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150 Da� h�o��energis�e Li�t, wie da� der Sonne, de� Phosphor� in Leben�luftverbrennend, i� blendend und farblo�. So kommt au� da� Li�t der Fix�ernemei�en� farblo� zu un�. Diese� Li�t aber dur� ein au� nur wenig tr�ube�Mittel gesehen, ers�eint un� gelb. Nimmt die Tr�ube eine� sol�en Mittel� zuoder wird seine Tiefe vermehrt, so sehen wir da� Li�t na� und na� eine gelbroteFarbe annehmen, die si� endli� bi� zum Rubinroten �eigert.J. W. v. Goethe, Zur Farbenlehre
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Chapter 1IntroductionThis thesis is devoted to the development of an e�cient algorithm to solvemulti{dimensional radiative transfer problems for models including scatter-ing. Aside from the necessity to save computation time, the amount ofmemory needed to store operators and data is a severe obstacle on existingcomputers. We therefore review the whole process from discretization oversolution algorithms to implementation techniques to provide a means to solveastrophysical problems with reasonable resources of time and storage. Ourmain direction of improvement are the generation of more suitable grids andthe implementation on supercomputers.We investigate the radiative transfer equation in the form#�rxu� (�+ �)u = � ZS2 P (~#; #)u(x; ~#) d~#+ �B(�; T (x));where �, �, P and B are positive functions described in detail in Chapter 2.The circum{stellar dust cloud of Figure 1.1 on the following page serves as amodel problem for the development of our algorithm. A star is centered in acloud of scattering and absorbing material. Around the star there is a holewhere the dust has evaporated. The diameters of the star, the hole and thecloud behave typically like 1:10:100. Matter density is usually high at theinner edge of the cloud and diminishes to the outer parts. This �gure showsthe main features of astrophysical radiative transfer problems: huge di�er-ences in length scales and rapidly changing parameters. A solution methodfor these problems must be able to handle these di�culties automatically by9



10 CHAPTER 1. INTRODUCTION
Figure 1.1: Dust enshrouded starresolving the inhomogeneous parts to a su�cient accuracy without spendingtoo much work in regions of smooth data and solution.Opposed to the common idea of discretizing the derivative operator on thespace domain 
 � R3 and the integral operator in the ordinate domain, theunit sphere S2, independently, we show a possibility to combine these intoone Petrov{Galerkin approximation on 
�S2. Clearly, this is a crucial steptowards a posteriori error control in the sense of Johnson et al. (cf. [12]).Additionally, it leads to a mixed �nite element method enabling more generalmeshes than the standard tensor product splitting into L2(
)
L2(S2). Thisscheme includes the opportunity of using e�cient parallelization techniquesand obtaining highly accurate solutions. Furthermore, we replace the �nitedi�erence and quadrature schemes used by Auer, Wehrse and many others(cf. e. g. [2,3,35,36,38]) on 
 and S2 by state of the art methods.Instead of the widely used �nite di�erence or �nite element upwind schemes,which are of �rst order only, we apply the streamline di�usion �nite elementmethod to the spatial discretization. This is a stabilization of the standard�nite element method developed specially for convection dominated equa-tions by Hughes et al. in [22{24]. Thus it is best suited for the case of lowscattering and shows convergence of second order on all our meshes and with



11standard linear trial functions. To cover the scattering dominated case, weuse a weighted form of this method. Since the streamline di�usion �nite ele-mentmethod is a Petrov{Galerkin scheme, it provides the base for systematica posteriori error analysis.Subdividing the unit sphere of R3, we replace the usual longitude{latitudemesh by a more regular triangulation derived from regular polyhedra. Thiseliminates artifacts in the discrete solution due to the polar singularities ofplanar charts of S2, so{called ray e�ects. Since it is more similar to anequidistribution, it reduces the number of required ordinates considerably.We show that application of the discrete Galerkin method with piecewiseconstant trial functions does not introduce more complexity due to multipleintegral evaluations in computing �nite element matrices.Due to the high dimension of the computational domain the common ap-proach of equidistant grids or tensor products of one{dimensional meshesleads to systems of untreatable size. Therefore, based on a posteriori errorestimates, we derive an adaptive grid generation technique to avoid the mainobstacle in solving radiative transfer problems, namely the huge amount ofdata due to high dimension of the computational domain and localized sharpedges in the resulting intensity distribution. Here adaptivity should be seenfrom two points of view: �rst, it provides reliability by limiting the actualerror from above using error estimates. Compared to standard a priori con-vergence analysis, we can guarantee the solution value to be in a computedinterval. We apply a new technique, that not only allows estimation in theenergy norm like that proposed by Verf�urth in [41], but is suitable for any er-ror functional. The estimate is derived by analyzing a dual problem adaptedto the speci�c error norm. As far as we know, this is the �rst time thistechnique is applied to radiative transfer and it shows that reliable solutionsare actually computable even for such complex models. Second, it savescomputing power by determining where and how far to enlarge the �niteelement space and where accuracy may be reduced. This may be achievedby increasing the polynomial degree of shape functions or subdividing gridcells. Since the analysis of the radiative transfer equation does not guaranteehigher regularity of solutions, we choose the latter way. If the computationof the global behavior of the solution is required, grid re�nement is controlledby a criterion, which combines similarity to the error estimate with minimalcomputational overhead. This method can generate well adapted grids in



12 CHAPTER 1. INTRODUCTION
Figure 1.2: Adaptive mesh for con�guration of Figure 1.1.reasonable time. To compute single values extracted from the solution, weapply a new technique involving the solution to a dual problem. This methodprovides us with a mathematically strict and sharp error estimate suitable tocontrol mesh re�nement. We use local re�nement to generate the adaptivegrids. This allows us to avoid storing the matrices due to a convenient scalingproperty. As an important feature, this grid generation technique ensures thestreamline di�usion method to be of optimal order even on extremely locallyre�ned meshes. A typical mesh generated for the dust cloud con�guration isdisplayed in Figure 1.2.We determine the solution of the discrete linear algebraic system by a com-bination of non{symmetric Krylov space methods with adaptive multi{gridschemes. Krylov algorithms provide a nearly optimal inversion of the scat-tering operator in two steps. The discrete transport operator \pollutes" theeigenvalues of the scattering matrix, resulting in a convergence rate rapidlydeteriorating on grid re�nement. Our multi{grid preconditioning techniquecounters the pollution leading to convergence independent of re�nement. To-gether with an e�cient local smoothing iteration, this yields a solution tech-nique of optimal complexity.Since radiative transfer on a three{dimensional domain is at least a �ve{



13dimensional problem, the amount of storage required is enormous even foradaptive methods with optimal grids. Therefore we implemented a parallelversion of our solution algorithm to exploit the extra resources provided bymodern multi{computers. Since well{resolved problems take some hours ofcomputing time on a workstation and the monochromatic equation has tobe solved several hundreds of times for one model, parallelization providesa way of reducing this time to a reasonable amount. The structure of theradiative transfer equation at a �rst glance o�ers several ways for paralleliza-tion, but it will be shown that they are of di�erent value. For the well suitedordinate parallelization we will show satisfactory e�ciency results on parallelcomputers.Approaches to programming now in use in numerical mathematics are notsuited for the development of scienti�c computing software. The problemsand solution methods for \real world" simulation are much too complex andneed the application of software engineering techniques. We develop a newapproach to �nite element codes using object oriented programming. It o�ersa means of verifying programs and producing reliable software on the level ofsimple functions as well as on the application level. This way, the handlingof the usual hard tasks like adaptive grids and parallelization takes place in awell de�ned formalized environment, making prediction of correctness morereliable.We begin this thesis by presenting the physical problem to be solved inChapter 2. Then we give an overview over analytical results for the radiativetransfer equation. The following chapter is devoted to variant discretizationmethods of the integral and di�erential operators and compares methodspreviously used with our discretization. In Chapter 4 we derive error es-timates for Galerkin discretizations of the radiative transfer equation andpropose various adaptive re�nement strategies. The numerical solution ofthe discrete system is discussed in Chapter 5. We proceed with the presen-tation of parallelization methods for these solution algorithms. The SeventhChapter is devoted to the software development techniques applied to imple-ment the proposed algorithms. We conclude with two real applications fromastrophysics and show the enhancements achieved by our methods.



Chapter 2Physical Problem andMathematical ModelWe consider physical settings of a class with the following properties: In adomain 
 there is a thin gas, with negligible interaction between particlesof this gas. Instead of this interaction, there are collisions of the particleswith the atoms of a �xed matter distribution. The dynamics of this gas isdescribed by Boltzmann's equation. Since the gas reacts with external matteronly, the | generally quadratic | collision term of the equation reduces to alinear functional. The resulting equation for the gas density % in phase space
�R3 has the formv � r%(x; v) + �t%(x; v) = ZR3 R(v; v0)%(x; v0) dv0 + f (2.1)Remark 2.1 The approximation made here is opposite to that leading toNavier{Stokes{equations. There the quadratic interaction term forces allparticles in a small space region to move into the same direction, resultingin a relation v = v(x).While for usual gases, the approximation leading to equation (2.1) is validonly for uninterestingly small densities, there are some kinds of particles,for which it is suitable even for moderate densities: neutrons, neutrinos andphotons. While in the �rst case it is a good approximation even for neutrondensities occurring in nuclear reactors, it is of very high accuracy for photons.This fact is due to the principle of wave superposition resulting from the14



2.1. RADIATIVE TRANSFER 15linearity of Maxwell's equations. The only exception is electro{magneticradiation of very high energy, where photon{photon scattering occurs dueto quantum e�ects. These can be neglected, since we are only interested inoptical and infrared simulation.Remark 2.2 Since we are particularly interested in electro-magnetic radia-tion, we will only discuss the photon transport problem further. Most resultscan be adapted easily to the neutron transport case.2.1 Radiative TransferObviously, using the velocity v makes no sense for photons, since they al-ways travel with light speed c � 3 � 108 msec. It is replaced by the photonmomentum 2�}=� | } denoting Planck's constant and � the wave{length| thus splitting the momentum space into directions in # 2 S2 and absolutevalues represented by �. After scaling (} = 1 and c = 1) and application ofKirchho�'s law, (2.1) may be written as radiative transfer equation#�rxu(x; #; �)� ��(x; #; �) + �(x; #; �)�u(x; #; �)= ZR+ ZS2 R(~�; ~#; �; #)u(x; ~#; ~�) d~# d~�+ �(x; #; �)B(�; T (x)) (2.2)Here the variables are chosen according to the macroscopic quantities de-scribed e. g. in [39]. � and � are the absorption and scattering coe�cientsrespectively. Finally,B is Planck's radiation function for black bodies de�nedby B(�; T ) = 4�c}�5 1e2�c}=�T � 1 (2.3)We scale all lengths by a typical length for the model, e. g. the diameter ofthe whole domain. Then, all coe�cients are pure numbers and we can de�neu and B dimensionless too (cf. e. g. [29]).Often, the frequency coupling in the redistribution function is negligible.This leads to the monochromatic radiative transfer equation#�rxu� (�+ �)u = � ZS2 P (~#; #)u(x; ~#) d~#+ �B(�; T (x)) (2.4)



16CHAPTER 2. PHYSICAL PROBLEMANDMATHEMATICALMODELIt is this form, we are mostly concerned with in our work. Apart from itsown physical relevance for visual light it serves as example and as solutionstep for more complex models.The physical meaning of the coe�cient functions introduces the followingproperties: � > 0 (2.5)� > 0 (2.6)B > 0: (2.7)The integral kernel P ful�llsZZS2 P (~#; #) d~#d# = 1 (2.8)P (#; ~#) = P (�~#;�#) (2.9)P (#; ~#) = P (~#; #): (2.10)Remark 2.3 While condition (2.8) can be ful�lled by an appropriate choiceof �, (2.9) and (2.10) are in many important cases ensured byP (~#; #) = f(�) with � = ^(#; ~#);namelyf(�) = 8<: 1�(S2) isotropic scattering316��1 + cos2 �� Thomson and Rayleigh scattering.2.1.1 Energy Transfer by RadiationThe evaluation of observer data from accretion discs and circum{stellarclouds requires a more complex radiative transfer model. Here, the heat-ing of absorbing matter by the radiation �eld is taken into account, leading



2.2. ANALYTICAL RESULTS 17to the following system of equations:#�rxu(x; #; �) =� ��(x; #; �) + �(x; #; �)�u(x; #; �)+ ZR+ ZS2 R(~�; ~#; �; #)u(x; ~#; ~�) d~#d~�+ �(x; #; �; T )B(�; T (x)) (2.11)ZR+ �(x; #; �)B(�; T (x)) d� = ZR+ ZS2 �(x; #; �)u(x; #; �) d# d� (2.12)8(x; #; �) 2 
� S2 �R+:This model is a consistent description of the energy distribution in a radiationheated stationary gas or dust cloud. One of its applications is the modelingof infrared radiation from those clouds. The occurrence of this radiation isessentially due to the energy balance equation (2.12).The solvability of system (2.11{2.12) is ensured by analytical results in [20].For the intended operator splitting approach, each iteration step will need thesolution of several equations of type (2.4). Therefore, the e�cient solutionof (2.4) is a crucial step.If a consistent radiation hydrodynamic model is desired, (2.11{2.12) has tobe completed by the equation of balance of momentum coupling the �rstmoments of the Boltzmann equations for photons and matter.2.2 Analytical ResultsIn the following we concentrate only on the monochromatic radiative trans-fer equation (2.4). First, we want to introduce some operators to simplifynotation. Let T# = #�rx T =O# T#�# = � Z P (~#; #)~: d~# � =O# �#:



18CHAPTER 2. PHYSICAL PROBLEMANDMATHEMATICALMODELWith these abbreviations, (2.4) readsTu+ �u� �u = �f (2.13)The equation given in the interior of the domain, , we have to prescribeboundary conditions before we can attempt to solve the radiative transferequation. With n�(x) the outer normal to the boundary � of 
 at x, wede�ne two classes of boundary conditions: the in
ow conditionu(x; #) = g(x; #) on ��; (2.14)where �� = n(x; #) j n�(x) � # < 0o (2.15)and re
ecting boundary conditionsu(x; #) = Zn�(x)�~#>0 P�(~#; #)u(x; ~#) d~# 8 n�(x) � # < 0: (2.16)Linear combinations of these conditions are possible to model translucentboundaries.2.2.1 Investigation of Coe�cientsThe behavior of solutions to (2.13) depends on the parameters � and stronglyon �. The numerical solution should be able to re
ect these di�erent solutionproperties and we shortly discuss the in
uence of the coe�cients.Considering the astrophysical problems we are primarily interested in, thesecoe�cients vary over the space domain between 0 and 104. The simplest caseclearly is �� 1 and �� �: Here (2.13) converges to a singularly perturbedversion of u = f . In the following analysis we therefore assume � � 0, havingin mind, that taking larger � always simpli�es the solution.We examine the two extremes � = 0 and �!1. In the �rst case, the radia-tive transfer equation decouples, leaving a set of pure convection equationsto be solved independently.For large values of �, there exists an analysis done by Borysiewicz et al.in [8, 9]. We give a short summary of their results, which they obtain byusing a least squares formulation of (2.4).



2.2. ANALYTICAL RESULTS 19Lemma 2.1 Let assumptions (2.5) to (2.10) be ful�lled and let � > 0. Thenequation (2.13) has a unique solution u withkuk 6 c (2.17)u = 1X0 1�� u� (2.18)where c is independent of � and u� solvesD1�ru0;r'E+ D�u0; 'E = 0 (2.19)D�u1; 'E = D�f; 'E� a (u0; ')D�u�+1; 'E = �a (u� ; ') � = 1; 2; : : :with a (u; v) = D(�� �)�1#�rxu; #�rxvE+ D�u; vE:This result shows, that for large values of � the solution of radiative transferproblems becomes independent of the ordinate variable and is well approxi-mated by solutions to Helmholtz's equation.2.2.2 RegularityIn the case of zero scattering, we have only regularity of the correspondingconvection equations. That means that we gain one order of derivative inthe transport direction, but the solution is only as regular as the data incrosswind direction.It has been shown (cf. e. g. F�uhrer and Rannacher in [17]) that the intensityu integrated over S2 solves the weakly singular Fredholm integral equationv � �v = r��v�(x) = Z
 exp � jy�xjZ0 �(x+ t y�xjy�xj dt!v(y)�(y)jy � xj2 dy (2.20)Pitk�aranta investigated the regularity of solutions to equations like (2.20)in [31,32]. His main result is the following:



20CHAPTER 2. PHYSICAL PROBLEMANDMATHEMATICALMODELLemma 2.2 Let v be solution to equation (2.20). Then v 62 H3=2(
) regard-less of the regularity of the data.This result is due to inconsistencies of the model near the boundary. In thescattering dominated case, we may use the expansion of lemma 2.1 to obtainhigher regularity in the interior of 
.



Chapter 3DiscretizationBoltzmann equations in theoretical physics are often solved by Monte{Carlo{methods. These schemes converge fast in the case of long mean free pathlengths (� small), but they have two disadvantages. Their convergence is veryslow for optically thick (� � 1) media and error control is only asymptoticwith unknown constants. Therefore we apply a discretization method tocover a wider range of applications.Due to the complex structure of the radiative transfer equation, there arenumerous possibilities for its discretization. They can be divided into twomain classes:1. separate discretizations for the integral and di�erential operator and2. complete discretizations for the whole equation.The �rst class uses well known techniques for each part of the equation. Theobvious advantage is the re-usability of well{proved methods by combiningthem into a tensor product discretization. We present some methods usedin our work. On the other hand, convergence must be proved via a semi{discretization analysis (cf. [26]).For the integral as well as the di�erential part of the radiative transfer equa-tion we distinguish between Galerkin and non{Galerkin discretization me-thods. While the latter are widely used in physics and engineering, they do21



22 CHAPTER 3. DISCRETIZATIONnot allow optimal error estimates obtained for Galerkin methods by exploit-ing additional information on the error, so called Galerkin orthogonality.For the discretization of the integral part we show equivalence between astandard collocation and a discontinuous �nite element scheme. This enablesthe application of superconvergence results to the collocation method as wellas easy implementation of the �nite element method.In the literature many methods have been proposed to discretize the spatialtransport operator (for a review cf. F�uhrer [14,15]). First, there is the methodof short characteristics proposed by Olson et al. [30]. Standard Galerkinmethods for convection problems are proven to be stable only in L2 andshow oscillating behavior for discontinuous solutions. Therefore,the so called�nite element upwind scheme was used by Turek et al. in [36{38]. Sincestandard upwind schemes are only of �rst order accuracy, we decided toapply the streamline di�usion method, which is of order 3=2 to 2 dependingon the mesh structure (cf. [44]).The approach of directly discretizing the whole radiative transfer equationo�ers the possibility of a theoretical justi�cation and has to be considered forany approach with error control. Its implementation is | for special cases |equivalent to a semi{discretization and thus does not require extra e�ort inevaluating integrals. Additionally, theoretical analysis avoids semi{discreteproblems and symmetry conditions for the angular discretization as requiredby Asadzadeh (cf. [1]).3.1 Basic Finite Element ResultsBefore we cite the most important convergence results for the �nite elementmethod, we give a short overview over our notation. Given a domain 
 2 Rn,let T be a subdivision of 
 consisting of cells K 2 T . These triangulationsare regular in the sense of Ciarlet [10] with the exception, that we allow onehanging node on the edge of a cell. The mesh parameter h is a piecewiseconstant function on 
 given by the diameter of the cell around each point.For globally re�ned grids, h may also denote the maximum diameter of allcells.



3.1. BASIC FINITE ELEMENT RESULTS 23The cells are de�ned by the mapping of a reference cell K0 into the domain
, in particular� linear mapping of the unit simplex Sd0 in R2 and R3,� bilinear mapping of the unit square Q20 onto a quadrangle,� trilinear mapping of the unit cube Q30 onto a hexahedron with possiblycurved surfaces and� bilinear mapping of the unit prism S20 � [�1; 1] onto an arbitrary prismin R3.On such a grid we de�ne spaces of piecewise polynomial �nite element func-tions 'h continuous at the cell edges. These functions are images of linear,bilinear and trilinear polynomials on the reference cell K0 under a transfor-mation of the same type. In the following we will call them to be in e. g.Q1(K).Convergence of the �nite element method is usually proved in two steps.First, we show, that the error can be bounded in terms of approximationproperties of the �nite element space Vh.Lemma 3.1 Let a(u; v) be a continuous elliptic bilinear form on the functionspace V withja(u; v)j 6 Lkukkvk and a(u; u) > �kuk2for all u; v 2 V . Let u and uh be solutions of the equationsa(u; v) = Df; vE 8 v 2 Va(uh; v) = Df; vE 8 v 2 Vh:Then the discretization error of the �nite element method is limited byku� uhk 6 L� infw2Vh ku� wk:For a proof see [10], pp. 104 f.The second step is to state the approximation properties of �nite elementspaces. Having in mind the usual piecewise polynomials on T , the followinglemma is the crucial step:



24 CHAPTER 3. DISCRETIZATIONLemma 3.2 (Bramble{Hilbert) Let 
 be a Lipschitz bounded domain.For some k 2 N0 and p 2 [0;1] let f be a continuous linear form onHk+1;p(
) with f(�) = 0 8 � 2 Pk(
):Then there is a constant C = C(
) such thatjf(v)j 6 C kfkHk+1;p0 jvjHk+1;p 8 v 2 Hk+1;p:A proof of this lemma may be found in [10] p. 192.The usefulness of this rather abstract lemma is given byCorollary 3.3 Lemma 3.2 applied to projections on polynomial spaces ofdegree k � 1 and 
 = K 2 T allows to estimate the interpolation error foru 2 Hk by ku��hukL2 6 ChkjujHkFurthermore, there are additional estimates for weaker normsku��hukH� 6 Ch���kukH� for � k 6 � 6 0 6 � 6 k3.2 The Integral OperatorThis section is devoted to the discretization of Fredholm integral equationsof second kind (an overview of the numerical treatment of these problemsmay be found in [21]). The prototype of the equations considered is�u� �u = f in G (3.1)with ��u�(#) = � ZG P (~#; #)u(~#)d~#:Due to the physical assumptions of the second chapter, � > � and conditions(2.8) to (2.10) apply to P .



3.2. THE INTEGRAL OPERATOR 253.2.1 Nystr�om's MethodA classical method for discretizing integral operators is the application of nu-meric quadrature, called Nystr�om's method. Any Newton{Coates{ or Gau�{formula may be used. For our two{dimensional computations | i. e. oneordinate dimension | we use the iterated midpoint rule on the unit circlewith m equidistributed points: #i = 2�m iwi = 1m (3.2)This formula allows an e�cient implementation and is of high accuracy:Lemma 3.4 Let u 2 Hk(S1) be a solution to (3.1) with G = S1 and righthand side f 2 Hk(S1). The solution to the equation discretized by formula3.2 shall be denoted by uh. Then the error admitsku� uhk 6 ChkkukHk:Proof: Applying the Euler{MacLaurin summation formula we know: Theorder of the interpolation error for equidistributed points and periodic func-tions is only dependent on the regularity of the integrand. By Lemma 3.1,the error estimate follows.For integration over S2 the �rst question arising is the construction of (nearly)equidistributed quadrature points to avoid discretization artifacts. It is wellknown, that there are only �ve regular polyhedra. State of the art beforeour investigation was using the parameterization of S2 over [��; �[�[0; �[.Regular subdivision of the parameter space results in two distinctive direc-tions at the poles. This causes a non{physical symmetry axis in the solutionand deteriorates convergence, since the cells near the poles have degenerateangles.Our approach uses the triangles of S2 obtained by successive subdivision ofan icosahedron (see Figure 3.1 on the next page). Quadrature points are thecell centers projected on S2 and spherical cell volumes serve as weights. SinceS2 lacks the periodicity of S1, we cannot apply the interpolation estimate ofLemma 3.4. As will be shown later in Theorem 3.7, this discretization is of



26 CHAPTER 3. DISCRETIZATION
Figure 3.1: Re�ned icosahedron (80 and 320 cells)second order. If we consider the number of cells lying on a great circle to be ameasure for the quality of such a subdivision, we can compare our triangula-tion with the longitude{latitude mesh. Using for instance 40 cells on a greatcircle, we need a total number of 320 cells, whereas the parameterizationapproach needs 800.3.2.2 Galerkin DiscretizationHaving in mind the development of more re�ned error estimates, it is ad-visable to look at Galerkin{discretizations for the integral operator. Theintegral equation (3.1) will then be used in its weak formulation: Searchu 2 X = L2(G) such thatZG �u(#)'(#)d#� ZZG �P (~#; #)u(~#)'(#)d~#d# = ZG f(#)'(#)d# 8 ' 2 X:(3.3)Replacing X by some �nite element space Xh, the computation of matrixelements requires evaluation of a double integral over each cell. For arbitrarytrial functions, this integration might result in enormous computational ef-fort. Applying discontinuous Galerkin method with piecewise constant poly-nomials (DG(0){method) avoids this problem for radiative transfer due to:



3.2. THE INTEGRAL OPERATOR 27Lemma 3.5 For f(x; #) independent of # and smooth in x, the integrationof operator #�rx may be replaced byZG #�rxf(x)d# = �Z #�rxd#� f(x) 8 x 2 
:Proof: By decomposing the derivative in direction # into its componentsand applying, that @if is constant considering the integration variable. �This property leads to the choice of our �nite element spaceXh = nv ��� vjK = cK;8K 2 T o; (3.4)where T is a subdivision of S2. We obtain T by projecting polyhedra asin Figure 3.1 onto the unit sphere. Independent of the mesh width h, theinterior angles � in these triangulations are limited by54� 6 � 6 72�and areas of the triangles di�er at most by a factor of two. So this tri-angulation is nearly uniform and does not produce artifacts known for thelongitude{latitude meshes.We are now ready to prove convergence of our discretization.Theorem 3.6 The physical assumptions of Chapter 2 given, the DG(0){dis-cretization of (3.1) is of �rst order and the error is limited byku� uhkL2 6 Ci��hkukH1with Ci the interpolation constant of Bramble{Hilbert{lemma.Proof: To apply Cea's lemma we show that the operator �Id�� is boundedand elliptic. Considering the simpli�ed integral equation (3.1) derived fromthe radiative transfer equation (2.13) by neglecting transport, conditions(2.5), (2.6) and (2.8) imply � > �L 6 �+ �



28 CHAPTER 3. DISCRETIZATIONWe may apply now Cea's lemma to obtainku� uhk 6 � + �� ku��hukUsing Bramble{Hilbert{lemma for piecewise constant functions, we concludethe proof. �Since this result is not su�cient compared to numerical results, we continuewith a re�ned convergence analysis.3.2.3 SuperconvergenceIf we are only interested in the error at the centers of mass of the triangles,e. g. to prove convergence of the midpoint rule, we may apply the followingsuperconvergence result:Theorem 3.7 Assume the solution u of (3.1) to be in H2;1(G). Then theerror at the centers of mass �i is limited byu(�i)� uh(�i) 6 Ch2kukH2;1Proof: FromD(�� �)u; vhE = Df; vhE D(�� �)uh; vhE = Df; vhEfor all vh 2 Xh, we deduce�Du� uh; vhE = D�(u� uh); vhE 8 vh 2 Xh�D�hu� uh; vE = D�h�(u� uh); vE 8 v 2 X�hu(#)� uh(#) = 1���h�(u� uh)�(#) a.e. in G;where �h is the L2{orthogonal projection from X on Xh. This leads to theerror representationu� uh = u��hu+�hu� uh = �u��hu�+ � 1��h�(u� uh)�:We conclude the proof by the following lemmas, where we show quadraticconvergence of both parts of the sum.



3.2. THE INTEGRAL OPERATOR 29Lemma 3.8 Let u and uh be solutions of the continuous and discrete integralequation (3.1), respectively. Then the error e = u� uh admits the estimatekekH�1 6 Ch2kukH1Proof: Using the self{adjointness of �, we introduce the solution z of thedual problem �z � �z = w (3.5)for w 2 H1. We get for all w 2 H1, using Galerkin orthogonality and thestability of the dual problemDe;wE = De; �z � �zE = D�e� �e; zE= D�e� �e; z ��hzE 6 kekL2 k�� �kL(L2;L2)kz ��hzkL26 kekL2 k�� �kL(L2;L2) h kzkH16 ��CihkekL2kwkH1:Note that we used stability of the dual problem from H1 to H1, which weget by di�erentiating the whole dual problem (3.5) and applying L2{stabilityto each derivative. We conclude the proof by applying the de�nition of theH�1{norm and the L2{estimate of lemma 3.6:kekH�1 = maxw2H1 De;wEkwkH1 6 ����2Ci0h2kukH1:Lemma 3.9 Let u and uh be solutions of the continuous and discrete integralequation (3.1), respectively. Then the error admits the estimatek 1��h�(u� uh)kL1 6 Ch2kukH1Proof: For su�ciently smooth phase function P the scattering operator �describes a continuous mapping of H�1 to L1 (cf. [21] pp. 129 �.). We applythe previous lemma and use the obvious relation k�huk1 6 kuk1 to provethe lemma.



30 CHAPTER 3. DISCRETIZATIONLemma 3.10 Let �h be the L2-projection on the space of piecewise constant�nite elements, u 2 H2;1(G). Then, the error at the center of mass of eachgrid cell obeys u(#c)� (�hu)(#c) 6 Ch2kukH2;1 :Proof: Taylor expansion around #c and the vanishing of �hf � f(#c) forlinear functions f yield the result.3.3 Discretization of Transport ProblemsIn this section we will discuss discretization methods for the transport prob-lem #�rxu+ �u = f in 
 (3.6)u = g on �#�This equation models the di�erential part of the radiative transfer equation.It has also signi�cance in regions with zero scattering (� = 0), where eachspeci�c intensity satis�es (3.6).3.3.1 Upwind TechniquesSeveral �nite di�erence and �nite element methods for the discretizationof the transport operators have been proposed. First, there is the shortcharacteristic scheme (see Figure 3.2 on the facing page) proposed by Olsonet al. in [30]. It is applied in astrophysics by explicitly inverting the transportoperators for each ordinate cell by cell. All coe�cients and the right hand sideare assumed to be piecewise constant, so the transport is solvable analyticallyalong the line 
. In astrophysical methods, one usually applies the analyticalsolution on each cell, which is an exponential function. Since the start valueat P5 is interpolated | usually linearly | from its neighbors, this exactinversion is too expensive and should be replaced by an �nite di�erencediscretization. Equation 3.6 is discretized byu(P3)� u(P5)h + �u(P3) = f(P3)
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�������# ��������
tt tttP1 P2P3P4 P5� 1� �Figure 3.2: The method of short characteristicswhich may be resolved to the update formulau3 = 11 + �h�hf3 + (1� �)u1 + �u2� (3.7)where h is the length of 
.This leads to a very sparse matrix with three entries per line for two{dimensional problems (�ve in 3D). The solution of the discrete system startsat the in
ow boundary, where the function values at P1 and P2 are knownfor each cell and proceeds from layer to layer through the domain. Thiscorresponds to the inversion of a triangular matrix if we suppose downwindordering of mesh points.Another possibility for transport equations is the imitation of backward dif-ferences by using sophisticated integration formul� to compute sti�ness ma-trices, the �nite element upwind methods. These schemes usually correspondto a �nite volume discretization. They share the disadvantage of insu�cienterror control and the �nite element version often induces a rather complexmatrix generation.3.3.2 The Streamline Di�usion MethodBoth transport discretization methods in the previous subsection have signi-�cant drawbacks: They are usually of �rst order accuracy only and they do



32 CHAPTER 3. DISCRETIZATIONnot possess Galerkin orthogonality to prove higher accuracy. On the otherhand, standard Galerkin discretizations of higher order show oscillations fordiscontinuous solutions. This behavior corresponds to the fact that standardGalerkin is stable only in L2.The streamline di�usion �nite element method is a Petrov{Galerkin schemefor (3.6), where test functions ' are replaced by '+ �#�rx' with a suitablychosen small parameter �. This corresponds to adding small di�usion intransport (streamline) direction only. Since this is done in a consistent way,there is no loss of accuracy.The weak formulation of (3.6) looks then likeD#�rxu+ �u;'+ �#�rx'E = Df; '+ �#�rx'E (3.8)� has to be chosen according to the size of � and is proportional to the localmesh width to obtain the optimal balance between accuracy and stability.We apply the streamline di�usion method to bilinear trial functions, i. e. uand ' are from the spaceVh = nv 2 C0(
) ��� vjK 2 Q1(K); 8K 2 T o (3.9)as de�ned in the �rst section of this chapter.Remark 3.1 The streamline di�usion method adds a weighted form of theleast{squares discretizationD#�rxu+ �u;�#�rx'+ �'E = Df;�#�rx'+ �'E (3.10)to the standard scheme. The di�erential operator in equation (3.10) is ofsecond order in the direction #. Therefore, the physical boundary conditionof (3.6) has to be modi�ed carefully to preserve the physical meaning. Bylemma 3.12 below follows that the streamline di�usion scheme does not havethis drawback. A solution method for the radiative transfer equation with aleast{squares discretization is proposed by Ressel in [33]In the following paragraphs we list some results which led to our choice touse streamline di�usion method.The approximation order of the streamline di�usion method for linear �niteelements has been proved to be 32 on general grids, but there is evidence



3.3. DISCRETIZATION OF TRANSPORT PROBLEMS 33for second order convergence on nearly all computationally interesting grids.Unfortunately, a mathematical proof for second order is available only onCartesian grids. In [44] the construction of grids with lesser convergence rateis discussed. Those grids are constructed purposely to show optimality ofthe theoretical results and do not occur in real calculations due to our gridgeneration techniques.Instead of the L2{norm we de�ne the stronger problem adapted normkuk2� = kp�#�rxuk22 + kp�uk22 + kuk2� (3.11)where kuk2� = kuk2#;� = 12 Z� u2(x) n�(x) � #dxand show the stability estimateLemma 3.11 Let L(u; v) be the bilinear operator de�ned in (3.8) with afunction � 2 C10(
). Then the estimateL(u; u) > Ckuk�holds.Proof: Evaluation of the bilinear form and partial integration yieldsL(u; u) = kp�#�rxuk2 + kp�uk2 + D�#�rxu; uE+ D�u; �#�rxuE> kp�#�rxuk2 + kp�uk2 + kuk� + kp�uk� � 12D�#�rx�u; uE= kp�#�rxuk2 + D��� �#�rx�2 �u; uE+ kuk�If we choose � < 2�#�rx� (3.12)the lemma is ful�lled with a constant C = min
(12; 1 � �#�rx�2� ) �Since boundedness of the operator is obvious, the previous lemma ensuresconvergence of the method. The weighted second order term in direction# su�ces to suppress oscillations in upwind direction occurring with thestandard Galerkin scheme.The following lemma has been developed in [25]:
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2 
1 rkr?

Figure 3.3: Domain of dependencyLemma 3.12 Let uh solution of (3.6). For an arbitrary sub-domain 
1 � 
as in Figure 3.3 choose 
2 with 
1 � 
2 � 
 such that� for all x 2 
2, there holds y = x� s � # 2 
2 for s > 0 and y 2 
, i. e.all upstream points of x belong to 
2.� For arbitrary points x 2 
1 and y 2 
�
2 we split the di�erence vectorr = y � x in parts r? and rk orthogonal and parallel to # respectively.These parts are to ful�ll rk > ch log 1h and j r? j> cph log 1h .With these assumptions, the estimateku� uhkL2(
1) 6 Chk+1=2�kukHk+1(
2) + kfkL2(
)�holds.Rannacher and Zhou proved a similar estimate for the maximumnorm in [45].It follows that in
uence of errors at point y on the solution at point x withjx� yj = d decays exponentially with pd in crosswind and with d in upwinddirection. This result corresponds to the observation, that information istransported only in streamline direction mimicking the physical model. Due



3.4. FULL GALERKIN DISCRETIZATION 35Level Upwind SD2 2.23 .8653 .829 .3654 .395 7.02�10�25 .201 1.42�10�26 .103 3.34�10�37 5.21�10�2 8.35�10�48 2.64�10�2 2.15�10�4Table 3.1: Upwind versus Streamline Di�usion (L2{errors for the radiativetransfer equation with constant coe�cients)to this, we can assume the same in
ow and out
ow boundary conditions asin the original equation (3.6).Asymptotic results are only of questionable value for scienti�c calculations,since the constants are known only with uncertainty. We therefore comparethe accuracy of �nite di�erence upwind and streamline di�usion �nite elementmethod in Table 3.1. The results are obtained for the radiative transferequation with constant coe�cients on regularly re�ned grids of mesh size2�level. Although streamline di�usion shows a slightly irregular convergencebehavior on coarse grids, it is clearly better than upwind even on coarsemeshes.The main advantage of the streamline di�usion �nite element method is itsbeing a Petrov{Galerkin discretization. This implies Galerkin orthogonalityfor the approximate solution. We can therefore apply the a posteriori errorcontrol techniques to be developed in Chapter 4.3.4 Full Galerkin DiscretizationBased on the discretizations developed in the two preceding sections, weconstruct a discretization for the full radiative transfer equation. We obtaintrial functions on 
�S2 by tensor products of the spaces in (3.4) and (3.9).Base functions are easily obtained: if f igi is a basis of Vh and f�igi a basis



36 CHAPTER 3. DISCRETIZATIONof Xh, then f'ijgij with 'ij(x; #) =  i(x)�j(#)is a basis of the tensor product spaceWh � W = L2(
 � S2):According to the norm for transport problems (3.11) we de�ne the normkuk2Wh = kp� #�rxuk2
�S2 + kp�uk2
�S2 + kuk2��S2 (3.13)for radiative transfer equation discretized with streamline di�usion, wherekuk2��S2 = 12 ZZS2 � u2 n�(x) � #dx d# (3.14)The full discretization with streamline di�usion stabilization of the transportoperator reads (where we abbreviate D:; :E = D:; :E
�S2 )D#�rxu+ �u� �u; '+ �#�rx'E = Df; '+ �#�rx'E 8 ' 2 Wh:(3.15)Lemma 3.13 Assuming � 2 C10(
), discretization (3.15) is stable in thenorm k:kWh de�ned in (3.13).Proof: Like in the pure transport case, the proof relies on a partial integra-tion of �rst order terms.D#�rxu+ �u��u; u+ �#�rxuE= D#�rxu; �#�rxuE + D�u; uE+ D�u; �#�rxuE+ D#�rxu; uE� D�u; uE� D�u; �#�rxuE= kukWh � D�#�rx�u; uE� �kp� uk+ kp�� uk��S2�> kp� uk+ kq�� � � �#�rx�2 uk+ kp1� �� uk��S2> CkukWh;



3.4. FULL GALERKIN DISCRETIZATION 37provided that � < minn2(�� �)#�rx� ; 1�o: (3.16)Next we propose a decomposition of the radiative transfer equation into adi�erential and an integral part. To give more insight into its structure, weassume the phase function P to be constant. Then, the scattering operator� may be seen as a projection operator from W onto V = L2(
)��u�(x) = � 1�(S2)ZS2 u(x; #) d#We introduce the auxiliary function v = �u and modify our equation yieldingthe mixed formulationD(#�rx + �)u; 'E� Dv; 'E =Df; 'ED��u;  E
 + Dv;  E
=08 ' 2 W;  2 VEllipticity with respect to kukWh of this system is obtained from the sameproperty of the original equation by using the fact that v = �u strongly. vmay therefore be eliminated leaving exactly the situation of lemma 3.13.We now build a tensor product discretization for the domains 
 and S2 bychoosing Vh � VW Th = Vh 
Xh � Wwith Vh and Xh � L2(S2) de�ned in (3.9) and (3.4) respectively.The full Petrov{Galerkin formulation reads: �nd (uh; vh) 2 W Th � Vh withD(#�rx+ �)uh; 'hE � Dvh; 'hE =Df; 'hED��uh;  hE
 + Dvh;  hE
=08 'h 2 W Th ;  h 2 Vh



38 CHAPTER 3. DISCRETIZATIONThis discretization shares the advantages and disadvantages of all tensorproduct grids: local re�nement is possible, but it is always a whole factorgrid that is re�ned. We therefore construct a more sophisticated method oflocal re�nement.We observe that for transport dominated problems, the regions where theintensity jumps di�er for the ordinates. It is therefore desirable to have aspecial grid for each direction, that isWh = V 1h � V 2h � � � � V mh :This makes a special handling of the global coupling of all directions by �necessary. The solution is using the mixed formulation with di�erent �niteelement spaces for di�erent equations. The weak formulation reads now: �nd(uh; vH) 2 Wh � VH withD(#�rx + �)uh; 'hE � DvH; 'hE =Df; 'hED��uh;  HE
 + DvH;  HE
=08 'h 2 Wh;  H 2 VH :If we ensure 8 i VH � V ih (3.17)then we have the strong condition vH = �H�uh, where �H is the usual L2projection on VH . For sake of simplicity, we investigate ellipticity in L2 byD(#�rx + �)uh; uhE � D�H�uh; uhE� D�uh;�H�uhE+ D�H�uh;�H�uhE=D(#�rx + �)uh; uhE � D�HP�uh; uhE=D(#�rx + �)uh; uhE � D�uh;�HuhE=D(#�rx + �)uh; uhE � D�uh; uhE + D�uh; uh ��HuhE;which proves



3.4. FULL GALERKIN DISCRETIZATION 39Lemma 3.14 Let a discretization of the radiative transfer equation of theform (3.17) ful�ll condition (3.17). Then the ellipticity estimateD(#�rx + �)uh; uhE� D�H�uh; uhE> k#�rx + �kkuhk2 � k�kkuhkkuh ��Huhk (3.18)holds.Remark 3.2 It is clear that using the methods of lemma 3.13, we can provestability in the stronger norm k:kWh.Remark 3.3 This discretization technique is especially useful in the trans-port dominated and moderately scattering case. In highly scattering regions,the intensities for di�erent ordinates tend to be the same, thus making thetensor product method adequate.Remark 3.4 The stability estimate (3.18) only involves computed quanti-ties, so the choice of the common mesh function H may be adaptively basedon this inequality.



Chapter 4AdaptivityNumerical computation of solutions to partial di�erential equations oftenrequires a huge amount of memory and computation time. For economicreasons | considering radiative transfer problems even for the ability tocompute at reasonable accuracy | it is inevitable to reduce the size of thediscrete system to be solved. A well{known method to reach this goal is theexploitation of symmetry to reduce the dimension of a problem, but manyproblems need computation of the full three{dimensional model. Here, adap-tive methods provide a 
exible means to reduce computation costs and |combined with a posteriori error estimates | produce reliable and accuratesolutions. This way, even radiative transfer problems can be solved on aworkstation (at least in the two{dimensional case). Three{dimensional ra-diative transfer needs sophisticated grid adaption even on supercomputers tomake problems computable.The aim of simulation is solving the physical equation, such that there is aguaranteed error estimate for the quantity of interest denoted by the func-tional E(u). It may be written in the abstract form���E(u� uh)��� 6 TOL: (4.1)Since the error u � uh is not known it has to be replaced by an estimate�E(h; uh).The solution should be obtained with as few as possible resources, i. e. ona nearly optimal grid in the �nite element context. Using the function h(x)40



4.1. ADAPTIVE ALGORITHMS 41denoting the local mesh width, this task reads as the following optimizationprocess: h(x) = max 8 x 2 
�E(h; uh) 6 TOL: (4.2)The iteration process applied to determine the optimal mesh function h mustconverge rapidly, since each step requires the solution of the di�erential equa-tion. In the �rst section, we present some optimization strategies for thisproblem.A real mesh can only approximate this optimal grid function h, since themesh generation process establishes additional constraints to the function h.So, optimality of a mesh has to be seen with respect to the grids obtainablein the algorithm. In the second section, we present di�erent mesh generationprocesses and re�nement criteria based on error estimates.In the third section of this chapter we discuss estimates for di�erent normsand their theoretical derivation.4.1 Adaptive AlgorithmsThe iterative process for solving a partial di�erential equation essentiallyreads like the algorithm in Figure 4.1. In the �rst step, we solve the problemAu = f on a starting grid (lines 9{11). Then, in each adaptive step, weadapt the grid according to the approximate solution u (5{7) and transfer uto the new mesh (8) to be used as start value of the iterative solution (11). Ifthe estimate e is lower than a given tolerance (12{13) we stop the loop anddo the postprocessing.There are two criteria for the e�ciency of this adaptive algorithm:1. optimality of the �nal grid and2. speed of convergence.If the multi{grid method is used to solve the discrete linear system in eachadaptive step, the weight is put very much on the �rst criterion. Indeed,



42 CHAPTER 4. ADAPTIVITY1 Triangulation tr := start triangulation2 Vector u := 0;3 for step :=0 to maxsteps4 if (step 6= 0)5 adapt(tr, u);6 tr.coarse();7 tr.re�ne();8 tr.interpolate(u);9 Vector b := tr.rhs(f);10 Matrix A := tr.matrix();11 u := A�1 b;12 double e := tr.estimate(u);13 if (e < TOL) break;14 tr.postprocess(u); Figure 4.1: Adaptive IterationBecker has shown in [4], that a tightly coupled adaptive multi{grid methodis much faster than solving to a given tolerance and re�ning alternatingly.As we are restricted to use iterative methods based on orthogonal sequencesof vectors, it is just the other way round. Each re�nement step means arestart of the iteration, since only the start vector may be interpolated fromthe previous grid. Due to the change in the operator, the orthogonality ofother vectors is lost.So we have to look for an re�nement criterion, which is a good compromisebetween grid optimality and convergence rate, putting stress on the latter.Given a local error indicator �K approximating the error contribution of cellK, the following criteria seem possible:1. Re�ne if �K � �K > 
TOL with �K = #K the overall number of cellsand 
 a constant slightly below unity.2. Re�ne if �K > �maxK �K with � 2]0; 1[.3. (numerus clausus) Sort cells on �K and re�ne the �rst � ones.
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Figure 4.2: Comparison of re�nement strategiesCriterion 1 compares each local error estimate with the global tolerance. Theweights are chosen such that local re�nement stops automatically if the globalcriterion is reached. Indeed, we can replace the check of the global error bythis local criterion. This is true, if the parameter �K is updated each time acell is re�ned. Optimality of the resulting grids is shown in a joint work withBecker and Suttmeier (cf. [6]).The parameter 
 ensures, that convergenceis not asymptotically to TOL, but that the estimate reaches TOL in a fewsteps.Re�nement criteria 2 and 3 try to equidistribute the error over the domain.Since both methods are monotonous and we have a priori bounds for theestimator, the global estimate converges until lower than TOL. Here theglobal error has to be checked independently.Criteria 1 and 2 may be easily generalized to obtain double re�nement forcells with especially large local error indicators and coarsening of cells witha small indicator, which is important for time dependent problems.Method 3 is especially valuable, if a computation \as accurate as possible"is desired. Then, the parameter � has to be determined by the remainingmemory resources.
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Figure 4.3: Parameter dependence of the second strategyWe compare these re�nement strategies applied to the dust cloud examplein Chapter 8. Parameter values are 
 = 0:8 and � = 1=3#K. The resultsare shown in Figures 4.2 and 4.3. The choice of the parameter � in Criterion2 is important as may be seen in Figure 4.3. While e. g. Verf�urth in [41]proposes � � 0:5 for Poisson's equation, a su�cient re�nement rate is notachieved even for � 2 f0:1; 0:2g. Parameter values of � 2 f0:01; 0:02g in ourcase yield the necessary convergence speed. We observe in Figure 4.2, thatall three methods generate grids of nearly the same e�ciency.The convergence of the second strategy depends strongly on the parameter� and the structure of the problem. The dust cloud model problem hasvery localized features and the error contributions are limited to a very smallportion of the domain. The result are very small re�nement regions, oftenjust one cell if � > 0:1. The necessarily �ne tuning of � makes this algorithminadequate in the if we want to cover a wide range of applications. With thelast strategy, we can easily control the growth rate of meshes and thereforethe memory consumption and convergence speed by varying the parameter



4.2. GRID GENERATION 45�. Since the action of � is obvious, this allows experimenting with di�erentconvergence rates, especially, if memory is insu�cient to reach the desiredaccuracy. In this case, we can approximate the best possible value with thesecond strategy. Provided computing resources are su�cient and an optimalerror estimate exists, the �rst strategy is obviously the best to reach theprescribed tolerance, since it is very fast and it does not need parametertuning.4.2 Grid GenerationAn important topic in designing adaptive algorithms is the generation ofcomputational meshes. We can interpret the output of an error estimatoras a mesh function h : 
 ! R, describing the desired local mesh width.According to this notion, di�erent grid generators have been developed:1. Execute the following three steps to compute a new mesh:(a) Randomly distribute points in the domain 
 with local densityhd(x).(b) Connect these points using a Delaunay algorithm to get a simpli-cial triangulation.(c) Apply a smoothing method to avoid degenerate simplices.2. The \advancing front" generator begins with a triangulation of theboundary. It consecutively constructs layers of cells protruding to theinterior and thus �lling the whole domain. This method is known tocause severe topological problems, if the domain is not convex or theboundary surface has rapidly changing curvature.3. The mesh generator we use constructs the �nal grid by successive localre�nement of a very coarse starting triangulation. Curved boundariesare approximated by pulling division points of those boundary edges(faces in 3D) on the desired curve (surface). This generator is the onlyone, which generates the structures needed by multi{level methods. Itis this last property, which made us decide for successive re�nement.



46 CHAPTER 4. ADAPTIVITYdistributed points advancing front local re�nementGrid regularitygood, depends on thesmoothing algorithmand is therefore a trade-o� to the approximationof h(x) good if topologic prob-lems of overlapping cellsare solved perfect for straightboundaries, tends to de-generate cells in criticalboundary regionsApproximation of mesh function h(x)best approximation good approximation mediocre approxima-tion, since the meshwidth can only jump byfactors of two betweenadjacent cells.Multi-gridgrid hierarchies haveto be constructeda posteriori same as left entry grids are constructed ashierarchy, so multi-gridis inherentTransfer between adaptive gridsNeeds point search al-gorithms and interpola-tion in cells. This oftencauses loss of accuracy. same as left entry uses multi-grid prolonga-tion and restriction oper-ators, therefore is highlyaccurateTable 4.1: Comparison of grid generation methods
The generation of non{uniform grids by using tensor products of arbitraryone{dimensional meshes is a strategy widely used. We do not consider itsapplication, since the grids obtained are restricted too much to approximatethe mesh function h. Additionally, these method often produces cells with anaspect ration of more than 104. The approximation properties of those cellsare rather bad, such that they deteriorate convergence of the whole grid.



4.3. ERROR ESTIMATES 474.3 Error EstimatesIn this section we develop a posteriori error estimates for the Galerkin dis-cretizations described in Chapter 3. The technique presented follows es-sentially the method proposed by Johnson et al. in [12] and applies theenhancements proposed by Becker/Rannacher in [7]. Consider a solution uto the radiative transfer equation and uh to its discretization. Let e = u�uhbe the error function. In computing a physically relevant problem, usually adesired accuracy is prescribed in the form���E(e)��� 6 TOL: (4.3)Here E(:) is the functional describing the value to be computed by the simu-lation, e. g. the L2-norm, the value at just one point or a boundary integralas in the example of Figure 8.1 on page 84. According to this functional wechoose rE such that E(e) = De; rEE: (4.4)Examples for rE areE(e) = kekL2 rE = e (4.5)E(e) = 1�(M) ZM e rE = �(M) (4.6)E(e) = e(x0) rE = �x0: (4.7)Here �(M) denotes the characteristic function of the set M de�ned as adistribution byZ
 �(M)' dx = 1�(M) ZM ' d�(x) 8 ' 2 C1(
)and �x0 = �(fx0g) the Dirac functional (� denotes a suitably chosen measureon M).Introducing the dual L� of the radiative transfer operator and the solution zof the dual problem L�z = rE: (4.8)



48 CHAPTER 4. ADAPTIVITYwe replace the error norm in (4.3) in terms z and the residual R(uh) byDe; rEE = DLe; zE= DLe; z � zhE (4.9)= Df � Luh; z � zhE= DR(uh); z � zhE; (4.10)In equation (4.9), we used a characteristic feature of �nite element methods,the Galerkin orthogonalityDLu� Luh; whE = 0 8 wh 2 Vh: (4.11)We now apply the formalism developed so far to the radiative transfer equa-tion and stateLemma 4.1 Let u be solution to the radiative transfer equation (2.13) anduh to a Galerkin discretization. Then, the error E(u� uh) admits the repre-sentation E(u� uh) = DTuh + �uh � �uh � �f; z � zhE (4.12)where z is solution to the dual problem�Tz + �z � �z = rE in 
 (4.13)z = 0 on �+: (4.14)Proof: Since (4.12) is just application of (4.10) to radiative transfer equationwe have to prove the correctness of the dual problem:Clearly, the operator �Id is self adjoint. The action of T on a functionu 2 C1(
� S2) results from the sum of operators T# withT#u(x; ~#) = �(~#� #) #�rxu(x; ~#):By partial integration we obtain T �# = �T# byZZS2 
 �(~#� #) #�rxu(x; ~#) v(x; ~#) dx d~#= � Z
 u(x; #)#�rxv(x; #)= � ZZS2 
 �(~#� #) u(x; ~#) #�rxv(x; ~#) dx d~#



4.3. ERROR ESTIMATES 49The self adjointness of the scattering operator � follows directly from sym-metry condition (2.10) by applying Fubini's theorem toZZ
 S2 � ZS2 P (#; ~#)u(x; ~#)v(x; #) d~#d# dxRemark 4.1 In the proof of lemma 4.1 we assumed zero in
ow boundaryconditions. In the case of non{trivial boundary conditions, we save the dual-ity relations of operators by prescribing these values in the weak form. Thiscorresponds to adding a term R��(u� g)v dx to the weak formulation of theradiative transfer equation.4.3.1 Mean Quadratic ErrorIn this subsection we analyze the mean quadratic error in the space variable.We consider u to be the solution of a semi{discrete radiative transfer equationwith a �xed number of ordinates.The appropriate error functional for L2{error estimates is rE = e. Clearly, wecannot solve the dual problem with right hand side e, since e is the unknownquantity. We therefore use a stability estimate of the form (denoting by thespace L2(L2) functions on S2 with values in L2(
)).kzkY 6 CskekL2(L2): (4.15)Remark 4.2 This estimate involves stability of the continuous dual problemand does not use properties of the discretization space.Remark 4.3 Since stability estimate (4.15) is used to limit the interpolationz � zh in (4.10), the norm k:kY should be as strong as possible to obtain anestimate of the form kz � zhkL2(L2) 6 h�kzkYwith � > 0.The error is observed to decay of order h2 and the residual decays of �rstorder. To obtain optimal bounds, we would like to have an error estimate ofthe form kek 6 CsCikhR(uh)k (4.16)



50 CHAPTER 4. ADAPTIVITYwith the interpolation constant Ci depending only on the trial functions.This estimate requires the space Y to be L2(H1), but it holdsRemark 4.4 The operator on the left hand side of (4.13) allows control onlyof kzk
�S2 and k#�rxzk
�S2 , but not of the gradient rz.We therefore apply a well{known remedy from numerics of hyperbolic equa-tions, the method of arti�cial di�usion (see e. g. [12,16,27]). Equation (2.4)is augmented by a small di�usion term, yielding"�u" + Tu" + �u" ��u" = �B (4.17)where " � h2jR(uh)j. The error ku � uhk is the sum of the error ku � u"kbetween the arti�cial di�usion equation and the radiative transfer equationand the discretization error ku"�uhk. Since the error due to arti�cial di�usionis of order h3, it may be neglected and the overall error is dominated by thediscretization error.Theorem 4.2 The modi�ed problem (4.17) admits the error estimateku" � uhk 6 CiCs �kminf1; h2" gR(uh)k+ kD2h(uh)k� (4.18)with a stability constant Cs depending only on the domain and the coe�cientsof the continuous dual problem. The approximate second derivative D2h(uh)is de�ned by kD2h(uh)k = 0@XE �����h�3=2@ul � @urn �����21A1=2 (4.19)Proof: The dual problem corresponding to (4.17) is"�z � Tz � �T 2z + �z � �z = ewith right hand side e = u" � uh. Applying the techniques described abovewe obtainkek = D"re;rzE+ D(T + �� �)e; zE= DR̂(uh); zE 6 k̂Csh2" R̂(uh)kkr2zk



4.3. ERROR ESTIMATES 51where R̂(:) is the residual of the modi�ed radiative transfer equation. Theweighting factor in front of the residual is taken from Lemma 4.3 below.Obviously, the dual problem is stable in L2 and we obtain the additionalestimate DR̂(uh); zE 6 ~CskR(uh)k kzkL2: (4.21)Since the error admits both estimates, the statement of the theorem is truewith Cs = max(Ĉs; ~Cs). �Lemma 4.3 The solution to the equation�"�z � Tz � �T 2z + �z � �z = e (4.22)admits the stability estimatekzkL2(H2) 6 Cs" kekL2(L2): (4.23)Proof: Equation (4.22) obviously admits the estimateskzkL2(L2) 6 CkekL2(L2) kzkL2(H1) 6 C" kekL2(L2):We can absorb the lower order terms to the right hand side, since � � � ispositive semi{de�nite on L2(L2), yielding�"�z � �T 2z = gThe di�erential operator on the left hand side has no coupling over the or-dinate space. Therefore, we can apply standard H2{estimates for ellipticproblems like Theorems 8.8 and 8.10 in Gilbarg / Trudinger [18]. Integratingover S2 results in estimate (4.23).In the proofs of Theorem 4.2 and of Lemma 4.3 we have assumed zero bound-ary conditions. They can be easily extended to in
ow boundary conditionsusing the techniques described in [12].Numerical tests have shown, that the error estimate of Theorem 4.2 is farfrom being optimal, since the stability of the dual problem is too weak. In thenext subsection we follow a new approach avoiding stability by computingan approximation for the solution to the dual problem with right hand sideindependent of e.



52 CHAPTER 4. ADAPTIVITY4.3.2 Boundary Integral ErrorNow we consider a situation like in Figure 8.1 on page 84. The value desiredfrom the computation is given by the functionalE(u) = E(u) � Z�+(#Obs) u(x; #Obs) n� � #Obs dx (4.24)The appropriate right hand side of the dual problem readsrE = �(#� #Obs) �(�+(#Obs)) (4.25)Now we can continue at (4.10) to get an e�cient a posteriori estimate (seealso [7]) for this special value:De; rEE 6 CSecDR(uh); zE � zEh E= CSecXK DR(uh); zE ��hzEEK6 CSecCiXK kR(uh)kK kr2zEkK;with the solution zE of the dual problem not depending on uh. In practicalcalculations, it is hard or even impossible to calculate zE and we replace itby the approximate dual solution zEh and add a security constant CSec toaccount for the error of zEh . This constant results from an L1{estimate forzEh and should be in the range of 1{1/4 (CSec = 1=4 means that we allowover{re�ning once due to the lack of accuracy of zEh ). We use the secondderivative of zEh de�ned in equation (4.19). These considerations result inLemma 4.4 The discretization error E(u� uh) is limited byjE(e)j 6 �E = XK2T �E(K); (4.26)where �E(K) denotes the local error indicator�E(K) = CSecCikR(uh)kK kD2hzEkK: (4.27)



Chapter 5Numerical SolutionThis chapter will discuss methods to solve the linear system of equationsresulting from the discretization methods of Chapter 3. A suitable solutionalgorithm has to show good convergence properties for transport dominated,scattering dominated and mixed problems, since astrophysical applicationsusually show both kinds of behavior in di�erent parts of the domain. Beforewe look at iterative methods in section 5.2, we investigate the structure andeigenvalue distribution of the discrete system.After shortly discussing the drawbacks of stationary iterations like the �{iteration common in astrophysics, we follow the way of Turek [36] and presenttwo fast Krylov space schemes for our equation in subsection 5.2.1. A veryimportant role plays the preconditioning method. In subsection 5.2.2 wewill compare three di�erent preconditioners for the streamline di�usion �niteelement method based on the upwind discretization of Chapter 3, standardGau�{Seidel and multi{level splitting.Finally, we devote a section to the discussion of implementation questions.Due to the exorbitant memory requirements of radiative transfer computa-tions this must be an important issue in this thesis. We show, that a problemadapted matrix representation may considerably reduce memory consump-tion. 53



54 CHAPTER 5. NUMERICAL SOLUTION5.1 The Discrete SystemWe give a short description of the matrices resulting from the various dis-cretizations introduced in Chapter 3.The discrete system has the form Ax = b (5.1)where x; b 2 X = Rn
Rm and A : X ! X.From the operator form (2.13) of the radiative transfer equation, we derivethe representation A = Th +Mh(�)� Sh (5.2)with a suitable discretization Mh(�) � �Idx of the multiplication with afunction �(x) depending on the space variable.For our tensor product discretizations, these operators may be split up fur-ther: Th = diag(T1; : : : ;Tm)Mh(�) = diag(M1(�); : : : ;Mm(�))Sh = 0BB@ !11M1(�) � � � !1mM1(�)... ...!m1Mm(�) � � � !mmMm(�)1CCA : (5.3)The �nite di�erence upwind scheme leads to matrices Ti de�ned by (3.7) andMi(�) the diagonal matrix with mii = �(xi).With the �nite element streamline di�usion tensor product discretization,the entries of these matrices are de�ned byTjki = D'j + �#i�rx'j;T 'kE (5.4)Mjki (�) = D'j + �#i�rx'j; �'kE (5.5)Mjki (�) = D'j + �#i�rx'j; �'kE: (5.6)Due to the equivalence result of Chapter 3, this structure is valid for the fullGalerkin discretization too.We now investigate the condition number and eigenvalue structure of thesematrices.



5.2. ITERATIVE METHODS 55Lemma 5.1 Assuming � � 1 and � = �� with some parameter � > 0, thecondition number of the discrete operator (5.2) is given bycCond � 1 + �� �2 (5.7)Proof: Due to the assumption � � 1 we may omit the transport operatorin our considerations.For the model case of constant phase function P , discretization (3.2) of equa-tion (2.4) yields a scattering matrixS = (�+ �)� �m = 0BBBBBB@�+ (1� 1m)� � 1m� : : : � 1m�� 1m� . . . ...... . . . ...� 1m� : : : � 1m� �+ (1 � 1m )�1CCCCCCA(5.8)This matrix has two eigenvalues, � with the eigenvector (1; : : : ; 1)T and the(m� 1){fold eigenvalue (�+ �).Therefore we have kSk = (1 + �)�kS�1k = 1��The proof is concluded by applying the de�nition cCond = kSk=kS�1k. �A graphical representation of the eigenvalue structure is given in Figure 5.1on the following page. Part a) shows the eigenvalues of the integral operator.These are smeared out by convolution with the mass matrix and addition ofthe transport part in b). Preconditioning con�nes them back to a smallerregion in c).5.2 Iterative MethodsThe standard algorithm used in astrophysics for some years is the so called �{iteration (see Figure 5.2 on the next page). In numerics of integral equations,it is known as Picard{iteration too. Considering the whole discrete system,
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0 �+ �c)b)

a) c c�� �� �� ���� �� �� ��Figure 5.1: Eigenvalue distribution of the discrete systemu(0) := u0for i := 1 to stepsfor k :=1 to mv(i�1)k = PNl=1 !klu(i�1)lfor k :=1 to Nu(i)k := T�1k v(i�1)k + FkFigure 5.2: The �{Iterationit is a Richardson method with nearly block{Jacobi{preconditioning. Usinga full Jacobi preconditioner is a �rst step to better convergence rates asdescribed by Turek in [36].Since the transport operator T is inverted explicitly, these methods convergevery fast for transport dominated problems. Exploiting the triangular matrixstructure of upwind{discretizations, the inversion of T is indeed very cheap(one matrix{vector{multiplication).Remark 5.1 Considering the streamline di�usion method the accurate in-version of T is not possible. An iterative procedure, solving to very highaccuracy would slow down the solution process essentially (cf. the results byF�uhrer in [15]). Here, we use an approximate inverse obtained by one multi-grid step or a Gau�{Seidel step. The latter is clearly sensible to increase ofthe condition number due to re�nement.



5.2. ITERATIVE METHODS 57Unfortunately, in the interesting case of scattering dominance this method| as like as other stationary iterations | breaks down, since the conditionnumber of the iteration matrix grows high.Since the convergence rate of preconditioned Richardson iteration methodsis only depending on the condition number, these are not suited for thescattering dominated case.5.2.1 Krylov Space MethodsThe eigenvalue distribution (5.8) shown in Figure 5.1 on the facing pageproposes application of a Krylov space method. These methods minimizethe iteration error over the a�ne spaceX� = x0 +K� with K� = spannA�(b�Ax0)o�=0;:::;��1and admit the following error estimate:Lemma 5.2 The iteration error of the �'th step is estimated byku� � uk 6 C�( �A; �) (5.9)with �( �A; �) = minp2Pnp(0)=1 max�2�( �A) jp(�)jwhere �A is the preconditioned system matrix.Proof: Confer [28], page 33.Since the eigenvalues have a large gap between the lower and the highercluster, small polynomial degrees su�ce to reduce the estimate. Consideringonly the scattering operator, the cg- or GMRES{algorithm converges in twosteps (choose p 2 P2 as p(x) = (�� x)(�+ � � x)).Indeed, the Bi-cgstab algorithm of van der Vorst (cf. [42]) proved ratherpromising in Turek's paper [36]. It usually reduces the errors much fasterthan stationary methods, but it shows a very irregular convergence history.We compare it to GMRES, the only method for non-symmetric systems,
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Figure 5.3: Comparison of Bi-cgstab and GMRES for di�erent scatteringparameterswhich really minimizes the error in each step (thus, the only one for which theestimate (5.9) holds). The results are shown in Figure 5.3 for the Eddingtonproblem of section 8.1. We display the norm of the residual over the numberof matrix{vector{multiplications, since Bi-cgstab uses two of them per step.We observe, that GMRES converges faster for moderate (� = 0:95�) scat-tering values as well as the equilibrium case � = �. On the other hand thememory requirements of GMRES make us decide for Bi-cgstab, since GM-RES needs one auxiliary vector for each iteration step, whereas Bi-cgstabneeds a �xed number of eight additional vectors.5.2.2 PreconditioningThe appropriate choice of a preconditioner is crucial for these methods toconverge. The block{Jacobi{method mentioned above is a natural choice. Itis exactly A�1 in the absence of scattering. For high values of �, the Lanczosprocess �lters out the low eigenmodes of the integral operator, while thepreconditioner reduces those of the di�erential operator.



5.2. ITERATIVE METHODS 59� = 0 � = 10, � = 9 � = 1000, � = 999Level Upw. Gau� MG Upw. Gau� MG Upw. Gau� MG1 7 5 1 7 5 3 9 8 142 9 8 2 12 8 5 42 51 383 10 10 2 11 9 6 111 48 404 13 14 2 11 9 7 184 37 425 23 18 3 13 12 7 154+31 58 446 34 28 6 18 17 7 158+13 73 447 53 58 9 32 36 6 152+8 77 40Table 5.1: Bi-cgstab Iteration steps regular re�nement and constant coe�-cients (multiple numbers show breakdowns in Bi-cgstab)�max = 64, ! = :999 �max = 6400, ! = :99Level Gau� MG Gau� MG4 0.11 0.025 0.58 0.295 0.19 0.085 0.66 0.356 0.35 0.112 0.68 0.357 0.59 0.249 0.65 0.358 > 1 0.394 0.64 0.39Table 5.2: Contraction numbers for the dust cloud on regular gridsExact inversion of T can not be applied to the streamline di�usion method.Therefore, we examine various preconditioning schemes for T .First, we apply the upwind discretization (3.7) as a preconditioner to thestreamline di�usion transport operator. A priori, we observe, that its ap-proximation is of �rst order only. Therefore, we expect deterioration of con-vergence on �ner meshes. This e�ect can be seen in Table 5.1. Note, thatthere are even breakdowns of the Bi-cgstab algorithm in the last column.Furthermore, this preconditioning method failed entirely, when we applied itto the dust cloud example and to three{dimensional problems.Gau�{Seidel preconditioning is known to be a good method for convectionequations. Sorting the points in downwind direction it converges faster thanthe �rst scheme. But it shows a strong dependency on the mesh width h too:for transport dominated problems the number of iterations is proportionalto 1=h, as shown in Table 5.1.



60 CHAPTER 5. NUMERICAL SOLUTION�max = 64, ! = :99 �max = 640, ! = :999Step Pts. Gau� MG Pts. Gau� MG1 289 0.101 0.034 289 0.550 0.4292 565 0.592 0.069 570 0.985 0.5643 1110 0.807 0.113 1143 0.994 0.5434 2209 0.987 0.125 2280 > 1 0.7175 4439 > 1 0.178 4622 0.6456 9007 0.223 9243 0.6767 18554 0.297 18462 0.6678 38448 0.313 36905 0.694Table 5.3: Contraction numbers on adaptive grids for a dust cloudTo avoid this behavior it is common practice for di�erential equations toapply a multi-grid technique. Since the Krylov space methods used rely onbi{orthogonal sequences of vectors, we have to choose between solving veryaccurate (krk / 10�15) or doing a �xed number of steps. The second variantis much faster and shows the desired results (cf. Tables 5.1 to 5.3): Thenumber of iteration steps does not grow anymore after a certain mesh size isreached (the slow down in the left column of Table 5.1 is due to the betterresolution of sharp edges in the solution).We compare the di�erent preconditioning methods on regularly re�ned gridswith constant coe�cients in Table 5.1. The non{multi{grid schemes areconsiderably slower and upwind causes even breakdowns in the Bi-cgstab al-gorithm in the last column. Tables 5.2 and 5.3 show results for Gau�{Seideland multi{grid preconditioners solving the dust cloud problem. Althoughin many cases, multi{grid convergence is not as good as in the elliptic case,Gau�{Seidel preconditioning is not stable enough to be su�cient. In partic-ular, it diverges very early on adaptive grids.Although multi{grid requires more computational e�ort than Gau�{Seidel,it is the only preconditioning method, which allows the solution of a widespectrum of problems. Since in our parallel implementation preconditioningis executed simultaneously, the de�ciency of computational cost is reducedon supercomputers.



5.3. MATRIX IMPLEMENTATION 615.3 Matrix ImplementationConsidering the huge amount of unknowns involved in radiative transfer com-putations due to the three{ to six{dimensional domain, the matrix storingtechnique is of great importance. We should also bear in mind, that inadaptive algorithms the solution of the linear system has a time consumingcounterpart: assembly of the system matrix. We thus look for a method toreduce generation time and storage size.The usual way applied to systems of di�erential equations, e. g. the Navier{Stokes{Equations, is the storage of a usual sparse matrix with block entries(4� 4). Alternatively, often 16 sparse matrices are stored. Since our blockshave size m�m with m between 10 and 1000 this is not acceptable.For our discretization we use the followingLemma 5.3 Let K0 be a parallelogram of dimension d and the matrix A0the discretization of an arbitrary di�erential operators of order ! on K0.For a cell K� resulting from the �{fold regular re�nement K0 into similarcells, the according matrix is obtained by the scalingA� = 2��!A0 (5.10)Proof: Immediate by observing that derivatives are O(2�) and the integra-tion volume is O(2�!). �Remark 5.2 A similar result is true for triangular cells, where single deriva-tives have to be replaced by their negative for the center child triangle. Inthe vicinity of curved boundaries, this lemma is not applicable, since divisionpoints on boundary edges have to be moved onto the boundary curve andthe proof relies on the re�nement into similar cells.Application of Lemma 5.3 allows generation of element matrices without ex-pensive integration. Since we have only arti�cial boundaries in our radiativetransfer problems, even the restriction regarding boundary curves does notapply.



62 CHAPTER 5. NUMERICAL SOLUTIONRecalling that the system matrix A of a �nite element discretization is ob-tained by A =XK AK; (5.11)we use this representation to execute the application of A to a vector. Hereand in the following, the element matrices AK are supposed to be of thesame size as A thus referring to global node numbers. Instead of buildingA according to (5.11) and multiplying v = Au, we compute vK = AKu andsum up afterwards. The loss of e�ciency traded in by this method is givenby #entries per line in AK �#cells per node#entries per line in A ; (5.12)which is 169 and 6427 for quadrilateral and hexahedral meshes respectively.This way we avoid the compilation of a global system matrix. Applicationof the matrix{scaling lemma 5.3 during matrix{vector{multiplicationv =XK 2�K�!A0 u�nally reduces the memory requirements for matrices nearly to zero. Wehave to accept a slowdown of matrix{vector{multiplication compared to aglobal matrix, but may reduce the memory needed for the whole program bya factor of four applying these techniques. This is especially important usingparallel computers with small local memory.



Chapter 6ParallelizationIn this chapter we will discuss di�erent ways of parallelization resulting fromthe structure of the radiative transfer equation. A recent work of V�ath(cf. [40]) dealt with this problem, but due to the architecture used, a SIMDmachine with about 8000 processors, the results are not applicable to mainstream parallel machines of MIMD type like those at the IWR1 in Heidel-berg. Eriksson et al. found another approach for the time dependent neutrontransport problem in [13]. The e�ciency of their method relies on the com-bination of discontinuous Galerkin methods and the time stepping scheme,so it is not applicable to the stationary problem we investigate.As the bilinear form in the radiative transfer equation consists of the sum ofthe two operators T and � acting on space and ordinate domain respectively,we may also choose between two parallelization strategies. In the �rst sectionwe refer to the problems, a spatial splitting of the whole domain causes. Thesecond section describes in detail the ordinate parallelization we apply. Weconsider its e�ect on the linear solvers of Chapter 5. The e�cient way of im-plementing parallel algorithms using distributed objects in C++ is presentedin the third section. We conclude this chapter by deriving theoretical esti-mates for the e�ciency and compare them to results obtained on the parallelcomputers at the IWR.1Interdisziplin�ares Zentrum f�ur wissenschaftliches Rechnen | interdisciplinary centerfor scienti�c computing 63



64 CHAPTER 6. PARALLELIZATION
1 
2�W �S �S
�N �N �E�i6 6#N #N- -#E #E

Figure 6.1: Domain decomposition for transport problems6.1 Domain Splitting StrategiesConvection dominated problems di�er in one speci�c point from elliptic prob-lems: There is a distinct direction of information 
ow. This has to be con-sidered in the development of parallelization strategies. While a domaindecomposition for Poisson's equation should minimize the length of interioredges, this does not yield an e�cient method for convection.Consider a preconditioning step on the simple domain in Figure 6.1 andregard transport direction #N . Each processor starts inverting the transportoperator at �S and pushes information towards �N . Since we use continuous�nite element spaces, there should be some information interchange across�i. This can be done by iteratively averaging inner boundary values at �i.Following lemma 3.12 the error induced at �i decays exponentially to theinterior of 
1 and 
2. Therefore we expect good convergence.Looking now at direction #E we are confronted with a changed situation.While processor 1 starts at the in
ow boundary �W and produces a ratheraccurate solution in the �rst step, processor 2 starts with random boundaryconditions. It will produce useful results in the second step, where processor1 reproduces the result of the �rst step.We conclude that parallelization strategies for transport equations shouldnot divide the domain across the transport direction.



6.2. ORDINATE PARALLELIZATION 65The solution of the radiative transfer equation consists of a bundle of trans-port inversions for di�erent directions. The construction of an e�cient do-main decomposition method would | following the above argument | re-quire a direction dependent splitting of the domain 
. Since this producesimmense implementation problems, we decided to look for another way ofparallelization.6.2 Ordinate parallelizationThe second strategy distributes the ordinate space S2 of the radiative trans-fer equation. Since we use discontinuous shape functions for the ordinatevariable and there is no local coupling due to the integral operator, this re-sults in a true non{overlapping parallelization. Not even boundary pointshave to be averaged over di�erent nodes.Clearly, it has disadvantages too: as the integral is a global operator, ordinateparallelization involves global communication.Considering the somewhat extreme case of just one ordinate per node, weexplain its e�ect on the two steps of the �{iteration (Figure 5.2).1. Evaluation of the integral sums involves | since !kl in (5.3) dependson the source and the destination ordinate | a communication sweep,where each processor gets the data of each other one. This can beachieved in m steps parallel compared to m2 steps for a sequentialcode.2. Inversion of the transport operators is a parallel task without any com-munication.The application of more sophisticated methods like Bi-cgstab and GMRESbases on these operations too, augmented by some vector scalings and addi-tions (full parallel) and scalar products (involves global collection).When we decide whether to use ordinate parallelization, we have to answeran important question: does it o�er a means for highly parallel computingor can we just occupy a moderate number of processors?



66 CHAPTER 6. PARALLELIZATION�1 �2 �3 : : : �m�1 �mu1; : : : ; ul1 uf2; : : : ; ul2 : : : ufm ; : : : ; ulmv1; : : : ; vl1 vf2; : : : ; vl2 : : : vfm; : : : ; vlmFigure 6.2: Two objects of a distributed vector class on m processorsThe answer depends on the number of angles required to approximate the so-lution. In two{dimensional test computations, about 30{60 ordinates showedto be necessary for constant phase function. Extrapolating to the three{dimensional problem, 1280 ordinates mean 40 points on a great circle of S2.So even putting several angles on one node, this leaves work for some hun-dred processors. Thinking of the rapidly changing phase function of Mie{scattering, there should be enough work for systems installed in the nextyears.6.3 Distributed objectsAn important question arising from the development of parallel code is theencapsulation of the parallelism. Since computer clusters have very di�erentprogramming interfaces and runtime characteristics (cf. section 6.4), changesbetween platforms should a�ect as few as possible portions of the code. Theusage of higher level standard libraries often reduces e�ciency, since ma-chine characteristics cannot be used. Here, the object oriented programmingconcept of information hiding may be very helpful.Consider e. g. the situation of Figure 6.2. The underlying vector class hasthe following features:� Each vector data spans over computing nodes �1 to �m.� Each node � holds the consecutive vector components uf� ; : : : ; ul�.� There is a mapping between global vector indices i and local indices(�; �) de�ned by i = f� + �. Assuring f� = l��1 + 1 this mapping is



6.4. PARALLEL SYSTEMS 67bijective.We see that addition and scalar multiplication of these vectors is purelylocal, since only corresponding indices of both vectors are involved. A globaloperation is e. g. the scalar product u � v. We implement this product byevaluating the local scalar products and summing up by data exchange.From the abstraction level of the operations named above, this parallel vectorbehaves like a usual one. It can be fed into an iterative solver just like anyother vector (using a suitable parallel matrix).On di�erent systems, the data collection of the scalar product should beimplemented according to machine characteristics, e. g. using a binary tree,hypercube or other topology. Due to information hiding (the solver does notknow about the implementation of a scalar product, it just expects a certainresult), the changes in the code are very small and local to vector routines.The application of these concepts to our vector classes allow a safe paralleliza-tion even of the adaptive algorithms described in Chapter 4. Veri�cation ofthe code is always possible on sequential and parallel computers, which isimportant to localize errors due to the parallel implementation.6.4 Parallel systemsSince the �rst steps in distributed computing, numerous parallelization para-digms have been developed. The most important are:SIMD Single InstructionMultipleData, all processors are synchronized oninstruction level and perform the same code on di�erent data. Typicalsystems as the MasPar or CM-2 contain some thousands of very simpleprocessors.MIMD Multiple Instruction Multiple Data, each processor can performindependent tasks. This is e. g. the idea of workstation clusters runningPVM.SPMD Single Program Multiple Data, a mixture of SIMD and MIMD,where the same program is automatically loaded on each computing



68 CHAPTER 6. PARALLELIZATIONnode. Examples are the Parsytec machines SC-T805 and PPC-GCwith PARIX environment.Since MIMD and SPMD have similar concepts and may be mutually emu-lated, we will refer to both as MIMD.A second di�erence between parallel systems is the organization of memoryand the resulting method of data exchange:Shared memory: all processors have access to the same address space ofthe machine. Data exchange is done by just reading memory writtenby another processor. Due to bus access con
icts, this model allowsonly moderately parallel systems (up to about 32 processors).Distributed memory: each processor has its own address space. Datahave to be transmitted explicitly from one node to another (messagepassing).Fortunately, the development seems to converge a bit in the last years. TheSIMD paradigm has nearly vanished due to its disadvantages from the pro-gramming and construction point of view. All highly parallel machines usemessage passing systems, although there is a trend to multi{processor nodes.Regarding the parallel operating systems, there is a standardization too.After systems like PARIX (for Parsytec computers) and PVM (for Worksta-tion clusters) have been developed independently, system providers now tryto evolve standards for message passing functions like MPI.But even considering just MIMD message passing systems there is a widevariety of platforms showing totally di�erent behavior. The overall execu-tion time of a parallel program is determined essentially by three factors.Clearly, in numerical applications the 
oating point performance (measuredin FLOPS, 
oating point operations per second) of the processor is of highimportance. Algorithms exchanging a big number of small data packages aresensitive to the communication startup time (sec). Programs passing hugeblocks of data rely on a high communication bandwidth (bytes/sec).



6.5. EFFICIENCY CONSIDERATIONS 69read data;create grid;initialize(matrix, vectors);solve(matrix, vectors);write data; Figure 6.3: A simple solution programIt is more useful to use values normalized to double precision arithmetic toinvestigate the e�ciency of a program:ts = startup time � FLOPScb = bandwidth8FLOPS :Usually, computer producers provide for some values of these quantities,called peak performance. Due to non{optimal compilers, problem structureand operating system overhead, these values are hardly reached. We considerthe actual values, occurring from our application.At the IWR in Heidelberg we have access to two parallel systems: the olderINMOS Transputer T805 based SuperCluster (SC-T805) with 128 nodes andthe GigaCluster consisting of 96 nodes with two PowerPC 601 processors each(PPC-GC). While communication and computing power are well balancedon the SC-T805 with cb = 0:8, this ratio is cb = 0:2 on the PPC-GC.6.5 E�ciency ConsiderationsBefore analyzing the di�erences in execution time, we develop a model tointerpret these data. Runtime results are then given for the whole programon di�erent platforms and for the iterative solver.6.5.1 Time Complexity ModelFirst we consider the non{adaptive program shown in Figure 6.3. For ourordinate parallelization all operations with exception of the solver are truly



70 CHAPTER 6. PARALLELIZATIONparallel, i. e. avoid communication. The program runs on all nodes withoutsynchronization, until initialization is complete. Any delay occurring withrespect to the sequential version has to be due to operating system overheadand �le data access. Since we made sure that �le data is small, this shouldbe negligible (see Table 6.1). The time on the Parsytec machine begins togrow at 16 processors, since the loading of the program itself consumes muchtime due to the low performance of data exchange between host and parallelcomputer.We now focus on the linear solvers. As for the single level iterations, theyconsist of the following classes of operations:1. Application of the radiative transfer operator2. Preconditioning3. Scaled vector additions4. scalar productsIn our implementation, classes 2 and 3 are truly parallel, communicationonly occurring in 1 and 4. To compute scalar products, each nodes collectsthe product for its part of the vector and then communicates just one num-ber. Clearly, on suitable machines this data exchange is negligible for vectorlengths of some 70.000 entries.That leaves us with the analysis of matrix{vector{multiplication. Consid-ering the matrix structure of (5.2) on page 54, the parallel version of thisoperation consists of two parts:1. the multiplication of Tk +Mk(�)�Mk(�) with the local vector com-ponents uk and2. the addition of fujgj 6=k of all other components and multiplication ofthe sum with Mk(�).Whereas the �rst part is inherently parallel, the sum in the second is the onlypart of the program, which causes communication. We show the sequentialalgorithm and an optimized parallel version in Figure 6.4 on the next page.



6.5. EFFICIENCY CONSIDERATIONS 711 for k := 0 to m2 vk := 0;3 for j := 0 to m4 vk := vk + !kjuj;5 wk :=Mk(�)vk; 1 hout = vp;2 vp = 0;3 for k := 1 to m4 start send(p + 1, hout);5 start receive(p� 1, hin);6 vp := vp + hout;7 wait comm();8 hout := hin;9 vp := vp + hout;10 wp :=Mp(�)vp;Figure 6.4: Sequential and parallel matrix{vector{multiplicationsystem # procs secPPC-GC 4 26PPC-GC 8 26PPC-GC 16 30PPC-GC 32 32SPARC 10/51 1 26RS6000 PPC 1 23Table 6.1: Initialization times for 70.000 nodes (2D) in secondsFor this method, the processors are located in a ring topology, i. e. p 2 Z�,where � is the number of processors. This way, each node has two neighbors(p+ 1 and p� 1) to communicate with. By doing the communication (lines4, 5 and 7 on the right) and vector addition (line 6) in parallel, the e�ciencyof the algorithm is bounded from below by cb if cb < 1 and is about 100%if cb > 1, since nearly the same operations have to be done, but only m2=�times instead of m2 times in the sequential version.6.5.2 ResultsFirst, we compare initialization times| generation of triangulation, operatorand right hand side | of Table 6.1. These should be constant, since theamount of work is proportional to the number of processors and everything



72 CHAPTER 6. PARALLELIZATIONordinates 1 � p 2 � p 4 � p 8 � p 16 � p 32 � pprocessors2 1.97 3.02 5.12 9.33 17.75 34.604 2.04 3.09 5.19 9.40 17.83 34.698 2.17 3.23 5.32 9.53 17.97 34.8216 2.46 3.51 5.61 9.87 18.23 35.0832 3.02 4.08 6.20 10.18 18.81 35.6764 4.17 5.22 7.31 11.52 19.96 36.82Table 6.2: Time for Bi-cgstab on the SC-T805 in seconds (1 step, 280 points)ordinates 1 � p 2 � p 4 � p 8 � pprocessors2 6:6 8:5 13:2 23:64 7:1 9:3 14:1 24:68 9:3 11:8 16:4 28:016 13:0 15:1 20:1 30:832 20:0 22:9 28:3 38:964 34:6 37:5 42:4 57:9Table 6.3: Time for Bi-cgstab on the PPC-GC in seconds (1 step, 70.000points)is done in parallel. The slight growth of this time on the PPC-GC is due tothe slow loading of the code itself onto the parallel machine.In Tables 6.2 and 6.3 we compare the execution time for one Bi-cgstab{step.On the Transputer system, we could only store about 300 space points dueto local memory restrictions. In each column, the problem size is scaled withthe number of processors. Looking at the table for the Transputer system,we see, that the execution time is nearly independent of the number of pro-cesses, if there are at least four ordinates on each node. This corresponds tonearly 100% e�ciency. If the load of each processor is smaller, e�ciency de-cays. Using one ordinate per node, there is only a slowdown of two using 32times as many processors corresponding to an e�ciency of 50%. These excel-lent results can be achieved, since communication bandwidth and computing



6.5. EFFICIENCY CONSIDERATIONS 73power are balanced on this system, i. e. cb � 0:8.On the PPC-GC 
oating point operations are about twenty times fasterthan on the SC-T805. Since communication velocity has increased only bya factor of four, the considerations of the last subsection predict a drop ofe�ciency. Indeed, in the �rst column, the elapsed time grows by a factor of�ve (20% e�ciency) and even for eight ordinates per node, there is a growthof execution time by a factor of two corresponding again to an e�ciency of50%. According to the time complexity, the lower bound of the e�ciency isabout 20%, but obviously, the preconditioning time su�ces to balance it inthe last column.Since the relatively slow communication of the PPC-GC is peculiar amongmodern parallel computers, the performance of our algorithm can be consid-ered su�cient. Even on this computer, the solution of the applications inChapter 8 is accelerated to an amount, where experimenting with parametersis possible in acceptable time.



Chapter 7Software DevelopmentScienti�c computing software to solve \real life" problems tends to becomemore and more complex. The necessary validation of program code becomesa hard task by this development. A proof of correctness is possible only forsimple data structures and small programs. The classic approach to morereliable software used in numerical computations is modular programming.Applying this paradigm, a complex algorithm is decomposed into small sim-ple parts which can be tested independently. But, as mentioned above, notonly methods are complex, but data structures too. Object oriented program-ming now allows the modularization of algorithms and data by combiningboth of these aspects into the same structure. This leads to the notion ofclasses and objects.The tight coupling of data and methods operating on them in object ori-ented programming, forces design to become an important step in softwaredevelopment. In previous numerical codes, this has been regarded only withthe aim of reducing memory usage and computation time.In a complex piece of software, design of classes has to optimize a combinationof four development aims:1. computing speed,2. memory requirements,3. veri�ability of code and4. 
exibility. 74



7.1. GRID HANDLING 75While the �rst two points have been investigated very thoroughly in the last30 years | see e. g. BLAS routines | points three and four are real whitepatches on the map. Additionally to the known trade{o� between speed andmemory consumption points three and four introduce a much more compli-cated balance. From the economic point of view we have to supplement run{time e�ciency by development e�ciency. In particular, software designedto develop new algorithms must obey this point, since implementation timeusually exceeds run{time by orders of magnitude.The main idea to improve 
exibility and correctness of a program lies in therestriction of data access. In usual FORTRAN or C code a great deal of datais handled by common blocks and global variables, respectively. These allowunrestricted read and write access to their members, so the programmer cannot be sure where these structures are changed or corrupted. This veri�cationproblem is augmented by the �xed structure of implementation: a change inthe data structure necessitates a change in all functions using it.Considering application to partial di�erential equations, there are severalparts of the algorithms which may be separated to a high degree. There isa base level of classes describing the adaptive grid generation and handlingof multi{grid structures. This part of software is invariant for a huge classof �nite element problems. A second level on top of the �rst de�nes basicnumerical operations like application of an operator to a discrete function.Here, the dependence on the structure of the physical problem is very strong.A third part of code provides standard numerical solvers as cg and Bi-cgstabfor linear systems and Newton's method for nonlinear problems. This levelshould be implemented in an abstract way to allow usage for di�erent appli-cations.We would like to illustrate these concepts with the implementation of DEAL(cf. [5]), a C++ class library for �nite elements developed by the author,Franz{Theo Suttmeier and Roland Becker, as well as its application to ra-diative transfer problems.7.1 Grid HandlingLet us �rst regard the abstract concept of a triangulation of a domain 
 asa hierarchy of grid cells with a certain topology. Its basic functionality is



76 CHAPTER 7. SOFTWARE DEVELOPMENTclass Triangulationf void read(File);void re�ne(int levels);void adaptive re�ne(double tolerance);Cell* �rst cell();Cell* next cell();Vertex* �rst vertex();Vertex* next vertex();g; Figure 7.1: The Triangulation classshown in Figure 7.1, where the triangulation is reduced to a set of cells andvertices with some additional mesh generation functions. This mesh shouldbe able to consist of triangles and quadrangles as well as tetrahedra, prismsand hexahedra in two and three dimensions respectively. This means that wehave to extract basic information from all these geometric objects to identifythem as a cell. The cell information necessary for adaptive re�nement was�rst collected in [34] in a very abstract way. This led to the de�nition of acell essentially following Figure 7.2 on the facing page.The function re�ne of Triangulation works by traversing all cells and forcingeach cell to re�ne itself. Since a correct triangulation is characterized byconsistent values of vertices, neighbors and father/child information, re�neand coarse function of Cell ensure conservation of these data. Certainly, acell can hardly supply any of these functions, since topology information isspeci�ed only for more concrete objects. Therefore, they are declared as anabstract interface and are implemented in derived classes for e. g. trianglesand quadrilateral cells, where we know the number of neighbors is three orfour respectively.The functional interface to these values enables high 
exibility regarding im-plementation. Considering e. g. the children there are two possibilities ofobtaining the corresponding pointers. They may be stored in a cell produc-ing memory consumption, but making fast access possible. Alternatively,they can be reconstructed from the list of cells stored in the triangulation.According to the algorithms used as well as preference for memory or speed



7.1. GRID HANDLING 77class Cellf int number of vertices();int number of neighbors();Vertex* vertex(int nr);Cell* neighbor(int nr);Cell* father();Cell* child(int nr);int level();int index();void re�ne();void coarse();double re�nement criterion();g; Figure 7.2: The Cell class (topology and re�nement)optimization, these techniques should be chosen appropriately. The inter-face of Figure 7.2 allows the necessary internal change of representation on apurely local basis, since implementation details are hidden for other functions.The correctness of working code using this function child is not in
uenced byinternal changes, if only the result of child is correct.We ensure for each function, that all objects involved in its operation |not only explicitly modi�ed objects | are in an admissible state after thefunction returns control to the calling context. Take e. g. cell re�nement asshown in Figure 7.3 on the following page. We start with a valid locallyre�ned triangulation (a). The cells are linked by the mutual neighborshiprelation 	 and the \is child of" relation�. We display two consecutive layersof re�nement on top of each other. After splitting the middle cell (�) intofour children, the topology is corrupted (b). Setting topology informationfor the children (c), the cell we operated on is valid, but the operation hasdestroyed the triangulation structure: there is only an unidirectional neigh-borship relation y from the children of (�) to their neighbors. Finally, thetopology information of neighboring cells is updated too and the topology isvalid again (d). Compared to other strategies, this process not only avoids
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(a) Starting grid with 1 re�ned cell (b) Children generated
(c) Topology of children (d) Re�ned gridFigure 7.3: Re�nement of a cell



7.1. GRID HANDLING 79
P1 P2

P3P4
P7
P6 P5P8P9 P10P11 u uuuuu uuu uu Q1Q2Q3Q4Q5 Figure 7.4: A hanging nodeexpensive postprocessing, but enables us to stop re�nement after processingan arbitrary cell (which is actually done in adaptive algorithms). While thestates (b) and (c) are \virtual" grids never to be seen in an application, (a)and (d) represent states, where further operations may be inserted.7.1.1 Re�nement EdgesRe�ning a grid locally, there are edges between di�erent levels of re�nementand the problem of \hanging nodes" arises. Using special interface cellsnot only disturbs the topology of the grid hierarchy, but causes di�cultiesimplementing accurate grid transfers. We decided to choose numerical treat-ment of these nodes. For theoretical treatment of our methods, we use theformalism of \hierarchical bases" developed in [43].For sake of simplicity, we will refer only to bilinear elements in the genericsituation of Figure 7.4. It is obvious from the construction, that the methodapplies to all conforming shape functions.Cell Q1 needs �ve shape functions, which are denoted in the hierarchicalbasis notation� the 4 usual bilinear shape functions '1 : : : '4 on a quadrilateral cell and� 1 additional function '5 satisfying



80 CHAPTER 7. SOFTWARE DEVELOPMENT{ the Lagrange interpolation condition '5(Pi) = �5i for all points ofQ1,{ '5 = 0 on the non{divided edges of Q1 and{ '5 is linear on the edges Q1 \Q2 and Q1 \Q3We remark, that we do not imply any knowledge of the behavior of '5 inthe interior of Q1. It should be chosen to o�er good interpolating properties.Outside Q1, on Q2 and Q3, '5 has the shape of a standard bilinear �niteelement function.While the hierarchical basis approach is natural for Q1, from the point ofview of cells Q2 and Q3, the shape functions in P1, P4 and P5 should bein nodal representation. We need a transformation between the hierarchicaland nodal base functions f'ig and f ig. For the construction, we evaluatea function uh =PuHi 'i =P uNi  i in the mesh points:u(P1) = uN1 = uH1u(P4) = uN4 = uH4u(P5) = uN5 = uH5 + 12uH1 + 12uH4 (7.1)This results in the matrix C of basis exchange (only considering the inter-esting points) C : uH 7! uN (7.2)0BB@uN1uN4uN5 1CCA = 0BB@1 0 00 1 012 12 11CCA0BB@uH1uH4uH5 1CCA (7.3)At this point we have to decide, whether there should be a degree of freedomat point P5. First, we consider the case of adding this degree of freedom.Interpolation estimates for Q2 and Q3 stay the same, while they are notworse (compared to the standard case) for Q1. As we use the completematrix in nodal representation, the element matrices of Q2 and Q3 have thecorrect form. We have to modify the element matrix of cell Q1. We build itas usual aHij = a�'i; 'j�Q1 i; j = 1; : : : ; 5The implementation of this algorithm is simpli�ed by the following remark:



7.1. GRID HANDLING 81Remark 7.1 The hierarchical basis matrix with additional hanging nodesconsists of two parts. A sub-matrix corresponding to the usual nodes co-incides with the standard element matrix without hanging nodes. For eachhanging node, it is added one row and column due to the extra base function.To get the nodal representation required to build the global matrix, we applythe basis transfer AN = CAHCT (7.4)Alternatively, the node P5 could be omitted. This has algorithmic advantagesin the use of elementmatrices. In particular, R. Becker has developed a highlye�cient multi{grid algorithm based on this technique in [4].In this case, we have to deal with the problem of node P5 occurring in thematrices of Q2 and Q3 but not in Q1. It is of algorithmic advantage to letpoint P5 be part of the mesh, so we search a treatment on matrix level. Thehierarchical representation of u(P5) is a natural choice. The desired behavioris achieved by setting uH5 = 0 and thus omitting base function '5. This wayof cancelling node values at P5 clearly involves no modi�cations of the righthand side, as would be necessary in nodal representation. Accordingly, wehave to apply the inverse base transformation as in (7.4), where C is deprivedof the third row. (7.3):  uH1uH4 ! =  1 0 120 1 12!0BB@uN1uN4uN5 1CCAThis conforms to �rst averaging uN1 and uN4 to uH5 , then applying the operatorA and �nally distributing the value of uH5 to the neighboring points. Thecorresponding changes of base have to be applied to the right hand sidegenerated by �nite element integration:fH1 = fN1 + f5fH4 = fN4 + f5:



82 CHAPTER 7. SOFTWARE DEVELOPMENTMethod rich cg Bi-cgstab cr GMRES QMRv = Au * * * * *d = b�Au * * * * * *v = ~A�1u * * * * * *v = ATu *v = ~A�Tu *� = u � v * * * * *v = �u * * * * *v = �u+ 
w * *v = v + u * *v = v + �u * *v = �v + �u * * *v = �v + �u+ 
w *Table 7.1: Common iterative solver interface7.2 Linear SolversIn section 5.3 we pointed out the importance of a sophisticated, problemadapted matrix implementation. Furthermore, special programming tech-niques like parallelization require the usage of vectors with non{standardbehavior. On the other hand, di�erent problems require di�erent linear so-lution methods. Especially considering non{symmetric linear systems, therehave been developed several methods. Since | with exception of GMRES| there is no su�cient theoretical justi�cation for these methods, they haveto be chosen by trying for a special problem.Since the implementation of new iterative solvers like GMRES or QMRmeth-ods with look{ahead is rather complex, we consider it an important featureof a �nite element programming library to provide a means for easily testingiterative methods. The methods should be provided by the library and useproblem dependent matrix{vector and vector{vector operations like thosedescribed in sections 5.3 and 6.3. To allow a high degree of optimization,we propose the rather fat interface shown in Table 7.1. From this table it isclear, that the solvers have di�erent requirements to matrices and vectors.We implement the iterative methods as function templates, taking matrixand vector types as template arguments. Using an abstract matrix class



7.2. LINEAR SOLVERS 83would not be a good idea since the user would have to provide for even theunneeded functions of the interface. Additionally, the vector type would notbe free and there would be a lot of insecure casting operations or run timechecking, which slows down development of new codes considerably.



Chapter 8ApplicationsDevelopment of astrophysical models is especially di�cult since experimentalpossibilities are very restricted. There are no ways to change parameters onan existing system and it is also impossible to observe an object from di�erentdirections if it is not rotating. So we are restricted to the information weobtain by electro{magnetic emission of distant objects in the direction ofearth, in particular visual light, infrared and radio waves. A typical settingfor these problems is shown in Figure 8.1. Here, the observed system is
Figure 8.1: A typical observer situation84



8.1. EDDINGTON LUMINOSITY 85supposed to be very far from earth. Even with powerful telescopes angularresolution of the object is not possible, it appears as a point source. The onlyinformation we get is time and wavelength dependency of electro{magneticradiation.Veri�cation of existing models of distant objects is only possible by numericalsimulation and comparison with measured data. In the second section, we dosuch calculations for the problem of a circumstellar dust cloud. On the otherhand, simulation allows to change model parameters to get more insight intophysical processes. This e�ect is the aim of our simulation in the �rst sectionon Eddington luminosity. Even in a simple geometric situation, a higherdimensional simulation reveals e�ects not observable in the one{dimensionalcase.8.1 Eddington LuminosityUp to now, models based on one{dimensional calculations predict a maxi-mum luminosity of a star, the so called Eddington luminosity, which cannotbe exceeded. A higher radiation 
ux would tear the star apart, since radia-tive forces would exceed gravitation. Actually, there are objects observed,e. g. nov�, which seem to emit much more radiation, than predicted by thistheory.The crucial ingredient to allow these one{dimensional calculations is hor-izontal homogeneity. Now there are considerations, that by omitting thishomogeneity a much higher luminosity is possible. On the other hand, ifexplosions occur, they could be local and do not destroy the star.We made comparative simulations to investigate how the maximumradiativepressure gradient and emitted radiation depend on inhomogeneities of thematerial. The setting for these calculations is shown in Figure 8.2 on thefollowing page. We consider a smooth layer spreading horizontally with anoscillating opacity�(x; y) = cos(�y) � ��max+ �min2 + �max� �min2 cos(�x)� :This layer is illuminated by upward radiation from the interior of the star.The results of these calculations consist of
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Figure 8.2: Model con�guration to investigate Eddington luminosityscatter = 99.99% scatter = 90%�min �max Fmax EN EN=Fmax Fmax EN EN=Fmax99 101 0.00018 0.0009 25 0.71 0 050 150 0.00017 0.005 28 0.80 0 09 191 0.00015 0.019 100 0.91 10�5 10�51 199 0.00022 0.086 391 0.93 0.036 0.39Table 8.1: Radiative force and emitted radiation1. the radiative force �eld FR(x) = RS2 # I(x; #) d# with its maximumvalue2. and the mean radiation emitted to the top EN = R �NI(x; #N) dx.This example is of moderate computing complexity, since all coe�cients aresmooth and even the solution does not have strong jumps. Therefore, it is asuitable application to verify the discretization and solution algorithms of ourprogram without introducing additional di�culties due to localized features.We show the relation between maximum radiative force in the interior of thedomain and emitted radiation in Table 8.1. Values for di�erent variations ofthe extinction and for two di�erent albedos are given. We see, that in thecase of high albedo, the quotient of EN and Fmax grows about a factor of 15compared to the inhomogeneous problem. If scattering is smaller, this growthis even more dramatic. In the cases of a homogeneous matter distribution,
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Figure 8.3: Radiative pressure �eld for small and large variation of �.the simulation resulted in a luminosity of zero and only in the last line, thereis a signi�cantly positive value of EN .Figure 8.3 shows the radiative pressure �eld for the two extremal con�gura-tions �min = 99 and �min = 1. The background color shows the opacity �with darker grey for higher opacity. While the �eld is always directed up-wards in the case of small variation, it has additional structure in the othercase. It is an interesting result, that radiative forces are directed towardsregions of higher density. This feature could result in a destabilization ofthe layer structure such that a homogeneous layer is not a stable con�gura-tion. Our simulations should be combined with a model of hydrodynamicsto understand the development of such a layer.8.2 Dust Enshrouded StarsMany stars, especially young ones are surrounded by dense clouds consistingof dust and gases. These clouds are heated by radiation from the star andemit themselves light of larger wavelengths due to Planck's formula (2.3).The temperature �eld in the cloud is given by the energy equation in (2.11).The geometry of the cloud is enforced by hydro-dynamical processes. Around



88 CHAPTER 8. APPLICATIONSa central star, there is a region, where due to the high temperature no dustcan exist. This hole is about ten radii of the star. Outside this area, there isdust of a high density decaying with the square of the distance to the star.The aim of this work was to accelerate the solution of the monochromaticradiative transfer equation, to allow the solution of the full system in a furtherstep. We reach this aim by the adaptive and parallel algorithms describedin Chapters 4 and 6, respectively. The re�nement history in Figure 8.4 onthe next page shows four meshes generated during the adaptive re�nementprocess.With our new adaptive approach we can predict the discretization error ofour method. For the �rst time, this estimate is sharp in the sense that thetrue error is overestimated by a factor below ten on su�ciently �ne grids. Weachieve this by using local weights (local in space and ordinates) obtainedfrom the approximation of the second derivative of the dual solution as de-scribed in Chapter 4. For a graphical representation of the dual solution tothe intensity emitted in direction WSW confer to Figure 8.5 on page 90. Weshow the dual solution for di�erent ordinates, the ordinate of interest (direc-tion WSW) and the opposite one in the �rst row as well as two intermediateordinates W and S in the second. Note, that the dual solution is one orderof magnitude larger for the WSW ordinate itself than for all others. Thesmoothness of the dual solution causes that the estimate obtained by for-mula (4.27) on page 52 is reliable with a safety constant CSec � 1:5. A meshhistory obtained by this estimate and the numerus clausus criterion alwaysdoubling the number of cells is shown in 8.4 on the next page. Although theestimate is dominated by the residual, we observe stronger re�nement in theWSW direction due to the dual solution part.In Table 8.2 we compare the re�nement optimal for L2{error control with theboundary error estimate. Using the numerus clausus re�nement strategy wegenerate meshes of about the same sizes for both criteria. Since the constantsin the L2{estimate are not sharp enough and the estimate is asymptoticallynot optimal, we do not use it to estimate the error. Note that we would haveto apply inverse estimates and trace theorems to estimate the boundary in-tegral value desired. We see that the indicator applying the dual solutionconverges much faster to a limit of about 0.617 (obtained by extrapolation).The L2{indicator needs about 8 times the number of grid points to reach thesame accuracy as the estimate. We obtained similar results for di�erent sets
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Figure 8.4: Re�nement history for the dust cloud (steps 1, 2, 4 and 6)
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Figure 8.5: Dual solutions for the boundary integral estimate



8.2. DUST ENSHROUDED STARS 91L2{indicator boundary{indicator estimatespoints value points value � CSec�e564 0.181 576 0.417 3.1695 23.771105 0.210 1146 0.429 1.0804 8.622169 0.311 2264 0.461 0.7398 7.114329 0.405 4506 0.508 0.2861 3.948582 0.460 9018 0.555 0.1375 3.3317202 0.488 18857 0.584 0.0526 2.3934562 0.537 39571 0.599 0.0211 1.7668066 0.551 82494 0.608 0.0084 1.40Table 8.2: Comparison between indicators based L2{error and boundaryintegral error controlof parameters, so this comparison gives evidence that the estimates usingcomputed dual solutions generate grids with much less cells than global indi-cators. This is due to the fact that the new approach we apply uses a locallyweighted residual to estimate the error instead of a global stability constant.Since the weights are computed by measuring the possible contribution oflocal residuals to the error functional, the new estimator is much �ner thanthe one using global stability. Additionally, the last column shows that theestimate is a sharp upper bound for the error of the boundary integral.From the numerical point of view, the problem is very di�cult to solve.The intensity inside the star is 100 in all computations, but the values atthe boundary are only between unity and 10�7. The advantage of the dualsolution approach lies in damping out of the residual in the parts of thecentral region, where the intensities have minor in
uence on the boundaryintegral. The result is the ability to calculate a boundary integral value of3:5 � 10�7 up to an absolute accuracy of about 10�7 using 37,000 mesh pointsonly (optical depth 21, � = 0:5�). We can compute the integral value of0.00054 up to a guaranteed relative accuracy of 5% on a grid of the same sizein case of a smaller optical depth of about eleven. The computation with16 ordinates needs 2:34 hours on the PPC-GC including the complete meshgeneration. This should be seen in relation to the about same amount of timenecessary for coarse computations without error control using conventionalmethods. Those simulations are suitable to give an impression of the globalqualitative behavior of the solution, but they often miscalculate the boundary
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Figure 8.6: Relative emission of the dust cloud for a star radiating withintensity 1 (curves for di�erent scattering parameters)integral value by orders of magnitude.For a wide range of the spectrum, the decoupling of wavelengths is a goodapproximation of the physical properties. For these data, we display theratio between radiation of the star and the emission of the cloud for di�erentopacities in Figure 8.6. The curves show the radiation dependent on theoptical depth de�ned by the integral of � over the line of sight. These curvesshow a strong dependence on � if the optical depth is high, whereas scatteringhas small in
uence in the optically thin case. These results emphasize thenecessity to produce accurate solutions for the scattering dominated problem.By multiplication of these computed values with the appropriate values ofPlanck's function, we obtain the emission pro�le of the dust cloud for smallwavelengths (visual light).



8.3. FURTHER DEVELOPMENT 938.3 Further DevelopmentSo far we have shown only two{dimensional applications of our methods.We computed a cloud similar to that of the �rst section with a full three{dimensional geometry. The results are shown on the color plate. The picturesshow the light emitted by the cloud in the direction of the observer, i. e. theappearance of such a cloud in the sky. The �rst �gure shows the geometryof the ellipsoidal cloud with three embedded stars. Pictures b and d demon-strate the results for a high opacity observed from di�erent points of view.Figure c shows the simulation for a smaller opacity.The techniques used in the two{dimensional case are all applicable in threedimensions, but since the memory requirements are much larger, the compu-tational grids have to be rather coarse on existing computers (the maximumof about 100,000 cells on a 64 M-Byte node leads to about 30 cells in each co-ordinate direction). A domain decomposition approach would not solve thisproblem, since we need about 300{1000 ordinates, thus the parallel machineis fully utilized using ordinate parallelization too. Therefore, we can onlysimulate with low resolution to get qualitative results. The accurate solu-tion of three{dimensional radiative transfer problems requires more powerfulcomputers than those available at the IWR by now.The second extension of our algorithms is the inclusion of the wave{lengthdependence. There are three mechanisms where the coupling of intensitiesfor di�erent wave{lengths occurs:� The scattering phase function P (~#; #) is only an approximation of theredistribution function R(~�; ~#; �; #). This extension is straight forward,since the structure of the coupling is the same as that of scattering.� Another transport term @u=@� may be introduced to model Dopplere�ects due to fast movement of the dust particles.� The equation of local energy equilibriumZR+ ZS2 �(x; #; �)u(x; #; �) d# d� = ZR+ �(x; #; �)B(�; T (x)) d�causes a nonlinear coupling of wave{lengths. This equilibrium is im-portant to model infrared radiation of dust clouds, e. g. to comparewith observer data of the ISO satellite.



94 CHAPTER 8. APPLICATIONSThe last mechanism has no additional memory requirements, since the wave{length integral can be accumulated step by step avoiding storing the intensi-ties for each wave{length. The same is true for a large class of redistributionfunctions. In particular the extension of our adaptive concepts to the wave{length dependent problem is interesting, since coe�cients and solution candi�er extremely between two nearby wave{lengths.
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