 5.1 Assuming o > 1 and k£ = oo with some parameter o > 0, the

condition number of the discrete operator (5.2) is given by

1 ,
+ao_2

(8]

(5.7)

CCond =~

Proof: Due to the assumption ¢ > 1 we may omit the transport operator

in our considerations.

For the model case of constant phase function P, discretization (3.2) of equa-

tion (2.4) yields a scattering matrix

k+(1— TL—)O‘ —%(r —%(r
_ 1 :
S=(k+o0)— %, = m?
(5.8)
—%(r —%(r &=+ (1 —%)(r

This matrix has two eigenvalues, £ with the eigenvector (1,...,1)7 and the

(m — 1) fold eigenvalue (k + o).

Therefore we have

Sll=(14+a)o
1
Aqi‘IH - —
oo

SIS m

|/

A graphical representation of the eigenvalue structure is given in Figure 5.1

The proof is concluded by applying the definition coona =

on the following page. Part a) shows the eigenvalues of the integral operator.
These are smeared out by convolution with the mass matrix and addition of
the transport part in b). Preconditioning confines them back to a smaller

region in ¢).

5.2 Iterative Methods

The standard algorithm used in astrophysics for some years is the so called A
iteration (see Figure 5.2 on the next page). In numerics of integral equations,

it is known as Picard iteration too. Considering the whole discrete system,
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Jd 4:
c) | b
0 k+o

Figure 5.1: Eigenvalue distribution of the discrete system

u® = g
for 2 := 1 to steps
for k :=1 tom
7),&7:71) -y, wkmyq)
for k :=1to N
7/,5:) = f”)qu) + F

Figure 5.2: The A Tteration

it is a Richardson method with nearly block Jacobi preconditioning. Using

a full Jacobi preconditioner is a first step to better convergence rates as

described by Turek in [36].

Since the transport operator T'is inverted explicitly, these methods converge
very fast for transport dominated problems. Exploiting the triangular matrix
structure of upwind discretizations, the inversion of 7" is indeed very cheap

(one matrix vector multiplication).

Remark 5.1 Considering the streamline diffusion method the accurate in-
version of T is not possible. An iterative procedure, solving to very high
accuracy would slow down the solution process essentially (cf. the results by
Fithrer in [15]). Here, we use an approximate inverse obtained by one multi-
grid step or a Gaufl Seidel step. The latter is clearly sensible to increase of

the condition number due to refinement.
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Unfortunately, in the interesting case of scattering dominance this method
as like as other stationary iterations  breaks down, since the condition

number of the iteration matrix grows high.

Since the convergence rate of preconditioned Richardson iteration methods
is only depending on the condition number, these are not suited for the

scattering dominated case.

5.2.1 Krylov Space Methods

The eigenvalue distribution (5.8) shown in Figure 5.1 on the facing page
proposes application of a Krylov space method. These methods minimize

the iteration error over the affine space

X, =2+ K, with K, = spa,n{A/’(b — Amo)}

=,

and admit the following error estimate:

Lemma 5.2 The iteration error of the v’th step is estimated by

o —ull < Cn(A,v) (5.9)

with

n(A,v) = min max
P, i
;g)ﬂ Aea(A4)

p(A)|

where A is the preconditioned system matriz.

Proof: Confer [28], page 33.

Since the eigenvalues have a large gap between the lower and the higher
cluster, small polynomial degrees suffice to reduce the estimate. Considering
only the scattering operator, the cg- or GMRES algorithm converges in two

steps (choose p € Py as p(x) = (k — 2)(k + 0 — x)).

Indeed, the Bi-cgstab algorithm of van der Vorst (cf. [42]) proved rather
promising in Turek’s paper [36]. Tt usually reduces the errors much faster
than stationary methods, but it shows a very irregular convergence history.

We compare it to GMRES, the only method for non-symmetric systems,
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Figure 5.3: Comparison of Bi-cgstab and GMRES for different scattering

parameters

which really minimizes the error in each step (thus, the only one for which the
estimate (5.9) holds). The results are shown in Figure 5.3 for the Eddington
problem of section 8.1. We display the norm of the residual over the number
of matrix vector multiplications, since Bi-cgstab uses two of them per step.
We observe, that GMRES converges faster for moderate (o = 0.95y) scat-
tering values as well as the equilibrium case ¢ = y. On the other hand the
memory requirements of GMRES make us decide for Bi-cgstab, since GM-
RES needs one auxiliary vector for each iteration step, whereas Bi-cgstab

needs a fixed number of eight additional vectors.

5.2.2 Preconditioning

The appropriate choice of a preconditioner is crucial for these methods to
converge. The block Jacobi method mentioned above is a natural choice. It
is exactly A7 in the absence of scattering. For high values of o, the Lanczos
process filters out the low eigenmodes of the integral operator, while the

preconditioner reduces those of the differential operator.
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Yy =10 y=10,06=9 vy = 1000, ¢ = 999
Level | Upw. Gaufl MG || Upw. Gaufl MG Upw. Gaul MG
1 7 5 1 7 5 3 9 8 14
2 9 8 2 12 8 5 42 51 38
3 10 10 2 11 9 6 111 48 40
4 13 14 2 11 9 7 184 37 42
5 23 18 3 13 12 7| 154431 58 44
6 34 28 6 18 17 7| 158413 73 44
7 53 58 9 32 36 6 15248 77 40

Table 5.1: Bi-cgstab Iteration steps regular refinement and constant coeffi-

cients (multiple numbers show hreakdowns in Bi-cgstab)

Xmax = 04, w = .999 | Ymax = 6400, w = .99

Level | Gaufy MG | Gauf MG
4 0.11 0.025 0.58 0.29

H 0.19 0.085 0.66 0.35

6 0.35 0.112 0.68 0.35

7 0.59 0.249 0.65 0.35

8 > 1 0.394 | 0.64 0.39

Table 5.2: Contraction numbers for the dust cloud on regular grids

Exact inversion of T' can not be applied to the streamline diffusion method.

Therefore, we examine various preconditioning schemes for 7.

First, we apply the upwind discretization (3.7) as a preconditioner to the
streamline diffusion transport operator. A priori, we observe, that its ap-
proximation is of first order only. Therefore, we expect deterioration of con-
vergence on finer meshes. This effect can be seen in Table 5.1. Note, that
there are even breakdowns of the Bi-cgstab algorithm in the last column.
Furthermore, this preconditioning method failed entirely, when we applied it

to the dust cloud example and to three dimensional problems.

GauB Seidel preconditioning is known to be a good method for convection
equations. Sorting the points in downwind direction it converges faster than
the first scheme. But it shows a strong dependency on the mesh width A too:

for transport dominated problems the number of iterations is proportional

to 1/h, as shown in Table 5.1.
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Ymax = 04, w = .99 Ymax = 0640, w = .999

Step Pts. | Gauf3 MG Pts.  Gauf MG
1 289 | 0.101 0.034 289  0.550 0.429

2 565 | 0.592  0.069 570 0.985 0.564

3 1110 | 0.807 0.113 | 1143 0.994 0.543

4 2209 | 0.987 0.125 | 2280 >1 0717

5 4439 > 1 0178 | 4622 0.645

6 9007 0.223 | 9243 0.676

7 18hh4 0.297 | 18462 0.667

8 38448 0.313 | 36905 0.694

Table 5.3: Contraction numbers on adaptive grids for a dust cloud

To avoid this behavior it is common practice for differential equations to
apply a multi-grid technique. Since the Krylov space methods used rely on
bi orthogonal sequences of vectors, we have to choose between solving very
accurate (||r|| S 107"") or doing a fixed number of steps. The second variant
is much faster and shows the desired results (cf. Tables 5.1 to 5.3): The
number of iteration steps does not grow anymore after a certain mesh size is
reached (the slow down in the left column of Table 5.1 is due to the better

resolution of sharp edges in the solution).

We compare the different preconditioning methods on regularly refined grids
with constant coefficients in Table 5.1. The non multi grid schemes are
considerably slower and upwind causes even breakdowns in the Bi-cgstab al-
gorithm in the last column. Tables 5.2 and 5.3 show results for Gauf} Seidel
and multi grid preconditioners solving the dust cloud problem. Although
in many cases, multi grid convergence is not as good as in the elliptic case,
GauB Seidel preconditioning is not stable enough to be sufficient. In partic-

ular, it diverges very early on adaptive grids.

Although multi grid requires more computational effort than Gaufl Seidel,
it 1s the only preconditioning method, which allows the solution of a wide
spectrum of problems. Since in our parallel implementation preconditioning
is executed simultaneously, the deficiency of computational cost is reduced

on supercomputers.
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5.3 Matrix Implementation

Considering the huge amount of unknowns involved in radiative transfer com-
putations due to the three to six dimensional domain, the matrix storing
technique is of great importance. We should also bear in mind, that in
adaptive algorithms the solution of the linear system has a time consuming
counterpart: assembly of the system matrix. We thus look for a method to

reduce generation time and storage size.

The usual way applied to systems of differential equations, e. g. the Navier
Stokes Equations, is the storage of a usual sparse matrix with block entries
(4 x 4). Alternatively, often 16 sparse matrices are stored. Since our blocks

have size m x m with m between 10 and 1000 this is not acceptable.

For our discretization we use the following

Lemma 5.3 et Ky be a parallelogram of dimension d and the matriz Ag

the discretization of an arbitrary differential operators of order w on K.

For a cell K, resulting from the v fold reqular refinement Ky into similar

cells, the according matriz is obtained by the scaling

A, =279 Aq (5.10)

Proof: Immediate by observing that derivatives are O(2") and the integra-
tion volume is O(27%). [

Remark 5.2 A similar result is true for triangular cells, where single deriva-
tives have to be replaced by their negative for the center child triangle. In
the vicinity of curved boundaries, this lemma is not applicable, since division
points on boundary edges have to be moved onto the boundary curve and

the proof relies on the refinement into similar cells.

Application of Lemma 5.3 allows generation of element matrices without ex-
pensive integration. Since we have only artificial boundaries in our radiative

transfer problems, even the restriction regarding boundary curves does not

apply.
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Recalling that the system matrix A of a finite element discretization is ob-

tained by
A= Ar 5.11)
K

we use this representation to execute the application of A to a vector. Here
and in the following, the element matrices Ax are supposed to be of the
same size as A thus referring to global node numbers. Instead of building
A according to (5.11) and multiplying v = Au, we compute vg = Agu and

sum up afterwards. The loss of efficiency traded in by this method is given

by

#entries per line in A x #cells per node

, (5.12)

#entries per line in A

which is % and % for quadrilateral and hexahedral meshes respectively.

This way we avoid the compilation of a global system matrix. Application

of the matrix scaling lemma 5.3 during matrix vector multiplication
v = ZQ”"’fu’AO u
K

finally reduces the memory requirements for matrices nearly to zero. We
have to accept a slowdown of matrix vector multiplication compared to a
global matrix, but may reduce the memory needed for the whole program by
a factor of four applying these techniques. This is especially important using

parallel computers with small local memory.
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Parallelization

In this chapter we will discuss different ways of parallelization resulting from
the structure of the radiative transfer equation. A recent work of Vath
(cf. [40]) dealt with this problem, but due to the architecture used, a STMD
machine with about 8000 processors, the results are not applicable to main
stream parallel machines of MIMD type like those at the TWR!' in Heidel-
berg. Eriksson et al. found another approach for the time dependent neutron
transport problem in [13]. The efficiency of their method relies on the com-
bination of discontinuous Galerkin methods and the time stepping scheme,

so it is not applicable to the stationary problem we investigate.

As the bilinear form in the radiative transfer equation consists of the sum of
the two operators T and ¥ acting on space and ordinate domain respectively,
we may also choose between two parallelization strategies. In the first section
we refer to the problems, a spatial splitting of the whole domain causes. The
second section describes in detail the ordinate parallelization we apply. We
consider its effect on the linear solvers of Chapter 5. The efficient way of im-
plementing parallel algorithms using distributed objects in C4++4 is presented
in the third section. We conclude this chapter by deriving theoretical esti-
mates for the efficiency and compare them to results obtained on the parallel
computers at the TWR.

nterdisziplinares Zentrum fiir wissenschaftliches Rechnen interdisciplinary center

for scientific computing
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Figure 6.1: Domain decomposition for transport problems

6.1 Domain Splitting Strategies

Convection dominated problems differ in one specific point from elliptic prob-
lems: There is a distinct direction of information flow. This has to be con-
sidered in the development of parallelization strategies. While a domain
decomposition for Poisson’s equation should minimize the length of interior

edges, this does not yield an efficient method for convection.

Consider a preconditioning step on the simple domain in Figure 6.1 and
regard transport direction ¥x. Fach processor starts inverting the transport
operator at 7 ¢ and pushes information towards 7 . Since we use continuous
finite element spaces, there should be some information interchange across

7;. This can be done by iteratively averaging inner boundary values at 7.

Following lemma 3.12 the error induced at 7, decays exponentially to the

interior of 0y and ;. Therefore we expect good convergence.

[.ooking now at direction ¥p we are confronted with a changed situation.
While processor 1 starts at the inflow boundary 7y and produces a rather
accurate solution in the first step, processor 2 starts with random boundary
conditions. Tt will produce useful results in the second step, where processor

1 reproduces the result of the first step.

We conclude that parallelization strategies for transport equations should

not divide the domain across the transport direction.
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The solution of the radiative transfer equation consists of a bundle of trans-
port inversions for different directions. The construction of an efficient do-
main decomposition method would following the above argument  re-
quire a direction dependent splitting of the domain 2. Since this produces
immense implementation problems, we decided to look for another way of

parallelization.

6.2 Ordinate parallelization

The second strategy distributes the ordinate space S? of the radiative trans-
fer equation. Since we use discontinuous shape functions for the ordinate
variable and there is no local coupling due to the integral operator, this re-
sults in a true non overlapping parallelization. Not even boundary points

have to be averaged over different nodes.

Clearly, it has disadvantages too: as the integral is a global operator, ordinate

parallelization involves global communication.

Considering the somewhat extreme case of just one ordinate per node, we

explain its effect on the two steps of the A iteration (Figure 5.2).

1. Evaluation of the integral sums involves since wy; in (5.3) depends
on the source and the destination ordinate  a communication sweep,
where each processor gets the data of each other one. This can be
achieved in m steps parallel compared to m? steps for a sequential

code.

2. Inversion of the transport operators is a parallel task without any com-

munication.

The application of more sophisticated methods like Bi-cgstab and GMRES
bases on these operations too, augmented by some vector scalings and addi-

tions (full parallel) and scalar products (involves global collection).

When we decide whether to use ordinate parallelization, we have to answer
an important question: does it offer a means for highly parallel computing

or can we just occupy a moderate number of processors?
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Figure 6.2: Two objects of a distributed vector class on m processors

The answer depends on the number of angles required to approximate the so-
lution. In two dimensional test computations, about 30 60 ordinates showed
to be necessary for constant phase function. FExtrapolating to the three
dimensional problem, 1280 ordinates mean 40 points on a great circle of S
So even putting several angles on one node, this leaves work for some hun-
dred processors. Thinking of the rapidly changing phase function of Mie
scattering, there should be enough work for systems installed in the next

years.

6.3 Distributed objects

An important question arising from the development of parallel code is the
encapsulation of the parallelism. Since computer clusters have very different
programming interfaces and runtime characteristics (cf. section 6.4), changes
between platforms should affect as few as possible portions of the code. The
usage of higher level standard libraries often reduces efficiency, since ma-
chine characteristics cannot be used. Here, the object oriented programming

concept of information hiding may be very helpful.
Consider e. g. the situation of Figure 6.2. The underlying vector class has

the following features:

e Fach vector data spans over computing nodes 7y to 7,,.

e Fach node 7 holds the consecutive vector components wuy ...

bor =

e There is a mapping between global vector indices 7 and local indices

(m,¢) defined by @ = fr + . Assuring f, = [,_1 + 1 this mapping is
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bijective.

We see that addition and scalar multiplication of these vectors is purely
local, since only corresponding indices of both vectors are involved. A global
operation is e. g. the scalar product u - v. We implement this product by

evaluating the local scalar products and summing up by data exchange.

From the abstraction level of the operations named above, this parallel vector
hehaves like a usual one. It can be fed into an iterative solver just like any

other vector (using a suitable parallel matrix).

On different systems, the data collection of the scalar product should be
implemented according to machine characteristics, e. g. using a binary tree,
hypercube or other topology. Due to information hiding (the solver does not
know about the implementation of a scalar product, it just expects a certain

result), the changes in the code are very small and local to vector routines.

The application of these concepts to our vector classes allow a safe paralleliza-
tion even of the adaptive algorithms described in Chapter 4. Verification of
the code is always possible on sequential and parallel computers, which is

important to localize errors due to the parallel implementation.

6.4 Parallel systems

Since the first steps in distributed computing, numerous parallelization para-

digms have been developed. The most important are:

SIMD Single Instruction Multiple Data, all processors are synchronized on
instruction level and perform the same code on different data. Typical
systems as the MasPar or CM-2 contain some thousands of very simple

Processors.

MIMD Multiple Instruction Multiple Data, each processor can perform
independent tasks. Thisis e. g. the idea of workstation clusters running

PVM.

SPMD Single Program Multiple Data, a mixture of SIMD and MIMD,

where the same program is automatically loaded on each computing
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node. Fxamples are the Parsytec machines SC-T805 and PPC-GC
with PARIX environment.

Since MIMD and SPMD have similar concepts and may be mutually emu-
lated, we will refer to both as MIMD.

A second difference between parallel systems is the organization of memory

and the resulting method of data exchange:

Shared memory: all processors have access to the same address space of
the machine. Data exchange is done by just reading memory written
by another processor. Due to bus access conflicts, this model allows

only moderately parallel systems (up to about 32 processors).

Distributed memory: each processor has its own address space. Data

have to be transmitted explicitly from one node to another (message

passing).

Fortunately, the development seems to converge a bit in the last years. The
SIMD paradigm has nearly vanished due to its disadvantages from the pro-
gramming and construction point of view. All highly parallel machines use

message passing systems, although there is a trend to multi processor nodes.

Regarding the parallel operating systems, there is a standardization too.
After systems like PARIX (for Parsytec computers) and PVM (for Worksta-
tion clusters) have been developed independently, system providers now try

to evolve standards for message passing functions like MPI.

But even considering just MIMD message passing systems there is a wide
variety of platforms showing totally different behavior. The overall execu-
tion time of a parallel program is determined essentially by three factors.
Clearly, in numerical applications the floating point performance (measured
in FLOPS, floating point operations per second) of the processor is of high
importance. Algorithms exchanging a big number of small data packages are
sensitive to the communication startup time (sec). Programs passing huge

blocks of data rely on a high communication bandwidth (bytes/sec).
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read_data;

create_grid,

initialize( matrix, vectors);
solve( matrix, vectors);

write_data;

Figure 6.3: A simple solution program

It is more useful to use values normalized to double precision arithmetic to

investigate the efficiency of a program:

t, = startup time - FLOPS
bandwidth
SFLOPS

Usually, computer producers provide for some values of these quantities,

Cp =

called peak performance. Due to non optimal compilers, problem structure
and operating system overhead, these values are hardly reached. We consider

the actual values, occurring from our application.

At the IWR in Heidelberg we have access to two parallel systems: the older
INMOS Transputer T805 based SuperCluster (SC-T805) with 128 nodes and
the GigaCluster consisting of 96 nodes with two PowerPC 601 processors each
(PPC-GC). While communication and computing power are well balanced
on the SC-T805 with ¢, = 0.8, this ratio is ¢, = 0.2 on the PPC-GC.

6.5 Efficiency Considerations

Before analyzing the differences in execution time, we develop a model to
interpret these data. Runtime results are then given for the whole program

on different platforms and for the iterative solver.

6.5.1 Time Complexity Model

First we consider the non adaptive program shown in Figure 6.3. For our

ordinate parallelization all operations with exception of the solver are truly
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parallel, i. e. avoid communication. The program runs on all nodes without
synchronization, until initialization is complete. Any delay occurring with
respect to the sequential version has to be due to operating system overhead
and file data access. Since we made sure that file data is small, this should
be negligible (see Table 6.1). The time on the Parsytec machine begins to
grow at 16 processors, since the loading of the program itself consumes much
time due to the low performance of data exchange between host and parallel

computer.

We now focus on the linear solvers. As for the single level iterations, they

consist of the following classes of operations:

1. Application of the radiative transfer operator
2. Preconditioning
3. Scaled vector additions

4. scalar products

In our implementation, classes 2 and 3 are truly parallel, communication
only occurring in 1 and 4. To compute scalar products, each nodes collects
the product for its part of the vector and then communicates just one num-
ber. Clearly, on suitable machines this data exchange is negligible for vector

lengths of some 70.000 entries.

That leaves us with the analysis of matrix vector multiplication. Consid-
ering the matrix structure of (5.2) on page 54, the parallel version of this

operation consists of two parts:

1. the multiplication of Ty + My () — My (o) with the local vector com-

ponents wu; and

2. the addition of {u;};4 of all other components and multiplication of

the sum with 9%.(o).

Whereas the first part is inherently parallel, the sum in the second is the only
part of the program, which causes communication. We show the sequential

algorithm and an optimized parallel version in Figure 6.4 on the next page.
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1 fork:=0tom 1 hout = vy
2 v = 0; > v, =0
2 for j:=0tom s  fork:=1tom
4 Vg 1= vp + Wi 4 start_send(p + 1, hont);
5 wg = M (0 )vg; 5 start_receive(p — 1, hin);
6 vy 1= vy + hout;
7 wait_comm();
8 hout 1= hins

o U, =0y + Pout;

1w w, =M, (0)v,y;

Figure 6.4: Sequential and parallel matrix vector multiplication

system # procs | sec
PPC-GC 41 26
PPC-GC 81 26
PPC-GC 16 | 30
PPC-GC 32| 32
SPARC 10/51 11 26
RS6000 PPC 11 23

Table 6.1: Initialization times for 70.000 nodes (21)) in seconds

For this method, the processors are located in a ring topology, i. e. p € Z,,
where 7 is the number of processors. This way, each node has two neighbors
(p+ 1 and p— 1) to communicate with. By doing the communication (lines
4,5 and T on the right) and vector addition (line 6) in parallel, the efficiency
of the algorithm is bounded from below by ¢, if ¢, < 1 and is about 100%
if ¢, > 1, since nearly the same operations have to he done, but only m?/v

times instead of m? times in the sequential version.

6.5.2 Results

First, we compare initialization times  generation of triangulation, operator
and right hand side of Table 6.1. These should be constant, since the

amount of work is proportional to the number of processors and everything
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ordinates || 1-p | 2-p|4-p| 8-p|16-p|32-p

Processors

20 1.97 | 3.02 | 5.12 | 9.33 | 17.75 | 34.60
41 2.04 1 3.09 | 5.19 | 9.40 | 17.83 | 34.69
8 2.17 | 3.23 | 5.32 | 9.53 | 17.97 | 34.82
16 || 2.46 | 3.51 | 5.61 9.87 | 18.23 | 35.08
32 | 3.02 | 4.08 | 6.20 | 10.18 | 18.81 | 35.67
64 || 417 | 5.22 | 7.31 | 11.52 | 19.96 | 36.82

Table 6.2: Time for Bi-cgstab on the SC-T805 in seconds (1 step, 280 points)

ordinates 1-p 2-p 4-p 8-p

processors
2 6.6 8.5 13.2 23.6

4 7.1 9.3 14.1 24.6

8 9.3 11.8 16.4 28.0

16 13.0 15.1 20.1 30.8

32 20.0 22.9 28.3 38.9

64 34.6 37.5 42.4 57.9

Table 6.3: Time for Bi-cgstab on the PPC-GC in seconds (1 step, 70.000
points)

is done in parallel. The slight growth of this time on the PPC-GC is due to

the slow loading of the code itself onto the parallel machine.

In Tables 6.2 and 6.3 we compare the execution time for one Bi-cgstab step.
On the Transputer system, we could only store about 300 space points due
to local memory restrictions. In each column, the problem size is scaled with
the number of processors. looking at the table for the Transputer system,
we see, that the execution time is nearly independent of the number of pro-
cesses, if there are at least four ordinates on each node. This corresponds to
nearly 100% efficiency. If the load of each processor is smaller, efficiency de-
cays. Using one ordinate per node, there is only a slowdown of two using 32
times as many processors corresponding to an efficiency of 50%. These excel-

lent results can be achieved, since communication bandwidth and computing
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power are balanced on this system. i. e. ¢, &~ (.8.

On the PPC-GC floating point operations are about twenty times faster
than on the SC-T805. Since communication velocity has increased only by
a factor of four, the considerations of the last subsection predict a drop of
efficiency. Indeed, in the first column, the elapsed time grows by a factor of
five (20% efficiency) and even for eight ordinates per node, there is a growth
of execution time by a factor of two corresponding again to an efficiency of
50%. According to the time complexity, the lower bound of the efficiency is
about 20%, but obviously, the preconditioning time suffices to balance it in

the last column.

Since the relatively slow communication of the PPC-GC is peculiar among
modern parallel computers, the performance of our algorithm can be consid-
ered sufficient. Even on this computer, the solution of the applications in
Chapter 8 is accelerated to an amount, where experimenting with parameters

is possible in acceptable time.



Chapter 7

Software Development

Scientific computing software to solve “real life” problems tends to become
more and more complex. The necessary validation of program code becomes
a hard task by this development. A proof of correctness is possible only for
simple data structures and small programs. The classic approach to more
reliable software used in numerical computations is modular programminyg.
Applying this paradigm, a complex algorithm is decomposed into small sim-
ple parts which can be tested independently. But, as mentioned above, not
only methods are complex, but data structures too. Object oriented program-
ming now allows the modularization of algorithms and data by combining
both of these aspects into the same structure. This leads to the notion of

classes and objects.

The tight coupling of data and methods operating on them in object ori-
ented programming, forces design to become an important step in software
development. In previous numerical codes, this has been regarded only with

the aim of reducing memory usage and computation time.

In a complex piece of software, design of classes has to optimize a combination

of four development aims:

1. computing speed,

2. memory requirements,
3. verifiability of code and
4. flexibility.

4
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While the first two points have been investigated very thoroughly in the last
30 years see e. g. BLAS routines  points three and four are real white
patches on the map. Additionally to the known trade off between speed and
memory consumption points three and four introduce a much more compli-
cated balance. From the economic point of view we have to supplement run

time efficiency by development efficiency. In particular, software designed
to develop new algorithms must obey this point, since implementation time

usually exceeds run time by orders of magnitude.

The main idea to improve flexibility and correctness of a program lies in the
restriction of data access. In usual FORTRAN or C code a great deal of data
is handled by common blocks and global variables, respectively. These allow
unrestricted read and write access to their members, so the programmer can
not be sure where these structures are changed or corrupted. This verification
problem is augmented by the fixed structure of implementation: a change in

the data structure necessitates a change in all functions using it.

Considering application to partial differential equations, there are several
parts of the algorithms which may be separated to a high degree. There is
a base level of classes describing the adaptive grid generation and handling
of multi grid structures. This part of software is invariant for a huge class
of finite element problems. A second level on top of the first defines basic
numerical operations like application of an operator to a discrete function.
Here, the dependence on the structure of the physical problem is very strong.
A third part of code provides standard numerical solvers as cg and Bi-cgstab
for linear systems and Newton’s method for nonlinear problems. This level
should be implemented in an abstract way to allow usage for different appli-

cations.

We would like to illustrate these concepts with the implementation of DEAT,
(cf. [5]), a C++ class library for finite elements developed by the author,
Franz Theo Suttmeier and Roland Becker, as well as its application to ra-

diative transfer problems.

7.1 Grid Handling

et us first regard the abstract concept of a triangulation of a domain  as

a hierarchy of grid cells with a certain topology. TIts basic functionality is
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class Triangulation
{
void read(File);
void refine(int levels);
void adaptive_refine(double tolerance);
Cell* first_cell();
Cell* next_cell();
Vertex* first_vertex();

Vertex* next_vertex();

Figure 7.1: The Triangulation class

shown in Figure 7.1, where the triangulation is reduced to a set of cells and
vertices with some additional mesh generation functions. This mesh should
be able to consist of triangles and quadrangles as well as tetrahedra, prisms
and hexahedra in two and three dimensions respectively. This means that we
have to extract basic information from all these geometric objects to identity
them as a cell. The cell information necessary for adaptive refinement was
first collected in [34] in a very abstract way. This led to the definition of a
cell essentially following Figure 7.2 on the facing page.

The function refine of Triangulation works by traversing all cells and forcing
each cell to refine itself. Since a correct triangulation is characterized by
consistent values of vertices, neighbors and father/child information, refine
and coarse function of Cell ensure conservation of these data. Certainly, a
cell can hardly supply any of these functions, since topology information is
specified only for more concrete objects. Therefore, they are declared as an
abstract interface and are implemented in derived classes for e. g. triangles
and quadrilateral cells, where we know the number of neighbors is three or

four respectively.

The functional interface to these values enables high flexibility regarding im-
plementation. Considering e. g. the children there are two possibilities of
obtaining the corresponding pointers. They may be stored in a cell produc-
ing memory consumption, but making fast access possible. Alternatively,
they can be reconstructed from the list of cells stored in the triangulation.

According to the algorithms used as well as preference for memory or speed
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class Cell

{
int number_of_vertices( );
int number_of_neighbors();

Vertex* vertex(int nr);
Cell* neighbor(int nr);
Cell* father();

Cell* child(int nr);

int level();
int index();
void refine();
void coarse();

double  refinement_criterion();

Figure 7.2: The Cell class (topology and refinement)

optimization, these techniques should be chosen appropriately. The inter-
face of Figure 7.2 allows the necessary internal change of representation on a
purely local basis, since implementation details are hidden for other functions.
The correctness of working code using this function child is not influenced by

internal changes, if only the result of child is correct.

We ensure for each function, that all objects involved in its operation

not only explicitly modified objects are in an admissible state after the
function returns control to the calling context. Take e. g. cell refinement as
shown in Figure 7.3 on the following page. We start with a valid locally
refined triangulation (a). The cells are linked by the mutual neighborship
relation (9 and the “is child of 7 relation ||. We display two consecutive layers
of refinement on top of each other. After splitting the middle cell (*) into
four children, the topology is corrupted (h). Setting topology information
for the children (c), the cell we operated on is valid, but the operation has
destroyed the triangulation structure: there is only an unidirectional neigh-
borship relation ~ from the children of (*) to their neighbors. Finally, the
topology information of neighboring cells is updated too and the topology is

valid again (d). Compared to other strategies, this process not only avoids
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Figure 7.3: Refinement of a cell
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Figure 7.4: A hanging node

expensive postprocessing, but enables us to stop refinement after processing
an arbitrary cell (which is actually done in adaptive algorithms). While the
states (b) and (¢) are “virtual” grids never to be seen in an application, (a)

and (d) represent states, where further operations may be inserted.

7.1.1 Refinement Edges

Refining a grid locally, there are edges between different levels of refinement
and the problem of “hanging nodes” arises. Using special interface cells
not only disturbs the topology of the grid hierarchy, but causes difficulties
implementing accurate grid transfers. We decided to choose numerical treat-
ment of these nodes. For theoretical treatment of our methods, we use the

formalism of “hierarchical bases” developed in [43].

For sake of simplicity, we will refer only to bilinear elements in the generic
situation of Figure 7.4. Tt is obvious from the construction, that the method

applies to all conforming shape functions.

Cell @)1 needs five shape functions, which are denoted in the hierarchical

basis notation

e the 4 usual bilinear shape functions ¢ ... ¢4 on a quadrilateral cell and

e 1 additional function 5 satisfying
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— the Lagrange interpolation condition ¢5(P;) = 65, for all points of
Qh
— w5 = 0 on the non divided edges of ()1 and

— (o5 18 linear on the edges )1 N Q)5 and Q1 N Q5

We remark, that we do not imply any knowledge of the behavior of @5 in
the interior of (J1. Tt should be chosen to offer good interpolating properties.
Outside @1, on )2 and )3, w5 has the shape of a standard bilinear finite

element function.

While the hierarchical basis approach is natural for ¢y, from the point of
view of cells ()3 and @3, the shape functions in P, Py and Ps should be
in nodal representation. We need a transformation between the hierarchical
and nodal base functions {¢;} and {¢;}. For the construction, we evaluate

a function uy = Zuﬁ@; = Zufvd)i in the mesh points:

u(P) = u) = ull
u(Py) = uf = uf (7.1)
u(Ps) = uwl = ull + %uff + %uif

This results in the matrix €' of basis exchange (only considering the inter-

esting points)

Cull = o (7.2)
ul 10 0\ [ulf
ufl\f =10 1 0 uf (7.3)
uly 15 15 1 ul?

At this point we have to decide, whether there should be a degree of freedom
at point P5. First, we consider the case of adding this degree of freedom.
Interpolation estimates for Qo and ()3 stay the same, while they are not
worse (compared to the standard case) for 1. As we use the complete
matrix in nodal representation, the element matrices of ()3 and ()3 have the
correct form. We have to modity the element matrix of cell @}1. We build it

as usual

(J,Z:(1,(4,97;,99'74)@1 ,7=1,....5

The implementation of this algorithm is simplified by the following remark:
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Remark 7.1 The hierarchical basis matrix with additional hanging nodes
consists of two parts. A sub-matrix corresponding to the usual nodes co-
incides with the standard element matrix without hanging nodes. For each

hanging node, it is added one row and column due to the extra base function.

To get the nodal representation required to build the global matrix, we apply

the basis transfer

AN =cARCT (7.4)

Alternatively, the node P5 could be omitted. This has algorithmic advantages
in the use of element matrices. In particular, R. Becker has developed a highly

efficient multi grid algorithm based on this technique in [4].

In this case, we have to deal with the problem of node Ps occurring in the
matrices of ()2 and ()3 but not in (1. Tt is of algorithmic advantage to let
point. Ps be part of the mesh, so we search a treatment on matrix level. The
hierarchical representation of u(Ps) is a natural choice. The desired behavior
is achieved by setting ul’ = 0 and thus omitting base function 5. This way
of cancelling node values at Ps clearly involves no modifications of the right
hand side, as would be necessary in nodal representation. Accordingly, we

have to apply the inverse base transformation as in (7.4), where C is deprived

of the third row. (7.3):

N
u
" 1 1
| = 1 4
u 01 =
4 2\l

This conforms to first averaging u¥ and u} to ul’, then applying the operator
A and finally distributing the value of u!’ to the neighboring points. The
corresponding changes of base have to be applied to the right hand side

generated by finite element integration:

.f1H = f1N + f5
ff:fi\f‘l‘.fa-
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Method rich | cg | Bi-cgstab | cr | GMRES | QMR
o — Au * * * * *
d=bh— Au K K K K K K
v — /Z\’1u * * * * * *
v=ATu *
v = /Z\*Tu *
o — -1 * * * * *
o — o K K K K K
v = au + yw * *
v=v+u * *
v=u0v+au * *

v = oav+ fu * * *
v =av+ fu+yw *

Table 7.1: Common iterative solver interface

7.2 Linear Solvers

In section 5.3 we pointed out the importance of a sophisticated, problem
adapted matrix implementation. Furthermore, special programming tech-
niques like parallelization require the usage of vectors with non standard
behavior. On the other hand, different problems require different linear so-
lution methods. Especially considering non symmetric linear systems, there
have been developed several methods. Since with exception of GMRES

there is no sufficient theoretical justification for these methods, they have

to be chosen by trying for a special problem.

Since the implementation of new iterative solvers like GMRES or QMR meth-
ods with Took ahead is rather complex, we consider it an important feature
of a finite element programming library to provide a means for easily testing
iterative methods. The methods should be provided by the library and use
problem dependent matrix vector and vector vector operations like those
described in sections 5.3 and 6.3. To allow a high degree of optimization,
we propose the rather fat interface shown in Table 7.1. From this table it is
clear, that the solvers have different requirements to matrices and vectors.
We implement the iterative methods as function templates, taking matrix

and vector types as template arguments. Using an abstract matrix class
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would not be a good idea since the user would have to provide for even the
unneeded functions of the interface. Additionally, the vector type would not
be free and there would be a lot of insecure casting operations or run time

checking, which slows down development of new codes considerably.



Chapter 8

Applications

Development of astrophysical models is especially difficult since experimental
possibilities are very restricted. There are no ways to change parameters on
an existing system and it is also impossible to observe an object from different
directions if it is not rotating. So we are restricted to the information we
obtain by electro magnetic emission of distant objects in the direction of
earth, in particular visual light, infrared and radio waves. A typical setting

for these problems is shown in Figure 8.1. Here, the observed system is

Figure 8.1: A typical observer situation
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supposed to be very far from earth. Even with powerful telescopes angular
resolution of the object is not possible, it appears as a point source. The only
information we get is time and wavelength dependency of electro magnetic

radiation.

Verification of existing models of distant objects is only possible by numerical
simulation and comparison with measured data. In the second section, we do
such calculations for the problem of a circumstellar dust cloud. On the other
hand, simulation allows to change model parameters to get more insight into
physical processes. This effect is the aim of our simulation in the first section
on Eddington luminosity. Even in a simple geometric situation, a higher
dimensional simulation reveals effects not observable in the one dimensional

case.

8.1 Eddington Luminosity

Up to now, models based on one dimensional calculations predict a maxi-
mum luminosity of a star, the so called Eddington luminosity, which cannot
be exceeded. A higher radiation flux would tear the star apart, since radia-
tive forces would exceed gravitation. Actually, there are objects observed,
e. g. novae, which seem to emit much more radiation, than predicted by this

theory.

The crucial ingredient to allow these one dimensional calculations is hor-
izontal homogeneity. Now there are considerations, that by omitting this
homogeneity a much higher luminosity is possible. On the other hand, if

explosions occur, they could be local and do not destroy the star.

We made comparative simulations to investigate how the maximum radiative
pressure gradient and emitted radiation depend on inhomogeneities of the
material. The setting for these calculations is shown in Figure 8.2 on the
following page. We consider a smooth layer spreading horizontally with an

oscillating opacity

Xmax + Xmin Xmax — Xmin )
cos(mx) | .
2 2

x(x,y) = cos(my) * ( 4

This layer is illuminated by upward radiation from the interior of the star.

The results of these calculations consist of
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Figure 8.2: Model configuration to investigate Eddington luminosity

scatter = 99.99% scatter = 90%
o Yo | Fome Fn | Fn) Foes || P B | Fine/ Fooms
99 101 || 0.00018 0.0009 25 0.71 0 0
50 150 || 0.00017  0.005 28 0.80 0 0
9 191 || 0.00015  0.019 100 091 10°° 1077
1 199 || 0.00022  0.086 391 0.93 0.036 0.39

Table 8.1: Radiative force and emitted radiation

1. the radiative force field Fp(z) = [q O I(x,0) d} with its maximum

value

2. and the mean radiation emitted to the top Ky = [?nT(2,9n) dz.

This example is of moderate computing complexity, since all coefficients are
smooth and even the solution does not have strong jumps. Therefore, it is a
suitable application to verify the discretization and solution algorithms of our

program without introducing additional difficulties due to localized features.

We show the relation between maximum radiative force in the interior of the
domain and emitted radiation in Table 8.1. Values for different variations of
the extinction and for two different albedos are given. We see, that in the
case of high albedo, the quotient of K and F,, .« grows about a factor of 15
compared to the inhomogeneous problem. If scattering is smaller, this growth

is even more dramatic. In the cases of a homogeneous matter distribution,
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Figure 8.3: Radiative pressure field for small and large variation of y.

the simulation resulted in a luminosity of zero and only in the last line, there

is a significantly positive value of Fy.

Figure 8.3 shows the radiative pressure field for the two extremal configura-
t10nS Xmin = 99 and ymin = 1. The background color shows the opacity y
with darker grey for higher opacity. While the field is always directed up-
wards in the case of small variation, it has additional structure in the other
case. It is an interesting result, that radiative forces are directed towards
regions of higher density. This feature could result in a destabilization of
the layer structure such that a homogeneous layer is not a stable configura-
tion. Qur simulations should be combined with a model of hydrodynamics

to understand the development of such a layer.

8.2 Dust Enshrouded Stars

Many stars, especially young ones are surrounded by dense clouds consisting
of dust and gases. These clouds are heated by radiation from the star and
emit themselves light of larger wavelengths due to Planck’s formula (2.3).

The temperature field in the cloud is given by the energy equation in (2.11).

The geometry of the cloud is enforced by hydro-dynamical processes. Around
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a central star, there is a region, where due to the high temperature no dust
can exist. This hole is about ten radii of the star. Outside this area, there is

dust of a high density decaying with the square of the distance to the star.

The aim of this work was to accelerate the solution of the monochromatic
radiative transfer equation, to allow the solution of the full system in a further
step. We reach this aim by the adaptive and parallel algorithms described
in Chapters 4 and 6, respectively. The refinement history in Figure 8.4 on
the next page shows four meshes generated during the adaptive refinement

pProcess.

With our new adaptive approach we can predict the discretization error of
our method. For the first time, this estimate is sharp in the sense that the
true error is overestimated by a factor below ten on sufficiently fine grids. We
achieve this by using local weights (local in space and ordinates) obtained
from the approximation of the second derivative of the dual solution as de-
scribed in Chapter 4. For a graphical representation of the dual solution to
the intensity emitted in direction WSW confer to Figure 8.5 on page 90. We
show the dual solution for different ordinates, the ordinate of interest (direc-
tion WSW) and the opposite one in the first row as well as two intermediate
ordinates W and S in the second. Note, that the dual solution is one order
of magnitude larger for the WSW ordinate itself than for all others. The
smoothness of the dual solution causes that the estimate obtained by for-
mula (4.27) on page 52 is reliable with a safety constant Cge. & 1.5. A mesh
history obtained by this estimate and the numerus clausus criterion always
doubling the number of cells is shown in 8.4 on the next page. Although the
estimate is dominated by the residual, we observe stronger refinement in the
WSW direction due to the dual solution part.

In Table 8.2 we compare the refinement optimal for 1.2 error control with the
boundary error estimate. Using the numerus clausus refinement strategy we
generate meshes of about the same sizes for both criteria. Since the constants
in the L? estimate are not sharp enough and the estimate is asymptotically
not optimal, we do not use it to estimate the error. Note that we would have
to apply inverse estimates and trace theorems to estimate the boundary in-
tegral value desired. We see that the indicator applying the dual solution
converges much faster to a limit of about 0.617 (obtained by extrapolation).
The I? indicator needs about 8 times the number of grid points to reach the

same accuracy as the estimate. We obtained similar results for different sets
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Figure 8.4: Refinement history for the dust cloud (steps 1, 2, 4 and 6)
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Figure 8.5: Dual solutions for the boundary integral estimate



8.2. DUST ENSHROUDED STARS 91

I? indicator | boundary indicator estimates
points  value | points value 7 @
564 0.181 576 0.417 | 3.1695 23.77
1105 0.210 1146 0.429 | 1.0804  8.62
2169 0.311 2264 0.461 | 0.7398  7.11
4329 0.405 4506 0.508 | 0.2861  3.94
8582 0.460 9018 0.555 | 0.1375  3.33
17202  0.488 | 18857 0.584 | 0.0526  2.39
34562  0.537 | 39571 0.599 | 0.0211 1.76
68066  0.551 | 82494 0.608 | 0.0084  1.40

Table 8.2: Comparison between indicators based 2 error and boundary

integral error control

of parameters, so this comparison gives evidence that the estimates using
computed dual solutions generate grids with much less cells than global indi-
cators. This is due to the fact that the new approach we apply uses a locally
weighted residual to estimate the error instead of a global stability constant.
Since the weights are computed by measuring the possible contribution of
local residuals to the error functional, the new estimator is much finer than
the one using global stability. Additionally, the last column shows that the

estimate is a sharp upper bound for the error of the boundary integral.

From the numerical point of view, the problem is very difficult to solve.
The intensity inside the star is 100 in all computations, but the values at
the houndary are only between unity and 1077. The advantage of the dual
solution approach lies in damping out of the residual in the parts of the
central region, where the intensities have minor influence on the boundary
integral. The result is the ability to calculate a boundary integral value of
3.5-10"7 up to an absolute accuracy of about 10°7 using 37,000 mesh points
only (optical depth 21, ¢ = 0.5%). We can compute the integral value of
0.00054 up to a guaranteed relative accuracy of 5% on a grid of the same size
in case of a smaller optical depth of about eleven. The computation with
16 ordinates needs 2:34 hours on the PPC-GC including the complete mesh
generation. This should be seen in relation to the about same amount of time
necessary for coarse computations without error control using conventional
methods. Those simulations are suitable to give an impression of the global

qualitative behavior of the solution, but they often miscalculate the boundary
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Figure 8.6: Relative emission of the dust cloud for a star radiating with

intensity 1 (curves for different scattering parameters)

integral value by orders of magnitude.

For a wide range of the spectrum, the decoupling of wavelengths is a good
approximation of the physical properties. For these data, we display the
ratio between radiation of the star and the emission of the cloud for different
opacities in Figure 8.6. The curves show the radiation dependent on the
optical depth defined by the integral of y over the line of sight. These curves
show a strong dependence on o if the optical depth is high, whereas scattering
has small influence in the optically thin case. These results emphasize the
necessity to produce accurate solutions for the scattering dominated problem.
By multiplication of these computed values with the appropriate values of
Planck’s function, we obtain the emission profile of the dust cloud for small

wavelengths (visual light).
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8.3 Further Development

So far we have shown only two dimensional applications of our methods.
We computed a cloud similar to that of the first section with a full three

dimensional geometry. The results are shown on the color plate. The pictures
show the light emitted by the cloud in the direction of the observer, i. e. the
appearance of such a cloud in the sky. The first figure shows the geometry
of the ellipsoidal cloud with three embedded stars. Pictures b and d demon-
strate the results for a high opacity observed from different points of view.

Figure ¢ shows the simulation for a smaller opacity.

The techniques used in the two dimensional case are all applicable in three
dimensions, but since the memory requirements are much larger, the compu-
tational grids have to be rather coarse on existing computers (the maximum
of about 100,000 cells on a 64 M-Byte node leads to about 30 cells in each co-
ordinate direction). A domain decomposition approach would not solve this
problem, since we need about 300 1000 ordinates, thus the parallel machine
is fully utilized using ordinate parallelization too. Therefore, we can only
simulate with low resolution to get qualitative results. The accurate solu-
tion of three dimensional radiative transfer problems requires more powerful

computers than those available at the TIWR by now.

The second extension of our algorithms is the inclusion of the wave length
dependence. There are three mechanisms where the coupling of intensities

for different wave lengths occurs:

e The scattering phase function P(qg, ) is only an approximation of the
redistribution function R(A, 9, A, ). This extension is straight forward,

since the structure of the coupling is the same as that of scattering.

e Another transport term du/AdX may be introduced to model Doppler

effects due to fast movement of the dust particles.

e The equation of local energy equilibrium

/ //{(m,197)\)7/,(r1:719,)\)d19 ) = /ﬁ(m,ﬁ,)\)B()\,T(m))d)\

R+ 52 R+
causes a nonlinear coupling of wave lengths. This equilibrium is im-
portant to model infrared radiation of dust clouds, e. g. to compare
with observer data of the ISO satellite.
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The last mechanism has no additional memory requirements, since the wave
length integral can be accumulated step by step avoiding storing the intensi-
ties for each wave length. The same is true for a large class of redistribution
functions. In particular the extension of our adaptive concepts to the wave
length dependent problem is interesting, since coefficients and solution can

differ extremely between two nearby wave lengths.
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